THE 100+ SERIES"

Education
CD-104644

Essential Practice for Key Science Topics

- Great extension activities for chemistry units
- Correlated to standards
- Comprehensive array of chemistry topics
- Fascinating puzzles and problems

Table of Contents

Laboratory Dos and Don'ts I
Laboratory Equipment 2
Triple and Four Beam Balances 3
Measuring Liquid Volume4
Reading Thermometers 5
Metrics and Measurements 6
Dimensional Analysis (Unit Factor Method) 7
Scientific Notation 8
Significant Figures 9
Calculations Using Significant Figures 10
Percentage Error 11
Temperature and Its Measurement. 12
Freezing and Boiling Point Graph 13
Phase Diagram 14
Heat and Its Measurement 15
Vapor Pressure and Boiling 16
Matter-Substances vs. Mixtures. 17
Physical vs. Chemical Properties 18
Physical vs. Chemical Changes 19
Boyle's Law 20
Charles' Law 21
Combined Gas Law 22
Dalton's Law of Partial Pressures 23
Ideal Gas Law 24
Graham's Law of Effusion 25
Element Symbols 26
Atomic Structure 27
Isotopes and Average Atomic Mass 28
Electron Configuration (Level One) 2
Electron Configuration (Level Two)....... 30 30
Valence Electrons 31
Lewis Dot Diagrams 32
Atomic Structure Crossword 33
Nuclear Decay
Half-Lives of Radioactive Isotopes 35
Periodic Table Worksheet 36
Periodic Table Puzzles 37
Ionic Bonding 39
Covalent Bonding 40
Types of Chemical Bonds 41
Shapes of Molecules 42
Polarity of Molecules 43
Chemical Bonding Crossword 44
Writing Formulas (Crisscross Method) 45
Naming Ionic Compounds. 46
Naming Molecular Compounds 47
Naming Acids 48
Writing Formulas from Names 49
Gram Formula Mass 50
Moles and Mass 51
The Mole and Volume 52
The Mole and Avogadro's Number 53
Mixed Mole Problems 54
Percentage Composition. 55
Determining Empirical Formulas 56
Determining Molecular Formulas (True Formulas) 57
Composition of Hydrates 58
Balancing Chemical Equations 59
Word Equations 60
Classification of Chemical Reactions ... 6 61
Predicting Products of Chemical
Reactions 62
Stoichiometry: Mole-Mole Problems 63
Stoichiometry: Volume-Volume Problems 64
Stoichiometry: Mass-Mass Problems 65
Stoichiometry: Mixed Problems 66
Stoichiometry: Limiting Reagent 67
Solubility Curves 68
Molarity (M) 69
Molarity by Dilution. 70
Molality (m) 71
Normality (N) 72
Electrolytes 73
Effect of a Solute on Freezing and Boiling Points. 74
Solubility (Polar vs. Nonpolar) 75
Solutions Crossword 76
Potential Energy Diagram 77
Entropy 78
Gibbs Free Energy 79
Equilibrium Constant (K) 80
Calculations Using the Equilibrium Constant 81
Le Chatelier's Principle 82
Bronsted-Lowry Acids and Bases 84
Conjugate Acid-Base Pairs 85
pH and pOH 86
pH of Solutions 87
Acid-Base Titration 88
Hydrolysis of Salts 89
Acids and Bases Crossword 90
Assigning Oxidation Numbers 91
Redox Reactions 92
Balancing Redox Equations 93
The Electrochemical Cell 94
Electrochemistry Crossword 95
Naming Hydrocarbons 96
Structure of Hydrocarbons 97
Functional Groups 98
Naming Other Organic Compounds 99
Structures of Other Organic Compounds 100
Organic Chemistry Crossword 101
Reference 102
Answer Key 103

Credits

Content Editor: Deborah Trogdon-Stout
Proofreader: Christine M. Schwab
Visit carsondellosa.com for correlations to Common Core, state, national, and Canadian provincial standards.

Carson-Dellosa Publishing, LLC

PO Box 35665
Greensboro, NC 27425 USA
carsondellosa.com
© 2015, Carson-Dellosa Publishing, LLC. The purchase of this material entitles the buyer to reproduce worksheets and activities for classroom use only-not for commercial resale. Reproduction of these materials for an entire school or district is prohibited. No part of this book may be reproduced (except as noted above), stored in a retrieval system, or transmitted in any form or by any means (mechanically, electronically, recording, etc.) without the prior written consent of Carson-Dellosa Publishing, LLC.
\qquad

Laboratory Dos And Don'ts

Identify what is wrong in each laboratory activity.
1.

\qquad
\qquad
\qquad
3.

\qquad
\qquad
\qquad
4.

\qquad
\qquad
\qquad
6.

\qquad
\qquad
\qquad
\qquad

Laboratory Equipment

Label the lab equipment.

\odot
\qquad

Triple And Four Beam Balances

Identify the mass on each balance.

Triple Beam Balance

Four Beam Balance

\qquad

Measuring Liquid Volume

Identify the volume indicated on each graduated cylinder. The unit of volume is mL .

1.

2. \qquad

3. \qquad

4.

5. \qquad

6. \qquad

7.

8. \qquad

9. \qquad
\qquad

Reading Thermometers

Identify the temperature indicated on each thermometer.

I.

2.

3. \qquad

4.

5.

6. \qquad

Metrics And Measurements

In the chemistry classroom and lab, the metric system of measurement is used. It is important to be able to convert from one unit to another.

mega-	kilo-	hecto-	deca-	Basic Units gram (g) liter (L) meter (m)	deci-	centi-	milli-	micro-
(M)	(k)	(h)	(da)		(d)	(c)	(m)	(μ)
1,000,000	1,000	100	10		0.1	0.01	0.001	0.000001
10^{6}	10^{3}	10^{2}	10^{1}		10^{-1}	10^{-2}	10^{-3}	10^{-6}

Unit Factor Method

I. Write the given number and unit.
2. Set up a conversion factor (fraction used to convert one unit to another).
a. Place the given unit as the denominator of the conversion factor.
b. Place the desired unit as the numerator.
c. Place a one in front of the larger unit.
d. Determine the number of smaller units needed to make one of the larger units.
3. Cancel the units. Solve the problem.

Example I\qquad	$55 \mathrm{~mm}=$$\qquad$ m		Example 2: 88 88 km $88 \mathrm{~km}=\ldots$			
	$\frac{1,000 \mathrm{~mm}}{}=0.055 \mathrm{~m}$		88 km	$\frac{1,000 \mathrm{~m}}{1 \mathrm{~km}}$	$88,000 \mathrm{~m}$	
Example 3: $7,000 \mathrm{~cm}=\ldots \mathrm{hm}$			Example 4: $8 \mathrm{daL}=\square \mathrm{dL}$			
$7,000-\mathrm{cm}$	1 m	$1 \mathrm{hm}=0.7 \mathrm{hm}$	8-dat	10 t	100 dL	800 dl
	$100-\mathrm{cm}$	10,000-em		I-dat	I-dat	

The unit factor method can be used to solve virtually any problem involving changes in units. It is especially useful in making complex conversions dealing with concentrations and derived units.

Convert each measurement.
I. $35 \mathrm{~mL}=$ \qquad dL
6. $950 \mathrm{~g}=$ \qquad kg
2. $275 \mathrm{~mm}=\ldots \mathrm{cm}$
7. $1,000 \mathrm{~L}=$ \qquad kL
3. $\mathrm{I}, 000 \mathrm{~mL}=$ \qquad
8. $4,500 \mathrm{mg}=$ \qquad
4. $25 \mathrm{~cm}=$ \qquad mm
9. $\quad 0.005 \mathrm{~kg}=$ \qquad dag
5. $0.075 \mathrm{~m}=$ \qquad cm
10. $15 \mathrm{~g}=$ \qquad mg
\qquad

Dimensional Analysis (Unit Factor Method)

Using this method, it is possible to solve many problems by using the relationship of one unit to another. For example, 12 inches = one foot. Since these two numbers represent the same value, the fractions 12 in ./I ft. and I ft./I2 in. are both equal to one. When you multiply another number by the number one, you do not change its value. However, you may change its unit.

Example I: Convert 2 miles to inches.
2 miles $\times \frac{5,280 \mathrm{ft} .}{1 \text { mile }} \times \frac{12 \text { inches }}{1 \mathrm{ft} .}=126,720 \mathrm{in}$.

Example 2: How many seconds are in 4 days?

$$
4 \text { days } \times \frac{24 \mathrm{hrs} .}{1 \text { day }} \times \frac{60 \mathrm{~min} .}{1 \mathrm{hr} .} \times \frac{60 \mathrm{sec} .}{1 \mathrm{~min} .}=345,600 \mathrm{sec} .
$$

Solve each problem. Round irrational numbers to the thousandths place.
I. 3 hr . $=$ \qquad sec.
2. $0.035 \mathrm{mg}=$ \qquad cg
3. $5.5 \mathrm{~kg}=$ \qquad lb.
4. $\quad 2.5$ yd. $=$ \qquad in.
5. \quad. $3 \mathrm{yr} .=$ \qquad hr.
6. 3 moles $=$ \qquad molecules $\left(\mathrm{I}\right.$ mole $=6.02 \times 10^{23}$ molecules $)$
7. 2.5×10^{24} molecules $=$ \qquad moles
8. 5 moles $=$ \qquad liters $(I$ mole $=22.4$ liters $)$
9. \quad IOO. liters $=$ \qquad moles
10. 50 . liters $=$ \qquad molecules

I I. 5.0×10^{24} molecules $=$ \qquad liters
12. $7.5 \times 10^{3} \mathrm{~mL}=$ \qquad liters
\qquad

Scientific Notation

Scientists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros. We can express these numbers as powers of 10 .
Scientific notation takes the form of $M \times 10^{n}$ where $1 \leq M<10$ and n represents the number of decimal places to be moved. Positive n indicates the standard form is a large number. Negative n indicates a number between zero and one.

Example I: Convert I,500,000 to scientific notation.
Move the decimal point so that there is only one digit to its left, for a total of 6 places.

$$
1,500,000=1.5 \times 10^{6}
$$

Example 2: Convert 0.000025 to scientific notation.
For this, move the decimal point 5 places to the right.

$$
0.000025=2.5 \times 10^{-5}
$$

(Note that when a number starts out less than one, the exponent is always negative.)

Convert each number to scientific notation.

1. $0.005=$ \qquad
2. $5,050=$ \qquad
3. $0.0008=$ \qquad
4. $1,000=$ \qquad
5. $1,000,000=$ \qquad

Convert each number to standard notation.
II. $1.5 \times 10^{3}=$ \qquad 16. $3.35 \times 10^{-1}=$ \qquad
13. $3.75 \times 10^{-2}=$ \qquad
12. $1.5 \times 10^{-3}=$ \qquad
17. $1.2 \times 10^{-4}=$ \qquad
18. $1 \times 10^{4}=$ \qquad
14. $3.75 \times 10^{2}=$ \qquad
19. $1 \times 10^{-1}=$ \qquad
15. $2.2 \times 10^{5}=$ \qquad 20. $4 \times 10^{0}=$ \qquad
6. $0.25=$ \qquad
7. $0.025=$ \qquad
8. $0.0025=$ \qquad
9. $500=$ \qquad
10. $5,000=$ \qquad
\qquad

Significant Figures

A measurement can only be as accurate and precise as the instrument that produced it. A scientist must be able to express the accuracy of a number, not just its numerical value. We can determine the accuracy of a number by the number of significant figures it contains.

1. All digits I-9 inclusive are significant.

Example: $\underline{129}$ has 3 significant figures.
2. Zeros between significant digits are always significant.

Example: $\underline{5,007}$ has 4 significant figures.
3. Trailing zeros in a number are significant only if the number contains a decimal point. Sometimes, a decimal may be added without any number in the tenths place.

Example: 100.0 has 4 significant figures.
100 . has 3 significant figures.
I00 has I significant figure.
4. Zeros in the beginning of a number whose only function is to place the decimal point are not significant.

Example: 0.0025 has 2 significant figures.
5. Zeros following a decimal significant figure are significant.

Example: 0.000470 has 3 significant figures.
0.47000 has 5 significant figures.

Determine the number of significant figures in each number.
I. 0.02 \qquad
2. 0.020 \qquad
3. 501 \qquad
4. 501.0 \qquad
6. 5,000.
7. 6,051.00
\qquad
\qquad
\qquad
5. 5,000
9. 0.1020
10. 10,001
\qquad

Determine the location of the last significant place value by placing a bar over the digit. (Example: $1.70 \overline{0}$)
II. 8,040
14. 0.0300
17. 699.5
19. 2.000×10^{2}
12. 0.90100
15. 90, 100
18. 4.7×10^{-8}
20. $10,800,000.0$
13. 3.01×10^{21}
16. 0.000410
\qquad

Calculations Using Significant Figures

When multiplying and dividing, limit and round to the least number of significant figures in any of the factors.

Example I: $23.0 \mathrm{~cm} \times 432 \mathrm{~cm} \times 19 \mathrm{~cm}=188,784 \mathrm{~cm}^{3}$
The answer is expressed as $190,000 \mathrm{~cm}^{3}$ since 19 cm has only two significant figures.
When adding and subtracting, limit and round your answer to the least number of decimal places in any of the numbers that make up your answer.

Example 2: $123.25 \mathrm{~mL}+46.0 \mathrm{~mL}+86.257 \mathrm{~mL}=255.507 \mathrm{~mL}$
The answer is expressed as 255.5 mL since 46.0 mL has only one decimal place.

Perform each operation, expressing the answer in the correct number of significant figures.
।. $1.35 \mathrm{~m} \times 2.467 \mathrm{~m}=$ \qquad
2. $\mathrm{I}, 035 \mathrm{~m}^{2} \div 42 \mathrm{~m}=$ \qquad
3. $\quad 12.01 \mathrm{~mL}+35.2 \mathrm{~mL}+6 \mathrm{~mL}=$ \qquad
4. $55.46 \mathrm{~g}-28.9 \mathrm{~g}=$ \qquad
5. $0.021 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 100.1 \mathrm{~cm}=$ \qquad
6. $0.15 \mathrm{~cm}+1.15 \mathrm{~cm}+2.051 \mathrm{~cm}=$ \qquad
7. $150 \mathrm{~L}^{3} \div 4 \mathrm{~L}=$ \qquad
8. $505 \mathrm{~kg}-450.25 \mathrm{~kg}=$ \qquad
9. $1.252 \mathrm{~mm} \times 0.115 \mathrm{~mm} \times 0.012 \mathrm{~mm}=$ \qquad
10. $1.278 \times 10^{3} \mathrm{~m}^{2} \div 1.4267 \times 10^{2} \mathrm{~m}=$ \qquad
\qquad

Percentage Error

Percentage error is a way for scientists to express how far off a laboratory value is from the commonly accepted value.
The formula is:

	Accepted Value - Experimental Value	
\% error $=$	Accepted Value	$\times 100$
absolute \qquad value	Accepted Value	

Determine the percentage error in each problem.
I. Experimental value $=1.24 \mathrm{~g}$ Accepted value $=1.30 \mathrm{~g}$
2. Experimental value $=1.24 \times 10^{-2} \mathrm{~g}$ Accepted value $=9.98 \times 10^{-3} \mathrm{~g}$
3. Experimental value $=252 \mathrm{~mL}$ Accepted value $=225 \mathrm{~mL}$
4. Experimental value $=22.2 \mathrm{~L}$ Accepted value $=22.4 \mathrm{~L}$
5. Experimental value $=125.2 \mathrm{mg}$ Accepted value $=124.8 \mathrm{mg}$
\qquad

Temperature and Its Measurement

Temperature (which measures average kinetic energy of the molecules) can be measured using three common scales: Celsius, Kelvin, and Fahrenheit. Use the following formulas to convert from one scale to another. Celsius is the scale most desirable for laboratory work. Kelvin represents the absolute scale. Fahrenheit is the old English scale, which is rarely used in laboratories.

$$
\begin{array}{ll}
{ }^{\circ} \mathrm{C}=\mathrm{K}-273 & \mathrm{~K}={ }^{\circ} \mathrm{C}+273 \\
{ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32 & { }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right) \\
\hline
\end{array}
$$

Complete the chart. All measurements are good to $1^{\circ} \mathrm{C}$ or better.

	${ }^{\circ} \mathrm{C}$	K	${ }^{\circ} \mathrm{F}$
1.	$0^{\circ} \mathrm{C}$		
2.			$212^{\circ} \mathrm{F}$
3.		450 K	
4.			$98.6{ }^{\circ} \mathrm{F}$
5.	$-273^{\circ} \mathrm{C}$		
6.		294 K	
7.			$77^{\circ} \mathrm{F}$
8.		225 K	
9.	-40 ${ }^{\circ} \mathrm{C}$		

\qquad

Freezing and Boiling Point Graph

Use the graph to answer each question.
I. Which is the freezing point of the substance? \qquad
2. Which is the boiling point of the substance? \qquad
3. Which is the melting point of the substance? \qquad
4. Which letter represents the range where the solid is being warmed? \qquad
5. Which letter represents the range where the liquid is being warmed? \qquad
6. Which letter represents the range where the vapor is being warmed? \qquad
7. Which letter represents the melting of the solid? \qquad
8. Which letter represents the vaporization of the liquid? \qquad
9. Which letter(s) shows a change in potential energy? \qquad
10. Which letter(s) shows a change in kinetic energy? \qquad
II. Which letter represents condensation? \qquad
12. Which letter represents crystallization? \qquad
\qquad

Phase Diagram

Use the diagram to answer each question.
I. Which section represents the solid phase? \qquad
2. Which section represents the liquid phase? \qquad
3. Which section represents the gas phase? \qquad
4. Which letter represents the triple point? \qquad
5. Which letter represents the critical point? \qquad
6. What is this substance's normal melting point? \qquad
7. What is this substance's normal boiling point? \qquad
8. Above what temperature is it impossible to liquify this substance no matter what the pressure? \qquad
9. At what temperature and pressure do all three phases coexist? \qquad
10. Is the density of the solid greater than or less than the density of the liquid?
II. Would an increase in pressure cause this substance to freeze or melt? \qquad
\qquad

Heat and Its Measurement

Heat (or energy) can be measured in units of calories or joules. When there is a temperature change ($\Delta \mathrm{T}$), heat (Q) can be calculated using this formula:
$Q=$ mass $\times \Delta \mathrm{T} \times$ specific heat capacity ($\Delta \mathrm{T}=$ final temperature - initial temperature)
During a phase change, use this formula:
$Q=$ mass \times heat of fusion (or heat of vaporization)

Solve each problem.
I. How many joules of heat are given off when 5.0 g of water cool from $75^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$? (Specific heat of water $=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)
2. How many calories are given off by the water in problem I?
(Specific heat of water $=1.0 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)
3. How many joules does it take to melt 35 g of ice at $\mathrm{O}^{\circ} \mathrm{C}$? (heat of fusion $=333 \mathrm{~J} / \mathrm{g}$)
4. How many calories are given off when 85 g of steam condense to liquid water? (heat of vaporization $=539.4 \mathrm{cal} / \mathrm{g}$)
5. How many joules of heat are necessary to raise the temperature of 25 g of water from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$?
6. How many calories are given off when 50 g of water at $0^{\circ} \mathrm{C}$ freezes? (heat of fusion $=79.72 \mathrm{cal} / \mathrm{g}$)
\qquad

Vapor Pressure and Boiling

A liquid will boil when its vapor pressure equals the atmospheric pressure.

Use the graph to answer each question.
I. At what temperature would Liquid A boil at an atmospheric pressure of 400 Torr? \qquad
2. Liquid B ? \qquad
3. Liquid C ? \qquad
4. How low must the atmospheric pressure be for Liquid A to boil at $35^{\circ} \mathrm{C}$? \qquad
5. Liquid B ? \qquad
6. Liquid C ? \qquad
7. What is the normal boiling point of Liquid A ? \qquad
8. Liquid B ? \qquad
9. Liquid C ? \qquad
10. Which liquid has the strongest intermolecular forces? \qquad
\qquad

Matter-Substances vs. Mixtures

All matter can be classified as either a substance (element or compound) or a mixture (heterogeneous or homogeneous).

Classify each of the following as a substance or a mixture. If it is a substance, write element or compound in the substance column. If it is a mixture, write heterogeneous or homogeneous in the mixture column.

Type of Matter	Substance	Mixture
1. chlorine		
2. water		
3. soil		
4. sugar water		
5. oxygen		
6. carbon dioxide		
7. rocky road ice cream		
8. alcohol		
9. pure air		
I0. iron		

\qquad

Physical vs. Chemical Properties

A physical property is observed with the senses and can be determined without destroying the object. Color, shape, mass, length, and odor are all examples of physical properties.
A chemical property indicates how a substance reacts with something else. The original substance is fundamentally changed in observing a chemical property. For example, the ability of iron to rust is a chemical property. The iron has reacted with oxygen, and the original iron metal is changed. It now exists as iron oxide, a different substance.

Classify each property as either chemical or physical by putting a check in the appropriate column.

I. blue color	Physical Property	Chemical Property
2. density		
3. flammability		
4. solubility		
5. reacts with acid to form H_{2}		
6. supports combustion		
7. sour taste		
8. melting point		
9. reacts with water to form a gas		
I0. reacts with a base to form water		
II. hardness		
I2. boiling point		
13.	can neutralize a base	
$14 . \quad$ luster		
$15 . \quad$ odor		

\qquad

Physical vs. Chemical Changes

In a physical change, the original substance still exists; it only changes in form. In a chemical change, a new substance is produced. Energy changes always accompany chemical changes.

