NEUROTHERM RADIO FREQUENCY LESION GENERATOR MODEL NT 1100

Service Manual

1.0 CONTENTS

1.1 Li 2.0 WAF	ist of Figures RNINGS AND CAUTIONS	3 2-1
3.0 INTF	RODUCTION AND APPLICABILITY OF THIS MANUAL	3-1
3.2 Si 3.3 Si 3.3.1 3.3.2 3.4 M 3.4.1 3.4.2	Revision B – Boards in rack Ianual Updates Neurotherm Radio Frequency Lesion Generator Unit Manual Changes	3-2 3-3 3-3 3-3 3-4 3-4 3-5
4.1 S 4.2 Pi 4.2.1 T 4.2.2 4.2.3 4.3 G 4.4 G 4.5 C 4.6 Ba	Pecifications	4-1 -11 -14 -17 -22 -23 -29 -30
5.2 Fi	ower Entry Module, Isolation Transformer and Power Supply Board use Board CUIT DIAGRAMS AND COMPONENT LISTS	5-3
6.2 Fu 6.3 In 6.4 St 6.5 R 6.6 R 6.7 Te 6.8 In 6.9 Cu 6.10 In	ower Supply Board - RF100C use Board – RF101D npedance Board –RF 102D timulate Board RF103D + Sub Board F Amplifier Board RF 104 C F Voltage and Current Metering Board RF 105C emperature Board RF106 D emperature Board RF106 D forterlock Board RF107D fornection Board RF109B fornection Board RF109B forterface Board RF110D formputer Mother Board RF111B	6-5 6-8 5-13 5-24 5-29 5-35 5-41 5-44

1.1 List of Figures

4.1	Output Power/Load Resistance Curve
4.2	Typical available Stimulate Output Voltage/Load Resistance
4.3	Fundamental Radiofrequency Circuit
4.4	Mechanism of Radio Frequency Heating
4.5	Schematic of Tissue Temperature v Distance from Electrode Tip
4.6	Increase in Lesion Size v Time
4.7	Typical Pulsed RF Signal
4.8	Frequency Spectrum of a 2Hz Rectangular Pulse
4.9	Frequency Spectrum of a 500 KHz Signal
4.10	Pulsed RF – Amplitude Control
4.11	Pulsed RF – Pulse Width Control
4.12	Pulse Dose
4.13	General Schematic of the Neurotherm NT1100

5.1	Power Supply	Unit - Circuit	Diagram

5.2 Fuse Board – Circuit Diagram

6.1	Power Supply Board -	-RF100C -	Circuit Diagram
6.2	Power Supply Board	-RF100C -	Component Layout
6.3	Fuse Board	-RF101D -	Circuit Diagram
6.4	Fuse Board	-RF101D -	Component Layout
6.5	Impedance Board	-RF102D -	Circuit Diagram
6.6	Impedance Board	-RF102D -	Component Layout
6.7	Stimulate Board	-RF103D -	Circuit Diagram
6.8	Stimulate Board	-RF103D -	Component Layout
6.9	RF Amplifier Board	-RF104C -	Circuit Diagram
6.10	RF Amplifier Board	-RF104C -	Component Layout
6.11	V/I Board	-RF105C -	Circuit Diagram
6.12	V/I Board	-RF105C -	Component Layout
6.13	Temperature Board	-RF106D -	Circuit Diagram
6.14	Temperature Board	-RF106D -	Component Layout
6.15	Interlock Board	-RF107D -	Circuit Diagram
6.16	Interlock Board	-RF107D -	Component Layout
6.17	Connection Board	-RF109B -	Circuit Diagram
6.18	Connection Board	-RF109B-	Component Layout
6.19	Interface Board	-RF110D-	Circuit Diagram
6.20	Interface Board	-RF110D-	Component Layout
6.21	Computer Motherboard	-RF111B-	Circuit Diagram – Bus
			Interface
6.22	Computer Motherboard	-RF111B-	Circuit Diagram - Digital
			Outputs
6.23	Computer Motherboard	-RF111B-	Circuit Diagram-Ribbon
			Connectors and PSU
6.24	Computer Motherboard	-RF111B-	Circuit Diagram – Digital
			Inputs
6.25	Computer Motherboard	-RF111B-	Circuit Diagram– Analog
			Inputs
6.26	Computer Motherboard	-RF111B-	Circuit Diagram– Analog
			Outputs
6.27	Computer Motherboard	-RF111B-	Component Layout
6.28	Front Panel Wiring		
6.29	General System Schematic		

2.0 WARNINGS AND CAUTIONS

Warning indicates a potentially harmful situation to yourself or others.

HAZARDOUS ELECTRICAL OUTPUT: The equipment is for use **ONLY** by qualified medical personnel.

Do **NOT** under any circumstance perform any testing or maintenance on the equipment while it is being used on a patient.

Do **NOT** use extension cords or adapters of any type. The power cord and plug must be intact and undamaged.

Should the power cord or plug become cracked, frayed, broken of otherwise damaged, it must be replaced immediately.

If the equipment has in any way suffered mechanical damage it should be returned to the Supplier for Inspection and Test before further use.

Unplug the power cord before cleaning or service.

The operator should not perform any servicing of the equipment. Any servicing should only be carried out by qualified personnel.

EXPLOSION HAZARD: Equipment not suitable for use in the presence of a flammable anaesthetic mixture with air or with oxygen or nitrous oxide.

ELECTRIC SHOCK HAZARD: Always turn the equipment off before cleaning and **DO NOT** allow **ANY** fluid to enter the ventilation holes or sockets.

ELECTRIC SHOCK HAZARD: Do not touch any exposed wiring or conductive surface, while cover is off and the equipment is energised. The voltage present when the electric power is connected to the equipment can cause injury or death. **Never** wear a grounding wrist strap when working on energised equipment.

FUSE REPLACEMENT: For continued protection against fire hazard, replace only with same type and rating of fuse as displayed on the rear Serial Number Plate.

IMPROPER LINE VOLTAGE: The voltage selector on the mains input socket is factory set and should not be changed by the user. The serial number plate shows the correct mains input voltage for the machine and the rating of the fuses to be used in the mains input fuse holder. An incorrect voltage setting may result in Neurotherm malfunction and potential damage.

2.0 WARNINGS AND CAUTIONS (continued)

A CAUTION indicates a condition that may lead to equipment damage or malfunction.

Servicing of the equipment in accordance with this service manual should never be undertaken in the absence of proper tools, test equipment and the most recent revision of this service manual which is clearly and thoroughly understood.

When repairing circuit boards, great care should be taken in handling boards as all boards contain static sensitive devices. Before servicing a board, ground yourself and the relevant tool to discharge any accumulated static charge by wearing a wrist strap and placing the board on a static mat. If a board has to be returned, use anti-static bags or containers.

The tests and repairs outlined in this manual should only be attempted by trained personnel. Unauthorised service may void the warranty of the unit.

Check the voltage rating on the rear Serial Number Plate before connecting the equipment to AC Mains Power. The equipment must never be operated at the wrong mains voltage.

Use insulated tools when adjusting the internal controls on the equipment.

When cleaning the outer casing or display panel of the equipment do not use abrasive agents or solvents.

To reduce risk of electrical shock do not remove back panel of generator. Refer servicing to qualified personnel.

3.0 INTRODUCTION AND APPLICABILITY OF THIS MANUAL

3.1 Introduction and applicability of this manual

This service Manual (Document No. R1000) gives the information required to maintain and repair the Neurotherm Radio Frequency Lesion Generator Unit, Model NT1100. The main body of this manual deals with the present production revision of the equipment. Differences between equipment revision are summarised in Section 3.2. Section 3.3 lists the technical changes made to the equipment.

The revision of the whole equipment is changed if such technical changes are made which make some spare parts incompatible with earlier units. The initial equipment numbering, as shown on the rear Serial Number Plate contains no revision letter (e.g. Serial No. NT1100-7020-05) however later revisions will contain a revision letter (e.g.Serial No. NT1100-7020-05 Rev A). If the whole machine is upgraded such that early machines cannot be easily amended, then the upgraded machines will start from a nominated serial number as indicated in Section 3.2.

Within the equipment, function units such as Printed Circuit Boards will be changed or updated from time to time, these may or may not introduce a revision of the whole equipment. Each printed circuit board contains an identity number and a serial number of the board together with the issue number - designated by a letter. The initial issue letter was A for all Boards. In all cases the spare parts order code is also the Board Identity Number and Issue Number (e.g. RF 102E).

In order to understand this manual it is necessary to have a complete understanding of the function and operations of the Lesion Generator Machine. This information can be obtained from the Operators Manual which contains full operating instructions.

3.2 Summary of Equipment Revision Changes

Initial production revision of this equipment – Model NT1100

Initial production DEC 2005

Start from NT 1100 – 7007-05

From NT1100 – 7150 – 06 (May 2006) Metal Rack used and all cards in rack were changed to move components away from guides

3.3 Summary of Board Revision Changes

3.3.1 Revision A – All Boards NT1100

Initial production revision of this equipment

Power Supply Board	RF100C
Fuse Board	RF101C
Impedance Board	RF102C
Stimulate Board	RF103C
RF Power Amplifier Board	RF104C
RF Voltage and Current Board	RF105B
Temperature Board	RF106C
Interlock Board	RF107C
Front Panel and Connection Board	RF109B
Interface Board	RF110C
Computer Motherboard	RF111B
Card Rack Backplanes	RF115A and RF116A

3.3.2 Revision B – Boards in rack

Fuse Board	RF101D
Impedance Board	RF102D
Stimulate Board	RF103D
RF Voltage and Current Board	RF105C
Temperature Board	RF106D
Interlock Board	RF107D
Interface Board	RF110D
Card Rack Backplanes	RF115B and RF116B

3.4 Manual Updates

3.4.1 Neurotherm Radio Frequency Lesion Generator Unit Manual Changes

This is the NT 1100 Manual applicable to the machines from serial numbers shown below:-

Issue No.	From Serial No	Page	Change	Date
	NT1100 – 700)7-05	As issued	DEC 2005
2	NT1100 – 715	50-06		JUNE 2006

3.4.2 Record of Manual Updates carried out

Update Number	Carried out by Name	Date
2	Howard Clarke	June 2006

4.0 GENERAL DESCRIPTION AND PRINCIPLE OF LESIONING

4.1 Specifications

SIZE:

Width	400 mm (15 ¾")
Height	300 mm (11 ¾")
Depth	415 mm (16 ½")

WEIGHT:

12.5 kg (28 lbs)

ELECTRICAL:

EUROPE	230 Volts 50Hz Fused 1	Amp on live and neu	utral

USA/CANADA 110 Volts 60Hz Fused 2 Amp on live and neutral

Voltage change via rear connector

Power Consumption 150 watts

The power supply is built to Class 2 standard. The mains transformer and all mains related parts are doubly insulated from the Main Enclosure. The mains transformer has separate isolated bobbins for mains and low voltage windings. Thermal fuses (rated to fail at 125°C) are fitted into all primary and secondary windings.

The machine is not connected to mains earth (class2).

STANDARDS:

This instrument complies with

EN60601-1:1997 IEC60601-1-2:1993 IEC60601-2-2:1998 IEC60601-2-10: With Canadian deviations

With respect to electrical shock, fire and mechanical hazards only in accordance with UL60601-1, IEC60601-1, CAN/CSA C22.2 No.601.1 and IEC 60601-2-2

IMPEDANCE

Measuring frequency	53KHz (± 3KHz)
Measuring source voltage	Less than 500 mV AC
Measuring Display	50-2000 ohms (one ohm resolution)
Accuracy	±5%
Features (a) (b) (c) (d)	Internal 500 ohm Test Resistor Impedance in all Lesion Modes and in Stimulation Mode when stimulation is off Audible Tone available where frequency varies with impedance over full impedance range (50- 2000 ohms). Audible tone is adjustable and mutable. Warning on screen if impedance is less than 50 ohms or greater than 2000 ohms.
STIMULATION MODE	
Signal Shape	Biphasic square wave with negative edge leading. This wave is available in a variety of frequencies and widths.
Output Range Voltage	0-5v \pm 3% for motor frequencies (2Hz and 5 Hz) 0-3v \pm 5% (Default) for all other frequencies 0-0.5v \pm 10% for all other frequencies
Current	0-10mA±5% 50-2000 ohms 0-6mA± 5% 50-2000 ohms 0-1mA± 5% 50-2000 ohms
Pulses Rates Motor	2 or 5 Hz (Default 2Hz)
Sensory	10,20, 50, 75, 100, 150, 180, 200 Hz (Default 50 Hz)
Pulse Rate Accuracy	<u>+</u> 3%
Pulse Widths	0.1, 0.2, 0.5 and 1.0 mS (Default 1.0 mS)
Pulse width Accuracy	\pm 5% for 0.2, 0.5 and 1.0 mS \pm 15% for 0.1mS

Features	 (a) Hardware and Software lockout if voltage / current control not initially set to zero. (b) Warning on screen if stimulation control is not initially at zero. (c) Flashing LED on front panel indicates machine is delivering stimulation pulses. (d) Stimulation Test Socket is provided on front of machine to interface with the standard stimulation test kit. (e) Various screen displays for displaying amplitude of each stimulation procedure.
LESION MODE	
RF Waveform	480 KHz ± 5% Sinusoidal
Power Output	Continuously variable. Maximum power output 30 watts \pm 5% into 200 ohms. Power is displayed in certain Lesion Modes.
Voltage Display on screen	0-99RF volts (RMS)
Current Display on screen	0-999RF milliamps (RMS)
Self Test	150 ohm dummy load resistor built into machine
Lamp Indicator	LED flashes when Lesion Power is being delivered.
Temperature Range	Selectable 50-90°C for Thermal Lesion (Default 80°) Selectable in 5° C steps in initial screen set ups Selectable in 1°C steps when in Lesion Mode using "Temp up and Temp down" buttons.
Time	Selectable 0:30 to 10:00 mins (Default 1:00 minute) Selectable in 30 seconds steps in initial screen set ups Selectable in 1 second steps when in Lesion Mode using "Time up and Time Down" buttons
Special Temperature Profiles	A series of fixed temperature/time profiles are programmed into the generator: P1, P2, P3. The user can also program a custom profile with the following characteristics:
	Start Temperature 50-60°C (Default 50°C) Step Time 00:10 to 3:00 mins (Default 2 mins) Step Rise 1°C or 5°C (Default 5°C) Final Temperature 65° - 90° C (Default 65°C) Final Dwell Time 1:00–10:00 Minutes (Default 4.00 mins

Lesion Start	Lesion starts as soon as temperature is within 5°C of desired temperature.	
Auto Mode	With Lesion Power Control off, the procedure can be carried out under Automatic control by pressing the "Auto start" button. The temperature will ramp up a 8°C per second and time will start when the measured temperature is within 5°C of desired temperature.	
	The lesioning can be stopped at any time by pressing the "Auto Stop" Button.	
Display	Temperature is displayed against time as a curve of the screen together with a display of "Measured temperature" and "Time to completion of lesion". RI Lesion power (or voltage and current) together with impedance are also displayed.	
Audible Indicator	An alarm tone (with a volume adjustment) will indicate the end of the procedure.	

PULSE RF MODE

In pulsed mode the waveform is pulsed rather than continuous.

Pulse Widths	5ms, 10ms, 20ms, 50ms (default 20 ms)
Pulse Frequencies	1Hz, 2Hz, 5Hz, (default 2 Hz)
Temperature Range	Selectable in 42-65°C range, (default 42°C)
Time	Selectable 00:30 to 20:00 minutes (default 2:00 mins)
Set Volts/ Current	Pulsed RF can be carried out in Auto Mode at fixed voltage or current. Voltage range 30-70 Volts (default 45 Volts) Current range 50-350 mA

PULSE DOSE MODE

In Pulse Dose Mode the numbers of Pulses of Pulsed RF are counted. Pulse Dose Procedures are carried out in Auto Mode.

Set Temperature	42°C
Pulse Counts	120-1200 count (Default 240 counts)
Rate	2Hz
Width	20 mS
Set Voltage Range	30-70V (Default 45V)
Set Current Range	50-350 mA

MULTIPLE PROBES

The Neurotherm can be operated with 1,2 or 3 probes. When in Stimulation Mode each probe is selected by the operator for Stimulation. In RF Lesion, Pulse RF or Pulse Dose Mode the generator energises all connected probes in a time interlacing method. In multiple probe operation not all pulse rates are available.

Features

- (a) Hardware and Software lockout if RF Power Control not initially set to zero.
- (b) Warning on screen if RF Control is not initially set to zero or if Auto is selected and RF control is not off.
- (c) LED Flashes on front panel to indicate machine is delivering power.
- (d) Three output sockets to accept a variety of probes, (including cordotomy (optional extra)) and enable multiple probe peration.
- (e) Hardware lockout if temperature exceeds 95°C.

MAJOR FEATURES

Touch Screen Operation – User interface set up and software control via TP 400 processor.

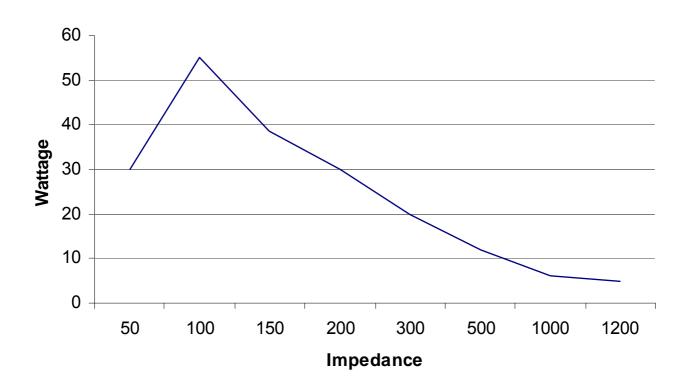
Windows CE4.2. NET Operating System.

12.1" LCD Sceen with Back lighting and wide antiglare visibility.

Printer Support	Via Bluetooth adaptor internally fitted.		
Remote Mimic Screen	Optically isolated running over CAT5 Cable to External TFT screen up to 300 metres.		
Storage Device	USB Memory Stick for downloading log files.		
Service Ports	Only accessible by service engineers for keyboard + mouse.		

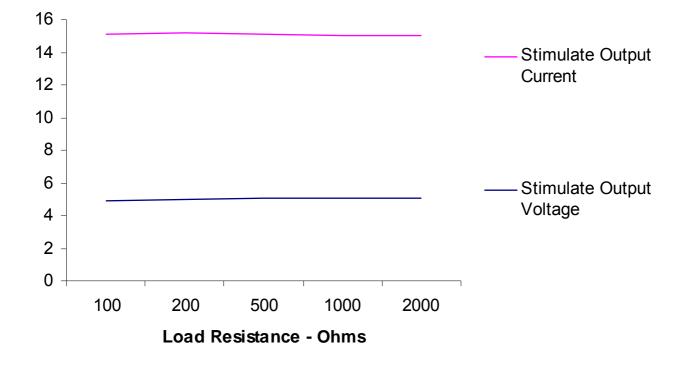
Any equipment connected to rear sockets must comply with IEC60950 and IEC60601-1

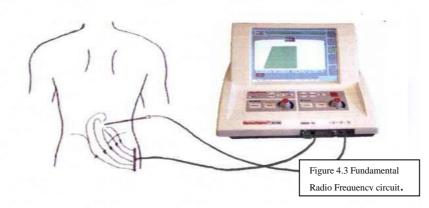
Use only parts supplied by Neurotherm Ltd. Any other parts will void the warranty and may cause danger to the patient.


