

INDEX

Surftest	
Surftest SJ-210	$\mathrm{J}-2$
Surftest SJ-310	$\mathrm{J}-3$
Surftest SJ-210/310 Optional Accessories	$\mathrm{J}-4,5$
Surftest SJ-410	$\mathrm{J}-6,7$
Surftest SJ-500/P, SV-2100	$\mathrm{J}-8,9$
Surftest SV-3200	$\mathrm{J}-10,11$
Surftest Extreme SV-3000CNC	$\mathrm{J}-12$
Surftest Extreme SV-M3000CNC	$\mathrm{J}-13$

Formtracer

Formtracer SV-C3200 / SV-C4500	$\mathrm{J}-14,15$
Formtracer Extreme SV-C4500CNC	$\mathrm{J}-16,17$
Formtracer CS-3200	$\mathrm{J}-18,19$

Formtracer Extreme CS-5000CNC / CS-H5000CNC J-20,21
Optional Styli for Surface Roughness Measurement $\quad \mathrm{J}-22,23$
Optional Accessories for Automatic Measurement J-24
Optional Accessories for Surftest / Formtracer J-25
Quick Guide to Precision Measuring Instruments J-26,27

Contracer

Contracer CV-2100	$\mathrm{J}-28,29$
Contracer CV-3200 / CV-4500	$\mathrm{J}-30,31$
Optional Arms and Styli for Contour Measurement	$\mathrm{J}-32-34$
Optional Accessories for Automatic Measurement	$\mathrm{J}-35$
Optional Accessories for Contracer / Formtracer	$\mathrm{J}-36$
Quick Guide to Precision Measuring Instruments	$\mathrm{J}-37,38$
Roundtest	
Roundtest RA-120 / 120P	$\mathrm{J}-39,40$
Roundtest RA-1600 / RA-1600M	$\mathrm{J}-41,42$
Roundtest RA-2200AS / DS / AH / DH	$\mathrm{J}-43,44$
Roundtest RA-H5200AS / AH	$\mathrm{J}-45,46$
Roundtest Extreme RA-2200CNC / RA-H5200CNC	$\mathrm{J}-47,48$
Optional Styli for Roundtest	$\mathrm{J}-49$
Optional Accessories for Roundtest	$\mathrm{J}-50,51$
Eco-Fix Kit Form-S \& L	$\mathrm{J}-52$
Quick Guide to Precision Measuring Instruments	$\mathrm{J}-53,54$

RA-1600M

Surftest SJ-210

SERIES 178 - Portable Surface Roughness Tester

FEATURES

- The 2.4-inch color graphic LCD provides excellent readability and an intuitive display that is easy to use. The LCD also includes a backlight for improved visibility in dark environments.
- The Surftest SJ-210 can be easily operated using the buttons on the front of the unit and under the sliding cover.
- Up to 10 measurement conditions and one measured profile can be stored in the internal memory.
- An optional memory card can be used as an extended memory to store large quantities of measured profiles and conditions.
- Access to each feature can be passwordprotected, which prevents unintended operations and allows you to protect your settings.
- The display interface supports 16 languages, which can be freely switched.
- An alarm warns you when the cumulative measurement distance exceeds a preset limit.
- The Surftest SJ-210 complies with the following standards: JIS (JIS-B0601-2001, JIS-B0601-1994, JIS B0601-1982), VDA, ISO-1997, and ANSI.
- In addition to calculation results, the Surftest SJ-210 can display sectional calculation results and assessed profiles, load curves, and amplitude distribution curves.

SPECIFICATIONS/CONFIGURATION

Model No.	SJ-210					
Order No. (inch/mm)	178-561-01A	178-561-02A	178-563-01A	178-563-02A	178-565-01A	178-565-02A
Drive unit	Standard type (178-230-2)		Retractable type (178-235)		Transverse tracing type (178-233-2)	
Detector	$\begin{aligned} & \text { 0.75mN type } \\ & (\mathbf{1 7 8 - 2 9 6}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{mN} \text { type } \\ & (\mathbf{1 7 8 - 3 9 0)} \end{aligned}$	$0.75 \mathrm{mN} \text { type }$ (178-296)	$\begin{aligned} & \hline 4 \mathrm{mN} \text { type } \\ & (178-390) \end{aligned}$	0.75 mN type $(178-387)$	$\begin{aligned} & \hline 4 \mathrm{mN} \text { type } \\ & (\mathbf{1 7 8 - 3 8 6)} \end{aligned}$
Display unit	Compact type (178-253A)					
Detector: Tip angle	60°	90°	60°	90°	60°	90°
Stylus tip radius	$2 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$
Detector measuring force	0.75 mN	4 mN	0.75 mN	4 mN	0.75 mN	4 mN
Standard accessories	12BAA303 Connecting cable 178-602 Roughness specimen (Ra $3.00 \mu \mathrm{~m}$) 12BAK699 Carrying case 12BAK700 Calibration stage 12BAK820 Protective sheets for display AC Adapter Operation manual Quick reference manual Warranty				12BAA303 Connecting cable 178-606 Roughness specimen (Ra 1.00um) 12AAE643 Point-contact adapter 12AAE644 V-type adapter 12BAK699 Carrying case 12BAK700 Calibration stage 12BAK820 Protective sheets for display AC Adapter, Operation manual Quick reference manual, Warranty	

DIMENSIONS Display unit, Drive unit

Drive unit inside display unit (Standard dectector installed in drive unit) SJ-210 series

Without back
face cover

Drive unit not stored inside display unit (Standard dectector installed in drive unit) SJ-210 series Standard drive unit

* For Retractable and Transverse type drive units, please see pg. J-3.

Technical Data: SJ-210
X axis (drive unit)
Measuring range: $\quad .70 "(17.5 \mathrm{~mm})$
.22" (5.6 mm) Transverse type
Measuring speed: $\quad .01, .02, .03 / / \mathrm{s}(0.25,0.5,0.75 \mathrm{~mm} / \mathrm{s})$ $.039 " / 5(1 \mathrm{~mm} / \mathrm{s})$ (Returning))
Detector
Range: $\quad 360 \mu \mathrm{~m}(-200 \mu \mathrm{~m}$ to $+160 \mu \mathrm{~m})$
Measuring method: skidded
Measuring force: $\quad 4 \mathrm{mN}(0.75 \mathrm{mN})$
Stylus tip: \quad Diamond, $90^{\circ} / 5 \mu \mathrm{mR}\left(60^{\circ} / 2 \mu \mathrm{mR}\right)$
Skid radius of curvature: 40 mm
Skid force: less than 400 mN
Type: Differential inductance
Power supply: Two-way power supply: battery (rechargeable Ni-MH battery) and AC adapter
Charging time: about 4 hours (may vary due to
ambient temperature)
Endurance: about 1000 measurements (differs slightly due to use conditions/ environment)
External I/O: USB I/F, Digimatic Output, Printer Output, RS-232C I/F, Foot SW I/F
Data storage: \quad Memory card (2GB) (option 12AAL069)
Dimensions (WxDxH)
Display unit: $\quad 2.05 \times 2.59 \times 6.3 "(52.1 \times 65.8 \times 160 \mathrm{~mm})$
Drive unit: $\quad 6.85 \times 2.59 \times 2$ " $(115 \times 23 \times 26 \mathrm{~mm})$
Mass: \quad About $1.1 \mathrm{lb}(0.5 \mathrm{~kg}$) (Display unit +
Drive unit + Standard detector)

Evaluation Capability: SJ-210

Applicable standards:
JIS'82, JIS'94, JIS'01, ISO'97, ANSI, VDA
Assessed profiles:
Primary profile, Roughness profile, DF profile, Roughness profile-Motif
Evaluation parameters:
Ra, Rc, Ry, Rz, Rq, Rt, Rmax, Rp, Rv, R3z, Rsk, Rku, Rc, RPc,
Rsm, Rz1max, S, HSC, RzJIS, Rppi, R $\Delta \mathrm{a}$, R Δ q,
RIr, Rmr, Rmr(c), Roc, Rk, Rpk, Rvk, Mr1, Mr2, A1, A2, Vo,
Rpm, tp, Htp, R, Rx, AR, Possible Customize
Analysis graphs: Bearning area curve / Amplitude distribution curve
Digital filters:
Cut off length: Gaussian, 2CR75, PC75 $\lambda c: .003, .01, .03,1^{\prime \prime}$ ($0.08,0.25,0.8,2.5 \mathrm{~mm}$) $\lambda \mathrm{s}: .1, .3 "(2.5,8 \mu \mathrm{~m})$
Sampling length: $\quad .003, .01, .03, .1^{\prime \prime}$ or arbitrary ($0.08,0.25,0.8,2.5 \mathrm{~mm}$) or arbitrary
Number of sampling lengths ($\mathrm{x} n$):
$x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10$ arbitrary length (0.3 to $16.0 \mathrm{~mm}: 0.01 \mathrm{~mm}$ interval)
$x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10$ arbitrary length
(0.3 to $5.6 \mathrm{~mm}: 0.01 \mathrm{~mm}$ interval)*
*Only for Transverse tracing drive unit type

Function: SJ-210

Customization: Desired parameters can be selected for calculation and display.
Go/no-go judgment: By max value / 16\% / Standard dev. Storage of measurement condition: Save the conditions at power OFF
Storage: Internal memory: Measurement condition (10 sets), Measured profile (1set)
Memory card (Option): 500 measurement conditions, 10,000 measured profiles, 500 display images Text file (Measurement conditions / Measured profile / Assessed profile / Bearing area curve / Amplitude distribution curve)
Calibration: Auto-calibration with the entry of numerical value / Average calibration with multiple measurement (Max. 5 times) is available

Technical Data: SJ-310
X axis (drive unit)
Measuring range: . 70 "(17.5mm)
.22 " $(5.6 \mathrm{~mm})$ Transverse type
Measuring speed: $\quad .01, .02, .03 \mathrm{l} / \mathrm{s}(0.25,0.5,0.75 \mathrm{~mm} / \mathrm{s})$.039 " $/ \mathrm{s}(1 \mathrm{~mm} / \mathrm{s}$) Returning
Detector
Range: $\quad 360 \mu \mathrm{~m}(-200 \mu \mathrm{~m}$ to $+160 \mu \mathrm{~m})$
Measuring method: skidded
Measuring force: $4 \mathrm{mN}(0.75 \mathrm{mN})$
Stylus tip: \quad Diamond, $90^{\circ} / 5 \mu \mathrm{mR}\left(60^{\circ} / 2 \mu \mathrm{mR}\right)$
Skid radius of curvature: 40 mm
Skid force: less than 400 mN
Type: Differential inductance
Power supply: Two-way power supply: battery (rechargeable Ni-MH battery) and AC adapter
Battery
Charging time:
Recharge cycles:

4 hours maximum

Approximately 1500 times (slightly varies with the usage and environmental conditions)
External I/O: USB I/F, Digimatic Output, RS-232C I/F,
Data storage: \quad Memory card (8GB) (option 12AAA841)
Dimensions (WxDxH)
Control unit: $\quad 10.8 \times 4.29 \times 7.8^{\prime \prime}$
($275 \times 109 \times 198 \mathrm{~mm}$)
Drive unit: $\quad 6.85 \times 2.59 \times 2$ " $(115 \times 23 \times 26 \mathrm{~mm})$
Mass
Display unit: Approx. $3.7 \mathrm{lb}(1.7 \mathrm{~kg})$
Drive unit:
.41 b (0.2kg)

Evaluation Capability: SJ-310

Applicable standards:
JIS'82, JIS'94, JIS'01, ISO'97, ANSI, VDA
Assessed profiles:
P (primary profile), R (roughness profile), DIN4776, roughness motif, waviness motif
Evaluation parameters:
Ra, Ry, Rz, Rt, Rp, Rq, Rv, Rsk, Rku, Rc, RSm, S, RPc, R3z, Rmi(c), Rpk, Rvk, Roc, , Rk, Mr1, Mr2, Lo, Rppi, R, AR, Rx,
A1, A2, Vo, HSC, Rmr, SK, Ku, R $\Delta \mathrm{a}, \mathrm{R} \Delta \mathrm{q}, \mathrm{Rir}, \lambda \mathrm{a}, \lambda \mathrm{q}, \mathrm{Rpm}$,
RzJIS (JIS'01), tp (ANSI), Htp (ANSI), Wte, Wx, W, AW, Rz1max
(ISO), Rmax (VDA, ANSI, JIS' 82), Possible Customize

Analysis graphs:

Bearing Area Curve (BAC), Amplitude Distribution Curve (ADC)
Digital filter:
2CR, PC75, Gaussian
Cutoff length: $\quad \lambda c: .003, .01, .03, .1,3^{\prime \prime}$
($0.08,0.25,0.8,2.5,8 \mathrm{~mm}$)
$\lambda \mathrm{s}: .1, .3^{\prime \prime}(2.5,8 \mu \mathrm{~m})$
Sampling length: $\quad .003, .01, .03, .1, .3^{\prime \prime}$ or arbitrary $(0.08,0.25,0.8,2.5,8 \mathrm{~mm})$ or arbitrary Number of sampling lengths ($x \mathrm{n}$):
$x 1, x 2, \times 3, x 4, \times 5, x 6, x 7, x 8, x 9, x 10$ arbitrary length
($0.3 \mathrm{to} 16.0 \mathrm{~mm}: 0.01 \mathrm{~mm}$ interval)
$x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10$ arbitrary length
(0.3 to $5.6 \mathrm{~mm}: 0.01 \mathrm{~mm}$ interval)*

* Only for Transverse tracing drive unit type

Printer: Thermal type
Printing width: $\quad 48 \mathrm{~mm}$ (paper width: 58 mm)
Recording magnification:
Vertical magnification: 10X to 100,000X, Auto
Horizontal magnification: 1 X to $1,000 \mathrm{X}$, Auto

Function: SJ-310

Customization: Desired parameters can be selected for calculation and display.
Statistical processing: Maximum value, minimum value, mean value, standard deviation, pass rate, histogram of each parameter
Go/no-go judgment: maximum value rule, 16% rule, average value rule, standard deviation ($1 \sigma, 2 \sigma, 3 \sigma$)
Storage: Internal memory: Measurement condition (10 sets)
Memory card (Option): 500 measurement conditions, 10,000 measured profiles, 500 display images, Text file (Measurement conditions / Measured profile / Assessed profile / Bearing area curve / Amplitude distribution curve), 500 statistical data, etc.
Calibration: Auto-calibration with the entry of numerical value / Average calibration with multiple measurement (Max. 12 times) is available.
Power-saving function: Auto-sleep-function, Auto light-off of Backlight by ECO mode.

Surftest SJ-310

SERIES 178 - Portable Surface Roughness Tester

FEATURES

- The data processing unit offers large 5.7-inch color graphic LCD touch-panel for superior readability and operability. The LCD also includes a backlight for improved visibility in dark environments.
- The excellent user interface provides intuitive and easy-to-understand operability.

SPECIFICATIONS/CONFIGURATION

Model No.	SJ-310					
Order No. (inch/mm)	178-571-01A	178-571-02A	178-573-01A	178-573-02A	178-575-01A	178-575-02A
Drive unit	Standard type (178-230-2)		Retractable type (178-235)		Transverse tracing type (178-233-2)	
Detector	$0.75 \mathrm{mN} \text { type }$ (178-296)	$\begin{aligned} & \text { 4mN type } \\ & (178-390) \end{aligned}$	$0.75 \mathrm{mN} \text { type }$ $(178-296)$	$\begin{aligned} & \hline 4 \mathrm{mN} \text { type } \\ & (\mathbf{1 7 8 - 3 9 0)} \end{aligned}$	0.75 mN type $(178-387)$	$\begin{aligned} & \hline 4 \mathrm{mN} \text { type } \\ & (178-386) \end{aligned}$
Display unit	Standard type with printer					
Detector: Tip angle	60°	90°	60°	90°	60°	90°
Stylus tip radius	$2 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$
Detector measuring force	0.75 mN	4 mN	0.75 mN	4 mN	0.75 mN	4 mN
Standard accessories	12AAM4475 Connecting cable 12AAA217 Nosepiece for plane surface 12AAA218 Nosepiece for cylinder 12AAA216 Supporting leg 12BAK700 Calibration stage 12BAG834 Stylus pen 12BAL402 Protection sheet 270732 Printer paper (5 pieces) 12BAL400 Carrying case Roughness reference specimen (Ra3um), AC adapter, Philips screwdriver, Strap for stylus pen, Operation manual, Quick reference manual, Warranty				12AAMM475 Connecting cable 12AAE643 Point-contact adapter 12AAE644 V-type adapter 12ABA700 Calibration stage 12BAG8344 Stylus pen 12BAL402 Protection sheet 270732 Printer paper (5 pieces) 12BAL400 Carrying case Roughness reference specimen (Ra 1um), AC adapter, Philips screwdrive, Strap for stylus pen, Operation manual, Quick reference manual, Warranty	

DIMENSIONS Display unit, Drive unit

Surftest / SJ-310

SERIES 178 - Optional Accessories

Detectors

SJ-Printer for SJ-210

Assessed profiles and calculation results and curves can be printed out by connecting the SJ-210-dedicated printer, which is palm sized (WxDxH: $93 \times 125 \times 70 \mathrm{~mm}$) and can run on an internal battery.

- Power supply can be selected. (AC adapter or battery pack)
- Printable items: Measurement conditions, calculation results, assessed profile, bearing area curve (BAC), amplitude distribution curve (ADC), and environment settings.

178-421A
*Not compatible with older SJ-201 models.

Example of the connection with $\mathbf{S J}$-210
Durable Printer paper
($25 \mathrm{~m}, 5$ rolls/set): 12AAA876
Printer paper (5 packs): 270732 RS-232C cable: 12AAL067

DP-1VR

It is possible to process Digimatic data output from the Surftest $S J$ series with the DP-1VR. This compact, hand-held device can provide printouts of measurement data and various statistical analyses results such as histograms, D-charts, and Xbar-R control charts. With optional output cables, DP-1VR is also capable of RS-232C output of measurement data to a PC (cable 09EAA084) and go/no-go condition output (cable 965516).

264-504-5A

Connecting cable: 936937 40" 1 (1m) Connecting cable: 965014 80" (2m) AC adapter: 09EAA088 Printer paper:

09EAA082

MiCAT

the standard in world metrology software
FORT

Free Communication Software SJ-Tools

This program can be downloaded for FREE from the Mitutoyo website. http:www.mitutoyo.com
Output software based on Microsoft-Excel* for controlling the devices and reproducing and storing the measurement data.

* Microsoft-Excel is not included in the scope of supply.

Complete with exclusive accessories.

- Measurement device control
- Definition of measurement variables
- Graphic representation of the profile
- Storage of measurement records
- Documentation of measurement results
- Connecting cable

Optional cables (Required for software communication)
12AAL068: USB PC connecting cable(USB cable) for SJ-210
12AAD510: USB PC connecting cable(USB cable) for SJ-310/410
12AAL067: RS-232C cable for SJ-210
12AAA882: RS-232C cable for SJ-310/410
12AAH490: USB PC connecting cable for SJ-500/SV-2100

SJ-Tools input mask for Surftest SJ series

SJ-Tools output record from MS-Excel

Optional Accessories

12AAL272: SJ-210 Replacement Battery Pack
12AAN046: SJ-310 Replacement Battery Pack
12BAK820: SJ-210 Display Protection Sheet (1pc.)
12AAL066: SJ-210 Display Protection Sheet (5pcs.)
12BAL402: SJ-310 Display Protection Sheet (1pc.)
12AAN040: SJ-310 Display Protection Sheet (10pcs.)
178-601: Precision Reference Specimen (Ra $3.00 \mu \mathrm{~m}$)
178-602: Precision Reference Specimen (Ra $119 \mu \mathrm{in} / 3.00 \mu \mathrm{~m}$)
178-603: Precision Reference Specimen - 2 values (GAR)
178-604: Precision Reference Specimen - 2 Values (MIT)
178-606: Precision Reference Specimen for Transverse Drive (Ra $0.039 \mu \mathrm{in} / 1.0 \mu \mathrm{~m}$)
178-029: Manual Column Stand, must use adapter 12AAA221 to mount SJ drive unit.

Nosepiece, Adapter

Nosepiece for flat surfaces

12AAA217

- SJ-210/210R optional accessory.
- SJ-310/310R standard accessory.
- Not available for the transverse tracing drive unit.

V-type adapter

12AAE644

-SJ-210/SJ-310 Transverse tracing type standard accessory.

- Dedicated to the transverse tracing drive unit.

Extension rod (50 mm)

12AAA210

- Not available for the transverse tracing drive unit.

Magnetic stand adapter
12AAA221 (ø8mm)
12AAA220 ($\varnothing 9.5 \mathrm{~mm}$)

Extension cable (1m)

12BAA303

- Only one cable can be used.

Setting attachments

Nosepiece for cylindrical surfaces

12AAA218

-SJ-210/210R optional accessory.

- SJ-310/310R standard accessory.
- Not available for the transverse tracing drive unit.
- ø30mm or smaller workpiece

Point-contact adapter

12AAE643

- SJ-210/SJ-310 Transverse tracing type standard accessory.
- Dedicated to the transverse tracing drive unit.

Support feet set

12AAA216

-SJ-210/210R optional accessory.

- SJ-310/310R standard accessory.
- Not available for the detector side of the transverse tracing

Vertical positioning adapter

12AAA219

- Not available for the transverse tracing drive unit.

Height gage adapter
12AAA222 ($9 \mathrm{~mm} \times 9 \mathrm{~mm}$)
12AAA233 (1/4" x 1/2")

* Not available for the transverse tracing drive unit

Improves measurement efficiency by allowing the setup of workpieces of the same type and the positioning of hard-to-access features of a workpiece.

No. 178-033

V-type for measuring in the cylinder axis direction

The V -width is adjustable to the cylinder diameter facilitating axial measurement of a wide range of cylinder diameters.

- Adjustable range: $\varnothing 5$ - 150 mm

No. 178-034
Setting attachment: Magnetic slider type

Best suited for measurement of the flat surface of a workpiece that has partial indentions and steps and that is hard to set the drive unit. Combination use with the magnet type specimen holder (Option No. 12AAA910) further improves the ease of operation.

No. 178-035

Setting attachment: Inside diameter type

Greatly facilitates measurement of internal wall surfaces of, for example, cylinder-block bores. - Applicable diameter: $\varnothing 75$ - $\varnothing 95 \mathrm{~mm}$ - Accessible depth: 30-135mm

Surftest SJ-410

SERIES 178 - Portable Surface Roughness Tester

FEATURES

- Both skidded and skidless measurement are possible with this series. Equipped with 46 roughness parameters that conform to the latest ISO, DIN, ANSI, and JIS standards.
- A wide-range, high-resolution detector and a drive unit provide superior high-accuracy measurement in its class.

Detector

Measuring range: $800 \mu \mathrm{~m}$
Resolution: $0.000125 \mu \mathrm{~m}$ (at $8 \mu \mathrm{~m}$ range)
Drive unit
Straightness/traverse length
SJ-411: $0.3 \mu \mathrm{~m} / 25 \mathrm{~mm}$
SJ-412: $0.5 \mu \mathrm{~m} / 50 \mathrm{~mm}$

- A skidless detector and a curved surface compensation function provide efficient evaluation of cylinder surface roughness.
- Ultra-fine steps, straightness and waviness can be measured by using the skidless measurement function.
- The handheld data processing unit and the 5.7-inch color graphic LCD touch-panel provides superior readability and operability. The LCD also includes a backlight for improved visibility in dark environments.
-The excellent user interface provides intuitive and easy-to-understand operability.
- Measured data can be output to a PC with optional RS-232C or USB cable.
- Digital filter function for non-distorted roughness profiles.
- Go/no-go judgment function.
- Auto-calibration function.
- The display interface supports 16 languages, which can be freely switched.
- Simplified contour analysis function supports the four types of measurement: step, level change, area and coordinate difference.
- Access to each feature can be passwordprotected, which prevents unintended operations and allows you to protect your settings.
- The optional attachments for mounting on a column stand significantly increase the operability.

Skidless measurement

SPECIFICATIONS

Model No.	SJ-411	SJ-411	SJJ-412	SJ-412
Order No. (inch/mm)	$\mathbf{1 7 8 - 5 8 1 - 0 1 A}$	$\mathbf{1 7 8 - 5 8 1 - 0 2 A}$	$\mathbf{1 7 8 - 5 8 3 - 0 1 A}$	$\mathbf{1 7 8 - 5 8 3 - 0 2 A}$
Detector measuring force	0.75 mN	4 mN	0.75 mN	4 mN
Evaluation range	25 mm	25 mm	50 mm	50 mm
Stylus tipTip angle $\mathrm{6ip}$ radius	$2 \mu \mathrm{~m}$	90°	60°	90°

Technical Data: X axis (drive unit)
Measuring range: $\quad 1$ " $(25 \mathrm{~mm})(\mathrm{SJ}-411), 2$ " $(50 \mathrm{~mm})(\mathrm{SJ}-412)$
Measuring speed: $\quad .002, .004, .008, .02, .04 \mathrm{H} / \mathrm{s}$ ($0.05,0.1,0.5,1.0 \mathrm{~mm} / \mathrm{s}$)
Return speed: $\quad .02, .04, .08 " / \mathrm{s}(0.5,1.0,2.0 \mathrm{~mm} / \mathrm{s})$
Traversing direction: Backward
Traverse linearity: $\quad 12$ uin 11 " $(0.3 \mu \mathrm{~m} / 25 \mathrm{~mm})(\mathrm{SJ}-411)$,
$20 \mathrm{Hin} / 2(0.5 \mu \mathrm{~m} / 50 \mathrm{~mm})(\mathrm{S}-412$
Detector Range / resolution: $800 \mu \mathrm{~m} / \mathrm{I} .0 .0125 \mathrm{\mu m}, 80 \mathrm{~mm} /$ $0.00125 \mu \mathrm{~m}, 8 \mathrm{~m} / 0.000125 \mathrm{um}$ (up to $2400 \mu \mathrm{~m}$ with an optional stylus)
Measurement method: Skidless / skidded
Measuring force: $0.75 \mathrm{mN}(4 \mathrm{mN})$
Stylus tip: Diamond, $60^{\circ} / 2 \mu \mathrm{mR}$ ($90^{\circ} / 5 \mu \mathrm{mR}$)
Skid radius of curvature: 40 mm
Type: Differential inductance
Power supply: Via AC adapter / rechargeable battery
Battery life: \quad Max. app. 1000 measurements (w/o printing)
Recharge time: 4 hours Data output Via USB interface / RS-232C interface / SPC output
Storage:Internal memory: Measurement condition (10 sets)
Memory card (Option): 500 measurement conditions, 10,000
measured profiles, 500 display images, Text file (Measurement conditions / Measured profile / Assessed profile / Bearing area
curve / Amplitude distribution curve), 500 statistical data, etc.
Dimensions (W×DxH)
Display unit: $\quad 10.8 \times 4.3 \times 7.8$ " $(275 \times 109 \times 198 \mathrm{~mm})$
Height-tilt adjustment unit: $5.16 \times 2.48 \times 3.9$ "($131 \times 63 \times 99 \mathrm{~mm}$)
Drive unit: $\quad 5.04 \times 1.41 \times 1.83$ " $(128 \times 36 \times 47 \mathrm{~mm})(\mathrm{SJ}-411)$, $6.1 \times 1.41 \times 1.83 "(155 \times 36 \times 47 \mathrm{~mm})(\mathrm{SJ}-412)$
Mass Control unit: Approx. $3.75 \mathrm{lb}(1.7 \mathrm{~kg})$
Height-tilt adjustment unit: Approx. . 91 b (0.4 kg)
Drive unit: $\quad 1.3 \mathrm{lb}(0.6 \mathrm{~kg})(\mathrm{SJ}-411), 1.5 \mathrm{bb}(0.7 \mathrm{~kg})(\mathrm{SJ}-412)$

Evaluation Capability

Applicable standards: JIS'82, JIS'94, JIS'01, ISO'97, ANSI, VDA, Free
Assessed profiles: $\quad P$ (primary profile), R (roughness profile), DF (DF profile), W(filtered waviness profile), roughness motif, waviness motif
Evaluation parameters: Ra, Rq, Rz, Ry, Rp, Rv, Rt, R3z, Rsk, Rku,
Rc, RPc, RSm, Rmax(VDA, ANSI), Rz1max(ISO'97), S, HSC,
Rz\|IS(JIS'01), Rppi, R Δa, R Δq, Rlr, Rmr, Rmr((c), R δc, Rk, Rpk, Rvk,
$\mathrm{Mr1}, \mathrm{Mr2}, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{Vo}, \lambda \mathrm{A}, \mathrm{Lo}, \mathrm{Rpm}, \operatorname{tp}(A N S I), \operatorname{Htp}(A N S I), R, R x, A R$, W, AW, Wx, Wte
Analysis graphs:
Digital filter:
Cutoff length:

Sampling length:
Bearing Area Curve (BAC),
Amplitude Distribution Curve (ADC)
入C: 003, 01, 03, 1, 3"
($0.08,0.25,0.8,2.5,8 \mathrm{~mm}$)
as: $100,320,1000 \mu \mathrm{in}$
(2.5, $8,25 \mu \mathrm{~m}$)(Availability of switching depends of the selected standard.) $0.08,0.25,0.8,2.5,8,25 * \mathrm{~mm}$; or arbitrary length in range 0.1 to 25 mm (0.1 to 50 mm : SJ-412) in 0.01 mm increments
Number of sampling lengths: 1, 2, 3, ~ 20 (limited by traverse range)
Printer: Thermal type
Printing width: $\quad 48 \mathrm{~mm}$ (paper width: 58 mm)
Recording magnification
Vertical magnification: 10X to 100,000X, Auto
Horizontal magnification: 1 X to $1,000 \mathrm{X}$, Auto
Function
Customize
Selection of display/evaluation parameter
Data compensation:
Ruler function:
D.A.T. function:

[^0]
MiCAT

the standard in world metrology software FORM

Free Communication Software
 SJ-Tools

This program can be downloaded for FREE from the Mitutoyo website. http:www.mitutoyo.com
Output software based on Microsoft-Excel* for controlling the devices and reproducing and storing the measurement data. *Microsoft-Excel is not included in the scope of supply.
Complete with exclusive accessories.

