

Table of Contents

Laboratory Dos and Don'ts I
Laboratory Equipment2
Triple and Four Beam Balances
Measuring Liquid Volume4
Reading Thermometers5
Metrics and Measurements6
Dimensional Analysis (Unit Factor Method)
Scientific Notation8
Significant Figures9
Calculations Using Significant Figures 10
Percentage ErrorII
Temperature and Its Measurement 12
Freezing and Boiling Point Graph
Phase Diagram
Heat and Its Measurement 15
Vapor Pressure and Boiling 16
Matter-Substances vs. Mixtures
Physical vs. Chemical Properties
Physical vs. Chemical Changes
Boyle's Law
Charles' Law
Combined Gas Law
Dalton's Law of Partial Pressures
Ideal Gas Law
Graham's Law of Effusion25
Element Symbols26
Atomic Structure27
Isotopes and Average Atomic Mass28
Electron Configuration (Level One) 29
Electron Configuration (Level Two) 30
Valence Electrons
Lewis Dot Diagrams
Atomic Structure Crossword
Nuclear Decay
Half-Lives of Radioactive Isotopes35
Periodic Table Worksheet

Periodic Table Puzzles
Ionic Bonding
Covalent Bonding
Types of Chemical Bonds
Shapes of Molecules
Polarity of Molecules
Chemical Bonding Crossword
Writing Formulas (Crisscross Method) 45
Naming Ionic Compounds46
Naming Molecular Compounds
Naming Acids
Writing Formulas from Names
Gram Formula Mass50
Moles and Mass
The Mole and Volume52
The Mole and Avogadro's Number 53
Mixed Mole Problems
Percentage Composition55
Determining Empirical Formulas
Determining Molecular Formulas
(True Formulas)57
Composition of Hydrates58
Balancing Chemical Equations 59
Word Equations
Classification of Chemical Reactions 61
Predicting Products of Chemical Reactions
Stoichiometry: Mole-Mole Problems63
Stoichiometry: Volume-Volume Problems
Stoichiometry: Mass-Mass Problems 65
Stoichiometry: Mixed Problems
Stoichiometry: Limiting Reagent
Solubility Curves
Molarity (M)69
Molarity by Dilution70
Molality (m)

Normality (N)72
Electrolytes73
Effect of a Solute on Freezing
and Boiling Points74
Solubility (Polar vs. Nonpolar)75
Solutions Crossword76
Potential Energy Diagram77
Entropy
Gibbs Free Energy79
Equilibrium Constant (K)80
Calculations Using the Equilibrium Constant
Le Chatelier's Principle
Bronsted-Lowry Acids and Bases
Conjugate Acid-Base Pairs
pH and pOH86
pH of Solutions
Acid-Base Titration
Hydrolysis of Salts
Acids and Bases Crossword
Assigning Oxidation Numbers
Redox Reactions
Balancing Redox Equations
The Electrochemical Cell
Electrochemistry Crossword
Naming Hydrocarbons
Structure of Hydrocarbons
Functional Groups
Naming Other Organic Compounds99
Structures of Other Organic
Compounds100
Organic Chemistry Crossword101
Reference
Answer Key103

Credits

Content Editor: Deborah Trogdon-Stout Proofreader: Christine M. Schwab

Visit carsondellosa.com for correlations to Common Core, state, national, and Canadian provincial standards.

Carson-Dellosa Publishing, LLC PO Box 35665 Greensboro, NC 27425 USA carsondellosa.com

© 2015, Carson-Dellosa Publishing, LLC. The purchase of this material entitles the buyer to reproduce worksheets and activities for classroom use only-not for commercial resale. Reproduction of these materials for an entire school or district is prohibited. No part of this book may be reproduced (except as noted above), stored in a retrieval system, or transmitted in any form or by any means (mechanically, electronically, recording, etc.) without the prior written consent of Carson-Dellosa Publishing, LLC.

Laboratory Dos And Don'ts

Identify what is wrong in each laboratory activity.

Τ

Name_

Laboratory Equipment

Label the lab equipment.

Triple And Four Beam Balances

Identify the mass on each balance.

Triple Beam Balance

lo o	0	20	30	40	50	60	70	80	40	100
_ ~	100	200	300	400	500	600	700	800	900	1000
П	anninn	2	nninn.		nınının 5	nin n inn 6	7	ninninini 8		
								$- \begin{array}{cccccccccccccccccccccccccccccccccccc$	$- \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$- \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Four Beam Balance

	~				100					200
20	10	20	30	40	50	60	70	80	90	io
20		2	3	4	5	6	γ_7	в	F	10
0	0.1	0.2	0.3	0.4	0,5	0.6	0.7	0.8	1111 0.9	шц І.с

Measuring Liquid Volume

Identify the volume indicated on each graduated cylinder. The unit of volume is mL.

Reading Thermometers

Identify the temperature indicated on each thermometer.

Metrics And Measurements

In the chemistry classroom and lab, the metric system of measurement is used. It is important to be able to convert from one unit to another.

mega-	kilo-	hecto-	deca-	Basic Units	deci-	centi-	milli-	micro-
(M)	(k)	(h)	(da)	gram (g)	(d)	(C)	(m)	(µ)
1,000,000	1,000	100	10	liter (L)	0.1	0.01	0.001	0.000001
106	10 ³	102	101	meter (m)	10-1	10-2	10-3	10-6

Unit Factor Method

- I. Write the given number and unit.
- 2. Set up a conversion factor (fraction used to convert one unit to another).
 - a. Place the given unit as the denominator of the conversion factor.
 - b. Place the desired unit as the numerator.
 - c. Place a one in front of the larger unit.
 - d. Determine the number of smaller units needed to make one of the larger units.
- 3. Cancel the units. Solve the problem.

Example I : 55 mm = m	Example 2 : 88 km = m
<u>55-mm I m</u> I,000-mm = 0.055 m	<u>88-km</u> 1,000 m I-km = 88,000 m
Example 3 : 7,000 cm = hm	Example 4 : 8 daL = dL
7,000-cm I-m I hm _ 0.7 hm	<u>8-dat 10-t 100 dL _ 800 di</u>
100- cm 10,000- cm = 0.7 Hitt	I-dat I-dat = 800 at

The unit factor method can be used to solve virtually any problem involving changes in units. It is especially useful in making complex conversions dealing with concentrations and derived units.

Convert each measurement.

- l. 35 mL = _____ dL
- 2. 275 mm = _____ cm
- 3. I,000 mL = _____ L
- 4. 25 cm = ____ mm
- 5. 0.075 m = _____ cm

Dimensional Analysis (Unit Factor Method)

Using this method, it is possible to solve many problems by using the relationship of one unit to another. For example, 12 inches = one foot. Since these two numbers represent the same value, the fractions 12 in./1 ft. and 1 ft./12 in. are both equal to one. When you multiply another number by the number one, you do not change its value. However, you may change its unit. **Example 1:** Convert 2 miles to inches. $2 \text{ miles} \times \frac{5,280 \text{ ft.}}{1 \text{ mile}} \times \frac{12 \text{ inches}}{1 \text{ ft.}} = 126,720 \text{ in.}$ **Example 2:** How many seconds are in 4 days? $4 \text{ days} \times \frac{24 \text{ hrs.}}{1 \text{ day}} \times \frac{60 \text{ min.}}{1 \text{ hr.}} \times \frac{60 \text{ sec.}}{1 \text{ min.}} = 345,600 \text{ sec.}$

Solve each problem. Round irrational numbers to the thousandths place.

- I. 3 hr. = _____ sec.
- 2. 0.035 mg = _____ cg
- 3. 5.5 kg = _____ lb.
- 4. 2.5 yd. = _____ in.
- 5. I.3 yr. = _____ hr.
- 6. 3 moles = _____ molecules (1 mole = 6.02×10^{23} molecules)
- 7. 2.5×10^{24} molecules = _____ moles
- 8. 5 moles = _____ liters (1 mole = 22.4 liters)
- 9. 100. liters = _____ moles
- 10. 50. liters = _____ molecules
- 11. 5.0×10^{24} molecules = _____ liters
- 12. $7.5 \times 10^3 \text{ mL} =$ ______ liters

Scientific Notation

Scientists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros. We can express these numbers as powers of 10.

Scientific notation takes the form of $M \times 10^n$ where $1 \le M < 10$ and *n* represents the number of decimal places to be moved. Positive *n* indicates the standard form is a large number. Negative *n* indicates a number between zero and one.

Example 1: Convert 1,500,000 to scientific notation.

Move the decimal point so that there is only one digit to its left, for a total of 6 places.

 $1,500,000 = 1.5 \times 10^{6}$

Example 2: Convert 0.000025 to scientific notation.

For this, move the decimal point 5 places to the right.

 $0.000025 = 2.5 \times 10^{-5}$

(Note that when a number starts out less than one, the exponent is always negative.)

Convert each number to scientific notation.

Ι.	0.005 =	6.	0.25 =
2.	5,050 =	7.	0.025 =
3.	0.0008 =	8.	0.0025 =
4.	1,000 =	٩.	500 =
5.	1,000,000 =	10.	5,000 =
Con	vert each number to standard notation.		
11.	$1.5 \times 10^3 =$	16.	3.35 × 10 ⁻¹ =
12.	1.5 × 10 ⁻³ =	17.	1.2 × 10 ⁻⁴ =
13.	3.75 × 10 ⁻² =	18.	I × 10 ⁴ =
14.	3.75 × 10 ² =	19.	× 0 ⁻¹ =
15.	2.2 × 10 ⁵ =	20.	4 × 10° =

Significant Figures

A measurement can only be as accurate and precise as the instrument that produced it. A scientist must be able to express the accuracy of a number, not just its numerical value. We can determine the accuracy of a number by the number of significant figures it contains.

I. All digits I-9 inclusive are significant.

Example: <u>129</u> has 3 significant figures.

2. Zeros between significant digits are always significant.

Example: <u>5,007</u> has 4 significant figures.

3. Trailing zeros in a number are significant only if the number contains a decimal point. Sometimes, a decimal may be added without any number in the tenths place.

Example: <u>100.0</u> has 4 significant figures.

100. has 3 significant figures.

100 has I significant figure.

4. Zeros in the beginning of a number whose only function is to place the decimal point are not significant.

Example: 0.0025 has 2 significant figures.

5. Zeros following a decimal significant figure are significant.

Example: 0.000470 has 3 significant figures.

0.<u>47000</u> has 5 significant figures.

Determine the number of significant figures in each number.

١.	0.02	6.	5,000.
2.	0.020	7.	6,051.00
3.	501	8.	0.0005
4.	501.0	٩.	0.1020
5.	5,000	10.	10,001

Determine the location of the last significant place value by placing a bar over the digit. (Example: $1.70\overline{0}$)

11.	8,040	14.	0.0300	17.	699.5	19.	2.000×10^{2}
12.	0.90100	15.	90,100	18.	4.7 × 10 ⁻⁸	20.	10,800,000.0
13.	3.01 × 10 ²¹	16.	0.000410				

Calculations Using Significant Figures

When multiplying and dividing, limit and round to the least number of significant figures in any of the factors.

Example 1: 23.0 cm × 432 cm × 19 cm = 188,784 cm³

The answer is expressed as 190,000 $\rm cm^3$ since 19 cm has only two significant figures.

When adding and subtracting, limit and round your answer to the least number of decimal places in any of the numbers that make up your answer.

Example 2: 123.25 mL + 46.0 mL + 86.257 mL = 255.507 mL The answer is expressed as 255.5 mL since 46.0 mL has only one decimal place.

Perform each operation, expressing the answer in the correct number of significant figures.

1. 1.35 m × 2.467 m =	
-----------------------	--

- 2. 1,035 m² ÷ 42 m = _____
- 3. 12.01 mL + 35.2 mL + 6 mL = _____
- 4. 55.46 g 28.9 g = _____
- 5. 0.021 cm × 3.2 cm × 100.1 cm = _____

6. 0.15 cm + 1.15 cm + 2.051 cm =_____

- 7. $150 L^3 \div 4 L =$ _____
- 8. 505 kg 450.25 kg = _____

9. 1.252 mm × 0.115 mm × 0.012 mm = _____

10. $1.278 \times 10^3 \text{ m}^2 \div 1.4267 \times 10^2 \text{ m} =$ _____

Percentage Error

Percentage error is a way for scientists to express how far off a laboratory value is from the commonly accepted value.

Determine the percentage error in each problem.

Ι.	Experimental value = 1.24 g Accepted value = 1.30 g
2.	Experimental value = $1.24 \times 10^{-2} \text{ g}$ Accepted value = $9.98 \times 10^{-3} \text{ g}$
3.	Experimental value = 252 mL Accepted value = 225 mL
4.	Experimental value = 22.2 L Accepted value = 22.4 L
5.	Experimental value = 125.2 mg Accepted value = 124.8 mg

Temperature and Its Measurement

Temperature (which measures average kinetic energy of the molecules) can be measured using three common scales: **Celsius**, **Kelvin**, and **Fahrenheit**. Use the following formulas to convert from one scale to another. Celsius is the scale most desirable for laboratory work. Kelvin represents the absolute scale. Fahrenheit is the old English scale, which is rarely used in laboratories.

°C = K – 273	K = °C + 273
$^{\circ}F = \frac{9}{5} ^{\circ}C + 32$	°C = $\frac{5}{9}$ (°F - 32)

Complete the chart. All measurements are good to 1°C or better.

	°C	К	°F
١.	0°C		
2.			212°F
3.		450 K	
4.			98.6°F
5.	-273°C		
6.		294 K	
7.			77°F
8.		225 K	
٩.	-40°C		

II. Would an increase in pressure cause this substance to freeze or melt? _

Heat and Its Measurement

Heat (or energy) can be measured in units of **calories** or **joules**. When there is a temperature change (ΔT), heat (Q) can be calculated using this formula:

 $Q = mass \times \Delta T \times specific heat capacity$ ($\Delta T = final temperature - initial temperature)$

During a phase change, use this formula:

Q = mass × heat of fusion (or heat of vaporization)

Solve each problem.

Ι.	How many joules of heat are given off when 5.0 g of water cool from 75°C to 25°C? (Specific heat of water = 4.18 J/g°C)
2.	How many calories are given off by the water in problem 1? (Specific heat of water = 1.0 cal/g°C)
3.	How many joules does it take to melt 35 g of ice at O°C? (heat of fusion = 333 J/g)
4.	How many calories are given off when 85 g of steam condense to liquid water? (heat of vaporization = 539.4 cal/g)
5.	How many joules of heat are necessary to raise the temperature of 25 g of water from 10°C to 60°C?
6.	How many calories are given off when 50 g of water at 0°C freezes? (heat of fusion = 79.72 cal/g)

Vapor Pressure and Boiling

A liquid will boil when its vapor pressure equals the atmospheric pressure.

Use the graph to answer each question.

- I. At what temperature would Liquid A boil at an atmospheric pressure of 400 Torr? _____
- 2. Liquid B? _____
- 3. Liquid C? _____
- 4. How low must the atmospheric pressure be for Liquid A to boil at 35°C? _____
- 5. Liquid B? _____
- 6. Liquid C? _____

7. What is the normal boiling point of Liquid A? _____

- 8. Liquid B? _____
- 9. Liquid C? _____

10. Which liquid has the strongest intermolecular forces?

Matter—Substances vs. Mixtures All matter can be classified as either a **substance** (element or compound) or a mixture (heterogeneous or homogeneous). Matter **Substance Mixture** can write chemical variable ratio formula, homogeneous Г **Element Homogeneous** Compound Heterogeneous colloids and one type two or more different solutions of atom atoms, chemically bonded suspensions

Classify each of the following as a substance or a mixture. If it is a substance, write *element* or *compound* in the substance column. If it is a mixture, write *heterogeneous* or *homogeneous* in the mixture column.

	Type of Matter	Substance	Mixture
1.	chlorine		
2.	water		
3.	soil		
4.	sugar water		
5.	oxygen		
6.	carbon dioxide		
7.	rocky road ice cream		
8.	alcohol		
٩.	pure air		
10.	iron		

Physical vs. Chemical Properties

A **physical property** is observed with the senses and can be determined without destroying the object. Color, shape, mass, length, and odor are all examples of physical properties.

A **chemical property** indicates how a substance reacts with something else. The original substance is fundamentally changed in observing a chemical property. For example, the ability of iron to rust is a chemical property. The iron has reacted with oxygen, and the original iron metal is changed. It now exists as iron oxide, a different substance.

Classify each property as either chemical or physical by putting a check in the appropriate column.

		Physical Property	Chemical Property
١.	blue color		
2.	density		
3.	flammability		
4.	solubility		
5.	reacts with acid to form $\rm H_{2}$		
6.	supports combustion		
7.	sour taste		
8.	melting point		
٩.	reacts with water to form a gas		
10.	reacts with a base to form water		
11.	hardness		
12.	boiling point		
13.	can neutralize a base		
14.	luster		
15.	odor		

Physical vs. Chemical Changes

In a **physical change**, the original substance still exists; it only changes in form. In a **chemical change**, a new substance is produced. Energy changes always accompany chemical changes.

Classify each as a *physical* or *chemical* change.

Ι.	Sodium hydroxide dissolves in water.	
----	--------------------------------------	--

2. Hydrochloric acid reacts with potassium hydroxide to produce a salt, water, and heat.

3. A pellet of sodium is sliced in two.

4. Water is heated and changed to steam. _____

- 5. Potassium chlorate decomposes to potassium chloride and oxygen gas.
- 6. Iron rusts.
- 7. When placed in H_2O , a sodium pellet catches on fire as hydrogen gas is liberated and sodium hydroxide forms.

8. Water evaporates.

- 9. Ice melts. _____
- 10. Milk sours. _____
- 11. Sugar dissolves in water.
- 12. Wood rots. _____

13. Pancakes are cooking on a griddle.

- 14. Grass is growing in a lawn.
- 15. A tire is inflated with air.
- 16. Food is digested in the stomach.
- 17. Water is absorbed by a paper towel.

© Carson-Dellosa • CD-104644

Boyle's Law

Boyle's Law states that the volume of a given sample of gas at a constant temperature varies inversely with the pressure. (If one goes up, the other goes down.) Use the formula:

 $P_1 \times V_1 = P_2 \times V_2$

Solve each problem (assuming constant temperature).

- 1. A sample of oxygen gas occupies a volume of 250. mL at 740. Torr. What volume will it occupy at 800. Torr pressure?
- 2. A sample of carbon dioxide occupies a volume of 3.50 liters at 125 kPa pressure. What pressure would the gas exert if the volume was decreased to 2.00 liters?
- 3. A 2.0 liter container of nitrogen has a pressure of 3.2 atm. What volume would be necessary to decrease the pressure to 1.0 atm?
- 4. Ammonia gas occupies a volume of 450. mL at a pressure of 720. mmHg. What volume will it occupy at standard pressure?
- 5. A 175 mL sample of neon has its pressure changed from 75 kPa to 150 kPa. What is its new volume?
- 6. A sample of hydrogen at 1.5 atm has its pressure decreased to 0.50 atm, producing a new volume of 750 mL. What was its original volume?
- 7. Chlorine gas occupies a volume of 1.2 liters at 720 Torr. What volume will it occupy at 1 atm pressure?
- 8. Fluorine gas exerts a pressure of 900. Torr. When the pressure is changed to 1.50 atm, its volume is 250. mL. What was the original volume?

Name_

Charles' Law

Charles' Law states that the volume of a given sample of gas at a constant pressure is directly proportional to the temperature in Kelvin. Use the following formulas:

 $\frac{V_1}{T_1} = \frac{V_2}{T_2} \quad \text{or} \quad V_1 \times T_2 = V_2 \times T_1$ $K = ^{\circ}C + 273$

Solve each problem (assuming constant pressure).

- I. A sample of nitrogen occupies a volume of 250 mL at 25°C. What volume will it occupy at 95°C?
- 2. Oxygen gas is at a temperature of 40°C when it occupies a volume of 2.3 liters. To what temperature should it be raised to occupy a volume of 6.5 liters?
- 3. Hydrogen gas was cooled from 150°C to 50°C. Its new volume is 75 mL. What was its original volume?
- 4. Chlorine gas occupies a volume of 25 mL at $3\overline{0}0$ K. What volume will it occupy at 600 K?
- 5. A sample of neon gas at $5\overline{0}^{\circ}$ C and a volume of 2.5 liters is cooled to 25°C. What is the new volume?
- 6. Fluorine gas at 300 K occupies a volume of 500 mL. To what temperature should it be lowered to bring the volume to 300 mL?
- 7. Helium occupies a volume of 3.8 liters at -45°C. What volume will it occupy at 45°C?
- 8. A sample of argon gas is cooled and its volume went from 380 mL to 250 mL. If its final temperature was -55°C, what was its original temperature?

Combined Gas Law

In practical terms, it is often difficult to hold any of the variables constant. When there is a change in pressure, volume, and temperature, the combined gas law is used.

 $\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2} \quad \text{or} \quad P_1 V_1 T_2 = P_2 V_2 T_1$

Complete the chart.

	Ρ,	V,	T,	P ₂	V ₂	T ₂
١.	I.5 atm	3.0 L	2 0 °C	2.5 atm		3 0°C
2.	720 Torr	256 mL	25°C		250 mL	5 0°℃
3.	6 0 0 mmHg	2.5 L	22°C	760 mmHg	1.8 L	
4.		750 mL	0.0°C	2.0 atm	500 mL	25°C
5.	95 kPa	4.0 L		101 kPa	6.0 L	471 K or 198° C
6.	650. Torr		100°	900. Torr	225 mL	15 0°℃
7.	850 mmHg	1.5 L	15°C		2.5 L	3 0 °C
8.	125 kPa	125 mL		10 0 kPa	10 0 mL	75°C

Dalton's Law of Partial Pressures

Dalton's Law says that the sum of the individual pressures of all the gases that make up a mixture is equal to the total pressure, or: $P_T = P_1 + P_2 + P_3 + ...$ The partial pressure of each gas is equal to the mole fraction of each gas times the total pressure.

 $P_{T} = P_{1} + P_{2} + P_{3} + \dots$ or $\frac{\text{moles gas}_{x}}{\text{total moles}} \times P_{T} = P_{x}$

Solve each problem.

