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Foreword

These lecture notes were translated from the Finnish lecture notes for the TUT course ”Mate-
maattinen kryptologia”. The laborious bulk translation was taken care of by the students Jussi
Kangas (visiting from the University of Tampere) and Paul Coughlan (visiting from the Univer-
sity of Dublin, Trinity College). I want to thank the translation team for their effort.

The notes form the base text for the course ”MAT-52606 Mathematical Cryptology”. They
contain the central mathematical background needed for understanding modern data encryption
methods, and introduce applications in cryptography and various protocols.

Though the union of mathematics and cryptology is old, it really came to the fore in con-
nection with the powerful encrypting methods used during the Second World War and their
subsequent breaking. Being generally interesting, the story is told in several (partly) fictive
books meant for the general audience1

The area got a whole new speed in the 1970’s when the completely open, fast and strong
computerized cryptosystem DES went live, and the revolutionary public-key paradigm was
introduced.2 After this, development of cryptology and also the mathematics needed by it—
mostly certain fields of number theory and algebra—has been remarkably fast. It is no exag-
geration to say that the recent popularity of number theory and algebra is expressly because of

1An example is Neal Stephenson’s splendidCryptonomicon.
2Steven Levy’s bookCrypto. Secrecy and Privacy in the New Code War gives a bit romanticized description of

the birth of public-key cryptography.
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cryptology. The theory of computational complexity, whichbelongs to the field of theoretical
computer science, is often mentioned in this context, but inall fairness it must be said that it
really has no such big importance in cryptology. Indeed, suitable mathematical problems for
use in cryptography are those that have been studied by top mathematicians for so long that only
results that are extremely hard to prove still remain open. Breaking the encryption then requires
some huge theoretical breakthrough. Such problems can be found in abundance especially in
number theory and discrete algebra.

Results of number theory and algebra, and the related algorithms, are presented in their own
chapters, suitably divided into parts. Classifying problems of number theory and algebra into
computationally ”easy” and ”hard” is essential here. The former are needed in encrypting and
decrypting and also in setting up cryptosystems, the latterguarantee strength of encryption. The
fledgling quantum cryptography is briefly introduced together with its backgrounds.

Only few classical cryptosystem—in which also DES and the newer AES must be included
according to their description—are introduced, much more information about these can be
found e.g. in the references BAUER, MOLLIN and SALOMAA . The main concern here is in
modern public-key methods. This really is not an indicationof the old-type systems not being
useful. Although the relevance of old classical methods vanished quite rapidly3, newer methods
of classical type are widely used and have a very important role in fast mass-encryption. Also
stream encrypting, so important in many applications, is not treated here. The time available for
a single course is limited. A whole different chapter would be correct implementation and use
of cryptosystems, which in a mathematics course such as thiscannot really be touched upon.
Even very powerful cryptosystem can be made inefficient withbad implementation and careless
use.4

Keijo Ruohonen

3As an example of this it may be mentioned that the US Army field manual FM 34-40-2:Basic Cryptanalysis is
publicly available in the web. The book BAUER also contains material quite recently (and possibly still!) classified
as secret.

4A great book on this topic is Bruce Schneier’sSecrets and Lies. Digital Security in a Networked World.



Chapter 1

Introduction

Encryptionof a message means the information in it is hidden so that anyone who’s reading (or
listening to) the message, can’t understand any of it unlesshe/she canbreakthe encryption. An
original plain message is calledplaintextand an encrypted onecryptotext.When encrypting you
need to have a so-calledkey, a usually quite complicated parameter that you can use to change
the encryption. If the encrypting procedure remains unchanged for a long time, the probability
of breaking the encryption will in practise increase substantially. Naturally different users need
to have their own keys, too.

The receiver of the messagedecryptsit, for which he/she needs to have his/her own key.
Both the encrypting key and decrypting key are very valuablefor an eavesdropper, using the
encrypting key he/she can send encrypted fake messages and using the decrypting key he/she
can decrypt messages not meant to him/her. In symmetric cryptosystems both the encrypting
key and the decrypting key are usually the same.

An encrypting procedure can encrypt a continuous stream of symbols (stream encryption)
or divide it into blocks (block encryption). Sometimes in block encryption the sizes of blocks
can vary, but a certain maximum size of block must not be exceeded. However, usually blocks
are of the same size. In what follows we shall only examine block encryption, in which case it’s
sufficient to consider encrypting and decrypting of an arbitrary message block, and one arbitrary
message block may be considered as the plaintext and its encrypted version as the cryptotext.

An encryption procedure issymmetric,if the encrypting and decrypting keys are the same
or it’s easy to derive one from the other. Innonsymmetricencryption the decrypting key can’t
be derived from the encrypting key with any small amount of work. In that case the encrypting
key can be public while the decrypting key stays classified. This kind of encryption procedure
is known aspublic-key cryptography,correspondingly symmetric encrypting is calledsecret-
key cryptography.The problem with symmetric encrypting is the secret key distribution to all
parties, as keys must also be updated every now and then.

Symmetric encryption can be characterized as a so calledcryptosystemwhich is an ordered
quintet(P,C,K,E,D), where

• P is the finitemessage space(plaintexts).

• C is the finitecryptotext space(cryptotexts).

• K is the finitekey space.

• for every keyk ∈ K there is anencrypting functionek ∈ E and adecrypting functiondk ∈
D. E is called theencrypting function spacewhich includes every possible encrypting
function andD is called thedecrypting function spacewhich includes every possible
decrypting function.

1



CHAPTER 1. INTRODUCTION 2

• dk(ek(w)) = w holds for every message (block)w and keyk.

It would seem that an encrypting function must beinjective,so that it won’t encrypt two different
plaintexts to the same cryptotext. Encryption can still be random, and an encrypting function
can encrypt the same plaintext to several different cryptotexts, so an encrypting function is not
actually a mathematical function. On the other hand, encrypting functions don’t always have
to be injective functions, if there’s a limited amount of plaintexts which correspond to the same
cryptotext and it’s easy to find the right one of them.

sender plain- 
text

ek
crypto- 
text

chan-
nel

receiver

eavesdrop-
per

key 
distribution k

crypto- 
text

plain- 
text

key 
distribution

dk

Almost all widely used encryption procedures are based on results in number theory or
algebra (group theory, finite fields, commutative algebra).We shall introduce these theories as
we need them.



Chapter 2

NUMBER THEORY. PART 1

”So in order to remove the contingent and subjective elements from
cryptography there have been concerted efforts in recent years to

transform the field into a branch of mathematics, or at least abranch
of the exact sciences. In my view, this hope is misguided, because in

its essence cryptography is as much an art as a science.”

(N. KOBLITZ , 2010)

2.1 Divisibility. Factors. Primes

Certain concepts and results of number theory1 come up often in cryptology, even though the
procedure itself doesn’t have anything to do with number theory. The set of all integers is
denoted byZ. The set of nonnegative integers{0, 1, 2, . . .} is called the set ofnatural numbers
and it’s denoted byN.

Addition and multiplication of integers are familiar commutative and associative operations,
with identity elements0 and1 respectively. Also recall the distributive lawx(y+ z) = xy+ xz
and the definitions of opposite number−x = (−1)x and subtractionx − y = x + (−1)y.
Division of integers means the following operation: When dividing anintegerx (dividend) by
an integery 6= 0 (divisor), x is to be given in the form

x = qy + r

where the integerr is calledremainderand fulfills the condition0 ≤ r < |y|. The integerq
is calledquotient. Adding repeatedly−y or y to x we see that it’s possible to writex in the
desired form. If it’s possible to givex in the form

x = qy,

whereq is an integer then it’s said thatx is divisible byy or thaty dividesx or thaty is a factor
of x or thatx is a multiple ofy, and this is denoted byy | x. The so-calledtrivial factors of an
integerx are±1 and±x. Possible other factors arenontrivial.

The following properties of divisibility are quite obvious:

(1) 0 is divisible by any integer, but divides only itself.

(2) 1 and−1 divide all integers, but are divisible only by themselves and by one another.

(3) If y | x andx 6= 0 then|y| ≤ |x|.

(4) If x | y andy | z then alsox | z (in other words, divisibility is transitive).

1Number theoryis basically just the theory of integers. There are however different extensions of number
theory. For example, we can include algebraic numbers—roots of polynomials with integral coefficients—which
leads us toalgebraic number theory,very useful in cryptology, see e.g. KOBLITZ. On the other hand, number
theory can be studied using other mathematical formalisms.For example,analytic number theorystudies integers
using procedures of mathematical analysis—integrals, series and so on—and this too is usable in cryptology, see
SHPARLINSKI.

3



CHAPTER 2. NUMBER THEORY. PART 1 4

(5) If x | y andx | z then alsox | y ± z.

(6) If x | y andz is an integer thenx | yz.

The result of division is unique since, if

x = q1y + r1 = q2y + r2,

whereq1, q2, r1, r2 are integers and0 ≤ r1, r2 < |y|, theny dividesr1 − r2. From the fact that
|r1 − r2| < |y| it then follows thatr1 = r2 and further thatq1 = q2.

An integer that has only trivial factors is calledindivisible.An indivisible integer is aprime
numberor just aprime2, if it is ≥ 2. The first few primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, . . .

2 is the only even prime. One basic task is to test whether or nota natural number is a prime.
An integer, which is≥ 2 and is not a prime, is calledcomposite.

Theorem 2.1. If the absolute value of an integer is≥ 2 then it has aprime factor.

Proof. If |x| ≥ 2 then a prime factorp of x can be found by the following algorithm:

1. Setz ← x.

2. If z is indivisible thenp = |z|.

3. If z is divisible, we take its nontrivial factoru. Then setz ← u and move back to #2.

The procedure stops because in the third step|z| gets smaller and smaller, so ultimatelyz will
be a prime.

Corollary. The number of primes is infinite.

Proof. An infinite list of primes can be obtained by the following procedure, known already to
ancient Greeks. (It is not believed to produce all primes, however, but this is an open problem.)

1. SetP ← 2. HereP is a sequence variable.

2. If P = p1, . . . , pn then computex = p1 · · · pn + 1. Notice that none of the primes in the
sequenceP dividex (remember uniqueness of division).

3. By Theorem 2.1,x has a prime factorp, which is not any of the primes in the sequence
P. Find some suchp, and setP ← P, p and return to #2.

The first few primes produced by the procedure are3, 7, 43, 13, 53, 5, 6 221 671, . . .

Basic tasks concerning primes are for example the following:

(1) Compute thenth prime in order of magnitude.

(2) Compute then first primes in order of magnitude.

(3) Compute the largest (resp. smallest) prime, which is≤ x (resp.≥ x).

(4) Compute primes, which are≤ x.

2The set of all primes is sometimes denoted byP.
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Theorem 2.2. An integerx 6= 0 can be written as a product of primes (disregarding the sign),
this is the so-calledfactorization.In particular, it is agreed that the number1 is the so-called
empty product, that is, a product which has no factors.

Proof. The algorithm below produces a sequence of primes, whose product is= ±x:

1. SetT ← NULL (the empty sequence).

2. If x = ±1 then we returnT , and stop. Remember that the empty product is= 1.

3. If x 6= 1 then we find some prime factorp of x (Theorem 2.1). Nowx = py. Set
T ← T , p andx← y and go back to #2.

This procedure stops because in the third step|x| gets smaller, and is eventually= 1 whereafter
we halt at #2. In particular, the empty sequence is returned if x = ±1.

Later we will show that this factorization is in fact unique when we disregard permutations
of factors, see Section 2.3. Naturally, one basic task is to find the factorization of a given integer.
This is computationally very hard, see Section 7.5.

2.2 Representations of Integers in Different Bases

The most common way to represent an integer is to use the familiar decimal representationor
in other words base-10 representation. Base-2 representation, called thebinary representation,
is also often used and so is base-8 octal representationand base-16 hexadecimal representation.
The general base representation is given by

Theorem 2.3. If k ≥ 2 then every positive integerx can be represented uniquely in the form

x = ank
n + an−1k

n−1 + · · ·+ a1k + a0

where0 ≤ a0, a1, . . . , an ≤ k − 1 andan > 0. This is calledbase-k representationof x, where
k is thebase (number)or radix andn+ 1 is thelengthof the representation.

Proof. The representation, i.e. the sequencean, an−1, . . . , a0, is obtained by the following al-
gorithm:

1. SetK ← NULL (the empty sequence).

2. Dividex by the radixk:

x = qk + r (quotientq, remainderr).

SetK ← r,K andx← q.

3. If x = 0 then returnK and quit. Else repeat #2.

x gets smaller and smaller in #2 with each iteration and so the procedure stops eventually in #3.
The base-k representation is unique because if

x = ank
n + an−1k

n−1 + · · ·+ a1k + a0 = bmk
m + bm−1k

m−1 + · · ·+ b1k + b0,
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where0 ≤ a0, a1, . . . , an, b0, b1, . . . , bm ≤ k − 1 andan, bm > 0 andn ≥ m, then we first
conclude thatn = m. Indeed, ifn > m then we also have

bmk
m + bm−1k

m−1 + · · ·+ b1k + b0 ≤ (k − 1)km + (k − 1)km−1 + · · ·+ (k − 1)k + k − 1

= km+1 − 1

< km+1 ≤ kn ≤ ank
n + an−1k

n−1 + · · ·+ a1k + a0,

which is a contradiction. Son = m, that is, the length of the representation must be unique.
Similarly we can conclude thatan = bn, because ifan > bn then

bnk
n + bn−1k

n−1 + · · ·+ b1k + b0 ≤ (an − 1)kn + (k − 1)kn−1 + · · ·+ (k − 1)k + k − 1

= ank
n − 1

< ank
n + an−1k

n−1 + · · ·+ a1k + a0,

which is also a contradiction. Again in the same way we can conclude thatan−1 = bn−1 and so
on.

Representation of the number0 is basically an empty sequence in every base. This of course
creates problems and so we agree on the convention that the representation of0 is 0. Conversion
between base representations, the so-calledchange of baseor radix transformation,is a basic
task concerning integers.

Theorem 2.4.The length of the base-k representation of a positive integerx is

⌊logk x⌋ + 1 = ⌈logk(x+ 1)⌉

wherelogk is the base-k logarithm.3

Proof. If the base-k representation ofx is x = ank
n+an−1k

n−1+ · · ·+a1k+a0 then its length
is s = n+ 1. It is apparent thatx ≥ kn, and on the other hand that

x ≤ (k − 1)kn + (k − 1)kn−1 + · · ·+ (k − 1)k + k − 1 = kn+1 − 1 < kn+1.

Sinceks−1 ≤ x < ks, thens− 1 ≤ logk x < s and so

s = ⌊logk x⌋ + 1.

Then againks−1 < x+ 1 ≤ ks, whences− 1 < logk(x+ 1) ≤ s and so

s = ⌈logk(x+ 1)⌉.

2.3 Greatest Common Divisor and Least Common Multiple

Thegreatest common divisor(g.c.d.) of the integersx andy is the largest integerd which divides
both integers, denoted

d = gcd(x, y).

The g.c.d. exists if at least one of the integersx andy is 6= 0. Note that the g.c.d. is positive.
(It’s often agreed, however, thatgcd(0, 0) = 0.) If gcd(x, y) = 1 then we say thatx andy have
no common divisorsor that they arecoprime.

3Remember that change of base of logarithms is done by the formula logk x = lnx/ ln k. Here⌊x⌋ denotes the
so-calledfloor of x, i.e. the largest integer which is≤ x. Correspondingly⌈x⌉ denotes the so-calledceiling of x,
i.e. the smallest integer which is≥ x. These floor and ceiling functions crop up all over number theory!
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Theorem 2.5. (Bézout’s theorem)The g.c.d.d of the integersx andy, at least one of which is
6= 0, can be written in the form

d = c1x+ c2y (the so-calledBézout form)

wherec1 andc2 are integers, the so-calledBézout coefficients. Also, ifx, y 6= 0, then we may
assume that|c1| ≤ |y| and|c2| ≤ |x|.

Proof. Bézout’s form and the g.c.d.d are produced by the following so-called(Generalized)
Euclidean algorithm.Here we may assume that0 ≤ x ≤ y, without loss of generality. Denote
GCD(x, y) = (d, c1, c2).

(Generalized) Euclidean algorithm:

1. If x = 0 then we come out of the algorithm withGCD(x, y) = (y, 0, 1) and quit.

2. If x > 0 then first we dividey with x: y = qx + r, where0 ≤ r < x. Next we find
GCD(r, x) = (d, e1, e2). Now

d = e1r + e2x = e1(y − qx) + e2x = (e2 − e1q)x+ e1y.

We end the algorithm by returningGCD(x, y) = (d, e2 − e1q, e1) and quit.

Sincer = y − qx, gcd(x, y) dividesr and hencegcd(x, y) ≤ gcd(x, r). Similarly gcd(x, r)
dividesy and thusgcd(x, r) ≤ gcd(x, y), sogcd(x, r) = gcd(x, y). Hence #2 produces the cor-
rect result. The recursion ends after a finite number of iterations becausemin(r, x) < min(x, y),
and so every time we callGCD (iterate) the minimum value gets smaller and is eventually= 0.

If x, y 6= 0 then apparently right before stopping in #1 in the recursionwe havey = qx and
r = 0 andd = x, whence at that pointc1 = 1 ≤ y andc2 = 0 ≤ x. On the other hand, every
time when in #2 we havey = qx + r andd = e1r + e2x, where|e1| ≤ x and|e2| ≤ r, then
e1 ande2 have opposite signs and thus|e2 − e1q| = |e2| + |e1|q ≤ r + xq = y. So, the new
coefficientsc1 = e2 − e2q andc2 = e1 will then also satisfy the claimed conditions.

Example. As a simple example, let’s computegcd(15, 42) and its Bézout form. We use inden-
tation to indicate recursion level:

gcd(15, 42) =?
42 = 2 · 15 + 12 , q = 2
gcd(12, 15) =?

15 = 1 · 12 + 3 , q = 1
gcd(3, 12) =?

12 = 4 · 3 + 0 , q = 4
gcd(0, 3) =?
GCD(0, 3) = (3, 0, 1)

GCD(3, 12) = (3, 1− 0 · 4, 0) = (3, 1, 0)
GCD(12, 15) = (3, 0− 1 · 1, 1) = (3,−1, 1)

GCD(15, 42) = (3, 1− (−1) · 2,−1) = (3, 3,−1)

So, the g.c.d. is3 and the Bézout form is3 = 3 · 15 + (−1) · 42.

You can get the next result straight from Bézout’s theorem:

Corollary. If the integerz divides the integersx andy, at least one of which is6= 0, then it also
dividesgcd(x, y).
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NB. Due to this corollarygcd(x, y) is often defined as the common divisor ofx andy, which
is divisible by every common divisor of these integers. Thisleads to the same concept of g.c.d.
Such a definition is also suitable for the situationx = y = 0 and gives the formulagcd(0, 0) = 0
(mentioned above).

Another corollary of Bézout’s theorem is uniqueness of factorization of integers, see Theo-
rem 2.2.

Theorem 2.6.Factorization of an integerx 6= 0 is unique.

Proof. Assume the contrary: There exists an integerx, which has (at least) two different fac-
torizations. We may assume thatx is positive and thatx is the smallest positive integer that has
this property. Thusx ≥ 2, since the only factorization of1 is the empty product. Now we can
write x as a product of primes with respect to two different factorizations:

x = pi11 p
i2
2 · · · p

in
n = qj11 qj22 · · · q

jm
m

wherep1, . . . , pn are different primes and likewiseq1, . . . , qm are different primes andi1, . . . , in
as well asj1, . . . , jm are positive integers. In fact, we also know that the primesp1, . . . , pn
differ from the primesq1, . . . , qm. If, for example,p1 = q1, then the integerx/p1 would have
two different factorizations andx/p1 < x, a contradiction. So we know thatgcd(p1, q1) = 1, in
Bézout’s form

1 = c1p1 + c2q1.

But it follows from this that

qj1−1
1 qj22 · · · q

jm
m = (c1p1 + c2q1)q

j1−1
1 qj22 · · · q

jm
m = c1p1q

j1−1
1 qj22 · · · q

jm
m + c2x,

from which we see further thatp1 divides the productqj1−1
1 qj22 · · · q

jm
m , in other words,

qj1−1
1 qj22 · · · q

jm
m = p1z.

Becausez and qj1−1
1 qj22 · · · q

jm
m have unique factorizations (they are both smaller thanx), it

follows from this thatp1 is one of the primesq1, . . . , qm which is a contradiction. So the contrary
is false and factorization is unique.

When giving a rational number in the formx/y, it is usually assumed thatgcd(x, y) = 1, in
other words, that the number iswith the smallest terms.This is very important when calculating
with large numbers, to prevent numerators and denominatorsfrom growing too large. Such
reduced form is naturally obtained by dividingx andy by gcd(x, y), so in long calculations the
g.c.d. must be determined repeatedly.

It’s important to notice that the bounds of the coefficients mentioned in Bézout’s theorem,
i.e. |c1| ≤ |y| and |c2| ≤ |x|, are valid in every step of the Euclidean algorithm. This way
intermediate results won’t get too large. On the other hand,the Euclidean algorithm does not
even take too many steps:

Theorem 2.7.When computinggcd(x, y), where0 ≤ x ≤ y, the Euclidean algorithm needs no
more than⌊2 log2 y + 1⌋ divisions.

Proof. If x = 0 (no divisions) orx = y (one division) there’s nothing to prove, so we can
concentrate on the case0 < x < y. The proof is based on the following simple observation
concerning division: Every time we divide integersa and b, where0 < a < b, and write
b = qa+ r (quotientq, remainderr), we have

b = qa+ r ≥ a+ r > 2r.
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When computinggcd(x, y) using the Euclidean algorithm we get a sequence

y = q1x+ r1 (0 < r1 < x),

x = q2r1 + r2 (0 < r2 < r1),

r1 = q3r2 + r3 (0 < r3 < r2),
...

rl−2 = qlrl−1 + rl (0 < rl < rl−1),

rl−1 = ql+1rl

with l + 1 divisions. If l = 2k + 1 is odd then by our observation above

1 ≤ rl < 2−1rl−2 < 2−2rl−4 < · · · < 2−irl−2i < · · · < 2−kr1 < 2−k−1y = 2−
l+1

2 y < 2−
l
2y,

and if l = 2k is even then

1 ≤ rl < 2−1rl−2 < 2−2rl−4 < · · · < 2−k+1r2 < 2−kx < 2−
l
2y.

So, in any casey > 2
l
2 which means that (taking base-2 logarithms)2 log2 y > l, and the result

follows.

Thus we see that applying the Euclidean algorithm is not verylaborious,⌊2 log2 y + 1⌋ is
proportional to the length of the binary representation ofy (Theorem 2.4). If you want to know
more about the computational efficiency of the Euclidean algorithm, see e.g. KNUTH.

The greatest common divisor of more than two integersx1, x2, . . . , xN

d = gcd(x1, x2, . . . , xN)

is defined in same way as for two integers, so it’s the largest integer which divides all the
numbers in the sequencex1, x2, . . . , xN . Again we require that at least one of the numbers is
6= 0. We may agree thatxN 6= 0. This kind of g.c.d. can be computed by applying the Euclidean
algorithmN − 1 times, since

Theorem 2.8. gcd(x1, x2, . . . , xN) = gcd(x1, gcd(x2, . . . , xN))

= gcd(x1, gcd(x2, gcd(x3, . . . , gcd(xN−1, xN) · · · )))

and furthermore the g.c.d. can be written in Bézout’s form

gcd(x1, x2, . . . , xN ) = c1x1 + c2x2 + · · ·+ cNxN .

Proof. For a more concise notation we denote

d = gcd(x1, x2, . . . , xN ) and d′ = gcd(x1, gcd(x2, gcd(x3, . . . , gcd(xN−1, xN ) · · · ))).

By Bézout’s theorem
gcd(xN−1, xN) = e1xN−1 + e2xN

and further

gcd(xN−2, gcd(xN−1, xN )) = e3xN−2 + e4 gcd(xN−1, xN) = e3xN−2 + e4e1xN−1 + e4e2xN

and so on, so eventually we see that for some integersc1, . . . , cN

d′ = c1x1 + c2x2 + · · ·+ cNxN .
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From here it follows, thatd | d′ and sod ≤ d′. On the other hand,d′ divides bothx1 and the
g.c.d.

gcd(x2, gcd(x3, . . . , gcd(xN−1, xN ) · · · )).

The g.c.d. above divides bothx2 andgcd(x3, . . . , gcd(xN−1, xN ) · · · ). Continuing in this way
we see thatd′ divides each numberx1, x2, . . . , xN and therefored′ ≤ d. We can thus conclude
thatd = d′.

If the numbersx1, x2, . . . , xN are 6= 0 then they have factorizations

xi = ±p
ji1
1 pji22 · · · p

jiM
M (i = 1, 2, . . . , N),

where we agree thatjik = 0 whenever the primepk is not a factor ofxi. It then becomes
apparent that

gcd(x1, x2, . . . , xN ) = p
min(j11,...,jN1)
1 p

min(j12,...,jN2)
2 · · · pmin(j1M ,...,jNM )

M .

The trouble when using this result is that factorizations are not generally known and finding
them can be very laborious.

The least common multiple(l.c.m.) of the integersx1, x2, . . . , xN is the smallest positive
integer that is divisible by every numberx1, x2, . . . , xN , we denote it bylcm(x1, x2, . . . , xN ).
For the l.c.m. to exist we must havex1, x2, . . . , xN 6= 0. Remembering the factorizations above,
we can see that

lcm(x1, x2, . . . , xN ) = p
max(j11,...,jN1)
1 p

max(j12,...,jN2)
2 · · · pmax(j1M ,...,jNM )

M .

The l.c.m. is also obtained recursively using the Euclideanalgorithm, without knowledge of
factors, since

Theorem 2.9. lcm(x1, x2, . . . , xN) = lcm(x1, lcm(x2, . . . , xN))

= lcm(x1, lcm(x2, lcm(x3, . . . , lcm(xN−1, xN ) · · · )))

and

lcm(x1, x2) =
|x1x2|

gcd(x1, x2)
.

Proof. The first formula of the theorem follows from the factorization formula, since the expo-
nent ofpk in lcm(x1, lcm(x2, . . . , xN)) ismax(j1k,max(j2k, . . . , jNk)) and on the other hand

max(j1k,max(j2k, . . . , jNk)) = max(j1k, j2k, . . . , jNk) (k = 1, 2, . . . ,M).

The second formula follows from the factorization formula as well, since the exponent of the
prime factorpk in x1x2 is j1k + j2k and on the other hand

max(j1k, j2k) = j1k + j2k −min(j1k, j2k).

NB. We see from the factorization formula that the g.c.d. of morethan two numbers is also the
(positive) common divisor of these numbers that is divisible by every other common divisor and
this property is often used as the definition. Correspondingly we can see that the l.c.m. is the
(positive) common multiple of these numbers that divides every other common multiple of the
numbers and this property is also often used as its definition. By these alternative definitions it
is usually agreed thatgcd(0, 0, . . . , 0) = 0 andlcm(0, x2, . . . , xN) = 0.
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2.4 Congruence Calculus or Modular Arithmetic

The idea ofcongruence calculusis that you compute only with the remainders of integers using
a fixed divisor (or several of them), the so-calledmodulusm ≥ 1. Congruence calculus is also
often calledmodular arithmetic.

We say that integersx andy arecongruent modulom, denoted

x ≡ y mod m (a so-calledcongruence),

if x−y is divisible bym. This might be read as ”x is congruent toy modulom” or just ”x equals
y modulom”. Then again, ifx − y is indivisible bym, it’s said thatx andy are incongruent
modulom and this is denoted byx 6≡ y mod m. Note thatx ≡ 0 mod m exactly whenx is
divisible bym, and that every number is congruent to every other number modulo 1.

The congruencex ≡ y mod m says that when dividingx andy by m the remainder is the
same, or in other words,x andy belong to the sameresidue classmodulom. Every integer
always belongs to one residue class modulom and only in one. There are exactlym residue
classes modulom, as there arem different remainders.

Obviouslyx is always congruent to itself modulom and ifx ≡ y mod m, then alsoy ≡ x
mod m and−x ≡ −y mod m. Furthermore, ifx ≡ y mod m andy ≡ z mod m then also
x ≡ z mod m, in this case we may write

x ≡ y ≡ z mod m.

(Congruence of integers is thus an example of an equivalencerelation.) For basic computing of
congruences we have the rules

Theorem 2.10.(i) If x ≡ y mod m andu ≡ v mod m thenx+ u ≡ y + v mod m.

(ii) If c is an integer andx ≡ y mod m thencx ≡ cy mod m.

(iii) If x ≡ y mod m andu ≡ v mod m thenxu ≡ yv mod m.

(iv) If x ≡ y mod m andn is a positive integer thenxn ≡ yn mod m.

Proof. (i) If x− y = km andu− v = lm then(x+ u)− (y + v) = (k + l)m.
(ii) If x− y = km thencx− cy = ckm.
(iii) This follows from (ii), sincexu ≡ yu ≡ yv mod m.
(iv) This follows from (iii).

You can compute with congruences pretty much in the same way as with normal equations,
except that division and reduction are not generally allowed (we get back to this soon).

If you think about remainders, in calculations you can use any integer that has the same
remainder when divided by the modulus, results will still bethe same, in other words, the result
is independent of the choice of the representative of the residue class. For simplicity certain sets
of representatives, so-calledresidue systems, are however often used:

• positive residue system0, 1, . . . , m− 1 (that is, the usual remainders);

• symmetric residue system−(m− 1)/2, . . . , 0, 1, . . . , (m− 1)/2 for oddm;

• symmetric residue system−(m− 2)/2, . . . , 0, 1, . . . , m/2 for evenm;

• negative residue system−(m− 1), . . . ,−1, 0.
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The positive residue system is the usual choice. In general,any set ofm integers, which are not
congruent modulom, form a residue system modulom. From now on the residue of a number
x modulom in the positive residue system—in other words, the remainder of x when divided
by the modulem—is denoted by(x,mod m).

Division (or reduction) of each side of a congruence is not generally allowed and can only
be done under the following circumstances.

Theorem 2.11.xu ≡ yu mod m is the same asx ≡ y mod m/ gcd(u,m), so you can divide
an integer out of a congruence if you divide the modulus by theg.c.d. of the modulus and the
integer that’s being divided out. (Note that ifm is a factor ofu thenm/ gcd(u,m) = 1.)

Proof. We first start from the assumptionxu ≡ yu mod m or (x−y)u = km. Then we denote
d = gcd(u,m), u = du′ andm = dm′. We have thatgcd(u′, m′) = 1 andm′ = m/ gcd(u,m)
and further that(x− y)u′ = km′. By Bézout’s theorem1 = c1u

′ + c2m
′, from which it follows

that
x− y = c1u

′(x− y) + c2m
′(x− y) = (c1k + c2(x− y))m′,

or in other words thatx ≡ y mod m/ gcd(u,m), as claimed.
Next we start from the assumption thatx ≡ y mod m/d or thatx− y = km/d. From this

it follows that(x− y)d = km and furthermore(x− y)u = u′km. Soxu ≡ yu mod m.

In particular, you can divide an integer that has no common factors with the modulus out of
the congruence without dividing the modulus.

Corollary. If gcd(x,m) = 1 then the numbersy + kx (k = 0, 1, . . . , m − 1) form a residue
system modulom, no matter what integery is.

Proof. Now we havem numbers. Ify + ix ≡ y + jx mod m, where0 ≤ i, j ≤ m− 1, then
ix ≡ jx mod m and by Theorem 2.11 we know thati ≡ j mod m. So i − j = km, but
because0 ≤ i, j ≤ m − 1 this is possible only whenk = 0, i.e. wheni = j. So different
numbers are not congruent.

Using the same kind of technique we see immediately that ifgcd(x,m) = 1, thenx has an
inverse modulom, in other words, there exists an integery such that

xy ≡ 1 mod m.

In this case we also writex−1 ≡ y mod m or 1/x ≡ y mod m.4 This kind of inverse is
obtained using the Euclidean algorithm, since by Bézout’s theorem1 = c1x + c2m and so
x−1 ≡ c1 mod m. On the other hand, ifgcd(x,m) 6= 1 thenx can’t have an inverse modulo
m, as we can easily see. Note that ifx−1 ≡ y mod m theny−1 ≡ x mod m or (x−1)−1 ≡ x
mod m. Inverses modulom (when they exist) satisfy the usual rules of calculus of powers. For
example,

(xy)−1 ≡ x−1y−1 mod m and x−n ≡ (x−1)n ≡ (xn)−1 mod m (n = 1, 2 . . . ).

Those numbersx of a residue system for whichgcd(x,m) = 1 form the so-calledreduced
residue system.The respective residue classes are calledreduced residue classesmodulom.
We can easily see that ifx ≡ y mod m thengcd(x,m) = gcd(y,m). This means there is
exactly the same amount of numbers in two reduced residue systems modulom (they are the
numbers coprime tom) and that the numbers of two reduced residue systems can be paired

4This inverse must not be confused with the rational number1/x.
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off by their being congruent modulom. That is, there is a bijection between any two reduced
residue systems modulom. The amount of numbers in a reduced residue system modulom is
calledEuler’s (totient) function,denotedφ(m). It’s needed for example in RSA cryptosystem.
The most common reduced residue system is the one that is formed out of the positive residue
system. Also note that ifp is a prime then1, 2, . . . , p−1 form a reduced residue system modulo
p andφ(p) = p− 1.

2.5 Residue Class Rings and Prime Fields

Integers are divided intom residue classes, according to which number0, . . . , m − 1 they are
congruent to modulom. The class that the integerx belongs to is denoted byx. Note that
x = x+ km, no matter what integerk is. We can define basic arithmetic operations on residue
classes using their ”representatives” as follows:

x± y = x± y , x · y = x · y and xn = xn (n = 0, 1, . . . ).

The result of the operation is independent of the choice of the representatives, which is easy to
confirm. The operation is thus well-defined. The basic properties of computing with integers
will transfer to residue classes:

(1) + and· are associative and commutative.

(2) Distributivity holds.

(3) Every classa has anopposite class−a, i.e. a class−a such thata+ (−a) = 0. If a = x,
then obviously−a = −x.

(4) 0 and1 ”behave” as they should, i.e.a+ 0 = a anda · 1 = a. Also 0 6= 1, if m > 1.

In the algebraic sense residue classes modulom form a so-calledring, see Chapter 4 and
the course Algebra 1. Thisresidue class ring modulom is denoted byZm. Z1 is singularly
uninteresting—and some do not think of it as a ring at all.

If gcd(x,m) = 1 then the residue classx has aninverse classx−1 for which x · x−1 = 1.
Naturally, if x−1 ≡ y mod m thenx−1 = y. If gcd(x,m) 6= 1 then there does not exist such
an inverse class. We have that every residue class other than0 has an inverse class exactly when
the modulusm is a prime. In this case the residue class ring is also called aprime field. So
in prime fields division, meaning multiplication by the inverse class, is available. The smallest
and most common prime field is thebinary fieldZ2, whose members are the elements0 and1
(calledbits, and mostly written without the overlining as0 and1).

Arithmetical operations in residue class rings can be transferred in a natural way to arith-
metical operations of matrices and vectors formed of residue classes. This way we get to use
the familiar addition, subtraction, multiplication, powers and transposition of matrices. Deter-
minants of square matrices also satisfy the basic calculation rules. Just as in basic courses, we
note that a square matrix has an inverse matrix, if its determinant (which is a residue class in
Zm) has an inverse class. Note that it is not enough for the determinant to be6= 0, because when
using Cramer’s rule to form the inverse matrix we need division modulom by the determinant.
In prime fields it is of course enough for the determinant to be6= 0.
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2.6 Basic Arithmetic Operations for Large Integers

Operation of modern cryptosystems is based on arithmeticalcomputations of large integers.
They must be executable quickly and efficiently. Efficiencies of algorithms are often compared
using numbers of basic steps needed to execute the algorithmversus the maximum lengthN
of the input numbers. A basic step could be for example addition, subtraction or multiplication
of the decimals0, 1, . . . , 9. The most common of these comparison notations is the so-called
O-notation. In this caseO(f(N)) denotes collectively any functiong(N) such that starting
from some lower limitN ≥ N0 we have|g(N)| ≤ Cf(N) whereC is a constant. Actual
computational complexity is discussed in Section 6.1.

