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EXECUTIVE SUMMARY 

Rural communities are increasingly vulnerable to climate change because of their dependence on 
natural resources, physical isolation, limited economic diversity, and higher poverty rates.1  With 
fundamental infrastructure already stressed in these systems, identifying vulnerable populations and 
anticipating climate impacts is essential to ensure that the significant adaptations needed for resiliency 
are available to these populations. In this project, researchers at Appalachian State University explored 
“climate vulnerability” and climate resilience “capacity”  in rural western North Carolina (WNC), 
identifying areas with greater hazard exposure  and socioeconomic vulnerability. This type of analysis is 
useful for local hazard mitigation planning and informing communications infrastructure planning for 
underserved rural areas.  While the discussion on climate vulnerability and resilience as it relates to 
hazard exposure like flooding is often more focused on coastal regions, we wanted to evaluate the state 
of vulnerability and capacity for resilience in rural inland areas in the Southeast, using the Appalachian 
Region of western North Carolina as the focus. In this study we used regional data from Argonne 
National Laboratory (ANL) to identify areas of high risk to climate change, and connect socioeconomic 
disparities using geospatial analysis, for the purpose of achieving two primary outcomes: 

1. Incorporate climate change data to produce comprehensive estimates of climate risk for 
hazard mitigation planning in rural western North Carolina 

2. Identify socioeconomic disparities and associated climate vulnerability and resilience 
capacity in rural regions to inform policy and decision-making for underserved rural areas. 

Through selected data analytics techniques, these two objectives were explored to produce some key 
findings relevant to understanding issues associated with building climate resilience capacity.   

Objective 1 

Planning for flooding resilience requires detailed information on where and when floods are expected to 
occur.  A shortcoming of many hazard mitigation plans is that flooding exposure is aggregated to 
governmental boundaries, whereas decision-making concerning flood mitigation needs to consider 
which water bodies are most prone to flooding in order to make strategic investments. We generated 
baseline estimates of flooding exposure across the state of North Carolina using inland flooding heights 
from Argonne National Laboratory (ANL), monthly trends in precipitation quantity and variability, 
impervious surface data, and reported flooding events. Our findings suggest that high inland simulated 
flooding heights do not necessarily correlate with greater frequency of flooding events, but this could be 
a result of several reasons:  1)  reported flood events are not necessarily in the same places with high 
inland flooding heights, 2)  subjectivity in the community-level reporting systems for flood events could 
reduce the reliability of flood events reported, both in terms of quantity and characterization, and 3) 

                                                 
1 Reidmiller, et al., (2018). Impacts, Risk, and Adaptation in the United States.  Fourth National Climate Assessment, 
Volume 2, U.S. Global Change Research Program. 
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high inland flooding heights might occur in low risk areas, e.g. rural areas with less potential for property 
damages.  Identifying the expected frequency of flooding at the watershed level is useful for evaluating 
the degree of exposure, prioritizing high risk areas, and guiding planning and decision-making for 
community resilience. 

Objective 2 

In our initial analysis regarding differential socioeconomic vulnerability across WNC, we find that the 
differences between WNC, particularly rural WNC, and the rest of the state are highly dependent on the 
way we assess vulnerability and resilience, but some common themes do exist. Regarding resilience, 
rural WNC has less governance and institutional (and infrastructure) capacity than the rest of the state. 
This means that rural WNC has, in general, less coverage for natural disasters, fewer mitigation policies 
in place, and less capacity in municipal expenditures for fire, police, and emergency management 
services. Some of this has to do with the exposure to natural hazards; rural WNC has less frequent 
exposure due to location, climate, and topography, but also limited experience with natural hazards 
when they do occur. We also have unique natural hazards, like landslides. At the same time, rural WNC 
demonstrates higher resilience scores in the social domain in one resilience indicator, despite lower 
scores from another indicator in the economic domain.       

While WNC and its rural portions can be distinguished from the rest of the state using these national-
level indicators of resilience, we wanted to investigate the concepts of resilience and vulnerability at a 
finer scale. We selected five counties in WNC that spanned the spectrum of the urban rural continuum 
codes; the five counties selected are Buncombe, Caldwell, Graham, Macon, and Watauga. We evaluated 
their exposure to certain hazards, specifically floods, wildfires, and landslides, the associated risks or 
amount of land impacted, and compared their social vulnerability and climate resilience based on 
relevan indicators and other sources of data.  The results of this comparative analysis demonstrate that, 
while counties may be similar in some respects, e.g., topography, culture, governance, differences in 
socioeconomic characteristics can influence considerations for regional hazard mitigation planning.  
Particular attention may be needed for underserved populations that lack awareness of the need for 
climate resilience capacity and/or the economic means to build it.  

Implications of our Findings 

Providing more forward-looking information as well as education about potential costs of unmitigated 
climate vulnerability is needed to help integrate steps for building climate resilience capacity into hazard 
mitigation plans (HMPs).  This also requires, however, an understanding of how socioeconomic 
variability among the county participants in regional HMPs can influence steps that are taken at the 
community level.  Aided by the use of climate data like that from ANL, social vulnerability metrics, and 
climate resilience indicators that have been evaluated in this study, communities can better estimate 
impending hazard events and identify specific weaknesses in climate resilience at the local level, so that 
HMPs can be more effective in planning for the allocation of resources for specific community needs.  
Building resilience in populations that experience multiple vulnerabilities, as well as historical 
disenfranchisement, will require a clear understanding of how individuals' social networks affect their 
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perceived ability to adapt to changing environmental conditions.  In addition, this type of analysis can 
help identify weaknesses in resources needed at the community level, like communications 
infrastructure, so that planners can improve resilience capacity among those most vulnerable or 
underserved. 
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SECTION 1:  PROJECT OVERVIEW AND OBJECTIVES 

While over 95% of U.S. land is considered rural, only about 19% of the population lives there2.  Rural 
natural resources, however, are the economic lifeblood to these communities, providing vital resources, 
e.g., food, energy, fresh water, to urban populations.3   Rural communities are increasingly vulnerable to 
climate change because of their dependence on natural resources, physical isolation, limited economic 
diversity, and higher poverty rates.4  Loss of young workers and dominant industries in the rural 
Southeast has exacerbated economic development and the means to make sweeping changes to 
combat direct and indirect impacts of climate change.  With fundamental infrastructure already stressed 
in these systems, identifying vulnerable populations and anticipating climate impacts is essential to 
ensure that the significant adaptations needed for resiliency are available to these populations. In this 
project, researchers at Appalachian State University explored “climate vulnerability” and climate 
resilience “capacity” in rural western North Carolina (WNC), identifying hazard exposure vulnerability 
and associated socioeconomic disparities. This type of analysis is useful for local hazard mitigation 
planning and informing communications infrastructure planning for underserved rural areas. 

The importance of rural America’s natural resources to the country’s economic and social well-being 
cannot be understated. Climate change risks in rural areas lack sufficient evaluation, however, which 
exacerbates the ability to plan appropriate responses to infrastructure needs, and to protect these 
valuable resources from potential hazards.  While the discussion on climate vulnerability and resilience 
as it relates to climate change is often more focused on coastal regions, we wanted to evaluate the state 
of vulnerability and capacity for resilience in rural inland areas in the Southeast, using the Appalachian 
Region of western North Carolina as the focus.  In collaboration with local officials in Watauga County, 
North Carolina, researchers at Appalachian State University used regional data from Argonne National 
Laboratory (ANL) to identify areas of high risk to climate change, and connect socioeconomic disparities 
using geospatial analysis, for the purpose of achieving two primary outcomes: 

1. Incorporate climate change data to produce comprehensive estimates of climate risk for 
hazard mitigation planning in rural western North Carolina 

2. Identify socioeconomic disparities and associated climate vulnerability and resilience 
capacity in rural regions to inform policy and decision-making for underserved rural areas. 

The research approach for this project included the following: 

                                                 
2 U.S. Census Bureau, 2016:  American Community Survey 
3 Kusmin L., 2009: “Rural America at a Glance, 2009 edition.” United States Department of Agriculture, Economic 
Research Service. EIB-59.  
4 Hales, D., et al. 2014: “Ch. 14: Rural Communities. Climate Change Impacts in the United States: The Third 
National Climate Assessment.” U.S. Global Change Research Program, 333-349 
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● Leveraging Argonne’s available data as well as other sources of climate data to produce more 
informed estimates of exposure to natural hazards such as flooding, and evaluation of how 
climate change might reorganize the spatial patterns of precipitation.  This produced 
comprehensive estimates of both baseline exposure to flooding and potential  changes in 
seasonal precipitation patterns that can inform mitigation strategies, identify specific regional 
data needs, and guide decision-making on disparities between risks in inland rural areas versus 
urban or coastal impacts.  

● Using relevant socioeconomic data for rural communities in western North Carolina to explore 
connections among rural disparities, climate vulnerability, and capacity for building resilience. 
Geospatial and statistical analysis were used to identify patterns of the spatial distribution of 
resilience and vulnerability. We are especially concerned in how rural WNC is unique in its 
resilience capacity and vulnerability. This analysis provides input to prioritize disadvantaged 
rural areas to improve climate resilience through informing hazard mitigation plans, 
infrastructure decisions, and economic development strategies in rural regions. 

 Significance or Impact of Project to Local Communities 

Climate change impacts should not be addressed in isolation as a reaction to hazards but rather 
interwoven with the goal of decreasing socioeconomic disparities in rural areas.5  Designing strategies 
for climate resilience that synergize with economic development and natural resource management 
maximizes strategic mitigation planning and resilience building. .  We employed a case study of selected 
counties in Western North Carolina to highlight how socioeconomic disparities are connected to climate 
resilience capacity, and provide a discussion of implications. 

The ultimate goal of this project is to inform planning for both policy makers (at local and state level) as 
well as how demonstrate how the use of various data analytics techniques can generate information 
that can assist with decision-making, particularly as it relates to resource needs for building climate 
resilience in communities (e.g., communications infrastructure decisions).  In addition, the outcomes of 
this project will help guide our research to improve resilience capacity in rural regions, as well as further 
exploration on expanding the use of natural resources to build resilience. 

Implications of COVID-19 Pandemic 

During the course of this project, we experienced the effects of the COVID-19 pandemic, including 
significant changes to lifestyle that are connected to climate vulnerability and community resilience.  In 
rural communities, small businesses were forced to close or operate at limited capacity, students shifted 
to remote learning, telehealth systems expanded, and employees began telecommuting.  These changes 
in lifestyles highlighted the deficiencies in resilience in rural communities, particularly with respect to 
health care and communications infrastructure, but also economic well-being.  It is clear that 

                                                 
5 Wang, C., Guan, D., & Cai, W. 2019: “Grand Challenges Cannot Be Treated in Isolation.” One Earth, 1. 24-26 
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deficiencies in climate resilience must be evaluated in light of concurrent risks associated with other 
ongoing events that impact community lifestyles as well as capacity for mitigating deficiencies.  The 
implications of the pandemic as they affect our project are discussed throughout this report as 
appropriate. 
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SECTION 2: LITERATURE REVIEW 

2.1 Background 

Recent years have seen a shift in the framing of disaster risk assessment and emergency 
management as discussed by researchers and practitioners in geography, community planning, 
public health, social services, economic development, and more. Specifically, the language of 
sustainability (e.g., sustainable development, sustainable communities, sustainability sciences) 
has given way to a discussion of resilience.   This process has shifted the terms of the discourse, 
requiring a different set of data inputs, and generating research questions, findings, and 
potential actions with a somewhat new focus. This applies fully to the realm of understanding 
and communicating climate change impacts and disaster risk. For rural WNC, nestled in the 
Southern Appalachians, the primary climate risks and their likely impacts on residents require 
regionally specific data inputs and analytical methods that differ from those used in coastal and 
piedmont regions. These may yield locally meaningful vulnerability assessments and locally 
relevant measures with the potential to build community resilience; inform policies and 
programs that support residents; and address socioeconomic disparities. 

2.2 Urban vs. Rural Resilience  

As the concept of resilience gains dominance across disciplines relating to climate change and 
communities, debate continues about definitions and metrics, even as a general consensus 
forms that cities need to prepare for future climate stresses and shocks by building resilience. 
This effort should coincide with pursuit of global sustainable development goals.6  To that end, 
planning should seek to address social inequities while promoting resilience, making use of the 
creativity and innovation that urban systems offer in pursuit of sustainable and resilient cities.   

While urban resilience commands much of the attention, rural communities have been 
underrepresented in the climate resilience discussion. Rural communities, home to less than 
one-fifth of the US population yet occupying four-fifths of the land area, differ from urban 
communities in socio-demographics, literacy, occupation, income—and climate vulnerability. 
Lal et al. (2011) reviewed data from diverse sources (peer-reviewed journal articles, 
government reports and websites, and more) to identify possible climate change impacts on 
rural communities. 7   These include expanded growing seasons in the Northeast, and intense 
drought and rising energy costs in agricultural regions of the Southwest and Southeast. While 

                                                 
6 Leichenko, Robin. "Climate change and urban resilience." Current opinion in environmental 
sustainability 3.3 (2011): 164-168. 
7 Lal, R., Delgado, J. A., Groffman, P. M., Millar, N., Dell, C., & Rotz, A. (2011). Management to mitigate 
and adapt to climate change. Journal of Soil and Water Conservation, 66(4), 276-285. 
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rural communities face specific vulnerabilities, they also may have unique capacity for coping 
with and mitigating impacts. 

Rural community resilience requires  a balance among economic, social, and environmental 
needs (the 3Es of sustainability) in the face of challenges—internal and external: “Resilience is 
about communities being able to successfully weather the vicissitudes of endogenous and 
exogenous changes.”8  Three characteristics of rural communities (economic capital, social 
capital, environmental capital) provide a framework for discussing rural resilience that extends 
beyond their agricultural or resource-based past. Moreover, Molnar (2010) noted that the focus 
on rural environments, household welfare, community, and livelihoods is now being heightened 
by climate change; its differential impacts across rural communities; and how they cope with 
existing and emerging challenges.9   

Similarly, the importance of rural commerce in community resilience cannot be understated; 
through direct pathways (jobs, goods, and services) and indirect benefits of economic 
development (e.g., stable population), community resilience relies on the business community. 
Rural business owners have the local knowledge and motivation to respond to local conditions 
“and to proactively and skillfully turn them into entrepreneurial opportunities,” in the process 
becoming active players in adaptation and change agents in promoting rural community 
resilience10 . 