Ι.	A 250. mL sample of oxygen is collected over water at 25°C and 760.0 Torr. What is the pressure of the dry gas alone? (Vapor pressure of water at 25°C = 23.8 Torr)
2.	A 32.0 mL sample of hydrogen is collected over water at $2\overline{0}$ °C and 750.0 Torr. What is the pressure of the dry gas alone? (Vapor pressure of water at $2\overline{0}$ °C = 17.5 Torr)
3.	A 54.0 mL sample of oxygen is collected over water at 23°C and 770.0 Torr. What is the pressure of the dry gas alone? (Vapor pressure of water at 23°C = 21.1 Torr)
4.	A mixture of 2.00 moles of H_2 , 3.00 moles of NH_3 , 4.00 moles of CO_2 , and 5.00 moles of N_2 exerts a total pressure of 800 Torr. What is the partial pressure of each gas?
5.	The partial pressure of F_2 is 300 Torr in a mixture of gases where the total pressure is 1.00 atm. If there are 1.5 total moles in the mixture, how many moles of F_2 are present?

Name_____

Ideal Gas Law

The **ideal gas law** describes the state of an ideal gas. While an ideal gas is hypothetical, the ideal gas law can be used to approximate the behavior of many gases under normal conditions. Use the formula:

PV = nRT where	P = pressure in atmospheres	
	V = volume in liters	R = Universal Gas Constant 0.0821 L•atm/mol•K
	<i>n</i> = number of moles of gas	T = Kelvin temperature

Use the ideal gas law to solve each problem.

- I. How many moles of oxygen will occupy a volume of 2.5 liters at 1.2 atm and 25°C?
- 2. What volume will 2.0 moles of nitrogen occupy at 720 Torr and $2\overline{0}^{\circ}$ C?
- 3. What pressure will be exerted by 25 g of CO_2 at a temperature of 25°C and a volume of 50 $\overline{0}$ mL?
- 4. At what temperature will 5.00 g of Cl_2 exert a pressure of 900. Torr at a volume of 75 $\overline{0}$ mL?
- 5. What is the density of NH_3 at 80 $\overline{0}$ Torr and 25°C?
- 6. If the density of a gas is 1.2 g/L at 745. Torr and $2\overline{\mathbf{0}}^{\circ}$ C, what is its molecular mass?
- How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 Torr and 27°C?
- 8. What volume will 454 grams (I lb.) of hydrogen occupy at 1.05 atm and 25°C?
- 9. Find the number of grams of CO_2 that exert a pressure of 785 Torr at a volume of 32.5 L and a temperature of 32°C.
- 10. An elemental gas has a mass of I0.3 g. If the volume is 58.4 L and the pressure is
 758 Torr at a temperature of 2.5°C, what is the gas?

Name_

Graham's Law of Effusion

Graham's Law states that a gas will effuse at a rate that is inversely proportional to	the
square root of its molecular mass, <i>MM</i> .	

$$\frac{\text{rate}_{1}}{\text{rate}_{2}} = \sqrt{\frac{MM_{2}}{MM_{1}}}$$

Solve each problem.

Ι.	Under the same conditions of temperature and pressure, how many times faster will hydrogen effuse compared to carbon dioxide?
2.	If the carbon dioxide in problem 1 takes 32 seconds to effuse, how long will the hydrogen take?
3.	What is the relative rate of effusion of $\rm NH_3$ compared to helium? Does $\rm NH_3$ effuse faster or slower than helium?
4.	If the helium in problem 3 takes 20 seconds to effuse, how long will NH $_{ m 3}$ take?
5.	An unknown gas effuses 0.25 times as fast as helium. What is the molecular mass of the unkown gas?

Name_

Element Symbols

An element symbol can stand for one atom of the element or one mole of atoms of the element. (One mole = 6.02×10^{23} atoms of an element.)

Write the symbol for each element.

I.	oxygen	10.	sulfur
2.	hydrogen	11.	plutonium
3.	chlorine	12.	calcium
4.	mercury	13.	radium
5.	fluorine	14.	cobalt
6.	barium	15.	zinc
7.	helium	16.	arsenic
8.	uranium	17.	lead
۹.	radon	18.	iron

Write the name of the element that corresponds with each symbol.

19.	Kr	29.	Cu
20.	Κ	30.	Ag
21.	C	31.	Р
22.	Ne	32.	Mn
23.	Si	33.	Ι
24.	Zr	34.	Au
25.	Sn	35.	Mg
26.	Pt	36.	Ni
27.	Na	37.	Br
28.	AI	38.	Hg

Atomic Structure

An atom is made up of protons and neutrons (both found in the nucleus) and electrons (in the surrounding electron cloud). The **atomic number** is equal to the number of protons. The **mass number** is equal to the number of protons plus neutrons.

In a neutral atom, the number of protons equals the number of electrons. The **charge** on an ion indicates an imbalance between protons and electrons. Too many electrons produce a negative charge. Too few electrons produce a positive charge.

This structure can be written as part of a chemical symbol.

mass number 15N3+ charge atomic 7 number 7 protons 8 neutrons (15 - 7) 4 electrons

Complete the chart.

Element/ Ion	Atomic Number	Atomic Mass	Mass Number	Protons	Neutrons	Electrons
Н						
H⁺						
¹² ₆ C						
⁷ ₃ Li+						
³⁵ CI-						
^{зq} К 19						
²⁴ ₁₂ Mg ²⁺						
As ³⁻						
Ag						
Ag ¹⁺						
S ²⁻						
U						

Isotopes and Average Atomic Mass

Elements come in a variety of **isotopes**, meaning they are made up of atoms with the same atomic number but different atomic masses. These atoms differ in the number of neutrons.

The **average atomic mass** is the weighted average of all of the isotopes of an element.

Example: A sample of cesium is 75% ¹³³Cs, 20% ¹³²Cs, and 5% ¹³⁴Cs. What is its average atomic mass?

Answer: $0.75 \times 133 = 99.75$ $0.20 \times 132 = 26.4$ $0.05 \times 134 = 6.7$ Total = 132.85 amu = average atomic mass

Determine the average atomic mass of each mixture of isotopes.

80% ¹²⁷ I, 17% ¹²⁶ I, 3% ¹²⁸ I
50% ¹⁹⁷ Au, 50% ¹⁹⁸ Au
15% ⁵⁵ Fe, 85% ⁵⁶ Fe
99% 'H, 0.8% ² H, 0.2% ³ H
95% ¹⁴ N, 3% ¹⁵ N, 2% ¹⁶ N
98% ¹² C, 2% ¹⁴ C

Electron Configuration (Level One)

Electrons are distributed in the electron cloud into principal energy levels (1, 2, 3, ...), sublevels (s, p, d, f), orbitals (s has 1, p has 3, d has 5, f has 7), and spin (two electrons allowed per orbital).

Example: Draw the electron configuration of sodium (atomic number 11).

Draw the electron configuration of each atom.

I.	CI	
2.	Ν	
3.	AI	
4.	0	

Electron Configuration (Level Two)

At atomic numbers greater than 18, the sublevels begin to fill out of order. A good approximation of the order of filling can be determined using the diagonal rule. бd Ъ£ 6p 5d 5f 5p Ϋd Ъ£ 4p 3p 3d 2p Note that after the 3p sublevel is filled, the 4s is filled, and then the 3d.

Draw the electron configuration of each atom.

١.	K
2.	V
3.	Co
4.	Zr

Ν	a	m	e
	-		\sim

Valence Electrons

The valence electrons are the electrons in the outermost principal energy level. They are always s electrons or s and p electrons. Since the total number of electrons possible in s and p sublevels is eight, there can be no more than eight valence electrons.			
	Example: carbon Electron configuration is 1s ² Carbon has 4 valence electr	2s ² rons.	2p ²].
Dete	rmine the number of valence electrons in	eact	atom
Ι.	fluorine	11.	lithium
2	phosphorus	12.	zinc
3.	calcium	13.	carbon
4.	nitrogen	14.	iodine
5.	iron	15.	oxygen
6.	argon	16.	barium
7.	potassium	17.	aluminum
8.	helium	18.	hydrogen
٩.	magnesium	19.	xenon
10.	sulfur	20.	copper

Lewis Dot Diagrams

Lewis dot diagrams are a way to indicate the number of valence electrons around an atom.

Draw the Lewis dot diagram of each atom.

Na•

Examples:

I. calcium 6. carbon

2. potassium

argon oxygen 3. 8.

phosphorus 4. aluminum **q**.

5. bromine hydrogen 10.

Name_

Ň:

7. helium

Atomic Structure Crossword

Across

- I. The smallest particle of an element that can enter into chemical change
- 4. The number of protons in the nucleus of an atom
- 6. Cannot be decomposed into simpler substances by ordinary chemical means
- 7. State in which all electrons are at their lowest possible energy level
- 8. The positively charged particle found in the nucleus
- 11. Standard atomic mass unit for carbon
- 13. Most of the mass of an atom is here.
- 16. Mass number minus atomic number
- 18. Electrons in the outermost principal energy level
- 19. Protons and neutrons are these.

Down

- 2. Sum of the protons and neutrons in the nucleus of an atom
- 3. Charged atom or group of atoms
- 5. Equal to the number of protons in a neutral atom
- 9. The volume of an atom is determined by the size of its electron.
- 10. Different forms of the same element
- 12. State in which electrons have absorbed energy and "jumped" to a higher energy level
- 14. Atoms with the same atomic number but different atomic masses
- 15. The nucleus and all electrons in an atom except the valence electrons
- 17. *s, p, d, f*

Nam	ne.
-----	-----

Half-Lives of Radioactive Isotopes

Ι.	How much of a 100.0 g sample of 198Au is left after 8.10 days if its half-life is 2.70 days?
2.	A 50.0 g sample of ¹⁶ N decays to 12.5 g in 14.4 seconds. What is its half-life?
3.	The half-life of ⁴² K is 12.4 hours. How much of a 750 g sample is left after 62.0 hours?
4.	What is the half-life of °Tc if a 500 g sample decays to 62.5 g in 639,000 years?
5.	The half-life of ²³² Th is 1.4×10^{10} years. If there are 25.0 g of the sample left after 2.8 $\times 10^{10}$ years, how many grams were in the original sample?
6.	There are 5.0 g of ¹³¹ I left after 40.35 days. How many grams were in the original sample if its half-life is 8.07 days?

Periodic Table Worksheet

Use a copy of the periodic table to answer each question.

- Where are the most active metals located? ______
- 2. Where are the most active nonmetals located?
- As you go from left to right across a period, the atomic size (decreases, increases).
 Why? ______
- 4. As you travel down a group, the atomic size (decreases, increases). Why?

5.	A negative ion is (larger, smaller) than its parent atom.
6.	A positive ion is (larger, smaller) than its parent atom.
7.	As you go from left to right across a period, the first ionization energy generally (decreases, increases). Why?
8.	As you go down a group, the first ionization energy generally (decreases, increases). Why?
۹.	Where is the highest electronegativity found?
10.	Where is the lowest electronegativity found?
11.	Elements of Group I are called
12.	Elements of Group 2 are called
13.	Elements of Group 3-12 are called
14.	As you go from left to right across the periodic table, the elements go from (metals, nonmetals) to (metals, nonmetals).
15.	Group 17 elements are called
16.	The most active element in Group 17 is
17.	Group 18 elements are called
18.	What sublevels are filling across the Transition Elements?
19.	Elements within a group have a similar number of
20.	Elements across a series have the same number of
21.	A colored ion generally indicates a
22.	As you go down a group, the elements generally become (more, less) metallic.
23.	The majority of elements in the periodic table are (metals, nonmetals).
24.	Elements in the periodic table are arranged according to their
25.	An element with both metallic and nonmetallic properties is called a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A					F	Per	io	dic	TC	abl	el	Puz	zzle	Э				
A E E E E A E E E E E C <td></td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>٩</td> <td>10</td> <td>П</td> <td>12</td> <td>13</td> <td>14</td> <td>15</td> <td>16</td> <td>17</td> <td>18</td>		2	3	4	5	6	7	8	٩	10	П	12	13	14	15	16	17	18
Image: Constraint of the second symbol. Image: Constraint of the second symbol. <td>A</td> <td></td> <td>E</td> <td></td> <td></td> <td></td> <td></td>	A													E				
C G B F G B Place the letter of each of the above elements next to its description. Then, using a copy of the periodic table, write the element's name and symbol. I I. An element in Group 17				· · · · · ·		I		1									D	
F H J			С												G			В
Image: Place the letter of each of the above elements next to its description. Then, using a copy of the periodic table, write the element's name and symbol. I. An element in Group 17 2. An alkali metal with an oxidation of +1 3. A metalloid 4. Has 80 electrons 5. Its electron configuration is 2, 4. 6. Has 99 protons 7. An element in the fifth period with fewer than 50 protons										Н		J						
Place the letter of each of the above elements next to its description. Then, using a copy of the periodic table, write the element's name and symbol. 1. An element in Group 17 2. An alkali metal with an oxidation of +1 3. A metallold 4. Has 80 electrons 5. Its electron configuration is 2, 4 6. Has 99 protons 7. An element in the fifth period with fewer than 50 protons		F																
Place the letter of each of the above elements next to its description. Then, using a copy of the periodic table, write the element's name and symbol. I. An element in Group 17														т				
8. Its electron configuration is 2, 8, 18, 18, 8.	Place the p 1. / 2. / 3. / 4. H 5. If 6. H 7. / 8. If	e the l eriod An ele An alk A met las 80 Is ele An ele	letter ic tak emen call m calloid delec ctron emen ctron	of ecole, w ble, w it in G hetal h d ctrons fons it in th con	s figure	f the ne ele 17 an ox ation	abov emen is 2, L riod v	ve ele t's nc on of un of 	ment ime c +1 _ ewer	s nex ind sy than	t to its mbo	s desc I.	s	on. Th	en, us	sing a		y of
9. A transition metal with one electron in its outer shell																		

Name_

Ionic Bonding

Ionic bonding occurs when a metal transfers one or more electrons to a nonmetal in an effort to attain a stable octet of electrons. For example, the transfer of an electron from sodium to chlorine can be depicted by a Lewis dot diagram.

Na + Ci → Na+Ci

Calcium would need two chlorine atoms to get rid of its two valence electrons.

$$: \dot{C} : + Ca^{+} Ca^{+} \dot{C} : \longrightarrow Ca^{+2} Cl_{2}^{-}$$

Sketch the transfer of electrons in each combination.

١.	K + F
2.	Mg + I
3.	Be + S
4.	Na + O
5.	Al + Br

Name_

Covalent Bonding

Covalent bonding occurs when two or more nonmetals share electrons, attempting to attain a stable octet of electrons at least part of the time.

Example:

 $H^{\bullet} + \overset{\times}{\underset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}}}}} \longrightarrow (H^{\bullet})^{\times}$

Note that hydrogen is content with 2, not 8, electrons.

Sketch how covalent bonding occurs in each pair of atoms. Atoms may share one, two, or three pairs of electrons.

Ι.	H + H (H ₂)
2.	F + F (F ₂)
3.	O + O (O ₂)
4.	N + N (N ₂)
5.	C + O (CO ₂)
6.	H + O (H ₂ O)

N	an	ne.
---	----	-----

Types of Chemical Bonds

Identify each compound as *ionic* (metal + nonmetal), *covalent* (nonmetal + nonmetal), or *both* (compound containing a polyatomic ion).

١.	CaCl ₂	11.	MgO
2.	CO ₂	12.	NH ₄ CI
3.	H ₂ O	13.	HCI
4.	BaSO ₄	14.	KI
5.	K ₂ O	15.	NaOH
6.	NaF	16.	NO ₂
7.	Na ₂ CO ₃	17.	AIPO ₄
8.	CH ₄	18.	FeCl ₃
٩.	SO ₃	19.	P ₂ O ₅
10.	LiBr	20.	N ₂ O ₃

Name.

Shapes of Molecules

Using VSEPR theory, name and sketch the shape of each molecule.

I. N ₂	7. HF
2. H ₂ O	8. CH ₃ OH
3. CO ₂	9. H ₂ S
4. NH ₃	10. I ₂
5. CH ₄	II. CHCI ₃
6. SO ₃	12. O ₂

Name_

Polarity of Molecules

Identify each molecule as *polar* or *nonpolar*.

I. N ₂	7. HF
2. H ₂ O	8. CH ₃ OH
3. CO ₂	9. H ₂ S
4. NH ₃	10. I ₂
5. CH ₄	II. CHCI ₃
6. SO ₃	12. O ₂

Chemical Bonding Crossword

Across

- I. Ammonia is polar because its shape is _____.
- 3. Word used to describe a molecule with an unequal charge distribution
- 6. Type of bond formed between an active metal and a nonmetal
- 8. The simultaneous attraction of electrons for the nucleii of two or more atoms is a chemical _____.
- 11. Type of covalent bond in which one atom donates both electrons
- 14. Bonding that is responsible for the relatively high boiling point of water
- 15. Type of covalent bond found in diatomic molecules
- Carbon dioxide is nonpolar because it is _____.
- 17. Particles formed from covalent bonding

Down

- I. Compounds with both ionic and covalent bonds contain this type of ion.
- 2. Type of bond found in aluminum foil
- 4. The formulas of ionic compounds must be expressed as _____ formulas.
- 5. The shape of a water molecule
- 7. Type of bond found between nonmetals
- 9. Type of covalent bonding that is found in a diamond
- Type of covalent bond found between atoms of different electronegativity values
- 12. Force of attraction between nonpolar molecules
- 13. Element with the highest electronegativity value

Writing Formulas (Crisscross Method)

Write the formula of the compound produced from the listed ions.

	Cl	CO ₃ -2	OH [.]	\$ O ₄ ⁻²	PO ₄ -3	NO ₃ -
Na⁺						
NH _u ⁺						
K⁺						
Ca ²⁺						
Mg ²⁺						
Zn ²⁺						
Fe³+						
Al ³⁺						
Co ³⁺						
Fe ²⁺						
H.						

Name.

Naming Ionic Compounds

Name each compound using the Stock Naming System.

Ι.	CaCO3	
2.	KCI	
3.	FeSO ₄	
4.	LiBr	
5.	MgCl ₂	
6.	FeCl ₃	
7.	Zn ₃ (PO ₄) ₂	
8.	NH ₄ NO ₃	
٩.	AI(OH) ₃	
10.	CuC ₂ H ₃ O ₂	
11.	PbSO ₃	
12.	NaClO ₃	
13.	CaC ₂ O ₄	
14.	Fe ₂ O ₃	
15.	(NH ₄) ₃ PO ₄	
16.	NaHSO ₄	
17.	Hg_2CI_2	
18.	$Mg(NO_2)_2$	
19.	CuSO ₄	
20.	NaHCO ₃	
21.	NiBr ₃	
22.	$Be(NO_3)_2$	
23.	ZnSO ₄	
24.	AuCl ₃	
25.	KMnO ₄	

Naming Molecular Compounds

Name each covalent compound.

١.	CO ₂	
2.	СО	
3.	SO	
4.	SO ₃	
5.	N ₂ O	
6.	NO	
7.	N ₂ O ₂	
8.	NO ₂	
٩.	NO	
	$N_2 O_4$	
10.	N ₂ O ₅	
.	PCI3	
12.	PCI ₅	
13.	NH ₃	
14.	SCI	
15.	P ₂ O ₅	
16.	CCL.	
17		
17.	510 ₂	
18.	CS_2	
19.	OF ₂	
20.	PBr ₃	

Ν	a	m	e.
---	---	---	----

Naming Acids

Name each acid.

Ι.	HNO ₃	
2.	HCI	
3.	H-SO.	
4	H SQ	
5	НС Н О	
6	HBr	
0.		
7.	HNO ₂	
8.	H ₃ PO ₄	
٩.	H ₂ S	
10.	H ₂ CO ₃	
Write	the formula of each ac	id.
11.	sulfuric acid	
12.	nitric acid	
13.	hvdrochloric acid	
14	acetic acid	
15.	hydrofluoric acid	
16.	phosphorous acid	
17.	carbonic acid	
18.	nitrous acid	
19.	phosphoric acid	

Writing Formulas from Names

Write the formula of each compound.

١.	ammonium phosphate	
2.	iron(II) oxide	
3.	iron(III) oxide	
4.	carbon monoxide	
5.	calcium chloride	
6.	potassium nitrate	
7.	magnesium hydroxide	
8.	aluminum sulfate	
٩.	copper(II) sulfate	
10.	lead(IV) chromate	
11	diphosphorus pentoxide	
10		
12.		
10.		
14.		
15.	aiuminum sultite	

Name.	
-------	--

Gram Formula Mass

Determine the gram formula mass (the mass of one mole) of each compound.

١.	KMnO ₄	
2.	KCI	
3.	Na ₂ SO ₄	
4.	Ca(NO ₃) ₂	
5.	Al ₂ (SO ₄) ₃	
6.	(NH ₄) ₃ PO ₄	
7.	CuSO ₄ •5H ₂ O	
8.	Mg ₃ (PO ₄) ₂	
٩.	Zn(C ₂ H ₃ O ₂) ₂ •2H ₂ O	
10.	Zn ₃ (PO ₄),•4H ₂ O	
11.	H,CO,	
12.	Ha_Cr_O_	
13.	Ba(CIO.).	
іц	Ee(SO)	
14.		
101		

Name___

Moles and Mass

Determine the number of moles in each quantity.

١.	25 g of NaCl
2.	125 g of H ₂ SO ₄
3.	100. g of KMnO ₄
4.	74 g of KCI
5.	35 g of CuSO ₄ •5H ₂ O

Determine the number of grams in each quantity.

6.	2.5 mol of NaCl
7.	0.50 mol of H ₂ SO _u
0	170 mal of KMnO
о.	
9.	0.25 mol of KCl
10.	3.2 mol of CuSO ₄ •5H ₂ O
	_

The Mole and Volume

For gases at STP (273 K and 1 atm pressure), one mole occupies a volume of 22.4 L. Identify the volume each quantity of gas will occupy at STP.

Ι.	I.00 mole of H ₂
2.	3.20 moles of O ₂
3.	0.750 mole of N_2
4.	1.75 moles of CO ₂
5.	0.50 mole of NH ₃
6.	5.0 g of H2
7.	100. g of O ₂
8.	28.0 g of N ₂
٩.	60. g of CO ₂
10.	IO. g of NH ₃

The Mole and Avogadro's Number

One mole of a substance contains Avogadro's number (6.02×10^{23}) of molecules.

Identify how many molecules are in each quantity.

Ι.	2.0 mol
2.	I.5 mol
3.	0.75 mol
4.	15 mol
5.	0.35 mol

Identify how many moles are in the number of molecules listed.

