‘ , life.augmented

UM1620
User manual

Standard Software Driver for C90FL Flash module embedded on

SPC56 A line microcontroller

Introduction

This document is the user manual for the Standard Software Driver (SSD) for single C90
Flash module.

The SSD is a set of API's that enables user application to operate on the Flash module
embedded on a microcontroller. The C90FL SSD contains a set of functions to
program/erase a single C90FL Flash module.

The C90FL Standard Software Driver (SSD) provides the following API’s:

July 2020

Flashinit

FlashErase

BlankCheck
FlashProgram
ProgramVerify
CheckSum
FlashSuspend
FlashResume

GetLock

SetlLock
FlashArraylntegrityCheck
FlashECCLogicCheck
FactoryMarginReadCheck

UM1620 Rev 4

1/41

www.st.com

http://www.st.com

Contents UM1620

Contents
1 Introduction i e 6
1.1 Document overview 6
1.2 Features 6
2 APl specification i e 7
2.1 General Overview 7
2.2 General type definitions 7
2.3 Configuration parametersandmacros 7
24 Callback notification 8
25 Return codes 9
2.6 Normal mode functions 10
261 Flashinit()t 10
2.6.2 FlashErase() i 1"
26.3 BlankCheck() 13
26.4 FlashProgram() i e 15
26.5 ProgramVerify() 17
2.6.6 CheckSum()o 19
2.6.7 FlashSuspend() e 20
26.8 FlashResume() e 22
2.6.9 GELOCK() .« .ot 24
2610 SetlLoCK() . ..o 26
2.7 Usertestmode functions 28
2.7.1 FlashArraylntegrityCheck() 28
2.7.2 FlashECCLogicCheck()ot e 31
2.7.3 FactoryMarginReadCheck() 32
Appendix A CallBacktimingscciiiiiiiiii ittt i 36
Appendix B Systemrequirements i i i i 37
AppendiX C ACIONYMSttt it sttt enanaannn e nnnnnnns 38
Appendix D Documentreference it 39

2/41 UM1620 Rev 4 ‘YI

UM1620 Contents

Revision history i i i i et sttt e e 40

3

UM1620 Rev 4 3/41

List of tables UM1620

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

4/41

Type definitions. 7
SSD configuration structure field definition. 7
Return Codes e 9
Arguments for Flashlnit() e 10
Return values for Flashinit() e 10
Arguments for FlashErase()o e e 11
Return values for FlashErase().o e 12
Troubleshooting for FlashErase() e 12
Bit allocation for blocks in low addressspace 13
Bit allocation for blocks in middle addressspace. i, 13
Bit allocation for blocks in high addressspace. 13
Arguments for BlankCheck().ot e 14
Return values for BlankCheck() 14
Troubleshooting for BlankCheck() i 15
Arguments for FlashProgram() e 15
Return values for FlashProgram() i 16
Troubleshooting for FlashProgram(). e 16
Arguments for ProgramVerify(). e 17
Return values for ProgramVerify() e 18
Troubleshooting for ProgramVerify() i 18
Arguments for CheckSum() e 19
Return values for CheckSum() e 19
Troubleshooting for CheckSum() e 20
Arguments for FlashSuspend(). e 20
Return values for FlashSuspend() i e 21
suspendState definitions. 21
Suspending state and flagvs. C90FL status, 22
Arguments for FlashResume() 23
Return values for FlashResume().o e e e 23
resumeState definitions 23
Arguments for GetLock() 24
Return values for GetLock() 24
Troubleshooting for GetLock() e 24
blkLockIndicator definitions. 25
blkLockState bit allocation for shadow addressspace 25
blkLockState bit allocation for low addressspace 26
blkLockState bit allocation for mid addressspace 26
blkLockState bit allocation for high addressspace. 26
Arguments for SetLock(). e 27
Return values for SetLock() i 27
Troubleshooting for SetLock() e 27
Arguments for FlashArrayintegrityCheck() 28
Return values for FlashArraylntegrityCheck().o i 29
Troubleshooting for FlashArraylntegrityCheck(). 29
Bit allocation for blocks in low addressspace 30
Bit allocation for blocks in middle addressspace 30
Bit Allocation for Blocks in High Address Space. 30
Arguments for FlashECCLogicCheck(). i e 31

UM1620 Rev 4 Kyy

UM1620 List of tables
Table 49. Return values for FlashECCLogicCheck() 31
Table 50. Troubleshooting for FlashECCLogicCheck() i 32
Table 51. Arguments for FactoryMarginReadCheck() 32
Table 52. Return values for FactoryMarginReadCheck() i 33
Table 53. Troubleshooting for FactoryMarginReadCheck() 34
Table 54. Bit allocation for blocks in low addressspace 34
Table 55. Bit allocation for blocks in middle address space 34
Table 56. Bit allocation for blocks in high addressspace. 35
Table 57. CallBack timings period for SPC564A70 e 36
Table 58. Systemrequirements e 37
Table 59. ACIONYMS . . . 38
Table 60. Document revision history 40
"I UM1620 Rev 4 5/41

Introduction UM1620

1.1

1.2

6/41

Introduction

Document overview

This document is the user manual for the Standard Software Driver (SSD) for single C90FL
Flash module. The road-map for the document is as follows.

Section 1.2 shows the features of the driver. Appendix B: System requirements details the
system requirement for the driver development. Appendix D: Document reference lists the
documents referred and terms used in making of this document. Appendix C: Acronyms lists
the acronyms used.

Chapter 2 describes the API specifications. In this section there are many sub sections,
which describe the different aspects of the driver. Section 2.1 provides a general overview of
the driver.

Section 2.2 mentions about the type definitions used for the driver. Section 2.3 mentions the
driver configuration parameters and configuration macros respectively. Section 2.4 and
Section 2.5 describe the CallBack notifications, and return codes used for the driver.
Section 2.6 and Section 2.7 provide the detailed description of normal mode and special
mode standard software Flash Driver APIs’ respectively. Appendix A: CallBack timings
provides the performance indexes.

Features

The C90FL SSD provides the following features:

e Two sets of driver binaries built on Power Architecture instruction set technology and
Variable-Length-Encoding (VLE) instruction set.

e Drivers released in binary c-array format to provide compiler-independent support for
non-debug-mode embedded applications.

e Drivers released in s-record format to provide compiler-independent support for
debugmode/JTAG programming tools.

e Each driver function is independent of each other so the end user can choose the
function subset to meet their particular needs.

e Support page-wise programming for fast programming.
e Position-independent and ROM-able

e Ready-to-use demos illustrating the usage of the driver
e Concurrency support via callback

3

UM1620 Rev 4

UM1620

API specification

2

2.1

2.2

2.3

3

API specification

General overview

The C90FL SSD has APIs to handle the erase, program, erase verify and program verify
operations on the Flash. Apart from these, it also provides the feature for locking specific
blocks and calculating Check sum. This SSD also provides 3 user test APIs for checking the

Array Integrity and the ECC Logic.

General type definitions

Table 1. Type definitions

Derived type Size C language type description
BOOL 8-bits unsigned char
INT8 8-bits signed char
VINT8 8-bits volatile signed char
UINT8 8-bits unsigned char
VUINT8 8-bits volatile unsigned char
INT16 16-bits signed short
VINT16 16-bits volatile signed short
UINT16 16-bits unsigned short
VUINT16 16-bits volatile unsigned short
INT32 32-bits signed long
VINT32 32-bits volatile signed long
UINT32 32-bits unsigned long
VUINT32 32-bits volatile unsigned long

Configuration parameters and macros

The configuration parameter which is used for SSD operations is explained in this section.
The configuration parameters are handled as structure. The user should correctly initialize
the fields including c90fIRegBase, mainArrayBase, shadowRowBase, shadowRowsSize,
pageSize and BDMEnable before passing the structure to SSD functions. The pointer to
CallBack has to be initialized either to a null pointer or a valid CallBack function pointer.

