
1 Introduction
The LPC55S69 MCU has two Arm® Cortex®-M33 cores, each with a maximum
working frequency of 100 MHz. Two additional co-processors are also
integrated to strengthen the computing ability for specific use. The CASPER
Crypto co-processor enables hardware acceleration for certain asymmetric
cryptographic algorithms, while the PowerQuad hardware accelerator is used
for DSP functions (fixed and floating-point). This application note describes the
design of a benchmark demo to see the best performance of the LPC55S69
MCU. In the demo project, the two Arm Cortex-M33 cores are running the
coremark standard benchmark task, while the PowerQuad is set up to execute
the FFT computing task.

2 Porting coremark benchmark project on
LPC5500

In the original coremark template project from the offset website (www.eembc.org/coremark/index.php), the coremark standard
measurement procedure is executed as a whole application project and runs only once during the whole life-cycle of the
application. This usage makes sense, because users do not run other functions when wanting to measure the coremark
performance.

The LPC55xx CoreMark on Cortex-M33 Porting Guide (document AN12284) shows how to port the coremark project onto the
LPC5500 platform.

In the demo case, the coremark is run time by time in different conditions with different PowerQuad tasks. The original way of
calling the coremark procedure is modified, making it a function that can be called when needed.

Figure 1. Changing original main() function of coremark to coremark_start()

Contents

1 Introduction.. 1

2 Porting coremark benchmark
project on LPC5500............................ 1

3 Enabling dual-core projects................... 2

4 Enabling PowerQuad tasks................... 5

5 Running the project for benchmark
record.. 7

6 Revision history..................................... 9

7 Appendix A: Purchasing LCD
module used in this demo................. 10

AN12387
Running coremark benchmark with dual CM33 cores and
PowerQuad on LPC5500
Rev. 2 — 04/2020 Application Note

http://www.eembc.org/coremark/index.php
https://www.nxp.com/doc/AN12284

As seen in Figure 1, the original main() function name is changed to coremark_start() in the core_main.c source file. This function
is the entry of the coremark task in the application. In the core_portme.c source file, insert the "gCoreMarkDone" flag variable
into the portable_fini() function to indicate that the coremark task of the current cycle is done.

 void portable_fini(core_portable *p)
 {
 ...
 gCoreMarkDone = true;
 }

In the demo project, the coremark task is called everytime as follows:

 gCoreMarkDone = false;
 coremark_start();
 while (!gCoreMarkDone)
 {
 }

Only CORE0 executes the coremark task time and time again. For CORE1, the coremark task is executed only
once because its running condition is not changed during the whole demo with various PowerQuad tasks with
CORE0.

 NOTE

3 Enabling dual-core projects

3.1 Memory allocation for the best performance
To achieve the best working performance, allocate the memory blocks of code and data for both cores in a suitable way and
reduce the arbitration of the accessing bus in the hardware system.

In the hardware system diagram, the memories are divided into blocks and connected to the AHB bus matrix separately. Using
this design, different bus masters can access different memory blocks simultaneously, without any arbitration delay.

For the LPC55S69 MCU, the available memories are shown in Figure 2.

NXP Semiconductors
Enabling dual-core projects

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 2 / 11

Figure 2. LPC5500 memory map overview (part)

The following applies to the CORE0 application in this demo:

- The code is kept in the FLASH memory between 0x0000_0000 and 0x0003_FFFF (256 KB in total). The code runs in the FLASH
memory.

- The data (including stack and heap) is kept in the RAM1 and RAM2 memories between 0x2001_0000 and 0x2002_FFFF (128
KB in total).

The following applies to the CORE1 application in this demo:

- The code is kept in the FLASH memory between 0x0004_0000 and 0x0009_7FFF, (352 KB in total). After booting up, the code
is copied to the RAMX memory block and run there between 0x0400_0000 and 0x0400_7FFF (32 KB in total).

- The data (including stack and heap) are kept in the RAM3 memory between 0x2003_0000 and 0x2003_FFFF (64 KB in total).

The RAM0 memory keeps the shared data (discussed further on in this document).

The access paths are shown in Figure 3.

NXP Semiconductors
Enabling dual-core projects

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 3 / 11

Figure 3. LPC5500 hardware system diagram (part)

Figure 3 shows that no memory blocks (slaves in the AHB matrix) are owned by the two cores (masters in the AHB matrix). The
only exception is the RAM0 memory, which is used to share data between the two cores.

The memory allocation is configured as the linker files of the project are made.

