

Sentinel[®] Cerebral Protection System During TAVR

February 23, 2017 Claret Medical, Inc. Circulatory System Devices Panel Introduction

Thomas Engels Vice President of Clinical Affairs Claret Medical, Inc.

The Sentinel Cerebral Protection System

- Class 2 (proposed), temporary accessory device
- Placed prior to and removed after Transcatheter Aortic Valve Replacement (TAVR)
- TAVR associated with cerebrovascular events¹
- Embolic Protection Devices (EPD) have been used in carotid stenting for >15 years
- No alternative option available for embolic protection in TAVR
- Sentinel investigational in US
- Sentinel CE Marked 2013
 - >3,000 TAVR procedure

Proposed Sentinel System Indication

The Sentinel[®] Cerebral Protection System is indicated for use as a cerebral protection device to capture and remove embolic material while performing transcatheter aortic valve procedures in order to reduce peri-procedural ischemic brain injury.

The diameters of the arteries at the site of filter placement should be between 9 – 15 mm for the brachiocephalic and 6.5 mm – 10 mm for the left common carotid arteries.

Animation of the Sentinel System During TAVR

Safety and Effectiveness Outcomes

- Primary Safety
 - 30-Day MACCE vs. Performance Goal Achieved
- Primary Effectiveness Median New Lesion Volume (DW-MRI)
 - Observed treatment effect $\geq 30\%$ Achieved
 - Test vs. Control Not achieved
- Other Relevant Study Outcomes
 - Sentinel system successfully delivered & retrieved in 94% of patients
 - Major Sentinel access-related complications were rare (N=1, 0.4%)
 - Embolic debris captured in 99% of patients

US Medical Device Classification

- Medium risk, temporary accessory device
- De Novo pathway required due to lack of predicate cerebral protection device
- De Novo pathway risk/benefit balance on the basis of the totality of pre-market evidence and post market measures

Presentation Agenda

Background, Device Description, Trial Design, Safety and Effectiveness Data

Martin B. Leon, MD Professor of Medicine, Columbia University Medical Center

Histopathology

Renu Virmani, MD President, CVPath Institute, Inc. Clinical Professor, George Washington University

History of Neuroprotection

William A. Gray, MD

System Chief of the Division of Cardiovascular Disease, Lankenau Medical Center, Main Line Health

Conclusion

Azin Parhizgar, PhD

President and Chief Executive Officer Claret Medical, Inc.

Additional Experts

Interventional Cardiology

Samir Kapadia, MD

Director, Cardiac Catheterization Laboratory Cleveland Clinic

Susheel Kodali, MD

Director, Structural Heart & Valve Center Columbia University Medical Center

Axel Linke, MD

Co-director, Department of Internal Medicine/ Cardiology University of Leipzig Heart Center

Roxana Mehran, MD

Professor of Medicine, Cardiology Mount Sinai, New York

Neurology and Neurosurgery

Maxim Mokin, MD, PhD

Director of Neuro Interventional Surgery University of South Florida Health

Jesse Weinberger, MD

Vascular Neurology Specialist Mount Sinai Hospital

MRI Neuroimaging Robert Zivadinov, MD, PhD

Professor of Neurology, Director, Buffalo Neuroimaging Analysis Center

Michael Dwyer, PhD

Director Of Technical Imaging Buffalo Neuroimaging Analysis Center Assistant Professor of Neurology University of Buffalo

Neurocognition

Ronald Lazar, PhD

Professor of Neuropsychology Columbia University Medical Center

Statistics

Roseann White, MA

Director, Pragmatic Clinical Trial Statistics Duke Clinical Research Institute

Background

Martin B. Leon, MD

Professor of Medicine

Columbia University Medical Center

Strokes are Considered a Major Complication after TAVR

PARTNER 1A RCT (SAPIEN TAVR vs. Surgery); 699 high-risk patients with severe AS; N Engl J Med 2011;364:2191-2202

Typical Examples of Heavily Calcified Aortic Valves

Radiograph of surgical specimen

Autopsy specimen

Strokes are Considered a Major Complication after TAVR

Technological refinement of transcatheter valves and adjunctive procedures, such as