Table 2. SSD configuration structure field definition

Parameter name Type Parameter description
c90fIRegBase UINT32 The base address of C90FL and BIU control registers.
mainArrayBase UINT32 The base address of Flash main array.
mainArraySize UINT32 The size of Flash main array in byte.

UM1620 Rev 4

API specification UM1620

Note:

24

8/41

Table 2. SSD configuration structure field definition (continued)

Parameter name Type Parameter description
shadowRowBase UINT32 The base address of shadow row
shadowRowSize UINT32 The size of shadow row in byte.
shadowRowSize UINT32 Number of blocks of the large address space (128K or 256K).
lowBlockNum UINT32 Block number of the low address space.
midBlockNum UINT32 Block number of the mid address space.
highBlockNum UINT32 Block number of the high address space.
pageSize UINT32 The page size of the C90FL Flash
BDMEnable UINT32 /E()j(iasfi;;:)the state of background debug mode (enable

The type definition for the structure is given below.
typedef struct _ssd_config
{

UINT32 c90flRegBase;

UINT32 mainArrayBase;
UINT32 mainArraySize;
UINT32 shadowRowBase;
UINT32 shadowRowSize;
UINT32 lowBlockNum;

UINT32 midBlockNum;

UINT32 highBlockNum;

UINT32 pageSize;

UINT32 BDMEnable;

} SSD_CONFIG, *PSSD_CONFIG;

The macro value COMPILER_SELECT should be set to
CODE_WARRIOR - if CodeWarrior compiler is used for compiling
DIAB_COMPILER - if Diab compiler is used for compiling

Callback notification

The Standard Software Driver facilitates the user to supply a pointer to ‘CallBack()’ function
so that time-critical events can be serviced during C90FL Standard Software driver
operations.

Servicing watchdog timers is one such time critical event. If it is not necessary to provide the
CallBack service, the user is able to disable it by a NULL function macro.

#define NULL_CALLBACK ((void *) OXFFFFFFFF)

The job processing callback notifications shall have no parameters and no return value.

3

UM1620 Rev 4

API specification

3

Return codes

The return code is returned to the caller function to notify the success or errors of the API
execution. These are the possible values of return code:

Table 3. Return codes

Name Value Description
C90FL_OK 0x00000000 | The requested operation is successful.
C90FL_INFO_RWE 0x00000001 RWE bit is set before Flash operations.
C90FL_INFO_EER 0x00000002 |EER bitis set before Flash operations.
C90FL_ERROR_ALIGNMENT 0x00000100 | Alignment error.
C90FL_ERROR_RANGE 0x00000200 |Address range error.
New program/erase cannot be preformed
C90FL_ERROR_BUSY 0x00000300 | while a high voltage operation is already in
progress.
C90FL_ERROR_PGOOD 0x00000400 | The program operation is unsuccessful.
C90FL_ERROR_EGOOD 0x00000500 | The erase operation is unsuccessful.
C90FL_ERROR_NOT BLANK 0x00000600 | | ere is a non-blank Flash memory location
within the checked Flash memory region.
There is a mismatch between the source
C90FL_ERROR_VERIFY 0x00000700 |data and the content in the checked Flash
memory.
C90FL_ERROR_LOCK_INDICATOR | 0x00000800 | Invalid block lock indicator.
C90FL_ERROR_RWE 0x00000900 lI’?e(;aclic;-wh|Ie-wr|te error occurred in previous
CY0FL_ERROR_PASSWORD 0X00000A00 The passworq provided c_annot u.nlock the
block lock register for register writes
In ‘FlashArraylIntegrityCheck()’ the MISR
C90FL_ERROR_AIC_MISMATCH 0x00000B00 | values generated by the hardware do not
match the values passed by the user.
C90FL_ERROR_AIC_NO_BLOCK | 0x00000c00 | M FlashArmaylntegrityCheck() no blocks
have been enabled for Array Integrity check
In ‘FactoryMarginReadCheck()’ the MISR
C90FL_ERROR_FMR_MISMATCH |0x00000D00 |values generated by the hardware do not
match the values passed by the user.
C90FL_ERROR_FMR_NO_BLOCK |0x00000E00 |/ FactoryMarginReadCheck()’ no blocks
have been enabled for Array Integrity check
C90FL_ERROR_ECC_LOGIC 0x00000F00 In ‘FlashECCLogicCheck()’ the simulated
ECC error has not occurred.
UM1620 Rev 4 9/41

API specification UM1620

2.6

2.6.1

10/41

Normal mode functions

Flashlnit()

Description

This function reads the Flash configuration information from the Flash control registers and
initialize parameters in SSD configuration structure. ‘Flashinit()’ must be called prior to any
other Flash operations.

Prototype
UINT32 Flashlnit (PSSD_CONFIG pSSDConfig);
Arguments
Table 4. Arguments for Flashlnit()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.

Return values

Table 5. Return values for Flashlnit()

Type Description Possible values

Indicates either success or failure type. It is a bit
mapped return code so that more than one condition | C90FL_OK

UINT32 can be returned with a single return code. Each bitin | C90FL_INFO_EER
the returned value, except for CO0FL_OK, indicates a | C90FL INFO RWE
kind of current status of C90FL module. B B

Troubleshooting

None.

Comments

‘Flashinit()’ checks the C90FL_MCR_RWE and CO90FL_MCR_EER bit, and clear them
when any of them is set. If RWE bit is set, Flash program/erase operations can still be
performed.

Assumptions

The user must correctly initialize the fields including c90fIRegBase, mainArrayBase,
shadowRowBase, shadowRowSize, pageSize and BDMEnable before passing the structure
to the Flashinit() functions.

3

UM1620 Rev 4

UM1620

API specification

2.6.2 FlashErase()

Description

This function erases the enabled blocks in the main array or the shadow row. Input
arguments together with relevant Flash module status are checked, and relevant error code
is returned if there is any error.

Prototype

UINT32 FlashErase (PSSD_CONFIG pSSDConfig,

BOOL shadowFlag,

UINT32 lowEnabledBlocks,
UINT32 midEnabledBlocks,
UINT32 highEnabledBlocks,
void (*CallBack)(void));

Arguments
Table 6. Arguments for FlashErase()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. | Please refer to Section 2.3 for more details.
TRUE: the shadow row is erased. The
lowEnabledBlocks, midEnabledBlocks and
Indicate either the main | highEnabledBlocks are ignored;
shadowFlag array or the shadow row | FALSE: The main array is erased. Which blocks are

to be erased.

erased in low, mid and high address spaces are
specified by lowEnabledBlocks, midEnabledBlocks
and highEnabledBlocks respectively.

lowEnabledBlocks

To select the array
blocks in low address
space for erasing.

Bit-mapped value. Select the block in the low
address space to be erased by setting 1 to the
appropriate bit of lowEnabledBlocks. If there is not
any block to be erased in the low address space,
lowEnabledBlocks must be set to 0.

