Project Electronics For Everyone

ambit's nev autumn/winte catalogut

ALL THE 'USUAL’ BITS (Rs, Cs, Tr's, ICs etc) + ALL THE TRICKY BITS
70ρ at all good newsagents or direct

* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES DESPATCHED WITHIN 8 WORKING HOURS

* PHONE ORDER SERVICE - (NO MACHINES!) PLEASE NOTE OUR NEW PHONE SYSTEM AUTOMATICALLY STACKS CALLS
IN ORDER OF ARRIVAL SO PLEASE WAITIF NOT ANSWFRED IMMEDIATELY

$$
8 \mathrm{AM}-7 \mathrm{PM} \text { MON - SAT }
$$

0277230909

* COMPUTER ORDER SERVICE - 'REWTEL' 6 PM - 9 AM 300 BAUD/RS232 (IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

INTERNATIONAL
200. NORTH SERVICE ROAD
BRENTWOOD ESSEX BRENTWOOD, ESSE Telephane: (02771) 230909

PROJECTS

* THE H.E. EPROM PROGRAMMER 20
For 6502-based home computers. * POP AMPS No. 6 30
Linear ohmmeter
\star POP AMPS No. 7 46
Low range ohmmeter
- SIGNAL POWEREDLOUDSPEAKER PROTECTOR 50
A 'set and forget' circuit
overvoltagecut-OU 68
Crowbar circuit protection device.
FEATURES
* FINISHING TOUCHES 12
Beauty classes for project cases. * COMPONENTS FOR COMPUTING 16
ROMs and EPROMs.
* THE ELECTRONIC REVOLUTION 40
ictures from afar - television arrives. 55
Propagation and aerials.
* VOYAGER CAR COMPUTER 62
The review of the kit.
FAMOUSNAMES 65
Herman Hollerith.
REGULARS
Monitor 6
What's On Nex 18
Points of View 34
Clever Dick 37
HE Bookshelf 49
HESubscriptions 53
PCB Service 70
HE PCB Printout 73

Editor: Ron Keeley
Editorial Assistant: Helen Armstrong
Technical lllustrator: Jerry Fowler
Advertisement Manager: Jolyn Nice Divisional Advertisement Manager: Gary Price Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell

FINISHING TOUCHES - page 12

COMPONENTS FOR COMPUTING - page 16 Picture courtesy Ferranti Ltd.

THE ELECTRONIC REVOLUTION - page 40

Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-4371002. Telex No 8811896. Published by Argus Specialist Publications Ltd.

TMnaluageicg makes soldering fast \& reliable

Ersin Multicore

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin}$ /lead for general purpose electrical soldering and $60 / 40 \mathrm{tin}$ /lead ideal for small components and fine wire soldering.

Slze PC115 60/40 tin/lead
£1.38 Handy pack notexmm do

Multicore Savbit

Size 3 40/60 tin/lead £4.37 Per reel 1.5 mm da Size 10 60/40 tin/lead $\mathbf{£ 4 . 3 7 \text { Per reel } 0 . 7 1 \mathrm { mm } \text { da } \mathrm { c }}$

Size 19A 60/40 tin/lead £1.15 Handy pack 1.22 mm da

Multicore Savbit, solder increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

$\mathbf{£ 1 . 1 5}$ Per pack 1.2 mm dia
Size SV130 Savbit £1.73 Per pack

Multicore Alu-Sol

 Multicore Alu-Sol, solder contains 4 cores of flux, suitable for most metals especially aluminium. Comes in handy dispensers on tool box reels.> Size AL150 Alu-Sol £2.07 Per pack. 14 Kmmm dio

Size 4 Alu-Sol $\mathbf{£ 7 . 8 2}$ Per reel $\mathrm{i} . \mathrm{mmm}$ da

All prices inclusive of VAT.
Available from most electrical and DIYs stores. If you have difficulty in obtaining any of these products send direct with 50 p for postage and packing. For free colour brochure send S.A.E.

Multicore Solder Wick

Multicore Solder Wick, absorbs solder instantly fro tags and printed circuits with the use of a 40 to 50 watt soldering iron.
Quick and easy to use, desolders in seconds.
Size AB10 Solder Wick
£1.43 Per pack

Multicore Tip Kleen

Multicore Tip Kleen, soldering iron tip wiping pad. Replaces wet sponges.

Size 2 Tip Kleen $\mathbf{£ 0 . 9 2}$ Per pack

Bis Wire strippers and cutters

Wire strippers and cutters, with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-gri,

Bib Audio/Video Products Limited
(Solder Division), Kelsey House,
Wood Lane End, Hemel Hempstead,
Hertfordshire, HP2 4RQ.
Telephone: (0442) 61291
Telex 826437

MONITOR

Fourth London Computer Fair - 1983

The Fourth London Computer Fair is to be held from 14 to 16 of April at the Central Hall, Westminster. This year, the computer fair will be part of a larger London Computer Festival, which is being held to bring together all the activities organised by the Association of London Computer Clubs, and events held in London and the South East to mark Information Technology Year in 1982.

The Computer Fair is the latest of an annual event organised by the Association of London Computer Clubs (ALCC), a group of some fifteen local computer clubs in the London Area. The Fair started out when the North London Hobby Computer Club invited other clubs to join them in organizing the event, and since then it has become yearly more popular, so that now it has become one of the major exhibitions for micro-based systems and projects, attracting both major UK micro companies and the smaller companies in south east England.

This year, as part of the Computer Festival, the Computer Fair is being cosponsored by the ALCC and the GLC (with the actual running being done for the first time by a professional organisation, Goddard, Steadman and Partners).

The main aim of the ALCC and its member clubs is simply to spread knowledge about the use of micros, especially for home users, to put people with computers in touch with each other, and to run seminars, meetings and lectures to teach people what can be done with home computers. They want to establish new clubs, and help information to circulate between groups. Eventually, any kind of group with an interest in hobby computing should be able to join. There is a three-man executive committee, and the chairman and secretary from each member club will form a clubs council. There will be specialist subcommittees to deal with specific aims and projects within the ALCC, so there will be opportunities for people with particular interests to actively do something, about them.

Members of associated clubs can attend each other's meetings, and newsletter is circulated to club secretaries. Information is available on Prestel, starting on page 80080 , including a newsletter which is updated daily. Remember that Prestel terminals are now available for use in many public libraries. The ALCC also has various discount and bulk purchasing schemes for members.

The main clubs participating are the Croydon Micro Computer Club 101653 3207 or 764 4043), Harrow Computer Club (01950 7068), North London Hobby Computer Club (where the whole thing started) (01607 8349), East London Amateur Computer Club (01554 3288), North Kent Amateur Computer Club (Biggin Hill 71742), Richmond Computer Club (01 892 1873), South East London Micro Computer Club (01 853 5829), West London Personal Computer Club 101997 9437), and Worcester Park

Computer Club (01 337 1609), as well as in-house clubs in places like the Post Office HO, Home Office, etc. All these clubs have regular meetings, monthly or more often, and the North London Hobby Computer Club is run from the Polytechnic of North London, where it holds structured courses on a termly basis, open to members of the public.

The London Computer Festival is being organised by a consortium of computer interests, including the National Computing Centre Micro Systems Centre, and local authority computer centres. For information on the Festival, contact the Secretary to the Consortium, GLC Central Computer Service, Room 431, County Hall, London SE1 (01633 3348).

For more information about the ALCC, contact the ALCC at North London Hobby Computer Club, Polytechnic of North London, Holloway, London N7 8DB. Tel: (016072789).

Going Up

Many a radio amateur wants to set up a radio mast in the back garden, but, having overcome all obstacles and finally put it up and into operation, finds that he's got the thing the wrong way round, or the mast isn't quite tall enough, or it's prone to blow over - and so on. Allweld Engineering's Altron SP1 Swing Post is a practical way to reduce access problems on radio masts: it is basically a hinged post which can be either latched upright, or swung into a horizontal position at about waist height for adjustments. The swing post will hold a mast made of any piece of aluminium tubing, from $13 / 4$ to 2 in in diameter and up to 6 m (20ft) long, and Allweld also supply 2 in tubing up to 5 m long at $£ 6.50$ a meter, if required.

The swing post is made of galvanised steel and simply sets into concrete, or impacted filling, in a hole in the ground (it could even double as a washing-line post, couldn't it?). The SP1 costs $£ 49.50$, inc. VAT and UK carriage.

For mobile broadcasters, the Altron PM1 portable mast is made in zinc-plated steel tube and is designed to telescope into 1.5 m sections for easy carriage. Thus it can be packed into any car and easily set up, with the car as a support, at any location. An adjustable-height bracket clamps to the guttering of most car roofs, while allowing the mast to be rotated. The PM 1 extends to 5.5 m (18 ft) and costs £40.50, VAT and UK carriage inc.

Finally, a universal aerial mounting, for television, CB, amateur radio aerials, etc. The QM1 is a pressure-bar which fits across most window openings or similar from 25 to 42 in (or more with an extension) in a vertical or horizontal position. The fixing clamp takes tubes from $11 / 2$ to 2 in , and no drilling or brackets are needed for fixing. For rotatable or long masts, up to 8 ft long and 12 lb weight, an extra support arm is available which can mount on the QM1 itself, or be set into the wall. We don't have a price for this one, but all orders and enquiries should go to Allweld Enginearing, Unit 6, 232 Selsdon Rd., S. Croydon. Tel: 016816734 or 01680 2995.

Shorts

Camtec Circuits and Systems have produced four new finger heatsink designs for use with SOT32 and TO220 case plastic transistors. The heatsinks, made from high-grade black anodised aluminium, come with composite drillings to allow a variety of devices to be mounted either flat, or on legs that pass through the PCB. They are also available undrilled or with special drillings if \boldsymbol{r}^{-} quired.

For details and prices contact Camtec Circuits and Systems, 5 York Rd., Bognor Regis, W. Sussex. Tel: (0243) 862911

Electronic Hobbias have sent us a description of how to convert their $31 / 2$-digit Digital Panel Meter kit for use as a digital thermometer. The kit contians an IC, PCB, liquid crystal display, components and hardware to build a DPM on a single chip, run from a 9 V battery. Extra components needed for the conversion have to be obtained in addition to the kit. Other applications mentioned are input attenuator, AC voltage meter, multirange DVMs, current and resistance meters. Details from Caroline Stewart, Electronics Hobbies Ltd., 17 Roxwell Rd?, Chelmsford, Essex CM1 2LY. Tel! (0245) 62149.

Black Star are supplying the Sabtronics 8000 nine-digit frequency meter, a pottable, battery or mains operated meter. capable of measuring frequencies between 1 Hz and 1 GHz with 'impressive accuracy'. Frequencies are covered in threre ranges and three gate times are provided.

There are two BNC inputs 110 Hz to $100 \mathrm{MHz} / 1 \mathrm{MR}$ and 10 MHz to $1000 \mathrm{MHz} / 50 \mathrm{R}$) and a sensitivity control. Sensitivity ranges from 20 V to 10 Hz to 35 mV at 1 GHz . Maximum resolution is 0.1 Hz (on the 10 MHz range), 1 Hz (on the 100 MHz range) and 10 Hz (on the 1 GHz range), all using a ten second gate time.

The 8000 costs $£ 155.00$ plus VAT Specification and information from Black Star Ltd., 9A Crown St., St. Ives, Cambs PE17 4EB. Tel: (0480) 62440.

Stotron have added miniature relays by National to their catalogue, including subminiature DIP relays with single or double pole operation and very low operating power, for 12 or 24 V ; four pole miniature relays capable of switching 5A at 250 VAC , for 24 VDC or 220 VAC ; several kinds of low-profile relays, and various sealed terminals to give higher reliability and to prevent solder contamination.

General enquiries to Stotron Ltd., Haywood Way, Ivyhouse Lane, Hastings, E. Sussex TN35 4PL. Tel: (0424) 442160.

Electronic Hobbies have produced a range of 'Simplex' lightweight soldering irons. These are available for 24 or 48 V , and 18 or 23 W , and cost $£ 5.00$ plus $£ 1.00 \mathrm{p} \mathrm{\& p}$, with VAT to be added to the total cost. The irons conform with international CEE11 and BS 3456 safety regulations. A wide range of iron-clad soldering bits is also available.

Order or enquire: Electronic Hobbies Ltd., 171 Broomfield Rd., Chelmsford, Essex CM1 1RY. Tel: (0245) 62149.

Casio, who are already known for pacemaker watches for joggers and runners, have now produced a waterresistant watch (over a distance of 50 meters) for swimmers and people in training for other water sports.

One characteristic of these watches is their ability to bleep at regular, pre-set intervals, to help a runner keep his stride rate steady, important for athletic training. The water-resistant J30 also has a daily alarm, countdown timer alarm and stopwatch feature.

Price is $£ 14.95$ (RRP). For further information, contact Casio Electronics Co. Ltd., Unit 6, 1000 North Circular Rd., London NW2 7JD. Tel: 014509131.

A New Hobby Shop

Hobbyists from South London and further afield will be interested to know of a new component and hardware shop opening in SW18, near Southfields and Earlsfield stations. JEE Distribution's shop will be open usual hours plus 10 am to 4 pm on Saturdays, and will be stocking over 4000 electronics items, with the aim of providing a complete equipment source for the hobbyist. A catalogue aimed specifically at hobbyists is available for 25 p, and you can write for a complete catalogue and mail-order prices to Roger Buckingham, JEE Distribution Ltd., 43 Strathville Rd., London SW18 40X. Tel: 018700075 (5 lines).

Telephone Ringer

Inspired by our 'Telephone Repeater' project back in October '81, Tutchings Electronics have sent us information about the new 'Door Bell Repeater' they are producing. This can be set up just about anywhere that a length of wire will reach (Tutchings mention the garage and the garden, but do not say specifically that it is suitable to be mounted out of doors, so you will have to check that) and will sound a bell and flash a green light when the doorbell rings.

This is obviously useful for anyone some distance from their doorbell, or engaged in some noisy pursuit like watching the telly, and the light facility (an optional switch is available to switch off the bell when required) is especially handy when a silent alarm is wanted, or for the hard of hearing. The repeater can be set to sound as many times as you wish for each ring of the doorbell. Apparently, it doesn't work with chimes, but it might be possible to wire it in to some chime systems, so it may be worth asking.

The repeater can be powered either by PP9 battery or from an AC adaptor (which can be supplied for $£ 3.50$). The price of the Door Bell Repeater is $£ 11.50$ plus $£ 1.50$ p\&p, and it is guaranteed for one year. Write to Tutchings Electronics Ltd., Crest House, 3 Grange Rd., Southbourne, Bournemouth BH6 3NY. Tel: (0202) 424858.

Nellie Goes Home

Still on the subject of computers, but going back a bit in time, one of the oldest first generation computers actually to be put to regular commercial use in Britain is being returned to its makers, STC (who no longer make computers now), for their archives.

The computer, known as Nellie, is a Stantec Zebra, 'which can be described as a serial digital computer with a 33-bit word length. Operation is based entirely on a magnetic drum rotating at 100 revolutions per second, 32 words per track giving a word cycle time of about 312 microseconds. Although this sounds slow compared with modern computers, the long word length enables a high degree of arithmetical precision to be combined with a multiplicity of switching
operations that could take place in one word time. For precision mathematics, the machine's efficiency is still close to that of the latest equipment available.' For comparison's sake, it takes three kW to heat up Nellie's 600 valves, and 21 fans to make sure they do not overheat. It then takes another four KW to enable her to calculate, when the high-tension circuits are switched on, and she requires a 270 sq ft computer room to herself. She has the capacity of a small desk-top micro today.

Nellie has had a fairly impressive history: she was the main computer at Woolwich Polytechnic until the mid1960s, when STC stopped making computers, which effectively made her obsolete. Later, she was acquired by a gentleman called Mr. MacRae as a backup computer for another Zebra that he was already using in his business - this was long before business computers were the commonplace they now are - and Mr. MacRae's computers were also used by a firm of sail designers, Bruce Banks Sails Ltd. The two computers were used together, each providing a backup for the other, but when the first machine was destroyed by fire in the early 70s, Bruce Banks Sails took over Nellie full-time '(such was her reliability that she had never required the backup) and used her for all their research and development work until January 1981, when all her programs were transferred to a modern micro.

By taking a gamble and relying on Nellie at a time when she was obsolete and when there was no outside source of maintenance, Bruce Banks Sails was able to use a computing facility which they would not have been able to afford in any other form, and gain a world lead in the scientific approach to yacht sailmaking, which is today a precise science. Nellie could be said to represent the birthplace of sail technology.

Comparing the dimensions and enormous power of old computers with the tiny size of modern micros which can do the same tasks is a awe-inspiring exercise. Here's hoping that other old machines like Nellie will be preserved in museums and by private owners so that we can look back on them in the future.

Software For Sinclair

Sinclair Research have announced eighteen new software cassettes, mostly adventure games, for the Spectrum and ZX81.

The most expensive tape is The Hobbit, designed for the 48 k Spectrum, a fantasy game based closely on the book of the same name, and indeed the game package from Melbourne House publishers includes a copy of said book to give the player hints on what to do next. The game, of course, develops according to the player's decisions, and if he takes too long over them, it will develop without him! The Hobbit has been written to use the full potential of the 48 k Spectrum, and has a built-in 500-word 'inglish' vocabulary to instruct the computer. Will Bard the Bowman miss this time? Will Smaug the Dragon eat the thirteen dwarves and re-invest his hoard? Here's your chance to find out - it costs £14.95.

There will be a review of The Hobbit game in a future issue of HE.

Also for the Spectrum are four adventure games: Adventure A (Planet of Death) Adventure B (/nca Curse), Adventure C (Ship of Doom) and Adventure D (Espionage Island), all published by Artic at $£ 6.95$. Sounds like a normal day's work for Harrison Ford. Then there is Reversi, a modern version of the late nineteenth century board game (also known as Othello) with nine levels of difficulty, from Games Of Skill, price $£ 7.95$, and two practical programmes from ICL, the Collectors Pack, which enables collectors to hold a minimum of 600 records of up to nine items on one cassette, and the Club Record Controller, both $£ 9.95$.

All these are for the 48 k Spectrum, excepting Reversi, which is for the 16 k version, and Adventure A, which can be played on either the 16 or the 48 k model.

For 2×81 users, the four adventure games are available for use with the 16 k RAM pack, and are priced $£ 5.95$ each. Reversi costs $£ 6.95$ and needs 16 k . Also for the $16 \mathrm{k} \mathrm{ZX81}$ is Thro' the Wall/Scramble, and a tape with two interactive games in machine code, Super Glooper and Frogs, both from Psion/Microgen at $£ 4.95$.

For the 1 k ZX81 there is a Games Pack with eleven items ($£ 6.00$) and a new ZX81 Chess tape (£2.95) - these are both from Artic.

For the experienced ZX81 operator, there is a new $Z X$ Toolkit (Artic, £5.95) which gives nine new functions: renumber, delete, MEM, dump, find, replace, save and append, and remkill.

Prices are all inc. VAT and the tapes are available now from Sinclair Research, Stanhope Rd., Camberley, Surrey, and from retail stockists.

Oric the Third - and Forth

A 32k version of Oric Products International's Oric I microcomputer will be available from January 1983 - it should be in the shops now. It retails at $£ 139.95$ (inc. VAT), making a trio with the 48 k

Oric at $£ 169$, and the 16 k version (£99.95).

All the Orics run on extended BASIC, but for mail order purchasers only there is a free cassette containing FORTH as a second language with the 48 k model. This cassette is to be available as an optional extra for other buyers of the 48 k and 32 k Orics. More information from Oric Products International, Coworth Park, London Rd., Ascot, Berks SLL 7SE. Tel: (0990) 27686.

OK, OK, OK

OK Machine \& Tool have now issued their 1983 catalogue with " 108 pages of information on tools and equipment for electronics, telecommunications, manufacturing, field services, labs, as well as schools and hobby users... It also features a unique product line of low cost tools and products, especially for educational and home use, and is full of useful technical and product information." Updates will be added every quarter.

Also from OK is a series of wire binding posts by BP which can be connected to a phono plug, banana plug, alligator clip, spade lug or wire, and plastic washers are available for complete insulation from PCB or chassis. For amateurs, these are available in packages of four (one red, one yellow, one green, one black); there are also bulk packages of 100 of any one colour.

A hand-held voltage and continuity tester, the Steinel Combi-Check, claims to be foolproof and fully protected against any damage to the unit (or the user) from wrong operation. Covering a voltage range of 6 to 660 V AC/DC in eight increments, it is shock protected by a high input resistance, and protected against voltage surges.

The Combi-Check can be used for phase-to-ground testing, polarity, continuity in the 0 to 2MR range, and diode testing, as well as AC/DC voltage testing. Its performance and display levels can be
checked on a voltage indicator before ot during voltage testing, and it gives visual and audible readouts.

For further news or catalogue, contact OK Machine \& Tool (UK) Ltd., Dutton Lane, Eastleight, Hants S05 4AA. Tel: (0703)610944.

Open And Closed

Open Sesame? It's not quite as simple as that, but if you are fed up with climbing out of your car on wet windy evenings and struggling with the garage keys, you could consider a remote-controlled garage door mechanism. Slave-Dor, longtime specialists in automatic door control, are now handling the US-made Moore O Matic screw-driven remote-controlled garage door operator.

The newest model, called the Ultra Lift 838 , costs $£ 247.00$, and is operated by remote control from inside the car. The basis of the opening mechanism is a triplethread $3 / 4$ " hollow aluminium screw and belt-drive mechanism with a microprocessor controlled circuit board (easy to replace in case of failure). The 'door open' and 'door closed' limits of the screw, and the pressure needed to stop automatic opening or closing in case of obstruction are adjustable by the owner. The whole mechanism is designed to resist interference by ice, gravel and other driveway hazards, and includes an ingarage light which comes on automatically.

Slave-Dor haven't told us whether the unit is user-installable, or whether the remote is IR or ultrasonic, but they have told us that there is a cheaper version for $£ 181.75$, and that they will be introducing a version for domestic gates, which is user-installable.

For full details, contact Slave-Dor (UK), (Division of Amplite Electrical Ltd.), 1 Maidstone Rd., New Southgate, LondonN11 2TR. Tel: 018812905.

Going Down

What lies at the bottom of Loch Ness? What lies at the bottom of the generations-old desire to know what lies at the bottom of Loch Ness? Everybody (just for once, we can use this oft-abused cliche with some accuracy) has heard of the Monster - generous time and resources have been spent on tracking it (him? her?). But the Loch Ness Explorers Club are taking an entirely different and down to earth track, by ignoring the palaeontology and getting on with the archaeology.

The Explorers Club are planning to survey the entire floor of Loch Ness, and record - on computer and video and any other appropriate method which is presented - the geography of the loch and any man-made remains which have sunk to the bottom during the loch's millenia-old history as a cross-country waterway (it's part of the Caledonian canal and was at one time the main route across Scotland). They have two sailing boats, video and computer equip-
ment and, far from trying to acquire more heavy-duty gear, want the whole project (which they expect to run for about five years) to be run entirely with the ideas and assistance of hobbyists. In their own words:
"What we are looking for is hobbyists who might fancy designing and building equipment that we can use to further the survey. The hobbyists may either send their built pieces to us and we will try them out and return them with a report of their performance, or better still, they are most welcome to bring them along and try them out themselves on Loch Ness on board our research vessel. This way the hobbyists get a chance to test their ideas and their prototypes under practical conditions. The kind of equipment we need is varied indeed. It ranges from robots, capable of working in 800 feet of water, remote-controlled grabs, TV cameras, water-tight cases, low level lighting systems, sonar (tight beamed), computer recording data methods, position fixing systems.
. .th that a hobbyist can dream up and wants testing. Timte is plentiful, so any modifications that may be needed to someone's idea will be able to be tried out, too. No project is too small, too trivial."

Members of the club will get a quarterly progress report, opportunities to visit the site and use the equipment, and contribute any ideas, even seemingly unlikely ones, which come to them.

This sounds like a good opportunity for inventors and adventurers, as well as down to earth hobby designers, to try out their ideas in the field.

The address to contact is: The Loch Ness Explorers Club, "John William". Foyers, Inverness-shire, IV1 2YB, Scotland.

Prestel Editing

Continuing on the theme of computer clubs: The Association of Computer Clubs (ACC - not to be confused with the ALCC), acting in its role as the national body representing the computer hobbyist, has linked up with Micronet 800 to create Club Spot 800, a new way to involve the ordinary computer enthusiast in Prestel editing.

Club Spot 800 will be on Prestel * $8008+$, and will contain news and ideas about micros and micro clubs, programs, sales, wants, views etc.

The ACC is holding an editors conference on Saturday 26 February, at the Institute of Grocery Distribution, Grange Lane, Letchmore Heath, Watford, Herts. The nearest station is Watford Junction, and lifts can be arranged from there. Registration is free in advance, or $£ 5.00$ on the door, subject to space. There will be an introductory talk on Prestel editing, a hands-on session and questions and discussions.

For information, contact Rupert Steel, ACC National Prestel Committee Secretary, St. John's College, Oxford 0X1 3JP. Tel: (0865)512811.

Starting February 12th we will be open from 10am to 4pm every Saturday to sell our vast range of components at bargain prices. You will easily find us in Daventry on the A45, opposite the John O'Gaunt Hotel.

SATURDAY BARGAINS \star *
EMOS SATURDAY SALES

					ACCESS AND BARCLAYCARD WELCOME						
				년							
			120								
	为		Caniactrons		Tous						
				边							
				边							
	SWMAEI					为					
					Opro						
		Lrumeres									
	Schs	何									
				Componevr Kirs							
The Rapid Guarantee \star Same day despatch $*$ Competiive prices \star Top quality components \star In－depth stocks											

elearrowne
 AUTO-ELECTRONIC PRODUCTS

KITS OR READY BUIT

ELECTRONIC IGNITION

IS
 YOUR CAR
 AS GOOD AS IT COULD BE?

\$ Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery

* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
- Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders).
* Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
- Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.

Most NEW CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems. $31 / 2$ times the spark energy of ordinary capacitive systems, 3 times the spark duration.

Total Energy Olscharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTEAFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.

* IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without baliast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS: (Older current impulse types need an adaptor).

STANDARD CAR KIT	£15.90	
Assembled and Tested	£26-70	P. \& P. f1 (UK)
TWIN OUTPUT KIT	£24.55	
For Motor Cycles and Cars with twin igni	in systems	inc
Assembled and Tested	£36.45	-

TWIN OUTPUT KIT £24.55
Assembled and Tested $£ 36.45$
nclude VAT
 minature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code)
t 80 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.

* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
\& INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
- 30 SECOND DELAY when system is armed allows owner to lock doors etc.

Don't Wait Until Its too Late ~ Fit one NOW!

* DISABLES IGNITION SYSTEM when alarm is armed.
- IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES.
SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

CAR ALARM KIT
£ 24.95
ASSEMBLED AND TESTED $£ 37.95$
PLUS
P. \& P.

E1 (U.K.)
Prices
include
VAT

Access and Visa
Welcome. Write or
Phone Quoting Number

HOWEVER long you have been building your own electronic projects, the problem of how to house them remains a perennial one. No matter how well the project works, you won't want to show it off to the girlfriend, boyfriend, neighbour, mother-in-law, budgerigar, cat etc. unless it looks good . . . will youl

Over the next couple of pages you'll find all of the information you need to be able to put a project into a box or case and give it the high-quality appearance that it deserves. When you've finished reading this article we think that, even if you have never put a single electronics project into a case before, you will agree that housing a project is just a matter of following a few simple rules.

First things first. What sort of housing are you going to use? There are hundreds of different boxes and cases on the market - some cheap, others not so cheap. You might even make your own if you can, but the problem remains the same, whatever box you decide to put your project in: how do you make it look presentable? After all, you might argue that it doesn't matter what it looks like inside, it's what is outside that people see, so the box itself is important to the final appearance of your project.

Assuming that you have already built up your project on a printed circuit board (PCB) or piece of Veroboard and tested it to make sure it works and does everything it's supposed to, the peripheral components (called panel hardware) such as potentiometers, meters and connection sockets will be joined to the PCB by short lengths of wire.

Write a list of all these controls sockets, meters etc. - which need to be accessed from outside the case. Other examples of controls are the volume, treble, bass and balance on a stereo amplifier, while input and output sockets are almost always needed. Now, take a few minutes and try to visualise a layout for the front panel of the project box. Some projects will have an obvious layout - for example an amplifier looks 'right' in a case having a long, thin front panel, with all controls in a straight line. Front panels of other projects could take a bit more thought.

There are two ways of going about this, depending on whether you already have your box or not. If you have a box then the size and shape of the panel is fixed. However, if you haven't got a box you can decide your own front panel size and shape - but then you have the problem of finding a box to suit your requirements. Keep a few catalogues from mail-order companies handy because they will give you a good idea of what boxes you can get (and how much they cost!). Above all, don't rush this stage; take your time, perhaps draw out in pencil on paper a few rough-sketched panel layouts until you've got the one most suitable for your project.

It's worthwhile remembering, while you are designing your front panel, the rule of the 'Five Ps' - Prior Planning Prevents Poor Performance. In other words, a bit of careful thought before you put your project in its box will help stop you making any mistakes. Don't make a move until you are sure you have every-
thing plannedl Don't drill a hole, don't even mark the case until you are positive you haven't missed anything out; once you've marked or drilled the case you can't go back and start again - you have ruined the casel

Centres of all holes for all panel hardware should now be marked using a hammer and punch; a punchmark will keep a drill bit in the right place and prevent it from slipping, scratching or scoring the panel. Small holes can be drilled out using a hand-drill and bit, but a power drill fitted with the correct sized bit is better still. Large holes can be a bit trickier. There are two general methods punching, or sawing and filing. Punching gives by far the neatest and cleanest of holes, but you have to have the correct sized punch. If you want a lot of different sized holes you need a good selection of punches, and the problem here is that punches are quite expensive. If you can't afford to buy more than a couple then it's best to buy sizes which you will use most often. For example, a punch which gives a hole to suit potentiometers is a good size to buy because most projects use at least a couple of 'pots'

Using a punch is simple. Drill a pilot hole in the panel to fit the centre bolt of the punch. Now, following the instructions which will be supplied with it, handtighten the parts of the punch until the

Keith Brindley

With patience, a few sim a home-built project can as "a bou

cutting edge bites onto the panel. Now, using a spanner or Allan key tighten the punch until the hole is cut. It really couldn't be simpler.

The other method of making large holes is a bit more fiddly and takes more care, but is decidedly cheaper. Using a pair of dividers or compasses, mark out

Top left: the professional touch custom metalwork for the HE TV Amp by Newrad Instruments Ltd, assembly and finish by Paul Coster.

Above: A project wired-up for testing. Later it will have to be disassembled for mounting in a case.

Left: A range of simple metal and plastic enclosures.

ple tools and a little skill, be made to look as good ght one".

the exact size of the hole in its correct position. Next, punch-mark and drill a number of holes around the inside of the circumference of the hole. Now, using a padsaw, or junior hacksaw, cut round the marked hole, keeping fractionally to the inside edge of the circumference, going from each small drilled hole to the next.

When you have cut all the way round, the centre will fall out. Then, using a halfround file, carefully file all round the inside edge of the hole until it is the correct size.

Take extreme care when you do any metalwork, because one slip with a drill bit, scriber, file etc. could make a scratch on the panel which you can never remove - the appearance of your project will be ruined.

The Inside Story

When you've made all the necessary holes in the front panel, it's time to think about how you are going to mount the project's circuit board. Plastic pillars are ideal; alternatively simple nuts, bolts and washers can be used to do the job. Whatever method you use, you will need to drill more holes to suit, but in the bottom of the case this timel

Next step on the agenda is to label the front panel so that all controls and switches etc. can be clearly identified. Rubdown transfer lettering is the best for this; there are many different makes of transfer letters but they are basically the same in use. The surface of your project must, first, be perfectly clean and free from grease - the lettering won't stick unless the panel is grease free so spend a bit of time cleaning the case. You can use a piece of rag sparingly damped with methylated spirits or, alternatively, one of
the commercially available kitchen scouring creams. Make sure your hands are clean at this pointl

Transfer lettering is bought as a sheet with a quantity of each letter of the alphabet and the numbers ' 0 ' to ' 9 ' on it. Have a good look at the selection of styles of lettering (called 'faces') you can buy; most manufacturers produce a catalogue for the purpose. Choose a face which you like and which will suit the project. A good tip is to buy a fairly plain face (so the style will suit more than just the one project) and one which is quite small in size (so that you get more letters per sheetl).

Transferring a letter is simply done by laying the sheet ink side down over the panel, making sure the letter you want is exactly over the place you want it. Now, with a soft-leaded pencil or a ball-point pen, slowly rub over the letter so that it sticks to the panel and stays behind when you remove the sheet. There are three useful tips here:

- lightly rule a pencilled line where the label is to placed; this way, the word will be 'straight'
- where a label is to be central, above or under a definite point (such as a pot) start labelling with the middle letter; this ensures the word is not lop-sided
- make sure your spelling is correct; once you've misspelt a word, you'll have to redo itl

Above: Front panel artwork for the HE Incremental Timer, drawn up from the printed circuit board.

