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Security is paramount in our increasingly connected and complex world. Security and cybersecurity have 

become top concerns and gained a lot of international attention through news reports of recent attacks 

and data breaches. These events have underscored the need for designers to improve security from 

endpoint to endpoint.

Looking at the Internet of Things (IoT) for instance, security is necessary in industrial applications like 

building and home automation, smart grids, appliances, factory automation, personal electronics and 

automotive. Designers must take security seriously, conducting a thorough risk evaluation and selecting 

appropriate measures so that their application protects user privacy and defends consumers against 

fraudulent actions – all while providing the proper functionality and services.

In this context, the question arises: How do you achieve your desired level of security in connected 

devices? Achieving a sufficiently good level of security requires a lot of effort, investment and time. 

This e-book will provide an overview of why security matters, how to evaluate which security measures  

you need, and how to implement these measures against threats and adversaries. We will also take 

a look at the main security enablers that Texas Instruments (TI) offers to assist you in furthering your 

security objectives.

In t roduct ion
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As the world continues to seek greater convenience, the 

internet and the devices connected to it have become a 

predominant tool in our lives. However, this connection 

to the internet comes with a range of drawbacks that are 

somewhat tolerable – such as a partial loss of data on 

social media, or not – like the loss of personal information 

and privacy. Preserving privacy also means preserving 

human rights and freedom, which is why cybersecurity has 

become a major concern for many types of applications, 

especially those that connect to the internet or to each other.

Cybersecurity is no longer something that only concerns a 

small group of experts. It concerns us all and has spread into 

nearly every corner of daily life. All designs requiring security 

or involving some aspect of security must be taken seriously 

(and with a lot of humility) from the very first day of a project.

While integrated circuits (ICs) like microcontrollers (MCUs), 

processors and wireless connectivity devices do not 

constitute a complete solution for securing an application, 

they can provide the building blocks for you to use to 

incorporate security features into your application. These 

are various types of security features that enable and assist 

designers in reducing the security risk consistent with their 

intended end application and design requirements. At TI, 

we have partitioned these features into 12 categories in 

order to help our customers easily identify the security 

features that are pertinent to their applications. We call 

these categories “security enablers”.

1.1.  Why does security matter?

Why should system architects, designers and engineers 

concern themselves with the security of the products  

they create?

When designers think about the word “security,” there 

are inevitably other terms that come to mind, such as 

“privacy,” “safety,” “protection” and “defense.” The broad 

topic of security actually encompasses and embraces all of 

these other terms. To maintain privacy, consumers create 

passwords for online accounts, establish PINs for payment 

cards and give fingerprints to prove their identity. These 

actions are intended to “secure” personal information, or in 

some cases to “secure” individuals or property from harm, 

as much as possible.

Anything precious and valuable is worth securing. But 

an obvious question arises: From whom or what are we 

securing these precious items? In the modern world, 

security measures are intended to defend against other 

people. This type of security is both a unique human need 

and a unique human problem because, while obvious, 

items of value to one person are likely to be items of value 

to many others.

Chapter 1: Introduction to cybersecurity

Security enabler: A category of security features that TI devices may support. They can help customers achieve 

their security objectives.
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In the modern digital world, many precious items have 

moved from being tangible, analog things to digital bits. 

For example, the money in bank accounts is just a set 

of bytes in a database; photographs and favorite songs 

are simply files on smartphones or computers (now more 

commonly in the cloud); and communications – text 

messages, chat logs, emails, voice calls, social media 

posts, etc. – are all packets of digital data moving in and 

around a vast digital network spanning the globe.

But these things are no less valuable just because they 

are collections of bits rather than the tangible objects they 

represent. Consumers value photos, music and other 

data, so they try to prevent attackers from getting into 

devices and modifying their content. Because individuals 

value privacy and freedom from unauthorized parties 

knowing what they say and who they say it to, there is a 

conscious attempt to protect communications from being 

intercepted. Because users want to protect their online 

identity and reputation, efforts are made to prevent others 

from accessing accounts and impersonating them online.  

This is all security. 

1.2. Security framework: a view of a  
typical embedded application

Everything starts at the application level. As shown in 

Figure 1, designers will typically want to protect their 

customer assets against threats by implementing security 

measures. At the semiconductor level, the main assets 

in a system that need protection are data, code, device 

identities and keys. This e-book intends to help developers 

understand how to identify their “customer assets” and 

categorize them into one of these three categories at the 

semiconductor level. 

The exposure points (often referred to as the “attack 

surface”) in a system can increase the vulnerability of 

assets at each part of the application/system life cycle and 

operations. Exposure points in a system can be broadly 

categorized as storage, run-time or transfer operations.

TI offers security enablers in order to help designers 

implement their security measures. Based on the assets 

that need protection and the exposure points, you should 

consider all of the appropriate security enablers and 

then select security features at the device level to design 

appropriate protection. The green blocks in on the next 

page are 12 security enablers that we will define in the 

next section.

 

Assets:  The objects (either physical or logical) that you 

want to protect. An asset can be firmware that a user  

loads onto a device, data transmitted over a network or 

key material stored on a device.
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TI delivers different types of security enablers to
help you address the emerging threats and 

implement security measures to protect your asset.

To protect those asset, you would 
implement security measures.

In the real world, there can be holes
in the protection called exposure points.

It starts with an asset you want to protect
against different types of threats.

Asset

Asset

Threats

Exposure 
points

Threats

Asset

Exposure 
points

Asset
Threats

Security
measures

Exposure
points

Threats

Security
measures

TI Security Enablers

Asset

Exposure
points

Threats

Security
measures

TI Security Enablers

Secure frame work
and software update

Figure 1 - Security framework.
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Chapter 2: Risk assessment and security discovery process

It’s safe to assume that someone with sufficient motivation, 

expertise, equipment and time can break any security 

measure. With this in mind, a discussion on security 

requirements must weigh the cost and effort of implementing 

security against the value of what is being secured and the 

assumed cost of mounting a successful attack.

A risk assessment should consist of two steps: a qualitative 

risk assessment first (identifying the vulnerabilities, threats, 

threat probabilities and measures) and a quantitative risk 

assessment (quantifying loss in case a threat is realized, 

such as mapping a dollar amount to a specific risk).

This principle revolves around three fundamental questions:

• What is being protected? (asset)

• Who or what are you protecting against?  

(threat and threat probability) 

• What is the attack surface?  

(exposure points and threat probability)

You must start with a good understanding of the targeted 

application and then conduct a risk assessment to identify 

which security measures will mitigate the threats and which 

are possible to implement in your system. Once identified, 

you can connect the security measures to actual security 

enablers (security features in TI devices). This leads to the 

identification of an embedded device that may contain 

the right ingredients (security features) to implement these 

security measures. The flow chart in figure 2 describes this 

process, sometimes iterative, but we will explain it in further 

detail in the following sections.
Security: using an objective and holistic risk analysis, 

a designer may assess an asset as secure if the 

designer has confidence in determining that the value 

of the protected asset is smaller than the cost of the 

cheapest attack that compromises this asset.

Figure 2 - Security implementation cycle: developer’s responsibilities and devices with security enablers.
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2.1. Threats or threat modeling 
(attackers capabilities and attack 
surfaces)

A practical way to classify the type of threats that any 

design has to consider is to view it from a system access 

perspective. The attacker poses three main types of 

threats: from the network (remote: internet), the board 

(close proximity) and the chip (physical attacks) as shown  

in figure 3.

• Network threats include any communication channel 

(either wired or wireless) that allows a remote attacker 

not present at the location or in close proximity to the 

device to attack it. 

• Board threats target printed circuit board (PCB) access 

and use any wired interface on the chip.

• Chip threats infiltrate device access to perform integrated 

circuit (IC) decapsulation and deprocessing to gain 

access to the internal layers and elements of the chip.