To select the array

Bit-mapped value. Select the block in the middle
address space to be erased by setting 1 to the

back function pointer.

midEnabledBlocks | blocks in mid address | appropriate bit of midEnabledBlocks. If there is not
space for erasing. any block to be erased in the middle address space,
midEnabledBlocks must be set to 0.
Bit-mapped value. Select the block in the high
To select the array address space to be erased by setting 1 to the
highEnabledBlocks | blocks in high address | appropriate bit of highEnabledBlocks. If there is not
space for erasing. any block to be erased in the high address space,
highEnabledBlocks must be set to 0.
Address of void call Any addressable void function address. To disable it
CallBack

use NULL_CALLBACK macro.

3

UM1620 Rev 4

11/41

API specification UM1620

12/41

Return values

Table 7. Return values for FlashErase()

Type Description Possible values
C90FL_OK
UINT32 Successful completion or error value. C90FL_ERROR_BUSY
C90FL_ERROR_EGOOD

Troubleshooting

Table 8. Troubleshooting for FlashErase()

Error codes Possible causes Solution

Wait until all previous

program/erase operations on the

Flash module finish.

Possible cases that erase cannot

start are:

— erase in progress
(FLASH_MCR-ERS is high);

— program in progress
(FLASH_MCR-PGM is high);

Check if the C90FL is available
and high voltage is applied to
CO0FL. Then try to do the erase
operation again.

New erase operation cannot be
performed because there is
program/erase sequence in
progress on the Flash module.

C90FL_ERROR_BUSY

C90FL_ERROR_EGOOD | Erase operation failed.

Comments

When shadowFlag is set to FALSE, the ‘FlashErase()’ function erases the blocks in the main
array. It is capable of erasing any combination of blocks in the low, mid and high address
spaces in one operation. If shadowFlag is TRUE, this function erases the shadow row.

The inputs lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks are bit-mapped
arguments that are used to select the blocks to be erased in the Low/Mid/High address
spaces of main array. The selection of the blocks of the main array is determined by
setting/clearing the corresponding bit in lowEnabledBlocks, midEnabledBlocks or
highEnabledBlocks.

The bit allocations for blocks in one address space are: bit 0 is assigned to block 0, bit 1 to
block 1, etc. The following diagrams show the formats of lowEnabledBlocks,
midEnabledBlocks and highEnabledBlocks for the C90FL module.

For low address space valid bits are from bit 0 to bit (lowBlockNum — 1). In which,
lowBlockNum is the number of low blocks returned from Flashlnit();

For middle address space valid bits are from bit 0 and bit (midBlockNum — 1). In which,
midBlockNum is the number of middle blocks returned from Flashinit();

For high address space valid bits are from bit 0 to bit (highBlockNum — 1). In which,
highBlockNum is the number of high blocks returned from Flashlinit();

3

UM1620 Rev 4

UM1620 API specification
For example, below are bit allocations for blocks in Low/Mid/High Address Space of
SPC564A70:

Table 9. Bit allocation for blocks in low address space
MSB LSB
bit 31 bit 10 bit 9 bit 8 bit 1 bit 0
reserved reserved block 9 block 8 block 1 block 0
Table 10. Bit allocation for blocks in middle address space
MSB LSB
bit 31 bit 4 bit 3 bit 2 bit 1 bit 0
reserved reserved | reserved | reserved | block 1 block 0
Table 11. Bit allocation for blocks in high address space
MSB LSB
bit 31 bit 6 bit 5 bit 4 bit 1 bit 0
reserved reserved block 5 block 4 Block 1 Block 0
If the selected main array blocks or the shadow row is locked for erasing, those blocks or
the shadow row are not erased, but ‘FlashErase()’ still returns C90FL_OK. User needs to
check the erasing result with the ‘BlankCheck()’ function.
It is impossible to erase any Flash block or shadow row when a program or erase operation
is already in progress on C90FL module. ‘FlashErase()’ returns C90FL_ERROR_BUSY
when trying to do so. Similarly, once an erasing operation has started on C90FL module, it is
impossible to run another program or erase operation.
In addition, when ‘FlashErase()’ is running, it is unsafe to read the data from the Flash
module having one or more blocks being erased. Otherwise, it causes a Read-While-Write
error.
Assumptions
It assumes that the Flash block is initialized using a ‘FlashlInit()’ API. User provides the
correct ssdconfig parameters to FlashErase() as returned by Flashinit().
2.6.3 BlankCheck()

3

Description

This function checks on the specified Flash range in the main array or shadow row for blank
state. If the blank checking fails, the first failing address and the failing data in Flash block
are saved.

UM1620 Rev 4 13/41

API specification

UM1620

Prototype

UINT32
UINT32
UINT32
UINT32

UINT64 *pFailData,
void (*CallBack) (void));

BlankCheck (PSSD_CONFIG pSSDConfig,
dest,
size,
* pFailAddress,

Arguments
Table 12. Arguments for BlankCheck()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination address to be Any accessible address aligned on double word
dest . .
checked. boundary in main array or shadow row
If size = 0, the return value is CO90FL_OK.
. Size, in bytes, of the Flash ' . . T .
size 122, In by'es, OT e Fas It should be multiple of 8 and its combination with

region to check.

dest should fall in either main array or shadow row.

pFailAddress

Return the address of the first
non-blank Flash location in the
checking region.

Only valid when this function returns
C90FL_ERROR_NOT_BLANK.

pFailData

Return the content of the first
non-blank Flash location in the
checking region.

Only valid when this function returns
C90FL_ERROR_NOT_BLANK.

CallBack

Address of void callback
function.

Any addressable void function address. To disable
it use NULL_CALLBACK macro.

Return values

Table 13. Return values for BlankCheck()

Type

Description

Possible values

UINT32

Successful completion or error value.

C90FL_OK
C90FL_ERROR_ALIGNMENT
C90FL_ERROR_RANGE
C90FL_ERROR_NOT_BLANK

14/41

UM1620 Rev 4

3

UM1620 API specification

Troubleshooting

Table 14. Troubleshooting for BlankCheck()

Returned error bits Description Solution
The dest/size are not Check if dest and size are aligned on
CO0FL_ERROR_ALIGNMENT properly aligned. double word (64-bit) boundary.
The area specified by dest | Check dest and dest+size. The area
C90FL_ERROR_RANGE and size is out of the valid |to be checked must be within main
C90FL array ranges. array space or shadow space.

There is a non-blank
C90FL_ERROR_NOT_BLANK | double word within the
area to be checked.

Erase the relevant blocks and check
again.

Comments

If the blank checking fails, the first failing address is saved to *pFailAddress, and
the failing data in Flash is saved to *pFailData. The contents pointed by
pFailAddress and pFailData are updated only when there is a non-blank location in
the checked Flash range.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

26.4 FlashProgram()

Description

This function programs the specified Flash areas with the provided source data. Input
arguments together with relevant Flash module status are checked, and relevant error code
is returned if there is any error.

Prototype

UINT32 FlashProgram (PSSD_CONFIG pSSDConfig,
UINT32 dest,

UINT32 size,

UINT32 source,

void (*CallBack)(void));

Arguments
Table 15. Arguments for FlashProgram()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination at_jdress to be Any accessible address aligned on double word
Dest programmed in Flash : .
memory. boundary in main array or shadow row.

UM1620 Rev 4 15/41

3

API specification

UM1620

Table 15. Arguments for FlashProgram() (continued)

Argument

Description

Range

Size

Size, in bytes, of the Flash
region to be programmed.

If size = 0, C90FL_OK is returned.

It should be multiple of 8 and its combination with dest
should fall in either main array or shadow row.

source

Source program buffer
address.

This address must reside on word boundary.

CallBack

Address of void call back
function pointer.

Any addressable void function address. To disable it
use NULL_CALLBACK macro.