Top right: Even a small bench drill is suitable for drilling PCBs, plastic and light metalwork.

Right: Panel mounted displays require square or rectangular holes, made by drilling, cutting and filing as described in the text.

If you do make any mistakes, ordinary cellophane adhesive tape can be carefully used to remove the offending letters. Lay a piece of adhesive down over the error, rub it down then pull the tape off; the letters underneath the tape will be removed with it. Be careful it doesn't catch any letters you don't want removed!

Spray it Again, Sam?

Transfer letters can be easily scratched and damaged so they have to be protected from mishandling. Clear protective lacquer is available in aerosol form, and this gives a hardwearing finish to your project's front panel, preventing all but

Above: Plastic mounting strips simplify the problem of securing a PCB or Veroboard within a case.

Below: Using rub-down lettering; a soft pencil will do as well as the special burnishing tooll

the fiercest of scratches from damaging the lettering. Most manufacturers of rubdown letters also produce their own forms of aerosol lacquer.

After you've sprayed the front panel, let the lacquer dry thoroughly. There's nothing more irritating than a messy (and irremovable) thumbprint on an otherwise perfect front panel, so allow at least the

Above: A neatly completed Hobby

Electronics project and . . . Middle: A not-so-neatly completed project; the 'birds nest' effect could have been avoided by the use of ribbon cable or . . . Below: Cable ties, such as these self-adhering types.
manufacturer's recommended drying time before you touch it!

When the panel is perfectly dry, the time has arrived to put the whole project into the completed case. Unsolder all connecting wires which were on the PCB for testing, and discard them. Now, mount all panel hardware and the PCB in their respective places in the case. At this stage you can put all control knobs onto any pot shafts, too. You may have to shorten the pot shaft to suit - but don't do this with the pot in the case, other wise you might damage the case; take the pot out and, holding it in a vice, cut the shaft to the correct length using a hacksaw.

We're at the point now, where we commence final wiring-up of the project. Following the projects's circuit, cut each connecting wire to the correct length; this helps to keep the project looking neat inside. Make each connection in two steps:

1. Solder one end of the connecting lead to one point, say the PCB.
2. Take the lead around the case to the other point, cut it to length; then solder it.

Make all connecting leads go around the case in the same fashion so that generally they group together. Then, when all connections have been made and you have checked the project, (making sure it still works), tie the group of leads together with a cable tie. Plastic cable-ties, lacingcord or simple string can be used for this job. Forming all connecting leads into such a bunch gives a very neat appearance to the inside of your project, much better than the "bird's nest" appearance you get when a project is wiredup with all connecting leads simply taking the shortest distance between two points. It really is worth the extra few centimetres of wire you might use in forming the group of leads.

Now, the only thing to do is put the lid onto your case and then you can take a step back to admire your fully housed and completed project. Neat, isn't it!

THREE FOR FREE

 merom

EXPERIMENTOR BREADBOARDS

No soldering mudular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to buld a breadboard of any size
All EXP Breadboards have two bus bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.
EXP $325 £ 2.00$ The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up 1022 pin ICs Has 130 contact points including two 10 point bus-bars.

EXP 350 £3. 15 Specially designed . for working with up 1040 pin ICs perfect for 3 \& 14 pin ICs
Has 270 contact points including two 20 point bus-bars.

EXP $300 £ 6.00$ The most widely bought bread-board in the UK With 550 contact points, Iwo 40 point
bus bars, the EXP 300 will accept any size IC and up to 6×14 pin DIPS Use this breadboard with Adventures in Microelectronics.

EXP 600 ¢6.30 Mos MICROPROCESSOR projects in magazines and educational books are bult on the EXP 600 .

EXP 650 £4.25 Has $\cdot 6$ centre
spacing so is perfect for MICROPROCESSOR applications.

EXP 4B £2.50 Fou
more bus bars in "snap-on" unit

The above prices are exclusive of PGP and 15% VAT

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd, Dept. 14TT

Unit 1, Shire Hill Industrial Estate,
Saffron Walden. Essex CB1 13 AO .
Tel: Saffron Walden (0799) 21682
Telex: 817477

Available from selected stockists ELECTRONICS BY NUMBERS No. 10 SOIL MOISTURE TESTER No more wilting houseplants with this soil

 moisture test. Just place the probes into the soil and it will light up to tell you whether the soil is "too wet" or "too dry". You don't even need green fingers.No. 11 DIGITAL ROULETTE
The suspense and excitement of the casino in your own home. Just press the button, the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.

No. 12 EGG TIMER

How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking now!
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph

You will need: One EXP 300 or EXP 350 breadboard 15 silicon diodes
6 resistors 6 Light Emitting Diodes
Just look at the diagram. Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components. connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

For full detailed instructions and layouts of Projects 10,11 and 12 , simply take the coupon to your nearest GSC stock ist, or send direct to us; and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet

If you have missed projects, 1, 2 and 3, or 4,5 and 6 , or 7.8 and 9 , please tick the appropriate box in the coupon

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost Two easily assembled kits.

PB6 Kıt, 630 contacts, four 5-way binding posts accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT £11.00

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kıt economy. PROTO-BOARD $100 \mathrm{KTT} £ 14.25$

COMPONENTS computing
 Paul Kelly

Like elephants, ROMs never forget (unless you want them to).

Last month we outlined the different types of memory used in microcomputing systems and discussed, in detail, RAMs (Random Access Memory). We continue this month by looking at the other main memory type, ROMs (Read Only Memory). A ROM is in fact a type of random access memory (but rarely referred to as a RAM), in that it consists of a number of memory cells organised as a number of randomly addressable data words, each of one or more bits wide. The most significant difference between a ROM and a RAM is that the data stored in a RAM may be freely altered during normal operation of the device whereas in a ROM, the data is fixed at manufacture or by a programming procedure (depending on the type of device) and is unalterable in-circuit. The property enables ROMs to retain data when no power is applied to the device and is called 'non-volatility'. Such devices are of particular use in microcomputer systems where it is desirable to have the machine's operating software available immediately from powerup, whether it be a BASIC interpreter in a home microcomputer, a Disc Operating System (DOS) of a business machine or an industrial control system.

There áre a huge variety of ROMs, in general use, which vary in the technologies of fabrication, in the means of data fixing and, of course, in their capacities and organisations. Most of the devices fall into one of the following broad categories: mask programmed ROMs, bipolar programmable (fusible link) ROMs, UV-Erasable ROMs (EPROM) and electrically alterable ROMs (EEPROM).

In a mask programmed ROM, the stored data is determined by the set of masks used in the manufacture of the device. It is unlikely that these devices will ever be used by hobbyists, as the manufacturer's masking charge, although steadily falling, is of the order of $£ 2,000$ I Mask programmed ROMs are used widely by high volume manufacturers of microprocessor based equipment (eg microcomputers) where the overall cost per unit (over, say 10,000
devices) is very small.
EPROMS are the most popular ROMs, used almost universally by hobbyists, small volume equipment manufacturers and Research \& Development departments. The popularity of these devices lies, firstly, in their field-programmability, and secondly in their ability to be erased (by ultra-violet light) and reprogrammed many times. We will be looking at these devices, in particular, in the final half of this article.

EEPROMS have only recently hit the market and are, at present, too expensive to be in general use though no doubt they will completely replace EPROMS in the long term. EEPROMS vary in type. Generally they are programmed in the same manner as EPROMs but can be erased electrically (rather than by UV).

Pictures courtesy Ferranti Ltd.

some devices one location at a time and

 others, all locations together.Bipolar PROMs are almost always programmed by a method of "blowing' fusible links within the device. The programming process is irreversible - oncè a data bit has been programmed lusually from ' 1 ' to ' O ') it cannot be reversed. The basis principle of fusible links is itlustrated in Figure 1; when the cell is selected (addressed) by its row drive, it will pull the column output high if the link is intact - if the link is blown the column output remains low. The fuse, which is usually made of nichrome, is blown by momentarily passing a high current: through the transmitter and for this, Vce is often increased to a high voltage (although the particular programming requirements vary widely from one manu

Figure 1. (a) The physical structure of a bi-polar fusible link PROM cell; (b) the circuit of a single cell; (c,d) these drawings, showing the fuse intact and then blown, were made from a pair of photomicrographs of a PROM cell.

Figure 3. The structure of a UV erasable EPROM memory cell.

Table 1

TYPE	ORGANISATION	TECHNOLOGY	SUPPLY	CURRENT	PINS	COMMENTS
2708	$1 K \times 8$	NMOS	$+5,+12 \mathrm{~V}$	65 mA	24	Now obsolete.
2716	$2 K \times 8$	NMOS	+5 V	100 mA	24	Low cost type.
2532	$4 K \times 8$	NMOS	+5 V	100 mA	24	No OE pin.
2732	$4 K \times 8$	NMOS	+5 V	100 mA	24	Uses OE pin.
2764	$8 K \times 8$	NMOS	+5 V	150 mA	28	Pin compatible with 2732; expensive.
2564	$8 K \times 8$	NMOS	+5 V	150 mA	28	Pin compatible with 2532; expensive.

The essential characteristics of the most common EPROM types are tabulated above. As chip densities have increased lowcapacity ICs such as the 2708 have become obsolete. However, the very high density chips remain expensive.
facturer to another). Bipolar PROMS offer an advantage in speed when compared with other PROMs, which are usually MOS (access time of the order of $20 n S$ versus 200 nS for MOS). Because this extra speed is not required by the average microcomputer system, and because of the high cost and difficult programming procedures, bipolar PROMs are rarely used for storing software in microcomputers. However they are used in minicomputers and mainframes, within the CPU microprogram control unit (where speed is crucial); a more frequent use is as a substitute for a logic array, as shown in Figure 2. Each of the PROM's outputs is a logical function of the input (address) lines; if any required function is tabulated (as in a truth table) by storing the contents of the table as data in the PROM, it will then function as an equivalent array of combinational logic

Figure 2. An EPROM can be used as a look-up table; the 8 -bit result is stored at an address corresponding to the values of the 4 -bit multiplier and multiplicand.

$i_{s}=$ SET-UP TIME
$i_{h}=$ HOLD TIME
Figure 4. The timing diagram of a single program cycle for the 2716 EPROM.
which might otherwise be used to implement the function. The example given is of a 4-bit multiplier used to give an eight bit product, implemented with one ROM chip - an equivalent circuit with NAND and NOR gates would require many chips!

We return, now, to the subject of EPROMs because, as a hobbyist, this is the type you are most likely to encounter (particularly if you build the programmer presented in this issue). A profile of the 'silicon slice' of one memory cell is shown in Figure 3. Each cell is based on a single MOS transistor, with a 'floating gate' implanted in the silicon dioxide insulator normally placed between the transistor control gate and the drain-source conduction channel. During programming, a high potential applied between drain and control gate causes an injection of electrons into the floating gate across the SiO_{2} barrier, but when the high potential is removed, a charge remains on the floating gate indefinitely. This charge on the floating gate inhibits the control gate, preventing it from turning on the transistor; thus two logical states exist for the cell, depending on whether the floating gate has been charged or not. The presence of UV light raises the conductivity of the SiO_{2} sufficiently to permit a gradual leakage of charge from the floating gate. Typically, an EPROM will take 30 minutes to complete erasure using a commercial UV erasing unit. The UV light of sunlight is not strong in the required spectrum (short wavelength UV) and could take several weeks to erase an EPROM. However, erasure boxes can be purchased as cheaply as $£ 40$, these days, with tubes running at about $£ 12$ each, if you wish to DIY.

In Table 1 we have presented some of the characteristics of most of the popular EPROMS on the market, together with their pin configurations. Most of the devices are in 24-pin DIL packages (except the larger $8 \mathrm{k} \times 8$) EPROMS, which are 28 -pin) and have a glass 'window' at the top of the package to allow UV light to strike the exposed silicon chip. After programming, a paper label or similar must be placed over the window to prevent gradual erasure in sunlight or artificial flrouescent lighting.

We have not gone into the internal architecture of a ROM, as the interconnection of memory cells within the device is basically the same as for RAMs (see last month's installment). Externally, the devices are very similar as well; they have an address bus (the number of lines being determined by the memory capacity), a data bus (which for most devices, being intended for microcomputing applica-
tions, is eight bits wide) and a chip select line (CE) which allows many devices to connect onto the data bus (when high, the CE pin disables the data output drivers). Obvously, for a ROM, there is no R/W (Read/Write) line, and in its place a Program Voltage pin is provided.

The earlier EPROM types (eg 2708) were quite complicated to program, in that it was necessary to cycle through all address locations many times so as to avoid localised heating of the chip. Most of the modern EPROMS, though, are fairly standardised and may be programmed a byte at a time; we will consider the 2716 EPROM (probably the most popular, at £2.50 each) in particular. A programming cycle for the 2716 is illustrated by the timing diagram of Figure 4. With the device enabled (CE low) and the programming drive, VPP, at 25 V , a stable address and data word are presented to the appropriate pins of the device; the OE (Output Enable) pin is also taken high to avoid conflict with the data 'blanks' already present in the ROM. The data is then programmed by applying a high to the PGM/CE pin for a period of 50 mS . It is important to note that a blank EPROM as supplied by the manufacturer has all its bits 'high' and that, during programming, the appropriate bits are forced low; it is not possible to bring a bit back from a low to a high without erasing the entire device. For a 2716, it takes about a minute and a half to program all 2048 locations on an automatic programmer and it takes at least 20 mins to erase the device. This gives the software developer a very fast turn around on modifications he makes during program development.

It is also worth mentioning some details of commercial programmers, although they are priced from 'as little' as $£ 200$! Some of the cheaper programmers are simple copiers, and therefore of limited use to software developers (but of considerable use to 'pirates', most noticeably of video games!) For manufacturers, bulk copiers (to program several EPROMS at a time) have become a cheap time-saving device - again not much use to the amateur. The 'intelligent' EPROM programmers, now beginning to flood the market, are becoming just within the reach of the amateur's pocket, and offer all the facilities he could wish. Most of these have video displays (as opposed to the earlier LEDs) and, in conjunction with an integral keyboard, allow data to be entered and manipulated as required before programming. The project presented in this issue, however, is a compromise between what one would like and what one can afford

COMING SOON TO

RADIO CONTROLLED GËRBIL PROJECT

The April issue of Hobby Electronics features a special project of particular interest to all radio control enthusiasts and connoiseurs of digital devices.
You've seen HEBOT, now meet HOPPY, the Hobby Electronics Radio Controlled Gerbil! This unique project uses special circuitry to create a remarkable, life-like toy that will provide hours of fun for all the family (with the possible exception of the household cat).

Look for it only in the April issue of Hobby Electronics!

TOOL AND TEST EQUIPMENT FOR THE ELECTRONICS HOBBYIST

Also featured in next month's issue is another great Hobby Electronics survey, this time providing all the information needed to select the most useful items of tools and test equipment for your workshop.

AUTO POWER-DOWN

A simple but ever-so-useful project that can be built into many battery operated projects.

EPROMmer

Our two-part EPROMmer for 6502-based home computers is rounded off next month with full constructional details and a complete listing of the operating program.

Naturally, the April issue of HE will also include our popular regular features such as THE ELECTRONIC REVOLUTION and COMPONENTS FOR COMPUTING, plus your own letters in POINTS OF VIEW; despite all our efforts to restrain him, CLEVER DICK will be here as usual.

> March issue on sale at your newsagent from 11th February. Place your order now!

Although these articles are being prepared for the next issue, circumstances may alter the final content.
\qquad

 $\left|\begin{array}{ll}\mathrm{TIL321/2} & 130 \mathrm{p} \\ \text { T14330 } & 1400 \\ 7750 / 60 & 2000\end{array}\right|$ 30_{100}

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calender
receives coded time data from NPL Rugby. The clack never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided.
Complete Kit.
$\mathbf{£} 120+\mathbf{£ 2 . 0 0}$ carr. Ready Built Unit .
 Reprint of ETI articles at $£ 1.00+$ s.e.e.

MICROTRAINER
Complete Kit $£ 64.00+£ 1.00$ p\&p
1802 Ref. 67.00
IDEAL for HOBBYIB゙TS
explore the workings of microarn and and unravel the mystical field of computers. INVALUABLE for training centres, schools and industries - gives effective insight into micros to engineers, electricians etc not directly involved in the computer field. INEXPENSIVE - a truly low cost teaching aid - in fact a short step towards developing new ideas and systems.

BBG MICRO COMPUTER
 OFFICIAL DEALER
 Please phone for vvaliability

BBC Model B £399

(incl VAT) Carr £8/unit
Model A to Model B upgrade kit $£ 50$ Fitting charge $£ \mathbf{1 5}$
Individual upgrades also available. WORD PROCESSOR 'VIEW' 16K ROM $£ 52$
TELETEXT ADAPTOR $£ 195$
PRESTEL ADAPTOR $£ 90$
2nd PROCESSOR 6502/Z80 £170
ACORN SOFT/BBC SOFT/GAMES PADDLES IN STOCK

FLOPPY DISC INTERFACE

inc. 1.0 0.S $£ 95+£ 20$ installation. BBC FLOPPY DISC DRIVES
Single drive $5 \%^{\prime \prime} 100 \mathrm{~K} £ 235+£ 6$ carr. Dual drive 5 \% " $800 \mathrm{~K} £ 799+$ f8 carr. BBC COMPATIBLE DRIVES
These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £360; 400K £490; $800 \mathrm{~K} \mathbf{£ 6 1 0}$

MICRO TIMER

The programmable clock/timer is a 6502 based dedicated micro computer with memory and 4 digit 7 segment displays to form an extremely versatile timing device with following features: - 24 hour 7 day timer

- 4 completely independent switch outputs
- 6 digit 7 segment display output to indicate
real time turn-off times and reset times Individual outputs to day of week, switch and
status LEDs - Data entry through a simple matrix pad

EPROMmer For 6502-Based Computers
 Ian Hickman

Originally designed to operate in conjunction with a UK101 computer, the HE EPROMmer can be made to work with any computer using the 6502 MPU . Full construction details, including the PCB, component overlay and the operating program listing, will be presented in the April ' 83 issue of HE. Part 1: The Circuit and How It Works.

OVER the last few years the cost of PROMs (Programmable ROMs), and particularly UV Erasable Programmable Read Only Memories, has dropped sharply, while single rail 5 V types have largely displaced the earlier and less convenient three-rail types. For the budget conscious home constructor, the beauty of EPROMs is that. if you get it wrong, the PROM can be 'wiped' and used again, unlike a fusible link PROM, where one "burns one's boats" the first time it is programmed. To erase an EPROM, one simply exposes it to short wavelength Ultra-Violet light from, for example, a 12 in 8 W uncoated fluorescent tube. The "black light" tubes sold for such purposes as demonstrating the fluorescence of various minerals or rock samples are not suitable for erasing PROMs, as they only emit longer wavelength, less harmful, ultra-violet light. The author purchased an EPROM Eraser replacement tube and found that this works perfectly in a 12 V transistor fluorescent ballast which, at other times, is used as a tent light run from the car's cigar lighter socket when camping. The short wavelength UV radiation from the tube will completely erase an EPROM in twenty minutes or less, but on no account look at the tube when lit as the radiation is very bad for the eyes.

This EPROM Programmer is designed to program Ultra-Violet Erasable Programmable Read Only Memories, namely 2 K by 8 EPROMs such as the 2716 and 2516 , and 4 K by 82732 s. The author designed it to work with his Compukit UK101, but it should work
equally well with any 6502-based personal computer. The EPROM Programmer contains a 25 V power supply for the programming voltage VPP, but draws the small current that it needs at +5 V from the host computer.

It was decided before the design was commenced that operation should be simple. Thus, the only controls on the EPROM Programmer are two toggle switches; one selects 2716 or 2732 (16 K or 32 K) operation whilst the other selects Read or Program. Reading, programming and verifying are all carried out under the control of a "user friendly" operating system written in BASIC. The Programmer has been in use for many months now, and has proved extremely useful and completely reliable.

Circuit Design

To cope with 2716 and 2732 EPROMs, the circuit must be able to change the functions of pins 18,20 and 21 of the PROM socket - all other pin designations for the two devices are identical. Table 1 shows the functions of these three pins for the two different PROMS, and it can be seen that the logic level applied to pin 18 needs to be inverted for the 2732 (relative to the 2716) in the PROGRAM mode, but not in the READ mode. This can be achieved by using an EXOR (Exclusive OR) gate which inverts the signal to pin 18 only when +25 V is applied to pin 20 . How this is arranged will shortly become clear.

Figures 1 and 2 show the complete circuit of the HE EPROM Programmer.

Figure 1 shows the circuit board, with a 40 way DIL socket J 1 . This socket is connected by a 40 way jumper lead to the expansion socket of the host UK101 computer, though the EPROM Programmer does not use all of the signals available. Addresses A8 - 15 are decoded to define the position of the 6821 PIA (Peripheral Interface Adapter) in the UK101's memory map. With the connections shown, this is 32768. Addresses AO and A1 are also used by the PIA directly, to provide access to Control Register A, Peripheral Register A, Control Register B or Peripheral Register B as appropriate. For those who have not used the 6821 PIA before, Figure 3 shows its internal structure RSO and RS1 are connected to address lines A0 and A1 of the host computer's address bus and route the PIA's data bus (connected to the UK101's data bus) as shown in Table 2. When RSO,

TABLE 1

			PROGRAM	
EPROM	PIN	READ	START	INHIBIT
2716	18	0	1	0
2732		0	0	1
2716	20	0	1	1
2732		0	+25 V	+25 V
2716	21	+5 V	+25 V	+25 V
2732		A11	A11	A11
2716	IC5a	0	0	0
2732	PIN1	0	1	1

Two switches are used to change the logic functions according to the programming operation and the type of EPROM, as shown above.

Figure 1. The main circuit board carries the sockets connecting to the host computer (J1) and to the EPROM (J2), the PIA (IC3) and its address decoders (ICs 1 and 2), plus the EPROM address latch (IC4). IC5 and 01 are concerned with the EPROM pin functions; two spare gates are used to drive the 'Busy' LED.

Figure 2. The power supply and pin function logic circuits are designed as separate modules.

RS1 $=1.0$ respectively, access is provided to Control Register A. Then, writing a ' O ' in bit two of the eight bit Control Register A-CRA2 $=0$ provides access to Data Direction Register A (DDRA) if RSO, RS $1=0,0$. For each bit in DDRA which is then set
to a ' O ', the corresponding bit in Peripheral Interface A (PAO - 7) is set as an input, whilst a ' 1 ' sets it as an output. That is, RSO, RS1 $=0,0$ accesses DDRA if CRA2 $=0$, or Peripheral Interface A if CRA2 $=1$. In the latter case, PAO - 7 are all inputs if

DDRA holds zero and are all outputs if DDRA holds 255. (The EPROM
Programmer uses all eight lines, PAO 7, as all inputs or alternatively as all outputs, although under control of DDRA, any mixture of inputs and outputs can be set up).

TABLE 2

RS0	RS1	CRA2	CRB2	LOCATION SELECTED
1	0	x	x	CONTROL REGISTER A
0	0	0	x	DATA DIRECTION REGISTER A
0	0	1	x	PERIPHERAL DATA REGISTER A
1	1	x	x	CONTROL REGISTER B
0	1	x	0	DATA DIRECTION REGISTER B
0	1	x	1	PERIPHERAL DATA REGISTER B

The 6821 Register selection programming. Control signal RS1 selects either control Register A or B, while RSO selects either the Data Direction Register or the Peripheral Data Register of the selected side.

Figure 3. The internal architecture of the 6821 PIA. Not all the functions are used by the EPROMmer circuit!

Figure 4. Detail showing the PIA address decoding circuitry. With the connections shown, this places the PIA at 32768, though other addresses can be arranged by selecting the appropriate outputs from each decoder section.

We do not use bits 0, 1, 6 or 7 of CRA, but in addition to bit 2 we also need bits 3, 4 and 5. These control line CA2, and we configure this as an output, which is set to a 0 or a 1 as appropriate by the BASIC operating system, as will be explained later.

Similar comments apply to the B sidr of 6821, as shown in Table 2.

The arrangement of the 6821 thus provides access to a total of six registers whilst only occupying four consecutive memory addresses. The present circuit does not take advantage of this economy of address space since for simplicity and economy, partial

Building Blocks

The 74LS139 is a dual 1 -of-4 Decoder/Demultiplexer IC containing two independent decoders. Each decoder accepts two binary inputs and produces a single, unique active LOW output for each combination of inputs, as shown in the Truth Table. Each decoder has an active LOW ENable (E) input which forces all four outputs HIG! when it is taken HIGH itself.

In the EPROM Programmer, two 74LS139s are used to provide address decoding for the PIA as shown in Figure 4; when the correct address is presented on the host computer's address bus, pin 12 of IC2 goes low. ENabling the PIA.

The circuit of one half of a 74LS139.

INPUTS			OUTPUTS			
\bar{E}	A_{0}	A_{1}	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L

H = HIGH VOLTAGE LEVEL

> L = LOW VOLTAGE LEVEL

The Truth Table for the decoder; each combination of inputs produces a single unique output.

How It Works

THE HEART of the Programmer circuit is the 6821 Peripheral Interface Adaptor (PIA). This contains two independent sets of DATA registers, PAO-7 and PBO-7, each controlled by separate control Registers CRA and CRB, plus a pair of Data Direction Registers DDRA and DDRB. Register PB is used to store the data to be programmed into the EPROM, while register PA is used to hold the address in the EPROM where the data is to be located. Both sets of information are transmitted via the host computer's Data Bus.

Thus storing a single byte of data requires two separate operations; first the EPROM address is sent to register PA, then the data to be stored in the EPROM at that address is sent to Register PB. These operations are carried out under the control of the
operating software.
However, since only eight address bits are supplied, only 256 bytes of EPROM can be programmed, therefore it is necessary to increment the EPROM address after each block of 256 addresses. Before the low-order address bits are sent to Register PA, four address bits are first loaded into the four-bit latch IC4, and these are presented to the EPROM address bus at the same time as PAO-7 loads the low-order address into the EPROM. That is, programming one byte of data actuelly required three operations; first, EPROM addresses A8-A11 are latched into IC4; then address bits AO-A7 are presented via PAO-7, then the data is loaded via PBO-7.

Since the Programmer is designed to program both 2716 and 2732 EPROMs, which have some slightly
different pin functions, the appropriate logic levels are derived from two switches and a small amount of control logic; the switching and logic circuit is described fully in the text and Table 1.

Finally, ICs 1 and.2, a pair of 1 -of-4 line decoders, are used to ENable the PIA when the appropriate address appears on the host computer's address bus. Address lines A8-A15 are decoded by ICs 1 and 2 while AO and A1 are applied directly to the PIA (see text and Building Blocks for further details). This system locates the PIA's Control and Data Direction Registers at 32768 32771 . However, because address lines A2 - A7 are not decoded, the register's addresses also occur at the next four addresses, the four after that and so on.

address decoding is used. Address bits AO and A1 are applied to the 6821 directly and, in conjunction with A8 to A15 decoded by IC1 and IC2, locate the PIA's four registers at 32768-32771. But as address bits A2 to A7 inclusive are not used, the PIA could equally well be addressed at the next four memory locations or the four after that and so on. This is satisfactory in the author's set-up as the 256 addresses following the PIA are unused, but the point must be borne in mind if you wish to relocate the PROM
Programmer's PIA address, say to tuck it away in one of the odd spaces near the top of RAM.

Returning then to Figure 1, it can be seen that address lines 0 to 7 of the EPROM are driven by Peripheral Register A, PAO - 7, of the PIA. Do not confuse the EPROM's address lines with the computer's address bus; the EPROM address is written into PAO - 7 via the computer's data bus. The data bus also supplies the data to be stored in the EPROM, and this program data is held in Peripheral Register B, PBO - 7, of the PIA. That would be the end of the story if the EPROM only held 256 bytes, but
in fact it holds 2048 bytes (2716) or 4096 bytes (2732), so the eight address bits held in PAO - 7 must be augmented by three or four more EPROM address lines. These extra address bits are held in four bit latch IC4. The latch inputs D1 - 4 are from the four low order outputs PAO - 3 of Peripheral Register A; the appropriate address data is stored in Peripheral Register A and then latched in IC4 by momentarily taking PIA control output CA2 high. This extra operation only represents a tiny overhead as EPROM addresses A8 - 10 (or A8-11 in the case of the 2732) only need updating once for every 256 lower order addresses.

Having set up the complete EPROM address in latch IC4 and PAO - 7 of the PIA, and with the corresponding data byte to be stored sitting in PBO -7 , PIA control line CB2 is taken high for 50 mS . Provided VPP is at +25 V , this has the effect of "burning' the data into the EPROM at that address. If a 2732 is in course of being programmed, then +25 V will be present at pin 20 of the PROM. This is detected by Q1, which places a ' 1 ' on pin 1 of EXOR gate IC5a,
causing it to act as an inverter, as required (see Table 1). Under all other conditions (2732 read or verify, 2716 all operations), there will be a ' 0 ' at pin 1 of IC5a and the CB2 signal is therefore not inverted. This looks after pin 18's requirements, and the functions of pins 20 and 21 for the two types of PROM are sorted out by switches SW1 and SW2, again in accordance with Table 1.

Two of the spare EXOR gates have an input tied to PA3. Thus during reading, programming or verifying, as successive addresses are set up in Peripheral Register A, red LED 1 will blink on and off, showing that it is "all happening"; PA3 was chosen as giving a suitable blink rate. A green LED driven from the +25 V supply indicates that the mains supply to the EPROM Programmer is on, whilst a yellow LED powered from +5 V indicates that the Programmer is indeed receiving this supply from the host computer. The +25 V supply is actually more like +24 V 7 nominal, using as it does a 7824 regulator with the common leg propped up on a small signal silicon diode D2.

SinclairZX
 Spec

16K or 48K RAM... full-size movingkey keyboard... colour and sound.... high-resolution graphics...

 From only £125!First, there was the world-beating Sinclair ZX80. The first personal computer for under £100.

Then, the ZX81. With up to 16 K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the $\mathbf{Z X 8 1}$ remains the ideal low-cost introduction to computing.

Now there's the $Z \times$ Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16 K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around £60.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZXPrinter - available now - is fully compatible with the $Z \times$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232/network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour - 8 colours each for foreground, background and bore plus flashing and brightness-inter control.
- Sound-BEEP command with vari pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard-a keys at normal typewriter pitch, wi repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true hi resolution graphics.
- ASCII character set - with upper-a lower-case characters.
- Teletext-compatible-user softwar can generate 40 characters per lin or other settings.
- High speed LOAD \& SAVE-16K in 1 seconds via cassette, with VERIFY MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-2000200 for
personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp
needed coupon below. You can pay by day. BY FREEPOST-use the no-stamp
needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

ipectrum software on iettes-available now

¥Spectrum software library is g every day. Subjects include , education, and business/ oold management. Flight tion...Chess... Planetoids l..Inventions...VU-CALC...VU-3D Record Controller...there is hing for everyone. And they all ull use of the Spectrum's colour, , and graphics capabilities. You'll e a detailed catalogue with your um

Expansion Module

is module incorporates the three ons of Microdrive controller, local etwork, and RS232 interface. ect it to your Spectrum and you can up to eight Microdrives, unicate with other computers, and wide range of printers e potential is enormous, and the e will be available in the early part 3 for around $£ 30$.

air Research Ltd, Stanhope Road, jerley, Surrey GU15 3PS. amberley (0276) 685311.

To:	ir R	T, Camber	Orde		
	Item		Code	Item Price £	Total £
	Sinclair	-16K RAM version	100	125.00	
	Sinclair	-48K RAM version	101	175.00	
	Sinclair		27	59.95	
	Printer	f rolls)	16	11.95	
	Postag	: orders under £100	28	2.95	
		orders over £100	29	4.95	
				Total £	
Please tick if you require a VAT receipt \square *I enclose a cheque/postal order payable to Sinclair Research Ltd for £ *Please charge to my Access/Barclaycard/Trustcard account no.					
*Please delete/complete as applicable					
Signature					
PLEASEPRINT					
Address					
$1\|1\| 1\|1\| 1\|1\| 1\|1\| 1\|1\| 1 \mid 111$					
FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application					

Feel like sounding off? Then write to the Editor stating your Point Of View!

Gordon Channer Again!

Now, replies to a reader's query, from other readers:

Dear Sir,
With regard to Gordon Channer's letter (HE January '83) may / suggest he contacts Black Star Ltd., who advertise in ETI /they appear in Monitor and in our suppliers' surveys from time to time, too - Ed.). They stock a range of Crotech oscilloscopes, two of which may be operated from a 10 V to 15 V DC supply. I hope this information will be of use. J.M. Oakley,

Ormskirk,
Lancs.
Thanks, J.M. - you've furthered the cause of hydro-electronics. (Anybody who doesn't understand that hasn't read their January HE properly - shame on you.)

