
0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000
0000 0000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000 0000
0000 0000 0000
0000 0000 0000
000000000000000000
000000000000000000

0000000000000000
000000 000000

0000 0000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000

0000000000
00000000000

00000000000
00000000000

00000000000 ooogggggggg00
000000000000000000

/. 000000000000000000
000000000000000000
0~0000000000000000
0000 0000
0000 0000

0000 00000
00000 0000000

000000 000000000
0000000 00000000000
0000000 00000000000
0000 0000 0000
0000 0000 0000
0000 0000 0000
000000000000 000000
000000000000 000000

0000000000 00000
00000000 0000

000000
0000
0000

00000
0000000

0000 00000000
0000 0000000
00000000000000
000000000000
000000000000
00000000000000
0000 0000000
0000 00000000

0000000
00000

0000
0000

0000 00000
00000 0000000

000000 000000000
0000000 00000000000
0000000 00000000000
0000 0000 0000
0000 0000 0000
0000 0000 0000
000000000000 000000
000000000000 000000

0000000000 00000
00000000 0000

000000
000000
000000
000000
000000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000
0000 0000

000000
000000
000000
000000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000 0000
0000 0000 0000
0000 0000 0000
000000 0000 000000
000000 000000
000000 000000
000000 000000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000

0000000000
00000000000

00000000000
00000000000

00000000000
00000000000

0000000000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000
0000 0000

0000 000000
00000 000000

000000 000000
0000000 000000
0000000 0000 0000
0000 00000 0000
0000 000000 0000
0000 00000000000
0000000000000000000
00000000000 000000

0000000000 00000
00000000 0000

00001".tD

IBM System/3
Disk System
RPG II and System Additional Topics
Programmer's Guide

IBM System/3
Disk System
RPG II and System Additional Topics
Programmer's Guide

Preface

This manual assumes that you have had programming ex
perience on the IBM System/3 Disk System. You should
now be familiar with basic RPG II concepts and disk con
cepts presented in the following manuals:

• IBM System/3 Disk System Introduction, GC21-7510.

• IBM System/3 Card and Disk System RPG JI Fundamen
tals Programmer's Guide, GC21-7502.

• IBM System/3 Disk System Qmcepts and Programming
Programmer's Guide, GC21-7503.

You should also be familiar with the term disk system
management. A group of system programs called disk
system management loads and runs programs on the disk
system.

This manual presents additional RPG II and disk concepts
that can help you in programming applications. Each
chapter of this manual is a separate unit of instruction. A
list is provided at the beginning of each chapter which de
tails the contents of the chapter and the concepts you
should be familiar with before reading that chapter. A
series of review questions is provided at the end of each
chapter to help you evaluate what you have learned.

First Edition (September 1970)

This manual discusses direct file organization and the fol
lowing processing methods:

• Consecutive processing of direct files.

• Random processing of sequential and direct files.

• Processing of disk files by record address files.

It also discusses concepts and coding for the following disk
system features:

o ADDROUT sort.

• Automatic file allocation.

• Multi-volume files.

• Inquiry.

• Dual programming feature {DPF).

• Storing programs and procedures on disk.

Changes are continually made to the specifications herein; any such change will be
reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming
Publications, Department 425, Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1970

Additional RPG II concepts are presented on the following
topics:

• Controlling the performance of operations.

• Altering the order of file processing.

• Describing input fields that control processing.

• Using the printer.

• Using arrays.

• Changing data structure.

Four manuals are available for further reference:

• IBM System/3 Di.sk System Operation Control Language
and Disk Utilities Reference Manual, GC21-7512.

• IBMSystem/3 Disk System Di.sk Sort Reference
Manual, SC21-7522.

• IBM System/3 Disk System RPG II Reference Manual,
SC21-7504.

• IBM System/3 Disk System Operator's Guide,
GC21-7508.

ii

CHAPTER 1. DIRECT FILE ORGANIZATION •
Introduction .
Relative Record Number .

Deriving the Relative Record Number
Synonym Records .

Processing Direct Files . .
Random Processing by Relative Record Number
Consecutive Processing of Direct Files

Direct Files: Adding and Deleting Records
Adding Records to Direct Files
Deleting Records from Direct Files

When To Use Direct File Organization
Considerations . . .
Summary. •

How To Create a Direct File .
Creating a Direct File Without Synonyms
Creating a Direct File With Synonyms
Example of Creating a Direct File . .

REVIEW 1 . .
ANSWERS TO REVIEW 1 .

CHAPTER 2. CONSECUTIVE PROCESSING OF
DIRECT FILES .

- Introduction .
_ When to Process Direct Files Consecutively .

How to Code for Consecutive Processing of a Direct File
Consecutive Retrieval From a Direct File
Consecutive Updating of a Direct File

REVIEW2 ..
ANSWERS TO REVIEW 2.

1-1
1-3
1-4
1-4
1-6
1-8
1-8
1-9

1-10
1-10
1-10
1-10
1-11
1-11
1-12
1-12
1-12
1-15
1-21
1-22

2-1
2-2
2-3
2-3
2-3
2-8

2-11
2-12

'CHAPTER 3. RANDOM PROCESSING OF DIRECT AND
SEQUENTIAL FILES 3-1

Introduction . 3-2
When to Process Direct and Sequential Files Randomly 3-2

Considerations • · 3-2
Relative Record Numbers . . 3-2
Random Processing by Relative Record Number 3-2
Coding for Random Processing of Direct and Sequential

Files 3-4
CHAIN Operation . • 3-5
Random Retrieval From a Direct File 3-6
Random Updating of a Direct File 3-12

REViEW 3 • . • • 3-15
ANSWERS TO REVIEW 3. 3-16

'CHAPTER 4. SORTING A FILE TO PRODUCE AN
ADDROUT FILE . .

Introduction .
Input and Output for ADD ROUT Sort •

File Placement • •
Determining Storage and File Sizes .
Coding Sequence Specifications •
OCL Statements .
Example: ADDROUT Sort
REVIEW4 .•
ANSWERS TO REVIEW 4 . •

4-1
4-2
4-2
4-4
4-5
4-7
4-8
4-9

. 4-11

. 4-12

Contents

1 CHAPTER 5. PROCESSING DISK FILES BY RECORD
ADDRESS FILES

Introduction . .
Files Containing Relative Record Number

(ADDROUT Files)
Files Containing Record Key Limits .

Random Processing by ADDROUT Files .
Considerations for Using ADDROUT Files
RPG II Specifications (Processing by ADDROUT

File)
Example: Processing by ADDROUT File

Sequentially Processing an Indexed File Within Limits .
Creating a Record Address File Within Limits .
Processing Sequentially Within Limits
RPG II Specifications (Sequential Processing Within

Limits) •
Example: Sequentially Processing Part of an Indexed

File •
REVIEW 5 .
ANSWERS TO REVIEW 5 • •

· CHAPTER 6. MULTI-VOLUME FILES.
Introduction .

·Creating Multi-Volume Files
Creating a Sequential File
Creating a Direct File .

· .. Considerations for Creating Multi-Volume Files.
Processing Multi-Volume Files.

, fyocessing Files Consecutively.
Processing Files Randomly.

Coding the RPG II File Description Sheet to Process
Multi-Volume Files .

· Coding Parameters on the File Statement to Process
Multi-Volume Files .

Parameters for the PACK Keyword .
Parameters for the UNIT Keyword
Parameters for the TRACKS or RECORDS Keyword
Parameters for the LOCATION Keyword

5-1
5-2

5-2
5-2
5-2
5-3

5-3
5-4
5-6
5-6
5-7

5-7

5-8
5-11
5-12

6-1
6-2
6-2
6-2
6-2
6-2
6-4
6-4
6-4

6-4

6-6
6-7
6-8
6-9
6-9
6-9 Parameters for the RETAIN Keyword

Example: Comparative Sales Analysis
REVIEW6 .
ANSWERS TO REVIEW 6 .

• • 6-10
6-13
6-14

CHAPTER 7. AUTOMATIC FILE ALLOCATION 7-1
Introduction . 7-2
Allocating File Space Automatically . 7-2
Considerations for Using Automatic File Allocation 7-3
-REvIEW 7 - . . 7-5

ANSWERS TO REVIEW 7 . • 7-6

CHAPTER 8. STORING PROGRAMS AND
PROCEDURES ON DISK 8-1

Introduction • 8-3
Advantages of Storing Programs and Procedures on Disk . 8-4

Increasing System Efficiency • 8-4
Decreasing Processing Time 8-4
Storing Programs and Their Data Files on Removable

Disks • • • . 8-4

iii

Location of Libraries on Disk . 8-5 Performing Total Operations Without a Control Break . 11-25
Object Libraries • 8-6 Internal Control Level Indicator LO 11-25

Physical Characteristics of the Object Library 8-6 Causing Control Breaks . • 11-27
Source Libraries . 8-8 Coding Control Level Indicators As Calchlation

Physical Characteristics of the Source Library 8-8 Conditioning Indicators . . 11-27
Storing Programs and Procedures Into Libraries. 8-9 Controlling When Operations are Performed • 11-28

The Library Maintenance Program 8-9 Halt Indicators (Hl-H9) 11-28
Using RPG II to Store an Object Program on Disk 8-15 External Indicators • . 11-32
Compiling and Storing a Source Program Into an REVIEW 11. INDICATORS . . 11-37

Object Library 8-15 ANSWERS TO REVIEW 11. INDICATORS . 11-38
REVIEW 8 8-17 Binary Field Operations (Controlling Switches) . 11-39
ANSWERS TO REVIEW 8 . 8-18. BITON Operation Code . 11-39

BITOF Operation Code . 11-40

CHAPTER 9. INQUIRY 9-1
TESTB Operation Code 11-40

Introduction . 9-2
Example • 11-41

Requesting Inquiry in an Interrupt Environment 9-2
REVIEW 11. BINARY FIELD OPERATIONS . 11-43
ANSWERS TO REVIEW 11. BINARY FIELD Functions of the Inquiry Request Key 9-2

OPERATIONS 11-44
Oassifying Programs for Inquiry 9-2

Altering the Order of Operations on the Basis of the Inquiry in an Interrupt Environment . 9-4
File Planning . 9-4 Next Record in a File 11-45

Planning Inquiry Programs . 9-4 Processing Card or Disk Files . 11-45

REVIEW9 9-7 Checking for Duplicates 11-46

ANSWERS TO REVIEW 9 . 9-8 Doing Special Operations for Only One Record in a
Group . . 11-55

Doing Special Operations for the Last Record in a
CHAPTER 10. DUAL PROGRAMMING FEATURE . 10-1 Group 11-58
Introduction • 10-3 Additional Points to Consider About Look Ahead • . 11-58
Advantages of Running Programs in a DPF Environment 10-3 REVIEW 11. LOOKAHEAD. 11-59

Main Storage. 10-3 ANSWERS TO REVIEW 11. LOOK AHEAD 11-60
Input/Output Devices 10-3
Processing Time . 10-3

CHAPTER 12. DESCRIBING INPUT FIELDS THAT
Considerations for Operating Under DPF 10-4

CONTROL PROCESSING 12-1
Considerations When Running System/3 Programs in a

Introduction . 12-2
DPF Environment · 10-7

Control Fields 12-2
Inquiry 10-7

Split Control Fields • 12-5
Disk Sort, Alternate Track Assignment, and Disk

Field Record Relation Indicators . 12-7
Initialization 10-7

OR Relationship 12-7
Executing RPG II Object Programs in a DPF

Environment 10-8 OR Relationship With Field Record Relation Entries 12-8

Loading Programs in a DPF Environment 10-8 Field Record Relation with Control Fields . 12-10

Sample Job Streams 10-9 Field Record Relation with Split Control Fields 12-10

REVIEW 10 . . 10-11 Using Match Fields With Field Record Relation For

ANSWERS TO REVIEW 10 10-12 More Than One Record Type 12-11
REVIEW 12 . 12-16
ANSWERS TO REVIEW 12 . 12-18

CHAPTER 11. CONTROLLING THE PERFORMANCE
OF OPERA TIO NS IN AN RPG II PROGRAM 11-1 CHAPTER 13. USING THE PRINTER 13-1

Introduction . 11-3 Introduction . 13-2
Increasing the Speed of Operations (Dual 1/0 Areas) 11-3 Using Overflow and Fetch Overflow to Control Page

Dual Input Areas 11-3 Formatting 13-2
Dual Output Areas . 11-4 Overflow Indicators . 13-3

Using Subroutines to Control the Processing of Specifications for Using Overflow Indicators 13-3
Calculations 11-6 Overflow Logic . 13-6

Controlling Overlay By Using Subroutines 11-6 The Effect of Skipping and Spacing On Overflow 13-9
Using Subroutines to Repeat the Same Calculations Printing Over the Perforation • 13-10

Several Times in One Cycle • 11-6 REVIEW 13. OVERFLOW AND FETCH OVERFLOW . 13-13
Specifications for Coding A Subroutine • 11-10 ANSWERS TO REVIEW 13. OVERFLOW AND

REVIEW 11. SUBROUTINES . 11-17 FETCH OVERFLOW 13-14
ANSWERS TO REVIEW 11. SUBROUTINES • 11-18 Using *PLACE To Print Duplicate Information . . 13-15
Repetitive Output (EXCPT Operation) . 11-19 Specifications for Using *PLACE . . 13-18

Using EXCPT and *PLACE . 11-19 Formation of Print Lines 13-19
Conditioning the Use of EXCPT Operation • 11-22 Printing a Field Several Times on the Same Line . 13-23

REVIEW 11. EXCEPTION OUTPUT . 11-23 REVIEW 13. *PLACE. . 13-25
ANSWERS TO REVIEW 11. EXCEPTION OUTPUT • . 11-24 ANSWERS TO REVIEW 13. *PLACE . 13-26

iv

Using the Dual Feed Carriage Feature to Print Two Describing Data and Storing It in an Array 15-39
Output Files for One Program . 13-27 Entire Array Data On One Record . 15-39

File Description Specifications 13-28 Array Data On More Than One Record 15-42
Output-Format Specifications • . 13-28 REVIEW 15 . 15-51
Example: End-of-the-Month Billing . . 13-29 ANSWERS TO REVIEW 15 15-55

REVIEW 13. DUAL FEED CARRIAGE 13-33
ANSWERS TO REVIEW 13. DUAL FEED CARRIAGE • 13-34 CHAPTER 16. CHANGING DATA STRUCTURE. 16-1
Using the Printer-Keyboard as a Second Printer . . 13-35 Character Structure . 16-2

Using the Printer-Keyboard to Communicate With Representation of Negative Numbers • 16-3
the Operator 13-35 Representation of Characters in Storage • 16-5

Using the Printer-Keyboard as an Output Device Difference Between Character Representation on
for RPG II Programs • . 13-36 Cards and in Storage . 16-6

REVIEW 13. PRINTER-KEYBOARD . 13-39 Identifying Bit Combinations with Numerical Values 16-12
ANSWERS TO REVIEW 13. PRINTER-KEYBOARD . . 13-40 Assigning Numerical Values to Zone and Digit

Portions 16-16
CHAPTER 14. ALTERING THE ORDER OF Packed Decimal Format 16-20

PROCESSING FILES 14-1 Binary Format . 16-21
Introduction . 14-2 Collating Sequence of Characters . 16-23
FORCE: Specifying the Next File to Process 14-3 Collating By Zone Or Digit 16-28

Forcing a Number of Records from a File 14-4 Altering the Collating Sequence . 16-31
Look-Ahead to Determine Whether a File is to be Forced . 14-10 Specifying Changes in Collating Sequence • 16-31
REVIEW 14 . 14-13 Coding Characters to be Equal . 16-36
ANSWERS TO REVIEW 14 . 14-14 Punched Cards for the Altered Sequence . . 16-40

Altering the Structure of Characters • . 16-43
CHAPTER 15. ARRAYS . 15-1 How Move Zone Operations Work 16-43
Introduction . 15-2 Coding a Move Zone Operation . 16-43
When to Use An Array Instead of A Table 15-2 Differences in the Move Zone Operations 16-44
Defining An Array 15-3 Field Format and Move Zone Operations 16-45
Referencing All Fields in An Array 15-4 Example of a Move Zone Operation . 16-46

Array to Array Calculations 15-6 Choosing the Model Character for Factor 2 16-47
Calculations Using Arrays and Single Fields Translating Characters • • 16-4 7

(or Constants) . 15-9 Need for File Translation 16-47
Adding All Fields Within An Array 15-10 Specifying File Translation 16-47
Output of An En tire Array • 15-10 Punched Cards for the Translation Table. . 16-52
Accumulating Groups of Totals 15-15 REVIEW 16 • 16-53

Referencing Individual Fields of An Array 15-22 ANSWERS TO REVIEW 16 16-57
Indexing an Array . 15-22
Output of Individual Fields of an Array 15-24
Referencing Only Part of a Field • . 15-26

LOKUP of an Array 15-30
Searching an Array for a Particular Field . 15-30
Searching An Array for More Than One Field . 15-36
Output During an Array Search . 15-38 INDEX X-1

v

vi

i_HIMii§#
DIRECT FILE ORGANIZATION

CHAPTER 1 DESCRIBES:

Direct file organization.

How records are retrieved from direct files.

How to handle synonym records.

Two ways to process direct files.

Adding and deleting records from a direct file.

Applications for direct file organization.

Creating a direct file with RPG II.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe System/3 disk storage concepts.

Describe sequential and indexed files.

Define consecutive and random processing.

Define addition and deletion of records.

Code RPG II specification sheets to process sequential and indexed files.

Note: These topics are described in IBM System/3 Disk System Concepts and
Programming Programmer's Guide, G~21-7503.

v

Direct File C

J

·2

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe direct file organization.

Define relative record number and synonym records.

List the three ways direct files can be processed.

Describe how records are added to or deleted from a direct file.

List several applications where direct file organization is preferable to other file
organizations.

Code the RPG II specification sheets to create (load) a direct file.

INTRODUCTION

A direct file is a file on disk in which records are assigned
specific record positions. Direct file organization enables
you to directly access any record in the file without
examining other records or searching an index. Thus, in
some processing situations, direct file organization has
advantages over sequential and indexed organizations
(see When to Use Direct File Organization).

Figure 1-1 represents direct file organization. Records are
assigned specific locations., regardless of the order they are
put into the file. Record locations exist for all records
which can be put into the file, although not all locations
contain records. The location in the file where a record

Record
Location:

I I
I 1 I
I I

I I
I 21
I I

2

I
3

1
I I
I I

3

Figure 1-1. Direct File Urgaruzatton

4

Unused record
locations (blanks)

will be placed is determined from a control field in the
record. Records can be scattered throughout the file,
depending on the distribution of the control fields. The
unused record locations contain blanks. How the locations
became blank is discussed in How to Create a Direct File.

Direct files may span multiple disk volumes. When a direct
file is processed, however, all volumes containing portions
of the file must be mounted on the disk drive, since every
record in the file must be accessible. Therefore, multi
volume direct files are limited to two volumes with a
single disk drive (one fixed volume and one removable
volume) and four volumes with dual disk drives (two fixed
volumes and two removable volumes).

7 8

Direct File Organization 1-3

RELATIVE RECORD NUMBER

In a direct file, a record is written and retrieved directly by
specifying the location of the record in relation to the
beginning of the file. This relative position is called the
relative record number. The relative record number is not
a disk address, but is a positive, whole number that is con
verted by disk system management to the disk address of
the record to be accessed.

Deriving the Relative Record Number

A relative record number is similar to the key of an indexed
file or the control information in a sequential file: it is de
pendent upon a specific field (control field) in the record.
The control field can either be used directly (without
change) as a relative record number or it can be mathemat
ically converted to provide an acceptable relative record
number.

Direct Method

An easy way to derive relative record numbers is to have
them correspond directly to the control fields in the
records. Because the control information need not be
converted into a relative record number, manipulation and
programming are kept to a minimum. For example, in
Figure 1-1 the record with a 1 in the control field becomes
relative record number one; the record with a 5 becomes
relative record number five, and so forth. This method is
practical where control numbers can be assigned on a
sequential basis, such as employee numbers for payroll
records, student numbers in a school, and customer
numbers for customer files.

Suppose a small college has an enrollment of 5,000
students. A master student file is maintained including
currently enrolled students and graduates for the last
two years. The master file contains approximately 7 ,000
words. Each student is assigned a 6-digit file number as
follows:

Expected
year of
graduation

7419397
I A unique identification number
I from 1 - 9999
I

The identifying numbers are assigned on a sequential basis
and numbers retired from the master file are available for
reassignment.

1-4

A direct file with 10,000 record locations is used for the
student master file, satisfying a need for fast access to each
student's record. Since the identifying numbers range
between 1 and 9999 and there are no duplicates, the
relative record number is taken directly from the student
file number. Figure 1-2 shows relative record numbers
taken from the student file number being used to update
student addresses.

Conversion Method

Conversion refers to any technique for obtaining a desirable
range of relative record numbers from the control fields of
the records. The conversion method must be used when
the values in the control fields cannot be used directly as
relative record numbers. For example, employee numbers
in a factory range from 0001 to 1500, but only 450 numbers
are in use since numbers belonging to employees who have
retired or terminated have not been reused. A file large
enough for 1500 records is not needed; therefore, a tech
nique for converting the employee numbers to approx
imately a 1 through 500 range must be found. This pro
vides 50 locations for file expansion.

When the conversion method is used, every possible control
field in the file must convert to a relative record number in
the allotted range (in this case, 1 through 500), and the
resulting relative record numbers should be distributed
evenly across the allotted range so that there are few

, synonym records. Synonym records are two or more
) records whose control fields yield the same relative record
- number (see Synonym Records). Your program must
· allow for synonyms if they are generated. (As a general

rule, 15 percent of a file should be reserved for expansion
and synonym records.)

One way to convert the range of employee numbers from
1500 to 500 is to divide the employee number by 3 and
drop the remainder (thus 3 becomes 1 ; 6 becomes 2; 1500
becomes 500). However, unless the file is perfectly dis
tributed, there will be synonym records. For example, if
the numbers 6, 7, and 8 are present, all three become
relative record number 2.

An alternate technique that produces fewer synonyms is
to divide the employee number by 2 and drop the remain
der. This compresses 1500 numbers to 750. There are
300 unused locations in this case, but fewer synonyms.

Control ____ -r--:-~"""f'.S.00SQREW • jQHN W RR2
Field • 2 3 ·-~~==:~::::1-:::::!::;:=~====•· 10 11 12 13 ,, is ,, 11 1a ,g .20 21 22 23 2• 2s 26 21 2a 29 Jo 31 J2

GLENCOE• Ml NN

7if."04.96JJOHNSONtr OHN P 2716
2 3 ·~:=::=!:::::~=::::?.::.::~:;::t 10 11 12 13 1.4 15 16 17 ' 19 20 21 22 23 2" 25 26 27 1& 2.9 30 31 11

2 ;«~~:~:~';~ II~~~:~~ S~Ya?. ~ 23 ~ 25 2& 27 •• 29 ~~~
B
A
8
4
2
1

Student
------Address

File SPRUCE A IRON CITY,MJNN
O«~~O~ttH~~~~~~D~~~· B JI,) JI i1 B

Relative } 496 Record
Number

• 497 498

Figure 1-2. Relative Record Numbers Corresponding Directly to a Control Field

8006

A
8
4
2

8007

Direct
Student

8008

Direct File Organization 1-5

If there is no sequence to numbers in a control field (such
as part numbers), a conversion technique that produces
random numbers can be used. The resulting numbers
should be distributed evenly within the selected range
(depending upon the number of record locations needed)
and should be suitable as relative record numbers (positive,
whole numbers). One such technique is squaring the num
ber in the control field and selecting certain digits from the
resulting number as the relative record number. The cal
culation must be performed every time the program must
seek a record. For example, suppose you have part numbers
that consist of six digits, with certain digits having a special
meaning. No two part numbers are alike. The part number
is squared and, of twelve resulting digits, the center four
are used as the relative record number for the parts inven
tory file.

Part number = 468152

468152 x 468152 = 2191162§104
::-:·:·:·:·:·:·:·:·:::

Relative record number= 6629

Since four digits are selected, random numbers from 1 to
9999 could be developed. Therefore, a file containing
10,000 record locations should be provided for the parts
inventory.

Even the technique used in the example above is likely to
produce synonym records, since the center four digits of
the square of two different part numbers can be identical.
If a conversion technique produces too many synonyms,
it may be necessary to find a different technique or even a
different file organization. The complexity of processing
and programming for synonyms may outweigh the advan
tages of direct file organization.

Synonym Records

Two or more records whose control fields yield the same
relative record number are called synonym records. Syn
onyms have the same relative record numbers, but contain
different data. Only one of a group of synonyms can be
stored in the record location which agrees with its relative
record number. Therefore, you must find a way to store
and retrieve the other synonyms.

1-6

One way to handle synonyms is to link them together so
that all can be found by locating the first, as in Figure 1-3.
The first record is stored in the record location indicated
by its relative record number. That location is called the
home location; the record placed there is called the home
record. The first synonym is stored in the first unoccupied
record location (a location for which no relative record
number was developed). The relative record number of the
second location is then stored in the home record; that is,
the first synonym is linked to the home record. The
second synonym, if present, would be stored in the next
unoccupied record location and would be linked to the
first, and so forth.

In Figure 1-3, all records that are synonyms are loaded
into the file after records that can be stored in their home
location have been loaded. (See How to Create a Di.reef
File, Creating a File With Synonyms.)

If a new record is added to the file, but its home location
is occupied by a synonym for a different record location,
that record must be treated as a synonym for its home
location. Figure 1-4 shows the file that resulted from the
addition of synonyms in Figure 1-3. The home location
for record C is occupied by a synonym for record B, so
record C is placed in the first unoccupied location. Since
record B 1 is already linked to record B 2, record C must be
linked through B2 to its home location.

When you process a direct file containing synonyms, you
must verify every record retrieved. For example, when
you retrieve relative record 3 from the file in Figure 1-4,
you get record B1, which is a synonym for relative record
2. This is unacceptable. However, if you check the record
retrieved, you find that it is a synonym. You can now
chain to the relative record location, if any, indicated by
the first record and retrieve the second record. You can
continue this process until you find the record you want
or until the chain of synonyms ends. In this case, you
probably have an error because the requested record is
not in the file.

A similar method for handling synonyms is to set aside a
portion of the file for synonym records. Suppose, for
example, a file for 8500 records is set up to provide
relative record numbers between 0 arid9999.]Jy actually
setting aside enough area for 11,000 records, any synonyms
developed can be stored in record locations from 10,000
to 10,999.

Direct File

Relative record numbers 0-999
records

0 9999 10,000 10,999

/ unoccupied 1or•ions \ --------

Synonym
8 1 added

Synonym
82 added

2 3

A

2 3

Home J
Location t

I f

4 5 6

D ..
4 5 6

8 13 8 1 15 D 8
2 1 1 • A

Record 8
contains location
of synonym 8

1
.

Synonym 8 1
contains location
of synonym 8 Z

6

Figure 1-3. Storing Synonym Records in a Direct File

I A I B H s, H D

2 3

c

2 3

4 5 6 7 8

Record C is relative record number 3, but
location 3 is already occupied. Therefore,
record C must be placed in the first avail
able location.

G

4 5 6 7 8

Figure 1-4. Storing a Record When Its Home Location Is Occupied

7 8

G H

7 8

G H

7 8

9 10

9 10

9 10

/*

9 10

/*

9 10

Direct File Organization 1-7

The relative record number of a synonym is stored in the
home location, and a chain of synonyms is built as in the
previous method.

______ (_________ [___ } ___ l _,...--.i\

!10000 111.i\\\j\\\\\\\\\\1\\\\\\\1\1\l\1\111\1\\\l\1\1\1~\11\\11\\l\\1\\\\\fl 0 i10001lllt]_]lllll_llll~l __ 8
1 _ _..__

0
1 __ 1 _{ A B

2 3 4 1 Q,000 10,001

If records are added to the file, this method can be better
than the previous method, since a home location is kept
free for each different relative record number. Only one
seek is required for records without synonyms. However,
this method wastes more space because 11,000 locations
are used for 8500 records.

Other methods for handling synonyms can be devised.
Whatever the method used, extra accesses are required for
synonym records, and coding for verifying records is neces
sary.

PROCESSING DIRECT FILES

Direct files can be processed in three ways:

• Randomly by relative record number.

• Consecutively.

• Randomly by ADDROUT file (see Chapter 5).

1-8

Synonyms

Random Processing by Relative Record Number

Processing direct files by relative record number is similar
to random processing of indexed files by key. In both
cases, the file is processed randomly by the CHAIN opera
tion code during calculation time in the RPG II object
program cycle. In either type of file, only the records you
specify are processed.

For direct files, the relative record number is used to locate
the record you want. An index of record locations on disk
is not required. The disk address of the record is calculated
for you from the relative record number. Since no index
search is required, random access of a direct file by relative
record number can be faster than random access of an in
dexed file by key. (It may not be faster if a large number
of synonym records exist, since the average number of
seeks per record could become greater than the two re
quired by an indexed file.)

Figure 1-5 shows the steps that occur in updating a direct
master file with changes read from the MFCU. The master
file is updated randomly as changes are read.

Random processing by relative record number can be used
for retrieving or updating records from a direct file. (See
Chapter 3, Random Processfng of Direct and Sequential
Files, for more detailed information.)

Consecutive Processing of Direct Files

If you process only a low volume of specific records from
a direct file, random processing by relative record numbers
is usually faster. If you process the entire file, you can
process it consecutively, that is, one record after another
from beginning to end.

In consecutive processing of both sequential and direct
files, the contents of every record location is processed
until the end of the file is reached or until the end of job
conditions are met.

Gchange records are
read in from the
MFCU.

5-------

Since record locations containing blanks may be encountered
in direct organization, you must allow for the blank records
in your program.

Consecutive processing can be used to retrieve or update
records from a direct file which is specified as a primary or
secondary file. Detailed information on consecutive proces
sing of direct files is presented in Chapter 2, Consecutive
Processing of Di.reef Files.

----- 5

---- 10

--- 6

8

@Relative record
numbers are
provided by a
control field.

-- 3

Relative
Record#

2 3

DIRECT MASTER FILE

Figure 1-5. Random Processing of a Direct File

5 6

0 Relative record
numbers are used
to chain to the
master file.

10

@aster records are\
updated in the order
changes are received: 3, 8, 6, 10, 5.

/*

Direct File Organization 1-9

DIRECT FILES: ADDING AND DELETING RECORDS

After a file is created, file maintenance is usually necessary
to keep the file current. Adding and deleting records are
file maintenance functions common to all disk files.

Adding Records to Direct Files

Unlike sequential and indexed files, direct files can have
space available between existing records for records to be
added. {With either sequential or indexed files, new records
are physically added at the end of records already in the
file.) Records are added to a direct file by means of a
normal update operation as follows:

1. The relative record number for the record to be
added is developed.

2.

3.

4.

The location is read into main storage.

If the location is blank, the new record is stored.

If the location is occupied, the new record is stored
as a synonym (see Synonym Records).

In any file organization the situation can arise when records
must be added, but the allotted file space is full. To add
records, you must increase the total space available for the
file by using the Disk Copy /Dump program to copy the file
into a larger area (see IBM System/3 Disk System Operation
Control Language and Disk Utilities Reference Manual,
GC21-7512).

Deleting Records from Direct Files

As with sequential and indexed files, records in direct files
can be identified for deletion by a delete code. This code
is usually a single character at a particular location in the
record. When the file is processed, your program must
check for the delete code; if the code is present, the record
can be bypassed.

1-10

Since the record has been deleted, the record location is
available for a new record. Either a synonym for a differ
ent location can be stored or the location can be reused by
assigning the relative record number to a new record. If the
file contains synonyms, be careful not to delete synonyms
chaining information when you delete a record and reuse
the location.

Note: Records cannot be deleted from a direct file using
the Disk Copy /Dump program. Because the DELETE
parameter of the COPYFILE control statement causes
physical deletion of identified records, the function would
destroy the relative record positions on which direct file
organization depends.

WHEN TO USE DIRECT FILE ORGANIZATION

When choosing a file organization, you must consider the
use, size, activity, and volatility of the file.

Direct file organization can best be applied to files with
the following characteristics:

• Low activity.

• Random processing (on an inquiry basis or by unordered
transactions).

• Stable file size, not expanding beyond predictable limits.

• Control fields that can be used as or converted to a
relative record number.

Most file uses which indicate direct file organization also
indicate indexed organization. However, direct organiza
tion can have certain advantages over indexed:

• Direct file organization can require less main storage for
processing because no index handling routines, index
input/output areas, and master core index are needed.

• Random access of direct files can be faster, since a record
can be retrieved by only a single access (seek and read
or write). Similar access of an indexed file requires two
accesses, one for the index and one for the data record.

Like indexed files, direct files allow immediate inquiry and
response from any record in the file. This is important in
applications such as:

• Demand deposit accounting when you must find the
current balance of a specific account.

• Inventory control when you must retrieve information
on inventory items.

• Accounts receivable when you must retrieve current
customer information.

Also, like indexed files, direct master files allow processing
of both ordered and unordered transactions. therefore,
transactions need not be presorted. Thus, direct files can be
used in a variety of jobs with several other files, sequenced
or unsequenced, so long as the relative record number is
furnished.

Considerations

A significant consideration in using direct file organization
is developing the relative record number·. If you use a sim
ple method which p~oduces few synonyms, direct file
organization can be advantageous for you. Remember,
however, that you must provide the relative record number,
handle synonyms, and validate records retrieved. If the
programming to perform these functions becomes too
complex or requires too much main storage, you may want
to consider indexed file organization as an alternative.
You may waste file space by allowing for synonym records
or by not reassigning relative record numbers when records

are deleted. If too many synonyms are produced, the
average number of seeks per record for a direct file can
increase to a level where it is slower to process than an
indexed file. Perhaps future additions and deletions to the
file will upset the balance of your conversion technique.
You must consider all these factors in choosing the file
organization best suited to your needs.

A restriction inherent in direct organization or any other
file organization which supports random processing is that
the entire file must be online. That is, all volumes of the
file must be mounted while the file is being processed. This
means that a direct file is limited to two volumes in a single
drive environment or four volumes in a dual drive environ
ment. Since the number of volumes is limited, you will
want to be sure that, at its maximum probable size, your
direct file can be contained on the available disk space.

Summary

In summary, direct file organization can be used when:

• Direct inquiry capability is desired.

• Unordered (random) transactions are processed.

• Access speed is important to you.

• The size of the file is stable.

• The control field lends itself to developing a relative
record number.

Considerations when using direct organization are:

• It can require more complicated programming and
extra main storage, since the programmer must:

1. Provide the relative record number.

2. Handle synonym records.

3. Validate records retrieved.

• Unused file space can result from blank record locations.

• All volumes must be online.

Direct File Organization 1-11

HOW TO CREATE A DIRECT FILE

To create a direct file, you must define a disk file as a
chained output file in file description specifications
(Figure 1-6). In this way, the file is uniquely identified as
a direct file to disk system management. Disk system
management then allocates disk space for the file and clears
that space to blanks. From that point, the method you use
to write data records on the file depends on whether or not
you must check for synonyms among those records.

Whether or not you must check for synonyms, relative
record numbers are used with the CHAIN operation code in
your program to make the corresponding record locations
available for loading. The data used as a relative record
number in the chain operation can be a field in an input
record, or it can be created in your program.

Creating a Direct File Without Synonyms

If you will not have synonyms, you can load records into a
direct file in a single pass. You do this by specifying a
chained output file and writing records in the file by means
of the CHAIN operation. Record locations cannot be in
spected before they are filled with data. If a synonym is
encountered, it is written over the previous record and the
previous record is lost.

Example of Creating a Direct File in this section describes
the creation of a file without synonyms. This method of
creating a direct file can be used when the relative record
number either corresponds to a field containing sequential
values or is derived in such a way that no synonyms are
produced.

Creating a Direct File With Synonyms

If you have synonyms, you can create a direct file by using
more than one pass to load records into the file. The exact
metho.d you use depends on your scheme for handling
synonym records (see Relative Record Nu.mber, Synonym
Records). Your first job must define the disk file as a
direct file and clear the file to blanks. Once the file has
been cleared, one or more subsequent jobs can be run using
the update function to read record locations and check for
synonyms while loading the file.

Figure 1-7 shows a method of defining a direct file and
clearing it to blanks. In this method, the input card file
from which the direct file is created is placed in the MFCU.

1-12

The disk file is specified as a chained output file and is
cleared to blanks by disk system management after the job
begins. The CHANUM field from the card file is used to
chain to the corresponding location in the direct file and
the first record is placed in the file. The last record (LR)
indicator is then turned on by a SETON operation, forcing
the end of job condition. The direct file now contains a
single record. This job can be immediately followed by
one or more jobs which read the remaining cards from the
MFCU and write out the disk records using the update
function.

You learned in Relative Record Number, Synonym Records
in this chapter that there are several ways to handle
synonyms. Two methods described were:

1. Storing all synonyms in an area of the file set aside
for them.

2. Storing synonyms in unused record locations between
the records in the file.

After your direct file is defined and cleared to blanks, dif
ferent steps are required to put records into the file for the
two methods listed.

If the first method is used, all records can be placed in the
direct file in a single job. That job would retrieve and
check each record location before it is filled. If the loca
tion already contains a record (that is, the record to be
written is a synonym), the synonym is stored in the next
available location in the portion of the file set aside for
synonyms. Thus, all home records and synonyms are
placed in the file in a single job.

If the second method is used, two jobs are required to place
home records and synonyms in the direct file. The first job
loads all home records; any synonyms encountered are by
passed. The second job loads synonyms in the record loca
tions available between home records. Both jobs are done
using the update function to check each record location.

Whatever method you use to handle synonym records, you
will have to devise a sequence of jobs similar to those
described above. Remember:

1. A disk file is defined as a direct file by being specified
as a chained output file.

2. In order to check for synonyms, you must employ
the update function. Random update with direct
files is described in Chapter 3, Random Processing
of Direct and Sequential Files.

Line Filename

File Type

File Designation

End of File

File Description Specifications

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Sequence Type of File Symbolic Name of Tape
Organization w Device Device w Label Exit Rewind

0
FileFormat orAdditionalArea ~ ; ~

g 2 5'. Overflow Indicator c !ii Core Index Condition

~ a: Block Record ::::: ~ ~ ·~ UH~
a~ £2.C Length Length~ ~o Strf ... ~ ~ ~
~a..w<(u. ~ :;;c:::; L:ca~~;n ~ j <(z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

a 2

0 3 I I I I I I I I .I I I I I TTI I I TTTI I TTT
t-0+4-+--+--it-+-+--t-+-+-+--+--t-t--+-+--+-~-+-+--t-t- Note: Shaded columns must remain blank; blank columns are va ri able -+-+--+-t-t-+-+--+--it-+-+--1

0 5
or optional.

0 6

a 1

Figure 1-6. File Description Entries to Define a Direct File

IBr., International Business Machines Corporation

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Form X21-9092

Printed in U.S.A.

75 76 77 78 79 80

Oat•----- Graphic

1 2

Page rn ~~~;~:ation I I I I I I I Punching
Instruction

Program---------------- Punch

Programmer ______________ _

Core
Line m Sizet~

g; Compile
f-
E

if
3456789

I Sterling ~
~ ~ ~ l

~ ~ Core ! g ~ ~ ~ ~ ~ Number .~
S. ~ Size to u .C iii ~ a,. ·E @ Of Print ~
Q 8 Execute a; 'f 'l ~ ~ ~ ~ Positions ~

IE f~jj~~i& I
8~ 0~ £M ~

<(

Control Card Specifications

Refer to the specific System Reference Library manual for actual entries.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

File Type

File Designation

End of File

File Description Specifications

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Line Filename Sequence Type of File ...J Device Symbolic _w Name of Tape
Organization w Device Label Exit Rewind

File Format or Additional Area ~ 0 ~

_Uc ~a: ~ Overflow Indicator ~ z' Condition
.---

0 !!i Core Index 3 u Block Record ::::: ~ Key Field ·~ 1l :J Ul-~
g ~ w ~ ~ Length Length § ~ g ~~~:~:n ,E j ~ z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71-72 73 74

0 2
F ~' ~E1cl1 p e r l2.~b rl2ilE ~' ~ 1¢11

0 4 F

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 1 of 4)

Direct File Organization 1-13

IB"'

Date ____ _

Program----------------

Programmer---------------

Line

>
I-

~

Filename

Position

lnternatio,,al Business Machines Corporation

RPG INPUT SPECIFICATIONS

[

Punching 1 Graphic T T
Instruction J Punch T T

Record Identification Codes

Position Z
0

~
:: N ~
~uo

Position

T T
T T

Field Location

1 2

Page[D

~
Field Name 3

e
~

~
~-t;
~~

i:r
;;2
::;;u

Program
Identification

Form X21-9094
Printed In U.S.A.

75 76 77 78 79 80

I I I I I I I

Field

·~
Indicators

~ Sterling

1
Sign

Zero Position
Plus Minus or

" Blank
;;
ii:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 ws 1 C[j.
o 2 I 3
o 3 I l
o 4 I

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 2 of 4)

IB~ International Business Machines Corporation Form X21-9093

Printed in U.S.A.

RPG CALCULATION SPECIFICATIONS
1 2 75 76 77 78 79 80

Date Graphic t t t Page[D Program I I I I I I l Punching Identification
Instruction Punch Program

Programmer

Resulting
Indicators Indicators

Arithmetic

ffi I l Plus Minus Zero

Line And Factor 1 Operation Factor 2 Result Field
Field ;. Compare

Comments
~ 5· Length g High Low Equal
I-

~
j 1>2 1<2 1=2

~ -' 0 0 s z Lookup
- z z z Table (Factor 2) is

High Low Equal
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c ~ ~ ~ ll~WK/"'1 c[)Lld:t M ~I RIEC11
0 2 c SE l.:zj~ LB
0 3 c

0 4 c

0 5 c

0 6 c

0 7 c

0 8 c

0 9 c
n ,.

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 3 of 4)

1-14

I

IBJtt lntwnational Business Machines Corporation Form X21-9090

Printed In U.S.A.

RPG OUTPUT- FORMAT SPECIFICATIONS
1 2 75 76 n 78 79 80

Date ___ _ Poy{[J Punching 1-G-ra_ph_ic -l---+---+---+---+--1--1--l
I nstruction Punch Program ___________ _

Programmer __________ _

Space .Skip Output Indicators

lf!i
I 1 ~§ Line Filename Field Name

And

~
~~ ~ ~ I-

~ ~ 0 0 'O 8"'
~ "'<(<(z z z

~ ~
3 4 5 6 7 8 9 10 " 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 JI 32 33 34 35 36 37 38 '39

oH 0 ~l~e_l1tl ~ f ~15 I IJ
oH : HHHt R~~~IR"W
0T3T T T TT

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 4 of 4)

Example of Creating a Direct File

A distributor wishes to create a customer file on disk. He
lists the following as significant characteristics of the file:

• Customer numbers are assigned on a sequential basis;
new customers are assigned the next higher number.

• There .are few deletions from the file.

• The file will be used to process invoices, orders, and
cash payments in an unordered manner.

• The file must allow direct inquiry to any customer's
record.

• The file has low activity; for example, out of 5000
customer records, only 100 invoices are processed per
day.

The distrlbutor needs both direct and consecutive proces
sing capability. These are offered by indexed and direct

.....,.,
Edit Codes

Zero Balan~ CQmmas 'No Sign CR - X • Remove
> to Print Plus Sign Sterling

End I!
Yes Yes 1 A J Y = Date Sign

a; Position
Positon II Yes No 2 il K Field Edit

in "' No Yes 3 c L Z = Zero

Output l No No 4 D M Suppress

Record rf

' Constant or Edit Word
ll.

40 41 42 43 «U~~~~WITT~~~~~n~~OOITT~~~~WD~Mm 71 72 73 74

~ f 1
TT T T T

HHH !HH f
TTTTT TT TI IT I I I I

!H
I IT

file organizations. Because the customer numbers are as
signed consecutively, synonym records are not a consider
ation. For this reason, and because there will be few
deletions from the file creating wasted space, direct file
organization provides maximum flexibility and access
speed.

His first step, then, is to create the direct file. He decides
that the record format shown in Figure 1-8 satisfies his
information needs. Additional fields in the record will
contain information to be used in specific jobs, such as
customer payments, invoicing, and sales analysis. (Various
applications using the customer file are described in
Chapter 2 and Chapter 3.)

The file is created from data on input cards (Figure 1-8).
The customer number (CUSTNO) is used directly as the
relative record number to chain to the direct file. The cus
tomer data from the input cards is then written on disk.
As a check on the creation of the file, each record written
on disk is also printed in the report shown in Figure 1-9.

Direct File Organization 1-15

1 2 3 4 5 I 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2.2 23 24 25 26 27 28 29 30 31 32

ITYPEI I TRRTRYI
65 66 67 68 69 70 71 2 73 {~~~~~#9.180 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

: 97 981100 101 102 '10 107101108 109 no 111 112 113 114 115 116 111 n8 119 120 121 122 123124 125 126 121128 :

8 rCUSNAM--1-a 4 4
2 2
1 1

12345678910111213Fl415161718.1920212223Z.C2526272829303132 B B
A A

:~ADDR · CTYSTA ZIP !
2 2
1 1
6133 ,.. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 SS 56 57 58 59 60 61 62 63 u B

A A
8 8
4 4
2 2
1 M"61~Hro11nnn~nnn~eo~H~M~~.,~~~M~~H"~l

IBM3700

,----------,---~~------~-----,,, //I I I
/1 /I I I I

/~/ff/ ~ I I~ I ~ I CUSNAM I
o/81 ~ tff / ~ I i / I

1$1~1 8 1t1 ~ I (;j' I I

rrr rr 1' t r
1 1

(Length)

4 2 3 18

Input
Card

Disk
Record

r--------------------------------
1

I I I /
I I I

l I I / I
/ ADDA / CTYSTA / ZIP / (Additional /

/ / / / Data) /

r r r r rd
16 16

Figure 1-8. Record Formats for Creating a Direct Customer File

1-16

5

Total
Length= 128

61

t::I
i:;·

a
"r1
t=:
(D

0

j
N.
II)

c:t. g
7"
-J

~
~
~
......
~
~
::i. a
(D
Q.

~
d-.
~
0,
(")

~ s
~
:;ti
(D
0

~ a-

0

CUSTOMER TYPE

1637
4301
3601

B
B
D

NAME ADDRESS

JONES VARIETY 14 S MAIN BEDROCK, TEX
JIM'S 5 AND 10 1103 FRANKLIN ST GLENCOE, MN
SCHMIDT HARDWARE 600 lST ST NW HILL CITY, MD

__ , ----+--+--~;--

ZIP CODE TERRITORY SALESMAN

45412
55336
21222

12
12
02

015
015
046

Specification Sheets

Figure 1-10 shows the RPG II coding necessary to create
the direct customer file.

IB:M International Business Machines Corporation

RPG CONTROL-CARD AND FILE DESCRIPTION SPECIFICATIONS

Form X21-9092

Printed in U.S.A.

75 76 77 78 79 80
Date ____ _

Punching 1 Graphic I
lnstructionI Punch T T

T
T T
T T

1 2

Page~ ~~~;i~:ation I I I I I I I
Program----------------

Programmer ______________ _

Control Card Specifications

" 1l
~~ ~
L ~ ~ i
f ~ ~ ! i .§ ~ ~~;r~~; I
~ CZ ! ~ ~ ~ ~ Positions 8

OI ;:E :J :J.., +-' 't N

~~EE66]~ ~
;;:

Line
Core .,. Core

a,, Size t~ ~ .g Size to
~ Compile 0 8 Execute

~ ti .5
~ g~

Refer to the specific System Reference Library manual for actual entries.

3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1

Line

3 4

0 2

0 3

0 4

0 5

0 6

0 7

I

File Description Specifications

Filename

File Type

File Designation

End of File

Sequence

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File _,
Organization w

File Format or Additional Area ~
C m 8

~ e t: ...!. Overflow Indicator c

._ 3 ~ Block Record ::::. ~ ~ ·1

Device Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Core Index

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

~
Condition

:::> U1-¥!!-

z j g ~ w ~ ~ length length ~ ~ g ~~~:~;n .E
5 6 1 0 9 10 11 12 13 14 15 16 11 10 19 20 21 22 23 24 25 26 21 20 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 The direct file being created 62 63 64 6s 66 61 6s 69 10 11121314

F ciu srrCIAl~.lJ~ISrdthnai(fx>Ml~:? dir? ttnnttFCI tltHJile,"r1J is defined as a chained output
F ~Iv sit~ /IL.! blc S: 1 12]1~ 1 l r[R 1 J) (s /([.. fi I e. -+-+~__,_._~-+-1-f---l-+--f--1--1
F ~ u s TL I s·¥:~ f: lf~ :-·· ::::.:;net fl:Hf' 1.H\¥jf.11Ek'

~ TT 1 T T { -....~Random Processing
Chained Output File

JJlll_l_llllJJ

T
T

Figure 1-10. Creating a Direct File (part 1 of 4)

1-18

IBWI

Date ____ _

Program----------------

Programmer---------------

lnternatiof'lal Business Machines Corporation

RPG INPUT SPECIFICATIONS

Punching
Instruction

Graphic

Punch

1 2

Page~ Program
Identification

Form X21-9094
Printed in U.S.A.

75 76 77 78 79 80

I I I I I I I

Record Identification Codes Field

Line
c.
>

1-

j

Filename z
=: Q
.c§Q) ,gc. ,,8~
~ - a:" z 0

Position Position Position

Field Location
~
1!~--~--~
iii

~ II

.!! ~
- ~ ~ ~
~e~~~
~ i3 cS ~ ~

From To

Field Name

c Indicators

~
0

0 ·~ Sterling :E-o
] .9!]!] Sign

LLLL Zero Position

II Plus Minus or

1 ,, Blank
~ 1! "iii
::o u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

¢1 1 c 1
O 2 I

o 3 I

o 4 I

0 5 J

0 6 J

o 7 I

O 8 I

0 9 J

1 o I

11 I

Figure 1-10. Creating a Direct File (part 2 of 4)

IB:ft1

Date _____ _

Program _______________ _

Programmer ______________ _

Indicators

'O z 'O z

Factor 1

l
~ TYPIE

7

~1 ~lrlct sir~

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

r Punching l 'nstruction

Operation

Graphic I I
Punch l l

Factor 2

l I t J
l l

1 2

Page~

Resulting
Indicators

Arithmetic

Plus1 Minu;i- Zero

Result Field Field g Compare
Length -~ HighT Low 1Equal

:ai 1>2j1<2j1•2

~ Lookup

Table (Factor 2) is

form X21-9093

Printed in U.S.A.

75 76 77 78 79 80

~;~~;~f~ation I I I I I I I

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16 1;l ~~Nh®M:@1HiMtt@:@~HUti-@WW::mt@EHt~,,,,A2 43 44 45 46 47 48 49 50 51 52 53 ~ig:J~0;J:~u:~ 60 61 62 63 64 65 66 67 68 69 10 11 12 73 74

0 1 c

0 2

0 3 c

0 4 c

0 5 c

0 6 c

0 7 c

o 8 c

Figure 1-10. Creating a Direct File (part 3 of 4)

records is used to chain to the
direct file. Indicator 04 turns on
if a record is not found in the
CHAIN operation (see CHAIN
Operation, in Chapter 3).

I I l I I l llTlllllllTTl

Direct File Organization 1-19

IBJ.1 I nternetional Buslneu Machin" Corporation

RPG OUTPUT· FORMAT SPECIFICATIONS
Date ___ _

Program ___________ _ l Punching Graphic l l l l J
Instruction 1--Pu_nc_h --+--lj---+--1+---+J---+--J+-----lJ

Programmer ___________ _

Space .Skip Output Indicators

1 2

Page[O

Edit Codes

Form X2HI090

Printed In U.S.A.

75 1s n 1a 79 so

- X • Remove
Sterling
Sign
Position Line Filename I ~

:!!
Field Name § ~":iton ~ ~= ~": ~ ~

m ~ ~ ~ in !!! No Yes C l
~~'!~~ ~ ~ 8.:itOutputi No No DM

Plus Sign
Y • Date

Field Edit
Z • Zero

Suppress

3 4 5 6 7 8 9 10 11 12 13 14 15

"' < ·:·:· ,..... .. . ~ ~ Record ~ Constant or Edit Word

11 1e 19 20 21 ~II~~ !iii:[# i ~iflScl:~.l:u.33 34 35 36 31 38 I:!!! 40 41 42 43 t41!5 46 47 48 49 50 51 52 53 54 55 56 57 58 59 so 61 62 63 64 65 66 67 68 69 10 11 72 73 74

0 1 °Ckl_SIIFlL~IEI~
0 2 0

0 3 0

0 4 0 ic.u~r~1 s rl~
05 0 p~
0 6 0

0 7 0

0 8 0

0 9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

0

0

0

0

1

Figure 1-10. Creating a Direct File (part 4 of 4)

1-20

1 'T~P~'
7 '~IE1'
7

7'1 I~· J>j C!o~E'
I lilf Rl'P. I T~~ I

IrlJPE 1

It£ 17\J

1. What distinguishes direct file organization from indexed or consecutive organization?

2. What is a relative record number? How can you determine a relative record number?

3. What must be done when a synonym record is encountered?

4. How do you add a record to a direct file?

5. Code RPG II specification sheets to create a direct file. The file is an inventory master file. The
relative record numbers are the part numbers. The file is created from input cards in the following
format:

1 2 3 • 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

~~"~~~mm~~m~~Mm~~~~~m~~~m~mm~mmm

B B
A Part
8
4 No.
2
1
B
A
8 On

Description Price
A
8
4
2
1

•wtt~u~ffiffiD~~ro~nu~~~o~n~~~B

A
8

4 .hand 4

~--···t·························-~
! '8' Card Code !
2 2
1 ~~n~"M~nun~nnnn~~~~M~~n""~~~~tt~~ 1

IBM3700

The disk records should have the same format except the delete code should be in column 38. The
delete code should be initialized to A. When the record is deleted, the code will be changed to D.

Review 1

Direct File Organization 1-21

Answers to Review 1

1-22

1. Records are loaded and retrieved from a direct file by specifying the relative position of the record
in the file. Records can be scattered throughout the file. The sequence in which they are loaded
depends on the sequence of relative positions supplied.

2. The relative record number is used to reference records in a direct file. It is the position of the
record in relation to the beginning of the file. Relative record numbers can be determined in dif
ferent ways. The direct method is a technique of using the control field directly as the relative record
number. There are several methods of conversion by manipulating a control field mathemtically to
determine an acceptable relative record number

3. When a synonym record is encountered, two control fields have been converted to the same relative
record number. The programmer must provide an alternative record location for the synonym in
these cases.

4. Records are added to blank or inactive locations within the file. Records can be deleted by activating
the delete code and ignoring any data recorded in that record position or by blanking out the record.

5. See coding sheets (Figure 1-11).

International Business Machines Corporation IBJ.1
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Date-----

Program----------------

Programmer ______________ _

~ Sterling ~

L ~ ~ i
Core .,, Core i:n g' = ~ ~ Number gi

! ~~~~le l ~ ~~=c~~e i ~ ~ I i ~ ~ ~;,~;i~~s ~
E ~5 .og.,~u..u_!_!o;o;cc">~ I
u..5 o'ii _,.i?, -

0~ -M ~
<(

Line

Punching
Instruction

Graphic

Punch

1 2

Page~

Control Card Specifications

Refer to the specific System Reference Library manual for actual entries.

Form X21-9092

Printed in U.S.A.

75 76 77 78 79 80

r~~~;~:ation I I I I I I I

3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

File Type

File Designation

End of File

Line Filename Sequence

File Format
0

.e. t:
u 0:
3 U Block

g~w~~ Length

Record
Length §

File Description Specifications

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File _,
Organization w

or Additional Area ~
a> 8
~ Overflow Indicator c

'~ ~·~
~ g ~:!~:n ~

Device Symbolic Name of
Device w Label Exit

Extent Exit
for DAM

Core Index

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

::> z

Tape
Rewind
.-----I

File
Condition

U1-~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2
F ~ AiB DIS! t PE lE ti" ~I~ MlEJ c~ 1 -

0 4

Figure 1-11. Creating a Direct Inventory File (part 1 of 4)

IBJ.1 lnternatiol"al Business Machines Corporation F0<m X21-9094
Printed in U.S.A.

RPG INPUT SPECIFICATIONS
Date ____ _

Program----------------

Programmer---------------

Line
c.
>
f-

!

Filename
§
0

·;:;
c.
0

~
~
g>.

€·o
~ Position
"!:?

~

Punching
Instruction

Graphic

Punch

Record Identification Codes

Position ~ Position

~ ~ ~
~uo

Field Location

1 2

Page~

~
Field Name]

g
8

0

~~ u.u::

H
~u

Program
Identification

75 76 77 78 79 80

I I I I I I I

Field

5
Indicators

·;:;

~ Sterling

] Sign
Zero Position

Plus Minus or
.,, Blank
o;
u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 :ii 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2 1

0 3 2. >I DElst
0 4

0 5

0 6

Figure 1-11. Creating a Direct Inventory File (part 2 of 4)

Direct File Organization 1-23

IB~ International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS
Date _____ _

Program _______________ _

Programmer ______________ _

Indicators

Factor 1

Punching
Instruction

Operation

Figure 1-11. Creating a Direct Inventory File (part 3 of 4)

IB~

Graphic

Punch

Factor 2 Result Field

lnternn:ionel Business Machines Corporation

Field
Length

1 2

Page~

Resulting
Indicators

Ari1hmetic

Plus Minus Zero

g Compare

~ High Low Equal
~ 1>2 1<2 1-2

~ Lookup

RPG OUTPUT- FORMAT SPECIFICATIONS
1 2

Date I Punchin? I Graphic

I I I I I I I I
Pagem

Program Instruction Punch

Programmer

!£ l
~ Space .Skip Output Indicators Jo.

Edit Codes

~ {fil
...

Zero Balances

I 1 Commas No Sign CR -
"' lg ~ to Print

Line Filename w ~ Field Name End 1!
Yes Yes 1 A J ;;; t~ Posit on . Yes No 2 1:1 K g_ Q~ ~

ll t in "' No Yes 3 c L

~!
.,, .!;:

~ ~ J: .. t 8 ~ No No 4 D M
E i~ i .!;: 0 0 0 Output

~ > .><
,;; <{ <{ z z z

~ ~ Record If
~~ . Constant or Edit Word

0..

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 80

~;~;~f~cation I I I I I I I

Comments

Form X21-9090

Printed In U.S.A.

75 76 77 78 79 80

Program I
Identification I I I I I I

l

X • Remove
PllfSSign Sterling

Y • Date
Sign
Position

Field Edit
Z • Zero

Suppress

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 132 33 34 35 36 37 39m_ 40 41 42 43 «~~a~~~~~~~~m~~~~~~~~~m~~~ro 71 -72 73 74

0 1 D~ IS~ ~ ~1
0 2 0 ~ R~ NQ d 0 3 0 tfE sr=
0 4 0 PR ·~~ 3l:l
0 5 0 bW ~ N~ ~'']
0 6 0 U' r ~ I

0 7 0

Figure 1-11. Creating a Direct Inventory File °(part 4 of 4)

1-24

'GmVA:D'
CONSECUTIVE PROCESSING OF DIRECT FILES

CHAPTER 2 DESCRIBES:

Consecutive processing of direct files.

When to process direct files consecutively.

How to code the RPG II specification sheets to process a direct file consecutively.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Code basic RPG II programs using sequential and indexed files.

Describe consecutive processing.

Define activity and volatility of a file.

Describe, in concept, direct file organization.

Define synonym record.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe, in concept, consecutive processing of direct files.

Code RPG II specification sheets to consecutively retrieve records from a direct file.

Code RPG II specification sheets to consecutively update records in a direct file.

State the conditions for selecting consecutive processing of direct files.

Consecutive Processing of Direct Files 2-1

INTRODUCTION

Consecutive processing of direct files is similar to consec
utive processing of sequential files. Record locations are
processed one after another until end of job requirements
are met. Blank record locations are processed along with
those containing data. Remember that a direct file is
cleared to blanks when it is created, and record locations
which are not filled remain blank. See Chapter 1 for a
description of direct file organization.

The File Description Sheet entries required for consecutive
processing (Figure 2-1) are identical for direct and sequen
tial file organizations. As shown in Figure 2-1, dual input/
output areas can be requested (column 32 of the File
Description Sheet) for primary and secondary direct input
files. (The use of dual input/output areas is described in
Chapter 11.) Consecutive processing can be used to re
trieve and update primary and secondary direct files. It
cannot be used to create a direct file.

When retrieving and updating a direct file consecutively,
you may want to check each record for synonyms and
handle the synonyms differently from other records.
However, since consecutive processing is not dependent
upon relative record numbers, a direct file can be processed
consecutively without regard for synonyms.

If a consecutively processed direct file is in a logical sequence
by a control field, it can be used in multifile processing.
The same rules apply to direct files used in multifile
processing which apply to other primary and secondary
files. A complete description of multifile processing is in
the IBM System/3 Disk System RPG II Reference Manual,
SC21-7504.

File Description Specifications

File Type

File Designation

End of File

Line Filename Sequence

File Format
c

~
0 Block
~ ~ 2: Length
O.. W <(LL

0 2

0 3

0 4

0 5

0 6

0 7

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
Device

Symbolic

Device

Name"-t
Label Exit

Note: Shaded columns are not used; blank columns are
variable or optional.

Figure 2-1. File Description Specifications for Consecutive Processing

2-2

Extent Exit

for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

File

WHEN TO PROCESS DIRECT FILES CONSECUTIVELY

Consecutive processing of direct files is desirable in the
following situations:

1. You want to process all or most of the records in the
file (activity is high).

2. The physical sequence of the file is appropriate to
your job. Either you do not care about the sequence
(updating sales data, changing activity codes), or the
physical sequence of the records (by account number,
stock number, and so forth) is satisfactory for your
purpose.

Direct files are often employed where the activity of a file
is low and direct inquiry from the file is necessary. There
are times, however, when the activity on a direct file is high
for certain jobs, such as a writing a report where the entire
file is listed. It can be desirable, in such cases, to process
the file consecutively.

In Chapter 1, for example, a direct customer file is cr~ated
for a distributor (see How to Create a Direct File in Chapter
1). The distributor selects direct file organization because
the activity of the file is expected to be low, unordered
transactions are to be processed, and he desires immediate
inquiry capability. Each day, invoices are prepared, records
are updated with sales information and customer payments,
and inquiries concerning customer accounts are processed
on a demand basis using random processing. At the end of
each sales period, sales analysis reports are prepared and
periodic adjustments are made to sales figures. These
periodic jobs use consecutive processing, because all records
are to be processed. Because the customer numbers used
as relative record numbers are sequential, the periodic
reports are in customer number sequence.

HOW TO CODE FOR CONSECUTIVE PROCESSING
OF A DIRECT FILE

Consecutive Retrieval From a Direct File

Consecutive retrieval of records from a direct file requires
the same File Description Sheet entries as consecutive re
trieval from a sequential file. The required entries for
retrieval are shown in Figure 2-1 (I in column 15 indicates
that the file is an input file). The file named in columns
7-14 must be a previously created direct file. Because the
file is an input file, it must also be defined on the Input
Specifications Sheet.

Example 1

Suppose the direct customer file, CUSTFILE, created in
Chapter 1, is processed to produce a monthly report. This
report shows all customers that have had no sales activity
during the period. It is analyzed by sales personnel, who
then make follow-up calls. The records of all customers
are examined and the file is in sequence by customer num
ber; therefore, the report is produced by consecutive
processing of the direct file.

Consecutive Processing of Direct Files 2-3

The format of the disk records in CUSTFILE is shown in
Figure 2-2.

Figure 2-3 shows a part of the report produced by the
consecutive processing job. The report consists of fields
selected from CUSTFILE and an accumulated total for
accounts receivable (TOTAR).

4 2 3 55

Length

r-;----r---r----,---7
I t: I cf I ~~ I ~ I ~$ I

;g;; 5 I 5 I ! I .;; I

_(_1--~1--~J---------1---(I I I I
2 6 6 7 7

r-----1---r--.-r---r-----7
I "~ I i I # I ~~ I I

I $' I f I f I f I (Reserved) I

(I I I I (_ I ~, I I I .
6 6 6 6 9

Total length of record= 128 positions

Figure 2-2. Disk Record Format for Direct Customer File, CUSTFILE

2-4

:!'.!
~
'"'1
CD

ll"
~

~
CD

"C
0
:l
0,
~
CD
(')
CD

= ~
'< -= ~
~-
CD
()
c:
~
0 s
CD
~
::::-
0 s
()
0

~
CD
(')

c:
~-
CD

"'d
'"'1
0
(')
CD

() ti>

0 s· ~ (JQ
CD 0 (')

c:,

~-
s:.:i

t:l CD l:j"
~ CD

(')
0
(')

"'rj CD
ti> = ti> CD s·

(JQ

0,
t:l
l:j"
CD

~
"'rj

= CD
ti>

ll"
CJl

D

I CUSTOMER

1637
2279
2331

NAME

JONES VARIETY
GREEN GROCERY,INC
STAR MARKET

-~--~~-r-+-r--;---+----+--~-++-+----+-+-h-+++-~-+-+--t-+-1-+4--HH--+-+-l-+-+-+--1· t--:*--f-7~T-r-~ -·

CITY,STATE

BEDROCK, TEX
BIG CITY,CALIF
GOODTOWN,GA

SALESMAN

15
102

74

LAST ORDER

4/13/71
4/27 /71
4/01/71

SLS PREV PER CRDT

240.37 01
1200.00 01

31. 95 03

TOT A/R

.00
600.00
937.16

Figure 2-4 shows the specification sheets necessary to
consecutively retrieve records from CUSTFILE to produce
REPORTl, a list of recently inactive customers.

Since the direct file probably contains blank record loca
tions and inactive records, a technique is employed on the
Input Sheet to bypass such records (Figure 2-4). If a
meth(!d is not used to bypass unidentified records, the
program will halt when they are encountered.

International Business Machines Corporation

IB~
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Da1e ____ _

Program-----------------

Programmer ______________ _

" tl
~~ ~
L !'J, ~ £

Core

Punching 1 Graphic I
Instruction j Punch I 1 T

T T

Control Card Specifications

1 2

Page~

Line Size to ~ .~ ~r:to f i ~ ~ ! .5 ~ ~~;r~: I Refer to the specific System Reference Library manual for actual entries.

~Compile
f-

~
8 8 Execute <ii ex 't ~ ~ ~ ~ Positions ~
II l~fj~~;c>& ~
g~ 0~ -M ~

<(

Form X21-9092

Printed in U.S.A.

75 76 77 78 79 80

~;~~;i~~ation I I I I I I I

3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1

Line

3 4

0 2

0 3

0 4

0 5

0 6

0 7

Filename

File Type

File Designation

End of File

File Description Specifications

Mode of Processing

Leng1h of Key Field or
of Record Address Field

Record Address Type

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Sequence Type of File1 Symbolic Name of Tape

File Format ~;~;~~~~~:I Area ~ Device Device w Label Exit ~
g °' 8 The direct file is described File

~ ~ .:. Overflow Indicator c Condition

u.

t-oE ~ Block Record :::: ~ ~ ·~ as a disk file tO be processed •re Index U1-U~
:;: w ~ ~ Length Length § ~ g Starti~g ~ consecutively (identical to the ~ ~

s 6 7 a 9 10 11 12 13 1•· 1~ ·i~ # @K kW\f~ ~r;JSaJ. :; 'Ml'.:~~ #k ~-; J ~nr:;=:t,:). description of a sequential disk• 62 63 64 65 66 67 68 69 70 71 72 73 74

F cu s]IF I L-tft [B F ~ 1~8 ~, ~1 1' ,:: file). 1'>]1
F REPP Rl1'1 =:::::(>:er tFJl'llHtl .. · , ~tN:mE·R

Figure 2-4. Consecutive Retrieval From a Direct File (part 1 of 4)

2-6

IB:ft1

Date ____ _

Program---------------

Programmer---------------

~
]
C:•

Line Filename ~ § p
Position

i 1l c: "E 0
§ ·g_

~ t1l z 0

1

lnternatiorial Business Machines Corporation

RPG INPUT SPECIFICATIONS

Punching
Instruction

Graphic

Punch

Record Identification Codes

Position Position

Field Location

i1----.----t
iii

tJ ~
~ ~ i

3e~~~
~56~~

From To

1 2

Page~

~
Field Name]

e
~

0

:9~
.!!!"ii u..u:
.~2'
-5 :~
~6

Program
Identification

Form X21-9094
Printed in U.S.A.

75 76 77 78 79 80

I I I I I I I

Field

c: Indicators
0

~
~ Sterling
"O Sign

J Zero Position
Plus Minus or

"O Blank
a;
u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1

0 2

0 3

0 4

''{ti::;:;: An OR line with any record 3 6 ~.1U SITINlq
identifying in di cater not used 1--+--f-l--+-+-+--f--l-+-l+'~c+--4-+=-l+l~~-+-jL-+-S-+M-'lltlj-+=-ftt-+--+-1-1--1--+-1-+--+--+-+-+-+-+-1--+-1
elsewhere in the program 13 3~ ~() $~~ 0 5

0 6 causes unwanted records to 1417 lbl1 ClI1r' slrlt\-1
0 7 be bypassed, including blank ~~ "9 Cli<IEJDI / lI1
0 8 records. 1'7,~ JrJ~ Lr:> I vl~l
0 9

1 0

11

1 2

1 3

1 4

1 5 I

Figure 2-4. Consecutive Retrieval From a Direct File (part 2 of 4)

IB:ft1

Date _____ _

Program _______________ _

Programmer ______________ _

Indicators

ffi I I Line
~ 5· Factor 1

I- ~
~ 0 15 15 ...J 0

- z z z

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

l Punching
Instruction

Operation

Graphic I
Punch l

Factor 2

I I
l l J

Result Field
Field
Length

1 2

Page~

Resulting
Indicators

Arithmetic
Plus Minus Zero

:; Compare

g High Low Equal
~ 1>2 1<2 1=2

~ Lookup

Table (Factor 2) is

High Low Equal

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 80

~~~~:~!~cation I I I I I I I 

Comments 

345678 

0 1 c 
9 10 ~ 12 13 14 15 16 17 ~ R 24 25 26 27 t~M 3P 32 ~ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ~ 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 2 c l™!tAIRI 1'712 
0 3 c II Oil ~IR 
0 4 c l!Pl71.4IR 
0 5 c truLL41RI 
0 6 c 

Figure 2-4. Consecutive Retrieval From a Direct File (part 3 of 4) 

Consecutive Processing of Direct Files 2-7 



IBJt1 I nternetional Business Macllines Corporation Form X21·9090 

Printed In U.S.A. 

RPG OUTPUT - FORMAT SPECIFICATIONS 
1 2 75 76 T7 78 79 80 

Date ___ _ 

Program __________ _ r 
Punching Graphic 1 I T 
Instruction Punch -, T I 1 1 

Programmer _________ _ 

Space Skip Output Indicators ... 
Edit Codes 

Line Filename I 1 Field Name II § End ; 

~ -~ f i.. i---.--r--+--.-..-+--~~ ~ 1! ~slton ~ 
Yes 
Yes 
No 

Yes 
No 
Yes 
No 

- X = Remove 
Plus Sign 

!\ J Y=Date 
B K Field Edit 

Sterling 
Sign 
Position 

CL Z=Zero 

al<(~~~ o o 8~ Output .:;1,0..u'° 
z z ~ ~ Record 

~ Constant or Edit Word 

D M Suppress No 

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38'39 40 41 42 43 44'45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 0 IF E PblRIT 1 H 
o 2 o ol~ tllF 
0 3 0 

0 4 0 

0 5 0 

0 6 0 

0 7 0 

0 8 0 

0 9 0 

1 0 0 

1 1 0 ~ 1 
1 2 0 c.o s JnYjo 
1 3 0 

1 4 0 

1 5 0 

0 

0 lljSlif E J 
0 CRIEIDt lI 
0 

0 

Figure 2-4. Consecutive Retrieval From a Direct File (part 4 of 4) 

Consecutive Updating of a Direct File 

In the preceding example of consecutive retrieval, none of 
the fields in CUSTFILE were mocllfied;-data was taken from 
the disk records and used to produce a report. If, on the 
other hand, you want to modify certain data in the disk 
records, you must use the update function. If all or most 
of the records in the direct file are to be processed, you 
may want to update the file consecutively. 

Consecutive updating of records in a direct file requires the 
same File Description Sheet entries as consecutive updating 
of a sequential file. The required entries for updating are 
shown in Figure 2-1 (U in column 15 means update). The 
file named in columns 7-14 must be a previously created 
direct file. Because the file is an update file, it must also 
be defined with input and output-format specifications. 

2-8 

fll 'NArf'!~' 

15" ' s A Lie s~IAIN ' 

>14 I ~IL s 1~IE1V PlttR I 

i~ 

Example2 

Suppose the direct customer file created in Chapter 1 and 
retrieved consecutively in Example 1 is to be updated. At 
the end of each sales period, 'when all reports are completed, 
the sales figures for that period must be adjusted. Sales 
amounts for the last period (LSTPER, Figure 2-2) are 
replaced by the sales amounts from the current period 
{THSPER). The field containing the current sales amount 
is reset to zero for the accumulation of the next selling 
period. The fields containing accounts receivable overdue 
amounts will be updated when the monthly accounts re
ceivable statements are written. 

Figure 2-5 shows the coding necessary to consecutively 
update CUSTFILE. As an update file, CUSTFILE must be 
defined by file description specifications .and the fields to 
be updated must be described by input and output specif
ications. Customer records are read, updated, and written 
out in the order they physically appear in the direct file. 



IB~ 
International Business Machines Corporation 

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS 
Date ____ _ 

Program----------------

Programmer ______________ _ 

I~ " 
ar ~ £ ~ 

! E~,. } jE::.. l M ~ ~ i ~.~~~.I 
i If 0:.,~~Il~~-j-M~ ~~ if g :i ..: ~ ~ ~ 

Une 

<{ 

Punching 1 Graphic I 
Instruction_ I Punch l 

Control Card Specifications 

1 2 

Page~ 

Refer to the specific System Reference Library manual for actual entries. 

Form X21-9092 

Printed in U.S.A. 

75 76 77 78 79 80 

Program JllTTTl 
Identification 

3 4 5 6 1 0 9 10 11 12 13 14 15 15 11 1a 19 20 21 22 n 24 25 26 21 20 29 30 31 n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 51 58 59 50 51 62 63 64 65 66 61 68 69 10 11 12 13 14 

0 1 

Line Filename 

File Type 

File Designation 

End of File 

Sequence 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File ..J 

Organization w Device 
File Format or Additional Area ~ 

Symbolic 
Device 

O m 8 z 

Name of 
Label Exit 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ 
Condition ~ e t: ...:.. Overflow Indicator c Y! 

j ~ ~ Block Record ' ~ ~ ·~ The direct file is described 
Sore Index Ul-~ 

3 4 5 

0 2 

6 1 0 9 10 11 12 13.dii~d:i~ilti;U~!~ji!i!@ii'i@w§l,j~~!!~Hii~JjtHVMW~*= as a sequential disk file to 

F~kJlstzjF16.llJl)P F 2.~ 11..2.W 121.s.~\.,.,beupdated. 

~ 
61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 3 

0 4 

0 5 

Figure 2-5. Consecutive Update of a Direct File (part 1 of 4) 

IB~ 

Date ____ _ 

Program---------------

Programmer---------------

Line Filename 

Position 

International Business Machines Corporation 

RPG INPUT SPECIFICATIONS 

Punching 

Instruction 
Graphic 

Punch 

Record Identification Codes 

~ Position 

~ ~ ~ 
~uo 

z 
0 

~ Position 

~~j 
z 0 0 

Field Location 
> 
">-----~--.... 
iii 

~ II 

g ~ 

- ~ ~ ~ 
~ e ~ -E ~ 
~~6~~ 

From To 

1 2 

Page~ 

~ 
Field Name ] 

1 

0 

:E-o 
.~:2 
"-u. 

-~~ 
~~ 
::Eo 

Program 
Identification 

~1 

Form X21·9094 
Printed in U.S.A. 

75 76 77 78 79 BO 

I I I I I I I 

Field 

" 
Indicators 

0 .. , 
~ Sterling 
"C Sign 

j Zero Position 
Plus Minus or 

"C Blank 
-;:; 
u:: 

3 4 5 6 1 0 9 10 11 12 13 14 15 16 11 ia 19 20 21 22 23 24 25 26 21 20 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 61 62 63 64 65 66 61 68 69 10 11 12 13 14 

0 1 I J I 
0 2 I ~Jbl'f( !2JB.P TT T I I 
0 3 :} :I :f. :::=::::::: :::::: :::::=:: An OR line with any record 

0 4 identifying indicator not 

0 5 
used elsewhere in the program 

>-
0
--+-

6 
t--t--t--+--<,__...__,_-+--<,__...__,_-+--<~--+--+-+- causes unwanted (blank) 

0 7 
records to be bypassed. 

o 0 ttttttttttttttttt 
Figure 2-5. Consecutive Update of a Direct File (part 2 of 4) 

Consecutive Processing of Direct Files 2-9 



IB"' 
International Business Machines Corporation 

RPG OUTPUT - FORMAT SPECIFICATIONS 

Form X21-9090 

Printed In U.S.A. 

1 2 75 76 77 7B 79 BO 
Date _____ _ 

Graphic l l l I 
Program---------------

I Punching l Instruction Punch I l l l 
Programmer ______________ _ 

Filename 

~ Space Skip Output Indicators ...!'>o. Edit Codes 

:.c~ I I It!~ ,.. .... Commas Zer~ 0:,_\~~ces No Sign CR - x g Remove 

·' - ~-~ ~ And And Field Name § ~~t ~ ~es ~es ~ ~ ~ Y • ~i:~~ Edit 

g J1 " ~ ;: ~ in" on en N~s y~ 3 C L z • Zero 

_: .)l ,E e ~ ~ 
0 0 0 

8 Output ~ No No 4 D M Suppress 

~ !: co <C z z z :Cw Record ~ 
~ ~ ai 11 

Line 

Constant or Edit Word 
~ ~ 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 11 12 13 14 ~~ ~ 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 j:ig 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

..... 
0+ 2-+-+-0--+-1--1--+-+-+-1--1-I ··=-+-=::::_.:::· .. Consecutive update of a -t-t--;lr~~i-::5=l-'le_=-t~~R:t--t--t-t--t:;;lrj.r~0;t---1t-t--t-t-t-+-+--+-t--t--t--t---t--t-t--t-t-t-+-+-t-t-+--t-t-t-t-t--t-H 

,_o-+-3-t-t-o+-+-+-1-+-+--i-+--+--+ disk file is done only at LS IIPIEtR ~ 

0 1 at~lS[FlL~lllfl l l kt>liJ 

0 4 0 detail time. 
t--o +-5+-+-o-t-t--+-+--+-+--+-+-+--t I I I I I I II I I I l I 

Figure 2-5. Consecutive Update of a Direct File (part 3 of 4) 

IB~ International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 BO 

Date Graphic ·l 
± t j Page~ Program I I I I I I l Punching Identification 

Program 
Instruction Punch I 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I 1 Plus Minus Zero 

ffi 
Factor 1 Operation Factor 2 Result Field 

Field !. Compare 
Line 

! 5 Length ~ High Low Equal 
Comments 

E ~ ~ 
~ 1>2 1<2 1•2 

~ -' 0 'O 'O .. Lookup 
- z z z :c 

Table (Factor 21 is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18•19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c ~1. l- l4DJ VtIJ HS l8E.RI /..~ llJP IE~ 
0 2 c ~ ~I-~~ ~I~ lI 

r;ro ,_ ... 
""'I ~ 

0 3 c 

Figure 2-5. Consecutive Update of a Direct File (part 4 of 4) 

2-10 

I 



Review 2 

1. What points must you consider when processing a direct file consecutively? 

2. What is the difference between coding for retrieval of a direct file consecutively and a sequential file 
consecutively? 

Consecutive Processing of Direct Files 2-11 



Answers to Review 2 

2-12 

1. a. There will probably be blank and inactive records to be bypassed. 

b. The physical sequence of the file may or may not be meaningful as a logical sequence. 

c. You may encounter synonym records and must take steps to allow for them. 

d. The activity of the file for this run will probably determine whether to process randomly or 
consecutively. 

2. Those coding routines required to take care of blanks and synonyms must be added. The File 
Description and Input Sheets will be identical. 



i91fti41:t;t 
RANDOM PROCESSING OF DIRECT AND SEQUENTIAL FILES 

~ 
CHAPTER 3 DESCRIBES: 

When random processing is desirable. 

Random processing by relative record number. 

How to code the RPG II specification sheets to process direct and sequential files 
randomly. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Code basic RPG II programs using sequential and indexed files. 

Describe random processing. 

Describe, in concept, direct file organization. 

Define synonym record. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

State the conditions for selecting random processing by relative record number. 

Describe, in concept, random processing by relative record number. 

Code RPG II specification sheets to randomly retrieve records from direct and 
sequential files. 

Code RPG II specification sheets to randomly update records in direct and 
sequential files. 

Random Processing of Direct and Sequential Files 3-1 



INTRODUCTION 

Note: In a data processing context, the words random and 
direct are often used interchangeably. The word random, 
in this context, does not have the same meaning as it has 
in the term random number, which is a number obtained 
by chance. Here, random processing means that data 
records are accessed directly in a file, without regard to the 
physical or logical sequence of the records and without ac
cessing other records first. 

Sequential files and direct files are designed for different 
methods of processing. Records in a sequential file are 
normally processed consecutively; whereas records in a 
direct file are normally processed randomly. However, 
basic similarities exist between the two file organizations. 
Both consist of a data area containing only record locations, 
and neither uses an index. Both sequential and direct files 
can be processed consecutively. In fact, as shown in 
Chapter 2, the File Description Sheet entries for consecu
tive processing are identical for the two files. Because of 
the similarity in organization, sequential files, like direct 
files, can sometimes be processed randomly. 

WHEN TO PROCESS DIRECT AND SEQUENTIAL 
Fl LES RANDOMLY 

Direct files are organized for low activity processing. In 
low activity processing, a relatively low percentage of 
records from a file are processed at one time. For example, 
perhaps only 100 records per day out of 5000 are proces
sed. Efficiency is reduced when you must read all the 
records in the file just to process a few, so the file is proc
essed randomly. 

Random processing enables you to process only the records 
you want, disregarding all other records. This immediate 
access is important when a file is processed on a demand 
basis, requiring immediate inquiry and response. Random 
processing also enables you to process transactions on either 
an ordered or an unordered basis, increasing processing 
versatility and eliminating the need for presorting inquiries 
and transactions. 

3-2 

Considerations 

Remember that most advantages of random processing are 
available either with direct files or indexed files. A signif
icant consideration when using direct file organization is 
that you must develop relative record numbers. If a simple 
method is used that produces few synonyms, direct organ
ization can have the advantages of speed and space-saving 
over indexed organization. In any case, you must provide 
the relative record number, handle synonyms, and verify 
records yourself. If these functions become complex or 
require too much main storage, you might want to consider 
consecutive processing or indexed organization. 

The opportunities for random processing of sequential disk 
files are limited. If the sequential file is in order by control 
fields and there are no missing or duplicate records, the 
contents of the control fields can be used as relative record 
numbers. This is a se'condary use, however, since sequential 
files are designed for high-activity consecutive processing. 

RELATIVE RECORD NUMBERS 

Random processing of direct and sequential files is done by 
using relative record numbers. A relative record number is 
the numeric position of a record in relation to the begin
ning of the file. A relative record number must be a 
positive, whole number. 

RANDOM PROCESSING BY RELATIVE RECORD 
NUMBER 

Random processing of indexed files is accomplished by 
using the control field value {record key) to search an index. 
If a match is found, the record at the disk location contained 
in the 'index entry can be accessed. The control field value, 
therefore, is not related to the actual location of the record 
on disk. When processing randomly by relative record num
ber, however, the relative record number is used by disk 
system management to calculate the disk location of the 
record. No index area and index search are required, since 
the control field value is directly related to the record loca
tion. Therefore,_random processing by relative record 
number can be faster than random processing by key of an 
indexed file. If a large number of synonyms exist in the 
file, the advantage of fewer accessed required to retrieve a 
record may be negated by more complicated programming 
to handle synonyms and an increase in the average number 
of seeks per record due to synonyms (see Synonym Records 
in Chapter 1 for ways to handle synonym records). 



Random processing by relative record number can be used 
to retrieve and update direct and sequential disk files. With 
either organization, the file is specified as a chained file to 
be processed by the CHAIN operation code. Records can 
be processed either in an ordered or an unordered manner. 
Processing of records in sequence is usually faster than un
ordered processing, since less movement of the disk access 

0 Record is read from 
the input file. 

~ 
\ 

\ 

2 

\ 
\ 

\ 
\ 

\ 

@ Relative record number from 
the input record control field 
is used to chain to the disk file. 

Disk 
File 

2 3 

\ 
\ 

\ 
\ 

\ 
\ 

4 

\ 
\ 

\ 
\ 

' 
5 

mechanism is required. Figure 3-1 shows the steps involved 
in random processing of a disk file by relative record num
ber. In the figure, relative record numbers are obtained for 
control fields in the input records; however, they could also 
be generated by your program. Random retrieval includes 
steps one, two, and three in the figure; random update in
cludes all five steps. 

e New information is 
inserted in the record 
if update is indicated. 

E) Disk record is 
retrieved. 

6 '0 8 9 

record is written. 

/* 

10 

Figure 3-1. Random Processing by Relative Record Number (Direct or Sequential Disk File) 

Random Processing of Direct and Sequential Files 3-3 



CODING FOR RANDOM PROCESSING OF DIRECT 
AND SEQUENTIAL Fl LES 

Figure 3-2 shows the basic file description specifications 
for random processing by relative record number. The 
entries shown apply to both direct and sequential files. 

Columns 7-14: These columns must contain the disk 
filename. 

Column 15: This column contains an I entry for random 
retrieval or a U entry for random update. An 0 entry in 
this column with a C in column 16 defines a chained out
put file (see How to Oeate a Direct File in Chapter 1). 

Column 16: The C in this column indicates a chained file 
processed randomly by the CHAIN operation code. A 
maximum of 15 chained files are allowed per program. 

Column 19: Must contain an F. 

Columns 20-23: A number which is equal to or a multiple 
of the disk record length must be entered in these columns. 
This entry affects the size of the input/output area allocated 
by RPG II. The maximum block length for disk files in 
4096. If you assign a block length which is equal to the 
record length, an efficient block length is calculated for 
you by RPG II (Figure 3-3). Blocking disk records can 
increase the input/output efficiency of your program by 
reducing the number of accesses. You must be sure, how
ever, that you have enough main storage available for your 
input/output area. 

Columns 24-27: These column~ contain the length of the 
disk record (1-4096). Remember that random update can
not change the record length for a file; record length is 
fixed when the file is created. 

Column 28: This column must contain an R for random 
processing. 

Columns 40-46: These columns contain the device name, 
DISK. 

Columns 68-69: These columns give the number of volumes 
containing the file. For random processing, two volumes 
are allowed on a single drive and four volumes are allowed 
on two drives. All volumes must be online. 

Columns 71-72: Direct and sequential files can be condi
tioned by a Ul-U8 external indicator. 

Block length Input/output Number of 

Record computed by area allocated records per 
length RPG II by RPG II block 

32 256 256 8 

60 240 512 4 

64 256 256 4 

80 240 512 3 

96 192 512 2 

128 256 256 2 

256 256 256 1 

512 512 512 1 

Figure 3-3. Block Length and Size of Input/Output Area Computed 
by RPG II for Random Processing By Relative Record 
Number 

File Description Specifications 

Line Filename 

File Type 

File Designation 

End of File 

Sequence 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File ...J 

Organization LU 
File Format or Additional Area ~ 

e m 8 
~ : Overflow Indicator g 

U Block Record i:r :::::: t Key Field -~ 
~ w ~ ~ Length Length :::i ~ g ~~~:~:n S 

Device Symbolic 
Device 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 

02 ffiffi]fufuJ@UfllilliDtS 
o3 Rlffiffillifuffiillilli]ill I 
0 4 

0 5 

0 6 

Name of 
Label Exit 

Figure 3-2. Basic File Desc~ption Specifications for Random Processing of Direct and Sequential Files 

3-4 

Extent Exit· 
for DAM 

Core Index 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

File 
Condition 
U1-U8 



CHAIN Operation Columns 33-42: Factor 2 entry is the name of the file from 
which a record is read. 

In direct and sequential files, records to be accessed random-
ly are identified by relative record numbers in CHAIN state- Columns 54-55: An indicator entered in these columns 
ments. One record is read for each CHAIN statement will be turned on if the record is not found. This condition 
executed. Records identified in CHAIN statements are read occurs when: 
during calculations in the program cycle. Fields from the 
records can be used during detail or total calculations. For 
example, a record read during detail calculations can be 
altered during detail calculations and written out during 
detail output. The same applies to total calculations and 
total output. 

Figure 3-4 shows the entries to be made in a CHAIN state
ment. 

Columns 7-17: Indicators can be used. 

Columns 18-27: Factor 1 entry is either the name of the 
field containing the relative record number or the relative 
record number itself. 

1. 

2. 

The relative record number is zero or negative. 

The relative record number is greater than the number 
of record locations in the file. 

If the indicator in columns 54-55 is on, the chained file 
cannot be updated. If an indicator is not specified, the 
program will halt when a record is not found, displaying a 
1 U halt code. The program can be restarted by pressing 
HALT/RESET on the processing unit Use of an indicator 
in columns 54-55 is recommended; because, if the bypass 
option is selected after a 1 U halt, the next record may not 
be read from the same file. Therefore, the results of the 
bypass option may not be predictable. 

IBJ.1 International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

Date ___ _ 

Program ____________ _ 

Programmer ___________ _ 

Indicators 

Factor 1 

RPG CALCULATION SPECIFICATIONS 

r Punching Graphic I I 1 
I Instruction l-P-un-ch-+--+J-+---l---lJ-1--1+--I 

Operation Factor 2 Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

~ ~ ~ Table (Factor 2) is 

High Low Equal 

75 76 77 78 79 80 

~~~~;:f:ation I I I I I I I 

Comments

- - -J Lookup

3 4 5 6 7 8 9 10 11 12 13 14 15 16 ·- ·- ·- -- •• -- -- - ••• -- . •7 28 29 30 31 32 -- - - -- -- ·- -- .. .• .• .• 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1-:+
2
-;

1

--1-+-;--1-+-;--1-+-;--1--+--\. ~~~:; ~~~~;1~) c H~ 1 W ~~~me 01 chained~ %!! MH&fl@M:t!lll M li'lft'\!4
a 3 , name

a 4

a s

'''' '· a e c
Note: Shaded columns must remain blank; blank columns are variable or optional.

a 1

a s ,c

a 9

1 a

1 1

1 2 c

1 3

1 4

1 5

c

c

Figure 3-4. CHAIN Statement for Random Processing by Relative Record Number

Random Processing of Direct and Sequential Files 3-5

Random Retrieval From a Direct File

The entries on the File Description Sheet that are charac
teristic of random retrieval are shown in the first coding
line on 'Figure 3-2. Random retrieval is distinguished from
random update by an I in column 15.

The records in the direct file to be retrieved must be further
described on input specifications. On the Input Sheet, a
direct file being retrieved must have an alphabetic sequence
entry (columns 15-16), since sequence checking cannot be
done during random processing.

If the direct file being retrieved contains synonym records,
calculations must be included in the program to test for
synonyms and retrieve the desired record.

Example 1

Suppose the direct customer file, CUSTFILE, created in
Chapter 1 (How to Create a Direct File) and processed con
secutively in Chapter 2 is to be retrieved randomly. The
distributor wants to make demand inquiries as necessary
during each day concerning customer sales and account
information. Inquiries are received on cards (Figure 3-5)
containing an I in column one followed by the customer
number of the record to be retrieved. These cards are read
from the primary MFCU hopper. Each time an inquiry card
is read, the customer number (CSTMER) is used as the
relative record number to chain to CUSTFILE.

The format of the disk records in CUSTFILE is shown in
Figure 3-6.

3-6

If a record is found in CUSTFILE which corresponds to the
number on the inquiry card, a response is printed in the
format shown in Figure 3-7. This response lists pertinent
sales information and the total accounts receivable amount.

The RPG II coding to accomplish the random inquiry
application is shown in Figure 3-8. The RPG II specifica
tions would be identical if CUSTFILE were a sequential
disk file to be retrieved randomly.

I 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Record ID Code

l:
s 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ss 56 57 58 59 60 61 62 63 64

6 67 68 69 70 7L 1L 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

B .l .. ~!~~~L106101100100110 11111zn>11• 11s 11611111011912012112z12>12•12s126121120 B

A A
8 8
4 4
2 2
1 1 B I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 B

A A
8 8
4
2

4
2

1 1
8 n~~~"""~~tlO«~~u~~~~~~~~~~~~W~~~UB

A A
8 8
4 4
2 2
1 ~UUUHroTinnn~nnnn~~~~MMUUUM~~~~~~% 1

IBM3700

Figure 3-5. Inquiry Card Format

4 2 3 55

Length

r-1---r---r----,---7
I "'I ff I .l. I $" I ~ I ff 0 # ~ #
/~I 5 I .::r I ~ I .::r I

t I I I ((
2 6 6 7 7

r---,---7---7---7-----7
I ~ I I I # I ~~ I I

I f I f I ! I f I (Reserved) I

((((((
6 6 6 6 9

Total length of record= 128 positions

Figure 3-6. Disk Record Format for Direct Customer File, CUSTFILE

Random Processing of Direct and Sequential Files 3-7

VJ
Oo

>'rj

~·
VJ

f.l
1-d
::i.
::s
..+

~
0
= ..+

"'C a
::t'
0 s
~

§
Q.
0 s
5'

11
~·

:::0
(D

11
~
~

-.....--+;..-~--+
. I -~~>-+-__._.;_,_+_._,_;._---+-w+~H-+H--+-rl-+-:--t--t--f---<rl"-r--:---t-+-i·---r-r-r-t---r-~-r+i -~ ~~-

CUSTOMER ACTIVITY SALESMAN CREDIT LAST ORDER LAST PAY SLS THIS PER SLS LAST PER TOTAL A/R

3119 A 105 01 4/17/71 4/01/71 360.00 239.50 360.00
6678 RECORD NOT FOUND--INVALID RECORD NUMBER
1703 I 35 03 11/19/70 12/01/70 .00 .00 .00

International Business Machines Corporation

IB~
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Date-----

Program----------------

Programmer ______________ _

Une

" 1l
~~ ~
~ (11 ~ ~ ~

., ~:·t~ ~ .~ ~:·to ~ f ~ i l .§ : ~~;.~: I
: Compile ;3 g Execute en ~ '* ~ ~ ~ ~ ~ Positions ~

~ II ~~EE66£~ ~
4:

Punching 1 Graphic I
Instruction r Punch T I I l

l l

Control Card Specifications

1 2

Page~

Refer to the specific System Reference Library manual for actual entries.

Form X21-9092

Printed in U.S.A.

75 76 77 78 79 80

~;~~;~:ation I I I I I I I

3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1

File Description Specifications

Line Filename

File Type

File Designation

End of File

Sequence

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File -'
Organization w

File Format or Additional Area ~
O m 8 .e i:: .,!. Overflow Indicator c

3 ~ Block Record ::::: ~ ~·~
g ~ w ~ ~ Length Length § ~ g ~~!~:n .E

Device

345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44.

a 2
F 1 ~c Al81.ti . .l:J?lr:,J: ··=:rncr::ttnur .. : ,.,,.=··= .. l

,_: :_,__._._+-1-__._..__._-+-.____...._,__Ci-~,..t\-_,_:.~ __._.__......_.___._f_,_. --'--"'--'--....._.__,___\!"~a~ Jo m processing

o 1 hamed input 1le

Figure 3-8. Random Retrieval from a Direct File (part 1of4)

Symbolic
Device w

0

z'
~

Name of
Label Exit

The direct file is defined
as a chained input file to
be retrieved randomly.

Extent Exit
for DAM

Core Index

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

~
Condition

::> Ul·U~

z
;9 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

Random Processing of Direct and Sequential Files 3-9

1Bft41

Da1e ____ _

Program--------------

Programmer-------------

Line Filename

Position

lnternatioroal Business Machines Corporetion

RPG INPUT SPECIFICATIONS

Punching

Instruction
Graphic

Punch

Record Identification Codes

Position Position

Field Location

1 2

Page~

Q)

-'

-'
Field Name]

1

Program
Identification

F0<m X21-9094
Printed in U.S.A.

75 76 77 78 79 BO

I I I I I II

Field

15
Indicators

-.,
~ Sterling

]
Sign

Zero Position
Plus Minus or .,, Blank

Q;
u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1
I I ~ c AIR It I~ s 1¢ 7 1.1 c_ I

0 7

0 B

0 9

1 0

1 1

1 2

Figure 3-8. Random Retrieval from a Direct File (part 2 of 4)

IB~

Date ____ _

Program _____________ _

Programmer ____________ _

Line

!
] 0 z

Indicators

0
z 0 z

Factor 1

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

[
Punching 1t--Gra_phic-+---+-J--+-1-IJ-1-1

1
-f--11

1
---l

Instruction l Punch l

Operation Factor 2 Result Field
Field
Length

1 2

Page Im)

Resulting
lndica1ors

Arithmetic

Plus Minu1 Zero

Compare

High Low I Equal
1>2 1<211=2

Lookup

Table (Factor 21 is

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 BO

~;~~;~f:ation I I I I I I I

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16w: MM~iMHUMMMiMgWM@M WtfiWtHHlMfMWI~ KWWWWi WtM1~ i t!ttit;J°~iu:~ so 61 62 63 64 65 66 67 68 69 70 71 12 73 74

0 1 c

0 2 c

0 3

0 4

0 5 c

0 6 c

0 7

0 B c

Figure 3-8. Random Retrieval from a Direct File (part 3 of 4)

3-10

IBJ.1

Date ____ _

Program--------------

Programmer ____________ _

Space . Skip

Line Filename

International Business Machines Corporation Form X21-9090

Printed in U.S.A.

RPG OUTPUT - FORMAT SPECIFICATIONS

r
Punching Graphic T

1
I JJ

Instruction 1-P-u_nc_h --<~+--+--+--+J--<~+--1

Output Indicators

T
And

0
z

I
0
z

Field Name l,M § End
Positon 11

~ ~ ~utput ~
:a j Record ~

Commas

Yes
Yes
No
No

1 2 75 76 n 1a 79 so

Page~

Edit Codes

Zer~ ~~\~~ces. 'No Sign CR - X • Remove
Plus Sign

A J Y s Date Yes
No
Yes
No

B K Field Edit

Sterling
Sign
Position

CL ZsZero
D M Suppress

w co ;:_ Constant or Edit Word

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 pg 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 l&J1 'MTlolu~ 1:1>
0 2 0

1-0+9~_0 +-+--1 N 13 means that th is Ii ne i;:;ib=·=8f.'=Jl:::~=:=ji::::~::l;:;4:;: i::;;::lµI+)-1;:: -l---~~~ llfl.i <Jr1+-S~TL.1-!W~Q=+--t---t--+--+-+"~-+-1-J-.-l-l-l--+-+-1--1-+--1--J-.-+-1-l----l-l-l--l---l--l---+--l---l-l----1-jW--l--t
1-1+0~_0+-+--I will not be printed if a 4c eblv~ 1!4i

record is not found in I{
,_

1
-+-

2
-+--f-

0
+-+--1 the direct file. 1-+-1--1--<>-+--1--"-'--'-__.___,'-+-,jf,__, (Other fields - see printed report)

1 1 0

1 3 o Tl 1
·' ~?=:;:hr: ;:I::;:;::::::,:::,. lr1olr!AIR U 91'71

1Qll71 13 \} 1 4

0

,_
1
,.