Tranthe use of embolic protection devices,13will facilitate transcatheter replacementrotic embdevice maContinstudy wilthe dural

ment of transcatheter redures, such as the use evices,¹³ will facilitate and may improve outices should be evaluated

and to assess the risk of late thromboembolic events. The insertion of a prostnesis without removal of the diseased aortic valve creates an irregular zone around the stent that may predispose to thrombus formation. This concern might explain the investigators' use of dual antiplatelet

current standard techniques. The future introduction of prostheses for surgical replacement should be held to the high standard of clinical evaluation demonstrated in this evaluation of transcatheter aortic-valve implantation.

in controlled trials with randomization against

TAVR is Projected to Grow in the Next Decade

CO-14

- In 2015, TAVR accounted for 32% of all Medicare AV replacements in the US
- Globally, TAVR is expected to grow approximately 4-fold in the next 10 years

Courtesy of Dr M. Leon TVT 2016; Adapted from Credit Suisse TAVI Comment – January 2015

Strokes After TAVR

- Approximately 3% to 7% at 30 days in high surgical risk patients (CEC adjudicated FDA studies)
- Up to 85% of strokes occur within 1 week of TAVR
- Associated with increased 1-year mortality and reduced quality-of-life
- Frequency is highly dependent on stroke definitions (e.g. VARC-2*) and ascertainment methods (e.g. w/wo neurology assessments)

Strokes After TAVR

Insights Into Timing, Risk Factors, and Outcomes of Stroke and Transient Ischemic Attack After Transcatheter Aortic Valve Replacement in the PARTNER Trial (Placement of Aortic Transcatheter Valves)

Samir Kapadia, MD; Shikhar Agarwal, MD; D. Craig Miller, MD; John G. Webb, MD;
Michael Mack, MD; Stephen Ellis, MD; Howard C. Herrmann, MD; Augusto D. Pichard, MD;
E. Murat Tuzcu, MD; Lars G. Svensson, MD, PhD; Craig R. Smith, MD;
Jeevanantham Rajeswaran, PhD; John Ehrlinger, PhD; Susheel Kodali, MD; Raj Makkar, MD;
Vinod H. Thourani, MD; Eugene H. Blackstone, MD; Martin B. Leon, MD

- 2621 patients from PARTNER (high and extreme risk);
 CEC adjudication
- Acute-phase (peri-procedural) stroke risk peaked at 2 days, with a low constant risk of 0.8% per year

Kapadia S, et al. Circ Cardiovasc Interv 2016;9:e002981

Strokes After TAVR (Acute Phase)

Kapadia S, et al. Circ Cardiovasc Interv 2016;9:e002981

Spectrum of Brain Injury Caused by Embolic Material

- Clinical neurologic events
 - Strokes (disabling and non-disabling)
 - Transient ischemic attacks (TIA)
- Brain injury on neuro-imaging studies detected by DW-MRI
- Neuronal injury without overt symptoms¹ which may result in acute or chronic changes in neurocognitive function

Brain Injury on Neuro-imaging (DW-MRI) after TAVR

- Frequent early DW-MRI abnormalities (68%-100% of patients) after TAVR from 9 studies
- Most patients have multiple infarcts which represent permanent ischemic brain damage
- SENTINEL trial based on results from predicate trial (CLEAN-TAVI)
 - Randomized, controlled study in 100 patients
 - Single TAVR system
 - Exact MRI methodology was used by the same core laboratory as is used in the current study

CO-20

Sentinel Cerebral Protection System: Device Description and Case

Protected vs All Territories Intra-cerebral Vasculature

Zhao M, et al. Regional Cerebral Blood Flow Using Quantitative MR Angiography. AJNR 2007;28:1470-1473

Protected and Unprotected Cerebral Vascular Territories

Partially Protected 24% brain volume Unprotected 2% brain volume

Sentinel Cerebral Protection System During TAVR

 Two independent filters capture & remove embolic material

- Polyurethane filter, pore size = 140 µm
- Standard R trans-radial sheath access (6F)
- One size accommodates most vessel sizes (brachiocephalic 9-15 mm and left common carotid [LCC] 6.5-10 mm)
- Deflectable compound-curve catheter facilitates cannulation of LCC
- Minimal profile in aortic arch (little interaction with other devices)

