
 TB3216
 Getting Started with Universal Synchronous and
Asynchronous Receiver and Transmitter (USART)

Introduction

Author: Alexandru Niculae, Microchip Technology Inc.

The purpose of this document is to describe step-by-step how to configure the USART peripheral on megaAVR® 0-
series, tinyAVR® 0- and 1-series, and AVR® DA devices. While this is a complex peripheral and can work in various
modes, this document will use it in Asynchronous mode for the following use cases:

• Send ‘Hello World’ to a Terminal
Demonstrates how to send a string to the PC and show it in the terminal.

• Send Formatted Strings/Send String Templates Using ‘printf’
Enhances the first use case with the ability to use the ‘printf’ function to send strings over USART.

• Receive Control Commands
Many times, the USART is used to implement a command-line interface. This way, the microcontroller can
receive control commands via the USART.

Additionally, this document provides information on how to configure the USART in Synchronous mode and One Wire
mode.

Note:  For each of the use cases described in this document, there are two code examples: One bare metal
developed on ATmega4809 and one generated with MPLAB® Code Configurator (MCC) developed on AVR128DA48.

View the ATmega4809 Code Examples on GitHub
Click to browse repository

View the AVR128DA48 Code Examples on GitHub
Click to browse repository

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 1

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-usart-studio
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-usart-mplab-mcc

Table of Contents

Introduction...1

1. Relevant Devices.. 3

1.1. tinyAVR® 0-series...4
1.2. tinyAVR® 1-series...5
1.3. megaAVR® 0-series... 6
1.4. AVR® DA Family Overview.. 6

2. Overview... 7

3. Send ‘Hello World’...9

4. Send Formatted Strings/Send String Templates Using printf...13

5. Receive Control Commands... 15

6. Other Implementation Modes..17

6.1. Synchronous Mode.. 17
6.2. One-Wire Mode..18

7. References..19

8. Revision History.. 20

The Microchip Website...21

Product Change Notification Service..21

Customer Support.. 21

Microchip Devices Code Protection Feature.. 21

Legal Notice... 22

Trademarks.. 22

Quality Management System... 23

Worldwide Sales and Service...24

 TB3216

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 2

1. Relevant Devices
This section lists the relevant devices for this document. The following figures show the different family devices,
laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin-compatible and
provide the same or more features. Downward migration on tinyAVR® 1-series devices may require code
modification due to fewer available instances of some peripherals

• Horizontal migration to the left reduces the pin count and, therefore, the available features
• Devices with different Flash memory sizes typically also have different SRAM and EEPROM

Figure 1-1. tinyAVR® 0-series Overview

2 KB

8
Pins

ATtiny402

20 24 14

ATtiny202

ATtiny804 ATtiny806 ATtiny807

ATtiny404 ATtiny406

ATtiny204

4 KB

8 KB

Flash

16 KB ATtiny1604 ATtiny1606 ATtiny1607

Figure 1-2. tinyAVR® 1-series Overview

8
Pins

20 24 14

8 KB

Flash

16 KB

32 KB

4 KB

2 KB

ATtiny3216 ATtiny3217

ATtiny1614 ATtiny1616 ATtiny1617

ATtiny412

ATtiny212

ATtiny414 ATtiny416 ATtiny417

ATtiny214

ATtiny814 ATtiny816 ATtiny817

 TB3216
Relevant Devices

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 3

Figure 1-3. megaAVR® 0-series Overview

Pins

Flash

ATmega1608

ATmega3208

ATmega808

ATmega3208 ATmega3209

ATmega1608 ATmega1609

ATmega808 ATmega809

28 40 48 32

ATmega4808 ATmega4808 ATmega4809 ATmega4809

8 KB

16 KB

32 KB

48 KB

Figure 1-4. AVR® DA Family Overview

Pins

Flash

AVR64DA28

AVR128DA28

AVR32DA28

AVR128DA32 AVR128DA48 AVR128DA64

AVR64DA32 AVR64DA48 AVR64DA64

AVR32DA32 AVR32DA4832 KB

28 48 64 32

64 KB

128 KB

1.1 tinyAVR® 0-series
The figure below shows the tinyAVR® 0-series devices, laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin-compatible and
provide the same or more features

• Horizontal migration to the left reduces the pin count and, therefore, the available features

 TB3216
Relevant Devices

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 4

Figure 1-5. tinyAVR® 0-series Overview

2 KB

8
Pins

ATtiny402

20 24 14

ATtiny202

ATtiny804 ATtiny806 ATtiny807

ATtiny404 ATtiny406

ATtiny204

4 KB

8 KB

Flash

16 KB ATtiny1604 ATtiny1606 ATtiny1607

Devices with different Flash memory sizes typically also have different SRAM and EEPROM.