5
i-+

0
,.....,. When a record is not ~]

t-1--+-+-o-4-!--1 found in the direct file, -+--+-+-~++-+--+-+-1-1-+-+-~-+-114-+=3-i=3:.+-J-1-l'R~E~=l=l'-'1I alR"l=D+-+]!t..:+o::....i]I-=-+--F-F-Fb+~-+-ltf~]Q~H-1--lLIL-f-!'N_+"~~l~...lflL=>/'-1!0J~+-+-+-l
this line is printed. ~ 'iB!ECldRID ~U~8Eti<'

[Clsr MIE1R

0

0

0

Figure 3-8. Random Retrieval from a Direct File (part 4 of 4)

Random Processing of Direct and Sequential Files 3-11

Random Updating of a Direct File

The coding entries on the File Description Sheet that are
characteristic of random update are shown in the second
coding line on Figure 3-2. Random update is distinguished
from random retrieval by a U in column 15.

The fields to be updated must be further described on both
Input and Output-Format Sheets. If the direct file being
updated contains synonym records, calculations must be
included in the program to test for synonyms and locate
the desired record.

Example2

Each day, the distributor described in Example 1 prepares
invoices for customer orders. Information from the invoices
is used to update the customer file, CUSTFILE. Since this
information is read from cards (Figure 3-9) in an unordered
manner, a random update job is required. The input cards
contain the date and total amount of the transactions for
each customer. New addresses are also contained on this
card when required. As each card is read, the customer
number (CUSTMR) is used to chain to the direct file. The
amount of the transaction is added to total sales for the
period (THSPER) and to the accounts receivable amount
(ARLT30). The date of the transaction is placed in the
date oflast order field (LSTORD) in the customer record.
If an address change is indicated by an X in column 18 of
the input card, the new customer address replaces the old.
If a blank record location is encountered in processing, the
input card is listed on the printer along with the statement

3-12

"No master record for the above record." Similarly, if a
record is not found in CUSTFILE because of an invalid
relative record number (see CHAIN Operation in the pre
ceding- text), the input card is printed, followed by the
statement "Above record not found - invalid record num
ber."

CUSTFILE, described as a chained update file, must be
described on both Input and Output-Format Specifications
Sheets, since data is both read from and written on the file.
The specifications are shown in Figure 3-10.

' 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

"M~~D~~~~UU«~~ouu~~~~~~MU~~ro~~~~

!IDCODEI

l
~uu~~roTinnnnnnnnoo~~~~~~u~~~~~~~~%

lCUSTMRI INEWADRI
:~~,oo~~-~mmm~~Mm~rol[MITTMMWW~m~m~mm:

! DATE TOCOST

1

• !
2 2

~ 1 234 s~•••wttaaMffiIB"ra~mmuu~uuv~~m~n~
A A

! NAMADD :
2 2
1 1

~l=:J"'"' .. ., ... """" "" "" """ """ !
~~u~~•~n~nnnnoo~~~~~~u~~~~~~~~% 1

IBM3700

Figure 3-9. Daily Invoicing Card for Updating CUSTFILE

IB:ft1 International Business Machines Corporation

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Dal•-----

Program----------------

Programmer

i
Core

Punching
Instruction

Graphic

Punch

Control Card Specifications

1 2

Page~

Form X21-9092

PrintedjnU.S.A.

75 76 77 78 79 80

:~~;~:ation I I I I I I I

Line Ill Sizet~
g: Compile
...

~ ~ Number "'
Refer to the specific System Reference Library manual for actual entries.

]

Line Filename

File Type

File Designation

End of File

Sequence

File Description Specifications

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File -' Symbolic Name of
Organization w Device Device w Label Exit

File Format or Additional Area -8 O

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind
.--

File ~ m 8 z
~ ~ ..:. Overt~ g !d Condition

~ - Block Record :::: t::o ~ ·2.,- Core Index u1-~

u.~ ~ .e c ~ :::> :l
o. w <(u. Length Length :) ~ g ~:a:!~:n iE j ~ Z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2 MF]Cjq1
0 3

0 4 i8B I NliiE1R
0 5 F

Figure 3-10. Updating a Direct File Randomly (part 1 of 4)

IBJll

Date ____ _

Program------------

Programmer--------------

Line Filename

Position

lnternatiof'lal Business Machines Corporation

RPG INPUT SPECIFICATIONS

Punching
Instruction

Graphic

Punch

Record Identification Codes

lii Position

~~~ 
0 - -" z u u 

- ~ Position 

~~~ 
.g u c5

Field Location

I

1 2

Page~

~
Field Name]

-e
~

0

~~
~u:

H ::;;u

Program
Identification

Form X21-9094

75 76 77 78 79 80

I I I I I I I

Field

c Indicators
0

~ Sterling

'E Zero
Sign

~
Position

Plus Minus or ,, Blank
o;
u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 1 c~IRDl!W
o 2 I

o 3 I 11 :t)AfriE
o 4 I Liz 17l1J7(:l co sit
0 5 1

0 6 J 1
o 7 I 1
0 8

0 9

1 clu sl1iF 1 ~~IM.s
" lcolslf~lo

1 0 & &'l~IT H slPIElr<
11 1lt;Z 1 2IA·I~ L!TI~
1 2 I

Figure 3-10. Updating a Direct File Randomly (part 2 of 4)

Random Processing of Direct and Sequential Files 3-13

IBr.,:

Date ____ _

Program ______________ _

Programmer _____________ _

Indicators

AL L Factor 1

~ s s z z

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

[

Punching Graphic

1
1

1
1

1
1 I

Instruction t-P-u-nc-h -t---t--t---l--+--t--l~J

Operation Factor 2 Result Field
Field
Length

1 2

Page~

Resulting
Indicators

Arithmetic
Plus Minus Zero

Compare

High Low Equal
1>2 1< 2 1=2

Lookup

Table (Factor 2) is

High Low Equal

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 80

~;~~:~f~ation I I I I I I I

Comments

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1

1~ W11i~IN1 lllls P~ ~IDlD IJ1Q c. o slzj
114

115

Figure 3-10. Updating a Direct File Randomly (part 3 of 4)

IBJ.1 International Business Machines Corporation

RPG OUTPUT - FORMAT SPECIFICATIONS
Date ____ _

Program--------------

Programmer ____________ _

Space Skip

Line Filename

~ ~
~

~ ~ 0
CD <t z

r
Punching Graphic I l I
Instruction 1--Pu_nc_h --1--;J--+--+---+-l--+--J-t--i

Output Indicators

At 1 Field Name End
Positon
in

0 0 Output
z z Record

>
I!!
iii

" ~
l
rf
II

<>.

..!'>.
.,..

Commas

Yes
Yes
No
No

1 2

Page~

Edit Codes

Zero Balances No Sign CR .
to Print

Yes 1 /\ J
No 2 H K
Yes 3 c L
No 4 D M

Constant or Edit Word

x =

y =

z =

Form X21-9090

Printed In U.S.A.

75 76 n 78 79 80

Remove
Plus Sign Sterling

Date Sign
Position

Field Edit
Zero
Suppress

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 '3~ 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2 0 IDIAtrl~
0 3 0 1Kzll~ 11.~IN1[4-
0 4 0

0 5 0 IN AIAA "IDID
06 op~rllllI lD ll 1~ 1113
0 7 0 l!killNl113 ~
0 8 0

0 9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

0

0

0

0

0

Figure 3-10. Updating a Direct File Randomly (part 4 of 4)

3-14

1. What is a relative record number?

2. How is the relative record number used to access a record randomly?

3. Code a program to update a direct file randomly:

Problem Description
ITEM

CARD

MASTER

PRINTER SYSTEM/3 DISK

Disk Record

Positions Contents

1-2 Code= 20

3-5 Product number

6-25 Description

26-32 Price (2 decimal positions)

32-38 Quantity on hand

39 Activity code = A

Card Record

Columns Contents

1-2 Code= 10

3-5 Part number

6-11 Customer number

12-16 Quantity ordered

Update the disk file quantity on hand by subtracting the quantity ordered on the item card. If the
quantity on hand is zero or negative, print the item number, description, order quantity, quantity on
hand, and the message, "out of stock".

Review 3

Random Processing of Direct and Sequential Files 3-15

Answers to Review 3

1. A relative record number is a value representing the numeric position of a record in a file relative to
the beginning of the file. A relative record number must be a positive, whole number.

2. The correct relative record number for the desired record must be supplied by the programmer, either
as an input variable, a derived variable or a constant. This value is converted automatically to the
disk address of the desired record. The disk address is used to access the required record.

3. See coding sheets (Figure 3-11).

IBJ.1

Date ____ _

International Business Machines Corporation

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
1 2

Page~

Form X21-9092

Printed in U.S.A.

75 76 77 78 79 80

~:~~;i~~ation I I I I I I I
Program----------------

Punching 1 Graphic J
lnstructiori J Punch l 1

l
l l J
J .I

Programmer ______________ _

Line
Core ... 2 Core

e1> Size t~ g .g Size to
~ Compile c5 8 Execute

~ H'
~ ~ ~

" 1l
~~ 5i

L 19. ~ i
g' £ ~ ~ g ... cc Number .£
-B ~ a; 65 ~ .S c; Of Print ~
:! U1 Dz- .!. .!.. 6:: ~ Positions 8

°'~;;a~~~ ~
~~E:Ebb]~ ~

<(

Control Card Specifications

Refer to the specific System Reference Library manual for actual entries.

3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 H

Line Fi I ename

3 4 5 6 7 8 9 10 11 12 13 14

0 2 F t[NV11t
0 3 F Cl4\RID I ~
0 4 F -~10 !Mr
0 5 F

0 6 F

0 7 F

File Type

File Designation

End of File

Sequence

File Description Specifications

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File _, Symbolic Name of
Organization w Device Device iii Label Exit

File Format or Additional Area .g 0

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

~ C m 8 z
~ .:. Overflow Indicator c !!i Core Index Condition

u Block Record ::::: ~ ~ ·~ :::i U1·~
~ w ~ ~ Length Length :i ~ g ~:~:~:n .E ~ ~ z

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 11 72 73 74

F
I 1) F

F

Figure 3-11. Updating a Direct Inventory File (part 1 of 4)

3-16

IBJ.41

Date ____ _

Program----------------

Programmer---------------

g
B
~
C•

Line Filename
§ i*° Position
0 "E
0. ~ 0

lnternatiof'lal Business Machines Corporation

RPG INPUT SPECIFICATIONS

lPunching
Instruction

Graphic

Punch

Record Identification Codes

Position Position

l
l 1 l

Field Location
~
~!----~----1
iii

~ II

&: ~

- ~ ~]
~eN~~
~~6~!

From To

1 2

Page~

~
Field Name]

e
~

0

~-a
.!:!]!
U.u.

H

Program
Identification

Form X21-9094
Printed in U.S.A.

75 76 77 78 79 80

I I I I I I I

Field

5
Indicators

~ Sterling

]
Sign

Zero Position
Plus Minus or

"O Blank
a;
u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 1 C1
O 2 I

o 3 I

o 4 I

0 5 I I IM!11ttl
0 6 I

O 7 I

0 8 I

o 9 I

1 0 l

Figure 3-11. Updating a Direct Inventory File (part 2 of 4)

IBJ.41

3

International Business Machines Corporation

11 c.vs~

lilll2.IPR I C[Ej

Form X21-9093

Printed in U.S.A.

RPG CALCULATION SPECIFICATIONS
Date _____ _

Program _______________ _

Programmer ______________ _

Indicators

~ AL I Line
0. 5 >

Factor 1

I-

~ ~] ..J 0 ti ti
- z z z

[

Punching Graphic 1
1 1

1
1

JI
Instruction t-P-u-nc-h--+----+-!---+---+--l---+-----1

Operation Factor 2 Result Field
Field
Length

1 2

Page~

Resulting
Indicators

Arithmetic

Plus Minus Zero

::!:. Compare

~ High Low Equal
~1>21<21=2

~ Lookup

Table (Factor 2) is

High Low Equal

75 76 77 78 79 80

~~~~~~f:ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c Hl 
0 2 c 

0 3 c 

0 4 c IH12 Gbtdo IE!M.D w[R o N~ IRISC.[Q[fil 
0 5 c 

0 6 c 

0 7 c 

0 8 c 

0 9 c 

1 0 c 

1 1 c 

1 2 c 

- -
Figure 3-11. Updating a Direct Inventory File (part 3 of 4) 

Random Processing of Direct and Sequential Files 3-17 



IBJYI 

Date _____ _ 

Program----------------

Programmer ______________ _ 

!!: 

International Business Machines Corporation 

RPG OUTPUT- FORMAT SPECIFICATIONS 

l Punching 
Instruction 

Graphic 

Punch 1 1 
1 2 

~Space Skip Output Indicators ~ Edit Codes 

FormX21-ll090 

Printed in U.S.A. 

75 76 n 10 79 00 

Line Filename 

~ T .r !I ; -v Commas Zer:',,8p~li~~ces No Sign CR - X • Remove 
Plus Sign 

~ ! And And Field Name ~ ~ ~:iton iii ~:: ~~ ~ ~ ~ y ~ ~~~~Edit 
~ h ~ t a" ~ ~utput i ~~ ~~ ! g ~ z • ~~~~ .... 

Sterling 
Sign 
Position 

8. ... ~:So o o -. ~ 
~ ~ co <( ...... z z z ~ ~ Record ~ 
~ ~ Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ~ 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

01 oPRtNIT ~ ~2 ~~NHl 
0 2 0 

0 3 0 Pld: RlT IMci 
0 4 0 ll)E stlR 
0 5 0 !Qr ~o l<lVJ 
0 6 0 ~~/r lb_ ~ _riQ 

slijoc~' 0 

o I ~v Irr ~I ~I lt!1 11N IH~ 
0 7 

0 B 

0 9 0 IGIT liPHi 
1 0 0 

1 1 0 

Figure 3-11. Updating a Direct Inventory File (part 4 of 4) 

3-18 



'g:m414:r 
SORTING A FILE TO PRODUCE AN ADDROUT FILE v 

CHAPTER 4 DESCRIBES: 

ADDROUT sort and its output. 

Sequence specifications and OCL statements required for the ADDROUT sort. 

How to determine storage and file sizes for the ADDROUT sort. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Describe tag-along sort. 

Code the Sequence Specifications to execute a tag-along sort. 

Describe the functions of the keyword parameters on the FILE statement. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Describe output of an ADD ROUT sort and compare it to the output of a tag-along 
sort. 

State the advantages of using the ADD ROUT sort over the tag-along sort. 

List the sequence specifications required by the Disk Sort program. 

List the three files used by the Disk Sort program to put out an ADDROUT file. 

Calculate storage and file sizes so your requirements do not exceed the amount of 
main storage and disk storage you have. 

Code sequence specifications and OCL statements to execute the Disk Sort program. 

Sorting a File to Produce an ADDROUT File 4-1 



INTRODUCTION 

The Disk Sort program performs either of two jobs: 

• A tag-along sort that creates a sorted sequential file. 

• An ADDROUT sort that creates a sorted record-address 
file. 

The two types of sort differ in output. A tag-along sort 
produces output records that retain the control fields and 
the data, only the data, or only the control field: 

RECORD 1 RECORD 2 

control control 
field data field data 

1------d-:-:~-o __ R_D_1 ______ -+--------:-~-:-o_R_D_2 ____ ---t, { 

RECORD 1 RECORD 2 

control field control field 

An ADDROUT sort produces output records that contain 
the relative record numbers of the sorted records. A relative 
record number indicates to disk system management the 
relative position (first, second, twenty-second) of a record 
in a file. The relative record number is a binary number 
contained in a 3-byte field. The disk file containing relative 
record numbers is kno\Vn as an ADDROUT file. 

The ADDROUT file can then be used as input (in the form 
of a record-address file) to process the source file in an 
RPG II program. 

By sorting a file in several sequences based on different con
trol fields in each record of the file, the file can be used to 
create several ADDROUT files. For example, you have a 
transaction file in order by stock number. By performing 
two ADDROUT sorts on the transaction file, you could 
have one ADDROUT file sequenced by customer number 
and another by invoice number. Consequently, the trans
action file can be processed in several sequences: stock 
number, customer number, or invoice number. 

4-2 

INPUT AND OUTPUT FOR ADDROUT SORT 

Note: The circled numbers in the following text relate to 
the circled numbers in the Figure 4-1. 

Instructions for sorting a file are coded on Sequence Spec
ifications sheets 0 . Sequence specifications are comprised 
of three types of information: header, record type, and 
control field. 

• Header specifications identify the type of sort you want 
the program to perform. 

• Record type specifications identify input records you 
want the program to use. 

• Control field specifications identify the input record 
fields (control fields) you want the program to use in 
sorting output records. 

The sort program then processes input, work, and output 
files according to the specifications. 

The input file@ contains the records you want sorted. 
The program sorts the control fields and the relative record 
numbers of the input records to be sorted according to the 
control fields that you specify are to determine the sequence 
of the output. There are no size limitations on an input 
file: it can be a multi-volume file. 

The work file@ contains the control fields and relative 
record numbers of the records that you select to be sorted 
from the input file. The Disk Sort program uses the work 
file space for sorting the relative record numbers in the 
order you specify before writing them out on the output 
file. A work file can be on the same disk as the input file 
if there is enough room. If the space on the disk you are 
using is limited, the work file can be on any other disk. 
You must allow enough space for the work file. Work 
records are used internally by the program and are not 
necessarily in their final form. For an ADDROUT sort, 
work records take the following form: 

control field relative record number 

The control field in a work record is that field you spec
ified as the control field on the Sequence sheet for a cor
responding input record. 

The output file@ contains only a 3-byte relative record 
number for each of the sorted input records. 

' I 



Sequential 
Indexed or 
Direct File 

Disk 
Input 
File 

• Header Specifications 
• Record Type Specifications 
• Field Specifications 

___ @ 

Sequence 
Specification 

Disk 
Sort 
Program 

Sorted 
Disk 
Output 
File 

Disk 
Work 
File 

ADDROUT Sort Output: 

Relative Relative 
Record Number Record Number 

Figure 4-1. Summary of Input and Output for ADDROUT Sort 

Sorting a File to Produce an ADDROUT File 4-3 



File Placement 

• Records being sorted from the disk input files must be 
copied to the disk work file. Therefore, disk access 
mechanism movement between the input file and the 
work file should be minimized. 

• Records are sorted in the work file. When you must make 
the work file multi-volume on the same drive, the start
ing track location on each volume should be approxi
mately the same. By doing this, minimum disk access 
mechanism movement on the work file is maintained. 

One disk, one disk drive 

Input Work I Output R1 

or 

I Output Work Input R1 

Three disks, two disk drives 

Drive 1 Work R1 

Input R2 

Drive 2 

Output F2 

• The work file is copied to the disk output file. Disk 
access mechanism movement between the work and 
output files should be minimized. 

• The placement of the input, work, and output files are 
inter-related. 

Figure 4-2 shows the most effective placement of files for 
various disk drive configurations. 

Two disks, one disk drive 

Work Input R1 

Output Input F1 

Four disks, two disk drives . 

Input R1 

Drive 1 

Output F1 

Work R2 

Drive 2 

Work F2 

This figure illustrates placement of input, work, and output files 
on disk •• Efficiency ranges from minimum to maximum (A·D). 

Figure 4-2. Placement of Files on Disk Drives 

4-4 



DETERMINING STORAGE AND FILE SIZES 

Before you run a Disk Sort program, you should determine 
the amount of main storage available. For optimum per
formance, the Disk Sort program requires at least 9K bytes 
of main storage (K=l 024). It will run in as little as SK main 
storage, but takes approximately twice as long. To deter
mine how much main storage is available to the Disk Sort 
program, subtract the supervisor size from your total 
amount of main storage. 

The remainder is the amount in which you can execute the 
program. The remainder is also used to determine the work 
file size factor that is used to calculate the size of the work 
file. 

You must then calculate file sizes so that your files will 
not be too large for the amount of disk storage available. 
You can use the following formulas to determine file sizes 
in number of tracks: 

• Input File - Multiply the number of input records by 
the length of the input records. Divide by 6144. 

• Work File - Multiply the number of work records by 
the length of the work records. Divide by 6144. Mul
tiply the answer by the work file size factor {Figure 4-3). 

Note: The number of work records is equal to the num
ber of records selected for sorting. If you have an 8,000 
record file and all the records are to be sorted, the num
ber of work records is 8,000 also. The length of the work 
record will be the sum of the control fields plus three. 

• Output File - Multiply the number of work records by 
three. Divide by 6144. 

Note: In an ADD ROUT sort, the length of the output 
record is always three bytes, since the relative record 
number is three bytes long. 

Storage Size Available Maximum Work File Size Factor 
for ADDROUT Sort 

5K 1.52 

SK 1.17 

9K 1.15 

12K 1.09 

20K 1.07 

28K 1.07 

Note: This is the maximum factor. When the Disk Sort 
program is run, an actual factor will be printed. You can 
then re-calculate your file size using this factor. 

Figure 4-3. Work File Size Factor for ADDROUT Sort 

Sorting a File to Produce an ADDROUT File 4-5 



If your calculations result in an uneven number, always 
round the figure to the next higher number of tracks. 
Figure 44 illustrates the calculation of file sizes for both 
an ADDROUT and tag-along sort. This illustration assumes 
that tag-along sorts the entire record. The input files for 

Assume these values for this example: 

Main storage for Disk Sort= 8192 bytes 
Number of input records= 2000 
Number of work records= 1000 (half are included) 
Input record length= 200 bytes 
Work size file factor= 1.17 

both sorts are 66 tracks in length. Notice that the work and 
output files for the tag-along sort occupy 73 tracks, while 
these files occupy only four tracks for the ADDROUT sort. 
Since the size of the files for the ADD ROUT sort are smal
ler, ADDROUT sort will take less time to sort the file. 

Tag-along sort: ADD ROUT Sort: 

Work record length = 210 bytes 
(control field length = 10) 

Output record· length= 200 bytes 
(drop control field) 

Input ( 2000 x 200) = 65.1 
File 6144 

66 tracks 

Work (1000 x 210) x 1.17 = 39.99 
File 6144 

40 tracks 

Output (1000 x 200) = 32.6 
File 6144 

33 tracks 

Total tracks used = 139 tracks 

Work record length = 13 bytes 
(control field length = 13) 

Output record length = 3 bytes 

(2000 x 200) = 65.1 
6144 

66 tracks 

(1000 x 13) x 1.17 = 2.5 
6144 

3 tracks 

(1000x3) =0.49 
6144 

1 track 

Total tracks used= 70 tracks 

Figure 4-4. Example of Calculating File Sizes for SOR TR and SORTA 

4-6 



CODING SEQUENCE SPECIFICATIONS 

Sequence specifications for an ADDROUT sort are similar 
to specifications for a tag-along sort. 

• Do not include output record length in columns 29-32 
on the header specification, because it is always three 
bytes. 

There are two exceptions for an ADDROUT sort: 

• Code SORTA in columns 7-11 on the header specifica
tion to identify an ADDROUT sort is to be performed. 

Figure 4-5 is a column summary of the sequence specifica
tions. If you need further explanation of column-by-column 
entries, refer to the IBM System/3 Disk System Disk Sort 
Reference Manual, SC21-7522. 

IB~ 
International Business Machines Corporation 

SEQUENCE SPECIFICATIONS 
Header 

Line Job MATCH "' SORTA 
@ g-

SORT Longest Total o Stacker Select "' c 
MERGE Control Field ;;c § S § ~ Output Reserved Job Description 

Number MATCH of any Record i L.. ~ a o Record 
8. SELECT Type ~ S S P P S P ~ E ~ g, Length 

Form X21-90B9 

Printed in U.S.A. 

Page~ 
I 2 

~ ~~~~ cX U M M U 0 0 ~ ~ ;i: 8 
3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

0 o o ttl$lORTW :tl:l=lt: J t~.t: .!111 
- Record Type 

~ ~ 
1 

Factor 1 Rel. 1-r----F-ac_tor_2_1F_ie_ld_or_Co_ns1_a_nt1 ____ -+-----------Co-m_me_n1_s ----------~ 
EQ 

a j ~ ~: NE Constant - - - - - - - -, 

Number ~ -~ ~ ~ : ci~ t- - - - - - - -1 Record 

~ 8 ~ ~ I Location LE 
0 

Location I Name I 
"' 1 From I To GE U: From I To I I 

3 4 5 6 1 a 9 :10 11 12J_13 14 15 16 11 10 19 20 21 22 23124 25 26 21120 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47148 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 61 sa 69 10 11 12 

wmmmt:t:t t::11: ffi ~ 0 2 ~R-+-f-+-l-+-+-+-+--+--1-+--+-+-+-+--+-+-+-+--+-1-+--+-+-jf-f--+-+-t 

o 3 I -~ 

0 5 : 0 l 
o e l ft: tl Consider specifications for the shaded columns: 

Control Field and Data Field -l"t't 
une Forced ~ Identify the job as an ADD ROUT sort job 

r---r- ~ 
t 

~... ~ ~ 1- - - - -..,©Select input records by comparing the contents 
- !! 6 c 

1 f f Id ' t t t Number ~ 6 5 -~ Field I . 0 a le agams a cons an 
8. 8: .e Location ~ -~ .J§ Name I 

~ ~ ~ From To ~ ~ 8 'Ii' Select input records by comparing two fields 
3 4 5 6 1 a 9 10 11 12 13 14 15 16 11 10 19 20 2!..Z? 23 24 25 26 21 20 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 4514.!/· • 

¥@"@:$ ):f':@:@@:@:n:t:tt: 4...l I in the records 

k~~l:=~bl~~~~;~}+~dlm@*:ldl=B~l~~~=f~l•~~mlbJ+,~~~~~S~~~~~~~~~~~~~~~~~~ D~~~nmm~~ntr~ficlds 
b~•r,=iht~lim;~t*:&~fmili•td1:-f~t~i:=tbt~1~~1~l~:ili~t=t~lcli~~~~~~~~~~~~~~~~~~~~~I~~~~~ow~~~w~~ds 
~:-:-~~-----~----~------+-+-jf-f----+--~~~-l~~~~~~~~w~ficlds 

1 4 l lli11iilllllllllllllllllJJ 

Figure 4-5. Column Summary (ADDROUT Sort) 

Sorting a File to Produce an ADD ROUT File 4-7 



OCL STATEMENTS Control Language and Disk Utilities Reference Manual, 
GC21-7512. 

In order for the Disk Sort program to do the job you spec
ify, you must use certain OCL statements. Figure 4-6 
explains these statements. 

Parameter summaries for all OCL control statements are 
explained in the IBM System/3 Disk System Operation 

OCL statements and sequence specifications can be stored 
in the source library and loaded into main storage. Chapter 
8, Storing Programs and-Procedures on Disk, describes how 
to store programs and procedures in a source library. 

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 

/~ 
II LG AD t n~1 111r ., .... El ,.,.,., ............ , ..................... ,.,.,. ·"'"""· ...... ....... ...... ... . 

II ~11 LE 

II ,:1 I LE 

10 l='I/ LE 

II RUN 

II LOAD $DSORT This statement tells disk system management to load the disk sort program from the 
fixed disk. $DSORT is the IBM name for the Disk Sort program. F1 is a fixed disk. 

II Fl LE 

II RUN 

As you know, every file used in a program must be defined by a II Fl LE statement. 
For a disk sort job, you must always define three files: an input file, a work file, and 
an output file. The input file is the file you want sorted. The work file is space on the 
disk that the program uses to do the sort job. The output file is the new file created 
from the input file as a result of the sort job. 

The keyword parameters for NAME are INPUT, WORK, and OUTPUT. These three 
vvords are predetermined by IBM. For the program to use a file in one of these three 
ways, you must correctly use these three vvords. 

A RUN statement is always the last OCL statement for a job. 

Figure 4-6. OCL Statements for a Disk Sort Job 

4-8 

60 



EXAMPLE: ADDROUTSORT 

You have a customer master file containing: 

• Customer number and addresses. 

• Salesman number. 

• Accounts receivable amount. 

The file is an indexed file processed by customer number 
throughout the month for invoicing and at the end of every 
month for customer statements. Along with the monthly 
statements, the sales department wants the accounts re
ceivable for customers owing more than $2500.00 to be 
printed by customer number within salesman number. This 
informs each salesman which of his customers have large 
accounts receivable outstanding. 

In order to do this, records of those customers who owe 
more than $2500.00 must be sorted according to salesman 
number. -Because there is not enough disk space for a tag
along sort, an ADDROUT sort is used. 

Figure 4-7 is a Sequence Specification Sheet for this sort. 
'SORTA in columns 7-11 on the header specification indi
cates that the Disk Sort program is to perform an ADDROUT 
sort. The sum of lengths of the control fields is nine. (Sales
man number is three positions long and the customer num
ber is six positions long.) 

Because only specific customer records are to be included 
in the sort, record type specifications must be coded. I in 
column 6 indicates that only those customer records with 
a balance of more than $2500 are to be included in the 
sort. (Positions 95 through 101 of the input record contain 
the amount owed to the company.) 

The field specifications indicate that two input record fields 
are to be used as control fields: salesman number (SALNO) 
in positions 102 through 104 of the input record, and cus
tomer number (CUSTNO) in positions 1 through 6. 

The Nin column 7 of the field specification and the A in 
column 18 of the header specification indicate that the 
control fields are to be sorted in normal ascending sequence. 

fOJ"m X21-9089 

IBIYJ 
International Business Machines Corporation Printed in U.S.A. 

SEQUENCE SPECIFICATIONS Page~ 
Header 1 2 

Line Job MATCH (/) SORTR 
@ & SORT Longest Total 0 Stacker Select ~ c 

MERGE Control Field ~ u o 
Reserved Job Description ·.g Output 

Number MATCH of any Record 
8 == c; Record 

SELECT Type fiissPPSPJ!l 
~ SORTA juMMUOO~ H 

S. Length 

f- SORTR 6 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 w~~~«%~~~~WITT~~~~~~~WWITT~~M~M~~~ronn 

0 0 0 Hl::,U~]A 191~ l 
Record Type 

Line 

~ 
Factor 1 Rel. Factor 2 (Field or Constant) Comments 

1---T-
I EQ 

H 
Y• NE 

Constant 
- - --- -- -, 

Q -.;1 
LT i=------- -1 

Number ~ ~· GT Record I _::1 
~ N g I Location LE Location I Name I 

f- 8U 
Qi 1 From GE ;f From To I I To 

3 4 5 6 7 8 9 :10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21l2s 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 « 45 46 47148 49 50 51 52 53 ~ 55 56 57 ~ 59 60 61 62 63 M 65 66 67 68 69 70 71 72 

0 1 1 IG IG!5 IH2 1~l1 r/] h I ~ 
0 2 I I 

0 3 I I 
0 4 -r I 

0 5 i I 
0 6 I l .l 

Control Field and Data Field 
Line Forced Comments 

t----,--. t-r-r--
:i 1------, 

~ 
~ g 
t;:; I ~ c5 § 

Number .e l fl 
Field I 

z Location Name I ~j§ 
From To I f- f- u a:(/) u 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45146 47 48 49 50 51 52 53 ~ 55 56 57 58 59 60 61 62 ~ M 65 66 67 68 69 70 71 72 

0 7 F Nti 1~2 1~ F\lAILJNIO T J 
0 8 FNit"' l1J ~ ~l 5__[Jf\tj l 
a Is I F I IT Tl I I I I l I I l l l I I I I I I I l l I I l I I I 1 I I I I I I TTTTTI I ITTTTTTTTTTT 

·Figure 4-7. Sequ~nce Specifications to Sort Customer Records Owing More than $2,500.00 

Sorting a File to Produce an ADDROUT File 4-9 



4-10 



1. What output is created by the tag-along sort? How is this output used in an RPG II programY 

2. What output is created by the ADDROUT sort? 

3. What disk areas are required by the sort program? 

4. Calculate the total disk space requirements for the following sort using ADDROUT sort: 

• 2000 records. 

• 100 bytes per record. 

• 10 byte control field. 

• 9K bytes of storage available for the Disk Sort program. 

5. What are the primary reasons for choosing the ADDROUT sort over the tag-along sort? 

6. Fill out the sort specification sheets for the following job, using the ADD ROUT sort: 

Sort the receipt records in an inventory transaction file into purchase order number sequence to be 
used for purging a file of outstanding purchase orders. Receipts all have a 1 in position 96. Other 
transactions in the file have codes other than 1 in position 96. The purchase order number is in 
positions 13-18 of the records. 

Review 4 

Sorting a File to Produce an ADDROUT File 4-11 



Answers to Review 4 

1. The output of the tag-along sort is a consecutive data file. It is processed py an RPG II program as 
any other consecutive file would be processed. 

IB~ 

2. The output of the ADD ROUT sort is a file of the relative record numbers of records in the input 
file. The relative record numbers are in the sequence in which you wish to process the input file. 

3. The disk areas required are: the input file, a work area, and an output area. 

4. 2000 records X 100 bytes per record = 200,000 bytes. 
200,000 bytes+ 6144 = 32.55 or 33 tracks for the input file. 

2,000 records X 13 bytes (3 byte relative record numbers, 10 byte control field)= 26,000 bytes 
work records. 
26,000bytesX1.15 file size factor= 29,900 bytes 
29,900 bytes+ 6144 = 4.87 or 5 tracks for the work file. 

2,000 records X 3 byte relative record numbers= 6,000 bytes. 
6,000 bytes+ 6144 = .98 or 1 track for the output file. 

5. The primary reasons for choosing ADDROUT sort over tag-along sort should be disk storage 
capacity and less time to sort the file. 

6. See specification sheet. 

lntemetionel Business Machines Corporation 

SEQUENCE SPECIFICATIONS 
Header 

Line Job MATCH "' SORTA 

1.--~--SO-R-T --f Longest Total ~ Stacker Select -~ 8L_o ~ 
Number ~!~g~ ~~~;~~~~d ~ " Ci 0 ~~;~~~ 

Q SELECT Type ~ S S P P S P ~ ~ ~ g Length 

Job Description Reserved 

Form X21-9089 

Printed in U.S.A. 

Page CD 
1 2 

~ ~=~~ & U M M U 0 0 ~ ~ d: 6 
3 4 5 6 1 a 9 to t t t2 n t4 t5 16 11 19 t9 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 n 12 

o o o H ~. 161A r.wwi=ic:rr1io1NT ~ ~IV / ~WI 
Record Type 

~ Q Factor 1 Rel.1-.-----Fa_cto_r_2 l_Fie_ld_or_eo_n_st•_nt_I ----+-----------Co_m_me_nt_s -----------i 
<( I EQ 

6 j ~ ~: NE Constant - - -- - - - -, 

Number ~ .~ ~ ~: ~~ ~ - - - - - - -1 Record I 
~ 8 ~ ~ I Location LE 

0 
Location I Name I 

1 From To GE U: From To I I 
3 4 5 6 1 8 9 :10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21'28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47j48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 11 12 

o , 1 ~ ~~ 1o~ecm · l11Hc[]Ju1n~ olNILI¥ ~~Ide / ~Is 
0 2 

0 3 

0 4 

0 5 

0 6 

Line 
1---r-

Location 

ol al F 111 111 

. 4-12 

Forced 
1--r-r-

! 
0 
l!l a 
:E 
Jl 
18 

Control Field and Data Field 

t------, 
I 

Field I 
Name I 

I 

Comments 

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45146 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

~Jtt>iriulAlc:~Jc:I L~k' 111-1,..., lW' r:::;; 

1111111111111111111 lllll1llllllllllllllllllllllllll 



•a:w:a•:t:r 
PROCESSING DISK FILES BY RECORD ADDRESS FILES v 

CHAPTER 5 DESCRIBES: 

Random processing by ADDROUT files. 

Considerations when processing by ADDROUT files. 

RPG II specificationsto process by ADDROUT files. 

Processing indexed files sequentially within limits. 

How to create a record address file containing record key limits. 

RPG II specifications to process sequentially within limits. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

How a file is sorted to produce an ADDROUT file. 

-'Indexed file organization (record keys). 

Primary files, secondary files, and the end-of-file condition. 

Alphameric and numeric character sets. 

The purpose of using RPG Il File Description and Extension Sheets. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Describe ADDROUT files. 

Describe how to process a file by an ADDROUT file. 

List the considerations when processing by ADDROUT files. 

Code RPG II specifications to process a file using an ADDROUT file. 

Describe record address files containing record key limits. 

Describe how to process an indexed file sequentially within limits. 

Code RPG II specifications to process an indexed file sequentially within limits. 

List the rules for creating record address files containing record key limits. 

Processing Disk Files by Record Address Files 5-1 



INTRODUCTION 

Record address files are input files that indicate which 
records are to be read from disk files and the order in 
which the records are to be read. There are two types of 
record address files: 

• Files containing relative record numbers. 

• Files containing record-key limits. 

Files Containing Relative Record Numbers (ADDROUT 
Files) 

A record address file that contains relative record numbers 
is called an ADDROUT file. (ADDROUT files are pro
duced by the Disk Sort program.) ADDROUT files are 
comprised of binary 3-byte relative record numbers that 
indicate the relative position {first, twentieth, ninety-ninth) 
of records in the file to be processed. 

An ADDROUT file can only be a disk file. Any file organ
ization can be processed using an ADDROUT file. 

Files Containing Record Key Limits 

A record address file with record key limits contains the 
lowest and the highest key fields for a specified section of 

an indexed file. Record address files containing record key 
limits can be entered from disk, card, or a printer-keyboard. 
They are used to process only indexed files. When a sec
tion of an indexed file is processed using record key limits, 
the processing method is known as sequential within limits. 

Example: You have an indexed file, but want to process 
only the records with keys 2,000 through 3,000. The 
record key limits in this record address file would be 2,000 
{lowest) and 3,000 {highest key field). Through RPG II 
specifications the appropriate section (records with keys 
2,000 through 3,000) of the indexed file would be 
processed. 

RANDOM PROCESSING BY ADDROUT Fl LES 

All types of file organizations (sequential, indexed, or 
direct) used as primary or secondary files can be processed 
by ADDROUT file. When an RPG II program processes a 
file using an ADDROUT file, it reads a relative record 
number from the ADDROUT file, then locates and reads the 
record situated at that relative position in the file being 
processed. Only those records whose relative record num
bers are located in the ADDROUT file are processed. 
Records are read in this manner until the end of the 
ADDROUT file is reached. Figure 5-1 shows an ADDROUT 
file used to process a disk file. 

ADDROUT file 
(containing relative 
record numbers) 

First Third Fourth Sixth 

File to be processed 
(relative positions 
of records) 

Record Record Record Record 

2 3 4 5 6 

Note: The RPG 11 program will read the ADDROUT file and 
find that the fir5t record to be read is in relative position one 
of the file being processed. The second record to be read is in 
relative position three. Since all records are not read, processing 
by ADD ROUT file is random processing. 

Figure 5-1. Processing a File by ADDROUT File 

5-2 



Considerations for Using ADDROUT Files 

The following three points should be consid~red for using 
ADDROUT files: 

1. One file can be sorted in several sequences based on 
different control fields in each record of the file. 
Several ADDROUT files can be created from the 
same input file to be used as input to RPG II programs. 
For example, you have a transaction file in order by 
stock number. By performing two ADDROUT sorts 
on the transaction file, you could have one ADDROUT 
file sequenced by customer number and another by 
invoice number. Consequently, you can access the 
transaction file in an RPG II program by several 
sequences: stock number, customer number, or 
invoice number. 

2. Less disk space is required to process a file by an 
ADDROUT file than by the output file of a tag
along sort becuase the output records of the 
ADDROUT file are only three bytes long. 

3. If an ADDROUT file is used to process a multi
volume file, all volumes of that file must be mounted 
during processing becuase the next record required 
may be on any volume. 

RPG 11 Specifications (Processing by ADDROUT File) 

To process a file by an ADDROUT file in an RPG II pro
gram, additional entries must be made on the File Descrip
tion and File Extension Sheets. {Input specifications need 
not be written for the ADDROUT file.) 

File Description Si>ecifications 

FILES BEING PROCESSED MUST 
HAVE: 

Column Entry Meaning 

28 (Mode of ·R File is to be processed 
Processing) by ADDROUT file. 

31 (Record Address I File is to be processed by 
Type) 

' relative record numbers 
'"'- from ADD ROUT file. 

ADDROUT FILES MUST HAVE: 

Column Entry Meaning 

. 15 (File Type) I File is an input file • 

16 (File Designation) R File is a record address. 

1J (End-of-File) E Records from the file 
must be processed 
before the program 
can end. 

19 (Fi le Format) F File consists of fixed-
length records. 

20-23 (Block) 3 Block length is three. 
I Length) 

24-27 (Record 3 The ADDROUT file 
Length) consists of 3-byte 

relative record numbers. 

31 (Record Address I File is an ADDROUT file 
. Type) 

32 (Type of File T File is an ADDROUT 
Organization) file. 

39 (Extension E File must be further 
Code) defined on the 

Extension sheet. 

40-46 (Device) DISK File is a disk file. 

68-69 (Number of number of 01 is assumed if you 
Extents) volumes do not code this entry. 

containing 
the file 

Processing Disk Files by Record Address Files 5-3 



Figure 5-2 is a sample File Description Sheet describing two 
input files: a master file and the ADDROUT file used to 
process it. The master file to be processed is coded the same 
as any other input file with two exceptions: Column 28 
contains an Rand column 31 contains an L These two 
columns indicate that the file is processed by an ADDROUT 
file. 

The ADD ROUT file contains an I in column 15 indicating 
that it is an input file. Columns 16, 31, and 32 contain an 
R, /, and T respectively. These three columns indicate that 
the file is a record address file consisting of relative record 
numbers. Columns 20-27 and 29-30 contain 3 and 03 re
spectively. These columns indicate the block and record 
length of the file and the length of the record address field. 
Column 39 contains an E indicating that the ADD ROUT 
file is further defined on the File Extension Sheet. 

File Extension Specifications 

If you are processing by ADDROUT file, entries in columns 
11-18 and 19-26 on the File Extension Sheet must be 
coded: 

• Columns 11-18 (From Filename) must contain the name 
of the record address file. This must be the same name 
given to the record address file on the File Description 
Sheet. 

• Columns 19-26 (To Filename) must contain the name 
of the file to be processed. This must be the same file
name that was defined on the File Description Sheet. 
This entry indicates that the file is to be processed by 
the ADDROUT file coded in columns 11-18. 

5-4 

Figure 5-3 is a sample File Extension Sheet corresponding 
to the File Description Sheet in Figure 5-2. The entries 
tell the compiler that MASTER is to be processed by the 
ADD ROUT file labeled ADDROUT. 

Example: Processing by ADDROUT File 

You have a customer master file containing: 

• Customer numbers and addresses. 

• Salesman numbers. 

• Accounts receivable amounts. 

The file is an indexed file processed by customer number 
throughout the month for invoicing and at the end of every 
month for customer statements. Along with the monthly 
statements, the sales department wants the accounts re
ceivable for all customers owing more than $2500.00 to be 
printed by customer number within salesman number. This 
informs each salesman which of his customers have large 
accounts receivable outstanding. 

In order to do this, the records of customers who owe more 
than $2500.00 must be sorted according to salesman num
ber. You sort the file using ADD ROUT sort because there 
is not enough disk storage to use a tag-along sort. After the 
file is sorted, you have an ADDROUT file consisting of 
those records to be printed. The output of the sort becomes 
input to an RPG II program. Figures 5-2 and 5-3 show the 
RPG II entries required to use the ADDROUT file as input 
to an RPG II program. 

'·' 



Line Filename 

File Type 

File Designation 

End of File 

Sequence 

Block 
Length 

Record 
Length 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File _. 
Organization w 
or Additional Area .g 

"' 8 ..:. Overflow Indicator c 
~ ..---:-- ·~ 

<::: I:: Key Field iii 

~ g ~::!~!n ~ 

Device Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Core Index 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ 
Condition 

UH#!-
~ z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 2 F MAlSIT1EIT< I ~ F 11UJ~ 1 "1rA n ~ 7 I I [I t I S ~ 1 
03 

F IL'"' uJj 1"Re lEi a 13 ~3~1j 1£1n1s1
1< rzJ1 

0 4 F 

Figure 5-2. File Description Sheet for Processing by ADDROUT File 

IBJ.1 I ntemational Business Machines Corporation 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 
1 2 

Page~ Punching t--Gr~ap_h_ic--+-+--+--t---+--+--1---l 
Instruction Punch 

Date _____ _ 

Program _______________ _ 

Programmer ______________ _ Extension Specifications 

Record Sequence of the Chaining File 

To Filename 

Number i ~ 
:! 

of Number 

H~ Table or ih Table or Entries of Length 
Array Name 

Length 

Array Name Per Entries of of 

Record Per Table Entry ti~ g (Alternating Entry ti~ g 
or Array :!. .5 ~ Format) " E " 

u g i !~! 0.. c"' 

Number of the Chaining Field 

Line 

From Filename 

Figure 5-3. File Extension Sheet for Processing by ADDROUT File 

FormX21-9091 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~~;~!~cation I I I I I I I 

Comments

Processing Disk Files by Record Address Files 5-5

SEQUENTIALLY PROCESSING AN INDEXED FILE
WITHIN LIMITS

Processing a section of an indexed file sequentially is some
times necessary. For example, you have a customer file
with account numbers ranging from 1000 to 4999. Each
week statements are sent to 1,000 of the customers. By
using a record address file containing record key limits, you
can tell the RPG II program what records are to be proc
essed. This type of processing is known as sequential within
limits.

Creating a Record Address File'Within Limits

A record address file containing record key limits can be
entered from a disk, card, or a printer-keyboard. The fol
lowing rules must be observed when you are creating a
record address file:

• You can use only one record address file for each RPG
II program, but the record address file can contain
several sets of limits.

• Only one set of limits is allowed on each record in a
record address file. The length of each record is at least
twice as long as the length of the record key, since each
record is comprised of two keys.

• The low record key must begin in position one of the
record. Each record is twice as long as the record key
since each record is comprised of two keys.

5-6

• The high record key must immediately follow the low
record key. No spaces are allowed between the two
keys.

If the key field were four bytes long and the low record
key were 2000 and the high record key were 2999, the
record would look like this:

r 20002999

Each record key can be from 1-29 characters in length.

• The length of the keys must be equal. Therefore, it may
be necessary to place leading zeros in a numeric record
key to make the length of the keys equal. For example,
if the low record key were three positions {200) and the
high record key were four positions {2999), a zero must
be placed before the 200 to make it a four-position num
ber. The record would look like this:

(02002999

Each key length must equal the key field length you
specify in columns 29-30 of the File Description Sheet.
Each key length in the record address file must be equal
to the key length in the indexed file.

• An alphameric record key can contain blanks.

• The same set of limits can appear on more than one
record in a record address file. Therefore, records within
a set of limits can be processed as many times as you
wish.

• The two record keys in a set of limits can be identical.
For example, both the low and high record key can be
2999. In this case, only one record (2999) will be
processed.

Processing Sequentially Within Limits

Processing a section of an indexed file by record keys is
known as sequential within limits. The RPG II program
uses one set of limits (one record in a record address file)
at a time. Records are read according to the arrangement
of the record keys in the section of the indexed file speci
fied by the limits. When the records identified in one sec
tion are read, the program reads another set of limits from
the record address file. The program continues reading
records in this manner until the end of the record address
file is reached or an end-of-file condition on the indexed
file is reached.

An end-of-file condition can occur if a file being processed
ends before the high record key in a set of limits is reached.
For example, if you specify the high f'ecor-d key as 2999
and the last record in that section of the file is 2800, the
program ends when record 2800 is processed if there are no
other sets of limits to be processed.

RPG II Specifications (Sequential Processing Within Limits)

To process a file by a record address file using RPG II, you
must make additional entries on the File Description and
File Extension Sheets. (Input specifications need not be
written for the record address file.)

File Description Specifications

INDEXED Fl LE TO BE PROCESSED
MUST HAVE:

Column Entry Meaning

28 (Mode of L Records are to be read
Processing) from this file !!_equentially

within limits.

31 (Record Address A Record keys are used in
, Type) processing and loading

indexed files.

FJECORD ADDRESS FILE CONTAINING i
'

RECORD KEYS MUST HAVE:

Column Entry Meaning

15 (File Type) I File is an input file.

16 (File Designation) fl File is a record
address file.

17 (End-of-File) E File must be

' processed before the
program can end.

19 (File Format) F File contains fixed-
length records.

20-23 (Block Length) number Block length for the . file •

24-27 (Record Length) number Record length for the
file.

29-30 (Length of Record length of the Maximum length is
Address Field) record key 29 positions.

39 (Extension Code) ·E File is further defined
on the Extension
Sheet.

40-46 (Device) input device Input device for the
file.

Processing Disk Files by Record Address Files 5-7

Figure 5-4 is a sample File Description Sheet describing
two input files: an indexed file (MCUSTFLE) to be
processed and a record address file (RAFILE) to process
it. MCUSTFLE is coded as any other indexed file with.
two exceptions: column 28 contains an L and column 31
contains an A. Together these two columns indicate that
MCUSTFLE is to be processed sequentially within limits.

RAFILE contains R in column 16 indicating that the file
is a record address file. Columns 29-30 contain the length
of the record key. In this case the record key is seven
positions long. Column 39 contains an E indicating the
file is further defined on the File Extension Sheet.

File Extension Specifications

If you are processing a file using a record address file, entries
in columns 11-18 and 19-26 of the File Extension Sheet
must be coded:

• Columns 11-18 (From Filename) must contain the name
of the record address file. This must be the same name
as the record address file on the File Description Sheet.

• Columns 19-26 (To Filename) must contain the name of
the indexed file to be processed. This must be the same
filename that was defined on the File Description Sheet.

These two entries indicate that the indexed file is to be
processed by the record address file named in columns
11-18.

Figure 5-5 is a sample Extension Sheet corresponding to
the File Description Sheet in Figure 5-4. The entries indi
cate that RAFILE is used to process MCUSTFLE sequen
tially within limits.

Example: Sequentially Processing Part of an Indexed File

You have a master customer file on disk consisting of 128-
character records. The file is organized by customer num
ber within customer class. Customers are separated into
such classes as wholesalers or retailers. Together the cus
tomer number and class form a composite customer account
number (key) in the form: ccnnnnn.

cc is the customer class and nnnnn is the customer number.
Customer classes begin at 01 and are in ascending order.
Within each customer class, customer numbers range from
00000-99999.

You must prepare separate reports by the customer class
categories for sales analysis purposes. A record address
file can be used to supply the particular class categories
and customer number ranges as shown in Figure 5-6. The
key in each disk record begins in column 2 and the record
address file is loaded in MFCUl. Figures 54 and 5-5 show
the necessary File Description and Extension entries for
this job.

File Description Specifications

File Type

File Designation

End of File

Line Filename Sequence

File Format

~ u Block

~ w ~ ~ Length

Record

Length ~

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File -'
Organization W
or Additional Area ~

"' 8 .!. Overflow Indicator c

'~ ~-~
~ g ~=~!~:" ~

Device Symbolic
Device

Name of
label Exit

Extent Exit
for DAM

Core Index

File AdditionNnordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

~
Condition

Ul-l~

~ z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2
F Mk-11\~h'"l.ElL.Je! 1 tB 1= 215

1

~ 1112.A La17lAll 12 D 1 Is I< ~11

04 FT TT ITT

Figure 5-4. File Description Sheet for Processing by Record Address File Wi.thin Limits

5-8

IB:ft1 International Business Machines Corporation

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

Oat•------
Punching l-Gr_ap'-h_ic--!-+--4--~--l--4--~-I

Program _______________ _ Instruction Punch

Programmer ______________ _ Extension Specifications

Number ~
Record Sequence of the Chaining File

Line

of Number ~ -~ s Table or
To Filename Table or Entries of Length

~ ·~ ~ Array Name
Array Name Per Entries of

Record Per Table Entry ~ ~ g (Alternating

or Array ~ -~ ~ Format)
• ~ i

0.. c"'

Number of the Chaining Field

From Filename

Figure 5-5. File Extension Sheet for Processing by Record Address File Within Limits.

Record address file

03000000399999

01000000199999

_Symbolic representation
of customer ranges on
the disk file.

Figure 5-6. Files for the Example of Processing an Indexed File
Sequentially Within Limits

Length
of
Entry

~
~

1 2

Page rn

ih
0.."

~ ~ ~
!~j

Formx21..gog1
Printed In U.S.A.

75 76 77 78 79 BO

~~~~;~f~cation I I I I I I I 

Comments 

Processing Disk Files by Record Address Files 5-9 



5-10 



Review 5 

1. How is the output of the ADDROUT sort used by an RPG II program for processing data? 

2. Fill out the RPG II File Description and File Extension Specification Sheets for a program to access 
a data file using output from the ADDROUT sort. 

The data file is an indexed sequential file that contains 5000 records. Each record is 96 positions. 
The account number is used as the key field and is contained in the first six positions of the record. 

3. In processing between limits how are the limits supplied to the program? 

4. Describe briefly how an indexed file is processed between limits. 

5. Code the File Description and File Extension Specification Sheets to define an indexed file and the 
record address file used to process it between limits. The key for the indexed file is customer number 
and is stored in positions one through six. The record address file will be read in the primary hopper 
of the MFCU. 

Processing Disk Files by Record Address Files 5-11 



Answers to Review 5 

Line 

3 4 5 

0 2 

0 3 

0 4 

1Bft1 

1. The output file created by an ADDROUT sort is specified as a record address file to the RPG II 
program. The record address file is used to access a data file for processing. The record address file 
contains the relative record numbers of the records in the data file to be processed. Records in the 
data file are accessed in the sequence in which their relative record numb.ers appear in the record 
address file. 

2. See specification sheets. 

File Description Specifications 

File Type Mode of Processing 

Length of Key Field or 
of Record Address Field 

File Addition/Unordered 

Number of Tracks 
File Designation 

End of File Record Address Type 

Type of File _. Symbolic Name of 
Organization w Device Device Lii Label Exit 

File Format or Additional Area ~ ~ 

Sequence Filename 

Extent Exit 
for DAM 

for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ e m 8 z 
I-~ ~ .:. Overflow Indicator g !!i Core Index Condition 

u Block Record , ~ ~ ·~ => U1-l~ 
~ ~ w ~ ~ Length Length :§ ~ g ~:~:~:n ,E ~ ~ z 
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 58 69 70 71 72 73 74 

FMASlt~ 1~ E ~16 ~ ~,~ EDISk ~1 

I ntem1tlonal Business Machines Corporation 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 

FormX21-9091 
Printed In U.S.A. 

75 76 77 78 79 80 

Oat•------
Punching t--G_ra~ph_ic---!--+--+-t--t--+-t---1 

1 2 

Page rn ~~~~:,~cation ~UE!S tT121 
Program _______________ _ Instruction Punch 

Programmer--------------- Extension Specifications 

Record Sequence of the Chaining File 
Number [ ~ 

:!! 

Comments 

of Number ~ -~ 0 Table or ~h Table or Entries of Length 

~~~ Array Name 
Length

Array Name Per Entries of of

Record Per Table Entry
~] ~

(Alternating Entry ~ ~ g
or Array

Format) " E .,
II ~ i '; 'li g

CL C "1 CL C en

Number of the Chaining Field

To Filename Line

From Filename

5-12

Line

3. Limits are specified to the program via a record address file on cards, the printer-keyboard, or from
disk.

4. The record address file contains the high and low keys to be processed. These are read from con
secutive positions of the record address file records, beginning with the first position. The program
accesses the record in the indexed file that has the low limit key and processes the file sequentially
until the high limit key has been processed. Multiple sets oflimits can be used in one program and
the upper and lower limits for one set can be the same to process a single record.

5. See specification sheets.

File Description Specifications

File Type

File Designation

Mode of Processing

Length of Key Field or
of Record Address Field

File Addition/Unordered

Number of Tracks

End of File

Filename Sequence

Record
Length 0::

:::;

Record Address Type

Type of File ..J
Organization w
or Additional Area ~

"' 8 .:. Overflow Indicator c
0 r---:-- -~

<:: I::: Key Field iii

~ g ~~~~:n]

Device Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Core Index

for Cylinder Overflow

Number of Extents

< z

Tape
Rewind
..--

File
Condition

UM~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2
F I~ A Fl I iL 8 ' lC E 1f. ti~ 1112 ~6 I EIMEtlllll l l I

0 4 F

IBJ4 I ntematlonal Business Machines Corporation
FormX21-9091
Printed In U.S.A.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS
1 2 75 76 77 78 79 80

Paga rn Punching l--G_rap:....h.....;ic--l-+--+--l-+--+--1--1
Instruction Punch ~~~~~~f:ation QUEIS1151 Oat•------

Program _______________ _

Programmer--------------- Extension Specifications

Number of the Chaining Field

Record Sequence of the Chaining File

Line

Number L_ i
of Number Table or ~ -~ c Table or Entries of Length

~H
Length

To Filename
Per Entries of Array Name of ~~3 Array Name 0.. .. (Alternating
Record Per Table Entry ii ii ~ Entry ~ii §

or Array ~ .§ ~ Format) .. E "
II ll if !H 0.. c"'

From Filename

Comments

Processing Disk Files by Record Address Files 5-13

5-14

u:ra;14:r
MUL Tl-VOLUME FILES v

CHAPTER 6 DESCRIBES:

Multi-volume files.

Creating and processing multi-volume files.

Coding the OCL FILE statement and the RPG II File Description Sheet to create
and process multi-volume files.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe the function of the RPG II File Description Sheet.

Describe the function and format of the FILE statement.

Describe sequential and direct file organization.

List the types of processing these file organizations permit.

Distinguish between a fixed and a removable disk.

Distinguish between cylinders and tracks.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Define multi-volume files.

List the two ways multi-volume files are created and processed.

Code the FILE statement and RPG II File Description Sheet to create and process
multi-volume files.

Multi-Volume Files 6-1

r

INTRODUCTION

A multi-volume file is a file that is contained on more than
one disk (volume).

CREATING MULTI-VOLUME FILES

Coding parameters on the RPG II File Description Sheet
and on the OCL FILE statement will cause disk system
management to create a multi-volume file. Disk system
management creates sequential'or direct multi-volume·"'

·· · files. · ' ') ·

The way in which a multi-volume file is created depends
on the number of disks the file will occupy and on the file
organization (sequential or direct). Sequential files are
created consecutively; direct files are created randomly.

Creating a Sequential File

When you create a multi-volume sequential file, records
are placed in consecutive order on as many volumes as
needed. When the first volume is filled, records are placed
on the second volume.

You can mount all the disks to contain the file at the same
time or you can add or replace disks as needed. When all
the disks are mounted at the same time, the file is created
as an online, multi-volume file. If disks are added or re
placed during creation, the file is created as an ofjline,
multi-volume file.

To create an offline, multi-volume, sequential file, you must
use removable disks only. If you have a one-drive system,
the first volume is created. Another disk is then placed on
the disk drive, and the next volume is created. This is con
tinued until the entire multi-volume file is completed. If
you have a two-drive system, you can alternate the process
from one drive to another. You can mount two removable
disks, then after the first volume is created, you can replace
it by another disk while the second volume is created. An
offline, multi-volume, sequential file can have a maximum
of 50 volumes.

When you create an online multi-volume file, you can use
both fixed and removable disks. The file, however, cannot
exceed the number of disks that can be on the system at
one time. Therefore, a single-drive system is limited to a
two-volume file, and a two-drive system can have a max
imum file size of four volumes.

6-2

Creating a Direct File

Direct files are created randomly (Figure 6-1). Recall that
records in sequential files are stored consecutively on the
first volume until it is filled, then records are stored on the
second volume. Unlike sequential file loading, direct files
can have records placed alternately between the first and
second volumes.

For example, assume you have an input file labeled INPUT
that you want loaded on two volumes, the first of which
can store 1000 records. The relative record numbers of the
first five records are: 1, 1000, 3000, 500, and 4000
{Figure 6-2).

When records 1 and 1000 are read, they are placed in rela
tive positions 1 and 1000 on the first volume. The next
record is placed in relative position 3000 of the file, which
is on the second volume. Records 500 and 4000 are then
read and placed in their relative positions on volumes one
and two respectively. Blanks are in all positions that do
not contain records. Disk system management initializes
the disk to blanks before creation of the file begins.

When creating a multi-volume direct file, the file must be
created as an online, multi-volume file. The files can be
contained on both fixed and removable disks. On a one
drive system, the file must be contained on two volumes.
On a two-drive system, the maximum direct file size is
four volumes.

Considerations for Creating Multi-Volume Files

No matter what type of file organization you use, you must
consider these points when planning to use multi-volume
files:

• Multi-volume files must be created on consecutive tracks
of each volume. For example, a disk file cannot occupy
tracks 20-30 and tracks 41-50 of the same volume. The
file can occupy tracks 2040 of one volume, or the data
from tracks 41-50 can be placed on the second volume.

• No volume except the first volume of the file can con
tain scratch files during creation or addition to a file.

• Those volumes containing the multi-volume file cannot
contain any other file, if you do not specify the file
location for your multi-volume file.

• If you do specify a file location, ensure that no other
files are on that volume in that location.

• N"olume names must be unique:

INPUT FILE

Numbers

LOADED FILE

1 2 3 4 5 6 7 8 9 10

3 .,, 13 6 .,, 8 .,, 10

A direct file is not loaded onto a disk in any consecutive order.
The file is loaded according to relative record numbers. In this
figure, record 3 is read first and placed in relative position 3 on
disk. Record 8 is then read and loaded in position 8. Whe·n
record 6 is read, it is placed between record 3 and 8 in position
6. Once a direct file is on disk, the records containing data do
not necessarily follow one another. There can be blank records
between the records containing data. This type of loading is
called a random load.

Figure 6-1. Loading a Direct File

Figure 6-2. Loading a Direct File on Multi-Volumes

INPUT

l
Relative
Record
Numbers

~ 1

~1000

3000~

~500

4000~

I
/* I

Multi-Volume Files 6-3

PROCESSING MUL Tl-VOLUME Fl LES

Multi-volume files can be processed consecutively or ran.:·
"domly. Disk system management reads all the records in a
file when processing consecutively, but processes only
specified records. When processing randomly, disk system
management both reads and processes only specified records
in a file.

Processing Files Consecutively

When you are consecutively processing multi-volume files
with all volumes offline, all the volumes must be removable.
If you have a one-drive system, you can mount a disk, wait
until all of the records have been read, then mount the next
disk. If you have two drives, you can mount two disks,
wait until all of the records have been read from the first
disk, then replace it with the next volume while your pro
gram reads from the second disk.

If you are consecutively processing multi-volume files with
all volumes online, any combination of fixed and remov
able disks is permitted, but all must be mounted initially
and remain mounted throughout the entire job.

When processing consecutively' you must consider the
following:

• If you are creating or adding to a file,. the job :i:nust not
be cancelled between volumes, or the file must be com
pletely reloaded. No more records can be added to the
portion of the file that was completed· because the pro
gram cannot recognize which dlsk was the last volume.
(Records can be added only at the end of the last vol-

.. ume.) Records can be retrieved from it, however.

• As long as all file names and record lengths are identical,
two files not created as a multi-volume file can still be
processed as a multi-volume file. For example, two files
could be created at separate times on different volumes.
They could both be labeled FILEA and contain 128-
position records. The two files can then be processed
together as one multi-volume file. Records from this
type of file can be consecutively retrieved or updated.

6-4

Processing Files Randomly

Because disk system management directly accesses spec
ified records during random processing and the records can
be on different volumes, all volumes of the multi-volume
file must be online. The file can reside on both fixed and
removable disks. If you have one drive, the multi-volume
file is on two volumes.· If you have two drives, the maximum
multi-volume file size is four volumes. If a fixed disk is
used, you can copy the file to the fixed disk prior to run
ning the job and back to the removable disk for storage
after the volume has been processed. This leaves the fixed
disk free to perform other functions when the multi-volume
file is not being processed.

Figure 6-3 is a summary of the maximum number of vol
umes permitted for multi-volume files.

CODING THE RPG II FILE DESCRIPTION SHEET TO
PROCESS MUL Tl-VOLUME Fl LES

When processing single volume files, you must enter 01 in
columns 68-69 (Number of Extents) on the File Descrip
tion Sheet. (An extent is definable area on disk where data
is stored.) This entry tells the disk system management the
number of volumes in your file. When processing multi
volume files, enter in these columns the total number of
volumes that contain your file.

Figure 6-4 is an example of coding the Number of Extents
specification.

One Drive · Two Drives ·

Maximum Number Maximum Number Maximum Number Maximum Number
of Volumes of Volumes of Volumes of Volumes
Allowed Online Allowed Online

Removable
Disks Only 50 1 50 2

Removable and
Fixed Disk 2 2 4 4

Figure 6-3. Maximum Number of Volumes for Multi-Volume Files

File Description Specifications

File Type Mode of Processing File Addition/Unordered

File Designation
Length of Key Field or

Extent Exit
Number of Tracks

of Record Addr"'5 Field for Cylinder Overflow

End of File Record Addr"'5 Type
for DAM

Number of Extents

Line Filename Sequence
Type of File -' Device

Symbolic Name of Tape
Organization w w Rewind

File Format or Additional Area {l
Device

ls
Label Exit

~ 0 Ol 8 z·
8. et: .:. Overflow Indicator c:

!d
Condition

~ u c::
:: ~ ~-i Core Index UH~ ~~ Block Record

~ g~ 0 <: Length Length c:: ~o Starting ~ ~ ::::>
w < u.. :::i <{;:::

Location
ill z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71.72 73 74

0 2 Fl! NP JT IP :E 19h 9c MB ~lll1 111II lllll l ll l l
0 3 F~ IUT l"lf [[] h i:1 2~~ rll [QI SIKJ HtH HHt + ~ ·~2 t ~ ,...~ "'-1
0 4 F

0 5 F
Columns 68-69 are the only columns which tell the

0 6 F
system you are processing multi-volume files. In this

0 7 F
figure, an output file is being created on two disks.
iiiiiiiiiiiiiii~ii33i ..1.

F H1H HHf f 11 1 1 F

Figure 6-4. File Description Specifications for Multi-Volume Files

Multi-Volume Files 6-5

CODING PARAMETERS ON THE FILE STATEMENT
TO PROCESS MUL Tl-VOLUME Fl LES

The only difference between coding the FILE statement to
process a single volume file and a multi-volume file is that
you must define and code additional parameters for these
keywords: PACK, UNIT, TRACKS, RECORDS, and
LOCATION.

These additional parameters are necess~ry for two reasons:

1. When files contained on more than a single volume
are processed, the system must be supplied with ad
ditional information about each additional volume
in order to perform all the protection and checking
functions it performs.

2. Additional information is needed to determine and
check the sequence in which the volumes are proc
essed and the way they are to be mounted on the
disk drives.

You should already be familiar with the format of
keywords and parameters on the FILE statement for
single volume files. For multi-volume files, you must
code the keywords that require additional parameters
as follows:

KEYWORD-'data list'

A data list is a list of parameters that must be en
closed by single quotes. Each item in the list must
be separated from the next by commas, for example
'50, 100, 500'. Figure 6-5 shows an example of data
lists in parameters.

1 4 8 12 16 20 24 .28 .32 36 40 44 48 52 56 60 64 68 72

Figure 6-5. Data Lists on the FILE Statement

6-6

Parameters for the PACK Keyword

The names of the disks that contain, or will contain, the
multi-volume file must follow the keyword PACK. The
PACK names must be unique. Figure 6-6 shows an example
of the PACK parameter for a 3-volume multi-volume file.
The volumes are named VOLl, VOL2, and VOL3.

When a multi-volume file is created, disk system manage
ment writes sequence numbers on the volumes to indicate
the order in which the volumes are created. They are num
bered in the order that you list their names in the PACK
parameter. They are numbered in consecutive, ascending
order (01, 02, and so on).

When a multi-volume file is processed consecutively, disk
system management provides two checks to ensure that the
disks are processed in the proper order:

1. It checks to ensure that the disks are used in the order
that their names are listed in the PACK parameter.

2. It checks the sequence numbers of the disks used to
ensure that they are in ascending order (01, 03, 07
and so on).

If you are reloading a multi-volume file, the PACKS must
be in consecutive, ascending order.

If the file was not created as a multi-volume file, these
quence number is ignored, since no sequence number was
written at creation of the file.

Disk system management stops when it detects a disk that
is out of sequence. The operator can do one of the follow
ing three things if the system stops:

• Mount the proper disk and restart the system.

• Restart the system and process the disk that is mounted
(if the PACK sequence number is greater than the last
one processed).

• End the program.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Figure 6-6. Sample PACK Parameter for Multi-Volume Files

Multi-Volume Files 6-7

Parameters for the UNIT Keyword

The keyword UNIT must be followed by codes indicating
where. on the disk drive the disks containing the file are
located.

The codes are as follows:

Code Meaning

Rl Removable disk on drive one

Fl Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

The order' of codes in the UNIT parameter must correspond
to the order of names in the PACK parameter. For ex
ample, assume that a direct file is being created on two
disks named VOLl and VOL2. Further assume that VOLl
is a removable disk to be used on drive one, and VOL2 is a
removable disk to be used on drive two. Figure 6-7 shows
the PACK and UNIT parameters for this file.

When you are creating an offline sequential file or proces
sing an offline sequential file consecutively, you can use
the same drive for more than one of the disks. The disks
must be removable, however. If you do use the same
drive, do not repeat the code for the drive in the UNIT
parameter. When the number of codes in the UNIT para
meter is less than the number of names in the PACK para
meter, disk system management uses the codes alternately.

For example, assume that your program processes a file
consecutively. The disks containing the file are named
VOLl, VOL2, and VOL3, respectively. You intend to
mount VOLl and VOL3 on drive one, and VOL2 on
drive two.

Figure 6-8 shows the PACK and UNIT parameters for the
file. Disk system management uses Rl, then R2, as speci
fied for VOLl and VOL2, and then goes back to Rl for
VOL3. If, in the preceding example, all three disks were
used on drive one, the UNIT parameter in Figure 6-9 would
have been used. Consecutive files that are created separately
as single volume files can be processed as a multi-volume
file, but they must all have the same name.

If any fixed unit {Fl or F2) is specified, the number of
PACK parameters must be equal to the number of UNIT
parameters. The file must be an online, multi-volume file.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Figure 6-7. Sample UNIT Parameter: Different Unit for Each Disk

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Figure 6-8. Sample UNIT Parameter: Same Unit for Two Disks

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

I I lB I IL E N ~~~ -MIVIElL IL._ Su_ PIAt.lfc- ' MO Ll1_._y_"'IL12_._y_~IL13 f u J\jl1 rJ- E i" {t ,. . ~ ~
Figure 6-9. Sample UNIT Parameter: Same Unit for All Disks

6-8

Parameters for the TRACKS or RECORDS Keyword

The keyword TRACKS or RECORDS must be followed by
numbers that indicate the amount of space needed on each
of the disks containing the multi-volume file. The order of
these numbers must correspond to the order of the names
in the PACK parameter.

For example, assume that your program is creating a sequen
tial file on three disks: VOLl, VOL2, and VOL3. The
first 50 records are to be placed on VOLI, the next 500 on
VOL2, and the last 200 on VOL3.

The PACK and RECORDS parameters for the file are
shown in Figure 6-10.

Parameters for the LOCATION Keyword

The keyword LOCATION must be followed by the track
numbers indicating where the file begins on each disk you
use for the file. The order of the numbers must correspond
to the order of the names in the PACK parameter.

For example, assume your program is creating a direct file
on three disks: VOLl, VOL2 and VOL3. The track loca-

tions of your file on each disk are: track 198 in VOLl,
track 10 in VOL2, and track 8 in VOL3.

The PACK and LOCATION parameters for the file are
shown in Figure 6-11. If you omit the LOCATION para
meter, disk system management chooses the beginning
track on each of the disks. You must either specify the
starting location on all disks of a multi-volume file or on
none of the disks.

If you do not give a location parameter, none of the file
volumes can contain any type of file. If you do give a
location parameter, make sure there are no files on that
volume in that location.

Parameters for the R ET Al N Keyword

You can specify a multi-volume file as a scratch file
(RETAIN-S) only if it is created on line. If RETAIN-Sis
used to create a multi-volume file on line, you can change
it to a temporary file (RET AIN-T) only if this is also done
on line.

An offline, multi-volume file defined as a scratch file can
not be processed. If, however, you change it to a temporary
file, you can then process it as an offline file.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Figure 6-10. Sample RECORDS Parameter for Multi-Volume Files

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

/~
I I
I I

Figure 6-11. Sample LOCATION Parameter for Multi-Volume Files

Multi-Volume Files 6-9

EXAMPLE: COMPARATIVE SALES ANAL VSIS

Assume that you are preparing a comparative sales analysis
report for your company to analyze the sales made to each
customer. You want to compare the amount of sales by
product made to a customer each quarter of one year to
sales made to the same customer each quarter of the pre
vious year. This analysis will provide the sales department
with information about problem areas for future sales
efforts. This type of comparative sales analysis involves a
great deal of historical data because data about sales for
two years must be processed. Your job is to write an RPG
II program to create and process a multi-volume file con
taining the historical sales data.

First, you must determine the number of volumes that will
be required to store the data and the type of processing
you desire. For this example, assume that the historical
data file (SLSHIS) can be loaded onto two volumes from
card files (CARDIN). Since all the data will be processed,
the file organization is sequential. Remember, the only
additional entry that is required to tell the system that you
are creating a multi-volume file is an entry in columns 68-
69 on the File Description Sheet. Figure 6-12 shows an
example of this coding. Assume you have a, one-drive sys
tem. Since you might expand the historical data file in the
future, you decide to use removable disks. Remember, with
a one drive system, it is possible to mount two volumes for
loading at the same time by using both the fixed and re
movable disk. However, you can process only two volumes

6-10

for the file. {In this case, for expansion purposes, it is bet
ter to use only removable disks.) Therefore, you would
mount one volume, wait until it i~ filled, and then mount

I

the next volume. I

Before the volumes can be loaded, however, your job stream
must indicate to disk system management what you want
to do. The only difference in OCL statements between
processing single-volume and multi-volume files is that key
words on the FILE statement require data list parameters.
Assume that 2500 records will be placed on each disk be
ginning on track 55 of the first volume and track 10 of the
second volume. Figure 6-13 shows an example of the FILE
statement for this program.

After your file is created, you must process it. In this case,
the disk output file which was created now becomes the
input file. Once again the only entry in your RPG II pro
gram which tells the system you are processing a multi
volume file is the entry in columns 68-69 on the File
Description Sheet (Figure 6-14).

The volumes will be mounted for processing in the same
manner they were mounted for creation. The FILE state
ment is very similar except that you do not code the
LOCATION, TRACKS, or RECORDS parameters, because
they are required only for loading a file. Figure 6-15 shows
an example of the coding for defining SLSHIS on the File
Description Sheet.

Line Filename

File Type

File Designation

End of File

Sequence

File Description Specifications

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File _, Symbolic Name of
Organization w Device Device iii label Exit

File Format or Additional Area ~ !;

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents .

Tape
Rewind

~ C m 8 z
~ ,.:. Overflow Indicator c: !!i Core Index Condition

o Block Record ::::: ~ ~ ·~.. ~ UH~
it! e < "ii ~ -'
n. w <(LL Length Length :) ~ g ~::!~:n S j <(z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 55 66 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2

0 3

0 4

0 5

·Figure 6-12. File Description Sheet for Loading SLSHIS

1 4 8 12 16 20 24 28 32 36 40 44 48

llt!
II ~, LIS N~ ME -s IUS '-'l IS L\.u NI II -lB 1~ PA ~~ -' IV hL 1 _l_ N ~IL 2' _l_

rr<'F _, I.!.

215 ~~ I I I r-. (~ Il tJ~ -\ 1~15
J.. I ~I' 1<1

'""'
l:l~ rzrn _l_ v

I .

Figure 6-13. FILE Statement for Loading SLSHIS

Line Filename

File Type

File Designation

End of File

Sequence

File Description Specifications

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File _, Symbolic Name of
Organization w Device Device iii Label Exit

File Format or Additional Area {l 0

52

Extent Exit
for DAM

56 60

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

~ C m 8 z
~ ~ ~ Overt~·~ !!i Core Index Condition

Jo ~
0

C Block Record a: ::::: t: Key Field iii 1: :J :J Ul-~
_ CC w ~ LL Length Length ::::; ~ g Starting S !) ~ z

3 4 s 6 1 a 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 3~o=t~~n 38 39 40 41 42 43 44 45 46 47 48 49 50 51 s2 53 54 55 56 57 58 59 60 61 62 63 64 65 6&'tffi}/JIJ!fi!J, ;7,o n 12 73 74

0121FISILfSIH!1S.1112 ~ 116~ l l ill ~L~l<J I lllll lllll lllll tU2JIZl0'i,

oM F T T TT TT TT T T I I I I I I I l I I I I I I I I I T I I I I I I I T I I T

Figure 6-14. File Description Sheet for Processing SLSHIS

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

;ltj
II i: I LE l IA lr-i_ lSI LISI Ii.I I s_l_ ~ IN ltn -1<11 E~ C.lk -' _\ij~ Ll _l__\ij bL. 2' ~

~ IT I'

Figure 6-15. FILE Statement for Processing SLSHIS

E

€

Multi-Volume Files 6-11

6-12

Line

Review 6

1. What distinguishes a multi-volume file from other files?

2. What types of file organizations can be specified for multi-volume files?

3. You are going to create a file named SALES on three offline multi-volumes. Assume the following
specifications:

• The volumes are named SALES!, SALES2, and SALES3.

• The first volume should begin on track 30 and each of the others on track 5.

• The first volume will have 5000 records and each of the others 7000 records:

• This is a two-drive system and the volumes should be mounted on alternate drives
as the file is loaded.

a. Write a FILE statement for creating this file.

b. Complete the File Description Sheet for describing the file in an RPG II program.

File Type

File Designation

End of File

Filename Sequence

File Format

Block
Length

Record
Length §

File Description Specifications

Mode of Processing

Leng1h of Key Field or
of Record Address Field

Record Address Type

Type of File ...J

Organization W
or Additional Area .g

O> 8
.:.. Overflow Indicator c
0 ~·~

::::: t: Key Field 5i
~ e Starting ~

- Location

Device Symbolic
Device

Name of
w Label Exit
0

z
!d

Extent Exit
for DAM

Core Index

File Addi1ion/Unordered

Number of Tracks
for Cylinder Overflow

Number of Ex1ents

Tape
Rewind

~
Condition

:> Ul-~

z
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0I2l FlSltiJIJEJS 11 : E 111~ 11l5rl 1 l l ll llllll lll ll l lll l ll ll l l l 1
a 131 F I I I I I I I I I f I

Multi-Volume Files 6-13

Answers to Review 6

1

/~
l/Jl

Line

6-14

1. A multi-volume file is contained on more than one disk.

2. Sequential and Direct.

3. a.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

~lL LI~ All/\ IMli::-, -~I 1AL EIS_._ ML tzJ- 'R 1_._ Rl2J I tElA Ck - \ IS'Ai L'E lsl1 -1 s IAL 'SS l2 _._ S[A ILJEI 53 I :..Ill: f' _,
~

-:!< :J. I \3 5T
I

b.

Filename

~E 1~-\' 1Jrl rJf/J --'- L cc 1<1T r1J r1: ~J: -1. _._l u. r.I. w . --r I

File Description Specifications

File Type

File Designation

End of File

Seq"uence

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File _,
Organization w

File Format or Additional Area ""
C m 8

~ t: .!. Overflow Indicator c

Device

Ar Jb N- ~-1 5_._
I I'

Symbolic Name of
Device Label Exit

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

File
Condition
Ut-UB 3 ~ Block Record .:::: ~ Key Field ·~ !!i Core Index

g ~ w ~ ~ Length Length :) ~ g ~=:~:n .E ~ ~ ~
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

E

•a:m:a•¥1:t
AUTOMATIC FILE ALLOCATION v

CHAPTER 7 DESCRIBES:

Automatic file allocation.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe the use of the FILE statement.

Determine the size of a file.

Define permanent, temporary, and scratch files.

Define removable and fixed disks.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Define automatic file allocation.

Describe how disk system management performs automatic file allocation.

State the advantages and restrictions of using automatic file allocation.

Code the FILE statement to use automatic file allocation.

Automatic File Location 7-1
',

INTRODUCTION

You can allocate disk space for a file by determining the
size of the file and the location of an available number of
tracks that can contain that file. (If you have planned the
location of your files, you know where files are located and
the tracks that are available for further allocation. The Disk
File Layout Chart, GX21-9108, is available to document
your file locations.) After you have determined where to
place your file, you can code the LOCATION parameter of
the FILE statement to tell disk system management on
which track the file is to begin. Figure 7-1, part A, is a
sample FILE statement containing a LOCATION parameter
to tell disk system management that FILEA is to be located
on disk pack VOLl beginning on track 10.

If, as in Figure 7-1, part B, no LOCATION parameter is
coded, FILEA is located on the disk pack automatically for
you. The process used by disk system management to allo
cate file space for you is known as automatic file allocation.

ALLOCATING FILE SPACE AUTOMATICALLY

When allocating file space, disk system management calcu
lates the length of the file and checks the volume label to
determine which tracks are available for allbcation. {The
volume label contains the status of each track and indicates
which tracks are available for allocation.) Disk system
management then:

1.

2.

Finds a continuous string of available tracks.

Allocates space for permanent files, then temporary
files, and finally scratch files, if multiple files are be
ing allocated.

Disk system management places your file on a continuous
· string of available tracks that is as near to the length of your
file as possible. For example, it can determine that your
file is 10 tracks long and find one string of 12 available
tracks and another of 15 tracks. It places your file in the
string of 12 tracks because the 12-track string is closer to
the length of the file.

1 4 8 12 16 20 24 28

1tl
32

II 1=11 LEi UIJ\ lul~I -la ll LE lA.). rDA r 1(1 -~ bL 1 .).~ W_ I ~ ·~ II ~I/ t~ ll IA IM Ir-I -a l LIE IA~ PA rll(-~ ir.L 11 ~u Al I LI.
7 fT

Figure 7-1. FILE Statement and Use of the LOCATION Parameter

7-2

If an area is found containing the number of available tracks
and two files are already on either side of the area, the new
file will be placed adjacent to a file with similar attributes,
if possible. For example, permanent files are placed ad
jacent to permanent files. Figure 7-2, parts A and B, shows
a permanent file being placed adjacent to another permanent
file. Files are placed adjacent to files with similar attributes,
so there will be as few unused tracks between files as pos
sible. It is more important, however, to locate a new file
on a string of tracks as close to the length of your file as
possible. Therefore, a permanent file could be allocated
space next to a temporary or scratch file, if the number of
tracks at that location can contain the permanent file.

If your file is the first file placed on a disk, the system al
locates space for the file beginning at the highest numbered
track. After a disk contains files and two areas are available
for a new file, the file is placed beginning at the highest
numbered available location. This is done to allow you as
many available tracks as possible next to the object library
which is located at the lowest numbered tracks, so the ob
ject library can expand, if necessary.

available Scratch
Part A Permanent File New Permanent File tracks file

available Permanent
Part B Scratch File tracks New Permanent File File

Disk system management determines the type of file to the left
of the available tracks. If the file to the left is similar, the new
file is left-adjusted (Part A). If the file to the left is not similar,
it is right-adjusted (Part B).

Figure 7-2. File Placement of Automatic File Allocation

36 40 44 48 52 56 60 6

J II ~+-T- ~1 ~T ~Al ~Ilk s- ~rzj 11,r1A \I 1b N- 1 '2 Lt.. JJ.\

T- ~1 :lr RJ~ rllKJ s- ri:~ IT @ 11+-.
11 I I I

CONSIDERATIONS FOR USING AUTOMATIC FILE
ALLOCATION

If you let disk system management allocate file space, you
do not have to determine where to locate files. It is easier,
but there are some considerations in determining whether
to use automatic file allocation. After you have gained ex
perience, you should be able to locate a file more efficiently
than disk system management. Disk system management
may leave a string of available tracks between files which
is unusable, because it is not long enough to locate another
file.

If you plan your own files, you can determine where files
are located by checking the Disk File Layout Chart, if you
keep your layout chart up-to-date. If you automatically
allocate some files and then want to locate a file yourself,
you must check the volume label to determine what tracks
are available. This is done by using the File and Volume
Label Display utility program. (See the IBM System/3 Disk
System Operation Control Language and Disk Utilities
Reference Manual, GC21-7512 for more information on
this utility program.)

Automatic file allocation can increase the time needed to
copy programs using the Copy Dump utility program. (See
the IBM System/3 Disk System Operation Control Language
and Disk Utilities Reference Manual, GC21-7512.) For
example, you have used automatic file allocation and now
wish to copy a file onto tracks 30 through 50 of the disk on
Fl. However, disk system management placed the file to
be copied on tracks 50 through 70 of the disk on Rl. Copy
ing time increases when a file is copied from one location
on a disk to another location on another disk, because the
access mechanism must move. It would be more advan
tageous to allocate the file space on tracks 30 through 50
of Rl yourself so that the file can be copied onto the same
tracks (tracks 30 through 50) of Fl.

Automatic file allocation considers effective use of file space,
but not the usage of the files. It does not consider file plan
ning for multiple input files in a program or job-to-job
transitions. If you plan your own file locations, you can
place files that are used in conjunction close together on
disk. When files used together are located near one another,
processing time may be improved.

Automatic File Location 7-3

7-4

Review 7

1. What does automatic file allocation mean?

2. What advantages are there to using automatic file allocation? Disadvantages?

3. How is automatic file allocation indicated on the FILE statement?

4. Consider the following diagram of a disk and its allocated files.

0 100

Object Blank
Temporary Scratch Temporary_ Scratch Permanent Scratch Permanent

Library 15 tracks
File File File File File File File
5 tracks 10 tracks 12 tracks 15 tracks 10 tracks 15 tracks

r

Where would the disk system allocate the following files?

a. A temporary file requiring 12 tracks.

b. A temporary file requiring 7 tracks.

c. A permanent file requiring 10 tracks.

d. A permanent file requiring 5 tracks.

e. A permanent file requiring 12 tracks.

Automatic File Location 7-5

Answers to Review 7

7-6

1. With automatic file allocation, the programmer is not concerned with specifying the placement of
data files. The disk system automatically finds a space for each file as it is loaded.

2. Automatic file allocation is easier to use, although it can cause some wasted space on the disk.
Performance time may be slower with automatic allocation when data files are not aligned between
the fixed and removable disk.

3. The location parameter is omitted.

4. You should have used the following logic in determining where to place the data files:

a. The available area closest to the required number of tracks is determined.

b. If the file on the left of the available area has the same attribute as the file to be allocated, the file
is left-adjusted.

c. If not, the file is right-adjusted.

A I Object
• Library

8 I O_bJect
Library

I 0. _bject I
C • Library .

I O_bJect I D Library

I Object
E . Library

I I I I I I

I I

I I

I I I I I

I I I I

•a=M:a•:1;•
STORING PROGRAMS AND PROCEDURES ON DISK v

CHAPTER 8 DESCRIBES:

Source programs, object programs, and Operation Control Language (OCL), utility
program control statements.

Advantages and considerations for storing programs and procedures on disk.

Object libraries and source libraries.

The Library Maintenance programs.

RPG II object output.

The CALL statement.

The COMPILE statement.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe basic disk concepts such as sector and disk system management.

Differentiate between fixed and removable disks.

Define source programs, object programs, and OCL.

Define permanent and temporary programs.

Describe how programs and OCL statements are loaded into storage from cards.

Storing Programs and Procedures on Disk 8-1

8-2

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Define procedures.

List the advantages and considerations for storing programs and procedures on disk.

Describe object libraries and source libraries.

List the functions of the Library Maintenance program.

Code the OCL and program control statements to build object and source libraries
and store programs and procedures.

Describe the CALL statement.

Code the RPG II Control Card Specification Sheet for object output.

Code the COMPILE Statement.

INTRODUCTION When OCL statements and utility program control state
ments are stored in a source library, they are call procedures.

In the System/3 Disk System, programs and OCL statements The System/3 Library Maintenance program can be used to:
can be stored on disk and transferred as needed into main
storage. • Allocate space for libraries.

The area in which programs are stored on disk is called a
library. Two types of libraries can be located on a disk:
object libraries and source libraries. Object libraries con
tain object programs; source libraries contain source pro
grams, QCL statements, and utility program control state
ments.

• Enter programs and procedures into libraries.

• Maintain libraries.

More information about this program and its functions is
given later in this chapter under The Library Maintenance
Program.

Storing Programs and Procedures on Disk 8-3

ADVANTAGES OF STORING PROGRAMS AND
PROCEDURES ON DISK

By storing frequently used programs and procedures on
disk, you can increase the efficiency of your system opera
tion and reduce the amount of time required to process
jobs. When you need a particular program or procedure, it
can be loaded from disk, reducing card handling. When
programs and procedures are located on disk, firm opera
ting procedures can be established.

Increasing System Efficiency

All programs and procedures can be placed on a master
pack and copied to the fixed disk for execution. For
example, you can load an entire series of application pro
grams and procedures on a fixed disk with a minimum
number of control statements. Assume you run payroll
every Friday morning. On Friday, you can use a pre
tested procedure to transfer all the required programs and
their procedures from the master pack to a fixed disk,
then run payroll.

There are two library functions that make this method
particularly efficient: naming conventions and object lib
rary expansion.

Naming Conventions: You can transfer all the correct pro
grams and procedures from the master pack to the fixed
disk using one Library Maintenance control statement, if
you establish and use a naming convention. The names of
all programs and procedures used in an application series
should begin with the same letters. For example, name all
payroll programs and their corresponding procedures be
ginning with the letters PAY. Then, with one COPY con
trol statement, all payroll programs and procedures in both
libraries will be copied onto the fixed disk.

1 4 8 12 16 20 24 28 32

1ltl
36

II rh ~~ ~lR ,., " -lB 1 tr1c ~l8 ll IL I i--
-1~1 ILIL I• IA

'-
1• ,. I'

8-4

er

(The COPY control statement is described under The Lib
rary Maintenance Program.)

Object Library Expansion: Object libraries are capable of
expanding their size for temporary entries. When you copy
an object program onto the fixed disk, you can designate
it as a temporary entry. Then if you add a permanent
entry, reallocate the library, or delete all temporary entries,
the object library will return to its normal size. Consequent
ly, by using this function, you use a minimum amount of
storage on the fixed disk, leaving it free to perform other
functions when you are not using the object library.

Decreasing Processing Time

Disk system management takes more time to read programs
from caras into main storage than to read programs from
disk into main storage. Once your programs and procedures
are located on disk, programs can be transferred quickly
into main storage, thereby decreasing the amount of time
to run your jobs. Operating time is also saved because the
operator does not handle card decks.

Storing Programs and Their Data Files on Removable Disks

If space on the fixed disk is limited, or if you prefer to do
so, programs and the data files they process can be stored
on a removable disk. By placing programs and data files on
the same disk, you can reduce the number of times disk
packs must-be changed. This is especially true if a program
uses only one data file. This also allows more available
space on the fixed disk, a more flexible arrangement of
space for output files on the fixed disk, and placement of
files to minimize access time.

40 44 48 52 56 60 64 68 72

fr" I\ ~IL.JLJ Ir,., l[L._

There are certain thin~ you must consider when placing
both programs and data files on a removable disk, however.
First, more space is required on the removable disk.

Maintaining programs on a removable disk is more difficult,
because they are scattered across several disks instead of all
located on a master pack. For example, if the format of an
inventory record changed, you must search several packs to
update all the programs using that record, rather than search
ing just one master pack. You should have a master pack
so that you have copies of your programs if something
happens to one of the other disks.

You should not place data and programs on the same packs
if you are processing multi-volume files. The pack contain
ing the program cannot be removed during the job.

e

LOCATION OF LIBRARIES ON DISK

You can place a source library, an object library, or both
on a disk. If space is allocated for only a source or object
library, the Library Maintenance program places the library
in the first available disk area large enough to contain the
library.

If you are allocating space for a source library on a disk
containing an object library, a disk area large enough for
the source library must immediately precede or follow the
object library (Figure 8-1). If the disk area follows the ob
ject library, the Library Maintenance program moves the
object library to allow space for the source library pre
ceding it.

If an object library is being allocated on a disk with a source
library, space for the object library must immediately fol
low the source library.

User
AreaG)

Source Library ~ Object Library
User
Area

CJ)

Upper Boundary

(D If there are no use files present at the time the
library is created, this area contains alternate
tracks.

@scheduler Work Area for Roll-in/Roll-out.

Figure 8-1. Relative Positions of Libraries on Disk

Storing Programs and Procedures on Disk 8-5

OBJECT LIBRARIES

The object library is an area on disk used to store object
programs and routines. Object programs, or executable
programs, are programs and subroutines that can be loaded
for execution. Routines, or nonexecutable programs, are
programs and subroutines that need further translation be
fore being loaded for execution. Nonexecutable programs
are used by the compiler and must be on the same disk
pack as the compiler. Figure 8-2 is a sample object library.

The object library is one physical area containing two
logically different types of entries: object programs and
routines. When these entries are copied into the object
library, they are given different object library designations.
Object programs are given an 0 library designation; routines
are given an R library designation. Figure 8-3 shows the
logical library entries within the object library.

Source Library (optional)

Object Library Directory

Object Library containing:

1; Executable object
programs

2. Routines (nonexecutable

Physical Characteristics of the Object Library

Size: The minimum size of a library not on a system pack
is three tracks. The minimum size of an object library on a
system pack is 30 tracks. (You can build an object library
on any disk pack, but you must have one library online
containing the systems programs.)

For the object library consisting of system programs, the
disk area forming the library must also be large enough to
contain a work area for disk system management. The
number of tracks for the work area space need not be in
cluded in the number of tracks you specify for the library;
the Library Maintenance program calculates and assigns the
additional space for you. The amount of additional space
needed depends on the capacity of your system and whether
your programming system has inquiry capability or the dual
programming feature. Figure 8-4 is a table showing the
work area size required for various system capacities.

Permanent Entries

OBJECT LIBRARY

0. Library Entries

and

R. Library Entries

object programs} O. Library Entries

Upper Boundary

User Area

Figure 8-2. Format of the Object Library

8-6

Temporary Entries and

R. Library Entries

The 0 library entries are executable programs. They are
loaded by the LOAD statement.

The R library entries are nonexecutable routines used by
the compiler. They must be on the same disk as the compiler.

Figure 8-3. Logical Parts of an Object Library

Directory: The Library Maintenance program creates a
directory for every object library {Figure 8-2). The direc
tory acts as a table of contents for the programs contained
within the object library. It contains such information as
the name and location of the entries. If the object library
is on a system pack, three of the requested tracks are re
served for the directory. If not, only the first track is re
served for the directory.

Upper Boundary: The upper boundary of the object lib·
rary (Figure 8-2) will automatically expand only if more
space is needed for temporary entries and if area next to
the library is available. When permanent entries are placed
in the library, all the temporary entries are deleted and the
object library returns to its normal size.

To make efficient use of this feature, the area next to the
upper boundary of the object library should be kept free
of data files. When disk system management automatically
allocates file space for you, the area next to the object lib·
rary is probably free because your files are placed as close
to the end of the disk pack as possible. When allocating
your own file space, you should allocate your files toward
the end of the pack, also. This leaves room for object lib·
rary expansion.

Organization of Entries: Entries are stored in the object
library serially; that is, a twenty-sector program occupies
20 consecutive sectors. Temporary entries follow all per
manent entries in the object library. The permanent entry
is loaded into the first available space large enough to hold
it, usually the space following the last permanent entry.

Gaps can occur in the object library when a permanent entry
, is deleted and replaced with one using fewer sectors. The

Library Maintenance program scans the library to locate
available sectors, then places the entry into the smallest gap
large enough to hold it.

You should use the Library Maintenance program to re
organize the library when you delete permanent entries,
when a great number of additions and deletions take place,
or when there is no apparent room.

In reorganizing entries, the Library Maintenance program
shifts entries so that gaps do not appear between them.
This makes more sectors available for use.

Frequent adding, replacing, and deleting of entries causes
unusable sectors. You can determine how many sectors are
unusable by printing the library directory using the Library
Maintenance program.

Scheduler Work Area Size

No Inquiry CD No Inquiry Inquiry Inquiry ROLL-IN/ ®
Capacity Without DPF 1 With DPF Without DPF With DPF ROLL-OUT 2

12K bytes 2 tracks 4 tracks 6 tracks 8 tracks 4 tracks

16K bytes 2 tracks 4 tracks 7 tracks 9 tracks 5 tracks

24K bytes 2 tracks 4 tracks 8 tracks 10 tracks 7 tracks

32K bytes 2 tracks 4 tracks 9 tracks 11 tracks 9 tracks

CD Dual Programming Feature.

®Tracks needed by the scheduler to retain information concerning an interrupted program.

Figure 8-4. Work Area Size

Storing Programs and Procedures on Disk 8-7

SOURCE LIBRARIES

Source libraries can contain source program statements and
procedures. Examples of source statements are RPG II
source programs and sequence specifications for the Disk
Sort program.

Procedures are sets of OCL statements. The procedures for
utility programs can include program control statements.

Entries in the source library can be comprised of any valid
System/3 characters. Figure 8-5 shows the format of the
source library.

The source library is one physical area containing two
logically different types of entries. When these entries are
copied into source libraries, they are given different source
library designations. Source programs are given an S library
designation; procedures are given a Plibrary designation.
Figure 8-6 shows the logical entries within the source
library.

User Area

Source Library Directory

Source Library containing:

1. Source program
statements

2. Procedures

Object Library Directory

Object Library (optional)

Figure 8-5. Format of the Source Library

8-8

Physical Characteristics of the Source Library

Size: The minimum size of a source library is one track.

Directory: Note the area labeled source library directory
in Figure 8-5. The directory acts as a table of contents for
each source library entry containing such information as
the name and location of each entry. The first two sectors
of the first track are always assigned to the directory with
additional sectors 'used as needed.

Organization of Entries: Entries within the source library
need not be stored in consecutive sectors. An entry can be
stored in widely separated sectors with each sector contain
ing a pointer to the next sector that contains the next part
of the entry.

The boundary of the source library cannot be expanded;
therefore, an entry must fit within the available library
space. The system provides maximum space within the pre
scribed limits of the source library by compressing entries.
That is, all duplicate characters are removed from entries.
Later, if the entries are printed or punched, the duplicate
characters are reinserted.

SOURCE LIBRARY

S. Library Entries

and

P. Library Entries

The S library entries are source programs. Procedures
cannot be executed from this library.

The P library entries are procedures which can be executed.

Figure 8-6. Logical Entries Within the Source Library

STORING PROGRAMS AND PROCEDURES INTO
LIBRARIES

There are three methods you can use to store programs into
libraries: the Library Maintenance program, a specification
on the RPG II Control Card Sheet, or the COMPILE OCL
statement.

The Library Maintenance Program

Depending upon your specifications, the Library Mainten
ance program can:

• Allocate space for a library. It can create, reorganize,
change the size of, or delete a library.

• Delete entries from a library.

• Copy entries from one location to another within a lib
rary, from one library to another, from the input device
to a library, from the library to a printer, or from a lib
rary to a punch, and give new names if requested.

• Rename library entries.

In this discussion, only creation of libraries and storing of
programs and procedures into libraries from an input de
vice are described. Maintenance functions of the program
are mentioned only in general terms. More information
about maintenance is in the IBM System/3 Disk System
Reference Manual, GC21-7512.

OCL Statements and Program Control Statemen'IS

The Library Maintenance program {$MAINT) requires the
same OCL statements as other utility programs. A sample
job stream to load the program from Fl into storage is:

1 4 8 12 16 20 24 28

;ltj
II LC ~z:: !M Al NT _JEJ ll
II ~u~

T

[(n 1qk Ahl lcJo ~ VL!) ~ L.111 ~ttj ILl.?J '11.l'Yi l;tl1 [2 fU'l ICA.l'/11 k w

Program control statements follow OCL statements in the
job stream and provide the program with information con
cerning its functions. The program control statements and
their associated functions are:

• ALLOCATE: assigns or cancels disk space for libraries.
Using this statement you can also reorganize or change
the size of libraries.

• DELETE: removes entries from a library.

• COPY: copies entries from one location to another
within a library (renaming the entries), from one lib
rary to another, from the input device to a library, from
the library to a printer, or from a library to a punch.

• CEND: follows card decks to be copied from the reader
into a library and indicates the end of the input to be
copied.

• RENAME: changes the name of a library entry.

• END: follows the program control statement and in
dicates to disk system management that the job stream
for the Library Maintenance program has ended.

Storing Programs and Procedures on Disk 8-9

A sample job stream loading the program and creating an
object library consisting of five tracks on Rl is:

1 4 8 12 16 20

;[
II LC ~If. IM A~ M:IJ ~t
I I Rl 11 N I'

24

OCL Statements {

Program Control { II IAL Lt r~~ rs IT" -~ 1~ b~ UE ctr
Statements II IENIZ:

--,

I

Remember that the library program control statements must
be terminated by an END statement.

Storing Programs In an Object Library

To store object programs in an object library you must first
use the Library Maintenance program to create an object
library. You can then copy the program from an input
device or another library into the library.

The Library Maintenance program creates object libraries
according to the specifications you code on the ALLOCATE
statement. Figure 8-7 shows the format of the ALLOCATE
statement to create an object library. The keyword para
meters for the ALLOCATE statement include TO,
OBJECT, SYSTEM, and WORK.

The TO keyword parameter indicates the location of the
disk drive on which the library is to be created.

The OBJECT keyword parameter indicates the number of
tracks to be used for the library. If an 0 is coded, the lib
rary is deleted; if an R is coded, the library is reorganized.

The SYSTEM keyword parameter assigns the number of
tracks for the object library directory. If NO is coded, one
track is assigned to the directory, and the directory will not
be large enough to contain system program entries. If YES
is coded, three tracks are assigned to the directory, and the
directory will be large enough to contain entries for the

28 32 36 40 44 48 52

-Iii

system programs. The parameter YES must be assigned if a
disk is being created to contain a minimum system.

The WORK keyword parameter indicates the drive on
which a second disk containing a disk system management
work area is located. A work area is required if you are:

• Reallocating space for an existing library.

• Allocating space to create a source library on a disk that
contains only an object library.

• Removing a source library from a disk that also contains
an object library.

Ubrary entries are temporarily stored in the work area
while the program moves and reorganizes libraries.

Oeatingan Object Library: Assume you are creating an
object library on a disk located on Rl that consists of 12
tracks. You are not storing a minimum system in the lib
rary, so only one track is needed for the directory. The
ALLOCATE statement looks like this:

1 4 8 12 16 20 24 28 32

;lt_
36

llZ IAIL L~ lrJ~ tr IE [~ -~ It 11'1~ . \II: lrlT -1 2Li Srt lsr IEI~ -Nk:
[7 rr

//ALLOCATE TO-{~~ }OBJECT-jNUMBERt SYSTEM- jNO t WORK-{~~}
R2 ' l R ~ ' 1 YES ~ ' R2
F2 F2

Figure 8-7. Format of the ALLOCATE Statement to Create an Object Library

8-10

Since you are not reallocating space for the library, note
that the WORK keyword parameter is not required.

Once you have created the library, you can store object
programs into it. The Library Maintenance program copies
entries into a library according to the specifications you
code on the COPY statement {Figure 8-8). The keyword
parameters for the COPY statement are FROM, LIBRARY,
NAME, TO, RETAIN, and NEWNAME.

The FROM keyword parameter indicates the location of
the input file containing the entries to be copied. The
input file may be on cards in the reader or on disk in a
library.

The LIBRARY keyword parameter indicates the type of
entry being stored into a library:

• S - Source statements to be stored in a source library.

• P - OCL procedures to be stored into a source library.

• 0 - Object programs to be stored into an object library.

• R - Routines to be stored into an object library.

• ALL - All types of entries are to be copied to the
corresponding libraries.

The NAME keyword parameter further identifies the entries
to be copied into the library. (The NAME, LIBRARY and
RETAIN keyword parameters are used together to identify
the entries to be copied.) The possible data that can fol
low NAME are:

• name - Name of the library entry to be copied.

• characters.ALL - Only those entries beginning with the
indicated characters are to be copied. Up to five charac
ters can be used.

• ALL - All entries (of the type indicated to the LIBRARY
parameter) are to be copied.

• DIR - Directory entries for all library entries of the
type indicated in the LIBRARY keyword parameter are
to be copied. If the LIBRARY keyword parameter is
ALL, system directory entries are also printed.

• SYSTEM - Only system programs comprising a minimum
system are to be copied.

• $cc.ALL-The IBM program with the name beginning
with the indicated characters ($cc) is to be copied. For
example, $MA.ALL means the Library Maintenance
program {$MAINT) is to be copied.

l R 1 l l S l (name) (~ ~ ~ Fl P } characters.ALL (I R2 f
II COPY FROM- R2 ,LIBRARY- 0 ,NAME-' ALL ~--,TO- F2

F2 R ~DIR lPRINT '
READER ALL SYSTEM I PUNCH ,,
. $cc.ALL l PRTPCH

\

RETAIN-l ! (,NEWNAME- S name i
R ~ 1 characters.ALL~

Figure 8-8. COPY Statement Format

Storing Programs and Procedures on Disk 8-11

The TO keyword parameter indicates on what device the
output file is located. The possible devices are:

• Disk drive - Rl, Fl, R2, F2.

• PRINT- Entries are to be printed on the system
printed.

• PUNCH - Entries are to be punched on cards.

• PRTPCH - Entries are to be both punched and printed.

The RETAIN keyword parameter identifies the status of
an entry and can change the status of an existing entry.
The possible parameters are:

• T - Temporary entry.

• P- Permanent entry.

• R - Replaces an entry. This parameter is used if you
are copying an entry into a library on a disk that al
ready has an entry with that name. The new entry is
placed in the library and the old entry is deleted. A
temporary entry cannot replace a permanent entry.

1 4 8 12 16 20 24 28

;ltj
~

,..11

~ 11-f~ JV\- [gE A~ E~ ~L (~ n!A 1:~1 -" '-Ir- ~] L ll v
'l -'-N

~

32

IA

The NEWNAME keyword parameter indicates the name
you want used on the entries being copied on disk. With
out this keyword parameter, the program uses the NAME
keyword parameter. The NEWNAME-characters.ALL
parameter indicates you want to use these characters to
identify all the entries you are placing on disk instead of
the characters specified in the NAME-characters. ALL
statement.

Storing an Object Program: Assume you want to store an
object program in the library created on Rl. The object
program is labeled PAY02 and is stored on cards. It will
be a permanent entry. Figure 8-9 is the COPY statement
to load PA Y02. The job stream for this program is shown
in Figure 8-10.

Storing Programs and Procedures in a Source Library

To store programs and procedures in source libraries, you
must first use the Library Maintenance program to create
a source library, then copy entries into the source library.

36 40 44 48 52 56 60

'ME -E M1 ~2 _JIJ 11'1- Bl _._R IEl71 A/ 6'J-l9 ~

' I'

6

Figure 8-9. A COPY Statement for Loading PA Y02 Into the Object Library

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 €

;lt_
II L10 A~ llM ~I ~[J ~f 1 II n AJTl Ll 'Din II\ T"l iy_ M'~ lN llJlf l II\ ,~c IE ~M Pt< [., kl

~ll"'l

II ~~JN
i'

II -1- fuJ p~ ~f" -J< IEIA --1< LI 'BRI l~E lj_ -"' ~I A '1. ~I- p~ t:fJa 2...\. ~c -R llL_ ~IE [A lN -tp I~ IV l..!!!!! _._ v ...\.
I '

l'r') Rl r=cr ~~
ll'l!A 1~1~ ~

II tE IND tlE ~[) Mu ISITI - IN A[E b8 JE C[JJ 7J!E ~llt' [It ~141 -

II ENllJ ~IND Mu lSII [£ ~M IN ~IJ E IS lr8 TEI ME M7J ~!
lFIQ~ Lil 1"]~ ltdn ~ MA I~ rlE IA- IA ~~c f ~~

II\ ilA
I'""~ In t.n: "\J

Figure 8-10. Job Stream to Load PAY02 Into the Object Library

8-12

The Library Maintenance program creates a source library
according to your specifications on the ALLOCATE state
ment. The ALLOCATE statement to build a source lib
rary looks like this:

The TO keyword parameter indicates on which drive the
disk containing the library is located.

The SOURCE keyword parameter indicates the number of
tracks comprising the library. If 0 is codea, the library is
deleted; if R is coded, the library is reorganized.

The WORK keyword parameter indicates on which drive a
second disk containing a disk system management work
area is located. A work area is required if you are:

• Reallocating space for an existing library.

• Allocating space to build a source library on a disk con
taining only an object library.

• Removing a source library from a disk also containing
an object library.

Library entries are temporarily stored in the work area
while the program moves and reorganizes libraries.

Creating a Source Library: Assume you want to create a
source library on a disk already containing an object lib
rary. The library Will contain 15 tracks and be located on
Rl. The ALLOCATE statement looks like this:

If you are allocating space for a source library on a disk
that contains an object library, you must designate a work
area. Your choices in this case are Fl, R2, or F2, depend
ing on which disk has the available work space.

After a source library is created, you can load procedures
or source programs into it. The Library Maintenance pro
gram copies entries into the library according to your
specifications on the COPY statement. The format and
possible keyword parameters for the COPY statement are
described in the section Oeating an Object Library.

Note: For the purpose of instruction, creation of source
and object libraries have been described separately. It is
most advantageous, however, to create both libraries at the
same time.

Storing Programs and Procedures on Disk 8-13

Storing a Procedure in the Source Library: As stated pre
viously under Storing an Object Program, the program
PAY02 was loaded into an object library. Now that a
source library has also been created, the procedures needed
to execute PAY02 can also be stored on disk. Figure 8-11
shows the COPY statement required to enter the procedure
(named PAYPRO) from cards into the library. Notice that
LIBRARY-Pis coded. P designates that a procedure is to
be copied into the source library. (LIBRARY-S would in
dicate that a source program is being copied into the source
library.)

The job stream needed to load the Library Maintenance
program and copy PA YPRO into the sourc~ library is shown
in Figure 8-12.

Calling Procedures: Procedures in the source library will
not be executed until they are placed into a job stream by
disk system management from either cards or the printer-

keyboard. The job stream required to merge procedures
and execute the appropriate program looks like this:

1 4 8 12 16 20 24 28 32

1I
36

II ir1A L ILJ ~ IA 1-1- na mt.f _u ~Ii. ~ ~ ~1Yf Vl. J, ll Ill '1 rtlV

II ~II !N I'

CALL statements tell disk system management to merge
procedures into the job stream. The CALL statements are,
in effect, replaced by the procedures they identify and can
not be placed in the source library.

The statement required to merge the procedure PA YPRO
into the job stream are:

1 4 8 12 16 20 24 28

/~
I lJJ r11A I L PAI rrPrR R1
II R!Ut-i

.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

I' I' I'

Figure 8-11. COPY Statement to Load PAYPRO Into the Source Library

This procedure is l
stored in the source .
library under the
name PA YPRO.

1

;ltj
lL I
II
II

II
II
l/J/

II
II

4 8

J ll'i
'-"""' Al
BU~
rlf"I ~ ~I~

1u~ [l

~ LE.
IJ IN

Clf INID
~~I'll

12 16 20 24

~M ~ll til f 1
I

IBR "'~ -~ 18/lJ DE B~ w 13'R IA~

~A IY~ 2 1<1
N~ ~f -~ AY._ MS tI:tt lEA tKJ -\/

Figure 8-12. Job Stream to Load PAYPRO Into a Source Library

8-14

28

v-

irlL

32 36

~ IME w~ -P ~

l1l llhl t II -1Rl2

40 44 48 52 56 60

~R h lrt -~ 11L1. RI~ TIA II~ -Pl h ,..- fT

Using RPG II to Store an Object Program on Disk

You can use RPG II to indicate the type of object output
you want after compiling a source program. The compiled
program can be stored in an object library or punched into
cards. You usually want the object program written in the
object library until you have corrected the severe errors in
your program. When a program is written temporarily in
the object library, it is overlaid by the next program written
in that object library. The object program is written in the
same object library containing the compiler, unless a
COMPILE statement indicates otherwise. (See Compiling
and Storing a Source Program Into the Object Library for
further information.)

Column 10 of the RPG II Control Card Sheet is used to
specify the object output. The following entries can be
made:

Entry Explanation

blank The object program is written temporarily
in the object library.

C The object program is written permanently
in the object library.

P The object program is punched into cards.

Columns 75-80 of the control card are used to name your
object program. This name is used in the library directory
which also contains the location of your program on disk.
The name may be comprised of any System/3 characters,
but the first character must be alphabetic. If columns
75-80 are left blank, the compiler assumes the name is
RPGOBJ.

Compiling and Storing a Source Program Into an Object
Library

The COMPILE OCL statement tells disk system manage
ment to:

1. Compile a source program from a source library and
store the object program in an object library, or

2. Compile a source program from cards and store the
object in an object library.

The format of the COMPILE statement looks like this:

II COMPILE SOURCE-name,UNI T-{ ~H ,OBJECT-{ ~~}

The SOURCE keyword parameter is used if the source pro
gram is located in a source library. You must supply the
same name given to the source program when it was stored
in the library by the Library Maintenance program. The
UNIT parameter must be used with the SOURCE parameter
to identify the disk location of the source program to be
compiled.

If the SOURCE keyword parameter is not used, the source
program is assumed to be on cards following the RUN
statement in the job stream.

The OBJECT keyword parameter tells the system where
the disk which will contain the object program is located.
If the source program is on cards, the OBJECT keyword
parameter is the only parameter which can be specified. If
the OBJECT keyword parameter is omitted in either case,
the object program is placed on the same disk pack as the
compiler. The name assigned to object program in the
object library is the name you assigned in the Program
Identification (columns *75-80) on the RPG II Control
Card Sheet. If you did not assign a name in these columns,
RPGOBJ is assumed.

Storing Programs and Procedures on Disk 8-15

Sample Statements

1 4 8 12 16 20 24 28 32

;[t
II ~,., AD ISA LE Sb.. F11
II --MP IL El 5 cu BC F-l.t c LI ST IN I tn- A1Ji.U

II BllJ ~
17

This sample job stream tells the system that the source pro
gram named SALES is located on a fixed disk on drive one
(Fl). The OBJECT-RI keyword parameter tells the system
to place the object program on a removable disk on drive
one {Rl).

1 4 8 12 16 20 24 28

/[
II Ula AJJ

ltl

JE1 " II -1i-M~ lLE n~ 1JIE Ir T1 -R1
11 Rll N

l(~ lft~. nl~ ~ loJrJ !.+ " r"":I- r- l

This sample job stream compiles a source program on cards
and stores it in an object library on Rl. If the OBJECT
parameter was not coded, the program would be compiled
and placed into the same object library as the compiler {Fl).

8-16

36 40 44 48 52 56 60 E

,.. 1U IEC IIl- IR1
-r

1. What types of programs are stored in the source library? The object library? .

2. What is a procedure?

3. What are two advantages of storing programs and procedures on disk?

4. What are the three ways entries can be copied into the source or object library?

S. Write the control statements to set aside ten tracks for the object library on a new disk.

6. Write the control statements to execute an object program named AROOl which is stored in the
object library on Fl. The program uses no disk files.

7. Write the control statements to copy the procedure in question 6 into the source library on Fl.

8. Write the control statements to copy an RPG II object program stored in cards into the object
library on Fl with the name AROOl.

Review 8

9. Write the control statements to transfer the program named AROOl in the object library on Fl to the
object library on Rl and delete the current AROOl on Rl.

10. Write the control statements to print out the object library directory from Fl.

Storing Programs and Procedures on Disk 8-17

Answers to Review 8

8-18

1. RPG II source programs and OCL procedures are stored in the source libraries.
Executable object programs and nonexecutable subroutines are stored in the object libraries.

2. A procedure is a set of OCL statements for a given job.

3. When the source and procedure libraries are used, time is saved loading programs and operation is
made simpler.

4. Entries can be cataloged into the source and object library via the library maintenance program.

5.

6.

RPG II object programs can be cataloged into the object library at compilation time by specifying
C or blank in column 10 of the RPG II control (HCC6) card. A blank entry specifies that the
program be cataloged with a temporary attribute. C is used to catalog the programs permanently.

1 4 8 12 16 20 24 28 32 :
/~
II I,., AD I~ A11 NT ~~ll '-'-'
II '}(LJ N
llJJ A ·- r" -~ 1 ~~ JI,: '"Ir -1~ 1g11 f.
II EIND

IT

1 4 8 12 16 20 24 28

It
II LO AID A JJ

1_._ EJ1 rn '11

II l?J'J (j_
.

7.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 E

/~
II Lb AT. SIM All [NlJj f 1
II RUN

,

II r'"n p;l'f_ -IR E~A r1= ~ LL rin' II\ n 1y_~ ~LL ~IA Mlc:I -A rXf '~1 I~ -la l1->. ~£1 r'IAJ llN - 'P 1-1~ M I-,.....
"'"'"

II I/ h An A~ ~~ 1~ 1~1
IT 17

II RJUtJ_
T

II t 1E NJ~
II Elf.l_D

8.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 E

/~
II LO AIT iM A~ NlTI ,, Fl
II RU N

T

II ..-1.-RI ElR :M -~ Ell nE lti->. LI n~ II\ 'M 1y1_ OLL NIA f't'E -A 1W~ r;J1 _._I :r- Elli ~s T'A I IN -p_ -'I'.'

t-b lb ~ ~~ ~IL ~~ ... i: f- I' .
-+-t--

w
II rE ND
II EN[)

9.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

;[
I I I h ~D IM IAI/ ~r ,lE llJ
II R lf1
I/ ~h Py i=R ~~ -i: 1 ILlt -r.i'f'l 11\lc ,11_ ~ N~ MS .. - +I ~-Rlt R IE\T All ~-R " '' ~(#-

-1"4 l'UIJ ~11 ~

II c.la f'm I ~

IL_! ~l!m

10.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 6

1lt
II I h

'- lAID !~ lA l NII IF11
II R' IN

-,-

II rl"" IPY I~~ :,vi -R1 LlL B~ ~R M- r'I NA IME -D I 'R _jzj h- ~1< llfj lJJ '-"'-"' u

II ENID
. ' .,

Storing Programs and Procedures on Disk 8-19

8-20

¥HJ44i:i;t
INQUIRY v

CHAPTER 9 DESCRIBES:

Inquiry programs.

The use of the 5471 Printer-Keyboard for inquiry.

Coding RPG II control card specifications to classify inquiry programs.

How inquiry operates in a dedicated environment.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Define basic disk system concepts such as disk, main storage, and disk system
management.

Define online.

Define object library.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Define inquiry.

List and define the three classifications of programs for inquiry.

Describe roll-out and roll-in.

Describe the use of the 5471 Printer-Keyboard.

Inquiry 9-1

INTRODUCTION

In some data processing applications, inquiries that require
immediate answers occur. One customer may want the
status of his account; another may want to know if an
item is in stock for immediate delivery. To answer these
inquiries, you must be able to access certain disk records.
The object program you use to retrieve this information is
called an inquiry program.

Inquiry programs can be executed as part of a normal job
stream, or they can interrupt other programs that are
executing (interrupt environment). After a request for in
quiry is made in an interrupt environment, the following
things occur:

1. A program being executed is interrupted.

2. The current status of the program is stored on disk.

3. The inquiry program is loaded to retrieve and display
the requested information.

4. The original program is reloaded.

REQUESTING INQUIRY IN AN INTERRUPT
ENVIRONMENT

To interrupt a job prior to loading an inquiry program,
you must make an inquiry request. To request inquiry,
you must have a printer-keyboard such as an IBM 54 71
Printer-Keyboard (Figure 9-1). On the 5471, the key
labeled REQ is the Request Key. When pressed, it causes
an interrupt and indicates to disk system management
that an inquiry program is about to be loaded and the
program that is executing must be stored on disk. The
OCL statements for the inquiry program are then initiated
from the printer-keyboard. (At least the READER state
ment indicating what input device contains the OCL state
ments must be entered from the keyboard.)

The inquiry program must be loaded from the object li
brary (see Chapter 8. Storing Programs and Procedures on
Disk). If you interrupt a program that is processing input
from cards, refer to the IBM System/3 Disk System
Operator's Guide, GC21-7508 for information on how to
clear the MFCU.

9-2

Functions of the Inquiry Request Key

The Inquiry Request Key can be pressed to:

1. Interrupt an executing program and thereby enter
the interrupt environment.

2. Initiate an inquiry program that is already in main
storage waiting for an inquiry request to begin execu
tion.

3. Initiate the reading of input data from the printer
keyboard for a program described in the second item
of this list.

CLASSIFYING PROGRAMS FOR INQUIRY

Not all programs can be interrupted by an inquiry program.
By coding specifications in column 37 (Figure 9-2) on the
RPG II Control Card Sheet, you determine whether the
program can be interrupted. The entries which classify the
program are:

• ~ (blank) - A ~-type program is a processing program
that does not recognize an inquiry request. It cannot
be interrupted.

• B - AB-type program is a processing program that
recognizes an inquiry request, and, therefore, can be
interrupted or stored on disk.

• I - While /-type programs can be loaded as inquiry pro
grams in an interrupt environment (see note), a program
is usually classified as an /-type when it is used as an in
quiry program that is to remain in main storage for the
servicing of inquiries. An /-type program can be exec-
uted only by an inquiry request (pressing the Request Key).
An /-type program cannot be interrupted and stored on
disk. If an input file is to be entered from the printer-key
board for an /-type program, you must again press the
Request Key to initiate reading of the~put file.

Note: An inquiry program that interrupts a B-type pro
gram can be classified as B, ~. or /-type. An inquiry pro
gram loaded to perform a complete job is usually classi
fie.d as a B-type program. An inquiry program loaded to
answer one request or few requests is usually loaded as an ·
/-type program (see Planning Inquiry Programs for further
information). If a B-type program is rolled out by an in
quiry program also classified as B-type, the inquiry pro
gram must complete execution before another inquiry
request is made.

Figure 9-1. Keyboard Format of'the 5471 Printer-Keyboard

line

~ Sterling

i 0

~~8~g

Control Card Specifications

Refer to the specific System Reference Library manual for actual entries.

If you leave the column blank, this

Line

Line
Core
Size to

i Sterling

L~

.mt:

I Sterling

~
:;;
~

Control Card Specifications

Number
Refer to the specific System Reference Library manual for actual entries.

If you code a 8, this program

Control Card Specifications

Refer to the specific System Reference Library manual for actual entries.

Figure 9-2. Coding RPG II Inquiry Support on the Control Card Sheet

Inquiry 9-3

INQUIRY IN AN INTERRUPT ENVIRONMENT

An inquiry program can be loaded into storage as any
other program, or it can be loaded when an inquiry request
is made to interrupt a program that is executing. When
your system is controlled by one program at any one time,
you have a dedicated system. Therefore, in an interrupt
environment you must interrupt the executing program to
allow the inquiry program to control the system. You re
quest an interrupt by pressing the Request Key on the
printer-keyboard. You can only interrupt B-type programs.
As soon as the Request Key is pressed, the system sets
an indicator and the executing program completes the
execution cycle it is in. A system routine called
roll-out then transfers the B-type program from main
storage onto disk, retaining the current status of the pro
gram (Figure 9-3, insert A). Space is allocated for the rolled
out program at system generation time. (See the IBM
System/3 Disk System Operator's Guide, GC21-7508 for
system generation procedures.) Ozapter 8. Storing Pro
grams and Procedures on Disk contains the scheduler work
area size including space requirements for roll-out/roll-in.
The inquiry program is then loaded into main storage for
execution. (The inquiry program may be a ~, I, or another
B-type program.) Figure 9-3, insert B shows the inquiry pro
gram being loaded from disk into main storage. After the
inquiry program reaches the end of its processing, the B
type program that was interrupted is transferred back into
main storage by the roll-in routine (Figure 9-3, insert C).
The interrupted program begins execution at the point of
the interruption.

Notice that the inquiry program that was loaded does not
get rolled out onto disk. Therefore, you cannot accumu
late any information such as totals to be saved from one
inquiry request to the next.

FILE PLANNING

When an inquiry program is loaded, the files for that pro
gram must be online. If an inquiry is received and the
proper file is not online, then the inquiry cannot be
processed. Your correct files must be mounted before
processing can occur.

9-4

This involves some file planning and job scheduling on your
part. For example, if most inquiries about stock status
come early in the morning, then the inventory file should
be online at that time, and programs using that file such as
invoicing or inventory transactions can also be run at the
same time.

PLANNING INQUIRY PROGRAMS

Since B-type programs can be interrupted, you must deter
mine what types of programs should be classified as B-type.
Usually long reports that do not have to be finished immedi
ately are classified as B-type. Such a report might be an
end-of-month stock status report.

Inquiry programs that can interrupt B-type programs can
be classified as ~' B, or /-type. For example, suppose you
are running an end-of-month stock status report, and now
find you must run a payroll job. The payroll job can roll
out the stock status job. It is a short job that must be
finished immediately. Another example of an inquiry pro
gram that might need to be loaded immediately would be
a request to determine where a certain inventory item is
located so that it can be shipped. Since the inventory file
is online for the stock status report, the location of the
item could be determined quickly by an inquiry program.

Those programs you do not want rolled out should be If
type. For example, you may be running a payroll job and
checks are positioned on the printer. You may not want
the payroll program rolled out, since the operator may have
to remove the checks and not reposition them correctly. If
you are running a teleprocessing program, you may not
want it rolled out because you may lose telephone con
nections.

Programs classified as I-type can serve two p\Jrposes. In
dual programming (see Ozapter 10. Dual Programming
Feature), an inquiry program can be loaded into one level
and remain there to service inquiries. Such a program must
be classified as I-type. In a dedicated system, an I-type pro
gram could be loaded for a length of time to answer re
quests. For example, an /-type program could be loaded
during the second shift of a day to answer inquiries into
the amount or location of items in a warehouse. An /-type
program remaining in main storage can only be executed
by pressing of the Request Key.

System/3

® 8-Type

Program

System/3

® Inquiry

Program

System/3

©
8-Type

Program

Figure 9-3. Roll-out and Roll-in

The 8-type
program is
rolled out
onto disk.

The inquiry
program is
loaded into
storage.

The 8-type
program is
rolled back
into storage.

Inquiry 9-5

Review9

1. What is meant by inquiry?

2. What are the three classifications of programs related to inquiry?

3. What is meant by roll-out and roll-in?

4. What is the significance of the 54 71 Printer Keyboard in inquiry?

Inquiry 9-7

Answers to Review 9

9-8

1. Inquiry is a request for the contents of a specific disk record. This can be either in a batch environ
ment or an interrupt environment where an executing program is interrupted to perform the inquiry.

2. An /-type program is an inquiry program which can only execute upon an inquiry request. AB-type
program can be interrupted. Any type can interrupt a B-type program. A ~-type (blank) program
cannot be interrupted.

3. When an inquiry request is made, the executing program is halted and written out onto an area of
disk, preserving the current status of the program. The inquiry program is read in from disk. When
inquiry is completed, the original program is read back into storage and execution continued.

4. The 5471 Printer-Keyboard is required to perform inquiry and roll-in/roll-out. The inquiry request
is initiated by pressing the Request Key on the keyboard.

GIM:ii§;f
DUAL PROGRAMMING FEATURE ,,

CHAPTER 10 DESCRIBES:

Operation of the dual programming feature (DPF).

Advantages of running programs under DPF.

Considerations for operating under DPF.

Considerations for running System/3 programs under DPF.

How to execute an RPG II program in DPF.

PARTITION statement and considerations for loading programs in a DPF environment.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:

Basic disk concepts such as 1/0, main storage, supervisor, processing time, and
dedicated environment.

File processing, removable and fixed disks, and Initial Program Load (IPL).

The function of inquiry(~, B, and I-type programs).

The function of teleprocessing.

Compilation of RPG II programs.

Function of DATE, LOG, NOHALT, HALT, IMAGE, and FORMS statement.

Overlays.

Dual Programming Feature 10-1

10-2

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe how DPF operates.

List the advantages of running under DPF.

List the considerations for operating under DPF.

Demonstrate understanding of some of the considerations for running System/3
programs under DPF.

Describe how to execute RPG II object programs in DPF.

Identify, using reference material, the OCL statements that require special
considerations when loading a program in DPF.

Describe the function and coding for a PARTITION statement.

INTRODUCTION

With the dual programming feature (DPF), you can have
two programs in main storage at the same time. Only one,
however, can be executing instructions at any one time.

When DPF is operating, main storage contains the super
visor and two programs. Control is transferred from one
program to the other whenever the program that is execu
ting must await completion of an input or output opera
tion. For example, one program requests a print opera
tion, but the printer is still busy with a previous request.
Control is then transferred to the other program. Similarly,
one program requests that a card be read for processing.
Since the program must wait until reading is completed
before it can process the data, control is transferred to the
other program. The second program must await comple
tion of an input or output operation, before control is re
turned to the first program. Similarly, control is trans
ferred when a halt occurs in one program level.

Most programs have a significant amount of time when
they are waiting for I/O completion. If both programs are
waiting, the program whose 1/0 completes first receives
control.

Figure 10-1 shows how main storage is organized in a DPF
environment. The supervisor occupies 4K (4,096) bytes of
storage in DPF. The storage areas occupied by the two
programs are called program level 1 and program level 2.
Each level must have a minimum of 4K bytes, if the level
is active.

4K bytes {
Minimum of { 4K bytes

Minimum of { 4K bytes

Supervisor

Program Level 1

Unused Area

-- ------
Program Level 2

The arrows indicate the direction in which
storage is allocated to each level. If the two
programs do not occupy the entire amount
of storage you have, an unassigned area
exists between program levels. This area
can then be used by disk system manage
ment to increase the efficiency of your
system operation.

Figure 10-1. Main Storage in a DPF Environment

ADVANTAGES OF RUNNING PROGRAMS IN A DPF
ENVIRONMENT

Main Storage

DPF enables you to make more efficient use of your sys
tem storage. For example, if you were to run a 4K program
on a 12K system in a dedicated environment, you would
only be using 7K of your storage:

Program =4K
Supervisor = 3K
Used Storage = 7K

Consequently, SK storage is unused.

In a DPF environment, you could run two 4K programs on
a 12K system and use the entire storage capacity:

Two programs = BK
Supervisor = 4K
Used storage = 12K

Input/Output Devices

With proper planning, DPF also enables you to use your
system input/output devices more effectively. In a dedi
cated environment, you may run a program to copy one
disk to another. The MFCU and printer are not used. In
DPF, you could run two programs: one to copy a disk,
the other to read cards from the MFCU and print the data
on the printer.

Processing Time

DPF permits more efficient use of the computer's proces
sing time. When a program is executing, the central
processing unit is executing the program's instructions.
When instructions are not being executed, the processing
capabilities of the computer are not used. For example, if
an instruction cannot be executed because data is not
available to be processed {waiting for a card to be read)
or because a device is not ready to execute the requested
instruction (printer is busy with a previous P.rint instruc
tion), execution of the program is suspended until the re
quired conditions are satisfied. When the execution is sus
pended, the computer's processing time is lost because no
instructions can be executed. DPF allows control to trans
fer to another program. That program can then begin
executing instructions, thereby using the processing time.

Dual Programming Feature 10-3

The inquiry function of System/3 and teleprocessing (BSC)
can be operated more efficiently under DPF than a dedi
cated environment. In a dedicated environment, an inquiry
program must reside in storage or be loaded every time a
request is made, consequently rolling out a program that
is executing. In DPF, the inquiry program can be loaded

I
into one program level, and a program can still execute in
the other level.

If you are using teleprocessing {BSC), one program level
could be dedicated to teleprocessing; the other level would
be available for running other programs. For example, if
messages are being relayed from one terminal to another,
program level 2 can be assigned to teleprocessing. Although
messages are not relayed constantly through the day, the
teleprocessing program may have to be in storage at all
times. Therefore, if the teleprocessing program is loaded
into program level 2, it is available when needed. When
the teleprocessing program is inactive, normal processing
programs can use system resources.

CONSIDERATIONS FOR OPERATING UNDER DPF

You must consider the following points when planning to
use DPF:

1. You must determine that you have enough storage.
Because the supervisor requires 4K bytes, you could
not, for example, run one 4K program and one SK
program on a 12K system. One of the two programs
could not be loaded.

2. Two programs in storage must use the proper com
bination of I/O devices. Both program levels cannot
use the MFCU or the printer.

For example, if you were running two jobs both of
which require the printer, such as an invoicing and a
sales analysis job, one program could not execute be
cause the printer would not be available. The disk
and the printer-keyboard can be shared by two pro
grams. The disk data file can be shared depending
upon the type of disk file processing. Figure 10-2
shows the normal considerations for efficient file
processing. Figure 10-3 shows the restrictions when
a data file is shared by two program levels.

3. Care should be taken when the printer-keyboard is
used as:

10-4

• The system input device for both program levels.

• The system input device in one level and as an in
put device for an RPG II program in the other
level.

If these situations arise, the operator must first deter
mine which level is requesting information. Use of
the RPG II DSPLY operation code may help deter
mine which level is requesting information. The per
formance of DPF may also be less efficient, because
the operator may hold up your system when keying
in information.

4. Each one of these IBM programs requires dedicated
use of the system: RPG II Compiler, Library Main
tenance, Basic Assembler, and IBM 1255 Utility
Program.

Note: Object programs denoted by a LOAD* OCL
card cannot be loaded into level 2. In order for an
object program on cards to be loaded into level 2, it
must first be copied from the reader to an object lib
rary and then loaded from the object library.

5. File planning is necessary to avoid problems that
arise when two programs use the same disk drives.

c
0
·~
::! ·c:
!,
0
..! u:

For example, if two programs were using two separate
files on the same disk {Figure 10-4), the access arm
may have to move every time each program requests
I/O. Movement of the access arm will increase access
time, slowing the performance of the program. To
avoid this problem, it is most advantageous to have
files for each active program on separate disk drives.
You could, however, have separate files on two re
movable disks or one file immediately above the
other file on fixed and removable disks as shown in
Figure 10-5.

Processing Method

Consecutive Indexed Random by Relative
Record Number

Consecutive Yes No Yes

Create or
retrieve-Yes

Indexed --------- Yes Yes
Add or
update--No

Direct Yes No Yes

Note: You cannot reload a permanent file. If you reload
an indexed file as a consecutive or direct file, that
indexed file becomes a consecutive or direct file,
respectively.

Figure 10-2. Considerations for Efficient File Planning

N
Qj

~
..J

E
E en
0

c:t

Read a File

Create or
Add to a
File

Update
Records
in a File

Program Level 1

Read a File Create or Add Update Records
to a File in a File

Yes No Yes

No No No

Yes No No

Figure 10-3. Disk File Processing of a Data File Stored by Two Program Levels

Supervisor

Program Level 1

Program Level 2

Depending upon file locations, the access arm may
have to move a great distance between files.

Figure 10-4. File Locations Causing Arm Movement

If files are located one above the other, the access
arm may not have to move as far when each program
requests 1/0.

Figure 10-5. File Locations Causing Less Arm Movement

Dual Programming Feature 10-5

6.

10-6

Points to Remember When Planning Files

• If two programs reference the same disk unit (Rl,
Fl, R2, F2), they must be processing the same
disk pack, because you cannot change a pack on
that unit for each program's I/O request.

• If you load programs or procedures from a disk,
or use a disk for IPL, the disk cannot be removed.
In this case, it may be best to have programs and
procedures on the fixed disk, leaving the remov
able disks free for changing.

• If one of the programs uses offline, multi-volume
files, the other program must not have files on ·the
same volumes. When a disk is replaced for one
program, it may contain files still needed by the
other.

• If two programs are initiated, one of which uses
data files on the system drive, the job that does
not use data files on that disk should be initiated
first. Program initiation involves numerous
accesses to the system programs that could greatly
increase your access time. If the program using
data files on the system drive were initiated first,
initiation of the other program would cause the
access arm to move frequently from the data files
to the system programs. If the program not using
data files on the system drive were initiated first,
it would read the system programs and be finished
with the drive, leaving it free for initiation and
execution of the program using the data files on
the system drive.

Individual programs will not necessarily run in any
less time under DPF than they would in a dedicated
environment. In fact, an individual program may
take longer to run in DPF. A set of programs, how
ever, may finish sooner than they would if they were
run in a dedicated environment. For example, if you
had two jobs to run, neither of the individual jobs
may run in any less time. However, the set may be
finished sooner in a DPF environment, because one
program would be using any processing time that the
other could not use. If the programs were run con
secutively, processing time may be wasted during
each program's run.

7. DPF requires efficient job scheduling because of the
preceding considerations. Suppose you had four jobs
to be run requiring the I/O shown in Figure 10-6.
Jobs 1 and 2 and Jobs 3 and 4 can be run together,
because they do not require the same I/O devices. If
Job 2 finishes before Job 1, you could run Job 4
because Jobs 1 and 4 do not require the same devices.
If, on the other hand, Job 1 finishes first, Job 3
could not be run with Job 2, because both jobs re
quire the printer for output.

JOB1 JOB3

An inquiry A stock status report
program that: that:

Program
Level 1

• Reads printer-
keyboard.

• Reads disk.

Program
Level 2

• Reads disk .

• Writes printer-
keyboard.

JOB2

An inventory
updating program
that:

• Reads cards.

• Reads disk.

• Updates disk .

• Prints .

Figure 10-6. Job Scheduling for DPF

• Prints .

JOB4

A detail punching
job that:

• Reads cards.

• Punches cards.

CONSIDERATIONS WHEN RUNNING SYSTEM/3
PROGRAMS IN A DPF ENVIRONMENT

The inquiry function, the Disk Sort Program, the Alternate
Track Assignment Program, and the Disk Initialization
Program require special considerations when operating in
a DPF environment.

Inquiry

An inquiry program can either reside in one of the two
program levels in main storage or not reside in main storage.
If it is not in storage, an executing program must be rolled
out when an inquiry request is made. Remember the three
classifications of programs for inquiry:

• I-typeis an inquiry program that cannot be rolled out.

• ,_type cannot be rolled out.

• B-type can be rolled out.

If the inquiry program is in main storage, it must be an/
type program, and the other level must contain a ,-type
program. The /-type program is then executed when the
Inquiry Request Key is pressed.

If the inquiry program does not reside in main storage, it
can be any of the three program types. However, if both
partitions are active, you must have a B-type program in
level 1 and a ,-type program in level 2 to operate inquiry
when the inquiry program is not resident in storage. This
is because the system does not allow level 2 to be rolled out
upon an inquiry request. Consequently, no B-type program
can reside in level 2.

When a B-type program is rolled out in level I, the OCL
statements for the inquiry program must be initiated from
the printer-keyboard (at least a READER statement indica
ting what device contains the OCL statements must be en
tered). The same storage and 1/0 devices are available to
the inquiry program as were available to the B-type program
when it was rolled out. However, if the inquiry program is
to share the same disk file as the B-type program, the file
processing restrictions in Figure 10-2 and Figure 10-3 apply.

Disk Sort, Alternate Track Assignment, and Disk
Initialization

The Disk Sort, Alternate Track Assignment, and Disk
Initialization programs require a minimum of SK bytes
each to execute.

If they are loaded into program level 2, they are assigned
SK bytes unless you use an OCL PARTITION statement.
(You can use an OCL PARTITION statement to indicate
the size of the program you wish to run in level 2.)

The programs cannot be run in a 12K DPF system, if level
2 is active or a previous job used the PARTITION state
ment for level 2. (4K for the supervisor plus 4K for pro
gram level 2 leaves only 4K for the program in level I.) If
the PARTITION statement was used for the previous pro
gram, you must perform another IPL to .run the programs.
You can never use more than 4K for program level 2 on a
l 2K DPF system.

Note: If you load the Disk Sort Program into level l, all
storage except 4K bytes for the supervisor is used unless
level 2 is already active or you preassigned storage to level
2 using a PARTITION statement.

Dual Programming Feature 10-7

EXECUTING RPG II OBJECT PROGRAMS IN A DPF
ENVIRONMENT

The amount of storage available for object program execu
tion may differ from the amount of storage available for
object program generation. When the storage sizes differ,
you should indicate on the RPG II Control Card Sheet the
amount of main.storage the object program can use. If this
amount.results in overlays, some of the DPF performance
advantage may be lost. Columns 12-14 (Core Size to
Execute) indicate the amount of storage in which the pro
gram will execute. The entries for these columns are:

Entry

Blank

001-029

Explanation

Storage available for object program
execution is the same as that for pro
gram compilation.

Storage available for program execu
tion (if different from storage for
program compilation).

The entry must end in column 14. The entry is some mul
tiple of 1 K bytes of storage (K = 1,024). To determine
the entry, subtract the amount of storage occupied by the
second program level and the supervisor from the total
storage capacity of the system. It is rarely desirable to
specify less than 4K since that is the minimum partition
size. Figure 10-7 is a sample Control Card Sl).eet indicating
the object program will execute in 4K bytes.

LOADING PROGRAMS IN A DPF ENVIRONMENT

A program can be loaded into either program level first.
You tell the supervisor which system input device contains
the job streams for the programs by selecting the device on
the Dual Program Control Switch. (Refer to the IBM
System/3 Disk System Operator's Guide, GC21-7508 for
further operating procedures.) When preparing your job
streams, you should be aware of the following OCL con
siderations:

1.

2.

DATE statement. The DATE statement you use as
an IPL statement to set the system date must be sup
plied with the first program loaded. Do not provide
a DATE statement for the other program level.

A DATE statement that temporarily changes the sys
tem date can be used within the set of OCL state
ments for programs in either program level. This
DATE statement applies only to the program for
which it is used.

LOG statement. LOG statements can be placed any
where among the statements in either job stream.
There are, however, certain restrictions on their use.

• Only LOG statements for program level 1 can tell
the system to use a different logging device. The
device used for level 1 is also used for level 2.

IB~
International Business Machines Corporation Form X21-9092

Printed in U.S.A.

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Oat•----

Program-----------

Programmer __________ _

Core
Line CL> Sizet~

~ Compile ...
~

Core
Size to
Execute

ii
0

Sterling

Figure 10.7. Core Size to Execute

10-8

Punching 1-G_ra_phi_c ---1--1--1--1--1--1--1---i
I nstruction Punch

Control Card Specifications

1 2

Page DJ

Refer to the specific System Reference Library manual for actual entries.

75 76 77 78 79 80