Earth Leakage

—			1
1	Enclosure leakage current	40	400
	Normal	40 microamsps	100 microamps
	Reverse	40 microamsps	100 microamps
	Single fault condition	40	500 ·
	Normal	40 microamsps	500 microamps
	Reverse	40 microamps	500 microamps
2	Patient leakage current		
	Normal (AC)	5 microamps	100 microamps
	Reverse (AC)	4 microamps	100 microamps
	Single fault condition		
	Normal (AC)	7 microamps	500 microamps
	Reverse AC)	7 microamps	500 microamps
3	Patient Leakage current		
	Normal (DC)	4 microamps	10 microamps
	Reverse (DC)	4 microamps	10 microamps
	Single fault condition		
	Normal (DC)	4 microamps	50 microamps
	Reverse (DC)	4 microamps	50 microamps
4	Patient Auxiliary Leakage Current		
	Normal (AC)	4 microamps	100 microamps
	Reverse (AC)	4 microamps	100 microamps
	Single Fault Condition		
	Normal (AC)	6 microamps	500 microamps
	Reverse (AC)	6 microamps	500 microamps
5	Patient Auxiliary Leakage Current		
	Normal (DC)	4 microamps	10 microamps
	Reverse (DĆ)	4 microamps	10 microamps
	Single Fault Condition		
	Normal (DC)	4 microamps	50 microamps
	Reverse (DC)	4 microamps	50 microamps
		İ. İ.	· ·
6	Patient Leakage Floating Type		
	Normal	27 microamps	5000 microamps
	Reverse	27 microamps	5000 microamps
	Single Fault Condition		
	Normal	36 microamps	5000 microamps
	Reverse	35 microamps	5000 microamps
i			

Environmental Conditions


7	Transport	Temperature Humidity Pressure	-10°C to 70°C 0-95%RH 140-760mmHg	Non-Condensing (0-12,200 metres) (0-40, 000ft)
8	Storage	Temperature Humidity Pressure	10°C to 60°C 10 to 80% RH 520-760mmHg	(0-3000 metres) (0-10,000ft)
9	Operating	Temperature Humidity	10°C to 40°C 10 to 80% RH	


Figure 4.2	Typical available Stimulation Output Voltage / Load Resistance and
	Stimulate Output Current/Load Resistance

Load Resistance	Stimulate Output Voltage (5v Constant Voltage)	Stimulate Output Current (10mA Constant Current)
0		
100	4.88	10.2
200	4.98	10.2
500	5.04	10.1
1000	5.05	10
2000	5.07	9.84

4.2 Principles of Lesioning

4.2.1 The basic physical principles of radiofrequency ablation

Figure 4.3 shows the fundamental radiofrequency circuit. The RF lesion generator or power source provides a source of RF. It is connected by wires to 2 electrodes: one inserted into the body, referred to as the active electrode; another in contact with the surface of the body, referred to as the dispersive electrode. This is the so-called monopolar configuration. The RF voltage

causes current to flow through the wires, through the electrodes, and to the patient's body. The patient's body is a conductive electrolytic media, and thus the patient's body becomes part of the RF circuit. This current spreads out from the electrodes and flows through the electrolytic tissue medium of the body. The active and dispersive electrodes have a similar physical role in delivering and receiving the current, but functionally, because of their differing areas, they have very different effects with regard to the RF heating process.

The active electrode with its smaller surface area has much higher field densities in the tissue adjacent to it. This higher field density causes significant heating near the active electrode surface. The dispersive electrode has a much larger area, and, as a consequence, the field density is much lower in the tissue adjacent to it. This results in a lower radiofrequency heating effect, and thus if the dispersive electrode is large enough no appreciable heating will occur near it. In fact, a large area surface plate to join to the skin with a conductive gel for good conductivity will not heat appreciably even though this same radiofrequency current will cause intense heating near the much smaller active electrode. It is recommended for most radiofrequency procedures that the dispersive electrode, therefore, should have an area of greater than 150 square centimeters to be safe from any significant heat elevation when RF lesions delivering 50 watts or less are used.

The mechanism for radiofrequency heating is shown in figure 4.4. The electric field lines emanate from the active electrode tip and are created by the voltage impressed upon it by the radiofrequency generator. This electric field creates an electric force on the charged ions within the electrolytic medium of the tissue. According to the physics laws this force produces a motion, and the motion is oscillatory at the frequency of the RF current.

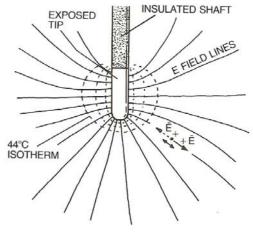


Figure 4.4 mechanisms for Radiofrequency heating It is this radiofrequency motion which causes the ions to rub against the surrounding fluid medium, causing friction which results in the tissue heating. The temperature at any point is controlled by the frictionally induced power dissipation at that point, mediated by thermal diffusion and thermal convection. The thermal diffusion and convection are typically caused by blood circulation.

The temperature distribution around the electrode tip can be calculated by making certain simplifying assumptions. One of the assumptions is that the medium is homogeneous and that the factors of thermal diffusion and circulation are also uniform. Under these circumstances one can calculate the isotherms (surfaces of constant temperature) surrounding the electrode tip for a given impressed radiofrequency voltage. These isothermal surfaces are critical to determining the lesion size. As it is known that living tissue will be permanently destroyed for sustained temperatures of approximately 45 C, the 45 degree isotherm can be considered to be the outer border of the lesion since tissue within this volume will be thermally destroyed and tissue outside of this volume will experience lower temperatures than are necessary for cellular destruction. Isothermal surfaces are indicated by the -- lines in **figure 4.4**

It is important to understand that the radiofrequency field, and thus power dissipation in the tissue actually heats the tissue as opposed to the electrode itself. The heated tissue in turn raises the temperature of the electrode tip and thus heats the tip. Therefore, it is not the electrode tip which heats the tissue, but rather the tissue which heats the electrode tip. If the electrode is properly designed so as not to sink away too much of the thermal energy, the electrode will give an accurate representation of the tissue temperature at its surface. It is for this reason that thermal monitoring of the radiofrequency tip is a good indication of the hottest portion of the lesion volumes, namely the isotherm that lies closest to the surface of the electrode. With the simplifying assumptions of a homogeneous medium, the lesion size represented by the 45 degree isotherm increases with increasing tip temperature and also increases with increasing tip dimension particularly the radius of the electrode tip.

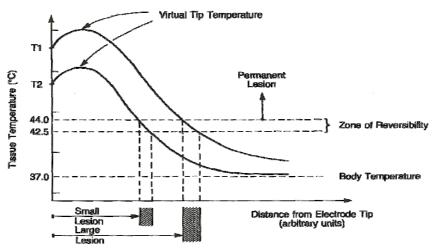
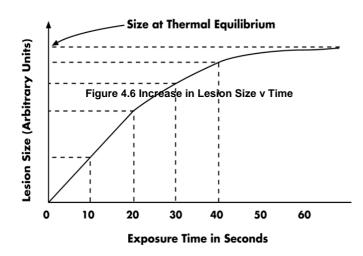



Figure 4.5 Schematic of Tissue Temperature v Distance for Electrode Tip.

Figure 4.5 shows a schematic diagram of the temperature of the tissue as a function of distance from the electrode tip. It should be noted that the temperature is not isotropic for a non-spherical electrode, and thus these curves may differ at different orientations on a non-spherical electrode tip. The temperature at the surface of the electrode, such as T2, measures very nearly the hottest tissue nearby, and the tissue at greater distances falls off until it asymptotically approaches body temperature at large distances from the electrode tip. By raising the radiofrequency voltage, one will increase the temperature to T1 near the electrode tip, and thus the distances to the 45 C isotherm will increase accordingly. With knowledge of these characteristics and the temperature vs.distance curve, one can therefore judge the size of the lesion volumes by choosing the appropriate tip temperature for a given tip geometry. This is the reason temperature measurement has been historically essential to produce consistent and quantified lesion volumes.

Measurement of the tip temperature has another very important benefit. By avoiding tip temperatures near 100 C (the temperature at which water boils), one avoids the undesired effects of charring, sticking or the formation of a hemorrhage or explosive gas which may be also be accompanied by sparking. In the early days of neurosurgical lesions, before reliable tip temperature measurement was possible, neurosurgeons would establish the end point of their lesion making by listening for the "popping" lesion. The popping was caused by the tip temperature exceeding 100 C and the subsequent gas formation at the tip to the electrode. This obviously was not a controlled lesion technique and led to unpredictable and dangerous destructive conditions.

In pain management there are now well-established prescriptions for appropriate electrode size and tip temperature to achieve desired lesion volumes. It has been historically clear that prescriptions which involve power and current did not have lasting value, but rather prescriptions that involve temperature, electrode size and accounting for the heat washout caused by blood flow. The importance of temperature control was not always recognized. For instance, in the early days of percutaneous cervical cordotomy, elaborate prescriptions of current, power and time for making RF lesions were established. The subsequent clinical results were not consistent in the early days of cordotomies, and it was only when temperature was measured at the tip of the cordotomy electrode that consistency and reproducibility was finally achieved.

Another important aspect of controlled radiofrequency lesion making is illustrated in Figure 4.6. This shows experimental data of the increase in lesion size for a fixed electrode geometry and a fixed tip temperature. The lesion size in this situation is defined as the width of the prolate ellipsoidal width of the prolate ellipsoidal lesion volume. The graph clearly shows that for constant tip temperature the lesion size grows and asymptotically reaches a maximum value in a time between 30 and 60 seconds. The 45C isothermal surface can then be referred to as the equilibrium lesion size. Leaving the radiofrequency power turned

on indefinitely beyond 60 seconds will not increase the equilibrium lesion size. In the past, so-called time-dependent lesions were made in which a certain power was held by the radiofrequency generator for 10-20 seconds. This too led to inconsistent results, and resulted in the acknowledgment of the equilibrium lesion size as being the optimum methodology.

It is noteworthy that impedance monitoring has a great value in assessing the progress of a heat lesion. The impedance seen by the electrode tip depends on tissue interfaces and this property has been used very effectively to distinguish between the interface of electrolytic fluids and tissue. For example this has been used with percutaneous cordotomy electrodes to clearly tell when the electrode has traversed from the cerebral spinal fluid to a position of contact with the spinal cord. Impedance monitoring has also been used to identify when an advancing electrode has progressed from the annulus of the disk into the nucleus pulposus. The change of impedance during the heating process is dramatic. It has been shown that as the tissue or medium heats up, the impedance will drop. This is very much related to the phenomena that the engine oil in an automobile will become less viscous as the temperature of the engine increases. There is a point, however, as the temperature at the lesion tip approaches 100 C, when the impedance will cease to decrease and, in fact, will rise precipitously as the temperature approaches the boiling point. The reason for this is that the protein coagulation has a rapid onset in this temperature range causing a decrease in Ionic mobility. Near the boiling point, gas suddenly forms around the electrode tip, acting as an electrically insulating barrier thus sending the impedance to very high levels. At the onset of boiling, the impedance rises very rapidly. In summary, it is clear that the monitoring of temperature and impedance are both of great significance.

4.2.2 Pulsed radiofrequency

Historically, radiofrequency was neuroablation. This was true for percutaneous cordotomy, the treatment of trigeminal neuralgia, and the destruction of the medial branch nerve for facet pain. Mysteries remained however. It was not understood why RF lesions were so often followed by long periods of discomfort before any beneficial clinical effect appeared. In the 1990s, additional unanswered questions were added. The mode of action of RF lesions of the lumbar sympathetic change (other than for vascular disease) was not understood since there were acceptable success rates, though the results did not correlate with the degree of sympathetic block.

This led to the hypothesis by Sluijter that heat might not be the element causing the clinical effect of an RF lesion. The next obvious steps were to define a method to apply radiofrequency at high intensity without allowing the tip temperature to rise to neurodestructive levels. The method that was chosen by Sluijter was placing the output setting of the RF generator in the same range as was customary for making heat lesions but interrupting the output, thus allowing for sufficient time for the generated heat to be washed away by thermoconductivity and circulation.

This method has been commonly referred to as pulsed radiofrequency (PRF). Pulsed radiofrequency is a relatively new technique that applies short pulses of radiofrequency (20 ms) at a high voltage of 45 to 60 volts to neural tissue. **Figure 4.7** shows the currently accepted paradigm of 20 milliseconds of RF followed by 480 milliseconds of off time. In this way high intensity radiofrequency is delivered but with a short enough on time so as not to cause heating above 42 C.

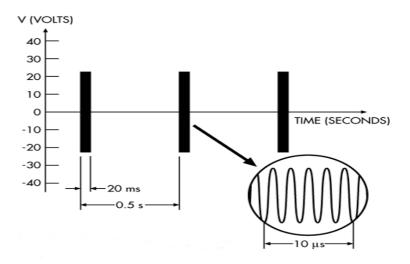


Figure 4.7 Typical Pulsed RF Signal

It is a natural reaction to think of pulsed radiofrequency as being analogous to the neural modulation effects achieved using spinal cord stimulators or TENS units. However, these two modalities are very different. In neural modulation the therapeutic effect is achieved by applying low frequency (< 1000Hz) rectangular pulses.

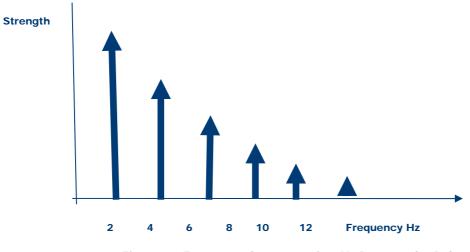


Figure 4.8 Frequency Spectrum of a 2Hz Rectangular Pulse.

Figure 4.8 shows the frequency spectrum of a two Hz rectangular pulse. As can be seen from the figure, the major frequency component is at two Hz and falls off as the frequency increases. At frequencies above 1000 Hz, the amplitude of the frequency component is getting very small. There is a very different situation with pulsed radiofrequency. In this case, the rectangular pulses have radiofrequency inside of them. This changes the frequency spectrum entirely. As can be seen from **figure 4.9**, the major frequency component is now 500 kHz and decreases at higher and lower frequencies. At frequencies below 1000 Hz, the contribution can be shown to be negligible. In conclusion, the frequency spectrums of pulsed radiofrequency are entirely different than the frequency spectrums of low frequency stimulators.

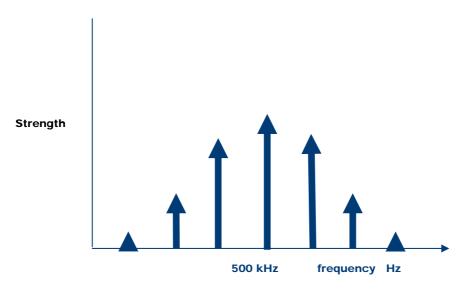


Figure 4.9 Frequency Spectrum of a 500KHZ Signal.

There is very little conclusive research to date on the mode of action of PRF. A few preliminary studies have shown that a modification of CFOS and DNA expression has been observed in cells of rat DRG after exposure to PRF. However, additional basic research needs to be done to come to any good scientific conclusion as to the mechanism of action of PRF.

In this era of evidence based medicine, pulsed radiofrequency has not yet been validated. Several retrospective studies and audits have been conducted and the initial results are positive. Because of a lack of uniform treatment guidelines, the anecdotal results for pulsed have ranged from magnificent to abysmal. It is this author's belief that standardization of many of the PRF parameters will at worst result in uniform treatment for all patients and at best significantly improve the clinical outcomes. In any case, controlled clinical studies are long overdue for this potentially promising modality.

When the study of PRF began, the parameters were arbitrary. For the voltage, a value is taken that was within the range of the voltage during the initial heating phase of an RF heat lesion. The values of 20 milliseconds on time and 480 milliseconds off time were chosen because they were thought to provide good conditions for preventing heating above 42 degrees Centigrade. The initial choice of 120 second duration of the procedure was completely arbitrary, and it was just taken as a starting point. With no scientific basis, these parameters have been arbitrarily modified by clinicians and thus there is no consensus as to what the optimum parameters are.

One of the major variables in pulsed radiofrequency treatment is the voltage level when the pulses are "on". This arises from the desire to keep the temperature below 42 degrees C. If 42 degrees C. is reached, it is necessary to either manually or automatically reduce the pulsed amplitude or the pulsed duration in order to ensure the temperature does not exceed 42 degrees. Using the pulsed dose method, every pulsed is ensured to be of the same amplitude and duration. This method is explained in detail in the following paragraph.

4.2.3 The Pulse Dose Concept.

Whenever Pulsed RF is used, if the selected temperature limit is reached, the pulse must be modified in some way to prevent the selected temperature limit from being exceeded; this can be done by either.

- 1. Modifying the pulse **amplitude** of the pulses- i.e. if a 45 volt amplitude was set, and if the temperature limit was set to 42 degrees and was reached, the next pulses will be reduced in voltage to prevent the temperature from increasing above the 42 C temperature limit.
- 2. Modifying the pulse **width** whenever the temperature limit was reached, thus insuring that each pulse delivered was the full set voltage amplitude.

In **Pulse dose** the two conditions shown above are avoided. A **FULL** pulse is always given, i.e. if the setting is 45 volts amplitude for 20 milliseconds, you will always deliver this pulse amplitude and duration. If the set temperature limit is reached, the generator will wait until the temperature drops below the set temperature limit, and then again will give a **FULL** amplitude and duration pulse.

Because the generator is only delivering full pulses, in this mode initially one sets the "number of pulses" that is desired for the procedure as opposed to procedure time, since procedure time can vary depending on whether the set temperature limit was reached.

The following diagrams depict the different modes-

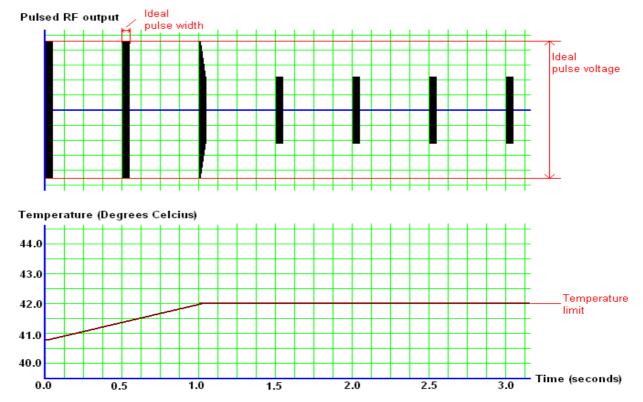
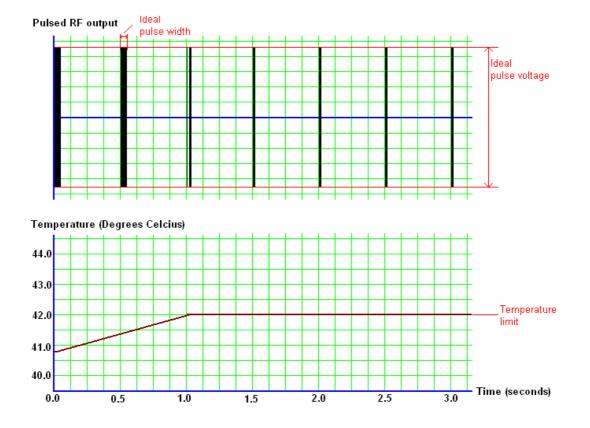
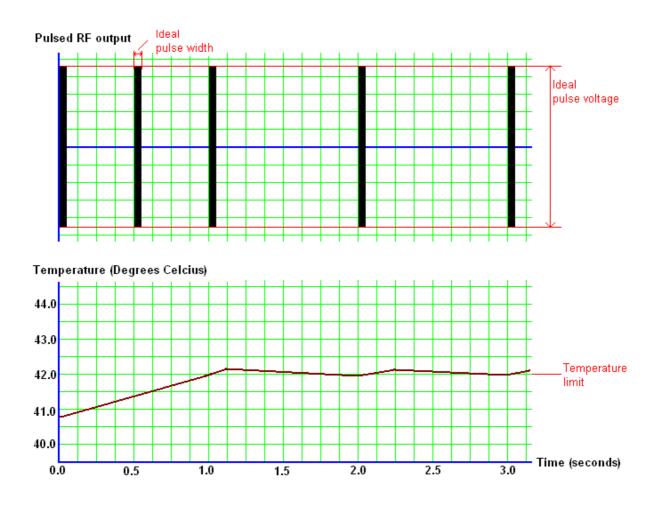
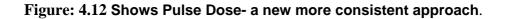



Figure 4.10 Shows Historical Pulsed RF amplitude control


Figure 4.10 Pulse RF Amplitude Control


The beginning pulses are the desired pulses of 45 volts amplitude and 20 ms duration. Note that the moment the set temperature limit is reached the voltage is changed (reduced) in order to keep the temperature below this limit. (Note that this implies that every patient gets unpredictable and variable pulse amplitude which is undesirable).

When the temperature limit is reached the pulse width is changed as opposed to the pulse amplitude. Note that the pulse width is changed the moment the temperature limit is reached, the width is varied to keep the temperature limit. Though this is better than amplitude control, it still implies that treatments will not be consistent and uniform between patients.

In the pulse dose mode, only amplitudes that are the full set voltages and widths that are the full set pulse width are delivered. If the temperature limit is reached, the generator stops giving output until the temperature falls below the temperature limit. This guarantees that every treatment delivers the full set amplitude and pulse width. The number of pulses or "doses" are set by the operator as opposed to time, thus ensuring that every treatment is consistent patient to patient.

