c\ MICROCHIP

MPLAB Harmony Graphics Composer
User's Guide

MPLAB Harmony Integrated Software Framework

© 2013-2018 Microchip Technology Inc. All rights reserved.




Volume Ill: MPLAB Harmony Configurator (MHC)

Volume Ill: MPLAB Harmony Configurator (MHC)

This volume provides user and developer-specific information on the MPLAB Harmony Configurator (MHC).
Description
The MPLAB Harmony Configurator (MHC) is a graphical utility used to configure MPLAB Harmony projects. MHC provides
m a "New MPLAB Harmony" project wizard and a graphical user interface for configuration of MPLAB Harmony projects.
When used, it generates (or updates) a project outline, including the C-language main function and system configuration
HARMONY files and stores the project configuration selections for later retrieval, modification, and sharing.

-

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

MPLAB Harmony Graphics Composer User's Guide

This section provides user information about using the MPLAB Harmony Graphics Composer (MHGC).

Introduction

This user's guide provides information on the MPLAB Harmony Graphics Composer (MHGC), also referred to as the graphics composer, which is
included in your installation of MPLAB Harmony. MHGC is tightly coupled with the Aria User Interface Library to facilitate rapid prototyping and
optimization of the application's graphical user interface (GUI).

Description

The MPLAB Harmony Graphics Composer (MHGC), also referred to as the graphics composer, is a graphics user interface design tool that is
integrated as part of the MPLAB Harmony Configurator (MHC). MHGC is tightly coupled with the Aria User Interface Library to facilitate rapid
prototyping and optimization of the application's graphical user interface (GUI). The tool provides a "What you see is what you get" (WSYWIG)
environment for users to design the graphics user interface for their application. Refer to Volume V: MPLAB Harmony Framework Reference >
Graphics Library Help > Aria User Interface Library for more information.

The MPLAB Harmony Graphics Composer (MHGC) Tool Suite and the Aria User Interface Library provide the following benefits to developers:
« Enhanced User Experience — Libraries and tools are easy to learn and use.

e Intuitive MHGC Window Tool — Flexible window docking/undocking. Undo/Redo and Copy/Paste support. Tree-based design model. Display
design canvas control including zooming.

« Tight Integration Experience — Graphics design & code generator tools are tightly integrated, providing rapid prototyping and optimization of
look and feel

« Powerful User Interface (Ul) Library — Provides graphics objects and touch support
* Multi-Layer Ul design — Supported in the MHGC tool and Aria Library

* Complete Code Generation — Can generate code for library initialization, library management, touch integration, color schemes and event
handling with a single click

e Supports Performance and Resource Optimization — Draw order, background caching, and advanced color mode support improve performance

* Resource optimization — Measures Flash memory usage and can direct resources to external memory if needed. Global 8-bit color look-up
table (LUT) supports reduced memory footprint. Heap Estimator tool, which helps to manage the SRAM memory footprint.

» Text localization — Easily integrate international language characters into a design and seamlessly change between defined languages at
run-time

« Easy to Use Asset Management — Tools provide intuitive management of all graphics assets (fonts, images, text strings)
* Image Optimization — Supports cropping, resizing, and color mode tuning of images
» Expanded Color Mode Support — The graphics stack can manage frame buffers using 8-bit to 32-bit color

» Powerful Asset Converter — Inputs several image formats, auto converts from input format to several popular internal asset formats, performs
auto palette generation for image compression, supports run-length encoding. Supports automatic font character inclusion & rasterization.

« Event Management — Wizard-based event configuration. Tight coupling to enable touch user events and external logical events to change the
graphics state machine and graphics properties.

» Abstract Hardware Support — Graphics controllers and accelerators can be added or removed without any change to the application

Glossary of Terms

Throughout this user's guide the following terms are used:

Acronym or Term Description

Action A specific task to perform when an event occurs.

Asset An image, font, or binary data blob that is used by a user interface.
Event A notification that a specific occurrence has taken place.
Resolution The size of the target device screen in pixels.

Screen A discreet presentation of organized objects.

Tool An interface used to create objects.

ul Abbreviation for User Interface.

Widget A graphical object that resides on the user interface screen.

Graphics Composer Window User Interface

This section describes the layout of the different windows and tool panels available through MHGC.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Description

MHGC is launched from the MHC toolbar Launch Utility menu. Launching the Graphics Composer creates a new screen. Shown below is the
MHGC screen for the Aria Showcase demonstration. (If you don’t see this screen layout, reset the screen by selecting Window > Reset Dock
Areas from the window’s menus.)

File Edit View Asset Tools Window

‘E 2’ ) P ’ l:;‘:[ i ‘ «[i:j. (=] ’m\ (_?\ ’ 5 ‘H:—; ‘ abc

2 MPLAB Harmony Graphics Composer - pic32mz_ef_sk_meb2_legacy* =1 & g
File Edit View Asset Tools Window

oS e~ D e =R ()8 =) X:205 Y:95 100%

( Tree View = 4 (| () Screen Designer - SplashScreen = ]| (] widget Tool Box -0

o ‘Widget
Tre e (0,0) - (479,0) L-Too I

(] Screens - 0 ° éwmmsa:u -6
X mmtd 2712 P 'cse mA

[ = sceen A

Name
Splash

Screen_s' Screen Designer Properties

R Editor

| L L Sosth,
(] Schemes -0 1
e X (0,271) \SIZXL ; ;:en

SCh emes Bottom Tab for Each Screen SRS S Py St}

RadoButtonsOnDarkScheme -I SplashScreen  x | ManMenu X |FrstScreen X [ SecondScreen X |ThrdScreen X |FourthSceen X :F:ﬁhSGe_]Show C0n80|e

l Lo A8, MHGC Output Console parked out of the way | {Toqggle Buttory 5

. J

Panels

By default, there are five active panels and one minimize panel on this screen:

» Screen Designer — Shows the screen design for the selected screen. Tabs on the bottom of the Screen Designer panel show the available
screens.

« Tree View — Shows the layer and widget hierarchy for the current screen.
* Screens — Manages screens in the application.
* Schemes — Manages coloring schemes in the application.

In v2.03b of MPLAB Harmony, a third tab nhamed Options, along with Screens and Schemes was available. These properties are
Note:  now located within the File > Settings menu.

* Widget Tool Box — Available graphics widgets are shown on this panel. Widgets are added to the screen by selecting an icon and dragging or
clicking. Widget properties are discussed in the Widget Properties section below.

» Properties Editor — All properties for the currently selected object are shown in this panel.

e The MHGC Output console is parked at the bottom of the Screen Designer window. This console panel can be used to debug problems when
the Graphics Composer boots up or during its operation.

Each of the panels has a window tool icon at the upper right corner. Minimizing a panel parks it on the screen just like the Output Console.

Undocking the panel creates a new, free floating window. Redocking returns a previously undocked window to its original location on the Screen

Designer window.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 4



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Tool Icons:
1: Minimize
2: Redock
3: Undock

When a panel is undocked, its edges become active and support moving or manipulating the panel as an independent window.

2 X mBed

Export  Visible Na... View
V] | @] | def.| &=

Tool Bar

There are 18 tool bar icons on the Screen Designer Window, as described in the following figure.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 5



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

File Edit View Asset Window

TEee B0 e =R a 0 0| GO -
9

N - be
12 3 4 56 8 10 11 14 15 16 17 18

Tool Icons: 10: Zoom In

: Create New Design 11: Zoom Out

- Save Design 12: Toggle Line Snapping
- Undo 13: Show Grid

- Redo 14: Xand Y Grid Size

- Cut Selected Object(s) 15: Grid Color

- Copy Selected Object(s) 16: Toggle Object Clipping

OO ~NOOOA, WN =

: Paste Selected Object(s) 17: Toggle Screen Info
- Canvas Size Dialog 18: Select Text Preview Language
. Center View

Create New Design brings up a New Project Wizard dialog that allows you to select anew the screen size, color mode, memory size, and project
type. This will erase the currently displayed design.

Save Design saves the current graphics design.

The target configuration's conf i gur at i on. xm will not be updated to reflect these changes in the graphics design until one of
Note: the following events happens:

1. The application is regenerated in MHC,

2. The target configurations are changed in the MPLAB X IDE,

3. MPLAB X IDE is exited.

In items 2 and 3 you will be prompted to save the new configuration.

Undo and Redo manipulate changes in the screen design into internal MHC memory.
Cut/Copy/Paste support the manipulation of graphics objects (widgets).

Canvas Size Dialog brings up a dialog window allowing changes in the pixel width and height of the Screen Designer panel. (Note: Dimensions
smaller than the display’s dimensions are ignored).

Center View centers the panel’s view of the screen.

Zoom In and Zoom Out allow you to change the scale of the Screen Designer’s display of the current window. Currently this only supports coarse
zooming (powers of two zooms in and out).

Toggle Line Snapping enables/disables line snapping when moving objects (widgets).

Show Grid turns the Screen Designer pixel grid on/off.

X and Y Grid Size adjust the pixel grid.

Grid Color selects the pixel grid color.

Toggle Object Clipping turns object clipping on/off.

Toggle Screen Info turns the display of screen information (X and Y axes) on/off.

Select Text Preview Language changes the language used on all text strings shown, when the application supports more than one language.

Screen Designer Window

Most of the work of the MPLAB Harmony Graphics Composer is done using the Screen Designer. This section covers the basics of how a
graphical user interface is designed using the screen designer.

Description

The following figure shows the Screen Designer window for the Aria Quickstart demonstration, with the pic32mz_ef_sk_meb2 configuration
selected. (Load whatever configuration belongs to your board and follow along.)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 6



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface
- pic32mz_ef_sk_meb2

= | & & [[C]E] of kM| E0)

(] Screen Designer - defauit =0

’ 480
0.0) | | (479,0)

GFX_Quickstart - 56| Widget

Image Widget

272 HARMDNY

-

IMake changes. Generate. Run. | Button Widget

{0,271) (479,271)

default x

The pixel dimensions of the display (480x272) are determined by the MHC Display Manager. Other configuration in Aria Quickstart can have
different size displays (such as: 220x176, 320x24, or 800x480).

This demonstration has three widgets: a label containing the title string at the top, an image of the MPLAB Harmony logo in the middle, and a
button containing the text string “Make changes. Generate. Run.” at the bottom. The label widget's text string was first created using the String
Assets window before it was assigned to the label widget. The image assigned to the image widget was first imported using the Image Assets. The
string embedded in the button widget was also created using the String Assets window before it was assigned to the button widget.

The Tree View panel organizes the display’s widgets into groups using layers. Every display has at least one layer and complex designs can have
many more. Within the tree view, the order of layers and the order of widgets within a layer determine the draw order. Draw order goes from top to
bottom. Top-most layers and widgets are drawn first and bottom-most are drawn last. Controlling draw order is one of the ways to improve
graphics performance by minimizing redrawing.

1 1 1

(] Tree View = @'D
QIR+ FLL
=] @ Layer0

;

= ImageWidget1
ButtonWidget1

Since the location of every widget within a layer is relative to the layer, you can move a layer's worth of widgets by simply moving the layer. Layers
also provide inheritance of certain properties from the layer to all the layer’s widgets.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 7



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Exploring the Screen Designer Window
We can add another widget to this screen by launching the Widget Tool Box panel into a separate window.

(] Widget Tool Box -Q?;'D

qDlsconnects this panel from the frame (Ctrl+ E)

Next, drag a circle from the tool box onto the display. Find a place on the display for this new widget.

Besides dragging widgets onto the display, you can click on a widget in the Widget Tool Box, converting the cursor into that widget, and then click
on the screen to drop the widget in place.

= Widgets

B8 Button

o Check Box

Q cirde
—| (479,0) Draw Surface
Gradient
Group Box
Image Sequence
Image
Key Pad
Label

il
WENYCPE

Your display should now look appear like the following figure.

480
©,) { (4190)

GFX_Quickstart \

4

o HARMDNY
\v/

(0,2711) (479,211)
Note how the Tree View panel now shows the widget you just added.

(] Tree View

=2- @ Layer0
- /A Labelwidget1
- e ImageWidget1
ButtonWidget1

: CirdeWidget1

Launch the Properties Editor for the circle.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 8



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

[25] 84

[=] Editor
Locked
Hidden
[=] Widget
Name
Position
Size
Enabled
Visible
[ Border
Type
Margin
Scheme
Background Type
Alpha Blending
Optimization Flags
[=] Button
Toggleable
Text String
Alignment
Pressed Image
Released Image
Image Position
Image Margin
Pressed Offset
[=] Events
Pressed
Released

PhantomButton
[48,189]
[383,71]
[Bevel]

[ Bevel

[41 4’ 4’ 4]
(

@)

[ None

v

[false, false, false]

(

[Center,Middle]

(

(

[Leftof

10
1

Next, change the fill property on the circle from “None” to “Fill”.

a Note:

When done, the screen should now appear, as follows.

Properties Window.

LT

~)@

If the properties in the Properties Editor shown are not for CircleWidget1, click on the circle widget to change the focus of the

(0,0)

GFX_dmm oi___ No
|

HARMONY .-

(02711)

Turn on Line Snapping, which enables drawing guides to assist in aligning widgets on the display.

" Toggle Line Snapping

(21

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

(0,0) i (479,0)

GFX_Quickstart

- . V/;
MPLAB

-

Maks changse. Gersrate. Run. l ) |

(0,271) | (1479,271)

Next, turn on Object Clipping, which allows you to see how widgets are clipped by the boundaries of the layer that contains them.
Note: Clipping applies to layers, which can be smaller than the display.

e -

|Togg|e Object Clipping |

Clipping Off Clipping On

| (479,0) | (479,0)

To delete a widget, select the widget and press Delete on your keyboard or use the delete icon ( x ) on the Tree View panel.

For more hands-on exploration of graphics using the Aria Quickstart demonstration, see Volume 1: Getting Started With MPLAB Harmony > Quick
Start Guides > Graphics and Touch Quick Start Guides > Adding an Event to the Aria Quickstart Demonstration.

The steps to create a new MPLAB Harmony project with touch input on a PIC32MZ EF Starter Kit with the Multimedia Expansion Board (MEB) I
display can be found in Volume 1: Getting Started With MPLAB Harmony > Quick Start Guides > Graphics and Touch Quick Start Guides >
Creating New Graphics Applications.

Menus

This section provides information on the menus for the MPLAB Harmony Graphics Composer screen.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 10



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Description

File Menu

-

2 MPLAB Harm
Edit View
New

2ave

Save As

Import
Export

Settings

Exit

New — Same as the Create New Design tool icon.

Save — Same as the Save Design tool icon.

Save As — Supports exporting the design under a new name. By default, the name is conposer _export . xnl . See Importing and Exporting
Graphics Data for more information.

Import - Reads in (imports) a previously exported design or a ./ f r amewor k/ src/ syst em confi g/ { board_confi g}/ confi guration. xm
file that contains the graphics design to be imported. See Importing and Exporting Graphics Data for more information.

Export — Same as Save As. See Importing and Exporting Graphics Data for more information.

Settings — Brings up Project and User Settings dialog, including:

* Project Color Mode - How colors are managed

e Using a Global Palette

¢ Show Welcome Dialog

» Pre-emption Level — Allows for sharing of the device’s cycles with other parts of the application

» Hardware Acceleration — Is graphics hardware accelerator enabled in software?

Exit — Closes the MHGC window and exits

The choices for Project and User Settings > Project Color Mode are:

e GS_8 - 8-hit gray scale

* RGB_332 - Red/Green/Blue, 3 bits Red/Green, 2 bits Blue

* RGB_565 - Red/Green/Blue, 5 bits Red, 6 bits Green, 5 bits Blue

« RGBA_5551 - Red/Green/Blue/Alpha, 5 bits Red/ Green/Blue, 1 bit for Alpha Blending

* RGB_888 - Red/Green/Blue, 8 bits Red/Green/Blue

« RGBA_8888 - Red/Green/Blue/Alpha, 8 bits Red/Green/Blue/Alpha Blending

* ARGB_8888 - Alpha/Red/Green/Blue, 8 bits Alpha Blending/Red/Green/Blue

Ensure that the Project Color Mode chosen is compatible with the display hardware you are using; otherwise, the colors shown on the display will
not match those shown on the Graphics Composer Screen Designer.

Using a Global Palette enables frame buffer compression for applications using the Low-Cost Controllerless (LCC) Graphics Controller or Graphics
LCD (GLCD) Controller. If the global palette is enabled, you will have to change the MHC configuration of the Graphics Controller to match. For the
LCC controller, enable "Palette Mode". For the GLCD controller, change the Driver Settings > Frame Buffer Color Mode to "LUT8".

If Using a Global Palette is enabled, the following warning appears.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 11



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

-
Enable Global Palette Mode? b g

"o' You are about to enable "Global Palette” mode. This mode converts all images and scheme colors into an 8-bit format
\ and generates a global lookup table for use by a display driver. This allows frame buffers to be stored using less memory.
Some graphics features are incompatible with this mode and will be automatically disabled:

1. Compressed Image Decoding (JPEG, PNG, etc)
2. Alpha Blending
3. Anti-aliased Fonts

In order for this mode to work properly you must assign a scheme to all layers and widgets. Aria's internal scheme will not
work properly in palette mode.

Are you sure you want to enable global palette mode?

Yes | [ Cancel ]

A
If Show Welcome Dialog is enabled, the following welcome screen appears when launching MHGC.

Puro Graphics Composer
™

Welcome to the MPLAB Harmony Graphics Composer user interface design application.

Please select from one of the choices below to get started. You can also dlick the close button to begin using the tool

without guided assistance.
E] Create a new project using the new project wizard.
/ {} Load an existing design from an MPLAB Graphics Composer data file.
—ey

/ Use design loaded from current MHC configuration.

[~ Don't show this dialog again. Close

If you are not creating a new project you can ignore this window.
Note:

When the Preemption Level is set to zero, all dirty graphics objects are refreshed before the graphics process relinquishes control of the device.
(Dirty means needing a redraw.) With the level set to two, graphics provides maximum sharing with the rest of the application, at the cost of slower
display refreshes. A level of one provides an intermediate level of sharing.

The Hardware Acceleration check box determines whether graphics uses the device’s built-in graphics hardware accelerator in software.
You must also specify the graphics hardware accelerator in the MPLAB Harmony Framework Configuration within the MHC

Note:  Options tab. If the host device lacks a graphics processor, you will see a warning message when you try to select a processor that
does not exist on your device.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 12



Volume Ill: MPLAB Harmony Configurator (MHC)

Edit Menu

MPLAB Harmony Graphics Composer User's

é-»Graphics Stack

&

Use Graphics Stack?
» Graphics Display
Graphics Controller

@ Graphics Processor

Select Processor Type m Hk
- Timing Controller INANO 2D ]

E} Graphics Options None

[ [¥] Enable Draw Pipeline
B Use Harmony Graphics Composer Suite?

This menu implements the same functions as the first seven tool icons.

Edit| View Asset Window

View Menu

mas T

i

Undo
Redo

Cut Selected Items !

Copy Selected Items

Paste Selected Items

This implements the same functions as the remaining tool icons.

Asset Menu

§ S SRR S S - S

AL A

<

<

4| S

Asset Window
Adjust Canvas Size

Center View

ZoomIn

Zoom QOut
Show Grid

Line Snapping
Edit Grid Color
Object Clipping

Screen Information

String Preview Language »

These menu features are discussed in Graphics Composer Asset Management.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Graphics Composer Window User Interface

13



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Asset| Tools Window
| Memory Locations
DDR Organizer
Images
Fonts
String Table Configuration
Strings

Binaries

Tools Menu

The Event Manager, Global Palette, and Heap Estimator are discussed in MHGC Tools.

Window

[ Event Manager ||

Global Palette

N

Heap Estimator

Window Menu

Selecting Console opens the Output Console for the Graphics Composer. This console panel can be used to debug problems when the Graphics
Composer boots up or during its operation.

Selecting Reset Dock Areas restores the MHGC panel configuration to the default setup by redocking all of the panels that have been undocked

into separate windows.
Windowh

[ Console

= Reset Dock Areas |

New Project Wizard

The New Project Wizard is launched from the Welcome dialog of the MPLAB Harmony Graphics Composer (MHGC), which supports the creation
of a new graphics design, or the importing of an existing graphics design.

Description

Welcome Dialog window

The Welcome dialog is launched when the Graphics Composer is chosen from the Launch Utility pull-down menu in the MPLAB Harmony
Configurator (MHC).

Projects | Files | Services | || StartPage | MPLAB® Harmony Configurator® x|
#- () soraphics_quickstart MBS STPC 2|8+ P
ODUOHS':Ood(Diagram x IPnDnag'am
MPLAB Harmony & Application Configuration
+-Application Configuration
) , Graphics Cwnposer
+-Advanced Exception and Error Handling T :
n Con ration
+)-Harmony Framework Configuration : e

ADC Configuration

Clock Configuration

Display Manager

The window has three options:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 14



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

(MPLAB | :
P Graphics Composer
-

Welcome to the MPLAB Harmony Graphics Composer user interface design application.

Please select from one of the choices below to get started. You can also dlick the dose button to begin using the tool
without guided assistance.

To create a new
Create a new project using the new project wizard. graphics design

To importa graphics design
Load an existing design from an MPLAB Graphics Composer data file: from another project

) ] To load the graphics
Use design loaded from current MHC configuration. < e sign in this project

a If this window does not appeatr, it can be re-enabled from MHGC's File > Settings > General menu.
Note:

File| Edit View /

For MHGC’s Welcome Dialog

2 Projectand Usersetings L

Color Settings N

Show Welcome Dialog: (V]

Preemption Level: LEVEL O

Hardware Acceleration:

New Project Wizard Windows

Selecting the first icon in the Welcome dialog launches the New Project Wizard. There are four stages in the New Project Wizard: Color Mode,
Memory Size, Project Type, and Finish.

The New Project Wizard can also be launched from the first icon (Create New Design) of MHGC's tool bar:
. — —
2 MPLAB Harmony Graphics Composer - default
File Edit View Asset Tools Window
oo xun e @R | EH oF o
(| Create New Designl = @ G‘ (] Screen Designer - default

QX[*TE
| @laveto

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 15



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

If the Graphics Stack has not been enabled in MHC, an Enable Graphics Stack? dialog will appear to support enabling the Graphics Stack before

proceeding:

p
Enable Graphics Stack?

=

Enable "Use Graphics Stack"?

I noticed that the "Use Graphics Stack” setting in MHC is currently disabled. It is highly recommended that this setting be selected.

"~

In the Color Mode stage you choose the Display Color Mode for the new graphics design:

-
2. New Project Wizard

Color Mode
Memory Size
Project Type
Finish

3

e Graphics Composer
.

Color Mode Selection
Select the color mode to use for this project. The color mode determines the color depth, pixel storage
format, and memory requirements for the design.

Not all display d and display drivers t all color mod
your display device and driver support the selected color mode

You must ensure that

GS_8 8 bits Greyscale

RGB_332 8bits 3 bits red, 3 bits green, 2 bits blue

© RGB_565 16bits  Shbits red, 6 bits green, 5 bits red

RGBA_5551 16 bits Sbits red, 5 bits green, 5 bits blue, 1 bit alpha

RGB_888 24bits 8 bits red, 8 bits green, 8 bits blue

RGBA_8838 32bits 8 bits red, 8 bits green, 8 bits biue, 8 bits alpha

ARGB_8888 32bits 8 bits alpha, 8 bits red, 8 bits green, 8 bits blue

| Use Global Color Palette The global color palette provides the means to use both 8 bit frame
buffers and display 16-32 bit color depth. The imitation is that the
color palette of the design is imited to 256 colors. The display driver

must support this feature and may require additional configuration to

261120

Estimated size of a single frame buffer (bytes):

J

This choice must be supported by the graphics controller defined in the board support package of the project configuration. (If you make a mistake
it can be corrected using MHGC's File > Settings > Project Color Mode menu.) Click Next moves the wizard on to the next stage.

The Memory Size stage configures the Program Flash allocated to memory use. This value is only used by the Graphics Composer’s Asset menu
Memory Configuration tool. The value used in the Memory Size stage can be updated using the Configuration sub-tab of the Memory

Configuration tool window.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

16



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

2. New Project Wizard

o)

ey Graphics Composer
~

Color Mode
Memory Size
Project Type
Finish

Memory Size Configuration

Use the controls below to configure the amount of flash memory you want to use for memory
consumption analysis. Additional memory sources can be added through the "Memory Location”
configuration window.

Flash Memory Size (bytes): 524,288 5~

[oprevos ] [ net ] |

(S

Clicking Previous returns to the Color Mode stage and clicking Next moves the wizard to the Project Type stage.

There are two choices at the Project Type stage: A completely blank design, and a template design with a few predefined widgets.

HARMONY
-

Graphics Composer

Color Mode
Memory Size
Project Type
Finish

" New Project Contents

Select from one of the choices below regarding the state of the new project.

) Start a new project using a completely blank design.

Start a new project using a basic template. ﬂlstetrlplauendudesamdesaeen,afewmdges,;
%h\ages strings, and a default font.

Clicking Previous returns to the Memory Size stage, and clicking Next moves the wizard to the Finish stage.

g
2. New Project Wizard

Pure Graphics Composer
-

Color Mode
Memory Size
Project Type
Finish

Finish

MPLAB Harmony Graphics Composer is now ready to create your graphics design project. Please dick
“Finish" to continue.

previous | [

"

If the “Template” project type was chosen, MHGC's Screen Designer will show:

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 17



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

(] Screen Designer - screenl = @D

©0) | | 79,0)

MPLAB Harmony Graphics Composer

272 HARMONY

-

Modify. Generate. Run. |

(0,271) (479,27

screenl X |

Tree View Panel
The organization of application widgets and layers, including draw order, is managed using this panel.

Description

Example Tree View

The following Tree View (from main screen of the Aria Coffee Maker demonstration shows the tree structure for a screen with three layers.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 18



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

(] Tree View
23X 2T
= @Layero

= BackgroundImage
/A RoastLabel Tool Icons:

1: Add New Layer

- [ DragfaneRight 2: Set Layer as Active
i'zese'?d 3: Delete Selected Objects
anelWidget4 . )
[©%) BrewButton 4: Raise Selected Objects
(] Panelwidget5 5: Raise Selected Objects to Top
(] PanelWidget6 6: Lower Selected Objects
£ Panciidget? 7: Lower Selected Objects to Bottom

(©K] RightTrayLid

w ImageWidget6
Layer2
(] DragPanel
=) [] PanelWidget2
(©K] Changelanguage
(OK] CoffeeButton
(0K] CoffeeBeanButton
(OK] TeaButton
(©X] InfoPageButton
A AppTitieLabel
= (K] GPUButton
/A GPUButtonLabel
=) (OK] LeftTrayLid
w ImageWidget5

The tool icons for this panel support layers and managing screen objects (layers/widgets).

Drawing Order and Parent/Child Relationships

The Graphics Composer Tree View panel allows you to organize the widgets per screen in the desired drawing order (z-order). It also allows for
the user to organize the widgets into parent — child hierarchies to allow for the paint algorithm to draw the groups together in event of motion or
re-draw. Please note that this does not associate or group the widgets by functionality. (Example: a group of radio buttons might not belong to a
common parent on the screen.) This parent-child relationship is limited to the widgets location on the screen, motion on the screen and the
drawing order on the screen. (Exceptions to this general rule are the Editor > Hidden, Alpha Blending properties, and layer single versus double
buffering. These apply to the parent and all the parent's children.)

The tree is traversed depth-first. This means that the z-order goes background (bottom of z-order) to foreground (top of z-order) as we go from top
to bottom in the list of widgets, i.e., ImageWidgetl, is the widget at the bottom of the z-order and the PanelWidget1 is the topmost widget on the
z-order. The tree structure can be arranged and modified by dragging the widgets and releasing it under the desired parent/child. Also, the list can
be modified by using the up/down arrows provided at the header of the Composer Widget tree window to traverse the tree.

Editor > Hidden Property for Layers
Setting Editor > Hidden hides the layer and all its children from the Graphics Composer Screen Designer but does not affect how the layer and its
children are displayed when the application is running. This can be useful when designing complex screens with overlapping layers.
Alpha Blending Property for Layers

Enabling Alpha Blending allows you to control the transparency of a layer and all its children. You can experiment with Alpha Blending in the Aria
Coffee Maker demonstration. Load the project, launch MHC, and then start the Graphics Composer Screen Designer. There are three layers
(Layer0, Layerl, Layer2) in this demonstration. Layerl (the drag panel on the right) and Layer2 (the drag panel on the left) have Alpha Blending
enabled with Alpha Amount = 225. Setting the Alpha Amount to 255 is the same as disabling Alpha Blending (255 = no transparency). Setting the

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 19



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Alpha Amount to 0 makes the layer invisible (0 = full transparency, i.e., invisible).
The following figure shows the main screen with Alpha Blending = 225.

480
0 | | (479,0)

&W?o}

(0,271) (479,271)

| 480

(0,271) (479,271)

Double Buffering for Layers

Graphics double buffering for the LCC driver is enabled in the Display Manager’s Display Setting screen when the application is changed to use
external memory instead of internal. Click Configure to bring up the LCC Driver Configuration Settings Window.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 20



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Lﬁ]DﬁsphySetbngs x |

Select Display Newhaven 4.34nch 480x272 (WQVGA) with PCAP v | [ Customize r
Horizontal Resolution 430 - pixels [ Apply ]
Vertical Resolution 272 | pixels Hardware Layers 1 v
Orientation 0 =) Display Analogue WQVGA or lower
Generate Driver [LCC jv]( N Configure ]
Horizontal Puise Width (Thow) 4112 pixcel dock cydes @ IConﬁgure Driver Settings|

Configure the memory according to whether double buffering is to be enabled for the display’s layer or layers.
2 Using Internal Memory |/
—————for Single Buffering ————
LCC Driver Configuration Settings

Aggressive iv‘
Memory Interface Mode :Int:emal v:

Refresh Strategy

.