~~~~;~:ation I I I I I I I 



• LOG must be on for both program levels before 
logging can occur. If a LOG statement for either 
program level stops the logging function, logging 
is stopped for both levels. 

• When the printer is the logging device, OCL state
ments and message codes are not printed if the 
program in either level uses the printer as an out
put device. 

Figure 10-8 shows sample LOG statements in a job 
stream. 

3. NOHALT statement. The NOHALT statement is in
valid for program level 2. The program in this level 
always stops after each job. 

4. HALT statement. The HALT statement is ignored by 
program level 2. 

5. IMAGE and FORMS statements. These statements 
are invalid if the other level has the printer allocated 
to it and the job cannot be run. 

6. PARTITION statement. The PARTITION statement 
is used only in DPF. 

The PARTITION statement is used to indicate the 
size of the program you wish to run in program level 
2. If you do not use a PARTITION statement, when 
loading a program into level 2, the supervisor auto
matically assigns 4K bytes of storage to level 2, if the 
storage is available. To ensure that storage is available 
for program level 2 you should use a PARTITION 
statement (Figure 10-9). You should only assign as 
much storage as needed for level 2, however, because 
some IBM programs can use unassigned storage to 
organize their performance. 1 Only another PARTI
TION statement or another IPL can then change the 
size of program level 2. 

The PARTITION statement must be supplied in the 
job stream for program level 1. If can only be assigned 
when a program in level 2 is at end of job. 

The format of the PARTITION statement is: 

II PARTITION size 

You must state the number of bytes of storage you want to 
save for program level 2. The number must be equal to or 
greater than 4096. The amount of storage you specify is 
rounded to the next highest 256 bytes by the supervisor, 
if it is not a multiple of 256 bytes. 

Sample Job Streams 

Figure 10-10 shows the job streams required to load the 
four jobs shown in Figure 10-6. Assume the system has the 
minimum system configuration plus the 54 71 Printer
Keyboard and dual drives. ·The Dual Program Switch in
dicates from what device OCL statements are read. MFCU 
is always hopper 1, and at system generation time P-KY was 
assigned to the 5471 Printer-Keyboard. 

1 4 8 12 16 20 24 

vv I-VJ IG p~ IW tr~ 
vV t..P Id[; [p~ lciG 1IFl1 
VIL R~ 
lLIL ~~ IG ~AF 
Vll L~ IA~ IPR lol6 211 IF1 
l]l l'Rlv N 
II t.lc ~G pfi' 

The first LOG statement indicates that the printer is 
used as the logging device while program PROG1 is 
being run. OCL statements and error messages are not 
printed for program PROG2 because of the second 
LOG statement. The third LOG statement causes the 
logging device to be used again. 

Figure 10-8. LOG Statement Example 

Dual Programming Feature 10-9 



Supervisor 

Program Level 1 

Unused Area 

!--------------------..., 

+ Program Level 2 

I 4K bytes 

I 
I 
l 

Without a PARTITION statement 
If level 1 is not using the storage and a program 
is loaded into level 2, it is assigned at least 4K 
bytes. When the program in level 2 comes to 
end of job, the storage for level 2 is no longer 
reserved and level 1 can use it. 

Figure 10-9. Assigning Storage to Program Level 2 

Supervisor 

Program Level 2 

Unused Area 

Program Level 2 + (a minimum of 4K bytes I 
of storage is reserved) I 

I 
I 

With a PARTITION statement 
If a PARTITION statement is used, the assigned 
storage can only be used by the program in level 
2. It is reserved. Even when the program in level 
2 comes to end of job that storage is reserved for 
future programs in level 2. 

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 

sel~ ~u~IL P~o~IRA~ ~l~drlcl~ lrlo P-K~I ~blR L M6LJ I~ ~I 

IU 'f<. tft lJb 1 

- - - - -kl~l-f~ - - - -1-

I R U!AI ~blsl31 

Figure 10-10. Sample Job Stream 

10-10 



1. What advantages does DPF offer? 

2. Indicate with S (shared) or N (not shared) which devices can be shared between the two levels of 
programs under DPF: 

a. MFCU 

b. Printer 

c. Printer/Keyboard 

d. Disk drive 

e. Disk file 

3. What limitations apply to shared disk files? 

4. Name two programs which cannot be run in a DPF environment. 

5. How do you allocate storage to the two programs to be run under DPF? 

Review 10 

Dual Programming Feature 10-11 



Answers to Review 10 

10-12 

1. DPF enables you to make more efficient use of system storage, 1/0 devices, and processing time. 

2. a. N 

b.N 

c. s 

d. s 

e. S (Refer to Figures 10-2 and 10-3 for instances when a disk file can be shared.) 

3. Two programs in DPF cannot write to the same file. 

4. Basic Assembler, RPG II compiler, Library Maintenance, 1255 Utility Program. 

5. By specifying in the H control cards how much storage should be used to execute the programs and 
specifying how much storage should be allocated to the second partition with the PARTITION OCL 
statement. 



ti:Jljijl§if 
CONTROLLING THE PERFORMANCE OF OPERATIONS IN AN RPG II PROGRAM ,, 

CHAPTER 11 DESCRIBES: 

Dual input/output areas. 

Subroutines. 

Exception output (EXCPT operation code). 

Halt, LO, and external indicators. 

Look ahead feature. 

Binary field operations (BITON, BITOF, TESTB). 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

RPG II object cycle. 

Object library. 

Function of RPG.II indicators~ specifically Ll-L9. 

Looping (GOTO-TAG). 

Multi-file processing. 

Use of the SETON and SETOFF operation codes. 

Use of *PLACE. 

Overflow and fetch overflow. 

Binary data. 

Controlling the Performance of Operations in an RPG II Program 11-1 



11-2 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Function and coding for dual input/output areas. 

Function and coding for subroutines. 

Function and coding for exception output (EXCPT operation code). 

Halt, LO, and external indicators. 

Look ahead feature. 

Effects of exception output and look ahead on the RPG II object cycle. 

Binary field operations (BITON, BITOF, TESTB). 



INTRODUCTION 

There are several ways that you as a programmer can con
trol the performance of operations in an RPG II program. 
This chapter discusses six programming techniques which 
control operations: 

1. Dual input/output areas may increase the speed of 
operations in an RPG II program. 

2. Subroutines repeat operations in a program and 
eliminate duplicate coding. 

3. 

4. 

Exception output (EXCPf operation code) repeats 
output operations during calculation time and elim
inates duplicate coding. 

Indicators can prevent certain operations from being 
performed and perform total time operations without 
a control break. 

5. Binary field operations set and test bits in storage 
allowing you to control operations based on certain 
conditions that you specify. 

6. The look ahead feature allows you to alter the order 
of operations based on the next record in a file. 

INCREASING THE SPEED OF OPERATIONS (DUAL 
1/0 AREAS) 

During a normal RPG II cycle, a record is read, calculations 
are performed, and output (printed or punched) is pro
duced. The cycle is repeated for each record. 

The speed at which the cycle is done depends upon the 
speed at which records are read and output produced. 
Calculations take less time than reading, printing, or 
punching. Reading, printing, and punching can be speeded 
up by using dual input/output areas. 

Dual In put Areas 

When dual input areas are used, the program cycle is 
changed. First a record is read. At the same time, calcu
lations are being performed on this record, another record 
is being read. Thus, the contents of two records are in the 
computer at the same time. Figure 11-1 shows how the 
records are processed when two input areas are used. 

Dual input areas can be specified for sequential or direct 
input !files. No stacker selection can be specified, nor can 
the input files be specified as combined or update files. 

Dual input areas require more computer storage space than 
one input area, because two records are in storage during 
each cycle. If you have a large program, you might not 
have enough storage space to accomodate two input areas. 
If your program plus two input areas require more space 
than is available, certain RPG II object cycle routines re
main on disk during execution and are called into storage 
as needed. If too many routines remain on disk, the per
formance of your program may be decreased. 

The effect of dual input areas can be determined only if 
you have knowledge of a program's processing require
ments and experience in RPG II programming. In some 
cases, you can only make a final determination by actual 
experiementation. 

Input area 1 

Input area 2 

Input area 1 

Input area 2 

Input area 1 

Input area 2 

lll:J:!!!ill ~ 
Record B (_ 

Records A and Bare 
initially read into 
storage. 

Record C ~ ::::.~:~~~:.,:~ c 
) is read while Record t B is processed. 

l\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;:§:i,~8,{,~:'.9,;:\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\I l ::~~:s~=~.o~~:o~~ D 

is read while Record 

I I 
C is processed. 

. Record D . 

Note: The shaded areas represent records being processed. 

Figure 11-1. Dual Input Areas 

Controlling the Performance of Operations in an RPG II Program 11-3 



Specificati.ons: One entry on the File Description Sheet is 
required to specify dual input areas; any digit 1-9 in column 
32 assigns dual input areas for the specified file. Figure 11-2 
shows the file MASTER has been assigned dual input areas. 

Dual Output Areas 

When dual output areas are used, the program cycle is 
changed. A record is either printed or punched at the 
same time calculation and output operations are being 
done to produce the next record. (Calculation operations 
are not done at the same time as punching or printing when 
only one output area is used.) Figure 11-3 shows how out
put records are produced using dual output areas. 

Dual output areas, like dual input areas, require more com
puter storage. Consequently, the same space considerations 
that apply to dual input areas also apply to dual output 
areas. Dual output areas can only be used for sequential 
and direct files that do not have stacker selection entries, 
nor are specified as combined ;or update files. 

Specificati.ons: One entry is required on the File Descrip
tion Sheet to specify dual output areas, any digit 1-9 can 
be entered in column 32 for an output file. Figure 11-4 
shows the file PRINT has been assigned dual output areas. 

File Description Specifications 

File Type Mode of Processing File Addition/Unordered 

File Designation 
Length of Key Field or 

Extent Exit 
Number of Tracks 

of Record Address Field for Cylinder Overflow 

End of File Record Address Type 
for DAM 

Number of Extents 

Line Filename Sequence Type of File _, Symbolic Name of Tape 
Organization W Device Rewind 

File Format or Additional Area {l 
Device Label Exit ,...------., 

~ O> 8 File 
.:. Overflow Indicator c Condition 

a: '~ ~·~ Core Index Ul-~ 
~ Block Record 

~w 
c > Length Length a: ~ o Starting ~ <?. ::::> 
;c LL :J < ::: Location w 

<( z 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 2 F IM ITEIR lAls II tp IF 2l5~ 12~ 12 DI SI< (Z 1 
0 3 F 

0 4 F 

0 5 F 

0 6 F 

0 7 F 

F 

F 

Figure 11-2. Specifying a Dual Input Area 

114 



Output area 2 Record B 

Output area 1 Record C 

Output area 2 Record D 

{ Record A is in output area 1. 

l
), While record A is being put out, 

calculations are oerformed on 
record B, and it is moved to 
output area 2. 

{ When record A is finished, record 
) B is ready to be put out. While 

( 

record Bis being put out from area 
2, record C is calculated and moved 
into area 1. 

l Record D is calculated and 
moved into area 2, while 
record C is being put out. 

Note the shaded blocks represent records being written, 
punched, or printed. 

Figure 11-3. Dual Output Areas 

Line Filename 

File Type 

File Designation 

End of File 

Sequence 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File _, Symbolic Name of 
Organization w Device Device iii Label Exit 

File Format or Additional Area ~ l5 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 
.....

File 0 m 8 z 
§ ~ ~Over!~.~ !!i Core Index Condition 

2 i;! 
0 

Block Record ic :::: C Key Field ~ a; :l :l Ul-~ 
g ~ w < ~ Length Length :; ~ g ~~!~:n aE j < z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 2 F ~~ Aj1' I~ ~ l25i6 11~~ Dlt lslk ~1 

0 4 F 

0 5 F 

0 6 F 

0 7 F 

Figure 11-4. Specifying Dual Output Areas 

Controlling the Performance of Operations in an RPG II Program 11-5 



USING SUBROUTINES TO CONTROL THE PROCESSING 
OF CALCULATIONS 

You may want to specify parts of an RPG II program as 
subroutines. Subroutines can be used to: 

• Reduce the storage requirements for RPG II programs. 
When a program exceeds available storage, certain RPG 
II object cycle routines remain on disk to be called in 
as needed. This is known as overlay and it could de
crease performance if many routines remain on disk. 
Subroutines can be stored on disk in place of certain 
RPG II routines. By coding infrequently used routines 
as subroutines, you can control the way RPG II performs 
overlay. You must determine which subroutines should 
remain on disk. The compiler cannot determine which 
subroutines are infrequently used. 

• Perform the same calculations several times during one 
cycle. This eliminates duplicate codi~g . .Similarly, a 
subroutine can perform the same calculations .in several 
different programs. For example, you can have a tax 
routine used by several invoicing jobs. By coding the 
routine as a subroutine, it needs to be coded and tested 
only once. 

Controlling Overlay By Using Subroutines 

By using subroutines, you can control the routines that the 
compiler stores on disk if overlay is necessary. You can 
have certain exception routines in a program, such as credit 
check, invalid part number, or invalid customer number, 
that are used less frequently than the object cycle routines 
the compiler stores on disk. By coding these exception 
routines as subroutines, the compiler can place them, in
stead of object cycle routines, on disk in the object library 
after compilation. Your main program is never entirely 
loaded into main storage at one time. Only as many ob· 
ject cycle routines or subroutines will be executed from 
disk as ,necessary. 

The compiler gives priority to object cycle routines based 
on the normal expected frequency of use. Those routines 
that are seldom used are stored on disk before overflow 
routines. 

You must give priority to subroutines to determine which 
subroutines, rather than object cycle routines, should be 
stored on disk. Those subroutines used infrequently should 
be the first routines stored in the object library. Priority is 
established through the order in which the subroutines ap
pear at compilation time. The last subroutine in your 
source program will be the first subroutine stored in the 
object library. Consequently, you should place an infre
quently used subroutine as the last subroutine in your 
source program: 

Subroutine 
1 

'Subroutine 
2 

Subroutine 
3 

..._ 

...... 

The last subroutine in your 
source program is the first 
subroutine stored on disk. 

Using Subroutines to Repeat the Same Calculations 
Several Times in One Cycle 

In many programs, the same operation may be required 
several times in one cycle. When coding the job, you can 
specify the operations as many times as needed. This often 
involves large amounts of coding, however. If the same 
operations are done several times in succession, you can 
use loops (GOTO-TAG) to reduce the amount of coding. 

If the same operations are not done several times in suc
cession, but are performed at many different points in your 
program, creating a loop could not work. As an example, 
consider the job which creates a weekly Sales Commission 
Report. The report desired (Figure 11-5) shows two things: 

1. Total commission earned by each salesman. 

2. Total commission paid in each district. 



The area in which all salesmen work is divided into three 
districts: A, B, and C. Some salesmen work in only one 
district while others can work in parts of two or more dis
tricts. 

For each salesman, the input file contains a record for
matted as shown in Figure 11-6. The amounts in the dis
trict fields show total weekly sales made by that salesman 
in each district. If the salesman did not work a district or 
made no sales in that district, the field contains a zero. 

The report must contain the commission earned in each 
district by each salesman. In addition, total commission 
must be accumulated for each salesman and each district. 
The percentage of commission is: 

• Three percent of the gross sales up to 1000.00 dollars 

• Plus two percent of the gross sales between 1000.01 and 
5000.00 dollars 

• Plus one percent of the gross sales over 5000.00 dollars. 

COMMISSION REPORT 

Salesman Dist A DistB DistC Total 

Joe Arness 41.93 23.16 9.43 74.52 

Bob Brown 113.16 24.93 138.09 

Charles Butler 26.98 449.16 109.38 585.52 

~ 

I 
\... 

l 1,998.02 * 986.43 * 1,043.97 * 

Figure 11-5. Sales Commission Report 

Name DISTA DIST B 

25 26 32 33 39 40 46 

Figure 11-6. Input for the Sales Commission Report 

Controlling the Performance of Operations in an RPG II Program 11-7 



Figure 11-7 shows the calculations needed to find the in
formation required for the report. You first compare the 
contents of each district field to zero to find out if the 
salesman sold anything in that district. If it is not zero, 
you calculate the commission (COMM) earned. You then 
add commission earned to total commission for the sales
man (MANTOT) and to total commission paid in each dis
trict (TOTALA, TOTALB, or TOTALC). 

The calculations needed to find commission earned are the 
same for each district (Figure 11-7, inserts A, B, C, lines 
3-16). Rather than coding these calculations three times, 

you can code them once and branch to them each time 
they are needed (Figure 11-8). 

Using GOTO and TAG, you could easily branch to the cal
culations needed to find commission. But since you could 
branch to them from three different places, it would be 
difficult to determine where you should return. You could 
return to the point where totals are accumulated for district 
A, the point they are accumulated for district B, or the 
point they are accumulated for district C. The RPG II ob
ject program can return to the correct point in the calcula
tions after a subroutine is used by establishing the neces
sary instructions to branch back to the main program. 

IBM; International Business Machines Corporation Form x21..g093 

Printed in U.S.A. 

Date ___ _ 

Program1 __________ _ 

Programmer __________ _ 

Indicators 

Line 1 1 
! 

Factor 1 

~ ~ 0 ~ z 

0 1 c 

0 2 c IClJ9 
0 3 c 

0 4 c lrt 
0 5 c 

0 6 c 

RPG CALCULATION SPECIFICATIONS 

l Punching [ Graphic J _j 
Instruction j Punch ] J j 

Operation Factor 2 

1 J 

Result Field 
Field 
Length 

IMllVUll ~2H 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1•2 

Lookup 

Table (Factor 21 is 

lfl 1111 

75 76 77 78 79 80 

~~~~:~f~ation I I I I I I I 

Comments

0 7 c 11 11"1 I c A suta 11r ln ~'('} rl\JEfn Calculations
1--o+e+-J_,c l-+-4--+~1 ~11-+++--+-H.111~!:f-!V!....J'~~JLI1-+-+--+-~M~1~ 'Lo.!!fil--+-~~~~Pie.~· -ll'~'1"~4--1--+-.P_q..i\!-ll.f'm~!l.3f-1A+-+--+-1-t--+:-IJ.t++-+-1-t-+-+-+-1++) required to find -

~of9+-tc~l-t+t11 ~l H-H+~3~Q)~.~~~((jH-+t+~'A~D~~~H;~IM~IM±AH-t-f+~~/Vl~IM~lA~-H+-1rf'HTif+HTI~ commission earned. -

1 0 c GV°lTO 1TrtrlA11 A
1 1 c 12 fD 1 ls T~I s u!E 5~ rt*2 . ~tl
1 2 c

1 3 c IJ
1 4 c

ril6 c

1 5 c NIM A IAID" M~~ nrr
1t7 c tB lil~IG
@~i~+-++-11-+-+-+-+-1-+-++-l--11-+-+-+-+-1-+-++-l--ll-+-++-l--ll-+-+-f--l--11-+-+-+--+-11-+-+-+-l--ll-+-+-+-l--ll-+-+-+-+---i-+-+-+-l--ll-+-+-+-+-1-+-+-+-H

c

Figure 11-7. Calculations for Sales Commission Job (part 1 of 2)

11-8

IBJ.t

Date ___ _

Program ____________ _

Programmer ___________ _

Indicators

Line
~

I I Factor 1

t-
E

~ 0 0 0 z z z

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

r Punching GraphicI l 11 J l Instruction 1-P-un-ch-+---+----+--1---~If--l--+---l

Operation Factor 2 Result Field
Field
Length

1 2

Page[D

Resulting
Indicators

Arithmetic

Plus Minus Zero

Compare

High Low Equal
1>2 1<2 1=2

Lookup

Table (Factor 2) is

High Low Equal

Form X21-9093

Printed in U.S.A.

75 76 77 7B 79 BO

~~~~~~f:ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 

0 2 c 

0 3 c 

0 4 c 

0 5 c 

0 6 c 

0 7 c 

0 8 c 

0 9 c 

1 0 c 

1 1 c 

1 2 c 

1 3 c 

1 4 c 
1 5 c 

@: ,__... 

IBJ.t 

Date 

Program 

Programmer 

12 
12. 
12 

Indicators 

0 z 0 z 0 z 

JIS B r.tlMP ~ 

~r\'llt'li 

~ VE ~ U1'""lI . [Q 1 

rr ff~ 1 F 

International Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

r 
Punching Graphic JJ II i

1 
T 

Instruction l-P-un-ch-+---+---+---1-----+--l--T+---l 

Factor 1 Operation Factor 2 Result Field 
Field ·~ 
Length :f 

~ 
-~ 
0 

1~ 11a 

1 1111 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

Table (Factor 2) is 

High Low Equal 

I 
1 

Form X21-9093 

Printed in U.S.A. 

75 76 77 7B 79 BO 

~~~~~~!~cation I I I I I I I 

Comments

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

ID I SITt.
1~ to 1 strt MJl]I .~I~

1r- 11tr' [~IA It Jc

12
112 11-1 r
12.

~mm rr lC [1A rr 1712
IB ITIAWJ

Figure 11-7. Calculations for Sales Commission Job (part 2 of 2)

Controlling the Performance of Operations in an RPG II Program 11-9

Not this:
District A

~ calculate
~ commission

Accumulate totals

District B

~ calculate
~ commission

Accumulate totals

District C

~ calculate
~ commission

Accumulate totals

But this:·

District A

~
Accumulate totals

District B ,~Calculate
~Commission

Accu~/7
DistrictC /

Accumulate totals

Figure 11-8. Branching to Similar Calculations

Specifications for Coding A Subroutine

You specify subroutines on the Calculation Sheet after all
detail and total operations. Every statement in the sub
routine must be identified as part of the subroutine by the
letters SR in columns 7-8 (Figure 11-9). In addition, the
operation codes BEGSR and ENDSR must be coded to
establish the beginning and end of the subroutine.

The name of each subroutine must appear in factor 1 on
the same line as the BEGSR operation code (Figure 11-9).
Every_ subroutine used in the program must have a unique
name. The rules for establishing a subroutine name are the
same as those for forming a field name.

11-10

IB:r.t International

RPG CALCULJ

Data l Punching ~
Program

Instruction Punch

Programmer

Indicators

Lina AL L Factor 1 Operation F

!
! ~ ~ ~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36

0 1 c

0 2 c

0 3 c

0 4 c

0 5 c

0 6 c

0 7 cSR ISIUB
0 8 c le: RJ
0 9 c
1 0 c :>
1 1 c i! ~I
1 2 cSR EIN ns:R
1 3 c

1 4 c
1 5 c

c

c

c
c

c

Figure 11-9. Structure of a Subroutine

Calling the Subroutine

When using GOTO and TAG, you use a GOTO operation
code to branch to the next operation to be performed.
When you do the operations in a subroutine, you do not
branch to the subroutine; you call it.

When you call a subroutine, you use the execute subroutine
(EXSR) operation code. This operation code can be placed
anywhere in the calculation operations. Whenever the
EXSR operation code is encountered, all operations in the
subroutine will be performed. After the subroutine has
been executed, RPG II branches back to the main program
and continues execution with the next statement after the
EXSR statement (Figure 11-10).

Fields Used in a Subroutine

The same fields can be used by both the subroutine and the
main routine. You may define the field in either routine.
However, the name and characteristics of the field must be
the same in both routines.

The fields you define in a subroutine should be general so
that they apply to all situations fo.r which a subroutine is
used. For example, if DIST A is used as the field name in a
subroutine to calculate district sales, you always take in
formation from the DISTA field when calculating commis
sion. However, you want the routine also to handle infor
mation from the fields DISTB and DISTC. Using specific
fields limits the correct use of a subroutine to one situation.

Instead, if you use a general field name such as SALES, this
one subroutine can be used to calculate commission in all
three districts (Figure 11-11, insert C). However, because
there is no input field called SALES, you must use the
Z-ADD operation code to place information in this field
(Figure 11-11, insert B). The information in the appropri
ate district field (DISTA, DISTB, or DISTC) is moved into
the field called SALES before the subroutine is executed.
When finding commission earned in district A, DISTA is
moved into. SALES; when finding commission earned for
district B, DISTB. is move.d into. SALES, etc .. In this way'·
you ensure that the subroutine uses the correct informa
tion each time it is called.

First a record is read. Now commission earned in each dis
trict must be calculated.

1. DIST A is compared to zero to see if the salesman
sold anything in that district. If the field is greater
than zero, commission must be calculated. If the
field is zero, a branch is taken to B, where another
comparison is made.

2. Before the subroutine can be called, it must be sup
plied with the correct amount of sales. Thus, the
contents of DIST A are moved into SALES.

3. The subroutine is called by the EXSR operation code.

4. The commission is calculated by operations specified
in the subroutine.

5. The subroutine is finished when ENDSR statement is
executed. The instruction following EXSR is executed.
The commission found by the subroutine is added to
the total commission earned by the salesman .
(MANTOT) and to the total commission paid in the
district (TOT ALA).

Using Subroutines in the Sales Commission Report Example

Now that you have learned how subroutines are used, de
fined, and executed, see how they are used in the Sales
Commission Report job. All specifications.are shown in
Figure 11-11.

Main Program Subroutine

Figure 11-10. EXSR (Order in Which Calculations are Performed)

6. Now DISTB is compared to zero to see if commission
earned should be calculated. If so, information from
Jhefield.DISTB is moved to SALES, and the sub
.routine is called. The next steps are basically the same
as those already described. Follow the rest of the job.

Controlling the Performance of Operations in an RPG II Program 11-11

IB:ft1

Date ____ _

Program--------------

Programmer-------------

B
B
] 1

!!'.
:?-· ...

Line Filename •t: 0

~ ~ Position I- "E

~ ~
3 4 5 6 7 8 9 10 ti 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 1 lsl l~L ES A~ (ij1
0 2 I

0 3 I

@:
_1_1-

IB~

Date ____ _

Program ______________ _

Programmer _____________ _

Indicators

ffi I 1 Line

! 5

~ ~
0 b ...J 0

- z z z

Factor 1

lntern1tiof'1I Business Machines Corporation

RPG INPUT SPECIFICATIONS

Punching
Instruction

Graphic

Punch

Record Identification Codes

1 2

Page[D

Field Location
2 3 i ~ iii

~ .
_!! ~ Field Name]
~n ls; Position I;; Position From To

~ f5 E ~ ~ ~ ~~ ~ ~ ~]
~~6 8 ~ 0 6 ~u 6 cii 0..

25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4849505 1 52 53 54 55 56 57 58 59 60

1 21.: INA MEI
12ll 3 ~~ IS lrlA
3r3 13'- 12~ lllS [JB
f4rl ~ ~2 ID/ ~T~

International Business Machinet: Corpol'8tlon

RPG CALCULATION SPECIFICATIONS

l Punching Graphic I l
Instruction Punch I J

Operation Factor 2

I
l l

I
l

Result Field
Field
Length

1 2

Page[O

Resulting
Indicators

Arithmetic
Plus Minus Zero

Compare

High Low Equal
1>2 1<2 1=2

Lookup

Table (Factor 2) is

High Low Equal

:s

H
II
B
61 62

Form X2t-9094
Printed in U.S.A.

75 76 77 78 79 80
Program
Identification I I I I I I I

g . .,
~
]
-0
a;
u::

63 64

Field
Indicators

Plus

65 66

Sterling
Sign

Zero Position
Minus or

67 68

Blank

69 70 71 72 73 74

FormX21-9093

Printed In U.S.A.

75 76 77 78 79 80

~~~;~f~tion I I I I I I I 

Comments 

345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66'67 68 69 70 71 72 73 74 

0 1 c 

0 2 c GK: lO B 
0 3 c 

0 4 c 
Mttv E lt I ffi]A 
IElx SRI l~A~ c.11' 

lslALEIS 12 
0 5 c ~D MANTie 
0 6 c CIO~ lA~n ITaIAllJ ~ 
0 7 c 

0 8 c B 
0 9 c Dll lslrlB 
1 0 c Go:rc t 
1 1 c S~LElS 
1 2 c EXISR IS~LS 
1 3 c 

1 4 c tlaMt1 
f!'i!AINll~ 
IT1IAJf.J [bT AJL B 

1 5 c l- llf 
c [JAC 

Figure 11-11. Sales Commission Job Using a Subroutine (part 1of3) 

11-12 



IBJ.1 

Date ___ _ 

Program __________ _ 

P"rogrammer __________ _ 

Indicators 

Line I I 
~ 

Factor 1 

f-

] 15 15 15 z z z 

International Business Machines Corparation 

RPG CALCULATION SPECIFICATIONS 

l Punching Graphic l 
Instruction Punch J J 

Operation Factor 2 

t t t 

Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

Table (Factor 2) is 

High Low Equal 

Form X2t-9093 

Printed in U.S.A. 

75 76 77 78 79 80 

~;~~;~!~cation I I I l l D 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 JJ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 e ~t marAltr1 IOIJAILld 
0 2 e ~-iau!L 
0 3 e It 
o 4 e~ 

0 5 els tBEGSR 
o s e ISi ls~LES 
0 7 es l1pj SAIL flS Mull] .~3 
o a els! 11' 
o 9 e 15 112.1llI1 
1 o cs~ 111 
1 1 e 151 111 H 

12 ciS 11 
13 c5 1 
1 4 els! 11'~ 
1 s c 19 1fl M J~li . (ljll 
[6 e1SI 1 
17 clS 

Figure 11-11. Sales Commission Job Using a Subroutine (part 2 of 3) 

Controlling the Performance of Operations in an RPG II Program 11-13 



IB"' 
International Business Machines Corporation Form X21-9090 

Printed in U.S.A. 

RPG OUTPUT - FORMAT SPECIFICATIONS 
75 76 77 78 79 80 

Date ___ _ 

Program------------ [ 

Punching Graphic J J J 
Instruction 1-P-un-ch----jf--Jt---t---Jt---J.-r-Jf--i 

1 2 

Page DJ ~;~~~f~ation I I I I I I I 
Programmer __________ _ 

Space .Skip Output Indicators ..h. 
Edit Codes 

f!l 
Line Filename I 1 Field Name II§ End 

Positon 

~ l!l I;; in 
~ t ~ 8 ~ I-

~ ~ 1) Output 
E ~ ~ 0 0 

.f 
<! z z z 

~ ! Record 

... 
Zero Balances Commas No Sign CR . x - Remove 

to Print Plus Sign Sterling 

Yes Yes 1 A J y. Date Sign 

Yes No 2 B K Field Edit Position 

No Yes 3 c L Z • Zero 
No No 4 D M Suppress 

Constant or Edit Word 
3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 381:!_9 40 41 42 43 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 olDli;;iu r~ ~ 
0 2 0 

0 3 0 ,,., 13111 
0 4 0 bN 
0 5 0 'lSlALE5MAIN I 

0 6 0 5>-
0 7 0 'DIS,.~' 
0 8 0 [} > ' "lJ 5 t I 
0 9 0 11 
1 0 0 ~ 2 rt11 
1 1 0 

1 2 0 IC IYilY,I~ 1 
1 3 0 

1 4 0 llfVIJP1 1 Iii 
1 5 0 ~~l~ITlelI 1 11 

0 I~ 
0 

0 

@: ~Ir AIL:lll 171~ 

Figure 11-11. Sales Commission Job Using a Subroutine (part 3 of 3) 

Using Valid Subroutine Operations 

Any operation code that can be used in calculations can be 
used in a subroutine except BEGSR and ENDSR. This 
means that you can use all arithmetic, compare and testing, 
move look-up, EXSR, and branching operations. 

There are limitations on some of the operations: 

1. 

11-14 

You may only branch to another statement in the 
subroutine when using the GOTO statement (Figure 
11-12). 

2. 

3. 

You may branch to the ENDSRstatement if you put 
a name in Factor 1 of the ENDSR statement. 

You may not branch to a statement outside of the 
subroutine. 

4. You can not branch to a TAG within the subroutine 
from a GOTO outside of the subroutine (Figure 11-12). 

5. You can not have a subroutine coded within another 
subroutine. However, one subroutine can call another 
subroutine. This means that within one subroutine 
you may have an EXSR statement (Figure 11-13). A 
subroutine, however, cannot call its caller. 



IB"' 

Date _____ _ 

Program, _______________ _ 

Programmer ______________ _ 

Indicators 

Factor 1 ffi And And Line 
0. 5· 
> 
I- ~ 
~ ~ ~ 15 15 z z 

International E 

RPG CALCUU! 

Punching 
Instruction 

Operation 

Graphic 

Punch 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

DO THIS: 

0 5 

0 6 c 

0 7 c 

0 8 c 

0 9 

1 0 c 

IB"' 

Date 

Program 

Programmer 

ffi 
Line 

! 5 

~ ~ ~ 
...J 0 
- z 

to branch to another 
statement within the 
subroutine. 

Indicators 

I l -
And 

15 15 z z 

Factor 1 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

nl Ir r. 1 TTTT 
OR THIS: Use a GOTO statement 

outside the subroutine 
to branch to a TAG 
statement within the 
subroutine. 

0 6 c 
0 7 c 
0 8 c 
0 9 c 
1 0 c 
1 1 c ISR 
1 2 c SJ< 
1 3 clsJ< U\JIA lr-11E 
1 4 cl<;~ 
1 5 els~ 
ll~ clSIR 

r 

Figure 11-12. Branching Within a Subroutine 

lnternation• e 

RPG CALCULJ! 

Punching I Graphic 

Instruction Punch 

Operation F< 

28 29 30 31 32 33 34 35 36 

SIC ITO ~A ~E 

BE GIS 

tr1AIG 

·-

IB:t.4J 
International I 

RPG CALCUL.l 

Date r Punching~ 
Program 

Instruction Punch 

Programmer 

Indicators 

ffi 1 L Factor 1 Operation F; 
Line 

0. 5· 
~ ~ 
~ 0 ~ 15 0 ...J 0 

- z z z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 .,. 111 I I I f I 

~ DOTHIS: Use one subroutine to 
0 : call another subroutine I-
0 ·~ " 
0 4 c 
0 5 c 
0 6 c 
0 7 c lcq~ 5u ~lAJ ~E GS~ 
0 8 c IC~ 
0 9 c~ 

1 0 c l<i EX le:;~ Su ta~ 
1 1 Cb 
1 2 els EN DS~ 
1 3 cE;IR !Su ~~ BE GS~ 
1 4 cl51~ 
1 5 c 51 
1~ c ,..., 

117 ct.:> to-IN 11'"' 
c 
c 
c I 

Figure 11-13. Using EXSR Within a Subroutine 

Controlling the Performance of Operations in an RPG II Program 11-15 



Conditioning Subroutine Statements 

Any indicator which is valid in columns 9-17 can be used to 
condition an operation within the subroutine. That opera
tion will then be performed only when the conditions estab
lished by the indicators are satisfied. The BEGSR and 
ENDSR operation code, however, cannot be conditioned by 
any indicators. 

The EXSR statement can also be conditioned by indicators. 
In this case, the entire subroutine will be performed only 

when conditions for the EXSR statement are met. For 
example, in Figure 11-14, insert A, the subroutine will be 
performed only if MR is on. 

Control level indicators cannot be used to condition state
ments within a subroutine since SR must appear in columns 
7-8. The indicators used on the EXSR statement deter
mine whether the entire subroutine is performed at detail 
time or at total time (Figure 11-14, insert B). 

181'1 International Business Machines Corporation FormX2HKl93 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date Graphic t t t f Page[D Program I I I I I I I r Punching Identification 
Instruction Punch Program 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I I Plus}Minusl Zero 

Factor 1 Operation Factor 2 Result Field 
Field Compare 

Line 
Q. Length High ilow IEqual 

Comments 
> 
I- , >2 1< 2 1=2 

~ 0 0 0 Lookup 
z z z 

Table (Factor 2) is 

6 7 8 9 10 
HighJ LowJEqual 

3 4 5 1112 13 14 15 16 17 16 t9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 
4Y°l51 

52 53 54 55 56 57 58 59 60 Gt 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 111TT lllll l 
0 2 c M ~ l~ IEIXS~ sutBA SUBA will be executed at detail 
0 3 c time if MR is on. 

I 

0 4 c 
TTTTT Tl IIIII I 

0 5 c I IT 
TTTTTlTI I I I I I I I I I I 

0 6 c 11 ~ EX Is~ 5u ~A1 SUBA will be executed at total time. 
0 7 c +++++{+!++++++++++++ - - - I TT 

Figure 11-14. Conditioning Calculations Within a Subroutine 

11-16 



Review 11. Subroutines 

1. When should a subroutine be used? 

2. What are the operations used to define and execute a subroutine? What entry must be made for each 
calculation operation of a subroutine that is different from all other calculations? 

3. What limitations in the use of GOTO and TAG apply to subroutines? 

4. Where must subroutines be coded? 

Controlling the Performance of Operations in an RPG II Program 11-17 



Answers to Review 11. Subroutines 

11-18 

1. A subroutine can be used whenever the same calculations must be executed at several different places 
in a program or when it is desired to control the number of overlays within your program. 

2. The first line of a subroutine must have the BEGSR operation code in columns 28-32 with the sub~ 
routine name in factor 2. The last line in a subroutine must have ENDSR operation code in columns 
28-32. This line can have a name in factor 1, and this name can then be referenced by a GOTO state
ment. Every subroutine operation code must have SR in columns 7-8. 

3. No branches can be made from a GOTO statement within a subroutine within a subroutine to a TAG 
statement outside that subroutine. No branches can be made from outside the subroutine to a TAG 
statement within the subroutine. 

4. All subroutines must appear on the Calculation Sheet after all detail and total calculations. 



REPETITIVE OUTPUT (EXCPT OPERATION) 

RPG II has a special operation code called EXCPT which 
allows you to write or punch as many records as are re
quired during one program cycle. 

Normally a record is written or punched at either detail or 
total output time. Using EXCPT, records can be put out 
during detail or total calculation time. Each time you use 
the operation code EXCPT, specified records are written 
immediately. For example, if you use eight EXCPT opera
tion codes in succession, you can get an exception output 
cycle eight times. The records are identical if the data 
fields in the exception records are not altered between the 
EXCPT operation codes on the Calculation Sheet. 

When you use the EXCPT operation code, you also must 
specify which records are to be put out during calculation 
time. These records are identified by an E in column 15 of 
the Output-Format Sheet. Only those output lines iden
tified by an E will be put out during an exception output 
cycle. 

Using EXCPT and *PLACE 

The reserved word *PLACE duplicates fields and places 
them on the same line. In the discussion of *PLACE in 
Chapter 13, an example is used in which three mailing 
labels/were printed for each customer using *PLACE. If 
you wanted to print 15 labels for each customer, however, 
you could not use only the reserved word *PLACE. The 
only way would be to print the same three mailing labels 
five times in succession. 

In the RPG II program cycle, each record specified is writ
ten or punched only once per cycle. For each record read 
for the job shown in Figure 11-15, the detail line specified 
in lines 01-04 is written only once. Remember that the 
*PLACE entry causes the field to be duplicated. Using 
*PLACE one line is printed with three identical names. The 
same is true for each of the other records specified. If you 
want to print 15 identical mailing labels, you need all 
records printed five times each. 

Figure 11-16 shows tlie specifications necessary to print 15 
mailing labels per customer. The *PLACE specifications on 
the Output-Format Sheet will cause three mailing labels to 
be printed side by side on the paper. Each EXCPT code 
used on the Calculation Sheet causes all records identified 
by an E in column 15 of the Output-Format Sheet to be 
printed one time in the order shown on the sheet. Because 
all four lines are to be printed on the mailing label, all are 
identified by an E. The five EXCPT codes will cause five 
rows of three mailing labels each to be printed. 

Another set will not be printed at detail output time, be
cause all records having an E in column 15 can be printed 
only at calculation time when the EXCPT operation code is 
encountered. 

EXCPT can be used with punched cards or disk as well as 
printed output. It operates in the same way in all cases. 
Each time the EXCPT code is encountered, output lines 
identified by an E in column 15 are executed. 

Only output files may have EXCPT records specified; 
EXCPT cannot be used for combined files. All EXCPT 
records must be specified after all heading, detail, and 
total lines on the Output-Format Sheet. 

Controlling the Performance of Operations in an RPG II Program 11-19 



IB~ 
International Business Mechinn Corporation 

RPG OUTPUT· FORMAT SPECIFICATIONS 

Form X21-9090 

Printed in U.S.A. 

75 76 77 78 7g 80 
Date ____ _ 

l Punching 
Instruction 

Graphic J l 
l l 

J 
l 

1 2 

Page[D ~;~;~7cation I I I I I I I 
Program--------------- Punch 

Programmer ______________ _ 

~Space Skip Output Indicators ..h Edit Codes 

~ t.ii -v Co Zero Balances N s· CR • X • Remove 
w i I I I _-co ~ mmas to Print o ogn Plus Sign 

~ 't And A~d Field Name ~:~ton ~ ~= ~~s ~ : ~ Y = ~~e~~ Edit 

~ .!1 " f Ill ~ in !!! No Yes 3 C L Z • Zero = ~ 5 t -co~ ~ 0 
0 

8 ! Output ] No No 4 D M Suppress ! i ~ ~ ~ Z z ~ ~ ~ Record ~ 
~ ~ 

Line Filename 

Constant or Edit Word 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 i:!? 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 0 ~INT la B~ 
0 2 0 35 
0 3 0 J5 
0 4 0 115 
0 5 0 D 
0 6 0 3l5 
0 7 0 1.; 
0 8 0 *IPll IAltlE 1 L'S 
0 9 0 D 2 
1 0 0 

1 1 0 SlrlAlIE 
1 2 0 r.tl~l.ACE 
1 3 0 1115 
1 4 0 D 3 
1 5 0 

116 ° '" 1'1 0 1 15 
0 

0 

0 

Figure 11-15. Detail Output Operations 

11-20 



IB~ International Business Machines Corporation Form X2HI093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date Graphic I I 1 l Page[D Program I I I I I I f Punching Identification 
Instruction l l 1 Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I I Plus Minus Ze.-o 

ffi 
Factor 1 Operation Factor 2 Result Field 

Field g Compare 
Comments Line 

c. 5 Length ~ High Low Equal 
> ~ 1>2 1<2 1=2 .... 

~ 
~ 0 0 0 ... Lookup ...J 0 ::c -z z z 

Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3 2 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c El~ c~'" 
0 2 c IE~ tP 
0 3 c EX CP 
0 4 c EX CP 
0 5 c E~ lrP 
- - -

IB~ 
International Business Machines Corporation 

RPG OUTPUT- FORMAT SPECIFICATIONS 
Date ____ _ 

Graphic l ] ] 
Program--------------- [ 

Punching 
Instruction Punch l J l 

Programmer ______________ _ 

~ 
~ Space . Skip Output Indicators 

Une Filename 

~ J mlq,,__~~ 
~ ! 1 And Field Name I § End ~ 
e .M en t ~:siton ID 

=<'1.E~ -"'~ 2l o o o H Output~ 

l 
l 

Commas 

Yes 
Yes 
No 
No 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

1 2 

Page[JJ 

Edit Codes 

No Sign CR 

A 
B 
c 
D 

Form X21-909C. 

Printed in U.S.A. 

75 76 77 78 79 80 

~~:;;f~ation I I I I I I I 

- X = Remove 
Plus Sign 

J Y=Date 
K Field Edit 
L Z•Zero 
M Suppress 

Sterling 
Sign 
Position 

~ _! ~ :( :( z z z ~ ~ Record ,f, 
>- ~ ;._ Constant or Edit Word 

3 4 5 6 1 0 9 to 11 12 13 14 15 16 11 10 19 20 21 22 23 24 25 26 21 20 29 30 31 32 33 34 35 36 37 38 '3? 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 51 62 63 64 65 66 67 68 69 10 11 12 73 74 

0 1 0 EB I NL ~ ~~12 
0 2 0 ~AMEi 
0 3 0 15 
0 4 0 11~ 
0 5 0 

0 6 0 l31'i 
0 7 0 l'i 
0 8 0 111~ 
0 9 0 E 
1 0 0 Bi 
1 1 0 IS ,.!ATIE 3[5 
1 2 0 115 
1 3 0 11115 
1 4 0 

1 5 0 5 
1~ 0 

[tz 0 

~rPIL C~ 
•IPL. t.IE 

5 
1 15 

0 

0 

0 

Figure 11-16. EXCPT Operation Code Used with Exception Records 

I 

Controlling the Performance of Operations in an RPG II Program 11-21 



Conditioning the Use of EXCPT Operation 

There are two ways you can condition an EXCPT opera
tion: (1) on the Calculation Sheet; and (2) on the Output
Format Sheet. 

The EXCPT operation can be conditioned on the Calculation 
Sheet in the same way as any other operation. As shown in 
Figure 11-17, the EXCPT records are put out only when 
MR is on. 

An indicator used on the Calculation Sheet controls the 
printing or punching of all EXCPT records. Individual 
EXCPT records are controlled by indicators specified in 
columns 23-31 of the Output-Format Sheet. These indica
tors are used in the same way for EXCPT records as they 
are for all other records. 

Restriction: Overflow indicators cannot be used to con
dition an EXCPT line. This means that an EXCPT record 
cannot be a record that is printed only when the end of 
the page has been reached. 

Remember, these lines are exceptions. They print only at 
calculation time, not at output time. Therefore, they 
could not possibly be printed when other overflow lines 
are. 

An EXCPT line may be, however, printed on the overflow 
line. If it is, the overflow indicator will be turned on as 
usual. EXCPT lines can even fetch overflow. You may 
place an Fin column 16 of any exception line. If the over
flow indicator is on when the EXCPT line having an Fin 
column 16 is reached, all lines conditioned by the over
flow indicator will be printed before the exception line is 
printed. 

IB"' International Business Machines Corporation Form X21-0093 

Printed in U.S.A. 

RPG CALCULATION SPECI Fl CATIONS 
1 2 75 76 77 78 79 80 

Date Graphic T T T Page[D Program I I I I I I I r Punching Identification 
Instruction I T T Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I 1 Plus Minus Zero 

Line Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments :g_ Length High Low Equal 
;:: 1>2 1< 2 1=2 

~ ~ 'O 'O Lookup 
z z 

Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c ~h ~Ir ~[)[) 1r10 lDAIL rr~ ITIAJL 
0 2 c ~ EX le:~ 
0 3 c 

0 4 c 

0 5 c 

Figure 11-17. Conditioning the EXCPT Operation Code 

11-22 



IB:t.41 

Date 

Program 

Programmer 

Line 
c. 
~ 

~ 
3 4 5 6 

Review 11. Exception Output 

1. What occurs when the EXCPT operation code is executed? 

2. In a program used to create a tub file, you need to punch a specified number of cards for each item. 

7 8 

This number will be punched in each input card. Refer to the coded input sheet for record layouts 
and code the Calculation and Output-Format Sheets for the job. 

lnternatiol"lal Business Machines Corporation Form X21·9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
1 2 75 76 77 78 79 80 

l ! Pag•[O 
Program I I I I I I l Punching Graphic Identification 

Instruction 
Punch l 

~ Record Identification Codes Field Field Location 
] 1 2 3 ~ 

c: Indicators 

~ 
0 

~·~ 
iii ~ Sterling ~ II -0 Filename i 0 

rrl ~ Field Name 3 o; -0 Sign 

~ ~ ~ 
u: J Zero Position 

Position z 0 ~ Position - ~ Position From To ~ Plus Minus or 
"E ~ ~ ~ ~o ~ ~ ~ 1 ·;: 

-0 Blank 

~ ~ ~ j ~§ ~ o; 
z u u ~oo Q en IL u: 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

I 

0 1 It 'E I l1J Fi I ILE IAA ~1 1 CIU 
0 2 I 

~ 1 I ]IE tl_N CILJ1. 
0 3 I [8Z ~IN IL M Ptf R 
0 4 I 1 9~' tW l<" 
n c . 

Controlling the Performance of Operations in an RPG II Program 11-23 



Answers to Review 11. Exception Output 

IB~ 

Date 

Program 

Programmer 

Line 

! 
~ 

3 4 5 6 

0 1 c 

0 2 c 

0 3 c 

0 4 c 

0 5 c 

0 6 c 

0 7 c 

IB:ft1'. 

1. Immediate output for specified records occurs. These records are coded as exception records by an E 
in column 15 of the Output-Format Sheet. 

2. See specification sheets. 

International Business Machines Corporation 

RPG CALCULATION SPECI Fl CATIONS 

Graphic T T T r Punching 
Instruction I I I Punch 

Indicators 

~ I I Factor 1 Operation Factor 2 
Field 

5 Result Field 
Length 

~ 
0 15 ~ ...J 0 -z z 

7 8 g 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

l IArJ< T ISITI rITAG 
~I! EX ~P:r 

11 NIU M~ E~ Is :)3 1 IN J M~ EIR 
1 ~ so T~ ISIT A~ 

International Business Machines Corporation 

Form X21-9093 

Printed in U.S.A. 

1 2 75 76 77 78 79 80 

Page[O Program I 
Identification I I I I I 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 

::s Compare 

g High Low Equal 
'.ft>21<21=2 

~ Lookup 

Table (Factor 21 is 

High Low Equal 
52 53 54 55 56 57 58 59 

~~ 

Comments 

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

FormX2Hl090 
Printed in U.S.A. 

RPG OUTPUT- FORMAT SPECIFICATIONS 
75 76 77 78 79 80 

Date ____ _ 

l Punching 
Instruction 

Graphic T T T 
1 2 

Page[I] ~~~;~:ation I I I I I I I 
Program---------------- Punch T T I J 
Programmer ______________ _ 

Line 

~ ,_ ,_;, O"'P" lod;~'°" ' > Ill>- Ed;< Cod" 

~ I 1 I F;old Nome ( '"' ~ '°:':' '";, :::;"' "" ';~ ': ' : : ~i~:;, 
~ Ji ., i!l t ~:siton CD ~:s ~~ ~ ~ Z = Zero 

~ ~~CD -<(~ -CD~ !:! 0 0 0 8 ~ Output ~ No No D M Suppress 
e: ~ :C z z z =5 j Record ~ 
1- l!! w CD n Constant or Edit Word 

Filename 

Sterling 
Sign 
Position 

~ ~ 

5 6 1 8 9 10 11 12 13 14 15 1s 11 18 19 20 21 22 23 24 25 2s 21 28 29 30 31 32 33 34 35 36 37 3a l:J9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 11 72 73 74 3 4 

0 1 

0 2 0 

0 3 0 

11-24 

I 



PERFORMING TOTAL OPERATIONS WITHOUT A 
CONTROL BREAK 

In this section, you will learn to work with a special internal 
control level indicator LO. You will also learn another use 
of the Ll-L9 indicators. 

Internal Control Level Indicator LO 

LO is a unique control level indicator which is always on. 
You cannot assign it to a field, as you do L1 -L9, by enter
ing it in columns 59-60 of the Input sheet. But, you can 
use it to condition a calculation operation. The operation 
so conditioned will be done at total time for every program 
cycle, since LO is always on. 

The main purpose of the LO indicator is to allow you to 
specify total operations when indicator Ll-L9 are not 
available or when they cannot accomplish the job. 

Consider the use of LO in a summary punching job. Basic
ally the job consists of finding payment due by subtracting 
discount received from total purchases and punching this 
amount along with other information into a summary card 
(Figure 11-18). The input file shown in Figure 11-19 con
sists of three record types: 

• Name/address cards. 

• Item cards which describe an individual item purchased 
by the customer. 

• Blank cards which are to be summary punched. 

The amount of discount each customer receives is shown 
by the last digit of the account number. The discount code 
is as follows: 

0 - no discount 

1 - two percent discount 

2 - four percent discount 

For each item card, quantity (QTY) must be multiplied by 
price (PRICE). The result is then accumulated in a field 
called TOTAL. After all cards of a group have been read, 
you can find the discount and net payment. These two 
operations are total operations that should be conditioned 
by control level indicators. 

Is there a field which can be used as a control field? 
CUSTNO could be used, but if CUSTNO is defined as the 
control field, the blank card has no CUSTNO field. There
fore, control field contents will not be checked when this 
card is read, and a control break will not occur at the cor
rect time. 

However, when the name/address card is read, a control 
break will occur since the contents of CUSTNO on the 
name/address card are different from the previous name/ 
address and item cards. Total operations will be done. 
Summary punching the blank card is a total operation. Thus 
the punching 1will occur, but the wrong card will be punched. 
The only card available for punching at total time is the one 
that caused the control break - the name/address card. 
This card instead of the blank card will be punched. 

RPG II control field logic will not work for this job. The 
blank card, not the name/address card, should cause a con
trol break, but it never will since it has no control field on 
it. 

12434HENRY J JOHNSON 10 
I Zl•5&711~"UUM~~~~~~~UUUUHUHH~~U 

1268 8943 894 8049 
»U"MVHH~~uu"u"vuu~~""M"~"~"~~""u 

~-·~~mm~~umu~®m~~~~~ITT~M®m~w~m~m~ 

B B 
A A 
a CUST NAME a 
~ NO. ~ 
~ 1 2: 3 .a S I 7 I 9 tO 11 12 13 1• 15 Mi f7 11 19 20 21 22 23 2• 2 26 27 21 29 30 31 32 ~ 

f .. ~~1E~ .. ::j_ ~~~- ............ ~ 
A A 
8 8 
4 4 
2 2 
1 """""~nnnu~nnnn~~u~unHVHH~~""""" 1 

llN3700 

Figure 11-18. Summary Card 

Controlling the Performance of Operations in an RPG II Program 11-25 



nM"~~mm~mam~~~mmMMM~ITTMM®m~m~~~mm 
B B 
A A 
8 8 
4 4 
2 2 

~' 2 ••s•1••~nuuw~•"~gN~nnNnannu~~H~ 
A A 
8 8 
4 4 
2 2 

!n~nHnHH~~UU«U"O••~~""M"H~HH~~"""~ 

124304210040438671KIRON BRACES I 

B 
HUVH"ronnnunnnnn~~HUMHUPHH~"""""" 

A 
a CUST S'MAN QlY 
~NO. 

ITEM 
NO. 

DESC 
A 
8 
4 
2 

~ •s•1••~nuuw~."~gN~UllNllHUHH~~H~ 

A WGT. UNIT UNIT I A 

! PRICE ca:;r ! 
2 2 

!n~HHPHH~~UU«U"Oa•~~Q"M"H~HH~~UUM~ 

12 430HENRY J JOHNSON 14 
1 Z J • 5 I 7 I I 10 11 12 t3 lot IS 11 17 11 11 20 21 U 13 H 25 ff 27 21 21 JO 31 JZ 

EAST AVE HARBOR HILL R. 
»MHHnHH~MUU«U"OUU~~HUM"HPHH~~tU« 

I A 
HUUHnronnnunnnnn~~HHMHMUHH~~""""" 

nM"~~mm~mam~~~mmMMM~ITTMM®m~m~m~mm 
B B 

: CUST NAME : 
4 NO. 4 
2 2 

~ •5171 UUM~W"ggN~llllNnHUHH~~H~ 

WA 
Ce 
04 
U2 

OSH 
1 

A 
8 
4 
2 

SH 
1 

- Blank Summary Cards 

Item Cards 
{may be several per account) 

A A 
a ADDA CITY/STATE a 
4 4 
2 2 

- Name/ Address Cards 

{ 1 per account) 

~--···1···-·-··-···············ri~ 
1 uuuunronnnunnnnn~~""""""""~""""""1 

llM3700 

Figure 11-19. Record Types in an Input File 

11-26 



Causing Control Breaks 

When it is necessary to do total operations but no control 
fields are available to cause a control break, you may use 
LO to cause an artificial control break. 

Remember that total operations are those conditioned by 
Ll-L9 or LR. Ll-L9 will not turn on unless there is a con
trol break or unless they are set on. For the job just dis
cussed, L1 must be artificially set on since total operations 
are required but.a control break does not occur. 

If total operations are ever to be done, they must be con
ditioned by LO, Ll-L9, LR. Ll-L9 are not available, but 
LO is since LO is always on. Thus you can use LO to con
dition the operation which will set L1 on. When L1 is 
turned on you can do total operations necessary for the 
job. 

In this case, you wish to do total operations when the blank 
card is read. 03 is the indicator assigned to the blank card. 
Thus, you must set L1 on when the record identifying in
dicator 03 is on. The SETON operation is, therefore, con
ditioned by both LO and 03 (Figure 11-20). 

Control level indicators should be set on at total time. If 
they are set on at detail time, they are turned off before 
any operations which they condition are encountered. 

Coding Control Level Indicators As Calculation Conditioning 
Indicators 

Control level indicators are normally entered in columns 
7-8 of the Calculation Sheet where they specify which cal
culations are to be done at total time. They may, also, be 
used in columns 9-17 where they indicate which detail opera
tions are to be done on the first card of a control group. 

Control level indicators are turned on near the beginning of 
the program cycle if the contents of the control field on 
the card just read are different from the contents of the 
previous control field. Since the indicator is not turned off 
until the end of the cycle, it is on during total and detail 
time. Thus, it is available to use as a conditioning indicator 
during detail time as well as total time. 

When an operation is not conditioned by control level in
dicators specified in columns 7-8 of the Calculation Sheet, 
the operation is done at detail time. If the operation is con
ditioned by control level indicator specified in columns 
9-17, and not in 7-8, the operation is still done at detail 
time when L1 is on. L1 is on only during the processing of 
the first card in a control group for only the first card in a 
new group causes a control break. 