Here is why pulsed dose is superior to the other methods. Imagine doing medial branch heat lesions and every patient is treated at a different temperature, i.e. one at 80 ° C, one at 70 ° C, another at 60 ° C. Would you be surprised if this resulted in variable patient outcomes? Pulsed dose standardizes pulsed RF, just as always using the same temperature standardizes heat RF.

Figure 4.12 Pulse Dose

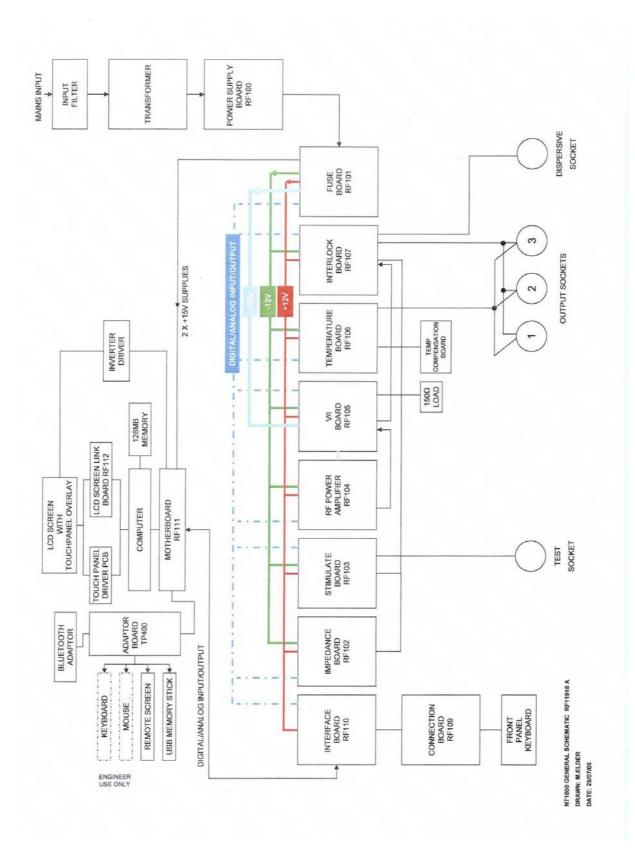


Figure 4.13 General Schematic of the Neurotherm NT1100

4.3 General Description

Figure 4.13 Shows a General Schematic of the Neurotherm NT 1100, and a brief description of the various Printed Circuit Boards used is given below. A more detailed description of each board together with its circuit diagram is given in Section 5.

(a) Mains Input Unit

The Mains Input- - either 115v or 230v comes into the machine via a Corcom Input Unit which includes Mains Filter, Dual Fuses (1Amp for 230v input, 2 Amp for 115v input), two pole On/Off Switch and Voltage Changing Module.

(b) <u>Mains Isolating Transformer</u>

Output from the Mains Input Unit goes to a 150w Isolating Transformer which has the Mains and Low Voltage Windings on two independent isolated bobbins. Thermal Fuses are fitted on the Mains Input Windings and on each secondary Winding. Independent Secondary Windings are:-

67v at 1.25 amp	AC
12v at 2 amp	AC
14v at 2 amp	AC
14v at 1 amp	AC

(c) <u>Power Supply Board RF100</u>

The Power Supply is located on the bottom baseplate of the machine close to the transformer and contains full wave rectifier bridges, voltage regulators and smoothing capacitors to produce a series of DC voltages. These are:-

90v (75v under load) Rectified and smoothed for Generating RF
15v Rectified and Smoothed for the Computer and Display
12v 2amp Regulated DC for Circuit Boards
-12v 1amp Regulated DC for Circuit Boards and Fan

The Power Supply Board is fully socketed for ease of replacement with connectors for Transformer, Fan and Rack.

All voltage with the exception of the Fan go to the Fuseboard in the rack.

(d) Card Rack

The main card rack in the machine contains seven circuit boards and wiring between the various card is on a 2 section backplane.

Fuse Board RF 101

DC voltages from the power supply go to a Fuse Board which provides fusing as follows :-

- + 12 v 2amp for logic (fused 2amp)
- 12 v 1amp for logic (fused 1 amp)
- + 90v for RF (fused 2amp)
- + 15v for Computer and Display Section is divided into two separate 15 v supplies each fused at 2 amps.

Each fused supply has an associated LED which indicates whether the supply is good (LED – ON) or the fuse is blown (LED – OFF). All fused supplies are monitored by opto isolated couplers and a "Fuse OK" signal is monitored by the computer.

4.4 General Signal Information

Motherboard RF111 (Part)

The computer is connected to a motherboard which provides an interface for a series of Digital and Analogue Input / Output signals. Signals provided are :-

29 Digital Inputs47 Digital Outputs8 Analogue Inputs4 Analogue Outputs

The Computer operates at 5 volts but interface to the various cards is at 12v DC.

The Motherboard is connected by 2 x 50 way ribbon cables to the Interface Board RF 110.

Interface Board RF110

This board which sits at one end of the rack provides the interconnection between the computer motherboard, the front panel keyboard and the rack.

The board has no active components It connects into the rack via a 96 way edge connector and connect to the computer motherboard by 2×50 way ribbon cables and to the Connection Board and front panel keyboard by a 34 way ribbon cable.

Connection Board RF109 and Front Panel Keyboard

The Front Panel Keyboard consists of 14 Membrane Keys with tactile feel 4 of which have an integral LED. There is also a single 'Mains' LED. The Panel also contains two rotary potentiometers with integral switches (which indicate when the potentiometers are in the 'off' position).

The Connection Board is located on the rear of the Front Panel Keyboard. The connection to the Membrane Keyboard is via a 21 way flat film connector and the connection to the two potentiometers with integral switches is via a 10 way latched connector. A 34 way ribbon connector connects the Connection Board to the Interface Board.

A small circuit and sounder are also mounted on the Connection Board to give the "tick" as time counts down.

Impedance Board RF 102

The Impedance Board measures impedance at the patient using a small 53 KHz signal. Its input is connected to the Interlock Board and can be switched to measure the impedance at any of the 3 probe connectors.

The Board contains a 500 Ohm Test Resistor which is switched into circuit during the self test sequence of the computer to check that the Impedance Circuit is working correctly. The Board also contains a 'tone' circuit whose output frequency is proportional to the impedance measured and is available if required for cordotomy procedures or during standard impedance measurements. The volume of the tone can be set up on the 'Options' screen of the machine.

Impedance is measured in all lesion procedures and in stimulation mode when no stimulation signal is present. The output of the board is connected to an analogue input on the Computer Motherboard and displayed as ohms on the display screen.

Stimulate Board RF 103

The Stimulation Board provides the biphasic stimulation signals used in the Stimulation 'Motor' or 'Sensory' modes of the machine.

The board produces the following "frequencies" and "widths" of stimulation pulse.

Frequencies

Sensory 10,20, 50, 75,100, 150, 180, 200 Hz Motor 2Hz or 5Hz

Pulse Widths

0.1 mS, 0.2 mS, 0.5 mS, 1 mS

These frequencies and pulse widths are selected by user via the appropriate "screens" and selected on the board via an appropriate BCD code from the computer via its Digital Outputs.

In a similar way the maximum pulse height and whether the pulse is a voltage or current pulse is selected via computer Digital Outputs.

The outputs available are 0-0.5v, 0-3v, 0-5v and 0-1mA, 0-6mA, 0-10mA

The board also contains a tone circuit which is connected to the test socket on the front of the machine and is used via the test block to check stimulation pulses appear at a probe.

The stimulation circuit can be connected to any of the 3 probe input sockets on the front of the machine as selected by the user.

A hardware interlock is fitted to prevent stimulate pulses being emitted when the stimulation mode is selected and the voltage/current control is not initially set to zero. This circuit is in addition to the software interlock.

The flashing LED on the appropriate stimulate mode "select" button operates when output is present (this is controlled by software).

The output from the board is connected to an analogue input on the Computer Motherboard and displayed on the display screen.

Temperature Board RF106

The temperature Board measures the temperature at any selected output and controls the power sent to a probe by switching it off when a selected temperature is reached. The input to the board is from the three probe sockets on the front panel of the machine.

The board contains a single temperature measuring circuit and which probe is connected to it is controlled by the computer.

In procedures, where multiple probes are connected to the machine the single temperature circuit is switched between probes.

The temperature circuit is designed for Type K Thermocouples and the small signal from the selected probe is passed via a multi stage low pass filter to a Monolithic Thermocouple Amplifier with Cold Junction Compensation. This Thermocouple Amplifier is also connected to a Temperature Compensation Board mounted on the rear of the probe sockets which effectively moves the Cold Junction Compensation point from the Temperature Board to the Probe Socket and hence avoids any errors due to temperature rise within the Neurotherm.

The output from the Thermocouple Amplifier is approximately 0-1v for 0-100 $^{\circ}$ C, the voltage is then multiplied x 2 to give a 0-2v signal to an analogue input of the computer to display the appropriate temperature.

The computer (via one of its analogue outputs) sends out a 0-2v signal to represent the temperature the user has selected to control to. This signal is compared with the measured temperature signal and when the measured signal approaches the control temperature the Board sends an excess temperature signal to the RF Power Amplifier to shut down the RF. This control of the Power Amplifier is made via hardware and the computer does not form part of the control loop.

The measured temperature is also compared with a 95°C set temperature and if the measured temperature gets to 95° C the Power Amplifier output is shut down and the RF is also isolated from the patient via a relay. This safety circuit is also a hardware only lockout.

The Temperature Board also contains the circuitry to generate the frequencies and pulse widths for Pulsed RF. The following frequencies and pulse widths are provided

Frequency 1, 2, 5, 10 Hz Pulse Width 5, 10, 20, 50 mS These frequencies and pulse widths are selected by the user via the appropriate "screens" and selected on the board via an appropriate BCD code from the computer via its Digital Outputs.

These pulse frequencies are also used as primary switching frequencies for the interlacing of impedance measurement during RF Lesioning, and are used for this purpose on the V/I Board.

RF Power Amplifier RF104

The RF Power Amplifier is located on the base of the machine and uses the air flow from the fan to directly cool its integral heat sink. The Amplifier produces a sine wave output which is a constant voltage over a very wide patient impedance range. The Amplifier is set to give 30 watts at 200 ohm load.

The output voltage of the Amplifier is approximately 0-75 Vrms for a DC input of 0-5 volts. In Manual Mode this DC voltage comes from the RF Power Control on the Front Panel, but when the Amplifier is in Auto Mode the voltage is provided by one of the Analogue Outputs of the computer.

The amplifier also has a Low Power Mode which is switched on when a Cordotomy Treatment is being used.

Output from the Amplifier is enabled both by hardware and software and both signals have to be enabled for output to be present. The Hardware Enable is used for Impedance Interlacing, Pulsed RF, Temperature Control, 95°C Excess Temperature and Hardware Interlock.

The Software Enable is given when the machine is in the correct operating state, no errors have been monitored by the computer and the Computer Watchdog Timer is running correctly.

The Amplifier Board is designed to be tolerant to a shorted output and will cut out if the board detects over-temperature. If the Board detects a failure it sends an error signal to the Computer which will be displayed.

V/I Board RF105

The V/I Board has several different functions, these are:-

- a) Provide the 75v for the RF Power Amplifier
- b) Measure the RF Current and RF Voltage being delivered by the RF Amplifier.
- c) Switching RF Power to a Test Load
- d) Provide timing circuit for interlacing the Impedance and RF Signals

The 75V DC Voltage from the Power Supply Board is fused on the Fuse Board and then goes to the V/I Board. When a condition that RF is required is determined by the computer, an "RF ON Enable" signal is sent from the computer and switches the 75V DC through to the RF Power Amplifier. (RF Power at this point is not switched to the patient a whole series of conditions have to be met for this to occur).

RF Signal sinewave at 480KHz comes onto the Board from the RF Power Amplifier and its Voltage and Current are detected by two toriod coils, the output of each is full wave rectified and produces a DC Output Voltage which is proportional to the RF Voltage and Current from the Power Amplifier. These voltages go to two Analogue Inputs on the Computer Motherboard and are used to display RF Voltage and RF Current.

Under normal circumstances the output RF is fed to an external 150ohm 100 watt Test Load fixed in the base of the machine and only passes to the Interlock Board when a "Disconnect Test Load" signal is received from the computer.

In order to measure the Impedance of the patient when RF is present it is necessary to turn off the RF for about 25mS twice a second. The circuitry to carry out this signal interlacing is contained on the V/I Board. The key stages of measurement are:-

- a) Disconnect RF from patient
- b) Connect Impedance Measuring Circuit
- c) Wait for signal to stabilise and then sample and hold the reading
- d) Disconnect Impedance Circuit
- e) Reconnect RF
- f) Sample RF
 - Then 500 ms later
- g) Hold RF Signal
- h) Disconnect RF from patient etc.

This interlacing procedure is triggered by pulses from the Temperature Board, so that when the machine is in pulsed or dosed RF Modes, the temperature measurement is carried out during the "off period" of the RF.

Interlock Board RF107

The Interlock Board provides the main final interlock to only allow RF to go to the patient if all key conditions are met. It is also the point where switching of RF between outputs occurs.

RF arrives at the board from the V/I Board and then passes to the patient via a safety relay and then a series of relays which select which output should be activated.

In order for the safety relay to operate the following conditions have to be met

- a) A lesion must have started and not be timed out
- b) The Temperature Board must not have detected a temperature in excess of 95° C
- c) The Computer Watchdog Timer must be running
- d) Pulse or Lesion Mode must have been selected
- e) If Auto Start has been selected, RF Control is turned off (fully anticlockwise)
- f) Auto Stop has not been pressed.

If all the conditions for the safety relay are met the RF signal is switched to 3 relays which control which outputs of the machine receives an RF signal. This is under the control of the computer, as when multiple outputs are used the RF is switched to each output in turn.

When operating with Dual Probes and a lesion is made between two electrodes, one of the outputs of the machine is switched to act as the dispersive.

When a procedure is completed, an alarm tone is sounded. The volume of this alarm can be set up on the "Options" Screen of the machine, and the computer generates the appropriate Analogue Output Signal to activate the required volume on the board.

Computer Board and Ancillary Boards

The Computer Board is a PC104 Single Board Computer with a 5 watt requirement, so forced air cooling of the computer is not required. The board contains interfaces which include USB, TFT Display, Keyboard, Mouse, Serial Port for Touchscreen and Flash Memory. Its link to the machine is via its 64 way PC104 Interface Connector which connects directly into the Computer Motherboard. Some interfaces, for example, the USB Memory Stick, Remote Screen and Printer Bluetooth Adaptor connect from the computer card to the Adaptor Board TP400 via a short 50 way ribbon cable.

The Adaptor Board which is mounted on the Motherboard (but not connected to it) provides external connections at the rear of the machine. Two other connections for keyboard and mouse for engineers use only are also provided.

The Computer Board has a small sub-board into which the 128 MB Flash Memory Card is plugged, this memory contains the working system software for the machine and a segment of its memory is used to store the readings from procedures for later downloading to the memory stick.

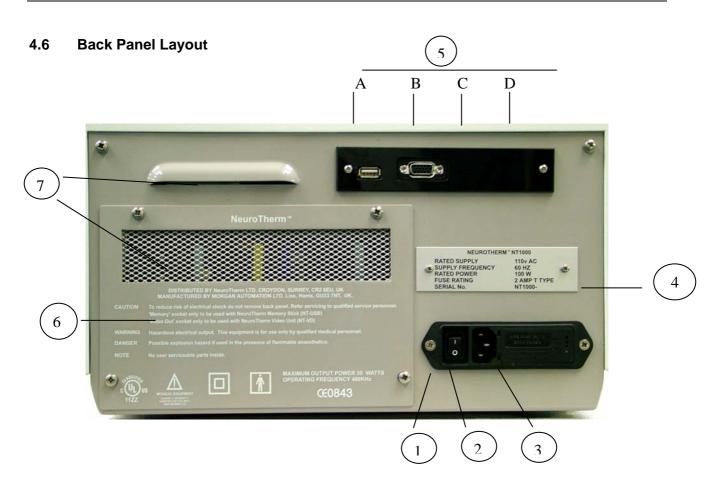
The computer also connects directly to the TFT Display and Touchscreen. For the TFT Display the connection goes via a small link board which reorders the pins numbers and connectors so that ribbon cables can be used. The Touchscreen goes via a small Driver Board which enables the touchscreen to connect to the RS232 interface of the computer. The TFT Display has back illumination which is provided by a small inverter board mounted on the rear of the display; this inverter gets a 12vDC signal from the Computer Motherboard.

The rationale of using a number of small interface boards for the display and touchscreen is that if at some stage in the future the computer, touchscreen or display were changed, then the only boards requiring modification would be the small interface board or Adaptor Board.

4.5 Connector Panel Layout

Dispersive Socket This 4mm socket is for the lead of the Dispersive Patient Plate which should be at least 200 sq cm (21 square inches).

Test Socket This 2mm socket is used to connect the Test Block for use in testing the thermocouple probes in the Stimulate Mode.


Probe Socket No 1 This 4 pin socket is used to connect single electrodes for standard RF Lesion and Pulsed RF Lesion Procedures.

Probe Socket No 2 This 4 pin socket is used to connect electrodes used for 'special' procedures .

Probe Socket No 3

This 4 pin socket is used to connect electrodes used for 'special' procedures.

[Special procedures include two and three electrode procedures, dual electrode procedures, bipolar electrode procedures and cordotomy procedures]

- Mains On/Off Switch This is a rocker type switch, combined with an I.E.C. connector socket with twin 'inline' anti-surge fuses in a single unit to IEC 950
- 2. Mains IEC Connector

The three pin plug of the mains must be pushed into this socket. This cannot be done incorrectly i.e. with the live and neutral reversed because of the orientation of the unused earth pin.

3. Fuses and Voltage Changes

The Neurotherm is protected by two in-line fuses, one on the live line and one on the neutral line. These fuses are located to the right hand side of the IEC socket. The fuses are 20mm Anti-Surge to BS 4265. 1 amp for 230v supply, 2 amps for 115v supply. To access the fuse holder lift protective lid from the right hand edge and hinge back, the fuse carrier can then be removed. The mains input unit also contains a small printed circuit card which allows the mains input voltage to be changed [Note this is for **factory setting only** and should not be altered]

4. Serial Plate

This plate gives information on Rated Supply, Rated Power, Fuse Ratings and the Machine Serial Number.

5. Rear Connector

Depending on the options chosen, there are a series of connectors on the rear of the generator, some which are available to the operator and some which are covered over with a protective cover.

Connector A- Memory socket available on all machines for use **only** with Neurotherm Memory Stick (NT-USB). <u>DO NOT CONNECT ANY OTHER DEVICE</u> <u>TO THIS SOCKET AS IT WILL COMPROMISE THE SAFETY OF THE PATIENT</u>

Connector B- 'Video Out' socket- available on some machines for use only with Neurotherm Video Unit (NT-VD) - this unit provides opto-isolated connection to a remote display. <u>DO NOT CONNECT ANY OTHER DEVICE TO THIS SOCKET</u> <u>AS IT WILL COMPROMISE THE SAFETY OF THE PATIENT</u>

Connector C- Remote keyboard- this connector is covered over and is a keyboard connection for service engineers only.

Connector D- Remote Mouse- this connector is covered over and is a mouse connection for service engineers only.

6. Contact Address

If the Neurotherm requires a routine service or in the unlikely event of the machine malfunctioning, the contact address of Neurotherm Ltd is shown on the back plate. The full address, telephone and contact details are shown in Section 11.

7. Ventilation Apertures These apertures are to ensure the correct air circulation within the generator and should not be blocked or obstructed.

5.0 DETAILED DESCRIPTION OF MODULES

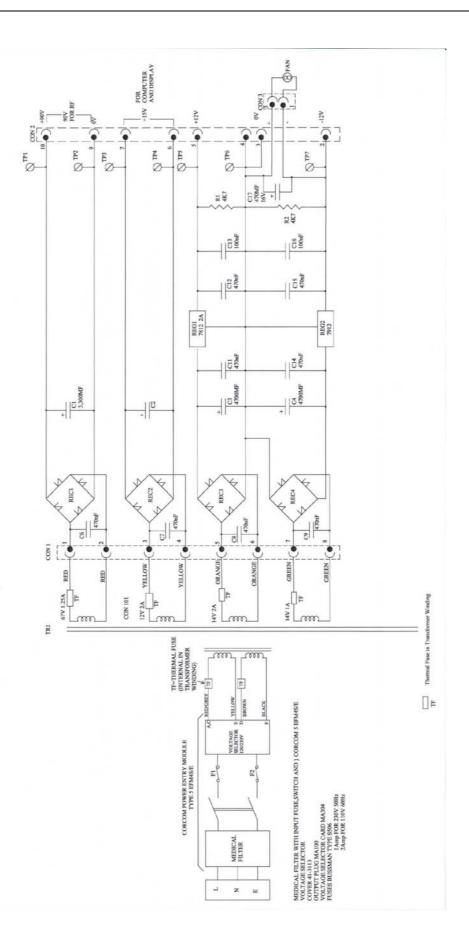
5.1 Power Entry Module, Isolation Transformer and Power Supply Board

Referring to Figure 5.1 Mains Power is connected into the rear of the equipment and goes via a Medical Filter to a double pole On/Off Switch and then via two fuses to a voltage selector which is connected to the main Isolating Transformer TR1.