2.3 North Carolina and Appalachia 

The southern United States is particularly socially vulnerable to climate hazards. Adapting the 
Social Vulnerability Index (including variables for infrastructure and built environment) to 
include social and demographic variables more reflective of social well-being, Emrich & Cutter 
(2011) identified elevated drought hazard exposure concentrated in Appalachia, specifically 
western North Carolina, as well as moderate and elevated multi-hazard risk in the area.11 

In light of increasing exposure to extreme weather events over the past half-century, 
particularly in the US Southeast and Southwest, Preston (2013) used demographic data to 
create scenarios of future county-level population changes and historical changes in wealth, 

                                                 
8 Wilson, G., 2010. “Multifunctional ‘quality’ and rural community resilience.” Transactions of the Institute 
of British Geographers, 35 (3) 
9 Molnar, J. J., 2010. “Climate change and societal response: Livelihoods, communities, and the 
environment.” Rural Sociology, 75 (1), 1-16 
10 Steiner, A., and J. Atterton, 2015. “Exploring the contribution of rural enterprises to local resilience.” 
Journal of Rural Studies, 40, 30-45 
11 Emrich, Christopher T., and Susan L. Cutter, 2011. “Social vulnerability to climate-sensitive hazards in 
the southern United States.” Weather, Climate and Society, 3 (3), 193-208 
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and to estimate future losses from extreme climate events. Results suggest economic losses 
growing by a factor of 1.3-1.7 by 2025, and by 1.8-3.9 by 2050.12   Further, an exploratory study 
employed spatial data for population growth, natural land loss, and climate change data to 
identify ‘hotspots’ of projected climate change in the U.S. Although such concentrations 
occurred across the nation, ‘hotspots’ of projected natural land loss clustered in the Southeast, 
particularly in the Piedmont region of North and South Carolina, with a distinctive band in the 
Appalachian region.13 

2.4 Equity dimensions of climate risk and resilience 

Rural climate vulnerability has social equity dimensions. Some argue that in the debate over the 
most effective and meaningful approaches to hazard risk assessment, social vulnerability has 
been severely underrepresented. In one study analyzing the records for 1500 Hurricane Ike-
damaged single-family homes, researchers found that hazard exposure, structural 
characteristics, and socioeconomic characteristics were significant predictors of structural 
damage; this suggests that such assessments may be useful tools for promoting resilient 
communities.14 

Building community resilience to climate change in rural, farming-dependent areas requires 
decision-makers to “embrace a "social justice" perspective and an understanding of science as 
transformative of society.”  Furman et al. (2014) analyzed quantitative and qualitative data 
from a sample of 98 African-American farmers in the Southeastern U.S. Facing the same risks 
and stresses as other small farmers (e.g., rising land costs, policies that favor mass-scale 
farming), African-American farmers are “vulnerable to drought and other climate anomalies 
due to their limited resource base, residence in remote countries, and advanced age,” while 
also struggling with injustices rooted in racism. 15   

                                                 
12 Preston, Benjamin, 2013. “Local path dependence of U.S. socioeconomic exposure to climate 
extremes and the vulnerability commitment.” Global Environmental Change, 23 (4), 719-732 
13 Neelam C. Poudyal, Duncan Elkins, Nathan Nibbelink, H. Ken Cordell, Buddhi Gyawali (2015). An 
exploratory spatial analysis of projected hotspots of population growth, natural land loss, and climate 
change in the conterminous United States. Land Use Policy, Volume 51, P 325-334 
14 Highfield, Wesley E., Walter Gillis Peacock, and Shannon Van Zandt, 2014. “Mitigation planning: Why 
hazard exposure, structural vulnerability, and social vulnerability matter.” Journal of Planning Education 
and Research, 34 (3), 287-300 
15 Furman, C., C. Roncoli, W. Bartels, M. Boudreau, H. Crockett, H. Gray, and G. Hoogenboom, 2014. 
“Social justice in climate services: Engaging African American farmers in the American South.” Climate 
Risk Management, 2, 11-25 
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2.5 Planning and policy for climate resilience 

Despite significant climate change impacts felt across the U.S. and world, making adaptation 
measures urgent, climate resilience research is still in its infancy (Wilbanks & Kates, 2010, Lyles 
et al., 2016).  In addition, the integration of climate resilience measures into local hazard 
mitigation plans is not widely practiced.  For example, Stults (2017) analyzed 30 local hazard 
mitigation plans for integration of climate change with FEMA’s Plan Review Crosswalk checklist, 
and found that most (23 of 35 plans) explicitly discussed climate change impacts on natural 
hazards. Even so, while many communities anticipate a changing climate, few have formally 
committed to adaptation measures.16 Communities may benefit from guidance on integrated 
hazard mitigation planning and engaging "nontraditional stakeholders such as experts in 
climate science, local organizations working on climate mitigation and adaptation, regional 
organizations, and the most vulnerable residents."  Better outcomes may be achieved with 
early and repeated stakeholder input 17. Practitioner and stakeholder responses provide 
guidance on shaping future climate resilience and sustainability policy application, specifically 
when it comes to the process of collecting community input and challenges related to 
“stakeholder concerns, practitioner preferences, and uncertainty under future (climate change) 
conditions.”  

Finally, a survey of state Hazard Mitigation Officers in the 56 U.S. states, territories, and the 
District of Columbia that participate in FEMA’s Hazard Mitigation Grant Program revealed the 
extent to which Hazard Mitigation Plans (HMPs) have incorporated climate change. Although 
most of the respondents reported that HMPs address climate change, motivated by growing 
evidence and projections of climate change, they also reported barriers to integrating climate 
change, such as lack of funding and competing priorities; political priorities were cited both as 
facilitating and hindering integration.18 Better evidence-based hazard mitigation policy and 
practice will require effective translation of climate change research for practitioners. 

  2.6 Information and communication technology and the rural digital gap 

There is no question that access to an effective communications infrastructure is essential to 
building climate resilience in rural communities.  Yet, access in rural areas is exacerbated by 

                                                 
16 Stults, Missy, 2017. “Integrating climate change into hazard mitigation planning: Opportunities and 
examples in practice.” Climate Risk Management, 17, 21-34 
17 Goldsmith, Windi, and Thomas Flanagan, 2017. “Value methodology—Case studies within climate 
resilience and sustainability policy application.” Architectural Engineering & Design Management, 13 (1), 
3-21 
18 Gonick, Shannon A., and Nicole A. Errett, 2018. “Integrating climate change into hazard mitigation 
planning: A survey of state hazard mitigation officers.” Sustainability, 10 (11) 
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both physical and socioeconomic barriers due to insufficient prevalence of broadband 
technology or inability to afford it.  The scant literature on rural information and 
communication technology (ICT) is heavily focused on the technical dimensions of the 
urban/rural digital gap, overshadowing a discussion of ways rural communities have selectively 
incorporated some digital technologies into social and economic systems. 

 Ashmore et al. (2015) describe the importance for rural residents of Internet technology and 
access, and discusses how high-speed broadband, and its impact in everyday routines and in 
personal skill-building and empowerment, may promote resilient rural communities. They note 
the often “contradictory nature of the relationship between superfast broadband, rural users 
and potential individual and community resilience.”19   

  

                                                 
19 Ashmore, F. H., J. H. Farrington, and S. Skerratt, 2015. “Superfast broadband and rural community 
resilience: Examining the rural need for speed.” Scottish Geographical Journal, 131 (3-4), 265-278. 
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SECTION 3: HAZARD EXPOSURE FROM CLIMATE CHANGE IMPACTS (Objective 1)  

3.1  Background for this section  

Heavy precipitation events impact communities due to inland flooding, destabilization of the ground 
resulting in landslides, and other hazards that can cause property damage, loss of life, and injury. 
Significant damages from heavy precipitation and other storms have been increasing in the past decade 
20, and models project that the frequency and intensity of flooding is expected to increase in many areas 
of the United States21.22  Decision-makers need information concerning potential current and future 
risks of heavy precipitation to stimulate mitigation planning and strategic development. This has 
ultimately been shown to substantially reduce financial burden from disaster23 24 25. 

Characterizing risk and exposure is an essential component for building community resilience; a 
community cannot respond, adapt, and rebound from natural hazards if they do not have some 
expectation of intensity of exposure and overall risk to a system. The Federal Emergency Management 
Agency (FEMA) provides tools to help identify potential losses and provides funding for community 
mitigation efforts.26 In addition to FEMA, a few resilience indicators have been suggested to assess a 
communities’ baseline ability to absorb and adapt to hazardous events. 27 28 29  Although each of these 
tools are informative, they either treat climate as static or provide only a baseline of resilience.  This 
approach can be problematic because, used alone, historic probabilities of hazards events cannot 
effectively characterize future hazards under a changing climate. Incorporating available climate 
projection data can assist in estimating future exposure and the need for more effective mitigation 
strategies in a community. 

Watersheds are dynamic unique systems that respond to heavy precipitation individually in the 
headwaters, but collectively as water migrates downstream. This individual response is the coupling 

                                                 
20 Smith, A. B. & Arndt, D. S. US Billion-dollar weather and climate disasters over the last 40 years (1980-2019)-in 
historical context. in 100th American Meteorological Society Annual Meeting (AMS, 2020). 
21 Maurer, E. P., Kayser, G., Doyle, L. & Wood, A. W. Adjusting flood peak frequency changes to account for climate 
change impacts in the western United States. J. Water Resour. Plan. Manag. 144, 5017025 (2018). 
22 Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change exacerbates hurricane flood hazards along US 
Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 10, 1–9 (2019). 
23 Godschalk, D. R., Rose, A., Mittler, E., Porter, K. & West, C. T. Estimating the value of foresight: aggregate 
analysis of natural hazard mitigation benefits and costs. J. Environ. Plan. Manag. 52, 739–756 (2009) 
24 Shreve, C. M. & Kelman, I. Does mitigation save? Reviewing cost-benefit analyses of disaster risk reduction. Int. J. 
disaster risk Reduct. 10, 213–235 (2014) 
25 Laub, P. M. Report on costs and benefits of natural hazard mitigation. (DIANE Publishing, 1997). 
26 Zhou, H., Wan, J. & Jia, H. Resilience to natural hazards: a geographic perspective. Nat. hazards 53, 21–41 (2010) 
27 Cutter, S. L., Burton, C. G. & Emrich, C. T. Disaster resilience indicators for benchmarking baseline conditions. J. 
Homel. Secur. Emerg. Manag. 7, (2010). 
28 Cutter, S. L. The landscape of disaster resilience indicators in the USA. Nat. hazards 80, 741–758 (2016). 
29 Summers, J. K., Harwell, L. C., Smith, L. M. & Buck, K. D. Measuring community resilience to natural hazards: the 
natural hazard resilience screening index (NaHRSI)—development and application to the United States. GeoHealth 
2, 372–394 (2018) 
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among its topography, soil characteristics, vegetation, underlying geology, and human impacts 30.  Most 
watershed modeling approaches simulate flooding events by incorporating some of these characteristics 
into a process-based model.31 These are informative exercises, but are highly reliant on computation 
demand, careful structure of input parameters, and user expertise32 33 . Statistical, or data driven, 
modeling can provide additional inferential capacity, and can be used in conjunction with process 
modeling to provide comprehensive information concerning exposure34. 

Climate change is often talked about at the global scale, but local decision-makers need to be aware of 
potential climate changes within their own community35. Even national or state level reporting on the 
changes within the climate do not help local communities plan for the alterations of seasonal dynamics 
that could cause hazards such as flooding or drought, impacting economic livelihood and human health. 
For example, the recent North Carolina Climate Science report does provide some coarse insights into 
the regional trends in climate36. But, the diversity of environments within regions such as Western North 
Carolina (WNC) cause these predictions to lack some of the specificity for localized decision-making. 
Annual precipitation is expected to increase across the state of North Carolina as well as the number of 
days with extreme precipitation events. Knowing this accentuates the need for reliable estimates of 
localized exposure to flooding for appropriate natural hazard planning.  

In the face of climate change, and with the availability of downscaled future climate data from 
WorldClim37 38, it could benefit hazard mitigation planning to incorporate this high-resolution data to 
assess both current and future climate risks and seasonal changes. Our initial goal was to use the 
Argonne national laboratory (ANL) climate data, available high-resolution climate data for current and 
potential future precipitation patterns, national level impervious surface data, and locations of flooding 
events to assess expected occurrence of flooding within the state of North Carolina. This baseline 
estimate of flooding exposure was then used in conjunction with monthly precipitation data and the 
ANL data to explore whether we can find consistent patterns among watersheds in the potential 
changes in precipitation. Although monthly patterns in precipitation cannot accurately simulate the 
sporadic nature of extreme weather that causes floods, it provides a better baseline (than historical data 

                                                 
30 Merz, B. et al. Floods and climate: emerging perspectives for flood risk assessment and management. Nat. 
Hazards Earth Syst. Sci. 14, 1921–1942 (2014). 
31 Daniel, E. B. et al. Watershed Modeling and its Applications : A State-of-the-Art Review. 26–50 (2011). 
32 Shirmohammadi, A. Uncertainty in TMDL Models. Trans. ASABE 49, 301–314 (2006). 
33 Leskens, J. G., Brugnach, M., Hoekstra, A. Y. & Schuurmans, W. Why are decisions in flood disaster management 
so poorly supported by information from flood models? Environ. Model. Softw. 53, 53–61 (2014). 
34 Solomatine, D. P. & Price, R. K. Innovative approaches to flood forecasting using data driven and hybrid 
modelling. in Hydroinformatics: (In 2 Volumes, with CD-ROM) 1639–1646 (World Scientific, 2004). 
35 Howarth, C. & Painter, J. Exploring the science–policy interface on climate change: The role of the IPCC in 
informing local decision-making in the UK. Palgrave Commun. 2, 16058 (2016). 
36 Kunkel, K. E. et al. North Carolina State climate report. (2020) 
37 Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. 
Climatol. 37, 4302–4315 (2017). 
38 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate 
surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005). 
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alone) for local communities to assess high risk watersheds and localized changes to their precipitation 
patterns. This section summarizes the work in association with achieving objective 1:  Incorporating 
climate change data to produce comprehensive estimates of climate risk for hazard mitigation planning 
in rural western North Carolina. 

3.2  Evaluation of Argonne National Laboratory Data 

AT&T collaborated with ANL to develop the AT&T’s Climate Change Analysis Tool. The result of this 
collaboration is a dataset generated from climate model simulations using current (1995-2004) data and 
future (2045-2054) projections. The simulations generated return periods for 10-year and 50-year 
storms and produced the following sets of variables: inland flooding, associated wind speeds with a 
given storm, and coastal flooding. The 5th, 50th, and 95th percentiles are included for storm return 
periods of 10-years and 50-years, and the general extreme value distribution parameters are included to 
extract projections for any n-year return period. 

We used inland flooding data across the state of North Carolina, but we focus our attention in this 
general discussion to a 27-county region described as WNC (Figure 3.1). The 27 counties we describe as 
WNC represent a range of different types of communities (See Table A.1 in Appendix). All but two of the 
Rural Urban Continuum codes from the United States Economic Research Service are represented39; 
most of the counties in WNC are non-metro areas, with eight counties classifying as completely rural 
communities. 

Inland flooding was simulated by the WRF-Hydro® model (Version 5). This process model simulates the 
entire hydrological cycle for watersheds within a study area, using inputs such as climate variables, 
topography, and vegetation to inform a physics-based model. The outputs from this model include 
depth of surface water accumulation (the inland flooding data presented here), but also stream flow 
and flood duration. The data were packaged in a .csv file for public use, and this contains over 
19,272,189 observations across the Southeastern United States. For faster processing capabilities, we 
first removed all zeros from this dataset, leaving 823,274 nonzero observations for analysis. This 
included 150,860 observations within the state of North Carolina and 12,513 when constrained to 27 
counties in North Carolina identified as WNC.  

  

                                                 
39 Parker, T. Rural-urban continuum codes. (2013). 
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Flooding events are spatially constrained by watershed boundaries.  Although hazard planning occurs 
along political boundaries, e.g. city, county, or regional level, decisions concerning flooding occurrence 
need to consider watershed boundaries. Because of this, we used 12-digit hydrologic codes from the 
United States Geological Survey in developing a flooding exposure model. This included 1775 
watersheds within North Carolina, and 441 watersheds in the WNC region. For each return period, we 
calculated the mean flood height in each watershed using the median and the 95th percentile estimates 
of flood heights at the specific points mentioned above.  

The watersheds with the highest average surface flooding height for the median 10-year and 50-year 
event is Fires Creek in Clay County for WNC and for the state of North Carolina, Carrot Creek in Carteret 
County. The maximum flood height at a single point in a watershed for WNC was the Upper Linville River 
in Avery County for a 10-year event, and Grassy Creek of the Lower Little River in Alexander County for a 
50-year event. Figure 3.1 shows the distribution of 10-year and 50-year mean flood heights for each 
watershed.