6.	6.02×10^{23}
7.	1.204 × 10 ²⁴
8.	1.5 × 10 ²⁰
٩.	3.4 × 10 ²⁶
10.	7.5 × 10 ¹⁹

Name.	
-------	--

Mixed Mole Problems

Ι.	How many grams are there in 1.5 x 10 ²⁵ molecules of CO ₂ ?
2.	What volume would the $\rm CO_2$ in problem 1 occupy at STP?
3.	A sample of $\rm NH_3$ gas occupies 75.0 liters at STP. How many molecules is this?
4.	What is the mass of the sample of $\rm NH_3$ in problem 3?
5.	How many atoms are there in 1.3 x 10 ²² molecules of NO ₂ ?
6.	A 5.0 g sample of $\rm O_2$ is in a container at STP. What volume is the container?
7.	How many molecules of $\rm O_2$ are in the container in problem 6? How many atoms of oxygen?

Ν	a	m	ne.
---	---	---	-----

Percentage Composition

Determine the percentage composition of each compound.

Ι.	. KMnO ₄	
	K =	
	Mn =	
	O =	
2	HCI	
۲.		
	H =	
	Cl =	
3.	. Mg(NO ₃) ₂	
	Mg =	
	N =	
	O =	
4.	. (NH ₄)PO ₄	
	N =	
	H =	
	P =	
	O =	
5.	. Al ₂ (SO ₄) ₃	
	AI =	
	S =	
	O =	

- 6. How many grams of oxygen can be produced from the decomposition of IOO. g of KCIO₃?
- 7. How much iron can be recovered from 25.0 g of Fe_2O_3 ?
- 8. How much silver can be produced from 125 g of Ag_2S ?

Determining Empirical Formulas

Identify the empirical formula (lowest whole number ratio) of each compound.

1.	75% carbon, 25% hydrogen
2.	52.7% potassium, 47.3% chiorine
3.	22.1% aluminum, 25.4% phosphorus, 52.5% oxygen
4	1.3% maanesium 87% bromine
5.	32.4% sodium, 22.5% sulfur, 45.1% oxvaen
6.	25.3% copper, 12.9% sulfur, 25.7% oxygen, 36.1% water

Determining Molecular Formulas (True Formulas)

I.	The empirical formula of a compound is NO ₂ . Its molecular mass is 92 g/mol. What is its molecular formula?
2.	The empirical formula of a compound is CH ₂ . Its molecular mass is 70 g/mol. What is its molecular formula?
3.	A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is 60. g/mol. What is its molecular formula?
4.	A compound is 64.9% carbon, 13.5% hydrogen, and 21.6% oxygen. Its molecular mass is 74 g/mol. What is its molecular formula?
5.	A compound is 54.5% carbon, 9.1% hydrogen, and 36.4% oxygen. Its molecular mass is 88 g/mol. What is its molecular formula?

Composition of Hydrates

A **hydrate** is an ionic compound with water molecules loosely bonded to its crystal structure. The water is in a specific ratio to each formula unit of the salt. For example, the formula $CuSO_4 \cdot 5H_20$ indicates that there are five water molecules for every one formula unit of $CuSO_4$.

Ι.	What percentage of water is found in CuSO ₄ •5H ₂ O?
2.	What percentage of water is found in Na ₂ S•9H ₂ O?
3.	A 5.0 g sample of a hydrate of BaCl ₂ was heated, and only 4.3 g of the anhydrous salt remained. What percentage of water was in the hydrate?
Ч.	A 2.5 g sample of a hydrate of Ca(NO $_3$) $_2$ was heated, and only 1.7 g of the anhydrous salt remained. What percentage of water was in the hydrate?
5.	A 3.0 g sample of $Na_2CO_3 \bullet H_2O$ is heated to constant mass. How much anhydrous salt remains?
6.	A 5.0 g sample of Cu(NO $_3$) $_2$ •nH $_2$ O is heated to constant mass. How much anhydrous salt remains?

Balancing Chemical Equations

Rewrite and balance each equation.

١.	$N_2 + H_2 \rightarrow NH_3$
2.	$\text{KCIO}_3 \rightarrow \text{KCI} + \text{O}_2$
3.	$NaCl + F_2 \rightarrow NaF + Cl_2$
4.	$H_2 + O_2 \rightarrow H_2O$
5.	$AgNO_3 + MgCl_2 \rightarrow AgCl + Mg(NO_3)_2$
6.	$AlBr_3 + K_2SO \longrightarrow KBr + Al_2(SO_{\mu})_3 $
7.	$CH_{\mu} + O_{2} \rightarrow CO_{2} + H_{2}O$
8.	$C_{2}H_{2} + O_{2} \rightarrow CO_{2} + H_{2}O$
٩.	$CH_{1} + O_{2} \rightarrow CO_{2} + H_{1}O_{2}$
	$ \sum_{k=1}^{n} \sum_{$
10.	$FeCI_3 + NaOH \longrightarrow Fe(OH)_3 + NaCI _$
11.	$P + O_2 \rightarrow P_2O_5$
12.	$Na + H_2O \rightarrow NaOH + H_2$
13.	$Ag_2O \rightarrow Ag + O_2$
14.	$S_8 + O_2 \rightarrow SO_3$
15.	$CO_{2} + H_{2}O \rightarrow C_{4}H_{10}O_{4} + O_{2}$
16.	$K + MaBr \longrightarrow KBr + Ma$
17	$HCI + CaCO \rightarrow CaCI + HO + CO$
17.	

Name.	
-------	--

Word Equations

Rewrite each word equation as a chemical equation. Then, balance the equation.

I. zinc + lead(II) nitrate yield zinc nitrate + lead

2. aluminum bromide + chlorine yield aluminum chloride + bromine

3. sodium phosphate + calcium chloride yield calcium + sodium chloride

4. potassium chlorate, when heated, yields potassium chloride + oxygen gas

5. aluminum + hydrochloric acid yield aluminum chloride + hydrogen gas

6. calcium hydroxide + phosphoric acid yield calcium phosphate + water

7. copper + sulfuric acid yield copper(II) sulfate + water + sulfur dioxide

8. hydrogen + nitrogen monoxide yield water + nitrogen

Classification of Chemical Reactions

Identify each reaction as *synthesis, decomposition, cationic* or *anionic single replacement,* or *double replacement*.

I. $2H_2 + O_2 \rightarrow 2H_2O$ 2. $2H_2O \rightarrow 2H_2 + O_2$ 3. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ 4. $2CO + O_2 \rightarrow 2CO_2$ 5. $2HgO \rightarrow 2Hg + O_{2}$ 6. $2KBr + Cl_2 \rightarrow 2KCl + Br_2$ 7. CaO + H₂O \rightarrow Ca(OH)₂ 8. AgNO + NaCl \rightarrow AgCl + NaNO₃ 9. $2H_2O_2 \rightarrow 2H_2O + O_2$ 10. $Ca(OH)_{2} + H_{2}SO_{u} \rightarrow CaSO_{u} + 2H_{2}O$

Predicting Products of Chemical Reactions

Predict the product in each reaction. Then, write the balanced equation and classify the reaction.

١.	magnesium bromide + chlorine
2 .	aluminum + iron(III) oxide
3.	silver nitrate + zinc chloride
4.	hydrogen peroxide (catalyzed by manganese dioxide)
5.	zinc + hydrochloric acid
6.	sulfuric acid + sodium hydroxide
7.	sodium + hydrogen
8.	acetic acid + copper

	Stoichiometry: Mole-Mole Problems
Solve	each problem.
Ι.	$N_2 + 3H_2 \rightarrow 2NH_3$ How many moles of hydrogen are needed to completely react with two moles of nitrogen?
2.	$2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$
	How many moles of oxygen are produced by the decomposition of six moles of potassium chlorate?
3.	$Zn + 2HCI \rightarrow ZnCl_2 + H_2$
	with an excess of hydrochloric acid?
4.	$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
	How many moles of oxygen are necessary to react completely with four moles of propane (C_3H_8)?
5.	$K_3PO_4 + Al(NO_3)_3 \rightarrow 3KNO_3 + AlPO_4$
	How many moles of potassium nitrate (KNO ₃) are produced when six moles of potassium phosphate (KPO _{μ}) react with two moles of aluminum nitrate(Al(NO ₃) ₃)?

Stoichiometry: Volume-Volume Problems

Ι.	$N_2 + 3H_2 \rightarrow 2NH_3$ What volume of hydrogen is necessary to react with five liters of nitrogen to produce ammonia? (Assume constant temperature and pressure.)
2.	What volume of ammonia is produced in the reaction in problem 1?
3.	$C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$ If 20 liters of oxygen are consumed in the above reaction, how many liters of carbon dioxide are produced?
4.	$2H_2O \rightarrow 2H + O_2$ If 30 mL of hydrogen are produced in the above reaction, how many milliliters of oxygen are produced?
5.	$2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$ How many liters of carbon dioxide are produced if 75 liters of carbon monoxide are burned in oxygen? How many liters of oxygen are necessary?

	Stoichiometry: Mass-Mass Problems	
Solve each problem.		
Ι.	$2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$ How many grams of potassium chloride are produced if 25 g of potassium chlorate decompose?	
2.	$N_2 + 3H_2 \rightarrow 2NH_3$ How many grams of hydrogen are necessary to react completely with 50.0 g of nitrogen in the above reaction?	
3.	How many grams of ammonia are produced in the reaction in problem 2?	
4.	$2AgNO_3 + BaCl \rightarrow 2AgCl + Ba(NO_3)$ How many grams of silver chloride are produced from 5.0 g of silver nitrate reacting with an excess of barium chloride?	
5.	How much barium chloride is necessary to react with the silver nitrate in problem 4?	

Stoichiometry: Mixed Problems

١.	$N_2 + 3H_2 \rightarrow 2NH_3$
	What volume of NH ₃ at STP is produced if 25.0 g of N ₂ is reacted with an excess of H ₂ ?
2.	$2\text{KCIO}_{2} \rightarrow 2\text{KCI} + 3\text{O}_{2}$
	If 5.0 g of KClO ₃ are decomposed, what volume of O ₂ is produced at STP?
3.	How many grams of KCI are produced in problem 2?
4.	$Zn + 2HCI \rightarrow ZnCI_{a} + H_{a}$
	What volume of hydrogen at STP is produced when 2.5 g of zinc react with an
	excess of hydrochloric acid?
5.	$H_2SO_4 + 2NaOH \rightarrow H_2O + Na_2SO_4$
	produced in the above reaction?
6.	$2AICI_3 \rightarrow 2AI + 3CI_2$
	If 10.0 g of aluminum chloride are decomposed, how many molecules of Cl_2 are
	proaucea?

Stoichiometry: Limiting Reagent

١.	$N_2 + 3H_2 \rightarrow 2NH_3$
	How many grams of NH $_3$ can be produced from the reaction of 28 g of N $_2$ and 25 g of H $_2$?
2.	How much of the excess reagent in problem 1 is left over?
3.	Mg + 2HCl \rightarrow MgCl ₂ + H ₂ What you was at budge and at STD is preduced from the reaction of 50.0 g of Mg
	and the equivalent of 75 g of HCl?
4.	How much of the excess reagent in problem 3 is left over?
5.	$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$
5.	$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$ Silver nitrate and sodium phosphate are reacted in equal amounts of 200. g each. How many grams of silver phosphate are produced?
5.	$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$ Silver nitrate and sodium phosphate are reacted in equal amounts of 200. g each. How many grams of silver phosphate are produced?
5.	$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$ Silver nitrate and sodium phosphate are reacted in equal amounts of 200. g each. How many grams of silver phosphate are produced?
5.	$\begin{array}{l} 3 \text{AgNO}_3 + \text{Na}_3 \text{PO}_4 \longrightarrow \text{Ag}_3 \text{PO}_4 + 3 \text{NaNO}_3\\ \text{Silver nitrate and sodium phosphate are reacted in equal amounts of 200. g each. How many grams of silver phosphate are produced?}\\ \text{How much of the excess reagent in problem 5 is left over?} \end{array}$
5.	$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$ Silver nitrate and sodium phosphate are reacted in equal amounts of 200. g each. How many grams of silver phosphate are produced? How much of the excess reagent in problem 5 is left over?
5.	$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$ Silver nitrate and sodium phosphate are reacted in equal amounts of 200. g each. How many grams of silver phosphate are produced? How much of the excess reagent in problem 5 is left over?

Name_____

Solubility Curves

Answer each question based on the solubility curve shown.

- Which salt is least soluble in water at 20°C?
- How many grams of potassium chloride can be dissolved in 200 g of water at 80°C?
- 3. At 40°C, how much potassium nitrate can be dissolved in 300 g of water?
- 4. Which salt shows the least change in solubility from 0°C to 100°C?
- 5. At 30°C, 85 g of sodium nitrate are dissolved in 100 g of water. Is this solution *saturated*, *unsaturated*, or *supersaturated*?
- 6. A saturated solution of potassium chlorate is formed from 100 g of water. If the saturated solution is cooled from 80°C to 50°C, how many grams of precipitate are formed?

7. What compound shows a decrease in solubility from 0°C to 100°C?

- 8. Which salt is most soluble at 10°C?
- 9. Which salt is least soluble at 50°C?
- 10. Which salt is least soluble at 90°C?

Molarity (M)

 $Molarity = \frac{moles of solute}{liter of solution}$

I.	What is the molarity of a solution in which 58 g of NaCl are dissolved in I.0 L of solution?
2.	What is the molarity of a solution in which 10.0 g of $AgNO_3$ are dissolved in 500. mL of solution?
3.	How many grams of KNO_3 should be used to prepare 2.00 L of a 0.500 M solution?
4.	To what volume should 5.0 g of KCI be diluted in order to prepare a 0.25 M solution?
5.	How many grams of $CuSO_4 \bullet 5H_2O$ are needed to prepare 100. mL of a 0.10 M solution?

Molarity by Dilution

Acids are usually acquired from chemical supply houses in concentrated form. These acids are diluted to the desired concentration by adding water. Since moles of acid before dilution equal moles of acid after dilution, and moles of acid = $M \times V$, then $M_1 \times V_1 = M_2 \times V_2$.

I.	How much concentrated 18 M sulfuric acid is needed to prepare 250 mL of a 6.0 M solution?		
2.	How much concentrated 12 M hydrochloric acid is needed to prepare $1\overline{0}0$ mL of a 2.0 M solution?		
3.	To what volume should 25 mL of 15 M nitric acid be diluted to prepare a 3.0 M solution?		
4.	How much water should be added to 50. mL of 12 M hydrochloric acid to produce a 4.0 M solution?		
5.	How much water should be added to 100. mL of 18 M sulfuric acid to prepare a 1.5 M solution?		
Ν	la	m	e.
---	----	---	----
---	----	---	----

Molality (m)

Molality = $\frac{\text{moles of solute}}{\text{kg of solvent}}$

Solve each problem.

Ι.	What is the molality of a solution in which 3.0 moles of NaCl are dissolved in 1.5 kg of water?
2.	What is the molality of a solution in which 25 g of NaCl are dissolved in 2.0 kg of water?
3.	What is the molality of a solution in which 15 g of $\rm I_2$ are dissolved in 500. g of alcohol?
4.	How many grams of $\rm I_2$ should be added to 750 g of CCl_4 to prepare a 0.020 m solution?
5.	How much water should be added to 5.00 g of KCI to prepare a 0.500 m solution?

Name.	
-------	--

Normality (N)

normality = molarity × total positive oxidation number of solute **Example:** What is the normality of 3.0 M of H_2SO_4 ? Since the total positive oxidation number of H_2SO_4 is +2 (2 H⁺), N = 6.0.

Solve each problem.

1.	What is the normality of a 2.0 M NaOH solution?
2.	What is the normality of a 2.0 M $\rm H_{3}PO_{\mu}$ solution?
3.	A solution of H_2SO_4 is 3.0 N. What is its molarity?
4.	What is the normality of a solution in which 2.0 g of Ca(OH) $_{\rm 2}$ is dissolved in 1.0 L of solution?
5.	How much AICl ₃ should be dissolved in 2.00 L of solution to produce a 0.150 N solution?

Electrolytes

Electrolytes are substances that break up (dissociate or ionize) in water to produce ions. These ions are capable of conducting an electric current.

Generally, electrolytes consist of acids, bases, and salts (ionic compounds). Nonelectrolytes are usually covalent compounds, with the exception of acids.

Check the appropriate column to classify each compound as either an electrolyte or a nonelectrolyte.

	Compound	Electrolyte	Nonelectrolyte
١.	NaCl		
2.	CH ₃ OH (methyl alcohol)		
3.	$C_{3}H_{5}(OH)_{3}$ (glycerol)		
4.	HCI		
5.	C ₆ H ₁₂ O ₆ (sugar)		
6.	NaOH		
7.	C_2H_5OH (ethyl alcohol)		
8.	CH ₃ COOH (acetic acid)		
۹.	$NH_4OH (NH_3 + H_2O)$		
10.	H ₂ SO ₄		

74

Effect of a Solute on Freezing and Boiling Points

Use the following formulas to calculate changes in freezing and boiling points due to the presence of a nonvolatile solute. The freezing point is always lowered; the boiling point is always raised.

 $\Delta T_{_F} = M \times C.f. \times k_{_F}$

 $\Delta T_{B} = M \times d.f. \times k_{B}$

M = molality of solution

 $k_{\rm F}$ and $k_{\rm B}$ = constants for particular solvent

d.f. = dissociation factor (how many particles the solute breaks up into; for a nonelectrolyte, d.f. = 1)

 $k_{B}H_{2}O = 0.52^{\circ}C/M$ $k_{E}H_{2}O = 1.86^{\circ}C/M$

(The theoretical dissociation factor is always greater than observed effect.)

Solve each problem.

Ι.	What is the new boiling point if 25 g of NaCl are dissolved in 1.0 kg of water?
2.	What is the freezing point of the solution in problem 1?
3.	What are the new freezing and boiling points of water if 50. g of ethylene glycol (molecular mass = 62 g/M) are added to 50. g of water?
4.	When 5.0 g of a nonelectrolyte are added to 25 g of water, the new freezing point is -2.5°C. What is the molecular mass of the unknown compound?

Solubility (Polar vs. Nonpolar)

Generally, "like dissolves like." Polar molecules dissolve other polar molecules and ionic compounds. Nonpolar molecules dissolve other nonpolar molecules. Alcohols, which have characteristics of both, tend to dissolve in both types of solvents but will not dissolve ionic solids.

Check the appropriate columns to indicate whether the solute is soluble in a polar or nonpolar solvent.

Solutes	water	Solvents	alcohol
I. NaCl			Giconor
2. I ₂			
3. ethanol			
4. benzene			
5. Br ₂			
6. KNO ₃			
7. toluene			
8. Ca(OH) ₂			

Solutions Crossword

Across

dissolving is equal to the rate of precipitation

- 18. The presence of a nonvolatile solute will ______ the freezing point of a solvent.
- 19. These substances dissociate or ionize in water and are then able to conduct an electric current.

Down

- I. Properties that depend on the number of particles in a solution
- 3. Solution in which more solute can be dissolved
- 5. Solution containing a relatively large amount of dissolved solute
- 7. Substance present in a smaller amount in a mixture
- 8. The solubility of most solids ______ as temperature increases.
- II. Maximum amount of solute that can dissolve in a stated amount of solute at a given temperature
- 12. Moles of solute per liter of solution
- 16. Solutions in which water is the solvent are called _____.

Potential Energy Diagram

Reaction Coordinate \rightarrow

$A + B \iff C + D + energy$

Answer each question using the graph shown.

- I. Is the above reaction endothermic or exothermic?
- 2. Which letter represents the potential energy of the reactants? _____
- 3. Which letter represents the potential energy of the products? _____
- 4. Which letter represents the heat of reaction (Δ H)? _____
- 5. Which letter represents the activation energy of the forward reaction?
- 6. Which letter represents the activation energy of the reverse reaction?
- 7. Which letter represents the potential energy of the activated complex?
- 8. Is the reverse reaction endothermic or exothermic? _____
- 9. If a catalyst were added, what letter(s) would change? _____

Entropy

Entropy is the degree of randomness in a substance. The symbol for change in entropy is ΔS .

Solids are very ordered and have low entropy. Liquids and aqueous ions have more entropy because they move about more freely. Gases have an even larger amount of entropy. According to the Second Law of Thermodynamics, nature is always proceeding to a state of higher entropy.

Determine whether each reaction shows an *increase* or *decrease* in entropy.

 $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$ Ι. $H_2O(I) \rightarrow H_2O(S)$ 2. 3. $N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g)$ $NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$ 4. 5. $KCI(s) \rightarrow KCI(l)$ $CO_{2}(s) \rightarrow CO_{2}(g)$ 6. $H^{+}(aq) + C_{2}H_{3}O_{2}(aq) \rightarrow HC_{2}H_{3}O_{3}(l)$ 7. $C(s) + O_2(g) \rightarrow CO_2(g)$ 8. $H_{2}(g) + CI_{2}(g) \rightarrow 2HCI(g)$ ٩. $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ 10. 11. $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ $2AI(s) + 3I_2(s) \rightarrow 2AII_3(s)$ 12. $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(l)$ 13. 14. $2NO(g) \rightarrow N_2(g) + O_2(g)$ $H_{2}O(g) \rightarrow H_{2}O(l)$ 15.

Name_____

Gibbs Free Energy

For a reaction to be spontaneous, the sign of ΔG (Gibbs free energy) must be negative. The mathematical formula for this value is:

 $\Delta G = \Delta H - T \Delta S$

where ΔH = change in enthalpy or heat of reaction

T = temperature in Kelvin

 ΔS = change in entropy or randomness

Complete the table for the sign of ΔG : +, -, or *undetermined*. When conditions allow for an undetermined sign of ΔG , temperature will decide spontaneity.

ΔΗ	ΔS	ΔG
_	+	
+	_	
_	_	
+	+	

Answer each question.

- 1. The conditions in which ΔG is always negative are when ΔH is ______ and ΔS is ______.
- 2. The conditions in which ΔG is always positive are when ΔH is ______ and ΔS is ______.
- 3. When the situation is indeterminate, a low temperature favors the (entropy, enthalpy) factor and a high temperature favors the (entropy, enthalpy) factor.

Answer problems 4-6 with *always, sometimes,* or *never*.

- 4. The reaction: $Na(OH)_5 \rightarrow Na^+(aq) + OH^-(aq) + energy will _____ be spontaneous.$
- 5. The reaction: energy + $2H_2(g)$ + $O_2(g)$ + $2H_2O(I)$ will _____ be spontaneous.
- 6. The reaction: energy + $H_2O(s) \rightarrow H_2O(l)$ will ______ be spontaneous.
- 7. What is the value of ΔG if $\Delta H = 32.0$ kJ, $\Delta S = +25.0$ kJ/K and T = 293 K?
- 8. Is the reaction in problem 7 spontaneous?
- 9. What is the value of ΔG if $\Delta H = +12.0$ kJ, $\Delta S = 5.00$ kJ/K and T = 290. K?
- 10. Is the reaction in problem 9 spontaneous?