See table 1 for the full definition of these threats.

Threats differ based on the level of access and the level of 

equipment and capabilities attackers might have (attack 

surface and attack vector). Each level simply refers to 

particular attack surfaces and vector sets that you need 

to consider. The types help you quickly determine the 

resistance goals of particular applications and tailor which 

security measures to implement. For example, chip threats 

are typically not considered for connected products, as  

the potentially riskiest attack for that type of product is 

one that can be reproduced and scaled to many devices, 

potentially an entire area/city.

 

Figure 3 - Threat types in an embedded system.
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Threat 
Categories

Threat 
Definition Capabilities

Network Signal analyst with only 
remote access, wired 
or wireless (no direct 
physical access).

The attacker accesses the system through the wide area network (WAN) or other wireless protocol.  
It can communicate with the device, impersonate another device, etc. The attacker can also be  
located in close proximity to the device. It can monitor or modify inbound/outbound wireless  
communication/or unintended emissions. It can attack the wireless physical layer. It can also perform 
network timing attacks.

Board Hobbyist or electrical 
engineering lab with 
physical access to 
device.

The attacker has access to the PCB. They can monitor interactions with the device using wired 
interfaces for communication (Serial Peripheral Interface [SPI], Inter-Integrated Circuit Protocol [I2C],  
universal asynchronous receiver transmitter [UART]), debugging (Joint Test Action Group [JTAG]) 
or power supply (electromagnetic/power analysis). They can also trace and manipulate the wired 
interfaces of the device. They will modify the PCB and actively try to create the conditions that lead to 
the targeted access retrieval.

Chip Professional hacking 
companies, universities, 
lab, spy agencies.

The attacker has a sufficient amount of time and full physical access to the product. They can 
delaminate a package to get access to the device’s internal layers. In this category, the main examples 
of attacks are microprobing, fault attack (laser, light, etc.) of the Integrated Circuit, but also reverse 
engineering of the read-only memory (ROM). The attacker delaminates the package to access the 
device’s internal layers and uses a panoply of sophisticated silicon analysis tools: focus ion beam (FIB), 
scanning electron microscope (SEM), EmiScope (EMI) or atomic force microscope (AFM).

Table 1 - Threat categories.
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If the cost of a system attack is higher than the total value of 

the asset, then it is reasonable to assume that a successful 

attack will not be mounted. When considering such risks, 

note that some attacks are expensive to develop but can 

be inexpensive to repeat. For example, an attack that 

relies on wafer backgrinding* and observing the active 

components to extract assets from a device requires both 

significant expertise and equipment to execute, and this 

expertise and equipment is required each time the attack 

is repeated. In contrast, there are attacks that obtain an 

invariant secret used in a device family to unlock it for retest 

or failure analysis purposes. Obtaining the secret may 

involve equipment and expertise rivaling the first attack in 

cost; however once obtained, the secret may be used to 

mount repeated attacks, making this effectively very low 

cost compared to acquiring access to the whole system. 

This attack presents a high risk.

There are many techniques for analyzing security risks. 

Generally, within the security space, risk analysis techniques 

are referred to as “threat modeling.” Each risk analysis 

technique comes with its own pros and cons, in addition to 

specific industry standards (official or de facto) that specify 

which technique(s) to use. We provide further details and 

possible methods in Section 3.3 to help designers carry out 

this threat modeling step in a more rigorous way.

In the threat modeling process, it is very common that the 

identification of threats leads to the identification of assets, 

and vice versa. For example, you may not consider a piece 

of software an asset, but when considering the threats 

when a device is connected, that piece of software could 

be updated, which would lead to the control of all devices 

in the network; therefore, a piece of software and its control 

suddenly becomes a very important asset.

Table 2 shows three different scenarios that use the TI 

security discovery process. This process should guide  

you towards the security enablers that are most relevant 

to your security objectives, but it does not replace a full 

analysis (following one of the possible tools we suggest in 

Section 3.3).

Defining the security measure is a necessary step to identify 

the security enablers you need at the device level.

Scenarios Baby Monitor
Payment Terminal 
(Electronic Point of Sale [ePOS]) Electronic Door Lock (E-Lock)

Threat Attackers can eavesdrop and 
access the video/audio of a  
baby monitor to determine if 
someone is home.

Attackers can try to physically access a 
system to manipulate what is displayed, in 
order to deceive users and steal money.

Attackers can use the debugging interface to 
access the code and key in order to understand 
how to open any e-lock of any brand.

Customer Asset Video/audio streaming 
content

Money (data displayed). Personal possessions (anything that the  
e-lock protects).

Security Measure Encrypt video/audio streaming 
content.

Add tamper protection to the PCB  
with a mesh.

Lock the debugging port.

Table 2 - TI security discovery process examples.

*Wafer backgrinding is a semiconductor device fabrication    

  step during which wafer thickness is reduced.
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2.2. Map your security measures  
to security enablers

Now that you have identified your threats, your (application-

level) assets and your security measures, you can map these 

security measures to the security enablers. We provide this 

as a tool (table 4) to facilitate your device selection process.

The 12 categories of security enablers (the blue boxes 

in figure 1) are somewhat flexible and purposely include 

overlap. Each category may include dozens of detailed 

features that help resolve a security threat for a particular 

market or application. In general, most TI embedded 

processing systems-on-chip (SoCs) contain at least 

some basic security enablers, such as secure boot and 

cryptographic acceleration, on-chip. Some security enablers 

are only available on specific SoCs, depending on the 

device’s intended applications. Figure 4 places the security 

enablers in a pyramid to illustrate the typical layers of an 

embedded processor/MCU with or without a wireless 

interface. We recommend starting from the bottom of the 

pyramid and working toward the top as a typical way to 

think about the relevant measures.

Figure 4 - Typical layers of an embedded processor, with or without a wireless interface.
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Security 
Enabler Threat Questions Simple Explanation

Secure Boot Your application runs off an external flash. How can you make sure 
that only your software runs on your devices?

Methodologies can help secure the boot process by preventing the loading of software (bootloaders, drivers, operating 
systems, applications) not signed with an acceptable digital signature.

Device Identity/Keys How can you identify and authenticate the identity of your device  
to the network?

You can evaluate and elect to use an identity that TI stores in the devices. It may have the form of a unique ID (UID) and 
optionally a signature (certificate) key whose public key is easily shareable with a cloud service, for example.

Cryptographic Acceleration How can you achieve your latency or throughput performance while 
maintaining your keys/data/code security?

You can leverage the efficiency of dedicated hardware to implement your cryptographic objectives. It can be provided as 
hardware or as ROM, such as Advanced Encryption Standard (AES) tables. In some cases, the device does not provide 
cryptographic acceleration, but TI provides generic software C libraries.

Debugging Security Can somebody use a debugger probe to read out your assets? You can lock out debugging ports. Some devices will provide various options such as permanent locks, or you can create 
a password/credential per device to allow reopening of the debugging port.

Trusted Execution 
Environment (TEE)

Now that you have developed, audited and/or certified your application, 
how can you make sure that vulnerability in another application running 
on the same central processing unit (CPU) cannot be exploited to 
attack your assets: keys, data and code?

A TEE enables you to isolate your application (keys/data/code) at run time from other applications, helping you reduce the 
risk of security vulnerabilities in other parts of the software. A TEE can either be a physically separated MCU or a virtually 
isolated processing unit.

Secure Storage If somebody tampers with your device or finds a software 
weakness to exploit, are your critical keys and data secure?

Keys and data are stored in a part of the memory that is isolated from the rest of the code and data. TI provides various 
security features ranging from encrypted blob of keys, anti-tamper modules with master keys, and a private key bus 
between the nonvolatile memory and the cryptographic accelerators. 