1.2 tinyAVR® 1-series
The following figure shows the tinyAVR 1-series devices, laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin-compatible and
provide the same or more features. Downward migration may require code modification due to fewer available
instances of some peripherals.

• Horizontal migration to the left reduces the pin count and, therefore, the available features

Figure 1-6. tinyAVR® 1-series Overview

8
Pins

20 24 14

8 KB

Flash

16 KB

32 KB

4 KB

2 KB

ATtiny3216 ATtiny3217

ATtiny1614 ATtiny1616 ATtiny1617

ATtiny412

ATtiny212

ATtiny414 ATtiny416 ATtiny417

ATtiny214

ATtiny814 ATtiny816 ATtiny817

Devices with different Flash memory sizes typically also have different SRAM and EEPROM.

 TB3216
Relevant Devices

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 5

1.3 megaAVR® 0-series
The figure below shows the megaAVR® 0-series devices, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin and feature compatible
• Horizontal migration to the left reduces the pin count and, therefore, the available features

Figure 1-7. megaAVR® 0-series Overview

Pins

Flash

ATmega1608

ATmega3208

ATmega808

ATmega3208 ATmega3209

ATmega1608 ATmega1609

ATmega808 ATmega809

28 40 48 32

ATmega4808 ATmega4808 ATmega4809 ATmega4809

8 KB

16 KB

32 KB

48 KB

Devices with different Flash memory sizes typically also have different SRAM and EEPROM.

1.4 AVR® DA Family Overview
The figure below shows the AVR® DA devices, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin and feature compatible
• Horizontal migration to the left reduces the pin count, and therefore, the available features

Figure 1-8. AVR® DA Family Overview

Pins

Flash

AVR64DA28

AVR128DA28

AVR32DA28

AVR128DA32 AVR128DA48 AVR128DA64

AVR64DA32 AVR64DA48 AVR64DA64

AVR32DA32 AVR32DA4832 KB

28 48 64 32

64 KB

128 KB

Devices with different Flash memory sizes typically also have different SRAM.

 TB3216
Relevant Devices

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 6

2. Overview
The USART module has four pins, named RX (receive), TX (transmit), XCK (clock) and XDIR (direction). In One-Wire
mode only, the TX pin is used for both transmitting and receiving. The downside of this mode is that it only provides
half-duplex communication. In Asynchronous mode, both RX and TX pins are used, thus achieving full-duplex
communication. The XCK pin is used for clock signal in Synchronous mode, and the XDIR pin is used for RS485
mode.

Figure 2-1. USART Block Diagram

Clock Generator

Transmitter

Receiver

Transmit Shift Register

TXDATA

Parity

Pin

Clock

Data

Parity

TX

RX

Receive Shift Register

RXDATA Buffer

Sync Logic
XCK

XDIR

TxD

RxD

Fractional Baud Rate

RXDATA

OSC
BAUD

 Generator

 Generator

Pin
Control

Control

Control

Control

Pin
Control

Recovery

Recovery

Checker

The most common USART configuration is referred to as “9600 8N1”, meaning 9600 baud rate, eight data bits, no
parity, and one Stop bit. Therefore, a typical USART frame will have 10 bits (one Start bit, eight data bits, and one
Stop bit) and will be able to represent one ASCII character, which means an “8N1” configuration will transmit
BAUD_RATE/10 ASCII characters per second.

Note:  All examples described in this document will use a 9600 baud rate and “8N1” frame format. The serial
terminal must be set for this configuration.

Moreover, the USART is a complex peripheral and can be used to achieve a handful of other protocols such as:

 TB3216
Overview

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 7

• Host SPI
• Client LIN
• IR Communication
• Addressable USART (also called Multi Processor Communication)
• RS485

 TB3216
Overview

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 8

3. Send ‘Hello World’
This use case demonstrates how to send a string to the PC and visualize it in the terminal. The USART will be
configured for Asynchronous mode, and only the TX pin will be used.