4

External Memory Size 1 MByte
Buffering Stra': Single ~
Palette Sup Disable =

Please refer to the "Drivers” ->
"Graphics Controler” -> "LCC" under the
Options tab for additional configuration

settings
o ]

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 21



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

= Using External Memory iﬂ
——for Double Buffering ———

LCC Driver Configuration Settings

Refresh Strategy :'Convenb'onalé v

L )

Memory Interface Mode Exhemal v
External Memory Size |2MBytes v
Buffering Stra': Single |

Palette Sup Disable

Please refer to the "Drivers” ->
"Graphics Controller” -> "LCC" under the
Options tab for additional configuration

settings
o ]

A

Increasing the Buffer Count of a layer from 1 to 2 enables double buffering for the layer and all its child widgets. To prevent tearing on the display

when switching from one buffer to the other, VSync Enabled should also be selected.

Screens Panel

[ Layer
Buffer Count 2
[+ Buffer 0 [Auto]
[+ Buffer 1 [Auto]
Transparency Enabled (]
VSync Enabled V]

Application screens are managed using the Screens Panel.

Description

The Screens panel tab manages all the application’s screens, as shown in the following figure.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Graphics Composer Window User Interface

22



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

LR IR A

_ (] screens = 2 [ Tool Icons:
& — 1: Create New Screen
x ’ 253 ’ Ll 2: Delete Screen
Generate Visible - View 3: Set as Primary Screen
8 4: Make Screen Active
5: Move Screen Up in Order
6: Move Screen Down in Order

V] | ThirdScreen ™ o

V] | FourthScreen
| | FifthScreen N
SettingsScreen S\
W | MainMenuHelp

V) ListWheelHelpScreen

W] | TouchTestHelpScreen
V] KeypadHelpScreen
AlphaBlendingHelpScreen
SlideshowHelpScreen

Screens:
1: Primary Screen
2: Active Screen

3: Selected Screen

FEEEEEEE
<

PR
=~
e
=

llllll’llll)[]ll

<
<

a These screens are examples from the Aria Showcase demonstration project
Note

The underlined screen name identifies the primary screen (in this case, SplashScreen.) The bold screen name identifies the currently active
screen in the Graphics Composer Screen Designer window (in this case MainMenu.) The blue background identifies the selected screen (i.e., the
screen that is manipulated by the tool icons), in this case FirstScreen.

Window Toolbar

The window’s tools icons support:

1. Create New Screen — Create a new screen. You will be prompted for the name of the new screen, which will appear at the bottom of the
Screens list.

2. Delete Screen — Delete the selected screen. This removes the selected screen from the application.
3. Set as Primary Screen — Sets the selected screen as the default screen displayed by the application at boot-up.

4. Make Screen Active — This selected screen is displayed in the Screen Designer panel. You can also select the active screen by clicking on the
screen’s tab at the bottom of the Screen Designer panel.

[ |

5. Move Screen Up in Order — Moves the selected screen up in the list of screens, which is useful in organizing a large list of screens, but has no
other significance.

6. Move Screen Down in Order — Moves the selected screen down in the list of screens.
Useful in organizing a large list of screens, but has no other significance.

Window Columns

The Generate check box is used in selecting those screens that will be included in the application when MPLAB Harmony Configurator (MHC)
generates/regenerates the application. (This, along with the Enabled check box for languages, allows customization of the application’s build to
support different end uses from the same project.) The Visible check box can be cleared to hide a screen from the sub-tabs located at the bottom
of the Screen Designer. The View column provides a mouse-over preview of the screen.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 23



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Schemes Panel
Application color schemes are managed using the Schemes Panel.

Description

Color schemes for the application’s graphics are managed using the Schemes sub-tab.

Tool Icons:
1: Create New Scheme
2: Edit Selected Scheme
3: Delete Selected Scheme

1 3e

4: Duplicate Selected Scheme

-
4
m B

S 2 Scheme Editor -
[=) Scheme
— Name AternateGradientScheme
'U (=] Colors
Lu + Base W (5100 [
& Highlight [24,51,26) &
q, Highlight Light [31,63,31] [
a & Shadow B (16,32,16) (=)
E shadow Dark W68 &
Foreground M (31,0,0) &)
d) Foreground Inactive 0,031 (=)
= {# Foreground Disabled M (16,32,16) &
o ) Background 0,023 ()
# Background Inactive [26,56,28] ()
(/)] (% Background Disabled [24,51,26) &
[+ Text [l ©0,0,0] (=
() Text Highlight W 0,0,31 (J
Text Highlight Text [31,63,31] ()
Text Inactive [26,56,28) &)
Text Disabled B (17,35,18) =)
: [ Reset || Ok ] £ cancei i

Editing a Scheme

To edit an existing scheme, select the scheme from the list and click Edit.

X ©

s Edit Existing Scheme]

The Scheme Editor dialog appears, which allows you to change the colors associated with this display scheme.

Scheme Editor

The Scheme Editor window supports editing the individual colors of a color scheme. Clicking the ellipsis ( ... ) opens the Color Picker window.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

24



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

==

p
2 Scheme Editor Color Mode: RGB_888
[=] Scheme
v Name BackgroundGradientScheme
[=] Colors .
o Base 0,00 Click to
Red EditRGB O jaunch
Green Values 0 Color
Blue 0 Picker
Highlight [200,208,212] o)
Highlight Light [255,255,255] ()
Shadow B (128,128,128) ()
Shadow Dark Ml (64,64,64] (]
Foreground [181,194,255] ()
Foreground Inactive Il [0,0,66] -
Foreground Disabled I (128,128,128] ()
Background 0,052 ()
Background Inactive [214,227,231] ()
Background Disabled [200,208,212) ()
Text Il ©0.0,0 -m
Text Highlight Il [0,0,255) [os)
Text Highlight Text [255,255,255) ()
Text Inactive [214,227,231] ()
Text Disabled I (140, 146, 148) [
i Reset | | ok Cancel
-

Color Picker

The Color Picker window allows the user to easily select a color by providing a color wheel, brightness gauge, and some common predefined color

choices. The user can change the individual color values or input a number in Hexadecimal format. The end result is displayed in the top right

corner.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

25



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

-
=]

-

Color Picker (RGB_888) — S |

Color Selector

Brightness Selector

Red: h7ols ||

Enter RGB Values - &= s ||
Blue: 153k |

\

I

Enter Hex Value = o3a3%9 |

|

]

|

e [
FENEN
NENEN
EEEEE
J |

Cancel |

v e
, B (e (o

( ok

Options

Provides information on the defeatured Options window.

Description

In v2.03b, MPLAB Harmony Graphics Composer user interface provided a third window along with Screens and Schemes, named Options.
Beginning with v2.04b of MPLAB Harmony, these options are now located within the File > Settings menu (see Menus for details).

Widget Tool Box Panel

The Widget Tool Box panel is the interface by which users add widgets into the screen representation.

Description

All the available graphics widgets are shown in the Widget Tool Box:

MPLAB Harmony Graphics Composer provides automatic code optimization by keeping track of the widgets that are currently being used. When
MHC generates or regenerates the application, only the Graphics Library code necessary for your design is included in the project.

There are two primary methods for creating new widget objects: clicking and dragging. To add a new layer to a screen use the Screens sub-tab.

Click Method

The following actions can be performed by using the Click method:

* Clicking an item selects it as active. Users can then move the cursor into the screen window and view a representation of the object about to be
added.

» Left-clicking confirms the placement of the new object
« Right-clicking aborts object creation
» Clicking the active item again deactivates it

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 26



Drag Method

Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

Dragging and dropping a tool item into the Screen Designer Window creates a new instance of an object. When dragging a tool item, releasing the
cursor outside of the Screen Designer Window cancels the drag operation.

Widget List

The Graphics Composer Tool Box is the interface by which users add widgets into the screen representation.

Widget

Arc

Bar Graph
Button

Check Box
Circle

Circular Gauge
Circular Slider
Draw Surface
Gradient
Group Box
Image

Image Plus
Image Sequence

Key Pad

© 2013-2017 Microchip Technology Inc.

1 1 1 1

R a widget Toolsox |

=] widgets
Arc
Bar Graph
Button
Check Box
Circle
Circular Gauge
Circular Slider
Draw Surface
Gradient
Group Box
Image Plus
Image Sequence
Image
Key Pad
Label
Line Graph
Line
List Wheel
List
Panel
Pie Chart
Progress Bar
Radial Menu
Radio Button
Rectangle
Scroll Bar
Slider
Text Field
Touch Test
Window

Of0 €0l S HION\NEP>ENYICPMAE S208EE D

Example Application
aria_showcase_reloaded
aria_showcase_reloaded

aria_adventure and many others, including aria_quickstart
aria_showcase_reloaded, aria_video_player
None

aria_showcase_reloaded, aria_oven_controller
aria_showcase_reloaded

None

aria_showcase (background)
aria_video_player

aria_quickstart

aria_oven_controller

aria_showcase, aria_basic_motion

aria_showcase, aria_touchadc_calibrate

MPLAB Harmony v2.06

27



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Label aria_quickstart

Line aria_video_player, ./aps/examples/3rd_party_display
Line Graph aria_showcase_reloaded

List Wheel aria_showcase

List aria_video_player

Panel aria_video_player

Pie Chart aria_showcase_reloaded

Progress Bar aria_flash

Radial Menu aria_radial_menu, aria_showcase_reloaded

Radio Button aria_showcase

Rectangle aria_benchmark

Scroll Bar None

Slider aria_video_player

Text Field aria_showcase

Touch Test aria_showcase, aria_touchadc_calibrate, ./apps/examples/3rd_party_display
Window None

Click Method

The following actions can be performed by using the Click method:

« Clicking an item selects it as active. Users can then move the cursor into the screen window and view a representation of the object about to be
added.

« Left-clicking confirms the placement of the new object
* Right-clicking aborts object creation

« Clicking the active item again deactivates it.

Drag Method

Dragging and dropping a tool item into the Screen Designer Window creates a new instance of an object. When dragging a tool item, releasing the
cursor outside of the Screen Designer Window cancels the drag operation.

Automatic Code Optimization

MPLAB Harmony Graphics Composer keeps track of the types of widgets that are used and updates the MHC Tree constantly to ensure that only
the Graphics Library code necessary for your design is included in the project.

Widgets

Widgets can be configured by using the Properties Editor on the right side of the MHGC interface. Each widget has multiple properties to manage
their appearance as well as their functioning. Most properties related to appearance are common between widgets, though some widgets require
specific property entries.

Arc — A graphical object in the shape of an arc. The arc thickness can be set and filled.

Bar Graph — A graphing widget that shows data in categories using rectangular bars.

Button - A binary On and Off control with events generation for Press and Release state.

Check Box - A selection box with Checked and Unchecked states, and associated events.

Circle - A graphical object in the shape of a circle.

Circular Gauge — A circular widget that operates like a gauge, where the hand/needle position indicates a value.

Circular Slider — A circular widget that can change values based on external input like touch. The slider is filled based on the value of the widget
relative to the maximum value.

Draw Surface - A container with a callback from its paint loop. a draw surface lets the application have a chance to make draw calls directly to the
HAL during LibAria's paint loop.

Gradient - A draw window that can be associated with a gradient color scheme. This allows for color variation on the window.
Group Box - A container with a border and a text title. With respect to functionality, a group box is similar to a window.

Image Sequence - A special widget that allows image display on screen to be scheduled and sequenced. Select the images to be displayed, and
the order for display. A timer to trigger the transitions must be created by calling the image sequence APIs to show the next image from the timer
callback function.

Image - Allows an image to be displayed on screen. The size and shape of the widget decides the visible part of the image, as scaling is not
enabled for images at this time.

Image Plus - Allows an image to be displayed on screen. The image can be resized (aspect ratio lock is optional). The widget can be set to accept
two-finger touch input.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 28



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Key Pad - A key entry widget that can can be designed for the number of entries divided as specified number of rows and column entries. The
widget has a key click event that can be customized.

Label - A text display widget. This does not have any input at runtime capability. A Text Field widget serves that purpose.
Line - A graphical object in the shape of a line.

Line Graph — A graphing widget that shows data in categories using points and lines.

List Wheel - Allows multiple radial selections that were usually touch-based selections and browsing.

List - Allows making lists of text and image items. The list contents, number of items, and the sequence can be managed through a List
Configuration dialog box in the Properties box.

Panel - A container widget that is a simpler alternative to DrawSurface as it does not have the DrawSurface callback feature.
Pie Chart — A graphing widget that shows data entries as sectors in a circle.
Progress Bar - Displays the progress pointer for an event being monitored through the "Value Changed" event in the Properties Editor.

Radial Menu - A widget that groups any number of images into an elliptical carousel. It can configured as a touch interactive image carousel or
interface menu.

Radio Button - A set of button widgets that are selected out of the group one at a time. The group is specified by the Group property in the
Properties Editor.

The radio buttons in the same group must have the same group number specified in their properties.
Note:

Rectangle - A graphical object in the shape of a rectangle.

Scroll Bar - Intended to be used with another relevant widget such as the List Wheel to scroll up and down. It has a callback each time the value
is changed. The callback allows users to trigger actions to be handled on the scroll value change event.

Slider - Can change values with an external input such as touch. Event callbacks on value change are also available through the Properties Editor.

Text Field - Text input can be accepted into the text field from an external input or from a widget such as keypad. Event ‘'Text Changed' in the
Properties Editor is used for accepting the input.

Touch Test - Allows tracking of touch inputs. Each new touch input is added to the list of displayed touch coordinates. The input is accepted
through the 'Point Added' event callback in the Properties Editor.

Window - A container widget similar to the Panel but has the customizable title bar.

Properties Editor Panel
The properties for all layers and widgets are managed using this panel.

Description

The Properties Editor displays options for the currently-selected object (layer or widget), or the options for the active screen if no objects are
selected. To edit an option: left-click the value in the right column and then change the value. Some values have an ellipsis that will provide
additional options. In the previous case, the ellipsis button will display the Color Picker dialog.

Some properties, like the screen width and height, are locked and cannot be edited. Other properties offer check boxes and combo-type
drop-down box choices. Some properties are grouped together like the Position and Size entries. Individual values of the group can be edited by
expanding the group using the plus symbol. For example, the following figure shows properties for a Button Widget.

A new support feature is the ? icon to the right of the Scheme pull-down, which brings up an “Scheme Helper” for the widget showing how it is
colored when using a Bevel border. For a more complete description of widget coloring, see Widget Colors.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 29



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

_CllProneﬂisEdhr h -gb

B

[=) Editor -
Locked ]
Hidden |

[=] Widget
Name ButtonWidget1
Position [101,201]
Size [270,40]
Enabled V]
Visible V]
Border [Bevel]
Margin [4,4,4,4] —
Scheme ( v
Background Type (Fill -
Alpha Blending M
Optimization Flags [false, false, false]

[=] Button
Toggleable ]
Text String [ Instructions v ()
Alignment [Center ,Middle]
Pressed Image ( )
Released Image ( )
Image Position  LeftOf v)
Image Margin 10
Pressed Offset 1 X

Object Properties
Provides information on widget, layer, and screen properties.

Description

Object Properties and Event Actions

Each widget has a structured tree of properties, visible under the MPLAB Harmony Configurator window on the right of the standard window setup
within MPLAB X IDE. Most widget properties have a Related Event action that can be use in an event or macro to change or set a property from
the application.

Each widget has 3-4 property sets:
Editor — Controls the behavior of layers and widgets under the MPLAB Harmony Graphics Composer Suite Editor.

Property Name Type Description Related Event Actions
Locked Boolean Locks the object (widget), preventing changes by the designer. | N/A
Only affects the object (widget) in the editor.
Hidden Boolean Hides the widget and its children in the designer window. Only N/A
affects the appearance of the widget in the editor.
Active Boolean For layers only. Sets the layer as active. Any objects (widgets) N/A
added to the screen will be added to this layer.
Locked to Screen Size Boolean For layers only. Locks the layer size to the size of the display’'s | N/A
screen.

Widget — Controls the behavior of screens, layers, and widgets on the display.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 30



Volume Ill: MPLAB Harmony Configurator (MHC)

Property Name

Name

Position

Size

Enabled

Visible

Border

Margin

Scheme

Background Type

Alpha Blending

Type
String

[X,Y] Pair of
Integers

[X,Y] Pair of
Integers
Boolean
Boolean

Widget Border

Integer

Boolean

MPLAB Harmony Graphics Composer User's

Description

Editable name for each object. By default, widgets are named
NameWidget1, ...,NameWidgetN. For example: ButtonWidget1,
ButtonWidget2, ... .

Location on the layer of the upper left corner of the widget or
the location on the display of the upper left corner of the layer.
Measured in display pixels. X is measured from left-to-right and
Y is measured from up-to-down from the upper left corner of the
parent object (typically a Layer or Panel).

X: Width, Y: Height of object, in display pixels.

Is the object enabled? Disabled objects are not built into the
display’s firmware.

Is the object visible by default? Object visibility can be
manipulated in firmware using laWidget_GetVisible and
lawidget_SetVisible.

Choices are: { None | Line | Bevel }.

Four integers ([Left,Top,Right,Bottom]) defining the widget's
margins on the display, in display pixels.

Color scheme assigned to the layer or widget. Blank implies the
default color scheme.

Sets the background of the layer or widget. Choices are { None
| Fill | Cache }. In MPLAB Harmony v2.03, this type was
Boolean. Now, Off = None, On = Fill. With Fill selected, the
widget's background is one solid color. With Cache selected, a
copy (cache) of the framebuffer is created before the widget is
drawn and this cache is used to fill the background of the
widget. This supports transparent widgets in front of complex
widgets, such as JPEG images. Instead of rerendering the
JPEG image, it is just drawn from the cache.

Is alpha blending enabled for this layer or widget and all of its
children? If enabled, specify the amount of alpha blending as an
8-bit integer. Zero makes the object invisible, whereas 255
makes the background invisible.

Widget Advanced — Advanced control of layers and widgets

Optimization
Sub-Property Name

Draw Once

Force Opaque

Local Redraw

Type

Boolean

Boolean

Boolean

Description

Indicates that the widget should draw once per screen Show
Event. All other attempts to invalidate or paint the widget will be
rejected.

Provides a hint to the renderer that the entire area for this
widget is opaque. Useful for widgets that may use something
like an opaque image to fill the entire widget rectangle despite
having fill mode set to None. This can help reduce unnecessary
drawing.

Provides a “hint” to the widget's renderer that the widget is
responsible for removing old pixel data. This can avoid
unnecessary redrawing.

Use Local Redraw only if you know what you're doing!

Important!

Related Event Actions

N/A

Adjust Position, Set X
Position, Set Y Position

Adjust Size, Set Size, Set
Width, Set Height

Set Enabled

Set Visible

Set Border Type

Set Margins

Set Scheme

Set Draw Background

N/A

Related Event Actions

N/A

N/A

N/A

Widget Name (e.g., Button Check Box, Circle, etc.) — Optional properties tied to each widget. See Dedicated Widget Properties and Event

Actions.

Events — Associates widget events with event call-backs. For example, you can enable and specify a button pressed event and button release

event for the Button widget.
For each event you specify:

* Enabled/Disabled Check box — To enable or disable (default) the event.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Graphics Composer Window User Interface

31



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

» Event Callback — Selected from the Event Editor Action List.
There are additional Event actions that do not correspond to any specific property:

* Set Parent — Set the parent of the object, including no parent.

Dedicated Widget Properties and Event Actions

Arc Widget
Property Type Description
Name
Radius Integer | The outside radius of the arc.
Start Angle Integer | The starting angle of the arc in degrees.
Center Angle | Integer | The center angle of the arc in degrees. A positive angle draws the arc counter-clockwise from
the start angle. A negative angle draws clockwise.
Thickness Integer | The thickness of the arc fill, measured from the radius to center. (radius — thickness)
determines the inside radius.
Round Edge | Boolean | Draws round arc edge.

Bar Graph Widget

Property Name
Stacked

Tick Length

Fill Graph Area

Value Axis
Configuration
¢ Maximum Value
e Minimum Value
¢ Tick Interval
« Subtick Interval

¢ Show Ticks
¢ Tick Position
e Show Tick
Labels
* Show Subticks
¢ Subtick Position
¢ Show Gridlines
« String Set
Category Axis
Configuration
¢ Show Tick
* Show Category
Labels

¢ Tick Position

Category
Configuration Dialog

Data Configuration
Dialog

Button

Property Name

Toggleable

© 2013-2017 Microchip Technology Inc.

Type Description
Boolean Stacks the bars for the entries in a category
Integer The length, in pixels, of the ticks on each axis
Boolean Fills the graph area with scheme base color
Configures the value (Y) axis
Integer The maximum value of the axis
Integer The minimum value of the axis
Integer The intervals between major ticks
Integer The interval between minor ticks
Boolean Show/Hide the major ticks
Enum Position of major ticks on the value axis. Choices are: {Inside | Center | Outside}
Boolean Show/Hide the tick labels
Boolean Show/Hide the minor ticks
Enum Position of minor ticks on the value axis. Choices are: {Inside | Center | Outside}
Boolean Show/Hide the gridlines
String The string asset containing the numeric characters for the tick labels. The asset
Asset must contain the characters for numbers 0 to 9.
Configures the category (X) axis
Boolean Show/Hide the ticks
Boolean Show/Hide the category labels
Enum Position of the ticks on the category axis. Choices are: {Inside | Center | Outside}
(See The Category Configuration Dialog lets users add categories to the line graph.

Description) | The following properties can be set:
e Label — String Asset. The label to show for each category

(See The Data Configuration Dialog lets users add and configure data series to the
Description) | line graph. The following properties can be set:

* Scheme — Scheme. The color scheme of the data series
» Category Values — Integer. Values in series for each category

Type Description

Boolean Is button toggle enabled?

MPLAB Harmony v2.06

Graphics Composer Window User Interface

Related Event
Actions

Set Radius
Set Start Angle
Set Center Angle

Set Thickness

Set Round Edge

Related Event Actions
Set Stacked Bars

Set Tick Length

Fill Graph Area

Set Max Value

Set Min Value

Set Tick Interval

Set Subtick Interval
Show Value Axis Ticks

Set Value Axis Ticks
Position

Show Value Axis Labels

Show Value Axis
Subticks

Set Value Axis Subticks
Position

Show Value Axis
Gridlines

Set Labels String

Show Category Axis
Ticks

Show Category Axis
Labels

Set Category Axis Ticks
Position

None

None

Related Event Actions

Set Toggleable

32



Volume Ill: MPLAB Harmony Configurator (MHC)

Pressed

Text String

Alignment:
¢ Horizontal
« Vertical

Pressed Image
Released Image

Image Position

Pressed Offset

Check Box

Property Name
Text String

Alignment:
¢ Horizontal
« Vertical

Checked

Unchecked Image

Checked Image

Image Position

Image Margin

Circle

Property Name
X

Radius

Circular Gauge Widget

Property Name
Radius

Start Angle
Center Angle

Start Value
End Value
Value

String Set

Boolean

Integer

Type

Boolean

Integer

Type

Integer

Integer

Integer

Type
Integer
Integer

Integer

Integer
Integer
Integer

String
Asset

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

If Toggleable is enabled, provide default state of the button. Set Press State

This can be used to see the colors of an asserted button.

Select widget's text string from the Select String Dialog. Set Text

Text string alignment within the button object.

Horizontal alignment. Choices are: { Left | Center | Right }. Set Horizontal Alignment

Vertical alignment. Choices are: { Top | Middle | Bottom }. Set Vertical Alignment

Select image used for pressed state. Default: no image. Set Pressed Image

Select image used for pressed state. Default: no image. Set Released Image

Position of image relative to button text. Choices are: { LeftOf | Set Image Position

Above | RightOf | Below | Bottom }.

Offset of button contents when pressed. In Pixels. Set Pressed Offset

The X and Y position of the button contents is offset by this

amount.

Description Related Event Actions

Select widget's text string from the Select String Dialog. Set Text

Text string alignment within the button object.

Horizontal alignment. Choices are: { Left | Center | Right }. Set Horizontal Alignment

Vertical alignment. Choices are: { Top | Middle | Bottom }. Set Vertical Alignment

Default state of the check box. Set Check State

_Select image used for widget's unchecked state. Default: no Set Unchecked Image

image.

Select image used for the widget's checked state. Default: no Set Checked Image

image.

Position of image relative to check box text. Choices are: : { Set Image Position

LeftOf | Above | RightOf | Below | Bottom }.

Space between image and text. In Pixels. Set Image Margin

Description Related Event Actions

X offset of circle’s center, from widget's upper left hand corner, | N/A

in pixels.

Y offset of circle’s center, from widget's upper left hand corner, | N/A

in pixels.

Circle’s radius, in pixels. Set Radius
Description Related Event Actions
The outside radius of circular gauge. Set Radius
The starting angle of the circular gauge in degrees. Set Start Angle
The canter angle of the circular gauge in degrees. A positive Set Center Angle
value draws the gauge counter-clockwise. Clockwise if negative.

The start value of the circular gauge. Set Start Value
The end value of the circular gauge. Set End Value
The value of the circular gauge. Set Value

The string asset containing the numeric characters for the tick -
labels. The asset must contain the characters for numbers 0 to 9.

MPLAB Harmony v2.06 33



Volume Ill: MPLAB Harmony Configurator (MHC)

Major Ticks Configuration
« Ticks Visible
« Tick Length
¢ Tick Value
« Tick Labels Visible

Hand Configuration
« Hand Visible
« Hand Radius
« Center Circle Visible
¢ Center Circle Radius
« Center Circle Thickness

Advanced Configuration

Minor Ticks Configuration
Dialog

Minor Tick Labels
Configuration Dialog

Arcs Configuration Dialog

Circular Slider Widget

Property Name
Radius

Start Angle
Start value

End Value

Value

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony Graphics Composer User's

Configures the major ticks.

Boolean Shows/Hides the major ticks.

Integer The length of ticks in pixels.

Integer The interval between ticks.

Boolean Shows/Hides the major tick labels.
Configures the gauge hand/needle.

Boolean Shows/Hides the gauge hand/needle.

Integer Sets the length of the hand in pixels

Integer Shows/Hides the hand center circle.

Integer Sets the radius of the center circle in pixels

Integer Sets the thickness of the center circle in pixels.

- Additional widget configuration options for adding minor ticks,
labels and arcs.

(See The Minor Ticks configuration lets users add minor ticks to the

Description) | widget. The following properties can be set:
¢ Start Value — Integer. The value where the first tick starts
« End Value - Integer. The value where the last tick ends
* Interval — Integer. The interval between ticks

« Radius — The radius in pixels where the ticks will be drawn
from

* Length — The length of the ticks in pixels, drawn from the
radius towards the center

¢ Scheme — The color scheme for the ticks

(See The Minor Ticks configuration lets users add minor tick labels to
Description) | the widget. The following properties can be set:

« Start Value — Integer. The value where the first tick label is
drawn

« End Value — Integer. The value where the last tick ends
« Interval — Integer. The interval between ticks

¢ Radius - Integer. The radius, in pixels, where the tick labels

will be drawn from

e Position — Enum, choices are {Outside | Inside}. Position of

the label relative to the radius
¢ Scheme — The color scheme for the ticks

(See The Arcs configuration lets users draw arcs in the gauge widget.

Description) | The arcs can be used to colorize regions or range of values in the

gauge. The following properties can be set for each arc:

¢ Type — Enum, choices are {VALUE | ANGLE}. A value type

arc is drawn relative to the values in the gauge. An angle

type arc is draw based on the angles and is not affected by

the values in the gauge.
¢ Start — Integer. The start value or angle of the arc
* End - Integer. The start value or angle of the arc

* Thickness — Integer. The thickness of the arc in pixels, filled

inward from the radius towards the center
¢ Radius — Integer. The radius of the arc in pixels
¢ Scheme. The color scheme of the arc

Type Description

Integer The outside radius of circular slider.

Integer The start angle of the circular slider, in degrees.
Integer The start value of the circular slider.

Integer The end value of the circular slider.

Integer The value of the circular slider.

MPLAB Harmony v2.06

Graphics Composer Window User Interface

Show/Hide Ticks

Set Tick Length

Set Tick Value
Show/Hide Tick Labels

Show/Hide Hand

Set Hand Radius/Length
Show/Hide Center Circle
Set Center Circle Radius
Set Center Circle Thickness

None

None

None

Related Event Actions
Set Radius

Set Start Angle

Set Start Value

Set End Value

Set Value

34



Border Circle Configuration
* Show Outside Circle

Volume Ill: MPLAB Harmony Configurator (MHC)

Boolean

« Outside Circle Thickness | Integer

¢ Show Inside Circle

¢ Inner Circle Thickness

Active Area Configuration
« Fill Active Slider Area
* Round Edges

e Active Slider Area
Thickness

¢ Inner Circle Thickness

Button Configuration
* Show Circular Button
e Sticky Button
¢ Touch on Button Only

¢ Circular Button Radius

Boolean
Integer

Boolean
Boolean
Integer
Integer

Boolean
Boolean
Boolean
Integer

e Circular Button Thickness Integer

Draw Surface — No additional properties.

Gradient

Property Name

Direction

Group Box

Property Name
Text String

Alignment

Image Sequence

Property Name

Sequence Configuration
Dialog

Starting Image
Play By Default
Repeat

Image Widget

Property Name
Image

Alignment:
¢ Horizontal
« Vertical

Image Plus Widget

Type

Type

Type

Integer
Boolean

Boolean

Type

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony Graphics Composer User's

Configures the border circle.

Shows/Hides the outside circle border.

The thickness of the outside circle border in pixels.
Shows/Hides the inside circle border.

The thickness of the inside circle border in pixels.

Configures the slider active area.

Fills the active slider area.

Draws a round edge for the active area.

The thickness of the slider active area in pixels.
The thickness of the inside circle border in pixels.

Configures the slider button.
Shows/Hides the circular slider button.

If set, the button sticks when it reaches the start/end values.
If set, the widget responds to touches within the button area only.

The radius of the circular button in pixels.
The thickness of the of the circular button border in pixels.

Description

Gradient draw direction. Choices are: { Right | Down | Left | Up }.

Description

Select widget's text string from the Select String Dialog.

Text string alignment within the widget. Choices are: {
Left|Center|Right }.

Description

Specify image sequence by using the Image Sequence

Configuration Dialog window.

Selects the first image to be shown.
Will image sequence play automatically?

Should the image sequence repeat?