- Measurement device control
- Definition of measurement variables
- Graphic representation of the profile
- Storage of measurement results
- Documentation of measurement results

Optional cables (Required for software communication)

12AAD510: USB PC connecting cable (USB cable)
12AAA882: RS-232C connecting cable

Optional Accessories

178-611: \quad Step gage $(2 \mu \mathrm{~m}, 10 \mu \mathrm{~m})$
178-612: \quad Step gage ($2 \mu \mathrm{~m}, 10 \mu \mathrm{~m}, 79 \mu \mathrm{in}, 394 \mu \mathrm{in})$
178-610: Step gage (step: $1 \mu \mathrm{~m}, 2 \mu \mathrm{~m}, 5 \mu \mathrm{~m}, 10 \mu \mathrm{~m}$)
12AAM556: Height/tilt adjustment unit for SJ-410
178-039: Manual column stand (granite base) (vertical travel: 250 mm)
178-010: Auto-set unit for 178-039
178-020: $\quad X$ axis adjustment unit for 178-039
178-030: Tilting adjustment unit (Inclination adjustment unit) for 178-039
12AAB358: Cylindrical surface adapter (workpiece dia.: 15-60mm)
178-016: Leveling table
(tilting: $\pm 1.5^{\circ}$, max. loading: 15 kg)
178-048: Leveling table with D.A.T function (mm) (tilting: $\pm 1.5^{\circ}$, max. loading: 15 kg)
178-058: Leveling table with D.A.T function (inch) (tilting: $\pm 1.5^{\circ}$, max. loading: 15 kg)
178-043-1: $X Y$ leveling table ($25 \times 25 \mathrm{~mm}$) (tilting: $\pm 1.5^{\circ}$, max. loading: 15 kg , swiveling: $\pm 3^{\circ}$)
178-053-1: XY leveling table ($1^{\prime \prime} \times 1^{\prime \prime}$) (tilting: $\pm 1.5^{\circ}$, max. loading: 15 kg , swiveling: $\pm 3^{\circ}$)
178-042-1: Digital XY leveling table ($25 \times 25 \mathrm{~mm}$) (tilting: $\pm 1.5^{\circ}$, max. loading: 15 kg , swiveling: $\pm 3^{\circ}$)
178-052-1: Digital XY leveling table ($1^{\prime \prime} \times 1^{\prime \prime}$) (tilting: $\pm 1.5^{\circ}$, max. loading: 15 kg , swiveling: $\pm 3^{\circ}$)
178-049: Digital XY leveling table ($25 \times 25 \mathrm{~mm}$) (max. loading: 15kg)
178-059: Digimatic XY leveling table ($1^{\prime \prime} \times 1^{\prime \prime}$) (max. loading: 15kg)
178-019: Precision vise for XY leveling table (jaw opening: 36 mm)
998291: Precision V-block for XY leveling table (workpiece dia.: 1-160mm)
12AAA841: Memory card (8GB)
965014: SPC cable (2 m)
264-012-10: Input tool (USB type)
264-504-5A:DP-1VR
-: Detectors, Styli, and nosepieces (See pg. J-22/23.)

Consumables

12AAN040: LCD protective sheet (10 sheets/set)
12AAA876: Durable printer paper ($25 \mathrm{~m}, 5 \mathrm{rolls} / \mathrm{set}$)
270732: Printer paper (5 pack)
12AAN046: Replacement battery
12AAJ088: Footswitch

Surftest SJ-410

SERIES 178 - Portable Surface Roughness Tester

DIMENSIONS

MEASUREMENT APPLICATIONS

Carrying case is a standard accessory.

With optional accessories.
178-010: Auto-set unit
178-020: X-axis adjustment unit
178-030: Tilting adjustment unit

Surftest SJ-500/P, SV-2100

SERIES 178 - with Dedicated Control / PC System / Display Unit

High-precision and high-performance surface roughness tester with a dedicated control unit, achieving user-friendly display and simple operation.

FEATURES

- User-friendly display and simple operation equipped with a highly visible color 7.5 -inch TFT LCD.
- Easy positioning. A joy stick built in the dedicated control unit allows easy and quick positioning. Fine positioning of a small stylus, required for measuring the inner side of a small hole, easily can be made using the manual knob.

SJ-500

- Easy setting of measuring conditions for surface roughness. Equipped with simple input function allows inputs according to drawing instruction symbols of ISO/JIS roughness standards. Troublesome measuring condition settings can be easily input by directly selecting a drawing instruction symbol for surface roughness from the menu.

SURFPAK-EZE Easy-to-use task-focused software

Measurement and results display screen

User-friendly graphical display and button layout allows intuitive operation. Simplified fine-contour analysis provided as standard, including step, area, angle, and circle calculation.

Technical Data: SJ-500
X-axis (drive unit)
Measuring range: $\quad 1.97^{\prime \prime}$ (50 mm)
Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Linear encoder
Drive speed: $\quad 0-.781 / \mathrm{s}(0-20 \mathrm{~mm} / \mathrm{s})$
Measuring speed: $\quad .00078-.2 \mathrm{n} / \mathrm{s}(0.02-5 \mathrm{~mm} / \mathrm{s})$
Traversing direction: Backward
Traverse linearity: $\quad .0078 \mu \mathrm{in} / 1.97^{\prime \prime}(0.2 \mu \mathrm{~m} / 50 \mathrm{~mm})$
Positioning: $\quad \pm 1.5^{\circ}$ (tilting, with DAT function) 1.18 " (30mm) (up/down)

Detector
Resolution / Range: . $4 \mu \mathrm{in} / 32000 \mu \mathrm{in}, .04 \mu \mathrm{in} / 3200 \mu \mathrm{in}$, .004 $\mathbf{0} \mathrm{in} / 320 \mu \mathrm{in}$ $0.01 \mu \mathrm{~m}(800 \mu \mathrm{~m}), 0.001 \mu \mathrm{~m}(80 \mu \mathrm{~m})$, $0.0001 \mu \mathrm{~m}$ ($8 \mu \mathrm{~m}$)
Detecting method: Skidless / skid measurement
Measuring force: $\quad 4 \mathrm{mN}(0.75 \mathrm{mN})$ (low force type)
Stylus tip: \quad Diamond, $90^{\circ} / 5 \mu \mathrm{mR}$ ($60^{\circ} / 2 \mu \mathrm{mR}$: low force type)
Skid radius of curvature: 1.57 " (40 mm)
Detecting method: Differential inductance
Control unit
Display: $\quad 7.5^{\prime \prime}$ color TFT with backlight
Printer: Built-in thermal printer
Magnification: Horizontal: X10 to X500,000, Auto Vertical: X0.5 to X10,000, Auto
Drive unit control: Joystick operation with manual knob

Technical Data: SV-2100

X-axis (drive unit)
Measuring range: $\quad 3.94^{\prime \prime}$ (100 mm)
Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Linear encoder
Drive speed: $\quad 0-1.571 / \mathrm{s}(0-40 \mathrm{~mm} / \mathrm{s})$
Measuring speed: $.00078-.197 \mathrm{H} / \mathrm{s}(0.02-5 \mathrm{~mm} / \mathrm{s})$
Traversing direction: Pull
Traverse linearity: $\quad 6 \mu \mathrm{in} / 4^{\prime \prime}(0.15 \mu \mathrm{~m} / 100 \mathrm{~mm})$
Z2-axis (column)
Type:
Manual operation or power drive
Vertical travel: $\quad 13.8^{\prime \prime}$ or $21.6^{\prime \prime}$ (350 mm or 550 mm *)
Resolution*: $\quad 1 \mu \mathrm{~m}$
Measurement method*: Rotary encoder
Drive speed*: $\quad 0-.78$ "/s ($0-20 \mathrm{~mm} / \mathrm{s}$)
*Only for power-drive type
Detector
Resolution / Range : $.4 \mu \mathrm{in} / 32000 \mu \mathrm{in}, .04 \mu \mathrm{in} / 3200 \mu \mathrm{in}$,
$004 \mu \mathrm{in} / 320 \mu \mathrm{in}$
$0.01 \mu \mathrm{~m} / 800 \mu \mathrm{~m}, ~ 0.001 \mu \mathrm{~m} / 80 \mu \mathrm{~m}$, $0.0001 \mu \mathrm{~m} / 8 \mu \mathrm{~m}$
Detecting method: Skidless / skid measurement
Measuring force: $\quad 4 \mathrm{mN}$ or 0.75 mN (low force type)
Stylus tip: \quad Diamond, $90^{\circ} / 5 \mu \mathrm{mR}$ ($60^{\circ} / 2 \mu \mathrm{mR}$: low force type)
Skid radius of curvature: 1.57 " (40 mm)
Detecting method: Differential inductance
Control unit
Display:
Printer:
Magnification:
Drive unit control: Joystick operation with manual knob

Evaluation Capability

Cutoff length
Is: $0.25 \mu \mathrm{~m}, 0.8 \mu \mathrm{~m}, 2.5 \mu \mathrm{~m}, 8 \mu \mathrm{~m}, 25 \mu \mathrm{~m}, 250 \mu \mathrm{~m}$, no filter $\mathrm{k}^{*}: 0.025 \mathrm{~mm}, 0.08 \mathrm{~mm}, 0.25 \mathrm{~mm}, 0.8 \mathrm{~mm}, 2.5 \mathrm{~mm}, 8 \mathrm{~mm}$, 25 mm
If: $0.08 \mathrm{~mm}, 0.25 \mathrm{~mm}, 0.8 \mathrm{~mm}, 2.5 \mathrm{~mm}, 8 \mathrm{~mm}, 25 \mathrm{~mm}$, no filter
Sampling length (L **
$0.025 \mathrm{~mm}, 0.08 \mathrm{~mm}, 0.25 \mathrm{~mm}, 0.8 \mathrm{~mm}, 2.5 \mathrm{~mm}, 8 \mathrm{~mm}$,
$25 \mathrm{~mm}, 80 \mathrm{~mm}$ (SV-2100 only)
Data compensation functions
Parabola compensation, hyperbola compensation, ellipse
compensation, R-plane (curved surface) compensation,
conic compensation, tilt compensation
*Arbitrary length can be specified in the range from 0.02 mm
to 50 mm .
12AAA876: High durable printer paper (5 Rolls/set)
270732: Standard type printer paper (5pcs.)

Surftest SJ-500/P, SV-2100

SERIES 178 — with Dedicated Control / PC System / Display Unit

SPECIFICATIONS

Model no.	SJ-500P	SJ-500	SV-2100M4	SV-210054	SV-2100H4	SV-2100W4
Type of Data processing	PC System	Dedicated Data Processor	Dedicated Data Processor			
Order No. (inch)	178-531-02A	178-533-02A	178-637-01A	178-681-01A	178-683-01A	178-685-01A
Measuring force of detector	4 mN	4 mN	0.75 mN			
X-axis measuring range	2" (50mm)		4" 100 mm)			
Vertical travel	Optional stand		13.8" (350mm) manual column	$13.8^{\prime \prime}$ (350mm) power column	$21.6^{\prime \prime}(550 \mathrm{~mm}$) power column	
Granite base size (WxD)	Optional stand		$23.6 \times 17.7^{\prime \prime}(600 \times 450 \mathrm{~mm})$			$\begin{gathered} 39.4 \times 17.7^{\prime \prime} \\ (1000 \times 450 \mathrm{~mm}) \end{gathered}$
PC IIF Unit	$\begin{array}{\|c\|} \hline 13.7 \times 10.4 \times 3.4^{\prime \prime} \\ (350 \times 263 \times 86 \mathrm{~mm}) \\ \hline \end{array}$	NA	NA	NA	NA	NA
Dimensions (main unit, WxDxH)	$\begin{gathered} 16.7 \times 3.7 \times 6.3^{\prime \prime} \\ (425 \times 94 \times 160 \mathrm{~mm}) \\ \hline \end{gathered}$		$\begin{gathered} 28.2 \times 17.7 \times 34^{\prime \prime} \\ (716 \times 450 \times 863 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 28.2 \times 17.7 \times 38^{\prime \prime} \\ (716 \times 450 \times 966 \mathrm{~mm}) \\ \hline \end{array}$	$\begin{gathered} 28.2 \times 17.7 \times 46^{\prime \prime} \\ (716 \times 450 \times 1166 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 44 \times 17.7 \times 46.3^{\prime \prime} \\ (1116 \times 450 \times 1176 \mathrm{~mm}) \end{gathered}$
Main unit Mass	$5.9 \mathrm{lbs} .(2.7 \mathrm{~kg})$		308.6 lbs. (140 kg)	308.6 lbs. (140 kg)	330 lbs . (150 kg)	$485 \mathrm{lbs}(220 \mathrm{~kg}$)
Assessed profiles	Dedicated data processor type: P (primary profile), R (roughness profile), WC, envelope residual profile, roughness motif, waviness motif PC system type: P (primary profile), R (roughness profile), WC, WCA, WE, WEA, DIN4776 profile, E (envelope residual profile), roughness motif, waviness motif					
Evaluation parameters	Dedicated data processor type: Ra, Rc, Ry, Rz, Rq, Rt, Rmax, Rp, Rv, R3z, Sm, S, Pc, mr (c), סc, mr, tp, Htp, Lo, Ir, Ppi, HSC, $\Delta a, \Delta q, K u, S k, R p k, R v k, R k, M r 1, M r 2, A 1, A 2, ~ V o, \lambda a, \lambda q, R, A R, R x, W, A W, W x, W t e$, (43 parameters), Customization PC system type: Pa, Pq, Psk, Pku, Pp, Pv, Pz, Pt, Pc, PSm, P Δq, Pmr (c), Pmr, Poc, Ra, Rq, Rsk, Rku, Rp, Rv, Rz, Rt, Rc, RSm, R R Δq, Rmr (c), Rmr, Roc, Wa, Wq, Wsk, Wku, Wp, Wv, Wz, Wt, Wc, Wsm, W Δq, Wmr (c), Wmr, Wסc, Rk, Rpk, Rvk, Mr1, Mr2, A1, A2, Rx, AR, R, Wx, AW, W, Wte, Ry, RyDIN, RzDIN, R3y, R3z, S, HSC, Lo, Ir, $\Delta a, \lambda a, ~ \lambda q, ~ V o, ~ H t p, ~ N R, ~$ NCRX, CPM, SR, SAR, NW, SW, SAW					
Analysis graphs	Dedicated data processor type: ADC, BAC, power spectrum graph PC system type: ADC, BAC Graph, power spectrum graph, auto-correlation graph, Walsh power spectrum graph, Walsh autocorrelation graph, slope distribution graph, local peak distribution graph, parameter distribution graph					
Curved surface compensation	Dedicated data processor type: Parabolic compensation, Hyperbolic compensation, Elliptical compensation, Circular compensation Conic compensation, Inclination (Entire, Arbitrary) PC system type: Parabolic compensation, Hyperbolic compensation, Elliptical compensation, Circular compensation, Conic compensation, Inclination (Entire, Arbitrary), Polynomial compensation					
Contour analysis	Dedicated data processor type: Area, Circle, Angle, Coordinate difference, Step, Inclination PC system type (SURFPAK-EZ): Area, Circle, Angle, Coordinate difference, Step, Inclination					
Filters	Dedicated data processor type: 2CR-75\%, 2CRPC-75\%, Gaussian, Robust-spline PC system type: 2CR-75\%, 2CR-50\%, 2CRPC-75\%, 2CRPC-50\%, Gaussian, Robust-spline					

Manual column stand options: 178-085 and 178-089 (for SJ-500)

Suitable for desktop use in inspection rooms and such.

No.178-085* Does not include measuring unit Vertical adjustment range: $11.8^{\prime \prime}(300 \mathrm{~mm})$ Dimension (W $\times \mathrm{D} \times \mathrm{H}$): $23.6^{" 1} \times 17.7^{\prime \prime} \times 28^{\prime \prime}$ $(600 \times 450 \times 710 \mathrm{~mm})$ Weight: 242 lbs (110 kg)
No.178-089* Does not include measuring unit Vertical adjustment range: 9.8 " (250 mm) Dimension (W $\times \mathrm{D} \times \mathrm{H}$): $15.7 \times 9.8 \times 2.4{ }^{\prime \prime}$ $(400 \times 250 \times 60 \mathrm{~mm})$ Weight: 44 lbs (20 kg)

Dimensions of SJ-500 w/ manual column stand 178-085

Auto-leveling table: 178-081 (for SJ-500 / SV-2100M44), 178-083 (for SV/210054 / H4 / W4)

This is a stage that performs fully automatic leveling as measurement starts, freeing the user from this tedious operation. Fully automatic leveling can be done quickly by anyone. In addition, the operation is easy and reliable.

Inclination adjustment angle	$\pm 2^{\circ}$
Maximum load	$15.4 \mathrm{lbs}(7 \mathrm{~kg})$
Table dimensions	$5.12 \times 3.94{ }^{\prime \prime}(130 \times 100 \mathrm{~mm})$
Mass	$7.7 \mathrm{lbs}(3.5 \mathrm{~kg})$

Surftest SV-3200

SERIES 178 - Surface Roughness Testers

The Surftest SV-3200 Series provide high-accuracy, high-level analysis and multi-functionality in measurement of surface roughness.

FEATURES

- Mitutoyo's Surftest SV-3200 Series provides high-accuracy, high-level analysis and multi-functionality in threedimensional analysis and measurement of fine contour, as well as the conventional type surface roughness measurement.
- Peripheral devices such as the auto-leveling table are available to enhance operability and to enable automatic measurement.
- FORMTRACEPAK V5, dedicated dataanalyzing software, is installed. This software allows data management in a consistent format, from the work site to the laboratory.
- Ceramic, which is known for its superb anti-abrasive property, is used as the X -axis drive unit guide. No lubrication of the guide is required.
- High-accuracy glass scales are built-in on X-axis (resolution: 1.97 $\mathbf{\mu i n}$ ($0.05 \mu \mathrm{~m}$) and Z2-axis (column, resolution: 39.4 $\mathbf{4}$ in ($1 \mu \mathrm{~m}$) to ensure high-accuracy positioning.

The SV-3200 series manifest high-reliability especially in the horizontal roughness parameters (S, Sm), that require highaccuracy of the X-axis travel.

- When equipped with high accuracy Y-axis table and 3D surface analysis software MCubeMap, this offers CNC type capabilities usually performed on Extreme series machines.
- Various optional detector holders such as Crank Rotary type and Manual Rotary type make this versatile for many different applications.
- New optional Digital Automatic Tilt (DAT) function is best suited for workpieces that are too large for leveling tables.

Technical Data

X-axis
Measuring range: $\quad 4$ " or $8^{\prime \prime}$ (100 mm or 200 mm)
Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Linear encoder
Drive speed: $\quad 0-3.1 \mathrm{I} / \mathrm{s}(0-80 \mathrm{~mm} / \mathrm{s})$
Measuring speed: $\quad .00078-.78 \mathrm{n} / \mathrm{s}(0.2-20 \mathrm{~mm} / \mathrm{s})^{* *}$
Traversing direction: Backward
Traverse linearity: $\quad 4^{\prime \prime}:(2+L) \mu i n(0.05+0.001 L) \mu m *$
Z2-axis (column)
Vertical travel:
Resolution: ($300 \mathrm{~mm}, 500 \mathrm{~mm}$ or 700 mm) power drive $39.4 \mu \mathrm{in}(1 \mu \mathrm{~m})$
Measurement method: ABSOLUTE linear encoder
Drive speed: $\quad 0-1.21 / \mathrm{s}(0-30 \mathrm{~mm} / \mathrm{s})$
Detector
Range / resolution: $32000 \mu \mathrm{in} / .4 \mu \mathrm{in}, 3200 \mu \mathrm{in} / .04 \mu \mathrm{in}$,
$320 \mu \mathrm{in} / .004 \mu \mathrm{in}$
(up to 96000μ in with an optional stylus)
$\{(800 \mu \mathrm{~m} / 0.01 \mu \mathrm{~m}, 80 \mu \mathrm{~m} / 0.001 \mu \mathrm{~m}, 8 \mu \mathrm{~m}$ $10.0001 \mu \mathrm{~m}$)
(up to $2400 \mu \mathrm{~m}$ with an optional stylus)\}
Detecting method: Skidless / skid measurement
Measuring force: $\quad 0.75 \mathrm{mN}$ (low force type)
Stylus tip: Diamond, $60^{\circ} / 2 \mu \mathrm{mR}$ (low-force type)
Skid radius of curvature: 1.57 " (40 mm)
Detecting method: Differential inductance
Base size (W xH): $\quad 23.6 \times 17.7^{\prime \prime}(600 \times 450 \mathrm{~mm})$ or
$39.4 \times 17.7^{\prime \prime}(1000 \times 450 \mathrm{~mm})$
Base material: Granite
*L = Measured length inch (mm)
**Recommended speed: under $5 \mathrm{~mm} / \mathrm{s}$
If using higher speed, stylus tip may be chipped and/or accuracy
may be worse, depending on surface condition.

Evaluation Capability: FORMTRACEPAK V5

Assessed profiles
P (primary profile), R (roughness profile), WC, WCA, WE, WEA, DIN4776 profile, envelope residual profile, roughness motif, waviness motif
Evaluation parameters
Ra, Rq, Rz, Ry, Rz(JIS), Ry(DIN), Rc, Rp, Rpmax, Rpi, Rv, Rvmax, Rvi, Rt, Rti, R3z, R3zi, R3y, S, Pc (Ppi), Sm, HSC, mr, סc, plateau ratio, mrd, Rk, Rpk, Rvk, Mr1, Mr2, $\Delta \mathrm{a}, \Delta \mathrm{q}, \lambda \mathrm{a}, \lambda \mathrm{q}, \mathrm{Sk}, \mathrm{Ku}, \mathrm{LO}$, Lr, A1, A2
Roughness motif parameters: $\mathrm{Rx}, \mathrm{R}, \mathrm{AR}, \mathrm{SR}, \mathrm{SAR}, \mathrm{NR}, \mathrm{NCRX}$, CPM
Waviness motif parameters: Wte, Wx, W, AW SW, SAW, NW
Analysis graphs
ADC, BAC1, BAC2, power spectrum chart, auto-correlation chart, Walsh power spectrum chart, Walsh auto-correlation chart, slope distribution chart, local peak distribution chart, parameter distribution chart
Digital filter 2CR-75\%, 2CR-50\%, 2CR-75\% (phase corrected), 2CR-50\% (phase corrected), Gaussian-50\%
Cutoff length*
$\lambda c: .001, .003, .01, .03, .1, .3,1^{\prime \prime}$
($0.025 \mathrm{~mm}, 0.08 \mathrm{~mm}, 0.25 \mathrm{~mm}, 0.8 \mathrm{~mm}, 2.5 \mathrm{~mm}, 8 \mathrm{~mm}, 25 \mathrm{~mm}$) fl: . $001, .003, .01, .03, .1, .3,1^{\prime \prime}$
$(0.08 \mathrm{~mm}, 0.25 \mathrm{~mm}, 0.8 \mathrm{~mm}, 2.5 \mathrm{~mm}, 8 \mathrm{~mm}, 25 \mathrm{~mm})$
fh: . $001, .003, .01, .03, .1, .3,1^{\prime \prime}$
($0.08 \mathrm{~mm}, 0.25 \mathrm{~mm}, 0.8 \mathrm{~mm}, 2.5 \mathrm{~mm}, 8 \mathrm{~mm}$)
Sampling length (L)*.001, .003, .01, .03, .1, .3, 1"
($0.025 \mathrm{~mm}, 0.08 \mathrm{~mm}, 0.25 \mathrm{~mm}, 0.8 \mathrm{~mm}, 2.5 \mathrm{~mm}, 8 \mathrm{~mm}, 25 \mathrm{~mm}$)
Data compensation functions
Tilt compensation, R-plane (curved surface) compensation, ellipse compensation, parabola compensation, hyperbola compensation, quadric curve automatic compensation,
polynomial compensation, polynomial automatic compensation
*Arbitrary length can be specified in the range from .001 " (0.025 mm) to the maximum traverse length.

Surftest SV-3200

SERIES 178 - Surface Roughness Testers

SPECIFICATIONS
\square Models without X-axis inclination function

Model No.	SV-320054	SV-3200H4	SV-3200W4	SV-3200L4
Order No. (inch)	178-424-11A	178-425-11A	178-426-11A	178-464-11A
Order No. (inch)	178-444-11A	178-445-11A	178-446-11A	178-484-11A
Measuring force of detector	0.75 mN	0.75 mN	0.75 mN	0.75 mN
X-axis measuring range	4" (100mm)	4" (100mm)	4" (100mm)	4" (100mm)
Vertical travel	12" (300mm) power column	$20^{\prime \prime}(500 \mathrm{~mm})$ power column	$20^{\prime \prime}(500 \mathrm{~mm})$ power column	27.6 " (700mm) power column
Granite base size (WxD)	$23.6 \times 17.7{ }^{\prime \prime}(600 \times 450 \mathrm{~mm})$	$23.6 \times 17.7{ }^{\prime \prime}(600 \times 450 \mathrm{~mm})$	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)
Dimensions (main unit, WxDxH)	$\begin{aligned} & 29.8 \times 19.0 \times 38.010 \\ & (756 \times 482 \times 966 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 29.8 \times 19.0 \times 45.9 " \\ (756 \times 482 \times 1166 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 45.5 \times 19.0 \times 46.3 " \\ (1156 \times 482 \times 1176 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 45.5 \times 19.0 \times 56.5 \mathrm{~F} \\ (1156 \times 482 \times 1436 \mathrm{~mm}) \end{gathered}$
Mass (main unit)	308 lbs (140kg)	$330 \mathrm{lbs}(150 \mathrm{~kg})$	485 lbs (220kg)	595 lbs (270kg)
Model No.	SV-320058	SV-3200H8	SV-3200W8	SV-3200L8
Order No. (inch)	178-427-11A	178-428-11A	178-429-11A	178-465-11A
Order No. (inch)	178-447-11A	178-448-11A	178-449-11A	178-485-11A
Measuring force of detector	0.75 mN	0.75 mN	0.75 mN	0.75 mN
X-axis measuring range	8" (200mm)	8" (200mm)	8" (200mm)	8" (200mm)
Vertical travel	12" (300mm) power column	20 (500 mm) power column	20" (500mm) power column	27.6" (700mm) power column
Granite base size (WxD)	$23.6 \times 17.7^{\prime \prime}(600 \times 450 \mathrm{~mm})$	$23.6 \times 17.7{ }^{\text {" }}$ (600 $\times 450 \mathrm{~mm}$)	39.4×17.7 " $(1000 \times 450 \mathrm{~mm})$	39.4×17.7 "(1000 $\times 450 \mathrm{~mm}$)
Dimensions (main unit, WxDxH)	$\begin{gathered} 30.2 \times 19.0 \times 38.0^{\prime \prime} \\ (766 \times 482 \times 966 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 30.2 \times 19.0 \times 45.9^{\prime \prime} \\ (766 \times 482 \times 1166 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 45.9 \times 19.0 \times 46.3^{\prime \prime} \\ (1166 \times 482 \times 1176 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 45.5 \times 19.0 \times 56.5^{\prime \prime} \\ (1156 \times 482 \times 1436 \mathrm{~mm}) \\ \hline \end{gathered}$
Mass (main unit)	308 lbs (140kg)	330 lbs (150kg)	485 lbs (220kg)	595 lbs (270kg)

Optional Accessories

178-602-1: Reference Specimen (Supports ISO)
178-611: Reference Step Specimen ($2 \mu \mathrm{~m}, 10 \mu \mathrm{~m}$)
178-612: Reference Step Specimen ($2 \mu \mathrm{~m}, 10 \mu \mathrm{~m}, 79 \mu \mathrm{in}, 394 \mu \mathrm{in}$)
178-610: Step gage
($1 \mu \mathrm{~m}, 2 \mu \mathrm{~m}, 5 \mu \mathrm{~m}, 10 \mu \mathrm{~m}$)
178-047: Three-axis adjustment table
(including 998291 precision V-block.)
178-016: Leveling table
178-042-1: \quad Digimatic $X Y$ leveling table ($25 \times 25 \mathrm{~mm}$)
178-052-1: Digimatic XY leveling table (1×1 ")
178-043-1: XY leveling table ($25 \times 25 \mathrm{~mm}$)
178-053-1: XY leveling table (1×1 ")
178-019: Precision vise*
998291: Precision V-block*
181-902-10: V-block set with clamp (Max. workpiece dia.: 25 mm)
181-901-10: V-block set with clamp (Max. workpiece dia.: $1^{\text {" }}$)
(See page J-22/23.) Detectors, styli, and nosepieces
*Use with an XY leveling table

Optional Accessories

A wide range of peripherals are available to support various challenging measurement needs.