The USART1 instance default pins, PC0 (TX) and PC1 (RX), are connected directly to the debugger interface. They
can be used to send data bytes to a host PC by using the Virtual COM Port (CDC) interface of the Embedded
Debugger (EDBG), bypassing the need for an additional UART to USB converter.

This use case follows the steps:

• Set the baud rate
• Enable the Transmitter (TX)
• Configure the pins

How to Configure the Baud Rate
The baud rate shows how many bits are sent per second. The higher the baud rate, the faster the communication.
Common baud rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200, with 9600 being the most
commonly used one.

On the megaAVR 0-series, the maximum baud rate is limited to 1/8 * (maximum USART clock) in Asynchronous
mode and 1/2 * (maximum USART clock) in Synchronous mode. To set the baud rate, write to the USARTn.BAUD
register:

USART1.BAUD = (uint16_t)USART1_BAUD_RATE(9600);

Notice the use of the USART1_BAUD_RATE macro to compute the register’s value from the baud value. This macro
must be defined based on the formula in the image below. This formula depends on the USART configurations, so it
might not be the same in other modes.

Figure 3-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Conditions Baud Rate (Bits Per Seconds) USART.BAUD Register Value
Calculation

Asynchronous ����� ≤ ����_���� ����� = 64 × ����_���� × ���� ���� = 64 × ����_���� × �����
Synchronous
Host ����� ≤ ����_���2 ����� = ����_���2 × ���� 15:6 ���� 15:6 = ����_���2 × �����

S is the number of samples per bit. In Asynchronous operating mode, it is 16 (NORMAL mode) or 8 (CLK2X mode).
For Synchronous operating mode, S equals 2.

This is how the USART1_BAUD_RATE macro is defined. It uses F_CPU because the USART clock matches the CPU
clock.

#define F_CPU 3333333
#define USART1_BAUD_RATE(BAUD_RATE) ((float)(F_CPU * 64 / (16 * (float)BAUD_RATE)) + 0.5)

 TB3216
Send ‘Hello World’

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 9

How to Enable the Transmitter and Send Data
Depending on the application needs, the user may choose to enable only the receiver or the USART module
transmitter. Since in this use case only the microcontroller sends messages, only the transmitter needs to be
enabled.

USART1.CTRLB |= USART_TXEN_bm;

Before sending data, the user needs to check if the previous transmission is completed by checking the
USARTn.STATUS register. The following code example waits until the transmit DATA register is empty and then
writes a character to the USARTn.TXDATA register:

void USART1_sendChar(char c)
{
 while (!(USART1.STATUS & USART_DREIF_bm))
 {
 ;
 }
 USART1.TXDATAL = c;
}

The Send register is nine bits long. Therefore, it was split into two parts: The lower part that holds the first eight bits,
called TXDATAL, and the higher part that holds the remaining one bit, called TXDATAH. TXDATAH is used only when
the USART is configured to use nine data bits. When used, this ninth bit must be written before writing to
USARTn.TXDATAL, except if CHSIZE in USARTn.CTRLC is set to ‘9-bit - Low byte first’, where USARTn.TXDATAL
should be written first.

How to Configure Pins
The TX pin must be configured as an output. By default, each peripheral has some associated pin positions. The pins
are described in the Multiplexed Signals section in the device-specific data sheet. Each USART has two sets of pin
positions. The default and alternate pin positions for USART1 are shown below.

Table 3-1. Multiplexed Signals

Pin name(1,2) USARTn

PC0 1,TxD

PC1 1,RxD

PC2 1,XCK

PC3 1,XDIR

VDD

GND

PC4 1,TxD(3)

PC5 1,RxD(3)

PC6 1,XCK(3)

PC7 1,XDIR(3)

Notes: 
1. Pin names are of type Pxn, with x being the PORT instance (A,B,C, ...) and n the pin number. Notation for

signals is PORTx_PINn. All pins can be used as event input.
2. All pins can be used for external interrupt, where pins Px2 and Px6 of each port have full asynchronous

detection.
3. Alternate pin positions. For selecting the alternate positions, refer to the PORTMUX documentation.

 TB3216
Send ‘Hello World’

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 10

For this use case, the default USART1 pin position is used; this is PC0 to PC1. The following code sets the TX pin
direction to output.