 

 Figure 3.1. North Carolina HUC-12 watershed boundaries, county boundaries, and the mean 
flood heights for (A) 10-year and (B) 50-year flood events. Flood heights are based on the median 
values of the distribution of inland flooding heights provided by Argonne. These were averaged 
within a watershed and divided into quartiles for easier visualization. Flooding events from 2010-
2019 are shown as well as the 27 county region defined as Western North Carolina (WNC).  
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3.3 Evaluation of National Flooding Events Database for North Carolina 

The Flooding events data is available from the National Center for Environmental Information (NCEI) 
flooding events database40. We selected all events across the state of North Carolina of the type “Flood” 
and “Flash Flood” for the years 2010-2019. The beginning locations of each flooding event were joined 
to each watershed, allowing for a count of events over this decade. We also evaluate county by county 
flooding events in terms of frequency and associated damages to property, crops, and the population 
(deaths and injuries). These counts were used as the response variables for the Zero Inflated Poisson 
(ZIP) regression modeling analysis to assess flooding risk (sect 3.5). 

There were 1,861 flooding events recorded during this time period, with property losses totaling over a 
billion dollars and crop losses of over $600 million (Table 3.2). These also resulted in four documented 
injuries and 48 deaths. The most flooding events occurred in 2018, while 2016 was the most expensive 
year in terms of property and human life losses. Three counties in WNC were represented in the top ten 
counties with flooding occurrences (Watauga, Transylvania, and Henderson). WNC county flooding 
events and costs are also shown in Table 3.1. Other notable counties include three most populated 
counties:   Wake (Raleigh area), Guilford (Greensboro), and Mecklenburg (Charlotte); three coastal 
counties (New Hanover, Brunswick, and Pender); and one other county in a metropolitan area 
(Rockingham). 

  

                                                 
40 NCEI. Storm Events Database. https://www.ncdc.noaa.gov/stormevents/ (2020). 
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Table 3.1. 

Evaluation of frequency and expense of flooding events for the decade 2010 – 2019 for North Carolina. 

Year 
Number of flood 
events 

Total property costs 
(Thousands $) 

Total crop costs 
(Thousand $) Deaths Injuries 

2010 269 6839 69610 8 0 

2011 147 7644 5 2 1 

2012 103 1266 0 0 0 

2013 216 23627 30 0 0 

2014 109 2854 5 0 2 

2015 196 1793 0 0 1 

2016 245 721307 171000 24 0 

2017 104 1549 0 1 0 

2018 359 229429 430030 12 0 

2019 113 3710 0 1 0 

 

The distribution of storms by months for each year is provided in Figure 3.2. Three months during this 
time period had over 100 flooding events: September of 2010 and 2018, and October of 2016. Other 
notable periods of storm events were the summer floods of 2013, where between June and July of that 
year 141 flooding events occurred. The period of time from September to October 2016 was the most 
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costly period of flooding events, with 890 million dollars in damages to property and crops. This period 
of time was also the deadliest, with 24 lives lost. 

 

 

Figure 3.2. Distribution of flooding events by year and by month for the time period of 2010-2019 for 
North Carolina.  
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3.4  Precipitation and impervious surface data for North Carolina  

Flooding is a product of topography, precipitation intensity and duration, soil type, vegetation, and 
stormwater management practices. The available Argonne data uses a landscape processing model 
which includes soil type, vegetation, and topography. Along with these projected flood heights from 
Argonne, we used potential precipitation data and one specific human impact, impervious surfaces, to 
assess expected flooding exposure.  

For current precipitation trends, 30-year normals are available from the Parameter-elevation 
Regressions on Independent Slopes Model (PRISM) research group at Oregon State University41.  Data 
with resolution of 800 m2 was selected for annual and monthly precipitation. High resolution 
downscaled data for climate change scenarios is available from WorldClim42 43. Although WorldClim 
does have 30-year normal data, it only represents 1970-2000, rather than the more recent 1980-2010 
data from PRISM. For our initial modeling purposes, we selected all monthly precipitation values from 
PRISM and calculated the coefficient of variation for monthly precipitation. These values were averaged 
across each watershed. Impervious surface data is provided by the Multi-Resolution Land Characteristics 
(MRLC) consortium at 30 m2 resolution, and we determined the average impervious surface located 
within the watershed using the 2016 update44.  

3.5  Zero-inflated Poisson modeling approach 

To assess potential flooding risk in watersheds across North Carolina, we used the ZIP regression 
modeling approach. The response variable is the number of storm events within a watershed that was 
extracted from the NCEI storm events database (Section 3.3) and the explanatory variables were the 
inland flooding heights from ANL (Section 3.2), monthly precipitation totals from PRISM (Section 3.4), 
and percent impervious surface from MRLC (Section 3.4).  

Count data are most appropriately modeled by a Poisson regression; however, since many watersheds 
were shown to have zero flooding events during 2010-2019, we opted to use a  ZIP model in this 
analysis. In a ZIP model, each observation is one of two cases: case 1 states that the count is zero, while 
case 2 states that the counts (including zeros) is generated using a Poisson model. Case 1 occurs with 
probability 𝜋𝜋 and case 2 occurs with probability1 − 𝜋𝜋. The probability distribution for event 𝑦𝑦𝑖𝑖  is given 
as follows: 

𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 (𝑦𝑦𝑖𝑖 = 𝑗𝑗)  = {𝜋𝜋𝑖𝑖 + (1− 𝜋𝜋𝑖𝑖) 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝜇𝜇𝑖𝑖)  (1− 𝜋𝜋𝑖𝑖)
𝜇𝜇𝑖𝑖𝑦𝑦𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 (−𝜇𝜇𝑖𝑖)

𝑦𝑦𝑖𝑖!
     𝑖𝑖𝑖𝑖 𝑗𝑗 = 0 𝑖𝑖𝑖𝑖 𝑗𝑗 > 0  

Where the Poisson component is 

                                                 
41 Daly, C., Taylor, G. H. & Gibson, W. P. The PRISM approach to mapping precipitation and temperature. in Proc., 
10th AMS Conf. on Applied Climatology 20–23 (Citeseer, 1997). 
42 Ibid, N 37 
43 Ibid, N 38 
44 Homer, C., Dewitz, J., Jin, S. & Xian, G. Z. Completion of the 2016 National Land Cover Database, Revealing 
Patterns of Conterminous US Land Cover Change from 2001 to 2016. AGUFM 2019, B24A-03 (2019) 
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𝜇𝜇𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽𝑜𝑜 + 𝛽𝛽1 𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚) 

and the logistic link function 𝜋𝜋𝑖𝑖 is: 

𝜋𝜋𝑖𝑖  =
𝜆𝜆𝑖𝑖

1 + 𝜆𝜆𝑖𝑖
 

𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝛼𝛼𝑜𝑜 + 𝛼𝛼1 𝑧𝑧1𝑖𝑖 + 𝛼𝛼2𝑧𝑧2𝑖𝑖 + ⋯𝛼𝛼𝑚𝑚𝑧𝑧𝑚𝑚𝑚𝑚) 

One of the benefits of this approach is that the response for inflated zeros (the logistic component) can 
be modeled with different predictors than the Poisson component. The expected value, in our case the 
number of flood events in a 10-year period, is a product of the Poisson component, 𝜇𝜇𝑖𝑖, and the 
probability that the event is not a zero, 1 − 𝜋𝜋𝑖𝑖. 

We used a bootstrapped aggregation approach to predict the expected number of flooding events, and 
to compare the accuracy of traditional Poisson regression (𝜇𝜇𝑖𝑖), and two ZIP models: a full model using all 
available data and a model which in each bootstrapped sample used backwards elimination as a variable 
subset selection method. Bagged models were compared using optimism-corrected root mean square 
error (RMSE)45.  The number of bootstrapped samples for each of the bagged models was 1000. The 
bootstrapping ZIP approach was performed in R 4.0.2.  

3.6 Results of Zero-Inflated Poisson Regression Analysis 

Naïve (in-sample) RMSE estimates were 2.15, 1.05, and 1.03 for the Poisson, ZIP with backward 
elimination, and ZIP with all variables respectively. However, when corrected using optimism, the 
backwards elimination ZIP performed 10 % better than Poisson regression, and 33 % better than the ZIP 
using all variables. Since this model is a mixture of a Poisson model and a logistic model, we present two 
measures to assess the relative strength of association between the parameters and the count or zero 
component of our model (Table 1.3). For the count component we used the incidence rate ratio (IRR); 
this is interpreted as the rate ratio for a one standard deviation increase in the explanatory variable, 
given everything else is held constant.  As an example, the IRR for a 50-year flood event is 2.11 (95% CI: 
1.28, 4.61) (Table 1.3) This means the 50-year flood event that is one standard deviation above the 
mean would be expected to see counts increase by a factor of 2.11.   The zero component of the model, 
we assessed this using the odds ratio. Using May precipitation as an example, the odds that the 
observation is zero increases by a factor of 2.74 (95% CI: 1.05, 15.06) for a one standard deviation 
increase in May precipitation, holding all other explanatory variables constant. 

Our findings suggest that expected flooding height does not necessarily mean more flooding events. 
There was an conflicting component of flood heights for different return periods; the strongest effect 
was that increased 10-year flood height would lead to lower probability that a watershed had zero 
flooding events (OR 0.17, 95% CI: 0.02, 0.59), but the higher the 50-year flooding height, the more likely 
the watershed has a count of zero (OR: 6.52, 95% CI: 1.35, 72.68). Both 10-year and 50-year flood 

                                                 
45 Tibshirani, R. J. & Efron, B. An introduction to the bootstrap. Monogr. Stat. Appl. Probab. 57, 1–436 (1993) 
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heights demonstrate a similar pattern for the count component of the regression, where higher 50-year 
floods heights meant higher expected counts, but this was offset by lower expected counts for higher 
10-year flood events; however, the effect was not as pronounced (Table 3.2). This suggests that higher 
simulated flooding heights do not necessarily correlate with greater frequency of floods. This could be a 
result of several reasons:  1) Reported flood events are not necessarily in the same places with high 
inland flooding heights, 2) Subjectivity in the community-level reporting systems for flood events could 
reduce the reliability of flood events reported, both in terms of quantity and characterization, and 3) 
high inland flooding heights might occur in low risk areas, e.g. rural areas with less potential for property 
damages. 

Impervious surfaces (IRR: 1.37, 95% CI: 1.23, 1.48) and July precipitation (IRR: 1.69, 95% CI: 1.18, 3.28) 
are the strongest effects, aside from 50-year flooding height, to contribute to the count component of 
the model. Impervious surfaces are well known for their ability to increase run-off into waterways 
because they do not allow water to percolate into the ground; it also requires less rain to generate the 
same amount of run-off 46.  July has some of the most frequent counts of storms events in this study 
(243), and the events contribute substantially to the monthly precipitation because of the type of 
precipitation that occurs in the summer in North Carolina. “Pop-up” thunderstorms occur more often in 
the summertime, and can produce large amounts of precipitation in a localized, short time frame. Up to 
72% of total summer rainfall is produced by thunderstorms in the Eastern United States47. July and June 
are also a part of the hurricane season in the Carolinas. Although October has some of the highest 
number of flooding events in this study time period (274), higher October precipitation leads to lower 
counts of storms events (IRR: 0.63, 95% CI: 0.37,0.90). Upon further inspection, approximately 50% of 
these documented events resulted from Hurricane Matthew in 2016. These rare events are difficult to 
model within monthly 30-year normal precipitation totals. Four of the years included did not have any 
flooding events that occurred in October.  

  

                                                 
46 Frazer, L. Paving paradise: the peril of impervious surfaces. Environ. Health Perspect. 113, A456–A462 (2005). 
47 Changnon, S. A. & Changnon, D. Long-Term Fluctuations in Thunderstorm Activity in the United States. Clim. 
Change 50, 489–503 (2001). 
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Table 3.2.  

The incidence rate ratios and odds ratios for the zero inflated Poisson (ZIP) regression models. Confidence 
intervals were generated from a percentile bootstrap. Only significant effects from the covariates are 

shown in this table.  

 Incidence 
rate ratios 

 Odds Ratios 

50-year flooding height 2.11  
(1.28, 4.61) 

50-year flooding height 6.52  
(1.35, 72.68) 

10-year flooding height 0.59  
(0.29, 0.94) 

10-year flooding height 0.17  
(0.02, 0.59) 

Percent impervious surface 1.37  
(1.23, 1.48) 

May precipitation 2.74  
(1.05, 15.06) 

July precipitation 1.69  
(1.18, 3.28) 

  

October precipitation 0.63  
(0.37, 0.90) 

  

Monthly precipitation coefficient of variation  0.47  
(0.17, 0.96) 

  

 

The distribution of flooding events across the state for hydrologic units with available data is shown in 
Figure 3.3. WNC is highlighted for effect. With the exception of some highly populated areas, most of 
the central part of the state is predicted to have low to no flooding events. Most of the highest event 
predictions were either on the coast, in cities, and a few in the WNC region. Nine watersheds were 
predicted to have more than five flooding events in a decade, including the watershed with the highest 
number of flooding events (24), Smith Creek in New Hanover County, and a few others that had 10 or 
more actual flooding events: Masonboro Inlet in New Hanover County and the Headwaters of the South 
Fork of the New in Watauga County.  
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Figure 3.3. Expected number of flooding events within each watershed based on a bootstrapped 
aggregated zero-inflated poisson (ZIP) regression model. Documented storm events from the NCEI flooding 
events database are shown as black dots. Counties are outlined in black and Western North Carolina 
(WNC) counties are outlined in blue.  

3.7  Analysis of change in future precipitation patterns 

Understanding how precipitation changes within watersheds can assist in identifying higher risk time 
periods for floods and other precipitation related hazards, e.g. droughts, wildfires, and landslides. 
Although a more robust analysis is needed to conclusively make generalizations concerning precipitation 
changes, this exploratory analysis is meant to show that climate change projections can be used to make 
localized inferences. 

WorldClim has projected downscaled data on temperature and precipitation from multiple climate 
models using the four representative concentration pathways (RCP2.6, RCP4.5, RCP6.3, RCP8.5) for two 
time periods: 2041-2060, and 2061-208048. These are based on the coupled modeling intercomparison 
project (CMIP) used for the fifth assessment report on climate change from the Intergovernmental Panel 
on Climate Change (IPCC). Recently (March 2020), the WorldClim group released new downscaled data 
based for use in the sixth assessment report down to 2.5 arc minutes (~5km2), but the resolution needed 
for our analysis has not been released (30 arc seconds, or ~1km2)49.  

We decided to use the data at 30 arc seconds resolution for monthly precipitation from the Geophysical 
Fluid Dynamics Laboratory Earth System Model 2 (GFDL-ESM2G) to assess how the precipitation 
patterns in the state of North Carolina as well as its individual watersheds might change under 
concentration pathway RCP4.5, which is a more conservative “middle of the road” estimate of future 

                                                 
48 Ibid, N 38 
49 Ibid, N 37 
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climate changes. Much like the historic data from PRISM, we averaged each month’s precipitation within 
a watershed, and calculated relative precipitation change as a percentage change from the 30-year 
normals to the 2041-2060 period. To incorporate the ANL data, we assumed that the severity of flooding 
from 10-year and 50-year flood events would increase, and used the 95th percentile values from the 
process model results as an indicator of this increased severity of flooding in the future.  

To further understand the spatial patterns of change in future precipitation patterns, a k-means cluster 
analysis was performed to see how individual watersheds could be grouped. The NbClust package 50 and 
visual inspection of clustrees 51 was used to determine the appropriate number of clusters for our 
analysis. A range of two to 10 clusters was evaluated, and we determined that either two or three 
clusters were optimal values to use. Three clusters were chosen because of an equal number of indices 
determining both (two or three clusters) to be the optimal number of clusters, and the increased 
explanatory power from adding an additional cluster. Sixteen variables were used in the clustering 
analysis: monthly precipitation change; annual coefficient of variation of monthly precipitation change; 
changes in flood heights from the 50th to 95th percentile values of flooding height from the 10-year and 
50-year flooding events; and the expected current number of flooding events (Section 3.5). Expected 
number of flooding events were min-max normalized to keep all variables on a similar scale. 