External Memory Protection You want to expand your application with off-chip flash or  
double-data-rate (DDR) memory. How do you make sure that  
only your application can run on the CPU?

Quad SPI (QSPI)/external memory interface (EMIF) with execute-in-place provides an easy way to expand your application. 
The capability to decrypt/authenticate on the fly can assist you in protecting confidentiality/authenticity while allowing only 
your application to run on the CPU.

Networking Security How can you get optimal performance while connecting to the network 
with known protocols?

You can use networking protocol accelerators for Internet Protocol security (IPsec), Transport Layer Security (TLS), 
or dedicated hardware and firmware to these protocols (A firmware denotes a piece of software in ROM or a piece of 
software that TI programs at manufacturing ).

Initial Secure Programming
(Overbuild Protection Plus 
Counterfeiting)

You want to program your chip in an untrusted environment (such 
as a foreign manufacturing facility). How can you ensure that your 
application/keys are not altered, stolen or replaced?

TI provides a methodology that you can evaluate and elect to use to strengthen the confidentiality, integrity and 
authenticity of initial firmware or keys programmed in an untrusted facility or during the first boot of the application.

Secure Firmware and 
Software Update

How can you update your application remotely and securely?  
Nobody should be able to spy, impersonate or replay your updates.

You can encrypt and sign the updated image for part or all of the application to help mitigate against efforts to spy, 
impersonate or replay your firmware updates. TI provides various product-dependent features such as over-the-air  
updates (OTA) while the application is running, hot swap and load for external flash.

Software Intellectual 
Property (IP) Protection

Your software IP (code) represents a significant investment that you’d 
like to protect. Can you protect its confidentiality during different parts 
of your product’s life cycle?

Firewalls, IP protection zones/regions, encryption and debugging lockout of part or all of the application are some of the 
security features that TI provides to help you address these types of concerns.

Physical Security If somebody has physical access to your application, can they open the 
package or use the power supply to get access to your assets?

Removing the package and measuring the answer time or power consumed by a protocol request are powerful attacks 
that anyone with access to the device can use. TI provides various hardware and software features to help you thwart 
these types of attacks.

Table 3 - Security enabler glossary.
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Having identified threats and security measures at the 

application level, it’s time to identify the corresponding 

assets and exposure points at the semiconductor level, 

using table 4 as a guide to select the most appropriate 

security enablers.

For example, looking at table 4, if you wish to protect the 

asset Code in the situation (exposure point) of Transfer, 

you will most likely need to consider the Cryptographic 

Acceleration, Networking Security, Secure Firmware and 

Software Update, and Initial Secure Programming security 

enablers. If you want to protect the Identity & Keys asset 

in the situation (exposure point) of Transfer, you will most 

likely need to consider the Cryptographic Acceleration and 

Networking security enablers.

It’s likely that only one (or only a subset) of the securities 

enablers provided above are pertinent to the problem you 

are trying to solve. Additional security enablers, outside 

those provided above, may be necessary to complete your 

design. At best, table 4 can help you make a first initial 

assessment of the possible important security enablers to 

help you through the selection process.

TI Security 
Enablers

Secure Boot

Device Identity/Keys

Cryptographic Acceleration

Debugging Security

TEE

Secure Storage

External Memory Protection

Networking Security

Initial Secure Programming

Secure Firmware and Software Update

Software IP Protection

Physical Security

Table 4 - Guide to security enablers based on function of asset and exposure points.
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2.3. Security discovery process  
examples

While making a analysis on the security implementation, it is 

important to be able to address two questions (as displayed 

in figure 5) regarding the asset you need to protect at the 

device level and the corresponding exposure points as 

defined in the TI security framework.

Table 5 takes the three examples from table 1 and maps 

them to TI security enablers.

This security discovery process is intended to be an easy 

first step for identifying the security enablers that pertain to 

the problem you are trying to solve, and lead to a selection 

of devices equipped with those security enablers that can 

help you implement the appropriate measures. It does 

not provide a foolproof way to identify all of the measures 

necessary to defeat attacks and attack scenarios. We 

strongly recommend following the threat modeling process 

to minimize the risks. See Section 3.3 for some leads  

and examples.

Scenarios Baby monitor

Payment terminal 
(Electronic Point of Sale 
[ePOS])

Electronic door lock 
(E-Lock)

Threat Attackers can eavesdrop and 

access the video/audio of a 

baby monitor to determine if 

someone is home.

Attackers can try to physically  

access a system to manipulate 

what is displayed, in order to  

deceive users and steal money.

Attackers can use the debugging 

interface to access the code and 

key in order to understand how to 

open any e-lock of any brand.

Customer asset Video/audio streaming 

content

Money (data displayed). Personal possessions (anything 

that the e-lock protects).

Measure Encrypt video/audio 

streaming content.

Add tamper protection to the PCB 

with a mesh.

Lock the debugging port.

Device asset Data Data Data

Exposure point Transfer Run Time Storage

Security 

enabler guide 

output

• Cryptographic Acceleration

• Networking Security

• Secure Boot

• TEE

• Physical Security

• Debugging Security

• Secure Storage

• Cryptographic Acceleration

• Physical Security

• External Memory Protection

Security enabler

selected in the 

context of the  

security measure

If encryption of the video 

stream is not possible in  

software, the solution is: 

Cryptographic Acceleration

Use anti-tamper techniques: 

Physical Security

Lock your debugging access: 

Debugging Security

Example of TI device 

equipped with such 

security enablers 

SimpleLink™ CC32xx, 

CC26xx wireless MCUs

Sitara™ AM438xx processor MSP430FR69xx MCU

Table 5 - Security discovery process examples.

Figure 5 - Fundamental security questions once measures have been established.

What assets do you want to protect? 

ASSETS

EXPOSURE
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2.4. Selecting the appropriate device

The security discovery process allows designers to connect 

the security measure to the required security enablers. 

Ultimately, you need to select the appropriate device 

to support your application. TI offers a large portfolio of 

MCUs (host and wireless) and processors integrating these 

security enablers. The product documentation in Chapter 6 

provides detailed security features in each security enabler 

category. Figure 6 illustrates as an example the security 

features incorporated into SimpleLinkTM Wi-Fi® CC322x 

wireless MCUs, which support data (device asset) on the 

transfer (exposure point) situation.

Overall, developers can use the TI security discovery 

process which is summarized in figure 7 below when 

addressing a security challenge. It is important for the 

developers to define the security measure as precisely as 

possible. At this stage developers can use the TI  

security discovery process to identify which device may  

be appropriate for their application and obtain guidance  

to implement their security measures.

Getting down to the detailed security features

Asset to Protect Security Enablers
Detailed Security 
Features

AES256

MD5

SHA2

RSA, ECC

WPA2, WPS

TLS 1.2

EAP xxxx

+

Figure 6 - Breakdown of security features of SimpleLink Wi-Fi wireless MCUs.

Figure 7 - TI security discovery process summary. 

What is being protected?

Who or what are we protecting against?

Which measures are being considered to implement?

TI device portfolio options: microcontrollers and microprocessors

IDENTITY
AND KEYS DATA CODE

RUN-TIMESTORAGE TRANSFER

Customer
Assets

Threats

Security
Measures

Device
Assets

Exposure
Points

Security
Enablers Secure firmware

and software update

DATA
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Chapter 3: How to implement security

3.1. Terminology

It is critical to ensure consistent communications around 

embedded systems security, especially when there are 

different definitions for the terms used. Inconsistency – 

where all parties were sure they understood the security 

discussions – leads to preventable failures. Therefore, 

consistent definitions and terminology are required.