The linker file for CORE0 is as follows:

 define symbol m_interrupts_start = 0x00000000; //FLASH
 define symbol m_interrupts_end = 0x0000013F; //FLASH

 define symbol m_text_start = 0x00000140; //FLASH
 define symbol m_text_end = 0x0003FFFF; //FLASH

 define exported symbol CORE1_image_start = 0x00040000; //FLASH
 define exported symbol CORE1_image_end = 0x00097FFF; //FLASH

 define symbol m_xcode_start = 0x20000000; //RAM0
 define symbol m_xcode_end = 0x2000FFFF; //RAM0

 define symbol m_data_start = 0x20010000; //RAM1-2
 define symbol m_data_end = 0x2002FFFF; //RAM1-2

NXP Semiconductors
Enabling dual-core projects

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 4 / 11

The linker file for CORE1 is as follows:

 define symbol m_interrupts_start = 0x04000000; //RAM-X
 define symbol m_interrupts_end = 0x0400013F; //RAM-X

 define symbol m_text_start = 0x0400013F; //RAM-X
 define symbol m_text_end = 0x04007FFF; //RAM-X

 define symbol m_data_start = 0x20030000; //RAM3
 define symbol m_data_end = 0x2003FFFF; //RAM3

3.2 Inter-communication between CORE0, CORE1, and PowerQuad task
CORE0, CORE1, and PowerQuad work at the same time after the chip comes out from a reset. The messages are printed by
CORE0. As the main core, CORE0 synchronizes the work with another core or co-processor and collects the result marks
together.

The inter-communication between CORE0 and PowerQuad uses the volatile global variable defined in the
task_powerquad_benchmark.c source file:

 volatile uint32_t gTaskPowerQuadCounter = 0u;

This variable increases when the PowerQuad task is executed everytime CORE0 runs the coremark task. When CORE0 finishes
its coremark task, the portable_fini() function in the core_portme.c source file for CORE0 collects the value of
"gTaskPowerQuadCounter" and prints it later.

The inter-communication between CORE0 and CORE1 uses the shared memory in RAM0. Some variables are defined at
absolute addresses for both cores in the core_portme.c source file:

 volatile int CORE1_coremark __attribute__((section(".ARM.__at_0x20038000")));
 volatile int CORE1_costtime __attribute__((section(".ARM.__at_0x20038010")));
 volatile int CORE1_finish_flag __attribute__((section(".ARM.__at_0x20038020")));

When the CORE1 coremark task is done, it feeds its result into "CORE1_coremark" and "CORE1_costtime" and marks
"CORE1_finish_flag" as "true". CORE0 waits until "CORE1_finish_flag" is "true", collects the values in "CORE1_coremark" and
"CORE1_costtime", and prints them.

4 Enabling PowerQuad tasks
The PowerQuad task is handled inside the ISR (Interrupt Service Routine), which is defined as the PQ_IRQHandler() function
inside the vector table. In the demo case, there are three types of computing tasks for PowerQuad: FFT with 128 points, FFT
with 256 points, and FFT with 512 points.

 void App_PQTask_CFFT512Case(void)
 {
 PQ_TransformCFFT(DEMO_POWERQUAD, 512u, inputData, cfftResult);
 }

 void App_PQTask_CFFT256Case(void)
 {
 PQ_TransformCFFT(DEMO_POWERQUAD, 256u, inputData, cfftResult);
 }

 void App_PQTask_CFFT128Case(void)
 {
 PQ_TransformCFFT(DEMO_POWERQUAD, 128u, inputData, cfftResult);
 }

NXP Semiconductors
Enabling PowerQuad tasks

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 5 / 11

A software callback is designed to make the ISR run a different task. Different PowerQuad tasks can be installed into the ISR
before launching it.

 /* ISR for PowerQuad*/
 void PQ_IRQHandler(void)
 {
 uint32_t flags = POWERQUAD->INTRSTAT; /* PQ_GetStatusFlags(). */
 /* A software workaround.
 * Use the OVERFLOW flag instead of DONE flag to detect the DONE interrupt. /
 if (POWERQUAD_INTREN_INTR_OFLOW_MASK == (POWERQUAD_INTREN_INTR_OFLOW_MASK and flags))
 {
 gTaskPowerQuadCounter++;
 //PQ_TransformCFFT(DEMO_POWERQUAD, N, inputData, cfftResult); /* start the new task. */
 if (gAppPowerQuadCallback)
 {
 (*gAppPowerQuadCallback)();
 }
 }
 POWERQUAD->INTRSTAT = flags; /* PQ_ClearStatusFlags(). */
 }

 void App_PQInstallCallback(void (*callback)(void))
 {
 gAppPowerQuadCallback = callback;
 }

In the application, the PowerQuad tasks are triggered one by one:

 void task_pq_fft_128(void);
 void task_pq_fft_256(void);
 void task_pq_fft_512(void);

 void (*cAppLcdDisplayPageFunc[])(void) =
 {
 task_pq_fft_512,
 task_pq_fft_256,
 task_pq_fft_128 /* merge the last task into this one. */
 //task_end
 };

 void task_pq_fft_512(void)
 {
 PRINTF("%s\r\n", __func__);
 ...
 App_PQInstallCallback(App_PQTask_CFFT512Case);
 gCoreMarkDone = false;
 coremark_start();
 while (!gCoreMarkDone)
 {
 }
 ...
 }

 void task_pq_fft_256(void)
 {
 PRINTF("%s\r\n", __func__);
 ...
 App_PQInstallCallback(App_PQTask_CFFT256Case);
 gCoreMarkDone = false;