The Voltage Selector Unit is a small printed circuit card which allows the mains input voltage to be changed. {Note. It is for factory setting only and should not be altered.}

The Isolation Transformer is of a double bobbin type and has four secondary windings namely:

Winding 1	67v	1.25A
Winding 2	12v	2A
Winding 3	14v	2A
Winding 4	14v	1A


The transformer is fitted with thermal fuses on all primary and secondary windings.

The transformer secondary windings are connected onto the Power Supply Board via an 8way Connector CON I.

The Power Supply Board provides the following supplies:

- (a) 90v (75v under load) Rectified and Smoothed for generating the RF Power.
- (b) 15v Rectified and Smoothed for powering the computer and display via supplies on the Computer Motherboard.
- (c) 12v 2 amp regulated DC for the circuit boards
- (d) -12v amp regulated DC for the circuit boards and fan.

A 10 way connector (CON 2) is provided for connection of all DC voltages to the Card Rack and 3 way connector (CON 3) is provided for connection of the main cooling fan.

Figure 5.1 Power Supply Unit – Circuit Diagram

5.2 Fuse Board

Referring to Figure 5.2

DC voltages from the Power Supply Board go to the Fuse Board which provides fusing for the various supplies together with LED indication of the status of the each supply (LED ON – Supply Healthy) and Test Points for monitoring and fault finding.

The fusing provided is:

F101	+12V	for logic fused 2 amps
F102	-12V	for logic fused 1 amp
F104	+90V	for RF Power fused 2 amps
F105	+15v	for Computer supply (5v) fused 2 amps
F106	+15v	for Display Illumination fused 2 amps

Test points provided are:

TP 1 TP2 TP3	+12v 0v -12v	Logic
TP5 TP6	+90v 0v	RF Power
TP7 TP8 TP9	+15v 0v +15v	Supplies to Computer Motherboard

The LED indication is:

LED	101	+12v	Logic
LED	102	-12v	Logic
LED	104	+90v	RF Power
LED	105	+15v	Computer 5v
LED	106	+15v	Display Illumination

All supplies are connected on their secondary side (after the appropriate fuse) to a Quad Opto Isolated Coupler which produces a digital input to the computer to indicate that all supplies are present. The signal "Fuses OK" goes to Digital Input C3 and is high when all supplies are present.

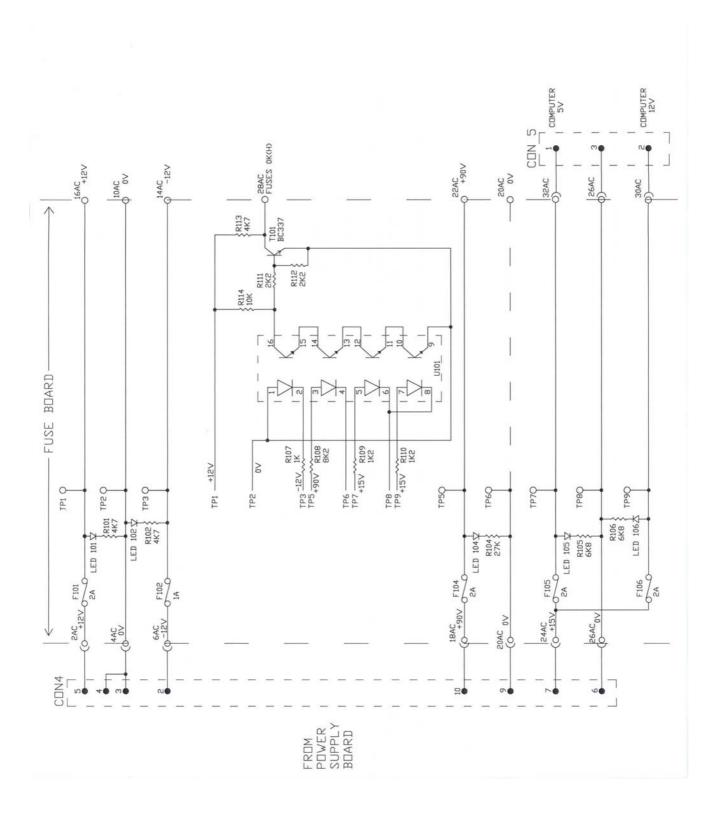
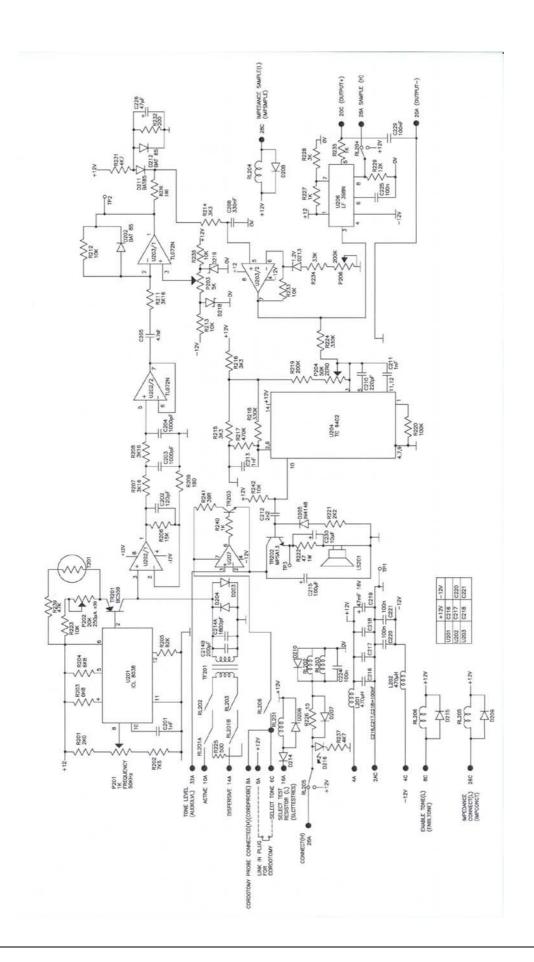
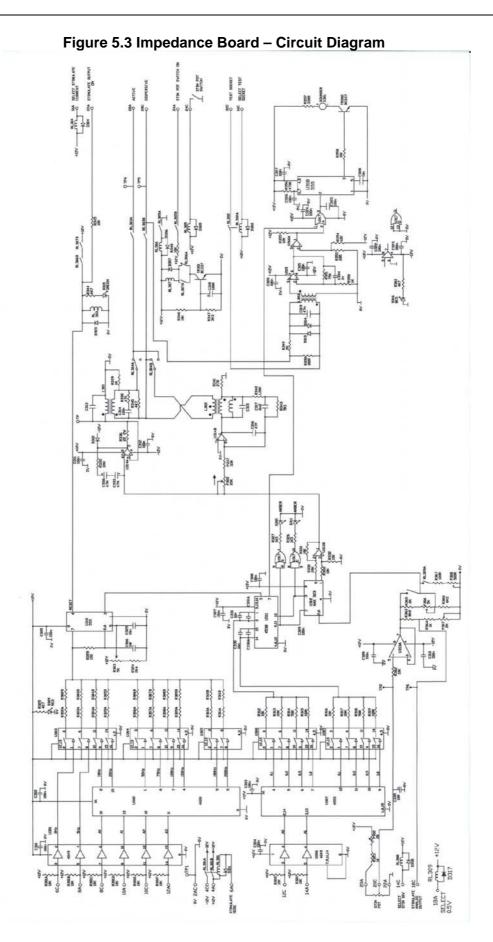




Figure 5.2 Fuse Board – Circuit Diagram

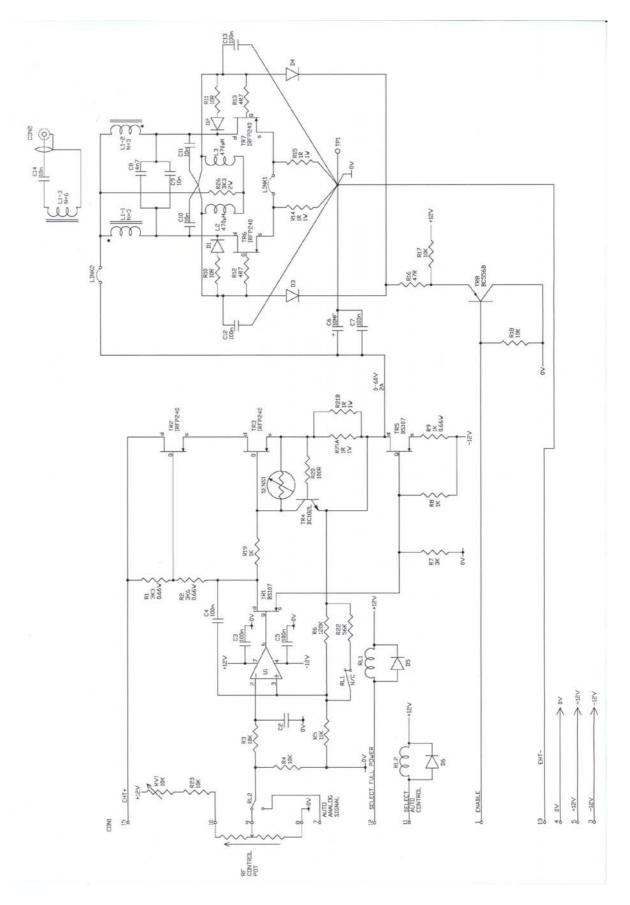
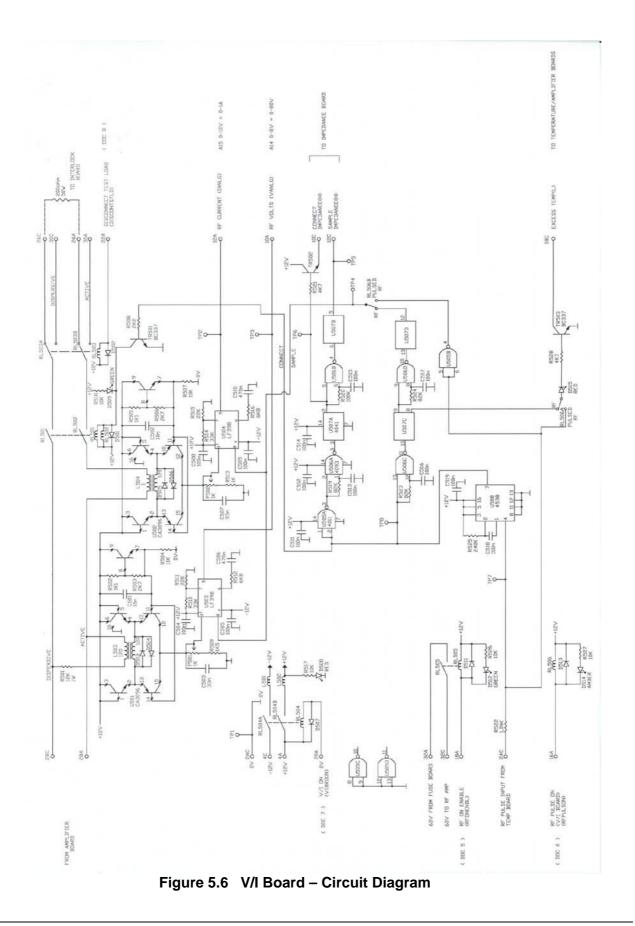



Figure 5.5 RF Amplifier Board – Circuit Diagram

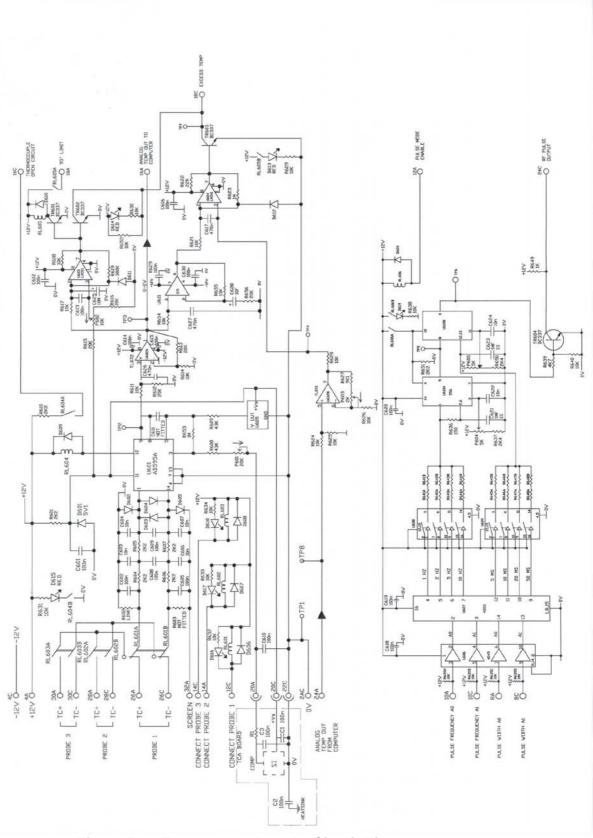


Figure 5.7 Temperature Board – Circuit Diagram

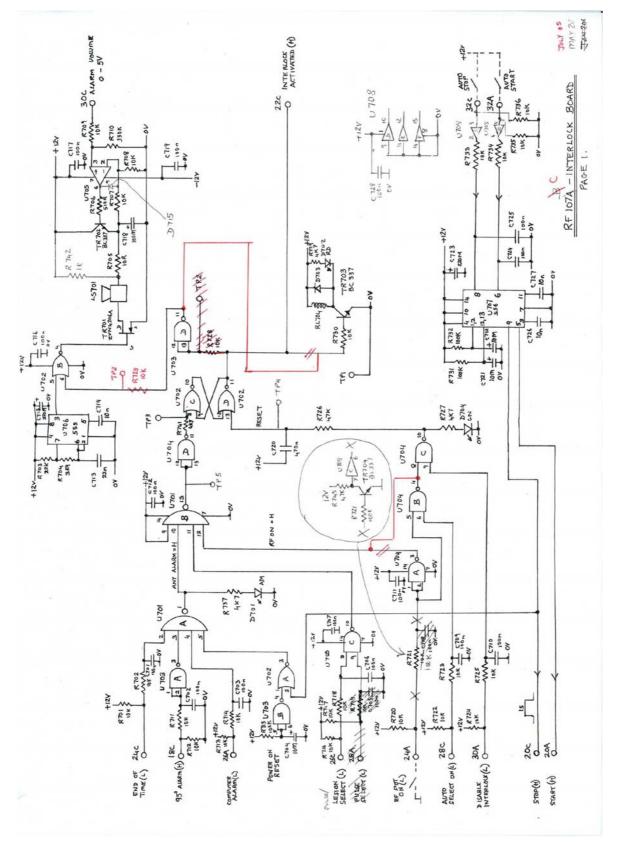


Figure 5.8 Interlock Board – Circuit Diagram

6.0 CIRCUIT DIAGRAMS AND COMPONENT LISTS

This section contains details of circuit boards, and general wiring:-

- a) Component Lists
- b) Circuits
- c) Board Layouts

Details are included for the following Boards:-

a)	Power Supply Board	RF100C
b)	Fuse Board	RF101D
c)	Impedance Board	RF102D
d)	Stimulate Board	RF103D
e)	RF Generator Board	RF104C
f)	RF Voltage and Current Board	RF105D
g)	Temperature Board	RF106D
h)	Interlock Board	RF107D
i)	Interface Board	RF110C
j)	Front Panel and Connection	RF109B
k)	Computer Motherboard	RF111B

6.1 Power Supply Board - RF100C

Components

R1	4K7±5%	1/4 watt	Carbon Film
R2	4K7±5%	1/4 watt	Carbon Film
C1 C2 C3 C4 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 C17	3300MF 4700MF 4700MF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF	160v 63v 25v 25v 100v 100v 100v 63v 63v 63v 63v 63v 63v 63v 63v 63v	Electrolytic Electrolytic Electrolytic Electrolytic Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Electrolytic
REC1	6 amp	Rectifier Bridge	KBPC 602
REC2	6 amp	Rectifier Bridge	KBPC 602
REC3	6 amp	Rectifier Bridge	KBPC 602
REC4	6 amp	Rectifier Bridge	KBPC 602
REG	78S12	2 amp	Regulator
REG	7912	1 amp	Regulator
CON1	8 way	Connector	Molex 39-26-3080
CON2	10 way	Connector	Molex 39-26-3100
CON3	3 way	Connector	Molex 39-26-3030

TP1-TP7 PCB Test Points

The two regulators are each mounted on heatsinks Heatsink type SW38-4

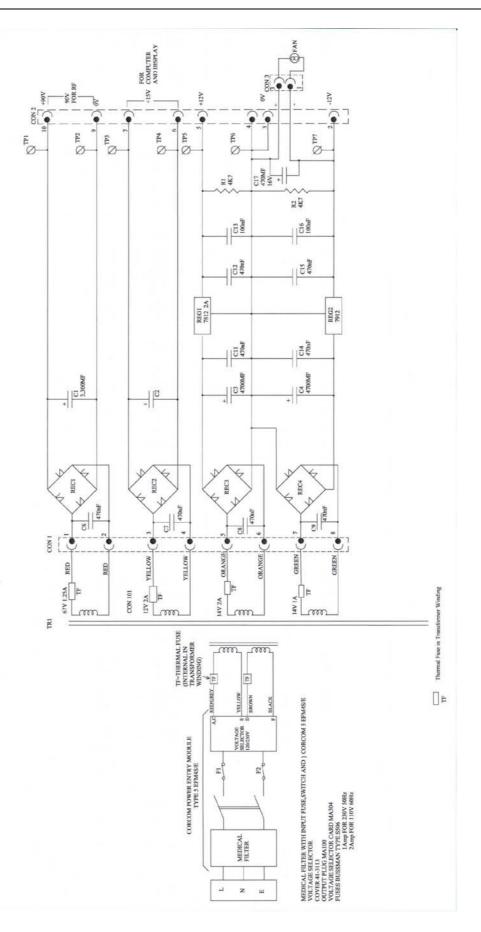


Figure 6.1 Power Supply Board – RF100 C – Circuit Diagram

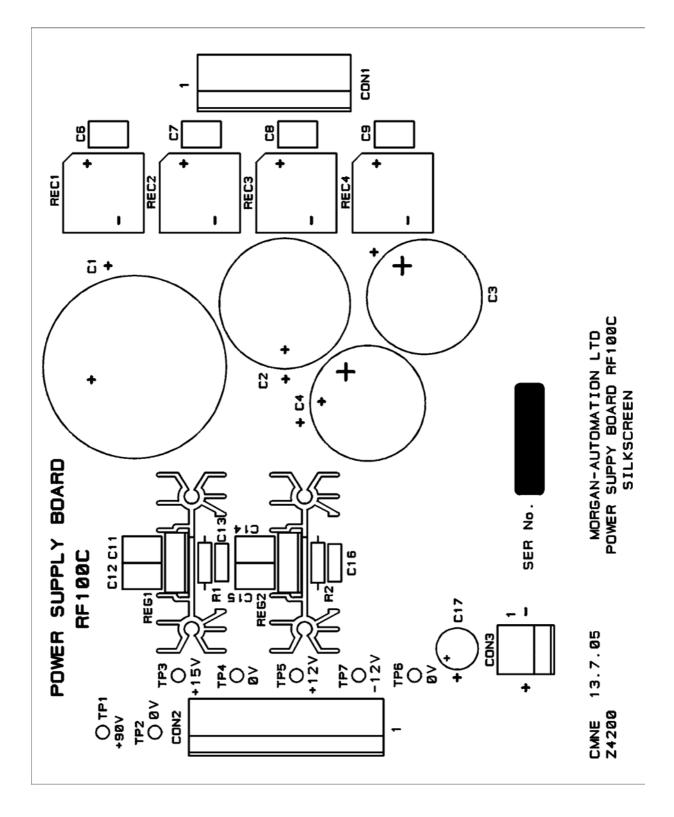
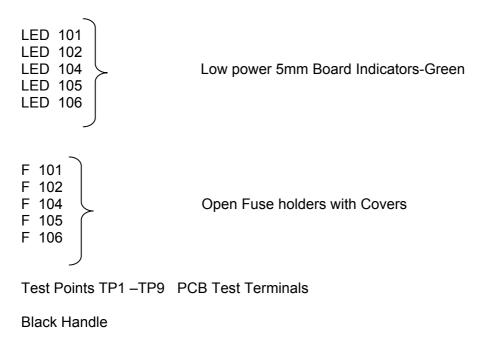


