
Learning Formatting Style Transfer and Structure Extraction for
Spreadsheet Tables with a Hybrid Neural Network Architecture

Haoyu Dong
Microsoft Research

Beijing, China
hadong@microsoft.com

Jiong Yang
Xi’an Jiaotong University

Xi’an, China
yang1365340347@stu.xjtu.edu.cn

Shi Han
Microsoft Research

Beijing, China
shihan@microsoft.com

Dongmei Zhang
Microsoft Research

Beijing, China
dongmeiz@microsoft.com

ABSTRACT
Table formatting is a typical task for spreadsheet users to better
exhibit table structures and data relationships. But quickly and
effectively formatting tables is a challenge for users. Lots of man-
ual operations are needed, especially for complex tables. In this
paper, we propose techniques for table formatting style transfer,
i.e., to automatically format a target table according to the style of
a reference table. Considering the latent many-to-many mappings
between table structures and formats, we propose CellNet, which
is a novel end-to-end, multi-task model leveraging conditional Gen-
erative Adversarial Networks (cGANs) with three key components
to (1) model and recognize table structures; (2) encode formatting
styles; (3) learn and apply the latent mapping based on recognized
table structure and encoded style, respectively. Moreover, we build
up a spreadsheet table corpus containing 5,226 tables with high-
quality formats and 784 tables with human-labeled structures. Our
evaluation shows that CellNet is highly effective according to both
quantitative metrics and human perception studies by comparing
with heuristic-based and other learning-based methods.

CCS CONCEPTS
• Information systems → Semi-structured data; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Spreadsheets is the most popular end-user development tools for
data management, presentation, and analysis. Since spreadsheet
tables are flexible with various structures, table formats such as
border, font, alignment, and color, are created to help better ex-
hibit table structures and data relationships. Take Figure 1(b)(c) for
example, these well-formatted tables are much easier to read and
understand for humans than the table in Figure 1(a) without any
human-crafted formats.

However, table structures and data semantics are often complex.
As a result, manual formatting of tables can be tedious and time-
consuming. Automatic recommendation of table formats may help,
but it would have difficulties when a user wants to enforce a consis-
tent formatting style for multiple tables on the same spreadsheet,
or wants to reuse a desirable formatting style from another table.
Therefore, techniques are required to enable table formatting style
transfer, i.e., to automatically format a target table according to the
style of a reference table.

Table formats are highly dependent on table structures. For ex-
ample, borders are usually used to shape data fields or data groups.
And they are also dependent on data distribution and semantics, e.g.,
color/bold-font are usually used to highlight extreme/aggregation
values. Therefore, we formulate the table style transfer task as a
conditional generation task, i.e., generating the formats of a target
table conditioning on both the structures and contents of it and a
formatting style for reference. However, there lack key techniques
to (1) model and recognize table structures; (2) encode formatting
styles; (3) learn and apply the latent mappings between structure,
style, and formats. In addition, table structure modeling concerns
global relationships across all cells in the table, and the mappings
from structures to formatting styles are latent and not one-to-one.
These facts jointly challenge the applicability of supervised classifi-
cation approaches.

In this paper, we propose CellNet, a hybrid data-driven model
for table formatting style transfer. This model mainly contains two
parts: the first part extracts table structures from table contents; the
second part transfers the formatting style from a reference table
to a target table conditioned on extracted table structures and the
reference style. We conclude contributions in this paper as follows:

• We propose and formulate a new problem, formatting style
transfer for spreadsheet tables. Since formatting generation
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(b) A sheet with human-crafted formats.

(d) A sheet with human-labeled table structures.

(a) A sheet with default formats.

(c) A sheet with human-crafted formats.

Figure 1: An example of table formatting styles and the annotated table structure. (a) shows a spreadsheet consisting of three
tables with default formats. (b) and (c) are two spreadsheets with the same table data but different formatting styles. (d) illus-
trates table structure annotations with intuitive coloring.

is highly dependent on table structures, we propose a joint
learning framework, CellNet, to learn table structure extrac-
tion and table formatting generation simultaneously.

• For the task of table structure extraction, we propose a CNN-
based model to detect table headers and total rows/columns.
To enable supervised training, we build up a human-labeled
dataset with broad coverage of diverse table structures.