NXP Semiconductors
Enabling PowerQuad tasks

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 6 / 11

 coremark_start();
 while (!gCoreMarkDone)
 {
 }
 ...
 }

 void task_pq_fft_128(void)
 {
 PRINTF("%s\r\n", __func__);
 ...
 App_PQInstallCallback(App_PQTask_CFFT128Case);
 gCoreMarkDone = false;
 coremark_start();
 while (!gCoreMarkDone)
 {
 }
 ...
 }

 int main(void)
 {
 ...
 while (1)
 {
 keyValue = App_GetUserKeyValue();
 if (keyValue != keyValuePre)
 {
 App_DeinitUserKey(); /* disable detecting key when changing the lcd display. */
 (*cAppLcdDisplayPageFunc[keyValue])(); /* switch to new page on lcd module. */
 keyValuePre = keyValue;
 App_InitUserKey(); /* enable detecting key for next event. */
 }

 __WFI(); /* sleep when in idle. */
 }
 }

When the PowerQuad task is launched, it runs continuously with CORE0 running the coremark task. CORE0 stops the
PowerQuad task after its coremark task is done. The "gTaskPowerQuadCounter" variable is used to count the cycles that the
PowerQuad task runs. At the same time, this number is counted by the CORE0 coremark task. Then it can be determined how
many times the PowerQuad task runs per second, and this number can be used as the performance benchmark value in the report.

5 Running the project for benchmark record
To run the demo project, build the CORE1 project first and generate the image for CORE1. Then build the CORE0 project, which
includes the CORE1 image. After this, one image file includes the applications for both cores.

There are two versions of the project:

- LCD display version: this version uses the LCD module to show the result
(lpc5500_coremark_dualcore_powerquad_lcd_display).

- UART terminal version: this version uses the UART terminal to output the result when there is no LCD module. It shows the
same thing on the LCD when the LCD module is assembled (lpc5500_coremark_dualcore_powerquad_uart_terminal). This
version is a modification of the first one.

When the LCD display version works, the result is shown on the LCD module, as shown in Figure 4.

NXP Semiconductors
Running the project for benchmark record

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 7 / 11

Figure 4. Records on LCD screen

When the UART terminal version works, the result is shown in the UART terminal, as shown in Figure 5.

NXP Semiconductors
Running the project for benchmark record

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 8 / 11

Figure 5. Records in UART terminal

This information is summarized in Table 1.

Table 1. Benchmark summary at 96-MHz core clock

Core clock = 96 MHz CORE 0

coremark

CORE 1

coremark

PowerQuad

cycles/second

DualCore + PQ FFT512 338 372 28807

DualCore + PQ FFT256 322 372 54795

DualCore + PQ FFT128 306 372 103153

When running with 150-MHz core clock, the record is shown in .

Table 2. Benchmark summary at 150-MHz core clock

Core clock = 150 MHz CORE 0 coremark CORE 1 coremark PowerQuad cycles/second

DualCore + PQ FFT512 523 582 44577

DualCore + PQ FFT256 493 582 83939

DualCore + PQ FFT128 445 582 149489

The score of CORE1 is higher than the score of CORE0, because the code of CORE1 runs in the SRMAX memory, while the
code of CORE0 runs in the FLASH memory. The FFT task with fewer points runs more frequently and interrupts CORE0 to restart
the task in the ISR of PowerQuad. The score of CORE0 is a little lower when the PowerQuad is run more.

6 Revision history
Table 3 summarizes the changes done to this document since the initial release.

Table 3. Revision history

Revision number Date Substantive changes

0 03/2019 Initial release

Table continues on the next page...

NXP Semiconductors
Revision history

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 9 / 11

Table 3. Revision history (continued)

Revision number Date Substantive changes

1 05/2019 Added Appendix A: Purchasing LCD
module used in this demo.

2 04/2020 Modified Table 1 and Table 2.

7 Appendix A: Purchasing LCD module used in this demo
Purchase the LCD board at these links:

• https://www.waveshare.com/product/modules/oleds-lcds/arduino-lcd/2.8inch-tft-touch-shield.htm

• http://www.waveshare.net/shop/2.8inch-TFT-Touch-Shield.htm

NXP Semiconductors
Appendix A: Purchasing LCD module used in this demo

Running coremark benchmark with dual CM33 cores and PowerQuad on LPC5500, Rev. 2, 04/2020
Application Note 10 / 11

https://www.waveshare.com/product/modules/oleds-lcds/arduino-lcd/2.8inch-tft-touch-shield.htm
http://www.waveshare.net/shop/2.8inch-TFT-Touch-Shield.htm

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 04/2020
Document identifier: AN12387

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Porting coremark benchmark project on LPC5500
	3 Enabling dual-core projects
	3.1 Memory allocation for the best performance
	3.2 Inter-communication between CORE0, CORE1, and PowerQuad task

	4 Enabling PowerQuad tasks
	5 Running the project for benchmark record
	6 Revision history
	7 Appendix A: Purchasing LCD module used in this demo

