


# Owner's Manual For Automatic Transfer Switch with Integrated Load Center

100-200 Amp, Service Entrance

Model Number RTG24SHA1 (100A) RTG42SHA1 (200A)



| MODEL NUMBER:   |  |
|-----------------|--|
| SERIAL NUMBER:  |  |
| DATE DURCHASED. |  |

Register your Generac product at: WWW.GENERAC.COM 888-436-3722

Para español, visita: <a href="http://www.generac.com/service-support/product-support-lookup">http://www.generac.com/service-support/product-support-lookup</a>

# **AWARNING**

California Proposition 65. Engine exhaust and some of its constituents are known to the state of California to cause cancer, birth defects, and other reproductive harm. (000004)

# **AWARNING**

California Proposition 65. This product contains or emits chemicals known to the state of California to cause cancer, birth defects, and other reproductive harm. (000005)

# **Table of Contents**

| Section 1: Introduction and Safety                                    | Section 4: Operation                                                                                                                                          |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction1                                                         | Functional Tests and Adjustments13                                                                                                                            |
| Safety Rules                                                          | Manual Operation13Close to Utility Source Side13Close to Generator Source Side14Return to Utility Source Side14Voltage Checks14                               |
| Section 2: General Information Introduction5                          | Utility Voltage Checks                                                                                                                                        |
| Unpacking 5                                                           | Checking Automatic Operation15                                                                                                                                |
| Equipment Description                                                 | Installation Summary15 Shutting Generator Down While Under Load15 Testing The Smart A/C Module15                                                              |
| Transfer Switch Data Decal 6                                          | Testing The Smart Management Module16                                                                                                                         |
| Transfer Switch Enclosure                                             | Section 5: Drawings and Diagrams Installation Drawings                                                                                                        |
| Smart Management Module (SMM) (Sold Separately)                       | Interconnection Drawings                                                                                                                                      |
| Section 3: Installation                                               | Air-Cooled 100A Generator (page 2 of 2)20                                                                                                                     |
| Introduction to Installation                                          | Interconnection Drawing 10000005901— Air-Cooled 200A Generator (page 1 of 2)21 Interconnection Drawing 10000005901— Air-Cooled 200A Generator (page 2 of 2)22 |
| Installing Branch Circuit Conductors 10                               | Interconnection Drawing 10000005855—                                                                                                                          |
| Connecting Power Source and Generator Power Supply 10                 | Liquid-Cooled 100A Generator (page 1 of 2)23 Interconnection Drawing 10000005855— Liquid-Cooled 100A Generator (page 2 of 2)24                                |
| Connecting Start Circuit Wires11                                      | Interconnection Drawing 10000005855—<br>Liquid-Cooled 200A Generator (page 1 of 2)25                                                                          |
| Connecting Smart A/C Module (SACM) 11 Control of Air Conditioner Load | Interconnection Drawing 10000005855— Liquid-Cooled 200A Generator (page 2 of 2)26                                                                             |
| Auxiliary Contact12                                                   |                                                                                                                                                               |

This page intentionally left blank.

# Section 1: Introduction and Safety

#### Introduction

Thank you for purchasing a Generac Power Systems Inc. product. This unit has been designed to provide high performance, efficient operation, and years of use when maintained properly.



#### **AWARNING**

Consult Manual. Read and understand manual completely before using product. Failure to completely understand manual and product could result in death or serious injury. (000100a)

Read this manual thoroughly and understand all of the instructions, cautions, and warnings before using this equipment. If any section of the manual is not understood, contact your nearest authorized dealer, or contact Generac Customer Service at 1-888-436-3722 (1-888-GENERAC), or <a href="https://www.generac.com">www.generac.com</a> with any questions or concerns.

The owner is responsible for proper maintenance and safe use of the equipment. Before operating or servicing this transfer switch:

- Study all warnings in this manual and on the product carefully.
- Become familiar with this manual and the unit before use.
- Refer to the installation sections of the manual for instructions on final assembly procedures. Follow the instructions completely.

Save these instructions for future reference. ALWAYS supply this manual to any individual that will use this equipment.

The information in this manual is accurate based on products produced at the time of publication. The manufacturer reserves the right to make technical updates, corrections, and product revisions at any time without notice.

## **Safety Rules**

The manufacturer cannot anticipate every possible circumstance that might involve a hazard. The warnings in this manual, and on tags and decals affixed to the unit are, therefore, not all inclusive. If using a procedure, work method or operating technique that the manufacturer does not specifically recommend, verify that it is safe for others. Also make sure the procedure, work method or operating technique utilized does not render the equipment unsafe.

# **Safety Symbols and Meanings**

Throughout this publication, and on tags and decals affixed to the transfer switch, DANGER, WARNING, CAUTION and NOTE blocks are used to alert personnel to special instructions about a particular operation that may be hazardous if performed incorrectly or carelessly. Observe them carefully. Their definitions are as follows:

## **ADANGER**

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

(000001)

# **AWARNING**

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

(000002)

# **ACAUTION**

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

(000003)

**NOTE:** Notes contain additional information important to a procedure and will be found within the regular text of this manual.

These safety alerts cannot eliminate the hazards that they indicate. Common sense and strict compliance with the special instructions while performing the action or service are essential to preventing accidents.

#### **Electrical Hazards**



#### **ADANGER**

Electrocution. High voltage is present at transfer switch and terminals. Contact with live terminals will result in death or serious injury.

(000129)

#### A DANGER

Equipment malfunction. Installing a dirty or damaged transfer switch will cause equipment malfunction and will result in death or serious injury.

(000119)



#### A DANGER

Electrocution. Water contact with a power source, if not avoided, will result in death or serious injury.

(000104)

# WARNING

Only a trained and licensed electrician should perform wiring and connections to unit. Failure to follow proper installation requirements could result in death, serious injury, and damage to equipment or property. (000155)



#### DANGER

Electrocution. In the event of electrical accident, immediately shut power OFF. Use non-conductive implements to free victim from live conductor. Apply first aid and get medical help. Failure to do so will result in death or serious injury. (000145)

## **ACAUTION**

Equipment damage. Verify all conductors are tightened to the factory specified torque value. Failure to do so could result in damage to the switch base. (000120)

## **▲ DANGER**

Electrical backfeed. Use only approved switchgear to isolate generator from the normal power source. Failure to do so will result in death, serious injury, and equipment damage. (000237)

# **ACAUTION**

Equipment damage. Perform functional tests in the exact order they are presented in the manual. Failure to do so could result in equipment damage. (000121)



#### ADANGER

Electrocution, equipment and property damage. Handle transfer switches carefully when installing. Never install a damaged transfer switch. Doing so could result in death or serious injury, equipment and property damage. (000195)

#### **ACAUTION**

Equipment damage. Exceeding rated voltage and current will damage the auxiliary contacts. Verify that voltage and current are within specification before energizing this equipment. (000134a)



#### A DANGER

Electrocution. Turn utility supply OFF before working on utility connections of the transfer switch. Failure to do so will result in death or serious injury. (000123)



#### **ADANGER**

Electrocution. Do not disable or modify the connection box door safety switch. Doing so will result in death or serious injury.

(000157)

#### **▲** DANGER

Automatic start-up. Disconnect utility power and render unit inoperable before working on unit. Failure to do so will result in death or serious injury.

(000191)

#### **General Hazards**

#### **ADANGER**

Electrical backfeed. Use only approved switchgear to isolate generator from the normal power source. Failure to do so will result in death, serious injury, and equipment damage. (000237)



#### **ADANGER**

Electrocution. High voltage is present at transfer switch and terminals. Contact with live terminals will result in death or serious injury.

