TOSVERT VF-AS1/PS1

CC-Link Option Function Manual

CCL001Z1

NOTICE

1. All information contained in this manual are subject to change without notice. Please confirm the latest information on our web site "www.inverter.co.jp".

Introduction

Thank you for purchasing a "CC-Link Option (CCL001Z1)" for TOSVERT VF-AS1/PS1 inverter.
This option can connect with open field network CC-Link and data communications with the CC-Link master through installing this option in the VF-AS1/PS1 and using it. Besides this instruction manual, the "CC-Link option Instruction Manual" is required to develop software communicating with VF-AS1/PS1. In such a case, please get in touch with our branch offices or sales offices. ("CC-Link Option Instruction Manual": E6581474).
This manual is also aimed at the operator using "VF-AS1/PS1 CC-Link option", so please use it for future maintenance and inspection.

- TOSVERT VF-AS1 Instruction Manual E6581301
- TOSVERT VF-PS1 Instruction Manual E6581386
- TOSVERT VF-AS1/PS1 CC-Link Option Instruction Manual E6581476

				See the instruction manual of "TOSVERT VF-AS1/PS1 CC-Link Option Instruction Manual" (E6581476) for cautions relating to the ambient environment, installation and wiring.
	∇Turn off the power supply when connecting or disconnecting a communication cable.			
	∇When the control power is turn off by the instantaneous power failure, communication will be unavailable for a while. The Life of EEPROM is approximately ten thousand times. Avoid writing a command more than ten thousand times to the same parameter of the inverter.			

Table of contents

1. Overview 3
2. Basic specifications 3
3. Name of functions of main parts 4
3.1. Set the station No. and baud rate 4
3.2. About indicator of LED 4
4. Functions 6
4.1. Initial setting 6
4.2. Inverter parameter (relate to the CC-Link) 7
4.3. CPU version check 7
4.4. Basic functions 8
4.4.1. Run and frequency operation command 8
4.4.2. Monitor 8
4.4.3. Writing and reading the parameter 8
4.5. Communication specification 9
4.5.1. Input/ Output signal 10
4.5.2. Remote Register Assignment 13
4.5.3. Instruction Codes 16
4.5.4. The details of error code 17
4.5.5. Description of reply code 18
4.5.6. Description of monitor code 19
4.5.7. Description of input terminal information 21
4.5.8. Description of output terminal information 21
5. Programming examples 22
5.1. Example of the inverter status reading 23
5.2. Example of the command mode setting 24
5.3. Example of the operation commands setting 25
5.4. Example of frequency command setting 25
5.5. Example of the output frequency monitoring 26
5.6. Example of the parameter writing 26
5.7. Example of the parameter reading 27
5.8. Example of the trip history reading - 28
5.9. Example of the inverter resetting at inverter error 29
6. Unusual diagnosis 30
6.1. Option error 30
6.2. Disconnection error of network cable 30
6.3. How to check the error using the LEDs 31

1. Overview

This option allows the VF-AS1/PS1 inverter to be connected into a CC-Link network. CC-Link supports a maximum of 42 nodes, allowing for the Master and this option is based on CC-Link Ver.1.10.

The CCL001Z1 is able to operate RUN/STOP, monitor the status of the inverter, set the inverter's parameter and etc. by the CC-Link master through installing the VF-AS1/PS1. And it can use various applications.

2. Basic specifications

<Environmental specification>

Item	Specification
Operating environment	Indoors, an altitude of 3,000m or less, where the product will not be exposed to direct sunlight, corrosive or explosive gases, vapor, coarse particulates including dust, and where there is no grinding fluid or grinding oil nearby.
Ambient temperature	0 to $+60^{\circ} \mathrm{C}$
Storage temperature	-25 to $+65^{\circ} \mathrm{C}$
Related temperature	20 to 93% (no condensation and absence of vapor)
Vibration	$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})$ or less $(10-55 \mathrm{~Hz})$

<CC-Link communication specification>

Item	Specification
Number of units corrected	42 units max. (1 station occupied by 1 unit). May be used with other equipment. (*)
Baud rate	$156 \mathrm{k}, 625 \mathrm{k}, 2.5 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{Mbps}$
Power supply	Supplied from the inverter
Station type	Remote device station
Number of stations occupied	One inverter occupies one station
Connect cable	CC-Link dedicated cable, CC-Link Ver1.10.compatiable CC-Link dedicated cable
Maximum transmission distance	$1200 \mathrm{~m}(156 \mathrm{kbps})$

*Maximum number of units connected to one master station is 42 units (when only inverters are connected).
*If any other units are included, the number of occupied stations depends on the unit and therefore the following conditions must be satisfied:

1. $\{(1 \times a)+(2 \times b)+(3 \times c)+(4 \times d)\}<=64$
a: Number of units occupying 1 station $c:$ Number of units occupying 3 stations
b: Number of units occupying 2 stations
d: Number of units occupying 4 stations
2. $\{(16 \times A)+(54 \times B)+(88 \times C)\}<=2304$
A : Number of remote I/O stations $<=64$
B : Number of remote device stations <= 42
C: Number of local, standby master and intelligent device stations <= 26

3. Name of functions of main parts

3.1. Set the station No. and baud rate

For the setting station number or communication speed to take effect, power needs to be turned off and then turned back on.

x10 (SW2)
Rotary switches for the setting up a station No.

BAUD RATE (SW1)
Rotary switch for the setting up a baudrate

- Set the Station No.

The station number is able to set between 1 and 64.
The switch x 10 is set up the ten's place and x 1 is set up the ones.
Set the arrow (\uparrow) of the corresponding switch to the required numeral.

- Set the baud rate. (For details, refer to the CC-Link master unit manual.)

Setting Switch	0	1	2	3	4
Transmission Speed	156 kbps	625 kbps	2.5 Mbps	5 Mbps	10 Mbps

*It causes an error when the switches are not set correct position (ex. set position between 0 and 1 switch label), or set over 5 .

3.2. About indicator of LED

The LED shows the present status of the network and error.
*Refer to this manual [6.3. How to check the error using the LEDs].

C	POWER	Light on during power on.
C	L.RUN	Light on during communication.
L	SD	Light on during send the data of CC-Link.
i	R	RD
n	Light on during receive the data of CC-Link.	
k	L.ERR	Light on during communication error.

Status of LED				Cause
L.RUN	SD	RD	L.ERR	
\bullet	\bigcirc	\bigcirc	\bigcirc	Normal communication is made but CRC error has occurred due to noise.
\bullet	\bigcirc	\bigcirc	\bigcirc	Normal communication
-	\bigcirc	\bigcirc	\bigcirc	Hardware fault
-	\bigcirc	\bigcirc	\bigcirc	Hardware fault
\bullet	\bigcirc	\bigcirc	\bigcirc	Cannot answer due to CRC error of receive data.
-	\bigcirc	\bigcirc	\bigcirc	Data sent to the host station does not reach destination.
-	\bigcirc	\bigcirc	\bigcirc	Hardware fault
-	\bigcirc	\bigcirc	\bigcirc	Hardware fault (It is an unstable state by disconnection, etc.)
0	\bigcirc	\bigcirc	\bigcirc	Polling response is made but refresh receive is in CRC error.
\bigcirc	\bigcirc	\bigcirc	0	Hardware fault
\bigcirc	\bigcirc	\bigcirc	\bigcirc	Hardware fault
\bigcirc	\bigcirc	\bigcirc	\bigcirc	Hardware fault
0	\bigcirc	\bigcirc	\bigcirc	Data sent to the host station is in CRC error.
0	O	\bigcirc	O	There is no data sent to the host station, or data sent to the host station cannot be received due to noise.
0	\bigcirc	0	\bigcirc	Hardware fault
0	\bigcirc	0	0	Cannot receive data due to break in the cable, etc.
0	\bigcirc	\bigcirc or O	\bullet	Invalid baud rate or station number setting.
\bullet	\bigcirc	\bigcirc	\bigcirc	Baud rate or station number is changed during operation.
\bigcirc	O	\bigcirc	\bigcirc	WDT error occurrence (hardware fault), power off or supply failure, etc.