Dear Sir (or Madam),
In answer to Gordon Chänner's letter in HE January ' 82 about a 12 VDC oscilloscope, the instrument he is looking for is obviously the superb instrument that was offered by ETI in their May ' 82 issue and the following couple of issues.
C. Williams,

Willenhall,
West Midlands.
This letter continued with various facetious comments coricerning Clever Dick, Steven Spielberg, binders and the dotted lines on our survey sheet . . . all of which are being referred to the proper authorities, who will doubtless be round with rubber truncheons one evening quite soon. As for the query about whether ETI is actually extra-terrestrial, we can't reply to that one as we can't understand a word their editorial team says. Sorryl

Generating Some Curiosity

Dear Sir,
I have just read the 'Wireless Goes To War' article in HE January '83 and found it very interesting. Can I suggest that John Biggins writes about the wartime development of radio during World War Two, which should also make interesting reading.

The caption for Fig. 3 on page 56 states that the purpose of the 'fan (propellar)' is not known; I think the purpose is quite obvious. It is an air driven generator to provide power for the aeroplane's radio, to save the weight of battery power packs. What do other readers think?
C.M. Daw,

Flitwick,
Beds.
It's easy when you know howl We had one or two readers contact us about this propellor, and they all agree with you. Now, when will our modern electronics companies think of something similar for personal stereos? I'm sure we'd all be willing to walk a bit faster to avoid the frustration of batteries conking out in. the middle of a loud bit!

Flash It Again, Please

Dear Sir,
Last year I built the circuit you published using two 555 timers and LEDs to make the 'Twinkling Star' tree decoration, and it worked perfectly. However, when I made the 'Christmas Tree Lights Flasher', neither of the 555 timers would work the relay specified. When put back into'the 'Star' circuit they both functioned perfectly. Both circuits were powered by new PP3 batteries, which pulled the relay in when directly connected.

Could you offer any explanation for this, or should / boost the output of the 555 with a small transistor in order to power the relay?
Robin R. Davies,
Horley,
Surrey.
Uh oh. Deeply involved as you are in building this circuit, your description of it must seem to you all-embracing. Unfortunately, to us, with our miles of files and lengthy editorial history, it sounds pretty much like any of a dozen other circuits.

As a matter of general policy, please can you try to name the month and year of the Hobby you were working from when writing about circuits? If you send an SAE, you will get a personal reply; if you don't, you will eventually appear in POV; but if we can't work out what you're talking about, you may never get a reply which makes any sense! So please, gentle readers - name, rank and serial number when you're reporting projects for misconduct.

Ear Errata

Dear Sir,

May I point out what I think are a number of errors concerning the project 'Big Ear' in HE December '82.

1) Reference page 80 (Circuit Diagram): The volume control RV1 has the bottom end connected to OV. This would place a dead short across C5 and R6.
2) Reference page 81 (Component Layout): R2 is shown as going to Pin 2 of the IC1 (TLO82). Circuit Diagram shows R2 going to Pin 3.
3) In the description of the Circuit (page 81) it is stated that "The input from the mic is fed to the non-inverting -ve input of IC1a", but the Circuit Diagram shows the input from.mic to the + ve input of IC1a.
4) The article states that "The junction of the two resistors is bypassed to OV by C3'", but the Circuit Diagram shows the bypass capacitor to be C5 at the junction of R3/R6.
A. Lord,

Southport,
Merseyside.
Dear Sir,
An electronics engineer has informed me that at least one error is present in the Circuit Diagram of the directional microphone published in HE December '82.

I would be grateful if you would send me a correct circuit diagram should the
statement be true. I have already purchased the components and am keen to complete the project.
P.E. Philpotts,

Brentwood,

Essex.
Weil, notwithstanding what we say about feedback sometimes taking months to come through, where the errors are less subtle they come back to us pretty fast! Here are the errata from our own correction card:
a) Page 80, Fig 2: Junction of R6, C5 and RV4 should not go to OV.
b) Page 81, Fig 3: R2 should go to pin 3 of IC1, not pin 2.
c) Page 81, Text: Input from mic is to non-inverting (+ ve) input.
d) Page 81, Text: Junction R2
$R 3 / R 6$ is bypassed to ground by C5, not C3.

A Bit Off The Beat

Dear Sir,
I have constructed the circuit board and components for the Metronome project in HE November '81. The accented beat is very unreliable. After a few seconds the 4017 IC breaks down and the accented beat is at random intervals. I have tried two fresh ICs, but the same fault develops after a couple of minutes. I have tried various voltages, and breakdown seems to occur soon after 7 V . I am quite convinced that it is not a circuit fault.

Is it possible that there is an inate problem with the 4017 when the reset pin is connected to one of its output. pins? I once used the 4017 as a divide-by-five counter, but eventually had to resort to other means because of its poor reliability. In any event my niece who was so looking forward to having the metronome is very disappointed. C.A. Bearfield,

Sale,
Cheshire.
Unfortunately, there was more than one error in this project, so we can't correct it in a few words. Anyone who thinks or knows, that there is an error in a project they are building, send us an SAE. Mark your own envelope 'project errata' and we'll forward a correction sheet as a matter of priority. The only snag can be that some project problems are subtle and may not come to light for months after a project is published, so anyone writing for corrections too soon after publication may not find what they're looking for. It's safest to do what Mr. Bearfield has done: test out all the possibilities to see if it's a construction or a component fault, and then contact Hobby.

Faults in projects seem to be inevitable because Hobby projects are effectively production designs - they're being made up in multiple copies by different people with components from different sources in different places. Designs for commercial production can have months of strenuous testing under all sorts of conditions before they're released for cloning - if we did that,
your Hobby would shoot up to about $£ 3.00$ a copy. So we rely on careful testing and - er - proofreading, and feedback from designers and readers, and cheer loudly when we get a design for publication that has been tested in the field for a year or two - not, alas, all that common, but nice if we can get it.

Heat But No Light

Dear Sir,
Some months ago you published an article on solar cells which I found very interesting. We are interested in using these solar panels to provide lighting in some of the bush missions and outstations. You mentioned one particular type of panel which appeared suitable. We would be very grateful if you could send us the name and address of the manufacturers and/or suppliers. We would also like to have an idea of the cost.

When we get your magazine (which is unfortunately very seldom) we find it very interesting and instructive. Keep up the good work.
Martin O'Neil,
Mansa,
Zambia,
Central Africa.
We have to admit that, unli; .. Jear old England, you have no shortage of sun out there. The cells, unfortunately, might prove a problem. The cells we featured were at the time listed in the RS Components catalogue, but on checking, they no longer appear to be available. Can any reader or supplier help? If so, contact us at POV. Meanwhile, somebody had better get HE onto the Bush Telegraph double quick and make sure Mr. O'Neill gets our reply!

Seeking The Light

Dear Sir,
I am a student at East Ham College of Technology, studying my final year in a TEC Diploma Electrical Engineering course.

The class has been asked to carry out a full year project. I have therefore decided to make and research on the Light Dimmer featured in HE October '80.

Can you therefore please be kind enough to send me some information based on this project.
"yas Syed,
Forest Gate,
London E7.
I'm afraid we don't keep files of extra information on our projects - what we have is what we publish in the magazine. Of course, back issues are always obtainable through our backnumbers service (details in most Hobby issues - not this one, alas. Check out February or April. Cost is $£ 1.25$ per issue or article). Also, there are in London some very good libraries that
have stocks of technical magazines going back many years which you can look at for reference, even if you don't live in the same local area. Try asking your local library for advice.

Microlog Mistake

Dear Sir,
HE Microlog (December '82).
Thank you for this excellent project which I am in the process of building. I think this is a good introduction into the world of analogue computing. With reference to Fig. 6, there appears to be a misprint. The top part of the secondary of T1 is taken straight to regulator IC3, instead of into the top part of BR1. Thanks for this great magazine and please keep up the good work.
H. Meidner,

Kensal Rise,
London NW10.
Yes, we caught that one, unfortunately, just too late to stop it from getting into print, but the correction was published in January's Hobby as part of Monitor, with the corrected diagram on page 72. Thank you for contacting us anyway it might have been something no-one else had yet spotted. Just to recap, the top of T1 should go to the top of the diode bridge BR1, but not to IC1.

Might As Well Stay Home . . .

Dear Sir,
I read with interest both the letter from Mr. Gordon Channer IPOV HE January '83) and the article 'Light and Power', both of which dealt with DC/AC inverters. I had already drafted out a letter to you on the same subject, now disposed of. I was going to state, and I do now, that l'm sure there are many people like myself who garage their car some distance from their home and would welcome such an inverter to enable them to use an electric drill, etc. That would mean something with a power capability of around 4-5000 watts. Perhaps your engineers can come up with something in the near future.

The other point I would like to raise, again for your engineers. What I would like to see is a project on a digital scoring device, like two seven segment displays that would retain their respective figures until they are updated, but only using one key-pad that could be switched lby a two-way switchl from one to the other. This could be used for many games like darts, cards, dominoes, etc.
A. W. Guy,

Forest Gate,
London E7.
As stated in the article on supplies, power in excess of around 200 watts is very difficult to realise, so it's unlikely that a more powerful supply will appear as a Hobby project, regrettably.

However, as for the scoring systems: we have something in mind, so watch this space!

HE PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits inclu de ALL the electronics and hardware needed. Printed circuit boards (fulify etched, drilled and roller tinned) or Veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. 8ATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of H.E. which includes the project - you will extra 45p each
Reprints available separately 45 p each + p. 8 p. 40 p.

PHASE FOUR Dec $82 £ 18.71$ BABY ALARM Oct $81 £ 8.70$, Fig 8 linking
STEREO NOISE GATE Dec $82 £ 15.35$ wire 7p metre

STEREO NOISE GATE Dec 82 £15. 35 TAPE/SLIDE SYNCHRONIZER Dec 82 $£ 21.73$
BIG EAR Dec 82 less pipe parts $£ 6.21$ MICROAMMETER ADAPTOR DEC 82 E4.98
ODOMETER Nov. 82 £14.98
DIANA V.C.O. Nov 82 £4.89
CB SQUEL'CH UNIT Oct $82 £ 9.19$ 'JUNIOR' SLOT CAR CONTROLLER Sept 82 c5. 60 less case.
X INTERFACE BOARD Sept 82 inc edge con £11.33.
V.I. FILTER July $82 £ 5.33$

AUTO WAH June 82 £18.98 inc case or 12.28 less case.

AUTO GREENHOUSE SPRINKLER June 82 E15.38 less pump and power upply (12 V 2 A).
ELEPHONE TIMER June 82 £33.42 less OWER SUPPIY (suitable type below) June 82 C9.98
ECHO REVERB UNIT May 82. Less case 33.98. Economy case W83 £3.76 extra DIGITAL THERMOMETER May 82 excluding case + bezel £16.90
AUDIO SIGNAL GENERATOR May 82 20.98.

CABLE TRACKER May 82 E 9.98
DIGITAL CAPACITANCE METER Apr $2 € 21.37$
IGNAL TRACER Apr 82 £ 3.86
BIKE ALARM Apr 82 £11.74
BICYCLE SIREN Mar 82 f10 89
NOISELESS FUZZBOX Feb 82 £ 10.45
MASTHEAD AMPLIFIER Feb 82 £ 14.74 DRUM SYNTHESIZER Dec 81: Full kit E 21.37
GUITAR HEADPHONE AMPUFIER Dec 81 f 3.72
IN CAR CASSETTE POWER SUPPLY Dec $81 £ 4.77$
SCRATCH
SCRATCH FILTER Nov 81 Mono $£ 5.82$ Stereo f8.98
LED VU METER Nov 81 less case ©4.87 SIMPLE STYLUS ORGAN Nov 81 less case $£ 4.98$
METRONOME Nov 81 £12.71
TELEPHONE BELL REPEATER Oct 81 E13.67
Med linking wire extra 14 p metre COMBINATION LOCK Oct 81 less solenoid f18.65 DIANA' MET
DIANA METAL LOCATOR Sept 81 REACTION TESTER GAME Sept 81 C 12.81
VARIABLE BENCH POWER SUPPLY Aug 81 £26.98
ULTRASOUND BURGLAR ALARM July 81 f19.98
ELECTRONIC DOOR BUZZER July 8 EL5.98
ELECTRONIC METRONOME July 81 E4.99
CONTINUITY CHECKER June 81 £5.71 ENVELOPE GENERATOR June 8 c17.98
AUDIO MIXER June 81 c5. 33
PUBLIC ADDRESS AMPLIFIER March $81 £ 19.48$. Extras - horn speakers $£ 6.83$ aach, PA MIC $£ 4.40$
WINDSCREEN WIPER CONTROLLER March 81 E8. 20
STEAM LOCO WHISTLE March 8 C 2.98
PHOTOGRAPHIC TIMER March 81 f.3.50

HEARTBEAT MONITOR Feb $81 € 24.98$ TWO-TONE TRAIN HORN Feb 81 f5.60
less case mave radio Feb $81 £ 8.20$ 8ENCH AMP Jan 81 £10. 80
NICAD CHARGER Jan 81 c8.20 BATTERY CHARGE MONITOR Dec 82 E5.77 MEMO
MEMORY BANK - MINI SYNTH ESISER Nov \& Dedc 80 £23.98 test leads
GUITAR PRE.AMP Nov 80 £6. 65 case (diecast) extra $\mathbf{〔 2 . 2 9}$
INTRUDER ALARM Oct $80-20.98$ TOUCH SWITCH Sept $80 £ 2.75$ less case \& contacts
GUITAR PHASER Sept 80 f16.28 SOUND OPERATED FLASH TRIGGER July 80 no skt £5.33
FOG HORN June 80 f6.64
SPEED CONTROLLEH TUK HLL APFII XU f17.55 (less case)
UIGITAL FREQUENCY METER April 80 E39.98
CAR ALARM Feb 79 f12.91
CAR ALARM Fob 79 f 12.91

MORE PROJECT KITS - SIMILAR STYLE TO H.E.

 INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH) PLEASE QUOTE REF. NO. WHEN ORDERINGB1 PEST CONTROL 'Ultrasonic cat scarer' 77.65
B2 COMPONENT TESTER 58.88 B4 GUITAR NOTE EXPANDER £17.98 B5 CAMERA OR FLASH GUN TRIGGER Infra red system f12.51
B6 SIMPLE INFRA RED RE B6 SIMPLE INFRA RED REMOTE CONTROLE17.20

WER SUPPLY $£ 17.98$
B9 SOUND TO LGHT - single channel
E8.42 THAEE CHANNEL SOUND TO
UGHT 21.44 LIGHT E21.44

MORE KITS AND COMPONENTS IN OUR LISTS FREE PRICE LIST Price list included with orders or send sae (9×4) CONTAINS LOTS MORE KITS, PC8s \&

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS a KITS. give personal sorvice

MAGENTA ELECTRONICS LTD

HV34. 135 HUNTER ST., BURTON-ON-TRENT, STAFFS
QE14.25T, W493 6845w, MOM-FRI 9-5. MAIL ORDER ONLY
IADD 46 PEPTO ALL ORDERS PRICES INC VAT ACCESS and BARCLAYCARD IVISA ORDERS ACCEPTED BY PHONE OR ORD
SAE ALL ENQUIRIES

Prices inc. VAT
OFFICIAL ORDERS WELCOME OVERSEAS. Payment must bo in sterling IAISH REPUBLIC and BFPO: UK PRICES. EUROPE: UK PRICES Plus 10\%

SOLOERZNG IRON STAND . £1.98 SPARE BITS. Small standard, large $55 p$ each. For $X 5+X 25$ SOLDER. Handy size SOLDER CARTON DESOLDER BRAID HEAT SINK TWEEZERS DESOLDER PUMP HOW TO SOLDER LEAFLET LOW COST CUTTERS LOW COST LONG NOSE PLIERS VIRE STRIPPERS \& CUTTERS PRECISION PETITE
12V PCB Drill. \qquad 511.67 Drill Stand........ \qquad Grinding Stone. \qquad . .50 p Saw Blade. Brass Wire Brush \qquad $\begin{array}{r}.85 \\ +\cdots .80 \\ -\quad .50 \\ \hline\end{array}$

VERO SPOT FACE CUTTER . $£ 1.49$ PININSERTION TOOL f1.98
. 52 p VEROPINS (pk of 100) .152 GULTMETER TYPE $2(20,000$ OpV) with transistor tester. Very good CROCODILE CLIP TEST LEAD SET
MULTIMETER TYPE 2 YN360 TR, £14.75

RESISTOR COLOUUR CODE CONNECTING WIRE PACK TYPE ED. 11 colours
illuminated magnifiers Small 2"' dia. $15 \times$ mag. Large $3^{\prime \prime}$ dia. $14 \times \mathrm{mag}$ CAST IRON VICE. SCREWDRIVER SEI POCKET TOOL SET OENTISTS INSPECTIO Mi.... 63.98

20,000 opv. Includes transistor tester $A C+D C$ volts. DC current. 4 very Usefut resistance ranges.

BOOKS
 ADVENTURES WITH MICROELECTRONICS

SEMICONDUCTIOR DATA BOOK Newnes
ELECTRONIC PROJECTS FOR HOME SECURITY

Similar to 'Electronics' below. Uses I.C.s. Includes dice, electronic organ, doorbell, reaction timer, radio, etc. Based on Bimboard 1 bread board Adventures with
Microelectronics
62.55 battery.

ADVENTURES WITH ELECTRONICS $\begin{gathered}\text { by Tom } \\ \text { Duncan }\end{gathered}$

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circults work. Component pack includes an S-Dec breadboard and all the components for the projerts.
Adventures with Electronics $\mathbf{~ 2 1 . 4 0}$. Component pack $\mathbf{£ 1 8 . 9 8}$ less battery.

HELPING HANDS JIG $£ 6.30$
Heaw base. Six barl and socke
jints allow infinite variation of clips
through 360°. Has $21 / 2^{\prime \prime}$ diamete
$25 \times$ I magnifier attached, used and
($25 \times$ magnier actacs staff

Project

Simple circuits based on operational amiplifiers

No 6: Linear Ohmmeter

BOTH of this month's Pop Amp circuits are concerned with the measurement of resistance. Like the previous circuits in this series, they are low-cost add-ons which give an inexpensive multimeter those extra facilities normally found only on the high grade models. You need only add a simple voltmeter or a multimeter switched to a DC voltage range.

Most multimeters include a circuit for measuring resistance; Usually it is powered by a cell hidden inside the case of the meter. This is wired in series with the coil of the meter and one of a set of standard resistors which can be switched into the circuit according to the range required (Figure 1). There are four snags to this arrangement: one is that the accuracy of the reading depends on the cell delivering the correct voltage. If it is not fresh; the reading is wrong. The second is that this circuit inevitably produces a non-linear reading. You will notice that the multimeter has a special scale for resistances; this is a non-linear scale with the lower gradations widely spaced and the higher values crowded toward the left-hand end. This highlights a third disadvantage which is that the scale reads from right to left, instead of the direction to which we are all more accustomed. Finally, there is the serious limitation that the amount of current flowing through a resistor of several megohms is usually far too small to be measured precisely with the kind of
microammeter found in the average multimeter. Consequently, resistance in excess of about 1 M ohms can not be measured with precision, if at all.

This circuit provides a linear reading, using the ordinary scale of a 10 V voltmeter, and reads from left-to-right. Its accuracy is not affected by battery condition until the batteries are really worn out, and it gives equally precise readings on all ranges, up to 9 M ohms.

Operating Amps

The op-amp is wired as a inverting amplifier, with the resistance which is to be measured (Rx, in Figure 2) as the feed-back resistor. The op-amp used in the prototype is a 7611 CMOS amplifier; the output of this device can swing fully between +9 V and -9 V , giving the maximum range of readings on one range setting.

The way the op-amp works as an inverting amplifier is explained for the benefit of readers who have missed earlier circuits in this series. The first point to note is that the amplifier has a balanced power supply of ++9 V and -9 V , provided by the two batteries. The two inputs to the amplifier have extremely high impedance - 10^{12} ohms (one teraohm) - and for all practical purposes we can consider that no current can flow into these terminals.

The amplifier detects the potential of each input, and when they are equal, the output of the amplifier is OV . If the potential at the non-inverting input (positive) is greater than that at the inverting input (negative), the output
swings to a positive voltage; if the positive input is less than that of the negative input, it swings negative. In this circuit, the positive input is wired directly to the OV line and all input voltages to the negative input are positive. Consequently the potential at the negative input is either equal to or greater than that of the positive input, so the outputs are OV or less. This is why the meter is connected with its negative terminal to the output of the amplifier and its positive terminal to the OV line; the output voltages are actually negative, but we read them as positive.

The positive input to the inverting input comes from a reference voltage source, which will be described in a moment. A current flows toward the input through a resistance, called the input resistance, RIN. In practice, this may be any one of a number of different resistances, each made up from a fixed resistor in series with a variable resistor, which can be switched into circuit. This allows changing the range of measurement. Because of the high input impedance referred to above, however, virtually no current can enter the inverting input, so the current flows along unchanged, through the test resistor, Rx to the output of the amplifier. Since this has swung to a negative voltage (for a positive input), the current flows into the amplifier's output.

RIN and RX are in series and the same current flows through each, so they act as a potential divider. Think of it as a seesaw which turns around a point at a distance from its middle (Figure 3). The high end is at VIN (a positive voltage), and the low end is at Vout (a negative

Figure 1. The resistance measuring circult of a typical multimeter.

Figure 2. Figure 2. Circuit diagram of the Linear Ohmeter.
voltage), and somewhere between positive and negative there must be OV. The amplifier adjusts Vout until this OV point is located exactly at the negative input, then both inputs are at OV and the circuit becomes stable. In this condition, the voltage drop across RiN is VREF, so the current through Rin is $\mathrm{I}=$ Vref/Rin. Also the voltage across Rx is Vout, so $1=$ Vout/Rx, and the same current, I, is flowing through both resistors, so VREF/RIN = Vout/Rx. We already know Vref and Rin, and we can measure Vout on the meter, so we can easily calculate Rx.

Vref is provided by a band gap reference IC (ICI) which acts in a way similar to a reverse-biased Zener diode but
with much greater precision; the voltage across this is typically 1 V 26 . If RiN is exactly 1 V 26 R and the voltage across it is exactly 1 V 26 , the current flowing through it is 1 mA , and if $R x$ is exactly 9 kR , it requires a voltage of 9 V to make 1 mA flow through it. In other words, with a 9kR resistor as the test resistor, Vout swings to -9 V , and remains there - the meter reads 9 V .

If $R x$ is $8 k R$, then Vout swings to -8 V ; the current through Rx is 1 mA , as before, and the voltage at the negative input is OV as before. Now the 'see-saw' is tilted less steeply, with its long arm only 8 times longer than the short one, and the meter reads 8 V . The same happens for all

Figure 3. The voltage see-saw around an op-amp.

Figure 4. Component layout of the circuit board; note that the track cuts are shown viewed from the component side.
other resistances up to 9 kR ; the meter reading in volts equals the resistance of $R x$, in kilohms.

If we make Rin equal to $12 \mathrm{k} 6, \mathrm{I}$ 'is reduced to 100 uA , so to obtain full-scale deflection of $9 \mathrm{~V}, \mathrm{Rx}$ must be 90k. Then the meter reading in volts equals the resistance of Rx in tens of kilohms. Table 4 shows the details of the four ranges which this circuit provides.

To obtain a 900R range we would need to make Riv equal to 126 ohms, and the current would be 10 mA . The IC is not able to hold VAEF steady when the current is as large as this. If you would like a lower range, make Ris 252 ohms, giving a fullscale reading equivalent to $1 \mathrm{k8}$; take the scale reading, divide it by five and call it kilohms.

The only other part of the circuit which needs comment is the zero adjustment. The inputs of the amplifier behave as if there is a very small voltage difference between them, even if there is not, and when amplified, this small difference would appear as a significantly large reading on the meter. We compensate for this by setting RV1, as explained later.

Construction

A board of the size recommended has room for four sets of fixed and preset resistors but you can leave out some of

Parts List

RESISTORS

Table 1

Rin	R2-5	RV2-5	CURRENT	FULL SCALE
1 k 26	1 kR	470 R	1 mA	9 kR
12 k 6	10 k	4 k 7	100 uA	90 k
126 k	100 k	47 k	10 uA	900 k
1 M 26	1 M	470 k	1 uA	9 MR

Table 1 shows the input resistance, the values of the input resistors and potentiometers which make up Rin, the reference current I, and the full scale resistance reading for each range of the Linear Ohmeter.

these if you do not want all the ranges listed in Table 1. If you are unable to obtain a 2 k 2 preset for RV1, use a 4 k 7 preset instead.

Wire up the whole circuit before testing it; it can readily be powered by two PP3 batteries though you can use other types, or a mains power pack, if you prefer. Switch on the power and first check that ICl is working; the voltage across C1 should be close to 1V26.

To make the offset null (set zero) adjustment, temporarily connect pins 2 and 3 of IC2 together, using a lead with crocodile clips, and adjust RV1 until the needle of the meter rests at OV. This operation requires patience, since the needle tends to swing violently to either side of zero, but it can be achieved with a little care. Then remove the connection between pins 2 and 3 .

You will need a standard resistor to test each range; a 1% tolerance resistor is best. Choose a value which is near the upper end of the scale you are calibrating, attach the probe clips and select the range on SW2. Adjust the corresponding preset until the meter reading shows the value of the standard resistor; all other readings on that range will now be correct. When all the ranges have been calibrated, the circuit is ready for use.

MINI-MULTI TESTER Deluxe pocket size precision mov Ing coil Instrument, Jewelled bearings - 2000 o.p.V.mirrored sc3le. $\begin{array}{ll}11 \text { instant range measures: } & \begin{array}{ll}\text { DC volts } 10,50,250,1000 . \\ A C \\ \text { Avotss } 10,50,250,1000 .\end{array}\end{array}$ AC volts $10,50,250,100$
DC amps $0=100 \mathrm{~mA}$.

Continuity and resistance 0.1 meg ohms In two ranges. Complete with test prods and instruction book showing how to measure capaclity and inductance as well
Unbelievable value at only $£ 6.75+60$ p post and insurance.

FREE Amps range kit to enable
you to read DC current from 0 . you to read DC eurrent from 0
10 amps, diractly on the 0.10 scale. It's tree if you purchase quickly, but If you already own
Mini-Tenter and would like one, Mini-Tenter
send $\mathbf{E Z . 5 0}$.

SUPER HI-FI SPEAKER

 CABINETSMade for an expensive HI-FI outfit - will suit any decor. Resonance free. Cut-outs for $61 / h^{\prime \prime}$ woofer and $21 /{ }^{\prime \prime}$ tweeter. The front material is
Dacron. The completed unit is mos Dacron. The completed unit is mo
pleasing. Supplied in pairs, price $\mathbf{8 6 . 9 0}$ per pair (this is prohably les than the original cost of one GOODMANS SPEAKERS $6 y^{*} 8$ ohm 25 watt $£ 4.50 .21 / h^{\prime \prime} 8$ ohm
tweeter. $£ 2.50$. No extra for postage I ordered with cabinets. Xover $£ 1,50$.
oren DITTO but for $8^{\prime \prime}$ speaker and $4^{\prime \prime}$
iweeter. $£ 7.50+83.50$.

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs repeats daily an and one orically correcting for theats daily ing or shortening day. An expensive time switch but you can have it for only E2.95. These are without case, but we can supply a plastic base $\mathbf{£ 1 . 7 5}$ or metal case $£ 2.95$. Also available Is adaptor kit to convert this into a normal 24 hr . time switch
but with the added advantage of up to 12 on/oft's per 24 hrs. This makes an 12 on/offs per 24 hrs. This makes on Ideal controller for the imm
Price of adaptor kit is $£ 2.30$.
THERMOSTAT ASSORTMENT
10 different thermostats. 7 bi-metal types and 3 , liquid types. There are the current stats which will open the switch to protec devices against overload, short circuits, etc., or when fitted say
in front of the element of a blow heater, the hear would trip in front of the element or a blow heater, the heat would trip eratures, others adjustable over a range of temper atures which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which can be immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fltted to our waterproof heater element, up in th
loft could protect your pipes from freezing. Separately, these loft could protect your pipes from freezing. Separately, these
tharmostats could cost around $£ 15.00$ - however, you can hav the parcef for $£ 2.50$.

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter, Low ohms tester, A.C. amps meter, Alarm clock, Soldering
Iron minder. Two way telephone, Memory jogger, Live Iine tester, Continuity checker, eic. etc., and you will still have hundreds of parts for future projects. Our $10 \mathrm{~K}_{9}$ parcel contains not less than 1,000 items - panal meters, zimers, the rmal trips, relays, switches, motors, drills, taps and dies, tools, thermostats, colls, condensers, resistors, muiti-turn pots and data on the 50 projects.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

EXTRACTOR FANS

 $5^{\text {" }}$ Plannair extractor
55.75. Post 75p

ROTARY WAFER SWITCHES
5 amp silver plated contacts. y" shaft. 1 " dia. wafer.
Single water tvpes, 29p each. as
1 pole 12 way $\quad 2$ pole 6 way $\quad 3$ pole 4 way
pole 3 way 59
Two water type, 59p each, as follows
2 pole 12 way 4 pole 5 way
6 pole 2 way
8 pole 3 way
3 pole 4 way
4 pole 3 way

3 wafer types. 99p sach.
12 p 3 way
4 pole 6 way
12 pole 2 way
6 pole 6 way
$18 p 2$ way

EXTRA POWERFUL $12 v$ MOTOR
Made to work battery lawnmower, this probably develops up to hip., so it could bo used to power a go
This is eesily reversible with our reversing switch - Priee £1.15).
MINI MONO AMP on p.c.b., sIze 4"x2"
3DDrox. Fitted volume control and a
for a tone control should you requira i. The ampilifier has three the output to be 3 W rms. More technical data will be included with the amplifier. Brand new, perfect condition. offered at the very low price
$\mathrm{E1.15}$ asch, or 10 for $£ 10.00$.

POPULAR PROVEN PROJECTS
MULTI-CHANNEL or ROBOT CONTROLLER This Is two kits. The 8 channel transmituer kit and the 8 channel racaiver kit. Each kit comes with diegrams and notes,
but no circuit boorcts, the componant levout being laft to you but no circuit boards, the componsnt tevout being left to vo
The data shows how to drive, reverse end steer two or more motors. With spare chennels to perform other functions. Price c9.50 for both kits.

3 CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you
wish but it is plenty rugged enough for disco work. The unlt is wish but it is plenty rugged enough for disco work. The unit is
housed in an attractive two tone metal case and has controls for housed in an attractive two tone metal case and has cont untput are by 1% "sockets and three paner mouning fuse holders provice thyristor protection. A four-pin plug and socket facilitate ease of
connecting lamps. Special price is E 14.95 in kit form or $£ 25.00$ assembled and tested. Case \& metal Chassis No. Fully punched and prepared.

WHY BE COLD - Build a tangential blower heater. TANGENTIAL BLOW HEATER
2.5 Kw qulat,
efficient instant
heating from
230/240 volt
mains. Kit c
of blower as

Hlustrated, 2.5 Kw
CAR STARTER AND CHARGER KIT
In an emergency you con start cer off mains or bring your battery 250 watt mains transformer, 40 amp bridge rectifier, start/charge switch and full instructions. You can assemble this in the evening. box it up or leave it on the shelf in the garage, whichever sults you best. Price $£ 12.50+E 3.00$ post,

TRANSMITTER SURVEILLANCE

Tiny, *asily hidden but which will ensble conversation to be picked up with FM radio. Can be made in a matchox - -ll electronic part RADIO MIKE
Ideal for dlscos and garden parties, allows complete freedom of move ment. Play through FM radio or tuner amp, $£ 6.90$ complete kit, (not licenceable in the U.K.)

FM RECEIVER

Made up and working, complete with scale and pointer needs only headphones, Ideal for use with our
m / ke. 55.85 . or kit of parts $£ 3.95$
3. 30v VARIABLE VOLTAGE POWER UNIT With I amp DC output, for use on the bench, students, inventors.
service engineers, etc. Automatic short circuit and overload protect service engineers, etc. Automatic short circuit and overload protec
lon. In case with a volt meter on the front panel. Completa kit lon. In cos
f13.80.

INTERRUPTED BEAM

Thit kit enables you to make a switch that will trigger when a steady beam of infre red or ordnairy light is broken. Main components relay, photo transistor, resistors and capacitors, etc. Circuit diagram but no case. Price $\mathbf{E 2} 30$

IONISER KIT

Refresh your home, office, shop, work room, etc. with a negative mains operated kit, case Included, £11.95 plus £2.00 post.

RADIO STETHOSCOPE

Easy to foult find - start at the aerial and work towerds the speaker

- when signal stops you have found the fault. Complete kit $£ a .95$. INVISIBLE AND SILENT SENTINEL Ultrasonic beam when broken could warn you of visitor
- transmitter $\&$ receiver. To operate light or bell. $£ 9.50$.

