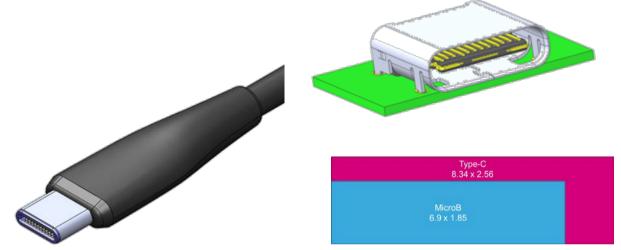

USB Power Delivery and Type-C



USB Type-C Overview

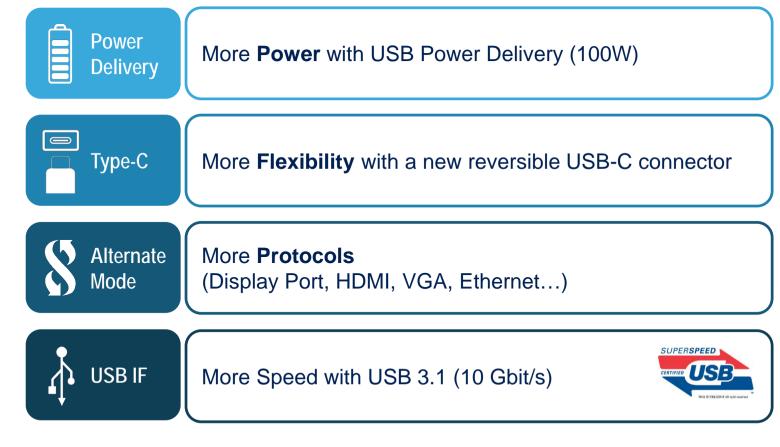
USB Power Delivery specification introduces USB Type-C receptacle, plug and cable; they provide a smaller, thinner and more robust alternative to existing USB interconnect. Main features are:

- Enable new and exciting host and device form-factors where size, industrial design and style are important parameters
- Work seamlessly with existing USB host and device silicon solutions
- Enhance ease of use for connecting USB devices with a focus on minimizing user confusion for plug and cable orientation

USB Type-C Overview

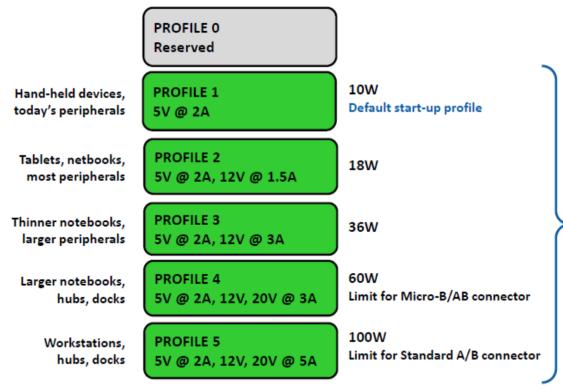
Type-C Features

- Enable **new** and exciting host and device **form-factors** where size, industrial design and style are important parameters
- Work seamlessly with existing USB host and device silicon solutions
- Enhance ease of use for connecting USB devices with a focus on minimizing user confusion for plug and cable orientation
- Simple Power Delivery implementation (BMC)


Mode of Operation	Nominal Voltage	Maximum Current	Notes
USB 2.0	5 V	500 mA	Default current, based on definitions in the base
USB 3.1	5 V	900 mA	specifications
USB BC 1.2	5 V	Up to 1.5 A	Legacy charging
USB Type-C @ 1.5 A	5 V	1.5 A	Supports high power devices
USB Type-C @ 3.0 A	5 V	3 A	Supports higher power devices
USB PD	Configurable up to 20 V	Configurable up to 5 A	Directional control and power level management

The Re-Evolution of USB

USB has evolved from a data interface capable of supplying limited power to a primary provider of *power* with a data interface



USB PD → Power Profiles as of today per USB PD release 2.0

Source capabilities organized as profiles

· Additional capabilities possible as optional extensions to standard pr

USB PD \rightarrow New Profiles proposal

Power Adapter Examples

	Permitted		Not permitted
	Standard	Include optionality ⁽¹⁾	
"15 W"	5 V @ 3 A (15 W)	5 V @ 3 A (15 W) 8 V @ 1.8 A (15 W)	<mark>5 V @ 2 A (10 W)</mark> 8 V @ 1.8 A (15 W)
"27 W"	5 V @ 3 A (15 W) 9 V @ 3 A (27 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 12 V @ 2.25 A (27 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 12 V @ 3 A (36 W)
"45 W"	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 3 A (45 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 3 A (45 W) 16 V @ 2.8 A (45 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) X 16 V @ 2.8 A (45 W)
"60 W"	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 3 A (45 W) 20 V @ 3 A (60 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 4 A (60 W) 20 V @ 3 A (60 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 5 A (75 W) 20 V @ 3 A (60 W)

(1) Making use of optionality is not encouraged as it diminishes interoperability – should only be utilized in specific use cases where a local optimization is of value and the standard voltages are still supported by Source & Sink

October 26th, 2015

USB 2.0 Contributors, USB 3.0 Contributors and USB-IF Confidential

Type-C Pin Outs Functions

Receptacle

	igh Spe or USB 3 in Alter		econfigu			3 2.0 face		High S for USE in Al	•	r reconfi	
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A12	A12
GND	TX1+	TX1-	V _{BUS}	CC1	D+	D-	SBU1	V _{BUS}	RX2-	RX2+	GND
								-		-	
GND	RX1+	RX1-	V _{BUS}	SBU2	D-	D+	CC2	V _{BUS}	TX2-	TX2+	GND
B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
	ondary us		Cable I Powe		(Cable Ground		Con	figurati	on Cha	annel