The customary functions⌊x⌋ (floor of x, i.e. the largest integer which is≤ x) and ⌈x⌉
(ceiling ofx, i.e. smallest integer which is≥ x) are used for rounding when needed.

Addition and subtraction

The common methods of addition and subtraction by hand that we learn in school can be pro-
grammed more or less as they are. Addition and subtraction ofnumbers of lengthN andM
requiresO(max(N,M)) steps, which is easy to confirm.

Multiplication

The usual method of integer multiplication by hand is also suitable for a computer, but it is not
nearly the fastest method. In this method multiplication ofnumbers of lenghtN andM requires
O(NM) steps, which can be lot.

Karatsuba’s algorithmis faster than the traditional algorithm. The algorithm is akind of
”divide and conquer” procedure. For multiplication of positive numbersn andm in decimal
representation we first write them in the form

n = a10k + b and m = c10k + d

wherea, b, c, d < 10k and the maximum length of the numbers is2k or 2k − 1. One of the
numbersa andc can be zero, but not both of them. In other words, at least one of these numbers
is written in base-10k representation. Then

nm = (a10k + b)(c10k + d) = y102k + (x− y − z)10k + z,

where
x = (a+ b)(c + d) , y = ac and z = bd,

so we need just three individual ”long” multiplications of integers (and not four as you may
originally think). When these three multiplications

(a+ b)(c+ d) , ac and bd

are performed in the same way by dividing each of them into three shorter multiplications and
so on, whereby we eventually end up using a simple multiplication table, we get Karatsuba’s
algorithm (where we denotePROD(n,m) = nm):

Karatsuba’s multiplication algorithm:

1. If n = 0 orm = 0, we return0 and quit.

2. We reduce the case to one in which both the multiplier and the multiplicand are positive:
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(2.1) If n < 0 andm > 0, orn > 0 andm < 0, we computet = PROD(|n|, |m|), return
−t and quit.

(2.2) If n < 0 andm < 0, we computet = PROD(−n,−m), returnt and quit.

3. If n,m < 10, we look upPROD(n,m) in the multiplication table, and quit.

4. If n ≥ 10 or m ≥ 10, we writen andm in the formn = a10k + b andm = c10k + d
wherea, b, c, d < 10k, as above. In decimal representation this is easy.

5. We computePROD(a + b, c + d), PROD(a, c) andPROD(b, d), return (the easily ob-
tained)

PROD(n,m) = 102kPROD(a, c) + 10k(PROD(a + b, c+ d)

− PROD(a, c)− PROD(b, d)) + PROD(b, d)

and quit.

The procedure ends since the maximum length of the numbers being multiplied is reduced to
about half in every iteration.

If we multiply two numbers of lengthN and denote byK(N) an approximate upper bound
on the number of basic arithmetical operations on the numbers 0, 1, . . . , 9 needed, then it is
apparent thatK(N) is obtained using a recursion formula

K(N) =

{

αN + 3K(N/2) if N is even

αN + 3K((N + 1)/2) if N is odd
, K(1) = 1,

where the coefficientα is obtained from the number of required additions and subtractions,
depending on the algorithm used. A certain approximate bound for the number of required
basic operations is given by

Theorem 2.12.If N = 2l thenK(N) = (2α+ 1)3l − α2l+1 = (2α + 1)N log2 3 − 2αN .

Proof. The value is correct, whenN = 1. If the value is correct whenN = 2l then it is also
correct whenN = 2l+1, since

K(2l+1) = α2l+1 + 3K(2l) = α2l+1 + 3(2α+ 1)3l − 3α2l+1 = (2α+ 1)3l+1 − α2l+2.

Naturally the number of basic operations for very largeN obtained by the theorem, that is

(2α+ 1)N log2 3 − 2αN = O(N log2 3) = O(N1.585),

is substantially smaller thanO(N2). For example, ifN = 212 = 4 096 thenN2/N log2 3 ∼= 32.
There are even faster variants of Karatsuba’s procedure where numbers are divided into more
than two parts, see for example MIGNOTTE.

The fastest multiplication algorithms use the so-called fast Fourier transformation (FFT),
see for example LIPSON or CRANDALL & POMERANCE. In this case the number of basic
operations isO(N lnN ln(lnN)). See also the course Fourier Methods.
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Division

Common ”long division” that is taught in schools can be transferred to a computer, although
the guessing phase in it is somewhat hard to execute efficiently if the base number is large, see
KNUTH. The number of basic operations isO(N2) whereN is the length of the dividend. Also
a division algorithm similar to Karatsuba’s algorithm is possible and quite fast.5

Division based on Newton’s method, familiar from basic courses, is very efficient. First we
assume that both the divisorm and the dividendn are positive, and denote the length of the
dividend byN and the length of the divisor byM . Since the casesN < M andN = M are
easy, we assume thatN > M . We denote the result of the divisionn = qm+ r (quotientq and
remainderr) byDIV(n,m) = (q, r). Note that thenq = ⌊n/m⌋.

We start by finding the inverse of the divisor. To find the root of the functionf(x) =
m− 1/x, i.e.1/m, we use the Newton iteration

xi+1 = xi −
f(xi)

f ′(xi)
= 2xi −mx2

i .

However, since we can only use multiplication of integers, we computel = 10N/m, i.e. the
root of the functiong(x) = m − 10N/x, for which we correspondingly get the exact Newton
iteration

xi+1 = 2xi −
mx2

i

10N
= 2xi −

x2
i

l
.

To be able to stay purely among integers, we use a version of this iteration that is rounded to
integers:

yi+1 = 2yi −

⌊
m

10M

⌊
y2i

10N−M

⌋⌋

.

Divisions by powers of10 are trivial in the decimal system. The purpose of using this is to
calculate⌊l⌋, by taking the floor⌊n10−N⌊l⌋⌋ we then obtain the quotient by some trial and
error, and finally get the remainder using the quotient.

The following properties are easy to confirm:

• 2y − ⌊m10−M⌊y210M−N⌋⌋ ≥ 2y − y2/l, in other words, rounding to integers does not
reduce values of iterants.

• If x 6= l then2x − x2/l < l. So the exact iteration approachesl from below. Because
m/10M < 1, for the rounded iteration we correspondingly get

2y −

⌊
m

10M

⌊
y2

10N−M

⌋⌋

≤ 2y −

⌊
m

10M

(
y2

10N−M
− 1

)⌋

≤ 2y −

⌊
1

l
y2 − 1

⌋

< 2y −

(
1

l
y2 − 2

)

≤ l + 2.

• If x < l then2x− x2/l > x. So the exact iteration is strictly growing as long as iterants
are< l. The same applies for the rounded iteration also.

5Such an algorithm is described for example in the book MIGNOTTE and in the old Finnish lecture notes RUO-
HONEN, K.: Kryptologia, and is very well analyzed in the report BURNIKEL , C. & ZIEGLER, J.: Fast Recursive
Division. Max Planck Institut für Informatik. ForschungsberichtMPI-I-98-1-022 (1998).
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We denote
l = yi + ǫi

whereǫi is the error. Newton’s methods arequadratic,i.e. they double the amount of the correct
numbers in every step, and so it is here too: Ifyi < l then

|ǫi| = l − yi ≤ l − 2yi−1 +
1

l
y2i−1 =

1

l
ǫ2i−1.

By repeating this and noting thatl > 10N−M we get (assuming again thatyi < l)

|ǫi| ≤
1

l
ǫ2i−1 ≤

1

l

(
1

l
ǫ2i−2

)2

≤ · · · ≤ l−(1+2+22+···+2i−1)ǫ2
i

0 = l1−2iǫ2
i

0 < 10(1−2i)(N−M)ǫ2
i

0 .

Now it is required that10(1−2i)(N−M)ǫ2
i

0 ≤ 1. Assuming that|ǫ0| < 10N−M this is equivalent to

i ≥

⌈

log2
N −M

N −M − log10 |ǫ0|

⌉

(confirm!). We choose then

y0 = 10N−M

⌊
10M

m

⌋

or y0 = 10N−M

⌈
10M

m

⌉

,

depending on which is nearer the number10M/m, the floor or the ceiling, whence|ǫ0| ≤
10N−M/2. So it suffices to choose

I =

⌈

log2
N −M

log10 2

⌉

= ⌈log2(N −M)− log2(log10 2)⌉

as the number of iterations.
Using the iteration rounded to integers produces a strictlygrowing sequence of integers,

until we obtain a value that is in the interval[l, l+2). Then we can stop and check whether it is
the obtained value or some preceding value that is the correct ⌊l⌋. The whole procedure is the
following (the output isDIV(n,m)):

Division using Newton’s method:

1. If n = 0, we return(0, 0) and quit.

2. If m = 1, we return(n, 0) and quit.

3. If m < 0, we computeDIV(n,−m) = (q, r), return(−q, r) and quit.

4. If n < 0, we computeDIV(−n,m) = (q, r), return(−q− 1, m− r), if r > 0, or (−q, 0),
if r = 0, and quit.

5. SetN ← length of dividendn andM ← length of divisorm.

6. If N < M , we return(0, n) and quit.

7. If N = M , we compute the quotientq. This is easy, since now0 ≤ q ≤ 9. (By trying
out, if not in some other way.) We return(q, n−mq) and quit.
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8. If N > M , we compute⌊10M/m⌋. Again this is easy, since1 ≤ ⌊10M/m⌋ ≤ 10. (By
trying out or in some other way.)

9. If 10M/m − ⌊10M/m⌋ ≤ 1/2, that is, 2 · 10M − 2m⌊10M/m⌋ ≤ m, we set
y0 ← 10N−M⌊10M/m⌋. Otherwise we sety0 ← 10N−M(⌊10M/m⌋ + 1). Note that
in the latter casey0 > l and at least one iteration must be performed.

10. We iterate the recursion formula

yi+1 = 2yi −

⌊
m

10M

⌊
y2i

10N−M

⌋⌋

starting from the valuey0 until i ≥ 1 andyi+1 ≤ yi.

11. We check by multiplications which one of the numbersyi, yi − 1, . . . is the correct⌊l⌋
and setk ← ⌊l⌋.

12. We sett ← ⌊nk/10N⌋ (essentially just a multiplication) and check by multiplications
again which numbert or t+1 is the correct quotientq in the divisionDIV(n,m) = (q, r).
We then return(q, n−mq) and quit.

The procedure in #12 produces the correct quotient because first of all r < m and

q =
n− r

m
≤

n

m
<

10N

m
.

Further, ifDIV(10N , m) = (k, r′) thenr′ < m and

nk

10N
=

(qm+ r)(10N − r′)

m10N
= q −

qr′

10N
+

r(10N − r′)

m10N
.

The middle term on the right hand side is in the interval(−1, 0] and the last term is in the
interval[0, 1). Soq is eithert or t+ 1.

Because the maximum numberI of iterations is very small—about the logarithm of the dif-
ference of the lengthN of the dividend and the lengthM of the divisor—and in an iteration step
there always are three multiplications and one subtractionof integers of maximum length2M
(some of which remain constant), division is not essentially more laborious than multiplication.
Trying out numbers in #7 and #8 does not take that many steps either.

NB. There are many different variants of this kind of division.CRANDALL & POMERANCE

handles the topic with a wider scope and gives more references.

Powers

Raising the numbera to thenth poweran takes too much time if you just repeatedly multiply by
a, since you need then|n| − 1 multiplications, while it in fact suffices to use at most2⌊log2 |n|⌋
multiplications:

Method of Russian peasants:

1. If n = 0 then we return the power1 and quit.

2. If n < 0, we seta← a−1 andn← −n.
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3. If n ≥ 1, we compute the binary representationbjbj−1 · · · b0 of n wherej = ⌊log2 n⌋ (the
length ofn as binary number minus one, see Theorem 2.4).

4. Seti← 0 andx← 1 andy ← a.

5. If i = j then we return the powerxy and quit.

6. If i < j and

6.1 bi = 0 then we sety ← y2 andi← i+ 1 and go to #5.

6.2 bi = 1 then we setx← xy andy ← y2 andi← i+ 1 and go to #5.

Correctness of the algorithm is a straightforward consequence of binary representation:

|n| = bj2
j + bj−12

j−1 + · · ·+ b12 + b0

and
a|n| = abj2

j

abj−12
j−1

· · · ab12ab0 .

It’s convenient to compute bits of the binary representation of n one by one when they are
needed, and not all at once. Now, ifi = 0, only one multiplication is needed in #6 since then
x = 1. Similarly, wheni = j, only one multiplication is needed in #5. For other values of
i two multiplications may be needed, so the maximum overall number of multiplications is
1 + 1 + 2(j − 1) = 2j, as claimed.

Actually this procedure works for every kind of power and also when multiplication is not
commutative, for example for powers of polynomials and matrices. When calculating powers
modulom products must be reduced to the (positive) residue system modulo m, so that the
numbers needed in calculations won’t get too large. This wayyou can quickly compute very
high modular powers.

The procedure takes its name from the fact that Russian peasants used this method for
multiplication when calculating with an abacus and you can think of a · n as thenth power
of a with respect to addition. Apparently the algorithm is very old.

Integral root

The integral lth root6 of a nonnegative integern is ⌊n1/l⌋. The most common of these roots is
of course theintegral square root(l = 2). Denote the length ofn in binary representation by
N .

We can use the same kind of Newton method for computing an integral root as we used for
division.7 For calculating the root of the functionxl − n, i.e.n1/l, we get the Newton iteration

xi+1 =
l − 1

l
xi +

n

lxl−1
i

.

However, because we want to compute using integers, we take an iteration rounded to integers:

yi+1 =

⌊
1

l

(

(l − 1)yi +

⌊
n

yl−1
i

⌋)⌋

,

and use addition, multiplication and division of integers.
The following properties are easy to confirm (e.g. by finding extremal values):

6In some texts it’s⌈n1/l⌉, and in some textsn1/l rounded to the nearest integer.
7It may be noted that the procedure that used to be taught in schools for calculating square roots by hand is also

similar to long division.
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•

⌊
1

l

(

(l − 1)y +

⌊
n

yl−1

⌋)⌋

≤
l − 1

l
y +

n

lyl−1
, so rounding to integers does not increase

iterant values.

• If x 6= n1/l andx > 0 then
l − 1

l
x+

n

lxl−1
> n1/l.

So the exact iteration approaches the root from ”above”. Forthe rounded version we get
correspondingly

⌊
1

l

(

(l − 1)y +

⌊
n

yl−1

⌋)⌋

≥

⌊
1

l

(

(l − 1)y +
n

yl−1
− 1

)⌋

>
l − 1

l
y +

n

lyl−1
− 2 ≥ n1/l − 2.

• If x > n1/l then
l − 1

l
x+

n

lxl−1
< x.

The exact iteration is strictly decreasing. The same is truefor the rounded version.

Denote
n1/l = yi − ǫi

and choosey0 = 2⌈N/l⌉ as the starting value. This can be quickly computed using thealgorithm
of Russian peasants. Sincen < 2N theny0 > n1/l. First we estimate the obtainedǫ0 as follows:

ǫ0 = y0 − n1/l = 2⌈N/l⌉ − n1/l ≤ 2N/l+1−1/l − n1/l = 2 · 2(N−1)/l − n1/l ≤ n1/l.

This Newton’s method is also quadratic. We only confirm the casel = 2. (The general case is
more complicated but similar.) Ifyi−1, yi > n1/l then

0 < ǫi = yi − n1/l ≤
l − 1

l
yi−1 +

n

lyl−1
i−1

− n1/l =
1

lyi−1

(

y2i−1 +
n

yl−2
i−1

− ln1/lyi−1

)

<
1

ln1/l

(

y2i−1 +
n

n(l−2)/l
− 2n1/lyi−1

)

=
1

ln1/l
(yi−1 − n1/l)2 =

1

ln1/l
ǫ2i−1.

Repeating this estimation we get (denotinga =
1

ln1/l
for brevity)

ǫi < aǫ2i−1 < a · a2ǫ2
2

i−2 < · · · < a1+2+22+···+2i−1

ǫ2
i

0

= a2
i−1ǫ2

i

0 = a−1(aǫ0)
2i = ln1/l

( ǫ0
ln1/l

)2i

≤ n1/ll1−2i .

If we now want to haveǫi < 1 then it’s sufficient to taken1/ll1−2i ≤ 1, so (confirm!) a
maximum of

I =

⌈

log2

(

1 +
log2 n

l log2 l

)⌉

iterations is needed. Hence the sufficient number of iterations is proportional tolog2N , which
is very little. So, calculation of an integral root is about as demanding as division.

NB. Becausen1/ log2 n = 2, we are only interested in values ofl which are at most as large as
the length ofn, others can be dealt with with little effort.
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Iteration rounded to integers produces a strictly decreasing sequence of integers, until we
hit a value in the interval(n1/l − 2, n1/l].

Newton’s method for computing integral lth root

1. If n = 0 or n = 1 then we returnn and quit.

2. Sety0 ← 2⌈N/l⌉ whereN is the length ofn in binary representation.

3. Repeat the iteration

yi+1 =

⌊
1

l

(

(l − 1)yi +

⌊
n

yl−1
i

⌋)⌋

starting fromy0 until yi+1 ≥ yi.

4. Check which one of the numbersyi, yi+1, . . . is the correct integral root⌊n1/l⌋, and quit.

Generating a random integer

Random bit sequences are commonly generated using ashift register8 of pth order modulo2:

ri ≡ a1ri−1 + a2ri−2 + · · ·+ apri−p mod 2

wherea1, a2, . . . , ap are constant bits (0 or 1, ap = 1). First we need the initial ”seed” bits
r0, r1, . . . , rp−1. Here we calculate using the positive residue system modulo2 in other words,
using bits. Of course the obtained sequencerp, rp+1, . . . is not random in any way, indeed, it is
obtained using a fully deterministic procedure and is periodic (length of period is at most2p).
When we choose the coefficientsa1, a2, . . . , ap−1 conveniently, we get the sequence to behave
”randomly” in many senses, the period is long and so on, see for example KNUTH. In the
simplest cases almost every coefficient is zero.

Shift registers of the type
ri ≡ ri−q + ri−p mod 2,

wherep is a prime andq is chosen conveniently, often produce very good random bits. Some
choices, where the numberq can be replaced by the numberp− q, are listed in the table below.

p q (p− q works also) p q (p− q works also)
2 1 1279 216, 418
3 1 2281 715, 915, 1029
5 2 3217 67, 576
7 1, 3 4423 271, 369, 370, 649, 1393, 1419, 2098
17 3, 5, 6 9689 84, 471, 1836, 2444, 4187
31 3, 6, 7, 13 19937 881, 7083, 9842
89 38 23209 1530, 6619, 9739
127 1, 7, 15, 30, 63 44497 8575, 21034
521 32, 48, 158, 168 110503 25230, 53719
607 105, 147, 273 132049 7000, 33912, 41469, 52549, 54454

These values were found via a computer search.9 Small values ofp of course are not very useful.

8A classic reference is GOLOMB, S.W.:Shift Register Sequences.Aegean Park Press (1982)
9The original articles are ZIERLER, N.: On Primitive Trinomials Whose Degree is a Mersenne Exponent.

Information and Control15 (1969), 67–69 and HERINGA, J.R. & BLÖTE, H.W.J. & COMPAGNER, A.: New
Primitive Trinomials of Mersenne-Exponent Degrees for Random Number Generation.International Journal of
Modern PhysicsC3 (1992), 561–564.
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In matrix form in the binary fieldZ2, see the previous section, the shift register is the fol-
lowing. Denote

ri =








ri+p−1

ri+p−2
...
ri








and A =










a1 a2 · · · ap−1 ap
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0










.

A is the so-calledcompanion matrixof the shift register. Then

ri+1 ≡ Ari mod 2

and hence
ri ≡ Air0 mod 2 (i = 0, 1, . . . ).

The matrix powerAi can be quickly computed modulo2 using the method of Russian peasants.
So, perhaps a bit surprisingly, we can quite quickly computeterms of the sequencerp, rp+1, . . .
”ahead of time” without computing that many intermediate terms. Note that for the bitstream to
be ”random”, the matrixRi = (ri, . . . , ri+p−1) obtained fromp consecutive vectorsri should
be invertible, i.e.det(Ri) 6≡ 0 mod 2, at some stage. Then you can solve the equationARi ≡
Ri+1 mod 2 for the matrixA. For large values ofp all these calculations naturally tend to
become difficult.

Random integersare obtained from random bit sequences using binary representation. Ran-
dom integerss0, s1, . . . of maximum binary lengthn are obtained by dividing the sequence into
consecutive blocks ofn bits and interpreting the blocks as binary numbers.

NB. Generating random bits and numbers needed in encryption is quite demanding. ”Badly”
generated random bits assist in breaking the encryption a lot. One may say with good reason
that generation of random numbers has lately progressed significantly largely due to the needs
of encryption.

The shift register generator above is quite sufficient for ”usual” purposes, even for light
encrypting, especially for larger values ofp. For a shift register generator to be cryptologically
strong, it should not be too predictable and for thisp must be large, too large for practice. There
are better methods, for example the so called Blum–Blum–Shub generator, which we discuss in
Section 7.7. See alsoGOLDREICH.

Another common random number generator is the so-calledlinear congruence generator.It
generates a sequencex0, x1, . . . of random integers in the interval0, 1, . . . , m using the recur-
sion congruence

xi+1 ≡ axi + b mod m

wherea andb are given numbers—also the ”seed” inputx0 is given. By choosing the numbers
a andb conveniently we get good and fast random number generators which are suitable for
many purposes. (See for example KNUTH.) Therand-operation in Maple used to be based on
a linear congruence generator wherem = 999 999 999 989 (a prime),a = 427 419 669 081 and
b = 0.

Since (
xi

1

)

≡

(
a b
0 1

)(
xi−1

1

)

≡ · · · ≡

(
a b
0 1

)i(
x0

1

)

mod m,

the sequencex0, x1, . . . can also be calculated very quickly ”in advance” using the method of
Russian peasants, even for large numbersm anda. On the other hand, ifgcd(xi−xi−1, m) = 1,
as it sooner or later will be, we can solve the congruencexi+1 − xi ≡ a(xi − xi−1) mod m
for a, and then getb ≡ xi+1 − axi mod m. For pretty much the same reasons as for the shift
register generator, the linear congruence generator is cryptologically very weak.



Chapter 3

SOME CLASSICAL CRYPTOSYSTEMS
AND CRYPTANALYSES

3.1 AFFINE. CAESAR

To be able to use the results of number theory from the preceding chapter, symbols of plaintext
must be encoded as numbers and residue classes. If there areM symbols to be encoded, we
can use residue classes moduloM . In fact, we may think the message to be written using these
residue classes or numbers of the positive residue system.

In the affine cryptosystemAFFINE a message symboli (a residue class modulom repre-
sented in the positive residue system) is encrypted in the following way:

ek1(i) = (ai+ b, mod M).

Herea andb are integers anda has an inverse classc moduloM , in other wordsgcd(a,M) = 1.
The encrypting keyk1 is formed by the pair(a, b) and the decrypting keyk2 by the pair(c, b)
(usually represented in the positive residue system). The decrypting function is

dk2(j) = (c(j − b), mod M).

So the length of the message block is one. Hence affine encrypting is also suitable for stream
encryption. When choosinga andb from the positive residue system the number of possible
values ofa is φ(M), see Section 2.4, and all in all there areφ(M)M different encrypting keys.
The number of encrypting keys is thus quite small. Some values:

φ(10) = 4 , φ(26) = 12 , φ(29) = 28 , φ(40) = 16.

The special case wherea = 1 is known as theCaesar cryptosystemCAESAR. A more
general cryptosystem, where

ek1(i) = (p(i), mod M)

andp is a polynomial with integral coefficients, isn’t really much more useful as there are still
very few keys (why?).

NB. AFFINE resembles the linear congruence generator discussed before. The cryptosystem
HILL, to be introduced next, resembles the shift register generator. This is not totally coinciden-
tal, random number generators and cryptosystems do have a connection: often you can obtain
a strong random number generator from a strong cryptosystem, possibly a not too useful such,
though.

23
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3.2 HILL. PERMUTATION. AFFINE-HILL. VIGENÈRE

In Hill’s 1 cryptosystemHILL we use the same encoding of symbols as residue classes modulo
M as in AFFINE. However, now the block is formed ofd residue classes considered as a
d-vector. Hill’s originald was2. The encrypting key is ad × d matrixH that has an inverse
matrix moduloM , see Section 2.5. This inverse matrixH−1 = K moduloM is the decrypting
key.

A message block
i = (i1, . . . , id)

is encrypted as
eH(i) = (iH, mod M),

and decrypted similarly as
eK(j) = (jK, mod M).

Here we calculate moduloM in the positive residue system.
There are as many encrypting keys as there are invertibled × d matrices moduloM . This

number is quite hard to compute. However, usually there is a relatively large number of keys if
d is large.

A special case of HILL is PERMUTATION or the so-calledpermutation encryption.Here
H is apermutation matrix,in other words, a matrix that has exactly one element equal toone in
every row and in every column all other elements being zeros.Note that in this caseH−1 = HT,
or thatH is an orthogonal matrix. In permutation encrypting the symbols of the message block
are permutated using the constant permutation given byH.

A more general cryptosystem is AFFINE-HILL or theaffine Hill cryptosystem.Comparing
with HILL, now the encrypting keyk1 is a pair(H,b), whereb is a fixedd-vector moduloM ,
and the decrypting keyk2 is the corresponding pair(K,b). In this case

ek1(i) = (iH+ b, mod M)

and
ek2(j) = ((j− b)K, mod M).

From this we obtain a special case, the so-calledVigenère2 encryptionVIGENÈRE by choosing
H = Id (d × d identity matrix). (This choice ofH isn’t suitable for HILL!) In Vigenère’s
encryption we add in the message block symbol by symbol a keyword of lengthd moduloM .

Other generalizations of HILL are the so-calledrotor cryptosystems,that are realized using
mechanical and electro-mechanical devices. The most familiar example is the famous ENIGMA
machine used by Germans in the Second World War. See SALOMAA or BAUER.

3.3 ONE-TIME-PAD

Message symbols are often encoded binary numbers of a certain maximum length, for example
ASCII encoding or UNICODE encoding. Hence we may assume thatthe message is a bit
vector of lengthM . If the maximum length of the message is known in advance and encrypting
is needed just once then we may choose a random bit vectorb (or vector modulo2) of length
M as the key, the so-calledone-time-pad, which we add to the message modulo2 during the

1Lester S. Hill (1929)
2Blaise de Vigenère (1523–1596)
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encryption. The encrypted message vector obtained as result is also random (why?) and a
possible eavesdropper won’t get anything out of it without the key. During the decrypting we
correspondingly add the same vectorb to the encrypted message, since2b ≡ 0 mod 2. In this
way we get the so-calledone-time-pad cryptosystemONE-TIME-PAD.

3.4 Cryptanalysis

The purpose ofcryptanalysisis to break the cryptosystem, in other words, to find the decrypting
key or encrypting key, or to at least produce a method which will let us get some information
out of encrypted messages. In this case it is usually assumedthat the cryptanalyzer is an eaves-
dropper or some other hostile party and that the cryptanalyzer knows which cryptosystem is
being used but does not know the key being used.

A cryptanalyzer may have different information available:

(CO) just some, maybe random, cryptotext (cryptotext only),

(KP) some, maybe random, plaintext and the corresponding cryptotext (known plaintext),

(CP) a chosen plaintext and the corresponding cryptotext (chosen plaintext),

(CC) a chosen cryptotext and the corresponding plaintext (chosen cryptotext).

Classical attack methods are often based onfrequency analysis, that is, knowledge of the
fact that in long cryptotexts certain symbols, symbol pairs, symbol triplets and so on, occur at
certain frequencies. Frequency tables have been prepared for the ordinary English language,
American English and so on.

NB. If a message is compressed before encrypting, it will lose some of its frequency information,
see the course Information Theory.

We now take as examples cryptanalyses of the cryptosystems discussed above.

AFFINE

In affine encryption the number of the possible keys is usually small, so they can all be checked
one by one in a CO attack in order to find the probable plaintext. Apparently this won’t work
if there is no recognizable structure in the message. On the other hand, we can search for a
structure in the cryptotext, in accordance with frequency tables, and in this way find KP data,
for example the most common symbol might be recognized.

In a KP attack it is sufficient to find two message-symbol-cryptosymbol pairs(i1, j1) and
(i2, j2) such thatgcd(i1 − i2,M) = 1. Such a pair is usually found in a long cryptotext. Then
the matrix (

i1 1
i2 1

)

is invertible moduloM and the key is easily obtained:
(
j1
j2

)

≡

(
i1 1
i2 1

)(
a
b

)

mod M

or (
a
b

)

≡ (i1 − i2)
−1

(
1 −1
−i2 i1

)(
j1
j2

)

mod M.
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In a CP attack the symbol pairs(i1, j1) and(i2, j2) can actually be chosen. In a CC attack it is
sufficient to choose a long cryptotext. Because it is quite easy to break, AFFINE is only suitable
for a light covering of information from casual readers.

HILL and AFFINE-HILL

The number of keys in Hill’s cryptosystem is usually large, especially ifd is large. A CO attack
does not work well as such. By applying frequency analysis some KP data can in principle be
found, especially ifd is relatively small. In a KP attack it is sufficient to find message-block-
cryptoblock pairs(i1, j1), . . . , (id, jd) such that the matrices

S =






i1
...
id




 and R =






j1
...
jd






are invertible moduloM . Note that in fact it is sufficient to know one of these matrices is
invertible, the other will then also be invertible. Of course S can be directly chosen in a CP
attack andR in a CC attack. IfS andR are known, the keyH is easily obtained:

R ≡ SH mod M or H ≡ S−1R mod M.

HILL is difficult to break, if one doesn’t at least have some KPdata available, especially if
d is large and/or the cryptanalyzer does not know the value ofd. On the other hand, a KP attack
and especially a CP or a CC attack is easy—very little data is needed—so HILL is not suitable
for high-end encryption.

AFFINE-HILL is a little harder to break than HILL. In a KP attack you need message-
block-cryptoblock pairs(i1, j1), . . . , (id+1, jd+1) such that the matrices

S =






i1 − id+1
...

id − id+1




 and R =






j1 − jd+1
...

jd − jd+1






are invertible moduloM . Note again, that it is actually sufficient to know that one ofthese
matrices is invertible. In a CP attackS can be directly chosen, as canR in a CC attack. IfS
andR are known,H is easily obtained in the same manner as above. WhenH is known,b is
easily obtained.

VIGENÈRE

VIGENÈRE was a widely used cryptosystem in its heydays. Its breaking was improved on with
time, reaching a quite respectable level of ingenuity. The first step is to findd. There are specific
methods for this, andd in VIGENÈRE is usually quite large. After this we can apply frequency
analysis. See STINSON or SALOMAA or BAUER.

ONE-TIME-PAD

If the key is not available to the cryptanalyzer, ONE-TIME-PAD is impossible to break in a
CO attack. However, if the same key is used many times, we basically come to a VIGENÈRE-
encrypting.
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ALGEBRA: RINGS AND FIELDS

4.1 Rings and Fields

An algebraic structureis formed of a setA. There must be one or more computing operations
defined on this set’s elements and these operations must follow some calculation rules. Also
usually a special role is given to some element(s) ofA.

A ring is a structureR = (A,⊕,⊙, 0, 1) where⊕ is the ring’saddition operation,⊙ is the
ring’s multiplication operation,0 is the ring’szero element,and1 is the ring’sidentity element
(and0 6= 1). If ⊕,⊙, 0 and1 are obvious within the context then the ring is often simply
denoted byA. It is also required that the following conditions hold true:

(1) ⊕ and⊙ arecommutativeoperations, in other words, always

a⊕ b = b⊕ a and a⊙ b = b⊙ a.

(2) ⊕ and⊙ areassociativeoperations, in other words, always

(a⊕ b)⊕ c = a⊕ (b⊕ c) and (a⊙ b)⊙ c = a⊙ (b⊙ c).

It follows from associativity that long sum and product chains can be written using paren-
theses in any (allowed) way you like without changing the result. Often they are written
completely without parentheses, for examplea1 ⊕ a2 ⊕ · · · ⊕ ak or a1 ⊙ a2 ⊙ · · · ⊙ ak.
Especially we get in this waymultiplesandpowers,that is, expressions

ka = a⊕ · · · ⊕ a
︸ ︷︷ ︸

k times

and ak = a⊙ · · · ⊙ a
︸ ︷︷ ︸

k times

and, as special cases,0a = 0, 1a = a, a0 = 1 anda1 = a.

(3) 0⊕ a = a and1⊙ a = a (note how these are compatible with multiples and powers).

(4) a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c) (distributivity).

(5) For every elementa there is anadditive inverseor opposite element−a, which satisfies
(−a) ⊕ a = 0. Using additive inverses we obtainsubtractiona ⊖ b = a ⊕ (−b) and
negative multiples(−k)a = k(−a).

NB. To be more precise, this kind of ringR is a so-calledcommutative ring with identity,a
proper ring is an even more general concept in the algebraic sense. See the course Algebra 1.
In future what we mean by a ring is this kind of commutative ring with identity.

27
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If the following condition (6) is also valid in addition to the above ones, thenR is a so-called
field:

(6) For every elementa 6= 0 there is a(multiplicative) inversea−1, for whicha ⊙ a−1 = 1.
Using inverses we obtaindivisiona/b = a⊙ b−1 andnegative powersa−k = (a−1)k.

It is usually agreed that multiplication and division must be performed before addition and
subtraction, which allows us to leave out a lot of parentheses. From these conditions we can
derive many ”familiar” calculation rules, for example

−(a⊙ b) = (−a)⊙ b and
a⊙ b

c⊙ d
=

a

c
⊙

b

d
.

So, every field is also a ring. Familiar rings which are not fields are for example the ring of
integersZ and variouspolynomial rings,e.g. polynomial rings with rational, real, complex or
integral coefficients, denoted byQ[x], R[x], C[x] andZ[x]. Computational operations in these
rings are the common+ and ·, the zero element is0, and the identity element is1. Also Zm

(residue classes modulom) forms a ring, so a residue class ring is truly a ring, see Section 2.5.
Familiar fields arenumber fields, the field of real numbers(R,+, ·, 0, 1), the field of rational

numbers(Q,+, ·, 0, 1) and the field of complex numbers(C,+, ·, 0, 1), and e.g. the field of
rational functions with real coefficients(R(x),+, ·, 0, 1) and theprime fields(Zp,+, ·, 0, 1) (see
Section 2.5). These are usually denoted briefly byR, Q, C, R(x) andZp.

4.2 Polynomial Rings

Polynomials defined formally using the elements of a fieldF as coefficients, form the so-called
polynomial ringof F , denoted byF [x]. A polynomial is written as the familiar sum expression
using a dummy variable (herex):

p(x) = a0 ⊕ a1x⊕ a2x
2 ⊕ · · · ⊕ anx

n , where a0, a1, . . . , an ∈ F and an 6= 0.

Thezero polynomialis the empty sum. In the usual way the zero polynomial ofF [x] is identified
with the zero element0 of F and constant polynomials with the corresponding elements of F .
Further, thedegreeof a polynomialp(x), denoteddeg(p(x)), is defined in the usual way as the
exponent of the highest power ofx in the polynomial (the degree above isn). It is agreed that
the degree of the zero polynomial is−1 (just for the sake of completeness). The coefficient
of the highest power ofx in the polynomial is called theleading coefficient(abovean). If the
leading coefficient is= 1, then the polynomial is a so-calledmonic polynomial.Conventionally
the term1xi can be replaced byxi and the term(−1)xi by⊖xi, and a term0xi can be left out
altogether.

Addition, subtractionandmultiplication of polynomials are defined in the usual way us-
ing coefficients and the corresponding computational operations of the field. Let’s study these
operations on the generic polynomials

p1(x) = a0 ⊕ a1x⊕ a2x
2 ⊕ · · · ⊕ anx

n and p2(x) = b0 ⊕ b1x⊕ b2x
2 ⊕ · · · ⊕ bmx

m

wherean, bm 6= 0. (So we assume here thatp1(x), p2(x) 6= 0.) Then

p1(x)⊕ p2(x) = c0 ⊕ c1x⊕ c2x
2 ⊕ · · · ⊕ ckx

k
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wherek = max(n,m) and

ci =







ai ⊕ bi, if i ≤ n,m

ai, if m < i ≤ n

bi, if n < i ≤ m.