Description
Select image used.

Image alignment within the image object.

Horizontal alignment. Choices are: { Left | Center | Right }.
Vertical alignment. Choices are: { Top | Middle | Bottom }.

MPLAB Harmony v2.06

Graphics Composer Window User Interface

Show/Hide Outside Border

Set Outside Border
Thickness

Show/Hide Inside Border
Set Inside Border Thickness

Show/Hide Active Arc Area
Set Round Edges

Set Active Arc Area
Thickness

Show/Hide Inactive Arc Area

Show/Hide Circular Button
Set Sticky Button

None

Set Circular Button Radius

Set Circular Button
Thickness

Related Event Actions

Set Direction

Related Event Actions
Set Text
Set Alignment

Related Event Actions

Set Entry Image, Set Entry
Horizontal Alignment, Set
Entry Vertical Alignment,
Set Entry Duration, Set
Image Count

Set Active Image
N/A

Set Repeat

Additional related event
actions: , Show Next, Start
Playing, Stop Playing.

Related Event Actions

Set Image

Set Horizontal Alignment
Set Vertical Alignment

35



Volume Ill: MPLAB Harmony Configurator (MHC)

Property
Name

Type

Image -
Resize To Fit

Interactive

Key Pad

Property Name
Row Count
Column Count

Key Pad Configuration
Dialog

Label

Property Name
Text String

Alignment:
¢ Horizontal
* Vertical

Line

Property Name
Start X

Start Y

End X
End Y

Line Graph Widget

Description

Select Image used

Type
Integer
Integer

(see Description)

Type

Type

Integer

Integer

Integer

Integer

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony Graphics Composer User's

Boolean | Resize the image to fill the size of the widget area

Boolean | Makes the widget interactive, allowing the image to be
translated, stretched and zoomed

Description

Number of key pad rows.

Number of key pad columns.

Related Event Actions

Set Image

Toggles option to best fit the image to the widget area

Toggles option to permit two-finger gestures to interact

with the widget

The Key Pad dialog window has the following:
Width — Integer. Width of each key, in pixels.
Height — Integer. Height of each key, in pixels.

Selecting one of the keys on the key pad diagram displays the

Rows — Integer. Number of key rows. A duplicate of Row

Count.

Columns — Integer. Number of key columns. A duplicate of

Column Count.

Cell Properties for that key:
Enabled — Boolean. Disabled cells (keys) are made

invisible.

Text String — Select key's text string from the Select String

Dialog.

Pressed Image — Select image used for pressed state.

Default: no image.

Released Image — Select image used for released state.

Default: no image.

Image Position — Position of image relative to key text.

Choices are: { LeftOf | Above | RightOf | Below | Behind }.
Image Margin — Integer. Space between image and text. In

Pixels.

Draw Background — Boolean. Controls whether the key
should fill its background rectangle.

Editor Action — Select the generic editor action that fires
when the key is clicked. Choices are: { None | Accept |

Append |
Editor Value String

Other Key Event Actions:

Description

Select widget's text string from the Select String Dialog.

Text string alignment within the widget.
Horizontal alignment. Choices are: { Left | Center | Right }.
Vertical alignment. Choices are: { Top | Middle | Bottom }.

Description

X start of line, in pixels, from upper left hand corner of the
widget.

Y start of line, in pixels, from upper left hand corner of the
widget.

X end of line, in pixels, from upper left hand corner of the widget.

Y end of line, in pixels, from upper left hand corner of the widget.

MPLAB Harmony v2.06

Related Event Actions
None.

None.

None.
None.
None.
None.

Set Key Enabled

Set Key Text

Set Key Pressed Image
Set Key Released Image
Set Key Image position

Set Key Image Margin
None.

Set Key Action

Set Key Value
Set Key Background Type

Related Event Actions
Set Text

Set Horizontal Alignment
Set Vertical Alignment

Related Event Actions

Set Start Point Position

Set Start Point Position

Set End Point Position.
Set End Point Position.

Graphics Composer Window User Interface

36



Property Name

Stacked

Tick Length

Fill Graph Area
Fill Series Area
Value Axis

Configuration

¢ Maximum
Value

e Minimum
Value

¢ Tick Interval

* Subtick Interval

¢ Show Ticks

¢ Tick Position

¢ Show Tick
Labels

¢ Show Subticks

¢ Subtick
Position

¢ Show Gridlines
e String Set

Category Axis
Configuration

¢ Show Tick

e Show
Category
Labels

¢ Tick Position

Category
Configuration
Dialog

Data Configuration
Dialog

List

Property Name

Selection Mode

Allow Empty Selection

Alignment

Icon Position

Icon Margin

Volume Ill: MPLAB Harmony Configurator (MHC)

Type

Boolean
Integer
Boolean

Boolean

Integer
Integer
Integer
Integer
Boolean
Enum
Boolean
Boolean
Enum
Boolean

String
Asset

Boolean
Boolean
Enum

(See
Description)

(See
Description)

MPLAB Harmony Graphics Composer User's

Description

Stacks the values of the entries in a category
The length of the ticks on each axis
Fills the graph area with scheme base color

Fills the series area with series scheme base color

Configures the value (Y) axis

The maximum value of the axis.

The minimum value of the axis.

The intervals between major ticks.

The interval between minor ticks.

Show/Hide the major ticks.

Position of major ticks on the value axis. Choices are: {Inside | Center | Outside}.
Show/Hide the tick labels.

Show/Hide the minor ticks.

Position of minor ticks on the value axis. Choices are: {Inside | Center | Outside}.
Show/Hide the gridlines.

The string asset containing the numeric characters for the tick labels. The asset must
contain the characters for numbers 0 to 9.

Configures the category (X) axis

Show/Hide the ticks

Show/Hide the category labels

Position of the ticks on the category axis. Choices are: {Inside | Center | Outside}

The Category Configuration Dialog lets users add categories to the line graph. The
following properties can be set:

* Label — String Asset. The label to show for each category

The Data Configuration Dialog lets users add and configure data series to the line
graph. The following properties can be set:

¢ Scheme — Scheme. The color scheme of the data series

« Point Type — Enum. The point indicator to use for the series. Choices are: {None |

Circle | Square}
« Fill Points — Boolean. Fills the points with series scheme foreground color

« Draw Lines — Boolean. Draws lines between points in the series using series
scheme foreground color

« Cateqgory Values — Integer. Values in series for each category

Type Description

- Select list selection mode. Choices are:
{Single|Multiple|Contiguous}.

Boolean Is a list selection allowed to be empty?

© 2013-2017 Microchip Technology Inc.

Horizontal text alignment. Choices are: { Left | Center | Right }.

Position of list icons relative to list text. Choices are: { LeftOf |
RightOf }.

Space between icon and text, in pixels.

MPLAB Harmony v2.06

Graphics Composer Window User Interface

Related Event
Actions

Set Stacked Points
Set Tick Length
Fill Graph Area
Fill Series Area

Set Max Value

Set Min Value

Set Tick Interval
Set Subtick Interval

Show Value Axis
Ticks

Set Value Axis Ticks
Position

Show Value Axis
Labels

Show Value Axis
Subticks

Set Value Axis
Subticks Position

Show Value Axis
Gridlines

Set Labels String
Show Category Axis
Ticks

Show Category Axis
Labels

Set Category Axis
Ticks Position

None

None

Related Event Actions

Set Selection Mode

Set Allow Empty Selection
Set Item Alignment

Set Icon Position

Set Icon Margin

37



Volume Ill: MPLAB Harmony Configurator (MHC)

List Configuration Dialog

List Wheel
Property Name
Alignment

Icon Position

Icon Margin
Selected Index

List Configuration Dialog

Type

Integer

Integer

Panel — No additional properties.

Pie Chart Widget

Property Type
Name

Start Angle Integer
Center Angle | Integer

Labels Visible | Boolean

Labels Offset | Integer

String Set String

Asset

Data (See

Configuration
Dialog

Progress Bar

Property Name

Direction

Value

Description

MPLAB Harmony Graphics Composer User's

Defines the string and icon image for each entry in the list.

Description

Sets horizontal text alignment. Choices are: { Left | Center |
Right }.

Position of icons relative to text. Choices are: { LeftOf | RightOf
.

Sets the space between icon and text. In pixels.

Selects the default list item.

Defines the image/text for each entry in the list.

The starting angle of the pie chart in degrees.

The center angle of the pie chart in degrees. A positive value draws the chart counter-clockwise.

Clockwise if negative.

Shows/Hides the labels for each data

The position of the labels relative to the center of the pie chart, in pixels.

The string asset containing the numeric characters for the tick labels. The asset must contain the

characters for numbers 0 to 9.

The Data Configuration Dialog lets users add data entries to the pie chart. The following
Description) | properties can be set:

* Value — Integer. The value of the entry

* Radius — Integer. The radius, in pixels, of the pie for the entry
» Offset — Integer. The offset, in pixels, of the pie from the center
» Scheme — The color scheme for the ticks

Type

© 2013-2017 Microchip Technology Inc.

Description

Graphics Composer Window User Interface

Set Item Icon, Set Item
Icon (actually sets item
text).

Additional Related Event
Actions: Deselect All
Iltems, Insert Iltem, Remove
All Items, Remove Item,
Select All Items, Set Item
Selected, Toggle Iltem
Select(ed).

Related Event Actions

Set Item Alignment

Set Icon Position

Set Icon Margin
Set Selected Index

Set Item Icon, Set Item
Icon (actually sets item
text)

Additional Related Event
Actions: Append Item,
Insert Item, Remove All
Items, Remove Item,
Select Next Item, Select
Previous Item.

Related Event
Actions

Set Start Angle

Set Center
Angle

Show/Hide
Labels
Set Label Offset

Set Label
String ID

None

Related Event Actions

Direction of progress bar. Choices are: { Right | Down | Left | Up | Set Direction

.

Default value of the progress bar. The primitives

| aProgr essBar W dget _Cet Val ue and

| aPr ogr essBar W dget _Get Val ue can be used to
manipulate the widget’s value during run time.

MPLAB Harmony v2.06

Set Value

38



Volume Ill: MPLAB Harmony Configurator (MHC)

Radial Menu Widget

Property Type
Name

Ellipse Visible | Boolean
Highlight Boolean
Prominent

Ellipse Type Enum
Theta Integer
a Integer
b Integer
Size Scale

Configuration Enum

¢ Size Scale

. Integer
* Minimum
Size Modifier
Integer
* Maximum
Size Modifier

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony Graphics Composer User's

Description

Show the elliptical track of the widget

Highlights the prominent item when the widget rotation has completed its reset to the
static, selectable position by drawing a rectangle behind the prominent item.

Selects the type of elliptical track

Default — an elliptical track that best fits the widget area based on the size of the tallest
and widest images with the size scale settings factored-in.

Orbital — a “flatter” elliptical track that is best used with the Theta setting for a tilted look
Rolodex — a vertical track with Theta setting locked at 90 degrees

The angle (in degrees) of tilt relative to the y-axis of the ellipse. The number range is 0
to 90 degrees.

This is the half-length (in pixels) of the 0-180 axis of ellipse. It is auto-calculated based
on the widget size, the tallest image’s height, the ellipse type and scale settings.

This is the half-length (in pixels) of the 90-270 axis of ellipse. It is auto-calculated based
on the widget size, the widest image’s width, the ellipse type and scale settings.

Off — all images displays at its original size

Gradual — images in the very back are scale to the Minimum Size Modifier setting, the
scale is gradually increased, with the prominent front item scaled to the Maximum Size
Modifier setting

Prominent — the image that is at the front, prominent location is scaled based on the
Maximum Size Modifier, all other images are scaled to the Minimum Size Modifier
setting

The value (in percent) for the widget to resize the image to. When Size Scale is set to
Gradual, this value represents the lowest scale for the item in the back. When Size
Scale is set to Prominent, this value represents the scaling value for every image in the
widget except for the prominent item. This value is equal to or less than the Maximum
Size Modifier value

The value (in percent) for the widget to resize the image to. When Size Scale is set to
Gradual, this value represents the largest scale for the item in the front (prominent
position). When Size Scale is set to Prominent, this value represents the scaling value
for the prominent item. This value is equal to or greater than the Minimum Size Modifier
value

MPLAB Harmony v2.06

Graphics Composer Window User Interface

Related Event actions

Elliptical track gets
draw in Harmony
Composer simulation
and at runtime.

Locks Theta to 90
degrees when Rolodex
is selected

This field is only valid
for Default and Orbital
Ellipse Type setting. It
is locked at 90 when
Rolodex is selected.

39



Volume Ill: MPLAB Harmony Configurator (MHC)

Item List
Configuration

¢ Total
Number of
Items
Shown

* Total
Number of
Widget Items

* Widget
Iltems
Configuration
Dialog

Touch Area
Configuration

¢ Show
Touch
Area

* Touch Area
X Offset

* Touch Area
Y Offset

* Touch Area
Width
Percent

* Touch Area
Height
Percent

Radio Button

Property Name
Text String

Alignment:
¢ Horizontal
* Vertical

Group

Selected

Selected Image

Unselected Image

Image Position

Image Margin

Circle Button Size

© 2013-2017 Microchip Technology Inc.

Integer

Integer

(See
Description)

Boolean

Integer

Integer

Integer

Integer

MPLAB Harmony Graphics Composer User's

The number images visible on the radial menu. This number does not may be less than
or equal to the total images in the widget.

The total number of images the widget contains.

The Widget Items Configuration Dialog lets users add images to the widget. The follow
properties can be set:

« Image — Image Asset. The image to show for the widget item

Show visually in Harmony Graphics composer the rectangular area that permits touch
interaction.

The X-coordinate in local space of the touch-allowed area for the widget. This is
auto-calculated based on the Touch Area Width Percent.

The Y-coordinate in local space of the touch-allowed area for the widget. This is
auto-calculated based on the Touch Area Height Percent.

The percentage of the width of the touch-allowed area as compared to the entire widget
area.

The percentage of the height of the touch-allowed area as compared to the entire
widget area. The default value is 50.

Graphics Composer Window User Interface

The widget
automatically
space-out the images
along the elliptical track
base on this value.

If this number is
greater than Total
Number of Items
Shown, some of the
images will be hidden
in a FIFO queue in the
back

This setting is for
preview in Harmony
Graphics composer
only. The touch area is
not rendered at runtime.

If this value is less than
100 percent, the area
is horizontally centered.

If this value is less than
100 percent, the area
is defined starting from
the bottom of the
widget.

Type Description Related Event Actions
- Select widget's text string from the Select String Dialog. Set Text
- Text string alignment within the widget.
Horizontal alignment. Choices are: { Left | Center | Right }. Set Horizontal Alignment
Vertical alignment. Choices are: { Top | Middle | Bottom }. Set Vertical Alignment
Integer Radio Button Group Number. Default is -1, indicating no group. | N/A
Only one radio button in a group can have a default selected
value of On. All others in the group are Off
Boolean If selected, the button has a default value of On. All other Select

buttons in the group have a Selected value of Off.
Select image used for selected state. Default: no image.
Select image used for unselected state. Default: no image.

Position of image relative to widget text. Choices are: { LeftOf |
Above | RightOf | Below | Behind }.

Space between radio button image and text, in pixels.

The diameter of the default circle button, in pixels

MPLAB Harmony v2.06

Set Selected Image
Set Unselected Image

Set Image Position

Set Image Margin

Set Circle Button Size

40



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Rectangle
Property Name Type Description Related Event Actions
Thickness Integer Line thickness in pixels. Set Thickness
Scroll Bar
Property Name Type Description Related Event Actions
Orientation - Scroll bar orientation. Choices are: { Vertical | Horizontal }. Set Orientation
Maximum Integer Maximum scroll value (minimum = 0.) Set Maximum Value
Extent Integer Length of scroll bar slider, re scroll bar maximum value. Set Extent
Indicates the number of lines or size of window visible at each
scroll setting.
Value Integer Initial scroll bar value. Set Value, Set Value
Percentage
Step Size Integer Step size value of scroll bar arrow buttons. ( Min = 1, Max = Set Step Size
9999). Additional Related Event
Actions: Step Backward,
Step Forward
Slider
Property Name Type Description Related Event Actions
Orientation - Orientation of the slider. Choices are: { Vertical | Horizontal }. Set Orientation
Minimum - Minimum slider value. Set Minimum Value
Maximum - Maximum slider value. Set Maximum Value
Value - Initial slider value. Set Value, Set Value
Percentage
Grip Size - Grip size of slider, from 10 to 9999, in pixels. Set Grip Size
Additional Related Event
Actions: Step
Text Field
Property Name Type Description Related Event Actions
Text String - Select widget's text string from the Select String Dialog. Clear Text followed by
Append Text
Alignment - Horizontal alignment. Choices are: { Left | Center | Right }. Set Alignment
Cursor Enable - Boolean. Show blinking cursor while editing. Set Cursor Enabled
Cursor Delay - Cursor delay in milliseconds. From 1 to 999,999. Set Cursor Delay

Additional Related Event
Actions: Accept Text,
Append Text, Backspace,
Clear Text, Start Editing.

Touch Test — No dedicated properties.

Window

Property Name Type Description Related Event Actions
Title String - Select widget's title string from the Select String Dialog. Set Title

Icon Image - Select image used. Default: no image. Set Icon

Image Margin Integer Space between icon and title, in pixels. N/A

Layer Properties and Event Actions

The property list for a graphic layer is close in look and feel to that of a widget. Each Layer has three property sets: Editor (see above), Widget
(see above), and Layer (see below).

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 41



Volume Ill: MPLAB Harmony Configurator (MHC)

Layer Properties

Property Name Type
Transparency Enabled Boolean
Mask Color Integer
All Input Passthrough Boolean
VSync Enabled Boolean
Buffer Count Integer
Buffer N -

Allocation Method -

Memory Address -

Variable Name String

Screen Properties and Events

MPLAB Harmony Graphics Composer User's

Description
Automatically mask out pixels of with a specified color.
If enabled Specify:
Red/Green/Blue or Red/Green/Blue/Alpha color value
Allow input events to pass through this layer to layers behind it.
Layers should swap only during vertical syncs.
Integer number of frame buffers associated with this layer,
either 1 or 2.
For each buffer (N= 1 or 2) you specify:
Buffer allocation method.
Choices are: { Auto | Address | Variable Name }
« Auto — Automatically allocate frame buffer space
¢ Address — Specify a memory address

« Variable Name — Use variable name as buffer location

If Address is the allocation method, specify the raw (physical)
memory address as a hexadecimal number.

If Variable name is the allocation method,
specify the variable name as a string value.

Related Event Actions

N/A

N/A
N/A
N/A
N/A

N/A

N/A

N/A

The property list for a screen shares the Name and Size properties with Layers and Widgets but has these unique properties.

Screen Properties

Property Name Type
Orientation -
Mirrored Boolean
Layer Swap Sync Boolean
Persistent Boolean
Export Boolean
Primary Boolean

Graphics Composer Asset Management

The Asset menu supports managing all graphical assets (memory, images, languages, fonts, strings, and binary data).

© 2013-2017 Microchip Technology Inc.

Description

Display orientation: 0, 90, 180, 270 Degrees.
This can also be set using the Display Manager.

Enables screen mirroring.

Enables that all layer buffer swapping happen at the same time,
delaying lower layers until higher layers are finished drawing as
well. For example, assume you make changes to layer 0 and
layer 1 and you want to see those changes show up on the
screen at the same time. Without this option you'd see layer 0’'s
changes as soon as it finishes when layer 1 has not yet started
drawing. This option will hold layer 0's swap operation until
layer 1 finishes as well.

Note: Currently, this property is only supported by the
CLCD Graphics Controller Driver and is ignored by all other
drivers.

Indicates that the screen should not free its widgets and
memory when it is hidden. This results in faster load times and
persistent data, but at the cost of higher memory consumption.
Includes this screen the application build.

This can also be set using the Screens panel.

Sets this screen as the primary screen. The primary screen is

the first screen displayed when the application starts. This can
also be done using the Screens Panel Generate check box.

MPLAB Harmony v2.06

Related Event Actions
N/A

N/A
N/A

N/A

N/A

N/A

Graphics Composer Window User Interface

42



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

Memory Configuration

Provides information on configuring memory locations.

Description

The Memory Locations window is launched from the Graphics Composer’'s Asset menu. Selecting Memory Locations this brings up a window with
three sub-tabs (in this example, the Aria Showcase demonstration is referenced):

14 [
= =1
Used: 385238
Avaiable: 14762 = P
h %

® Images=370,372 @ String Table=1,799 ® Font Glyphs=12,555

\ Summary | Configuration | Optimization|
\ Fie Name: '\, gfx_assets
Memory Location: \ Internal
\ File Format: .c
\ \
\ Image Count: \ 48
String Table Count: \
\ Font Glyph Count: 239,
\ Binary Count: 0 \
_ ﬁﬁ X ! D) %) |-
< m » 2 4 Free=15,274
- S ——
Tool Icons:

Window Toolbar

1: Add New Memory Location
2: Delete Selected Memory Location

3: Rename Selected Memory Location
4: Configure External Media Application Callback

5: Show Values as Percent

The window’s tools icons support:

1. Add New Memory Location — This supports multiple external memory resources.

2. Delete Selected Memory Location — Removes a previously defined memory location.
3. Rename Selected Memory Location — Renames a previously defined memory location.
4. Configure External Media Application Callback — This allow definition of media callbacks, which must be provided in the project.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

43



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

-

p
2. External Media Application Callback

=2

External media access requires callbacks to the application for peripheral communication.

Enter the desired names for the application callback functions.

Media Open: app_externalMediaOpen|
Media Read: app_externalMediaRead
Media Close: app_externalMediaClose

Ok

Cancel

S

5. Show Values as Percent — Memory utilization on the bar graph can be in bytes or as a percent of the total internal flash memory assigned to
support asset storage. (That memory allocation is set using the Configuration sub-tab.)

The APIs for the external media callback functions are as follows:

GFX_Resul t app_ext er nal Medi aOpen( GFXU_Asset Header * asset);

GFX_Resul t app_ext er nal Medi aRead( GFXU_Ext er nal Asset Reader * reader,

GFXU_Asset Header * asset,

voi d* address,

uint32_t readSi ze,

uint8 t* destBuffer,

GFXU_Medi aReadRequest Cal | back_FnPtr ch);

voi d app_ext ernal Medi aCl ose( G-XU_Asset Header * asset);

The graphics demonstration project, aria_external_resources, provides an example of how to write these callbacks. This demonstration supports

three types of external memory: SQI External Memory, USB Binary, and USB with File System. Examples of these callbacks are found in the

project’s app. c file. The Aria demonstration projects Aria External Resources and Aria Flash provide more details on how to use external memory
to store graphics assets.

Sub-tabs

There are three sub-tabs to this window.

Summary Sub-tab

This sub-tab summarizes program flash allocations for images, strings, and fonts.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

44



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Used: 96%
Avaiable: 3% 0% : Bar graph of asset %
Memory allocation set
memory used

' summary | Configuration | opc - Configuration subtab

File Name: gfx_assets
::n:)ry L:at'on: Internal Font Glyphs )

rmat: .C

String Table !

Image Count: 48
String Table Count: 1
Font Glyph Count: 239
Binary Count: 0

Pie chart showing
usage by asset type

Asset usage summary e images=93% ® Sting Table=0% © Font Glyphs=3% ~ Free=4%| | F

The memory allocation shown for “Font Glyphs” measure the space that holds all the font glyphs used by the application, either by static strings or
by glyph ranges defined in support of dynamic strings. Strings are defined by arrays of pointers to glyphs, so string memory usage measures the
size of these arrays, not the actual font glyphs used. (“Glyph” is defined here.)

a The word “glyph” comes from the Greek for “carving”, as seen in the word hieroglyph — Greek for “sacred writing”. In modern
Note: usage, a glyph is an elemental or atomic symbol representing a readable character for purposes of communicating through writing.

Configuration Sub-tab

This sub-tab specifies the intended allocation of internal (program) flash memory to graphics assets (Total Size). (The default value is 1024 bytes.)
It also names the graphics assets file name (here it will be gf x_asset s. c¢). The allocation of flash is only used to scale the Total/Used/Available
bar graph at the top of the display. Under sizing or oversizing this amount does not affect how the application is built.

Configuration | Optimization
Capacity: [ 1,536,000/5| Bytes
( Calculator ]
Output File Name: \gfx_assets

If your device has 1024 Kbytes (1048576 bytes) of flash, you can assign 40% to asset storage and 60% to code. In that case the “Total Size” in the
above sub-tab would be set to 419430 (= 40% of 1048576).

The Calculator button can assist you in allocating internal flash. Click on it and then set the device flash capacity. Then you can apply an
adjustment to that value to assign that memory to asset storage.

Example:
If the device has 2 Mbytes of internal Flash, click 2MB.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 45



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

'-2 Configure Memory Location Capacity - &‘
Capactty: 2,048,000 5| Bytes
Common Sizes
(o ] [(mo ) (=se ) (=we ] [ =]
(oo ] [we ) [CEER) (e ) [=s )
Adjustments

| Lo | [L2% | [ 5% | [ 7% |

.

Then, to assign 75% of the 2 Mbytes to asset storage, click -25% to reduce the 2 MB by 25%, leaving 75%, and then click OK to finish. This will
then assign 1,536,000 bytes to asset storage.

'-3’ Configure Memory Location Capacity M‘
Capacty: 1,536,0002] Bytes
Common Sizes
(69 | [ 1ma | 256KB (B3 | [ sze |
(6o | [ »8 | [ 26 | [ a8 | [ =& |
Adjustments

-10% s0% | [ % |
[ oo« ] [ conce ]

Internal (program) Flash is shared between the application’s code and asset storage. If the application code and graphics assets (fonts, strings,

images) won't fit into the available flash memory then the linker will be unable to build the application and an error will be generated in MPLAB X
IDE.

The Output File Name must be compatible with the operating system hosting MPLAB X IDE. In most cases the default name (gf x_asset . c) will
suffice, but this is provided for additional flexibility in building the application.

Optimization Sub-tab

The Optimization sub-tab for the Aria Quickstart demonstration is shown in the following figure.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 46



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

| Summary | Conﬁguration: Optimization | Memory usage

X P =R in bytes # of Widget uses

Name« Asset Name Size References Description
&= | NewHarmonyLOgo | 8153 | 1 300x180, JPEG, 24bpp
A.| TimesNewRoman18 | 514 | 1 Times New Roman, 18, bold
A.| TimesNewRoman12 | 308 | 1 Times New Roman, 12, plain

Image vs. Font
and Mouse-over 1 2 "~ &
Preview of Images / x Vo - A

Tool Icons:
1: Edit Selected Asset
2: Delete Selected Assets
3: Move Selected Assets
4: Show Only Images
5: Show Only Fonts
6: Show Only Binaries

The Size column shows the bytes allocated for storage in internal flash for the images, fonts, and binaries of the application.

The References column shows the number of known references for these assets by the application’s widgets. A references count of zero
suggests that the asset is not used by the application, but it could also mean that the asset is only used in real-time when it is dynamically
assigned to a widget by the application. Clicking the title of a column (Name, Size, or References) sorts the lists of graphics assets by that column.
Clicking the same column again reverses the sort order.

The window’s tools icons support:
1. Edit Selected Asset — This brings up the edit dialog for the image, font, or binary chosen
2. Delete Selected Assets — Removes the selected assets

3. Move Selected Assets — Move assets from one location to another. This is useful for moving assets to/from internal memory from/to external
memory.

4. Show Only Images — Show image assets toggle on/off
5. Show Only Fonts — Show font assets toggle on/off
6. Show Only Binaries — Show binary assets toggle on/off

DDR Organizer

The DDR Organizer tool supports managing buffers, raw images, and other memory resources in the DDR memory of DA devices and only
DDR-enabled DA devices. This tool also requires that the DA’s built-in 2D graphics processor be enabled. Under Harmony Framework
Configuration > Graphics Stack > Graphics Processor, select the NANO 2D processor:

-}-Graphics Processor
Select Processor Type JENGF5| -

The DDR Organizer tool is launched from the Assets Management pull-down menu:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 47



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

[Asset) Tools Window

Memory Locations

DDR Organizer k
Images

Fonts

String Table Configuration
Strings

The following window will appear if the tool has not been used before for the active project target configuration:

Load Memory Profile: [[Selecta profile) | v] [ Load ]

Memory Size

Start Address:0x
sze (oytess:  Ox

Usage Metrics (bytes)
Used: 0x ERROR
Available: 0x ERROR
Known Memory Consumers
e o
Type Name Size (Bytes) Offset

DDR memory size is configured as zero.

Select the memory profile that corresponds to the target DDR-enabled DA device:
T T T T

L L
Load Memory Profile: a profile] [ Load ]
(Select a profile)
Memory Size PIC32MZDA External DDR 128MB
Ctart Addrece:

Then select the Load Button to load that memory configuration into the tool.
When Preprocessing is enabled for an image under the Image Assets tool:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 48



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

[=] Preprocessing
1 |Enabled V]
2 | Managed V]
3 | Output Mode (RGBA_8888 v
4 | Padding V]
5 | Expected Size 524288

Preprocessing Options:
1: Enable Image Preprocessing
2: Automatically Manage Memory Address
3: Preprocessing Output Mode
4: Enable Power of Two Image Padding
5: Expected Processed Image Size

An entry for the image appears in the DDR Organizer window:

T T

T T
| (] DOR Organizer = 2 X
Load Memory Profile: ' PIC32MZDA External DDR 128M8 v Load
Memory Size

Start Address: 0x A8000000 =

Size (bytes): 0x 8000000 =

Usage Metrics (bytes) Known Memory Consumers
* -
Used: X 94A000 T
Avaiable: 0x 7686000
Tool Icons:

Known Memory Consumers 1: Add a Reserved Memory Block

o ® 2: Delete a Reserved Memory Block
Type Name Size (Bytes) Offset
‘ Reserved GLCD Frame Buffers | 8CA000 | 0
| Preprocessed Image NewHarmonylogo | 80000 | 8CA000

* Used: Reserved+Iimage(s) 0x94A000

When the memory profile is loaded, the tool automatically reserves DDR memory for the GLCD Frame Buffers sufficient for three double-buffered
layers, allocating 32 bits (4 bytes) for RGBA_8888 format for each pixel. This provides 384,000 pixels (800x480) per frame buffer.