• For the task of formatting style transfer, although paired
data which can be directly consumed by supervised models
are not available, large amounts of unpaired well-formatted
tables are available on the web and can be easily obtained.
Conditional Generative Adversarial Nets (cGANs) [7, 10, 13]
is a promising framework to learn style transfer from un-
paired data. While standard GANs [6] aim to learn a gener-
ative model that fits the natural data distribution, cGANs
learn a conditional generative model to map data from one
domain to the other, and have been successful in image style
transfer [5, 14, 15]. So we propose a cGAN-based method for
formatting style transfer conditioned on recognized table
structures and the reference style.

Our experiments show the effectiveness of CellGAN. For table
header prediction, it achieves 92.7% accuracy for top header predic-
tion and 95.2% accuracy for left header prediction, outperforming
all the baseline methods. CellNet achieves 95.2% precision and 82.4%
recall for total row prediction, and it also achieves 93.3% precision
and 88.6% recall for total column prediction. In the formatting style
transfer task, both quantitative evaluations and human studies
demonstrate the superiority of CellNet against other approaches.

2 PROBLEM STATEMENT
2.1 Table Structure Extraction
Table structure extraction is the task of recognizing structural com-
ponent types inside a table. We identified five kinds of components
for spreadsheet tables: top headers, left headers, value regions, total
rows, and total columns. A top header is a rectangular range of
cells that contains the labels of table columns and can be either flat
or hierarchical. A left header is a rectangular range of cells that
contains the labels of table rows. A value region is a rectangular
range of cells that contains table data (i.e., the body of the table).
Specifically, if a number in the value region is the sum of other
numbers, then we call this number as a total. If the majority of
numbers in a row are the sum of respective numbers in other rows,
then we call this row as a total row. A total column is similar
to a total row but is column-wise arranged. Total rows and total
columns are commonly used in the spreadsheet table, e.g. total rows
and columns are highlighted in orange in Figure 1(d). Moreover, to-
tals are important indications for data groups, e.g. D5:G5, D10:G10
and D15:G15 in Figure 1(d) indicate three data groups consisting of
Sales, Market and IT.

2.2 Formatting Style Transfer
Given a reference table A with style sA and a target table B with
style sB, the style transfer task aims to generate formats ffake for
reference table A with similar style with sB. But to the best of our
knowledge, there are no existing research works on describing
or defining table formatting styles. To capture various formatting
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Figure 2: Network architecture inCellNet to transfer style froma target tableB to the reference tableA. The structure extraction
module learns to recognize structural components and the formatting generator learns to generate formats based on style B.

styles in a more explicit way, we try to explore intuitive and mean-
ingful style variables for controllable formatting generation. For
example, we find an intuitive and quantitative variable to describe
the density of cell borders in a region, and we call it border den-
sity. Here border density can be easily calculated by counting the
proportion of the cells with borders in this region. Densities are
also intuitive for other format types that can be controlled via a
ratio-like variable, such as the portion of highlighted cells in the
top header. Specifically, since fill color and font bold are commonly
used to highlight the totals in a table, we directly use a boolean
encoding to represent if a total row or a total column is highlighted
with color or font bold. To this end, we list 16 intuitive and mean-
ingful variables for style control as shown in Table 1. With the
knowledge of table formats and table structure, all these variables
can be obtained in a quantitative manner. Then we can use mean
squared error (MSE) to quantify the similarity between the fake for-
matting style sfake and the target formatting style sB. In this paper,
we adopt four commonly used format types, border, alignment, fill
color, and font bold, to demonstrate the validity of our approach.

3 METHOD
3.1 Datasets
The WebSheet dataset is a large-scale web-crawled spreadsheet cor-
pus including 4,290,022 spreadsheet files[3]. We obtained our train-
ing and testing data via the following procedure: First, spreadsheets
in WebSheet are grouped by their HTTP domains and selected
with the top 12 domains with high formatting quality and broad
coverage of diverse table structures. Second, all tables in selected
spreadsheets are extracted by a recent table detection approach,
TableSense[3]. Third, 15% of the spreadsheet tables of each domain
are selected for human labeling according to the structure defini-
tions in Section 2.1. Finally, a final corpus containing 5,226 tables
with high-quality formats and 784 tables with structure labeling can
be obtained. 70% of the tables are randomly selected as the training
set, and the remaining 30% are used for testing. Table 2 shows the
statistics for each dataset on table structure and formatting.

Table 1: Variables for formatting style encoding.