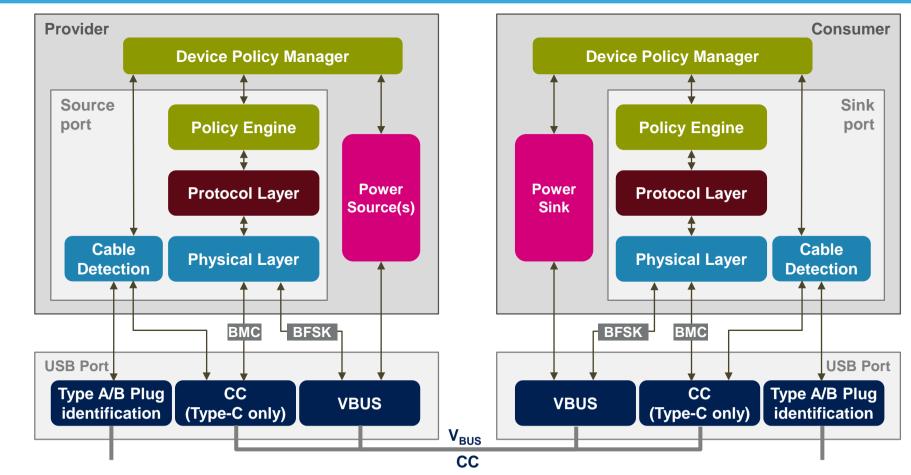
Two pins on the USB Type-C receptacle, CC1 and CC2, are used in the discovery, configuration and management of connections across USB type-C cable

Type-C Pin Outs Functions

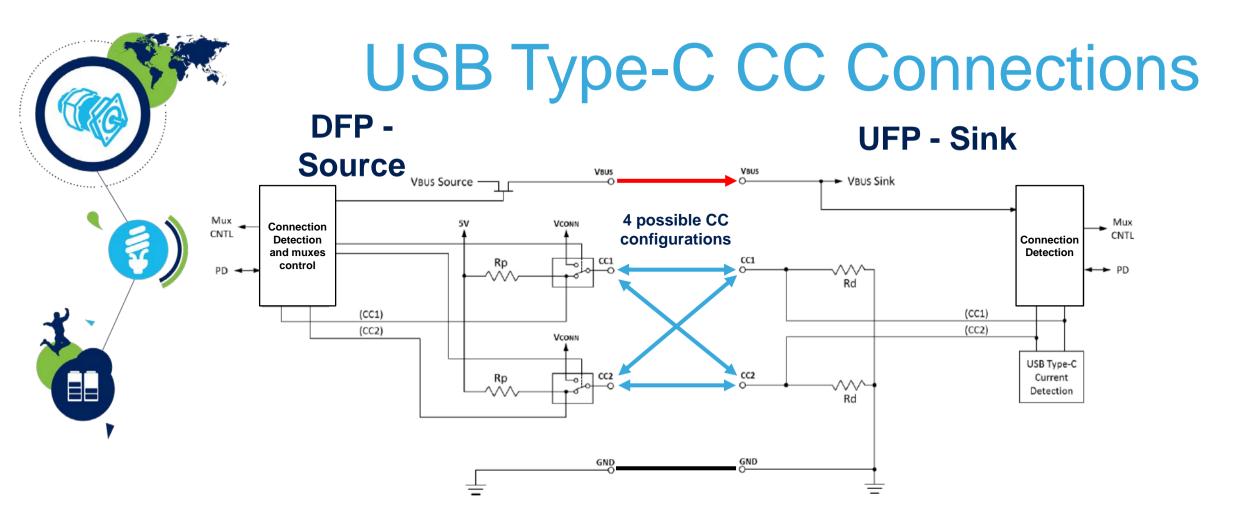
Plug

(R)	High Sp X for USE in Alt		reconfigu			3 2.0 rface	(T)	High S (for USI in Al		r reconfi	
A1.	2 A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1
GN	D RX2+	RX2-	V _{BUS}	SBU1	D-	D+	СС	V _{BUS}	TX1-	TX1+	GND
GN	D TX2+	TX2-	V	V _{CONN}			SBU2	V _{BUS}	RX1-	RX1+	GND
B1	B2	B3	B4	CONN B5	B6	B7	B8	BUS B9	B10	B11	B12
Se	econdary Bus	'	Cable Pow			Cable Ground		Con	figurati	on Cha	annel

On a standard USB Type-C cable, only a single CC wire within each plug is connected through the cable to establish signal orientation


The other CC pin is repurposed as V_{CONN} for powering electronics

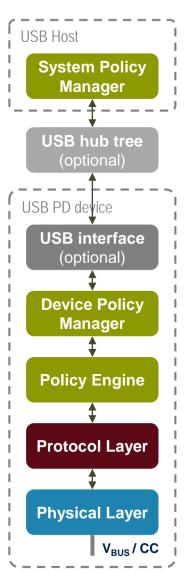
Also, only one set of USB 2.0 D+/D- wires are implemented


Architecture

Architecture and key words

Communication across the channel uses Biphase Mark Coding (BMC) over CC in Type C connector

- Detect attach/detach of USB ports, e.g. a DFP to a UFP
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish DFP and UFP roles between two attached ports
- Discover and configure VBUS
- USB Power Delivery Communication


USB PD Stack & Policy

Policies

System Policy Manager (system wide) is optional. It monitors and controls System Policy between various Providers and Consumers connected via USB.