Y-axis Table
178-097 for multiple workpiece measurement
178-096 for 3D measurement
*Not a measuring axis, only for positioning.

3D-Auto Leveling Table 178-077 *Used together with 178-096

Digital Advanced Tilting Unit 178-040
*Contact Sales Rep for details. Recommend to be installed in manufacturer's facility.
(See page J-25 for more accessories.)

Surftest Extreme SV-3000CNC

SERIES 178 - CNC Surface Measuring Instruments

FEATURES

- High-accuracy CNC surface roughness measuring instrument allows surface roughness measurement in both axes.
- Each axes has the maximum drive speed of $200 \mathrm{~mm} / \mathrm{s}$, which permits high-speed positioning that may result in a large increase in the throughput of multiple-profile/multiple-workpiece measurement tasks.
- For models with the α-axis, it is possible to perform continuous measurement over horizontal and inclined surfaces by powertilting the drive unit.
- For models with the Y-axis table, it is possible to expand the measuring range for multiple workpieces, etc., through positioning in the Y-axis direction.
- Using optional rotary table $\theta 1$ and $\theta 2$ designed to use with the CNC models enables it to expand the CNC measurement application range.
- Inclined plane measurements is possible through 2-axis simultaneous control in the X - and Y-axis directions.
- Since the detector unit incorporates an anti-collision safety device, the detector unit will automatically stop even if its main body collides with a workpiece or fixture.
- Supplied with an easy-to-operate Remote Box. The user can make any movement by selecting the required axis using the two joysticks. The current axis selection is easily identified by the icon on the key top.
- Communication with the data processing/ analysis section is via USB.

PC stand is not included, isolation stand is optional

SPECIFICATIONS

Model No.	SV-3000CNC		SV-3000CNC		SV-3000CNC		SV-3000CNC	
Order No. (100V-120V)	$178-521-1$	$178-541-1$	$178-522-1$	$178-542-1$	$178-523-1$	$178-543-1$	$178-524-1$	$178-544-1$
X1-axis measuring range	$8^{\prime \prime}$	$8 "$	$8^{\prime \prime}$	$8^{\prime \prime}$				
	$(200 \mathrm{~mm})$							
Z2-axis vertical travel	$12^{\prime \prime}$	$20^{\prime \prime}$	$12^{\prime \prime}$	$20^{\prime \prime}$	$12^{\prime \prime}$	$20 "$	$12^{\prime \prime}$	$20^{\prime \prime}$
	$(300 \mathrm{~mm})$	$(500 \mathrm{~mm})$						
Y-axis table unit	-	-	-	-	Installed	Installed	Installed	Installed
α-axis unit	-	-	Installed	Installed	-	-	Installed	Installed

Technical Data: SV-3000CNC

X1-axis
Measuring range: $\quad 8 "(200 \mathrm{~mm})$
Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Reflective-type linear encoder
Drive speed: $\quad 7.87 \mathrm{H} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})(\mathrm{CNC}$, max.)
$0-2.4 \mathrm{It} / \mathrm{s}(0-60 \mathrm{~mm} / \mathrm{s})$ (joystick)
Measuring speed: $\quad .00078-.078 \mathrm{l} / \mathrm{s}(0.02-2 \mathrm{~mm} / \mathrm{s})$
Traversing direction: Backward
Traverse linearity: $\quad 20 \mu \mathrm{in} / 8$ " $(0.5 \mu \mathrm{~m} / 200 \mathrm{~mm})$
α-axis**
Inclination angle: -45° to $+10^{\circ}$
Resolution: $\quad 0.000225^{\circ}$
Rotating speed: 1 rpm
Z2-axis (column)
Vertical travel:
Resolution:
12" (300mm) 20" *(500mm)
$1.97 \mu \mathrm{in}$ ($0.05 \mu \mathrm{~m}$)
Measurement method: Reflective-type linear encoder
Drive speed: $\quad 7.87 \mathrm{H} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})$ (max., CNC) $0-2.4$ " $/ \mathrm{s}(0-60 \mathrm{~mm} / \mathrm{s})$ (joystick)
Base size (W x H): $\quad 29.5 \times 23.6^{\prime \prime}(750 \times 600 \mathrm{~mm})$
Base material: Granite
Detector
Range / resolution: $32000 \mu \mathrm{in} / .4 \mu \mathrm{in}, 3200 \mu \mathrm{in} / .04 \mu \mathrm{in}$,
$320 \mu \mathrm{in} / .004 \mu \mathrm{in}$
(up to $96,000 \mu$ in with an optional stylus) $\{(800 \mu \mathrm{~m} / 0.01 \mu \mathrm{~m}, 80 \mu \mathrm{~m} / 0.001 \mu \mathrm{~m}$, $8 \mu \mathrm{~m} / 0.0001 \mu \mathrm{~m})$
(up to $2400 \mu \mathrm{~m}$ with an optional stylus)\}
Measuring force:
Stylus tip: $4 \mathrm{mN}(0.75 \mathrm{mN})$ (low-force type)
Diamond, $90^{\circ} / 5 \mu \mathrm{mR}$
($60 \% / 2 \mu \mathrm{mR}$: low-force type)
Dimension (W x D x H): $31.5 \times 24.4 \times 39.4^{\prime \prime}$
$(800 \times 620 \times 1000 \mathrm{~mm})$
$31.5 \times 24.4 \times 47.2^{\prime \prime}$
($800 \times 620 \times 1200 \mathrm{~mm}$)*
Mass
$529 \mathrm{lbs}(240 \mathrm{~kg}) 551 \mathrm{lbs}(250 \mathrm{~kg})^{*}$
*High-column model
Y-axis table unit**
Measuring range: $\quad 8^{\prime \prime}(200 \mathrm{~mm})$
Minimum reading : $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Scale unit:
Drive speed:
Reflective-type Linear Encoder
7.87 " $/ \mathrm{s}(200 \mathrm{~mm} / \mathrm{s}$) (max., CNC)
$0-2.4$ " $/ \mathrm{s}(0-60 \mathrm{~mm} / \mathrm{s}$) (joystick)
Maximum loading capacity: 44 lbs (20kg)
Traverse linearity $\quad 20 \mu \mathrm{in} / 8^{\prime \prime}(0.5 \mu \mathrm{~m} / 200 \mathrm{~mm})$
Linear displacement accuracy (at $20^{\circ} \mathrm{C}$):
$\pm(80+2 \mathrm{~L} / 4) \mu \mathrm{in}\{ \pm(2+2 \mathrm{~L} / 100) \mu \mathrm{m}\}$
L: Dimension between two measured
points (mm)
Table size: $\quad 7.87 \times 7.87^{\prime \prime}(200 \times 200 \mathrm{~mm})$
Dimensions (W x D xH): $12.6 \times 25.4 \times 4.1^{\prime \prime}$
($320 \times 646 \times 105 \mathrm{~mm}$)
Mass:
77 lbs (35kg)
**Y-axis table included only as a factory installed option.

Optional Accessories

Vibration isolation stand
Vibration isolation mechanism: Diaphragm air spring
Natural frequency: $\quad 2.5-3.5 \mathrm{~Hz}$
Damping mechanism: Orifice
Leveling mechanism: Automatic control with mechanical valves
Air supply pressure: $\quad 0.4 \mathrm{MPa}$
Allowable loading capacity: 772 lbs (350 kg)
Dimensions (W x D xH): $39.4 \times 35.2 \times 28.1^{\prime \prime}$
$(1000 \times 895 \times 715 \mathrm{~mm})$
Mass: $\quad 617 \mathrm{lbs}(280 \mathrm{~kg})$

Technical Data: SV-M3000CNC

X1-axis

Measuring range:	$8 "(200 \mathrm{~mm})$
Resolution:	$1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$

Measurement method: Reflective-type linear encoder Drive speed: $\quad 7.87 \mathrm{l} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})($ max., CNC) $0-1.97 \mathrm{Its}(0-50 \mathrm{~mm} / \mathrm{s})$ (joystick) Measuring speed: $.00078-.08 \mathrm{n} / \mathrm{s}(0.02-2 \mathrm{~mm} / \mathrm{s})$ Traverse linearity: $\quad 20 \mu \mathrm{in} / 8^{\prime \prime}(0.5 \mu \mathrm{~m} / 200 \mathrm{~mm})$

28 $\mu \mathrm{in} / 8^{\prime \prime}(0.7 \mu \mathrm{~m} / 200 \mathrm{~mm})$ (long-type detector)
20 $\mathrm{\mu in} / 8^{\prime \prime}$ ($0.5 \mu \mathrm{~m} / 200 \mathrm{~mm}$) (rotary-type detector, up/down direction) $28 \mu \mathrm{in} / 8^{\prime \prime}(0.7 \mu \mathrm{~m} / 200 \mathrm{~mm})$ (long-type detector, foward/backward direction)

α-axis

inclination angle:
Resolution:
Rotating speed:
-45° to $+10^{\circ}$
0.000225°
1 rpm
-axis (column) Vertical travel: Resolution:

20"(500mm)
$1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Reflective-type linear encoder Drive speed: $\quad 7.87 \mathrm{l} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})(\mathrm{CNC}$, max. $)$ 0-1.97"/s (0-50mm/s) (joystick)

Y-axis

Measuring range:
Resolution:
Measurement method: Reflective-type linear encoder
Drive speed: $\quad 7.87 \mathrm{l} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})(\mathrm{max} ., \mathrm{CNC})$ $0-1.97$ " $/ \mathrm{s}(0-50 \mathrm{~mm} / \mathrm{s})$ (joystick)
Measuring speed: $\quad .00078-.08 \mathrm{n} / \mathrm{s}(0.02-2 \mathrm{~mm} / \mathrm{s})$
Traverse linearity: $\quad 20 \mu \mathrm{in} / 2^{\prime \prime}(0.5 \mu \mathrm{~m} / 50 \mathrm{~mm}), 80 \mu \mathrm{in} / 32^{\prime \prime}$ $(2 \mu \mathrm{~m} / 800 \mathrm{~mm}) 28 \mu \mathrm{in} / 2^{\prime \prime}(0.7 \mu \mathrm{~m} / 50 \mathrm{~mm})$, $120 \mu \mathrm{in} / 32^{\prime \prime}(3 \mu \mathrm{~m} / 800 \mathrm{~mm})$ (long-type detector) $28 \mu \mathrm{in} / 2^{\prime \prime}(0.7 \mu \mathrm{~m} / 50 \mathrm{~mm})$, $120 \mu \mathrm{in} / 32$ " $(3 \mu \mathrm{~m} / 800 \mathrm{~mm})$ (rotary-type detector, up/down direction)

Base unit

Size (WxH): $\quad 23.6 \times 59.1^{\prime \prime}(600 \times 1500 \mathrm{~mm})$
Material: Loading capacity:
Detector
Range / resolution: $32000 \mu \mathrm{in} / .4 \mu \mathrm{in}, 3200 \mu \mathrm{in} / .04 \mu \mathrm{in}$,
$320 \mu \mathrm{in} / .004 \mu \mathrm{in}$
(up to 96,000 uin with an optional stylus) $\{800 \mu \mathrm{~m} / 0.01 \mu \mathrm{~m}, ~ 80 \mu \mathrm{~m} / 0.001 \mu \mathrm{~m}$, $8 \mu \mathrm{~m} / 0.0001 \mu \mathrm{~m}$ (up to $2400 \mu \mathrm{~m}$ with an optional stylus)\}
Detecting method: Skidless / skid measurement
Measuring force: $\quad 4 \mathrm{mN}$ or 0.75 mN (low-force type)
Stylus tip:
Diamond, $90^{\circ} / 5 \mu \mathrm{mR}$
($60 \% / 2 \mu \mathrm{mR}$: low-force type)
Skid radius of curvature: $1.57^{\prime \prime}$ (40 mm)
Detecting method: Differential inductance
Dimension (W x D xH): $42.7 \times 66.7 \times 75.7^{\prime \prime}$
($1085 \times 1695 \times 1922 \mathrm{~mm}$)
3527 lbs (1600 Kg)
(including vibration isolating unit) metrology software FORM

Software
 FORMTRACEPAK V5

Enables control of the optional motor-driven Y-axis table and rotary table for realizing efficient measurement automation. You can also perform contour evaluation that allows free analysis of level differences, angle, pitch, area and other characteristics based on surface roughness data. In addition, analysis results can be saved in the "html" "mhtml" or pdf format which allows Internet Explorer or MS-Word compatibility, allowing PC without layout editing programs to view analysis results.

Contour Measurement \& Surface Roughness Measurement Screen

Report Layout Screen

Surftest Extreme SV-M3000CNC

SERIES 178 - CNC Surface Measuring Instruments

FEATURES

- CNC Surface Roughness Tester covers measurement of large/heavy workpieces such as engine blocks, crankshafts, etc.
- In combination with the surface roughness detector rotating unit, S-3000AR (optional), it can perform continuous measurement over the bottom, top and side surfaces of a workpiece.
- Compatible with the optional large table for supporting a load of $220 \mathrm{lbs}(100 \mathrm{~kg})$ or a large $\theta 2$ table. Enables continuous automatic measurement of large-size workpieces.
- Suitable for automatic surface roughness measurement on large and heavy workpieces.
- Employs the column-moving type configuration that is not restricted by workpiece size. This is advantageous for measuring heavy workpieces, such as engine blocks, crankshafts, etc.
- Provides $31.5^{\prime \prime}(800 \mathrm{~mm})$ of Y -axis stroke. This makes it possible to measure multiple profiles on large workpieces.
- Load table has a self-contained structure to ensure that various size workpieces, jigs, auto-feed devices, etc., are easily accommodated and can be specified, if required, by special order.

SPECIFICATIONS

Model No.	SV-M3000CNC
Order No. (100V - 120V)	$178-549-1$
X1-axis measuring range	$8^{\prime \prime}(200 \mathrm{~mm})$
Z2-axis column travel range	$20^{\prime \prime}(500 \mathrm{~mm})$
Y-axis travel range	$32^{\prime \prime}(800 \mathrm{~mm})$
α-axis inclination angle	$-45^{\circ}(\mathrm{CCW}),+10^{\circ}(\mathrm{CW})$

Formtracer SV-C3200 / SV-C4500

SERIES 525 - Surface Roughness / Contour Measuring System

FEATURES

- Dramatically increased drive speed (X axis: 3.1 1/s ($80 \mathrm{~mm} / \mathrm{s}$), $\mathrm{Z2}$ axis column: $1.2^{\prime \prime} / \mathrm{s}(30 \mathrm{~mm} / \mathrm{s})$ further reduces total measurement time.
- In order to maintain the traverse linearity specification for an extended period of time, Mitutoyo has adopted highly rigid ceramic guides that combine the characteristics of smallest secular change and remarkable resistance to abrasion.
- The drive unit (X-axis) and column (Z2axis) are equipped with a high-accuracy linear encoder (ABS type on Z2-axis). This improves reproducibility of continuous automatic measurement of small holes in the vertical direction and repeated measurement of parts which are difficult to position.

Automatic Measurement

- A wide range of optional peripherals are available to support quick and easy CNC

Y-axis Table

Rotary Table $\theta 1$

Rotary Table $\theta 2$

Surface Roughness Measurement

- Traverse linearity: (2+1L) uin $(\pm(0.05+0.001 \mathrm{~L}) \mu \mathrm{m} *)$ Designed to handle workpieces calling for high accuracy.
*S4, H4, W4 types, L = Drive length inch (mm)
- Compliant with JIS '82/'94/'01, ISO, ANSI, DIN, VDA, and other international surface roughness standards.
- Equipped with a standard high accuracy detector ($0.75 \mathrm{mN} / 4 \mathrm{mN}$ measuring force) providing a resolution down to $0.004 \mu \mathrm{in}$ ($0.0001 \mu \mathrm{~m}$).

Contour Drive Measurement

- X axis accuracy: $\pm(31.5+10 \mathrm{~L}) \mu \mathrm{in}$ ($\left.\pm(0.8+0.01 \mathrm{~L}) \mathrm{um}^{*}\right)$
Z1-axis accuracy: $\pm(31.5+\mid 20 \mathrm{H})$ uin ($\pm(0.8+12 \mathrm{H} / 100) \mu \mathrm{m}$ *)
Designed to handle workpieces calling for high accuracy.
* SV-C4500S4, H4, W4 types, L = Drive length, $\mathrm{H}=$ Measurement height inch (mm)
- The contour drive unit of SV-C4500 series instruments can continuously measure in the upward and downward directions without the need to change the arm orientation or reset the workpiece, when combined with the double cone-end stylus (a new product with contact points in the upward and downward directions).

Technical Data: Common
Power supply:
$100-240 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Power consumption: 400 W (main unit only)

Technical Data: Contour Measurement

 X-axisMeasuring range: $\quad 4$ " (100 mm) or 8" (200 mm) Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Reflective-type linear encoder
Drive speed: $\quad 3.1 \mathrm{l} / \mathrm{s}(80 \mathrm{~mm} / \mathrm{s})$ and manual Measuring speed: $\quad .00078-.78 \mathrm{l} / \mathrm{s}(0.02-20 \mathrm{~mm} / \mathrm{s})^{*}$
*Recommended speed: under $5 \mathrm{~mm} / \mathrm{s}$
If using higher speed, stylus tip may be chipped and/or accuracy may be worse, depending on surface condition.

Measuring direction: Forward/backward
Traverse linearity: $\quad 32 \mu \mathrm{in} / 4 "(0.8 \mu \mathrm{~m} / 100 \mathrm{~mm})$
$79 \mu \mathrm{in} / 8^{\prime \prime}(2 \mu \mathrm{~m} / 200 \mathrm{~mm})$ *with the X axis in horizontal orientation
Linear displacement: $\pm(32+10 \mathrm{~L}) \mu \mathrm{in}(\pm 0.8+0.01 \mathrm{~L}) \mu \mathrm{m}$ (SV-C3200S4, H4, W4)
accuracy (at $\left.20^{\circ} \mathrm{C}\right) \quad \pm(32+10 \mathrm{~L}) \mu$ in $(\pm 0.8+0.01 \mathrm{~L}) \mu \mathrm{m}$ (SV-C4500S4, H4, W4) $\pm(32+20 \mathrm{~L}) \mu \mathrm{in}(\pm 0.8+0.02 \mathrm{~L}) \mu \mathrm{m}$ (SV-C3200S8, H8, W8) $\pm(32+20 \mathrm{~L}) \mu \mathrm{in}(\pm 0.8+0.02 \mathrm{~L}) \mu \mathrm{m}$ SV-C4500S8, H8, W8)
$* L=$ Drive length inch (mm)
Inclination range:
Z2-axis (column)
Vertical travel:
Resolution: $\quad 39.4 \mu \mathrm{in}(1 \mu \mathrm{~m})$ $\pm 45^{\circ}$

Drive speed:
$39.4 \mu \mathrm{in}(1 \mu \mathrm{~m})$
Drive speed:
Z1-axis (detector unit)
Measuring range: $\pm 1.2^{\prime \prime}(\pm 30 \mathrm{~mm})$
Resolution: $\quad 1.57 \mu \mathrm{in}(0.04 \mu \mathrm{~m})$ (SV-C3200 series), $.78 \mu \mathrm{in}(0.02 \mu \mathrm{~m})$ (SV-C4500 series)
Measurement method: Linear encoder (SV-C3200 series), Laser hologage (SV-C4500 series)
Linear displacement: $\pm(63+\mid 201 \mathrm{H}) \mu \mathrm{in}(\pm(1.4+\mid 2 \mathrm{H} / 100) \mu \mathrm{m})$ (SV-C3200 series)
accuracy (at $\left.20^{\circ} \mathrm{C}\right) \quad \pm(31.5+\mid 20 \mathrm{HI})$ uin
$(\pm(0.8+\mid 2 \mathrm{H} / 100) \mu \mathrm{m})$ (SV-C4500 series) *H: Measurement height from the horizontal position (mm)
Stylus up/down operation: Arc movement
Face of stylus: Upward/downward (SV-C3200)
Upward/downward (Direction switch by Formtracepak) (SV-C4500)
Measuring force:
30 mN (SV-C3200)
$10,20,30,40,50 \mathrm{mN}$ (SV-C4500) *As for SV-C4500, set the measurement force with

Traceable angle: Formtracepak.
Ascent: 77°, descent: 83°
(using the standard stylus provided and depending on the surface roughness)
Stylus tip Radius: $25 \mu \mathrm{~m}$, carbide tip

Technical Data: Surface Roughness Measurement	
Measuring range:	4" (100mm) or 8" (200mm)
Resolution:	1.97 uin (0.05 um)
Measurement method: Linear encoder	
Drive speed:	3.1 "/5 (80mm/s)
Traversing direction:	Backward
Traverse linearity:	(2+1L) uin (0.05+1/1/1000) $\mu \mathrm{m}$
	(S4, H4, W4 types)
	$20 \mu \mathrm{in} / 8$ " $0.5 \mu \mathrm{~m} / 200 \mathrm{~mm}$)
	(S8, H8, W8 types)
Z2-axis (column)	
Vertical travel:	12 l (300 mm) or 20 Cl (500 mm)
Resolution:	39.4 in (1 $\mu \mathrm{m}$)
Measurement method: ABSOLUTE linear encoder	
Drive speed: $\quad 0-1.21 / 5(0-30 \mathrm{~mm} / \mathrm{s})$ and manual	
Range / resolution:	$32000 \mu \mathrm{in} / .4 \mu \mathrm{in}, 3200 \mu \mathrm{in} / .04 \mu \mathrm{in}$, 320 uin $/ .004 \mu \mathrm{in}$
	(up to 96000 нin with an optional
	stylus)
	$\{800 \mu \mathrm{~m} / 0.01 \mu \mathrm{~m}, 80 \mu \mathrm{~m} / 0.001 \mu \mathrm{~m}$,
	$8 \mu \mathrm{~m} / 0.0001 \mu \mathrm{~m}$ (up to $2400 \mu \mathrm{~m}$ with
	an optional stylus)\}
Detecting method:	Skidless / skid measurement
Measuring force:	0.75 mN (low force type)
Stylus tip:	Diamond
	60\%\% 2 mR ((low force type)
Skid radius of curvature: 1.57 " (40mm)	
Detecting method:	Differential inductance

Technical Data: Surface Roughness Measurement X1-axis

Measuring range: - $\quad 4^{n}(100 \mathrm{~mm}$ or 8 (200mm)
Measurement method Lineat

Mrive speed:	$3.1 \mathrm{l} / \mathrm{s}(80 \mathrm{~mm} / \mathrm{s})$

Traversing direction: Backward
(54 , H4 W4 types)
$20 \mu \mathrm{in} / 8^{\prime \prime}(0.5 \mu \mathrm{~m} / 200 \mathrm{~mm})$
(S8, H8, W8 types)
Z2-axis (column)
Vertical travel: $\quad 12$ " $(300 \mathrm{~mm})$ or $20 "(500 \mathrm{~mm})$
Resolution: $\quad 39.4 \mu \mathrm{in}(1 \mu \mathrm{~m})$
dive AbSLUT Inear encoder
Detector $32.2 \mathrm{ks}(0-30 \mathrm{~ms})$ and ma
Range / resolution: $\quad 32000 \mu \mathrm{in} / .4 \mu \mathrm{in}, 3200 \mu \mathrm{in} / .04 \mu \mathrm{in}$,
$320 \mu \mathrm{in} / .004 \mu \mathrm{in}$
(up to $96000 \mu \mathrm{in}$ with an optional
$\{800 \mu \mathrm{~m} / 0.01 \mu \mathrm{~m}, 80 \mu \mathrm{~m} / 0.001 \mu \mathrm{~m}$, $8 \mu \mathrm{~m} / 0.0001 \mu \mathrm{~m}$ (up to $2400 \mu \mathrm{~m}$ with an optional stylus)\}
Detecting method: Skidless / skid measurement
Measuring force: $\quad 0.75 \mathrm{mN}$ (low force type)
60\%/2umR (low force type)
Detecting method: Differential inductance

Formtracer SV-C3200 / SV-C4500

SERIES 525 - Surface Roughness / Contour Measuring System

SPECIFICATIONS

Model No.	SV-C320054	SV-C3200H4	SV-C3200W4	SV-C3200L4
Order No. (inch)	525-491-11A	525-492-11A	525-493-11A	525-494-11A
Model No.	SV-C450054	SV-C4500H4	SV-C4500W4	SV-C4500L4
Order No. (inch)	525-451-11A	525-452-11A	525-453-11A	525-454-11A
X1-axis measuring range	4" (100mm)	4" (100mm)	4" (100mm)	4" (100mm)
Measuring force of detector	0.75 mN	0.75 mN	0.75 mN	0.75 mN
Vertical travel	12" (300mm) power column	20 " (500mm) power column	20 " (500mm) power column	27.6 " (700mm) power column
Granite base size (WxD)	23.6×17.7 " ($600 \times 450 \mathrm{~mm}$)	23.6×17.7 " ($600 \times 450 \mathrm{~mm}$)	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)
Dimensions (main unit, WxDxH)	$\begin{gathered} 39.2 \times 22.6 \times 38.011 \\ (996 \times 575 \times 966 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 39.2 \times 22.6 \times 46.3^{\prime \prime} \\ (996 \times 575 \times 1176 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 55.4 \times 22.6 \times 46.3^{\prime \prime} \\ (1396 \times 575 \times 1176 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 55.4 \times 22.6 \times 56.1^{\prime \prime} \\ (1396 \times 575 \times 1426 \mathrm{~mm}) \\ \hline \end{gathered}$
Mass (main unit)	308 lbs (140kg)	330 lbs (150kg)	485 lbs (220kg)	595 lbs (270kg)
Model No.	SV-C320058	SV-C3200H8	SV-C3200W8	SV-C3200WL8
Order No. (inch)	525-496-11A	525-497-11A	525-498-11A	525-499-11A
Model No.	SV-C450058	SV-C4500H8	SV-C4500W8	SV-C4500L8
Order No. (inch)	525-456-11A	525-457-11A	525-458-11A	525-459-11A
X1-axis measuring range	8" (200mm)	8" (200mm)	8" (200mm)	4" (100mm)
Measuring force of detector	0.75 mN	0.75 mN	0.75 mN	0.75 mN
Vertical travel	12" (300mm) power column	20 " (500mm) power column	20 " (500mm) power column	27.6 " (700mm) power column
Granite base size (WxD)	23.6×17.7 " ($600 \times 450 \mathrm{~mm}$)	23.6×17.7 " ($600 \times 450 \mathrm{~mm}$)	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)	39.4×17.7 " (1000 $\times 450 \mathrm{~mm}$)
Dimensions (main unit, WxDxH)	$\begin{gathered} 39.6 \times 22.6 \times 38.0 " \\ (1006 \times 575 \times 966 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 39.6 \times 22.6 \times 46.3 " \\ (1006 \times 575 \times 1176 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 55.4 \times 22.6 \times 46.3 " \\ (1406 \times 575 \times 1176 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 55.4 \times 22.6 \times 56.1^{\prime \prime} \\ (1396 \times 575 \times 1426 \mathrm{~mm}) \\ \hline \end{gathered}$
Mass (main unit)	308 lbs (140kg)	$330 \mathrm{lbs}(150 \mathrm{~kg})$	485 lbs (220kg)	595 lbs (270kg)

MiCAT

the standard in world metrology software
FORm

Software

FORMTRACEPAK V5

Enables control of the optional motor-driven Y-axis table and rotary table for realizing efficient measurement automation. You can also perform contour evaluation that allows free analysis of level differences, angle, pitch, area and other characteristics based on surface roughness data. In addition, analysis results can be saved in the "html", "mhtml" or pdf format which allows Internet Explorer or MS-Word compatibility, allowing PC without layout editing programs to view analysis results.

Optional Accessories

A wide range of peripherals are available to support various challenging measurement needs.

Y-axis Table
178-097 for multiple workpiece measurement
178-096 for 3D measurement *Not a measuring axis, only for positioning
(See page J-25 for more accessories.)

178-071 (S-3000)
Standard Detector Holder

178-074 (S-3000C)
Crank Type Detector Holder

3D-Auto Leveling Table 178-077
*Used together with 178-096

178-091 (S-3000CR)
Crank Rotary Type Detector Holder

178-092 (S-3000MR) Manual Rotary Type Detector Holder

Formtracer Extreme SV-C4500CNC

SERIES 525 - Surface Roughness/Form Measuring Instrument

- High-accuracy CNC surface roughness/ form measuring instrument allows both measurement of surface roughness and form/contour with one unit.
- Each axes has the maximum drive speed of 7.87 "/s ($200 \mathrm{~mm} / \mathrm{s}$), which permits highspeed positioning that may result in a large increase in the throughput of multiple-profile/multiple-workpiece measurement tasks.
- For models with the α axis, it is possible to perform continuous measurement over horizontal and inclined surfaces by powertilting the detector unit.
- For models with the Y-axis table, it is possible to expand the measuring range for multiple workpieces, etc., through positioning in the Y-axis direction.
- When combined with the double cone-end stylus (a new product with diametrically opposed contact points), the instrument can continuously measure in the upward and downward directions without the need to change the arm orientation or reset the workpiece fixturing.
- The measuring force can be switched among five levels (upward and downward) from the data-processing program (Formtracepak).
- Enables inclined plane measurements through 2-axis simultaneous control in the X - and Y-axis directions.
- When the detector for form/contour measurement is replaced with that for surface roughness measurement, or vice versa, it is a simple, one-touch replacement without re-routing of the connecting cables.
- Since the Z1-axis detector incorporates an anti-collision safety device, the detector unit will automatically stop even if its main body collides with a workpiece or fixture.
- Supplied with an easy-to-operate Remote Box. The user can make any movement by selecting the required axis using the two joysticks. The current axis selection is easily identified by the icon on the key top.
- Communication with the Data Processing/ Analysis section is via USB.