Description Value
Border
Proportion of horizontal borders in value region. [0.0, 1.0]
Proportion of vertical borders in value region. [0.0, 1.0]
Proportion of horizontal borders in top header. [0.0, 1.0]
Proportion of vertical borders in top header. [0.0, 1.0]
Proportion of horizontal borders in left header. [0.0, 1.0]
Proportion of vertical borders in left header. [0.0, 1.0]
Color (transparent and white are excluded)
Proportion of colorized cells in value region. [0.0, 1.0]
Proportion of colorized cells in top header. [0.0, 1.0]
Proportion of colorized cells in left header. [0.0, 1.0]
Total rows are colorized or not. {0, 1}
Total columns are colorized or not. {0, 1}
Font bold
Proportion of cells with font bold in value region. [0.0, 1.0]
Proportion of cells with font bold in top header. [0.0, 1.0]
Proportion of cells with font bold in left header. [0.0, 1.0]
Total rows are set to bold or not. {0, 1}
Total columns are set to bold or not. {0, 1}

3.2 Cell Featurization
Cells do not have a canonical representation in the spreadsheet, but
contain rich information such as data types, data formats, cell for-
mats, formulas, etc. To capture effective representations to initiate
end-to-end model learning, we devise a featurization scheme. Each
cell is encoded by a 21-dimensional vector to capture cell string,
data type, merge, and formula, whereas the formats are encoded by
a 6-dimensional vector to capture border, fill color, alignment, and
font bold. And we also devise a 124-dimensional vector to capture
row-level or column-level features, e.g., we devise a row-level fea-
ture that describes whether the formulas in the current row have
the same relative references. Then we expand both the row-level
and column-level features to the table size of h ×w . Based on our



Table 2: Comparison results of datasets on table structure and formatting.

Dataset

Average Average Average Average Average Average Proportion of Proportion of Proportion of Proportion of
rows columns total rows total columns rows columns cells with cells with cells with cells with

per table per table per table per table per top header per left header vertical border horizontal border fill color font bold
census.gov 46.0 10.6 2.3 0.5 2.6 1.1 0.97 0.99 0.22 0.73
edr.state.fl.us 50.4 14.4 6.0 0.9 1.8 2.7 0.99 1.00 0.98 1.00
nces.ed.gov 48.8 13.2 1.1 0.2 2.7 1.1 0.54 0.97 0.07 0.74
nsf.gov 33.4 10.1 2.1 0.2 2.1 1.0 0.46 1.00 0.10 0.32
saus 39.0 12.0 1.1 0.2 4.2 1.1 0.84 0.89 0.01 0.77
ucr.fbi.gov 40.1 10.8 2.2 1.1 1.5 1.6 0.10 1.00 0.00 0.84
juntadeandalucia 31.7 10.4 1.3 0.7 1.6 1.1 0.03 0.99 0.00 0.93
censusindia.gov 53.4 15.3 0.0 0.7 3.7 0.3 0.78 1.00 0.01 0.17
contraloria.gob 38.7 9.9 2.0 0.7 3.2 1.3 1.00 1.00 0.43 0.91
dane.gov.co 38.0 11.4 0.8 0.3 2.1 1.4 0.18 1.00 0.60 0.93
irs.gov 43.1 10.4 2.2 0.4 3.5 1.5 0.90 0.99 0.02 0.85
nyc.gov 41.4 8.72 0.3 0.1 1.3 0.7 0.97 1.00 0.56 0.95

proposed featurization, anh×w×151 input tensord and anh×w×6
output tensor f can be extracted from a table with h×w cells. Table
3 provides some representative features for table data and formats,
and the complete feature schema can be found in Appendix A.

Table 3: Table data and formats featurization.

Name Description Value
Value string
Log length Log length of the string. Float
Alpha prop Proportion of the letters in the string. [0.0, 1.0]
Has total keyword If this cell contains "total" keyword. [0.0, 1.0]
Merged Cell
Merged with top If the cell is merged with top neighbor. {0, 1}
Merged with left If the cell is merged with left neighbor. {0, 1}
Data type
Is number type If the cell value is displayed as number. {0, 1}
Is date type If the cell value is displayed as date. {0, 1}
Formula
Has formula If the cell value has formula. {0, 1}
Has SUM If contains the SUM in formula. {0, 1}
Formats
Horizontal border If horizontal border of the cell exists. {0, 1}
Vertical border If vertical border of the cell exists. {0, 1}
Horizontal alignment The horizontal alignment (left, center, right). {0, 1, 2}
Vertical alignment The vertical alignment (top, middle, bottom). {0, 1, 2}
Fill color If color exists (except transparent and white). {0, 1}
Font bold If font bold of the cell is added. {0, 1}