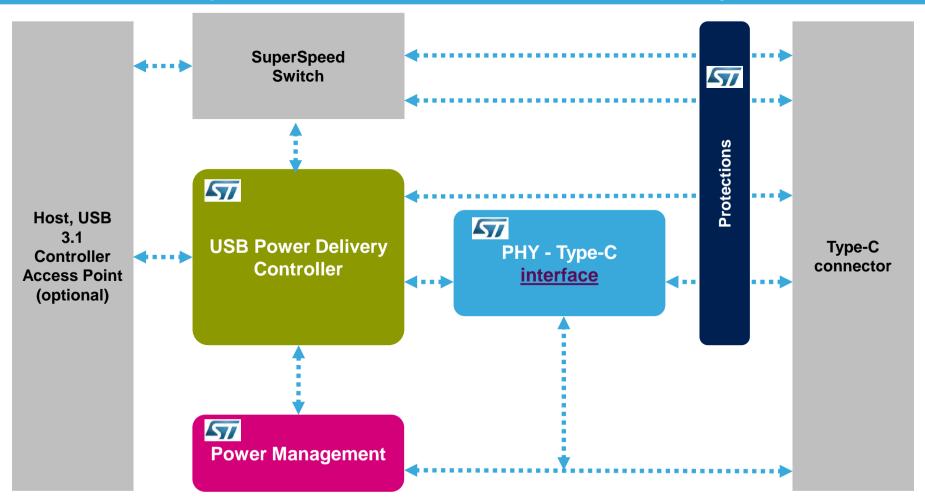
Device Policy Manager (one per Provider or Consumer) provides mechanisms to monitor and control the USB-PD within a particular Provider or Consumer. It enables local policies to be enforced across the system by communication with the System Policy Manager.

Policy Engine (one per Source or Sink Port) interacts directly with the Device Policy Manager in order to determine the present local policy to be enforced.

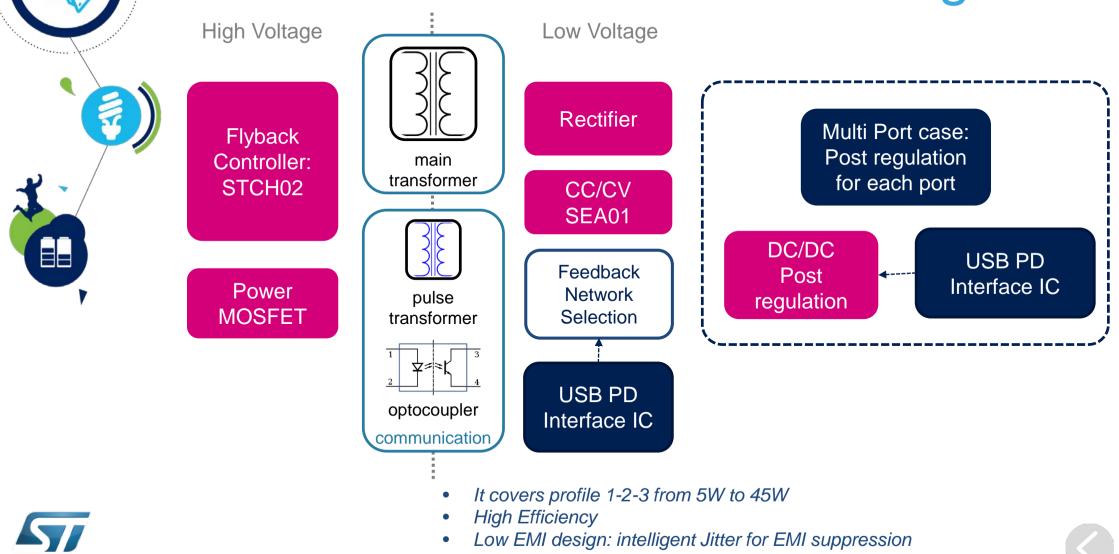
Protocol Layer

The Protocol Layer forms the messages used to communicate information between a pair of ports. It receives inputs from the Policy Engine indicating which messages to send and indicates the responses back to the Policy Engine

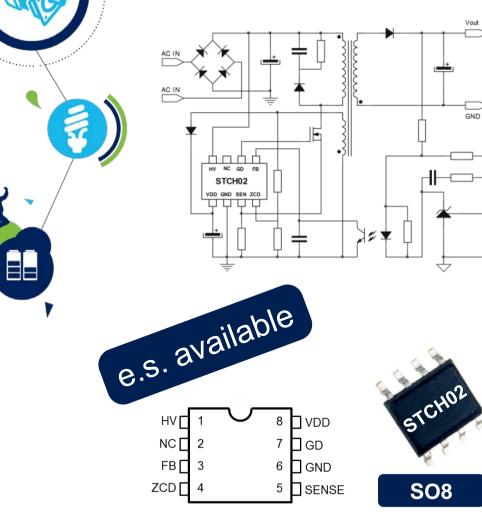
Physical Layer

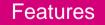

It is responsible for sending and receiving messages across either the V_{BUS} or CC wire. It consists of a transceiver that superimposes a signal (BFSK on V_{BUS} or BMC on CC) on the wire.