Security: Using an objective and holistic risk analysis, a 

designer may assess an asset as secure if the designer has 

confidence in determining that the value of the protected 

asset is smaller than the cost of the cheapest attack that 

compromises this asset

Asset: The objects (either physical or logical) that you want 

to protect. An asset can be firmware that a user loads onto 

a device, data transmitted over a network or key material 

stored on a device. The three main categories are:

• Key and device identity: Keys used for any 

cryptographic operations. Device identity can comprise 

one (or more) unique number(s), key(s) or certificate(s).

• Data: Any data that could represent value to an attacker.

• Code: Any software code that could represent value  

to an attacker.

Security boundaries: System and SoC boundaries define 

the limit between an assumed trusted world and a non-

trusted world. These boundaries can be static or dynamic: 

• Dynamic: To receive and apply an over-the-air patch, 

there needs to be trusted communications channels 

established between the patch source and destination. 

This may exist only during the transfer of the patch.

• Static: The trusted transmission of instructions from 

on-chip static random access memory (SRAM) or flash 

memory to the CPU instruction decoder may be static 

trusted (always trusted).

Trusted: Firm confidence that an entity provides the security 

goals it claims, and behaves as expected.

Threat: Also known as a “threat model.” Threats consist of 

a person or organization with sufficient motivation, expertise, 

equipment and time to carry out an attack, as well as the 

means to gain access. It is the nature of the attack vector 

that determines the specifics in how much expertise, 

equipment and time the attack requires.

Exposure points: Points in a system where there could be 

a risk of attack or a way of entry. Also known as an “attack 

surface.” If a burglar were attacking a house, the exposure 

point in that case is the door. The three categories in the TI 

framework are:

• Storage: Keys, data or code potentially exposed at rest in 

external or internal chip memory.

• Run time: Keys, data or code potentially exposed during 

run-time operations of the application.

• Transfer: Keys, data or code potentially exposed during 

transfer from/to a remote location. The transfer could be 

eavesdropped, intercepted or impersonated.

Attack vector: The mechanism used to carry out the attack. 

If a burglar were attacking a house, the attack vector is the 

burglar picking the lock of the door.

Vulnerability: A weakness in the system that can potentially 

be exploited. In the burglar analogy, this could be a defect in 

the lock of the door.

Exploit: A weakness of the system that can be exploited.

Security measures: Measures aimed at providing the 

intended protection of certain assets against specific threats.
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3.2. Detailed security goals  
and definitions

As we stated earlier, assets are the objects (either physical 

or logical) that you want to protect. An asset can be 

firmware that a user loads onto a device,  

data transmitted over a network or key material stored  

on a device.

Along with defining the asset, you must also define its 

security attributes. This is essentially the type of security  

that could be appropriate to protect an asset. For  

example, software code may be open and only need 

protection from modification, or a serial interface may be 

critical to the system and exposed, so it may need key 

exchange and encryption.

Some code may be deemed proprietary and require 

significant efforts to keep it confidential.

Table 7 lists the most common security attributes/goals.  

By narrowing the definition of assets that may need 

protection and limiting the set of security attributes to only 

those you strictly need, you can focus your security efforts 

to those areas where you can gain the most value.

3.3. Elements for building an embedded 
application with security features 

Using the security terms defined within this e-book, you can 

assess your system goals by considering three questions 

for each identified asset in the system:

• What security attributes does the asset need?

• What threats do I need to protect the asset against?

• What confidence is needed in that protection? 

This section gives you a starting point with which to focus 

your analysis of possible attack vectors, as well as deciding 

whether your security requirements are too stringent or if a 

system design effort is required to reduce the overall risk.

Consider a utility metering system (gas, electric, heat) using 

a global symmetric master key for administration purposes. 

The system requires high level of assurance that its key is 

protected from chip-, board- and network-level threats. 

High confidence is required in case a single device is 

attacked and jeopardizes the entire metering system. 

Security Attribute Definition

Confidentiality The protection of an asset is not made available or disclosed to unauthorized entities. In this context, entities include 

both individuals and processes [1]. Types of authorized entities include the asset owner, end user, manufacturer or 

creator, and law enforcement. Vendors may also consider customer code (binary) a confidential asset, as customers 

control who can read the information.

Access Control This includes both access authorization and access restriction. It refers to all of the steps taken to selectively  

authorize and restrict entry, contact or use of assets [1]. This applies to all assets from SRAM, ROM and flash  

memory to control over a peripheral, clock system or simple debugging/JTAG access

Authenticity These are assets or entities (data, transactions, communications, software or documents – either electronic or 

physical) confirmed as genuine, authorized to perform a task or used as intended. Authenticity is the validation that 

all parties involved are who they claim to be and that data has not been modified from the original source by an 

unauthorized entity.

Availability Protects assets from unauthorized loss of use (denial-of-service attacks) [2]. Loss of use includes many examples, 

including swamping a communication channel, false revocation of keys, spoofing authentication-failed responses to 

power-supply brownouts or failed patches, or a false patch to increase the internal revision number significantly in 

order to saturate (or at least make a legitimate patch fail due to) a revision number out of sequence.

Integrity Protects assets from unauthorized modification [2]. Examples include enabling, disabling or modifying hardware 

functions such as memory, peripherals, modifying keys, or random number entropy seed. Additional examples 

include selecting incorrect clock sources, divisors, analog-to-digital converter (ADC) sample rate, programmable gain 

amplifier (PGA) prescalers, and memory security protection. In software, some other examples comprise of patches 

for authentication code, security configuration setup code or the creation of a universal master key, deviant interrupt 

vector tables, setting crypto keys to known values, or adding back doors for remote exploits.

Table 7: Security attributes.
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Unfortunately, this might be a costly solution; a better 

approach would be to have a different asymmetrical key for 

each metering device.

This approach refocuses the security requirement from 

a chip, board and network level threat to only a network 

threat – which happens to be a much cheaper requirement 

to fulfill in this case. In other words, if you use the same 

symmetric key in all devices, there is a huge incentive for 

attackers to retrieve that key. That is why you must consider 

chip and board threats as well. But if there is a different key 

(for example, a public key) per chip, then the risk is reduced 

significantly, as it becomes economically not interesting for 

attackers to retrieve each and every key.

3.4 Security development life cycle 

Building embedded applications with security features 

involves more than performing risk analysis and 

implementing various security techniques and features. 

TI, along with other leading technology companies, has 

recognized the need for a security development life cycle 

(SDL) [3] [4] [5].

An SDL comprises various practices to help improve the 

security of a system or product, both at release and during 

its operational lifetime. Companies have defined their own 

SDL variants to address their own needs (including using  

terms other than “SDL”).  

Consider SDL practices for all phases of a project, 

including:

• Concept development/requirements generation

• Architecture

• Design

• Implementation

• Verification/validation

• Maintenance

In addition, an SDL may provide for trainings on security-

related topics (such as secure coding techniques, 

cryptography usage, etc.).

Security Assessment

Early in a project, a security assessment of the product 

should be performed to determine the applicability of the 

SDL, and what (if any) tailoring of the SDL is needed. This 

assessment should include looking at the overall system 

and its individual features to gain an understanding of where 

there may be risks. Some examples of questions asked 

during an assessment include:

• Does a system feature store privacy-related data?

• Is the system using a new OS?

• Does the system connect to the internet?

• Does the system have features that should only be 

available to some stakeholders?

The result of this assessment should be a determination  

of the applicability of the SDL, and what (if any) tailoring  

of the SDL.

Threat modeling 

As explained in Section 2.1, threat modeling is the method 

for analyzing a system for security threats and determining 

how to mitigate those threats. As outlined in “Threat 

Modeling: Designing for Security” by Adam Shostack, threat 

modeling involves four general steps:

1. Define the system to be protected.

2. Determine what can go wrong.

3. Determine countermeasures for the things that  

can go wrong.