(000129)



#### **▲** DANGER

Electrocution. In the event of electrical accident, immediately shut power OFF. Use non-conductive implements to free victim from live conductor. Apply first aid and get medical help. Failure to do so will result in death or serious injury. (000145)



#### WARNING

This unit is not intended for use as a prime power

source. It is intended for use as an intermediate power

supply in the event of temporary power outage only. See individual unit specifications for required

maintenance and run times pertaining to use.

This product is not intended to be used in a critical life support application. Failure to adhere to this warning could result in death or serious injury. (000209a)



#### **ADANGER**

Electrocution. Turn utility supply OFF before working on utility connections of the transfer switch. Failure to do so will result in death or serious injury. (000123)



#### **ADANGER**

Electrocution. Water contact with a power source, if not avoided, will result in death or serious injury.

(000104)

# **AWARNING**

Sudden start-up. Always set the safety disconnect switch to MANUAL before working on equipment. Failure to do so could result in death or serious injury.

(000194)

(000247)



# **▲**DANGER

Electrocution. Do not wear jewelry while working on this equipment. Doing so will result in death or serious injury.

(000188)

# Competent, qualified personnel should install, operate and service this equipment. Adhere strictly to local, state and national electrical and building codes. When using this equipment, comply with regulations established by the National Electrical Code (NEC), CSA Standard; C22.1 Canadian Electric Code, the Occupational Safety and Health Administration (OSHA), or the local agency for workplace health and safety.

- If working on this equipment while standing on metal or concrete, place insulative mats over a dry wood platform. Work on this equipment only while standing on such insulative mats.
- Never work on this equipment while physically or mentally fatigued.
- Any voltage measurements should be performed with a meter that meets UL3111 safety standards, and meets or exceeds overvoltage class CAT III.

# **▲**DANGER

Electrocution. Only authorized personnel should access transfer switch interior. Transfer switch doors should be kept closed and locked. Failure to do so will result in death or serious injury. (000213)

## **ADANGER**

Automatic start-up. Disconnect utility power and render unit inoperable before working on unit. Failure to do so will result in death or serious injury.

(000191)

Introduction and Safety

This page intentionally left blank.

# Section 2: General Information

#### Introduction

Thank you for purchasing a Generac transfer switch. This manual has been prepared especially for the purpose of familiarizing personnel with the design, application, installation, operation and servicing of the applicable equipment. Read this manual carefully and comply with all instructions. This will help to prevent accidents or damage to equipment that might otherwise be caused by carelessness, incorrect application, or improper procedures.

# **Unpacking**

Carefully unpack the transfer switch. Inspect closely for any damage that might have occurred during shipment. The purchaser must file with the carrier any claims for loss or damage incurred while in transit.

Check that all packing material is completely removed from the switch prior to installation.

## **Equipment Description**

The automatic transfer switch is used for transferring electrical load from a UTILITY (NORMAL) power source to a GENERATOR (STANDBY) power source. Such a transfer of electrical loads occurs automatically when the UTILITY power source has failed or is substantially reduced and the GENERATOR source voltage and frequency have reached an acceptable level. The transfer switch prevents electrical feedback between two different power sources (such as the UTILITY and GENERATOR sources) and, for that reason, codes require it in all standby electric system installations.

The transfer switch consists of a transfer mechanism, utility service disconnect circuit breaker, a control relay, fuses, terminal strip, and fuse holder for connection of sensing wires.

This transfer switch is suitable for use as service equipment.

#### Transfer Switch Mechanism

See *Figure 2-1*. These switches are used with a single-phase system, when the single-phase NEUTRAL line is to be connected to a neutral lug and is not to be switched.

This transfer switch is suitable for control of motors, electric discharge lamps, tungsten filament and electric heating equipment where the sum of motor full load ampere ratings and the ampere ratings of other loads do not exceed the ampere rating of the switch and the tungsten load does not exceed 30 percent of the switch rating.

This UL listed transfer switch is for use in optional standby systems only (NEC article 702).

A 100A rated switch is suitable for use on utilty services capable of delivering not more than 10,000 RMS symmetrical amperes, 240 VAC maximum. A 200A rated switch is suitable for use on a utility service capable of delivering not more than 22,000 RMS symmetrical amperes, 240 VAC maximum when utilized with Siemens and Murray branch circuit breakers, and suitable for use on utility services capable of 10,000 RMS symmetrical amperes, 240 VAC maximum when utilized with Eaton and Square D Homeline branch circuit breakers.

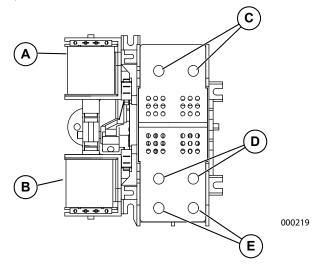



Figure 2-1. Typical Single-Phase ATS Transfer
Mechanism

| Α | Utility Closing Coil     |
|---|--------------------------|
| В | Generator Closing Coil   |
| С | Utility Lugs (N1 & N2)   |
| D | Generator Lugs (E1 & E2) |
| Е | Load Lugs (T1 & T2)      |

#### **Load Center Circuit Breakers**

This switch is listed for use with the following one inch breakers:

| Manufacturer      | SCCR Amperage Rating                                   |  |
|-------------------|--------------------------------------------------------|--|
| Siemens           | 22 kA (200A)                                           |  |
| Murray            | 10 kA (100A)                                           |  |
| Eaton             | 10 kA (100A and 200A)                                  |  |
| Square D Homeline | including GFCI, AFCI and tandem breakers up to 50 amps |  |

**NOTE:** For branch circuits and feeders over 50 amps, only listed Siemens or Murray circuit breakers shall be used.

#### Service Disconnect Breaker and Terminal Ratings

|                                                    | Breaker Specification                                                           | on                            |  |
|----------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------|--|
| Description                                        | Siemens MBK-100A Type EQ8681<br>or MBK-200A Type EQ8695<br>2-pole, Single Phase |                               |  |
| Voltage / Amp<br>Rating                            | 120/240 VAC, 100A or 200A<br>(80% Continuous Current Rated)                     |                               |  |
| Frequency                                          | 60 Hertz                                                                        |                               |  |
| •                                                  | ility Service and ect Breakers                                                  | Tightening Torque             |  |
| Utility<br>Connection                              | #4 - #3/0 AWG<br>(Cu/Al)                                                        | 55 in-lbs. (6.2 Nm)           |  |
| Generator / Load<br>Connection                     | #14 - 1/0 (Cu/AI)                                                               | 50 in-lbs. (5.6 Nm)           |  |
| Neutral / Ground<br>Bars                           | 10-14 Cu/10-12 Al                                                               | 20 in-lbs. (2.3 Nm)           |  |
|                                                    | 8 AWG                                                                           | 25 in-lbs. (2.8 Nm)           |  |
|                                                    | 6-4 AWG                                                                         | 35 in-lbs. (4.0 Nm)           |  |
| Ground<br>Conductors Only                          | (2) or (3) 14 AWG                                                               | 20 in-lbs. (2.3 Nm)           |  |
|                                                    | (2) 12-10 AWG                                                                   | 20 in-lbs. (2.3 Nm)           |  |
| Control Wiring                                     |                                                                                 | 11 in-lbs. (1.2 Nm)           |  |
| 200 Amp Utility Service and<br>Disconnect Breakers |                                                                                 | Tightening Torque             |  |
| Utility<br>Connection                              | #1 - 300MCM(Cu/Al)                                                              | 250 in-lbs.<br>(28.2 Nm)      |  |
| Generator / Load<br>Connection                     | #6 - 250MCM (Cu/Al)                                                             | 275 in-lbs.<br>(31.0 Nm)      |  |
| Neutral                                            | #4 - 2/0                                                                        | 40–50 in-lbs.<br>(4.5–5.6 Nm) |  |
| Ground                                             | (2) or (3) 14 AWG                                                               | 20 in-lbs. (2.3 Nm)           |  |
|                                                    | (2) 12-10 AWG                                                                   | 20 in-lbs. (2.3 Nm)           |  |
| Control Wiring                                     | Control Wiring 11 in-lbs. (1.2 Nm)                                              |                               |  |

#### **Transfer Switch Data Decal**

A data decal is permanently affixed to the transfer switch enclosure. Use this transfer switch only with the specific limits shown on the data decal and on other decals and labels that may be affixed to the switch. This will prevent damage to equipment and property.

