AN12775

Integrating the OTAP Client Service into a Bluetooth LE Peripheral

Device

Rev. 0 — 11 March 2020

1 Introduction

Over The Air Programming (OTAP) NXPs custom Bluetooth LE service
provides the developer a solution to upgrade the software that the MCU
contains. It removes the need of cables and a physical link between the OTAP
client (the device that is reprogrammed) and the OTAP server (the device that
contains the software update).

The best way to take advantage of the OTAP service is by integrating it into
the Bluetooth LE application, that way, you can reprogram the device many
times as required.

This document is intended for developers that are familiarized with the OTAP
software.

2 Basics of the OTAP Client Software

Chapter 2.1 contains a description of the actual implementation of the OTAP
client software included in the SDK package for FRDM-KW36. Chapter 2.2
explains the importance of integrating OTAP client software into your
application, and what it is expected to achieve.

2.1 OTAP Memory Management During the Update
Process

1. The KW36 Flash is partitioned into:

* One 256 KB Program Flash array (P-Flash) divided into 2 KB
sectors with a flash address range from 0x0000_0000 to
0x0003_FFFF.

* One 256 KB FlexNVM array divided in 2 KB sectors with address
range from 0x1000_0000 to 0x1003_FFFF.

» Alias memory with address range from 0x0004_0000 to
0x0007_FFFF. Writes or reads at the Alias range address
modifies or returns the FlexNVM content, respectively.

Application Note

Contents
1 Introduction........ccceveeeieieieree e 1

2 Basics of the OTAP Client Software...... 1
2.1 OTAP Memory
Management During
the Update Process....... 1

2.2 Advantages of the
OTAP Service
Integration...................... 4
3 Prerequisites......ccccccoceveriericicmrinnccciniens 5
3.1 Software

Development Kit
Download and Install...... 5

4 Customizing a Based Bluetooth LE
Demo to Integrate the OTAP

=Y Y [Y 7
4.1 Importing the OTAP
Service and
Framework Services
intothe HRS................... 7
4.2 Main Modifications in
the Source Files........... 13

4.3 Modifications in the
Project Settings and
Storage
Configurations.............. 22

4.4 Adding Low Power
Support on the
Application................... 23

5 Testing the HRS-OTAP Demao............. 25

5.1 Preparing the OTAP

Client SDK Software.... 25
5.2 Creating an HRS-

OTAP S-Record

Image to Update the

Software...........ccc........ 28
5.3 Creating an HRS S-

Record Image to

Update the Software.... 29
5.4 Testing the HRS-

OTAP Software............ 31

h
P

NXP Semiconductors

Basics of the OTAP Client Software

0x1003 FFFF

256 KB FlexNVM

0x1000_0000
Ox0007_FFFF

256 KB Alias FlexNVM

0x0004 0000
0x0003_FFFF

256 KB P-Flash

Ox0000_0000

Figure 1. MCU On-Chip memory

2. The OTAP application splits the flash into two independent parts, the OTAP bootloader, and the OTAP client. The
OTAP bootloader verifies if there is a new image available in the OTAP client to reprogram the device. The OTAP client
software provides the Bluetooth LE custom service needed to communicate the OTAP client device with the OTAP
server that contains the new image file. Therefore, the OTAP client device needs to be programmed twice, first with the
OTAP bootloader, then with the Bluetooth LE application supporting OTAP client. The mechanism created to have two
different software coexisting in the same device is storing each one in different memory regions. This is implemented by
the linker file. In the KW36 device, the bootloader application has reserved an 8 KB slot of memory from 0x0000_0000
to 0x0000_1FFF, thus the left memory is reserved, among other things, by the OTAP client application.

OTAP Client Device

Ox0003_FFFF

OTAP Client Software P-Flash

0x0000 2000
O0x0000_ 1FFF
Bootloader Software P-Flash

0x0000_0000

Figure 2. OTAP Client Software

3. To create a new image file for the client device, the developer needs to specify that the code will be stored with an offset
of 8 KB since the first addresses must be reserved for the bootloader (making use of the linker script). The new
application should also contain the Bootloader Flags at the corresponding address to work properly.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 2/35

NXP Semiconductors

Basics of the OTAP Client Software

0x0003_FFFF

0x0000_2000
Ox0000_1FFF

void

0x0000_0000

Figure 3. Software update

4. At the connection state, the OTAP server sends the image packets (known as chunks) to the OTAP client via Bluetooth
LE. The OTAP client device can store these chunks, in the first instance, at the external SPI flash (only available on the
FRDM-KW36 board) or at the On-Chip FlexNVM memory. The destination of the code is selectable in the OTAP client

software.
FRDM-KW36
OTAP Client Device MEW36x512xxx4
0x1003_FFFF
The Software Update can be
FlexMVM

stored at the FlexNVM

0x1000_0000 The Software Update can be
= External Flash

0x0003_FFFF stored at the External Flash

OTAP Client Software P-Flash
0x0000_2000
0x0000_1FFF

Bootloader Software P-Flash
0x0000_0000

Figure 4. Storage of the software update

5. When the transfer of the image has finished, and all chunks were sent from the OTAP server to the OTAP client, the
OTAP client software writes information, such as the source of the image update (external flash or FlexNVM) in a
portion of memory known as Bootloader Flags, and then resets the MCU to execute the OTAP bootloader code. The
OTAP bootloader reads the Bootloader Flags to get the information needed to program the device and triggers a
command to reprogram the MCU with the new application. Due to the new application was built with an offset of 8 KB,

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 3/35

NXP Semiconductors

Basics of the OTAP Client Software

the OTAP bootloader programs the device starting from the 0x0000_2000 address and the OTAP client application is
overwritten by the new image. Then, the OTAP bootloader triggers a command to start the execution of the new image.
If the new image does not contain the OTAP service included, the device would not be able to be programmed again
due to the lack of OTAP functionality. This is discussed further in Section 2.2 Advantages of the OTAP Service

Integration.
OTAP Client Device

0x0002_FFFF

P-Flash
0x0000 2000
0x0000_1FFF

Bootloader Software P-Flash
0x0000_0000

Figure 5. Memory content at the end of the software update process

NOTE
In practice, the boundary created between the OTAP client software and the software update addresses when the
internal storage is enabled is not placed exactly in the boundary of the P-Flash and FlexNVM memory regions.
Even more, these values might change depending on your linker settings. You can inspect the effective memory
addresses in your project.

2.2 Advantages of the OTAP Service Integration

As explained in chapter 2.1 OTAP Memory Management During the Update Process. The OTAP client software is a single-
programming demo application. Suppose that an OTAP client device is programmed with the OTAP client software and this
device requests an update, for example, a Heart Rate Sensor (HRS). The image that the OTAP server sends to the OTAP client
must be the HRS. After the reprogramming process the device that was the OTAP client, now, has turned into a Heart Rate
Sensor. The HRS does not have the capabilities to communicate with the OTAP server and request for another update. But if
the HRS image had included the OTAP client service as well, the device would have the possibility to request another software
update, for example, a modified Glucose Sensor example with OTAP Service. Due to the Glucose Sensor software includes the
OTARP client, the device can request another software update from the OTAP server. That way, the developer can continue
upgrading the software many times as needed. In other words, to be able to upgrade the software on the OTAP client device in
the future, the application sent over the air should support OTAP service.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 4/35

NXP Semiconductors

Prerequisites

First
Update

OTAP Client

OTAP Client Software

OTAP Server

Software Update for Client

OTAP Client Software

Second
Update

OTAP Client

OTAP Client Software

QOTAP Server
Software Update for Client

OTAP Client Software

Third
Update

OTAP Client

OTAP Client Software

OTAP Server
Software Update for Client

OTAP Client Software

Figure 6. OTAP integration functionality example

This application note is intended as guidance to add the OTAP service to a Bluetooth LE application.

3 Prerequisites

This document is provided together with a functional demo of the OTAP service integration. The example was based on the Heart
Rate Sensor project, available in the FRDM-KW36 SDK package and developed on the MCUXpresso IDE platform. The following
are required to complete the implementation of the HRS-OTAP integration demo.

* MCUXpresso IDE v11.0.0 or later

+ FRDM-KW36 SDK

* HRS - OTAP demo package

* FRDM-KW36 board
* A smartphone with loT Toolbox NXP app (available for Android and iOS)

3.1 Software Development Kit Download and Install

This chapter provides all the steps needed to download the SDK (Software Development Kit) for the FRDM-KW36 used as a

starting point.