- On O: Off ○: Flicker

4．Functions

This option is a communication interface unit that allows the PLC program to operate，monitor and set the parameter of the inverter as a remote station of CC－Link．It is able to communicate with a maximum speed of 10Mbps not only transmitting bit data but also by word data．

4．1．Initial setting

Set the following parameters of the inverter．

Name of parameter	functions	Description	Factory setting	CC－Link setting
ET8日	Command mode selection	II：Terminal input enabled i：Operation panel input enabled （including LED／LCD option unit） コ：2－wire RS485 communication input Э：4－wire RS485 communication input 4：Communication option input	8	4
F9日吕	Frequency setting mode selection 1	i：VI／II（voltage／current input） $\Xi:$ RR／S4（potentiometer／voltage input） 3：RX（voltage input） 4：Operation panel input enabled （including LED／LCD option input） 5 ：2－wire RS485 communication input E．4－wire RS485 communication input 7 ：Communication option input B：Optional AI1（differential current input） G：Optional AI2（voltage／current input） 119 ：Up／Down frequency i ：Optional RP pulse input 1こ：Optional high－speed pulse input ！ヨ：＊1	Ξ	7
F－G	Torque command selection	i：VI／II（voltage／current input） گ：RR／S4（potentiometer／voltage input） 3：RX（voltage input） 4 ：Operation panel input enabled （including LED／LCD option input） Ξ ：2－wire RS485 communication input E：4－wire RS485 communication input 7：Communications option input enabled 日：Optional Al1（differential current input）	\exists	＊2

＊1 Unsupported item．
＊2 Change the setting of F420 if necessary．

4．2．Inverter parameter（relate to the CC－Link）

Title	Function	Description
F950	Disconnection detection extended time	8.0 to 108.8 sec
F85：	Inverter operation at disconnection	```i: None (continued operation) Z: Deceleration stop 3: Coast stop 4: Network error(\(E,-,-\boldsymbol{B}\) trip) 5 : Preset speed operation (by \(F\) FSこ setting)```
F953	Preset speed operation selection	II：None ；to 15 ：Preset speed operation（by parameter setting）
F853	Communication option station address monitor （Read only）	Station No． i to 54 （case by CC－Link option）
F854	Communication option speed switch monitor （Read only）	II：156kbps i： 625 kbps こ：2．5Mbps $3: 5 \mathrm{Mbps}$ 4：10Mbps
F899	Network option reset setting	II：None i：Reset option circuit board and inverter

4．3．CPU version check

Version check of option card CPU

The version of the option with it has equipped can be checked by using the function of F to $F 7$ I日（standard monitor display selection）．
＊For details，refer to Instruction Manual E6581301．

Title	Function	Setting	Description
$F 718$	Standard display	$\Xi こ$	Add－on option 1 CPU version （Under side option）
F7：	monitor	$\exists \exists$	Add－on option 2 CPU version （Panel side）

For example，a panel display shown 1．02，when a CPU version is $1(01 \mathrm{H})$ and revision is 2 （02H）．

4.4. Basic functions

This clause shows the basic function of this CC-Link option using by CC-Link communication.

4.4.1. Run and frequency operation command

The PLC program can operate the inverter to run, stop, set the operation frequency and change the parameters.

If the PLC control these operations, select the command mode and the frequency setting mode. (Change the setting of the torque command selection if necessary.)

The parameter setting of the inverter
Command mode selection

Frequency setting mode selection
F חnd : 7[Communication option input] (Factory setting: ヨ)
Torque command selection

$$
F \text { Y }
$$

*The frequency setting and command can be made CC-Link priority by RYnA and RYnB. *" n " is depend on the station number.

4.4.2. Monitor

It is able to monitor the status of the inverter.

Set a monitor code to RWwn and turn RYnC on. The data is stored in the buffer memory of the PLC.
*" n " is depend on the station number.

- Refer to "Section 4.4.6. Description of monitor code" about the monitor code and unit.

4.4.3. Writing and reading the parameter

The PLC can read, write the inverter parameters and reset the inverter.

Set the command code to $R W w(n+2)$ (set the write data to $R W w(n+3)$ if necessary) and turn RYnF (instruction code execution request) on. The inverter performs processing corresponding to the command code, return the response data, read out data and RXnF (instruction code execution completion).

- Refer to "Section 4.4. Communication specification" about the command code, the unit of the data, and the setting range.

4.5. Communication specification

This option occupies one station area of the buffer memory of the PLC.
There are remote I/O (RX, RY both 32 bits) and the remote register (RWw , RWr both 4 word) in the communication data for one station area.

List of remote I/O

Inverter (Slave) \rightarrow PLC (Master)		PLC (Master) \rightarrow Inverter (Slave)	
Device No.	Signal	Device No.	Signal
RXn0	Forward running	RYn0	Forward rotation command
RXn1	Reverse running	RYn1	Reverse rotation command
RXn2	Output terminal 1 (OUT1)	RYn2	Input terminal 5 (S1)
RXn3	Output terminal 2 (OUT2)	RYn3	Input terminal 6 (S2)
RXn4	Output terminal 3 (FL)	RYn4	Input terminal 7 (S3)
RXn5	Output terminal 4 (OUT3)	RYn5	Input terminal 8 (S4)
RXn6	Output terminal 5 (OUT4)	RYn6	Input terminal 9 (L1)
RXn7	Output terminal 6 (R1)	RYn7	Input terminal 10 (L2)
RXn8	Output terminal 7 (OUT5)	RYn8	Input terminal 11 (L3)
RXn9	Output terminal 8 (OUT6)	RYn9	Intercept output to inverter (Coast stop)
RXnA	Output terminal 9 (R2)	RYnA	Frequency priority CC-Link
RXnB	Reserved	RYnB	Command priority CC-Link
RXnC	Monitoring	RYnC	Monitor command
RXnD	Frequency setting completion (RAM)	RYnD	Frequency setting command (RAM)
RXnE	Torque setting completion (RAM)	RYnE	Torque setting command (RAM)
RXnF	Instruction code execution completion	RYnF	Instruction code execution request
$\mathrm{RX}(\mathrm{n}+1) 0$	Reserved	$\mathrm{RY}(\mathrm{n}+1) 0$	Reserved
$\mathrm{RX}(\mathrm{n}+1) 1$		$\mathrm{RY}(\mathrm{n}+1) 1$	
$\mathrm{RX}(\mathrm{n}+1) 2$		$\mathrm{RY}(\mathrm{n}+1)^{2}$	
$\mathrm{RX}(\mathrm{n}+1) 3$		$\mathrm{RY}(\mathrm{n}+1) 3$	
$\mathrm{RX}(\mathrm{n}+1) 4$		$\mathrm{RY}(\mathrm{n}+1) 4$	
$\mathrm{RX}(\mathrm{n}+1) 5$		$\mathrm{RY}(\mathrm{n}+1) 5$	
$\mathrm{RX}(\mathrm{n}+1) 6$		$\mathrm{RY}(\mathrm{n}+1) 6$	
$\mathrm{RX}(\mathrm{n}+1) 7$		$\mathrm{RY}(\mathrm{n}+1) 7$	
$\mathrm{RX}(\mathrm{n}+1) 8$	Reserved	$\mathrm{RY}(\mathrm{n}+1) 8$	Reserved
$\mathrm{RX}(\mathrm{n}+1) 9$	Reserved	$\mathrm{RY}(\mathrm{n}+1) 9$	Reserved
$\mathrm{RX}(\mathrm{n}+1) \mathrm{A}$	Error status flag	$\mathrm{RY}(\mathrm{n}+1) \mathrm{A}$	Error reset request flag (A reset request is during switched ON)
$\mathrm{RX}(\mathrm{n}+1) \mathrm{B}$	Remote station ready	$\mathrm{RY}(\mathrm{n}+1) \mathrm{B}$	Reserved
$\mathrm{RX}(\mathrm{n}+1) \mathrm{C}$	Reserved	$\mathrm{RY}(\mathrm{n}+1) \mathrm{C}$	Reserved
$\mathrm{RX}(\mathrm{n}+1) \mathrm{D}$		$\mathrm{RY}(\mathrm{n}+1) \mathrm{D}$	
$\mathrm{RX}(\mathrm{n}+1) \mathrm{E}$		$\mathrm{RY}(\mathrm{n}+1) \mathrm{E}$	
$\mathrm{RX}(\mathrm{n}+1) \mathrm{F}$		$\mathrm{RY}(\mathrm{n}+1) \mathrm{F}$	