Classify each as a physical or chemical change.
I. Sodium hydroxide dissolves in water. \qquad
2. Hydrochloric acid reacts with potassium hydroxide to produce a salt, water, and heat. \qquad
3. A pellet of sodium is sliced in two. \qquad
4. Water is heated and changed to steam. \qquad
5. Potassium chlorate decomposes to potassium chloride and oxygen gas.
6. Iron rusts. \qquad
7. When placed in $\mathrm{H}_{2} \mathrm{O}$, a sodium pellet catches on fire as hydrogen gas is liberated and sodium hydroxide forms. \qquad
8. Water evaporates. \qquad
9. Ice melts. \qquad
IO. Milk sours. \qquad
11. Sugar dissolves in water. \qquad
I2. Wood rots. \qquad
13. Pancakes are cooking on a griddle. \qquad
14. Grass is growing in a lawn. \qquad
15. A tire is inflated with air. \qquad
16. Food is digested in the stomach. \qquad
17. Water is absorbed by a paper towel. \qquad
\qquad

Boyle's Law

Boyle's Law states that the volume of a given sample of gas at a constant temperature varies inversely with the pressure. (If one goes up, the other goes down.) Use the formula:

$$
P_{1} \times V_{1}=P_{2} \times V_{2}
$$

Solve each problem (assuming constant temperature).
I. A sample of oxygen gas occupies a volume of $250 . \mathrm{mL}$ at 740 . Torr. What volume will it occupy at 800 . Torr pressure?
2. A sample of carbon dioxide occupies a volume of 3.50 liters at 125 kPa pressure. What pressure would the gas exert if the volume was decreased to 2.00 liters?
3. A 2.0 liter container of nitrogen has a pressure of 3.2 atm . What volume would be necessary to decrease the pressure to 1.0 atm ?
4. Ammonia gas occupies a volume of $450 . \mathrm{mL}$ at a pressure of $720 . \mathrm{mmHg}$. What volume will it occupy at standard pressure?
5. A 175 mL sample of neon has its pressure changed from 75 kPa to 150 kPa . What is its new volume?
6. A sample of hydrogen at 1.5 atm has its pressure decreased to 0.50 atm , producing a new volume of 750 mL . What was its original volume?
7. Chlorine gas occupies a volume of 1.2 liters at 720 Torr. What volume will it occupy at I atm pressure?
8. Fluorine gas exerts a pressure of 900 . Torr. When the pressure is changed to 1.50 atm , its volume is 250 mL . What was the original volume?
\qquad

Charles' Law

Charles' Law states that the volume of a given sample of gas at a constant pressure is directly proportional to the temperature in Kelvin. Use the following formulas:

$$
\begin{gathered}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \text { or } \quad V_{1} \times T_{2}=V_{2} \times T_{1} \\
\mathrm{~K}={ }^{\circ} \mathrm{C}+273
\end{gathered}
$$

Solve each problem (assuming constant pressure).
I. A sample of nitrogen occupies a volume of 250 mL at $25^{\circ} \mathrm{C}$. What volume will it occupy at $95^{\circ} \mathrm{C}$?
2. Oxygen gas is at a temperature of $40^{\circ} \mathrm{C}$ when it occupies a volume of 2.3 liters. To what temperature should it be raised to occupy a volume of 6.5 liters?
3. Hydrogen gas was cooled from $I \overline{5} 0^{\circ} \mathrm{C}$ to $5 \overline{0}^{\circ} \mathrm{C}$. Its new volume is 75 mL . What was its original volume?
4. Chlorine gas occupies a volume of 25 mL at $30 \overline{0} \mathrm{~K}$. What volume will it occupy at 600 K ?
5. A sample of neon gas at $50^{\circ} \mathrm{C}$ and a volume of 2.5 liters is cooled to $25^{\circ} \mathrm{C}$. What is the new volume?
6. Fluorine gas at $30 \overline{0} \mathrm{~K}$ occupies a volume of $50 \overline{\mathrm{O}} \mathrm{mL}$. To what temperature should it be lowered to bring the volume to $30 \overline{\mathrm{O}} \mathrm{mL}$?
7. Helium occupies a volume of 3.8 liters at $-45^{\circ} \mathrm{C}$. What volume will it occupy at $45^{\circ} \mathrm{C}$?
8. A sample of argon gas is cooled and its volume went from $38 \overline{0} \mathrm{~mL}$ to $25 \overline{0} \mathrm{~mL}$. If its final temperature was $-55^{\circ} \mathrm{C}$, what was its original temperature?
\qquad

Combined Gas Law

In practical terms, it is often difficult to hold any of the variables constant. When there is a change in pressure, volume, and temperature, the combined gas law is used.

$$
\frac{P_{1} \times V_{1}}{T_{1}}=\frac{P_{2} \times V_{2}}{T_{2}} \text { or } \quad P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}
$$

Complete the chart.

	P_{1}	V_{1}	T,	P_{2}	V_{2}	T_{2}
1.	1.5 atm	3.0 L	$2 \overline{0}^{\circ} \mathrm{C}$	2.5 atm		$30^{\circ} \mathrm{C}$
2.	720 Torr	256 mL	$25^{\circ} \mathrm{C}$		250 mL	$50^{\circ} \mathrm{C}$
3.	$6 \overline{0} 0 \mathrm{mmHg}$	2.5 L	$22^{\circ} \mathrm{C}$	760 mmHg	1.8 L	
4.		750 mL	$0.0^{\circ} \mathrm{C}$	2.0 atm	500 mL	$25^{\circ} \mathrm{C}$
5.	95 kPa	4.0 L		101 kPa	6.0 L	471 K or $198^{\circ} \mathrm{C}$
6.	650. Torr		100°	900. Torr	225 mL	$15 \overline{0}^{\circ} \mathrm{C}$
7.	850 mmHg	1.5 L	$15^{\circ} \mathrm{C}$		2.5 L	$3 \overline{0}^{\circ} \mathrm{C}$
8.	125 kPa	125 mL		$10 \overline{0} \mathrm{kPa}$	$10 \overline{\mathrm{O}} \mathrm{mL}$	$75^{\circ} \mathrm{C}$

\qquad

Dalton's Law of Partial Pressures

Dalton's Law says that the sum of the individual pressures of all the gases that make up a mixture is equal to the total pressure, or: $P_{T}=P_{1}+P_{2}+P_{3}+\ldots$ The partial pressure of each gas is equal to the mole fraction of each gas times the total pressure.

$$
P_{\mathrm{T}}=P_{1}+P_{2}+P_{3}+\ldots \quad \text { or } \frac{\text { moles gas }_{\mathrm{x}}}{\text { total moles }} \times P_{\mathrm{T}}=P_{\mathrm{x}}
$$

Solve each problem.
I. A 250. mL sample of oxygen is collected over water at $25^{\circ} \mathrm{C}$ and 760.0 Torr . What is the pressure of the dry gas alone? (Vapor pressure of water at $25^{\circ} \mathrm{C}=23.8 \mathrm{Torr}$)
2. A 32.0 mL sample of hydrogen is collected over water at $2 \overline{0}^{\circ} \mathrm{C}$ and 750.0 Torr. What is the pressure of the dry gas alone? (Vapor pressure of water at $2 \overline{0}^{\circ} \mathrm{C}=$ I7.5 Torr)
3. A 54.0 mL sample of oxygen is collected over water at $23^{\circ} \mathrm{C}$ and 770.0 Torr . What is the pressure of the dry gas alone? (Vapor pressure of water at $23^{\circ} \mathrm{C}=21 . \mathrm{I}$ Torr)
4. A mixture of 2.00 moles of $\mathrm{H}_{2^{\prime}} 3.00$ moles of $\mathrm{NH}_{3^{\prime}} 4.00$ moles of $\mathrm{CO}_{2^{\prime}}$ and 5.00 moles of N_{2} exerts a total pressure of $80 \overline{0}$ Torr. What is the partial pressure of each gas?
5. The partial pressure of F_{2} is 300 Torr in a mixture of gases where the total pressure is 1.00 atm . If there are 1.5 total moles in the mixture, how many moles of F_{2} are present?

Ideal Gas Law

The ideal gas law describes the state of an ideal gas. While an ideal gas is hypothetical, the ideal gas law can be used to approximate the behavior of many gases under normal conditions. Use the formula:

$$
\begin{array}{llr}
P V=n R T \text { where } & P=\text { pressure in atmospheres } & \\
& V=\text { volume in liters } & R=\text { Universal Gas Constant } \\
& n=\text { number of moles of gas } & T=\text { Kelvin temperature } \bullet \mathrm{K}
\end{array}
$$

Use the ideal gas law to solve each problem.
I. How many moles of oxygen will occupy a volume of 2.5 liters at 1.2 atm and $25^{\circ} \mathrm{C}$?
\qquad
2. What volume will 2.0 moles of nitrogen occupy at 720 Torr and $2 \overline{0}^{\circ} \mathrm{C}$?
\qquad
3. What pressure will be exerted by 25 g of CO_{2} at a temperature of $25^{\circ} \mathrm{C}$ and a volume of $50 \overline{\mathrm{~mL}} \mathrm{~m}$? \qquad
4. At what temperature will 5.00 g of Cl_{2} exert a pressure of 900 . Torr at a volume of $750 \overline{\mathrm{~mL}}$? \qquad
5. What is the density of NH_{3} at $80 \overline{0}$ Torr and $25^{\circ} \mathrm{C}$? \qquad
6. If the density of a gas is $1.2 \mathrm{~g} / \mathrm{L}$ at 745 . Torr and $2 \overline{0}^{\circ} \mathrm{C}$, what is its molecular mass?
7. How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 Torr and $27^{\circ} \mathrm{C}$? \qquad
8. What volume will 454 grams (I lb.) of hydrogen occupy at 1.05 atm and $25^{\circ} \mathrm{C}$?
\qquad
9. Find the number of grams of CO_{2} that exert a pressure of 785 Torr at a volume of 32.5 L and a temperature of $32^{\circ} \mathrm{C}$. \qquad
10. An elemental gas has a mass of 10.3 g . If the volume is 58.4 L and the pressure is 758 Torr at a temperature of $2.5^{\circ} \mathrm{C}$, what is the gas? \qquad
\qquad

Graham's Law of Effusion

Graham's Law states that a gas will effuse at a rate that is inversely proportional to the square root of its molecular mass, MM.

$$
\frac{\text { rate }_{1}}{\text { rate }_{2}}=\sqrt{\frac{M M_{2}}{M M_{1}}}
$$

Solve each problem.
I. Under the same conditions of temperature and pressure, how many times faster will hydrogen effuse compared to carbon dioxide?
2. If the carbon dioxide in problem I takes 32 seconds to effuse, how long will the hydrogen take?
3. What is the relative rate of effusion of NH_{3} compared to helium? Does NH_{3} effuse faster or slower than helium?
4. If the helium in problem 3 takes 20 seconds to effuse, how long will NH_{3} take?
5. An unknown gas effuses 0.25 times as fast as helium. What is the molecular mass of the unkown gas?
\qquad

Element Symbols

An element symbol can stand for one atom of the element or one mole of atoms of the element. (One mole $=6.02 \times 10^{23}$ atoms of an element.)

Write the symbol for each element.

l. oxygen
 \qquad

2. hydrogen \qquad
3. chlorine \qquad
4. mercury \qquad
5. fluorine \qquad
6. barium \qquad
7. helium \qquad
8. uranium \qquad
q. radon \qquad
9. sulfur \qquad
II. plutonium
\qquad
10. calcium \qquad
11. radium \qquad
12. cobalt \qquad
13. zinc \qquad
14. arsenic \qquad
15. lead \qquad
16. iron \qquad

Write the name of the element that corresponds with each symbol.
19. Kr
20. K \qquad
\qquad
22. Ne \qquad
23. Si \qquad
24. Zr \qquad
25. Sn \qquad
26. Pt \qquad 36. Ni \qquad
27. Na \qquad 37. Br \qquad
28. Al \qquad 38. Hg \qquad
\qquad

Atomic Structure

An atom is made up of protons and neutrons (both found in the nucleus) and electrons (in the surrounding electron cloud). The atomic number is equal to the number of protons. The mass number is equal to the number of protons plus neutrons.
In a neutral atom, the number of protons equals the number of electrons. The charge on an ion indicates an imbalance between protons and electrons. Too many electrons produce a negative charge. Too few electrons produce a positive charge.
This structure can be written as part of a chemical symbol.
mass
number $\longrightarrow 15 \mathrm{~N}^{3+} \longleftarrow$ charge
atomic $\longrightarrow 7$ number

7 protons
8 neutrons (15-7)
4 electrons

Complete the chart.

$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Element/ } \\ \text { Ion } \end{array} \\ \hline \end{array}$	Atomic Number	Atomic Mass	Mass Number	Protons	Neutrons	Electrons
H						
H^{+}						
${ }_{6}^{12} \mathrm{C}$						
${ }_{3}^{7} \mathrm{Li+}$						
${ }_{17}^{35} \mathrm{Cl}^{-}$						
${ }_{19}^{39} \mathrm{~K}$						
${ }_{12}^{24} \mathrm{Mg}^{2+}$						
As ${ }^{3-}$						
Ag						
Ag ${ }^{1+}$						
S^{2-}						
U						

\qquad

Isotopes and Average Atomic Mass

Elements come in a variety of isotopes, meaning they are made up of atoms with the same atomic number but different atomic masses. These atoms differ in the number of neutrons.
The average atomic mass is the weighted average of all of the isotopes of an element.
Example: A sample of cesium is $75 \%{ }^{133} \mathrm{Cs}, 20 \%{ }^{132} \mathrm{Cs}$, and $5 \%{ }^{134} \mathrm{Cs}$. What is its average atomic mass?
Answer: $0.75 \times 133=99.75$
$0.20 \times 132=26.4$
$0.05 \times 134=\underline{6.7}$
Total $=132.85 \mathrm{amu}=$ average atomic mass

Determine the average atomic mass of each mixture of isotopes.
I. $80 \%{ }^{127} \mathrm{I}, 17 \%{ }^{126 \mathrm{I}}, 3 \%{ }^{128} \mathrm{I}$
2. $50 \%{ }^{197} \mathrm{Au}, 50 \%{ }^{198} \mathrm{Au}$
3. $15 \%{ }^{55} \mathrm{Fe}, 85 \%{ }^{56} \mathrm{Fe}$
4. $99 \%{ }^{1} \mathrm{H}, 0.8 \%^{2} \mathrm{H}, 0.2 \%^{3} \mathrm{H}$
5. $95 \%{ }^{14} \mathrm{~N}, 3 \%{ }^{15} \mathrm{~N}, 2 \%{ }^{16} \mathrm{~N}$
6. $98 \%{ }^{12} \mathrm{C}, 2 \%{ }^{14} \mathrm{C}$
\qquad

Electron Configuration (Level One)

Electrons are distributed in the electron cloud into principal energy levels (1, 2, 3, ...), sublevels (s, p, d, f), orbitals (s has $1, p$ has $3, d$ has $5, f$ has 7), and spin (two electrons allowed per orbital).

Example: Draw the electron configuration of sodium (atomic number II).

Draw the electron configuration of each atom.
I. Cl
2. N
3. Al
4. O
\qquad

Electron Configuration (Level Two)

At atomic numbers greater than 18, the sublevels begin to fill out of order. A good approximation of the order of filling can be determined using the diagonal rule.

Draw the electron configuration of each atom.
I. K
2. V
3. Co
4. Zr
\qquad

Valence Electrons

The valence electrons are the electrons in the outermost principal energy level. They are always s electrons or s and p electrons. Since the total number of electrons possible in s and p sublevels is eight, there can be no more than eight valence electrons.

Example: carbon
Electron configuration is $1 s^{2} \quad 2 s^{2} \quad 2 p^{2}$.
Carbon has 4 valence electrons.

Determine the number of valence electrons in each atom.
I. fluorine \qquad

2 phosphorus \qquad
3. calcium \qquad
4. nitrogen \qquad
5. iron \qquad
6. argon \qquad
7. potassium \qquad 17. aluminum \qquad
8. helium \qquad 18. hydrogen \qquad
9. magnesium \qquad 19. xenon \qquad
10. sulfur \qquad 20. copper \qquad
\qquad

Lewis Dot Diagrams

Lewis dot diagrams are a way to indicate the number of valence electrons around an atom.

Examples:
 Na^{-}

: $:$:
\mathbf{N}_{0}^{\bullet}

Draw the Lewis dot diagram of each atom.
I. calcium
6. carbon
2. potassium
7. helium
3. argon
8. oxygen
4. aluminum
9. phosphorus
5. bromine
10. hydrogen
\qquad

Atomic Structure Crossword

Across

I. The smallest particle of an element that can enter into chemical change
4. The number of protons in the nucleus of an atom
6. Cannot be decomposed into simpler substances by ordinary chemical means
7. State in which all electrons are at their lowest possible energy level
8. The positively charged particle found in the nucleus
II. Standard atomic mass unit for carbon
13. Most of the mass of an atom is here.
16. Mass number minus atomic number
18. Electrons in the outermost principal energy level
19. Protons and neutrons are these.

Down

2. Sum of the protons and neutrons in the nucleus of an atom
3. Charged atom or group of atoms
4. Equal to the number of protons in a neutral atom
5. The volume of an atom is determined by the size of its electron.
IO. Different forms of the same element
I2. State in which electrons have absorbed energy and "jumped" to a higher energy level
6. Atoms with the same atomic number but different atomic masses
7. The nucleus and all electrons in an atom except the valence electrons
8. s, p, d, f
\qquad

Nuclear Decay

Predict the product of each nuclear reaction.
I. ${ }^{42} \mathrm{~K} \longrightarrow{ }_{-1}^{0} \mathrm{e}+$ \qquad
2. ${ }^{239} \mathrm{Pu} \longrightarrow{ }_{2}^{4} \mathrm{He}+$ \qquad
3.

$$
{ }_{92}^{235 \mathrm{U}} \longrightarrow \longrightarrow{ }_{90}^{231 \mathrm{Th}}
$$

4. $\quad \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow$ \qquad

5. ${ }_{3}^{6} \mathrm{Li}+{ }_{0}^{\mathrm{O}} \mathrm{n} \longrightarrow{ }_{2}^{4} \mathrm{He}+$ \qquad
6. ${ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{15}^{30 \mathrm{P}}+$
7. ${ }_{4}^{\mathrm{B}} \mathrm{Be}+{ }_{4}^{\mathrm{H}} \longrightarrow$ \qquad $+{ }_{2}^{4} \mathrm{He}$
8. ${ }^{37} \mathrm{~K} \longrightarrow+{ }_{+1}^{0} \mathrm{e}+$ \qquad
9. \qquad $+{ }_{0} \mathrm{n} \longrightarrow{ }_{56}^{{ }_{5}^{42} \mathrm{Ba}}+{ }_{36}^{91} \mathrm{Kr}+3{ }_{0} \mathrm{n}$
10. ${ }_{92}^{238} \mathrm{U}+{ }_{2}^{4} \mathrm{He} \longrightarrow$ \qquad $+{ }_{0}{ }^{n}$

\qquad

Half-Lives of Radioactive Isotopes

Solve each problem.

1. How much of a 100.0 g sample of ${ }^{198} \mathrm{Au}$ is left after 8.10 days if its half-life is 2.70 days?
2. A 50.0 g sample of ${ }^{16} \mathrm{~N}$ decays to 12.5 g in 14.4 seconds. What is its half-life?
3. The half-life of ${ }^{42} \mathrm{~K}$ is 12.4 hours. How much of a $75 \overline{0} \mathrm{~g}$ sample is left after 62.0 hours?
4. What is the half-life of ${ }^{99} \mathrm{Tc}$ if a $50 \overline{0} \mathrm{~g}$ sample decays to 62.5 g in 639,000 years?
5. The half-life of ${ }^{232} \mathrm{Th}$ is 1.4×10^{10} years. If there are 25.0 g of the sample left after 2.8×10^{10} years, how many grams were in the original sample?
6. There are 5.0 g of ${ }^{131 \mathrm{I}}$ left after 40.35 days. How many grams were in the original sample if its half-life is 8.07 days?

Periodic Table Worksheet

Use a copy of the periodic table to answer each question.
I. Where are the most active metals located?
2. Where are the most active nonmetals located?
3. As you go from left to right across a period, the atomic size (decreases, increases).

Why?
4. As you travel down a group, the atomic size (decreases, increases). Why?
5. A negative ion is (larger, smaller) than its parent atom.
6. A positive ion is (larger, smaller) than its parent atom.
7. As you go from left to right across a period, the first ionization energy generally (decreases, increases). Why?
8. As you go down a group, the first ionization energy generally (decreases, increases). Why?
9. Where is the highest electronegativity found? \qquad
10. Where is the lowest electronegativity found? \qquad
1I. Elements of Group I are called \qquad .
12. Elements of Group 2 are called \qquad
13. Elements of Group 3-12 are called \qquad -
14. As you go from left to right across the periodic table, the elements go from (metals, nonmetals) to (metals, nonmetals).
15. Group 17 elements are called \qquad .
16. The most active element in Group 17 is \qquad .
17. Group 18 elements are called \qquad .
18. What sublevels are filling across the Transition Elements? \qquad
19. Elements within a group have a similar number of
20. Elements across a series have the same number of \qquad .
21. A colored ion generally indicates a \qquad .
22. As you go down a group, the elements generally become (more, less) metallic.
23. The majority of elements in the periodic table are (metals, nonmetals).
24. Elements in the periodic table are arranged according to their \qquad .
25. An element with both metallic and nonmetallic properties is called a \qquad
\qquad

Periodic Table Puzzle

Place the letter of each of the above elements next to its description.
I. An alkali metal \qquad
2. An alkaline earth metal \qquad
3. An inactive gas \qquad
4. An active nonmetal \qquad
5. A semimetal \qquad
6. An inner transition element \qquad
7. Its most common oxidation state is -2 . \qquad
\qquad
8. A metal with more than one oxidation state
9. A metal with an oxidation number of +3 \qquad
10. Has oxidation numbers of +1 and -1 \qquad
\qquad

Periodic Table Puzzle

1	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	18
A													E				
																D	
		C												G			B
									H		J						
	F																

										I				

Place the letter of each of the above elements next to its description. Then, using a copy of the periodic table, write the element's name and symbol.
I. An element in Group 17 \qquad
2. An alkali metal with an oxidation of +1 \qquad
3. A metalloid
4. Has 80 electrons \qquad
5. Its electron configuration is 2,4 . \qquad
6. Has 99 protons \qquad
7. An element in the fifth period with fewer than 50 protons \qquad
8. Its electron configuration is $2,8,18,18,8$. \qquad
9. A transition metal with one electron in its outer shell \qquad
10. An alkaline earth metal
\qquad

Ionic Bonding

Ionic bonding occurs when a metal transfers one or more electrons to a nonmetal in an effort to attain a stable octet of electrons. For example, the transfer of an electron from sodium to chlorine can be depicted by a Lewis dot diagram.

Calcium would need two chlorine atoms to get rid of its two valence electrons.

Sketch the transfer of electrons in each combination.
I. $K+F$
2. $\mathrm{Mg}+\mathrm{I}$
3. $\mathrm{Be}+\mathrm{S}$
4. $\mathrm{Na}+\mathrm{O}$
5. $\mathrm{Al}+\mathrm{Br}$
\qquad

Covalent Bonding

Covalent bonding occurs when two or more nonmetals share electrons, attempting to attain a stable octet of electrons at least part of the time.

Example:

Note that hydrogen is content with 2, not 8 , electrons.