Name_

Equilibrium Constant (K)

Write the expression for the equilibrium constant (K) for each reaction.

Calculations Using the Equilibrium Constant

Using the equilibrium constant expressions you determined on page 80, calculate the value of K when:

I. $(NH_3) = 0.0100 \text{ M}, (N_2) = 0.0200 \text{ M}, (H_3) = 0.0200 \text{ M}$ $(O_2) = 0.0500 \text{ M}$ 2. $(H^+) = I \times 10^{-8} M$, $(OH^-) = I \times 10^{-6} M$ 3. $(CO) = 2.0 \text{ M}, (O_2) = 1.5 \text{ M}, (CO_2) = 3.0 \text{ M}$ 4. $(Li^+) = 0.2 M, (CO_3^{-2}) = 0.1 M$ 5.

Le Chatelier's Principle

Le Chatelier's principle states that when a system at equilibrium is subjected to a stress, the system will shift its equilibrium point in order to relieve the stress.

Complete the chart by writing *left, right,* or *none* for equilibrium shift. Then, write *decreases, increases,* or *remains the same* for the concentrations of reactants and products, and for the value of K. The first one has been done for you.

Stress	Equilibrium Shift	(N ₂)	(H ₂)	(NH ₃)	К
I. Add N ₂	right		decreases	increases	remains the same
2. Add H ₂					
3. Add NH ₃					
4. Remove N_2					
5. Remove H_2					
6. Remove NH_3					
7. Increase temperature					
8. Decrease temperature					
9. Increase pressure					
10. Decrease pressure					

$N_2(g) + 3H_2(g) \iff 2NH_3(g) + 22.0 \text{ kcal}$

Le Chatelier's Principle (Cont.)

 $12.6 \text{ kcal} + \text{H}_2(\text{g}) + \text{I}_2(\text{g}) \iff 2\text{HI}(\text{g})$

	Stress	Equilibrium Shift	(H ₂)	(I ₂)	(HI)	К
11.	Add H ₂	right		decreases	increases	remains the same
12.	Add I ₂					
13.	Add HI					
14.	Remove H_2					
15.	Remove I ₂					
16.	Remove HI					
17.	Increase					
18.	Decrease temperature					
19.	Increase					
	pressure	ļ				
20.	Decredse					
	pressure					

NAOH(s) \iff Na⁺(aq) + OH⁻(aq) + 10.6 kcal

	Stress	Equilibrium Shift	Amount NaOH(s)	(Na⁺)	(OH⁻)	К
21.	Add NaOH(s)		<u></u>			
22.	Add NaCl (Adds Na+)					
23.	Add KOH (Adds OH-)					
24.	Add H ⁺ (Removes OH ⁻)					
25.	Increase temperature					
26.	Decrease temperature					
27.	Increase pressure					
28.	Decrease pressure					

Name_

Bronsted-Lowry Acids and Bases

According to **Bronsted-Lowry theory**, an acid is a proton (H⁺) donor and a base is a proton acceptor.

Example: $HCI + OH^- \rightarrow CI^- + H_2O$ The HCI acts as an acid, and the OH^- acts as a base. This reaction is reversible in that the H₂O can give back the proton to the CI⁻.

Label the Bronsted-Lowry acids and bases in each reaction and show the direction of proton transfer.

Example: H^+ H^+ acid $H^ H^+$ $H^$ base $H^ H^$ base H_2O H_2O $H_3O^+ + OH^ H_2O^+ + H_3O^+ + H_2O^- + H_2O^-$

2. $H_2SO_4 + OH^- \iff HSO_4^- + H_2O$ 5. $NH_3 + H_2O \iff NH_4^+ + OH^-$

3. $HSO_u^- + H_2O \iff SO_u^{2-} + H_3O^+$

Conjugate Acid-Base Pairs

In the exercise on page 84, it was shown that after an acid has given up its proton, it is capable of getting the proton back and acting as a base. **Conjugate base** is what is left after an acid gives up a proton. The stronger the acid, the weaker the conjugate base. The weaker the acid, the stronger the conjugate base.

Complete the chart.

Conjugate Pairs

	Acid	Base	Equation
١.	H ₂ SO ₄	HSO ₄ -	$H_2SO_4 \iff H^+ + HSO_4^-$
2.	H ₃ PO ₄		
3.		F-	
4.		NO₃⁻	
5.	H₂PO ₄ -		
6.	H ₂ O		
7.		\$0 ₄ 2-	
8.	HPO ₄ -2		
٩.	NH ₄ +		
10.		H ₂ O	

11. Which is a stronger base, HSO_4^- or $H_2PO_4^-$?

12. Which is a weaker base, Cl⁻ or NO_2^- ?

```
Name_
```

pH and pOH

The pH of a solution indicates how acidic or basic that solution is. A pH of less than 7 is acidic; a pH of 7 is neutral; and a pH greater than 7 is basic.

Since $(H^+)(OH^-) = 10^{-14}$ at 25°C, if (H^+) is known, the (OH^-) can be calculated and vice versa.

 $pH = -log (H^+)$ So if $(H^+) = 10^{-6}$ M, pH = 6. $pOH = -log (OH^-)$ So if $(OH^-) = 10^{-8}$ M, pOH = 8.Together, pH + pOH = 14.

Complete the chart.

	(H⁺)	рН	(OH-)	рОН	Acidic or Basic
١.	10 ⁻⁵ M	5	10 ⁻⁹ M	٩	acidic
2.		7			
3.			10 ⁻⁴ M		
4.	10 ⁻² M				
5.				11	
6.		12			
7.			10 ⁻⁵ M		
8.	10-11 M				
٩.				13	
10.		6			

Name_

pH of Solutions

Calculate the pH of each solution.

١.	0.01 M HCI
2.	0.0010 M NaOH
3.	0.050 M Ca(OH) ₂
4.	0.030 M HBr
5.	0.150 M KOH
6.	2.0 M HC ₂ H ₃ O ₂ (Assume 5.0% dissociation.)
7.	3.0 M HF (Assume 10.0% dissociation.)
8.	0.50 M HNO ₃
٩.	2.50 M NH ₄ OH (Assume 5.00% dissociation.)
10.	5.0 M HNO, (Assume 1.0% dissociation.)

Acid-Base Titration

To determine the concentration of an acid (or base), we can react it with a base (or acid) of known concentration until it is completely neutralized. This point of exact neutralization, known as the **endpoint**, is noted by the change in color of the indicator. Use the following equation:

 $N_{A} \times V_{A} = N_{B} \times V_{B}$ where N = normality V = volume

Solve each problem.

1.	A 25.0 mL sample of HCI was titrated to the endpoint with 15.0 mL of 2.0 N NaOH. What was the normality of the HCI?
2.	A 10.0 mL sample of H_2SO_4 was exactly neutralized by 13.5 mL of 1.0 M KOH. What is the normality of the H_2SO_4 ?
3.	How much I .5 M NaOH is necessary to exactly neutralize 20.0 mL of 2.5 M H_3PO_4 ?
4.	How much 0.5 M HNO $_{\rm 3}$ is necessary to titrate 25.0 mL of 0.05 M Ca(OH) $_{\rm 2}$ solution to the endpoint?
5.	What is the molarity of a NaOH solution if 15.0 mL is exactly neutralized by 7.5 mL of a 0.02 M $HC_2H_3O_2$ solution?

Hydrolysis of Salts

Salt solutions may be acidic, basic, or neutral, depending on the original acid and base that formed the salt.

strong acid + strong base \rightarrow neutral salt

strong acid + weak base \rightarrow acidic salt

weak acid + strong base \rightarrow basic salt

A weak acid and a weak base will produce any type of solution depending on the relative strengths of the acid and base involved.

Complete the chart for each salt shown.

	Salt	Parent Acid	Parent Base	Type of Solution
Ι.	KCI			
2.	NH ₄ NO ₃			
3.	Na ₃ PO ₄			
4.	CaSO ₄			
5.	AlBr ₃			
6.	Cul ₂			
7.	MgF ₄			
8.	NaNO ₃			
٩.	LiC ₂ H ₃ O ₂			
10.	ZnCl ₂			
11.	SrSO ₄			
12.	Ba ₃ (PO ₄) ₂			

Acids and Bases Crossword

Across

- I. Scale of acidity
- 5. An acid that consists of only two elements
- 7. Substance that forms hydronium ions in water (Arrhenius _____)
- 8. This happens when an acid dissolves in water.
- 10. According to Bronsted-Lowry, an acid is a _____ donor.
- 12. According to Bronsted-Lowry, a base is a proton _____.
- 13. Can act as either an acid or a base
- 14. These pairs differ only by a proton.
- 16. An acid with a small K_a value would be a _____ acid.
- 17. Reaction of an ion with H_2O to produce $H^+(aq) + OH^-(aq)$

Down

- 2. H₃O⁺
- 3. Formed from the reaction of an acid and a base
- 4. Procedure to determine the concentration of an acid or base
- 6. A solution that will resist changes in pH
- 8. Changes color at the endpoint of a titration
- 9. The reaction of an acid with a base
- Substance that produces hydroxide ions in aqueous solution (Arrhenius _____)
- When equivalent amounts of H⁺ and OH⁻ have reacted in a titration

Assigning Oxidation Numbers

Assign oxidation numbers to all of the elements in each compound or ion shown.

Ι.	HCI	11.	H ₂ SO ₃
2.	KNO3	12.	H ₂ SO ₄
3.	OH-	13.	BaO ₂
4.	Mg ₃ N ₂	14.	КМnO ₄
5.	KCIO ₃	15.	LiH
6.	AI(NO ₃) ₃	16.	MnO ₂
7.	S ₈	17.	OF ₂
8.	H ₂ O ₂	18.	SO3
٩.	PbO ₂	19.	NH ₃
10.	NaHSO ₄	20.	Na

Name.	
-------	--

Redox Reactions

For each equation, identify the substance oxidized, the substance reduced, the oxidizing agent, and the reducing agent. Then, write the oxidation and reduction half-reactions.

Example:oxidizedreducedMg+ $Br_2 \rightarrow MgBr_2$ reducingoxidizingagentagentoxidation half-reaction: $Mg^\circ \rightarrow Mg^{+2} + 2e^-$ reduction half-reaction: $2e^- + Br_2^\circ \rightarrow 2Br^-$

I. $2H_2 + O_2 \rightarrow 2H_2O$ Fe + $Zn^{2+} \rightarrow Fe^{2+} + Zn$ 2. 3. $2AI + 3Fe^{2+} \rightarrow 2AI^{3+} + 3Fe$ 4. Cu + $2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$

Ν	la	m	e.
---	----	---	----

Balancing Redox Equations

Balance each equation using the half-reaction method.

I. Sn° + Ag⁺ → Sn²⁺ + Ag°
2. Cr° + Pb^{2+} \rightarrow Cr^{3+} + Pb°
3. $KCIO_3 \rightarrow KCI + O_2$
4. $NH_3 + O_2 \rightarrow NO + H_2O$
5. PbS + $H_2O_2 \rightarrow PbSO_4 + H_2O$
6. H_2S + $HNO_3 \rightarrow S$ + NO + H_2O
7. MnO_2 + $H_2C_2O_4$ + H_2SO_4 \rightarrow $MnSO_4$ + CO_2 + H_2O_2
8. $H_2S + H_2SO_3 \rightarrow S + H_2O$
9. $KIO_3 + H_2SO_3 \rightarrow KI + H_2SO_4$
$10. K_2 Cr_2 O_7 + HCI \rightarrow KCI + CrCl_3 + Cl_2 + H_2 O$

- I. Which is the more easily oxidized metal: aluminum or lead? _____
- 2. What is the balanced equation showing the spontaneous reaction that occurs?

3. What is the maximum voltage that the above cell can produce? 4. What is the direction of electron flow in the wire? 5. What is the direction of positive ion flow in the salt bridge? Which electrode is decreasing in size? 6. 7. Which electrode is increasing in size? 8. What is happening to the concentration of aluminum ions? **q**. What is happening to the concentration of lead ions? 10. What is the voltage in this cell when the reaction reaches equilibrium? Which is the anode? ______ 11. 12. Which is the cathode? Which is the positive electrode? 13. 14. Which is the negative electrode?

Electrochemistry Crossword

ACROSS

- 4. Unit of electrical potential
- 6. Electrode where oxidation tokes place
- 7. Both atoms and _____ must be balanced in a redox equation.
- 9. The anode in an electrochemical cell has this charge.
- 10. Gain of electrons
- 12. Voltage of an electrochemical cell when it reaches equilibrium
- A substance that is oxidized is the agent.
- 14. Allows the flow of ions in an electrochemical cell

DOWN

- 1. The anode in an electrolytic cell has this charge.
- 2. Another word for on electrochemical cell
- 3. Electrode where reduction takes place
- 5. Process of layering a metal onto a surface in an electrolytic cell
- 8. Loss of electrons
- II. A substance that is reduced is the _____ agent.

Name_

Naming Hydrocarbons

Name each compound according to the IUPAC naming system.

Name_

Structure of Hydrocarbons

Draw the structure of each compound.

I. ethane	5. ethyne
2. propene	6. 3, 3-dimethylpentane
3. 2-butene	7. 2, 3-dimethylpentane
4. methane	8. n-butyne

Name.

Functional Groups

Classify each of the organic compounds as an *alcohol, carboxylic acid, aldehyde, ketone, ether,* or *ester*. Then, draw its structural formula.

I. CH3COOH	6. CH ₃ CH(OH)CH ₃
2. CH ₃ COCH ₃	7. CH ₃ CH ₂ COOH
3. CH ₃ CH ₂ OH	8. CH ₃ CH ₂ COOCH ₃
4. CH ₃ CH ₂ OCH ₃	9. CH ₃ CH ₂ COCH ₃
5. CH ₃ CH ₂ CHO	IO. CH ₃ OCH ₃

Naming Other Organic Compounds

Name each compound.

Structures of Other Organic Compounds

Draw the structure of each compound.

Ι.	butanoic acid	6.	methyl methanoate (methyl formate)
2.	methanal	7.	3-pentanol
3.	methanol	8.	methanoic acid (formic acid)
4.	butanone	٩.	propanal
5.	diethyl ether	10.	2-pentanone

Organic Chemistry Crossword

Across

- 2. Hydrocarbons containing only single bonds
- 4. Contains two double bonds
- 5. Alcohol in which the hydroxyl group is attached to an end carbon
- 7. An alkane minus one hydrogen; It attaches to another carbon chain.
- 9. Compounds with the same molecular formula, but different structural formulas
- II. A dihydroxy alcohol
- 12. Alcohol in which the hydroxyl is attached to a carbon attached to two other carbons
- 14. Open chain hydrocarbon containing one double bond
- 17. Organic compounds containing the benzene ring structure
- 18. Describes a hydrocarbon with a side chain of carbon atoms

Down

- I. An alcohol with only one hydroxyl group in its structure
- 3. Alcohol in which the hydroxyl is attached to a carbon attached to three other carbons
- 4. General formula R-CHO
- 6. High molecular mass compound consisting of repeating units called monomers
- 8. General formula R-CO-R'
- 10. Contains one or more -OH groups
- 13. Saturated open chain hydrocarbon
- 14. Open chain hydrocarbon containing only one triple bond
- 15. Produced by the reaction of an alcohol and an acid
- 16. General formula R-O-R'

Behavior of Nuclear Particles

 $E = mc^2$

 $\lambda = \frac{h}{mv}$

Mass-Energy Relationship

Wavelength of a Particle

Selected Polyatomic Ions Fundamental Concepts Hg,2+ dimercury(I) CrO, 2chromate $D = \frac{m}{V}$ Density Cr,O,2dichromate NH_u+ ammonium F = maForce MnO_upermanganate C,H,O,acetate MnO_u²⁻ manganate $P = \frac{F}{A}$ CH,COO-, Pressure NO,nitrite CNcvanide °C = $\frac{5}{9}$ (°F - 32) °F = $\left(\frac{5}{9}\right)$ °C + 32 Temperature NO₃nitrate CO,2carbonate Conversion OHhydroxide HCO,hydrogen carbonate PO_u³⁻ phosphate Work w = FdC,O,2oxalate SCN thiocyanate **Gas Laws** CIOhypochlorite SO,2sulfite $P_1V_1 = P_2V_2$ Boyle's Law SO_u²⁻ sulfate CIO,chlorite Charles' Law $V_1T_2 = V_2T_1$ HSO,,hydrogen sulfate CIO,chlorate S2032thiosulfate Combined Gas Law $V_1P_1T_2 = V_2P_2T_1$ CIO_uperchlorate $\begin{array}{rcl} {P_{_{T}}} &=& {P_{_{1}}} + {P_{_{2}}} + {P_{_{3}}} \ldots \\ {\frac{{r_{_{1}}}}{{r_{_{2}}}}} &=& {\frac{{u_{_{1}}}}{{u_{_{2}}}}} = \sqrt {\frac{{3RT}/{M_{_{1}}}}{{3RT}/{M_{_{2}}}}} = \sqrt {\frac{{M_{_{2}}}}{{M_{_{1}}}}} \\ {PV} &=& nRT \end{array}$ Dalton's Law **Solutions** Graham's Law $\Delta T_{\rm b} = K_{\rm b} m$ **Boiling Point Elevation** Ideal Gas Law $\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$ $V_1C_1 = V_2C_2$ Dilution Van der Waals Equation Freezing Point Depression $\Delta T_{f} = \Delta T_{f} = K_{f}m$ Henry's Law $C_{g} = k_{g}P_{g}$ or $S = k_{H}P$ **Energy Changes in Chemical Reactions** $m = \frac{mol \ solute}{kg \ solvent}$ Enthalpv $\Delta H = H_{\text{products}} - H_{\text{reactants}}$ Molality $\Delta E = q + w = q - P \Delta V$ $M = \frac{\text{mol solute}}{\text{L solution}}$ Molarity $qp = \Delta E + P \Delta V = \Delta H$ N = equivilants solute Normality L solution $\Delta S = S_{products} - S_{reactants}$ Entropy $\Delta P_{A} = P^{\circ}_{A}X_{B}$ Raoult's Law $P_A = P^{\circ}_A X_A$ Free Energy $\Delta G^{\circ} = \Delta H^{\circ} - T(\Delta S^{\circ})$ **Electrochemistrv Chemical Equilibrium** $E^{\circ} = \left(\frac{2.303RT}{n\mathcal{F}}\right)\log K$ Equilibrium Constant Expression Electromotive Force for $aA + bB \Leftrightarrow cC + dD$ $K_{c} = \frac{(C)^{c}(D)^{d}}{(A)^{a}(B)^{b}} = \frac{k_{forward reaction}}{k}$ $E = E^{\circ} - \left(\frac{0.0591}{n}\right)\log Q$ Nernst Equation **Acidity and Basicity Radiant Enerav** $k_w = (H^+)(OH^-) = 1.0 \times 10^{-14}$ Ion Product Wave Velocity $C = v\lambda$ Constant of Water $pH = -log(H^+)$ pН $pOH = -log(OH^{-})$ Energy of a Photon E = hv $pH + pOH = -logK_w = 14.00$ $K_{a}K_{b} = (H^{+})(OH^{-}) = k_{w}$