4. Check your analysis – how good is it?

Step one involves describing the system, often using 

data-flow diagrams and/or control-flow diagrams. Various 

techniques can assist a development team during step two 

to determine what can go wrong (how a malicious actor 

can attack the system). Step three entails generating a 

collection of attack possibilities, prioritizing them and putting 

countermeasures in place. Step three may also result in 

features changing or being dropped altogether from the 

product if the security risks are deemed too severe (often 

called “attack surface reduction”). Finally, step four provides 

a valuable review to look for things missed in earlier steps.

Threat modeling continues to evolve. Table 8 provides a 

short overview of several threat-modeling techniques, along 

with resources for additional reading. 
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You may want to evaluate the current state of  

each technique in relation to the four threat-modeling  

steps outlined above and in relation to currently available 

tool support.

Table 8 isn’t intended to be an exhaustive list of all 

techniques available today, nor is it ranked in any  

particular order.

Reviews and testing

Many security vulnerabilities are the result of low-level 

design mistakes. Issues such as buffer overflows and use-

after-free bugs are not apparent at an architectural level 

of abstraction [14]. Design reviews provide an opportunity 

to examine the design for both low-level defects and 

adherence to security best practices. For example, 

reviews can check for the use of banned functions, old 

tools or libraries, known unsafe practices for the given 

implementation language and more.

Developing and using checklists can help the reviews. 

Update the checklists as new vulnerability reports offer 

lessons learned. Checklists alone are not sufficient for 

developing a secure system, however.

 

Name Description Further Reading

STRIDE Developed by Microsoft, STRIDE is a mnemonic to assist an analysis team in  

determining what can go wrong. Each letter in the word STRIDE represents a different 

threat category: spoofing, tampering, repudiation, information disclosure, denial of  

service and elevation of privilege.

“Threat Modeling: Designing for  

Security” by Adam Shostack [3] 

Attack Trees Attack trees use the concept of a tree to think through attacks against a system. The root 

of a given tree represents the attacker’s goal, while the leaf nodes represent different ways 

the attacker may accomplish that goal. Mitigations are designed to reduce the risk of each 

path through the tree to the root node.

“Attack Trees” by Bruce Schneier [6]

PASTA The Process for Attack Simulation and Threat Analysis (PASTA) provides a seven-step 

process to threat modeling: define business objectives, define the technical scope,  

decompose the application/system, analyze the threats, analyze the system for  

vulnerabilities and weaknesses, enumerate attacks, and analyze risk/impact.

“Risk Centric Threat Modeling:  

Process for Attack Simulation and 

Threat Analysis” by Tony UcedaVélez 

and Moarco M. Morana [7]

STAMP and 

STPA

System-Theoretic Accident Model and Process (STAMP) is an accident model, whereas 

Systems-Theoretic Process Analysis (STPA) is a hazard analysis method. Both were  

developed at MIT for safety applications. However, STPA’s systems-based approach  

has allowed researchers and practitioners to apply it beyond safety applications and 

into security.

“Engineering a Safer World: Systems 

Thinking Applied to Safety” by Nancy 

Leveson [8]

MIT’s Partnership for a Systems  

Approach to Safety (PSAS) website [9]

“STPA-SafeSec: Safety and security 

analysis for cyber-physical systems” [10]

Intrusion Kill 

Chain

Intrusion kill chains look at the operation of a system instead of its design. Splitting  

attacks into phases, the system is analyzed to find mitigations to stop (kill) the attack 

(intrusion) at each phase.

“Intelligence-Driven Computer Network 

Defense Informed by Analysis of  

Adversary Campaigns and Intrusion  

Kill Chains” [11]

“The Industrial Control System Cyber 

Kill Chain”[12]

FMEA FMEA stands for failure mode and effect analysis and is not specifically a threat-modeling 

tool. However, some groups have attempted to apply it to threat modeling. The FMEA 

focus on reliability must be reworked when used for threat modeling, since security involves 

much more than reliability.

“Security Application of Failure Mode 

and Effect Analysis (FMEA)” [13]

Table 8: Threat modeling techniques.
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Verify the requirements resulting from a security assessment 

and threat modeling via testing. While classic functional 

testing techniques often apply, additional testing techniques 

available for vulnerability testing include:

• Fuzz testing: Random inputs attempt to crash the 

target, which an attacker can often use as a starting 

point for a more useful attack.

• Static analysis: Using security-focused rules.

• Vulnerability scanning: Using a tool to scan a system 

for known vulnerabilities, such as looking for known 

vulnerabilities in a Secure Sockets Layer (SSL) library.

In addition to individual testing techniques, another common 

testing methodology is called penetration testing (also 

known as pen testing). Pen testing focuses on real-world 

scenarios and finds ways that an attacker can circumvent  

a system’s security. The effectiveness of pen testing is  

often correlated to the experience of the team running  

the tests. You can hire a company to perform pen testing  

on a targeted product, but any selection process for a 

company like this should include an evaluation of its overall 

experience level, as well as its experience with the kind  

of product being tested.

Response planning

Unfortunately, mistakes will be made during a system’s 

development. While following a solid SDL will likely reduce 

the number of vulnerabilities in a system, it is unlikely to 

remove all of them. In addition, new attack techniques are 

developed regularly, which expose vulnerabilities that a 

development team could not have foreseen. 

 

When exposure points are exploited in the field, teams 

may need to move quickly to resolve them. Planning ahead 

will allow development teams to execute with precision 

and speed. A response plan should generally include the 

following steps:

• Identify individuals or teams responsible for executing  

the response plan.

• Identify or create a path to report vulnerabilities.

• Establish a process to triage the reported vulnerabilities.

• Establish a process to analyze, close and test an 

exposure point.

• Establish a process to release the fixed device and 

security bulletins and manage customer relationships.

• Update training and testing to catch similar issues  

in the future.
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Chapter 4: Threats and adversaries: The main exposure points and attack types

As depicted in figure 1, the main assets in a system that 

may need protection can be categorized as data, code, 

device identities and keys. The exposure points in a system 

increase the vulnerability of these assets during system 

operation and require different and appropriate security 

features. Exposure points in a system can be broadly 

categorized as storage, run-time and transfer operations. 

Based on the assets needing protection and the exposure 

points, consider the appropriate security features to  

design protection.

From a system-access perspective, an attacker poses three 

main types of threats: to the network (remote), to the board 

(close proximity) and to the chip (see table 1).

4.1. Network threats

With the massive growth of connected devices, network 

attacks are becoming more common. This is attributed to 

a number of aspects related to the fundamental nature of 

communication networks. A network topology (like that 

shown in figure 8) provides an exponentially growing 

number of attack paths and a growing potential to identify 

an exposure point through which an attacker can reach 

the target asset. Furthermore, an attack from the network 

is less obvious, thus providing the attacker some level of 

anonymity over a physical attack. 

The structured nature of security protocol stacks (see 

figure 9) increases the opportunity for more attacks due 

to the different layers of implementation, as well as the 

cross-layer glue logic. These layers are in many cases less 

well-defined and more prone to implementation faults.

Figure 8 - Typical network topology.
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Network attacks may take many different shapes and 

forms. Some of the most common types include:

• Tapping/eavesdropping. This refers to the act of 

sniffing the network at various points with tools that can 

eavesdrop, intercept, replay and impersonate anything 

transmitted over the network. In general, measures that 

can achieve confidentiality, integrity and authenticity of 

the transmitted assets or commands are necessary.

• Man-in-the-middle (MITM). This is an attack in which 

the attacker – without being detected – relays and 

possibly alters the communication between two parties 

who believe they are communicating directly with each 

other. It is usually performed to gain access to an asset. 

For example, an attacker within range of an unencrypted 

Wi-Fi access point can insert himself as an MITM.

• Denial of service (DoS) and distributed DoS (DDoS). 