It is responsible for managing data on the wire and for collision avoidance and detects errors in the messages using a CRC


Product Portfolio

A complete offer to "lean in" USB PD Ecosystem

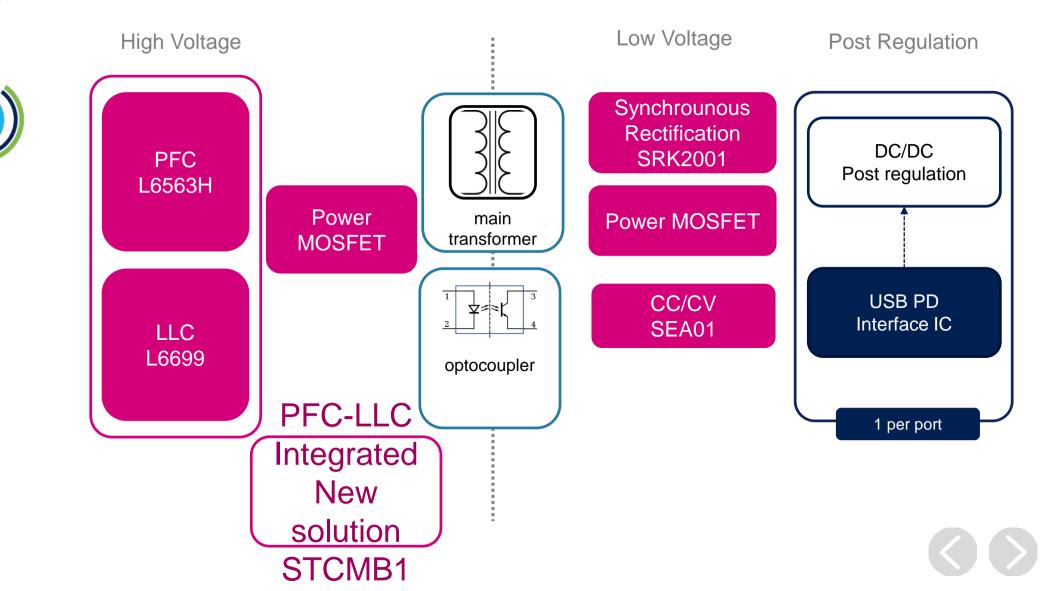

Profile 1-2-3 Power Source Building Blocks


life.augmented

STCH02

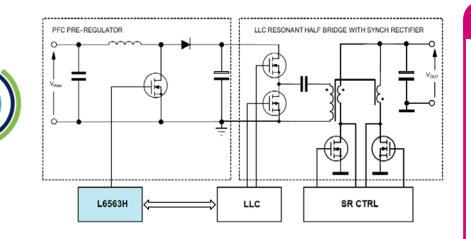
Primary Side Controller: Adapters up to 45W

life.auamentea

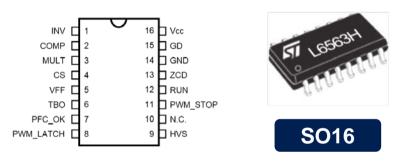


- Proprietary Constant current output regulation (CC) with no opto-coupler
- 700V embedded HV start-up circuit
- Quasi-resonant (QR) Zero Voltage Switching (ZVS) operation
- Valley skipping at medium-light load and advanced burst mode operation at no-load for under 10mW consumption
- Accurate adjustable output OVP

Benefits


- Low part count. BOM reduction thanks to an extensive features integration
- Exceeding 5 stars: No-Load power < 10mW
 - HV start-up zero power consumption
 - Advanced burst-mode operation
- Flexibility: suitable for adapters from 5W to 40W
- High Efficiency
- Low EMI design: intelligent jitter for EMI suppression

Profile 4, 5 Power Source Building Blocks



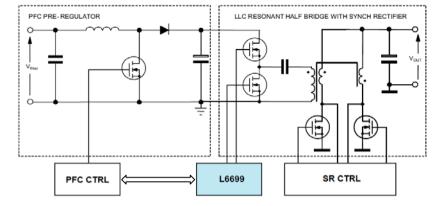
life.augmented

L6563H

Datasheet : available on www.st.com

Transition Mode PFC controller

Features


- 700V High Voltage Start-up circuit
- · Fast bidirectional input voltage feedforward
- Adjustable OVP
- AC Brownout Detection
- Tracking boost function
- Inductor saturation protection
- Proprietary THD optimizer circuit
- Interface for cascaded converters
- -600mA/+800mA gate driver
- Low steady state ripple and current distortion with limited undershoot or overshoot of the preregulator's output thanks to new input voltage feed-forward implementation
- Reduced THD of the current
- High reliability thanks to a full set of protections
- HV start-up significantly reduces consumption compared to standard discrete circuit solutions
- Facilitated cooperation with cascaded DC-DC converter thanks to several power management & housekeeping functions

L6699

High power adapters 90W to 250W

Series-resonant half-bridge topology

Datasheet : available on www.st.com

				_
Css		0	16	🛛 VBOOT
DELAY	2		15] нvg
CF	Ц 3		14	Ουτ
RFmin	d 4		13	N .C.
STBY	5		12	Vcc
ISEN	6		11	LVG
LINE	D 7		10	GND
DIS	₫ 8		9	PFC_STOR

SO16N

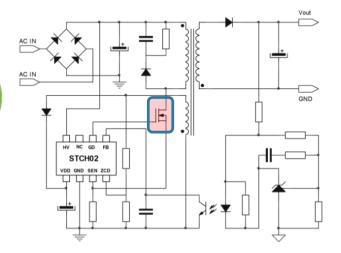
Features

- Self adjusting adaptive dead time
- Anti-capacitive mode protection
- Two-level OCP
 - Frequency shift
 - Immediate shutdown
- Safe-start procedure
- Burst-mode operation at light load
- Brown-out protection
- Interface with PFC controller