3.3 Network Architecture
Figure 2 presents our network architecture for semantic structure
extraction and formatting style transfer. Given reference table A
and target table B, CellNet first extracts structures of table A and
table B. Second, the style sB of table B can be calculated based on the
structure and formats of table B. Then CellNet generates formats
for table A conditioned on the reference formatting style sB. Three
key modules in CellNet are listed as follows:

CNN Backbone: The input tensor dA of table A and dB of table
B encode cell-level features. Here we employ a fully convolutional
neural network (FCNN) [9] to learn representations rA and rB from
input tensor dA and dB, respectively. This CNN backbone is trained
jointly by structure extraction and formatting style transfer.

Table Structure Extraction: Given input tensor dA and repre-
sentations rA of table A, the structure extraction module learns to

predict the top separation line between the top header and the data
region, the left separation line between the left header and the data
region, and total rows/columns. Row-wise and column-wise aver-
age pooling are adopted to squeeze feature maps in horizontal and
vertical directions, respectively. Since one table may have multiple
total rows, each row uses a sigmoid function for classification (sim-
ilar for total column prediction). While one table only has one top
header, a softmax function is adopted to predict a single separation
line across rows (similar for left header prediction). The prediction
results are then converted to structure masksmA with 5 channels
as shown in Figure 1(d), each channel representing a specific type
of structure component.

Formatting Style Transfer: we adopt a cGAN-based method
to learn the mapping from style to formatting, such that the gener-
ated formatting is indistinguishable from the real-world formatting.
Given input tensor dA, feature representations rA, structure masks
mA and reference style sB, the formatting style transfer module
learns to generate formats for the input table A in conditional set-
tings. As shown in Figure 2, to allow low-level spreadsheet features
to be effectively used to generate the output formats, the generator
G adopts a "u-net” architecture [12]. In our setting, althoughmA is
fed to the formatting module, the loss of formatting module does
not backprop to the structure extraction module.

3.4 Objective Functions
The objective function of table structure extraction Lstructure can
be defined straightforwardly by averaging the cross-entropy loss
of row/column-wise predictions for total rows/columns and header
separation lines, while the objective function of formatting style
transfer is hard to define since the absence of paired data in our
formatting style transfer task. In our dataset, one table is only for-
matted with one formatting style, so given a target table A with
style sA and a reference table B with style sB, there does not exist the
corresponding formats of table A with style sB to serve as ground
truth. So it’s challenging for traditional discriminative models that
need paired training data and explicitly defined loss functions. To
address this challenge, we define 16 intuitive and meaningful vari-
ables shown in Table 1 to formulate styles in a quantitative way
and propose Style Consistency Loss Lstyle to describe the style con-
sistency between the generated formatting style and the reference



formatting style as follows:

Lstyle =
16∑
i=1

(sfakei − sBi )
2. (1)

Moreover, table formats are not independent cell-by-cell class
labels but are well organized on a two-dimensional spreadsheet.
Generative Adversarial Nets (GANs) and conditional GANs (cGANs)
show that using a trained network as a loss function (discriminator)
can synthesize highly structured outputs (e.g. natural images) [6, 10,
14]. Thus we utilize cGAN’s framework by adopting a discriminator
D to guide the generated formats to look "real", which is trained
simply to classify whether the pair of table input and formats (d, f )
look "real" or "fake". The objective function is given by:

LcGAN(G,D) =E(d ,f )[logD(d, f )]+
Ed [log (1 − D(d,G(d)))],

(2)

The final objective function combines the losses above, and the
whole model is trained simultaneously in an end-to-end way:

L = Lstructure + λLcGAN + γLstyle, (3)

where λ and γ control the weights of these three terms.

4 EXPERIMENTS
4.1 Implementation Details
Inference takes on average 24.2 milliseconds per table on a V100
GPU. λ and γ are set to 5.0 and 2.0, respectively. The entire model
is trained end-to-end using an Adam optimizer. The learning rate
is initialized to 0.0001.
Generator in CellNet Let Ca×b-k denote a convolutional layer
with k a×b filters and stride 1. Accordingly, Da×b-k denotes con-
volutions down-sampled by a factor of 2, whereas convolutions
up-sampled by a factor of 2 are denoted as Ua×b-k. RRCP-k denotes
a residual block that contains 5×3 convolutional layers with k filters
on both layers. Then the generator consists of:

• Encoder: C1×1-64, C7×3-64, C7×3-64, D8×2-128, D8×3-256,
D8×3-512, D8×3-1024, RRCP-1024.