Reference

Equation

Constant

Henderson-Hasselbach

Solubility Product

Ionic Equilibrium

 $pH = pK_a + log \frac{(base)}{(acid)}$

 $K_{m} = (A^{+})^{m}(X^{-})^{n}$

	1	Metri	ics A	nd Meas	suren	nents	,	
In the cl	hemistry	classroom	n and lab,	the metric system	n of meas	urement i	s used. I	t is
importar	nt to be	able to co	onvert fror	n one unit to and	other.			
mega-	kilo-	hecto-	deca-	Basic Units	deci-	centi-	milli-	micro-
(M)	(k)	(h)	(da)	gram (g)	(d)	(c)	(m)	(µ)
1,000,000	1,000	100	10	liter (L) meter (m)	0.1	0.01	0.001	0.000001
105	105	10-	10.	motor (m)	10.	10-	10~	10-5
nit Facto	or Metho	bd						
I. Write	e the giv	/en numb	er and ur	nit.				
2. Set	up a cor	nversion fe	actor (fra	ction used to co	nvert one	unit to ar	nother).	
a.	Place	the given	unit as th	e denominator d	of the con	version fo	actor.	
b.	Place 1	the desire	ed unit as	the numerator.				
c.	Place	a one in f	ront of th	e larger unit.				
c. d.	Place Detern	a one in f nine the r	ront of th number of	e larger unit. f smaller units nee	eded to m	nake one	of the k	arger units:
c. d. 3. Can	Place Detern Icel the	a one in f nine the r units. Solv	ront of th number of ve the pro	e larger unit. f smaller units nee oblem.	eded to m	iake one	of the k	arger units:
c. d. 3. Can	Place Determ	a one in f nine the r units. Solv	ront of the number of ve the pro	e larger unit. f smaller units nee oblem.	eded to m	iake one	of the k	arger units
c. d. 3. Can Exampl	Place Determine Incel the Incel the	a one in f nine the r units. Solv mm =	ront of the number of ve the pro	e larger unit. f smaller units nee oblem. Exampl	eded to m	m =	of the k	arger units:
c. d. 3. Can <u>Exampl</u> 55-mm	Place	a one in f nine the r units. Solv mm = mm = 0	iront of the number of ve the pro- m 1.055 m	e larger unit. f smaller units nee oblem. <u>Exampl</u> 88-kn	eded to m le 2: 88 kr n 1,000	m = m = 88	of the k	arger units
c. d. 3. Can <u>Exampl</u> <u>55-mm</u>	Place + Determ ncel the + + 1: 55 + + 1,000	a one in f nine the r units. Solv mm = m = 0 0. cm =	ront of the number of ve the pro m 1.055 m	e larger unit. f smaller units nee oblem. <u>Exampl</u> <u>88-kn</u> hm Examp l	eded to m le 2: 88 kr n 1,000 1 -kr le 4: 8 da	m = m = 88 m = 88	of the k	arger units:
c. d. 3. Can <u>Exampl</u> <u>55-mn</u> <u>Exampl</u> 7.000-e	Place (Determ neel the (e 1: 55) n 1,000 le 3: 7,00 m 1 -	a one in f nine the r units. Solv mm = m = 0 00 cm = _ m = 1	iront of the number of ve the pro m 0.055 m	e larger unit. f smaller units nee oblem. <u>Exampi</u> <u>88-kn</u> hm Exampi	eded to m	m = 0 m = 88 m = 88 L =	of the k	arger units:
c. d. 3. Can <u>Exampl</u> <u>55-mn</u> <u>Exampl</u> <u>7,000-e</u>	Place (Determined the (le 1: 55) (1,000 (le 3: 7,0) (m) 1- (100	a one in f nine the r units. Solv mm = 0 mm = 0 00 cm = _ m -cm 10.0	tront of the number of ve the pro	e larger unit. t smaller units new belem. <u>88-kn</u> hm Exampl ₅ 0.7 hm	eded to m le 2: 88 kn n 1,000 le 4: 8 da t 10: le 4: 8 da	m = m = 88 m = 88 iL = L IC	of the k m ,000 m dL dL 	arger units: = 800 dL
c. d. 3. Can <u>Exampl</u> <u>55-mr</u> <u>Exampl</u> <u>7,000-e</u>	Place Determine le 1: 55 m 1,000 le 3: 7,00 m 1- 100	a one in f nine the r units. Solv mm = m = 0 00 cm = _ m -cm 10.0	tront of the umber of ve the pro .055 m .055 m .000-em	e larger unit. t smaller units new belem. 	eded to m le 2: 88 kn r 1,000 le 4: 8 da t 10: le 4: 10:	m = m = 88 m = 88 iL = t = t =	of the k m ,000 m dL <u>0 dL </u> dL	arger units: = 800 dL
C. d. 3. Carr Exampl 55-mn Exampl 7,000-e	Place Determination Incel the index Incel the index	a one in f nine the r units. Solv mm = m = 0 00 cm = m cm 10,0 method ca	n be used	e larger unit. f smaller units new belem. Exampl 88-km hm Exampl c 0.7 hm 8-dei 4 to solve virtually	eded to m le 2: 88 kn r 1,000 le 4: 8 da t 10: le 4: 10: any probl	m = 0 m = 88 m = 88 iL = t 10 at 1 em involv	of the k m ,000 m dL dat ring cha	= 800 dL
c. d. 3. Can 55-mm Exampl 7,000-e The unit units. It is	Place Determ Determ ncel the in ncel the in in ie 1: 55 in i i 1,000 in m in i 100 in factor m especial	a one in f nine the r units. Solv mm = 00 cm = mm = 00 00 cm = m = 10,0 	n be used n making	e larger unit. smaller units nea blem. Exampl <u>8-der</u> to solve virtually complex convers	eded to m eded to m 1,000	m = 0 m = 88 m = 88 iL = t _ 10 m = 1	of the k m ,000 m dL <u>00 dL</u> dat	= 800 dL nges in ations
c. d. 3. Can <u>55-mn</u> <u>55-mn</u> <u>55-mn</u> <u>55-mn</u> The unit units. It is and deri	Place Determ Determ ncel the it ncel the it 55 it ncel the it 1,000 ncel the it 100 factor m especial respecial 100	a one in f nine the r units. Solv mm = 00 cm = mm = 0 00 cm = method ca utily useful i s.	ront of the number of ve the pro- m. 0.055 m 1 hm 000-em n be usec n making	e larger unit. smaller units new belem. Example <u>88-kn</u> hm Example e 0.7 hm <u>8-def</u> d to solve virtually complex converse	eded to m le 2: 88 ki m 1,000 l+k le 4: 8 da L 1-k l 1-k any probl sions deali	m =) m = 88 m = 10 state of the state of the stateo	of the k m ,000 m dL 00 dL dat_ ving cha oncentra	= 800 dL
C. G. 3. Car Exampl 55-mr Exampl 7,000-e The unit units. It is and deri	Place Place Determine Determine acel the i 55 if acel the i 1,000 el 3: 7,00 1- mile 3: 7,00 100 factor mile sepecial ived unit: acch media	a one in f nine the r units. Solv mm = m = 0 00 cm = m cem 10, -em 10, -	ront of the number of ve the pro- m not the pro- not the pro- no	e larger unit. smaller units neu- bblem. Examplo 88-ter 6.0.7 hm 8-dei 6 do solve virtually complex convers	eded to m le 2: 88 ki r 1,000 l -ki le 4: 8 da ± 10-ki l -ki any problesions dealli	m = 0 m = 88 1L = + 10 at 1 - em involv ng with co	of the k m ,000 m dL 00 dL dat_ ping cha pincentro	arger units = 800 dL nges in ations
C. G. 3. Car Exampl 55-mr Exampl 7,000-e The unit units. It is and deri onvert et	Place Place Determine Determine incel the incel incel	a one in f nine the r units. Solv mm = m = 0 00 cm = 00 cm = ethod cas s. uethod cas s. usurement .35 di	ront of the number of ve the pro- m m 1.055 m 1 hm 2000-em 1 hm 1 hm 1 hm 2000-em 1 hm 2000-em 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	e larger unit. smaller units neu belem. Example 	eded to m le 2: 88 kin m 1,000 l 1+ki le 4: 8 da ± 10-kin le 4: 8 da ± 10-kin sions dealli	m = m = 88 m = 88 m = 88 m = 88 m = 88 m = 10 em involv ng with c	of the k m ,000 m dL 00 dL dat ving cha oncentro	= 800 dL nges in ations
C. d. d. 3. Can 55-mn Exampl 7,000-e The unit units. It is and deri onvert ed I. 35 n	Place Place Determined Determined incel the initial state initial state	a one in f nine the r units. Solv mm = 00 cm = = 00 cm = mm = 0 00 cm = method ca ully useful i s.	ront of the number of ve the pro- m m 0.055 m 1 hm 000-em n be usec n making	e larger unit. smaller units neu- belem. Exampl <u>88-kn</u> hm Exampl e 0.7 hm <u>8-ded</u> to solve virtually complex convers 6. Q	eded to m le 2: 88 ki	m = m = 88 m = 88 m = 88 m = 88 m = 88 m = 88 m = 100 m = 100 m = 98 m = 988 m = 988 m = 988 m = 9888 m = 98888 m = 988888888888888888888	of the k m ,000 m dL 00 dL dat ving cha oncentro	arger units: = 800 dL nges in ations
C. C	Place (Determined the fill of the fill o	a one in f nine the r units. Solv mm = 00 cm = mm = 0 00 cm = m = 10, cern	mont of the number of ve the pro- m 0.055 m 1 hm 000-em 1 hm 000-em 1 hm 000-em 1 hm 000-em 1 hm 000-em 1 hm 000-em 1 hm 000-em 1 hm 1 hm 000-em 1 hm 1 hm 1 hm 1 hm 1 hm 1 hm 1 hm 1 h	e larger unit. smaller units neu- sbiern. Exampi <u>88-kn</u> hm Exampi e 0.7 hm <u>8-ede</u> d to solve virtually complex converse 6. 94 7. I,	eded to m le 2: 88 ki r 1,000 l +k le 4: 8 da t 00 l +k le 4: 8 da t 00 l +k le 4: 8 da d +l +k lo 4: 8 da l +k lo 0 l +k lo 0 lo 0 l +k lo 0 l +k lo 0 l +k lo 0 l +k lo 0 lo 0	m = m = 88 m = 98 m = 988 m = 988 m = 988 m = 988 m = 988 m = 9888 m = 9888 m	of the k m dL 000 m dL 00 dL dat ing cha oncentro	= 800 dL nges in ations
C. C	Place ↓ Determined the fill tend to be the fill tend tend to be the fill tend to be the fill tend to be the fill tend tend tend tend tend tend tend tend	a one in finine the r units. Solv mm = mm = 0 00 cm = mm = 0 00 cm = method ca ully useful i s. usurement .35 aL 27.5 c 1.000	ront of the number of ve the pro- m. 0.055 m 1 hm 1 hm 1 hm 1 be usec n making 	e larger unit. smaller units neu- sbiern. Exampi <u>8.86 km</u> hm <u>8.eder</u> e 0.7 hm <u>8.eder</u> d to solve virtually complex convers 6. 94 7. I, 8. 4,	eded to m le 2: 88 ki r = 1.000 le 4: 8 da t = 100 le 4: 8 da t = 1000 le 4: 8 da t = 10000 le 4: 8 da t = 10000 le 4: 8 da t = 10000 le 4: 8 da t = 100000 le 4: 8 da t = 100000000000000000000000000000000000	m = m = 88 m = 100 m = 1000 m = 1000 m = 1000 m = 1000 m = 10000 m = 10000 m = 100000	of the k m dL dL ddL dL oncentro g L g	= 800 dL nges in ations
C. C	Place ↓ Determined the in- tent 1: 55 in 1 1,000 le 1: 55 in 1 1,000 le 3: 7,00 m 1- 100 factor m 1- or m 1- ach mecon m = _1 0 mL = _1 m = _1	a one in f nine the r units. Solv mm = = 0 00 cm = = 0 0 0 cm = = 0 0 0 cm = = 0 0 0 cm = = 0 0 0 cm = = 0 0 0 0 cm = = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ront of the number of ve the pro- m. 0.055 m 1 hm 1 hm 1 hm 1 hm 1 hm 1 hm 1 hm 1	e larger unit. smaller units nerv sbelern. Exampl <u>8.86 km</u> hm <u>8.ede</u> e 0.7 hm <u>8.ede</u> d to solve virtually complex convers 6. 94 7. I, 8. 4, 9. 0,	eded to m le 2: 88 ki r = 1.000 le 4: 8 da t = 100 le 4: 8 da t = 1000 le 4: 8 da t = 10000 le 4: 8 da t = 10000 le 4: 8 da t = 100000000000000000000000000000000000	m = m = 88 m = 100 states 100 states 10	of the k m,000 m dL dat dat dat dat dag	= 800 dL nges in ations

Dimensional Analysis (Unit Factor Method)	Scientific Notation
Using this method, it is possible to solve many problems by using the relationship of one unit to another. For example, 12 inches = one fact. Since these two numbers represent he same value, the fractions 12 in./1 ff. and 1 ff./12 in. are both equal to one. When you nultiply another number by the number one, you do not change its value. However, you nay change its unit. Example 1: Convert 2 miles to inches. 2 miles $\times \frac{5,280 \text{ ff.}}{1 \text{ mile}} \times \frac{12 \text{ inches}}{1 \text{ ff.}} = 126,720 \text{ in.}$	Scientists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros. We can express these numbers as powers of 10. Scientific notation takes the form of $M \times 10^{\circ}$ where $1 \leq M < 10$ and <i>n</i> represents the number of decimal places to be moved. Positive <i>n</i> indicates the standard form is a large number. Negative <i>n</i> indicates a number between zero and one. Example 1: Convert 1,500,000 to scientific notation. Move the decimal places that there is only one digit to its left, for a total of 6 places.
Example 2: How many seconds are in 4 days? 4 days $\times \frac{24 \text{ hrs.}}{1 \text{ day}} \times \frac{60 \text{ min.}}{1 \text{ hr.}} \times \frac{60 \text{ sec.}}{1 \text{ min.}} = 345,600 \text{ sec.}$	1,500,000 = 1.5 × 10° Example 2: Convert 0.000025 to scientific notation. For this, move the decimal point 5 places to the right. 0.000025 = 2.5 × 10° (Note that when a number starts out less than one, the exponent is always negative.)
ve each problem. Round irrational numbers to the thousandths place. 3 hr. = $10,800$ sec. 0.035 mg = 0.0035 cg 5.5 kg = 12.1 lb. 2.5 yd. = 90 in. 3 roles = 1.806×10^{24} molecules (1 mole = 6.02×10^{23} molecules) 4. 2.5 x 10 ²⁴ molecules = 112 inters (1 mole = 6.02×10^{23} molecules) 5. 5 moles = 112 inters (1 mole = 22.4 liters) 1. 100. liters = 1.344×10^{24} molecules 5. 50 k loters = 1.344×10^{24} molecules 5. 50 k loters = 1.344×10^{24} molecules 5. 50 k loters = 1.344×10^{24} molecules 5. 50 x 10 ²⁴ molecules = 186.047 liters 2. 7.5 x 10 ³ mL = 7.5 liters arron-Delices · CD-10444	1. $0.005 = 5 \times 10^{-3}$ 6. $0.25 = 2.5 \times 10^{-1}$ 2. $5.050 = 5.05 \times 10^3$ 7. $0.025 = 2.5 \times 10^{-2}$ 3. $0.0008 = 8 \times 10^{-4}$ 8. $0.0025 = 2.5 \times 10^{-3}$ 4. $1.000 = 1 \times 10^3$ 9. $500 = 5 \times 10^2$ 5. $1.000,000 = 1 \times 10^6$ 10. $5.000 = 5 \times 10^3$ Convert each number to standard notation. 11. $1.5 \times 10^9 = 1.500$ 16. $3.35 \times 10^{-1} = 0.335$ 12. $1.5 \times 10^3 = 0.0015$ 17. $1.2 \times 10^4 = 0.00012$ 13. $3.75 \times 10^2 = 0.0375$ 18. $1 \times 10^4 = 10,000$ 14. $3.75 \times 10^2 = 375$ 19. $1 \times 10^4 = 4$ 15. $2.2 \times 10^6 = 220,000$ 20. $4 \times 10^9 = 4$

Percentage Error					
Percentage error is a way he commonly accepted v he formula is:	for scientists to express how fo alue.	ar off a laboratory value is from			
% error = absolute value →	Accepted Value	× 100			
termine the percentage e	rror in each problem.				
 Experimental value = Accepted value = 1. 	1.24 g 80 g	4.62%			
 Experimental value = Accepted value = 9. 	I.24 x I0² g 88 x I0³ g	24.2%			
 Experimental value = Accepted value = 22 	252 mL 5 mL	12.0 %			
 Experimental value = Accepted value = 22 	22.2 L 4 L	0.893%			
 Experimental value = Accepted value = 12 	125.2 mg 4.8 mg	0.3%			

233 K

-40°C

٩.

© Carson-Dellosa • CD-104644

-40°F

Name_

Matter—	Substances	s vs.	Mixtures		
All matter can be classified mixture (heterogeneous or h	as either a substance (omogeneous).	(element	or compound) or a		
	Matter				
Substance can write chemical formula, homogeneous			Mixture variable ratio		
Element Com one type two or mo of atom atoms, cher	ound Homogeneous Heteroger e different solutions colloids (cally bonded suspensi				
Classify each of the following of slement or compound in the singlement of compound in the mixture of Type of Matter	is a substance or a mix ubstance column. If it olumn. Substance	tture. If it i is a mixtu	is a substance, write ire, write heterogeneous (Mixture		
I. chlorine	element				

2.	water	compound	
3.	soll		heterogeneous
4.	sugar water		homogeneous
5.	oxygen	element	
6.	carbon dioxide	compound	
7.	rocky road ice cream		heterogeneous
8.	alcohol	compound	
۹.	pure air		homogeneous
10	iron	element	

_	Physical vs. Chemical Changes
In (cho	a physical change , the original substance still exists; it only changes in form. In a emical change, a new substance is produced. Energy changes always accompany emical changes.
las	ify each as a physical or chemical change.
١.	Sodium hydroxide dissolves in water. physical
2.	Hydrochloric acid reacts with potassium hydroxide to produce a salt, water, and heat
3.	A pellet of sodium is sliced in twophysical
4.	Water Is heated and changed to steamphysical
5.	Potassium chlorate decomposes to potassium chloride and oxygen gas.
6.	Iron rusts chemical
7.	When placed in H ₂ O, a sodium pellet catches on fire as hydrogen gas is liberated and sodium hydroxide forms. <u>chemical</u>
8.	Water evaporates. physical
۹.	Ice melts physical
10.	Milk sours
п.	Sugar dissolves in waterphysical
12.	Wood rotsChemical
13.	Pancakes are cooking on a griddle
14.	Grass Is growing in a lawn. <u>chemical</u>
15.	A tire is inflated with airphysical
16.	Food is digested in the stomachChemical
17.	Water is absorbed by a paper towelphysical

Physical vs. Chemical Properties

A **physical property** is observed with the senses and can be determined without destroying the object. Color, shape, mass, length, and odor are all examples of physical properties.

A chemical property indicates how a substance reacts with something else. The original substance is fundamentally changed in observing a chemical property. For example, the ability of iron to rust is a chemical property. The iron has reacted with axygen, and the original iron metal is changed. It now exists as iron oxide, a different substance.

Classify each property as either chemical or physical by putting a check in the appropriate column.

		Physical Property	Chemical Property
١.	blue color		
2.	density		
3.	flammability		\checkmark
4.	solubility		
5.	reacts with acid to form $\rm H_2$		
6.	supports combustion		
7.	sour taste	\checkmark	
8.	melting point	\checkmark	
۹.	reacts with water to form a gas		
10.	reacts with a base to form water		
н.	hardness	\checkmark	
12.	bolling point		
13.	can neutralize a base		
14.	luster		
	odor		

	Boyle's Law
oyle's aries inv	Low states that the volume of a given sample of gas at a constant temperature versely with the pressure. (If one goes up, the other goes down.) Use the formula: $P_1 \times V_1 = P_2 \times V_2$
ve eac	h problem (assuming constant temperature).
I. As will	ample of oxygen gas occuples a volume of 250. mL at 740. Torr. What volume it occupy at 800. Torr pressure?
	231 mL
2. As Wh	ample of carbon dloxide occupies a volume of 3.50 liters at 125 kPa pressure. at pressure would the gas exert if the volume was decreased to 2.00 liters?
	219 kPg
3. A 2 neo	.0 liter container of nitrogen has a pressure of 3.2 atm. What volume would be cessary to decrease the pressure to 1.0 atm?
	<u>6.4 L</u>
4. Arr vol	imonia gas occupies a volume of 450. mL at a pressure of 720. mmHg. What ume will it occupy at standard pressure?
	42 <u>6</u> mL
5. Al İsh	75 mL sample of neon has its pressure changed from 75 kPa to 150 kPa. What s new volume?
	<u></u>
6. As	ample of hydrogen at 1.5 atm has its pressure decreased to 0.50 atm, ducing a new volume of 750 mL. What was its original volume?
	250 mL
7. Ch oc	lorine gas occupies a volume of 1.2 liters at 720 Torr. What volume will it cupy at 1 atm pressure?
	<u> </u>
8. Flu 1.5	orine gas exerts a pressure of 900. Torr. When the pressure is changed to 0 atm, its volume is 250. mL. What was the original volume?

		Atomic	Struct	ure			Is
An atom i (in the sur protons. Th	is made up rounding ele ne mass nu	of protons and neutro actron cloud). The atc mber is equal to the r	ons (both four omic number number of pre	nd in the nu r is equal to otons plus r	icleus) and the numbe ieutrons.	electrons r of	Elements c same atom neutrons.
In a neutro on an ion produce o	al atom, the indicates ar a negative o	number of protons e nimbalance betweer charge. Too few elect	quals the nur n protons and rons produce	mber of ele d electrons. e a positive	ctrons. The c Too many e charge.	harge lectrons	The averag Exam
This structu	ure can be v	written as part of a ch	nemical symb	iol. 7 pro:			
	r	number 15N ³⁺	🖵 charge	, 8 neu 4 elec	trons (15 – 7 ctrons		
	r	number					Determine th
complete t	he chart.		-				I. 80% ^{is}
Element/ Ion	Atomic Number	Atomic Mass	Mass Number	Protons	Neutrons	Electrons	
Н	I	1.0079	I	I	0	I	2. 50% "
H⁺	I	1.0079	I	I	0	0	
¹² 6C	6	12.011	12	6	6	6	3. 15% 5
⁷ ₃ Li+	3	6.941	7	3	4	2	
³⁵ CI-	17	35.453	35	17	18	18	
39 K	19	39.0983	39	19	20	19	4. 99% 1
$^{24}_{12}Mg^{2+}$	12	24.305	24	12	12	10	
As ³⁻	33	74.9216	75	33	42	36	5. 95% "
Ag	47	107.868	108	47	61	47	
Ag1+	47	107.868	108	47	61	46	6. 98% "
	16	32.06	32	16	16	18	
S ²⁻							