1. Navigate to the MCUXpresso web page

2. Click on “Select Development Board”. Log in with your registered account.

3. Search for the “FRDM-KW36” board in the “Search by Name” textbox. Then click on the suggested board and click on
“Build MCUXpresso SDK”.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

5/35

https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors

Prerequisites

Select Development Board

Search for your board or kit to get started.

Search by Name Hardware Details

Board FRDM-KW36
FRDM-KW36

Device MKW36Z24

i Core Type / Max Freq Cortex-MOP / 48MHz
Select a Board, Kit, or Processor

Device Memory Size 512 KB Flash
* Boards 64 KB RAM
FRDM-KW36
y Kits Actions
v Processors Build MCUXpresso SDK
Name your SDK Explore selection with Pins tool
SDK_2.2.2_FRDM-KW36 @ Explore selection with Clocks tool

Don't use: (CEPEEERD in the name of your SDK

Figure 7. Building the FRDM-KW36 SDK package

4. Select MCUXpresso IDE in the “Toolchain / IDE” combo box. Select the supported OS and provide the name to identify
the package in your MCUXpresso Dashboard.

SDK Builder

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools

Developer Environment Settings
Selections here will impact files and exampies projecis included in the SDK and Generated Projects

SDK Version Toolchain / IDE Host OS
222 2019-12-06 release_conn_ksdk_2.2_kw35a_1.3.6_RC3.2 - MCUXpresso IDE - Windows -
s Name $ Category “ Description Dependencies
D CMSIS DSP Library Middleware CMSIS DSP Software Library
FatFs Middleware FAT file system
FreeRTOS Operating systems
BLE Wireless stack BLE stack and examples
Framework Wireless stack Framework modules and examples
GenFsK Wireless stack GenFSK stack and examples

This MCUXpresso SDK configuration is available for direct download

Archive Name

Download SDK SDK 222 FRDM-KW36 136 RC32

Don't use EEAD in the name of your SDK

Figure 8. Customizing the installation settings

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 6/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

5. Click the “Download SDK” button. It takes a few minutes until the system gets the package into your account on the
MCUXpresso webpage. Read and accept the license agreement. The SDK automatically downloads on your PC.

6. Open MCUXpresso IDE. Drag and drop the FRDM-KW36 SDK zip in the “Installed SDKs” perspective.

[Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/ffolder) inte the 'Installed SDKs' view.

Mame SDK Version Manifest Version
£ SDK_2.x_FRDM-KW36 2.2.2 3.1.0

Figure 9. Importing SDK package to MCUXpresso IDE

At this point, you have downloaded and installed the SDK package for the FRDM-KW36 board.

4 Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

The following steps describe the process of customizing a Bluetooth LE demo imported from the SDK to integrate the OTAP
service. This guide uses a Heart Rate Sensor project (HRS) as a starting point, so, some steps may differ for another Bluetooth
LE SDK example.

4.1 Importing the OTAP Service and Framework Services into the HRS

The OTAP client software makes use of Framework functionalities that are not included for the HRS demo. So, the first step for
the OTAP integration must be to compare which folders and files in the project source tree are different between your project
and the OTAP Client. Then you must include it to enable these functionalities. A comparison between the HRS (left) and the
OTAP Client (right) is shown in Figure 10.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 7/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

£ bluetooth
-[E3 controller
BB host
"B profiles
-3 battery
E device_info
B3 heart_rate

= board

i cmsis

& doc

= drivers

B framework
5 common
-3 DCDC

E} Flash

“[E Internal
53 FunctionLib
-3 GPIO
-[i3 Keyboard
-3 LED
-5 Lists
-3 LowPower
~[£3 MemManager
-[E3 Messaging
-3 Modulelnfo
- MWSCoexistence
= NVM
-5 OSAbstraction

-3 Panic

-3 Reset

~[E3 RNG

- Seclib

-5 SerialManager
-2 TimersManager
-3 XCWR

=5 freertos

3 libs

= linkscripts

-m end_text.ldt

- @ main_text.ldt

-1 symbols.Idt

5 source

-5 common
E gatt_db

Figure 10. Source tree comparison

= bluetooth
(3 controller
- host
LB profiles
L3 battery
E device_info

= board

= CMSIS

= doc

51 drivers
= framework

-3 common

3 FunctionLib

=3 GPID

-5 Keyboard

-3 LED

-5 Lists

-3 LowPower

-5 MemManager
-5 Messaging

-3 Modulelnfo

-3 MWSCoexistence
-3 NV

-7 QShbetraction
-3 OtaSupport
anic
7 Reset

&= RNG

-3 Seclib

-5 SerialManager

-5 TimersManager
i3 XCVR

5 freertos

& libs

[E=r linkscripts

--m end_text.|dt

- @ main_text.ldt

-|m main_text_section.ldt |
--m symbols.Idt

=r source

&5 otap_client

The folders and files that are in OTAP Client but not in HRS, must be imported in the HRS project. The following steps are to

include the folders and source files in your project.

1. Expand the “bluetooth” and the “framework” folders in your workspace. Select the folder needed for updates and click
the right mouse button. Select “New->Folder”. A new window is shown. Provide the same name as the missing folder in

the source directory.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

8/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

3 Mew Folder O

*
Folder =
Create a new folder resource. .a_’ /

Enter or select the parent folder:

| frdmbw3b_wireless_examples_bluetooth_hrs_freertos/bluetooth/profiles |

&t (=]
= hci_transport ~
(= host
v [= profiles
[= battery
(= device_info
= heart_rate
(= board
(= CMSIS
= doc
= drivers
(= framewaork
(= freertos
= lihe ¥

Folder name: | otap

Advanced »»

®

Figure 11. Creating the Bluetooth and Framework folders

2. Repeat step 1 for the left folders. The result must look similar as shown in Figure 12.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 9/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

v = frdmbow3E_wireless_examples_bluetooth_hrs_freertos
@ Project Settings
ml Includes
2 CMSIS
w [bluetooth
[= controller
[= hci_transport

= host
v = profiles
[= battery
[= device_info
== heart_rate
2 board
2 drivers
w 2 framework
[= commaon
= DCDC
w [= Flash
w [= External
= Interface
[= Source
= Internal
= FunctionLib
= GPIO

= Keyboard
[= LED
= Lists
= LowPower
= MemManager
= Messaging
= Modulelnfo
= MWSCoexistence
= NVM
= OS5Abstraction
w = OtaSupport
[= Interface
= Source
v [source

W [Ccommaon
(= gatt_db
I = -:utap;client |

Figure 12. HRS directory updated

3. Copy the files inside all the recently created folders, from the OTAP client and save it into your project. Ensure that all

the files are in the same folder from the HRS side. For this example, these files are listed below.

+ “otap_interface.h” and “otap_service.c” in “bluetooth->profiles->otap” folder.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

10/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

« “Eeprom.h” in “framework->Flash->External->Interface” folder.

» Eeprom source files in “framework->Flash->External->Source” folder.

+ “OtaSupport.h” in “framework->OtaSupport->Interface” folder.
» “OtaSupport.c” in “framework->OtaSupport->Source” folder.
* “main_text_section.ldt” in “linkscripts” folder.

» “otap_client.h” and “otap_client.c” in “source->common->otap_client”

v [bluetooth
= controller
= hci_transport
= host
w = profiles
= battery
= device_info
(= heart_rate
w = otap
[n] otap_interface.h
[otap_service.c

Figure 13. OTAP files integrated into the HRS project

4. Navigate to “Project->Properties” in MCUXpresso IDE. Go to “C/C++ Build->Settings->Tool Settings->MCU C Compiler-

>Includes”. Click on the icon next to “Include paths” textbox (see Figure 14). A new window will appear, then click on the

“Workspace” button.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

11/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

type filter text

Resource
Builders
v CfC++ Build

Build Variables
Envircnment
Logging
MCU settings
Settings
Tool Chain Editor

C/C++ General

Project References
Run/Debug Settings
Task Tags

Validation

. Properties for frdmbow36_wireless_examples_bluetooth_hrs_freertos

Settings

MCUXpresso Config Tools

Configuration: | Debug [Active]

&5 Tool Settings & Build steps

~ B3 MCU C Compiler
(22 Dialect
(2 Preprocessor
(# Includes
(2 Optimization
(22 Debugging
(2 Warnings
(# Miscellaneous
(22 Architecture
w B3 MCU Assembler
2 General
(# Architecture & Headers
~ B3 MCU Linker
(2 General
(2 Libraries
(# Miscellaneous
(22 Shared Library Settings
(22 Architecture
(# Managed Linker Script
(2 Multicore
~ B3 MCU Debugger
(22 Debug