Benefits

- High efficiency:
 - Reduced internal consumption (Iq=1mA)
 - Adaptive dead time allows design optimization to achieve ZVS with lower magnetizing current
- Improved reliability and lifetime thanks to anticapacitive protection and smooth start-up circuit
- Reduced audible noise when entering burstmode operation thanks to smooth restart feature

Power MOSFET product families



USB-PD

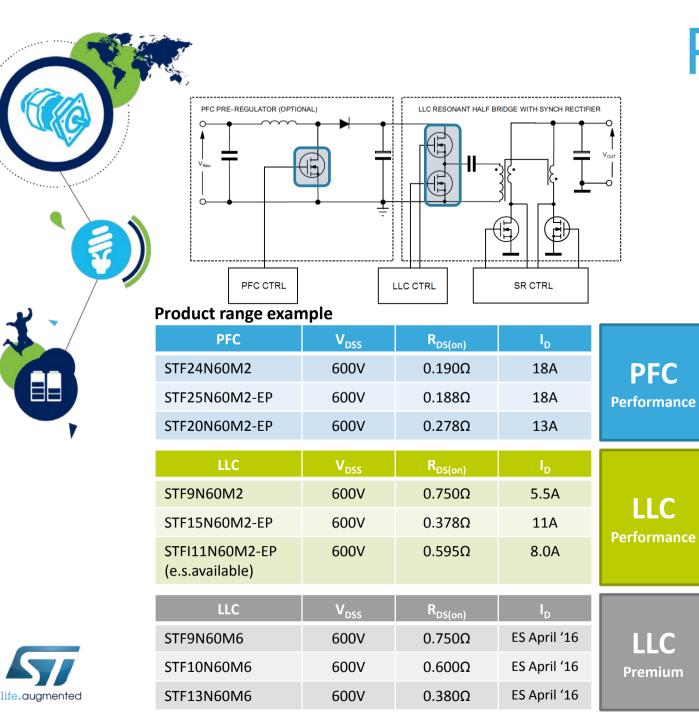
VHV PowerMOSFETs

Flyback Architecture

Outstanding Form Factor

Features

- Unmatched R_{DS(on)} at very high BVDSS 800-950V-1050V
- Ultra-Low Q_G and high switching speed
- Extremely low thermal resistance
- High quality & reliability


Benefits

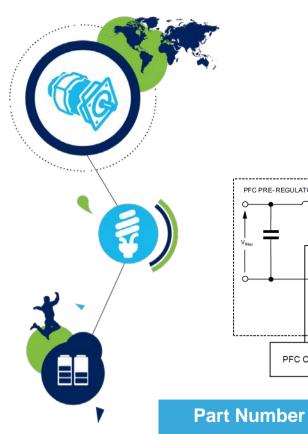
- Lower on-state conduction losses
- Best switching losses
- High efficiency with lower design complexity
- Ultra small Form factor

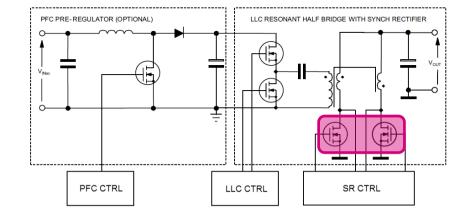
Product range example

Part Number	B _{VDss}	R _{DS(on)}	I _D
STB13N80K5	800V	0.45Ω	12A
STD8N80K5	800V	0.95Ω	6A
STD9N80K5	800V	0.90Ω	7A

Power MOSFET PFC & LLC Architecture

Features


- Up to 30% lower Q_G vs main competition (equivalent die size)
- 400 700V BV_{DSS} rated
- Back-to-Back G-S Zener protected


Benefits

- Reduced switching losses
- Enhanced immunity vs ESD & Vgs spikes
- Technologies dedicated to specific topology

Product range example

Ron

<1.1mΩ

<1.8mΩ

Voltage

40V

40V

STL260N4LF7

STL200N45LF7

Power	MC)SF	E	S
Synchi	ronous	Recti	ficat	ion

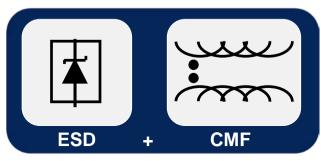
Benefits

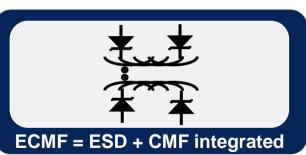
Current

5.5A

11A

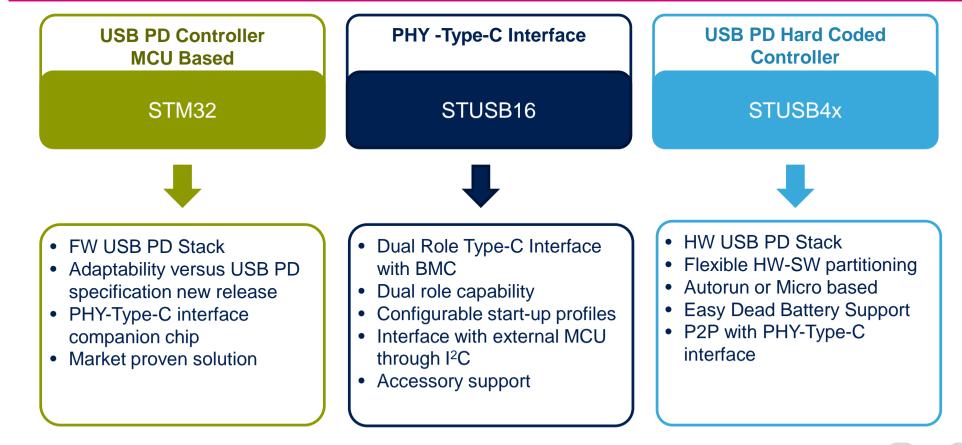
- Efficiency improvement due low conduction losses and to static and dynamic diode ones, minimized switching noise and Vds spike at turn OFF
- Easy driving features