This attack blocks the availability and accessibility of a 

resource. A distributed DoS attack is a synchronized 

attack originating from multiple sources, thus making it 

harder to block.

• Malware. Malware is malicious software successfully 

delivered to a point with network access. Once in place, 

the software may potentially attack that point either 

passively or actively. When performed passively, malware 

monitors activity that goes through that point; when 

active, it alters its behavior.

4.2. Board threats

Board attacks are broadly categorized as noninvasive or  

invasive, depending on whether physical intrusion or  

damage to the product at a system level was involved.

Noninvasive board attacks observe or manipulate the 

device without any physical harm or tampering. These are 

the three most common types:

• Side-channel attacks observe device behavior while it 

performs cryptographic or secure operations (execution 

time, power consumption or behavior in the presence  

of faults) to retrieve keys or passwords. Common  

side-channel attacks include:

– Timing analysis

– Electromagnetic analysis (EMA)

– Simple power analysis (SPA)

– Differential power analysis (DPA)

Network
user

Application layer
Type of communication: e-mail, file transfer, client/server

Presentation layer
Encrytion, data conversion, ASCII to EBCDIC, 
BCD to binary, etc.

Session layer
Starts, stops sessions, maintains order

Transport layer
Ensures delivery of entire file or message

Network layer
Routs data to different LANs and WANs based on 
network address

Data link (MAC) layer
Transmits packets from node to node based on 
station address
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Figure 9 - Open systems interconnection (OSI) model for a network protocol stack.
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• Fault-injection attacks alter environmental and operating 

conditions to cause the device to malfunction in a way 

that compromises security (such as skipping a critical 

CPU instruction or erasing bits that defeat device 

debugging locks). Common methods include:

– Altering voltages to introduce glitches.

– Varying the supply voltage beyond the  

operating limits.

– Altering the device temperature below or above  

its operating limits.

– Altering clocking to damage external crystals.

– Sending too-short clock pulses.

• Software attacks launch through communication 

interfaces with the device. Device debugging (JTAG) or 

other programming interfaces are the most common 

targets, like bootloaders, vendor-proprietary interfaces 

and protocols, and serial data communication interfaces 

like I2C, UART, SPI, QSPI and EMIF.

Invasive board attacks involve physical intrusion at a 

product or system level. This includes intrusion of product 

enclosures or tamper-protected enclosures (like PCB 

tamper mesh).

4.3. Chip threats

Chip threats enable unauthorized access beyond just the 

board signals, reaching into the chip’s internal signals 

in an effort to retrieve on-chip nonvolatile memory. The 

information gained can be the end goal itself. For instance, 

if an attacker obtains user code stored in on-chip flash 

and understands the application board schematics, they 

can clone and sell the application itself on the counterfeit 

market without the laborious and expensive R&D work. 

Alternatively, searching the same flash image for run-time 

weaknesses or encryption keys reveals vulnerability to  

a network attack. Once discovered, this network  

attack can be launched remotely to cause harm or  

steal further secrets.

Decapsulating the package, observing photons emitted by 

transistors using emission microscopy (EMMI), manipulating 

security bits with a laser, cutting security signals with a 

focused ion beam (FIB), nanoprobing data lines, imaging 

the back side of flash contents with a scanning electron 

microscope (SEM), and deprocessing and reverse-

engineering the device circuit layers are just a few examples 

of chip threats. The level of special knowledge, motivation, 

skill and cost required to carry out chip attacks varies,  

but in general is much greater than electrical attacks to  

the board.

4.4. Consequences of poor security

To provide some real-world context to the abstract  

question of why security matters, it’s important to consider 

and discuss five situations where security mechanisms  

have failed.

• Using a common password for a large number 

of devices. It is unfortunately all-too-common in the 

design of a system that convenience takes precedence 

over security. From a consumer standpoint, it is not 

uncommon to see people using the same password or 

PIN across various accounts, devices and websites.

 Cybersecurity practitioners make the same mistake 

when it comes time to design a key management 

system and infrastructure. Developers often opt for an 

approach based on a common key rather than using a 

different key per system, device or endpoint because 

it is more convenient and cheaper. Such a mistake has 

led to some rather large-scale attacks. For example, 

well-publicized internet DDoS attacks in 2016 came as 

a result of consistent default passwords on some IoT 

embedded systems. Because system owners didn’t 

modify the default password before adding it to the 

network, hundreds of thousands of devices were quickly 

taken over and made part of a malicious botnet [15].
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• Using a proprietary algorithm and security by 

obscurity. A second example is using proprietary 

algorithms for cryptography. Standard, industry-

accepted algorithms have received the proper attention, 

testing and study before becoming a standard. The 

entire cryptographic community constantly attacks and 

reviews these standards to ensure that they continue to 

withstand scrutiny. In many instances, when proprietary 

algorithms are finally publicly known (due to reverse-

engineering or another source of leakage), they are easily 

and very quickly undermined and broken by the same 

cryptographic community. A few more notorious failures 

from the embedded systems space are Keeloq and 

HiTag2 [16] [17].

 According to Kerckhoff’s principle, one of the 

fundamental principles in security is that a cryptosystem 

should be secure even if everything about the system 

(except the key) is public knowledge. Cryptographer 

and engineer Claude Shannon once said, “One ought to 

design systems under the assumption that the enemy 

will immediately gain full familiarity with them.” But just 

because “one ought to design” a secure system with 

that mindset does not mean that system designers 

should help attackers gain that familiarity. Keeping 

implementation details secret can buy you quite a lot  

of time – maybe even years, but it should never be the 

main pillar of security.

• In-field firmware updates gone wrong. In-field 

firmware updates have enabled new firmware images 

to be downloaded and installed into devices already 

deployed in the field, providing an effective way for 

manufacturers to offer service and support for their 

products after leaving the factory. However, in the 

absence of proper security measures, this feature 

may be misused. The consequences of a successful 

exploitation can be disastrous, ranging from a loss of IP 

and product cloning all the way to attackers successfully 

completing a takeover of the deployed systems.

 For example, if a medicine pump does not verify the 

authenticity of new firmware images, a successful 

exploitation of the firmware update mechanism could 

potentially allow attackers to change or control the 

dosage delivered to a patient and alter the pump’s 

display screen to indicate that a dosage was delivered[18]. 

In this scenario, failure to secure the device’s firmware 

upgrade process could contribute to the device not 

functioning as intended.

• Interconnected system complexity leads to failure. 

Large, complex and interconnected systems can make 

it extremely difficult to discover and close security gaps. 

This is becoming more common as engineers connect 

more embedded systems to the internet each day.

 Consider the case of an internet-connected vehicle. 

Automotive manufacturers like this idea because it 

allows them to remotely collect diagnostic and usage 

information; meanwhile, it can also be another potential 

revenue stream, allowing a service like in-vehicle Wi-Fi 

hotspots. New car buyers are attracted to these types of 

services since they enable features like automatic crash 

notification to emergency services or remote unlock in 

case of emergencies.

 Beyond convenience, that connectivity also becomes 

an avenue for attackers to remotely get into vehicle 

systems. Recently, unauthorized users remotely 

accessed a vehicle connected to a cellular data network. 

At first, only noncritical systems like the radio, navigation 

and climate control were breached; but it was later 

discovered that those systems shared a connection to 

the vehicle’s critical safety bus, where things like brakes, 

steering and the engine were connected. By simply 

bridging from the internet to the car radio and finally the 

safety bus of the vehicle, the attackers compromised 

its systems [17]. Those compromised systems could 

potentially cause system malfunctions in the vehicle that 

could have real-world consequences.
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• Secure programming failures. It’s important to 

understand that attackers don’t create security holes; 

they simply exploit them. Security gaps exist due to 

programming errors and coding flaws. In the most 

common embedded system programming languages, 

one of the most repeated mistakes is a failure to 

do proper bounds checking on memory accesses. 