Return values

Table 16. Return values for FlashProgram()

Type

Description

Possible values

UINT32

Successful completion or error value.

C90FL_OK
C90FL_ERROR_BUSY
C90FL_ERROR_ALIGNMENT
C90FL_ERROR_RANGE
C90FL_ERROR_PGOOD

Troubleshooting

Table 17. Troubleshooting for FlashProgram()

Returned error bits

Description

Solution

C90FL_ERROR_BUSY

New program operation
cannot be performed
because the Flash
module is busy with
some operation and
cannot meet the
condition for starting a
program operation.

Wait until the current operations finish.
Conditions that program cannot start
are:

1. program in progress (MCR-PGM
high);

2. program not in progress (MCR-PGM
low), but:

— erase in progress but not suspended;

— erase on main array is suspended but
program is targeted to shadow row;

— erase on shadow row is suspended.

C90FL_ERROR_ALIGNMENT

This error indicates that
dest/size/source isn’t
properly aligned

Check if dest and size are aligned on
double word (64-bit) boundary. Check if
source is aligned on word boundary.

C90FL_ERROR_RANGE

The area specified by
dest and size is out of the
valid C90FL address
range.

Check dest and dest+size. Both should
fall in the same C90FL address ranges,
i.e. both in main array or both in shadow
row

C90FL_ERROR_PGOOD

Program operation failed
because this operation
cannot pass PEG check.

Repeat the program operation. Check if
the CO0FL is invalid or high voltage
applied to C90FL is unsuitable.

16/41

UM1620 Rev 4

7

UM1620

API specification

2.6.5

3

Comments

If the selected main array blocks or the shadow row is locked for programming, those blocks
or the shadow row are not programmed, and ‘FlashProgram()’ still returns CO0OFL_OK. User
needs to verify the programmed data with ‘ProgramVerify()’ function.

It is impossible to program any Flash block or shadow row when a program or erase
operation is already in progress on C90FL module. ‘FlashProgram()’ returns
C90FL_ERROR_BUSY when doing so. However, user can use the ‘FlashSuspend()’
function to suspend an on-going erase operation on one block to perform a program
operation on another block. The user has begun an erase operation on the main array or
shadow row, it may be suspended to program on both main array and shadow row.

It is unsafe to read the data from the Flash partitions having one or more blocks being
programmed when ‘FlashProgram()’ is running. Otherwise, it causes a Read-While-Write
error.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

ProgramVerify()

Description

This function checks if a programmed Flash range matches the corresponding source data
buffer. In case of mismatch, the failed address, destination value and source value are
saved and relevant error code is returned.

Prototype

UINT32 ProgramVerify (PSSD_CONFIG pSSDConfig,
UINT32 dest,

UINT32 size,

UINT32 source,

UINT32 *pFailAddress,

UINT64 *pFailData,

UINT64 *pFailSource,

void (*CallBack)(void));

Arguments
Table 18. Arguments for ProgramVerify()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination address to be Any accessible address aligned on double word
Dest P . .
verified in Flash memory. boundary in main array or shadow row.
L If size = 0, C90FL_OK is returned. Its combination
. Size, in byte, of the Flash . R .
Size) . with dest should fall within either main array or
region to verify.
shadow row.
Source Verify source buffer address. | This address must reside on word boundary.
UM1620 Rev 4 17/41

API specification UM1620
Table 18. Arguments for ProgramVerify() (continued)
Argument Description Range
FailAddress Return first failing address in | Only valid when the function returns
P Flash. C90FL_ERROR_VERIFY.
FailData Returns first mismatch data | Only valid when this function returns
P in Flash. C90FL_ERROR_VERIFY.
FailSource Returns first mismatch data | Only valid when this function returns
P in buffer. C90FL_ERROR_VERIFY.
CallBack Address of void call back Any addressable void function address. To disable it
function pointer. use NULL_CALLBACK macro.

18/41

Return values

Table 19. Return values for ProgramVerify()

Type Description Possible values

UINT32 Successful completion or error value.

C90FL_OK
C90FL_ERROR_ALIGNMENT
C90FL_ERROR_RANGE
C90FL_ERROR_VERIFY

Troubleshooting

Table 20. Troubleshooting for ProgramVerify()

Returned error bits

Description Solution

C90FL_ERROR_ALIGNMENT

This error indicates that | Check if dest and size are aligned on
dest/size/source isn’t double word (64-bit) boundary. Check if
properly aligned source is aligned on word boundary

C90FL_ERROR_RANGE

The area specified by Check dest and dest+size, both should
dest and size is out of fall in the same C90FL address ranges,
the valid C90FL address |i.e. both in main array or both in shadow
range. row

C90FL_ERROR_VERIFY

The content in C90FL Check the correct source and destination
and source data addresses, erase the block and
mismatch. reprogram data into Flash.

Comments

The contents pointed by pFailLoc, pFailData and pFailSource are updated only when there
is a mismatch between the source and destination regions.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

3

UM1620 Rev 4

UM1620

API specification

2.6.6

3

CheckSum()

Description

This function performs a 32-bit sum over the specified Flash memory range without carry,
which provides a rapid method for checking data integrity.

Prototype

UINT32 CheckSum (PSSD_CONFIG pSSDConfig,
UINT32 dest,

UINT32 size,

UINT32 *pSum,

void (*CallBack)(void));

Arguments
Table 21. Arguments for CheckSum()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination address to be | Any accessible address aligned on double word
Dest : o .
summed in Flash memory. |boundary in either main array or shadow row.
o If size is 0 and the other parameters are all valid,
Size SIZ?’ in bytes, of the Flash C90FL_OK is returned. Its combination with dest
region to check sum. e :
should fall within either main array or shadow row.
Sum Returns the sum value 0x00000000 - OxFFFFFFFF. Note that this value is
P ’ only valid when the function returns COOFL_OK.
CallBack Address of void call back | Any addressable void function address. To disable it
function pointer. use NULL_CALLBACK macro.

Return values

Table 22. Return values for CheckSum()

Type Description Possible values
C90FL_OK
UINT32 Successful completion or error value. CO0FL_ERROR_ALIGNMENT
C90FL_ERROR_RANGE

UM1620 Rev 4 19/41

API specification UM1620

2.6.7

20/41

Troubleshooting

Table 23. Troubleshooting for CheckSum()

Returned error bits Description Solution

This error indicates that | Check if dest and size are aligned on
C90FL_ERROR_ALIGNMENT | dest/size isn’t properly | double word (64-bit) boundary. Check if
aligned. source is aligned on word boundary.

The area specified by Check dest and dest+size, both should
dest and size is out of fall in the same C90FL address ranges,
the valid C90FL address |i.e. both in main array or both in shadow
range. row.

C90FL_ERROR_RANGE

Comments

None.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

FlashSuspend()

Description

This function checks if there is any high voltage operation, erase or program, in progress on
the C90FL module and if the operation can be suspended. This function suspends the
ongoing operation if it can be suspended.

Prototype

UINT32 FlashSuspend (PSSD_CONFIG pSSDConfig,
UINT8 *suspendState,
BOOL *suspendFlag);

Arguments
Table 24. Arguments for FlashSuspend()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.

Indicate the suspend state
suspendState of C90FL module after the | All return values are enumerated inTable 27.
function being called.

Return whether the
suspended operation, if
there is any, is suspended
by this call.

TRUE: the operation is suspended by this call;

FALSE: either no operation to be suspended or the
operation is suspended not by this call.

suspendFlag

3

UM1620 Rev 4

UM1620

API specification

Return values

Table 25. Return values for FlashSuspend()

Type

Description

Possible values

UINT32 Successful completion.