• Decoder: U8×3-1024, U8×2-512, U8×3-256,U8×2-128,U8×2-5
Discriminator in CellNet The discriminator adopts multi-scale
PatchGAN [14] and consists of: C1×1-64, C5×3-64, D7×3-128, D5×3-
128, C3×1-512, D7×3-512, C5×3-512, C5×3-1.

4.2 Top/Left Header Recognition Evaluations
We invest a rule-based method for header recognition as well as
widely-used machine learning models such as Gradient Boosting
Decision Tree (GBDT):

Rule-based baseline we implement a header identification
method based on type-and-format mixed inference as a baseline.

GBDT baseline we train a GBDT model to predict the number
of rows in the top header and the number of columns in the left
header based on the feature schema introduced in Appendix A.

Evaluation results are shown in Table 4. CellNet achieves signifi-
cant accuracy gains over baseline models.

Table 4: Comparison results of header recognition.

% Top header accuracy Left header accuracy
Rule-based 63.1 77.2
GBDT 84.6 93.9
CellNet 92.7 95.2

Table 5: Comparison results of total recognition.

% Total rows Total columns
Precision Recall Precision Recall

Rule-based method 26.8 48.8 43.7 68.8
GBDT 89.4 79.1 89.6 89.2
CellNet 95.2 82.4 93.3 88.6

4.3 Total Rows/Columns Recognition
Evaluations

Since there lack research works on total rows and total columns
recognition, we first investigate a rule-based method as well as a
widely-used machine learning model, GBDT, on recognizing total
columns and total rows given a table.

Rule-based baseline we implement heuristics based on the
feature schema introduced in Appendix A. The key feature we used
is "If Approx. Row Sum", which is listed in combined row-wise
features. This feature describes if a data row can be approximately
summed up by other continuous data rows. But this algorithm is
brittle when a table has blank cells or round operations to data.

GBDT baseline we train a GBDT model to predict the total
rows and columns based on the same feature schema introduced in
Appendix A. For total rows, the GBDT model gives 0/1 prediction
for each table row. And similar to total column prediction.

The comparison results of precision and recall on the testing set
are shown in Table 5. CellNet shows significant gains over both the
rule-based method and GBDT in total row/column prediction. We
attribute the performance gains to the power of deep convolutional
models for capturing various spatial relationships of cells.

4.4 Formatting Style Transfer Evaluations
To the best of our knowledge, there’s no research work on spread-
sheet table formatting style transfer. We investigate a rule-based
method as well as a variant of CellNet for this task.

Rule-based baseline We implement a rule-based method to
format tables by consolidating heuristics based on our dataset. First,
we parse the header hierarchy to a top header tree and a left header
tree based on the merged cells in the top header and indent level in
the left header. To be specific, we build a hierarchical relationship in
the top header between a merged cell and the following cells under
it. It is similar in the left header for the cell and its subsequent
cells with more indents. According to the hierarchy, we format
appropriate levels of this hierarchical from top to bottom, whose
proportion of cells is closest to the specified format density in
the corresponding region. Additionally, the hierarchy of headers
reflects the data groups in the value region, which indirectly decides
the formats in value region. For example, we format horizontal and



vertical borders in value region depending on left and top header
hierarchy, respectively, and we format color and bold based on the
most matched level in the top and left hierarchies.

CellNet (w/o cGAN loss) CellNet (w/o cGAN loss) is a variant
of CellNet which directly replaces LcGAN by a supervised loss
Lsupervision without transferring formatting. CellNet (w/o cGAN
loss) tries to optimize MSE between the generated formats ffake
and the real format fA of table A without using adversary loss.

Lsupervision =
1
wh

i<h, j<w∑
i=0, j=0

(ffakei , j − fAi , j )
2, (4)

where h andw denote the height and width of table A.

4.4.1 Human Perceptual Study. Table formatting is mainly applied
to help users understand table structures and data relationships
intuitively. Thus the subjective perception of humans is important
to evaluate the quality of table formatting. So we conduct a human
perceptual study by employing 8 Excel professionals from Spee-
chocean 1 to evaluate the formatting generation results of various
methods. For each table, the generated formats and its original real-
world formats form a pair for human comparison. A professional
has unlimited time to inspect a pair and decide "better quality",
"worse quality", or "a tie for comparable qualities" according to:

• Integrity: Whether the formatting looks complete without
missing/redundant formats.