Depending on whether memory is being written or read, 

the outcome of improper bounds checking will differ.

 Writing to memory can lead to buffer overflows. First 

described in the mid-1990s, stack-based buffer overflow 

attacks are probably still the most common way for 

attackers to exploit a targeted system. Overflowing a 

buffer on a stack can allow attackers to overwrite return 

addresses or inject new code. Depending on the rights 

of the process whose stack has been corrupted, the 

system can be completely under the attacker’s control.  

If a vulnerable program is one that can receive input  

over a network connection, there is real potential for 

remote system compromises. This was the case for the 

famous computer worm Conficker, which spread rapidly 

by exploiting a buffer overflow bug in the Windows 

Remote Procedure Call service, ultimately infecting 

millions of computers and used as an attack vector for 

installing malware.

 Reading memory can cause information leakage. When 

reading more data than should be allowed, information 

that would normally remain private can potentially leak 

outside the system. As in the case with writing,  

network-related code with this type of bug can leak 

information to remote systems. Such was the case with 

the OpenSSL Heartbleed vulnerability in 2014. Due 

to improper bounds checking with a certain protocol 

feature, private program data (a server or other network 

daemon that relied on OpenSSL) would be returned to a 

remote client. This could compromise critical information 

such as the server’s private keys, and ultimately all 

communication with the server.

This is just a brief list of programming-based errors; 

there are many more with security implications. The 

fundamental point is that coding errors can have real-world 

consequences if exploited.

4.5. Leveraging industry standards and 
specifications for security

In today’s embedded world, the need to provide security 

in a system is unquestionable; however, this poses many 

challenges for designers. First and foremost, you must 

define adequate security requirements at the outset to build 

a system with security in mind, and invest a reasonable 

amount of effort and confidence into reducing the amount 

of exposure points in the system.

Across the semiconductor industry and academic world, 

various efforts on two complementary fronts are taking 

place: First, research on exposure points for existing 

systems and cryptographic protocols, and  second, 

defining effective measures to secure systems against such 

vulnerabilities. Standards, specifications, guidelines and 

certifications exist to help you maintain confidence that your 

systems and designs have achieved their defined security 

goals and requirements.

Before going into more details about some of the available 

security standards and schemes, it’s important to clarify 

the relationship between the process of certification and 

the standards (document established by central agencies 

such as the NIST, BSI, ANSSI). The process of certification 

or compliance is typically known as a certification scheme, 

whereas this process uses a set of industry standards or 

specifications. As a result, we can consider the standard as 

a part of a certification or compliance scheme.

The Common Criteria for Information Technology 

Security Evaluation (called Common Criteria or CC) 

is an international standard (International Organization 

for Standardization [ISO]/International Electrotechnical 

Commission [IEC] 15408) for computer security certification 

[2]. It provides a rigorous, standard and repeatable process 

to specify, implement and evaluate a computer security 

product. The process usually starts with a protection profile 

that defines the threats, assets and objectives.
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The level of assurance can be different for various products 

and markets. For example, personal computers are 

typically at evaluation assurance level (EAL) 2, trusted 

platform model (TPM) devices at EAL 4+, and smart cards 

or e-passports at EAL 5+. One of the main steps of this 

process is a vulnerability assessment (AVA_VAN level), 

which determines the exploitability of flaws or weaknesses 

for the target of evaluation (TOE) within the operational 

environment. The process also defines requirements for 

assurance through the adoption of a well-defined life-cycle 

model (configuration management, documentation, site 

security, fabrication, etc.).

Payment Card Industry-PIN Transaction Security  

(PCI-PTS) is payment security certification applicable to 

PIN-based credit cards. It is managed by the PCI Council, 

which is funded by financial institutions like MasterCard, 

Visa, JCB and Discover. The specification is designed 

to streamline security standards and the development 

of secure devices for payment by establishing common 

requirements, resulting in more consistent security 

measures and cost-effective market deployments. Common 

requirements benefit everyone in the financial payment 

sector and improve overall security for customer-entered 

data by removing conflicting requirements. Each  

PCI-PTS-certified device has to pass a PCI-accredited 

lab audit. Formal reports quantify the security of a device 

against the PCI-PTS specification.

The U.S. government’s Federal Information Processing 

Standard (FIPS) Publication 140-2 is a computer security 

standard used to accredit both hardware and software 

cryptographic modules and protocols. 

The publication classifies system tampering starting from 

simple evidence (level two, package of a chip) to robust 

detection (high probability) and resistance (levels three and 

four). The level three and four usually require a specialized 

module to detect and respond to a tamper attempt.

This standard focuses on the correct implementation of 

cryptographic algorithms, which includes health tests 

performed on the implementations of the cryptographi 

algorithms to verify proper functionality and the 

cryptographic key-management system. An independent 

laboratory contracted by the application manufacturer 

performs validation testing and issues a report.

The ISO/IEC 27001 standard is used for the certification 

of information security. It can certify the appropriate level 

of policies and procedures in the organization (i.e. the 

manufacturer) for developing, producing, building or 

operating smart-grid systems and components. IEC/ISO 

27019:2013 provides guiding principles (based on ISO/

IEC 27002) for information security management within the 

energy utility industry; however, this standard only provides 

guiding principles, not certifiable requirements.

Outside the well-established standards bodies, various 

other standards and specifications exist.

The Secure Hardware Extension (SHE) is a hardware 

and software specification developed by ESCRYPT, along 

with Audi and BMW, as an on-chip extension within MCUs. 

It creates a secure zone for automotive applications and 

defines cryptographic services through a set of functions 

and APIs to the application layer in an authentic software 

environment. The SHE specification also defines a hardware 

secure zone for isolating cryptographic secret keys from  

the rest of a system.

The three major blocks which make up a secure  

hardware zone:

• A storage area for protecting keys and additional 

corresponding information.

• An AES engine for providing cryptographic services.

• Control logic for interfacing to the MCU’s core.
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E-Safety Vehicle Intrusion Protected Applications 

(EVITA) is a hardware and software specification that 

provides guidelines for a secure on-board architecture, 

in addition to protocol and prototype demonstrations for 

automotive applications. It is sponsored by the European 

Commission and developed by a consortium consisting of 

automotive manufacturers and suppliers. The approach is 

based on hardware and software co-design – a design for 

hardware security modules (HSMs) and APIs that interact 

with the HSM.

The general structure of an HSM consists of four blocks: 

secure storage, crypto hardware acceleration, secure CPU 

and a hardware interface to the rest of the system. 

The EVITA specification also defines three HSM 

architectures for different security requirements and cost 

constraints: EVITA Full, EVITA Medium and EVITA Light. 

These vary in terms of the capability they provide on the 

four blocks.

The HSM architecture can be integrated in three  

different variants:

• HSM in a separate chip to the CPU. This is in general 

considered less secure than a single-chip solution and 

more expensive. It is less secure because a attacker can 

eavesdrop on the wiring between the CPU and HSM to 

get information about secret values, or ask the HSM to 

sign data not generated by the CPU.

• HSM in the same chip as the CPU, but with a state 

machine. This solution is usually considered more 

secure than an external chip and could be even more 

economical, but it is not flexible enough to reflect the 

future needs of security, as you cannot integrate new 

cryptographic algorithms. This type of design may be 

appropriate for very high security applications with very 

short lifetimes.

• HSM in the same chip as the CPU, but with a 

programmable secure core. This solution is usually 

considered the most secure and flexible. This would  

also be of benefit for several other applications 

outside the automotive industry due to its flexible and 

programmable architecture.

Application designers can get a third-party audit with an 

accredited test house or laboratory to perform readiness 

assessments of their security solution and identify any  

areas of noncompliance before the actual certification 

testing. This audit process typically involves four steps: 

• A consultation to help assess how the certification 

requirements apply to the application.