The tool icons support adding non-image memory allocations to the DDR memory map. To add or remove the memory allocation belonging to an
image, the Preprocessing enabled property for that image is enabled/disabled using the Image Asset tool.

Image Assets
Provides information on the Image Assets features.

Description

The Image Assets window is launched from the Graphics Composer's Asset menu.

The Image Assets window lets you import images, select different image formats/color modes for each image, select compression methods (for
example, RLE) for each image, and displays the memory footprint of each. Images can be imported as a BMP, GIF, JPEG, and PNG (but not
TIFF). Images can be stored as Raw (BMP, GIF), JPEG, and PNG.

MHGC does not support image motion that can be found in GIF (. gi ) files. GIF images are stored in the raw image format,
Note: meaning that there is no image header information stored with the image.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 49



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

When an image is imported into MGHC, the Graphics Asset Converter (GAC) stores the input format and color mode along with any relevant
header data. The image’s pixel data is then promoted from its native format into a Java Image using 32 bits/pixel (8 bits for each color, RGB, and 8
bits for Alpha Blending). If the image contains Alpha Blending then this information is stored in the “A” of RGBA, otherwise the “A” is set to
maximum opacity. When the application is built each image is stored in the image format and color mode selected. Images displayed in the Screen
Designer are converted from Java Image format into the format/color mode selected so that the Screen Designer accurately represents what the

application will show when running.

The images are decoded on the fly by the graphics library and rendered on the screen. This provides the designer with considerable flexibility to
import using one format and store resources using another format, thus exploring and maximizing the best memory utilization for their application
and hardware. This supports trading a smaller memory footprint at the cost of additional processing (for static or drawn-once) or reducing

processing at the cost of a larger memory footprint (dynamic or drawn many times).
The following figure shows the Image Assets window for the Aria Quickstart demonstration.

| (] Image Assets
> W ’
S / 3R Sze (bytes): 8153
- M‘_ Memory Location: Internal Flash -
NewHarmonylLogo|

Resize Crop | Reset

=) Source Image Information
+] Size
Fie Name
Format
Color Mode
Nixel Mode
=] Image Output Settings
Forriat
=) Preprizessing
Enabled

(300, 180]

PEG -

(Mouse over aproperty for detaled help)

Tool Icons:

(] Image Assets
1: Add Image From File

1. Z )
* =W /

4 )
a X

3: Rename Selected Image

4: Create New Virtual Folder

5: Delete Selected Images

Window Toolbar

There are five icons on the toolbar below the Images tab:

Size of flash memory used by image

Original file name (may be blank)

Store preprocessed image in DDR
|

2: Replace Existing Image with New Image File

-o x|

HARMONY

-

1. Add Image Asset — Brings up “Import Image File” dialog window to select image file to add to the graphics application.
2. Replace Existing Image with New Image File — Brings up the same “Import Image File” dialog but instead of creating a new image, the file’s

content replaces the currently selected image.
3. Rename Selected Image — Renames the selected image.

4. Create New Virtual Folder — Creates a new virtual folder, allowing you to organize images in a hierarchy.

5. Delete Selected Images — removes the selected images from the application.

Selecting the Add Image Asset or Replace Existing Image icon opens the Import Image File dialog that can be used to select and import an image.

C=)

p
2 Import Image File
Lookin: | |, Lena v| e E-
= |54 Lena_half size.gif
o b % Lena.gif || Lena_half size,jpg
RecentItems T Lena.jpg |Bs Lena_half size.png
R Lena.png |& Lena_half size.tiff
! & Lena.tiff
Desktop & Lena_half size.bmp
| File name:
My Documents  Files of type:  |= = .

&

After selecting the file and clicking Open, the Image Assets window opens.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

50



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

(] Image Assets =Z0 x|
®2z8 X | sae e s Sjze of memory used
- Images Memory Location: Internal Flash v
NewHarmonyLogo : '
“’“’— Resze Crop | Reset Original file name (may be blank)
Resize Image e i N ‘
Crop Image i Stze [256,256) \
File Name Lena_half size jpg
Reset Image Format
Color Mode
Pixel Mode
(=) Image Output Settings
Format 'J

S?Iect to change E s \
image format

(Mouse over a property for detaded help)

The size of the memory used for this image based on its color mode, format, compression, and global palette usage is shown by Size (bytes). See
Image Format Options below for more details.

The File Name of the original source file is also shown, but may be blank if the image was imported under MPLAB Harmony v2.03b or earlier. The
format and color mode of the stored image can be changed to reduce the image’s memory footprint. (If using an LCC controller, you can also turn
on the Global Palette, replacing each pixel in the image with just an 8 bit LUT index.)

The three internal image formats are:
* Raw - binary bit map with no associated header information. GIF and BMP images are imported into this format.

¢ PNG - lossless image format with compression, 24 bits/pixel (RBG_888) or 32bits/pixel (RGBA_8888). A good choice for line drawings, text,
and icons.

* JPEG (JPG) — loss compressed format, uses much less storage than the equivalent bit map (raw). Good for photos and realistic images.

New to Harmony 2.06 is the option to preprocess an image into raw pixels at boot-up, which will greatly improve image draw/redraw times though
the use of the high performance 2-D graphics processing unit (GPU) that is available on DDR-enabled DA devices. Be sure that this feature is
enabled in MPLAB Harmony Configurator. Under Harmony Framework Configuration > Graphics Stack > Graphics Processor, select the NANO
2D processor:

(=} Graphics Processor
Select Processor Type JENGF5] -

a Do not enable image preprocessing except on DDR-enabled DA devices with the NANO 2D graphics processor enabled. To do so
Note:  will produce an application that builds but does not run.

With Preprocessing of the image enabled, additional options become available:

+ DDR Memory allocation for the image is automatically handled when the Managed option is selected

e The Output Mode should be selected to match the GLCD's color mode, typically RGBA_8888

» The Padding option expands the image size to the nearest power of two. For example, a 480x212 image would be increased to 512x256 pixels.
* The expected size of the preprocessed image in DDR memory is shown in the Expected Size entry

For more information on how images are stored within DDR memory, see the section on the Asset Management DDR Memory tool above.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 51



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

[-] Preprocessing

1 | Enabled

2 Managed

3 | Output Mode (RGBA_8888 v)
4 | Padding

5 Expected Size 262144

Preprocessing Options:
1: Enable Image Preprocessing
2: Automatically Manage Memory Address
3: Preprocessing Output Mode
4: Enable Power of Two Image Padding
5: Expected Processed Image Size

The Image Assets window supports resizing, cropping, or resetting an image:
* Resize — Brings up a dialog window to change the pixel dimensions of the image. The image is interpolated from the original pixel array into the
new pixel array.

'd A
2 Image Asset Resize Dialog ﬂ
Input new image dimensions:
Width: | 2564
Height: | 2564
Maintain Aspect Ratio
[ ok | [cancel ]
- 7

« Crop - Places a cropping rectangle on the image. Click and drag a rectangle across the image to select the new image. Then click Ok to crop
the image.

* Reset — Allows undoing of a resize or crop. The original image is always stored in the project, so a Reset is always available to return the
image to its original state.

Original images are retained by MHGC by the superset Java Image format. So an image crop will change how the image is stored in the

application but not how it is stored in MHGC. Reset will always restore the image back to the original pixels. (Reset is not an “undo”.)

Example Images

Example images are available from many sites on the internet. One of the best sites is found at the USC-SIPI Image Database
(http://sipi.usc.edu/database/). There are many canonical test images, such as Lena, The Mandrill (Baboon), and other favorites, all in the TIFF

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 52


http://sipi.usc.edu/database

Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

format. The TIFF format is not supported by the Graphics Composer, but you can easily convert from TIFF to BMP, GIF, JPEG, or PNG using the

export feature found in the GNU Image Manipulation Program (GIMP), which is available for free download at: https://www.gimp.org. GIMP also
allows you to change the pixel size of these images, usually 512x512, to something that will fit on the MEB Il display (either 256x256 or smaller).

The following figure shows the Graphics Composer Screen Designer for the pic32mz_da_sk_meb2 configuration of the Aria Quick Start project

after adding three images.

480
(0,0) | (479,0)
272
(0,271) (479,271)

The following figure shows the Optimization Tab after adding these images.

| Summary | Configuration| Optimization [_]
EX P =R
Name Size References Description
= | Baboon_GIF 66042 1 256x256, 16bpp, RGB_565, 8 bit palette
= | Baboon_GIF2 65586 1 256x256, 8bpp, RGB_332, 8 bit palette
= | Baboon_JPEG 21372 1 256x256, JPEG, 24bpp
- | Baboon_64_64_PNG 13485 1 64x64, PNG, 24bpp, RGB_888
= | NewHarmonyLogo 8153 1 300x180, JPEG, 24bpp

Selecting the Baboon_GIF image and the Edit Selected Asset icon ( /) opens an Image Assets window, as shown in the following figure.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

53



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

1
- (] tmage Assets )
T8 Za x Size (bytes): 66042
&= Images Memory Location: [Internal Flash v
- NewHarmonylLogo - -
Baboon_GIF2 Resize Crop | Reset
g:zzg::;:ﬁg 4 PNG = Sounroe Image Information
Size [256,256]
File Name
Format gif
Color Mode RGB_565
Pixel Mode INDEX_8
[=] Image Output Settings
Format [Raw
Color Mode [RGB_565
Bits Per Pixel 16
Unique Pixel Count 253
Enable Palette
Compression Mode [ None
Mask Enable [

Because this image had only 253 unique pixel colors (Unique Pixel Count = 253) the Enable Palette option was automatically enabled. This

feature, which works on an image by image basis, is separate from enabling a Global Palette. The image is stored using 8 bits of indexing into an

image-specific lookup table (LUT). If the image has more than 256 unique colors then the Enable Palette option is not available and is not shown.
Image Format Options

Raw Format Images
Raw format images have the following options:

[=] Image Output Settings
Format | Raw v)
Color Mode RGB_888 . RGB_888 v
Bits Per Pixel 24 GS_8
Unique Pixel Count 65536 RGB_332
Compression Mode ( None | None « | [RGB_S65
Mask Enable M | RGBA_5551
=) Memory Information RLE
P RGBA_8888
Memory Usage (bytes 196608 -
— ) ARGB_88838
Mask Enable
Mask Color Il [0,0,0] ()

Regardless of the Color Mode of the imported the image, the stored image can be stored in a different color mode. For example, a JPEG image
could be in 24 bits/pixel RGB format but stored in the application using RGB_565 or even RBG_332 to save space. The Project Color Mode (set
through the File > Settings menu) is different from the Color Mode of images. This is determined by the capabilities of the projects graphics
controller. The graphics library converts images from the stored color mode to the project’s color mode before output.

If the image has 256 or less unique pixel colors an option to Enable Palette is set by default. If the image has more than 256 unique colors this
option is not displayed. This replaces the palette pixels with 8-bit indices into the image’s palette look up table (LUT). NOTE: Enabling the Global
Palette disables this for all images and all image pixels are replaced by 8-bit indices into the global palette LUT.

The Compression Mode for a raw format image is either None (no compression) or RLE for run-length encoding.

Image masking is a form of cheap blending. For example, given the following image, you may want to show the image without having to match the
lime green background. With image masking you can specify that the lime green color as the “mask color”, causing it to be ignored when drawing
this image. The rasterizer will simply match a pixel to be drawn with the mask. If they match, the pixel is not rendered.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 54



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

For PNG format images you can change the image format and the image color mode:
[=] Image Output Settings
Format PNG
Color Mode RGB_888
Bits Per Pixel 24

PNG Format Images

v

JPEG Format Images

For JPEG format images you can change from JPEG format to Raw or PNG:
[=] Image Output Settings
Format

Once changed from JPEG into another format, the new format will have other options.

Managing Complex Designs

The Image assets tool lists the images in the order of their creation. In a future version of MPLAB Harmony this will be sortable by image name.
For now, it is recommended that you use the Memory Locations asset tool, and use the Optimization sub-tab instead to manage a complex set of

images. The Optimization sub-tab allows you to sort graphics assets (fonts, images, binaries) by Name, Size, and number of widget References.
This makes it much easier to find and edit an image by its name rather than order of creation.

Font Assets

Provides information on the Font Assets features.
Description

The Font Assets window is launched from the Graphics Composer's Asset menu.

There are three dimensions to text support: Languages, Fonts, and Strings. Language “ID” strings are identified when an
Note: application supports more than one language. (In the case of single language support, the language default is provided.) Fonts are
imported and organized using the Font Assets window. Strings are defined by a string name, and this name is used by widgets to

reference the string. For each string and each language supported the glyphs are defined to spell out the string’s text and the font
is chosen for that text.

¢ Languages are managed within the String Table Configuration window
« Fonts are managed within the Font Assets window (this topic)
¢ Strings are managed within the String Assets window

The following figure shows the Font Assets window from the Aria Coffee Maker demonstration.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 55



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

@ 72X Size (bytes): 2138
[Sigi N\ . ) )
FrenchScriptMT \ il Aol
i_Smal ., ||Memory Location: Internal Flash v

FrerichScriptMT_MT 1
Mistra\ ’W
Mistral. Smal N
TimesNewRoman o QL 4

[7] Bok,
Arial_S! \ Itaic

Anti-Aliasing),

\ \
\ Preview Text: Theq.iqvbromfoxjnpedoveﬁ\eluydog.
\ \
\ \ .
The quncl\brown fox jumped over the lazy dog.

*T@m® /X

Tool Icons:
1: Add Font from File
2: Add Installed Font

4: Rename Selected Font
5: Delete Selected Fonts

3: Replace Existing Font Data with New Source Font

The Size (bytes): for a Font asset shows how much memory is needed to store all the glyphs used by the application from this font. For static
strings MHGC determines which glyphs are used by the application’s pre-defined strings and builds these glyphs into the application. For dynamic
strings (i.e. strings created during run time) ranges of glyphs are selected by the designer and these ranges are also included in the application by

MHGC. The memory needed to store all these glyphs is shown by Size (bytes): .

Window Toolbar

There are five icons on the toolbar below the Images tab:
1. Add Font From File — Adds a font asset from a file.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

56



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

£3 Import Font File i i, :W

Lookin: | |, My PublicDomainFonts v | (¥ [ [T

|

(P= A Arimo-Regular.ttf
- A dbtttf
RecentItems | i  DroidSans.ttf

A DroidSans-Bold.ttf
. A DroidSansMono.ttf

(PN I Gentium.ttf

__| Gentium_OFL.txt

D .| Gentium8.fnt

My D = |3 Gentium27.fnt

A JAIPUR_.TTF

&’0 A VeraMono.ttf
Computer

@ Flename:  |Gentum.ttf [ open
| e Gl

2. Add Installed Font — Add a font installed on your computer.

2 Select System Font

System Font: [Agency FB v }

Warning: This funtion imports fonts directly from the operating system. These fonts may be subject
to copyright or commercial license restrictions. You are responsible for verifying the license of any
font you choose to import using this tool.

|

[SystemFont:  \icNcwRoN—

L Tahoma ‘ ]

o | [ Goa

Warning: This fu{
t ight
| fﬁncfsoy;ms; Tempus S3ns ITC

Times New Roman

Traditional Arabic

3. Replace Existing Font Data with New Source Font — Both Add Font From File and Add Installed Font create a new font asset. This icon
allows you to update an existing font asset, importing from a file or using a font installed on your computer.

4. Rename Selected Font — Renames an existing font asset. In the example above, the Arial font was installed twice, first as a 16 point font and

second as a 12 point font. If added to the fonts assets in this order, the 12 point font will have the name Arial_1. This font asset was renamed to
Arial_Small using this tool.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

57



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

5. Delete Selected Fonts — Removes selected font assets from the application.

Sub-tabs

There are three sub-tabs to this window.

Style Sub-tab
! ! 1

_ (] Font Assets = 2 X
@A S / x Size (bytes): 187

Gigi ) Original File Name: Arial

FrenchScriptMT Memory ,
Gigi_Small Memory Location: Internal Flash Location .
FrenchScriptMT_MT P

Mistral Style | strings | Gyphs|

Mistral_Small | . Select Font Size in Points
TimesNewRoman

Arial ("] Bold » Bold — Renders the font Bold

(] Ttalic * |[talic — ltalicizes the font

] Anti-Aliasing * Anti-aliasing — Enables anti-aliasing

Preview Text: | The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the |azy dog.

The Size (bytes): shown represents the memory needed to store all the font's glyphs. The application only stores the glyphs that are used by static
(build-time) strings and by predefined glyph ranges to support dynamic (run-time) strings.

The choices for Memory Location must be defined before the font can be assigned. Go to the Memory Configuration window to add a new location
before using it in this sub-tab.

Each font asset consists of a font, size, and some combination of the { Bold, Italic, Anti-Aliasing } options, including selecting none of these
options. If you need bold for one set of strings and italic for another, then you will need two font assets, one with Bold checked and a second with
Italic checked. The same applies for font sizes. Each font size requires its own font asset. Thus if you need two sizes of Arial, with plain, bold, and
italic for each size, you will need 6 separate assets (6 = 2 Sizes x 3).

Glyphs are normally (Anti-Aliasing off) stored as a pixel bit array, with each pixel represented by only one bit. Turning on Anti-Aliasing replaces
each pixel bit with an 8-bit gray scale, thereby increasing font storage by a factor of 8!

What if a font is chosen that does not support the character types of the text used for a particular language in the application? How can you test
and debug this? There a basically two ways:

* Use an external font viewer to examine if the needed glyphs exist
» Configure, build, and run the application and verify the strings are correctly rendered
If the glyphs are not available they will be rendered as rectangles ( Z ).

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 58



Volume Ill: MPLAB Harmony Configurator (MHC)

Strings Sub-tab

MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

1
_ (] FontAssets = P
*@ERS /X Size (bytes): 2138
Gigi
) Orignal File Name: Arial
FrenchScriptMT
Gigi_Smal Memory Location: Internal Flash v
FrenchScriptMT_MT ‘
Mistral Style | Strings | Glyphs
Mistral_Smal String Assodations: Unique Character Count: 63
TimesNewRoman
Name Value Bound
Arial_Smal | InfoText_Desc9 | -
English | Three hardware graphics layer, double frame buffer per layer v
French | Trois couches graphiques matérieles, double frame buffer par v
Italian | Trestrat grafica hardware, buffer di doppio telaio per v
| German | Drei Hardware-Grafik-Layer, Doppel-Frame-Puffer pro v
| InfoText Tite |
English Demonstrated Feature
French Caractéristique prouvée
Italian Caratteristica dmostrato
i German Demonstrierte Eigenschaft s 1
T - ——

The Bound check box accomplishes the same thing as assigning a font to a text string in the Strings Assets window (Window:Strings menu).
Assigning a string to a font means that the font will generate glyphs for that string. This is just another way to accomplish the binding of the string

text to font.

This sub-tab is also useful in a complicated graphics design to see how many strings use a particular font. Lightly-used or unused fonts can be

eliminated to free up internal Flash memory.

Glyphs Sub-tab

:} Note:

The word “glyph” comes from the Greek for “carving”, as seen in the word hieroglyph — Greek for “sacred writing”. In modern
usage a glyph is an elemental or atomic symbol representing a readable character for purposes of communicating via writing.

The Glyph sub-tab is only used when your application supports dynamic strings. For static (build-time) strings MHGC automatically determines
which font glyphs are used based on the characters present in all the strings used by the application’s graphics widgets. Only these glyphs are
included as part of the application’s font assets. With dynamic (i.e. run-time) strings this is not possible. This sub-tab allows you to specify which
range of glyphs will be used by run-time strings. Once glyph ranges are defined, these glyphs are added to the font glyphs used by static strings.

The Create New Custom Import Range icon (T‘ﬁ) allows you to input a new glyph range for the font. Selecting this icon opens the Font Assets

window.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 59



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

r

Basic Latin v

Latin Extended =
Latin-1 Supplement T
a 'Font : Latin Extended-A
Latin Extended-B
@ D Z X Size (bytes): 2138 IPA Extensions
Gigi - : Spacing Modifier Letters
Original File Name: Aria .. .
FrenchScriptMT = Combining Diacritical Marks v
Gigi_Small Memory Location: e ‘_g
Fr'ger?chScriptMT_MT ’ — 2 Add Glyph Range E_
) -s m S
Mistral e Name: Basic Latin
Mistral_Small E ) 4
TimesNewRoman ) T .
Name gf/| Unicode Range: Basic Latin v
Arial_Smal Code Point Glyph
Starting Character: 3215 S pace
Ending Character: [126 -2 ~

String Table Configuration
Provides information on the String Assets features.

Description

The String Table Configuration window is launched from the Graphics Composer’s Asset menu.

a There are three dimensions to text support: Languages, Fonts, and Strings. Language “ID” strings are identified when an
Note: application supports more than one language. (In the case of single language support, the language default is provided.) Fonts are
imported and organized using the Font Assets window. Strings are defined by a string name, and this name is used by widgets to
reference the string. For each string and each language supported the glyphs are defined to spell out the string’s text and the font
is chosen for that text.
¢ Languages are managed within the String Table Configuration window (this topic)
« Fonts are managed within the Font Assets window

« Strings are managed within the String Assets window

Within this window, the Languages supported by the application are defined and the encoding for all application glyphs selected.

_ (] string Table Configuration

1
=0 x
Language Definitions Encoding
1AX
D Size (Bytes) Enabled
English | 1128 |
Chinese [ 1065 |

The “ID” string used for each language is merely for ease of use in building the texts to be used. “English”, “American”, or any other string can be
used to identity that language, as long as it is understood by the application’s creator when selecting the text to be used for that particular
language. Then the application can switch to supporting one of its languages using “ID” strings defined.

Here is an example string asset definition, taken from the Aria Coffee Maker demonstration. This application supports English, French, Italian, and
German. The text string “InfoText_Desc9” uses the Arial font, and text for each language is specified within the String Assets window.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 60



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

e /s aX String Name: InfoText_Desco

BrewTenOunce - ——
BrewTwelved Total Sze in Bytes: 468

_ _g:uk_‘g;” t Bl Reference Count: 1
GPU_On

~ InfoText_Descl Language Value Font
-InfoText_Desc10 English Three hardware graphics layer, dou...| Arial
‘InfoText_Desc11 French Trois couches graphiques matérielle...| Arial
-InfoText_Desc12 Italian Tre strati grafica hardware, buffer di...| Anal
-InfoText_Desc2 = || German Drei Hardware-Grafik-Layer, Doppel...| Anial

~ InfoText_Desc3
InfoText_Desc4
~ InfoText_DescS
InfoText_Desc6
InfoText_Desc7
InfoText_Desc8 L3

= InfoText_Desc9

InfoText_Title

Any number of languages can be defined as long as there is memory to store the strings needed.
The following figure shows the String Table Configuration for an application that uses English, Spanish, and Chinese.

Langusge Defitons | Encoding| Enable/
ﬁ A ,x’ ize of language Disable
B strings [bytes angua

D™ o~ . Size Enabled
English 0 257 V)
Chinese 1 2 3 250 ¥
Spanish 240

- B AX -

Tool Icons:
1: Add New Language
2: Set Default Language
3: Remove Selected Language

The size of all the strings for each language is shown in the Size column. String size represents the memory allocated for glyph indices for all the
strings supporting that language. A language can be enabled/disabled via the check box in the Enabled column. Disabling a language removes it
from the application build but keeps it in the project.

Window Toolbar

There are three icons on the toolbar:

1. Add New Language — Adds a new Language.

2. Set Default Language — Sets the application’s default language. Note, this is different than the abc tool on the Graphics Composer Window
toolbar. The abc icon sets the preview language for the Screen Designer panel only. This icon sets the language used by the application after
boot-up.

3. Remove Selected Language — Removes language from the application.

Clicking Add New Language opens a new line, allowing you to select and edit the new language’s “ID” string.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 61



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

1 C]!Sh'ngTd:leCmﬁgraﬁon =5 Ix

Language Definitions Encoding
1 AX

D Size (Bytes) Enabled

English | 1128 |
Chinese 1065
“| MyNewLanguage[ 0

Then, for every string defined in the application there will be a line to define the needed text, and to specify the font to be used.
(] String Assets =Ox
® /9 X String Name: Help

abc Strings

- AlphaBlendingDemo
AlphaBlendingDemoSmall
Backspace

DownLeft Language Value Font

Harmony English Help ArialUnicodeMS
: —||_Chinese b 2] ArialUnicodeMS
- HomeHelpText MyNewlanguage HEELLLPPPP!IT |
- KeypadWidgetDemo
- KeypadWidgetDemoSmall
- Keypad_0
- Keypad_1
- Keypad_2
- Keypad_3
- Keypad_4
Keypad_5
Keypad_6
Keypad_7
Keypad_8
- Keypad_9
= ‘»Keypad_a
- Keypad_b
- Keypad_c
- Keypad_d
|_:-Kevpad e ol

>

— || Total Size in Bytes: 18

Reference Count: 6

m

Font

ArialUnicodeMS
ArialUnicodeMS

Calibri
A s
ArialUn,godeMS_Large
ArialUnicodeMS_XL

I
If you don't provide a value for the new language the string will be output as a null (empty string). If you don’t provide a Font selection then the
string will be output as a series of blocks (?).

The Aria User Interface Library primitive, LI B_EXPORT voi d | aCont ext _Set St ri ngLanguage(ui nt 32_t i d), allows the application to
switch between languages using the Language ID #def i nes are specified in the application’s gf x_asset s. h file.

Sub-tabs

There are two sub-tabs to this window.
Language Definitions Sub-tab

This sub-tab shows the languages defined for the application. A Language can be enabled/disabled to include or exclude it from the application’s
generation/regeneration under MPLAB Harmony Configurator (MHC). New languages can be added by specifying a text string for the language.
With a new language, go to the String Assets window to specify the text and fonts for all defined strings.

Encoding Sub-tab

Selecting the Character Encoding Format Selection Dialog icon gives you three choices for how the characters in all strings in the graphics
application are encoded:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

62



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

1
_ (] string Table Configuration o«
| Language Definitions Encoding
There are three ways that string characters can be encoded. Each mode has its benefits and drawbacks.

English Character Support:

Standard 8-bit encoding scheme. Does not support international characters.

International Character Support:

@ UTF-8 Supports unicode characters using 8 to 32 bit character encoding sizes.

Pro: More memory efficient than UTF-16.
Con: Slower decode speed than UTF-16.

") UTF-16 Supports unicode characters using 16 or 32 bit character encoding sizes.

Pro: Faster decode speed than UTF-8.
Con: Not as memory efficient as UTF-8.

The default is ASCII. It is typically the most efficient in terms of memory and processing, but it does not support as many glyphs. Chinese text
should be encoded in UTF-8 or UTF-16, but Western language text can be encoded in ASCII to save memory. The trade-off between ASCII,
UTF-8, and UTF-16 depends on the application. Changing from UTF-8 to UTF-16 will double the size of all strings in the application. This is

because the sizes of all glyph indices double in size. (String sizes are the sizes of glyph reference indices, not the size of the particular font glyphs
used to write out the string.)

The memory utilization resulting from an encoding choice can be seen in the Summary sub-tab of the Memory Configuration window.

String Assets

Provides information on the String Assets features.
Description

The String Assets window is launched from the Graphics Composer’'s Asset menu.

The String Assets window supports managing the strings in the application. Strings are referenced by graphic widgets using an application-wide

unique name. This unique name is built into an enumeration that the application’s C code uses. For each language supported text is defined and a
font asset selected.

There are three dimensions to text support: Languages, Fonts, and Strings. Language “ID” strings are identified when an
application supports more than one language. (In the case of single language support, the language default is provided.) Fonts are
imported and organized using the Font Assets window. Strings are defined by a string name, and this name is used by widgets to

reference the string. For each string and each language supported the glyphs are defined to spell out the string’s text and the font
is chosen for that text.

Note:

Languages are managed within the String Table Configuration window
« Fonts are managed within the Font Assets window

¢ Strings are managed within the String Assets window (this topic)

The following figure shows an example taken from the Aria Coffee Maker demonstration. The string name, InfoText_Desc9, defines a string asset
that is used by the application.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 63



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

. []llmooe Assets = D'o“ !
e™za K Stze (oytes): a5z Size of flash memory used by image

- Images Memory Location: Internal Flash A
Resize Grop | Reset Original file name (may be blank)

=] Source Image Information
@ Size [300,180)

Dixel Mode
=] Image Output Settings

Forriat (PEG vi
=] Preprigessing

Enabled

(Mouse over aproperty for detaled help)

(] Image Assets Tool Icons:
1 e 4 1: Add Image From File

@ W / | * 2: Replace Existing Image with New Image File
3: Rename Selected Image
4: Create New Virtual Folder
5: Delete Selected Images

Store preprocessed image in DDR
|

The Total Size in Byte: for a string asset represents the memory needed to store the glyph indices for all the text defined for that string asset.
Adding more text will increase the number of glyph indices needed thus increasing the size of the string’s memory. Adding another language will
do the same, since the number of glyph indices also increases. Changing the font does not increase the size of the string’s memory, but may
increase the size of the font chosen if it is a “bigger” font and adds more glyphs to the new font. (By “bigger” we mean a font with more pixels, for
example because it is bigger in size, or perhaps because it is anti-aliased and the original font was not.)

The Reference Count shown reflects the number of build-time references to the string. Dynamic uses of a string, such as through
Note: macros or events, is not reflected in this number.