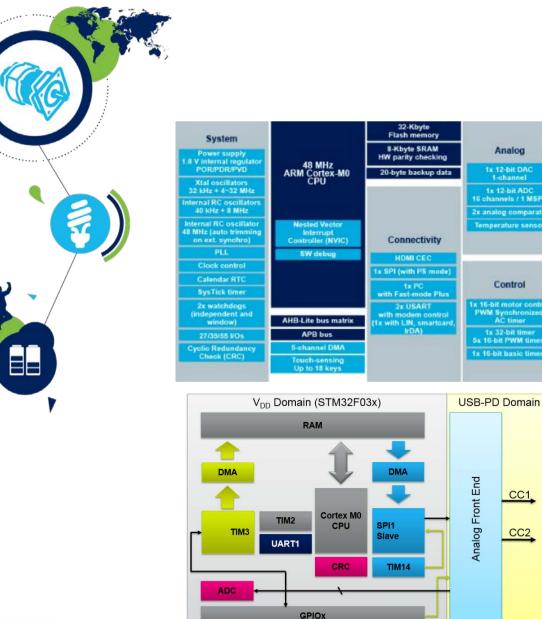

Protections ESD/CMF/ECMF

High flexibility for the Designers needs to find best compatibilities

- Robustness: Surge capability up to 25kV and low clamping
- Flexibility & Integration: Single or multi lines products
- Transparency: High bandwidth for high speed signals



- High quality of protection
- Unique filtering shape capabilities
- Serial Interface: USB2.0/3.0, MIPI, DP, HDMI
- Filters radiated noise and limits antenna de-sense.
- High quality of protection
- High integration: 1mm2 / 2 differential lines
- Serial Interface: USB2.0/3.0, MIPI, DP, HDMI
- Filters radiated noise and limits antenna de-sense



Controller & Interface

Value proposition: offer flexible and scalable solutions for designers

MCU Overview: STM32F0 HW resources

- Transmission uses : TIM14, SPI1, DMA, GPIO
- Reception uses : **TIM3**, **DMA**, **1 comparator**
- TIM2 is used to time-schedule tasks.

Analog

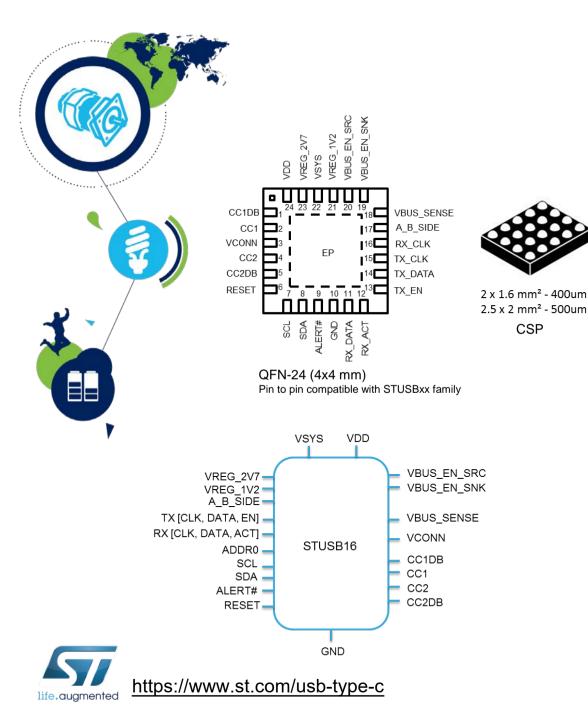
1x 12-bit DAC 1-channel

1= 12-hit ADO channels / 1 MSP

analog comparat

Control

1x 32-bit timer


CC1

CC2

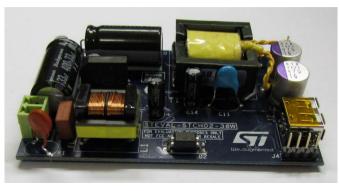
- Embedded ADC to detect device on the CC bus and perform power measurements
- CRC to evaluate message's CRC
- Standard GP I/Os to control Vconn, Load switch, Vbus discharge switch, Vout selection (primary feedback...

Project	Flash Memory	RAM Memory
Provider only	25.5 kB	4.4 kB
Provider only (RTOS)	29.0 kB	7.3 kB
Provider/Consumer DRP (RTOS)	30.2 kB	7.3 kB