L

Include paths (-1}

Manage Configurations..,

Build Artifact Binary Parsers @ Error Parsers

Ela & 5l &

WJsource/common
«/bluetooth/host/config
/bluetooth/controller/interface
/bluetooth/hci_transport/interface
WJ/source/common/gatt_db/macros
WJ/source/common/gatt_db
../bluetooth/profiles/battery
«/bluetooth/profiles/device_info
W/bluetooth/profiles/heart_rate
Framework/MWSCoexistence/Interface
.fdrivers

/CMSIS

WSutilities

WJframework/DCDC/ Interface/MIOW3GZ
./framework/XCVR/MKW3674

-

L

Include files (-include)

€ 4 3§l 2

Restore Defaults

Apply

W

@

Apply and Close

Cancel

Figure 14. Include paths perspective

5. Deploy your directory tree in the folder selection window. Select the following folders and click the “OK” button to save

the changes:

* bluetooth->profiles->otap

» framework->Flash->External->Interface

» framework->OtaSupport->Interface

* source->common->otap_client

Ensure that these paths were imported onto the “Include paths” view.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

12/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

Build Variables

Environment

Project Matures
Project References
Run/Debug Settings

(2 Optimization
(2 Debugging
(2 Warnings

~ | | Manage Configurations...

type filter text Settings v
Resource
Builders

~w C/C++ Build Configuration: |Debug [Active]

Wsource/commaen/gatt_db/macros
../source/commen/gatt_db
../bluetooth/profiles/battery

W/ Bluetooth/profiles/device_info

Logging i Tool Settings & Build steps Build Artifact Binary Parsers @ Error Parsers
MUCU settings
Settings w %3 MCU C Compiler Include paths (-) 28 83
Tool Chain Edit #5 Dialect
C,CDD G an | trer g p w/bluetooth/host/config
JC++ Genera (=5 Preprocessor ../bluetooth/controller/interface
MCUXpresso Config Tools @ Includes

. ../bluetooth/profiles/heart_rate
4 y /p ! 4
Task Tags = MISC.E”EHEDUS LJframework/MWSCoexistence/Interface
Validation (2 Architecture ./ drivers
w i MCU Assembler JCMSIS
@ General .Jutilities

@ Architecture & Headers
~ B85 MCU Linker
@ General
@ Libraries
@ Miscellanecus
@ Shared Library Settings
@ Architecture
(% Managed Linker Script
(2 Multicore
~ i MCU Debugger
(22 Debug
(# Miscellaneous

Wframeweork/DCDC/ Interface/MIKW36Z

_framework/ XCVRMIOWIRZA
"S{workspace_loc:/${ProjMame}/bluetooth/profiles/otap}”
"S{waorkspace_loc:/${ProjName}/framework/Flash/External/Interface}"
"S{workspace_loc:/${ProjName}/framework/OtaSupport/Interface}”
"Slworkspace_loc:/${ProjNamel/source/common/otap_client}” v

Include files (-include) &)

Restore Defaults Apply

@' Apply and Close

Cancel

Figure 15. Including the OTAP folders in the project paths

At this point, you have included the OTAP client Bluetooth and Framework services in the HRS project.

4.2 Main Modifications in the Source Files

Once you have included the OTAP client folders and files in your custom project, the next step is to inspect the differences

between the source files of the OTAP client and your Bluetooth LE application and add the code needed to integrate the OTAP
Service.The following sections explain the main aspects that you should focus on.

4.2.1 app_preinclude.h

The “app_preinclude.h” file, contains many preprocessor directives that configure some functionalities of the project, such as low
power enablement, DCDC configuration, Bluetooth LE security definitions, and the hardware board macros. The OTAP client

software requires some definitions that are not included for other Bluetooth LE SDK projects. These definitions that you must
include in your software update, are the following:

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note 13/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

» gEepromType_d
» gEepromParams_WriteAlignment_c
» gOtapClientAtt_d
The OTAP - HRS demo, sets the following values:

1. gEepromType_d: Defines the storage method between the AT45DB041E external flash on the FRDM-KW36 board
(default value) or the FlexNVM on-chip memory. You can also select among other memory devices for custom boards
(see the list of suppoted EEPROM in the Eeprom.h header file at framework/Flash/External/Interface).

/* Specifies the type of EEPROM available on the target board */
#define gEepromType d gEepromDevice AT45DB041E c

2. gEepromParams_WriteAlignment: Defines the offset of the software update for programming. Do not modify the default
value.

/* Eeprom Write alignment for Bootloader flags. */
#define gEepromParams WriteAlignment c 8

3. gOtapClientAtt_d: It sets the ATT transference method for OTA updates. It must be set to 1 for own purpose.

#define gOtapClientAtt d 1

4.2.2 app_config.c

The “app_config.c” source file, contains some structures that configure the advertising and scanning parameters and data. It also
contains the access security requirements for each service in the device.

The advertising data announces the list of services that the Bluetooth LE advertiser device (HRS — OTAP) contains. This
information is used by the Bluetooth LE scanner, to filter out the advertiser devices that do not contain the services required.
Hence, you must include the OTAP client service in the advertising data, to announce to the OTAP server, the availability of this
service. This is done at the scan response data as shown in the code below.

static const gapAdStructure t scanResponseStruct[l] = {
{

.length = NumberOfElements (uuid service otap) + 1,
.adType = gAdIncompletel28bitServicelist c,

.abData = (uint8 t *)uuid service otap

}

}i

gapScanResponseData_t gAppScanRspData =

{

NumberOfElements (scanResponseStruct),

(void *)scanResponseStruct

}i

CAUTION
Due to the OTAP client service is announced in the scan response, you must ensure that the OTAP server device
is configured to perform active scanning. This is already done by the IoT Toolbox App, but the OTAP server SDK
example does not. You can change the scanning settings of the OTAP server SDK example at the “app_config.c”
file, in the “gScanParams” struct.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 14/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

Additionally, you need to include the access security requirements for the OTAP service. This is done at the
“gapServiceSecurityRequirements_t” struct. You can customize these parameters for your purpose. The HRS — OTAP demo sets
the following parameters, focus on the OTAP service handle:

static const gapServiceSecurityRequirements t serviceSecurity[4] = {
{

.requirements = {

.securityModeLevel = gSecurityMode 1 Level 3 c,

.authorization = FALSE,

.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
by

.serviceHandle = service heart rate

by

.requirements = {

.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,

.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
b

.serviceHandle = service otap

by

{

.requirements = {

.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,
.minimumEncryptionKeySize
b

.serviceHandle = service battery
by

{

.requirements = ({

gbefaultEncryptionKeySize d

.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,

.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
b

.serviceHandle = service_device_info

}

}i

Last modification requires as well, to increase the index of the number of services in “deviceSecurityRequirements” struct:

gapDeviceSecurityRequirements t deviceSecurityRequirements = {

.pMasterSecurityRequirements = (void*)&masterSecurity,
.cNumServices = 4,
.aServiceSecurityRequirements = (void*)serviceSecurity

}i

4.2.3 gatt_db.h and gatt_uuid128.h

The “gatt_db.h” header file, contains the list of attributes that, together, shapes the profile of the GATT server (HRS-OTAP client
device). The most important step of this guide is to include the list of the OTAP client attributes into the device's database. It is
recommended to open the OTAP client SDK example, and your Bluetooth LE demo in order to compare both GATT databases.
Figure 16 shows the OTAP client portion of the database that defines the OTAP client service.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 15/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

PRIMARY_SERVICE_UUID128(service_otap, uuid_service_otap)

CHARACTERISTIC_UUID128(char_otap_control_point, uuid_char_otap_control_point, (gGattCharPropWrite_c | gGattCharPropIndicate_c))
VALUE_UUID128_VARLEM(value_otap_control_point, uuid_char_otap_control_point, (gPermissionFlagWiritable_c), 16, 16, 8x88)
CCCD{cccd_otap_control_point)

CHARACTERISTIC_UUID128(char_otap_data, uuid_char_otap_data, (gGattCharPropWriteWithoutRsp_c))

VALUE UUID128 VARLEN{value otap_data, uuid_char_otap_data, (gPermissionFlagWritable c), gAttMaxMtu_c - 3, gAttMaxMtu c - 3, @x@0)

Figure 16. OTAP client service

The profile built within the “gatt_db.h” database for the HRS — OTAP demo has the architecture depicted in Figure 17.