Note that ifn = m thenck can be= 0, in other words, the degree of the sum can be< k.
Further, theopposite polynomialof p2(x) is

−p2(x) = (−b0)⊕ (−b1)x⊕ (−b2)x
2 ⊕ · · · ⊕ (−bm)x

m

and we get the subtraction in the form

p1(x)⊖ p2(x) = p1(x)⊕ (−p2(x)).

Multiplication is defined as follows:

p1(x)⊙ p2(x) = c0 ⊕ c1x⊕ c2x
2 ⊕ · · · ⊕ cn+mx

n+m

where
ci =

⊕

t+s=i

at ⊙ bs.

Hence
deg(p1(x)⊙ p2(x)) = deg(p1(x)) + deg(p2(x)).

It is easy, although a bit tedious, to confirm that the(F [x],⊕,⊙, 0, 1) obtained in this way is
indeed a ring.

Furthermore,division is defined for polynomialsa(x) andm(x) 6= 0 in the form

a(x) = q(x)⊙m(x)⊕ r(x) , deg(r(x)) < deg(m(x))

(quotientq(x) andremainderr(x)). Remember it was agreed that the degree of the zero poly-
nomial is−1. The result of the division is unambiquous, because if

a(x) = q1(x)⊙m(x)⊕ r1(x) = q2(x)⊙m(x)⊕ r2(x)

wheredeg(r1(x)), deg(r2(x)) < deg(m(x)) then

r1(x)⊖ r2(x) = (q2(x)⊖ q1(x))⊙m(x).

But deg(r1(x) ⊖ r2(x)) < deg(m(x)), so the only possibility is thatq2(x) ⊖ q1(x) is the zero
polynomial. i.e.q1(x) = q2(x), and further thatr1(x) = r2(x).

Division can be performed by the following algorithm, whichthen also shows that division
is possible (the output is denoted byDIV(a(x), m(x)) = (q(x), r(x))):

Division of polynomials:

1. Setq(x) ← 0 andn ← deg(a(x)) andk ← deg(m(x)). Denote the leading coefficient
of m(x) by mk.

2. If n < k, return(q(x), a(x)), and quit.

3. Find the leading coefficientan of a(x).
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4. Set
a(x)← a(x)⊖ (an ⊙m−1

k )⊙ xn−k ⊙m(x)

and
q(x)← q(x)⊕ (an ⊙m−1

k )⊙ xn−k

andn← deg(a(x)) and go to #2.

Each time we repeat #4 the degreen gets smaller and so eventually we come out at #2.
Further, we can define factors and divisibility as in Section2.1. If a(x) = q(x)⊙m(x), we

say thata(x) is divisibleby m(x) or thatm(x) is a factor of a(x). A polynomial which has no
factors of lower degree other than constant polynomials is called irreducible.

When dividinga(x) by m(x) the remainderr(x) is said to be a residue ofa(x) modulo
m(x), compare the corresponding concept for integers in Section2.4.m(x) acts as amodulus.
Here it is assumed that the modulus is at least of degree1. The same kind of notation is also
used as for integers: If the residues ofa(x) andb(x) modulom(x) are equal, we denote

a(x) ≡ b(x) mod m(x)

and say thata(x) is congruent tob(x) modulom(x). The same calculation rules apply to
polynomial congruences as for integers.

The residue classa(x) = r(x) corresponding to the residuer(x) is formed by all those
polynomialsa(x) whose residue modulom(x) is r(x). All residue classes modulom(x) form
the so-calledresidue class ringor factor ring or quotient ringF [x]/m(x).1 It is easy to see, in
the same way as for integers, that residue classes modulom(x) can be given and be calculated
with by ”using representatives”, in other words,

a1(x)⊕ a2(x) = a1(x)⊕ a2(x) , −a(x) = −a(x) ,

a1(x)⊖ a2(x) = a1(x)⊖ a2(x) , ka(x) = ka(x) ,

a1(x)⊙ a2(x) = a1(x)⊙ a2(x) and a(x)
k
= a(x)k,

and the result does not depend on the choice of the representatives. (The operations are thus
well-defined.) The most common representative system is theset formed by all possible re-
mainders, or polynomials of at most degreedeg(m(x))− 1. HenceF [x]/m(x) is truly a ring.

Furthermore, just as we showed that every element ofZp other than the zero element0 has
an inverse, we can show that every element ofF [x]/p(x) other than the zero element0 has an
inverse, assuming that the modulusp(x) is an irreducible polynomial. For this purpose we need
the greatest common divisor of two or more polynomials inF [x] and the Euclidean algorithm
for polynomials.

The greatest common divisor(g.c.d.) of the polynomialsa(x) andb(x) of F [x] (not both
the zero polynomial) is a polynomiald(x) of the highest degree that divides botha(x) and
b(x), denotedd(x) = gcd(a(x), b(x)). Note that such greatest common divisor is not unique,
since if d(x) = gcd(a(x), b(x)) then alsoc ⊙ d(x), wherec 6= 0 is constant polynomial, is
gcd(a(x), b(x)). It is therefore often required thatd(x) is a monic polynomial.

Theorem 4.1. (Bézout’s theorem)If at least one of the polynomialsa(x) andb(x) is nonzero
then any g.c.d. of theirs can be written in the form

d(x) = c1(x)⊙ a(x)⊕ c2(x)⊙ b(x) (Bézout’s form).

In addition, ifa(x), b(x) 6= 0, it may be assumed thatdeg(c1(x)) ≤ deg(b(x)) anddeg(c2(x)) ≤
deg(a(x)).

1A similar notation is often used for integers:Zm = Z/m.
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Proof. The proof is quite similar to the proof of Theorem 2.5. We denoteGCD(a(x), b(x)) =
(d(x), c1(x), c2(x)) and assume thatdeg(a(x)) ≤ deg(b(x)). The (Generalized) Euclidean
algorithmneeded in the proof is the following recursion:

The (Generalized) Euclidean algorithm for polynomials:

1. If a(x) = 0 then we returnGCD(a(x), b(x)) = (b(x), 0, 1), and quit.

2. If a(x) 6= 0 is a constant polynomial, we returnGCD(a(x), b(x)) = (a(x), 1, 0), and
quit.

3. If deg(a(x)) ≥ 1 then we find the residuer(x) of b(x) moduloa(x), in other words,
we write b(x) = q(x) ⊙ a(x) ⊕ r(x) wheredeg(r(x)) < deg(a(x)). Then we find
GCD(r(x), a(x)) = (d(x), e1(x), e2(x)). Becaused(x) = e1(x)⊙ r(x)⊕ e2(x) ⊙ a(x),
thend(x) = gcd(a(x), b(x)) and

d(x) = (e2(x)⊖ e1(x)⊙ q(x))⊙ a(x)⊕ e1(x)⊙ b(x).

We returnGCD(a(x), b(x)) = (d(x), e2(x)⊖ e1(x)⊙ q(x), e1(x)), and quit.

The process ends sincemin(deg(r(x)), deg(a(x))) < min(deg(a(x), deg(b(x))), in other words,
each time we callGCD the minimum degree gets lower.

If gcd(a(x), m(x)) is a constantf 6= 0 then by multiplying both sides of Bézout’s form by
f−1 we obtain

1 = e1(x)⊙ a(x)⊕ e2(x)⊙m(x).

Hence in this casea(x) has an inversee1(x) modulom(x), i.e. a(x) has an inversee1(x) in
F [x]/m(x). (Assuming thatdeg(m(x)) ≥ 1.) At the same time we have a method for finding
the inverse.

In the special case wherep(x) is an irreducible polynomial ofF [x] and its degree is at least
1 the factor ringF [x]/p(x) is a field. Elements of this field are usually written in the residue
form

c0 ⊕ c1x⊕ c2x
2 ⊕ · · · ⊕ cn−1x

n−1

wheren = deg(p(x)) and the coefficientsc0, c1, . . . , cn−1 are elements ofF , that is, essentially
asn-vectors whose components are inF . Note that in this formcn−1 can be= 0. If p(x) is of
the first degree thenF [x]/p(x) = F , that is, we return to the original field.

Example. Irreducible polynomials ofR[x] are, except for the constants, either of the first or the
second degree. (This statement is equivalent to the Fundamental theorem of algebra, see the
course Complex Analysis.) We obtain from the formerR and from the latterC. So for example
C = R[x]/(x2 + 1). On the other hand, irreducible polynomials ofC[x] are constants or of the
first degree, so that doesn’t lead us anywhere.

A polynomial ringR[x] can also be formed using the elements of the ringR as coefficients,
in this way we obtain for example the polynomial ring with integer coefficientsZ[x]. In such
polynomial rings addition, subtraction and multiplication are defined as usual, but division is not
generally possible. By studying the division algorithm it becomes clear thatdivision is defined
if the leading coefficient of the dividing polynomial has an inverse inR. In the special case
wherethe divisor is a monic polynomial division is defined in any polynomial ring. Hence the
residue class ringR[x]/m(x) is defined only if the leading coefficient ofm(x) has an inverse in
R, and always ifm(x) is a monic polynomial.

This kind of division is needed for example in the NTRU cryptosystem, see Chapter 11.



CHAPTER 4. ALGEBRA: RINGS AND FIELDS 32

4.3 Finite Fields

Prime fields were denoted byZp in Section 2.5 or as residue classes modulo a prime numberp.
A prime field is one example of afinite field,but there are others. To obtain these we choose
an irreducible polynomialP (x) from the polynomial ringZp[x] of the prime fieldZp. Residues
moduloP (x) form the fieldZp[x]/P (x) the elements of which are usually expressed in the
form

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1

wheren = deg(P (x)) andc0, . . . , cn−1 ∈ Zp, or essentially as vectors(c0, c1, . . . , cn−1). This
field is finite, it has as many elements as there are residues moduloP (x) (that is,pn).

It can be shown (passed here), that every possible finite fieldcan be obtained in this way—
including the prime fieldZp itself. So the number of elements in a finite field is always a
power of a prime number. There are many ways to construct finite fields, in particular, there
are usually more than one irreducible polynomial to choose from inZp[x], but all finite fields
with pn elements are structurally the same, that is, they are isomorphic to any fieldZp[x]/P (x)
wheredeg(P (x)) = n. Hence there is essentially only one finite field withpn elements, and it’s
denoted byFpn or byGF(pn).2 For each powerpn there exists anFpn, in other words, you can
find irreducible polynomials of all degreesn ≥ 1 in the polynomial ringZp[x].

NB. If we take an irreducible polynomialP (x) of degreem with coefficients in the finite field
Fpn, i.e. an irreducible element of the polynomial ringFpn[x], then—as noted—the factor ring
Fpn/P (x) of residues moduloP (x) is a field that has(pn)m = pnm elements. This field must
beFpnm , and it is isomorphic to someZp[x]/Q(x) whereQ(x) is an irreducible polynomial of
degreenm in Zp[x].

In practice calculating in a finite fieldFpn is done by expressing the elements as residue
classes modulo some irreducible polynomialP (x) ∈ Zp[x] of degreen. The operations are
carried out by using representatives of degree no higher than n−1, or residues, to which results
are also reduced moduloP (x) by division. Ifp and/orn is large, these operations are obviously
very laborious by hand. There are other representations forfinite fields. Representation as
powers of primitive elements is used a lot in some cryptosystems (see Chapter 10).

Example. To constructF28 we may choose the irreducible polynomialP (x) = 1+x+x3+x4+
x8 in Z2[x] of degree8. Let’s check thatP (x) is indeed irreducible using the Maple program:

> Irreduc(1+x+x^3+x^4+x^8) mod 2;

true

Elements ofF28 are in the residue form

b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7

whereb0, . . . , b7 are bits, essentially as bit vectors(b0, b1, b2, b3, b4, b5, b6, b7). Using theGF
library of Maple we can calculate in finite fields, although it’s a bit clumsy. Let’s try the library
onF28:

> GF256:=GF(2,8,1+x+x^3+x^4+x^8):
> a:=GF256[ConvertIn](x);

2”GF” = ”Galois’ field”. Of courseZp = Fp = GF(p).
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a := x mod 2

> GF256[‘^‘](a,1200);

(x7 + x6 + x5 + x3 + x2 + x+ 1) mod 2

> c:=GF256[inverse](a);

c := (x7 + x3 + x2 + 1) mod 2

> GF256[‘+‘](a,GF256[‘^‘](c,39));

(x7 + x5 + x3 + 1) mod 2

So here we calculated in residue form the elementsx1 200, x−1 and x + x39. The command
ConvertIn converts a polynomial to Maple’s inner representation.

If you don’t know any suitable irreducible polynomial ofZp[x], Maple will find one for you:

> GF81:=GF(3,4):
> GF81[extension];

(T 4 + T 3 + 2T + 1) mod 3

The choice can be found by using theextension command. So here we got as a result the
irreducible polynomial1 + 2x+ x3 + x4 of Z3[x].

Matrix and vector operations in finite fields are defined as usual by the operations of their
elements. In this way we can apply addition, subtraction, multiplication, powers and transposes
of matrices, familiar from basic courses. Also determinants of square matrices follow the fa-
miliar calculation rules. Just as in basic courses, we note that a square matrix has an inverse
matrix if and only if its determinant is not the zero element of the field.

Besides cryptology, finite fields are very important for error-correcting codes. They are dis-
cussed more in the courses Finite Fields and Coding Theory. Good references are MCELIECE

and LIDL & N IEDERREITER and also GARRETT. The mass encryption system AES, which is
in general use nowadays, is based on the finite fieldF28 , see the next chapter.



Chapter 5

AES

5.1 Background

AES (Advanced Encryption Standard)is a fast symmetric cryptosystem for mass encryption. It
was developed through competition, and is based on theRIJNDAEL system,published in 1999
by Joan Daemen and Vincent Rijmen from Belgium, see DAEMEN & R IJMEN. AES replaced
the old DES system (Data Encryption Standard, see Appendix)published in 1975.

AES works on bit symbols, so the residue classes (bits)0 and1 of Z2 can be considered
as plaintext and cryptotext symbols. The workings of RIJNDAEL can be described using the
field F28 and its polynomial ringF28 [z]. To avoid confusion we usez as the dummy variable in
the polynomial ring andx as the dummy variable for polynomials inZ2 needed in defining and
representing the fieldF28 . Furthermore, we denote addition and multiplication inF28 by⊕ and
⊙, the identity element is denoted by1 and the zero element by0. Note that because1 = −1
in Z2, the additional inverse of an element inZ2[x], F28 and inF28 [z] is the element itself. So
subtraction⊖ is the same as addition⊕, in this case.

5.2 RIJNDAEL

In the RIJNDAEL system the lengthlB of the plaintext block and the lengthlK of the key are
independently either128, 192 or 256 bits. Dividing by32 we get the numbers

NB =
lB
32

and NK =
lK
32

.

Bits are handled as bytes of8 bits. An8-bit byteb7b6 · · · b0 can be considered as an element of
the finite fieldF28 , which has the residue representationb0+ b1x+ b2x

2 + b3x
3+ b4x

4+ b5x
5 +

b6x
6 + b7x

7, see the example in Section 4.3 and note the order of terms.
The key is usually expressed as a4 × NK matrix whose elements are bytes. If the key is,

byte by byte,
k = k00k10k20k30k01k11k21 · · · k3,NK−1

then the corresponding matrix is

K =







k00 k01 k02 · · · k0,NK−1

k10 k11 k12 · · · k1,NK−1

k20 k21 k22 · · · k2,NK−1

k30 k31 k32 · · · k3,NK−1







.

34
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Note how the elements of the matrix are indexed starting fromzero. Similarly, if the input block
(plaintext block) is, byte by byte,

a = a00a10a20a30a01a11a21 · · · a3,NB−1

then the corresponding matrix is

A =







a00 a01 a02 · · · a0,NB−1

a10 a11 a12 · · · a1,NB−1

a20 a21 a22 · · · a2,NB−1

a30 a31 a32 · · · a3,NB−1







.

During encryption we are dealing with a bit sequence of length lB, the so-calledstate.Like the
block, it is also expressed byte by byte in the form of a4×NB matrix:

S =







s00 s01 s02 · · · s0,NB−1

s10 s11 s12 · · · s1,NB−1

s20 s21 s22 · · · s2,NB−1

s30 s31 s32 · · · s3,NB−1







.

Elements of the matricesK,A andS are bytes of8 bits, which can be interpreted as ele-
ments of the fieldF28 . In this way these matrices are matrices over this field. Another way to
interpret the matrices is to consider their columns as sequences of elements of the fieldF28 of
length4. These can be interpreted further, from top to bottom, as coefficients of polynomials
with maximum degree3 from the polynomial ringF28 [z]. So, the stateS mentioned above
would thus correspond to the polynomial sequence

s00 ⊕ s10z ⊕ s20z
2 ⊕ s30z

3 , s01 ⊕ s11z ⊕ s21z
2 ⊕ s31z

3 , . . . ,

s0,NB−1
⊕ s1,NB−1

z ⊕ s2,NB−1
z2 ⊕ s3,NB−1

z3.

For the representation to be unique, a given fixed irreducible polynomial of degree8 fromZ2[x]
must be used in the construction ofF28 . In RIJNDAEL it is the so-calledRIJNDAEL polynomial

p(x) = 1 + x+ x3 + x4 + x8

which, by the way, is the same as in the example in Section 4.3.

5.2.1 Rounds

There is a certain numberNR of so-calledroundsin RIJNDAEL. The number of rounds is given
by the following table:

NR NB = 4 NB = 6 NB = 8
NK = 4 10 12 14
NK = 6 12 12 14
NK = 8 14 14 14

The ith round receives as its input the current stateS and its own so-calledround keyRi. In
particular, we need the initial round keyR0. In each round, except for the last one, we go
through the following sequence of operations:

S← SubBytes(S)

S← ShiftRows(S)

S← MixColumns(S)

S← AddRoundKey(S,Ri)
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The last round is the same except that we dropMixColumns.
The encrypting key isexpandedfirst and then used to distribute round keys to all rounds.

This and the different operations in rounds are discussed one by one in the following sections.
Encrypting itself then consists of the following steps:

• Initialize the state:S← AddRoundKey(A,R0).

• NR − 1 ”usual” rounds.

• The last round.

When decrypting we go through the inverse steps in reverse order.

5.2.2 Transforming Bytes (SubBytes)

In this operation each bytesij of the state is transformed in the following way:

1. Interpretsij as an element of the fieldF28 and compute its inverses−1
ij . It is agreed here

that the inverse of the zero element is the element itself.

2. Expands−1
ij in eight bitsb7b6b5b4b3b2b1b0, denote

b(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 (a polynomial inZ2[x])

and compute

b′(x) ≡ b(x)(1 + x+ x2 + x3 + x4) + (1 + x+ x5 + x6) mod 1 + x8.

The result

b′(x) = b′0 + b′1x+ b′2x
2 + b′3x

3 + b′4x
4 + b′5x

5 + b′6x
6 + b′7x

7

is interpreted as a byteb′7b
′
6b

′
5b

′
4b

′
3b

′
2b

′
1b

′
0 or as an element ofF28 . By the way, division by

1 + x8 in Z2[x] is easy since

xk ≡ x(k,mod 8) mod 1 + x8.

The operation in #2 may also be done by using matrices. We thenapply an affine transformation
in Z2: 













b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7















=















1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





























b0
b1
b2
b3
b4
b5
b6
b7















+















1
1
0
0
0
1
1
0















.

Byte transformation is done in reverse order during the decryption. Because inZ2[x]

1 = gcd(1 + x+ x2 + x3 + x4, 1 + x8)

(easy to verify using the Euclidean algorithm), the polynomial 1 + x + x2 + x3 + x4 has an
inverse modulo1 + x8 and the occuring8 × 8 matrix is invertible modulo2. This inverse is
x+ x3 + x6.

Transforming the byte is in all a nonlinear transformation,which can be given in one table,
the so-calledRIJNDAEL S-box.This table can be found for example in MOLLIN and STINSON.
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5.2.3 Shifting Rows (ShiftRows)

In this operation the elements of the rows of the matrix representation of the state are shifted
left cyclically in the following way:

shift row 0 row 1 row 2 row 3
NB = 4 no shift 1 element 2 elements 3 elements
NB = 6 no shift 1 element 2 elements 3 elements
NB = 8 no shift 1 element 3 elements 4 elements

While decrypting rows are correspondingly shifted right cyclically.

5.2.4 Mixing Columns (MixColumns)

In this transformation columns of the state matrix are interpreted as polynomials of maximum
degree3 in the polynomial ringF28 [z]. Each column (polynomial) is multiplied by the fixed
polynomial

c(z) = c0 ⊕ c1z ⊕ c2z
2 ⊕ c3z

3 ∈ F28 [z]

modulo1⊕ z4 where

c0 = x , c1 = c2 = 1 and c3 = 1 + x.

Dividing by the polynomial1⊕ z4 in F28 [z] is especially easy since

zk ≡ z(k,mod 4) mod 1⊕ z4.

Alternatively the operation can be considered as a linear transformation ofF28 :






s′0i
s′1i
s′2i
s′3i







=







c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0













s0i
s1i
s2i
s3i







.

When decrypting we divide by the polynomialc(z) modulo1⊕ z4. Although1⊕ z4 is not
an irreducible polynomial ofF28 [z]

1, c(z) has an inverse modulo1⊕ z4, because

1 = gcd(c(z), 1⊕ z4).

The inverse is obtained using the Euclidean algorithm (hardto compute!) and it is

d(z) = d0 ⊕ d1z ⊕ d2z
2 ⊕ d3z

3

where

d0 = x+ x2 + x3 , d1 = 1 + x3 , d2 = 1 + x2 + x3 and d3 = 1 + x+ x3.

So, when decrypting the column (polynomial) is multiplied by d(z) modulo1 ⊕ z4 and the
operation is thus no more complicated than when encrypting.In matrix form inF28







s0i
s1i
s2i
s3i







=







d0 d3 d2 d1
d1 d0 d3 d2
d2 d1 d0 d3
d3 d2 d1 d0













s′0i
s′1i
s′2i
s′3i







.

1It happens to be= (1⊕ z)4.
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5.2.5 Adding Round Keys (AddRoundKey)

The round key is as long as the state. In this operation the round key is added to the state byte
by byte modulo2. The inverse operation is the same.

5.2.6 Expanding the Key

The round keysR0,R1, . . . ,RNR
are obtained from the encrypting key by expanding it and then

choosing from the expanded key certain parts for different rounds. The length of the expanded
key in bits islB(NR + 1). Divided into bytes it can be expressed as a4 ×NB(NR + 1) matrix,
which hasNB(NR + 1) columns of length4:

w0,w1, . . . ,wNB(NR+1)−1.

Denote the columns of the key (matrixK) correspondingly:

k0,k1, . . . ,kNK−1.

The expanded key is computed using the following method:

1. Setwi ← ki (i = 0, . . . , NK − 1).

2. Define the remainingwi’s recursively by the following rules where addition of vectors in
F28 is done elementwise in the usual fashion:

2.1 If i ≡ 0 mod NK then computeu = xi/NK in the fieldF28 and set

wi ← wi−NK
⊕ SubByte(RotByte(wi−1))⊕







u
0
0
0







.

Here the operationSubByte means transforming every element (byte) of the col-
umn. OperationRotByte does a cyclic shift of one element up in a column.

2.2 If NB = 8 andi ≡ 4 mod NK, set

wi ← wi−NK
⊕ SubByte(wi−1)

where the operationSubByte is the same as in #2.1.

2.3 Otherwise simply set
wi ← wi−NK

⊕wi−1.

Now the round keyRi of the ith round is obtained from the columnswiNB
, . . . ,w(i+1)NB−1

(i = 0, 1, . . . , NR). In particular, from the firstNB columns we get the initial round keyR0.

NB. Expansion of the key can be made in advance, as long as the encrypting key is known.
Anyway, thexi/NK ’s can be computed beforehand in the fieldF28 .
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5.2.7 A Variant of Decryption

A straightforward procedure for decrypting follows the following chain of operations—they are
the inverse operations of the encrypting operations that were introduced before:

S← AddRoundKey(S,RNR
)

S← ShiftRows−1(S)

S← SubBytes−1(S)

S← AddRoundKey(S,RNR−1)

S← MixColumns−1(S)

S← ShiftRows−1(S)

S← SubBytes−1(S)

...

S← AddRoundKey(S,R1)

S← MixColumns−1(S)

S← ShiftRows−1(S)

S← SubBytes−1(S)

S← AddRoundKey(S,R0)

The order of the operations can, however, also be inverted. First, the order of row shifting and
transforming bytes does not matter, the former operates on rows and the latter on bytes. The
same goes for the inverted operations. Second, the operations

S← AddRoundKey(S,Ri)

S← MixColumns−1(S)

can be replaced by the operations

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(Ri))

In this way decrypting can also follow the chain

S← AddRoundKey(S,RNR
)

S← SubBytes−1(S)

S← ShiftRows−1(S)

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(RNR−1))
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S← SubBytes−1(S)

S← ShiftRows−1(S)

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(RNR−2))

...

S← SubBytes−1(S)

S← ShiftRows−1(S)

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(R1))

S← SubBytes−1(S)

S← ShiftRows−1(S)

S← AddRoundKey(S,MixColumns−1(R0))

which reminds us very much of the encrypting process. Hence RIJNDAEL encrypting and
decrypting are very similar operations.

5.3 RIJNDAEL’s Cryptanalysis

RIJNDAEL is built to withstand just about every known attackon this kind of cryptosystem.2 Its
designers Joan Daemen and Vincent Rijmen gave an extensive description of the construction
principles in a public document DAEMEN, J. & RIJMEN, V.: AES Proposal: Rijndael(1999),
which they later expanded to the book DAEMEN & R IJMEN. It should be mentioned that linear
cryptanalysis and differential cryptanalysis, that were much investigated in connection with
DES, are efficiently prevented in RIJNDAEL in their various forms. These cryptanalyses are
explained e.g. in STINSON (see also Appendix).

On the other hand, RIJNDAEL is actually the only ”better” cryptosystem where the (single)
S-box can be written in a comparatively simple algebraic form in F28 :

S(b) = s0 ⊕
8⊕

i=1

(si ⊙ b255−2i−1

)

for suitable elementss0, s1, s2, s3, s4, s5, s6, s7, s8 of F28 . Continuing from here it is relatively
easy to derive an explicit algebraic formula for the whole encryption process! This has raised
the question whether such formulas can be inverted efficiently. If the answer is yes, it would
seem that RIJNDAEL can be broken after all. This is a matter oflively investigation, so far no
weaknesses have been found.3

2Here among other things ideas of the Finnish mathematician Kaisa Nyberg were used. See NYBERG, K.:
Differentially Uniform Mappings for Cryptography.Proceedings of EuroCrypt ’93. Lecture Notes in Computer
Science765. Springer–Verlag (1994), 55–64.

3See for example FERGUSON, N. & SCHROEPPEL, R. & WHITING , D.: A Simple Algebraic Representation
of Rijndael.Proceedings of SAC ’01. Lecture Notes in Computer Science2259. Springer–Verlag (2001), 103–111
and MURPHY, S. & ROBSHAW, M.J.B.: Essential Algebraic Structure Within the AES.Proceedings of Crypto
’02. Lecture Notes in Computer Science2442. Springer–Verlag (2002), 1–16 and COURTOIS, N. & PIEPRZYK,
J.: Cryptanalysis of Block Ciphers with Overdefined Systemsof Equations.Proceedings of AsiaCrypt ’02. Lecture
Notes in Computer Science2501. Springer–Verlag (2002), 267–287.
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5.4 Operating Modes of AES

The usual way of using AES is to encrypt one long message blockat a time with the same key,
the so-calledECB mode(electronic codebook).

Another way, the so-calledCBC mode(cipher block chaining), is to always form a sum of
a message blockwi and the preceding cryptoblockci−1 bit by bit modulo2, i.e.wi ⊕ ci−1, and
encrypt it, using the same keyk all the time. In the beginning we need an initial (crypto)block.
Schematically CBC mode is the following operation:

AES

c1

AES

c2

w2

k

w1

k

c0

cn 1

AES cn

wn

k

A change in a message block causes changes in the following cryptoblocks in CBC mode. This
way CBC mode can be used forauthenticationor the so-calledMAC (message authentication
code) in the following way. The initial block can e.g. be formed of just0-bits. The sender
has a message that is formed of message blocksw1, . . . , wn and he/she computes, using CBC
mode, the corresponding cryptoblocksc1, . . . , cn applying a secret keyk. The sender sends the
message blocks andcn to the receiver. The receiver also has the keyk and he/she can check
whether thecn is valid by using the key.

In the so-calledOFB mode(output feedback) AES is used to transform the key in a proce-
dure similar to ONE-TIME-PAD encrypting. Starting from a certain ”initial key” κ0 we get a
key streamκ1, . . . , κn by encrypting this key over and over using AES,κ1 is obtained by en-
cryptingκ0. Again, when encrypting we use the same secret keyk all the time. Schematically:

AES

c2

w2

k
κ2

c1

w1

κ1

κ0 AES

k

AES

cn

wn

k
κn

cn 1

wn 1

κn 1

OFB mode gives rise to a variant, the so-calledCFB mode(cipher feedback), where the key
κi of the key stream is formed by encrypting the preceding cryptoblock. Againκ1 is obtained
by encrypting the initial blockc0.

AES

c1

w1

AES

kk

c0

cn 1

wn

AES cn

k

This variant can be used for authentication much as the CBC-mode, which it also otherwise
resembles.

There are also other modes, for example the so-calledCTR mode(counter mode).



Chapter 6

PUBLIC-KEY ENCRYPTION

6.1 Complexity Theory of Algorithms

Computational complexityis about the resources needed for computational solving of aproblem
versus the size of the problem. Size of the problem is measured by thelengthN of the input,
resources are usuallytime,that is, the number of computational steps required, andspace,that
is, the maximum memory capacity needed for the computation.Many problems are so-called
recognition problemswhere the solution is a yes-answer. A nice reference concerning classical
complexity theory is HOPCROFT& U LLMAN , later results are discussed e.g. in DU & K O.

To make complexity commensurable, we must agree on a mathemathical model for algo-
rithms, for example computing with Turing machines, see thecourse Theory of Automata,
Formal Languages or Mathematical Logic. There is adeterministicversion of the algorithm
model, where the algorithm does not have the possibility to choose, and anondeterministicver-
sion, where the next step of the algorithm may be chosen from finitely many possible steps.
To be able to say that a nondeterministic algorithm does solve a problem we must make the
following assumptions:

• The algorithm stops, no matter what steps are chosen.

• The algorithm can stop in a state, where it has not solved the problem.

• When the algorithm stops in a state where it has solved the problem, then the solution
must be correct. The solution is not necessarily unique.

• In recognition problems, a situation where the algorithm does not give any yes-answers
is interpreted as a no-answer.

• In problems other than the recognition problems, every input of a nondeterministic algo-
rithm must lead to a solution (output) by some choice of steps.

It is often a good idea to consider a nondeterministic algortihm as a verifying method for a
solution, not a method for producing it.

Complexity is mostly examined as asymptotic, in other words, considering sufficiently large
problems, and not separating time/space complexities thatdiffer only by a constant multiplier.
After all, linear acceleration and space compression are easy in any algorithm model. Although
choice of the algorithm model has a clear effect on complexity, it does not have any essential
meaning, in other words, it does not change the complexity classes into which problems are di-
vided according to their complexity. Complexity is often given using theO-notationO(f(N)),

42
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see Section 2.6. Without going any further into algorithm models, we define a few important
complexity classes.

The time complexity classP (deterministic-polynomial-time problems) is composed of the
problems, where using a deterministic algorithm solving the problem with input of lengthN
takes a maximum ofp(N) steps, andp is a polynomial which depends on the problem. For
example, basic computational operations on integers and computing g.c.d. are inP, see Chapter
2.

The time complexity classNP (nondeterministic-polynomial-time problems) is composed
of the problems, where using a nondeterministic algorithm solving the problem with input of
the lengthN takes a maximum ofp(N) steps, and againp is a polynomial depending on the
problem. For example compositeness of integers is inNP: Just guess (nondeterminism!) two
factors (6= 1) and check by multiplication whether the guess was correct.

The time complexity classco–NP (complementary-nondeterministic-polynomial-time prob-
lems) is formed of those recognition problems that have their complement inNP. Thecom-
plementof a problem is obtained when the yes- and no-answers are interchanged. For example,
recognition of primes is inco–NP, since its complement is testing compositeness, which is in
NP. It is not very hard to show that primality testing is inNP, but it is much more difficult to
show that it is inP, see Section 7.4.

ApparentlyP ⊆ NP and for recognition problems alsoP ⊆ co–NP. Is either of these a
proper inclusion? This is an open problem and a very famous one! It is commonly believed that
both inclusions are proper. Neither is it known whether either of the equationsNP = co–NP
andP = NP ∩ co–NP holds for recognition problems. The prevalent belief is that they do
not.

The space complexity classPSPACE (deterministic-polynomial-space problems) is formed
of those problems, where using a deterministic algorithm solving the problem with input of
length ofN takes a maximum ofp(N) memory units, andp is a polynomial depending on the
problem. For example, basic computational operations of integers and computing g.c.d. are in
PSPACE .

The space complexity classNPSPACE (nondeterministic-polynomial-space problems)
comprises those problems, where using a nondeterministic algorithm solving the problem with
input of lengthN takes a maximum ofp(N) memory units, andp is a polynomial, again de-
pending on the problem. It is not very difficult to conclude that

NP ⊆ PSPACE = NPSPACE ,

but it is not known whether or not the inclusion is proper.
An algorithm may contain generation of ideal random numbers, which makes itprobabilistic

or stochastic.A stochastic algorithm may fail from time to time, in other words, it may not
produce a result at all and gives up on solving the problem. Such algorithms are calledLas Vegas
algorithms.On the other hand, a stochastic algorithm may sometimes produce a wrong answer.
These algorithms are calledMonte Carlo algorithms.Note that every Las Vegas algorithm is
easily transformed into a Monte Carlo algorithm (how?).

The polynomial time complexity class corresponding to Monte Carlo algorithms isBPP
(bounded-probability-polynomial-time problems). In this case the algorithm must produce a
correct result with probability at leastp, wherep > 1/2 is a fixed number not depending on the
input. The relationship between classesBPP andNP is pretty much open—for example it is
not known whether one is a subset of the other.

Thinking about the future quantum computers we may define thepolynomial time complex-
ity classBQP (bounded-error-quantum-polynomial-time problems). Considering applications
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to encrypting, it is interesting to notice that factorization of numbers and computing discrete
logarithms belong to this class (the so-calledShor algorithms,see Section 15.3).

The function of the algorithm may sometimes be just to convert one problem to another, in
this case we are talking aboutreduction. If problemA can be reduced to another problemB
using reduction operating in deterministic polynomial time, we get a deterministic polynomial-
time algorithm forA from a deterministic polynomial-time algorithm forB.1 A problem is said
to beNP-hard, if every problem inNP can be reduced to it using a deterministic polynomial-
time algorithm. AnNP-hard problem isNP-complete,if it is itself in NP. AnNP-complete
problem is the ”worst kind” of problem in the sense that if it could be shown to be in deter-
ministic polynomial time then every problem inNP would be inP andNP = P. Nowadays
over a thousandNP-complete problems are known, and, depending on how they arecounted,
maybe even more.

Theorem 6.1. If someNP-complete recognition problem is inNP ∩ co–NP then for recog-
nition problemsNP = co–NP.

Proof. Assume that someNP-complete recognition problemC is in NP ∩ co–NP. Now
we shall examine an arbitrary recognition problemA in NP. SinceC is NP-complete,A
can be reduced toC in deterministic polynomial time. Hence the complement ofA can be
reduced to the complement ofC, which is also inNP, in deterministic polynomial time. So
A is in co–NP. A was arbitrary and soNP ⊆ co–NP. As an immediate consequence also
co–NP ⊆ NP, and thusNP = co–NP.

Because it is commonly believed thatNP 6= co–NP, noNP-complete recognition problem
would thus be inNP ∩ co–NP.

The old division of problems based on computing time is into the practically possible ones
(tractable problems) and to ones that take too much computing time (intractable problems).
Problems inP are tractable and the others are intractable. Since it is a common belief that
NP 6= P,NP-complete problems should be intractable. In practice evenproblems in the class
BPP are possible to solve: just apply the algorithm on the problem so many times that the
probability of half of these producing wrong results is negligible. Hence it is natural to demand
in cryptology that encrypting and decrypting functions arein P. It is, however, important to
remember that encrypting may include stochastic elements.