BURGLAR ALARM

Complete kit includes 6 exirenal alarm bell, mains power unit, consrol box with keyswitch, 10 window/door switches, 100 yar wiro. Wh intru
12v MOTOR BY SMITHS
Made for use in cars, these are serles
wound and they become more
powerful as load increases. Size
$3 y^{\prime \prime}$ long by $3^{\prime \prime}$ dila. These hav
B good length
price E3.45.
Ditro, but double ended $£ 4.25$.
Ditto, but permanent magnet, 23.75

WATERPROOF HEATING WIRE
60 ohms per yard, this is a heating element wound on tlbre glass coll and then covered with p.v.c. Dozens of uses - around water plpes, under grow boxes in gloves and socks. 230 a metre

J. BULL (Electrical) Ltd.

(Dept HE), 3436 AMERICA LANE, Ertubhehed
AYWARDS HEATH, SUSSEX RH16 30 Y YEARS MAIL ORDER TERMS: Ceeh, P.O. or cheque with order. Orders und
$\varepsilon 10$ add 60 p service charge. Monthly account orders eccep ted from £10 add 60 p service charge. Monthly account orders accepted from schools and public companies, Access 8 . B/ard orders accepred day or night. Hay wards Heath (0444) 464563 . Bulk ordort: write for quote.
Delivery by raturn. Shop open $9.00-5.30$, mon to Fri, not Seturday.

SCHOOLS-LABS-STORES-WORKSHOPS-FACTORIES.
Your chance to re-stock at less than cost pricesII! LIGHTING \& POWER CABLES

Copper clad.	Made by Volex to	0
1.5 mm flat twim	per 100 metres	. 60
1.5 mm flat 3 core \& E	par 100 metres	0
4 mm single	per 100 metres	63.00
6 mm flat 3 core	per 100 metres	$\underline{27.80}$
16 mm flat twin	per 100 metres	¢47.50
Telephone and multiway cables. Reliance as used by GPO.		

Thermostat: 3 level contact type

 TIMERS \& CLOCKSWITCHES
$T \mathrm{Time}$ and Set Switches. Smiths, Glass fronted $25 \mathrm{amp}, 230 \mathrm{~V}$ §2.30 Reserve. Ex-Electriclity Company Cooker clock switch. Smiths 12 hour
Clockwoek operated switches:
$15 \mathrm{amp}, 230 \mathrm{v}$. On time up to:
10 minutes
30 minuten
£1.37 120 minutes
30 minuten
81.37
$\mathbf{8 1 . 3 7}$

BLEEPERS - SIRENS - BELLS - BUZZERS
Siren/Hoover - Delta 6 or 12 V DC or 24 VAC

COUNTERS

6 digit counter. Mains operated. Not resettable
Ditto, But even numbers only
SWITCHES - ROCKER, TOGGLE, ETC.
Rocker switches: white push into hole 1 " $\times 7 / 16^{\prime \prime}$. All rated
10 amp, AC 250 volt. on/off
changeover centre o
on/aif with neon
on/otf with neon
push to make spring return
push to make spring return
Larger two circult one on one with mounting plate
13 amp rocker switch. Car Fastener (DOT)
Pistol Grip Switch: with lock-on as in electric drills Interlocking switch: blow heater, 3 rockers, 10 amp Micro switches. V3 types. 10 amp c/a contacts
mains button operated: $\quad 15 \mathrm{amp}$ c/o contacts 10 amp offlon
15 amp offlon
Lever operated add
Ministure iypes: Burgess V4 TB c/o
Two mounted with roller aperator
flat multi stackable 60 wbit
Operating coils for reed switch multi voltage 3, 6, 9, or 12
Ceramle magnots
Mullard
MISCELLANEOUS ITEMS
Neon Mains indicators. Standard
Bench isolation mains in $230 / 240 \mathrm{v}$ output. 250 Watis
Mains input. Porcelain removable fuse
․ E 1.2
or larger. Various thicknesses. price per Ib.
Ditto, Tufnol, price per lb.
Varicap P.B. TV tuner
Battery holder takes 6 U 2 batteries, snap connecto
Battery holder takes 62 batteries, snap connector
Car Battery clips, as for charger, + and - . per pair
MAINS TRANSFORMERS
6 volt 1 amp.
6.3 volt 2 amp
12 volt $\% / 4 \mathrm{amp}$
12 volt $3 / \mathrm{amp}$

82.00
82.50
84.00
82.00
82.50
82.00
22.00

MOTORS - MAINS \& BATTERY
3. 6 volt battery motor, very small

3 . 12 volt battery motor, very low current
Mains motor with gear box. 5 rev minute
80 rev per minute
110 rev minute
110 rev minute
200 rev minute
Mains motor, double ended fan motor
Ditto slingle en
Fan blade for above
Mains motor, double ended, very poweriul $1 / \%$ stack
Mains instrument motors J^{3} rev 24 hours
with gear box:
3 rev 24 hours
1 rev 1 hour.
16 rev 1 inute. 46 rev minute 4 rev minute
2 rev minute 1 rev minute.
Motor clockwork, set up to 1 hou
Motor, clockwork set up to 1 hour with ringer
Malns motor \%h.p. 1425 revs, ex computer
Vent opening motor with end stop switches.
12 volt motors, Smiths, single ended $11^{\prime \prime}$ " spindle
12 volt motars, Smiths, double ended $1 / 4^{\prime \prime}$ spindle 12 volt motors, P magnet type, single ended
it ho motor 3450 rpm 100 volt. BOHz . New

SPECIAL TERMS. For items in this column. Order no less than 10 of any item. Then add VAT at 15%, and 20% for carriage in the case of transformers and electric motors. All other items in this column are free post \& packing.

Pop Amps

We do not usually give sources of supply for the components used in these simple projects because they are generally easily availablel This month though, there are several that are a little hard to get hold of. These are: the ZN423 precision voltage reference, the 7611 CMOS op-amp (used in the Linear Ohmeter, Pop Amps No.6) and the 3342 programmable current source used in the Low Range Ohmeter (Pop Amps No.7).

The calibration resistors for the Linear Ohmeter should ideally be 0.4 watt 1% tolerance metal film types, for best accuracy, and these are not stocked by every supplier either. The values required are $8 \mathrm{k} 2,82 \mathrm{k}, 820 \mathrm{k}$ and 8 M 2 , though lower values in each range would do at a pinch. Fortunately, though, almost all of these components are stocked by Rapid Electronics.

Loudspeaker Protector

The difficult items in this project are the 1N5349B 12V/5W Zener diode and the TIP31C transistor; note that a TIP31A will not do, herel Also, the 12 V PCB mounting relay and the 2 k 22.5 W resistor may be somewhat hard to
locate; a 5 W resistor will do instead. You may find all these at your local supplier or in your favourite catalogue but if not, try Watford Electronics or MS Components, who stock all the hard to find items. MS Components are at Zephyr House, Waring Street, West Norwood, London SE279LH, 'phone 01-670 4466.

Since the Protector circuits are designed to fit into the loudspeaker cabinets, cases are not required and the cost should be in the region of $£ 6.00$, excluding the price of the PCB.

CHECK LIST

RESISTORS

(All $1 / 4$ watt 5% unless noted) $1 \times 47 \mathrm{R} ; 1 \times 2 \mathrm{k} 2,2.5 \mathrm{~W}$ or greater; $2 \times 47 \mathrm{k} ; 2 \times 100 \mathrm{k} ; 3 \times 470 \mathrm{k} ; 1 \times 220 \mathrm{k} ; 1$ $\times 2 \mathrm{M} 2 ; 1 \times 10 \mathrm{M}$.

POTENTIOMETERS

$1 \times 20 \mathrm{k}$ miniature carbon trimpot.

CAPACITORS

$1 \times 1000 \mathrm{u} 25 \mathrm{~V}$ axial electrolytic; $2 \times 220 \mathrm{n}$ polyester.

SEMICONDUCTORS

$1 \times$ CD4050; $1 \times$ TIP31C; 1×1 N5349B; 4×1 N4004; 4×1 N914, 1 N 4148 etc. miscellaneous
$1 \times 12 \mathrm{VDC}$ PCB relay; PCB, wire, solder etc.

Overvoltage Cut-Out

Once again, there are a couple of hard t get items; the 2N3904 transistor, which is however stocked by ElectroValue, and the 2N6403 SCR, which appears to be available only from Ambit. However, Greenweld stock a suitable substitute for the SCR (the C126M, rated at 12 A and 400 V PIV) and also the last awkward item, the OR47 5 watt resistor; thus they are a convienient source for all the components used in this project.

The cost of this project excluding the PCB should be about $£ 3.50$; a suitable two-part aluminium case can be had for around $£ 1.00$.

CHECK LIST

RESISTORS

(All $1 / 4$ watt 5% carbon unless noted)
$1 \times 2 \mathrm{k} 2 ; 2 \times 22 \mathrm{k} ; 1 \times 5 \mathrm{k} 6 ; 1 \times 2 \mathrm{M} 2$;
$1 \times 330 \mathrm{R} ; 1 \times 330 \mathrm{R}$; $1 \times$ OR $475 \mathrm{~W} 10 \%$.

CAPACITORS

$1 \times 10 \mathrm{u} 25 \mathrm{~V}$ axial electrolytic.
SEMICONDUCTORS
1×2 N3904; $1 \times$ CA3140; 1×2 N6403 or C126M; $1 \times$ BZY88C6V8; MISCELLANEOUS
Chassis mounting 20 mm fuse holder; 20 mm quickblow fuse, current rating as required; input and output terminal; optional case (as above); mounting fixings, PCB, wire, solder etc.

SAFGAN OSCILLOSCOPES- 5 mV /div Sensitivify. Choice of Band width $10, \mathrm{MHz}_{2}, 15 \mathrm{MHz}, 20 \mathrm{MHz}$. IS $/ \mathrm{div}-100 \mathrm{n} \mathrm{S} /$ div. Calibrated timebase. Solid trigger with bright line auto, normal and TV. XY facility, \mathbf{Z} modulation. Calibration output. Bright and clear display. Portability. Model DT410-10 MHz £205.85. Model DT415-15 MHz E217.35. Model DT420 20 MHz €228.85. Send S.A.E. FOR FULL spec.
thandar tmas 31/2 DIGIT LCD QIGITAL POCKET Multimeter - OC volts 1 mV to 1000 V - AC volts V to 500 V AC rms - DC current 1 Na to $2 \mathrm{~A} \bullet$ Resistance 152 to 2 MO . Diode check \bullet Basic accuracy \pm (0.75% of reading +1 digit) - Battery life typically 2000 hrs - leads inc. - $£ 45.94-40 \mathrm{KV}$ Probe $£ 34.95 \bullet$ Universal test lead set $\$ 12.95$.

KD55C LCD DIGITAL MULTIMETER

- $3 \frac{1}{2}$ digit Auto zero Auto polarity Full overload protection 10 Meg』 input impedance Over range and low battery inIdication DC volts $200 \mathrm{mV}-1000 \mathrm{~V} 5$ ranges $A C$ volts $200 \mathrm{mV}-700 \mathrm{~V} 5$ ranges DC current $200 \mu \mathrm{a} 10 \mathrm{~A} 6$ ranges AC current $200 \mu \mathrm{~B}-10 \mathrm{~A} 6$ ranges Resistance $200 \cap$ - $200 \mathrm{Meg} \Omega$ - Complete with battery, test leads, spare fuse and carrying case E39.95
fHANDAR SC110 SINGLE TRACE LDW POWDER 2" OSCILLDSCOPE • Bandwidth DC to 10 Mhz - Sensitivity: $10 \mathrm{mV} /$ div to $50 \mathrm{~V} / \mathrm{dlv}$. Sweep speeds: 0.1 e secs / div to 0.5 secs $/$ diy Power requirements $4-10$ V DC $4{ }^{\prime} \mathrm{C}^{\prime}$ cells : Size \& weiaht $255 \times 150 \times 40 \mathrm{~mm}: 800 \mathrm{gms} £ 171.35$ a truly portable and superb p instrument - Carrying case $\$ 8.86$ - AC Adaptor $\$ 5.69$ - Nicad Bat pack $\$ 8.63 \bullet \times 1$ probe $\$ 9.78 \bullet \times 10$ probe $\$ 11.50$ Complete range of Thandar instruments available from stock S.A.E. for GAT, \& prices

ELECTRONIC COMPONENTS AND TEST EQUIPMENT 35, HIGH BRIDGE, NEWCASTLE UPON TYNE NE11EW TEL: 0632326729

G.S.C. SOLOERLESS BREADBDAROS • Accepts all components with

 leads up to . $033^{\prime \prime}$ - Replaceable nickel-silver spring clip contacts. - Combines bus strip with board •Unlimited expansion $\cdot 3^{\prime \prime}$ and $\cdot 6$ " centre chanels - Three free experimental circuits with every purchase| | Centre | Strip | Strip | Tie | Term | i.c. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Channel | Length | Width | Points | Clips | Cpty. | Price |
| EXP-600 | 15 mm | 152 mm | 61 mm | 550 | 110 | ${ }^{3} 28 \mathrm{pin}$ | ${ }^{8} .38$ |
| ExP-300 | 8 mm | 152 mm | 53 mm | 550 | 110 | ${ }^{5} 14$ pin | ¢..¢ |
| EXP-4B | $n / 3$ | 152 mm | 25 mm | 160 | 32 | n / s | 0.81 |
| EXP-650 | 15 mm | 91mm | 61 mm | 270 | 54 | ${ }^{1} 10$ pin | E4.80 |
| EXP. 350 | 8mm | 91 mm | 53mm | 270 | 54 | ${ }^{3} 14 \mathrm{pin}$ | E.\% |
| EXP-325 | 8 mm | 48 mm | 53mm | 130 | 26 | ${ }^{122}$ | 2. 20 |

Please send S.A.E. for catalogue listing complete range of G.S.C. Instruments and Boards.

SABTRONICS LCD MULTMMETER MDDEL 2033. • DC volts 100 uV 1000 V Accuracy $+5 \%$ - AC volts $100 \mathrm{AV}-1000 \mathrm{~V}$ Accuracy $\pm 1 \%$ - DC current $10 \wedge A-2 A$ Accuracy $+1 \% \neq A C$ current $10 \wedge A-2 A$ Accurac $\pm 1 \%$ - Resistance $1 \Omega-20$ MS 2 Accuracy $\pm 1 \%$ - $\$ 42.27$. Please send 30 p for full Sabtronic catalogue and price list
TMK 500 MULTIMETER • 30 kopv - AC vílts 2.51025100250 5001000 V - DC volts 0.2512 .5102510251002581000 - DC current 50 мa 5 MA . 50 MA 12 amp - Resistance $0-6 \mathrm{KK}$ 60K, 60 meg. - Decibels -20 to $+56 \mathrm{~d} / \mathrm{b} \bullet$ Buzzer continuity test - Size 160×110 $\times 65 \bullet$ Batteries and leads inc. $£ 26.95$

YN360 TR MULTIMETER • AC volts 10502501000 - DC valts $0.1,0.5,2.5,10 v 150 v 250 v, 1000 \mathrm{v} . \square$ DC current $50 \mathrm{\mu a} 2.5 \mathrm{MA}$, $25 \mathrm{MA}, 250 \mathrm{MA}$ - Resistance $0-2 \mathrm{~K} 20 \mathrm{~K} 2 \mathrm{M} \Omega, 20 \mathrm{MS} \Omega$, $\operatorname{Transistor~}$ check - OB $-10 \mathrm{db}-+22 \mathrm{db} £ 16.95$

DESOLDERING TOOL E5. 55

SCHOOLS, COLLEGES, UNIVERSTIIES SUPPLIED. PHONE OR SENO YOUR ACEESS' OR BARCLAYCARD NUMBER.
prices include vat. please ado 75p postage to ORDERS UNDER \&10.00

habbyboard

mail order products for electronic projects

SPECIAL INTRODUCTORY KIT OFFERS

To enable the price conscious enthusiast to be a PROFESSIONAL
Hobbyboard Systems are derivatives from well proven, high quality PCB manufacturing techniques - they produce quality products for technical projects - why settle for less?

PRINTED CIRCUIT TRANSFER \& ETCH (KIT HB/1)

A complete kit which includes simple Foil Pattem transler system, rub dow transfers, copper clad PCB and all processing materials and requirements including explicit instructions. (Up to 10 circuits/kil

Normal Price E15.00 SPECIAL OFFER PRICE E12.00 INCL. VAT
PRINTED CIRCUIT PHOTO RESIST PRINT \& ETCH (KIT HB/2)
A complete kit which enables you to make top quality PCB's the professiona way. Includes full set of artwork aids, photo resist PCB and all process materials and requirements. (Up to 10 circuits/kit)

Normal Price £24.00 SPECIAL OFFER PRICE E16.00WNCL. VAT

DAYLIGHT PHOTOGRAPHIC SYSTEM (KIT HB/3)

Now you can make your own Photopositives and Negatives to professional standards - NO DARKROOM - complete kit with Pos. \& Neg. film and all process aids.

Normal Price $£ 19.50$
SPECIAL OFFER PRICE
E13.00 INCL. VAT
PHOTOLABEL \& PANEL SYSTEM (KIT HB/4)
Now make protessional labels \& panels for your project cases - finish the job properly -complete kit includes attwork transters and materials to print fully laminated Plastic Panels in 5 colours. (Up to 20 labels/kit).

Normal Price $£ 22.50$
KITSHB/2,13,14 REQUIRE
UVEXPOSURE

SPECIAL OFFERPRICE E15.00 INCL. VAT

BUILD YOUR OWN UV UNIT (hb/uv1)

UV Lamp. Holder \& Shade supplied with full assembly insiructions to build a unit which will give superb results normally only obtained from very high cosi systems-FAST EXPOSURES - FINELINE REPRODUCTION PRICE

Normal Price £27.00
 SPECIAL OFFER PRICE \&18.00 INCL. VAT

Hobbyboard UV ARTBOX (MB/UV2)

A fully buith, sell-contained artwork table and UV exposure unit - TWO for the
price of ONE - EXPOSURE AREA 9 " $\times 6^{\prime \prime}$-EXCELLENTVALUE, Normal Price $£ 65.00$ SPECIAL OFFER PRICE
E49.00 INCL. VAT
kits $H B 2, H B / 3$ and $H B / 4$ with your new exposure unit
ITHB/5FULL PHOTOKIT - $£ 60.00$ INCL. VAT
KIT HB/5 FULL PHOTOKIT - $£ 60.00$ INCL. VAT
KIT HB/6
ORDER FORM
ICheques or Pustal Order

ase send me the following as quickly as possible
Please send me the f
QTY DESCRIPTION

- KITHB/1-PCBTRANSFER\& ETCHKIT-

KITHB/2-PCBPHOTORESISTKIT-
KITHB/3-DAYLIGHTPHOTOKIT-
KITHB/4-PHOTOLABELPANELKIT-KITMB/5-FULL UV/1 PHOTOKIT-KITHB/6-FULLUV/2PHOTOKIT-HBUUV1-DIYUV EXPOSURE UNIT HB/UV2-HobbyboardUV ARTBOX

Name

Address

Please Send further details \square

KELAN (Hobbyboard)
North Works, Hookstone Park, Harrogate, North Yorkshire. © 0423-883672
A division of Kelan Engineering Lid.
HE/383

\square VSA Post \& Packing 50, to K calalogue of uur oxtensive weic ome	tro ELECTRONIC KITS its, $15 p$ for UK kits, E .00 for ge of kits a Cabinets. Trade, E	7 HUGHENDEN ROAD, HASTINGS, SUSSEX. TN34 3TG Telephone: HASTINGS (0424) 436004 Cabiners. Send 200 S.A.E. for ducational \& Exoorienquiries
KS 100 MInI VHF Super-regenerative receiver $88-108$ MHZ 9V D.C. $E 5.27$ inc VAT		UK 108 Miniature F.M. transmilter. Not licenceable In U.K. c9.46 inc. V.A.T.
KS 370 2 Tone Stren, output 10W at $4 \mathrm{ohm}, 6 \mathrm{~W}$ at 8 ohm .100 DBM E5. 27 Inc VAT		UK 150 Amplifier Output Voitmetere (Mono \& Stereol) E3,48 inc VAT
UK 114/U cow Integrated Circult Amplifier, req 32V D.C. power 88.42 inc VAT		MW-UK E02/U tw Radio Racaiver $\mathbf{7 . 3 7 \text { inc VAT }}$
65272 6 Chen High Power VU Unit 300 W per chan $\mathbf{6 1 5 . 7 8}$ inc VAT	UK 11/W Electranic Siren (ready senombled) $12 \mathrm{~V} D C$ $\mathbf{E 1 0 . 6 2 \mathrm { inc } \text { VAT }}$	KS 12 LED VU Dizplay 0.3V-1.3V. ${ }^{5} 12 \mathrm{~V}$ D.c. E9. 12 Inc Vat
		KS 238 3 chennel microphone porated sound to lipht 300 W per channel. 240 V A.c. E11.58 inc. V.A.T.
KS 240 3 channel sound to light. output $3 \times 1 \mathrm{KW} 240 \mathrm{~V}$ c13.70 inc VAT	KS 260 3 channel chase light. IKW per channel, 240 V A.C. c 10.52 inc. V.A.T.	
	UK 380 Digital tuning indicator E37. 88 inc. V.A.T.	KS 420 Digiral D.C. voltmeter, 999MV-S99V. 0.5V D.C. E17.89 inc. V.A.T.
KS 300 Westminster chimes (8ig Benl c9.48 inc. V.A.T.	UK 562 Transistor and diode tespar E14.73 Inc. V.A.T.	KS 166 Dusk Switch 9V D.C. Switches 240V-6A min E12.63 inc VAT
3005-00 Instrument Cablnot H S4mm $W 2 \mathrm{~mm}$, L 145 mm 65.27 Inc VAT All Aluminium	3006.70 instrument Coblnot, H 68 mm , W 23 mmm . D 218 mm $E 11.58$ inc VAT All aluminium	$3003-00$ Heat SInk Box, H Thmm, w $72 \mathrm{~mm}, \mathrm{~L} 143 \mathrm{~mm}$ f5. 00 linc VAT

	$\begin{gathered} \text { SELF } \\ \text { ASSEMBLY KIT } \end{gathered}$
SX 1000	£12.95
SX 2000	£19.95
TX 1002	£22.95
TX 2002	£32.95
AT 80	£32.95
VOYAGER	£64.95
MAGIDICE	$¢ 9.95$

NAME \qquad HE3
ADDRESS

TX1002
 Electronic Ignition

Contactless or contact triggered - Extended coil energy storage circuit - Inductive Discharge - Three position changeover switch Distributor triggerhead adaptors included - Die cast weatherproof case - Clip-to-coil or remote mountingfacility - Fits majority of 486 cyl . 12 V . neg. earth vehicles \bullet Over 145 components to assemble

TX2002
 Electronic Ignition

- The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit. - Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerCan also be triggered by existing contact breakers. - Die cast waterprool case with clip-to-coil fitting © Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles. - Over 150 components to assemble

Al SPARKRITE products and designs se fully covered by one or more World Patents.

SPECIAL OFFER

"FREE" MAGIDICE KIT WITH ALL ORDERS OVER $£ 45.00$

MAGIDICE
Electronic Dice

- Not mn suto item but great fun
- Tor the random selection
- Triggered by waving of hand
- Bieeps and flashes during a 4 second - Throw displayed for 10 seconds Auto display of last throw 1 second in 5 Hours of contmuous use from PP7 battery

Clevep michr

Still half full of Christmas Spirit, CD attempts to answer another motley selection of reader's letters.

Christmas comes but once a year . . .
fortunately. Letters like this next one
arrive more frequently, though.
Dear CD,
I am writing to ask you this question: what are the units of conductance?

If you cannot answer the question then I think that a binder would compensate me, don't you?
Yours hoping that you don't answer, A. Sutton,

Rishton.
Lancs.
PS I'm trusting you not to consult a dictionary, nor to ask anybody else. Don't cheatl

Who needs a dictionary? The unit of conductance, as you seem to know already, is the 'mho'; that is, the inverse of resistance which is measured in 'ohms'. Get it? Good.

The author of the next letter receives the CD Bright Idea award . . . a very large raspberry.

Dear Clever Dick,

I think HE is fantastic, brilliant, clever etc. BUT your printers are chronic. Here is a solution (how about a binder?): rebuild all your projects after the designs have been mangled by the printer, ie build them from the finished article.
M. Cummings,

Chepstow,
Gwent.
Well . . . yes. It sounds like a good idea, in theory. Unfortunately, it just can't be.

First, though, any errors which occur in HE are certainly not the fault of our printers. We manage them ourseives, thank you very much! Second, the editor takes every precaution to catch errors in circuits or projects before the issue is sent to the printers. Last, your suggestion is impractical for the simple reason that it is far, far too late to correct errors which are found only after tens of thousands of copies of the magazine have been printed

And if there was an award for Dumb Letter of the Month, this next one would win hands down

Dear Clever Dick,

I was wondering if you could tell me whether or not it would be safe to wire a single-wired intercom, that is mains operated, through the earth of the mains socket?

Could you also please tell me where I could buy an Eagle LT700 transformer and the ZN4 14 silicon chip?

S. Williams,

Keighley,
West Yorks.
PS Is it true that the OC71 transistor is going out in place of the AC128?

Is this man winding me up?
On the basis of the information supplied, I can only reply - No! Better to be safe than sorry, you see. I'm tempted to say "yes" but I do hate to lose readers!).

For the transformer, why don't you try Eagle International? Their address is: Precision Centre, Heather Park Drive, Wembley HAO 1SU. The telephone number is 019028832 . The ZN4 14 is widely available from most of the compenent suppliers advertising in Hobby Electronics . . . TK Electronics, for example.

As usual, the subject of my precious binders arises once more. Anybody would think I had thousands to sparel

Dear Clever Dick,

Would you mind telling me who I could send off to, and how much I would pay if I actually want to (wait for it . . . BUY a HE binderl? It's all very well you sitting there with your pile of binders, carelessIy discarding them in the direction of grovelling electronics enthusiasts when the whim takes you; how about telling us unfortunate and wretched beings how we can obtain these priceless gems to keep our equally priceless HEs in without grovelling to some anonymous "wit".

Incidentally, I've been buying HE regularly since February 1979 and I desperately need some binders - how about sending me one immediately land free) so I don't have to bother to write off again?

P. Spring,

Bath,

Avon.

PS Notice the lack of scrounging, squirming, crawling, truckling, scraping and fawning land any other nasty words of such like meaning) in this letter.

Of one thing I can assure you: my binders are never discarded "carelessly", or on a whim!

Astute readers may have noticed in last month's issue, that I have actually agreed (under considerable pressure, it must be said) to award one of my blue and gold masterpieces free of charge to any reader clever enough to fill out a subscription form for Hobby Electronics.

And now for something a little more exotic, to borrow a phrase.

Clever Dick Sir,
I am a guitar player in a rock group and would like to build a radio transmitter/receiver for use with my instrument, as / and many other guitarists are tied to our equipment by leads, cables etc.

Commercially I fear, those units are very expensive (hundreds of pounds) and I would be very pleased if you have any ideas or could put me in touch with anyone who has plans for such a project.

Finally, would I have to apply for a licence, as the range would only need to be approximately 100 ft ?
E.C. Mountford,

Stone,
Staffs.
I felt this question required an expert answer, so I contacted Mr. Steve Stow of Martellow Sound Ltd., manufacturers of the popular 'Rello' range of radio mics.

First, a licence is required to operate any such system and will only be issued for Home Office approved equipment. This means it is most unlikely that you will ever see a radio mic system project.

Second, it is virtually impossible to design a guitar transmitter/receiver system at a reasonable price, that will satisfy all guitarists. Any inexpensive system must incorporate a limiter, making it unrealistic for those players who use a wide dynamic range (a system that did not use limiting would cost over $£ 10001$).

However, Martello will shortly be releasing a new narrow-band system designed primarily for speech transmission. It will be shown at the annual APRS event in June ' 83 and will retail for approximately $£ 299$ plus VAT. Martello Sound will be able to supply individual modules at a slightly lower price to anyone who wishes to experiment. See you at the APRS?

I'm continually amazed by the poetic nature of some of my fans. Not so much by their poetry, though.

Dedicated to Seedy.

Being a nice sort of fellow
I'm sure you will oblige,
Now that I've forty issues
Down in a scruffy old drawer,
Eventually they're going to get torn,
Rendering them pretty messed up.
But you have just the cure,
If only you'll read from the top,
Next to the left hand side
Downwards towards the bottom,
Ending then starting again;
Read carefully and you will see
the perfect cure for me!
The Poet,
C/O S.A. Lilleyman,
Sale,
Cheshire.
I hate to be seen to encourage any more of this appalling stuff, but it is the cleverest letter of the month - not that that's saying very much. You win. The Binder is presently being despatched.

GET ais Powsi

Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

Module Numbe	Outpur Power Wotts cms	$\begin{gathered} \text { Lasd } \\ 1 \text { mpedance } \\ \Omega \end{gathered}$	distortion		Supply Voltape Typ	Size mm	WT	Priceinc. VAT
			T.M.D. Trp* 1 KHz	$\begin{gathered} \text { I.M.D. } \\ \text { SOHz } \\ 7 \mathrm{KHz} 4: 1 \end{gathered}$				
-11,	13	2-1	12.015\%	< 0.006%	± 18	$76 \times 68 \times 10$	240	¢8.40
Iryat	, 11	$1 . \mathrm{H}$	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	$\underline{69.55}$
ITVixant	351+30	1.H	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	£18.69
Wriea	60	1	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	E20.75
	60	8	0.01\%	<0.006\%	± 35	$120 \times 78 \times 40$	410	E20.75
1\%224	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	E25.47
uvj4.	120	8	0.01\%	<0.006\%	250	$120 \times 78 \times 50$	520	E25.47
HV:154	180	1	0.01\%	<0.006\%	$\pm .45$	$120 \times 78 \times 100$	1030	£38.41
нуY.бiн	18 O	B	0.01\%	<0.006\%	160	$120 \times 78 \times 100$	1030	E38.41

Protection: Full load line. Stew Rete: $15 \mathrm{v} / \mathrm{\mu s}$. Risetime: 5 sus. S/N ratio: 100db Frequency response $(-3 \mathrm{dBl}) 15 \mathrm{~Hz}-50 \mathrm{KHz}$. Inpur senstivit

RE. AMP SVSTEMS

Module Number	Module	Furstions	Current Required	Price inc. VAT
liv6	Mulin pre amo	Mic/Mag. Cartridge/Tuner/Tape/ Aux * Vol/Bass/Trable	10 mA	17.80
11766	Sterea pre ums	Mk/Mag. Cartringe/Tuner /Tapel Aux + Vol/Bass/Treble/Balance	20 mA	¢14.32
hYr's	(iuts pre jmo	Two Guitur ftass Leadt and Mic * separate Volume Bass Treble * Mix	20 mA	C15.36
11478	Starmu pre ump	As HYC6 less tone controls	20 mA	$¢ 14.20$

Most pre-amp modules can be driven by the PSU driving the main power amp.
A separate PSU 30 is avaliable purely for pre amp modules if required for
[5.47 (inc. VATI. Preame and miming modules in 18 different variation
Pease send for detank.
For ease of construction we recommend the B6 for modules HYE-HY 13 £ 1.05 and the 866 for modules HY66-HY78 $£ 1,29$ linc. VAT).

Module Number	Output Power Watts rms	Loadmpedtance Ω	distortion		Supply Voltage Typ	Size mm	WT \$ms	Price inc. VAT
			T.H.D. Typat 1 KHz	$\begin{gathered} \text { I.M.D. } \\ \text { 6OHz } \\ 7 \mathrm{KHz} 4: 1 \end{gathered}$				
Mcos 128	60	4.8	<0.005\%	<0.006\%	± 45	120×78×40	420	£30.41
MOS 248	120	4.8	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 80$	850	f39.86
MESS 364	180	4	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 100$	1025	¢45.54

Protection: Able to cone with complex loads without the need for very spectal
protection eircuitry liuses will sulficol.
Frequency response i-3dB): $15 \mathrm{~Hz}-100 \mathrm{KHz}$. Input sensifivity: 500 mV rms
'NEW to ILP' In Car Entertainments
C15
Mono Power Bcoster Amplifier to increase the output of your existing car radio
of cassetie player to e nominad 15 watts rms.
Robust construc tion
$£ 9.14$ (inc. VAT)
Mounts anywhere in ca
Automatic switch on.
Sutput power maximum 22 w perok in to 4Ω
Freauency response $(-3 \mathrm{~dB}) 15 \mathrm{~Hz}$ to 30 KHz , T.M.D. 0.1% of 10 W 1 KH
S/N ratio (DIN AUDIO) 80dB, Load Imbedance 3Ω
Input Sensitivity and impedance (selectable) 700 m V rm into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms in to 8Ω Size $95 \times 48 \times 50 \mathrm{~mm}$. Weignt 256 gms .

F15
Stereaverwion of Cl 5 .
$£ 17.19$ (inc. VAT)
Stize $95 \times 40 \times 80$. Weight 410 gens.

Model Numben	For Use With	Price inc. VAT
PSU $52 x$	$2 \times$ HY/24	[17.07
PSU 53x	2x MOS 128	£17.86
PSU $54 \times$	ix HY248	¢17.86
PSU 55x	ix MOS248	¢19.52
PSU $71 \times$	2x HY244	£21.75

Model Number	For Uso With	Mict ince VAT
PSU 72x	2xHY248	[22.54
PSU 73x	$1 \times \mathrm{HY} 364$	[22.54
PSU $74 \times$	1: HY368	¢24.20
PSU 75x	$2 \times$ MOS248. $1 \times$ MOS 368	¢24.20

X in parino. indicates primary vol:age. Please insert "O" in olace of
X for $110 \mathrm{O} . " 1 "$ in place of X for 220 V , and " 7 " in place of X for 240 V .