3.8 Results of future precipitation analysis 

Our findings suggest that watersheds within the state of North Carolina will, on average, see an increase 
of 39% in the monthly coefficient of variation, and in some months (May and October) may see an 
average increase of over 30% in monthly precipitation (Figure 1.4). Other notable increases are in June 
(22%) ad July (26%); we can infer from this that summertime thunderstorms might be either more 
frequent or more intense, or there will be more frequent days with precipitation in the early summer. 
This is in line with other studies of the Southern Appalachian Mountains with regards to precipitation 
patterns in the summer.52 53 Other months will see notable decreases in precipitation such as August 
and September, with decreases of 9% and 12%. 

                                                 
50 Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust Package: finding the relevant number of clusters in a 
dataset. J. Stat. Softw (2012). 
51 Kranen, P., Assent, I., Baldauf, C. & Seidl, T. The ClusTree: indexing micro-clusters for anytime stream mining. 
Knowl. Inf. Syst. 29, 249–272 (2011) 
52 Sugg, J. & Konrad, C. Relating warm season hydroclimatic variability in the southern Appalachians to synoptic 
weather patterns using self-organizing maps. Clim. Res. 74, 145–160 (2017). 
53 Kinlaw, T., Sugg, J. & Perry, B. Warm Season Hydroclimatic Variability and Change in the Appalachian Region of 
the Southeastern U.S. from 1950 to 2018. Atmosphere (Basel). 10, 289 (2019) 
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Figure 3.4:  Box and whisker plot of monthly precipitation changes. Median values are represented by the 
middle line and the box indicates the interquartile range, or the range of the 25th and 75th percentile. 
Whisker represents values that are 1.5 times the interquartile range. Results from the cluster analysis 
(Section 1.7) are indicated by three sets of points: red for cluster 1, blue for cluster 2, and yellow for cluster 3.  

The geographic locations of watershed clusters are displayed in Figure 3.5. Cluster 1 generally 
represents the coastal region with some member watersheds existing in WNC. This group of watersheds 
is poised to see higher increases in July (36 %) and May (33%) precipitation, but larger decreases in 
September precipitation (16 %). This set of watersheds is also poised to see a 31% increase in seasonal 
variability.  
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Figure 3.5. Cluster analysis results for the state of North Carolina. The three clusters following generally 
the designated regions of North Carolina. Cluster 1 represents the coastal and Eastern part of the state, 
Cluster 2 represents the Piedmont and many lower elevation components of Western North Carolina 
(WNC), and Cluster 3 could be described as the most mountainous part of WNC .  

Cluster 2 represents a significant portion of WNC, and this set of watershed is projected to have the 
lowest changes in 50 year flooding height (23%). A wetter spring is projected for this cluster, with 
increases of 13% and 20% in March and April Precipitation. Although this cluster had high intracluster 
variation between precipitation changes in October, this cluster had the highest mean increase in 
October precipitation (47 %). This is also the cluster with the highest expected number of flooding 
events. Cluster 3 represents the central, or Piedmont, region of North Carolina with some expanse into 
the Northeast part of North Carolina. This area is unique in the fact that it has the potential to have the 
highest increases in 10-year (13 %) and 50-year flooding heights (33 %), February precipitation (20%), 
and the largest changes in seasonality (66%). 

3.9  Landslide Vulnerability 

While we did not specifically evaluate the impact on landslide vulnerability as a result of precipitation 
estimates generated by this analysis, it is worthy to note that landslides are a primary climate-related 
hazard in WNC due to historical frequency and projections in increasing precipitation at higher 
elevations54.   The Appalachian Mountains are a “hotspot” for landslide vulnerability as can be seen in 
Figure 3.6, and the majority of landslides that occur in North Carolina are in the western region55.   In 
addition to the human losses associated with fatalities and injuries, this region incurs a significant 
economic impact due to uninsurable property losses and delays in business operations (e.g., tourism, 
transit of goods).   For example, the loss in commercial revenues when I-40 was closed for several 

                                                 
54 North Carolina Department of Environmental Quality (DEQ), 2020:  North Carolina Climate Risk Assessment and 
Resiliency Report 
55 Western North Carolina Vitality Index Foundation, WNC Vitality Index Report, 2016 
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months in 2009 was estimated at approximately $1 million per day, and the cost to repair the road was 
$10.2 million. 56   

 

Figure 3.6:  U.S. Landslide Inventory and Interactive Map, US Geological Survey, Accessed:  12/30/2020. 

 

3.10  Wildfire Vulnerability 

A wildfire occurs in wildland and is described as non-structured rather than prescribed burn57. In 
previous decades, fire suppression has increased the density of vegetation and fire-sensitive species, 
which can elevate wildfire risk and intensity58.  Fire suppression in combination with increase in season 
length, fire size, acreage burned, and developments into the wildland-urban interface has further 
complicated fire vulnerability and management (USFS 2018a).  The increasing threat of destructive 
wildfires combined with a growing wildland-urban interface resulted in an unprecedented wildfire event 

                                                 
56 Ibid, N 55 
57 U.S. Forest Service (USFS) (2019) Fire Terminology. https://www.fs.fed.us/nwacfire/home/terminology.html.   
Accessed 18 Apr 2019 
58 Aldrich SR, Lafon CW, Grissino-Mayer HD, DeWeese GG (2014) Fire history and its relations with land use and 
climate over three centuries in the Central Appalachian Mountains, USA. J Biogeogr 41:2093–2104 
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in WNC where nearly 75,000 acres of these counties burned from late October through early December 
201659.  Recent research in WNC finds that forest cover was the most significant predictor of wildfire, 
likely because forests present more fuels for wildfire growth.  Wildfires were also found to occur in less 
urban areas with low population densities, which corresponds to previous literature in other locations60  
61 . Physical vulnerability to wildfire is higher in the southern counties of WNC, with the highest 
observed in Macon County compared to Buncombe, Watauga, and Caldwell counties.  These results 
highlight that targeted responses are needed particularly for locations most vulnerable to wildfires in a 
changing climate.  

 

 

                                                 
59 Andersen, L. M. & Sugg, M. M. Geographic multi-criteria evaluation and validation: A case study of wildfire 
vulnerability in Western North Carolina, USA following the 2016 wildfires. Int. J. disaster risk Reduct. 39, 101123 
(2019) 
60 Lein JK, Stump NI (2009) Assessing wildfire potential within the wildland-urban interface: A southeastern Ohio 
example. Appl Geogr 29:21–34. https://doi.org/10.1016/j.apgeog.2008.06.002 
61 Ibid, N 59 
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Figure 3.7. Figure depicts western NC’s vulnerability to wildfire as well as wildfire sites between 
the years 1985-2016. The Wildfire Vulnerability layer is organized by census tracts, with an 
overhead layer that depicts WNC county boundaries.    

 

3.11 Implications for Land Use and Planning 

Few studies have tried to explore connections between monthly precipitation and climate impacts at a 
localized level, but some studies have explored the connections between climate and agriculture. 
County wide growing season (May-October) precipitation was analyzed for its impacts on crop yields in 
the Southeastern United States62.  Across North Carolina, growing season changes were associated 
positively with yields of soybeans and corn, and the increases in June and July precipitation may increase 
crop yields for these crops. Other crops like cotton, peanuts, and soybeans could have diminished crops 
yields because of the large increases in October precipitation. The changes in seasonality that will be 
experienced by some communities also can cause stress on water resources, and increase likelihood of 
drought during certain times of the year, especially the months of August and September. Regions of 
North Carolina that are most sensitive to impacts of drought on agriculture are the coastal and 
piedmont regions, but some counties in WNC (Alexander, Alleghany, Buncombe, Cleveland, Rutherford, 
Wilkes) are moderately sensitive to the impacts of drought on their agricultural yields. Although flooding 
events can also impact crop yields, and can cause significant losses, it is still uncertain the extent to 
which these events impact agriculture in North Carolina.  

Precipitation changes can also influence forests, and as the highest valued crop in the Southeastern 
United States, could be vulnerable to these changes. Changes in moisture regimes will likely influence 
forest productivity in the future, and the forests of North Carolina are already some of the most dynamic 
forests globally, although most of this is from management practices63 64.  Species migration has already 
been shown to be occurring in response to changing precipitation patterns65. Additionally, increased 
warm periods of drought increases the potential for wildfires in forests across North Carolina, which 
already has frequent occurrence of wildfires from human and natural sources66. 

Changes in the precipitation dynamics also have the potential to influence the occurrence, frequency, 
and severity of two other natural hazards: Landslides and wildfires. Both total rainfall and intensity 
affect landslide vulnerability, but at different scales. Total rainfall influences landslide vulnerability at 
local scales at longer temporal scales, but intensity can affect vulnerability at both local and regional 

                                                 
62 Eck, M. A., Murray, A. R., Ward, A. R. & Konrad, C. E. Influence of growing season temperature and precipitation 
anomalies on crop yield in the southeastern United States. Agric. For. Meteorol. 291, 108053 (2020). 
63 Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017). 
64 Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science (80-. ). 342, 850–
853 (2013). 
65 McEwan, R. W., Dyer, J. M. & Pederson, N. Multiple interacting ecosystem drivers: toward an encompassing 
hypothesis of oak forest dynamics across eastern North America. Ecography (Cop.). 34, 244–256 (2011). 
66 Ibid, N59 
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scales in the short-term67 . However, forest cover is a stabilizing factor to prevent landslides, so 
exploring mitigation policies that prevent deforestation in higher risk areas, or reforestation in those 
areas, can help in reducing the vulnerability to landslides in a changing climate. More research is needed 
to understand the full scope of climate feedback on landslide vulnerability from a range of climate 
change scenarios, with a critical analysis of the bias of estimated risks and the underlying uncertainty.   

Wildfire risk is increased by changes in climate, especially those areas that are expected to have warmer 
conditions and an increased length of drought from lack of precipitation. Although difficult to predict the 
length of future droughts based on the data we used, our findings suggest that the later months of 
summer might be at increased risk for occurrence of wildfires due to the decreased monthly 
precipitation in August and September. Although climate can promote conditions in which wildfires have 
the potential to occur, mitigation of wildfires begins with acknowledge the overwhelming contribution 
of humans to expanding the season and extent of wildfires in the United States68 .  Forest managers 
should focus on both minimizing potential exposure through best management practices, but also in 
educating the public on the dangers of human-induced forest fires and how to prevent them.  

Although extreme precipitation events are expected to increase across the Southeastern United States, 
we cannot project how this changes based on the data we have used. We can, however, suggest that 
increased summertime precipitation will likely be the results of intense “pop-up” thunderstorms that 
typically cause flash flooding in smaller, localized watersheds. Analysis of climate models have shown 
that extreme precipitation events increase during warm periods, and the models may underestimate the 
future changes in precipitation extremes69. Additionally, large-scale changes in circulation are likely to 
alter the occurrence of different precipitation patterns in Summer mountain storms, with more frequent 
daily rain at higher elevations and varied patterns in more lowland mountainous regions70. Identifying 
those high watersheds at high risk of exposure to flooding (section 3.5) can guide mitigation efforts to 
improve flooding resilience such as wetland restoration and protection, revitalization of riparian buffers, 
limiting development of impervious surfaces in high risk areas, improving dated infrastructure for 
stormwater, and other risk management and communication strategies. Mitigation now saves money 
later, and this study helps inform decision making based on watershed storm exposure and potential 
changes in precipitation regimes with the state of North Carolina.  

  

                                                 
67Gariano, Stefano Luigi, and Fausto Guzzetti. "Landslides in a changing climate." Earth-Science Reviews 162 
(2016): 227-252.  
68 Balch, J. K. et al,. Human-started wildfires expand the fire niche across the United States. Proc. Natl. 
Acad. Sci. 114, 2946 LP – 2951 (2017) 
69 Allan, R. P. & Soden, B. J. Atmospheric Warming and the Amplification of Precipitation Extremes. 
Science (80-. ). 321, 1481 LP – 1484 (2008). 
70 Sugg, J. & Konrad, C. Relating warm season hydroclimatic variability in the southern Appalachians to 
synoptic weather patterns using self-organizing maps. Clim. Res. 74, 145–160 (2017) 
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SECTION 4:  THE LANDSCAPE OF SOCIOECONOMIC DISPARITIES CONCERNING EXPOSURE, 
VULNERABILITY, AND RESILIENCE (Objective 2) 

4.1  Climate Change Impacts in Rural Communities 

While much of the discussion around climate vulnerability has centered on coastal communities, there is 
an increasing focus on rural areas where climate change impacts include those that significantly impact 
access to basic needs (health, communication, transportation, food/water, shelter), economic well-
being, and survival71.  At the local level, hazard mitigation planning has been the predominant means of 
addressing climate impacts but mostly as a reactive strategy for extreme weather events.  Intentional 
strategy for building climate resilience is largely absent from local rural planning, and this can be 
attributed to many reasons, including the lack of awareness of impending impacts, lack of financial 
resources to implement meaningful proactive strategy, and lack of knowledge on how to build resilience 
capacity.  The recent North Carolina Climate Risk Assessment and Resilience Plan, issued in March 2020, 
provides a directive and guidance for rural communities to begin integrating considerations for climate 
vulnerability and adaptation into resilience strategies, predominantly in existing hazard mitigation 
planning processes72.   But, there are significant barriers that might prevent building resilience capacity 
from the standpoint of both natural and human resources73.  For this project we sought to examine 
these barriers from the perspective of disparity in social vulnerability in rural regions that can 
exacerbate the difficulty in building meaningful climate resilience capacity.  For this purpose, we needed 
to first better define the terms “climate vulnerability”, “climate resilience”, and understand how these 
are valued using frameworks focused on social vulnerability and community resilience. This section 
summarizes the work in association with achieving objective 2: Identify socioeconomic disparities and 
associated climate vulnerability in rural regions that can inform policy and decision-making 

4.2  Resilience and Social Vulnerability 

Using indicator frameworks for assessing disparity in social conditions is helpful in finding correlations 
and connections in how this disparity can impact both vulnerability to physical climate impacts as well as 
the capacity for resilience.  This information is useful for planning and allocating scarce resources based 
on greatest need. 

A vulnerable community is one in which negative socioeconomic variables contribute to reduction in the 
community’s ability to prepare for, respond to, and recover from hazards. A socially vulnerable 
community has weak family structures, lack of leadership for decision making and conflict resolution, 
unequal participation in decision making, weak or no community organizations, and the one in which 
people are discriminated on racial, ethnic, linguistic or religious basis. Other social factors such as 

                                                 
71 Ibid, N 1 
72 Ibid, N54 
73 Lal, Pankaj, Janaki R. R. Alavalapati, and Evan D. Mercer, 2011. “Socio-economic impacts of climate 
change on rural United States.” Mitigation and Adaptation Strategies for Global Change, 16 (7), 819-844 
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culture, tradition, religion, local norms and values, economic standard, and political accountability also 
play a vital role determining the social vulnerability of a community74 . 

A resilient community is one that has the available resources to respond, to withstand, and to recover 
from adverse situations; but also the capacity to adapt, to anticipate, and to potentially prevent 
catastrophic events from occurring75 76. Resilience is a characteristic of the demographics of the 
population, the stability of social networks, the structure and diversity of the economy, and the 
institutional capacity to enact policies that foster resilience77  

Resilience and vulnerability are challenging constructs to analyze scientifically. A plethora of 
frameworks, indicators, and metrics exist that attempt to quantify these constructs, yet agreement on 
what constitutes a consistent set of metrics to evaluate both resilience and vulnerability is lacking 78. The 
conversation surrounding composite indicators can be contentious, but there is an active need to 
explore how best to use resilience and vulnerability indicators. Through this aspect of our project, we 
want to explore a few vulnerability and resilience indicators, and how these qualities of a community 
are distributed across North Carolina.  

