

January 2017 DT0075 Rev 1 1/6

 www.st.com

DT0075
Design tip

MotionFX orientation estimation

quick guide
 Andrea Vitali

Main components

NUCLEO-F401RE Nucleo-64 development board with STM32F401RE MCU,
supports Arduino and ST morpho connectivity

X-NUCLEO-IKS01A1 Motion MEMS and environmental sensor expansion board
for the STM32 Nucleo

STEVAL-MKI160V1 LSM6DS3 adapter board for the standard DIL24 socket

BLUEMICROSYSTEM1 Bluetooth low energy and sensors software expansion for
the STM32Cube

osxMotionFX Real-time motion-sensor data fusion software expansion
for the STM32Cube

Purpose and benefits

This design note explains how to configure and use the osxMotionFX software library and

includes:

 Hints for a fast startup when proper shutdown sequence is implemented by saving
thresholds and calibration parameters for the gyroscope and the magnetometer

 Guide to accurate gyroscope calibration in static and dynamic conditions, including
discussion on how a static condition can be automatically identified

 Guide to accurate magnetometer calibration, including discussion on how to track a
varying magnetic environment and how to get convergence to true yaw in static
conditions and control speed of convergence in dynamic conditions

 Guide to accelerometer use, including discussion on how to control speed of
convergence in static and dynamic conditions

 Explanation of format and orientation conventions for inputs and outputs

Configuring MotionFX: control knobs

Float ATime: 0.5 to 10; if it is low, accelerometer is trusted more in the update phase

(see below) in static condition (no motion); it is convenient to set it to a high value if

accelerometer is considered unreliable because there are large offset and gain errors.

Float MTime: 0.5 to 10; if it is low, magnetometer is trusted more in the update phase

(see below) in dynamic condition; it is convenient to set it to a high value if magnetometer

January 2017 DT0075 Rev 1 2/6

 www.st.com

is unreliable because of magnetic anomalies or imperfect hard/soft iron compensation. In

the static condition, the magnetometer is not trusted.

Float FrTime: 0.5 to 10; if it is low, accelerometer is trusted more in the update phase

(see below) in dynamic condition (high-g motion); it is convenient to set it to high value to

reduce the effect of high-g motion, or if the accelerometer is considered unreliable.

Unsigned char LMode: specify gyroscope calibration.

 LMode=0, gyro bias calibration is not active

 LMode=1, gyro bias calibration is active in static condition (more accurate); static

condition is identified as explained below.

 LMode=2, gyro bias calibration is active in dynamic condition (less accurate)

Float gbias_mag_th_sc_6X,gbias_acc_th_sc_6X,bias_gyro_th_sc_6X: if

high-pass filtered output from mag/acc/gyro is below threshold, then a static condition is

identified; thresholds for 6X data fusion (acc+gyro)

Float gbias_mag_th_sc_9X,gbias_acc_th_sc_9X,gbias_gyro_th_sc_9X: if

high-pass filtered output from mag/acc/gyro is below threshold, then a static condition is

identified; thresholds for 9X data fusion (acc+gyro+mag)

Unsigned char modx: down sampling factor to reduce computational complexity;

osx_MotionFX_propagate() needs to be always executed in order to estimate

orientation based on previous estimate and internal state; osx_MotionFX_update() can

be executed always (modx=1) or less frequently (modx>1) to correct the estimate with

information from sensors.

Int start_automatic_gbias_calculation: set to 1 to start automatic computation

of aforementioned thresholds; automatically reset to 0 when computation is completed;

sensors needs to be kept static when computation is ongoing.

Using MotionFX: pseudo-code sequence

Initialization (to be done once)

1. Init sensors (acc and gyro for 6X fusion, also mag for 9X fusion); on power-on wait

for transients to be completed in order to get good data samples

2. Init MotionFX fusion: osx_MotionFX_initialize()

3. Init mag calibration: osx_MotionFX_compass_Init()

4. osx_MotionFX_getKnobs(); modify settings; _setKnobs()

5. Reset by disabling fusion: osx_MotionFX_enable_6X(0) / _9X(0)

Start fusion

1. Init gyro calibration if possible: osx_MotionFX_setGbias()

January 2017 DT0075 Rev 1 3/6

 www.st.com

2. Init mag calib if possible: osx_MotionFX_compass_setCalibrationData()

3. Enable data fusion: osx_MotionFX_enable_6X(1) / _9X(1)

Data fusion (must be always executed at each iteration)

1. Read input data from accelerometer and gyroscope for 6X fusion

2. Read input data also from magnetometer for 9X fusion

3. Compensate mag hard/soft iron effects (e.g. compensate hard iron by subtracting

offsets read when mag calibration is completed, see below)

4. Set input: acc in G, gyro in DPS (deg per second), mag in uT/50 (microtesla/50)

5. Set correct delta time: e.g. if 100Hz, then dt = 0.01msec

6. Call osx_MotionFX_propagate()

7. Call osx_MotionFX_update(); increase speed by setting modx>1 in control

knobs, this will cause the function to be effectively executed only once every modx

calls

8. Get output: Euler angles (roll, pitch, yaw), quaternion, gravity, residual linear

acceleration, heading to magnetic North

Mag calibration (can be executed less frequently, at some iteration)