WITH ALOT OF

MELP riom

ELECTAONICS LTO

PRoifssional wirl Can manole...

 Unicase

 Unicase}

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HiFI Separates					Prine inc. VAT
UC1	Preamp				¢29.95
UP1X	$30+30 W / 4-8 \Omega$	Bipolar	Stereo	HiFi	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£ 74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	-Bipolar	Mono	HIFi	$£ 74.95$
UP6X	60W/4-8	MOS	Mono	HiFi	£64.95
UP7X	120W/4-8	MOS	Mono	HiFi	£84.95
Power Slaves					
USIX	60W/4 Ω	Bipolar	Power	Slave	¢59.95
US2 X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$£ 79.95$
US3X	60W/4-8	MOS	Power	Slave	£69.96
US4X	120W/4-8	MOS	Power	Slave	$£ 89.95$

Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for $110 \mathrm{~V}, ~ ' 1$ ' In place of X for 220 V (Europel, and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 Incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Lid. if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

A GREAT DEAL of the trouble with television in its early days stemmed from the fact that it came so close upon the heels of radio broadcasting. The first publicservice wireless broadcasts took place in the USA late in 1920. Within ten years, the first regular mechanical-scan TV transmissions were being made and at the end of 1936, still a month short of the BBC's fourteenth birthday, the worid witnessed the gtart of the first television service using the all-electronic system which is the direct ancestor of TV as we know it today. All in all, an astonishingly short time-scale when you consider how long it had taken public electricity supply, for instance, to get established in the mid19th Century.

An amazingly rapid development perhaps, but it was also a remarkably difficult one when you compare it with the birth of sound broadcasting in the years immediately after the Great War. The trouble with television was quite simply that the idea existed long before anyone had much idea of how to put it into practice. With wireless broadcasting it had been the other way around, of course: the basic technology - radio telephony had lain there virtually unnoticed for nearly two decades before the idea had dawned, some time in 1919, that there was enjoyment to be had (and perhaps money to be made) from using it to talk to a mass audience. But, once the idea of sound broadcasting was firmly established, about 1923, people naturally began to wonder why you couldn't broadcast pictures as well.

The problem was that in the early 1920 s , no more than a tiny handful of visionaries around the world had even the remotest idea of how this was going to be put into practice. In fact, most of the Informed Opinion in the electronics world thought that if the transmission of moving pictures could be achieved at all (which was far from certain) it would take at least half a century to do it. The next fifteen years were to prove the doubters dramatically wrong, but only at the cost of one near-disastrous false start, great expense, and a legacy of bitterness and illfeeling which was to plague television for years to come.

Early Days

The possibility of transmitting pictures electrically over long distances had been

> The idea of transmitting pictures electrically over long distances had been around since the middle of the 19th Century, but it took nearly 100 years to develop the technology.

examined half-heartedly since the 1850 s, when French experimenters had managed to pass a few slow, fuzzy reproductions of still pictures along telegraph wires. The idea never really caught on but it remains one of the curiosities of technological history that in the end, a reasonably fast and reliable system for telegraphing press photographs came into use in the early 1930 s, only a couple of years before the start of the first high-definition TV service. In fact it was rather as if the steam engine had been invented only a few years before the aeróplanel

The idea of pictures-from-afar was given a major boost in 1873 with the discovery of selenium and its photoelectric properties. After a few years' research, though, this line of enquiry appeared to lead to nothing, as it was realised that the new substance was too slow in responding to light variations for it to be much use in transmitting a moving picture. In 1888 the German experimenter Nipkow achieved a major breakthrough (though it was scarcely recognised as such at the time) by cracking the problem of image dissection - how to break a picture down into separate elements capable of being transmitted over a single wire as a succession of electrical pulses. His solution was the Nipkow disc: a spinning disc with a series of holes spiralling inwards from the edge, so that as each successive hole passed between the subject and a photo-electric cell, the light reflected through the hole onto the cell would give an electrical analogue of the light/shade
pattern on that part of the subject which the hole had just scanned. With this process reversed at the receiving end, a crude picture could be built up, with the number of lines corresponding to the number of holes in the disc. Although well ahead of its time - it had to wait for the invention of the valve as an effective current amplifier - this device was to form the basis of the first attempts at a working TV system.

Mechanical scanning, then, was the obvious starting-point when researchers began to think seriously about television - but it took a long time for them to begin thinking about it at all! Prior to the First World War, a few scientists had toyed with the idea as part of their researches into something else. Boris Rosing in Russia and A. A. Campbell-Swinton in Britain, for example, whose early work on cathode ray tubes had given them an inkling at least that they might one day be used in television systems, if only at the receiverend. It is only in looking back on it, though, that we can see the beginnings of television, and in later years CampbellSwinton used to become very annoyed when journalists described him as the 'Father of Television'. The Great War did nothing for TV, since its military value was far from clear. In fact, it set research back by a good few years when the Russian Revolution broke up Rosing's team of scientists at St. Petersburg. Then, when the War ended, attention was focussed for several years on the business of setting up sound-broadcasting in America and Europe. But a's life returned to normal a few pre-War experimenters got working again.

John Logie Baird in Britain and C.F. Jenkins in the USA were pursuing the task of marrying the Nipkow scanning system to the valve-based radio transmitter, while an obscure Russian immigrant called V.K. Zworykin, an old pupil of Rosing's, was beavering away in the Westinghouse research laboratories in Pittsburg, developing the all-electronic iconoscope scanning system which was eventually to drive all before it.

Flying Spots

At the beginning of 1924 though, when Baird gave the first demonstrations of his TV system in London, it looked very much as if mechanical scanning systems would be the basis of all future work on televi-
sion broadcasting. Baird's television camera in these demonstrations was really little more than an up-dating of Nipkow's apparatus. The main innovation was that the subject was scanned by a spot of light shone onto it through a Nipkow disc by a lamp mounted on the camera. The light reflected back - only a tiny percentage of that given out by the lamp - was focussed onto the photoelectric cell by lenses fitted over the successive holes in a second Nipkow disc, synchronised to spin with the first. The current given out by the cell modulated a medium-wave radio signal. The receiver, for its part, was a disarmingly simple contraption consisting of a neon light whose output was varied by the signal from the transmitter. It shone through another motor-driven Nipkow disc, synchronised with the camera, onto the back of a ground-glass screen. Given luck with synchronising the spin of the camera and receiver discs, the result was a postcardsized picture made up of twenty-five curved, vertical strips of yellowish light and greyish shade in which those with a good imagination might discern the smudgy, distorted semblance of a human face or some similar-sized object.

It was this rather unpromising system which Baird and his motley, quarrelsome crew of financial backers set out to perfect and sell to the British public during the years 1924-30. Before they could do so, however, they first had to win over the GPO and the BBC to the idea of a television service: the former so that it would grant the Baird Company a sizeable slice of the already-crowded MW band for experiments and the latter so that it would relax its statutory monopoly of broadcasting, lend a transmitter and eventually (it was hoped) take the new invention aboard as the BBC Television Service. Contrary to later legends, the Post Office and the BBC seem in fact to have been interested in the idea of television, and tolerably helpful despite the difficulty of negotiating with Baird (who was an outstandingly poor businessman) and his financial partners (some of whom were more than a little shady).

Demonstrations for the benefit of the GPO's engineers and then the BBC, in the autumn of 1928, seem to have given far from outstanding results even for an experimental system, and while the general verdict was that television was an idea

A Mihaly mirror-drum scanner, in use around 1929; the arrows show the path of the light.
[Photo. Science Museum, London.]
well worth developing, the GPO thought that it would need to have a lot of work done on it before they could inconvenience radio users by giving it part of the medium-wave band for trial broadcasts. Baird's associates were furious and immediately began a press campaign, accusing the Post Office and "the BBC bureaucrats" of trying to strangle the new invention at birth. This lead to the Postmaster-General twisting the BBC's arm until it agreed to lend the Baird Company a transmitter at Brookman's Park in North London, for six months of the experiment, problems with the transmitter led to a typically British compromise whereby the vision and the sound were broadcast on alternate days! Once the service was working properly however, the BBC (who were producing the programmes) were quite adventurous about what they broadcast. In May 1930 they put out the world's first television play, Pirandello's "The Man With A Flower In His Mouth", undetered by the fact that the entire cast had to act seated around a

John Logie Baird's 1925 experimental TV camera.
British Crown Copyright. Science Museum, London.
four foot-wide table. In June 1931 the Derby was televised in the first outside broadcast, the Nipkow disc being replaced on this occasion by a rotating drum of mirrors, each angled slightly from the next. In the autumn of 1932 the BBC formed a television committee and agreed with the Baird Company to provide two programmes per week until the spring of 1934.

Unfortunately public interest in the new service was minimal, however much of a stir TV demonstrations might cause on the stands at the Radiolympia exhibitions. Baird manufactured "televisors" at 25 guineas a time, to be on sale for the opening the experimental broadcasts but few of these were ever sold. Only thirty were known to exist when the broadcasts began in September 1929 and eighteen months later, only about 10,000 were in operation. True, most of these were home-built from kits of parts, since the receiver was simple enough for most radio amateurs to make for themselves. But as a public service, mechanical-scan TV failed to catch on, despite the fact that the Brookman's Park transmitter gave theoretical coverage over a large part of southern England. This was partly due to the fact, no doubt, that sound-broadcasting was only just becoming accepted as a regular public service. The main reason, certainly, was that the picture was simply not good enough.

Studio productions were very limited because the most the camera could take in was one or two people in head-andshoulders close-up. Any larger scene or outside broadcast had to make use of the clumsy intermediate film process, which involved shooting it first with a conventional cine camera, developing the film and running it through a scanner a minute or so later. Those appearing in the studio had to be thickly painted with a coating of flat white and dead black make-up, so as

One of Baird's Televisors; the serial number on the bottom left corner of the cabinet reads "1936-647".
(British Crown Copyright. Science Museurn, London.)
to get the maximum constrast from facial features. Then, sitting in the tiny blackedout studio being scanned by a brilliant, flickering light was unpleasant for most people, and it was even said to trigger epileptic fits in some. Nor were the results particularly impressive when they arrived in the living-room: the screen was about 3 in by 7 in, the picture swayed up and down the whole time, it smeared and it often lost sync and dissolved into a rushing smudge of light and shade. Even when the picture was received at its best, viewers said that it compared unfavourably with the early cine-films. All in all it was something people might watch out of interest but scarcely something they would pay to watch for pleasure!

The End of the Beginning

Baird tinkered with the system for three years in an effort to achieve acceptable definition and screen-size, but the mechanics and the electrics were both against him. A larger screen meant a larger scanning disc; a larger scanning disc had to spin faster and this inevitably led to loss of synchronisation and smearing of the picture, as the photo-electric cell found itself unable to keep up with the changing light values. In any case, better definition would have meant taking up an even larger slice of the MW band. Baird was a formidably stubborn man and his backers tended to blame the BBC for not trying hard enough to make mechanical TV work. But there were other opinions to be considered: wireless-users were complaining about interference from the TV transmissions and, in the USA and Germany, RCA and Deutsche Rundfunk (using the Mihaly-Traub system) were preparing to abandon their own TV experiments at the end of 1932 as a waste of time and money. Early in 1933, then,
the BBC announced to the Baird Company that it would end the broadcasts from Brookman's Park in September 1935.

While all this was going on, Zworykin had been at work in the United States, first for Westinghouse and later for the Westinghouse associate RCA. He had taken out a patent on his iconoscope TV camera as early as 1923 , but it was not until 1931 that he and his growing research team had developed it to a point where its picture could be compared with mechanical-scan television. The principle of the iconoscope was that an electron beam was fired obliquely at a metalmosaic plate, being electromagnetically deflected in the process to scan back and forth across the plate from top to bottom. The camera lens focussed the image onto the plate and as the electron beam traversed, it created a succession of tiny electron discharges corresponding to the light and shade of the image; these were amplified to modulate a VHF signal. Secondary emission of electrons was a serious problem, at first, and the haloes which it caused around the brighter parts of the picture were so persistent that at one point, late in 1932, RCA was preparing to give up its experiments with allelectronic TV and go back to mechanical scanning. But the problem was gradually overcome during the early months of 1933 to the extent that by mid-year Baird - who had once confidently said that "there is no hope for television by means of cathode ray tubes" - was sufficiently alarmed to begin his own experiments with electronic TV, borrowing the American inventor Philo T. Farnsworth's image-dissector tube (a primitive cathode-ray device) for the purpose.

Part of Baird's alarm was caused, no doubt, by the talks which were in progress between the BBC and RCA's British sister-company, EMI, following a very promising demonstration of electronic-

This exotic piece of glassware is an EMITRON camera tube, dating from 1935.
(Lent to the Science Museumby Electrical \& Musical Industries Lid.)
scan TV in April 1933. The BBC was determined to try the new system in an experimental public service, but the newspapers were beating the patriotic drum about American competition with the all-British Baird system. Baird's supporters, like the journalist Sydney Moseley, had always believed that the BBC was operating a vendetta against the Company, and they had sufficient influence in Parliament and Fleet Street for the Postmaster-General to be wary of doing anything which might lead to accusations that the Government had killed off Baird's Television by favouring foreigners. The result was that, however much the BBC might be impressed by the superiority of the EMI system over Baird's, it had to allow some sort of comparison when the Corporation's television service began broadcasts on 2 November 1936.

''String and Sticky Tape"

The arrangement was that each company's system would be used in alternate weeks: the EMI 405-line, 50 -scan per second transmissions going out from the Alexandra Palace in North London and the Baird 240 -line, 25 -scan broadcasts from Crystal Palace on the other side of town. In the event, though, it was hardly much of a competition. The Baird pictures, put out by a hastily-assembled jumble of mirror-drums, image-dissectors and intermediate filming, were so patently inferior to those from the EMI cameras that it hardly needed the bad luck of the Crystal Palace fire to bring about the Baird system's demise after only three months, in February 1937. From then on, electronic scanning was to rule the world's television systems, with only minor changes like the introduction of orthicon cameras in the late 1940s and the European switch to 625 lines in the mid-1960s.

The technical argument was over, but television took many years to live down the collapse of mechanical scanning and the bitter quarrels which followed. Development was slow during the years 1936-39, both in Britain and in the USA. In fact, by the time the Alexandra Palace transmitter was closed down abruptly at the end of a Mickey Mouse film on the morning of 1 st September 1939 (it was feared that the Luftwaffe would use it as a navigation beacon), the number of sets in
use had barely reached 20,000. Transmissions went out for a mere twenty hours per week and they could only be picked up within a radius of about 25 miles from Alexandra Palace. True, sets had got markedly cheaper over the three years - from around 95 guineas to 21 guineas for some of the most basic models - and they had also become noticeably less bulky, as improvements were made to the large iron-cored transformers needed to provide the 2,5000 volt anode potential. But 21 guineas was still 3-4 weeks' wages for a skilled workman in 1939 and, in any case, people were extremely reluctant to invest such a large sum in a set which might well end up as a useless relic like the 1930 televisors, if the BBC decided to abandon TV at some future date. Television excited little public interest in the last years of peace, either here or in the States, where NBC began regular broadcasts only in February 1939.

Radio was still the dominant medium and TV was regarded as a faintly crankish and unreliable experiment for years, even after it became a regular service. Indeed, there have been some historians in recent years who have said that much of the British Government's interest in television around 1936 arose from the fact that the Air Ministry needed a cover-story to explain the mass production of cathode ray tubes for use in the chain of top-secret radar stations which it was building along the South Coast!

Not a prototype Dalek, but an eariy EMI TV camera.
(British Crown Copyright. Science" Museum, London.)

The War put paid to television services the world over. The USA's embryonic TV network was closed down by order from Washington early in 1942, to free tubemanufacturing capacity for the Navy and, by the end of 1943, the German experimental transmitters had been bombed out of existence - though for some mysterious reason the Wehrmacht was

A pre-war (1938) EKCO TV receiver; the size of the screen can be judged against the operating knobs!
(British Crown Copyright. Sclence Museum, London.)
tinkering with transmissions from the Eiffel Tower right up to the liberation of Paris in 1944. The story of television begins once more on 7th June 1946, the day before the Victory Parade, when the BBC resumed television broadcasts from the Alexandra Palace. TV was back on the air, but it was there only as a rather threadbare version of the pre-War service. The number of sets in use had actually gone down as a result of the Blitz, and new manufacture was a very fitful affair as the electronics industry readjusted to peace. A few skilled enthusiasts managed to build their own sets from surplus radar equipment, but for most people a TV set was an undreamed-of luxury item; the climate of Austerity Britain was not at all favourable to expensive new services like television. It was not until 1949 that the BBC got its second TV transmitter, at Sutton Coldfield, and during 1950 set manufacture stopped altogether because of the Korean War. The actor's unions and the theatre managers were hostile while BBC radio broadcasting was reluctant to share its immense wartime prestige with this upstart newcomer.

Towards the Future

In spite of all these difficulties, television was busy preparing itself for its great take-off in the mid-1950s. The production teams were rapidly learning their new trade in the dingy, cluttered studios of the Ally Pally and the realisation slowly dawned, even on the BBC management, that television was a completely separate medium from radio: a process of education which was greatly helped by a disastrous attempt to put on Tommy Handley's "ITMA" programme as a simultaneous TV and radio broadcast. Scriptwriters began to cater exclusively for television and the first "personalities" began to emerge at the beginning of the 1950s: people like Gilbert Harding and MacDonald Hobley and Philip Harben. Sets were still expensive, though, and worse than that - the populace at large
still regarded TV as a slightly suspect plaything for the rich. It needed some major event to force TV in to the public consciousness.

That event came with the Coronation in June, 1953. Unlike the earlier Coronation in 1938, the BBC was allowed to televise the whole ceremony, including the scene inside Westminster Abbey. Large numbers of sets were hired for the occasion by people who would normally no more have thought of acquiring a TV set than a Rolls Royce. In the event, the whole proceeding turned out to be such an impressive spectacle that few of the sets went back to the showrooms afterwards. The number of licences had risen to two and a half million by the end of the year and, from then on, the television era had really arrived, both in Britain and in the United States where the three major networks CBS, NBC and ABC were soon able to parcel out the national TV audience among themselves much as they had shared out wireless broadcasting in the 1930s.

A Bush model TV22 9" television set from 1950; millions of viewers watched the 1953 Coronation on sets such as this.
(Photo, Science Museum, London.)

Technical improvements were few after 1950. The size and weight of sets were reduced still further as transformers were made more compact and scanning angles were increased to allow a wider screen for a given length of tube, eventually doing away with the early solution of mounting the tube vertically and placing an angled enlarging mirror over the top of it. At the studio end, the orthicon camera replaced the iconoscope and the zoom lens replaced the earlier four-lens turret, which made it necessary to cut from one camera to the other while changing focus. Video recording arrived in 1956, live satellite relay in 1962 and colour TV at the end of the 1960 s . With these developments television came to cover the whole Earth and the last stimuli to the imagination were removed. TV's direct influence on the world has been small in comparison with radio's. But the era of cable, satellite, home video and high-definition digital TV can only confirm it in its undisputed position as the world's most popular pastime.

EHPAK EARGANS

SIREN ALARM MODULE

merican Police type screamer powered tro any 12 . volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm, treezer breakdown and other security purposess. BP1245 watt liz max - Siren Alrm Modula
$\because 3.85$
Order No
BP124

BI-PAK SOLDER
 DESOLDERKIT

Kit comprises OROER NO. SX80
I High Quarity 40 wall General Purpose Lightweight Soldering lron 240v mains incl $3 / 16^{*}(4.7 \mathrm{~mm})$ bit.
1 Ouality Desoldering pump. High Suction with aulomatic ejection. Knurled. ant-corroslve casing and tellion nozzie.
1.5 metres of De- soldering braid on piastic dispenser.
2 yds (1.83m) Resin Cored Solder on Card. 1 Heat Shunt tool tweezer Type.
Total Retail Value over $£ 12.00$
OUA SPECIAL KIT PRICE $\mathbf{~} 8.95$
"IARESISTATLE RESISTOR BAROAINE"

Pathe Ofe Oucriptien Pre

 Resistors $\begin{array}{lll}\$ 112 & 200 & \text { is watt Carbon Ressistors } \\ \$ 113 & 200 & \text { ywatt Garbon Ressistors }\end{array}$ 5114150 hwatt Resistors 22 ohm $5 \times 15 \quad 100 \quad 1$ and 2 wath Resistors 22 Paks $\mathrm{SX12}$ - 15 contain a range of Carbon fitm Resistors of assorted values fiom 22 ohms to 2.2 meg. Save pounds on these resistor paks and have a lull iange to cover your propects. - Quantities aporoximate. count by weight.

25 pieces of Audio Plugs, Sockets and Con-

 36 Pin, Speakers, Phono Jack Stereo Inline and Mono etc Valued at well over fis normal Order No. SX25. Our Price 1.50 per pak.Guaranteed to save you money.
SX26 3 Prs of 6 pin 240° OIN Plugs and SX27A 60 Assorted Polystyrene Bead Capacitors Type 9500 Series PPO SX28A 50 Assorted Silver Mica Caps.
$5.6 \mathrm{p}-150 \mathrm{pF}$ $5.6 \mathrm{pF}-150 \mathrm{pF}$
SX29A 50 Assorted Silver Mica Caps.
$180 \mathrm{FF}-4700 \mathrm{p}$ 180 pF-4700 pF
SX30A 50 High Voltage Disc Ceramics 750 v SX3iA 50 Wirewound 9 watt (avg) Resistors 50 Wirewound 9 watt (avg) Resistors
Assorted values 1ohm-12K \quad E1.00

TheThird and 1Fourth Hand....... you always need This helptul unit git "until now horizontally on Heavy Base, Crocodile cilp attached to rod ends. Six ball $\&$ socket foints give infinite variation and positions through 360° also available attached to Rod a $21 / 2$ diam magnifier giving $2.5 \times$ magnification. Helping hand unit available with or withour magnitier Our Price with magnifier as illu strated OROER NO. T402 $£ 5.50$
Without magnitier OROER NO. T400 $£ 4.75$

BARGAINS

Sx91 $20 \times$ Large $\mathbf{2}^{2 \prime}$ RED LEO 514220 small. 125 Red LED's Sx43 10 Reclangular Green LEO's. 4530 Assorted Zener Olodes 250 mw .2 watt mixed voltages. all coded. New.
5347 iBlach instiument
Knobs-winged with pointer w Standard screw. Fit size 29n 20 mm .
Sxis 20 Assorted Sider Knots 8 lack/Chrome, etc.
sued 12 Neons and Fibment Lamps Low voltage and mairs - wious type and colours - some panel mounting

$11=5152$

6 Black Heatsink will fit T0.3 and 10-220. Ready drilled. Hall price value.
5×53 I Power finned Heatsiak, This healsink gives the greatest possible heat dissipation in the smallest space owing to its unique staggered fin design, pre dilled.
10.3 Sire 45 mm squarex 20 mm high. 40 p
sx54 $10-66$ size. $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm}$. $\quad 35 \mathrm{p}$
Sx55 I Heat Efficiency Power Finned Healsink
$90 \mathrm{~mm} \times 80 \mathrm{~mm} x 35 \mathrm{~mm}$ Kigh. Drilled to
take up to $4 \times$
i0. 3 devices
£1.50 each

PROGRAMMABLE UNIJUNCTION TRANSISTOR "PUT" case T0106 plastic MEUZ2 Similar to 2NG027 /6028 PNPN Silicon $\begin{array}{llll}\text { Price: } 1-9 & 10-49 & 50-99 & 100^{+} \\ \text {Each: } \\ 20 \mathrm{p} & 180 & 150 & 130\end{array}$ Normal Retail Each: $20 \mathrm{p} 18 \mathrm{p} \quad 15 \mathrm{p} \quad$ 13p Price £0.35 each SX33A 6 small ($\mathrm{min}_{\text {Switc }}$ (SDST/SP : SX35A G A मocker Switches

E100

SX32A 12 Assorted Jack \& Phono plug
suckets and adaptors, 2.5 m
£100
$\begin{array}{ll}\text { SX71 } & \begin{array}{ll}3.5 \mathrm{~mm} \text { and standard sizes } \\ & 50 \mathrm{BC} 108 \\ & \text { "Fallouts" Manufac }\end{array} \\ & \end{array}$
£1.00
turers out of spec on volts or
gain You test.
SX72 A mixed bundle of Copper $\quad £ 1.00$ Board Fibre glass and per cla Single and double sided. A fanlastic bargain

8100

SX38 100 Silicon NPN Transistors-a perlect Coded mixed types with data and eqvt sheet. No rejects Real value.
SX39 100 Silicon PNP Transistorsall perfect. Coded mixed types
with data and eqvt sheet. No rejects. Fantastic value.
2 203055 The best hnown Powet Pransistors in the World - 2 N3 3055 NPN 115 m . Our 81 -Pak Specisl Ofter Price: 10 of
53.50 50 of 100 of

30312 COMPLIMENTARY PNP POWER TRANSISTORS: TO 2N3055. Equivaient MJ2955-80312-T03
SPECIN P青ICE 50.70 exch

BRAND NEW LCD

 DISPLAY MULTITESTER.RE 188 m
LCD 10 MEGOHM INPUT IMPEDANCE
$\cdot 31 / 2$ digit * 16 ranges plus hFE test tacility for PNP and NPN transistors *Auto zero. auto polarity ${ }^{\circ}$ Single-handed, pushbutton operation "Over range indication " 12.5 mm (1 $/ \mathrm{r}$-inch) large LCO readout *Diove check -Fust circuil protection ${ }^{\circ}$ Test leads, battery and instructions included.
Maxindication 1999 or -1999
Polarity indication Negative only
Positive readings appear without + sign.
Input impedance. 10 Megohms
Zeroadjust Automatic
Sampling time 250 milliseconds Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ Power Supply $1 \times$ PP3 of equivalent $9 v$ Consumption 20 mw Consumption RANGES
OC voltage 0.205 mv
$0-2-20-200-1000 \mathrm{~V}$. Acc: 0.8 $0-2-20-200-1000 \mathrm{~V}$. Acc:
AC Voltage $0-200-1000 \mathrm{~V}$. Acc. 1.2% OC Current 0.200 uA . 0-2-20-200mA. 0-10 A. Acc: 1.2 Resistance 0-2-20-200K ohms 0.2 Megohms. Acc: 1% BI-PAK VERY LOWES! POSS PRICE

SINGLE SIDED FIBREGLASS

SILICON POMER TRANSISTORS

 -703NPN like 2N3055 - but not full spec 100 watts 50 V min.
10 for LISO - Very Good Value loos ol uses - no duds Orde! No. SK90

REGULATED VARIABLE
STABILISED
|POWER SUPPLY
Varmble from 2.30 vots and 0.2 Amps Kit indudes 1 - VPS30 Motule $1-25$ valt 2 amp transtorme! - 0.50v Z' Pand Mere, 1 - $02 \mathrm{amp} \tau^{\prime}$ Pana Meter 1-470 otm wiewound potentiometer, 1 - 7 chm witewound potentomete Wring Oifgram included VPS30 KIT $\mathbf{E D}$

MORE BARGAINEI

SX51 60 metres PVC covered Hool-ug wire single and stranded. Mired colours.
ST58 25 Assorted TIL Gates 7400
Series. 7401.7460 .
515910 Assorted flip Flops and MSI
20 Assorted Slider
Potentiometers
516240 Assorted Pre Sets Har/Vert
5179 10 etc.
10 Reed Switches - glass type 3 Micro Switches - with lever

 CIss Mad

BFFAK BARGANS

TRIACS - PLASTIC

 5×645 ilk in $\mathrm{sx} \times 888.17 \mathrm{l}$ log PER PAK

Sx40 250 Silicon 0iodes-Switchng like INA148 D0-35. All good-uncoded. Worth double our price. 15575 mA . $\quad 1.25$ S141 250 Silc on Oiodes-General Purpose, Ilue OA220/202. BAx13/16. Uncoded.
\square
SIM 10 SA SCR's $5064.3 \times 50 \mathrm{~V} .3 \times 100 \mathrm{n} 2 \times$ $200 \mathrm{v}, 2 \times 400 \mathrm{v}$. Super vavive less than 2

5×5

200v. $2 \times 400 \mathrm{v}$. All coded. Brand new, a
sure amay

MINIATURE TOOLS FOR HOBBYISTS

Minature round nose site curters
insulateo handies atyncen lengith

Mambles 5 'hanch liergit Order No Yout

Minature end nopers - insuibied nsocies
4hanch lengin Oroer No rours Whach rengin Oroer No Yous
Minature snive nose diers with sode curter and seriated orms - insublet
Andies 5nct lengit Order No YOA?
Alth insuleted handles
All AT
1.25

grip-driven

Ginch long scrowedrver wath soing losted one on
end 10 nold screws in possition while reaching mio
 So-7 Cross pant nol 95p ench
imexpensive tools of immense value
Comblined wree sulpper, curiet, crampel nct 25 assi

BA NUT DAIVEA SET Shatis plus unversal hanale in toll un
 ME ON SCREWDRIVER

7i, blade no NSI O.exp sech
5in blade no NS2 0.54 esch

EXPERIMENTOR
BOXES - ALUMINIUM -
PLASTIC
ALUMINIUM BOXES Made wilh Bright Aluminium folded
construction with deep lid and screws construction with deep lid and screws

Price
$83 p$
$83 p$

Plastic Boxes
Coloured Black. Close litting.
Flanged Lid, fixing screws int

flanged Lio, fixing screws into brass bushes, SIZE W W Order No. Price | 4 | 2 | 1 | 141 | Order No. Price |
| :--- | :--- | :--- | :---: | :--- |

 Hastic 35 2\% $144 \quad$ E1.50 4 obove but with aluminium top panel Plastlc sloping front

51/2 4/4 21/4
slope
to
10
112
Widh. 148

BI-PAK'S OPTO 83 SPECIAL

A selection of Large \& Small size LED's in Red Green, Yellow and Clear, plus shaped devices of differeni types 7 Segment displays, photo transistors, emititers and detectors.
Types like MEL11, FPTIOO etc. Plus Cadmium Cell ORP12 and germ, photo ransistor OCP71. TOTAL OF 25 PIECES

1 Amp SILICON RECTIFIERS

 Glass Type similar IN4000 SERIES IMOOOTHM4004 50 - 500 v - uncoo. 5 - you select tor VTTS All Defleal dences - No duus Mir 50 N 50 101 E1.00 - wORh Double OROEA NO SX76 Silcon General Purpose NPN Firnsiots $70-18$ Case dock fif leas - cooded CV7664 simiar 10 BC14) PRICE $£ 2.00$ £3.80 $£ 17.50$ £30.00 silicon Genearal Puidose PNP Transisiors T0.5 cose loch if liesas conerd CY9507 simitar 2N2005A to BF $\times 30 \mathrm{VC} 50$ IC 600 mA Min Me 50 ALL New' 50 on 100 on 500 on 1000 on PAMCE E2.50 £4.00 E19.00 £35.00

Silicon NPN‘L'TypeTransitors TO-92 Plastic centre collector
Lite BC182L - 183L - 184L
VCBO 45 VCEO 30 ICZOOMA He 100.400
ALL perfect devices - uncoded ORDER AS SX1B3L
50 of 100 of 500 oH 1000 of
$\begin{array}{llll}\mathbf{1} .50 & £ 2.50 & £ 10.00 & \mathbf{1 1 7 . 0 0}\end{array}$
PNP SILICON TRANSISTORS
Similar ZTX500-ZTX214 - E-Line
VCEO 40 VCBO 35 kc 300 mA He $50-400$
Brand New - Uncoded - Pelect Devices
50 oH 100 ofl 500 oH 1000 oH
$\begin{array}{lllll} & \mathbf{2} .00 & £ 3.50 & \$ 15.00 & \Sigma 25.00\end{array}$

MW398 NI.CAD CHARGER
Universal Ni-Cad battery charger All plaslic case with lift up lid. Charge/Test switch. LED innicators at each of the tive charging points.
Charges:- \quad Power -
PP3

PP3 (9V) $\quad 220.240 \mathrm{VAC}$
U12 115 V penitel Dims:
; U11 (15V C"') $210 \times 100 \times 50 \mathrm{~mm}$ U2(1.5V © © © 0.9 E
POWER SUPPLY OUR PRICE E3.25 Power supply fits direcily into 13 amp socket Fused for salety Polarity feversing socket Foused ior switely Lead with mulit plug Voltage swith Lead with multh plug
Inpul:- 240 V AC 50 HZ Ouiput -3.45 .6 . Inpul:- 240 VAC 50 HZ Oulput -3.45 .6 .
7.5 .9812 VOC Ratung. -300 ma MWBB

VOLTAGE REGULATORS
 T0220
 $\begin{array}{ll}\text { Positue }+ & \text { Negative }+ \\ 7805-50 p & 7905-55 p \\ 7812-500 & 7912-550 \\ 7815-50 p & 715-550\end{array}$
 $824-50 p$ $7924-55 p$

Cuarantee alwars been Pi PAKtion or your money back has

 All these Sale tems are in stock in quantity and we will despatch the same day as your order is recerved.
IC SOCKETS

Tho lowest price ever

the more you buy the cheaper the
$\begin{array}{llll}10 \text { pin } & \text { 85p } & 63.50 & 66.00\end{array}$

SILICON BRIDGE RECTIFIERS
Comprising o x is amp
rectifiers mounted on $P C$ rectifiers mounted on PCB
VRM - 150vits
IFM -1.5 Amps
Size: 1 inch square
10 off
50 off
100 off
O. 7.50
Order No. As: 4 R1 BRect.