Heart Rate Measurement Manufacturer Software
Name Revision

Model Number

Serial Number
Body Sensor Location
Harware
Revision
Heart Rate Control Point Firmware
Revision

Battery Level OTAP Control Point

Profile Service Characteristic Descriptor

Figure 17. HRS — OTAP profile

The “gatt_uuid128.h” header file contains all the “custom” UUID definitions and its assignation. The “gatt_uuid128.h” does not
contain definitions in the original HRS SDK project because the heart rate and the battery services are adopted services by the
Bluetooth SIG. However, the OTAP service and its characteristics need to be specified by the developer as a 128 — UUID. Figure
18 shows how to implement the 128 — UUID assignation for the OTAP service.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 16/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

UUID128(uuid_service_otap,

OxEQ,

UUID128(uuid_char_otap_control_point, oxEe,
UUID128(uuid_char_otap_data, oxEe,

@x1C, @x4B, Bx5E, 8x1E, OxEB, @xAl,
@x1C, @x4B, @xSE, Bx1E, @xEB, @xAl,
@x1C, Ox4B, @xSE, Ox1E, @xEB, @xAl,

Ox5C, OxEE, BxF4, OxSE, @xBA, @x50, Ox55, OxFF, 8x01)
@x5C, OxEE, @xF4, @xSE, @xBA, @x51, Ox55, OxFF, @x01)
Ox5C, OxEE, OxF4, OxSE, @xBA, 8x52, Ox55, OxFF, 8x01)

Figure 18. HRS — OTAP 128 — UUID definitions

4.2.4 heart_rate_sensor.c

The “heart_rate_sensor.c” is the main source file at the application level. Here are managed all the procedures that the device
performs, before, during and after to create a connection. The following steps are the main changes to integrate the OTAP service.

1. Merge the missing “#include” preprocessor directives to reference the OTAP files on your project (except
otap_client_att.h). See Figure 19, which is a comparison between HRS (left) and OTAP client (right) application files.
This step depends on your software since it might share different files than this example. The results should be similar
as depicted in Figure 20, before (HRS left), after (HRS-OTAP right).

* Include

* Include

/* Framework / Drivers */
#include "RNG_Interface.h”
#include "Keybeard.h”
#include "LED.h"

#include "TimersManager.h”
#include "FunctionLib.h”
#include "MemManager.h”
#include "Panic.h”

#if (cPWR_UsePowerDownMode)
#include "PHR_Interface.h”
#include “PWR_Configuration.h”
#endif

/* BLE Host Stack */

#include "gatt_server_interface.h”
#include "gatt_client_interface.h"

#include "gap_interface.h”

#if MULTICORE APPLICATION CORE
#include "dynamic_gatt database.h™
#else

#include "gatt_db_handles.h"
#endif

/* profile / Services */

#include "battery_interface.h”
#include "device_info_interface.h”
#include "heart_rate_interface.h™

/* Connection Manager */
#include "ble_conn_manager.h"

#include "board.h”
#include "ApplMain.h”
#include "heart_rate_sensor.h”

— i

—i

Ll

@
L

#include "EmbeddedTypes.h”

/* Framework / Drivers */
#include "RNG_Interface.h”
#include "Keybeard.h”
#include "LED.h"

#include "TimersManager.h"
#include "FunctionLib.h”

#include "Panic.h”

#if (cPWR_UsePowerDownMode)
#include "PWR_Interface.h”

#endif
#include "OtaSupport.h"

/* BLE Host Stack */

#include "gatt_interface.h”
#include "gatt_server_interface.h”
#include “gatt_client_interface.h”
#include "gatt_database.h”
#include “gap interface.h”

#include "gatt_db_app_interface.h™

#if !defined (MULTICORE_APPLICATION CORE) || (!MULTICORE_APPLICATION CORE)
#include “gatt_db_handles.h"

#endif

/* profile / Services */

#include "battery_interface.h”
#include "device_info_interface.h”
#include "otap_interface.h”

/* Connection Manager */
#include "ble_cann_manager.h"

#include "board.h”

#include "ApplMain.h™
#include "otap_client_att.h”
#include “otap_client.h”

Figure 19. Comparison between HRS (left) and OTAP (right) includes

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

17 /35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

/* Framework / Drivers */ /* Framework / Drivers */
#include "RNG_Interface.h” #include "RNG_Interface.h”
#include "Keyboard.h" #tinclude "Keyboard.h"
#include "LED.h" #include "LED.h"

#include "TimersManager.h" #tinclude "TimersManager.h"
#include "FunctionLib.h™ #tinclude "FunctionLib.h"
#include "MemManager.h" #tinclude "MemManager.h"
#include "Panic.h™ #tinclude "Panic.h”

#if (cPWR_UsePowerDownMode) #if (cPWR_UsePowerDownMode)
#tinclude "PWR_Interface.h” t#tinclude "PWR_Interface.h”
#include “PWR_Configuration.h" #include “PWR_Configuration.h™
#endif #endif

A #include “OtaSupport.h™

/* BLE Host Stack */ /* BLE Host Stack */
A #include "gatt_interface.h”
#include "gatt_server_interface.h” #include “gatt server_interface.h™
#include "gatt_client_interface.h” #include "gatt_client_interface.h™
#include "gatt_database.h”
#include "gap_interface.h” #include "gap_interface.h”

#include “gatt_db_app_interface.h™

#if MULTICORE_APPLICATION_CORE #if MULTICORE_APPLICATION_CORE
#include "dynamic_gatt_database.h” #tinclude “dynamic_gatt_database.h™
#else f#else

#include "gatt_db_handles.h” t#tinclude "gatt_db_handles.h"
#endif #endif

/* Profile / Services */ /* Profile / Services */

#tinclude "battery_interface.h” t#tinclude "battery_interface.h™
#include “device_info_interface.h” #include “device_info_interface.h”
#include “heart_rate_interface.h™ #include “heart_rate_interface.h”

A #include “otap_interface.h"

/* Connection Manager */ /* Connection Manager */
#include "ble conn_manager.h” #include "ble conn_manager.h”
#include "board.h" #include "board.h"

#include "ApplMain.h” #include "ApplMain.h"
#include "heart_rate_sensor.h” #include “heart_rate_sensor.h”

A #include "otap_client.h”

Figure 20. Merging the OTAP files into the project. Before (HRS left) and after (HRS-OTAP right).

2. Add the function prototypes and global variables that are used by the OTAP client software. See the comparison in
Figure 21 between HRS (left) and OTAP (right). As mentioned in the last step, this might depend on your application.
The results should be similar as depicted in Figure 22.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 18/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

Private memory declarations Private memory decla

o & static deviceld t mPeerDeviceld = glnvalidDeviceld c;
/* Adv state *+/ /* Adv Parmeters */
static advStats_t mAdvState; static advState_t mAdvState;

o static bool t nRestartady; @
static uint32_t maAdvTimeout; static tmrTimerID t appTimerId;

static deviceId_t mPeerDeviceld = gInvalidDeviceld c;

© /= Service Data*/ @ /* service pata %/
static bool t basValidClientList[gAppMaxConnections_c] = { FALSE }; static bool t basValidClientList[gAppMaxConnections_c] = { FALSE };
static basConfig_t basserviceCon {service_battery, @, basvalidClientlist, gAppMaxConnections_c}s static basConfig_t basServiceConfig = {(uint16_t)service_battery, @, basvalidClientlist, gAppMaxConnections_c};
static hrsUserData_t hrsUserData; static disConfig t disServiceConfig - {(uint16_t)service device info};

static hrsConfig_t hrsServiceConfig = {service_heart_rate, TRUE, TRUE, TRUE, gHrs_BodySensorlocChest_c, &hrsuserData};
static uint16_t cpHandles[1] = { value_hr_ctrl point };

& /* Application specific data®™/ & /* Application Data */
static bool_t mTogglel6BitHeartRate = FALSE;
static bool_t mContactStatus = TRUE;
static tmrTimerID_t madvTimerId;
static tmrTimerID_t measurementTinerId;
static tmrTimerID_t mBatteryMeasurementTimerId; static tmrTimerID t mBatteryMeasurementTimerId;