Sentinel Cerebral Protection System During TAVR – Case

CO-25

SENTINEL Trial Overview

SENTINEL Trial Design Overview

Patients with Severe Symptomatic Aortic Stenosis undergoing TAVR

Key Inclusion Criteria

- Patients with symptomatic severe aortic stenosis eligible for treatment with a US commercially approved TAVR system
 - 4 different TAVR systems used (not stratified during randomization)
- Acceptable aortic arch anatomy and vessel diameters without significant stenosis
 - Brachiocephalic diameter 9 -15 mm
 - Left common carotid diameter 6.5 -10 mm

Key Exclusion Criteria

- Anatomic
 - Right extremity vasculature not suitable
 - Brachiocephalic, left carotid or aortic arch not suitable
- Clinical
 - CVA or TIA within 6 months
 - Neurological disease with persistent deficits
 - Carotid disease requiring treatment within 6 weeks
 - Contraindications to MRI
 - Renal insufficiency (CR >3.0 mg/dL or GFR <30 cc/min)
 - Severe LV dysfunction (EF <20%)
 - Balloon valvuloplasty (BAV) within 30 days

Multicenter Trial: 363 Patients at 19 Sites

Study Administration

Co-Principal Investigators:

Susheel Kodali, MD Columbia University Medical Center

Samir R. Kapadia, MD Cleveland Clinic

Axel Linke, MD Co-director, Department of Internal Medicine/Cardiology University of Leipzig Heart Center

Clinical Steering Committee Chairman:

Martin B. Leon, MD Columbia University Medical Center

Study Medical Monitor:

Roxana Mehran, MD Mount Sinai School of Medicine

Clinical Events Committee:

Cardiovascular Research Foundation Chair: **Ozgen Dogan, MD** Neurologists: **Jesse Weinberger, MD Joshua Willey, MD** Data Safety Monitoring Board: Cardiovascular Research Foundation

Chair: Blase A. Carabello, MD

Histopathology / Morphometry Core Laboratory:

CV Path Institute Chair: **Renu Virmani, MD**

MRI Core Laboratory: Buffalo Neuroimaging Analysis Center, University of Buffalo Chair: Robert Zivadinov, MD, PhD

Neurocognitive Core Laboratory:

Tananbaum Stroke Center, Neurological Institute Columbia University Chair: **Ronald M. Lazar, PhD**

Sentinel CT Planning Center:

Cedars-Sinai Medical Center Chair: Hasan Jilaihawi, MD

Statistical Analysis

Duke Clinical Research Institute Project Director: **Roseann White, MA**

North American Science Associates, Inc (NAMSA)

Valve Type Distribution Over Time

Distribution of Valve Types Across Study Arms

No Significant Differences in Valve-type Distribution (p = 0.71)

CO-33

SENTINEL Trial Safety and Performance

SENTINEL Safety Populations

Patients with Severe Symptomatic Aortic Stenosis Undergoing TAVR

Primary Safety Endpoint

- Non hierarchical MACCE at 30 days
 - All-cause mortality
 - All strokes
 - Acute kidney injury (Stage 3) within 72 hours
- Historical MACCE performance goal
 - Weighted average of all FDA pivotal TAVR trials approved at time of SENTINEL trial initiation = 13.3%
- Upper-bound of one-sided 95% CI for MACCE derived from Safety Cohort (Safety Arm + Test Arm subjects) must be <18.3% (13.3% + 5% non-inferiority margin)
- Device cohort (Safety + Test arm) also compared to concurrent randomized Control arm

Patient Demographics

	Sentinel		
	Safety Arm (N=123)	Imaging Arm (N=121)	Control Arm (N=119)
Age (mean, yrs)	82	82	83
Female (%)	55	52	49
STS PROM Score (mean, %)	6.2	6.4	7.5
Previous stroke (%)	8	4	5
Previous TIA (%)	8	7	7
Diabetes (%)	27	41	38
h/o atrial fibrillation (%)	30	35	30
Heavily calcified aorta (%)	3	2	3
h/o CAD (%)	54	50	56
h/o PVD (%)	16	14	15
NYHA III/IV (%)	83	85	82
Valve area (cm ²)	0.7 ± 0.18	0.7 ± 0.17	0.7 ± 0.20
Mean aortic valve gradient (mmHg)	42 ± 15	44 ± 15	41 ± 14
Sentinel Access and Device Success

Reasons for No Sentinel (N=13, 5.6%)
No TAVR: 3
Inadequate vascular access: 6
Late screen failure: 3
Test patient treated as Control (protocol deviation): 1