4.3 Social Vulnerability Indicators 

4.3.1  Social Determinants of Health (SDoH) 

Social Determinants of Health ( SDoH) encompass the circumstances of all individuals, including 
upbringing, working, community conditions, socioeconomic status, education, employment, and an 
individual’s access to community and health services.79  More broadly, SDoH are factors in the social 
environment that contribute to or detract individuals’ and communities’ health. Understanding data on 
social determinants of health, such as income, educational level, and employment can help focus efforts 
to improve community health and improve understanding of the differential vulnerability from 
environmental hazards.  The authors compiled over 100 variables from multiple sources to quantify the 
SDoH at the census-tract level (See Table A.2 in Appendix).  After consultation with planners, public 
health personnel and geographers, a total of 60 variables were used in the final analysis. Principal 
component analysis (PCA) was used to reduce multicollinearity and create components for SDoH 
mapping and resulted in 15 components (Table 4.1).  Each component was added using an equal-weight 
                                                 
74 Binita KC, Shepherd, JM; Johnson Gaither, C. (2015) Climate change vulnerability assessment in Georgia. Applied 
Geography, Volume 62, P 62-74 
75 Cutter, S. L., Burton, C. G. & Emrich, C. T. Disaster resilience indicators for benchmarking baseline conditions. J. 
Homel. Secur. Emerg. Manag. 7, (2010) 
76 Cutter, S. L. The landscape of disaster resilience indicators in the USA. Nat. hazards 80, 741–758 (2016). 
77 Ristino, L. (2019). Surviving Climate Change in America: Toward a Rural Resilience Framework. W. New Eng. L. 
Rev., 41, 521 
78 Summers, J. Kevin, Linda C. Harwell, Lisa M. Smith, and Kyle D. Buck, 2017. “Measuring community resilience to 
natural hazards: Natural Hazard Resilience Screening Index—Development and application to the United States.” 
Landscape and Urban Planning 158, 75-86 
79 Artiga, Samantha, and Elizabeth Hinton. "Beyond health care: the role of social determinants in promoting 
health and health equity." Health 20.10 (2019): 1-13 



36 
 

framework to the Geographic Information System (GIS) to create a final map of SDoH vulnerability 
(Figure 4.1).  
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Table 4.1.  
Principal Component Analysis 2 - Components for SDoH 

Component Number Cardinality Component Name Variance* Top 5 Dominant Variables 

1 + Poverty 16.511 ● FIn_BPov - Families Income Below Poverty  
● FHH_NoHusb - Female Householder 
● PerPopBPov - Population with Poverty Status, % 

Below Poverty 
● PopBlack - African American Population 
● ChU18LivSP - Children Under 18 Single Parent 

2 + Over 65 Age 12.620 ● PopNoLabFo - Population Not in Labor Force 
● PopCvEmp - Labor Force, Civilian Employed 
● TPop65Over - Total Population 65 and Older 
● FPop65Over - Female Population 65 and Older 
● MPop65Over - Male Population 65 and Older 

3 - Mobile Home 
Housing 

10.640 ● Hospitals - Count of Hospitals 
● HousMobHom - Mobile Home Housing Units 
● OHMobHome - Occupied Housing Mobile Homes 
● Pop_ColBac - Population with College Education, 

Bachelor’s Degree 
● Pop_HighEd - Population with a Master’s Degree, 

Doctorate Degree, or Professional School Degree 

4 - Public (Use) 
Facilities 

8.222 ● Worship - Count of Places of Worship 
● Pharmacies - Count of Pharmacies 
● Banks - Count of Banks 
● TPopUnd18 - Total Population Under 18 
● WrkDA_Cp - Drive alone or Carpool (Workers) 

5 - Employment 4.741 ● Pop_ArmFor - Population in Armed Forces 
● WrkB_W - Bike or Walk 
● PopCvEmp - Population in Labor Force, Civilian 

Employed 
● CvPopEmp - Civilian Population Employed 
● PHH_OneVeh - Households with One Vehicle 

6 + Over 65 3.410 ● FPop65Over - Female Population 65 and Over 
● PopNoLabFo - Population Not in Labor Force 
● TPop65Over - Total Population 65 and Over 
● OcH_Rchild - Occupied Housing with Children Under 

18 
● PopCvEmp - Population in Labor Force, Civilian 

Employed 

7 + Mental Health 
Facilities 

3.070 ● MH_Count - Mental Health Facilities 
● PC_Count - Primary Care Facilities 
● TPopUnder5 - Total Population Under 5 Years 
● Pop_ArmFor - Population in Armed Forces 
● MPopUnder5 - Male Population Under 5 years 

8 + Under 5 Age 2.872 ● TPopUnder5 - Total Population Under 5 Years 
● MPopUnder5 - Male Population under 5 Years 
● FPopUnder5 - Female Population Under 5 Years 
● GasStation - Count of Gas Stations 
● NursHome - Count of Nursing Home 
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9 + Primary Care 
Facilities 

2.424 ● PC_Count - Primary Care Facilities 
● MH_Count - Mental Health Facilities 
● AvgRHHSize - Average Renter Household Size 
● PopOthRace - Population that is some other race 

alone 
● AvgHHSize - Average Household Size 

10 + Population Under 18 2.245 ● GasStation - Count of Gas Stations 
● TPopUnd18 - Total Population Under 18 Years 
● MGR_HHInc - Median Gross Rent as % of Household 

Income 
● FPopUnd18 - Female Population Under 18 Years 
● MPopUnd18 - Male Population Under 18 Years 

11 - Education 1.905 ● College - Count of Colleges 
● PopAmInd - Population American Indian or Alaskan 

Native 
● MobHome - Count of Mobile Homes 
● PrivSchools - Count of Private Schools 
● HousMobHom - Housing Units Mobile Home 

12 - Public (Health) 
Facilities 

1.750 ● Libraries - Count of Libraries 
● PopHawaii - Population Hawaii or Pacific Islander 
● PubHlthDep - Count of Public Health Departments 
● PopTwoRace - Population Two or More Races 
● NursHome - Count of Nursing Homes 

13 + Urgent Care 
Facilities 

1.702 ● UrgentCare - Count of Urgent Care Facilities 
● PopAmInd - Population American Indian or Alaskan 

Native 
● MGR_HHInc - Median Gross Rent as % of Household 

Income 
● TPopUnd18 - Total Population Under 18 
● PopTwoRace - Population Two or More Races 

14 + Race 1.622 ● PopAsian - Population Asian 
● Libraries - Count of Public Libraries 
● MGR_HHInc - Median Gross Rent as % of Household 

Income 
● PopOthRace - Population Other Race 
● WrkPT - Public Transportation (Workers) 

15 + Public (Station) 
Facilities 

1.607 ● FireStat - Count of Fire Stations 
● PopAmInd - Population American Indian or Alaskan 

Native 
● MobHome - Count of Mobile Homes 
● PopBlack - Population African American 
● GasStation - Count of Gas Stations 

16 + College 1.564 ● College - Count of Colleges 
● PopAmInd - Population American Indian or Alaskan 

Native 
● MGR_HHInc - Median Gross Rent as % of Household 

Income 
● PubHlthDep - Count of Public Health Departments 
● PopBlack - Population African American 

* Variance is found from the Total Variance Explained table from the PCA output from SPSS - column name Initial Eigenvalues, % of Variance 
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Figure 4.1: Map of the Social Determinant of Health (SDoH) for North Carolina based on a 2018 
analysis of data. Data from 60 variables was orthogonalized using Principal Components Analysis 
into 16 significant components. These were standardized and classified into 5 categories based 
on quantiles.  

 
4.3.2  SoVI® 

The SoVI® is a measure of underlying social vulnerability to hazard, and provides a comparative metric to 
measure the capacity for preparedness and response at the county level.   In this report, authors 
replicated SoVI®methods to examine underlying vulnerability at the census-tract level. Socioeconomic 
data was downloaded from the 2010 Census and 2012-6 American Community Survey for 317 census 
tracts in western North Carolina. Three tracts were excluded from the analysis due to lack of population 
and thus data availability. The variables chosen followed Cutter and Emrich (2017) who identified the 27 
variables as proxies for characteristics known to influence hazards vulnerability. In IBM SPSS Statistics 
24, the variables were normalized using z-score standardization. To reduce multicollinearity between 
variables, the standardized scores underwent principal components analysis (PCA). Components with 
eigenvalues greater than one were retained, leaving seven components. The directionality of the wealth 
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component was reversed because a higher amount of wealth indicates lower vulnerability. In ArcMap 
10.4.1, the components were joined to the tracts and summed to produce the social vulnerability index. 
 
4.3.3  CDC’s Social Vulnerability Index (SVI)  

Like SoVI, the Center for Disease Controls (CDC)’s Social Vulnerability Index (SVI) measures communities’ 
resilience when exposed to external stresses like disease outbreaks, natural and/or human-caused 
disasters. The CDC’s SVI uses 15 U.S. Census variables to determine vulnerability, including poverty, lack 
of vehicle access, and crowded housing and groups them into four-related themes.  More specifically the 
CDC’s SVI includes the following variables: Below Poverty, Unemployed, Income, No High School 
Diploma, Aged 64 and older, Aged 17 or younger, Older than Age 5 with a disability, single-parent 
households, minority, speak English “less than well”, multi-unit structures, mobile homes, crowding, no 
vehicle, group quarters. 

4.4  Climate Resilience Indicators 

4.4.1  Natural Hazards Resilience Screening Index NaHRSI (Formerly CRSI) 

The Natural Hazards resilience screening index (NaHRSI), formerly the Climate Resilience Screening 
Index (CRSI), was developed by the United States Environmental Protection Agency (EPA) as a tool for 
communities to evaluate their vulnerability and resilience to acute natural hazards. For this project, we 
will refer to this as the original acronym CRSI. The CRSI is based on publicly available data. Its primary 
purpose is to inform decision-makers on the characteristics that make a community resilient and target 
potential areas of improvement. The development of the CRSI starts with a recognition that vulnerability 
and recovery sit on a spectrum of resilience. This metric can be loosely defined as the ratio between the 
governance, or the planning, regulation, and training that a community executes, and the inherent risk 
of exposure to natural hazards. Governance is also determined by the community’s social structure, the 
natural environment, and the built environment.  

The resilience literature was surveyed and analyzed for features aligned with the EPA’s notions of 
resilience to develop the composite index of the CRSI. Although the ideas generally align in the 
discussion of community resilience, the application is different depending on field, expertise, and focus. 
The CRSI uses five domains (risk, governance, society, built environment, and natural environment) with 
28 indicators and 117 submetrics for their index. Variables were normalized as needed and standardized 
using min-max scaling.  

 



41 
 

 

Figure 4.2 - Climate Resilience Screening Index (CRSI) - Domains of Resilience. Source:  Figure from 
Summers et al. 2017 

The unique aspect of the CRSI is the incorporation of a risk domain in the calculation of 12 natural 
hazards and five technological hazards, e.g. locations of superfund sites, toxic release sites. The risk 
domain is calculated using a multi-hazard risk assessment approach which assesses exposure in a 
geographically context. This exposure is combined with natural, crop, or life and property losses to 
calculate the risk associated with each land use type (natural, dual-use, or developed). These are 
summed to get a county level comprehensive assessment of risk, described as the probability that a type 
of land will be exposed to a hazard that results in losses of property, life, crops, or in natural lands. 
These were min-max scaled similar to the other domains. 

The final calculation involves starting with the base assumption that resilience is the ratio of the 
recoverability (governance) and the vulnerability (risk). This is referred to as the basic resilience. Basic 
resilience is adjusted with multipliers for each of the remaining domains. The multipliers for the society, 
built environment, and natural environment are scaled by calculating the difference between a county’s 
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domain scores and the median score, and dividing this by the median score for a specific domain. The 
final CRSI scores is calculated using the equation below: 

〖CRSI〗_i=(〖Gov〗_i (1+ 〖Soc(a)〗_i+〖BE(a)〗_i+〖NE(a)〗_i ))/〖Risk〗_i 

Where CRSI is the resilience score for county i, is the governance domain score,  is the society domain 
multiplier,  is the built environment multiplier, is the natural environment multiplier, and  is the risk 
domain score. 

4.4.2  Building Resilient Infrastructure and Communities (BRIC) 

Cutter et al. (2014) describe the disaster resilience literature as “mired in definitional debates, 
epistemological orientations of researchers, and differences in basic approaches to measurement.” 
Their empirically based matrix Baseline resilience indicators for Communities (BRIC) combines 
conceptual and theoretical clarity with policy relevance and ease of application. The tool uses a common 
set of freely accessible variables to assess resilience, at the county level, across six domains (or capitals) 
from the literature:  social, economic, housing and infrastructure, institutional, community, and 
environmental. They found highest resilience in counties in the Midwest and Great Plains, and lowest 
values in the West, the Appalachians, and along the US-Mexico border. They note that “inherent 
resilience is not the opposite of social vulnerability, but a distinctly different construct both conceptually 
and empirically.” The BRIC tool highlights urban/rural differences 80: “Resilience in urban areas is 
primarily driven by economic capital, whereas community capital is the most important driver of 
disaster resilience in rural areas,” the latter also showing spatial variability, such that resilience-building 
efforts must be sensitive to local context rather than using a one-size-fits-all approach.   

4.4.3  Comparison of the CRSI and BRIC in North Carolina 

One of the issues with indicators metrics such as CRSI and the BRIC is that the scores depend highly on 
the background of the developing group, the selection of variables, and the aggregation techniques to 
arrive at a final indication score. Although the CRSI and the BRIC have similar approaches and time 
periods of analysis, the correlation between the scores per county are weak within the state of North 
Carolina (Kendall’s Tau=-0.0929, p=.171). Part of this can be attributed to the fact that the BRIC does not 
include a risk of natural hazards component, but even removing this factor from the CRSI, the 
correlation between these estimates is not significant (Tau=.132, p=0.052). This is not to say that these 
measures are not informative, but rather there is a valid reason for the contentious debate about their 
efficacy. An indicator created by a group with a more ecological framework of resilience will approach 
the weighting and variables selection with a different lens than a social scientist or a geographer. That 
doesn’t mean they are not useful for comparison, but decision-makers need to be informed concerning 
the foci, boundary conditions, and theoretical framework of the resilience indicator used.  

                                                 
80 Ibid, N 28 
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The core idea of the BRIC and the CRSI are the same, and many of the domains are similar. They both 
can be used to compare places across the United States, determine specific drivers of resilience, and 
with periodic updates evaluate improvements in resilience capacity over time. The BRIC’s selection of 
variables is evaluated to make sure that within each domain there is uniqueness within the selection of 
metrics within each domain, and that the domains do not show much correlation. This evaluation of 
metrics within the CRSI is not discussed in the literature, however. The number of metrics used in the 
BRIC is also much smaller than the CRSI, but there is some overlap between the selected variables. 
However there is one primary difference that probably justifies the poor correlations between the two. 
The BRIC uses a summing approach to create the composite BRIC scores from the six resilience domains, 
whereas the CRSI is a governance score that is a weighted sum of itself and the multiplier mentioned in 
the equation above. Because of these differences, we decide to use both to evaluate differences in 
perceived baseline resilience with Western North Carolina and the rest of the state.  