" n " is depend on the station number.
The reserved input signal should be set OFF ("0").

RWr, RWw (Default value = 0)

RWr r		Inverter \rightarrow PLC	
Address	Contents	Address	PLC \rightarrow Inverter
$R W r n$	First monitor value	$R W w n$	Contents
$R W r n+1$	Second monitor value (output frequency)	$R W w n+1$	Set frequency/ first and second)
$R W r n+2$	Reply code	$R W w n+2$	Instruction code
$R W r n+3$	Read data	$R W w n+3$	Write data

" n " is depend on the station number.

4.5.1. Input/ Output signal

*The default value is 0 (zero) of $R Y$ and $R X$.
(1) Output signal Master -> Inverter

The output signal from the master is shown. (The input signal to the inverter.)

Device No.	Signal	Description
RYn0	Forward run command	OFF: Stop command \quad ON: Forward run command
RYn1	Reverse run command	OFF: Stop command \quad ON: Reverse run command
RYn2	Input terminal selection5(S1)	The function depends on input terminal selection $5(F ; 15)$. *2
RYn3	Input terminal selection6(S2)	The function depends on input terminal selection $6(F ; 15) . * 2$
RYn4	Input terminal selection7(S3)	The function depends on input terminal selection $7(F ; 17) . * 2$
RYn5	Input terminal selection8(S4)	The function depends on input terminal selection $8(F ; 1 日)$. 2
RYn6	Input terminal selection9(L1)	The function depends on input terminal selection $9(F ; 15) . * 2$
RYn7	Input terminal selection10(L2)	The function depends on input terminal selection 10(F)
RYn8	Input terminal selection11(L3)	The function depends on input terminal selection 11(FiEl). *2
RYn9	Intercept output to inverter (Coast stop)	Stop the output of the inverter when turned on this signal. (Stop the output in the secondary circuit)
RYnA	Frequency priority CC-Link	Signals from the CC-Link are used to start and stop operation.
RYnB	Command priority CC-Link	Speed commands are entered from the CC-Link.
RYnC	Monitor command	When the monitor command (RYnC) is switched on, the monitored value is set to remote register RWrn and monitoring (RXnC) switches on. While the monitor command (RYnC) is on, the monitored value is always update.
RYnD	Frequency setting command (RAM)	When the frequency setting command (RYnD) is switched on, the set frequency RWwn+1 is written to the inverter. On completion of write, frequency setting completion (RXnD) switches on.
RYnE	Torque setting command (RAM)	When the torque setting command (RYnE) is switched on, the set torque RWwn+1 is written to the inverter. On completion of write, torque setting completion (RXnE) switches on.
RYnF	Instruction code execution request	When the instruction code execution request (RYnF) is switched on, processing corresponding to the instruction code set to RWwn+2 is executed. After completion of instruction code execution, instruction code execution completion (RYnF) switches on. When an instruction code execution error occurs, a value other than 0 is set to the reply code (RWrn+2).
$\begin{array}{\|c} \hline R Y(n+1) 0 \\ : \\ R Y(n+1) 7 \\ \hline \end{array}$	Reserved	Reserved for the system. *3
\| RY($\mathrm{n}+1$) 8	Reserved	Reserved for the system. *3
$\mathrm{RY}(\mathrm{n}+1) 9$	Reserved	Reserved for the system. *3
$R Y(n+1) A$	Error reset request flag *2	If the error reset request flag $(R Y(n+1) A)$ is switched on only when an inverter fault occurs, the inverter is reset and the error status flag $(R X(n+1) A)$ switches off. A reset request is during switched ON.
RY($\mathrm{n}+1$)B	Reserved	Reserved for the system. *3
$\begin{gathered} R Y(n+1) C \\ : \\ R Y(n+1) F \end{gathered}$	Reserved	Reserved for the system. *3

" n " is depend on the station number.
*1: When RYn0 and RYn1 are ON simultaneously the rotation is followed a parameter F; 5 (default = stop).

(But there are functional restrictions. Refer to the following page.)
*3: The reserved input signal should be set OFF ("0").

- Input function selection from the CC-Link.

The function numbers selection of the RYn2 - RYn8 function valid from the command of the CC-Link are following boldface numbers.