• Effectiveness:Whether the formatting reflects table struc-
ture well for easy look-up.

• Harmony: Whether the formatting visually matches the
table data in harmony.

In this experiment, all tables in the testing set are provided for
human evaluation. For each reference table in the testing set, we
randomly select another table in the testing set as the reference
table B, then we use the models described above to generate formats
for the target table A conditioned on sB of table B.

As shown in Table 6, all types of formats generated by CellNet are
rated much higher than those produced by alternative approaches.
For borders, 82.3% of the table format results obtained by CellNet
are considered to be no worse than the real-world data by human
users, showing significant improvement over 51.8% achieved by
the rule-based baseline. For alignment generation, the rule-based
baseline achieves 97.3% and CellNet even achieves 97.5%, and both
numbers are high. But CellNet(w/o cGAN loss) only achieves 72.4%,
which is much lower than other methods. A reasonable explanation
is that human evaluators are not sensitive to the overall alignment
direction while they are sensitive to local outliers. Our case stud-
ies show that by training only with the structure and style loss,
CellNet(w/o cGAN loss) produces much more local defects com-
pared with other methods. Thus we conclude that the loss LcGAN
is capable of enhancing the quality of generated formats.

4.4.2 Table-Level Accuracy. In this section, we propose a novel
table-Level accuracy (TLA) metric, which measures the degree of
exact matching between generated and real formats as follows:

1http://en.speechocean.com/

Table 6: Human evaluation results. These numbers indicate
the proportion of generated formatting that is no worse
than (better or comparable) real-world formatting.

% Color Bold Border Alignment
Rule-based 85.5 87.8 49.0 97.3
CellNet(w/o cGAN loss) 88.5 78.9 51.8 72.4
CellNet 91.2 95.7 82.3 97.5

Table 7: TLA results of formatting generation for target table
A conditioned on its own style sA.

% Color Bold Border Alignment
Rule-based 85.1 32.5 23.2 36.0
CellNet(w/o cGAN loss) 87.2 64.6 58.4 70.5
CellNet 89.2 75.1 67.8 78.3

TLA =
N∑
n=1

| f nfake == f nA |/N , (5)

where N is the total number of test tables, and "==” returns 1 if
the generated formats f nfake of table n and the corresponding real
formats f nA are exactly the same in the whole table region.

But as discussed in Section 3.4, due to the absence of ground truth
formats for the task of formatting style transfer, we cannot directly
evaluate the TLA metric in the task of formatting style transfer.
Here we devised an experiment that adapts the formatting style
transfer task to a formatting generation task. For each reference
tableA in the testing set, instead of generating formats conditioned
on the reference table A and reference style sB, models are used to
generate formats conditioned on reference table A and reference
style sA. Then this task is adapted to a pure supervised task, and the
real-world formats of table A can be directly used as ground truth.
To avoid ground truth leaking from input features, we exclude
formatting information from the input feature d . This experiment
can be utilized to evaluate the abilities of models to generate real-
world likely formats.

As shown in Table 7, CellNet outperforms all comparison meth-
ods. For border generation, the average TLA is 67.8%, which sig-
nificantly outperforms the rule-based baselines of 23.2% and the
CellNet(w/o cGAN loss) baseline of 58.4%.

4.4.3 Style Consistency Evaluations of Formatting Style Transfer. To
evaluate the ability of methods to keep the consistency of the gener-
ated style sfake and the reference style sB, we evaluate MSE between
sfake and sB. Our experiments show that the average MSE achieved
by CellNet is 0.0058, much lower than 0.0068 of the rule-based
method. CellNet (w/o cGAN loss) is not evaluated here because it
can not produce reasonable formatting patterns in this task without
adversary loss. And as discussed before, CellNet achieves much
better results in human evaluations and quantitative metrics for
formatting quality, so we can conclude that CellNet outperforms
baselines both in style consistency and formatting quality.



5 RELATEDWORK
Spreadsheet Table Structure Extraction andFormatting Style
Transfer As far as we know, this is the first study on learning
spreadsheet table formats conditioned on table structures. Nor can
we find any features or tools in Excel for intelligent formatting.
The most related feature is conditional formatting, which allows
users to manually define conditions for conducting batch mode
coloring or visual augmentation, but is not applicable for adap-
tive style transfer. As for table structure extraction, [1, 11] aim to
recognize tables and analyse their structures, but only target on
web tables. [2, 8] propose interactive ways for extracting relational
metadata from spreadsheet tables. [4] aims to identify expandable
groups in spreadsheets. CellNet is the first method to learn table
structure extraction and formatting generation in a joint way.