Private functions prototypes

/* Gatt and Att callbacks */ and Att callbacks

static void BleApp_AdvertisingCallback (gapAdvertisingevent t* pAdvertisinggvent); static void BleApp_AdvertisingCallback (gapAdvertisingEvent t* pAdvertisinggvent);

static void BleApp_ConnectionCallback (deviceld_t peerDeviceld, gapConnectionEvent_t* pConnectionEvent)s static void BleApp_ConnectionCallback (deviceld_t peerDeviceld, gapConnectionEvent t* pConnectionEvent);

static void BleApp_GattServerCallback (deviceld t deviceld, gattServerEvent t* pservertvent); static void BleApp_GattServerCallback (deviceld_t deviceld, gattServerEvent t* pServertvent);
= &

static void BleApp_Config(void); static void BleApp_Config(void);
= &

/= Timer Callbacks */

static void AdvertisingTimerCallback (void *);

static void TimerMeasurementCallback (void *);

static void BatteryMeasurementTinerCallback (void *);

static void BleApp_Advertise(void); static void BleApp_Advertise (void);

static void BatteryMeasurementTimerCallback (void *pParam);

Figure 21. Comparison between HRS (left) and OTAP (right) prototypes

Private memory declarations * Private memory declara

/= Adv State =/ Adv State
static advstate_t madvstates static advState_t madvState;
static bool_t mRestartAdy; static bool _t mRestartady;
static uintiz_t madvTimeout; static uint32_t madvTimeout;
static deviceld t mPeerDeviceld = gInvalidbeviceld_c; static deviceld t mPeerDeviceld = glnvalidDeviceld c;
/= Service Data*/ Service Data
static bool_t basvalidClientList[gappMaxConnections_c] = { FALSE }; static bool_t basvalidClientList[gAppMaxConnections_c] = { FALSE };
static basConfig_t basServiceConfig = {service_battery, 4, basvalidClientlist, gAppMaxConnections_c}; static basConfig_t basServiceConfig = {service_battery, @, basValidClientlist, gAppMaxConnections_c};
static hrsUserData_t hrsUserDatas static hrsUserData_t hrsUserData;
static disConfig_t disServiceConfig = {(uint16_t)service device info};
static hrsConfig t hrsserviceConfig = {service_heart_rate, TRUE, TRUE, TRUE, gHrs_BodySensorlocChest_c, ShrsUserData); static hrsConfig_t hrsServiceConfig = {service_heart_rate, TRUE, TRUE, TRUE, ghrs_BodySensorLocChest_c, &hrsUserData};
static uint16_t cpHandles[1] = { value_hr_ctr] point }; static uint16_t cpHandles[1] = { value_hr_ctrl point };
/= Application specific data*/ App specific data®/
static bool_t mTogglelBitHeartRate = FALSE} static bool_t mTogglel6BitHeartRate = FALSE;
static bool_t mContactStatus = TRUE; static bool_t mContactStatus = TRUE;
static tmrTinerID_t mAdvTimerId; static tmrTimerID_t mAdvTimerId;
static tmrTinerID_t mieasurementTinerld; static tnrTimerID_t mMeasurementTinerld;
static tmrTinerID t mBatteryMeasurementTimerIdy static tnrTimerID_t mBatteryMeasurementTimerld;

private functions prototypes

/* Gatt and Att callbacks */ and Att callbacks

static void Blefpp_AdvertisingCallback (gapAdvertisingEvent_t* pAdvertisingEvent); static void BleApp_AdvertisingCallback (gapAdvertisingEvent t* pAdvertisingEvent);

static void BleApp_ConnectionCallback (deviceId t peerDeviceld, gapConnectionEvent_t* pConnectionEvent); static void BleApp_ConnectionCallback (deviceld_t peerDeviceld, gapConnectionEvent_t* pConnectionEvent);
static void BleApp_GattServerCallback (deviceld_t deviceld, gattServerEvent_t* pServerfvent); static void BleApp_GattServerCallback (deviceId t deviceld, gattServerfvent t* pServerEvent);

static void BleApp_Config(void); static void BleApp_Config(void);

/* Timer Callbacks */ 7% Timer C ks */

static void AdvertisingTimerCallback (void *); static void AdvertisingTimerCallback (void *);

static void TimerMeasurementCallback (void *); static void TimerteasurementCallback (void *);

static void BatteryMeasurementTimerCallback (void *); static void BatteryMeasurementTinerCallback (void *);

static void BleApp_Advertise(void); static void BleApp_Advertise(void);

Figure 22. Merging the OTAP prototypes into the project. Before (HRS left) and after (HRS-OTAP right).

3. Locate the “BleApp_Config” function. The “BleApp_Config” function configures the GAP role of the device (HRS — OTAP
is a peripheral device), registers the notifiable attributes, prepares the services built on the database, and allocates
some application timers. Add the “OtapClient_Config” and “Dis_Start” functions to initialize these services. See the
following portion of the code.

/* Start services */
hrsServiceConfig.sensorContactDetected = mContactStatus;
#if gHrs_EnableRRIntervalMeasurements_d
hrsServiceConfig.pUserData->pStoredRrIntervals = MEM BufferAlloc (sizeof (uintl6 t) *
gHrs_NumOfRRIntervalsRecorded c);
#endif
Hrs Start (&¢hrsServiceConfig);
basServiceConfig.batteryLevel = BOARD GetBatteryLevel();
Bas Start (&basServiceConfig); (void)Dis_Start (&disServiceConfig) ;

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 19/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

if (OtapClient Config() == FALSE)

{
/* An error occured in configuring the OTAP Client */
panic(0,0,0,0);

4. Locate the “BleApp_ConnectionCallback”. The connection callback is triggered whenever a connection event happens,
such as a connection or disconnection.

a. Go to the connection case. Include the “OtapCS_Subscribe” and the “OtapClient_HandleConnectionEvent”
functions, this is implemented in the following portion of the code.

case gConnEvtConnected c:

{
/* Subscribe client*/
Bas_ Subscribe (&basServiceConfig, peerDeviceld);
Hrs_ Subscribe (peerDeviceld) ;
(void)OtapCS_Subscribe (peerDeviceId) ;

mPeerDevicelId = peerDeviceld;

/* Stop Advertising Timer*/
mAdvState.advOn = FALSE;
TMR_StopTimer (mAdvTimerId) ;

/* Start measurements */
TMR StartLowPowerTimer (mMeasurementTimerId, gTmrLowPowerIntervalMillisTimer c,
TmrSeconds (mHeartRateReportInterval c), TimerMeasurementCallback, NULL);

/* Start battery measurements */
TMR_StartLowPowerTimer (mBatteryMeasurementTimerId, gTmrLowPowerIntervalMillisTimer c,
TmrSeconds (mBatterylLevelReportInterval c), BatteryMeasurementTimerCallback, NULL);

* Handle OTAP connection event */
OtapClient HandleConnectionEvent (peerDeviceId);
#if (cPWR UsePowerDownMode)
#ifdef MULTICORE APPLICATION_ CORE
#if gErpcLowPowerApiServiceIncluded c
PWR ChangeBlackBoxDeepSleepMode (gAppDeepSleepMode c) ;
PWR AllowBlackBoxToSleep () ;
#endif
#else
PWR ChangeDeepSleepMode (gAppDeepSleepMode c) ;
PWR_AllowDeviceToSleep() ;
#endif
#else
J% UL =)
LED StopFlashingAllLeds () ; Ledl1lOn () ;
#endif
}

break;

b. Go to the disconnection case. Include the “OtapCS_Unsubscribe” and the
“OtapClient_HandleDisconnectionEvent” functions, the implementation is shown in the following portion of the
code.

case gConnEvtDisconnected c:

{

/* Unsubscribe client */

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 20/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

Bas Unsubscribe (&ébasServiceConfig, peerDevicelId);
Hrs Unsubscribe() ;
(void) OtapCS Unsubscribe () ;

mPeerDevicelId = gInvalidDeviceId c;

/* Stop Timers*/

TMR_StopTimer (mMeasurementTimerId) ;

TMR StopTimer (mBatteryMeasurementTimerId) ;

OtapClient HandleDisconnectionEvent (peerDeviceld) ;
if (cPWR UsePowerDownMode)

/% WL */

LedlOff () ;

/* Go to sleep */
#ifdef MULTICORE APPLICATION CORE
#if gErpcLowPowerApiServiceIncluded c
PWR ChangeBlackBoxDeepSleepMode (cPWR DeepSleepMode) ;
#endif
#else
PWR ChangeDeepSleepMode (cCPWR DeepSleepMode) ;
#endif
#else
/* Restart advertising */
BleApp Start();
#endif
}
break;