Positive logic	Negative logic	Function	Speed control	Torque control	$\begin{gathered} \mathrm{PM} \\ \text { control } \end{gathered}$	V/f
0	1	No function is assigned	$\bullet \cdot$	$\bullet \cdot$	\bullet	\bullet
2	3	F: Forward run command *3	$\bullet \cdot$	$\bullet \cdot$	\bullet	\bullet
4	5	R: Reverse run command *3	$\bullet \cdot$	$\bullet \cdot$	-	\bullet
6	7	ST: Standby *1, 3	$\bullet \cdot$	$\bullet \cdot$	\bullet	-
8	9	RES: Reset ${ }^{2}$, 3	$\bullet \cdot$	$\bullet \cdot$	\bullet	\bullet
10	11	S1: Preset speed 1	$\bullet \cdot$	-	\bullet	\bullet
12	13	S2: Preset speed 2	$\bullet \cdot$	-	-	-
14	15	S3: Preset speed 3	$\bullet \cdot$	-	\bullet	\bullet
16	17	S4: Preset speed 4	$\bullet \cdot$	-	-	\bullet
18	19	Jog run	$\bullet \cdot$	-	\bullet	\bullet
20	21	Emergency stop *2	$\bullet \cdot$	\bullet -	\bullet	\bullet
22	23	DC braking	\bullet	-	-	\bullet
24	25	Acceleration/deceleration switching 1	$\bullet \cdot$	-	\bullet	\bullet
26	27	Acceleration/deceleration switching 2	$0 / 0$	-	\bullet	\bullet
28	29	V/f switching signal 1	$\bullet \cdot$	-	\bullet	\bullet
30	31	V/f switching signal 2	$\bullet \cdot$	-	-	\bullet
32	33	Torque limit switching 1	$\bullet \cdot$	\bullet -	\bullet	\bullet
34	35	Torque limit switching 2	$\bullet \cdot$	$\bullet \cdot$	\bullet	\bullet
36	37	PID control OFF selection	$\bullet \cdot$	-	\bullet	\bullet
38	39	Pattern operation selection 1	$\bullet \cdot$	-	-	\bullet
40	41	Pattern operation selection 2	$\bullet \cdot$	-	-	-
42	43	Pattern operation continuation signal	$\bullet \cdot$	-	-	\bullet
44	45	Pattern operation trigger signal	\bullet	-	\bullet	\bullet
46	47	External thermal error	$\bullet \cdot$	-	\bullet	\bullet
48	49	Forced switching from communication to local	$0 \cdot$	-	-	\bullet
50	51	Holding of HD operation (stop the three-wire operation)	$\bullet \cdot$	-	\bullet	\bullet
52	53	PID differentiation/integration reset	$0 \cdot$	-	\bullet	\bullet
54	55	PID forward/reverse switching	$\bullet \cdot$	-	-	\bullet
56	57	Forced continuous operation	$\bullet \cdot$	-	-	\bullet
58	59	Specified speed operation	$\bullet \cdot$	-	-	\bullet
60	61	Acceleration/deceleration suspend signal	$\bullet \cdot$	-	\bullet	-
62	63	Power failure synchronized signal	$\bullet \cdot$	-	-	\bullet
64	65	My function RUN signal	$\bullet \cdot$	$\bullet \cdot$	-	\bullet
66	67	Auto-tuning signal	$\bullet \cdot$	-	\bullet	\bullet
68	69	Speed gain switching	$\bullet \cdot$	-	-	\bullet
70	71	Servo lock signal	\bullet	-	-	\bullet
72	73	Simple positioning (positioning loop)	$\bullet \cdot$	-	-	-
74	75	Integrating wattmeter display clear	$\bullet \cdot$	-	\bullet	\bullet
76	77	Trace back trigger signal	\bullet	-	-	\bullet
78	79	Light-load high-speed operation prohibitive signal	$\bullet \cdot$	-	\bullet	-
86	87	Binary data write	$\bullet \cdot$	$\bullet \cdot$	-	\bigcirc
88	89	Up/Down frequency (up)*1	\bullet	-	\bullet	\bullet
90	91	Up/Down frequency (down)*1	$\bullet \cdot$	-	\bullet	\bullet
92	93	Up/Down frequency (clear)	$\bullet \cdot$	-	\bullet	-
98	99	Forward/reverse selection	\bullet	$\bullet \cdot$	-	\bullet
100	101	Run/Stop command	\bullet	\bullet	\bullet	-
102	103	Commercial power/INV switching	$0 \cdot$	-	-	\bullet
104	105	Frequency reference priority switching *3	$\bullet \cdot$	-	-	\bullet
106	107	VI/Il terminal priority	\bullet	-	\bullet	-
108	109	Command terminal board priority *3	$\bullet \cdot$	- 0	\bullet	\bullet
111	111	Parameter editing enabling	$\bullet \cdot$	$\bullet \cdot$	-	\bullet
112	113	Control switching (torque /position)	$\bullet \cdot$	$\bullet \cdot$	-	-
122	123	Rapidest deceleration command	$\bullet \cdot$	-	\bullet	\bullet
124	125	Preliminary excitation	$\bullet \cdot$	\bullet -	-	\bullet
126	127	Braking request	\bullet	-	-	\bullet
130	131	Brake answer back input	$\bullet \cdot$	-	\bullet	\bullet
134	135	Traverse permission signal	\bullet -	-	-	\bullet

*1: Valid any time
*2: Independent of 17 亿
*3: This function is assigned by the output signal, the instruction code, etc. by fixation.
（2）Input signal Inverter－＞Master
The following shows input signals to the master．（The output signals from the inverter．）

Device No．	Signal name	Description
RXn0	Forward running	OFF：Other than forward running（during stop or reverse rotation） ON ：Forward running
RXn1	Reverse running	OFF：Other than reverse running（during stop or forward rotation） ON ：Reverse running
RXn2	Output terminal selection 1 （OUT1）	The function depends on output terminal function selection $1(F$ 泊合）
RXn3	Output terminal selection 2 （OUT2）	The function depends on output terminal function selection $2(\mathbb{F}$ İi$)$ ．
RXn4	Output terminal selection 3 （FL）	The function depends on output terminal function selection 3 （F゙ヨコ）
RXn5	Output terminal selection 4 （OUT3）	The function depends on output terminal function selection 4 （ - İİ）．
RXn6	Output terminal selection 5 （OUT4）	The function depends on output terminal function selection $5(F$ İ
RXn7	Output terminal selection 6 （R1）	The function depends on output terminal function selection 6 （ $F \mathfrak{I}$（ $)$ ）．
RXn8	Output terminal selection 7 （OUT5）	The function depends on output terminal function selection $7(F \leq \Xi)$ ．
RXn9	Output terminal selection 8 （OUT6）	The function depends on output terminal function selection $8(F 1 \Xi 7)$ ．
RXnA	Output terminal selection 9 （R2）	The function depends on output terminal function selection $9(F \leq \square)$ ．
RXnB	Reserved	Reserved for the system．
RXnC	Monitoring	Switched on when the monitored value is set to RWrn by the monitor command（RYnC）switching on．Switched off when the monitor command（ RYnC ）is switched off．
RXnD	Frequency setting completion （RAM）	Switched on when the set frequency is written to the inverter by the frequency setting command（RYnD）switching on．Switched off when the frequency setting command（RYnD）is switched off．
RXnE	Torque setting completion （RAM）	Switched on when the set torque is written to the inverter by the torque setting command（RYnE）switching on．Switched off when the torque setting command（RYnE）is switched off．
RXnF	Instruction code execution completion	Switched on completion of the processing corresponding to the instruction code（ $\mathrm{RWw}+2$ ）which is executed when the instruction code execution request（RYnF）switches on．Switched off when the instruction code execution completion（RXnF）is switched off．
$\begin{array}{\|c} \hline \mathrm{RX}(\mathrm{n}+1) 0 \\ : \\ \mathrm{RX}(\mathrm{n}+1) 7 \\ \hline \end{array}$	Reserved	Reserved for the system．
RX（ $\mathrm{n}+1) 8$	Reserved	Reserved for the system．
RX（ $n+1$ ） 9	Reserved	Reserved for the system．
RX（ $n+1$ ）A	Error status flag	Switched on when occurred an inverter error or option error （watchdog error，CPU error，ROM error or RAM error）．It is not switched on besides that．
RX（ $n+1$ ）${ }^{\text {B }}$	Remote station ready	Switched on when the inverter goes into the ready status on completion of initial setting after power－on or hardware reset． （Used as an interlock for read／write from／to the master．） Switched off when an inverter error occurs（protective function is activated）．
$\begin{gathered} \hline R X(n+1) C \\ : \\ R X(n+1) F \\ \hline \end{gathered}$	Reserved	Reserved

＂ n ＂is depend on the station number．

4.5.2. Remote Register Assignment

Divide the monitor code (RWwn) into half and select the first monitor data (RWr n) from the lower 8 bits and the second monitor data (RWr n) from the higher 8 bits.
(Example) When output voltage is selected for the first monitor and output torque is selected for the second monitor. -> The monitor code is 0703H.