6.2 Public-Key Cryptosystems

There are at least two keys in a public-key cryptosystem or nonsymmetric cryptosystem: the
public key and the secret key, or several of them. For the secret key to remain a secret it
must be computationally very challenging to calculate the secret key starting from the public
key. The public key can be left in a ”place” where anyone who wants to can take it and use
it to send encrypted messages to the owner of the secret key. This seemingly simple idea was
first announced by Whitfield Diffie and Martin Hellman and independently by Ralph Merkle in
1976.2

1Note that even if the output of the polynomial-time reduction is longer than its input, the length of the output is
still polynomially bounded by the length of the input, and that composition of two polynomials is a polynomial. A
similar phenomenon hardly ever occurs in other function classes. For example, the composition of two exponential
functions is not an exponential function.

2The original reference is DIFFIE, W. & HELLMAN , M.: New Directions in Cryptography.IEEE Transactions
on Information TheoryIT–22 (1976), 644–654. It became known later that James Ellis, Clifford Cocks and Mal-
colm Williamson came up with the same idea a bit earlier, but they worked for the British intelligence organization
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It might seem a good idea to arrange the keys so that cryptanalysis using CO data and the
public key would be computationally very demanding, e.g.NP-complete. Quite obviously
such cryptanalysis is inNP: Just guess the plaintext and encrypt it using the public key. Even
if there are stochastic elements in the encrypting this works since the random choices can be
guessed, too.

This cryptanalysis problem may also be considered as a recognition problem, the so-called
cryptorecognition:”Is w the plaintext corresponding to the cryptotextc in the triple(w, k, c)
wherek is the public key?” Cryptorecognition is inP if encrypting is deterministic, so making
it more complex requires stochastic encrypting. We won’t however get very far this way either,
because

Theorem 6.2. If for some cryptosystem cryptorecognition isNP-complete, thenNP =
co–NP.

Proof. The cryptorecognition problem is obviously inNP since the stochastic parts can be
guessed. On the other hand, it is also inco–NP because ifc is a cryptotext then there is just
one plaintext corresponding to it, otherwise decrypting won’t succeed. Now let’s guess some
plaintextw′ and encrypt it using the public keyk. If the result isc then comparew with w′,
and accept the triple(w, k, c) if w 6= w′. If the encrypting ofw′ does not givec or w = w′, the
procedure will end without giving a result. So cryptorecognition is inNP ∩ co–NP and the
result follows from Theorem 6.1.

Hence it would seem that cryptorecognition cannot beNP-complete in practice. The result
also shows that stochastic cryptosystems are not that much better than deterministic ones.

Usually when we speak about public-key systems we also mention so-calledone-way func-
tions: A functiony = f(x) is one-way if computingy from x is tractable but computingx from
y is intractable, possibly evenNP-complete. If the encrypting function of a public-key system
is ek then the function(c, k) = (ek(w), k) = f(w, k) is ideally one-way. Note that because
the public keyk is always available, it is included in the value of the function. On the other
hand, for a fixed public keyk the corresponding secret key gives a so calledtrap doorwhich
can be used to computew from c very fast. Existence of the trap door of course means that the
encrypting function is not really one-way for a fixedk.

NB. Connecting trap doors toNP-complete problems has proved to be difficult. In practice
having the trap door restricts an otherwiseNP-complete problem to a subproblem that is
notNP-complete, and usually not even very demanding. In fact, it has not been proved of
any cryptosystem-related function, that should ideally beone-way, that it is really one-way.
There is theP = NP problem haunting in background, of course. Problems on which good
cryptosystems can be based are ones with open complexity statuses. In this case breaking
the system would also mean a theoretical breakthrough in complexity theory and algorithm
development. All this, and also Theorem 6.2, means that complexity theory does not quite have
such an important role in cryptology as it is often given, viz. cryptography is often mentioned
as the practical application of complexity theory ’par excellence’.

Protocols which cannot be executed by secret-key systems are often possible when public-
key cryptosystems are used. As examples we takeverificationandsignature. If B wants to
verify that a message is sent by A, the message must contain information that sufficiently un-
ambiguously specifies A as its sender. In this case the following requirements are natural:

GCHQ (Government Communications Headquarters) which is why their ideas remained classified and were not
published until 1997.
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(i) Both A and B must be able to protect themselves against fake messages. An outside agent
C must not be able to pose as A.

(ii) A must be able to protect herself against B’s fake messages, which he claims to be sent
and signed by A.

(iii) A must not be able to deny sending a message she in fact did send.

Denote byeA andeB the public-key encrypting functions of A and B, and bydA anddB the
corresponding decrypting functions. Here it is assumed that encrypting is deterministic. The
procedure is the following:

1. A sends the messagew to B in the formc = eB(dA(w)).

2. B computeseA(dB(c)) = eA(dA(w)) = w. Note thateA anddA are inverse functions.

Conditions (i) and (iii) are satisfied since only A knowsdA. There must be some recognizable
content of correct type in the message, otherwise the message might be totally meaningless.
Condition (ii) is also valid since it would be practically impossible for B to generate the right
kind of message because he does not knowdA. If the signature is all that matters and not keeping
the message safe, it is enough for A to send B the pair(w, dA(w)). This simplest version of
verification/signature is vulnerable and there are better protocols, see Chapter 13.

6.3 Rise and Fall of Knapsack Cryptosystems

An example of the effects of the preceding section’s complexity considerations is the fate of the
well-known public-key system KNAPSACK3 or theknapsack system.

The knapsack system is based on the so-calledknapsack problem.Its input is(a, m) where
a = (a1, a2, . . . , an) is a vector of positive integers andm is a positive integer, represented in
some base. The problem is to writem as a sum of (some of) the components ofa, or then state
that this is not possible. In other words, the problem is to choose bitsc1, c2, . . . , cn such that

n∑

i=1

ciai = m,

or then state that this is not possible at all. In the corresponding recognition problem it is
sufficient just to state whether or not the choice is possible. The knapsack problem is clearly
in NP: Just guessc1, c2, . . . , cn and test whether the guess is correct. It is in fact known to be
NP-complete.

KNAPSACK-encrypting is done in the following way. The message symbols are bits and the
length of the message block isn. A message blockw = b1b2 · · · bn (bit sequence) is encrypted
as the number

c = ek(w) =

n∑

i=1

biai.

The public keyk is a. Apparently this kind of encrypting is inP. Cryptanalysis starting fromc
anda isNP-complete.

3KNAPSACK is ”historically” remarkable as it is one of the first public-key crypto systems, the original ref-
erence is MERKLE, R. & HELLMAN , M.: Hiding Information and Signatures in Trapdoor Knapsacks. IEEE
Transactions in Information TheoryIT–24 (1978), 525–530.
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Without any help KNAPSACK decrypting would also beNP-complete. The trap door is
gotten by starting from some simple knapsack problem which can be solved inP, and then
disguising it as an ordinary arbitrary knapsack problem. Thea of the latter knapsack problem is
then published as the public key. Using the trap door information the knapsack problem(a, c)
can be restored to its original easily solved form, and in this way the encrypted message can
be decrypted. But this does not lead to a strong cryptosystem, in other words, by using the
trap door we don’t obtain a disguised knapsack system, whosecryptanalysis would beNP-
complete, or even very difficult. In fact different variantsof KNAPSACK have been noticed
to be dangerously weak and so they are not used anymore. A well-known attack against basic
KNAPSACK is the so-calledShamir attack,see e.g. SALOMAA .

6.4 Problems Suitable for Public-Key Encryption

As the knapsack problem, the types of problems found useful in public-key encryption are
usually problems of number theory or algebra, often originally of merely theoretical interest
and quite abstract. This has brought many problems that earlier were considered to be purely
mathematical to serve as bases of practical cryptosystems.In particular, results of algebraic
number theory and theory of algebraic curves have become concretely and widely used, to
the amazement of mathematicians who believed they were working in a very theoretical and
”useless” field.

Some examples:

Cryptosystem Problem type
RSA, RABIN Factoring the product of two large primes.
ELGAMAL, DIFFIE–HELLMAN, XTR Computing discrete logarithm in a cyclic group
MENEZES–VANSTONE, CRANDALL Computing logarithm in a cyclic group deter-

mined by an elliptic curve
ARITHMETICA Conjugate problem in a group
NTRU Finding the smallest vector of a number lattice
MCELIECE, NIEDERREITER Decoding an algebraic-geometric linear code

(Goppa’s code)

The exact complexity of the first four of these is not known, however the problems are inNP.
Finding the smallest vector of a number lattice and decodinga linear code (see the course
Coding Theory) are known to beNP-complete problems, so considering NTRU, MCELIECE
and NIEDERREITER the situation should be similar to KNAPSACK, which for that matter
they distantly resemble. Indeed, some weaknesses are foundin these systems.4 The large size
of keys needed in MCELIECE has seriously limited its use. NTRU is however in use, to some
extent. The drawback of ARITHMETICA is in the difficulty of finding a suitable group—all
choices so far have turned out to be bad in one way or in another.

In the sequel we will discuss the systems RSA, ELGAMAL, DIFFIE–HELLMAN, XTR,
MENEZES–VANSTONE and NTRU. A good general presentation canbe found e.g. in the
book GARRETT.

4See for example CANTEAUT, A. & SENDRIER, N.: Cryptanalysis of the Original McEliece Cryptosystem.
Proceedings of AsiaCrypt ’98. Lecture Notes in Computer Science1514. Springer–Verlag (2000).



Chapter 7

NUMBER THEORY. PART 2

7.1 Euler’s Function and Euler’s Theorem

We return to Euler’s functionφ(m), already mentioned in Section 2.4, which gives the count of
those numbersx in the interval1 ≤ x ≤ m, for whichgcd(x,m) = 1, or the number of reduced
residue classes modulom. Note thatφ(1) = 1.

Theorem 7.1. (i) If p is a prime andk ≥ 1 then

φ(pk) = pk−1(p− 1).

In particular,φ(p) = p− 1.

(ii) If gcd(m,n) = 1 then
φ(mn) = φ(m)φ(n)

(multiplicativity of φ).

Proof. (i) Every pth of the numbers1, 2, . . . , pk is divisible byp. Hence there arepk − pk/p =
pk−1(p− 1) numbers that are coprime top.

(ii) Write the numbers1, 2, . . . , mn in an array as follows:

1 2 3 · · · n
n+ 1 n+ 2 n+ 3 · · · 2n
2n+ 1 2n+ 2 2n + 3 · · · 3n

...
...

...
...

(m− 1)n+ 1 (m− 1)n+ 2 (m− 1)n+ 3 · · · mn

The casesn = 1 andm = 1 are trivial so we may assume thatn,m ≥ 2. Numbers in any
column are mutually congruent modulon. On the other hand, by the Corollary of Theorem
2.11 numbers in any column form a residue system modulom. There areφ(n) columns with
numbers coprime ton. (Remember that ifx ≡ y mod n thengcd(x, n) = gcd(y, n).) Each
of these columns hasφ(m) numbers coprime tom. These are the numbers coprime tomn, and
there areφ(m)φ(n) of them.

Using the factorization
x = pi11 p

i2
2 · · · p

iN
N

(see Theorems 2.2 and 2.6) we obtain, using the theorem,

φ(x) = φ(pi11 )φ(p
i2
2 ) · · ·φ(p

iN
N ) = pi1−1

1 pi2−1
2 · · · piN−1

N (p1 − 1)(p2 − 1) · · · (pN − 1).

48
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Because factorization is a computationally demanding operation,φ(x) is not practically com-
putable in this way unless the factorization is given beforehand. However, we can see from this
fairly easily that ifx is a composite number, thenφ(x) < x − 1, and thatφ(x) ≥

√
x when

x > 6.
An essential result e.g. in defining the cryptosystem RSA is

Theorem 7.2. (Euler’s theorem)If gcd(x,m) = 1 then

xφ(m) ≡ 1 mod m.

Proof. Choose the reduced residue systemj1, j2, . . . , jφ(m) from the positive residue system
modulom. Then the numbersxj1, xj2, . . . , xjφ(m) also form a reduced residue system since by
the Corollary of Theorem 2.11 they are not congruent and are all coprime tom. So, the numbers
xj1, xj2, . . . , xjφ(m) andj1, j2, . . . , jφ(m) are pairwise congruent in some order:

xjk ≡ jik mod m (k = 1, 2, . . . , φ(m)).

By multiplying both sides of these congruences we obtain

xφ(m)j1j2 · · · jφ(m) ≡ j1j2 · · · jφ(m) mod m

and sincegcd(j1j2 · · · jφ(m), m) = 1, by dividing outj1j2 · · · jφ(m), furtherxφ(m) ≡ 1 mod m.

As an immediate consequence we get

Theorem 7.3. (Fermat’s little theorem)If p is a prime andx is not divisible byp then

xp−1 ≡ 1 mod p.

Euler’s theorem is often useful when we compute powers modulo m. In addition to using
the algorithm of Russian peasants, we first reduce the exponent moduloφ(m). If k = qφ(m)+r
(division) then

xk = xqφ(m)+r = (xφ(m))qxr ≡ 1q · xr = xr mod m.

Furthermore, it is immediately noticed that

x−1 ≡ xφ(m)−1 mod m

and that ifk ≡ l mod φ(m) thenxk ≡ xl mod m. (Assuming of course all the time that
gcd(x,m) = 1.) Fermat’s little theorem is especially useful when computing powers modulo a
prime. For instance, ifp is prime then always

xp ≡ x mod p.

7.2 Order and Discrete Logarithm

The smallest numberi ≥ 1 (if one exists) such thatxi ≡ 1 mod m, is called theorder of x
modulom. Basic properties of order are the following:

Theorem 7.4. (i) The order exists exactly whengcd(x,m) = 1.

(ii) If xj ≡ 1 mod m and the order ofx modulom is i theni dividesj. In particular, as a
consequence of Euler’s theorem,i dividesφ(m).
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(iii) If the order ofx modulom is i then the order ofxj modulom is

lcm(i, j)

j
=

i

gcd(i, j)

(see Theorem 2.9).

(iv) If the order ofx modulom is i and the order ofy modulom is j andgcd(i, j) = 1 then
the order ofxy modulom is ij.

Proof. (i) When gcd(x,m) = 1 then at leastxφ(m) ≡ 1 mod m (Euler’s theorem). On the
other hand, ifgcd(x,m) 6= 1 then obviously alsogcd(xi, m) 6= 1, and hencexi 6≡ 1
mod m wheni ≥ 1.

(ii) If xj ≡ 1 mod m but the orderi of x does not dividej thenj = qi+ r where1 ≤ r < i
(division) and

xr = xr · 1q ≡ xr(xi)q = xqi+r = xj ≡ 1 mod m,

andi would not be the smallest possible.

(iii) If the order ofx modulom is i and the order ofxj modulom is l then first of alli | jl (item
(ii)) andj | jl, solcm(i, j) | jl, i.e.lcm(i, j)/j is a factor ofl. Secondly,(xj)lcm(i,j)/j ≡ 1
mod m, sol divideslcm(i, j)/j (item (ii) again). Thereforel = lcm(i, j)/j.

(iv) If the order ofx modulom is i and the ordery modulom is j andgcd(i, j) = 1 then first
of all

(xy)i = xiyi ≡ yi mod m,

so the order of(xy)i modulom is the same as the order ofyi, which isj (item (iii)). But
if the order ofxy modulom is k then the order of(xy)i modulom is k/ gcd(i, k) (item
(iii) again). Hencej | k. It is shown similarly thati | k. Becausegcd(i, j) = 1, it must
be thatij | k. On the other hand,

(xy)ij = (xi)j(yj)i ≡ 1 mod m,

whence it follows thatk | ij (item (ii)). Thereforek = ij.

If the order ofg modulom is the largest possible, i.e.φ(m), and1 ≤ g < m theng is a
so-calledprimitive rootof m or aprimitive root modulom. Of course, in this case necessarily
gcd(g,m) = 1. Since then the powers

1, g, g2, . . . , gφ(m)−1

are not congruent—otherwise the smaller power could be divided out from the congruence and a
lower order forg would be obtained—and there areφ(m) of them, they actually form a reduced
residue system. The following property of primitive roots is given without proof.1.

Theorem 7.5. A numberm ≥ 2 has primitive roots if and only if it is either2 or 4 or of the
formpk or 2pk wherep is an odd prime. In particular, every prime has primitive roots.

1The proof is not very difficult but quite long—the casesm = 2 andm = 4 are of course trivial. It can be found
in almost every elementary number theory book, see for example SIERPINSKI. Some cryptology books contain
this proof as well, see for example KRANAKIS or GARRETT.
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On the other hand, it is easy to deduce the number of differentprimitive roots, when they exist:

Theorem 7.6. If there are primitive roots modulom then there areφ(φ(m)) of them.2 In
particular, a primep hasφ(p− 1) primitive roots.

Proof. If g is a primitive root ofm then those numbers

(gi, mod m) (i = 1, 2, . . . , φ(m)− 1)

for which gcd(i, φ(m)) = 1 are primitive roots ofm, and in fact exactly all of them (Theorem
7.4 (iii)). Hence, if the numberm has primitive roots at all, there areφ(φ(m)) of them.

The following well-known characterization of primes is obtained immediately from the
above.

Theorem 7.7. (Lucas’ criterium for primality) A numberp ≥ 2 is a prime if and only if there
exists a number whose order modulop is p− 1.

Proof. If p is prime, it has a primitive root of orderp− 1.
Then again, if there exists a numberx of order p − 1 modulop then p must be prime.

Otherwiseφ(p) < p − 1 and hence the order ofx cannot bep − 1 becausep − 1 | φ(p)
(Theorem 7.4 (ii)).

It might be mentioned that no powerful general algorithms are known for finding primitive
roots, not even for primes. On the other hand, if the factors of φ(m) are known then the fol-
lowing result gives a useful test for a primitive root ofm. Such a test is needed e.g. in setting
up certain cryptosystems, see Section 10.1. In the general case even computingφ(m) is a very
demanding task for large values ofm, not to mention its factorization.

Theorem 7.8. (Lucas’s criterium for primitive root) A number1 ≤ g < m is a primitive root
ofm if and only ifgcd(g,m) = 1 andgφ(m)/q 6≡ 1 mod m for every prime factorq of φ(m).

Proof. If g is a primitive root ofm then apparentlygcd(g,m) = 1 andgφ(m)/q 6≡ 1 mod m for
every prime factorq of φ(m), since the order ofg is φ(m).

Then again, ifgcd(g,m) = 1 andgφ(m)/q 6≡ 1 mod m for every prime factorq of φ(m),
the orderi of g dividesφ(m) (Theorem 7.4 (ii)), in other words,φ(m) = il. If l = 1 then
i = φ(m) andg is a primitive root. Anything else is out of the question, since if l > 1 thenl
would have a prime factorq′ andl = q′t and

gφ(m)/q′ = gil/q
′

= git = (gi)t ≡ 1t = 1 mod m.

Furthermore, combining these two Lucas’ criteria we obtain

Theorem 7.9. (Lucas–Lehmer criterium for primality) A numberp ≥ 2 is a prime if and
only if there exists a numberg such thatgp−1 ≡ 1 mod p andg(p−1)/q 6≡ 1 mod p for every
prime factorq of p− 1.

Proof. If p is a prime then we take a primitive root modulom asg.
Now let’s assume that for a numberg we havegp−1 ≡ 1 mod p andg(p−1)/q 6≡ 1 mod p

for every prime factorq of p− 1. Thenp | gp−1 − 1, sogcd(g, p) = 1. Further, ifj is the order
of g modulop thenj | p − 1 (Theorem 7.4. (ii)). Now we conclude, just as in the preceding
proof, thatj = p− 1 and further, by Lucas’ criterium, thatp is a prime.

2This is the reason why the odd-looking expressionφ(φ(m)) appears in cryptography here and there.
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Because, for a primitive rootg of m, the numbers1, g, g2, . . . , gφ(m)−1 form a reduced
residue system modulom, then for every numberx coprime tom there exists exactly one
exponent in the interval0 ≤ y < φ(m) for whichgy ≡ x mod m. This exponent is called the
discrete logarithmor theindexof x modulom in baseg. No efficient algorithms for calculating
discrete logarithms are known, e.g. the cryptosystem ELGAMAL is based on this. We get back
to this later. There is of course a nondeterministic polynomial-time algorithm starting from the
input (m, g, x): First just guess an indexy and then check whether it is correct. Exponentiation
using the algorithm of Russian peasants and reducing the result modulom is in polynomial
time.

7.3 Chinese Remainder Theorem

If factors of the modulusm are known, i.e. we can write

m = m1m2 · · ·mk,

the congruencesx ≡ y mod mi (i = 1, 2, . . . , k) naturally follow fromx ≡ y mod m. If the
modulus is a large number, it may often be easier to compute using these smaller moduli. This
can be done very generally, if the factorsm1, m2, . . . , mk are pairwise coprime, in other words,
if gcd(mi, mj) = 1 wheni 6= j:

Theorem 7.10. (Chinese remainder theorem3) If the numbersy1, y2, . . . , yk are given and
the modulim1, m2, . . . , mk are pairwise coprime then there is a unique integerx modulo
m1m2 · · ·mk that satisfies thek congruences

x ≡ yi mod mi (i = 1, 2, . . . , k).

Proof. DenoteM = m1m2 · · ·mk andMi = M/mi (i = 1, 2, . . . , k). Since themi’s are
pairwise coprime,gcd(M1, M2, . . . ,Mk) = 1 andgcd(mi,Mi) = 1 (i = 1, 2, . . . , k). The
following procedure produces a solutionx (if there is one!), and also shows that the solution is
unique moduloM :

1. CRT algorithm:

1. Using the Euclidean algorithm we writegcd(M1,M2, . . . ,Mk) = 1 in Bézout’s form (see
Theorem 2.8)

1 = c1M1 + c2M2 + · · ·+ ckMk.

2. Returnx ≡ c1M1y1 + c2M2y2 + · · · + ckMkyk mod M , e.g. in the positive residue
system.

The procedure works if a solution exists, because it followsimmediately from the congruences
x ≡ yi mod mi that ciMix ≡ ciMiyi mod M (i = 1, 2, . . . , k), and by addition we obtain
further

x = 1 · x = (c1M1 + c2M2 + · · ·+ ckMk)x ≡ c1M1y1 + c2M2y2 + · · ·+ ckMkyk mod M.

3The name ”Chinese remainder theorem” (CRT) comes from the fact that Chinese mathematicians knew this
result a long time ago, at least in the casek = 2.
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It still must be shown that a solution exists. Because apparently Mi ≡ 0 mod mj if i 6= j,
and on the other hand1 = c1M1 + c2M2 + · · · + ckMk, we haveciMi ≡ 1 mod mi (i =
1, 2, . . . , k). Therefore

x ≡ c1M1y1 + c2M2y2 + · · ·+ ckMkyk ≡ yi mod mi (i = 1, 2, . . . , k).

Because nowci ≡ M−1
i mod mi, we can moreover conclude that the solution can also be

obtained in another way:

2. CRT algorithm:

1. ComputeNi ≡M−1
i mod mi (i = 1, 2, . . . , k) by the Euclidean algorithm.

2. Returnx ≡ y1M1N1+y2M2N2+· · ·+ykMkNk mod M (in the positive residue system).

The proof gives an algorithm (actually two of them) for finding the numberx mentioned
in the theorem. Apparently this algorithm is polynomial-time when the input consists of the
numbersy1, y2, . . . , yk andm1, m2, . . . , mk. Other algorithms are known, for example the so-
calledGarner algorithmwhich is even faster, see e.g. CRANDALL & POMERANCE.

NB. In a way the Chinese remainder theorem gives a fitting (interpolation) of functions of the
form

y = fx(m) = (x, mod m)

through the ”points” (mi, yi), something that can be used in certain cryptoprotocols. The
Chinese remainder theorem is very useful in many contexts. Agood reference isDING & PEI

& SALOMAA .

7.4 Testing and Generating Primes

It took a long time before the first nondeterministic polynomial-time algorithm for primality
testing was found. It is the so-calledPratt algorithm.4 The algorithm is based on Lucas’
criteria. The input is a numbern ≥ 2 whose binary length isN . Denote the number of the steps
of the algorithm byT (n) and

PRATT(n) =

{

YES if n is prime

FAIL if the test does not produce a result with the choices made.

From Section 6.1 we recall that if the algorithm works then the inputn is a composite number
if and only ifPRATT(n) = FAIL for every possible choice.

Pratt’s algorithm:

1. If n = 2 or n = 3, returnYES and quit (0 test steps).

2. If n is > 3 and even (division by2), the algorithm gives up andPRATT(n) = FAIL
(0 test steps).

4The original reference is PRATT, V.R.: Every Prime has a Succint Certificate.SIAM Journal on Computing4
(1976), 198–221.
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3. Guess (nondeterminism) an integerx in the interval1 ≤ x ≤ n− 1.

4. Check whetherxn−1 ≡ 1 mod n using the algorithm of Russian peasants and reducing
modulon by divisions (1 test step). If this is not so then the algorithm gives up and
PRATT(n) = FAIL.

5. Guess (nondeterminism) prime factorsp1, . . . , pk of n − 1, where each assumed prime
factor may occur several times (0 test steps). Lengths of these numbers in the binary
representation areP1, . . . , Pk. Note thatP1, . . . , Pk ≤ N − 1 and that2 ≤ k ≤ N .

6. Check, by calling Pratt’s algorithm recursively, whether the numbersp1, . . . , pk are truly
primes (a maximum ofT (p1) + · · · + T (pk) test steps). If somePRATT(pi) = FAIL
then the algorithm gives up andPRATT(n) = FAIL.

7. Check by multiplication whetherp1 · · ·pk = n − 1 (1 test step). If this is not so, the
algorithm gives up andPRATT(n) = FAIL.

8. Check whetherx(n−1)/pi 6≡ 1 mod n (i = 1, . . . , k) by the algorithm of Russian peasants
and divisions (a maximum ofk test steps). If this is true, returnYES, otherwise the
algorithm gives up andPRATT(n) = FAIL.

Now we get following recursion inequality forT (n):

T (n) ≤ 2 + k +
k∑

i=1

T (pi) , T (2) = 0 , T (3) = 0.

Using this we can find an upper bound forT (n). It is easy to see recursively that for example
L(n) = 4 log2 n− 4 is such an upper bound, sinceL(2) = 0 andL(3) > 0 and

T (n) ≤ 2 + k +

k∑

i=1

L(pi) = 2 + k +

k∑

i=1

(4 log2 pi − 4)

= 2 + k + 4 log2(p1 · · ·pk)− 4k = 2− 3k + 4 log2(n− 1)

< −4 + 4 log2 n = L(n).

On the other hand, it takesO(N3) steps to perform each test step (there are better estimates)
andL(n) is proportional toN (Theorem 2.4). So, the overall time isO(N4).

In the ”old aristocracy” of primality testing are theAdleman–Pomerance–Rumely test5 and
its variants. The test is based on some quite advanced algebraic number theory, it is determinis-
tic and fast. Testing a numbern for primality takes at most

O((lnn)c ln(ln(lnn)))

steps wherec is (small) constant, and hence it is not quite inP—but almost, since theln(ln(lnn))
does grow very slowly. On the other hand, both theoreticallyand considering implementation,
it is hard to handle. See for example KRANAKIS .

A recent celebrated result in number theory is the fact that primality testing is inP. This
was proved by the Indians Manindra Agrawal, Neeraj Kayal andNitin Saxena in 2002.6 The
proved complexity of the algorithm isO((lnn)8) but heuristically a complexityO((lnn)6) is
obtained. However, as of yet there are no very fast implementations, although the algorithm is
quite short to present (the input isn ≥ 2):

5The original reference is ADLEMAN , L. & POMERANCE, C. & RUMELY, R.: On Distinguishing Prime Num-
bers from Composite Numbers.Annals of Mathematics117(1983), 173–206.

6The article reference is AGRAWAL , M. & K AYAL , N. & SAXENA , N.: PRIMES is in P.Annals of Mathematics
160(2004), 781–793.
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Agrawal–Kayal–Saxena algorithm:

1. Find out whethern is a higher power of an integerr, in other words, whether it can be
expressed asn = rl wherel ≥ 2. (Because thenl = log2 n/ log2 r ≤ log2 n, the number
of possible values ofl we must try out is proportional to the length ofn. After finding
these we compute the integrallth root ofn for every candidatel using Newton’s algorithm
from Section 2.6 and see if itslth power is= n.) If n is such a power, return ”NO” and
quit.

2. Find an integerm such that the order ofn modulom is > (log2 n)
2. (This can be done

by trying out numbers. A much more difficult thing is to show that such anm need not
be too large.)

3. Check whethern has a prime factor in the interval2, 3, . . . , m (perhaps by trying out
numbers and using the Euclidean algorithm). If it has, return ”NO” and quit.

4. Examine whether the congruences

(x+ i )n ≡ xn + i mod xm − 1 (i = 1, 2, . . . , ⌊
√
m log2 n⌋)

hold in the polynomial ringZn[x]. (For this we need the algorithm of Russian peasants
and divisions. Note that regardless of the value ofn division by the monic polynomial
xm− 1 is defined inZn[x]. See Section 4.2.) If they do not all hold true, return ”NO” and
quit.

5. Return ”YES” and quit.

A nice exposition of the algorithm and its working is in the article GRANVILLE , A.: It Is Easy
to Determine Whether a Given Integer Is Prime.Bulletin of the American Mathematical Society
42 (New Series) (2004), 3–38.

Some very useful primality tests are probabilistic, in other words, they produce the correct
result with high probability. For example the so-calledMiller–Rabin test7 is such a test. The
test is based on Fermat’s little theorem, according to which, if n is a prime andx is an integer
such thatgcd(x, n) = 1 thenxn−1 ≡ 1 mod n. Let’s writen in the form

n = 1 + 2lm,

wherem is odd. Ifn is odd thenl ≥ 1 and

0 ≡ xn−1 − 1 = x2lm − 1 = (x2l−1m − 1)(x2l−1m + 1) mod n,

and becausen is a prime it divides eitherx2l−1m−1 or x2l−1m+1, but not both of them (why?).
If n dividesx2l−1m − 1 then we can go through the same operation again. And so on. From this
we conclude that either for some numberi = 0, 1, . . . , l − 1 we have

x2im ≡ −1 mod n,

or if this is not true, eventually
xm ≡ 1 mod n.

7The original references are MILLER , G.L.: Riemann’s Hypothesis and Tests for Primality.Journal of Com-
puter and System Sciences13 (1976), 300–317 and RABIN , M.O.: Probability Algorithms.Algorithms and Com-
plexity(J.F. TRAUB, Ed.). Academic Press (1976), 35–36. The algorithm is sometimes also known asSelfridge’s
test.
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If it now happens for an integerx such thatgcd(x, n) = 1 andxm 6≡ ±1 mod n, that for all
numbersi = 1, 2, . . . , l − 1

x2im ≡ 1 mod n

then we can only conclude thatn is not a prime after all. Similarly if we run into ani > 0 such
thatx2im 6≡ ±1 mod n. On the other hand, when we try out several numbers, for example
certain ”small” primesx = 2, 3, 5, 7, 11, . . . , we obtain evidence of a kind for the primality
of n. As a matter of fact, this evidence can be made very strong by using several well-chosen
numbersx. This is so also in a probabilistic sense, with a random choice of the numberx in the
interval1 < x < n− 1.

In the following it is assumed that given or randomly chosen test numbersx1, x2, . . . , xk are
available.

Miller–Rabin primality test:

1. If n is even, the case is clear, return the result and quit.

2. If n is odd, setl ← 0 andm← n− 1.

3. Setl ← l + 1 andm← m/2.

4. If m is even, go to #3. (The maximum number of these rounds is⌊log2 n⌋.)

5. Setj ← 0.

6. If j < k, setj ← j + 1 andx← xj . Otherwise return ”PRIME” (supposed information)
and quit.

7. If xm ≡ 1 mod n or gcd(x, n) = n then go to #6. Then again, if1 < gcd(x, n)
< n, return ”COMPOSITE” (certain information) and quit. (Compute powers using the
algorithm of Russian peasants, the g.c.d. using the Euclidean algorithm.)

8. Seti← 0.

9. If x2im ≡ 1 mod n, return ”COMPOSITE” (certain information) and quit. (Compute
powers by repeated squarings starting from the power in #7, be sure to keep the interme-
diate results!)

10. If x2im ≡ −1 mod n, go to #6.

11. If i = l−1, return ”COMPOSITE” (certain information) and quit. Otherwise seti← i+1
and go to #9.

NB. This is the so-called ”bottom-up” version of the test. Thereis also a ”top-down” version,
wherei is decreased, see e.g. the lecture notesRUOHONEN, K.: Symbolinen analyysi.There
appears to be no significant difference in speed between these two versions.

So, the test is not ”rock-solid”. There are composite numbers that it returns as primes, these
are calledstrong pseudoprimesfor the test numbersx1, x2, . . . , xk. For example,25 326 001
= 2 251 · 11 251 is a strong pseudoprime for the test numbers3 and5. For a fixed value ofk
the time complexity of the test isO(N3), as it is easy to see (againN is the length ofn). As a
probabilistic algorithm the Miller–Rabin test is of the Monte Carlo type. It can be shown that for
a single randomly chosenx from the interval1 < x < n− 1 the test produces the wrong result
with a probability no higher than1/4, see the original reference RABIN or e.g. CRANDALL &
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POMERANCE or KRANAKIS or GARRETT. By repeating the test we get a certainty as good as
we want.8

Besides primality testing, generating primes of a given length is an essential task. A prime
of lengthN can be chosen randomly by first choosing a random integer of lengthN , see Section
2.6, and then testing it for primality by the Miller–Rabin test. This prime generation is quite
fast. If we denote byπ(x) the number of the primes less than or equal tox, we get a famous
asymptotic estimate:

Theorem 7.11. (Prime number theorem)lim
x→∞

π(x)

x/ lnx
= 1

The proof is difficult! Hence, of the numbers of magnituden approximately one in everylnn
is a prime. This is enough for random search of primes to go quickly. The random number
generators of Section 2.6 are good enough for this purpose. An older result

Theorem 7.12. (Chebychev’s theorem)
7

8
<

π(x)

x/ lnx
<

9

8
whenx ≥ 5.

gives rough quantitative bounds. It guarantees that there are at least
⌈

7n

8 lnn

⌉

primes among the numbers1, 2, . . . , n, and that in the interval(m,n] there are at least
⌈

7n

8 lnn

⌉

−

⌊
9m

8 lnm

⌋

primes. For example, in the interval(10150, 10151] there are thus at least something like

7 · 10151

1 208 ln 10
−

9 · 10150

1 200 ln 10
∼= 2.19 · 10148

primes, much more actually. Primes also occur fairly uniformly:

Theorem 7.13. (Bertrand’s postulate9) Whenn ≥ 2, there is at least one primep in the
intervaln < p < 2n.

Theorem 7.14. (Dirichlet–de la Vallée-Poussin theorem)If m ≥ 2 then primes are distributed
asymptotically equally among the reduced residue classes modulom.

Primes and primality testing are widely discussed in CRANDALL & POMERANCE.

7.5 Factorization of Integers

From the fact that primality testing is inP it follows immediately that factorization of integers
is in NP: just guess the prime factors and test their primality. Although primality testing is
in P and also quite fast in practice, factorization appears to bea highly demanding task. It is
enough to give a method that finds a nontrivial factord of an integern ≥ 2, or then confirms

8There are other Monte Carlo type primality tests, for example the so-calledSolovay–Strassen algorithm,see
e.g. SALOMAA or KRANAKIS .

9The postulate was actually proved by Chebychev.
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thatn itself is a prime. After that we can continue recursively from the numbersd andn/d. Of
course, we should start with primality testing, after whichwe may assume thatn is not a prime.

The following well-known algorithm often finds a factor for an odd composite numbern,
assuming that for some prime factorp of n there are no prime powers dividingp− 1 larger than
b. From this condition it follows thatp− 1 is a factor ofb! (doesn’t it?).

Pollard’s p − 1-algorithm10:

1. Seta← 2.

2. Iterate settinga← (aj ,mod n) for j = 2, . . . , b.

3. Computed = gcd(a− 1, n).

4. If 1 < d < n, return the factord, otherwise give up.

Assume thatp is a prime factor ofn which satisfies the given condition. After #2 apparently
a ≡ 2b! mod n and thus alsoa ≡ 2b! mod p. By Fermat’s little theorem2p−1 ≡ 1 mod p.
As was noted,p− 1 | b! whencea ≡ 1 mod p. So,p | a− 1 and thusp | d. It is possible that
a = 1, though, in which case a factor cannot be found.