4.5  Analysis of Rural Western North Carolina’s Climate Resilience 

4.5.1 Comparison of Western North Carolina’s resilience 

We desired to examine further differences between rural Western North Carolina and the rest of the 
state. Using the designation of WNC counties from Andersen and Sugg 2019 and the county-level rural-
urban continuum codes from the United States department of agriculture, we identified 20 counties 
within North Carolina that would fit a technical description of rural WNC. Using a nonparametric 
Kruskal-wallis test, we evaluated differences in the domain scores in the CRSI and BRIC. Within the CRSI, 
rural WNC is unique in terms of having lower governance (p<0.01) and built environment (p=0.020) 
scores, but higher social domain (p=0.024) scores. Because the nature of the weighting of governance 
scores in the CRSI, rural WNC also exhibited significantly lower (p<0.01) CRSI final scores. Within the 
BRIC, rural WNC had significantly lower economic, institutional, and overall BRIC scores (p<0.01) 

To evaluate the cluster of high resilience, low resilience, outliers, we explored the significantly different 
domains and the composite scores of the BRIC and CRSI using the local indicators of a spatial 
autocorrelation (LISA) analysis.  

4.5.2  Local indicators of spatial autocorrelation (LISA) Analysis 

As a part of the AT&T Grant task list for objective 2, a LISA analysis for CRSI scores and BRIC scores 
across the state of North Carolina was conducted using ArcMap 10.4. After beginning with the overall 
scores themselves, the analysis also included subdomains from each score. For CRSI, the subdomains 
that are included in the analysis are governance, built environment, and society, whereas for BRIC, the 
additional subdomains included are economic and institutional resilience. The spatial analysis for both 
scores was conducted across the state of North Carolina.  
 
To assess spatial autocorrelation at the local level, We used the cluster and outlier analysis (Anselin 
Local Moran’s I) in ArcMap 10.5. The unit of analysis was county resilience scores, and we conceived 
spatial relationships based on contiguity edges only. This specific analysis technique is effective when 
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polygons are similar in size and distribution, and when spatial relationships are a result of this polygon 
proximity. Because polygon continuity was used for the conceptualization of spatial relationships, row 
standardization was applied in order to mitigate bias due to polygon features having differing numbers 
of neighbors.  
 
4.5.3 Results of LISA analysis  

For the overall CRSI score analysis, there is a prominent Low-Low cluster located throughout much of 
the north/central western region of the state, encompassing the counties of Watauga* and Caldwell* 
(which are both part of the AT&T case study area), as well as counties located on the southern NC/SC 
border, such as Rutherford county (Figure 4.3) Overall, the cluster is made up of 16 counties and 
signifies this sub-region as having low CRSI score values relative to the mean, representing a lower 
overall resilience to acute weather events. 

For the governance subdomain, there is a significant Low-Low cluster located across the majority of the 
western region of the state, starting with Watuaga* and Caldwell* county in the north/central western 
portion of the state, and moving southeast. Noticeably, there is also one county polygon, Madison 
county, that is surrounded by the Low-Low cluster, but is rather identified as a High-Low outlier. This 
signifies that Madison county has a high governance-resiliency score and is surrounded by low-resiliency 
values, making it an outlier in WNC for this specific subdomain. For the CRSI built environment 
subdomain analysis, the only statistically significant cluster identified in WNC is a Low-Low cluster and 
encompasses only Cherokee county. Lastly, for CRSI’s society structure subdomain, there is a High-High 
cluster located in south-west WNC, encompassing eight counties (Yancey, Buncombe*, Madison, 
Henderson, Transylvania, Jackson, Macon*, and Haywood). There are also two Low-High outliers 
identified in WNC, Rutherford county and Graham* county. These results signify a statistically significant 
cluster of high-societal resilience values, along with two county outliers that have low societal-resilience, 
but are surrounded by high scores. 
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Figure 4.3. Mapping the LISA (Local’s Moran I) across the United States for spatial clustering of CRSI scores. 
Clustering were identified into two groups, high-high and low-low cluster, and outliers within each of these 

grouping are also shown. Significance level was 0.05.  

The analysis for the BRIC scores and its respective subdomains were also examined in the scope of WNC 
Figure 4.4). In terms of the overall BRIC score output, there is a Low-Low cluster located on the western-
most portion of the state enveloping six counties: Swain, Jackson, Macon*, Clay, Cherokee, and 
Graham*. Additionally, Haywood county is identified as a High-Low outlier. These results indicate that 
the westernmost portion of the state has low BRIC values relative to the mean, representing low-overall 
community resilience, with the exception of Haywood county, which has a high resiliency value but is 
surrounded by the low-value cluster. For the BRIC Economic subdomain, there is also a Low-Low cluster 
encompassing the majority of the westernmost portion of the state, including the counties of Swain, 
Jackson, Macon*, Cherokee, and Graham*. Additionally, two High-Low outliers are identified near WNC, 
including Rutherford county and Ashe county. This domain analysis signifies the westernmost portion of 



46 
 

the state as having a low overall economic resilience score, with the exception of the two outlier 
counties that have a high economic resilience scoring, but are surrounded by low values (See Figure 4.4) 
 
 

 

Figure 4.4. Mapping the LISA (Local’s Moran I) across the United States for spatial clustering of CRSI scores. 
Clustering were identified into two groups, high-high and low-low cluster, and outliers within each of these 

grouping are also shown. Significance level was 0.05.  

 
Lastly, for the Institutional resilience BRIC domain there are three different Low-Low clusters identified 
in WNC, as well as three High-Low outliers. Beginning with the cluster located along the NW portion of 
the state (along the NC-VA border), this cluster encompasses five NC counties: Surry, Alleghany, Ashe, 
Wilkes, and Watauga*. Additionally, there are two Low-Low clusters, both encompassing only one 
county, identified as Rutherford county and Clay County (both SW). Lastly, three High-Low outliers are 
identified as Polk, Haywood, and Graham* county. These results indicate the presence of three 
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statistically significant low institutional resilience clusters, along with three counties identified as 
exceptions, due to their high institutional-resilience scores surrounded by low values.  
 
The results of this analysis indicate that overall, the western region of North Carolina is composed of 
counties characterized by significant clusters of low resilience scores. The exception for this general 
trend is seen through the CRSI society subdomain, which features a statistically significant high resiliency 
cluster (including both Buncombe* and Macon* county); however, this subdomain also includes two 
outliers characterized by low societal resilience (Rutherford and Graham* county). Overall, this 
subdomain was the only output throughout this analysis that identified a high resiliency cluster, further 
proving that in general, WNC is characterized as having low community resilience to climate change and 
acute weather events. 
 
*- counties included in the AT&T case study area (Buncombe, Caldwell, Graham, Macon, Watauga)  

 

4.6  Interaction of Social Vulnerability and Physical Exposure to Hazards   

To better demonstrate the importance of examining hazard risk exposure through a lens of social 
vulnerability, this section provides an analysis for two different prominent hazards in WNC:  Wildfires 
and landslides.  Using the mapping of social vulnerability, we overlaid the physical exposure to these 
events to highlight areas where greater priority exists for building resilience in these communities.  

4.6.1 Social vulnerability and Wildfire exposure 

Future climate change and human development are expected to expand the wildlife-urban interface, 
alter precipitation, and stress water resources in the region, which may lead to more frequent wildfire 
events. In 2016, WNC had an unprecedented wildfire event with nearly 75,000 acres burned across the 
entire area. Using previous wildfire events from 1985 to 2016, a wildfire vulnerability index was created 
through multi-criteria evaluation that included elevation aspect, biomass, elevation, hillshade, forest 
cover, precipitation, population density, road density, slope and temperature.  Variables were selected 
and weighted based on regression analysis and analytical hierarchical processing to reduce subjectivity 
(Figure  4.4.1). 
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Figure 4.4.1  Physical vulnerability to wildfire at the census-tract level for western North Carolina.  
Classification is standard deviation with high indicating the highest wildfire risk and low indicting the 
lowest wildfire risk. 
 
The underlying social vulnerability of the communities to wildfire was calculated using the well-
established method of Cutter 2003, to calculate SoVI using principal component analysis. Both indices 
were combined and displayed using bivariate mapping techniques to assess where social and physical 
vulnerability to wildfire coincide in western North Carolina.  Index results were validated using 2016 
wildfire events and were robust in predicting wildfire occurrence and spread.  Further details can be 
found in Andersen and Sugg 201981.  These maps are shown in Figure 4.4.2 and 4.4.3 
 
 

                                                 
81 Ibid, N 38 
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Figure 4.4.2: Social Vulnerability of Western North Carolina counties using the SoVI methodology 
(Andersen and Sugg 2019). 

 
Figure 4.4.3: Social Vulnerability and Physical Vulnerability of Western North Carolina counties using the 
SoVI methodology and validated index of physical wildfire vulnerability (Andersen and Sugg 2019). 
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4.7.2  Social Vulnerability and Landslide Exposure 

As previously mentioned, landslide vulnerability is a primary hazard concern in several parts of Western 
North Carolina.  Figure 4.6 shows known landslide events in WNC through June 2011.  The most 
common and widespread type of landslide are mudslides (debris flows), and the concentration of these 
appear to be in the counties of Watauga (northern part), Buncombe and Haywood (central area), and 
Macon (southern area).  It is worthy to mention that these counties house relatively developed regions 
of WNC, where greater resilience planning as it applies to land restoration would be beneficial.  In 
Boone, NC (Watauga County) for example, “steep slope” building restrictions have been enacted as a 
means of preventing development in areas most vulnerable to landslides82 . 

 

 
Figure 4.6 - Known landslide events through June 2011 (3,290 events).  The highest 
concentration in Watauga county occurred in August, 1940 (over 2,000).  Source:  Western NC 
Vitality Index Report 2016. 
 

 

The NC Climate Risk Assessment and Resilience Report provides a map for potentially underserved 
populations in areas with historic exposure to landslides (Figure 4.7).  As compared to the historic 
occurrence of wildfires, landslide events are concentrated in the western part of the state.   There are 
several regions, particularly in the southwestern part of the state, where the most socially vulnerable 
are at the greatest risk for physical and economic loss associated with landslides.  Potential for 
increasing precipitation and failure to plan for building resilience could exacerbate these losses. 

 

                                                 
82Unified Development Ordinance, Town of Boone, 2014  
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Figure 4.7:  Potentially Underserved Populations in Historic Landslide Areas in North Carolina 
(Source:  NC Climate Risk Assessment and Resilience Plan, 2020) 

 
It is relevant to note that, in the Hazard Mitigation Plans evaluated for the Case Study in the next 
section, landslides are generally rated with higher risk than wildfires; this is also noted in Table 4.2, 
which identifies the primary “climate stressors” in the various Prosperity Zones across North Carolina83.  
In all 3 of the prosperity zones in the western part of the state, landslides are one of (and in some cases 
the only) climate stressor that impacts the economic condition of that region.  This is of particular 
concern because of the reliance on natural resources and land use in these regions for agriculture, forest 
products, and tourism, as well as transit of goods.  This can also have an impact on disaster response 
and consequently impacts climate resilience in rural communities.  As mentioned in the Literature 
Review, the economic condition of business and industry in rural regions is crucial to the ability to build 
resilience capacity; consequently, additional research like that done by Anderson and Sugg (2019) for 
wildfire vulnerability would be beneficial for WNC, given the concentration of landslides in this area and 
variance in social vulnerability illustrated above. 

 

  

                                                 
83 NC Climate Risk Assessment and Resilience Plan, North Carolina Department of Environmental 
Quality, 2020 



52 
 

Table 4.2 
Climate stressors in Prosperity Zones -- NW and Western (NC Climate Risk Assessment Report) 
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SECTION 5:   CASE STUDY OF RESILIENCE AND VULNERABILITY OF SELECTED COUNTIES  

5.1 Diversity of resilience and vulnerability within Western North Carolina 

While WNC and its rural portions can be distinguished from the rest of the state using these national-
level indicators of resilience, we wanted to investigate the concepts of resilience and vulnerability at a 
finer scale. We selected five counties in WNC that spanned the spectrum of the urban-rural continuum 
codes; the five counties selected are Buncombe, Caldwell, Graham, Macon, and Watauga (Figure 5.1). 
We evaluated their exposure to certain hazards; specifically floods, wildfires, and landslides; and 
compared their social vulnerability and resilience from previously mentioned indicators and other 
sources of data.  In addition, we examined the regional Hazard Mitigation Plans which included each 
county to evaluate how they differed in terms of recognizing and addressing climate risks and/or the 
discussion of resilience. 

 

Figure 5.1:  Counties used in Case Study  (Edited image from WNC Magazine, 2020) 

 

While we understand that a host of other hazards have to potential to occur, flood, wildfires, and 
landslides were selected to focus on because of the connections to the Argonne data and Objective 1 in 
our research project, previous research by Maggie Sugg concerning wildfire vulnerability, and the 
availability of more thorough landslide data from the North Carolina Department of Environmental 
Quality (DEQ) for three of the selected counties.  

The ultimate purpose for this case study is not to provide specific resilience planning to these counties 
or compare current efforts to integrate climate resilience into existing hazard mitigation plans, but 
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rather to demonstrate how these indicators of social vulnerability and climate resilience might be useful 
in prioritizing issues among different county participants of regional hazard mitigation plans.  This would 
enable a more productive process of integrating climate resilience into these plans, and assist with 
mapping needs to available resources among different areas based on differences in socioeconomic and 
resilience factors.  

5.2  Climate Risk - Hazard Occurrences in the Selected Counties 

To determine climate risk based on historic hazard occurrence, we used available data from regional 
hazard mitigation plans, and supplementing with more detailed information concerning flooding 
exposure from NCEI (Section 3.3) and North Carolina Department of Environmental Quality concerning 
landslide occurrence, to assess the level of exposure of the five counties to these three hazards (Table 
5.1). With regards to flooding, each county recognizes that flooding has a high probability of occurring, 
even with undocumented flooding events such as Graham County. The costs in damages are striking 
different in each of the counties ranging from $0 in Graham County to $2.9 million in Buncombe; much 
of this is due to the increased built environment in more urban areas such as the cities of Asheville and 
Boone.   

Wildfires are a moderate to high risk for exposure in each of these counties. The size and frequency of 
annual wildfires is strikingly different across these counties. While rural areas, such as Graham county, 
have few wildfires annually, these burn four to five times as much as areas than in more populated 
areas. As an example, Caldwell has the most documented number of fires per year, but these amount to 
the smallest total area burned each year of all five counties.  

Landslides have some skewed elements due to the long historic nature of the underlying data from table 
5.1. A substantial portion (~80 %) of landslides for Watauga county occurred as a result of a single storm 
in 1940. Surprisingly, in the regional hazard mitigation plan for Watauga, landslides are only a moderate 
risk. A reasoning for this is the different topographies of other counties in this hazard mitigation plan. 
Even with the exclusion of the rare storm event, Watauga falls behind only Buncombe county in number 
of landslides in this case study.  
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Table 5.1:   

 Summary of hazard exposure for the case study counties for flooding, wildfires and landslides. Data for 
this table were obtained from regional hazard mitigation plans for wildfires, the NCEI storm events 

database for flooding events (section 3.3), or landslide data provided by the North Carolina Department 
of Environmental Quality (NCDEQ). .  

County Buncombe Caldwell Graham Macon Watauga 

Flooding events 2010-2019 24 35 0 9 72 

Total costs of flooding 
2010-2019 

2902000 901000  0 5000 8710000             

Hazard risk of flooding in 
regional HMP 

High High High High High 

Average number of 
wildfires per year 

54 (2003-2012) 94 16 (2002-2016) 37 (2004-2013) 18 (2002-2016) 

Average number of acres 
burned per year 

171 123 689 165 159 

Hazard risk of wildfire in 
regional HMP 

Moderate Moderate High Moderate High 

Number of landslides 372 20 1 193 2,259*  

Hazard risk of landslides in 
regional HMP 

High Low High High Moderate 
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5.3  Social Vulnerability in Selected Counties 

Table 5.2 provides a comparison of social vulnerability between the five selected counties using the 
CDC’s SVI, the SoVI®, and the SDoH index for each county.  Color coding has been added to highlight the 
ranking of the counties from least vulnerable (green) to most vulnerable based on the indicators, and 
where available the domains (themes) used to aggregate the indicators. Multiple years are shown for 
the SVI to allow for relatively consistent comparisons for the SoVI (2010-2014) and the SDoH (2018).  