PORTC.DIR |= PIN0_bm;

To use the alternate pin positions, write to the PORTMUX.USARTROUTEA register.

PORTMUX.USARTROUTEA |= PORTMUX_USART10_bm;

Note:  In this example, the default pin position is used, not the alternate one.

Demo Code
This code example is used to continuously send the 'Hello World!' string through USART. A string is sent character by
character. The ‘USART1_sendString’ function calls the ‘USART1_sendChar’ function for each character in the
‘Hello Word!’ string. Before sending each character, the ‘USART1_sendChar’ function waits for the previous
character transmission to be completed. This is done by polling the Data Register Empty Interrupt Flag, DREIF, from
the STATUS register until it is set.

#define F_CPU 3333333
#define USART1_BAUD_RATE(BAUD_RATE) ((float)(F_CPU * 64 / (16 *
(float)BAUD_RATE)) + 0.5)

#include <avr/io.h>
#include <util/delay.h>
#include <string.h>

void USART1_init(void);
void USART1_sendChar(char c);
void USART1_sendString(char *str);

void USART1_init(void)
{
 PORTC.DIR &= ~PIN1_bm;
 PORTC.DIR |= PIN0_bm;

 USART1.BAUD = (uint16_t)USART1_BAUD_RATE(9600);

 USART1.CTRLB |= USART_TXEN_bm;
}

void USART1_sendChar(char c)
{
 while (!(USART1.STATUS & USART_DREIF_bm))
 {
 ;
 }
 USART1.TXDATAL = c;
}

void USART1_sendString(char *str)
{
 for(size_t i = 0; i < strlen(str); i++)
 {
 USART1_sendChar(str[i]);
 }
}

int main(void)
{
 USART1_init();

 while (1)
 {
 USART1_sendString("Hello World!\r\n");
 _delay_ms(500);
 }
}

 TB3216
Send ‘Hello World’

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 11

Note:  For the delay function to work properly, define the CPU frequency before including the <avr/delay.h>
header.

Note:  The default configurations are used for the CPU clock frequency and the USART frame structure. The default
CPU and peripheral clock frequency is 3.33 MHz. The USART default frame structure is comprised of eight data bits,
no parity bit, and one stop bit (8N1).

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MPLAB® Code Configurator (MCC) generated code example for AVR128DA48 with the same functionality as the
one described in this section can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3216
Send ‘Hello World’

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 12

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-usart-studio/tree/master/Send_Hello_World
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-usart-mplab-mcc/tree/master/Send_Hello_World

4. Send Formatted Strings/Send String Templates Using printf
It is a common use case for an application to send a string with variable fields, for example, when the application
reports its state or a counter value. Using formatted strings is a very flexible approach and reduces the number of
code lines. This can be accomplished by changing the output stream of the ‘printf’ function.

This use case follows these steps:

• Configure the USART peripheral the same as for the first use case
• Create a used defined stream
• Replace the standard output stream with the user-defined stream

Usually, when using ‘printf’, the characters are sent to a stream of data, called standard output stream. On a PC,
the standard output stream is handled by the function to display characters on the screen. But streams can be
created so that another function handles their data.

The following code creates a user-defined stream that will be handled by the USART1_printChar function. This
function is a wrapper of the USART1_sendChar function but has a slightly different signature to match what
FDEV_SETUP_STREAM expects as a parameter.

static void USART1_sendChar(char c)
{
 while (!(USART1.STATUS & USART_DREIF_bm))
 {
 ;
 }
 USART1.TXDATAL = c;
}

static int USART1_printChar(char c, FILE *stream)
{
 USART1_sendChar(c);
 return 0;
}

static FILE USART_stream = FDEV_SETUP_STREAM(USART1_printChar, NULL, _FDEV_SETUP_WRITE);

Then replace the standard output stream with the user-defined stream, handled by the USART send function.

stdout = &USART_stream;

The application can now use ‘printf’ instead of writing to USART registers directly.

uint8_t count = 0;
while (1)
{
 printf("Counter value is: %d\r\n", count++);
 _delay_ms(500);
}

Note:  The ‘printf’ function uses specifiers to mark where to insert variables in the string template. Some of the
available specifiers are in the table below:
Table 4-1. printf Specifiers

Specifier Description

%d Insert a signed integer

%s Insert a sequence of characters

%c Insert a character

%x Insert integer unsigned in hex format

 TB3216
Send Formatted Strings/Send String Templat...