Isotopes and Av	erage Atomic Mass
lements come in a variety of isotopes , n ame atomic number but different atomic eutrons.	neaning they are made up of atoms with the c masses. These atoms differ in the number of
he average atomic mass is the weighte Example: A sample of cesium is 75	ed average of all of the isotopes of an element. 5% ¹³³ Cs, 20% ¹³² Cs, and 5% ¹³⁴ Cs. What is its
average atomic mass?	
Answer: 0.75 × 133 = 99 0.20 × 132 = 26	.175 .4
$0.05 \times 134 = 6$.7
Total = 132	.85 amu = average atomic mass
termine the average atomic mass of eac	ch mixture of isotopes.
L 0.00/ 1271 1.70/ 1261 0.0/ 1281	
I. 80% ¹²⁷ I, 17% ¹²⁶ I, 3% ¹²⁸ I	
I. 80% ¹²⁷ I, 17% ¹²⁶ I, 3% ¹²⁶ I	139.7 amu
I. 80% ¹²⁷ I, 17% ¹²⁶ I, 3% ¹²⁸ I	139.7 amu
 80% ¹²7, 17% ¹²81, 3% ¹²81 50% ¹⁰Au, 50% ¹⁶8Au 	139.7 amu
 80% ¹²⁷], 17% ¹²⁸], 3% ¹²⁸] 50% ¹⁰⁰Au, 50% ¹⁹⁸Au 	139.7 amu 197.5 amu
 80% ¹²⁷, 17% ¹²⁸1, 3% ¹²⁸1 50% ¹⁰⁷Au, 50% ¹⁴⁸Au 15% ¹⁰⁵En, 85% ¹⁰⁶En 	139.7 amu 197.5 amu
 80% ¹²⁷, 17% ¹²⁸, 3% ¹²⁸ 50% ¹⁴⁷Au, 50% ¹⁴⁸Au 15% ⁶⁶Fe, 85% ⁶⁶Fe 	139.7 amu 197.5 amu
 80% ¹²⁷, 17% ¹²⁸, 3% ¹²⁸ 50% ¹⁰⁷Au, 50% ¹⁹⁸Au 15% ⁵⁰Fe, 85% ⁵⁰Fe 	139.7 amu 197.5 amu 55.85 amu
I. 80% ¹²⁷ , 17% ¹²⁶ , 3% ¹²⁸] 2. 50% ¹⁴⁷ Au, 50% ¹⁴⁸ Au 3. 15% ⁵⁰ Fe, 85% ⁵⁶ Fe 99% ¹ H 0.8% ² H 0.2% ³ H	139.7 amu 197.5 amu 55.85 amu
1. 80% ¹²⁷ [, 17% ¹²⁶ [, 3% ¹²⁸] 2. 50% ¹⁴⁷ Au, 50% ¹⁴⁸ Au 3. 15% ⁵⁶ Fe, 85% ⁵⁶ Fe 4. 99% ¹ H, 0.8% ² H, 0.2% ³ H	139.7 amu 197.5 amu 55.85 amu 1.012 amu
1. 80% ¹²⁷ [, 17% ¹²⁶ [, 3% ¹²⁸] 2. 50% ¹⁴⁷ Au, 50% ¹⁴⁸ Au 3. 15% ⁶⁶ Fe, 85% ⁶⁶ Fe 4. 99% ¹⁴ [, 0.8% ²⁴], 0.2% ³⁴]	139.7 amu 197.5 amu 55.85 amu 1.012 amu
1. 80% ¹²⁷], 17% ¹²⁶], 3% ¹²⁸] 2. 50% ¹⁴⁷ Au, 50% ¹⁴⁸ Au 3. 15% ⁵⁶ Fe, 85% ⁵⁶ Fe 4. 99% ¹⁴ I, 0.8% ² H, 0.2% ³ H 5. 06% ¹⁴⁰ J, 3% ¹⁶⁰ J, 2% ¹⁶⁰ J	139.7 amu 197.5 amu 55.85 amu 1.012 amu
1. 80% ¹²⁷ [, 17% ¹²⁶ [, 3% ¹²⁸] 2. 50% ¹⁴⁷ Au, 50% ¹⁴⁸ Au 3. 15% ⁵⁶ Fe, 85% ⁵⁶ Fe 4. 99% ¹⁴ H, 0.8% ² H, 0.2% ¹⁴ H 5. 95% ¹⁴ N, 3% ¹⁶ N, 2% ¹⁶ N	139.7 amu 197.5 amu 55.85 amu 1.012 amu 14.07 amu
1. 80% ¹²⁷ [, 17% ¹²⁶ [, 3% ¹²⁸] 2. 50% ¹⁰⁷ Au, 50% ¹⁰⁸ Au 3. 15% ⁵⁰ Fe, 85% ⁵⁰ Fe 4. 99% ¹⁴ , 0.8% ²⁴ , 0.2% ³⁴ H 5. 95% ¹⁰ N, 3% ¹⁰ N, 2% ¹⁰ N	139.7 amu 197.5 amu 55.85 amu 1.012 amu 14.07 amu
1. 80% ¹²⁷ , 17% ¹²⁶ I, 3% ¹²⁸ I 2. 50% ¹⁴⁷ Au, 50% ¹⁴⁸ Au 3. 15% ⁵⁶ Fe, 85% ⁵⁶ Fe 4. 99% ¹ H, 0.8% ² H, 0.2% ³ H 5. 95% ¹⁴ N, 3% ¹⁶ N, 2% ¹⁶ N 4. 99% ¹² C, 2% ¹⁴ C	139.7 amu 197.5 amu 55.85 amu 1.012 amu 14.07 amu
1. 80% ¹²⁷ , 17% ¹²⁶ I, 3% ¹²⁸ I 2. 50% ¹⁴⁰ Au, 50% ¹⁴⁸ Au 3. 15% ⁶⁶ Fe, 85% ⁶⁶ Fe 4. 99% ¹ H, 0.8% ² H, 0.2% ³ H 5. 95% ¹⁴ N, 3% ¹⁶ N, 2% ¹⁶ N 6. 98% ¹² C, 2% ¹⁴ C	139.7 amu 197.5 amu 55.85 amu 1.012 amu 14.07 amu

30

© Carson-Dellosa • CD-104644

olve	each problem.
١.	How much of a 100.0 g sample of $^{\mbox{\tiny 100}}\mbox{Au}$ is left after 8.10 days if its half-life is 2.70 days?
	12.5 g
2.	A 50.0 g sample of ¹⁴ N decays to 12.5 g in 14.4 seconds. What is its half-life?
	7.2 s
3.	The half-life of "K is 12.4 hours. How much of a $75\overline{0}$ g sample is left after 62.0 hours?
	23.4 g
4.	What is the half-life of $^{\rm eq}$ c if a 500 g sample decays to 62.5 g in 639,000 years?
	2.13 × 10 ⁵ y
5.	The half-life of ^{222}Th is 1.4 \times 10% years. If there are 25.0 g of the sample left after 2.8 \times 10% years, how many grams were in the original sample?
	100 g
6.	There are 5.0 g of 191 left after 40.35 days. How many grams were in the original sample if its half-life is 8.07 days?
	160 g

	Periodic Table Worksheet
Use o	a copy of the periodic table to answer each question.
١.	Where are the most active metals located? lower left
2.	Where are the most active nonmetals located? upper right
3.	As you go from left to right across a period, the atomic size(decreases) increases)
	Why? increased positive nuclear charge
4.	As you travel down a group, the atomic size (decreases, (ncreases). Why?
	additional principal energy levels
5.	A negative ion is(larger)smaller) than its parent atom.
6.	A positive ion is (larger, smaller) han its parent atom.
7.	As you go from left to right across a period, the first ionization energy generally (decreases (increases), Why? <u>increased positive nuclear charge</u>
8.	As you go down a group, the first ionization energy generally decreases)increases). Why?
۹.	Where is the highest electronegativity found?upper right (F)
10.	Where is the lowest electronegativity found? lower left (Fr)
н.	Elements of Group 1 are calledalkali metals
12.	Elements of Group 2 are called alkaline earth metals
13.	Elements of Group 3-12 are called transition elements
14.	As you go from left to right across the periodic table, the elements go from (metals,)ionmetals) to (metals(nonmetals))
15.	Group 17 elements are called halogens
16.	The most active element in Group 17 isfluorine
17.	Group 18 elements are called noble gases
18.	What sublevels are filling across the Transition Elements? d and f
19.	Elements within a group have a similar number of <u>valence electrons</u>
20.	Elements across a series have the same number of principal energy levels
21.	A colored lon generally indicates a <u>transition element</u>
22.	As you go down a group, the elements generally become (more, less) metallic.
23.	The majority of elements in the periodic table are (metals), nonmetals).
24.	Elements in the periodic table are arranged according to their atomic number
25.	An element with both metallic and nonmetallic properties is called a
	semimetal or metalloid

				F	Per	io	dic	; To	abl	e	Puz	zzle	Э				
I	2	3	4	5	6	7	8	٩	10	П	12	13	14	15	16	17	18
Δ		1											F				
~													L			D	
		<u> </u>												(D
		C							н		J			G			в
	F																
													Ι				
3. /	∖ me	talloid	d _									G;	; an	time	ony	, SD	
4. H	las 8	0 eleo	ctron	3								J	; me	ercu	ıry,	Hg	
5. ľ	ls ele	ctror	con	figure	ation	ls 2, I	ı						E; c	arb	on,	с	
6. H	las 9	9 pro	tons									I; e	eins	tein	ium	ı, Es	;
7. /	An ele	əmər	it in ti	ne fifi	h pe	rlod	with fi	ewer	than	50 p	rotor	IS	С; у	rttriu	um,	Y	
	ts ele	ctror		figuro	ation	is 2, i	3, 18,	18, 8.					B; x	eno	n, X	le	
8. I		nsitior	n met	al wii	h on	e ele	ctron	in Its	oute	r she	al	н	; pl	atin	um,	Pt	
8. I 9. /	A πar																

den	tify each co	Types of Cl mpound as <i>ionic</i> (metal +		i cal Bonds al), <i>covalent</i> (nonmetal + nonmetal), o
l.	(compound CaCl ₂	d containing a polyatomic ionic	ion).	MgOionic
2.	CO ₂	<u>covalent</u>	12.	NH _y CI <u>both</u>
3.	H ₂ O	covalent	13.	HCI covalent
4.	BaSO ₄	both	14.	KIionic
5.	қо	ionic	15.	NaOH both
6.	NaF	ionic	16.	NO ₂ <u>covalent</u>
7.	Na ₂ CO ₃ _	both	17.	AIPO ₄ both
8.	СН ₄	covalent	18.	FeCl,ionic
۹.	so,	covalent	19.	P2O6
10.	LIBr	ionic	20.	N2O3 <u>covalent</u>

Shapes of	Molecules
ing VSEPR theory, name and sketch the shap	be of each molecule.
I. N ₂ linear	7. HF linear
:N ≡ N:	н-ё:
2. H ₂ O bent O H H	^{в. сң_он tetrahedral H – с – о – Н H}
$: \overset{\circ}{\bullet} = \mathbf{C} = \overset{\circ}{\bullet}:$	۹. H _s s bent S H H
^{4.} NH, pyramidal H H H H H	10. l ₂ linear ::::=:::
^{5. CH} , H tetrahedral H ∕ C ∕ H H	II. CHCI, H tetrahedral :CI - C - CI: :CI :
$ \begin{array}{c} \bullet & \circ \circ_{\bullet} & \text{triangular planar} \\ \vdots & & & \\ \vdots	12. O ₂ linear :Ö =Ö:

	Polarity	of Molecules
lentify each mo	olecule as polar or nonpa	olar.
I. N ₂		7. HF
	nonpolar	polar
2. H ₂ O		8. CH ₃ OH
	polar	polar
3. CO ₂		9. H ₂ S
	nonpolar	polar
4. NH ₃		10. L
	polar	nonpolar
5. CH ₄		
	nonpolar	polar
6. SO3		12. O ₂
	nonpolar	nonpolar

	Cŀ	CO3-2	OH.	\$0 ₄ 2	PO ₄ -3	NO3.
Na⁺	NaCl	Na ₂ CO ₃	NaOH	Na ₂ SO ₄	Na ₃ PO ₄	NaNO ₃
NH	NH ₄ CI	(NH ₄) ₂ CO ₃	NH ₄ OH	(NH ₄) ₂ SO ₄	(NH ₄)3PO4	NH ₄ NO ₃
K∙	KCI	K ₂ CO ₃	кон	K ₂ SO ₄	K ₃ PO ₄	KNO ₃
Ca²*	CaCl ₂	CaCO3	Ca(OH) ₂	CaSO ₄	Ca ₃ (PO ₄) ₂	Ca(NO ₃)
Mg²+	MgCl ₂	MgCO ₃	Mg(OH) ₂	MgSO _u	Mg ₃ (PO ₄) ⁵	Mg(NO ₃)
Zn²+	ZnCl ₂	ZnCO ₃	Zn(OH) ₂	ZnSO ₄	Zn ₃ (PO ₄) ₂	Zn(NO ₃) ₂
Fe ³⁺	FeCl ₃	Fe ₂ (CO ₃) ₃	Fe(OH) ₃	Fe ₂ (SO ₄) ₃	FePO ₄	Fe(NO ₃) ₃
Al3+	AICI ₃	Al ₂ (CO ₃) ₃	AI(OH) ₃	Al ₂ (SO ₄)3	AIPO	AI(NO ₃) ₃
Co³*	CoCl ₃	Co ₂ (CO ₃) ₃	Co(OH) ₃	Co ₂ (SO ₄)3	CoPO ₄	Co(NO ₃)
Fe ²⁺	FeCl ₂	FeCO ₃	Fe(OH) ₂	FeSO ₄	Fe ₃ (PO ₄) ₂	Fe(NO ₃) ₂
H.	нсі	H ₂ CO ₃	HOH or H ₂ O	H₂SO4	H ₃ PO ₄	HNO ₃

Name.

		Naming Molecular Compounds
Nam	ne each co	ovalent compound.
Ι.	CO_2	carbon dioxide
2.	со	carbon monoxide
3.	SO_2	sulfur dioxide
4.	SO3	sulfur trioxide
5.	N ₂ O	dinitrogen monoxide
6.	NO	nitrogen monoxide
7.	N ₂ O ₃	dinitrogen trioxide
8.	NO_2	nitrogen dioxide
٩.	N ₂ O ₄	dinitrogen tetroxide
10.	N ₂ O ₅	dinitrogen pentoxide
П.	PCI ₃	phosphorus trichloride
12.	PCI5	phosphorus pentachloride
13.	NH ₃	ammonia
14.	SCI	sulfur hexachloride
15.	P ₂ O ₅	diphosphorus pentoxide
16.	CCI	carbon tetrachloride
17.	SiO ₂	silicon dioxide
18.	CS_2	carbon disulfide
19.	OF_2	oxygen difluoride
20.	PBr.	phosphorus tribromide

		Naming Ionic Compounds
Nam	ie each com	pound using the Stock Naming System.
Τ.	CaCO3	calcium carbonate
2.	KCI	potassium chloride
3.	FeSO ₄	iron(II) sulfate
4.	LiBr	lithium bromide
5.	MgCl ₂	magnesium chloride
6.	FeCl ₃	iron(III) chloride
7.	Zn ₃ (PO ₄) ₂	zinc phosphate
8.	$\rm NH_4\rm NO_3$	ammonium nitrate
٩.	AI(OH) ₃	aluminum hydroxide
10.	$CuC_2H_3O_2$	copper(I) acetate
н.	PbSO ₃	lead(II) sulfite
12.	NaClO ₃	sodium chlorate
13.	CaC2O4	calcium oxalate
14.	Fe ₂ O ₃	iron(III) oxide
15.	$(NH_{y})_{3}PO_{y}$	ammonium phosphate
16.	NaHSO ₄	sodium hydrogen sulfate or sodium bisulfate
17.	Hg ₂ Cl ₂	mercury(I) chloride
18.	Mg(NO ₂) ₂	magnesium nitrate
19.	CuSO ₄	copper(II) sulfate
20.	NaHCO3	_sodium hydrogen carbonate or sodium bicarbonate
21.	NiBr ₃	nickel(III) bromide
22.	Be(NO ₃) ₂	beryllium nitrate
23.	ZnSO ₄	zinc sulfate
24.	AuCl ₃	_gold(III) chloride
25.	KMnO ₄	potassium permanganate

		Naming Acids
am	e each acid.	-
I.	HNO ₃	nitric acid
2.	HCI	hydrochloric acid
3.	H ₂ SO ₄	sulfuric acid
4.	H ₂ SO ₃	sulfurous acid
5.	HC ₂ H ₃ O ₂	acetic acid
6.	HBr	hydrobromic acid
7.	HNO ₂	nitrous acid
8.	H ₃ PO ₄	phosphoric acid
٩.	H ₂ S	hydrosulfuric acid
0.	H ₂ CO ₃	carbonic acid
rite	the formula of each ac	id.
ı.	sulfuric acid	H_SO _u
2.	nitric acid	HNO3
3.	hydrochloric acid	HCI
4.	acetic acid	HC ₂ H ₃ O ₂
5.	hydrofluoric acid	HF
6.	phosphorous acid	H ₃ PO ₃
7.	carbonic acid	H_2CO,
8.	nitrous acid	HNO ₂
۹.	phosphoric acid	H ₃ PO ₄
n	hydrosulfuric acid	H_S

Writing Formulas from Names

Name.

Write	the formula of each compound	
١.	ammonium phosphate	(NH ₄)PO ₄
2.	iron(II) oxide	FeO
3.	iron(III) oxide	Fe ₂ O ₃
4.	carbon monoxide	CO
5.	calcium chioride	CaCl ₂
6.	potassium nitrate	KNO,
7.	magnesium hydroxide	Mg(OH) ₂
8.	aluminum sulfate	Al ₂ (SO ₄) ₃
۹.	copper(II) sulfate	CuSO
10.	lead(IV) chromate	Pb(CrO ₄) ₂
н.	diphosphorus pentoxide	P ₂ O ₅
12.	potassium permanganate	KMnO _y
13.	sodium hydrogen carbonate	NaHCO,
14.	zinc nitrate	Zn(NO ₃) ₂
15.	aluminum sulfite	Al ₂ (\$0 ₃) ₃
© Cars	on-Dellosa • CD-104644	ца

	C	Fram Formula Mass
ete	rmine the gram formul	a mass (the mass of one mole) of each compound.
I.	KMnO ₄	158 g
2.	KCI	74.55 g
3.	Na2SO4	142 g
4.	Ca(NO ₃) ₂	164 g
5.	Al ₂ (SO ₄) ₃	342 g
6.	(NH ₄) ₃ PO ₄	149 g
7.	CuSO ₄ •5H ₂ O	250 g
8.	Mg ₃ (PO ₄) ₂	262.86 g
۹.	Zn(C2H3O2)2•2H2O _	219 g
0.	Zn ₃ (PO ₄)2•4H2O _	458 g
١.	H ₂ CO ₃	62 g
2.	Hg ₂ Cr ₂ O ₇	617 g
3.	Ba(ClO ₃) ₂	304 g
4.	Fe ₂ (SO ₃) ₃	352 g
5.	NH ₄ C ₂ H ₃ O ₂	77 g

	Moles	s and Mass
eter	mine the number of moles in each	quantity.
١.	25 g of NaCl	
		0.43 mole
2.	125 g of H ₂ SO ₄	
		1.28 moles
3.	100. g of KMnO ₄	
		0.633 mole
4.	74 g of KCl	
		0.97 mole
5.	35 g of CuSO ₄ +5H ₂ O	
		0.14 mole
eter	mine the number of arams in each	auantity
4		(da).
0.	2.5 MOLOFINGCI	145 g
7	0.50 mol of H SO	
<i>'</i> .	0.30 mor of H ₂ 30 ₄	49 g
8		
0.		269 g
9.	0.25 mol of KCl	
		I9 g
	3.2 mol of CuSO. •5H.O	-
10.	5.2	800 a
10.		000 g

	The Mol	e and Volume
gc vc	ises at STP (273 K and I atm pressu plume each quantity of gas will occ	re), one mole occupies a volume of 22.4 L. Identify cupy at STP.
١.	1.00 mole of H ₂	22.4 L
2.	3.20 moles of O ₂	71.7 L
3.	0.750 mole of N_2	16.8 L
ł.	1.75 moles of CO ₂	39.2 L
5.	0.50 mole of NH ₃	11.2 L
5.	5.0 g of H2	56 L
<i>י</i> .	100. g of O ₂	70.0 L
3.	28.0 g of N ₂	22.4 L
) .	60. g of CO ₂	31 L
).	IO. g of NH ₃	13 L

Percentage Composition	Determining Empirical Formulas
termine the percentage composition of each compound.	Identify the empirical formula (lowest whole number ratio) of each compound.
I. KMnO ₄	I. 75% carbon, 25% hydrogen
K = <u>24.7%</u>	
Mn = <u>34.8%</u>	CH ₅
0 = <u>40.5%</u>	
2. HCI	2. 52.7% potassium, 47.3% chlorine
H =	KCI
Cl = 97.2 %	
3. Mg(NO ₃) ₂	3. 22.1% aluminum, 25.4% phosphorus, 52.5% oxygen
Mg = <u>16.2%</u>	
N = <u>18.9%</u>	AIPO
0 = <u>64.9%</u>	
N = $\frac{12.4\%}{12.4\%}$	4. 13% magnesium, 87% bromine
$H = \frac{3.6\%}{27.11\%}$	
$P ={0}$ $O ={0}$ 56.6%	MgBr ₂
5. Al ₂ (SO ₄) ₃	
AI = 15.8%	5. 32.4% sodium, 22.5% sulfur, 45.1% oxygen
\$ = <u>28.1%</u>	Na SO
0 = <u>56.1%</u>	Nd ₂ SO ₄
olve each problem.	6. 25.3% copper, 12.9% sulfur, 25.7% oxygen, 36.1% water
 How many grams of oxygen can be produced from the decomposition of I00. g of KCIO₃739.3 g.O 	
7. How much iron can be recovered from 25.0 g of Fe ₂ O ₂ ? 17.5 g Fe	CuSO _u (H ₂ O) ₅
8. How much sliver can be produced from 125 g of Ag. S? 109 a Aa	

	Balancing Ch	nemical Equations
Rewr	rite and balance each equation.	N . 211 . 5 ONU
Ι.	$N_2 + H_2 \rightarrow NH_3$	$N_2 + 3H_2 \rightarrow 2NH_2$
2.	$\text{KCIO}_3 \rightarrow \text{KCI} + \text{O}_2$	2KCIO ₃ → 2KCI + 30
3.	NaCl + F, → NaF + Cl,	2NaCl + F → 2NaF + Cl
4.	H₂+O₂ → H₂O	$2H_2 + O_2 \rightarrow 2H_2O_2$
5.	AgNO, + MgCl, → AgCl + Mg(N	$O_{3,2} \xrightarrow{2AgNO_3 + MgCl_2 \rightarrow 2AgCl + Mg(NO_3)}$
6.	$AlBr_s + K_sSO \rightarrow KBr + Al_s(SO_s)$	$2AIBr_{3} + 3K_{2}SO_{4} \rightarrow 6KBr + Al_{2}(SO_{4})$
7.	$CH_{\mu} + O_{\mu} \rightarrow CO_{\mu} + H_{\mu}O$	$CH_{u} + 2O_{2} \rightarrow CO_{2} + 2H_{2}O_{2}$
8.	C,H,+O, → CO,+H,O	$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_2$
٩.	$C_aH_{ia} + O_a \rightarrow CO_a + H_aO$	$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O_2$
10.	FeCl, + NaOH → Fe(OH), + NaC	FeCl ₃ + 3NaOH → Fe(OH) ₃ + 3NaC
п.	$P + O_2 \rightarrow P_2O_5$	$4P + 5O_2 \rightarrow 2P_2O_2$
12.	- • • • • • • • • • • • • • • • • • • •	2Na + 2H₂O → 2NaOH + H₂
13.	$Aq.O \rightarrow Aq + O_{a}$	2Ag₂O → 4Ag + O₂
14.	$S_1 + O_2 \rightarrow SO_2$	S ₈ + 12O ₂ → 8SO ₃
15.	$CO. +H_{2} \rightarrow C.H_{2}O. + O.$	$6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$
16	$K + MaBr. \rightarrow KBr + Ma$	2K + MgBr₂ → 2KBr + Mg
17		2HCI + CaCO ₃ \rightarrow CaCl ₂ + H ₂ O + CO ₃