5. Locate the “BleApp_GattServerCallback”, it manages all the incoming communications from the client devices. Add the
GATT events that need to be handled by the OTAP client software (“gEvtAttributeWritten_c”, “gEvtMtuChanged”,
“gEvtCharacteristicCccdWritten_c”, “gEvtAttributeWrittenWithoutResponse_c”, “gEvtHandleValueConfirmation_c” and
“gEvtError”). Your Bluetooth LE project might share some common GATT events, if it is the case, you will need to add a
conditional structure per each attribute handle. Focus on the “gEvtAttributeWritten_c” case, observe the conditional
structure that was included for the “HRS control point” and the “OTAP control point” handling.

case gEvtAttributeWritten c:
{

handle = pServerEvent->eventData.attributeWrittenEvent.handle;

status = gAttErrCodeNoError c;

if (handle == value hr ctrl point)

{

status = Hrs ControlPointHandler (&¢hrsUserData,

pServerEvent->eventData.attributeWrittenEvent.avValue[0]) ;

GattServer SendAttributeWrittenStatus (deviceld, handle, status);

}

else

{

OtapClient AttributeWritten (devicelId,
pServerEvent->eventData.attributeWrittenEvent.handle,
pServerEvent->eventData.attributeWrittenEvent.cValueLength,
pServerEvent->eventData.attributeWrittenEvent.avValue) ;

}
break;
case gEvtMtuChanged c:
{
OtapClient AttMtuChanged (deviceld,

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 21/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

pServerEvent->eventData.mtuChangedEvent.newMtu) ;
}
break;
case gEvtCharacteristicCccdWritten c:
{
OtapClient CccdWritten (deviceld,
pServerEvent->eventData.charCccdWrittenEvent.handle,
pServerEvent->eventData.charCccdWrittenEvent.newCccd) ;
}
break;
case gEvtAttributeWrittenWithoutResponse c:
{

OtapClient AttributeWrittenWithoutResponse (deviceld,
pServerEvent->eventData.attributeWrittenEvent.handle,
pServerEvent->eventData.attributeWrittenEvent.cValuelength,
pServerEvent->eventData.attributeWrittenEvent.aValue) ;

}
break;
case gEvtHandleValueConfirmation c:
{
OtapClient HandleValueConfirmation (devicelId);
}
break;
case gEvtError c:

{

attErrorCode t attError = (attErrorCode t) (pServerEvent->eventData.procedureError.error &
OxFF) ; if (attError == gAttErrCodeInsufficientEncryption c ||

attError == gAttErrCodeInsufficientAuthorization c ||

attError == gAttErrCodeInsufficientAuthentication c)

{
#if gAppUsePairing d
#if gAppUseBonding d
bool t isBonded = FALSE;
/* Check if the devices are bonded and if this is true than the bond may have
* been lost on the peer device or the security properties may not be sufficient.
* In this case try to restart pairing and bonding. */
if (gBleSuccess c == Gap_CheckIfBonded (deviceld, &isBonded) &&
TRUE == isBonded)
#endif /* gAppUseBonding d */
{
(void) Gap_SendSlaveSecurityRequest (devicelId, &gPairingParameters);
}
#endif /* gAppUsePairing d */
}
}
break;
default:
break;

At this point, you have integrated the OTAP Client code into the HRS.

4.3 Modifications in the Project Settings and Storage Configurations

The OTAP client software included in the SDK package contains some linker configurations to generate the application offset
needed for the OTAP Bootloader software and split the flash memory in accord of the storage method desired. Such configurations
are not part of the HRS demo, so it should be included to integrate the OTAP on the application. Follow the next steps to set the
project settings and the storage configurations.

1. Locate the “app_preinclude.h” file under the source folder of the project.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 22/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

a. To select external flash storage method, set the “gEepromType” define to “gEepromDevice_AT45DB041E_c”
(default in the HRS-OTAP software attached).

b. To select internal flash storage method, set the “gEepromType” define to “gEepromDevice_InternalFlash_c”.

'* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice AT4SDBE@41E ¢

Figure 23. Configuring the storage method at the preinclude file

2. Click the HRS-OTAP demo in the MCUXpresso workspace.
3. Navigate to “Project->Properties” in MCUXpresso IDE. Go to “C/C++ Build->MCU settings”.

a. To select external flash storage method, configure the fields depicted in Figure 24 in the “Memory details” pane
(default in the HRS-OTAP software attached).

Flash PROGRAM_FLASH Flash 02000 079800 FTFE_2K_PD.cfx
Flash NYM_region Flash2 0x7b 800 04000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 0x7f800 (0800 FTFE_2K_PD.cfx

Figure 24. Configuring external storage method

b. To select internal flash storage method, configure the fields depicted in Figure 25 in the “Memory details” pane.

Type Name Alias Location Size Driver

Flash PROGRAM_FLASH Flash 0x2000 0x3c800 FTFE_2K_PD.cfx
i Flash INT_STORAGE Flash2 (32800 (he3d000

Flash NVM_region Flash3 0x7b 800 04000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash4 Cx7FB00 0x300 FTFE_2K_PD.cfx

Figure 25. Configuring internal storage method

4. Clean and build the project.
At this point, you have finally integrated the OTAP service on the Bluetooth LE-based application.

4.4 Adding Low Power Support on the Application
In order to include low power support for OTAP as well, it is necessary to take some considerations.

1. The “OTA_PushimageChunk” function must be altered to disallow the device to sleep while is writing the data into the
flash device and to allow to the device return in low power mode when it has finished this procedure. Locate the
“OTA_PushlimageChunk” function in framework->OtaSupport->Source->OtaSupport.c file. Call
“PWR_DisallowDeviceToSleep” before entering on the “OTA_PushlmageChunk” code and call
“PWR_AllowDeviceToSleep” before return from the function. See the following example:

/* Include */

#if (cPWR_UsePowerDownMode)

#include "PWR Interface.h"

#include "PWR Configuration.h"

#endif

/* Public functions */

otaResult t OTA PushImageChunk (uint8 t* pData, uintl6 t length, uint32 t* pImageLength, uint32 t
*pImageOffset)

{

#if (cPWR UsePowerDownMode)

PWR DisallowDeviceToSleep();

#endif

/‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k OTA PushImageChunk Content init ‘k‘k‘k‘k*‘k‘k*‘k‘k‘k*‘k‘k*‘k‘k‘k‘k‘k*‘k‘k*‘k**/
/*************************** OTA Pushlmagechunk content end ****************************/
#if (cPWR UsePowerDownMode)

PWR AllowDeviceToSleep () ;

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 23/35

NXP Semiconductors

Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service

fendif
return status;

}

2. For Deep Sleep 5 and 8 modes (DSM5 and DSM8), who were developed based on VLLS modes, the wake-up routine
performs an SW reset, so the SFR’s values and the application context are lost and must be recovered after leaving low
power state. The warm boot callback restores the application context and the clocking configuration, but SPI peripheral
needed for the external storage method is not restored. In other words, the SPI must be initialized in the warm boot
callback. The following portion of code can be found in the HRS-OTAP example in the board->board.c file.

/* Include */
#include "SPI_ Adapter.h"

/* Private type definitions and macros */
ifndef gEepromSpilInstance c

#define gEepromSpilnstance c 0

#endif

static spiState t mEepromSpiState;

/* Private functions prototypes */
static void SPI Hardware Init (void);
/* Private functions */
static void SPI Hardware Init (void) {
spiBusConfig t spiConfig = {
.bitsPerSec = 8000000,
.master = TRUE,
.clkActiveHigh = TRUE,
.clkPhaseFirstEdge = TRUE,
.MsbFirst = TRUE

gpioOutputPinConfig t mEepromSpiCsCfg = {
.gpioPort = gpioPort C c,
.gpioPin = 19,
.outputLogic = 1,
.slewRate = pinSlewRate Fast c,
.driveStrength = pinDriveStrength Low c

Spi Init (gEepromSpilnstance c, &mEepromSpiState, NULL, NULL);
Spi Configure (gEepromSpiInstance c, &spiConfig);
GpioOutputPinInit (&émEepromSpiCsCfg, 1);

void BOARD WarmbootCb (void) {

/***/
/‘k‘k‘k‘k************************ Warmboot Callback Development ‘k‘k‘k‘k‘k***********************/
/‘k**********************/
SPI_Hardware Init();

}

3. The application files must also contain the APIs required for low power management, changing the DSM mode
depending on if the device is on advertising, connection or idle state and should be able to go to sleep whenever the
idle task is active. You could base on the HRS-OTAP application as a reference for the implementation of low power
support on your code.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 24 /35

NXP Semiconductors

Testing the HRS-OTAP Demo

5 Testing the HRS-OTAP Demo

The test case example that was designed to demonstrate the OTAP integration at the 5.4 Testing the HRS-OTAP Software
section, makes use of the listed software:

» OTAP Client SDK software, programmed in the FRDM-KW36 board.
* An SREC software update of the HRS-OTAP example.
» An SREC software update of the HRS SDK example.