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 13

Other settings do not change and are, therefore, skipped in the code snippets above. See the full code example on
GitHub.

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MPLAB MCC generated code example for AVR128DA48 with the same functionality as the one described in this
section can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3216
Send Formatted Strings/Send String Templat...

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 14

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-usart-studio/tree/master/Send_Formatted_String_Using_Printf
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-usart-mplab-mcc/tree/master/Send_Formatted_Strings_Using_Printf

5. Receive Control Commands
One important usage of the USART represents the implementation of a command-line interface. This way, the
microcontroller can receive control commands via USART. It is convenient to use the line terminator as a command
delimiter, so, for this use case, the USART will read full lines.

This use case follows the steps:

• Configure the USART peripheral same as for the first use case
• Enable the receiver
• Read and store the incoming data until the end of line
• Check if the received data are a valid command; if so, execute it

How to Enable the Receiver and Receive Data
For USART1, the default pin position for RX is Port C pin 1 (PC1). The following line sets the PC1 direction to input.

PORTC.DIR &= ~PIN1_bm;

Same as the transmitter, the receiver is enabled by witting to the USARTn.CTRLB register.

USART1.CTRLB |= USART_RXEN_bm;

Before reading the data, the user must wait for the data to be available by polling the Receive Complete Interrupt
Flag, RXCIF.

uint8_t USART1_read()
{
 while (!(USART1.STATUS & USART_RXCIF_bm))
 {
 ;
 }
 return USART1.RXDATAL;
}

How to Read a Line
The following code snippet reads one line of data and stores it in an array. It assumes that a valid line is shorter than
the array length.

The array index is reset to zero when reaching the array end to avoid a buffer overflow error in case of longer lines
received. The characters ‘\n’ (line feed) and ‘\r’ (carriage return) are ignored because they are part of the line
terminator. When ‘\n’ is found, the string end (NULL) is added to the command, and the function ‘executeCommand’
will call a function based on the value of the command string.

char command[MAX_COMMAND_LEN];
uint8_t index = 0;
char c;

/* This delay invalidates the initial noise on the TX line, after device reset. */
 _delay_ms(10);

while (1)
{
 c = USART1_readChar();
 if(c != ‘\n’ && c != ‘\r’)
 {
 command[index++] = c;
 if(index > MAX_COMMAND_LEN)
 {
 index = 0;
 }
 }

 if(c == ‘\n’)
 {

 TB3216
Receive Control Commands

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 15

 command[index] = ‘\0’;
 index = 0;
 executeCommand(command);
 }
}

In the following code example on GitHub, the USART receives ‘ON’ and ‘OFF’ commands, and the microcontroller
controls a GPIO output, which can, for example, toggle an LED.

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MPLAB MCC generated code example for AVR128DA48 with the same functionality as the one described in this
section can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3216
Receive Control Commands

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 16

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-usart-studio/tree/master/Receive_Control_Commands
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-usart-mplab-mcc/tree/master/Receive_Control_Commands

6. Other Implementation Modes
The applications described above demonstrate the basic USART functionalities. This section describes the USART
configured in Synchronous mode and One-Wire mode.

6.1 Synchronous Mode
Figure 6-1. USART Communication Mode (CMODE) Bit Field in Control C Register

Bit 7 6 5 4 3 2 1 0

CMODE[1:0] PMODE[1:0] SBMODE CHSIZE[2:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 1 1

The CMODE bit field in the CTRLC register controls the communication modes.

The disadvantage of the Asynchronous mode is that the receiver chip and the transmitter chip need to use the same
baud rate, and exact timing is required. The asynchronous protocols use a separate line for the clock signal, so the
chip that generates the clock dictates the communication speed, which is much more flexible in terms of exact
timings and creates two roles in the communication: The server that generates the clock and the client that receives
the clock.

In the Synchronous USART mode, an additional clock pin, XCK, is used. Same as the RX and TX pins, XCK has a
default pin, and changing the PORTMUX register will also change XCK. Configuring the XCK direction decides if the
device is a server (generates clock) or a client (receives clock).