USB-PD Interface: STUSB16xx

Features

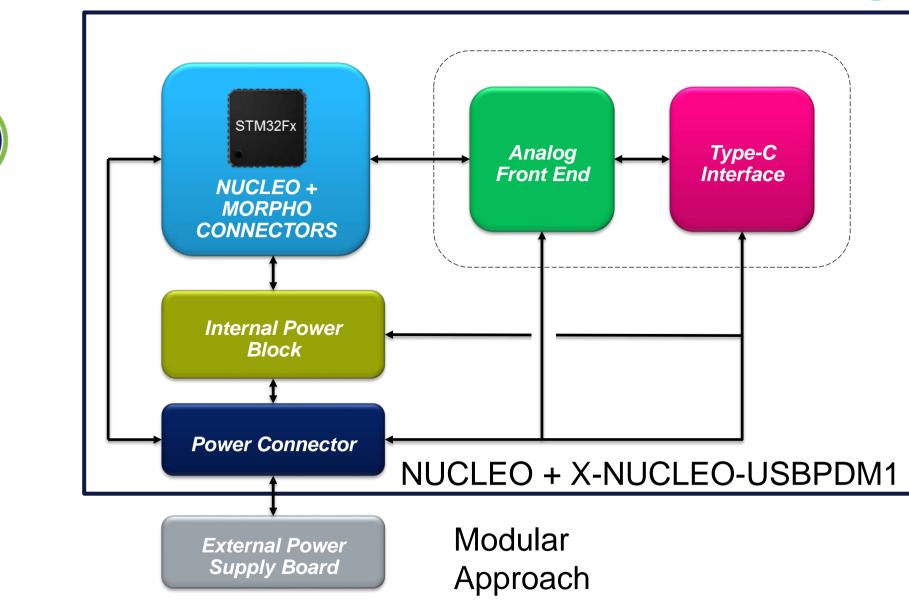
- Dual Role Type-C Interface with BMC
- Dual role capability
- Configurable start-up profiles
- 600mA VCONN
- 120uA Idle current measured
- Interface with external MCU through I²C+Interrupt
- Integrated Voltage monitoring
- Integrated V_{BUS} discharge path
- Accessory support
- Dual Power supply:
 - V_{SYS =} 3.3V,
 - V_{DD} [4.6V; 22V] (from V_{BUS})

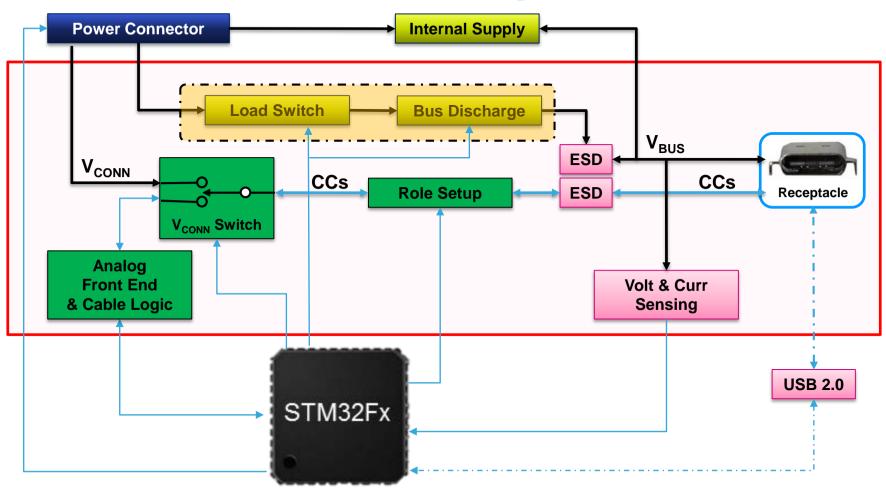

Benefits

- Low Pin count
- Integrated BMC transceiver
- Simple, Robust
- Configurable, Flexible
- Optimized for Portable applications
- P2P with STUSB4x

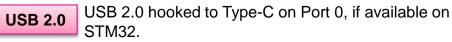
USB-PD Type-C Solution

- AC/DC Multi-output 36W Converter
 - Based on STCH02 QR controller
 - Multiple Output voltages (5V, 9V, 12V)
- STM32 Embedded Software Solution
 - to interface with USB-C connector
 - to handle the USB Power Delivery protocol
 - cost effective and popular 32bit Microcontroller


• HW platform based on X-Nucleo Shield



Block Diagram


life.augmented

Block Diagram: Features

On board functionalities activable if not available on external power supply board.

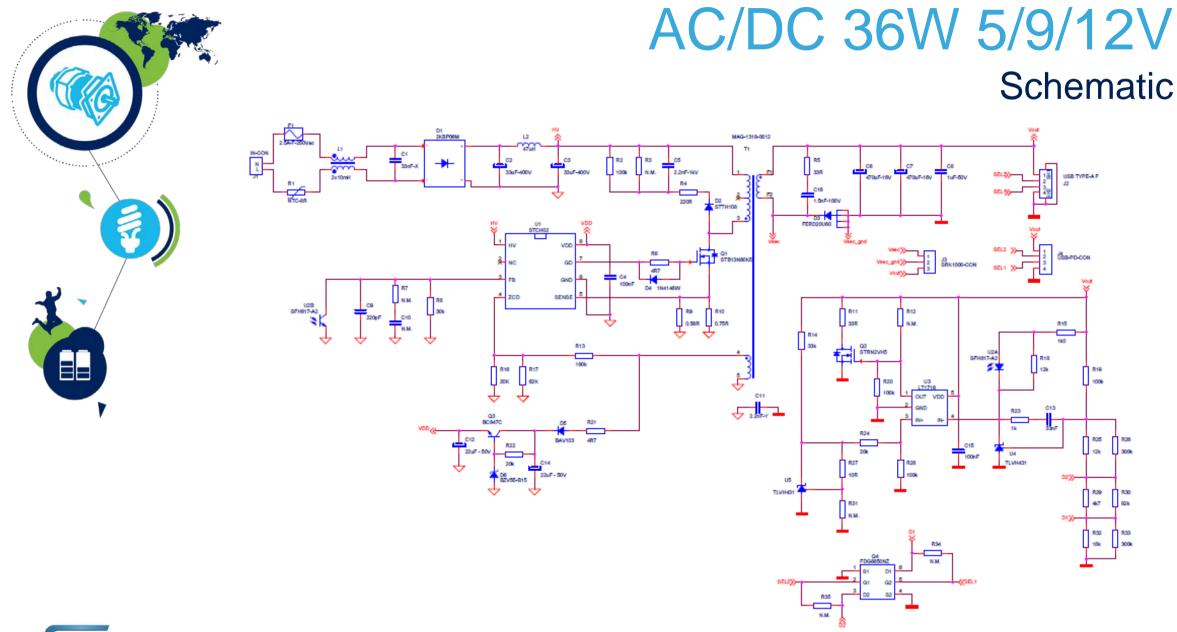
AC/DC 36W 5/9/12V Efficiency and no Load Consumption