The time complexity of the algorithm is

O(bBN2 +N3)

whereN andB are the binary lengths of the numbersn andb, respectively. From this it is seen
thatb should be kept as small as possible compared withn, for the algorithm to work fast. On
the other hand, ifb is too small, too many prime factors are precluded and the algorithm does
not produce a result.

More exact presentation and analysis of Pollard’sp−1-algorithm and many other algorithms
can be found in the references RIESEL and CRANDALL & POMERANCE. Pollard’sp − 1-
algorithm has been generalized in many ways, for example to the so-calledmethod of elliptic
curvesand toWilliams’ p+ 1-algorithm.

A very classical algorithm for finding factors is the so-calledtest division algorithm.In this
algorithm we first try out factors2 and3 and after that factors of form6k ± 1 up to ⌊

√
n⌋.

Integral square root can be computed fast, as was noted. Of course this procedure is rather
time-consuming. Test division is a so-calledsieve method.There are much more powerful
sieve methods, for instance thequadratic sieveand thenumber field sieve.The estimated time
complexities for the fastest algorithms at the moment are given in the following table. Shor’s
algorithm, see Section 15.3, is not included, since quantumcomputers do not really exist yet.

Algorithm Time complexity *

Quadratic sieve O
(

e(1+o(1))
√

lnn ln(lnn)
)

Method of elliptic curves O
(

e(1+o(1))
√

2 ln p ln(ln p)
)

(p is the smallest prime factor ofn)

Number field sieve O
(

e(1.92+o(1))(ln n)1/3(ln(lnn))2/3
)

* The notationf(n) = o(1) means thatlim
n→∞

f(n) = 0. More generally, the notationf(n) = o(g(n)) means
that lim

n→∞

f(n)/g(n) = 0.

10The original reference is POLLARD , J.M.: Theorems on Factorization and Primality Testing.Proceedings of
the Cambridge Philosophical Society76 (1975), 521–528. The algorithm can be varied in a number waysin order
to make it more powerful, this is just a basic version.
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7.6 Modular Square Root

The numberx is called asquare root ofy modulom or a so-calledmodular square rootif

x2 ≡ y mod m.

Usually this square root is represented in the positive residue system. We see immediately that
if x is a square root ofy modulom then so is(−x,mod m). Thus there are usually at least two
modular square roots, often many more.

There does not necessarily have to be any square root modulom. A numbery that has
square root(s) modulom is called aquadratic residuemodulom, and a numbery that has no
square roots modulom is called aquadratic nonresiduemodulom. Apparently at least the
numbers0 and1 are quadratic residues. In the general case testing quadratic residuosity or
quadratic nonresiduosity modulom is a difficult computational task.

If the numbery is a quadratic residue modulom and the factorization ofm is

m = pi11 p
i2
2 · · · p

iM
M

and some square rootxj of y modulopijj (j = 1, 2, . . . ,M) is known, then we can obtain more
square roots ofy modulom using the Chinese remainder theorem. Note that ify is a quadratic
residue modulom then it is also quadratic residue modulo everyp

ij
j , since every square rootx

of y modulom is also its square root modulopijj . Solve forx modulom the congruence system






x ≡ ±x1 mod pi11
x ≡ ±x2 mod pi22

...

x ≡ ±xM mod piMM

by using the CRT algorithm. The solution is uniquely determined modulom = pi11 p
i2
2 · · · p

iM
M .

Any of the2M combinations of the signs± may be chosen. Then

x2 ≡ (±xj)
2 ≡ y mod p

ij
j

and sopijj | x
2− y (j = 1, 2, . . . ,M). Since thepijj are coprime we havem | x2− y, i.e.x2 ≡ y

mod m. By going through all choices for the square rootsxj—there may well be several of
them—and all±-sign combinations we actually obtain every square root ofy modulom.

So, the situation is reduced to computing square roots modulo primes or prime powers.
Computing square roots modulo higher powers of primes is a bit more difficult and it is not
discussed here.11 On the other hand, square roots modulo a primep can be computed fast by the
so-calledShanks algorithm.There are always exactly two square roots ofy modulop, unless
y ≡ 0 mod p, since ifx is a square root andx′ is another then

x2 ≡ y ≡ x′2 mod p or (x− x′)(x+ x′) ≡ 0 mod p

and eitherp | x − x′, i.e.x ≡ x′ mod p, or p | x + x′, i.e.x′ ≡ −x mod p. And if y ≡ 0
mod p, then the only square root is0, as it is easy to see.

If p > 2 then apparently all quadratic residues modulop are obtained when we take the
squares of the numbers0, 1, . . . , (p− 1)/2 modulop. These squares are not congruent modulo
p (why?), so there is one more of the quadratic residues than the quadratic nonresidues, and this
one quadratic residue is0. Whethery is a quadratic residue or a quadratic nonresidue modulop
can be decided quickly, the casesp = 2 andy ≡ 0 mod p being of course trivial.

11A so-called Hensel lifting, much as the one in Section 11.3, is needed there, see e.g. GARRETT.
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Theorem 7.15. (Euler’s criterium) If p is an odd prime andy 6≡ 0 mod p theny is a quadratic
residue modulop if and only if

y
p−1

2 ≡ 1 mod p.

(Modular powers are computed quickly using the algorithm ofRussian peasants.)

Proof. If y is a quadratic residue, that is, for somex we havey ≡ x2 mod p, then by Fermat’s
little theoremxp−1 ≡ 1 mod p (note thatgcd(x, p) = 1 sincey 6≡ 0 mod p). So

y
p−1

2 ≡ xp−1 ≡ 1 mod p.

Conversely, ify(p−1)/2 ≡ 1 mod p then we take a primitive rootg modulop. In this case
we havey ≡ gi mod p for somei becausegcd(y, p) = 1, and

g
p−1

2
i ≡ y

p−1

2 ≡ 1 mod p.

But since the order ofg is p− 1, (p− 1)i/2 must be divisible byp − 1. Hencei is even andy
has the square roots(±gi/2,mod p) modulop.

If p is of the formp = 4l − 1, i.e. p ≡ 3 mod 4, then by using Euler’s criterium we
immediately get those two square roots ofy—assuming of course thaty 6≡ 0 mod p. They are
(±y(p+1)/4,mod p), since

(

±y
p+1

4

)2

= y
p+1

2 = y
p−1

2 y ≡ y mod p.

One of these two modular square roots is actually a quadraticresidue itself, this is the so-called
principal square root,and the other is a quadratic nonresidue. To see this, first of all, if x is
both a square root ofy and a quadratic residue modulop then−x cannot be a quadratic residue.
Otherwisex ≡ z21 ≡ −z

2
2 mod p for some numbersz1 andz2, and−1 ≡ (z1z

−1
2 )2 mod p,

i.e.−1 is a quadratic residue modulop. However this is not possible by Euler’s criterium since
(−1)(p−1)/2 = (−1)2l−1 = −1. On the other hand these modular square roots cannot both be
quadratic nonresidues, otherwise there will be too many of them.

The casep = 4l + 1 is much more complicated, oddly enough, and we need Shanks’
algorithm to deal with it.

Before we go to Shanks’ algorithm, we can now state that ifm does not have higher powers
of primes as factors—in other words,m is square-free—and the factorization

m = p1p2 · · · pM

is known then the situation concerning quadratic residues and square roots modulom is quite
simple:

• y is a quadratic residue modulom if and only if it is a quadratic residue modulo eachpj
(j = 1, 2, . . . ,M), and this is very quickly decided using Euler’s criterium.

• After computing the square rootsxj of y modulopj using Shanks’ algorithm, we obtain
all 2M square roots ofy modulom applying the CRT algorithm as above.

Furthermore we obtain

Theorem 7.16. If m is odd and square-free,gcd(y,m) = 1, i.e.y is not divisible by any of the
primespj, andy is a quadratic residue modulom then there are exactly2M square roots ofy
modulom whereM is the number of prime factors ofm.
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Proof. Otherwise for somepj we havexj ≡ −xj mod pj , i.e. 2xj ≡ 0 mod pj. Thus,
becausepj is odd,xj ≡ 0 mod pj and furthery ≡ x2

j ≡ 0 mod pj.

If the primespj are all≡ 3 mod 4 then exactly one of these2M square roots ofy modulom
in the theorem is obtained by the CRT algorithm choosing principal square roots ofy modulo
eachpj . This square root is theprincipal square rootof y modulom.

Corollary. If m is odd and square-free,y is a quadratic residue modulom, andx is a square
root ofy modulom then the square roots ofy modulom are exactly(xωi,mod m) (i = 1, 2, . . . ,
2M ) whereM is the number of prime factors ofm andω1, ω2, . . . , ω2M are the square roots of
1 modulom.

NB. All this depends very much on the factorization ofm being available. Already in the
case whereM = 2 and the factors are not known deciding whethery is quadratic residue
modulom or not, and in the positive case finding its square roots modulom, is very laborious.
Even knowing one of the square root pairs does not help. As a matter of fact, if we know
square rootsx1 andx2 of y modulom = p1p2 such thatx1 6≡ ±x2 mod m then the numbers
gcd(m, x1 ± x2) are the primesp1 and p2. Many cryptosystems and protocols, e.g. RSA, are
based on these observations.

And then the Shanks algorithm:

Shanks’ algorithm:

1. If p = 2, return(y,mod 2) and quit. Ify ≡ 0 mod p, return0 and quit.

2. If y(p−1)/2 6≡ 1 mod p theny does not have square roots modulop by Euler’s criterium.
Return this information and quit.

3. If p ≡ 3 mod 4, return(±y(p+1)/4,mod p) and quit.

4. Then again ifp ≡ 1 mod 4, write p − 1 = 2st wheret is odd ands ≥ 2. This is
accomplished by repeated divisions by2, and no more than⌊log2(p − 1)⌋ of them are
needed.

5. Randomly choose a numberu from the interval1 ≤ u < p. Now if u(p−1)/2 ≡ 1 mod p,
give up and quit. By Euler’s criteriumu is in this case a quadratic residue modulop and
for the sequel a quadratic nonresidue will be needed. Hence the choice ofu succeeds with
a probability of50%.

6. Setv ← (ut,mod p). Then the order ofv modulop is 2s. This is because ifi is this order,
thenit | 2st and soi | 2s. On the other hand,ut2k 6≡ 1 mod p for k < s, otherwise
u(p−1)/2 ≡ 1 mod p.

7. Setz ← (y(t+1)/2,mod p). Thenz2 ≡ yty mod p. In a sensez is an ”approximate”
square root ofy modulop, and using it we can find the correct square root in the form
x = (zv−l,mod p).

8. Find the said correct square root, in other words, a numberl such that

x2 ≡ (zv−l)2 ≡ y mod p , i.e. v2l ≡ z2y−1 ≡ yt mod p.
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Such a number exists because the modular equationw2s−1

≡ 1 mod p has2s−1 roots12

(solving forw) and they are(v2j,mod p) (j = 0, 1, . . . , 2s−1 − 1). Since(yt,mod p) is
one of the roots, the numberl can be found recursively in the binary form

l = bs−22
s−2 + bs−32

s−3 + · · ·+ b12 + b0

as follows:

8.1 The bitb0 is found when both sides of the congruencev2l ≡ yt mod p are raised to
the(2s−2)th power since

b0 =

{

0 if (yt2
s−2

, mod p) = 1

1 otherwise.

8.2 The bitb1 is found, when both sides of the congruencev2l ≡ yt mod p are raised
to the(2s−3)th power since

b1 =

{

0 if (yt2
s−3

v−b02s−2

, mod p) = 1

1 otherwise.

Note that here we need the already obtainedb0.

8.3 Using the obtained bitsb0 andb1 we similarly find the following bitb2, and so on.

9. Return(±zv−l,mod p) and quit.

It is quite easy to see that the algorithm is polynomial-timeand produces the correct result with
an approximate probability of50%. It is a Las Vegas type stochastic algorithm.

7.7 Strong Random Numbers

Cryptologically strong random numbers are needed for example in probabilistic cryptosystems
where random numbers are used in the encryption. Encryptingone and the same message can
then produce different results at different times. Many protocols also use random numbers.

Many otherwise quite good traditional random number generators, such as the shift register
generator introduced in Section 2.6, have proved to be dangerously weak in cryptography. The
specific needs of cryptology started an extensive research of pseudorandom numbers, theoreti-
cally as well as in practice.

The Blum–Blum–Shub generator13 is a simple random number generator, whose strength
is in its connections to quadratic residuosity testing. Since, as of now, no fast algorithms are
known for the testing, even probabilistic ones not to mention deterministic, the BBS generator
is thought to be strong in the cryptological sense, see e.g. GARRETT or STINSON.

Squaring a quadratic residuex modulon produces a new quadratic residuey. Now if y has
a principal square root, it must bex, and so in this case we are actually talking about permuting
quadratic residues. This permutation is so powerfully randomizing that it can be used as a
random number generator.

12Here we need from polynomial algebra the result that an algebraic equation ofdth degree has at mostd different
roots. See for example the course Algebra 1 or Symbolic Computing or some elementary algebra book.

13The original reference is BLUM , L. & B LUM , M. & SHUB, M.: A Simple Unpredictable Random Number
Generator.SIAM Journal on Computing15 (1986), 364–383.
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The BBS generator produces a sequence of random bits. The generator needs two primes
p andq, kept secret, of approximately same length. The conditionp ≡ q ≡ 3 mod 4 must be
satisfied, too, for the principal square roots to exist. Denoten = pq. If the goal is to producel
random bits, the procedure is the following:

Blum–Blum–Shub generator:

1. Choose a random numbers0 from the interval1 ≤ s0 < n. Randomness is very impor-
tant here, and for that the random number generators introduced in Section 2.6 are quite
sufficient. Indeed, some choices lead to very short sequences, and the random number
generator starts repeating itself quite soon, which is of course a serious deficiency. This
is discussed thoroughly in the original article.

2. Repeat the recursion
si = (s2i−1, mod n)

l times and compute the bits

bi = (si, mod 2) (i = 1, 2, . . . , l).

3. Return(b1, b2, . . . , bl) and quit.

NB. Cryptologically strong random number generators and good cryptosystems have a lot in
common, as a matter of fact, many cryptosystems can be transformed to cryptologically strong
random number generators, see e.g.GOLDREICH andSHPARLINSKI and the articleA IELLO ,
W. & RAJAGOPALAN, S.R. & VENKATESAN, R.: Design of Practical and Provably Good
Random Number Generators.Journal of Algorithms29 (1998), 358–389.

7.8 Lattices. LLL Algorithm

If v1, . . . ,vk are linearly independent vectors ofRk then thelattice14 generated by them is the
set of the points

〈v1, . . . ,vk〉 = {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ Z}

of Rk. The vectorsv1, . . . ,vk are called thebase vectorsor thebasisof the lattice, andk is
the dimensionof the lattice. A lattice has infinitely many bases ifk > 1. So, a central task
considering lattices is to find a ”good” basis which includesat least one short vector and whose
vectors do not meet at very sharp angles. Such a basis resembles the natural basis ofRk.

Thediscriminantof the lattice isD = | det(V)| whereV is the matrix whose columns are
v1, . . . ,vk. D is the volume of thek-dimensional parallelepiped spanned by the base vectors,
and does not depend on the choice of the basis of the lattice. This is because a matrixC, used
for changing the basis, and its inverseC−1 must have integral elements, in which case both
det(C) anddet(C−1) = det(C)−1 are also integers and hencedet(C) = ±1. After the change
of basis the discriminant is| det(CV)| = | det(C) det(V)| = D. The discriminant offers a
measure to which other quantities of the lattice can be compared.

The celebratedLenstra–Lenstra–Lovász algorithm15 (LLL algorithm) gives a procedure for
constructing a good basis for a lattice, in the above mentioned sense, starting from a given basis.
The resulting basis is a so-calledLLL reduced base.After getting the base vectorsv1, . . . ,vk as
an input, the algorithm produces a new basisu1, . . . ,uk for the lattice〈v1, . . . , vk〉, for which

14Research of lattices belongs to the so-calledgeometric number theoryor Minkowski’s geometry.
15The original reference is LENSTRA, A.K. & L ENSTRA JR., H.W. & LOVÁSZ, L: Factoring Polynomials with

Rational Coefficients.Mathematische Annalen261(1982), 515–534.
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1. ‖u1‖ ≤ 2
k−1

4 D
1

k ,

2. ‖u1‖ ≤ 2
k−1

2 λ whereλ is the length of the shortest nonzero vector of the lattice, and

3. ‖u1‖ · · · ‖uk‖ ≤ 2
k(k−1)

4 D.

Items 1. and 2. guarantee that the new base vectoru1 is short both compared with the discrimi-
nant and with the shortest nonzero vector of lattice. Item 3.guarantees that the angles spanned
by the new vectors are not too small. A measure of approximateorthogonality of the basis
u1, . . . ,uk is how close‖u1‖ · · · ‖uk‖ is toD, since‖u1‖ · · · ‖uk‖ = D for orthogonal vectors
u1, . . . ,uk.

For the time complexity of the LLL algorithm there is the estimate

O(k6(lnmax(‖v1‖, . . . , ‖vk‖))
3),

but usually it is a lot faster in practice. However, note thattime is polynomial only in the size
of the vectors, not in the size of the dimension. Performanceof the algorithm depends also on
how the vectorsv1, . . . ,vk are given and how you compute with them. Naturally, an easy case
is when the vectors have integral elements.

The LLL algorithm won’t be discussed any further here, it is treated in much more detail for
example in COHEN. Suffice it to say that it is extremely useful in a number of contexts.



Chapter 8

RSA

8.1 Defining RSA

RSA’s1 secret keyk2 consists of two large primesp andq of approximately equal length, and a
numberb (the so-calleddecrypting exponent) such that

gcd(b, φ(pq)) = gcd(b, (p− 1)(q − 1)) = 1.

The public keyk1 is formed of the numbern = pq (multiplied out), and the numbera (the
so-calledencrypting exponent) such that

ab ≡ 1 mod φ(n).

Note thatb does have an inverse moduloφ(n). The encrypting function is

ek1(w) = (wa, mod n),

and the decrypting function is
ek2(c) = (cb, mod n).

For encrypting to work, a message block must be coded as an integer in the interval0 ≤ w ≤
n−1. Both encrypting and decrypting are done quickly using the algorithm of Russian peasants.
The following small special case of the Chinese remainder theorem will be very useful:

Lemma. x ≡ y mod n if and only if bothx ≡ y mod p andx ≡ y mod q.

When setting up an RSA cryptosystem, we go through the following steps:

1. Generate random primesp andq of desired length, see Section 7.4.

2. Multiply p andq to get the numbern = pq, and computeφ(n) = (p− 1)(q − 1) as well.

3. Find a random numberb from the interval1 ≤ b ≤ φ(n)− 1 such thatgcd(b, φ(n)) = 1,
by generating numbers randomly from this interval and computing the g.c.d.

4. Compute the inversea of b moduloφ(n) using the Euclidean algorithm.

5. Publish the pairk1 = (n, a).

1The original reference is RIVEST, R.L. & SHAMIR , A. & A DLEMAN , L.: A Method for Obtaining Digi-
tal Signatures and Public Key Cryptosystems.Communications of the Association for Computing Machinery21
(1978), 120–126.
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Now let’s verify that decrypting works. First of all, ifgcd(w, n) = 1 then by Euler’s theorem
for some numberl we have

cb ≡ (wa)b = wab = w1+lφ(n) = w(wφ(n))l ≡ w · 1 = w mod n.

Then again, ifgcd(w, n) 6= 1, we have three cases:

• w = 0. Now apparently
cb ≡ (wa)b = 0b = 0 mod n.

• p | w butw 6= 0. Noww = pt wheregcd(q, t) = 1. Clearly

cb ≡ wab ≡ w mod p.

On the other hand, by Fermat’s little theorem for some numberl we have

wab = w1+lφ(n) = w(wφ(n))l = w(w(p−1)(q−1))l = w(wq−1)l(p−1) ≡ w · 1 = w mod q.

By the lemmacb ≡ wab ≡ w mod n.

• q | w butw 6= 0. We handle this just as we did the previous case.

NB. The above mentioned conditiongcd(w, n) 6= 1 does not bode well: Either the message
is directly readable or it hasp or q as a factor, in which case using the Euclidean algorithm
gcd(w, n) can be obtained and thus the whole system can be broken. Of course, this also
happens ifgcd(c, n) 6= 1, but becausen does not have higher powers of primes as factors and
c ≡ wa mod n, in fact

gcd(c, n) = gcd(wa, n) = gcd(w, n).

8.2 Attacks and Defences

RSA can be made very safe but this requires that certain dangerous choices are avoided. Note
that KP data is always available in public-key systems. One case to be avoided was already
indicated in the note above, but it is very rare. Other thingsthat should be kept in mind are the
following:

(A) The absolute value of the differencep−q must not be small! Namely, ifp−q > 0 is small
then(p − q)/2 is small too, and(p + q)/2 is just a bit larger than

√
pq =

√
n (check!).

On the other hand,

n =

(
p+ q

2

)2

−

(
p− q

2

)2

.

To find the factorsp andq of n we try out integers one by one starting from⌈
√
n ⌉ until we

hit a numberx such thatx2 − n = y2 is a square. When thisx is found, we immediately
obtainp = x + y andq = x − y. Becausen itself is not square,⌈

√
n ⌉ = ⌊

√
n⌋ + 1.

Computing the integral square root is quite fast, see Section 2.6.

(B) We must keep an eye on the factor structure ofφ(n) when choosing the primesp andq.
If gcd(p− 1, q − 1) is large then

u = lcm(p− 1, q − 1) =
(p− 1)(q − 1)

gcd(p− 1, q − 1)
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is small (see Theorem 2.9). On the other hand,gcd(a, u) = 1 (why?) anda has an inverse
b′ modulou. This b′ will also work as a decrypting exponent because we can now write
ab′ = 1 + lu andu = t(p− 1) = s(q − 1) for some numbersl, t ands, and by Fermat’s
little theorem

cb
′

≡ wab′ = w1+lu = w(wu)l = w(wp−1)lt ≡ w · 1 = w mod p.

(Here of coursec ≡ wa mod p.) Similarly cb
′

≡ w mod q and by the lemma also
cb

′

≡ w mod n. If u is much smaller thanφ(n) then b′ can be found by trying out
numbers. The conclusion is thatp− 1 andq− 1 should not have a large common divisor.

(C) A situation whereφ(n) has only small prime factors must be avoided, too. Except that in
this situation we can try to factorn by Pollard’sp− 1-algorithm and similar algorithms,
it may also be possible to go through all candidatesf for φ(n), for whichgcd(f, a) = 1,
compute the inverse ofa modulof , decrypt some cryptotext, and in this way findφ(n) by
trial and error. Note that ifφ(n) = (p− 1)(q − 1) andn are known we can easily obtain
p andq as the roots of the second degree equation

(x− p)(x− q) = x2 + (φ(n)− n− 1)x+ n = 0.

The roots

x1,2 =
−φ(n) + n + 1±

√

(φ(n)− n− 1)2 − 4n

2
can be computed quite quickly using integral square root.

(D) Using iterated encryptingwe can either factorn or find the plaintextw, when the corre-
sponding cryptotextc is available. Compute the sequence

ci = (cai−1, mod n) = (ca
i

, mod n) = (wai+1

, mod n) , c0 = c,

recursively untilgcd(ci − c, n) 6= 1. If this succeeds, there are two possibilities:

• gcd(ci − c, n) = p or gcd(ci − c, n) = q: In this casep andq are found and the
system is broken.

• gcd(ci− c, n) = n: In this case necessarilyw = ci−1 and the plaintext is found. Ifw
has a recognizable content, it will be found already in the preceding iteration round!

Does the procedure succeed every time? By Euler’s theorem

aφ(φ(n)) ≡ 1 mod φ(n),

i.e. we can writeaφ(φ(n)) − 1 = lφ(n), and further

cφ(φ(n))−1 ≡ waφ(φ(n))

= w1+lφ(n) = w(wφ(n))l ≡ w · 1 = w mod n,

so at leasti = φ(φ(n)) suffices. On the other hand,φ(φ(n)) ≥ 4
√
n, so that this bound for

the number of iterations is not very interesting.

(E) Apparently very small decrypting exponents must be avoided, since they can be found by
trying out numbers. As a matter of fact, certain methods makeit possible to find even
fairly large decrypting exponents. For example, ifb < n0.292, it can be found using the
LLL algorithm.2

2See BONEH, D. & DURFEE, G.: Cryptanalysis of RSA with Private Keyd Less Thann0.292. Proceedings of
EuroCrypt ’99. Lecture Notes in Computer Science1592. Springer–Verlag (1999), 1–11.
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A small encrypting exponent can also do harm, even if the decrypting exponent is large.
If for examplewa < n thenw can be easily obtained fromc by taking the integralath

root. See also Section 8.5.

(F) It goes without saying that if there is such a small numberof possible messages that
they can be checked out one by one then the encrypting can be broken. If all messages
are ”small” then this can be done quite conveniently by the so-calledmeet-in-the-middle
procedure.Here we assume thatw < 2l, in other words, that the length of the message
in binary representation is≤ l. Because by the Prime number theorem there are only few
possible large prime factors ofw, it is fairly likely thatw will be of form

w = w1w2 where w1, w2 ≤ ⌈2
l/2⌉

(at least for large enoughl), in which case the corresponding encrypted message is

c ≡ wa
1w

a
2 mod n.

⌈2l/2⌉ is obtained by the algorithm of Russian peasants and by extracting the integral
square root if needed. The procedure is the following:

1. Sort the numbers(ia,mod n) (i = 1, 2, 3, . . . , ⌈2l/2⌉) according to magnitude, in-
cluding thei’s in the listL obtained. Computing the numbers(ia,mod n) by the
algorithm of Russian peasants takes timeO(2l/2N3) whereN is the length ofn, and
sorting with quicksort takesO(l2l/2) time steps.

2. Go through the numbers(cj−a,mod n) (j = 1, 2, 3, . . . , ⌈2l/2⌉) checking them
against the listL—this is easy, since the list is in order of magnitude. If we find
a j such that

cj−a ≡ ia mod n

then we have foundw = ij (meeting in the middle). Using binary search and
computing powers by the algorithm of Russian peasants takestimeO(2l/2(l+N3)).
If it so happens thatj−1 mod n does not exist thengcd(j, n) 6= 1 and a factor ofn
is found.

The overall time isO(2l/2(l + N3)), which is a lot less than2l, assuming of course that
the listL can be stored in a quickly accessible form.

The problem of small messages can be solved usingpadding, in other words by adding
random decimals (or bits) in the beginning of the decimal (orbinary) representation of the
message, so that the message becomes sufficiently long. Of course a new padding needs
to be taken every time. In this way even single bits can be messages and safely encrypted.

NB. In items (B) and (C) safety can be increased by confining to theso-calledsafe primesor
Germain’s numbersp andq, i.e. to primesp andq such that(p−1)/2 and(q−1)/2 are primes.
Unfortunately finding such primes is difficult—and it is not even known whether or not there
infinitely many of them. Some cryptologists even think thereare so few Germain numbers it is
not actually safe to use them!

A particularly unfortunate possibility in item (D) is that the iteration succeeds right away.
Then it can happen thatp | c or q | c, but what is much more likely is that the message is a
so-calledfixed-point message, in other words, a messagew such that

c = ek1(w) = w.

Apparently0, 1 andn− 1 are such messages. But there are usually many more of them!
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Theorem 8.1.There are exactly

(1 + gcd(a− 1, p− 1))(1 + gcd(a− 1, q − 1))

fixed-point messages.

Proof. Denotel = gcd(a− 1, p− 1) andk = gcd(a− 1, q − 1) and take some primitive roots
g1 andg2 modulop andq, respectively. Then the order ofga−1

1 modulop is (p − 1)/l and the
order ofga−1

2 moduloq is (q − 1)/k, see Theorem 7.4 (iii). Hence the only numbersi in the
interval0 ≤ i < p− 1 such that

(ga−1
1 )i ≡ 1 mod p or (gi1)

a ≡ gi1 mod p,

are the numbers

ij = j
p− 1

l
(j = 0, 1, . . . , l − 1).

Similarly the only numbersi in the interval0 ≤ i < q − 1 such that(gi2)
a ≡ gi2 mod q, are the

numbers

hm = m
q − 1

k
(m = 0, 1, . . . , k − 1).

Apparently every fixed-point messagew satisfies the congruenceswa ≡ w mod p, q, and vice
versa. Hence exactly all fixed-point messages are obtained by the Chinese remainder theorem
from the(l + 1)(k + 1) congruence pairs

{

x ≡ 0 mod p

x ≡ 0 mod q
,

{

x ≡ 0 mod p

x ≡ ghm

2 mod q
,

{

x ≡ g
ij
1 mod p

x ≡ 0 mod q
,

{

x ≡ g
ij
1 mod p

x ≡ ghm

2 mod q

(j = 0, 1, . . . , l − 1 andm = 0, 1, . . . , k − 1).

Of course, there should not be many fixed-point messages. Because in practicea and bothp
andq are odd, generally there are at least(1 + 2)(1 + 2) = 9 fixed-point messages. Especially
difficult is the situation wherep − 1 | a − 1 andq − 1 | a − 1. In this case there are(1 + p −
1)(1 + q − 1) = n fixed-point messages, that is,all messagesare fixed-point messages. Ifg1
andg2 are known and the number of fixed-point messages is relatively small, they can be found
in advance and avoided later.

Some much more complicated ideas have been invented for breaking RSA. These are intro-
duced for example in MOLLIN . None of these has turned out to be a real threat so far.

8.3 Cryptanalysis and Factorization

Breaking RSA is hard because the factors ofn cannot be computed in any easy way. In the
public key there is also the encrypting exponenta. The following result shows that there is
no easy way to obtain additional information out ofa, either. In other words, an algorithmA,
which computesb from n anda, can be transformed to a probabilistic algorithm, which canbe
used to quickly factorn.

If a square rootω of 1 modulon is known somehow andω 6≡ ±1 mod n, then the factors
of n can be quickly computed using this square root, because then(ω− 1)(ω+1) ≡ 0 mod n
and one of the numbersgcd(ω ± 1, n) equalsp. The following algorithm uses this idea and
the assumed algorithmA trying to factorn. In a way the algorithm resembles the Miller–Rabin
algorithm.
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Exponent algorithm:

1. Choose a random messagew, 1 ≤ w < n.

2. Computed = gcd(w, n) using the Euclidean algorithm.

3. If 1 < d < n, returnd andn/d and quit.

4. Computeb using the algorithmA and sety ← ab− 1.

5. If y is now odd go to #7.

6. If y is even, sety ← y/2 and go to #5. Ifab− 1 = 2sr wherer is odd, we cycle this loop
s times. Note that in this cases ≤ log2(ab − 1) < 2 log2 n, i.e. s is comparable to the
length ofn.

7. Computeω = (wy,mod n) by the algorithm of Russian peasants.

8. If ω ≡ 1 mod n, we give up and quit.

9. If ω 6≡ 1 mod n, setω′ ← ω andω ← (ω2,mod n) and go to #9. This loop will be
cycled no more thans times, sinceab − 1 = 2sr is divisible byφ(n) and on the other
hand by Euler’s theoremwφ(n) ≡ 1 mod n.

10. Eventually we obtain a square rootω′ of 1 modulon such thatω′ 6≡ 1 mod n. Now if
ω′ ≡ −1 mod n, we give up and quit. Otherwise we computet = gcd(ω′− 1, n), return
t andn/t, and quit.

The procedure is a probabilistic Las Vegas type algorithm where #1 is random. It may be
shown that it produces the correct result at least with probability 1/2, see for example STINSON

or SALOMAA .
Despite the above results it has not been shown that breakingRSA would necessarily lead

to factorization ofn. On the other hand, this would make RSA vulnerable to attacksusing CC
data, indeed CC data may be thought of as random broken cryptotexts.

8.4 Obtaining Partial Information about Bits

Even if finding the message itself would seem to be difficult, could it be possible to find some
partial information about the message, such as whether the message is even or odd, or in which
of the intervals0 ≤ w < n/2 or n/2 < w < n it is? Here we assume of course thatn is odd.
If for example we encrypt a single bit by adding a random padding to the binary representation,
parity of the message would give away the bit immediately.

In this way we obtain two problems:

(1) Compute theparity of w
par(c) = (w, mod 2)

starting from the cryptotextc = ek1(w).

(2) Compute thehalf of w

half(c) =

⌊
2w

n

⌋

starting from the cryptotextc = ek1(w).
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These two problems are not independent:

Lemma. The functionspar andhalf are connected by the equations

half(c) = par((2ac, mod n)) and par(c) = half((2−ac, mod n)).

Proof. First we denote
c′ = (2ac, mod n) = ((2w)a, mod n).

If now half(c) = 0 then0 ≤ 2w < n, i.e.2w is the plaintext corresponding toc′, andpar(c′) =
0. Again, if half(c) = 1 thenn/2 < w < n, i.e.0 < 2w − n < n. Thus in this case2w − n is
the plaintext corresponding toc′ and it is odd sopar(c′) = 1.

The latter equality follows from the former. If we denotec′′ = (2−ac,mod n) then by the
above

half(c′′) = par((2ac′′, mod n)) = par((2a2−awa, mod n)) = par(c).

Hence it suffices to consider the functionhalf. Now let’s compute the numbers

ci = half(((2iw)a, mod n)) (0 ≤ i ≤ ⌊log2 n⌋).

Here of course2iw can be replaced by the ”correct” message(2iw,mod n) if needed. Hence
ci = 0 exactly when dividing2iw by n the remainder is in the interval[0, n/2), in other words,
exactly whenw is in one of the intervals

jn

2i
≤ w <

jn

2i
+

n

2i+1
(j = 0, 1, . . . , 2i − 1).

Becausen is odd, the following logical equivalences hold:

c0 = 0⇐⇒ 0 ≤ w <
n

2

c1 = 0⇐⇒ 0 ≤ w <
n

4
or

n

2
< w <

3n

4

c2 = 0⇐⇒ 0 ≤ w <
n

8
or

n

4
< w <

3n

8
or

n

2
< w <

5n

8
or

3n

4
< w <

7n

8
...

Thusw can be found in⌊log2 n⌋+ 1 steps by binary search.
All in all we can conclude by this that an algorithm, which computes one of the functionspar

or half, can be transformed to an algorithm for decrypting an arbitrary message in polynomial
time. So, the information about a message carried by these functions cannot be found in any
easy way.

NB. On the other hand, if we know some number of decimals/bits of the decrypting key or of the
primesp or q, we can compute the rest of them quickly, seeCOPPERSMITH, D.: Small Solutions
to Polynomial Equations, and Low Exponent RSA Vulnerabilities.Journal of Cryptology10
(1997), 233–260.
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8.5 Attack by LLL Algorithm

Very often the beginning of a plaintext is fixed and the variable extension is short. In such
situations one should not use a very small encrypting exponent a. In this case the plaintext is of
form

w = x+ y

wherex remains always the same andy is the small variable part. Let’s agree that|y| ≤ Y .
The choice ofY is revealed later, of courseY is an integer. A negativey is also possible here,
whatever that might mean! The corresponding cryptotext is

c = ((x+ y)a, mod n).

A hostile outside party now knows the public key(n, a), c, x andY and wants to findy. For
this the polynomial

P (t) = (x+ t)a − c =
a∑

i=0

dit
i

of Zn[t] is used, where the coefficientsdi are represented in the positive residue system and
da = 1. So, we are seeking a numbery such that|y| ≤ Y andP (y) ≡ 0 mod n.

Consider then thea+ 1-dimensional lattice〈v1, . . . ,va+1〉 where

v1 = (n, 0, . . . , 0) , v2 = (0, nY, 0, . . . , 0) , v3 = (0, 0, nY 2, 0, . . . , 0) , . . . ,

va = (0, . . . , 0, nY a−1, 0) , va+1 = (d0, d1Y, d2Y
2, . . . , da−1Y

a−1, Y a).

See Section 7.8. When the LLL algorithm is applied to this we obtain a new basisu1, . . . ,ua+1,
from which we only needu1. Now the discriminant of the lattice is

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n 0 0 · · · 0 0
0 nY 0 · · · 0 0
0 0 nY 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · nY a−1 0
d0 d1Y d2Y

2 · · · da−1Y
a−1 Y a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= naY 1+2+···+a = naY
a(a+1)

2 ,

so
‖u1‖ ≤ 2

a
4D

1

a+1 = 2
a
4n

a
a+1Y

a
2 .

u1 can naturally be written as a linear combination of the original base vectors with integer
coefficients:

u1 = e1v1 + · · ·+ ea+1va+1 = (f0, f1Y, f2Y
2, . . . , faY

a)

where
fi = ei+1n+ ea+1di (i = 0, 1, . . . , a− 1) and fa = ea+1.