Sketch how covalent bonding occurs in each pair of atoms. Atoms may share one, two, or three pairs of electrons.
I. $\mathrm{H}+\mathrm{H}\left(\mathrm{H}_{2}\right)$
2. $\mathrm{F}+\mathrm{F}\left(\mathrm{F}_{2}\right)$
3. $\mathrm{O}+\mathrm{O}\left(\mathrm{O}_{2}\right)$
4. $\mathrm{N}+\mathrm{N}\left(\mathrm{N}_{2}\right)$
5. $\mathrm{C}+\mathrm{O}\left(\mathrm{CO}_{2}\right)$
6. $\mathrm{H}+\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$
\qquad

Types of Chemical Bonds

Identify each compound as ionic (metal + nonmetal), covalent (nonmetal + nonmetal), or both (compound containing a polyatomic ion).
l. CaCl_{2} \qquad II. MgO
2. CO_{2} \qquad 12. $\mathrm{NH}_{4} \mathrm{Cl}$ \qquad
3. $\mathrm{H}_{2} \mathrm{O}$ \qquad 13. HCl \qquad
4. BaSO_{4} \qquad 14. KI \qquad
5. $\mathrm{K}_{2} \mathrm{O}$ \qquad
6. NaF \qquad
7. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ \qquad 17. AlPO_{4} \qquad
8. CH_{4} \qquad 18. FeCl_{3} \qquad
9. SO_{3} \qquad 19. $\quad \mathrm{P}_{2} \mathrm{O}_{5}$ \qquad
20. $\mathrm{N}_{2} \mathrm{O}_{3}$ \qquad
\qquad

Shapes of Molecules

Using VSEPR theory, name and sketch the shape of each molecule.

I. N_{2}	7. HF
2. $\mathrm{H}_{2} \mathrm{O}$	8. $\mathrm{CH}_{3} \mathrm{OH}$
3. CO_{2}	9. $\mathrm{H}_{2} \mathrm{~S}$
4. NH_{3}	10. I_{2}
5. CH_{4}	II. CHCl_{3}
6. SO_{3}	12. O_{2}

\qquad

Polarity of Molecules

Identify each molecule as polar or nonpolar.

I. N_{2}	7. HF
2. $\mathrm{H}_{2} \mathrm{O}$	8. $\mathrm{CH}_{3} \mathrm{OH}$
3. CO_{2}	9. $\mathrm{H}_{2} \mathrm{~S}$
4. NH_{3}	IO. I_{2}
5. CH_{4}	11. CHCl_{3}
6. SO_{3}	I2. O_{2}

Chemical Bonding Crossword

Across

I. Ammonia is polar because its shape is \qquad .
3. Word used to describe a molecule with an unequal charge distribution
6. Type of bond formed between an active metal and a nonmetal
8. The simultaneous attraction of electrons for the nucleii of two or more atoms is a chemical \qquad .
11. Type of covalent bond in which one atom donates both electrons
14. Bonding that is responsible for the relatively high boiling point of water
15. Type of covalent bond found in diatomic molecules
16. Carbon dioxide is nonpolar because it is \qquad .
17. Particles formed from covalent
bonding
\qquad

Writing Formulas (Crisscross Method)

Write the formula of the compound produced from the listed ions.

	Cl^{-}	$\mathrm{CO}_{3}{ }^{-2}$	OH^{-}	$\mathrm{SO}_{4}{ }^{-2}$	$\mathrm{PO}_{4}{ }^{-3}$	$\mathrm{NO}_{3}{ }^{-}$
Na+						
NH4 ${ }_{4}{ }^{+}$						
K+						
Ca^{2+}						
$\mathbf{M g}{ }^{\mathbf{2 +}}$						
$\mathbf{Z n}{ }^{\mathbf{2 +}}$						
Fe^{3+}						
Al^{3+}						
Co^{3+}						
$\mathrm{Fe}^{\mathbf{2 +}}$						
\mathbf{H}^{+}						

\qquad

Naming Ionic Compounds

Name each compound using the Stock Naming System.

1. CaCO_{3}
2. KCl
3. FeSO_{4}
4. LiBr
5. MgCl_{2}
6. FeCl_{3}
7. $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
8. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
9. $\mathrm{Al}(\mathrm{OH})_{3}$
10. $\mathrm{CuC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
II. PbSO_{3}
11. NaClO_{3}
12. $\mathrm{CaC}_{2} \mathrm{O}_{4}$
13. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
14. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
15. NaHSO_{4}
16. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
17. $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$
18. CuSO_{4}
19. NaHCO_{3}
20. NiBr_{3}
21. $\operatorname{Be}\left(\mathrm{NO}_{3}\right)_{2}$
22. ZnSO_{4}
23. AuCl_{3}
24. KMnO_{4}
\qquad

Naming Molecular Compounds

Name each covalent compound.

1. CO_{2}
2. CO
3. SO_{2}
4. SO_{3}
5. $\mathrm{N}_{2} \mathrm{O}$
6. NO
7. $\mathrm{N}_{2} \mathrm{O}_{3}$
8. NO_{2}
9. $\quad \mathrm{N}_{2} \mathrm{O}_{4}$
10. $\mathrm{N}_{2} \mathrm{O}_{5}$
II. PCl_{3}
11. PCl_{5}
12. $\quad \mathrm{NH}_{3}$
13. SCl_{6}
14. $\quad \mathrm{P}_{2} \mathrm{O}_{5}$
15. CCl_{4}
16. SiO_{2}
17. CS_{2}
18. $\quad \mathrm{OF}_{2}$
19. PBr_{3}

Naming Acids

Name each acid.
l. HNO_{3}
2. HCl
3. $\mathrm{H}_{2} \mathrm{SO}_{4}$
4. $\mathrm{H}_{2} \mathrm{SO}_{3}$
5. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
6. HBr
7. HNO_{2}
8. $\mathrm{H}_{3} \mathrm{PO}_{4}$
9. $\mathrm{H}_{2} \mathrm{~S}$
10. $\mathrm{H}_{2} \mathrm{CO}_{3}$

Write the formula of each acid.
II. sulfuric acid
12. nitric acid
13. hydrochloric acid
14. acetic acid
15. hydrofluoric acid
16. phosphorous acid
17. carbonic acid
18. nitrous acid
19. phosphoric acid
20. hydrosulfuric acid
\qquad

Writing Formulas from Names

Write the formula of each compound.
I. ammonium phosphate
2. iron(II) oxide
3. iron(III) oxide
4. carbon monoxide
5. calcium chloride
6. potassium nitrate
7. magnesium hydroxide
8. aluminum sulfate
9. copper(II) sulfate
10. lead(IV) chromate
II. diphosphorus pentoxide
12. potassium permanganate
13. sodium hydrogen carbonate \qquad
14. zinc nitrate
15. aluminum sulfite
\qquad

Gram Formula Mass

Determine the gram formula mass (the mass of one mole) of each compound.
I. KMnO_{4}
2. KCl \qquad
3. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ \qquad
4. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
5. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
6. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
7. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ \qquad
8. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
9. $\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
II. $\mathrm{H}_{2} \mathrm{CO}_{3}$
12. $\mathrm{Hg}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
13. $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$
14. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
15. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
\qquad

Moles and Mass

Determine the number of moles in each quantity.
I. 25 g of NaCl
2. I 25 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$
3. IOO. g of KMnO_{4}
4. 74 g of KCl
5. 35 g of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Determine the number of grams in each quantity.
6. 2.5 mol of NaCl
7. 0.50 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$
8. $\quad 1.70 \mathrm{~mol}$ of KMnO_{4}
9. $\quad 0.25 \mathrm{~mol}$ of KCl
10. 3.2 mol of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
\qquad

The Mole and Volume

For gases at STP (273 K and I atm pressure), one mole occupies a volume of 22.4 L . Identify the volume each quantity of gas will occupy at STP.

I. I. 00 mole of H_{2}
2. 3.20 moles of O_{2}
3. $\quad 0.750$ mole of N_{2}
4. $\quad 1.75$ moles of CO_{2}
5. 0.50 mole of NH_{3}

6. $\quad 5.0 \mathrm{~g}$ of H 2
7. $100 . \mathrm{g} \mathrm{of}_{2}$
8. 28.0 g of N_{2}
9. 60. g of CO_{2}
1. IO. g of NH_{3}
\qquad

The Mole and Avogadro's Number

One mole of a substance contains Avogadro's number (6.02×10^{23}) of molecules.

Identify how many molecules are in each quantity.

I. 2.0 mol	
2.	1.5 mol
3.	0.75 mol
4.	15 mol
5.	0.35 mol

Identify how many moles are in the number of molecules listed.
6. 6.02×10^{23}
7. 1.204×10^{24}
8. 1.5×10^{20}
9. $\quad 3.4 \times 10^{26}$
10. 7.5×10^{19}
\qquad

Mixed Mole Problems

Solve each problem.
I. How many grams are there in 1.5×10^{25} molecules of CO_{2} ?
2. What volume would the CO_{2} in problem I occupy at STP?
3. A sample of NH_{3} gas occupies 75.0 liters at STP. How many molecules is this?
4. What is the mass of the sample of NH_{3} in problem 3?
5. How many atoms are there in 1.3×10^{22} molecules of NO_{2} ?
6. A 5.0 g sample of O_{2} is in a container at STP. What volume is the container?
7. How many molecules of O_{2} are in the container in problem 6? How many atoms of oxygen?
\qquad

Percentage Composition

Determine the percentage composition of each compound.
I. KMnO_{4}
$K=$ \qquad
$\mathrm{Mn}=$ \qquad
$0=$ \qquad
2. HCl
$\mathrm{H}=$ \qquad
$\mathrm{Cl}=$ \qquad
3. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Mg}=$ \qquad
$\mathrm{N}=$ \qquad
O = \qquad
4. $\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$
\qquad
5. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$\mathrm{Al}=$ \qquad
$S=$ \qquad
$\bigcirc=$ \qquad

Solve each problem.
6. How many grams of oxygen can be produced from the decomposition of IOO. g of KClO_{3} ? \qquad
7. How much iron can be recovered from 25.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$? \qquad
8. How much silver can be produced from 125 g of $\mathrm{Ag}_{2} \mathrm{~S}$? \qquad
\qquad

Determining Empirical Formulas

Identify the empirical formula (lowest whole number ratio) of each compound.
I. 75% carbon, 25% hydrogen
2. 52.7% potassium, 47.3% chlorine
3. 22.1% aluminum, 25.4% phosphorus, 52.5% oxygen
4. 13% magnesium, 87% bromine
5. 32.4% sodium, 22.5% sulfur, 45.1% oxygen
6. 25.3% copper, 12.9% sulfur, 25.7% oxygen, 36 . 1% water
\qquad

Determining Molecular Formulas (True Formulas)

Solve each problem.
I. The empirical formula of a compound is NO_{2}. Its molecular mass is $92 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
2. The empirical formula of a compound is CH_{2}. Its molecular mass is $70 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
3. A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is $60 . \mathrm{g} / \mathrm{mol}$. What is its molecular formula?
4. A compound is 64.9% carbon, 13.5% hydrogen, and 21.6% oxygen. Its molecular mass is $74 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
5. A compound is 54.5% carbon, 9 . I\% hydrogen, and 36.4% oxygen. Its molecular mass is $88 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
\qquad

Composition of Hydrates

A hydrate is an ionic compound with water molecules loosely bonded to its crystal structure. The water is in a specific ratio to each formula unit of the salt. For example, the formula $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$ indicates that there are five water molecules for every one formula unit of CuSO_{4}.

Solve each problem.
I. What percentage of water is found in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?
2. What percentage of water is found in $\mathrm{Na}_{2} \mathrm{~S} \bullet 9 \mathrm{H}_{2} \mathrm{O}$?
3. A 5.0 g sample of a hydrate of BaCl_{2} was heated, and only 4.3 g of the anhydrous salt remained. What percentage of water was in the hydrate?
4. A 2.5 g sample of a hydrate of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ was heated, and only 1.7 g of the anhydrous salt remained. What percentage of water was in the hydrate?
5. A 3.0 g sample of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ is heated to constant mass. How much anhydrous salt remains?
6. A 5.0 g sample of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$ is heated to constant mass. How much anhydrous salt remains?
\qquad

Balancing Chemical Equations

Rewrite and balance each equation.
I. $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
2. $\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\mathrm{O}_{2}$
3. $\mathrm{NaCl}+\mathrm{F}_{2} \rightarrow \mathrm{NaF}+\mathrm{Cl}_{2}$
4. $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{AgNO}_{3}+\mathrm{MgCl}_{2} \rightarrow \mathrm{AgCl}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
6. $\mathrm{AlBr}_{3}+\mathrm{K}_{2} \mathrm{SO} \rightarrow \mathrm{KBr}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
7. $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
8. $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
q. $\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{FeCl}_{3}+\mathrm{NaOH} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{NaCl}$
II. $\mathrm{P}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{5}$ \qquad
12. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$ \qquad
13. $\quad \mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{Ag}+\mathrm{O}_{2}$
14. $\mathrm{S}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$
15. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
16. $\mathrm{K}+\mathrm{MgBr}_{2} \rightarrow \mathrm{KBr}+\mathrm{Mg}$
17. $\mathrm{HCl}+\mathrm{CaCO}_{3} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
\qquad

Word Equations

Rewrite each word equation as a chemical equation. Then, balance the equation.
I. zinc + lead(II) nitrate yield zinc nitrate + lead
2. aluminum bromide + chlorine yield aluminum chloride + bromine
3. sodium phosphate + calcium chloride yield calcium + sodium chloride
4. potassium chlorate, when heated, yields potassium chloride + oxygen gas
5. aluminum + hydrochloric acid yield aluminum chloride + hydrogen gas
6. calcium hydroxide + phosphoric acid yield calcium phosphate + water
7. copper + sulfuric acid yield copper(II) sulfate + water + sulfur dioxide
8. hydrogen + nitrogen monoxide yield water + nitrogen
\qquad

Classification of Chemical Reactions

Identify each reaction as synthesis, decomposition, cationic or anionic single replacement, or double replacement.
I. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
3. $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
4. $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
5. $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$
6. $2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$
7. $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
8. $\mathrm{AgNO}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
q. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
10. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
\qquad

Predicting Products of Chemical Reactions

Predict the product in each reaction. Then, write the balanced equation and classify the reaction.
I. magnesium bromide + chlorine
2. aluminum + iron(III) oxide
3. silver nitrate + zinc chloride
4. hydrogen peroxide (catalyzed by manganese dioxide)
5. zinc + hydrochloric acid
6. sulfuric acid + sodium hydroxide
7. sodium + hydrogen
8. acetic acid + copper
\qquad

Stoichiometry: Mole-Mole Problems

Solve each problem.
I. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

How many moles of hydrogen are needed to completely react with two moles of nitrogen?
2. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

How many moles of oxygen are produced by the decomposition of six moles of potassium chlorate?
3. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ How many moles of hydrogen are produced from the reaction of three moles of zinc with an excess of hydrochloric acid?
4. $\quad \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

How many moles of oxygen are necessary to react completely with four moles of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?
5. $\mathrm{K}_{3} \mathrm{PO}_{4}+\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow 3 \mathrm{KNO}_{3}+\mathrm{AlPO}_{4}$ How many moles of potassium nitrate $\left(\mathrm{KNO}_{3}\right)$ are produced when six moles of potassium phosphate $\left(\mathrm{KPO}_{4}\right)$ react with two moles of aluminum nitrate $\left(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\right)$?
\qquad

Stoichiometry: Volume-Volume Problems

Solve each problem.
I. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

What volume of hydrogen is necessary to react with five liters of nitrogen to produce ammonia? (Assume constant temperature and pressure.)
2. What volume of ammonia is produced in the reaction in problem I?
3. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

If 20 liters of oxygen are consumed in the above reaction, how many liters of carbon dioxide are produced?
4. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}+\mathrm{O}_{2}$

If 30 mL of hydrogen are produced in the above reaction, how many milliliters of oxygen are produced?
5. $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$

How many liters of carbon dioxide are produced if 75 liters of carbon monoxide are burned in oxygen? How many liters of oxygen are necessary?
\qquad

Stoichiometry: Mass-Mass Problems

Solve each problem.
I. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

How many grams of potassium chloride are produced if 25 g of potassium chlorate decompose?
2. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ How many grams of hydrogen are necessary to react completely with 50.0 g of nitrogen in the above reaction?
3. How many grams of ammonia are produced in the reaction in problem 2 ?
4. $2 \mathrm{AgNO}_{3}+\mathrm{BaCl} \rightarrow 2 \mathrm{AgCl}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)$

How many grams of silver chloride are produced from 5.0 g of silver nitrate reacting with an excess of barium chloride?
5. How much barium chloride is necessary to react with the silver nitrate in problem 4 ?
\qquad

Stoichiometry: Mixed Problems

Solve each problem.
I. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

What volume of NH_{3} at STP is produced if $25.0 \mathrm{~g} \mathrm{of} \mathrm{N}_{2}$ is reacted with an excess of H_{2} ?
2. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

If 5.0 g of KClO_{3} are decomposed, what volume of O_{2} is produced at STP?
3. How many grams of KCl are produced in problem 2 ?
4. $\quad \mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ What volume of hydrogen at STP is produced when 2.5 g of zinc react with an excess of hydrochloric acid?
5. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

How many molecules of water are produced if 2.0 g of sodium sulfate are produced in the above reaction?
6. $2 \mathrm{AlCl}_{3} \rightarrow 2 \mathrm{Al}+3 \mathrm{Cl}_{2}$

If 10.0 g of aluminum chloride are decomposed, how many molecules of Cl_{2} are produced?
\qquad

Stoichiometry: Limiting Reagent

Solve each problem.
I. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

How many grams of NH_{3} can be produced from the reaction of 28 g of N_{2} and 25 g of H_{2} ?
2. How much of the excess reagent in problem I is left over?
3. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$

What volume of hydrogen at STP is produced from the reaction of 50.0 g of Mg and the equivalent of 75 g of HCl ?
4. How much of the excess reagent in problem 3 is left over?
5. $3 \mathrm{AgNO}_{3}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}+3 \mathrm{NaNO}_{3}$

Silver nitrate and sodium phosphate are reacted in equal amounts of 200. g each. How many grams of silver phosphate are produced?
6. How much of the excess reagent in problem 5 is left over?

Solubility Curves

Answer each question based on the solubility curve shown.

1. Which salt is least soluble in water at $20^{\circ} \mathrm{C}$? \qquad
2. How many grams of potassium chloride can be dissolved in 200 g of water at $80^{\circ} \mathrm{C}$? \qquad
3. At $40^{\circ} \mathrm{C}$, how much potassium nitrate can be dissolved in 300 g of water?
\qquad
4. Which salt shows the least change in solubility from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
\qquad
5. At $30^{\circ} \mathrm{C}, 85 \mathrm{~g}$ of sodium nitrate are dissolved in 100 g of water. Is this solution saturated, unsaturated, or supersaturated? \qquad
6. A saturated solution of potassium chlorate is formed from 100 g of water. If the saturated solution is cooled from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, how many grams of precipitate are formed?

7. What compound shows a decrease in solubility from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? \qquad
8. Which salt is most soluble at $10^{\circ} \mathrm{C}$? \qquad
9. Which salt is least soluble at $50^{\circ} \mathrm{C}$? \qquad
10. Which salt is least soluble at $90^{\circ} \mathrm{C}$? \qquad
\qquad

Molarity (M)

Molarity $=\frac{\text { moles of solute }}{\text { liter of solution }}$

Solve each problem.
I. What is the molarity of a solution in which 58 g of NaCl are dissolved in I .0 L of solution?
2. What is the molarity of a solution in which 10.0 g of AgNO_{3} are dissolved in 500. mL of solution?
3. How many grams of KNO_{3} should be used to prepare 2.00 L of a 0.500 M solution?
4. To what volume should 5.0 g of KCl be diluted in order to prepare a 0.25 M solution?
5. How many grams of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are needed to prepare 100. mL of a 0.10 M solution?
\qquad

Molarity by Dilution

Acids are usually acquired from chemical supply houses in concentrated form. These acids are diluted to the desired concentration by adding water. Since moles of acid before dilution equal moles of acid after dilution, and moles of acid $=M \times V$, then $M_{1} \times V_{1}=M_{2} \times V_{2}$.

Solve each problem.
I. How much concentrated 18 M sulfuric acid is needed to prepare 250 mL of a 6.0 M solution?
2. How much concentrated 12 M hydrochloric acid is needed to prepare $\mathrm{I} \overline{0} 0 \mathrm{~mL}$ of a 2.0 M solution?
3. To what volume should 25 mL of I 5 M nitric acid be diluted to prepare a 3.0 M solution?
4. How much water should be added to $50 . \mathrm{mL}$ of I 2 M hydrochloric acid to produce a 4.0 M solution?
5. How much water should be added to $100 . \mathrm{mL}$ of I 8 M sulfuric acid to prepare a I. 5 M solution?
\qquad

Molality (m)

$$
\text { Molality }=\frac{\text { moles of solute }}{\text { kg of solvent }}
$$

Solve each problem.
I. What is the molality of a solution in which 3.0 moles of NaCl are dissolved in 1.5 kg of water?
2. What is the molality of a solution in which 25 g of NaCl are dissolved in 2.0 kg of water?
3. What is the molality of a solution in which 15 g of I_{2} are dissolved in $500 . \mathrm{g}$ of alcohol?
4. How many grams of I_{2} should be added to 750 g of CCl_{4} to prepare a 0.020 m solution?
5. How much water should be added to 5.00 g of KCl to prepare a 0.500 m solution?
\qquad

Normality (N)

normality $=$ molarity \times total positive oxidation number of solute
Example: What is the normality of 3.0 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
Since the total positive oxidation number of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $+2\left(2 \mathrm{H}^{+}\right), \mathrm{N}=6.0$.

Solve each problem.

1. What is the normality of a 2.0 M NaOH solution?
2. What is the normality of a $2.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution?
3. A solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 3.0 N . What is its molarity?
4. What is the normality of a solution in which 2.0 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ is dissolved in I .0 L of solution?
5. How much AlCl_{3} should be dissolved in 2.00 L of solution to produce a 0.150 N solution?
\qquad

Electrolytes

Electrolytes are substances that break up (dissociate or ionize) in water to produce ions. These ions are capable of conducting an electric current.
Generally, electrolytes consist of acids, bases, and salts (ionic compounds).
Nonelectrolytes are usually covalent compounds, with the exception of acids.

Check the appropriate column to classify each compound as either an electrolyte or a nonelectrolyte.