IB"' International Business Machines Corporation Form X21·9093 

Printed in U.S.A. 

RPG CALCULATION SPECI Fl CATIONS 
1 2 75 76 77 78 79 80 

Date Graphic t t t I Page[JJ 
Program I I I I I I I r Punching Identification 

Instruction l Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I T Plus Minus Zero 

Line And Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments 
8. Length High Low Equal 

~ 1>2 1< 2 1=2 

~ 0 0 0 Lookup 
z z z 

Table (Factor 2) is 

High Low Equal 
3 4 5 6 1 0 9 10 11 12 13 14 15 t6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c ~ i2. mlY MULlT tl?ll< I CIE ll<lEISUL[ j] 12 
0 2 c rq_ 12 [RE~UlI 

1AII:ID [Jo'IIAt [~triPJL 1e ~2 
0 3 cl~ t2i3 Slf trkJIN [U_l 
0 4 c Ll Mb VIE ~iu INb Sir ~(J rnE 1~ 
0 5 c J1 ct: ~E !Ct l!l~ 11 1~ 11 
0 6 c ~1 1aJ Tlf'I IT AL MU LT .~ '[ I st r-1~ H 
0 7 c J1 11 w 1'.AJL f1U L[ .~2 1J I srr r-1~ H 
0 8 c 1 trlAJL SIUtE lD I lsc E~ E{M ~T I~ 
n Q r 

Figure 11-20. Conditioning the SETON Operation 

Controlling the Performance of Operations in an RPG II Program 11-2 7 



CONTROLLING WHEN OPERATIONS ARE PERFORMED 

When you are processing a job, there can be certain con
ditions determing when operations should or should not be 
performed. This section will discuss two indicators which 
can control when operations are performed: halt indicators 
and external indicators. 

Halt Indicators (H1-H9) 

Halt indicators may be used to: 

• Stop a program after finding an error. 

• Condition calculation or output operations after finding 
an error. This is necessary because the system does not 
halt until after all calculation and detail output opera
tions are performed for the record that caused the error. 
Halt indicators can be used in the same way as indicators 
OI-99 to condition operations. 

Stopping a Program After an Error Occurs 

Halt indicators are used to stop an RPG program when a 
specified condition is satisfied. Halt indicators can be used 
as record identifying, field, or resulting indicators. When 
halt indicators are used as record identifying indicators, a 
halt will be caused by a specific type of record; when used 
as field indicators, a halt will be caused by a specific type 
of input data; when used as resulting indicators, a halt will 
be caused by a specific type of results from calculations. 

11-28 

A halt indicator can be turned on at one of four different 
times (Figure I I-2I). Its use, of course, will determine 
when it is turned on. The program does not halt immedi
ately when a halt indicator is turned on. All total and de
tail operations remaining in the cycle are performed first; 
then the program halts. This means that processing will 
still be completed on information from the card that 
caused the specified condition. 

After a halt, you can continue processing by pressing 
START on the processing unit. Halt indicators are always 
turned off before another program cycle begins. 

Preventing Calculations From Being Performed When An 
Error Occurs 

Halt indicators are usually used to test for an error condi
tion in your data. Specifications shown in Figure I I-22 
illustrate the use of HI to test for an error condition. A 
test is made to determine if the INSTOK field in the amount 
card is minus, which indicates an error condition. When 
this occurs, HI is turned on. Since calculations should be 
done when this error does not occur, they must be condi
tioned by NHI. This means that the calculations will be 
done only when HI is not on. 

Halt indicators can also be specified on the Calculation 
Sheet to test for an error. For example, in Figure I I-23, 
HI is set on if the result of operation in line OI is negative. 
If quantity in stock (INSTOK) is negative after quantity 
shipped (QTYSH) has been subtracted, an error has oc
curred. HI turns on and the system will halt after the cur
rent cycle. 



• 

Perform detail 
output 

• 
HALT 

Perform detail © calculation. 
Turn halt indicators 
used as resulting 
indicators on or off 

• 

• 

® 
Move data from card 
selected into 
processing area. 

• Turn halt indicators 
used as field 
indicators on or off 

• 

• Perform total 
output 

• 
Figure 11-21. Logic for Halt Indicators 

• 

START 

• 

Perform total 
calculations. 

• 

card 

Turn halt indicators used 
as resulting 

Turn on halt 
indicators when • 
used as record 
identifying indiators 

Change in 
control field? 
Yes, turn on 
control level • 
indicators 

• 

• 

Controlling the Performance of Operations in an RPG II Program 11-29 



IBJ.1 

Date ____ _ 

Program----------------

Programmer---------------

Line Filename 
c. 
> 
I- Position 

~ 

lnternatiol"al Business Machines Corporation 

RPG INPUT SPECIFICATIONS 

[

Punching 
Instruction 

Graphic 

Punch f f 
Record Identification Codes 

Position Position 

f f 
Field Location 

1 2 

Page DJ 

~ 
Field Name ] 

1 

0 

:E-c 
.!!~ 
LLLL 

{:~ 
~6 

Program 

Identification 

Form X21·9094 
Printed In U.S.A. 

75 76 77 78 79 80 

I I I I I I I 

Field 

c Indicators 
0 

~ Sterling 

] Sign 
Zero Position 

Plus Minus or .,, Blank 
o; 
u: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 :i1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 196 c~ 
0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

0 8 

0 9 

1 0 

1 1 

1 2 

IBJt1 

Date _____ _ 

Program _______________ _ 

Programmer ______________ _ 

Indicators 

ffi AL L 
Line 

c. 5 
~ ~ 
~ 0 15 ~ --' 0 

- z z 

Factor 1 

1 8 lL!TISMNO 

115 
1 lLtrJEMN" 
[4!S IJt TAIL 

1 

1~ 
1 rBAIIS 

International Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

[ Punching l Instruction 

Operation 

Graphic 

Punch 

Factor 2 Result Field 
Field 
Length 

1 2 

Page DJ 

Resulting 

Indicators 

Arithmetic 
Plus Minus Zero 

~ Compare 

~ High Low Equal 

i 1>2 1<2 1=2 

~ Lookup 

Table (Factor 2) is 

Form X21-9093 

Printed in U.S.A. 

75 76 77 78 79 80 

~~~~;~f~ation I I I I I I I 

Comments

345678 9 10 1$: ~~: i~; l~: ~Ji 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ~ig5h5 5~0~7 ~~u5a~ 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1

0 2

0 3

0 4

Figure 11-22. Conditioning Calculations by a Halt Indicator

11-30

IB:t.1 International Business Machines Corporation Form X21-9093

Printed in U.S.A.

RPG CALCULATION SPECIFICATIONS
Date _____ _

Program _______________ _

Programmer ______________ _

Indicators

~ And And Line

! 5
~

~ ~ 0 b b z z z

Factor 1

Punching
Instruction

Operation

Figure 11-23. Testing Result Field for Error Conditions

Graphic

Punch

Factor 2 Result Field
Field
Length

1 2

Page[D

Resulting
Indicators

Arithmetic

Plus Minus Zero

~ Compare

~ High Low Equal
~ 1>2 1<2 1~2

~ Lookup

Table (Factor 2) is

75 76 77 78 79 BO

~;~~;~f:ation I I I I I I I

Comments

Controlling the Performance of Operations in an RPG II Program 11-31

External Indicators

External indicators have two major functions:

• They can condition the use of files.

• They can control which calculations should be done for
a specific job run.

Using One Program To Do Two Jobs

One program can be used to do similar jobs if you use ex
ternal indicators.

Consider, for example, the following jobs. Two jobs of
reports are required each week. One is a sales analysis re-.
port showing what items sold during the week; the second
is an inventory report showing balance on hand for each
item in stock. Notice the similarity in the format of the
reports (Figure 11-24).

Two files are available: The MASTER file which contains
balance forward records for all items in the store and a
transaction file (TRANS) which contains all the weekly
sales for each item (Figure 11-25). Both files are in ascend
ing order by item number.

The sales analysis job requires only a listing of records
found in the transaction file.

SALES ANALYSIS

ITEM NUMBER AMOUNT SOLD DATE

46732 -, 09/15/68

8 09/16/68

2 09/17/68

09/19/68

46739 12 09/15/68

20 09/16/68

25 09/17/68

8 09/18/68

3 09/19/68

Figure 11-24. Two Similar Reports from Two Different Jobs

11-32

The inventory report is a matching records job. When
records from both files match, the number sold is sub
tracted from the balance on hand. The new balance is then
printed on the report following the list of transactions.

The inventory job requires two files; the other only one.
You can write one program to do jobs which have such dif
ferent file requirements by using external indicators to tell
the program when to expect two files.

Setting External Indicators

Although most indicators are set by the program, you set
external indicators prior to the execution of the program.
This is done by including a SWITCH statement in your
Operation Control Language. The format of the SWITCH
statement is:

II SWITCH indicator settings

The indicator settings are:

1 = indicator is on.

0 = indicator is off.

X = indicator is unaffected.

BALANCE FORWARD

ITEM NUMBER AMOUNT SOLD DATE BALANCE

46732 7 09/15/68

8 09/16/68

2 09/17/68

09/19/68

.150*

46733

32*

46739 12 09/15/68

20 09/16/68

h

I
I

I
I

I

00123

MASTER
FILE

Item Number

45671

35680

' '\
' '\

' \
I '
l,_~~~~~~~~~~~~~~\-

t 2 3 .t 5 I 7 I I 10 II 12 13 M 15 II 17 II 11 20 21 22 23 2' 25 2& 27 21 H 30 31 32

A
8
4 ITEM
2
1
B
A
8
4
2

BALFOR DATE

A
8
4
2

•• , •• ~nuu~~-v~~~~UDNHHVHH~~"~
A
8
4
2

~"u"""""~~~u«e•u"d~~""~"~~99~~"""~
A A
8 8
4 4
2 2
1 HMUMH~nnnun~nnn~~HUMHUVHM~""""""l

l•M3700

/

I
I

I
I

I

00469

00123

00123

00123

00123

TRANSACT! ON
FILE

Item Number

12369

' /,.--~~~~~~~~~~~~~~~~~---

I 2 3 • S I 7 I 9 IO 11 t2 13 W 15 11 17 11 tt 20 21 22 23 H 25 215 27 21 .2t 30 31 32

~••m~mm~mQmQ~~mmmMMmITTmM®m~m~m~m~
B B
A

! ITEM
2
1
B
A
8
4
2

SOLD DATE
A
8
4
2

Ull~~-V~~~~llllNHHVHH~~U~
A
8
4
2

1 1
B»MHH"HU~~~U«e•u"d~~U»~"~~9H~~HUMB

A A
8 8
4 4
2 2
1 HMUMH~nnnun~nnn~~UHMHHVHM~"""""" 1

l•M3700

Figure 11-25. Format of Records Used in Sales Analysis and Balance Forward Jobs

Controlling the Performance of Operations in an RPG II Program 11-33

Figure 11-26 shows a SWITCH statement which sets exter
nal indicators one and eight on and indicators two through
six off. Indicator seven is unaffected.

Once an indicator is set, it is not changed until you provide
another SWITCH statement or perform IPL. You cannot
use the SETON or SETOF operation codes with external
indicators.

Using an External Indicator to Condition a File

You can assign an external indicator to a file. When the in
dicator is on, the file is used; when it is off, the file is riot
used. This, then, is how you can tell a program when to
expect one file and when to expect two. Consider again the
two jobs discussed previously: sales analysis and inventory.

1 4 8 12 16 20 24 28

;[
1717 5 ~II Ir ,,..IH lrt '(/ u: rHJ ~1

Figure 11-26. SWITCH Control Statement

The TRANS file is needed for both jobs, the MASTER file
is only needed for the inventory job. Thus, the MASTER
file is assigned the Ul indicator. You set the indicator on
for the inventory job (MASTER is used here) and off for
the sales analysis job (MASTER is not used).

The U1 indicator is assigned to a file on the File Description
Sheet in columns 71-72. Any of the eight external indica
tors (Ul-U8) could be used. Ul was arbitrarily chosen for
this job (Figure 11-27).

When writing a program to do two jobs, be certain that the
jobs are similar. When the jobs require many different cal
culations and output operations, writing two different pro
grams would be easier than using external indicators.

File Description Specifications

Line Filename

File Type

File Designation

End of File

Sequence

Mode of Processing

Length of Key Field or
of Record Address Field Extent Exit

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Record Address Type for DAM Number of Extents

Type of File _, Device Symbolic Name of Tape
Organization w Device Label Ex it Rewind

File Format or Additional Area ~ ~

~ ~ Overflow Indicator ~ Condition
cc l:i .--- ·~ Core Index u1-ua
ii! e <:. Length Length ~ ~ o Starting ~ ~ ~
o.. w <(u. <(:::: Location w · ·

u Block Record .:::: I::: Key Field ~ :> ii
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 6~; ;;:: .t~;~
0 2 F~lt\sl11El1< 1115 IAIF ~P 1q6 MF~1~1 q. .~J-
0 3 Flrl~AINlc: leis ~IF 9~ jqf6 Mlfr J2 .. 7% l-
0 4 F ~~/ IN!T 0 F 113~ l13!2
0 5

0 6

0 7

Figure 11-27. Assignment of an External Indicator

11-34

Controlling Calculations For A Specific Job When Using
One Program for Several Jobs

Naturally, the calculations performed and the type of re
port written depends upon the job being done. Different
calculation and output-format/specifications are needed
for each job. In order to determine which specifications
to use for a particular job, calculation and output-format
specifications must also be conditioned by the external
indicator.

Consider for example, calculations done for a sales analysis
job. For each item in stock, monthly total sold is calcu
lated and then added to the previous month's year-to-date

total to find the current year-to-date total. In the first
month of a new year, monthly totals should not be added
to prior year-to-date totals because totals are not carried
over from year to year. This last statement, the year-to
date addition statement, therefore, is not done for all
program runs. By conditioning the statement with an
external indicator, you can control when the operation is
done. In Figure 11-28, the monthly total is added to prior
year-to-date only when Ul is on.

When one program is written to do two similar jobs, some
calculations may be used for both jobs and some for only
one. Again, you use external indicators to control which
calculation specifications are used for each job.

IBJ.1 International Business Machines Corporation Form X21-9093

Printed in U.S.A.

Date ___ _

Program ____________ _

Programmer ___________ _

Indicators

And Factor 1

RPG CALCULATION SPECIFICATIONS

Punching l-G_r•_Ph_ic--+--t--+----1____,f---f---~
Instruction Punch

Operation Factor 2 Result Field
Field
Length

Figure 11-28. Conditioning a Calculation by an External Indicator

1 2

Page[]]

Resulting
Indicators

Arithmetic

Plus Minus Zero

Compare

High Low Equal
1>2 1<2 1=2

75 76 77 78 79 80

~;~~;~f:ation I I I I I I I

Comments

Controlling the Performance of Operations in an RPG II Program 11-35

11-36

Review 11. Indicators

1. When do the following indicators turn on?

Hl-H9, LO, Ul-U8

2. When are they turned off?

3. How is the RPG II logic altered by the halt indicators?

4. What are the two major uses for the external indicators, Ul-U8?

Controlling the Performance of Operations in an RPG II Program 11-37

Answers to Review 11. Indicators

11-38

1. Hl-H9 are turned on immediately when the condition being tested is true. LO is always on. Ul-U8 is
turned on by the OCL SWITCH statement.

2. Hl-H9 are turned off at the beginning of the next RPG II cycle. LO is never off. Ul-U8 is never affected
by RPG II. Only the OCL SWITCH statement affects these indicators.

3. When halt indicators are turned on, the program continues through all total and detail calculation and
output; then halts.

4. Ul-U8 indicators are used to condition certain calculations or to condition the activity of a file for a
certain run of a program. These conditions can be changed without recompiling the program.

BINARY FIELD OPERATIONS (CONTROLLING
SWITCHES)

RPG II provides certain operation codes which set and test
individual bits in storage. These individual bits can be set
and tested to allow you further control over processing.
The bits are called switches and their functions are similar
to that of RPG II indicators. The operation codes which
set and test the bits are known as binary field operations.
A binary field is a one-byte field containing 8 bits labeled
0-7. The bits can be set on, set off, and tested. Since each
bit can be utilized, there are eight indicators in every byte.

When using binary field operations, remember how data
fields are initialized by the system:

• Alphameric fields are initialized to Hexadecimal '40'.

• Numeric fields are initialized to Hexadecimal 'FO'.

You should initialize the binary field containing the bits to
be set and tested to binary zero (Hexadecimal '00') at the
beginning of the program.

Bl TON Operation Code

Figure 11-29 shows a Calculation Sheet containing the
BITON operation code. This operation code causes
specified bits in Factor 2 to turn on (set to 1) in the field
named as the Result Field. The field named in the Result
Field must be one-position alphameric field. Since it is one
position in length, a 1 must be entered in column 51 of
Field Length. One or more of the eight bits can be turned
on. To turn on the first bit in a field, enter 0 in Factor 2.
These bit numbers must be enclosed by apostrophes.

You can use conditioning indicators in columns 7-17. You
may also turn on a bit in an array element, but that array
element must be one position in length.

In Figure 11-29, bits 0, 1, and 7 are set to 1 in the binary
field labeled CODE.

IB"'
International Business Machines Corporation FormX21-9093

Printed in U.S.A.

Date ___ _

Program ___________ _

Programmer __________ _

Indicators

Factor 1 Line I 1
!
E

~ ~ 0 0 z z

RPG CALCULATION SPECIFICATIONS

r Punching Graphic lI lI TT l Instruction 1-P-un-ch-----l~~~~~-----l-----l

Operation Factor 2 Result Field
Field
Length

1 2

Page[D

Resulting
Indicators

Arithmetic

Plus Minus Zero

Compare
High Low Equal
1>2 1<2 1m2

Lookup

Table (Factor 2) is

High Low Equal

75 76 77 78 79 80

~~~~~~17:ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4-t 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c l!l[@:JIJt:t::nn:n:~~ trlCN '~ 17 I r()nE fl f W! f mm:t:nt:t: 
0 2 c 

0 3 c 

0 4 c 

0 5 c Note: The shaded columns 
are not used. Leave them blank. 

I 11tii1iii-tiiti1-j n 7 r 

0 6 c 

Figure 11-29. The BITON Operation Code 

Controlling the Performance of Operations in an RPG II Program 11-39 



BITOF Operation Code 

Figure 11-30 is a sample Calculation Sheet containing the 
BITOF operation code. This operation code causes speci
fied bits identified in Factor 2 to turn off (set to O) in a 
field named as the Result Field. In Figure 11-30, bits 0, 
3, and 4 are turned off (set to O) in the binary field labeled 
CODE. 

All other specifications are the same as those specified under 
BITON Operation Code. 

TESTB Operation Code 

Figure 11-31 is a sample Calculation Sheet with the TESTB 
operation code. This operation code causes specified bits 

identified in Factor 2 to be tested for an off or on condi
tion. Resulting indicators in columns 54-59 are set depend
ing upon the conditions. At least one resulting indicator 
must be used with the TESTB operation, and as many as 
three can be named for one operation. Two indicators may 
be the same for one TESTB operation, but not three. Re
sulting indicators in these columns have the following 
meanings: 

• Columns 54-55: An indicator in these columns is turned 
on if each bit in Factor 2 is off (set to 0). 

• Columns 56-57: An indicator in these columns is turned 
on if two or more bits were tested and found to be of 
mixed status, some bits on and other bits off. 

• Columns 58-59: An indicator in these columns is turned 
on if each bit in Factor 2 is on. 

IB~ International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

Date ___ _ 

Program ___________ _ 

Programmer __________ _ 

Indicators 

I 1 
And Factor 1 

Line ! 
0 15 15 z z z ~ 

RPG CALCULATION SPECIFICATIONS 

r 
Punching Graphic t 
Instruction Punch 

Operation Factor 2 Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 

1>2 1<2 1=2 

Lookup 

Table (Factor 2) is 

High Low Equal 

75 76 77 78 79 80 

~;~~;~!~cation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 1.!fldF1'<llq~, 1cti1n1E 11n:mm1:r:r:r::nr: 
0 2 

0 3 
-~ 

1-o-+-4-+-11--t--t-t-+-+--+--+---+-+-+-+-+--+-+-+--+-11-+--~--+--~-+-+---+--+--1---1--+-11-+---l---+-+--l--+ Note: The shaded columns -+--t-1--+--+--+--+--~-+-+---+---+-1---1--+-1 
,_

0
...._

5--+--<>-+--+-+---+-...._..._._..._._--+-.._._-+-.__._-+--<-+-_,__._.__,__.___._.._,_............,,___.___.__._,__,___.__,_..._._ are not used. Leave them L,__,...._._._._-+--+_._.._..__._.._,___._,_....._._. 

blank. 
l--t--+-lt--t--+-t-t--+--+--+---+-+-+-+-+--+-+-+--+-ll-+--~--+--~-+-+---+-4-t--t--+-11-+---l---+-+-+-!-. 

I I I I II I I I I I I II I 

0 6 

Figure 11-30. The BITOF Operation Code 

11-40 



In Figure 11-31, bits 4, 5, and 6 in the binary field named 
CODE are tested. Resulting indicator 66 is turned on if 
bits 4, 5, and 6 are off. If some are on and others off, re
sulting indicator 77 is turned on. If they are all on, result
ing indicator 88 is turned on. 

All other specifications are the same as those specified 
under BITON Operation Code. However, you need not 
define the Result Field as one position in length, since this 
is done when the field is used in a BITON or BITOF opera
tion code. 

Example 

Fields are sometimes present in customer master files to 
indicate particular types of customers. When such a mas
ter file is created, each of the conditions indicating a par
ticular customer type is represented in a card by one 
column. Since each card column occupies one byte of 
storage, four columns indicating customer types will be 
stored in four bytes of storage. You can use binary field 
operations to convert each one-byte card column to one 
bit of information on disk. Therefore, four bytes /of in
formation can be reduced to four bits of information on 
disk. 

For example, assume you have a customer master file on 
cards. You have four columns containing the following in
formation: 

• Whether the customer is a wholesaler or retailer. 

• If the customer is entitled to a discount. 

• If orders should be checked by the credit department. 

• If due to a bad payment history, the shipment should be 
sent cash on delivery. 

Now you want to place the card file on disk, and the in
formation from the four columns in four bits in a binary 
field labeled CHECK. The four columns will be labeled 
WHLSE, DSCT, CREDIT, and COD respectively. The 
following operations should be performed: 

1. If WHLSE is equal to 1, turn on bit 0 in CHECK. 

2. If DSCT is equal to 1, turn on bit 1 in CHECK. 

3. If CREDIT is equal to 1, turn on bit 2 in CHECK. 

4. If COD is equal to 1, turn on bit 3 in CHECK. 

Figure 11-32 shows correct coding for this problem. Re
member that before setting up dat~/in a binary field, the 
binary field should be set to binary zero. This can be done 
by the BITOF instruction (Line 1, Figure 11-32). 

IB~ International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

Date ___ _ 

Program ___________ _ 

Programmer __________ _ 

Line ~ 

f-

~ 

Indicators 

And 

'O 
z 

And 

'O z 

Factor 1 

Figure 11-31. The TESTB Operation Code 

RPG CALCULATION SPECIFICATIONS 

Punching f-G-ra_ph_ic -!--1--1--1--1--l--l--I 

Instruction Punch 

Operation Factor 2 Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

75 76 77 78 79 80 

~;;~~~!~cation I I I I I I I 

Comments 

Controlling the Performance of Operations in an RPG II Program 11-41 



IBJ.1 International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date l Punching 
Graphic I I I Page~ Program I I I I I I I Identification 

Instruction l l l l Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I L Plus Minus Zero 

~ 
Factor 1 Operation Factor 2 Result Field 

Field g Compare 
Comments Line 

c. 5 Length ~ High Low Equal 
> :¥t>21<21-2 I- ~ 
~ 0 ~ ti ~ 

... Lookup ..J 0 :i:: -z z 
Table (Factor 21 is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c Bl T"' i:1' '2jl2 l4J5 ~ 'C HE Cl~ 1 
0 2 c ~H SLle ~lf"'I MP 1 1~ 
0 3 c tcs CI1 Ir- MP 11 1l1J 
0 4 c ~R E'D lllI IC" MP 1 112 
0 5 c tOl) 

,..,,..., 
rtiP 1 13 

0 6 c 1~ I rlN \~I ti t=lrl~ 
0 7 c 11 l "N \ 1 ' rl EldK ~I 

0 8 c 1~ I 0 1N \ 2 I ~II- ECK 
0 9 c 1~ J ON 'jj, CH E1dK 
1 0 c 
.. ,. 

Figure 11-32. Example of Binary Field Operations 

11-42 



Review 11. Binary Field Operations 

1. What are bit switches used for? 

2. Code the calculation specification to: 

a. Set on bits 4 and 7 in a field called TESTER. 

b. Set off bits 1, 2, and 3 in TESTER. 

c. Test to see whether bits 1, 2, and 3 in TESTER are all on or all off. Set on indicator 01 if they are 
all on and set on indicator 02 if they are all off. 

Controlling the Performance of Operations in an RPG II Program 11-43 



Answers to Review 11. Binary Field Operations 

IB~ 

Date 

Program 

Programmer 

Line 
c. 
> 
t-

~ 

3 4 5 6 

0 1 c 

0 2 c 

0 3 c 

0 4 c 

0 5 c 

n R r 

11-44 

1. Bit switches are used to code and test for specified situations. With System/3 Disk System, they are 
stored in one-byte alphameric fields in storage and on disk. One example is credit information in an 
accounts receivable file. The first bit might mean a COD only; the second, payment due in 30 days; 
the third, credit limit $1000; etc. When these conditions are coded as bit switches they take up less 
disk space than single character codes that might be used in the same way. 

2. See coding sheets. 

International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Graphic 1 1 1 Page[D Program I I I I I I l Punching Identification 
Instruction I J J Punch 

Resulting 
Indicators Indicators 

Arithmetic 

I 1 Plus Minus Zero 

Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments 
Length High Low Equal 

1>2 1< 2 1=2 

0 b b Lookup 
z z z 

Table (Factor 2) is 

High Low Equal 
7 8 e 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

~l[kJ~ '1417 I TIEISTIEJR 1 ~UES '"ll~N 2Q 
elltrOF '121:3 I [°ESir~tR GUES ;-;l1 1~N 2b 
[l~I~ '12]3 ~ ~ Kl 1 ~u~s II GIN 2C 

I 



ALTERING THE ORDER OF OPERATIONS ON THE 
BASIS OF THE NEXT RECORD IN A FILE 

Calculations to be performed may depend upon informa
tion in the record or the type of record to be processed 
next. For example, if, while processing a record, you know 
the next record is identical to the one being currently 
processed, you can bypass calculations for the current 
record. 

The RPG II language has a special feature called look ahead, 
which extends the basic RPG II logic. It will allow the com
puter to look at information in the next record to be 
processed while it is processing the current record. This 
means that information in record B can be used while record 
A is being processed. By using this feature, you can write 
a program that uses information from the next record 
available for processing. 

Through the use of 
Look Ahead, information 

Processing Card or Disk Files 

As the card (Card A) is read, data recorded on it is trans
ferred to the input area. The card then moves on to the 
wait station (Figure 11-33). According to the RPG II pro
gram cycle, information is transferred from the input area 
to the processing area right before detail time. At detail 
time, then, calculations can be done on data from the card 
which is shown sitting in the wait station. 

However, when look ahead is specified, another card (Card 
B) is read before detail-time operations are performed in 
the current cycle. Card A is stacked and information from 
Card A is moved to the processing area. Then information 
on Card B just read is transferred to the input area and is 
available to use for determining what detail calculations 
should be done on data from Card A, now in the stacker. 

To 
from this card is Input Area 

available to use It 
while the previous 

card is being processed. iii. ~ 

This card is moved to a 
stacker and information 
from the card is moved 
to the processing area . 

..._ .. ~r---------~-W A ITS TAT ION ~--.....c::P _ _, __ 

STACKER 

Figure 11-33. The Look Ahead Function 

~ ~i-1-H+!-H-i+Wll+I 
REA~RHEAD ~ 

Note: This is not a 
combined file. 

Controlling the Performance of Operations in an RPG II Program 11-45 



Figure 11-34 shows processing of three records from two 
disk input files, one primary and one secondary. The first 
record from each file is read (Figure 11-34, insert A). 
Figure 11-34 shows records being selected for processing. 
The records available for look ahead during the processing 
of these records are: 

Record Processed Records Available 

Pl P2 and Sl 

P2 P3 and Sl 

Sl P3 and S2 

In general, when the record being processed is from an 
input file, the next record in the input file is available as 
are the records which were read but not selected from the 
other files. 

Checking for Duplicates 

Duplicate records or records with duplicate fields are some
times considered erroneous. Only one of the duplicates 
should be used for the job. 

Consider, for example, the case of a company which has a 
large turnover in inventory items. Quite frequently new 

11-46 

items are added and others deleted from the inventory. A 
number for a deleted part is to be assigned to a new part. 
Some mistakes have occurred, however, and one part num
ber has been assigned to two different items.· As a result 
of this error, inventory balances for these items have not 
been updated correctly, and errors have been made on 
customer invoices. If this situation is possible, a regular 
check should be made for duplicate part numbers. 

Each month, a report is created showing the complete in
ventory. All part numbers are listed on the report. You 
could look through the report to check for duplicate part 
numbers, but it would be easier and more accurate if you 
could add a few specifications that would check for dup
licates and indicate on the report which item numbers are 
duplicate. 

By using the look ahead feature you have access to infor
mation that is coming up. You can then use th.is informa
tion to determine what operations to do. If you are process
ing a record with part number 64322, and you know that 
the next record also has part number 64322, you can print 
a message indicating duplicate part numbers, then halt. 
But, if you are processing the record with part number 
64322 and you do not know that the next record also has 
part number 64322, you can do nothing special because 
you are not aware that you are processing a record which 
contains a duplicate entry. 



PRIMARY FILE SECONDARY Fl LE ® 

2 2 2 2 

0 (P2) (P3) (P4) (52) (53) (54) 

:.~: :,~~:~~~ _ ,_ --------_:__ +--, 0:,~: :~~::~~le. 
I V Ma:tch field :: I 
I n ~ n I Area into which records 
: ~ ~ I are read (read area). 

I I 
L-------- __________ __J 
I I 

l l Area into which records 
I 

1 
are selected for 

I I processing (process area). 

I I 
L--------- --- _____ J 

@Read second 
record from 
primary file. 

2 

(P3) 

2 

(P4) (52) 

r-----· .. ------------., I ./\\;,.. I 

i 11 (P2JI W ! 
I I 
L-----~·· __________ __J 
I .,,i;\. I 

j ~ ! 
I I 
L-~------- --- _____ J 

05elect first record 
from primary file 
for processing. 

Figure 11-34. Available Records: Two Input Files (part 1 of 2) 

® 

2 2 

(53) (54) 

Read Area 

Process Area 

Controlling the Performance of Operations in an RPG II Program 11-4 7 



11-48 

© 

©Read third 
record from 
primary file. 

2 

(P4) 

1 2 2 

(S2) (S3) (S4) 

r----- .. ·------------, 
I _,. : 

:I l\P3)1 w I 
I I 
L-----·· ------------1 
I I 

i ~ ! L ________ , ________ J 

8select second record r:---, 
from primary file for 11 : Processed Records 
processing. L_~]l~ 

r---------------- -, 
I ,:'" I 

i 1
2 

(P3)1 I 1 (S2)1 i 
I I 
L------- ---- ------1 
I I 
I I 

! ~ I 
L ________ W ________ j 

Read Area 

Process Area 

@ 

@Read second record 
from secondary file. 

Read Area 

Process Area 

\lf 
8select first record from 

secondary file for processing. 

Processed Records 

Figure 11-34. Available Records: Two Input Files (part 2 of 2) 



\ 

Writing Specifications for Look Ahead 

Any field which you want to look at in the next record to 
be processed must be defined as a look ahead field. If that 
field is also used in normal processing (other than as a look 
ahead field), it must be defined in the normal way. Thus, 
most look ahead fields will be specified twice. 

Figure 11-35, lines 01-05, shows specifications needed to 
describe the input file used in the inventory listing job. 
When checking for duplicates, PARTNO is the field you 
want to use when looking ahead at the next field; there
fore, PARTNO must be defined as a look ahead field. The 
specifications in Figure 11-30, lines 06-07, do this. 

All look ahead fields must be defined as being in a record 
type different from the others defined. This is done by 
using a unique alphabetic sequence entry in columns 15-16. 
No record identifying indicator (01-99) can be used. A 
double asterisk(**) is placed in columns 19-20 to specify 
that the fields described in the following lines are look 
ahead fields. Field location is also specified for look ahead 
fields. 

Every look ahead field must be named, but the name 
must e "fferent than when it was described as a normal 
input held. The same fieta1s given two names so that yo°ii 
can distinguish between the field on the record being 
processed and that same field (the look ahead field) on the 
record that is to be processed next (Figure 11-36). 

1Bft1 lnternatiOJ'lal Business Machines Corporation Form X21-9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date 

1 I 1 1 j Page[D 
Program I I I I I I I [Punching Graphic Identification 

Program Instruction 
Punch l 

Programmer 

~ Record Identification Codes 
Field Location Field 

Indicators 
~ 1 2 3 <:" 

~ 
.g :! go. Qi 0 ~ Sterling ~·'- ~ II :2-a 

Line Filename i 0 
~ P?. Field Name ] .!!]! "O Sign 

~ ~n 
ILLL j Zero Position 

~ 
Position ~e~ Position - 2l Position 

~~ 
From To .52' Plus Minus or I- 1:! ~ .e ~ g -u:~ Blank 

~ ; ~ ~ "O 

~ ~ b t:! J! 0 !:::! .! 8 ~~ Qi 
z u u ZOU ~ u 6 cii "- :Ou u:: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 I I ~p um ~ '2J1 
1 [5 PIA ~T I Nd 0 2 I 

0 3 I g 2l5 TIE [S~i 
0 4 I 2~ 31 12P tR I ts 
0 5 1 312 ~~ " fill rAli r.N 

0 6 I JS~ ** 
0 7 1 1 5 Nii= xr IN~ 
0 R T 

Figure 11-35. Look Ahead Specifications 

Controlling the Performance of Operations in an RPG II Program 11-49 



Computer 

INPUT AREA 

l 

12644 

(NEXTNO) 

12643 

(PARTNO) 

Figure 11-36. Look Ahead Field: A Field With Two Names 

Using Look Ahead Information 

Now that you have specified the look ahead field, you can 
use it as you would any other field. The only exceptions 
are that you cannot use it as a result field in calculations, 
nor can it be blanked after for output. 

For the listing job, you have to make a comparison between 
part numbers from two records. If PARTNO on the record 
being processed is the same as NEXTNO on the next record 
to be processed, you wish to print a message indicating dup
licate entries. If the PARTNO and NEXTNO fields do not 
match, there are no duplicates for that part number, and 
the item is merely listed. 

11-50 

NEXTNO refers to 
columns 1-5 in the 
card to be processed next. 

PARTNO refers to columns 
1-5 in the card being currently 
processed. 

Figure 11-37 shows specifications for the job. The opera
tion in line 01 of the Calculation Sheet compares the part 
number on the record being processed {PARTNO) to the 
part number on the record coming next (NEXTNO). If 
they are equal, indicator 07 is turned on. Notice on the 
Output-Format Sheet that when 07 is on, the word 
duplicate is printed. 

The SETON and SETOF operations in lines 02-04 of the 
Calculation Sheet are used so that the computer will 
duplicate the record when the second record having the 
duplicate part number is processed. 



IB~ International Business Machines Corporation Form X2l-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date Graphic I I l Page[D Program I I I I I I I ~ Punching Identification Instruction l l l l J Program Punch 

Programmer 

Indicators 
Resulting 
Indicators 

Arithmetic 

AL L Plus Minus Zero 

Line Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments 
~ Length High Low Equal 
f- 1>2 1< 2 1=2 

~ 0 'O 'O Lookup 
z z z 

Table (Factor 21 is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c PIA RlI INri rlo ~ NE XT INO (}J_ 
0 2 c m _Slf. TidNI 1111 
0 3 c l51 N~tz SE ]Of'J ~2 ~ 
®~ l511 52 lSE lIJdF1 l51 !52 

IB~ 
International Business Machines Corporation Form X21-9090 

Printed in U.S.A. 

RPG OUTPUT- FORMAT SPECIFICATIONS 
75 76 77 78 79 80 

Date ___ _ 
Punching Graphic 

Program-------------
Instruction t-P-un-ch-+---+--t--+---+--+-;-----i 

1 2 

Page[IJ ~~~;:f:ation I I I I I I I 
Programmer ___________ _ 

Space Skip Output Indicators _r,,,, 
Edit Codes 

!(j v 
Zero Balances 

1 1 
Commas No Sign CR - X • Remove 

Ii§ > to Print Plus Sign Sterling 

Line Filename Field Name End 2' 
Yes Yes 1 A J Y • Date Sign 

iii Position 
Positon II Yes No 2 8 K Field Edit 

! f ;; ~ in "' No Yes 3 c L Z = Zero 

.E !? ~ 
Ii; 

~ ~ ~ Output ~ No No 4 D M Suppress 
E ~ ::( ~ 0 0 

& 
z z 

~ ci3 
Record 8!. 

II Constant or Edit Word 
a.. 

3 4 5 6 7 8 9 10 11 12 13 14 15 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 op ~I !NII ~ I2 
0 2 0 PA ~Tl INl"I ~ l'i 
0 3 0 ms 5r-1 ~ 
0 4 0 Ir- All "'1 ~ f"" ,. 

@: rl.'1 ~~ 'll: ute bl ICIA tr1E I 

Figure 11-37. Using Information from the Look Ahead F.ield to Check for Duplicates 

Consider, for example, records Al, A2, and B. The first 
two records are duplicates; the third is not. When Al is 
processed, the program looks ahead to A2 and, by com
paring, knows that A2 is the same as Al. When A2 is 
processed, the program looks ahead to B. The compare will 
say that A2 is not a duplicate since it does not match Bl. 
But A2 really is a duplicate because it is the same as Al. 
Thus, when processing Al, you have to set an indicator 
which will be on when A2 is processed and which will in
dicate that A2 is a duplicate since it matches the previous 
record. 

When PARTNO equals NEXTNO, 07 turns on. This, in 
turn, causes indicator 51, which is used to indicate that a 

duplicate record is processed, to turn on. During the next 
program cycle, the compare does not indicate duplicates; 
therefore 07 is not on. But 51 is on, meaning that the 
record being processed is a duplicate since the part number 
on it matched the part number on the previous record. 
Therefore, i07 is set on. Remember 07 conditions those 
output operations which are to be done for duplicates. 

In line 04, indicator 51 is set off so that it will not indicate 
duplicates in the following cycle. Indicator 51 is necessary 
so that 51 will be set off for the last duplicate record, not 
the first. Figure 11-38 shows the program logic for this job. 

Controlling the Performance of Operations in an RPG II Program 11-51 



12455 DOOR KNOB 48 DUPLICATE 

• 

• 

• 

Turn off 
record identifying 
indicator 01 

Perform detail 
output 

Perform detail calculations: 
Compare PARTNO fields: 

12455 to 12455 
They are equal so turn H 1 on. 
H1 is on so SETON 51 • 

Move data from card 
selected into processing 
area. If Look Ahead is 
used, read another card. 
The first card is stacked. 

• • 
Figure 11-38. Logic for Look Ahead (part 1 of 3) 

11-52 

12457 

START 

~ 
• 

' \ 
\I• , , 
)} 

,;! 
,,}' Note: This card is read Read a 

Card fe only if the Look Ahead 
,~ feature Is used. It " ~~ ·~;i' 

----- _!:,.- ... 1 
ttt ,' 12455 I 

\:;\~,%~ I I 
,,f'·"·'''"'' I 

12455 I 

is read after data 

• from the first 
card is moved 

into the processing 
area. 

I 
1 Turn on • • .J 

record identifying 
indicator 01 

• 
• 

• 
• 



12455 

12455 

DOOR KNOB 48 DUPLICATE 

HINGE,6" 90 DUPLICATE 

• 
• 

• 

Perform detail 
output 

Turn off 
record identifying 
indicator 01 

Perform detail calculations: 
Compare PARTNO fields: 

12455 to 12456 
Not equal so turn 07 off 

SETON 07 and 52 
SETOF 51 and 52 

• 

Move data from card selected 
e into processing area. If Look 

Ahead is specified, read another 
card. The first card is stacked . 

• 
• 

• 

Figure 11-38. Logic for Look Ahead (part 2 of 3) 

• 

f 12457 

I 12456 

START 

~ I I 

• I I 
/1 

• I I 
I I 

I I 
I " 

/ / 
/ / 

/ / 

~/ 
r - .- - - - - - - , 

, 12456 I 
I I 
12455 I 

.I 

I 

I-

Turn on 
record identifying • 
indicator 01 

• 

• 

• 

Controlling the Performance of Operations in an RPG II Program 11-53 



12455 

12455 

12456 

DOOR KNOB 48 DUPLICATE 

HINGE, 6" 90 DUPLICATE 

HINGE, 8" 75 

• 
• Turn off 

record identifying 
indicator 01 

Perform detail 
output operations 

Perform detail calculations: 
Compare PARTNO fields: 

12456 to 12457 
• Unequal so turn 07 off. 

• 

START CJ 
~ / ; 

, 
// 

• • I/ ,, • ,, 
'• '• \.s. T 

<~---
/12457 ; 

t]-J 

Move data from card 
selected into processing 
area. If Look Ahead is 

• used, read another card. 
The first card is stacked • 

• • 
Figure 11-3 8. Logic for Look Ahead (part 3 of 3) 

11-54 

Turn on 
record identifying 
indicator 01 

• 

• 

• 

• 



Doing Special Operations for Only One Record in a Group 

It is often important to know if and when you are process
ing the only record in a group. The job described in the 
following paragraphs is such a case. 

A report is prepared showing charges made by customers 
during the week {Figure 11-39). The input file is organ
ized in ascending order by customer number. During the 
month some customers will have made one charge; others 
several. 

When only one charge is made per customer, the total line 
is nearly a duplicate of the only detail line. In this case, 
you do not need to print both the detail and total lines 
because the total line will do. 

But how will you know during any one program cycle 
whether the current record is the only one in a group? 
You can find out by looking at information on the next 
record. 

Remember that any time it is necessary to use information 
from the next record available for processing in order to 
determine what to do while processing the current record, 
you must use the look ahead feature. Account number is 
established as a look ahead field in this job. Any look 
ahead field specified applies to all record types. Thus each 
record read contains information that will be looked at be
fore the record itself is processed. By looking ahead into 
this field you will know whether or not the next record to 
be processed is part of a new group. 

Whenever a card is read, the current ACCT field is com
pared to the one coming up. If the fields are equal, you 
know you are processing a record that is not the only one 
in a group. Therefore, a detail line should print. If the 
ACCT fields are not equal, however, the current card is the 
only one in the group, and the detail line should not print. 
Figure 11-40 shows the specifications for the job. 

MONTHLY CHARGES 

ACCT NO NAME CHARGE 

47653 JILL ARNDT 4.97} 
5.99 Detail lines 

23.87 

47653 JILL ARNDT 34.83 • Total 

49832 NANCY BENNET 87.93 * Total 

59821 JOAN BOND 7.42 Detail 

Figure 11-39. Format of Monthly Charges Report 

Controlling the Performance of Operations in an RPG II Program 11-55 



1Bft1 lnternatior'lal Business Machines Corporation 

RPG INPUT SPECIFICATIONS 

Form X21-9094 
Printed in U.S.A. 

75 76 77 78 79 BO 
Date ____ _ 

Punching 
Instruction 

Graphic 

1 2 

Page[D 
Program 
Identification I I I I II I 

Program----------------

Programmer---------------

Filename 

Position 

Punch 

Record Identification Codes 

~ e N Position 

() ~ 2 
z u u 

~ Position 

~ ~ ~ 
.g u 6 

Field Location 

~ 
Field Name ] 

j 

Field 

c Indicators 
0 

5 ~ :2-0 Sterling 

~~ ] Sign 
Zero Position 

H Plus Minus or ,, Blank 
o; 

:Ou u: 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 ic IAJ'R ~ lAJA ~1 
0 2 I• I" l11Ll rt IN - IL 1 
0 3 .., 13rt NfA'N, E 

~i? 
IA" 

~IC 1~ll<IG 0 4 l_~I>-

@· 
[Afj: ~~ 

It ... INr:;;; 
IA. I I 

IB~ International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date Graphic J j 1 j j Page[IJ Program I I I I I I l Punching Identification 
Instruction 

Punch J Program 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

1 1 Plus Minus Zero 

~ Field g Compare 
Line 5 

And Factor 1 Operation Factor 2 Result Field g High Comments 
~ Length Low Equal 

to- ~ ~ 1>2 1< 2 1 =2 

j 6 ~ 'O 'O ... Lookup ...J 0 :c - z z z 
Table (Factor 21 is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c ~c ld1 co [ME NIE ~t 19~ 
0 2 c ~~ ~t:l N 141 
0 3 c "II-I ~~ ADDI f KJ I"'" HlfS IC [C H~ ~2J 
0 4 c ~ f SE WR ~ 
@: 

Figure 11-40. Using Look Ahead to Find the First and Only Card in a Group (part 1 of 2) 

11-56 

I 



IBJ.1 International Business Machines Corporation 

RPG OUTPUT - FORMAT SPECIFICATIONS 

Form X21-9090 

Printed in U.S.A. 

75 76 77 78 79 80 
Date ____ _ 

r 
Punching 
Instruction 

Graphic I 
l I 1 I J 

l J 

1 2 

Page[D ~;~:~1:ation I I I I I I I 
Program--------------- Punch 

Programmer ______________ _ 

r.. ,.;, o"'"'""';"""' ( ';· ~ """™ ,.~ ~;;;~ ·::~:':, - x - ~";';;~ 
w Z T 1 Field Name - End ·- Yes Yes 1 A J Y • Date 
i'.; !£ And And !!! Positon ':;' Yes No 2 B K Field Edit 
~ ~ ~ ~ ~ !l ~ in cc No Yes 3 C L Z = Zero 

-.... ~> i!:! ~ ~ ~ ~ ~ ~ ~ 8 .., ~:~~; J No No 4 D M Suppress 

bl ~ ~ ! Constant or Edit Word 

Line Filename 

Sterling 
Sign 
Position 

J 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 JJ 34 35 36 37 38 IJ9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 

0 0 2 1515 CH]AtRGES' 
0 3 0 I t8 
0 4 0 

0 5 0 ·~ 'NAME I 

0 6 0 5 'r~At'R~E' 
0 7 0 2 
0 8 0 Lil 
0 9 0 ILJl 
1 0 0 

1 1 0 rn 13 Ll 
1 2 0 ~ddI 2]3 
1 3 0 N!AME .~ 

c 0 "'i \~/ 

@~or-+-+-r~-r-r-+---t-+-+-+-t-i-t-r-+-+-r~-+-+-t--+-+-f-+-+-+-+--~~~+-+-+-+--+-+-+--+-+-+-+-+--+-+-t-+--+-+-+--+-i 

Figure 11-40. Using Look Ahead to Find the First and Only Card in a Group (part 2 of 2) 

Controlling the Performance of Operations in an RPG II Program 11-57 



Doing Special Operations for the Last Record in a Group 

In some jobs, it may be necessary to do special operations 
on the last record of a control group. This is because, un
less the last record in the control group is of a different 
type (have different record identification), it is impossible 
to know when you are processing the last record in the 
group. When all records are of the same type, you have to 
know what is on the next record before you know whether 
or not you are processing the last record in the group. To 
look at information in the next record, you must use the 
look ahead feature. 

Figure 11-41 shows four cards which are to be processed. 
The first three belong to one control group; the fourth is 
the beginning of the next group. The last card of the 
group (the third card in this case) requires special process
ing. In order to know when the last card in the group is 
to be processed, you must look at the account number in 
the next card. When it is different, you know that the 
last card in the group is being processed. 

Additional Points to Consider About Look Ahead 

You must consider the following things when you are 
planning to use look ahead: 

• Look ahead may be used with update or combined files, 
but the results are different than look ahead with input 
files. When look ahead is used with a combined or up
date file, and that file is the only input file in the pro
gram, the field looked at is not on the next record, but 
on the record currently being processed. Therefore, 
there is little use for look ahead with update or com
bined files in a single file program. 

• Look ahead is never used with chained, demand, or out
put files. 

11-58 

• Only one look ahead record type specification may be 
used for a ftle. There may be several fields listed under 
that one record type specification however. 

• Any look ahead fields specified apply to all types of 
records in the ftle. Therefore, all records read from the 
ftle will be treated as if they have look ahead fields. 

• Look ahead is used more in jobs requiring two files than 
in jobs requiring one file. 

47654 
(Account field 
specified also as 
a look ahead field) 

In the processing of 
this card, the 
Look Ahead feature 
shows that the next 
account number is different. 
Therefore, this is the 
last card of a group 
and as such requires 
special operations. 

Figure 11-41. Using Look Ahead to Find Last Card in a Group 



Review 11. Look Ahead 

1. Basically, what does the look ahead facility allow you to do? What limitations apply to its use? 

2. To the input specifications given add those which will allow you to look ahead in order to read the next 
part number (PARTNO) and next code in column 96. 

1Bft1 

Date ____ _ 

Program---------------

Programmer--------------

Line 
c. 
> 
I-

~ 

Filename 

Position 

lnternatiol"lal Business Machines Corporation 

RPG INPUT SPECIFICATIONS 

Punching 
Instruction 

Graphic 

Punch 

Record Identification Codes 

Position Position 

Field Location 

1 2 

Page[D 

~ 
Field Name 3 

g 
8 

0 

:9~ 
.!!!~ 
U.u. 

.S gi 
-5 :E 
H 

Program 
Identification 

Form X21-9094 
Printed in U.S.A. 

75 76 77 78 79 80 

I I I I I I I 

Field 

c Indicators 
0 

~ Sterling 

1 
Sign 

Zero Position 
Plus Minus or ,, Blank 

Qi 
u: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 :it 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1~ 
0 2 1 
0 3 32 DISC 
0 4 

0 5 

Controlling the Performance of Operations in an RPG II Program 11-59 



Answers to Review 11. Look Ahead 

IBJt1 

1. Look ahead allows you to use data on the next record to be processed. Normally only the data on the 
record currently being processed is available to the RPG II program. Look ahead should only be used 
with input files. If it is used with combined or update files, information in the look ahead field will be 
from the record currently being processed, not the combines or update file. 

2. ** must be specified in columns 19-20 to indicate that the fields listed are to be looked at in the next 
card available for processing. Look ahead fields must be given different field names than those used 
when describing the file. A unique sequence entry must also be used. 

lnternatio,,al Business Machines Corporation 

RPG INPUT SPECIFICATIONS 

Form X2t-9094 
Printed in U.S.A. 

75 76 77 78 79 80 
Date ___ _ 

1 2 

Page[D 
Program 
Identification I I I I I I I 

Program-------------

Programmer------------

Line 
0. 
> 
I-

~ 

Filename 

Position 

Punching 
Instruction 

Graphic 

Punch 

Record Identification Codes 

Position Position 

Field Location 

it-------r----1 
a; 

From To 

Field Name 

c 

Field 
Indicators 

0 1--~~--1 

~ 
"a:P. Zero 
~ Plus Minus or 
-,, Blank 
Qi 
u: 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2t 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4t 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 2 I 

o 3 I lZJ 3t2 " I S C 
o 4 I 

O 5 I 

O 6 I 1 ~IEXIINIC 
o 7 I g~xrcn 
0 8 I 

11-60 



•a:rm114:r 
DESCRIBING INPUT FIELDS THAT CONTROL PROCESSING ,, 

CHAPTER 12 DESCRIBES: 

Control fields and split control fields. 

Field record relation indicators with the OR relationship, split control fields, and 
match fields. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Function and coding of input fields on the RPG II Input Sheet. 

Function of RPG II indicators. 

RPG II object cycle. 

Match fields and matching records logic. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Function and RPG II coding for control fields and split control fields. 

Function and RPG II coding for/field record relation indicators. 

Describing Input Fields That Control Processing 12-1 



INTRODUCTION 

For every job,° you must describe the type of information 
the RPG II Compiler will be working with. This means that 
you must describe the input file on the File Description 
Sheet and the types of records in the file on the Input 
Sheet. 

To describe a record you must describe the field~ in the 
record plus any information that identifies each type of 
record. It also means you must indicate that certain fields 
on the record are to be used as control fields or match 
fields. 

CONTROL FIELDS 

A basic job in any data processing installation is the prep-
aration of detail reports that consist of one line of printing 
for each record read, such as a transaction listing. Figure 
12-1 shows what a detail report would look like. 

Because product classes are repeated for each line, the re-
port is cluttered and hard to read. The same report {Figure 
12-2) grouped by class is much easier to read. Here, all 
items from one class are listed together with headings used 
on each page to identify the information. Since all items 
on one page apply to the same class, the class is printed 
only once. Such a report is sometimes referred to as a 
group-indicated report. Group-indication is the printing of 
control information on one line per group. The date is 
printed at the bottom. 

12-2 

A control field is any field used to indicate when a certain 
type of processing should be done. Since the CLASS field 
(Figure 12-3) controls processing, it must be specified as 
the controf field. Each time a record is read, this control 
field is checked for a change in contents (control break). 
When a control break occurs, a different type of processing 
or additional processing is to occur. In this case, a change 
in the CLASS field indicates: 

1. Skip to the bottom of the page. 

2. Print the date. 

3. Skip to a new page. 

4. Print heading. 

CLASS ITEM NO DESCRIPTION ON HAND 

00124 7657352 SWEATER, V-NK, SZ 32 10 
00124 63241B1 SWEATER, V-NK, SZ 34 16 
00124 43151CK CARDIGAN, SZ 36 17 

00124 76738K2 CA~DIGAN, SZ 40 8 
00125 54321K4 T-SHIRT, WH,SZ 30 11 
00125 56422K4 T-SHIRT, WH, SZ 32 14 
00125 57381J4 T-SHIRT, WH,SZ 40 15 
00125 58324B1 T-SHIRT, WH,SZ 42 8 

00125 57421C2 T-SHIRT, BK, SZ 46 12 
00126 67341B3 WOOL SOCKS, BL 10 11 

IN STOCK AS OF 10/30/70 

Figure 12-1. Printed Report of all Items in Stock 



CLASS 

00124 

CLASS 

00125 

CLASS 

00126 

ITEM NO 

46732J1 

6324181 

43151CK 

DESCRIPTION 

SWEATER, V-NK, SZ 32 

SWEATER, V-NK, SZ 34 

CARDIGAN, SZ 36 

IN STOCK AS OF 10/30/70 

ITEM NO 

54321K4 

56422K4 

57381J4 

5832481 

DESCRIPTION 

T-SHIRT, WH, SZ 30 

T-SHIRT, WH,SZ 32 

T-SHIRT, WH,SZ 40 

T-SHIRT, WH, SZ 42 

IN STOCK AS OF 10/30/70 

ITEM NO 

6734183 

6743283 

DESCRIPTION 

WOOL SOCKS, BL 10 

WOOL SOCKS, GR 10 

IN STOCK AS OF 10/30/70 

Figure 12-2. Report Group - Indicated by Department Number 

CLASS ITEMNO DESC ON HAND DATE 

5 6 12 13 32 33 38 39 

Figure 12-3. Item Record 

44 

PAGE 0001 

ON HAND 

10 

16 

17 

PAGE 0002 

ON HAND 

11 

14 

15 

8 

PAGE 0003 

ON HAND 

11 

9 

? 
~ 
~ 

Describing Input Fields That Control Processing 12-3 



Coding Control Fields 

The RPG II specifications for the job are shown in Figure 
12-4. The entry L1 on line 02 of the Input Sheet {Figure 
12-4, insert A) establishes the CLASS field as a control 
field. When the information in the control field changes 
(a control break occurs) L1 is turned on. The L1 indicator 
is used on the Output-Format Sheet {Figure 12-4, insert B) 
to condition those operations which should be performed 
only when a control break occurs. 

IB~ lnternatiof"lal Business Machines Corporation 

RPG INPUT SPECIFICATIONS 
Date ____ _ 

Program---------------

Programmer--------------

Line Filename 
c. 

Position > 
I-

~ 

Punching 

Instruction 
Graphic 

Punch 

Record Identification Codes 

- ~ Position 

~ ~ ~ 
~uo 

Z 
0 

~ Position 

E~j 
z u u 

Field Location 

1 2 

Page[O 

~ 
Field Name ] 

e 
~ 

0 

~;g 
.!!"ii u..u: 

H 
:i:U 

Program 
Identification 

Form X21-9094 
Printed in U.S.A. 

75 76 77 78 79 80 

I I I I I I I 

Field 
Indicators 

0 ·;::; 

~ Sterling 
"O Sign 

J Zero Position 
Plus Minus or 

"O Blank 
a; 
u: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 I I NIEU 
o 2 I ~ 5 Ir' A~ SI L[ 

l-i J2 I i.)~ N~ o 3 I 

o 4 I tl':l 1-=-~ ~: 
3~ .. )ii ll I A l~I 

3~ I~ ~ E 

IBJt1: International Business Machines Corporation 

RPG OUTPUT· FORMAT SPECIFICATIONS 
Date ____ _ 

Program--------------- l Punching Graphic 1
1 

1
1 Instruction 1--Pu-nc-h--+---+----t--+---+--+-+---< 

Programmer _____________ _ 

u. 

~Space Skip Output Indicators 

i 
6 ........--...-----------, --r-.1----1 > 

§ ~ And And Field Name I § End a;
11 .c...... ;:: Positon 

e31., ~ ~~in OJ 

~~,E~~~o o 0 8'.:!output~ 

Line Filename 

Commas 

Yes 
Yes 
No 
No 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

1 2 

Page DJ 

Edit Codes 

No Sign CR 

A 
8 
c 
D 

fOt"m X21·9090 

Printed in U.S.A. 

75 76 77 78 79 80 

~;::~f~ation I I I I I I I 

- X .. Remove 
Plus Sign 

J Y=Date 
K Field Edit 
L Z=Zero 
M Suppress 

Sterling 
Sign 
Position 

~ ,! ~ < ..... Z Z Z ·w-6 ~ Record ~ 
..... ~ ..,. II Constant or Edit Word 
~ ~ 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 l:!_g 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

01 obUIIEJU~ ~ 12~1 1 
0 2 0 

0 3 0 'CLASISJ1 

0 4 0 

0 5 0 \ ll:IS lo( I te l ~ I 
0 6 0 'ICNJ..lANtlJ I 
0 7 0 1 
0 8 0 c SS 
0 9 D l '"\EMNQ 
1 0 0 

1 1 D 

1 2 0 

, 3 o I~~ 'IN ~ ~~K ~S Ci~' 
@~J+-+-+-+-+-+--+-+-+-t-t-t---+-+-+--+-+-f--+--H--+--+-~IA~l~f-+-+--+--+-+-4~h~2-f--+'-1~t-'-FF~~~-+--++-+-+-+--t---+-l---+--Hf---+-l 

") 

Figure 12-4. Defining and Using a Control Field 

12-4 



Split Control Fields 

Two separate parts of a field or two separate fields can be 
used as one control field known as a split control field. 
This is done by assigning the same control level indicator to 
both parts of the field. The compiler will consider the data 
in the split control fields as one continuous field. 

Suppose you have a 3-character customer number field in 
the record and now need a 6-character field. The problem 
is how to put a larger customer number (such as 100010, 
100020) in a 3-character field. You cannot change records 
easily because there is no room for expansion on either 
side of the customer number field {Figure 12-5), and to 
expand the field, the entire record format would have to be 
changed. All programs using these records would also have 
to be changed to accomodate the changed record format. 
This would be considerable work and inconvenience. RPG 
II provides the split control field feature to meet changing 
data processing needs with minimum effort. 

The solution to the problem is to add a 3-character portion 
to the customer number field using three columns which 

are not adjacent to the original customer number field 
(Figure 12-6). The original three numerals of the customer 
number remain in the original field. The three additional 
numbers are put in the new customer number field. 

At the end of each month, a report is produced consisting 
of: 

1. Customer number. 

2. A description of each purchase. 

3. The cost of each purchase. 

4. The total cost of all purchases. 

The report is group-indicated as shown in Figure 12-7. 

The customer number determines when totals would be 
printed and thus must be used as a control field. However, 
on each record the customer number is split into two parts 
(two fields). Both must be used in order to get the correct 
customer number {Figure 12-8). 

CUSTNO ITEMNO DESC QTY ORD COST 

3 4 12 13 32 33 37 38 44 

Figure 12-5. Three Digit Customer Field 

CNUM2 ITEM NO DESC QTYORD COST CNUM1 

3 4 12 13 32 33 37 38 44 45 47 48 

Figure 12-6. One Customer Number Split into Two Parts 

Describing Input Fields That Control Processing 12-5 



CUSTOMER PURCHASES 

001249 #14 NAILS 
# 9NAILS 

001254 HAMMER 
ELECTRIC SAW 

001497 2' X4's 

001972 PLYWOOD 

002024 TILE 

Figure 12-7. Report Group Printed by Customer Number 

Coding Split Control Fields 

Split control fields must be described in specification lines 
which follow one another (Figure 12-8). 

CNUMl, the field in the high order position of the record 
(columns 45-47), must be specified on the Input Sheet be
fore CNUM2, the field in positions 1-3. This is required 

COST 

2.49 
3.78 

$ 6.27 * 

1.29 
42.85 

$44.14 * 

17.93 

$17.93 * 

7.43 

$ 7.43 * 

87.93 

$87.93 * 

because the three digits in CNUM2 are the first three digits 
of the customer number. 

Parts of a split control field may be either alphameric or 
numeric. In this example, they were both defined as 
numeric (indicated by the entry in column 52). If one of 
them, however, had been defined as numeric and one as 
alphameric, they both are considered numeric by the com
piler. 

IB~ lnternatiOl'lal Business Machines Corporation Form X21·9094 
Printed in US.A. 

Date ___ _ 

Program------------

Programmer-----------

~ 
~ 1 

go, 
~·~ Line Filename ".ij 0 

! ~ 
~ 

Position 

~ i ~ a: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 1 IR EC DS IN NS ~1 
0 2 I 

0 3 I 

0 4 I 

0 5 I 

0 6 I 

RPG INPUT SPECIFICATIONS 

Punching Graphic 
Instruction 1-P-unc-h--<--<t--t--,___,,__,,__,..___. 

1 2 

Pag•[IJ 

Record Identification Codes 
Field Location 

2 3 i 
iii ~ ~ . 

.!! !!!. Field Name ] 
t t L. ~ 'E 

~ ~ E 
Position 

ge~ 
Position 

~~ iH From To 

J ~ N'" 
~ 0 c'.i ~ 0 c'.i .g u c'.i.n a. 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

141i:; l4tZ (l~I IN' M1 L1 
1 3 ac NU l'/2 lU1 

11 112 I J]E M~C 
13 l~Z DE s~ 
3~ 31 [fJ ui [ll IJ< 
1~11 1414r/ 1'-11 

Figure 12-8. Specifying a Split Control Group 

12-6 

61 62 

Program 
Identification 

75 76 77 78 79 80 

I I I I I II 

Field 

.g Indicators 

~ Sterling 

] 
Sign 

Zero Position 
Plus Minus or 

il Blank 

u: 

63 64 65 66 67 68 69 70 71 72 73 74 



FIELD RECORD RELATION INDICATORS 

You may have some programs which process several /dif
ferent record types. Two or more record types might con
tain identical fields. To eliminate coding these identical 
fields for every record type you may use the OR relation- · 
ship which indicates that certain fields are found on all 
record types. Not all fields are identical in different record 
types, howeve·r. You must have some way of specifying 
those fields found on only specific record types in the OR 
relationship. Field record relation indicators indicate those 
fields found on only specific record types. 

Field record relation indicators will relate: 

• A field to a specific record type in the OR relationship. 

• Control fields and split control fields to a specific record 
type in an OR relationship. 

• Match fields for more than one record type. 

OR Relationship 

You can eliminate duplicate coding by using an OR relation
ship to describe identical record types. This method also 
reduces the size of the program. 

When using the OR relationship, you need to write the 
names of identical fields from more than one type of record 
only once on the Input Sheet. OR relationship specifica
tions indicate that the fields named may be found on all 
of the record types. The following input specifications are 
necessary to set up the OR relationship: 

1. Record identifying indicators (01-99) for each record 
type. 

2. The letters OR in columns 14-15 for all record types 
other than the first. 

3. Entries describing the record identification code of 
each record type (columns 21-31). 

The record identifying codes must be described for all types 
of records in the file before any fields are described (Figure 
12-9). The letters OR are placed before the description of 
each record type except the first. OR indicates that the 
fields listed may be found on all record types. In this 
example, the fields listed may be found on records identi
fied by an N, D, or 0 in column 96. Identical fields are 
described after the entries which establish the OR relation
ship. 

IBJ.1 lntern1tiof'al Business Machines Corporation Form X21-9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
1s 1s 1r1a 19 ao 1 2 

Date l l l Pag•[D 
Program I I I I I I I [Punching Graphic Identification 

Program Instruction 
Punch l l l 

Programmer 

g Record Identification Codes Field 
13 Field Location 

Indicators 
~ 1 2 3 i c 

~ 
0 

g>. 
. ., 

iii ~ 
~·a ~ II a: Sterling 

Line Filename g e Field Name ! 
.,, Sign 

8. ~ ~ ;ii \l J Zero Position 
?: i Position ~e~ Position 

g e ~ Position sH From To Plus Minus or 

! j ~o J .,, Blank 

£" () !:::! ~ ~ N '" ~§ -.; 
z u u ~u6 6.;; 11. u:: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 I IN VE ~T R'< ~~i 1 ~tl c~ 
0 2 I ~< 2 ~n l/"",r; 

0 3 I ~r< ~3 ~~ Ir 
I\.. 

0 4 I 1 5 r AlSS 
0 5 I 6 112 I lE~ Nin 
0 6 I 13 32 l>-1 5"' 
0 7 I 3t3 3~ ~l"'I II A 'l ,... 

0 8 I r3'j ~ ~D Af[lf 
n n T 

Figure 12-9. Using the OR Relationship to Describe Identical Record Types 

Describing Input Fields That Control Processing 12-7 



OR Relationship With Field Record Relation Entries 

In the example of printing a report by product class, all 
record types had identical fields (Figure 12-3). Suppose 
that the information on each record type is organized dif
ferently; the records have some fields which are identical 
and some which are not (Figure 12-10). Now you want to 
print only a description of new items. The record identified 
by an N is the only one with the DESC field. All card types 
still have CLASS, ITEMNO, DATE, and ONHAND fields. 

Remember that OR relationship can be used when all fields 
are not identical. In this case, additional entries must be 

CLASS ITEMNO DESC ON HAND 

5 6 12 13 32 33 40 

New Item Record 

~ 
CLASS ITEM NO ON HAND ~ 

~ 
~ 

DATE 

5 6 12 13 20 90 95 96 

Regular Item Record 

CLASS ITEMNO ON HAND DATE 

5 6 12 13 20 90 95 96 

Discontinued Item Record 

Figure 12-10. Record Types with Some Identical Fields 

12-8 

made in the field record relation columns (63-64) on the 
Input Sheet. The entry consists of any of the record iden
tifying indicators (01-99) assigned to a record type speci
fied in the OR relationship. The record identifying indica
tor entered in columns 63-64 relates a field to a particular 
record by identifying the record type in which the field is 
found. 

When columns 63-64 are blank, the fields listed are assumed 
to be found in the positions specified on all records in the 
OR relationship. When an entry is specified in columns 
63-64, the field is found only on the record type having 
that record identifying indicator. 

90 

(") 
0 
0 
m 
II 

0 

(") 
0 
0 
m 
II 
0 

DATE 

95 96 

(") 
0 
0 
m 
II 
z 



To use the OR relationship with field record relation entries 
you must: 

1. Code the specifications describing record types in the 
OR relationship (Figure 12-11, lines 02, 03, and 04). 

2. Describe all fields which are identical on all record 
types (Figure 12-11, lines 06, 07, and 08). In this 
example, the identical fields are CLASS, ITEMNO, 
and DATE. 

3. Specify all fields that are found only on the first 
record type in the OR relationship, then the second 
record type, then the third, and so on (Figure 12-11, 
lines 10, 11, 12, and 13). 

In this example, the only fields for the first record type 
which have not been described are DESC and ONHAND. 
For each field, the entry 01 must be made in columns 
63-64. This entry means that DESC and ONHAND are 
found on only the record type 01 identified by an Nin 
column 96. 

IBJYI lnternatiof'lal Business Machines Corporation Fonn X21-9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
Date ___ _ 

Program-----------

Punching f-G--'rap_hi_c -+---+T--1--1--+TT---!---l---I 
Instruction Punch T 

Programmer _________ _ 

Record Identification Codes 
Field Location 

''* 
Line Filename ;.__r~ 

Position Position 5 Position 

~ ~ ~ 
~ u c5 

1 2 

Pag•[D 

Field Name 

75 76 77 78 79 80 
Program 
Identification I I I I I I I 

Field 
Indicators 

""0:8.,1... Zero 
Plus Minus or 

Blank 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

01 1 ~~1Es~1~1~e ~L~ '-1~~ I1~E1s 11~ lttHIE c~ ~IEL~lru~1N1s1H1~ 1~~~1srr 
0 2 1 f [f-..1v1i;;;.n1 I~~ 1 ~ h CIN 

0 4 I t: f-< 13 ~ tj r C 
0 5 I ~HrElse F 1 IE: on ~ A11<1s lL "EN JlclAlt 1 IN ~LL 1,.IAIRTI 
0 6 

0 7 

0 8 

0 9 

1 0 

11 

1 2 

1 3 

I 1 

Figure 12-11. Field Record Relation 

1~ I IIEF' N[C 
I~ II ll T ~ 

I\ tlTI 

~ 
1 
2 
I~ 

* 

Describing Input Fields That Control Processing 12-9 



The DESC field is related to the record identified by an 
Nbecause this is the only record type having

1
a DESC field. 

ONHAND, however, is found on all record types. ONHAND 
must be related to the record having an Nin column 96 
because it is in a different location on this record type. 
The field location of ONHAND must be specified and re
lated to the corresponding record type by the record iden
tifying indicators {Figure 12-12, line 11 ). 

Remember that when fields are not identical on all record 
types, the field must be described and related to all record 
types on which it is found. 

All fields relating to only one record type must be entered 
as a group and must be given the same record identifying 
indicators in columns 63-64. 

If most fields are common, describing the record type with 
field record relation usually reduces the number of speci
fications you must write and the amount of storage neces
sary to hold the instructions. 

Field Record Relation with Control Fields 

Control fields can also be related to a specific record type 
in an OR relationship by field record relation entries. In 

Figure 12-12 the CLASS field is a control field {Ll in 
columns 59-60). It is also found on all record types; blanks 
in the columns 63-64 indicate this. However, if a control 
field is found on only one record type, the control field 
must be related to the record type in which it is found by 
an entry in columns 63-64 {Figure 12-12, line 07). 

The number of control fields need not be the same for 
every record in the OR relationship. Regardless of the 
number of control fields per record type, all control fields 
and all other fields related to the same record type are 
entered as a group {Figure 12-12, lines 07 and 08). 

Field Record Relation with Split Control Fields 

The rules applying to field record relation with control 
fields also apply to field record relation with split control 
fields. In addition, when split control fields are found on 
record types described in an OR relationship used with 
field record relation entries, all portions of the split con
trol field must be assigned to same control level indicator 
and the same field record relation entry. This is necessary 
because all parts of a split control field are on the same 
record rather than on two different records. 

IB~ lnternatiOl"lal Business Machines Corporation Form X21-9094 
Printed in U.S.A. 

Date ___ _ 

Program __________ _ 

Programmer-----------

Line Filename 

Position 

RPG INPUT SPECIFICATIONS 

Punching Graphic 
Instruction t-P-unc-h---it--11"-t-t-i"-t--1r----1 

Record Identification Codes 

Position Position 

Field Location 

~t-----r------1 
a; 

From To 

1 2 

Page[IJ 

Field Name 

75 76 77 78 79 80 
Program 

Identification I I I I I I I 

Field 
Indicators 

~ Zero ! Plus Minus or 
Blank 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 :ii 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

01 1 l~VENT~Y ~ 11 ~~ CN 
0 2 I h I< 2 ~ f-1 CID 
o 3 I ~ I< I~ ~ C :::: ~ 1 5 C Lli\&ls L 1 
0 4 1~ I t[JEMNO 
0 5 

0 6 

0 7 31 1 
0 8 l 2 ,..,l !L A'f\. 7" 2 
0 9 1 3 

Figure 12-12. Field Record Relation with Control Fields 

12-10 



Using Match Fields With Field Record Relation For More 
Than One Record Type 

Many fields have the same name, contain the same type of 
data, and are found in certain positions of any record type 
in the file. For example, salesmen records and other em
ployee records could be organized as shown in Figure 12-13. 
For both record types, all fields are the same except the 
COMM and SALARY fields and the record identifying 
code. 

CLASS 
(1-3) 

425 

COMM 
(14-15) 

DSTRCT 

l 
EMPNUM 

(8-9) (25-27) 

t 
07 1 5 135 

7 8 9 10 11 12 13 1• 15 16 17 18 19 20 21 zz 23 2• 25 26 27 28 29 30 31 32 

s 

~~~~~m~~~mm~mMm~~~nMITTM~ww~mmmITTmm 

B B
A A
8 8
4 4
2 2

~ 1 2 3 • s 6 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ~
A A
8 8
4 4
2 2
1 1
n~~~"""~~~~«~~n~~~~~~~~~~~~ro~~~«

B B
A A
8
4

8
4

2 2
1 ~u~~~Mnnn~~nnnn~~~~~M~~~M~~~~~"%1

IBM3700

SALESMAN RECORD

Figure 12-13. Same Match Fields for Both Record Types

When only a few fields differ, record types can be described
on the Input Sheet in an OR relationship. Instead of using
separate sets of input specifications, common fields need
be described only once. As shown in Figure 12-14, entries
in the field-record relation columns can then identify the
fields which are unique to a particular record type. Notice
that fields which are the same for all record types are des
cribed first. All fields related to a particular record type
are then described before specifying the fields related to
one of the other record types.

CLASS SALARY
(1-3) (13-17) L_;RCT

l
EMPNUM

9) (25-27)

+
293 04 07564 387

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

~~~~~m~~~mm~mMm~~MnMITTMMWW~mmmITTmm 
B B 
A 
8 
4 
2 
1 
B 1 z 3" s, 1 e 

A 
8 
4 
2 

A 
8 
4 
2 

IBM 3700 

A 
8 
4 
2 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ~ 

OTHER EMPLOYEE RECORD 

A 
8 
4 
2 

IBJt1 I nternatiof'lal Business Machines Corporation Form X21·9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
Date ____ _ 

Program--------------

Programmer-------------

~ 
~ 1 

C:• 
:?-.i... 

Line Filename '+;: 0 

0. ~ > Position ... 
1! 

] ~ 
3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 1 IE ~te LQ oce EA~ ~1 ~~ 
0 2 I ~l< (2121 ~~ 
0 3 I 

0 4 I 

0 5 I 

0 6 I 

0 7 I 

Punching 
Instruction 

Graphic 

Punch 

Record Identification Codes 

2 

z 0 t; Position - ~ Position 
~ .e ~ 

~§~ - N m 
~uo 

3 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 

t:S 
~""" l\.o .... 

Figure 12-14. Describing Fields with Field Record Relation 

~~ z u 

39 40 

Field Location 

i 
a; 

- II :d ~ 
~;q From To 

~I~ 
6"' a.. 

41 42 43 44 45 46 47 48 49 50 51 5 

1 ~ F ~ 

12'' ffs 1~ 

1 2 

Pag•[D 

~ 
Field Name 3 

g 
8 

2 53 54 55 56 57 58 59 60 

CIL ~S[S 
~ 1 f'R 11 

Jlf.1 
c "'·~ 

1~ 117u s L~ IT<~ 

~ 

:2~ 
Li:~ 

I:~ 
~6 

61 62 

Program 
Identification 

75 76 77 78 79 80 

I I I I I I I 

Field 

.g Indicators 

~ 
a: Sterling 
"O 

Zero 
Sign 

j Position 
Plus Minus or 

"O Blank 
Q; 
ii: 

63 64 65 66 67 68 69 70 71 72 73 74 

~1 
rzl2 

Describing Input Fields That Control Processing 12-11 



DSTRCT (M3), CLASS (M2), and EMPNUM (Ml) are the 
three match fields to be used in sequence checking the 
EMPLOYEE file. Since all match fields are common to all 
record types, they have been described only once on the 
Input Sheet without any field record relation entries. 
Therefore, the match field entries need be assigned only 
once (Figure 12-15). When record types are described in 
an OR relationship and a match field entry is assigned to a 
field without any field record relation entry, the match 
field will be used for all record types. 

IB"' 

Date ___ _ 

Program-------------

Programmer------------

lnternati<>f'lal Business Machines Corporation 

RPG INPUT SPECIFICATIONS 

Punching 
Instruction 

Graphic 

Punch 

Record Identification Codes 

1 2 

Page[]] 

.~ Field Location 

~ 1 2 3 
~ ~ c. a; 

~·o ~ II 
Line Filename M !!! Field Name ] ! ~ ~ ~n i Position ~ Position Position From To 

~ ] ~eg ~ ~ g ~~ t! ~ 8!. 1 j 0 !:::! ! ~fl 6 6~~ z u u ~u 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5 2 53 54 55 56 57 58 59 60 

0 1 IE MP_ LQ Yf EA~ 1 ~~ ~ 
0 2 I ""1( ~Zj e~ Ir 11"1 

l'-1"' 
0 3 I Ll I~ ~11 Al~l5; 
0 4 I t ~ '1Jl2' l CT 
0 5 I f11'i 121~ E~ p~ [M 
0 6 I 

1l~ 11'i1i 1'11"1 l'-1 

0 7 I 111 21SJ ~L rRr-1 
0 B I 

Figure 12-15. Assigning Match Fields Once for Two Record Types 

12-12 

Program 
Identification 

Form X21-9094 
Printed in U.S.A. 

75 76 77 78 79 80 

I I II I I I 

Field 

c Indicators 
0 . ., 
-;; 

Sterling a: 

] Sign 
Zero Position 

Plus Minus or 
Blank ii u: 

61 62 63 64 65 66 67 68 69 70 71 72 73 74 

M2J 
NrJ 
~11 

rt1 
r2Jl2 



Although some fields (Figure 12-15) differed between 
record types, all the fields to be used in matching were the 
same (same name, format, and card columns). Suppose 
that one of the match fields, CLASS, is in different record 
columns for each record type. The two record types in the 
EMPLOYEE file might then appear as in Figure 12-16. 

The two record types can be described either by coding 
separate input specifications for each record type or by 

EMPNUM 
(1-3) 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

s 

SALESMAN RECORD 

A 
8 
4 
2 

A 
8 
4 
2 
1 
B 
A 
8 
4 
2 

(Record Identifying Indicator 01 
turns on when this card type read.) 

26 27 28 29 30 31 32 ~ 

A 
8 
4 
2 

~"~~~"~"~~~O«~~n~uoo~~~~~~D~MW~~"~~ 
A A 
8 8 
4 4 
2 2 
1 ~~~uHroTinn~~nnnn~~~~UM~~UM~~tt~H~% 1 

•sM3700 

combining the entries using field record relation. Both 
methods have advantages. If most fields are common, 
describing the record types with field record relation 
usually reduces the number of specifications you must 
write and also reduces the amount of storage necessary to 
hold the instructions. Howev~r, when match fields differ 
between record types, assigning field record relation entries 
to the match fields can be somewhat confusing at first. 

EMPNUM 
(1-3) 

SALARY 
(10-14) 

fs~~ss I g~2~~T 
-~~, __ j __ _ 

387 293 Ja7564 {a4 

A 
8 
4 
2 
1 

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

0 

OTHER EMPLOYEE RECORD 

A 
8 
4 
2 
1 

I 2 3 4 5 6 ! (Record Identifying Indicator 02 
21 ze zg 30 31 32 B 

a turns on when this card type read.) 
A 
8 

4 4 
2 2 
1 1 
B"~~~n~"~~~O«~~U~UOO~~~~~~D~MW~~"~B 

A A 
8 8 
4 
2 

~~~uHroTinn~~nnn~~~~~~~~~~M~~tt~~~~ 

IBM3700

4
2
1

IBJt1 lnternatioflal Business Machines Corporation Form X21-9094
Printed in U.S.A.

RPG INPUT SPECIFICATIONS
Date ____ _

Program--------------

Programmer-------------

g
5
] 1

Co

r5 Line Filename
:g_

~ Position

E "E

if-*' ~
3 4 5 6 7 8 9 10 t1 t2 13 14 15 16 17 18 19 20 21 22 23 24

0 1 I lf:I MtJ> us VE IEIAIA ~~]<;~
0 2 I IC~ (22 ~16
0 3 I

0 4 I

0 5 I

0 6 I

0 7 I

0 B I

0 9 I

' n T

Punching

Instruction
Graphic

Punch

Record Identification Codes

2

:;; :;; Position Position

~~; ~ e ~
~$6 ;'£ u 6

3

25 26 27 2B 29 30 :it 32 33 34 35 36 37 38

Ir~

lr'-11'1

Figure 12-16. Match Fields Differ Between Record Types

3o
~§

39 40

Field Location

i
iii

~ '
~~

~ J) al From To
~ ~ ~
a~!

4t 42 434445464 7 48 49 50 51 5

11 'J

2 21
7

1 12
f I1

1 2

Page DJ

~
Field Name]

1
2535455565758 59 60

u~
[Jf.:) rm~'-cc [MIN
~L rA5~
lrJT ~

1rz 1141~ s~ LIA~

0

~-a
.!!:!~
U.u.

"'"'

H
6t 62

75 76 77 78 79 80
Program
Identification I I I I I I I

Field

c: Indicators
0

~ Sterling
"CJ Sign

j Zero Position
Plus Minus or

"CJ Blank
o;
ii:

63 64 65 66 67 68 69 70 7t 72 73 74

1 i i
Fields on all

t--t-
record types

tt Fieids o~y on

h sa!esmen records

2 l Flcl~ on1; ~rn'
~12 other employee

records
11111111

Describing Input Fields That Control Processing 12-13

The two record types in Figure 12-16 are described using
field record relation. To sequence check the EMPLOYEE
file, match field entries must also be entered for the appro
priate fields (EMPNUM, DSTRCT, and CLASS). Figure
12-17 shows correct specifications for this job. Two of the
match fields (EMPNUM and DSTRCT) are found on all
record types, and consequently do not have field record
relation entries. Notice, however, that the M2 match field
(CLASS) is not the same for all record types since the loca
tion of the field varies. Therefore, the CLASS match field
differs on each record type and must be assigned field
record relation indicators. When such a situation occurs
(some match fields on all record types and some match
fields which differ between record types), the match fields
assigned field record relation indicators must also be as
signed to all record types as EMPNUM and DSTRCT are.
This is done by assigning a dummy match field entry that
is not conditioned by field record relation indicators.

Figure 12-17, line 05, shows the dummy entry for the
CLASS match field. You know which entries to make in
the Field Location columns of this dummy match field
because you know that any one match field is always the

same length, regardless of record type of column location.
In this case, CLASS is three columns long.· Any numbers
which give the correct length of the match field can be
specified.

As shown in Figure 12-17, columns 12-14 are specified for
the dummy match field. When this specification line is
performed, the program reads the three columns of the
data (columns 12-14) on whichever record type was read.
Of course, the M2 match field is not in columns 12-14 on
either record type so you do not want this incorrect data
to be used in sequence checking. It will not be, because
all of the match field entries are checked before the sequence
checking is performed. If the card read is record type 01,
line 07 is performed. This entry tells the computer that
the data in columns 10-12 should be used for the M2 field.
On the 'other. hand, if record type 02 is read, line 08 is per
formed and the data in columns 5-7 is used instead of that
in columns 12-14. Therefore, when either of the specifica
tions in lines 07 or 08 is performed (depending on record
type), the data used as the match field is changed, as if the
dummy entry has never been specified.

IB~ lnternatiof'lal Business Machines Corporation Form X21-9094
Printed In U.S.A.

RPG INPUT SPECIFICATIONS
1 2 75 76 77 78 79 80

Date

1 I 1 Page[IJ
Program I I I I I I I r Punching Graphic Identification

Program Instruction
Punch l l

Programmer

~
Record Identification Codes Field Field Location

] 1 2 3 ~
c Indicators

g 0 . .,
g>. iii ~ Sterling p ~ II

Line Filename rr: e Field Name] "O Sign

~ ~ ti al J Zero Position
§ Position :;; Position :;; Position

~~ ~~~
From To Plus Minus or I-

1 ~e~ g~~ g Blank

~ i
"O

~ ~ c5
~ N '" 2 ~ II 8 o;
~uo ~() o en o.. ii:

3 4 5 6 7 8 9 10 11 12 13 t4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 j1 32 33 34 35 36 37 38 39 40 41 42 434445464 7 48 49 50 51 5 2 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

IE. M~
,_ ;.;.1

11:.AIA l?Jt ~.(~s Dummy entry so ;h;t 0 1

""" n j..I
0 2 I ~'R m2 ~~ Ir~ all match fields are
0 3 I 1 I~ ~E ~p ~UM f#J1 assigned without
0 4 I ri.rz 1211 ~s 'i; CT lt-11'3 f!,eld-record relation.
0 5 1 11 12 114 1rL ~IC~ M2 17
0 6 I Performing either of these f- 7 ~ !~IM ~I~
0 7 I specifications actually voids Jl 1'" v.. 111~~ ~12 l•

0 B I what has been done as a result] 7 ?,,,.. LA Isl~ MZ ~~ ~

0 9 I of performing the dummy entry. fl~ 1'j IC lk lliht!Y k '~
1 0 I

Figure 12-17. Assigning Match Fields for Records Described with Field Record Relation

12-14

Although the specifications in Figure 12-17 will cause the
EMPLOYEE file to be sequence checked correctly, there
is a way to reduce the number of specifications required.
As mentioned, for a dummy entry you can specify any
columns which give the correct length for the match field.
However, if you specify the actual columns associated with
that match field on one of the record types, there is no
need for the specification which relates those columns to
the match field for that record type (Figure 12-18). By
entering 10 to 12 (line OS, Figure 12-18) as the columns
for the M2 field, you can eliminate the match field entry
(line 07) in which the M2 field is described for record
type 01.

After performing the dummy entry (line OS), the com
puter knows the M2 match field is to be found in columns

10-12. If record type 01 is read, the M2 field actually is
in columns 10-12. Thus, line 07 does not have to be per
formed because it would not change anything. Of course,
if record type 02 were read, the specification in line 08 is
performed.

This says, for record type 02, use columns S-7 for the M2
field instead of columns 10-12.

The Field Name specified for the dummy entry can be any
name, also, since field names are ignored in selecting match
fields. In this case, CLASS was specified since the M2 fields
on both record types have the same name. If the names
differ, it is still a good practice to use a name given to the
match field on one of the record types.

IB:ft1 lnternatio,,al Business Machines Corporation Form X21·9094
Printed in U.S.A.

RPG INPUT SPECIFICATIONS
1 2 75 76 77 78 79 80

Date

1 1 1 Page[D
Program I I I I I I I l Punching Graphic Identification

Program Instruction
Punch l l

Programmer

~ Record Identification Codes Field Field Location

~ 1 2 3 i c: Indicators

g 0

C:• iii ~ Sterling :?-·~ ~ u
Line Filename ~ 0

rd se Field Name] "C Sign

~ ii; ~~~ J Zero Position
Position z 0 t:l Position Position From To Plus Minus or f-- "E ~ e ~ ~o -e

~ ~ E ~ ~ ~§ jj~ ~
"C Blank

£" ~ £3 6 o;
z u u u (/] 0.. u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 434445464 7 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 I i:I 1MIE Lk:J !YE 'EA 1 1>J ~1 ~ 1S
0 2 I ""'R 02 ~I;

,..,..,
0 3 I l":l ~E M p~ Ut1 ~
0 4 I 12 12 rtJ ~ rR rT ~
0 5 I 11~ 1 ~ it l Al~S M2
0 6 I . rrn1 i_"I

·!•'"···:·:· ; :····-·:·:···.•.·:·:··

0 7 I This entry eliminated - ~En 11~
,. ~1~ S. 7M.2 i1 fh'

0 8 since the dummy entry ········· .·.•.•'' . ,.. ... ·.··~ r~·····
.... ..,.·. f:iir rio·· I

~ It
0 9 I specifies the match field 11~ 1 2~~ IAll riL 2
1 0 I is in columns 10-12.

1 1 I 7
Dummy entry so that all match

1 2 I fields are assigned without field-
1 3 I record relation.
1 4 I lllllllllllllllll

Figure 12-18. Eliminating Specifications in Assigning Match Field Entries

Describing Input Fields That Control Processing 12-15

Review 12

1. A sales analysis report is to be group-indicated by salesman number as shown on the following printer
spacing chart. The fields on input file records are arranged as follows: '

Columns Entries

1-2 Salesman number Oas t two digits of the three possible)

3-8 Amount of sale

9-23 Customer name

30 Salesman number (first digit of the three possible)

96 Indicates the record type

Fill in the input specifications for this job choosing your own file and field names.

2 3 4 5 6 7 8 9 j_ I 10 11 :
I 2 3!415 6 7 8 9 0 I 2 3 4 Sf6 7 8 9 0 I 2 3 4 S 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5~ 8 9 OJI 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 Of! 2 3

~ T I

.1 T I

I j_ I I

1u s]j olfllE! R

IXIXIX

12-16

I

li1.IXIXIX .DCIX l

J

llCIX. IXllCIY • !'ii)(~
I

I

.)(~
I

T

•

J

J
I

.1.

I l

I I

_L I

.i I !

.i I l
---~~;:i::i:~.1.......,i...i...i.-*'=;1;;ttijtt±:i±:t±:bbl-1...,1

2. Rewrite the Input specifications shown below using field record relation entries.

IBJ.1

Date ____ _

Program----------------

Programmer---------------

~
~ 1

ra Line Filename z
ci ~§ > Position I- i -~ ~ ~ ~ ~ z 0

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 I P1 ~y EJI [E 11 s ~ 1
0 2 I~ ~A y]f IJ<D
0 3 I

0 4 I

0 5 I

0 6 I

0 7 I

0 8 I~ lS[I1 :c~ !AND ~" N'D
0 9 I NSI 12rl 1
1 0 I

11 I

1 2 I

1 3 I

1 4 I

IBJ.1

Date

Program

Programmer

~
] 1

~·o Line Filename z
8. :::o ~ ~ _8";;' Position

l ~
:> § ·~
~ zo

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 q~ IHK; u~s ~b ~K E~
0 2 I lN61 r3rzj 1
0 3 I

0 4 I

0 5 I

0 6 1

0 7 I

0 8 I

lnternatiol'lal Business Machines Corporation

RPG INPUT SPECIFICATIONS

Punching
Instruction

Graphic

Punch

Record Identification Codes

2

c ~ Position - ~ Position
~ ~ e ~
o~~ ~ N "'

0 - .c z u u z u u

3

25 26 27 28 29 30 31 32 33 34 35 36 37 38

CtR

~8 "U CJJ l~ NS
Lil:

Field Location
~
1!
co

~ II

1rl fe.
'- ~ ~ - t; I-~ From To =o jj~ ~ § u Ula.

39 40 41 42 434445464 7 48 49 50 51 52

l2J , ..
I~

, ..
I"'

1 !2~
B 31:12

I~ 3~
, ..

l3 J4j
1 11.Ji, 1"1

lnternatiol'lal Business Machines Corporation

RPG INPUT SPECIFICATIONS

l 1 1 l Punching Graphic
Instruction

Punch l 1 1

Record Identification Codes
Field Location

2 3 i
iii

~ II

a:~
~~~ 

~ e ~ 
Position - ~ Position 

~~ g ~ ~ From To 
~ .e f 

0 ~ ~ 0 ~ ~ 6 t; ~ z u u zuu ~ u 

1 2 

Page[D 

~ 
Field Name Q; 

j 
e 
~ 

53 54 55 56 57 58 59 60 

NEE Nb 
I-~ Ill 

v !..1 
~~M 
~y !JI 

r-1 1ulf'I 

t:ll-' Ll2 
..... l 1 

~A M I= 
~I 

1 2 

Page[D 

g 
Field Name ] 

e 
~ 
8 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

rT 
l?I r-r"'I l; ",,.. 

~ I"'() L t- 1 U2 
~ EM PNC .01 
1~ 12 NA '-iiE 
3~ 3~ ~] SW ~ID 

0 

~-t; 
.!!:!iU u.u:: 

f I 
;i2 
::;;u 

61 62 

0 

:B-o 
.!!!"i> u..u:: 

~:~ 
1ii~ ::;;u 

61 62 

Program 
Identification 

Form X21-9094 
Printed in U.S.A. 

75 76 77 78 79 80 

I I I I I I I 

Field 

c Indicators 
0 . ., 
~ Sterling 
-c Sign 

j Zero Position 
Plus Minus or 

-c Blank 
Q; 
u:: 

63 64 65 66 67 68 69 70 71 72 73 74 

Form X21-9094 
Printed in U.S.A. 

75 76 77 78 79 80 
Program I I I I I I I Identification 

Field 

c Indicators 
0 

~ Sterling 

~ Sign 

! Zero Position 
Plus Minus or 

Blank -c 
o; 
u:: 

63 64 65 66 67 68 69 70 71 72 73 74 

Describing Input Fields That Control Processing 12-17 



Answers to Review 12 

1. 

IBJt1 

Date ____ _ 

Program-------------

Programmer------------

Line Filename 

Position 

lnternatiol'al Business Machines Corporation 

RPG INPUT SPECIFICATIONS 

[

Punching 
Instruction 

Graphic 

Punch 

Record Identification Codes 

Position Position 

I 
Field Location 

~~---.----! 
a; 

From To 

1 2 

Page[JJ 

Field Name 

Program 
Identification 

Form X21'"9094 
Printed in U.S.A. 

75 76 77 78 79 80 

I I I I I I I 

c 

Field 
Indicators 

-~ 1---r---.--t 

~ Sterling 
-c Sign J Plus Minus ~~ro Position 

-c Blank 
o; 
u:: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 2 I 11 -.,. l8JRE ~ -l2 
o 3 I 

o 4 I 

30 ~~ SLS 01 1 
1 2J ISLIS ~0!2 1 

0 5 J 

0 6 J 

0 7 I 

The two fields which make up the salesman number should be assigned the same control level indicator 
to indicate that both fields are to be considered as one. 

12-18 

The split control fields must be specified on two adjacent lines. Since the first digit of the salesman 
number is in column 30, this single digit field should be specified before the field containing the last 
two digits of the number. The computer determines the order in which the digits are to be arranged by 
the order in which the fields are specified. 



2. 

IB~ lnternatiof"lal Business Machines Corporation Form X21-9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
1 2 75 76 77 78 79 BO 

Date 

j 1 j Page DJ Program I I I I I I r Punching Graphic Identification 
Program Instruction 

Punch ] 
Programmer 

~ Record Identification Codes 
Field Location Field 

] 1 2 3 > c: Indicators 
~ "' 0 

...J ·;::; 

~·'-
iii 

...J ~ Sterling ~ II 
Line Filename ~ 0 

g ~ Field Name ] "C Sign 
a. in J Zero Position 
> 

l 
Position ~ e i Position - ~ Position 

~Cl 
From To Plus Minus or .... "E ~ ~ ~ 1 Blank 

~ 
"C 

~ 0 ~ .2 ~~6 ~§ Q; 
<ii z (.J (.J (.JU) 0.. u: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 434445464 74849505 1 52 5 3 54 55 56 57 58 59 60 61 62 63 6 4 65 66 67 68 69 70 71 72 73 74 

0 1 

0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

0 B 

0 9 

1 0 

1 1 

1 2 

1 3 

I IP I~ lE I fOE [O[A 1~ 11 c~ 
I 

I 

I 

J 

I 

I 

I 

I 

I 

I 

I 

I 

re~ ~ 1 CD 
o~ r:!~ 1 c 

l' ... 1 ... Nt I• 
~ Ii:;~" ~IT "]2 
~ ~ .... N!C lilt 

1 2 NA ME 1 
B 131"'4 12 

Ito;; r. 
I~ IW 1118 It<~ 

Br· ~7 NA ~El I~ 
1 ri~ 

") Aflf '' 1 ~~ Mf::I 1.n 
-~ 13 13 1-11( SW rRD 3~ 

Because these card types contain common fields, the OR relationship may be used to describe them. However, 
since not all fields are common to all card types, field record relation entries must also be used. All common 
fields - WEEKNO, EMPNO, and DEPT- are described first. The NAME field, alth<;mgh found on all card types, 
is in different locations. Thus, it must be related to all card types by specifying it and its end position three times 
and using the record identifying indicator in columns 63-64 to indicate the record type with which it is associated. 
PAYRAT is found in only card type 10. Thus 10 is placed in the Field Record Relation columns (64-64). 
DEDAMT and HRSWKD are related to the card type on which they are found in the same way. Remember that 
all fields related to one card type must be grouped together. 

I 

Describing Input Fields That Control Processing 12-19 



12-20 



•a:w:a•:t:r 
USING THE PRINTER 

CHAPTER 13 DESCRIBES: 

RPG II overflow. 

RPG II fetch overflow. 

Use of the special RPG II word *PLACE. 

Use of the dual feed carriage feature and coding for the two output files. 

Use of the 5471 Printer-Keyboard as a second printer and coding of the File 
Description Sheet to describe it as an output device. 

,, 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE THE 
FOLLOWING RPG II CONCEPTS: 

Object cycle. 

Function of RPG II indicators. 

DEBUG operation code. 

Automatic page formatting. 

DSPLY operation code. 

Disk system IPL statements and procedures. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Overflow. 

Fetch overflow. 

Effects of overflow on the RPG II object cycle. 

*PLACE. 

Use of the dual feed carriage feature and coding for the two output files. 

Use of the 54 71 Printer-Keyboard as a second printer and coding of the File 
Description Sheet to describe it as an output device. 

Using the Printer 13-1 



INTRODUCTION 

The most important part of any job is the result of the 
job - the output. This chapter describes five programming 
methods for controlling printed output: 

1. Overflow signals that the end of a page has been 
reached and allows you to advance to a new page and 
print special lines such as headings. 

2. Fetch overflow prevents records from printing over 
the perforation. 

3. *PLACE is a special RPG II function that allows you 
to print duplicate information. 

4. Using the dual feed carriage feature, you can produce 
two printer output files in the same program. 

5. Using the 5471 Printer-Keyboard, you can communi
cate with the operator and have a second output de
vice for RPG II programs. 

CLASS 

00124 

CLASS 

00125 

ITEM NO 

46732J1 
6324181 
43151CK 

DESCRIPTION 

SWEATER, V-NK, SZ 32 
SWEATER, V-NK, SZ 34 
CARDIGAN, SZ 36 

IN STOCK AS OF 10/30/70 

ITEM NO DESCRIPTION 

54321K4 T-SHIRT, WH, SZ 30 
56422K4 T-SHIRT, WH, SZ 32 
57381J4 T-SHIRT, WH, SZ 40 
5832481 T-SHIRT, WH, SZ 42 

IN STOCK AS OF 10/30/70 

USING OVERFLOW AND FETCH OVERFLOW TO 
CONTROL PAGE FORMATTING 

RPG II performs automatic page formatting. It leaves five 
blank lines at the top of a page and six at the bottom. (Six 
lines are printed per inch.) Automatic page formatting may 
not always meet your needs. If you want control over page 
formatting, you can use an overflow indicator {OA-OG, 
OV). For instance, assume that at the end of every month 
you prepare an inventory report which consists of a list of 
the quantity of all items in stock by product class. Items 
are listed by product class, and each product class should 
start on a new page {Figure 13-1). 