	Stoichiometry: Mole-Mole Problems		Sto
oive	each problem.	50	veedd
Ι.	N_{2} + $3H_{2}$ \rightarrow $2NH_{3}$ How many moles of hydrogen are needed to completely react with two moles of nltrogen?		1. N ₂ Wi ar
	6 moles		
2.	$2\text{KCIO}_s \rightarrow 2\text{KCI} + 3\text{O}_2$ How many moles of oxygen are produced by the decomposition of six moles of potassium chlorate?		2. W
	9 moles		
3.	$7n + 2HCI \rightarrow 7nCI + H.$		3. C.
	How many males of hydrogen are produced from the reaction of three moles of zinc with an excess of hydrochloric acid?		lf 2 die
	3 moles		
4.	$C_8H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ How many moles of oxygen are necessary to react completely with four moles of propane (C ₈ H ₈)?		4. 2H lf: ox
	20 moles		
5.	$K_3PO_4 + Al(NO_3)_3 \rightarrow 3KNO_3 + AIPO_4$ How many moles of potassium nitrate (KNO_3) are produced when six moles of potassium nitrate (A(A) >)?		5. 20 Ho
	e moles		

NoC

60

NH,

© Carson-Dellosa • CD-104644

Temperature (°C)

Molarity (M) Molarity 2 midel of solution Molarity 4 midel be solution Molarity 5 midel of solution Molarity 6 midel of solution B midel of solution B midel of solution Molarity 6 midel of solution B midel of solution Molarity 6 midel of solution B midel of solution <th></th> <th>Norre</th>		Norre
Multity - model of blacks Multity - model of blacks If the disculation We sch problem: Image: State of blacks Image: State of blacks <th>Molarity (M)</th> <th>Molarity by Dilution</th>	Molarity (M)	Molarity by Dilution
We dealth picklem. 1. What is the modelly of a solution is which 85 g of NoCl are disolved in L0L of exceeding of a solution is which 85 g of NoCl are disolved in 200 m. of oblight? 1.0 M 2. What is the modelly of a solution is which 100 g of AgNo, are disolved in 200 m. of oblight? 0.118 M 3. How many grams of NNO, should be used to prepare 200 L of 0.0500 M solution? 101 g 4. To what y vulnes though 50 g of NoCl be used to prepare 200 L of 0.0500 M solution? 101 g 4. To what y vulnes though 50 g of NoCl be used to prepare 100 m. L of a 0.10 M solution? 2.70 m.L 6. How much water should 50 g of NoCl be duited to prepare 100 m. L of a 0.10 M solution? 1.1 L (1.5 C or 1.200 m.L total solution) 6. How many grams of CLSDs, 45(,0 can enseded to prepare 100 m.L of a 0.10 M solution? 2.5 g monodecer = CO15664 70 m.L 6. How many grams of CLSDs, 45(,0 can enseded to prepare 100 m.L of a 0.10 M solution? 1.1 L (1.2 L or 1.200 m.L total solution) 1.1 L (1.2 L or 1.200 m.L total solution) 1.1 L (1.2 L or 1.200 m.L total solution) 1.1 L (1.2 L or 1.200 m.L total solution) 1.1 L (1.2 L or 1.200 m.L total solution) 1.1 L (1.2 L or 1.200 m.L total solution) 1.1 L (1.2 L or 1.200 m.L total solution) 2.5 g monodecer = CO15664 70 corect 1.2 m Norme 1.1 Work is the monodity of a solution in which 3.0 monite of NoCl are disolved in 1.1 L (1.2 L or 1.200 m.L total solution) 1.2 Mord is the monodity of a solution in which 3.0 g of NoCl are disolved in 1.1 L (1.2 L or 1.200 m.L total solution) 2.0 m 2.0 m 3. Word is the monodity of a solution in which 3.0 g of 0.0 C are disolved in 1.20 g of 0.0 N 3. Word is the monodity of a solution in which 3.0 g of 0.0 C are disolved in 1.20 g of 0.0 N 3. A solution of H ₂ O ₀ , is 3.0 N. Whold is the monomity of a 2.0 N H ₂ O ₀ , is 3.0 N. Whol	Molarity = moles of solute liter of solution	Acids are usually acquired from chemical supply houses in concentrated form. These acids are diluted to the desired concentration by adding water. Since moles of acid before dilution equal moles of acid after dilution, and moles of acid = $M \times V$, then
	re each problem.	$M_1 \times V_1 = M_2 \times V_2.$ Solve each problem.
 What is the modelly of a solution in which 10.0 g of AgAC, are disolved in 0.118 M How many grams of KNO, should be used to prepare 2.00 L of 0.500 M solution? If a what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb edituded in order to prepare 0.25 M To what volume should 5.0 g of KCb editude in order to prepare 0.25 M To what volume should 5.0 g of KCb editude in order to prepare 0.25 M How many grams of CuBO₁-Situ order To what volume should 5.0 g of KCb editude in order of a 0.10 M How many grams of CuBO₁-Situ order Modelly = modelly of a solution in which 3.0 moles of NoCl are disolved in 2.0 g of KCb editor order What is the modelly of a solution in which 3.0 moles of NoCl are disolved in 2.0 g of KCb are disolved in 5.0 g of L are disolved in 5.0 g of	What is the molarity of a solution in which 58 g of NaCl are dissolved in I.0 L of solution? I.0 M	I. How much concentrated 18 M sulfuric acid is needed to prepare 250 mL of a 6.0 M solution? 83 mL
Due the of Bollief? D. II & M D	2. What is the molarity of a solution in which 10.0 g of AgNO ₃ are dissolved in	2. How much concentrated 12 M hydrochlatic acid is peeded to prepare 10 mil
Normary grams of RNQ, should be used to prepare 2.00 L of a 0.500 M solution? 101 g 101 g 101 g 125 mL 3. To what volume should 25 mL of 15 M nitric cold be diluted to prepare a 0.26 M solution? 270 mL 4. How many grams of CuBQ, *54,0 are needed to prepare a 0.26 M solution? 2.5 g 1.1 L (1.2 L or 1,200 mL of 18 M solution) 6. How many grams of CuBQ, *54,0 are needed to prepare 100. mL of a 0.10 M solution? 2.5 g 1.1 L (1.2 L or 1,200 mL total solution) 6. How many grams of CuBQ, *54,0 are needed to prepare 100. mL of a 0.10 M solution? 70 counce 70 counc	500. mL of solution?	 How much concentrated 12 Mitydiochionic data is needed to prepare too mill of a 2.0 M solution? I7 mL
IOI g I.25 mL Iou how much volue should 50 g of KCi be diluted in order to prepare a 0.25 M solution? IOO mL (150 mL of 12 M hydrochlotic oc produce a U.0 M solution? Iou how much volue should 50 g of KCi be diluted in order to prepare a 0.25 M solution? IOO mL (150 mL of 12 M hydrochlotic oc produce a U.0 M solution? Iou how much volue should 50 g of KCi be diluted in order to prepare 100. mL of a 0.10 M solution? IOO mL (150 mL total solution) Iou how much volue should be added to prepare 100. mL of a 0.10 M solution? I.1 L (1.2 L or 1,200 mL total solution) Iou how much volue should be added to prepare 100. mL of a 0.10 M solution? I.1 L (1.2 L or 1,200 mL total solution) mechanism c Childsd 64 Molality (m) Iou makes of solute model in total solution Molality = model to a solute model in total solution Interference Molality = model to a solute model in total solution Iou mL of a 2.0 M iou HyDO, solution? Ive such problem: I. What is the normality of a solution in which 3.0 moles of NaCi are disolved in 12.0 kg of wolfer? 0.2 m Iou m What is the modelity of a solution in which 3.5 g of NaCi are disolved in 2.0 kg of wolfer? Iou m What is the modelity of a solution in which 15 g of I, are disolved in 800, g of a cool of HyDO, is 3.0 N. What is its molently? Iou Make I is the molality of a 2.0 M HyDO, is 3.0 N. What is its molarity?	. How many grams of KNO ₃ should be used to prepare 2.00 L of a 0.500 M solution?	 To what volume should 25 mL of 15 M nitric acid be diluted to prepare a 3.0 M solution?
To what volume should 5.0 g of KCl be diluted in order to prepare a 0.25 M solution? 270 mL 4. How much water should be added to 50, mL of 12 M hydrochold oc produce a 4.0 M bother? 100 mL (150 mL total solution) 4. How much water should be added to 50, mL of 12 M hydrochold oc produce a 4.0 M bother? 1.1 L (1.2 L or 1,200 mL total solution) 4. How much water should be added to 100, mL of 18 M sulture added 1.5 M solution? 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) 1.1 L (1.2 L or 1,200 mL total solution) ve each problem. Molality = moles of solute teample: What is the moratify 1 of a total solution? Lo m Lo m .0 m .0 m .0 m .0 m .0.22 m .0 L2 m .1 Much is the molality of a solution in which 3.0 moles of NaCl are dissolved in 2.0 kg of	101 g	125 mL
How many grams of Cu80,*6H ₂ O are needed to prepare 100, mL of a 0.10 M 2.5 g I.1 L (1.2 L or 1,200 mL total solution) encloses - CD10664 64 me Molality (m) Molality = moles of solute kg of solvent Molality = moles of solute kg of solvent More (III) S the molality of a solution in which 3.0 moles of NaCl are disolved in 1.5 the normality of a solution in which 3.0 moles of NaCl are disolved in 1.5 the molality of a solution in which 3.0 moles of NaCl are disolved in 1.5 the molality of a solution in which 3.0 moles of NaCl are disolved in 1.5 the molality of a solution in which 3.0 moles of NaCl are disolved in 2.0 kg of water? 2. What is the molality of a solution in which 3.0 moles of solute isolved in 2.0 kg of water? 2.0 m 4. What is the molality of a solution in which 15 g of L are disolved in 500, g of olcohol? 0.12 m	To what volume should 5.0 g of KCI be diluted in order to prepare a 0.25 M solution? 270 mL	 How much water should be added to 50. mL of 12 M hydrochloric acid to produce a 4.0 M solution? 100 mL (150 mL total solution)
2.5 g 1.1 L (1.2 L or 1,200 mL total solution) me 70 me 70 Molality (m) 70 Molality = moles of solute kg of solvent 70 we each problem. 70 I. What is the molality of a solution in which 3.0 moles of NaCl are dissolved in 1.6 kg of water? Normality (M) 2. What is the molality of a solution in which 3.0 moles of NaCl are dissolved in 1.6 kg of water? Normality of a 2.0 M NaCH solution? 2. What is the molality of a solution in which 15 g of NaCl are dissolved in 2.0 kg of water? 0.22 m 3. What is the molality of a solution in which 16 g of L are dissolved in 500. g of alcoho? 0.12 m	How many grams of CuSO ₄ =5H ₂ O are needed to prepare 100. mL of a 0.10 M solution?	 How much water should be added to 100. mL of 18 M sulfuric acid to prepare a 1.5 M solution?
me	con-Deliosa - CD-104644 69	70 © Carton-Delloso - CD-10
Molality (m) Normality (N) Molality = moles of solute kg of solvent Molality = moles of solute kg of solvent Molality = moles of solute kg of solvent normality = molafity × total positive oxidation number of solute Example: What is the normality of 3.0 M of H ₂ SO ₄ is +2 (2 H ²) Solve each problem. Mort is the molality of a solution in which 3.0 moles of NaCl are dissolved in L5 kg of water? L0 m What is the molality of a solution in which 25 g of NaCl are dissolved in 2.0 kg of water? L0 M L2 m What is the molality of a solution in which 15 g of 1 ₂ are dissolved in 500. g of alcohol? L2 m Mort is the molality of a solution in which 15 g of 1 ₂ are dissolved in 500. g of alcohol? A solution of H ₂ SO ₄ is 3.0 N. What is its molarity?		
Molality = moles of solute kg of solvent normality = molarity x total positive oxidation number of solute Example: What is the normality of 3.0 M of H ₃ SO ₄ ? Since the total positive oxidation number of H ₃ SO ₄ is +2 (2 H ²). Solve each problem. 1. What is the molality of a solution in which 3.0 moles of NaCl are dissolved in 1.5 kg of water? 1. What is the normality of a 2.0 M NaCH solution? 2. What is the molality of a solution in which 25 g of NaCl are dissolved in 2.0 kg of water? 2.0 M 3. What is the molality of a solution in which 15 g of I _g are dissolved in 500. g of alcohol? 0.12 m	JMe	Name
I. What is the molality of a solution in which 3.0 moles of NaCl are dissolved in 1.5 kg of water? Solve each problem. I. What is the molality of a solution in which 3.0 moles of NaCl are dissolved in 2.0 kg of water? I. What is the normality of a 2.0 M NaOH solution? 2. What is the molality of a solution in which 25 g of NaCl are dissolved in 2.0 kg of water? 0.22 m 3. What is the molality of a solution in which 15 g of I ₂ are dissolved in 500. g of alcohol? 3. A solution of H ₂ SO ₄ is 3.0 N. What is its molarity?	Molality (m)	Name Normality (N)
I. What is the normality of a 2.0 M NaOH solution? 2.0 m 2.0 m 2.0 M 2.0 N 3. What is the molality of a solution in which 25 g of NaCl are dissolved in 2.0 kg of olds of 12.0 kg	me Molality (m) Molality = moles of solute kg of solvent	Name Normality (N) normality = molarity x total positive axidation number of solute Example: What is the normality of 3.0 M of H ₂ SO ₄ ? Since the total positive axidation number of H ₂ SO ₄ is +2 (2 H ²), N = 6.0.
2. What is the molality of a solution in which 25 g of NaCl are dissolved in 2.0 kg of water? 0.22 m 3. What is the molality of a solution in which 15 g of 1 ₂ are dissolved in 500. g of alcohol? 0.12 m 2. What is the normality of a 2.0 M H ₂ PO ₄ solution? 3. A solution of H ₂ SO ₄ is 3.0 N. What is its molarity? 1.5 M	me Molality = moles of solute kg of solvent ve each problem. I. What is the molality of a solution in which 3.0 moles of NaCt are dissolved in	Name Normality (N) normality = molarity x total positive oxidation number of solute Example: What is the normality of 3.0 M of H ₂ SO ₄ ? Since the total positive oxidation number of H ₂ SO ₄ is +2 (2 H ²), N = 6.0. Solve each problem.
acohol? a	Imme	Name Normality (N) normality = molarity x total positive oxidation number of solute Example: What is the normality of 3.0 M of H_SO_{v}? Since the total positive oxidation number of H_SO_{v} is +2 (2 H'), N = 6.0. Solve each problem. 1. What is the normality of a 2.0 M NaOH solution? 2.0 N
S. What is the molality of a solution in which 15 g of I ₂ are dissolved in 500. g of alcohol? O.12 m I.5 M	Image: symplectic symple	Name Normality (N) normality = molarity x total positive oxidation number of solute Example: What is the normality of 3.0 M of H_SO_v? Since the total positive oxidation number of H_SO_v is +2 (2 H'), N = 6.0. Solve each problem. 1. What is the normality of a 2.0 M NaOH solution? 2.0 N
0.12 m I.5 M	Image: street	Name Normality = molarity x total positive axidation number of solute Example: What is the normality of 3.0 M of H ₂ SO ₄ ? Since the total positive axidation number of H ₂ SO ₄ is +2 (2 H'). N = 6.0. Solve each problem. 1. What is the normality of a 2.0 M NaOH solution? 2.0 N 2. What is the normality of a 2.0 M H ₂ PO ₄ solution? 6.0 N
	Imme	Name
 How many grams of I₂ should be added to 750 g of CCI₄ to prepare a 0.020 m solution? What is the normality of a solution in which 2.0 g of Ca(OH)₂ is dissolved as a solution? 	Imme	Name

72

71

5. How much water should be added to 5.00 g of KCl to prepare a 0.500 m solution?

135 g

© Carson-Dellosa • CD-104644

© Carson-Dellosa • CD-104644

How much AICl₃ should be dissolved in 2.00 L of solution to produce a 0.150 N solution?

13.3 g

	Electrolytes		Effect of a Solute on Freezing
Electrolytes are substances that	break up (dissociate or ic	onize) in water to produce	and Boiling Points
ions. These ions are capable of c Generally, electrolytes consist of Nonelectrolytes are usually cova	onducting an electric cu acids, bases, and salts (io lent compounds, with the	rrent. nic compounds). e exception of acids.	Use the following formulas to calculate changes in freezing and boiling points due the presence of a nonvolatile solute. The freezing point is always lowered; the boil point is always raised.
heck the appropriate column to onelectrolyte.	classify each compound	as either an electrolyte or a	$ \Delta T_{F} = M \times cl.f. \times k_{F} \qquad k_{B}H_{2}O = 0.52^{\circ}\text{C/M} $ $ \Delta T_{g} = M \times cl.f. \times k_{g} \qquad k_{F}H_{2}O = 1.86^{\circ}\text{C/M} $
Compound	Electrolyte	Nonelectrolyte	M = molality of solution
. NaCl	\checkmark		$d_{f,f} = dissociation factor (how many particles the solute breaks up into; for nonelectrolyte, d_{f,f} = 1)$
	•		(The theoretical dissociation factor is always greater than observed effect.
. CH _s OH (methyl alcohol)			Solve each problem.
. C ₃ H ₅ (OH) ₃ (glycerol)			1. What is the new boiling point if 25 g of NaCl are dissolved in 1.0 kg of wate
. нсі	\checkmark		100.45°C
i. C _o H ₁₂ O _o (sugar)		\checkmark	2. What is the freezing point of the solution in problem 1?
. NaOH	\checkmark		-1.6°C
. C2H5OH (ethyl alcohol)		\checkmark	 What are the new freezing and boiling points of water if 50. g of ethylene (molecular mass = 62 g/M) are added to 50. g of water?
. CH _s COOH (acetic acid)	\checkmark		boiling point: 108.4°C freezing point: -30°C
I. NH ₄ OH (NH ₃ + H ₂ O)	\checkmark		4. When 5.0 g of a nonelectrolyte are added to 25 g of water, the new freez point is -2.5°C. What is the molecular mass of the unknown compound?
0. H ₂ SO ₄	\checkmark		I LIA B
1		1	

Solu	bility (Polo	ır vs. Nonpo	olar)
Generally, "like dissolv ompounds. Nonpola ave characteristics c nic solids. eck the appropriate	res like." Polar molecule ir molecules dissolve of of both, tend to dissolv columns to indicate w	es dissolve other polar n ther nonpolar molecule e in both types of solver hether the solute is solu	nolecules and ionic s. Alcohols, which nts but will not dissolve ble in a polar or
npolar solvent. Solutes	water	Solvents CCL	alcohol
I. NaCl	~		
2. l ₂		 ✓ 	\checkmark
3. ethanol	\checkmark	\checkmark	\checkmark
ł. benzene		\checkmark	\checkmark
5. Br ₂		\checkmark	\checkmark
5. KNO3	\checkmark		
7. toluene		\checkmark	\checkmark
3. Ca(OH) ₂	\checkmark		

GIDDS Free Energy	Equilibrium Constant (K)
or a reaction to be spontaneous, the sign of ΔG (Gibbs free energy) must be negative.	Write the expression for the equilibrium constant (K) for each reaction.
he mathematical formula for this value is: AG = AH = TAS	I. $N_2(g) + 3H_2(g) \iff 2NH_3(g)$
where ΔH = change in enthalpy or heat of reaction	
T = temperature in Kelvin	(NH,) ²
ΔS = change in entropy or randomness	$K = \frac{1}{(N_2)(H_2)^3}$
$\begin{array}{c} \text{Complete the table for the sign of } \Delta \in ; \\ \sigma, \sigma \text{ or undetermined. When conditions} \\ \text{sillow for an undetermined sign of } \Delta \in ; \\ \text{emperature will decide spontaneity.} \end{array} A \mid A \leq A \mid A \mid$	2. 2KClO ₃ (\$) ↔ 2KCl(\$) + 3O ₂ (@)
+ + undetermined	K = (O ₂) ³
nswer each question.	
1. The conditions in which ΔG is always negative are when ΔH is <u>negative</u> and ΔS is <u>positive</u> .	3. $H_2O(1) \iff H^*(aq) + OH^*(aq)$
 The conditions in which ΔG is always positive are when ΔH is positive and ΔS is negative 	
 When the situation is indeterminate, a low temperature favors the (entropy) factor and a high temperature favors the (entropy) inthalpy) factor. 	K = (H·)(OH·)
nswer problems 4–6 with <i>always, sometimes,</i> or <i>never</i> .	
4. The reaction: $Na(OH)_5 \rightarrow Na^{*}(aq) + OH^{*}(aq) + energy will alwaysbe spontaneous.$	
5. The reaction: energy + $2H_2(g)$ + $O_2(g)$ + $2H_2O(f)$ will never be spontaneous.	$K = \frac{(CO_2)^2}{(CO)^2(O_2)}$
6. The reaction: energy + $H_2O(s) \rightarrow H_2O(l)$ will sometimes be spontaneous.	
7. What is the value of AG if AH = 32.0 kJ, AS = +25.0 kJ/K and T = 293.K2 -7,293 k J	5. $\amalg_2 CO_3(s) \rightarrow 2\amalg^*(aq) + CO_3^{2*}(aq)$
	K (Ha)(00-2)
8. Is the reaction in problem 7 spontaneous?	
8. Is the reaction in problem 7 spontaneous? 9. What is the value of ΔG if $\Delta H = +12.0$ kJ, $\Delta S = 5.00$ kJ/K and T = 290. K? $\pm 1,460$ kJ	K = (11 ⁻)-(CO ₃ -)