Technical Data: Common

Base size (W xH):	31×39.4 " 800×1000
	34×47.2 " (800 x 1200mm) Type H
Base material:	Granite
Mass:	529 lbs (240kg) Type S
	551 lbs (250kg) Type H
Power supply:	$100-120 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Power consumption:	500W (main unit only)

Technical Data: Contour Measurement
X1-axis
Measuring range: 8" (200mm)
Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Reflective-type linear encoder
Drive speed: $\quad 7.87 \mathrm{H} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})($ max., CNC)
$0-2$ " $/ \mathrm{s}(0-50 \mathrm{~mm} / \mathrm{s}$) (joystick)
Measuring speed: $.00078-.08 \mathrm{n} / \mathrm{s}(0.02-2 \mathrm{~mm} / \mathrm{s})$
Measuring direction: Forward / Backward
Traverse linearity: $\quad 80 \mu \mathrm{in} / 8 "(2 \mu \mathrm{~m} / 200 \mathrm{~mm})$
*with the X axis in horizontal orientation
Linear displacement accuracy (at $20^{\circ} \mathrm{C}$):
$\pm(0.8+4 \mathrm{~L} / 200) \mathrm{mm})$

* $\mathrm{L}=$ Drive length (mm)
α-axis* Depends on Code \#
Inclination angle: $\quad-45^{\circ}$ to $+10^{\circ}$
Resolution: $\quad 0.000225^{\circ}$
Rotating speed: 1 rpm
Z2-axis (column)
Vertical travel: $\quad 12^{\prime \prime}$ or $20^{\prime \prime}(300 \mathrm{~mm}$ or 500 mm$)$
Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Reflective-type linear encoder
Drive speed:
$7.87 \mathrm{H} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})(\mathrm{max} ., \mathrm{CNC})$
$0-2.1 / \mathrm{s}(0-50 \mathrm{~mm} / \mathrm{s})$ (joystick)
Z1-axis (detector unit)
Measuring range: $\pm 1.2^{\prime \prime}(\pm 30 \mathrm{~mm})$
Resolution: $\quad .787 \mu \mathrm{in}(0.02 \mu \mathrm{~m})$
Measurement method: Reflective Type detector unit
Linear displacement:
Accuracy $\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right) \quad \pm(32+110 \mathrm{H}) \mu \mathrm{in}(\pm(0.8+12 \mathrm{H} / 100) \mu \mathrm{m})$
* H : Measurement height from the
horizontal position (mm) w/o α-axis: $\pm(1.5+10 \mathrm{Hl} / 1000) \mathrm{\mu m}$
Stylus up/down operation: Arc movement
Face of stylus: Downward
Measuring force: $\quad 10,20,30,40,50 \mathrm{mN}$
Traceable angle: Ascent: 70°, descent: 70° (using the standard stylus provided and

Stylus tip Radius: $25 \mu \mathrm{~m}$, carbide tip

[^1]
Y-axis table unit**

Measuring range: $\quad 8^{\prime \prime}(200 \mathrm{~mm})$
Minimum reading : $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Scale unit: Reflective-type linear encoder 200mm/s (max., CNC) 0-2" $/ \mathrm{s}(0-50 \mathrm{~mm} / \mathrm{s}$) (joystick)
Maximum loading capacity: 44 lbs (20kg)
Traverse linearity $\quad 20 \mu \mathrm{in} / 8^{\prime \prime}(0.5 \mu \mathrm{~m} / 200 \mathrm{~mm})$ Surface roughness $80 \mu \mathrm{in} / 8^{\prime \prime}(2 \mu \mathrm{~m} / 200 \mathrm{~mm})$ contour
Linear displacement accuracy (at $20^{\circ} \mathrm{C}$):
$\pm(80+20 \mathrm{~L}) \mu \mathrm{in}\{ \pm(2+2 \mathrm{~L} / 100) \mu \mathrm{m}\}$
contour mode
L: Dimension between two measured points (mm)
Table size: $\quad 7.8 \times 7.8^{\prime \prime}(200 \times 200 \mathrm{~mm})$
Dimensions (W x D x H): $2.6 \times 25.4 \times 4.1^{\prime \prime}$
($320 \times 646 \times 105 \mathrm{~mm}$)
Mass:
77 lbs (35kg)
**Y-axis table included only as a factory installed option.

Optional Accessories
 Machine vibration stand: 12AAE032

Vibration isolation mechanism: Diaphragm air spring
Natural frequency: $\quad 2.5-3.5 \mathrm{~Hz}$
Damping mechanism: Orifice
Leveling mechanism: Automatic control with mechanical valves
Air supply pressure: 0.4 Mpa
Allowable loading capacity: 772 lbs (350 kg)
Dimensions (W x D x H): $39.4 \times 35.2 \times 28.1^{\prime \prime}$
($1000 \times 895 \times 715 \mathrm{~mm}$)
Mass:
617 lbs (280kg)

MiCAT
 the standard in world metrology software
 FORT

Software

FORMTRACEPAK V5

Enables control of the optional motor-driven Y-axis table and rotary table for realizing efficient measurement automation. You can also perform contour evaluation that allows free analysis of level differences, angle, pitch, area and other characteristics based on surface roughness data. In addition, analysis results can be saved in the "html", "mhtml" or pdf format which allows Internet Explorer or MS-Word compatibility, allowing PC without layout editing programs to view analysis results.

Formtracer Extreme SV-C4500CNC

SERIES 525 — Surface Roughness/Form Measuring Instrument

SPECIFICATIONS

Model No.	SV-C4500S CNC	SV-C4500H CNC
Order No. (100V-120V)	$525-674-1$	$525-694-1 \mathrm{~A}$
X1-axis measuring range	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$
Z2-axis vertical travel	$12^{\prime \prime}(300 \mathrm{~mm})$	$20 "(500 \mathrm{~mm})$
Y-axis table unit	Installed	Installed
α-axis unit	Installed	Installed
Granite base size (WxD)	$29.5 \times 23.6^{\prime \prime}(750 \times 600 \mathrm{~mm})$	$29.5 \times 23.6 "(750 \times 600 \mathrm{~mm})$
Dimensions (main unit, WxDxH)	$31.5 \times 24.4 \times 39.4 "(800 \times 620 \times 1000 \mathrm{~mm})$	$31.5 \times 24.4 \times 47.2^{"}(800 \times 620 \times 1200 \mathrm{~mm})$
Mass (main unit)	$529 \mathrm{lbs}(240 \mathrm{~kg})$	$551 \mathrm{lbs}(250 \mathrm{~kg})$

DIMENSIONS

Unit: mm

Detector Stand

Formtracer CS-3200

SERIES 525 - Form Measuring Instruments

FEATURES

- Highest measurement accuracy in its class. X axis: $\pm(1+0.01 \mathrm{~L}) \mu \mathrm{m}$ $Z 1$ axis: $\pm(1.5+\mid 2 \mathrm{H} / 100) \mu \mathrm{m}$
- To detect surface roughness and contour in a single measurement the $\mathrm{Z1}$-axis detector unit of CS-3200S4 has a wide measuring range and high resolution of $5 \mathrm{~mm} / 0.08 \mu \mathrm{~m}$ to $0.05 \mathrm{~mm} / 0.0008 \mu \mathrm{~m}$.

- In order to maintain the traverse linearity specification for an extended period of time, Mitutoyo has adopted highly rigid ceramic guides that combine the characteristics of smallest secular change and remarkable resistance to abrasion.
- Drastically increased drive speed further reduces total measurement time.
X axis: $80 \mathrm{~mm} / \mathrm{s}, \mathrm{Z2}$ axis: $20 \mathrm{~mm} / \mathrm{s}$
- To enhance safety during fast traverse, the Z-axis detector unit incorporates a safety device (Automatic Stop-On-Collision Mechanism).
- The detector unit can be extended to avoid interference between the drive unit and workpiece. The measuring range is shifted to the left by $2.76^{\prime \prime}(70 \mathrm{~mm})$.

- Incorporation of an ABS scale in the Z2 axis eliminates the need for origin point re-setting conventionally required for every step of repeated measurements over step or multiple sections.
- Small holes and inclined planes can be efficiently measured using the inclined X-axis drive unit and fine-feed handles on the X and ZZ axes.
- All detector and drive unit cables are housed inside the main unit to eliminate any risk of abrasion and guarantee troublefree, high-speed operation.
- Orientation of the drive unit can be inclined by $\pm 45^{\circ}$. This allows CS-3200 to measure an inclined surface quickly.

Technical Data: Contour Measurement

> X1-axis
> Measuring range: $\quad 4 "(100 \mathrm{~mm})$
> Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
> Measurement method: Reflective-type linear encoder
> Drive speed: $\quad 0-3.11 / 5(0-80 \mathrm{~mm} / \mathrm{s})$ and manual
> Measuring speed: $\quad .00078-.00787 / / 5$
> ($0.02-0.2 \mathrm{~mm} / \mathrm{s}$) (surface roughness)
> $0.00078-0.07871 / \mathrm{s}(0.02-2 \mathrm{~mm} / \mathrm{s})$ (contour)
> Measuring direction: Forward / Backward
> Traverse linearity: $\quad 8 \mu \mathrm{in} / 4^{\prime \prime}\left(16 \mu \mathrm{in} / 4^{\prime \prime}\right)$
> $[0.2 \mu \mathrm{~m} / 100 \mathrm{~mm}(0.4 \mu \mathrm{~m} / 100 \mathrm{~mm})]$
> (): at the protruded detector position
> *with the X axis in horizontal orientation
> Linear displacement accuracy (at $20^{\circ} \mathrm{C}$):
> $\pm(32+10 \mathrm{~L}) \mathrm{uin}\{ \pm(0.8+0.01 \mathrm{~L}) \mathrm{um}\}$
> * $L=$ Drive length (mm)
> Inclination range:
> $\pm 45^{\circ}$
> Z2-axis (column)
> Vertical travel: $\quad 12 "(300 \mathrm{~mm})$
> Resolution: $\quad 39.4 \mathrm{in}(1 \mathrm{\mu m})$
> Measurement method: ABSOLUTE linear encoder Drive speed: $\quad 0-.781 / \mathrm{s}(0-20 \mathrm{~mm} / \mathrm{s})$ and manual
> Z1-axis (detector unit)
> Measuring range / resolution: $3 \mu \mathrm{in} / .2$ " , $3 \mu \mathrm{in} / .02$ ",
> .03uin/.002"
> ($0.08 \mu \mathrm{~m} / 5 \mathrm{~mm}, 0.008 \mu \mathrm{~m} / 0.5 \mathrm{~mm}, 0.0008 \mu \mathrm{~m} / 0.05 \mathrm{~mm}$)
> Measurement method: Differential inductance method
> Linear displacement: $\pm(60+20 \mathrm{H}) \mathrm{uin} \pm(1.5+2 \mathrm{H} / 100) \mathrm{um}$
> Accuracy (at $20^{\circ} \mathrm{C}$) *H: Measurement height from the horizontal position (mm)
> Stylus up/down operation: Arc movement
> Face of stylus: Downward
> Measuring force: $\quad 0.75 \mathrm{mN}$
> Traceable angle: Ascent: 65°, descent: 65° (using the standard stylus provided and depending on the surface roughness)
> Stylus tip
> Base size ($\mathrm{W} \times \mathrm{H}$):
> Base material:
> Mass:
> Power supply: Radius: $2 \mu \mathrm{~m}$, diamond $23.6 \times 17.7^{\prime \prime}(600 \times 450 \mathrm{~mm})$ Granite
> $309 \mathrm{lbs}(140 \mathrm{~kg})$ (main unit)
> $100-240 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
> 400W (main unit only)

Protrusion of Detector Position Normal detector position

Unit: mm

When detector is maximally extended
(Extended by 70 mm from normal position)

MiCAT

the standard in world metrology software
FORM

Software

FORMTRACEPAK6000

Enables control of the optional motor-driven Y-axis table and rotary table for realizing efficient measurement automation. You can also perform contour evaluation that allows free analysis of level differences, angle, pitch, area and other characteristics based on surface roughness data. In addition, you can create an original inspection certificate by setting the print format to suit your particular requirements.

Design data creation (CAD file import)

Main Unit Startup System

Formtracer CS-3200

SERIES 525 - Form Measuring Instruments

SPECIFICATIONS

Model No.	CS-3200S4
Order No. (inch)	$525-411 \mathrm{~A}$
X1-axis measuring range	$4^{\prime \prime}(100 \mathrm{~mm})$
Z2-axis vertical travel	$12^{\prime \prime}(300 \mathrm{~mm})$

Stylus

(Unit: inch (mm))
Standard stylus: No. 12AAD554

Tip radius:	$2 \mu \mathrm{~m}$
Tip angle:	60° cone
Tip material:	Diamond

For contour/surface roughness measurement Measurable depth: $\quad .28^{\prime \prime}(7 \mathrm{~mm})$ max.

Cone stylus: No. 12AAD552

Tip radius:	$25 \mu \mathrm{~m}$
Tip angle:	30° cone
Tip material:	Sapphire

Deep Groove stylus: No. 12AAD560

Tip radius:	$2 \mu \mathrm{~m}$
Tip angle:	60° cone
Tip material:	Diamond

Eccentric stylus: No. 12AAD558

Tip radius:	$2 \mu \mathrm{~m}$
Tip angle:	60° cone
Tip material:	Diamond

For contour/surface roughness measurement Measurable offset length:

60" (15mm)

For contour measurement
Measurable depth: $.28^{\prime \prime}(7 \mathrm{~mm})$ max.

Small hole stylus: No. 12AAD556

Tip radius:	$2 \mu \mathrm{~m}$
Tip angle:	60° cone
Tip material:	Diamond

For contour/surface roughness measurement Measurable depth:
.79" (20mm) max.
$2 x$-long stylus: No. 12AAD562

Tip radius:	$5 \mu \mathrm{~m}$
Tip angle:	40° cone
Tip material:	Diamond

For contour/surface roughness measurement Measurable depth: $\quad 39$ " $(10 \mathrm{~mm})$ max.

For contour/surface roughness measurement Applicable hole: $\quad \varnothing .08$ " (ø2mm) min.

Measuring lens

Measuring ball screw

Measuring bearing ring

Formtracer Extreme CS-5000CNC / CS-H5000CNC

SERIES 525 - CNC Form Measuring Instruments

Wide range detector employing active control technology

FEATURES

- High-accuracy stylus-type CNC surface measuring instrument allows simultaneous measurement of surface roughness and form/contour.
-The X1 axis has a maximum drive speed of 1.57 " $/ \mathrm{s}(40 \mathrm{~mm} / \mathrm{s}$) and $\mathrm{Z2}$ axis has a maximum drive speed of 7.87 " $/ \mathrm{s}(200 \mathrm{~mm} /$ s). This permits high-speed positioning that may result in a large increase in the throughput of multiple-profile / multipleworkpiece measurement tasks.
- A Mitutoyo Laser Holoscale is incorporated in the X 1 axis and $\mathrm{Z1}$ axis so that high resolution (X 1 axis: 6.25 nm , $\mathrm{Z1}$ axis: $4 \mathrm{~nm} / 8 \mathrm{~nm}$) is achieved and batch measurement of form / contour and surface roughness can be made.
- The active control method is employed for the Z1-axis detector to implement a widerange measurement capability wherein the variation in dynamic measuring force is restricted.
- Since the Z1-axis detector incorporates an anti-collision safety device, the detector unit will automatically stop even if its main body collides with a workpiece or fixture.
- For models with the α-axis, it is possible to perform continuous measurement over horizontal and inclined surfaces by powertilting the X 1 axis.
- For models with the Y-axis table, it is possible to expand the measuring range for multiple workpieces, etc., through positioning in the Y-axis direction.
- Supplied with the easy-to-operate Remote Box, the user can make any movement by selecting the required axis using the two joysticks. The current axis selection is easily identified by the icon on the key top.
- Uses USB for communicating with the Data Processing / Analysis Unit (optional).

Technical Data:

X1 axis
$\begin{array}{ll}\text { Measuring range: } & 8^{\prime \prime}(200 \mathrm{~mm}) \\ \text { Resolution: } & 0.25 \mu \mathrm{in}(0.00625 \mu \mathrm{~m})\end{array}$
Measurement method: Laser Holoscale
Drive speed: Max. 1.57 " $/ \mathrm{s}(40 \mathrm{~mm} / \mathrm{s})$ (in CNC mode) $0-1.57$ " $/ \mathrm{s}(0-40 \mathrm{~mm} / \mathrm{s})$
(in joystick control mode)
Measuring speed: $.0008-.008^{\prime \prime} / \mathrm{s}(0.02-0.2 \mathrm{~mm} / \mathrm{s})$
(surface roughness)
. $0008-.08$ " $/ \mathrm{s}(0.02-2 \mathrm{~mm} / \mathrm{s}$)
(form/contour)
Measuring direction: Forward / Backward
Traverse linearity: $\quad(4+1.5 \mathrm{~L}) \mu \mathrm{in}\{(0.1+0.0015 \mathrm{~L}) \mu \mathrm{m}\}$
with standard stylus
$(8+1.5 \mathrm{~L}) \mu \mathrm{in}\{(0.2+0.0015 \mathrm{~L}) \mu \mathrm{m}\}$ with 2 X -long stylus
*Traverse linearity: $\quad(2+3 L) \mu$ in $\{(0.05+0.0003 L)\} u m$ with standard stylus
$(4+1.5 L) \mu$ in $\{(0.1+0.0015 L)\} \mu m$ with 2X-long stylus
Linear displacement accuracy $\pm\left(20^{\circ} \mathrm{C}\right): \pm(12+2 \mathrm{~L}) \mu \mathrm{in}$
$\{ \pm(0.3+0.002 \mathrm{~L}) \mu \mathrm{m}\}$
*Linear displacement accuracy $\pm\left(20^{\circ} \mathrm{C}\right): \pm(2.8+6.3+\mathrm{L}) \mu \mathrm{in}$ $\{ \pm(0.16+0.001 \mathrm{~L}) \mu \mathrm{m}\}$
$\mathrm{L}=$ Measured length inch (mm)
Z1 axis
Measuring range: $\quad .47^{\prime \prime}(12 \mathrm{~mm})$ (with standard stylus) Resolution: $\quad .16 \mu \mathrm{in}(0.004 \mu \mathrm{~m})$ (with standard stylus) $.32 \mu \mathrm{in}(0.008 \mu \mathrm{~m})$ (with 2X-long stylus)
*Resolution: $\quad .03 \mu \mathrm{in}(0.0008 \mu \mathrm{~m})$ (with standard stylus) $.06 \mu$ in $(0.0016 \mu \mathrm{~m})$ (with 2X-long stylus)
Stylus up/down: Arc movement
Measurement method: Transmission-type laser linear encoder
Linear displacement accuracy $\left(20^{\circ} \mathrm{C}\right)$: $\pm(12+120 \mathrm{H})$ uin
$\{ \pm(0.3+10.02 \mathrm{HI}) \mu \mathrm{m}\}$
*Linear displacement accuracy $\left(20^{\circ} \mathrm{C}\right): \pm(2.8+120 \mathrm{H}) \mu \mathrm{in}$ $\{ \pm(0.07+10.02 \mathrm{HI}) \mu \mathrm{m}\}$
Measuring force: $\quad 4 \mathrm{mN}$ (with standard stylus) $\quad \begin{gathered}\mathrm{H}=\text { Measured height inch (} \mathrm{mm} \text {) }\end{gathered}$

Traceable angle:
Stylus tip:
(ball stylus)
Face of stylus:
Z2 axis (column unit)
Measuring range: $\quad 12 "(300 \mathrm{~mm})$ (20" (500 mm) high column type) Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Reflective-type linear encoder
Drive speed: \quad Max. 7.87 " $/ \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})$ (in CNC mode)
$0-1.97$ " $/ \mathrm{s}(0-50 \mathrm{~mm} / \mathrm{s})$
(in joystick control mode)
Base size (W x D): $\quad 29.5 \times 23.6^{\prime \prime}(750 \times 600 \mathrm{~mm})$
Base material: Granite
Dimension (W x D x H): $31.5 \times 24.439 .4^{\prime \prime}(800 \times 620 \times 1000 \mathrm{~mm})$
$31.5 \times 24.4 \times 47.2^{\prime \prime}$
($800 \times 620 \times 1200 \mathrm{~mm}$: high column type)
Mass: $\quad 529 \mathrm{lbs}(240 \mathrm{~kg}) 551 \mathrm{lbs}(250 \mathrm{~kg})$: high column type))
*CS-H5000CNC model in red.
the standard in world metrology software

FORm

Software

FORMTRACEPAK V5

Enables control of the optional motor-driven Y-axis table and rotary table for realizing efficient measurement automation. You can also perform contour evaluation that allows free analysis of level differences, angle, pitch, area and other characteristics based on surface roughness data. In addition, analysis results can be saved in the "html", "mhtml" or pdf format which allows Internet Explorer or MS-Word compatibility, allowing PC without layout editing programs to view analysis results.

ASLPAK (optional software)

Aspherical lens analysis program recommended to be used with CS-H5000CNC and CS-5000CNC models. To make full use of software functions, optional accessories such as y-axis table, 3DALT and theta $\theta-1$ table are required. The functions can be restricted without the optional accessories.

Formtracer Extreme CS-5000CNC / CS-H5000CNC

SERIES 525 - CNC Form Measuring Instruments

SPECIFICATIONS

Model No.	CS-5000CNC	CS-5000CNC	CS-5000CNC	CS-5000CNC
Order No. (100V-120V)	$525-736 \mathrm{~A}$	$525-737 \mathrm{~A}$	$525-738 \mathrm{~A}$	$525-739 \mathrm{~A}$
X1-axis measuring range	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$
Z2-axis vertical travel	$12^{\prime \prime}(300 \mathrm{~mm})$	$12^{\prime \prime}(300 \mathrm{~mm})$	$12^{\prime \prime}(300 \mathrm{~mm})$	$12^{\prime \prime}(300 \mathrm{~mm})$
Y-axis table unit	-	-	Installed	Installed
α-axis unit	-	Installed	-	Installed

Model No.	CS-5000CNC	CS-5000CNC	CS-5000CNC	CS-5000CNC
Order No. (100V - 120V)	$525-756 \mathrm{~A}$	$525-757 \mathrm{~A}$	$525-758 \mathrm{~A}$	$\mathbf{5 2 5 - 7 5 9 \mathrm { A }}$
X1-axis measuring range	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$
Z2-axis vertical travel	$20^{\prime \prime}(500 \mathrm{~mm})$	$20^{\prime \prime}(500 \mathrm{~mm})$	$20^{\prime \prime}(500 \mathrm{~mm})$	$20^{\prime \prime}(500 \mathrm{~mm})$
Y-axis table unit	-	-	Installed	Installed
α-axis unit	-	Installed	-	Installed

Model No.	CS-H5000CNC	CS-H5000CNC
Order No. (100V-120V)	$525-786 \mathrm{~A}$	$525-787 \mathrm{~A}$
X1-axis measuring range	$8^{\prime \prime}(200 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$
Z2-axis vertical travel	$12^{\prime \prime}(300 \mathrm{~mm})$	$12^{\prime \prime}(300 \mathrm{~mm})$
Y-axis table unit	-	Installed

Stylus

12AAD543**: Standard-length stylus (tip radius: $5 \mu \mathrm{~m}$)
12AAJ037*2: For CS-H5000CNC (tip radius: $5 \mu \mathrm{~m}$)
Tip material: Diamond

12AAD544*1*2: Standard-length ball stylus (tip radius: $5 \mu \mathrm{~m}$)
Tip material: Sapphire

12AAD545*1: Double-length stylus (tip radius: $5 \mu \mathrm{~m}$)
12AAJ039*2: For CS-H5000CNC (tip radius: $5 \mu \mathrm{~m}$) Tip material: Diamond

12AAD546*1*2: Double-length ball stylus
Tip material: Sapphire

*1: Standard accessory of CS-5000CNC
*2: Standard accessory of CS-H5000CNC

12AAD651: Standard-length stylus for small hole
Tip radius: 5 $\mu \mathrm{m}$
Tip material: Diamond

12AAD652: Standard-length stylus for extra-small hole
Tip radius: 5 um Tip material: Diamond

12AAD653: Standard-length eccentric stylus
Tip radius: $5 \mu \mathrm{~m}$
Tip material: Diamond

12AAJ041*2: Double-length stylus (tip radius: $2 \mu \mathrm{~m}$)

Optional Styli for Surface Roughness Measurement

Compatible with SJ-410, SJ-500, SV-2100, SV-3100, SV-3000CNC, SV-M3000CNC, SV-C3200, SV-C4500 Series

Detector (0.75 mN): 178-396-2 Detector (4mN): 178-397-2

Extension rods
(12AAG202: 50mm, 12AAG203: 100 mm)

Optional Styli for Surface Roughness Measurement

Compatible with SJ-410, SJ-500, SV-2100, SV-3200, SV-3000CNC, SV-M3000CNC, SV-C3200, SV-C4500 Series

Optional Accessories for Automatic Measurement

Compatible with SV-3200, SV-C3200, SV-C4500, CS-3200 and CNC Models

Y-axis table*: 178-097

A Y-axis table for both positioning and capable of 3D surface roughness measurement when used withoptional software FTPK-PRO or MCubeMap.** *Not supporting Y -axis measurements. ** Only for 178-096

	$178-097$	$178-096$
Travel range	$8^{\prime \prime}(200 \mathrm{~mm})$	$4^{\prime \prime}(100 \mathrm{~mm})$
Resolution	$1.97 \mu \mathrm{\mu in}(0.05 \mu \mathrm{~m})$	$1.97 \mu \mathrm{\mu n}(0.05 \mathrm{\mu m})$
Positioning accuracy	$\pm 3 \mu \mathrm{~m}$	$\pm 1 \mu \mathrm{~m}$
Drive speed	Max. $3.15^{\prime \prime} / \mathrm{s}(80 \mathrm{~mm} / \mathrm{s})$	Max. $.78^{\prime \prime} / \mathrm{s}(20 \mathrm{~mm} / \mathrm{s})$
Maximum load	$110 \mathrm{lbs}(50 \mathrm{~kg})$	$33 \mathrm{lbs}(50 \mathrm{~kg})$
Mass	$62 \mathrm{lbs}(28 \mathrm{~kg})$	$68 \mathrm{lbs}(31 \mathrm{~kg})$

$\theta 2$-axis table: 178-078*

You can measure multiple points on a cylindrical workpiece and automate front/rear-side measurement.

* $\theta 2$-axis mounting plate (12AAE718) is required when directly installing on the base of the SV-3100.

Displacement	360°
Resolution	0.0072°
Maximum load	$8.8 \mathrm{lbs}(4 \mathrm{~kg})$
(loading moment)	$(343 \mathrm{~N} \cdot \mathrm{~cm}$ or less)
Rotational speed	Max. $18^{\circ} / \mathrm{s}$
Mass	$11 \mathrm{lbs}(5 \mathrm{~kg})$

Quick chuck: 211-032

This chuck is useful when measuring small workpieces. You can easily clamp them with its knurled ring.

Retention range	Inner latch	$0 \mathrm{OD}: 6.04-1.42^{\prime \prime}(1-36 \mathrm{~mm})$
	Inner latch	ID: $\varnothing .55-2.6^{\prime \prime}(14-70 \mathrm{~mm})$
Outer latch	$00: 6.04-2.95^{\prime \prime}(1-75 \mathrm{~mm})$	
Dimensions	$\varnothing 4.65 \times 1.61^{\prime \prime}(118 \times 41 \mathrm{~mm})$	
Mass		$2.61 \mathrm{lbs}(1.2 \mathrm{~kg})$

ө1-axis table: 12AAD975*

For efficient measurement in the axial/transverse directions. When measuring a cylindrical workpiece, automatic alignment can be performed in combination with the Y-axis table.

* $\theta 1$-axis mounting plate (12AAE630) is required when directly

Auto-leveling table: 178-087
This is a stage that performs fully automatic leveling as measurement starts, freeing the user from this troublesome operation. Fully automatic leveling can be done quickly by anyone. In addition, the operation is easy and reliable.

Micro-chuck: 211-031

This chuck is suitable for clamping extra-small diameter workpieces (ø1mm or less), which cannot be retained with the centering chuck.