The table demonstrates the variability in social vulnerability among the different socio-economic 
dimensions.   While we ranked the counties on each dimension from least to most vulnerable using a 
color coding, note that there may not be significant differences in some cases between the actual 
scores.  However, this provides an example of how counties could be compared for purposes of 
understanding differences in social vulnerability that could impact climate resilience planning.  For 
example, the CDC’s SVI score is quite different between Caldwell County and its neighbor, Watauga 
County.  While these 2 counties are not in the same regional Hazard Mitigation Planning zone, there are 
many similarities between them in terms of physical hazard exposure and current overall (low) resilience 
scores.   However, building resilience in Caldwell County could prove more difficult due to more limited 
economic resources and, potentially, a lower awareness of the need to do so. 
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Table 5.2: 
Comparison of Social Vulnerability Measures Among Selected Counties 

Legend Least       Most 

Vulnerable           

  Buncombe Caldwell Graham Macon Watauga 

CDC’s SVI -2014 0.22 0.40 0.30 0.26 0.09 

2018 
0.16 0.39 0.45 0.09 0.21 

Socioeconomic theme   
2014 0.04 0.84 0.64 0.30 0.50 

   2018 
0.03 0.65 0.73 0.19 0.59 

Housing composition and 
disability theme      2014 0.05 0.35 0.06 0.41 0 

   2018 
0.03 0.39 0.59 0.36 0 

Minority status and 
language theme      2014 0.38 0.12 0.09 0.13 0.09 

   2018 
0.44 0.27 0.08 0.30 0.03 

Housing and transportation 
theme      2014 0.78 0.13 0.23 0.24 0.39 

   2018 
0.73 0.21 0.25 0.06 0.57 

SoVI ®                  2014 0.45 0.03 2.11 4.15 -0.65 
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5.4  Resilience Indicators for Selected Counties 

Table 5.3 provides a comparison of resilience based on the two indicators (BRIC and CRSI) and the 
associated domains used to calculate the indicator. The table is color-coded from least resilient (red) to 
most resilient (green). Since the CRSI also has a risk component this is color-coded from least risky 
(green) to most risky (red). The scores among the counties in many cases are similar among the BRIC 
scores for all domains and overall scores. Counties were most different in the infrastructure domain, and 
most similar in the environmental domain. This highlights the difficulties in characterizing the small-scale 
nuances in quantifying community resilience building across geographically linked landscapes; the BRIC 
is more useful for state, regional, and national comparisons of community level resilience.  

The CRSI scores reveal a more distinct separation of five selected counties. Some of this is due to the 
weighting approach that the CRSI uses as well as the inclusion of a comprehensive evaluation of natural 
hazard risk. Watauga is the least resilient overall community, and the nature of the calculation makes it 
difficult to discern what domains of resilience lead to such a stark contrast of overall CRSI score 
compared to other counties in this case study. Since the CRSI a) weights the overall score by  governance 
and b) normalizes scores based on the United States median values for the governance, society, built 
environment, and natural environment domains, it seems like that this score is a reflected of both a low 
relative score nationally in governance and one or more other domains. Macon county has the highest 
overall resilience and the highest score in the society domain. Caldwell has the highest governance 
domain score, Buncombe the highest built environment domain score, and Graham the highest natural 
environment domain score.  

  

  



59 
 

Table 5.3.  
Comparison of resilience based on the two indicators (BRIC and CRSI) 

Legend Least       Most 

Resilient           

Risk           

  Buncombe Caldwell Graham Macon Watauga 

BRIC 2015 2.77 2.71 2.62 2.52 2.73 

Social 
0.69 0.65 0.65 0.62 0.69 

Economic 
0.47 0.46 0.41 0.40 0.40 

Infrastructure 
0.28 0.25 0.19 0.21 0.29 

Community 
capital 0.36 0.38 0.35 0.34 0.38 

Institutions 
0.40 0.41 0.46 0.39 0.38 

Environment 
0.56 0.56 0.56 0.57 0.59 
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CRSI 2017 0.96 0.84 1.18 2.07 0.20 

Risk 
0.51 0.28 0.18 0.31 0.17 

Governance 
0.25 0.38 0.24 0.23 0.26 

Built 
environment 0.50 0.36 0.33 0.41 0.39 

Natural 
environment 0.33 0.41 0.51 0.47 0.35 

Society 
0.55 0.47 0.43 0.59 0.45 

  

 

5.5  Inferences from vulnerability and resilience indicators case study  

One of the challenges in the evaluating constructs such as resilience and vulnerability through 
composite indicators is the difficulty in providing context for use at the local, community level. We 
present a way to utilize this information from three indicators: CDC’s SVI, the BRIC, and the CRSI. We 
evaluate each of these for Macon and Caldwell counties because of their similarities as mostly rural 
counties with one city under 20,000 residents.   Demonstrating how to make inferences concerning 
vulnerability and resilience can help guide decision-making concerning what are the current strengths of 
a community based on national level indicators, what weaknesses need to be addressed, what actions 
might be most suitable or advantageous to explore, and what additional fine-scale, bottom up data 
needs exists for accurate understanding of a community’s vulnerability and resilience. 

With respect to social vulnerability, the CDC’s SVI (2018) scores demonstrate a number of differences for 
Caldwell and Macon counties.  Caldwell County showed a moderate level of social vulnerability overall 
(.39) while the overall SVI   for Macon County was low (.09). Examining levels of vulnerability within the 
aggregated SVI “themes” demonstrates unique differences. Both counties ranked relatively low in terms 
of risk related to housing and transportation (Caldwell, .21; Macon, .06). However, Caldwell County 
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ranked higher in the themes of socioeconomics (.65) and housing composition and disability (.39). The 
Minority status and language vulnerability ranked in the median area (.27). Macon County scores for 
socioeconomic concerns were low (.19), moderate for housing composition and disability (.36) and 
moderately high for minority status and language risks (.30). From this data, it is suggested that Caldwell 
county climate change initiatives could focus on developing living wage jobs and stabilizing housing and 
services to individuals with disabilities. Macon County, conversely might be more effective in focusing 
on designing communications in multiple languages and developing ties with minority populations. 

Resilience rankings, based on the BRIC associated domains social; economic; infrastructure; community 
capital; institutions; and environment.  A similar comparison of these rankings for Caldwell and Macon 
counties provides more guidance for specific areas of intervention and planning. Caldwell County ranks 
most resilient in areas of economic (.46); community capital (.38), and institutions (.41) but lower in 
areas of social (.65); infrastructure (.25); and environment (0.56). Macon County ranks high in resilience 
in environment (.57), yet least resilient in areas of social (.62); economic (.40); infrastructure (.21); 
community capital (.34); and institutions (.39). The low BRIC score in the community capital domain can 
be seen to confirm the high vulnerability of the SVI theme minority status and language risks. 
Community capital is certainly linked with an individual’s capacity to access community resources. Thus, 
minority populations and those with language challenges would have less resilience in terms of 
accessing programs that might increase their resilience to climate change or natural disaster. 

Similarly, the CRSI indicates resilience in the domains of risk, governance, built environment, natural 
environment, and society. The CRSI also has a risk component that can be used as a comparison 
indicator. Comparison of Caldwell and Macon counties reveals that Caldwell County has a lower level of 
overall resilience (.84) while Macon County has a significantly higher level of overall resilience (2.07). 
Specifically, Caldwell county rankings are relatively low for domains of risk (.28), and governance (.38) 
but high risk in domains of built environment (.36), natural environment (.41), and society (.47). CRSI 
rankings for Macon County reveal that the county has lower scores for the domains of risk (.31), 
governance (.23), and built environment (.41), with higher scores in natural environment (.47), and 
society (.59). The domains of the CRSI may indicate that residents are not engaged in community 
governance but more engaged in the community as a whole and in the natural assets of the county. 

This comparison of vulnerability and resilience demonstrates the critical need for understanding each 
community from a granular level as well as from an overall perspective. Each community has 
significantly different levels of vulnerability and resilience in differing areas. Climate change measures 
will need to be such that exposure to hazards is acknowledged and mitigated, vulnerabilities, both 
physical and social, are reduced, and resilience is increased. By understanding the components that are 
included in the domains of the different indexes, planners can gain an initial appreciation of the unique 
factors impacting each county. This comparison also serves to encourage the inclusion of a broad 
spectrum of stakeholders in climate change initiatives. From this comparison it is clear that the voices of 
minority populations should be included in the early stages of planning rather than merely invited to 
approve of final plans.   
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SECTION 6: SUMMARY AND CONCLUSIONS 

6.1 Summary of Key Findings for Objective 1 

Objective 1: Incorporate climate change data to produce comprehensive estimates of climate risk for 
hazard mitigation planning in rural western North Carolina 

Objective 1 focused on using the ANL data to make inferences concerning the geographic distribution of 
flooding heights.  With the inclusion of additional data such as monthly trends in precipitation, 
impervious surfaces, and documented flooding events, we were able to generate an estimate of 
baseline exposure of a watershed to floods (Figure 3.3). Since risk is a product of exposure and 
vulnerability, understanding the spatial distribution of potential flooding exposure allows decision-
makers to prioritize mitigation efforts in watersheds to focus on watersheds that are highly exposed to 
flooding. This also helps city and county managers evaluate land-use policies to limit flooding damages. 

Our findings suggest that high inland simulated flooding heights do not necessarily correlate with 
greater frequency of flooding events, but this could be a result of several reasons:  1)  reported flood 
events are not necessarily in the same places with high inland flooding heights, 2)  subjectivity in the 
community-level reporting systems for flood events could reduce the reliability of flood events reported, 
both in terms of quantity and characterization, and 3) high inland flooding heights might occur in low 
risk areas, e.g. rural areas with less potential for property damages. Other key findings support the 
literature concerning impervious surface’s role in increasing flooding exposure, and the importance of 
summer thunderstorms in contributing to documented flooding events.  

The uncertainty of direct climate impacts from rare events made it difficult to attempt to project 
increases or decreases in flooding exposure using coarse data such as monthly precipitation trends. We 
therefore used the available data concerning climate change from WorldClim to assess how trends in 
precipitation might change in the future, rather than projecting the ZIP regression model into the future. 
Three distinct regimes exist in North Carolina, mimicking generally the traditional three regions of North 
Carolina.  Watersheds will, on average, see an increase of 39% in the monthly coefficient of variation, 
and in some months (May and October) may see an average increase of over 30% in monthly 
precipitation (Figure 3.4). Other notable increases are in June (22%) and July (26%), which might suggest 
that summertime thunderstorms could be either more frequent or more intense, or there could be 
more frequent days with precipitation in the early summer. 

6.2 Summary of Key Findings for Objective 2 

Objective 2:  Identify socioeconomic disparities and associated climate vulnerability and resilience 
capacity in rural regions to inform policy and decision-making for underserved rural areas.  

In our initial analysis regarding differential socioeconomic vulnerability across WNC, we find that the 
differences between WNC, particularly rural WNC, and the rest of the state are highly dependent on the 
way we assess vulnerability and resilience, but some common themes do exist. Regarding resilience, 
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rural WNC has less governance and institutional (and infrastructure) capacity than the rest of the state. 
This means that rural WNC has, in general, less coverage for natural disasters, fewer mitigation policies 
in place, and less capacity in municipal expenditures for fire, police, and emergency management 
services. Some of this has to do with the exposure to natural hazards; rural WNC has less frequent 
exposure due to location, climate, and topography, but also limited experience with natural hazards 
when they do occur. We also have unique natural hazards, like landslides. At the same time, rural WNC 
demonstrates higher resilience scores in the social domain in one resilience indicator, despite lower 
scores from another indicator in the economic domain.       

We have also discovered there is diversity in frameworks evaluating climate resilience, and also 
discrepancies between similar resilience indices and the scores reported. As an example, we explored 
two resilience indicators developed around the same time period: the Natural Hazard Screening Index 
(CRSI) and the baseline resilience indicators for communities (BRIC). Even when putting them on 
common ground (one included natural hazards in the calculation and one did not), these scores had 
weak correlations at best.  In other words, while resilience indices can help identify geographic regions 
of interest, the analysis of resilience capacity must be explored at the community level.   

It’s important to note, however, that the use of these scores helps to identify clusters of areas with 
higher and lower scores across the different domains of resilience.  But for purposes of integrating 
climate resilience planning at the community level, there may be a need for a “bottom-up” approach to 
building resilience capacity. The results of the case study of 5 selected counties in WNC demonstrated 
that variances in different dimensions of social vulnerability and hazard exposure can influence 
resilience planning measures at the community level; this suggests that the “one size fits all” approach 
in regional hazard mitigation planning might overlook specific needs at the community level.    

6.3 Implications of Key Findings  

6.3.1 Implications for Hazard Mitigation Planning 

The primary means of addressing climate resilience capacity in rural communities has been through 
evaluation of hazard exposure to the area, and mitigation planning that predominantly uses historical 
data to determine reactive measures for disaster response.  The notion of proactive steps to build 
resilience is often hindered by the lack of awareness and/or information, as well as economic means.  
Providing more forward-looking information as well as education about potential costs of unmitigated 
climate vulnerability is needed to help integrate steps for building climate resilience capacity into hazard 
mitigation plans (HMPs).  This also requires, however, an understanding of how socioeconomic 
variability among the county participants in regional HMPs can influence steps that are taken at the 
community level.  Aided by the use of climate data, social vulnerability metrics, and climate resilience 
indicators that have been evaluated in this study, communities can better estimate impending hazard 
events and identify specific weaknesses in climate resilience at the local level, so that HMPs can be more 
effective in planning for the allocation of resources for specific community needs.   
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Poor rural communities, such as those in Appalachia, and poor communities of color often lack a voice in 
regulation setting and planning and have been marginalized within climate change initiatives.   It is 
critical then, that the goals for climate change responses promote democracy and inclusiveness. It is 
critical that community members be seen as equal partners in planning; requiring sensitivity to the 
values and concerns of the community and in particular those most vulnerable.  Building resilience in 
populations that experience multiple vulnerabilities, as well as historical disenfranchisement, will 
require a clear understanding of how individuals' social networks affect their perceived ability to adapt 
to changing environmental conditions. In Appalachia, individuals' dependencies on social networks 
influences their perceived resilience to changing climatic conditions. While stable communities afford 
residents the opportunity to establish social relationships, the instability associated with multiple 
disadvantages discourages such relationships84. Building and enhancing resilience in these communities 
will require decision makers to focus on policy solutions that emphasize social networks and adaptive 
capacities.  Increasing the resilience of minority and/or marginalized community citizens will require 
more culturally appropriate and context-relevant approaches in order to understand vulnerabilities of 
these communities. There must be explicit inclusion of marginalized community members in climate 
change outreach, and planning efforts in order to ensure climate readiness for all residents.  
 
6.3.2 Implications for Communications Infrastructure in Rural Areas  

A primary topic in the discussion of rural resilience (climate and other stressors) is on the adequacy of 
the communications structure in these regions, particularly as it relates to capacity of disaster response 
and emergency management.  Indeed, this is relevant to the discussion on building climate resilience 
capacity because so many residents of residential areas tend to lack access to broadband or other 
communication service providers, either due to geographic location and/or economic capacity.  A survey 
in Watauga County provides some insight into the issues with resilience in a rural communications 
infrastructure85.  The map in Figure 6.1 shows the responses from unserved or underserved participants 
from the survey, demonstrating that most of the county has survey participants who have inadequate 
access to service.  This includes those with no internet access at all (25% of respondents), no cellular 
internet access (74% of respondents), no cable internet access (78% of respondents), no satellite 
internet access available (74%), and no DSL internet access available (75%),     
 
 

                                                 
84 Gilster, M.E & C.L. Meier (2017) Formal and Informal Social Organization: Do Geography, Structural 
Inequality, and Other Forms of Social Organization Matter? Journal of Community Practice, 25:2, 172-189  
85 Broadband Survey, High Country Council of Governments for Watauga County, May 2017. 