	Sentinel (Safety + Test)		
Sentinel Access			
Radial	94.4%		
Brachial	5.6%		
Device Success			
Both Filters Deployed*	94.4%		
≥ One Filter Deployed	99.6%		

*Acute delivery and retrieval success: Deployment and retrieval of the proximal and distal filters in accessible anatomies (not excessively tortuous or calcified)

TAVR Procedural Factors in SENTINEL Study

	Sentinel (Safety + Test)	Control	P-value
TAVR Procedure Time (Mean Minutes ¹⁾	87	74	0.013
TAVR Fluoroscopy Time (Mean Minutes ²)	19	17	0.073

¹ Time elapsed between first arterial access and removal of the last guide from the arterial access sheath ² Time elapsed use of fluoroscopy during TAVR Procedure

Primary Safety Endpoint (30-Day MACCE)

Error bars represent upper bound of the one-sided 95% Upper CI

Imputation method based on the logistic regression method. Factors used in imputation algorithm: age, sex, BMI, history of diabetes, history of atrial fibrillation, previous stroke with permanent deficit, and geography

Safety Endpoint Evaluation (Without Non-Inferiority Margin)

Error bars represent upper bound of the one-sided 95% Upper CI

Imputation method based on the logistic regression method. Factors used in imputation algorithm: age, sex, BMI, history of diabetes, history of atrial fibrillation, previous stroke with permanent deficit, and geography

30-Day MACCE Sentinel vs. Concurrent Control (Analyzed ITT)

Error bars represent upper bound of the one-sided 95% Upper CI

30-Day Clinical Safety Results (Analyzed ITT)

	Sentinel (Safety + Test) (N=234)		Control (N=111)		
	Ν	%	Ν	%	P-value
Any MACCE [†] patients	17	7.3	11	9.9	0.40
Events					
Death (all-cause)	3	1.3	2	1.8	0.65
Stroke	13	5.6	10	9.1	0.25
Disabling	2	0.9	1	0.9	1.00
Non-disabling	11	4.8	9	8.2	0.22
AKI (Stage 3)	1	0.4	0	0	1.00
TIA	1	0.4	0	0	1.00
Sentinel-related complications ¹	1	0.4	N/A	N/A	N/A

¹Late brachial artery pseudo-aneurysm treated with thrombin injection

†MACCE defined as Death (any cause), Stroke (any), Acute Kidney Injury (Stage 3).

Note: MACCE events adjudicated by independent Clinical Events Committee who were blinded to treatment arm

Stroke Diagnosis ≤72 hours (Analyzed ITT)

CO-43

*Fisher Exact Test

Safety Summary

- Primary Safety Endpoint achieved
 - 30-day Sentinel MACCE vs. Performance Goal (p < 0.001)
- 30-Day MACCE
 - Sentinel 7.3% vs. Control 9.9%
- 30-Day stroke rate
 - Sentinel 5.6% vs. Control 9.1%
- Peri-procedural stroke rate (≤72 hours)
 - Sentinel 3.0% vs. Control 8.2%
- One (0.4%) Sentinel-related access site complication

Histopathology

Renu Virmani, MD

President, CVPath Institute Inc.

- Clinical Professor
- George Washington University

Histopathologic Analysis of Filters: Proximal and Distal

- 105 patients with 210 evaluable filters
- Filters processed and embedded in paraffin and sectioned
- Slides classified by thrombus and tissue type
 - Thrombus (acute and chronic)
 - Valve tissue
 - Calcium nodules
 - Arterial wall (intima or media including necrotic core)
 - Myocardium
 - Foreign material

Type of Tissue Identified

Calcium nodules

Arterial wall + thrombus

Foreign material + thrombus

Myocardium + thrombus

Type of Morphometric Analysis Performed

- Automated analysis for particle size (HALO software)
- Five largest tissue samples measured manually in largest and smallest dimensions
- Morphology of tissue characterized

SENTINEL Histopathology: Total Embolic Material by Type

Morphometric Analysis: Embolic Material by Particle Size

Automated measurement

Patient Quartile Analysis: Average Number of Particles ≥0.5 mm

CO-51

1 in 4 Patients had 25 Particles ≥0.5 mm in Size

Automated measurement

Morphometric Analysis: Embolic Material by Valve Type ≥ 0.5 and ≥ 1 Millimeter

Manual measurement

Process Methodology

Sentinel filters (with collected debris)