When requesting information or ordering parts for this equipment, make sure to include all information from the data decal.

For future reference, record the Model and Serial numbers in the space provided on the front cover of this manual

#### Transfer Switch Enclosure

The standard switch enclosure is a National Electrical Manufacturer's Association (NEMA) and UL Type 1, intended for indoor installation only.

#### Safe Use of Transfer Switch



#### **AWARNING**

Consult Manual. Read and understand manual completely before using product. Failure to completely understand manual and product could result in death or serious injury. (000100a)

Before installing, operating or servicing this equipment, read the *Safety Rules* carefully. Comply strictly with all *Safety Rules* to prevent accidents and/or damage to the equipment. The manufacturer recommends that a copy of the *Safety Rules* be posted near the transfer switch. Also, be sure to read all instructions and information found on tags, labels and decals affixed to the equipment.

Three publications that outline the safe use of transfer switches are the following:

- NFPA 70; National Electrical Code
- UL 1008; STANDARD FOR SAFETY-AUTOMATIC TRANSFER SWITCHES
- UL 67; Panelboards Marking and Application Guide

**NOTE:** It is essential to use the latest version of any standard to ensure correct and current information.

# **Load Management Options**

Load management systems are designed to work together to prevent a generator from being overloaded by large appliance loads. A Smart A/C Module (SACM) is standard in these switches. An optional Smart Management Module (SMM) is also available.

#### Smart A/C Module (SACM)

See *Figure 2-2*. Up to four air conditioner loads can be managed by the SACM. The SACM manages, or temporarily disconnects, the connected loads in the event of a drop in generator frequency (overload). Loads to be managed are in 4 priority levels on the module.

Priorities A/C 1-4 (A) have connections for an air conditioner. To control an air conditioner, no additional equipment is required. Internal normally closed relays interrupt the 24 VAC thermostat control signal to disable the air conditioner load.

Four LEDs, located on the SACM (B), illuminate when a load is connected and powered.

The SACM has a test button used to simulate an overload condition. This button operates even when the transfer signal is inactive.

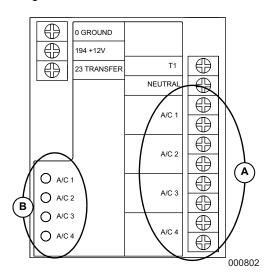



Figure 2-2. Smart A/C Module (SACM)

# Smart Management Module (SMM) (Sold Separately)

See *Figure* 2-3. Any loads, including central air conditioners, can be managed using a SMM. The system can accommodate up to eight individual SMMs.

**NOTE:** SMMs are self-contained and have individual built-in controllers.

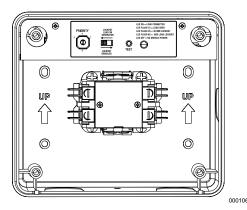



Figure 2-3. Smart Management Module (SMM)

#### **Application Considerations**

Generator overload condition is determined by generator frequency. Loads are shed when frequency is less than 58 Hz for three seconds or less than 50 Hz for one-half second (for 60 Hz systems).

The SACM can be used in conjunction with individual SMMs to manage a combined total of 12 loads: eight SMMs and four SACMs.

- Use Priorities A/C 1–4 on the SACM as the top priorities, then up to four SMMs as Priorities 5–8.
- Use only select A/C priorities on the SACM as the top priorities, then use additional SMMs as the remaining priorities.
- A SMM can share a priority with an A/C priority on the SACM provided the generator is sized to handle the combined surge load from both appliances. Sharing priorities can allow up to 12 loads to be managed in a properly sized system.

In any combination of modules, the recovery times after a loss of utility power or shutdown due to overload are shown in Table 1.

**Table 1. Priority Settings** 

| Priority | Recovery Time        | Smart A/C<br>Module | Smart<br>Management<br>Module |
|----------|----------------------|---------------------|-------------------------------|
| 1        | 5 minutes            | Yes                 | Yes                           |
| 2        | 5 minutes 15 seconds | Yes                 | Yes                           |
| 3        | 5 minutes 30 seconds | Yes                 | Yes                           |
| 4        | 5 minutes 45 seconds | Yes                 | Yes                           |
| 5        | 6 minutes            | NA                  | Yes                           |
| 6        | 6 minutes 15 seconds | NA                  | Yes                           |
| 7        | 6 minutes 30 seconds | NA                  | Yes                           |
| 8        | 6 minutes 45 seconds | NA                  | Yes                           |

Refer to the SMM Owner's/Installation Manual for detailed characteristics and specifications of that product.

**General Information** 

This page intentionally left blank.

# Section 3: Installation

#### Introduction to Installation

This equipment has been wired and tested at the factory. Installing the switch includes the following procedures:

- Mounting the enclosure.
- Connecting power sources and load leads.
- · Connecting the generator start and sensing circuit.
- Connecting any auxiliary contact (if needed).
- Testing functions.

## **Mounting**

Mounting dimensions for the transfer switch enclosure are in this manual. Enclosures are typically wall-mounted. See *Drawings and Diagrams*.

## **ADANGER**

Equipment malfunction. Installing a dirty or damaged transfer switch will cause equipment malfunction and will result in death or serious injury.

(000119)

This transfer switch is mounted in a NEMA 1 type enclosure. It can only be mounted indoors and should be based on the layout of installation, convenience and proximity to the utility supply and load center.

Install the transfer switch as close as possible to the electrical loads that are to be connected to it. Mount the switch vertically to a rigid supporting structure. To prevent switch distortion, level all mounting points.

#### Install Breakers

**1.** See *Figure 3-1*. Remove screws from front panel assembly (A).

**NOTE:** There are four screws on the front panel assembly on 100A models; six on 200A models.

- **2.** Remove front panel assembly, and open door to expose breaker knockouts (B). Remove knockouts required for selected breaker installation.
- **3.** After removing knockouts, install front panel assembly and secure with screws.

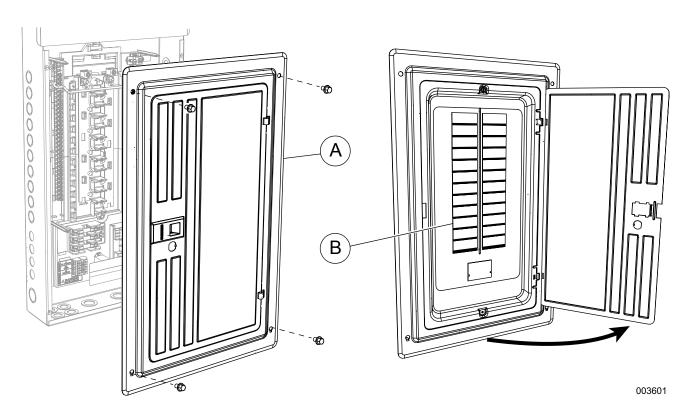



Figure 3-1. Front Panel Assembly and Breaker Knockouts

**4.** See *Figure 3-2*. Insert tab on each breaker (A) into the hook on the bus (B). Push the breaker into the bus until it snaps into place.