MULTITESTERS

${ }^{1}, 000$ opv Including lest leads b batier. 30,000 opv. Including test leads and case AC volts - $0 \cdot 15 \cdot 150-500-1,000$. OC volis: - $0-15-150-500-1,000$. OC currents -0.1 ma - 150 ma Resisiance:- 0.2 .5 k ohms 100 K ohms 01 ms -90 $\times 61 \times 30 \mathrm{~mm}$.
. O/No. 1322.0 UR PRICE E6.50 ONLY

DOME TWEETER

 ohms, Frequency Response
98 mm dia $\times 31 \mathrm{~mm}$ deep.
OUR PRICE $\mathbf{E 2} .85$ O/No. DMT200

SPECIAL OFFER OF STEREO AUDIO MODULES

Fully bullt and tested in our factory
A COMPLETE SET TO GIVE YOU 70 WATTS TOTAL
35 WATTS (rms) PER CHANNEL 55v POWER SUPPLY
${ }_{2}^{\text {Kit comprises }} 2 \times$ Al80 Power Amplifiers $2 \times$ AL80 Power Ampitifers
$1 \times$ PA 200 Stereo Pre Ampififier $1 \times$ Fiont Panel Black with White letering $1 \times$ Front Panel Black with white len
$4 \times$ Black Knobs with White Pointer a $\begin{aligned} & \text { a Black Knobs with White Poiner } \\ & \text { NORMAL REIALL PRICE } 552 \text { COMPLE }\end{aligned}$ OUR SPECIAL OFFER PRICE FOR 1 MONTH ONLY
Order by phone NOW with your Credit Card -

BR P
 J月PAN: $=0$ get wow arder ewn laster Gocos not mally sent 2mo Cless Mall
 Rempmber wow must zod var at $15^{\circ} \mathrm{o}$ to mowr corder
 Tobl Pasuge add Soo per Yotul aide.

$1 \times$ SPM120/55 Power Supply
$1 \times$ Transformer 55v
※ Transformer 55v Full hook-up chart Full hoo
AVE $\mathrm{C14}$
-

COMPLETE

Pop Amps

Simple measuring circuits based on operational amplifiers.

No. 7: Low Range Ohmmeter

THIS CIRCUIT has two ranges, O to $9 R$ and. 0 to 900 mR . A typical multimeter rarely has the ability to measure resistances as low as these, yet there are occasions on which you want to know the value of a resistance with some degree of precision. You may have made your own low-value wire resistor for use as a dropper in a current regulating circuit, for example; or you may want to measure the resistance of the coil of a loudspeaker or of a solenoid. Such devices often carry high currents when in use, and possibly the circuit is operating close to its limits. In this event the difference between 3.5 ohms and 3.7 ohms may make all the difference between safe operation and dangerous overloading of the other components. This device measures such resistances precisely. It can also be used for measuring the resistance of short lengths of cable, enabling you to calculate the resistance of a longer run. It can measure contact resistance in relays and similar devices, which usually have resistances of a few tens of milliohms.

Low Class Circuits

As in the previous circuit, the op-amp is wired as an inverting amplifier. The amplifier works in the same way as in that project, but the input to it is derived in a slightly different way. The principle is that a known current is made to flow through the unknown resistance, Rx, and the amplifier is used to measure the voltage developed across Rx. Since RX is very low, the voltage is very low too, but this is amplified to give a voltage which is measurable by an ordinary voltmeter.

The constant current is derived from ICI, which is a programmable constant current generator. Provided that the voltage across ICI exceeds about 1V5, the current flowing from ICl remains unchanged no matter what the operating voltage may be; this means that the current is independent of the freshness of the battery. The IC is programmed by the value of R1. With R1 $=10 \mathrm{R}$ as in Figure 1, the constant current is 6 m 77 A at $25^{\circ} \mathrm{C}$. It varies in proportion to the absolute temperature

Figure 1. The Pop-Amp No. 7 circuit, a Low Range Ohmeter.

Figure 2. The stripboard component overlay, showing track cuts viewed from the top.
but, unless you are likely to be using the circuit at sub-zero temperatures, this results in an error of less than 1% in the readings.

Suppose that Rx has the value 9R; the voltage developed across it is $9 \times$ $6.77 \times 10^{3}=60 \mathrm{mg} 3 \mathrm{~V}$. If the voltage at point ' A ' is 60 m 93 V , the current flowing through R2 is 6u093A. Note that the measuring circuit draws less than a ten thousandth of the current coming from the current
generator, making virtually no
difference to the voltage across Rx.
This current flows on through R4 and R5. Since R4 and R5 have a combined resistance 1 M 47 , the voltage at the output must fall to $6.093 \times 10^{6} \times$ $1.47 \times 10^{6}=8 \mathrm{~V} 96$.

When $R x$ is $9 R$, the meter reads 8 V 96 , so the meter reading, in volts, is approximately equal to the resistance in ohms. To give a more precise reading it would be necessary to substitute an

Parts List

RESISTORS

(All 0.4 watt 1% metal film, unless noted)

R1............................ 10 R	MISCELLANEOUS
OW25 5\% carbon	SW1 DPDT
R2 10k	toggle or slide switch
R3 . 1 1k	SW2 SPDT
R4 1 MR	toggle or slide
R5 . 470k	M1 10VFSD meter
POTENTIOMETERS	Stripboard, $27 \times 63 \mathrm{~mm}(24$ holes $\times 10$
RV1 . 2k2	strips); 8-pin DIL socket (IC2); $7 \times 1 \mathrm{~mm}$
horizontal sub-min preset	terminal pins; $2 \times$ crocodile probe clips;
	connecting wire, solder etc. Optional
SEMICONDUCTORS	case.
IC1 3342	
programmable constant current source	BUYLINES page 34

8.2 resistor and 4 k 7 preset for R2, but in this application it is probably not worth while.

On the other scale, which covers 0 to 900R, the voltage across Rx has a maximum value of $6 \mathrm{mO93V}$, which is a tenth of the maximum of the O to 10 R range. This means that amplification must be ten times greater, so R3 has the value 1 kR range. This means that amplification must be ten times greater, so R 3 has the value 1 kR . Then a full scale reading of 9 V corresponds to a resistance of 900 mR .

You will have noted in Figure 1 that there are two wires going to point ' A '; this is to allow for a possible error due to the probe lead resistance. One wire delivers current direct to point ' A ' - the whole current goes to this point. The other wire makes a direct connection between point ' A ' and the voltage measuring circuit and the current in this lead is so small that the resistance of the wire causes negligible voltage drop at the IC.

As explained in Pop Amps No. 6, an op-amp may deliver an appreciable
output voltage even when its inputs are at equal potential. This 'offset voltage' is compensated by adjusting the setting of RV1.

Construction

The circuit fits easily onto the smallest standard size of Veroboard, though you may want to use a larger board if you intend to fit trimmer presets for the two resistance ranges. The circuit requires so little current that it can be powered by two PP3 batteries. Note that the terminals of RV1 have to be slightly bent out of alignment in order to fit it into a convenient place on the board.

Complete the circuit before testing it, then clip the two probe wires together and switch on the power. The inputs of the op-amp are then joined together so they are at the same potential and the output should be zero; if not, adjust the setting of RV1 until the needle of the meter rests at OV. Unless you have decided to fit trimmer presets, no further adjustments are necessary. Clip the probes to a known resistance in the 0 to 10R range, and select the range using SW2. The voltmeter should indicate the resistance. Use two or more 1R resistors wired in parallel for testing the lower range.

MODULES FOR SECURITY \& MEASUREMENT INTRUDER ALARM CONTROL UNIT CA 1250
 This excining new module oflers all the possible features likely to be required when building an 2 magnelic swicties or in conjunction with severat ulirasonic alarm modules or infra-red units, a reatly effective system can be constructed at a fraction of

 the cost of comparable ready-made units Supplied with a lully explanatory Oata Sheet that makes insiallation straight forward, the mootule is fully tested and guaranteed.-avalable in kil form f16.95 - VAT

- Stabilised ouput voltage for external units - 2 operating modes - full atarm/anti-tamper and panic facilly
- Screw connections for ease of installation - Separate relay contacis for switching external loads
- Test hoop facility

 Adjustable range from 5 ft to 25 ft .
 dule containing both ultrasonic transmitter and receiver and carcuitry for providing false alarm suppression. This module. rogether with a suitable 12 V power supply and relay unit as shown. forms an effective though inexpensive intruder alarm. Supplied with comprehensive Data Sheet. it is easily mounted in a wide range of enclosures. A ready-drilled case and necessary hardware is available below.

DIGITAL VOLTMETER MODULE DVM 314

Fully built 8 tested

- Positive 6 negative voltage with an FSO of 999 mV which is eastly extended - Requires only single supply $7-12 \mathrm{~V}$ - Migh overall accuracy - $0.1 \%+1$ digit - Large brigh $0.43^{\prime \prime}$ LED displays - Supplied with full applications data

With this lully bullt and calihrated module a wide range of accurate equipment such as multmeters. thermometers. battery indicators etc can be constricted at a fraction of the cost of reaty-made units. Full det.wls are supplied for extending the voltage tange. measuring current. resistance and temperature. Fully guaramteed, the unit has been supphed to electricity authorities, Government departments, etc

Temperature Measurement Kit DT. 10

$£ 2.25$ + VAT
Using the I.C. probe supplied, this kit provides a linear output of $10 \mathrm{mV}{ }^{\circ} \mathrm{C}$ over the temper ature range from -
$10^{\circ} \mathrm{C}$ to $+10^{\circ} \mathrm{C}$. $10^{\circ} \mathrm{C}$ to $+10{ }^{2}$.
thermometer.

Power Supply PS. 209

$£ 4.95+$ vat
This fuily built mains power supply provites iwo stabilised isolated outputs of 9 V .250 mA each. The unit is kieally suted for operating the OVM at Temperature Measurement module.

Power Supply \& Relay Units PS $4012 \quad £ 4.25$ + vat

Provides a stabilised 12 V sutput and relay with 3 A

 contacts. The unit is designed to operate one or two Siren Module SL 157£2.95 + va
Produces a loud and penetrating sliding fone operating from 9-15V. Capable of driving 2 off 8 ohm ing from 9.15 V . Capable of driving
speakers to SPL of 110 db at 2 M . speakers to SPL of 110 db at 2 M .
Contarns an inhibil facility for use with shop Combins an inibr lacin brense win shop arcuits

Add VAT \& 50p post and packing to all orders.
Shop hours $9.00 \cdot 5.30 \mathrm{p} . \mathrm{m}$. (Wed. $9.00 \cdot 1.00$ p.m.) Units on demonstration - callers welcome. S.A.E. with all enquiries.

Hardware Kit HW 4012
$\mathbf{£ 4 . 2 5 + V A T}$ Aswile read-driled case with the varous moun ing pillars, mains switch socket and nuts and bol Designed to house the ultrasonic alarm module agether with ins power supoly.

* ACCESSORIES *

3-position Key Swith for use with CA 1250 supplied with 2 keys
Magnetic swith (with magnet) 5" Horn speaker for use with CA 1250
(2)

RISCOMP LIMITED
Dept HE3
21 Duke Street,
Princes Risborough, Buck s
Princes Risborough (084 44) 6326

Boohshelis

THE HE BOOKSHELF is the easiest way to build up your library of electronics books. Order today to have these top titles delivered

To receive your books you have only to fill in the form below and send it, together with your payment, to the address stated.

I am enclosing my Cheque/Postal Order/
for: (delete as necessary)
f. (Made payable to A.S.P. Ltd) OR Debit my Access/Barclaycard (delete as necessary)

Please use BLOCK CAPITALS and include post codes. Name (Mr/Mrs/Miss)
(delere accordingly)
Address
\qquad
\qquad
Signature
Date

Books Required	Price	
	Add 75p p\&p	0.75
Total Payment	$£$	

"Holy Smoke", exclaimed Robin, "that's another bass driver gone up in a puff". The Caped Crusader reached for the stereo headphones. "I warned you, Robin. You should build the HE . . .

NOT with a bang, not even with a whimper - most loudspeakers, when subjected to intolerable strain, simply stop, cease and desist from operating. The vital signs no longer present, the hapless audiophile sits for a moment in wonder at the pallid absense of sound before filling the air himself with tones of electric blue.

Usually, the power amplifier has gone faulty and applied the full DC supply to the loudspeaker terminals. Without some form of protection, the result is at least an open circuit bass driver - or worse. A protection circuit prevents this by monitoring the loudspeaker lines for the presence of DC, opening a set of relay contacts if this occurs and disconnecting the speakers from the faulty amplifier.

However, conventional speaker protection circuits suffer from two disadvantages: first, they are active devices, and thus require a separate power supply, either from batteries or from mains. The second problem results from the type of filter used to distinguish between DC and the audio signal; a standard passive.filter, set at around 10 Hz , is often used, but it is possible that a large amplifier will produce sufficient energy at low frequencies to trigger the protector, even though there is not actually a fault present.

These problems are both overcome
by this new circuit. The result is a particularly small, compact circuit board which can be mounted inside a loudspeaker enclosure. Thus it is not necessary to run mains power leads, or to continually check and replace batteries (the unit, while suiting all types of loudspeakers in general, is therefore very suitable for sound reinforcement systems). The solution used in this project is to power the protection circuit from the audio signal itself.

This is done by placing a full wave rectifier across the speaker lines and charging a 1000u capacitor through a $47 R$ resistor. The worst possible load presented to the speaker lines is therefore 47 ohms - and this is only while charging the capacitor and for signal voltages in excess of 12 V . This ensures that the unit has no discernable effect on audio quality but makes possible a truly 'set and forget' speaker protector that can, if required, be mounted inside the enclosure.

The second problem, that of the filter, is solved by a new design which has an almost 'brick wall' response; it enables the unit to be used with very high power amplifiers without danger of false triggering by very low frequency content.

Power Monitor

Another cause of speaker failure is the
application of too much power for too long - a problem that is most often encountered in professional applications where the sound level can peak into the red and stay peaked for minutes, unless the sound engineer is alert. The Signal Powered Protector also tests for overpower, with an adjustable level control, and disconnects the speakers should the amplifier exceed the limit for more than a certain period.

This feature needs to be adjusted carefully when the unit is being used in a hifi set-up; if the trigger level is too low, the speakers. will be cut out by the sudden dynamic peaks which normally occur in some types of music.

The maximum power is determined by the type of regulator transistor (Q1) used; we have specified a TIP31C for this device. It has a collector-to-emitter breakdown voltage (VCEO) of 100 V , and since the emitter is at 12 V , the maximum voltage that can be aplied to the unit is 112 V . This is equivalent to an amplifier capable of supplying approximately 784 watts into an 8 R load, or 1568 watts in four ohms. If the amplifier to be used is capable of powers greater than this(!), the regulator transistor should be changed for a device with a higher VCEO rating.

The relay pulls about 40 mA when operated, so power dissipation in the regulator transistor will be around ${ }^{5}-1$ watts when there is 100 V acros

Figure 1. All there is to know about the circuit of the Signal Powered Loudspeaker Protector.

Figure 2. The component layout drawn on the PCB pattern; the full-sized foil is reproduced on the PCB Printout page.

Although this is not particularly high, it is high enough to be outside the safe operating limits of many high voltage transistors, so be careful when choosing a substitute.

Protection Circuit

The signal from the power amp is rectified by the fullwave bridge formed by D1-D4. The output from this is fed through a 12 V regulator circuit formed by 01 and the associated components, with ZD1 setting the regulated voltage. Capacitor C1 is charged to this level, and powers the remainder of the circuit. The output of the bridge rectifier also feeds the input of the DC sense circuitry and the over-power detector.

Buffers IC 1 a and c form the DC filter. Resistors R4, 6 with IC2a form a
Schmitt trigger with a small deadband. When the signal goes above the trigger voltage, the output of IC 1a swings hard to the positive supply rail, charging C2 through the 220k resistor, R6. Buffer IC1c, together with R10 and R11, form a second Schmitt trigger, monitoring the voltage across C2. If this reaches the second trigger voltage then its output goes toward the positive rail, activating IC1d, e and f, which pull in the relay and disconnect the loudspeaker lines.

It takes about 100 ms to charge C2 via R8. However, the input to IC 1 a is fullwave rectified unsmoothed DC. The output, therefore, will switch between high and low as the input swings above and below the trigger voltage. With a normal audio input, then, the output of

Parts List

IC1 a will go low before $\mathbf{C} 2$ can charge to the second trigger level, and it will discharge rapidly into the low output via diode D6. Thus only signals which do not have a zero crossing for longer than 100 ms will trigger the protector.

The over-power detector consists of a voltage divider, formed by R3 and RV1, driving a third Schmitt trigger. Whenever the voltage exceeds the trigger level, the output of IC1b will be driven high and C3 will commence to charge. If this condition persists for long enough, the output buffers will drive the relay, disconnecting the speaker lines.

Note that both the DC sense and the over-power detector charge C3 when a fault condition occurs. The circuits are decoupled from the capacitor by diodes, so that it can only discharge through R12 (the effect of the input impedance of the buffers is negligible). Together, R12 and C3 have a time constant of about one second, therefore the relay will hold on for this length of time. Thus the speaker lines are re-connected approximately one second after a fault condition has been detected.

Construction

Construction is straightforward since all of the components are mounted on the PCB. The usual precautions should be taken to ensure that all polarised
components have been mounted with the correct orientation. The IC used is a CMOS type and is therefore static sensitive. Solder this last, and preferably using an earthed soldering iron. It is a wise precaution to discharge yourself before handling the device by first touching an earthed metal appliance.

It is a wise precaution, also, to space the 2.5W resistor, R2, off the PCB slightly. In the case of a high powered loudspeaker going faulty with DC this component will get quite hot, and spacing improves ventilation around the component and prevents the possibility of charring the board. If you can't obtain a 2.5 watt type then a 5 W type may be substituted.

Before mounting the unit check operation by connecting around 20VDC across the speaker input terminals on the PCB. The relay should cut in after about one tenth of a second. If the protector passes this test, connect the speaker wiring. If the preset is turned fully down (turn it anticlockwise when viewing the board with the components on top and the relay to the right) the relay will cut in when the power exceeds around 20 watts for an extended period. The protector allows transients to the full supply rail to pass but will prevent a continuous 20W from being applied to the loudspeaker. To increase this, turn the preset clockwise until the desired response is achieved.

Performance

We tested the loudspeaker protector for its effect on audio performance as well as its reliability. A variety of powe amps were used to ensure that the loa represented by the protector would no affect audio performance. Even a very low power amplifier, with a comparatively small damping factor (high output impedance) could drive the unit with no degradation to the sound quality. During every test the protector worked well and cut in at the correct time to prevent damage to the loudspeakers.

NOTE. Some amplifiers are unstable when driven into an open circuit.

 This is particularly true of valve power amplifiers, some of which destroy themselves the moment the speaker is disconnected.Loudspeaker protectors are, however, not usually required for use with valve power amps, since the possibility of DC on the speaker lines is remote. But over-power protection may be required.

SAVE £4.25 by receiving a FREE magazine binder when you suloscribe to

It's true, by subscribing to Hobby
Electronics you will not only recelve your personal copy direct to your door for a whole year but also have a superb A S P magazine binder In which to keep your coples AND IT'S FREE!
All you have to do to recelve your FREE binder is book a new subscription or renew an existing subscription to Hobby Electronics before 30th April 1983. What could be simpler? Normally priced at £4.25, these attractlve binders will hoid approximately 12 Issues of Hobby Electronics.
Not for you any longer the chore of having to track down dogeared coples of your favourite magazine, Instead you will merely go to your bookshelf and they will be waiting for you in pristine condition.
Don't miss out on this outstanding offer - subscribe today and recelve your FREE binder within 14 days of your order being recelved.

SPECIAL OFFER

Cut out and SEND TO.

513, LONDON ROAD. THORNTON HEATH, SURREY, CR 4 6AR ENGLAND.
Please send my free binder and commence my personal subscription to with the issue

SUBSCRIPTION RATES
(tick \square as appropriate)

E11.95 for 12 issues UK
E13.95 for 12 issues
E13.95 for 12 issues
overseas surface overseas surface
E26.90 for 12 issues Alr Mall

I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for £.
(made payable to ASP Ltd)
OR
Debit my Access/Barclaycard ${ }^{\text {. }}$ ("delete as necessary)
Ineart card no.

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
delete accordingly
Address

Signature
Date

TEST EQUIPMENT CENTRES A.meworisom onem
RETAIL • MAIL ORDER - EXPORT - INDUSTRIAL - EDUCATIONAL

HAMD MELD

KD25C* 13 range $0.2 A$ DC 2 merjohm KD30C 26 range 1 A AC/OC 20 meg ohm KD55C 28 range 10 A AC/DC 20 meg ohm
$6010+22$ range 10 A AC/0C 20 meg ohm $7030+$ As 6010 but 0.1% basic. 188BH 16 range IOA DC. 2 meg plus tile $£ 41.30$ 189A 30 range toA AC/DC. 20 meg plus Mie
loster

HA MO MELD AUTO RAMGE
OM2350*21 range 10A AC/0C 20 meg ohm [Minizture)
 Mo30/A As above plus cont. buzzer Mo31 22 range $10 \mathrm{AC/OC} 2$ mep ohms plus cant E 4.50

FREQUENCY COUNTERS

PFERZOOA 200 MHI hand theid pockel 8 diglt LED
811048 diglt LEO bunch 2 ranges 100 MHz 877.00

 FF040* 8 diglt LCD $40 \mathrm{mHz} \quad$| H12 |
| :--- |
| 126.50 | T\% 2000° g dipit LCO 200 M * Optional carry case c6.84

Prescalers - Extended range ol most counters
TPEOO COO MHZ
TP1000
£74.00
ELECTRONIC INSULATION TESTER
YF $501500 \mathrm{~V} / 0 \cdot 100 \mathrm{~m}$ will carty case
MULTIMETERS
(UK C/P 65p)
Y720620K/V.
19 renge packet mater
SPECIAL PRICE
SPECIAL PRICE
C7081504/V21 ranges.
Range doubior IOA DC
SPECIAL PRICE
$£ 7.95$

ETC5000/5001 $£ 15.95$
duabler. 10A DC.
TMK 50023 ranges $30 \mathrm{~K} / \mathrm{V}$. 12 A DC plus
MH5GR 20K
NH5GR $2 \mathrm{~K} / \mathrm{N} .22$ range pockel
EUIO2 14 range $2 \mathrm{~K} / \mathrm{V}$ pocket
830A 26 range $30 \mathrm{~K} / \mathrm{V}$. IOA AC/OC overload

protection, slc.
360 T
23 rang

IOA AC/DC plus HIe
AT1020 is range zok/V. Deluxe plus hle
tester
ST303Th 21 range 20K/V plus His tester

VARIABLE POWER
SUPPLIES
PP241 0/12/24V. 0/1A
PP243 3 amp verslan £59.9
(UK C/P ©1.001
DIGITAL THERMOMETER
TH301LCO -
Thermecouple

LOGIC PROBES

Fuil specifitiation any model on request SAE Dy post. 'HM' Series HAMEG: 'SC' THAMDAR: CS' Series TRIO: '3' Series CROTECH SIMELE TRACE
303015 MHZ 5 mV . 95 mm tube plus camponent
Rester C/P E3.00
SC1 $10 \AA$. Miniature 10 mHz latterv oortable
Posh lree El7r.00
WH1 03 I5 MHZ 2nV. 6 x 7 display plus component lester C/P CB .00
\# Optlonal carry case $£ 6.84$ AC a aptor $£ 669$
DUAL TRACE (UK C/P £4.00)
MM203/4 Oual 20 MHZ plua component
CS 15664 Oual 20 MHz. All Iacilities HM204 Oual 20 MHZ plus component test swesp delay.
OPTIONAL PROBE KITS $\begin{array}{lrl}\mathrm{X1} & & 87.95 \\ \times 1-\mathrm{x} 10 & \mathrm{E} 10.50 & \times 10 \\ \times 100\end{array}$ STOCKISTS FOR TRIO:MAMEG: GROTECH: SAFGAM'SCOPES. MOST MODELS IM STOCK.

high voltage meter

Direct rading $0 / 40 \mathrm{KV}$.
digital capacitance
0. 1 p 1402000 md LCO 8 ranger

TRANSISTOR TESTER

Olrsci reading PMP.
(UK C/P 65p)
AUDIO ELECTROOICS caneare
301 EOGWARE ROAD, LONOON WZ IBN. TER: 01-724 3564 ALSO AT HENRYS RAOIO.
404/40S EDGWARE ROAD. LONDON WZ

"BIG TRAK" MOTORIZED GEARBOX
These units are as used in the "Big Trak" computerized vehicle, and offer the experimenter in robolics the opportunity to purchase the electro-mechanical part required in building remote controlled vehicles. The unit comprises: a) $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle; b) A gearbox contained within the black ABS housing reducing the final drive speed to approx. 50 rpm .
Data is supplied with the unit showing various options on driving the motors, as well Data is supplied with the unir showing various options on to dirn right, left or go straight ahead.

SIMON GAME

PCB's is back again. Another supply of raady buith computerised game is now with us. Supplied, tested computerised wime is now with us. Supplied.

REED RELAYS

Mannufacturers rejects - DIL and other PCB moun-
ting types. SP , DP and 4 P - make, break $\& \mathrm{c} / 0$ contacts. Not tested, so may be only partially working or o/c etc, so very low price - pack of 10
assorted f1: 25 (2.00; 100 ©.00

FERRIC CHLORIDE

 New supplies just arrived - 500 mg bags of granules,easily dissoved in 500 ml of water. Only $£ 1.15$ easily dissoved in
Also abrasive poolishing biock $95 p$.

AA NI-CADS 10 for £9.95

 Brand new nickel cadmium batteries by GE , standard $1.2 \mathrm{~V} 1450 \mathrm{~mA} / \mathrm{H}$. Professional quality with suldertags both ends. Special price, K .40 ea; 10 for Cl .95 ; Box of 80 cess.
Nicad Charger:
PP3. Oniy 77.95

FILAMENT DISPLAYS
20037 eog display 12.5 mm high. Ideal for TTL operation, taking 5 V BrnA per sea. Std 14 DIL
packege. Only CY each. 4 for 83.00 . Daza supplied.

Electrical combination lock for maximum security, absolutely pick-proofll One million combinationsIf Dial is turned to the right to one number, left to a second number, then right again to a third number. Only when this has been comcontacts close. These can be used to operate a relay or solenoid etc. Overall dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Finished in bright chrome, With combination the price is reduced to 9.96 .

LIE DETECTOR

Not a soy, this procision instrument was onginatly a change in emotional belance, or as a lie detector. Full dotails of how to use it are given, and a circuit diagram. Supplied completo with probes, leads and
conductive jelly. Needs $24, \mathrm{~V}$ bant. Overatl size 156 $\times 100 \times 100 \mathrm{~mm}$. Only 69.96 - worth that for the
case and moter atonel

COMPONENT PACKS
K503 150 wirewound resistors from iW to 12 W , with a good range of values fl 1.75
K 506 , 20 assorted potentiometers, all typas in cluding single ganged, rotary snd slider $£ 1.70$ $K 614100$ silver mica csps from 5 pF to a fow thoussind pF. Tolerances from 1\% to $10 \% ~ 』 2$ K620 Switch Pack. 20 different rocker, slide
rotary, toggle, push, micro, etc. Only $f 2$ COMPUTER BATTLESHIPS Probably one of the most popular electronic games on the market. Unfortunately the design ing modei, aithough it may PB as a work perfectly. Instead we have tested the sound chip, and sell the board for its component value only (PCB may be chipped or cracked). SN76477 sound IC; TMS1000 u-processor batt clips, R's, C's etc. Size $160 \times 140 \mathrm{~mm}$. Onty

1882/3 CATALOGUE

Biggerl Betterll Buy onalll Onty 7 bip inc. post - Look what you getll

- list class repty paid envelope
- Whotecale list for bulk buyers
- Bargain List with hundreds of surplus lines - Huge range of c

Sent free to schools, colleges etc.

REGULATED PSU PANEL

Exclusive Greenweld design. fully varable components except pots Board contain all 77.75. Suitable transformer and pots fB . Send SAE for fuller details

GREENWELD
443F Mill Brook Road, Southampton SO1 OHX

RADIO RULES
 IanSinclair
 Propagation and aerials

YES, AERIALS! I know that all of the US magazines use the word antenna, but what Marconi called it is good enough for me. As you might have gathered by now, this Part is about how you get that modulated carrier winging its way from the transmitter to the receiver, which means that we're dealing with the most tricky of all electronic components, empty space.

As it happens, most of the space that we use is not exactly empty, but the presence of air makes so little difference to the way a radio wave behaves that it might as well be empty space. One of the great mysteries that baffled great brains for centuries was how light waves could reach us from the sun if there was no material between us and the sun to carry the waves. The problem was finally solved by Clark Maxwell (see Famous Names, HE May '81) who, in a brilliant piece of theoretical reasoning, showed that a wave consisting of both electrical and magnetic fields could move through empty space. In this respect, electromagnetic waves are totally unlike the more familiar waves of sound and of water.

Both electrostatics and magnetism are involved in the electromagnetic field. A varying voltage between any two points causes a magnetic field, and a varying magnetic field causes a voltage. The electric and magnetic fields chase each other along, needing no matter to contain them or be affected by them, and their speed is around 300 million metres per second. What we call 'light' is just one of the huge range of electromagnetic waves, all of which travel at the same speed in space, and which are distinguished from each other only by their different frequencies and wavelengths. These two quantities are, incidentally, related, because frequency \times wavelength $=$ speed, and the speed is constant - see Table 1. For radio waves, then, we can always find what the wavelength is for any given frequency, or the other way round, and Figure 1 shows some examples.

Electromagnetic waves can travel in insulators, though at a lower speed than in air or in free space, but they cannot travel in their normal form through good conductors, because a good conductor will short-circuit the electric field part of the wave. Waves can travel along the surface of a metal, however, and can be reflected from conducting surfaces. For many of our purposes, the electric field component of a wave is the important one, and most of our transmission systems cause the electric field to move in one particular direction. When this is so, the wave is said to be plane-polarised. If the electric field is parallel to the surface of the Earth, the wave is horizontally
polarised, and if the electric field is 90° to the surface of the earth, the wave is vertically polarised. The direction of the magnetic field is always at 90° to the direction of the electric field, and both fields are at 90° to the direction of motion (Figure 2).

WAVELENGTH \times FREQUENCY $=$ VELOCITY

(in metres)	(in Hertz)	OF LIGHT $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
WAVELENGTH	FREQUENCY	

FREQUENCY $=11.24 \mathrm{MHz}=11.24 \times 10^{6}$
WAVELENGTH $=\frac{3 \times 10^{8}}{11.24 \times 10^{6}}=26.69 \mathrm{~m}$
Table 1. Calculations on wavelength and frequency.

(a)

Figure 1a. The electric and the magnetic waves are at 90° to each other and also at 90° to the direction of movement.

Propagation

Propagation means the way in which a wave travels from one place to another. Over short distances, the path of a wave can be taken as a single straight line, the 'line of sight' from the transmitter to the receiver. For many of the distances we are interested in, however, the path of the wave will involve at least one reflection from the ionosphere, which is the reflecting layer above the atmosphere of the Earth (Figure 3). This reflecting layer is created by the action of sunlight on the low-pressure gases more than 70 miles above the surface of the Earth. The highenergy ultra-violet rays of the sun (which at that height would burn you up to a frazzle in seconds) separate the oxygen and nitrogen of the air into charged particles, called ions, so making the low-pressure gas behave like a conductor. In darkness, these particles recombine (sometimes causing a glow in the sky, hence the Northern Lights or Aurora Borealis), which is why there are such considerable differences between daytime and nightime radio ranges. There are also considerable

Figure 1b. Another representation of the polarisation of electromagnetic waves.

Figure 2. How waves bounce from the ionosphere for long-distance communications.
variations in the ultra-violet output from the sun, which leads to the degree of ionisation varying considerably from time to time.

The way in which radio waves travel by bouncing from the ionosphere also accounts for reception problems. Fading is caused because waves that have travelled along different paths can be received simultaneously. Because the path length is never constant as the ionosphere churns around, waves which meet at the receiver may be in phase, out of phase, or any amount of phase degrees apart, causing the amplitude of the received signal to vary considerably, right down to almost zero at times. For some reflecting conditions, the phase of the reflected wave may depend on its frequency, so that the two sidebands of the AM signal may be out of phase, causing severe distortion. This is why suppressed-carrier SSB signals are so often -superior in signal quality.

Launching-Pad

An aerial is a form of launching-pad for waves, and since all of our aerials are made of metal, they create an electric field in the air around them, so that what you acutally launch is the electric-field part of the wave. Like Mary's little lamb, its magnetic field is sure to go every where with it.

