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We will now look at the solutions of a particle of mass m confined to move along the x-axis
between 0 to L. This is achieved by making the potential 0 between x = 0 and x = L and
V =∞ for x < 0 and x > L (see Figure 1). In quantum mechanics this model is referred to as
particle in a box (PIB) of length L.

Figure 1: The one-dimensional infinite potential well of length L. It is divided into three regions,
with regions I and III having V =∞ and region II having V = 0

Before we set up and solve the Schrödinger equation let us apply de Broglie’s approach to this
problem. de Broglie associates a wave with every material particle traveling with momentum
p. The wavelength of the wave is

λdB =
h

p
.

The classical analog of a particle in a box is a string that is fixed at both ends. When such a
string is plucked, we know that the amplitude of the oscillations at the fixed ends is zero. In
other words, an integer number of half-wavelengths must fit in the length of the box. Applying
this idea to the present case, we find that

n
λdB

2
= n

h

2p
= L n = 1, 2, · · ·

Solving for p we get

p =
nh

2L

The particle feels no potential energy so all its energy is in the form of kinetic energy. As a
result

E =
p2

2m
.

Substituting for p, we get

En =
n2h2

8mL2
n = 1, 2, · · ·



Let us now proceed to analyze this problem quantum mechanically. The Schrödinger equa-
tion is

Ĥψ(x) = Eψ(x), (1)

where V (x) = ∞ in regions I and III and V (x) = 0 in region II. The results are in no way
affected if in region II the potential is V because it only has the effect of altering the zero of
energy and so without of generality we will assume that V = 0 within the box.

In regions I and III the wave function is identically zero since the potential is infinite so we
will only have to consider the solution within the box.

We are looking for the solutions to the equation

− h̄2

2m

d2

dx2
ψ(x) = Eψ(x). (2)

We rewrite this differential equation in the form

d2ψ

dx2
= kψ. (3)

where k =
√

2mE
h̄2 . The general solution to this differential equation is

ψ(x) = A cos(kx) +B sin(kx)

where A and B are constants. (Verify that this indeed is the solution by substituting it into
the differential equation.)

The boundary conditions that the wave function should satisfy are

ψ(0) = 0

and
ψ(L) = 0.

The first of these conditions implies that A = 0. The second condition yields B sin(kL) = 0
which implies that

kL = nπ, n = 1, 2, 3, · · ·

or in other words k = nπ/L. Because E is related to k we hence obtain that

E =
n2h2

8mL2
, n = 1, 2, 3, · · ·

and the wave function has the form

ψn = B sin
(nπx
L

)
.

You will notice that the application of the boundary conditions naturally leads to quantization.
In addition, observe that we do not consider n = 0 as a possibility because that would imply
that the wave function is identically zero for all x or in other words there is no particle!

The constant B is yet to be determined. The normalization condition on the wave function
yields B. ∫ L

0
ψ2dx =

∫ a

0
B2 sin2

(nπx
L

)
dx = 1

from which we determine that

B =

√
2

L
.



Interestingly, the energies obtained by solving the Schrödinger equation are identical to that
obtained from a qualitative analysis using the de Broglie principle. Observe that the lowest
state has an energy of h2

8mL2 , which is different from zero. This is called the zero point energy.
It implies that even when the system is in the ground state it is undergoing ceaseless motion.
This zero point energy is a result of the uncertainty principle.

What is the zero point energy predicted by the uncertainty principle? The particle is confined
to a box of length L, which means that the uncertainty in the position is L - the particle has
to be somewhere in the box. The minimum uncertainty in the momentum from the Heisenberg
relation is

∆p =
h̄

2L

The momentum is at least of the order of the uncertainty in the momentum, implying that

p =
h̄

2L

or in other words

E =
h̄2

4mL2

a result that agrees with the quantitative result derived in the last paragraph.
Having determined the wave function for this problem let us put it to some use. One of the

things that we are often interested in is the position of the particle if it is present in a particular
state. Notice that the states that we solved for are energy eigen states. Moreover, they are not
eigen states position. That is

xψn 6= constant× ψn

In cases where the wave function is not an eigen function of the operator corresponding to the
observable, we will be concerned with the statistical mean of the measured values, averaged
over a large number of measurements, the expectation value. The expectation value is defined
of an operator is defined as

< Op >=

∫
ψ∗Ôpψdτ∫
ψ∗ψdτ

.

The expectation value of the position for a particle in the n-th state of a particle in a box would
hence be

< x >=
2

L

∫ L

0
sin
(nπx
L

)
x sin

(nπx
L

)
dx =

1

L

∫ L

0

(
1− cos

(
2nπx

L

))
xdx

Because the wave functions are normalized the denominator is unity. You can show, either by
symmetry arguments or by explicit integration, that the result is L/2, which agrees with the
classical result.

This process may be performed for any other observable. For example, the average momen-
tum or the expectation value of the momentum of a particle in the n-th state of the box. The
only difference in the procedure to determine the expectation value of position is to replace the
position operator with the momentum operator. That is, multiplication by x is replaced with
the momentum operator,

(
−ih̄ d

dx

)
. The average momentum is then

< p >=
2

L

∫ L

0
sin
(nπx
L

)
p̂x sin

(nπx
L

)
dx =

2

L

∫ L

0
sin
(nπx
L

)(
−ih̄ d

dx

)
sin
(nπx
L

)
dx.

By symmetry arguments, we find that the average momentum is zero. This agrees with the
classical result - the particle has equal probability of traveling in either the +x or −x direction.
To include:

1. Calculate expectation values of x̂ and p̂.



2. Probability maximum dependence on the state

3. Symmetry and number of nodes

4. Correspondence principle

5. Finite potential well

6. Two and three dimensions - Separation of variables, degeneracy

7. Particle inside a circle and a sphere

Exercises:

1. Verify the uncertainty principle by considering the first state in the box.

2. Consider the box to extend from -L/2 to L/2. Solve the Schrödinger equation for this
case.

3.