Window Toolbar

There are four icons on the toolbar:

1. Add New String — Adds a new string.

2. Rename Selected ltem — Allows renaming the string.

3. Describe Selected String - Provides a Description field value for selected string.
4

. Create New Virtual Folder — Creates a new virtual folder, allowing you to organize strings in a hierarchy. Here's an example reorganization of

the existing strings. Note the order of virtual folders or items in the list is strictly alphabetical. Virtual folders and string asset organization is
merely for the convenience of the developer. Neither has an effect on how the application is built.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

64



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

_G'Str'ngMﬁ!s
¢ /9 x

abc Strings

=3 Brew*Ounce

=3 Big

- BrewSixteenOunce
BrewTwelveOunce

=3 Small
-BrewEightOunce

.- BrewTenOunce

=3 InfoTexts
InfoText_Descl
InfoText_Desc10
InfoText_Desc11
InfoText_Desc12
InfoText_Desc2
InfoText_Desc3
InfoText_Desc4
InfoText_Desc5

- InfoText_Descé

- InfoText_Desc7

- InfoText_Desc8

- InfoText_Desc8

- InfoText_Title

=3 GPU_*

L. GPU_Off

=3 Roasts

i Dark_Roast

... Light_Roast

- Medium_Roast
- AppTitle

5. Delete Selected Items — Deletes selected strings from the application.
6. Import String Table - Imports an Excel CSV (Comma Separated Value) file to replace the current string table.
7. Export String Table - Exports the current string table as an Excel CSV (Comma Separated Value) text file.

Creating New Strings

To create a new string, click Add New String ( @ ).

Selecting this icon opens the Add String dialog to name the string. The text chosen for the string name should be acceptable as a C variable.

2 Add String Dialog @

Name: NewString

[ Create ] [ Cancel ]

After entering the new string’s name and click Create, the following String Assets window appears.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

65



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

:“-'GPU_Off
--GPU_On
InfoText_Desc1
- InfoText_Desc10
- InfoText_Desc11
- InfoText_Desc12
- InfoText_Desc2
- InfoText_Desc3
- InfoText_Desc4
- InfoText_DescS
- InfoText_Desc6
InfoText_Desc7
InfoText_Desc8
- InfoText_Desc9
- InfoText_Title
- Light_Roast
- Medium_Roast

String Name:

Total Sze in Bytes: 50

e sax

NewString

elect font for

IR e string) v i

Reference Count: Etering string valu ach langua
Language Value \/— Font V
English Adding a New StringX
French -
Italian Gigi
German P FrenchScriptMT
- ._W E
anguages in lick to oo
he application dd a Mistral_Smal
_ TimesNewRoman v
trin

In the String Assets window, there will be a line for each of the languages defined for the application. Provide the string text and font for each of

the languages. An empty string will be used if the text is not provided. Not providing a font causes the string to be rendered as a string of boxes (

).

Importing and Exporting String Tables

Importing an Excel CSV (Comma Separated Values) file replaces the existing string assets table. Exporting creates an Excel CSV file that can be
imported into another project or target configuration. Exported string tables can be manipulated in Excel, even combining multiple string tables into

a single string table that can then be imported.

If the string asset table contains UTF-8 then the file cannot be directly loaded into Excel. Instead, within Excel create a new sheet. Import the string

table using Get Data, selecting From File, From Text, or CSV. Then in the dialog window change the File Origin to Unicode (UTF-8).

Excel does not support importing UTF-16.
Note:

Binary Assets

Provides information on the Binary Assets features.

Description

The Binary Assets window is launched from the Graphics Composer’'s Asset menu.

X

Tool Icons:
1: Add Binary Fi

le
2: Delete Selected Entries

Selecting the Add Binary File icon ( ° opens the Import File dialog.

© 2013-2017 Microchip Technology Inc.

MPLAB Har

mony v2.06




Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

' ™\
2 Import File N [
Lookin: | |. scratch v & [
L -
<

Recent Items

Desktop

|«

My DA imante

" J
This supports any formatted binary file. Developers can then add a custom-coded decoder to support the format implied by the imported file. (A
future version of the GFX library will include a bin2code utility in support of this feature.)

MHGC Tools

The Tools menu supports managing all graphics events, using a global palette, and estimating heap memory usage.

Event Manager
This section provide information on the Event Manager.

Description

The Graphics Composer Event Manager provides a GUI interface to manage all of the events associated with a graphics application. In a general
sense, an event is an action or occurrence that is processed by software using an “event handler”. Button pushes or keystrokes are widely
recognized and handled events. Events related to a touch screen are commonly called “gestures”. This GUI allows the assignment of actions to
events associated with graphics widgets and to events outside of the graphics library. Under the Graphics Composer Event Manager tab there are
two sub-tabs, one for “Events” and a second for “Macros”.

(] Event Management = 2 <

Events | Macros - Macros originate outside of widgets in the host application

7 screen EvEVENts originate inside of widgets
Widget Events Descripuon:  Tnis event is generated when the corresponding button widget is released.
— J Vi

The following table summarizes the difference between "events" and "macros" and provides examples of each instance of source to destination:
Differences Between Events and Macros

Source Inside of Graphics (Destination) Outside of Graphics (Destination)
Inside of Graphics "Event" "Event"

Example: Button changes button text Example: Button changes MEB2 LED color
Outside of Graphics | "Macro" Not supported by Event Manager Tool

Example: Mounting SD card changes screen

“Events” under the first tab are generated from within graphics widgets and can manipulate the properties of screen widgets or set semaphores
that engage with the rest of the application. “Macros” are executed outside of graphics widgets by other parts of the application. “Macros” allow the
application to change widget properties or behavior.

Both “Events” and “Macros” event handlers can be built using collections of “Template” actions or using “Custom” developer-provided code. Most
widget properties have an associated Template action that can be used to manipulate that property in an event handler (either “Event” or “Macro”).
For more information on properties and related actions, see the discussion on the Properties Window below.

To explore these capabilities, let’s look at the Aria Quickstart project after the completion of the Adding an Event to the Aria Quickstart
Demonstration Quick Start Guide.

Graphics Composer Events

The Graphics Composer Screen Designer shows that there is one layer and three widgets in this demonstration.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 67



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

(] Tree View = &6
T
(0,0)
= &3 Layerd
A LabelWidget1 -
= ImageWidget1 \:q
ButtonWidget1 \
\\
272
(0,271) (479,271)

Of the three widgets shown above, only ButtonWidgetl can have events associated with it, one for button pressed and a second for button
released. This can be seen in the Graphics Composer Event Manager window, which is available from the Tools menu:

Events | Macros| Name: Pressed
[®- Screen Events e - - -
& tEvents Description: This event is generated when the corresponding button widget is pressed.
= [ defaut
= (55 ButtonWidget1
Press
-~ [V] Reledstd Actions:

S Z2t 3

The events shown under “ButtonWidget1” are mirrored in the widget's properties. Selecting or clearing an event in one window does the same in
the other window, thus enabling (selecting) or disabling (clearing) the corresponding event.

[=] Events
Pressed =)
Released (&

We can add a Check Box widget to the applications display and then use the Event Manager to assign actions to the widget's events. A Check
Box widget has two events, one for being “Checked” (i.e., selected) and another for being “Unchecked” (i.e., cleared). Enabling the “Checked”
event then allows the selection of the action or actions for that event.

HAL — .

ﬁa v Chechoandgetl
= Pl Checked

i onchectes

I~ My Check Box

Ivake ¢

The Actions: sub-window has five tool icons for managing the actions associated with an event:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 68



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Actions: 1: Create New Action
a 2: Edit Selected Action
1 [ 5 T % 3: Delete Selected Action

4: Move Selected Action(s) Up in Execution Order
| 5: Move Selected Action(s) Down in Execution Order

Clicking the Create New Action icon ( ) opens the Action Edit dialog.

,
£3 Action Edit Dialog 8

[——

| Name: Provide optional action name

Select the type of action to create:
Select from actions related to widget properties
@ Template Template actions are created using a wizard-based approach. The user will be guided through a

series of questions involving: selecting an action target, choosing an action to perform, and inputting
required argument values.

Paste in custom, user-defined function

Custom Custom actions consist entirely of user-defined code segments. In this mode whatever code the
user inputs into the text field will be inserted into the auto-generated code files verbatim. No error
checking or validation is performed.

[ Cancel

If you select Custom and click Next, you will see the following dialog. Unfortunately, there is no C code error checking with this window. It just
copies the code into | i bari a. c and | i bari a. h. If there is a problem with the code you will not know about it until you try to build your
application. An alternative is just to type a comment such as/ *My event goes here*/, generate the code, and then find out where this
comment landed in the code. (Typically, inside | i bari a_events. c,orlibaria_nacros. c) You can then write the action routine from within
the MPLAB X IDE editor and compile just that file to debug the code written.

3 Action Edit Dialog - | — S5

Name: ChedkBoxAction|

Custom Action Definition:

If you select Template, the Action Edit dialog will update, as follows. Select ButtonWidget1.

(63 Action Edit Dialog - — ot S

Name: CheckBoxAction

Select target object from the kst below:

@B Context
o Event Origin: CheckBoxWidget1 (Check Box)
- [ Active Screen: default
5 &3 Layer0 (Layer)
A LabelWidget1 (Label)
= ImageWidget1 (Image)

/ ChedBoxWidget1 kaheck Box)

e fﬁm]:m]'

As shown previously, you next need to select the widget that you want to manipulate with this action. Note that the event originated with
CheckBoxWidgetl, but the event's action can manipulate any of the existing widgets. In this case, ButtonWidgetl has been selected. Clicking Next

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 69



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

will then bring up a list of the actions available in manipulating a button widget.

| £/ Action Edit Dialog

Name: ChedkBoxAction

&

Select the action to perform on: ButtonWidget1 (ButtonWidget)

Adjust Position

Adjust Size

Set Border Type

Set Draw Background
Set Enabled

Set Height

Set Horizontal Aignment
Set Image Margn

Set Image Position

‘ Set Margins

Set Parent

Set Position

Set Press State

Set Pressed Image

Set Pressed Offset

Set Released Image \
Set Scheme
Set Size

Set Toggleable

Set Vertical Alignment
Set Visible

Set Width \
| |SetX Position

Set Y Position

Sets the text for this button.

! Cancel

You can select the “Set Text” action, which will then change the button’s text property, followed by NEXT, which will open a dialog to select the text
string for this action.

r Y
| %] Action Edit Dialog S5

Name: CheckBoxAction

Provide values for each argument:

[=] Arguments (Set Text)
String

GFX_Quickstart

Previous ] [ Finish

You can then select from the available (already defined) strings which text to use for the button’s text field. Press the Finish button to complete the
definition of this action.

Screen Events

As shown previously, the Graphics Composer Event Manager, Events sub-tab supports screen events when the screen is visible (On Show) and
hidden (On Hide). These events can define event handlers based on Template actions or Custom, user-defined code.

Widget Events
Not all widgets can generate an event. For example, a Label Widget has nothing to generate, it just sits there on the screen, labeling. Here is a list
of the widgets that can generate an event:
» Button — Pressed and Released events
* Check Box — Checked and Unchecked events
» Draw Surface — Draw Notification event
* Image Sequence — Image Changed event

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 70



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

* Key Pad - Key Click event

¢ List Wheel — Select Item Changed event

e List — Selection Changed event

e Progress Bar — Value Changed event

« Radio Button — Selected and Deselected event
» Scroll Bar — Value Changed event

» Slider Widget — Value Changed event

e Text Field — Text Changed event

* Touch Test — Point Added event

Graphics Composer Macros

Macros implement event handlers for events that originate outside of graphics primitives such as widgets and are designed to change or
manipulate widgets inside of the graphics part of an application. (Events that originate outside of graphics and don't touch the graphics part of the
application are outside of the scope of the Graphics Event Manager and are not discussed here.)

The following figure shows a simple example of a macro.

Events  Macros
/ Q Name: MyMacrod
Function Name: default_MyMacro0()

] default
— Description:

\

The toolbar for Macros has three icons.

Tool Icons:
1 )’ 3 1: Create New Macro
. 2: Edit Selected Macro
3: Delete Selected Macro

Creating a new macro and selecting its actions is just like that of a widget event:

1. Create a new macro using the “Create New Macro” tool. The check box to the left of the new macro’s name enables/disables the macro.
Clearing it removes the macro from the next code generation.

2. Select the new macro and edit it using the second icon (shown previously).

3. Inthe Actions: window, select Create New Action. An optional name can be provided in the Name: box. You can then choose to use a
Template and select a predefined action or Custom to create a customized action.

: . Tool Icons:
Actions: 1: Create New Action

o n 2: Edit Selected Action
1 { 3 4 5 3: Delete Selected Action

4: Move Selected Action(s) Up in Execution Order
| 5: Move Selected Action(s) Down in Execution Order

4. If you chose a “Custom” action, proceed as discussed previous in Graphics Composer Events. When using templates the next step is to
choose the target widget for the action. This choice is limited to those only the widgets in the currently “active” screen. If your application has
multiple screens and the widget you are targeting is not part of the currently active screen you need to change the active screen.

« Changing the active screen can be done by selecting the corresponding screen tab at the bottom of the Graphics Composer Screen
Designer

MainMenu X FrstSaeen%x: SecondScreen X lThrdScreen x lFourthScreen x |F|ﬂhScreen x
r

» Alternately, you can switch using the Graphics Composer Manager:Screens tab

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 71



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

1 1 1 1
(] Screens = 5

X B3|
Export Visible  Name View
l | SplashScreen -
MainMenu

tScreel

SecondScreen
ThirdScreen
FourthScreen
FifthScreen
SettingsScreen
MainMenuHelp
ListWheelHelpScreen
TouchTestHelpScreen
KeypadHelpScreen
AlphaBlendingHelpScreen
SlideshowHelpScreen

FEEEEEEEEEEKEE
EEEEEEEEEEE S

5. After selecting the target widget for this macro, click Next button to select an action related to this widget. (Just as with template-based widget
events.) The macro can contain more than one action, targeting more than one widget.

Graphics Events Test Bed

Additional examples of events and macros can be found in the MPLAB Harmony project found in ./apps/examples/events_testbed. This project is
based on the Quick Start Guide “Adding an Event to the Aria Quickstart Demonstration” found in Volume 1 of MPLAB Harmony’s built-in
documentation.

This project has target configurations for PIC32MZ DA and EF starter kits with the MEB2 graphics board. It demonstrates the following
events/macros:

Event Testbed

Source Inside of Graphics (Destination) Outside of Graphics (Destination)

Inside of "Event" "Event"

Graphics Button changes button text from "Make Changes. Generate. Run" to | Virtual Switch S1 changes MED2 LEDs D6 and D7 on/off
"Ouch! Ouch! Ouch!" via boolean semaphore

Outside of "Macro" Not supported by Event Manager Tool

Graphics APP_Tasks changes color scheme for Virtual LEDs D6 and D7 MEB2 S1 changes MEB2 LEDs D6 and D7

between LED_OFF and LED_ON

Asserting the “Make Changes. Generate. Run” button on the display changes its text to “Ouch! Ouch! Ouch!”. Pressing the MEB2's Switch S1
changes the LED D6 and D7 on the MEB2 board as well as changing the virtual LEDs D6 and D7 on the display. Pressing the display’s virtual S1
switch does the same.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

72



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

 Vnal A RMONY
> \/rlbuch! Ouch! Ouch!|
2

Make changes. Generate. Run. |

The application’s events are defined in | i bari a_events. c:
#include "gfx/libarial/libaria_events.h"

/] CUSTOM CODE - DO NOT DELETE
extern bool bDi splay_Sl1State;
/1 END OF CUSTOM CODE

/] ButtonWdgetl - PressedEvent

voi d ButtonWdget1_PressedEvent (| aButtonW dget* btn)

{

// ButtonDown - Set Text - ButtonWdgetl

| aBut t onW dget _Set Text ( (| aButt onW dget *) But t onW dget 1,
| aString_CreateFrom D(string_CuchGuchCuch));

}

/1 ButtonWdgetl - Rel easedEvent

voi d ButtonW dget 1_Rel easedEvent (| aButt onW dget* bt n)
{

/1 ButtonUp - Set Text - ButtonWdgetl

| aBut t onW dget _Set Text ( (| aButt onW dget *) But t onW dget 1,
laString_CreateFrom D(string_lnstructions));

}

// Display_S1 - PressedEvent

voi d Display_S1_PressedEvent (| aButtonW dget* btn)
{

// CUSTOM CCDE - DO NOT DELETE

bDi splay_Sl1State = true;

/1 END OF CUSTOM CCODE

}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 73



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

/1 Display_Sl1 - Rel easedEvent

voi d Display_S1_Rel easedEvent (| aButt onW dget * bt n)
{

/] CUSTOM CODE - DO NOT DELETE

bDi splay_Sl1State = fal se;

/1 END OF CUSTOM CODE

}

The ButtonWidgetl changes the text using the | aBut t onW dget _Set Text function. Details on how this is accomplished are discussed in the
Quick Start Guide “Adding an Event to the Aria Quickstart Demonstration”.

The Display_S1 widget just sets a Boolean semaphore bDi spl ay_S1St at e. Creating the events for the Display_S1 virtual switch is easy, just
enable the widget's events in the widget's properties:

(] Properties Editor = %3
SN E

Hidden ] -
[=] Widget

Name Display_S1

[+] Position [3,3]

[+] Size [74,100]

Enabled V]

Visihle 7
(=] Events

Pressed @] m

Released V] =)

This will create empty event handlersin | i bari a_event s. ¢, which can then be modified to change the boolean semaphore
bDi spl ay_S1St at e as shown above.

The application’s macros are defined in | i bari a_macr 0s. ¢ change the coloring scheme for the display’s virtual LEDs:
#include "gfx/libarial/libaria_macros.h"

voi d LEDsTur nOn(voi d)

{

i f(laContext_GetActiveScreenlndex() != default_ID)
return;

/1 TurnOnDi spl ayD6 - Set Schene - MEB2_LED D6

| aW dget _Set Schere( (| aW dget *) MEB2_LED D6, &LED ON);
/1 TurnOnDi spl ayD7 - Set Schene - MEB2_LED D7

| aW dget _Set Schere( (| aW dget *) MEB2_LED D7, &LED ON);
}

voi d LEDsTurnOf f (voi d)

{

i f(laContext_GetActiveScreenlndex() != default_ID)
return;

/1 TurnO fDi splayD6 - Set Schene - MEB2_LED D6
| aW dget _Set Schene( (| aW dget *) MEB2_LED D6, &LED OFF);
/1 TurnO fDi splayD7 - Set Schene - MEB2_LED D7
| aW dget _Set Schene( (| awW dget *) MEB2_LED D7, &LED OFF);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 74



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

}
The difference between the color scheme LED_OFF and LED_ON is only in the base color:
2. Scheme Editor ﬁ 2 Scheme Editor i
(=) Scheme ) Scheme
Name LED_OFF Name LED_ON
=) Colors =) Colors
+ Base [24,51,26] [ + Base Il (31,0,0) -
) Highlight [24,51,26) = ) Highlight [24,51,26) CJ

The macros LEDsTurnOn and LEDsTurnOff are called from the application’s main task loop, APP_Tasks. The work of controlling the LEDs is
done in the APP_STATE_SERVI CE_TASKS case.:

#include "gfx/libariallibaria_macros. h"
bool bMEB2_Sl1State = fal se;

bool bDisplay_SiState = fal se;

bool bLED State = fal se;

bool bLED St at eNow;

void APP_Tasks ( void )
{

/* Check the application's current state. */
switch ( appData.state )

{

/* Application's initial state. */

case APP_STATE_INIT:

{

bool applnitialized = true;

if (applnitialized)

{

appDat a. st ate = APP_STATE_SERVI CE_TASKS;
}

br eak;

}

case APP_STATE SERVI CE_TASKS:

{
bMEB2_SlState = ! BSP_SW TCH SiStateGet(); // dosed --> grounded

bLED St at eNow = bMEB2_Sl1State || bDi splay_S1St at e;
if ( bLED State != bLED_ Stat eNow )

{// LED state has changed

if ( bLED_StateNow )

{

BSP_LED D6On(); // MEB2 LED D6 On

BSP_LED D7On(); // MEB2 LED D7 On

LEDsTurnOn(); // Turn display LEDs on

}

el se

{

BSP_LED D6CFf(); // MEB2 LED D6 O f
BSP_LED_D7OFf(); // MEB2 LED D7 Of f

LEDsTurnOf f(); // Turn display LEDs off

}//end if ( bMEB2_Sl1State || bDisplay_SlState )
bLED State = bLED StateNow, // Remenber new state
}

br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 75



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

/* TODQ inplement your application state machine.*/

/* The default state should never be executed. */
defaul t:

{

/* TODO Handle error in application's state machine. */
br eak;

}
}
}

Heap Estimator
Provides information on heap space allocation.

Description

Many parts of a graphics design are implemented using memory allocated from the application’s heap space. Therefore, it is important to allocate
sufficient memory for the heap. This tool can estimate heap usage by the allocation based on the widgets, layers, screens, and decoders currently

in the design.
When launching the tool from the Tools menu, the Heap Configuration window appears.

1 1 I ! l
Configure MHC

Current MHC Heap Value: ’ ‘ {

Set MHC Heap Value }

Calculate

Estimated GFX Heap Requirements: ] |

L Add To MHC Heap Value }

Note: This value is only an estimation of the required memory needed to support the graphics stack. Other subsystems may require heap space as well and this
calculation includes a modest accomodation for these systems. This amount may not be enough.

Summary | Screen Details
Name Size (Bytes) Description

Clicking Calculate estimates heap usage. The following figure shows what occurs within the Aria Quickstart demonstration if the heap space is
only 4096 bytes:

' ! nsufficient Memory Ale !

Current MHC Heap Value: l4096 } [ Set MHC Heap Value ]

Calculate
Estimated GFX Heap Requirements: 10664 } [ Add To MHC Heap Value ]

Note: This value is only an estimation of the required memory needed to support the graphics stack. Other subsystems may require heap space as well and this
calculation indudes a modest accomodation for these systems. This amount may not be enough.

Summary | Screen Details
Name Size (Bytes) Description
HAL Context 1344
Aria Context 200
Aria Overhead 2048 |General library overhead
JPEG Decoder 2048|JPEG decode block
Largest Screen 928|default
- [Other Harmony Components 4096 Extra space to accomodate other system components.

The Summary tab shows how the estimated heap requirements was derived by summing up all the sizes shown under the “Size (Bytes)” column.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Note that the largest contribution comes from the screen requiring the largest heap allocation (in this case MainMenu).

If there is insufficient memory allocated to the heap, an exclamation point (! ) appears in the window. If you hold your mouse pointer over this icon,
the following message appears:

The current MHC heap value is not high enough
to accommodate the estimated requirements of
the graphics stack. Please adjust the value.

You can click Set MHC Heap Value to reset the heap allocation to match the estimated requirements. Selecting Add to MHC Heap Value adds
the estimated heap requirements to the current heap value. (In the case above, this would change the heap allocation to 4096+10664 bytes.)

Alternately, you can set the heap allocation to a larger value by going to the MPLAB Harmony Configurator window, selecting the Options tab and
setting the Heap Size within Device & Project Configuration > Project Configuration.

StartPage  #| MPLAB® Harmony Configurator® &
B3P | e |20 | %

Options™ | Clock Diagram X | Pin Diagram x| Pin Settings x|

MPLAB Harmony & Application Configuration
[+--Application Configuration
[+-Harmony Framework Configuration
[+-BSP Configuration
[+)-Third Party Libraries
[=-Device & Project Configuration
+}-PIC32MZ 2048EFH 144 Device Configuration
=}-Project Configuration
Generate Standalone Project?
. **% Note: Standalone Project generation not supported fc
—]-XC32 (Global Options)

=Hxc324d
[=-General
Heap Size (by’oes)
+-ISA Mode

The Screen Detalils tab (from the Aria Showcase demonstration) shows screen-by-screen the heap space needed for each layer and widget on the
screen selected.

After you have updated the Heap Size, either using the Heap Estimator tool or by directly editing the value as shown above, you
Note:  must regenerate the project using the Generate Code button. This will update the actual heap size value used in building the
application.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 77



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

1 Hesp Confiueation N mpl

Current MHC Heap Value: 230000 [ Set MHC Heap Value ]
Estimated GFX Heap Requirements: 190903 [ Add To MHC Heap Value ]

Note: This value is only an estimation of the required memory needed to support the graphics stack. Other subsystems may require heap space as well and this
calculation incdudes a modest accomodation for these systems. This amount may not be enough.

Sunmary Screen Details l

Tervm— “|| Total sze (bytes): 1188
FirstScreen
SecondScreen Name Type Size (Bytes) Description
ThirdScreen = | |Layer0 Layer 288
FifthScreen HarmonyLogoWidget ImageWidget 172|
SettingsScreen SplashBar ImageWidget 172|
MainMenuHelp SplashBarLogo ImageWidget 172|
_||ListwheelHelpScreen PanelWidget PanelWidget 156/ |

TouchTestHeloScreen

Clicking the “Name” column will alphabetize the list. Clicking the “Size (Bytes)” column sorts the assets by size, with the largest at the top and
smallest at the bottom.

This sub-tab can help in managing the application’s utilization of heap space. For example, excess use of cached backgrounds for widgets can
become ruinously expensive, expanding the application’s need for heap well beyond the capabilities of the device. As an example, consider a
screen label from the Aria Showcase demonstration.

The Heap Estimator tool shows that if caching is enabled for the label's background, this widget requires 23699 bytes of heap to store the widget.
Note that the label is twice the size of the text it contains, so one way of reducing the cost of the widget is to make it smaller, thereby reducing the
number of background pixels that must be stored. If the label is resized, the heap allocation is reduced to 11688 bytes, which is a drop of
appoximately 50%. Finally, if the background is changed from “Cache” to “Fill” the widget only needs 188 bytes.

The lesson learned is to use Cache as a background only for widgets where it is absolutely necessary and to make the “cached” widgets as small
as possible.

Global Palette
Provides information on the Global Palette features.

Description

The Global Palette window is launched from the Graphics Composer’s Asset pull-down menu.

Using a Global Palette enables frame buffer compression for the LCC graphics controller. It creates a 256 color look up table (LUT) and then
changes the entire user interface design to adhere to that LUT. Frame buffers are stored as 8 bits/pixel (bpp) indices rather than 16-32 bpp colors.
The display driver performs a LUT operation to change each LUT index into a color before writing to the display/controller memory. This enables
the use of double buffering, without using external memory, on devices that could not support it before. It also supports single buffering on larger
displays. Of course, running the LUT requires more processing on the host. Currently only the LCC graphics controller supports this feature. The
Aria demonstration Aria Basic Motion is an example of how using a Global Palette greatly improves the efficiency and capabilities of a design.
Enable the Global Palette by clicking on the Enable Global Palette check box in the window or using the File > Settings menu. the Global palette
can always be disabled. MHGC will then restore the project back to its original configuration.

If the global palette is enabled you will have to change the MHC configuration of the Graphics Controller to match. For the LCC controller, enable

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 78



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

"Palette Mode". For the GLCD controller, change the Driver Settings > Fame Buffer Color Mode to "LUT8".

The results of enabling the Global Palette:

* 8bpp frame buffers. In the case of the most common demonstrations this means a 50% reduction in the size of the frame buffer.

« This also opens up the capability to support a single frame buffer for some larger displays.

What is lost by enabling the Global Palette:

» First and foremost - No Dynamic Colors. Dynamic colors are unlikely to match up with an entry in the global palette’s look-up table.

* No alpha blending capability. The level of alpha blending can be changed during run-time. (See No Dynamic Colors.)

* No JPEGs or PNGs. Again, no dynamic colors. All images in MGHC will be changed to the color mode of the project, and generated as Raw.

* No font anti-aliasing. Again, no dynamic colors. While the 8-bits/pixel for each glyph is known, the color of the text depends on the color
scheme used, and color schemes can change at run time.

» Additional overhead when performing LUT (index->color) operations in the display driver.
The following figure shows the default “Global Palette” when Project Color Mode is set to RGB_888.

o5t 4

: ' P 0 @)  [] Enable Global Palette

I C] Global Palette |
- AL — AN AN A Aann
P c0; @) | Enable Global Palette

000000 800000 008000 Tool Icons:
808080 FF0000 00FF00 _ .
00005F 000087 0000AF 1: Import From Image File
Q0SFAF 005FD7 00SFFF .
Soaar okl il 2: Auto-Calculate Palette
00DZSE ST aoniap 3: Reset to Default
4: Enable Global Palette
FF875F FF8787 FF87AF FF87D7 [ETRTCY
FFAFAF FFAFD7 FFAFFF FFD700 FFD75F FFD787 ] FFD7AF [FFD7D7
FFD7FF FFFF00 FFFFSF FFFF87 FFFFAF FFFFD7 FFFFFF 080808

121212 1cicic 262626 303030 3A3A3A 444444 4E4E4E 585858
626262 606060 626262 767676 808080 SASASA 949494 9ESEJE
ASASAS B2B2B2 BCBCBC C6C6Co DODODO DADADA |E4E4E4 EEEEE

This default palette is good for designs that use a wide array of colors. MHGC also supports developing a custom palette by importing an image
defining the palette or by analyzing the pixel colors already in use by the application’s images. The palette’s color mode is determined by the
Project Color Mode, which is determined by the graphics controller.

Clicking on an entry in the palette with bring up the Color Picker dialog window, allowing you to edit the entry’s color.

Window Toolbar

There are four icons on the toolbar:

1. Import From Image File - Importing a global palette from an image file. Selecting this brings up the following warning. Images can be imported
as a BMP,.GIF, JPEG, and PNG (but not TIFF).

' N
Import Image E

Please select an image to import to configure the global palette. Any supported image format may be used.
The first 256 unique colors of the source image will be used to configure the palette values. If the image contains fewer
than 256 unique colors then the available colors will be used and the remaining palette values will be filled with zeros.

2. Auto-Calculate Palette — Calculates a new palette using the current design. Selecting this brings up the following warning.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 79



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

p
Auto-Calculate Global Palette? g

The global palette auto-calculation algorithm analyzes the current design and calculates a palette based

on an aggregate of the colors present. If more than 256 colors exist then the most similar colors are averaged

until the color count is reduced to an acceptable level. Color posterization may occur for designs with a high

color count. For low color count designs this algorithm may help provide a better color match than the default palette.

Warning: Depending on the number of unique colors in the project this algorithm can take a long time to execute.

Are you sure you want to discard the current palette values and run the auto-calculation algorithm?

* Selecting Yes opens a status window that shows the progress made in selecting a palette of 256 colors

ph
2 Auto-calculating Global Palette M

Compressing color list...