Compound	Electrolyte	Nonelectrolyte
I. NaCl		
2. $\mathrm{CH}_{3} \mathrm{OH}$ (methyl alcohol)		
3. $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}$ (glycerol)		
4. HCl		
5. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (sugar)		
6. NaOH		
7. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethyl alcohol)		
8. $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)		
9. $\mathrm{NH}_{4} \mathrm{OH}\left(\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}\right)$		
10. $\mathrm{H}_{2} \mathrm{SO}_{4}$		

\qquad

Effect of a Solute on Freezing and Boiling Points

Use the following formulas to calculate changes in freezing and boiling points due to the presence of a nonvolatile solute. The freezing point is always lowered; the boiling point is always raised.
$\Delta T_{F}=M \times d . f . \times k_{F}$
$k_{B} H_{2} O=0.52^{\circ} \mathrm{C} / \mathrm{M}$
$\Delta T_{B}=M \times$ d. $f . \times k_{B}$
$k_{F} H_{2} O=1.86^{\circ} \mathrm{C} / \mathrm{M}$
$M=$ molality of solution k_{F} and $k_{B}=$ constants for particular solvent
d.f. $=$ dissociation factor (how many particles the solute breaks up into; for a nonelectrolyte, d. $f_{1}=1$)
(The theoretical dissociation factor is always greater than observed effect.)

Solve each problem.
I. What is the new boiling point if 25 g of NaCl are dissolved in 1.0 kg of water?
2. What is the freezing point of the solution in problem I?
3. What are the new freezing and boiling points of water if $50 . \mathrm{g}$ of ethylene glycol (molecular mass $=62 \mathrm{~g} / \mathrm{M}$) are added to $50 . \mathrm{g}$ of water?
4. When 5.0 g of a nonelectrolyte are added to 25 g of water, the new freezing point is $-2.5^{\circ} \mathrm{C}$. What is the molecular mass of the unknown compound?
\qquad

Solubility (Polar vs. Nonpolar)

Generally, "like dissolves like." Polar molecules dissolve other polar molecules and ionic compounds. Nonpolar molecules dissolve other nonpolar molecules. Alcohols, which have characteristics of both, tend to dissolve in both types of solvents but will not dissolve ionic solids.

Check the appropriate columns to indicate whether the solute is soluble in a polar or nonpolar solvent.

Solutes	water	Solvents CCl_{4}	alcohol
I. NaCl			
2. I_{2}			
3. ethanol			
4. benzene			
5. Br_{2}			
6. KNO_{3}			
7. toluene			
8. $\mathrm{Ca}(\mathrm{OH})_{2}$			

Solutions Crossword

Across

2. Solution containing the maximum amount of solute possible at that temperature
3. Two liquids which can mix are said to be \qquad .
4. The presence of a nonvolatile solute will
\qquad the boiling point of a solvent.
5. A homogeneous mixture
6. Substance present in larger amounts in a mixture
7. Moles of a solute per kilogram of solvent
8. Solution containing a relatively large amount of solvent
9. The solubility of gases
\qquad increases. as temperature

10. State in which the rate of dissolving is equal to the rate of precipitation
11. The presence of a nonvolatile solute will \qquad the freezing point of a solvent.
12. These substances dissociate or ionize in water and are then able to conduct an electric current.

Down

I. Properties that depend on the number of particles in a solution
3. Solution in which more solute can be dissolved
5. Solution containing a relatively large amount of dissolved solute
7. Substance present in a smaller amount in a mixture
8. The solubility of most solids \qquad as temperature increases.
11. Maximum amount of solute that can dissolve in a stated amount of solute at a given temperature
12. Moles of solute per liter of solution
16. Solutions in which water is the solvent are called \qquad .
\qquad

Potential Energy Diagram

Reaction Coordinate \rightarrow

$$
A+B \longleftrightarrow C+D+\text { energy }
$$

Answer each question using the graph shown.
I. Is the above reaction endothermic or exothermic? \qquad
2. Which letter represents the potential energy of the reactants? \qquad
3. Which letter represents the potential energy of the products? \qquad
4. Which letter represents the heat of reaction $(\Delta \mathrm{H})$? \qquad
5. Which letter represents the activation energy of the forward reaction? \qquad
6. Which letter represents the activation energy of the reverse reaction? \qquad
7. Which letter represents the potential energy of the activated complex?
\qquad
8. Is the reverse reaction endothermic or exothermic? \qquad
9. If a catalyst were added, what letter(s) would change? \qquad

Entropy

Entropy is the degree of randomness in a substance. The symbol for change in entropy is ΔS.
Solids are very ordered and have low entropy. Liquids and aqueous ions have more entropy because they move about more freely. Gases have an even larger amount of entropy. According to the Second Law of Thermodynamics, nature is always proceeding to a state of higher entropy.

Determine whether each reaction shows an increase or decrease in entropy.
I. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
2. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
3. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
4. $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
5. $\mathrm{KCl}(\mathrm{s}) \rightarrow \mathrm{KCl}(\mathrm{l})$
6. $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
7. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{3}(\mathrm{l})$
8. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
9. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
10. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
II. $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
12. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{AlI}_{3}(\mathrm{~s})$
13. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
14. $2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
15. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
\qquad

Gibbs Free Energy

For a reaction to be spontaneous, the sign of ΔG (Gibbs free energy) must be negative. The mathematical formula for this value is:

$$
\Delta G=\Delta H-T \Delta S
$$

where $\Delta H=$ change in enthalpy or heat of reaction
$T=$ temperature in Kelvin
$\Delta S=$ change in entropy or randomness

Complete the table for the sign of ΔG : ,+ -, or undetermined. When conditions allow for an undetermined sign of ΔG, temperature will decide spontaneity.

ΔH	ΔS	ΔG
-	+	
+	-	
-	-	
+	+	

Answer each question.
I. The conditions in which ΔG is always negative are when ΔH is \qquad and ΔS is \qquad .
2. The conditions in which ΔG is always positive are when ΔH is \qquad and ΔS is \qquad .
3. When the situation is indeterminate, a low temperature favors the (entropy, enthalpy) factor and a high temperature favors the (entropy, enthalpy) factor.

Answer problems 4-6 with always, sometimes, or never.
4. The reaction: $\mathrm{Na}(\mathrm{OH})_{5} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+$ energy will \qquad be spontaneous.
5. The reaction: energy $+2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ will \qquad be spontaneous.
6. The reaction: energy $+\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ will \qquad be spontaneous.
7. What is the value of ΔG if $\Delta H=32.0 \mathrm{~kJ}, \Delta S=+25.0 \mathrm{~kJ} / \mathrm{K}$ and $\mathrm{T}=293 \mathrm{~K}$? \qquad
8. Is the reaction in problem 7 spontaneous? \qquad
9. What is the value of ΔG if $\Delta H=+12.0 \mathrm{~kJ}, \Delta S=5.00 \mathrm{~kJ} / \mathrm{K}$ and $\mathrm{T}=290 . \mathrm{K}$? \qquad
10. Is the reaction in problem 9 spontaneous? \qquad
\qquad

Equilibrium Constant (K)

Write the expression for the equilibrium constant (K) for each reaction.
I. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
2. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \longleftrightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
3. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longleftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
4. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
5. $\mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Li}+(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})$
\qquad

Calculations Using the Equilibrium Constant

Using the equilibrium constant expressions you determined on page 80, calculate the value of K when:
I. $\left(\mathrm{NH}_{3}\right)=0.0100 \mathrm{M},\left(\mathrm{N}_{2}\right)=0.0200 \mathrm{M},\left(\mathrm{H}_{2}\right)=0.0200 \mathrm{M}$
2. $\left(\mathrm{O}_{2}\right)=0.0500 \mathrm{M}$
3. $\left(\mathrm{H}^{+}\right)=1 \times 10^{-8} \mathrm{M},\left(\mathrm{OH}^{-}\right)=1 \times 10^{-6} \mathrm{M}$
4. $(\mathrm{CO})=2.0 \mathrm{M},\left(\mathrm{O}_{2}\right)=1.5 \mathrm{M},\left(\mathrm{CO}_{2}\right)=3.0 \mathrm{M}$
5. $(\mathrm{LL}+)=0.2 \mathrm{M},\left(\mathrm{CO}_{3}^{-2}\right)=0.1 \mathrm{M}$
\qquad

Le Chatelier's Principle

Le Chatelier's principle states that when a system at equilibrium is subjected to a stress, the system will shift its equilibrium point in order to relieve the stress.

Complete the chart by writing left, right, or none for equilibrium shift. Then, write decreases, increases, or remains the same for the concentrations of reactants and products, and for the value of K. The first one has been done for you.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22.0 \mathrm{kcal}
$$

Stress	Equilibrium Shift	$\left(\mathrm{N}_{2}\right)$	$\left(\mathrm{H}_{2}\right)$	$\left(\mathrm{NH}_{3}\right)$	K
I. Add N_{2}	right		decreases	increases	remains the same
2. Add H_{2}			-		
3. Add NH_{3}				-	
4. Remove N_{2}					
5. Remove H_{2}					
6. Remove NH_{3}				-	
7. Increase temperature					
8. Decrease temperature					
9. Increase pressure					
10. Decrease pressure					

\qquad

Le Chatelier's Principle (Cont.)
 $12.6 \mathrm{kcal}+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{HI}(\mathrm{g})$

$\left.$| Stress | Equilibrium
 Shift | $\left(\mathbf{H}_{\mathbf{2}}\right)$ | (I $\mathbf{I}_{\mathbf{2}}$ | (HI) | K |
| :--- | :---: | :---: | :---: | :---: | :---: |
| II. Add H | (| right | - | decreases | increases | | remains |
| :---: |
| the same | \right\rvert\,

$\mathrm{NAOH}(\mathrm{s}) \longleftrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})+10.6 \mathrm{kcal}$

Stress	$\begin{aligned} & \text { Equilibrium } \\ & \text { Shift } \end{aligned}$	$\begin{aligned} & \text { Amount } \\ & \mathrm{NaOH}(\mathrm{~s}) \end{aligned}$	$\left(\mathrm{Na}^{+}\right)$	(OH^{-})	K
21. Add $\mathrm{NaOH}(\mathrm{s})$		-			
22. Add NaCl (Adds Na^{+})			-		
				-	
24. $\left.\begin{array}{l}\text { Add H+ } \\ \text { (Removes } \mathrm{OH}^{-} \text {) }\end{array}\right)$				-	
25. Increase					
26. Decrease temperature					
27. Increase pressure					
28. Decrease pressure					

\qquad

Bronsted-Lowry Acids and Bases

According to Bronsted-Lowry theory, an acid is a proton $\left(\mathrm{H}^{+}\right)$donor and a base is a proton acceptor.

Example: $\mathrm{HCl} \xrightarrow{\mathrm{H}^{+}} \mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
The HCl acts as an acid, and the OH^{-}acts as a base. This reaction is reversible in that the $\mathrm{H}_{2} \mathrm{O}$ can give back the proton to the Cl^{-}.

Label the Bronsted-Lowry acids and bases in each reaction and show the direction of proton transfer.

l. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

4. $\mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O}+\longleftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{OH}^{-} \longleftrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
3. $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
\qquad

Conjugate Acid-Base Pairs

In the exercise on page 84, it was shown that after an acid has given up its proton, it is capable of getting the proton back and acting as a base. Conjugate base is what is left after an acid gives up a proton. The stronger the acid, the weaker the conjugate base. The weaker the acid, the stronger the conjugate base.

Complete the chart.
Conjugate Pairs

	Acid	Base	Equation
I.	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{HSO}_{4}{ }^{-}$	
2.	$\mathrm{H}_{3} \mathrm{PO}_{4}$		
3.		$\mathrm{H}_{2} \mathrm{SO}_{4} \longleftrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}{ }^{-}$	
4.		$\mathrm{~F}^{-}$	
5.	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$		
6.	$\mathrm{H}_{2} \mathrm{O}^{-}$		
7.		$\mathrm{SO}_{4}{ }^{2-}$	
8.	HPO_{4}^{-2}		
9.	$\mathrm{NH}_{4}{ }^{+}$		
10.		$\mathrm{H}_{2} \mathrm{O}$	

II. Which is a stronger base, HSO_{4}^{-}or $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$?
12. Which is a weaker base, Cl^{-}or NO_{2}^{-}? \qquad
\qquad

pH and pOH

The pH of a solution indicates how acidic or basic that solution is. A pH of less than 7 is acidic; a pH of 7 is neutral; and a pH greater than 7 is basic.

Since $\left(\mathrm{H}^{+}\right)\left(\mathrm{OH}^{-}\right)=10^{-14}$ at $25^{\circ} \mathrm{C}$, if $\left(\mathrm{H}^{+}\right)$is known, the $\left(\mathrm{OH}^{-}\right)$can be calculated and vice versa.

```
pH=-log(H+) So if (H+})=1\mp@subsup{0}{}{-6}M,pH=6
pOH = -log (OH-})\quad\mathrm{ So if (OH
Together, pH + pOH = 14.
```

Complete the chart.

	$\mathbf{(\mathbf { H } ^ { + })}$	$\mathbf{p H}$	$\mathbf{(\mathbf { O H } ^ { - })}$	$\mathbf{p O H}$	Acidic or Basic
1.	$10^{-5} \mathrm{M}$	5	$10^{-9} \mathrm{M}$	9	acidic
2.		7			
3.			$10^{-4} \mathrm{M}$		
4.	$10^{-2} \mathrm{M}$			11	
5.		12			
6.					
7.					
8.	$10^{-5} \mathrm{M}$				
9.					
10.					

\qquad pH of Solutions

Calculate the pH of each solution.
I. 0.01 M HCl
2. 0.00 IO M NaOH
3. $0.050 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
4. 0.030 M HBr
5. 0.150 M KOH
6. $2.0 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (Assume 5.0% dissociation.)
7. 3.0 M HF (Assume 10.0% dissociation.)
8. $0.50 \mathrm{M} \mathrm{HNO}_{3}$
9. $\quad 2.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ (Assume 5.00% dissociation.)

IO. $5.0 \mathrm{M} \mathrm{HNO}_{2}$ (Assume 1.0% dissociation.)
\qquad

Acid-Base Titration

To determine the concentration of an acid (or base), we can react it with a base (or acid) of known concentration until it is completely neutralized. This point of exact neutralization, known as the endpoint, is noted by the change in color of the indicator.
Use the following equation:

$$
N_{\mathrm{A}} \times V_{\mathrm{A}}=N_{\mathrm{B}} \times V_{\mathrm{B}} \quad \text { where } \quad \begin{aligned}
& N=\text { normality } \\
& V=\text { volume }
\end{aligned}
$$

Solve each problem.
I. A 25.0 mL sample of HCl was titrated to the endpoint with 15.0 mL of 2.0 N NaOH . What was the normality of the HCl ?
2. A 10.0 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was exactly neutralized by 13.5 mL of 1.0 M KOH . What is the normality of the $\mathrm{H}_{2} \mathrm{SO}_{4}$?
3. How much I. 5 M NaOH is necessary to exactly neutralize 20.0 mL of $2.5 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?
4. How much $0.5 \mathrm{M} \mathrm{HNO}_{3}$ is necessary to titrate 25.0 mL of $0.05 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution to the endpoint?
5. What is the molarity of a NaOH solution if 15.0 mL is exactly neutralized by 7.5 mL of a $0.02 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution?
\qquad

Hydrolysis of Salts

Salt solutions may be acidic, basic, or neutral, depending on the original acid and base that formed the salt.
strong acid + strong base \rightarrow neutral salt
strong acid + weak base \rightarrow acidic salt
weak acid + strong base \rightarrow basic salt
A weak acid and a weak base will produce any type of solution depending on the relative strengths of the acid and base involved.

Complete the chart for each salt shown.

Salt	Parent Acid	Parent Base	Type of Solution
I. KCl			
2. $\mathrm{NH}_{4} \mathrm{NO}_{3}$			
3. $\mathrm{Na}_{3} \mathrm{PO}_{4}$			
4. CaSO_{4}			
5. AlBr_{3}			
6. CuI_{2}			
7. MgF_{4}			
8. NaNO_{3}			
9. $\mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$			
I0. ZnCl_{2}			
II. SrSO_{4}			
I2. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$			

\qquad

Acids and Bases Crossword

Across

I. Scale of acidity
5. An acid that consists of only two elements
7. Substance that forms hydronium ions in water (Arrhenius \qquad)
8. This happens when an acid dissolves in water.
10. According to Bronsted-Lowry, an acid is a \qquad donor.
12. According to Bronsted-Lowry, a base is a proton \qquad .
13. Can act as either an acid or a base
14. These pairs differ only by a proton.
16. An acid with a small K_{a} value would be a \qquad acid.
17. Reaction of an ion with $\mathrm{H}_{2} \mathrm{O}$ to produce $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Down

2. $\mathrm{H}_{3} \mathrm{O}^{+}$
3. Formed from the reaction of an acid and a base
4. Procedure to determine the concentration of an acid or base
5. A solution that will resist changes in pH
6. Changes color at the endpoint of a titration
7. The reaction of an acid with a base
II. Substance that produces hydroxide ions in aqueous solution
(Arrhenius \qquad
8. When equivalent amounts of H^{+}and OH^{-}have reacted in a titration
\qquad

Assigning Oxidation Numbers

Assign oxidation numbers to all of the elements in each compound or ion shown.

I. HCl	II. $\mathrm{H}_{2} \mathrm{SO}_{3}$
2. KNO_{3}	12. $\mathrm{H}_{2} \mathrm{SO}_{4}$
3. OH^{-}	13. BaO_{2}
4. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$	14. KMnO_{4}
5. KClO_{3}	15. LiH
6. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	16. MnO_{2}
7. S_{8}	17. OF_{2}
8. $\mathrm{H}_{2} \mathrm{O}_{2}$	18. SO_{3}
9. PbO_{2}	19. NH_{3}
10. NaHSO_{4}	20. Na

\qquad

Redox Reactions

For each equation, identify the substance oxidized, the substance reduced, the oxidizing agent, and the reducing agent. Then, write the oxidation and reduction half-reactions.

Example:

oxidation half-reaction: $\mathrm{Mg}^{\circ} \rightarrow \mathrm{Mg}^{+2}+2 \mathrm{e}^{-}$
reduction half-reaction: $2 \mathrm{e}^{-}+\mathrm{Br}_{2}^{\circ} \rightarrow 2 \mathrm{Br}^{-}$
I. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{Fe}+\mathrm{Zn}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Zn}$
3. $2 \mathrm{Al}+3 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{Fe}$
4. $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
\qquad

Balancing Redox Equations

Balance each equation using the half-reaction method.

1. $\mathrm{Sn}^{\circ}+\mathrm{Ag}^{+} \rightarrow \mathrm{Sn}^{2+}+\mathrm{Ag}^{\circ}$
2. $\mathrm{Cr}^{\circ}+\mathrm{Pb}^{2+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Pb}^{\circ}$
3. $\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\mathrm{O}_{2}$
4. $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{PbS}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
6. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{~S}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
7. $\mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
8. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$
9. $\mathrm{KIO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4}$
10. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{CrCl}_{3}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
\qquad

The Electrochemical Cell

Answer each question, referring to the diagram and a table of standard electrode potentials.
I. Which is the more easily oxidized metal: aluminum or lead? \qquad
2. What is the balanced equation showing the spontaneous reaction that occurs?
3. What is the maximum voltage that the above cell can produce? \qquad
4. What is the direction of electron flow in the wire? \qquad
5. What is the direction of positive ion flow in the salt bridge? \qquad
6. Which electrode is decreasing in size? \qquad
7. Which electrode is increasing in size?
8. What is happening to the concentration of aluminum ions? \qquad
9. What is happening to the concentration of lead ions? \qquad
IO. What is the voltage in this cell when the reaction reaches equilibrium? \qquad
II. Which is the anode?
12. Which is the cathode?
13. Which is the positive electrode? \qquad
14. Which is the negative electrode? \qquad
\qquad

Electrochemistry Crossword

ACROSS

4. Unit of electrical potential
5. Electrode where oxidation tokes place
6. Both atoms and \qquad must be balanced in a redox equation.
7. The anode in an electrochemical cell has this charge.
8. Gain of electrons
9. Voltage of an electrochemical cell when it reaches equilibrium
10. A substance that is oxidized is the
\qquad agent.
11. Allows the flow of ions in an electrochemical cell

DOWN
I. The anode in an electrolytic cell has this charge.
2. Another word for on electrochemical cell
3. Electrode where reduction takes place
5. Process of layering a metal onto a surface in an electrolytic cell
8. Loss of electrons
II. A substance that is reduced is the
\qquad agent.
\qquad

Naming Hydrocarbons

Name each compound according to the IUPAC naming system.

I.	5.
2.	6.
3.	7.
4.	8.

\qquad

Structure of Hydrocarbons

Draw the structure of each compound.

I. ethane	5. ethyne	
2. propene	6. 3, 3-dimethylpentane	
3. 2-butene		

\qquad

Functional Groups

Classify each of the organic compounds as an alcohol, carboxylic acid, aldehyde, ketone, ether, or ester. Then, draw its structural formula.

I. $\mathrm{CH}_{3} \mathrm{COOH}$	6. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
2. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$	7. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	8. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
4. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$	9. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
5. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$	IO. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

\qquad

Naming Other Organic Compounds

Name each compound.

I.	6.
2.	7.
3.	8.
4.	9.
5.	10.

\qquad

Structures of Other Organic Compounds

Draw the structure of each compound.

| I. butanoic acid | 6. methyl methanoate (methyl formate) |
| :---: | :---: | :---: |
| 2. methanal | 7. 3-pentanol |
| 3. methanol | $8 . \quad$ methanoic acid (formic acid) |
| 4. butanone | |

\qquad

Organic Chemistry Crossword

Across

2. Hydrocarbons containing only single bonds
3. Contains two double bonds
4. Alcohol in which the hydroxyl group is attached to an end carbon
5. An alkane minus one hydrogen; It attaches to another carbon chain.
6. Compounds with the same molecular formula, but different structural formulas
II. A dihydroxy alcohol
7. Alcohol in which the hydroxyl is attached to a carbon attached to two other carbons
8. Open chain hydrocarbon containing one double bond
9. Organic compounds containing the benzene ring structure
10. Describes a hydrocarbon with a side chain of carbon atoms

Down

1. An alcohol with only one hydroxyl group in its structure
2. Alcohol in which the hydroxyl is attached to a carbon attached to three other carbons
3. General formula R-CHO
4. High molecular mass compound consisting of repeating units called monomers
5. General formula R-CO-R'
6. Contains one or more -OH groups
7. Saturated open chain hydrocarbon
8. Open chain hydrocarbon containing only one triple bond
9. Produced by the reaction of an alcohol and an acid
10. General formula R-O-R'
\qquad

Reference

Answer Key

Name_

Laboratory Equipment

Label the lab equipment.

Answer Key

Dimensional Analysis (Unit Factor Method)

Using this method, it is possible to solve many problems by using the relationship of one unit to another. For example, 12 inches = one foot. Since these two numbers represent the same value, the fractions 12 in. / I ft. and I It./I 12 in. are both equal to one. When you multiply another number by the number one, you do not change its value. However, you may change its unit,

> Example I: Convert 2 miles to inches.
> 2 miles $\times \frac{5,280 \mathrm{ft.}}{1 \text { mile }} \times \frac{12 \text { inches }}{1 \mathrm{ft} .}=126,720 \mathrm{in}$.