	Chateli	ier's Pri	nciple	(Cont.)			Bro	onste	ed-Lo	wry A	cids	and	l Bas	es
	12.6 kca	I + H₂(g) + I	₂(g) 👄 2HI	(g)		Acc	ording to B	ronsted	Lowry the	ory, an acid	l is a proto	n (H+) da	onor and	a base is
Stress	Equilibrium	(H,)	(I,)	(HI)	к	prot	on accepto	or. H+						
II. Add H ₂	right		decreases	Increases	remains		Example:	HCI +	OH- → C	+ H ₂ O				
12. Add I ₂	right	decreases		increases	same		The HCI ac that the H	cts as an 20 can g	acid, anc jive back t	the OH- ac he proton to	ts as a bas the CI	e. This re	eaction is r	eversible
13. Add HI	left	increases	increases		same	Labol	the Bropste	dlown	aoide and	hann in oar		and sh	ou the dir	option of
14. Remove H ₂	left		increases	decreases	same	transfe	ər.	u-lowly	ucius unu	bases in ead	Inteaction		ow me di	echorior
15. Remove I ₂	left	increases		decreases	same					H⁺		H⁺		
16. Remove HI	right	decreases	decreases		same			Exa	mple: H ₂	0 + Cl		f +	HCI	
17. Increase temperature	right	decreases	decreases	increases	increases					ia base u-	, Du	. н от		- + H O
 Decrease temperature 	left	increases	increases	decreases	decreases		n ₂ 0 + n ₂ 0	\rightarrow	n ₃ 0' + 0	п	4. On ·	+ 1,0+		5 + Π ₂ Ο
19. Increase pressure	none	same	same	same	same				н٠		ŀ	÷		н٠
20, Decrease							H*							
pressure	none	same	same	same	same		H				*	<u> </u>		\frown
Stress	NAOH(s) Equilibrium Shift	same Na•(aq) + Amount NaOH(s)	same OH [.] (aq) + 10. (Na [.])	same 6 kcal (OH ⁻)	same K	2.	H^{*} $B A$ $H_{2}SO_{4} + O$ H^{*}	╟↔	 A I HSO ₄ - +	в Н ₂ О	в 5. NH ₃ н	• • • H ₂ O •	<-> NH ₄	A B + OH-
Stress 21. Add NaOH(s) 22. Add NaCl	NAOH(s) Equilibrium Shift none	same Na'(aq) + Amount NaOH(s) Increases	same OH [.] (aq) + 10. (Na [.]) same	same 6 kcal (OH-) same decreases	same K same	2.	H^{*} $B \qquad A$ $H_{2}SO_{4} + O$ H^{*}	╉		H ₂ O	в 5. NH ₃ + Н	A + H ₂ O	↔ NH ₄	A B + OH
Stress 21. Add NaOH(s) 22. Add NaCl (Adds Na*) 23. Add KOH	NAOH(s) Equilibrium Shift none left left	same Na'(aq) + Amount NaOH(s) increases increases	same OH'(aq) + 10. (Na [.]) same decreases	same 6 kcal (OH-) same decreases	same K same same same	2.	H^{*} $B \qquad A$ $H_{2}SO_{4} + O$ H^{*} $A \qquad E$	₩ ↔	$HSO_{4}^{-} + H^{+}$	8 H2O A	B 5. NH ₃ + H B	▲ + H₂O · • ▲	↔ NH ₄ ∕	A B + OH- H+ B
Stress Stress 21. Add NaOH(s) 22. Add NaOH (Adds Nar) 23. Add KOH (Adds OH) 24. Add H	NAOH(s) Equilibrium Shift none left left right	same → Na'(aq) + Amount NaOH(s) increases increases decreases	same OH (aq) + 10. (Na+) same 	same 6 kcal (OH-) same decreases	K Same Same Same Same	2.	H^{*} $B \qquad A$ $H_2SO_4 + O$ H^{*} $A \qquad E$	₩ ↔		8 H ₂ O A	B 5. NH ₃ + H B	• • • •	↔ NH ₄ A	A B + OH+ H+ B
21. Add NaOH(s) 22. Add NaOH(s) 23. Add NaCi (Adds Nar) 24. Add KOH (Adds OH) 24. Add H (Removes OH) 25. Increase	NAOH(s) Equilibrium Shift none left left left left	same Na'(aq) + Amount NaOH(s) increases increases decreases increases	same OH(aq) + 10. (Na*) same decreases increases decreases	same 6 kcal (OH-) same decreases decreases	K same same same same decreases	2.	H^{*} B A $H_2SO_4 + O$ H^{*} A E HSO $W^{*}H$	₩ ↔	A I HSO ₄ - + H ⁺ B	8 H₂O ▲ H.O*	В 5. NH ₃ - 1 Н В	▲ + H₂O · • ▲	↔ NH.; ∕	A B + OH+ H+ B
Stress 21. Add NaOH(s) 22. Add NaCI (Adds Na ⁻) 23. Add KOH (Adds OH ⁻) 24. Add H ⁻ (Removes OH ⁻ 25. Increase temperature 26. Decrease temperature	NAOH(s) Equilibrium Shift none left left left left right	same → Na'(aq) + Amount NaOH(s) increases increases decreases increases decreases	same OH (aq) + 10. (Na ⁻) same decreases increases decreases increases	same 6 kcal (OH ⁻) same decreases decreases increases	K same same same decreases increases	2. 3.	H" B A H ₂ SO ₄ + O H ⁴ A E HSO ₄ - M+H	₩ ↔ 3 20 ↔	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	B H₂O ▲ H₃O	В 5. NH ₃ -{ Н	• • • • •	↔ NH ₄	A B + OH- H• B
pressure Stress 21. Add NaOH(s) 22. Add NaCl (Adds Na ²) 23. Add KOH (Adds OH) 24. Add H ² (Removes OH) 25. Increase temperature 26. Decrease temperature 27. Increase temperature 27. Increase temperature	NAOH(s) Equilibrium Shift none left left left left left left none	same Na'(aq) + Amount NaOH(s) increases increases decreases increases decreases same	Same OH'(aq) + 10. (Na') Same decreases increases decreases increases same	same 6 kcal (OH ⁻) same decreases decreases increases same	K same same same decreases increases same	2. 3.	H^{*} $B \qquad A$ $H_{2}SO_{4} + O$ H^{*} $A \qquad E$ $HSO_{4}^{-} H^{*}H$	H ⁺ ↔ 3 2 ⁰ ↔	$A = HSO_{4} + H$ B $SO_{4}^{2} - H$ B	4 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	В 5. NH ₃ + Н	• + H ₂ O • •	↔ NH ₄ '	A B + OH- H• B

Name

Conjugate Acid-Base Pairs

In the exercise on page 84, it was shown that after an acid has given up its proton, it is capable of getting the proton back and aciting as a base. **Conjugate base** is what is left after an acid gives up a proton. The stronger the acid, the weaker the conjugate base. The weaker the acid, the stronger the conjugate base.

Complete the chart.

Conjug	ate Pairs		
Acid	Base	Equation	
H ₂ SO ₄	HSO ₄ -	$H_2SO_u \iff H^* + HSO_u^-$	
H ₃ PO ₄	H ₂ PO ₄ ⁻	$H_{3}PO_{u} \rightarrow H^{*} + H_{2}PO_{u}^{-}$	
HF	F	$HF \rightarrow H^* + F^-$	
HNO ₃	NO3-	$HNO_3 \iff H^* + NO_3^-$	
H_PO4-	HPO ₄ -2	$H_2PO_{\mu^-} \iff H^*$	
H ₂ O	OH-	$H_2O \iff H^* + OH^-$	
HSO ₄ -	SO ₄ 2-	$HSO_{u}^{-} \iff H^{+} + SO_{u}^{-3}$	
HPO ₄ -2	PO ₄ -3	$HPO_{u}^{-2} \iff H^{+} + PO_{u}^{-3}$	
NH ₄ ⁺	NH ₃	$NH_{u^{+}} \iff H^{+} + NH_{3}$	
H₃O⁺	H₂O	$H_3O \iff H^* + H_2O$	
/hich is a stroi	nger base, HSC	or н ₂ PO ? Н_2 PO	
/hich is a wea	iker base, Cl- a	or NO ₂ -?CI	
		-	04
	Conjug Acid H ₂ SO ₄ H ₂ PO ₄ HF HNO ₃ H ₂ PO ₄ ⁻¹ H ₂ O ₄ ⁻¹ H ₂ O ₄ ⁻¹ HSO ₄ ⁻¹ HSO ₄ ⁻¹ HPO ₄ ⁻² NH ₄ ⁺¹ H ₃ O ⁺¹ hlob is a stron /hich is a weed	Conjugate Pairs Acid Base H ₂ SO ₄ HSO ₄ H ₂ PO ₄ H ₂ PO ₄ HF F ⁻ HNO ₃ NO ₅ H ₂ PO ₄ HPO ₄ ⁻² H ₂ O OH ⁻ HSO ₄ SO ₄ ⁻² HPO ₄ ⁻² PO ₄ ⁻³ NH ₄ ⁺ NH ₃ H ₃ O ⁺ H ₂ O /hlch is a stronger base, HSC Choin is a weaker base, Choin is a weaker base, Choin is a weaker base, Choin is a stronger base, Choin is a str	Conjugate PairsAcidBaseEquation H_2SO_u $HSO_u^ H_2SO_u \leftrightarrow H^+ + HSO_u^ H_2PO_u^ H_2PO_u^ H_3PO_u \rightarrow H^+ + H_2PO_u^ HF$ $F^ HF \rightarrow H^+ + F^ HNO_3$ $NO_3^ HNO_3 \leftrightarrow H^+ + NO_3^ H_2PO_u^ HPO_{u^{-2}}$ $H_2PO_{u^-} \leftrightarrow H^+$ $H_2O_u^ HPO_{u^{-2}}$ $H_2O_{u^-} \leftrightarrow H^+$ $H_2O_u^ HPO_{u^{-2}}$ $H_2O_{u^-} \leftrightarrow H^+ + OH^ HSO_{u^-}$ SO_4^+ $HSO_{u^-} \leftrightarrow H^+ + SO_{u^{-3}}$ $HPO_{u^{-2}}$ $PO_{u^{-3}}$ $HPO_{u^{-2}} \leftrightarrow H^+ + PO_{u^{-3}}$ NH_v^+ NH_3 $NH_u^+ \leftrightarrow H^+ + NH_3$ H_3O^+ $H_2O_{u^-} \circ H_2O_{u^-}^-$ /hlch is a stronger base, HSO_4^- or $NO_2^-?$ $H_2^- O_{u^-}^-$

© Carson-Dellosa • CD-104644

pH of Solutions					
alcu	late the pH of each solution.				
I.	0.01 M HCI				
		pH = 2			
2.	0.0010 M NaOH				
		pH = 11			
3.	0.050 M Ca(OH) ₂				
		pH = 1.3			
4.	0.030 M HBr				
		pH = 1.5			
5.	0.150 M KOH				
		pH = 13.2			
6.	2.0 M HC,H,O, (Assume 5.0% dissociation.)				
		pH = 1.0			
7.	3.0 M HF (Assume 10.0% dissociation.)				
		pH = 0.52			
8.	0.50 M HNO.				
	- 3	pH = 0.30			
٩.	2.50 M NH.OH (Assume 5.00% dissociation.)				
•		pH = 13.1			
10	50 M HNO (Assume 1.0% dissociation)				
10.		pH = 1.3			

Name

pH and pOH

The pH of a solution indicates how acidic or basic that solution is. A pH of less than 7 is acidic; a pH of 7 is neutral; and a pH greater than 7 is basic.

Since (H*)(OH-) = 10^{-14} at 25°C, if (H*) is known, the (OH-) can be calculated and vice verso

Together, pH + pOH = 14.

Complete the chart.

	(H⁺)	рН	(OH-)	рОН	Acidic or Basic
Ι.	10-5 M	5	10 ⁻⁹ M	٩	acidic
2.	10-7 M	7	10-7 M	7	neutural
3.	10-10 M	10	10-4 M	14	basic
4.	10-2 M	2	10-12 M	12	acidic
5.	10-3 M	3	10-11 M	11	acidic
6.	10 ⁻¹² M	12	10-2 M	2	basic
7.	10-9 M	٩	10-5 M	5	basic
8.	10-11 M	П	10-3 M	3	basic
٩.	10-1 M	I	10 ⁻¹³ M	13	acidic
10.	I0-6 M	6	10-8 M	8	acidic
86				•	© Carson-Dellosa • CD-10464

		Hydroly	sis of Salts	
Salt	solutions ma	y be acidic, basic, or neu	utral, depending on the c	original acid and base
inai	strong acid	+ strong base → neut	ral salt	
	strong acid	+ weak base -> acidic	: salt	
	weak acid	+ strong base -> basic	salt	
A w rela	eak acid and tive strengths	of the acid and base inv	ce any type of solution d volved.	epending on the
omp	plete the cha	rt tor each sait snown.		
	Salt	Parent Acid	Parent Base	Type of Solution
I.	KCI	HCI	кон	neutral
2.	NH ₄ NO ₃	HNO ₃	NH ₄ OH (NH ₃ + H ₂ O)	acidic
3.	Na ₃ PO ₄	H ₃ PO ₄	NaOH	basic
4.	CaSO ₄	H₂SOų	Ca(OH)2	neutral
5.	AlBr3	HBr	AI(OH) ₂	acidic
6.	Cul ₂	ні	Cu(OH) ₂	acidic
7.	MgF ₄	Mg(OH) ₂	HF	basic
8.	NaNO3	HNO ₃	NaOH	neutral
۹.		HC ₂ H ₃ O ₂	LiOH	basic
10.	ZnCl ₂	НСІ	Zn(OH) ₂	acidic
п.	SrSO ₄	H ₂ SO ₄	Sr(OH) ₂	neutral
12.	Ba3(bO [*]) ⁵	H ₃ PO ₄	Ba(OH) ₂	basic

As	signing Ox	idation Nu	mbers
ign oxidation nu	mbers to all of the elem	nents in each compoun	d or ion shown.
I. HCI	+ HCI	II. Н ₂ SO ₃	⁺¹ + ⁴ − ² H ₂ SO ₃
2. KNO ₃	*1 *5 -2 KNO ₃	12. H ₂ SO ₄	⁺¹ / ₂ ⁺⁶ ⁻² / ₄
3. OH-	-2 +1 OH-	13. BaO ₂	BaO ₂
4. Mg ₃ N ₂	$\mathbf{\hat{Mg}_{3}N_{2}^{-3}}$	14. KMnO ₄	, K Mn O _μ
5. KCIO ₃	* ¹ * ⁵ - ² КСІО ₃	15. LIH	Li H
6. AI(NO ₃) ₃	^{*3} (^{*5} ∧ ⁻² ₃) ₃	ló. MnO₂	^{‡4} Mn O ₂ ^{−2}
7. S ₈	S ₈	17. OF ₂	°F2 -1
8. H ₂ O ₂	H ₂ O ₂	18. SO3	\$ ⁺⁶ O ₃ ⁻²
9. PbO ₂	* ⁴ - ² PbO ₂	19. NH ₈	⁻³ + ¹ N H ₃
0. NaHSO ₄	*1 +1 +6 -2 Na HSO _u	20. Na	Ňa

	Redox Reactions
r each equation, identif gent, and the reducing o	y the substance oxidized, the substance reduced, the oxidizing agent. Then, write the oxidation and reduction half-reactions.
Example:	oxidized reduced Mg + Br ₂ → MgBr ₂ reducing oxidizing agent agent oxidation half-reaction: Mg° → Mg ² + 2e ⁻ reduction half-reaction: 2e ⁻ + Br ² ₂ → 2Br ⁻
Dividized re $I_1 2H_2 + O_2 \rightarrow$ reducing agent	duced 2H ₂ O oxidizing agent
avidation half-rea	
oxidation half-ree reduction half-ree	action: $2H_2^{\circ} \rightarrow 4H^{\circ} + 4e^{\circ}$ action: $4e^{\circ} + 0^{\circ}_{,\circ} \rightarrow 20^{2^{\circ}}$
oxidation half-rea reduction half-rea oxidized re 2. Fe + Zn ²⁺ → reducing agent	action: 2H ₂ ° → 4H+ + 4e ⁻ action: 4e ⁻ + O ₂ ° → 2O ²⁻ duced Fe ²⁺ + Zn oxidizing agent
oxidation half-rea reduction half-rea oxidized re 2. Fe + Zn ²⁺ → reducing agent oxidation half-rea reduction half-rea	action: $2H_2^{\circ} \rightarrow 4H^{\circ} + 4e^{-1}$ action: $4e^{-1} + O_2^{\circ} \rightarrow 2O^{2-1}$ duced $Fe^{2*} + 2n$ oxidizing agent action: $Fe^{-1} \rightarrow Fe^{2*} + 2e^{-1}$ action: $2e^{-1} + 2n^{2*} \rightarrow 2n^{\circ}$
oxidation half-re- reduction half-re- toxidized re 2. Fe + Zn ²⁺ → reducing agent oxidation half-re- reduction half-re- oxidized re 3. 2AI + 3Fe ³⁺ → reducing agent	action: $2H_2^{\circ} \rightarrow H^{\circ} + 4e^{-1}$ action: $4e^{-1} + O_2^{\circ} \rightarrow 2O^{2-1}$ duced $Fe^{2+1} + 2n$ oxidizing agent action: $Fe^{-1} \rightarrow Fe^{2+1} + 2e^{-1}$ action: $2e^{-1} + 2n^{2+1} \rightarrow 2n^{\circ}$ duced $2Ah^{\circ} + 3Fe$ oxidizing agent
oxidation half-re- reduction half-re- poxidized re 2. Fe + Zn ²⁺ → reducing agent poxidation half-re- reduction half-re- solized re 3. 2AI + 3Fe ³⁺ → reducing agent poxidation half-re- reduction half-re-	action: $2H_2^{\circ} \rightarrow H^{\circ} + 4e^{-1}$ action: $4e^{-1} + O_2^{\circ} \rightarrow 2O^{2-1}$ duced $Fe^{2+1} + 2n$ oxidizing agent action: $2e^{-1} + 2n^{2+1} \rightarrow 2n^{0}$ duced $2A^{1+1} + 3Fe$ oxidizing agent action: $2A^{10} \rightarrow 2A^{1+1} + 6e^{-1}$ action: $6e^{-1} + 3Fe^{0} \rightarrow 3Fe^{0}$
oxidation half-re- reduction half-re- oxidized re 2. Fe + 2n ²⁺ → reducing agent oxidation half-re- reduction half-re- oxidized re 3. 2Al + 3Fe ²⁺ → reducing agent oxidation half-re- reduction half-re- reduction half-re- reduction half-re- reduction half-re- reduction half-re- poxidized re 4. Cu + 2AgNO ₃ reducing agent	action: $2H_2^{0} \rightarrow 4H^{+} + 4e^{-}$ action: $4e^{-} + O_2^{0} \rightarrow 2O^{2-}$ duced $Fe^{2+} + 2n$ oxidizing agent action: $Fe^{-} \rightarrow Fe^{2+} + 2e^{-}$ action: $2e^{-} + 2n^{2+} \rightarrow 2n^{0}$ duced $2A^{2+} + 3Fe$ oxidizing agent action: $2A^{10} \rightarrow 2A^{12+} + 6e^{-}$ action: $6e^{-} + 3Fe^{-} \rightarrow 3Fe^{0}$ duced $4uced + 3e^{-} \rightarrow 3e^{-}$

aland	ce eac	h ec	Bala quation u	INC sing th	ing e half-r	Re eactio	dox	Equations
I.	Sn°	+	2 Ag⁺	→	S⊓²⁺	+	2 Ag°	oxidizing: $Sn^0 \rightarrow Sn^{*2} + 2e^{-1}$ reduced: $2(e^{-1} + Ag^{*} \rightarrow Ag0)$
2.2	Crº	+	3 Pb2+	⇒	2 Cr ^s +	+	3 Pb°	oxidizing: $2(Cr^{\circ} \rightarrow Cr^{\circ 3} + 3e^{-}$ reducing: $3(2e^{-} + Pb^{2} \rightarrow Pb^{\circ})$
3.2	KCIO3		→ 2 KC	н к	30	2		oxidizing: $2O_3^{2*} \rightarrow 3O_2^{0} + 12e^{-1}$ reducing: $2(6e^{-1} + Cl^{5*} \rightarrow Cl^{-1})$
4. ц	NH3	+	50 ₂	→	ų NO	+	6 H₂O	oxidizing: $4(N^{3-} \rightarrow N^{2+} + 5e^{-})$ reducing: $5(e^{-} + O_2^{-} \rightarrow 2O^{2-})$
5.	PbS	+	4H2O2	→	Pb	so ₄	+ 41	$H_2Ooxidizing: S^2 \rightarrow S^{6*} + 8e^-$ reducing: $H(2e^- + O_2^{-1} \rightarrow 2O)$
6.3	H₂S	+	2 HNO3	→	3 S	+	2 NO	+ $4 H_2O$ oxidizing: $3(S^{2-} \rightarrow SO + 2e^{-})$ reducing: $2(3e^{-} + N^{5+} \rightarrow N^{2+})$
7.	MnO ₂		+ H ₂ C	; ₂ O ₄	+	H ₂ SO	, →	$\begin{array}{rcl} \text{MnSO}_{4} & + & 2 \text{ CO}_{2} & + & 2 \text{ H} \\ \text{oxidizing: } \text{C}_{2}^{\ 6^{*}} & \rightarrow & 2\text{C}^{\ 4^{*}} + 2\text{e}^{-} \\ \text{reducing: } 2\text{e}^{-} + \text{Mn}^{\ 4^{*}} & \rightarrow & \text{Mn}^{\ 2^{*}} \end{array}$
8.2	H₂S	+	H ₂ SO ₃	⇒	3 S	+	3 H ₂ O	oxidizing: $2(S^{2-} \rightarrow S^0 + 2e^-)$ reducing: $2(2e^- + S^0 \rightarrow S^{-2})$
۹.	KIO3	+	3 H ₂ SO	3 -	> K	+	3 H ₂ SC	Ooxidizing 3(S ⁴ → S ⁶⁺ + 2e ⁻) reducing 6e ⁻ + I ^s → I ⁻
10.	K ₂ Cr ₂ C	ο,	+ I4H	CI	→ 2	KCI	+ 2(CrCl ₃ + 3Cl ₂ + 7H ₂ O oxidizing: 3(2Cl ⁻ \rightarrow Cl ₂ ⁰ + 2e ⁻) reducing: 6e ⁻ + Cr ₂ ⁴⁺ \rightarrow 2Cr ³⁺

Naming Other Organic Compounds	
н н	нон
н−¢−¢−он	н−ċ−с−с−н
, Ĥ Ĥ	Ĥ Ĥ
ethanol	methyl ethanoate or methyl acetat
2.	7.
н н propanone	2-butanol
3.	8.
ннн о	н н о
н-с-с-с-с-н	н−с҆−с҆−с⊓он
ннн	нн
butanol	propanoic acid
4.	۹.
ΗQ	H O
н-с-с-он	H-C-C-H
H acetic acid or ethanoic acid	H
5.	
нн	ннон
^{;;} ;; н−с−о−с−н	— — — — — — — — — — — — — — — — — — —
dimethyl ether	2-butanone

Connect students with essential science information in this comprehensive **Chemistry** resource. It includes more than 100 activities to extend and enhance your chemistry studies. Tables, charts, and illustrations aid students as they learn about a wide variety of topics including the periodic table, atomic structure, and scientific notation. The pages are rich in content vocabulary and offer a variety of exercises and activities with great student appeal. This book will serve as an excellent supplement to your and chemistry curriculum.

Check out these other great Carson-Dellosa products to support standards-based instruction in your classroom.

The 100+ Series™ Human Body CD-104641

The 100+ Series™ Physical Science CD-104642

The 100+ Series™ Biology CD-104643

Visit learningspotlibrary.com for FREE activities!

PO Box 35665 • Greensboro, NC 27425 USA

carsondellosa.com