Hence
fi ≡ ea+1di mod n (i = 0, 1, . . . , a).

Now we take the polynomial

Q(t) =
a∑

i=0

fit
i.
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BecauseP (y) ≡ 0 mod n, we have also

Q(y) =

a∑

i=0

fiy
i ≡

a∑

i=0

ea+1diy
i = ea+1

a∑

i=0

diy
i = ea+1P (y) ≡ 0 mod n.

Furthermore, by the triangle inequality, the estimate|y| ≤ Y and the Cauchy–Schwarz inequal-
ity,

|Q(y)| ≤
a∑

i=0

|fiy
i| ≤

a∑

i=0

|fi|Y
i =

a∑

i=0

1 · |fi|Y
i ≤ (a+ 1)

1

2‖u1‖.

At this point we can give an estimate forY . Choose aY such that

(a+ 1)
1

22
a
4n

a
a+1Y

a
2 < n , i.e. (check!) Y < 2−

1

2 (a + 1)−
1

an
2

a(a+1) .

Hence|Q(y)| < n. Because, on the other hand,Q(y) ≡ 0 mod n it must be thatQ(y) = 0.
So, the desiredy can also be found by any numerical algorithm for finding the roots of the
polynomial equationQ(y) = 0 with integral coefficients. There may be several alternatives,
hopefully one of them will turn out to be the correct one.

The method is fast ifa is small enough. The maximum length of the vectorsv1, . . . ,va+1 is
proportional to the length ofY a and the LLL algorithm is polynomial-time in this length. On the
other hand, the LLL algorithm is slow for large values ofa—remember it wasn’t polynomial-
time in the length of the dimension—and the numerical searchof roots is then laborious also.

On the other hand, for large values ofa, a rather smallY and hencey must be chosen, which
further limits usefulness. Ifn is of order10300, we obtain the following connection between the
decimal length ofy anda using the choice ofY above:
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Chapter 9

ALGEBRA: GROUPS

9.1 Groups

A group is an algebraic structureG = (A,⊙, 1) where⊙ is a binary computational operation,
the so-calledgroup operation,and1 is the so-calledidentity elementof the group. In addition
it is required that the following conditions hold:

(1) (a⊙ b)⊙ c = a⊙ (b⊙ c) (⊙ is associative).

(2) a⊙ 1 = 1⊙ a = a.

(3) For every elementa there exists a unique elementa−1, the so-calledinverseof a, for
whicha⊙ a−1 = a−1 ⊙ a = 1.

Furthermore, it is naturally assumed thata ⊙ b is defined for all elementsa andb, and that the
result is unique. The group operation is often read ”times” and calledproduct. If in addition

(4) a⊙ b = b⊙ a (⊙ is commutative)

then we say thatG is acommutative group.1

Because of the associativity we can write

a1 ⊙ a2 ⊙ · · · ⊙ an

without parentheses, the result does not depend on how the parentheses are set. Furthermore we
denote, as in Section 4.1,

an = a⊙ · · · ⊙ a
︸ ︷︷ ︸

n copies

, a−n = a−1 ⊙ · · · ⊙ a−1

︸ ︷︷ ︸

n copies

and a0 = 1

and the usual rules of power calculus hold. Powers can also becomputed using the algorithm
of Russian peasants.

NB. Commutative groups are also often calledadditive groups. In this case the following
additive notation and nomenclature is commonly used: The group operation is denoted by⊕ or
+ etc. and calledsum. It is often read ”plus”. The identity element is calledzero elementand
denoted by0 or 0 etc. The inversea−1 is calledopposite elementand denoted by−a. A power
an is calledmultipleand denoted byna. Compare with the notations in Section 4.1.

1A commutative group is also calledAbelian group.

74
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The simplest group is of course thetrivial group where there is only one element (the iden-
tity element). Other examples of groups are:

• The familiar group(Z,+, 0) (integers and addition) is usually denoted briefly just byZ.
Inverses are opposite numbers and the group is commutative.

• (Zm,+, 0) (residue classes modulom and addition) is also a commutative group, inverses
are opposite residue classes. This is a called theresidue class groupmodulom, and
denoted briefly byZm.

• Nonsingularn× n matrices with real elements form the group(Rn×n, ·, In) with respect
to matrix multiplication. This group is not commutative (unlessn = 1). The identity
element is then× n identity matrixIn and inverses are inverse matrices.

• If we denote reduced residue classes modulom by Z∗
m, see Section 2.4, then(Z∗

m, ·, 1) is
a commutative group, inverses are inverse classes. Note that the product of two reduced
residue classes is also a reduced residue class. This is called thegroup of unitsof Zm,
denoted briefly by justZ∗

m, and it hasφ(m) elements (reduced residue classes).

• From every ringR = (A,⊕,⊙, 0, 1), see Section 4.1, itsadditive groupR+ = (A,⊕, 0)
can be extracted. Moreover, from every fieldF = (A,⊕,⊙, 0, 1) also itsmultiplicative
groupF ∗ = (A− {0},⊙, 1) can be extracted, it is also called group of units ofF .

For an elementa of a group(A,⊙, 1) the smallest numberi ≥ 1 (if one exists) such that
ai = 1 is called theorder of a. Basic properties of order are same as for the order of a number
modulom in Section 7.2, and the proofs are also the same (indeed, order modulom is the same
as order in the groupZ∗

m):

• If aj = 1 then the order ofa dividesj.

• If the order ofa is i then the order ofaj is

i

gcd(i, j)
=

lcm(i, j)

j
.

• If the order ofa is i thena−1 = ai−1.

• If, in a commutative group, the order ofa is i and the order ofb is j andgcd(i, j) = 1
then the order ofa⊙ b is ij.

• Elements of finite groups always have orders.

If the size of a finite groupG = (A,⊙, 1) isN and for some elementg

A = {1, g, g2, . . . , gN−1},

in other words, all elements of the group are powers ofg then the group is called acyclic group
andg is called itsgenerator.In this case we often writeG = 〈g〉. Note that the order ofg then
must beN (why?). An infinite group can also be cyclic, we then require that

A = {1, g±1, g±2, . . . }.

A cyclic group is naturally always commutative.
Apparently for instanceZ andZm are cyclic with1 and1 as their generators. If there exists

a primitive root modulom thenZ∗
m is cyclic with the primitive root as its generator.
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NB. A finite cyclic group〈g〉 with N elements has a structure equal (or isomorphic) to that of
ZN :

gi ⊙ gj = g(i+j,mod N) and (gi)−1 = g(−i,mod N).

Computing inZN is easy and fast, as we have seen. On the other hand, computingin 〈g〉 is not
necessarily easy at all if the connection betweengi and i is not easy to compute. This is used
in numerous cryptosystems, see the next chapter. We get backto this when considering discrete
logarithms.

The multiplicative groupF∗
pn of the finite fieldFpn is always cyclic. Its generators are

calledprimitive elements.This was already stated in Theorem 6.4 for the prime fieldZp, whose
generators are also called primitive roots modulop. If G = (A,⊙, 1) is a group andH =
(B,⊙, 1), whereB is subset ofA, is also group thenH is a so-calledsubgroupof G. For
example,(2Z,+, 0), where2Z is the set of even integers, is a subgroup ofZ. Cyclic subgroups,
that is,subgroups generated by single elements,are important subgroups: If the order ofa is i
then in the subgroup〈a〉 generated bya we take

B = {1, a, a2, . . . , ai−1}.

And if a does not have an order then

B = {1, a±1, a±2, . . . }.

It is easy to see that this is a subgroup. A basic property of subgroups of finite groups is the
following divisibility property. Denote the cardinality of a setC by |C|.

Theorem 9.1. (Lagrange’s theorem)If G = (A,⊙, 1) is a finite group andH = (B,⊙, 1) is
its subgroup then|B| divides|A|. In particular, the order of every element ofG divides|A|.

Proof. Consider the sets
a⊙H = {a⊙ b | b ∈ B},

the so-calledleft cosets.If c is in the left coseta ⊙ H thenc = a ⊙ b anda = c ⊙ b−1 where
b ∈ B. Hencec⊙H ⊆ a⊙H anda ⊙H ⊆ c⊙H, soa ⊙H = c⊙H. Thus two left cosets
are always either exactly the same or completely disjoint. So A is partitioned into a number of
mutually disjoint left cosets, each of which has|B| elements. Note thatB itself is the left coset
1⊙H.

If G1 = (A1,⊙1, 11) andG2 = (A2,⊙2, 12) are groups then theirdirect productis the group

G1 ×G2 = (C,⊗, (11, 12))

where the set of elements is the Cartesian product

C = A1 × A2 = {(a1, a2) | a1 ∈ A1 ja a2 ∈ A2}

and the operation⊗ and inverses are defined by

(a1, a2)⊗ (b1, b2) = (a1 ⊙1 b1, a2 ⊙2 b2) and (a1, a2)
−1 = (a−1

1 , a−1
2 ).

It is easy to see that theG1 × G2 defined in this way is truly a group. The idea can extended,
direct productsG1×G2×G3 of three groups can be defined, and so on. Without proofs we now
present the following classical result, which shows that the groupsZm can be used to essentially
chacterize every finite commutative group using direct products:
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Theorem 9.2. (Kronecker’s decomposition)Every commutative finite group is structurally
identical (or isomorphic) to some direct product

Z
p
i1
1

× Z
p
i2
2

× · · · × Z
p
ik
k

wherep1, . . . , pk are different primes andi1, . . . , ik ≥ 1. Here we may agree that the empty
direct product corresponds to the trivial group{1}, so that it is included, too.

9.2 Discrete Logarithm

In a cyclic goup〈g〉 we define thediscrete logarithmin the baseg by

logg a = j exactly when a = gj.

Furthermore we will assume that in a finite cyclic group withN elements,0 ≤ logg a ≤ N − 1.
For example inZ the logarithm is trivial: The only bases are±1 and log±1 a = ±a. It

is also quite easy in the groupZm: The base is somei wheregcd(i,m) = 1, and logi j
= (ji−1,mod m). But already discrete logarithms inZ∗

p are anything but trivial for a large
primep, and have proved to be very laborious to compute. Also discrete logarithms in many
other groups are difficult to compute. Even if the groupG itself is not cyclic, and discrete
logarithm is not defined inG itself, in any case discrete logarithms are defined in its cyclic
subgroups.

Now let’s take a closer look at the logarithm inZ∗
p, also often calledindex.The problem is

to find a numberj in the interval0 ≤ j ≤ p− 2 such thatgj ≡ b mod p, when the generator
(primitive root)g andb are given e.g. as decimal numbers in the positive residue system. Clearly
this problem is inNP: Guessj and test its correctness by exponentiation using the algorithm
of Russian peasants. On the other hand, deterministicallyj can be computed by simple search
and the algorithm of Russian peasants in estimated timeO(p(ln p)3) and in polynomial space.
By computing in advance as preprocessing the so-calledindex table, in other words, the pairs

(i, (gi, mod p)) (i = 0, 1, . . . , p− 2)

sorted by the second component, the problem can be solved in polynomial time and space,
excluding the index table, but then there is an overhead of superpolynomial time and space. A
sort of intermediate form is given by

Shanks’s baby-step-giant-step algorithm:

1. Setm← ⌈
√
p− 1 ⌉. The integral square root⌊

√
p− 1⌋ is quick to compute and

⌈
√
p− 1 ⌉ =







⌊
√
p− 1⌋ if p− 1 is a square, i.e.p− 1 = ⌊

√
p− 1⌋2

⌊
√
p− 1⌋ + 1 otherwise.

2. Compute the pairs

(i, (gmi, mod p)) (i = 0, 1, . . . , m− 1) (thegiant steps)

and sort them by the second component. As a result we have the listL1. In this we need
the algorithm of Russian peasants and a fast sorting algorithm, for example quicksort.
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3. Compute the pairs

(k, (bg−k, mod p)) (k = 0, 1, . . . , m− 1) (thebaby steps)

and sort them by the second component, as well. In this way we obtain the listL2.

4. Find a pair(i, y) from the listL1 and a pair(k, z) from the listL2 such thaty = z.

5. Return(mi+ k,mod p− 1) and quit.

If these pairs can be found, the obtained numberj = (mi+k,mod p−1) is the correct logarithm,
since in this case we can writemi+ k = t(p− 1) + j and

gmi ≡ bg−k mod p , i.e. b ≡ gmi+k = (gp−1)tgj ≡ 1 · gj ≡ gj mod p.

On the other hand, the algorithm always returns a result, since if b ≡ gj mod p and0 ≤ j ≤
p−2 then using divisionj can be expressed in the formj = mi+k where0 ≤ k < m, whence
also

i =
j − k

m
≤

j

m
<

p− 1

m
≤

p− 1
√
p− 1

=
√

p− 1 ≤ m.

The baby-step-giant-step algorithm can be implemented in timeO(m) and spaceO(m).
Other algorithms for computing discrete logarithm inZ∗

p are for example Pollard’s kanga-
roo algorithm, see Section 12.2, thePohlig–Hellman algorithmand the so-calledindex calculus
method,see for example STINSON and SALOMAA . The Pohlig–Hellman algorithm is reason-
ably fast if p − 1 has only small prime factors. All these algorithms can be generalized to
computing discrete logarithms ofF∗

pn, also a very laborious task.

9.3 Elliptic Curves

Geometrically anelliptic2 curvemeans a curve of third degree, satisfying the implicit equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Note the special indexing of coefficients, which is traditional. An additional requirement is that
the curve is smooth, in other words, that the equations

a1y = 3x2 + 2a2x+ a4

2y + a1x+ a3 = 0

obtained by differentiating both sides, are not both simultaneously satisfied in the curve. Geo-
metrically this guarantees that the curve has a tangent in every point. Using implicit derivation,
familiar from basic courses,

dy

dx
=

3x2 + 2a2x+ a4 − a1y

2y + a1x+ a3
and

dx

dy
=

2y + a1x+ a3
3x2 + 2a2x+ a4 − a1y

.

When both horizontal and vertical tangents are allowed, theonly situation where a tangent may
not exist is when the numerator and the denominator both vanish.

2The name comes from the fact that certain algebraic functionsy = f(x), related to computing lengths of arcs
of ellipses by integration, satisfy such third degree equation.



CHAPTER 9. ALGEBRA: GROUPS 79

Originally an elliptic curve was of course real, or inR2. The curve can be considered in
any fieldF (the so-calledfield of constants), which the coefficients come from, however. In this
case the curve is the set of all pairs(x, y), which satisfy the defining equation. Although the
smoothness condition does not necessarily have any ”geometric” meaning in this case, it turns
out to be very important.

Quite generally we can confine ourselves to simpler ellipticcurves of the form

y2 = x3 ⊕ ax⊕ b

(the so-calledWeierstraß short form) where the equations

0 = 3x2 ⊕ a

2y = 0

are not simultaneously satisfied (the smoothness condition). Here the notations2 = 21 and
3 = 31 are used. Assuming that2 6= 0 and3 6= 0, eliminatingx andy from the equations

y2 = x3 ⊕ ax⊕ b

0 = 3x2 ⊕ a

2y = 0

(which is not very difficult, try it) we see that this corresponds to the condition

4a3 ⊕ 27b2 6= 0.

A special property of this simpler type of curves is that theyare symmetric with respect to the
x-axis, in other words, if a point(x, y) is in the curve then so is the point(x,−y).

So, exceptions will be fields where2 = 0 (for example the fieldsF2n) or where3 = 0 (for
exampleF3n). In the former the equations are of the form

y2 ⊕ ay = x3 ⊕ bx⊕ c (thesupersingularcase)

and
y2 ⊕ xy = x3 ⊕ ax2 ⊕ b (thenonsupersingularcase),

and in the latter
y2 = x3 ⊕ ax2 ⊕ bx⊕ c.

In addition, the corresponding smoothness conditions willbe needed, too. Even though for
instance the fieldsF2n are very important in cryptography, in what follows we will for simplicity
confine ourselves only to fields for which the above-mentioned short formy2 = x3 ⊕ ax ⊕ b,
where4a3 ⊕ 27b2 6= 0, is possible. Other forms are considered e.g. by WASHINGTON and
BLAKE & SEROUSSI& SMART.

For geometric reasons it has been known for a long time that for a real elliptic curve, or
rather for its points, a computational operation can be defined, which makes it a commutative
group. The corresponding definition can also be made in otherfields, in which case we also
obtain a commutative group. These groups are simply called justelliptic curves.Because there
are a lot of elliptic curves, we obtain in this way abundant cyclic subgroups, convenient for
cryptosystems based on discrete logarithms.

Now let’s first consider the group operation inR2 for the sake of illustration. The identity
element of the group is somewhat artificial, it is a ”point”O in infinity in the direction of the
y-axis. Positive and negative infinities are identified. It isagreed that all lines parallel to the
y-axis intersect at this pointO. Geometrically the group operation⊞ for the pointsP andQ
produces the pointR = P ⊞Q, and the opposite point−P by the following rule:



CHAPTER 9. ALGEBRA: GROUPS 80

1. Draw a line through the pointsP andQ. If P = Q, this line is the tangent line at the point
P . Smoothness guarantees that a tangent exists.

2. If the drawn line is parallel to they-axis thenR = O.

3. OtherwiseR is the reflection of the point of intersection of the line and the curve, with
respect to thex-axis. It is possible that the line is tangent to the curve inP (when the
point of intersection andP merge), in which caseR is the reflection ofP , or in Q (the
point of intersection andQ merge), in which caseR is the reflection ofQ.

4. −P is the reflection ofP with respect to thex-axis. In particular,−O = O.

Apparently the operation⊞ is commutative. Interpreting this rule suitably we see immediately
thatP ⊞O = O⊞ P = P (in particular,O⊞O = O) and thatP ⊞−P = −P ⊞ P = O, as in
a group it should be.

Example. On the right there is the elliptic curve

y2 = x3 − 5x+ 1

in R2 drawn by the Maple program. Also shown is the group opera-
tion of the points

P = ((1−
√
29)/2, (3−

√
29)/2) and Q = (0, 1)

of the curve. The result is

R = ((1 +
√
29/2,−(3 +

√
29)/2).

Note how the curve has two separate parts, of which one is closed
and the other infinite. Not all elliptic curves are bipartitein this way.
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We will now compute the result of the operationP ⊞ Q = R in general. The casesP = O
and/orQ = O are easy. If the points areP = (x1, y1) andQ = (x2, y2), P 6= Q andx1 = x2

then apparentlyy1 = −y2, soR = O or P = −Q. Hence we move on to cases in which either
x1 6= x2 orP = Q. First let’s deal with the former case. A parametric representation of the line
throughP andQ is then

{

x = x1 + (x2 − x1)t

y = y1 + (y2 − y1)t.

Let’s substitute these into equationy2 − x3 − ax− b = 0 of the elliptic curve:

(y1 + (y2 − y1)t)
2 − (x1 + (x2 − x1)t)

3 − a(x1 + (x2 − x1)t)− b = 0.

The left side is a third-degree polynomialp(t) in the variablet. Since the pointP is in the
curve (corresponding tot = 0) and so is the pointQ (corresponding tot = 1), the polynomial
p(t) is divisible by t(t − 1), i.e. p(t) = q(t)t(t − 1) for some first-degree polynomialq(t).
Furthermore we obtain from the equationq(t) = 0 the parameter valuet3 corresponding to the
third intersection point(x3, y3). A division shows that

q(t) = (y2 − y1)
2 − 3x1(x2 − x1)

2 − (x2 − x1)
3(t + 1)

and so

t3 =
(y2 − y1)

2

(x2 − x1)3
−

2x1 + x2

x2 − x1

.
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Substituting these to the parametric representation of theline we obtain
{

x3 = λ2 − x1 − x2

y3 = λ(x3 − x1) + y1

where
λ =

y2 − y1
x2 − x1

(slope of the line), and finally
P ⊞Q = R = (x3,−y3).

Here it may be that(x3, y3) = P or (x3, y3) = Q. Note that(x3, y3) is always defined.
We still need to consider the caseP = Q = (x1, y1), and compute

P ⊞ P = 2P = R.

If y1 = 0, the tangent of the curve is apparently parallel to they-axis andR = O or−P = P .
Thus we move on to the casey1 6= 0. The slope of the tangent is

dy

dx
=

3x2 + a

2y
.

Hence a parametric representation of tangent line drawn in the pointP is
{

x = x1 + 2y1t

y = y1 + (3x2
1 + a)t.

Substituting these into the equation of the curve as before we obtain the polynomial

p(x) = (y1 + (3x2
1 + a)t)2 − (x1 + 2y1t)

3 − a(x1 + 2y1t)− b.

Since the pointP is in the curve (corresponding tot = 0), p(t) is divisible byt, in other words,
p(t) = q(t)t. By division we obtain

q(t) = ((3x2
1 + a)2 − 12x1y

2
1)t− 8y31t

2.

One root of the equationq(t) = 0 is t = 0 and the other is

t2 =
(3x2

1 + a)2

8y31
−

3x1

2y1
.

The intersection point(x2, y2) is obtained by substituting this into the parametric representation:
{

x2 = λ2 − 2x1

y2 = λ(x2 − x1) + y1

where

λ =
3x2

1 + a

2y1

(slope of the line). Finally we obtain

2P = R = (x2,−y2).
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Again it can be thatP = (x2, y2). Also in this case(x2, y2) is always defined.
These computational formulas can be used in any field in whichthe elliptic curve can be

written in the short formy2 = x3 ⊕ ax ⊕ b where4a3 ⊕ 27b2 6= 0. In other fields some-
what different formulas are needed, see KOBLITZ or WASHINGTON or BLAKE & SEROUSSI&
SMART.

All in all we conclude that forming the opposite element is easy (reflection), the group op-
eration is commutative and quite easy to compute. However, associativity of the operation is
difficult to prove starting from the formulas above. The correct world, thinking about proper-
ties of elliptic curves, is the so-calledprojective geometry,in which the group operation itself
occurs naturally. Associativity inR2 follows fairly directly from classical results of projective
geometry for curves of the third degree. The following result (translated) can be found in an old
Finnish classic3 of projective geometry, from which associativity follows easily:

”If two lines a andb intersect a third-degree curve in the pointsA1, A2, A3;B1, B2, B3,
respectively, the third intersection pointsC1, C2, C3 of the linesA1B1, A2B2, A3B3 and
the curve are collinear.”

In other fields associativity must be proved separately and it is quite an elaborate task, see for
example WASHINGTON. Note that in other fields also commutativity must be proved separately,
but this is fairly easy. Both laws are symbolic identities, so they can be verified symbolically.
Let’s do it by using the Maple program. Apparently cases in which at least one of the elements
isO are trivial, so they can be ignored.

Let’s begin with commutativity. First we define the group operation by

> eco:=proc(u,v)
local lambda,xx,yy;
lambda:=(v[2]-u[2])/(v[1]-u[1]);
xx:=lambda^2-u[1]-v[1];
yy:=lambda*(xx-u[1])+u[2];
[xx,-yy];
end:

and then check the commutative law:

> A:=eco([x[1],y[1]],[x[2],y[2]]);

[
(y2 − y1)

2

(x2 − x1)
2
− x1 − x2,− (y2 − y1)

(

(y2 − y1)
2

(x2 − x1)
2
− 2x1 − x2

)

(x2 − x1)
−1 − y1]

> B:=eco([x[2],y[2]],[x[1],y[1]]);

[
(y1 − y2)

2

(x1 − x2)
2
− x2 − x1,− (y1 − y2)

(

(y1 − y2)
2

(x1 − x2)
2
− 2x2 − x1

)

(x1 − x2)
−1 − y2]

> normal(A-B);

[0, 0]

Let’s then verify associativity in the case of no doublings.

> A:=eco([x[1],y[1]],eco([x[2],y[2]],[x[3],y[3]])):
> B:=eco(eco([x[1],y[1]],[x[2],y[2]]),[x[3],y[3]]):
> C:=numer(normal(A-B)):
> max(degree(C[1],y[1]),degree(C[1],y[2]),degree(C[1],y[3]),

degree(C[2],y[1]),degree(C[2],y[2]),degree(C[2],y[3]));

11

We need to substitute the equation of the curve raised to higher powers:

3NYSTRÖM, E.J.:Korkeamman geometrian alkeet sovellutuksineen.Otava (1948).
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> yhtalot:={seq(y[1]^(2*i)=(x[1]^3+a*x[1]+b)^i,i=1..5),
seq(y[2]^(2*i)=(x[2]^3+a*x[2]+b)^i,i=1..5),
seq(y[3]^(2*i)=(x[3]^3+a*x[3]+b)^i,i=1..5),
seq(y[1]^(2*i+1)=y[1]*(x[1]^3+a*x[1]+b)^i,i=1..5),
seq(y[2]^(2*i+1)=y[2]*(x[2]^3+a*x[2]+b)^i,i=1..5),
seq(y[3]^(2*i+1)=y[3]*(x[3]^3+a*x[3]+b)^i,i=1..5)}:

> normal(subs(yhtalot,C));

[0, 0]

Numbers of terms are pretty large:

> nops(C[1]),nops(C[2]);

1082, 6448

Verification by hand would thus be quite tedious, but associativity can also be proved mathe-
matically using some ingenuity. Let’s then check associativity in a remaining case which has
one doubling:

P ⊞ (Q⊞Q) = (P ⊞Q)⊞Q.

(The other cases are checked similarly.) First we define the doubling by

> ecs:=proc(u)
local lambda,xx,yy;
lambda:=(3*u[1]^2+a)/2/u[2];
xx:=lambda^2-2*u[1];
yy:=lambda*(xx-u[1])+u[2];
[xx,-yy];
end:

> A:=eco([x[1],y[1]],ecs([x[2],y[2]])):
> B:=eco(eco([x[1],y[1]],[x[2],y[2]]),[x[2],y[2]]):
> C:=numer(normal(A-B)):
> max(degree(C[1],y[1]),degree(C[1],y[2]),

degree(C[2],y[1]),degree(C[2],y[2]));

15

Again we need to substitute the equation of the curve raised to higher powers:

> yhtalot:={seq(y[1]^(2*i)=(x[1]^3+a*x[1]+b)^i,i=1..7),
seq(y[2]^(2*i)=(x[2]^3+a*x[2]+b)^i,i=1..7),
seq(y[1]^(2*i+1)=y[1]*(x[1]^3+a*x[1]+b)^i,i=1..7),
seq(y[2]^(2*i+1)=y[2]*(x[2]^3+a*x[2]+b)^i,i=1..7)}:

> normal(subs(yhtalot,C));

[0, 0]

Elliptic curves are very variable as groups. However, Kronecker’s decomposition tells us
that finite elliptic curves are direct products of residue class groups. In fact, we get an even
more accurate result:

Theorem 9.3. (Cassels’ theorem)An elliptic curve over the finite fieldFq is either cyclic or
structurally identical (i.e. isomorphic) to a direct productZn1

×Zn2
of two residue class groups

such thatn1 | n2, q − 1.

Considering the size of the group we know that

Theorem 9.4. (Hasse’s theorem)If there areN elements in an elliptic curve over the finite
fieldFq then

q + 1− 2
√
q ≤ N ≤ q + 1 + 2

√
q.
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Astonishingly enough, if the coefficients of an elliptic curve are in some subfield, it is enough
to know how many of its elements are in this subfield:

Theorem 9.5. Assume thatE is an elliptic curve over the fieldFq, that there areq + 1 − a
elements in it (cf. Hasse’s theorem), and that the roots of the equationx2 − ax + q = 0 are
α and β. Then, if we considerE as an elliptic curve over the fieldFqm, there are exactly
qm + 1 − αm − βm elements in it. Note that becauseFq is a subfield ofFqm , E can also be
interpreted as an elliptic curve overFqm. See Section 4.3.

Proofs of these theorems require some fairly deep algebraicnumber theory!4 Hence there
are approximately as many elements in an elliptic curve overthe fieldFq as there are inFq.
Some quite powerful algorithms are known for computing the exact number of the elements,
the so-calledSchoof algorithm5 and its followers, see WASHINGTON or BLAKE & SEROUSSI

& SMART.
It is not easy to find even one of these many elements. As a matter of fact, we do not

know any polynomial-time deterministic algorithm for generating elements of elliptic curves
over finite fields. Ifq = pk, one (slow) way is of course to generate random pairs(x, y), where
x, y ∈ Fq, using the representation of the fieldFq as residue classes of polynomials inZp[x]
modulo somekth-degree indivisible polynomial ofZp[x]—see Section 4.3—and test whether
the pair satisfies the equation of the elliptic curve. By Hasse’s theorem, an element is found by
a single guess with an approximate probability of1/q. The following Las Vegas type algorithm
produces an element of the curve in the positive residue system, in a prime fieldZp wherep > 3:

1. Choose a random numberx from the interval0 ≤ x < p and set

z ← (x3 + ax+ b, mod p).

By Hasse’s theorem this produces a quadratic residuez with an approximate probability
of 50%, since from eachz we obtain two values ofy, unlessz = 0.

2. If z = 0, return(x, 0) and quit.

3. If z(p−1)/2 6≡ 1 mod p, give up and quit. By Euler’s criteriumz is then a quadratic
nonresidue modulop.

4. Compute the square rootsy1 andy2 of z modulop by Shanks’ algorithm, return(x, y1)
and(x, y2) and quit.

The algorithm is apparently polynomial-time and produces aresult with an approximate proba-
bility of 25%. Recall that Shanks’ algorithm produces a result with an approximate probability
of 50%.

NB. By random search we can now find e.g. an elementP 6= O of the elliptic curve and a
(large) primer such thatrP = O, whence the order ofP is r (the order ofP must divider
anyway). The cyclic subgroup〈P 〉 is then sufficient for the needs of cryptography. Another
(slow) way is to choose a random elementP and test its order, which of course should be large.
For this we can use a version of Shanks’ baby-step-giant-step algorithm. By iterating and using
properties of order—see Section 9.1—elements of even higher order may then be found.

Nevertheless, the issue is quite complicated and use of elliptic curves in cryptography is not
straightforward. See for exampleROSING or BLAKE & SEROUSSI& SMART.

Good references are KOBLITZ and WASHINGTON and e.g. SILVERMAN & TATE or COHEN

or CRANDALL & POMERANCE.
4See for example WASHINGTON or CRANDALL & POMERANCE.
5The original reference is SCHOOF, R.: Elliptic Curves over Finite Fields and the Computationof Square Roots

modp. Mathematics of Computation44(1985), 483–494. The algorithm is difficult and also difficult to implement.



Chapter 10

ELGAMAL. DIFFIE–HELLMAN

10.1 Elgamal’s Cryptosystem

Elgamal’s cryptosystem1 ELGAMAL can be based on any finite groupG = (A,⊙, 1) in whose
large cyclic subgroups〈a〉 discrete logarithmloga is difficult to compute. Such groups are for
instanceZ∗

p and more generallyF∗
pn, in particularF∗

2n , and elliptic curves over finite fields.
The public key is the triple

k1 = (G, a, b)

whereb = ay. The secret key isk2 = y. Note that the public key holds the information of the
secret key becausey = loga b, but it is not easy to obtain it from the public key. Encrypting is
nondeterministic. For that we randomly choose a numberx from the interval0 ≤ x < l wherel
is the order ofa. If it is not wished forl to be published, or it is not known, we can alternatively
give some larger upper bound, for example the number of elementsG, which hasl as a factor,
see Lagrange’s theorem. The encrypting function is

ek1(w, x) = (ax, w ⊙ bx) = (c1, c2).

Thus the message block must be interpreted as an element ofG. The decrypting function is

dk2(c1, c2) = c2 ⊙ c−y
1 .

Decrypting works since

dk2(a
x, w ⊙ bx) = w ⊙ bx ⊙ (ax)−y = w ⊙ axy ⊙ a−xy = w.

The idea is to ”mask”w by multiplying it by bx, x is supplied viaax.
For setting up ELGAMAL in the multiplicative groupZ∗

p of a prime field we choose bothp
and the primitive roota modulop simultaneously. Moreover, it is to be kept in mind thatp− 1
should have a large prime factor so that discrete logarithm cannot be quickly computed (see
Section 7.2) e.g. by the Pohlig–Hellman algorithm. This goes in the following way:

1. Choose a large random primeq, and a smaller random numberr which can be factored.

2. If 2qr+1 is a prime, setp← 2qr+1. Note that in this casep−1 has a large prime factor
q. Otherwise we return to #1.

1The system was developed by Taher Elgamal in 1984. The original reference is ELGAMAL , T.: A Public Key
Cryptosystem and a Signature Scheme Based on Discrete Logarithms.IEEE Transactions on Information Theory
IT–31 (1985), 469–472. Discrete logarithms inZ∗

p
were used in this cryptosystem.

85
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3. Randomly choose a numbera from the interval1 ≤ a < p.

4. Test by Lucas’ criterium whethera is a primitive root modulop. The prime factors of
p − 1 needed here, that is,2 andq and the known prime factors ofr, are now easy to
obtain.

5. If a is a primitive root modulop, choose a random numbery from the interval1 ≤ y < p,
returnp, a andy, and quit. Otherwise return to #3.

NB. In a groupZ∗
p, using an elementb of order much lower thanp must be avoided. Otherwise

it is easy to try out candidate valuesr for the order and compute

cr2 ≡ (wbx)r ≡ wr(br)x ≡ wr · 1 = wr mod p.

If the candidate happens to be the correct order ofb, the whole cryptosystem is transformed into
a deterministic system resembling RSA, possibly easily broken by e.g. the meet-in-the-middle
attack, see Section 8.2. An exception is the case wherew ≡ bi mod p for somei andcr2 ≡ 1
mod p, but there are very few of these choices ifr is small.

10.2 Diffie–Hellman Key-Exchange

ELGAMAL allows many parties to publish their public keys within the same system: Each
party just chooses its owny and publishes the correspondingay. ELGAMAL is in fact a later
modification of one of the oldest public-key systems, theDiffie-Hellman key-exchange system
DIFFIE–HELLMAN.

The setting here is the same as in ELGAMAL. Each partyi again chooses a random number
xi from the interval0 ≤ xi < l or from some larger interval, and publishesaxi. The common
key of the partiesi andj is in that caseaxixj , which they both can compute quickly from the
published information and from their own secret numbes.

Breaking DIFFIE–HELLMAN consists of the following two operations. First, computexi

from axi. Second, compute(axj )xi = axixj . In this way it is equivalent to solving the following
problem:

DHP: Given(G, a, b, c), computebloga c.

This problem is the so-calledDiffie–Hellman problem.The complexity of the Diffie–Hellman
problem is not known, computing discrete logarithms naturally solves that too. Note that the
order of appearance ofb andc does not actually matter since

bloga c = (aloga b)loga c = (aloga c)loga b = cloga b.

ELGAMAL’s decrypting is also equivalent to the Diffie–Hellman problem. If DHP can be
quickly solved, we can first compute

bx = bloga ax = bloga c1

quickly and then
c2 ⊙ b−x = w,

and ELGAMAL is broken. On the other hand, if ELGAMAL is broken, we can quickly compute
w = c2⊙ b−x from the cryptotext(c1, c2) and the public information, in which case we can also
quickly compute

bloga c1 = bx = (c−1
2 ⊙ w)−1.

Becausec1 is random element of〈a〉 this means that DHP can be solved quickly.
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10.3 Cryptosystems Based on Elliptic Curves

A finite cyclic subgroup of an elliptic curve can be used to setup Elgamal’s cryptosystem. Nat-
urally in this cyclic group discrete logarithm must be difficult to compute or the Diffie-Hellman
problem must be difficult to solve. Unfortunately in certainelliptic curves (supersingular elliptic
curves) over finite fields these problems are solved relatively quickly by the so-calledMenezes–
Okamoto–Vanstone algorithm,and these must be avoided, see KOBLITZ or WASHINGTON or
BLAKE & SEROUSSI & SMART.2 It might be mentioned that Shanks’ baby-step-giant-step
algorithm is suitable for computing discrete logarithms inelliptic curves, and so is the Pohlig–
Hellman algorithm, but they are not always fast.