C90FL_OK

Troubleshooting

None.

Comments

After calling ‘FlashSuspend()’, read is allowed on both main array space and shadow row
without any Read-While-Write error. But data read from the blocks targeted for programming
or erasing is indeterminate even if the operation is suspended.

This function should be used together with ‘FlashResume()’. The suspendFlag returned by
‘FlashSuspend()’ determine whether ‘FlashResume()’ needs to be called or not. If
suspendFlag is TRUE, ‘FlashResume()’ must be called symmetrically to resume the

suspended operation.

Following table defines and describes various suspend states and associated suspend

codes.
Table 26. suspendState definitions
Argument Code Description Valid operation after suspend
Erasing operation, programming
NO OPERTION 0 There is no program/erase operatlop and read are valid on
- operation. both main array space and
shadow row.
There is a program . . .
PGM_WRITE 1 sequence in interlock write Only read is valid on both main
array space and shadow row.
stage.
ERS WRITE 5 .Th.ere is an erase sequence Only read is valid on both main
- in interlock write stage. array space and shadow row.
There is an erase-suspend . . .
ERS_SUS_PGM_WRITE |3 program sequence in Only read is valid on both main
; . array space and shadow row.
interlock write stage.
PGM_SUS 4 The program operation is in | Only read is valid on both main
suspended state. array space and shadow row.
e araso paraton on | PO0TTIIG perton sl
ERS_SUS 5 main array is in suspended |. Y e y space.
is valid on both main array space
state.
and shadow row.

3

UM1620 Rev 4

21/41

API specification UM1620

Table 26. suspendState definitions (continued)

Argument Code Description Valid operation after suspend

The erase operation on
SHADOW_ERS_SUS 6 shadow row is in suspended
state.

Read is valid on both main array
space and shadow space.

The erase-suspended
ERS_SUS PGM_SUS 7 program operation is in
suspended state.

Only read is valid on both main
array space and shadow row.

The table below lists the Suspend Flag values returned against the Suspend State and the
Flash block status.

Table 27. Suspending state and flag vs. C90FL status

suspendState EHV | ERS | ESUS | PGM | PSUS | PEAS suspendFlag
NO_OPERATION X 0 X 0 X X FALSE
PGM_WRITE 0 0 X 1 0 FALSE
ERS_WRITE 0 1 0 0 X X FALSE
ESUS_PGM_WRITE 0 1 1 1 0 X FALSE
1 0 X 1 0 X TRUE
PGM_SUS
X 0 X 1 1 X FALSE
1 1 0 0 X 0 TRUE
ERS_SUS
X 1 1 0 X 0 FALSE
1 1 0 0 X 1 TRUE
SHADOW_ERS_SUS
X 1 1 0 X 1 FALSE
1 1 1 1 0 TRUE
ERS_SUS _PGM_SUS
X 1 1 1 1 X FALSE

The values of EHV, ERS, ESUS, PGM, PSUS and PEAS represent the C90FL status at the
entry of FlashSuspend;

0: Logic zero; 1: Logic one; X: Do-not-care.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

2.6.8 FlashResume()

Description

This function checks if there is any suspended erase or program operation on the C90FL
module, and resumes the suspended operation if there is any.

3

22/41 UM1620 Rev 4

UM1620

API specification

Prototype

UINT32 FlashResume (PSSD_CONFIG pSSDConfig,

UINT8 *resumeState);

Arguments
Table 28. Arguments for FlashResume()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.

P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Indicate the resume state of

resumeState C90FL module after the All return values are listed in Table 29.
function being called.

Return values

Table 29. Return values for FlashResume()

Type

Description

Possible values

UINT32

Successful completion.

C90FL_OK

Troubleshooting

None.

Comments

This function resumes one operation if there is any operation is suspended. For instance, if
a program operation is in suspended state, it is resumed. If an erase operation is in
suspended state, it is resumed too. If an erase-suspended program operation is in

suspended state, the program operation is resumed prior to resuming the erase operation. It
is better to call this function based on suspendFlag returned from ‘FlashSupend()'.

Following table defines and describes various resume states and associated resume codes.

Table 30. resumeState definitions

Code name Value Description
RES_NOTHING 0 No program/erase operation to be resumed
RES PGM 1 A program operation is resumed
RES_ERS 2 A erase operation is resumed
RES ERS PGM 3 A suspended erase-suspended program operation is
- - resumed

Assumptions

It assumes that the Flash block is initialized using a ‘Flashlinit()’ API.

3

UM1620 Rev 4

23/41

API specification UM1620

2.6.9 GetLock()

Description

This function checks the block locking status of Shadow/Low/Middle/High address spaces in
the C90FL module.

Prototype

UINT32 GetLock (PSSD_CONFIG pSSDConfig,
UINT8 blkLocklndicator,

BOOL *blkLockEnabled,

UINT32 *blkLockState);

Arguments
Table 31. Arguments for GetLock()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.

Indicating the address space
and the block locking level,
blkLockIndicator |which determines the address
space block locking register
to be checked.

Refer to Table 34 for valid values for this
parameter.

TRUE — The address space block locking register
is enabled for register writes.

FALSE — The address space block locking
register is disabled for register writes.

Indicate whether the address
blkLockEnabled |space block locking register is
enabled for register writes

Returns the blocks’ locking Bit mapped value indicating the locking status of

bikLockStat status of indicated locking the specified locking level and address space.
ockstate level in the given address 1: The block is locked from program/erase.
Space 0: The block is ready for program/erase

Return values

Table 32. Return values for GetLock()

Type Description Possible values

C90FL_OK

UINT32 Successful completion or error value. CO0FL_ERROR_LOCK_INDICATOR

Troubleshooting

Table 33. Troubleshooting for GetLock()

Returned error bits Possible causes Solution

The input blkLockIndicator | Set this argument to correct

CA0FL_ERROR_LOCK_INDICATOR is invalid. value listed in Table 34.

24/41 UM1620 Rev 4 ‘Yl

UM1620 API specification

Comments

Following table defines and describes various blkLockIndicator values.

Table 34. blkLockIndicator definitions

Code Name Value Description

LOCK_SHADOW_PRIMARY 0 Primary block lock protection of shadow address space

Secondary block lock protection of shadow address
space

—_

LOCK_SHADOW_SECONDARY

LOCK_LOW_PRIMARY
LOCK_LOW_SECONDARY
LOCK_MID_PRIMARY
LOCK_MID_SECONDARY
LOCK_HIGH

Primary block lock protection of low address space

Secondary block lock protection of low address space

Primary block lock protection of mid address space

Secondary block lock protection of mid address space

ol W[IDN

Block lock protection of high address space

For Shadow/Low/Mid address spaces, there are two block lock levels. The secondary level
of block locking provides an alternative means to protect blocks from being modified. A
logical “OR” of the corresponding bits in the primary and secondary lock registers for a block
determines the final lock status for that block. For high address space there is only one
block lock level.

The output parameter blkLockState returns a bit-mapped value indicating the block lock
status of the specified locking level and address space. A main array block or shadow row is
locked from program/erase if its corresponding bit is set.

The indicated address space determines the valid bits of blkLockState. The following
diagrams show the block bitmap definitions of blkLockState for shadow/Low/Mid/High
address spaces.