Example 2: How many seconds are in 4 days? 4 days $\times \frac{24 \text { hrs. }}{1 \text { day }} \times \frac{60 \mathrm{~min} .}{1 \mathrm{hr.}} \times \frac{60 \mathrm{sec} .}{1 \text { min. }}=345,600 \mathrm{sec}$

Solve each problem. Round irrational numbers to the thousandths place.
I. $3 \mathrm{hr} .=\frac{10,800}{} \mathrm{sec}$.
2. $0.035 \mathrm{mg}=\mathbf{0 . 0 0 3 5} \mathrm{cg}$
3. $5.5 \mathrm{~kg}=\quad 12.1 \mathrm{lb}$.
4. $2.5 \mathrm{yd}=\mathbf{9 0} \mathrm{in}$.
5. $1.3 \mathrm{yr}=\mathbf{2 8 , 4 7 0} \mathrm{hr}$.
6. 3 moles $=1.806 \times 10^{24}$ molecules (1 mole $=6.02 \times 10^{282}$ molecules)
7. 2.5×10^{44} molecules $=\mathbf{4 .} 152$ moles
8. 5 moles $=\quad 112 \quad$ liters $(1$ mole $=22.4$ liters $)$
Q. $100.11 \mathrm{terar}=\frac{4.46}{\text { moles }}$
10. 50 . liters $=1.344 \times 10^{24}$ molecules
II. 5.0×10^{24} molecules $=\quad 186.047$ Ilers
12. $7.5 \times 10^{3} \mathrm{~mL}=\mathbf{7 . 5}$ liters

Name

Scientific Notation

Scientists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros. We can express these numbers as powers of 10 Scientific notation takes the form of $M \times 10^{n}$ where $1 \leq M<10$ and n represents the number of decimal places to be moved. Positive n indicates the standard form is a large number. Negative n indicates a number between zero and one.

Example I: Convert $1,500,000$ to scientific notation.
Move the decimal point so that there is only one digit to its left, for a total of 6 places.
$1,500,000=1.5 \times 10^{6}$
Example 2: Convert 0.000025 to scientific notation.
For this, move the decimal point 5 places to the right.
$0.000025=2.5 \times 10^{-5}$
(Note that when a number starts out less than one, the exponent is always negative.)
Convert each number to scientific notation.

I. $0.005=5 \times 10^{-3}$	6.	$0.25=2.5 \times 10^{-1}$
2. $5.050=5.05 \times 10^{3}$	7.	$0.025=2.5 \times 10^{-2}$
3. $0.0008=8 \times 10^{-4}$	8.	$0.0025=\underline{2.5 \times 10^{-3}}$
4. $1,000=1 \times 10^{3}$	9.	$500=\underline{5 \times 10^{2}}$
5. $1,000,000=1 \times 10^{6}$	10.	$5,000=5 \times 10^{3}$

Convert each number to standard notation

1.	$1.5 \times 10^{3}=1,500$	16.	$3.35 \times 10^{-1}=$	0.335
12.	$1.5 \times 10^{-4}=\underline{0.0015}$	17.	$1.2 \times 10^{4}=$	0.00012
13.	$3.75 \times 10^{-2}=0.0375$	18.	$1 \times 10^{4}=$	10,000
14.	$3.75 \times 10^{2}=\underline{375}$	19.	$1 \times 10^{-1}=$	0.1
15.	$2.2 \times 10^{5}=220,000$	20.	$4 \times 10^{\circ}=$	4

Answer Key

Significant Figures

A measurement can only be as accurate and precise as the instrument that produced it. A scientist must be able to express the accuracy of a number, not just its numerical
value. We can determine the accuracy of a number by the number of significant figur it contains.

All digits I-१ inclusive are significant. Example: $\underline{129}$ has 3 significant figures.
2. Zeros between significant digits are always significant. Example: $\underline{5,007}$ has 4 significant figures.
3. Trailing zeros in a number are significant only if the number contains a decimal point. Sometimes, a decimal may be added without any number in the tenths place.

Example: 100.0 has 4 significant figures.
100 . has 3 significant figures.
100 has I significant figure.
4. Zeros in the beginning of a number whose only function is to place the decimal point are not significant. Example: $0.00 \underline{25}$ has 2 significant figures.
5. Zeros following a decimal significant figure are significant. Example: 0.000470 has 3 significant figures. 0.47000 has 5 significant figures.

Determine the number of significant figures in each number.
I. $0.02 \xrightarrow{1}$
2. $0.020 \quad 2$
3. $501-3$
4. $501.0 \quad 4$
5. $5,000 \mathrm{~L}$
6. $5,000.4$
7. $6,051,00 \quad 6$
8. $0.0005 \longrightarrow 1$
9. $0.1020 \quad 4$
10. $10,001 \quad 5$

Determine the location of the last significant place value by placing a bar over the digit. (Example: $1.700 \overline{0})$
11. $8,0 \overline{4} 0$
12. $0.9010 \overline{0}$
13. 3.01×10^{21}
14. $0.030 \overline{0}$
16. $0.00041 \overline{0}$
17. $699 . \overline{5}$
18. $4 . \overline{7} \times 10^{-2}$
19. $2.00 \overline{0} \times 10^{2}$
20. $10,800,000.0$

Name

Percentage Error

Percentage error is a way for scientists to express how far off a laboratory value is from the commonly accepted value.
The formula is:

$$
\left.\begin{array}{c|c}
\begin{array}{c}
\% \text { error }= \\
\text { absolute } \\
\text { value }
\end{array}
\end{array} \right\rvert\, \quad \begin{aligned}
& \text { Accepted Value }- \text { Experimental Value } \\
& \text { Accepted Value }
\end{aligned} \times 100
$$

Determine the percentage error in each problem

I. Experimental value $=1.24 \mathrm{~g}$ Accepted value $=1.30 \mathrm{~g}$	4.62\%
2. Experimental value $=1.24 \times 10^{-2} \mathrm{~g}$ Accepted value $=9.98 \times 10^{-3} \mathrm{~g}$	
3. Expermental value $=252 \mathrm{~mL}$ Accepted value $=225 \mathrm{~mL}$	12.0 \%
4. Experimental value $=22.2 \mathrm{~L}$ Accepted value $=22.4 \mathrm{~L}$	0.893\%
5. Experimental value $=125.2 \mathrm{mg}$ Accepted value $=124.8 \mathrm{mg}$	0.3\%

\qquad

Name_

Calculations Using Significant Figures

```
When multiplying and dividing, limit and round to the least number of significant figures
in any of the factors.
    Example I: }23.0\textrm{cm}\times432\textrm{cm}\times19\textrm{cm}=188,784\textrm{cm
        The answer is expressed as 190,000 cm}\mp@subsup{}{3}{3}\mathrm{ since 19 cm has only two
        significant figures.
When adding and subtracting, limit and round your answer to the least number of
decimal places in any of the numbers that make up your answer
    Example 2: }123.25\textrm{mL}+46.0\textrm{mL}+86.257\textrm{mL}=255.507\textrm{mL
        The answer is expressed as }255.5\textrm{mL}\mathrm{ since }46.0\textrm{mL}\mathrm{ has only one
        decimal place.
```

Perform each operation, expressing the answer in the correct number of significant figures.

$$
\text { 1. } 1.35 \mathrm{~m} \times 2.467 \mathrm{~m}=\quad \mathbf{3 . 3 3} \mathbf{~ m}^{\mathbf{2}}
$$

2. $1,035 \mathrm{~m}^{2} \div 42 \mathrm{~m}=\quad \mathbf{2 5 ~ m}$
3. $12.01 \mathrm{~mL}+35.2 \mathrm{~mL}+6 \mathrm{~mL}=\mathbf{5 3} \mathbf{~ m L}$
4. $55.46 \mathrm{~g}-28.9 \mathrm{~g}=\quad \mathbf{2 6 . 6} \mathrm{g}$
5. $0.021 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 100.1 \mathrm{~cm}=\quad \mathbf{6 . 7} \mathbf{~ c m}^{\mathbf{3}}$
6. $0.15 \mathrm{~cm}+1.15 \mathrm{~cm}+2.051 \mathrm{~cm}=\quad \mathbf{3 . 3 5} \mathbf{~ c m}$
7. $150 L^{3} \div 4 L=$ \qquad $40 L^{2}$
8. $505 \mathrm{~kg}-450.25 \mathrm{~kg}=\quad \mathbf{5 5} \mathbf{~ k g}$
9. $1.252 \mathrm{~mm} \times 0.115 \mathrm{~mm} \times 0.012 \mathrm{~mm}=\quad \mathbf{0 . 0 0 1 7} \mathbf{m m}^{\mathbf{3}}$
10. $1.278 \times 10^{3} \mathrm{~m}^{2} \div 1.4267 \times 10^{2} \mathrm{~m}=\quad \mathbf{8 . 9 5 8} \mathbf{~ m}$

10

Name
Temperature and Its Measurement
Temperature (which measures average kinetic energy of the molecules) can be measured using three common scales: Celsius, Kelvin, and Fahrenheit. Use the following formulas to convert from one scale to another. Celsius is the scale most desirable for laboratory work. Kelvin represents the absolute scale. Fahrenheit is the old English scale, which is rarely used in laboratories.

$$
\begin{array}{ll}
{ }^{\circ} \mathrm{C}=\mathrm{K}-273 & \mathrm{~K}={ }^{\circ} \mathrm{C}+273 \\
{ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32 & { }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)
\end{array}
$$

Complete the chart. All measurements are good to $1^{\circ} \mathrm{C}$ or better

	${ }^{\circ} \mathrm{C}$	K	${ }^{\circ} \mathrm{F}$
I.	$0^{\circ} \mathrm{C}$	273 K	$32^{\circ} \mathrm{F}$
2.	$100^{\circ} \mathrm{C}$	373 K	$212^{\circ} \mathrm{F}$
3.	$177^{\circ} \mathrm{C}$	450 K	$351{ }^{\circ} \mathrm{F}$
4.	$37.0^{\circ} \mathrm{C}$	310 K	$98.6{ }^{\circ} \mathrm{F}$
5.	$-273^{\circ} \mathrm{C}$	0 K	-459 ${ }^{\circ} \mathrm{F}$
6.	$21^{\circ} \mathrm{C}$	294 K	$70^{\circ} \mathrm{F}$
7.	$25^{\circ} \mathrm{C}$	298 K	$77^{\circ} \mathrm{F}$
8.	$-48^{\circ} \mathrm{C}$	225 K	$-54{ }^{\circ} \mathrm{F}$
१.	$-40^{\circ} \mathrm{C}$	233 K	-40 ${ }^{\circ} \mathrm{F}$

[^0]
Answer Key

Nam

Freezing and Boiling Point Graph

Use the graph to answer each question.

© Carson-Dellosa - CD-104644

Name

Use the diagram to answer each question.
I. Which section represents the solid phase? A.
2. Which sectlon represents the llquid phase? C
3. Which section represents the gas phase? B
4. Which letter represents the triple point? _d
5. Which letter represents the critical point? e
6. What is this substance's normal melting point? $65^{\circ} \mathrm{C}$
7. What is this substance's normal boiling point? $100^{\circ} \mathrm{C}$
8. Above what temperature is it impossible to liquify this substance no matter what the pressure? $110^{\circ} \mathrm{C}$
9. At what temperature and pressure do all three phases coexlst? $45^{\circ} \mathrm{C}, 0.3 \mathrm{~atm}$
10. Is the density of the solld greater than or less than the density of the llquid? greater than
11. Would an increase in pressure cause this substance to freeze or melt? freeze

Name
Heat and Its Measurement
Heat (or energy) can be measured in units of calories or joules. When there is a temperature change (ΔT), heat (Q) can be calculated using this formula:
$Q=$ mass $\times \Delta T \times$ specific heat capacity
($\Delta \mathrm{T}=$ final temperature - initial temperature)
During a phase change, use this formula:
$Q=$ mass \times heat of fustion (or heat of vaportation)
Solve each problem

I. $\overline{\text { Dow }}$ many Joules of heat are glven off when 5.0 g of water cool from $75^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$? (Specific heat of water $=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)	
I,000 J	
2.	How many calorles are given off by the water in problem I? (Specific heat of water $=1.0 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)
250 cal	
	How many joules does It take to melt 35 g of lce at $\mathrm{O}^{\circ} \mathrm{C}$? (heat of fusion $=333 \mathrm{~J} / \mathrm{g}$) T2,000 J
4.	How many calorles are glven off when 85 g of steam condense to llquild water? (heat of vaporizatlon $=539.4 \mathrm{cal} / \mathrm{g}$) $\overline{4} 6,000 \mathrm{cal}$
5.	How many Joules of heat are necessary to ralse the temperature of 25 g of water from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$? $\overline{5,000 ~ j}$
	How many calorles are glven off when 50 g of water at $0^{\circ} \mathrm{C}$ freezes? (heat of fuslon $=79.72 \mathrm{cal} / \mathrm{g}$)
	$\overline{4}, 000 \mathrm{cal}$

Name

Vapor Pressure and Boiling

A liquid will boil when its vapor pressure equals the atmospheric pressure.

Use the graph to answer each question.
I. At what temperature would Llauld A boll at an atmospherle pressure of 400 Torr? $40^{\circ} \mathrm{C}$
2. Lquild B ? $70^{\circ} \mathrm{C}$
3. Lquild C ? $92^{\circ} \mathrm{C}$
4. How low must the atmospherlc pressure be for Uquid A to boll at $35^{\circ} \mathrm{C}$? 375 Torr
5. Lauld B ? 150 Torr
6. Uquild C? $\mathbf{7 5}$ Torr
7. What is the normal bolling point of Lauld $\mathrm{A} ? 50^{\circ} \mathrm{C}$
8. Lauld B ? $82^{\circ} \mathrm{C}$
9. Hauld C ? $108^{\circ} \mathrm{C}$
10. Which llquid has the strongest Intermolecular forces? C C

Answer Key

Name

Classify each of the following as a substance or a mixture. If it is a substance, write element or compound in the substance column. If it is a mixture, write heterogeneous or homogeneous in the mixture column.

Type of Matter		Substance
1. chlorine	element	
2. water	compound	
3. soll		heterogeneous
4. sugar water	element	
5. oxygen	compound	
6. carbon dloxide		heterogeneous
7. rocky road lce cream	compound	
8. alcohol		homogeneous
9. pure alr	element	
I0. lron		

© Carson-Dellosa •CD-104644

Name_

Physical vs. Chemical Properties

A physical property is observed with the senses and can be determined without
destroying the object. Color, shape, mass, length, and odor are all examples of physical
properties.
A chemical property indicates how a substance reacts with something else. The original
substance is fundamentally changed in observing a chemical property. For example, the
ability of iron to rust is a chemical property. The iron has reacted with oxygen, and the
original iron metal is changed. It now exists as iron oxide, a different substance.

Classify each property as either chemical or physical by putting a check in the appropriate column.

Name

Physical vs. Chemical Changes

```
In a physical change, the original substance still exists; it only changes in form. In a
chemical change, a new substance is produced. Energy changes always accompany
chemical changes
Classify each as a physicalor chemlcalchange.
I. Sodlum hydroxide dissolves in water. physical
2. Hydrochlorlc acld reacts with potasslum hydroxide to produce a salt, water, and
    #ydrochlorlcacld reacjs with
3. A pellet of sadlum is sllced In two.___ physical
4. Water is heated and changed to steam. physical
5. Potastlum chlorate decompases to potasslum chlorlde and oxygen gas.
    chemical
6. Iron rusts. chemical
7. When placed in H2 O, a sodlum pellet catches on fire as hydrogen gas is llberated
    and sodlum hydroxlde forms._Chemical
8. Water evaporates. physical
9. lce melts. physical
10. Mllk sours. chemical
II. Sugar dissolves In water.__physical__
12. Wood rots. chemical_
13. Pancakes are cooking on a griddle. chemical
14. Grass is growing in a lawn.__chemical
15. A tire is inflated with alr.___physical
16. Food is dlgested in the stomach. chemical
17. Water is absorbed by a paper towel.__physical
```

Name

Boyle's Law

Boyle's Law states that the volume of a given sample of gas at a constant temperature varies inversely with the pressure. (If one goes up, the other goes down.) Use the formula:

$$
P_{1} \times V_{1}=P_{2} \times V_{2}
$$

Solve each problem (assuming constant temperature).
I. A sample of oxygen gas occuples a volume of $250 . \mathrm{mL}$ at 740 . Tor. What volume will It occupy at 800 . Torm pressure?

$$
23 \overline{\mathrm{~T}} \mathrm{~mL}
$$

2. A sample of carbon dloxide occuples a volume of 3.50 liters at 125 kPa pressure What pressure would the gas exert if the volume was decreased to 2.00 liters?

$$
2 \overline{1} 9 \mathrm{kPa}
$$

\qquad
3. A 2.0 liter contalner of niltrogen has a pressure of 3.2 atm . What volume would be necessary to decrease the pressure to 1.0 atm ?
\qquad
6.4 L
4. Ammonla gas occuples a valume of $450 . \mathrm{mL}$ at a pressure of $720 . \mathrm{mmHg}$. What volume will it occupy at standard pressure?

$$
42 \overline{6} \mathrm{ml}
$$

5. A 175 mL sample of neon has its pressure changed from 75 kPa to 150 kPa . What is its new volume?

$\overline{8} 8 \mathrm{~mL}$

6. A sample of hydrogen at 1.5 atm has its pressure decreased to 0.50 atm , producing a new volume of 750 mL . What was its original volume?

250 mL
7. Chlorine gas occuples a volume of 1.2 Iters at 720 Torr. What volume will it occupy at I atm pressure?
$1 . T \mathrm{~L}$
8. Fluorine gas exerts a pressure of 900. Torr. When the pressure is changed to 1.50 ctm , its volume is 250 . mL . What was the orlginal volume?
$3 \overline{\mathrm{~T}} 7 \mathrm{~mL}$

Answer Key

Name

Charles' Law

Charles' Law states that the volume of a given sample of gas at a constant pressure is directly proportional to the temperature in Kelvin. Use the following formulas

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \text { or } \quad V_{1} \times T_{2}=V_{2} \times T_{1}
$$

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273
$$

Solve each problem (assuming constant pressure).

1. A sample of niltrogen occuples a volume of 250 mL at $25^{\circ} \mathrm{C}$. What volume will it occupy at $5^{\circ} \mathrm{C}$?
$3 T 0 \mathrm{~mL}$
2. Oxygen gas is at a temperature of $40^{\circ} \mathrm{C}$ when It occuples a volume of 2.3 liters. To what temperature should it be ralsed to occupy a volume of 6.5 Iters?
3. Hydrogen gas was cooled from $150^{\circ} \mathrm{C}$ to $5 \overline{0}^{\circ} \mathrm{C}$. Its new volume is 75 mL . What was its original volume?
4. Chlorine gas occuples a volume of 25 mL at $3 \overline{0} 0 \mathrm{~K}$. What volume will it occupy at 600 K ?
\qquad
5. A sample of neon gas at $5 \overline{0}^{\circ} \mathrm{C}$ and a valume of 2.5 liters is cooled to $25^{\circ} \mathrm{C}$. What is the new volume?
6. Fluorine gas at $300 \overline{\mathrm{~K}}$ accuples a volume of $50 \overline{\mathrm{~mL}}$. To what temperature should It be lowered to bring the volume to 300 mL ?

180 K or $-93^{\circ} \mathrm{C}$
7. Hellum occuples a volume of 3.8 liters at $-45^{\circ} \mathrm{C}$. What volume will it occupy at $45^{\circ} \mathrm{C}$?
5.3 L
8. A sample of argon gas is cooled and its volume went from $38 \overline{0} \mathrm{~mL}$ to $25 \overline{0} \mathrm{~mL}$. If its final temperature was $-55^{\circ} \mathrm{C}$, what was its original temperature?

33 工 K or $58^{\circ} \mathrm{C}$
© Carson-Dellosa • CD-104644

Name

Combined Gas Law

In practical terms, it is often difficult to hold any of the variables constant. When there is a change in pressure, volume, and temperature, the combined gas law is used.
\qquad
Complete the chart.

	\mathbf{P}_{1}	v	T,	P_{2}	V_{2}	T
1.	1.5 atm	3.0 L	$20^{\circ} \mathrm{C}$	2.5 atm	1.9 L	$30^{\circ} \mathrm{C}$
2.	720 Torr	256 mL	$25^{\circ} \mathrm{C}$	$8 \overline{0} 0$ Torr	250 mL	$5 \overline{0}^{\circ} \mathrm{C}$
3.	$6 \overline{0} 0 \mathrm{mmHg}$	2.5 L	$22^{\circ} \mathrm{C}$	760 mmHg	1.8 L	$\begin{gathered} 269 \text { K } \\ \text { or } \\ -4^{\circ} \mathrm{C} \end{gathered}$
4.	1.2 atm	750 mL	$0.0{ }^{\circ} \mathrm{C}$	2.0 atm	500 mL	$25^{\circ} \mathrm{C}$
5.	95 kPa	4.0 L	$\begin{gathered} 295 \mathrm{~K} \\ \text { or } \\ 22^{\circ} \mathrm{C} \end{gathered}$	101 kPa	6.0 L	$\begin{aligned} & 471 \mathrm{~K} \text { or } \\ & 198^{\circ} \mathrm{C} \end{aligned}$
6.	650. Torr	275 mL	100°	900. Torr	225 mL	$15 \overline{0}^{\circ} \mathrm{C}$
7.	850 mmHg	1.5 L	$15^{\circ} \mathrm{C}$	$\begin{gathered} 540 \\ \mathrm{mmHg} \end{gathered}$	2.5 L	$30^{\circ} \mathrm{C}$
8.	125 kPa	125 mL	544 K or $271^{\circ} \mathrm{C}$	$100 \overline{\mathrm{kPa}}$	$100 \overline{m L}$	$75^{\circ} \mathrm{C}$

Dalton's Law of Partial Pressures

Dalton's Law says that the sum of the individual pressures of all the gases that make up a mixture is equal to the total pressure, or: $P_{\mathrm{T}}=P_{1}+P_{2}+P_{3}+\ldots$. The partial pressure of each gas is equal to the mole fraction of each gas times the total pressure.

$$
P_{\mathrm{T}}=P_{1}+P_{2}+P_{3}+\ldots \quad \text { or } \frac{\text { moles gas }_{\mathrm{x}}}{\text { total moles }} \times P_{\mathrm{T}}=P_{\mathrm{x}}
$$

Solve each problem

	A 250 . mL sample of oxygen is collected over water at $25^{\circ} \mathrm{C}$ and 760.0 Torr. What is the pressure of the dry gas alone? (vapor pressure of water at $25^{\circ} \mathrm{C}=23.8$ Torr) 736 Torr
	A 32.0 mL sample of hydrogen s collected over water at $2 \overline{0}^{\circ} \mathrm{C}$ and 750.0 Torr. What is the pressure of the dry gas alone? (vapor pressure of water at $2 \overline{0}^{\circ} \mathrm{C}=$ 17.5 Tom) 732.5 Torr
	A 54.0 mL sample of oxygen is collected over water at $23^{\circ} \mathrm{C}$ and 770.0 Torr. What is the pressure of the dry gas alone? (Vapor pressure of water at $23^{\circ} \mathrm{C}=21.1$ Tor') 748.9 Torr
	A mikture of 2.00 males of $\mathrm{H}_{2} 3.00$ moles of $\mathrm{NH}_{5}, 4.00$ moles of CO_{2}, and 5.00 moles of N_{2} exerts a total pressure of $80 \overline{0}$ Tor. What is the partial pressure of each gas? $\begin{array}{cc} \mathrm{H}_{2}=114.2 \text { Torr } & \mathrm{CO}_{2}=228.6 \text { Torr } \\ \mathrm{NH}_{3}=171.4 \text { Torr } & \mathrm{N}_{2}=285.7 \text { Torr } \end{array}$
	The partal pressure of $\mathrm{F}_{\text {i }} 300$ Tort in a mlxture of gases where the total pressure is 1.00 dmm . If there are T .5 total moles in the mixture, how many moles of F_{2} are present? 263 moles

[^1]$P_{\mathrm{T}}=P_{1}+P_{2}+P_{3}+\ldots \quad$ or $\frac{\text { moles gas }_{\mathrm{x}}}{\text { total moles }} \times P_{\mathrm{T}}=P_{\mathrm{X}}$
I. A $250 . \mathrm{mL}$ sample of oxygen is collected over water at $25^{\circ} \mathrm{C}$ and 760.0 Torr. What

Name

Name

Ideal Gas Law

The ideal gas law describes the state of an ideal gas. While an ideal gas is hypothetical, the ideal gas law can be used to approximate the behavior of many gases under normal conditions. Use the formula:

$$
\begin{array}{lll}
P V=n R T \text { where } & P=\text { pressure in atmospheres } & \\
& V=\text { volume in liters } & R=\text { Universal Gas Constant } \\
0.082 \mid L \cdot \operatorname{atm} / \mathrm{mol} \cdot \mathrm{~K}
\end{array}
$$

Use the ideal gas law to solve each problem.