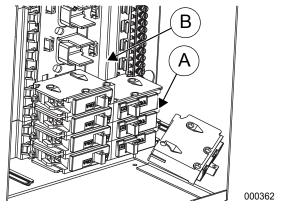



Figure 3-2. Install Breakers

 See Figure 3-3. Apply provided circuit directory labels (C) and mark each circuit accordingly with a pen.

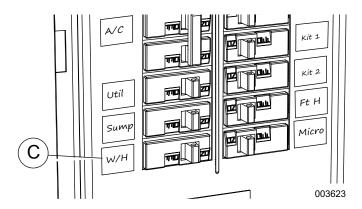



Figure 3-3. Label Breakers

# **Installing Branch Circuit Conductors**

- Install properly sized branch circuit conductors into the transfer switch through the knockouts provided. Additional knockouts can be made in the field as needed.
- Connect the ungrounded branch circuit conductors (hot conductors) to a properly sized circuit breaker approved for use with the transfer switch.
- Terminate the neutral conductor and equipment grounding conductor of the branch circuit at the neutral/equipment ground terminal bars.
- 4. Size all conductors, raceways, conduits, and junction boxes, if required, to the applicable NEC code articles and follow the NEC installation requirements for the wiring method(s) selected.

**NOTE:** Multi-wire branch circuits must be installed in accordance with NEC Article 210.4.

# Connecting Power Source and Generator Power Supply



#### **ADANGER**

Electrocution. Turn utility and emergency power supplies to OFF before connecting power source and load lines. Failure to do so will result in death or serious injury. (000116)

Installation and interconnection diagrams are provided in this manual.

**NOTE:** All installations must comply with national, state and local codes. It is the responsibility of the installer to perform an installation that will pass the final electrical inspection.

- Connect utility supply at the utility service disconnect circuit breaker terminals.
- Connect loads to the Integrated Load Center with customer-supplied circuit breakers.
- See Figure 2-1. Connect generator to the generator terminals (E1 and E2) on the transfer mechanism.
- Connect the generator neutral wire to the top neutral lug or side lugs on the panelboard. An additional neutral lug kit (pre-assembled on the 200A panelboard) is provided for installation in the field if needed.
- Connect neutral conductors to the lugs and terminals along the neutral/ground bars in the panelboard section of the transfer switch.
- Connect grounding electrode conductors to the neutral terminal bars in the panelboard portion of the switch.

Conductor sizes must be adequate to handle the maximum current to which they will be subjected, based on the 75°C column of tables, charts, etc. used to size conductors. The installation must comply fully with all applicable codes, standards and regulations.

All power cables can enter the enclosure through the provided knockouts. Additional knockouts into the enclosure can be made in the field as needed.

**NOTE:** Cover and protect the transfer switch and breakers while removing knockout slugs. Avoid dropping slugs or metal chips into the enclosure.

Conduit entry shall maintain the proper wire bending spaces required by Tables 312.6 (A) and (B) in the NEC. Conduits should be arranged to provide separation between the Utility and Generator supply conductors inside the enclosure.

**NOTE:** If aluminum conductors are used, apply corrosion inhibitor to conductors. After tightening terminal lugs, carefully wipe away any excess corrosion inhibitor.

Tighten terminal lugs to the torque values as noted on the decal located on the inside of the door. After tightening terminal lugs, carefully wipe away any excess corrosion inhibitor.

# **ACAUTION**

Equipment damage. Verify all conductors are tightened to the factory specified torque value. Failure to do so could result in damage to the switch base. (000120)

# **Connecting Start Circuit Wires**

Control system interconnections may consist of N1, N2, and T1, and leads 23 and 194. The generator control wiring is a Class 1 signaling circuit. Reference instruction manual of specific engine generator for wiring connection details. Recommended wire gauge sizes for this wiring depends on the length of the wire, as recommended in the following chart:

| Maximum Wire Length   | Recommended Wire Size |
|-----------------------|-----------------------|
| 1–115 ft (1–35 m)     | No. 18 AWG            |
| 116–185 ft (36–56 m)  | No. 16 AWG            |
| 186–295 ft (57–89 m)  | No. 14 AWG            |
| 296-460 ft (90-140 m) | No. 12 AWG            |

**Exception:** Conductors of AC and DC circuits, rated 1000 volts nominal, or less, shall be permitted to occupy the same equipment, cable, or conduit. All conductors shall have an insulation rating equal to at least the maximum circuit voltage applied to any conductor within the equipment, cable, or conduit. See NEC 300.3(C)(1).

# Connecting Smart A/C Module (SACM)

See *Figure 3-4*. The Smart A/C Module (SACM) can control an air conditioner (24 VAC) directly.

#### Control of Air Conditioner Load

- **1.** Route the thermostat cable (from the furnace/ thermostat to the outdoor air conditioner unit) to the transfer switch.
- Connect the wire to the terminal strip terminals (A/C

   on the SACM as shown in *Figure 3-4*. These are normally closed contacts which open upon load shed conditions. Route thermostat wire away from high voltage wires.
- **3.** If required, connect additional air conditioners to the terminal strip terminals (A/C 2-4).

| Contact Ratings |                     |  |
|-----------------|---------------------|--|
| A/C 1-4         | 24 VAC, 1.0 Amp Max |  |

**NOTE:** These instructions are for a typical air conditioner installation. Control of certain heat pumps and 2-stage air conditioners may require special connections or the use of SMMs to control the loads.

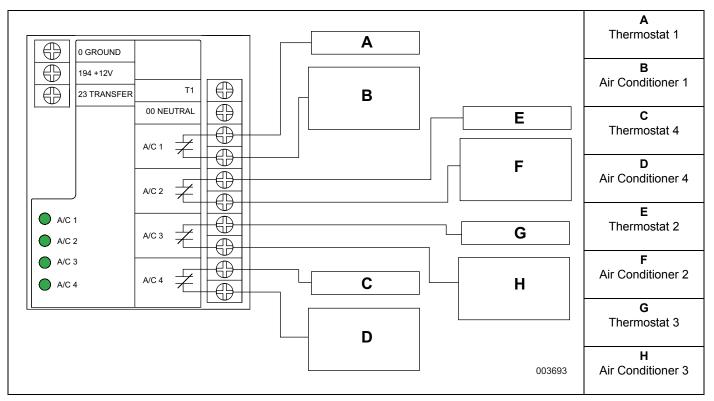



Figure 3-4. Typical SACM Connections

# **Auxiliary Contact**

See *Figure 3-5*. If desired, there is one normally-closed Auxiliary Contact (A) on the transfer switch to operate customer accessories, remote advisory lights, or remote annunciator devices. A suitable power source must be connected to the common terminal. If needed, an extra auxiliary contact can be added.

The auxiliary contact is normally closed when the transfer switch is in utility mode. The contacts will open when the transfer switch is in the standby power mode.