For low address space valid bits are from bit 0 to bit (lowBlockNum — 1). In which,
lowBlockNum is the number of low blocks returned from Flashlnit();

For middle address space valid bits are from bit 0 and bit (midBlockNum — 1). In which,
midBlockNum is the number of middle blocks returned from Flashinit();

For high address space valid bits are from bit 0 to bit (highBlockNum — 1). In which,
highBlockNum is the number of high blocks returned from Flashlnit();

For shadow row valid bit is bit O;

For example, below are bit allocations for blocks in Low/Mid/High Address Space of

SPC564A70:
Table 35. blkLockState bit allocation for shadow address space
MSB LSB
bit 31 bit 1 bit 0
reserved | ... reserved |shadow row
‘1[UM1620 Rev 4 25/41

API specification UM1620
Table 36. blkLockState bit allocation for low address space
MSB LSB
bit 31 bit 10 bit 9 bit 8 bit 1 bit 0
reserved reserved | block 9 block 8 block 1 block 0
Table 37. blkLockState bit allocation for mid address space
MSB LSB
bit 31 bit 4 bit 3 bit 2 bit 1 bit 0
reserved reserved | reserved | reserved | block 1 | block O
Table 38. blkLockState bit allocation for high address space
MSB LSB
bit 31 bit 6 bit 5 bit 4 bit 1 bit 0
reserved reserved block 5 block 4 block 1 block 0

2.6.10

26/41

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

SetLock()

Description

This function sets the block lock state for Shadow/Low/Middle/High address space on the
C90FL module to protect them from program/erase. The API provides password to enable
block lock register writes when is needed and write the block lock value to block lock

register for the requested address space.

Prototype
UINT32 SetLock (PSSD_CONFIG pSSDConfig,

UINT8 blkLocklndicator,
UINT32 blkLockState,
UINT32 password);

UM1620 Rev 4

3

UM1620 API specification
Arguments
Table 39. Arguments for SetLock()
Argument Description Range
pSSDConfig Pointer to the SSD The values in this structure are chip-dependent.

Configuration Structure.

Please refer to Section 2.3 for more details.

blkLockIndicator

Indicating the address
space and the protection
level of the block lock
register to be read.

Refer to Table 34 for valid codes for this parameter.

The block locks to be set to

Bit mapped value indicating the lock status of the
specified protection level and address space.

register for register write.

blkLockState the specified addrfess 1: The block is locked from program/erase.
space and protection level.)
0: The block is ready for program/erase
Correct passwords for block lock registers are
A password is required to EXA}Z'A1_F:11'1 :‘or IE)ové/;,v(l,jg A;3d3d3r§sfs SSpace Iglock
password enable the block lock ocking Register, UX — or secondary

Low/Mid Address Space Block Locking Register,
and 0xB2B2_2222 for High Address Space Block
Select Register.

Return values

Table 40. Return values for SetLock()

Type

Description

Possible values

UINT32

Successful completion or error value.

C90FL_OK
C90FL_ERROR_LOCK_INDICATOR
C90FL_ERROR_PASSWORD

Troubleshooting

The troubleshooting mentioned below comprises of hardware errors due to both P Flash
block erase verify and P Flash section erase verify command. Apart from these the input
based error handling is also mentioned.

Table 41. Troubleshooting for SetLock()

Returned error bits

Possible causes

Solution

C90FL_ERROR_LOCK_INDICATOR

The input blkLockIndicator
is invalid.

Set this argument to correct
value listed in Table 34.

C90FL_ERROR_PASSWORD

The given password cannot
enable the block lock
register for register writes.

Pass in a correct password.

Comments

The bit field allocation for blkLockState is same as that in ‘GetLock() function.

3

UM1620 Rev 4

27/41

API specification UM1620

2.7

2.71

28/41

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

User test mode functions

FlashArraylntegrityCheck()

Description

This function checks the array integrity of the Flash. The user specified address sequence is
used for array integrity reads and the operation is done on the specified blocks. The MISR
values calculated by the hardware is compared to the values passed by the user, if they are
not the same, then an error code is returned.

Prototype

UINT32 FlashArraylntegrityCheck (PSSD_CONFIG pSSDConfig,
UINT32 lowEnabledBlocks,

UINT32 midEnabledBlocks,

UINT32 highEnabledBlocks,

UINT8 addrSeq,

MISR misrValue,

void (*CallBack)(void));

Arguments
Table 42. Arguments for FlashArraylntegrityCheck()
Argument Description Range
pSSDConfig Pointer to the SSD The values in this structure are chip-dependent.

Configuration Structure. | Please refer to Section 2.3 for more details.

Bit-mapped value. Select the block in the low
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
lowEnabledBlocks. If there is not any block to be
evaluated in the low address space,
lowEnabledBlocks must be set to 0.

To select the array
lowEnabledBlocks blocks in low address
space for erasing.

Bit-mapped value. Select the block in the middle
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
midEnabledBlocks. If there is not any block to be
evaluated in the middle address space,
midEnabledBlocks must be set to 0.

To select the array
midEnabledBlocks | blocks in mid address
space for erasing.

Bit-mapped value. Select the block in the high
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
highEnabledBlocks. If there is not any block to be
evaluated in the high address space,
highEnabledBlocks must be set to 0.

To select the array
highEnabledBlocks | blocks in high address
space for erasing.

3

UM1620 Rev 4

UM1620 API specification

Table 42. Arguments for FlashArraylntegrityCheck() (continued)

Argument Description Range

The default sequence (addrSeq = 0) is meant to
replicate sequences normal “user” code follows,
and thoroughly check the read propagation paths.
This sequence is proprietary.

The alternative sequence (addrSeq = 1) is just
logically sequential.

It should be noted that the time to run a sequential
sequence is significantly shorter than the time to
run the proprietary sequence.

To determine the
address sequence to be
used during array
integrity checks.

addrSeq

A structure variable
containing the MISR
misrValue values calculated by the
user using the off-line
MISR generation tool.

The individual MISR words can range from
0x00000000 - OXFFFFFFFF

Address of void call back | Any addressable void function address. To disable

CallBack function pointer. it use NULL_CALLBACK macro.

Return values

Table 43. Return values for FlashArrayIntegrityCheck()

Type Description Possible values
C90FL_OK
UINT32 Successful completion or error value. C90FL_ERROR_AIC_MISMATCH
C90FL_ERROR_AIC_NO_BLOCK

Troubleshooting

The trouble shooting given here comprises of hardware errors and input parameter error.

Table 44. Troubleshooting for FlashArraylntegrityCheck()

Returned error bits Possible causes Solution

The MISR value calculated | &-calculate the MISR values
o using the correct Data and
by the user is incorrect.

C90FL_ERROR_AIC_MISMATCH addrSeq.

The MISR calculated by the
Hardware is incorrect.

Hardware Error.

Enable any of the blocks using
variables lowEnabledBlocks,
midEnabledBlocks and
highEnabledBlock.

None of the Blocks are
C90FL_ERROR_AIC_NO_BLOCK |enabled for Array Integrity
Check

Comments

The inputs lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks are bit-mapped
arguments that are used to select the blocks to be evaluated in the Low/Mid/High address

UM1620 Rev 4 29/41

3

API specification

UM1620

30/41

spaces of main array. The selection of the blocks of the main array is determined by
setting/clearing the corresponding bit in lowEnabledBlocks, midEnabledBlocks or
highEnabledBlocks.

The bit allocations for blocks in one address space are: bit 0 is assigned to block 0, bit 1 to
block 1, etc. The following diagrams show the formats of lowEnabledBlocks,
midEnabledBlocks and highEnabledBlocks for the C90FL module.