1. How many moles of oxygen will occupy a volume of 2.5 liters at 1.2 atm and $25^{\circ} \mathrm{C}$?

0.12 moles

2. What volume will 2.0 moles of nitrogen occupy at 720 Torr and $2 \overline{0}^{\circ} \mathrm{C}$? 51 L
3. What pressure will be exerted by 25 g of CO_{2} at a temperature of $25^{\circ} \mathrm{C}$ and a volume of $50 \overline{0} \mathrm{~mL}$? 28 afm
4. At what temperature will 5.00 g of Cl_{2} exert a pressure of 900 . Torr at a volume of $75 \overline{0} \mathrm{~mL}$? 154 K or $-119^{\circ} \mathrm{C}$
5. What is the density of NH_{3} at $80 \overline{0}$ Torr and $25^{\circ} \mathrm{C}$? $\mathbf{0 . 7 3} \mathbf{~ g / L}$
6. If the density of a gas is $1.2 \mathrm{~g} / \mathrm{L}$ at 745 . Torr and $2 \overline{\mathrm{O}}^{\circ} \mathrm{C}$, what is its molecular mass? $29 \mathrm{~g} / \mathrm{mol}$
7. How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 Torr and $27^{\circ} \mathrm{C}$? 0.124 moles
8. What volume will 454 grams (1 lb .) of hydrogen occupy at 1.05 atm and $25^{\circ} \mathrm{C}$? $10,494.6 \mathrm{~L}$
9. Find the number of grams of CO_{2} that exert a pressure of 785 Torr at a volume of 32.5 L and a temperature of $32^{\circ} \mathrm{C} . \quad \mathbf{2} \overline{3} \mathbf{~ g}$
10. An elemental gas has a mass of 10.3 g . If the volume is 58.4 L and the pressure is 758 Torr at a temperature of $2.5^{\circ} \mathrm{C}$, what is the gas? $\mathbf{B r}_{\mathbf{2}}$ (bromine)
24

Answer Key

Graham's Law of Effusion

Graham's Law states that a gas will effuse at a rate that is inversely proportional to the square root of its molecular mass, $M M$.

$$
\frac{\text { rate }_{1}}{\operatorname{rate}_{2}}=\sqrt{\frac{M M_{2}}{M M_{1}}}
$$

Solve each problem.

1.	Under the same condillons of temperature and pressure, how many times faster will hydrogen effuse compared to carbon dloxide?
	4.7
2.	If the carbon dloxide in problem I takes 32 seconds to effuse, how long will the hydrogen take? $6.8 \mathrm{~s}$
3.	What is the relative rate of effuslon of NH_{3} compared to hellum? Does NH_{3} effuse faster or slower than hellum? 0.49 , slower
4.	If the hellum in problem 3 takes 20 seconds to effuse, how long will NH_{3} take? $9.7 \mathrm{~s}$
5.	An unknown gas effuses 0.25 times as fast as hellum. What is the molecular mass of the unkown gas? $64 \mathrm{~g} / \mathrm{mol}$

Name_

Element Symbols

An element symbol can stand for one atom of the element or one mole of atoms of the element. (One mole $=6.02 \times 10^{23}$ atoms of an element.)

Write the symbol for each element.

I. oxygen \mathbf{O}	10. sulfur \mathbf{S}
2. hydrogen H	II. plutonlum Pu
3. chlorine Cl	12. calclum $\mathbf{C a}$
4. mercury $\mathbf{H g}$	13. radlum Ra
5. fluorine F-	14. cobalt Co
6. barlum Ba	15. ZInc $\mathbf{Z n}$
7. hellum He	16. arsenlc As
8. uranlum U	17. lead $\mathbf{P b}$
१. radon $\mathbf{R n}$	18. Iron Fe

Write the name of the element that corresponds with each symbol.

Name

Atomic Structure						
An atom is made up of protons and neutrons (both found in the nucleus) and electrons (in the surrounding electron cloud). The atomic number is equal to the number of protons. The mass number is equal to the number of protons plus neutrons. In a neutral atom, the number of protons equals the number of electrons. The charge on an ion indicates an imbalance between protons and electrons. Too many electrons produce a negative charge. Too few electrons produce a positive charge. This structure can be written as part of a chemical symbol.						
Complete the chart.						
$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Element/ } \\ \text { Ion } \end{array} \\ \hline \end{array}$	Atomic Number	Atomic Mass	Mass Number	Protons	Neutrons	Electrons
H	I	1.0079	I	I	0	I
H^{+}	I	1.0079	I	I	0	0
${ }_{6}^{12} \mathrm{C}$	6	12.011	12	6	6	6
${ }_{3}^{7} \mathrm{Li}^{+}$	3	6.941	7	3	4	2
${ }_{17}^{35} \mathrm{Cl}^{-}$	17	35.453	35	17	18	18
${ }_{19}^{39} \mathrm{~K}$	19	39.0983	39	19	20	19
${ }_{12}^{24} \mathrm{Mg}^{2+}$	12	24.305	24	12	12	10
As^{3-}	33	74.9216	75	33	42	36
Ag	47	107.868	108	47	61	47
Ag^{1+}	47	107.868	108	47	61	46
S^{2-}	16	32.06	32	16	16	18
U	92	238.029	238	92	146	92

© Carson-Dellosa • CD-104644

Name
Isotopes and Average Atomic Mass
Elements come in a variety of isotopes, meaning they are made up of atoms with the same atomic number but different atomic masses. These atoms differ in the number of neutrons.
The average atomic mass is the weighted average of all of the isotopes of an element.
Example: A sample of cesium is $75 \%{ }^{133} \mathrm{Cs}, 20 \%{ }^{132} \mathrm{Cs}$, and $5 \%{ }^{134} \mathrm{Cs}$. What is its average atomic mass?
Answer: $0.75 \times 133=99.75$
$0.20 \times 132=26.4$
$\begin{aligned} 0.05 \times 134 & =\frac{6.7}{\text { Total }}= \\ & 132.85 \mathrm{amu}=\text { average atomic mas }\end{aligned}$

Determine the average atomic mass of each mixture of isotopes.

2. $50 \%{ }^{187} \mathrm{Au}, 50 \%{ }^{184} \mathrm{Au}$	
	197.5 amu
3. $15 \%{ }^{55} \mathrm{Fe}, 85 \%{ }^{5 \%} \mathrm{Fe}$	
	55.85 amu
4. $99 \% \mathrm{H}_{s} 0.8 \%{ }^{2} \mathrm{H}, 0.2 \%{ }^{3} \mathrm{H}$	1.012 amu
5. $95 \%{ }^{14} \mathrm{~N}, 3 \%{ }^{15} \mathrm{~N}, 2 \%{ }^{14} \mathrm{~N}$	14.07 amu
6. $98 \%{ }^{12} \mathrm{C}, 2 \%{ }^{14} \mathrm{C}$	
	12.04 amu

Answer Key

© Carson-Dellosa • CD-104644

Name__________

Electron Configuration (Level Two)

At atomic numbers greater than 18 , the sublevels begin to fill out of order. A good approximation of the order of filling can be determined using the diagonal rule.

$$
\begin{aligned}
& \begin{array}{lllll}
5 \delta & 5 R & 5 d & 5+ \\
\times & 48 & 41 & 4 d & 4+
\end{array} \\
& \text {-3 3R 3d } \\
& \text { - } 2 \text { 人 } 2 \text { Note that ofter the 3p sublevel is } \\
& \text { filled, the } 4 \text { s is filled, and then the } 3 d \text {. }
\end{aligned}
$$

Draw the electron configuration of each atom.

Name

Lewis Dot Diagrams

Lewis dot diagrams are a way to indicate the number of valence electrons around an atom.

Examples:	$N a^{\bullet}$	$\because \stackrel{\bullet}{\text { ® }}$:

Draw the Lewis dot diagram of each atom
I. calclum
ca:
. C C :
2. potasslum

7. hellum

He:

8. oxygen

4. aluminum

A!

9. phosphorus

Answer Key

Name

Across

Down
I. The smallest particle of an element that can enter into chemical change
The number of protons in the nucleus of an atom
6. Cannot be decomposed into simpler substances by ordinary chemical means
State in which all electrons are at their lowest possible energy leve
8. The positively charged particle found in the nucleus
Standard atomic mass unit for carbon
13. Most of the mass of an atom is here.
16. Mass number minus atomic number
18. Electrons in the outermost principal energy level
2. Sum of the protons and neutrons in the nucleus of an atom
3. Charged atom or group of atoms
5. Equal to the number of protons in a neutral atom
9. The volume of an atom is determined by the size of its electron.
10. Different forms of the same element
12. State in which electrons have
absorbed energy and "jumped" to a higher energy level
14. Atoms with the same atomic number but different atomic masses
15. The nucleus and all electrons in an atom except the valence electrons
17. spdf
19. Protons and neutrons are these.

Half-Lives of Radioactive Isotopes
Solve each problem.

Name

Periodic Table Worksheet

Use a copy of the periodic table to answer each question.
Where are the most actlve metals located? lower left
2. Where are the most actlve nonmetals located? upper right
3. As you go from left to right across a period, the atomic size (decreases. ncreases). Why? \qquad increased positive nuclear charge
4. As you trovel down a group, the atomic size (decreases increases). Dhy? additional principal energy levels
5. A negative lon is (larger)smaller) than its parent atom.
6. A positive ion is (larger, maller) han its parent atom.
7. As you go from laft to right across a perlod, the first lontzation energy generally As you go from left to right across a perlod, the first lonzation energy generally
(decreases increases). Why? increased posifive nuclear charge
8. As you go down a group, the first lonization energy generglly (decreases. Increases). Why? outermost electron is farther away from
9. Where is the highest electronegativtly found? upper right (F)
10. Where is the lowest electronegatlvity found? lower left (Fr)
I. Elements of Group I are called \qquad alkalimetals . Elements of Group 2 are called \qquad alkaline earth metals
3. Elements of Group 3-12 are called transition element
4. As vou go from left to right across the perlodic table, the elements go from metals, yonmetals) to (metals nionmetals).
15. Group 17 elements are called \qquad halogens
16. The most active element in Group 17 Is fluorine
7. Group 18 elements are called \qquad
8. What sublevels are filling across the Transition Elements? \square d and f
\qquad
. Elements within a group have a simillar number of __ valence electrons.
20. Elements across a serles hove the same number of principal energy levels.
21. A colored ion generally indicates a \qquad transition element
2. As you go down a group, the elements generally become(more)less) metallc.
23. The majority of elements in the perlodic table are metals, nonmetals).
24. Elements in the perlodic table are arranged according to thelr atomic numbers.
25. An element with both metallic and nonmetallic propertles lis called a
semimetal or metalloid
36

Answer Key

Name.

Periodic Table Puzzle

 $\square \operatorname{HO}^{+1+}$
Place the letter of each of the above elements next to its description.

8. A metal with more than one oxidation state \qquad
9. A metal with an oxidation number of +3 J
10. Has oxidation numbers of +1 and $-1 \quad$ I

Covalent Bonding

```
Covalent bonding occurs when two or more nonmetals share electrons, attempting to attain a stable octet of electrons at least part of the time.
```


Example:

```
\[
\mathrm{H} \cdot+{ }^{x} \mathrm{H}
\]
```

Sketch how covalent bonding occurs in each pair of atoms. Atoms may share one, two, or three pairs of electrons.

Answer Key

Name

Types of Chemical Bonds

Identify each compound as ionic (metal + nonmetal), covalent (nonmetal + nonmetal), or both (compound containing a polyatomic ion).

1. $\mathrm{CaCl}_{2} \frac{\text { ionic }}{}$
2. CO_{2} covalent
II. MgO ionic \qquad
3. CO_{2} covalent
4. $\mathrm{NH}_{4} \mathrm{Cl}$ both
5. $\mathrm{H}_{2} \mathrm{O}$ covalent
6. HCl covalent
\qquad 14. Kl \qquad
7. $\mathrm{K}_{2} \mathrm{O}$ \qquad
8. NaOH both
\qquad
9. NO_{2} \qquad
\qquad 17. AlPO_{4} \qquad ooth
10. $\mathrm{CH}_{4} \quad$ covalent
11. FeCl_{3} ionic
12. SO_{8} covalent
13. $\mathrm{P}_{2} \mathrm{O}_{5}$ covalent
14. LIBr \qquad 20. $\mathrm{N}_{2} \mathrm{O}_{3} \xrightarrow[\text { covalent }]{ }$
\qquad
© Carson-Dellosa •CD-104644
onic
41
41

Name	
Polar Identify each molecule as polar or	Molecules
I. N_{2} nonpolar	7. HF polar
2. $\mathrm{H}_{2} \mathrm{O}$ polar	8. $\mathrm{CH}_{3} \mathrm{OH}$ polar
3. CO_{2} nonpolar	9. $\mathrm{H}_{2} \mathrm{~S}$ polar
4. NH_{3} polar	10. I_{2} nonpolar
5. CH_{4} nonpolar	II. CHCl_{3} polar
6. SO_{3} nonpolar	12. O_{2} nonpolar

© Carson-Dellosa - CD-104644

Shapes of Molecules

Using VSEPR theory, name and sketch the shape of each molecule.

I. N_{2} linear $: N \equiv N:$	7. HF linear $\mathbf{H}-\underset{\sim}{\mathbf{F}}:$
2.	8.
3. CO_{2} linear $: \ddot{O}=c=\ddot{O}:$	9. $\mathrm{H}_{2} \mathrm{~S}$
4. NH_{3} pyramidal	
5. CH_{4}	II. CHCl_{3}
	12. O_{2} linear $: \ddot{O}=\ddot{O}:$

42
© Carson-Dellosa • CD-104644

Answer Key

Name_						
Writing Formulas (Crisscross Method)						
Write the formula of the compound produced from the listed ions.						
	ct	$\mathrm{CO}_{3}{ }^{-2}$	OH	$\mathrm{SO}_{4}{ }^{\text {2 }}$	$\mathrm{PO}_{4}{ }^{\text {3 }}$	$\mathrm{NO}_{3}{ }^{\text {a }}$
Na^{+}	NaCl	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NaOH	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	NaNO_{3}
$\mathrm{NH}_{4}{ }^{+}$	$\mathrm{NH}_{4} \mathbf{C l}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	$\mathrm{NH}_{4} \mathrm{OH}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	$\mathrm{NH}_{4} \mathrm{NO}_{3}$
K+	KCI	$\mathrm{K}_{2} \mathrm{CO}_{3}$	кон	$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	KNO_{3}
Ca^{2+}	CaCl_{2}	CaCO_{3}	$\mathrm{Ca}(\mathrm{OH})_{2}$	CaSO_{4}	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathbf{M g}^{\mathbf{2 +}}$	$\mathbf{M g C l}{ }_{2}$	MgCO_{3}	$\mathrm{Mg}(\mathrm{OH})_{2}$	MgSO_{4}	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
Zn^{2+}	ZnCl_{2}	ZnCO_{3}	$\mathrm{Zn}(\mathrm{OH})_{2}$	ZnSO_{4}	$\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
Fe^{3+}	FeCl_{3}	$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	$\mathrm{Fe}(\mathrm{OH})_{3}$	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	FePO_{4}	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
Al^{3+}	AlCl_{3}	$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	$\mathrm{Al}(\mathrm{OH})_{3}$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	AlPO_{4}	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
Co^{3+}	CoCl_{3}	$\mathrm{CO}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	$\mathrm{Co}(\mathrm{OH})_{3}$	$\mathrm{CO}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	CoPO_{4}	$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}$
Fe^{2+}	FeCl_{2}	FeCO_{3}	$\mathrm{Fe}(\mathrm{OH})_{2}$	FeSO_{4}	$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
H^{+}	HCI	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\underset{\substack{\mathrm{HOH} \\ \text { or } \mathrm{H}_{2} \mathrm{O}}}{ }$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$	HNO_{3}
- Carson-Dellosa - CD-104644						

Name	
	Naming Ionic Compounds
Name each compound using the Stock Naming System.	
1. CaCO_{3}	calcium carbonate
2. KCl	potassium chloride
3. FeSO_{4}	iron(II) sulfate
4. LiBr	lithium bromide
5. MgCl_{2}	magnesium chloride
6. FeCl_{3}	iron(III) chloride
7. $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	zinc phosphate
8. $\mathrm{NH}_{4} \mathrm{NO}_{3}$	ammonium nitrate
9. $\mathrm{Al}(\mathrm{OH})_{3}$	aluminum hydroxide
10. $\mathrm{CuC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	copper(I) acetate
11. PbSO_{3}	lead(II) sulfite
12. NaClO_{3}	sodium chlorate
13. $\mathrm{CaC}_{2} \mathrm{O}_{4}$	calcium oxalate
14. $\mathrm{Fe}_{2} \mathrm{O}_{3}$	iron(III) oxide
15. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	ammonium phosphate
16. NaHSO_{4}	sodium hydrogen sulfate or sodium bisulfate
17. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$	mercury(I) chloride
18. $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$	magnesium nitrate
19. CuSO_{4}	copper(II) sulfate
20. NaHCO_{3}	sodium hydrogen carbonate or sodium bicarbonate
21. NiBr_{3}	nickel(III) bromide
22. $\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}$	beryllium nitrate
23. ZnSO_{4}	zinc sulfate
24. AuCl_{3}	gold(III) chloride
25. KMnO_{4}	potassium permanganate
46	-Carson-Dellosa C CD-104644

Name	
Naming Acids	
Name each acid.	
1. $\mathrm{HNO}_{3} \longrightarrow$	nitric acid
2. HCl	hydrochloric acid
3. $\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$	sulfuric acid
4. $\mathrm{H}_{2} \mathrm{SO}_{3} \longrightarrow$	sulfurous acid
5. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	acetic acid
6. HBr	hydrobromic acid
7. $\mathrm{HNO}_{2} \longrightarrow$	nitrous acid
8. $\mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow$	phosphoric acid
a. $\mathrm{H}_{2} \mathrm{~S}$	hydrosulfuric acid
10. $\mathrm{H}_{2} \mathrm{CO}_{3}$	carbonic acid
Write the formula of each acid.	
11. sulfurle acld	$\mathrm{H}_{2} \mathrm{SO}_{4}$
12. nitric acld	HNO_{3}
13. hydrochlorle acld	HCl
14. acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
15. hydrofluorle acld	HF
16. phosphorous acld	$\mathrm{H}_{3} \mathrm{PO}_{3}$
17. carbonlc acld	$\mathrm{H}_{2} \mathrm{CO}_{3}$
18. nitrous acid	HNO_{2}
19. phosphorlc acld	$\mathrm{H}_{3} \mathrm{PO}_{4}$
20. hydrosulfuric acld	$\mathrm{H}_{2} \mathrm{~S}$
48	© Carson-Dellosa CD-104644

Answer Key

Name	
Gram Formula Mass	
Determine the gram form	(the mass of one mole) of each compound.
l. KMnO_{4}	158 g
2. KCl	74.55 g
3. $\mathrm{Na}_{2} \mathrm{SO}_{4}$	142 g
4. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	164 g
5. $\mathrm{A}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	342 g
6. $\left(\mathrm{NH}_{4} \mathrm{P}_{8} \mathrm{PO}_{4}\right.$	149 g
7. $\mathrm{CusO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	250 g
8. $\mathrm{Mg}_{3}(\mathrm{PO})_{4}$	262.86 g
9. $\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$	219 g
10. $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	458 g
II. $\mathrm{H}_{2} \mathrm{CO}_{3}$	62 g
12. $\mathrm{Hg}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	617 g
13. $\left.\mathrm{Ba}(\mathrm{ClO})_{2}\right)_{2}$	304 g
14. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{2}\right)_{3}$	352 g
15. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{1} \mathrm{O}_{2}$	77 g
50	

Name	
The Mole and Volume	
For gases at STP (273 K and I atm pressure), one mole occupies a volume of 22.4 L . Identify the volume each quantity of gas will occupy at STP.	
I. 1.00 mole of H_{2}	22.4 L
2. 3.20 moles of O_{2}	71.7 L
3. 0.750 mole of N_{2}	16.8 L
4. 1.75 molas of CO_{2}	39.2 L
5. 0.50 mole of NH_{3}	11.2 L
6. 5.0 g of H 2	56 L
7. $100 . \mathrm{g}$ of O_{2}	70.0 L
8. 28.0 g of N_{2}	22.4 L
9. $60 . \mathrm{g}$ of CO_{2}	31 L
10. $10 . \mathrm{gof} \mathrm{NH}_{3}$	13 L
52	\bigcirc Carson-Delosa \cdot CD-10464

Answer Key

Nome -	
The Mole and Avogadro's Number	
1.20mal	1.2×10^{24}
2. 1.5 mol	9.0×10^{23}
3. 0.75 mml	4.5×10^{23}
4. 15 mol	9.0×10^{204}
5. 0.35 mmol	2.1×10^{23}
0. 0.02×1000	1.00 moles
7. 1.204×10^{109}	2.00 moles
8. 1.5×1000	2.5×10^{5} or 0.000025 mole
9. ${ }^{\text {. } 4 \times 1000}$	560 moles
$10 . \quad 7.5 \times 10^{19}$	1.2×10^{40} or 0.00012 mole
momeno coicean	

54 © Carson-Dellosa \cdot CD-104644

Name

Percentage Composition

Determine the percentage composition of each compound.