Suppose the heading were to start on line 11 of each page. 
To have an equal margin (ten spaces) on top and bottom, 
line 56 should be the last printed line on the page (assum
ing 66 lines per page). For this report, you must use an 
overflow indicator to control page format. 

ON HAND 

10 
16 
17 

ON HAND 

11 
14 
15 
8 

-----------------------
CLASS 

00126 

ITEM NO 

6734183 
6743283 

DESCRIPTION 

WOOL SOCKS, BL 10 
WOOL SOCKS, GR 10 

IN STOCK AS OF 10/30/70 

ON HAND 

11 
9 

-------------

Figure 13-1. End-of-Month Inventory Report 

13-2 



Overflow Indicators 

Overflow indicators, like other indicators, are used to do 
two things: 

• Signal a certain condition. 

• Control when specific operations (including those which 
control page format) are performed. 

For example, in the monthly inventory report, items in 
stock are listed by product class. The report consists of 46 
lines per page (starting line is 11 and ending line 56). Some 
product classes are going to have more than 46 different 
items in stock. For these classes, additional pages (overflow 
pages) are required to list the items. 

The overflow line is the last line you want to print on the 
page. For this report, the overflow line would be line 56. 
When this line is printed, the overflow indicator (if one is 
assigned) turns on to signal that the last line you wished 
printed on the page has been reached. 

When the overflow indicator is on, you know that the over
flow line has been reached. At the end of the page, opera
tions, such as advancing to a new page (the overflow page) 
and printing headings on the new page, are performed. By 
assigning and using overflow indicators, RPG II allows you 
to print special lines at the bottom of the page and at the 
top of the new page. Because you do these operations 
only when the overflow indicator is on, you will have to 
condition these operations by the overflow indicator. 

Specifications for Using Overflow Indicators 

You must specify to the RPG II compiler how reports 
should be printed. To tell it what/to do, you make line 
counter, file description, and output-format specifications. 

line Counter Specifications 

Line counter specifications, found on the bottom half of 
the Extension and Line Counter Sheet (Figure 13-2), are 
used exclusively for defining the number of lines you wish 
printed on each page. 

Every time you use an overflow indicator to control for
matting, you should prepare line counter specifications. 
Otherwise, a page length of 66 lines will be assumed with 
line 60 as overflow line. 

Note: Standard forms are 11 inches long. The printer 
prints 6 lines to an inch. This provides 66 lines of print
ing per page. 

Figure 13-3 is a sample Line Counter Sheet for the inven
tory report. Columns 7-14 are for filename. Only a 
printer file name can be used here. Columns 15-22 con
tain the entries for report formatting: 

o Columns 15-17: Place in these columns the number of 
available lines per page. Your page can contain a max
imum of 112 lines. Therefore, the maximum length of 
a page is slightly more than 18 inches. The inventory 
report uses standard 11 inch paper, providing 66 lines 
per page. 

• Columns 18-19: Put the letters FL in these columns to 
show that the previous specifications gave form length. 

• Columns 20-22: Enter in these columns the number of 
the overflow line, when you want the overflow indica
tor to be turned on. In the example given, it was 56. 
You can use any number from 1-112. 

• Columns 23-24: Enter the letters OL in these columns 
to show that the previous specification was the over
flow line. 

Notice that columns 25-80 are not used. 

Using the Printer 13-3 



IBJ.1 International Business Machines Corporation 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 

Oat•------

Program _______________ _ l Punching l Graphic I I 
Instruction J Punch I J 

Programmer--------------- Extension Specifications 

Record Sequence of the Chaining File 
Number i 

Line 
~ 
I-

~ 

Number of the Chaining Field of Number iii c: -
Length II ,Q 0 

Table or Entries of 

~~~ Per Entries of 
Array Name

Record Per Table Entry ~ Ri g
or Array ~ .§ ~

II g g
0.. 0"'

From Filename

To Filename
Table or Length
Array Name of
(Alternating Entry
Format)

i

t 2

Page rn

ih
~ ~ ~
':,- 'ij g
0.. 0"'

F0<mX21-9091
Printed in U.S.A.

75 76 77 78 79 BO

~~~~:~f:ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 

0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

0 8 

0 9 

I 0 

Line Counter Specifications 

10 11 12 

Line c. Filename 
I- 1i -8 .c 1i 1i ~~ .c ~z 1i ~.8 1i !Z .c !.8 1i ! .8 -8 ~ _g 1i H Ji ~~ 1i ! .8 
~ ., E 

§ 
., E § ., E ~ § ., E ~ § 

., E 2 § " E 2 § " E 2 § " E 2 § " E ~~ " E :ii E " E 2 § " E 2 § .s: :::J .E :::> .: :::J .s: :::J :.1£ .5 :::J .5 :::J ·= ::J ·= :::J 
.s: :::J ti i .5 :::J :.1£ ..J z z ..J z z ..J z (.) z ..J z (.) z (.) z ..J z (.) z ..J z (.) z ..J z (.) z ..J z ..J z ..J z uz (.) z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68'69 70 71 72 73 74 

1 1 

1 2 

1 3 

Figure 13-2. RPG II Extension and Line Counter Specification Sheet 

Line Filename 

Line Counter Specifications 

1i 
" E .s :::J 
..J z 

1i ., E .s: j 
..J z 

.1l 
" E .s: :I 
..J z 

10 

1i 
" E .s: :::J 

..J z 

11 12 

H 
c: E 

tli 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1 1 L p JU~l:r [bb :tlL El" 0 L 
1 2 

1 3 

Figure 13-3. Line Counter Specifications 

13-4 



File Description Specifications 

You must assign an overflow indicator to the printer file 
when you want to control the format of printed reports. 
This is done by an entry in columns 33-34 of the File 
Description Sheet (Figure 13-4). You may choose to enter 
any of the following overflow indicators: OA, OB, OC, 
OD, OE, OF, OG, or OV. The orie you choose, however, 
must be used throughout the program. L must also be 
entered in column 39 to indicate that line counter specifi
cations are used. 

Output-Format Specifications 

When RPG II handles overflow, pages are advanced auto
matically. When you handle overflow, you must specify 
that forms should advance. This is done by specifying a 
skip to the first printing line on the page, line 11 in this 
case. For this job, the heading line would be first. Figure 
13-5 shows the correct specification for forms advance
ment. Remember to make a skip specification on a line 
conditioned by the overflow indicator (Figure 13-5). If 
you forget, a continuous listing will be the result. 

These two entries indicate to the RPG II compiler that it 
should not provide automatic page formatting, but should 
format according to your specifications. 

When the printer reaches the end of a printed page, RPG II 
also allows you to ignore that the end of the page has been 
reached and continue printing. You do this by assigning 

Line Filename 

File Type 

File Designation 

End of File 

Sequence 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File _, Symbolic Name of 
Organization w Device Device w Label Exit 

file Format or Additional Area ~ 0 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ O m 8 z 
§ ~ ~ Overt~-~ !!i Core Index Condition 

~ U Block Record , t: Key Field ai ~ ::> ::> u 1-~ 
g~w~~ Length Length :J ~g ~~:!~!n] j ~ Z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ·59 70 71 72 73 74 

02 FC~RD~ I l@hb ~~~~11 
0 3 

F le18 t MI g ~ kl=-+'U 14""1~\ti:f-+-!-+:l!d-t'-P-+'-'R+o-tl '-=-1--N T'-+:=E'-1'-'Rt-1-+--+-+-+-t-+-+-+-+-+-1-+-+-+-+--1f--+-+-l-+--+--l--+-l-+--+-I 

04 F htdW 
0 5 F 

0 6 F 

0 7 F 

Figure 13-4. Assigning an Overflow Indicator to the Printer 

IB1'1 International Business Machines Corporation FormX2Ml090 

Printed In U.S.A. 

RPG OUTPUT - FORMAT SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date I Punchin~ I Graphic 

I I I I I I I I Page DJ Program I I I I I I I Identification 
Program Instruction Punch 

Programmer 

u. 

l Space Skip Output Indicators -"-
Edit Codes 

~ 1£\l\ 
.... 

Zero Balances 

I 1 
Commas No Sign CR - X = Remove 

.<: II§ ~ to Print Plus Sign Sterling 

Line Filename ~ Field Name End 
~ 

Yes Yes 1 A J Y a Date Sign 
iii Position 

Posit on . Yes No 2 3 K Field Edit 
~ L 

j ~ ~ in CD No Yes 3 c L Z = Zero 
~ Ji ~ ~ ~ Output l No No 4 D M Suppress 
E t 0 0 0 8 .. 
if "ll 

z z z 
] ~ Record ~ 

Ji II Constant or Edit Word 
D.. 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ~33 34 JS 36 37 38 (:lg 40 41 42 43 «~~Q48~00~~~54~~~~~00~~~64~~~68Mro 71 72 73 74 

0 1 o[P RI !Nil ,., 3111 Ip 
0 2 0 p~ lQj,I 2.~ ·~1 LA SS' 
0 3 0 [1~ I I tr!EIM ~, 
0 4 0 ~.., ~I I Z?j CR t IE lI I O~' 
0 5 0 tz[g I k:>IN ltM WID I 

Figure 13-5. Specification for Forms Advancement 

Using the Printer 13-5 



an overflow indicator and never using it to condition out
put files. Lines will be printed from the top line to the 
bottom line of each page, even over the perforation. If you 
do not want this to happen, remember to use an overflow 
indicator to condition the output operations which are to 
be done when the end of the page is reached. 

Overflow Logic 

Figure 13-6 shows one page of a report printed according 
to the line counter and output-format specifications shown 
in Figure 13-7. The heading line is printed on line 11 as 
was specified, but the last line printed was 57. This hap
pened as a result of RPG II overflow logic (Figure 13-8). 

According to the logic, there are two times at which the 
overflow indicator can be turned on: 

1. At total time when total records are printed. 

2. At detail time when detail records are printed. 

There is, however, only one time during each cycle when 

total calculations and total output operations are per
formed. If a record is printed on the overflow line, the 
indicator turns on. A test is then made to determine if the 
overflow indicator is on. If it is on, all operations condi
tioned by the overflow indicator are performed, and the 
indicator is turned off. Detail calculations and output 
operations are performed last. If a detail record is printed 
on the overflow line, the overflow indicator will turn on, 
but the program will not check to see if the indicator is 
on until after total output in the next cycle. Thus, lines 
can be printed past the overflow line simply because the 
computer does not as yet know that the.overflow indicator 
is on. 

The overflow indicator was turned on at detail time for the 
inventory report shown in Figure 13-6, because a detail 
record was printed on the overflow line. 

the program checks to see if the overflow indicator is on. 
This is immediately before detail calculations are performed. 

The program did not know that the overflow line was 
reached, since no check was made at this point. Therefore, 
another record is read. In this case, assume that the record 
is from department 00125. A control break occurs because 
the previous record was from department 00124. Thus, 
total operations are performed. The total record specified 
in lines 12 and 13 of the Output-Format Sheet shown in 
Figure 13-7 is printed on line 57, one line past the over
flow line. It is only after total records are printed that the 
computer knows overflow has occurred (Figure 13-8). 
Therefore, the total record was printed after the overflow 
line has been reached. 

Follow this logic, as shown in Figure 13-8, step by step. 
First, a record is read. If this card causes a control break, 

CLASS ITEM NO 

00124 46732KJ 
47431BJ 
46732AK 
43267BJ 
43678B1 

Ii--"""' 

14732BO 
OVERFLOW LINE - 14643KL 

DESCRIPTION 

BOYS TURTLENECK BL 
BOYS TURTLENECK GR 
BOYS TURTLENECK BKI 
BOYS V-NECK GR 
BOYS V-NECK RD 

NYLON SOCKS 14 GR 
NYLON SOCKS 16 BL 

IN STOCK AS OF 09/16/70 

Figure 13-6. Inventory Report Showing Overflow Line 

13-6 

ON HAND 

14 
11 
8 

15 
6 

-
32 
40 



Line Counter Specifications 

10 11 12 

Line c. Filename > 
.ii I-

.0 .il .ii .ii .ii ~ .8 .0 ~~ ~! .ii ~~ .0 ~ .8 .0 
Q) t 

.0 "! -8 .0 ] 1! .ii ]~ .ii ~ -8 
~ 

c .0 

" E 5 " E 5 " E 2 5 " E 2 § " E 2 5 " E 2 5 " E ~ § " E 2 § " E c E " E c E " E 2 ; " E 2 5 :5 ~ .s :::J :J;t .s :::J :J ~ .s :::J .s :::J .s :::J .s :::J 6 :i ·= :::J 6 :i .s :::J .s :::J 

z ...J z z (.) z ...J z (.) z (.) z ...J z (.) z ...J z UZ ...J z (.) z ...J z ...J z ...J z UZ ...J z uz 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1 1 L~ILJJIPlrJl1 hbFL ~~ 
1 2 

1 3 

IB~ 

Date _____ _ 

Program---------------

Programmer ______________ _ 

International Business Machines Corporation 

RPG OUTPUT- FORMAT SPECIFICATIONS 

r 
Punching 

Instruction 

Graphic 

Punch 1 J 

1 2 

Page DJ 

Form X21 ·9090 

Printed in U.S.A. 

75 76 77 78 79 80 

Line Filename 

~ 

J""" ""' o,,.,,,,,;"""' I ; • ~-- '-:,':;~;= ·::::·:. - x - = 
f:: t I 1 Field Name § ~:iton ~ ~:: ~~· ~ ;'~ ~ Y • ~~~~Edit 
H h ] ~ ~ ~ ~utput ]u ~~ ~~s ! g ~ z ~ ~~~~ress 

Sterling 
Sign 
Position 

I-
E 
~ 

~ ~ ~ ~ ... - ~ ~ ~ ... c Record £ 
t- M ~ ci5 II Constant or Edit Word 

~ ~ 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 0 iO!UIIPoh: ~I ~1l I p 
o 2 o blR 
0 3 0 I C!~A~ls_ I 

0 4 0 I t!IJ~ ~O' 
0 5 0 • o~sld~1!eln1~' 
0 6 0 

0 7 0 1 
0 8 0 L1 
0 9 0 

1 0 0 ~tsc. 
1 1 0 

1 2 0 T 
1 3 0 

1 4 0 v 
1 5 0 

0 

0 

0 

0 

0 

Figure 13-7. Specifications for Controlling the Format of the Inventory Report 

Using the Printer 13-7 



• 
• 
Turn off 
control level 

• and record 
identifying 
indicators 

Perform detail output: 
Turn on overflow indi
cator if overflow line is 
printed 

Perform detail 
calculations 

• 

• Move data into 
processing area 

Is overflow indicator 

• 

on? If so, perform all 
operations conditioned 
by the overflow indicator 
and turn overflow indica
tor off. 

• 
• 

Figure 13-8. Logic for Overflow 

13-8 

START 

~ • 

Perform total 
output. Turn on 
overflow indicator 
if overflow line 
is printed 

• 

• 

card 

Perform total 
calculations 

Turn on 
resulting 
indicator 

Change in 
control field? 
Yes, turn on 
control level 
indicator • 

• 

• 

• 



The Effect of Skipping and Spacing On Overflow 

So far, you have learned that the overflow indicator is 
turned on when a record is printed on the overflow line. 
Actually, the overflow indicator is turned on whenever the 
overflow line is reached. This means that spacing or skip
ping to a line past the overflow line will also cause the 
overflow indicator to turn on. However, if the skip speci
fication skips past/ the /overflow line to the next page, the 
indicator does not turn on. In this case there is no need 
for it to be on since a new page was advanced anyway. 

For example, assume the overflow line for a job is line 58. 
Assume also that the detail record specified in Figure 13-9 
was printed on line 57. This would not turn the overflow 
indicator on. However, this same detail specification allows 
for two spaces. Spacing two lines moves line 59 into print
ing position. Although line 58 has not been printed, it has 
been passed, and the overflow indicator will be turned on 
to indicate this. 

IBJ.1 International Business Machines Corporation Form X21-9090 

Printed in U.S.A. 

Date ___ _ 

Program------------

Programmer __________ _ 

Space .Skip 

Line Filename 

RPG OUTPUT- FORMAT SPECIFICATIONS 
1 2 75 76 T7 78 79 80 

[ 

Punching Graphic] JJ} J
1 Instruction l-P-unc-h-+---l---+----l----1----1---1--~ 

Page[D :~:~tionl I I I I I I 

Output Indicators ... 
Edit Codes 

1 l 
ltf; > -v Commas Zer~ 8p~\~~ces No Sign CR - X • Remove Sterling 

Sign 
Position 

0 z b z 

IW ~ 
Field Name llli § ~":iton ~ ~~ ~"; ~ ~ 

E !J in ai No Yes C L 

8 ! Output J No No . D M 

~ ~ Record ';;- Constant or Edit Word 

Plus Sign 
Y = Date 

Field Edit 
Z • Zero 

Suppress 

3 4 5 6 7 8 9 10 11 12 13 14 15 .t:l-[* ~:20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ~ 40 41 42 43 ~ 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o , o if'F< 1 IM11E"R ~ JI~ H 
0 2 0 12..15 
0 3 0 AIDIVR 
0 4 0 ~ulclE 
0 5 0 

Figure 13-9. Space Specification 

Using the Printer 13-9 



Printing Over the Perforation Preventing-Records From Printing Over the Perforation By 
Fetch Overflow 

Sometimes lines are printed over the perforation because 
the overflow indicator has not been tested. To eliminate 
this situation you can: 

Fetch overflow specifications allow you to alter the basic 
RPG II overflow logic by checking the overflow indicator 
before printing records. You can cause forms to advance 

• Specify the overflow line high enough on the page to 
ensure that the overflow indicator will be sensed (Figure 
13-10). 

at the time that total or detail records are printed. Figure 
13-11 shows the two additional times when operations con
ditioned by the overflow indicator may be performed. (Re
member that forms advance at this time.) 

• Specify fetch overflow. 

36 _________________________________________________ 7_8_.4_5 ____________ __ 

37 
38 _________________________________________________ 168 __ .1_7 __________ ~ 

39 
40;...._ ________________________________________________________________ -f 

41 42 ________________________________________________________ 7_5_5_.6_7 ____ _ 

43 
44 __________________________________________________________________ __ 

45 
46~---------------0~V~E~R~F~L~O~W;...;.....;::L~IN~E~---------------------------4-,9_8_9_.7_2 ______ _ 
47 48 ______________________________________________________________________ __ 

'49 
50 ______________________________________________________ 1_3_,4_2_1_.6_7 ________ _, 

51 
52 ______________________________________________________________________ ~ 

53 
54 ____________________________________________________________________ __, 

55 
56 __________________________________________________________________ ~ 

57 
58 ____________________________________________________________________ __. 

59 
60 
61 
62 
63 
64 
65 
66 

------------------------------------------------------------------------. 
------~--------------------------------------------------------------,-

--------------------------------------------------------------------1 

Figure 13-10. Specifying the Overflow Line High on the Page 

13-10 



During the regular program cycle, RPG II tests to see if the 
overflow indicator is on after a total or detail record is 
printed. By using the fetch overflow specification, you can 
tell the computer to determine if the overflow indicator is 
on be[ ore it prints total or detail records. You do this by 
entering an Fin column 16 of the Output-Format Sheet 
for any detail or total record. When an Fis encountered, 
a test is made. 

If the overflow indicator is on when the tests is made, all 
operations conditioned by the overflow indicator are im
mediately performed. These operations usually include 
forms advancement and the printing of headings. 

START 

If overflow indicator 
is on, perform output 
(total, heading, detail) • 

• 
Turn off control 
level and record 

conditioned by the \ 
overllow indicator identifying 

indicators 

\ • Perform detail output: 

\ Turn on overflow indi
cator if overflow line 
is printed 

Perform detail 
calculations 

Move data into 
processing area 

Is overflow indicator on? 

• 

• If so perform all operations 
conditioned by the overflow 
indicator and turn overflow 
indicator off 

• Perform total output: 
Turn on overflow indi-

• cater if overflow line 

Figure 13-11. Logic for Fetch Overflow 

is printed 

t l • 
If overflow indicator 
is on, perform output 
(total, heading, detail) 
conditioned by the 
overflow indicator 

• 

~ • • 

card 

Perform total 
calculations 

Turn on 
resulting e 
indicator 

Change in 
control field? 
Yes, turn on 
control level 
indicator 

• 

• 

• 

Using the Printer 13-11 



Figure 13-12 shows two fetch overflow specifications (lines 
07 and 09). Consider how these operations are performed. 
When it is time for the specifications in line 07 to be done, 
a test is made to see if the overflow routine is fetched; if 
the overflow indicator is on, the following operations are 
performed: 

1. 

2. 

All total lines conditioned by the overflow indicator 
are printed. 

Forms are advanced (provided a skip to 01 has been 
specified in a line conditioned by the overflow indi
cator). 

3. Heading lines conditioned by th~ overflow indicator 
are printed. 

4. The overflow indicator is turned off. 

5. The record specified in line 07 is printed. 

Another test is made to see if the overflow indicator is on 
because of the specification (F) in line 09. If line 07 causes 
forms to advance, the overflow indicator would not be on 
at this time. The total record specified in specification line 
09 would print normally. 

However, if the record specified in line 07 were printed on 
the overflow line, the overflow indicator would be on, and 
the specification in line 09 would cause the overflow routine 
to be performed. 

13-12 

To determine where to place the F that will fetch the over
flow routine (provided the overflow indicator is on), you 
should study all possible overflow situations. By counting 
spaces and lines, you can calculate what would happen if 
overflow occurred on each detail and total line. 

IB~ 
International 

RPG OUTPUT-
Date ___ _ 

Punching Graphic 

Program------------
Instruction Punch 

Programmer __________ _ 

Line Filename 

... 
~Space Skip Output Indicators 

~t-r--+---.---+--....--.---1 

! At 1 
.!! " 

~.E~ -"'~ ~ 0 

~ ~ ~ - z 

~ 

0 
z 

0 
z 

Field Namf 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

0 1 ~1 
0 2 0 3 
0 3 0 

0 4 0 

0 5 0 

0 6 0 .~:;:::! An Fin column 16 causes the 
1-o-+-7-+-11-o+--+-l-1--1----+4-+--+j~ ... '""'F'*~}_._3-+4--1-computer to test to see if the 

1-o+s-+-l1-ot-t--+-1-t--+--1--t-o~'''""f''''t~;+--i..L.""l~-1-overflow indicator is on prior 
o 9 o f.T F]~ to printing the line. 
1 0 0 

I . I T -r T T T I T T T T T T T 

Figure 13-12. Fetch Overflow Specifications 



IB"' 

Date 

Program 

Review 13. Overflow and Fetch Overflow 

1. When you are not using overflow indicators or line counter specifications but are allowing RPG II to 
handle overflow automatically, how many lines are assumed per page? What is the first line printed? 
What is the overflow line? 

2. Code the line counter specifications which are necessary to define a form of 50 lines with the overflow 
line eight lines from the bottom? What entry must also be made on the File Description Sheet? 

3. Describe a situation where printing can occur below the overflow line. 

4. How does the fetch overflow specification alter the normal program cycle? 

5. Given the following information, supply the fetch specifications for the job shown in the foilowing 
output-format, which will prevent printing records on or over the perforation. 

• Number of printing lines per page is 66. The overflow line is 58. 

• There are seven total lines in all. Since all are conditioned by the same control level indicator, they 
will all print when a level 1 control break occurs. 

• Overflow should be forced if the overflow line is printed prior to beginning total output. 

• Total lines 1, 2, and 3 must print on the same page. Total lines 4 through 7 must print on the same 
page. 

International Business Machines Corporation Form X21-9090 

Printed in U.S.A. 

RPG OUTPUT - FORMAT SPECIFICATIONS 
1 2 75 76 n 78 79 so 

Graphic t i l Pag{[J Program I I I I I I I r Punching Identification 
Instruction l Punch 

Programmer 

Space .Skip Output Indicators Jo,. 
Edit Codes 

lt8 ...... 
Zero Balances 

I l 
Commas No Sign CR X = Remove 

11§ > to Print Plus Sign Sterling 

Line Filename Field Name End ~ 
Yes Yes 1 A J Y = Date Sign 

iii Position 
Posit on . Yes No 2 B K Field Edit 

8. IC~ in "' No Yes 3 c L Z = Zero 
~ ~~ ~ ~ 8 '.! Output l No No 4 D M Suppress 

] 
0 0 0 

<{ z z z 
~ ~ Record f Constant or Edit Word 

3 4 5 6 7 B 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 JBb9 40 41 42 43 «~~Q~~oo~~~~~~~~woo~~~M~oo~~~M 71727374 

0 1 0 p RI m [gR ]j 3 LL 
0 2 0 lllo lr1A L1 81¢ 
0 3 0 tzj ~ Ll 
0 4 0 171~ rnA ~l:z. I~~ 
0 5 0 m 11.zJ Li 
0 6 0 1710 rrlA- L3 i~ 
0 7 0 tzj Ll.2. L1 
0 8 0 flol ITA rm 8~ 
0 9 0 l11 ~ Lil 
1 0 0 lnci lrl4 L-1~ ~lifi 
1 1 0 n ~ Lt 
1 2 0 lrbl ~l4_ 1w ~~ 
1 3 0 lIJ ~1 
1 4 0 ~Id 171.4J L1 ~ 

~ 

Using the Printer 13-13 



Answers to Review 13. Overflow and Fetch Overflow 

Line 

1. Sixty-six lines are assumed per page. First line printed is 06 and the overflow line is 60. 

2. 

File Type 

File Designation 

End of File 

Filename Sequence 

File Format 
0 

Q~ :;, u Block 

g~w~~ Length 

Record 

Length ~ 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File ...J 

Organization W 
or Additional Area ~ 

Ol 8 
....:.. Overflow Indicator c 

'~ ~·! 
~ f2 Starting ~ 

- Location 

Device 
Symbolic 
Device 

Name of 
w Label Exit 
ls 
z 

Extent Exit 
for DAM 

Core Index 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 
.---

File 
Condition 

U1·U,!.
:;, 
z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0l21 F ll1RJLJM11 ll ~ . ll l l lllbJ l w l ll lelRlt mm I II II II II I ll II l I l I 
Line Counter Specifications 

10 11 12 

Line ! Filename 

] 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1 1 LIE'.Rlr hJ.TI l(J52)FIL"1
A[Z

1
,..,' 1 

1 2 

1 3 

13-14 

Form length is 50 lines and overflow is 42. Any overflow indicator OA-OG or OV must be entered in 
columns 33-34 of the File Description Sheet. 

3. a. Printing can occur below the overflow line when more than one detail or total line is printed during 
one cycle and a line other than the last total line is printed on the overflow line. 

b. When the last detail line for a control group prints on the overflow line, the total lines for that group 
will print below the overflow line. 

4. The overflow indicator is tested prior to printing each line specified with fetch overflow. If the indicator 
· is on when tested, overflow output is performed immediately and then the line specified is printed. Nor

mally, the indicator will not be tested until after total output. 

5. Fin column 16 of lines -1 and 4 of the Outpu t-F orma t Sheet. Fin column 16 of line 1 will assure that 
total 1 will not print below the overflow line, thus causing total 3 to fall over the perforation. Since 1, 
2, and 3 must all be on the same page, no fetch should be specified for lines 2 and 3. Since totals 4 
through 7 must all print on the same page and will not all fit below the overflow line, enter Fin the 
specifications for total 4 to cause a skip to the next page if the overflow indieator is on. Since totals 5 
through 7 must print on the same page as total 4, no fetch specification should be entered for them. 



USING *PLACE TO PRINT DUPLICATE INFORMATION 

Using *PLACE, you can tell the RPG II compiler to print 
duplicate information. When you specify *PLACE on the 
Output-Format Sheet, the fields listed above it will be 
printed in a different position on the same line. This elim
inates much duplicate coding. 

For example, assume that your !distribution firm prepares 
invoices on their data processing system. The invoice 

ITEM 
NO 

NAME 

QTY 

Figure 13-13. Invoice Form 

CUSTNO 

PRICE AMT 

TOTAL TOT 

ITEM 
NO 

(Figure 13-13) sent to each customer consists of two parts: 
one part the customer keeps, the other he tears off and sends 
along with his payment. Many fields are common to both 
parts of the invoice. For example, NAME and CUSTNO 
(customer number) are printed on the first line of each 
part. All fields in the fourth line of the report, except for 
the description (DESC) fields, and all fields in the total 
line are found in both parts of the invoice. The second 
part is almost a duplicate of the first. 

NAME CUSTNO 

ADDR 

CITY 

DESC QTY PRICE AMT 

TOTAL TOT 

Using the Printer 13-15 



Figure 13-14 shows the printer spacing chart for the invoice. 
What output-format specifications would you write to print 
fields twice on the same line? You could define the field 
and give the end position for it each time you wanted to 
print the field. Figure 13-15 shows the coding necessary 
using this method. There is an easier way to do this, how
ever. This is through the use of *PLACE. 

INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
FIELD HEADINGS/WORD MARKS 6 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, 2203, and 5203 Print span: 

----+--IBM 5203 ::t I 
_LLll Lil ll..LLllJ.II Illl..lll.lI IIIIIIIII III IIIII IT I:LII I II rII IITII T lll_lllIIIIIIITTTTTTll 

--~-----IBM 407, 408, 409, and 1403 Model: 
l l_lll llll..1IIIT TTiIJTT T TT TTTTTT TTT TTTT TT TTTT TTTT T TT T II I I I I 

------re~· 1403 Models 2, 3, 5, N1 and 141 
lilill llllilIII Illl..lll I IT ITTTTT TTI TTTT T T TTTT T TT T II I I TTTTTTT If! 

~ IBM 1443 Models 1, N1, 2203, and 1 
HJ. il 111 l l l I I IIlI I I I I II I I T 
Q ) 2 3 4 5 6 7 8 91 I 

1 2 3 • s 6 11~0 1 2 3 • s 6 11 9 o 1 2 3!4 s 6 119o1 2 3 • s 6 119o1 2 3 • s 6 11 9 o 1 2 3 • s 6 119 o 1 2 3 • s 6 1a9o1 2 3 • s 6 1 a 9 o 1 2 3 • s 6 1a9o1 2 3 • s~ a 9 0I1 2 3 

x x X )(.)(X X x 
I/ M 

/XIXDCIX _DCX .~ OC/X1)(1.txl1 

17'id11A IL IS!XD<IXIX • ~IXI 

Figure 13-14. Printer Spacing Chart for Invoice 

13-16 

I 

IXXXXX'lCX 
( 

XIYIXl'll1X 

"1r11rr r 

X XXXP<X 

X.IXIXllCIX /')(~ 

XlXJXJ)qY/X 
Ill ,_J)] 

_l_ T 

1- T 
T 

1- I 

T 

I 

I 
...l 
I 

T 

p. :!: I 

T I 

I 

I J 
I I 

-1 I 
I I 

_J_ J_ 
-, J_ 

I I 

T T 
T 
I 

T 
I 

I 



1Bft1 lntwnetional Business M.chinn Corporltion Form X21-9090 

Printed In U.S.A. 

RPG OUTPUT- FORMAT SPECIFICATIONS 
Date _____ _ 

Program---------------

Programmer ______________ _ 

~ Space Skip Output Indicators 

Line Filename 

~ l J rnlfil,11-,--~--,...~ 
- "§ Field Name II End i" 
~ ~ And And § Positon ~ 
-~CD~ l~jn .e HH ~ ! ~ ~ ~ ~ i ~=~~ ¥ 

"' 0.. 

Commas 

Yes 
Yes 
No 
No 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

1 2 

Page[D 

Edit Codes 

No Sign CR 

fl 
c 
D 

75 76 n 1a 19 eo 

- X • Remove 
Plus Sign 

J Y • Date 
K Field Edit 

Sterling 
Sign 
Position 

L Z•Zero 
M Suppress 

Constant or Edit Word 
3 4 5 6 7 8 9 10 11 12 t3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ~ 33 34 35 36 37 38 i:Jg 40 41 42 43 44 [4s 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 53 64 65 66 67 68 69 70 71 72 73 74 

01 01~vo1tla D 12~ 
0 2 0 

0 3 0 

0 4 0 

0 5 0 

0 6 0 

0 7 0 

0 8 0 

0 9 0 

1 0 0 

1 1 0 

1 2 0 

1 3 0 

1 4 0 

1 5 0 

1~ 0 

11. 0 

0 

IBJ.1 

IMA~E llJS 
cu s[IINl{j 

l4DD[R 

~1Jn~ 75 

1 

~IRlt~IE 3 

IDIE\S~ 

International Business Machines Corporation Form X21-9090 

Printed in U.S.A. 

RPG OUTPUT- FORMAT SPECIFICATIONS 
Date ____ _ 

Program----------------

Programmer ______________ _ 

~ Space . Skip Output Indicators 

Line 

8. 
~ 
E 
.f 

Filename 

i I 
~ T 1 m11r-T ~i 

~ ~ And L Field Name § ~":iton ~ 
€Mm m g; ~ in cc 

i~~~ ~ ! ~ ~ ~ 8~ Output~ 
~ ~ ~ ~ Record ~ 
~ 0.. 

Commas 

Yes 
Yes 
No 
No 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

Edit Codes 

No Sign CR 

.... 
!·) 
c 
D 

75 1s n 10 79 00 

• X • Remove 

J 
K 
L 
M 

Plus Sign 
Ya Date 

Field Edit 
Z m Zero 

Suppress 

Sterling 
Sign 
Position 

Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ~ 33 34 35 36 37 38 ~ 40 41 42 43 44 ~ 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 6t 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 0 

0 2 0 I mor]AI~' 
0 3 0 

0 4 0 ]51 ·~· 
0 5 0 • rJo[[A L' 
0 6 0 

0 7 0 lU I [1' 
0 8 0 

Figure 13-15. Output-Format Specifications for Invoice (Coding Each Field Twice) 

Using the Printer 13-17 



Specifications for Using *PLACE 

*PLACE is a special RPG II function which can be used to 
accomplish duplicate printing with less coding. To the 
RPG II compiler the specification *PLACE means: Dup
licate that part of the line which has been specified and 
place the duplicated information in a different position on 
the same line. *PLACE means a special function is to be 
performed. You should not use this specification as a 
field name, since the RPG II compiler will assume you 
want the preceding field duplicated. When using *PLACE 
you first define, for each record, all the fields which are to 
be duplicated. Give the end position for each field as you 
normally do. Then enter the word *PLACE on the line 
below the fields which are to be duplicated. Figure 13-16 
shows the entries for the first detail line of the invoice. 

The compiler does not know where to print unless you 
specify an end position on the *PLACE entry. In Figure 
13-16, the end position given for the *PLACE entry was 
86. 

The *PLACE specification duplicates not only letters but 
also blank spaces. It will duplicate all the characters (in
cluding blanks) from position 1 to the end position speci
fied for a field. These duplicated characters are then 
placed so that they end in the end position specified for 
the *PLACE entry. 

When specifying an end position for the *PLACE entry, 
you must know exactly where you wish the fields to print. 
You must also consider the amount of space needed for the 
printing of all characters to be duplicated. Always specify 
an end position which allows room for the printing of dup
licated fields. 

IBJ.1 International Business Machines Corporation Form X21-9090 

Printed in U.S.A. 

RPG OUTPUT- FORMAT SPECIFICATIONS 
1 2 75 76 77 78 79 BO 

Date ___ _ Page[D :~:7cation I I I I I I I Punching Graphic 
Instruction 1-P-unc_h____,,__+--+--+--1---1--t----i 

Program------------

Programmer __________ _ 

Space .Skip Output Indicators -"" Edit Codes 
l(jj ... 

Zero Balances 

I 1 
Commas No Sign CR - X • Remove 

I§ > to Print Plus Sign Sterling 

Line Filename Field Naine End Yes Yes 1 ,l\ J Y • Date Sign 
a; Position 

Positon II Yes No 2 B K Field Edit 

! ~ ~ ~ ~ in CD No Yes 3 c L Z • Zero 

~ ~ Output l No No 4 D M Suppress 
E ~~ ~ 0 0 8"" 
~ 

<{ z z 
~ ~ Record rf 

II Constant or Edit Word 
0.. 

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 l:Jg 40 41 42 43 «~~o~~w~~~~~~~~wro~~~M~w~~~ro 71 72 73 74 

0 1 o I ]MV 01 c.I~ ~I llJ<t~ 
0 2 0 ~~ N~ ~151 
0 3 0 ~(} M2 sr Jajf, 
0 4 0 l*P LPr ctt: ~ 
0 5 0 

Figure 13-16. Output-Format Specifications for First Line of Invoice (Using *PLACE to Print Fields Twice) 

13-18 



Formation of Print Lines 

When System/3 performs printer output, a whole line is 
printed at once, regardless of how many fields are in that 
line. Before printing, the whole line is moved to an area of 
storage exactly as it is to be printed. Data is placed in this 
storage area one field at a time. 

The sequence in which data enters the storage area depends 
on the sequence that field names are specified on the RPG 
II Output-Format Sheet. The first field recorded on the 
Output-Format Sheet is entered first, then the second, etc. 
Each field is inserted into the storage area according to its 
end-position entry on the Output-Format Sheet. If you 
have made conflicting entries in your specifications (for 
example, one field overlapping another) the last field men
tioned is the one that will print in its entirety. 

*PLACE operates in the same way as normal field names. 
The operations associated with *PLACE are performed in 

the sequence *PLACE is specified on the Output-Format 
Sheet in relation to other output entries. 

Follow the formation of the first line to be printed on the 
invoice. According to the specifications in Figure 13-16, 
the NAME field ends in position 25 and CUSTNO in 36. 
The first part of the line is completed with these specifica
tions (Figure 13-17, insert A). Because of the way lines are 
formed, the end position for the *PLACE entry must be at 
least two times the higher end position specified for a field 
that is to be duplicated. This ensures that the last field 
mentioned will not overlap the field preceding. In this case 
the same fields are to be printed again on the second part 
of the same line. Since the end position was 36, the second 
part of the same line must end at least in position 72 (two 
times higher than the end position for the field to be dup
licated). It is decided they are to end in position 86. The 
second part of the line is formed by the *PLACE entry 
{Figure 13-17, insert B). 

10 
I 

20 
I 

30 
I 

40 

I 
50 
I 

60 
I 

70 
I 

80 
I 

90 
I 

JOHN FITZGERALD 

A. Result of 
field description 
entries 

4758321 I 

Figure 13-17. Line Formation (First Line of Invoice) 

1 JOHN FITZGERALD 4758321 I 
L_ --------------...1 

B. Result of *PLACE 
entry 

Using the Printer 13-19 



Using Different Spacing for Duplicated Fields. The second 
and third lines of the invoice do not have fields to be dup
licated. However, the fourth line of the invoice requires 
that all fields be duplicated. Notice that different spacing 
is required for the duplicated fields because a field called 
DESC must be inserted between ITEMNO and QTY. 

Figure 13-18 shows correct specifications. You want to 
start with ITEMNO since it is the first field. ITEMNO is 
specified as usual; the end position is given. Then *PLACE 
is specified with the correct end position, 50 in this case. 
These specifications cause the line to look like that in 
Figure 13-19, insert A. 

Now, the remaining three fields are specified and an end 
position is given for each. *PLACE is entered after them 
to signify that the above three fields should be duplicated. 
Remember that when fields are duplicated, all information 

from position 1 to the highest end position specified for a 
field is used. In this case, positions 1 through 38 are dup
licated and placed so that they end in position 95. 

QTY, PRICE, and AMOUNT are in positions 1 through 38, 
but ITEMNO is also there since it ends in position 10. Thus, 
all four fields are duplicated and placed so that they end in 
96. Figure 13-19, insert B shows resulting formation of the 
line. ITEMNO now appears three times, once in the DESC 
field area where it should not be. 

In this example, we can specify the field DESC to end in 
position 75. It will overlay the unwanted ITEMNO field 
and thus get rid of it. Figure 13-19, insert C shows the 
line as it will be printed. 

For each job you do using *PLACE, you will have to cal
culate exactly what happens when lines are formed. 

IB~ 
lnternetional Business Machines Corporation Form X21-9090 

Printed In U.S.A. 

Date ___ _ 

Program __________ _ 

Programmer __________ _ 

Space Skip 

Line Filename 

RPG OUTPUT- FORMAT SPECIFICATIONS 
1 2 75 76 n 78 79 BO 

l Punching Graphic f 
Instruction Punch 1 

~~:~cation I I I I I I I 

Output Indicators 

1 1 
0 
z 

0 
z 

... 
Edit Codes 

~.1 - -y Commas Zero Bal.ances No Sign CR - X • Remove 

I - to Print l==='*"'===*==*==*="=l Plus Sign 
Field Name § Em:! ~ Yes Yes 1 A J Y • Date 

g; t ~siton ~ ~~s ~~s ~ ~ , ~ Z • ~~e:~ Edit 

{l ! Output ~ No No 4 D M Suppress 

~ ~ Record ~ 
Constant or Edit Word 

0.. 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 p9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 o t !M Vb] I ~ ~ 
0 2 0 

0 3 0 

0 4 0 1 
0 5 0 

0 6 0 

0 7 0 

0 B 0 

0 9 0 15 
1 0 0 ~Iese 712 
1 1 0 

Figure 13-18. Correct Specifications for Fourth Line oflnvoice 

13-20 



0 10 

47535 

47535 

47535 

20 30 

1 

38 1.10 

38 1.10 

40 50 60 70 

: 47535 

41.80 ~ - 47535 47535 

41.80 ~I. 47535 WOOLSOCKS,GR,SZ9 

A. Line after first 
*PLACE 

B. Line after second 
I *PLACE 

I C. Line after speci-
TOTAL ___ _ I fication of the 

I DESC field 

Figure 13-19. Fourth Printed Line (Using Correct Specifications) 

80 90 100 

38 1. 10 41.80 

38 1.10 41.80 

TOTAL ___ _ 

Using the Printer 13-21 



Duplicating Constants: *PLACE can duplicate constants 
as well as fields. The same specifications are used for both. 
Figure 13-20 shows the specifications for the last line of 
the invoice. In this case *PLACE duplicates a field and 
two constants. As you can see, using *PLACE eliminates 
duplicate coding. 

*PLACE Used With Other Entries: For the *PLACE entry, 
columns 7-22 and 44-74 must be blank. However, *PLACE 
may be conditioned by any indicators specified in columns 
23-31. When indicators are used, fields will be duplicated 
only when the condition set by the indicators is met. For 
example, the specification in line 3 of Figure 13-21 will be 
done only when matching records are found. 

IB"' 
International Business Machines Corporation Form X21-9090 

Printed In U.S.A. 

RPG OUTPUT - FORMAT SPECIFICATIONS 
1 2 75 76 n 1a 79 so 

Date Graphic 1 t t j Page DJ Program I I I I I I r Punching Identification 
Program 

Instruction Punch 

Programmer 

Space . Skip Output Indicators -"'- Edit Codes 

ii~ 
.... 

Zero Balances 

1 1 Commas No Sign CR - X c Remove 

I§ > to Print Plus Sign Sterling 

Line Filename ~ Field Name End Yes Yes 1 !\ J Y = Date Sign 
iii Position 

Positon ' Yes No 2 a K Field Edit 

~ .e E ~ ~ in "' No Yes 3 c L Z m Zero 

I- ~ ~~ ~ 
t Output l No No 4 D M Suppress 

~ 0 0 0 

] ~ co<( z z z 
~ ~ Record cf. 

I- II Constant or Edit Word 
0.. 

3 4 5 6 7 8 9 tO 11 12 13 t4 15 t718 t9 20 2t 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 [Jg 40 41 42 43 ~~~~~~WITT~~~~~U~WWITT~~M~W~~mm 71 72 73 74 

o 1 o I ~ Of ~IS 
o 2 0 

o 3 0 

o 4 0 

o 5 0 

o 6 0 

o 7 0 

o a 0 

o 9 0 

1 o 0 s1 I IJj tru: AL ~· 
1 1 0 Tk>IT ~ 138 
1 2 0 ~ Lh4J C~I :t[J 

Figure 13-20. Using *PLACE to Duplicate Constants 

IB"' 
International Business Machines Corporation 

RPG OUTPUT- FORMAT SPECIFICATIONS 

Form X21-9090 

Printed In U.S.A. 

I 

1 2 75 76 n 1a 19 so 
Date ____ _ 

Graphic 

Program--------------

Punching 
Instruction Punch 

Programmer _____________ _ 

LL 

~ Space . Skip Output Indicators 

Line 

8. 
~ 

~ 

Filename 

~ J l 1rnttj1r -...--~ ~ I ~ 
w t Field Name - End ~ 
~ ~ And And !!'.! Positon , 
- ,!! ID ~ ~ in CC 

i~H~~o o o S~Output~ 
~ ~ z z z ~ ! Record ~ 
~ 0.. 

Commas 

Yes 
Yes 
No 
No 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

Edit Codes 

No Sign CR 

A 
3 
c 
;) 

- X • Remove 
Pius Sign 

J Y • Date 
K Field Edit 
L Z•Zero 
M Suppress 

Constant or Edit Word 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 1t 12 13 14 15 16 t7 18 19 20 21 22 23 24 25 26 27 28 29 30 3t ~ 33 34 35 36 37 38 ~ 40 41 42 43 « 45 46 47 ~ 49 50 51 52 ~ ~ ~ 56 57 58 59 60 61 62 63 M 65 66 67 M W 70 71 72 73 74 

o 1 0 

o 2 0 

o 3 0 

o 4 0 

Figure 13-21. Conditioning the *PLACE Entry 

13-22 



Printing a Field Several Times on the Same Line 

*PLACE can be used to print the same field several times in 
the line. All you have to do is enter *PLACE along with an 
end position for each time you want the fields duplicated. 
If you want the field duplicated twice, you need two 
*PLACE entries. 

Assume that periodically a store prepares mailing labels for 
each customer who has an account with them. They use 
the labels when they send out special advertisements. The 
mailing label/has only name, address, and zip code on it. 

0 
I 

10 
I 

20 
I 

30 
I 

40 
I 

50 
I 

60 
I 

I NAME I I NAME 

I ADDA I I ADDA 

I CITY I I STATE I I CITY 

I ZIP I 

Figure 13-22. Mailing Labels 

Since the label has to be only a few inches wide, the man
ager found he could print three labels side by side on his 
120-print position printer (Figure 13-22). 

You can see that each field needs to be printed three times 
on each line. In the examples discussed so far, *PLACE 
was used to duplicate fields only once. 

Figure 13-23 shows the specifications for the first line. 
NAME needs to be entered three times per line. The 
original field specification prints it one time: the two 
*PLACE entries cause it to be printed two more times. 

I 
I 

70 
I 

I 

I 

(STATE I 
ZIP I 

80 
I 

I 

I 

I 

90 
I 

100 
I 

NAME 

ADDA 

CITY I 
I 

110 
I 

I 

I 

I STATE I 
ZIP I 

120 
I 

1Bft1 International Business Machines Corporation Formx21...gogo 

Printed in U.S.A. 

RPG OUTPUT- FORMAT SPECIFICATIONS 
1 2 75 76 n 10 19 00 

Date 
Graphic t t t 1 j Pa9•DJ Program I I I I I I I r Punching 

Instruction Punch 
ldentrtication 

Program 

Programmer 

Space Skip Output Indicators _I'>, 

Edit Codes 

ti~ 
...... 

Ze_ro Balances 

T 1 
Commas No Sign CR X g Remove 

le > to Print Plus Sign Sterling 

Line Filename Field Name End ~ 
Yes Yes 1 !\ J Y = Date Sign 

And ;;; Position 
Positon ' Yes No 2 " K Field Edit 

~ ~ ~ ~ in ID No Yes 3 c L Z ~ Zero 
I- ~~ ~ 

i;; 
Ci Output l No No 4 ::> M Suppress 

j ~ 0 0 
CD <t z z z 

~ ~ Record c. 
~ Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ~9 40 41 42 43 «~~~~~w~~~~~~~~ww~~~~~~n~~ro 71 72 73 74 

0 1 oL 4181 EL ~ l312. 
0 2 0 N~ ~IE 3[5 
0 3 0 ~ff LA] CE ffi5 
0 4 0 *Pl L'rt ~E [!115 

Figure 13-23. Using *PLACE for Producing Mailing Labels 

Using the Printer 13-23 



13-24 



Review 13. *PLACE 

1. What is the function of *PLACE? 

2. In the example shown, is *PLACE used correctly? If not, why not? 

1Bft1 lnWnational Business Machinn Corporation Fann X21-9090 

Printed Jn U.S.A. 

RPG OUTPUT- FORMAT SPECIFICATIONS 
1 2 75 1s n 1a 19 so 

Date I Punchi~ I Graphic I I I I I I I I 
Page DJ Program I I I I I I I 

Program 
Identification 

Instruction Punch 

Programmer 

LL 

~Space .Skip Output Indicators Jo. 
Edit Codes 

i £Id 
..... 

Zero Balances 
0 1 1 le > Commas 

to Print 
No Sign CR - X • Remove 

Sterling 

"' ~ 
Plus Sign 

Line Filename ~ Field Name End Yes Yes 1 A J Y • Date Sign 
a; Position 

L Positon . Yes No 2 !l K Field Edit 

! ~ 
ll ~ in i No Yes 3 c L Z • Zero 

~ .2 !! ~ ~ 
,, ~ 

Output No No 4 D M Suppress 

~ ~ ~ :t <{ 
0 b 0 ~ ~ z z z Record :;: 

~ ~ 0.. 

.;i .:_ Constant or Edit Word 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 35 l:Jg 40 41 42 43 «~~a@~ro~~~~~w~~~ro~~~~~~~~~ro 71 72 73 74 

0 1 0 tflKll w111 v l1 ~ ~ ~ 
0 2 0 

0 3 0 

0 4 0 

r\1A NE 2J~ 
~ .... r ti'P~ ~I 
I~ ILIAJ ell: 7~ 

3. Write the output specifications to print three mailing labels in a row using *PLACE. The first label 
ends in print-position 25. The second in 60, the third in 95. Each mailing label will have three lines 
and look like this: 

NAME (25 characters) 

ADDR(25) 

ADDR (18) ZIPCODE ( 5) 

Using the Printer 13-25 



Answers to Review 13. *PLACE 

IB"' 

1. The function of *PLACE is to easily code the printing of duplicate information on the same output 
line. *PLACE places information from print position 1, through the highest end position previously 
defined for a field into the print positions indicated by the end position in the *PLACE entry. 

2. It is not correct. The end position in the *PLACE specification is not high enough. The duplicated 
information will overlay the field called ACCTNO. The end position on the *PLACE line should be 
at least twice the highest end position previously specified for that record. 

3. Three labels must be printed. Therefore, for each line you must specify the original field and two 
*PLACE entries which will cause the contents of the original field to be duplicated twice. 

International Business Machines Corporation 

RPG OUTPUT· FORMAT SPECIFICATIONS 

Form X21-9090 

Printed In U.S.A. 

1 2 75 76 n 10 79 00 
Date ___ _ 

Program------------

Programmer __________ _ 

Space . Skip 

Line Filename 

l Punching Graphic 1
1 

J 1 J 
Instruction l-P-unc-h--1--+--+--+--+-1--+--+J~J 

Output Indicators jo,, 

0 z 
0 
z 

Field Name End 
Positon 
in 
Output 
Record 

> 
~ 
ii'i 
II 

ID 

~ 
~ 
II 

0.. 

... 
Commas 

Yes 
Yes 
No 
No 

PageITJ 

Edit Codes 

Zero Balances No Sign CR - x. Remove 
to Print Plus Sign Sterling 

Yes 1 A J y. Date Sign 

No 2 B K Field Edit Position 

Yes 3 c L z = Zero 
No 4 D M Suppress 

Constant or Edit Word 
3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 l:g_ 33 34 35 36 37 38 39 40 41 42 43 44 ~ 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 2 0 

0 3 0 ~PLAC~ 
0 4 0 

0 5 0 r5 l 
0 6 0 ~R1 
0 7 0 

0 8 0 

0 9 0 p 1 
1 0 0 

1 1 0 

1 2 0 

1 3 0 

13-26 



USING THE DUAL FEED CARRIAGE FEATURE TO 
PRINT TWO OUTPUT FILES FOR ONE PROGRAM 

The dual feed carriage feature of the 5203 Printer (Figure 
13-24) allows you to produce two separate printer output 
files for one program. Note that two forms are placed on 
the same printer. The forms used for the two output files 
are special forms for your printer such as checks or invoices 
which are narrower than the standard forms. Each form is 
held in place by its own set of carriage tractors. One form 
is controlled by the left carriage of the printer and the other 

Figure 13-24. 5203 Printer with the Dual Feed Carriage Feature 

form is controlled by the right carriage. Note the space be
tween the right and left carriage tractors that contains no 
form. When you are printing on two forms you will lose 
17 print positions since noforms can be place in this space. 

To print two output files for one program, each of the two 
printer files are considered separate output files and must 
be described as such. These output files require special 
descriptions on the File Description Sheet and the Output
Format Sheet. 

Using the Printer 13-27 



File Description Specifications 

The two output files to be printed must be assigned to the 
device names PRINTER and PRINTR2 on the File Descrip
tion Sheet (columns 40-46). PRINTER is the device name 
for the left carriage of the printer. The form con trolled by 
the right carriage of the printer is assigned the device name 
PRINTR2. Figure 13-25 is a sample File Description Sheet 
for the dual feed carriage feature. 

Output-Format Specifications 

Spacing and skipping on the two forms are completely in
dependent. You can specify different spacing and skipping 
for each output file. Spacing and skipping are entered in 
columns 17-22 of the Output-Format Sheet. 

Remember, there are 17 print positions you cannot use, 
because there is a space between the left and right car
riage tractors which cannot contain a form. This is im
portant when you are planning where to position your 

printing on each form. The first character to be printed 
on the form in the right carriage must be at least 17 posi
tions away from the last character on the form in the left 
carriage (PRINTER) to have 80 print positions. You de
cide to use print positions 1 through 80. Now, since the 
first character in the right carriage must be at least 17 
positions away from the last character in the left carriage, 
print position 98 is the first available position: 

80 (End position of the form in the left carriage) 
+17 (Number of print positions you cannot use) 

97 

Therefore, 98 is the first available position. If the length of 
your print line will be 35 characters, the end position for 
the second form will be 132. Recall that you must specify 
the end position for each form in columns 40-43 on the 
Output-Format Sheet. You would specify 80 as the end 
position of the left form, and 132 for the right form. 

IB:M International Business Machines Corporation Form X21..S092 

Printed in U.S.A. 

Date----

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS 
1 2 

Page [] 

75 76 77 78 79 80 

~;~~;i~~ation I I I I I I I 
Program------------

Punching 1 Graphic I 
Instruction j Punch J 1 1 T 

1 
Programmer ___________ _ 

Core 

Line cu Sizet~ 
g; Compile 

1-

j 

Core 
Size to 
Execute 

Control Card Specifications 

Sterling ~ 

~ ~ l 

f~H~;~;.~:sf 
5.5.;;ij~ ~ 

~ E.£00£~ ~ 
~ 

Refer to the specific System Reference Library manual for actual entries. 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 

Line Filename 

File Type 

File Designation 

End of File 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Sequence ~:=n~:a~i~~ ~ Device Symbolic w Name of ~=nd 
File Format or Additional Area -8 Device 0 Label Exit ~ 

8- f2 @ ~ Overflow Indicator ~ z Condition 
~ ~ a: o r--- -~ ~ Core Index U1-~ 

Ll.

Eo ~ ~ Block Record a: .::::: t:: Key Field i ~ => ~ ,----
g ~ w ~ ~ Length Length :J ~ g ~~:!~~n iE j < z 

3 4 s 6 1 8 9 10 11 12 13 14 15 15 11 18 19 20 21 22 23 24 25 26 21 20 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 so s1 52 53 54 ss 56 s1 58 59 60 61 62 63 64 65 66 s1 68 69. 10 11 12 73 74 

0 2 F 1INP u]I 1 P _,_,,,Ii. #fi't#!; tff tt :t :\:\:~ ==--

0 3 

0 4 

0 5 

Figure 13-25. Device Names for Two Output Files Using the Dual Feed Carriage 

13-28 



Example: End-of-the-Month Billing 

Assume that your company invoices its customers using 
your data processing system. It is your responsibility to 
prepare and print the invoices to be sent to the customers. 
You are also going to keep an invoice register; a record of 
every invoice that is set out. Since you have the dual feed 
carriage feature, you will print both the invoice and the 
invoice register at the same time. 

Since you are printing an invoice and an invoice register, 
you name your two output files INVOICE and INVREG. 
Recall that the form in the left carriage is controlled by the 

device name PRINTER, and the form in the right carriage 
is controlled by the device name PRINTR2. Figure 13-26 
shows a sample File Description Sheet. 

Next, the format of your output must be determined. In 
this case, INVREG will have the standard length of 66 
lines, while INVOICE will have a non-standard form length 
of 50. Headings must be printed on the top of each page. 
INVOICE has a 63 print position line and INVREG has a 
50 print position line. Figure 13-27, insert A is a sample 
invoice and Figure 13-27, insert Bis a sample invoice 
register. 

File Description Specifications 

File Type 

File Designation 

End of File 

Line Filename Sequence 

File Format 

~ u Block 
ii!. € < Length 
0. W <(LL 

Record 
Length :i 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File ...J 

Organization W 
or Additional Area {l 

"' 8 .,!. Overflow Indicator c 

'~ ~-~ 
~ e Starting ~ 

- Location 

Device 
Symbolic 

Device 
Name of 
Label Exit 

Extent Exit 

for DAM 

Core Index 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind ..--

File 
Condition 

UH~ 
~ z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

:1:1 : ~!~•¥1 ~ H! !H ! ~¥v tH L~~- H!H HH! H!!! ! ! ! 
Figure 13-26. Assigning Device Names to INVOICE and INVREG 

Using the Printer 13-29 



TELEPHONE 
408-286-9100 

SOLD TO 

SHIP TO 

S. W. KINGS 

REYNOLDS INDUSTRIES, INC. 
111 W. SECOND ST. 

SAN JOSE, CALIF. 95113 

498 RIVER STREET 
SAN JOSE, CALIF. 94067 

IMPERIAL DESIGN HOMES 
DIVISION OF S. W. KINGS 
8343 BRANCH STREET 
SUNNYVALE, CALIF. 95117 

ORDER DATE 

7/10/70 
ORDER NO. 

13826 
SALESMAN 

G. JONES 

QTY. 

96 
40 

350 
200 
175 

INVOICE 
NO. 

13836 
13827 
13828 
13829 

ITEM 
NUMBER 

391468 
411116 
411132 
411732 
511117 

CUST. 
NO. 

430975 
431030 
432450 
434960 

$ 

DESCRIPTION 

OCTAGON BOX 4 INCH 
TWINLITE SOCKET B 
SOCKET ADAPTER BRN 
SILET SWTCH IVORY 
PULL CORD GOLD 

INVOICE REGISTER 

111sno 

EXTENDED DISC. 
AMOUNT AMOUNT 

471.58 $ 
238.96 4.78 

57.70 
208.62 4.17 

$ 

UNIT PRICE 

.23 

.60 

.32 
1.20 

.42 

TOTAL 

INVOICE 
AMOUNT 

471.58 
234.18 

57.70 
204.45 

FINAL TOTALS $12,263.97 $145.29 $11,118.68 

Figure 13-27. Sample Invoice and Invoice Register 

13-30 

CUST. NO. 

430975 

SHIP DATE 

7/15/70 

EXTENDED 
AMOUNT 

$ 22.08 
24.00 

112.00 
240.00 

73.50 

$471.58 



Since INVOICE has a non-standard form length, it must 
be defined on the Line Counter Sheet. You will use line 
43 as the overflow line. Figure 13-28 shows a sample Line 
Counter Sheet. (Note that since INVREG has a standard 
form length, it does not have to be defined on the Line 
Counter Sheet.) 

You also want to have headings printed on the top of every 
page. Because you do these operations only when an over
flow indicator is on, you have to condition these operations 
by the overflow indicator. Figure 13-29 is the File Descrip
tion Sheet with overflow indicators. Figure 13-30 shows 

the Output-Format Sheet to print headings at the top of 
every page. {Remember that skipping and spacing on the 
two·carriages are independent.) 

Also, recall that the form in the right carriage (in this case 
INVREG) must be at least 17 positions away from the form 
in the left carriage. Since INVOICE will have a 63 print 
position line, you assign positions 1-63 to it. INVREG is 
a SO print position line and you assign it to positions 81 
through 131. 

Line Counter Specifications 

Line ! Filename 

~ 
.8 ., E 

.5 :I 

..J z 

10 11 12 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1 1 L 1w~o1ce l@~~FU4i~~o~ 
1 2 

1 3 

Figure 13-28. Line Counter Specifications for INVOICE 

Line Filename 

File Type 

File Designation 

End of File 

Sequence 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Extent Exit 
for DAM 

File AdditionNnordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Type of File ..J Symbolic Name of Tape 
Organization w Device Device Label Exit Rewind 

File Format or Additional Area ~ .------1 

~ ~ Overflow Indicator ~ ~~ition 
u Block Record :::: ~ ~ ·~ Core Index U1-~ 
~ w ~ ~ Length Length § ~ g Starting ,ii ~ ~ 

.. Location 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3,j~:"' ~::36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

02 F/ltJVOf~ ~ /f~]F\~% LPRtNT£R: 

0 s F cu s~l~s v~ F l1l1ti_ l!W71R{j itA 1 la~ ID / sl~ 
0 6 

0 7 

Figure 13-29. File Description Sheet for End-of-Month Billing 

Using the Printer 13-31 



IBr., International Business Ma 

RPG OUTPUT · FORl'v 
Date Graphic I [ Punching 

Program 
Instruction Punch l 

Programmer 

!;!, 
~ Space Skip Output Indicators r; .2 
i 
0 1 l z: 

Line Filename w ~ Field Name 
t:!!: 

~ e M t 

~ ~ 
~ 

Ill 4:: 
f-- =~ ~ 

!; 8 <{ 

i 8. t 4:: 0 0 0 "' 
~~ 

CD<{ <{ z z z 
~ ~ 

"' 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4 

0 1 o I l!tjV 0 I ~ci 11 12Jo 1 1P 
0 2 0 PR ~F 
0 3 0 

0 4 0 

0 5 o I ~v RielG fj_ ~~l !le 
0 6 0 k:>IR OOt' 
0 7 0 

Figure 13-30. Heading Specifications for INVOICE and INVREG 

13-32 



Review 13. Dual Feed Carriage 

1. What does the use of the dual feed carriage allow you to do? 

2. What relationship exists between the two feeds of the dual feed carriage? 

3. What limitations exist when designing forms for use with the dual feed carriage? 

4. How do you distinguish between the two feeds on the RPG II specification sheets? 

Using the Printer 13-33 



Answers to Review 13. Dual Feed Carriage 

13-34 

1. The dual feed carriage allows the printing of two independent reports simultaneously. 

2. None. It is as though there were two separate printers. 

3. Seventeen print positions must be left blank between the two output forms. 

4. The only difference is that the device name on the File Description Sheet for the left carriage is 
PRINTER and for the right carriage is PRINTR2. 



USING THE PRINTER-KEYBOARD AS A SECOND 
PRINTER 

The IBM 5471 Printer-Keyboard is an input/output device. 
It accepts data into storage and/or prints data from storage. 
You will want most of your output printed on the 5203 
Printer, but there are certain times when you may want 
output printed on the printer-keyboard. For example, OCL 
statements and halt messages are printed on the printer
keyboard, if you have one. If you do not have a printer
keyboard, they may be printed on the printer. If you are 
printing a report on the printer, you would not want halt 
messages from the system printed among the figures of 
your report. In this case, the printer-keyboard is a device 
which will print this output for you. There are two major 
uses for printing on the printer-keyboard: 

• As a logging device for OCL statements and halt mes
sages to the operator. 

• As an output device for certain RPG II programs. 

Using the Printer-Keyboard to Communicate With the 
Operator 

OCL statements and message codes can be printed on the 
printer-keyboard. OCL statements and halt messages are 
printed in order to communicate the system's status to 
the operator. If a halt occurs, the operator will want to 
know why, so he can correct the situation. For example, 
if a wrong disk pack is mounted, the operator needs to 
mount the right pack before the program can execute. 

You can also place comments among your OCL statements 
to give the operator certain set-up information. You might 
tell him which pack to mount, so your program will not be 
interrupted by a halt because a wrong pack is mounted. If 
your system has no printer-keyboard, the OCL statements 
and halt messages are printed on the printer. If you have 
a printer-keyboard/and do not want messages printed on 
the printer, you can tell the system to print them on the 

printer-keyboard. Whether you use the printer-keyboard 
or the printer for these messages, the LOG statement is 
used to tell the system whether or not statements are to 
be printed and where you want to print them. 

LOG Statement 

The device used to print OCL statements and message codes 
is called the logging device. If you want to change the log
ging device or specify if the statements and codes are to be 
printed, you must use a LOG statement. You can use the 
LOG statement anywhere among the IPL statements or 
within any of the sets of OCL statements for your programs. 
In the job stream, a LOG statement appearing within a set 
of statements for a program must precede the RUN state
ment. If a LOG statement appears in a procedure, it must 
follow the LOAD statement and precede the RUN state
ment. 

The LOG statement (Figure 13-31) can be coded to per
form the following four functions: 

Code Meaning 

CONSOLE Use printer-keyboard as logging device. 

PRINTER Use printer as logging device. 

OFF Stop printing. 

ON Start printing. 

I II LOG code 

Figure 13-31. LOG Statement Format 

Using the Printer 13-35 



When disk system management reads a LOG statement that 
contains the OFF code, it stops printing OCL statements 
and message codes. The only way you can instruct the 
system to start printing them again is by using a LOG state
ment that contains the ON, PRINTER, or CONSOLE code. 
The ON code causes disk system management to resume 
printing on the last used logging device. If your system has 
no printer-keyboard, printing is resumed on the printer. 

For example, assume you are using the OCL statements 
shown in Figure 13-32. Also assume that the system has 
a printer-keyboard. 

Because of the first LOG statement, the printer is used as 
the logging device while program PROG 1 is being run. OCL 
statements and error messages are not printed for program 
PROG2 because of the second LOG statement. The third 
LOG statement causes the logging device to be used again 
but the print-keyboard, not the printer, is the device used. 

Using the Printer-Keyboard as an Output Device for RPG II 
Programs 

The 5471 Printer-Keyboard can be used as the only output 
printer or as the second output printer for an RPG II pro
gram. The DSPL Y operation code uses the printer-keyboard 
as the only output device, and the printer-keyboard can be 
used as a second printer for exception reports. Following 
are three applications in which the printer-keyboard can be 
used as the output device. 

1 4 8 12 16 20 24 28 32 

/~ 
II Lb ,. ~~ IN ITFR 
71 o ~ llJ ~~ ~~ 1L._ If= l 
71/__ ~ 

..... 
Hv 

II I- ... i;;, J:li:1 
17 I 11 TI µu r.,r..- ~ 
l7l7 ~u~ J7 

II 1111" ~ o~ 

Figure 13-32. LOG Statement Example 

13-36 

Example 1 

Remember that the printer-keyboard can be used to print 
a field. For example, if you were processing an inventory 
program, you might want to print all item numbers for 
which no disk records were found. The printer-keyboard 
can print a field if you use the DSPLY operation code. 
Output from the DSPLY operation code (either a field or 
array element with or without a halt) can only be printed 
on the printer-keyboard. This field will not be displayed 
on the printer. Figure 13-33 is a sample File Description 
Sheet for using the DSPLY operation code. Note that the 
file must be defined as a display file in column 15 and the 
output device must be CONSOLE (the symbolic device 
name for the 54 71 Printer-Keyboard). 

Example2 

Remember that the DEBUG operation is an RPG II function 
that you may use to help you find errors in a program 
which is not working properly. This code causes either one 
or two output records to be printed containing information 
which is helpful for finding programming errors. If you 
have a report being printed on the printer, and you find 
you must use the DEBUG operation code, you would not 
want these output records from DEBUG among your own 
output records. This would be a good time to use the 
printer-keyboard for the output records from DEBUG. 
Figure 13-34 shows how to define the printer-keyboard as 
the output device. 

Example3 

The printer-keyboard can also be used as the right carriage 
is used on the dual feed carriage feature. Recall that the 
dual feed carriage feature will give you two separate output 
files for the same program. Just as the right carriage was 
used as a second output device to print the invoice register -
{INVREG) in the dual feed carriage application example, 
the printer-keyboard could also have been used as the second 
output device. The only difference is that the printer-key
board must be defined as the output device on the File 
Description Sheet as it was in Figure 13-34. 



Line Filename 

File Type 

File Designation 

End of File 

Sequence 

Block 
Length 

Record 
Length 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File -' 
Organization w 

"' or Additional Area 8 
.:. Overflow Indicator c: 
0 .---.g 

, t: Key Field ii 

~ g ~:!~!n ~ 

Device Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Core Index 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

::::> z 

Tape 
Rewind 
.-----

File 
Condition 

U1-~ 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

02 Dffli~ f%%%%#]$#fff]CDHS~LE 
0 3 

0 4 

1-0-1---4
5 

f---+-1--1-f---+-+--+-+--jf---+-+--+-+--j1--1--+-+--jf---+--+--+-+-l-+-+--1-t-+--+--t-+--jr-+--+--t-1--1--+--+-+ Note: No specifications may be made 
o s in the shaded columns. 
0 7 II I I I I I I I II I I I I 

Figure 13-33. Specifications for Using the Printer-Keyboard for Display Files 

Line 

3 4 5 6 7 

0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

Filename 

File Type 

File Designation 

End of File 

Sequence 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File _, Symbolic Name of 
Organization w Device Device w Label Exit 

File Format or Additional Area ~ 0 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind ,.............-

0 "' 8 z ~ .:. Overflow Indicator c: !!i Condition 

~ Block Record , ~ ~ ·! Core Index U1-~ 

File 

~ .e < a: ~ l..... ... :x :l :J 
~ w q:: u. Length Length ::J ~ g ~=!~:n ~ j ~ z 

B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

Note: No specifications may be made 
in the shaded columns. 

Figure 13-34. Specifications for Using the Printer-Keyboard as an Output File 

Using the Printer 13-37 



13-38 



Review 13. Printer-Keyboard 

1. What are the two general uses for the printer-keyboard? 

2. Name the three types of situations when you may want to use the printer-keyboard as an output device. 

3. Define the printer-keyboard files on the File Description Sheet for these three situations. 

Using the Printer 13-39 



Answers to Review 13. Printer-Keyboard 

Line 

1. The printer-keyboard can be used to log OCL statements and operator messages and as an output device 
for RPG II programs. 

·2. You may want to define the printer-keyboard as an output device for: 

3. 

1. The DSPLY operation code. 

2. The DEBUG operation code. 

3. Specifying normal output on an output sheet. 

Filename 

File Type 

File Designation 

End of File 

Sequence 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Type of File ...J Device Symbolic Name of Tape 
Organization w Device w Label Exit Rewind 

0 
File Format "'or Additional Area ~ ;. ~ 

~ ~ Overflow Indicator -~ !!! Core Index ~~~ 

~ w ~ ·~ ~~~~~h ~:;~ ~ ~ ~ ~:~:~~~d ~ ~ ~ ~ 
3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 58 69 70 71 72 73 74 

0 2 F IEIR]K L I sl1J o lfl ~- ojM.s c:> t..!E1 

0 5 F 

0 6 F 

0 7 F 

13-40 



u:m414:r 
) AL TEAING THE ORDER OF PROCESSING FILES ,, 

CHAPTER 14 DESCRIBES: 

RPG II FORCE operation code. 

Forcing records from a file. 

FORCE and the look-ahead feature. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Multi-file processing. 

Look-ahead. 

Matching records logic and match fields. 

RPG II object cycle. 

End-of-file condition. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Functions and coding of the FORCE operation code. 

How to force records from a file. 

Use and coding of FORCE with the look-ahead feature. 

Altering the Order of Processing Files 14-1 



INTRODUCTION 

· RPG II uses two methods to determine the order in which 
records are processed in a multi-file job. 

• If match fields are not specified for either file, all records 
in the primary file are processed, followed by those in 
the secondary files in the order defined on the File 
Description Sheets. 

• When match fields are assigned, the RPG II logic of 
matching records determines from which file the next 
record is to be processed. 

The order of processing determined by RPG II logic is ap
propriate for most of your multi-file jobs. However, for 
certain jobs, it may be necessary to have some of the 
records in the two files processed in an order other than 
that in which RPG II logic would select the records. 

A record can be processed out of order only if you indicate 
to the program that the file containing that record is to be 
forced. To do this, you must code additional specifications. 

Regardless of how your files are organized, the following 
situations require that you alter the order of processing: 

14-2 

1. Match fields cannot be assigned to the files and you 
wish to: 

a. Process a primary file record followed by a par
ticular number of secondary file records. 

b. Process a secondary file record only when it 
matches a primary file record. 

2. Match fields are assigned to both input files. You 
wish to process one primary file record, followed by 
matching secondary file records, then the rest of the 
matching primary records. 

3. A particular file is to be used in a job only if certain 
conditions occur. 

To alter the order of processing, you must first determine 
which file is to be processed - when and under which con
ditions. Once you know the order, the next step is to [deter
mine, for a particular programming cycle, whether the 
RPG II logic will select the appropriate record or if you 
must force the_ processing of that record. 

The first record to be processed in any job can only be 
selected by RPG II logic in the usual way. Thereafter, to 
alter the order of processing, you tell the program to force 
a record from a file which would not ordinarily be processed 
next. Once the forced record is processed, and providing 
another record is not forced, the RPG II logic selects the 
next record in the usual way. This is the record which 
would have ordinarily been processed if the other file had 
not been forced. 

( 



FORCE: SPECIFYING THE NEXT FILE TO PROCESS 

To process a record out of its normal sequence, you specify 
on the Calculation Sheet the FORCE operation code and 
the name of the file which is to be forced in the next pro
gram cycle (Figure 14-1). 

Assuming a record type 01 from the primary file is being 
processed, the calculation on line 01 is performed. The 
next detail-time calculation specification for record type 
01 indicates that the secondary file (SECOND) is to be 
forced. The FORCE does not occur immediately, how
ever. This specification only tells the program to remember 
that a record from the file SECOND is to be processed next. 
Any additional calculations and/or output for the record 
being processed are performed first to complete the present 
program cycle. 

At the beginning of a normal program cycle, RPG II logic 
looks at the two records available to select the one to 
process during that cycle. However, if the record from the 
file which would not normally be selected is to be processed, 
this must be indicated to the program before the beginning 
of the cycle. If a file is to be forced, there is no need for 

RPG II logic to compare the records and make a selection. 
This is the reason that, if a file is to be forced, the FORCE 
must be indicated during the program cycle immediately 
before the cycle in which the FORCE is to occur. 

Depending on your job, you may not have to force a record 
in every program cycle of a job. For such situations, you 
must indicate when the FORCE is to be done by specifying 
conditioning indicators in columns 9-17 of the Calculation 
Sheet (Figure 14-1). Whether the FORCE is to be per
formed in the next cycle or not may depend on any of 
several conditions: 

• The type of file or record type being processed at the 
time. 

• The number of records which have been processed. 

• The result of a calculation performed. 

• The contents of a field on the record being processed. 

• The contents of a field on a record which has not been 
processed yet. 

IB"' 
International Business Machines Corporation FormX21-9093 

Printed in U.S.A. 

Date ___ _ 

Program, ___________ _ 

Programmer __________ _ 

Indicators 

Line I L 
! 

Factor 1 

~ ~ 0 0 z z 

RPG CALCULATION SPECIFICATIONS 

[ 

Punching Graphic T 
Instruction Punch T 

Operation Factor 2 

T 
T 

I 
l 

Result Field 
Field 
Length 

1 2 

Page OJ 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1s2 

Lookup 

Table (Factor 21 is 

75 76 77 78 79 80 

~;:~~~f:ation I I I I I I I 

Comments 

a 3 c ~11 ~dRe~ SIEh:>lrvJD · Con di ti on under -+-1-+-+-1--+-~~_µ:q!!..!.J.=~:::+==-j~~~+-+-+-1--+-+-+--+-1-+-+-1--+-.i-+-H1-+-+-+--+-+-+-Hl----l--+-+--+-.i-+-+-l----l---l--I 
0 4 c 

0 5 c which force is to Additional calculations. 
1-:~:4-+:-4-l---+--l---I-- be performed. --+-1-+--+-1---+-+Jf'-1--1---4 

0 8 c 

0 9 c ll 
1 0 c 

Figure 14-1. Specifying the File to be Processed in the Next Program Cycle 

Altering the Order of Processing Files 14-3 



Forcing a Number of Records from a File 

Let's consider a case in which you condition the FORCE 
operation on the basis of whether a resulting indicator is 
on or off. 

Suppose you have a number of customers who periodically 
order items to be delivered from a central warehouse. One 
record is kept for each unit in stock in the warehouse, and 
another record for each customer's order of a particular 
unit. 

Orders are processed according to the type of unit ordered. 
Therefore, for a particular run, the primary file (ORDER) 
contains all order records for only one type of unit, and 
the secondary file (STOCK) contains all in-stock records 
for that type of unit. 

5648 4607 10 

4607 12 

4607 12 

4607 07 

4607 04 

4607 05 

4607 09 

I I I 
Customer Unit Qty 
Number Ordered 

® 
ORDER file 

Figure 14-2. Files for Processing Customer Orders 

14-4 

For this run, the ORDER file {Figure 14-2, insert A) con
tains the week's order records for television sets, unit num
ber 4607. The records show which customer placed the 
order, and the quantity of television sets wanted. The 
STOCK file consists of a separate record for each tele
vision set {unit 4607) in stock (Figure 14-2, insert B). Each 
record provides the unit number, list price, and serial num
ber of the item. 

There are two purposes for processing the files. First, you 
want an indication of which orders can be filled and which 
orders cannot be filled. Secondly, the STOCK file is to be 
kept up-to-date so it only contains as many records as 
there are television sets available. 

4607 39895 WS61770 

39895 TS91870 

39895 M320CEW 

39895 4361G11 

39895 K124110 

39895 S15206H 

39895 4224320 

39895 D21AX32 

4607 39895 126AJ41 

l l 
Unit List Serial 
Number Price Number 

@ 

STOCK file 



The job should produce a printed report showing which 
orders can be filled, and the amount each customer owes 
(Figure 14-3). Thus, you must determine the amount due 
for each item and the total amount for each order. A 
record from each file must be available before you can 
calculate the information. 

Files for this job must be processed in a specific order. The 
quantity ordered (QTY) from an ORDER record must be 
available first. This quantity is used to determine how 
many STOCK records are to be processed. When enough 
STOCK records for an order have been processed, the 
next ORDER card is selected to repeat the process. 

CUSTOMER ITEM QTY SERIALNO 

1938 4607 09 
126AJ41 
DZ1AX32 
4324320 
S15206H 
K124110 
4361G11 
M320CEW 
TS91870 
WS61770 

2012 4607 05 

2637 4607 04 

3425 4607 07 

Figure 14-3. Printed Report Showing Customer Orders Processed 

Looking at the two files, you can see that every record has 
a common field containing the unit number. It does no 
good to assign a match field to control processing order, be
cause the unit number is always the same for every record. 
All records in the primary file would be processed before 
any secondary file records. 

Remember, there is no way you can control selection of the 
first record to be processed in a job. RPG II logic always 
selects a primary file record first when match fields are not 
specified. Since an ORDER record must be available first 
for this job, the ORDER file should be designated as the 
primary file. 

COST TOTAL 

359.05 359.05 
359.05 718.10 
359.05 1077.15 
359.05 1436.20 
359.05 1795.25 
359.05 2154.30 
359.05 2513.35 
359.05 2872.40 
359.05 3231.45 

359.05 359.05 
359.05 718.10 
359.05 1077.15 
359.05 1436.20 
359.05 1795.25 

398.95 398.95 
398.95 797.90 
398.95 1196.85 
398.95 1595.80 

367.03 367.03 
367.03 734.06 
367.03 1101.09 
367.03 1468.12 

Altering the Order of Processing Files 14-5 



Controlling the Number of Times FORCE is Performed 

After RPG II selects and processes an ORDER record, you 
must FORCE the processing of a number of STOCK rec
ords. The quantity ordered (QTY) from the ORDER rec
ord is used to control the number of times you force second
ary file records. The quantity is stored in a field, called 
COuNT, to keep track of how many records are left to be 
forced for an order. Each time a STOCK record is forced, 
the number in COUNT is reduced by one. When COUNT 
reaches zero, enough STOCK records have been processed 
for that particular order. Then RPG II logic can again take 
over to process the next ORDER record (Figure 14-4). 

The calculation specifications shown for this job (Figure 
14-5) only determine if a record is to be forced in the next 
cycle. 

Assume the first ORDER record (record type 01) has been 
selected, making the quantity ordered (QTY) available. The 
first calculation specification (line 01) for this record type 
stores the quantity in the COUNT field. Then the program 
determines if any STOCK records are to be processed for 
this order (line 05). If COUNT is greater than zero, indica
tor 27 turns on. With 27 on, line 06 is performed, indica
ting a STOCK record must be forced in the next program 
cycle. 

At the beginning of the second cycle then, the first STOCK 
record (record type 02) is selected (by being forced). Line 
03 is performed to reduce the COUNT by one for this 
record being processed. The COUNT is then compared to 

14-6 

zero again (line 05) to determine if any more STOCK rec
ords are to be processed for this order. If COUNT is still 
greater than zero (27 set on again), line 06 is performed 
again, indicating another STOCK record is to be forced at 
the beginning of the next cycle. 

RPG II selects 

ORDER record 

NO 

FORCE a 

STOCK record 

Subtract 1 

from quantity 

YES 

Is quantity greater 
than zero? 

Figure 14-4. Determining When Stock Records Must be Forced 

to Fill an Order 



IBJ.1 International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
75 76 77 78 79 BO 

Date ___ _ 

Program ___________ _ [ 

Punching Graphic T T 1 
1
1 Jl 

Instruction r-P-un-ch --+--+T--+T--+-+-1--1---1------l 
1 2 

Page[D ~;~~;~f~ation I I I I I I I 
Programmer __________ _ 

Indicators 

Line ~ 
AL L Factor 1 

I-

~ b b b z z z 

Operation Factor 2 Result Field 
Field 
Length 

Resul1ing 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

Table (Factor 2) is 

High Low Equal 

Comments 

345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 

0 2 c -x: 
0 3 c 

0 4 c ~ 
0 5 c 

0 6 c 

Figure 14-5. Controlling the Number of Times a File is Forced 

During processing of the second STOCK record, COUNT is 
again reduced by one (line 03). Assuming COUNT is now 
at zero, the COMP ARE operation on line OS sets indicator 
27 off. With 27 off, the FORCE operation on line 06 is 
not performed during this cycle. At the beginning of the 
next program cycle then, RPG II selects the next ORDER · 
record from the primary file in the usual way. 

At this point, add the specifications for calculating the 
amount due and for printing the report (Figure 14-6). An 
ORDER record is selected first, making the QTY available. 
Calculation lines 01, 02, and 06 in Figure 14-6 are per
formed for this record (record type 01). First, a TOTAL 
field, to be printed for each group of customers, is set to 
zero (line 01). Next, the quantity ordered is moved into 
the COUNT field (line 02). If COUNT is greater than zero, 
indicator 27 is turned on (line 06), and line 07 is performed; 
the program is instructed to force a STOCK record at the 
beginning of the next cycle. Before forcing, however, the 
output specifications (Figure 14-6, lines 08-12) are per
formed to print data from the ORDER record. 

Following output, the next cycle begins with a forced 
STOCK record (record type 02) being processed. The cost 
is added to a TOTAL field (line 03) to accumulate the total 
amount due on the order. 

Then, COUNT is reduced by one for the record being 
processed (line 04). Once again COUNT is compared to 
zero (line 06) to determine if line 07 should be performed; 
that is, to determine if another STOCK record is to be 
forced for the next cycle. The COST and TOTAL calcu
lated for the STOCK record are then printed, by perform
ing the output specifications on!lines 13-15. 

The record selected at the beginning of the next program 
cycle depends on whether a FORCE operation was indi
cated in the previous cycle. If calculation line 09,had been 
performed, another STOCK record would be processed (by 
being forced). If not, RPG II would select the next 
ORDER record from the primary file. 

Altering the Order of Processing Files 14-7 



IB~ 

Date _____ _ 

Program _______________ _ 

Programmer ______________ _ 

Indicators 

~ I 1 Line 
~ ~i" 

Factor 1 

to-
~-] ...J 0 0 0 -z z z 

International Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

Punching 
Instruction 

Operation 

Graphic 

Punch 

Factor 2 Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 

g Compare 

~ High Low Equal 
~t>21<21=2 

~ Lookup 

Table (Factor 2) is 

High Low Equal 

Fann X21-9093 

Printed in U.S.A. 

75 76 77 78 79 BO 

~;~~;~f~ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 

0 2 c 

0 3 c 

0 4 c 

0 5 c b~· 
0 6 c 

0 7 c 

0 8 c 

0 9 c 

IB"' 

Date 

Program 

Programmer 

Line 

~:a ITlolTAL IAIDD tcosJI: II!ctlt4L ~12 

CO UNIT CO/.f P l<t~¢ 
FlolRelEIS TIC CIK 

lntemetional Business Machines Corporation 

RPG OUTPUT - FORMAT SPECIFICATIONS 

Form X21-9090 

Printed In U.S.A. 

1 2 75 76 T7 78 79 BO 

Filename 

IL 

[ 

Punching 
Instruction 

Graphic 1 J 
Punch J J l l 

l l 

~Space Skip Output Indicators La;::ITIIEillEIIEBElilW-1'@> ~------E-d-it_Co_d-es-------~ 

~ llEJ~o-.-~--...,..., ~ 
w i T l Field Name II§ End i 
f:: ~ And And t :;:isiton 11 

n~~ ~ t ~~ i 
i~~~~ ~~ ~ ~ Output~ 

Commas 

Yes 
Yes 
No 
No 

Zer~o ~li~~ces No Sign CA 

Yes 
No 
Yes 
No :J 

- X • Remove 
Plus Sign 

J Y • Dale 
K Field Edit 
L Z•Zero 
M Suppress 

> .lt! <( ~ ~ Record ~ 
t-- ~ ~ ::_ Constant or Edit Word 

Sterling 
Sign 
Position 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 mi 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 IP 
0 2 0 

0 3 0 'K..IUI:':> t olJVifj, tlr:BM 
0 4 0 

0 5 0 I COS! 11iotrl4 L' 
0 6 

0 '* 
0 7 o~ 
0 8 0 l<ZU 
0 9 0 

1 0 0 

1 1 0 l.215 
1 2 0 

1 3 0 

1 4 0 ~-
1 5 0 TOII_AL "1 rJ). 

Figure 14-6. Specifications to Process Customer Orders 

14-8 



Controlling Processing After Reaching End of File 

In a multifile job, end-of-file entries can be specified for 
one, both, or neither of the two input files. If an end-of
file entry is specified for only one file, processing stops 
after all records from that file have been processed. (Re
member, however, if match fields are assigned to the files, 
the program continues to process the records from the 
other file which match the last record processed or which 
have no match fields.) If end-of-file entries are specified 
for both or for neither of the input files, processing con
tinues until all records in both files have been processed'. 

For this job, processing must continue until both files reach 
end of file. Actually, if one file runs out before the other, 
you do not want to perform the usual calculations and out
put for the remaining file. 

To continue the job until both files have been completely 
processed, specify end-of-file entries on the File Descrip
tion Sheet either for both or for neither of the two input 
files (Figure 14-7). By doing this, the LR indicator will not 
be set on to end the job until the last record of the last file 
has been processed. 

With end of file specified for both files, consider what will 
happen when only one of the files reaches end of file 
(Figure 14-6). First, suppose the STOCK file reaches end 
of file before all ORDER records are processed. Since both 
files are not at end of file, processing will not stop. Instead, 
after processing the next ORDER record, the program will 
try to force the appropriate number of records from the 
STOCK file. With no more STOCK records to force, 
another ORDER record will be selected. Once again, the 
program will try to force STOCK records for that order. 
The process continues until all primary file ORDER records 
have been processed. Furthermore, every time a new 
ORDER record is processed, it is printed on the report as 
if the order were being filled. 

A similar problem arises if the ORDER file reaches end of 
file first. Suppose the last order has just been filled. 

After processing the last STOCK record for that order, no 
more STOCK records are to be forced, so RPG II logic tries 
to select the next primary file ORDER record. In doing so, 
the end of file of the ORDER file is reached. Since the job 
is to continue until both files are processed, RPG II logic 
automatically processes the remaining records in the other 
file (STOCK). As each remaining STOCK record is 
processed, the calculations and output for that record type 
are performed as if the record were being used to fill an 
order. 

File Description Specifications 

File Type 

File Designation 

End of File 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Line 
Sequence Type of File -' Symbolic Name of Tape 

Filename o File Format m ~;~~~~~~~:1 Area ~ Device Device ; Label Exit R:~nd 
! § ~ ~ Overflow lndi~ator ·~ ~ Core Index ~ni~ion 
E 3 u Block Record :::: I:: Key Field iii a; :::> - ;:.;;;-

~ g ~ w ~ ~ Length Length ~ ~ g ~:~~~:n :fi j ~ z 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

02 FOIRVEI~ e~E ~5~ 1~8 IL I 5[1': 
0 3 F srno C~ e. s ~ l.215 {:> l1 l.2j g 

0 5 F 

0 6 F 

0 7 F 

Figure 14-7. Continuing Processing Until Both Files Reach End of File 

Altering the Order of Processing Files 14-9 



LOOK-AHEAD TO DETERMINE WHETHER A FILE IS 
TO BE FORCED 

For some jobs, you cannot determine whether a record is 
to be forced in the next cycle until you know something 
about the records which have not been processed yet. Thus, 
you must look ahead in one or both files at the next record 
which is not yet available for processing. In looking ahead, 
you may be checking to determine what record type is next, 
to see what data is on the next record, or to determine if 
the next record has the same match field as the record being 
processed. What you find in looking ahead can determine 
which file is to be processed next and, also, whether the file 
must be forced or not. 

Before considering the use of FORCE with look-ahead, how
ever, you should evaluate your system design. If at all pos
sible, you should organize your files in such a way that the 
RPG II logic can determine the appropriate order of file 
processing. In this way, you do not have to code additional 
specifications to control the order. Of course, from time 
to time you may have jobs in which you must use FORCE 
and look-ahead. 

Performing a Matching Records Job Without Match Fields 

If two files are organized such that the same match fields 
cannot be assigned to the two files, you can still process 

the matching records together by using look-ahead fields 
and the FORCE operation. {This cannot be done, however, 
if the look-ahead file is defined as a combined or update 
file.) Look-ahead can be used to determine if certain fields 
(not assigned as match fields) on an unprocessed record 
match those on the record being processed. If they match, 
FORCE is performed to cause the matching unprocessed 
record to be selected next. 

As an example, assume a report is to be prepared showing 
the amount of each salesman's sales and his quota. The 
report should also compare the total of district sales with 
the district quota. 

The two files available for this job are described in Figure 
14-8. The primary file {MASTER) contains a district rec
ord {record type 01), followed by all salesmen's MASTER 
records (type 02) associated with the district. These are 
in turn followed by the next district record (01) and its re
lated salesmen MASTER records {02) and so on. Although 
the records are grouped by district, all salesman MASTER 
records in the file are still in ascending sequence by sales
man number. The secondary file {SALES) contains only 
one record type {03), a record for each individual sale. The 
SALES file is also in ascending sequence by salesman num
ber. While the MASTER file contains a record for every 
salesman (assume there are no MASTER records missing), 
the SALES file may contain only one, several, or even no 
records for a particular salesman. 

IB:t.1 lntematiol"'al Business Machines Corporation Form X21·9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
Date ___ _ 

Program-----------

Programmer _________ _ 

Line 
c. 
> 
I-

~ 

Filename 

Punching Graphic J J 
Instruction Punch J J 

Record Identification Codes 

l j J 

Field Location 

i~--.-----1 
iii 

From To 

0 

:~ 
~ 

~ ·g 
c 

1 2 

Page[D 

~ 
Field Name ] 

1 

0 

:!2-o 
.!!:!]! 
"-u.. 

H 

Program 
Identification 

75 76 77 78 79 80 

I I I I I I I 

Field 

c Indicators 
0 . ., 
~ Sterling 
-0 Sign 

J Zero Position 
Plus Minus or 

-0 Blank 
a; 
u:: 

3 4 5 6 7 8 9 10 ti 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1 C'll_ 
o 2 I 51¢DstrlN UIM I I I I 
o 3 I 

o 4 I 

1 1li.l~n[g V o~IA ~ District record 1-+-+-+-1--1 

13 A 'i D5tr1MG-R · Jl l ll l l l 

o 9 I 

1 0 11~ 
1 1 I S~LES 1 cs 

1 3 i 

Figure 14-8. Describing Files to be Matched Without Match Fields 

14-10 



To produce the report, the records should be processed in 
the following order: 

1. District record (record type 01). 

2. Salesman MASTER record (record type 02). 

3. All SALES records for that salesman (record type 03). 

4. 

5. 

6. 

Next salesman MASTER record. 

SALES records for that salesman. 

Next district record (after all salesman MASTER 
records associated with the first district have been 
processed). 

There is no common field on all three record types which 
can be assigned as a match field to cause the records to be 
processed in this order. Totals are to be accumulated by 
salesman number; but the MANNUM field is contained 
only on the salesman MASTER and SALES records. The 
district records do not contain this information. 

If the MANNUM fields are assigned as Ml match fields for 
only two of the record types, the records will be processed 
in an incorrect order. Following the last salesman MASTER 
record (02 record type) for a particular district, the next 
record in the same file is another district card. Since dis
trict records have no Ml match field entry assigned (no 
MANNUM field), the district record is processed immedi
ately before the SALES records for the last salesman. 

Although this job cannot be done using match fields, you 
can match the records yourself by using the look-ahead 
capability to compare fields (Figure 14-9). The object is 
to match a salesman's SALES record with this salesman 
MASTER record. Thus, the MANNUM field on a SALES 
record is defined as a look-ahead field. While processing a 
salesman MASTER record, you then look ahead (in calcu
lations) at the unprocessed SALES record to determine if 
the salesman number is the same as on the record being 
processed. If they match, the FORCE operation code is 
used to process the SALES record as if RPG II logic were 
performing a matching records job. You then continue to 
force the rest of the SALES records which contain the 
same salesman number. For each record, look-ahead is 
used to check the MANNUM field to determine ifthe 
SALES record should be forced. When look-ahead indicates 

that the next SALES record is for a different salesman num
ber, the SALES record is not forced. Instead, RPG II takes 
over to select the next primary file record which is either 
another salesman MASTER record or the next district 
record. 

Start 

RPG 11 selects 
record from 
primary fi I e 

FORCE the 
SALES record 
to be processed 

record so select 
next primary 
file record) 

primary file 
record) 

No 

(select next 
primary file 
record) 

Figure 14-9. Using Look Ahead to Determine if Records Match 

Altering the Order of Processing Files 14-11 



Now that you understand the steps involved in this job, 
look at the specifications in Figure 14-10. The Input Sheet 
describes the records in each file and defines the look
ahead field for the SALES records. Only the calculations 
necessary to determine which record is to be processed 

next are shown. To actually prepare the report, you would 
need file description specifications to define the files and 
additional calculation and output specifications to accumu
late totals and print the data. 

IBJ.1 lnternatiof'lal Business Machines Corporation F0<m X21-9094 
Printed in U.S.A. 

Date ____ _ 

Program--------------

Programmer-------------

RPG INPUT SPECIFICATIONS 

r Punching l 'nstruction 

Graphic 

Punch 

1 2 

Page[D 
Program 
Identification 

75 76 77 78 79 80 

I I I I I I I 

i Record Identification Codes Field Field Location 

~ 1 2 3 i 5 
Indicators 

g>. ~ ·;:; 
iii 0 ~ :E'~ ~ n ~.t; Sterling 

Filename ·.;:; 0 ~ £e Field Name ] -~:!! ] Sign 

~ l; ~~ 1l U.u. Zero Position 
Position 

c tl Position Position 11 From To .~!!' Plus Minus or 

] 
g ~e ~ go 8:. e ii:~ Blank ...._ E 

~§ jM ~ 
.., 

b ~Ls ~ts II ~'5 ~ z 6 u"' Q. 

8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

7 
I I I I -+-+-1---+-+-i 

District record 

1 c l1 

1-+-1--+-11--+-11--+-1-+-+-+-+-+-+---+-+---+-+---+-+-1-1--+-+-+-+--1-+-1-+-4-+-4-+-4-+-+-+--l-l-+-+--+-i+=::~+---1-l---l-!-9J-!-~~Mµ..ltt-Wj'..:..j!..!..JNi=--CJ M~ Sal es man 
~ IZ. 5 ¥_ AIMIE master record 0 8 I 

0 9 I 

1 0 1 

11 Is 

1 2 I 

1 3 i 

1 4 I 

1 5 I 

I 

IB:ft1 

Date 

Program 

Programmer 

gjL ~s lAlAJ ~3 ll cs 

~ ~ 

Indicators 

AL L Factor 1 

~ b b z z 

lil1 3lllmuo!™ 

International Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

l Punching Graphic JJ I I 
Instruction t-P-un-ch--+--+----+--t-lt--+---+l--i 

Operation Factor 2 Result Field 
Field 

0 

Length ~ 
~ 
·2 
c 

1 2 

Page[IJ 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

Table (Factor 21 is 

High Low Equal 

Form X21-9093 

Printed in U.S.A. 