One difficulty naturally is that construction of cyclic subgroups of elliptic curves is labo-
rious. Another difficulty is that when ELGAMAL for finite fields approximately doubles the
length of message (the pair construction), ELGAMAL for elliptic curves approximately quadru-
ples it. Recall that, by Hasse’s theorem, there are approximately as many points in an elliptic
curve as there are elements in the field. This is avoided by using a more powerful variant of
ELGAMAL, the so-calledMenezes–Vanstone systemMENEZES–VANSTONE. The public key
of the system is a triplek1 = (E, α, β) whereE is an elliptic curve over a prime fieldZp where
p > 3, α is the generating element in a cyclic subgroup ofE, andβ = aα. The secret key is
k2 = a. A message block is a pair(w1, w2) of elements ofZp represented in the positive residue
system.

The encrypting function is defined in the following way:

ek1((w1, w2), x) = (y0, y1, y2)

where
y0 = xα , y1 = (c1w1, mod p) , y2 = (c2w2, mod p),

x is a random number—compare to ELGAMAL—and the numbersc1 andc2 are obtained by
representing the pointxβ = (c1, c2) of the elliptic curve in the positive residue system.x must
be chosen so thatc1, c2 6≡ 0 mod p. The decrypting function is

dk2(y0, y1, y2) = ((y1c
−1
2 , mod p), (y2c

−1
2 , mod p)).

Note thatc1 andc2 are obtained bya from y0, since

ay0 = a(xα) = (ax)α = x(aα) = xβ = (c1, c2).

The idea is, as in ELGAMAL, to use the elliptic curve to ”mask”the message. Like ELGAMAL
MENEZES-VANSTONE also approximately doubles the length ofmessage, two elements of
Zp are encrypted to four.

NB. Space can also be saved by ”compressing” elements of the elliptic curve into smaller
space. Compressing and decompressing take more time, though. For example, in the prime
fieldZp an element (point)(x, y) of an elliptic curve can be compressed into(x, i) wherei =
(y,mod 2), sincey can be computed fromx3+ax+b by Shanks’ algorithm and choice of sign is
determined byi. (If (x, y) is a point of the curve then so is(x, p−y), andp−y ≡ 1−y ≡ 1− i
mod 2.)

2It is also an unfortunate feature that the most convenient bit-based finite fieldsF2n seem to be worse than the
others. See for example GAUDRY, P. & HESS, F. & SMART, N.P.: Constructive and Destructive Facets of Weil
Descent on Elliptic Curves.Journal of Cryptology15 (2002), 19–46. The further we get in the mathemathically
quite demanding theory of elliptic curves, the more such weaknesses seem to be revealed.
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A third difficulty in using elliptic curves is in encoding messages to points of the curve. One
way to do this is the following. We confine ourselves to elliptic curves over the prime fieldZp

here for simplicity, the procedure generalizes to other finite fields, too.

1. Encode the message block first to a numberm such thatm+ 1 ≤ p/100.

2. Check in the same way as in the algorithm of Section 9.3 whether the elliptic curve has a
point (x, y) such that100m ≤ x ≤ 100m+ 99.

3. If such a point(x, y) is found, choose it to serve as the counterpart of the messagem.
Otherwise give up. It may be noted that giving up here is very rare, since it has been
shown that the algorithm does it with an approximate probability of 2−100 ∼= 10−30.

Of course this procedure slows the encrypting process a notch. Note that decoding is quite fast,
though:m = ⌊x/100⌋.

NB. An advantage of cryptosystems based on elliptic curves, when compared to RSA, is that
the currently recommended key-size is much smaller. A ”fast” cryptosystem CRANDALL using
elliptic curves, patented by Richard Crandall, might be mentioned here, too. It is based on the
use of special primes, so-calledMersenne numbers.

10.4 XTR

A newer quite fast variant of DIFFIE–HELLMAN or ELGAMAL typecryptosystem is obtained
in the unit groups of certain finite fields, the socalledXTR system.3 In XTR we work in a
cyclic subgroup (of a large sizer) of F∗

p6 wherep is a large prime andr | p2 − p + 1. In
such subgroups we can represent the elements in a small spaceand fast implementations of
computing operations are possible. So, the question is mostly just of a suitable choice of the
group, regarding implementation. There are other similar procedures, for example the so-called
CEILIDH system.

3The original reference is LENSTRA, A.K. & V ERHEUL, E.R.: The XTR Public Key System.Proceedings of
Crypto ’00. Lecture Notes in Computer Science1880. Springer–Verlag (2000), 1–19. The name originates from
the words ”Efficient Compact Subgroup Trace Representation”, got it?



Chapter 11

NTRU

11.1 Definition

TheNTRU cryptosystem1 is a cryptosystem based on polynomial rings and their residue class
rings, which in a way resembles RIJNDAEL. Like RIJNDAEL, it is mostly inspired by the so-
called cyclic codes in coding theory, see the course Coding Theory. The construction of NTRU
is a bit more technical than that of RSA or ELGAMAL.

In NTRU we first choose positive integersn, p andq wherep is much smaller thanq and
gcd(p, q) = 1. One example choice isn = 107, p = 3 andq = 64. The system is based on the
polynomial ringsZp[x] andZq[x], and especially on the residue class ringsZp[x]/(x

n − 1) and
Zq[x]/(x

n− 1). See Section 4.2 and note thatxn− 1 is a monic polynomial in both polynomial
rings, so we can divide by it.

So, remainders are important when dividing byxn − 1, that is, polynomials ofZp[x] and
Zq[x] of maximum degreen−1. Computing with these inZp[x]/(x

n−1) and inZq[x]/(x
n−1)

is easy since addition is the usual addition of polynomials and in multiplication

xk ≡ x(k,mod n) mod xn − 1.

In the sequel we use the following notation. IfP (x) is a polynomial with integral coef-
ficients then the polynomialP(m)(x) of Zm[x] is obtained fromP (x) by reducing its coeffi-
cients modulom. Moreover, such aP(m)(x)—or rather its coefficients—is represented in the
symmetric residue system,see Section 2.4. Considering addition and multiplication of polyno-
mials we see quite easily that ifR(x) = P (x) + Q(x) andS(x) = P (x)Q(x) in Z[x] then
R(m)(x) = P(m)(x) + Q(m)(x) andS(m)(x) = P(m)(x)Q(m)(x) in Zm[x]. Furthermore, we see
that ifP (x) ∈ Z[x] is of degree no higher thann−1 then so isP(m)(x) ∈ Zm[x]. In this case the
polynomialP(m)(x) can be considered as a polynomial of the residue class ringZm[x]/(x

n−1).
For setting up the system we choose two secret polynomialsf(x) and g(x) of Z[x], of

degree no higher thann − 1. From these we get the polynomialsf(p)(x) andg(p)(x) of Zp[x],
and the polynomialsf(q)(x) andg(q)(x) of Zq[x]. As noted,f(p)(x) andg(p)(x) can also be
interpreted as polynomials of the residue class ringZp[x]/(x

n − 1). Similarly the polynomials
f(q)(x) andg(q)(x) can be interpreted as polynomials of the residue class ringZq[x]/(x

n − 1).
Interpreted this way we also require from the polynomialsf(p)(x) andf(q)(x)—or from the
original polynomialf(x)—that there are polynomialsFp(x) ∈ Zp[x] andFq(x) ∈ Zq[x] of
degree no higher thann− 1 such that

Fp(x)f(p)(x) ≡ 1 mod xn − 1 and Fq(x)f(q)(x) ≡ 1 mod xn − 1.

1The origin of the name is unclear, the original reference is HOFFSTEIN, J. & PIPHER, J. & SILVERMAN , J.H.:
NTRU: A Ring-Based Public Key Cryptosystem.Proceedings of ANTS III. Lecture Notes in Computer Science
1423. Springer–Verlag (1998), 267–288. The idea is a couple of years older.
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In other words,Fp(x) is the inverse off(p)(x) in Zp[x]/(x
n − 1) andFq(x) is correspondingly

the inverse off(q)(x) in Zq[x]/(x
n − 1). Further we compute inZq[x]

h(x) ≡ Fq(x)g(q)(x) mod xn − 1.

Apparently we may assume that the degree ofh(x) is at mostn−1, so it can also be interpreted
as a polynomial of the residue class ringZq[x]/(x

n − 1).
Now, the public key is(n, p, q, h(x)) and the secret key is(f(p)(x), Fp(x)). A message

is encoded as an element ofZp[x]/(x
n − 1), i.e.. the message is a polynomialw(x) of Zp[x]

of degree no higher thann − 1. In particular,w(x) is represented using the symmetric residue
systemmodulop. If p = 3 then the coefficients ofw(x) are−1, 0 and1. A w(x) represented this
way can be transformed to a polynomialw(q)(x) of Zq[x], just reduce the coefficients moduloq.
Note that this expressly requires a fixed representation of coefficients!

11.2 Encrypting and Decrypting

For encrypting we choose a random polynomialφ(x) of maximum degreen − 1. From this
we get the polynomialφ(p)(x) in the polynomial ringZp[x] and the polynomialφ(q)(x) in the
polynomial ringZp[x], which can be interpreted further as polynomials of the residue class rings
Zp[x]/(x

n − 1) andZq[x]/(x
n − 1), respectively. Encrypting is performed inZq[x]/(x

n − 1) in
the following way:

c(x) ≡ pφ(q)(x)h(x) + w(q)(x) mod xn − 1.

In decrypting we first compute

a(x) ≡ f(q)(x)c(x) mod xn − 1

in Zq[x]/(x
n−1), andrepresent the coefficients ofa(x) in the symmetric residue system modulo

q. Again in this representationa(x) can be transformed to the polynomiala(p)(x) of Zp[x]
by reducing the coefficients modulop. After this the message itself is ideally obtained by
computing

w′(x) ≡ Fp(x)a(p)(x) mod xn − 1

in Zp[x]/(x
n − 1), and by representing the coefficients ofw′(x) using the symmetric residue

system modulop.
But it is not necessarily true thatw′(x) = w(x)! Decrypting works only for a suitable

choice of the polynomials used—at least with high probability. First of all, we note that in
Zq[x]/(x

n − 1)

a(x) ≡ f(q)(x)c(x) ≡ f(q)(x)(pφ(q)(x)h(x) + w(q)(x))

≡ pf(q)(x)Fq(x)φ(q)(x)g(q)(x) + f(q)(x)w(q)(x)

≡ pφ(q)(x)g(q)(x) + f(q)(x)w(q)(x) mod xn − 1.

If now p is much smaller thanq and the absolute values of the coefficients of the polynomials
φ(x), g(x), f(x) andw(x) are small, it is highly probable that in computingpφ(q)(x)g(q)(x) +
f(q)(x)w(q)(x) mod xn − 1 coefficients need not be reduced moduloq at all when representig
them in the symmetric residue system moduloq. (Recall the ”easy” multiplication above!) From
this it follows that the polynomialsφ(p)(x), g(p)(x) andf(p)(x) are also obtained from the poly-
nomialsφ(q)(x), g(q)(x) andf(q)(x) by just taking their coefficients modulop—all coefficients
being again represented in the symmetric residue system—and that

a(p)(x) ≡ pφ(p)(x)g(p)(x) + f(p)(x)w(x) ≡ f(p)(x)w(x) mod xn − 1
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in Zp[x]/(x
n − 1). Hence (again inZp[x]/(x

n − 1)) it is very probable that

w′(x) ≡ Fp(x)a(p)(x) ≡ Fp(x)f(p)(x)w(x) ≡ w(x) mod xn − 1,

i.e. decrypting succeeds.

11.3 Setting up the System

So, errorless decrypting is not automatic but requires thatthe parameters and polynomials used
are chosen conveniently, and even then only with high probability. Denote byPn,i,j the set of
the polynomials of degree no higher thann − 1 such thati coefficients are= 1, j coefficients
are= −1 and the remaining coefficients are all= 0. The following choices are recommended:

n p q f(x) g(x) φ(x)
251 2 239 ∈ P251,72,0 ∈ P251,72,0 ∈ P251,72,0

107 3 64 ∈ P107,15,14 ∈ P107,12,12 ∈ P107,5,5

167 3 128 ∈ P167,61,60 ∈ P167,20,20 ∈ P167,18,18

503 3 256 ∈ P503,216,215 ∈ P503,72,72 ∈ P503,55,55

If—as above—p = ri11 andq = ri22 wherer1 andr2 are different primes, the polynomial
f(x) and its inversesFp(x) andFq(x) can be found by the following procedure. (Otherwise the
procedure is further complicated by use the Chinese remainder theorem.)

1. Take a random polynomialf(x) with integral coefficients whose degree is at mostn− 1
(possibly as indicated in the table above).

2. Check using the Euclidean algorithm thatgcd(f(r1)(x), x
n − 1) = 1 in Zr1 [x] and that

gcd(f(r2)(x), x
n − 1) = 1 in Zr2 [x], see Section 4.2. If this is not true, give up.

3. Then by Bézout’s theorem we get, by using the Euclidean algorithm, polynomialsh1(x),
k1(x), l1(x) andh2(x), k2(x), l2(x) with integral coefficients such that

1 = h1(x)f(x)+k1(x)(x
n−1)+r1l1(x) and 1 = h2(x)f(x)+k2(x)(x

n−1)+r2l2(x)

whereh1(x) areh2(x) of maximum degreek, k1(x), andk2(x) of maximum degreen−1,
andl1(x) andl2(x) of maximum degree2n − 1. In addition we may apparently assume
that the coefficients of the polynomialsh1(x), k1(x) andh2(x), k2(x) are in the symmetric
residue systems modulor1 andr2, respectively.

4. Denotej1 = ⌈log2 i1⌉ andj2 = ⌈log2 i2⌉, whence2j1 ≥ i1 and2j2 ≥ i2.

5. Compute2

Fp(x) ≡ h1(x)

j1−1
∏

m=0

(1 + r2
m

1 l1(x)
2m) mod xn − 1 in Zp[x]/(x

n − 1)

and

Fq(x) ≡ h2(x)

j2−1
∏

m=0

(1 + r2
m

2 l2(x)
2m) mod xn − 1 in Zq[x]/(x

n − 1),

return the results andf(x) and quit.

2This operation is the so-calledHensel lift. The empty products occuring in the casesj1 = 0 andj2 = 0 are
≡ 1.
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The procedure usually produces a result immediately. The result is correct, since (verify!)

Fp(x)f(p)(x) ≡ 1− r2
j1

1 l1(x)
2j1 ≡ 1 mod xn − 1 in Zp[x]/(x

n − 1)

and
Fq(x)f(q)(x) ≡ 1− r2

j2

2 l1(x)
2j2 ≡ 1 mod xn − 1 in Zq[x]/(x

n − 1).

The polynomialg(x) is chosen randomly (say, within the limits allowed by the table).

11.4 Attack Using LLL Algorithm

NTRU uses polynomials of degree no higher thann− 1, which can be interpreted asn vectors
(here column vectors). For these polynomials

f(x) = f0 + f1x+ · · ·+ fn−1x
n−1 ,

g(x) = g0 + g1x+ · · ·+ gn−1x
n−1 and

h(x) = h0 + h1x+ · · ·+ hn−1x
n−1

the vectors are

f = (f0, f1, . . . , fn−1) , g = (g0, g1, . . . , gn−1) and h = (h0, h1, . . . , hn−1).

As above

h(x) ≡ Fq(x)g(q)(x) mod xn − 1 , i.e. f(q)(x)h(x) ≡ g(q)(x) mod xn − 1

in Zq[x]/(x
n − 1). Remember thatFq(x) is the inverse off(q)(x) in Zq[x]/(x

n − 1). If we take
the matrix

H =







h0 h1 · · · hn−1

hn−1 h0 · · · hn−2
...

...
. . .

...
h1 h2 · · · h0







then the above equation can be written in the form

fH ≡ g mod q.

Note how the structure of the matrixH nicely handles reduction moduloxn − 1.
The vectors above bring to mind lattices. The dimension of a suitable lattice is however2n.

Now let’s take the2n× 2n matrix

M =

(
δIn H

On −qIn

)

(in block form) whereIn is then×n indentity matrix ,On is then×n zero matrix andδ 6= 0 is
a real number. ClearlyM is nonsingular, denote the lattice generated by its rows by〈M〉. Note
thatM is obtained from the public key.

Becausef(q)(x)h(x) ≡ g(q)(x) mod xn − 1, then inZ[x]/(xn − 1)

f(x)h(x) ≡ g(x) + qk(x) mod xn − 1

for some polynomialk(x) with integral coefficients of degree at mostn − 1. Whenk(x) is
represented as above as ann−1-dimensional column vectork, this equation can also be written
in the form

fH = g + qk.
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Furthermore in matrix form we get the equation

(
f k

)
M =

(
δf g

)
.

This shows that the2n-vector
(
δf g

)
is in the lattice〈M〉. Because the coefficients off(x)

andg(x) are small, we are talking about a short vector of the lattice.By a convenient choice of
the numberδ we can make it even shorter. If

(
δf g

)
is short enough, it can often be found by

the LLL algorithm and used to break the system.

NB. The recommended parameters of NTRU above are chosen precisely to prevent this kind
of attacks by the LLL algorithm. As of now no serious weaknesses in NTRU have been found,
despite some claims to the opposite. It should be mentioned that, unlike RSA and ELGAMAL, it
is not known either that NTRU could be broken using quantum computing, see Chapter 15.



Chapter 12

HASH FUNCTIONS AND HASHES

12.1 Definitions

A hashis a word of fixed length that describes a message ”accuratelyenough”. The message can
then be quite long. The procedure which gives the hashing is called ahash function.Because
the number of possible hashes is smaller than the number of messages, a hash fucntion is not
one-to-one, in other words, in some cases it gives the same hash for several messages. This is
calledcollision. For a hash function to be usable it should naturally be quickly computable from
the message, but also such that a hostile party cannot efficiently take advantage of collisions in
any way. Bearing this in mind we define several different concepts:

• A hash functionh is weakly collision-free for the messagew if it is computationally hard
to find another messagew′ such thath(w) = h(w′).

• A hash functionh is weakly collision-freeif for any given messagew it is computationally
hard to find another messagew′ such thath(w) = h(w′).

• A hash functionh is strongly collision-freeif it is computationally hard to find messages
w andw′ such thath(w) = h(w′), in other words, if it is hard to find a messagew for
whichh is notweakly collision-free.

• A hash functionh is one-wayif for any given hasht it is hard to find a messagew such
thath(w) = t.

These definitions are not quite exact in that we do not consider computational complexity here.
If the message space is finite—as it usually is—complexity, being an asymptotic concept, cannot
really be defined at all.

NB. Other nomenclatures are used too. Weakly collision-free hash functions are also called
second preimage resistant,strongly collision-free hash functions are also called just collision-
free,and one-way hash functions are also calledpreimage resistant.

There is a connection between one-way and strongly collision-free hashing:

Theorem 12.1. If the message spaceW is finite and the hash space isT and |W | ≥ 2|T |,
where| · | denotes cardinality of sets, then a strongly collision-free hash functionh is one-way.
To put it more exactly, an algorithmA which invertsh can be transformed to a Las Vegas type
probabilistic algorithm which finds a collision with at least probability1/2.

94
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Proof. Denote byMw the set of the messages with the same hash asw, and byD the family of
all these sets. Then

|D| = |T | and
∑

D∈D

|D| = |W |.

The following Las Vegas algorithm finds a collision or gives up.

1. Choose a random messagew ∈ W .

2. Compute the hasht = h(w).

3. Find a messagew′ such thath(w′) = t using the algorithmA.

4. If w′ 6= w, returnw andw′ and quit. Otherwise give up and quit.

We just need to show that the algorithm gives a result with at least probability1/2:

P(A collision is found.) =
∑

w∈W

|Mw| − 1

|Mw|

1

|W |
=

1

|W |

∑

D∈D

∑

w∈D

|D| − 1

|D|

=
1

|W |

∑

D∈D

(|D| − 1) =
1

|W |

(
∑

D∈D

|D| −
∑

D∈D

1

)

=
|W | − |T |

|W |

≥
|W | − |W |/2

|W |
=

1

2
.

It is obvious that for extensively and continuously used hash functions strong collisions
should not occur essentially at all. Because of this it was quite a surprise, when in 2004 the
Chinese Xiaoyun Wang, Dengguo Feng, Xuejia Lai and Hongbo Yufound collisions in many
commonly used hash functions. In addition to that, Wang, Yiqun Lisa Yin and Yu noted that
collisions can be found relatively easily even in SHA-11, the ”flagship” of hash functions. De-
veloping good hash functions appears to be even more difficult than it was thought.

12.2 Birthday Attack

If the number of possible hashes is small, collisions can be found by trying out: Just choose
k random messagesw1, . . . , wk, compute the hashesti = h(wi), and check whether collisions
occur. This simple procedure is called thebirthday attack2. Now let’s estimate probabilities
for the birthday attack to succeed. In this case we may assumethat different hashes occur

1This ”Chinese attack” is discussed in many talks in the referencesProceedings of Crypto ’05. Lecture Notes
in Computer Science3621. Springer–Verlag (2005) jaProceedings of EuroCrypt ’05. Lecture Notes in Computer
Science3494. Springer–Verlag (2005).

2The name comes from the fact that if we have large enough groupof people then the probability of at least two
of them having the same birthday (day of the year) is high. Using approximation and noting that1.177

√
365 ∼=

22.49 it is seen that it suffices to have at least 23 people in the group for the probability of same birthdays to be at
least1/2. In this case the exact computation gives

P =

(

1−
1

365

)(

1−
2

365

)

· · ·

(

1−
23− 1

365

)

∼= 0.493.
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with at least approximately equal frequency. Otherwise theprobability of finding collisions just
increases. The probability for no collisions to occur is apparently

Pn,k =
n(n− 1)(n− 2) · · · (n− k + 1)

nk
=

(

1−
1

n

)(

1−
2

n

)

· · ·

(

1−
k − 1

n

)

wheren is the number of hashes. Since it is well-known thatlim
n→∞

(

1 +
a

n

)n

= ea, we obtain
further the estimate

P
1
n

n,k
∼= e−1−2−···−(k−1) = e−

k(k−1)
2 .

(Heren is of course large and much larger thank.) Hence the probability of finding at least one
collision is

Qn,k = 1− Pn,k
∼= 1− e−

k(k−1)
2n .

This way we get an estimate fork whenQn,k = Q is given:

−
k(k − 1)

2n
∼= ln(1−Q)

or
k2 − k + 2n ln(1−Q) ∼= 0

or

k ∼=
1

2

(

1 +
√

1− 8n ln(1−Q)
)

.

By choosingQ = 1/2 we conclude that a collision is found with probability1/2 if

k ∼=
1

2

(

1 +
√
1 + 8n ln 2

)
∼=
√
2n ln 2 ∼= 1.177

√
n.

Thus for example for a40-bit hash the birthday attack succeeds with probability1/2 if k is
slightly larger than220 = 1 048 576. Consequently, hashes should be significantly longer, for
instance in SHA-1 hash length is160 bits, and thenk should be slightly larger than280 ∼=
1.2 · 1024 for the birthday attack to succeed. On the other hand, the ”Chinese attack” shows
somewhat amazingly that ak of order269 ∼= 5.9 · 1020 may already suffice.

Birthday attacks sometimes occur in a bit different form, which goes as follows. We first
choosek1 messagesw1, . . . , wk1 randomly, and then independently anotherk2 random messages
w′

1, . . . , w
′
k2

, and seek collisions of the formh(wi) = h(w′
j), so-calledcross-collisions.Denote

the possible cases by the symbols

T1 = ”There is a collision in the messagesw1, . . . , wk1.”

T2 = ”There is a collision in the messagesw′
1, . . . , w

′
k2

.”

T12 = ”There is a cross-collision.”

and the complementary cases by overlining as usual. Apparently then for example

P(T1) = Qn,k1 , P(T 2) = Pn,k2 , P(T 1 andT 2) = Pn,k1Pn,k2 etc.

Further, apparently
P(T 1 andT 2 andT 12) = Pn,k1+k2.

By the rules for probabilities, from this we get the conditional probability

P(T 12 | T 1 andT 2) =
Pn,k1+k2

Pn,k1Pn,k2

∼=
e−

(k1+k2)(k1+k2+1)
2n

e−
k1(k1+1)+k2(k2+1)

2n

= e−
k1k2
n .
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On the other hand, it is very unlikely that many collisions occur, and a few collisions really do
not change the probability of a cross-collision by much, as compared to the situation where no
collisions occur. (Remember thatn is large and thatk1 andk2 are small compared to it.) Hence

P(T 12 | T1 or/andT2) ∼= e−
k1k2
n and so P(T 12) ∼= e−

k1k2
n .

So, if we want the probability of cross-collision to be1/2 we should choose (verify!)

k1k2 ∼= n ln 2.

Hence it is enough to choose

k1, k2 ∼=
√
n ln 2 ∼= 0.833

√
n.

This latter type birthday attack resembles Shanks’ baby-step-giant-step algorithm in some
ways, see Section 9.2. As a matter of fact, a very similar probabilistic algorithm for computing
discrete logarithms can be derived from it. The baby-step-giant-step algorithm of course has
the advantage of being deterministic, and even somewhat faster. On the other hand, modular
exponentiation is a randomizing operation, so it can be usedin the random choices, and we get
a powerful and very space-efficient probabilistic algorithm for computing the discrete logarithm
b = logg a modulop (a prime):

Pollard’s kangaroo algorithm:

1. DenoteJ = ⌊log2 p⌋ andN = ⌊
√
p⌋, and choose the numbersc andc′ randomly from

the interval0, 1, . . . , p− 1. (Note thatJ andN are quickly computed.)

2. Compute the numbertN using the recursion

ti = (ti−1g
2(ti−1,mod J)

, mod p) , t0 = (gc, mod p).

(Becausec is known, these recursion steps are called jumps of atame kangaroo.) If we
denote

d =
N∑

i=0

2(ti,mod J)

thentN = (gc+d,mod p).

3. Compute the numbers

wj = (wj−1g
2(wj−1,mod J)

, mod p) , w0 = (gb+c′, mod p) = (agc
′

, mod p)

one by one using recursion. (Becauseb is not known, these steps are called jumps of a
wild kangaroo.) Simultaneously we compute the numbers

Dj = Dj−1 + 2(wj ,mod J) , D0 = 0,

recursively, whencewj = (gb+c′+Dj ,mod p).

4. If we find a valuel ≤ N such thatwl = tN (cross-collision) then

gc+d ≡ gb+c′+Dl mod p , i.e. gc+d−c′−Dl ≡ a mod p.

In this case we returnb = (c+ d− c′ −Dl,mod p− 1) and quit. Then again, if we have
computed all the numbersw0, w1, . . . , wN without any cross-collisions occuring, we give
up and quit.
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By the birthday attack principle, a cross-collision is found in this situation with at least probabil-
ity 1/2. Note that if a cross-collision is found already for someti andwl, wherel ≤ i < N , then
it is also found fortN because the recursions are identical. By repeating the algorithm many
times choosing a new randomc′ each time, but not a newc, it is very likely that we will eventu-
ally be able to computeb. However, because the number of steps needed isO(

√
p ), this is not a

polynomial-time algorithm, although it is fast. On the other hand, no lists are stored—compare
to the baby-step-giant-step algorithm—so the space neededis very small.

12.3 Chaum–van Heijst–Pfitzmann Hash

As an example of a simple hash function we consider theChaum–van Heijst–Pfitzmann hash
functionhCHP. For this we need a primep such thatq = (p−1)/2 is also a prime, i.e. a Germain
number, see Section 8.2. Furthermore we need two different primitive rootsα andβ modulo
p. In addition we assume that the discrete logarithma = logα β cannot be computed easily. A
message(w1, w2) consists of two numbersw1 andw2 in the interval0, 1, . . . , q − 1, and

hCHP(w1, w2) = (αw1βw2, mod p).

Finding even one collision ofhCHP makes it possible to compute the discrete logarithm
logα β fast:

Theorem 12.2.If different messages(w1, w2) and(w′
1, w

′
2) are known such thathCHP(w1, w2) =

hCHP(w
′
1, w

′
2) then the discrete logarithma can be computed fast.

Proof. The hashes are the same, that is,

αw1βw2 ≡ αw′

1βw′

2 mod p.

Becauseβ ≡ αa mod p, this is equal to

αa(w2−w′

2)−(w′

1−w1) ≡ 1 mod p.

α is a primitive root modulop, soa(w2 − w′
2) − (w′

1 − w1) is divisible by its order modulop,
i.e. byp− 1, see Theorem 7.4 (ii). Therefore

a(w2 − w′
2) ≡ w′

1 − w1 mod p− 1.

Now let’s denoted = gcd(w2−w′
2, p− 1). Then, by the above congruence,d is also a factor of

w1 − w′
1. From this it follows thatw2 6= w′

2. Namely, ifw2 = w′
2 thenw1 6= w′

1 andd = p− 1.
This is however impossible since|w1 − w′

1| < q < p− 1.
We denote further

u =
w2 − w′

2

d
, v =

w′
1 − w1

d
and r =

p− 1

d
.

Thengcd(u, r) = 1 and, by Theorem 2.11,

au ≡ v mod r , i.e. a ≡ u−1v mod r.

Thus the possible values ofa in the positive residue system modulop− 1 are

a = (u−1v, mod r) + ir (i = 0, 1, . . . , d− 1).

On the other hand, the possible values ofd are 1, 2, q and p − 1. Becausew2 6= w′
2 and

|w2 − w′
2| < q < p− 1, eitherd = 1 or d = 2. So the discrete logarithma is easy to find, it is

either(u−1v,mod r) or (u−1v,mod r) + r.
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ThushCHP is strongly collision-free and by Theorem 12.1 it is also one-way.

NB. The CHP hash function is too slow to be very useful, many otherhash functions are much
faster to compute. Another problem lies in the difficulty of finding enough Germain’s numbers.
On the other hand, as the ”Chinese attack” shows, more and more weaknesses are found in fast
hash functions.



Chapter 13

SIGNATURE

13.1 Signature System

A signature systemis a quintet(P,A,K, S, V ), where

• P is the finitemessage space.

• A is the finitesignature space.

• K is the finitekey space.Eachkeyis a pair(ks, kv) whereks is the secretsigning keyand
kv is the publicverifying key.

• For each signing keyks there is asigning functionsks ∈ S. For a messagew we have
sks(w) = (w, u) whereu is thesignatureof the messagew. S is the space of all possible
signing functions.

• For each verifying keykv there is averifying functionvkv ∈ V . V is the space of all
possible verifying functions.

• For each messagew and for a key(ks, kv) we have

vkv(w, u) =

{

CORRECT ifsks(w) = (w, u)

FALSE otherwise.

The public verifying key is left available for everyone to use, the secret signing key is personal
and only the signer has it. The signed message issks(w) = (w, u). If a receiver wants he/she can
verify the signature by the verifying function. Usually a suitable hashingh(w) of the message
w is used when signing. This has the advantage of allowing the message to be quite long.

The signature must satisfy the following basic conditions:

• An outside party who does not know the signing key, cannot send a signed message that
can be verified in the name of a real signer, or at least such a message should not contain
any meaningful information. In particular, an outside party cannot detach a signature
from a real signed message and use it as the signature of another message.

• The signer cannot later on deny having signed a correctly signed message.

Many cryptosystems can immediately be transformed to signature systems, and have in fact
originally been signature systems.

100
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13.2 RSA Signature

A signature system is obtained from RSA by defining

ks = (n, b) and kv = (n, a),

and

sks(w) = (w, (wb, mod n)) and vkv(w, u) =

{

CORRECT, ifw ≡ ua mod n

FALSE otherwise.

Apparently faking this signature in one way or another is equivalent to breaking RSA. An
outside party can however choose a signatureu by takingw = (ua,mod n) as the message.
Such a message does not contain any information, though. Even this does not work if an one-
way hash functionh is used. In that casekv = (n, a, h) and

sks(w) = (w, (h(w)b, mod n)) and vkv(w, u) =

{

CORRECT ifh(w) ≡ ua mod n

FALSE otherwise.

RSA can also be used to get a so-calledblind signature.If A wishes to sign a messagew of
B, without knowing its content, the procedure is the following:

1. B chooses a random numberl such thatgcd(l, n) = 1, computes the numbert =
(law,mod n) and sends it to A.

2. A computes the signatureu′ = (tb,mod n) as if the message would bet, and sends it to
B.

3. B computes the numberu = (l−1u′,mod n).

Because A does not know the numberl, he/she does not get any information about the message
w. On the other hand,u is the correct signature of the messagew, since

l−1u′ ≡ l−1tb ≡ l−1labwb ≡ l−1lwb ≡ wb mod n.

13.3 Elgamal’s Signature

Elgamal’s cryptosystem can be transformed into a signaturesystem by choosing the groupG =
Z∗
p, wherep is large prime, a primitive roota modulop andb = (ay,mod p). The verifying key

is nowkv = (p, a, b) and the signing key isks = (p, a, y). The signing function issks(w) =
(w, c, d) where

c = (ax, mod p) and d = ((w − yc)x−1, mod p− 1)

andx is a random number, chosen from the interval1 ≤ x < p−1, such thatgcd(x, p−1) = 1.
Now xd = w − yc+ k(p− 1) for some numberk. The verifying function is

vkv(w, c, d) =

{

CORRECT ifbccd ≡ aw mod p

FALSE otherwise.

Verifying a correct signature will then succeed, since by Fermat’s little theorem

bccd ≡ aycaxd = ayc+w−yc+k(p−1) = aw(ap−1)k ≡ aw · 1 = aw mod p.

To forge a signature one should be able to computec andd without knowingy andx. We
then note the following:
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• If the forger first chooses somec and then tries to obtain the correspondingd, he/she must
computelogc(a

wb−c) modulop. This is essentially computing the discrete logarithm in
G. Note that becausegcd(x, p− 1) = 1, alsoc is a primitive root modulop, see Theorem
7.4 (iii).

• Then again, if the forger chooses first somed and then tries to find the correspondingc,
he/she must solve the equation

bccd ≡ aw mod p.

No fast algorithms are known for solving such equations.

• If the forger tries to send a signed message, even a random one, he/she might try to first
choosec andd and then find some suitablew. But in this case he/she must compute
loga(b

ccd) modulop.1

NB. DSS (Digital Signature Standard), a modification of Elgamal’s signature, is quite exten-
sively used, see e.g.STINSON or MENEZES& VAN OORSCHOT& VANSTONE.

13.4 Birthday Attack Against Signature

If hashing is used in signing and it is possible to change the message a little bit here and there
without essentially altering its meaning, it is also possible to apply a birthday attack to get
cross-collisions in the following way, see Section 12.2:

1. If the length of the hashes used in signing isB bits, the forger finds, say,B/2 + 2 places
where the message to be signed can be changed without really changing it essentially—
for example adding or removing commas and spaces, making small innocent mistakes
and so on. This way2B/2+2 versions of the correct message are obtained, the hashes of
which the forger then computes.

2. Correspondingly, the forger findsB/2 + 2 places in the fake message he/she chooses,
where it can be varied without changing the meaning, and computes the2B/2+2 hashes of
the fake messages obtained this way.

3. The forger seeks a possible cross-collision in these two hash sets by sorting in the same
way as in the baby-step-giant-step algorithm. It can be found very certainly, if the hashes
of the messages may be considered as having been born randomly, since the probability
of success is in this case approximately

1− e−
2B/2+22B/2+2

2B = 1− e−16 =∼= 0.999 999 887.

The condition considering randomness is not very demanding, since a good hash func-
tion is already randomizing and small differences in messages cause large differences in
hashes.

4. The forger leaves the version of the correct message occurring in the cross-collision to
be signed. If the signer does not notice the difference or simply does not care, the forger
now has a version of the fake message he/she chose which has the very same hash, and
gets it signed by the signer as well!

1There are however other ways for obtaining a random signed message! It is also possible to sign some other
random messages by using a single received signature. See STINSON.



Chapter 14

TRANSFERRING SECRET
INFORMATION

14.1 Bit-Flipping and Random Choices

Generating of random bit (”bit-flipping”) is easy, if we havetrusted party to perform it. If such
a party is not available, bit-flipping is still possible by a proper method. In what follows in the
bit-flipping procedure1 A flips a random bit for B. At first only B knows the result but if he
chooses to do so, he can tell it to A. Even if B does not tell the result to A, he still can’t change
the bit he got and this way he can’t cheat by telling the wrong bit to A, without it being revealed
to A at some point. This way B iscommitted to the bitthat he got.