Figure 6.2 Power Supply Board –RF100 C – Component Layout


6.2 Fuse Board – RF101D

R101 R102 R104 R105 R106 R107 R108 R109 R110 R111 R112 R112	4K7±5% 4K7±5% 27K±5% 6K8±5% 6K8±5% 1K±5% 8K2±5% 1K2±5% 2K2±5% 2K2±5% 2K2±5%	0.25 watt 0.25 watt	Carbon Film Carbon Film Carbon Film Carbon Film Carbon Film Carbon Film Carbon Film Carbon Film Carbon Film Carbon Film
R113 R114	4K7±5% 10k±5%	0.25 watt 0.25 watt	Carbon Film Carbon Film

T101	BC337	NPN Transistor

U101

4 way Transistor Output Opto Isolator Type KP1040E

Edge Connector DIN 41612 Type D32 Way

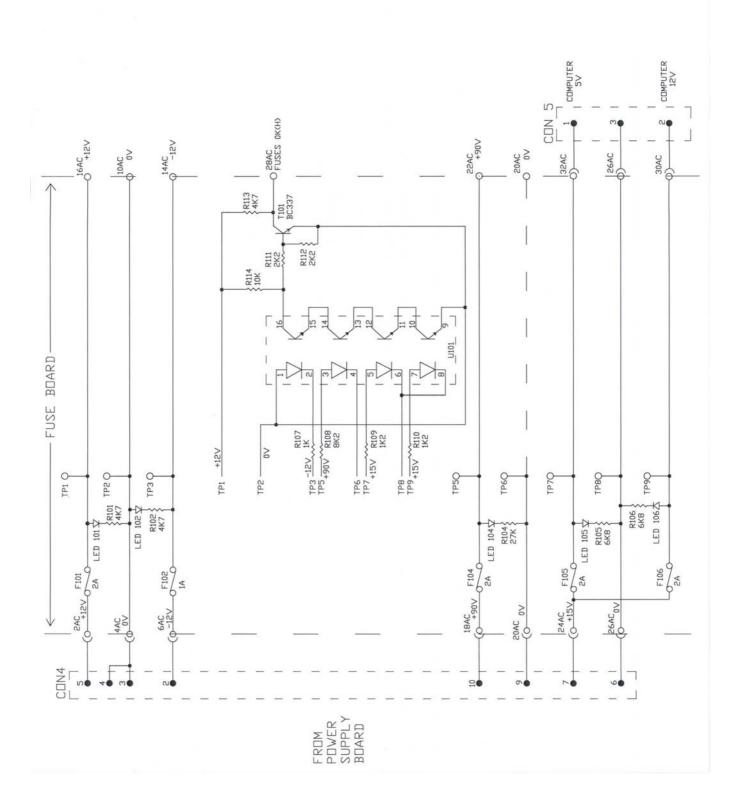


Figure 6.3 Fuse Board – RF101 D – Circuit Diagram

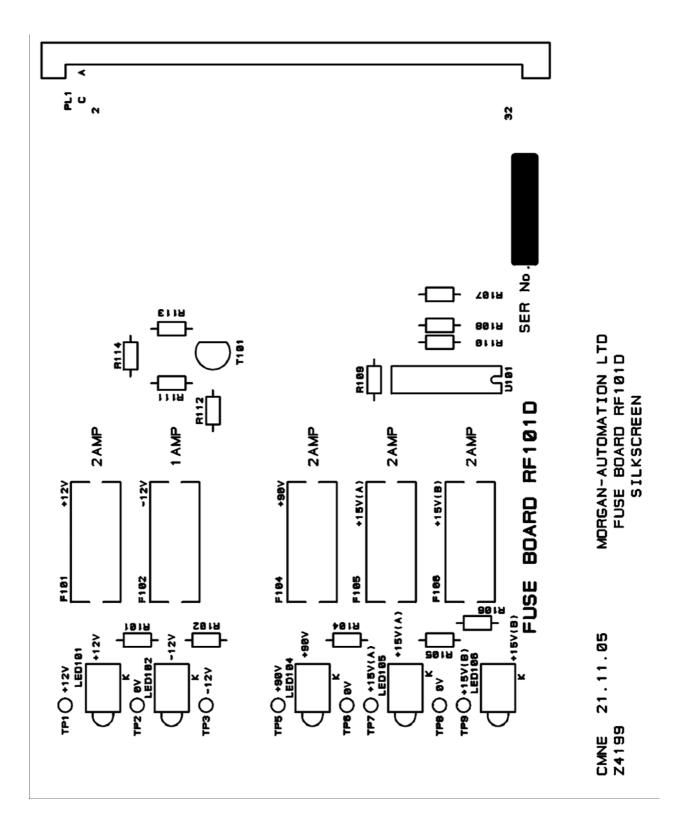


Figure 6.4 Fuse Board – RF 101 D – Component Layout

6.3 Impedance Board –RF 102D

Components

R201	2K	±5%	0.25 W	Carbon Film
R202	7K5	±5%	0.25 W	Carbon Film
R203	6K8	±5%	0.25 W	Carbon Film
R204	6K8	±5%	0.25 W	Carbon Film
R205	82K	±5%	0.25 W	Carbon Film
R206	15K	±5%	0.25 W	Carbon Film
R207	3K16	±0.5%	0.25 W	Precision Metal Film
R208	3K16	±0.5%	0.25 W	Precision Metal Film
R209	180R	±5%	0.25 W	Carbon Film
R211	3K16	±0.5%	0.25 W	Precision Metal Film
R212	10K	±5%	0.25 W	Carbon Film
R213	10K	±5%	0.25 W	Carbon Film
R214	3K3	±5%	0.25 W	Carbon Film
R215	3K3	±5%	0.25 W	Carbon Film
R216	3K3	±5%	0.25 W	Carbon Film
R217	470K	±5%	0.25 W	Carbon Film
R218	330K		0.25 W	Carbon Film
R219	200K	±5%	0.25 W	Carbon Film
R220	100K	±5%	0.25 W	Carbon Film
R221	2K2	±5%	0.25 W	Carbon Film
R222	47R	±5%	1 Watt	Carbon Film
R223	10K	±5%	0.25 W	Carbon Film
R224	330K	±5%	0.25 W	Carbon Film
R225	499R	±0.1%	0.25 W	Precision Metal Film
R226	10R	±5%	0.25 W	Carbon Film
R227	1K	±5%	0.25 W	Carbon Film
R228	3K	±5%	0.25 W	Carbon Film
R229	12K	±5%	0.25 W	Carbon Film
R230	100R	±5%	0.25 W	Carbon Film
R231	4K7	±5%	0.25 W	Carbon Film
R232	200R	±5%	0.25 W	Carbon Film
R233	10K	±5%	0.25 W	Carbon Film
R234	33K	±5%	0.25 W	Carbon Film
R235	1K	±5%	0.25 W	Carbon Film
R236	10K	±5%	0.25 W	Carbon Film
R237	4K7	±5%	0.25 W	Carbon Film
R239	LINK	10/0	0.25 VV	
R240	1K	±5%	0.25 W	Carbon Film
R241	39R	±5%	0.25 W	Carbon Film
R242	10K	±5%	0.25 W	Carbon Film
R242	IUK	1070	0.25 W	
P201	1K		Potentiometer	18 turn
P202	20K		Potentiometer	18 turn
P203	5K		Potentiometer	18 turn

Impedance Board – RF 102D contd

P204	50К		Potentiometer 18 turn
P206	200К		Potentiometer 18 turn
$\begin{array}{c} C201\\ C202\\ C203\\ C204\\ C205\\ C208\\ C210\\ C211\\ C212\\ C213\\ C214B\\ C215\\ C216\\ C217\\ C218\\ C219\\ C220\\ C221\\ C224\\ C225\\ C226\\ C229\\ C230\\ \end{array}$	1000pF ±1% 120pF ±1% 1000pF ±1% 4.7nF 330nF 220pF 1nF 2.2nF 1nF 1800pF ±1% 100MF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF	100V 63V 100V 100V 100V 16V 63V 63V 63V 63V 63V 63V 63V 63V 63V 16V 63V	Silver Mica Silver Mica Silver Mica Silver Mica Polyester Polyester miniature plate ceramic Ceramic Ceramic Ceramic Ceramic Silver Mica Electrolytic Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Electrolytic Polyester Electrolytic
D202 D203 D204 D205 D206 D207 D208 D209 D210 D211 D212 D213 D214 D215 D216 D218 D219	BAT85X IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 BAT85 BAT85 BAT85 ZXR125ER IN4002 IN4148 LED Amber ZXR 125ER ZXR125ER		1.2V Reference Diode 1.2V Reference Diode 1.2V Reference Diode
TR201	BC559		PNP Transistor
TR202	MPSA13		Darlington
TR203	MPSA13		Darlington

Impedance Board – RF102D contd

U201 U202 U203 U204 U206 U207	ICL 8038 CCPD TL072N TL072N TC9402CPD LF398N LM741CN	Frequency Generator Dual Amplifier Dual Amplifier Voltage to Frequency Converter Sample/Hold Operation Amplifier
L201 L202	470µН 470µН	
TF201	PT4	1:1 Pulse Transformer
T 201	Thermistor 100K at 25°C N	ГС Туре
LS201	Loudspeaker 8ohm 40mm d	lia 200mW
RL201 RL202 RL203 RL204 RL205 RL206	12V 12V 12V 12V 12V 12V	Low Power 2 pole relay Reed Relay Reed Relay Low Power 2 pole relay Low Power 2 pole relay Low Power 2 pole relay

TP1-TP3 Test Points

64 Way Connector DIN416 Type D 32 way ac

Handle - White

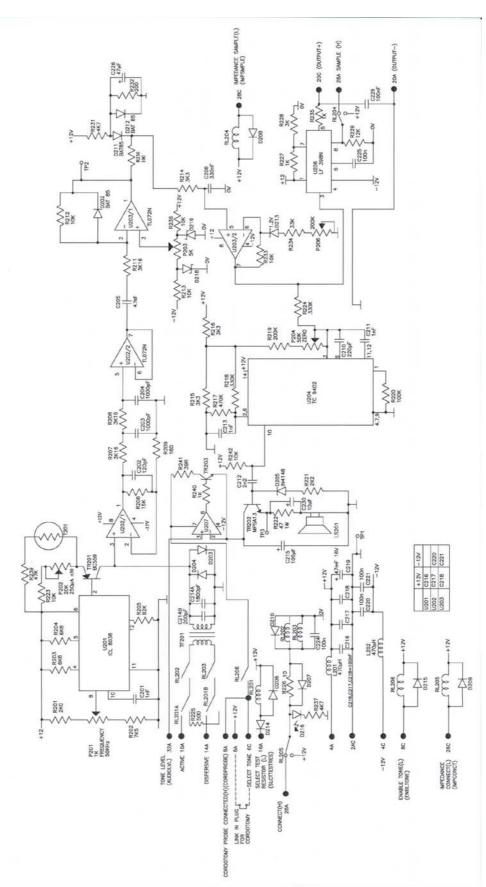


Figure 6.5 Impedance Board – RF102 D – Circuit Diagram

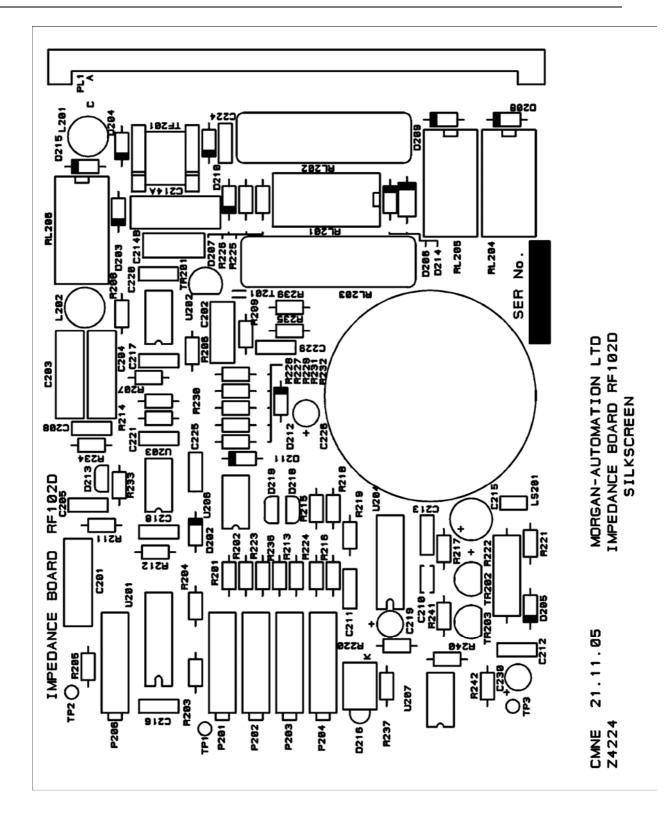


Figure 6.6 Impedance Board – RF102 D – Component Layout

6.4 Stimulate Board RF103D + Sub Board

	1012	7	Duesed Desisters, CII
R301A-F	10K	7 0.6. wett	Bussed Resistors SIL
R302A	698K ±1%	0.6 watt	Metal Film
R302B	16K2 ±1%	0.6 watt	Metal Film
R303A	280K ±1%	0.25 watt	Metal Film
R303 B	K6 ±1%	0.25 watt	Metal Film
R304A	140K ±1%	0.6 watt	Metal Film
R304B	2K7 ±1%	0.25 watt	Metal Film
R305A	68K ±1%	0.25 watt	Metal Film
R305B	3K24 ±1%	0.6 watt	Metal Film
R306A	28K ±1%	0.6 watt	Metal Film
R306B	442R ±1%	0.6 watt	Metal Film
R307A	16K2 ±1%	0.6 watt	Metal Film
R307B	2K7 ±1%	0.25 watt	Metal Film
R308A	14K ±1%	0.6 watt	Metal Film
R308B	133R ±1%	0.6 watt	Metal Film
R309A	9K1 ±1%	0.25 watt	Metal Film
R309B	274R ±1%	0.6 watt	Metal Film
R310A	7K5 ±1%	0.25 watt	Metal Film
R310B	287R ±1%	0.6 watt	Metal Film
R311A	6K8 ±1%	0.25 watt	Metal Film
R311B	191R ±1%	0.6 watt	Metal Film
R312	9K1 ±1%	0.25 watt	Metal Film
R313	18K ±1%	0.25 watt	Metal Film
R314	45K3 ±1%	0.6 watt	Metal Film
R314 R315	91K ±1%	0.25 watt	Metal Film
R316	9K1 ±1%	0.25 watt	Metal Film
			Metal Film
R317		0.25 watt	
R318	45K3 ±1%	0.6 watt	Metal Film
R319	91K ±1%	0.25 watt	Metal Film
R320	10K ±5%	0.25 watt	Carbon Film
R321	10K ±5%	0.25 watt	Carbon Film
R323	1K ±1%	0.25 watt	Metal Film
R324	2K4 ±1%	0.25 watt	Metal Film
R325	4K7 ±5%	0.25 watt	Carbon Film
R326	1K5 ±5%	0.25 watt	Carbon Film
R327	1K5 ±5%	0.25 watt	Carbon Film
R330	18K ±1%	0.25 watt	Metal Film
R331	10K ±1%	0.25 watt	Metal Film
R332	10K ±1%	0.25 watt	Metal Film
R335	39K ±1%	0.25 watt	Metal Film
R336	22R ±5%	2.5 watt	vitreous
R337	33K ±1%	0.25 watt	Metal Film
R338	470R ±5%	0.25 watt	Carbon Film
R339	1M ±5%	0.25 watt	Carbon Film
R340	4K7 ±5%	0.25 watt	Carbon Film
R341	27R ±5%	0.25 watt	Carbon Film
R342	LINK		
	E1141X		

Stimulate Board RF103D + Sub Board contd

5K1 ±5%	0.25 watt	Carbon Film
4K7 ±5^%	0.25 watt	Carbon Film
10K ±5%	0.25 watt	Carbon Film
		Carbon Film
		Metal Film
		Metal Film
	0.25 watt	Metal Film
	0.25 watt	Metal Film
6K2 ±1%	0.25 watt	Metal Film
100R ±1%	0.25 watt	Metal Film
9K1 ±1%	0.25 watt	Metal Film
2K	18 Turn Pot	entiometer
	18 Turn Potentiometer	
3001		entioniciei
100nF	63v	Polyester
		Metallised Polyester
		Polyester
		Polyester
		Polyester
		Polyester
		Polyester
		Polyester
	001	i olycolol
	63v	Polyester
	001	
	100.	Ceramic
		Polyester
£.£!!!	1004	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$4K7 \pm 5^{\%}$ 0.25 watt $10K \pm 5\%$ 0.25 watt $10R \pm 5\%$ 0.25 watt $10R \pm 5\%$ 0.25 watt $10R \pm 5\%$ 0.25 watt $1K \pm 5\%$ 0.25 watt $1K \pm 5\%$ 0.25 watt $12K \pm 5\%$ 0.25 watt $10K \pm 1\%$ 0.25 watt $10R Turn Pot$ 5K $100R \pm 1\%$ 0.25 watt $100R \pm 63v$ 100nF <t< td=""></t<>

Stimulate Board RF103D + Sub Board contd

C318 C319 C320 C321 C322 C323 C324 C325 C326 C327 C328 C329 C330 C330A C331A C331A C331A C332 C333 C334 C335	$\begin{array}{l} 100MF \\ 47nF \\ 100nF \\ 10nF \\ 10nF \\ 10nF \\ 10Nf \ \pm 1\% \\ \\ 10n\pm 1\% \\ \\ Select \ on \ test \\ 47MF \\ 47MF \\ 1n \\ 10\mu F \\ \end{array}$	63v 63v 63v 63v 63v 63v 63v 63v 63v 63v	Electrolytic Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Precision Polypropylene Select on Test Precision Polypropylene Electrolytic Electrolytic Polyester Electrolytic
D301 D302 D303 D304 D305 D306 D307 D308 D309 D310 D311 D312 D313 D314 D315 D316 D317	IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 Red LED Amber LED BAT 85 IN4148 IN4148 Green LED Red LED IN4148	Sc	hottky Barrier Diode
TR301 TR302	BC337 BC337	NPN Tran NPN Tran	
S301	Sounder		
U301 U302 U303 U304 U305	4049B 4028B MAX313CPE MAX313CPE MAX313CPE	1 of 10 De Quad SPS Quad SPS	ting Buffers ecoders ST CMOS Analogue Switches ST CMOS Analogue Switches ST CMOS Analogue Switches

U306 U307 U308 U309	4049B 4555B MAX313CPE MAX313CPE	Hex Inverting Buffers 1 of 4 Decoder/Demultiplexer Quad SPST CMOS Analogue Switches Quad SPST CMOS Analogue Switches
U310 U311 U312 U313 U314 U315 U316 U317 U318	NE555N HCF4538BEY MAX323 TL082 TCA0372 TL071 LM393N 4071 NE555N	Timer Dual Precision Monostable Multivibrator Dual Analogue Switch Dual Operational Amplifier Power Op Amp Operational Amplifier Comparator Quad 2 Input OR Gates Timer
L301 L302 L303	1:1 1 + 1 : 1 + 1 1 : 1	Transformer Transformer Transformer
RL301 RL302 RL303 RL304 RL305 RL306 RL307 RL308 RL309	Double Pole Relay Single Pole Relay Double Pole Relay	12v 12v 12v 12v 12v 12v 12v 12v 12v 12v
TP 1-6	Test Points	
Connector	DIN 41612	Type D 32 way ac
Handle	Green	