Retention range
Dimensions
Mass

OD: $\varnothing 0-.06^{\prime \prime}(0-1.5 \mathrm{~mm})$ $\varnothing 4.65 \times 1.9^{\prime \prime}(118 \times 48.5 \mathrm{~mm})$

Examples of optimal combinations of accessories for CNC models

	Y-axis Table	θ_{1} Table	\#2 Table
Automatic leveling	-	-	-
Automatic alignment (Patent registered: Japan)	\bullet	\bullet	-
Multiple workpiece batch measurement	\triangle	-	-
Measurement in the Y-axis direction	\bullet	-	-
Oblique measurement of XY plane **	\bullet	-	-
Outside 3D surface roughness measurement/evaluation **	\bullet	-	-
Multiple-piece measurement in the Y-axis direction (Positioning in the Y -axis direction)	\bullet	-	-
Multiple-piece measurement in the radius direction (Positioning in the rotating direction of XY plane)	-	\bullet	-
Tracking measurement in the Z-axis direction *	-	-	-
Inclined surface measurement in the X-axis direction	-	-	-
Inclined hole inside measurement in the X -axis direction	-	-	-
Multiple cylinder generatrix line measurement	-	-	\bullet
Measurement of both top and bottom surfaces	-	-	\bullet
Rotary positioning of large workpiece ***	-	-	-
Upward/downward and frontward/backward measurement of large workpiece ***	-	-	-

* : Applicable only to form/contour measurement ** : Applicable only to surface roughness measurement
*** : Applicable only for SV-M3000CNC

Drive unit tilting function (Patent pending: Japan)	Large θ Table	Rotary-type detector holder
\bullet	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
\bullet	-	-
\bullet	-	-
-	-	-
-	-	-
-	-	-
-	-	-

[^2]

Optional Accessories for Surftest / Formtracer

Compatible with Desktop Models of Surftest and Formtracer

3-axis adjustment table
This table helps make the required alignment adjustments when measuring cylindrical surfaces. The corrections for the pitch angle and the swive angle are determined from a preliminary measurement and the Digimatic micrometers are adjusted accordingly. A flat-surfaced workpiece also can be leveled with this table.

Leveling table
178-043-1 (mm), 178-053-
1 (inch)

- Table top: $130 \times 100 \mathrm{~mm}$
- Leveling range: $\pm 1.5^{\circ}$

Digital leveling table
178-042-1 (mm) 178-052-1 (inch)

- XY travel: $\pm 12.5 \mathrm{~mm}$
- Table top: $130 \times 100 \mathrm{~mm}$
- Leveling range: $\pm 1.5^{\circ}$
- XY travel: $\pm 12.5 \mathrm{~mm}$

V-block
998291

- Workpiece diameter: 1 mm to 160 mm
- Can be mounted on a leveling table

Precision vise

178-019

- Max. workpiece size:

36 mm

- Can be mounted on a
leveling table.

Cross-travel table
218-001 (mm),
$218-011$ (inch)

- Table top: $280 \times 180 \mathrm{~mm}$
- XY travel: $100 \times 50 \mathrm{~mm}$

Cross-travel table 218-041 (mm),
218-051 (inch)

- Table top: $280 \times 152 \mathrm{~mm}$
- XY travel: $50 \times 25 \mathrm{~mm}$

Calibration Calibration stand ${ }^{* 1}$ stand ${ }^{*}$ 12AAG175

- Table top: $130 \times 100 \mathrm{~mm}$ 12AAM100

Calibration stand ${ }^{* 3}$ 12AAM309

Rotary vise 218-003
-Two-slide jaw type.

- Max. workpiece
size: $\varnothing 60 \mathrm{~mm}$
- Minimum reading: 1°

Center support

172-142

- Max. workpiece
dia.: 120 mm
- 60 mm riser is optional

Center support riser

172-143

- Used with a
center support.
- Max. workpiece dia.: 240 mm

Swivel
center support
172-197

- Max. workpiece dia.: 80 mm * * 65 mm when swiveled 10°
- Max. workpiece length: 140 mm

Holder with clamp

176-107

- Used with a
cross-travel table or rugged table.
- Max. workpiece height: 35 mm

V-block
with clamp
172-234, 172-
378

- Used with a cross-travel table or rugged table. - Max. workpiece dia.:
$50 \mathrm{~mm}(172-234)$,
25mm (172-378)

Quick Guide to Precision Measuring Instruments

Surftest (Surface Roughness Testers)

JIS B 0601:2001 Geometric Product Specifications(GPS)-Surface Texture: Profile method-Terms, definitions, and surface texture parameters
IIS B 0632:2001 Geometric Product Specifications (GPS)-Surface Texture:Profile method-Metrological characterization of phase-correct filters
IIS B 0633:2001 Geometric Product Specifications(GPS)-Surface Texture:Profile method-Rules and procedures for the assessment of surface texture
IIS B 0651:2001 Geometric Product Specifications (GPS)-Surface Texture:Profile method- Nominal characteristics of contact(stylus) instruments

Nominal Characteristics of Contact (Stylus) Instruments

 unless otherwise specified.

Static Measuring Force

$\begin{aligned} & \text { Nominal radius of } \\ & \text { curvature of stylus tip: } \\ & \mu \mathrm{m} \end{aligned}$	Static measuring force at the mean position of stylus: mN	Tolerance on static measuring force variations: $\mathrm{mN} / \mathrm{mm}$
2	0.75	0.035
5	0.75 (4.0) Whate 1	0.2
10		

Metrological Characterization of Phase Correct Filters

A profile filter is a phase-correct filter without phase delay (cause of profile distortion dependent on wavelength).
The weight function of a phase-correct filter shows a normal (Gaussian) distribution in which the amplitude transmission is 50% at the cutoff wavelength.

Data Processing Flow

Relationship between Cutoff Value and Stylus Tip Radius
The following table lists the relationship between the roughness profile cutoff value λc, stylus tip radius rite, and cutoff ratio $\lambda c \lambda s$.

$\begin{aligned} & \lambda c \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \lambda s \\ & \mu \mathrm{~m} \\ & \hline \end{aligned}$	$\lambda \mathrm{c} / \mathrm{s}$	$\begin{gathered} \text { Maximum rip } \\ \mu \mathrm{m} \end{gathered}$	Maximum sampling length $\mu \mathrm{m}$
0.08	2.5	30	2	0.5
0.25	2.5	100	2	0.5
0.8	2.5	300	$2{ }^{\text {Note } 1}$	0.5
2.5	8	300	5 Note2	1.5
8	25	300	$10{ }^{\text {Note } 2}$	5

-Surface Profiles IIS $80601: 2001$ (IS0 42877: 1997)

Primary Profile
Profile obtained from the measured profile by applying a low-pass fiter

Roughness Profile
Profile obtained from the primary profile by suppressing the longer wavelength components using a high-pass fiter of cutoff value λc.

Waviness Profile
Profile obtained by applying a band-pass filter to the primary profile to remove the longer wavelengths above λf and the shorter wavelengths below λc.

Definition of Parameters
IIS 80601 : 2001
(50 0 4287 : 1997)
Amplitude Parameters (peak and valley) Maximum peak height of the primary profile $P p$ Maximum peak height of the roughness profile Rp Maximum peak height of the waviness profile W_{p} Largest profile peak height Zp within a sampling length

Maximum valley depth of the primary profile Pv Maximum valley depth of the roughness profile Rv Maximum valley depth of the waviness profile Wv Largest profile valley depth Zv within a sampling length

Maximum height of the primary profile Pz Maximum height of the roughness profile Rz Maximum height of the waviness profile Wz Sum of height of the largest profile peak height Zp and the largest profile valley depth Zv within a sampling length

In Old JIS and ISO 4287-1: 1984, Rz was used to indicate the "ten point height of irregularities." Care must be taken because
differences between results obtained according to the existing and d standards are not always negligibly small. (Be sure to check whether the drawing instructions conform to existing or old standards.)

Mean height of the primary profile elements PC Mean height of the roughness profile elements Rc Mean height of the waviness profile elements Wc Mean value of the profile element heights Zt within a sampling length

Total height of the primary profile Pt
Total height of the roughness profile Rt
Total height of the roughness profile Rt
Total height of the waviness profile Wt
Sum of the height of the largest profile peak
Sum of the height of the largest profile peak height Zp and the largest profile valley depth Zv within the evaluation length

Amplitude Parameters (average of ordinates)
Arithmetical mean deviation of the primary profile Pa Arithmetical mean deviation of the roughness profile Ra Arithmetical mean deviation of the waviness profile Wa Arithmetic mean of the absolute ordinate values $\mathrm{Z}(\mathrm{x})$ within a sampling length

$$
\mathrm{Pa}, \mathrm{Ra}, \mathrm{Wa}=\frac{1}{T} \int_{0}^{1}|Z(x)| \mathrm{dx}
$$

with l a s Ip, Ir, or I w according to the case.

Root mean square deviation of the primary profile Pq Root mean square deviation of the roughness profile Rq Root mean square deviation of the waviness profile Wq Root mean square value of the ordinate values $\mathrm{Z}(\mathrm{x})$ within a sampling length

$$
\mathrm{Pq}, \mathrm{Rq}, \mathrm{Wq}=\sqrt{\frac{1}{1} \int_{0}^{1} Z^{2}(x) \mathrm{dx}}
$$

with \mid as $\mid p$, lr , or \mid w according to the case.

Skewness of the primary profile Psk
Skewness of the roughness profile Rsk
Skewness of the waviness profile Wsk
Quotient of the mean cube value of the ordinate values $Z(x)$ and the cube of Pq, Rq, or Wq, respectively, within a sampling length

$$
\text { Rsk }=\frac{1}{\operatorname{Rq}^{3}}\left[\frac{1}{\operatorname{lr}} \int_{0}^{1 r} z^{3}(x) d x\right]
$$

The above equation defines Rsk. Psk and Wsk are defined in a similar manner. Psk, Rsk, and Wsk are measures of the asymmetry of the probability density function of the ordinate values.

Kurtosis of the primary profile Pku Kurtosis of the roughness profile Rku Kurtosis of the waviness profile Wku
Quotient of the mean quartic value of the ordinate values $Z(x)$ and the fourth power of Pq, Rq, or Wq , respectively, within a sampling length

$$
\mathrm{Rku}=\frac{1}{\mathrm{Rq}^{4}}\left[\frac{1}{\operatorname{lr}} \int_{0}^{\mathrm{t}} Z^{4}(x) \mathrm{dx}\right]
$$

The above equation defines Rku. Pku and Wku are defined in a similar manner. Pku, Rku, and Wku are measures of the sharpness of the probability density function of the ordinate values.

Spacing Parameters
Mean width of the primary profile elements PSm Mean width of the roughness profile elements RSm Mean width of the waviness profile elements WSm
Mean value of the profile element widths Xs within a sampling length

$$
\text { PSm, RSm, WSm }=\frac{1}{m} \sum_{i=1}^{m} X_{s i}
$$

Hybrid Parameters
Root mean square slope of the primary profile $P \Delta q$ Root mean square slope of the roughness profile $R \Delta q$ Root mean square slope of the waviness profile $W \Delta q$ Root mean square value of the ordinate slopes $\mathrm{dZ} / \mathrm{dX}$ within a

Curves, Probability Density Function, and Related Parameters
Material ratio curve of the profile (Abbott-Firestone curve) Curve representing the material ratio of the profile as a function of section level c

Material ratio of the primary profile $\operatorname{Pmr}(\mathrm{c})$ Material ratio of the roughness profile $\operatorname{Rmr}(\mathrm{C})$
Material ratio of the waviness profile $\mathrm{Wmr}(\mathrm{c})$
Ratio of the material length of the profile elements MI(c) at a given level c to the evaluation length

$$
\operatorname{Pmr}(c), \operatorname{Rmr}(c), W \operatorname{mr}(c)=\frac{M 1(c)}{\ln }
$$

Section height difference of the primary profile Pdc Section height difference of the roughness profile Rdc Section height difference of the waviness profile Wdc
Vertical distance between two section levels of a given material ratio

Relative material ratio of the primary profile Pmr Relative material ratio of the roughness profile Rmr Relative material ratio of the waviness profile Wmr
Material ratio determined at a profile section level Rठc (or Pठc or $W \delta c)$, related to the reference section level c0

$$
\begin{aligned}
& \operatorname{Pmr}, \mathrm{Rmr}, \mathrm{Wmr}=\operatorname{Pmr}(\mathrm{c} 1), \operatorname{Rmr}(\mathrm{c} 1), \mathrm{Wmr}(\mathrm{c} 1) \\
& \begin{array}{ll}
\text { where } & c 1=c 0-R \delta c(R d C, W \delta c) \\
c 0 & =c(P m 0, R m r O, W m r 0)
\end{array}
\end{aligned}
$$

Probability density function
(profile height amplitude distribution curve)
Sample probability density function of the ordinate $Z(x)$ within the evaluation length

JIS Specific Parameters
Ten-point height of irregularities, Rz_Js
Sum of the absolute mean height of the five highest profile peaks and the absolute mean depth of the five deepest profile valleys, measured from the mean line within the sampling length of a roughness profile. This profile is obtained from the primary profile using a phase-correct band-pass filter with cutoff values of Ic and Is.

Symbol	Used profile
RzJIS82	Surface profile as measured
RzJIS94	Roughness profile derived from the primary profile using a phase-correct high-pass filter

Arithmetic mean deviation of the profile Ra_{75}
Arithmetic mean of the absolute values of the profile deviations from the mean line within the sampling length of the roughness profile (75%). This profile is obtained from a measurement profile using an analog high-pass filter with an attenuation factor of $12 \mathrm{db} / o c t a v e$ and a cutoff value of $\lambda \mathrm{c}$.

$$
\operatorname{Ra}_{75}=\frac{1}{\ln } \int_{0}^{\ln }|z(x)| d x
$$

Sampling Length for Surface Roughness Parameters
Table 1: Sampling lengths for aperiodic profile roughness parameters (Ra, Rq, Rsk, Rku, R $\Delta \mathbf{q}$), material ratio curve, probability density function, and related parameters

Ra $\mu \mathrm{m}$	Sampling length Ir mm	Evaluation length In mm
$(0.006)<\mathrm{Ra} \leq 0.02$	0.08	0.4
$0.02<R=0.1$	0.25	1.25
$0.1<R a \leq 2$	0.8	4
$2<R \leq 10$	2.5	12.5
$10<R \mathrm{Ra} \leq 80$	8	40

Table 2: Sampling lengths for aperiodic profile roughness parameters ($\mathrm{Rz}, \mathrm{Rv}, \mathrm{Rp}, \mathrm{Rc}, \mathrm{Rt}$)

$\begin{gathered} \mathrm{Rz} \\ \mathrm{Rz} 1 \max \\ \mu \mathrm{~m} \end{gathered}$	Sampling length Ir mm	Evaluation length In mm
(0.025)<Rz, Rz1max ≤ 0.1 $0.1<R z$, Rz1 1 max ≤ 0.5 $0.5<R z, R z 1$ max ≤ 10 $10<R z$, Rz1 max ≤ 50 $50<R z$, Rz1max ≤ 200	$\begin{aligned} & 0.08 \\ & 0.25 \\ & 0.8 \\ & 2.5 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.25 \\ & 4 \\ & 12.5 \\ & 40 \end{aligned}$

1) Rz is used for measurement of Rz, Rv, Rp, Rc, and Rt.
2) RzImax only used for measurement of Rzimax, Rvimax, Rplmax, and Rclmax.

Table 3: Sampling lengths for measurement of periodic roughness profile roughness parameters and periodic or aperiodic profile parameter Rsm

Rsm mm	Sampling length Ir mm	Evaluation length In mm
$0.013<R s m \leq 0.04$	0.08	0.4
$0.04<R s m \leq 0.13$	0.25	1.25
$0.13<R s m \leq 0.4$	0.8	4
$0.4<R s m \leq 1.3$	2.5	12.5
$1.3<R s m \leq 4$	8	40

Procedure for determining a sampling length if it is not specified

Table. 1 Procedure for determining the sampling length of an aperiodic profile if it is not specified.

Table 2. Procedure for determining the sampling length of a periodic profile if it is not specified.

Contracer CV-2100

SERIES 218 - Contour Measuring Instruments

FEATURES

- Newly designed high-precision digital ARC scale improves the Z-axis accuracy and resolution.
- Quick-release grip handle allows for rapid traverse in column Z-axis for CV-2100M4.
- Key operation buttons are now mounted onto the X-axis drive unit, eliminating wired remote box.
- X-axis traverse speed has been greatly improved to $20 \mathrm{~mm} / \mathrm{s}$ allowing quick positioning and set-up time.

CV-2100M4 with personal computer system and software

- New added function for automatic stylus up/down means high-volume repetitive measurements are now capable with part programming.
- Z-axis detector measuring range has been improved to 50 mm for both models.
-CV-2100N4 model can be mounted to optional manual column stand or custom fixture supplied by end user.

Connected to a personal computer, the FORMTRACEPAK V5 contour analysis program provides various modes of measurement and analysis. *Printer not included

Centralized front control panel

Quick-vertical motion handle

X-axis jog shuttle

*1: If the CV-2100N4 is operated without the dedicated manual stand, the measuring range of the Z-axis might be reduced, depending on the installation conditions. If you are considering using the CV-2100N4 without the stand, contact your local Mitutoyo sales office for advice.
*2: Optional accessory 218-042 manual column stand

Technical Data

X1-axis
Measuring range: $\quad 4^{\prime \prime}(100 \mathrm{~mm})$ (CV-2100)
Resolution: $\quad 3.93 \mu \mathrm{in}(0.1 \mu \mathrm{~m})$
Measurement method: STVC-10Z
Drive speed: $\quad 0-.79 " / \mathrm{s}(0-20 \mathrm{~mm} / \mathrm{s})$
Measuring speed: $.000787 \mathrm{~m} / \mathrm{s}, .2 \mathrm{n} / \mathrm{s}(.02,5 \mathrm{~mm} / \mathrm{s})$
Measuring direction: Forward / Backward
Traverse linearity: $\quad 98.4 \mu \mathrm{in} / 4^{\prime \prime}(2.5 \mu \mathrm{~m} / 100 \mathrm{~mm})$ (CV-2100)
Linear displacement: $\pm(100+20 \mathrm{~L}) \mu \mathrm{in} \pm(2.5+2 \mathrm{~L} / 100) \mu \mathrm{m}$

* $L=$ Drive length (mm)

Inclining range
$\pm 45^{\circ}$
Z2-axis (column)
Column type:
Vertical travel:
Manual (M4 type)
13.8" (350 mm) (M4 type)
$\begin{array}{ll}\text { Z1-axis (detector unit) } & \\ \text { Measuring range: } & \text { 2" (50mm) } \\ \text { Resolution: } & 3.93 \mu \mathrm{uin}(0.1 \mu \mathrm{~m})\end{array}$
Measurement method: Digital arc scale
Linear displacement: $\pm(100+100 \mathrm{~h}) \mu \mathrm{in} \pm(2.5+\mid 0.1 \mathrm{H}) \mu \mathrm{m}$
Accuracy (at $20^{\circ} \mathrm{C}$) *H: Measurement height from the horizontal position within $\pm 1^{\prime \prime}(\pm 25 \mathrm{~mm})$
Stylus up/down operation: Arc movement
Face of stylus: Downward
Measuring force: $\quad 30 \pm 10 \mathrm{mN}$ (3gf)
Traceable angle: Ascent: 77°, descent: 87°
(using the standard stylus provided and depending on the surface roughness)
Stylus tip
Base size (W x H):
Base material:
Mass:
Power supply: $23.6 \times 17.7^{\prime \prime}(600 \times 450 \mathrm{~mm})$ Granite
321 lbs (145.8kg) (CV-2100M4),
Power consumption: 30 W (main unit only)

Highly accurate arc scale

This scale directly tracks the arc trajectory of the stylus tip so that the most accurate compensation can be applied to the scale output, which leads to higher accuracy and resolution.

Optional Accessories

218-042: Column stand for CV-2100N4 (vertical travel: 250 mm , inclination: $\pm 45^{\circ}$)
218-001: Cross-travel table (XY range: $100 \times 50 \mathrm{~mm}$)
218-011: Cross-travel table (XY range: 4 " $\times 2$ ")
218-041: Cross-travel table (XY range: $50 \times 25 \mathrm{~mm}$)
218-051: Cross-travel table (XY range: $2^{\prime \prime} \times 1$ ")
218-002: Rugged table
176-107: Holder with clamp
218-003: Rotary vise (heavy-duty type)
172-144: Rotary vise
172-234: V-block with clamp
(Max. workpiece dia.: 50 mm)
172-378: V-block with clamp
(Max. workpiece dia.: 25mm)
172-197: Swivel center support
172-142: Center support
172-143: Center support riser
998862: Pin gage unit for calibration (mm)
998861: Pin gage unit for calibration (inch)
Arms and styli (See page J-32/33.)
12AAG175: Calibration table
178-047: 3 -axis adjustment table

Contracer CV-2100

SERIES 218 - Contour Measuring Instruments

SPECIFICATIONS

Model		CV-2100M4	CV-2100N4
Order No.		218-643A	218-623A
Measurement range	X-axis	4"(100mm)	
	Z1-axis (detector unit)	2"(50mm)	
Z2-axis (column) travel range		13.8"(350mm)	-
X-axis inclination angle		$\pm 45^{\circ}$	-
Resolution	X-axis	3.93 $\mathrm{in}^{\text {(} 0.1 \mu \mathrm{~m} \text {) }}$	
	Z1-axis	3.93 $\mathrm{in}^{\text {(} 0.14 \mathrm{~m})}$	
Drive method	X-axis	Motorized drive 0-0.79in/s (0-20mm/s)	
	Z2-axis (column)	Manual (quick up-and-down motion, fine feed)	-
Measuring speed		. $00078-.2 \mathrm{l} / \mathrm{sec}(0.02-5 \mathrm{~mm} / \mathrm{s}$)	
Linearity accuracy (X-axis horizontal orientation)		$98.4 \mu \mathrm{in} / 4 \mathrm{in}(2.5 \mu \mathrm{~m} / 100 \mathrm{~mm})$	
Accuracy (20 ${ }^{\circ} \mathrm{C}$)	X-axis	$\pm(100+20 \mathrm{~L}) \mu \mathrm{in}[\pm(2.5+0.02 \mathrm{~L}) \mu \mathrm{m})] \mathrm{L}=$ Measurement Length (mm) $\pm(100+\|100 H\| \mu \mathrm{in})[\pm(2.5+\|0.1 \mathrm{H}\|) \mu \mathrm{m}] \mathrm{H}=$ Measurementt height from horizontal position within 1 " $(\pm 25 \mathrm{~mm})$	
	Z1-axis		
Measurement direction		Forward / Backward	
Measurement surface direction		Downward	
Measuring force		(3gf) ($30 \pm 10 \mathrm{mN}$)	
Stylus traceable angle (Standard accessory stylus)		Ascent 77°, Descent 87° (Depends on the surface condition)	
External dimensions ($\mathrm{W} \times \mathrm{D} \times \mathrm{H}$)		$\begin{aligned} & 29.3 \times 17.7 \times 34.8^{\prime \prime} \\ & (745 \times 450 \times 885 \mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{gathered} 25.6 \times 5.63 \times 5.45 " \\ (651 \times 143 \times 138.5 \mathrm{~mm}) \\ \hline \end{gathered}$
Mass		$321.43 \mathrm{lbs}(145.8 \mathrm{~kg})$	$12.78 \mathrm{lbs}(5.8 \mathrm{~kg})$

DIMENSIONS

CV-2100M4 Unit: inch(mm)

T-groove dimensions (CV-2100M4)

Contracer CV-3200 / CV-4500

SERIES 218 - Contour Measuring Instruments

CV-3200S4 with personal computer system and software

CV-3200 FEATURES

- Dramatically increased drive speed (X axis: $80 \mathrm{~mm} / \mathrm{s}, \mathrm{Z2}$ axis: $20 \mathrm{~mm} / \mathrm{s}$) further reduces total measurement time.
- In order to maintain the traverse linearity specification for an extended period of time, Mitutoyo has adopted highly rigid ceramic guides that combine the characteristics of smallest secular change and remarkable resistance to abrasion.
-With the support for a wide range of optional peripherals designed for use with the CNC models enables simplified CNC measurement.
-The drive unit (X -axis) and column (Z2-axis) are equipped with a high-accuracy linear encoders (ABS type on Z2-axis). This improves reproducibility of continuous automatic measurement of small holes in the vertical direction and repeated measurement of parts which are difficult to position.
- A newly designed straight arm reduces interference on the workpiece and expands the measurement range in the $\mathbf{Z 1}$ axis (height) direction.
- One-touch mounting and removal of the arm.
- X1-axis accuracy: $\pm(0.8+0.01 \mathrm{~L}) \mu \mathrm{m}^{*}$ Z1-axis accuracy: $\pm(1.6+\mid 2 \mathrm{H} / 100) \mathrm{um}$ Designed to handle workpieces calling for high accuracy.
* CV-3200S4, H4, W4 types, L = Drive length, H = Measurement height (mm)

With the addition of a new function for continuously measuring top and bottom faces, the variable measuring force function has become more useful, enabling a wide variety of efficient, high-precision measurements.

CV-4500 FEATURES

- When combined with the double cone-end stylus (a new product with diametrically opposed contact points), the instrument can continuously measure in the upward and downward directions without the need to change the arm orientation or reset the workpiece fixturing.
-The measuring force can be switched among five levels (upward and downward) from the data-processing program (Formtracepak).
- High-precision and high-speed drive has been achieved, significantly improving measurement efficiency.
- A newly designed straight arm has reduced interference on the workpiece and expanded the measurement range in the $Z 1$ axis (height) direction.
- One-touch mounting and removal of the arm.

Technical Data

X-axis
Measuring range: $\quad 4^{\prime \prime}(100 \mathrm{~mm})$ or $8^{\prime \prime}(200 \mathrm{~mm})$ Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
Measurement method: Reflective-type linear encoder
Drive speed: $\quad 3.15 \mathrm{H} / \mathrm{s}(80 \mathrm{~mm} / \mathrm{s})$ and manual
Measuring speed: $.0008-.79 \mathrm{l} / \mathrm{s}(0.02-20 \mathrm{~mm} / \mathrm{s})^{*}$
*Recommended speed: under $5 \mathrm{~mm} / \mathrm{s}$
If using higher speed, stylus tip may be chipped and/or accuracy may be worse, depending on surface condition.