Color Table Size: 2189
Cancel I

« This can be lengthy operation, but it will effectively generate a palette better tailored to the design. However, extreme (or rare) colors will be
changed to nearby, more-plentiful colors, thereby eliminating some of the contrast in images. Whites will tend to darken and blacks lighten. This
can be remedied by editing the calculated palette to whiten the whites, darken the blacks, and make other colors closer to the original. This of
course may increase the posterization of the image, but that is a natural trade-off in using only 256 colors.

3. Reset to Default — This returns the Global Palette to its default values, which opens the Reset Global Palette dialog.

4 N\
Reset Global Palette? ﬂ

Are you sure you want to reset the global palette to its default values?

Yes |No}

4. Enable Global Palette — This performs the same function as File > Settings: Using a Global Palette. Selecting this opens the Enable Global
Palette Mode warning.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 80



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

-
Enable Global Palette Mode?

L3

1. Compressed Image Decoding (JPEG, PNG, etc)
2. Alpha Blending
3. Anti-aliased Fonts

work properly in palette mode.

Are you sure you want to enable global palette mode?

You are about to enable "Global Palette” mode. This mode converts all images and scheme colors into an 8-bit format
and generates a global lookup table for use by a display driver. This allows frame buffers to be stored using less memory.
Some graphics features are incompatible with this mode and will be automatically disabled:

In order for this mode to work properly you must assign a scheme to all layers and widgets. Aria's internal scheme will not

Yes ;| [ Cancel ]

Widget Colors
Provides information on widget coloring.

Description

Widget Colors

Widget coloring can be customized by creating additional color schemes and assigning these customized schemes to a subset of the widgets

uses. For example, a ButtonColorScheme could be customized and used only for Button Widgets.

To help highlight the different colors available for each widget, a “CrazyScheme”, with extreme contrast among the 16 available colors, was used

as the color scheme for each widget:

[ Scheme
Name

[=] Colors
Base
Highlight
Highlight Light
Shadow
Shadow Dark
Foreground
Foreground Inactive
Foreground Disabled
Background
Background Inactive
Background Disabled
Text
Text Highlight
Text Highlight Text
Text Inactive
Text Disabled

CrazyScheme

[192,192,192]

[ [255,0,0]
[255,255,255]
[255,255,0]
[192,192,0]

[ [0,255,0]

M 0,128,0]

[l [0.582,0]
[0,255,255]

I [0,192,192]

Il [0, 128,128]

Il 0,0,128]

Il [0,0,255]
[224,224,224]
[178,188,191]

M [96,101,102]

Use this color scheme to help identify the relevant colors for the widgets listed below.

The left column shows the coloring assignments for a Bezel boarder. The right side shows Line/No Border color assignments.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

81



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Widget With Bezel Border Widget With Line or No Borders
Arc Widget:
. Arc, Filled Arc, Filled
Arc, Filled ov ’
Highlight Light oo
(o3 < =
= 9 g o
ra o D Foreground
22 o o
S o o) Foreground
w S Foreground @ Base
3 ® 2 Base
@ Base 3
§ Shadow Dark Parent Base
2 No Fill Or Layer Background
Shadow .
Shadow Dark Foreground No Fill
No Fill
Highlight Light Foreground
Parent Base
Foreground Or Layer Background| p, oh¢Base
Shadow Dark Or Layer Background
Parent Base
Or Layer Background
Shadow
Shadow Dark
Bar Graph:
Bar Graph Bounda
Bar Graph Boundary o D Y
© §__Highlight Light 58
e S -~
22 % w Base
® o Base wd
@5 @
2 8 5
£y s Foreground @ Foreground
3 Shadow 5 Shadow Dark
§_ Shadow Dark =

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 82



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

&) TestString

hadow Dark ext

Checked Box Unchecked Box

Shadow Shadow
Shadow Dark Shadow Dark
] - Base Base
‘Foreground - Background
- ’Background
Highlight Highlight
Highlight Light Highlight Light

Base

E'ﬁShadowDarkI'ﬁﬁﬁﬁifﬁ'ﬁ
Or Layer Background ' __41 ST 1

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

83



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Circular Slider Circular Slider
Border, Filled Border, Filled

Highlight Light o

o3 4 g | |
-3 Background
% S g | 9 |
So ®

P

‘ -

S  Shadow No Fill

3 Shadow Dark

No Fill
Highlight Light

:

§hadow
Shadow Dark

11T

Shadow Dark

aseg juaied

punoubyoeg 1aAe 10 punoiboeg Jake] 10

‘oseg jualed

punouboeg Jake] 10

“Highlight Light

Parent Base
Or Layer Background

hadow Dark Foreground

Foreground Inactive

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 84



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Shadow. | Shadow

ighlight
Light
-

Parent Base

Or Layer Bgnd
Image or Image, Image Plus,
Image Sequence or Image Sequence

Shadow Dark Base

Parent Base

Or Layer Background

{ H N\ I

Or Layer Background

ighlight Light
A . _

Parent Base = o
Or Layer Background

~ Highlight Light
1

Shadow
o e

Parent Base
Or Layer Background

oreground

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 85



Volume Ill: MPLAB Harmony Configurator (MHC)

Line Graph Boundary
Q ¥ __Highlight Light

=8

r o

Q3

§ ot Base

Q

i

S

3 Shadow

§_ Shadow Dark

List Wheel

GRADIENT: Shadow
Background Disabled Shadow Dark

To Background Inactive

Foreground
Foreground Disabled

Tex to Foreground Inactive

Highlight Light

MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

aseg juaied =3

e Graph Boundary

Base

Foreground @ Foreground
Shadow Dark

punoabyoeg sekeqio I

List Wheel

Shadow Dark

List 1

Parent Base

Parent Base Or Layer Background
Or Layer Background
Shadow :
List Shadow Dark g S List
o smeme
Unasserted Pressed Asserted < 2 Listl L Text
Texi e : 2
i o8 |List2 List2
o i
2 ., Background
3 - AT &
5
a Shadow Dark
Background Highlight Light
Parent Base
Or Layer Background
© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 86



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Graphics Composer Window User Interface

Parent Base
Or Layer Background

Parent Base
Or Layer Background

Radial Menu

(does not support borde

punouBoeg Jake 10

(if Highlight Prominent enabled

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 87



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Graphics Composer Window User Interface

N pr—

]
| e WYY
ey
(Selectea

Parent Base
Or Layer Background

Shadow

Or Layer Background

Scroll Bar

ighlight Light

hadow
Shadow Dark

Background

EForegroundl
==
/\

Parent Base
Or Layer Background

Scroll Bar

oreground

hadow Dark

ackground

I~

_—7.
Parent Base

Or Layer Background

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

88



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Code Generation

Released Pressed

Shadow Dark
Highlight Light Shadow

Back-
—ground

Shadow Highlight
Shadow Dark Highlight Light

Base

Shadow Darrk

Released

Base!f

Released

Pressed

Back-
ground

Pressed

hadow Dark
Base Shadow

Lnghllght

Or Layer Background

osegq juaied

pubg 1a/e 4

ooooooooooooo
......

ooooooo
ooooooo

ooooooooooooooo

ooooo

Parent Base
Or Layer Background

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

89



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Code Generation
This topic describes using the graphics composer to generate code.

Description

MPLAB Harmony Graphics Composer data is generated the same way as the rest of the project within MHC through the Generate button.

libaria_harmony.h/c — These files provide the interface that binds libaria to the overall MPLAB Harmony framework. They contain the
implementations for the standard state management, variable storage, and initialization and tasks functions. If the touch functionality is enabled
then the touch bindings are also generated in | i bari a_har nmony. c.

libaria_init.h/c - These files contain the main initialization functions for the library state and screens. The header file contains all predefined
information for the library state including screen IDs, schemes, and widget pointers. The main initialization function initializes all schemes and
screens, creates all screen objects, and sets the initial state of the library context. As each screen must be capable of being created at any time,
each screen has a unique create function that can be called at any time by the library. The | i bari a_i ni t. c file contains these create functions.

libaria_events.h/c — The event files contain the definitions and implementations of all enabled MHGC events. Each event implementation will
contain all generated actions for that event.

libaria_macros.h/c — The macro files contain the definitions and implementations of all defined MHGC screen macros. A macro is similar to an
event in that it can contain actions. However, it is meant to be called from an external source such as the main application.

libaria_config.h — This file contains configuration values for the library. These are controlled through settings defined in the MHC settings tree.
gfx_display_def.c — This file contains generated definitions for enabled graphics displays.

gfx_driver_def.c — This file contains generated definitions for enabled graphics drivers.

gfx_processor_def.c — This file contains generated definitions for enabled graphics processors.

gfx_assets.h/c — These files contain generated asset data.

Advanced Topics

This section provides advanced information topics for MHGC.

Adding Third-Party Graphics Products Using the Hardware Abstsraction Layer (HAL)
This topic provides information on using the Hardware Abstraction Layer (HAL) to add third-party graphics products.

Description

The architecture of the MPLAB Harmony Graphics Stack is shown in the following diagram.

MPLAB Harmony Configurator and
Graphics Composer Suite

\

Application
Y
Third-Party Aria User
Graphics Library Interface Library
v
Graphics Utilities
Library

Y
Hardware Abstraction Layer

v

\J Y
Graphics Graphics Graphics
Controller Controller Accelerator

Driver Driver Driver

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

90



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Hardware Abstraction Layer (HAL)

The HAL is a software layer that serves as a gatekeeper for all graphics controller and accelerator drivers. This layer is configured at initialization
by the underlying graphics drivers and provides functionality such as buffer management, primitive shape drawing, hardware abstraction, and draw
state management. This layer serves as a means of protection for the drivers, frame buffers, and draw state in order to prevent state
mismanagement by the application.

Third-Party Graphics Library

The third-party graphics library can be used with the MPLAB Harmony framework to perform the graphics operations desired by the application.
The third-party library has access to the HAL, which has been configured to service the frame buffer which is filled by the third-party graphics
library.
The third-party graphics library can access the MPLAB Harmony framework drivers such as touch drivers, graphics controller driver, and display
driver through the HAL. The draw pipeline and the user interface (Ul) design files come from the third-party graphics library. The third-party
graphics library needs the frame buffer location to fill the frame buffer with the pixel values. Or, in case of external controllers, it would need a
function to access the controller drivers to output pixels on the display. The HAL provides the third-party graphics library with the frame buffer
location or the APl to communicate the pixel values to the external controllers.
The following figure from the MPLAB Harmony Configurator (MHC), shows the selections made in the Graphics Stack to enable the needed
graphics display and controller features. Note that the Draw Pipeline for the MPLAB Harmony Graphics Stack has been disabled to assure that the
third-party graphics alone is taking effect. The MPLAB Harmony Graphics Configurator (MHGC) is also not enabled, as the design tools from the
third-party graphics library are used to generate the Ul graphics. The LCDConf . c file has appropriate APIs for the third-party graphics library to
communicate through the HAL with the display drivers and the framebuffer.
[+}-Drivers
[=}Graphics Stack
- [¥] Use Graphics Stack?
[+-Graphics Display
[=}-Graphics Controller
-Select Controller Type |GLCD v
£-GLCD

:--Driver Implementation |STATIC v

E Pixel Clock Settings

\3}',» Driver Settings

[#-Graphics Processor

[#-Timing Controller

[=+-Graphics Options

. [7] Enable Draw Pipeline

D Use Harmony Graphics Composer Suite?
[#-Math Library

[+-MPLAB Harmony Networking

+-Operating System Abstraction Layer (OSAL)

+-Peripheral Library

[+-Sample Module

[+-System Services

- Tests

+-TCPIP Stack

[+}-USB Library

[+)-BSP Configuration

|- Third Party Libraries

[#-RTOS

[#-TCPIP

[=}-Graphics

(=) [¥] Use SEGGER emWin Graphics Library?
=}-SEGGER emWin Graphics Library

[ [¥] Use SEGGER emWin Touch Wrapper?
: [#-emWin Touch Wrapper
=) [¥] Use SEGGER emWin GUI Wrapper?

[#-emWin GUI Wrapper

Example Demonstration Project

The Aria demonstration project, emwin_quickstart, has three configurations. Each configuration has an APl nhamed LCD_X_Config, which is

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 91



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

generated with the relevant calls for SEGGER emWin to communicate with the display driver and obtain the frame buffer location pointer to write
the pixel data to it. For PIC32MZ DA and PIC32MZ EF configurations, the frame buffer pointer address is provided to SEGGER emWin by the
HAL. For the S1D controller on PIC32MX devices (pic32mx_usb_sk2_s1d_pictail_wqgvga), The pixel write function pointers are assigned to the
appropriate S1D driver APIs, which allow SEGGER emWin to write to the display controller.

Speed and Performance of Different Image Decode Formats in MHGC
Provides information and recommendations for image decode formats.

Description
MHGC supports various image formats and the MHGC Image Assets Manager provides the ability to convert and store a source image into to the
following formats
* Bitmap RAW
¢ Bitmap Raw Run-Length Encoded (RLE)
« JPEG
« PNG
e Predecoded RAW Bitmap in DDR (PIC32MZ DA)
The following table shows the relative rendering time and Flash memory requirements of the different image formats in the MPLAB Harmony
Graphics Library. The rendering time includes decoding the image and drawing it to the screen. This information is helpful when optimizing a
MPLAB Harmony graphics project for performance and/or Flash memory space. For example, as shown by the red highlighted text in the table, a
40x40 pixel 16-bit RAW image renders 2.38 times faster and uses 2.59 times more Flash space than a JPEG image.

Resolution sizein

Image Format (Pixels) Flash  Relative Frame Update Rate Relative Size In Flash

(Bytes)
Versus RAW | Versus JPEG Versus RAW Versus JPEG
(16-bit) (24-bit) (16-bit) (24-bit)

40x40 3200 1 2.38 1 2.59
Raw 16-bit 100x100 20000 1 2.73 1 6.23
200x200 80000 1 2.67 1 11.23
40x40 1796 0.71 1.68 0.56 1.45
Raw 16-bit RLE | 100x100 5288 0.57 1.55 0.46 2.89
200x200 25916 0.56 L5 0.37 4.2
40x40 1237 0.42 1 0.39 1
100x100 3212 0.37 1 0.16 1
200x200 7123 0.38 1 0.09 1
i 40x40 1999 0.34 0.8 0.62 1.62

PNG (32-bit)
100x100 6782 0.25 0.68 0.34 2.11
Predecoded 40x40 1237 0.81 12z 0.39 1
RAW in DDR 100x100 3212 2.68 7.32 0.16 1
(from JPG) 200x200 7123 10.06 26.83 0.09 1

Predecoded Images in DDR (RAW)

For PIC32MZ DA devices with DDR, the MHGC Image Asset Manager provides an option to predecode images from Flash and store them into
DDR as RAW images. The GPU is used to render the decoded image from DDR to the frame buffer. This provides a faster render time than an
equivalent RAW image in Flash memory, specifically for large images (up to 10 times faster for a 200x200 image). Conversely, predecoding small
images 40x40 pixels or smaller in DDR may not render faster due to the additional overhead of setting up the GPU.

Recommendations:
« If there is adequate DDR memory available, consider predecoding images to DDR for best performance
* Using JPEG images and predecoding them into DDR can provide the best rendering performance and most Flash memory savings.

D The images are decoded from Flash to DDR memory by the Graphics Library during initialization and may introduce delay at
Note:  boot-up, depending on the number and size of the images.

RAW Images

RAW images provide fast rendering time, as there is no decoding needed. However, depending on image content, it can be two times larger than a
Run-Length Encoded (RLE) image and about 3 to 10 times larger than a JPEG.

Recommendation:
For small images that are to be rendered frequently, consider using a RAW image for better performance

JPEG Images

JPEG images provide the most Flash space savings, but are slower to render compared to RAW and RAW RLE.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 92



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Recommendations:

« Ifimages are large and not used frequently, consider using the JPEG image format to save flash memory space
« |If DDR memory is available, consider predecoding JPEG images in DDR for better rendering performance

Run-Length Encoded RAW Images

In terms of rendering speed and size, RAW RLE images are in between RAW and other compressed formats like JPEG or PNG. Depending on the
image contents, RAW RLE can be approximately 1.5 times faster than JPEG, but could be significantly larger in size for large images. Again,
depending on the image content, RAW RLE can be about half the size and performance of a RAW image.

Recommendation:
If optimizing your application for both speed and flash size consider using RAW RLE images
PNG Images

Among the image formats, PNG is slowest to render and requires more memory to decode.
Recommendations:

* Unless fine levels of alpha-blending are needed, it is better to use other image formats to achieve the best performance. Use the MHGC Asset
Manager to convert the source PNG image and store it in a different image format.

« If you would like to use an image with a transparent background, it may be better to use a RAW RLE image with background color masking to
achieve the same effect with better performance than a PNG. Color masking is supported in the MHGC Image Asset Manager.

Draw Pipeline Options

This section details how to use the Graphics Pipeline.

Description

The nominal rendering pipeline for an image is shown in the following figure.

Layer Clippin Rectangle S Color

Y PPing Clipping Masking
Orientation

& > Alpha >{ Color Conversion
Blending
Mirroring
\
Frame Buffer
Write

The order of rendering for other widgets may differ. For example, for a colored rectangle the color mask is first checked. If the rectangle’s fill
matches the mask color defined then there is nothing to draw.

Graphics Pipeline

Provides information on the graphics pipeline.
Description

Layer Clipping

In order of the processing, Layer Clipping is first applied to the image. If the image extends beyond the edges of the layer that contains it then
those pixels are not drawn. Failure to clip out-of-bound pixels can cause the application to crash. The following figures shows an example of layer
clipping:

Before applying layer boundaries:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 93



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Frame Buffer

After applying layer boundaries:

Frame Buffer

Rectangle Clipping
Next, the image is clipped to the boundaries of any widgets that contain it as a parent, such as a rectangle.
Before applying the clipping rectangle.:

Frame Buffer

After applying the clipping rectangle:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 94



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Frame Buffer

Color Masking of Pixels

Pixels in the image are matched to a mask color. If the colors match the pixel is discarded (not drawn). In the following example, the black border
of the image is removed by defining the mask color to be black.

Before applying color mask:

Frame Buffer

After applying color mask:

Frame Buffer

Orientation and Mirroring

The logical orientation of the graphics design may not match the physical layout of the display. Pixels may need to be reoriented from logical to
physical space before being rendered.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 95



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Physical 0,0 Logical 0,0
Frame Buffer

Pixels may also need to be flipped (mirrored) before being rendered.
Physical 0,0

Frame Buffer

U

Logical 0,0

Alpha Blending

Each pixel drawn is a composite of the image color and the background color based on the alpha blend value defined by a global alpha value, the
pixels alpha value, or both.

Before alpha blending:

Frame Buffer

After alpha blending:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 96



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Frame Buffer

Color Conversion

The image color format may not be the same as the destination frame buffer. Each pixel must be converted before it is written. In the following
example, the image is stored using 24 bits per pixel; however, the frame buffer uses 16 bits per pixel.

Frame Buffer (RGB_565)

Image (RGB_888)

Frame Buffer Write
The final stage in rendering an image is to write each-color converted pixel to the frame buffer.

Graphics Pipeline Options
Provides information graphics pipeline options.

Description

Each stage in the graphics pipeline adds overhead to the rendering. Stages can be removed from processing using MPLAB Harmony Configurator
(MHC) options for the Draw Pipeline, found by selecting MPLAB Harmony Framework Configuration > Graphics Stack.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 97



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

-}-Graphics Stack

=[] Use Graphics Stack?
+-Graphics Display
+-Graphics Controller

+-Graphics Processor

&) + +)

+

1-Timing Controller
}-Graphics Options
-)-- [¥] Enable Draw Pipeline
(V| Enable Alpha Blending
(V] Enable Bounds Clipping

V] Enable Color Conversion
(V] Enable Color Masking
(V] Enable Layer Clipping
(V| Enable Orientation and Mirroring
+}- [¥] Use Harmony Graphics Composer Suite?
+}-Math Library
For example, the Alpha Blending stage can be disabled if your graphics application does not use alpha blending. If the color mode of the display

matches the color mode of all images you can disable Color Conversion. Disabling unneeded stages can improve performance and reduce code
size.

Also, a graphics controller driver may add additional stages, or opt to bypass stages completely depending on the capabilities of the graphics
hardware supported by the driver.

Improved Touch Performance with Phantom Buttons

This topic provides information on the use of phantom buttons to improve touch performance.

aria_coffeemaker Demonstration Example
Provides image examples with buttons in the aria_coffeemaker demonstration.

Description
Small buttons are hard to activate on the screen. The use of phantom (invisible) buttons can improve touch performance without increasing the
size of the visible footprint of the button on the display.
The aria_coffee_maker has a sliding tray on each side of the display. Sliding a tray in, or out, is accomplished by a phantom (invisible) button.
Looking at the left tray, we see the three parts of this phantom button.
1. LeftTrayLid: An invisible button widget, whose outline is shown in blue. This area is the touch field.
2. ImageWidget5: An image widget containing a hand icon, providing a visual clue as to how to manipulate the tray.

3. The Release Image and Pressed Image: These are defined as part of the button widget properties. The Pressed Image has a darker coloring
than the Released Image. This difference is what shows the user that the button has been pressed.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 98



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

‘ =)ok LeﬂTrayLid 480
= ImageWidget5
|

vc’ﬂ“%

d .

Ty

o3ew | pasea|ay
odew| passaid

GBI
@a

(0.271) 2 ©x] Left:rr.ayLid

2 =

The drawing hierarchy for this part of the design is shows that ImageWidget5 is a daughter widget to the LeftTrayLid button widget.

@ Layer2
=~ (] DragPanel
= [ PanelWidget2
- [9K] Changelanguage
[©X] CoffeeButton
(9K] CoffeeBeanButton
(©X] TeaButton
(©X] InfoPageButton
~ /A AppTitieLabel
= [©K] GPUButton
A GPUButtonLabel
=

= ImageWidgetS

Examining the properties of the LeftTrayLid button widget reveals more about how this works. The following figure demonstrates these three
properties.

1. The Border is defined as None.

2. Background Type is defined as None.

3. The different images used will show when the button is Pressed or Released.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 99



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

1 "
(] Propertes Editor =201
8
[=) Editor
Locked ]
Hidden (|

[ Widget

Name LeftTraylLid
¥ Position [210,0]
Size [70,272)
Enabled vl
Visible @

1  Border [None]
Margin [0,0,0,0]

‘ Scheme  trayScheme v

2 Background Type [ None v
Alpha Blending ]

Optimization Flags [false, false, false]
[=] Button
Toggleable O
Text String ( =[]
Alignment [Left,Middle]

3 Pressed Image [ tray_left_pressed )
Released Image  tray_left vi)
Image Position (LeftOf v)
Image Margin 10
Pressed Offset 0

[=] Events
Pressed [
Released [

Advanced Topics

By setting the border and background to None, the button is invisible. Only by providing different images for Released versus Pressed does the
user know when the button has been pressed.
The actual touch region defined by the button is much larger than the images shown on the display. This extra area increases the touch response

of the display.

Small Buttons Controlled by Phantom Buttons

Provides information on phantom button control of small buttons.

Description

When the border is not set to None, and the background is not set to None, the button widget provides a direct visible clue to the user when it is
pressed. Which can be seen in the following figure with the button from aria_quickstart. In aria_quickstart, ButtonWidget1 has a bevel border, and

a fill background.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

100



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

480
©0) | | (479,0)

GFX_Quickstart

(] Tree View

MPLAB QX[ F

[

HARMONY:- 200 e

| = ImageWidget1
- ‘ @ Buttonidget:

IMake changes. Generate. Run. |

(0,271) (479,271)

Let's use aria_quickstart to demonstrate how to control ButtonWidgetl using a phantom button to surround it, thereby increasing touch
responsiveness.

When using a bevel border and filled background, the button provides visible feedback when it is asserted.

Outer Top/Left Border Background
HighlightLight Base

N

netortr |y feleased

Text Inner Bottom/Right Border Outer Bottom/Right Border
Text Shadow ShadowDark
Outer Top/Left Border Inner Top/Left Border Background
ShadowDark Shadow Background

v/ /
Pressed
I 4

Inner Bottom/Right Border Outer Bottom/Right Border
HighlightLight HighlightLight

To use this feedback mechanism instead of images, there is a way to have a small button on the display, with a larger touch zone provided by
another phantom button.

Steps:

1. Click on ButtonWidget1 in the Screen Designer panel. Go to the Properties Editor panel for the widget and uncheck the Enabled property to
disable the button. Enable Toggleable so that this button will have a memory.

2. Drag a new button from the Widget Tool Box panel and center it around ButtonWidgetl. In the Properties Editor panel for this new button,
change the name of the widget to PhantomButton. Change the Background Type to None. Leave the Border set as Bevel for now. The
following figure displays the new button in the Screen Designer panel:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 101



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

L IG5 A 0 B (o JL IS A A A A AL A A N g O
l
0: IMake changes. Generate. Run.
:
1
o) O ©
The Properties Editor panel should display the following information.
1 1 1 1 D
(] Properties Editor =08
[= Editor
Locked [
Hidden [
[=] Widget
Name PhantomButton
Position [48,189]
Size [383,71]
Enabled
Visible
[=] Border [Bevel]
Type [Bevel )
Margin 4444
Scheme ( -2
Background Type [ None v)
Alpha Blending [
Optimization Flags [false, false, false]
[=] Button
Toggleable [
Text String ( (=)
Alignment [Center,Middle]
Pressed Image ( v)
Released Image [ v)
Image Position [Leftof v)
Image Margin 10
Pressed Offset 1
[=] Events
Pressed = [
Released = [

3. In the Tree View panel, drag ButtonWidgetl to be a daughter widget of PhantomWidget. When PhantomWidget is moved, ButtonWidget1 will
move along with the parent.

(] Tree vView = [

PN PN
[P TI e
= @ Layer0
A Labelwidget1
= ImageWidget1
=}~ (©K] PhantomButton
[ ButtonWidget1

4. Click on PhantomButton again in the Screen Designer panel and move to the Properties Editor. Enable both the Pressed and Released events.
Then click on the (...) icon to define the events. (See the following two steps.)

[=] Events
Pressed V]
Released W]

5. Defining the Pressed Event.

Click on the (...) icon. In the Event Editor, under Pressed dialog, click the New icon to define a new event. In the Action Edit Dialog that next
appears, leave the selection on the template and hit the Next button. In the next window, select the target of the event. We want to change the
state of ButtonWidget1, so select it and hit Next. The next dialog shows all the template actions that we can use to modify ButtonWidgetl. Choose
Set Pressed State and hit Next. Set the Argument to Enable Pressed. Name this event Set Press state for ButtonWidget1 then hit Finish. Leave

the Event Editor by hitting Ok.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 102



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Provide values for each argument:

[=) Arguments (Set Press State)
Pressed v

6. Defining the Released Event.

Click on the (...) icon. In the Event Editor, under Released dialog, click the New icon to define a new event. In the Action Edit Dialog that next
appears, leave the selection on the template and hit the Next button. In the next window, select the target of the event. We want to change the
state of ButtonWidget1, so select it and hit Next. Choose Set Pressed State and hit Next. Leave the Argument disabled. Name this event Unset
Press state for ButtonWidget1 then hit Finish. Leave the Event Editor by hitting Ok.
Provide values for each argument:

(=] Arguments (Set Press State)

Pressed

7. Generate the application from the MPLAB Harmony Configurator main menu.
8. From the MPLAB main menu, build and run the project. To verify that ButtonWidgetl does change, click outside of the original boundaries.

9. As a final step, hide the PhantomButton by changing its border to None. Next, Generate the code again from MHC. Finally, build and run the
project from MPLAB and see how much easier it is to assert ButtonWidgetl using a phantom button.

GPU Hardware Accelerated Features
This section details how to configure the GPU hardware accelerated features.

Description
On the PIC32MZ DA devices, the on-board 2D Graphics Processing Unit (GPU) peripheral allows certain features to be accelerated. These
features are:
» Line draw
« Single-color rectangle fill
* Image Blit

Once configured, these features are supported by the Hardware Abstraction Layer (HAL) and can be enabled or disabled at run-time. When
disabled, the HAL falls back to the software-based algorithms, and relies on the CPU to perform the features.

Configuring for GPU Hardware Acceleration

The Nano2D library, is the driver library that permits hardware acceleration via the GPU. To make sure the Nano2D library is configured as part of
your application, make sure to enable this in the MPLAB Harmony Configurator (MHC) under Graphics Stack > Use Graphics Stack > Graphics
Processor > Select Processor Type > NANO 2D.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 103



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

MPLAB® Harmony Configurator® st[ ) vid
MPLAB® Harmony Configurator
) H D { I G j d 3 E, ?8
Options® | Clock Diagram  x | Pin Diagram x | Pin Settings x |
Drivers _‘_I

[=H-Graphics Stack
=¥ Use Graphics Stack?
Graphics Display
Graphics Controller
[=-Graphics Processor

-Select Processor Type | NANO 20| Ll
Nano2D
Timing Controller None

Graphics Options

[V Use Harmony Graphics Composer Suite?
Math Library
MPLAB Harmony Networking
Operating System Abstraction Layer (OSAL)
Peripheral Library

Sample Module o
System Services

Tests

TCPIP Stack

USB Library

[=1-BSP Configuration LI

Enabling/Disabling GPU Hardware Acceleration at Runtime
Once configured, the hardware acceleration via the GPU is enabled by default at launch. The hardware acceleration can subsequently be turned
on or off at runtime by calling the following lines of code:
Enable acceleration:
GFX_Set ( GFXF_DRAW PI PELI NE_MODE, GFX_PI PELI NE_GCUGPU) ;
Disable acceleration:
GFX_Set ( GFXF_DRAW PI PELI NE_MODE, GFX_PI PELI NE_GCU) ;
This change takes effect immediately for subsequent draw instructions into HAL.

Line Draw and Rectangle Fill Hardware Acceleration

When the GPU hardware acceleration is enabled, line draw and rectangle fill features are automatically supported. This is supported by HAL
function calls GFX_Dr awlLi ne and GFX_Rect Fi | | . The actual routing of the call between the hardware accelerated support versus the
software-based algorithmic support is abstracted from the caller.