* The hexadecimal value attaches and expresses " H " to the end of a number.

(1) Remote register		(Master -> inverter)
RWw signal		
Address	Signal name	Description
RWw n	Monitor code	Sets the monitor code to be referenced. By switching on the (RYnC) signal after setting, the specified monitored data is set to ($\mathrm{RWr} n$). The first monitor (RWr n) : RWw n Setting of the lower 8 bits of monitor code. The second monitor $(R W r n+1)$: RWw n Setting of the higher 8 bits of monitor code.
RWw ($n+1$)	Set frequency	Specifies the set frequency. After setting the register, a frequency is written after turning on the RYnD. When the writing of the frequency is completed, RXnD turns on, depending on the input command.
	Set torque	Specifies the set torque. After setting the register, a torque is written after turning on the RYnE. When the writing of the torque is completed, RXnE turns on, depending on the input command.
RWw ($\mathrm{n}+2$)	Command code	Sets the command code for actions such as operation mode switching, parameter read, write, error reference, error clear, etc. The command will be executed by turning RYnF on after the register setting is completed. When the command execution is completed, RXnF turns on.
RWw ($\mathrm{n}+3$)	Write data	Sets data specified by the above-mentioned command code (if necessary). If no data needs to be written, the value shall be zero. RYnF is turned on after setting the above-mentioned command code and this register.

" n " is depend on the station number.

Address	Remote register	Address	Remote register	Address	Remote register	Address	Remote register
No. $1\left\{\begin{array}{l}1 \mathrm{E} 0 \mathrm{H} \\ 1 \mathrm{E} 1 \mathrm{H} \\ 1 \mathrm{E} 2 \mathrm{H}\end{array}\right.$ 1E3H	RWw0 RWw1 RWw2 RWw3	$\text { No. } 3\left\{\begin{array}{l} 1 \mathrm{E} 8 \mathrm{H} \\ 1 \mathrm{E} 9 \mathrm{H} \end{array}\right.$ 1EBH	RWw8 RWw9 RWwA RWwB	$1 \mathrm{~F} 3 \mathrm{H}$	RWw10 RWw11 RWw12 RWw13		

No. $2\{$	RWw4 RWw5 RWw6 RWw7	1ECH $\left\{_{1 \mathrm{EDH}}\right.$ 1EEH 1EFH		((
				1F4H			
			RWwC	No. 6 1F5H	RWw14	2 DCH	RWwFC
			RWwD	No. 6 1F5H	RWw15	No. 64 2DDH	RWwFD
			RWwE	(RWw16	2DEH	RWwFE
			RWwF	1F6H	RWw17	2DFH	RWwFF
$\begin{array}{r} \left\{\begin{array}{l} \left\{\begin{array}{l} 1 \mathrm{E} 4 \mathrm{H} \\ 1 \mathrm{E} 5 \mathrm{H} \\ 1 \mathrm{E} 6 \mathrm{H} \end{array}\right. \\ 1 \mathrm{E} 7 \mathrm{H} \end{array}\right. \end{array}$				1F7H			

(2) Remote register (Inverter -> Master)

RWr signal

Address	Signal name	Description
$R W r n$	First monitor	When $R Y n C$ is on, the monitored value specified to the lower 8 bits of the monitor code (RWwn) is set.
$R W r(n+1)$	Second monitor (output frequency)	When "0" is set to the higher 8 bits of the monitor code (RWwn), the current output frequency is always set. When other than "0" is set to the higher 8 bits of the monitor code (RWwn) and RYnC is on, the monitored value specified to the higher 8 bits of the monitor code (RWwn) is set.
$R W r(n+2)$	Response code	When turn on RYnF, the response code correspond to the instruction code of RWw(n+2) is set. When turn on $R Y n D$ or $R Y n E$, the response code correspond to the instruction code of RWw(n+2) is set. The value "0" is set for a normal reply and other than "0" is set for data fault, mode error, etc.
$R W r(n+3)$	Read data	For a normal reply, the reply data to the instruction specified by the instruction code is set.

" n " is depend on the station number.

Address	Remote register	Address	Remote register	Address	Remote register	Address	Remote register
$\begin{array}{r} \left\{\begin{array}{l} \left\{\begin{array}{l} \\ 2 \mathrm{E} 0 \mathrm{H} \\ 2 \mathrm{E} 1 \mathrm{H} \\ 2 \mathrm{E} 2 \mathrm{H} \end{array}\right. \\ 2 \mathrm{E} 3 \mathrm{H} \end{array}\right. \end{array}$	RWro RWr1 RWr2 RWr3	$\text { No. } 3\left\{\begin{array}{l} \left\{\begin{array}{l} 2 \mathrm{E} 8 \mathrm{H} \\ 2 \mathrm{E} 9 \mathrm{H} \\ 2 \mathrm{EAH} \end{array}\right. \\ 2 \mathrm{EBH} \end{array}\right.$	RWr8 RWr9 RWrA RWrB	$\begin{aligned} & 2 \mathrm{~F} 0 \mathrm{H} \\ & \mathrm{No.} 5 \\ & 2 \mathrm{~F} 2 \mathrm{H} \end{aligned}\left\{\begin{array}{l} \\ 2 \mathrm{~F} 1 \mathrm{H} \end{array}\right.$ $2 \mathrm{~F} 3 \mathrm{H}$	RWr10 RWr11 RWr12 RWr13		
$\text { No. } 2 \begin{aligned} & \left\{\begin{array}{l} \\ 2 \mathrm{E} 4 \mathrm{H} \\ 2 \mathrm{E} 5 \mathrm{H} \\ 2 \mathrm{E} 6 \mathrm{H} \end{array}\right. \\ & 2 \mathrm{E} 7 \mathrm{H} \end{aligned}$	RWr4 RWr5 RWr6 RWr7	No. $4\left\{\begin{array}{l}\text { \{ } \\ 2 \mathrm{ECH} \\ 2 \mathrm{EDH} \\ 2 \mathrm{EEH}\end{array}\right.$	RWrC RWrD RWrE RWrF	$\begin{aligned} & 2 \mathrm{~F} 4 \mathrm{H} \\ & \mathrm{No.} 6 \\ & 2 \mathrm{~F} 6 \mathrm{H} \end{aligned}\left\{\begin{array}{l} \\ 2 \mathrm{~F} 5 \mathrm{H} \end{array}\right.$ $2 \mathrm{~F} 7 \mathrm{H}$	RWr14 RWr15 RWr16 RWr17	$\text { No. } 64\left\{\begin{array}{l} \left\{\begin{array}{l} \\ 3 \mathrm{DCH} \\ 3 \mathrm{DDH} \\ 3 \mathrm{DEH} \end{array}\right. \\ 3 \mathrm{DFH} \end{array}\right.$	RWrFC RWrFD RWrFE RWrFF