Efficiency @ 115Vac

Load	lout [A]	5V	9V	12V
100%	3.000	83.18%	85.17%	85.41%
75%	2.250	80.61%	85.34%	85.53%
50%	1.510	80.20%	84.71%	84.61%
25%	0.750	80.92%	85.17%	81.67%
Average		81.23%	84.45%	84.30%

Efficiency @ 230Vac					
Load	lout [A]	5V	9V	12V	
100%	3.000	82.42%	85.56%	86.35%	
75%	2.250	81.44%	84.65%	85.47%	
50%	1.510	80.65%	83.44%	84.08%	
25%	0.750	77.89%	80.36%	80.05%	
Average		80.60%	83.50%	84%	

Input voltage	Efficiency @ 10% Pout					
	5V	9V	12V			
115V _{AC}	76.29%	76.68%	73.28%			
230V _{AC}	73.09%	73.06%	70.54%			


Input voltage	No load consumption <i>5V</i>
115Vac	11mW
230Vac	12mW

- 36W 5/9/12V board
- Please note that the values of efficiency are penalized by the power losses on secondary rectifier diode. The efficiency can be **improved around 4%** using synchronous rectification ٠
- ٠

life, gugmented

MCU + Discrete AFE Overview

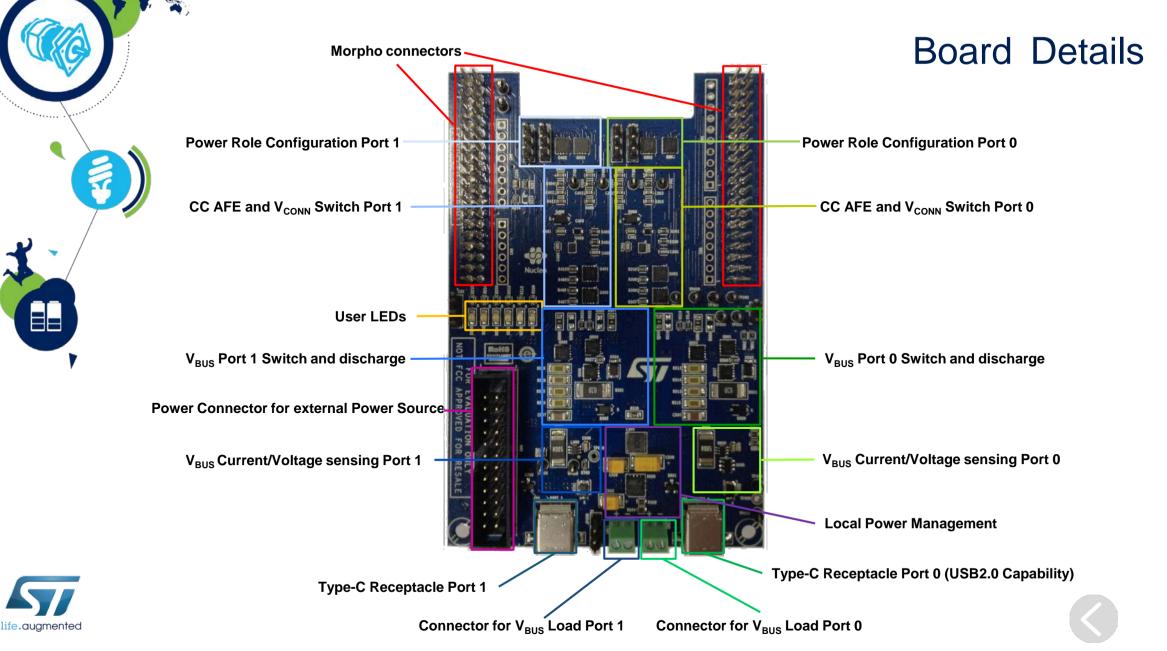
STM32F0 USB-C & PD FW GPI/Os Discrete Analog FE USB Type-C connector

life.auamen

- STM32 Embedded Software Solution to interface with USB-C connector and to handle the USB Power Delivery protocol.
 - Hardware : Entry level Cortex-M0 based STM32F0 microcontroller series with simple discrete Analog Front End PHY
 - Embedded Software : USB-C & PD Middleware

Best device for 2 ports management : STM32F051 in 48 pin package Best device for 1 port management : STM32F051/31 in 20/32 pin package

X-NUCLEO-USBPDM1


- USB-C Power Delivery expansion board with two USB Type-C connectors for two port management.
- Main features:
 - Two Dual Role Ports
 - Dedicated Power Connector to interface with external Power Supply board providing different profiles (up to 20V and 5A) and V_{CONN}
 - On-board Power management able to provide internal needed voltages from V_{BUS}
 - Six debug LEDs
 - USB 2.0 interface capability available on one port
 - Compatible with STM32 Nucleo boards
 - Equipped with ST morpho connectors

X-NUCLEO-USBPDM1