The following table displays performance improvement by comparing the frame update rate of rectangular fills of varying sizes with, and without
hardware acceleration. The table shows that the higher the frame update rate, the better the performance. The measurement is performed using
the entire Harmony Graphics Stack but with most Aria draw pipeline features disabled, so that the focus is on HAL performance.

Rect Fill Size No Acceleration Frame Update | Hardware accelerated Frame Update | Performance Improvement
Frequency (Hz) Frequency (Hz)

60x60 101 160 58.4%

100x100 37 158 327.0%

140x140 19 157 726.3%

180x180 11 156 1318.2%

220x220 8 155 1837.5%

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 104



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

The HAL uses a software algorithm for rectangle fill sizes below 50x50, as the CPU is able to perform the operation faster than the
Note:  GPU below that size.

Image Blit Hardware Acceleration

The only way Image Blits significantly leverage hardware acceleration is via the block transfer of image data that has been preprocessed into
DDR/Internal SRAM memory into frame buffer memory.

The GPU is able to interpret and transfer pixel data in RGB565 or RGBA8888 format only.
Note:

The following table displays performance improvement by comparing the frame update rate of the image blit of the same 100x100 image in varying
formats with, and without GPU acceleration. The table shows that the higher the frame update rate, the better the performance. There is a marked
performance increase when using the preprocessing method (despite the amount of image data is doubled in RGBA8888 versus RGB565).

Image Format (100x100) No Acceleration Frame GPU Frame Update @ Performance
Update Frequency (Hz) Frequency (Hz) Improvement

RGB565 raw pixels 37 60 62.1%

RGB565 with RLE compression 26 34 30.8%

JPEG (24-bit) 17 22 29.4%

PNG (32-bit) 13 15 15.4%

Preprocessed RGBA8888 raw pixels 29 161 455.2%

The GPU works best with image sizes in powers of two (such as 128x128 instead of 125x105). Images with sizes that are not a power of two may
be rendered with artifacts. This is often a case-by-case situation and the way to remedy this is to pad the memory footprint up to the nearest power
of two.

Prior to application use, images stored in flash storage will need to be preprocessed, converting them from the original format into a raw bitmap.
There are two methods to achieve this:

1. Calling from application code: The API GFXU_Preprocess Image can be used to preprocess an image asset to a target memory location (DDR
or internal SRAM) while specifying the destination color mode (RGB565 or RGBA8888). The application developer will need to manage the
target memory and be careful not to stomp on other critical memory structures such as the frame buffer, or the GPU’s command buffer. Power
of two padding can be enabled via the API.

2. The application developer can also use the Image Assets options within the MPLAB Harmony Graphics Composer User's Guide (MHGC) to
specify that certain image assets should be preprocessed at application launch. This can be achieved by enabling image preprocessing as
shown under the Preprocessing sub-section of the Image Asset window as shown in the following figure:

. () Image Assets : = & O |
t2z9 X Saze (oytes): s153- Size of flash memory used by image
pu— —— Memory Location: Intemal Flash =
A Original file name (may be blank)
=] Source Image Information

+ Sze [300, 180] ~
File Name
: -
Nixel Mode 2
5 Image Output settngs HARMONY

Forniat PEG -
0 Prepdessing -

Enabled
- Store preprocessed image in DDR
|

I (Mouse over aoroperty for detaded help)

(] Image Assets Tool Icons:
1 2 3 4 1: Add Image From File

@ o) / 8 * 2: Replace Existing Image with New Image File
3: Rename Selected Image
4: Create New Virtual Folder
5: Delete Selected Images

For more information, see Image Assets and DDR Organizer under the Graphics Composer Asset Management section above.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 105



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Image Preprocessing Memory Management
This sections describes preprocessing.

Description

Whether using internal SRAM only or DDR memory, care must be taken when allocating memory for preprocessing images. For more information,
see Image Assets and DDR Organizer under the Graphics Composer Asset Management section above.

Preprocessing using DDR

For PIC32MZ DA devices with access to DDR memory, the frame buffer and the command buffer for the GPU is also located on the DDR. It is
important for the application developer to select the appropriate memory location in DDR for image preprocessing without trampling on these other
memory structures.

The following table specifies the available addressing region to access the DDR memory.

Device Type Address Range Begin (KSEG1) Address Range End (KSEG1)
Internal DDR (maximum size 32 MB) 0xA8000000 OxA9FFFFFF
External DDR (maximum size 128 MB) 0xA8000000 OXAFFFFFFF

At configuration time, MHGC generates the frame buffer allocation in the application’s system configuration code.

This allocation is targeting a WVGA RGBA8888 3-overlay double-buffered configuration; therefore, six buffer allocations are specified. More DDR
memory can be freed up for image preprocessing using the following:

*  WVGA Resolution is not required

« Enable all three overlays

* Double frame buffering

The application developer may choose to change the allocation manually in syst em confi g. h.

The following table breaks down the allocation:

Frame Buffer Address Range Begin Address Range End
LayerO Buffer 0 0xA8000000 OxA8176FFF
LayerO Buffer 1 0xA8465000 OxA85DBFFF
Layerl Buffer 0 0xA8177000 OxA82EDFFF
Layerl Buffer 1 0xA85DC000 OxA8752FFF
Layer2 BufferO 0xA82EE000 O0xA8464FFF
Layer2 Bufferl 0xA8753000 O0xA88CBFFF

For an example on using image preprocessing using DDR memory, please refer to the aria_coffee_maker application.

Internal SRAM Only

When operating with only the internal SRAM, the frame buffer can take up a significant portion of available memory. To avoid system stability
issues with dynamically allocating memory for the preprocessing, the application developer may want to predetermine the memory footprint
required for the image and assign the memory statically.

For an example of image preprocessing using internal SRAM, please refer to the aria_radial_menu application.

Creating a MPLAB Harmony Graphics Application Using a Third-Party Display

This demonstration provides a step-by-step example of how to create a MPLAB Harmony graphics application using a non-Microchip (third-party)
display.

Description

Introduction

Creating a new MPLAB Harmony graphics application using a Microchip board and a Microchip display is very simple: A new MPLAB Harmony
application is created and the Board Support Package (BSP) belonging to the hardware configuration is selected. If the project is using a
third-party display then there are more steps and this tutorial will provide an example of the process.

This tutorial shows how to connect a third-party display to the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit board (EF
Starter Kit) using two Microchip Adapter boards and a custom ribbon cable. It shows how to setup the pinouts, configure graphics, and adapt an
existing MPLAB Harmony capacitive touch driver to support the display board’s capacitive touch controller.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 106



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Prerequisites

Before beginning this tutorial, ensure that the MPLAB X IDE is installed along with the necessary language tools as described in Volume I: Getting
Started With MPLAB Harmony > Prerequisites. In addition, ensure that MPLAB Harmony is installed on the hard drive, and that the correct MPLAB
Harmony Configurator (MHC) plug-in is installed in the MPLAB X IDE.

A basic familiarity with application development under MPLAB X and MPLAB Harmony is required, including how to use MPLAB Harmony
Configurator (MHC). There are introductory videos on Microchip’s YouTube channel for those who have never used MPLAB Harmony. The first
video to watch is Getting Started with MPLAB Harmony. There is also a Creating Your First Project tutorial in Volume 1 of MPLAB Harmony’s
documentation.

For first time users of MPLAB Harmony Graphics there is a video series on YouTube. The first video is MM MPLAB® Harmony Edition - Ep. 7 -
MPLAB Harmony Graphics Composer Suite. In Volume 1 of MPLAB Harmony’s documentation there are Quick Start tutorials covering graphics,
located at Quick Start Guides > Graphics and Touch Quick Start Guides.

Tutorial Resources
The folder ./ apps/ exanpl es in MPLAB Harmony has a project that can be copied and used as the base of this tutorial,
3rd_party_di spl ay_start, and a project that represents the completed project from this tutorial, 3r d_party_di spl ay.
This is what you will find in the ./ apps/ exanpl es folder under Harmony 2.06:
3rd_party_display
3rd_party_display_start
creating_your_first_project
peripheral
events_testbed
system
If there are difficulties then compare the completed project with the current project.

Tutorial Hardware

Of all the PIC32MZ devices available today, the PIC32MZ EF family is the best candidate for this effort. The EF family does not have on-chip
graphics controller or Graphics Processing Unit (GPU), which makes it a less expensive and lower power solution for use with a display that has a
built-in controller.

Mikroelektronika (Mikroe) offers a prototype display that can be used using a ribbon cable between the display and the EF host. This third party
(non-Microchip) board serves as the basis for this tutorial. The ‘TFT PROTO 5" Capacitive’ display costs around 100USD and is available for order
online (https://www.mikroe.com/tft-proto-5-capacitive-board). It has an 800x480 pixel WVGA display, driven by an SSD1963 graphics controller.
The SSD1963 graphics controller is already supported in MPLAB Harmony. It has a Focal Tech FT5x06 capacitive touch controller. This tutorial
will cover how to design the pin-out between the EF host and display board, as well as how to adapt an existing MPLAB Harmony capacitive touch
driver (MTCH6303) to support the Focal Tech touch controller.

For this tutorial the following hardware will be used:
1. PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit board (Part # DM320007).

2. Starter Kit I/O Expansion Board (Part # DM320002) — this provides the 0.1” headers we need to connect up the display using a ribbon cable or
0.1" jumpers.

3. PIC32MZ Starter Kit Adaptor Board (Part # AC320006) — this provides an 168 to 132 pin adapter to adapt the 168-pin connector on the EF
starter kit with the 132 pin connector on the 1/0 Expansion Board.

4. Mikroelektronika TFT PROTO 5" Capacitive display.
5. 40 to 50 pin ribbon cable to connect the 1/0O Expansion Board to the display, or a set of colored 0.1" jumpers.
Here is how the hardware is assembled:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 107


http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DV102013
http://www.microchip.com/developmenttools/productdetails.aspx?partno=dm320007
http://www.microchip.com/developmenttools/productdetails.aspx?partno=dm320002
http://www.microchip.com/developmenttools/productdetails.aspx?partno=ac320006

Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

MR L R gl CAPACITIVE]

M\ MicrocHie

168-132 .
+ Mikroe WVGA I
EF Starter Kit Pin Adapter Expansion

Ribbon Cable

The connectors that route signals from the EF pins to the display’s ribbon cable are:

168-132 Pin
EF Starter Kit J1 Adapter J2

168-132 Pin = 1/O Expansion
Adapter J1 Board J1

I/O Expansion
Board J11

I/0O Expansion

Board J10

The EF Starter Kit + 168-132 Pin Adapter + 1/0 Expansion board can host any number of prototype hardware configurations. A spreadsheet has
been developed that maps every pin of the EF device to a pin on the I/O Expansion board, with one final spreadsheet tab that provides the pin
outs for the ribbon cable that connects the display to the /O Expansion Board. (The spreadsheet is found in the Zip file

.\apps\ exanpl es\ 3rd_party_di spl ay\ pi nout s. zi p.) The picture above shows the board connectors used in getting from a pin on the EF
device to a pin on the display’s ribbon connector.

This spreadsheet has the following tabs:

1. Sorted by Skit J1 Pins — This tab maps EF pins to pins on the J1 (168 pin) connector on the 168-132 pin adapter. It also maps the 168-pin J1
connecter to the J2 132-pin connecter. Pins are sorted by the pin order on the Starter Kit 168-pin J1 connector.

2. Sorted by Device Pins — A copy of the first tab, sorted by EF device pins.
3. Sorted by Adaptor J2 Pins — A copy of the first tab, sorted by the pins on the J2 132-pin adaptor.

4. PIC32 10 Expansion Pin Out — Provides the pin out of the I/O Expansion Board from the 132-pin J1 connector to the 0.1” pitch headers on the
board (J10,J11).

5. End to End — maps the EF device pins to the 0.1” pitch headers on the I/O Expansion Board. This tab can be reused to map out other
application pin outs.

6. Mikroe Display — Provides the pin outs for the 40-pin ribbon cable connector (CN3) on the display board.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 108



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

7. End to End by Device Pins — This tab combines Tab 4 with Tab 6. It shows how to build a ribbon cable between the 1/0O Expansion Board and
the display. On this tab the rows belonging to EF device pins that aren’t part of the ribbon cable are hidden for the sake of simplicity.

Tab 7 of the spreadsheet shows:

Dev Pin # Device Pin Name 12 Pin # J2 Pin Name J1Pin# J1PinName J10Pin# J11Pin#| Pin®  Pin Name Notes:
3 EBIDS/AN17/RPES/PMDS/RES 13 EBIDS/PMDS 13 PMPDS/RES 7 18 TFT-05 P
4 EBIDG/AN16/PMDE/RES 9 L 6 19 TFT-06 P
5 EBID7/AN15/PMD7/RE? 7 EBID7/PMD7 7 PMPD7/RE7 5 20 TFT-07 P
12 EBIWE/AN20/RPC3/PMWR/RC3 28 CAN1_RX via JP1 Open, JP2 closed 28 PMPWR/RDA 14 10 TFT-WR# | g Bit banged as part of every command or data sequence, also used In device reset
13 EBIOE/AN19/RPCA/PMRD/RCA 25 EBIOE/PMRD/RCA 25 PMPRD/RDS 13 1 TET-RD® | g Bit banged as part of device reset
22 TMS/AN24/RAD 126  TMS/RAO 126 TMS/RAD - 60 7 TFT-RSTH | g To pin 127 of SSD1963 (RESETH), GND via 10K Ohm, RESET_BAR
87  EBIA14/PMCS1/PMA14/RAS 27  EBAL4 27 PMPCS1/RD11 15 - 9 TFT-CSH | g Chip Select is bit banged as part of every code sequence
95 RPAL4/SCLI/RALS 84 RPA14/SCLI/RAIA 84 5C11 35 3 CTP-SCL I 12C interface h controller
9 RPA15/SDA1/RA1S 86 SDAYTOUCH_SDA 86 SDAY 37 B CTP-SDA 1 12C interface h controller
97  ERIAIS/RPDY/PMCS2/PMALS/RDY 79 SSI/EBIALS 79 INT4 6 18 CTP-RSTH | g | v
98  RPD10/SCK4/RD10 95  SCK4/WIFI_SCK/SD13 95 SDD1 a3 39 CTP-WAKEN| g ¢ I v by 1A
104 RPDO/RTCCANTO/RDO 87 INTO/RDO 87 INTO a2 5 CTPINTE | g Can be sent to INTn
109 RPD1/SCK1/RD1 91 RD1/SCX1/AUDIO_BICK 2 8 TFT.O/CH | g Data/Command_bar for $SD1963
110  EBID14/RPD2/PMD14/RD2 24 ERID14 D14 12 27 TFT-D14 | p
111  EBID1S/RPD3/PMD1S/RD3 26 EBID15/PMD1S 1 28 TFT-015 | p
112 EBID12/RPD12/PMD12/RD12 20  EBID12/PMDI2 10 25 TFT-D12 P
113 EBID13/PMD13/RD13 22 EBID13/PMD13 9 26 TFT.013 | p
121 ETXCLK/RPD7/RD7 47  RD7/U2RTS/BT_RTS 24 12 TFTTE | g Wired to pin 50 of SSD1963 (TE, Tear Enable) to be wired to GPIO on EF, Optional
124  EBID11/RPFO/PMD11/RFO 18 PMD11 wia JP1, IP2 Oper 18 PMPD11/RFO 7 24 TFT-011 | p
125 EBID10/RPF1/PMD10/RF1 16 PMD10 via 3 with JP4 open 16 PMPD10/RF1 8 23 TFTD10 | p
127  EBIDS/RPG1/PMDS/RG1 14 14 PMPDI/RG1 5 2 TFT-09 [
128  EBIDS/RPGO/PMDS/RGO 10 o 6 21 TFT-08 v
135 EBIDO/PMDO/RED 23 12 13 TFT-00 P
138 EBID1/PMD1/RE1 2 n 14 TFT-01 P
142 EBID2/PMD2/RE2 19 10 15 TFT-02 P
143 EBID3/RPE3/PMD3/RE3 17 9 16 TFT-03 P
144  EBID4/AN1B/PMD4/RES 15  EBIDA/PMDA 15 PMPDM/REA 8 17 TFT-D4 P
11 GND 2,22,39 2,22,39 2 GND

The ribbon cable for this project is constructed using the map from J10 Pin#/J11 Pin # to the TFT Proto 5” Pin #. For example, the first line of the
Tab 7 shows that pin 7 of the J10 header on the I/O expansion board is connected to pin 18 of the display connector, thereby connecting PMPD5
(PMP data pin 5) on the device to TFT-D5 on the display.

Note: display pins with a “#” suffix indicate that the signal is active low (# = bar).

TFT-Dn display pins are part of the SSD1963 display controller's Parallel Master Port (PMP) interface. Other TFT-* pins are part of the controller to
host interface. For example, TFT-WR# is connected to the controller's WRbar (write strobe bar) pin, which is called WR_STROBE_BAR in the
MPLAB Harmony Graphical Pin Manager. (Setting up the project’s pins using the Pin Manager is discussed later in the tutorial.)

On the display connector FT5x06 capacitive touch controller pins are called CTP-*. There is an 12C clock pin (CTP-SCL), I12C data pin (CTP-SDA),
an interrupt pin to alert the host of a touch event (CTP-INT#), and reset/wakeup pins (CTP-RST#/CTP-WAKE#).

Creating the Project in MPLAB and MPLAB Harmony

Getting Started

The pre-installed project, 3rd_party_display_start can be used as a basis for the work discussed in this tutorial. Be sure to copy this project to a
place in the MPLAB Harmony directory hierarchy that is just as deep. If this is not done, all the relative paths in the project’s configuration will no
longer find the project's files and nothing will build.

For example, copying 3rd_party_di spl ay_start into a directory .\ apps\ 3rd_party_di spl ay will not work, since the target directory is
one level higher in MPLAB Harmony's directory hierarchy. The directory . \ apps\ gf x\ 3rd_party_di spl ay will work since it is at the same
level in the hierarchy.

There is an extra file in the .\ apps\ exanpl es\ 3rd_party_di spl ay_start file (xc32_vm nn_pi ¢32mx_i ncl ude_assert. h), which
provides the modification to the compiler's assert . h as discussed in Volume 1 of MPLAB Harmony’s documentation (Creating Your First
Project). This modification supports producing breakpoints under the debugger when an assert fails, which can be very useful in debugging the
code. Simply use this file to replace . / xc32/ vm nn/ pi ¢32nx/ i ncl ude/ assert. h, where m nn represents the version nunber of
the conpiler you are using.

For first time users of the PIC32MZ product line and MPLAB Harmony should create the starting the project from scratch. Follow the instructions in
“Creating Your First Project”, which is found in Volume 1: Getting Started With MPLAB Harmony Libraries and Applications. Call the new project
3rdPartyDi spl ay instead of Heartbeat.

In Part 1, Step 3 of the Creating Your First Project, use a different application name than “heartbeat." For example accept the default “app”, then
replace “heartbeat” with the new application name in the tutorial code examples. If the default application name “app” is used then “heartbeat” is
replaced by “app” in the code examples. The header file heartbeat.h would be named app. h instead and it should contain:

typedef enum

{

/* Application's state machine's initial state. */
APP_STATE_I NI T=0,

APP_STATE_SERVI CE_TASKS,

/* TODO Define states used by the application state nachi ne. */
APP_RESTART_TI MER

} APP_STATES;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 109



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Here the enum is called APP_STATES instead of HEARTBEAT_STATES and the state APP_RESTART_TI MER replaces the state
HEARTBEAT RESTART_TI MER. The structure HEARTBEAT_DATA is now called APP_DATA:

typedef struct

{

/* The application's current state */
APP_STATES st at e;

/* TODO Define any additional data used by the application. */
SYS_TMR_HANDLE hDel ayTiner; // Handle for delay timer

} APP_DATA;

The same principle applies to app. ¢ (instead of hear t beat . ¢ in the tutorial). The structure heartbeatData is now called appData. The source
file app. ¢ should contain:

{

/* Check the application's current state. */
switch ( appData.state )

{

/* Application's initial state. */

case APP_STATE_INIT:

{

bool applnitialized = true;

if (applnitialized)

{

appDat a. hDel ayTi ner = SYS_TMR Del ay M5( HEARTBEAT_DELAY) ;
if (appData. hDel ayTi mer != SYS_TMR _HANDLE | NVALI D)

{ /] Valid handl e returned

BSP_LEDON( HEARTBEAT_LED) ;

appDat a. st at e = APP_STATE_SERVI CE_TASKS;

}
appDat a. st at e = APP_STATE_SERVI CE_TASKS;

}
br eak;

}

case APP_STATE_SERVI CE_TASKS:

{

if (SYS_TMR Del aySt at usGet (appDat a. hDel ayTi mer))
{ // Single shot tinmer has now tined out.
BSP_LEDToggl e( HEARTBEAT_LED) ;

appbDat a. state = APP_RESTART_TI MER;

}

br eak;

/* TODO inplenent your application state machine.*/
case APP_RESTART_TI MER

{ Il Create a new tiner

appDat a. hDel ayTi mer = SYS_TMR _Del ay M5( HEARTBEAT_DELAY) ;
i f (appData. hDel ayTi mer != SYS_TMR _HANDLE | NVALI D)

{ /! Valid handl e returned

appDat a. stat e = APP_STATE_SERVI CE_TASKS;

}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 110



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

br eak;

}

/* The default state should never be executed. */
defaul t:

{

/* TODO Handle error in application's state machine. */
br eak;

}

}

}

At the end of the Creating Your First Project tutorial, the project supports a HyperTerminal console on a PC, which can be used to display
diagnostic messages. The project will also support the advanced error handling (asserts and exceptions) that MPLAB Harmony provides.

When running this application, verify that the HyperTerminal application (115200 baud, 8 bits, no stop bits) sees an initialization message of,
Application created Mar 1 2018 15:09:50 initialized! at startup, where the date and time report when the app. c file was last compiled. This
message originates in the application initialization function:

void APP_Initialize ( void)

{
SYS_MESSAGE("\r\nApplication created " _ DATE _ " " _ TIME__ " initialized!\r\n");

/] Test out error handling
/1 assert(0);

1 {

/1l uint8_t x, vy, z;

Il x =1,

/l'y =0;

Il z =xly;

/1 SYS_DEBUG PRI NT( SYS_ERROR DEBUG "x: %, y: %, z: %\r\n",Xx,y,2z);
11}

/* Place the App state machine in its initial state. */
appData. state = APP_STATE INT,;

/* TODO Initialize your application's state machine and ot her
* paraneters.

*/

}

Verify that asserts and exception handling work before proceeding. Uncomment the assert and test. Then comment out the assert and uncomment
the {...} clause to test out exceptions.

If this is the first time hooking up a HyperTerminal session to the EF Starter Kit using the MCP2221, see Part 3 of the Creating
Note:  Your First Project tutorial in Volume 1 of MPLAB Harmony's documentation. This part of the tutorial shows how to hookup the EF
Starter Kit to your PC. It also discusses in Steps 11 and 12 how to setup your HyperTerminal application.

Setting Up Pins using the MPLAB Harmony Graphical Pin Manager

Since a pre-defined Board Support Package is not available, pin assignments will have to be manually entered into the Pin Manger using the “Pin
Settings” tab. Load the startup project, either from a copy made from .\ apps\ exanpl es\ 3rd_party_di spl ay_st art or one created from
scratch. Then run MPLAB Harmony Configurator:

fh | oG . Bpa . . .

[T WP

;JMPLAB@ Harmony Configuratorl
From MPLAB Harmony Configurator, select the Pin Settings tab:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 111



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Advanced Topics

Make these modifications to the pin table:

3 MPLAB® Harmony Configurator* - Editor

LB PP

StartPage  ®| MPLAB® Harmony Configurator® &
$9955) | @ | O | oo

[ Options* | Clock Diagram _ x | Pin Diagram _ x | Pin Settings x|

M-

(53

StartPage | MPLAB® Harmony Configurator® |
LB (PP | BPs) | 2O | order: [ {v| [ Tablevew |
| options* | Clock Diagram x| Pin Diagram _ x | P Settngs x|
. PinID .‘l'.?'d:ru Name Function %";}‘s)"“‘ &%
1 RG15 Available In nfa
2 RAS Available In nfa
3 RES PMDS PMDS nfa nfa
4 RE6 PMDS PMD& nfa nfa
5 RE7 PMD7 PMD7 n/a nfa
12 RC3 WR_STROBE_BAR GPIO_OUT Out Low
13 RC4 RD_STROBE_BAR GPIO_OUT Out Low
14 RG6 USART to USS Bridge (BSP) U2RX nfa nfa
2 RAD RESET_BAR GPIO_OUT Out Low
25 RBS USB_VBUS_SWITCH VBUS Out Low
43 RHO BSP_LED_1 LED_AH Out Low
44 RH1 BSP_LED_2 LED_AH Out Low
45 RH2 sV BSP_LED_3 LED_AH Out Low
59 RB12 BSP_SWITCH_1 SWITCH In Low
60 RB13 BSP_SWITCH_2 SWITCH In Low
61 RB14 USART to USB Bridge (BSP) uzTX na || na |
87 RA4 v CHIP_SELECT_BAR GPIO_OUT out [ tow |
95 RA14 s5v scL1 sCL1 nfa n/a
% RA15 5v SDA1 SDA1 n/a n/fa
97 RD9 sv CTP_RST GPIO_OUT Out Low
104 RDO sv CTP_INT_BAR INTO n/a _I_ n/a
109 RD1 sv DATA_OR_COMMAND_BAR GPIO_OUT out [ Low
110 RD2 v PMD14 PMD14 na || na
111 RD3 5V PMD15 PMD15 na || nja
112 RD12 5V PMD12 PMD12 na || nja
13 RD13 sV PMD13 PMD13 n/a [ nfa
124 RFO sV PMD11 PMD11 nja nfa
125 RF1 sV PMD10 PMD10 nfa nja
126 RK7 sV Available In nfa
127 RG1 sV PMD9 PMDA nfa nfa
135 REO sV PMDO PMDO nfa nfa
138 RE1 sV PMD1 PMD1 nja nja
142 RE2 v PMD2 PMD2 nfa nfa
143 RE3 sV PMD3 PMD3 nfa nfa
144 RE4 PMD4 PMD4 nfa nfa

The pins labeled USART to USB Bridge (BSP) support the MCP2221 USART to USB device on the EF Starter Kit board. It provides a
HyperTerminal interface on the PC. This is setup in the 3r d_par ty_di apl ay_st art project.

Be sure the touch interrupt event interrupt (pin 104, CTP_INT_BAR) pin is pulled high (CNPU enabled), otherwise touch event interrupts will never

fire:

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

112



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Advanced Topics

3 MPLAB® Harmony Configurator* - Editor o | & |
Start Page aJ MPLAB® Harmony Configurator® 3| L=l
LB (PP | S 2 |3 | order: [Pins v [ Table view
Opnons'[dod(l)agran x [Pnouagan x:MSettngs x |

Pin Voltage Change Notification Pull Up Pull Down
Number sl Tolerance ame Functon (ONEN) @)  (@wD)
104 RDO SV CTP_INT_BAR INTO v -

Setting up Graphics

Options™ ICIod( Diagram X l Pin Diagram % l Pin Settings % ‘

In MPLAB Harmony Configurator, under the Options tab: [MPLAB Harmony & Application Configuration

open Harmony Framework Configuration > Graphics Stack and enable the Graphics Stack with the following settings.

First select a “Custom Display” as the display type.
Then enter the dimensions of the Mikroe display (800x480).
[=}-Graphics Stack

= Use Graphics Stack?

[=}-Graphics Display
:-Select Display Type | Custom Display
E\ Resolution
. LWidth 800

; Height | 480

+-Total Pixels (pixels) | 384000

The display can be set in MHC’s Display Manager.
4 Note:

ﬂ MPLAB® Harmony Configurator* &
e | 2 | T2

ock Diagram X I Pin Diagram

iy

=)

ADC Configuration

Clock Configuration

Display Mﬂ}ager

ny & Application Configuration

R

Enable the Graphics Stack using the MHC's Options tab, it is easier to do the basic display setup here. Later the Display Manager will be used to
tune the display’s timing (syncs plus front porches and back porches) so that all 800x480 pixels are correctly displayed. For now, accept the

default display timings.The equivalent setup using the Display Manager is:
MPLAB® Harmony Configurator* |

Display Settings X ‘

Customize

Apply

Select Display :Custom Display v
Horizontal Resolution 800 = pixels [
Vertical Resolution 480 -5 pixels
Orientation |0 Display Analogue
Generate Driver :5501963 v

Hardware Layers

ENRd

The Mikroe display uses a SSD1963 graphics controller to run the TFT display, which is supported in MPLAB Harmony. This graphics controller is
connected to the EF host using the Parallel Master Port (PMP), 12C, and GPIO peripherals. (For details, see the Setting Up Pins using the MPLAB

Harmony Graphical Pin Manager section above.)

Under Graphics Stack > Graphics Controller, select the SSD1963 graphics controller, enable the controller's backlight PWM. Change the pixel
clock from the default to 30 MHz and click “Execute” to compute the Pixel Clock Prescaler value. Finally, since the system clock for the EF host

runs at 200 MHz, add an additional NOP for correct Write Strobe timing.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

113



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

[=}-Graphics Stack
=] Use Graphics Stack?
[+-Graphics Display
[=}-Graphics Controller
i-Select Controller Type |SSD1963 v
[=-55D1963
SSD 1963 drives LCD Backlight PWM?
[=}-Pixel Clock Settings
i ster Clock (MHz) | 100
..Pixel Clock (MHz) |30

iClick to Calculate Pixel Clock Prescaler Value

i--Pixel Clock Prescaler | 3.3333
Additional NOPs for Write Strobe timing: |l v
--166 MHz <= System Clock < 250 MHz , adding 1 NOP to Write Strobe timing.

-Mas

Finally, verify Use Touch System Service? (Deprecated) is enabled:

= Use Harmony Graphics Composer Suite?
[=)-Middleware
[ Use Graphics Utilities Library?
=] Use Aria User Interface Library?
- [¥] Generate Events?
Generate Macros?
- || Use Touch System Service? (Deprecated)
["] Use Input System Service?
i [] Enable Demo Mode?
[+-Widget Flags

When finished, re-generate the code to capture these new settings using the Generate Code button in MPLAB Harmony Configurator.