4.5.3. Instruction Codes

Code No.		Item	Description
1003H	Command mode selection read		0 : Terminal input enabled 1: Operation panel input enabled (including LED/LCD option input) 2: 2-wire RS485 communication input 3: 4-wire RS485 communication input 4: Communication option input
2003H	Command mode selection write		
1004H	Frequency setting mode selection read		1: VI/II (voltage/current input) 2: RR/S4 (potentiometer/voltage input) 3: RX (voltage input) 4: Operation panel input enabled (including LED/LCD option unit) 5: 2-wire RS485 communication input 6: 4-wire RS485 communication input 7: Communication input 8: Optional AI1 (differential current input) 9: Optional AI2 (voltage/current input) 10: UP/DOWN frequency 11: Optional RP pulse input 12: Optional high-speed pulse input 13: *3
2004H	Frequency setting mode selection write		
0072H	Special monitor		0000H to FFFFH: Monitor value selected after choosing instruction code 00F3H.
0073H	Read	Special monitor code read	Read the content that was monitored by special monitor.
00F3H	Write	Special monitor selection	Select the monitor code of special monitor.
0074H	Trip history No.1, No. 2 read		Read the No. 1 (latest) to No. 4 (oldest) trip records. *1
0075H	Trip history No.3, No. 4 read		
006DH	Frequency command value (RAM) read		Read the frequency command value (RAM).
006EH	Torque command value (RAM) read		Read the torque command value (RAM).
00EDH	Option frequency command value (EEPROM\&RAM) write *2		Write the option frequency command value (EEPROM \&RAM).
O0EEH	Option torque command value (EEPROM\&RAM) write *2		Write the option torque command value (EEPROM\&RAM).
00F4H	Trip history clear		9696H : Clear all trip history.
00FCH	Parameter all clear		9696H : Clear all parameters. (Parameters other than proofread values are made into factory's default settings.)
00FDH	Inverter reset		9696H: Reset the inverter.
$\begin{aligned} & 1000 \mathrm{H} \text { to } \\ & 1999 \mathrm{H} \\ & (1000 \mathrm{H} \text { to } \\ & 1 \mathrm{~F} 99 \mathrm{H}) \end{aligned}$	Read parameters (RAM)		To read parameters F000 to F984, add the triple figures that follow Fxxx to 1000H. (Ex: Fg84 -> $984+1000=$ 1984) No error occurs when you select 1A00 to 1F99. Because these parameters are for maintenance.
$\begin{array}{\|c} 2000 \mathrm{H} \text { to } \\ 2999 \mathrm{H} \end{array}$	Write parameters (EEPROM\&RAM) *2		To write parameters F000 to F984, add the triple figures that follow Fxxx to 2000H.

[^0]
4．5．4．The details of error code

The following data are stored as trip history data when the inverter trip occurred．

Error code		Description	Trip display
Decimal No．	Hexadecimal No．		
0	00H	No error	のEr，
1	01H	Overcurrent during acceleration	最
2	02H	Overcurrent during deceleration	OE
3	03H	Overcurrent during fixed speed operation	053
4	04H	Dynamic braking element overcurrent	昌 51
5	05H	U－phase arm overcurrent	昌明
6	06H	V－phase arm overcurrent	ロロロコ
7	07H	W－phase arm overcurrent	明吅
8	08H	Input phase failure	ERHi
9	09H	Output phase failure	ERH日
10	OAH	Overvoltage during acceleration	召口
11	OBH	Overvoltage during deceleration	分口に
12	OCH	Overvoltage during fixed speed operation	分P3
13	ODH	Inverter overload	Bi
14	OEH	Motor overload	
15	0FH	Dynamic braking resister overload	昌15
16	10 H	Overheating	昭
17	11 H	Emergency stop	E
18	12 H	EEPROM fault（writing error）	EER
19	13 H	Initial read error（parameter initialization）	Eロロコ
20	14H	Initial read error（parameter initialization）	EERコ
21	15H	Inverter RAM fault	Er，
22	16H	Inverter ROM fault	Erra
23	17H	CPU fault	Er，-4
24	18 H	Communication error interruption	Errs
25	19H	Gate array fault	Erra
26	1AH	Output current detector error	$E r, 7$
27	1BH	Communication error（1－9 i set to 4．）	Erra
29	1DH	Low current operation	$4{ }_{6}$
30	1EH	Undervoltage（main circuit power supply）	吅i
32	20 H	Overtorque	昌上
33	21H	Ground fault	$E F i$
34	22 H	Ground fault	EFE
36	24H	Dynamic braking abnormal element （200V－55kW or larger，400V－90kW or larger）	85

（It continues to the next．）
(Continuation)

| Error code
 No. | | Hexadecimal
 No. | Description |
| :---: | :--- | :---: | :---: | Trip display

4.5.5. Description of reply code

When executing the frequency setting (RYnD), torque setting (RYnE) or instruction code execution (RYnF), check the reply code ($\mathrm{RWr}(\mathrm{n}+2)$) in the remote register after execution.

Reply code

| Data
 (Hexadecimal No.) | Item | Description |
| :---: | :--- | :--- | :--- |
| 0000 H | Normal (No error) | Normal completion of instruction code
 execution. |
| 0001 H | Write mode error | Parameter write was attempted during
 operation other than a stop. |
| 0002 H | Parameter selection error | Unregistered code number was set. |
| 0003 H | Setting range error | Set data is outside the setting data range. |

4.5.6. Description of monitor code

Divide the monitor code ($R W w n$) into half and select the first monitor data ($\mathrm{RWr} n$) from the lower 8 bits and the second monitor data (RWr n) from the higher 8 bits.
(Example) When output voltage is selected for the first monitor and output torque is selected for the second monitor. -> The monitor code is 0703H.

RWw n	Monitor code
the higher 8 bits	the lower 8 bits
Second monitor description	First monitor description

Monitor code (When an invalid monitor code is set up, monitor value fixes to 0.)

Code Number	Second Monitor Description (the higher 8 bits)	First Monitor Description (the lower 8 bits)	Unit
00H	Output frequency	None monitor (Monitor value is 0)	0.01 Hz
01H	Output frequency	Output frequency	0.01 Hz
02H *1	Output current	Output current	0.01A
03H	Output voltage	Output voltage	0.1 V
04H	None monitor (Monitor value is 0)	None monitor (Monitor value is 0)	-
05H	Frequency command value	Frequency command value	0.01 Hz
06H	Output speed *2	Output speed *2	$1 \mathrm{~min}^{-1}$
07H	Output torque	Output torque	0.1\%
08H	DC voltage	DC voltage	0.1 V
09H	PBR load factor	PBR load factor	0.1\%
OAH	Motor overload factor (OL2 data)	Motor overload factor (OL2 data)	0.1\%
OBH, OCH	None monitor (Monitor value is 0)	None monitor (Monitor value is 0)	-
ODH	Input power	Input power	0.01kW
OEH	Output power	Output power	0.01 kW
OFH	Input terminal information	Input terminal information	-
10H	Output terminal information	Output terminal information	-
11H	Output current (\% monitor)	Output current (\% monitor)	0.1\%
12 H	Exciting current	Exciting current	0.01A
13H	None monitor (Monitor value is 0)	None monitor (Monitor value is 0)	-
14H	Cumulative operation time	Cumulative operation time	1h
15H, 16H	None monitor (Monitor value is 0)	None monitor (Monitor value is 0)	-
17H	Accumulation power supply ON time	Accumulation power supply ON time	1h
18 H	Motor overload factor	Motor overload factor	0.1\%
19H	Integral input power	Integral input power	1 kWh
1 AH	Integral output power	Integral output power	1 kWh
1BH	RR/S4 input	RR/S4 input	-
1 CH	VI/II input	VIIII input	-
1DH	RX input	RX input	-
$1 \mathrm{EH}, 1 \mathrm{FH}$	None monitor (Monitor value is 0)	None monitor (Monitor value is 0)	-
20 H	Torque command	Torque command	0.1\%
21H	Torque current	Torque current	0.1\%
22 H	None monitor (Monitor value is 0)	None monitor (Monitor value is 0)	-
23H	Speed feedback (real-time value) *3	Speed feedback (real-time value) *3	0.01 Hz
24H	PID feedback value	PID feedback value	0.01 Hz
25H	Speed feedback (1-second filter) *3	Speed feedback (1-second filter) *3	0.01 Hz
26 H to 2FH	None monitor (Monitor value is 0)	None monitor (Monitor value is 0)	-