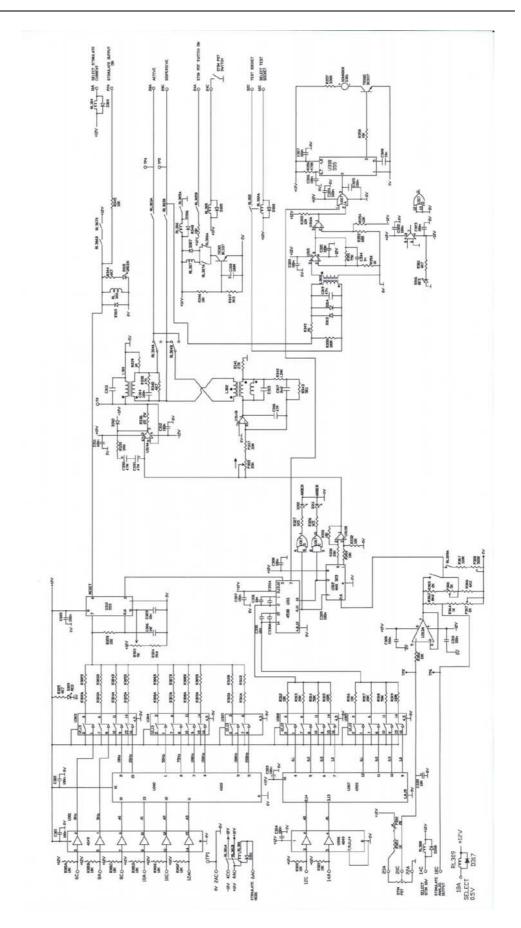


Figure 6.7 Stimulate Board – RF 103 D – Circuit Diagram

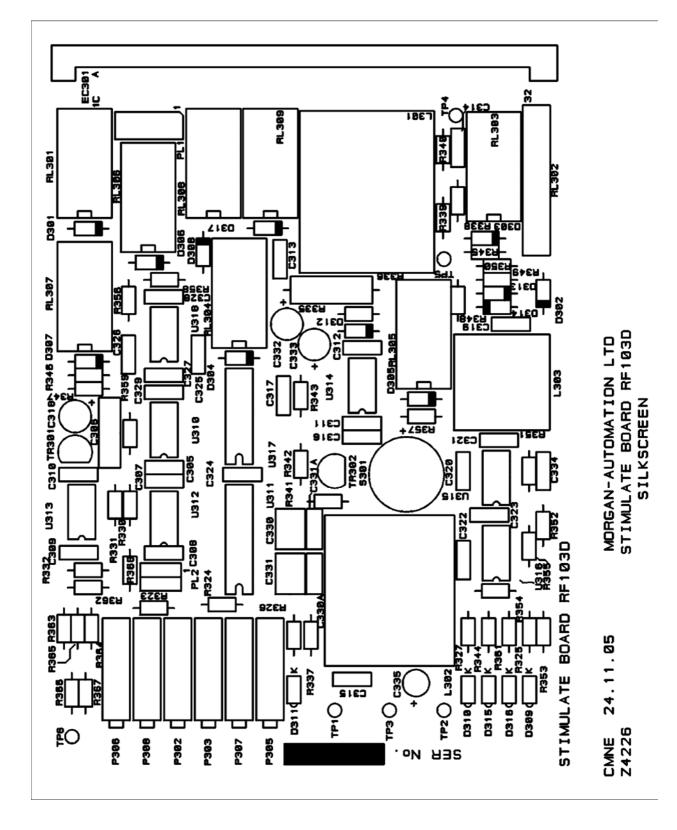


Figure 6.8 Stimulates Board – RF103 D – Component Layout

6.5 RF Amplifier Board RF 104 C

COMPONENTS

				_
RI	3K3	± 5%	0.66w	Carbon Film
R2	3K6	± 5%	0.66w	Carbon Film
R3	10K	± 5%	0.25w	Carbon Film
R4	1M	± 5%	0.25w	Carbon Film
R5	12K	± 1%	0.25w	Metal Film
R6	120K	± 1%	0.25w	Metal Film
R7	1K5	± 5%	0.25w	Carbon Film
R8	820R	±5%	0.25w	Carbon Film
R9	IK	±5%	0.66w	Carbon Film
R10	100R	±5%	0.25w	Carbon Film
R11	100R	±5%	0.25w	Carbon Film
R12	4R7	± 5%	0.25w	Carbon Film
R13	4R7	± 5%	0.25w	Carbon Film
R14	1R	± 5%	1 watt	Power Oxide Resistor
R15	1R	± 5%	1 watt	Power Oxide Resistor
R19	10K	± 5%	0.66w	Carbon Film
R20	100R	± 5%	0.25w	Carbon Film
R21	0R39	± 5%	2.5 w	Power Oxide Resistor
R22	120K	± 1%	0.25w	Metal Film
R23	10K	± 5%	0.25w	Carbon Film
R24	3K3	± 5%	1watt	Power Oxide Resister
R25	12K	± 1%	0.25w	Metal Film
R26	15K	± 5%	0.25w	Carbon Film
R27	10K	± 5%	0.25w	Carbon Film
R29	10K	± 5%	0.25w	Carbon Film
R30	1K8	±5%	0.25w	Carbon Film
R31	560K	±5%	0.25w	Carbon Film
R32	330K	±5%	0.25w	Carbon Film
RVI	10K		18 tum potentimeter	
			-	

RF Amplifier Board RF 104 C contd

C2 C3 C4 C5 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17	100nF 100nF 100nF 220nF 4n7 820pF 10nF 10nF 100nF 100nF 22nF 10nF 10nF 10nF 10nF	100v 100v 100v 100v 375v AC 250v 375v AC 250v AC 250v AC 250v AC 375v AC 375v AC 100v 100v	Polyester Polyester Polyester Polyester Polyester Polypropylene Silver Mica Polypropylene Polypropylene Polypropylene Polypropylene Polypropylene Polypropylene Polyester Polyester Polyester Polyester
L1 L2 L3	4+4: 9 47μΗ 47 μΗ	On Former	
D1 D2 D3 D4 D5 D6 D7 D8 D9	BAV 21 BAV 21 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 BZX 79 C10	Fast High Vol Fast High Vol 10v Zener	

RF Amplifier Board RF 104 C contd

TR1	2N 5550	NPNTransistor
TR2	IRFP 240	Power MOSFET
TR3	IRFP 240	Power MOSFET
TR4	BC182L	NPN Transistor
TR5	2N5550	NPN Transistor
TR6	IRFP240	Power MOSFET
TR7	IRFP 240	Power MOSFET
U1	LM741 CN	Operational Amplifier
U2	4N32	Darlington Opto Isolator
U3	TC4427CPA	Dual Mosfet Driver
SENS 1	T75	Thermal Switch 75°
RL1	2pole	12 Volt Relay
RL2	2pole	12 Volt Relay
CON1	15way	Molex friction Lock Header
CON2	SMB	Straight Male PCB Header
TP 1	Test Point	

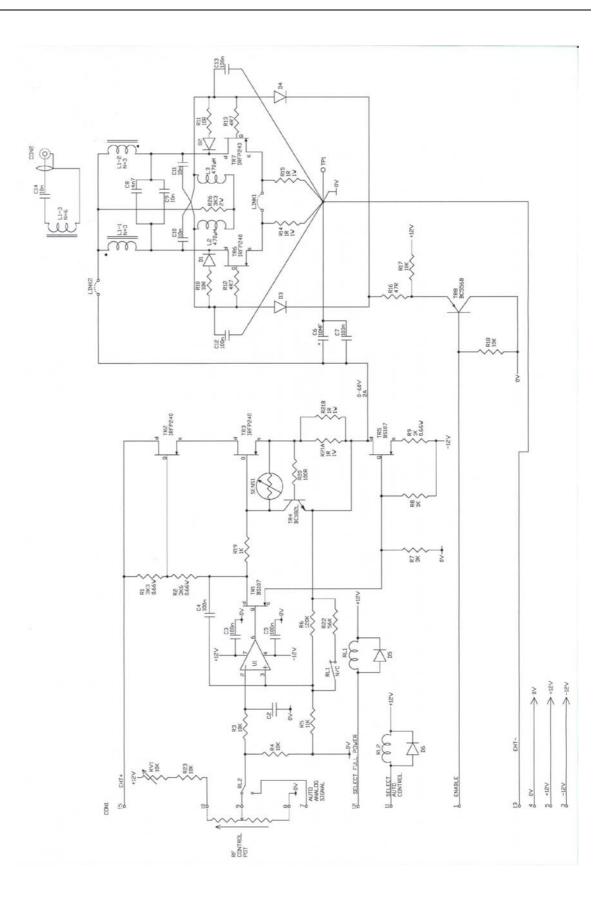


Figure 6.9 RF Amplifier Board – RF104 C – Circuit Diagram

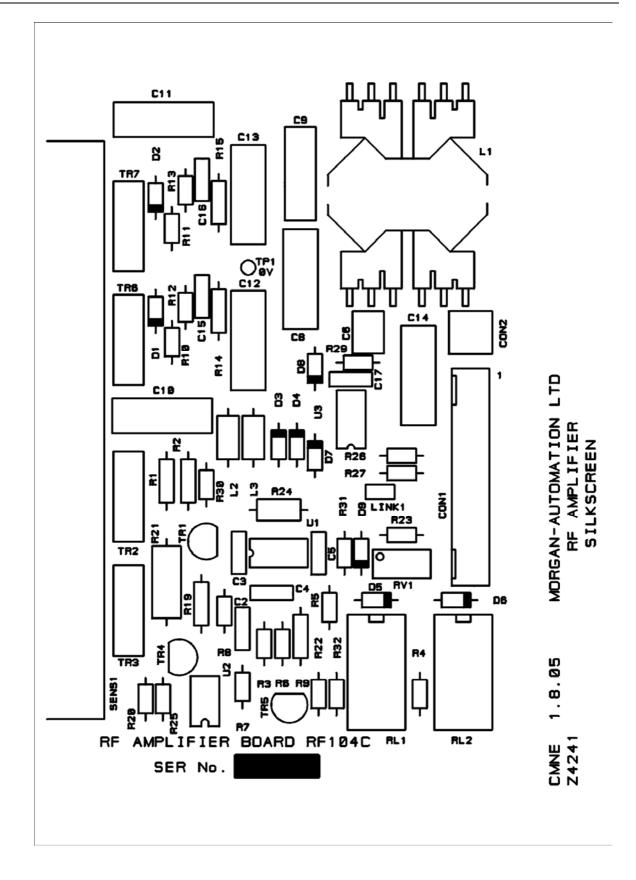


Figure 6.10 RF Amplifier Board – RF104C – Component Layout

6.6 RF Voltage and Current Metering Board RF 105C

R501	12K	±5%	1watt	Carbon Film
R502	1K1	±5%	0.25 watt	Carbon Film
R503	2K7	±5%	0.25 watt	Carbon Film
R504	11K	±5%	0.25 watt	Carbon Film
R505	IK1	±5%	0.25 watt	Carbon Film
R506	2K7	±5%	0.25 watt	Carbon Film
R507	11K	±5%	0.25 watt	Carbon Film
R508	2K2	±5%	0.25 watt	Carbon Film
R509	IK5	±5%	0.25 watt	Carbon Film
R510	33K	±5%	0.25 watt	Carbon Film
R511	22K	±5%	0.25 watt	Carbon Film
R512	6K8	±5%	0.25 watt	Carbon Film
R513	1K	±5%	0.25 watt	Carbon Film
R514	33K	±5%	0.25 watt	Carbon Film
R515	22K	±5%	0.25 watt	Carbon Film
R516	6K8	±5%	0.25 watt	Carbon Film
R517	10K	±5%	0.25 watt	Carbon Film
R518	10K	±5%	0.25 watt	Carbon Film
R519	82K	±5%	0.25 watt	Carbon Film
R520	100K	±5%	0.25 watt	Carbon Film
R521	4K7	±5%	0.25 watt	Carbon Film
R522	LINK			
R523	82K	±5%	0.25 watt	Carbon Film
R524	82K	±5%	0.25 watt	Carbon Film
R525	240K	±5%	0.25 watt	Carbon Film
R526	10K	±5%	0.25 watt	Carbon Film
R527	10K	±5%	0.25 watt	Carbon Film
R528	4K7	±5%	0.25 watt	Carbon Film

RF Voltage and Current Metering Board RF 105C contd

P501 P502	1K 1K	18tum 18tum	Potentiometer Potentiometer
C501 C502 C503 C504 C505 C506 C507 C508 C509 C510 C511 C512 C513 C514 C515 C516 C517 C518	10nF 10nF 33nF 100nF 100nF 470nF 33nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF	100v 100v 63v 63v 63v 63v 63v 63v 63v 63v 63v 63	Polyester Polyester
C519	100nF	63v	Polyester
L501 L502 L503 L504	Inductor 470 Inductor 470 120 : 120 Tor 1 : 120 Toroid	μH oid	

D501	IN4148
D502	IN4148

RF Voltage and Current Metering Board RF 105C contd

D503 D504 D505 D506 D507 D508 D509 D511 D512 D513 D514 D515	IN4148 IN4148 IN4148 IN4148 IN4148 Red LED Green LED IN 4148 Green LED IN4148 Amber LED Red LED		
TR501 TR502 TR503	BC337 MPSA 13 BC337	NPN Transistor Darlington NPN Transistor	
U501 U502 U503	CA 3096E CA 3096E LF 398	NPN/ PNP Transistor NPN / PNP Transistor Sample and Hold	
U504 U505 U506 U507 U508	LF398 4011 4093 4041 4538	Sample and Hold Quad 2 – Input NAND Quad 2 – Input NAND Quad TRUE / COMPL Dual Precision Monos	Schmitt Trigger
RL 501 RL 502 RL 503 RL 504 RL 505 RL 506	Single Pole R Single Pole R Double Pole F Double Pole F Single Pole R Double Pole F	eed Relay Reed Relay Reed Relay elay	12v 12v 12v 12v 12v 12v 12v
TP1 – 8	Test P	Points	
Connector	DIN 41612	Type D	32way ac

Handle Black

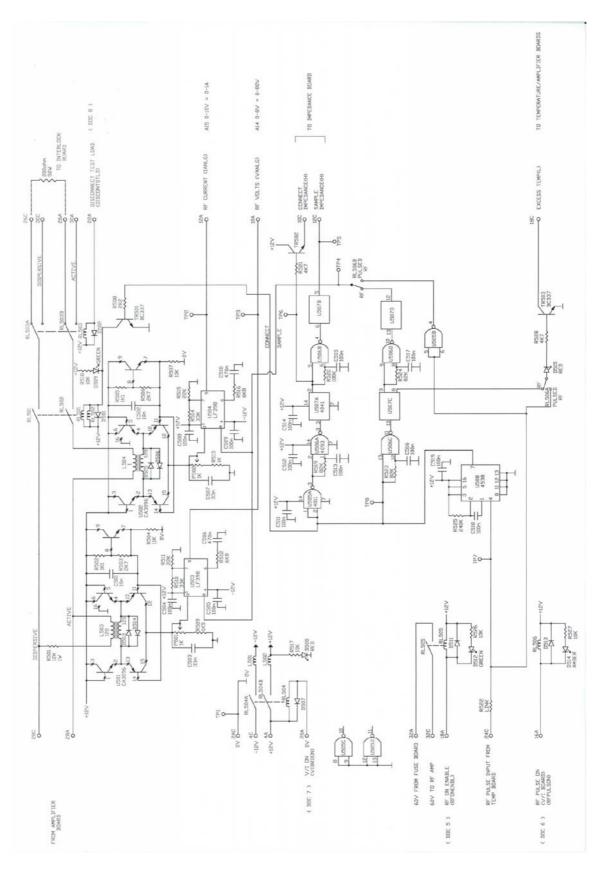


Figure 6.11. V/I Board RF 105C – Circuit Diagram

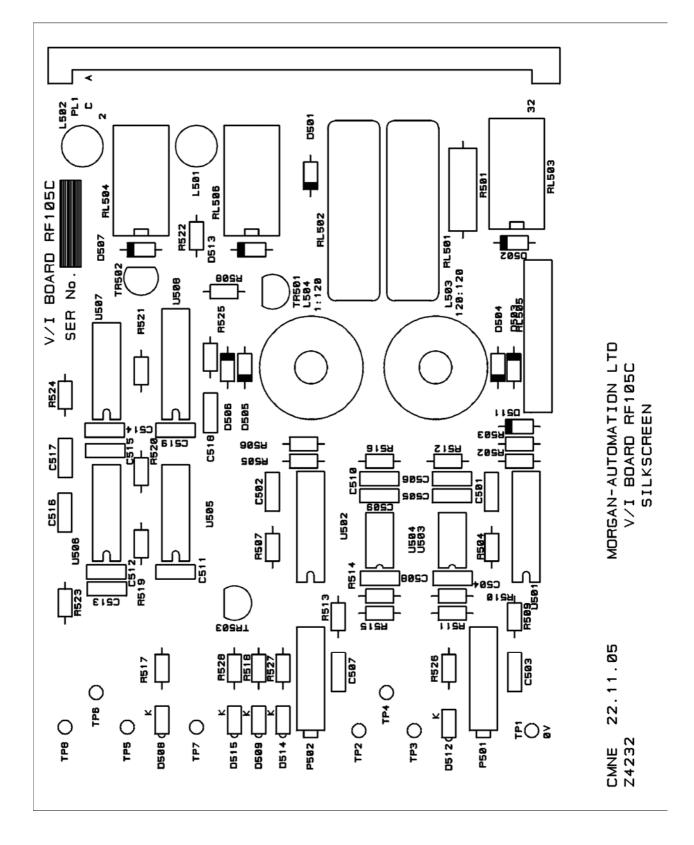


Figure 6.12 V/I Board - RF 105C - Component Layout

6.7 Temperature Board RF106 D

R601	2K2	±5%		0.25 w	Carbon Film
R602	LINK				
R603	Not Fi	tted			
R604	2K2	±5%		0.25 w	Carbon Film
R605	2K2	±5%		0.25 w	Carbon Film
R606	2K2	±5%			Carbon Film
R607	2K2	±5%			Carbon Film
R608	43K	±1%			Metal Film
R609	43K	±1%			Metal Film
R610	2K2	±1%			Metal Film
R611	10K	±1%			Metal Film
R612	20K	±1%			Metal Film
R613	20K	±1%			Metal Film
R614	10K	±1%			Metal Film
R615	20K	±1%			Metal Film
R616	10K	±1%			Metal Film
R617	10K		±1%		0.25 w Metal Film
R618	10K	±1%		0.25 w	Metal Film
R619	300K	±1%			Metal Film
R621	130K	±1%			Metal Film
R622	22K	±1%			Metal Film
R623	1M	±1%			0.25 w Metal Film
R624	10K	±1%		0.25 w	Metal Film
R625	10K	±1%			Metal Film
R626	10K	±1%			Metal Film
R627	9K1	±1%			Metal Film
R628	10K	±1%			Metal Film
R629	10K	±5%		0.25 w	Carbon Film
R630	10K	±5%		0.25 w	Carbon Film
R631	10K	±5%		0.25 w	Carbon Film
R632	10K	±5%			Carbon Film
R633	10K	±5%		0.25 w	Carbon Film
R634	10K	±5%		0.25 w	Carbon Film
R635	10K	4 com	nmoned		
R636	150R	±5%		0.25 w	Carbon Film
R637	2K4	±1%		0.25 w	Metal Film
R638	10K	±5%		0.25 w	Carbon Film
R639	4K7	±5%		0.25 w	Carbon Film
R640	10K	±5%		0.25 w	Carbon Film
R641A	1M3	±1%		0.25 w	Metal Film
R641B	127K	±1%		0.25 w	Metal Film
R642A	698K	±1%		0.25 w	Metal Film
R642B	16K2	±1%		0.25 w	Metal Film
R643A	280K	±1%		0.25 w	Metal Film
R644B	5K6	±1%			Metal Film
R644A	140K	±1%		0.25 w	Metal Film
R644B	2K7	±1%		0.25 w	Metal Film
R645A	6K8	±1%		0.25 w	Metal Film
R645B	191R	±1%		0.25 w	Metal Film
R646A	14k	±1%		0.25 w	Metal Film