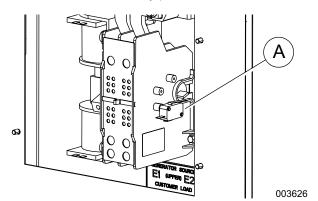



Figure 3-5. Auxiliary Contact

**NOTE:** Auxiliary Contact is rated 10 amps at 125 or 250 volts AC, and 0.6 amps at 125 volts DC.

# **ACAUTION**

Equipment damage. Exceeding rated voltage and current will damage the auxiliary contacts. Verify that voltage and current are within specification before energizing this equipment. (000134a)

# Section 4: Operation

## **Functional Tests and Adjustments**

Following transfer switch installation and interconnection, inspect the entire installation carefully. A competent, qualified electrician should inspect it. The installation should comply strictly with all applicable codes, standards, and regulations. When absolutely certain the installation is proper and correct, complete a functional test of the system.

# **ACAUTION**

Equipment damage. Perform functional tests in the exact order they are presented in the manual. Failure to do so could result in equipment damage.

(000121)

IMPORTANT: Before proceeding with functional tests, read and make sure all instructions and information in this section is understood. Also read the information and instructions of labels and decals affixed to the switch. Note any options or accessories that might be installed and review their operation.

# **Manual Operation**



#### **ADANGER**

Electrocution. Do not manually transfer under load. Disconnect transfer switch from all power sources prior to manual transfer. Failure to do so will result in death or serious injury, and equipment damage. (000132)

See *Figure 4-1*. A manual handle is shipped with the transfer switch and is stored in a bracket (B) within the cabinet. Manual operation must be checked BEFORE the transfer switch is operated electrically. To check manual operation, proceed as follows.

IMPORTANT NOTE: Never manually operate the transfer switch mechanism while it is energized with utility or generator power.

- **1.** Confirm the generator is OFF.
- Turn OFF both UTILITY (service disconnect circuit breaker) and EMERGENCY (generator main line circuit breaker) power supplies to the transfer switch.
- 3. Note position of transfer mechanism main contacts by observing the movable contact carrier arm. This can be viewed through the long narrow slot in the inside cover of the ATS. The top of the movable contact carrier arm is yellow to be easily identified.
- Manual operation handle in the UP position—LOAD terminals (T1, T2) are connected to UTILITY terminals (N1, N2).

 Manual operation handle in the DOWN position— LOAD terminals (T1, T2) are connected to EMERGENCY terminals (E1, E2).

# **ACAUTION**

Equipment damage. Do not use excessive force while manually operating the transfer switch. Doing so could result in equipment damage.

(000122)

#### **Close to Utility Source Side**

See *Figure 4-1*. Before proceeding, verify the position of the switch by observing the position of manual operation handle. If the handle is UP, the contacts are closed in the NORMAL (UTILITY) position, no further action is required. If the handle is DOWN, proceed with Step 1.

- With the handle inserted into the movable contact carrier arm (A), move handle UP. Be sure to hold on to the handle as it will move quickly after the center of travel.
- 2. Remove manual operating handle from movable contact carrier arm. Return handle to storage bracket (B).

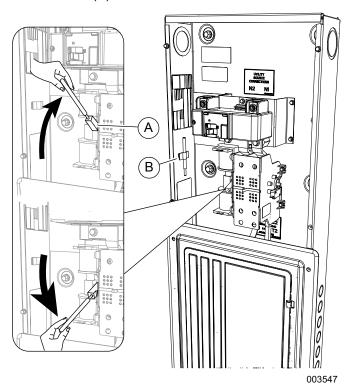



Figure 4-1. Manual Operation

#### Close to Generator Source Side

See *Figure 4-1*. Before proceeding, verify the position of the switch by observing the position of the manual operation handle. If the handle is DOWN, the contacts are closed in the GENERATOR (STANDBY) position. No further action is required. If the handle is UP, proceed with Step 1.

- With the handle inserted into the movable contact carrier arm (A), move the handle DOWN. Be sure to hold on to the handle as it will move quickly after the center of travel.
- 2. Remove manual operating handle from movable contact carrier arm. Return manual operating handle to storage bracket (B).

#### **Return to Utility Source Side**

- 1. Manually actuate switch to return manual operating handle to the UP position.
- Remove manual operating handle from movable contact carrier arm. Return manual operating handle to storage bracket (B).

## **Voltage Checks**

#### **Utility Voltage Checks**

 Turn ON the UTILITY power supply to the transfer switch using the utility service disconnect circuit breaker.



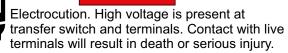
#### **ADANGER**

Electrocution. High voltage is present at transfer switch and terminals. Contact with live terminals will result in death or serious injury.

(000129)

With an accurate AC voltmeter, check for correct voltage. Measure across ATS terminal lugs N1 and N2; N1 to NEUTRAL and N2 to NEUTRAL.




#### **ADANGER**

Electrocution. Turn utility supply OFF before working on utility connections of the transfer switch. Failure to do so will result in death or serious injury. (000123)

#### **Generator Voltage Checks**

- On the generator panel, select the MANUAL mode of operation. The generator should crank and start.
- 2. Let the generator stabilize and warm up at no-load for at least five minutes.
- 3. Set the generator's main circuit breaker (CB1) to its ON or CLOSED position.

#### **ADANGER**



(000129)

4. With an accurate AC voltmeter and frequency meter, check the no-load, voltage and frequency. Measure across ATS terminal lugs E1 to E2; E1 to NEUTRAL and E2 to NEUTRAL.

| Frequency               | 60-62 Hz    |
|-------------------------|-------------|
| Terminals E1 to E2      | 240-246 VAC |
| Terminals E1 to NEUTRAL | 120-123 VAC |
| Terminals E2 to NEUTRAL | 120-123 VAC |

- **5.** When certain that generator supply voltage is correct and compatible with transfer switch ratings, turn OFF the generator supply to the transfer switch.
- **6.** On the generator panel, select the OFF mode to shut down the generator.

NOTE: Do NOT proceed until generator AC output voltage and frequency are correct and within stated limits. If the no-load voltage is correct but no-load frequency is incorrect, the engine governed speed may require adjustment. If no-load frequency is correct but voltage is not, the voltage regulator may require adjustment.

#### Generator Tests Under Load

- Set the generator main circuit breaker to OFF or OPEN.
- 2. Set the utility service disconnect circuit breaker to OFF or OPEN.
- **3.** Manually actuate the transfer switch main contacts to the emergency (Standby) position. See "Manual Operation".
- To start the generator, select the MANUAL mode of operation. When engine starts, let it stabilize for a few minutes.
- 5. Set the generator main circuit breaker to ON or CLOSED. The generator now powers all LOAD circuits. Check generator operation under load as follows:
  - Turn on electrical loads to the full rated wattage/amperage capacity of the generator. DO NOT OVERLOAD.
  - With maximum rated load applied, check voltage and frequency across transfer switch terminals E1 and E2. Voltage should be greater than 230 VAC (240 VAC system); frequency should be greater than 59 Hz.

- Verify that the gas pressure remains within acceptable parameters (see the generator Installation Guidelines manual).
- Let the generator run under rated load for at least 30 minutes. With unit running, listen for unusual noises, vibration, overheating, etc., that might indicate a problem.
- When test under load is complete, set main circuit breaker of the generator to the OFF or OPEN position.
- Let the generator run at no-load for several minutes. Then, shut down by selecting the OFF mode.
- **8.** Move the main switch contacts back to the utility position.

**NOTE:** See *Manual Operation*. Operating lever of transfer switch should be in UP position.

- 9. Install front cover of enclosure.
- 10. Turn on the utility power supply to transfer switch, using whatever means provided (such as a utility main line circuit breaker). The utility power source now powers the loads.