Code Number	Second Monitor Description (the higher 8 bits)	First Monitor Description (the lower 8 bits)	Unit
30 H	My function monitor 1	My function monitor 1	-
31 H	My function monitor 2	My function monitor 2	-
32 h	My function monitor 3	My function monitor 3	-
33 H	My function monitor 4	My function monitor 4	-

*1: The monitor code " 02 H " will be overflow when its value more than 327.67 A . If that monitor overflowed, use the monitor code "11H".
*2: This monitor function is VF-PS1 only.
*3: These monitor functions are available with the option unit CPU software version 2.01 or later.

4．5．7．Description of input terminal information

Bit	Terminal name	Function（parameter name）	0	1
0	F	Input terminal function selection $1(F ; 1 i)$	OFF	ON
1	R	Input terminal function selection 2（Fiヒコ）		
2	ST＊	Input terminal function selection 3（F； \mathfrak{F} ）${ }^{\text {a }}$		
3	RES	Input terminal function selection $4(F ; 1$ 年		
4	S1	Input terminal function selection $5(F ; 15)$		
5	S2	Input terminal function selection $6(F ; 15)$		
6	S3	Input terminal function selection $7(\underline{F} ; 17)$		
7	RR／S4	Input terminal function selection $8(F ; 1 日)$		
8	L1	Input terminal function selection $9(F ; 19)$		
9	L2	Input terminal function selection $10(F)$		
10	L3	Input terminal function selection 11（Fiコl）		
11	L4	Input terminal function selection 12（F）ごコ）		
12	L5	Input terminal function selection $13(F 1$ ごコ）		
13	L6	Input terminal function selection 14 （F）		
14	L7			
15	L8	Input terminal function selection 16（Fロコ）		

＊This function is not supported by VF－PS1．

4．5．8．Description of output terminal information

Data composition of input terminal information（Code No．$=10 \mathrm{H}$ ）．

Bit	Terminal name	Function（parameter name）	0	1
0	OUT1		OFF	ON
1	OUT2	Output terminal function selection $2\left(\begin{array}{llll}1 & 1 & 3\end{array}\right)$		
2	FL	Output terminal function selection 3（F）		
3	OUT3	Output terminal function selection 4 （F1ココ）		
4	OUT4	Output terminal function selection $5\left(\begin{array}{l}1 \\ 1 \\ \text { I }\end{array}\right.$		
5	R1	Output terminal function selection $6(F)$		
6	OUT5	Output terminal function selection $7(F \backslash \Xi \boxed{)}$		
7	OUT6	Output terminal function selection $8\left(\begin{array}{l}1 \\ 1 \\ \hline\end{array}\right.$		
8	R2	Output terminal function selection $9(F ; \exists 日)$		
9	R3	Output terminal function selection $10(F) 5 日)$		
10	R4			
11 to 15	－	－	－	－

5.Programming examples

This chapter provides programming examples which control the inverter with the PLC.

System configuration for programming example

- As for master station, when use the Mitsubishi Electric An series, the recommended version is "LS" or later. The example of CC-Link communication network composition

- CPU	Mitsubishi Electric Corp.	A1SJHCPU
- Master unit	Mitsubishi Electric Corp.	A1SJ61BT11
- Input module	Mitsubishi Electric Corp.	A1SX40
- CC-Link dedicated cable	Kuramo Electric Corp.	FANC-110SBH
- Inverter	TOSHIBA	TOSVERT VF-AS1 (2 units)
- CC-Link option	TOSHIBA	CCL001Z1 (2 units)

5.1. Example of the inverter status reading

The following explains a program to read the inverter status from master buffer memory.
The following program reads the inverter status of station 2 to M0-M7 register.

5.2. Example of the command mode setting

The following explains a program to write various data to the inverter.

The following program changes the operation mode of station 1 inverter to CC-Link operation.
Operation mode writing code number : 2003H (Hexadecimal number)
CC-Link operation set data : 0000H (Hexadecimal number)
The reply code at the time of instruction code execution is set to D2.

Stores reply code to D2 when the instruction code execution completion.

$\mathrm{D} 2=0000 \mathrm{H} \cdots \cdots \cdots \cdot$ Normal	Normal completion of instruction code execution.
$0001 \mathrm{H} \cdots \cdots \cdots \cdot$ Write mode error	Execution improper error.
	(Write protected during operation)
$0002 \mathrm{H} \cdots \cdots \cdots$ Parameter selection error	Unregistered code number was set.
$0003 \mathrm{H} \cdots \cdots \cdots$ Setting range error	Set data is outside the permissible data range.

Command mode setting
Code number : 2003H
Setting data 0000 H : Terminal input enabled
0001 H : Operation panel input enabled
(including LED/LCD option unit)
0002H : 2-wire RS485 communication input
0003H : 4-wire RS485 communication input
0004H: Communication option input

5.3. Example of the operation commands setting

The following explains a program to write a running command for inverter operation to the buffer memory of the master.

The inverter is operated in accordance with the operation commands written to the remote outputs (addresses 160H to 1DFH).

The following program outputs the command of forward rotation signal to station 1 inverter.

5.4. Example of frequency command setting

The following program changes the running frequency of station 1 inverter to 50.00 Hz .
Set frequency : K5000 (Decimal number)
The reply code at the time of instruction code execution is set to D2.

*To continuously change the running frequency from the PLC
When the frequency setting completion (ex.: RX1D) switches on, make sure of that the reply code in the remote register is 0000 H and change the set data (ex.: RWw1) continuously.

5.5. Example of the output frequency monitoring

The following explains a program to read monitor functions of the inverter.
The following program reads the output frequency of station 1 inverter to D1.
Example : The output frequency of 50 Hz is indicated $1388 \mathrm{H}(0.01 \mathrm{~Hz}$ unit).

Please refer to "Section 4.4.6. Description of monitor code" about the details of a monitor code.
*When you refer to data by the monitor, be careful of a unit.

5.6. Example of the parameter writing

The following example program changes the $F \Xi i$; "Reverse-run prohibition selection" setting of station 2 inverter to " $;$: Prohibit reverse run".

Reverse-run prohibition selection write code number : 2311H (Hexadecimal number)
Reverse-run prohibition set data : 1 (Decimal number)

*To write parameters, add the triple figures that follow Fxxx to 2000H.
Example \quad Fヨif \rightarrow 2311H

5.7. Example of the parameter reading

The following program reads $F \Xi i ;$ "Reverse-run prohibition selection" of station 2 inverter to D2.

The code of reading "Reverse-run prohibition selection" : 1311H (Hexadecimal number) The reply code at the time of instruction code execution is set to D1.