Temperature Board RF106 D contd

R646B R647A R647B R648A R648 R649 R650 R651 R651 R652 R653 R654 R655 R655	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.25 w Meta 0.25 w Meta 0.25 w Meta 0.25 w Meta 0.25 w Meta 0.25 w Meta 0.25 w Carb 0.25 w Carb 0.25 w Carb 0.25 w Meta 0.25 w Meta 0.25 w Meta 0.25 w Meta	al Film al Film al Film al Film al Film pon Film pon Film al Film al Film al Film
P601 P602 P603 P604 P605	50K 10K 2K 5K 5K	18 tum pote 18 tum pote 18 tum pote 18 tum pote 18 tum pote	entiometer entiometer entiometer
$\begin{array}{c} C601\\ C602\\ C603\\ C604\\ C605\\ C606\\ C607\\ C608\\ C609\\ C610\\ C611\\ C612\\ C613\\ C614\\ C615\\ C616\\ C617\\ C618\\ C619\\ C620\\ C621\\ C622\\ C623\\ C624\\ C625\\ C626\\ \end{array}$	100nF 10nF 10nF 10nF 10nF 10nF 10nF 100nF	63v 63v 100v 63v 63v 63v 63v 63v 63v 63v 63v 63v 63	Polyester Polyester

Temperature Board RF106 D contd

C627 C628 C629 C630	470nF 100MF 100nF 100n	63v 16v 63v 63v	Polyester Electrolytic Polyester Polyester
D601 D602 D603 D604 D605 D606 D607 D608 D609 D610 D611 D612 D613 D614 D613 D614 D615 D616 D617 D618 D619 D620 D621	BZX79C IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 BAT 85 BAT 85 Red LED Red LED Red LED Red LED Amber LED Amber LED Green LED IN4148 BAW 62	5VI	Zemer Diode
TR 601 TR 602 TR 603 TR 604	BC337 BC337 BC337 BC337	NPN NPN	Transistor Transistor Transistor Transistor
U601 U602 U603 U604 U605 U606 U607 U608 U609 U610 U611	AD595A TL072 LM311 LM311 LM35DZ 4049 4555 MAX 313 CPE MAX 313 CPE 556 TL071	Comparator Comparator Precision Ce Hex Inverting Dual 1 of 4 D Quad SPST	ional Amplifier entigrade Temperature Sensor g Buffers Decoder / Demultiplexer Cmos Analog Switches Cmos Analog Swiches

Temperature Board RF106 D contd

RL601 RL602 RL 603 RL 604 RL 605 RL 606	2 pole Relay 2 pole Relay 2 pole Relay 2 pole Relay 2 pole Relay 2 pole Relay	12v 12v 12v 12v 12v 12v 12v
TP1-8	Test Points	
CON 601	DIN41612	Type D 32 way ac

Handle Blue

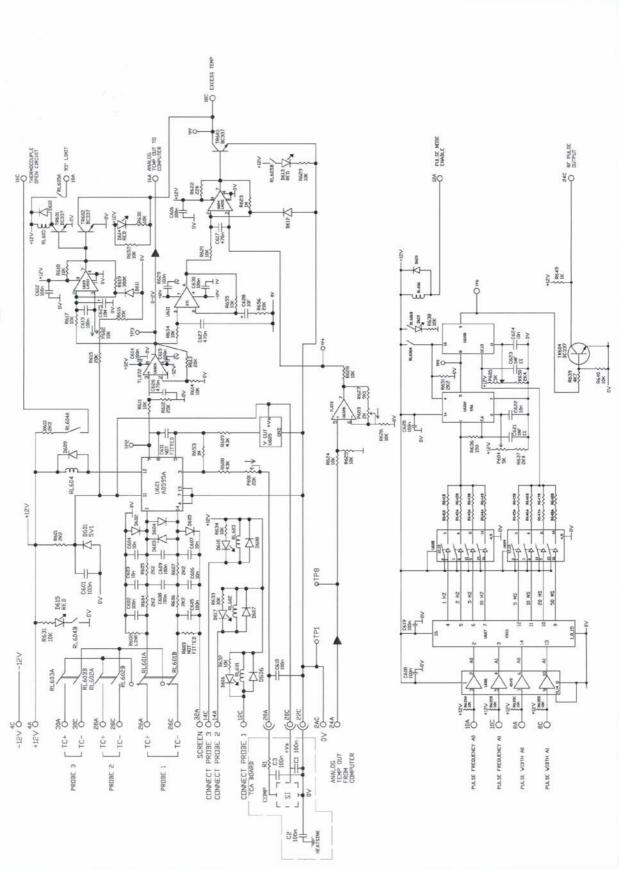


Figure 6.13 Temperature Board RF106D – Circuit Diagram

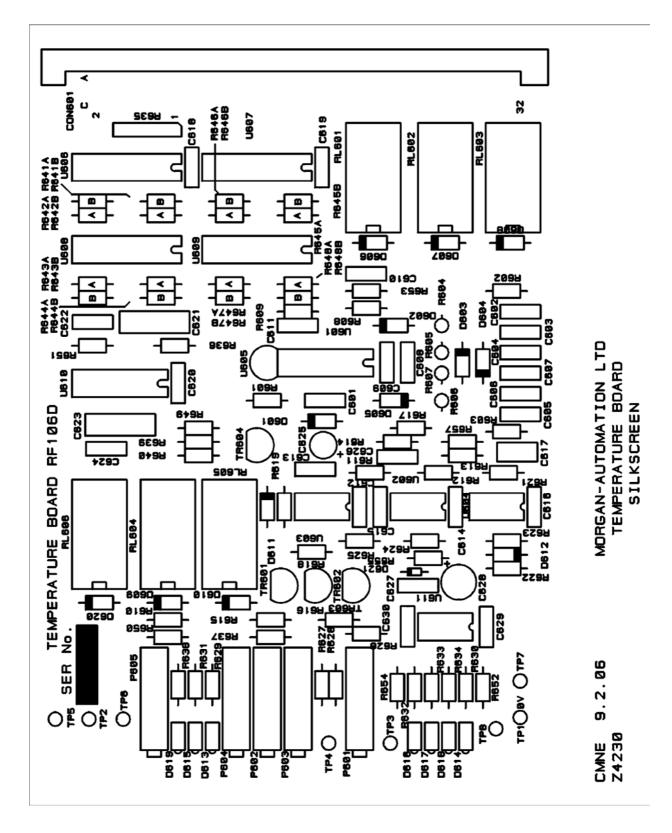


Figure 6.14 Temperature Board RF 106D - Component Layout

6.8 Interlock Board RF107D

R701	10K	±5%	0.25 watt Carbon Film
R702	10K	±5%	0.25 watt Carbon Film
R703	22K	±5%	0.25 watt Carbon Film
R704	3K9	±5%	0.25 watt Carbon Film
R705	10R	±5%	0.5 watt Carbon Film
R706	510R	±5%	0.25 watt Carbon Film
R707	10K	±5%	0.25 watt Carbon Film
R708	10K	±5%	0.25 watt Carbon Film
R709	10K	±5%	0.25 watt Carbon Film
R710	330K	±5%	0.25 watt Carbon Film
R711	10K		
		±5%	0.25 watt Carbon Film
R712	10K	±5%	0.25 watt Carbon Film
R713	10K	±5%	0.25 watt Carbon Film
R714	10K	±5%	0.25 watt Carbon Film
R715	100K	±5%	0.25 watt Carbon Film
R716	10K	±5%	0.25 watt Carbon Film
R717	10K	±5%	0.25 watt Carbon Film
R718	10K	±5%	0.25 watt Carbon Film
R720			
	10K	±5%	0.25 watt Carbon Film
R721	100K	±5%	0.25 watt Carbon Film
R722	10K	±5%	0.25 watt Carbon Film
R723	10K	±5%	0.25 watt Carbon Film
R724	10K	±5%	0.25 watt Carbon Film
R725	10K	±5%	0.25 watt Carbon Film
R726	47K	±5%	0.25 watt Carbon Film
R727	4K7	±5%	0.25 watt Carbon Film
R728	10K	±5%	0.25 watt Carbon Film
R729	4K7	±5%	0.25 watt Carbon Film
R730	10K	±5%	0.25 watt Carbon Film
R731	100K	±5%	0.25 watt Carbon Film
R732	100K	±5%	0.25 watt Carbon Film
R733	10K	±5%	0.25 watt Carbon Film
R734	10K	±5%	0.25 watt Carbon Film
R735	10K	±5%	0.25 watt Carbon Film
R736	10K	±5%	0.25 watt Carbon Film
R737	4K7	±5%	0.25 watt Carbon Film
R738	4K7	±5%	0.25 watt Carbon Film
R739	4K7	±5%	0.25 watt Carbon Film
R740	4K7	±5%	0.25 watt Carbon Film
R741	4K7	±5%	0.25 watt Carbon Film
R742	1K	±5%	0.25 watt Carbon Film
R743	4K7	±5%	0.25 watt Carbon Film
R744	4K7	±5%	0.25 watt Carbon Film
R745	4K7	±5%	0.25 watt Carbon Film
R746	4K7	±5%	0.25 watt Carbon Film
11/40	4 1\/	TO \0	0.20 Wall GaiDUIT FIIII

Interlock Board RF107D contd

R701 R702 R703 R704 R706 R707 R709 R710 R711 R712 R713 R714 R715 C716 C717 C718 C716 C717 C718 C719 C720 C721 C722 C723 C724 C725 C726 C727 C728	100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 22nF 10nF 220MF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF	63v 63v 63v 63v 63v 63v 63v 63v 63v 63v	Polyester Polyester Electrolytic Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Electrolytic Polyester Electrolytic Polyester
D701 D702 D703 D704 D705 D706 D707 D708 D709 D710 D711 D712 D712 D713 D714 D715 D716 D717	LED – Amber LED – Red IN4148 LED – Green LED – Red LED – Red IN4148 IN4148 IN4148 IN4148 IN4148 LED – Red LED – Red LED – Red IN4148 LED – Red IN4148		

Interlock Board RF107D contd

TR701 TR702 TR703 TR704	ZVN4206A BC337 BC337 BC337	Small Signal MOS NPN Transistor NPN Transistor NPN Transistor
U701 U702 U703 U704 U705 U706 U707 U708	4012 4001 4011 4011 TL071 NE 555 N NE 556N 4049	Dual 4 input NAND Gate Quad 2 input NOR Gate Quad 2 input NAND Gate Quad 2 input NAND Gate Amplifier Timer Dual Timer Hex Inverting Buffers
RL701 RL702 RL703 RL704 RL705 RL706 RL707	Double Pole Relay Double Pole Relay Double Pole Relay Double Pole Relay Double Pole Relay Double Pole Relay Double Pole Relay	12v 12v 12v 12v 12v 12v 12v 12v
TP1-5	Test Points	
Connector	DIN41612	Type D 32way a c

Handle - Yellow

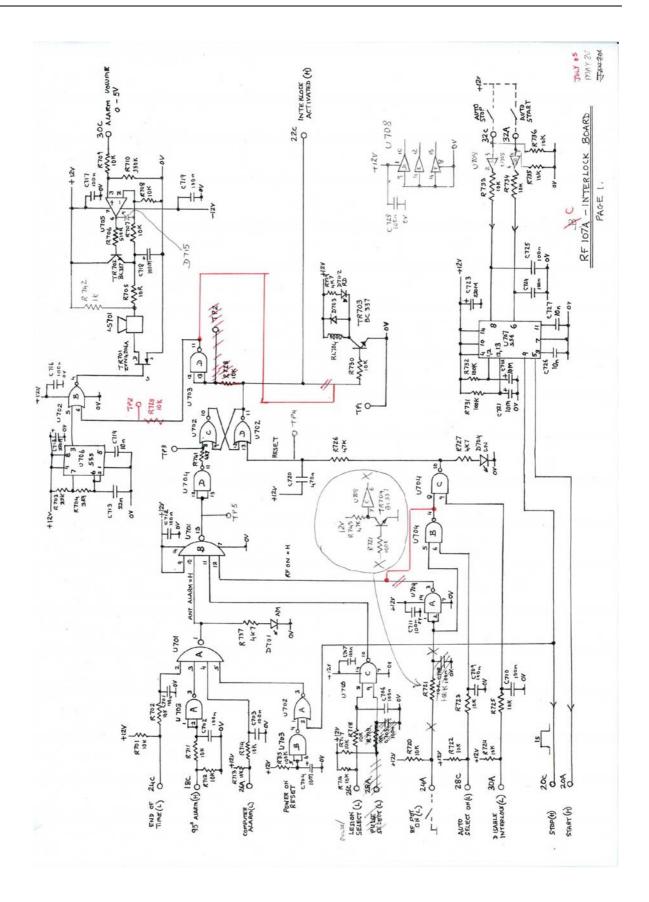


Figure 6.15 Interlock Board – RF 107 D – Circuit Diagram

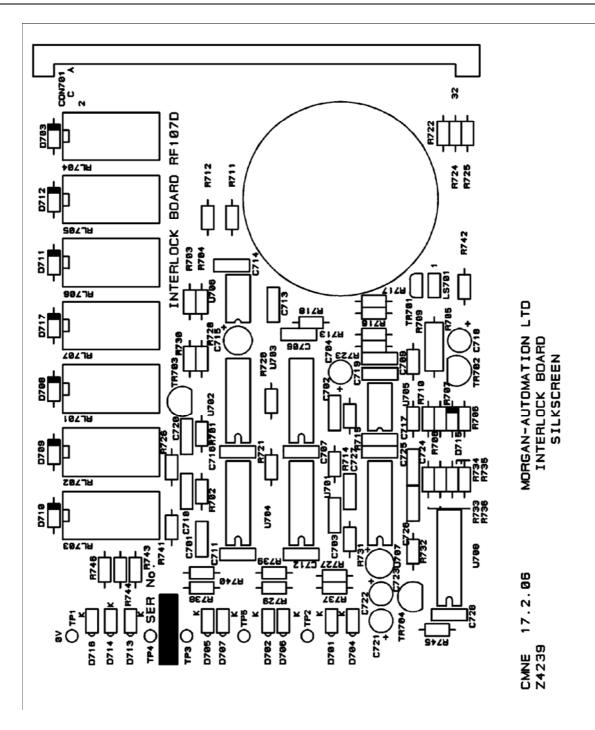
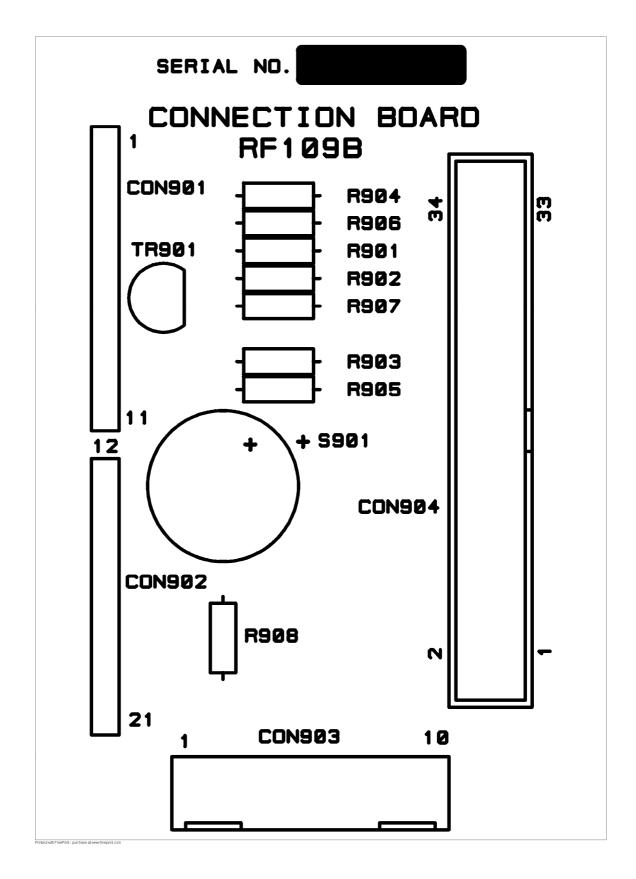
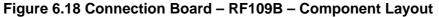


Figure 6.16 Interlock Board - RF107D - Component Layout


6.9 Connection Board RF109B


R901 R902 R903 R904	3K3 3K3 3K3 3K3	±5% ±5% ±5% ±5%	0.25watt 0.25watt 0.25watt 0.25watt	Carbon Film Carbon Film Carbon Film Carbon Film
R905	3K3	±5%	0.25watt	Carbon Film
R906 R907	10K 1K	±5% ±5%	0.25watt 0.25watt	Carbon Film Carbon Film
R908	330R	±5%	0.25watt	Carbon Film
TR901	BC327		PNP Trar	nsistor
S901	Sounder			
CON901 CON901 CON901 CON901	10 way Si 10 way H	ingle Row Header ingle Row Header eader oxed Header		

34 WAY RIBBON CABLE +12V	SELECTUPBTN	/NBTN	TN																				- 1					
THE T	SELE(SELECTDWNBTN	LDGBTN ENDSESSIDNBTN	TIMEUPBIN	TIMEDWNBTN	TEMPUPBTN	AUTOSTARTBIN	AUTDSTOPBTN	PULSERFBTN	LESIDNBTN	STIMMTRBTN	STIMSENSBTN	+12V	MAINSONLED	SENSBTNLED	MOTORBINLED	LESIDNBTNLED	PULSERFBTNLED	STIMPDT+	STIMPOTWIP	STIMPDT-	STIMONSWITCH	0	RFPUT+	RFPDTWIP	RFPDT-	RFDNSWITCH	N0
CDNNECTION BOARD RF109A Int Panel SUB Board	13 0	14 00	16 Ø Ø	a c	18 Ø		20 S	2 S	Q EE	- 9E	24	25 Č	30	R901.3K3 28	26	R903 3K3 23 Ø	32	R905 3K3 22 0	10 00	6	8		° 5	a ⊘ (∑	*	n	2	-
CDN RF10 FRDNT con 902	19	- 18	15	50	. 14	12	13	CON 901	" •	Q	8	• 7	4	د ۹	• ę	6	e	• 10	CDN 903	. a		4	S	9	7	8	6	• 10
J ST.00.15	SELECT UP	SELECT DOWN		THE UP	TIME DOWN	LEMB (Ib	AUTD START			TESTIDN	HUTUR	SENSORY	+15 VOLTS	HAINS DN	SENSORY	HUTOR	LESIDN C	PULSE			STIM }	PDT [,						Y

Figure 6.17 Connection Board – RF109B – Circuit Diagram

6-42

6.10 Interface Board RF110D

Components

- J1 34 way Male PCB Boxed Header with short latches
- J2 50 way Male PCB Boxed Header with short latches
- J3 50 way Male PCB Boxed Header with short latches

TP1-4 Test Points

Edge Connector 96 way DIN41612

Handle White

CONNECTOR (EC)	
EDGE CONN	33330000000000000000000000000000000000
E	32B 32B
C24B	3 3 3 + EC + EC
ECIABC EC25B+EC24B EC22B EC22B EC22B EC22B EC22B EC23B EC23B EC23B	EC22A EC21A EC21A EC20A J2PIN27 J2PIN27 J2PIN27 J2PIN28 J2PIN2
	8 0 SIIMPUT-IP 9 0 SIIMPUT-VIP 11 0 TEMPUPBTN 12 0 SELECTUPBTN 13 0 SELECTUPBTN 14 0 SELECTUPBTN 15 0 LGGBTN 17 0 TIMEUPBTN 18 0 SELECTUPBTN 17 0 TIMEUPBTN 18 0 LCGBTN 19 0 AUTOSTOPBTN 20 0 AUTOSTOPBTN 21 0 FIMEDWNBTN 22 0 AUTOSTOPBTN 23 0 STIMTRBTN 23 0 STIMTRBTN 24 0 STIMTRBTN 25 0 STIMTRBTN 26 0 STIMTRBTN 27 0 LINSENSBTN 28 0 IZV 31 0 IZV 32 0 STIMTRBTN 33 0 ILMSENSBTN 28 0 STIMTRBTN 33 0 IZV 33 0 IZV 33 0 LINSE 34 0 IZV </td
EC7A EC7A EC0A EC00A EC10A EC10A EC11A EC11A EC11A EC11A EC11A	EC12A 8 EC13A EC13A 11 EC4A 9 EC13A 11 EC4A 12 EC29A 11 EC29A 12 EC29A 11 EC16A 12 EC14B 12 EC16A 12 EC16A 12 EC16B 22 EC19B 28 JIPIN22 28 JIPIN23 28 JIPIN22 28 JIPIN23 28 JIPIN32 28 JIPIN33 28 JIPI
	DIDBA STIMMUDAI DIDBA STIMMUDAI DIDBA STIMMUDA DIDBA SELTINKT DIDBA SELTINKT DIDBA SELTINKT DIDBA SELTINKT DIDBA SELTINKT DIDBA SELTINKT DIDBA SELTINK DIDBA SELTINK DIDCA FEDULSTRES DIDCA THESTRES DIDCA THESTRES DICA THESTRES
g0000000	
-1004004 -1007	
EC19A AGND EC18A EC18A EC5B EC10B EC10B	AGND EC17C EC18C EC19C AGND N/C AGND EC265 AGND EC265 AGND EC265 AGND EC265 AGND EC265 AGND EC265 AGND EC265 AGND JIPIN24 JIPIN24 JIPIN24 JIPIN24 JIPIN24 JIPIN24 JIPIN23 JIPIN23 JIPIN23 JIPIN25 JIPIN23 JIPIN23 JIPIN25 JIPIN23 JIPIN23 JIPIN12 JIPIN12 JIPIN12 JIPIN12 JIPIN12 JIPIN12 JIPIN12 JIPIN12 JIPIN12 EC27A EC27A EC27A EC27A EC27A EC27B EC27C DDDD
LG ANN G G	AIG AIG AIZ AGND AIZ AGND AOL TEMP DUT AGND AOL TEMP DUT AGND AOL RECNIFIL AO3 AUDIL-VL AO3 AUDIL-VL AO3 AUDIL-VL AO4 ALRM-VL DIA2 SIMMTRBIN DIA2 SIMMTRBIN DIA2 SIMMTRBIN DIA3 LGGBTN DIA3 LGGBTN DIA3 LGGBTN DIA3 ESIDNBTN DIA3 ENDSSSSIDNBTN DIA5 ENDSSSSIDNBTN DIA5 ENDSSSSIDNBTN DIA5 ENDSWCH DIC3 FUCSON DIC3 FUCSON DIC4 FUCSON DIC4 FUCSON DIC4 FUCSON DIC3 FUCSON DIC4 FUCSON
Q0000000	