65 
 

 
Figure  6.1 - Unserved or Underserved Broadband Survey Participants in Watauga County, NC 

 
 
Interestingly, from feedback in this survey, economic capacity did not seem to be the reason for lack of 
access, as indicated by the high percentage (91%) of respondents who said they would be willing to 
purchase broadband, if available.  Consequently, this is important to the climate resilience capacity-
building discussion in that it is an issue with physical access, rather than economic barriers, that 
highlight the need for expanding and improving the communications infrastructure in rural regions.   The 
data from this survey helped to identify deficiencies in access to sufficient communication and, if 
combined with mapping of high-risk hazard exposure areas as well as high social vulnerability scores 
(like examined in this study), the results would be useful for identifying and prioritizing areas to expand 
communications infrastructure, particularly broadband.    
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6.3.3 Implications for Natural Resource and Land Use Management  

In preparation of the 2020 North Carolina Climate Risk Assessment and Resilience Report, the Working 
Lands Stakeholder Group was formed to help evaluate different ways that agricultural and forest land 
could be used to assist with building climate resilience.   It is widely thought that forest management 
practices are a primary “natural climate solution” because of the significant untapped potential to 
reduce carbon density, prevent soil erosion, protect watersheds, and reduce wildfire if forests were 
more properly managed and cleared land was reforested. 86  Researchers at Duke University have 
produced resources that demonstrate the opportunities for forest management practices that can 
produce community resilience benefit across North Carolina (Figure 6.3).  In WNC, the primary areas of 
benefit include protection in urban areas (flooding) and in water supply watersheds.  Thus, it is clear 
that the vast amount of forested property in WNC, while being the target of climate risk (wildfires and 
landslides), is also the primary asset for building climate resilience.   By using the data from this study on 
hazard vulnerability as well as resilience capacity, we could map the areas of greatest need to those with 
greatest protection opportunities.   
 

 
Figure 6.3: Protection and reforestation opportunities with community resilience benefit (Source: 
Nicholas Institute for Environmental Policy Solutions at Duke University)   

  

                                                 
86 Natural climate solutions for the United States, Fargione, J.E. et al, Science Advances, Nov 2018:(4) 
11 
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6.4 Concluding Remarks  

In this study, we focused on the need to integrate the concept of social justice into the discussion of 
climate resilience in rural communities.  Climate change and social vulnerability are deeply 
interconnected87 and are problems rooted in the structures, systems, and values of local societies and 
economics. Historically, the disenfranchisement of the most vulnerable communities from climate 
change decision making have included broad consequences, such as the reduction of community 
cohesion, feelings of powerlessness, and socioeconomic damage. Sensitivity to local values and concerns 
of the community will make it clear that climate change acts as a threat multiplier, exacerbating poverty, 
environmental degradation, and social instability. Responding to climate change and reducing social 
vulnerability requires an intersectional and transformational approach that includes the voices of those 
most at risk.  
 
Place-conscious approaches acknowledge that the resources needed to revitalize communities are 
unequally distributed across regions88. It is important to consider that place-based and place-conscious 
approaches not only promote change within a geographic area, but they may also diffuse to other 
communities.  At the same time, the influence of adjacent communities also suggests that climate 
change initiatives should create collaborations across community lines. What happens in one 
community is related to what is happening in surrounding communities. Exploring the spatial 
autocorrelation among resilience and vulnerability attributes (Section 4.5.3) helps us understand the 
spatial dependence (or independence) of resilience and vulnerability, and identify areas for 
collaborations based on those spatial patterns.   
 
A number of authors have pointed out that outcomes to problem-solving improved when stakeholder 
input was obtained early and repeatedly throughout the planning process89  90. As this report has 
demonstrated, vulnerability, exposure, and resilience must be assessed in terms of the actual 
experience of the people living and working within each community.  In addition, the need for input 
from the business community in rural areas is essential, as community resilience is vital to the 
sustainability of economic development and job growth. 
 
  

                                                 
87 Boetto, H. , A Transformative Eco-Social Model: Challenging Modernist Assumptions in Social Work, The British 
Journal of Social Work, Volume 47, Issue 1, January 2017, Pages 48–67 
88 Turner, M.A. (2017). Beyond People Versus Place: A Place-Conscious Framework for Investing in Housing and 
Neighborhoods. Housing Policy Debate, Volume 27, Issue 2.306-314 
89 Cains,M.H., and D. Henshel (2019) Community as an equal partner for region-based climate change vulnerability, 
risk, and resilience assessments. Current Opinion in Environmental Sustainability, 39 P 24-30 
90 Goldsmith, and Flanagan, (2017) Value methodology–case studies within climate resilience and sustainability 
policy application. Architectural Engineering & Design Management, 13(1), P3-21. 
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APPENDIX 

Table A.1. 
Western North Carolina (WNC) counties and their 2013 population, their rural urban classification, and 

specifics concerning flooding events during the period of 2010 to 2019. 
County Population  

20 
Rural-Urban Continuum Code 20 Total 

flooding 
events  
21 

Total costs  
(Thousands $) 
22 

Alexander 37198 (2) Metro - Counties in metro areas of 250,000 to 1 million 
population                                                                                                                                       

6 11 

Alleghany 11155 (9) Nonmetro - Completely rural or less than 2,500 urban 
population, not adjacent to a metro area                                                                                                            

14 510 

Ashe 27281 (7) Nonmetro - Urban population of 2,500 to 19,999, not adjacent to 
a metro area                                                                                                                             

34 311 

Avery 17797 (8) Nonmetro - Completely rural or less than 2,500 urban 
population, adjacent to a metro area                                                                                                                

16 230 

Buncombe 238318 (2) Metro - Counties in metro areas of 250,000 to 1 million 
population                                                                                                                                       

24 2902 

Burke 90912 (2) Metro - Counties in metro areas of 250,000 to 1 million 
population                                                                                                                                       

36 282 

Caldwell 83029 (2) Metro - Counties in metro areas of 250,000 to 1 million 
population                                                                                                                                       

35 901 

Cherokee 27444 (9) Nonmetro - Completely rural or less than 2,500 urban 
population, not adjacent to a metro area                                                                                                            

3 13 

Clay 10587 (9) Nonmetro - Completely rural or less than 2,500 urban 
population, not adjacent to a metro area                                                                                                            

1 0 

Cleveland 98078 (4) Nonmetro - Urban population of 20,000 or more, adjacent to a 
metro area                                                                                                                                  

3 20 

Graham 8861 (9) Nonmetro - Completely rural or less than 2,500 urban 
population, not adjacent to a metro area                                                                                                            

0 0 

Haywood 59036 (2) Metro - Counties in metro areas of 250,000 to 1 million 
population                                                                                                                                       

4 22 

Henderson 106740 (2) Metro - Counties in metro areas of 250,000 to 1 million 
population                                                                                                                                       

46 243 

Jackson 40271 (6) Nonmetro - Urban population of 2,500 to 19,999, adjacent to a 
metro area                                                                                                                                 

5 53 

Macon 44996 (6) Nonmetro - Urban population of 2,500 to 19,999, adjacent to a 
metro area                                                                                                                                 

9 5 

Madison 33922 (7) Nonmetro - Urban population of 2,500 to 19,999, not adjacent to 
a metro area                                                                                                                             

6 2552 

McDowell 24505 (6) Nonmetro - Urban population of 2,500 to 19,999, adjacent to a 
metro area                                                                                                                                 

24 864 

Mitchell 15579 (7) Nonmetro - Urban population of 2,500 to 19,999, not adjacent to 
a metro area                                                                                                                             

9 616 

Polk 20510 (8) Nonmetro - Completely rural or less than 2,500 urban 
population, adjacent to a metro area                                                                                                                

11 439 

Rutherford 67810 (4) Nonmetro - Urban population of 20,000 or more, adjacent to a 
metro area                                                                                                                                  

10 46 

Surry 73673 (4) Nonmetro - Urban population of 20,000 or more, adjacent to a 
metro area                                                                                                                                  

24 1024 

Swain 13981 (8) Nonmetro - Completely rural or less than 2,500 urban 
population, adjacent to a metro area                                                                                                                

11 3622 

Transylvania 33090 (6) Nonmetro - Urban population of 2,500 to 19,999, adjacent to a 
metro area                                                                                                                                 

47 239 

Watauga 51079 (5) Nonmetro - Urban population of 20,000 or more, not adjacent to 
a metro area                                                                                                                              

72 8710 
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Wilkes 69340 (6) Nonmetro - Urban population of 2,500 to 19,999, adjacent to a 
metro area                                                                                                                                 

30 35 

Yadkin 38406 (2) Metro - Counties in metro areas of 250,000 to 1 million 
population                                                                                                                                       

9 503 

Yancey 17818 (8) Nonmetro - Completely rural or less than 2,500 urban 
population, adjacent to a metro area                                                                                                                

9 208 
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Table A.2.  Description of All Data and Data Sources for the Creation of the SDoH Metric 
Table 1. SDOH Variables 

Description of Variable Variable Name Source 
% Total Population: Male: Under 5 Years MPopUnder5 

2018 
American 

Community 
Survey, 5-Year 

Estimate 

% Total Population: Male: Under 18 Years (Population 5-9, 10-14, 15-17) MPopUnd18 
% Total Population: Male: Over 65 Years (Population 65-74, 75-84, 85 and Over) MPop65Over 

% Total Population: Female: Under 5 Years FPopUnder5 
% Total Population: Female: Under 18 Years (Population 5-9, 10-14, 15-17) FPopUnd18 

% Total Population: Female: Over 65 Years (Population 65-74, 75-84, 85 and Over) FPop65Over 
% Total Population: Under 5 Years TPopUnder5 

% Total Population: Under 18 Years (Population 5-9, 10-14, 15-17) TPopUnd18 
% Total Population: Over 65 Years (Population 65-74, 75-84, 85 and Over) TPop65Over 

Median Age: MedAge 
% Total Population: White Alone PopWhite 

% Total Population: Black or African American Alone PopBlack 
% Total Population: American Indian and Alaska Native Alone PopAmInd 

% Total Population: Asian Alone PopAsian 
% Total Population: Native Hawaiian and Other Pacific Islander Alone PopHawaii 

% Total Population: Some Other Race Alone PopOthRace 
% Total Population: Two or More Races PopTwoRace 

% Households: Family Households: Other Family: Female Householder, No Husband Present FHH_NoHusb 
% Renter-Occupied Housing Units ((Total Renter Housing / Total Housing) * 100)  RentHouse 
% Occupied Housing Units: with Related Children of the Householder Under 18 OcH_Rchild 

% Renter-Occupied Housing Units: with Related Children of the Householder Under 18 ReH_Rchild 
Average Household Size AvgHHSize 

Average Household Size for Renter-Occupied Housing Units AvgRHHSize 
% Population 25 Years and Over: Less than High School Pop_LessHS 

% Population 25 Years and Over: High School Graduate or More (Includes Equivalency) Pop_HSGrad 
% Population 25 Years and Over: Some College or More and Bachelor's Degree or More Pop_ColBac 

% Population 25 Years and Over: Master's Degree or More and Professional School Degree or More and 
Doctorate Degree or More Pop_HighEd 

% Population 16 Years and Over: in Labor Force Pop_LabFor 
% Population 16 Years and Over: in Labor Force: in Armed Forces Pop_ArmFor 

% Population 16 Years and Over: in Labor Force: Civilian Pop_Civil 
% Population 16 Years and Over: in Labor Force: Civilian: Employed PopCvEmp 

% Population 16 Years and Over: in Labor Force: Civilian: Unemployed PopCvUnem 
% Population 16 Years and Over: Not in Labor Force PopNoLabFo 

% Civilian Population in Labor Force 16 Years and Over: Employed CvPopEmp 
% Civilian Population in Labor Force 16 Years and Over: Unemployed CvPopUnem 

% Housing Units: Mobile Home HousMobHom 
% Occupied Housing Units: Mobile Home OHMobHom 

Median Gross Rent as a Percentage of Household Income in the Past 12 Months (Dollars) MGR_HHInc 
% Families: Income Below Poverty Level FIn_Bpov 

% Workers 16 and Over: Drove Alone and Carpooled  WrkDA_Cp 
% Workers 16 and Over: Public Transportation (includes Taxicab) WrkPT 

% Workers 16 and Over: Bicycle and Walked WrkB_W 
% Total: No Health Insurance Coverage NoHlthCov 

% Households with Housing Costs more than 30% of Income HHcost_30I 
% Own Children under 18 Years: Children Living with Single Parents ChU18LivSP 

Percent Below Poverty Level - Population for whom poverty status is determined PerPopBPov 
Percent of Households with No Available Vehicle  PHH_NoVeh 



76 
 

Percent of Households with 1 Vehicle Available PHH_OneVeh 
Count of Childcare Centers normalized by the Total Population Childcare 

HIFLD 

Count of Banks normalized by the Total Population Banks 
Count of Fire Stations normalized by the Total Population FireStat 

Count of Mobile Homes normalized by the Total Population MobHome 
Count of Public Health Departments normalized by the Total Population PubHlthDep 

Count of Urgent Care normalized by the Total Population UrgentCare 
Count of Churches/Areas of Worship normalized by the Total Population Worship 

Count of Colleges normalized by the Total Population College 

NCCGIA 
NC OneMap 

Count of Emergency Shelters normalized by the Total Population EmergShelt 
Count of Gas Stations normalized by the Total Population GasStation 

Count of Hospitals normalized by the Total Population Hospitals 
Count of Nursing Home normalized by the Total Population NursHome 
Count of Public Libraries normalized by the Total Population Libraries 

Count of Pharmacies normalized by the Total Population Pharmacies 
Count of Private Schools normalized by the Total Population PrivSchool 
Count of Public Schools normalized by the Total Population PubSchool 

HPSA Data - Count of Mental Health Facilities per Census Tract MH_Count 
HRSA 

HPSA Data - Count of Primary Care Facilities per Census Tract PC_Count 
Total Population (B03002) Hispanic or Latino Origin by Race TPop_Hisp 

2018 
American 

Community 
Survey, 5-Year 

Estimate 

Not Hispanic or Latino: White Alone White_NHsp 
Not Hispanic or Latino: Black or African American Alone Black_NHsp 

Total Population (B19001B) Household Income in the Past 12 Months (in 2018 Inflation-Adjusted Dollars) 
(Black or African American Alone Householder) TP_BHHInc 

Less than $10,000 BHH_L10 
$10,000 to $14,999 BHH_149 
$15,000 to $19,999 BHH_199 
$20,000 to $24,999 BHH_249 

Combined income values of less than $25,000 for Black or African American Householder BHH_Less25 
Total Population (B19001H) Household Income in the Past 12 Months (in 2018 Inflation-Adjusted Dollars) 

(White, Not Hispanic or Latino Householder) TP_WHHInc 

$100,000 to $124,999 WHH_1249 
$125,000 to $149,999 WHH_1499 
$150,000 to $199,999 WHH_1999 

$200,000 or More WHH_200Up 
Combined income values of greater than $100,000 for White, Not Hispanic/Latino Householder WHH_Grt100 

Total Population (B19001) Household Income in the Past 12 Months (in 2018 Inflation - Adjusted Dollars) TPop_HHInc 
Less than $10,00 HH_L10 

$10,000 to $14,999 HH_149 
$15,000 to $19,999 HH_199 
$20,000 to $24,999 HH_249 

Combined income value of less than $25,000 HH_Less25 
$100,000 to $124,999 HH_1249 
$125,000 to $149,999 HH_1499 
$150,000 to $199,999 HH_1999 

$200,000 or More HH_200Up 
Combined income value of greater than $100,000 HH_Grt100 
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