1. KMnO_{4}
$K=24.7 \%$
$\mathrm{Mn}=34.8 \%$
$0=40.5 \%$
2. HCl

$$
H=2.8 \%
$$

$$
\mathrm{Cl}=97.2 \%
$$

3. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Mg}=16.2 \%$
$N=-18.9 \%$
$0=64.9 \%$

$H=3.6 \%$
$P=27.4 \%$
$0=56.6 \%$
4. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$\mathrm{Al}=15.8 \%$
$S=28.1 \%$
$0=56.1 \%$
Solve each problem.
5. How many grams of oxygen can be produced from the decomposition of $100 . \mathrm{g}$ of $\mathrm{KClO}_{3} 73 \mathrm{G} .3 \mathrm{~g} \mathrm{O}$
6. How much lron can be recovered from 25.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$? 17.5 g Fe
7. How much sllver can be produced from 125 g of $\mathrm{Ag}_{2} \mathrm{~S}$? 109 g Ag
[^2]Name
Determining Empirical Formulas
Identify the empirical formula (lowest whole number ratio) of each compound.

56
© Carson-Dellosa • CD-104644

Answer Key

Name
 Determining Molecular Formulas (True Formulas)

Solve each problem
I. The emplitical formula of a compound is NO_{2}. its molecular mass is $92 \mathrm{~g} / \mathrm{mol}$. What is Its molecular formula?

$$
\mathrm{N}_{2} \mathrm{O}_{4}
$$

2. The empirical formula of a compound $\mathrm{ss} \mathrm{CH}_{2}$. ts motecular mass is $70 \mathrm{~g} / \mathrm{mol}$. What is Its molecular formula?

$$
\mathrm{C}_{5} \mathrm{H}_{10}
$$

3. A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)
$$

4. A compound is $64,9 \%$ carbon, $13,5 \%$ hydrogen, and 21.6% oxygen. Its molecular mass is $74 \mathrm{~g} / \mathrm{mal}$. What is its molecular formula?

$$
\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)
$$

5. A compaund $1 \mathrm{~s} 54.5 \%$ carban, 9.1% hydrogen, and 36.4% oxygen. Hs molecular mass is $88 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?

$$
\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right)
$$

Name_

Composition of Hydrates

A hydrate is an ionic compound with water molecules loosely bonded to its crystal structure. The water is in a specific ratio to each formula unit of the salt. For example, the formula $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ indicates that there are five water molecules for every one formula
unit of CuSO_{4}

Solve each problem.

Name

Balancing Chemical Equations

Name

Word Equations

Rewrite each word equation as a chemical equation. Then, balance the equation.

Answer Key

Name
 Classification of Chemical Reactions

Identify each reaction as synthesis decomposition cattonic or anlontc single replacement, or double replacement.
l. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
3. $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
4. $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
5. $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$
6. $2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$
7. $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
8. $\mathrm{AgNO}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{5}$
१. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
10. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
\qquad
synthesis
decomposition
cationic single replacement
anionic single replacement
\qquad
synthesis
\qquad
© Carson-Dellosa • CD-104644

Name
Predicting Products of Chemical Reactions
Predict the product in each reaction. Then, write the balanced equation and classify the
reaction.
Predictions will vary.

I. magneslum bromide + chlorine $\mathrm{MgBr}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{MgCl}_{2} \mathrm{Br}_{2}$	anionic single replacement
2. aluminum + Iron(III) oxde $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$	cationic single replacement

3. silver nitrate + zunc chloride double replacement
$2 \mathrm{AgNO}_{3}+\mathrm{ZnCl}_{2} \longrightarrow 2 \mathrm{AgCl}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
4. hydrogen peroxde (catalyzed by manganese dloxide) decomposition

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{MnO}_{2} \mathrm{H}_{2} \mathrm{O}^{2} \mathrm{O}_{2}
$$

5. zinc + hydrochlorle acld cationic single replacement

$$
\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

6. sulfuric acld + sodlum hydroxide double replacement (neutralization)

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

7. sodlum + hydrogen synthesis

$$
2 \mathrm{Na}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{NaOH}
$$

8. acetlc acid + copper none

$$
\mathrm{CH}_{3} \mathrm{COOH}\left(\text { or } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)+\mathrm{Cu} \longrightarrow \text { no reaction }
$$

Name

Stoichiometry: Mole-Mole Problems

Solve each problem.

Name
Stoichiometry: Volume-Volume Problems
Solve each problem.

I. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ What volume of hydrogen is necessary to react with five liters of nitrogen to produce ammonla? (Assume constant temperature and pressure.)	
15 L	
2. What volume of ammonla is produced in the reaction In problem I?	
10 L	
3. $\mathrm{C}_{3} \mathrm{H}_{3}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ If 20 liters of oxygen are consumed in the above reaction, how many liters of carbon dloxide are produced? $12 \mathrm{~L}$	
4. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}+\mathrm{O}_{2}$ If 30 mL of hydrogen are produced in the above reactlon, how many milliliters of oxygen are produced?	
15 mL	
5. $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$ How many liters of carbon dloxide are produced if 75 liters of carbon monoxide are burned in oxygen? How many liters of oxygen are necessary? $\begin{aligned} & 75 \mathrm{LCO}_{2} \\ & 37.5 \mathrm{LCO}_{2} \end{aligned}$	

[^3]
Answer Key

```
Name
    Stoichiometry: Mass-Mass Problems
Solve each problem.
I. (2KClO
    15g
2. }\mp@subsup{\textrm{N}}{2}{}+3\mp@subsup{\textrm{H}}{2}{}->2\mp@subsup{\textrm{NH}}{3}{
    How many grams of hydrogen are necessary to react completely wlth 50.0 g of
    nltrogen In the above reaction?
    10.7 g
3. How many grams of ammonla are produced in the reaction in problem 2?
    6 0 . 7 ~ g =
4. 2AgNO}+\textrm{BaCl}->2\textrm{AgCl}+\textrm{Ba}(\mp@subsup{\textrm{NO}}{3}{}
    How many grams of sllver chlorlde are produced from 5.0 g of sllver niltate
    reacting with an excess of barlum chlorlde?
    4.2 g
5. How much barlum chlorde is necessary to react w/th the sllver nltrate In
    problem 4?
    3.1 g
```


Stoichiometry: Limiting Reagent

Solve each problem.

Name_

Stoichiometry: Mixed Problems

Solve each problem.

Name

Solubility Curves

Answer each question based on the solubility curve shown.
I. Which salt is least soluble in water at $20^{\circ} \mathrm{C} 7 \mathrm{KClO}_{3}$
2. How many grams of potassium chloride can be dissolved in 200 g of water at $80^{\circ} \mathrm{C}$? \qquad 100 g
3. At $40^{\circ} \mathrm{C}$, how much potassium nitrate can be dissolved in 300 g of water? 126 g
4. Which salt shows the least change In solubility from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? $\xrightarrow{\mathrm{NaCl}}$
5. At $30^{\circ} \mathrm{C}, 85 \mathrm{~g}$ of sodium nitrate are dissolved in 100 g of water. is this solution saturated, unsaturated, or supersaturated'? unsaturated
6. A saturated solution of potassium chlorate is formed from 100 g of water. If the saturated solution is cooled from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, how many grams of precipitate are formed? 7 g

7. What compound shows a decrease in solubility from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? $\mathbf{N H}_{3}$
8. Which salt is most soluble at $10^{\circ} \mathrm{C} 7 \quad$ KI
q. Which salt is least soluble at $50^{\circ} \mathrm{C}$? KClO_{3}
10. Which salt is least soluble at $90^{\circ} \mathrm{C}$? $\quad \mathrm{NH}_{3}$

Answer Key

Molarity (M)

Molarity $=\frac{\text { moles of solute }}{\text { liter of solution }}$
Solve each problem.

	What is the molarity of a solution in which 58 g of NaCl are dlasolved in $\mathrm{I} . \mathrm{L}$ of solution? $1.0 \text { M }$
2.	What is the molarity of a solution In which 10.0 g of AgNO_{3} are dissolved in $500 . \mathrm{mL}$ of solution? $0.118 \text { M }$
3.	How many grams of KNO_{3} should be used to prepare 2.00 L of a 0.500 M solutlon? $101 \mathrm{~g}$
4.	To what volume should 5.0 g of KCl be dlluted In order to prepare a 0.25 M solution? $270 \text { mL }$
5.	How many grams of $\mathrm{CuSO}_{4}{ }^{\circ} 5 \mathrm{H}_{2} \mathrm{O}$ are needed to prepare $100 . \mathrm{mL}$ of a O .10 M solution? $2.5 \mathrm{~g}$

Name_ \qquad

Molarity by Dilution

Acids are usually acquired from chemical supply houses in concentrated form. These
acids are diluted to the desired concentration by adding water. Since moles of acid
before dilution equal moles of acid after dilution, and moles of acid $=M \times V$, then
$M_{1} \times V_{1}=M_{2} \times V_{2}$.
Solve each problem.
I. How much concentrated 18 M sulfuric acld ls needed to prepare 250 mL of a 6.0 M solution?

83 mL
2. How much concentrated 12 M hydrochlorle acld is needed to prepare $1 \overline{0} 0 \mathrm{~mL}$ of a 2.0 M solution?

17 mL
3. To what volume should 25 mL of 15 M nitric acld be dilluted to prepare a 3.0 M solution?

125 mL
4. How much water should be added to $50 . \mathrm{mL}$ of 12 M hydrochlorlc acld to
produce a 4.0 M solution?

100 mL (150 mL total solution)
5. How much water should be added to $100 . \mathrm{mL}$ of 18 M sulfuric acld to prepare a 1.5 M solutlon?

Solve each problem

I. What is the molallty of a solution in which 3.0 moles of NaCl are dilsolved in 1.5 kg of water? $2.0 \text { m }$
2. What ls the molally of a solutlon \ln which 25 g of NaCl are dlssolved $\ln 2.0 \mathrm{~kg}$ of water? $0.22 \text { m }$
3. What is the molalily of a solution in which 15 g of l_{2} are dilsolved in 500 g of alcohol? $0.12 \mathrm{~m}$
4. How many grams of f_{2} should be added to $750 \mathrm{~g}_{\mathrm{g}}$ of CCl_{4} to prepare a 0.020 m solution? $3.8 \mathrm{~g}$
5. How much water should be added to 5.00 g of KCl to prepare a 0.500 m solution? $135 \mathrm{~g}$

Name

Normality (N)
normality $=$ molarity \times total positive oxidation number of solute Example: What is the normality of 3.0 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$? Since the total positive oxidation number of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $+2\left(2 \mathrm{H}^{+}\right), \mathrm{N}=6.0$.

Solve each problem.

I. What is the normallity of a 2.0 M NaOH solution? $2.0 \mathrm{~N}$
2. What is the normallity of a $2.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solutlon? $6.0 \mathrm{~N}$
3. A solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ Is 3.0 N . What is its molartity? $1.5 \text { M }$
4. What is the normality of a solution in which 2.0 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ is dissolved in 1.0 L of solution? $0.054 \mathrm{~N}$
5. How much AlCl_{3} should be dlssolved $\ln 2.00 \mathrm{~L}$ of solution to produce a 0.150 N solution? $13.3 \mathrm{~g}$

Answer Key

Name__		
Electrolytes		
Electrolytes are substances that break up (dissociate or ionize) in water to produce ions. These ions are capable of conducting an electric current. Generally, electrolytes consist of acids, bases, and salts (ionic compounds). Nonelectrolytes are usually covalent compounds, with the exception of acids.		
Check the appropriate column to classify each compound as either an electrolyte or a nonelectrolyte.		
Compound	Electrolyte	Nonelectrolyte
I. NaCl	V	
2. $\mathrm{CH}_{3} \mathrm{OH}$ (methyl alcohol)		
3. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{OH})_{8}$ (alycerol)		V
4. HCl	V	
5. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (sugar)		
6. NaOH	V	
7. $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{OH}$ (ethyl alcohol)		\checkmark
8. $\mathrm{CH}_{3} \mathrm{COOH}$ (acetlc acld)	V	
9. $\mathrm{NH}_{4} \mathrm{OH}\left(\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}\right)$	\checkmark	
10. $\mathrm{H}_{2} \mathrm{SO}_{4}$		
© Carson-Dellosa - CD-104644		

Name
 Effect of a Solute on Freezing and Boiling Points

Use the following formulas to calculate changes in freezing and boiling points due to the presence of a nonvolatile solute. The freezing point is always lowered; the boiling point is always raised.

$$
\begin{array}{ll}
\Delta T_{F}=M \times \text { d.f. } \times k_{F} & k_{g} H_{2} O=0.52^{\circ} \mathrm{C} / \mathrm{M} \\
\Delta T_{B}=M \times \text { d.f. } \times k_{B} & k_{F} H_{2} O=1.86^{\circ} \mathrm{C} / \mathrm{M}
\end{array}
$$

$M=$ molality of solution
k_{F} and $k_{B}=$ constants for particular solvent
d.f. = dissociation factor (how many particles the solute breaks up into; for a nonelectrolyte, d.f. $=1$) (The theoretical dissociation factor is always greater than observed effect.)

Solve each problem.

I. What is the new bolling point If 25 g of NaCl are dlssolved in 1.0 kg of water? $100.45^{\circ} \mathrm{C}$
2. What is the freezing point of the solution in problem I? $-1.6^{\circ} \mathrm{C}$
3. What are the new freezing and bolling points of water if $50 . \mathrm{g}$ of ethylene glyco (molecular mass $=62 \mathrm{~g} / \mathrm{M}$) are added to $50 . \mathrm{g}$ of water? boiling point: $108.4^{\circ} \mathrm{C}$ freezing point: $-30^{\circ} \mathrm{C}$
4. When 5.0 g of a nonelectrolyte are added to 25 g of water, the new freezing point is $-2.5^{\circ} \mathrm{C}$. What is the molecular mass of the unknown compound? 149 g

74 © Carson-Dellosa \cdot CD-104644

Name

Solubility (Polar vs. Nonpolar)

Generally, "like dissolves like." Polar molecules dissolve other polar molecules and ionic compounds. Nonpolar molecules dissolve other nonpolar molecules. Alcohols, which have characteristics of both, tend to dissolve in both types of solvents but will not dissolve ionic solids.

Check the appropriate columns to indicate whether the solute is soluble in a polar or nonpolar solvent.

Solutes	water	Solvents CCl_{4}	alcohol
I. NaCl			
2. l_{2}			V
3. ethanol		V	V
4. benzene			V
5. Br_{2}			
6. KNO_{3}			
7. toluene			
8. $\mathrm{Ca}(\mathrm{OH})_{2}$	/		

[^4]Name

Solutions Crossword

Across
2. Solution contalning the maximum \quad S $|\mathbf{A}| \mathbf{T}|\mathrm{U}| \mathbf{R}|\mathbf{A}| \mathbf{T}|\mathbf{E}| \mathbf{D}$ amount of solute posslble at th temperature
4. Two llquids which can mix are sald to be \qquad
6. The presence of a nonvolatle solute will $\xrightarrow{\text { point of a solvent bolling }}$ the point of a solvent.
9. A homogeneous mixture
10. Substance present in larger amounts in a mixture
13. Moles of a solute per Moles of a solute per
klogram of solvent
14. Solution containing a Solutton contalning a
relatively large amount relatively
of solvent
5. The solubllity of gases Increases. as temperature
17. State in which the rate of dissolving is equal to the rate of precipltation
18. The presence of a nonvolatile solute will solvent.
9. These substances alssoclate or lonize In water and are then able to conduct an electric current.
Down
I. Propertles that depend on the number of particles in a solution
3. Solution in which more solute can be alssolved
5. Solution contalining a relatlvely large amount of dissolved solute
7. Substance present in a smaller amount in a mixture
8. The solubility of most solids \qquad as temperature increases.
II. Maximum amount of solute that can allssolve in a stated amount of solute at a glven temperature
12. Moles of solute per liter of solutlon
16. Solutions in which water is the solvent are called

76

Answer Key

Potential Energy Diagram

Answer each question using the graph shown.
I. Is the above reaction endothermic or exothermic? exothermic
2. Which letter represents the potential energy of the reactants? B
3. Which letter represents the potentlal energy of the products? $\quad \mathbf{F}$
4. Which letter represents the heat of reaction $(\Delta \mathrm{H})$? D
5. Which letter represents the actlvation energy of the forward reaction? \qquad
6. Which letter represents the actlvation energy of the reverse reaction? E
7. Which letter represents the potential energy of the activated complex?
-
8. Ls the reverse reaction endothermic or exothermic? endothermic
9. If a catalyst were added, what letter(s) would change? \qquad A, C, E

Abstract

Name

Entropy

Entropy is the degree of randomness in a substance. The symbol for change in entropy is ΔS.	
Solids are very ordered and have low entropy. Liquids and aqueous ions have more entropy because they move about more freely. Gases have an even larger amount of entropy. According to the Second Law of Thermodynamics, nature is always proceeding to a state of higher entropy.	
Determine whether each reaction shows an Increase or decrease in entropy.	
I. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$	increase
2. $\mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	decrease
3. $\mathrm{N}_{2}(\underline{\theta})+3 \mathrm{H}_{2}(\underline{\theta}) \rightarrow 2 \mathrm{NH}_{3}(\underline{\theta})$	decrease
4. $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}+(\mathrm{aq})+\mathrm{Cr}(\mathrm{aq})$	increase
5. $\mathrm{KCl}(\mathrm{s}) \rightarrow \mathrm{KCl(l)}$	increase
6. $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	increase
7. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{HC}_{2} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{l})$	decrease
8. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	increase
9. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$	no change
10. $\mathrm{Ag}(\mathrm{aq})+\mathrm{Cr}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$	increase
II. $2 \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	increase
12. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{AlI}_{3}(\mathrm{~s})$	decrease
13. $\mathrm{H}+(\mathrm{aq})+\mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{O})$	decrease
14. $2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	no change
15. $\mathrm{H}_{2} \mathrm{O}(\mathrm{O}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1)$	decrease

Name

Gibbs Free Energy

For a reaction to be spontaneous, the sign of ΔG (Gibbs free energy) must be negative. The mathematical formula for this value is

$$
\Delta G=\Delta H-T \Delta S
$$

where $\Delta H=$ change in enthalpy or heat of reaction
$T=$ temperature in Kelvin
$\Delta S=$ change in entropy or randomness

Answer each question.
I. The conditions in which ΔG is always negative are when ΔH is negative and ΔS is positive.
2. The conditions in which ΔG is always positive are when ΔH is positive and ΔS is negative
3. When the situation is indeterminate, a low temperature favors the (entropy enthalpy) factor and a high temperature favors the entropy. enthalpy) factor.
Answer problems 4-6 with olvoys sometimes or never.
4. The reaction: $\mathrm{Na}(\mathrm{OH})_{5} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+$ energy will \qquad always be spontaneous.
5. The reaction: energy $+2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ will never \qquad spontaneous.
6. The reaction: energy $+\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ will sometimes be spontaneous.
7. What is the value of ΔG if $\Delta H=32.0 \mathrm{~kJ}, \Delta S=+25.0 \mathrm{~kJ} / \mathrm{K}$ and $\mathrm{T}=293 \mathrm{~K}$? -7,293 k J
8. Is the reaction in problem 7 spontaneous? yes
9. What is the value of ΔG if $\Delta H=+12.0 \mathrm{~kJ}, \Delta S=5.00 \mathrm{~kJ} / \mathrm{K}$ and $\mathrm{T}=290 . \mathrm{K}$? $+\mathbf{I}, \mathbf{4 6 0} \mathbf{~ k ~ J}$
10. Is the reaction in problem 9 spontaneous? no
© Carson-Dellosa • CD-104644
79

Name

Equilibrium Constant (K)

Write the expression for the equilibrium constant (K) for each reaction.

Answer Key

Calculations Using the Equilibrium Constant

Using the equilibrium constant expressions you determined on page 80, calculate the value of K when:
I. $\left(\mathrm{NH}_{3}\right)=0.0100 \mathrm{M},\left(\mathrm{N}_{2}\right)=0.0200 \mathrm{M},\left(\mathrm{H}_{2}\right)=0.0200 \mathrm{M}$
$\frac{(0.01)^{2}}{(0.02)(0.02)^{3}}=625$
2. $\left(\mathrm{O}_{2}\right)=0.0500 \mathrm{M}$
$(0.05)^{3}=1.25 \times 10^{-4}$
3. $\left(\mathrm{H}^{+}\right)=1 \times 10^{-8} \mathrm{M},\left(\mathrm{OH}^{-}\right)=1 \times 10^{-6} \mathrm{M}$

$$
\left(1 \times 10^{-8}\right)\left(1 \times 10^{-6}\right)=1 \times 10^{-14}
$$

4. $(\mathrm{CO})=2.0 \mathrm{M},\left(\mathrm{O}_{2}\right)=1.5 \mathrm{M},\left(\mathrm{CO}_{2}\right)=3.0 \mathrm{M}$

$$
\frac{(3.0)^{2}}{(2.0)^{2}(1.5)}=1.5
$$

5. $\left(\mathrm{L}^{+}\right)=0.2 \mathrm{M},\left(\mathrm{CO}_{3}^{-2}\right)=0.1 \mathrm{M}$
$(0.2)^{2}(0.1)=4 \times 10^{-3}$

Le Chatelier's Principle (Cont.)