*To read parameters, add the triple figures that follow Fxxx to 1000H.
Example Fヨif -> 1311H

5.8. Example of the trip history reading

The following program reads the trip history of station 2 inverter to D1.
Trip history No.1, No. 2 reading code number :74H (Hexadecimal number)
To reply code at the time of instruction code execution is set to D2.

Sample of the display of trip history
Read data $\cdots \cdots C a s e ~ o f ~ 2 D 0 E H . ~$

*For details of error code, refer to "Section 4.4.4. The details of an error code".

5.9. Example of the inverter resetting at inverter error

The following program resets the station 1 inverter.

Reads the remote input (RX00 to RX1F) data of buffer memory to M100 - M131. Switches on the error reset request flag (RY1A). Switches off the error reset request flag (RY1A) if the error status flag (RX1A) is off. Writes M200 - M231 data to the remote outputs (RY00 to RY1F) of buffer memory.
*The above inverter reset using RY1A may be made only when an inverter fault occurs.
Also, inverter reset can be made independently of the operation mode.
*Change the command mode to the network operation mode.

6．Unusual diagnosis

6．1．Option error

The error message is displayed when there is hardware error，software error or lose of connection of wire．

\checkmark Display of trip information

Eーココ（Error code ：55）：Add－on option 1 error

（This error is displayed at the time the bottom side option has an error or only one option is installed and has an error．）

Eーミ゙（Error code ：56）：Add－on option 2 error

（This error is displayed at the time the two－units are installed and the upper side option has an error．）

6．2．Disconnection error of network cable

\checkmark Display of trip information

Err（Error code ：27）：Communication error

Velated parameter

［F 1 S5 Disconnection detection extended time］
The range ： 0.0 to 0.0 .0 sec ．
The waiting time from when a network error occurs to when a communication error ＂$E r-G$＂is displayed can be adjusted．If a network error continues past the time set in $F G 5 \Omega$ ，it is recognized as a communication error and＂$E,-\boldsymbol{r}$＂is displayed．

When normal communication returns during the set time，a communication error is not displayed and operation is continued．
［F日与：Inverter operation at disconnection］
The range \quad ：Stop and Communication release
（CMOD，FMOD）
i：None（continued operation）
Ξ ：Deceleration stop
3：Coast stop
4：Network error（ $E,-1$ rip）

The action of the inverter when the communication error occurred can be specified．

［F 552 Preset sped operation selection］
 Setting range π None

i to 15 ：Preset speed operation（by parameter setting）

6.3. How to check the error using the LEDs

The following example explains the causes of fault which may be judged from the LED status of the CC-Link unit (CCL001Z1) of the inverter.

(1) When two or more inverters are connected

The following example explains the causes and corrective actions for fault which may be judged from the LED status of the CC-Link units (CCL001Z1) of the inverters under the condition that the SW, M/S and PRM LEDs of the master are off (the master setting is proper) in the system configuration shown below:

Power supply	CPU	Master unit
Station 1 Inverter	Station 2 Inverter	Station 3 Inverter

LED Status				Cause	Corrective Action
Master	CCL001Z1				
	Station 1	Station 2	Station 3		
TIME O LINE O or TIME • LINE O	L.RUN • SD RD L.ERR O	L.RUN • SD RD L.ERR O	L.RUN • SD RD L.ERR O	Normal	-
	L.RUN O SD O RD O L.ERR O	L.RUN SD RD L.ERR	L.RUN • SD RD L.ERR	Poor contact of the CCL001Z1 with the inverter.	Plug the CCL001Z1 securely. Check the connector.
TIME • LINE • or TIME O LINE •	L.RUN • SD RD L.ERR	L.RUN O SD * RD * L.ERR O	L.RUN O SD * RD * L.ERR O	Since the L.RUN LEDs of the station 2 and later are off, the communication cable between station 1 and 2 is open or disconnected from the terminal block.	Referring to the LED "on" condition, search for an open point and repair.
	L.RUN O SD * RD * L.ERR O	L.RUN O SD * RD * L.ERR O	L.RUN O SD * RD * L.ERR O	The communication cable is shorted.	Among the three wires of the communication cable, search for shorted wire and repair.
	L.RUN O SD RD L.ERR *	L.RUN O SD * RD * L.ERR	L.RUN O SD * RD * L.ERR	The communication cable is wired improperly.	Check the wiring on the inverter terminal block and correct the improper wiring point.

(2) Communication stops during operation

- Check that the CC-Link units and the CC-Link dedicated cable are connected properly.
(Check for contact fault, break in the cable, etc.)
- Check that the PLC program is executed properly.
- Check that data communication has not stopped due to an instantaneous power failure, etc.

LED Status				Cause	Corrective Action
Master	CCL001Z1				
	Station 1	Station 2	Station 3		
TIME O LINE O or TIME LINE O	$\begin{array}{lll} \hline \text { L.RUN } & O \\ \text { SD } & \text { * } \\ \text { RD } & \bullet \\ \text { L.ERR } & 0 \end{array}$	L.RUN • SD RD L.ERR O	L.RUN O SD * RD L.ERR O	Since the L.RUN LEDs of station 1 and station 3 are off, the station numbers of station 1 and 3 are duplicated.	After correcting the re-peated station numbers of the inverters, switch power on again.
	L.RUN SD RD L.ERR	L.RUN O SD O RD L.ERR	L.RUN • SD RD L.ERR	Since the L.RUN and SD LEDs of station 2 is off, the communi-cation speed setting of station 2 is wrong within the setting range (0 to 4).	After correcting the communication speed setting, switch power on again.
	L.RUN SD RD L.ERR O	L.RUN • SD RD L.ERR O	L.RUN • SD RD L.ERR	Since the L.ERR LED of station 3 flickers, the setting switch of station 3 was moved during normal operation.	After returning the setting switch to the correct position, power on the inverter again.
	L.RUN O SD RD L.ERR	L.RUN • SD RD L.ERR O	L.RUN • SD RD L.ERR O	The setting switch of station 1 is outside the range (communi-cation speed: 5 to 9, station number: 65 or more).	After correcting the setting switch position of the CCL001Z1, power on again.
	L.RUN • SD RD L.ERR O	L.RUN • SD RD L.ERR	L.RUN • SD RD L.ERR O	Since the L.ERR LED of station 2 is on, station 2 is affected by noise. (L.RUN may put out the light.)	Securely connection FG of each inverter and master to ground.
	L.RUN SD RD L.ERR	L.RUN • SD RD L.ERR	L.RUN • SD RD L.ERR	Since the L.ERR LEDs of station 2 and later are on, the communication cable between the inverters of stations 2 and 3 are affected by noise. (L.RUN may put out the light.)	Check that the com-munication cable is connected to SLD. Also run it as far away as possible from the power lines. 100 mm or more)
	$\begin{array}{ll} \hline \text { L.RUN } & \bullet \\ \text { SD } & \bullet \\ \text { RD } & \bullet \\ \text { L.ERR } & O \end{array}$	L.RUN • SD RD L.ERR O	L.RUN • SD RD L.ERR	Terminal resistors are left un-connected. (L.RUN may put out the light.)	Check that the terminal resistors are connected.

- On, O: OFF, ๑: Flicker, *: Any of on, flicker or off.

[^0]: *1 : The details of error code are indicated to the following page.
 *2 : The Life of EEPROM is approximately ten thousand times.
 *3: Unsupported item.