# **Checking Automatic Operation**

To check the system for proper automatic operation, proceed as follows:

- **1.** Verify generator is in OFF mode.
- 2. Set the generator main circuit breaker to ON.
- **3.** On the generator panel, select AUTO. The system is now ready for automatic operation.
- Turn utility power supply to the transfer switch OFF with the Utility Breaker.

With the generator ready for automatic operation, and the utility source power turned off, the engine should crank and start after a ten second delay (factory default setting). After starting, the transfer switch should connect load circuits to the standby side after a five (5) second warmup delay. Timer duration varies depending on whether or not Cold Smart Start (if equipped) is enabled. Let the system operate through its entire automatic sequence of operation.

With the generator running and loads powered by generator AC output, turn ON the utility power supply to the transfer switch. The following should occur:

- After approximately 15 seconds, the switch should transfer loads back to the utility power source.
- Approximately one minute after re-transfer, the engine should shut down.

With the generator in the AUTOMATIC mode, the system is now set for fully automatic operation.

## **Installation Summary**

- 1. Verify the installation has been properly performed as outlined by the manufacturer and that it meets all applicable laws and codes.
- **2.** Verify proper operation of the system as outlined in the appropriate installation and owner's manuals.
- **3.** Educate the end-user on the proper operation, maintenance and service call procedures.

#### Shutting Generator Down While Under Load

**IMPORTANT NOTE:** To avoid equipment damage, follow these steps, in order, when shutting the generator down during utility outages. Shutdowns may be required during outages to perform routine maintenance or to conserve fuel.

# To turn the generator OFF (while running in AUTO and online):

- 1. Turn main utility disconnect off.
- **2.** Turn the generator MLCB (generator disconnect) to OFF (open).
- **3.** Run generator for approximately one minute to allow proper cooling.
- 4. Turn the generator OFF.

#### To turn the generator back ON:

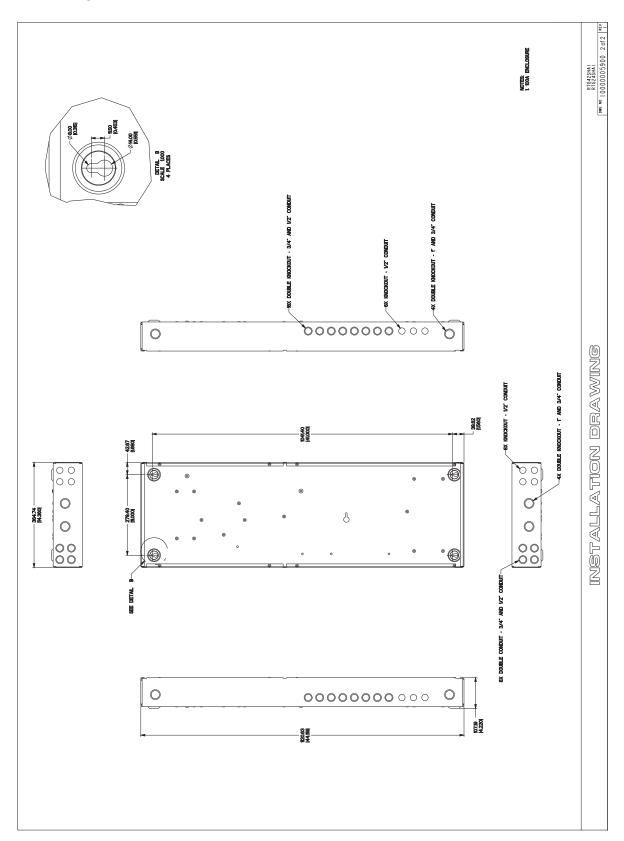
- **1.** Place generator in AUTO mode. Start generator and warm up for a few minutes.
- 2. Set MLCB (generator disconnect) to ON (closed).

The system now operates in automatic mode. Main utility disconnect can be turned ON (closed). To shut the unit off, repeat the entire process.

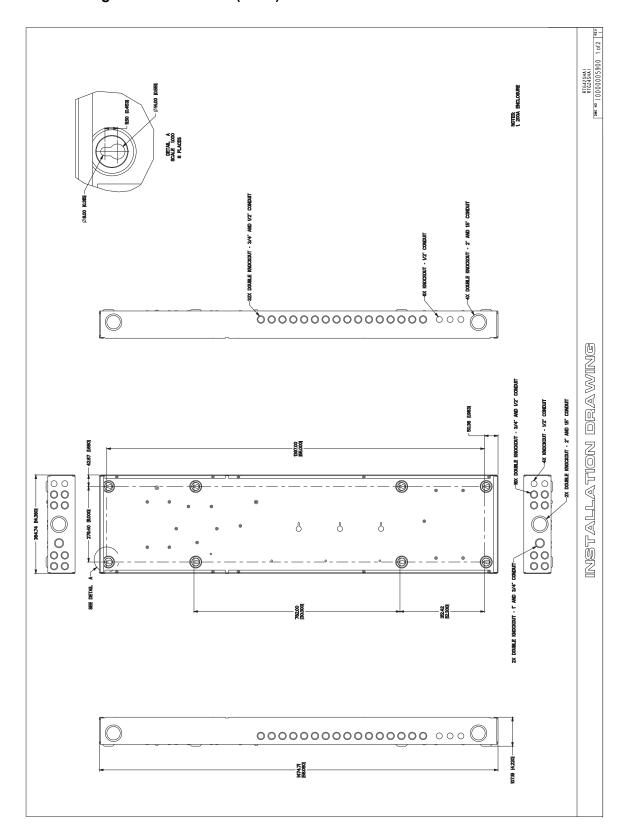
# **Testing The Smart A/C Module**

A Test pushbutton is provided on the bottom of the Smart A/C Module to test the operation of the load shed functions. The Test button will work when the ATS is in the Utility or the Generator position.

- **1.** Turn on the Utility supply to the ATS.
- 2. Verify managed loads are powered and all LEDs illuminate on Smart A/C Module.
- 3. Press the TEST button on the Smart A/C Module.
- **4.** Verify that all of the connected loads to be "shed" become disabled.
- **5.** After five (5) minutes verify A/C 1 is energized and Status LED A/C 1 is ON.
- After another 15 seconds, verify A/C 2 is energized and Status LED A/C 2 is ON.
- **7.** After another 15 seconds, verify Load A/C 3 is energized and Status LED Load A/C 3 is ON.
- **8.** After another 15 seconds, verify A/C 4 is energized and Status LED A/C 4 is ON.

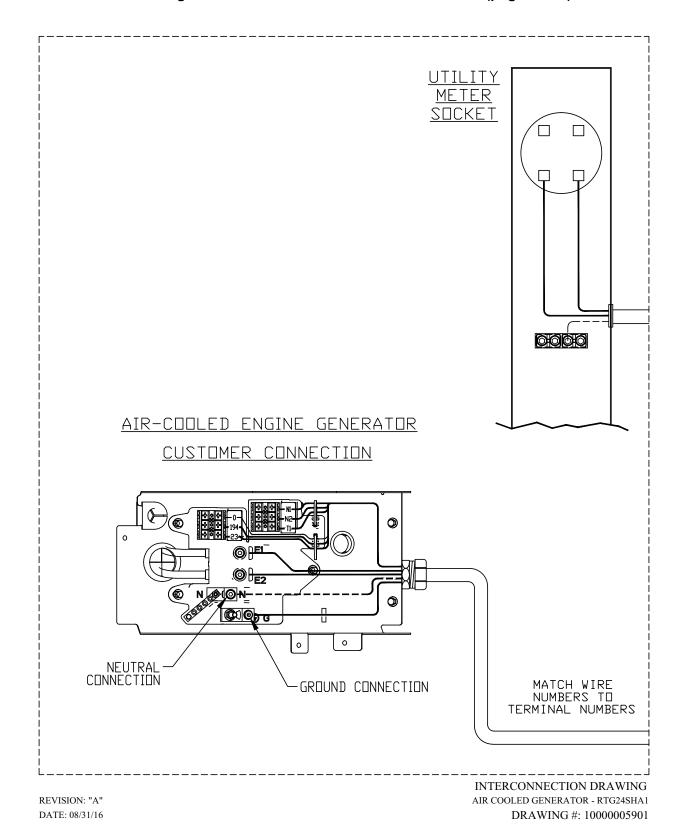

# **Testing The Smart Management Module**

Refer to the SMM Owner's/Installation Manual for testing that product.