Launching a wave into space (Figure 4) is like transferring power to anything; it needs some matching of impedance. You can't, for example, expect to transfer much power to an eight ohm loudspeaker from an amplifier with a $2 k$ output resistance, and the same applies to aerials, so that the action of an aerial depends to a large extent on the imedance of space. What on earth do we mean by the impedance of space? Just this: a radio wave carries power, and power means volts and amps. When a radio wave travels through space, we can measure the volts between two points in the wave, and we can also measure the amps that are flowing. The ratio of volts to amps is called the impedance, and it is measured in ohms (R). The ratio of peak voltage to peak current in a wave is called the characteristic impedance of free space, and that's a figure which can be calculated (rather than measured) at about 377 ohms. When we put an aerial into this space, however, the aerial acts as a contact which alters the impedance to some extent; so that what we have to match is not the impedance of free space, but the impedance of aerial plus space, which is usually a lower quantity.

The most efficient aerial for transmitting purposes is one which has the maximum amount of electric field between its ends when a wave is sent to it. The shortest possible aerial of this type, called a half-wave dipole (yes, it's half a wavelength long) will also have a fairly low impedance, around 70 ohms, and is almost perfectly resistive - it dissipates power into space with no reflections. In general, an efficient aerial needs to be cut to a length which is a whole number of half-wavelengths. For example, the wavelength of a 28 MHz wave in space is 10.7 metres, and if we allow for the wavelength on the wire of the aerial being
about five per cent less than this, we arrive at the figure 10 m . Half a wavelength is 5 m , so that aerial lengths of $5 \mathrm{~m}, 10 \mathrm{~m}$, $15 \mathrm{~m}, 20 \mathrm{~m}$ and so on would be acceptable. Table 2 shows the half-wavelength lengths corresponding to some popular amateur bands.

The reason for preferring aerials of this half-wave length can be understood more easily if we superimpose against a drawing of the aerial a diagram of the voltage in a wave (a 'standing wave'), using the same scale. A half-wave aerial has a pattern of the type shown in Figure 5. The maximum voltage is at each end, so that the electric field across the aerial is large, and the maximum current is in the middle. The conditions for drawing these standing waves are that there should always be maximum voltage at the ends and maximum current in the middle - the

FREQUENCY (MHz)	HALF-WAVE (metres)
1.8	74.9
3.5	39.0
7.0	20.1
14.0	10.05
21.0	6.7
28.0	5.02
70.0	1.8
144.0	0.97
430.0	0.32

Table 2. Half-wave lengths in metres for the popular amateur bands.

Figure 3. A half-wave dipole radiates waves, behaving as far as the transmitter is concerned like a 75 ohm resistor (which radiates heat).

Figure 4. Wave pattern of a half-wave dipole aerial. The maximum wave voltages are at the ends, and the minimum in the middle.

Figure 5. The wave pattern for a full- wave aerial. There are three maximum positions and two minimum positions.
wave cannot be stable otherwise. Figure 6 shows the standing-wave pattern fore full-wave aerial length.

The ratio of voltage to current obvious ly varies from one part of an aerial to another, being very large at the ends of a half-wave aerial, and very small at the middle. Note, however, that if the aerial is correctly cut to length, there is no phase difference between current and voltage - they rise and fall in step. These standing-wave patterns are permanent on an aerial of the correct length - there will never be a time when the voltage at the centre of the half-wave aerial is large and the current small, for example.

An aerial which is cut to a number of half-waves in length is said to be resonant, and an aerial of this type works most efficiently at the frequency for which it is designed, though it may radiate at some harmonic frequencies as well, because it will also be a number of halfwaves long for some harmonic frequencies. The radiation of a horizontal halfwave aerial is not equally strong in all directions; it tends to be strongest along a line at right angles to the aerial's length, following the pattern shown in Figure 7. Longer resonant aerials, (one-wave, one-and-a-half-wave, two-wave, etc.) radiate over a wider range, and very long resonant aerials will radiate almost in the direction of the wire, but few people, unless they live on farms, can use long resonant aerials, particularly on the lower frequency, longer wavelength bands. When the half-wave aerial is used ver-

Figure 6. Theoretical radiation patterns for aerials - these show how the wave goes out in different directions.

Figure 7. A three-element Yagi, made by adding a director and a reflector to the dipole. The director is shorter than the dipole, and the reflector is longer.

Figure 8. Quarter-wave sections. A shorted quarter-wave piece of cable acts like an open circuit; an open circuit quarter-wave section acts like a short circuit because of the wave patterns, shown here.
tically, however, its radiation pattern is omnidirectional - equal in all directions around it.

These patterns are theoretical and are found in practice only when aerials are spaced well away from the ground and any other conducting objects, but they form a reasonable guide to what we can expect. We can modify the patterns very considerably by adding 'dummy' aerials or parasitic elements parallel to the main half-wave aerial and spaced some distance away from it. One popular arrangement is the three-element Yagi of Figure 8 in which a slightly longer element, the reflector, is set at 0.15 wavelength from the radiating aerial, and a shorter element, the director, is set at 0.1 wavelength in the opposite side. This arrangement gives a very much more directional beam, and if you want to change the direction of transmission, you will have to turn the whole assembly just about possible for a 10 m wavelength.

Feeding the Power

One of the most critical parts of radio transmission practice is the correct feeding of power from the transmitter to the aerial, and it's all a matter of wavelengths again. We get accustomed to the idea that if you have a voltage on one end of a piece of wire, you'll have exactly the same voltage on the other end. That's true of AC and DC generally when no current flows, but not when the length of the wire is something like the wavelength of the AC. When a piece of wire is some appreciable fraction of a wavelength long, like a quarter wavelength, then it can have very different voltages on its ends, simply because a wave has formed on the wire.

Normally, this effect doesn't bother us. Our electronics equipment is made so that the dimensions of conductors are all very small compared to the wavelength of the signals that they are handling. This becomes much more difficult for UHF signals, and that's why UHF is so tricky to work with. In any transmitter circuit, however, there is one piece of connecting wire which just has to be long - the wire that connects the output of the transmitter to the aerial, called the tranmission line. For best results, an aerial should be placed as far away from buildings as possible, and that means that the transmission line, or feeder, will be long, often considerably longer than one wavelength. Ideally, we want the waves to travel along this line from transmitter to aerial, but if we get things wrong, the waves may be reflected back to the transmitter, causing a loss of radiated power. The transmission line can, if not correctly designed, waste a lot of that precious power.

What happens? The line is carrying a wave and it, like the space round the aerial, has a characteristic impedance, usually of 75 ohms or 300 ohms, depending on the construction of the line. Unlike space, though, we can do things to a line, such as shorting or open-circuiting the ends. When we do such things, the line can behave very differently, as we can demonstrate by drawing wave diagrams. A shorted line one quarter wavelength
long, for example, will behave like an open circuit for waves of that length, (Figure 9) and an open circuit quarterwave line will behave like a short circuit. Pieces of line attached to the main line can therefore be made to act like transformers, or as resonant filters, making the way the waves behave work for us instead of against us.

Standing Waves and Travelling Waves

Our ideal transmitter rig would feed waves from the transmitter, up the transmission line to the aerial where they would be wholly radiated into space. The speed of the waves along the transmission line is not as high as their speed in free space, and can be taken as about 66% of free space speed in coaxial cable and 85% of free space speed in twin-line feeder. These ideal conditions are met if the transmitter output impedance, the feeder impedance and the aerial - plus -space impedance are all identical at the frequency of transmission. This is what is termed a perfectly equalised load condition, with a non-resonant feeder. Such conditions can be-approached even if the equalisation is not perfect, providing that

Figure 9. Using a matching stub to match an aerial to a transmission line. The stub acts like a transformer.

Figure 10. Reflection in lines. (a) Pattern of a wave travelling along a line with no reflections. (b) A wave travelling along a line, with some reflection which causes a wave to travel in the opposite direction. (c) Total reflection, so that the pattern shown, a standing-wave pattern, forms. No energy is being radiated from the line now.
the length of the feeder can be adjusted, or some other means of matching used. As transmitters are universally constructed nowadays to have an output impedance of 50 ohms, aerials can be constructed to a variety of impedance values, and feeders generally have an impedance of 75 ohms or of 300 ohms . We usually have to take some steps to match these different impedances to each other.

At the aerial, this is achieved by the correct shaping of the aerial, or by the addition of 'matching stubs', which are the short sections of line that behave like transformers (Figure 10). At the transmitter, the transmission line is matched to the output impedance of the transmitter by using a wideband variable transformer which is called an aerial tuning unit (or antenna tuning unit, if you must), shortened to ATU.

How do we know when we have achieved matching? The answer lies in the way that waves behave when a mismatch is present. The worst possible mismatches are open circuits or short circuits, and these will both cause power to be completely reflected back down the line (Figure 11). Even a small mismatch, however, will reflect some power, so that measuring the reflected power is a good way of measuring the closeness of the matching. When a reflection occurs, standing waves form on the line, causing some parts of the line to be permanently at higher voltages than other parts. The ratio of the amplitude of such a standing wave to the (desirable) travelling wave amplitude (the one which goes up the spout and radiates away) is another good measure of matching, and we can obtain instruments which measure this standing wave ration, SWR for short. The SWR meters use a type of bridge circuit to balance the amplitude of waves travelling up the transmission line against the amplitude of waves reflected back, and the lower the SWR reading the better is your system. The minimum possible value (because of the way the SWR is defined) is one, but it's practically impossible to obtain such a reading - if you do it's time to have the meter checkedl A SWR reading of less than two is pretty good, and if the line is a low-loss type, then you work with SWR values greater than two without greatly reducing the efficiency of your system, because in such circumstances, the amount of power which you get out will not be greatly affected by the SWR value. If the line is lossy (low-grade coax, for example), then high SWR spells low power output, and there is also the danger, whenever the SWR is high, that the reflected power will damage PA stages. Valve output stages are very much less likely to be damaged in this way than transistor stages.

Note by the way that the ATU will be used to match the transmitter to the transmission line. If the aerial is not correctly matched to the line, then no amount of fiddling with the ATU will get the SWR really low.

Aerial Shapes and Sizes

One thing that will strike you when you look through magazines and books is the C huge range of aerials that you will find described, and the claims that are made

Figure 12. A trap dipole aerial. The trap is the parallel resonant circuit in each arm of the aerial.
for them. You might easily conclude that almost anything could act as an aerial and you're quite close to the mark. Almost any piece of wire will act as an aerial for reception and for transmission anything that can be matched reasonably well will get a signal out. To get the best from the power of your transmitter, though, a correctly designed, constructed and matched aerial is essential.

The simplest type of aerial to construct is the half-wave dipole. This means a length of wire or rod equal to half a wavelength (allowing for the length of a wave on a wire being about 80 per cent of the length in free space), and cut at the centre to allow two connections. The impedance at the centre of such an arrangement is about 70 ohms, and resistive for the frequency at which the aerial is one half wavelength long, or an odd number (one, three, five, seven etc) of halfwavelengths long. An aerial of this type looks like a good impedance match for 70 . ohms coaxial cable, but there is one snag. - the aerial is a 'balanced' arrangement, requiring signals of opposite phase on its two arms, and arranged so that the sum of the signals is zero. Coaxial cable, by contast, is unbalanced, with all of the signal on its inner core, and the outer core earthed. To ensure correct matching of a dipole aerial with coaxial feeder, then, we need a unit which will obtain balanced signals at the end of the coaxial cable; such a unit is called a 'balun', short for balanced to unbalanced transformer (Figure 12). This can be constructed - it consists of tightly-coupled windings on a ferrite core - but is more easily bought. Coaxial cable is convenient because most transmitter outputs are unbalanaced, so the coax is the most obvious type of feeder to use, being comparatively cheap, and with a balun at the end it operates

Figure 13. A folded dipole. Folding increases the impedance fourfold.

Figure 14. A simple vertical aerial. The snag is getting an efficient earth.

Figure 15. A horizontal (Hertz) type of aerial, and matching section.

Figure 16. A Marconi aerial, much favoured at low frequencies.
very satisfactorily. If you use a transmitter which has a balanced output, then you must use either twin line (balanced line) or the correct impedance (usually 300 ohms), and no balun at the aerial end, or you can use coax with a balun at each end of the cable. In general, the fewer devices like baluns that you need to use, the better, because each device must lose some power.

Because the simple half-wave dipole is a one-frequency (plus odd-numbered harmonics) aerial, many variations on the design attempt to extend its use to other bands. The most successful of these variations is the 'trap dipole', which uses two sections in each half of the aerial, separated by a parallel LC circuit (tuned circuit). At its resonant frequency, its impedance is so high that it completely isolates the outer sections of the aerial, so that only the inner sections radiate. Figure 13 shows the arrangement of a trap dipole aerial that can be used at amateur frequencies ranging from 3.75 MHz to 30 MHz . The trap uses a 10 uH coil and 50 pF capacitor, making it resonant at around 7.1 MHz . The inner dipole is of 9.85 m and the outer of 6.46 m . It can give SWR figures of less than 2.5 on all the amateur bands within its range.

At 7 MHz , the resonant trap completely isolates the outer sections of the aerial
from the inner ones, so that the inner sections are used as a straightforward 7 MHz dipole. At 3.5 MHz , the total length of the aerial, plus the equivalent length of the inductor of the trap, gives an aerial which will operate well at this low frequency. Above 7 MHz , the end sections are not isolated but, with the operating frequency well above the resonant frequency of the traps, the traps act as capacitors which will resonate with the inductance of the outer sections of the aerial at frequencies which are odd harmonics of the fundamental frequency. At 14 MHz , for example, with a wavelength of around 17 m in wire, the half-way length is 8.57 m , and $3 / 2$ wavelengths (three half-waves) amount to 25.7 m . The combination of the $2 \times 6.45 \mathrm{~m}$ outers with $2 \times 9.75 \mathrm{~m}$ inners, plus the capacitance of the trap, produces the same effect as this length of aerial. Similarly, it acts as a five-halfwave aerial at 21 MHz , and as aseven-halfwave aerial at 28 MHz . The aerial matches well to a 75 ohm line, but, like all multiband arrangements, will not have the same high performance in every band. You can't have it all ways.

A simple dipole matches to 750 hms , but if the dipole is folded, as shown in Figure 14 then its impedance is four times as much, 300 ohms, and this arrangement can be fed by 300 ohm twin line, providing that suitable matching exists at the transmitter. A dipole can always be matched by using 'matching stubs':
quarter wavelength pieces of transmission line (Figure 10) with the feeder attached at any point which gives the minimum SWR reading.

Dipoles can be formed into Yagi arrangements by adding reflector and director wires parallel to the dipole. A Yagi is much more directional than a plain dipole, so that it's useful mainly if you are trying to get out with maximum power in one direction only. The impedance of a dipole is considerably reduced by adding the other sections to make a Yagi but, by folding the dipole part, a reasonable match to 75 ohms can usually be achieved.

Unbalanced Aerials

An aerial can be fed from one end rather than from the centre, and in such a case unbalanced coax cable is appropriate as a feeder. One form of unbalanced aerial is the vertical type, using a quarter-wavelength of vertical wire fed by 50 ohm coaxial cable (Figure 15). This type of aerial needs an earth under the wire, and because satisfactory low-resistance earth connections are difficult to make unless you live in a bog (I mean a peatbog, of course), the 'ground-plane' construction, using wires a quarter of a wavelength long arranged as radii of a circle on, or just under, the ground can be used in place of an earth connection (Figure 16). For VHF, the roof of a car makes a good ground plane, and lower frequencies can
be catered for by using a loading inductor to increase the effective length of the aerial.

Another type of unbalanced aerial is the end-fed horizontal wire of Figure 17, which, for best results, should be half a wavelength long. Careful matching is needed to avoid harmonic radiation, and it's usually better to use a dipole unless you are keen on experimenting. An aerial of this type for the lower amateur frequencies needs a lot of wire, and shorter lengths can be used in what is called the Marconi aerial. This one uses an inductor connected at the far end of the aerial (remote from the feeder), with an autotransformer and capacitor at the feeder end for matching purposes (Figure 18). An earth directly into soil (NOT to mains earth or to a water pipe) will be needed.

In general, if you want to make your own aerial, then you must consult some of the magazines and books which are published by the RSGB (in Britain) or the ARRL (in the US). These are gold-mines of information on amateur radio, and if you are a determined constructor you will find in their pages information on every imaginable thing which has any application to amateur radio transmission and reception.

Next month: interference problems, and what to do about them.

This versatile, lightweight, suspended or bench munted Polisher/Grinder (illustrated), has been designed for small engineering works in particular, clock making, dentistry, jewellery, electronics, sculpture and model engineering. The Flexible Drive is light in weight, highly flexible, and bends without strain. The Hand Plece is aluminium and has two ballraces to obtain maximum precision at high speed, and is complete with a pin chuck and four steel collets, zero, 1.5 mm , 2.5 mm and 3.0 mm .

Plase sand 35 p for our latest catalogue of tools, powar units,
stands, flexibte drives and other products
EXPO (DRILLS) LTD CLOCK TOWER
WORKS. BROOK LANE
WARSASH HANTS SO3 6FH
Telephone: Locksheath 83966/7/8

ELECTRONICS STEREO TUNER MODULE

3 BAND - L.W./M.W./F.M MONO/F.M. STEREO * FULLY ASSEMBLED COMPLETE WITH CIRCUIT DIAGRAMS FERRITE ROD AERIAL 4 WAY FUNCTION SWITCH WITH POINTER KNOB 12 V d.c. INPUT SUPPLY OUTPUT O-IVR.M.S. ADJUSTABLE WAVEBAND COVERAGE: L.W. 155-270KHz
M.W. $525-1650 \mathrm{KHz}$
F.M. $87.5-108 \mathrm{MHz}$
F.M. SENSITIVITY 2.5 uV

PRICE £6.00 (PLUS $£ 1.25$ p\&p)

* 2 WAY SPEAKER KIT - High Quality Peerless $6 \frac{1}{2}$ " Full Range \& 2" Tweeter. 8 ohms, 25 W rms. Complete with Crossover Network and Full Wiring Diagram. PRICE E5.75 IPLUS $\mathbb{2}$ papl * 3 WAY SPEAKER KIT - High Quality Peerless $8^{\prime \prime}$ Woofer \& 5" Midrange \& 2" Tweeter. 8 ohms, 40W rms. Complete with Crossover Network and Wiring Diagram. PRICE $\mathrm{E}_{\mathbf{9} .25}$ (PLUSE 2.50 pEp)

* 12V d.c. POWER SUPPLY UNIT $220 / 240 \mathrm{~V} 50 \mathrm{~Hz}$ input 14.3 V d.c. output Max. 1.1VA. Manufactured in U.K. to BS4435. Switched-Centre Off. 3 Forward and 3 Reverse positions. Complete with input and output leads. PRICE $\mathbb{£ 2 . 5 0}$ (PLUS 75pp\&p)
ALL GOODS FULLY GUARANTEED. DESPATCH BY RETURN OF POST. PRICES TRADE ENQUIRIES WELCOME: CALLERS BY APPOINTMENT ONLY PLEASE

MEON electronics

49 Wadeson St., London E2 9DP. Tel: 01-981 7834

NEW SURPLUS RELEASE

ER-GOVT LEAD ACID ACCUMULATORS. Brand new 10 V SAh famous manufacture. Easily tap ped ins. etc. Must have cost Gove over $£ 20$ each. Our price $\mathbf{E 5} .50$ each, carriage $£ 2.50$. Two for Cl carriage E3.50.4 for E88 carriage E6. 8 for E32 carriage E10. All despatched unfilled. Robust wooden tray with carrying handies. Holds 8 accummulators 25 .
CORDLESS INDUCTIVE LOOP HEADPHONES S
CORDLESS INDUCTIVE LOOP HEADPHONES. Self powered, Input via loop or eternal min BNC socket. Contains transistorised high gain amplifier. Operates from internal batteries. Noise excluding
muffs. Switch on when placed on head. Special offer while stocks last $£ 8$ pp $£$. Two pairs for $E 12$ post free.
LGHTWEIGHT MEADSETS (Gove release). Brand new 600 ohrns impedance. A bargain at E3. 50 pp E1. Two pairs for $€ 7$ post free
resistors made ot exacting specifications by automatic machines. E12 range IRO to iom in lots o 1000 (25 per value). Onty 58 per 1000 . Lots of 5000 for E35. 1 RO to 10 M . 1000 PCB type resistors E2.50. Bulk purchase enables us to offer 1000 mixed pre formed carbon film resistors. 5% tof for
PCB mounting. Huge range of preferred value. $\mathbf{~} 2.50$ per 1000.4000 for $£ 8$. Postage 150 in $£ 1$. GENUINE AFV TANK HEADSETS AND MIKE $£ 3.50$ per pair pp $£ 1$. 2 pairs $£ 7$ post fioe. All head phones fitted with ex-Ministry plug. Standard jack plugs available 25p each. 2 for 40 p. Headphone
extension sockets available at 25 p each. 2 for 40 p . Impedance of tirst wo tems 600 ohms. All hegdextension sockers availitie a. phones in good condition
SCOOP PUARCHASE: PVE SOCKET PHONE RECEIVEAS. Type PF1 normal froc. 450 mHz .
SUpolied in used condition less battery f4.50 each. Carriage E1. Two pairs 29.00 posit tree. Four SUpplied in used condition less bettery. $\mathbf{5 4} .50$ each. Carriage $\mathbf{£ 1}$. Two pairs $\mathbf{E 9 . 0 0}$ post tree. Four piirs 518.00 Post froe.
ThE GOVT. SUAPLUS WIRELESS EQUIPMENT HANDBOOK. Gives detailed information and
cliagrams for British and American Government Surplus Receivers, Transmiters and Tes circuit diagrams for 8 Sritish and American Government Surplus Receivers. Transmitters and Tes
Equipment, etc. Also suggested modification details and improvernents for Surplus equipment. Incorporated is a Surplus/Commercial cross referenced value and transistor guide. The standard
reference work in this field. Only $£ 7.50 \mathrm{p}+\mathrm{D} £ 1.50$. No VAT on books. reference work in this field. Only $£ 7.50 \mathrm{p}+\mathrm{p} £ 1.50$. No VAT on books.
Switch hcorporated. Mostly with lead and DIN plug. Used but nice condition. Three designs of case housing. Price one mike our choice $\mathbb{E 2}$ plus 50 p pp . Bargain offer all three mikes $\mathrm{E4} .50 \mathrm{pp} \mathrm{E1}$. GENUINE EX-GOVT. COLLAPSIBLE AERIALS. A fully adjustable highty efficient whip aerial in five sections. Length 11 metres. Closed $300 \mathrm{~m} / \mathrm{m}$. Copper plated sections. As used an ex-Govt
Manpacks. Brand new in makers box $\mathbf{~} \mathbf{2} .50$ each pp 75 p . Two for Ez post free.

HAVE YOU SEEN THE GREEN CATT 1000 x of now components, radio, electronic, audio at
unbelievably low prices. Send 50p and receive catalogue and FREE RECORD SPEED INOICATOR.

MINI JUMBO PACK (E20 worth)
For $\mathrm{E} 5 \mathrm{pP} £ 1.50$. PLEASE ADO $\mathbf{1 5 \%}$ VAT to all orders induding carrigge and pp

12/14 Harpur Street, Leeds, LS2 7EA. Jel: 452045 Now retail premises at above address (opposite Corals) Callers welcome 9 to 5 Mon to Sat. Sunday 10 till 3. Govt Surplus items always in stock

UNIVERSAL NICAD CHARGER

TYPE FC4 $£ 24.50+£ 1.50 \mathrm{P}_{\&} \mathrm{P}$

Power requirement: 240 V AC 60 Watts. Constant current generator

- Variable from 10 mA to

4 amps, Log Scale. -Regulation OK' lamp extinguishes on too high a load.
:Variable from 1 min . to 60 mins. +14 hrs switched position.
Manual stant and stop Manual s buttons. Timer on lamp : Power on lamp, malns switch on curreat contro knob

Capabilities

?

Will trickle charge at 14 hrs. rates up to 12. .2 V Cells or 2110 mAF 8.2 V mass plate cells. Will fast charge up to 7 12 V cells withinon

: D Cells
C Cells
506 C Cell
AA Cells

(Note: Lower curremts and longer times may of course be used |

SOUTHERN TECHNICAL SYSTEMS, UNDERLYN FARM, MAIDSTONE ROAD, MARDEN, KENT TN12 9BE Teléphone Maidstone 831022

Dept HE3, 180a Bedford Road, Kempston, Bedford MK42 8BL

彩

WITCHED MODE PSUs

pecially for those interested in extending their knowledge of lectronics (which must be about 100% of you), we are eturning to the Designer's Notebook feature with not one ut two articles. As you may gather from the heading, one of hese is not a million miles away from the subject of switched Tode power supplies, one of the design fields often regarded s a no-go area for the hobbyist - that is, until that hobbyist eads ETI. The other Designer's Notebook will be on voltage inultipliers, so start queueing at the newsagents now.

2EAL-TIME CLOCK CALENDAR

t project for all those readers with 6502 -based micros that 'an't tell the time, or remember what day it is. If you liked the 3502 Sound/DAC card this month, you'll love this project: only in the April edition of ETI.

ZX81 MUSIC BOARD

This is a quite sophisticated though cost-effective music board or the ZX81. The board is capable of playing music without continuous CPU maintenance, and three notes may be played at once, each with independently variable volume. If you want more out of your micro, get next month's.ETI.

NDFL

NDF what? We're afraid you'll have to wait until the next ETI is published to find out what those letters stand for, but it will culminate in an entirely new audio amplifier design.
Sounds interesting. Meanwhile, here are a few clues ...

LOOK OUT FOR THE APRIL ISSUE ON

 SALE MARCH 4th
VOYAGER CAR COMPUTER Keith Brindley Ex HE-Man Keith returns with a tale about a kit designed for more economical motoring.

THE Voyager kit arrives through the post, from Sparkrite, securely packed in a polystyrene foam box, which has formed spaces for each main part. Everything you need to build and fit the kit (except tools) comes with it, and that includes wire, solder, nuts \& bolts, and screws. All you have to supply are the necessary tools la small soldering iron, long-nosed pliers, wire cutters, a small screwdriver and a small cross-head screwdriver) plus a reasonable competance at soldering.

There are, apparently, over 300 parts (mechanical and electronic) in the kit (1 didn't stop to count them) and it took about five hours' continuous work to get the Voyager ready for installation into a car. A very good instruction booklet takes the builder through each stage, in a clear and concise, step-by-step way. The tasks are divided into the assembly of three printed circuit boards (PCBs):

> 1) Ice-warning PCB
> 2) Main display PCB
> 3) Keyboard PCB
followed by instructions for fitting the ice-warning PCB into its metal housing and fitting the other two boards into the plastic Command Module housing.

Without a doubt, the most difficult board to construct is the main display board. There are about 80 electronic components to insert and solder; including a fair number of polarised components, so great care must be taken to select the correct components. This PCB holds all main integrated circuits and they all are soldered directly into the board - no IC sockets are used. But the instructions are quite clear on how to solder them in without damage. The vacuum fluorescent display also mounts onto this board, but is raised (by about 5 mm) from the board's surface.

The keyboard PCB contain sixteen push-button switches and a bank of six small bulbs (to backlight the front panel); only three other components are soldered onto this board.

These two PCBs are interconnected in a number of places but, instead of wired connections (which can mean a 'birds-nest' of leads), the connections are made by fixed PCB connector plugs and sockets. Thus, the two boards are literally pushed together and pulled apart. A thin sheet of plastic film fits between them to prevent possible shortcircuits. The whole arrangement makes a neat and professional combination

which fits easily into the plastic Command Module housing which is then ready for its front panel and fitting into the car.

Three sensors, one to measure temperature for the ice warning, one for fuel-flow and one for distance/speed measurement, have to be fitted to the vehicle. Temperature is detected by a thermistor, which should be mounted somewhere away from possible sources of heat which could affect accuracy. The Voyager fitting instructions, in a separate fold-open booklet, suggests that the temperature sensor be mounted either in the space behind the vehicle grille (but well clear of the radiator) or behind the front bumper.

Fuel-flow has to be measured by inserting the sensor, the right way round, into the carburrettor feed pipe. All
necessary clips and connection pieces, for all standard petrol-engined cars but not high-pressure fuel systems such as diesel or petrol injection), are supplied.

Next, the speed sensor and magnets have to be fitted to the vehicle so that the magnets rotate past the sensor at a rate proportional to the speed of the car. The magnets are tied securely onto the car's propellor shaft on a rear-wheel drive car, or to one of the two drive shafts of a front-wheel drive car. The number of times a magnet passes the sensor is proportional to the number of times the road wheels turn, and hence proportional to vehicle speed. This, incidentally, is the same system used in the HE Digital Speedometer of the December 1980 issue.

I fitted my Voyager Command Module centrally, above the dashboard

The collected parts of the Voyager kit.

The manual is
well written and clearly illustrated.
of my car, using the special windscreen fitting, self-adhesive pad and short, balljointed connecting rod. A variety of fitting methods are supplied in the kit to enable the module to be mounted above or below the dash in most required positions.

Connections between the various sensors and the Command Module are made by joining the leads from each sensor to one end of a length of ribbon cable. The ribbon cable is fitted with a female connector to mate with the male connector in the rear of the Command Module. At the sensor end of the cable, individual plugs and sockets are used to connect to the sensor leads. Power connections are all made using fuses and the special cliptype connectors supplied. Again, easily understandable instructions make the module fitting an easy - if timeconsuming - job. Voyager is, at this time, ready to test, calibrate and use.

Road Test

Testing is a straighforward procedure, given in the operating handbook, to make sure all functions are up and running.

The microcomputer, within Voyager, needs to be programmed to suit the car it is fitted to. This entails driving over a measured distance and keying in that distance (to calibrate the distance/speed sensor) and then using a measured amount of fuel and keying in that amount (to calibrate the fuel sensor). At the end of this calibration period, Voyager can be programmed to provide two figures which the user should note. Then if, at some future date, Voyager is removed for any reason, or if the car battery is taken out and Voyager's internal memory is erased, the figures can simply be re-inserted, thus saving the bother of having to go through the whole calibration procedure again. The kilometrespaced marker-posts on a motorway are a convenient measure of the distance to programme into Voyager.

Eating up the miles, my car went through about seven gallons of petrol on a motorway trip, so I was very quickly

Installation of the speed sensor.

The two PCBs are fitted back-to-back.

The assembled PCBs before installation.
able to see Voyager fully operational.
One of the most amazing things you become aware of on a 'consumption now' reading ie, how many miles-pergallon the car is doing on a second-bysecond basis, is how little fuel is used cruising at high speed, and how much fuel is being guzzled around town, in lower gears. For example, at a constant 70 mph in top gear my car registered about 32 mpg , whereas in second gear the car registered no higher than 12 mpg (at any engine speed) and in third gear: 22 mpg . The most economical speed of
all was about 60 mph , when the car returned over 40 mpg .

All-in-all, Voyager represents good value for money as a well presented and well produced kit. It's fun to build, and can, in fact, save you money if you watch your fuel consumption figures. If you feel that you're not capable of building it yourself, Voyager is also available from Sparkrite, (at 82 Bath Street, Walsall, West Midlands WS 1 3DE) as a ready-built and working device - all you have to do is fit it to your car.

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
\star Lowest prices - Largest stocks *

* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

- Access - Visa - American Express accepted also Hifi Markets Budget Card.

The frrm for Speakers
8
062529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders!

CAN WE SELL YOU SOME

FRESH AIR?

ZEPHION

negative ion generators

Dr J.B.Smith writes:- "Did you know that the air you breathe is made up of billions of tiny molecules, many of which may charged molecules (called ions) are particularly interesting. charged molecules called ions are particutarty interesting particles in the air making them heavier so that they fall to the ground, leaving behind purer air for you to breathe ! The ZEPHION negative ion generator produces millions of these negatively charged molecules every second, flooding your' home or office with invigorating mountain-fresh air.

Many users of these ion generators claim greatly increased alertness, loss of lethargy (particularly in stuffy, smoky offices) and relief from hay fever, asthma and many breathing problems.

```
BUILD_IT YOURSELFI_....... clip the coupon.>- - %
    Dataplus Developments
    Geading, Berks.
    RG1 3LY TEL:- 0734 67027
    ADDRESS:-
PLFASE SEND :-
    ZEPHION KITS e &21.5OP
    Kits include all parts)
    zEPHTON AIR TONERS
    ZEPHION AIR TONERS 
                                    Money immediately refunded if
    ces include VAT & postage; allow 14 days for delivery.
                                    oalaptuS PE
```


ELECTROSUPPLIES

WHOLESALE \& TRADE COUNTER
BOWNESS MILL, SHAWCLOUGH ROAD,
WATERFOOT, ROSSENDALE, LANCS. TEL:
ROSSENDALE 215556
RETAIL SHOP
6A TODD STREET, MANCHESTER (next to VICTORIA STATIONI TEL: 061-835 1185

Teletekst Panels
Main Board, and informátion, untested. . 15 set
200 MHz frequency counter kits
Kit contains 2 PCB's one for main component and one for displays. 8 digit. All parts except case lusing the ICM 7216B chip).