75 76 77 78 79 80 

~~~~:~t7cation I I I I I I I 

Comments

8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

--~ ~- -- --· ---~-~-- - ----~~~-- .. -

If salesman master card (02) or SALES
card (03) being processed, check salesman
number on the next SALES card.

Figure 14-10. Using Look Ahead to Match Records

14-12

Review 14

1. What job situations would require you to alter the order of processing?

2. What does FORCE do?

3. If you must alter the order of processing, how do you control this in your program?

Altering the Order of Processing Files 14-13

Answers to Review 14

14-14

1. A. Match fields cannot be assigned to the files, and you need to:

a. Process a primary file record followed by a number of secondary file records.

b. Process a secondary file record only when it matches a primary record.

B. Match fields are assigned to both files. You need to alter the order of matching record logic
to process a primary file record, then matching secondary file records before matching primary
file records.

C. A particular file is to be processed in a job only if certain conditions occur.

2. No action occurs when the specification is encountered. At the beginning of the next program cycle,
the next record from the file specified as Factor 2 of the FORCE operation is selected (by being
forced) for processing.

3. You can control the order of processing by describing your situation on the Calculation Sheet and
conditioning the FORCE statements with indicators, branching, or looping.

•a=M:au1;•
ARRAYS ,,

CHAPTER 15 DESCRIBES:

Use of arrays and RPG II coding to reference an entire array or individual elements
of the arrays.

XFOOT operation code.

LOKUP operation code.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:

Use of and coding for tables.

Exception output.

RP9 II object cycle.

OR relationship.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Determine the use of arrays as opposed to the use of tables.

Define an array.

Code problems that reference all fields in an array.

Code problems referencing individual fieldsin an array.

Define and code the LOKUP operation code with arrays.

Describe data and store it in an array.

Arrays 15-1

INTRODUCTION

An a"ay is a continuous series of data fields stored side by
side so they can be referenced as a group. Figure 15-1 shows
an array of 12 fields containing the total sales for each
month of the year. Each field of the array has the same
characteristics; that is, each contains data in the same for
mat (alphmeric or numeric), of the same length, and with
the same number of decimal positions.

An array is very similar in concept to a table. Both arrays
and tables are set up by coding extension specifications.
The type of data which you can put in an array is the same
as that which you can put in a table. The data to be read
into the computer and placed in an array can be punched
on cards or written on disk. Otherwise, the data can be
produced during the program, as a result of calculations,
and then stored in the array. The way in which the data
is stored inside the computer is also the same; that is, one
field of data immediately follows another. The uses, how
ever, of tables and arrays differ considerably.

WHEN TO USE AN ARRAY INSTEAD OF A TABLE

Two factors determine when to use an array instead of a
table:

• How the data is to be
1
loaded into storage.

• How you want to use the data once it is stored.

In most cases, tables contain constant data such as tax rates,
shipping instructions, or discount rates. The constant data
is then used for calculations or printing with variable trans
action data. Arrays are generally used for vapable data
and totals which are used independently of the variable
transaction data.

You should usually use arrays instead of tables when you
want to reference all fields at one time. Arrays can reduce
the number of RPG II specifications you must code for a
job, as well as the time required to reference the entries.

Each field Two decimal positions
in each field

JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC

Figure 15-1. 12-Field Numeric Array

15-2

DEFINING AN ARRAY

You tell the RPG II compiler to set up an array in the same
way that you indicate a table is to be created; that is, by
coding extension specifications. One line is coded for each
array to be used in a program. As you can see in Figure
15-2, the entries made on the Extension Sheet indicate:

• The name of the array.

• The number of fields in the array.

• The length of each field.

• The number of decimal positions, if any, in a field.

All arrays used in your program must be assigned a name
of six characters or less which is entered in columns 27-32.
The rules for naming arrays are similar to those for naming
tables; an array name can consist of any combination of
alphabetic characters and numbers. However, while the
first character must be an alphbetic character, an array
name cannot begin with the letters TAB. This is the way
the compiler distinguishes between an array and a table.

Columns 33-35 of the Extension Sheet should be blank
when defining an array. An entry is made in these columns
only if the group of data items is to be considered a table.

Columns 36-39 are used to enter the number of fields in the
array (from 1to9999). This number should be entered so
that the last digit is in column 39.

The length of each field (number of characters, including
blanks) should be specified in columns 40-42, with the
number ending in column 42. The length, which must be
the same for every field in the array, cannot be greater than
255.

If the fields in an array are numeric, the number (0-9) of
digits to the right of the decimal point should be entered in
column 44. Even if no decimal positions are present, a
zero must be specified if the field is numeric. A blank in
column 44 indicates that the fields are to contain alpha
meric data. Remember, however, that if arithmetic opera
tions are to be performed on the fields, the array must be
defined as numeric.

Columns 46 through 57 are not used in defining an array.
These columns are used if two related tables are set up in
an alternating format on table input records. Two arrays
cannot be used in the same way that two related tables are.

The extension specifications only reserve the appropriate
space in storage for the array. In a following section, you
will learn how data is stored in the array.

IBJ.1 International Bu1lneu Ma:hlnes Corporation
FormX21-9091
Printed in U.S.A.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS
Date ___ _

Program ___________ _

Programmer __________ _

Record Sequence of the Chaining File

Number of the Chaining Field

Line 8. To Filename

~

~
From Filename

Figure 15-2. Defining an Array

Punching t-G_ra~ph_ic -+---+----+---+---+---+---+---l
Instruction Punch

Extension Specifications

Number ~
of Number·

~h Table or
Table or Entries of Length

Array Name
Array Name Per Entries of

"-" (Alternating
Record Per Table Entry

~ ~ ~ or Array
Format)

II ~ if
a. 0"'

Length
of
Entry

~
:!!

1 2

Page DJ

ih
il ~ g
"' E "

!~£

75 76 77 78 79 BO

~~:~:~f:ation I I I I I I I

Comments

Arrays 15-3

REFERENCING ALL FIELDS IN AN ARRAY

Suppose a company employs 15 sales clerks whose daily
sales are recorded on a punched card (SALES). As Figure
15-3 shows, field l contains sales for clerk # 1, field 2 for

clerk # 2, and so on. There is one SALES record for each
day. In addition to a daily amount, the company wishes
to have a monthly sales total for each clerk. Therefore, at
the end of the month, the daily sales amounts for a clerk
must be accumulated.

-· =--___ -__ -=-~-111 I

l~I I clerk 3 I lcle;k4 I lci;k'51
Daily record 1~1 I clerk 8 I 1cl;k91 1~1
for January 1 1~21 l~I 1~41 l~I

lcie;:k21 lcl;k31 lcle';k4 I lcle;kSI
I cie;k? I lcie;kal l~I lcle;k101

1~1 1 1~2 1 ,~31 lcl;k141 lcle;k15I

SALES Records

Figure 15-3. SALES Records

15-4

As shown in Figure 154, an array (MONTH) of 15 fields is
set up to contain the monthly totals. The monthly sales
record is read and each clerk's total is placed in the appro
priate array element. Another array, called DAY, could be

- ,...,,...,_ --- ,..__.. ---.-.- ~ -..._..,._ - ,..__.,,.

clerk 1 clerk 2 clerk 3

sales sales

clerk 11 clerk 12 clerk 13
sales sales sales

2 3 4 5 6 7 8

set up to contain the 15 sales amounts for any particular
day. In this way, as the SALES card for one day is read
into the computer, the 15 fields of data would be placed in
the array DAY.

- ~

~ ~ ,..,.,....._ ,..,,...,,.._ -- ---
clerk 4 clerk 5

Monthly SALES record

clerk 10
sales sales

clerk 14 clerk 15
sales sales

9 10 11 12 13 14 15

clerk DAY array

2 3 4 5 6 7 8 9 10 11 12 13 14 15

MONTH array

Figure 15-4. Using Arrays to Contain Sales Data

Arrays 15-5

Array to Array Calculations

Once the first SALES record is read and the data stored in
the DAY array, the 15 fields of DAY are added to the 15
fields of MONTH. In other words, field 1 of DAY is added
to field 1 of MONTH, field 2 to field 2, and so on (Figure
15-5).

The 15 accumulated sale amounts (results of the additions)
are stored in MONTH. Then, another SALES card is read
into the DAY array. The new DAY fields are then added
again to the accumulated totals in MONTH.

This method is similar to using two tables and adding an
entry from one table to an entry in the other table. How
ever, performing the operations for a table requires more
specifications than to do the job using arrays.

With tables, you must reference each element (sales amount
for a clerk) separately. First, you must perform a table
lookup to find the appropriate sale amount from the day
table. Of course, since you do not know the amount of
each sale, you cannot search the day table directly. A re
lated table of sales clerk numbers must be set up and
searched. Only after you find the appropriate salesclerk
entry is the corresponding sale amount in the day table
made available. Then you must lookup the corresponding
element of the month table. At this point, use of the table
names in calculations or output would finally refer to each
of the entries looked up. An addition operation would then
be required to add the two entries and place the result in
the month table. After all this, you have accumulated a
total for only one of the sales clerks.

To repeat the same procedure 14 more times for the other
sales clerks' entries, the program must read 14 cards and go
through 14 program cycles. This occurs when you use a
table name in specifications. The name refers to only one
element, the entry just looked up.

DAY array (totals for day 4)

0015.21 0012.86 0025.31 0008.93 0017.83 0019.24 0015.67 0032.81 0042.21 0021.87 0019.67 0018.46 0013.45 0028.37 0023.95

2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ + + + + + + + + + + + + + +

0072.18 0142.96 0063.90 0089.61 0076.95 0128.76 0134.21 0062.34 0079.83 0052.24 0148.75 0063.69 0057.24 0138.78 0053.96

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MONTH array (accumulated totals for days 1,2 and 3)

\ ! ! ! ! I I I I J J J J J J I
0087.39 0155.82 0089.21 0098.54 0094.78 0148.00 0149.88 0095.15 0122.04 0074.11 0168.42 0082.15 0070.69 0167.15 0077.91

2 3 4 5 6 7 8 9 10 11 12 13 14 15

MONTH array (accumulated totals for days 1,2,3 and 4)

Figure 15-5. Adding One Array to Another Array

15-6

On the other hand, if you have defined your groups of data
as arrays rather than tables, only one calculation specifica
tion is necessary. The name of an array actually refers to
all of the fields in that array. Adding the array DAY to the
array MONTH causes every field of one array to be added
to corresponding fields of the other array {1 to 1, 2 to 2,
3 to 3, etc.). Since the MONTH array is specified under
Result Field, the result of ~ach addition is placed back into
the appropriate field of MONTH (Figure I 5-6).

Notice on the Calculation Sheet in Figure 15-6 that no re
sulting indicators have been specified for this arithmetic
operation. When an array name is specified in a calculation,
the operation is performed on every field of the array. There
fore, there are a multiple number of results; in this case, 15
sales totals. A resulting indicator can indicate the condition

of only a single result. Thus, resulting indicators are
usually not used when referencing an entire array. There
are two exceptions when resulting indicators can be used,
as explained under Adding All Fields Within An Array and
Searching An Array For A Particular Fzeld.

Operations Which Can be Performed on Arrays

As mentioned, an operation to be performed on an array is
performed for every field in the array. A result is then pro
duced for each field operated on. For this reason, certain
operations cannot be performed on arrays, because the re
sults have no meaning. The operation codes COMP (com
pare), TESTZ (test zone), and MVR (move remainder)
should not be used.

IB"' lntemationlll Business Machines Corporation
FormX21-!Kl91
Printed In U.S.A.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

Oat•-----

Program ____________ _

Programmer ___________ _

Record Sequence of the Chaining File

Number of the Chaining Field

Line ~ To Filename

I-

~
From Filename

Punching ,_G_ra~ph_ic__,___,_+---+---+---+-_,___,
Instruction Punch

Extension Specifications

Number ~
of Number ih Table or

Table or Entries of Length
Array Name

Array Name Per Entries of
0.." (Alternating

Record Per Table Entry ~ r; ~
or Array ~ .§ ! Format)

II ~ i
0.. 0"'

Length
of
Entry

~

I 2

Page DJ

lh
0.."

~ ii ~
'" E " !U

75 76 77 78 79 80

~~~~::!~cation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 ~oNIIJH ~5 b ~ TIQ ~CCV~ ~1Nlrl8J ~L~ 
0 2 

0 3 E 

IB1'1 

Date ____ _ 

Program ____________ _ 

Programmer ___________ _ 

Indicators 

Line ~ 
And And Factor 1 

I-

~ 

Figure 15-6. Referencing All Fields of an Array 

I ntemational Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

Punching t-G-ra_ph_ic-+--t----J-+-+---+---1--1 
I nstruction Punch 

Operation Factor 2 Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>21<2 1•2 

Lookup 

Form X21-9093 

Printed In U.S.A. 

75 76 77 78 79 80 

~~:;;f~tion I I I I I I I 

Comments 

Arrays 15-7 



Performing Operations on Arrays of Different Lengths 

In this last example, all arrays used in an operation were of 
the same length; Factor 1, Factor 2, and the result array 
each contained 15 fields. Thus the operations were carried 
out until all fields were processed. 

Suppose, as shown in Figure 15-7, that DAY only contains 
12 while the MONTH array contains 15 fields. In such a 

case, the operations are performed only until the last field 
in the shortest array has been processed. Thus, the 12 
fields of DAY are added to the first 12 fields of MONTH, 
and the 12 results are placed in the first 12 fields of 
MONTH. The remaining three fields of the result field 
(MONTH) remain unchanged. Likewise, if the result array 
is shorter than any of the factors (arrays), the operation is 
repeated only for the number of fields in the shortest (re
sult) array. 

0015.21 0012.86 0025.31 0008.93 0017.83 0019.24 0015.67 0032.81 0042.21 0021.87 0019.67 0018.46 

2 3 4 5 6 7 8 9 10 11 12 

DAY array 

+ + + + + + + + + + + + 

0072.18 0142.96 0063.90 0089.61 0076.96 0128.76 0134.21 0062.34 0079.83 0052.24 0148.75 0063.69 

i 
6 10 2 3 4 5 

I MONTH array 

9 

'f 
0087.39 0155.82 0089.21 0098.54 0094.78 0148.00 0149.88 0095.15 0122.04 0074.11 0168.42 0082.15 0057.24 0138.78 0053.96 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MONTH array Unchanged 

Figure 15-7. Operations on Arrays of Different Lengths 

15-8 



Calculations Using Arrays and Single Fields (or Constants) 

.Another way in which you can perform calculations on an 
entire array is by adding (or multiplying, etc.) the same 
value to every field in the array. For example, suppose the 
sales clerks are to receive a commission of 10 percent of 
their sales, to be paid at the end of the month. After all 
daily sales have been accumulated into the MONTH array, 
you want to multiply each of the 15 fields in MONTH by 
the value .10 and to place the commission amounts in 
another 15-field array called COMMIS. 

To perform this job, it is not necessary to set up a 15-field 
array for the commission rates, with each field containing 
the value .10. In an array operation, when one of the fac-

tors is a field (containing a value) or a constant, the opera
tion is performed using the same field or constant on every 
field in the array. 

You can also use a field or constant as both factors to place 
the same result in every field of an array. The calculation' 
specifications in Figure 15-8 show the single field named 
DISCNT being subtracted from the single field AMOUNT, 
with the result placed in a 5-field array named DUE. The 
value (017) in DISCNT is subtracted from the value (243) 
in AMOUNT, and the result (226) is placed in the first 
field of DUE. The single specification then causes the 
operation to be performed four more times until the re
sult (226) has been placed in each remaining field of the 
DUE array. 

1Bft1 International Business Ma::hines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
Date ___ _ 

Punching Graphic 

Program, ___________ _ Instruction t-Pu-n-ch-t--l--t--l--l--t--1f---f 

Programmer __________ _ 

Line ~ 
I-

~ 

Indicators 

And 

'O z 

And 

'O z 

Factor 1 Operation 

AMOUNT field 

226 I 226 I 226 

field 1 field 2 field 3 

Figure 15-8. Storing the Same Data in All Array Fields 

Factor 2 Result Field 

226 226 

field 4 field 5 

Field ·~ 
Length ~ 

~ 
·2 
0 

1 2 

Page[O 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

DUE array 

75 76 77 78 79 BO 

~;~~~~f~tion I I I I I I I 

Comments 

Arrays 15-9 



Adding All Fields Within An Array 

In the job to accumulate a monthly sales total for each 
clerk, the amounts that each clerk sold was determined. In 
addition, the company also wants to know the total of all 
sales each day. 

As mentioned before, each clerk's daily sales are stored in 
a separate field of a 15-field array named DAY. To obtain 
a total of all sales for the day, you must add together the 
contents of all fields in the array. The sum can then be 
placed in a single field. 

The XFOOT operation code (Figure 15-9, columns 28-32), 
tells the computer to sum the contents of every field in 
the array named in Factor 2. Columns 18 through 27 
(Factor 1) of the Calculation Sheet are left blank since the 
XFOOT operation involves only the values in one array. 
The sum of the DAY array fields is then placed in the 
single field named in columns 43 through 48 (Result Field). 

In all other types of array calculations, multiple results are 
produced in accordance with the number of fields in an ar-

ray. However, performing anXFOOT operation provides 
only one result, the total of all fields. For this reason, 
XFOOT is the only operation referencing an entire array in 
which you specify a single field name rather than an array 
name, under Result Field. Furthermore, since there is 
only one result, a resulting indicator may be assigned in 
columns 54-59 to determine if the sum is plus, minus, or 
zero. In this case, a resulting indicator was not specified 
(Figure 15-9) because the sales amounts will always be 
positive. 

Output of An Entire Array 

For many jobs, you will want to put out array data as well 
as perform calculations on the fields. The output of all 
fields in an array is accomplished as easily as referencing an 
entire array in calculations, that is, by specifying the name 
of the array. By specifying the array name under Field 
Name (columns 32-37) on the Output Sheet, all fields within 
the name array will be punched, printed, or written on the 
indicated output file {Figure 15-10). 

IB~ lntern1tion1I Business Machines Corporation Form X21-9093 

Printad in U.S.A. 

Date ___ _ 

Program ___________ _ 

Programmer __________ _ 

Indicators 

And And Factor 1 

RPG CALCULATION SPECIFICATIONS 

Punching Graphic 
Instruction >-P-un-ch---<f--t--<f--t----t----i---<f--1 

Operation Factor 2 Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1s2 

75 76 77 78 79 BO 

~~~~;~f7cation I I I I I I I 

Comments

+~ + ~+ /"°"\ + ~+ ~+·~+r-'\+~+~ + ~+ ~+ ~+ ~+ ~ ,.....---..... Sum

0015.21 0012.86 0025.31 0008.93 0017.83 0019.24 0015.67 0032.81 0042.21 0021.87 0019.67 0018.46 0013.45 0028.37. 0023.95 I 00315.841

2 3 4 5 6 7 8 9 10 11 12 13 14 15

DAV array TOT DAV field

Figure 15-9. Adding All Fields of an Array

15-10

Any output conditioning indicators specified in columns
23 through 31 of the Output Sheet determine when during
the program the array fields will be printed or punched. If
no indicators are specified, the entire array is printed or
punched every time a record is processed. Indicators can
be specified to put out array data during detail cycles or at
total time. You may want to put out array data at total
time by customer or inventory item, for example, to be
used as input to subsequent update runs.

RPG II determines where the array data is to be put out on
a card, printer file, or disk by the end position column /you
specify in columns 40 through 43 of the Output Sheet. The
array fields are put out such that the last field of the named
array ends in the column indicated. NoteLhowever, that if

~ -! ,.......~--~_.,, __ , ~-tt.~,,;..~-~l-¥"1~

all fields in the array cannot be put out on one, outputco·:.
feeora;tffif.airay·,fieldS .. musib'e.!efe~~~~~~f .separately on .tile
0utp~i s1leet. '·a11i1'ilt'-or ii1diVi<l~~ii~1<l;-~·1e·,<liscusseci·····

s iater:··· .-: -~· 0, ... , .• -,.

The output of an entire array requires only one specification.
An entire array can be printed or punched at any time during
the run or at the end of job, depending on how the output
specification is conditioned.

You must specify how you want the data fields to appear on
the output record. Alphameric fields appear on an output
record just as they appear in storage; however, numeric
array fields may be edited or unedited. If no editing is
specified, the fields will be printed or punched just as they
appear in storage, with the last field ending in the end
position column of the output file. In other words, one
field will immediately follow another with no punctuation
and no blanks between fields.

Usually, printed array output is easier to read and has a
better appearance if edit codes or edit words are used to
punctuate the data and insert spaces between fields. If
punched output or disk output is desired, generally the
array output records are used as input the next time the
job is run. Therefore, editing is usually not specified, so
the fields will be in the appropriate format to be used as
input.

Editing affects the column which is specified as the end
position of the output record. If each field in a 5-field
array contains seven characters, 35 positions would be
necessary to output the entire array in unedited form. On
the other hand, if punctuation and blanks are inserted for
each field, the number of positions required increases.
When specifying an end position, you must allow enough
positions to output all edited fields.

Regardless of whether editing is specified or not, when
output of an entire array is performed, every field of that
array is put out in the same format. If an edit code or edit
word is specified, every field is edited in the same way.
Since all fields of an array contain the same type of informa- ·
tion, ordinarily you want the fields punctuated in the same
way. If, however, one field must be edited differently from
another field in the same array, you must put out the fields
separately. The means of referencing individual fields of
an array is discussed later in this section.

When an edit code is specified in column 38 of the Output
Sheet, every field of the named array will be punctuated
accordingly. Furthermore, any edit code specified for atL--
,entire arra}". also causes two blank spaces to be inserted
between each field. The insertion of blanks is taken into
consideration by the program so that the last field ends in
the end position specified.

IBJtt I nternetional Business Machines Corporation F0<mX2M1090

Printed in U.S.A.

RPG OUTPUT- FORMAT SPECIFICATIONS
1 2 75 76 n 78 79 BO

Date I Punchi~ I Graphic

I I I I I I I I
P.geITJ :::;:cation I I I I I I I

Program Instruction Punch

Programmer

Space Skip Output Indicators
Edit Codes

I
Zero Balances

1 L
Commas No Sign CR - X • Remove

-§
IF! to Print Plus Sign Sterling

Line Filename Field Name End ~
Yes ·Yes 1 !\ J Y • Date Sign

iii Position
Positon ' Yes No 2 fl K Field Edit

~ ~ t l
ll Ii in i No Yes 3 c L Z • Zero

.... ~ 8 ~ Output No No 4 D M Suppress

~ ~~ 0 0 0 "lS < z z z
~ ! Record ~

I Constant or Edit Word
Q.

3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 23 24 25 26 38~ 17 18 21 22 27 28 29 30 31 32 33 34 35 36 37 40 41 42 43 ~~~~~~WM~~~~~~~~~~~~~~~~~~ro 71 72 73 74

oH 0 [Bi P1)]Bfil J I,, 1 1 l- ~ ~oW~ Ill 11 lililII IIII II III II I III
ol2J 0 1 Uilil lm ll lllllll llllll 11111 I ~u I I I I I ii 1-1 loTTTTTT

Figure 15-10. Output of an Entire Array

Arrays 15-11

As shown in Figure 15-11, the edit code 3 causes all five ·
fields of the SALES array to be printed with decimal points
inserted, leading zeros suppressed, and zero balances
present. In addition, two blanks are automatically printed
before each field since an edit code was specified.

1Bft1 lnternetiONI Business Machines Corp«ation

RPG OUTPUT· FORMAT SPECIFICATIONS
1 2

Page[O Date ____ _

Program-------------

Programmer ___________ _

Space .Skip Output Indicators _1'.

Edit Codes

~~
....

Zero.Salances

AL 1
Commas No Sign CR -

II§ i
to Print

Line Filename Field Name End Yes Yes 1 ·"'
J

Positon . Yes No 2 3 K

~ ~! f
;: t In i No Yes 3 c L

I- i
l;

5 8 ! Output No No 4 0 M

~
~ 0 0 11 Q\: <(<(z z z :6 § Record rf. w"' . Constant or Edit Word

0..

Form X21-9090

Printed In U.S.A.

75 76 77 78 79 BO

X • ·Remove
Plus Sign Sterling

Y • Date Sign

Field Edit Position

Z • Zero
Suppress

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ~ 33 34 35 36 37 381:!! 40 41 42 43 ~~~~~~~~~~~~~~~~~~~~M~OO~~~ro 71727374

0 1 o~ l,g_p ~ ~
0 2 0 sloq. ~IES
0 3 0

0 A n

00456 u1783 29684 00000 08063 Array

Two blanks inserted before field Two blanks inserted before field

~f ero suppressed LL., Three zeros suppressed

-- I ,..,__,._.. 4.56 17.83 296.84 .00

3 blanks

~

5 blanks

80.63

t
position 112

Output of
array

Figure 15-11. Output of an Entire Array With Edit Codes

15-12

318 11lZ

If no edit code specifies exactly how you want the array
fields to be edited, you can specify the punctuation by
using an edit word (columns 45-70). In this way, you can
edit array fields with dollar signs, zero suppression, blanks,
constant words, or any combination of punctuation de
sired. When edit words are used, all punctuation must be
specified. Unlike edit codes, edit words do not cause two
blanks to be automatically inserted in the output record
before each array field. Figure 15-12 shows an edit word
specified without blanks; one field of SALES immediately

follows the next on the output record. Any extra blanks
which are to appear must be indicated in the edit word by
an&. Notice, in Figure 15-13, that the two blanks speci
fied are to be printed as part of every field. Thus, the
second blank following the last field will be the character
which ends in the end position column. Notice that an
additional two columns have been allowed for each field
{five fields). The end position column has thus been in
creased by ten over that in Figure 15-12.

1Bft1 International Business Machines Corporation Form X21·9090

Printed In U.S.A.

RPG OUTPUT- FORMAT SPECIFICATIONS
Date

[Punching T Graphic T
Program Instruction I Punch T
Programmer

u.

~Space Skip Output Indicators

~ {9

I I 0

I§ .t:

i.ine Filename ~ Field Name

L 8.

j
&l t

~ cX .2 ~ ~ 8 ~
E ~~~

0 0 0 .><

6 < z z z :5 j
u. a w"'

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 JBl:l9

0 1 olR1 ~p k>IRII p
0 2 0 s~ L~S rs
0 3 0

A -

00456 01783 2~4 I 00000 08063 Array

No blanks inserted

$ 4.56$ 17.83$296.84$.00$ 80.63

t
End position
112

Figure 15-12. Output of an Entire Array With Edit Words

Output of
array

1 2 75 76 77 78 79 80

T T J PageITJ
Program I I I I I I I T T J
Identification

-"'- Edit Codes
Commas Zero 8alanc:"5 No Sign - X • Remove

~ to Print CR Sterling Plus Sign
End I!

Yes Yes 1 A J Y • Date Sign
iii Position

Positon I Yes No 2 a K Field Edit

in 1 No Yes 3 c l Z • Zero

Output No No 4 ~ M Suppress

Record ~
I Constant or Edit Word
a.

40 41 42 43 ~G~a~~ro~~~~~~~~~ro~~~~~~~~~ro 71 72 73 74

11~ '$ l2. ,

Arrays 15-13

IB"'

Date

Program

Programmer

LL

~ Space Skip

i
0
.s::

Line Filename w ~
i2 ~

8. g Jl
~ $

~ ~ :: Jl
~ i E 8. t ~ ~

~ > ><
<{

f--:;:
vs

3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22

0 1 0 IR IEP oL~r ~
0 2 0

0 3 0

0 4 0

0 5 0

00456 01783 29684 00000

SALES

$ 4.56 $ 17.83 $296.84 $

-

International Business Machines Corporation FormX2Hl090

Printed in U.S.A.

RPG OUTPUT· FORMAT SPECIFICATIONS
1 2 75 76 T7 78 79 BO

Graphic 1 I J J Pl9{IJ Program I I I I I I I l Punching Identification
Instruction Punch l l l J

Output Indicators .1'>.
Edit Codes

it!
Zero Balances

At 1 m§ >
Commas

to Print No Sign CR . X s Remove
Sterling Plus Sign

Field Name End Yes Yes 1 A J Y • Date Sign
a; Position

Poslton II Yes No 2 ;J K Field Edit
ll t in "' No Yes 3 c L Z 1:: Zero

0 0 8 ! Output il No No 4 !) M Suppress
0 ii z z z

~ ~ Record ~

' Constant or Edit Word
a..

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 p_g 40 41 42 43 ~~~~~~~~~~~~~~~woo~~~M~~~~~ro 71 72 73 74

SA LI~ ~

08063 Array

.00 $ 80.63

/
End position
122

Output of
array

111~1.6 lH lHHH I ~. ;2'1&> I

•rn Insert two blanks 1'- f-H 1-H

at end of each field. f-t-I-+-

lllllllllll

Figure 15-13. Editing Every Field of an Array

15-14

Accumulating Groups of Totals

As you have seen, arrays can be used to accumulate a total.
In a previous example, fields containing daily sales were
added to obtain monthly totals, which were stored in the
MONTH array.

To carry this concept further, one of the most common
uses of arrays is accumulating more than one group of
totals. Such a procedure is called rolling of totals, since
one _total is used to obtain a greater total, which is then
used to calculate an even larger total, and so on. Each
total is rolled into or accumulated into the next total.

Figure 15-14 shows the organization of the Nelson Company.
The company's two regions are each divided into three

branches, which are in tum made up of three to six stores
each.

Company sales data is recorded on cards, as shown in
Figure 15-15. For each store there is a separate record
providing the 12 sales amounts for each month of the year.
The sales records are organized such that stores are grouped
within a branch and branches grouped within a region.
Three one-column fields on each record: identify a card with
a particular store, a particular branch, and a particular
region.

A sales report must be produced showing the monthly sales
for each store, for each branch, for all branches within a
region, and for both regions (the total monthly sales of
the entire company). The report, a series of accumulated
totals, should look like the one in Figure 15-16.

NELSON COMPANY

REGION I REGION II

BR A BR C BR A BR C

Store 1 Store 1 Store 1 Store 1 Store 1 Store 1

Store 2 Store 2 Store 2 Store 2 Store 2 Store 2

Store 3 Store 3 Store 3 Store 3 Store 3

Store 4 Store 4 Store 4

Store 5 Store 5

Store 6

Figure 15-14. Company Organization by Groups

Arrays 15-15

1C4

Region I

Branch B J..__1s2 ____ _

I /181

Branch At,, 1A3
1A2
~~~~~~~~~~~--

A 1 

I JAN I FEB 'MARI APR I MAYI JUN I 

Figure 15-15. Sales Records Organized by Groups Within Groups 

15-16 



SALES REPORT 

JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC 

STORE ~ - '---"--
......._ -- --

s:roRE - --. 

STORE - -
BRANCH A TOTAL - - --

STORE .___ - - --- -
STORE - - - - -

BRANCH B TOTAL -- - -
STORE 

STORE -
STORE -- --
STORE 

,.....__ ---- - ..--- ~ 

BRANCH C TOTAL - - ...._ 

REGION I TOTAL --
STORE --- -- ~ --- -
STORE ..........__ --
STORE 

__,__ 
~ 

STORE --
STORE - --

BRANCH A TOTAL ~ 

STORE 
__... -

STORE ---
STORE """'- -

BRANCH B TOTAL 

STORE 

STORE 

STORE 

STORE 

STORE 

STORE 

BRANCH C TOTAL 

REGION II TOTAL 

COMPANY TOTAL 

Figure 15-16. Sales Report by Groups Within Groups 

Arrays 15-17 



To produce the report, four arrays of 12 fields each should 
be set up, as shown in Figure 15-17. The first array, STR, 
will be used to hold the 12 sales amounts read from the sales 
records. The other three arrays will be used to accumulate 
the necessary totals for each branch, each region, and the 
entire company. 

In general, this job should accumulate store totals into the 
BRNCH array, branch totals into the REG, array, and 
region totals into the COMP array. Thus, the specifications 
must perform two functions: 

SA LES record 

• Add all fields of one· array to all fields of another array. 

• Print all fields of each array. 

To have the program produce the correct totals, you must 
specify that one array is to be added to another array and 
printed. To do this, the two fields which identify a record 
with a particular branch and region should be specified as 
control fields. A change in the branch (or region) control 
field will cause a control break, indicating the records for 
all stores in a particular branch (or region) have been 
processed. 

$JAN $FEB $MAR $APRIL $MAY $JUNE $JULY $AUG $SEPT $OCT $NOV $DEC 

STA array 

REG array 

I I I I I I 
COMP array 

Figure 15-17. Four Arrays for Group Totals 

15-18 



As shown in Figure 15-18, control level indicator L1 is 
turned on when the first record is read for a store in a dif
ferent branch. Likewise, L2 is turned on (and thus L1 is 
automatically turned on) when the first record is read for 
a store in a different region. The specifications on lines 
06-17 merely describe the store sales data for each month 
of the year. 

1Bft1 lnternatiol"lal Business Machines Corporation 

RPG INPUT SPECIFICATIONS 
Date 

f I I I [Punching Graphic 

Program Instruction 
Punch 1 1 l 

Programmer 

Record Identification Codes 

Form X21·9094 
Printed in U~.A. 

1 2 75 76 77 78 79 80 

Page[O 
Program I I I I I I I Identification 

~ Field Field Location 
Indicators 

~ 1 2 3 ~ g g 
1! 

~ g>. iii Sterling :E'~ ~ II 
Line Filename ·.;; 0 ~ e Field Name 3 ] Sign 

~ ~ ~ ;ij al Zero Position 

i Position z 0 n Position - ~ Position 

~ ~ ~ 
From To Plus Minus or 

I- "E ~ e ~ ~c e Blank 

~ ~ § ~ 
,, 

~ ~ ~$6 ~§ 6 £5:. ~ Q; 
u: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6 0 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 I~ AIL c~I ~ ~1 r I 
0 2 I 11 1~ RE ~I olM IL i. Fields which 
0 3 I l [6¢ B~ AN cJH1 L 1 identify 
0 4 I ~ 3~ Slf ~~ I record. 
0 5 J~ 
0 6 J 33 li!JIA 137 _\ 
0 7 I l~.8 l4i. AIF1B 
0 B I 116 ~1 li.lt1R 
0 9 I g [~ ~AP 
1 0 I IQ:3 ~1 ~lr 
11 I o-·~ ~l lilll~ 

12 fields to 
~j be stored in 

1 2 I ~ "9 lz~L . store array. 
1 3 i ?~ 7[1 f2i41G 
1 4 I lrl~ 7 'I [2JsP 
1 5 I f/J tzjoc. 81: 
1~ I ~ 12.lMY' 3_2__ 
i? J ~ 9~ ~ve 

Figure 15-18. Identifying Groups by Assigning Control Level Indicators 

Arrays 15-19 



The specifications in Figure 15-19, insert A illustrate how 
control level indicators are used to control the performance 
of calculations and output. 

As a sales record is read, the 12 monthly totals for that 
store are placed in the array STR. {How data gets into an 
array will be discussed later.) Each time new data is placed 
in STR (every time a card is processed), the fields are added 
to the BRNCH array to accumulate totals for the branch 
{Calculation Sheet, line 01). The store totals are printed as 
each record is processed, because every time a new card is 
read the data previously in the STR array is replaced by the 
totals for the next store (output lines 01-02). 

When all store records for a particular branch have been read 
and their totals printed and accumulated in the BRNCH 
array, an L1 control break occurs. The control break is in
dicated by reading the first store record in the next branch. 
Before processing this next record, the branch totals are 
printed and the BRNCH array is filled with zeros to prepare 
for accumulating the next branch totals {Figure 15-19, in~ 
sert B, lines 03-04}. Before printing and zeroing the BRNCH 
array, however, the branch totals are added to the REG ar
ray {Calculation Sheet, line 02). 

The same program cycles are repeated for the rest of the 
records in region I. Remember, however, that data is ac
cumulated into the REG array only when processing for a 
branch is complete {Ll on). 

15-20 

Once records for all branches within region I have been 
processed, L2 is turned on, indicating the first record in the 
next region has been read, but not yet processed. With L2 
on, the 12 accumulated region totals are printed {Output 
Sheet, lines 05-06}. Before output of the REG array, how
ever, calculations conditioned by L2 on are performed; that 
is, the region totals are added to the company array COMP 
{Calculation Sheet, line 03}. The calculation is done be
fore output so the region totals can be saved before REG 
is filled with zeros. 

The same procedure is followed for all store records in 
region II. During every program cycle, the store totals are 
printed and accumulated to form a branch total; when L1 
is on, the branch total is printed and accumulated into a 
region total. 

When the end of file is reached, the LR indicator is turned 
on. Automatically, all control level indicators assigned {Ll 
and L2} are also turned on. Therefore, after the last store 
record has been printed and the store totals added to 
BRNCH {Figure 15-19, insert A, line 01), any specifications 
condition~d by L1, L2, or LR are performed. In other 
words, the totals for the last branch are added to REG 
{Figure 15-19, insert A); then the region totals are added 
to COMP. Followmg the calculations, tfuee sets of totals 
are printed; totals for the last branch {Figure 15-19, insert 
B, lines 03-01); then the region II totals; and, finally, the 
company totals. 



IB"' 
lntern1tional Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date l Punching 
Graphic I I I Page[D Program I I I I I I I Identification 

Instruction l l l Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

AL L Plus Minus Zero 

ffi 
Factor 1 Operation Factor 2 Result Field 

Field :!;. Compare 
Comments Line 

<> 5 Length ~ High Low Equal 

~ ~ 
~ 1>2 1<2 1~2 

~ 9 0 l5 l5 ... Lookup 
:I: -z z z Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o}l c [SR ltl C.1!1 ~I ~T l8 BR rJcH ic Ck!~ B_R NCH lrk2td 
0J2l c~1 R[E K; ~R NC!J l~IEk:s ~le eo~ RIEIG T\Q l:I!A_t... 
-T-T 

c L~ co ~~ ~D~ ~IE1G K:b Mle !_C t~ ~~ ~ IW ~ll.d ® c 

IB"' 
International Business Machines Corporation Form X21·9090 

Printed in U.S.A. 

RPG OUTPUT - FORMAT SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date Graphic l l l J Pag{IJ Program I I I I I I I l Punching Identification 
Program 

Instruction Punch l l l J 
Programmer 

!!: 
3: Space .Skip Output Indicators .!». 

Edit Codes .!2 
1i lia 

.... 
Zero Balances 0 

Al 1 
Commas No Sign CR - X • Remove 

I§ >- to Print Plus Sign Sterling 

Line Filename ~~ Field Name End ~ 
Yes Yes 1 " J Y ~ Date Sign 

iii Position 
Positon II Yes No 2 a K Field Edit 

~ 0 " ~ $ in CD No Yes 3 c L Z • Zero 
- .!!! ~ :I:" 

~~ ~ 8 ~ 
,, 

No No 4 ) M Suppress I-
i~ ~ 0 l5 0 Output 

E 

~ >-"" < z z z 
~ ~ Record 8?. 

I- :;l II Constant or Edit Word 
Vi 0. 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38~ 40 41 42 43 «~46~48~50~~~54~56~~W~ITT~~~~66~68~ro 71 72 73 74 

0 1 0 rR ISP O~]j VJ 
0 2 0 IS tr~ 3 11~[~ 
0 3 0 ]] ~3 Ll 
0 4 0 ~R NC.~ 3IB 1i.1~ 
0 5 0 t 33 LJi. 
0 6 0 ~E~ ~~ 1m.J 
@: rl ~~ 

~o J!1P ~ iii.I~ 

Figure 15-19. Accumulation and Output of Group Totals Using Arrays 

Arrays 15-21 



REFERENCING INDIVIDUAL FIELDS OF AN ARRAY 

In addition to referencing all fields of an array, you can use 
an individual array field in calculations or output. Suppose 
you have an array with each field containing the quantity in 
stock of a particular part manufactured by your company. 
Field 1 contains the quantity in stock for part# 1, field 2 
for part #2, and so on. When a shipment of ordered parts 
is received, the quantity in stock must be updated to reflect 
the current inventory. This means you should reference 
(add to) only particular fields of the array. 

Indexing an Array 

As you learned, if a chlculation or output specification con
tains an array name alone, that specification is automatically 
performed for every field of the array. To reference only a 
single field of an array, you must identify that field for the 
computer. This is done by placing a comma after the array 
name, followed by an index which points to the particular 
field (Figure 15-20). This index can be either the actual 
number of the field to be referenced or the name of a field 
containing the number of the field to be used. 

If you recall Defining an A"ay, the name used to refer to 
an array cannot exceed six characters in length. When 
referencing individual fields, both the array name and an 
index are necessary to refer to the data. Therefore, usually 
the array name, plus the comma, plus the index cannot e -

e name used to refer to an individual 

name (with index) used to refer to an individual array field 
is specified only as Factor 1 or Factor 2 on the Calculation 
Sheet. In this case, the array name plus comma plus index 
may be as long as ten characters. However, the array name 
portion of the reference still cannot exceed six characters. 

Figure 15-20, line 01 shows a valid reference to the ninth 
field of an array named ARYl. However, if the array con
tains ten or more fields, some of which may have to be 
referenced, the name of this array would have to be short
ened to provide enough positions for the index (Figure 
15-20, line 04). The limit of six characters applies even if 
the name of a field is used as an index. As line 07 shows, 
if an index field IFLD is specified, only one character (B) 
can be used as the name of the array because the indexed 
name is specified under Result Field. However, COM, 
INDEX on line 07 is valid, even though longer than six 
characters, because it is specified only under factor columns. 

Specifying an Index Which Does Not Change 

If you know exactly which field is to be used in a calcula
tion or output operation and the specification is to refer
ence the same field in every program cycle of the job, you 
should use a constant as the mdex. ASsume a 7-field array 
(SLS) is defined to contain a salesman's six daily commission 
amounts and his total commission for the week. The six 
daily amounts from one of the salesmen's input records are 
read into fields 1-6 of the array. The seventh field on the 
input record contains zeros and is read into field 7 of the 
array (Figure 15-21, insert A). 

IB~ International Business Mechines Corporation Form X21-9093 

Printed in U.S.A. 

Date ___ _ 

Program ___________ _ 

Programmer __________ _ 

Indicators 

Line AL I Factor 1 
c. 
> 
I-

~ 0 0 0 z z z 

0 1 

0 2 c 

0 5 c 

0 6 c 

0 7 c 

0 8 

RPG CALCULATION SPECIFICATIONS 

l Punching Graphic l l 
Instruction Punch } l 

Operation Factor 2 Result Field 
Field 
Length 

Figure 15-20. Referencing a Particular Field of an Array 

15-22 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
PlusJ Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

Table (Factor 2) is 

75 76 77 78 79 BO 

~~~~~~!~cation I I I I I I I 

Comments

The array fields are defined as 5-cligit numbers with two
decimal positions. Once the data is in the array, the XFOOT
calculation operation is performed to add all fields of the
array and place the total in the seventh field (Figure 15-21,
insert B). The weekly total for every salesman is always
stored in the seventh field. Therefore, the actual number

035.20 027.80 042.37 031.87

025.93 000.00

DOE, JOHN

7 can be specified as the index. In addition, a $25 bonus
is to be added to a salesman's total if his weekly commis
sion exceeds $175 (Figure 15-21, insert C). Thus, in every
program cycle, field 7 must first be compared to $175 to
determine if the bonus is to be added to the contents of
field 7.

03520 02780 04237 03187 01790 02593 00000 SLS array ®
Field 2 3 4 5 6 7

RPG CALCULATION SPECIFICATIONS

Reference every Reference only
field of array 7th field of array

®

03520 02780 04237 03187 01790 02593 18107 SLS array

Field 7

RPG CALCULATION SPECIFICATIONS

c ©

SLS array 03520 02780 04237 03187 01790 02593 18107

+ 2500

SLS array 03520 02780 04237 03187 01790 02593 20607

Field 7

Figure 15-21. Specifying a Number as an Index

Arrays 15-23

Specifying an Index Which Can Be Changed

On the other hand, if the array field will vary when a par
ticular specification is performed, the index should be a
field name rather than an actual number. In this way, the
number stored in the index field can be changed during the
program to indicate which array field is to be referenced.

An array (STK) is used to contain the quantities in stock of
all parts manufactured by a company. Field 1 of the array
contains the quantity for part # 1, field 2 for part #2, and
so on. When additional P¥ts are manufactured, the values
in the appropriate fields must be updated. Therefore,
records are punched daily for each type of part produced.
Each record contains the part number (NM) and the quan
tity of that part produced (QTY).

To perform the update job, the contents of the QTY field
must be added to one of the array fields for every record
processed. Thus, an index must be used in order to refer-
ence only the individual field to be updated. Since each
daily record is for a different part number, the array field to
be increased will vary each time the specification is performed.
For this reason, an actual number cannot be specified as the
index, because QTY would be added to the same field for
every part number. lhstead, the NM field, which con tams
the part number for each record, can be specified as the
index (Figure 15-22). Then, every time the addition speci
fication is performed, the part number just stored in NM in
dicates which number field of the array is to be referenced.

15-24

Output of Individual Fields of an Array

To put out individual fields of an array, you code the same
output specifications you would for normal fields. The only
difference is that under Field Name on the Output Sheet
you must specify the array name followed by a comma and
an index. The index then points to the particular field to
be put out (Figure 15-23).

Thus, referencing individual array fields for output is the
same as referencing them for calculations. If the same field
is to be put out every time the output specification is per
formed, an actual number can be used as an index. Other
wise, if different fields are to be put out individually, a field
should be specified which contains the changing index value.
In any case, the array field (array name plus comma plus
index) on the Output Sheet cannot exceed six characters
in length.

Edit codes and edit words can be used to punctuate an in
dividual numeric array field. If an entire array is to be put
out but the fields require different punctuation, each field
and its editing should be specified individually. Editing to
be done on an individual array field is specified and per
formed just as it would be for any normal field. This means
that, if an edit code 1s specified for an mdmdual array field,
two blanks are not automatically inserted before the field,
as was the case with an entire array. Furthermore, although
any type of output can be edited, editing is generally not
specified for an array field which is to be punched on a
card or written on disk to be used as input to another run.

IB"'
lnternetlon•I Businen Machines Corporation

RPG CALCULATION SPECIFICATIONS
1 2

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 80
Date _____ _

Punching
Instruction

Graphic Page[D ~;~~:~1:ation I I I I I I I
Program _______________ _ Punch

Programmer ______________ _

Indicators

Factor 1 Operation Factor 2 Result Field

Figure 15-22. Specifying the Name of a Field as an Index

IB"'
lnternetional Business Machines Corporation

Field
Length

Resulting
Indicators

Arithmetic

Plus Minus Zero

~ Compare

~ High Low Equal
~ 1>2 1<2 1•2

~ Lookup

RPG OUTPUT· FORMAT SPECIFICATIONS
1 2

Date Graphic 1 1 ! 1 Page DJ l Punching
Instruction Punch l Program

Programmer

s
~ Space Skip Output Indicators _...

Edit Codes

i tffi
....

Zero 8alanc;1!S

I 1
Commas No Sign CR . 0

I§ ~ to Print .c
Line Filename w ~ Field Name End ~

Yes Yes 1 " J

~~
iii

Positon Yes No 2 a K
l'l.!!! ~

~ ~ in .!!! No Yes 3 c L
~ :i::"

~~ 8 ~ i No No 4 '.) M
E i~ ~ ~ 0 0 0 Output

of ~~
<(z z z :6 .§ Record ~ w"' u Constant or Edit Word cli Q.

Comments

Form X21-ll090

Printed In U.S.A.

75 76 n 78 79 80

Program I
Identification I I I I I I

X • Remove
Sterling Plus Sign

Y • Date Sign
Position Field Edit

Z • Zero
Suppress

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38~ 40 41 42 43 «%~Q~~w~~~~$~D~~~~~~~~ooo~~ro 71 72 73 74

0 1 0 IE leP bl~ ~ TTTTTTTTTTTTTTTT
0 2 0 IS t. s_.J_ 7 3 17.13

Referencing the same field by

0 3 01*
using actual number as index

0 4 o~
0 5 o~
0 6 o~ A~ DS ~
0 7 0 ST_ l<a ~~3 3)2 Referencing different fields by

using a field as the index
0 8 0]T

J_ J_J_ _l _l J_J_ _l J_ _l _l J_J_ _l J_J_
I I I I I I I I I I I

Figure 15-23. Output of Individual Array Fields

Arrays 15-25

Referencing Only Part of a Field

When a field is referenced in a specification, all characters
within that field are used in the calculation or output. How
ever, you may wish to reference only some of the data
stored in a field. For example, consider the case during ad
dress printing where the zip code is within the same field as
the city and state on an input record but must be printed
on a separate line on the output record {Figure 15-24).

The indexing capability of arrays can be used to enable you
to reference specific characters from an input field. This is
accomplished ;by setting up two arrays; one to contain the
entire field of data and one to hold only the specific charac
ters you want to reference.

First, the entire field from which you wish to use data is
stored in an array (Figure 15-25). This array is previously
defined as containing as many fields as there are characters
in the field to be referenced. Thus, each character of the
one field is actually stored in a separate field of the array.
The array fields can then be referenced one at a time (using
an index) until a field containing a specific character is
located. This process of checking the fields of an array for

el sc nnin .

After scanning the fields and locating a specific character,
you can then move that character and any characters {fields)
on either side of it to a smaller array. This array will then
contain the portion of the original input field which you
wish to reference separately in calculations or output.

For an address printing job, let's assume the input records
are defined as shown in Figure 15-26. The CTYSTA field
contains the city/state and zip code. Although names of
the city and state may vary in length, the zip code is always
five digits long. Any righthand, unused positions of the
field will contain blanks.

15-26

Input record

j45876l NELSON KENNETH RAY

114618 RUSSELL AVENUE NORTHI

I ROCHESTER;t5MINN~55901~1Sl515t51:5r> I
CTYST A field

Output record

NELSON KENNETH RAY

~181JP§§~~~~Ysl'JUE NORTH
< ROCHESTER, MINN ·•·•
; 55901

0

%
2

~CTYSTA field to be printed as

Figure.15-24. Referencing Parts of a Field Separately

The array fields are defined as 5-digit numbers with two
decimal positions. Once the data is in the array, the XFOOT
calculation operation is performed to add all fields of the
array and place the total in the seventh field (Figure 15-21,
insert B). The weekly total for every salesman is always
stored in the seventh field. Therefore, the actual number

035.20 027.80 042.37 031.87

025.93 000.00

DOE, JOHN

7 can be specified as the index. In addition, a $25 bonus
is to be added to a salesman's total if his weekly commis
sion exceeds $175 (Figure 15-21, insert C). Thus, in every
program cycle, field 7 must first be compared to $175 to
determine if the bonus is to be added to the contents of
field 7.

03520 02780 04237 03187 01790 02593 00000 SLS array ®
Field 2 3 4 5 6 7

RPG CALCULATION SPECIFICATIONS

Reference every Reference only
field of array 7th field of array

®

03520 02780 04237 03187 01790 02593 18107 SLS array

Field 7

RPG CALCULATION SPECIFICATIONS

©

SLS array 03520 02780 04237 03187 01790 02593 18107

+ 2500

SLS array 03520 02780 04237 03187 01790 02593 20607

Field 7

Figure 15-21. Specifying a Number as an Index

Arrays 15-23

Specifying an Index Which Can Be Changed

On the other hand, if the array field will vary when a par
ticular specification is performed, the index should be a
field name rather than an actual number. In this way, the
number stored in the index field can be changed during the
program to indicate which array field is to be referenced.

An array (STK) is used to contain the quantities in stock of
all parts manufactured by a company. Field 1 of the array
contains the quantity for part # 1, field 2 for part #2, and
so on. When additional p'\ftS are manufactured, the values
in the appropriate fields must be updated. Therefore,
records are punched daily for each type of part produced.
Each record contains the part number (NM) and the quan
tity of that part produced (QTY).

To perform the update job, the contents of the QTY field
must be added to one of the array fields for every record
processed. Thus, an index must be used in order to refer-
ence only the individual field to be updated. Since each
daily record is for a different part number, the array field to
be increased will vary each time the specification is performed.
For this reason, an actual number cannot be specified as the
index, because QTY would be added to the same field for
every part number. Instead, the NM field, which contains
the part number for each record, can be specified as the
index (Figure 15-22). Then, every time the addition speci
fication is performed, the part number just stored in NM in
dicates which number field of the array is to be referenced.

15-24

Output of Individual Fields of an Array

To put out individual fields of an array, you code the same
output specifications you would for normal fields. The only
difference is that under Field Name on the Output Sheet
you must specify the array name followed by a comma and
an index. The index then points to the particular field to
be put out (Figure 15-23).

Thus, referencing individual array fields for output is the
same as referencing them for calculations. If the same field
is to be put out every time the output specification is per
formed, an actual number can be used as an index. Other
wise, if different fields are to be put out individually, a field
should be specified which contains the changing index value.
In any case, the array field (array name plus comma plus
index) on the Output Sheet cannot exceed six characters
in length.

Edit codes and edit words can be used to punctuate an in
dividual numeric array field. If an entire array is to be put
out but the fields require different punctuation, each field
and its editing should be specified individually. Editing to
be done on an individual array field is specified and per
formed just as it would be for any normal field. This means
that, if an edit code is specified for an individual array field,
two blanks are not automatically inserted before the field,
as was the case with an entire array. Furthermore, although
any type of output can be edited, editing is generally not
specified for an array field which is to be punched on a
card or written on disk to be used as input to another run.

IBJtt International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

F0<m X21-9093

Printed in U.S.A.

75 76 77 78 79 80
Date _____ _

Punching
Instruction

Graphic

1 2

Page[D ~;~~;~f:ation I I I I I I I
Program _______________ _

Programmer ______________ _

Indicators

ffi And And
Line

~ 5 Factor 1 Operation

I- ~
~ ~ ~ b ~ z

Figure 15-22. Specifying the Name of a Field as an Index

IBJtt

Punch

Factor 2 Result Field

International Business Machines Corporation

Field
Length

Resulting
Indicators

Arithmetic
Plus Minus Zero

g Compare

g High Low Equal
~1>21<21•2

~ Lookup

RPG OUTPUT - FORMAT SPECIFICATIONS
1 2

Date
Graphic I I I] Page[IJ [Punching

Instruction Punch l l l J Program

Programmer

!£
~ Space Skip Output Indicators -"'- Edit Codes
i t~

...
Zero 8alanc,es

I 1
Commas No Sign CR -0

le
>- to Print .c

Line Filename w = Field Name End
~

Yes Yes 1 " J iii t: u. Pt>siton a Yes No 2 a K

! d
j Ii = ! in 1 No Yes 3 c L

=~ ~ ~ 0 b 0 ~ ~ Output No No 4 ') M
E !>'. t ~ :{ <(z z z Record if ~~ ~ cii rf

u Constant or Edit Word cii Q.

Comments

F0<m X21-9090

Printed in U.S.A.

75 76 n 78 79 80

Program I
Identification I I I I I I

X • Remove
Sterling Plus Sign

Y • Date
Sign
Position

Field Edit
Z • Zero

Suppress

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 JSl:Jg 40 41 42 43 «~~o~~w~~~M~~~~~~~~~M~~~~~ro 71 72 73 74

0 1 o!E !eP bl~ ~ 1T1TTT1T1TT11TTT
0 2 0 ISL. s_J_ 7 3]JS

Referencing the same field by

0 3 o~
using actual number as index

0 4 o~
0 5 o~
0 6 oC A[B DS ~
0 7 0 ST. l<Lt. ~~l.3 31.Z

Referencing different fields by
using a field as the index

0 8 0
J_ .11.1.1 J_J_ .1 J_ .1 J J_J _ _l _LJ_
r I T I I I ,- I r I I I r I I I

Figure 15-23. Output of Individual Array Fields

Arrays 15-25

Referencing Only Part of a Field

When a field is referenced in a specification, all characters
within that field are used in the calculation or output. How
ever, you may wish to reference only some of the data
stored in a field. For example, consider the case during ad
dress printing where the zip code·is within the same field as
the city and state on an input record but must be printed
on a separate line on the output record (Figure 15-24).

The indexing capability of arrays can be used to enable you
to reference specific characters from an input field. This is
accomplished

1
by setting up two arrays; one to contain the

entire field of data and one to hold only the specific charac
ters you want to reference.

First, the entire field from which you wish to use data is
stored in an array (Figure 15-25). This array is previously
defined as containing as many fields as there are characters
in the field to be referenced. Thus, each character of the
one field is actually stored in a separate field of the array.
The array fields can then be referenced one at a time (using
an index) until a field containing a specific character is
located. This process of checking the fields of an array for
particular data is referred to as field scanning.

After scanning the fields and locating a specific character,
you can then move that character and any characters (fields)
on either side of it to a smaller array. This array will then
contain the portion of the original input field which you
wish to reference separately in calculations or output.

For an address printing job, let's assume the input records
are defined as shown in Figure 15-26. The CTYST A field
contains the city/state and zip code. Although names of
the city and state may vary in length, the zip code is always
five digits long. Any righthand, unused positions of the
field will contain blanks.

15-26

Input record

1458761 NELSON KENNETH RAY

114618 RUSSELL AVENUE NORTHI

ROCHESTE R;t.SM I NNt55590HSt:5t5t5151St51:5t)

CTYST A field

Output record

NELSON KENNETH RAY

. .. :f&1S~p~~h4A.V~~UE NORTH
'/ROCHESTER, MiNN · ...

/55901

""'CTYST A field to be printed as

Figure.15-24. Referencing Parts of a Field Separately

(

CTYSTA field (30 characters)

ROCHESTER,-t5MIN~55901~

~~-------------~-----... --------~
ALL array (30 fields)

Figure 15-25. Isolating Part of a Field

1Blt1

Date ____ _

Program-------------

Programmer------------

~
] 1

g>.

;.._r~
Position

Line Filename

ZIP array (5 fields)

fnternatio11al Businea Machines Corporation

RPG INPUT SPECIFICATIONS

Punching
Instruction

Graphic

Punch

Record Identification Codes

Position - ~ Position

~ ~ ~
~uo

Field Location
r::
~ 1-----.----1
iii

From To

1 2

Page[O

Field Name

Form X21-9094
Printed in U.S.A.

75 76 77 78 79 80
Program
Identification I II I I I I

g

Field
Indicators

~ 1-----.,...--1

~ Sterling
.., Sign

a:~ Zero Position
~ Plus Minus or
.., Blank
-;;
u:

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 I I INP ulI ~ W511
0 2 I l1 ~~ D[£
0 3 I f?j l;· INIA m
0 4 I ~~
0 5 I ~b
0 6 I~ ctrtsr~ 1r=; , l~!.W)<:!Jo~ lIM IN~ ~ /l] i'.-Slrnj tJjE ~~ tP ~q I~
0 7 I

"~ pl l!S-)1:. 1i:::1f

~ k:r['tJstM
~
~ 1

n A T "' I

ROCH ESTE R~~MI N Nb55901 i'>~~i'>~~i'>i'>i'>

Figure 15-26. Defining a Field to be Scanned CTYSTA field

Arrays 15-27

The two arrays for this job are defined with the extension
specifications in Figure 15-27. ALL is set up to contain 30
fields, one for each character of the CTYSTA field from
the input record. The five fields of the ZIP array will be
used to contain the zip code portion of the CTYSTA field.

To locate the zip code in the ALL array, the fields must be
scanned one at a time, beginning with the last {rightmost)
field of the array. Thus, the index field (A) for referencing
the individual fields of ALL is initially set up in the Calcu
lation Sheet to contain the value 30 (Figure 15-28, line 01).
When the last {rightmost) character of the zip code is
located, it should be moved to the rightmost (fifth) field of
the ZIP array. Therefore, a 5 is initially set up in the index
field {Z) which will reference a particular field of ZIP
(Figure 15-28, line 02).

With the index fields set up, the computer can begin scan
ning ALL for the zip code. The fields of ALL are checked,
from right to left, until the first nonblank character is
located. As line 04 shows, a character is compared to a
blank. If it is blank, the index value is decreased {line 05)
so the next character to the left can be compared to a
blank. When one of the characters checked is not a blank
{indicator 20 oft), the last character of the zip code has
been located. This ends the field scanning.

The computer can now proceed to perform the next group
of calculations which move the located character to the
rightmost position of the ZIP array {line 09). The character
in the ALL array which was moved to the ZIP array is now
made blank {line 1 O) so the city and state line can be printed
without the zip code. Line 11 checks the index value of Z
to determine if all five characters of the zip code have been
moved to the ZIP array and made blank in the ALL array.
If Z has a value of J, all five characters have been moved.
If not (indicator 21 is oft), the index values for both arrays
are decreased by 1, so the next zip code character (to the
left of the last one moved) can be moved from ALL to the
next portion in the ZIP array.

After calculations, the output specifications in Figure 15-29
cause the name and address to be printed. The NAME and
STREET fields are printed exactly as they appear on the
input record. City and state, on the other hand, are printed
from the ALL array rather than the input field, because the
zip code has been blanked out. The zip code, which was
moved to the ZIP array, is then printed alone on the next
output line.

IBJt1 lntem1tfonll Business Machines Corpor1tion
FormX21-9091
Printed In U.S.A.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

Oat•----
Punching 1-G_ra~phl_c -t--t--t-+---t--+--t--t
Instruction Punch Program __________ _

Programmer __________ _ Extension Specifications

Number of the Chaining Field
Number L_ of Number Table or

Table or Length A .2 0

To Filename Entries of
~H Array Name

Per Entries of Array Name
Record Per Table Entry ~H

(Alternating
Format)

or Array '; ·2 g
a.. 0"'

Record Sequence of the Chaining File

Line i!l.
~

~
From Filename

Figure 15-27. Defining Arrays for Field Scanning

15-28

Length
of
Entry

i

1 · 2

Page rn

~ .~ c
~~~ 
iS ;;; ~ 
'" E " 

!~i 

75 76 77 78 79 80 

~~~;~f~cation I I I I I I I 

Comments

IB:ft1

Date ___ _

Program ___________ _

Programmer __________ _

Indicators

AL L Factor 1

~ b ~ z

International Busineu Machines Corporation

RPG CALCULATION SPECIFICATIONS

l Punching Graphic JI lJ 1
1 Instruction t-P-un-ch-1----+-+-+-+-+--+---<

Operation Factor 2 Result Field
Field
Length

1 2

Page[D

Resulting
Indicators

Arithmetic

Plus Minus Zero

Compare

High Low Equal
1>2 1<2 1=2

Lookup

Table (Factor 2) is

High Low Equal

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 80

~~:~:~f~ation I I I I I I I

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c l- lDJIJ3~ ~ I~ I 'i/iDX FOR !ALL AiB
02 c ~-~D~5 r 1~ /~DX F~IR ~I~~
o3 c Fll@JiP !IA~
0 4 c ~LL JA co~P • ' 1m1s CHAR ~ laLANK
05 c llkzl A SU~ 1 ~ ~S-~E~RIEts IN~X
06 c ~~ ~otto ~/~DlP CHC~ NXT CHAR~C
0 7

0 8 ~o Vt:. lj_p tMG
~o ~ ~L L l4 l. I Pu_~

I fT
0 9 c ~v 1 l~AR lPk:JD,

1
Nl~l A
~11 ll_
~f2.11

ltl_
[15(1

17

Figure 15-28. Field Scanning

IB~

Date ___ _

Program------------

Programmer __________ _

Space Skip

Line Filename

~o llllE I ~l-IL IAI
~~ ~p l
slll]a [lj IAI
~UB 1 l
GO tro ~o Vifd ll Ip

International Business Machines Corporation

RPG OUTPUT· FORMAT SPECIFICATIONS

l Punching Graphic ~' I JI r
1

JJ
Instruction l-P-unc-h---<f---ll-11-1-1-----Jf---~

Output Indicators Jo..

0 z 0 z

Field Name End
Positon
in
Output
Record

>
11
a;
II
ID

l
rf
II

"-

....
Commas

Yes
Yes
No
No

1 2

Page[O

Edit Codes

Zero Balances No Sign CR -to Print

Yes 1 "' J
No 2 8 K
Yes 3 c L
No 4 0 M

Constant or Edit Word

Form X21-9090

Printed in U.S.A.

75 76 n 78 19 80

~~~~cation I I I I I I I 

x - Remove 
Plus Sign Sterling 

Y- Date Sign 

Field Edit Position 

Z • Zero 
Suppress 

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ~ 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 0 B I LIL s IO 1 ~1 
0 2 0 

0 3 0 tD [ 
0 4 0 

D l [_ [4 LL ~ Only city and state will be printed since 
-------~~--lL----~-------------~p~~~~~dooL 

0 5 0 

0 6 0 

07 0 lLJ ~1 lJJlJl_LLLLlJ.J.lJ.J.LJ.J..Ll 

Figure 15-29. Output of Part of a Field 

Arrays 15-29 



LOKUP OF AN ARRAY 

Searching an Array for a Particular Field 

An array can be searched to determine if a particular field 
of data is stored in the array. Actually, the array lookup 
is coded and performed in almost the same way as a single 
table lookup. As the Calculation Sheet in Figure 15-30 
shows, you specify: 

1. The search word to be used. 

2. The LOKUP operation code. 

3. The array to be searched. 

4. The condition which must be satisfied. 

5. The resulting indicator which turns on if the con
dition is met. 

The array lookup continues, one field at a time, until the 
search condition is satisfied or the end of the array is 
reached, whichever occurs first. As is the case for table 
lookups, array fields must be in sequence (A or D) if 
searching for either a low or high condition. 

Al though array and table searches are similar, there is an 
important difference you must be aware of. Remember, 
the array lookup is similar to a single table lookup, not a 
two-table lookup. Only one array is specified in the look
up operation. Only one array is specified in the lookup 
operation. Any field which is referenced as the result of a 
successful search can only be from the array actually 
searched. In other words, the array can not be searched to 
make a field from another array available, as is the case 
when two related tables are used in a lookup operation. For 
this reason, no result field is ordinarily specified in an array 
lookup operation. 

IB~ International Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date l Punching l Graphic I 1 l l Page[D Program I I I I I I I Identification 

Program 
Instruction j Punch J l l l 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

AL I Plus Minus Zero 

Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments Line 
c. Length High Low Equal 
> 1>2 1< 2 1 •2 ... 
~ ~ 0 ~ 

Lookup 
z Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 001)1 II IJ LOI ~oIE IAIRIAI1I I I I II I J 11' I LU IJ I 
0 2 c I~ 1~ ll ± :i ± J.Ill ll I 
0 3 c Actual search word Name of array Condition which satisfies search 
0 4 c or field containing to be searched and which resulting indicator 
0 5 c search word I lIIllII is turned on 

--'-

Figure 15-30. Searching an Array for a Particular Field 

15-30 



Starting the Search at a Particular Field 

Another very important difference between tables and 
arrays concerns where the search can begin. In a table 
search, only the name of the table to be searched can be 
specified as Factor 2 of the lookup operation. As a result, 
a table search always begins at the first table element. 
Likewise, if only an array name is specified as Factor 2 of 
a lookup operation, the search will automatically begin at 
the first field of the named array. 

With arrays, however, you also have the capability of be
ginning an array search at any field you specify. Under 
Factor 2, you specify the array name, followed by a comma 
and an index. The index, whether an actual number or the 
name of a field containing a number, points to the array 
field where the search is to begin (Figure 15-31 ). 

In a large array where you know that the value you are 
searching for is not in a particular section of 'the array, 
search time can be greatly decreased by beginning the 
lookup at a particular field. Suppose you have a 300-field 

array name ARY containing the values 001 through 300 in 
ascending sequence. To locate a value of 047, only 47 
fields would have to be checked before the search condition 
was satisfied. However, to locate the value 289, 289 fields 
would have to be checked, if the search began at the first 
array field. 

Now, divide the array into three parts of 100 fields each: 

Fields 1-100: values 001-100. 

Fields 101-200: values 101-200. 

Fields 201-300: values 201-300. 

For any value of less than 101, the first third of the array is 
searched, beginning at field 1. For values greater than 100, 
but less than 201, the second third of the array is searched, 
beginning at field 101. Likewise, a search is started at field 
201 to locate any value greater than 200. In any case, no 
more than 100 fields have to be checked to satisfy the 
search condition. 

IB:ft1 lntern1tional Business Machines Corporation FormX21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date 
[ Punching Graphic l l l l Page[]] Program ·I I I I I I I Identification 

Instruction l l l l 1 Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

AL L Plus Minus Zero 

Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments Line 

! Length High Low Equal 
1>2 1<2 1•2 

~ ~ l) l) Lookup 
z z Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO :n 32 33 34 35 JS a~=:a11.: 39 40 4, 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c IS 1 R CH .kl~ LO kU p~ lg~ m:i. 3] ~ Actual number ~b 
0 2 c I* OIR ~w M~~ :~ as index 
0 3 c SR c ff :w.t c...o 14'101 lfla R~ Jd x :I HiHtH l' 0 4 c 1.1'::::: =:::::··· ~ 
0 5 c !'-Name of index field containing number 

0 6 c 11111111111II11n1ru 
Figure 15-31. Starting an Array Search at a Particular Field 

Arrays 15-31 



For this example, the number of the array field at which 
the search is to begin will vary, depending on the value be
ing searched for. Figure 15-32 shows that three LOKUP's 
have been coded. Only one of the lookup operations is per
formed for a particular value. 

To determine which LOKUP (line 03, 04, or 05) is per
formed, you must first determine in which part of the array 
the value is located. The first COMP (compare) operation 
{line 01) checks for a value in the first 100 fields. If the 
value is less than 101, indicating the first one third of the 
array, indicator 33 is set on. If 33 is on, the LOKUP be
ginning at field 1 is performed {line 03). However, if the 
value is not in the first third of the array {33 off), another 
compare {line 02) is necessary to determine/if the value is 
in the second third of the array (indicator 44 set on). Thus, 
the LOKUP beginning at field 101 {line 04) is performed 
with indicator 44 on. If neither indicator {33 or 44) was 
set on, the value must be in the last third of the array, if 
it is in the array at all. Therefore, with both 33 and 44 
off, the LOKUP beginning at field 201 is performed. 

For the first LOKUP {line 03), it is not necessary to actually 
specify the numeric value 1 as the index, in the same manner 
as 101 is specified for the second LOKUP. When no index 
is specified with the array name, the search automatically 
begins at the first field, as if the index were 1. 

If the value of the index changes, as in this case, you can 
use an index field to contain the number of the array field, 
rather than using the actual number. In this way, it is 

' necessary to code only one LOKUP. Of course, you must 
place the appropriate number in the index field every time 
before the lookup operation is performed. Thus an index 
field will not always reduce the number of specifications 
required. 

As shown in Figure 15-33, first the compare operations are 
performed to determine whether the value is in the first, 
second, or last third of the array. The results of the com
pare operations determine which number should be zero
added into the index field, ISFLD, before the lookup is 
performed. 

IBJ.1 International Business Machines Corporation Fonn X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date l Punching 
Graphic l l J Page DJ Program I I I I I I I Identification 

Instruction l l 1 Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I L Plus Minus Zero 

Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments Line 

! Length High Low Equal 
1>2 1< 2 1•2 

~ ;g 'O 'O Lookup 
z z Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 ·1a 19 20 21 22 23 24 25 25 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c VA L-ll,lE c~ MP 1~1 ~IJ [EI lB sLrJ r!H IR ~? 
0 2 c INl3l3 MA LtJ~ eo ~p lm'L ~ -i 1-i 11H I~ ~~ UJ'I 
0 3 c liBJ Vl4_ LU~ I Lio ll<u PIA '.E~ ~ l41RJ lr1 S[I IAII FL~ "-11 
0 4 c ~4 llLA _LU~ LIO ll(U I& ~ LL 11 ~1 "~ SlI AIRtrl FL~ ~It ~11 

~1'\, 1 .. A ~ L.llJ~, [bO ~~ I' IJ. ~t. ~~ lSlr ~IRIT1 ~~ ~l:Z k.?511 0 5 c 1.:JU. er~ ~ m 
0 6 c 

Figure 15-32. LOKUP with an Actual Index 

15-32 



Determining if a Search Is Successful 

At this point, we should discuss the index field and how its 
contents are changed as a result of the lookup operation. 
Before the lookup is performed, you determine the value 
which is to be placed in the index field. The array search 
then begins at the field number specified. The array lookup 
continues, one field at a time, until the search condition is 
satisfied or the end of the array has been reached, which
ever occurs first. If an index field is specified, the number 
of the array field first satisfying the search condition is 
stored in the index field. However, if the end of the array 
is reached and none of the fields satisfy the search, a 1 is 
placed in the index field. In any case, if an actual number, 

not an index field, is specified as the index, the actual in
dex is not changed to reflect the success of the search. 

The way in which you determine a successful search is 
whether the resulting indicator assigned has been turned on 
or off. Thus, if the resulting indicator is off and an index 
field had been specified, the index field should contain the 
value 1, the result of an unsuccessful search. Note, how
ever, that the contents of the index field alone cannot in
dicate that a search was unsuccessful. If the first field of 
an array satisfied the search condition, the index field 
would also contain the value 1; however, in such a case, the 
resulting indicator would be on. 

IBJt1 International Business Machinu Corporation Form X21-9093 

Printed in U.S.A. 

Date ___ _ 

Program ___________ _ 

Programmer __________ _ 

Indicators 

Line I I 
~ 

Factor 1 

I-

~ ~ ~ ~ 

RPG CALCULATION SPECIFICATIONS 

r Punching Graphic l l 
l Instruction Punch J J 

Operation Factor 2 Result Field 
Field 
Length 

1 2 

Pag•[I] 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
t>2 t<2 1=2 

Lookup 

Table (Factor 21 is 

High Low Equal 

75 76 77 78 79 80 

~~~~;~,:ation I I I I I I I 

Comments

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 Co~~ 1~1 33 Fl l~r ['#/RVl2
0 2 c

0 3 c 1~13
V~LUE

~I-~ D l~l9S11 IXFLD 3~ s~ RT ~,r F Lle] '1
0 4 c ~-~~ 11~11 ~~~LD ~(I R~ II LID #11~11
0 5 c

0 6 c vlAILIU!f LO UPAR1 [l[FL~ ~~
0 7 c

Figure 15-33. LOKUP with an Index Field

Arrays 15-33

Referencing a Field Which Satisfies a Search

After a successful search, you can use the data from the
field which satisfied the condition only if the array name
with an index field is specified in the LOKUP specifications.
If an index field is specified, the number of the field which
satisfied the search is stored in the index field. Therefore,
specifying the array name with the index field in a sub
sequent calculation or output specification refers to the field
which satisfied the search.

However, if no index field is available (array name specified
alone or with a numeric index), the number of the field
cannot be determined and, therefore, the data cannotibe
referenced. You can only determine if one of the array
fields does contain the data for which you searched, ac
cording to the on-off status of the resulting indicator.

The ability to reference a data item which satisfies a search
is one of the major differences between an array lookup

and a table lookup. During a table lookup, when an element
is found which satisfies the search, the element is saved in
a special hold area related to the table. Thereafter, using
the table name alone refers to the contents of the hold area
(in other words, to the data item which satisfied the
search). There is no hold area associated with an array,
however. Thus, following a lookup, specifying the array
name alone refers to the entire array, rather than to any
particular field. The only way an individual array field can
be referenced is by specifying the array name with an index.

Assume you wish to search an array CHG to check for
amounts over $100. If you only want to determine if there
are any fields containing a greater amount, the search can
be coded as shown in Figure 15-34. If indicator 16 is on,
indicating a successful search, you can then print a message
stating there is a charge over $100. Otherwise, if indicator
16 is off, you can print a message stating all charges are
under $100. With the LOKUP specification shown, how
ever, you would have no way of knowing how many fields
or which fields satisfied the search condition.

IBi., lntern•tional Businen Machines Corporation Form X21-9093

Printed In U.S.A.

RPG CALCULATION SPECIFICATIONS
Date ___ _

Punching 1-G-ra_ph_ic -+--+--+--+--+--+--+--l
lnstruc1ion Punch Program ___________ _

Programmer __________ _

Indicators

I 1 Line Factor 1 Operation Factor 2 Result Field
Field

~ Length
I-
E

~ ~ c; ~ z

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

0 1 c l!i~.~ t..K>ll< up ~H-161
0 2 c

0 3 c

Figure 15-34. Determining Only if a Search Is Successful

15-34

52 53

1 2

Page[D

Resulting
Indicators

Arithmetic
Plus Minus Zero

Compare

High Low Equal
1>2 1< 2 1=2

Lookup

Table (Factor 2) is

High Low Equal

75 76 77 78 79 80

~~~::f7cation I I I I I I I 

Comments 

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

* 

( 



If you wish to know which field satisfied the search or, 
perhaps, how much over $100 the amount is, the array 
lookup should be coded with an index field (Figure 15-35). 
The index field can be preset to contain the value 1, so the 
search begins at the first field of the array. If the search is 

satisfied, IX will contain the number of the first field over 

$100; and the resulting indicator will be turned on. The 
contents of IX can then be printed to indicate which field 
satisfied the search. The actual contents of that field can 
be printed by specifying the array name with the index 
field (Figure 15-35, Output Sheet). 

IBJ.t International Business Machines Corporation Form X21-909J 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date Graphic t t ± 
Page[O 

Program I I I I I I I l Punching Identification 
Instruction 

Program Punch 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

AL L Plus Minus Zero 

Line Factor 1 Operation Factor 2 Result Field 
Field Compare 

Comments 
~ Length High Low Equal 
~ 1>2 1< 2 1=2 

] ~ b ~ Lookup 
z 

Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 1J 14 15 16 17 18 19 20 21 22 2J 24 25 26 27 28 29 JO J1 J2 JJ 34 J5 36 J7 38 39 40 41 42 4J 44 45 46 47 48 49 50 51 52 5J 54 55 56 57 58 59 60 61 62 6J 64 65 66 67 68 69 70 71 72 7J 74 

0 1 c Ir.- Arv jj} I XI i~ T 
0 2 cX ~ 0 3 c~ 
0 4 c 11aJ 1¢. ~0 L.O I< u Plc H~ ' ( x 11~ + ft Ir 'ft I 11 

IBJt1 International Business Machines Corporation Form X21·9090 

Printed in U.S.A. 

RPG OUTPUT - FORMAT SPECIFICATIONS 
1 2 75 76 n 1s 79 so 

Date I Puru:hin~ I Graphic 

I I I I I I I I 
P.geITJ 

Program I I I I I I I Identification 
Program Instruction Puru:h 

Programmer 

LL 

~ Space Skip Output Indicators ..1'> 
Edit Codes 

i ~11 
..... 

Zero Balances 

I l 
Commas No Sign CR - X • Remove 0 

11§ ?: to Print Sterling 
.<: Plus Sign 

Line Filename - i:l Field Name End I! v .. v .. 1 ti. J Y • Date Sign 

i2 ~ iii Position 
Posit on II Yes No 2 8 K Field Edit 

~ .e ~ 
~~ 

~. ~ ~ in ! No v .. 3 c L Z • Zero 
~ :r" ~ No No 4 M Suppress 

i~ ~ b 8 _,. Output 0 
E 0 0 

if > _,. "'<( <( z z z :5 .i Record rf. I- :;I w"' II Constant or Edit Word cl) Q. 

J 4 5 6 7 8 9 10 11 12 1J 14 15 16 17 18 19 20 21 22 2J 24 25 26 27 28 29 JO J1 32 33 34 J5 36 37 38'39 40 41 42 43 44J45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7J 74 

0 1 o~ ulJ .llli!T !2 [~ 
0 2 0 J~ 11~ 
0 3 0 CiHG I fi r2J5 ·~ 

I . 
0 4 0 [T 

0 5 0 

Figure 15-35. Determining Which Array Field Satisfies the Search 

Arrays 15-35 



Searching An Array for More Than One Field 

The previous example points out an important considera
tion: an array LOKUP operation is completed when the 
first field is found which satisfies the search condition. If 
you wish to find all fields which satisfy the condition, you 
must code additional specifications which cause the program 
to loop back in calculations to repeat the lookup operation 
from the point where the last search was successful. 

As example, assume your compariy manufactures 25 dif
ferent items, identified-by item codes 1-25. A 25-field ar
ray QTY (Figure 15-36) is used to keep track of the quantity 
in stock of each item. The first field contains the quantity 
of item code J, the second field contains the quantity of 
item code 2, and so on. 

Whenever the quantity of an item falls below 25, 100 items 
are to be manufactured and added to stock. To determine 
which items are to be manufactured, every week the QTY 
array is searched, comparing the array fields with a search 
word (MFGPT) of 25 from a data card. When a quantity 
is found to be less than 25 (search condition Low), the 
item code and quantity in stock are printed. 

From Figure 15-36 you can see that four items must be 
manufactured. The specifications in Figure 15-37 will not 
locate all of the items with quantities less than 25. The 
lookup operation shown will locate only the first quantity 
below 25. If only one data card (containing the search 
word) is read, the specifications are performed once. As 
you know, for every data card read, the program cycle is 
repeated. However, even if several data cards with the same 
search word are read, every time the lookup is repeated, the 
search begins again at field 1 of the array. Therefore, the 
same array field satisfies the search every time, and the 
other three quantities are never found. 

QTY ARRAY 
Array Field 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

047 068 051 

Below stock level of 25 

Figure 15-36. More than One Array Field Which Satisfies the Search Condition 

IBJ.1 International Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 
Date ___ _ 

Punching ._G_ra_phi_c _,___.__,___.____,_____,___,___.. 
Instruction Punch Program ___________ _ 

Programmer __________ _ 

Indicators 

And And Operation Factor 1 Line 

! 
Factor 2 Result Field 

E 

~ 

Figure 15-37. Array Search Which Locates Only One Field 

15-36 

Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1-2 

Lookup 

008 075 

Form X21-9093 

Printed in U.S.A. 

75 76 77 78 79 80 

~;:~~!~cation I I I I I I I 

Comments 



To locate more than one field satisfying the same search 
condition, the LOKUP must be repeated within a single 
program cycle. Not only must the LOKUP be repeated, 
but the search must begin at the point where the previous 
search ended. You can repeat the LOKUP using the GOTO 
and TAG operations, as shown in Figure 15-38. To make 
sure the repeated search begins where the last search left 
off, you must specify the array name with an index field 
in the LOKUP specification. The contents of the index 
field is then updated after each successful search to indicate 
at which array field the next search should begin. 

The first search should begin at field 1. Thus, as Figure 
15-38 shows, the index field IX is initially set up to con
tain the value 1. (The field is zeroed before adding 1, since 
you have no way of knowing the contents of IX at the be
ginning of the program run.) The TAG operation is not 

performed; therefore, the computer skips this specification 
and performs the LOKUP. 

When the first QTY field less than 25 is found, the number 
of the field (04) is placed in the index field. Providing the 
LOKUP was successful (33 on), a 1 is added to the value 
in the index field, to indicate at which field the next search 
should begin. The value in the index field is then compared 
to 26 to see if the entire array (25 fields) has been searched. 
If there are still array fields to be checked (indica'tor 44 on), 
the program branches back (GOTO) to perform the LOKUP 
again. The search would then begin again, only at the field 
following the last field which satisfied the search. The cal
culation specifications would be repeated over and over 
until all items to be manufactured are located and until the 
end of the array is reached. 

IBJ.1 International Bu:Uness Machines Corporation Form X21-9093 

Printed in U.S.A. 

Date ___ _ 

Program __________ _ 

Programmer __________ _ 

Indicators 

Line 1 1 Factor 1 
c. 
> 
I-

~ b 0 0 z z z 

RPG CALCULATION SPECIFICATIONS 

r 
Punching Graphic T 
Instruction Punch I 

Operation Factor 2 

T 
I 

I J 
l J 

Result Field 
Field 
Length 

1 2 

Page DJ 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 

Compare 

High Low Equal 
1>2 1<2 1=2 

Lookup 

Table (Factor 2) is 

High Low Equal 

75 76 77 78 79 80 

~;~~;~f:ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 

01 c .J-+- t-N ~~~ITTITT~1 1111 lllct> ~\T~1R1T !All ~L~ ~1 
o 2 c )/71 ~Ksl41 N r-!rlAIG 

OB C ~...._ ~ 
0 9 c 

Figure 15-38. Repeating a LOKUP to Locate to Locate All Array Fields Satisfying the Search Condition 

Arrays 15-37 



Output During an Array Search 

The specifications in Figure 15-39 search through the QTY 
array to locate more than one field. In this case, it does no 
good to search through an array unless you know what data 
was found. For this reason, each quantity less than 25 and 
its related item code are printed. Following each successful 
search, the item code number (same as the number of the 
array field containing the quantity) is stored in the index 
field IX. Thus, the field IX can be printed. The acutal 
quantity which satisfied the search can be printed by 
specifying the array name with the index field in the output 
specification. 

Since the output specifications/usually are not performed 
until all calculations are done, normal output would cause 
only the last field number located plus the value one 
(Figure 15-38, line 04) and the contents of that field 
(quantity) to be printed. 

In order to print each item code (field number) located in 
the array search (and its quantity), output must be done 
before the contents of the index field are changed. 

You have learned that using the EXCPT operation on the 
Calculation Sheet makes it possible to perform output 
specifications before calculations are finished and then to 

IB~ lntern1tion1I Business Machines Corporation Form X21-9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 

Page[D 

75 76 77 78 79 80 
Date ___ _ 

l Punching Graphic 1
1 

1
1 

I 
lnstru~tion 1-P-un-ch--4f--l----l-l--l----ll----llf----l ~~~;~f:ation I I I I I I I 

Program ___________ _ 

Programmer __________ _ 

Indicators 

Line 

! 
I I Factor 1 

~ 0 0 0 z z z 

Operation Factor 2 Result Field 
Field 
Length 

Re.ulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 
High Low Equal 
1>2 1<2 1=2 

Lookup 

Table (Factor 21 is 
High Low Equal 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 

0 2 c 

0 3 c 

0 4 c Pl& I NIIJ :#lfl LIV __._00 'l_ 
0 5 c I '!. 
0 6 c Bl31 
0 7 c 
n R r. [ 

1Bft1 
Form X21-9090 

Printed in U.S.A. 

:r:r.-m=======------L ... __ z_, RPG 
1 

~~~~;~~~f ~T~; CITJ'ONS 1 2 75 76 n 1s 79 so 

Page[D

Programmer _________ T_,____,_

Line Filename

Space Ski1 Output Indicators ""' Edit Codes

V I J {jj > "" Commas Zer:, Bp~li~~ces No Sign CR - X • Remove

I ~-
., ;: i ::•iton ~ ~~ ~~ ~ ~ ~ Z • Zero

,2 :! t - - - 8 < Output 1l No No 4 '.J M Suppress
~ ~ ;; ~ ~ ~ ~ :5 "i Record ~

Sterling
Sign
Position

~I
And And Field Name a; End ~ Yes Yes 1 <>. J y • ~~~~Edit

I J w iii • Constant or Edit Word
3 4 5 6 7 8 9 10 11 12 13 14 15 l.t 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ~j 40 41 42 43 ~ ~ 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 o lfl r l1'!1 ~ IJ tf l~ b 1 P
0 2 0 I Qf[Y'
0 3 0

0 4 0 1 !il 'I
0 5 0

Figure 15-39. Output of Array Field as it is Located in the Search

15-38

branch back to finish the calculation operations. As Figure
15-39 shows, following a successful LOKUP, the EXCPT
operation then causes the data placed in the index field to
be printed, followed by the contents of the array field
which satisfied the search. After the exception output has
been performed (output lines identified by an E in column
15), the program continues with the calculation specifica
tions, by performing the array lookup again.

DESCRIBING DATA AND STORING IT IN AN ARRAY

Now that you understand how arrays can be used, you
must be able to get the data into an array so that you can
reference the information. Once an array is defined, a
place is reserved in storage for the fields, and the array
data can be stored. Data to be stored in an array can be
either punched on cards which are read into the computer
at the time your object program is executed, or created
from calculations performed during the job and then
stored in the array. Creation of array information during
a program has been discussed under referencing fields of
an array.

Fields of array data to be read from input records must be
described on the Input Sheet. The input specifications in
dicate where the data is located on the record. The way in
which the data is described determines whether the data is
automatically stored in the array fields or whether you
must code calculation specifications to MOVE the data into
the array. How the array information is described, and thus
stored, depends on two factors:

1. How the array data is organized on a record.

2. Whether the data for an array is contained in one or
more records.

An input record containing array data can contain only data
for that array or can contain both array data and other data
fields to be used in the program. In either case, the array
data is organized in one of two ways:

1. All array fields may occupy consecutive positions on
the record; that is, each field immediately following
another with no blanks or other data between the
fields.

2. The array fields may be scattered on the record, in
any order, with blanks or normal input fields placed
between the array fields.

The way in which the data is organized and the size of the
array generally determines the number of input records re
quired to contain the array data.

Entire Array Data On One Record

Array Data in Consecutive Positions

If array fields are in order in consecutive positions on a
record, describing and storing the data is very easy. All of
the array data on the one record may be described on the
Input Sheet as if it were a single field. Thus, only one input
specification is necessary to indicate a name for the field
and the columns on the record where the array data begins
and ends (Figure 1540). By specifying the name of the
array as the field name, the data is automatically stored in
the appropriate fields of the array as the input record is
read.

When you describe an input record of array data, you
specify no entry in column 52 (Decimal Positions) of the
Input Sheet. Since the array name and characteristics have
been previously defined on the Extension Sheet, the entry
in column 44 of the Extension Sheet indicates the number
of decimal positions in each array field.

Array Data Scattered on a Record

When array fields are scattered on an input record, the data
cannot be automatically stored in an array. Each field must
be described separately on the Input Sheet to indicate where
each item of array data begins and ends. Calculation speci
fications are then necessary to individually move each field
of data into the appropriate field of the array.

Assume that a 6-field array named EMP is set up by coding
extension specifications. The six fields of data for the array
are scattered on a record, as shown in Figure 1541. Ad
ditional input information (blanks and other input fields)
is recorded between the array fields .. Furthermore, the array
fields are not in the order in which they are to be stored.

When you describe the array data, you must identify each
field by a separate line of input specifications, with each
field given a unique field name. This is necessary because
the array data is not continuous. As Figure 1541 shows,
normal input fields can be described along with the array
fields.

Arrays 15-39

IBJ,1 I ntem1tlonal Business Machines Corporation
Form X21-!l091
Printed In U.S.A.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

Oat•------

Program _______________ _ l Punching
Instruction

Graphic I I
Punch I I

I 2

Page rn 75 76 77 78 79 80

~;~~;~,:ation I I I I I I I
Programmer--------------- Extension Specifications

Record Sequence of the Chaining File ~ ~
Number 1! 1!

Line

From Filename

To Filename

of Number

H~ Table or ih Table or Entries of Length
Array Name

Length

Per Entries of of
Array Name Entry I>." (Alternating Entry I>."

Record Per Table ~ iU g ~co g
or Array ti!. .E ~ Format) "' E "

II ~ 5f !~j I>. 0"'

Number of the Chaining Field

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0_! 11 E l _I LU J l Jl 1 p AM±±H n }_ ~ lZ l 111 l l 1 1 ± ± ± 11 ±
'n_WL£1 l lll l l lll lll 'X ll l .lll J l J l lJ

IBJ.1

Date ____ _

Program----------------

Programmer---------------

Record Identification Codes

Form X21-9094
Printed In u .s.A.

75 76 17 78 79 80
Program

1 2

Page[D
Identification I I I II II

" ~~eld Location
5

Field
Indicators

Filename

c '\. g ·~
z ~-;=~ j i "'[SJ Field Name] h ~ Zero !~:ii:: ~ ~ i] Position g e i Position g e i Position g e i ~ ~ From To g I:~ ! Plus Minus ~~ank

~ ~8£ ~i36 ~;}6 ~~6~~ 8 ~6 ~

3 4 5 6 7 8 9 10 ti 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 ~ 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

Line

0 H 1
/ :wIBum II I ~1 II ID c~ II I II I lI I ~ I I I l I I I II

t+ I +++++++ t t n+ +n T++ n-t1 +~~ pmn + + + + i t Ht
Position 3 Position 32

s 12548

I 0021
02643 00178 30457 21268

Array field #1 #2 #3 #4 #5 #6

12548

PAY array

Input Record

Figure 15-40. Storing Data in an Array

15-40

IBJt1 lntemetional Business Machines Corporation

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

Oat•------

Program _______________ _

Programmer---------------

Record Sequence of the Chaining File

Number of the Chaining Field

Line To Filename

From Filename

[
Punching ,__Gr-'ap'-h-"ic--!_1

1

+--+-+--+--+-+--1
Instruction • Punch

Table or
Array Name

Extension Specifications

Number
of
Entries
Per
Record

Number
of
Entries
Per Table
or Array

Length
of
Entry

Table or Length
Array Name of
(Alternating Entry
Format)

1 2

Page rn
Form X21·9091
Printed In U.S.A.

75 76 77 78 79 80

~;~~;~,:ation I I I I I I I

Comments

~ ~ 5 : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ~1~30 31 32 33 34 35 36 37 38 z 40 4]6 43 44 45 46 47 48 49 5]51 52 53 54 55 56 57 5i59 60 61 62 63 64 65 6167 68 69 70 71 72 73 74

:I :I :T J""T II :I:T::I:T

IB"' lnternatiol"al Business Machines Corporation Form X21·9094
Printed in U.S.A.

RPG INPUT SPECIFICATIONS
Date ____ _

Program----------------
l Punching Graphic J I J i Instruction

Punch l
Programmer---------------

Record Identification Codes
Field Location

1 2 3 i
iii

Filename

Position Position From To

1 2

Pag•[D

~
Field Name]

g
8

0

:E-o
-~a;
u.~

"'"' ·= c "5 :~
~6

Program
Identification

75 76 77 78 79 80

I I I II II

Field

c Indicators
0

~ Sterling

"E Sign

! Zero Position
Plus Minus or

"O Blank
o;
u:

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 1 Dli
0 2 1 ~ IA FILlnl l 1 1 • T T 1 1 T 1 T
~-W1-+--W1-+--W--l--+-1i-l--W--l--Wi-l-~--1--+-11-+-~--1-..µ-+--1-1--1-..J--1-+--J..-..l-+-~-+-11~3~1-+-l....J.Ll-f=J.tL.!!=l-.l~\.i~ Fields containing array data. ~
0 3 I I J. l4 f I LIDIA- I I I I I I I I I I _,__._......_.._._..

~,1-1-+-4-+-+ll~g f--+-~~=!-"'1'1"'!--'-'iHl---'--'I R..,,,S'l-l--++-r Normal input field. +-+--+-+-+-1 0 4 I

0 5 17 8
~-J I
0 6 ,
~
0 7

1-1---H
0 8

1-1---H
0 9

1-1--H
1 0

1--f-+-,
1 1

1-1--H
1 2

l-+-
1 3

l-+-
1 4

l-+-
1 5

I-+-

~-"~~mm~m~m~~oom~~™M~WMM~m~mm~~ITT~
B B
A Array Array Array A

! Field Field HRS Field !
~ 1 2 Field 4 2

B I 2 3 .. 5 • 1 I ' '° II IZ 13 14 15 16 11 ,. " 20 21 22 23 24 25 26 21 21 29 30 31 32 ~

A Array lArray A

! Field Field !
r » 34 35 36 ~ 38 39 •O " '2 • • = '6 '1 •8 '° 50 SI 52 53 5' 55 51 57 58 59 10 61 12 13 u !
: Array A
4 RATE Field !
~ Field 5 2

HMUMH~nnnu~nnnn~61UUUHHHHH~61nUNHH 1

Figure 15-41. Array Data Scattered on a Record

\218 ff ~f Lit~ I I I I I I I I I
1f...-+~-+-.P\3'4-"Bg.....+-+l3C!l-'-~A-'+-'F-1-I..qllJ=!G,1-J+H.> Fields containing +-+--4--l--+--l--1

414 ~ g A/ALID 3 a{r~i ~~ai L J_ J_

17111 l/1'711.~IAlrlc Normal input field. H

1~-J_j~..J!!8~lo!!!i--ji---µ.!8+.J~4-fliq-~F~IL~IDq.~~ Field containing array data. H

Arrays 15-41

Once the scattered fields have been described on the Input
Sheet, each field of array data is stored in the array using
a MOVE calculation (Figure 15-42). Since each field has a
unique field name and must be stored in a specific array
field, a separate move specification must be coded for each
field to be stored.

The specifications which move the array data into the array
fields should generally be specified first on the Calculation
Sheet. This is necessary to ensure that the data will be in
the array when any calculations on the array (specified
later on the Calculation Sheet) are performed.

Note that in the input specification~ in Figure 15-42, the
consecutive array fields were stored directly into the PAY
array by specifying the array name (PAY) as the field name.
The array fields are not stored directly into the individual
fields of the EMP array (Figure 15-43), because an ordinary
field name (AFLDl, ALFD2, etc.) was assigned to each
field of array data. The field was then moved into the array
position. This occurred because an array name with an
index cannot be used in input specifications. Thus, the only
time the array fields can be stored directly is when the array
data is together on one input record.

Array Data On More Than One Record_

In some cases, the data for an array cannot be contained on
one input record. First, consider a case in which the array
data on all input records is organized consecutively. Data
for a 17-field array, named TAX, is contained on four input
records (Figure 15-44). The first three records contain five
fields each, and the fourth record contains the data for the
last two fields of the array. Each numeric field is five
characters long. The data is organized on the records in the
order in which it is to be stored in the array.

It is important to note that when data is stored in an a"ay
by specifying the a"ay name as the field name the inf orma
tion is placed at the beginning of the a"ay. Thus, the 25
columns of data from this first input record are stored in
fields 1-5 of the array (Figure 15-44). .

Although the data on the next three records is also arranged
consecutively, each field is defined separately in the input
specifications. Each record is not defined as a single array
field and stored automatically in the array because every
time another record is read, the data would be stored at the
beginning of the array. Thus, the data previously stored at
the beginning of the array would be destroyed.

IB~ International Business Machines Corporation Form x21.g093

Printed in U.S.A.

RPG CALCULATION SPECIFICATIONS
1 2 75 76 77 78 79 80

Date Graphic f f Page DJ Program I I I I I I I l Punching Identification
Instruction

Program Punch

Programmer

Resulting
Indicators Indicators

Arithmetic

I 1 Plus Minus Zero

Factor 1 Operation Factor 2 Result Field
Field Compare

Comments Line
c. Length High Low Equal

?: 1>2 1< 2 1=2

~ 0 0 0 Lookup
z z z

Table (Factor 2) is

High Low Equal
3 4 5 6 7 8 9 to 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c 1 M~ l\lf ~p lllD1 r='(I lo'a 1
0 2 c 11 ~o ~f (jr= IUIJ t.11 .ii:
0 3 c 1 IV~ ME Ar=1 J- El' p~ 3
0 4 c Hi fJt j\JIE ~r: ii

t:~ Pl:~
0 5 c ~ 11 ~Ir I~ E ~ r: ji EY Pl:J5
0 6 c 1 ~~ l\JI£ A r: I" r::.fJ P:~
0 7 c 1

,,
0 8 c ~ Additional calculations using the
0 9 c 17 array data
1 0 c

~ 1 1 c

1 2 c

1 3 c

Figure 15-42. Moving Data Fields into Individual Fields of an Array

15-42

Instead, the data from record types 2, 3, and 4 is stored by
moving each field directly into the appropriate field of the
array. To store the data in this way requires a move opera
tion for each field of data on every record but the first
record.

In this example, the method of defining and storing data in
the TAX array is relatively simple. However, if there is a

large number of data fields contained on records other than
the first, storing the data can require a great number of
move instructions. As an example, the TAX array consists
of 32 fields, requiring seven input records to contain the
array data. Records 1-6 each contain five fields of data,
while the seventh record contains the remaining two fields.
Storing\the data in the way described would require 27
separate move instructions for the fields on records two
through seven.

IBJt1 lntern1tiol"lal Business Machines Corporation FormX2MKl94
Printed in U.S.A.

RPG INPUT SPECIFICATIONS
Date ____ _

Program--------------

Programmer-------------

~
~ 1

go.
~·a Line Filename

~ ~ Position I- 1!

~ !

Punching

Instruction
Graphic

Punch

Record Identification Codes

2

li;

~e~ Position Position
~ .e ~

~ f3 cS ~ScS

3

3 4 5 6 7 a 9 to 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0 1 I (fl_P UT_ lAlA ~11 1 ID18
0 2 I

0 3 I

0 4 I

0 5 I

0 6 I

0 7 I

0 8 I

0 9 I

1 0 I

Array I I Array
Field Field

"~~~~MD~~Utt44~~tt~~~~un~

Figure 15-43. Incorrect Description of Array Data Fields

~~
~u

39 40

i
iii

~ II

~ ~ ~
~ ~ ~
6 b3 ~

Field Location

From To

1 2

Pag•[D

~
Field Name]

g
8

41 42 434445464 7 48 49 50 51 52 5 3 54 55 56 57 58 59 60

~ I~ ~Lt
11 111 lf1M p a.
1 ~11 It< s1

'

llJ5 l2lll MP Li.Ii
a~ 3~ Ii M p~~
~~ 141& ~~ IA:.3
111 1'1_ ~ IA T~
rtsJ ~

EMP,
2

[EJM ~[51

EMP,
3

EMP,
4

75 76 77 78 79 80
Program
Identification II I I I I I

Field

c Indicators
0 .,
~ Sterling
"Cl Sign

J Zero Position
Plus Minus or

Blank ii
u:

61 62 63 64 65 66 67 68 69 70 71 72 73 74

Invalid to
reference an
individual array
field on input
sheet.

11111111
nnnn

EMP,
5

EMP,
6

Arrays 15-43

When the fields in an array are numerous and many of them
are contained on records other than the first, it is more ef
ficient to directly store each record as it is read. This can
be done by arranging the array records so the data fields
which are to be stored at the end of the array are read first.
With this in mind, assume that the data has been organized
such that record 1 is stored at the end of the array while
the two fields on the last record are stored at the beginning
of the array.

The fields from record 1 are initially read and stored at the
beginning of the array. The stored data is then moved within

4 --
FLD2

FLD1 FLD2 FLD3 FLD4 FLD5

FLD2 FLD3 FLD4 FLD5

the array to the appropriate fields before the next array in
put record is read and stored at the beginning of the array
(Figure 15-45).

Although the array fields are read in reverse order, notice
in Figure 15-45 that the fields of data on any one record
are still in proper sequence. Thus, the last five fields of the
TAX array are in order on record 1 from field 28 through
field 32, not field 28. This is because the fields of data are
moved in the order in which they are read into the array.
Therefore, the last field on record 1, after being moved,
becomes the last field of the array.

11111111111I111111
Field 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

TAX array

Figure 15-44. Array Data Consecutive on More than One Record

15-44

Fie
1
td I F~eld I
I 3 I 4 I 5 6 7

Field.
23

Field I Field I Field I Field
24 25 26 27

7

6

5

4

3

@

Record
7

2

2 fields

Record 3

Record
6

Figure 15-45. Storing Array Data in Reverse Order

I I I
28 I 29 I 30 I 31 I 32

·.,____,_........_~---

5 FIELDS

Field
31

Field
32

TAX array after record 1 read

H++H
TAX array after MOVE operation

Record
5

Record 3

Record
4

Record 2 Record 1

I I I I I I I I
23 124 I 25 I 26 I 27 28 I 29 I 30 I 31 I 32

I I ~ I I I I I

Record 2

Record
3

Record
2

Record 1

Record
1

Arrays 15-45

Array Data Scattered on More Than One Record

Regardless of how many records are used to contain array
data, if theifields are scattered on the records, each field
must be individually moved into its appropriate position
in the array. However, a separate move specification is not
always necessary for each field of data to be moved. In
some cases, the same move specification can be used for all
the records. This depends on whether all the input records
for a single array are organized in the same format and

3

2 I FLos I

I FL01 I

5

4 I FL013 I

I FL04 I

I FLoa I
I FL02I

Figure 15-46. Array Data Scattered on More than One Record

15-46

whether the fields from different records can be assigned
the same name.

Assume that a 22-field array, named ARA, is defined. The
data for the array is scattered on six input records, as
shown in Figure 15-46. Although the array data is not con
secutive, the four fields on each of the first five records are
in the same format on each record. The remaining two
fields on the sixth record are in the same format as the
first two fields on all other records.

6 I FL021 I

I FL011 I
IFL0191

FL0151

IFL0161

IFL01~

I FL012 I
FLOG

Organized in
Same Format

I FL0221

I FL0181

Since the array data follows the same organization on all
records, describing one set of fields (Figure 15-4 7) actually
describes the fields on all records, except the last. A
separate input specification must be coded to indicate that
record 6 only contains two of the fields. (Note on the
Input Sheet that records 1-5 are described in an OR relation
ship. Therefore, a specific card sequence cannot be speci
fied in columns 15 through 16. You can assume that the
array input records are in sequence. Record type 1 is the
first record read and record type 6 is the last.)

Because the fields on the different records have the same
field names, only one MOVE specification is necessary for

each unique field name. The specification on line 07 of
Figure 15-48, when repeated for each record, moves FLDA
of that record to the appropriate field of the ARA array.
Lines 09 and 10 are performed for every record except the
last, which does not have fields FLDC and FLDD.

Since the fields on the input records are in the same order
as they are to be stored in ARA, a definite pattern is estab
lished as to where the data is to be moved. Fields from
record 1 are stored in array fields one through four, fields
from record 2 in array fields 5 through 8, fields from
record 3 in array fields 9 through 12, and so on.

IBJ.1 lnternatiof'lal Business Machines Corporation Form X21-9094
Printed in U.S.A.

Date ___ _

Program-----------

Programmer-----------

Line
0.
>
I-

~

Filename

Position

RPG INPUT SPECIFICATIONS

[

Punching Graphic r
1

r
1

T
Instruction 1--Pu-nc-h ---1--1-1---~---11-----11--1

Record Identification Codes
Field Location

Position Position

1 2

Pag•[D

~
Field Name 3

j

0

H
H :;:u

Program
Identification

75 76 77 78 79 80

I I I I II I

Field

c: Indicators
0 . .,
~ Sterling

1
Sign

Zero Position
Plus Minus or .., Blank

Qi
;:;:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 I / W PIUJT 1 ~l:
0 2

0 3 1 ~13
0 4 blE
0 5 I Dl5
0 6 1

0 7 1

0 8 I

0 9 1

1 o I

11 I

1 2 1

Figure 15-47. Describing One Set of Array Fields for Several Records

Arrays 15-4 7

Array index fields can be used to indicate to which array
fields the data is to be moved. For each unique field name,
an individual index field should be set up. In this way, the
values in the index fields only have to be changed every
time another array input record is processed. When the
first record is read, the index fields A, B, C, and D are
initialized to 1, 2, 3, and 4, respectively, to prepare for
moving the fields from record type 1 (Figure 15-48, lines
01-04). After the four fields are moved, the value 4 is added
to each of the index fields so they point to where the four
fields on the next record should be stored (Figure 15-48,
lines 12-15). The same calculation specifications are re
peated until fields FLDA and FLDB from the sixth record
have been moved to the last two array fields.

Conditioning Operations Until All Array Data is Stored

All information must be stored in an array before you can
reference the data by specifying the array name or array
name with an index. If array data is contained on only one
record, this means that any calculations to \move the data
into the array must be specified before any calcuia tions
which use the array information. On the other hand, when
array data is contained on more than one record, some

operations cannot be performed until all the array data is
stored.

For every record of array data, RPG II goes through a com
plete program cycle, just as it does to process any other
data card. This means that input, calculation, and output
specifications can be performed every time an array input
record is processed. You want input specifications to be
performed to describe the array record to the system.
Likewise, calculation specifications which move the data
from the record to the array should also be performed.
However, if there are still some array records which have
not been processed (thus, not stored in the array), calcula
tions and output which reference the array must not be
performed. For example, if only five fields of data have
been moved into a 10-field array, adding all fields of the
array or printing all fields will certainly not provide the
results you want.

Once the last array input record has been stored, any
specifications referencing the array fields can be performed.
Thus, you must specify a conditioning indicator (columns
9 through 17 on Calculation Sheet and columns 23 through
31 on Output Sheet) which indicates when the last array
record has been processed.

IBJ.1 International Business Machines Corporation Form x21..g093

Printed in U.S.A.

Date ___ _

Program __________ _

Programmer __________ _

Indicators

Line I I
!

Factor 1

~ b b b z z z

RPG CALCULATION SPECIFICATIONS

Punching 1 Graphic T
Instruction l Punch I

Operation Factor 2

T 1
I 1

1
1

Result Field
Field
Length

1 2

Page[D

Resulting
Indicators

Arithmetic
Plus Minus Zero

Compare

High Low Equal
1>21<2 1 2 2

Lookup

Table (Factor 2) is

High Low Equal

75 76 77 78 79 80

~~~~~~f:ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0T1 c 1 F. -AIT r A I~ SElJj lt.;1'P JIN J9x 
0 2 c 1 - ~ 1

' ~ ~ ~ 'F I E. L t:IS F 
0 3 c 1 - ~ C I~ Mb V I ~ G rD A 
04 c l1. -A ~ ~~ 
0 5 c I* 
0 6 c ~ 
0 7 c 

0 8 c 

0 9 c Nrl6 
1 a c N'2~ 
11 dE 
1 2 c Ntil~ /_IN c;;i I NDE[i 
1 3 c 'JH 
1 4 c ~ rl~ AtTIAJ IF 1<0 M rN E XIT1 
1 5 c ['l~ A f-1 ~l 

Figure 15-48. Using the Same MOVE for Fields from Several Records 

15-48 



Lines 02 through 31 of the Calculation Sheet in Figure 1549 
are performed to move data from the six array input records 
into the array ARA. When the last record is processed 
(record identifying indicator 06 on), the two array opera
tions on lines 16 and 17 can be performed during that pro
gram cycle. Therefore, when record type 6 has been stored, 
indicator 33 is set on (Figure 15-49, line 14). Indicator 33 
(or any other indicator which is set on) can then condition 
the XFOOT and SUB operations to be performed in a pro
gram cycle. 