Measuring direction: Forward / Backward
Traverse linearity: $\quad 32 \mu \mathrm{in} / 4^{\prime \prime}, 80 \mu \mathrm{in} / 8^{\prime \prime}$
($0.8 \mu \mathrm{~m} / 100 \mathrm{~mm}, 2 \mu \mathrm{~m} / 200 \mathrm{~mm}$)
*with the X axis in horizontal orientation
Linear displacement: ($31.5+10 \mathrm{~L})$ uin
accuracy (at $\left.20^{\circ} \mathrm{C}\right) \quad\{ \pm(.8+0.01 \mathrm{~L}) \mu \mathrm{m}\}(\mathrm{CV}-320054, \mathrm{H} 4, \mathrm{~W} 4, \mathrm{~L} 4)$
$(32+10 \mathrm{~L}) \mathrm{uin}$
$\{ \pm(0.8+0.01 \mathrm{~L}) \mu \mathrm{m}\}(\mathrm{CV}-450054, \mathrm{H} 4, W 4, \mathrm{~L} 4)$
$(31.5+20 \mathrm{~L}) \mu \mathrm{in}$
$\{ \pm(0.8+0.02 \mathrm{~L}) \mu \mathrm{m}\}$ (CV-320058, H8, W8, L8)
$(32+20 L)$ uin
$\{ \pm(0.8+0.02 \mathrm{~L}) \mu \mathrm{m}\}$ (CV-4500S8, H8, W8, L8)

* $\mathrm{L}=$ Drive length (mm)

Inclining range:
$\pm 45^{\circ}$
Z2-axis (column)
Vertical travel:
Resolution:
$10 "(300 \mathrm{~mm})$ or $20^{\prime \prime}(500 \mathrm{~mm})$
$39.4 \mu \mathrm{in}$ (1 $\mu \mathrm{m}$)
Measurement method: ABSOLUTE linear encoder
Drive speed:
$0-1.2^{\prime \prime} / \mathrm{s}(0-30 \mathrm{~mm} / \mathrm{s})$ and manual
Z1-axis (detector unit)
Measuring range: $\quad \pm 1.2^{\prime \prime}$ ($\pm 30 \mathrm{~mm}$)
Resolution: $\quad 1.57 \mu \mathrm{in}(.04 \mu \mathrm{~m})$ (CV-3200 series),
$.78 \mu \mathrm{in}(0.02 \mu \mathrm{~m})$ (CV-4500 series)
Measurement method: Rotory arc encoder (CV-3200 series), (CV-4500 series)
Linear displacement
Accuracy (at $\left.20^{\circ} \mathrm{C}\right)$: $\pm(63+\mid 20 \mathrm{HI}) \mu$ in $\{ \pm(1.4+\mid 2 \mathrm{H} / / 100) \mu \mathrm{m}\}$ (CV-3200 series)
$\pm(32+120 \mathrm{HI})$) in $\{ \pm(0.8+\mid 2 \mathrm{H} / 100) \mu \mathrm{m}\}$ (CV-4500 series)

* H : Measurement height from the horizontal position (mm)
Stylus up/down operation: Arc movement
Face of stylus: Upward/downward
Measuring force: $\quad 30 \mathrm{mN}$ (CV-3200)
Measuring force: $\quad 10,20,30,40,50 \mathrm{mN}$ (CV-4500) (Specified from the data-processing program Formtracepak)
Traceable angle: \quad Ascent: 77°, descent: 83° (using the standard stylus provided and depending on the surface roughness)
Stylus tip Radius: $25 \mu \mathrm{~m}$, carbide tip
Base size (W x H): $\quad 17.7 \times 23.6^{\prime \prime}(450 \times 600 \mathrm{~mm})$ or $39.4 \times 17.7^{\prime \prime}(1000 \times 450 \mathrm{~mm})$
Base material: Granite
Power supply: $\quad 100-240 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Power consumption: 400 W (main unit only)

Contracer CV-3200 / CV-4500

SERIES 218 - Contour Measuring Instruments

SPECIFICATIONS

Model No.	CV-3200s4	CV-3200H4	CV-3200W4	CV-3200L4
Order No. (inch)	218-491-10A	218-492-10A	218-493-10A	218-494-10A
Model No.	CV-4500s4	CV-4500H4	CV-4500W4	CV-4500L4
Order No. (inch)	218-451-10A	218-452-10A	218-453-10A	218-454-10A
X1-axis measuring range	4" (100mm)	4" (100mm)	4" (100mm)	4" (100mm)
Vertical travel	12" (300mm) power column	20 " (500mm) power column	20" (500mm) power column	27.6" (700 mm) power column
Granite base size (WxD)	$23.6 \times 17.7{ }^{\prime \prime}(600 \times 450 \mathrm{~mm})$	$23.6 \times 17.7{ }^{\prime \prime}(600 \times 450 \mathrm{~mm})$	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)
Dimensions (main unit, WxDxH)	$\begin{aligned} & 29.2 \times 17.7 \times 35.6 " \\ & (741 \times 450 \times 905 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 29.2 \times 17.7 \times 43.5^{\prime \prime} \\ (741 \times 450 \times 1105 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 45.5 \times 19 \times 46.3^{\prime \prime} \\ (1156 \times 482 \times 1176 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 45.5 \times 19.4 \times 56.5 \mathrm{n} \\ (1156 \times 492 \times 1436 \mathrm{~mm}) \\ \hline \end{gathered}$
Mass (main unit)	309 lbs (140kg)	$331 \mathrm{lbs}(150 \mathrm{~kg})$	$485 \mathrm{lbs}(220 \mathrm{~kg})$	595 lbs (270kg)
Model No.	CV-320058	CV-3200H8	CV-3200W8	CV-3200L8
Order No. (inch)	218-496-10A	218-497-10A	218-498-10A	218-499-10A
Model No.	CV-450058	CV-4500H8	CV-4500W8	CV-4500L8
Order No. (inch)	218-456-10A	218-457-10A	218-458-10A	218-459-10A
X1-axis measuring range	8" (200mm)	8" (200mm)	8" (200mm)	4" (100mm)
Vertical travel	12" (300mm) power column	$20^{\prime \prime}(500 \mathrm{~mm})$ power column	20" (500mm) power column	27.6" (700 mm) power column
Granite base size (WxD)	$23.6 \times 17.7{ }^{\prime \prime}(600 \times 450 \mathrm{~mm})$	$23.6 \times 17.7{ }^{\prime \prime}(600 \times 450 \mathrm{~mm})$	39.4×17.7 ($1000 \times 450 \mathrm{~mm}$)	39.4×17.7 " ($1000 \times 450 \mathrm{~mm}$)
Dimensions (main unit, WxDxH)	$\begin{gathered} 30.2 \times 19 \times 38 " \\ (767 \times 482 \times 966 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 30.2 \times 19 \times 46 " \\ (767 \times 482 \times 1166 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 45.9 \times 19 \times 46.3^{\prime \prime} \\ (1166 \times 482 \times 1176 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 45.9 \times 19.4 \times 56.5{ }^{\prime \prime} \\ (1166 \times 492 \times 1436 \mathrm{~mm}) \end{gathered}$
Mass (main unit)	309 lbs (140kg)	$331 \mathrm{lbs}(150 \mathrm{~kg})$	485 lbs (220kg)	$595 \mathrm{lbs}(270 \mathrm{~kg})$

Collective Calibration Function

- A dedicated calibration gage enables the user to calibrate the instrument for Z-axis gain, symmetry, stylus-tip radius, etc., in a single procedure.

Calibration Kit:
CV-4500: 12AAQ491
CV-3200: 12AAQ489 (not shown)

MiCAT
the standard in world metrology software
FORTI

Software

FORMTRACEPAK V5

Measurement Control Screen

Profile Analysis Screen

Automatic Circle/Line Application Function

Data Composition Function

Optional Arms and Styli for Contour Measurement

For CV-2100

Tip angle: $\quad 12^{\circ}$ Tip radius: $\quad 25 \mu \mathrm{~m}$ Tip material: Carbide

Tip angle: $\quad 20^{\circ}$
Tip radius: $\quad 25 \mu \mathrm{~m}$ Tip material: Carbide

Small hole: 932693 / 12AAE873

932693 12AAE873
Tip shape: Single bevel Cone Tip angle: $20^{\circ} \quad 30^{\circ}$ Tip radius: $25 \mu \mathrm{~m} \quad 25 \mathrm{~m}$ Tip material: Carbide Carbide

List of Applicable Arms

Arm name	Order No.	Compatible stylus height
Straight type	935111	$\mathrm{H}=6 \mathrm{~mm}$
	935112	$\mathrm{H}=12 \mathrm{~mm}$
	935113	$\mathrm{H}=20 \mathrm{~mm}$
	935114	$\mathrm{H}=30 \mathrm{~mm}$
	935115	$\mathrm{H}=42 \mathrm{~mm}$
Eccentric type	935116	$\mathrm{H}=6 \mathrm{~mm}$
	935117	$\mathrm{H}=12 \mathrm{~mm}$
	935118	$\mathrm{H}=20 \mathrm{~mm}$
	935119	$\mathrm{H}=30 \mathrm{~mm}$
Small hole	935120	$\mathrm{H}=42 \mathrm{~mm}$

List of Applicable Styli

Stylus name	Order No.	Stylus height
Single-bevel stylus carbide-tipped	354882	$\mathrm{H}=6 \mathrm{~mm}$
	354883	$\mathrm{H}=12 \mathrm{~mm}$
	354884	$\mathrm{H}=20 \mathrm{~mm}$
	354885	$\mathrm{H}=30 \mathrm{~mm}$
	354886	$\mathrm{H}=42 \mathrm{~mm}$
Cross-ground stylus carbide-tipped	354887	$\mathrm{H}=6 \mathrm{~mm}$
	354888	$\mathrm{H}=12 \mathrm{~mm}$
	354889	$\mathrm{H}=20 \mathrm{~mm}$
	354890	$\mathrm{H}=30 \mathrm{~mm}$
	354891	$\mathrm{H}=42 \mathrm{~mm}$
Cone stylus carbide-tipped tip angle 20°	12AAE865	$\mathrm{H}=6 \mathrm{~mm}$
	12AAE866	$\mathrm{H}=12 \mathrm{~mm}$
	12AAE867	$\mathrm{H}=20 \mathrm{~mm}$
	12AAE868	$\mathrm{H}=30 \mathrm{~mm}$
	12AAE869	$\mathrm{H}=42 \mathrm{~mm}$
Cone stylus sapphire tipped tip angle 30° *Diamond tipped *tip angle 50°	354892	$\mathrm{H}=6 \mathrm{~mm}$
	354893	$\mathrm{H}=12 \mathrm{~mm}$
	354894	$\mathrm{H}=20 \mathrm{~mm}$
	355129*	$\mathrm{H}=20 \mathrm{~mm}$
	354895	$\mathrm{H}=30 \mathrm{~mm}$
	354896	$\mathrm{H}=42 \mathrm{~mm}$
Cone stylus carbide-tipped tip angle 30°	12AAA566	$\mathrm{H}=6 \mathrm{~mm}$
	12AAA567	$\mathrm{H}=12 \mathrm{~mm}$
	12AAA568	$\mathrm{H}=20 \mathrm{~mm}$
	12AAA569	$\mathrm{H}=30 \mathrm{~mm}$
	12AAA570	$\mathrm{H}=42 \mathrm{~mm}$
Knife-edge stylus carbide-tipped	354897	$\mathrm{H}=6 \mathrm{~mm}$
	354898	$\mathrm{H}=12 \mathrm{~mm}$
	354899	$\mathrm{H}=20 \mathrm{~mm}$
	354900	$\mathrm{H}=30 \mathrm{~mm}$
	354901	$\mathrm{H}=42 \mathrm{~mm}$
Ball stylus carbide-tipped	354902	$\mathrm{H}=6 \mathrm{~mm}$
	354904	$\mathrm{H}=20 \mathrm{~mm}$
	354905	$\mathrm{H}=30 \mathrm{~mm}$
	354906	$\mathrm{H}=42 \mathrm{~mm}$
Small-hole stylus carbide-tipped single bevel	932693	$\mathrm{H}=2 \mathrm{~mm}$
	932694	$\mathrm{H}=4 \mathrm{~mm}$
	932695	$\mathrm{H}=6.5 \mathrm{~mm}$
Small-hole stylus carbide-tipped cone	12AAE873	$\mathrm{H}=2 \mathrm{~mm}$
	12AAE874	$\mathrm{H}=4 \mathrm{~mm}$
	12AAE875	$\mathrm{H}=6.5 \mathrm{~mm}$

Optional Styli for Contour Measurement

CV-2100, CV-3200, CV-4500, SV-C3200, SV-C4500 and SV-C4500CNC

- Any specified arm and stylus other than above listed can be custom-made for special order.

Arm and Stylus set: 12AAR588

Set for CV-4500 / SV-C4500 SV-C4500CNC		
Part	Part No.	Part Description
Arm	12AAQ762	Eccentric arm
	12AAM103	Small-hole arm
Stylus	354889	Cross-ground stylus
	354882	Single-bevel cut stylus
	12AAA568	Cone stylus
	12AAM104	Small hole stylus
	12AAM106	Small hole stylus
	12AAM096	Double-sided cone stylus
	12AAM097	Double-sided cone stylus
	Integrated arm and stylus	12AAM109

Arm and Stylus set: 12AAR587
Set for CV-3200 /CV-4500 / SV-C3200 / SV-C4500 / SV-C4500CNC

Part	Part No.	Part Description
Arm	12AAQ762	Eccentric arm
	12AAM103	Small-hole arm
Stylus	354889	Cross-ground stylus
	354882	Single-bevel cut stylus
	12AAA568	Cone stylus
	12AAM104	Small hole stylus
	12AAM106	Small hole stylus

Optional Arms and Styli for Contour Measurement For CV-3200, CV-4500, SV-C3200, SV-C4500 and SV-C4500CNC

- Eccentric arm

Double

- Cross ground

Tip angle: 30° (SPH-79: 50°) Tip radius: $25 \mathrm{\mu m}$ Tip material: Carbide,Sapphire (SPH-79: Diamond)

List of Applicable Arms

Arm Name	Order No.
Straight type	12AAM101
Eccentric type	12AAQ762
Small hole	12AAM103
*1: Standard accessory *2: Stylus for CV-4500 series *3: One-sided cut stylus $S P H-71$ (standard accessory) mounting	

Arm stylus (integrated arm and stylus) only for CV-4500

Arm stylus name	Order No.	$\mathrm{H}(\mathrm{mm})$	Tip angle
Double small-hole arm stylus *8	12AAT469	2.4	20°
	12AAT470	5	20°
	12AAM108	2.4	30°
	12AAM109	5	30°
	12AAM110	9	30°

*8: Arm Stylus for CV-4500, SV-C4500 and SV-C4500CNC series. series

- Double small-hole arm stylus: 12AAM108/12AAT469

- Double small-hole arm stylus: 12AAM109/12AAT470

List of Applicable Styli

Stylus Name	Order No.	H (mm)
Double cones stylus *4	12AAM095 *5	20
	12AAM096	32
	12AAM097	48
Single-bevel stylus carbide-tipped	354882	6
	354883	12
	354884*6	20
	354885	30
	354886	42
Cross-ground stylus carbide-tipped	354887	6
	354888	12
	354889	20
	354890	30
	354891	42
Cone stylus sapphire-tipped tip angle 30°	354892	6
	354893	12
	354894	20
	354895	30
	354896	42
Cone stylus carbide-tipped tip angle 30°	12AAA566	6
	12AAA567	12
	12AAA568	20
	12AAA569	30
	12AAA570	42
Cone stylus carbide-tipped tip angle 20°	12AAE865	6
	12AAE866	12
	12AAE867	20
	12AAE868	30
	12AAE869	42
Cone stylus diamond-tipped tip angle 50°	355129	20
Knife-edge stylus carbide-tipped	354897	6
	354898	12
	354899	20
	354900	30
	354901	42
Ball stylus carbide-tipped	354902	6
	354904	20
	354905	30
	354906	42
Small-hole stylus *7	12AAM104	2
	12AAM105	4
	12AAM106	6.5

*4: Stylus for CV-4500 series
*5: Standard accessory of CV-4500 series
*6: Standard accessory of CV-3200 series
*7: Styli SPH-21, 22, and $\mathbf{2 3}$ for CV-3100/4100 series are not available.

- Double small-hole arm stylus: 12AAM110

Y-axis table*: 178-097
A Y-axis table for both positioning and capable of 3D surface roughness measurement when used withoptional software FTPK-PRO or MCubeMap.** * Not supporting Y -axis measurements. ** Only for 178-096

$\theta 2$-axis table: 178-078*

You can measure multiple points on a cylindrical workiece and automate front/rear-side measurement. * $\theta 2$-axis mounting plate (12AAE718) is required when directly installing on the base of the SV-3100.

Displacement	360°
Resolution	0.0072°
Maximum load (loading moment)	$4 \mathrm{~kg}(343 \mathrm{~N} \cdot \mathrm{~cm}$ or less $)$
Rotational speed	Max. $18^{\circ} / \mathrm{s}$
Mass	$11 \mathrm{lbs}(5 \mathrm{~kg})$

Quick chuck: 211-032

This chuck is useful when measuring small workpieces. You can easily clamp them with its knurled ring.

Retention range	Inner latch	OD: $\varnothing .04-1.42^{\prime \prime}(1-36 \mathrm{~mm})$
	Inner latch	ID: $\varnothing .55-2.76^{\prime \prime}(14-70 \mathrm{~mm})$
	Outer latch	OD: $\varnothing .04-2.95^{\prime \prime}(1-75 \mathrm{~mm})$
Dimensions	$\varnothing 4.65 \times 1.61^{\prime \prime}(118 \times 41 \mathrm{~mm})$	
Mass	$2.65 \mathrm{lbs}(1.2 \mathrm{~kg})$	

Optional Accessories for Automatic Measurement

Compatible with CV-3200, CV-4500 and CNC Models

01-axis table: 12AAD975*

For efficient measurement in the axial/transverse directions. When measuring a cylindrical workpiece, automatic alignment can be performed in combination with the Y-axis table.

* $\theta 1$-axis mounting plate (12AAE630) is required when directly installing on the base of the SV-3100.

Displacement	360°
Resolution	0.004°
Maximum load	$26.5 \mathrm{lbs}(12 \mathrm{~kg})$
Rotational speed	Max. $10^{\circ} / \mathrm{s}$
Mass	$15 \mathrm{lbs}(7 \mathrm{~kg})$

Automatic-leveling table:178-087
(SV, CV, CS3200)
Automatic-leveling table:178-037
(CNC Models)
This is a stage that performs fully automatic leveling as measurement starts, freeing the user from this troublesome operation. Fully automatic leveling can be done quickly by anyone. In addition, the operation is

Micro-chuck: 211-031

This chuck is suitable for clamping extra-small diameter workpieces ($\varnothing 1 \mathrm{~mm}$ or less), which cannot be retained with the centering chuck.

Retention range	$0 \mathrm{D}: \varnothing 0-.06^{\prime \prime}(0-1.5 \mathrm{~mm})$
Dimensions	$\varnothing 4.65^{\prime \prime} \times 1.9^{\prime \prime}(118 \times 48.5 \mathrm{~mm})$
Mass	$1.32 \mathrm{lbs}(0.6 \mathrm{~kg})$

Examples of optimal combinations of accessories for CNC models

	Y-axis Table	θ_{1} Table	82 Table
Automatic alignment (Patented: Japan)	\bigcirc	\bigcirc	-
Multiple workpiece batch measurement	-	-	-
Multiple-piece measurement in the Y-axis direction (Positioning in the Y-axis direction)	\bigcirc	-	-
Multiple-piece measurement in the radius direction (Positioning in the rotating direction of XY plane)	Δ	\bigcirc	-
Tracking measurement in the Z-axis direction *	-	-	-
Inclined surface measurement in the X -axis direction	-	-	-
Inclined hole inside measurement in the X -axis direction	-	-	-
Multiple cylinder generatrix line measurement	-	-	\bigcirc
Measurement of both top and bottom surfaces	-	-	\bigcirc
Rotary positioning of large workpiece **	-	-	-
Upward/downward and frontward/backward measurement of large workpiece **	-	-	-

*: Applicable only to form/contour measurement

* : Applicable only for SV-M3000CNC
© Recommended - Essential — Not necessary

Optional Accessories for Contracer / Formtracer

Compatible with Desktop Models of Contracer and Formtracer

Cross-travel table

- Table top: 11" x 7 "($280 \times 180 \mathrm{~mm}$)
- XY travel: 3.94 " $\times 1.97$ " $(100 \times 50 \mathrm{~mm})$
- Max. load 110 lbs (50kg)

218-001 (mm) 218-011 (inch)

- Table top: $11^{\prime \prime} \times 5.98^{\prime \prime}(280 \times 152 \mathrm{~mm})$
- XY travel: 1.97" x .98"(50 x 25mm)
- Max. load 44 lbs (20kg)

218-041 (mm) 218-051 (inch)

Rotary vise

- Two-slide jaw type.
- Max. workpiece size: $\varnothing 2.36^{\prime \prime}$ (60 mm)
- Minimum reading: 1°

- One-slide jaw type
- Max. workpiece size: $\begin{gathered} \\ 2.36 " \text { " } \\ \text { (} 60 \mathrm{~mm})\end{gathered}$
- Minimum reading: 5°

172-144

Leveling table

- Table top: $5.12^{\prime \prime} \times 3.94^{\prime \prime}(130 \times 100 \mathrm{~mm})$
- Leveling range: $\pm 1.5^{\circ}$
- Height: 1.57 " (40 mm)

178-016

V-block with clamp

- Used with a cross-travel table or rugged table.
- Max. workpiece diameter: 1.97 " $(50 \mathrm{~mm})$
- Max. workpiece diameter: .98" (25mm)

Precision vise

- Max. workpiece size: 1.42" (36mm)
- Can be mounted on a leveling table.

- Workpiece diameter: $0.039^{\prime \prime}$ to $6.3^{\prime \prime}$ (1mm to 160 mm)
- Can be mounted on a leveling table

Leveling table

- Table top: $5.12^{\prime \prime} \times 3.94^{\prime \prime}(130 \times 100 \mathrm{~mm})$
- Leveling range: $\pm 1.5^{\circ}$
- XY travel: . 49 " $\pm(12.5 \mathrm{~mm})$

178-043-1 (mm) 178-053-1 (inch)

Digital leveling table

- Table top: $5.12^{\prime \prime} \times 3.94^{\prime \prime}(130 \times 100 \mathrm{~mm})$
- Leveling range: $\pm 1.5^{\circ}$
- XY travel: . 49 " $\pm(12.5 \mathrm{~mm}$)

Three-axis adjustment table

Drive unit tilting function (Patent pending: apan)	Large θ Table	Rotary-type detector holder
$\mathbf{\Delta}$	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-		-
-		-
-		-

Three-axis adjustment table

Order No.	
Table top	5.11×3.94 " $(130 \times 100 \mathrm{~mm})$
Workpiece weight	33lbs. $(15 \mathrm{~kg})$ at max.
Workpiece diameter	$.04-6.3^{\prime \prime}(1-160 \mathrm{~mm})$
Leveling range	$\pm 1.5^{\circ}$
Swivel range	$\pm 2^{\circ}$
Y-axis adjustment	$\pm 0.5^{\prime \prime}(\pm 12.5 \mathrm{~mm})$
Height	$6^{\prime \prime}(152.5 \mathrm{~mm})$
Mass	$19.81 \mathrm{bs} .(9 \mathrm{~kg})$
Remarks	V-block $(\mathbf{9 9 8 2 9 1})$ not included

Quick Guide to Precision Measuring Instruments

Traceable Angle

The maximum angle at which a stylus can trace upward or downward along the contour of a workpiece, in the stylus travel direction, is referred to as the traceable angle. A one-sided sharp stylus with a tip angle of 12° (as in the above figure) can trace a maximum 77° of up slope and a maximum 87° of down slope. For a conical stylus (30° cone), the traceable angle is smaller. An up slope with an angle of 77° or less overall may actually include an angle of more than 77° due to the effect of surface roughness. Surface roughness also affects the measuring force.
For model CV-3200/4500, the same type of stylus (SPH-71: one-sided sharp stylus with a tip angle of 12°) can trace a maximum 77° of up slope and a maximum 83° of down slope.

Compensating for Stylus Tip Radius

A recorded profile represents the locus of the center of the ball tip rolling on a workpiece surface. (A typical radius is 0.025 mm .) Obviously this is not the same as the true surface profile so, in order to obtain an accurate profile record, it is necessary to compensate for the effect of the tip radius through data processing.

R: Stylus tip radius
M : Measurement magnification
If a profile is read from the recorder through a template or scale, it is necessary to compensate for the stylus tip radius beforehand, according to the applied measurement magnification.

Accuracy

As the detector units of the X and Z axes incorporate scales, the magnification accuracy is displayed not as a percentage but as the linear displacement accuracy for each axis.

Overload Safety Cutout

If an excessive force (overload) is exerted on the stylus tip due, perhaps, to the tip encountering a too-steep slope on a workpiece feature, or a burr, etc., a safety device automatically stops operation and sounds an alarm buzzer. This type of instrument is commonly equipped with separate safety devices for the tracing direction (X axis) load and vertical direction (Y axis) load.
For model CV-3200/4500 a safety device functions if the arm comes off the detector mount.

Simple or Complex Arm Guidance

In the case of a simple pivoted arm, the locus that the stylus tip traces during vertical movement (Z direction) is a circular arc that results in an unwanted offset in X, for which compensation has to be made. The larger the arc movement, the larger the unwanted X displacement (δ) that has to be compensated. (See figure below.) The alternative is to use a complex mechanical linkage arrangement to obtain a linear translation locus in Z, and, therefore, avoid the need to compensate in X.

Z-axis Measurement Methods

Though the X axis measurement method commonly adopted is by means of a digital scale, the Z axis measurement divides into analog methods (using a differential transformer, etc.) and digital scale methods.
Analog methods vary in Z-axis resolution depending on the measurement magnification and measuring range. Digital scale methods have fixed resolution.
Generally, a digital scale method provides higher accuracy than an analog method.

Compensating for Arm Rotation

The stylus is carried on a pivoted arm so it rotates as the surface is traced and the contact tip does not track purely in the Z direction. Therefore, it is necessary to apply compensation in the X direction to ensure accuracy. There are three methods of compensating for arm rotation.

1: Mechanical compensation
2: Electrical compensation
3: Software processing. To measure a workpiece contour that involves a large displacement in the vertical direction with high accuracy, one of these compensation methods needs to be implemented.

Contour Analysis Methods

You can analyze the contour with one of the following two methods after completing the measurement operation.

1. Data processing section

The measured contour is input into the data processing section in real time and a dedicated program performs the analysis using the mouse and/or keyboard. The angle, radius, step, pitch and other data are directly displayed as numerical values.

2. Analysis program

Analysis combining coordinate systems can be easily performed. The graph that goes through stylus radius correction is output to the printer as the recorded profile.

Tolerancing with Design Data

Measured workpiece contour data can be compared with design data in terms of actual and designed shapes rather than just analysis of individual dimensions. In this technique each deviation of the measured contour from the intended contour is displayed and recorded. Also, data from one workpiece example can be processed so as to become the master design data to which other workpieces are compared. This function is particularly useful when the shape of a section greatly affects product performance, or when its shape has an influence on the relationship between mating or assembled parts.

Best-fitting

If there is a standard for surface profile data, tolerancing with design data is performed according to the standard. If there is no standard, or if tolerancing only with shape is desired, best-fitting between design data and measurement data can be performed.

<Before best-fit processing>

The best-fit processing algorithm searches for deviations between both sets of data and derives a coordinate system in which the sum of squares of the deviations is a minimum when the measured data is overlaid on the design data.

Data Combination

Conventionally, if tracing a complete contour is prevented by stylus traceable-angle restrictions then it has to be divided into several sections that are then measured and evaluated separately. This function avoids this undesirable situation by combining the separate sections into one contour by overlaying common elements (lines, points) onto each other. With this function the complete contour can be displayed and various analyses performed in the usual way.

Measurement Examples

Internal gear teeth

Male thread form

Female thread form

Gage contour

Technical Data
 Turntable

Rotational accuracy: Radial: ($0.04+6 \mathrm{H} / 10000$) um H: Probing height (mm) Axial: $(0.04+6 \times 110000) \mathrm{um}$ 6rpm
Rotating speed:
Table top diameter: $\varnothing 1.96^{\prime \prime}(150 \mathrm{~mm})$
Centering range: $\quad \pm .12^{\prime \prime}(3 \mathrm{~mm})$
Leveling range: $\pm 1^{\circ}$
Maximum probing diameter: $\varnothing 11^{\prime \prime}(280 \mathrm{~mm})$
Maximum workpiece diameter: $\varnothing 17.3^{\prime \prime}(440 \mathrm{~mm})$
Maximum workpiece weight: 55 lbs (25 kg)
Vertical column (Z-axis)
Vertical travel: $\quad 11^{\prime \prime}(280 \mathrm{~mm})$
$\begin{array}{ll}\text { Feeding: } & \begin{array}{l}1.18^{\prime \prime} \text { " (30mm)/rev. ((coarse), } \\ \\ 0.039^{\prime \prime}(1 \mathrm{~mm}) / \text { rev. (fine) }\end{array}\end{array}$
Maximum probing height: 11 " 280 mm) from the turntable top Maximum probing depth: $3.94^{\prime \prime}(100 \mathrm{~mm})$ (min. ID: $1.18^{\prime \prime}(30 \mathrm{~mm})$ Horizontal arm (X-axis)
Horizontal travel: $\quad 65^{\prime \prime}(165 \mathrm{~mm})$ (Including a protrusion of $1^{\prime \prime}(25 \mathrm{~mm})$ the turntable rotation center)
Probe and stylus
Measuring range: $\pm 1000 \mu \mathrm{~m}$
Measuring force: $\quad 100 \mathrm{mN} \pm 30 \mathrm{mN}$
Standard stylus: \quad 12AAL021, carbide ball, $\varnothing 1.6 \mathrm{~mm}$
Measuring direction: Two directional
Stylus angle adjustment: $\pm 45^{\circ}$ (with graduations)
Data analysis unit:
Processing unit: Built-in (PC with Roundpak)* Data sampling points: 3,600 points/rotation Data analysis items:

Roundness, Coaxiality, Concentricity, Flatness, Circular runout (radial), Circular runout (axial), Squareness (against axis), Squareness (against plane), Thickness deviation, Parallelism
Reference circles for roundness evaluation:
LSC, MZC, MIC, MCC
Recording device:
Built-in thermal line printer (optional external printer)* Recording magnification:

X5 to X200,000, Auto (X1 to X500,000)*
Roughness component reduction:
Low pass filter, band pass filter
Filter type:
2CR-75\%, 2CR-50\%, 2CRPC-75\% (phase corrected),
2CRPC-50\% (phase corrected), Gaussian, filter OFF
Cutoff value;
15 upr, 50 upr, 150 upr, 500 upr, $15-150$ upr, $15-500$ upr,
50-500upr, Manual setting*
Number of measuring sections
Max. 5-section (100-section)*
*RA-120P

Large color LCD display for RA-120 models

Roundtest RA-120 / 120P

SERIES 211 - Roundness Measuring Instruments

The Roundtest RA-120 / 120 P are a compact, affordable, and simple-to-use device for measuring part geometry on the shop floor. It also provides such superb data analysis capabilities as required with laboratory roundness measuring instruments and has a $\pm 1000 \mu \mathrm{~m}$ wide range detector and precision turntable with excellent rotation accuracy.

Z-axis scale unit

Optional X-axis stop

The RA-120 is a dedicated processor-based model which controls all operations via the control panel incorporated in the main unit.

Order No.: 211-544A (with mechanical mic-heads) Order No.: 211-543A (with DAT function, inch/mm)

The RA-120P is a PC-based model which controls all operations via ROUNDPAK software (optional).

SPECIFICATIONS

Model No.	RA-120*	RA-120D	RA-120P	RA-120PD
Order No.	211-544A	211-543A	$211-547 \mathrm{~A}$	211-546A

* Does not include Z-axis scale unit.