1. If not started: osx_MotionFX_compass_forceReCalibration()

2. Set input: acc in mG (milli-g), mag in mGauss (milli-Gauss)

3. Call osx_MotionFX_compass_saveAcc()

4. Call osx_MotionFX_compass_saveMag()

5. Call osx_MotionFX_compass_run(), this effectively runs the calibration

6. If osx_MotionFX_compass_isCalibrated() becomes true, and periodically:

a. osx_MotionFX_getCalibrationData()and save for compensation above

b. for immediate convergence to true yaw: reset fusion by disable/enable; note

that convergence to true yaw is allowed only in dynamic condition, because in

static condition the magnetometer is not trusted

Stop fusion

a. Save gyro calibration for later use: osx_MotionFX_getGbias()

b. Save mag calibration for later use: osx_MotionFX_getCalibrationData()

c. Disable osx_MotionFX_enable_6X(0) / _9X(0)

MotionFX magnetometer calibration

Magnetometer calibration is running only if osx_MotionFX_compass_SaveAcc() and

_SaveMag() functions are called in the main loop.

January 2017 DT0075 Rev 1 4/6

 www.st.com

Calibration is started by osx_MotionFX_forceReCalibration(). Completion status is

checked by osx_MotionFX_compass_isCalibrated().

After completion, calibration parameters can be read and used to compensate hard/soft

iron effects in magnetometer data before they are fed to orientation estimation functions

osx_MotionFX_propagate() and _update(). In the current version of the library, only

offsets are estimated, hence only hard iron effects can be compensated.

Even after completion, if _SaveAcc() and _SaveMag() are called, calibration continues

to run in the background and may update the calibration parameters; this is why calibration

parameters should be read periodically even after completion, so that any update can be

captured and exploited.

In the current version of the library, magnetic anomalies are not rejected, but they are

filtered out. If there is a limited amount of anomalies with respect to good data, accuracy of

calibration is minimally affected. In some case, it can also happen that the anomalies’

effects do cancel each other out.

MotionFX input/output conventions

Input is coming from 3-axis sensors: accelerometer, gyroscope and magnetometer. The

orientation of sensors is specified by a three-letter code, one for each axis.

Letters (NSWEUD) indicate where axes (XYZ) are pointing. First letter for X, second letter

for Y, third letter for Z. In figure 1, there are four examples: NED, ENU, SEU and NWU

system/sensor orientation (left). The specific configuration for sensors on IKS01A1 Nucleo

eXpansion board is also shown (right).

Output is the orientation in different formats: Quaternion and Euler angles. Output is

referenced to a coordinate system specified by a three-letter code.

Quaternions are arrays of 4 values, Q = [X, Y, Z, W]. When processing quaternions, it is

important to remember that they are a redundant representation of orientation. Q is

equivalent to –Q. As an example: averaging Q and –Q should not give zero as output, but

Q or –Q.

Euler angles in the NED system, where XYZ axes are North-East-Down, are as follows:

• Roll, also known as bank, is a clockwise rotation around X looking to North

• Pitch, also known as attitude, is a clockwise rotation around Y looking to East

• Yaw, also known as heading, is a rotation around Z looking Down

January 2017 DT0075 Rev 1 5/6

 www.st.com

Figure 1. Sensor orientation: NED, ENU, SEU, NWU. Sensor orientation in IKS01A1 Nucleo
eXpansion board.

Figure 2. Euler angles in North-East-Down coordinate system.

Support material

Related design support material

Product Evaluation board – X-NUCLEO-IKS01A1, Motion MEMS and environmental sensor
expansion board for STM32 Nucleo

Product Evaluation board –STEVAL-MKI160V1, LSM6DS3 adapter board for standard DIL24
socket

Product Evaluation board – NUCLEO-F401RE, Nucleo-64 development board with
STM32F401RE MCU, supports Arduino and ST morpho connectivity

Product Evaluation board – BLUEMICROSYSTEM1, Bluetooth low energy and sensors software
expansion for STM32Cube

Development kit – osxMotionFX Real-time motion-sensor data fusion software expansion for

Up

Down

North

EastWest

South

X North

Y East

Z Down

XYZ
NED system

XYZ
ENU system

Y North

X East

Z Up

XYZ
SEU system

Y East

X South

Z Up

XYZ
NWU system

X North

Y West

Z Up

January 2017 DT0075 Rev 1 6/6

 www.st.com

Related design support material

STM32Cube X-CUBE-MEMS1

Documentation

Databrief, DB2531, Real-time motion-sensor data fusion software expansion for STM32Cube

User manual, UM1866, Getting started with the osxMotionFX fusion and compass library for X-
CUBE-MEMS1 expansion for STM32Cube

Application note, AN4615, Fusion and compass calibration APIs for STM32 Nucleo with the X-
NUCLEO-ISK01A1 sensors expansion board

Design Tip, DT0050, How to install and run osxMotionFX Sensor Data Fusion library

Revision history

Date Version Changes

11-Jan-2017 1 Initial release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements,
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should
obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and
conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for
application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for
such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