CVPath filter (40 micron pore size)

- Filtered through 40-micron mesh
- Processed, embedded in paraffin
- Sectioned at 4-6 microns
- Sections are stained, total of 5 sections per filter
- Assessed by light microscopy

CO-54

Arterial Wall & Valve Tissue

CO-55

Calcium Nodules

Myocardium

CO-57

Foreign Material

Largest Piece – Valve and Arterial Wall (5.4 mm)

Distal Filter

Sentinel vs. TAVR Catheter Profile Comparison

TAVR devices are larger, stiffer than Sentinel

CO-59

 TAVR device features such as exposed metal frames or flared tubes or tips are prone to interacting with vessel wall

CO-60

Debris From TAVR

- TAVR traverses:
 - Iliac artery
 - Abdominal aorta
 - Thoracic aorta
 - Aortic arch
 - Ascending aorta

Aortic arch Thoracic and abdominal aorta with iliac bifurcation

Histopathology Summary

- Tissue or foreign material combined with acute thrombus was found in 98%
- Debris captured from all valve types
- Acute thrombus alone observed in only 1% of patients
- Valve tissue and calcium nodules captured in 50% of patients
- Foreign material captured in 35% of patients
- 1 in 4 Patients had 25 Particles ≥0.5 mm in size

SENTINEL Trial Effectiveness

Martin B. Leon, MD

Professor of Medicine

Columbia University Medical Center

MRI Methodology and Acquisition Protocol

- Serial 3T scan acquisition at baseline, 2-7 days and 30 days on the same scanner
- All sites imaging core lab certified according to MRI technologist manual and approved by MRI physicist
- Sequences acquired:
 - Diffusion weighted (acute changes)
 - T2/FLAIR (chronic changes)
 - B0 Field Map
 - High-resolution 3D T1-weighted anatomical image
- Scans transferred, queried, accepted in real time

MRI Analysis of New DWI Lesion Volume and Number

- Blinded core lab analysis of all scans
- Serial co-registration and subtraction
- Artifact/distortion correction

- Baseline DWI 2-7 days DWI Subtraction DWI 52.7mm³ 34.3mm³ 408.7mm³
- Per-lesion
 quantification and
 longitudinal tracking

DWI – diffusion weighted image

FLAIR - attenuated inversion recovery

SENTINEL Imaging Study

Patients with Severe Symptomatic Aortic Stenosis undergoing TAVR

Primary Effectiveness Endpoint and Success Criteria

- Primary Effectiveness Endpoint
 - Median total new lesion volume in protected territories at Day 2-7 based on DW-MRI
- Study Success Criterion Reduction in Median Total New Lesion Volume (Test vs. Control) in protected territories
 - Criterion #1: statistical superiority
 - Criterion #2: observed treatment effect ≥30%

Primary Effectiveness Endpoint: New Lesion Volume in Protected Territories

Imputation method based on the predictive mean matching method.

Factors used in imputation algorithm based on blinded aggregate data: 850 Hounsfield Unit calcification score; BMI; Valve type; Procedural stroke; Pre/post dilatation; Mean aortic valve gradient

[†]Wilcoxon Test

Median New Lesion Volume by Territory (Analyzed ITT)

	Median New Lesion Volume, mm ³ [IQR]		
Territory	Test	Control	P-value [†]
Protected	102.8 [37,423]	178.0 [34,483]	0.33
Partially Protected	69.2 [0,269]	59.0 [0,229]	0.73
Unprotected	0 [0,53]	0 [0,0]	0.20
All	294.0 [69,786]	309.8 [100,886]	0.81

Total Lesion Number and Volume for Patients with Stroke in All Territories

Renderings of 2-7 day DW-MRI Scans in Control Patients

 In stroke patients, lesion size, number, and location are ALL important

Size

Location

CO-70

3D renderings of 2-7d DW-MRI scans from 3 control stroke patients

CO-71

Post Hoc Analysis of RCTs Meta-Analysis of Effectiveness

Comparison of CLEAN-TAVI vs. SENTINEL Outcomes

Test arm results consistent in both studies

Mean New Lesion Volume, mm ³ (Coefficient of Variation) Mean %			
Territories	Test	Control	Reduction
CLEAN-TAVI ¹	474 (172%)	1030 (235%)	54%
SENTINEL	413 (190%)	696 (363%)	41%