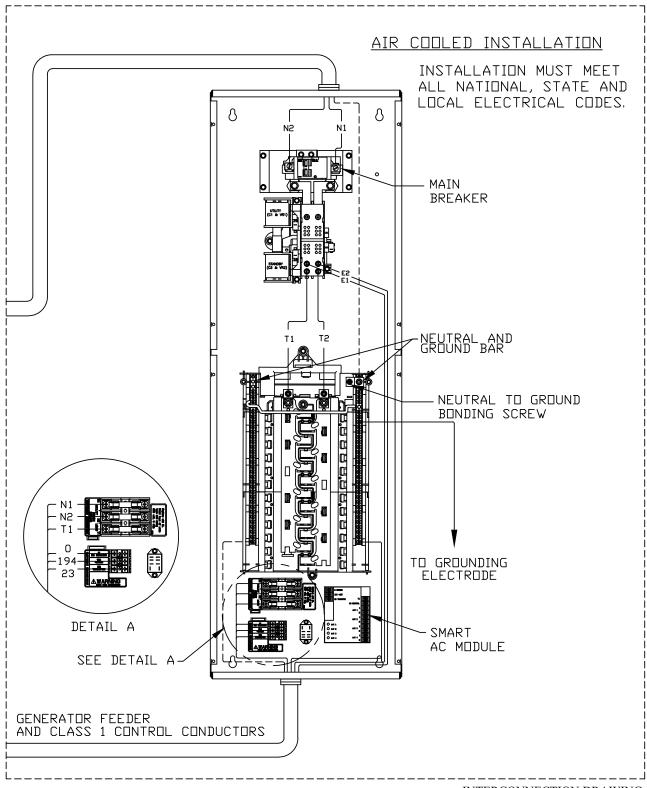

# Section 5: Drawings and Diagrams

# **Installation Drawings**

Installation Drawing No. 10000005900 (100A)