Stereo Cassette Deck
COmplete with pre-amplifiers...

DELTA TECH
62 NAYLOR ROAD LONDON N2O OHN
All items full spec and by well known manufacturers. Prices VAT inclusive, Postage 20p. Mail order only. Phone 01-445 8224. SAE for full list including capacitors esistors and others.

 74190
74191
74922
74193
7494
74195
74198
TLL

TLI 'LS
00

Herman Hollerith

Ian Sinclair

An inventor who made a fortune from...a piece of cardboard?

THE HOLLERITH CARD was a device which was widely used in the dawn of computing, but the life and work of Herman Hollerith is not as well-known as it might be, despite this major contribution to the 20th Century.

Herman Hollerith was born in 1860 in Buffalo, New York State in the USA, of German immigrant parents. He went through school with little distinction, and graduated from Columbia University School of Mining in 1879. He is, therefore, yet another example of an inventor who made his name in a field of activity for which his training was virtually irrelevant. The moral of this is, that it's a background knowledge of subjects like maths, chemistry and, especially, physics, along with that indefinable urge to solve problems which motivates the true inventor that counts, rather than what you specialise in - though it sharpens your mind to have specialised in something. Hollerith, in fact, never pursued a career in mining engineering.

Computer Challenges

One of the lecturers at Columbia at that time was William P. Trowbridge, who was placed in charge of the 1880 census by the US Government. Trowbridge found that Hollerith was interested in what he (Trowbridge) was doing, and appointed Hollerith as his assistant in the slow and laborious process of gathering and' analysing statistics for the census. When most of the work was finished, Hollerith took a teaching job at the newlyfounded Massachusetts Institute of Technology, and after that, for the best part of ten years, he worked for the US Patent Office in Washington as a Patent examiner. There must be something about this type of work that provokes curiousity, because this is the job that Einstein also was doing while he formulated the Laws of Relativity.
Hollerith seems to have spent most of his time outside the office in brooding over the problems of the census. The tabulation work in the 1880 census had been done by hand, and even by that time the job was clearly becoming too much, with the looming danger that the results of one census would not be analysed by the time of the next one! Hollerith realised that only an automated system could possibly cope with the information from the next census in 1890, because of the huge increase in the population of the US and the number of new headings that would have to analysed. There were, for example, several hundred new job titles to account for, and the flood immigrants to the US meant that the statistics on the
origins of new citizens were expanding enormously. Hollerith set about designing a system that would cope with the expected flood, and the results of his work were the beginning of data processing, the foundations of information technology.

A Simple Idea

The idea he came up with was, like so many good ideas, basically quite simple. Each census result was tabulated by punching holes in a card, using a card of as many columns (for headings) and as many hole positions (for data under each heading) as were needed. Modern cards use ten hole positions 40 columns. Each of these columns would be used to represent some measurable quantity, such as age range, and the position of the hole punched in that column would show the answer of that particular respondant. Similarly other answers on the sex, employment, marital status, number of children and educational achievement of the people who replied could be coded into one small card by the position of the hole punched in each column. The holes were punched by a small machine, like a cash register, and the rate at which a skilled operator could prepare cards from census forms was an enormous improvement on the filling-in of tables by hand.
The Hollerith cards were made from a non-conducting material, cardboard, so that the presence of a hole in a card could be detected electrically. This meant that comparatively simple electromechanical machines, using contacts and relays (no electronics in these days!) could carry out sorting. Even nowadays, the sight of a Hollerith card sorter in operation is rather awe-inspiring, as the cards are whipped across the sorting slots and pushed into the correct piles by small solenoids. Hollerith hoped, incidentally, that letters would be sorted in the same way, but this development did nottake place.

Beasties

Statistical Breakthrough

Hollerith's cards, and the punches and readers that he had developed to make use of them, were just the breakthrough that statisticians needed, because methods of tabulation that depended on metal rods fitting into the cards had proved to be much too slow and cumbersome, By using electrical contacts on each side of the card, Hollerith's system ensured very rapid reading, so that the results of a census could be available in a few months. His system was ready for the 1980 census, and it proved enormously successful, drastically shortening the time that was needed to obtain results from the census. It would probably be no exaggeration to say that this prompt availability of statistics laid the foundation for the expansion of the US economy which persisted for the next 40 years. Oddly enough, though, despite the clear advantages of the system, and the undoubted success that it had, it was not. widely adopted in the US outside the census office. For some curious reason, companies in the US at that time did not appear to realise the usefulness of Hollerith's data processing system.
In a strange reversal of the normal procedure, Hollerith took his invention to Europe, where it was enthusiastically taken up for statistical purposes (but not, at that time, in the conservative UK), and encouraged by this success, Hollerith returned to the US to form the Tabulating Machine Co., incorporated in New York in 1896, to manufacture tabulators of 'all types. This time the idea caught on, and tabulating machines bearing the Hollerith imprint started to appear in the accounts offices of organisations all over the world. The name 'Comptometer' started to be used - how many readers remember the number of job vacancies for comptometer operators in the late 40s and early 50s? The punched-card system became a world standard, and when I first started computer programming, the program had to be punched onto Hollerith-type cards. Herman Hollerith himself died in 1929 in Washington, D.C.
Whatever became of the Tabulating Machine Co.? Well, it's a fact of life that a lot of companies that start off with a few employees, and are successful, will eventually grow to be very big companies. The Tabulating Machine Co. was absorbed by one take-over after another, devoured other companies in turn, and eventually changed its name to International Business Machines, now the jolly green giant of computer manufacturers. I wonder if Acorns grow as fast?

Electrovalue
 Understandably Britain's most popular and relied-upon suppliers of SEMI-CONDUCTORS I.C. COMPONENTS COMPUTING EQUIPMENT TOOLS, BOXES, CONNECTORS and much, much more THE LATEST PRICE LIST TELLS ALL large S.A.E. brings your FREE copy by return GOOD PRICES - GOOD SERVICE -DISCOUNTS
 Send for yours now to:
 ELECTROVALUE LTD. Also in Menchester for personal shoppors st: G80 Burnage Lene, Burnego, Menchester M19 INA - Telephona $061-4324945$ Computing Shop-
 700 Burnage Lene, Manchester - Telephone 061-4314866

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

 IN YOUR OWN HOME-AT YOUR PACEICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City \& Guilds Certificates

Radio Amateurs

Basic Electronic Engineering (Joint C\&G/ICS)

Certificate Courses

TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance
Computer Engineering* and Programming Microprocessor Engineering*
TV, Radio and Audio Engineering Electrical Engineoring,* Installation
and Contracting -Quallif for IET Kneocieto Memborshtp CACC Approved by CACC

Member of ABCC
POST ORPHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus.
Subject of Interest
Name
Address

01-6229911 (All Houra)

Send for my CATALOGUE ONLY 75p (plus 25p post/packing)

My all-inclusive prices quoted in the Catalogue are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade.

See my prices on the following:
CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND:HIGH VOLTAGE, RESISTORS. V/Bth WATT TO 100 WATT; 0.1\% TO 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MUITITURN, ROTORY AND SLIDE. DIODES, RECTIFIERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, ICS, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INOICATORS, BELIS, SIRENS, HOLOERS, POWER SUPPLIES, HARDWARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VOR'S, INSULATORS, CASSETTES, METERS, SOLOER, HANOLĖS, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOAROS and others.

Prices you would not believe before inflation!

BRIAN J. REED
 TRADE COMPONENTS

ESTABLISHED 26 YEARS
161 St. Johns Hill, Battersea, London SW11 1TQ
Open 11 am till 7 pm Tues. to Sat. Telephone: 01-223 5016

Manchester Home Computer Show MIIDLAND HOTEL April 22/23/24

Your diary dates are:
Glasgow May
Birmingham June
Nottingham September
Newcastle October
Bristol December

Sponsored jointly by:
Personal Computing Today
ZX Computing
Computing Today
Micro Update
Personal Software

At the Home Computer Shows will be a complete cross section of the hardware and software available to the home user. The emphasis is on the lower end of the price bracket with computers from $£ 50-£ 400$.

If you are interested in computers and what they can do for you then come along to our COMPUTER ADVICE CENTRE: experts will be on hand to give you impartial advice on equipment available.

Try out the machines in our own demonstration area and see programs running covering educational, games and small business applications.

There is a COMPETITION at every show to:

> WIN TWO COMPUTERS.

Win a computer for yourself as well as one for the school of your choice: free entry form with advance tickets. Also available at the show with the show catalogue.
ADMISSION $£ 2.00$ (CHIILDREN UNDER 8 \& O.A.P's FREE) AND IF YOU'RE A PARTY OF 20 OR MORE, THERE'S A $\mathbf{2 5 \%}$ DISCOUNT

Friday 22 April '83 (10am-6pm) Saturday 23 April '83 (10am-6pm) Sunday 24 April '83 (10am-4pm)

The Manchester Home Computer Shiow Midland Hotel. (Opposite Town Hall).

For advance tickets send cheque/postal order to: ASP Exhibitions
Argus Specialist Publications
145 Charing Cross Rd,
London WC2H OEE
Tel: 01-437-1002

Overvoltage Cut-out

A super circuit protector for all mains-powered projets.

WHEN a stabilised supply becomes faulty, this often results in a substantial increase in the output voltage, but the first indication that a fault has occurred is likely to be when the supplied equipment fails due to semiconductors or other delicate components being damaged by the excessive supply potential! The voltage difference between the unregulated and regulated supplies can be surprisingly large, incidentally, with an overload in the region of 50% being quite possible if the unregulated supply finds its way to the output.

A simple method of protecting equipment against an excessive supply voltage is to use an overvoltage cutout between the power source and the equipment concerned. The circuit described here is of the 'crowbar' type that instantly short circuits the power supply if an input potential above a certain threshold level is detected. The virtual short circuit that is placed across the supply almost instantly pulls the supply voltage down to a safe level, and limits the duration of the overload to an insignificant period of a fraction of a millisecond. A fuse, in series with the input of the cutout, then blows so that power is cut off altogether until the fault has been rectified and the fuse has been replaced.

It is possible to have a purely electronic cutout, and this 'crowbar' method may seem a little crude. However, it has the advantage of a negligible voltage drop through the fuse (which is the only component in series with the supply), so that adding a unit of this type should give no degradation of performance.

The Circuit

The circuit diagram of the Overvoltage Cutout is shown in Figure 2. Operational amplifier IC1 is used as the comparator, while R5 provides a small amount of positive feedback over IC1 so that the output triggers either to the high state or low state, but cannot be at an intermediate level. The output is low if the inverting input (pin 2) is at a higher voltage than the non-inverting input (pin 3), or the high state if the comparative input levels are reversed.

The inverting input is held at a stable

Figure 1. The circuit diagram of the Overvoltage Cut-out.

Figure 2. The PCB component overlay. The full-sized foil pattern is reproduced on the PCB Printout page.
potential of 6 V 8 by the simple Zener stabiliser circuit formed by R2 and ZD1. The non-inverting input is fed from the supply lines via a potential divider which is formed by R1, R2 and R3, and this divider
circuit supplies a little under half the supply voltage to the non-inverting input. R1 and C1 form a simple filter which prevents transients on the supply from producing spurious triggering of the unit.

With a nominal 12 V supply (allowing for the fact that some items of equipment, such as a mains power supplies for CB transceivers, actually give about 13.8 V, and a car supply can reach a similar level), the potential fed to the noninverting input of IC1 is still below the

6 V 8 reference potential applied to the inverting input. IC 1 's output is low, Q1 is biased off and SCR1 is switched off.

The situation is different if a fault occurs; if the supply voltage rises above about 14.3 V , the non-inverting input is then the one at the higher potential. This

How It Works

A COMPARATOR is used as the basis of the circuit; this compares the supply voltage with a stable reference voltage. Normally the difference between the reference potential and the supply voltage is quite small and the output of the comparator is consequently at a low voltage. The thyristor, which it drives via Q1, is therefore switched off and has no effect.

If the supply voltage rises to a high enough level the potential difference between the reference and supply
voltages is sufficient to trigger the comparator to the high state and the thyristor is then switched on via Q1. It virtually short circuits the supply, so that the voltage is reduced to a low and safe level, but the high current flow causes FS 1 to blow and completely cut off the supply from the output. The unit is primarily intended for use with 12 V equipment such as power supplies for mobile CB transceivers. The nominal trigger voltage is 14.3 V .

Parts List

2N3904
IC1
CA3140
SCR1
2N6403 or similar

MISCELLANEOUS

FS 1 20mm quickblow fuse current rating as required
Chassis mounting 20 mm fuseholder; input and output terminals; printed circuit board; case; 6BA fixings, connecting wire, solder etc.

BUYLINES
Page 34
causes the output of IC1 to be triggered to the high state, turning on Q1 and SCR1; the supply is 'crowbarred', with SCR1 effectively short circuit, and fuse FS1 blows. The output current ot IC 1 is insufficient to reliably operate most thyristors, and Q 1 is therefore used as an emitter follower buffer stage to produce a suitably high drive current; R6 prevents excessive gate current from flowing into SCR1. R7 gives a certain amount of current limiting when SCR1 is triggered, although this is probably not, strictly, necessary as SCR1 only has to conduct for a few milliseconds before FS 1 disconnects the supply, and a considerable current overload could probably be tolerated for such a short duration.

FS1 is a 1 amp fuse on the prototype, but the rating of this fuse must obviously be varied to suit the particular item of equipment fed from the output. It should have a current rating approximately equal to or a little, higher than the maximum current drain of the equipment being powered. For example, a current consumption of 1.8 A would require a 2A fuse, this being the nearest current rating available, but higher than the 1.8A figure.

Construction

All the components (including FS1 and its chassis mounting fuseholder) are mounted on a printed circuit board which is detailed in Figure 2. This is constructed in the usual way, but bear in mind that IC 1 has a MOS input stage and therefore needs the standard MOS handling precautions. Both the CA3140E (which is an 8 pin DIL package) and the CA3140T (which has an 8 pin TO-99 metal package) will readily fit onto the printed circuit board. Note that SCR1 does not need a heatsink, as it conducts too briefly to heat up significantly. Any thyristor having a current rating of about 12A or more should be satisfactory in this design, and it is not essential to use a 2N6403.

The printed circuit board is small enough to fit into practically any small metal or plastic case. Pairs of spring terminals are fitted at each end of the case to provide an easy way of connecting the input and output leads to the unit, and these are colour coded red and black to indicate the polarity of the supply lines. Clearly mark which set of contacts are the input terminals and which are the outputs, and be sure to connect the unit correctly. There will be dire consequences if a mistake is made here since, if the unit is triggered, the fuse will not blow because it would be at the output of the unit instead of the input.

A simple way to test the unit is to use a bench power supply to provide an input voltage which is steadily increased from about 10 volts until the circuit triggers; a voltmeter is used to monitor the voltage. The current limiting facility of the supply can be used to prevent FS 1 from blowing, and the circuit can then be reset by reducing the supply voltage and momentarily disconnecting the supply from the input of the unit. If necessary, the trigger voltage can be reduced slightly by decreasing the value of R2, or increased by raising the value of this resistor.

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/Postal Order made payable to ASP Ltd.
for the amount shown below Price.
OR
I wish to pay by Barclaycard. Please charge my account number
OR

I wish to pay by Access. Please charge to my account number

SIGNATURE

NAME

(BLOCK CAPITALS)
ADDRESS
(BLOCK CAPITALS)

Please allow 21 days for delivery

| Boards Required | Price |
| :--- | :--- | :--- |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

Lightning ELECTRONIC COMPONENTS

THE CHOICE IS YOURS - CALL AT OUR NEW SHOWROOM OR USE OUR VERY FAST MAIL ORDER SERVICE.
EITHER WAY WE'LL KEEP YOU HAPPY *****
Furthermore we promise if any part ordered by mail fails to please just return within 7 days for a full refund
For a vast selection of electronic components \& equipment of all kinds. Here is just a selection of our stocks. Many more items listed in our catalogue available now 70p post paid.

LIGHTNING ELECTRONIC COMPONENTS

Showroom \& Mail Order Distribution Centre at:18 Victoria Road. TAMWORTH, Staffs B79 7HR
Telephone 0827-65767.

OUR GREAT NEW ILLUSTRATED CATALÓGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT

PRCES!

SEND S.A.E. OR PHONE NOW FOR YOUR COPY THIEFCHECK BURGLAR
ALARM D-IY SYSTEM

A.D. ELECTRONICS DEPT. HE3 217 WARBRECK MOOR AINTREE LIVERPOOL

- DISTRIBUTOR LI OHUUO51 5238440

STORAGE CABINETS

Steel cabinets,

2 wide $\times 55^{\prime}$ deep $\times 22^{\circ}$ high nished blue whth clear

MILLHILL SUPPLIES

Acosea/Bercliycard welcome or

6 THE STREET, CROMMNRH, WNLIN

nin ENFIELD

ELECTRONICS 208 BAKER ST,, ENFIELO

POST 65p	25p PACKSI	ADD VAT 15\%
100 6BA Washers	10 No 8 Cup Washers	55 -way Tag Strips
10 No 8xl" Woodscrews	3 PP3 Snaps	33.5 mm Jack Skts
3 TO5 Heatsinks	10 m Connecting Wire	4 m 1 mm Sleeving
38 -pin DIL Skts	1 100K Multiturn Preset	4100 K Presets
$21000 \mu \mathrm{~F} / 50 \mathrm{v}$ Cans	$10100 \mu \mathrm{~F} / 40 \mathrm{v}$ Elects	$3100 \mu \mathrm{~F} / 16 \mathrm{v}$ PCB
$18 \mu \mathrm{~F} / 350 \mathrm{v}$ Ax	8 680R iW Res	120 mm Panee Fuse
1 B7G Skt	1 B9A Skı	1 B9A Skirted
218 -pin DIL Skts	$128-\mathrm{pin}$ DIL Skt	

AOV Min Coromic Platas: 250/pack. 8 parar pack one value

OF96/63p, EABC/78p, ECHB1/70p, ECLBO/70p, EF80/57p, EF85/59p, EF86/72p, EFB9/99p
 6BA6/68p, 6BWO/E6, 80Y/L.45.

LETCHWORTH ELECTRONIC COMPONENTS

Spirella Bullding, Bridge Road, Letchworth, Herts SG6 4ET TEL: (04626) 70354/79681

ReCHARGEABLE BATTERIES
 AND CHARGERS

PRIVATE OR TRADE ENQUIRIES WELCOME
FULL RANGE OF NICADS AND SEALED LEAD AVAILABLE SEND SAE FOR LISTS
$£ 1.45$ for booklet Booklet 'Nickel Cadmium Power' SANDWELL PLANT LTD
2 Union Drive, Boldmere, Sutton Coldfield, West Midlands 021-354 9764 After hours 0977616913

SAVE fff's ON HOME HEATING BILLS

UNIQUE DIGITAL THERMOSTAT
POSSIBLE FUEL
SAVINGS OF
UP TO 25%

Normally manufactured exclusively for the trade. Features: Continuous readout of ambient temp via 3 digit 7 segment display - LED indicates when pump is in operation $0.2{ }^{\circ} \mathrm{C}$ Hysterises - 240 v 3 A control contacts - Switched set temperature

High specification - Simple to calibrate Connect in place of existing thermostat Requires 240 V 2VA supply - Kit includes all necessary components, Enclosure, diagrams and instructions.
Kit price only $£ 39.90$. Assembled Price £49.90
Prices include P\&P and VAT
Send cheque or PO to: DICON ELECTRONICS LIMITED
Bond Street, Bury, Lancs BL9 7DU Tel 061-7975666

HE
 PBs

Below: The PCB foil pattern for the
Signal Powered Loudspeaker Protector.

Foil pattern of the Overvolt Cut-out.

MASIMFR HTFGIRONICS NOWU The PRACHTCAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practica and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams
Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
(1) Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

New Job? New Career? NewHobby?Getinto Tlectronics Now!
 Please send your brochure without any obligation to

COLOUR BROCHURE

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55p. Clear acetate sheet for master 14 p . Copper-clad fibreglass board, approx. 1 mm thick f 1.75 sq . ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

AMAZING ELECRONIC PLANS Lasers, Super-powered Cutting Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue E1 (refundable) - from Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

TELETEXT (ORACLE/CEEFAX) add-on adaptors for any television only $£ 149.95$ inclusive. Also Prestel/Viewdata and Telesoftware. Cytel (HE) Freepost, Bristol BS10 6BR. 10272) 502008 any time.

HAVEN HARDWARE

 Jupiter Ace 589.90. Inverse Video £4.95.
Access raken. SAE for det Access raken. SAE for details.
HAVEN HARDWARE
4 Asby Rosd. Asby, Workington, Cumbria 094.686627
Agency enquiries weicome

NVANIETBANNIDJ

Auto Electronics, 103 Coventry Street, Kidderminster. Tel: (0562) 2179

Brand new components by return post or ring with Access/Barclaycard number for same day despatch.
All manufacturers guaranteed new stock. All at most competitive prices. Catalogue available only 50 p . All prices inclusive of VAT.

LIE DETECTORS Brand new in steel case with 100-0-100 microamp meter. Complete with probes and gel. Price $£ 7.00$ (This includes VAT but not postage). " Q " Services, 29 Lawford Crescent, Camberley, Surrey. (Yateley) 871048.

PARAPHYSICS JOURNAL Russian translations); Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: S.A.E. $4 \times 9^{\prime \prime}$ Paralab, Downtown, Wilts.

ELECTONIC kits for sale: Morse Practice £4.10, Dice £8.10. SAE for details. Bee Micro, 33 Bevendean Crescent, Brighton, E. Sussex.

CLEARANCE SALE of High Quality assorted Electrical Terminal Connectors. Rings, Spades, Forks etc. at $£ 5.56$ for 100 . Space Enterprises, Springfield, The Ridge, Epsom, Surrey.

CONVERT ANY TV into Large Screen oscilloscope (by external unit). Costs approx. £12 to build. Circuit and plans $£ 3$ or SAE details. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

POWERAMPLIFIĖRS 200 WATT E11.95pl - case and controls, volume, balance and sockets. $4 \times$ MJ3001 outputs, $100+100$ watts! (R.R.P. + data $=£ 38.40$). Kia, 8 Cunliffe Road, Ilkley.

SPECTRUM GAMES SALE. Venture 17 games in 11, was $£ 6.3$ Compulsive Games, was $£ 5$. The lot on one cassette for just $£ 6$. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

SELLING YOUR PRODUCTS?

SELL THEM QUICKLY AND CHEAPLY FOR FURTHER INFORMATION CALL

> ASP CLASSIFIED 01-437 1002 extn. 213 or 282

BUMPER BOX OF BITS

WOWIII We've got so many components in stock, we can't possibly list them all!! \rightarrow So buy a box, in it you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, IC's, etc., coils, pots . . and so on. All modern parts - guaranteed at least 1000 items. Minimum weight 10 lbs . ONLY $\mathbf{8} .50$ inc. ELECTRONICS WORLD
1F Dowo Roed, Sellebury, Wilte SP2 78N

POWERFUL SW Medium FM portable radio, only $£ 14.95 \mathrm{p}+\mathrm{p}$ £2.55. Sharland Enterprises, 7 Mountview, Mill Hill NW7 3HT.

DIGITAL WATCH REPLACEMENT parts. Batteries, displays, backlights etc. Also reports, publications, charts. S.A.E. for full list. Profords, Copnersdrive, Holmergreen, Bucks HP15 6SGE.

ELECTRONICS BOOKS. International publishers. Lowest rates. Ask list. Businesspromotion. 376 Lajpatrai Market Delhi India.

BURGLAR ALARM EQUIPMENT. Please visit our $2,000 \mathrm{sq}$. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Lid. 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274-308920.

ELECTRONICS component shop in MAIDSTONE, KENTI Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

AERIAL AMPLIFIERS limprove weak television reception. Price $£ 6.70$. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

centuaion ALARMS

We manufacture, you save fef's
Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories.
Discount up to 20% off list prices, e.g. Control Equipment from $£ 15.98$, Decoy Bell Boxes from $£ 5.95$ inc. TRADE ENOUIRIES WELCOME O 0484-21000 or 048435527 (24 hr. ans.) CENTURION ALARMS (HE) 1265 Wakefield Road. Hudderstield HD5 98E, W. Yorks
Access $\&$ Visa
Orders Welcomed

HOBBY ELECTRONICS CLASSIFIED ADVERTISEMENT - ORDER FORM

If you have something to sell now's your chance! Don't turn the page - turn to us! Rates of charge: 26 p per word per issue (minimum of 15 words). Box Nos. £2.50 and post to HOBBY ELECTRONICS, CLASSIFIED DEPT., 145 CHARING CROSS ROAD, LONDON WC2

					$£ 3.90$
					$£ 5.20$
					$£ 6.50$
					$£ 9.80$
					$£ 10.40$
					$£ 11.70$

Please place my advert in HOBBY ELECTRONICS for issues commencing as soon as possible.

I am enclosing my Cheque/Postal Order/International money Order for: (delete as necessary) £. . . . (Made payable to A.S.P. Ltd)

All classified advertisements must be paid for in advance.

Please use BLOCK CAPITALS and include post codes. Name (Mr/Mrs/MIss/Ms)
Address
\qquad

Signature.
Daytime Tel. No.

ADVERTISERS INDEX

A.D.E	
AITKEN BROS.	34
AMBITINTERNATIONAL	IFC
AMTRON	35
AUDIO ELECTRONICS	54
BIB AUDIO.	. 4
BI-PAK	44, 45
B K ELECTRONICS	IBC
BNRS	72
$\&$ BULL	33
CRICKLEWOOD	5
CRIMSON COMPONENTS	66
DATAPLUS DEVELOPMENTS	. 64
DELTA TECH	64
DICON ELECTRONICS	71
ELECTRONICS \& COMPUTING	. 48
ELECTRONIZE DESIGN	. 11
ELECTRO SUPPLIES	. 64
ELECTROVALUE	66
ENFIELD ELECTRONICS	71
EXPOLTD.	59
GREENWELD.	. 54
GENSON ELECTRONICS	9
G.S.C.	. 15
HEMMINGS	52
ICS	. 66
ILP	38,39
KELAN ENGINEERING	. $35, \mathrm{OBC}$
KEMPSTON. 60
LETCHWORTH	71
LIGHTNING ELECTRONICS	71
MAGENTA ELECTRONICS	28
MEON ELECTRONICS.	. 60
MILL HILL SUPLIES	7
MYERS ELECTRONICS	60
RAPID ELECTRONICS	. 10
BRIAN J REED	. 66
RELAY-A-QUIP.	59
RISCOMP	47
SANDWELL PLANT	71
SINCLAIR RESEARCH	24, 25
SOUTHERN TECHNICAL SYSTEMS	. 60
SPARKRITE	36
TECHNOMATIC	19
T.K. ELECTRONICS	32
WILMSLOW AUDIO	

\square
 It's easy
 to complain
 about
 advertisements.
 The Advertising Standards Authority. If an advertisement is wrong. we're here to put it right.
 A.S.A. Lid.. Brook Hoi ise. Tormngton Place. London WCIE 7HN.

MULLARD SPEAKER KITS
Purposefully designed 40 watr R.M.S. and 30 watt R.M.S. 8 ohm speakers systoms. recantly
developed by MuL LARD'S specialist team in Belgium. Kits comprise Mullard woofer (l^{*} or $5^{\prime \prime}$) with foam surround and alumbinium voice coil. Mullard 3" high power domed tweoter. B.K.E. built and tested crossover based on Mullard clreuir, combining low loss components, glass fibre board and recessed loudspaaker terminals.
SUPERB SOUNDS AT LOW COST. Krts supplied in polystyrene packs complete with instructions. $8^{\prime \prime}$ " 40 W. system - recommended cabinet size 240 $* 216 * 445 \mathrm{~mm}$
Price $[14.90$ each $+\mathbf{E 2 . 0 0} \mathrm{P} \& \mathrm{P}$
$5^{\text {" }} 30 \mathrm{~W}$ system - recommended cabinet size $60 \times 175 \times 295 \mathrm{~mm}$
rice $\mathbf{f 1 3 . 9 0}$ each + $\mathbf{5 1 . 5 0} \mathbf{P} 8 \mathrm{P}$
Designer approved flat pack cabinet kits, including grill fabric. Can be finished with iron on veneer or self adhesive vinyl etc.
8 " system cabinet kit $\mathbf{f 8 . 0 0}$ each

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices
Audio Equipment Test Equipment by Thandar
and
Leader

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system 8 ohms
Build a quality 60 watt R.M.S. system.

* $10^{\prime \prime}$ Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
* 3" Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$
* $5^{\prime \prime}$ Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
$\star 3$-way crossover $6 \mathrm{~dB} /$ oct 1.3 and 6 KHz Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime}$ Fitted with attractive cast aluminium fixing es removable enabling a unuque choice of cabinet styling Can be mounted direcrily on 10 baffle
 $2^{\circ} 85$ wat grile 89.50 PGP E .25. minium r.M. . MCKENZIE CT285GP ILEAO GUITAR, KEYBOARO, DISCOI 2 Resp. 106.5 KHz ., Sens. 98 dB . Price: $\mathbf{c 2 2 . 0 0 + £ 3 \text { carriage }}$ $12^{\prime \prime} 85$ watt R.M.S. MCKENZIE C1285TC IP.A., DISCO) $2^{\prime \prime}$ aluminium voice coil. Twin
 $155^{\prime \prime} 150$ watt R.M.S. MCKENZIE C15 (BASS GUITAR, P.A.) 3 aluminium voice coil.
Die cast chassis. 8 ohm imp., Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . Price: $£ 47+£ 4$ Die cast c
carriage.
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (nn voice coil) of a Piezo iweeter produces an improved transient response with a lowe distortion level than ordinary dynamic weeters. As a crossover is not required these units can be added to existing speaker systems of up (more if 2 put in series) FREE EXPLANATORY LEAFLETS

TYPE 'A' (KSN2036A) ${ }^{3}$ ' round with protective
 sized Hi-fi speakers. Drice $\mathbf{f 3} .45$ each.
TYPE 'B' IKSN1005AI $3 \frac{1}{2}$ " super horm. For general purpose speakers, disco and P.A systerns etc. Price $\mathbf{C 4} .35$ each
TVPE 'C' IKSN6016A12" - 5 " wide dispersion horn. For quality H_{1} fin systems and quality discosetc Price 55.45 each.
TYPE ' D' (KSN 1025A) - 6 " wide dispersion horn. Upper frequency response retained extending down to mid range (2 KHz). Suitable for high quality Hi.fi systems and quality discos. Price $£ 6.90$ each.
TYPE 'E' (KSN1038A) 3\%" horn tweeter with altractive silver finish irm. Surable for Hi-fi monitor systems etc. Price $\mathbf{[4 . 3 5}$ each.
TYPE 'F' (KSN1057A) Cased version of type 'E' Free standing satellite iweeter. Perfect add on tweeter for conventional loudspeake
Sysiems
P\&P 20p ea. (or SAE for Piezo leaflets). All three units have aluminium cente domes and rolled foam surround Crassover coill bines spring loaded loudsneaker terminals and recesser mountina nanel Price $£ 22.00$ per kit $+£ 2.50$ postage and pac
OH Avalalule separately. prices on reguest

12" 80 watt R.M.S. loudspeaker

 A superb general purpose twin cone loudspeaker. 50 or. magnel ${ }^{2}$ aluminumvoice coil. Rolled surround quency 25 Hz . Frequency response to 13 KHz . Senstivity 95 dB . Impedance 80 hm . Attractive blue cone with aluminium centre dome.
Price $£ 17.99$ each $+£ 3.00$ PGP.

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5 TY

EXCLUSIVE MAIL ORDER FOR PRICE CONSCIOUS ENTHUSIASTS

the complete Printed Circuit Workshop

\star Copper Clad Boards \star Veroboards
\star Breadboards \star Artwork materials
\star Hobbyboard Photo Resist System the simplest, cleanest method ensuring high quality PCB's EVERYTIME.
\star Plastic \& Die Cast Boxes \& Cases
\star Connectors \star Sockets
\star Terminals \star Screws, Nuts, Spacers etc. \star Workshop Tools
\star Drills \& Machines.
\star ZX81 \& SPECTRUM INTERFACING SYSTEMS AND ACCESSORIES.
Microboard Drills Eurocards

Verobox ${ }^{\text {® }}$

Desk Top Case

ULTRA VIOLET SENSITIVE COPPER CLAD LAMINATE

Top quality glass fibre with $10 z$ Cufoil. Will reproduce tracks down to .01 inch. Peel off black protective film.
Compatible with all positive systems.

SPECIAL OFFER

Complete - low cost introductory Hobbyboard Photo Resist Kit inctions for UV exposure lamp \& furk, board \& DIY UV unit - all artwork, boairements + "Introduction chemical require" to Circuit Making"

Veroboard
 ®

I/C Sockets

Connectors

Printed Circuit Etch Resist Transfers

Please send me details of:-
Hobbyboard mail order catalogue
Hobbyboard Photo Resist System
Hobbyboard ZX81/SPECTRUM SYSTEM
Hobbyboard special offer
NAME
ADDRESS

Ihave completed \square electronic projects during the past 12 months