Figure 6.19 Interface Board – RF110D – Circuit Diagram

6-45

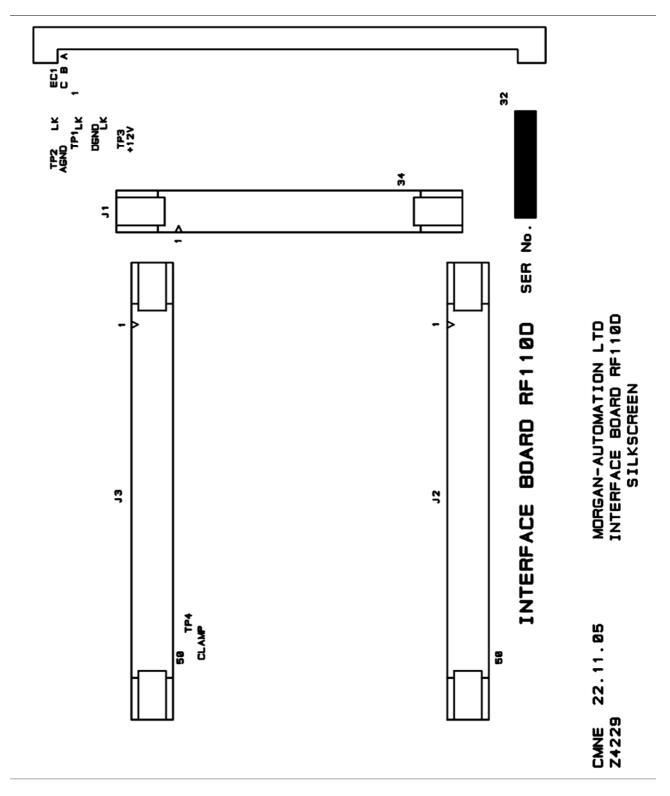


Figure 6.20 Interface Board – RF110D – Component Layout

6.11 Computer Mother Board RF111B

R1 R2 R3 R4	LINK 4K7 LINK LINK	±5%	0.25watt	Carbon Film
R5	LINK			
R6	30K	±1%	0.25watt	Metal Film
R7	30K	±1%	0.25watt	
R8	NOT F	FITTED		
R9	NOT F	FITTED		
R10	NOT F	FITTED		
R11	10K	±1%	0.25watt	Metal Film
R12	10K	±1%	0.25watt	Metal Film
R13	1K	±1%	0.25watt	Metal Film
R14	LINK			
R15	NOT F	FITTED		
R16	1K	±1%	0.25watt	Metal Film
R17	1K	±1%	0.25watt	Metal Film
R18	1K	±1%	0.25watt	Metal Film
R19	1K	±1%	0.25watt	Metal Film
R20	1K	±1%	0.25watt	Metal Film
R21	1K	±1%	0.25watt	Metal Film
R22	NOT F	FITTED		
R23	NOT F	FITTED		
R24	10K	±1%	0.25watt	Metal Film
R25	10K	±1%	0.25watt	Metal Film
R26	10K	±1%	0.25watt	Metal Film
R27	10K	±1%	0.25watt	Metal Film
R28	4K7	±5%	0.25watt	Carbon Film
RA1	4K7		8 common	ed resistor network
RA2	4K7		8 common	ed resistor network
RA3	4K7		8 common	ed resistor network
RA4	4K7		8 common	ed resistor network
RA5	4K7		8 common	ed resistor network
RV1	10k		potentiome	eter

Computer Mother Board RF111B contd

C1	100nF	63v	Polyester
C2	100nF	63v	Polyester
C3	100nF	63v	Polyester
C4	100nF	63v	Polyester
C5	100nF	63v	Polyester
C6	100nF	63v	Polyester
C7	100nF	63v	Polyester
C8	100nF	63v	Polyester
C9	100nF	63v	Polyester
C10	100nF	63v	Polyester
C11	100nF	63v	Polyester
C12	100nF	63v	Polyester
C13	100nF	63v	Polyester
C14	10nF	100v	Polyester
C15	10nF	100v	Polyester
C16	NOT FIT	TED	5
C17	100nF	63v	Polyester
C18	100nF	63v	Polyester
C19	100nF	63v	Polyester
C20	100nF	63v	Polyester
C21	100nF	63v	Polyester
C22	100nF	63v	Polyester
C23	100nF	63v	Polyester
C24	100nF	63v	Polyester
C25	100nF	63v	Polyester
C26	10MF	63v	Polyester
C27	100nF	63v	Polyester
C28	100F	100v	Polyester
C29	10MF	63v	Polyester
C30	10nF	100v	Polyester
C31	100nF	63v	Polyester
C32	100nF	63v	Polyester
C33	100nF	63v	Polyester
C34	100nF	63v	Polyester
C35	100nF	63v	Polyester
C36	100nF	63v	Polyester
C37	100nF	63v	Polyester
C38	100nF	63v	Polyester
C39	100m 10MF	63v	Polyester
C39 C40	100nF	63v	Polyester
C40 C41	100nF	63v	Polyester
C41 C42	100nF	63v	Polyester
C42 C43	100nF	63v	Polyester
C43 C44			•
	470nF	63v	Polyester
C45	470nF	63v	Polyester

Computer Mother Board RF111B contd

C46 C47	NOT FITTED 4700MF 25v		Electrolytic
D1 D2	LM4040 IN4002	2.5	2.5v Voltage Reference
D3	IN5355 5watt		18v Zener
L1	10µH		Inductor
SW1	8way DIL Switch		
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U21 U22 U23 U24 U22 U23 U24 U25 U26 U27 U28 U29 U20 U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U35 U36	74HCT 688 74HCT 245 74HCT 138 74HCT 240 74HCT 138 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 ULN2803A 74HCT 273 4050 74HCT 273 4050		

Computer Mother Board RF111B contd

- J1 64 way PC104 Header
- J2 50 way boxed header with short latches
- J3 51 way boxed header with short latches
- J4 4 way connector
- J5 10 way connector

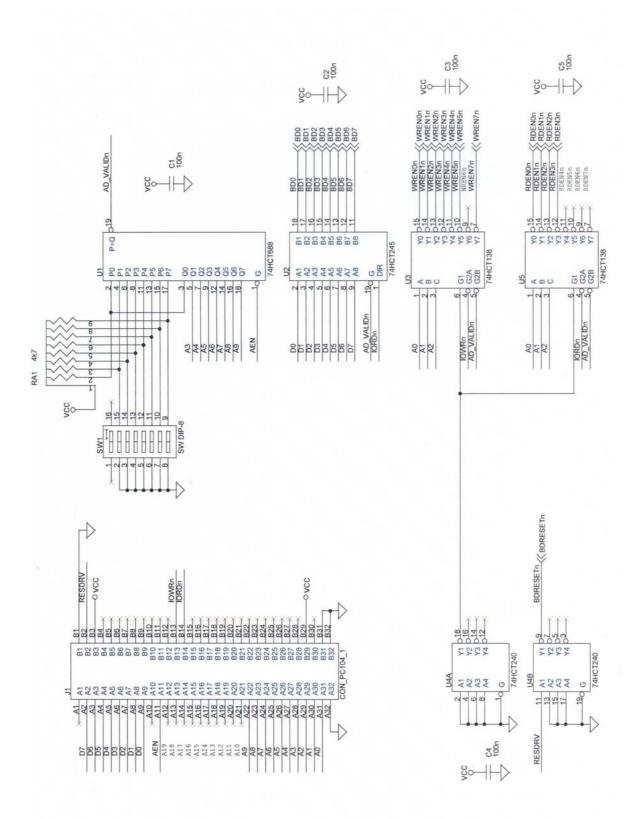


Figure 6.21 Computer Motherboard RF111B – Circuit Diagram – Bus Interface

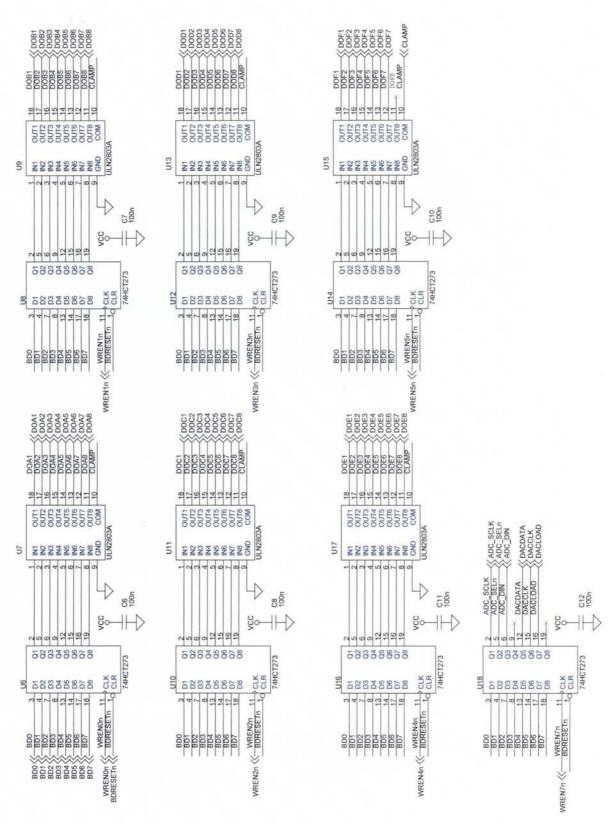


Figure 6.22 Computer Motherboard – RF111B – Circuit Diagram – Digital Outputs

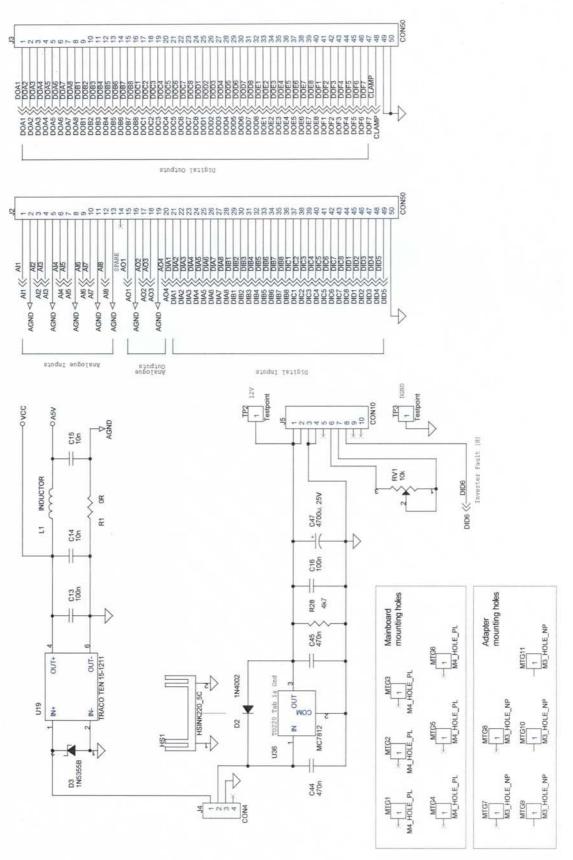


Figure 6.23 Computer Mother Board – RF111B – Circuit Diagram – Ribbon Connectors and PSU

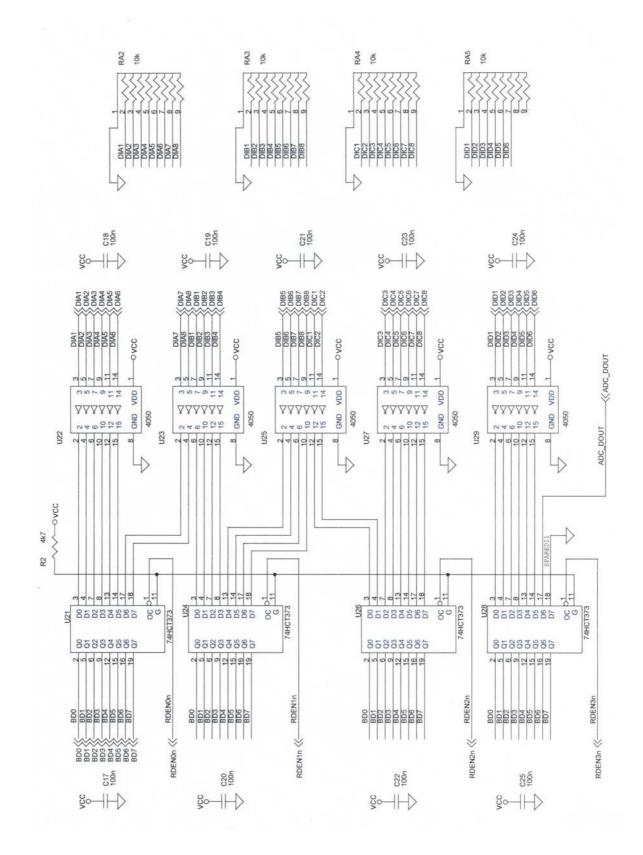
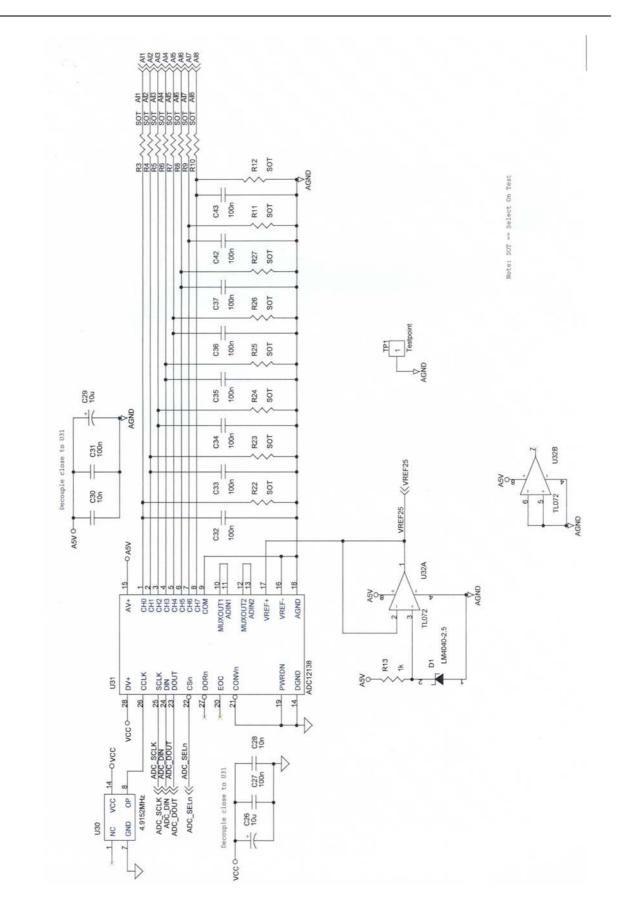



Figure 6.24 Computer Motherboard – RF111B – Circuit Diagram – Digital Inputs

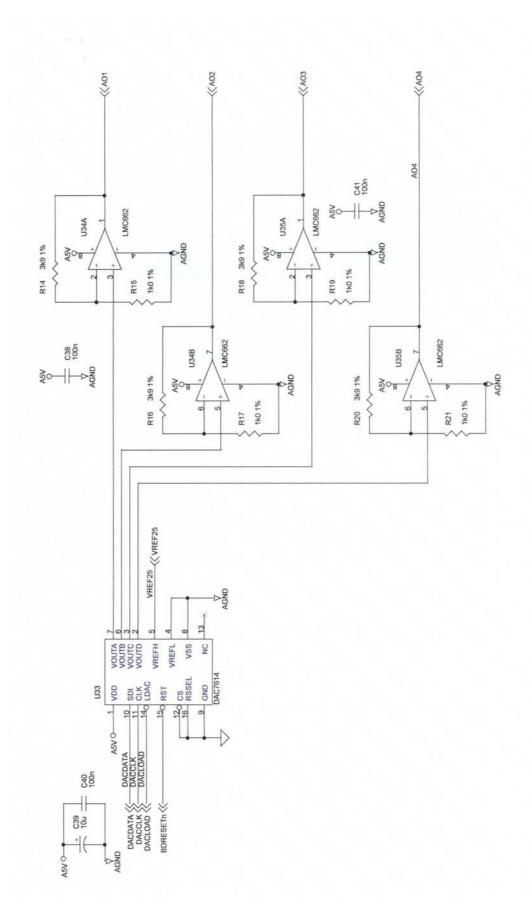


Figure 6.26 Computer Motherboard RF111B – Circuit Diagram – Analog Ouputs

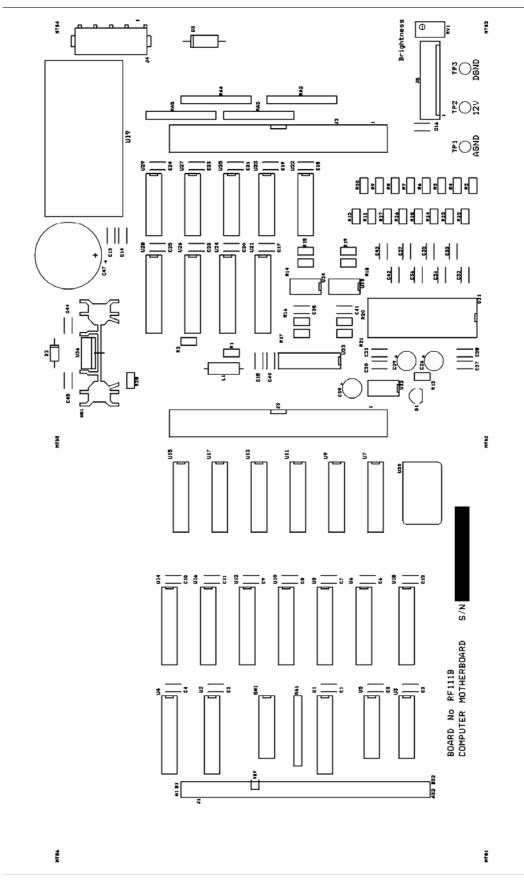


Figure 6.27 Computer Motherboard – RF111B – Computer Layout

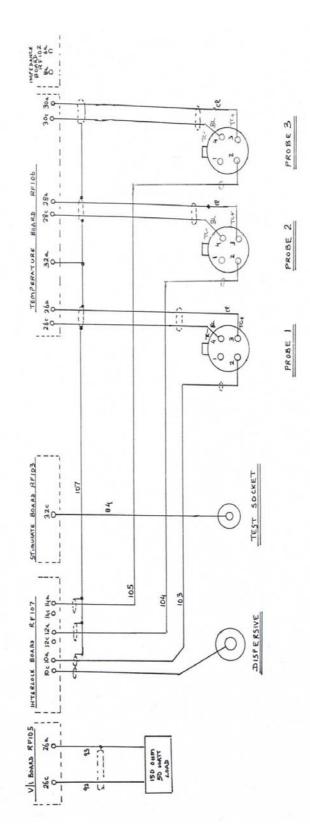


Figure 6.28 Front Panel Wiring Figure

6.29 General System Schematic