The record identifying indicator 06 was not specified to 
condition the array operations, because 06 is on only for 
the cycle in which the sixth array record is processed. Since 
the array operations on lines 16 through 17 must be per
formed in the following program cycles also (for example, 
if normal data records follow the array records), they must 
be conditioned by an indicator which is on during the fol
lowing cycles. Once indicator 33 has been set on, it remains 
on through following program cycles, until set off (line 01) 
when another group of array records are processed. 

IB~ lnternatio.nal Business Machines Corporation Form X21'"9093 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date ~ Punching l Graphic J 1 1 J j Pag•[D 
Program I I I I I I I Identification 

Program 
Instruction j Punch J 1 

Programmer 

Resulting 
Indicators Indicators 

Arithmetic 

I l Plus Minus Zero 

Field Compare 
Line And Factor 1 Opera ti on Factor 2 Result Field Comments 

Length High Low Equal g, 
1>2 1< 2 1=2 f-

~ 15 15 15 Lookup 
z z z 

Table (Factor 2) is 

High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 5 3 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 11 SfllJ o~ 131~ 
0 2 c 1 ~-AD A [2J 
0 3 c 1 -Al ,. :f 12 
0 4 c ~1 -~ 

,_ 
~ 2 ~ 

0 5 c 11 IJ -Al ~ D 12~ 
0 6 c 

,,,,,.. 
IE '""IL Pi ~ ~ A 

0 7 c fl: vlE ,_ r- B ~ .. H 
0 8 c ,... '6' tJ"v E ~ ,. i .c 
0 9 c N tj "'" E i:I D .\I ~I• J) 

~ ~ ~ ~ 
--.-

1 0 c H 
1 1 c ~ ,.. H 
1 2 c N ~ i,..; 

\I" ~ ... 
1 3 c N ;., D ~ ~ ~ 

I.!. 
1 4 c ,~ ~!:I .N 13~ 
1 5 cH 

1f c 1313 XIP 11 AtB ~ UM[A LL 11 
Il7 c s~ lAlB ~4-22 51lJ~ 1~ rA, .. 1212 

Figure 15-49. Conditioning Operations Until All Array Data is Stored 

Arrays 15-4 9 



Figure 15-50 shows how the array operations must be con
ditioned for another situation. In this case, record identify
ing indicator 06 does not set on indicator 33 because in
formation (DSCNT) from data records following the array 
records must be available before the array operations can be 
performed {line 16). If indicator 06 caused indicator 33 to 
be set on, the array operations would be performed during 
the program cycle in which the sixth array record is stored. 
At that point, the DSCNT data is not available. Therefore, 
record identifying indicator 09 (the first type of data card 
following the array records) sets on the conditioning in
dicator 33 instead. 

At this point, we must mention a problem which can come 
up if array fields are contained on more than one record 
(or the same record type), and the records contain normal 
input data as well as array data. Assume three cards con
tain the array data and all the data must be stored in the 
array prior to performing any calculation or output opera
tions. This means the three records must be read before 
processing. As each new record (of the same record type) 
is read, the data from the previous record is destroyed, un
less it has been moved or stored in a special place, such as 
an array. Since normal input data (non-array fields) from 
the first two records is no longer available once the third 
record has been read, any calculation or output specifica
tions which reference this input data might give incorrect 
results. 

IB~ International Business Machines Corporation FormX2MXl93 

Printed in U.S.A. 

RPG CALCULATION SPECIFICATIONS 
75 76 77 78 79 80 

Date ___ _ 

[ 

Punching 1 Graphic l l 
Instruction l Punch l J I 

l 
l 
1 

1 2 

Page[D ~;:;:cation I I I I I I I 
Program ___________ _ 

Programmer __________ _ 

Indicators 

Line AL L 
~ 

Factor 1 

I-

~ ~ 0 0 z z 

Operation Factor 2 Result Field 
Field 
Length 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 

Compare 

High Low Equal 
1>2 t<2 1=2 

Lookup 

Table (Factor 2) is 

High Low Equal 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 c 1 D t:lL ..., 1-1 I~~ 
1 ~-Al .,[ A ~ 0 2 c 

0 3 c 1 1!-~ 2 M 

0 4 c 11 ~- ~ I~ Ii l 
0 5 c 11 Ii-~" 14 ~ ll 

0 7 c 

0 6 c ~ ~ ~ Move data 

~ ~ ~~ from input 
0 8 

0 9 c 
~ IP 1 • ,. record into 

~ A ~ ,, l . array 
~ 

1 0 c ~I Q •• 
t t N l{j L 
1 2 c rl 

~ 

1 ~ c ~ I 

t 4 9 r.:: t: 1111 SB 
ts c~)l'l 

t- c I'\. I~ 
09 set on by reading first data i'' 

~ card following array input records.------------- Field of data on the data records which follow ==::=::::::..J 
the array mput records. 

Figure 15-50. Conditioning Operations Until All Array Data Is Stored and Input Data Is Available 

15-50 



1. An array is like a table in which of the following ways (state true or false and the reasons for your 
answer): 

a. Each can be referenced as one group of information. 

b. Each is a continuous series of data fields {elements) stored side by side. 

c. A particular item of data can be individually referenced in either a table or an array. 

d. Each is defined by coding extension specifications. 

Review 15 

2. Can one array be compared to another array to determine which is greater or less? State the reason 
for your answer. 

3. Explain what happens if an array: 

a. of 18 fields is added to an array. 

b. of three fields, with the result placed in an array. 

c. of 18 fields. 

4. The following array {ARASIX) is to be set up at the beginning of a program run: 

2 72 5 20 15 

a. Define the array on an Extension Sheet. 

b. If ARASIX is multiplied by 3, what data will be placed in the result array RESARA? 

c. Should the result array RESARA be defined on the Extension Sheet also? 

d. If so, code the necessary extension specifications to define RESARA. 

e. What is accomplished by defining an array on the Extension Sheet? 

Arrays 15-51 



5. a. Explain what happens when an XFOOT operation is performed. 

b. If ARASIX (refer to question 3) is specified on the Calculation Sheet as Factor 2 of an XFOOT 
operation, what data would be placed in the result field? 

6. How does a programmer specify that an entire array is to be printed or punched? 

7. How does a programmer specify whether an entire array or only a particular array field is to be 
operated upon or used for output? 

8. Data for a SALES array is recorded on one card (record type 01 of INFILE) in the following format: 

Field Columns Field Columns 

Clerk1 1-10 Clerk6 51-60 
Clerk2 11-20 Clerk7 61-70 
Clerk3 21-30 Clerk8 71-80 
Clerk4 31-40 Clerk9 81-90 
Clerk5 41-50 card code 91 (not array data) 

Each of the clerk fields contains data with two decimal positions. Code the specifications necessary to: 

a. Define the array. 

b. Describe the input record. 

c. Store the data in the SALES array. 

9. A 12-field array ITM is defined as follows: 

Programmer ___________ _ Extension Specifications 

Line ~ 
f-

~ 
From Filename 

To Filename 

Number L_ of Number Table or 
Table or Entries of Length ~ :rn Array Name 

Length 

Array Name Per Entries of of 
"-" (Alternating 

Record .Per Table Entry 13 c; g Entry 

or Array ~ .§ ~ Format) 
II g g 
"-Cl"' 

Comments 

Number of the Chaining Field 

Record Sequence of the Chaining File 

15-52 



Data for the array is contained on three records from the input file INPT: 

FLD1 FLD2 FLD3 FLD4 3 

1-5 6-10 11-15 16-20 

Fields in FLD1 FLD2 FLD3 FLD4 2 Record Identification 

card columns 1-5 6-10 11-15 16-20 Code 

FLD1 FLD2 FLD3 FLD4 

1-5 6-10 11-15 16-20 

Record 3 

--;---- Record 2 

---- Record 1 

a. Code the specifications to describe the records and store the data in ITM. 

b. How could you simplify the method of storing the array data? 

10. Explain how data from the following record would be stored into the SET array (1 S fields, three 
numeric characters each, no decimal positions), and code the specifications to describe and store the 
first five fields: 

Field Columns Field Columns Field Columns 

Fld1 2-4 Fld6 22-24 Fld11 42-44 
Fld2 6-8 Fld7 26-28 Fld12 46-48 
Fld3 10-12 Fld8 30-32 Fld13 50-52 
Fld4 14-16 Fld9 34-36 Fld14 54-56 
Fld5 18-20 Fld10 38-40 Fld15 58-60 

Column 1 contains a Pas the record identifying code. 

Arrays 15-53 



15-54 

11. a. Code the output specifications to print the 13th field of the array SET (output filename PRINT). 

b. Code the specifications to print the entire array SET at end of job (output filename PRINT). 

12. SEARCH is the name of a field containing data you wish to locate in the 6-field PAY array. Code the 
specifications to search the array to determine if the data is present. If present, print the number and 
contents of the array field. 

13. Code specifications to: 

a. Add ARAI to ARA2 and place the result in ARA2. 

b. Sum all fields of ARA2 and place the result in TOT AL. 

c. Print both results. 



Answers to Review 15 

1. a. False. Only one table element can be referenced at one time. 

2. 

3. 

b. True. 

c. True. 

d. True. 

No. An operation to be performed on an array is repeated for each field in the array. Therefore, a 
compare (COMP) operation cannot give a meaningful result for the entire array. 

The first three fields of array a would be added to the three fields of array b, with the three results 
placed in the first three fields of array c. The remaining 15 fields of array c (result array) remain 
unchanged. 

4. a. Entries shown are required; no other entries should be made. The entry in column 44 is necessary 
to indicate the fields are numeric for arithmetic operations. 

Programmer ____________ _ Extension Specifications 

Line 1!l. 

?: 

~ 

Record Sequence of the Chaining File 
~ ~ Number 1! 

To Filename 

of Number ih Table or u~ Table or Entries of Length 
Array Name 

Length 

Array Name Per Entries of of 
0.." I Alternating 

Record P..-Table Entry 
~ ~ ~ 

Entry tS iii ~ 
or Array 

!~£ 
Format} 

~ ·~ ~ 
0.. 0"' 

Number of the Chaining Field 

From Filename 

Comments 

b. 
3 6 216 15 60 45 

c. Yes, all arrays to be used in a program must be defined on the Extension Sheet. 

d. Entries shown are required; no other entries should be made. Length of array field (columns 40-42) 
must be 3 to contain the largest addition result. 

Programmer ____________ _ Extension Specifications 

Record Sequence of the Chaining File 
Number ~ ~ 

To Filename 

of Number ~ .~ c Table or ~ .~ c Table or Entries of Length 
p~ Array Name 

Length i ·~ 3 Per Entries of of 
Array Name 

Record Per Table Entry ~H 
(Alternating Entry i§ ~ ~ 

or Array 
Formatl ,. E " 

H ~ fi !~l 0. 0"' 

Comments 

Number of the Chaining Field 

From Filename 

e. An area in storage sufficient to contain the array data is reserved. The actual array data may be 
stored in the array later, when input records are read or during calculations. 

Arrays 15-55 



5. a. The XFOOT operation causes all data fields in the array specified as Factor 2 to be added together. 

6. 

7. 

8. 

The single result of the additions is placed in the result field specified with the XFOOT operation. 

b. The total of all fields in the ARASIX array (115) would be placed in the result field. 

The name of the array is specified uner Field Name (columns 32 through 37) on the Output Sheet. 
The filename (columns 7 through 14) must also be specified, as for output of any field. 

The array name is specified alone (on the Calculation or Output Sheet) to reference the entire array. 
The array name must be followed by a comma and an index number or index field to reference only 
a particular array field. 

a. Extension specifications to define the array: 

Programmer ____________ _ Extension Specifications 

From Filename 

To Filename 

Number L_ ~ 
of Number Table or ih Table or Entries of Length II .2 C Length 

Per Entries of ~ -~ 3 Array Name of 
Array Name 0.." (Alternating 

Record Per Table Entry 

~ ~ ~ 
Entry 1S ~ g 

or Array 
Format) tf:. .E ~ 

II lrl i II !rl iir 
o.. o en o.. o en 

Comments 

Number of the Chaining Field 

Line ! 
~ 

Record Sequence of the Chaining File 

b. Input specifications to describe the input record and store the data in the SALES array: 

IB~ lnternatiol"al Business Machines Corporation Form X21-9094 
Printed in U.S.A. 

RPG INPUT SPECIFICATIONS 
1 2 75 76 77 78 79 80 

Date 

T T T T 1 l Page[D 
Program I I I I I I l Punching Graphic Identification 

Program Instruction I T T T 1 Punch 

Programmer 

5 Record Identification Codes Field Field Location 

~ 1 2 3 
~ 15 

Indicators 

C:• iii ~ ·= ·;.· 
~ II ~ Sterling 

Line Filename ~ 0 lrl ~ Field Name ] "E Sign 

~ ~ :;; "- ~ ~ From ! Zero Position 
Position - " Position Position To Plus Minus or I-

"E ~~~ ~ e ~ ~o IH ] 
~ 

'O Blank 

~ 0 - .c: 0 ~ ~ ~ § 8 ~ z u u zuu u (I) 0.. 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o}I 1 rJ~II IT TT ~TA fPr1 TID1 ~1 T1T TTT Hti ITT sWJ5t I J l l t t Ht oN I 1111111 l l lll T1T TTT TTrT¢ l l l l 
T T TTT 

15-56 

I 



9. a. 

IBJt1 

Date 

Program 

Programmer 

~ 
] 1 

C:• 

~·a Line Filename z 
0. :::c; ~ > l Ji~ Position 
I- 1:! 

~ § ·~ ~ .ii z 0 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 1 I I NPT .4l41 ~ ~~ 
0 2 I 

0 3 I lilB ~~ ~/gj 
0 4 I ~R l31.2. 
0 5 I 

0 6 I 

0 7 I 

0 8 I 

IB"1 

Dale _____ _ 

Program _______________ _ 

Programmer ______________ _ 

Indicators 

ffi I I Line 

! 5 
~ 

~ 0 w 
0 0 ...I 0 

- z z z 

Factor 1 

lnternatiorial Business Machines Corporation 

RPG INPUT SPECIFICATIONS 
1 2 

1 f f 1 Page[O [Punching Graphic 
Instruction 

Punch 

Record Identification Codes 
Field Location 

2 3 ~ g ~ 
ii3 

w II 

~ £e. Field Name ] loo~ i 
z 0 ~ Position - Position z Cl ~ ~ ~ 

From To 
~ e E g 

~ § & ~~ 0 t! .2 6 ~ ~ 8 zuu z u 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

llll 
11 IZ.~ ~I tdt1 

~12 
~ 

1 ~1¢ FL ~1 
6 1~ 

[1 ~5 
1~ I~ 

International Business MochiAes Corporation 

RPG CALCULATION SPECIFICATIONS 

Punching 

Instruction 

Operation 

Graphic 

Punch 

Factor 2 Result Field 
Field 
Length 

~F 
~F 
~F 

LDI~ 
LD3 
~~ 

1 2 

Page DJ 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

~ Compare 

~ High Low Equal 
~ 1>2 1<2 1=2 

~ Lookup 

Table (Factor 2) is 

High Low Equal 

0 

12.t; 
.~ Qj 
LL.~ 

f:r 
~ .2 ::Eu 

61 62 

Form X21·9094 
Printed in U.S.A. 

75 76 77 78 79 80 
Program I I I I I I I Identification 

.g 
~ 
"O 

j 
"O 
o; 
u:: 

63 64 

Field 
Indicators 

Plus 

65 66 

Sterling 
Sign 

Zero Position 
Minus or 

67 68 

Blank 

69 70 71 72 73 74 

Form X21-9093 

Printed in U.S.A. 

75 76 77 78 79 80 

~~~~:~1:ation I I I I I I I 

Comments

345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c

0 2 c

0 3 c

0 4 c

0 5 c i)f
0 6 c ~bVE F~ 1
0 7 c l1tovl_g FLD~ /Ir~ 1~
0 8 c lllIL!L_!l
0 9 c ~ o VI@: fjLID4 t!I!d~11ll

Arrays 15-57

IB~

b. All 12 fields could be recorded consecutively on one record (columns 1-60) and then stored directly
into the array by specifying the array name (ITM) as the Field Name on the Input Sheet. Calculations
would not be necessary to move data into the array.

lntematiortal BusintA Machines Corporation

RPG INPUT SPECIFICATIONS

F0<mX21-!1094
Printed in U.S.A.

75 76 77 78 79 80
Date ____ _

1 2

Page[D
Program
Identification I I I II I I

Program--------------

Programmer-------------

Line Filename

Position

J

Punching
Instruction

Graphic

Punch

Record Identification Codes

Position Position

Field Location

~
Field Name]

)

Field

6
Indicators

5 ~ :!J.t; Sterling

~~]
Sign

Zero Position
.s~ Plus Minus or

u ,, Blank
o;
u::

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

:f:f : 'ftlflTHH ~ ' t~h elA HI HI Hfi HJ~~,11111 1 1 1 1 l l lll
T TTT TTT TTT T]7jijIJI I I I + T T TTT

15-58

10.

IB"'

Date ____ _

Program---------------

Programmer---------------

~
] 1

Co
·;.·

Line Filename z :s ~
~ ::o ~ Position I- ~ .8; "I!

~ 5 -~ ! ~ zo

3 4 5 6 7 8 9 10 ti 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 I (~p Utlj A-IA ~~1 ~
0 2 I

0 3 I

0 4 I

0 5 I

0 6 I

IBJ.1

Date _____ _

Program _______________ _

Programmer ______________ _

Line

!
~

Indicators

I
'O z

Factor 1

lnternatio11al Business Machines Corporation

RPG INPUT SPECIFICATIONS

Punching
Instruction

Graphic

Punch

1 2

Page[D

Record Identification Codes
Field Location

2 3 2::
~ ~ iii

~ .
!l ~ Field Name]

~ - !i ... ~ i
Position Position From To

~~~ ~ ~ ~ !~ j ~ ~ l ~ 0 0 ~uo ~u 0 ci5 "-

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 434445464 74849505 I 52 53 54 55 56 57 58 59 60 

~iP 
z ~F W1 
I ~~ IFL. lcil 

1 11- lt>F L'.Dl3 
1 1 ~IF ~Z>rf: 
11 z, !ilF LDI5i 

I ntern•tional Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

r 
Punching Graphic lI lI lI 
Instruction l--Pu-nc-h--+--+-+----+-----1---+---+----I-

1 2 

Page[O 

Resulting 
Indicators 

Arithmetic 

c Plus Minus Zero 

Operation Factor 2 Result Field 
Field :~ :S. Compare 

Length .f -~ High Low Equal 
~ ~ 1>2 1<2 1a2 

~ i Lookup 
Table (Factor 2) is 

High Low Equal 

0 

:2-a 
.!?"ii 
LL~ 

~-~ 
i~ 
61 62 

Fonn X21-9094 
Printed In U.S.A. 

75 76 77 78 79 80 
Program 
Identification I I II I I I 

!5 

~ 
] 
"'O .. 
u: 

63 64 

Field 
Indicators 

Plus 

65 66 

Sterling 
Sign 

Zero Position 
Minus or 

67 68 

Blank 

69 70 71 72 73 74 

FormX21-9093 

Printed in U.S.A. 

75 76 77 78 79 80 

~~~::,~cation I I I I I I I 

Comments

345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c ~1 ~v[gj FLIVI! slfil 1
0 2 c

0 3 c

0 4 c

0 5

Arrays 15-59

11. a. Output of 13th field of SET array:

IB:ft1 International Business Machines Corporation Form X21-9090

Printed In U.S.A.

RPG OUTPUT· FORMAT SPECIFICATIONS
1 2 75 76 n 10 79 00

Date I Puru:hin~ I Graphic

I I I I I I I I
PogeDJ

Program I I I I I I I Identification
Program Instruction Punch

Programmer

!:
;: Space Skip Output Indicators _...

Edit Codes
~ tii

Zero Balances, t5 1 L I§ > Commas
to Print

No Sign CR . X • Remove
Sterling .c

~
Plus Sign

Line Filename w z Field Name Encl Yes Yes 1 A J Y • Date Sign
iii Position i2 ~ Posit on II Yes No 2 ll K Field Edit

~ 0 tl ll t in "' No Yes 3 c L Z • Zero
- .!!

~~
~ ~ ~~
~ l! 0 0 0 8 ~ Output "5l No No 4 D M Suppress

~ ~ t -1!
~~

en< < z z z
~ ~ Record rf . Constant or Edit Word ci> a..

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38~ 40 41 42 43 ~~~a~~w~~~~~~~ww~~~~~~~n~wro 71 72 73 74

0 1 0 p Rt Nl1J ~ ~1
0 2 0 15[€: l1L 1 12.'J
0 3 0

b. Output of entire SET array at end of job:

IB:ft1 International Business Machines Corporation Form X21-9090

Printed in U.S.A.

RPG OUTPUT· FORMAT SPECIFICATIONS
1 2 75 76 n 10 79 00

Date Graphic f f f 1 i PogeDJ
Program I I I I I I I l Puru:hing Identification

Program
Instruction Punch

Programmer

!:

~ Space .Skip Output Indicators _ ...
Edit Codes '

~ 1r11
....

Zero Balances

1 1
Commas No Sign CR . X • Remove

.c II§ > to Print Plus Sign Sterling

Line Filename w ~ Field Name Encl ~
Yes Yes 1 A J Y • Date Sign

iii Position i2 it Positon n Yes No 2 B K Field Edit

~ .e M ll t
in "' No Yes 3 c L Z • Zero

~ !
~ :1i .. ::!: ~
~ ~ 8 Output "5l No No 4 D M Suppress

E !. ~ 0 0 0 "' -1!
if ~g

en< < z z z
~ ~ Record rf

II Constant or Edit Word ci> a..
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 35m_ 40 41 42 43 ~~~a~~w~~~~~~~ww~~~~~~~n~wro 71 72 73 74

0 1 0 'P RI lMT l11 L8_
0 2 0 ~lgj_r 1li
0 3 0

15-60

12.

IB~

Date

Program

Programmer

Indicators

~ I L Line

! 5
~

~ 0 0 0 _, 0
- z z z

Factor 1

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

Punching
Instruction

Operation

Graphic

Punch

Factor 2 Result Field
Field
Length

1 2

Page[D

Resulting
Indicators

Arithmetic

Plus Minus Zero

~ Compare

~ High Low Equal
~ 1 >2 1< 2 1 = 2

:C Lookup

Table (Factor 2) is

High Low Equal

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 80

~;~~;~f:ation I I I I I I I

Comments

3 4 5 6 7 8 9 10 1t t2 13 t4 t5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 7t 72 73 74

0 1 c

0 2 c AIG!d_ I !ti
0 3 c

0 4 c IX
0 5 c w_~3Nl1li lL~
0 6 c

0 7 c

IB~
International Business Machines Corporation Form X21·9090

Printed in U.S.A.

RPG OUTPUT· FORMAT SPECIFICATIONS
1 2 75 76 n 78 79 ao

Date Graphic f t f Page[D
Program I I I I I I I r Punching Identification

Program
Instruction Punch

Programmer

~

~ Space Skip Output Indicators _,,,,
Edit Codes

~ ltl
....

Zero Balances
0 I 1

Commas No Sign CR - X • Remove

I§ > to Print Plus Sign S1erling

Line Filename wt Field Name End ~
Yes Yes 1 /\ J Y = Date Sign

iii Position 12 ~ Positon ' Yes No 2 B K Field Edit

~ 0 u

~ l! in CD No Yes 3 c L Z • Zero
- .!!! ~ ~~ ~~ ~ ! <{ Output ii No No 4 D M Suppress

j 8.:;; 0 0 0 "" ij

~~
al<{ z z z

:ii
c Record rf iii . Constant or Edit Word

Vi c..
3 4 5 6 7 8 9 10 11 12 13 14 1516 1718 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38b_g 40 41 42 43 ~-48~484BW~~~54~~D~~WITT~~~~~E68WM 71 72 73 74

0 1 op RI WJI ~ I~
0 2 0 I~ ~
0 3 0 ~AY I~ l1~
0 4 0

I'

Arrays 15-61

13.

IBJ.1

Date _____ _

Program _______________ _

Programmer ______________ _

Indicators

ffi I L Line

! ~i'
E ~
if 0 ~ 15 15 _. 0

- z z z

Factor 1

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

l Punching
Instruction

Operation

Graphic

Punch

Factor 2 Result Field
Field
Length

1 2

Page[D

Resulting
Indicators

Arithmetic

Plus Minus Zero

::!;. Compare

g High Low Equal
it>21<21=2

x Lookup

Table (Factor 2) is

High Low Equal

Form X21-9093

Printed in U.S.A.

75 76 77 78 79 80

~~~;~!~cation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3·1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 64 65 66 67 68 69 70 71 72 73 74 

0 
, c IARIAlil ~ l4 ~12. ~IR1Al2 

0 3 c 

1Bft1 lnternistionel Businea Machin .. Corpor•tion Fa<m X21-9090 

Printed In U.S.A. 

RPG OUTPUT· FORMAT SPECIFICATIONS 
Date _____ _ 

Program----------------

Programmer ______________ _ 

~ Space . Skip Output Indicators 

~ I .I m~B01r--.----"""'T",.., 
w ~ Field Name II §: End Ir 
~ l " And And ;i ~ ::•iton ~ 
i~Uj~o o 15 8'.!output~ 
~ "B m <C z z z ~ ! Record ~ 

"' a.. 

Line Filename 

.... 
Commat 

Yes 
Yes 
No 
No 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

1 2 75 76 n 78 79 so 

Poge[IJ ::~7cation I I I I I I I 

Edit Codes 

No Sign CR - X • Remove 

1 
2 

"3 
4 

Plus Sign 
A J Y•Date 
B K Field Edit 
CL Z•Zero 
D ,M Suppress 

Sterling 
Sign 
Position 

Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ~ 33 34 35 36 37 38 ~ 40 41 42 43 44 ~ 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 

0 2 0 

0 3 0 

0 4 0 

15-62 



•a:m11:1:r 
CHANGING DATA STRUCTURE ,, 

CHAPTER 16 DESCRIBES: 

Representation of characters on cards. 

Representation of characters in storage (disk and inside the computer). 

Packed and binary data. 

Collating sequence of characters. 

Move zone operations. 

File translation. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Describe the representation of characters and negative numbers on cards. 

Describe the representation of characters on disk and inside the computer. 

Define byte, bit, zone portion and digit portion. 

Compare the storing of characters on cards to the storing of characters in storage. 

Identify bit combinations with numerical values. 

Assign numerical values to zone and digit portions. 

Define unpacked decimal format, packed decimal format, and binary format. 

Describe the hexadecimal numbering system. 

Describe the collating sequence of characters. 

Code specifications to change the collating sequence. 

Alter the structure of characters in storage by using move zone operations. 

Translate characters by coding the Translation Table and Alternate Collating Sheet. 

Changing Data Structure 16-1 



CHARACTER STRUCTURE 

Punched cards provide data the computer is to work with. 
Each of the 96 columns of a card can contain punches for a 
single character. Therefore, up to 96 characters of informa
tion can be represented on a single record. 

Each column of a card consists of six punch positions, 
labeled B, A, 8, 4, 2, and J, from the top of a column to 

Numeric Characters 

0 1 2 3 4 5 6 7 8 9 

Zone 
B 

1----1 

Punch A A 

Positions 8 8 8 
~ 4 4 4 4 

Digit ~ 2 2 2 2 
~ 1 1 1 1 1 

Alphabetic Characters 

A B c D E F G .. , I J 

Zone 
B B B B B B B B B B B 
~ A A A A A A A A A 

Punch 
~ 8 8 

Positions 
Digit 4 4 4 4 4 
~ 2 2 2 2 
~ 1 1 1 1 1 1 

Special Characters 

} ¢ < l1 + I] 1 $ • 

Zone 
B B B B B B B B B B B 

t----
A A A A A A A A 

Punch 8 8 8 8 8 8 8 8 8 8 
I---

Positions 4 4 4 4 4 4 
Digit t--

2 2 2 2 2 2 2 
t--

1 1 1 1 1 

Figure 16-1. Character Set and Punch Combinations 

16-2 

K 

B 

2 

) 

B 

8 
4 

1 

L 

B 

2 
1 

_;_ 

B 

8 
4 

2 

the bottom. Characters are represented by a combination 
of from zero to six holes punched in the punch positions of 
a single column. 

Since there are six punch positions available, the number 
and positions of the holes may be varied to form 64 dif
ferent punch combinations. Each unique combination of 
punches is associated with a particular character. There
fore, you can represent 64 different characters in the com
puter (Figure 16-1 ). 

M N 0 p Q A s T u v w x y z 

B B B B B B 
A A A A A A A A 

8 8 8 8 
4 4 4 4 4 4 4 4 

2 2 2 2 2 2 
1 1 1 1 1 1 1 

-, - I & % - > 7 : #@' = " '4 
B B 

A A A A A A A 

8 8 8 8 8 8 8 8 8 8 8 8 8 

4 4 4 4 4 4 4 4 4 

2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 



A card column consists of both a zone portion and a digit 
portion. B and A are referred to as zone punch positions, 
while 8, 4, 2, and 1 are digit punch positions. The com
binations of zone and digit punches make it possible to 
separate the characters into three groups (Figure 16-1): 

Representation of Negative Numbers 

• Alphabetic letters are represented by at least one punch 
in both the zone and digit portions of a column. 

Note that positive numbers are represented only by digit 
punches. Negative numbers (-1 through -9) can also be 
represented to the computer. However, to indicate that a 
number is negative, a column must contain both the punch 
combination for the number and the punch combination 
for the minus sign. As column 7 of Figure 16-2 shows, the 
8 and I digit-punch positions are punched to represent the 
number 9. A -9 is represented in column 12 by the same 
digit punches plus a hole in the B zone-punch position. 

• The 28 special characters can consist of no punches, 
only zone punches, only digit punches, or both zone 
and digit punches. 

• Positive numbers are represented by holes only in the 
digit punch positions. The one exception if the number 
0 which is represented by a single punch in the A zone 
punch position. 

Positive 9 Character 

9 R 

Negative 9 Character 
(Prints as "R") 

1 2 3 .f 5 I 7 I I 10 It 12 13 14 15 16 17 18 19 20 21 2.Z 23 H 25 26 27 28 29 30 31 32 

~~~m~mm~m~m~~Mrn~~~~~mM"®m~mm~~m~ 

Digit Punches
Only for Positive
Number B •- B • f '(~-----------~;~-!----"B" Punch for Minus Sign

i , z , • • • ~ a 9 10" ~r. ~ .. -~ .. ~ .. ~.~, :": .. ~z~o ~":,,-;,,~,;. :;,.:,.:-;,~, ,;;,;21-;,o;-;,;';"", ll',,l:'.._l~ Digit Punches for Number
A A

8 8
4 4
2 2

~"~"un»n~~qo~~«ouu~~~"~"~~~"~~~~~~
A A
8 8
4 4
2 2
1 ~w~uuronnnn~~nn»~~"~""""""~~H~tt~tt 1

llM3700

Figure 16-2. Punches for Negative Numbers

Changing Data Structure 16-3

As mentioned, all 64 possible punch combinations are
associated with a character. Therefore, adding a B zone
punch to the punch combination of a number means the
punch combination for any negative number is the same as
the punch combination/already assigned to one of the 64
characters. The negative numbers -1 through -9 are rep
resented by the same punch combinations as the letters J
through R {Figure 16-3).

The computer determines whether the punch combination
is a letter or a number according to whether an entry has
been made in column 52 of the input specifications.
Column 52 is used to specify the number of decimal
positions in a field. If an entry is present, the computer as
sumes any character in that field to be numeric. Absence

CHARACTERS

Punch
Position -1 -2 -3 -4 -5 -6 -7 -8 -9

B

A

8

4

2

Punch
Position

B

A

8

4

2

• • • • • • • • •

• •
• • • •

• • • •
• • • • •

l 11111111
J KL MN 0 P QR

• • • • • • • • •

• •
• • • •

• • • •
• • • • •

of an entry in column 52 tells the computer that it is read
ing either a letter or a special character in an alphameric
field. By examining column 52, the computer recognizes
when the B zone punch is associated with the punch com
bination of one of the letters J through R or the punch
combination of a negative number.

In the discussion so far, you have learned how data is re
corded in a form which the computer can understand. The
data is represented as punched holes on 96-column cards.
Before the computer can use the data, as in calculations or
output operations, it must store the information. The data
is then available in computer storage whenever it is needed
during the run of a program.

Figure 16-3. Negative Number Punch Combinations the Same as Punch Combinations for J-R

16-4

Representation of Characters in Storage

When you look at the punch area of a card, you cannot
immediately determine which characters are stored on the
card. First, you have to determine which character is as
sociated with a particular punch combination. The punched
holes, then, are the means of representing characters on a
card. Similarly, a character such as the letter A is not stored
on disk/or inside the computer in a form you would recog
nize as the letter A. On disk or inside the computer, there
is also a means of representing characters.

Information from each of the 96 columns of punched cards
can be transferred to disk. Data from each column is stored
in corresponding positions on disk in the form of magnetized
spots.

Characters are represented electronically in computer storage.
The storage area of the computer consists of a number of
magnetic bits, which can be turned on or off by passing an
electric current through them. The exact details of how
this is done is not important to this discussion; what is im-

"off" bit

portant is that each bit can be in either an on state or an off
state. We use a 1 to show a bit that is on; while a 0 repre
sents a bit that is off (Figure 16-4).

The magnetic bits inside the computer or on disk are ar
ranged in groups, called bytes, just as the punch positions
on a card are arranged in groups called columns {Figure
16-4). Just as each column on a card can contain a charac
ter, each byte in storage can also contain a character. A
particular combination of on and off bits in a byte represent
a certain character inside the computer, just as a particular
combination of punched and unpunched positions in a
column represent that character on a card.

Data is represented on a card, character by character; like
wise, data is stored inside the computer, character by charac
ter. Just as you can look at a punched card and refer to a
character by the particular column containing that charac
ter's punch combination, the computer can reference a
character by the particular byte in storage which contains
that character's bit combination.

I
-~~~~~--~~-~~1-n~"lb-it1~~~~~-

01011001 10110011 _ 1010110

(Containing Bit Combination
for a Single Character)

Figure 16-4. Representation of Characters in Storage

Changing Data Structure 16-5

Difference Between Character Representation on Cards
and in Storage

A byte is divided into a zone portion and a digit portion,
just as a card column is {Figure 16-5). The four digit posi
tions, in both a byte and a column, are labeled l, 2, 4, and
8. However, since there are two additional positions (bits)
in storage which are used to represent a character, a byte
contains four zone positions, whereas a card column con
tains only two zone positions. The additional two zone
positions in each byte are labeled C and D as shown.

Although there are many similarities in the way a character
is represented in storage and on a punched card, it is im
portant to note one difference. While a card column con
sists of six positions, a byte consists of eight positions or
bits. Thus, within the computer, eight positions are used
to represent a single character, whereas only six positions
are available on a card.

Zone
Portion

Digit
Portion

•
'-'

•

BYTE

DCBA8421
'-"~~

Zone
Portion

Digit
Portion

N
3 • 5 I 7 I t ff> 11 12 13 M 1$ " 17 t8 tt 20 21 Z.Z U 2' 25 26 27 28 29 30 31 32

•
A
8
4
2

6711~ttUUU~-~d~~~ununHVHH~~"~
A
8

4 4
2 2

~n~~H»»»~~UUtt~"V~ff~~~"~"ff~9"~~ttUU~
A A
8 8
4 4
2 2
1 HMUUHMTinn~n~nnn~~ttUNUHUUH~~""""" 1

llM3700

Figure 16-5. Correspondence Between a Byte and a Card Column

16-6

Since there are four digit positions in both a byte and a
card column, the digit portion of a byte corresponds one
for-one with the digit portion of that character's punch
combination. That is, if a digit punch position is punched,
the corresponding digit bit is set on (1) in storage. Likewise,
a digit bit is set off (0) if the corresponding punch position
does not contain a punch. To check this, note how the
digit portion of the plus sign (+) character is represented on
a card and in storage (Figure 16-6).

The zone portions of a card column and a byte do not cor
respond one-to-one, however. This is because there are
four zone bits in storage for each character, while there are

only two zone positions in a card column. Looking at
Figure 16-6 again, you can see that even though A and B
punch positions contain punches for the plus sign character,
the A and B bits in storage are not on.

Since the zone portions differ, a translation must take place
when a card is read and the data (characters) is stored inside
the computer. This is exactly what happens. The machine
reads the punch combination on the card and electronically
produces the appropriate bit combinations in storage. Such
translations (shown in Figure 16-7) are automatic; there
fore, you need not be concerned with how the computer
knows which bits to turn on and off.

+
I 2 3 4 5 (j 7 I 9 10 11 12 13 14 15 16 17 18 l9 ZO 21 Z2 23 24 Z5 2ti 27 28 29 30 31 32

PMH~~mm~m~m~~oom~~~~~m~M®~~m~~~mm

• B
e A
• 8
• 4

2 • 2
1

I Zl•S•1••~n~u~~~O~RW~unuB~VHtt~~ll~
A A
B 8

4
2

~»~~HV~H~~UU«~«OQff~~~"~"~~~~~~~"«~
A A
8 8
4 4
2 2
1 ~"VMMroTinn~~nnnn~Mu"u"unuu~~n~tt~u 1

llM3700

• • I • • • Column 5 of the card

Punch
Position 8

Bit
Position

A 8 4 2

0 0 0

D C B A 8 --------------
Zone
Portion

4

Figure 16-6. Similarity in Digit Portion of Byte and Card Column

0 Byte in Storage Containing Plus (+) Character

2

Changing Data Structure 16-7

Punch Punch
Combination

Bit Character
Zone Digit· Combination

Combination
Character Bit

Zone Digit Combination

BI A ,8 4 2 1 Zone Digit B A 8 4 2 1 Zone Digit -
,fl 0100 0000 A • • • 1100 0001

(blank) B • • • 1100 0010
j • • • • 0100 1010 c • • • • 1100 0011

• • • • • 0100 1011
(period)

D • • • 1100 0100

< • • • • 0100 1100
E • • • • 1100 0101

(• • • • • 0100 1101
F • • • • 1100 0110

+ • • • • • 0100 1110
G • • • • • 1100 0111

I • • • • • • 0100 1111
H • • • 1100 1000

& • • • 0101 0000
I • • • • 1100 1001

I • • • 0101 1010 • • 1101 0000

$ • • • • 0101 1011
J or-1 • • 1101 0001

* • • • 0101 1100
K or-2 • • 1101 0010

) • • • • 0101 1101
L or-3 • • • 1101 0011

; • • • • 0101 1110
M or-4 • • 1101 0100

I • • • • • 0101 1111
N or-5 • • • 1101 0101

- • 0110 0000
Oor-6 • • • 1101 0110

(minus) P or-7 • • • • 1101 0111

I • • 0110 0001 Oor-8 • • 1101 1000

• • • • 0110 1011 R or-9 • • • 1101 1001

% • • • 0110 1100 s • • 1110 0010

• • • • 0110 1101 - T • • • 1110 0011
(underscore) -

u • • 1110 0100
> • • • • 0110 1110 v • • • 1110 0101
? • • • • • 0110 1111 w • • • 1110 0110
: • • 0111 1010 x • • • • 1110 0111
• • • 0111 1011 y • • 1110 1000
@ • • 0111 1100 z • • • 1110 1001
, • • • 0111 1101

(apostr9phe)
+O • 1111 0000

= • • • 0111 1110
1 • 1111 0001

·-1---

" • • • • Of11 1111
2 • 1111 0010

3 • • 1111 0011

4 • 1111 0100

5 • • 1111 0101

6 • • 1111 0110

7 • • • 1111 0111

8 • 1111 1000

9 • • 1111 1001

Figure 16-7. Bit and Punch Combinations for Characters

16-8

When programming in RPG II, however, you do have to be
concerned with zones and digits as they are represented
inside the computer. The division of the card column into
zone and digit portions is only for convenience.

On the Input Sheet, you can specify record identification
codes. If you choose to use only the zone portion of a
character, you will be using the zone positions as they are

in storage. Assume that a record identification code with
the zone of a$ character in column 1 is to turn on resulting
indicator 21. If an input record is read with the character
Jin column 1, indicator 21 will not turn on. Even though
the card zone punches for$ and J are the same (both have
the B zone punched), the bit combinations in storage for
the$ and J do not have identical zone portions (Figure
16-8).

ZONE PORTIONS OF CARD

Zone
Punches
Identical

Punch Combination for Character$

_ _,,ti tt K10101102103IO<tl05IOIK>7H)8109no 1n 112 nJ n• ns 111111 111 nt t201211221z312• m121lZ7121
Be B
A A

-5. 8
4 4
2. 2

~~ 2 >• •• 11 •~n~outt•ngtt~vununnnnnw~n~
A A
8 8
4 4
2 2

~nMH»»»»~~UU«U"U"ff~~u"~"""""~~UUM~
A A
8 8
4 4
2 2
1 HMUMH~nnnun~nnn~~UUNHHVHH~~"""""l

laM3700

J"

Zone
Portions
Differ

Punch Combination for Character J

I 2 3 4 5 I 7 I I K> II IZ 13 M 15 II 17 18 ti ZO ZI U 23 H 25 H 27 21 Zt 30 31 JZ

- ---97 .. "KIOKM 102103t0410SIOll07IOllOlftD In n2 n3 ns 111117 .. nt 120t2IRZ1231N\25121t21121
Be B
A A -----5 8
4 4
2 2

~'· J4 51711~U~OUR•ngg~~llUUUMVHHW~U~
A A
8 8
4 4
2 2

~n»H»»»»~~UU«HMU"a~~~U~H»n»»~~UUM~
A A
8 8
4 4
2 2
1 HMUHH~nnnun~nnn~~UUMHHVHH~~"""""l

laM3700

Figure 16-8. Difference in Zone Portions of a Byte and a Card Column

ZONE PORTIONS IN STORAGE

Bit Combination for Character$

" '1 "
D c B A 8 4 2
~

Zone Portion

Bit Combination for Character J

" st e e

D c B A 8 4 2
~

Zone Portion

Changing Data Structure 16-9

There is one exception which should be noted in specifying
that the zones of characters be used to identify records.
According to Figure 16-9, the zone of the letter J is used to
identify record type 01, while the zone of a minus sign is
used to identify record type 02. Recorded on cards, both
characters have a B zone punch. However, inside the com
puter, their zone representations differ:

B J B
DCBA DCBA

Although the zones differ, the computer considers the two
the same. Thus, a card with a minus punched might turn
on either the 01 or 02 indicator. Likewise, a card with the
letter J could turn on either indicator.

The reason the computer treats both zone representations
the same is to aid programmers whose files were set up for
former systems. To ~void any confusion, we suggest that
you not specify both (zones of the letters J and -) for
identification of record types which are to be used in the
same program.

IB~

Date ___ _

Program-----------

Programmer-----------

~
~ 1

C•

Line Filename ~·~
~ i ~ Position
I-

j ~ j

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 1[£ IE:IA 1 IL' ~~ ~1 ~
0 2 I~
0 3 I lB.a ~Jz ~
0 4 I

lnternatioftalBus

RPG INPUT

Punching
Instruction

Record Identification Codes

2

~ Position - ~ Positior

~~a ~ ~ ~
~ 0 t.i ~ 0 t.i

25 26 27 28 29 30 31 32 33 34 35 36 37

'lJ

~, ...

Figure 16-9. Exception: Zone Representation Considered the Same

16-10

Consider another example which points out the difference
in how negative numbers are stored and how you may think
they are stored. The minus sign alone is represented on a
card and in storage as shown in Figure 16-10, insert A.
Only the zone portion of the card contains a punch. Figure
16-10, insert B shows how a positive 5 is represented on a
card and in storage. In this case, only the digit portion of
the card contains punches. Note Figure 16-10, insert C for
the punch and bit combinations which represent a -5.

When checking the cards you can see that the digit punches
for the positive 5 and the negative 5 are the same. Further
more, the digit bits in storage for the two characters are
also the same. The zone punch for -5 is the same as the
zone punch for the minus sign character. Therefore, you
would not always assume that, in storage, the zone bits for
the -5 should be identical to the zone bits for the minus
sign (Figure 16-1 O).

The reason is that the computer checks the entire punch
combination (both zone and digit portions) of a column to
determine which zone bits are to be on or off. Since the
entire punch combinations (not only zone punches) for the
minus character and the negative 5 are different, their zone
bits in storage are also different.

A conclusion can be drawn from the previous examples:
each unique punch combination is associated with a different
bit combination. Of course, in discussing negative numbers
before, we stated that the punch combinations of -1 through
-9 are the same as the punches for the letters J through R
Thus, the bit combinations for the negative numbers are
also the same as those for J through R

Consider again the number of positions available to rep
resent a character. A characteristic of codes involving dif
ferent combinations (such as bits on and off or punches) is
that the greater the number of positions available to repre
sent any one combination, the greater the number of com
binations that are possible. As mentioned, with six punch
positions, 64 unique punch combinations can be made, and,
therefore, 64 different characters can be represented on a
card. With eight bits (positions), 256 unique combinations
of on-off bits can be created and, therefore, 256 different
characters could be represented inside the computer. How
ever, you only need 64 characters to program the computer;
therefore, only 64 of its 256 bit combinations are associated
with a printable character.

Representation of Minus(-) Character Representation of "5" Character (Positive)

5
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 11 17 18 19 20 21 2.Z Z3 2.t ZS 26 27 28 29 30 31 32 I 2 3 4 5 6 1 8 I 10 11 12 13 14 15 II 17 t8 19 20 21 2.2 23 Z4 25 ZI 27 28 29 30 31 32

~~"m~~m~~umm~Mm~~~~mnMM~m~mmmmmITT

B B
A
8
4
2

A
8
4
2

•
A
8
4
2

~ 1 2 3 4 5 • 7 • • 10 " 12 13 14 15 .. 17 20 21 22 23 24 25 26 27 21 29 30 31 32 ~

A
8
4
2
1
B 1 2 3" s & 1 a • 10 ~ 12 13 14 15 .. 17 20 21 22 23 24 25 .. 27 28 29 30 31 32 ~

A
8
4
2

A
8
4
2

~"~~Mn»"w~uu«~uuuu~~~"~"~n~"ro~~ntt~
A A
8 8

A
8
4
2

A
8

A
8
4
2

A
8

4 4 4 4
2 2 2 2
1 UH"uuronnnn~nn21n~~ttnunuvuu~~"""""l 1 UHOHHronnnn~nn21n~~ttnUHHVHH~~""""" 1

llM3700

0 0

@ BIT D c B A

©

llM3700

0 0 0 0

8 4 2 @ D c

Representation of "-5" Character (Negative)

N
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 II 17 II 19 20 21 2.2 Zl 24 25 2' 27 28 29 30 31 32

~~Hm~mm~~um~~Mm~~~~~ITTMM~m~mmmmm~

B • B
A A
8 8
4 • 4
2 2
1 • . 1
B I 2 3 .. 5 6 7 • t IO 11 12 13 •• 15 16 17 II 19 20 21 22 23 2• 25 26 27 28 29 30 31 32 B

A A
8 8
4
2

4
2

1 1
B"~~MU~"W~UU«~UUUU~~~"~"~D~"ro~~ntt 6
A A
8 8
4 4
2 2
1 UMUHH~Tinnn~nn21n~~HUUHHVHff~~Htttttttt 1

llM3700

0 0 0

BIT D c B A 8 4 2

Figure 16-10. Representation of a Negative Number

0 0

B A 8 4 2

Changing Data Structure 16-11

Identifying Bit Combinations with Numerical Values

Each unique combination of eight bits can be associated with
a numerical value. Before discussing how the numerical
value is determined for a character, perhaps first you would
like to know why numeric values are assigned.

As mentioned before, data is represented on punched cards
because the computer can read punched holes. Actually,
after reading a card, the computer does not immediately
determine what character is punched. It can, however, dis
tinguish one punch combination from another punch com
bination. Furthermore, the particular combination of
punches indicates to the computer which bits should be set
on and off to represent that punch combination inside the
machine. At this point, the representation on the card is
just a particular group of punches and the representation
in storage is merely a particular combination of on and off
bits.

To use the byte of data for output, the computer must
know what character to punch or print. This is done by
associating a numerical value with each unique bit com
bination. The computer automatically knows that a certain
value is related to a particular character, such as the value
209 indicates the character J.

Consider how a numerical value and how the character are
determined. Each of the eight bits in a byte are assigned a
number. The values begin with 1 for the 1 bit and are
doubled for each of the next bits (Figure 16-11). By adding
only the numbers which correspond to bits which are on
(1), a numerical value is obtained for a byte. As Figure
16-11 shows, first the punch combination (for the charac
ter F) in column 7 is translated into the bit combination
in storage. The bits on result in a numerical value of 198,
which the computer associates with the character F.

16-12

F

~•Mm~mm~mum~~oom~~~M~mmM~m~m~~~m~

B • B
A • A
8 8
4 • 4
2 • 2

~· 2 >• s1111~n~~u~•n~~~~nnttttHVHH~~"~
A A
8 8
4 4
2 2

~ 33 ,. 35 31 37 31 :H <IC •1 "2 43 .t.t 45 .ti U A8 .ff 50 SI 52 53 s.t 55 56 57 !58 59 10 11 IZ 13 14 ~
A A
8 8
4 4
2 2
1 HMnuuronnnun~nnn~~Hnununnn~~""""" 1

llM3700

\
One Byte in Storage

0 0 0 0

BIT D C B A 8 4 2 1

Numerical f
Value t t t t t t t
Assigned 128 64 32 16 8 4 2

Add Value of
Bits That Are On 128 + 64 +4+2 198

NUMERICAL VALUE 198 = F CHARACTER

Figure 16-11. Determining a Numerical Value for a Character

Any difference in the bit combination results in a dif
ference in numerical value. Therefore, every character is
associated with a different numerical value. The greatest
numerical value which can be associated with a bit com
bination is 255 {all eight bits on), while the lowest numer
ical value is 0 {all eight bits off). This results in a total of
256 possible numerical values. Only 64 different charac
ters can be represented on a card; therefore, we are con
cerned with only 64 of the different numerical values.
However, as Figure 16-12 shows, the 64 numerical values
associated with the characters can range anywhere from 0
through 255. The numerical values missing from the chart
are not related to any printable character.

Bit Numerical
Combination Value Character

00000000 0
00000001 1
00000010 2
00000011 3
00000100 4
00000101 5
00000110 6
00000111 7
00001000 8
00001001 9
00001010 10
00001011 11
00001100 12
00001101 13
00001110 14
00001111 15
00010000 16
00010001 17
00010010 18
00010011 19
00010100 20

--
00010101 21
00010110 22
00010111 23
00011000 24
00011001 25
00011010 26

-
00011011 27
00011100 28
00011101 29
00011110 30
00011111 31
00100000 32
00100001 33
00100011 34
00100011 35
00100100 36
00100101 37
00100110 38
00100111 39
00101000 40
00101001 41
00101010 42
00101011 43
00101100 44
00101101 45
00101110 46
00101111 47
00110000 48
00110001 49
00110010 50

Figure 16-12. Numerical Values Associated with Characters
(part 1of3)

Changing Data Structure 16-13

Bit Numerical Bit Numerical

Combination Value Character Combination Value Character

00110011 51 01100110 102
00110100 52 01100111 103
00110101 53 01101000 104

00110110 54 01101001 105

00110111 55 01101010 106

00111000 56 01101011 107 ,
00111001 57 01101100 108 %

00111010 58
00111011 59

01101101 109 -
01101110 110 2:

00111100 60 01101111 111 ?

00111101 61
00111110 62
00111111 63

01110000 112
~10001 113
1-- • 0111 001 0 114

01000009 64 Blank
01000001 65

01110011 115
01110100 116

01000010 66 01110101 117

01000011 67 01110110 118

01000100 68
~·-·-

01110111 119

01000101 69
01000110 70

01111000 120
~1111001 121

01000111 71 01111010 122 :

01001000 72 01111011 123 1f
01001001 72
01001010 74 ~

-ofi11100 124 @
I-·

01111101 125
,

····-
01001011 75 01111110 126 =
01001100 76 <:" --01111111- 127

,,
-

01001101 77 (10000000 128

01001110 78 + 10000001 129
..

01001111 79 I 10000010 130

01010000 80 &
01010001 81

10000011 131
I-· 10000100 132
-

01010010 82 10000101 133

01010011 83 10000110 134

01010100 84
01010101 85

--foooo111 135
1--

10001000 136

01010110 86 10001001 137
01010111 87 10001010 138

01011000 88 10001011 139

01011001 89 -10001100 140

01011010 90 I 10001101 141 -
01011011 91 $
01011100 92 *

10001110 142
1--

10001111 143

01011101 93) 10010000 144

01011110 94 ; 10010001 145

01011111 95 ..., 10010010 146

01100000 96 - 10010011 147

01100001 97 I 10010100 148
01100010 98 10010101 149
01100011 99 10010110 150
01100100 100 10010111 151 ·-----
01100101 101 10011000 152

Figure 16-12. Numerical Values Associated with Characters (part 2 of 3)

16-14

Bit Numerical Bit Numerical

Combination Value Character Combination Value Character

10011001 153 11001100 204

10011010 154 11001101 205

10011011 155 11001110 206

10011100 156
10011101 157

11001111 207
11010000 208 I

10011110 158 11010001 209 J or -1

10011111 159 11010010 210 K or-2

10100000 160 11010011 211 L or-3

10100001 161 11010100 212 M or-4

10100010 162
10100011 163
10100100 164
10100101 165
10100110 166
10100111 167
10101000 168
10101001 169
10101010 170
10101011 171
10101100 172
10101101 173
10101110 174
10101111 175
10110000 176
10110001 177
10110010 178
10110011 179
10110100 180

11010101 213 N or-5
11010110 214 0 or-6
11010111 215 P or-7
11011000 216 Qor-8
11011001 217 R or-9
11011010 218
11011011 219
11011100 220
11011101 221
11011110 222
11011111 223
11100000 224
11100001 225
11100010 226 s
11100011 227 T
11100100 228 u
11100101 229 v
11100110 230 w
11100111 231 x

10110101 181 11101000 232 y

10110110 182 11101001 233 z
10110111 183 11101010 234

10111000 184 11101011 235

10111001 185 11101100 236

10111010 186 11101101 237

10111011 187 11101110 238 -
10111100 188 11101111 239

10111101 189 11110000 240 0

10111110 190 11110001 241 1

10111111 191 11110010 242 2

11000000 192 11110011 243 3

11000001 193 A 11110100 244 4

11000010 194 B 11110101 245 5

11000011 195 c 11110110 246 6

11000100 196 D
11000101 197 E
11000110 198 F
11000111 199 G
11001000 200 H
11001001 201 I
11001010 202
11001011 203

11110111 247 7
11111000 248 8
11111001 249 9
11111010 250
11111011 251
11111100 252
11111101 253
11111110 254
11111111 255

Figure 16-12. Numerical Values Associated with Characters (part 3 of 3)

Changing Data Structure 16-15

Assigning Numerical Values to Zone and Digit Portions

You have seen how a single numerical value is determined
for a combination of eight bits. The numerical value of a
character in storage can also be expressed as a pair of num
bers, rather than a single value. One number designates the
value of only the four zone bits; the other number repre
sents the value of the four digit bits.

You may be wondering why a character would ever be as
sociated with two paired numbers, since it can be associated
withjust a single number. In certain jobs, you may be con
cerned with only the digit portion or only the zone portion
of a character. For example, if records within a group are
to be sequence checked only on the basis of the zone of a
character, the computer must look at only the zone bits
and determine a numerical value for the zone portion alone
in order to make the comparison. Also, if you want to alter
the collating sequence or translate a file, both to be dis
cussed later, you must know the separate values for the zone
and digit portions of a character.

Determining separate zone and digit values is similar to de
termining a single value for an entire bit combination; that
is, values are assigned to each of the bit positions. The
values which correspond to on bits (1) are then added to
obtain a value.

To determine separate values, the zone and digit portions
are each treated as separate 4-bit combinations. The four
bits in each portion are assigned the values 1, 2, 4, and 8
(Figure 16-13). The rightmost zone and digit bits each
have the value 1; while the leftmost bits in each portion are
assigned the value 8. A value for the zone portion of a byte
is determined by adding only the values corresponding to
zone bits which are on (1). Likewise, a digit value is ob
tained by considering only digit bits which are on.

As Figure 16-14, insert A shows, the bit combination for
the slash (/) character produces a zone value of 6 and a
digit value of 1. Putting the two values together, the entire
character can be expressed as the value 61. Note, however,
that this is not the same as the numerical value 61 in our
decimal numbering system. If we were to determine a
numerical value for the entire 8-bit combination, we would
obtain the value 97 (Figure 16-14, insert B).

16-16

Bit

Assigned
Value

Zone

0 -0

D C B A

8 4 2

Digit

0 0

8 4 2

·a 4 2

Figure 16-13. Assigning Values for Zone and Digit Portions of a
Character

VALUE BY ZONE AND DIGll

Zone Digit

~ ~

Bit Combination I

for "/" Character
0 0 I 0 0 0

I

Bit D c B A
I 8 4 2
I
I

Values For
4 + 2 I + 1 "ON" Bits I

I
@ Zone Value 6 I Digit Value

VALUE FOR ENTIRE BIT COMBINATION

Bit Combination 0 0 0 0 0
For "/" Character

Bit D c B A 8 4 2

Values For 64 + 32 + 1
"ON" Bits

@ Value 97

Figure 16-14. Difference in Value of Entire Character and Value
of Zone and Digit Portions of Character

As mentioned before, with eight bits or positions in a byte,
256 different 8-bit combinations can be formed. The 256
combinations can be associated with the numerical values
0-255 (Figure 16-15, insert A). If either the zone or digit
portion are considered separately, however, only four bits
or positions are available. Therefore, a maximum of 16
different 4-bit combinations can be represented in either
the zone or digit portion of a byte. The 16 zone or digit
combinations can be associated with the values 0 through
15 (Figure 16-15, insert B).

The value obtained for a zone or digit bit combination is
referred to as hexadecimal number. Hex means 6, while
decimal refers to 10. Hexadecimal, then, means 6 + 10, or
16. A hexadecimal number can be any one of 16 possible
values (0-15). Putting the two hexadecimal numbers for
the zone and digit portions together gives a hexadecimal
value for the entire character. 61 is the hexadecimal value
for the / character. Keep in mind that this hexadecimal
value is actually two separate values, one for the zone and
one for the digit portion.

@
DETERMINING NUMERICAL VALUE FOR ENTIRE BYTE

Bit D c B A 8 4 2

Value Assigned
To Bit 128 64 32 16 8 4 2

Maximum 128 +64+32 +16
Numerical

+ 8 + 4 + 2 + 1 = 255

Value

@
DETERMINING NUMERICAL VALUE FOR ZONE OR DIGIT

ZONE DIGIT

Bit D c B A 8 4 2

Value Assigned
To Bit 8 4 2 8 4 2

8+4+2+ 1=15 8 + 4 + 2 + 1 = 15

Maximum Numerical Maximum Numerical
Value For Zone Bits Value For Digit Bits

Figure 16-15. Maximum Values for Entire Character and for
Zone and Digit Portions

Changing Data Structure 16-17

All of the 256 possible 8-bit combinations can be repre
sented by a hexadecimal value; that is, two hexadecimal
numbers. However, each hexadecimal number can take up
only one position. If a zone portion has the value 15 and
a digit portion has the value 12, the hexadecimal value for
the character cannot be expressed as 1512. Consequently,
a zone or digit portion whose numerical value is 10 or
greater {2-position number) must be represented in a slight
ly different form. This is done by assigning a single letter
as a substitute for the number. The letters A through·F
serve as the hexadecimal forms of the values 10 through 15
as shown in Figure 16-16.

An 8-bit combination with a zon.e value of 15 and a digit
value of 12 is expressed as having a hexadecimal value of
FC. Because the complete numbering series is composed
of numbers 0 through 9 followed by letters A through F,
a hexadecimal value for the zone and digit portion of an
8-bit combination can appear as a pair of numbers {61), a
letter and a number (C4, 4F), or a pair of letters (DB).

Since zone and digit values are determined separately, a
single combination of eight bits can have the same hexa
decimal number for both the zone and digit portion. Thus

Hexadecimal
Number

0

0

2

2

3 4

3 4

Figure 16-16. Hexadecimal Values of Numbers 0-15

16-18

5 6 7

5 6 7

11, 22, 33, AA, and other such values represent 8-bit com
binations which have the same bits on in both their zone
and digit portions.

Entirely different 8-bit combinations can have identical
zone hexadecimal numbers or identical digit hexadecimal
numbers, but not both. That is, the zone portion of one
character can contain the same bits on and off as the zone
portion of another character. In such a case, the identical
zone bit combinations wouldlgive identical zone hexa
decimal values. However, if they are different characters
and the zone values are identical, the digit bits and, thus,
the digit values, must differ. This is because no two charac
ters can have the same 8-bit combination.

Figure 16-17 shows the hexadecimal values associated with
the 64 printable characters the computer recognizes. The
hexadecimal values are in sequence just as the regular num
erical values are. Furthermore, the hexadecimal value as
sociated with a character is equivalent to the numerical
value associated with that character., However, jthere is no
need for you to be able to translate back and forth between
numerical values and hexadecimal values. If you must use
a character's hexadecimal value in your programming, you
can refer to the chart showing the appropriate value.

8 9 10 11 12 13 14 15

8 9 A B c D E F

Hexadecimal Numerical
Character Value Value

Blank 40 64
c 4A 74

48 75
< 4C 76
(40 77
+ 4E 78
I 4F 79
& 50 80
I 5A 90
$ 58 91
* 5C 92
) 50 93
, 5E 94
I 5F 95
- 60 96
I 61 97
I 68 107
% 6C 108
- 60 109
> 6E 110
? 6F 111
: 7A 122

1--.#. 78 123
@ 7C 124
I 70 125
= 7E 126
,, 7F 127
A C1 193
8 C2 194
c C3 195
D C4 196
E C5 197
F C6 198
G C7 199
H ca 200
I C9 201
T DO 208
J or -1 01 209
K or-2 02 210
Lor-3 03 211
M or-4 04 212
N or-5 05 213
Oor-6 06 214
P or-7 07 215
Qor-8 08 216
R or-9 09 217

--s E2 226
T E3 227
u E4 228
v E5 229

I-·-------w E6 230
x E7 231
y ES 232
z E9 233

.,____ 0 FO 240
1 F1 241
2 F2 242
3 F3 243
4 F4 244
5 F5 245
6 F6 246
7 F7 247
8 F8 248
9 F9 249

Figure 16-17. Hexadecimal Values Associated with Characters

Changing Data Structure 16-19

Packed Decimal Format

As you have learned, each byte of storage, whether on disk
or in the computer, can contain one character. That charac
ter can be a decimal number or an alphabetic or special
character. The format of the characters is known as un
packed decimal format. Each byte of storage is divided
into a 4-bit zone and a 4-bit digit part. Figure 16-18 shows
the unpacked decimal format.

The zone part of the low-order (rightmost) byte indicates
whether the decimal number is positive or negative. In un
packed decimal format, the zone part is included for each
digit in a decimal number; however, only the zone over the
low-order digit serves as the sign. The low-order digit is the
only digit which makes use of the zone portion. Figure 16-19
shows the unpacked decimal format for decimal number
28,191.

Packed decimal format means that one byte of storage can
contain two decimal numbers. A decimal number will oc
cupy the zone portion which is unused in unpacked decimal
format. This format allows you to put almost twice as much
data into a byte as you can using the unpacked decimal
format.

The low-order byte in packed decimal format is also divided
into two 4-bit parts. Each byte, except the low-order byte,
contains one decimal digit in each 4-bit part. The low
order byte contains a decimal digit in the leftmost 4-bit
part {bits 0-3) and the sign of the decimal field in the right
most 4-bit part {bits 4-7). Figure 16-20 shows packed
decimal format.

The sign part of the low-order byte is used to indicate
whether the numeric value represented in the digit parts is
positive or negative. Compare how the decimal number
28,191 is represented in packed decimal format (Figure
16-21) with its unpacked representation {Figure 16-19).

Figure 16-19. Unpacked Format of Decimal Number 28,191

0 -------~ 7 0 ______ ,... 7

Digit Digit Digit Sign

Figure 16-20. Packed Decimal Format

Positive

2 8 1 9 1 Sign
t

001 o ; 1 ooo 1 0001 : 1001 I 0001 : 1111

~----- 3 Bytes -------1~

Figure 16-21. Packed Format of Decimal Number 28,191

0----1~ 1 ·o -----1~ 1 ·0---~1·o--~~1·0-----11~1

Zone Digit Zone Digit Zone Digit Zone Digit Sign Digit

~'·'~
1 Byte

Figure 16-18. Unpacked Decimal Format

16-20

1101 =Minus sign
1111 = Pl us sign

You can specify packed input, output, table, or array fields:

• Packed input fields. Enter a Pin column 43 of the Input
Sheet. This causes the data to be unpacked before it is
stored.

• Packed output fields. Enter a Pin column 44 of the
Output-Format Sheet. This causes the data to be packed
before it is written out.

• Packed table or array fields. Enter a Pin column 55 of
the Extension Sheet. The data will be unpacked before
it is stored. Packed tables or arrays are not allowed at
compile time.

Since data must be represented in unpacked decimal _format
once it is inside the computer, yqu must give the RPG pro
gram an indication when input fields are in a different for
mat.

Because data mu~t be represent~d-in µnpacked decimal for
mat before it can be processed, it is correct to store data on
disk and read it into the computer in the, unpacked decimal
format. This eliminates converting the input field.

Binary Format

To save a maximum amount of space on disk, you can store
numeric fields in binary format. Binary format means that
two bytes of disk storage can contain a maximum of four
decimal numbers, and that four bytes of disk storage can
contain a maximum of nine decimal/ numbers. In the binary
format, each field on disk must be either two or four bytes
long.

Each 2-byte binary field consists of a 1-bit sign followed by
a 15-bit numeric value. In binary format, a decimal num
ber as large as 9,999 requires two bytes of disk storage.
For each 2-byte binary field stored on disk, the system
automatically sets aside four bytes of storage to accomo
date the field when it is converted to zoned decimal. Fig
ure 16-22 shows a 2-byte field in binary format.

Each 4-byte binary field consists of a 1-bit sign followed
by a 31-bit numeric value. In binary format, a decimal num
ber as large as 999,999,999 requires four bytes of disk
storage. For each 4-byte binary field stored on disk, the
system sets aside nine bytes of main storage to accomodate
the field when it is converted to zoned decimal. Figure
16-23 shows a 4-byte field in binary format.

0 15

Number

2 Bytes

Figure 16-22. Two-byte Field in Binary Format

0 31

Number

4 Bytes

Figure 16-23. Four-byte Field in Binary Format

Changing Data Structure 16-21

In each case, the sign portion of the high-order byte (left
most) is used to indicate whether the numeric value is
positive or negative. Notice that in the binary format the
zone portion of the decimal number is not given. Compare
how the decimal number 28,191 is represented in binary
format (Figure 16-24) with its packed and unpacked repre
sentation (Figure 16-19 and 16-21).

Since data must be represented in unpacked decimal format
when it is inside the computer, you must indicate to the
RPG II program when fields are in another format. You
can specify binary input, output, table, or array fields:

Positive
Sign

1 1
116,3841 8192 0 : 2048 l 1024 :. 512 0 0
I

0 0 0 0

• Binary input fields. Enter a Bin column 43 of the Input
Sheet. The data is then converted into decimals before
it is stored.

• Binary output fields. Enter a Bin column 44 of the
Output-Format Sheet. The data is then converted into
binary before it is stored.

• Binary table or array fields. Enter a Bin column 55 of
the Extension Sheet. The data will be converted to
decimals before it is stored. Binary tables or arrays are
not allowed at compile time.

0 0 16 8 4 2 = 28,191*

0 0

* The numeric value for each binary byte is obtained by adding the numbers which correspond to the bits that are on.
(Bits that are on are represented as 1's.) The sign bit is not included in the value of the number.

Figure 16-24. Binary Format of Decimal Number 28,191

16-22

COLLATING SEQUENCE OF CHARACTERS

To perform jobs efficiently, you usually organize your in
formation in some order or sequence. Imagine trying to
locate a person's phone number if the names in a telephone
book were not in alphabetical order. Of course, before
using this order or sequence, you must know what it is.
Through the learning process, you know that alphabetical
order means that A comes before B, B before C: and so on.
Likewise, in numerical sequence, 1 is less than 2, 2 less than
3, and so on.

In most of your data processing jobs, the computer must
be able to recognize an order or sequence of data. For
example, if you instruct the computer to sequence check a
file according to an alphabetic department code on each
record, it must be able to determine if the department T
lrecord should appear before the department X record, or
vice versa. In another instruction, perhaps the computer is
to compare two quantities, such as 3 and 8, and turn on an
indicator if the first quantity is less than the second quan
tity. The computer must determine if 3 is less than 8 or if
8 is less than 3.

The previous two tasks would be easy for you to perform
because, through memorization or habit, you know the
natural order of the alphabetic characters A through Zand
the numbers 0 through 9. However, a computer has not
memorized such orders. For the computer to perform
these tasks, an order or sequence of characters must be
established.

To further point out the need for a set order of characters,
assume the computer must check to make sure records in a
file are in proper order according to a department field.
Some department codes are alphabetic, as department A;
while some department codes are numbers, such as depart
ment 8. Should the numeric department records appear be
fore the alphabetic department records, or vice versa? It is
likely that the answer would depend on who is asked. How
ever, for efficient data processing, you certainly do not want
records sorted one way one time and another way the next
time. Thus, the computer must use one set order of charac
ters.

Every character recognized by the computer must hold a
certain position in this order in relation to the position of
the rest of the characters. Such an order is referred to as a
collating sequence of characters. By definition, to collate
means to arrange or verify that data appears in proper order
or sequence.

There can be any number of collating sequences. The
sequence used depends on the particular order in which
characters are to be recognized. In any case, the computer
should use only one collating sequence at a time.

The standard collating sequence of 64 characters is shown
in Figure 16-25. The blank, which is the first character, is
considered as the lowest in the sequence while the number
9, the last character, is the highest in the sequence. Note
that all of the special characters (except the}) are first in
this sequence, followed by the alphabetic characters A
through Zin their natural order, and then the numbers 0
through 9 (in their natural order). The only character which
you might not expect to be in its position is the} which
comes between the letters I and J.

This collating sequence is the order used by the computer
for the purpose of sorting cards, comparing numbers to
determine which is greater or less, checking the sequence
of records in a file, and matching records from two files to
determine which record should be processed next. Accord
ing to the collating sequence, the computer compares two
characters to determine if one comes before or after the
other, or is less than or greater than the other. Of course,
you specify which characters (or fields of characters) are
to be compared.

1 Blank 23 # 45 a
2 c 24 @ 46 R
3 25

, 47 s
4 < 26 = 48 T
5 (27

,, 49 u
6 + 28 A 50 v
7 I 29 8 51 w
8 & 30 c 52 x
9 I 31 D 53 y

10 $ 32 E 54 z
11 * 33 F 55 0
12) 34 G 56 1
13 ; 35 H 57 2
14 I 36 I 58 3
15 - (minus) 37 l 59 4
16 I 38 J 60 5
17 , 39 K 61 6
18 % 40 L 62 7
19 _(underscore) 41 M 63 8
20 > 42 N 64 9
21 ? 43 0
22 : 44 p

Figure 16-25. Standard Collating Sequence

Changing Data Structure 16-23

For sorting, sequence checking, and matching, you can
specify an ascending or descending collating sequence. For
example, if records are to be in ascending sequence, the
characters being checked should be in the order shown in
Figure 16-25. That is, a card with a blank should come be
fore a card with the letter K. (The blank characters is
lower in sequence than the letter K.) Likewise, a card with
the letter K should come before any records containing one
of the numbers 0 through 9. If you specify descending
sequence, the computer compares to make sure they are in
the opposite order, the characters higher in sequence coming
first.

As mentioned, a computer cannot memorize the order of
characters; it must use another method for remembering
the collating sequence. To do this, it uses the values as
sociated with characters to determine each character's rela
tion to another character in the sequence.

In a previous discussion, a value is calculated for each bit
combination in storage. The value can be thought of as a
single numerical value for the entire 8-bit combination or
as a 2-digit hexadecimal value, which is actually one hexa
decimal number for each 4-bit combination (zone and digit).
A hexadecimal value is another way of representing a
numerical value.

Once a value is calculated, the computer uses it to determine
which character is represented. Thus, the numerical value
193 (same as hexadecimal value Cl) is associated with the
character A while the numerical value 243 (hexadecimal
value F3) is associated with the numeric character 3. Per-

16-24

haps you wonder why a particular value, such as 193 (Cl)
is related to the letter A, rather than a different value.

The values associated with the 64-characters were originally
assigned such that the natural sequence of the values cor
responds with the positions characters are to hold within
the collating sequence. For example, the character A is as
sociated with value 193 (hexadecimal Cl), B with 194 (C2),
Cwith 195 (C3), and so on. Just as A is lower than Band
Bis lower than C in the collating sequence, 193 (Cl) is less
than 194 (C2), and 194 (C2) is less than 195(C3).

Figure 16-26 shows the 256 possible bit combinations, their
numerical and hexadecimal values, and the characters as
sociated with each. In this list of bit combinations, the
numerical values are in order from 0 through 255 (hexa
decimal values 00 through FF), and the associated charac
ters are in the standard ascending collating sequence.

As you can readily see, the value associated with a character
does not always immediately follow the value associated
with the previous character in the sequence. For example,
the character S follows the character R in the collating
sequence of characters. However, the numerical value of
S, 226 (hexadecimal E2), does not immediately follow the
numerical value of R, 217 (hexadecimal D9). The reason
for the gap is because the bit combinations with the num
erical values 218 through 225 are not associated with any
of the 64-printable characters. Regardless, the computer
determines that R is lower in sequence than (comes before)
S because the value of R (217 or hexadecimal D9) is less
than the value of S (226 or hexadecimal E2).

Bit Hexadecimal Numerical Bit Hexadecimal Numerical
Combination Character Value Value Combination Character Value Value

00000000 00 0 00110011 33 S1
00000001 01 _1 00110100 34 52
00000010 02 2 00110101 35 53
00000011 03 3 00110110 36 54
00000100 04 4 00110111 37 S5
00000101 05 5 00111000 38 S6
00000110 06 6 00111001 39 57
00000111 07 7 00111010 3A S8
00001000 08 8 00111011 3B S9
00001001 09 9 00111100 3C 60
00001010 OA 10 00111101 30 61
00001011 OB 11 00111110 3E 62
00001100 oc 12 00111111 3F 63
00001101 OD 13 01000000 Blank 40 64
00001110 OE 14 01000001 41 6S
00001111 OF 15 01000010 42 66
00010000 10 16 01000011 43 67
00010001 11 17 01000100 44 68
00010010 12 18 01000101 4S 69
00010011 13 19 01000110 46 70
00010100 14 20 01000111 47 71
00010101 15 21 01001000 48 72
00010110 16 22 01001001 49 73
00010111 17 23 01001010 c 4A 74
00011000 18 24 01001011 4B 7S
00011001 19 25 0100110 ~ 4C 76
00011010 1A 26 01001101 (40 77
00011011 1B 27, 01001110 + 4E 78
00011100 1C 28 01001111 I 4F 79
00011101 10 29 01010000 & 50 80
00011110 1E 30 01010001 S1 81
00011111 1F 31 01010010 52 82
00100000 20 32 01010011 53 83
00100001 21 33 01010100 54 84
00100010 22 34
00100011 23 35

~_010101 55 85
01010110 56 86

00100100 24 36 01010111 57 87
00100101 25 37 01011000 S8 88
00100110 26 38 01011001 S9 89
00100111 27 39 01011010 l SA 90
00101000 28 40 01011011 $ SB 91
00101001 29 41 01011100 * SC 92
00101010 2A 42 01011101) 50 93
00101011 2B 43 01011110 ; SE 94
00101100 2C 44 01011111 1 , SF 95
00101101 20 45 01100000 - 60 96
00101110 2E 46 01100001 I 61 97
00101111 2F 47 01100010 62 98
00110000 30 48 01100011 63 99
00110001 31 49 01100100 64 100
00110010 32 50 01100101 6S 101

Figure 16-26. Characters and Values Associated with the 256 Bit Combinations (part 1 of 3)

Changing Data Structure 16-25

Bit Hexadecimal Numerical Bit Hexadecimal Numerical
Combination Character Value Value Combination Character Value Value

01100110 66 102 10011001 99 153
01100111 67 103 10011010 9A 154
01101000 6B 104 10011011 98 155
01101001 69 105 10011100 9C 156
01101010 6A 106 10011101 90 157
01101011 , 6B 107 10011110 9E 15B
01101100 % 6C 10B 10011111 9F 159
01101101 - 60 109 10100000 AO 160
01101110 > 6E 110 10100001 A1 161
01101111 ? 6F 111 10100010 A2 162
01110000 70 112 10100011 A3 163
01110001 71 113 10100100 A4 164
01110010 72 114 10100101 AS 165
01110011 73 115 10100110 A6 166
01110100 74 116 10100111 A7 167
01110101 75 117 10101000 AB 168
01110110 76 11B 10101001 A9 169
01110111 77 119 10101010 AA 170
01111000 7B 120 10101011 AB 171
01111001 79 121 10101100 AC 172
01111010 : 7A 122 10101101 AD 173
01111011 # 7B 123 10101110 AE 174
01111100 @ 7C 124 10101111 AF 175
01111101

,
70 125 10110000 BO 176

01111110 = 7E 126 10110001 B1 177
01111111 " 7F 127 10110010 B2 17B
10000000 BO 12B 10110011 83 179
10000001 B1 129 10110100 B4 180
10000010 B2 130 10110101 85 181
10000011 B3 131 10110110 B6 182
10000100 B4 132 10110111 B7 183
10000101 BS 133 10111000 BB 184
10000110 B6 134 10111001 B9 1B5
10000111 B7 135 10111010 BA 186
10001000 BB 136 10111011 BB 187
10001001 B9 137 10111100 BC 188
10001010 BA 13B 10111101 BO 189
10001011 BB 139 10111110 BE 190
10001100 BC 140 10111111 BF 191
10001101 BO 141 11000000 co 192
10001110 BE 142 11000001 A C1 193
10001111 BF 143 11000010 B C2 194
10010000 90 144 11000011 c C3 195
10010001 91 145 11000100 D C4 196
10010010 92 146 11000101 E cs 197
10010011 93 147 11000110 F C6 198
10010100 94 148 11000111 G C7 199
10010101 95 149 11001000 H ca 100
10010110 96 150 11001001 I C9 101
10010111 97 151 11001010 CA 202
10011000 9B 152 11001011 CB 203

Figure 16-26. Characters and Values Associated with the 256 Bit Combinations (part 2 of 3)

16-26

Bit Hexadecimal Numerical
Combination Character Value Value

11001100 cc 204
11001101 CD 205
11001110 CE 206
11001111 CF 207
11010000 DO 208
11010001 J 01 209
11010010 K 02 210
11010011 L 03 211
11010100 M 04 212
11010101 N 05 213
11010110 0 06 214
11010111 p 07 215
11011000 Q 08 216
11011001 R 09 217
11011010 DA 218
11011011 DB 219
11011100 DC 220
11011101 DD 221
11011110 DE 222
11011111 OF 223
11100000 EO 224
11100001 E1 225
11100010 s E2 226
11100011 T E3 227
11100100 u E4 228
11100101 v E5 229
11100110 w E6 230
11100111 x E7 231
11101000 y ES 232
11101001 z E9 233
11101010 EA 234
11101011 EB 235
11101100 EC 236
11101101 ED 237
11101110 EE 238
11101111 EF 239
11110000 0 FO 240
11110001 1 F1 241
11110010 2 F2 242
11110011 3 F3 243
11110100 4 F4 244
11110101 5 F5 245
11110110 6 F6 246
11110111 7 F7 247
11111000 8 FS 248
11111001 9 F9 249
11111010 FA 250
11111011 FB 251
11111100 FC 252
11111101 FD 253
11111110 FE 254
11111111 FF 255

Figure 16-26. Characters and Values Associated with the 256 Bit Combinations (part 3 of 3)

Changing Data Structure 16-27

Collating By Zone Or Digit

You learned from a previous discussion that the zone and
digit portions of characters can be treated as separate and
distinct groups of four bits, each with its own hexadecimal
number.

Different characters may have identical zone bits or iden
tical digit bits, but not both. Consequently, different
characters may be associated with the same zone hexa
decimal number or the same digit hexadecimal number but
not both. As an example, the character A is associated with
the value Cl, Bis associated with C2, and K is associated
with D2. A has the same zone value (C) as B, while K has
the same digit value (2) as B. However, Bis the only charac
ter with both a zone value of C and a digit value of 2.

In most data processing tasks, the computer uses entire
characters or the values of those characters to make com
parisons, to determine which is greater or less, and so on.
However, for certain purposes, such as sorting cards, you
may wish to have the computer check only the zone or
only the digit portion of characters. In such a case, the
compU;ter must use a collating sequence based on zone or
digit values rather than the standard collating sequence
based on the entire value.

If the computer uses a collating sequence based on the zone
portions of characters, any differences in the digit bits are
ignored. Only the value of the zone bits are considered.
The reverse occurs if a collating sequence based on the digit
portions of characters is to be used.

The fact that certain characters have the same zone or digit
values can be used to group characters within a collating
sequence. On the basis of zone values, the 64 printable
characters are divided into eight groups (Figure 16-27). The
zone bits (and values) are identical for all characters within
a group. If collating is to be on the basis of digit values,

16-28

the characters can be divided into 16 groups (Figure 16-28).
In such a case, digit bits (and values) are identical for all
characters within a particular group.

Using the standard collating sequence, the computer con
siders each character to hold a specific position in the
sequence. Therefore, no two characters can be considered
equal; one must come before another or be less than
another character.

On the other hand, using a collating sequence based on
zones or digits, one group or characters follows another
group of characters. The characters within a group can
occupy any position within that group. Thus, there is an
order of groups but no particular order of characters within
a group.

Note that in the collating sequence by zone shown in Fig-
ure 16-27, any character in group 5 is considered lower in
sequence than any character in group 6. If records are sorted
in ascending order by zone, a record with the letter D (group
5) comes before a record with the letter N (group 6).

Now consider a case in which characters from the same
zone group are to be compared. Assume one record con
tains the letter D (group 5) and the next record contains
the letter F (group 5). Which should be sorted first accord
ing to a collating sequence based on zones? Since the com
puter ignores the digit bits of each character, they are con
sidered equal because they both have the same zone value.
Therefore, no one character must come earlier in the
sequence than another character from the same group. The
sequence of the characters is the same order in which the
records are read. Thus, if the D card is read first in a sort
job, the D record comes before the F record. On the other
hand, if the F card is read first, the F record comes before
the D record. In either case, the records are in proper
sequence based on zones.

Bit
Collating

Character Combination
Sequence
of

Bit Collating
Character Combination

Sequence
of Zones

Zone Digit Zones Zone Digit

b 0100 0000 A 1100 0001
(blank)

B 1100 0010

4 0100 1010 c 1100 0011
0100 1011

(period) D 1100 0100

< 0100 1100 1
E 1100 0101 5

(0100 1101 F 1100 0110

+ 0100 1110 G 1100 0111

I 0100 1111 H 1100 1000

& 0101 0000 I 1100 1001

I 0101 1010 } 1101 0000

$ 0101 1011 J or-1 1101 0001

* 0101 1100 2 K or-2 1101 0010

) 0101 1101 Lor-3 1101 0011

; 0101 1110 M or-4 1101 0100 6

-, 0101 1111 N or-5 1101 0101

- 0110 0000 0 or-6 1101 0110

(minus) P or-7 1101 0111

I 0110 0001 Oor-8 1101 1000

I 0110 1011 R or-9 1101 1001

% 0110 1100 3 s 1110 0010

1101 1101 T 1110 0011
(underscore)

u 1110 0100
> 0110 1110 v 1110 0101
? 0110 1111 w 1110 0110 7
: 0111 1010 x 1110 0111
0111 1011 y 1110 1000
@ 0111 1100 4 z 1110 1001
I 0111 1101

(apostrophe) +O 1111 0000

= 0111 1110
1 1111 0001

II 0111 1111 2 1111 0010

3 1111 0011

4 1111 0100

5 1111 0101 8

6 1111 0110

7 1111 0111

8 1111 1000

9 1111 1001

Figure 16-27. Collating Sequence by Zone

Changing Data Structure 16-29

Bit
Collating

Character Combination
Sequence
of

Bit
Collating

Character Combination
Sequence
of

Zone Digit Digits Zone Digit Digits

.fl 0100 0000 H 1100 1000
(blank)

Oor-8 1101 1000
& 0101 0000

y 1110 1000 9
- 0110 0000 1

(minus) 8 1111 1000

} 0111 0000 I 1100 1001

+O 1111 0000 R or-9 1101 1001

I 0110 0001 z 1110 1001 10

A 1100 0001 9 1111 1001

J or-1 1101 0001 2 4 0100 1010

1 1111 0001 ! 0101 1010 11

B 1100 0010 : 0111 1010

Kor-2 1101 0010 0100 1011
(period)

s 1110 0010 3
$ 0101 1011 12

2 1111 0010
, 0110 1011

c 1100 0011
0111 1011

L or-3 1101 0011

T 1110 0011 4 < 0100 1100

* 0101 1100
3 1111 0011

---- % 0110 1100 13
D 1100 0100

@ 0111 1100
Mor-4 1101 0100

(0100 1101
u 1110 0100 5

) 0101 1101
4 1111 0100

- 0110 1101 14
E 1100 0101 (underscore)

N or-5 1101 0101 ,
0111 1101

v 1110 0101 6 (apostrophe)

5 1111 0101 + 0100 1110

F 1100 0110 ; 0101 1110

0 or-6 1101 0110 > 0110 1110 15

w 1110 0110 7 = 0111 1110
--

6 1111 0110 I 0100 1111

G 1100 0111
--, 0101 1111

P or-7 1101 0111 ? 0110 1111 16

x 1110 0111 8
,,

0111 1111

7 1111 0111

Figure 16-28. Collating Sequence by Digit

16-30

AL TERI NG THE COLLATING SEQUENCE

A collating sequence is the order in which characters are
arranged. As you know, all characters are associated with
different numerical values in order that the computer may
recognize them. The sequence of numerical values (ascend
ing or descending sequence) determines the order in which
characters associated with the values are recognized.

The association of a particular character with a numerical
value is an arbitrary decision. Thus, the collating sequence
itself is arbitrary. System/3 is programmed to expect the '
collating sequence discussed previously in the section
Collating Sequence Of Characters. This does not mean,
however, that you must always use this sequence. You can
change it and there may be times when you desire to do so.

For example, you may want alphabetic characters to follow
the numbers instead of preceding them. Suppose that a
company originally started with a few departments. The
departments were assigned numbers from 01-99. Two
columns were devoted to department numbers in vatlous
records. The company expanded and departments in
creased. Soon there were more than 99 departments. To
avoid having to change the department field from two to
three characters in all records, the manager decided to use
the letters of the alphabet to represent department num
bers: 99, AO, Al, etc. In this case, A must follow the num
ber 9 in the sequence. Thus it is necessary to alter the col
lating sequence so that numbers come before alphabetic
characters.

There can be other reasons than the one just explained for
altering the collating sequence. Suppose you wish to have
the computer consider two characters equal {having the
same place in the sequence). For example, it is often de
sirable to have the computer consider a blank and zero
equal. This eliminates having to punch leading zeros in
numeric fields since blanks will be the same as zeros in the
new sequence. Or your language may demand that you
have characters such as A, A: 0, E, E' included in the
alphabetic sequence (A, A, B). Since the 64 graphics do not
include these characters, other seldom used characters can
be substituted for them and repositioned in the collating

sequence. For example, a number-symbol(#) repositioned
between the letters A and B can substitute for an A, an at
symbol (@)repositioned between 0 and P substitutes for an
0.

These are only a few reasons for altering the collating
sequence. You may have others. Just remember that you
can alter the collating sequence in any way that fits your
needs.

Specifying Changes in Collating Sequence

To change the collating sequence, you must associate charac
ters with different numerical values. The following sections
will explain how this is done.

Forms for Altering the Collating Sequence

Figure 16-29 illustrates two forms on which you must
specify changes to the collating sequence. One form is the
RPG II Control Card and File Description Sheet; the other
is the Translation Table and Alternate Collating Sequence
Coding Sheet which is used for listing the actual changes in
sequence. Both forms are used in conjunction with the RPG
II Input, Output and Calculation Sheets.

A letter S entered in column 26 of the RPG II control card
notifies the computer that additional information will be
furnished as part of the job so that the collating sequence
can be altered. All other columns contain the information
that must normally be entered to process job.

The Alternate Collating Sequence Coding Sheet lists 256
bit combinations along with their hexadecimal numerical
values. As you learned from discussions of character struc
ture, hexadecimal values are written in the form of two
character values. One value represents the numerical value
of the character's zone; the other represents the numerical
value of the character's digit. The 64 printable graphics
are listed beside the bit combinations and numerical values
with which they are associated.

Changing Data Structure 16-31

...... :!1 O"I w ~
N

CD

IB~
International Businns Machines Corporation Form X21 ·9092

Printed in U.S.A.

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
...... 1 2 75 76 77 78 79 80
O"I

N
~

Date l Punching l Graphic l l l l l l J Page rn Program I I I I I I I Identification
Instruction J Punch I_ l l l l l J Program

'"Ij
0 Programmer

~ Control Card Specifications
z
CD
CD
Q.
CD
Q.

~
I~ ~ i

Core Core Ud~ Number g'
Une Size to ~ .§ Size to .S ~ Of Print -~ Refer to the specific System Reference Library manual for actual entries.

....
~ IB~ International Business Machines Corporation Form X21-9096

Printed in U.S.A-

ct TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

9
~
~
CD
("')
0

System/3
Replaced

System/3
Replaced Replaced

System/3
Replaced Replaced

By/Takes By/Takes System/3 By/Takes By/Takes System/3 By/Takes
Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of

= ~

s·
00000000 00 00110011 J3 01100110 66 10011001 99 11001100 cc
00000001 01 00110100 J4 01100111 67 10011010 9A 11001101 CD
00000010 02 00110101 J5 01101000 6B 10011011 9B 11001110 CE

(JQ

en
CD

00000011 OJ 00110110 36 01101001 69 10011100 9C 11001111 CF
00000100 04 00110111 J7 01101010 6A 10011101 9D 11010000 } DO

..c
~
CD

00000101 05 00111000 JB 01101011 6B 10011110 9E 11010001 J D1 -I
00000110 06 00111001 J9 01101100 % 6C 10011111 9F 11010010 K D2

::s
(')
CD

00000111 07 00111010 JA 01101101 - 6D 10100000 AO 11010011 L DJ
00001000 OB 00111011 JB 01101110 > 6E 10100001 A1 11010100 M D4

en 00001001 09 00111100 JC 01101111 ? 6F 10100010 A2 11010101 -1lL ...Q5_
"l:j

CD
(')

Ei

00001010 OA 00111101 JD 01110000 70 10100011 AJ 11010110 0 D6
00001011 OB 00111110 JE 01110001 71 10100100 A4 11010111 p D7
00001100 oc 00111111 3F 01110010 72 10100101 A5 11011000 a DB

(')
~ c-.

00001101 OD 01000000 Blank 40 01110011 73 10100110 A6 11011001 R D9
00001110 OE 01000001 41 01110100 74 10100111 A7 11011010 DA

0
i;!

00001111 OF 01000010 42 01110101 75 10101000 AB 11011011 DB
00010000 10 01000011 43 01110110 76 10101001 A9 11011100 DC
00010001 11 01000100 44 01110111 77 10101010 AA 11011101 DD
00010010 12 01000101 45 01111000 7B 10101011 AB 11011110 DE
00010011 13 01000110 46 01111001 79 10101100 AC 11011111 DF
00010100 14 01000111 47 01111010 : 7A 10101101 AD 11100000 EO
00010101 15 01001000 4B 01111011 # 7B 10101110 AE 11100001 E1
00010110 16 01001001 49 01111100 @ 7C 10101111 AF 11100010 s E2
00010111 17 01001010 ¢ 4A 01111101 7D 10110000 BO 111ooou T ll
00011000 lB 01001011 48 01111110 = 7E 10110001 81 11100100 u E4
00011001 19 01001100 < 4C 01111111

.. 7F 10110010 B2 11100101 v E5
00011010 lA 01001101 (4D 10000000 BO 10110011 8J 11100110 w E6
00011011 1B 01001110 + 4E 10000001 B1 10110100 B4 11100111 -X E7
00011100 1C 01001111 I 4F 10000010 B2 10110101 85 11101000 y EB
00011101 1D 01010000 & so 10000011 SJ 10110110 86 11101001 z E9
00011110 1E 01010001 S1 10000100 84 10110111 B7 11101010 EA
00011111 1F 01010010 S2 10000101 B5 10111000 8B 11101011 EB
00100000 20 01010011 5J 10000110 B6 10111001 B9 11101100 EC
00100001 21 01010100 S4 10000111 B7 10111010 BA 11101101 ED
00100010 22 01010101 -5.5_ 10001000 BB 10111011 BB 11101110 EE
00100011 23 01010110 S6 10001001 B9 10111100 BC 11101111 EF
00100100 24 01010111 S7 10001010 SA 10111101 BD 11110000 0 FO
00100101 25 01011000 5B 10001011 BB 10111110 BE 11110001 1 F1
00100110 26 JlliLI 1.QQJ _fill 10001100 BC 10111111 BF 11110010 2 F2
00100111 27 01011010 ! SA 10001101 BD 11000000 co 11110011 J FJ
00101000 2S 01011011 1: 5B 10001110 BE 11000001 A C1 11110100 4 F4
00101001 29 010111.DO_ _5C_ 10001111 SF 11000010 B C2 11110101 s FS
00101010 2A 01011101 ..l SD 10010000 90 11000011 c CJ 11110110 6 F6
00101011 2B 01011110 : SE 10010001 91 11000100 D C4 11110111 7 F7
00101100 2C 01011111 -, SF 10010010 92 11000101 E cs 11111000 s FB
00101101 2D 01100000 60 10010011 93 11000110 F C6 11111001 9 F9
00101110 2E 01100001 ...L 61 10010100 94 11000111 G C7 11111010 FA
00101111 2F 01100010 62 10010101 9S 11001000 H C8 11111011 FB
00110000 JO 01100011 63 10010110 96 11001001 I C9 11111100 FC
00110001 J1 01100100 64 10010111 97 11001010 CA 11111101 FD
00110010 J2 01100101 6S 10011000 9S 11001011 CB 11111110 FE

11111111 FF

Coding a Change in Sequence

Each change in the collating sequence is specified in the Re
placed By column on the coding sheet. In this column,
place the hexadecimal value of the graphic whose position
in the normal sequence is to be changed. The character cor
responding to the hexadecimal value entered in the Replaced
By column replaces the character which is presently associ
ated with the bit combination shown on the same line.

Figure 16-30 illustrates entries made to change the normal
collating sequence. Hexadecimal values entered on the
second and third lines of the sample coding sheet reverse
the order in which the numbers 1 and 2 are recognized by
the computer.

Numerical values entered on the second line of the sample
specify that the number 2 (hexadecimal value F2) replaces
the number 1. In other words, in the new sequence the num
ber 2 is associated with the value Fl instead of the number
1. Hexadecimal values on the third line specify that the
number 1 (hexadecimal value Fl) replaces the number 2.
These two specification lines cause 2 to come before 1 in
the collating sequence (0, 2, 1, 3).

Effect of the Coded Change in Sequence

Any alternate collating sequence you specify is used tem
porarily. It is used only for the program which contains
the alternate collating sequence specifications. Even more
specifically, it is used in that program for operations which
involve sequencing, such as checking sequence of records,
comparing fields, or matching records.

You may think, according to specifications:in Figure 16-30,
that the character 2 read into the computer is always re
placed by a 1. This is not true. The computer associates
characters with the values you specify only before sequen
cing operations involving:

1. Compare operations on alphameric fields.

2. Matching or sequence checking match fields.

How does the computer keep track of the collating sequence
to use? The computer keeps all your instn1ctions for al
tering the sequence in storage. The

1
area in storage which

holds this information may be pictured as shown in Fig-
ure 16-31. These instructions combined with the pattern
for normal sequence give the computer the correct col
lating sequence to use.

Consider the use of an altered sequence when determining
which record to select for processing in a multi-file job.
The collating sequence has been changed so that 2 comes
before 1.

Code

11110000

11110001

11110010

11110011

11110100

11110101

Character Associated
with Bit Combination

System/3
Graphic Entry

0 FO

1 F1

2 F2

3 F3

4 F4

5 F5

Numerical Value of
the Replacement Character

/
Replaced
by

F2~

F1~ _ _}

77
ll
ll

\ t 7'2 Numerical Value
of Bit Combination 2 Replaces 1

8-Position Bit Combinations 1 Replaces 2

Figure 16-30. Explanation of Alternate Collating Sequence Sheet

Numerical Value Associated Characters

of Normal Collatlng Altered Collating
Bit Combinations Sequence Sequence

FO 0 0

f 1 1 2

f 2 2 1

f 3 3 3

f 4 4 4

f 5 5 5
f 6 6 6

f 7 7 7

Figure 16-31. Storage Area Holding Alternate Collating Sequence
Instruction

Changing Data Structure 16-33

Figure 16-32 illustrates how the computer uses the alternate
sequence. Two cards are read into the read area. Just be
fore the compare operation which is done to determine
which match field has a lower value, the computer checks to
see if the characters used in the compare are affected by the
alternate collating sequence instructions. They are. The
character 1 normally associated with the value Fl is re
placed by the character 2; the character 2 normally associ
ated with the value F2 is replaced by the character 1.

F1 and 1 ----- F1and2

F2 and 2 ---- F2 and 1

F3and3 ----- F3 and 3

16-34

When doing the compare, the, the computer substitutes
these values. For the match field having the character 2,
the computer uses the bit combination whose value is Fl
instead of the bit combination for F2. Similarly for the
match field containing a J, the computer uses the bit com
bination of F2 instead of the bit combination for Fl. As a
result of the compare, the primary card containing a 2 in
the match field is chosen for processing. This card was
chosen because Fl (now associated with character 2) is
lower in sequence than F2 (now associated with the charac
ter J).

After the compare, characters are again associated with
values as assigned in the normal collating sequence.

Match

B B
A A
8 8
4 4
2. 2
1 1 •

Primary File Secondary File

Bit Combinations in
Storage

Substituted Bit
Combinations

F2

~
F1

B
A
8
4
2•
1

11110001

Compare to 11110010

F2

2

Figure 16-32. Using Alternate Collating Sequence (0, 2, l, 3, 4, 9)

Compare to determine
low Match Field. For
compare should alternate
collating sequence be used?

COLLATING SEQUENCE

I 1
Numerical
Value of
Bit Combination

FO
F1
F2
F3
F4

Primary file card selected
for processing because F1
is lower in value than F2.
The new collating sequence
is 0, 2, 1, 3, 4, etc.

YES
Associated Character

Normal Altered
Coll. Seq. Coll. Seq.

0
1 2 l.
2 1 J
3
4

Use altered sequence for
compare by using
values associated with
characters as specified.

Changing Data Structure 16-35

Coding Characters to be Equal

Entries can be made to allow two characters to occupy the
same position in the collating sequence; that is, they are
associated with the same numeric value. When two charac
ters occupy the same position in the sequence, the com
puter recognizes one character as being the same as the
other.

Figure 16-33 illustrates the specifications which allow a
blank and zero to occupy the same position in an altered
sequence. The hexadecimal value associated with the

International Business Machines Corporation

character blank is replaced by the hexadecimal value {FO)
which is already associated with the zero. Because the zero
and blank are associated with the same numerical value,
they are recognized as the same character. Figure 16-34
shows why a field containing a blank is equal to a field con
taining a zero when the altered sequence is used.

If a blank is equal to zero, then \?\?43 is the same as 0043.
You can see from this example that altering the sequence
in this way saves time because leading zeros do not have to
be recorded on the card. Blanks can be left instead since
blanks are considered to be the same as zeros.

Form X21-9096
Printed in U.S.A.

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

Replaced Replaced Replaced Replaced
System/J By{Takes System/J ByfTakes System/J By{Takes System/J ByfTakes

Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of

~-- JJ 01100110 66 10011001 99 11001100 cc
00110100 34 01100111 67 10011010 9A 11001101 CD

00110101 J5 01101000 6B 10011011 9B 11001110 CE
00110110 J6 01101001 69 10011100 9C 11001111 CF
00110111 37 01101010 6A 10011101 90 11010000 } DO
00111000 38 01101011

%
6B 10011110 9E 11010001 J D1

00111001 J9 01101100 6C 10011111 9F 11010010 K D2
00111010 JA 01101101 - 60 10100000 AO 11010011 L DJ
00111011 3B 01101110 > 6E 10100001 A1 11010100 M D4
00111100 JC 01101111 7 6F 10100010 A2 ...1.1010101 N. _OS_

00111101 JO 01110000 70 10100011 A3 11010110 0 D6
00111110 JE 01110001 71 10100100 A4 11010111 p 07
00111111 3F 01110010 72 10100101 A5 11011000 a DB
01000000 Blank 40 ~ 01110011 73 10100110 A6 11011001 R D9
01000001 41 , ~ 01110100 74 10100111 A7 11011010 DA
01000010 42 """"b,,.01110101 75 10101000 AB 11011011 DB
01000011 4J 0~110 76 10101001 A9 11011100 DC
01000100 44 01110~ 77 10101010 AA 11011101 DD
01000101 45 01111000 ~ 7B 10101011 AB 11011110 OE
01000110 46 01111001 -- ·0101100 AC 11011111 OF
01000111 47 01111010 : Zero Replaces Blank. 0101101 AD 11100000 EO
01001000 4B 01111011 # 0101110 AE 11100001 E1
01001001 49 01111100 @ It.;

~
10101111 AF 11100010 s E2

01001010 ¢ 4A 01111101 70 10110000 BO 11lOOO__ll _I_ _f3_

01001011 4B 01111110 = 7E ~1 B1 11100100 u E4
01001100 < 4C 01111111 .. 7F 1 ":lll10 B2 11100101 v E5
01001101 (40 10000000 BO 101100~ BJ 11100110 w E6
01001110 + 4E 10000001 B1 10110100

~
B4 11100111 x E7

01001111 I 4F 10000010 B2 10110101 B5 11101000 y EB
01010000 & 50 10000011 BJ 10110110 ~ 11101001 z E9
01010001 51 10000100 B4 10110111 B7 ~ 11101010 EA
01010010 52 10000101 B5 10111000 BB ~ 11101011 EB
01010011 5J 10000110 B6 10111001 B9 ~ 11101100 EC
01010100 54 10000111 B7 10111010 BA ""'b.,11101101 ED
01010101 -5.5.. 10001000 BB 10111011 BB ~110 EE

_fil01..!)J10 56.. 10001001 B9 10111100 BC 11101~::: :::::;:;:;:~:::::::::;::::::::: ::::::::S:$::;:, ..
01010111 57 10001010 BA 10111101 BO 11110000:::::: ::-o Fo'::;:::::

01011000 5B 10001011 BB 10111110 BE 11110001 ::::: :::l:::::::::::::::::::::::: :;:;~:::::::::
01011001 _fill 10001100 _BC 10111111 BF 11110010 2············ Fi

.Jllil.1.1010 ! 5A 10001101 BO 11000000 co 11110011 J F3
01011011 ::t 5B 10001110 BE 11000001 A C1 11110100 4 F4
010U100._ ..SC. 10001111 BF 11000010 B C2 11110101 5 F5
01011101 J 50 10010000 90 11000011 c CJ 11110110 6 F6
010111lil : 5E 10010001 91 11000100 D C4 11110111 7 F7
01011111 -, 5F ~- 92 ~00101 E C5 11111000 B FB
01100000 60 10010011 9J 11000110 F C6 11111001 9 F9
01100001 I 61 10010100 94 11000111 G C7 11111010 FA
01100010 62 10010101 95 11001000 H CB 11111011 FB
01100011 6J 10010110 96 11001001 I C9 11111100 FC
01100100 64 10010111 97 11001010 CA 11111101 FD
01100101 65 10011000 9B 11001011 CB 11111110 FE

11111111 FF

Figure 16-33. Specifying Blank Equal to Zero in New Collating Sequence

16-36

Field A = Blank

Bit combinations
in storage

~I 0100¢¢00
..,..._..,._..

40

I
I
I
I
I
I
I

Substituted I
bit combinations I

~I i
1111ra¢~ I Compare to
-..-~

FO

Compare Field A to Field B

Field'B = 0

1111¢¢~

-..-~

Compare Field A to Field B.
--------------+- For compare should Alternate

Collating Sequence be used7

FO
I

I Numerical Associated Character

I
I
I
I
I
I
I
I
i

1111'6¢0¢
..,..._..,._..

FO

Value of Normal
Bit Combinations Coll.Seq.

40 Blank

E9 z

FO 0
F1 1

Use Alternate Sequence

------- for Compare by Using
Values Associated with
Characters as Specified

Result: FO is the same as FO
Fields are equal; Blank
is the same as zero.

Altered
Coll. Seq.

0

.

y es

Figure 16-34. Using Alternate Collating Sequence (Blank Equals Zero)

Changing Data Structure 16-37

Example of the Coding of an Altered Sequence

Figure 16-35 shows a part of the normal collating sequence,
and one of several ways in which the sequence can be
changed. Arrows depict changes required in the positions
of characters to alter the sequence as shown at the right
side of the figure.

In like manner, arrows in Figure 16-36 show entries on the
coding sheet which must be specified to alter the sequence.
Note that letters B through I are repositioned to allow the
at-symbol (@) to appear between letters A and B. Identical
results could be achieved by repositioning the value for the
letter A to the line above, making it correspond to bit com
bination 1100000.

To produce the sequence shown in Figures 16-35 and 16-36,
the appropriate hexadecimal values must be specified in the
Replaced By column beside each graphic involved in the
change. Figure 16-37 shows the actual coding required to
alter the sequence.

Notice that each number which is to be collated before the
alphabetic character is assigned a hexadecimal value which
has no graphic associated with it. These values have no
associated graphics that could have been assigned to the
values previously associated with numbers. This is not
necessary, however, because these values have no associated
graphics. When two graphics are involved in the change,
then both must be assigned different values except when
they are to be considered equal.

16-38

PORTION OF THE
NORMAL SEQUENCE

l

F
G
H
I

J
K
L
M
N
0
p
Q

T
u
v
w
x

2
3
4
5
6
7
8
9

AL TE RED SEQUENCE

l

0
1
2
3
4
5
6
7
8
9
A
@

B
c
D
E
F
G
H

_!____
J
K
L
M
N
b
p
Q

R
~

T
u
v
w
x
y

z
}

Figure 16-35. Normal Sequence Versus Altered Sequence

System/J
Graphic

Blank

<
J_

&

L

International Business Machines Corporation

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

Entry

3J
J4
J5
J6
J7
JB
J9
3A
3B
JC
JD
JE
JF
40
41
42
4J
44
45
46
47
4B
49
4A
4B
4C
40
4E
4F
50
51
52
53
54

56
57
5B
59
5A
5B

50
5E
5F
60
61
62
6J
64
65

Replaced·
By/Takes
Place Of

System/J
Code Graphic Entry

Replaced
By/Takes
Place Of Code

01100110 66 10011001
01100111 67 10011010
01101000 6B 10011011
01101001 69 10011100
01101010 6A 10011101
01101011 6B 10011110
01101100 % 6C 10011111
01101101 60 10100000
01101110 > 6E 10100001
01101111 6F 10100010
01110000 70 10100011
01110001 71 10100100
01110010 72 10100101
01110011 7J 10100110
01110100 74 10100111
01110101 75 10101000
01110110 76 10101001
01110111 77 10101010
01111000 7B 10101011
01111001 79 10101100
01111010 7A 10101101
01111011 .dt-:-:· 7B 10101110
01111100 ::@·:;:, 7C 10101111
01111101 :::~:'1:" 7D 10110000
01111110 = ~ 7E 10110001
01111111 " :s_ 7F 10110010
10000000 ~ BO 10110011
10000001 ~ Bl 10110100
10000010 i.S.B2 10110101
10000011 ~ 10110110
10000100 BA 10110111
10000101 B5 _'\ 101_1_1000
10000110 B6 ~ 10111001
10000111 B7 ~ 10111010
10001000 BB '\. 10111011
10001001 B9 ~ 10111100
10001010 BA ~ 10111101
10001011 BB ~ 10111110

t--1_00_0_11~0~0--t-----1---B~Cc_-+----~-'\. 10111111

System/J
Graphic Entry

99
9A
9B
9C
90
9E
9F
AO
Al
A2
AJ
A4
A5
A6
A7
AB
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
BJ
B4
B5
B6
B7
BB
B9
BA
BB

-. BC

BF

Replaced
By/Takes
Place Of

10001101 BD f\. 11000000 co
t--1~00~0~1-11-0-+----+-~B=E--+------1~ '-! ~__,..,11~000.,..,...,00~1-~.-A-.-,,--r---c1'----1------1

10001111 BF 11000010 :'B'::;::. C2
10010000 90 11000011 : c=::::: CJ
10010001 91 11000100 ;: D ::;?. C4
10010010 92 11000101 ;. E :;:;; CS
10010011 9J ~00110 ;:F:;:;: C6 __ __, ____ __,

10010100 94 11000111 .;G.;:;i C7
10010101 95 11001000 ; H::;;;: C8
10010110 96 11001001 ~I :~;:;: C9
10010111 97 11001010 ;::;:;:::> CA

10011000 9B 11001011 CB

Figure 16-36. Changes Necessary for Altered Sequence

System/J
Code Graphic Entry

11001100 cc
11001101 CD
11001110 CE

11010001 -::a.J' 01
11010010 Kl 02

Form X2 l-9096
Printed in U.S.A.

Replaced
By/Takes
Place Of

i--o1~10~1=00~1~1-+-=LJ__,_~.~~D=3~-+---~
11010100 MT D4

..1_1010101 ..N.T Jl5_

11010110 o I 06
t---'1~10~1=01~1~1-+-~p_j~----t-=0~7-~ ___ 1

11011000 a I oB
11011001 R _\ 09
11011010 _} DA

11011101 1~ DD
11011110 DE
11011111 _r OF
11100000 _} EO
11100001 _\ El

11100100 ~ t ~:
11100101

11101000 Y _l EB
11101001 fI_ E9
11101010 r EA
11101011 EB
11101100 EC
11101101 ED
11101110 E...E_
11101111 :·::::::: EF
11110000 ,; fo ;:;:; FO
11110001 ;:; : 1 ;:::: Fl
11110010 :;;:: 2 ;:;:; F2

11110110 :; : 6 :;:;:; F6
11110111 ;:;7 ;:;: F7

>--1_11_1_1000 _ _,,:=~:B_:~J _ _____.._FB
11111001 ;: :9 ;:;: -,_F,-.,-9--+------t
11111010 . :::;::::' FA

11111011 FB
11111100 FC
11111101 FD
11111110 FE
11111111 FF

Changing Data Structure 16-39

International Business Machines Corporation Form X21-9096
Printed in U.S.A.

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

System/3
Graphic

Blank

Entry

33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B

< 4C
(4D

4E

Replaced
By{Takes
Place Of

System/3 =~~~":! System/3
Replaced
By{Takes
Place Of Code Graphic Entry Place Of Code Graphic Entry Code Entry

System/3
Graphic

01100110 66 10011001 99 11001100 cc
01100111 67 10011010 9A 11001101 CD
01101000 68 10011011 9B 11001110 CE
01101001 69 10011100 9C 11001111 .-:- :::·:'::;:;:,. CF

~::~:~:~ :: :~:::~~ :~ ::~:~~ \ ,,;,.,::::: ~~

Replaced
By{Takes
Place Of

01101100 % 6C 10011111 9F 11010010 KJ D2
01101101 6D 10100000 AO 11010011 L]° __ __,f----'D=3'---+-------I
01101110 > 6E 10100001 Al 11010100 MJ D4
01101111 ? 6F 10100010 A2 1rnrnrn1 -N_\ _115_

01110000 70 10100011 A3 11010110 0 J 06
01110001 71 10100100 A4 11010111 p I_-~0~7---+-------<
01110010 72 10100101 A5 11011000 Q I DB
01110011 73 10100110 A6 11011001 R j D9
01110100 74 10100111 A7 1

1
1
1
0
0

1
1

1
1
0
0

1
1
0
1

l DA
01110101 75 10101000 AB 1 DB
01110110 76 10101001 A9 11011100 -, DC
01110111 77 10101010 AA 11011101 T DD

, 01111000 7B 10101011 AB 11011110]- OE
01111001 79 10101100 AC 11011111 j OF
01111010 7A 10101101 AD 11100000 J EO
01111011 .-:#-:::-. 7B 10101110 AE 11100001 Il El
01111100 :~@.:;:: 7C --C:Z 10101111 AF 11100010 E2
01111101 ·--~:"{ 70 10110000 BO 11100011 T l U
01111110 -_S 7E 10110001 Bl 11100100 U E4
01111111 : -'" 7F 10110010 B2 i---:-l..:...:ll=oo""'1=01"---"1-v"-----ll+-=E5"---+----1

10000000 ~ BO :~::~~ B3 l--'-1..:...:::=~~:--'-:~"----l>--'~~---z--•j_>--+~~;~--+------<
~-_,_1 ___ -+-~4~F--+--------I

& 50
l--':""~""000"""'1'-'-~ -+-----'~\-l-----":2-'--1 -+-----1 10110101 :: ~~:~11~01~ooo~~~~v~:/:~=:=:EB:===:======:

10000011 -, 83 10110110 B6 i---:-1..:...:11=01=00=1~1--'z=7_·~--+--=-E9"-----+----1
51
52
53
54

56
57
58

__5_9
5A

)

5B
5C

5D
5E

10000100 I'\ 84 10110111 B7 i---:-1..:...:11=0=10""'10"---'1-__!__---+~EA~--+----1
l-'1""0000=1""0"""1 -+----+-\:\1--"B-'-5 -+-----! 10111000 BB i---:-1..:...:11=0=10"-11~1-----+--=-EB"-----+----1

10000110 -lll; 10111001 B9 i--:-1..:...:11""0-'-'11=00"--t-----+--=-E~C----;-----1
~=1~0000~~1~1:'.'.:1 =~=====~=:::I!-\"'"._'-----_-+.._-::::~~~-< 10111010 BA _._,1--'-l l=O~l 1=0~1 --+-------;-~E-=-D--+------t
1-'1=000=1000=--+---+--"B,,_8'°-\:--t-----1 10111011 =~ l--'-1-'-'11..,.o_,_,11""10.__1-----+--=-~=-;--+--------+
l-':""==-'-':~=10-'-1 -+----t----"':~=----~-'~~----i :~::: :~ -. ~r) l--'-:-'--'::=~oooo_,_,11'-'-11'---<':;""'·:-~""''\,:,..i:::---+--"'Fo~---1--_l=L-=-.------+

10001011 8B -, 10111110 BE --.,_ 11110001 ;:; 1 ;:;:; F1 1 I~
~~1~000~~11~00~~~-=--=--=--=----1+1-----='9~c";_-=_-=_-~l\:';..-:,-:_-:=_-:=_j 10111111 BF ~ f--!1.!.C11!..,!_100~1o~::::t--2'-':"=":;::--+--::-F2_,_-t-~,c~
,_,1-!COOO~ll~O.!...l -+----+--_,,,BD"°--+-............ ---=~ 11000000 CO ~10011 ;:;: 3;;;:; F3

:=:::~ :; """~--..._::..;c:~~oo:.:.10~1 -f;>:;=:~·:=_..,,i,--+---=~~!--+--_.e.==-i;;._-=:3:=---~ 1---=-::.:..::..:..::~::..:1~01~;:;;:j;:;;f...::::.+:;!:i:-~i~i--1-___:_..:::!,__-+-~G1;1B-1
l---'1~00~1~0000~---1---+-~90----+-----t 11000011 : C';:i:: C3 C.4 11110110 :;:;: 6 :;:;; F6 m

10010001 91 11000100 ; o:;:;: C4 ~ 1--1--11-10-1--11-:':'-l;:;'-'. 1'"':;*:;;----+--,-F7~--+-~J--:_,_E:::----t
5F
60

1100001100001101_+--------+--=9=-2--+------I 11000101 =.E::;:; C5 cc 11111000:;:;:9;:;:; FB ., F
93 t---rtao0~1-1--o-~:-=-F *:;:,,·-----;---,,C-6-- c.--; 11111001 :;: 9 ::;:; F9 __! ~

61 10010100 94 11000111 ;.G;:;:; C7 C ~ 11111010 -:.;:,:;:;:;::· FA
62 10010101 95 11001000 ':H;:;:; C8 CC . 11111011 FB
63 10010110 96 11001001 ;:I;:;; C9 G~ 11111100 FC

10010111 97 11001010 -:::-:-:--:· CA 11111101 FD
10011000 98 11001011 CB 11111110 FE

11111111 FF

Figure 16-37. Cod.ing for Altered Sequence

Punched Cards for the Altered Sequence

After you have coded all specifications for the alternate
collating sequence, you can record them so that they can
be used by the computer. Records describing the alternate
sequence are to be formatted as follows:

Columns

1-6

7-8

9-96

16-40

Entries

AL TSEQ (This entry allows the com
puter to recognize that this card is
describing an alternate sequence.)

Blank

The hexadecimal values involved in
changing the sequence

In columns 9-96, there are 22 groups of 4 columns. Each
group (9-12, 13-16, etc.) must contain two hexadecimal
values involved in changing the sequence. The first two
columns of a group are for the hexadecimal value taken
from the Entry column of the Alternate Collating Sequence
Coding Sheet. The last two columns in a group are for the
hexadecimal value taken from the Replaced By column of
the· coding sheet (Figure 16-38).

More than one record may be used to specify changes in
collating sequence. However, each additional record must
be formatted in the same way as the first.

The first blank appearing in columns 9-96 is recognized by
the computer as the end of the record. Consequently,
blanks must not appear between pairs of hexadecimal values.

Two additional records must be included along with the
alternate collating sequence records. One record containing
**~(two asterisks and a blank) in columns 1 through 3
must precede the sequence records; the other record, con
taining/*~ (slash, asterisk, and blank) in columns 1 through
3 must follow the sequence records.

All records (except the RPG II control card) used for alter
ing the collating sequence must follow RPG II specifications
(or file translation specifications, when used) and must
precede any tables being entered.

'

B
A
8
4
2
1
B
A
8
4
2

C27C
1 • 5 a 1 a 1 10 11 12 11 M 1s '' 11 11 " zo 21 u u z• zs u 21 ze 21 Jo 31 3z

65 66 17 H H 70 71 72

t71199IOOIOll02

\!:''.
I 2 3 • 5 '

A
8
4
2

~"M»HPHH~~~uueu~~ff~~""~"~"""~~UUM~
A A
8 8
4 4
2 2
1 HMUMff~nnn~nnnnn~~UUMHHUNH~~nuuuu 1

laM3700

Figure 16-38. Punching Alternate Collating Sequence Cards

Figure 16-39 shows the cards containing the different types
of information that you must supply to alter the collating
sequence. Reference numbers appearing in parentheses
identify the order in which the cards must be placed.

Information presented in the lower right-hand corner of
the figure shows the altered collating sequence that will be
recognized by the computer during the processing of the
job. After the job has been processed, the computer auto
matically resumes using the normal collating sequence.

Form X21-9096
Printed in U.S.A.

System/3
Replaced
By!Takes
Place Of

System/3
Replaced
By!Takes
Place Of Graphic Entry Code Graphic Entry

99 11001100
9A
9B
9C
90

~ 9E 7~
~ 9F ~'1' 1110101°"
~ J-!1.!.!11C:!.01~0.!.!11-f-l'--=---..-.·_ "1-~~----'1'.

~ 11101100 ~ """'"
~-4\.._ -"' L....-:.1~11=01'-"10=1'-'-----'-~ED=--_,_ __ ___.
~ BB l--!-1~11~01~11~0--1-----1--"'EE,,__-+-----t
~ BC,_11'-"1=01'"-11,_,_1__,_ __ ____..-=EF'--__._ __ __.

BD .._,_11,_,_1~100=00=-->-=----1-~FO,,____._ __ __.
BE l--!-1~11..:..:10~001--1-~---l---'-Fl,__-+-----t
BF l--!-11,_,_1_,,10=01=0--1--"-----1--"'-'F2.___-+-----t
CO '--'"11~1_100~1~1__,_~ _ ____..--'-'F3,____._~---<

.-:;::~:;:;:;!;!;!;!;: ;:;:;:;:;:::::::::;::::::.. ,____11c.o..11_0_10_0__,_ __ __.__F4'---+-----1
...... f:;:;:·c2 "JC '::;:;. 11110101 F5

::;:;;~;:;:;:;!;!;!; :;:;:;W,·~;;y 1--=-11'-'-1~10=11:0.:.o--1--=-----1---'-'F6'---+-----t

A

~: ••••• •• c~ ~ '"-'-!!'-"!~!~'"-~'-'-1->--'---.......... ~:~C-__,_ __ __.
C6 Cjf ,____11~1~11~00~1__,_-'----<----'--'F9'---+-----1
C7 C.i:: l-'-11,_,_1~11=01=0--1-----1-----'--'FA_,__-+-----t
~ C:C-b:- L,....!..;11~1~11=01~1__,_ __ __,_--'-'FB,___._ __ __,
C9 V l---'-11,_,_1~11~100=-.+---.+-~FC=---+----r
CA C~ l-'-1'-.!11~11~10~1--1-----1-.......:...:FD=---+-----t
CB ~!!~!-!!-!!-~-+----1--=~-~---4

Changing Data Structure 16-41

"""" i 0\
J;..
t..l

(1)

"""" 0\
~
~
Cll

= 9
9
~
'<
0,

;::::
(1)

"" = ~

~
(")

~
::t
= (IQ

Cll
(1)

.g
(1)

= n
(1)

Cll
"d
(1)
n
5 n
~
i:t.
0

= "'

RPG CONTROL CARD

Numerical Values: Columns 9-96

Punched in Column 26

s

(1)

~
(2)

Information obtained from
RPG input, calculation, output,
and file description specifications

II IJ l\C '!

**-6

(3)

Punched in Columns 1-3

·•tional Business Machines CoipOiation

Punched in Columns 1-6

Columns 7-8 Blank

~
ALTSEQ B7FOB8F285

F2BAF388F4BCF5BDF6BE
F7BFF8COF9C27CC3C2

(4)

~~ATE COLLATING SEQUENCE CODING SHEET

Replaced
By{Takes
"lace Of Code

10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011

~~:p~~ J11111M~1:1:1111~1
I ~~l§(;,-:. I t:;::::f:

:;: B7 E!3!_
BB 1::1
B9 F~
BA F~
BB -F ..
BC :;-

BD =41
BE ::.'.I_
BF ;ft.'

A ;:~{::.
co J~'
Cl I '-Y

:::::ff- c2- -ITC:-»:::fo
c
D

G ::::::n:
H F:l CB I _J:,.__-, ::::;:.'<-:

;:IT C9 I c g#i~:
':';;J:: CA cq/;::;;

'"'18~:;:;:;:,:,:J,,~:::::;::f~!iil!iif?
•·:o:;;:;::;::;:-;::;:;:;:v;.•p

------......

~I-

/*J6

(5)

Code

11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

Punched in Columns 1-3

ED
EE
EF
FO
Fl
F2
F3
F4
F5
F6
F7
FB
F9
FA
FB
FC
FD
FE
FF

Form X21-9096
Printed in U.S.A.

Collated Sequence

-0 c • Il I + & $) ; I- I
• % -) ? : #' = ,, 1 2 3 4 5
6789A@BCDEFGHI
JKLMNOPQRSTUVW
XYZ [

AL TERI NG THE STRUCTURE OF CHARACTERS

You learned in the discussion of character structure that
each System/3 graphic is represented in the machine by a
unique setting of eight bits; four zone bits and four digit
bits. If any change is made to either the zone or digit bits,
the entire character is changed. For example, if the A bit
of the letter Mis changed from on to off, the letter M be
comes the letter D (Figure 16-40).

You can, of course, change a character before it is read into
the computer by punching different zone punches on the
card. But you can also change a character after it has been
read. This is done by changing the zones of characters
through the use of move zone operation codes.

Why would you ever want to change the zone of a character
after it has been read? One common reason for changing
zones is to deliberately change the sign of a field from
positive to negative, or vice verasa.

This is necessary when a numeric field read in from a special
file has its sign in the high-order (leftmost) position of the
field. Numeric fields are required to have the sign in the
low-order (rightmost) position of the field. Thus, a numeric
input field having its sign in the high-order position must
have its sign moved to the low-order position. The move
zone operations allow you to do this.

How Move Zone Operations Work

Move zone operations involve only the zone portion of
characters. The computer does not actually move the zone
of one character to the zone portion of another. Rather, it
changes a character by making its zone identical to the zone
of the character which you indicate should serve as the
model. The character serving as a model is not changed by
the operation.

Thus, in order to use the move zone operations you must
have:

1. A character which needs to be changed.

2. A character that has the zone you want the changed
character to have.

For example, if you want the low-order (rightmost) position
of the field AMOUNT to be changed from a positive 5 to a
negative 5 you must have a character to serve as a model
whose zone portion is the same as the zone of a negative
five.

Coding a Move Zone Operation

Figure 16-41 illustrates the way in which a move zone opera
tion is coded. The name of the field containing the character
to be changed must be entered in the Result Field. Either
a constant or the name of the field which contains the
model character must be entered in Factor 2. The move
zone operation code is specified in the Operation columns
(28-32). Any conditioning indicators you wish to use can
be specified, but resulting indicators cannot be used.

D C B A 8 4 2 1

-M

-o

Figure 16-40. Changing Zones Changes Characters

lntwnational Business MKhine:s Corpor•tion

RPG CALCULATION SPECIFICATIONS

Factor 1 Operation Factor 2 Result Field
Field
Length

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

MH

~
~

Operation describes
character - positions
affected by movement
of the zone.

JHjl b~ IE ILIDlA Fl EILI IDB
f' [1 1

-~
location of the model \ character or constant.

Location of character
changed by the move
zone operation.

Figure 16-41. Cocling for a Move Zone Instruction

Changing Data Structure 16-43

Differences in the Move Zone Operations

There arefour different move zone operation codes avail
able. Each code involves the zones of characters located in
different positions; namely:

1. High-order positions in both Factor 2 and the Result
Field.

2.

3.

4.

High-order position in Factor 2 and low-order in the
Result Field.

Low-order positions in both Factor 2 and the Result
Field.

Low-order position in Factor 2 and high-order in the
Result Field.

Since only the zones of high and low-order characters in a
field or constant are involved in the move zone operations,
only the high or low-order positions of a field can be
changed.

Figure 16-42 illustrates the ways in which the four opera
tion codes affect the zone of a character in the Result Field.

Move From High-Order Zone to High-Order Zone (MHHZO)

This operation code moves the zone of the high-order alpha
meric character in the constant or field entered in Factor 2
to the high-order alphameric character in the Result Field.

Move From Low-Order Zone to High-Order Zone (MLHZO)

This operation code moves the zone of the low-order charac
ter in the field or constant entered in Factor 2 to the high
order alphameric character in the Result Field. The Result
Field must be alphameric; Factor 2 can be either numeric
or alphameric.

Move From High-Order Zone to L~w-Order Zone (MHLZO)

This operation code moves the zone of the high-order alpha
meric character in the constant or field entered in Factor 2
to the low-order rightmost character in the Result Field.
Because of its high-order zone, Factor 2 must be an alpha
meric field. The Result Field can be _either alphameric or
numeric.

16-44

Move From Low-Order Zone to Low-Order Zone (MLLZO)

This operation code moves the zone of the low-order charac
ter in the field or constant entered in Factor 2 field to the
low-order character in the Result Field. Both Factor 2 and
the Result Field can be either numeric or alphameric.

Factor 1 Operation Factor 2 Result Field
Field
Length

~~20nnn~25~nnn~~~"~3536V~~~~QU«a%Q~~so~

~-+-+-+-+-+-+-+-~~IH_'-4'ff;._;.µ:l"l=~l-'-'ll_A_L-+c p ll~JJ- --1--H --~: U ~JA)~ -- l
~--4---1---J -1---..,1----+--+-4-4-+-+--1---41-----1-+f----+-1·--I- - -1-+-t -1--1-- - ~-+-Tr 1-l-

to
High

Factor 1 Operation Factor 2

1a 19 20 21 n 23 24 25 ~ 21 nn~3132 " ~ 35 36 37 ~ ~ ~ 41 42

M1 lul~ !nil/ UM E~)1 __
~---j-

Numeric 1 Field (Factor 2)

Alpha 2 Field

Result Field

43 44 45 46 47 ~

l4 ~1P Hl81

Field
Length

49 50 51

~-

Move
Low
to
High

Alpha 1 Field (Result Field)

Figure 16-42. Move Zone Operations (part 1 of 2)

Factor 1 Operation Factor 2 Result Field
Field
length