The following sections explain how to build the software required for the testing example proposed in this document. However,
you are free to decide which software or steps are not relevant to you.

5.1 Preparing the OTAP Client SDK Software
1. Attach your FRDM-KW36 board on the PC.

2. Program the OTAP Bootloader on the FRDM-KW36, you can simply drag and drop the prebuilt binary file from the
following path on the board:

<FRDM-KW36_SDK_root>ltools|wireless|binaries|bootloader_otap_frdmkw36.bin
3. Open MCUXpresso IDE. Click the “Import SDK example(s)” option in the “Quickstart Panel” view.

. MCUXpresso IDE - Quickstart Panel

Mo project selected

= Create or import a project

—= . Mew project...
-f B 1mport SDK example(s)...
% Import project(s) from file system...

-

Figure 26. Quickstart Panel Perspective

4. Click twice on the frdmkw36 icon.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 25/35

NXP Semiconductors

Testing the HRS-OTAP Demo

B sDK Import Wizard

O x
€3 Please select a target device and a board x @
A

. Board and/or Device selection page

~ SDKMCUs Available boards 128 &

MCUs from installed SDKs Please select an available board for your project.

NXP MKW36Z51 25004 [type to filter |
>

frdmlow36

® < Back Next > Finish Cancel

Figure 27. Device Selection Perspective

5. Type “otac_att” in the examples textbox and select the freertos project at “wireless_examples->bluetooth->otac_att-
>freertos”. Click the “Finish” button.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 26/35

NXP Semiconductors

Testing the HRS-OTAP Demo

B sDK Import Wizard m] ®

™) -
1, The source from the SDK will be copied into the workspace, \E
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KW36' SDK.
. A
. Import projects

Project name prefie | frdmiow3s L | Project name suffix: &

Use default location

C\Users\Edgar\Documents\MCUXpressolDE_11.0.0_2516\workspace\frdmlow36 Browse...
Project Type Project Options
@ CProject | C++ Project | CStatic Library | C++ Static Library SDK Debug Console @) Semihost (O UART Example default
Copy sources

Import other files

Examples I\Hl e %l =
| otac_att I |
Mame Description Wersion

v (W] = wireless_examples
+~ (] £ bluetooth
v [H] £ otac_att
= bm
= freertos

@ chok | Nets Concel

Figure 28. Importing the OTAP client project on the workspace

6. Set the storage configurations:
a. Open the “app_preinclude.h” file located in the source folder of the project:

* To select the external flash storage method (AT45DB041E_c external flash), set the “gEepromType” define
to “gEepromDevice_AT45DB041E_c”

» To select the internal flash storage method (On-chip FlexNVM memory), set the “gEepromType” define to
“gEepromDevice_lInternalFlash_c”

/* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice AT45DB@41E_c

Figure 29. Configuring the storage method at the preinclude file

b. Navigate to “Project->Properties” in MCUXpresso IDE. Go to “C/C++ Build->Settings->Tool Settings->MCU
Linker->Miscellaneous” perspective.

+ To select external flash storage method, configure the fields depicted in the following figure in “Memory
details” pane.

Flash PROGRAM_FLASH Flash (%2000 (0x79800 FTFE_2K_PD.cfx
Flash MNVM_region Flash2 (x7b800 (000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 (x7F800 %800 FTFE_2K_PD.cfx

Figure 30. Configuring external storage method

» To select internal flash storage method, configure the fields depicted in the following figure in “Memory
details” pane.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 27135

NXP Semiconductors

Testing the HRS-OTAP Demo

Type Narme Alias Location Size Driver

Flash PROGRAM_FLASH Flash 0x2000 0x3c800 FTFE_2K_PD.cfx
i Flash INT_STORAGE Flash2 0x3e800 0x3d000

Flash NVM_region Flash3 (0x7bB00D 0x4000 FTFE_2K_PD.cfx
Flash FREESCALE PROD_DATA Flashd Cx7F200 0x200 FTFE_2K_PD.cfx

Figure 31. Configuring internal storage method

7. Clean and build the project. Flash the project on the “FRDM-KW36” board.

At this point, you have programming and configuring the OTAP client software on your board. You can communicate to a server
and request for a software update.

5.2 Creating an HRS-OTAP S-Record Image to Update the Software

1. Install the HRS-OTAP demo provided with this document in your MCUXpresso IDE. You can drag and drop the project

from your installation path to the MCUXpresso workspace. A warning message is shown, click the “Copy” button to
clone the original example.

! MCUXpresso IDE Project Import *

% Areyou sure you want to import the following projects?
'GAfrdmkw36_hrsotap_wireless_examples_bluetooth_hrs_freertos'?

Figure 32. Importing the HRS-OTAP demo on the MCUXpresso workspace

2. Open the “end_text.Idt” linker script located at the linkscripts folder in the workspace. Locate the section placement of
Figure 33 and remove the “FILL” and the “BYTE” statements. This step is needed only to build the SREC image file to
reprogram the device.

/* Remowve this section to keep the nym section on writiing the device */
VM
1
=
. = ORIGIN({NWM region) + LENGTH{NVM region) - 1;

B A
} > NWM_region

Figure 33. Preparing the linker file

3. Clean and build the project.

4. Deploy the “Binaries” icon in the workspace. Click the right mouse button on the “.axf” file. Select the “Binary Utilities-
>Create S-Record” option. The S-Record file is saved at the “Debug” folder in the workspace with “.s19” extension.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 28/35

NXP Semiconductors

5.3

Testing the HRS-OTAP Demo

vat;? Binaries

[Includes
8 CMSIS
2 bluetooth
2 board
2 drivers
2 framework
2 freertos
2 source
(7= startup
3 utilities
= Debug
= doc
= libs

£

) Quickstart Panel 3

= Build your project

= 4, Build

[Project Explorer 32 | 2, Peripherals+

v 2= frdmbkw36_hrsotap_wireless_example
& Project Settings

ﬁ frdmlbow36_hrsotap_wireless_ex

MCUXpresso IDE - Quich
_1oe | Project: frdmbow36_hrsotap_wireles

= Create or import a project

e . Mew project...
-)—
. Import SDK example(s)...

® Import project(s) from file sysi

ﬁ frdmbow36_hrsotap_wireless_examples_k

L E

% @

1111 Registers 3 Faults

MNew

Open
Open With

Show in Local Terminal

Copy
Paste

Delete
Move...

Rename...

Import...
Export...

Build Project
Refresh

Run As

Debug As
Profile As
Utilities

Binary Utilities
Teols

Validate

Run C/C++ Code Analysis
Team
Compare With
Replace With

Properties

Ctrl+C
Chrl+V
Delete

F2

F5

Alt+Enter

Create hex

Create binary
Create 5-Record
Disassemble

ELF Information

Size

Strip debug symbaols

Process symdefs file

Figure 34. Creating the SREC file

Save this file in a known location on your smartphone.

Creating an HRS S-Record Image to Update the Software

perspective is shown. Click twice on the frdmkw36 icon.

. Open MCUXpresso IDE. Click the “Import SDK example(s)” option in the “Quickstart Panel” view, the device selection

. Type “hrs” in the examples textbox and select the freertos project at “wireless_examples->bluetooth->hrs->freertos”.
Click the “Finish” button.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

29/35

NXP Semiconductors

Testing the HRS-OTAP Demo

B sDK Import Wizard m] ®

-
1, The source from the SDK will be copied into the workspace, \E
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KW36' SDK.
. A
. Import projects

Project name prefic: | frdmlan3

LL | Project name suffix: &
Use default location
C\Users\Edgar\Documents\MCUXpressolDE_11.0.0_2516\workspace\frdmlow36 Browse...
Project Type Project Options
@ CProject | C++ Project | CStatic Library | C++ Static Library SDK Debug Console @) Semihost (O UART Example default
Copy sources

Import other files

Examples I\Hlu’_%lE‘

|hrs |

MName Description
v (W] = wireless_examples
v (W] £ bluetooth
v @ £ hrs
= bm
= freertos

Wersion

@ chok | Nets Concel

Figure 35. Importing the HRS project on the workspace

3. Open the “app_preinclude.h” file under the source folder at the MCUXpresso workspace. Locate the
“cPWR_UsePowerDownMode” macro and change its value to zero. This step is not mandatory, but it is useful at
running time to confirm whenever the software update has been successfully programmed by the OTAP bootloader.