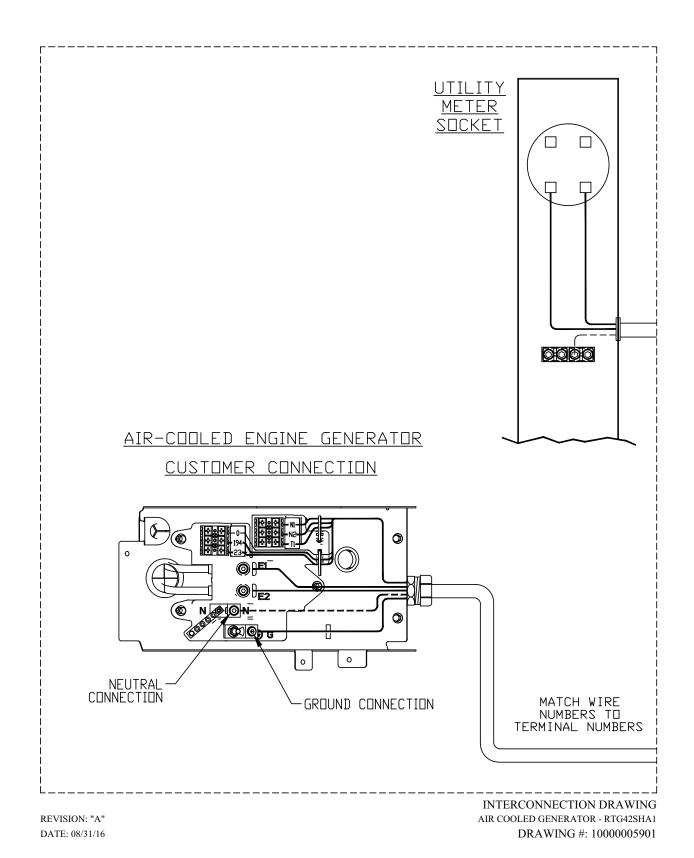

# Installation Drawing No. 10000005900 (200A)



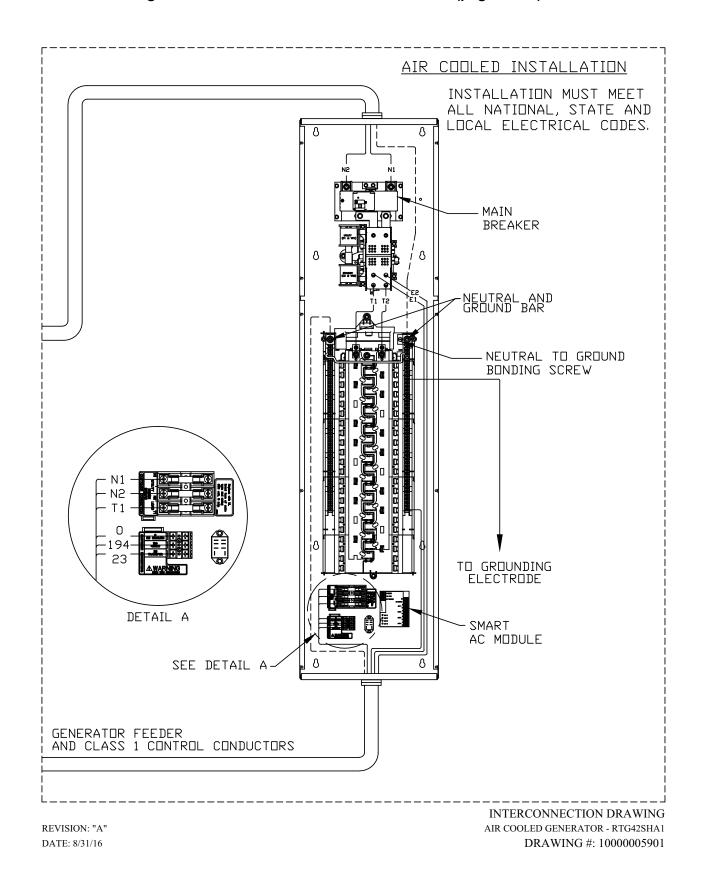

# **Interconnection Drawings**

#### Interconnection Drawing 10000005901—Air-Cooled 100A Generator (page 1 of 2)



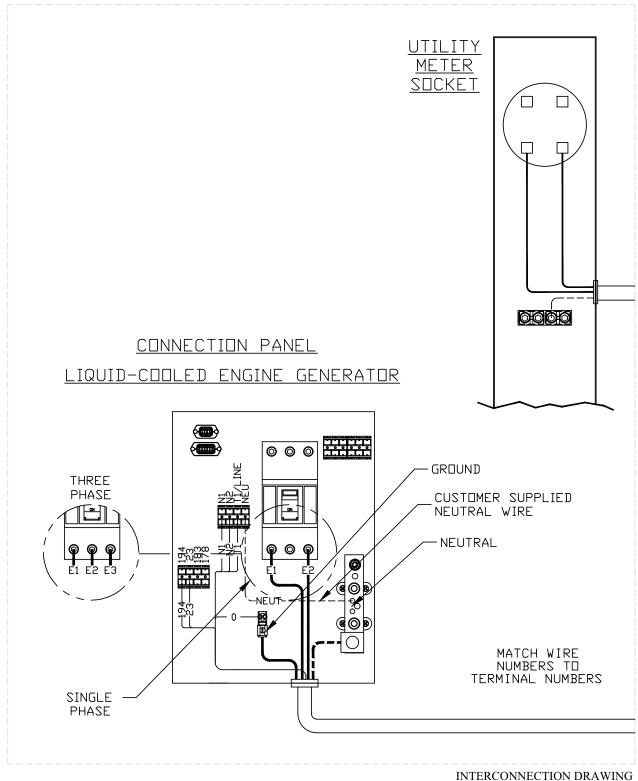

#### Interconnection Drawing 10000005901—Air-Cooled 100A Generator (page 2 of 2)




REVISION: "A"
DATE: 08/31/16

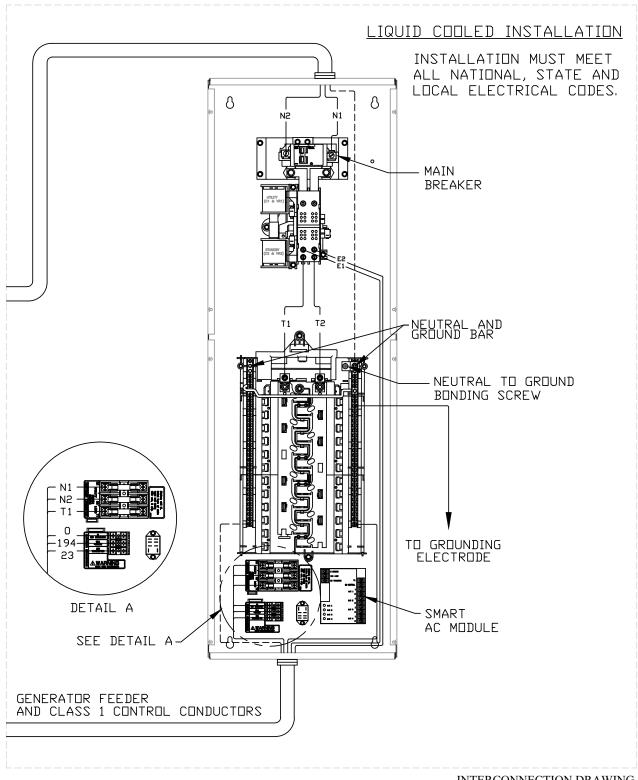
INTERCONNECTION DRAWING AIR COOLED GENERATOR - RTG24SHA1 DRAWING #: 10000005901

## Interconnection Drawing 10000005901—Air-Cooled 200A Generator (page 1 of 2)



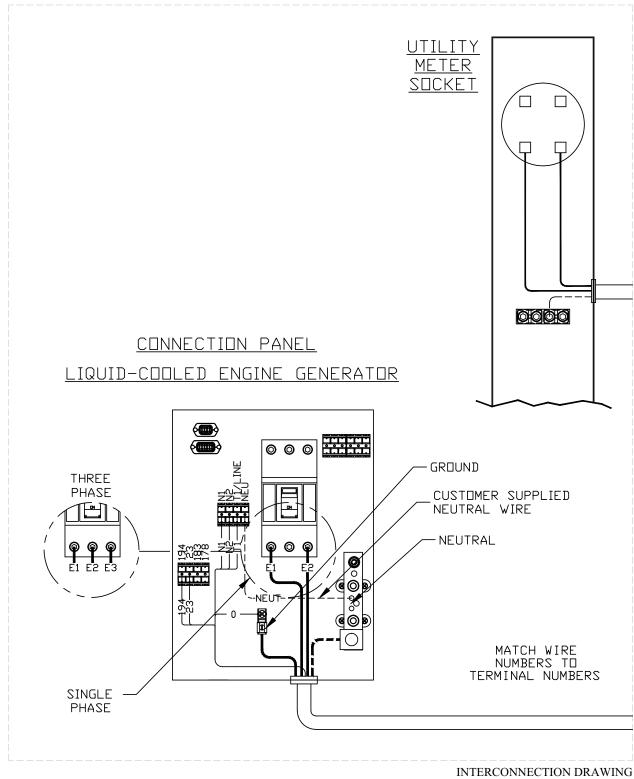

## Interconnection Drawing 10000005901—Air-Cooled 200A Generator (page 2 of 2)




22

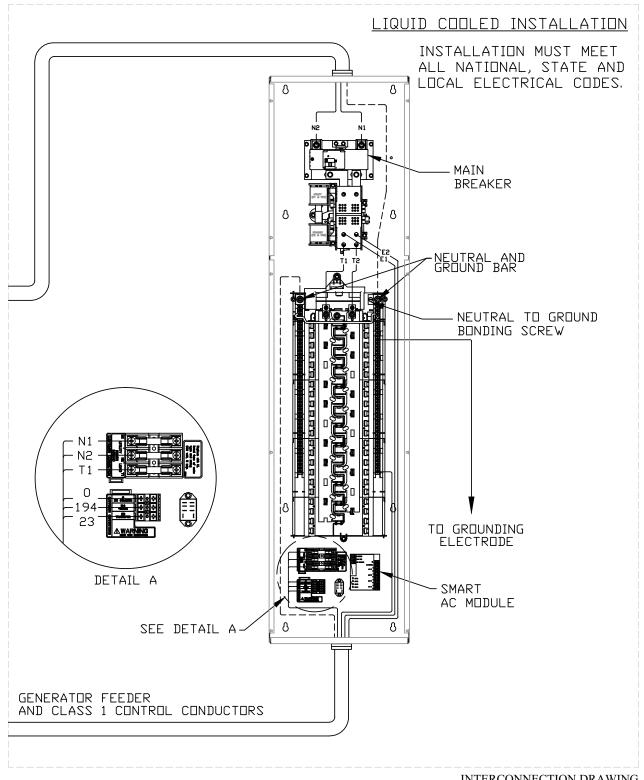
## Interconnection Drawing 10000005855—Liquid-Cooled 100A Generator (page 1 of 2)




REVISION: "A" DATE:08/31/16 INTERCONNECTION DRAWING LIQUID COOLED GENERATOR - RTG24SHA1 DRAWING #: 10000005855

# Interconnection Drawing 10000005855—Liquid-Cooled 100A Generator (page 2 of 2)




REVISION: "A" DATE: 08/31/16 INTERCONNECTION DRAWING LIQUID COOLED GENERATOR - RTG24SHA1 DRAWING #: 10000005855

## Interconnection Drawing 10000005855—Liquid-Cooled 200A Generator (page 1 of 2)



REVISION: "A" DATE:08/31/16 INTERCONNECTION DRAWING LIQUID COOLED GENERATOR - RTG42SHA1 DRAWING #: 10000005855

## Interconnection Drawing 10000005855—Liquid-Cooled 200A Generator (page 2 of 2)



REVISION: "A" DATE: 08/31/16 INTERCONNECTION DRAWING LIQUID COOLED GENERATOR - RTG42SHA1 DRAWING #: 10000005855



Part No. 10000005755 Rev. A 10/10/2016