6 DEPLOYMENT
The proposed techniques for table style transfer is still at its incu-
bation stage towards products, but its promising effectiveness has
been recognized and appreciated via internal deployments for trial
in Microsoft. The internal trial is invite-only, opened to multiple
product teams in Office involving cross-disciplinary employees in-
cluding Program Managers, Designers, Engineers, and Engineering
Managers. Since the first deployment and invited trials in March
2020, we have received good amount of positive feedback, which
verifies the practical utility of our techniques.

The deployment mainly consists of two parts, the front-end
interface and the back-end service. The front-end part is responsible
for user interaction, table reading and format applying, while the
machine learning models are hosted in the back-end service to
extract table structures and transfer the formatting style from one
to another. We deploy the front-end part and publish an Office
add-in in Microsoft in a network sharing way2, and both a local
service and an online service are deployed on the back-end side. A
real demo video for this Office add-in can be found on our website3.

For the front-end part, we adopt Office JavaScript API4 to read
Excel tables and apply formats. It supports Excel in both Office
and Office 365 and has nearly real-time performance. As shown in
the demo video, by clicking the "Extract" button after selecting a
reference table and then clicking "Apply" after selecting a target
table, one can easily transfer the style from a reference table to a
target table. Moreover, to enforce a consistent formatting style for
multiple tables on the same document, a user can apply a selected
formatting style to the whole document via simple clicks.

For the back-end part, we wrap our key technologies as a service:
(1) extracting table structures; (2) encoding table formatting styles
regarding different table structures; (3) adaptively decoding and
applying a reference style to a table. By simply calling (3) for each
table accordingly, our add-in can support the scenario of making
multiple tables in a document with a consistent style.

2https://docs.microsoft.com/en-us/office/dev/add-ins/publish/publish
3https://www.microsoft.com/en-us/research/publication/learning-formatting-style-
transfer-and-structure-extraction-for-spreadsheet-tables-with-a-hybrid-neural-
network-architecture/
4https://docs.microsoft.com/en-us/office/dev/add-ins/develop/understanding-the-
javascript-api-for-office

7 DISCUSSION AND CONCLUSION
In this paper, we propose formatting style transfer for spreadsheet
tables. First, as introduced in Section 1, table formats depend on
table structures. To enable high-accuracy data-driven methods for
table structure extraction, we build up a spreadsheet table corpus
with high-quality formats and structure labeling. Second, since
there lacks a widely adopted learning framework in the spreadsheet
domain, especially for generation tasks, we propose CellNet to
learn and apply the latent mapping from table data to table formats
based on recognized table structures and encoded styles. In the
future, we plan to build a unified intelligent experience across
Office applications for automatic table formatting.
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A FEATURE LIST APPENDIX
A.1 Basic Cell-wise Features
Table 8 mainly describes basic featurization of cells, covering nine
categories such as cell string, merged cell, data type, and so on.

Table 8: Cell-wise Features

Category Name Description Value
Log Length Log of length of the string. Float
Log length of Space Log length of the prefix spaces in string. Float
Alpha Prop Proportion of the letters in the string. [0.0, 1.0]

Cell String Number Prop Proportion of digits in the string. [0.0, 1.0]
Keyword Total If the keyword ’total’ exists in the string. {0, 1}
Keyword Sum All If the keyword ’sum’ or ’all’ exists in the

string.
{0, 1}

Merged If the cell is merged. {0, 1}
Merged With Top If the cell is merged with top neighbor. {0, 1}

Merge Merged With Bottom If the cell is merged with bottom neighbor. {0, 1}
Merged With Left If the cell is merged with left neighbor. {0, 1}
Merged With Right If the cell is merged with right neighbor. {0, 1}

Data Type Number Type If the cell value is viewed as number. {0, 1}
Date Type If the cell value is viewed as date. {0, 1}
Same With Right If the format string is consistent with that

of right neighbor.
{0, 1}

Same With Below If the format string is consistent with that
of the neighbor below.

{0, 1}

Has Formula If the cell has formula. {0, 1}
Refers Current Row If the formula refers any cell in the current

row explicitly.
{0, 1}

Formula Refers Current Column If the formula refers any cell in the current
column explicitly.