- SENTINEL underpowered due to:
 - Observed lower new lesion volumes in the control arm
 - Higher variability in control vs design assumptions

¹ Raw mean calculated and used in the SENTINEL protocol
Trials Available for Meta-Analysis of Effectiveness

	CLEAN-TAVI	MISTRAL-C	SENTINEL
Single Blind	Yes	Yes	Yes
Randomized 1:1	Yes	Yes	Yes
Independent core lab analysis of DW-MRI	Yes	Yes	Yes
Study Sites	1 Site EU	4 Sites EU	19 Sites US & Europe
Valve Type(s)	CoreValve	CoreValve SAPIEN 3 SAPIEN XT	CoreValve SAPIEN 3 SAPIEN XT Evolut R
Number of Patients with DW-MRI data	94	37	189

Meta-Analysis of Effectiveness* Change in Mean New Lesion Volumes (Protected Territories)

	% Change (95% CI) [Absolute Difference]		Favor Tes	s Fa st Co	vors ontrol	
CLEAN-TAVI (N=94)	-52.7% (-73.8%, -15.0%) [-191]	I				
MISTRAL-C (N=36)	-66.9% (-89.4%, 3.4%) [-45]	·	•			
SENTINEL (N=189)	-18.9% (-53.0%, 40.2%) [-25]					
OVERALL (N=319)	-37.5% (-57.6%, -8.0%) [-50]					
		-100%	-50%	0%	50%	100%
*Patient-level data used in analyses		% Change Between Test and Control (95% CI)				

Meta-Analysis of Effectiveness* Change in Mean New Lesion Volumes (All Territories)

	% Change (95% CI) [Absolute Difference]		Favors Test	Fa Co	vors ontrol	
CLEAN-TAVI (N=94)	-43.9% (-67.2%, -4.1%) [-304]					
MISTRAL-C (N=36)	-58.6% (-88.3%, 46.2%) [-92]		•			
SENTINEL (N=189)	-1.4% (-40.9%, 64.5%) [-4]					
OVERALL (N=319)	-24.4% (-47.7%, 9.3%) [-66]					
		-100%	-50%	0%	50%	100%
% C		% Ch	ange Betw	een Te	st and Co	ontrol
*Patient-level data used in analyses		(95% CI)				

CO-76

Neurocognitive Sub-Study

Methodology

Domain	Neurocognitive Test
Attention	Digit Span Trail Making Part A
Verbal Memory	Hopkins Verbal Learning Test
Visual Memory	Brief Visual Memory Test
Executive Function	Letter Number Sequencing Trail Making Part B Rey Complex Figure Test (Copy)
Processing Speed	Digit Symbol Controlled Oral Word Association

Corrected for the Covariates of Mental Status and Depression

SENTINEL Trial Design Overview Neurocognition Sub-study

Patients with Severe Symptomatic Aortic Stenosis undergoing TAVR

Primary Outcome: Z-score Change at 30 Days (ITT)

	Sen			
	Test (N=93)	Control (N=92)	P-value*	
Composite Z-Score	-0.09 ± 0.44	-0.03 ± 0.37	0.42	

Components of Z-Score			
Attention	0.14 ± 0.51	$\textbf{0.03} \pm \textbf{0.55}$	0.18
Executive Function	$\textbf{0.25} \pm \textbf{0.86}$	$\textbf{0.14} \pm \textbf{0.86}$	0.47
Processing Speed	$\textbf{0.12} \pm \textbf{0.39}$	$\textbf{0.14} \pm \textbf{0.43}$	0.55
Verbal Memory	$\textbf{-0.32} \pm \textbf{0.8}$	-0.28 ± 0.85	0.46
Visual Memory	-0.36 ± 0.79	-0.46 ± 0.91	0.43

*Data presented as Mean ± SD, model adjusted for education and baseline Geriatric Depression Score and baseline Mini Mental State Score.