• A comprehensive evaluation of the solution to verify that 

it complies with the requirements.

• A compliance report that documents testing procedures, 

assessments, any risk and necessary actions to mitigate 

those risks.

• An evaluation of changes to an approved solution to 

verify continued compliance with the requirements.

The third-party audit process helps define and design 

application security by minimizing the risk of noncompliance 

to the certification standard. This process is especially 

invaluable if you are new to the certification process and 

helps speed up the whole certification and approval 

process. TI has over the years gotten several products 

audited and generally makes reports available under 

nondisclosure agreements (NDAs).
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Chapter 5: TI and security

5.1. A long history

TI has a long history in developing devices with security 

enablers and technologies that assist designers in meeting 

industry or customer security requirements that are 

pertinent to their application. For instance, TI was one of 

the first semiconductor companies to implement, develop 

and deploy full ARM® TrustZone extensions for applications 

in the mobile market (M-Shield™ security hardware and 

software) and has continued over the years to provide these 

types of security features in its embedded processors and 

analog products.

With the growing market demand for wireless connectivity, 

TI has developed a broad portfolio of processors, secure 

processors (ePOS), wireless connectivity microcontrollers 

(SimpleLink MCUs) and wireless network processors for 

the embedded world. Acknowledging the importance of 

security but realizing the complexity of introducing state-

of-the-art security capabilities into a product, TI prioritized 

devices that address these aspects so you have the power 

to address security challenges with ease.

The SimpleLink™ Wi-Fi® device family is just one result of 

this vision; it is available in two versions, either as a catalog 

MCU with a pre-integrated Wi-Fi networking subsystem 

(the SimpleLink CC3220 wireless MCU) or as a stand-

alone Wi-Fi-networking companion device (the SimpleLink 

CC3120 network processor). The SimpleLink Wi-Fi portfolio 

takes a holistic view of security challenges, encompassing 

a range of features to address a issues including secure 

communication, secure storage, key management, identity 

aspects, security during development and security during 

production. TI designed these capabilities to be seamless 

to users and implicit to the product architecture. Ease 

of implementation through straightforward APIs puts the 

power of security in your hands and helps you work toward 

minimizing possible misuse of your products.

Throughout the decades, TI has successfully delivered 

devices with security features to a wide range of 

applications and markets that require security, including 

automotive key fobs, ink cartridge authentication, battery 

authentication, medical devices* (blood glucose meters 

[BGMs]), cable authentication and ePOS.

Through its vast network of engineers and market expertise, 

TI has developed a broad portfolio of security features to 

assist you in designing for and implementing security to 

meet your desired objectives.

  *TI products are not authorized for use in life-critical medical 

equipment unless authorized officers of the parties have executed a 

special contract specifically governing such use. See TI’s terms of 

sale at www.ti.com.

http://www.ti.com
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Chapter 6: Overview of TI solutions to help implement security measures

TI is delivering hundreds of security features integrated 

across its broad embedded processing portfolio to 

enable developers to meet their products’ security 

goals. TI’s large embedded processing portfolio ranges 

from microprocessors to microcontrollers including the 

SimpleLink™ MCU platform enabling developers to reuse 

100 percent of their code across the portfolio of MCUs 

supporting a wide range of connectivity standards and 

technologies including RS-485, Bluetooth® low energy,  

Wi-Fi®, Sub-1 GHz, 6LoWPAN, zigbee®, Ethernet,  

Thread, RF4CE and proprietary RF. The table below 

features some key products of the embedded processing 

portfolio and highlights the corresponding supported 

security enablers and features.

Portfolio: Learn About the 
Security Offering

TI Security Enabler  
(Device Feature Example)

Microcontrollers

MSP430™ ultra-low  
power MCUs

• Device identity (unique ID)
• Debug security (JTAG lock w/ password)
• Cryptographic acceleration (AES 128/192/256)
• Software IP protection (Debug lock-out, IP encapsulation)

C2000™ real-time control MCUs • Secure boot (MAC-based)
• Device identity (unique ID)
• Debug security (JTAG lock with password)
• Cryptographic acceleration (AES 128/192/256)
• Software IP protection (IP Protected zones)

SimpleLink™ MSP432™ MCUs • Device identity (unique ID)
• Debug security (JTAG lock w/ password, factory reset configuration)
• Cryptographic acceleration (AES 128/192/256)
• Software IP protection (IP Protected zones)
• Secure firmware & software update (AES-encrypted firmware  

update/ password authentication )

Wireless 
Microcontrollers

SimpleLink Sub-1 GHz  
Wireless MCUs

• Device identity (Unique ID)
• Debug security/ Software IP protection (JTAG lock)
• Cryptographic acceleration (AES 128, AES-CCM, TRNG)

SimpleLink Bluetooth® low  
energy Wireless MCUs

• Device identity (Unique ID)
• Debug security/ Software IP protection (JTAG lock)
• Cryptographic acceleration (AES 128, AES-CCM, TRNG)

SimpleLink Wi-Fi® Wireless MCUs • Secure boot (authenticated boot, standard secure, root-of-trust public key)
• Device identity (unique private key per device)
• Debug security (JTAG lock)
• Cryptographic acceleration (AES 128/192/256, DES/3DES, SHA 1/2)
• Networking security (WPA2, TLS)
• Secure storage (secure storage)
• Software IP protection (cloning protection)
• Initial secure programming (encrypted firmware flow for manufacturing)
• Secure firmware & software update (file system security, software  

tamper protection)

Processors

Sitara™ Processors • Secure boot (authenticated boot, standard secure, root-of-trust public key)
• Device identity (unique ID)
• Debug security (JTAG lock)
• Cryptographic acceleration (AES 128/92/256, DES/3DES, RSA, ECC, SHA 1/2, TRNG)
• External memory protection (encrypted execute-in-place with QuadSPI)
• Trusted execution environment (TEE)
• Secure storage (TEE)
• Software IP protection (Debug lock-out)
• Initial secure programming (secure boot, secure flashing)
• Physical security (anti-tamper module)

Automotive Processors • Secure boot (root-of-trust public key)
• Device identity (unique ID)
• Debug security (JTAG lock w/ password)
• Cryptographic acceleration (AES 128/92/256, DES/3DES, SHA 1/2, TRNG)
• External memory protection (firewalls)
• Secure storage (secure ROM APIs, anti-cloning)
• Software IP protection (Debug lock-out)

 www.ti.com/security

http://www.ti.com/lit/SWPB018
http://www.ti.com/lit/SWPB018
https://www.ti.com/lit/swpb019
https://www.ti.com/lit/pdf/SWPB014
http://www.ti.com/lit/swpb017a
http://www.ti.com/lit/swpb017a
http://www.ti.com/lit/pdf/swpb022
http://www.ti.com/lit/pdf/swpb022
http://www.ti.com/lit/SWPB015
http://www.ti.com/lit/wp/spry303c/spry303c.pdf
http://www.ti.com/lit/spyt001
www.ti.com/security
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This e-book provided a glimpse into how TI can help designers achieve their security goals by analyzing 

a targeted application and holistically considering its security. We covered the main steps of the security 

implementation cycle: the identification of the security goals, risks and measures. Then we provided a 

way to derive from the security measures what security enablers can help you achieve your security 

goals. Finally, we provided more leads and guidance for identifying security goals and risks.

Security is a matter that you must consider in the early phases of a project, not as an afterthought. 

Carefully evaluate the risks of each decision in order to weigh it correctly and choose the necessary 

measures appropriately. A risk analysis is the cornerstone of any application requiring some level of 

security and it is really in your hands. For more information, see ti.com/security.

Conclus ion

www.ti.com/security
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