$12.6 \mathrm{kcal}+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{L},(\mathrm{g}) \leftrightarrow 2 \mathrm{H}(\mathrm{g})$

Stress	Equilibrium Shift	$\left(\mathrm{H}_{2}\right)$	$\left(\mathrm{I}_{2}\right)$	(HI)	K
II. Add H_{2}	rlght	-	decreases	Increases	remains the same
12. Add I 2	right	decreases	-	increases	same
13. Add HI	left	increases	increases	-	same
14. Remove H_{2}	left	-	increases	decreases	same
15. Remove I_{2}	left	increases	-	decreases	same
16. Remove HI	right	decreases	decreases		same
17. Increase temperature	right	decreases	decreases	increases	increases
18. Decrease temperature	left	increases	increases	decreases	decreases
19. Increase pressure	none	same	same	same	same
20. Decrease pressure	none	same	same	same	same
$\left.\mathrm{NAOH}(\mathrm{s}) \leftrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{(\mathrm{aq}}\right)+10.6 \mathrm{kcal}$					
Stress	$\begin{array}{\|c} \text { Equilibrium } \\ \text { Shift } \end{array}$	Amount $\mathrm{NaOH}(\mathrm{s})$	$\left(\mathrm{Na}^{+}\right)$	$\left(\mathrm{OH}^{-}\right)$	K
21. Add $\mathrm{NaOH}(\mathrm{s})$	none	-	same	same	same
22. AddNaCl (Adds Na^{+})	left	increases	-	decreases	same
23. Add KOH (Adds OH^{-})	left	increases	decreases	-	same
24. $\begin{aligned} & \text { Add H} \\ & \text { (Removes } \mathrm{OH}^{+} \text {) }\end{aligned}$	right	decreases	increases	-	same
25. Increase temperature	left	increases	decreases	decreases	decreases
26. Decrease temperature	right	decreases	increases	increases	increases
27. Increase pressure	none	same	same	same	same
28. Decrease pressure	none	same	same	same	same

Name___

Le Chatelier's Principle

Le Chatelier's principle states that when a system at equilibrium is subjected to a stress, the system will shift its equilibrium point in order to relieve the stress.

Complete the chart by writing left, nght, or none for equilibrium shift. Then, write decreases increases, or remalns the same for the concentrations of reactants and products, and for increases, or remalns the same for the concentrat
the value of K. The first one has been done for you.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22.0 \mathrm{kcal}
$$

Stress	Equilibrium Shift	$\left(\mathrm{N}_{2}\right)$	$\left(\mathrm{H}_{2}\right)$	$\left(\mathrm{NH}_{3}\right)$	K
I. Add N_{2}	right		decreases	increases	remalns the same
2. Add H_{2}	right	decreases		increases	same
3. Add NH_{3}	left	increases	increases	-	same
4. Remove N_{2}	left	-	increases	decreases	same
5. Remove H_{2}	left	increases		decreases	same
6. Remove NH_{3}	right	decreases	decreases	-	same
7. Increase tempercture	left	increases	increases	decreases	increases
8. Decrease tempercture	right	decreases	decreases	increases	decreases
9. Increase pressure	right	decreases	decreases	increases	same
10. Decrease prossure	left	increases	increases	decreases	same

Name

Bronsted-Lowry Acids and Bases

According to Bronsted-Lowry theory, an acid is a proton $\left(\mathrm{H}^{+}\right)$donor and a base is a proton acceptor.

Example: $\stackrel{\mathrm{HCl}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}}{\mathrm{H}^{+}}$
The HCl acts as an acid, and the OH^{-}acts as a base. This reaction is reversible in that the $\mathrm{H}_{2} \mathrm{O}$ can give back the proton to the Cl^{-}.

Label the Bronsted-Lowry acids and bases in each reaction and show the direction of proton transfer.

$$
\text { Example: } \underset{\substack{\mathrm{H}_{2} \mathrm{O}_{\text {acid }}^{+}}}{\mathrm{H}_{\text {base }}^{\mathrm{Cl}^{-}}} \leftrightarrow \underset{\text { base }}{\mathrm{OH}^{-}} \stackrel{\mathrm{H}_{\text {acid }}^{+}}{\mathrm{HCl}_{\text {acid }}}
$$

$$
\text { I. } \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad \text { 4. } \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}+\leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
$$

2. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{OH}^{-} \longleftrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

A B B A
3. $\mathrm{HSO}_{4}^{-} \mathrm{W}^{+} \mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{SO}_{4}^{2-} \mathrm{H}^{+} \mathrm{H}_{3} \mathrm{O}^{+}$

A B B \mathbf{A}

Answer Key

Name			
Conjugate Acid-Base Pairs			
In the exercise on page 84, it was shown that after an acid has given up its proton, it is capable of getting the proton back and acting as a base. Conjugate base is what is left after an acid gives up a proton. The stronger the acid, the weaker the conjugate base. The weaker the acid, the stronger the conjugate base.			
Complete the chart.			
Conjugate Pairs			
	Acid	Base	Equation
1.	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	$\mathrm{H}_{2} \mathrm{SO}_{4} \leftrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$
2.	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
3.	HF	F-	$\mathbf{H F} \rightarrow \mathbf{H}^{+}+\mathrm{F}^{-}$
4.	HNO_{3}	NO_{3}^{-}	$\mathrm{HNO}_{3} \longleftrightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}{ }^{-}$
5.	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	$\mathrm{HPO}_{4}{ }^{-2}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \longleftrightarrow \mathrm{H}^{+}$
6.	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	$\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
7.	$\mathrm{HSO}_{4}{ }^{-}$	SO_{4}^{2-}	$\mathrm{HSO}_{4}{ }^{-} \longleftrightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{-3}$
8.	$\mathrm{HPO}_{4}{ }^{-2}$	$\mathrm{PO}_{4}{ }^{-3}$	$\mathrm{HPO}_{4}^{-2} \longleftrightarrow \mathrm{H}^{+}+\mathrm{PO}_{4}^{-3}$
9.	$\mathrm{NH}_{4}{ }^{+}$	NH_{3}	$\mathrm{NH}_{4}{ }^{+} \longleftrightarrow \mathrm{H}^{+}+\mathrm{NH}_{3}$
10.	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$
II. Which is a stronger base, HSO_{4}^{-}or $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$? $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$			
12. Which is a weaker base, $\mathrm{Cl}^{\text {or } \mathrm{NO}_{2}^{-} \text {? }} \mathrm{Cl}^{-}$			
© Carson-Delosa - CD-104644			

Name_

pH and pOH

Complete the chart.

	$\left(\mathrm{H}^{+}\right)$	pH	(OH^{-})	pOH	Acidic or Basic
1.	$10^{-5} \mathrm{M}$	5	$10^{-9} \mathrm{M}$	9	acidic
2.	$10^{-7} \mathrm{M}$	7	$10^{-7} \mathrm{M}$	7	neutural
3.	$10^{-10} \mathrm{M}$	10	$10^{-4} \mathrm{M}$	14	basic
4.	$10^{-2} \mathrm{M}$	2	$10^{-12} \mathrm{M}$	12	acidic
5.	$10^{-3} \mathrm{M}$	3	$10^{-11} \mathrm{M}$	11	acidic
6.	$10^{-12} \mathrm{M}$	12	$10^{-2} \mathrm{M}$	2	basic
7.	$10^{-9} \mathrm{M}$	9	$10^{-5} \mathrm{M}$	5	basic
8.	$10^{-11} \mathrm{M}$	11	$10^{-3} \mathrm{M}$	3	basic
9.	$10^{-1} \mathrm{M}$	1	$10^{-13} \mathrm{M}$	13	acidic
10.	$10^{-6} \mathrm{M}$	6	$10^{-8} \mathrm{M}$	8	acidic

Name
-2

pH of Solutions

Calculate the pH of each solution.

I. 0.01 M HCl	
	$\mathrm{pH}=2$
2. 0.0010 M NaOH	
	$\mathrm{pH}=1 \mathrm{l}$
3. $0.050 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$	
	$\mathrm{pH}=1.3$
4. 0.030 M HBr	
	$\mathrm{pH}=1.5$
5. 0.150 M KOH	
	$\mathrm{pH}=13.2$
6. $2.0 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (Assume 5.0% dilssoclation.)	
	$\mathrm{pH}=1.0$
7. 3.0 M HF (Assume 10.0% dlssoclation.)	
	$\mathrm{pH}=0.52$
8. $0.50 \mathrm{M} \mathrm{HNO}_{3}$	
	$\mathrm{pH}=0.30$
9. $2.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ (Assume 5.00% dlissoclation.)	
	$\mathrm{pH}=13.1$
10. $5.0 \mathrm{M} \mathrm{HNO}_{2}$ (Assume 1.0% dilsoclation.)	
	$\mathrm{pH}=1.3$

© Carson-Dellosa • CD-104644

Name \square

Acid-Base Titration

To determine the concentration of an acid (or base), we can react it with a base (or acid) of known concentration until it is completely neutralized. This point of exact neutralization, known as the endpoint, is noted by the change in color of the indicator Use the following equation:

$$
N_{\mathrm{A}} \times V_{\mathrm{A}}=N_{\mathrm{B}} \times V_{\mathrm{B}} \quad \text { where } \quad \begin{aligned}
N & =\text { normality } \\
V & =\text { volume }
\end{aligned}
$$

Solve each problem.
I. A 25.0 mL sample of HCl was thrated to the endpolnt with 15.0 mL of 2.0 N NaOH . What was the normally of the HCl ?
1.2 N
2. A 10.0 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was exactly neutrallzed by 13.5 mL of 1.0 M KOH . What is the normallty of the $\mathrm{H}_{2} \mathrm{SO}_{4}$?
1.4 N
3. How much 1.5 M NaOH is necessary to exactly neutralize 20.0 mL of $2.5 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

33 mL
4. How much $0.5 \mathrm{M} \mathrm{HNO}_{3}$ is necessary to thrate 25.0 mL of $0.05 \mathrm{M} \mathrm{Ca(OH)}{ }_{2}$ solution to the endpoint
2.5 mL
5. What is the molarity of a NaOH solution If 15.0 mL is exactly neutrallzed by 7.5 mL of $\mathrm{a} 0.02 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution?

```
                                    0.01 M
```


88

Answer Key

Hydrolysis of Salts

Salt solutions may be acidic, basic, or neutral, depending on the original acid and base
that formed the salt.
strong acid + strong base \rightarrow neutral salt
strong acid + weak base \rightarrow acidic salt
weak acid + strong base \rightarrow basic salt
A weak acid and a weak base will produce any type of solution depending on the
relative strengths of the acid and base involved. relative strengths of the acid and base involved.

Complete the chart for each salt shown.

Salt	Parent Acid	Parent Base	Type of Solution
I. KCl	HCl	KOH	neutral
2. $\mathrm{NH}_{4} \mathrm{NO}_{3}$	HNO_{3}	$\mathrm{NH}_{4} \mathrm{OH}\left(\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}\right)$	acidic
3. $\mathrm{Na}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$	NaOH	basic
4. CaSO_{4}	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	neutral
5. AlBr $_{3}$	HBr	$\mathrm{Al}(\mathrm{OH})_{2}$	acidic
6. Cul_{2}	HI	$\mathrm{Cu}(\mathrm{OH})_{2}$	acidic
7. MgF_{4}	$\mathrm{Mg}(\mathrm{OH})_{2}$	HF	basic
8. NaNO_{3}	HNO_{3}	NaOH	neutral
9. $\mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	LiOH	basic
10. ZnCl_{2}	HCl	$\mathrm{Zn}(\mathrm{OH})_{2}$	acidic
II. SrSO_{4}	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Sr}(\mathrm{OH})_{2}$	neutral
12. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{Ba}(\mathrm{OH})_{2}$	basic

Name_

Name
Assigning Oxidation Numbers
Assign oxidation numbers to all of the elements in each compound or ion shown.

	${ }^{+1} \mathrm{HCl}^{-1}$	li. $\mathrm{H}_{2} \mathrm{SO}_{3}$	$\stackrel{+1}{\mathrm{H}_{2}} \mathrm{~S}^{+4} \mathrm{O}_{3}^{-2}$
2. KNO_{3}	${ }^{+1} \mathrm{KNO}_{3}^{+5} \mathrm{O}_{3}$	12. $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\stackrel{+1}{\mathrm{H}_{2}}{\stackrel{+6}{ } \mathrm{SO}_{4}^{-2}}^{-2}$
3. OH^{-}	$\mathbf{O H}^{-2+1}$	13. BaO_{2}	$\stackrel{+2}{2 a O}_{2}^{-1}$
4. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$	$\stackrel{+2}{\mathrm{Mg}_{3}} \mathrm{~N}_{2}^{-3}$	14. KMnO_{4}	$\stackrel{+1}{\mathbf{K}} \stackrel{+7}{\mathbf{M n}} \mathbf{O}_{4}^{-2}$
5. KClO_{3}	$\stackrel{+1}{\mathrm{~K}} \mathrm{CH}_{\mathrm{C}}^{1} \mathrm{O}_{3}^{-2}$	15. UH	$\stackrel{+1}{\mathrm{Li}}{ }^{-1}$
6. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	$\stackrel{+3}{\mathrm{Al}}\left({\left.\stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}\right)_{3}^{-2}}^{-2}\right.$	16. MnO_{2}	$\stackrel{+4}{\mathrm{M}} \mathrm{O}_{\mathbf{2}}^{-2}$
7. S_{8}	$\stackrel{0}{\mathbf{S}_{8}}$	17. OF_{2}	$\stackrel{+2}{O}^{-1} \mathbf{F}_{2}$
8. $\mathrm{H}_{2} \mathrm{O}_{2}$	$\stackrel{+1}{\mathrm{H}_{2} \mathrm{O}_{2}^{-1}}$	18. SO_{3}	$\mathrm{S}^{+6} \mathrm{O}_{3}^{-2}$
9. PbO_{2}	$\stackrel{+4}{\mathrm{PbO}_{2}}$	19. NH_{3}	$\stackrel{-}{\mathbf{N}}^{\mathbf{+}}{ }_{3}^{+1}$
10. NaHSO_{4}	$\stackrel{+1}{\mathrm{NaHS}^{+1+6} \mathrm{H}_{4}^{-2}}$	$\text { 20. } \mathrm{Na}$	$\stackrel{\circ}{\mathrm{Na}}$

Name

Redox Reactions

For each equation, identify the substance oxidized, the substance reduced, the oxidizing agent, and the reducing agent. Then, write the oxidation and reduction half-reactions.

Example: \begin{tabular}{l}

oxidized
Mg reducing agent oxidation half-reaction: reduced oxidizing
Br_{2}

reduction half-reaction: $2 \mathrm{Mg}^{-}+\mathrm{Mg}^{+2}+2 \mathrm{Br}_{2}^{-} \rightarrow 2 \mathrm{Br}^{-}$
\end{tabular}

```
oxidized reduced
l. 2H2
reducing agent oxidizing agent
oxidation half-reaction: 2H}\mp@subsup{\mathbf{H}}{}{\mathbf{0}}->\mathbf{4H}\mp@subsup{\mathbf{H}}{}{+}+4\mp@subsup{\textrm{e}}{}{-
reduction half-reaction: 4e- + O2,0}->2\mp@subsup{\textrm{O}}{}{2-
oxidized reduced
2. Fe + Zn2+ }->\mp@subsup{\textrm{Fe}}{}{2+}+\textrm{Zn
reducing agent oxidizing agent
oxidation half-reaction: Fe }->\mp@subsup{\textrm{Fe}}{}{2+}+2\mp@subsup{e}{}{-
reduction half-reaction: }\mathbf{2e}\mp@subsup{\mathbf{e}}{}{-}+\mathbf{Zn}\mp@subsup{\mathbf{n}}{}{\mathbf{+}}->\mathbf{Zn}\mp@subsup{\mathbf{0}}{}{0
oxidized reduced
3. 2Al +3Fe+}->2\mp@subsup{\textrm{Al}}{}{3+}+3\textrm{Fe
reducing agent oxidizing agent
oxidation half-reaction: 2AI'
reduction half-reaction: 6e- +3Fe}\mp@subsup{}{}{2+}->3\mp@subsup{\textrm{Fe}}{}{0
oxidized reduced
4. Cu + 2AgNO
reducing agent oxidizing agent
oxidation half-reaction: }\textrm{Cu}->\mp@subsup{\textrm{Cu}}{}{2+}+2\mp@subsup{e}{}{-
reduction half-reaction: 2\mp@subsup{e}{}{-}+2\mp@subsup{\mathbf{Ag}}{}{+}->2\textrm{Ag}

\section*{Answer Key}

Name_

\section*{Balancing Redox Equations}

Balance each equation using the half-reaction method.


Name
——___

\section*{The Electrochemical Cell}


Answer each question, referring to the diagram and a table of standard electrode potentials.
1. Which is the more easlly oxdalzed metal: aluminum or lead? aluminum
2. What is the balanced equation showing the spontaneous reaction that occurs? \(2 \mathrm{Al}^{0}+3 \mathrm{~Pb}^{+2} \rightarrow 2 \mathrm{Al}^{+3}+3 \mathrm{~Pb}^{0}\)
3. What is the moximum voltage that the above cell can produce? +1.79 V
4. What is the direction of electron flow in the wre? from aluminum to lead
5. What is the dilection of posttive lon flow in the salt bridge? from aluminum nitrate 6. Which electrode is decreasing insze? aluminum to lead(II) nitrate
7. Which electrode is increasing in szze? lead
8. What is happening to the concentration of aluminum ions? ___ increasing
9. What is happening to the concentration of lead ions? decreasing
10. What is the voltage in thls cell when the reaction reaches equllibrium? zero
II. Which is the anode? \(\qquad\) aluminum
12. Which is the cathode? \(\qquad\) lead
13. Which ts the positive electrode? \(\qquad\) lead
14. Which is the negative electrode? \(\qquad\) aluminum

Name

\section*{Electrochemistry Crossword}

```

ACROSS

```
4. Unit of electrical potential
6. Electrode where oxidation tokes place
7. Both atoms and ___ must be Both atoms and balanced in a redox equation
9. The anode in an electrochemical cell has this charge.
10. Gain of electrons
12. Voltage of an electrochemical cell when it reaches equilibrium
13. A substance that is oxidized is the
___ agent.
Allows the flow of ions in an electrochemical cell

DOWN
The anode in an electrolytic cell has this charge.
2. Another word for on electrochemical cell
3. Electrode where reduction takes place
5. Process of layering a metal onto a surface in an electrolytic cell
8. Loss of electrons
II. A substance that is reduced is the __ agent.
\(\qquad\)

Name

\section*{Naming Hydrocarbons}

Name each compound according to the IUPAC naming system.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
I. \\
propane
\end{tabular} & \begin{tabular}{l}
5. \\
butane
\end{tabular} \\
\hline \begin{tabular}{l}
2. \\
n-butene or I-butene
\end{tabular} & \begin{tabular}{l}
6. \\
methylpropane or isobutane
\end{tabular} \\
\hline 3. & 7. \\
\hline \begin{tabular}{l}
4. \\
2-methylpentane
\end{tabular} & \begin{tabular}{l}
8. \\
3, 3-diethylpentane
\end{tabular} \\
\hline
\end{tabular}

\section*{Answer Key}

\section*{Structure of Hydrocarbons}

Draw the structure of each compound.
\begin{tabular}{|c|c|}
\hline I. ethane & 5. ethyne
\[
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
\] \\
\hline 2. propene & 6. 3, 3-dlmethylpentane \\
\hline 3. 2-butene & 7. 2, 3-dimethylpentane \\
\hline 4. methane & 8. n-butyne \\
\hline
\end{tabular}
© Carson-Dellosa •CD-104644

Name_

\section*{Functional Groups}

Classify each of the organic compounds as an alcohol carboxyllc acld aldehyde, ketone. ether, or ester. Then, draw its structural formula.
\begin{tabular}{|c|c|}
\hline I. \(\mathrm{CH}_{3} \mathrm{COOH}\) carboxylic acid & 6. \(\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{OH}^{2} \mathrm{CH}_{3}\right.\) alcohol \\
\hline  & 7. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\) carboxylic acid \\
\hline 3. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\) alcohol & 8. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\) ester \\
\hline \begin{tabular}{l}
4. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}\) \\
ether
\end{tabular} & \begin{tabular}{l}
9. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}\) \\
ketone
\end{tabular} \\
\hline 5. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}\) aldehyde & \begin{tabular}{l}
10. \(\mathrm{CH}_{3} \mathrm{OCH}_{3}\) \\
ether
\end{tabular} \\
\hline
\end{tabular}

98
Carson-Dellosa • CD-1046

Name

\section*{Naming Other Organic Compounds}

Name each compound.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
I. \\
ethanol
\end{tabular}} & 6. \\
\hline & \begin{tabular}{l}
 \\
methyl ethanoate or methyl acetate
\end{tabular} \\
\hline 2. & 7. \\
\hline \begin{tabular}{l}
 \\
propanone
\end{tabular} & \begin{tabular}{l}
 \\
2-butanol
\end{tabular} \\
\hline 3. & 8. \\
\hline \begin{tabular}{l}
 \\
butanol
\end{tabular} & \begin{tabular}{l}
 \\
propanoic acid
\end{tabular} \\
\hline 4. & q. \\
\hline \begin{tabular}{l}
 \\
acetic acid or ethanoic acid
\end{tabular} &  \\
\hline 5. & 10. \\
\hline  &  \\
\hline
\end{tabular}

Name
Structures of Other Organic Compounds
Draw the structure of each compound.
\begin{tabular}{|c|c|}
\hline I. butanolc acld & 6. methyl methanoate (methyl formate) \\
\hline 2. methanal & 7. 3-pentanol \\
\hline 3. methanol & 8. methanolc acld (formic aeld) \\
\hline 4. butanone & 9. propanal \\
\hline 5. dlethyl ether & 10. 2-pentanone \\
\hline
\end{tabular}

100

\section*{Answer Key}
 THE 100+ SERIES \({ }^{\text {² }}\)

\section*{CHEMISTRY}

Essential Practice for Key Science Topics

Connect students with essential science information in this comprehensive Chemistry resource. It includes more than 100 activities to extend and enhance your chemistry studies. Tables, charts, and illustrations aid students as they learn about a wide variety of topics including the periodic table, atomic structure, and scientific notation. The pages are rich in content vocabulary and offer a variety of exercises and activities with great student appeal. This book will serve as an excellent supplement to your and chemistry curriculum.

Check out these other great Carson-Dellosa products to support standards-based instruction in your classroom.


The \(100+\) Series \(^{\text {TM }}\)
Human Body
CD-104641


The \(100+\) Series \(^{\text {TM }}\)
Physical Science CD-104642


The \(100+\) Series \(^{T M}\)
Biology
CD-104643


Visit

\section*{CARSON-DELLOSA \({ }^{\text {" }}\)}```


[^0]:    12

[^1]:    © Carson-Dellosa • CD-104644

[^2]:    © Carson-Dellosa • CD-104644

[^3]:    64
    © Carson-Dellosa • CD-104644

[^4]:    © Carson-Dellosa • CD-104644