To activate the Synchronous mode:

• Configure the XCK pin (PC2) direction as output;
PORTC.DIR &= ~PIN2_bm;

• Write 0x01 to the CMODE bit field in the USARTn.CTRLC register.
Figure 6-2. USART Communication Mode
Value Name Description
0x0 ASYNCHRONOUS Asynchronous USART
0x1 SYNCHRONOUS Synchronous USART
0x2 IRCOM Infrared Communication
0x3 MSPI Host SPI

USART1.CTRLC = USART_CMODE_SYNCHRONOUS_gc;

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MPLAB MCC generated code example for AVR128DA48 with the same functionality as the one described in this
section can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3216
Other Implementation Modes

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 17

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-usart-studio/tree/master/Synchronous_Mode
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-usart-mplab-mcc/tree/master/Synchronous_Mode

6.2 One-Wire Mode
Using only one wire effectively reduces the number of pins used for USART communication to one. RX and TX are
internally connected, and only TX is used, which means that both incoming and outgoing data will share the same
wire, so transmission and reception cannot happen simultaneously. This is called half-duplex communication.

Figure 6-3. Loop-back Mode Enable (LBME) Bit in Control A Register

Bit 7 6 5 4 3 2 1 0

RXCIE TXCIE DREIE RXSIE LBME ABEIE RS485[1:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Use the LBME bit in the CTRLA register to enable an internal loopback connection between RX and TX. An internal
connection between RX and TX can be created by writing to USARTn.CTRLA.

USART1.CTRLA |= USART_LBME_bm;

This will internally connect the RX and TX pins, but only the TX pin is used. As the TX pin is used for both transmit
and receive, the pin direction needs to be configured as an output before each transmission and switched back to
input when the transmission ends.

Since RX is connected internally to TX during transmission, it will receive the data sent, which can be used as a
collision detection mechanism. If there is another transmission occurring, the received data will not match the
transmitted data. An advanced one-wire driver could take advantage of this strategy.

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MPLAB MCC generated code example for AVR128DA48 with the same functionality as the one described in this
section can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3216
Other Implementation Modes

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 18

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-usart-studio/tree/master/One_Wire_Mode
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-usart-mplab-mcc/tree/master/One_Wire_Mode

7. References
1. ATmega4809 web page: https://www.microchip.com/wwwproducts/en/ATMEGA4809
2. megaAVR® 0-series Manual (DS40002015)
3. ATmega3209/4809 – 48-pin Data Sheet megaAVR® 0-series (DS40002016)
4. ATmega4809 Xplained Pro web page: https://www.microchip.com/developmenttools/ProductDetails/

atmega4809-xpro
5. AVR128DA48 Product Page: www.microchip.com/wwwproducts/en/AVR128DA28
6. AVR128DA48 Curiosity Nano Evaluation Kit web page: www.microchip.com/Developmenttools/ProductDetails/

DM164151
7. AVR128DA28/32/48/64 (DS4000218)
8. Getting Started with the AVR® DA Family (DS00003429)

 TB3216
References

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 19

http://www.microchip.com/DS40002015
http://www.microchip.com/DS40002015
http://www.microchip.com/DS40002016
https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro
https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro
https://www.microchip.com/wwwproducts/en/AVR128DA28
https://www.microchip.com/Developmenttools/ProductDetails/DM164151
https://www.microchip.com/Developmenttools/ProductDetails/DM164151
http://www.microchip.com/DS40002183
http://www.microchip.com/DS00003429

8. Revision History
Doc Rev. Date Comments

C 01/2021 Updated the GitHub repository links. Added the AVR® DA Family Overview, References, and
Revision History sections. Added MCC versions for each use case, running on AVR128DA48.
Minor editorial corrections.

B 6/2019 Updated code examples in section 3. ‘Hello World’ and section 4. ‘Send Formatted Strings/
Send String Templates Using printf’. Revision History added. Minor editorial corrections.

A 12/2018 Initial document release.

 TB3216
Revision History

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 20

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

 TB3216

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 21

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-
Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7425-8

 TB3216

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 22

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3216

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 23

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc. Technical Brief DS90003216C-page 24

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Relevant Devices
	1.1. tinyAVR® 0-series
	1.2. tinyAVR® 1-series
	1.3. megaAVR® 0-series
	1.4. AVR® DA Family Overview

	2. Overview
	3. Send ‘Hello World’
	4. Send Formatted Strings/Send String Templates Using printf
	5. Receive Control Commands
	6. Other Implementation Modes
	6.1. Synchronous Mode
	6.2. One-Wire Mode

	7. References
	8. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