For low address space valid bits are from bit 0 to bit (lowBlockNum — 1). In which,
lowBlockNum is the number of low blocks returned from Flashlnit();

For middle address space valid bits are from bit 0 and bit (midBlockNum — 1). In which,
midBlockNum is the number of middle blocks returned from Flashinit();

For high address space valid bits are from bit 0 to bit (highBlockNum — 1). In which,
highBlockNum is the number of high blocks returned from Flashinit();

For example, below are bit allocations for blocks in Low/Mid/High Address Space of
SPC564A70:

Table 45. Bit allocation for blocks in low address space

MSB LSB
bit 31 bit 10 bit 9 bit 8 bit 1 bit 0
reserved reserved block 9 block 8 block 1 block 0
Table 46. Bit allocation for blocks in middle address space
MSB LSB
bit 31 bit 4 bit 3 bit 2 bit 1 bit 0
reserved reserved | reserved | reserved | block 1 block 0
Table 47. Bit Allocation for Blocks in High Address Space
MSB LSB
bit 31 bit 6 bit 5 bit 4 bit 1 bit 0
reserved reserved block 5 block 4 Block 1 Block 0

If no blocks are enabled the C90FL_ERROR_AIC_NO_BLOCK error code is returned.

Depending on the address sequence specified the MISR values are calculated for the
enabled blocks using the corresponding sequence. If the MISR values calculated by the
hardware is not the same as the values passed to this API by the user then the API returns
the error code C90FL_ERROR_AIC_MISMATCH.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

UM1620 Rev 4

3

UM1620

API specification

2.7.2

3

FlashECCLogicCheck()

Description

This function checks the ECC logic of the Flash. The API simulates a single or double bit
fault depending on the user input. If the simulated ECC error is not detected, then the error
code C90FL_ERROR_ECC_LOGIC is returned.

Prototype

UINT32 FlashECCCLogicCheck (PSSD_CONFIG pSSDConfig,
UINT64 dataval,
UINT64 errBits,
UINT32 eccValue)

Arguments
Table 48. Arguments for FlashECCLogicCheck()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
The 64 bits of data for which
the ECC is calculated. The
dataValue bits of dataValue are flipped | Any 64-bit value.
to generate single or double
bit faults.
Is a 64-bit mask of the bits
errBits at which the user intends to | Any 64-bit value, except zero.
inject error.
It's a 32 bit value which has | This is a corresponding ECC value for the data
eccValue to be passed by user. This | value passed by the user.
is calculated ny using an Note: Same data words should be used in off line
offline ECC Calculator. ECC calculator and Flash ECC logic check API.

Return values

Table 49. Return values for FlashECCLogicCheck()

Type Description Possible values

CI90FL_OK

UINT32 Successful completion or error value. CO0FL_ERROR_ECC_LOGIC

Troubleshooting

The trouble shooting given here comprises of hardware errors and input parameter error.

UM1620 Rev 4 31/41

API specification UM1620

2.7.3

32/41

Table 50. Troubleshooting for FlashECCLogicCheck()

Returned error bits Possible causes Solution

The ECC value calculated by | Re-calculate the ECC values
CY90FL ERROR ECC LOGIC |the user isincorrect. using the correct Data.

Hardware Failure. Hardware error.

Comments

Depending on the errBits value, a single or double bit faults are simulated. When a Flash
read is done, if the simulated error has not occurred, then the API returns the error code
C90FL_ERROR_ECC_LOGIC.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

FactoryMarginReadCheck()

Description

This function checks the Factory Margin reads of the Flash. The user specified margin level
is used for reads and the operation is done on the specified blocks. The MISR values
calculated by the hardware is compared to the values passed by the user, if they are not the
same, then an error code is returned.

Prototype

UINT32 FactoryMarginReadCheck (PSSD_CONFIG pSSDConfig,
UINT32 lowEnabledBlocks,

UINT32 midEnabledBlocks,

UINT32 highEnabledBlocks,

UINT8 marginLevel,

MISR misrValue,

void (*CallBack)(void));

Arguments
Table 51. Arguments for FactoryMarginReadCheck()
Argument Description Range
pSSDConfig Pointer to the SSD The values in this structure are chip-dependent.

Configuration Structure. | Please refer to Section 2.3 for more details.

Bit-mapped value. Select the block in the low
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
lowEnabledBlocks. If there is not any block to be
evaluated in the low address space,

To select the array blocks
lowEnabledBlocks |in low address space for
erasing.

lowEnabledBlocks must be set to 0.

3

UM1620 Rev 4

UM1620

API specification

Table 51. Arguments for FactoryMarginReadCheck() (continued)

Argument Description Range
Bit-mapped value. Select the block in the middle
To select the array blocks address space whose array integrity is to t?e
midEnabledBlocks |in mid address space for evaluated by setting 1 to the appropriate bit of
erasin P midEnabledBlocks. If there is not any block to be
g- evaluated in the middle address space,
midEnabledBlocks must be set to 0.
Bit-mapped value. Select the block in the high
To select the array blocks address space whose array integrity is to t?e
highEnabledBlocks |in high address space for evaluated by setting 1 to the appropriate bit of
erasin highEnabledBlocks. If there is not any block to be
9. evaluated in the high address space,
highEnabledBlocks must be set to 0.
To determine the margin | Selects the margin level that is being checked.
. level to be used during Margin can be checked to an erased level
marginLevel . : _
factory margin read (marginLevel=1) or to a programmed level
checks. (marginLevel =0).
A structure variable
misrValue sgmzlsn::ggl]ctL:Ztlt\aﬂcliSbR the The individual MISR words can range from
: s 0x00000000 - OxFFFFFFFF
user using the offline
MISR generation tool.
CallBack Address of void call back | Any addressable void function address. To disable
function pointer. it use NULL_CALLBACK macro.

Return values

Table 52. Return values for FactoryMarginReadCheck()

Type Description Possible values
C90FL_OK
UINT32 Successful completion or error value. C90FL_ERROR_FMR_MISMATCH
C90FL_ERROR_FMR_NO_BLOCK

Troubleshooting

The trouble shooting given here comprises of hardware errors and input parameter error.

3

UM1620 Rev 4

33/41

API specification UM1620

Table 53. Troubleshooting for FactoryMarginReadCheck()

Returned error bits Possible causes Solution

The MISR value
calculated by the user is
incorrect.

The MISR calculated by
the Hardware is incorrect.

Re-calculate the MISR values
using the correct Data and

C90FL_ERROR_FMR_MISMATCH address.

Hardware Error.

Enable any of the blocks using
variables lowEnabledBlocks,
midEnabledBlocks and
highEnabledBlock.

None of the Blocks are
enabled for Factory
Margin Read Check

C90FL_ERROR_FMR_NO_BLOCK

Comments

The inputs lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks are bit-mapped
arguments that are used to select the blocks to be evaluated in the Low/Mid/High address
spaces of main array. The selection of the blocks of the main array is determined by
setting/clearing the corresponding bit in lowEnabledBlocks, midEnabledBlocks or
highEnabledBlocks.

The bit allocations for blocks in one address space are: bit 0 is assigned to block 0, bit 1 to
block 1, etc. The following diagrams show the formats of lowEnabledBlocks,
midEnabledBlocks and highEnabledBlocks for the C90FL module.