1’ MPLAB X Store MPLAB® Harmony Configurator se[
ﬁﬁg & 20|%
aram | Generate Code| * | Pin Settings  x l

Be sure to use the Prompt Merge For All Differences merge strategy to maintain code customizations installed outside of MHC.

After regenerating the project, you will have to customize the system_i ni t. c file, found in the project under Source Files / app /
system config / <target_configurati on>, where <t arget _confi gurati on> is typically "default". Move the
SYS PORTS | nitialize call fromthe middle of SYS_I ni ti al i ze to between SYS_DEVCON_Per f or manceConfigand BSP_I ni ti al i ze.

The Old location:

The New location is:

SYS_CLK_Initialize( NULL );
SYS_DEVCON Initialize (SYS_DEVCON INDEX 0, (SYS MODULE INIT*)NULL);
SYS_DEVCON_PerformanceConfig (SYS_CLK SystemFrequencyGet()):

B5P_Initialize():

Tuning Display Timing Using Display Manager

The next step is to tune the timing of the display using the Display Manger to prevent the edges of the screen from being clipped. A rectangle
needs to be drawn on the edges of the screen. Then by building and running the application, we can see if any parts of the border rectangle are

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 114



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's Advanced Topics

clipped or missing. A different color is needed for each of the four sides of the border rectangle, as in some cases the display controller's memory
pointers can “wrap” a pixel from one side of the display to the opposite side. If all the sides are the same color this would not be apparent. Here is
the screen to implement in the Screen Designer panel:

800

©0 |

| (199,0)

LeftEdge

(] Tree View

TopEdge

223 X(rTF e

= @ Layer0

s / LeftEdge

/ TopEdge
/ BottomEdge
/ RightEdge

BottomEdge

RightEdge

(0,479)

(799,479)

Each side of the border will require a custom color scheme. The border is created by drawing four separate lines using four separate line widgets.
Examine how line widgets are colored by dragging a line widget from the Widget Toolbox panel onto the Screen Designer panel and then pick the
Properties Editor Panel for that widget. Click on the “?” to the right of the Scheme property.

Scheme ( )
Background Type [ None
This will bring up the “Line Widget Scheme Helper” window:
2 LineWidget Scheme Helper é
Outer Top/Left Border Background
HighlightLight Base
Line Border >
ShdadowDark
Shape
Foreground
I Bottom/Right Border
Shadow (Inner)
ShadowDark (Outer)
|| i

If the Background and Shape of the widget are colored with the same color, different for each side, then the four edges of the display are easily
marked. Using the same colors for the line, and the widget's background, allows the use of the size and position of the line widget rather than the
line’s coordinates to mark that edge of the display.

To create the display, within MHC, launch the Graphics Composer.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

115



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Advanced Topics

Projects %

Files

Services

Start Page 8| MPLAB® Harmony Configurator®

#- [ goraphics_quickstart

L

LB (PP)

Options™®

$9Pcce) | 2| 3

[

Clock Diagram X IPnDuag‘am

MPLAB Harmony & Application Configuration
(- Application Configuration

- Advanced Exception and Error Handiing
~-Hamony Framework Configuration

Using the Scheme panel, create four new color schemes.

AEX®

ID:‘ Create New Scheme

ADC Configuration
Clock Configuration
Display Manager
Graphics Cwnposer
Pin Configuration

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

116



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

Advanced Topics

© 2013-2017 Microchip Technology Inc.

=] Scheme =) Scheme
Name LeftEdgeScheme Name RightEdgeScheme
(=] Colors (=] Colors
| Base M (31,0,0] + Base B [0,63,0)
(#] Highlight [24,51,26] ] Highlight [24,51,26]
(#] Highlight Light [31,63,31] ] Highlight Light [31,63,31)
#) Shadow B (16,32,16) ) Shadow B [16,32,16)
#] Shadow Dark M (8, 16,8] + Shadow Dark M [3.16.8]
+ Foreground M (31,0,0] + Foreground M [0,63,0]
#] Foreground Inactive [26,56,28] =+ Foreground Inactive [26,56,28)
# Foreground Disabled M (16,32, 16] ) Foreground Disabled M (16,32, 16)
(+] Background [31,63,31] #) Background [31,63,31]
(#] Background Inactive [26,56,28] ) Background Inactive [26,56,28)
(+] Background Disabled [24,51,26] +] Background Disabled [24,51,26]
@) Text M [©.0,0 ) Text Bl 0.0,0
) Text Highlight M ©,0,31] ) Text Highlight W 0.0,31
(#] Text Highlight Text [31,63,31] ) Text Highlight Text [31,63,31]
(¥ Text Inactive [26,56,28] ) Text Inactive [26,56,28]
@ Text Disabled M (17,36, 18] ) Text Disabled M (17,36, 18]
=] Scheme = Scheme
Name TopEdgeScheme || Name BottomEdgeScheme
=) Colors [=] Colors
+ Base B 0,031 + Base M (31,0,31]
] Highlight [24,51,26] (#] Highlight [24,51,26)
) Highlight Light [31,63,31] (#] Highlight Light [31,63,31]
) Shadow M (16,32, 16) ] Shadow M (16,32,16]
] Shadow Dark M (8,16,5] ] Shadow Dark M (8,16,8]
+) Foreground 0,031 ) Foreground M (31,0,31)
+ Foreground Inactive [26,56,28] (+] Foreground Inactive [26,56,28]
#) Foreground Disabled B (16,32, 16] ) Foreground Disabled M (16,32, 16]
+) Background [31,63,31] (+] Background [31,63,31]
+) Background Inactive [26,56,28) (+] Background Inactive [31,63,31]
+ Background Disabled [24,51,26] +) Background Disabled [24,51,26]
) Text Il [0,0,0] & Text il 0.0,0]
) Text Highlight B 0.0,31 ) Text Highlight l[0,0,31]
# Text Highlight Text [31,63,31] [+] Text Highlight Text [31,63,31]
# Text Inactive [26,56,28] ) Text Inactive [26,56,28)
) Text Disabled M (17,36, 18] +) Text Disabled M (17,36, 18]

MPLAB Harmony v2.06

Next, drag a line widget onto the display four times and edit each widget's properties to create and position each edge of the display’s border:

117



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Advanced Topics

_ (] Properties Editor = (2% [_ (] Propertes Editor =0
[=) Editor [=) Editor
Locked @ Locked [
Hidden M Hidden M
=) Widget [=) Widget
Name LeftEdge Name TopEdge
Position [0,0) Position [0,0]
[ Size [4,480) Size [800,4)
Enabled @ Enabled V)
Visible Visible
[+] Border [None) Border [None]
[# Margin [0,0,0,0] [# Margin [0,0,0,0]
Scheme (LeftEdgeScheme v )(?] |  Scheme (TopEdgescheme v )(?)
Background Type (Fil v) Background Type (Fil v)
Alpha Blending B Alpha Blending O
Optimization Flags [false, false, false] Optimization Flags [false, false, false]
[ Line [ Line
Start X 0 Start X 0
Start Y 0 Start Y 0
End X 0 End X 0
EndY 0 EndY 0
_ (] Properties Editor = 4 ]| (] Properties Editor = %0
%2‘ 9(_)
(=) Editor [= Editor
Locked M Locked M
Hidden @ Hidden M
[=) Widget [=) Widget
Name BottomEdge Name RightEdge
Position [0,476] [+ Position [796,0]
[ Size [800,4] [ Size [4,480]
Enabled @ Enabled v
Visible ) Visible
[+) Border [None] [+] Border [None]
Margin [0,0,0,0] [+ Margin [0,0,0,0]
Scheme ( BottomEdgeScheme  « Scheme (RightEdgeScheme /(2]
Background Type (Fil v) Background Type Fil v
Alpha Blending B Alpha Blending B
[%) Optimization Flags [false, false, false] [+ Optimization Flags [false, false, false]
[ Line = Line
Start X 0 Start X 0
Start Y 0 StartY 0
End X 0 End X 0
EndY 0 End Y 0

Note that the “Line” coordinates are set to [0,0,0,0] since it is the size of the widget rather than the widget's line that marks each border line. The
lines in these widgets are not used. Each widget's position and size mark an edge of the display, not the line. Re-generate the application and then

run it.

oL

5] Run Main Project}

The HyperTerminal application (115200 baud, 8 bits, no stop bits) should show the following when the application boots up:

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

118



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

$SD1963 driver LCDC FPR: 314574, (0x04CCCE)

Application created Mar 4 2018 17:51:00 initialized!

Examine the border of the resulting display,note that the top edge of the border is completely missing and the left edge is about half the width
desired, compared to the right and bottom edges. To fix this the display timings need to be adjusted using the Display Manager:

E]vwn

ADC Configuration

By Clock Configuration

Display Manager
Graphics C8mposer

If this is the first time using the Display Manger, Volume 1 of MPLAB Harmony’s documentation has a Display Manager Quick Start Guide and
Volume Il has the MPLAB Harmony Display Manager User’s Guide. Increase the Horizonal Pulse Width by two clocks, re-generate, and then run.
The left border should be fully visible.

Horizontal Pulse Width (Thpw) }H[ﬂ,

Next, tune the Vertical Pulse Width. Gradually increasing it to move the top border line down until it is fully visible. (22 H-syncs seems to be the
correct value.)

ertical Pulse Widt D 224 H-syncs

After each adjustment re-generate, build and run, then examine the resulting display. Stop when all borders are fully visible and there are no
“dead” (black) pixels on the display.

In the Display Manger, the final, optimal, settings for the display are:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 119



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

MPLAB® Harmony Configurator*
Help | Display Settings X I

>

Select Display [Cmtnm Display v} [ Customize }—

Horizontal Resolution pixels ( Apply ]
Vertical Resolution pixels Hardware Layers
S wve |

Generate Driver [5501963 v} [ Configure ]
l |
|| Horizontal Pulse Width (Thpw) pixel clock cycles E 1
Horizontal Front Porch (Thfp) pixel dock cycles | See / Change Pin i

Horizontal Back Porch (Thbp) pixel clock cycles
[ Master Clock (ssD19... | | 100| MHz + Timing Prescaler

pixel clock frequency = 30 MHz
1 Pixel clock period = 33.33 ns
Thpw (44 x 33.33) + Thip (2 x 33.33) + Thres (800 x 33.33) + Thbp (2 x 33.33) = 28.27 us
1 H-sync time = 28.27 us
NOTE: Clock source and timing estimates intended for supported generated drivers only.

Vertical Pulse Width (Tvpw) H-syncs (o)
I Y-
Vertical Back Porch (Tvbp) H-syncs
1 H-sync = 28.27 us
Tvpw (22 x 28.27) + Tvip (1 x 28.27) + Tvres (480 x 28.27) + Tvbp (1 x 28.27) = 14.25 ms
1 V-sync time = 14.25 ms
Total Refresh Rate 70.19 Hz + 1 display layer(s)
Display Refresh Rate = 70.19 Hz
NOTE: This is a best estimate. Flease refer to documentation for explanation.

Data Enable [ see/chaingePin |
Backiight Enable [ see/ChaingePin |
Display Reset [ see/chaingePin |

EEE

‘EE.
When finished, the display should be:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 120



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's

(0,0)

TopEdge
AP PSRN AT 2
- =
.-
o~
-
- >
L o
» .
LeftEdge MY b g

A I Dt N PAPRAG A

RightEdge

7

BottomEdge

¥
& g
g |
T
b
&
”3
*®
h
g

»
v
¢
L
3
N
1
¥
¢
-

k3
L |
¥
" §
3 »

]
‘e
£y
L

(0,479)

(799,479)

Advanced Topics

A picture of each edge through a 10x power loupe verifies that each edge is exactly 4 pixels wide and there are no “dead” (black) pixels between

the edges of the display and the colored border.
The Mikroe board uses a Riverdi RVT50AQTNWCAOQO display.
Table 8.3 of its datasheet covers display timing:

8.3 Parallel RGB timing table

Horizontal Display Area Thd -
DCLK Frequency Fclk -
One Horizontal Line Th 889
HS pulse width Thpw 1
HS Blanking Thb -
HS Front Porch Thfp 1
Vertical Display Area Tvd -
VS period time Tv 513
VS pulse width Tvpw 3
VS Blanking Tvb -
VS Front Porch Tvfp 1

800
30
928
48
88
40
480
525
3
32
13

50
1143
255

255

767
255

255

DCLK
MHz
DCLK
DCLK
DCLK
DCLK
TH
TH
TH
TH
TH

Some explanation is required to match up this data with the Display Manager’s settings. Back porch timings are not shown in the table, but can be

calculated by subtracting the HS/VS pulse width from the HS/VS Blanking:
HS Back Porch = HS Blanking — HS pulse width = Thbp = Thb — Thfp
VS Back Porch = VS Blanking — VS pulse width = Tvbp = Tvb — Tvfp

The DCLK Frequency typical value of 30 MHz has already been used in setting up the display pixel clock speed. However, using the “Typ”
(Typical) values, and the calculated Thbp and Tvbp values from the equations above, the timing will not work. The timing values that work for this

tutorial meet the minimum or maximum range shown above with one exception:
The “One Horizontal Line” timing, Th, has a minimum of 889 pixel clocks, but the one in use is:

Th = Thpw + Thbp + 800 pixels+ Thfp = 44 + 2 +800 + 2 = 848 pixel clocks < 889

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

121



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

which is 41 pixel clocks (4.6%) below the minimum Th of 889 shown in Table 8.3 above.

Results may vary on your display. This was tested on two different boards with the same results. Starting out with the default display timings and
then iteratively tuning them to reduce pixel clipping and dead pixels, as discussed above, will provide the optimal display timings for the hardware
regardless of the final settings.

Supporting the Focal Tech FT5x06 Capacitive Touch Controller

Microchip (Atmel) and Focal Tech are key providers of capacitive touch controllers. Focal Tech FT5x06 touch controllers are found on many of the
displays used by Microchip customers, so a third-party display with a Focal Tech capacitive touch controller is a good choice for this tutorial.

MPLAB Harmony provides these touch controller drivers:

[+ \g& 1Imer unver uprary

g
& Generic Touch Driver API
@ 10bit ADC Touch Driver Library
Q ADC Touch Driver Library
Q AR1021 Touch Driver Library
@ MTCHE301 Touch Driver Library
0 MTCH6303 Touch Driver Library
@ mXT336T Touch Driver Library

The Generic Touch Driver outlines the generic Touch Driver AP| supported by MPLAB Harmony. It provides a template that can serve as the base
for a custom-built driver for the FT5x06 touch controller.

A faster way to support the Focal Tech FT5x06 is to find a similar device that is already supported in MPLAB Harmony and simply modify the
driver code for that device. This eliminates having to write all the supporting code needed to fit the new driver into MPLAB Harmony. Capacitive
touch devices typically have an 12C interface with the host, and an interrupt signal that is driven low to alert the host that a touch event has been
detected. In response to this external interrupt the host uses the 12C interface with the device to query the device and read the (x,y) pixel
coordinates of the touch event.

The FT5x06 command interface is closest to the MTCH6303 interface since it requires a write command followed by a read command to get the
touch event. (The MTCH6301 only requires the read message.) The other thing to be aware of is the data order coming from the chip.

FT5x06 Memory:
Operating Mode Register Map

Address | Name Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO | Host
Access
Op.00h | DEVIDE MODE Device Mode[2:0] RW
Op.,0lh | GEST ID Gesture ID[7:0] R
Op.02h | TD STATUS Number of R
touch points[3:0]
Op.03h | TOUCHI XH 1"Event 1¥ Touch R
Flag X Position[11:8]
Op.04h | TOUCHI XL 1** Touch X Position[7:0] R
Op.05h | TOUCHI YH 1* Touch ID[3:0] 1¥ Touch R
Y Position[11:8]
Op.06h | TOUCHI YL 1* Touch Y Position[7:0] R
Op.07h
Op.08h
Op.09h | TOUCH2 XH 2"Event 2"Touch R

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 122



Volume Ill: MPLAB Harmony Configurator (MHC)

MPLAB Harmony Graphics Composer User's

Advanced Topics

Flag | | X Position[11:8]
Op.0Ah | TOUCH2 XL 2" touch X Position[7:0] R
Op.0Bh | TOUCH2 YH 2" Touch ID[3:0] 2 Touch R
Y Position[11:8]
Op.0Ch | TOUCH2 YL 2™ Touch Y Position[7:0] R
Op.0Dh R
Op.0Eh R
Op.0Fh | TOUCH3 XH 3“Event 3" Touch R
Flag X Position[11:8]
Op.10h | TOUCH3 XL 3™ Touch X Position[7:0] R
Op.11h | TOUCH3 YH 3™ Touch ID[3:0] 3" Touch R
Y Position[11:8]
Op.12h | TOUCH3 YL 3™ Touch Y Position[7:0] R
Op.13h R
Op.14h R
Op.15h | TOUCH4 XH 4™ Event 4™ Touch R
Flag X Position[11:8]
Op.16h | TOUCH4 XL 4" Touch X Position[7:0] R
Op.17h | TOUCH4 YH 4™ Touch ID[3:0] 4™ Touch R
Y Position[11:8]
Op.18h | TOUCH4 YL 4™ Touch Y Position[7:0] R
Op.19h R
Op.1Ah R
Op.1Bh | TOUCHS XH 5™Event 5™ Touch R
Flag X Position[11:8]
Op,1Ch | TOUCHS XL 5"Touch X Position[7:0] R
Op.1Dh | TOUCHS YH 5™ Touch ID[3:0] 5™ Touch R
Y Position[11:8]
Op.lEh | TOUCHS YL 5™ Touch Y Position[7:0] R
Op.1Fh R
Op.20h R
Op.7Fh | Reserved
Op,80h | ID_ G THGROUP valid touching detect threshold. R'W
Op,81h | ID G THPEAK valid touching peak detect threshold. R'W

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

123



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Modifying MPLAB Harmony’'s MTCH6303 Touch Driver for the Focal Tech FT5x06

The first step towards supporting the FT5x06 is to add a MTCH6303 driver to the application, and then modify the MTCH6303’s code to support
the FT5x06. To support the FT5x06, we will add a C preprocessor #if defined(FT_SUPPORT)...#else...#endif clauses to the code and then define
FT_SUPPORT in the project's C compiler properties.

To add the MTCH®6303 touch driver, make the following changes to the project's MHC settings:

[=)-Touch Drivers
[] Use Touch ADC Driver?
[7] Use MXT336T Driver?
[#-GENERIC
[=}-Touch (Deprecated)
(+-ADC10BIT
+-AR1021
[+-MTCH6301
=)-MTCH6303
£ [¥] Use MTCHB303 driver?
[7] Use MTCH6303 message stream?
i--12C driver module index DRV_I2C_INDEX_0 «
Queue depth |25
=] Interrupt mode

--External interrupt source | =[N =0 RG] -

.. commm——. R

Be sure to increase the event queue depth from the default of 10 to something larger, here it is 25. The controller's CTP-INT# (CTP_INT_BAR in
the Pin Settings table) is connected to INTO, so change the external interrupt source to INT_SOURCE_EXTERNAL_O.

Next, enable the 12C driver, using a bit-banged implementation:

=-12C

=

Use 12C Driver?
--Driver Implementation DYNAMIC -
Interrupt Mode
-Number of 12C Driver Clients |1
i-~Number of I2C Driver Instances |1
-] Incdude Force Write I12C Function (Master Mode Only - Ignore NACK from Slave)
=] 12C Driver Instance 0
- Use Bit Bang I12C Implementation?
12C Module ID |12C_ID_1 v
Operation Mode DRV_I2C_MODE_MASTER
Bit Bang Timer Source |TMR_ID_S v

12C Interrupt Priority |INT_PRIORITY_LEVEL3 v
12C Interrupt Sub-priority | INT_SUBPRIORITY_LEVELD +

The Interrupt System Service is enabled, with an Interrupt Priority of 5, connected to INTO, and triggered on a falling edge (since CTP-INT# is

active low):

© 2013-2017 Microchip Technology Inc.

[=}-System Services

[=)-Interrupts
Use Interrupt System Service?
= Use External Interrupts?
- Number of External Interrupt Instances | 1
E\» External Interrupt Instance 0
+-External Interrupt Module ID |INT_EXTERNAL_INT_SOURCED +
E Generate ISR Code?
P Interrupt Priority | INT_PRIORITY_LEVELS v
- Interrupt Sub-priority INT_SUBPRIORITY_LEVELD
+-Polarity -

L Enabled by System Service?

MPLAB Harmony v2.06 124



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Re-generate the application to implement these changes to the application.

Rather than edit the application’s MTCH6303 driver code, install the modified driver from the tutorial project found in

\apps\ exanpl es\ 3rdPar t yDi spl ay. Copy the code found in directory

.\ apps\ exanpl es\ 3rdPartyDi spl ay\ firmare\src\system config\defaul t\framework\driver\touch\nmch6303
into the same folder in the project.

To keep these changes in the code whenever the project is regenerated, always choose the “Prompt Merge For All Differences” merge strategy
and simply close all the windows related to the MTCH6303 driver. These changes are identified by / CUSTOM CODE — DO NOT DELETE ... //
END OF CUSTOM CODE flags in the code.

Ignore all proposed changes for the following files:
edrv_mtch6303_static.h
«drv_ntch6303_static.c
edrv_mtch6303_static_local.h

To enable Focal Tech support in the modified driver, open the project’s configuration and define FT_SUPPORT in the C compiler section.

Option categories: | Preprocessingandmessages ....i v

Freprocessor macros FT_SUPPORT

Adding a Touch Test Widget

Bring up MHC'’s Graphics Composer again and add a Touch Test widget to the screen. Resize the widget to cover most of the display. Next,
create another color scheme, and customize it to see the cross hairs for all touch measurements reported by the widget.

The TouchTest Widget has the following color scheme:

X

r
2 TouchTestWidget Scheme Helper

Quter Top/Left Border Background
HighlightLight Base

N

1
Line Border > Vertical Lines
ShdadowDark Gradient Start : Background
Gradient End : Backgroundinactive
) Horizontal Lines Bottom/Right Border
Gradient Start : Foreground Shadow (Inner)
Gradient End : Foregroundinactive ShadowDark (Outer)

First, create a new scheme, call it TouchTestScheme:
(7] Schemes
¢ W x B
|uc' Create New Scheme

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 125



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

Edit the Foreground and Background colors so that both are red.

Finally, edit the properties for the Touch Test widget to have a Line border, and to use the TouchTestScheme color scheme:

The Screen Designer panel should show:

© 2013-2017 Microchip Technology Inc.

[ 2 Scheme Editor JL ﬂ‘
[=] Scheme
Name TouchTestScheme
[=] Colors

Base [24,51,26] )
Highlight [24,51,26] &
Highlight Light [31,63,31] )
Shadow M [15,32,16] ()
Shadow Dark W5 15,8 ()
Foreground M (31,0,0] (=
Foreground Inactive [26,56,28] )
Foreground Disabled M 16,32, 18] )
Background M (31,0,0] ()
Background Inactive [26,56,28] (e
Background Disabled [24,51,26] )
[ Text W00 (J
¥ Text Highlight WDo531 &
[# Text Highlight Text [31,63,31] [
Text Inactive [26,56,28] ()
[#] Text Disabled B [17,36,18] (]

1
. (] Properties Editor =8
[ Editor
Locked |
Hidden [
[ Widget
Name TouchTestWidget1
Position [90,80]
Size [620,310]
Enabled
Visible
Border [Line]
Margin [4,4,4,4]
Scheme [TouchTestScheme  + (2]
Background Type [ None v)
Alpha Blending |
Optimization Flags [false, false, false]
[=] Touch Test
Point Added m® (=)
(Mouse over a property for detailed help)

MPLAB Harmony v2.06

126



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Advanced Topics

SeddiaASAARAARSAARRARRAARARRRES — ] 93
LeftEdge TopEdge RightEdge |
(] Tree View
223X TF e |
5 &3 Layer0 TouchTestWidget1 |
<80 / LeftEdge
/ TopEdge |
/ BottomEdge
/ RightEdge
TouchTestWidget1
BottomEdge |
(0,47;)_ (799,479)

Close the Graphics Composer window and save the modifications to the graphics design. Re-generate the application’s code and then build and
load the application.

Testing the Final Application

Here is what the display should look like during a touch event:

TFT Proto 5"

S=
*
=
:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 127



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Importing and Exporting Graphics Data

Completed Tutorial Project

The completed tutorial project can be found in .\apps\examples\3rdPartyDisplay.

Importing and Exporting Graphics Data
This topic provides information on importing and exporting graphics composer-related data.
Description

The MPLAB Harmony Graphics Composer (MHGC) provides the capability for users to import and export graphics designs. The user can export
the state of an existing graphics composer configuration or import another graphics composer configuration from another project.

Importing Data
1. To import a graphics design into MHGC, select File > Import. The Browse for MPLAB Harmony Graphics Composer XML file dialog appears,

which allows the selection of a previously exported Graphics Composer . xm file, or the conf i gur ati on. xm file that contains the desired
graphics image.

"% Browse for MPLAB ==

Look in: [ |. pic32mz_ef_sk_meb2_legacy

. framework
__| composer_export.xml
= configuration.xml

s

File name: kconﬁgwation.ml

1 5 [
My D s Files of type: =xml

2. After selecting a file and clicking Open, you will be prompted whether to overwrite existing data.

f- h'
Overwrite Existing Data? (25|

@ Importing will erase any existing screens and assets. Continue?

%No

3. If you selected a conposer _export. xnl file, clicking Yes will replace the current graphics design with the new design.

4. Otherwise, if you selected a confi gurati on. xm file, you will be prompted to import the data into the current graphics design. Click Yes to
replace the current graphics design with the new design.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 128



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer User's Importing and Exporting Graphics Data

2 Import Design Data

Design data from a previous version of MPLAB Harmony Graphics Composer has been detected.
Would you like to import this data into the current graphics design?

Open the selected configuration _

Exporting Data

1. To export a graphics design from MHGC, select File > Export. The Select File Location for MPLAB Harmony Graphics Composer XML file
dialog appears.

Savein: | | default

I bsp
. framework
|| configuration.xml

File name: ‘ omposer_export.xml

Files of type: [t,m Save selectec
|

2. To export a graphics design using a conf i gur ati on. xm file, use the Save Configuration utility from the MPLAB Harmony Configurator
(MHC) toolbar.

Start Page ll MPLAB® Harmony Configurator® &
PP | Bp) | 2|8 | T

— X | PinDiagram  x | Pin Settings X |

Save Configuration |

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 129



Volume Ill: MPLAB Harmony Configurator (MHC)  MPLAB Harmony Graphics Composer Suite

MPLAB Harmony Graphics Composer Suite
This section provides user information about using the MPLAB Harmony Graphics Composer Suite (MHGS).

Description

Please see Volume IV: MPLAB Harmony Framework Reference > Graphics Libraries Help > MPLAB Harmony Graphics Composer Suite for
detailed information.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 130



Index

Index

A

Adding Third-Party Graphics Products Using the Hardware Abstsraction
Layer (HAL) 90

Advanced Topics 90
aria_coffeemaker Demonstration Example 98

B
Binary Assets 66

C

Code Generation 90

Creating a MPLAB Harmony Graphics Application Using a Third-Party
Display 106

Creating the Project in MPLAB and MPLAB Harmony 109
D

DDR Organizer 47

Draw Pipeline Options 93

E

Event Manager 67

=
Font Assets 55

G

Global Palette 78

GPU Hardware Accelerated Features 103
Graphics Composer Asset Management 42
Graphics Composer Window User Interface 3
Graphics Pipeline 93

Graphics Pipeline Options 97

H
Heap Estimator 76
|

Image Assets 49

Image Preprocessing Memory Management 106
Importing and Exporting Graphics Data 128

Improved Touch Performance with Phantom Buttons 98
Introduction 3

M

Memory Configuration 43

Menus 10

MHGC Tools 67

MPLAB Harmony Graphics Composer Suite 130
MPLAB Harmony Graphics Composer User's Guide 3

N
New Project Wizard 14

@)

Object Properties 30
Options 26

P
Properties Editor Panel 29

© 2013-2017 Microchip Technology Inc.

S

Schemes Panel 24

Screen Designer Window 6

Screens Panel 22

Small Buttons Controlled by Phantom Buttons 100

Speed and Performance of Different Image Decode Formats in MHGC 92
String Assets 63

String Table Configuration 60

Supporting the Focal Tech FT5x06 Capacitive Touch Controller 122

T
Tree View Panel 18

V

Volume Ill: MPLAB Harmony Configurator (MHC) 2
w

Widget Colors 81
Widget Tool Box Panel 26

MPLAB Harmony v2.06 131



	MPLAB Harmony Help
	Volume III: MPLAB Harmony Configurator (MHC)
	MPLAB Harmony Graphics Composer User's Guide
	Introduction
	Graphics Composer Window User Interface
	Screen Designer Window
	Menus
	New Project Wizard
	Tree View Panel
	Screens Panel
	Schemes Panel
	Options
	Widget Tool Box Panel
	Properties Editor Panel
	Object Properties

	Graphics Composer Asset Management
	Memory Configuration
	DDR Organizer
	Image Assets
	Font Assets
	String Table Configuration
	String Assets
	Binary Assets

	MHGC Tools
	Event Manager
	Heap Estimator
	Global Palette

	Widget Colors

	Code Generation
	Advanced Topics
	Adding Third-Party Graphics Products Using the Hardware Abstsraction Layer (HAL)
	Speed and Performance of Different Image Decode Formats in MHGC
	Draw Pipeline Options
	Graphics Pipeline
	Graphics Pipeline Options

	Improved Touch Performance with Phantom Buttons
	aria_coffeemaker Demonstration Example
	Small Buttons Controlled by Phantom Buttons

	GPU Hardware Accelerated Features
	Image Preprocessing Memory Management

	Creating a MPLAB Harmony Graphics Application Using a Third-Party Display
	Creating the Project in MPLAB and MPLAB Harmony
	Supporting the Focal Tech FT5x06 Capacitive Touch Controller


	Importing and Exporting Graphics Data

	MPLAB Harmony Graphics Composer Suite

	Index