SENTINEL Trial Effectiveness Summary

- Primary Effectiveness Median New Lesion Volume (Protected Territories)
 - Observed treatment effect ≥ 30% Achieved
 - Test vs. Control not achieved
- Meta analysis (3 RCTs) provides additional evidence of effectiveness

SENTINEL Results in the Context of Neuroprotection History

William A. Gray, MD

System Chief of the Division of Cardiovascular Disease

Main Line Health

Accessory Devices: Catheter-based Filters Used in Carotid Artery Stenting Are Similar to Sentinel

SENTINEL: First RCT in Filter Embolic Protection

- Evaluation metrics are not established
 - Low incidence of clinical endpoints (e.g., stroke) limits their utility
 - DW-MRI surrogate is therefore valuable, but still being refined (timing, effect of pre-existing abnormalities, etc.)
 - DW-MRI lesions relevancy of volume vs number vs location not established
- Expected treatment effect of DW-MRI surrogate not established or clinically validated

Filters Used in Sentinel and Carotid Artery Stenting Are Safe

- Vascular trauma from filter embolic protection in CAS is rare
- Similarly there was no filter-related vascular trauma reported in SENTINEL
 - Finding is consistent with parallels in filter construction
- Dwell times are short

CO-85

Both CAS and TAVR EPD Capture Significant Amounts of Liberated Debris

57% Debris Collected in CAS EPD: ARCHeR Study

- Types of embolic material collected by filters
 - Foam cells
 - Smooth muscle cells
 - Cholesterol
 - Collagen/elastin
 - Platelet/fibrin

57% of samples contained embolic material

Analysis of Particles Collected Per Filter in ARCHeR and in SENTINEL

¹Gray W A et. al. J Vasc Surg 2006,;44:258-69

EPD with Both CAS and TAVR Demonstrate Similar Stroke Reduction

CO-88

Adapted from Garg, et al. (2009). Neuroprotection and Stroke, Endovascular Thoracic: 16: 412-427

The Impact of Device Approval

- Carotid artery stent coupled with EPD approval in US in 2004
- Approval led to significant increase in use of protected carotid artery stenting
 - 5,000 to 75,000
 - 50% decrease in overall complication rates after device approval
- Improvements likely secondary to
 - Widespread EPD availability
 - Refinements in patient selection and technique

Summary: 5 Perspectives

- SENTINEL is the first pivotal multicenter US IDE study to isolate EPD neuroprotective procedural and outcomes
- SENTINEL safety profile is consistent with prior carotid artery (CAS) EPD studies
- Similar to carotid EPD, SENTINEL filter collection resulted in a high percentage of debris capture
- Incorporation of Sentinel into TAVR resulted in stroke reduction similar to that seen after adoption of carotid stenting embolic protection
- Further outcome improvements possible once TAVR EPD is broadly available

Concluding Remarks

Azin Parhizgar, PhD

President and Chief Executive Officer Claret Medical, Inc.

Company Perspective

- Claret focused on developing best cerebral protection device to protect from acute embolic ischemic injury or stroke
- 4-year commercial history outside US
- SENTINEL: first US/EU, multicenter, randomized, controlled EPD trial
- Provides safety in a rapidly evolving TAVR field

Effectiveness Endpoint Success Criteria: ITT New Lesion Volume in Protected Territories

Analyzed ITT

Sentinel Debris Type

Patient Quartile Analysis: Average Number of Particles ≥0.5 mm

CO-95

1 in 4 Patients had 25 Particles ≥0.5 mm in Size

Patient Quartiles

Primary Safety Endpoint Met (30-Day MACCE)

Stroke Diagnosis ≤72 hours (ITT)

*Fisher Exact Test

Summary

- Sentinel
 - is safe, with minimal complications, injury or disruption of the TAVR workflow
 - performs as intended
 - reduced the peri-procedural stroke rate compared to control (3% vs 8.2%)
 - yields an observed treatment of effect of 42%
 - captures a wide spectrum of emboli destined for the brain in 99% of the patients

Post-approval Training Program

- Committed to comprehensive training
- Sentinel safety and technical success demonstrated that IDE training was effective
- Elements of training program to mimic IDE study:
 - Comprehensive didactic training
 - Hands on learning with anatomical model
 - Proctor up to 5 cases at each site

Post-Market Surveillance Recommendations

- Close collaboration with FDA in formulating an effective PMS program to ensure a safe commercial roll out
- Program to include:
 - Post-market registry
 - Collect additional data in a real-world setting
 - A registry or TVT module

CO-101

Sentinel[®] Cerebral Protection System During TAVR

February 23, 2017 Claret Medical, Inc. Circulatory System Devices Panel