For low address space valid bits are from bit O to bit (lowBlockNum — 1). In which,
lowBlockNum is the number of low blocks returned from Flashinit();

For middle address space valid bits are from bit 0 and bit (midBlockNum — 1). In which,
midBlockNum is the number of middle blocks returned from Flashinit();

For high address space valid bits are from bit 0 to bit (highBlockNum — 1). In which,
highBlockNum is the number of high blocks returned from Flashinit();

For example, below are bit allocations for blocks in Low/Mid/High Address Space of

SPC564A70:
Table 54. Bit allocation for blocks in low address space

MSB LSB

bit 31 bit 10 bit 9 bit 8 bit 1 bit 0
reserved reserved block 9 block 8 block 1 block 0

Table 55. Bit allocation for blocks in middle address space
MSB LSB
bit 31 bit 4 bit 3 bit 2 bit 1 bit 0
reserved reserved | reserved | reserved block 1 block 0
UM1620 Rev 4 ‘Yl

UM1620

API specification

3

Table 56. Bit allocation for blocks in high address space

MSB LSB
bit 31 bit 6 bit 5 bit 4 bit 1 bit 0
reserved reserved block 5 block 4 Block 1 Block O

If no blocks are enabled the C90FL_ERROR_FMR_NO_BLOCK error code is returned.

The MISR values are calculated for the enabled blocks using the logical sequence. If the
MISR values calculated by the hardware is not the same as the values passed to this API by

the user then the API returns the error code C90FL_ERROR_FMR_MISMATCH.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

UM1620 Rev 4

35/41

CallBack timings

UM1620

Appendix A CallBack timings

Note:

36/41

Table 57. CallBack timings period for SPC564A70

API Name Time (us)
System clock = 40 MHz
FlashProgram() (size = 0x1000) 1.7
ProgramVerify() (size = 0x1000, CALLBACK_PV =70) 99.3
FlashErase() (low block 0) 1.7
BlankCheck() (size = LOW_BLOCKO0_SIZE, CALLBACK_BC = 80) 101.3
CheckSum (size = 0x1000, CALLBACK_CS = 120) 103.25
FlashArraylntegrityCheck (low block 0) 1.7
FactoryMarginReadCheck (low block 0) 1.7

Callback time period for ‘CheckSum()’ is measured with CALLBACK_CS (CallBack function

period for checksum)

Callback time period for ‘ProgramVerify()’ is measured with CALLBACK_PV (CallBack

function period for program verify)

Callback time period for ‘BlankCheck()’ is measured with CALLBACK_BC (CallBack

function period for program verify)

UM1620 Rev 4

3

UM1620 System requirements

Appendix B System requirements

The C90FL SSD is designed to support a single C90FL Flash module embedded on
microcontrollers. Before using this SSD on a different derivative microcontroller, user has to
provide the information specific to the derivative through a configuration structure.

Table 58. System requirements

Tool name Description Version number
CodeWarrior IDE Development tool 2.7
Diab PowerPC compiler Compiler 5.7.0.0
GreenHills Development tool 6.1.4
P/E Debugger
‘Y_I UM1620 Rev 4 37/41

Acronyms

UM1620

Appendix C Acronyms

38/41

Table 59. Acronyms

Abbreviation

Complete name

API Application Programming Interface
BIU Bus Interface Unit

ECC Error Correction Code

EVB Evaluation Board

RWwW Read While Write

SSD Standard Software Driver

UM1620 Rev 4

3

UM1620 Document reference

Appendix D Document reference

1. SPC564A70B4, SPC564A70L7 32-bit MCU family built on the embedded Power
Architecture® (RM0068, Doc ID 18132)

3

UM1620 Rev 4 39/41

Revision history

UM1620

Revision history

40/41

Table 60. Document revision history

Date Revision Changes
18-Mar-2013 1 Initial release.
Removed Table: CallBack timings period for SPC56EL60X,
02-May-2013 2 SPC56XL70xx
Updated Appendix D: Document reference
18-Sep-2013 3 Updated Disclaimer.
13-Jul-2020 4 Updated title.

UM1620 Rev 4

3

UM1620

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics — All rights reserved

3

UM1620 Rev 4 41/41

	1 Introduction
	1.1 Document overview
	1.2 Features

	2 API specification
	2.1 General overview
	2.2 General type definitions
	Table 1. Type definitions

	2.3 Configuration parameters and macros
	Table 2. SSD configuration structure field definition

	2.4 Callback notification
	2.5 Return codes
	Table 3. Return codes

	2.6 Normal mode functions
	2.6.1 FlashInit()
	Table 4. Arguments for FlashInit()
	Table 5. Return values for FlashInit()

	2.6.2 FlashErase()
	Table 6. Arguments for FlashErase()
	Table 7. Return values for FlashErase()
	Table 8. Troubleshooting for FlashErase()
	Table 9. Bit allocation for blocks in low address space
	Table 10. Bit allocation for blocks in middle address space
	Table 11. Bit allocation for blocks in high address space

	2.6.3 BlankCheck()
	Table 12. Arguments for BlankCheck()
	Table 13. Return values for BlankCheck()
	Table 14. Troubleshooting for BlankCheck()

	2.6.4 FlashProgram()
	Table 15. Arguments for FlashProgram()
	Table 16. Return values for FlashProgram()
	Table 17. Troubleshooting for FlashProgram()

	2.6.5 ProgramVerify()
	Table 18. Arguments for ProgramVerify()
	Table 19. Return values for ProgramVerify()
	Table 20. Troubleshooting for ProgramVerify()

	2.6.6 CheckSum()
	Table 21. Arguments for CheckSum()
	Table 22. Return values for CheckSum()
	Table 23. Troubleshooting for CheckSum()

	2.6.7 FlashSuspend()
	Table 24. Arguments for FlashSuspend()
	Table 25. Return values for FlashSuspend()
	Table 26. suspendState definitions
	Table 27. Suspending state and flag vs. C90FL status

	2.6.8 FlashResume()
	Table 28. Arguments for FlashResume()
	Table 29. Return values for FlashResume()
	Table 30. resumeState definitions

	2.6.9 GetLock()
	Table 31. Arguments for GetLock()
	Table 32. Return values for GetLock()
	Table 33. Troubleshooting for GetLock()
	Table 34. blkLockIndicator definitions
	Table 35. blkLockState bit allocation for shadow address space
	Table 36. blkLockState bit allocation for low address space
	Table 37. blkLockState bit allocation for mid address space
	Table 38. blkLockState bit allocation for high address space

	2.6.10 SetLock()
	Table 39. Arguments for SetLock()
	Table 40. Return values for SetLock()
	Table 41. Troubleshooting for SetLock()

	2.7 User test mode functions
	2.7.1 FlashArrayIntegrityCheck()
	Table 42. Arguments for FlashArrayIntegrityCheck()
	Table 43. Return values for FlashArrayIntegrityCheck()
	Table 44. Troubleshooting for FlashArrayIntegrityCheck()
	Table 45. Bit allocation for blocks in low address space
	Table 46. Bit allocation for blocks in middle address space
	Table 47. Bit Allocation for Blocks in High Address Space

	2.7.2 FlashECCLogicCheck()
	Table 48. Arguments for FlashECCLogicCheck()
	Table 49. Return values for FlashECCLogicCheck()
	Table 50. Troubleshooting for FlashECCLogicCheck()

	2.7.3 FactoryMarginReadCheck()
	Table 51. Arguments for FactoryMarginReadCheck()
	Table 52. Return values for FactoryMarginReadCheck()
	Table 53. Troubleshooting for FactoryMarginReadCheck()
	Table 54. Bit allocation for blocks in low address space
	Table 55. Bit allocation for blocks in middle address space
	Table 56. Bit allocation for blocks in high address space

	Appendix A CallBack timings
	Table 57. CallBack timings period for SPC564A70

	Appendix B System requirements
	Table 58. System requirements

	Appendix C Acronyms
	Table 59. Acronyms

	Appendix D Document reference
	Revision history
	Table 60. Document revision history