/* Enable/Disable PowerDown functionality in PwrLib */
#define cPWR UsePowerDownMode 0

4. Navigate to “Project->Properties->C/C++ Build->MCU settings”. Configure the following fields and save the changes.

Flash PROGRAM_FLASH Flash (%2000 (x79800 FTFE_2K_PD.cfx
Flash NVM_region Flash2 (x7b300 (4000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 (x7£800 (%3800 FTFE_2K_PD.cfx

Figure 36. Configuring the memory layout

5. Navigate to the workspace. Locate the “linkscripts” folder and include into it the “main_text_section.Idt” linker script. You
can copy and paste from the OTAP client SDK example.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 30/35

NXP Semiconductors

7.

Testing the HRS-OTAP Demo

= frdmbow36_wireless_examples_bluetooth_hrs_freertos
& Project Settings
[kl Includes
2 CMSIS
2 bluetooth
A board
2 drivers
2 framework
2 freertos
w [linkscripts
end text.ldt
main_text_section.|dt
man_text.ldt
symbolsldt
2 source
2 startup
2 utilities
= doc
= libs

Figure 37. Importing linker scripts

. Open the “end_text.Idt” linker script located at the linkscripts folder in the workspace. Locate the section placement of

Figure 38 and remove the “FILL” and the “BYTE” statements.

/* Remowve this section to keep the nym section on writiing the device */
NV
1
=
. = ORIGIN({NWM_region) 4+ LENGTH{NVM_ regicn) - 1;
BT e
T » NVM_region

Figure 38. Preparing the linker file

Include the “OtaSupport” folder and its files in the “framework” folder. Include “External” folder and its files in the
“framework->Flash” folder. This step can be done in the same way as explained in 4. 7. Importing the OTAP Service and
Framework Services into the HRS section.

Clean and build the project.

Deploy the “Binaries” icon in the workspace. Click the right mouse button on the “.axf” file. Select the “Binary Utilities-
>Create S-Record” option. The S-Record file is saved at the “Debug” folder in the workspace with “.s19” extension.

10. Save this file in a known location on your smartphone.

5.4 Testing the HRS-OTAP Software

To exemplify the testing case of this section, see Figure 39. The FRDM-KW36 contains the OTAP client software. The OTAP
client requests a software update from the OTAP server (the smartphone). This software image is the HRS-OTAP demo. The
FRDM-KW36 at this point has been updated and can handle all the incoming communication from an HR central or the OTAP
server. To demonstrate that you can continue updating the software of the KW36 device, you can connect the HRS-OTAP to an
OTAP server and request a software update that only contains the HRS example. From this point, you cannot continue updating
the software since the OTAP service was not included in the last software upgrade. This example was designed to understand

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note 31/35

NXP Semiconductors

Testing the HRS-OTAP Demo

the key points of the OTAP integration. However, the main purpose of this application note is creating software updates that
include the OTAP service and continue upgrading and improving the KW36 device.

FRDM-KW36

OTAP Client profile

First Update (HRS-
OTAP)

OTAP Client Software

Smartphone OTAP Server

Software Update for Client

Second Update
(only HRS)

FRDM-KW36

OTAP Client Software

HRS-OTAP profile

—
OTAP Client Software
Smartphone OTAP Server
Software Update for Client
—

KW36 can not request
another update from
the server since OTAP
service was not
integrated in the
software update. It
shows the importance
of integrating OTAP in
the software update.

FRDM-KW36

HRS profile

Smartphone OTAP Server
Software Update for Client

Figure 39. Proposed Test

1. Open the loT Toolbox App and select the OTAP demo. Click “SCAN” to start scanning for a suitable advertiser.

Figure 40. loT Toolbox Interface

E@®

loT Toolbox

Gyoling Speed

O,

Hucosn

Prrecciminy

®

OTAp

Z,

Zighes Shell

ol
®

Running Speed

Blood Pressure

Huart Rate

2. Press the ADV button (SW2) on the FRDM-KW36 board to start advertising.

3. Create a connection with the “NXP_OTAA” device. Then, the OTAP interface is displayed on your smartphone.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

32/35

NXP Semiconductors

Testing the HRS-OTAP Demo

LI
“ 10T Toolbox

AaES® 30w 2 £1045
e 0T Toolbox

DISCOMMNECT
OTAR

OTAF

NXP_OTAA e - - ~
006037 2AFCES File Information
Urbonded 57 dBm

File Marme

File Version

File Size

Status Filg: not bopdisd

Firmware Update &

s 1 100%

Figure 41. Connecting the OTAP client and the OTAP server

4. Click the “Open” button and search for the “HRS-OTAP” SREC file.

5. Click “Upload” to start the transfer. Wait until the confirmation message is displayed.

BES FOV 2 E104s
“ 1oT Toolbox

DISCOMNECT

OTAP

d File Information B
File Narne FSL BLE OTAP Desnvo Imge File
File Version D01V 1111947000005
File Size 213724609375 kb
Status Valid Filg

Firmware Update &
Y T e—

Status: Connecied

Figure 42. Updating the OTAP client to HRS-OTAP

6. Wait few seconds until the OTAP bootloader has finished programming the new image. The HRS-OTAP application
starts automatically (The RGB LED blinks).

7. Press the ADV button (SW2) on the FRDM-KW36 board to start advertising. Verify that the device can be detected by
both, HRS and OTAP applications of the loT Toolbox. The device is named as “NXP_HRS_OTAP”. You can create a
connection and interact with both demos.

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020
Application Note 33/35

NXP Semiconductors

Testing the HRS-OTAP Demo

OTAP

NXP_HRS_OTAP|
006037 ZAFC L3
Unisonded

¢ 10T Toolbox

59 dizm

uff
-

v
W

30 ¥ 0 B0s0
< o7 Toolbox

DISCOMNEDT

Heart Rate

168

bpm

Sensor Location

Chest

Status: Connected

Figure 43. HRS-OTAP device detected by both applications

L] 0¥ 2 L5
e |oT Toolbox

DISCOMNECT

aTAR

g ™y

File Infarmation

File Marne FSL BLE OTAP Disine I File
File Version Tl 111111 41000005
File Size 182 443355375 kb
Status Vol Fila

Firmware Update %
1Y S—r—

Status: Connected

8. Connect the HRS-OTAP device with the OTAP smartphone application. Update the software using the “HRS” SREC

file.

9. Confirm that the device has been updated to a simple HRS, making use of the HRS-OTAP demo. Press the ADV button
(SW2) on the FRDM-KW36 board to start advertising. Now the device’s name is “NXP_HRS"”. Connect the device with
the HRS loT Toolbox app and verify that it works as expected.

-]
“ 1oT Toolbox

Heart Rate

HXP_HRS
O0:B0CAT-ZAFCALS
Unibonded

57 dBm

Figure 44. HRS-OTAP device detected by both applications

30 ¥ & L1054

10T Toelbox

Heart Rate

DISCOMNECT

158

bpm

Sensor Location

Chest

Stadus: Connmcied

Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11 March 2020

Application Note

34/35

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
uVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 11 March 2020
Document identifier: AN12775

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Basics of the OTAP Client Software
	2.1 OTAP Memory Management During the Update Process
	2.2 Advantages of the OTAP Service Integration

	3 Prerequisites
	3.1 Software Development Kit Download and Install

	4 Customizing a Based Bluetooth LE Demo to Integrate the OTAP Service
	4.1 Importing the OTAP Service and Framework Services into the HRS
	4.2 Main Modifications in the Source Files
	4.2.1 app_preinclude.h
	4.2.2 app_config.c
	4.2.3 gatt_db.h and gatt_uuid128.h
	4.2.4 heart_rate_sensor.c

	4.3 Modifications in the Project Settings and Storage Configurations
	4.4 Adding Low Power Support on the Application

	5 Testing the HRS-OTAP Demo
	5.1 Preparing the OTAP Client SDK Software
	5.2 Creating an HRS-OTAP S-Record Image to Update the Software
	5.3 Creating an HRS S-Record Image to Update the Software
	5.4 Testing the HRS-OTAP Software