{0, 1}

Contains Sum If the formula uses the function ’sum’. {0, 1}
Same With Right If the formula in relative form is consistent

with that of right neighbor.
{0, 1}

Same With Below If the formula in relative form is consistent
with that of the neighbor below.

{0, 1}

Indent Indent Quantity Numbers of indents in this cell. Integer
Border Horizontal Border If the cell has top border. {0, 1}

Vertical Border If the cell has left border. {0, 1}
Alignment Horizontal Alignment Horizontal alignment of the cell (left, center,

right)
{0, 1, 2}

Vertical Alignment Vertical alignment of the cell (bottom, cen-
ter, top)

{0, 1, 2}

Colored If the color of the cell is neither white nor
transparent.

{0, 1}

Color R Value R value of the RGB color. [0.0, 1.0]
G Value G value of the RGB color. [0.0, 1.0]
B Value B value of the RGB color. [0.0, 1.0]

Bold Bold Font If bold font is applied. {0, 1}

A.2 Row/column-wise Features
Combined features are derived from basic features, and are divided
into two parts, one for rows and the other for columns. Row com-
bined features are listed in Table 9 , and similar for column features.

A.3 Features for Total Row/column Detection
Total features mostly serve for the recognition of total rows or
columns, which also have two parts for rows and columns, respec-
tively. In Table 10 we only shows a single feature group with a
specific absolute or relative error threshold, and different absolute
or relativ thresholds can form different feature groups. In our com-
plete total feature list, there are twelve groups in which six groups
serve for row total features with six different absolute or relative
error thresholds and the other six groups serve for columns with
similar patterns. In Table 10, we leave out the group features of
columns for simplicity.

Table 9: Combined Row-wise Features

Category Name Description Value
Occurance Number Number of occurances of the cell string in

the current row.
[0.0, 1.0]

Distance To Next Distance to the next cell string occurance
in the current row.

Integer

Cell String String Repeat Rank The rank of current occurance number in
the current row.

Integer

All Empty If all the strings and formulas in the current
row are empty.

{0, 1}

Non-empty Prop Proportion of cells with non-empty strings
in the current row.

[0.0, 1.0]

Keyword Total If there exists a cell has keyword ’total’ in
the current row.

{0, 1}

Number Prop Proportion of cells with data type of num-
ber in the current row.

[0.0, 1.0]

Data Type Date Prop Proportion of cells with data type of date
in the current row.

[0.0, 1.0]

Incons. Prop Proportion of data type inconsistency be-
tween cells in the current row and corre-
sponding cells in the next row.

[0.0, 1.0]

Border Horizontal Prop Proportion of cells with horizontal(top) bor-
der in the current row.

[0.0, 1.0]

Vertical Prop Proportion of cells with vertical(left) border
in the current row.

[0.0, 1.0]

Color Not White Prop Proportion of cells with non-white and non-
transparent color in the current row.

[0.0, 1.0]

Bold Bold Prop Proportion of cells with bold font in the
current row.

[0.0, 1.0]

Vertical Top Prop Proportion of cells with vertically top align-
ment in the current row.

[0.0, 1.0]

Alignment Vertical Center Prop Proportion of cells with vertically center
alignment in the current row.

[0.0, 1.0]

Vertical Bottom Prop Proportion of cells with vertically bottom
alignment in the current row.

[0.0, 1.0]

Formula Formula Prop Proportion of cells with formulas in the cur-
rent row.

[0.0, 1.0]

Table 10: Features for Detecting Total Rows

Category Name Description Value
In-row Non-zero Value Prop Proportion of cells with non-zero numerical

value in the current row.
[0.0, 1.0]

If Approx. Row Sum If a row-continuous region exists, in which
more than 60% of values summed up by
rows are approximately equal with corre-
sponding cell values in the current row
within an absolute/relative error.

{0, 1}

If Approx. Cell Sum If the numerical value of the cell is ap-
proximately equal with the sum of cells in
the corresponding region within an abso-
lute/relative error.

{0, 1}

Cross-row Approx. Equal Prop Proportion of cells in the current row,
whose numerical values are approximately
equal with the sum of cells in the corre-
sponding regionwithin an absolute/relative
error.

[0.0, 1.0]

Region Multi-rows If the region has multiple rows. {0, 1}

Region Distance The shortest distance between the corre-
sponding region and the current row.

Integer

Region Adjacent If there exists the corresponding region is
closely adjacent to the current row.

{0, 1}

Region Location Location of the corresponding region re-
specting to the current row (top, down).

{0, 1}
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