Order No.: 211-546A (with DAT function, inch/mm)

Roundtest RA-120 / 120P

SERIES 211 - Roundness Measuring Instruments

DAT (Digital Adjustment Table) function

The turntable digitally displays the centering and leveling adjustments, turning what used to be a difficult task into one that is simple enough for even new operators to perform.

1. Preliminary measurement of two cross sections: A and B .

2. Following preliminary measurement, the centering and leveling adjustment values are displayed on the monitor.
3. Manipulate the digital micrometer heads of the rotary table so that the adjustment values displayed on the monitor are realized.

4. Centering and leveling are complete. Centering range: $\pm 3 \mathrm{~mm}$ Leveling (inclination) range: $\pm 1^{\circ}$

DIMENSIONS

External dimensions

Turntable top view

Installation floor plan
चPower inlet ∇ Air inlet

Functions

- Notched workpiece measurement
- Recalculation of datum/measured data
- Limaçon function compensates for eccentricity
- Rotation of 3 D display**
- Real-time display**
- Simplified layout (divided layout)**
- Hair line, auxiliary line, hidden line, fill line**
- Color setting of measured data**
- Offsetting of recorded profile generation**
- Zooming of recorded profile**
- Data deletion**
- Graph analysis (displacement/angle between measured points)**
- Power spectrum analysis**
- Gear tooth analysis**
- Harmonic analysis**
- Text data output (via CSV format)**
**Function of ROUNDPAK software

Air supply

Air pressure: $\quad 390 \mathrm{kPa}$
Air consumption: $30 \mathrm{~L} / \mathrm{min}$.
Power supply: $\quad 100 \mathrm{~V}$ AC $-240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Dimensions (W x D \times H): $17.7^{\prime \prime} \times 14.2^{\prime \prime} \times 25^{\prime \prime}$
$(450 \times 360 \times 636 \mathrm{~mm})$
Mass: $\quad 70.5 \mathrm{lbs}(32 \mathrm{~kg})$ (main unit),

Optional Accessories

211-032: Quick chuck (OD: 1-79mm, ID: 16-69mm)
211-014: Three-Jaw chuck (OD: 2 - 78 mm , ID: 25 - 68 mm)
211-031: Micro-chuck (OD: 1.5mm max.)
356038: Auxiliary stage for a low-height workpiece
211-016: Reference hemisphere
211-045: Magnification checking gage
997090: Gage block set for calibration
12AAH320: X-axis stop
211-013: Vibration damping stand
12AAH433: Z-axis scale unit for RA-120 Interchangeable styli (See page J-49.)

356038

211-045

CONSUMABLE PARTS

12AAH181:	Printer paper	$10 \mathrm{rolls} / \mathrm{set}$
358592:	Element for air filter	$1 \mathrm{pc} / \mathrm{set}$
358593:	Element for air regulator	$10 \mathrm{pcs} . / \mathrm{set}$

Technical Data

Turntable
Rotational accuracy (radial): $(0.02+6 \mathrm{H} / 10000) \mu \mathrm{m}$ (RA-1600)
Rotational accuracy (axial): $(0.02+6 \mathrm{X} / 10000) \mu \mathrm{m}$ (RA-1600)
Rotational accuracy (radial): ($0.03+6 \mathrm{H} / 10000$) mm (RA-1600M)
Rotational accuracy (axial): ($0.03+6 \mathrm{~W} / 10000$) um (RA-1600M) H: Probing height (mm), X: Probing radius (mm)
Rotational speed: 4, 6, 10 rpm
Table top diameter: $\varnothing 5.9^{\prime \prime}(150 \mathrm{~mm})$
Centering range: $\quad \pm 3 \mathrm{~mm}$ (with DAT function)
Leveling range: $\quad \pm 1^{\circ}$ (with DAT function)
Maximum probing diameter: $\varnothing 11^{\prime \prime}(\varnothing 280 \mathrm{~mm})$
Maximum workpiece diameter: ø22"(ø560mm)
Maximum table loading: 55lbs (25kg)
Vertical column (Z-axis)
Vertical travel: $\quad 11.8^{\prime \prime}(300 \mathrm{~mm})$
Straightness (in narrow range: $0.20 \mu \mathrm{~m} / 100 \mathrm{~mm}($ RA-1600 $)$
Straightness (in entire range): $0.30 \mu \mathrm{~m} / 300 \mathrm{~mm}$ (RA-1600)
Straightness (in narrow range: $0.40 \mu \mathrm{~m} / 100 \mathrm{~mm}$ (RA-1600M)
Straightness (in entire range): $0.80 \mu \mathrm{~m} / 100 \mathrm{~mm}$ (RA-1600M)
Parallelism with turntable axis: $1.5 \mu \mathrm{~m} / 300 \mathrm{~mm}$
Positioning speed: $\quad \mathrm{Max} .15 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Maximum probing height (ID/OD): $11.8^{\prime \prime}(300 \mathrm{~mm})^{* 1}$
Maximum probing depth: 91 mm (over $\varnothing 32$)
$3.6^{\prime \prime}$ (over ø1.26")((91mm (over ø32))
$1.97^{\prime \prime}($ over ø0.27")((50mm (over ø7))
Horizontal arm (X-axis)
Horizontal travel: $\quad 6.5^{\prime \prime}(165 \mathrm{~mm})$ (From table axis $-1 \sim \pm 5.5^{\prime \prime}$
((-25mm - $\pm 140 \mathrm{~mm})$)
Positioning speed: Max. $15 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
X-axis straightness: $2.7 \mu \mathrm{~m} / 140 \mathrm{~mm}$ (RA-1600)
X-axis parallelism to turntable axis:
$1.6 \mu \mathrm{~m} / 140 \mathrm{~mm}$ (RA-1600)
Probe and stylus
Measuring range: $\quad \pm 400 \mu \mathrm{~m} / \pm 40 \mu \mathrm{~m} / \pm 4 \mu \mathrm{~m}$
Measuring force: $\quad 10-50 \mathrm{mN}$ (5 level switching)
Standard stylus: 12AAL021, carbide ball, $\emptyset 1.6 \mathrm{~mm}$
Measuring direction: Bi-directional
Stylus angle adjustment: $\pm 45^{\circ}$ (with graduations) Air supply
Air pressure: $\quad 0.39 \mathrm{MPa}\left(4 \mathrm{kgf} / \mathrm{cm}^{2}\right)$
Air consumption: $22 \mathrm{~L} / \mathrm{min}$
Power supply: $\quad 100 \mathrm{~V}$ AC $-240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ Dimensions (W x D x H): $35 \times 19.3 \times 33^{\prime \prime}(890 \times 490 \times 840 \mathrm{~mm})$
Mass: $\quad 375 \mathrm{lbs}(170 \mathrm{~kg})$
*1 Use an optional auxiliary stage for measuring a workpiece whose height is 20 mm or less.

ROUNDPAK

The latest roundness/cylindrical form analysis program

MiCAT the standard in world metrology software
FORm

Roundtest RA-1600 / RA-1600M

SERIES 211 — Roundness/Cylindricity Measuring System

RA-1600 / RA-1600M
with personal computer system and software

Spiral Measurement/Analysis

The spiral-mode measurement function combines table rotation and rectilinear action allowing cylindricity, coaxiality, and other measurement data to be loaded as a continuous data set.

Safety mechanism provided as a standard feature
A collision-sensing function has been added to the detector unit (when it is in the vertical orientation) to prevent collision in the Z-axis direction. Additionally, an accidental collision prevention function, which stops the system when the detector displacement exceeds its range, has been added. When an accidental touch is detected, the dedicated analysis software (ROUNDPAK) senses the error and automatically stops the system.

Measurement Through X-axis Tracking

Measurement while tracing is possible through a built-in linear scale in the X-axis. This type of measurement is useful when displacement due to form variation exceeds the measuring range of the detector, and X -axis motion is necessary to maintain contact with the workpiece surface.

Continuous Internal/External Diameter Measurement

Continuous internal/ external diameter measurement is possible without changing the detector position.

```
1), 2) : External diameter measurement measurement Internal diamete measurement
: Displacement
```

3) = inner diameter: Up to $\varnothing 50 \mathrm{~mm}$

Roundtest RA-1600 / RA-1600M

SERIES 211 - Roundness/Cylindricity Measuring System

Centering and Leveling Function

The turntable displays centering and leveling adjustments digitally, making this challenging task simple enough for even a new operator to perform.

1. Preliminary measurement of two cross sections: A and B.
2. Following preliminary measurement, the centering and leveling
 adjustment values are displayed on the monitor.

For RA-1600

For RA-1600M

3. By adjusting the micrometer heads for the rotary table, the adjustment values or level meter displayed on the monitor can be achieved.
4. Centering and leveling are complete. Centering range: $\pm 3 \mathrm{~mm}$ Leveling (inclination) range: $\pm 1^{\circ}$

SPECIFICATIONS

Model No.	RA-1600	RA-1600M
Order No. (inch/mm)	$211-733 \mathrm{~A}$	$211-724 \mathrm{~A}$
Mic Heads	Digimatic	Mechanical

DIMENSIONS

Optional Accessories

350850: Cylindrical square
356038: Auxiliary stage for a low-height workpiece
12AAF203: $2 x$ extension detector holder
12AAF204: Auxiliary detector holder for a large-diameter workpiece
12AAL090: Sliding detector holder
211-045: Magnification checking gage
211-014: Chuck (OD: $\varnothing 2-78 \mathrm{~mm}$, ID: $\varnothing 25-68 \mathrm{~mm}$)
211-032: Quick chuck (OD: ø1-79mm, ID: 16-69mm)
211-031: Micro-chuck (OD: ø0.1-1.5mm max.)
178-025: Vibration isolator (Desktop type)
64AAB213: Vibration isolation workstation
12AAL019: Side table for PC
Interchangeable styli (See page J-49.)

Sliding detector-unit holder (Option) 12AAL090
The detector-unit holder is equipped with a sliding mechanism, enabling one-touch measurement of a workpiece with a deep hole having a thick wall, which has been difficult with the conventional standard arm.

Sliding distance: 4.4" (112mm)
The detector-unit holder can be stopped at a position sufficiently higher than the workpiece along the Z-axis, and then lowered and positioned to make measurements.
Furthermore, internal/external diameters can be easily measured with the continuous internal/external diameter measurement function*.
*: See page 41 for details about the continuous ID and OD measuring function.

Technical Data

Turntable
Rotational accuracy (radial): $\{(0.02+3.5 \mathrm{H} / 10000) \mu \mathrm{m}\}$ Rotational accuracy (axial): $\{(0.02+3.5 \mathrm{R} / 10000) \mu \mathrm{m}\}$ H: Probing height (mm), R: Probing radius (mm)
Rotating speed: $\quad 2,4,6,10 \mathrm{rpm}$
Tabletop diameter: $\quad \varnothing 9.2^{\prime \prime}$ (235 mm) AS / AH models ø 7.9" (200 mm) DS / DH models
Centering range: $\pm 3 \mathrm{~mm}(\pm 5 \mathrm{~mm}$: DS / DH models)
Leveling range: $\pm 1^{\circ}$
Maximum probing diameter: $\varnothing 11.8^{\prime \prime}(300 \mathrm{~mm})$
Maximum workpiece diameter: ø22.8" (580mm)
Maximum workpiece weight: 66 lbs (30 kg)
Vertical column (Z-axis)
Vertical travel: $\quad 11.8^{\prime \prime}(300 \mathrm{~mm})$ ($22.8^{\prime \prime}(500 \mathrm{~mm})$: AH/DH models)
Straightness ($\lambda \mathrm{c} 2.5$): $0.10 \mu \mathrm{~m} / 100 \mathrm{~mm}, 0.15 \mu \mathrm{~m} / 300 \mathrm{~mm}$ ($0.25 \mu \mathrm{~m} / 500 \mathrm{~mm}$: AH / DH models)
Parallelism with rotating axis: $0.7 \mu \mathrm{~m} / 300 \mathrm{~mm}$ ($1.2 \mu \mathrm{~m} / 500 \mathrm{~mm}$: AH / DH models)
Positioning speed: Max. $50 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Maximum probing height: $11.8^{\prime \prime}$ (300 mm) (OD / ID) [22.8" (500 mm): AH / DH models)
Maximum probing depth: over ø32: 85 mm (w/standard stylus) over $\varnothing 7: 50 \mathrm{~mm}$ (w/standard stylus)
Horizontal arm (X-axis)
Horizontal travel: $\quad 6.9^{\prime \prime}(175 \mathrm{~mm})$ (Including a protrusion of $1^{\prime \prime}(25 \mathrm{~mm})$ the turntable rotation center)
Straightness (λ c2.5): $0.7 \mu \mathrm{~m} / 150 \mathrm{~mm}$
Squareness with rotating axis: $1.0 \mu \mathrm{~m} / 150 \mathrm{~mm}$
Positioning speed: Max. $30 \mathrm{~mm} / \mathrm{s}$ with joystick operation
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Probe and stylus
Measuring range: $\quad \pm 400 \mu \mathrm{~m} / \pm 40 \mu \mathrm{~m} / \pm 4 \mu \mathrm{~m}$
$(\pm 5 \mathrm{~mm}$: tracking range)
Measuring force: $\quad 10 \mathrm{mN} \sim 50 \mathrm{mN}$ (in 5 steps)
Standard stylus: 12AAL021, carbide ball, $\varnothing 1.6 \mathrm{~mm}$
Measuring direction: Two directional
Stylus angle adjustment: $\pm 45^{\circ}$ (with graduations)
Data analysis system
Analysis software: Roundpak
Filter type:
2CRPC-75\%, 2CRPC-50\%, 2CR-75\% (non-phase corrected), 2CR-50\% (non-phase corrected), Gaussian, filter OFF
Cutoff value;
15 upr, 50 upr, 150upr, 500 upr, 1500 upr, 15-150upr, 15-500upr, 15-1500upr, 50-500upr, 50-1500upr, 150-1500upr, Manual setting
Reference circles for roundness evaluation: LSC, MZC, MIC, MCC
Air supply
Air pressure: $\quad 390 \mathrm{kPa}\left(4 \mathrm{kgf} / \mathrm{cm}^{2}\right)$
Air consumption: $30 \mathrm{~L} / \mathrm{min}$.
Power supply: $\quad 100 \mathrm{~V}$ AC $-240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Dimensions (W x D x H): $26.3 \times 20 \times 35.4^{\prime \prime}$
$(667 \times 510 \times 900 \mathrm{~mm})$
$26.3 \times 20 \times 43.3^{\prime \prime}$
($667 \times 510 \times 1100 \mathrm{~mm}$: AH / DH models)
396 lbs (180kg)
$440 \mathrm{lbs}(200 \mathrm{~kg})$ AH / DH models

Printout

Roundtest RA-2200AS / DS / AH / DH

SERIES 211 - Roundness / Cylindricity Measuring System

The RA-2200 provides high accuracy, high speed and high performance in roundness measurement. The fully-automatic, or DAT (Digital Adjustment Table), function-aided manual workpiece centering and leveling turns what used to be a difficult task into one that is simple enough for even new users to
perform. This facilitates substantial reductions in overall measurement time. The RA-2200 system comes complete with powerful data analysis software ROUNDPAK, which requires only simple manipulation using a mouse and icons, achieving enhanced functionality and ease of operation.

Preliminary measurement is followed by automatic centering and leveling.

Preliminary measurement
Preliminary measurement of two cross-sections A and B .

A guidance system (D.A.T.) is incorporated into the turntables on the RA-2200DS/DH models to help the operator perform manual centering and leveling smoothly and simply.
Preliminary measurement of

Feed the digital micrometer head of the turntable by
Centering range: 5 mm
 the deviation displayed.

Simple
adjustment

Centering/leveling complete

$$
+-1+
$$

two cross-sections A and B.

Roundtest RA-2200AS / DS / AH / DH

SERIES 211 - Roundness / Cylindricity Measuring System

Greater productivity by continuous measurement

Both the OD and ID of a workpiece* can be measured in succession without the need for changing the traverse direction of the stylus. *nside diameter up to 50 mm .

Continuous measurement is possible as shown in steps
(1) through (3) on the figure at the left, without having

Highly repeatable measurements with highaccuracy scales Mitutoyo linear scales are used in the XZ drive unit to guarantee the high precision positioning so vital for repetitive measurement.

Surface roughness measurement function (Surface roughness unit: option)

A surface roughness detector, compliant with the relevant International Standards, can be mounted in place of the roundness measuring detector. This creates a multiple sensor system that can not only test the geometrical roundness/ cylindricity of a surface but also the roughness of that surface as well.

SPECIFICATIONS

Model No.	RA-2200AS	RA-2200DS	RA-2200AH	RA-2200DH
Order No.	$\mathbf{2 1 1 - 5 1 1 A}(\mathrm{mm} / \mathrm{inch})$	$\mathbf{2 1 1 - 5 1 4 A}$ (inch)	$\mathbf{2 1 1 - 5 1 2 A}(\mathrm{mm} / \mathrm{inch})$	$\mathbf{2 1 1 - 5 1 6 A}$ (inch)
Effective table diameter	$9.25^{\prime \prime}(235 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$	$9.25^{\prime \prime}(235 \mathrm{~mm})$	$8^{\prime \prime}(200 \mathrm{~mm})$
Centering/leveling adjustment	A.A.T.	D.A.T.	A.A.T.	D.A.T.
Centering range	$\pm 0.118^{\prime \prime}(\pm 3 \mathrm{~mm})$	$\pm 0.197^{\prime \prime}(\pm 5 \mathrm{~mm})$	$\pm 0.118^{\prime \prime}(\pm 3 \mathrm{~mm})$	$\pm 0.197^{\prime \prime}(\pm 5 \mathrm{~mm})$
Column travel	$12^{\prime \prime}(300 \mathrm{~mm})$ (standard column)	$20^{\prime \prime}(500 \mathrm{~mm})$ (high column)		
Basic unit mass	$396 \mathrm{lbs}.(180 \mathrm{~kg})$	$440 \mathrm{lbs} .(200 \mathrm{~kg})$		

DIMENSIONS

Optional Accessories

350850: Cylindrical square
356038: Auxiliary stage for a low-height workpiece
12AAF203: Extension probe holder (2X higher)
12AAF204: Auxiliary probe holder for a large diameter workpiece
211-045: Magnification checking gage
211-014: Chuck (OD: 1-85mm, ID: 33-85mm)
211-032: Quick chuck (OD: 1 - 75 mm , ID: $14-70 \mathrm{~mm}$)
211-031: Micro-chuck (OD: 1.5 mm max.)
178-025: Vibration isolator
178-024: Stand for vibration isolator
Interchangeable styli (See page J-49.)
12AAK110: Vibration isolator
12AAK120: Monitor arm
12AAL019: Side table for PC
12AAF353: Surface roughness detector holder

211-045

Sliding detector-unit holder (Standard) 12AAL090
The detector-unit holder is equipped with a sliding mechanism, enabling one-touch measurement of a workpiece with a deep hole having a thick wall, which has been difficult with the conventional standard arm.

Sliding distance: 4.4"(112mm)
The detector-unit holder can be stopped at a position sufficiently higher than the workpiece along the Z-axis, and then lowered and positioned to make measurements.
Furthermore, internal/external diameters can be easily measured with the continuous internal/external diameter measurement function*.
*: See page 41 for details about the continuous ID and OD measuring function.

12AAF203
Unit: mm

Technical Data

Turntable
Rotational accuracy (radial): $\{(0.02+3.5 \mathrm{H} / 10000) \mu \mathrm{m}\}$ Rotational accuracy (axial): $\{(0.02+3.5 \mathrm{X} / 10000) \mu \mathrm{m}\}$ H: Probing height (mm), X: Distance from the turntable axis (mm)
Rotating speed: $\quad 2,4,6,10 \mathrm{rpm}$ (20rpm: auto-centering)
Table top diameter: $\varnothing 11.8^{\prime \prime}$ (300 mm)
Centering range: $\pm 5 \mathrm{~mm}$
Leveling range: $\quad \pm 1^{\circ}$
Maximum probing diameter: ø 15.7" (400mm)
Maximum workpiece diameter: $\varnothing 26.8^{\prime \prime}(680 \mathrm{~mm})$
Maximum workpiece weight: 176 lbs (80 kg)
143 lbs (65kg): auto-centering
Vertical column (Z-axis)
Vertical travel: $\quad 13.8^{\prime \prime}(350 \mathrm{~mm})$, ($21.7^{\prime \prime}(550 \mathrm{~mm}$): AH model)
Straightness ($\lambda c 2.5$): $0.05 \mu \mathrm{~m} / 100 \mathrm{~mm}, 0.14 \mu \mathrm{~m} / 350 \mathrm{~mm}$ ($0.2 \mu \mathrm{~m} / 550 \mathrm{~mm}$: AH model)
Parallelism with rotating axis: $0.2 \mu \mathrm{~m} / 350 \mathrm{~mm}$ ($0.32 \mu \mathrm{~m} / 550 \mathrm{~mm}$: AH model)
Positioning speed: $\quad \mathrm{Max} .60 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Maximum probing height: $13.8^{\prime \prime}(350 \mathrm{~mm}$) (OD /ID)
[21.7" (550mm) (OD /ID): AH model)
Maximum probing depth: over ø32: 85 mm (w/standard stylus) over $\varnothing 7: 50 \mathrm{~mm}$ (w/standard stylus)
Horizontal arm (X-axis)
Horizontal travel: $\quad 8.9^{\prime \prime}(225 \mathrm{~mm})$
Straightness ($\lambda c 2.5$): $0.4 \mu \mathrm{~m} / 200 \mathrm{~mm}$
Squareness with rotating axis: $0.5 \mu \mathrm{~m} / 200 \mathrm{~mm}$
Positioning speed: Max. $50 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Probe and stylus
Measuring range: $\quad \pm 400 \mu \mathrm{~m}$ ($\pm 5 \mathrm{~mm}$: tracking range)
Measuring force: $\quad 10 \mathrm{mN} \sim 50 \mathrm{mN}$ (in 5 steps)
Standard stylus: 12AAL021, carbide ball, $\varnothing 1.6 \mathrm{~mm}$
Measuring direction: Two directional
Stylus angle adjustment: $\pm 45^{\circ}$ (with graduations)
Data analysis system
Analysis software: Roundpak
Filter type:
2CRPC-75\%, 2CRPC-50\%, 2CR-75\% (non-phase corrected), 2CR-50\% (non-phase corrected), Gaussian, filter OFF
Cutoff value;
15upr, 50upr, 150upr, 500upr, 1500upr,
15-150upr, 15-500upr, 15-1500upr, 50-500upr, 501500upr, 150-1500upr, Manual setting
Reference circles for roundness evaluation: LSC, MZC, MIC, MCC
Air supply
Air pressure: $\quad 390 \mathrm{kPa}\left(4 \mathrm{~kg} / \mathrm{cm}^{2}\right)$
Air consumption: $45 \mathrm{~L} / \mathrm{min}$.
Power supply: $\quad 100 \mathrm{~V} \mathrm{AC}-240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Dimensions (W x D x H): $49.6 \times 28.0 \times 66.9^{\prime \prime}$
$(1260 \times 710 \times 1700 \mathrm{~mm})$
$49.6 \times 28.0 \times 74.8^{\prime \prime}$
($1260 \times 710 \times 1900 \mathrm{~mm}$: AH model)
Mass: Main unit: 14331 lbs . 650 kg) 1477 lbs . (670kg): AH model
Vibration isolator:
375 lbs (170kg)

Roundtest RA-H5200AS / AH

SERIES 211 - Roundness / Cylindricity Measuring System

RA-H5200AS / AH, a roundness/cylindricity measuring system developed to combine world-class accuracy with maneuverability/ high-analysis capability.

High-accuracy automatic centering/leveling turntable

A highly accurate, highly rigid turntable has been achieved through exceptional manufacturing accuracy of the critical components, such as the rotor and stator, in addition to an airbearing incorporating a complex aperture that provides superior rigidity and uniform pressure distribution. As a result, the rotational accuracy (radial), which is the heart of the roundness/ cylindricity measuring system, is a world-class $(0.02+3.5 \mathrm{H} / 10000) \mathrm{\mu m}$.

Enhanced detector safety functions, such as accidental touch and collision detection, is installed to minimize damage to both machine and workpieces.

RA-H5200AS
with personal computer system and software

Automatic continuous OD/ID measurement

Automatic measurement can be performed continuously from external diameter to internal diameter without having to change the probe position. This not only reduces measurement time, but eliminates the error factors otherwise involved in changing the probe position, greatly facilitating high-accuracy measurement.
The automatic centering/leveling mechanism incorporates a high-precision glass scale on each axis of the turntable. This allows feedback to be generated that prevents positioning errors from affecting centering/leveling adjustments. The highspeed, automatic, centering/leveling capability achieved greatly contributes to reducing the total measurement time from workpiece setting to workpiece measurement.

Roundtest RA-H5200AS / AH

SERIES 211 - Roundness / Cylindricity Measuring System

X-axis tracking measurement

Because of the linear scale incorporated into the X-axis, measurement can be performed by tracking the workpiece surface (tracking range: $\pm 5 \mathrm{~mm}$). This function is effective for measuring a workpiece with a displacement that exceeds the detection range of the probe in measuring roundness/cylindricity or a taper that is determined with slider/column movement.

Surface roughness measurement function (Surface roughness unit: option)

A surface roughness detector, compliant with the relevant international standards, can be mounted in place of the roundness measuring detector. This creates a multiple sensor system that can not only test the geometrical roundness/ cylindricity of a surface, but also the roughness of that surface.

Top / bottom / internal / external surfaces

circumferential direction

Roughness in horizontal and vertical directions

SPECIFICATIONS

Model No.	RA-H5200AS	RA-H5200AH
Order No. * with vibration isolating stand	$211-531 \mathrm{~A}$	$211-532 \mathrm{~A}$
Column travel	$13.77^{\prime \prime}$ (350mm) (standard column)	$21.65^{\prime \prime}$ (550mm) (high column)

DIMENSIONS

Unit: mm

Optional Accessories

350850: Cylindrical square
12AAF203: Extension probe holder (2X higher)
12AAF205: Extension probe holder (3X higher)
12AAF204: Auxiliary probe holder for a large diameter workpiece
211-045: Magnification calibration gage
211-014: Chuck (OD: 2 - 78 mm , ID: 25 -68mm)
211-032: Quick chuck (OD: 1-79mm, ID: 16-69mm)
211-031: Micro-chuck (OD: 0.1~1.5mm max.)
12AAB598: Protective shield
Interchangeable styli (See page J-49.)
12AAL019: Side table for PC

211-032

350850

Sliding detector-unit holder (Standard) 12AAL090
The detector-unit holder is equipped with a sliding mechanism, enabling one-touch measurement of a workpiece with a deep hole having a thick wall, which has been difficult with the conventional standard arm.

Sliding distance: 4.4" (112mm)
The detector-unit holder can be stopped at a position sufficiently higher than the workpiece along the Z-axis, and then lowered and positioned to make measurements.
Furthermore, internal/external diameters can be easily measured with the continuous internal/external diameter measurement function*.
*: See page 41 for details about the continuous ID and OD measuring function.