~~~21 ~2 n 24 25 26 21 28 n JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

H-~m- _ l'(~Li!P IAL~lflA 1 Wtl~fl({ll 
1-t-t-1 

-- t-l·-1 -- - 1--t-< - + I --+--+-!-" - -!-+__, 
I ' 

Alpha 1 Field (Factor 2) 

Numer 1 Field (Result Field) 

Factor 1 Operation Factor 2 Result Field 
Field 
length 

18 19 '10 21 22 2J 24 25 26 27 28 29 JO 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

~~ L!rlO Nu"' El81 WV ~EIR!i 
.-i---+---1f-+---+-+-+--t-+-1---jt-r-+-+--t-t--+-+-+--+-i--+--t-+-t-1-+--+-+-+-~-+-1 

--t-+--+-~-+----+--<--+---+- .. -~--+---+-+·-+-+-+--+-+-+--t-+--1-11--r+-+-+-+--+---+-i~ 

Numeric 1 Field (Factor 2) 

Move 
Low 
to 
Low 

Numer 2 Field (Result Field) 

Figure 16-42. Move Zone Operations (part 2 of 2) 

Field Format and Move Zone Operations 

As you read the description of each move zone operation, 
you probably noticed that special attention was given to 
the types of fields which can be used with each operation. 
Keep in mind that you cannot move from or to the high
order positions of a numeric field because the computer 
does not use the high-order zone of fields defined as numeric. 

Which of the following move zone operations can be done 
if the two fields involved have formats as given below? 

1. Alphameric to Alphameric: MHLZO 

2. Alphameric to Numeric: MHHZO 

3. Numeric to Alphameric: MLHZO 

4. Numeric to Alphameric: MHHZO 

5. Numeric to Numeric: MLHZO 

6. Numeric to Numeric: MLLZO 

Items 1, 3, and 6 can be done. Items 2, 4, and 5 cannot be 
done. Item 2 suggests that the zone of the high-order posi
tion in the numeric field be changed. The computer does 
not use high-order zone of numeric fields. Item 4 suggests 
that the zone of the high-order character is to serve as a 
model. It cannot because the computer does not work 
with the zones of high-order characters in a numeric field . 
Item 5 cannot be done because again it involves high-order 
positions of numeric fields. 

Changing Data Structure 16-45 



Example of a Move Zone Operation 

Now that you know how the various move zone operation 
codes work, let's see how they can be used to change the 
sign of the field, VALUE, from the high-order to the low
order position. 

Naturally any field that has zones other than in the low
order position must be defined as alphameric if those zones 
are to be used by the computer. But if the field is to be in
volved in/an arithmetic operation, it must be numeric. 

To allow for both possibilities, you could define the field 
twice; once as alphameric and once as numeric. (Two 
unique field names are needed.) Another possibility is to 
define the field once as alphameric and then change it into 
a numeric field by moving it into a numeric field. This is 
what is done in the example (Figure 1643). 

Before doing any arithmetic operation, you must get the 
sign in the low-order position of a numeric field. First, you 
must determine what the sign is. This is done by the 
TESTZ operation. Remember that TESTZ turns on the 
minus indicator when it finds the characters-,}, or J 
throughR The specification in Figure 1643, insert B, 
line 02 causes indicator 20 to turn on if the sign of the 
field is minus. If indicator 20 is on, the zone of an R, which 
is the minus sign to the computer, is moved to the low-order 
position of the AMOUNT field. If the field tested is plus, 
no zone is moved because a numeric field having no minus 
sign is automatically assumed to be positive. 

Notice that the MHLZO (Move High to Low Zone) opera
tion code was used to change the zone of the low-order 
position of the AMOUNT field by giving it the same zone 
as the constant R MLLZO (Move Low to Low Zone) could 
also have been used because the one and only character in 
the alphameric constant specified serves as both the high 
and low-order character. 

IB:Jt1 lntern8tior"•I Business Machines Corporation Form X21-9094 
Printed In U.S.A. 

Date ___ _ 

Program------------

Programmer ___________ _ 

Line Filename 

Position 

i 
a: 

RPG INPUT SPECIFICATIONS 

r
Punching Graphic J 1 J 
Instruction ~P-un-ch-+-}+--+--+-~l-t--1+---t 

Record Identification Codes 
Field Location 

z 
0 

~ Position 

i § ~ 
~ .E! i Position 

~$ 6 

1 2 

Page DJ_ 

~ 
Field Name ] 

i 
~ 
go 
·c: 
~ 

Program 
Identification 

75 76 71 16 79 80 

1111111 

Field 

~ 
Indicators 

! Sterling 

i Sign 
Zero Position 

a: Plus Minus or 

~ 
Blank 

u:: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o N t.:1.J..-i--1-+-+-1-1-.w--1-+-1--1-1-.w-+-+.-+-t---f--;1-1--.J..-1..--l-l---l-lL+-f-+-++-H--h1-+-~ll~-f':=ll~.PlA't.!;1c~-4-11rT411V~l~o+-+--++-H-t-H--f-+-H-t-H 
@~1-LW~W---L-4-W-~~-W-J-+-W...w-W-l-~4--+--l--i-+-~~!~~~ffiMHLilV'~·IAIU~U~eH-+-+++-+-+-t-+-+-H--t--H-H 
. I 

IB:Jt1 

Date ___ _ 

Program ____________ _ 

Programmer ___________ _ 

Line ~ 

I-

~ 0 z 

Indicators 

15 z 15 z 

Factor 1 

lntern1tion1I Business Machines Corpor1tion 

RPG CALCULATION SPECIFICATIONS 

[ 

Punching Graphic j J _I 
Instruction 1-P-un-ch-+-j+--+---l--~j,_1--J-1---1 

Operation Factor 2 Result Field 
Field 
Length 

1 2 

Page[D 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 

~ Compare 
; High Low Equal 
~1>21<21-2 

~ Lookup 
Table (Factor 2) is 

High Low Equal 

Form X21-9093 

Printed In U.S.A. 

75 76 77 76 79 80 

~;~:~f:ation I I I I I I I 

Comments 

3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 10 19 20 21 22 23 24 25 26 21 28 29 30 :n 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 so 61 62 63 64 65 66 67 68 69 10 11 12 73 74 

~~ c ~~ ~V L~~ Q~ 
@+c-H-+-h~±~z1-+-+-1-+++-HH--H-+-t-+-H-!~~l~~~~t~~~,£~~.~!4-l-++-+41A~J~~~~!U*~±~:d-l-1--H-++-F~++-H-+-+-++-t--+-H-++-Hri 

.. .•. . r 

Figure 16-43. Using Move Zone Operations to Change the Sign of a Field 

16-46 



Choosing the Model Character for Factor 2 

Before specifying a move zone operation, you must have a 
character designated in Factor 2 whose zone will give the 
desired zone in the Result Field. 

Usually you will use move zone operations to change the 
signs of fields. Using any numbers in Factor 2 will produce 
a positive character in the Result Field. Using any one of 
the characters-, } , or J-R in Factor 2 will give you a 
negative character. Remember that negative numbers are 
punched with a B punch (minus sign) over the number. 
The punch combinations of negative numbers have the 
same numeric value in the computer as J-R. Thus, when 
you specify that the zone of a character should be made 
like the zone of J-R, you will get a minus character. See 
Clzaracter Structure for more information. 

Use Figure 16-27 as a guide for selecting the zone which 
will produce the desired change. 

TRANSLATING CHARACTERS 

In the previous discussion, you learned that the computer 
can alter the structure of characters by moving zones. But, 
through the file translation function of the RPG II language, 
it can do even more. It can translate one character into 
another. 

The translating function is known as file translation because 
characters can be translated either when they are read in or 
before they are recorded in the output file. The computer 
acts like an interpreter. Just as a human interpreter trans
lates languages (a word in German for a word in English), 
the computer translates characters by replacing one charac
ter with another. 

Need for File Translation 

Think of the use for file translation when translating codes. 
Codes are of ten used as a security measure to prevent access 

to classified information. Information is recorded on cards 
in coded form. In order to process the information, it must 
be decoded. A coded character must be replaced by the 
corresponding decoded character. 

For example, a firm which keeps all information classified 
uses the characters in the word FITZGERALD as a code 
for the numbers 0 through 9. Fis the code for zero, I for 
one, etc. When recorded on a card, the number 1432 ap
pears as IGZT. If a field containing IGZT is read into the 
computer and used in arithmetic operations, results re
ceived are wrong. IGZT must first be decoded, or trans
lated into 1432. 

Specifying File Translation 

Specifications for file translation are identical to those 
used to alter the collating sequence. 

Forms Used for a File Translation 

Figure 16-44 shows the forms on which you must specify 
the way in which files are to be translated. One form con
sists of the RPG II Control Card and File Description 
Sheet; the other consists of the Translation Table and Al
ternate Collating Sequence Coding Sheet for listing the 
characters to be translated. Both forms are used in con
junction with the RPG II Input, Output, and Calculation 
Sheets. 

Only column 43 in the RPG II control card relates to the 
change in sequence. A letter F entered in column 43 
notifies the computer that additional information furnished 
as part of the job relates to translating files. All other 
columns contain the information that must normally be 
entered to process a job. 

The Translation Table and Alternate Collating Sequence 
Coding Sheet lists 256 bit combinations along with their 
hexadecimal numerical values. You learned from discus
sions of character structure that the first number in the 
hexadecimal value represents the numerical value of the 
character's digit and the second number represents the 
numerical value of the character's zone. The 64 printable 
characters are listed beside the bit combination and hexa
decimal values with which they are associated. 

Changing Data Structure 16-4 7 



..... 
~ °' J:. ~ 

00 ~ 

IBM International Business Machines Corporation Form X21 ·9092 

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS 
Printed in U.S.A. 

..... 
°' J:. 
~ 

1 2 75 76 77 78 79 80 
Date l Punching 1 Graphic I 

± ± ± ± f f j Page rn Program I I I I I I I Identification 
lnstructionj Punch I Program 

'T1 
0 

Programmer ,.. 
'"t 

~ 
Control Card Specifications 

z 
(I> 
(I> 

0. 
(I> 

0. 

O' 
'"t 

'T1 

im ~ 

~ 

~ ~ 
Core 

'§. .~ 
Core Hg!~ ~ID Number ~ 

Line Size to Size to .c LC.. Of Print -~ Refer to the specific System Reference Library manual for actual entries. 

IB~ International Business Machines Corporation Form X21-9096 
Printed in U.S.A. 

i=: 
(I> 

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET 

~ 
~ ::s 
~ 
~ 

Replaced 
System/3 

Replaced Replaced Replaced Replaced 
System/J By/Takes By/Takes System/3 By/Takes System/3 By/Takes System/J By/Takes 

Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of 

ct. 00000000 00 00110011 33 01100110 66 10011001 99 11001100 cc 
0 ::s 00000001 01 00110100 J4 01100111 67 10011010 9A 11001101 CD 

Cll 00000010 02 00110101 3S 01101000 6B 10011011 9B 11001110 CE 
"O 00000011 OJ 00110110 J6 01101001 69 10011100 9C 11001111 CF 
(I> 
(') 00000100 04 00110111 37 01101010 6A 10011101 90 11010000 } DO 

Si 
(') 

00000101 OS 00111000 JB 01101011 6B 10011110 9E 11010001 J 01 
00000110 06 00111001 J9 01101100 % 6C 10011111 9F 11010010 K 02 

~ 
c:t. 
0 

00000111 07 00111010 JA 01101101 - 60 10100000 AO 11010011 L DJ 
00001000 08 00111011 JB 01101110 > 6E 10100001 A1 11010100 M 04 

~ 00001001 09 00111100 JC 01101111 ? 6F 10100010 A2 .. 110101Dt ...ti _.ll5_ 

00001010 OA 00111101 JD 01110000 70 10100011 A3 11010110 0 06 
00001011 OB 00111110 JE 01110001 71 10100100 A4 11010111 p 07 
00001100 QC 00111111 3F 01110010 72 10100101 AS 11011000 a OB 
00001101 00 01000000 Blank 40 01110011 73 10100110 A6 11011001 R 09 
00001110 OE 01000001 41 01110100 74 10100111 A7 11011010 OA 
00001111 OF 01000010 42 01110101 7S 10101000 AB 11011011 OB 
00010000 10 01000011 43 01110110 76 10101001 A9 11011100 oc 
00010001 11 01000100 44 01110111 77 10101010 AA 11011101 OD 
00010010 12 01000101 4S 01111000 7B 10101011 AB 11011110 DE 
00010011 1J 01000110 46 01111001 79 10101100 AC 11011111 OF 
00010100 14 01000111 47 01111010 : 7A 10101101 AD 11100000 EO 
00010101 1S 01001000 4B 01111011 # 7B 10101110 AE 11100001 E1 
00010110 16 01001001 49 01111100 @ 7C 10101111 AF 11100010 s E2 
00010111 17 01001010 ¢ 4A 01111101 70 10110000 BO 11100011 T ..u. 
00011000 1B 01001011 4B 01111110 = 7E 10110001 B1 11100100 u E4 
00011001 19 01001100 < 4C 01111111 .. 7F 10110010 B2 11100101 v ES 
00011010 1A 01001101 ( 40 10000000 80 10110011 BJ 11100110 w E6 
00011011 1B 01001110 + 4E 10000001 Bl 10110100 B4 11100111 x E7 
00011100 1C 01001111 I 4F 10000010 B2 10110101 BS 11101000 y EB 
00011101 10 01010000 & so 10000011 83 10110110 B6 11101001 z E9 
00011110 1E 01010001 S1 10000100 84 10110111 B7 11101010 EA 
00011111 1F 01010010 S2 10000101 BS 10111000 BB 11101011 EB 
00100000 20 01010011 S3 10000110 86 10111001 B9 11101100 EC 
00100001 21 01010100 S4 10000111 B7 10111010 BA 11101101 ED 
00100010 22 010101J21 M: 10001000 88 10111011 BB 11101110 EE 
00100011 23 01010110 !2§_ 10001001 89 10111100 BC 11101111 EF 
00100100 24 01010111 S7 10001010 BA 10111101 BO 11110000 0 FO 
00100101 2S 01011000 SB 10001011 BB 10111110 BE 11110001 1 F1 
00100110 26 .J!.1ID1001 _59_ 10001100 BC 10111111 BF 11110010 2 F2 
00100111 27 .MID 1010 ! SA 10001101 BO 11000000 co 11110011 3 F3 
00101000 2B 01011011 _t SB 10001110 BE 11000001 A Cl 11110100 4 F4 
00101001 29 JU0..1U00: :K: 10001111 BF 11000010 B C2 11110101 s FS 
00101010 2A 01011101 i SD 10010000 90 11000011 c C3 11110110 6 F6 
00101011 2B 01011110 : SE 10010001 91 11000100 D C4 11110111 7 F7 
00101100 2C 01011111 .., SF 10010010 92 11000101 E cs 11111000 B FB 
00101101 20 01100000 60 10010011 9J 11000110 F C6 11111001 9 F9 
00101110 2E 01100001 ..L 61 10010100 94 11000111 G C7 11111010 FA 
00101111 2F 01100010 62 10010101 9S 11001000 H C8 11111011 FB 
00110000 30 01100011 6J 10010110 96 11001001 I C9 11111100 FC 
00110001 J1 01100100 64 10010111 97 11001010 CA 11111101 FD 
00110010 J2 01100101 6S 10011000 9B 11001011 CB 11111110 FE 

11111111 FF 



Coding the Translation 

Each character that will be affected during the translation 
of a specified file must be identified on the coding sheet. 
In the column entitled Replaced By, enter the hexadecimal 
value of the character which is to replace the character 
presently associated with the bit combination shown. This 
means that the character associated with the value found 
in the Entry column will be translated into the character 
associated with the value entered in the Replaced By column. 

Figure 16-45 illustrates the entry made on the coding sheet 
to translate a character. If an input file is to be translated, 
this entry means that the letter F will be translated as the 
number 0 (FO is the hexadecimal value associated with 0). 
If the output file is to be translated, this entry means that 
the number 0 will be translated back into an Fbefore be
ing written out. You can think of the character associated 
with the value in the Entry column as being the character 
read in or printed out. On the other hand, the character 
associated with the value in the Replaced By column is the 
character represented in the machine (Figure 1646). 

Code 

11000100 

11000101 

11000110 

11000111 

11001000 

11001001 

\ 

Character Associated 
with Bit Combination 

System/3 
Graphic Entry 

D C4 

E C5 

F C6 

G C7 

H cs 
I C9 

Numerical-v=;ue 

of Bit Combination 

8-Position Bit Combination 

Numerical Value of 
Replacement Character 

/ 
Replaced 
By 

FO~ 

L 
L 

L 

L is translated to 0 

Figure 16-45. Explanation of File Translation Cod.ing Sheet 

Differences Between File Translation and Alternate 
Collating Sequence 

Because of the similarity of entries used in coding an alter
nate collating sequence and a file translation, these functions 
may seem identical. They are not, however. The difference 
occurs in the way the computer works with the characters 
involved. 

When alternate collating sequence is used, the characters 
are altered only temporarily for sequencing operations. 
The original bit combination of the character, obtained 
from the punch combination for that character, is not 
changed. Temporary substitution of another bit combina
tion is done instead. 

For file translation, bit combinations are actually changed. 
As a result, one character is changed (translated) into 
another. This translation occurs before your program in
structions are executed. 

What Files Should Be Translated? 

Any input files which contain information recorded in 
coded form should be translated if correct results are to be 
obtained. All characters which you specify to be translated 
are translated whenever they are encountered. This means 
if you specify an F to be translated to 0, all Fs read in will 
be translated. When there are several other fields on the 
cards in addition to the one containing coded information, 
remember all characters specified to be translated are trans
lated regardless of fields. 

When printing or punching information out, you may or 
may not find it necessary to specify file translation for the 
output files. If you have translated (decoded) your input 
file, you should translate information back into coded form 
before it is written or punched out. If all F's are translated 
as 0 's when read in, then all 0 's should be translated to F's 
before they are put out. Keep in mind that only characters 
which you specify are involved in the retranslation. 

. 
If you do not specify file translation for output files, in-
formation is put out exactly as it is in the machine. If you 
do not intend to translate output files, be certain that all 
characters from the input file are translated into a value 
associated with a printable graphic. Any hexadecimal value 
which does not have an associated g~aphic cannot be written 
or punched out (Figure 16-47). If an unprintable graphic 
is specified to be put out, a blank appears in its place. 

Changing Data Structure 16-49 



Input File 

File Translation specifications 

used for translating both 

input and output files 

Information read 
. in is translated. 

Figure 16-46. Summary of File Translation 

16-50 

:NCE CODING SHEET 

System/3 
Code Graphic 

10011001 
10011010 
1nn••n44 

10101011 
10101100 
10101101 
10101110 
10101111 
10110000 
10110001 
10110010 
10110011 
10110100 
10110101 
10110110 
10110111 
10111000 
10111001 
10111010 
10111011 
10111100 
10111101 
10111110 
10111111 
11000000 
11000001 A 
11000010 B 
11000011 c 
11000100 D 
11000101 
11000110 
11000111 G 
11001000 H 
11001001 
11001010 
11001011 

Form X21-9096 
Printed in U.S.A. 

Replaced 
By/Takes System/3 

Replaced 
By/Takes 

Entry Place Of Code Graphic Entry Place Of 

99 
9A 
nn 

AB 
AC 
AD 
AE 
AF 
BO 
Bl 
B2 
B3 
B4 
BS 
B6 
B7 
BS 
89 
BA 
BB 
BC 
BO 
BE 
BF 
co 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
cs 
C9 
CA 
CB 

11001100 cc 
11001101 CD 

11011110 DE 
11011111 OF 
11100000 EO 
11100001 E1 
11100010 E2 

11 E 
11100100 u E4 
11100101 v E5 
11100110 w E6 
11100111 x E7 
11101000 y ES 
11101001 z E9 
11101010 EA 
11101011 EB 
11101100 EC 
11101101 ED 
11101110 EE 
11101111 EF 
11110000 FO 
11110001 F1 
11110010 F2 
11110011 F3 
11110100 F4 
11110101 F5 
11110110 F6 
11110111 F7 
11111000 FS 
11111001 F9 
11111010 FA 
11111011 FB 
11111100 FC 
11111101 FD 
11111110 FE 
11111111 FF 

EF2ZTG 

Information is translated 
before being punched or 
printed. 

Output File 

Disk 
.... ~--System ...._ ___ .... 



International Business Machines Corporation 

'TION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET 

l Syste.'.1;!.3 I 
Entry 

"ll 

utional Bwiness Machin es Corporation 

ALTERNATE CO LLATING SEQUENCE CODING SHEET 

·~m/3 

ntry I Replaced 
By{Takes 
Place Of 

I 
-

·--I 

n changed 
nnot be 
AO has 
d graphic. 
file must 
d so that 

C6 (F) whe 
to an AO ca 
printed for 
no associate 
The output 
be translate 
AO will prin tout as F. 

Code 

10011001 
10011010 
10011011 
10011100 
10011101 
10011110 
10011111 
10100000 
10100001 
10100010 
10100011 
10100100 
10100101 
10100110 
10100111 
10101000 
10101001 
10101010 
10101011 
10101100 
10101101 
10101110 
10101111 
10110000 
10110001 
10110010 
10110011 
10110100 
10110101 
10110110 
10110111 
10111000 
10111001 
10111010 
10111011 
10111100 
10111101 
10111110 
10111111 
11000000 
11000001 
11000010 
11000011 
11000100 
11000101 
11000110 
11000111 
11001000 
11001001 
11001010 
11001011 

Figure 16-47. Printable Graphics 

System/3 
Graphic Entry 

99 
9A 
9B 
9C 
90 
9E 

~ t-... 9F 
?._ AO 

Al[ 
A~ 
A3 
A4 
A5} 
A6T 
A7T 
AB j 
A9 I 
AA I 
AB I 
AC T 
AD T 
AE T 
AF i BO 
Bl 
B2 
B3 
B4 
B5 
B6 
B7 
BB 
B9 
BA 
BB 
BC 
BO 
BE 
BF 
co 

A Cl 
B C2 
c C3 
D C4 
E C5 
F C6 
G C7 
H CB 

C9 
CA 
CB 

Replaced 
System/3 By{Takes 

Place Of Code Graphic 

10011001 

~ 
10011010 

-j 10011011 
10011100 
10011101 
10011110 
10011111 
10100000 
10100001 
10100010 

Replaced 10100011 
By{Takes 10100100 
Place Of 10100101 

10100110 
10100111 
10101000 
10101001 
10101010 
10101011 
10101100 
10101101 
10101110 
10101111 
10110000 
10110001 
10110010 
10110011 
10110100 
10110101 
10110110 
10110111 
10111000 
10111001 
10111010 
10111011 
10111100 
10111101 
10111110 
10111111 
11000000 
11000001 A 
11000010 B 
11000011 c 
11000100 D 

._!.!.Q_OO 101 E 
11000110 F 
11000111 G 
11001000 H 
11001001 I 
11001010 
11001011 

Replaced 
By{Takes 

Entry Place Of 

99 
9A 
9B 
9C 
90 
9E 
9F 
AO 
Al 
A2 
A3 
A4 
A5 
A6 
A7 
AB 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
BO 
Bl 
B2 
B3 
B4 
B5 
B6 
B7 
BB 
B9 
BA 
BB 
BC 
BO 
BE 
BF 
co 
Cl 
C2 
C3 
C4 
C5 L 
C6 £1/l. 
C7 
CB 
C9 
CA 
CB 

Form X2 l-9096 
Printed in U.S.A. 

System/3 
Replaced 
By!Takes 

Code Graphic Entry Place Of 

11001100 cc 
11001101 CD 
11001110 CE 
11001111 CF 
11010000 } DO 
11010001 J 01 
11010010 K 02 
11010011 L 03 
11010100 M 04 
11010101 _H_ _05_ 
11010110 0 06 
11010111 p 07 
11011000 a DB 
11011001 R 09 
11011010 DA 
11011011 DB 
11011100 DC 
11011101 DD 
11011110 DE 
11011111 OF 
11100000 EO 
11100001 El 
11100010 s E2 
11100011 _L E1 
11100100 u E4 
11100101 v E5 
11100110 w E6 
11100111 x E7 
11101000 y EB 
11101001 z E9 
11101010 EA 
11101011 EB 
11101100 EC 
11101101 ED 
11101110 EE 
11101111 ~ t-... EF 
11110000 0 FO 
11110001 1 Z" ~Fl 11110010 2 F2 
11110011 l.2'.'.".: F3 
11110~ 4 F4 
111¢1.11 5 F5 

~:~::~ 6 F6 
.,,,,,,,., 7 F7 

11111000 B FB 
11111001 9 F9 
11111010 FA 
11111011 FB 
11111100 FC 
11111101 FD 
11111110 FE 
11111111 FF 

C6 ( F) when changed 
to a FO will print 
out as a zero. No 
further translation 
is necessary. 

Changing Data Structure 16-51 



Punched Cards for the Translation Table 

After you have written all specifications for file translation, 
you can record them on cards so that they can be entered 
into the system. Cards containing these specifications must 
be formatted as follows: 

Columns 

1-6 
or 
1-8 

7-8 

Entry 

*FILES 

a filename 

Blank if not required 

9-96 Numerical values involved in translating 
characters 

If all files (both input and output) are to be translated, use 
the entry *FILES in columns 1 through 6. If only one file 
is translated, use that filename in columns 1 through 8. If 
several, but not all files, are to be translated, you must for
mat separate cards for each file. 

In columns 9 through 96, there are 22 groups of four 
columns. Each group (9-12, 13-16, etc.) must contain two 
hexadecimal values involved in the translating of one charac
ter. The first two columns of the group are for the hexa
decimal value taken from the Entry column of the Trans
lation Table and Alternate Collating Sequence Coding 
Sheet. The last two columns are for the hexadecimal value 
taken from the Replaced By column of the coding sheet. 

16-52 

More than one card can be used to specify the characters 
which must be translated. However, each additional card 
must be formatted in the same way as the first. All cards 
for one file must be grouped together. An error will occur 
if four cards are entered in the following order: 

1. FILE A 

2. FILEA 

3. FILEB 

4. FILEA 

Also, the first blank appearing in columns 9 through 96 is 
recognized by the computer as the end of the translation 
specifications. Consequently blanks should not appear be
tween pairs of hexadecimal values. 

Two additional cards must be included along with the file 
translation table cards. One card containing **f> (two 
asterisks and a blank) in columns 1 through 3 must precede 
the file translation cards. The other card, containing /*f> 
(slash, asterisk, and a blank) in columns 1 through 3, fol
lows the translation table cards. 

All cards used for file translation except the RPG II control 
card must follow RPG II input, calculation, and output 
specifications and must precede any tables or alternate 
collating sequence cards used. 



1. Into what two portions may every card column and every byte in storage be divided? 

2. Do all characters that have an A zone punched in the zone portion of a card have the same zone 
representation in storage? Why or why not? 

3. Calculate the numerical value of each of the following binary numbers as recorded in one byte of 
storage: 

a. 11000100. 

b. 11010101. 

c. 11101000. 

d. 11110011. 

4. Express the numerical value of the bytes shown in Question 4 as a pair of numbers (hexadecimal 
value), rather than as a single value. 

5. What does the computer use to determine the collating sequence of characters? 

6. Arrange the following characters in ascending collating sequence. Arrange the same characters in 
ascending collating sequence by zone and digit. 

Character Hexadecimal 

I 
Numerical 

Value Value 

c C3 195 

I 61 97 

p 07 215 

J 01 209 

* 5C 92 

T E3 227 

R 09 217 

4 F4 245 

& 50 80 

9 F9 249 

0 FO 240 

Review 16 

Changing Data Structure 16-53 



16-54 

7. Fill in the Alternate Collating Sequence Coding Sheet to: 

a. Insert a ii between U and V (use the # sign to represent U). 

b. Make a blank fall in the same sequence as zero. 

Show how this information would be punched into a card. 

8. In what RPG II operations is the alternate collating sequence used? 

9. Where is the sign located in a numeric field? 

10. The TESTZ operation checks the zones of: 

a. any position in a field. 

b. only the low order position in the field. 

c. only the high-order position in a field. 

11. A field may be alphameric for any move zone operations. Check those fields (Factor 2, Result) which 
can be numeric for the following move zone operations: 

Operation Factor 2 Result 

a. MHLZO 

b. MLHZO 

c. MLLZO 

d. MHHZO 

12. Code the calculation specifications to make the contents of a positive numeric AMTDUE field negative. 

13. What is the difference between the way the computer works with characters involved in an alternate 
collating sequence and the way it works with characters involved in file translation? 

14. Fill in the coding forms to translate A's to J's and B's to 3's. Show how these specifications would be 
punched in cards when all files are to be translated. 



Answers to Review 16 

1. Zone and digit. 

2. All characters which have the same zone punch in a card do not necessarily have the same zone 
representation in storage. There are four zone bits for each character in storage and only two zone 
positions in a card column. Therefore a translation must take place when the character is read. The 
computer checks the entire punch combination (both zone and digit) of a character to determine 
which bits are turned on or off in order to represent the character in storage. 

3. a. 196 

b. 213 

c. 232 

d. 243 

4. a. C4 

b. DS 

c. E8 

d. F3 

1 1 0 0 
128+64+o+O 

1 1 0 0 
C = 8+4+o+O 

0 1 0 0 
o+4+0+0 = 196 

0 1 0 0 
o+4+0+0 = 4 

5. The computer uses the numerical values associated with characters to determine the collating sequence 
of characters. 

Changing Data Structure 16-55 



6. When characters are collated by zone and digit, they are collated in this order: 

Character Numerical 
Value 

& 80 

* 92 

I 97 

c 195 

J 209 

p 215 

R 217 

T 227 

0 240 

4 245 

9 249 

16-56 



When characters are collated by zone the left half of the hexadecimal value is used to determine the order; when 
collating by digit the right half of the hexadecimal value is used. When characters are collated by zone or digit, 
several may hold the same position in the sequence and thus belong in the same group. Within that group they may 
hold any position. 

Characters collated by zone are in this order: 

Character 

I 

c 

T 

: l · 

Hexadecimal 
Value Used 

.Q_O 

§_C 

~1 

07 

Q1 

Q9 

£4 

F9 

FO 

* Characters within brackets 
may be in any order since 
they are in the same group. 

Characters collated by digit are in this order: 

I Hexadecimal 
Character Value Used 

0 } FO 
* 

~ 5Q 

I } 61 
* 

J 01 

c } C3 
* 

T E3 

4 F4 

p 07 

R 

} * 
09 

9 F9 

* 5C -

* Characters within brackets 
may be in any order since 
they are in the same group. 

Changing Data Structure 16-57 



7. 

International Business Machines Corporation 

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET 

System/3 
Code Graphic Entry 

00110011 33 
00110100 34 
00110101 35 
00110110 36 
00110111 37 
00111000 3S 
00111001 39 
00111010 3A 
00111011 3B 
00111100 3C 
00111101 30 
00111110 3E 
00111111 3F 

Replaced· 
By!Takes 
Place Of 

System/3 
Code Graphic 

01100110 
01100111 
01101000 
01101001 
01101010 
01101011 
01101100 % 
01101101 
01101110 > 
01101111 
01110000 
01110001 
01110010 

Entry 

66 
67 
6S 
69 
6A 
6B 
6C 
60 
6E 
6F 
70 
71 
72 

Replaced 
By!Takes 
Place Of 

System/3 
Code Graphic Entry 

10011001 99 
10011010 9A 
10011011 9B 
10011100 9C 
10011101 90 
10011110 9E 
10011111 9F 
10100000 AO 
10100001 A1 
10100010 A2 
10100011 A3 
10100100 A4 
10100101 A5 

01000000 Blank 40 "£l1i. 01110011 73 10100110 A6 

01000001 .~ 41 01110100 74 10100111 A7 

01000010 ~ 42 01110101 75 10101000 AS 

01000011 ~ 43 01110110 76 10101001 A9 

01000100 ~ 44 01110111 17 10101010 AA 
01000101 ~45 01111000 7S 10101011 AB 

01111001 79 10101100 AC 01000110 ~ 
01000111 K 01111010 d,,., .. 7A 10101101 AD 

~~::~~ :~~ ~::::~~ =~,:?---- AE 10101110 
10101111 AF 

7B t:..5-
1c--r--

01001010 ¢ 4A -.............. 01111101 70 BO 
,__0_1_00_1_0_11__. ___ --t-_4S _ __. ___ _.r-t-.111111110 = 

011~" 
7E 
7F 

10110001 
10110010 01001100 < 4C 

01001101 ( 40 
01001110 + 4E 
01001111 I 4F 
01010000 & 50 
01010001 51 
01010010 52 
01010011 53 
01010100 54 
01010101 ..Q5.. 
01010110 56 
01010111 57 
01011000 5S 
01011001 --5._9 

J!1!!.11Q1_0 ! 5A 
01011011 -!- 5S 
010UlllQ_ _fil;_ 

01011101 l_ 50 
01011.110 : 5E 
01011111 I 5F 
01100000 60 
01100001 1- e1 
01100010 62 
01100011 63 
01100100 64 
01100101 65 

16-58 

10000000 ---
10000001 
10000010 
10000011 
10000100 
10000101 
10000110 
10000111 
10001000 
10001001 
10001010 
10001011 
10001100 
10001101 
10001110 
10001111 
10010000 
10010001 
10010010 
10010011 
10010100 
10010101 
10010110 
10010111 
10011000 

so 

S7 
SS 
S9 
SA 
SB 
BC 
SD 
SE 
SF 
90 
91 
92 
93 
94 
95 
96 
97 
98 

10110011 B3 
10110100 B4 

10111010 
10111011 BB 
10111100 BC 
10111101 BO 
10111110 BE 
10111111 BF 
11000000 co 
11000001 A C1 
11000010 B C2 
11000011 c C3 
11000100 D C4 
11000101 E C5 
11000110 F C6 
11000111 G C7 
11001000 H CS 
11001001 I C9 
11001010 CA 
11001011 CB 

AL TSEQ 4gF~7RE5E5E6E6E7E7E8E8E9 
I Z J • S I 7 8 I IO II 12 13 M 15 11 17 11 1t 20 21 U Z3 Z• 25 21 27 H zt JO 31 JI 

E9EA 
"""H»»»~~uu"a~nou~~""""H"H»~~n"" 

~-·~~mm~m~m~~~mm~MM~ITT~M®m~m~~mm~ 

B B 
A 

'8 
4 
2 
1 
B 
A 
8 
4 
2 

A 
8 
4 
2 

1 zs•s1111~nun~~•n~~~~unttttHPHH~~u~ 
A 
8 
4 
2 

~»HHH»»»~~UU«U~n•o~~""""H~»»~~"""~ 
A A 
8 8 
4 4 
2 2 
1 HNPNH~nnnunMnnn~~nnwuHnuH~~n""""t 

laM3700 

Replaced 
By!Takes 
Place Of 

System/3 
Code Graphic 

11001100 
11001101 
11001110 
11001111 
11010000 } 
11010001 J 
11010010 K 
11010011 L 
11010100 M 

..1_1010101 .H. 
11010110 0 
11010111 p 
11011000 a 
11011001 R 
11011010 
11011011 
11011100 
11011101 
11011110 
11011111 
11100000 
11100001 
11100010 s 
11100011 ~ 
11100100 -:-l:I:·:·. 

101 . ,ev-::::: 

11101001 ': ::z ::::· 

11101011 
11101100 
11101101 
11101110 

11111>010 2 
11110011 3 
11110100 4 
11110101 5 
11110110 6 
11110111 7 
11111000 s 
11111001 9 
11111010 
11111011 
11111100 
11111101 
11111110 
11111111 

Entry 

cc 
CD 
CE 
CF 
DO 
01 
02 
03 
04 

06 
07 
OS 
09 
DA 
DB 
DC 
DD 
DE 
OF 
EO 
El 
E2 

E4 
E5 
E6 
E7 
ES 
E9 
EA 
EB 
EC 
ED 
EE 
EF 
FO 
Ft 
F2 
F3 
F4 
F5 
F6 
F7 
FS 
F9 
FA 
FB 
FC 
FD 
FE 
FF 

Form Xll-9096 
Printed in U.S.A. 

Replaced 
By!Takes 
Place Of 



IBJ.t 

8. An alternate collating sequence is used only for compare operations and matching or sequence checking 
operations done on match fields. 

9. The sign of a numeric field must be in the low-order (rightmost) position of the low-order byte. 

IO. c. 

11. Factor 2 Result Field 

a. x 

b. x 

c. x x 

d. 

12. 

International Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

Form X21-9093 

Printed in U.S.A. 

75 76 77 78 79 80 
Date ____ _ 

[ 

Punching Graphic ] 

1 2 

Page[IJ ~~~~;~f~ation I I I I I I I 
Program, ____________ _ Instruction Punch j j 
Programmer ______ _;_ ____ _ 

Indicators 

Factor 1 
_ffi I I Line ~~5 

~ g ~f 
~ 8~ ~ l5 l5 z z 

Operation Factor 2 Result Field 
Field 
Length 

Resulting 
Indicators 

Arithmetic 
Plus Minus Zero 

Compare 

High Low Equal 
1>21<21~2 

Lookup 

Table (Factor 21 is 

High Low Equal 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c 

0 2 

0 3 c 

IMllllLl~J ~.PJurE 
OR 

..11...l ...l 

13. In file translation a character is actually translated into another character because the computer changes 
bit combinations. All affected characters are changed for the entire job.· The bit combinations for 
characters involved in an alternate collating sequence are not changed. Bit combinations are substituted 
for others during sequencing operations only. 

Changing Data Structure 16-59 



14. 

System/3 
Code Graphic 

~~~~riri· 
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000 Blank
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010 ¢
01001011
01001100 <
01001101 I
01001110 +
01001111 I
01010000 &
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011oo0
OlOWX!J
01011010 I

01011011 I
.Jlli1.1UOO.
01011101 _l_
01.Q.11110 :
01011111 .,
01100000

_fil100001 L
01100010
01100011
01100100
01100101

16-60

International Business Machines Corporation

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

Entry

33
34
35
36
37
3B
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
4B
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
~
~
57
5S

_]fl
5A
5B

.5c.
5D
5E
5F
60

_fil

62
63
64
65

Replaced Replaced
System/3 By/Takes System/3 By/Takes

Place Of Code Graphic Entry Place Of Code Graphic

01100110 66 10011001
01100111 67 10011010
01101000 68 10011011
01101001 69 10011100
01101010 6A 10011101
01101011 6B 10011110
01101100 % 6C 10011111
01101101 - 6D 10100000
01101110 > 6E 10100001
01101111 7 6F 10100010
01110000 70 10100011
01110001 71 10100100
01110010 72 10100101
01110011 73 10100110
01110100 74 10100111
01110101 75 10101000
01110110 76 10101001
01110111 77 10101010
01111000 7B 10101011
01111001 79 10101100
01111010 : 7A 10101101
01111011 # 7B 10101110
01111100 @ 7C 10101111
01111101 7D 10110000
01111110 = 7E 10110001
01111111 .. 7F 10110010
10000000 80 10110011
10000001 B1 10110100
10000010 B2 10110101
10000011 B3 10110110
10000100 B4 10110111
10000101 B5 10111000
10000110 B6 10111001
10000111 B7 10111010
10001000 BB 10111011
10001001 89 10111100
10001010 SA 10111101
10001011 SB 10111110
10001100

---J 1--BC 10111111
10001101 SD 11000000
10001110 BE 11000001 A
10001111 BF 11000010 B
10010000 90 11000011 c
10010001 91 11000100 D

~- 92 ~~101 E
10010011 93 11000110 F
10010100 94 11000111 G
10010101 95 11001000 H
10010110 96 11001001 I
10010111 97 11001010
10011000 98 11001011

*FILES C1F1C2F3
I 2 3 • 5 I 7 I t 10 II 12 13 14 15 16 17 11 rt 20 21 22 2J HU 26 27 21 29 30 31 32

33 34 35 l6 37 38 39 •O .. , "2 0 •4 45 '6 .U •I O 50 51 52 SJ 54 SS SI 57 51 51 60 61 6Z '3 U

A A
6 6
4 4
2 2

~I 2 •• •171 l~H~U~~~~dd~VUUNttHVHH~~»~
A
6
4
2

A
6
4
2

1 1 B n ,.. 1s n n n u '° •t u u u .ts •• u a n so s1 52 s1 s.c ss " s1 51 st 10 " 12 u u B

A A
6 6
4
2

IH13700

4
2

Form X21-9096
Printed in U.S.A.

Replaced
System/3

Replaced
By/Takes By/Takes

Entry Place Of Code Graphic Entry Place Of

99 11001100 cc
9A 11001101 CD
9B 11001110 CE
9C 11001111 CF
9D 11010000 } DO
9E 11010001 J DI
9F 11010010 K D2
AO 11010011 L D3
A1 11010100 M D4
A2 11010101 _N_ _D5_

A3 11010110 0 D6
A4 11010111 p D7
A5 11011000 a DB
A6 11011001 R D9
A7 11011010 DA
AB 11011011 DB
A9 11011100 DC
AA 11011101 DD
AB 11011110 DE
AC 11011111 DF
AD 11100000 EO
AE 11100001 El
AF 11100010 s E2
BO 11UlOOJ1 .I. ll
B1 11100100 u E4
B2 11100101 v E5
B3 11100110 w E6
B4 11100111 x E7
B5 11101000 y EB
B6 11101001 z E9
B7 11101010 EA
BB 11101011 EB
B9 11101100 EC
BA 11101101 ED
BB 11101110 EE
BC 11101111 EF
BD 11110000 0 FO
BE 11110001 1 F1
BF 11110010 2 F2
co 11110011 3 F3
C1 ...EA 11110100 4 F4
C2 ..EA 11110101 5 F5
C3 11110110 6 F6
C4 11110111 7 F7
C5_ 11111000 s FS
C6 11111001 9 F9
C7 11111010 FA
C8 11111011 FB
C9 11111100 FC
CA 11111101 FD
CB 11111110 FE

11111111 FF

.tS-type programs 9-2
$MAINT (see Library Maintenance program)
*FILES card 16-52
*PLACE

description of 13-5
with EXCPT 11-19

activity, file (see file characteristics)
adding records, to a direct file 1-10
ADDROUT file

as output of ADDROUT sort 4-2, 5-2
example 4-9

random processing by
example 5-4
specifications for 5-3

use of 5-2
ADDROUT sort

example of 4-9
file placement 4-4
files

input 4-2
output 4-2
work 4-2

file size, determining 4-5
function 4-2
OCL 4-8
output of 4-2
sequence specifications 4-2, 4-7
storage size, determining 4-5
use of 4-2

ALLOCATE statement
function of 8-9
parameters for

creating an object library 8-10
creating a source library 8-13

allocating disk space 7-2
alternate collating sequence (see collating sequence)
Alternate Track Assignment, in DPF 10-7
AL TSEQ card 16-40
arrays

accumulating groups of totals 15-15
array to array calculations 15-6
definition 15-2, 15-3
of different lengths 15-8
indexing 15-22
LOKUP 15-30
operation codes, restrictions 15-7
output

during array search 15-38
of entire array 15-20
individual fields in array 15-24

and single fields 15-9
specifications 15-3
storing data into 15-39
usage 15-2
XFOOT 15-10

artificial control break 11-27
Assembler program (see Basic Assembler)

automatic file allocation
considerations for 7-3
operation of 7-2

automatic page formatting 13-2

~-type programs 9-2
Basic Assembler, in DPF 10-4
BEGSR 11-10, 11-14
binary field operations

BITON operation code 11-39
BITOF operation code 11-40
example of 11-41
TESTB operation code 11-40

binary format 16-21
BITOF operation code 11-40
BITON operation code 11-39
bits

in binary field operations 11-39
definition of 16-5

blank(~) -type programs 9-2
BSC (see teleprocessing)
bypass option, on a halt 3-5
bypassing records, consecutive retrieval 2-6
bytes, definition of 16-5

calculation specifications
for arrays

accumulating groups of totals 15-15
adding all fields (XFOOT) 15-10
array to array 15-6
array and single fields 15-9

binary field operations 11-39
FORCE 14-3
subroutines 11-10

CALL statement 8-14
calling

procedures 8-14
subroutines 11-10

card column structure 16-2
carriage tractors (see dual feed carriage)
CEND statement, function 8-9 ·
CHAIN operation code 3-5, 1-8
chained files (see CHAIN operation code)
character structure

altering the structure 16-43
negative numbers 16-3
punched cards 16-2
in storage 16-5

characteristics, file (see file characteristics)
collate, definition 16-23
collating sequence

altering the sequence 16-31
AL TSEQ card 16-40
punched cards 16-40
specifications 16-40
by zone or digit 16-28

COMPILE statement
function 8-15
parameters 8-15

Index

Index X-1

compiler, in DPF 10-4
compiling a source program 8-15
conditioners (see indicators)
consecutive processing

of direct files 1-9, 2-2
retrieval 2-3
update 2-8
use of 2-3

of multi-volume files 6-4
CONSOLE (see printer-keyboard)
control breaks (LO) 11-27
control card specifications

altering collating sequence 16-31
executing object programs, in DPF 10-8
file translation 16-47
inquiry 9-2
storing programs in object library 8-15

control fields
for ADDROUT sort 4-2
definition of 12-2
for deriving relative record numbers 1-4
with field record relation 12-10
specifications for 12-4
split control fields

definition of 12-5
specifications for 12-6

control field specifications (see sequence specifications)
control level indicators, during calculations 11-27
conversion method, for relative record numbers 1-4
Copy/Dump program (see Disk Copy/Dump program)
COPY statement

function of 8-9
parameters for

storing into object library 8-11
storing into source library 8-13, 8-14

COPY statement 8-3, 8-11
copying

automatic file allocation considerations 7-3
direct files 1-10
multi-volume file considerations 6-4
programs and procedures 8-3

data list, definition 6-6
DATE statement, in DPF 10-8
dedicated system, definition 9-4
delete code, for direct files 1-10
DELETE statement 8-9
deleting records, from a direct file 1-10
digit portion, of a byte 16-6
direct file organization

adding records 1-10
consecutive processing 1-9, 2-2
considerations for using 1-11
creation of 1-12
definition 1-3
deleting records 1-10
deriving relative record numbers 1-4
processing, general description 1-8
random processing 3-2
usage of 1-11

direct method, deriving relative record numbers 1-4
direct multi-volume files 6-2
directory

object library 8-7
source library 8-8

Disk Copy/Dump program 7-3, 1-10

X-2

disk drive codes 6-8
disk file layout chart 7-2
Disk Initialization program, in DPF 10-7
disk placement (see file placement)
disk space (see allocating disk space)
Disk Sort program

in DPF 10-7
files 4-2
function 4-2
OCL 4-8
output 4-2
sequence specifications 4-2, 4-7
(see also ADDROUT sort)

DPF (dual programming feature)
advantages of 10-2
and Alternate Track Assignment 10-7
considerations 10-4
and Disk Initialization 10-7
and Disk Sort 10-7
executing object programs in 10-8
file planning 10-6
and inquiry 10-7, 10-4
main storage, organization of 10-3
OCL 10-8
operation of 10-2
sample job stream 10-9
and teleprocessing 10-4

drive codes (see disk drive codes)
DSPL Y operation code

in DPF 10-4
with printer-keyboard 13-36

dual feed carriage
function 13-27
example 13-29
specifications 13-28

dual input/output areas
for consecutive processing of direct files 2-2
considerations 11-3
function of 11-3
specifications for 11-4
object cycle considerations 11-3

dual program control switch 10-8
dual programming feature (see DPF)
dummy entries, match fields with field record relation 12-14

edit codes, arrays 15-11, 15-24
edit words, arrays 15-11, 15-24
editing

of an entire array 15-11
of individual fields in an array 15-24

end-of-file entries
ADDROUT files 5-3
multifile processing 14-9
record-key limits files 5-7

end-of-file processing, FORCE 14-7
END statement 8-9
ENDSR 11-10, 11-14
EXCPT operation code

function 11-19
indicators 11-22
with LOKUP 15-38
object cycle considerations 11-19
with *PLACE 11-19
specifications 11-19

expansion of object library 8-7, 8-3
EXSR 11-10, 11-14

extension specifications
for ADDROUT files 5-4
arrays 15-3
record-key limits file 5-8

extent, definition of 6-4
external indicators

function 11-32
settings 11-32

fetch overflow
description of 13-10
specifications 13-11

field record relation
with control fields 12-10
function 12-7
input specifications 12-7
with match fields 12-11
with OR relationship 12-7

field scanning 15-26
fields

control (see control fields)
look ahead 11-49
in a subroutine 11-11

file characteristics, direct files 1-11
file description specifications

for ADDROUT files 5-3
altering collating sequence 16-31
consecutive processing, direct files 2-2
creating a direct file 1-12
dual feed carriage 13-28
dual I/O areas 11-4
file translation 16-4 7
multi-volume files 6-4
overflow 13-5
random processing by relative record number 3-4
record-key limits file 5-7

file extension specifications (see extension specifications)
file location

allocating 7-2
multi-volume files 6-2, 6-9

file maintenance, direct files
adding records 1-10
deleting records 1-10

file placement, ADDROUT sort 4-4
(see also file locations)

file processing
altering the order of 11-45, 14-1
considerations for 10-4
of direct files

consecutive 1-9, 2-2
random 1-8, 3-2

in DPF 10-4
of multifiles 14-2
of multi-volume files

consecutive 6-4
random 6-4

random by ADDROUT file 4-2, 5-2
of sequential files, randomly 3-2
sequential within limits 5-2, 5-6

file space, multi-volume files 6-9
(see also allocating disk space)

FILE statement, mutli-volume files 6-6
parameters 6-7

file translation
*FILES card 16-52
punched cards 16-52
specifications 16-4 7
use of 16-47

File and Volume Label Display program 7-3
*FILES card 16-52
FORCE

controlling number of times 14-6
indicators 14-6
with look ahead 14-10
object cycle considerations 14-6
processing after end of file 14-7
specifications 14-3

FORMS statement 10-9

group-indicated report 12-2
GOTO (see loops)

halt indicators
functions 11-28
object cycle considerations 11-28

HALT statement 10-9
header specifications (see sequence specifications)
hexadecimal numbers 16-16
home location 1-6
home record 1-6

I-type programs 9-2
IMAGE statement, in DPF 10-9
indexing arrays 15-22
indicators

for EXCPT 11-22
external (Ul-U8) 11-32
for field record relation 12-8
for FORCE 14-6
halt (Hl-H9) 11-28
L0-19 11-25, 11-27
for overflow 13-3
for *PLACE 13-22
for subroutines 11-16
for TESTB 11-40

internal control level indicator (LO) 11-25, 11-27
input areas, dual 11-3

(see also dual input/output areas)
input fields (see control fields)
input file, ADDROUT sort 4-2, 4-5
input specifications

for ADDROUT file 5-3
consecutive processing, direct files

retrieval 2-3
update 2-8

control fields 12-4
for look ahead 11-49
OR relationship 12-7

with field record relation 12-8
random processing, direct files

retrieval 3-6 ~

update 3-12
split control fields 12-6

Index X-3

inquiry
advantage of direct files 1-11
coding 9-2
definition 9-2
in DPF 10-3, 10-7
file planning 9-4
operation in interrupt environment 9-4
program planning 9-4
requesting 9-2

inquiry program, definition 9-2
inquiry request, definition 9-2
interrupt environment, definition 9-2
Interrupt Request Key (see Request Key) 9-2

library
object (see object library)
source (see source library)

Library Maintenance program
in DPF 10-4
creating libraries 8-10, 8-13
functions 8-9
OCL 8-9
program control statements 8-9
storing programs 8-11, 8-13

limits (see record-key limits)
line counter specification, overflow 13-3
line counter specification, overflow 13-3
linking 1-6
LOAD*, in DPF 10-4
LOCATION parameter, automatic file allocation 7-2

(see also FILE statement)
location of files, determining 7-2

(see also file locations)
location of libraries 8-5
LOG statement

in DPF 10-8
on printer-keyboard 13-35

LO (see internal control level indicator)
Ll-L9 (see indicators)
LOK UP

determining success of 15-33
with EXCPT 15-38
referencing a field satisfying search 15-34
searching for more than one field 15-36
searching for a particular field 15-30
starting search at particular field 15-31

look ahead 11-45
with FORCE 14-10

loops 11-6

main storage, in DPF 10-3
maintaining, direct file (see file maintenance)
maintaining libraries 8-9
match fields with field record relation 12-11
matching records without match fields 14-10
MFCU,in DPF 10-4
MHHZO operation code 16-44
MHLZO operation code 16-44
MLHZO operation code 16-44
MLLZO operation code 16-44
move zone operation codes

X-4

example 16-46
field format 16-45
model character 16-4 7
operation codes 16-44

multi-file processing 14-2
of direct files 2-3

multi-volume files
for ADD ROUT file 5-3

· creation of 6-2
definition 6-2
for direct files 1-3
in DPF 10-6
example of 6-10
file description specifications 6-4
file location, restrictions 6-2
FILE statement 6-6
as input for ADD ROUT sort 4-2
processing of 6-4

naming
conventions 8-3
object library entries 8-11
object programs 8-15

negative numbers, structure of 16-3
NOHAL T statement, in DPF 10-9
nonexecutable programs (see routines)

0 library (see object library)
object cycle, considerations

dual 1/0 areas 11-3
EXCPT 11-19
fetch overflow 13-11
FORCE 14-6
overflow 13-6

object library
as consideration for locating files 7-2
contents of 8-6
creation of 8-10
directory 8-7
expansion of 8-3, 8-7
loading inquiry programs from 9-2
location of 8-5
organization of entries 8-7
reorganizing 8-7
size 8-6
storing entries

via COMPILE 8-15
via RPG II 8-15
via Library Maintenance 8-11

object programs
execution in DPF 10-8
in object library 8-6

object output 8-15
OCL statements

for ADDROUT sort 4-8
for Disk Sort 4-8
in DPF 10-8
for inquiry 9-2
for Library Maintenance program 8-9
for multi-volume files 6-6
storing in source library 8-2

off state 16-5
offline, multi-volume files

creating 6-2
processing 6-4

on state 16-5
online, multi-volume files

creating 6-2
processing 6-4

OR relationship 12-7
with field record relation 12-8

output-format specifications
arrays

during array search 15-38
entire array 15-10
individual fields 15-24

consecutive update, direct file 2-8
dual feed carriage 13-28
EXCPT 11-19
overflow 13-5, 13-10
*PLACE 13-18
random update, direct file 3-12

output, repetitive (see EXCPT operation code)
output areas, dual 11-4

(see also dual input/output areas)
output file, ADDROUT sort 4-2, 4-5
output records

of ADDROUT sort 4-2
of tag-along sort 4-2

overflow
indicators 13-3
logic 13-6
skipping and spacing 13-9
specifications 13-3

overflow line 13-3
overlay 11-6, 10-8

P library (see source library)
PACK keyword (see FILE statement)
packed decimal format 16-20
PARTITION statement 10-9, 10-7
*PLACE

with constants 13-22
different spacing 13-20
with EXCPT 11-19
formation of print lines 13-19
with indicators 13-22
specifications 13-18

print lines, *PLACE 13-19
PRINTER (see dual feed carriage)
printer, in DPF 10-4

(see also dual feed carriage)
printer-keyboard

communicating with operator 13-35
in DPF 10-4
for inquiry 9-2
as output device

with DEBUG 13-36
with DSPLY 13-36
as second printer 13-36

PRINTR2 (see dual feed carriage)
procedures

calling 8-14
definition 8-2

processing (see file processing)
processing time, in DPF 10-3
program control statements, Library Maintenance 8-9
program level 1 10-3
program level 2 10-3
punched card structure 16-2

R library (see object library)
random processing

by ADDROUT file 5-2
definition 3-2
of direct and sequential files

considerations 3-2
relative record numbers 3-2
retrieval 3-6
specifications 3-4
update 3-12
use of 3-2

of multi-volume files 6-4
by relative record numbers 1-8

record address files
ADDROUT files 5-2, 4-2
(see also ADDROUT files)
record-key limits 5-2
(see also record-key limits file)

record identification codes 16-9
record-key limits, definition 5-2
record-key limits files

definition 5-2
example of processing 5-8
processing sequentially within limits 5-6
rules for creation of 5-6
specifications 5-7, 5-8
use of 5-2

record type specifications (see sequence specifications)
RECORDS keyword (see FILE statement)
relative record numbers

definition 1-4
deriving 1-4
as output of ADDROUT sort 4-2
processing by ADD ROUT file 5-2
random processing by 3-2
synonym records 1-6

RENAME statement 8-9
Request Key 9-2
resulting indicators

array to array calculations 15-7
for TESTB operation code 11-40

RETAIN keyword (see FILE statement)
retrieving direct file

consecutively 2-2, 2-3
randomly 3-6

RPGOBJ 8-15
rolling of totals 15-15
roll-in routine 9-4
roll-out/i;oll-in 9-4
roll-out routine 9-4
routines, in object library 8-6

S library (see source library)
scanning fields 15-26
scratch files, multi-volume files 6-9, 6-2
searching arrays 15-30
sequence checking, multi-volume files 6-7
sequence numbers, multi-volume files 6-7
sequence specifications

for ADDROUT sort 4-2
coding 4-7

Index X-5

sequential files, random processing of 3-2
sequential, multi-volume files

creation of
offline 6-2
online 6-2, 6-8

size 6-2
sequential within limits processing 5-2, 5-6
size

of direct files (see file characteristics)
of object library 8-6
of source library 8-8

skipping, overflow 13-9
sorting (see Disk Sort program)
source library

compiling entries 8-15
contents of 8-8
creation of 8-13
directory 8-8
location of 8-5
size 8-8
storing entries 8-13

space, file (see allocating disk space)
space, for multi-volume files (see file space)
spacing, overflow 13-9
split control fields

description 12-5
with field record relation 12-10
specifications 12-6

storage sizes, Disk Sort program 4-5
storing, in libraries

advantages of 8-3
considerations 8-3
programs and data files on removable disks 8-3
via COMPILE 8-15
via Library Maintenance program 8-9
vie RPG II 8-15

structure, of characters (see character structure)
subroutines

calling 11-10
fields within 11-11
function 11-6
overlays 11-6
repeating calculations 11-6
specifications 11-10
valid indicators 11-16
valid operations 11-14

SWITCH statement 11-32
switches (see binary field operations)
synonym records 1-4, 1-6

X-6

during consecutive processing 2-2
during random processing 3-2

tables, compared to arrays 15-2
TAG (see loops)
tag-along sort

calculating file sizes 4-6
function 4-2
output 4-2

teleprocessing, in DPF 10-4
TESTB operation code 11-40
total operations, without a control break 11-25
TRACKS keyword (see FILE statement)
tractors (see dual feed carriage)
translating (see file translation)

UNIT keyword (see FILE statement)
unpacked decimal format 16-20
update, direct files 1-10

consecutively 2-2, 2-8
randomly 3-12

upper boundary, object library 8-8
utility program control statements

for Library Maintenance 8-9
storing in source library 8-2

volatility (see file characteristics)
volume label 7-2, 7-3
Volume Label Display program 7-2
volume names, multi-volume files 6-7

work area
for creating object library 8-10
size of 8-6

work file, ADDROUT sort 4-2, 4-5
work file size factor 4-5
work records, ADDROUT sort 4-2

XFOOT 15-10

zone portion, of character 16-6

1255 Utility Program, in DPF 10-4
5471 Printer-Keyboard (see printer-keyboard)

GC21-7511-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

"Cl .. ;·
[
;·
c
en
?>

C)
n
N
..a
~
U1
..a
..a

6

READER'S COMMENT FORM

IBM System/3
Disk System
RPG II and System Additional Topics
Programm's Guide

Your answers to the questions on this sheet will help us produce better manuals for
your use. If any of your answers require comments, or if you have additional
information you think would be helpful, please use the space provided. All comments
and suggestions become the property of IBM.

1. Is the manual easy to read?

2. Is any of the information unclear?

3. Is additional information needed?

4. Is any of the information unnecessary?

5. Did you read the Preface?

6. Did you use the Table of Contents?

7. Did you use the Index?*

8. Did you take the tests? *

9. How did you use the manual:

Instructor in a class
Student in a class
Reference material ___ _
Self-Training
Other (Explain) -----

Have you had previous computer or programming training?

What is your present job?

What business is your company engaged in?

COMMENTS

Yes No

* Not included in all manuals

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-7511-0

GC21-7511-0

YOUR COMMENTS, PLEASE •••

Your answers to the questions on the back of this form, together with your comments, will
help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and sug·
gestions become the property of IBM.

Fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Publications, Dept. 4'25

POSTAGE WILL BE PAID BY •.•

IBM Corporation
General Systems Division
Development Laboratory
Rochester, Minnesota 55901

- -.
Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

Fold

n c: ...

m s:
ft
=-CD
3 -CAI

~ :;· ...
!
:;·
c v.
~

c;:
r:
~ ...
U'
ool
ool

C::

READER'S COMMENT FORM

IBM System/3
Disk System
RPG II and System Additional Topics
Programm's Guide

Your answers to the questions on this sheet wHI help us produce better manuals for
your use. If any of your answers require comments, or if you have additional
information you think would be helpful, please use the space provided. All comments
and suggestions become the property of IBM.

1. Is the manual easy to read?

2. Is any of the information unclear?

3. Is additional information needed?

4. Is any of the information unnecessary?

5. Did you read the Preface?

6. Did you use the Table of Contents?

7. Did you use the Index?*

8. Did you take the tests? *

9. How did you use the manual:

Instructor in a class
Student in a class
Reference material ___ _
Self-Training
Other (Explain) ____ _

Have you had previous computer or programming training?

What is your present job?

What business is your company engaged in?

COMMENTS

Yes No

* Not included in all manuals

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-75 I I-O

GC21-7511-0

YOUR COMMENTS, PLEASE •••

Your answers to the questions on the back of this form, together with your comments, will
help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and sug
gestions become the property of IBM.

Fold

BUSINESS REPLY MAIL
NO POST.AGE NECESSARY IF MAILED IN THE UNITED ST.ATES

.Attention: Programming Publications, Dept. 425

Fold

POST.AGE WILL BE PAID BY •••

IBM Corporation
General Systems Division
Development Laboratory
Rochester, Minnesota 55901

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

Fold

0 c ..

GC21-7511-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plnins, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, Now York 10017
[International]

C)
C')
N
'1
~
6