Technical Data: RA-2200CNC

Turntable
Rotational accuracy (radial): : $(0.02+3.5 \mathrm{H} / 10000) \mathrm{um}\}$
Rotational accuracy (axial): $\{(0.02+3.5 \mathrm{X} / 10000) \mathrm{um}\}$ H: Probing height (mm), X: Distance from the turntable axis ($m \mathrm{~m}$)
Rotating speed: $\quad 2,4,6,10 \mathrm{rpm}$
Tabletop diameter: $\quad \varnothing 9.25^{\prime \prime}$ (235 mm)
Centering range: $\pm 3 \mathrm{~mm}$
Leveling range: $\quad \pm 1^{\circ}$
Maximum probing diameter: $\varnothing 10.1^{\prime \prime}(256 \mathrm{~mm})$
Maximum workpiece diameter: ø $22.8^{\prime \prime}(580 \mathrm{~mm}$)
Maximum workpiece weight: 66 lbs (30 kg)
Vertical column (Z-axis)
Vertical travel: $\quad 11.8^{\prime \prime}(300 \mathrm{~mm}) 19.7^{\prime \prime}(500 \mathrm{~mm}: 2200 \mathrm{H}$ model)
Straightness (c2.5): $\quad 0.10 \mu \mathrm{~m} / 100 \mathrm{~mm}, 0.15 \mu \mathrm{~m} / 300 \mathrm{~mm}$ ($0.25 \mu \mathrm{~m} / 500 \mathrm{~mm}: 2200 \mathrm{H}$ model)
Parallelism with rotating axis: $0.7 \mu \mathrm{~m} / 300 \mathrm{~mm}$
($1.2 \mathrm{~mm} / 500 \mathrm{~mm}: 2200 \mathrm{H}$ model)
Positioning speed: Max. $50 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Maximum probing height: $11.8^{\prime \prime}$ (300 mm) (OD /ID) [19.7" (500 mm) (OD /ID): 2200H model]
Maximum probing depth: over $\varnothing 32$: 104 mm (w/standard stylus)
Horizontal arm (X-axis)
Horizontal travel:
6.9" $(175 \mathrm{~mm})$ (Including a protrusion of $1^{\prime \prime}$ (25 mm) the turntable rotation center)
Straightness (c2.5): $\quad 0.7 \mu \mathrm{~m} / 150 \mathrm{~mm}$
Squareness with rotating axis: $1.0 \mu \mathrm{~m} / 150 \mathrm{~mm}$
Positioning speed: Max. $30 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Probe and stylus
Measuring range: $\quad \pm 400 \mu \mathrm{~m} / \pm 40 \mu \mathrm{~m} / \pm 4 \mu \mathrm{~m}$ ($\pm 5 \mathrm{~mm}$: tracking range)
Measuring force: $\quad 40 \mathrm{mN}$ (not adjustable)
Standard stylus:
Measuring directio 12AAE301, carbide ball, $\varnothing 1.6 \mathrm{~mm}$
Measuring direction: one direction
Stylus angle adjustment: $\pm 45^{\circ}$ (with graduations)
Air supply
Air pressure: $\quad 390 \mathrm{kPa}\left(4 \mathrm{~kg} / \mathrm{cm}^{2}\right)$
Air consumption:
Power supply:
Dimensions $(W \times D \times H)$ $100 \mathrm{VAC}-240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ $26.3 \times 20 \times 35.4^{\prime \prime}$ $(667 \times 510 \times 900 \mathrm{~mm})$ $\left(26.3 \times 20 \times 43.3^{\prime \prime}\right.$ ($667 \times 510 \times 1100 \mathrm{~mm}$): 2200 H model) Mass: $\quad 397 \mathrm{lbs}(180 \mathrm{~kg})$ (441 lbs (200kg): 2200H model)

Technical Data: RA-H5200CNC

Turntable
Rotational accuracy (radial): : $(8+.35 \mathrm{H})$ uin $\{(0.02+3.5 \mathrm{H} / 10000) \mu \mathrm{m}\}$ Rotational accuracy (axial): $(.8+35 X) \mu$ in $\{(0.02+3.5 \mathrm{X} / 10000) \mu \mathrm{m}\}$ H: Probing height (mm), X: Distance from the turntable axis (mm)
Rotating speed: $\quad 2,4,6,10 \mathrm{rpm}$ (20rpm: auto-centering)
Table top diameter: $\varnothing 300 \mathrm{~mm}$
Centering range: $\pm 5 \mathrm{~mm}$
Leveling range: $\pm 1^{\circ}$
Maximum probing diameter: $\varnothing 14^{\prime \prime}$ (356 mm)
Maximum workpiece diameter: ø $26.8^{\prime \prime}(680 \mathrm{~mm})$
Maximum workpiece weight: 176 lbs (80 kg)
143 lbs (65 kg): auto-centering
Vertical column (Z-axis)
Vertical travel: $\quad 13.7^{\prime \prime}(350 \mathrm{~mm}) 21.7^{\prime \prime}(550 \mathrm{~mm})$: H5200H model
Straightness ($\lambda \mathrm{c} 2.5$): $0.05 \mu \mathrm{~m} / 100 \mathrm{~mm}, 0.14 \mu \mathrm{~m} / 350 \mathrm{~mm}$
($0.2 \mu \mathrm{~m} / 550 \mathrm{~mm}: \mathrm{H} 5200 \mathrm{H}$ model)
Parallelism with rotating axis: $0.2 \mu \mathrm{~m} / 350 \mathrm{~mm}$
($0.32 \mu \mathrm{~m} / 550 \mathrm{~mm}$: H5200H model)
Positioning speed: Max. $60 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Maximum probing height: $13.7^{\prime \prime}(350 \mathrm{~mm})$ (OD /ID)
[21.7" (550 mm) (OD / ID): H5200H model)
Maximum probing depth: over $\varnothing 32$: 104 mm (w/standard stylus) over ø12.7: 26 mm (w/standard stylus)
Horizontal arm (X-axis)
Horizontal travel: $\quad 8.8^{\prime \prime}(225 \mathrm{~mm})$
Straightness ($\lambda c 2.5$): $0.4 \mu \mathrm{~m} / 200 \mathrm{~mm}$
Squareness with rotating axis: $0.5 \mu \mathrm{~m} / 200 \mathrm{~mm}$
Positioning speed: Max. $50 \mathrm{~mm} / \mathrm{s}$
Measuring speed: $\quad 0.5,1,2,5 \mathrm{~mm} / \mathrm{s}$
Probe and stylus
Measuring range: $\quad \pm 400 \mu \mathrm{~m}(\pm 5 \mathrm{~mm}$: tracking range)
Measuring force: $\quad 40 \mathrm{mN}$ (not adjustable)
Standard stylus: 12AAE301, carbide ball, $\varnothing 1.6 \mathrm{~mm}$
Measuring direction: one direction
Stylus angle adjustment: $\pm 45^{\circ}$ (with graduations)
Air supply
Air pressure: $\quad 390 \mathrm{kPa}\left(4 \mathrm{kgf} / \mathrm{cm}^{2}\right)$
Air consumption: 45L/min.
Power supply:
$100 \mathrm{~V} \mathrm{AC}-240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Dimensions (W x D x H): $49.6 \times 28.0 \times 66.9^{\prime \prime}$
($1260 \times 710 \times 1700 \mathrm{~mm}$)
$49.6 \times 28.0 \times 74.8^{\prime \prime}$
($1260 \times 710 \times 1900 \mathrm{~mm}$: H 5200 H model)
Mass: Main unit: $1433 \mathrm{lbs}(650 \mathrm{~kg})$
1477 lbs (670 kg): H5200H (model)
Vibration isolator:
375 lbs (170kg)

Roundtest Extreme RA-2200CNC / RA-H5200CNC

SERIES 211 - CNC Roundness, Cylindricity and Surface Roughness Measuring System

Mitutoyo offers innovative roundness/ cylindricity measuring systems capable of automated measurement with independent/ simultaneous multi-axis CNC control. In addition to high measuring accuracy and reliability, these CNC models provide excellent inspection productivity.
Roundness and surface roughness measurements are both available from a single measuring system so workpiece resetting for roughness measurement is directions.

Roundtest Extreme RA-2200CNC / RA-H5200CNC

SERIES 211 - CNC Roundness, Cylindricity and Surface Roughness Measuring System

ROUNDPAK

Off-line measurement procedure programming function

On-screen virtual 3 S simulation measurements can be performed with the incorporated off-line teaching function that allows a part program (measurement procedure) to be created without an objective workpiece. The probe and the holder unit of the Roundtest Extreme can be precisely represented and an alarm can be raised to indicate that there is a collision risk predicted by the simulation.

$3 D$ simulation screens (work-view windows) can be generated after entering CAD data (in IGES, DXF form) and text data.

SPECIFICATIONS

Model No.	EXTREME RA-2200S CNC	EXTREME RA-2200H CNC
Order No.	211-517A	$211-518 \mathrm{~A}$
Column travel	$11.8^{\prime \prime}(300 \mathrm{~mm})$ (standard column)	$19.7^{\prime \prime}(500 \mathrm{~mm})$ (high column)
Model No.	EXTREME RA-H5200S CNC	EXTREME RA-H5200H CNC
Order No. with vibration isolating stand	211-533A	$211-534 \mathrm{~A}$
Column travel	$13.77^{\prime \prime}(350 \mathrm{~mm})$ (standard column)	$21.65{ }^{\prime \prime}(550 \mathrm{~mm})$ (high column)

DIMENSIONS

MiCAT
the standard in world metrology software FORM

Optional Accessories

350850:	Cylindrical square
211-045:	Magnification calibration gage
211-014:	Chuck (OD: $1-78 \mathrm{~mm}$, ID: $25-68 \mathrm{~mm}$)
211-032:	Quick chuck (OD: $1-79 \mathrm{~mm}$, ID: $16-69 \mathrm{~mm}$)
211-031:	Micro-chuck (OD: 0.1~1.5mm max.)
12AAB598:	Protective shield (RA-H5200 only)
12AAK110:	Interchangeable styli (See page J-49.)
12AAK120:	Monion isolator (RA-2200 only) (RA-2200 only)
12AAL019:	Side table for PC
12AAG419:	Surface roughness detector for RA-CNC

64AAB524 Workstation

Dimensions

Overall: $36 \times 30 \times 24-32^{\prime \prime}(W \times D \times H)$
Cord Bin: 4 " $h \times 5-3 / 8^{\prime \prime} \mathrm{d}$ (width is $10^{\prime \prime}$ less than table width) Distance From Front Edge to Cord Bin: 30 " d table $-15-1 / 2^{\prime \prime} \mathrm{d}$ Distance Between Legs: 10 " less than the overall table width

Work surface feature a $1^{\prime \prime}, 45 \mathrm{lb}$ density, furniture board substrate with attractive Gray laminate tabletop brimmed with bullnose edge band in Quartz gray color. Work surface is height adjustable in one inch increments from $24^{\prime \prime}$ to $32^{\prime \prime}$.

Tabletop incorporates metal threaded inserts on the underside to affix the leg assemblies for added strength and durability. Table comes with 4" casters with two as locking type for stationary placement.
*Laptop PC not included with table.

Optional Styli for Roundtest

Interchangeable Styli for RA-120, RA-120P, RA-1600/M, RA-2200, RA-H5200

Application/Type	Standard (Standard accessory)	Notch	Deep groove	Corner	Cutter mark
Order No.	12AALO21*	12AAL022	12AAL023	12AAL024	12AAL025
Stylus tip	¢1.6 mm tungsten carbide	ø mm tungsten carbide	SR0.25mm sapphire	SR0.25mm sapphire	tungsten carbide
Dimensions (mm)		Included in 5-pcs. styli set No. 12AAL020	Included in 5-pcs. styli set No. 12AALO20		
Application/Type	Small hole (ø0.8)	Small hole (ø1.0)	Small hole (ø1.6)	Extra small hole (Depth 3mm)	$\varnothing 1.6$ mm ball
Order No.	12AAL026	12AAL027	12AAL028	12AAL029	12AAL030
Stylus tip	$\emptyset 0.8$ mm tungsten carbide	ø1 mm tungsten carbide	ø1.6 mm tungsten carbide	$\varnothing 0.5 \mathrm{~mm}$ tungsten carbide	¢1.6 mm tungsten carbide
Dimensions (mm)		Included in 5-pcs. styli set No. 12AAL020			Included in 5-pcs. styli set No. 12AALO20
Application/Type	Disk	Crank (ø0.5)	Crank (ø1.0)	Flat surface	2X-long type**
Order No.	12AAL031	12AAL032	12AAL033	12AAL034	12AAL035
Stylus tip	ø12 mm tungsten carbide	$\varnothing 0.5 \mathrm{~mm}$ tungsten carbide (Depth 2.5 mm)	ø1 mm tungsten carbide (Depth 5.5 mm)	tungsten carbide	ø1.6 mm tungsten carbide
Dimensions (mm)					
Application/Type	2X-long type notch**	2X-long type deep groove**	2X-long type corner**	2X-long type cutter mark**	2X-long type Small hole**
Order No.	12AAL036	12AAL037	12AAL038	12AAL039	12AAL040
Stylus tip	ø3 mm tungsten carbide	SR0.25 mm sapphire	SR0. 25 mm sapphire	tungsten carbide	ø1 mm tungsten carbide
Dimensions (mm)					
Application/Type	3X-long type**	3X-long type deep groove**	Stylus shank	Stylus shank (standard groove)	Stylus shank (2X-long groove)**
Order No.	12AAL041	12AAL042	12AAL043	12AAL044	12AAL045
Stylus tip	ø1.6 mm tungsten carbide	SRO. 25 mm sapphire	For mounting CMM stylus (mounting thread M2)	For mounting CMM stylus (mounting thread M2)	For mounting CMM stylus (mounting thread M2)
Dimensions (mm)					

* 12AAL021 is a standard accessory for all Roundtest models.
** Not available for RA-10, RA-120/P and RA-220
Measuring is only in the vertical direction. Measuring magnification of 20000X is available using the 2 X -long stylus. Customized special interchangeable styli are available on request. Please contact any Mitutoyo office for more information. \dagger New design for holding styli is not shown in above illustrations
New styli for RA-2200 / H5200 are compatible with old RA-2100 / H5100 detectors.
Old styli for RA-2100 / H5100 are NOT compatible with new RA-2200 / H5200 detectors.

5 pc. Stylus set: 12AAL020

Part No.	Part Description
12AAL022	Stylus for notched workpiece
12AAL023	Stylus for deep groove
12AAL027	Stylus for small hole (1.0mm)
12AAL030	1.6mm ball stylus
12AAL035	2X-long type stylus

M2 CMM stylus with ruby ball tip
M2 CMM stylus with ruby ball tip
K

Optional Styli for Roundtest

Interchangeable Styli for

RA-2200 CNC, RA-H5200 CNC

Application/Type	Groove	Flat surface	General purpose	Notch
Order No.	12AAE310	12AAE302	12AAE301	12AAE309
Stylus tip	$\varnothing 1.6$ mm tungsten carbide	$\varnothing 1.6$ mm tungsten carbide	ø1.6 mm tungsten carbide	$\varnothing 3 \mathrm{~mm}$ tungsten carbide
Dimensions (mm)				
Application/Type	$\varnothing 1.6 \mathrm{~mm}$ ball	$\varnothing 0.8$ mm ball	$\varnothing 0.5 \mathrm{~mm}$ ball	Deep groove
Order No.	12AAE303	12AAE304	12AAE305	12AAE308
Stylus tip	$\varnothing 1.6$ mm tungsten carbide	$\varnothing 0.8$ mm tungsten carbide	$\varnothing 0.5$ mm tungsten carbide	$\varnothing 1.6$ mm tungsten carbide
Dimensions (mm)				

| Application/Type | Deep hole A | Deep hole B |
| :--- | :---: | :---: | :---: |
| Order No. | 12AAE306 | 12AAE307 |
| Stylus tip | $\varnothing 1.6 \mathrm{~mm}$ tungsten carbide | O1.6 mm tungsten carbide |
| | | |

Analysis options			$\begin{aligned} & \text { RA-H5200CNC/ } \\ & \text { RA-H5200 } \end{aligned}$	$\begin{gathered} \text { RA-2200CNC/ } \\ \text { RA-2200 } \end{gathered}$	RA-1600	RA-1600M	RA-120P	RA-120
Roundness		\bigcirc	-	-	-	-	-	-
Cylindricity		0	-	-	-	-	-	-
Concentricit		(0)	-	-	-	-	-	\bigcirc
Coaxiality	axiselement	(-)	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
	Axis-axis		-	-	-	-	-	-
Flatness		\square	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
Parallelism		11	-	-	\bigcirc	A	-	\bigcirc
Perpendicularity		\perp	-	-	-	\bigcirc	-	\bigcirc
Runout		1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
Total runout		44	-	-	-	A	-	-
Straightness		-	-	-	\bigcirc	-	-	-
Inclination		/	-	-	-	-	-	-
Taper		$/ 1$	\bigcirc	-	\bigcirc	A	-	-

- Full measurment capability
- Limited measurement capability; R-Axis must be stationary.

Optional Accessories for Roundtest

Centering chuck (ring operated)

211-032

Suitable for holding small parts with easy-to-operate knurled-ring clamping

- Holding capacity:

Internal jaws: $O D=1-36 \mathrm{~mm}, \mathrm{ID}=14-70 \mathrm{~mm}$.
External jaws: $O D=1-75 \mathrm{~mm}$.

- External dimensions: ø118x41 mm
- Mass: 1.2 kg

Centering chuck (key operated)

211-014

Suitable for holding longer parts and those requiring a relatively powerful clamp.

- Holding capacity:

Internal jaws: $O D=1-35 \mathrm{~mm}$, $I D=33-85 \mathrm{~mm}$
External jaws: OD $=30-80 \mathrm{~mm}$

- External dimensions: $\varnothing 157 \times 76 \mathrm{~mm}$
- Mass: 3.8 kg

Code No.	Dimensions	Load Capacity
64AAB357	$30 \times 48 \times 30^{" 1}$	1300 lbs

211-016
 Reference Hemisphere

Micro-chuck
211-031
Used for clamping a workpiece (less than $\varnothing 1 \mathrm{~mm}$ dia.) that the centering chuck cannot handle.

- Holding capacity: up to $\varnothing 1.5 \mathrm{~mm}$
- External dimensions: $\varnothing 118 \times 48.5 \mathrm{~mm}$
- Mass: 0.8kg

Magnification calibration gage 211-045

Used for normalizing detector magnification by calibrating detector travel against displacement of a micrometer spindle.

- Maximum calibration range: $400 \mu \mathrm{~m}$
- Graduation: $0.2 \mu \mathrm{~m}$
- Mass: 4kg

- Used for measuring a workpiece whose diameter is 20 mm or shorter and whose height is 20 mm or lower.

Magnification checking kit* 997090

- A combination of gage blocks and an optical flat.
* Standard accessory for RA-2200, RA-2200CNC, RA-H5200 and RA-H5200CNC

[^3]
Eco-Fix Kit Form-S

Mitutoyo ECO-FIX Kit Fixture Systems

Part No.	Qty.	Part name	Part No.	Qty.	Part name
K551038	1	Adaptor plate ø 150mm	K551069	1	Flat top $\varnothing 12 \mathrm{~mm}$
K551024	1	Location pin $\varnothing 12 \times 13 \mathrm{~mm}$	K550262	1	V-block mini
K551025	1	Location pin $\varnothing 12 \times 25 \mathrm{~mm}$	K550261	2	Cone receiver mini
K551026	1	Location pin $\varnothing 12 \times 50 \mathrm{~mm}$	K550250	1	Stopper element mini
K551027	1	Location pin $\varnothing 12 \times 100 \mathrm{~mm}$	K550247	1	Back square mini
K551028	1	Location pin $\varnothing 20 \times 13 \mathrm{~mm}$	K550888	2	Straight pin $\varnothing 6 \mathrm{~mm} \times 20 \mathrm{~mm}$
K551029	1	Location pin $\varnothing 20 \times 25 \mathrm{~mm}$	K550889	2	Straight pin $\varnothing 6 \mathrm{~mm} \times 30 \mathrm{~mm}$
K551030	1	Location pin $\varnothing 20 \times 50 \mathrm{~mm}$	K550890	2	Straight pin $\varnothing 6 \mathrm{~mm} \times 40 \mathrm{~mm}$
K551031	1	Location pin $\varnothing 20 \times 100 \mathrm{~mm}$	K551046	1	Slotted nut for receiver bracket $\mathrm{h}=12 \mathrm{~mm}$
K551035	1	Receiver bracket small	K551050	1	Allen key 2mm
K551036	1	Receiver bracket large	K551051	1	Allen key 3mm
K551040	1	Adjustable location pin $\varnothing 20 \mathrm{~mm}$	K551052	1	Allen key 4mm
K551041	1	Adjustable location pin $\varnothing 12 \mathrm{~mm}$	K551053	1	Allen key 5mm
K551042	3	Location pin $\varnothing 12 \mathrm{~mm}$ with bore $\varnothing 6 \mathrm{~mm}$	K551054	1	Double open ended spanner 10-17
K551044	1	Receiver bracket $\mathrm{L}=90 ; \varnothing 12 \mathrm{~mm}$	K550591	1	Washer $\varnothing 6,4 \mathrm{~mm} / \varnothing 17 \mathrm{~mm}$
K550716	1	Straight pin with thread	K550110	8	Cylinder head screw M6 x 20 mm
K550279	1	Spring clip, $\mathrm{d}=8 \mathrm{~mm}$, $\mathrm{L}=60 \mathrm{~mm}$	K550563	6	Cylinder head screw M6 x 25 mm
Kit Part No.			K551133		

Eco-Fix Kit Form-L

Part No.	Qty.	Part name	Part No.	Qty.	Part name
K551039	1	Adaptor plate ø 200mm	K550247	1	Back square mini
K551024	1	Location pin $\varnothing 12 \times 13 \mathrm{~mm}$	K550058	1	V-block
K551025	1	Location pin $\varnothing 12 \times 25 \mathrm{~mm}$	K550365	2	Cone receiver
K551026	1	Location pin $\varnothing 12 \times 50 \mathrm{~mm}$	K550982	1	Stopper element
K551027	2	Location pin $\varnothing 12 \times 100 \mathrm{~mm}$	K550248	1	Back square
K551028	2	Location pin $\varnothing 20 \times 13 \mathrm{~mm}$	K550888	2	Straight pin $\varnothing 6 \mathrm{~mm} \times 20 \mathrm{~mm}$
K551029	2	Location pin $\varnothing 20 \times 25 \mathrm{~mm}$	K550889	2	Straight pin $\varnothing 6 \mathrm{~mm} \times 30 \mathrm{~mm}$
K551030	2	Location pin $\varnothing 20 \times 50 \mathrm{~mm}$	K550890	2	Straight pin $\varnothing 6 \mathrm{~mm} \times 40 \mathrm{~mm}$
K551031	1	Location pin $\varnothing 20 \times 100 \mathrm{~mm}$	K550000	2	Straight pin $\varnothing 8 \mathrm{~mm} \times 30 \mathrm{~mm}$
K551035	1	Receiver bracket small	K550001	2	Straight pin $\varnothing 8 \mathrm{~mm} \times 50 \mathrm{~mm}$
K551036	1	Receiver bracket large	K550002	2	Straight pin $\varnothing 8 \mathrm{~mm} \times 95 \mathrm{~mm}$
K551040	2	Adjustable location pin $\varnothing 20 \mathrm{~mm}$	K551046	1	Slotted Nut for receiver bracket $h=12 \mathrm{~mm}$
K551041	1	Adjustable location pin $\varnothing 12 \mathrm{~mm}$	K551047	1	Slotted Nut for receiver bracket $h=15 \mathrm{~mm}$
K551042	2	Location pin $\varnothing 12 \mathrm{~mm}$ with bore $\varnothing 6 \mathrm{~mm}$	K551050	1	Allen key 2mm
K551043	3	Location pin $\varnothing 20 \mathrm{~mm}$ with bore $\varnothing 8 \mathrm{~mm}$	K551051	1	Allen key 3 mm
K551044	1	Receiver bracket $\mathrm{L}=90 ; \varnothing 12 \mathrm{~mm}$	K551052	1	Allen key 4mm
K551045	1	Receiver bracket $\mathrm{L}=120 ; ~ ¢ 20 \mathrm{~mm}$	K551053	1	Allen key 5 mm
K550279	2	Spring clip, $\mathrm{d}=8 \mathrm{~mm}$, $\mathrm{L}=60 \mathrm{~mm}$	K550591	1	Washer $\varnothing 6,4 \mathrm{~mm} / \varnothing 17 \mathrm{~mm}$
K550262	1	V-block mini	K550110	12	Cylinder head screw M6 $\times 20 \mathrm{~mm}$
K550261	2	Cone receiver mini	K550563	6	Cylinder head screw M6 x 25 mm
K550250	1	Stopper element mini			
Kit Part No.			K551134		

Quick Guide to Precision Measuring Instruments

Roundtest (Roundform Measuring Instruments)

JIS B 7451-1997: Roundness measuring instruments

JIS B 0621-1984: Definition and notation of geometric deviations
JIS B 0021-1998: Geometric property specifications touching of products-Geometric tolerance Roundness Testing

OR
 Roundness

Any circumferential line must be contained within the tolerance zone formed between two coplanar circles with a difference in radii of t

© Concentricity
The center point must be contained within the tolerance zone formed by a circle of diameter t concentric with the datum

- Straightness

Any line on the surface must lie within the tolerance zone formed between two parallel straight lines a distance t apart and in the direction specified

© Coaxiality
The axis must be contained within the tolerance zone formed by a cylinder of diameter t concentric with the datum

1 Circular Runout

The line must be contained within the tolerance zone formed between two coplanar and/or concentric circles a distance t apart concentric with or perpendicular to the datum

Adjustment prior to Measurement

Centering

A displacement offset (eccentricity) between the Roundtest's rotary table axis and that of the workpiece results in distortion of the measured form (limaçon error) and consequentially produces an error in the calculated roundness value. The larger the eccentricity, the larger is the error in calculated roundness. Therefore the workpiece should be centered (axes made coincident) before measurement. Some roundness testers support accurate measurement with a limaçon error correction function The effectiveness of this function can be seen in the graph below.

\square Flatness
The surface must be contained within the tolerance zone formed between two parallel planes a distance tapart

\perp Perpendicularity
The line or surface must be contained within the tolerance zone formed between two planes a distance t apart and perpendicular to the datum

14 Total Runout

The surface must be contained within the tolerance zone formed between two coaxial cylinders with a difference in radii of t, or planes a distance t apart, concentric with or perpendicular to the datum

C/Cylindricity
The surface must be contained within the tolerance zone formed between two coaxial cylinders with a difference in radii of t

Leveling
Any inclination of the axis of a workpiece with respect to the rotational axis of the measuring instrument will cause an elliptic error. Leveling must be performed so that these axes are sufficiently parallel.

Effect of Filter Settings on the Measured Profile
Roundness values as measured are greatly affected by variation of filter cutoff value. It is necessary to set the filter appropriately for the evaluation required.

Evaluating the Measured Profile Roundness
Roundness testers use the measurement data to generate reference circles whose dimensions define the roundness value. There are four methods of generating these circles, as shown below, and each method has individual characteristics so the method that best matches the function of the workpiece should be chosen.

Minimum Circumscribed
Minimum Circumscribed
Circle (MCC) Method
The smallest circle that can enclose the measured profile is created. The
roundness figure is then defined as the maximum departure of the The smallest circle that can enclose the measured profile is created. The
roundness figure is then defined as the maximum departure of the
profile from this circle. This circle is sometimes referred to as the 'ring profile from this circle. This circle is sometimes referred to as the 'ring
gage' circle.

 then defined as the radial separation of these two circles.

Undulations Per Revolution (UPR) data in the roundness graphs

Measurement result graphs

A 1 UPR condition indicates eccentricity of the workpiece relative to the rotational axis of the measuring instrument. The amplitude of undulation components depends on the leveling adjustment.

A 2 UPR condition may indicate: (1) insufficient leveling adjustment on the measuring instrument; (2) circular runout due to incorrect mounting of the workpiece on the machine tool that created its shape; (3) the form of the workpiece is elliptical by design as in, for example, an IC-engine piston.

A 3 to 5 UPR condition may indicate: (1) Deformation due to over-tightening of the holding chuck on the measuring instrument; (2) Relaxation deformation due to stress release after unloading from the holding chuck on the machine tool that created its shape.

A 5 to 15 UPR condition often indicates unbalance factors in the machining method or processes used to produce the workpiece.

A 15 (or more) UPR condition is usually caused by tool chatter, machine vibration, coolant delivery effects, material non-homogeneity, etc., and is generally more important to the function than to the fit of a workpiece.

[^0]: $\xrightarrow{2}$

[^1]: Technical Data: Surface Roughness Measurement
 X1-axis
 Measuring range: $\quad 8 "(200 \mathrm{~mm})$
 Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
 Measurement method: Reflective-type linear encoder
 Drive speed: $\quad 7.87 \mathrm{l} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})($ max., CNC)
 $0-2$ " $/ \mathrm{s}(0-50 \mathrm{~mm} / \mathrm{s})$ (joystick)
 Measuring speed: $\quad .00078-.08 \mathrm{n} / \mathrm{s}(0.02-2 \mathrm{~mm} / \mathrm{s})$
 Traversing direction: Pulling
 Traverse linearity: $\quad 20 \mu \mathrm{in} / 8^{\prime \prime}(0.5 \mu \mathrm{~m} / 200 \mathrm{~mm})$
 α-axis* Depends on Code \#
 Inclination angle: $\quad-45^{\circ}$ to $+10^{\circ}$
 Resolution: $\quad 0.000225^{\circ}$
 Rotating speed: 1 rpm
 Z2-axis (column)
 Vertical travel: $\quad 12^{\prime \prime}$ or $20 "$ (300 mm or 500 mm)
 Resolution: $\quad 1.97 \mu \mathrm{in}(0.05 \mu \mathrm{~m})$
 Measurement method: Reflective-type linear encoder
 Drive speed: $\quad 7.87 \mathrm{~m} / \mathrm{s}(200 \mathrm{~mm} / \mathrm{s})(\mathrm{max} ., \mathrm{CNC})$
 0-2" $/ \mathrm{s}(0-50 \mathrm{~mm} / \mathrm{s}$) (joystick)
 Detector (optional)
 Range / resolution: $32000 \mu \mathrm{in} / .4 \mu \mathrm{in}, 3200 \mu \mathrm{in} /$
 $.04 \mu \mathrm{in}, 320 \mu \mathrm{in} / .004 \mu \mathrm{in}$
 (up to 96000μ in with an optional stylus)
 $\{800 \mu \mathrm{~m} / 0.01 \mu \mathrm{~m}, 80 \mu \mathrm{~m} / 0.001 \mu \mathrm{~m}$, $8 \mu \mathrm{~m} / 0.0001 \mu \mathrm{~m}$ (up to $2400 \mu \mathrm{~m}$ with an optional stylus)\}
 Detecting method: Skidless / skid measurement
 Measuring force: $\quad 0.75 \mathrm{mN}$
 Stylus tip: $\quad 60 \% / 2 \mu \mathrm{mR}$
 Skid radius of curvature: 1.57 " (40 mm)
 Detecting method: Differential inductance

[^2]: -: Essential
 A: Recommended
 -: Not necessary

[^3]: Origin-point gage* 998382

 - A gage for zero setting of the R-axis and Z-axis.
 * Standard accessory for RA-2200 and RA-H5200