The procedure works in the following way, see Section 7.6:

1. A chooses two different large primesp andq and sends the productn = pq to B.

2. B randomly chooses a numberu from the interval1 < u < n/2 and sends the modular
square

z = (u2, mod n)

to A.

3. A computes the four square roots ofz modulon:

(±x, mod n) and (±y, mod n).

This is possible since A knows the factors ofn. Denote the smaller of the numbers
(±x,mod n) by x′, and correspondingly the smaller of the numbers(±y,mod n) by y′.
Thenu is one of the numbersx′ andy′.

4. A cannot know which of the numbersx′ andy′ is u, so she guesses. It is of no use for A
to send B the number she guessed, because if it happens not to beu then B can factorn.
Instead A finds the first bit on the right in which the binary representations ofx′ andy′

differ, and sends this bit to B in the form ”Thej th bit of your number is . . . ”.

5. B tells A if the guess was correct (the flipped bit is1) or incorrect (the flipped bit is0).
Even if B does not tell the result to A, he is still bound to it and cannot change it.

1The original reference is BLUM , M.: Coin Flipping by Telephone. A Protocol for Solving Impossible Prob-
lems.SIGACT News(1981), 23–27.
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6. Finally B revealsu to A and A reveals the factorization ofn. B cannot fool A, since he
only knows one of the square rootsx′ andy′, otherwise B would be able to factorn.

NB. As is usual, it is here assumed that when choosing a numberu randomly we won’t get a
number such thatgcd(u, n) 6= 1. Indeed, this is highly unlikely ifn is large.

Generalizing, we can choose a random integer from a given interval by flipping the bits of
its binary representation one by one, and removing initial zeros if needed.

Another random choice situation is when, for both A and B,k numbers from the numbers
1, 2, . . . , N are chosen randomly such that both know their own numbers butnot the numbers
of the other. Furthermore, it is required that A and B don’t share any of the numbers. If the
above bit-flipping might be thought of as ”coin tossing” thenthis could be thought of as ”card
dealing”. The procedure is following:

1. A and B agree on a large primep.

2. A chooses a secret numbera from the interval1 ≤ a < p−1 such thatgcd(a, p−1) = 1,
and computes the numbera′ = (a−1,mod p− 1).

3. B chooses a secret numberb from the interval1 ≤ b < p− 1 such thatgcd(b, p− 1) = 1,
and computes the numberb′ = (b−1,mod p− 1).

4. The numbersi are encoded as the numbersci = (g2i+1,mod p) (i = 1, 2, . . . , N) where
g is a primitive root modulop. g andp can be found in the same way as in setting up
ELGAMAL, see Section 10.1. The numbersci are all quadratic nonresidues modulop,
since exponents of quadratic residues are even.

5. B computes the numbersβi = (cbi ,mod p) (i = 1, 2, . . . , N), permutes them randomly
and sends them to A. Note that becauseb is odd, information of a numberci being a
quadratic residue modulop passes this encoding process by Euler’s criterium, since by
Fermat’s little theoremcp−1

i ≡ 1 mod p and hencec(p−1)/2
i ≡ ±1 mod p. Because of

this, allci’s were chosen to be quadratic nonresidues modulop to start with. On the other
hand, obtainingci from βi would require computing a discrete logarithm inZp.

6. A chooses2k of these numbers, sayβi1 , . . . , βi2k , computes the numbers

αj = (βa
ij
, mod p) = (cabij , mod p) (j = 1, 2, . . . , k),

and sends them and the numbersβik+1
, . . . , βi2k to B. Again obtainingβij from αj would

require computing a discrete logarithm.

7. B computes the numbers

γj = (αb′

j , mod p) = (caij , mod p) (j = 1, 2, . . . , k)

and sends them to A. Compare this to decrypting of RSA.

8. A computes her numberscij = (γa′

j ,mod p) (j = 1, 2, . . . , k).

9. B computes his numberscij = (βb′

ij
,mod p) (j = k + 1, . . . , 2k).
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14.2 Sharing Secrets

If t andv are positive integers andt ≤ v then a(t, v)-threshold schemeis a procedure which is
used to distribute a secretS to v parties so that anyt − 1 parties won’t get anything out of the
secret but anyt parties get to know it in full (thethreshold).

Threshold schemes are usually carried out by some kind of interpolation. A certain function
fp1,...,pt, the so-calledinterpolant,is defined fully when its parametersp1, . . . , pt are known. The
parameters themselves are obtained if we know the values of the function in at leastt different
points:

fp1,...,pt(xi) = yi (i = 1, 2, . . . , v wherev ≥ t).

On the other hand, values in anyt− 1 points do not define the parameters unambiguously. The
secretS is the functionfp1,...,pt, or its parametersp1, . . . , pt or just some of them. Each party
is given a value of the function, the so-calledshare.This is done secretly by a trusted outside
party, the so-calleddistributorD.

One way to get an interpolant is to use a polynomial

p(x) = S ⊕
t−1⊕

j=1

pj+1x
j .

This is calledShamir’s threshold scheme.2 It can be carried out in any fieldF with more thanv
elements. The most common choice is a prime fieldZq whereq > v. The secret is the constant
termS = p1 of p(x). It is known that a polynomial of degree no higher thant − 1 is fully
determined when its values are known int different points. On the other hand, a polynomial
won’t be determined unambiguously, if the degree ist − 1 and there are less thant points.
In particular, the polynomial’s constant term is not determined in this way, unless a value is
specifically given in the pointx = 0. This is because if the constant termS were uniquely
determined byt − 1 valuesyi = p(xi) in different pointsxi 6= 0 (i = 1, 2, . . . , t − 1) then the
remaining parametersp2, . . . , pt would be determined by the equations

x−1
i ⊙ (yi ⊖ S) =

t−1⊕

j=1

pj+1x
j−1
i (i = 1, 2, . . . , t− 1).

As is seen,S can be anything, so no information aboutS is revealed.
The interpolation itself can be carried out using a linear system of equations—the matrix

of which is a so-called Vandermonde matrix—or for example Lagrange’s interpolation (see the
basic courses):

p(x) =

t⊕

j=1

yj ⊙
t⊙

k=1
k 6=j

(xj ⊖ xk)
−1 ⊙ (x⊖ xk).

In this case

S = p(0) =
t⊕

j=1

yj ⊙
t⊙

k=1
k 6=j

(xk ⊖ xj)
−1 ⊙ xk.

Points where values ofp(x) are computed can be public, in which case the shares would be just
these values. Then computation ofS is just computation of a linear combination of the shares
with known coefficients, possibly precomputed.

The scheme itself is the following:

2The original reference is SHAMIR , A.: How to Share a Secret.Communications of the Association for Com-
puting Machinery22 (1979), 612–613.
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Shamir’s threshold schme:

1. D chooses a fieldF andv different elementsu1, u2, . . . , uv 6= 0 of F , and communicates
ui to theith party (i = 1, 2, . . . , v). The secretS is an element ofF .

2. D secretly and randomly choosest− 1 elementsp2, . . . , pt of the fieldF .

3. D computes the shares

wi = S ⊕
t−1⊕

j=1

pj+1 ⊙ uj
i (i = 1, 2, . . . , v),

and communicates to each party its share, without letting the other parties know anything
about it.

4. When the partiesi1, i2, . . . , it want to know the secret, they interpolate and computeS.
For example, using Lagrange’s interpolation

S =

t⊕

j=1

wij ⊙
t⊙

k=1
k 6=j

(uik ⊖ uij)
−1 ⊙ uik .

NB. Sharing secrets must not be confused with a very similar procedure, the so-calleddispersal
of information,where you disperse a file intov pieces, anyt of which suffice to reconstruct the
file quickly. The difference is thatt − 1 pieces can now perfectly well give a lot of information
about the file, possibly not the whole file, however. Dispersal of information has to do with error-
correcting codes (see the course Coding Theory), and the dispersed parts are usually much
smaller than the shares above. The original reference isRABIN , M.O.: Efficient Dispersal of
Information for Security, Load Balancing, and Fault Tolerance.Journal of the Association for
Computing Machinery36 (1989), 335–348.

There are other ideas for sharing secrets. Many secret sharing schemes are based on coding
theory. The Chinese remainder theorem can be used in the interpolation, too, e.g. in the so-
calledMignotte threshold scheme,see for example DING & PEI & SALOMAA .

14.3 Oblivious Data Transfer

The party A wants to transfer a secret to the party B, but in such a way that the secret may or
may not be transferred. Of course B knows whether the secret was transferred or not, but A
should not know this. In fact, from A’s point of view, the secret is transferred with probability
1/2. A simple procedure for this would be the following. Here, asusual,n is a product of two
different large primesp andq. The secret may be thought to be these two primes, the real secret
could then e.g. be encrypted by RSA usingn. So, in the beginning A knowsp andq while B
does not.

1. B chooses a numberx from the interval1 ≤ x < n, computes(x2,mod n), and sends it
to A.

2. A computes the four square roots

(±x, mod n) and (±y, mod n)



CHAPTER 14. TRANSFERRING SECRET INFORMATION 107

of (x2,mod n) modulon, and sends one of them to B. Because A knows the factors ofn,
she can do this quite quickly. A cannot however know which of the square rootsx is. See
Section 7.6.

3. B checks whether the square root he got from A is≡ ±x mod n. In the positive case
B does not get the secret. Otherwise B gets to know numbersx andy such thatx2 ≡ y2

mod n andx 6≡ ±y mod n, and is able to factorn and in this way learns the secret. A
cannot know whether or not B got the secret, unless B chooses to tell this to A.

14.4 Zero-Knowledge Proofs

There are two parties in aninteractive proof system, theproverP and theverifier V. They send
messages to each other and perform computations based on themessages they receive, including
random number generating if necessary. The goal of P is to convince V that he knows some
property of some object. The object could be e.g. a mathematical result and the property its
truth, but of course it could be something quite different. Another goal of P is not to transmit to
V any other information than that he knows this property. This is calledzero-knowledge proof.

The basic requirements of a zero-knowledge proof are the following:

(I) The probability of P successfully fooling V is very small.

If, for example, P does not know the proof of a mathematical result, but claims to do so,
then his chances of fooling V should be minuscule.

(II) If P truly knows the property, he can prove this to V beyond any reasonable doubt.

(III) V won’t get from P any information that he could not obtain himself without P, computing
in polynomial time if needed.

In this case V could actually simulate the proof protocol in polynomial time as if P would
participate in it, but without P. Note that there are no restrictions on the complexity of
computations of P. The simulation must be exact enough to make it impossible to tell it
apart from the ”real” one, computing in polynomial time.

Despite condition (III), V might, after some very long computations, be able to get more infor-
mation, possibly the whole property. So, instead of (III), astronger condition is required in the
so-calledperfect zero-knowledge proof:

(III ′) V won’t get from P any information that he could not get by himself without P.

Here too V computes in polynomial time, but the simulation must now be fully identical
to the ”real” one.

Sometimes the zero-knowledge proof defined by the conditions (I)–(III) above is called
computational zero-knowledge proof,to distinguish it from perfect zero-knowledge proof. It
should be noted that the above conditions do not really give exact definitions. These defini-
tions are actually much more complicated, see for example STINSON or GOLDREICH. The
difference between computational and perfect zero-knowledge proofs is in the comparison of
stochastic distributions: In perfect zero-knowledge proofs ”real” and simulated distributions
must be identical, in computational zero-knowledge proofsit is only required that the distribu-
tions cannot be separated by polynomial-time computations.
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The following protocol3 gives a perfect zero-knowledge proof of the fact thatx is a quadratic
residue modulon wheren = pq andp and q are two different large primes, assuming that
gcd(x, n) = 1. Here the problem is QUADRATICRESIDUES, and the proof is a square root ofx
modulon.

1. Repeat the followingk times:

1.1 P chooses a random numberv from the interval1 ≤ v < n such thatgcd(v, n) = 1,
computes the numbery = (v2,mod n), and sends it to V.

1.2 V chooses randomly a bitb (0 or 1) and sends it to P.

1.3 P computes the numberz = (ubv,mod n) whereu is a square root ofx modulon,
and sends it to V.

1.4 V checks thatz2 ≡ xby mod n.

2. If the check passes every time for each of thek rounds, V concludes that P really knows
x is a quadratic residue modulon.

Theorem 14.1.The above protocol gives a perfect zero-knowledge proof forthe problemQUAD-
RATICRESIDUES.

Proof. If P does not know a square root ofx, he must cheat and send to B the numberz = v,
and either the numbery = (z2,mod n) (exposed ifb = 1) or the numbery = (z2x−1,mod n)
(exposed ifb = 0). Thus the probability for P to cheat without getting caughtis 1/2k, which
can be made as small as wanted. Then again, if P really knows a square rootu, he of course
passes the test every time.

V can simulate P’s part perfectly in this protocol. The idea is that V generates triples(y, b, z)
where

y ≡ z2x−b mod n.

Let’s show that if V chooses the bitb and the numberz completely randomly, these triples have
a distribution identical to the ”right” one, where P is involved and chooses a randomv.

We say that the triple(y, b, z) is feasible,if

• 1 ≤ y < n andgcd(y, n) = 1,

• b is 0 or 1, and

• 1 ≤ z < n andz2 ≡ xby mod n.

There are2φ(n) feasible triples, because there areφ(n) possible choices ofz and b can be
chosen in two different ways, and these choices determiney. Note that sincegcd(x, n) = 1 and
gcd(y, n) = 1, thengcd(z, n) = 1 also.

Feasible triples occur in the protocol equally probably when P is involved, since P chooses
v from amongφ(n) different alternatives, and four possible square rootsv correspond to oney.
Wheny andb have been chosen, there are four possible choices forz. Also in the simulation
performed by V feasible triples are equiprobable when V choosesz randomly from the interval
1 ≤ z < n andgcd(z, n) = 1, andb is chosen randomly.

3The original reference is GOLDWASSER, S. & MICALI , S. & RACKOFF, C.: The Knowledge Complexity of
Interactive Proof Systems.SIAM Journal on Computing18 (1989), 186–208.
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Let’s also take an example of a (computational) zero-knowledge proof. The problem is to
prove that there is a so-called Hamiltonian circuit in a graph. A graphconsists ofverticesand
edgesthat connect vertices. Usually not all vertices are connected by edges. AHamiltonian
circuit is a path which forms a circuit through all vertices of the graph visiting each vertex
exactly once and returning to the starting vertex. The path proceeds via the edges. (See the
course Graph Theory.) Finding out whether or not there is a Hamiltonian circuit in a suitably
encoded graph is known to be anNP-complete recognition problem HAMILTON CIRCUIT. The
following protocol4 gives a zero-knowledge proof to this problem.

1. Repeat the followingk times. The input is the graphG where the vertices are denoted by
1, 2, . . . , n.

1.1 P arranges the vertices in a random order and sends the list v1, v2, . . . , vn obtained
this way (encoded in bits)encryptedto V. P also sends to V then × n matrix
D = (dij) (the so-calledadjacency matrix) encrypted element by elementwhere
the diagonal elements are= 0 and

dij =

{

1 if there is an edge connecting the verticesvi andvj
0 otherwise,

wheni 6= j. Because of the symmetry it is enough to send only the upper triangle.
Each element of the matrix is encrypted by its own key. The encryption must lead
to commitment, that is, P must not be able to change the graph later by changing
keys, compare with bit-flipping. Naturally, the encryptionis assumed to be strong
enough, in other words nothing can be got from an encrypted bit in polynomial time.

1.2 V chooces a bitb randomly and sends it to P.

1.3 If b = 0, P decrypts the listv1, v2, . . . , vn and the whole matrixD for V by sending
her the decrypting keys. Then again, ifb = 1, P decrypts for V only then elements
di1i2 , di2i3, . . . , dini1 of the matrixD where the verticesvi1 , vi2, . . . , vin in this order
form a Hamiltonian circuit (in which case the elements are all = 1).

1.4 If b = 0, V checks whether he got the correct graph. The decrypted list v1, v2, . . . , vn
gives the order of the vertices andD gives the edges. Then again, ifb = 1, V checks
whether the obtained elements of the matrix are= 1.

2. If the check passes in each of thek rounds, V concludes that P really does know a Hamil-
tonian circuit ofG.

The commitment mentioned in #1.1 is obtained for example in the following way. Here the
large primep and the primitive rootg modulop are made public.

1. In the beginning V chooses and then sends to P a random number r from the interval
1 < r < p. P cannot quickly compute the discrete logarithmlogg r modulop.

2. P randomly chooses a numbery from the interval0 ≤ y < p − 1 (the secret key) and
sends to V the numberc = (rbgy,mod p) whereb is the bit to be encrypted. Each ele-
ment ofZ∗

p is in the positive residue system both of the form(gy,mod p) and of the form

4The original reference seems to be BLUM , M: How to Prove a Theorem So No One Else Can Claim It.
Proceedings of the International Congress of Mathematicians 1986. American Mathematical Society (1988),
1444–1451.
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(rgy,mod p), soc does not reveal anything of the bitb. Whichever the bit is, the distribu-
tion of c remains the same. On the other hand, P cannot change the bitb by changingy to
somey′, otherwise

gy ≡ rgy
′

mod p or rgy ≡ gy
′

mod p,

i.e.
r ≡ g±(y−y′) mod p,

and P would immediately obtainlogg r modulop from this.

Theorem 14.2.The above protocol gives a zero-knowledge proof for the problemHAMILTON -
CIRCUIT.

Proof. If P does not know a Hamiltonian circuit, he is able to cheat ifhe receives the bitb = 0,
but not if he receives the bitb = 1. Then again, if P knows a Hamiltonian circuit of some other
graphG′ with n vertices, he can cheat if he receives the bitb = 1, but not if he receives the bit
b = 0. So, the probability for P to succesfully cheat all the time is1/2k, which can be made as
small as we want. Then again, if P knows a Hamiltonian circuitof G, he of course passes the
test every time.

V can simulate the protocol in polynomial time also without P. What V does is the following.
V chooses a random bitb. If b = 0, V orders the vertices randomly and encrypts the list
obtained this way. Further, V gets the adjacency matrixD and encrypts it. Then again, ifb = 1,
V encrypts only some random elementsdi1i2 , di2i3, . . . , dini1 where the indexing is cyclic each
index occurring exactly two times, and each element is= 1. For the sake of completeness, V
can encrypt something else to obtain the right amount of encrypted data. Because the encryption
used is strong, the encrypted element sequences are very ”similar” whether they come from the
correct adjacency matrix or not. In other words, computing in polynomial time the difference
cannot be seen, and the occuring distributions cannot be separated. This does not mean that the
distributions should be exactly the same!

HAMILTON CIRCUIT is anNP-complete problem to which other recognition problems in
NP can be reduced, see Section 6.1. Hence V can always perform such a reduction, if needed,
and we have

Theorem 14.3. Zero-knowledge proofs can be given to all positive solutions of recognition
problems inNP.

A perfect zero-knowledge proof of anNP-complete recognition problem is however thought
to be impossible, in other words, the theorem is expected to be false for perfect zero-knowledge
proofs. Actually, a result much more general than Theorem 14.3 is known:

Theorem 14.4. (Shamir’s theorem5) Recognition problems for whose positive solutions there
are zero-knowledge proofs are exactly the recognition problems inPSPACE .

5The original reference is SHAMIR , A.: IP = PSPACE. Journal of the Association for Computing Machinery
39 (1992), 869–877.



Chapter 15

QUANTUM CRYPTOLOGY

15.1 Quantum Bit

The values0 and1 of the classical bit correspond in quantum physics to complex orthonormal
base vectors, denoted traditionally by|0〉 and |1〉. We can think then that we operate inC2

considered as a Hilbert space. Aquantum bitor qubit is a linear combination of the form

b = α0|0〉+ α1|1〉

(a so-calledsuperposition) whereα0 andα1 are complex numbers and

‖b‖2 = |α0|
2 + |α1|

2 = 1.

In particular,|0〉 and |1〉 themselves are quantum bits, the so-calledpure quantum bits.It is
important that physically a quantum bit can be initialized to one of them.

A quantum physicalmeasurementof b results either in|0〉 or in |1〉—denoted briefly just
by 0 and1. So, the measurement always involves the basis used. According to the probabilistic
interpretation of quantum physics, the result0 is obtained with probability|α0|2 and the result
1 with probability|α1|2.

A quantum bit is a quantum physicalstateand it can be transformed to another state in one
time step, provided that the transformation is linear and its matrixU is unitary, i.e.U−1 is the
conjugate transposeU† of U. Hence also

Ub = β0|0〉+ β1|1〉 , where

(
β0

β1

)

= U

(
α0

α1

)

,

is a quantum bit (state). Note in particular that

|β0|
2 + |β1|

2 =
(
β∗
0 β∗

1

)
(
β0

β1

)

=
(
α∗
0 α∗

1

)
U†U

(
α0

α1

)

=
(
α∗
0 α∗

1

)
(
α0

α1

)

= 1.

(Complex conjugation is here denoted by an asterisk.) Now let’s recall some basic properties of
unitary matrices:

1. The identity matrixI2 is unitary. It is not necessary to do anything in a time step.

2. If U1 andU2 are unitary thenU1U2is also unitary. This means a quantum bit can be
operated on several times in consecutive time steps, possibly using different operations,
and the result is always a legitimate quantum bit. This is exactly how a quantum computer
handles quantum bits.

111
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3. If U is unitary thenU† is also unitary. When a quantum bit is operated on and another
quantum bit is obtained, then the reverse operation is always legitimate, too. A quantum
computer does not lose information, and is thusreversible.It has been known long that
every algorithm can be replaced by a reversible algorithm. This was first proved by the
French mathematician Yves Lecerf in 1962. Later it was shownthat this does not even
increase complexity very much.1 Hence reversibility is not a real restriction considering
computation, of course it makes designing quantum algorithms more difficult.

15.2 Quantum Registers and Quantum Algorithms

Quantum bits can be merged into quantum registers of a given length. The mathemathical
operation used to do this is the so-calledKronecker productor tensor product.Kronecker’s
product of the matricesA = (aij) (ann1 ×m1 matrix) andB = (bij) (ann2 ×m2 matrix) is
then1n2 ×m1m2 matrix

A⊗B =








a11B a12B · · · a1m1B

a21B a22B · · · a2m1B
...

...
. . .

...
an11B an12B · · · an1m2B








(in block form). As a special case we get Kronecker’s productof two vectors (m1 = m2 =
1). The following basic properties of Kronecker’s product are quite easy to prove. Here it is
assumed that the occurring matrix operations are well-defined.

1. Distributivity: (A1 +A2)⊗B = A1 ⊗B+A2 ⊗B

A⊗ (B1 +B2) = A⊗B1 +A⊗B2

2. Associativity: (A⊗B)⊗C = A⊗ (B⊗C)

As a consequence of this a chain of consecutive Kronecker’s products can be written
without parentheses.

3. Multiplication by a scalar: (cA)⊗B = A⊗ (cB) = c(A⊗B)

4. Matrix multiplication of Kronecker’s products (this pretty much follows directly from
multiplication of block matrices):

(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2)

5. Matrix inverse of Kronecker’s product (follows from the multiplication law):

(A⊗B)−1 = A−1 ⊗B−1

6. Conjugate transpose of Kronecker’s product (follows directly from conjugate transposi-
tion of block matrices):

(A⊗B)† = A† ⊗B†

1The original references are LECERF, M.Y.: Machines de Turing réversibles. Récursive insolubilité enn ∈ N
de l’équationu = θnu, oùθ est un ”isomorphisme de codes”.Comptes Rendus257(1963), 2597–2600 and LEVIN ,
R.Y. & SHERMAN, A.T.: A Note on Bennett’s Time-Space Tradeoff for Reversible Computation.SIAM Journal
on Computing19 (1990), 673–677.
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7. Kronecker’s products of unitary matrices are also unitary. (Follows from the above.)

When two quantum bitsb1 = α0|0〉+ α1|1〉 andb2 = β0|0〉+ β1|1〉 are to be combined to
a two-qubitregister,it is done by taking Kronecker’s product:

b1 ⊗ b2 = α0β0(|0〉 ⊗ |0〉) + α0β1(|0〉 ⊗ |1〉) + α1β0(|1〉 ⊗ |0〉) + α1β1(|1〉 ⊗ |1〉).

(More exactly, it is the register’s contents that is defined here.) A traditional notation convention
here is

|0〉 ⊗ |0〉 = |00〉 , |0〉 ⊗ |1〉 = |01〉 etc.

It is easy to see that|00〉, |01〉, |10〉, |11〉 is an orthonormal basis, in other words, the register’s
dimension is four. If we wish to operate on the register’s first quantum bit byU1 and to second
by U2 (both unitary matrices) then this is done by the unitary matrix U1 ⊗U2, because by the
multiplication law

(U1 ⊗U2)(b1 ⊗ b2) = (U1b1)⊗ (U2b2).

In particular, if we want to operate only on the first quantum bit by the matrixU, it is done by
choosingU1 = U andU2 = I2. In the same way we can operate only on the second quantum
bit. But in a two-qubit register we can operate also by a general unitary4 × 4 matrix, since
the register is a legitimate quantum physical state. With this kind of operating we can link
the quantum bits of the registers. Quantum physical linkingis calledentanglement,and it is
a computational resource expressly typical of quantum computation, such a resource does not
exist in classical computation.

In a similar way we can form registers of three or more quantumbits, operate on its quantum
bits, either on all of them or just one, and so on. Generally the dimension of a register ofm
quantum bits is2m. Base vectors can then be thought to correspond, via binary representation,
to integers in the interval0, . . . , 2m − 1, and we adopt the notation

|k〉 = |bm−1bm−2 · · · b1b0〉

when the binary representation ofk is bm−1bm−2 · · · b1b0, possibly after adding initial zeros.
Several registers can be combined to longer registers usingKronecker’s products, and we can
operate on these either all together or only one and so on.

Despite the register’s dimension2m being possibly very high, many operations on its quan-
tum bits are physically performable, possibly in several steps, and the huge unitary matrices
are not needed in practice. In this case the step sequence is called aquantum algorithm.It is
important that entanglements too are possible and useful inquantum algorithms.

In the the sequel the following operations are central. Showing that they can be performed
by using quantum algorithms is somewhat difficult.2 Herek is as above.

• From the input|k〉 ⊗ |0 · · ·0〉 we compute|k〉 ⊗ |(wk,mod n)〉 wherew andn ≤ 2m are
given fixed integers.

• From the inputk we compute its so-calledquantum Fourier transformation

FQ(|k〉) =
1

2m/2

2m−1∑

j=0

e
2πijk

2m |j〉

wherei is the imaginary unit. Quantum Fourier transformation works much as the ”or-
dinary” discrete Fourier transformation, in other words, it picks periodic parts from the
input sequence, see the course Fourier Methods.

2See for example SHOR, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer.SIAM Journal on Computing26 (1997), 1484–1509 or NIELSEN & CHUANG.
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15.3 Shor’s Algorithm

Today’s quantum computers are very small and have no practical meaning. Handling bigger
quantum registers with quantum computers would however mean that procedures central for
the safety of for example RSA and ELGAMAL, such as factorization and computing discrete
logarithms modulo a prime, could be performed in polynomialtime. Indeed, these problems
are in the classBQP . This was shown by Peter Shor in 1994. Let’s see Shor’s factorization
algorithm here. See the reference SHOR mentioned in Footnote 2.

Shor’s factorization algorithm is very similar to the exponent algorithm for cryptanalysis
of RSA in Section 8.3. The mysterious algorithm A, that appeared there, is just replaced by a
quantum algorithm. Of course, the numbern to be factored can here have many more prime
factors than just two. The ”classical part” of the algorithmis the following when the input is
the integern ≥ 2:

Shor’s factorization algorithm:

1. Check whethern is a prime. If it is then returnn and quit.

2. Check whethern is a higher power of some integer, compare to the Agrawal–Kayal–
Saxena algorithm in Section 7.4. Ifn = ut, wheret ≥ 2, we continue by finding the
prime factors ofu from which we then easily obtain the factors ofn. This part, as the
previous one, is included only to take care of some ”easy” situations quickly.

3. Choose randomly a numberw from the interval1 ≤ w < n.

4. Computed = gcd(w, n) by the Euclidean algorithm.

5. If 1 < d < n, continue fromd andn/d.

6. If d = 1, compute with the quantum computer a numberr > 0 such thatwr ≡ 1 mod n.

7. If r is odd, go to #9.

8. If r is even, setr ← r/2 and go to #7.

9. Computeω = (wr,mod n) by the algorithm of Russian peasants.

10. If ω ≡ 1 mod n, give up and quit.

11. If ω 6≡ 1 mod n, setω′ ← ω andω ← (ω2,mod n), and go to #11.

12. Eventually we obtain a square rootω′ of 1 modulon such thatω′ 6≡ 1 mod n. If now
ω′ ≡ −1 mod n, give up and quit. Otherwise computet = gcd(ω′ − 1, n) and continue
from t andn/t. Note that becauseω′ + 1 6≡ 0 mod n and on the other handω′2 − 1 =
(ω′ + 1)(ω′ − 1) ≡ 0 mod n, some prime factor ofn is a factor ofω′ − 1.

As in Section 8.3, it can be proved that ifn is composite, the algorithm finds a factor with at
least probability1/2.

So, #6 is left to be performed with the quantum computer. Thiscan be done based on the
fact that(wj,mod n) is periodic with respect toj and a periodr can be found by a quantum
Fourier transformation. The procedure itself is the following:
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6.1 Choose a number2m such thatn2 ≤ 2m < 2n2.

6.2 Initialize two registers of lengthm to zeros:|0 · · ·0〉 ⊗ |0 · · ·0〉.

6.3 Apply the quantum Fourier transformation to the first register:

FQ(|0 · · ·0〉)⊗ |0 · · ·0〉 =

(

1

2m/2

2m−1∑

j=0

e
2πij·0
2m |j〉

)

⊗ |0 · · ·0〉

=
1

2m/2

2m−1∑

j=0

|j〉 ⊗ |0 · · ·0〉.

Now we have a uniform superposition of the integers0, . . . , 2m − 1 in the first register.
The quantum computer is ready to handle them all simultaneously!

6.4 Compute by a suitable operation (see the previous section) simultaneously

1

2m/2

2m−1∑

j=0

|j〉 ⊗ |(wj, mod n)〉.

The registers are now entangled in the quantum physical sense.

6.5 Measuring the second register we obtain the integerv, and the registers are

γ

2m−1∑

j=0

wj≡v mod n

|j〉 ⊗ |v〉

whereγ is a scaling constant and the indicesj occur periodically. Scaling is needed
because after the measuring we must have a quantum physical state.

6.6 Apply the quantum Fourier transformation to the first register:

γ

2m/2

2m−1∑

j=0

wj≡v mod n

2m−1∑

l=0

e
2πilj

2m |l〉 ⊗ |v〉.

6.7 Measure the first register. The resultl is then obtained with probability|g(l)|2 where

g(l) =
γ

2m/2

2m−1∑

j=0

wj≡v mod n

e
2πilj

2m .

But g(l) is, ignoring the coefficient, a discrete Fourier transformation of a sequence in
which1 occurs with the same period asj in #6.5, other elements being zeros.

The above-mentioned probability is illustrated below, when m = 8 andr = 10. These
values are of course far too small to be very interesting in practice.r corresponds to the
frequency28/10 = 25.6, which can be seen very clearly together with its multiples.It is
very likely that the measuredl will be near one of these.
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6.8 In this way we obtain a valuel, which is an approximate multiple of the frequency2m/r,
i.e. there is aj such that

j

r
∼=

l

2m
.

Becauser ≤ φ(n) < n − 1, r might be found by trying out numbers around the rational
numberl/2m. In any case, using the condition form in #1, we can very probably find the
correctr using so-called Diophantine approximation, see the reference SHOR in Footnote
2.

All in all, we are talking about a kind of probabilistic polynomial-time algorithm using
which we can find periods of quite long sequences. Such an algorithm would have a lot of
applications, e.g. in group theory, if only we had large quantum computers.

15.4 Quantum Key-Exchange

A quantum bit can be represented in many orthonormal bases. Because measuring is always
connected to an orthonormal basis and results in one of the base vectors, we can measure a
quantum bit, pure in one basis, in another basis and get any one of the latter basis’ vectors.
Another important quantum-physical property is that it is not possible to duplicate a quantum
bit or state (theNo-cloning theorem,see e.g. NIELSEN & CHUANG).

First let’s take an orthonormal basis|0〉, |1〉, denotedB1, and then another basis|+〉, |−〉,
denotedB2, where

|+〉 =
1
√
2
(|0〉+ |1〉) and |−〉 =

1
√
2
(|0〉 − |1〉).

B2 is then orthonormal too. The measurer can decide in which basis he/she measures. For
example, when measuring the quantum bit

|0〉 =
1
√
2
|+〉+

1
√
2
|−〉
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in the basisB2, the measurer gets|+〉 with probability1/2.
Quantum key-exchange can be done in many ways. One way to get asecret key for two

parties A and B is the following:

1. A sends a sequence of bits to B, interpreting them as pure quantum bits and choosing for
each bit the basis she uses,B1 or B2, and when usingB2 identifying, say,0 with |−〉 and
1 with |+〉. A also remembers her choices of bases.

2. After obtaining the quantum bits sent by A, B measures themchoosing randomly a basis,
B1 or B2, for each received quantum bit, and remembers his choices ofbases and the
measured results.

3. B sends to A the sequence of bases he chose using a classicalchannel.

4. A tells B which of their choices of bases were the same usinga classical channel.

5. A and B use only those bits for the key, which are obtained from these common choices
of bases. Indeed, these are the bases where B’s measurement gives pure quantum bits
identical to the ones sent by A. About half of the bits sent will thus be used.

If an outside party C tries to interfere in the key-exchange,either by trying to obtain the key
by measuring quantum bits sent by A or by trying to send B quantum bits of his own, he is very
likely caught. (As a consequence of the No-cloning theorem,C cannot copy quantum bits for
later use.) First of all, when measuring the quantum bits sent by A, C must choose the basisB1
or B2. This choice is the same as A’s in about half of the cases. C sends these quantum bits to
B, who believes they came from A. Then a lot of the bits chosen by A and B for their secret
key in #5 will be different. This is naturally revealed later, say, by using AES and letting the
first encrypted messages sent be equipped with parity checksor some other test sequences. The
same will be true, of course, if C tries to send B quantum bits of his own choice instead of A’s
quantum bits.

Another key-exchange procedure based on a somewhat different principle is the following:

1. Both A and B initialize a set of registers of length two, each to the state

1
√
2
(|00〉+ |11〉) (a so-calledBell state).

This can be done (verify!) by first initializing the registers to the state|00〉 = |0〉 ⊗ |0〉
and then applying the unitary matrix

1
√
2







1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1







.

The basisB1 is used in all registers, but also for the basisB2 we have a Bell state, since
computing the Kronecker products it is easy to see that

1
√
2
(|00〉+ |11〉) =

1
√
2
(| −−〉+ |++〉).

In Bell’s state both positions contain the same pure quantumbit, in other words, the
quantum bits are entangled. Physically the quantum bits canbe separated and taken very
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far from each other without destroying the entanglement. A takes the first quantum bits,
and B the second, remembering their order. Another possibility is that a trusted third
party initializes the Bell states and then distributes their quantum bits to A and B. Ideally
all this happens hidden from outsiders. The ”halves” of the Bell states reside with A and
B, waiting to be taken into use.

If A and B can be absolutely sure that they received their ”halves” of the Bell states
without any outside disturbing, they get their secret key-bits simply by measuring their
quantum bits in the same basis (agreed on beforehand). Because of the entanglement
they will get the same bits, even though these are random. This happens even if A and
B do their measurements so closely following each other thatthe information cannot
be exchanged with the speed of light!3 Otherwise a procedure similar to the one above
should be used as follows.

2. When A and B need the key, A measures her quantum bits (the first quantum bits) and
chooses randomly the basis,B1 or B2, for each quantum bit. After this, B measures his
quantum bits and chooses the basis randomly for each quantumbit. Because the quantum
bits are entangled, they get the same results if they are using the same basis.

3. A tells B her choices of bases using a classical channel, thus announcing that the key-
exchange began. This way the actual key distribution cannotproceed faster than light. B
then tells A which of their choices of bases were the same again using a classical chan-
nel. An outside party cannot use this information, since he does not know the measured
quantum bits. An outside party can however try to mess thingsup e.g. by sending B faked
choices of bases in A’s name. This will be revealed eventually as pointed out earlier. That
will also happen if an outside party succeeded in meddling with A’s or B’s quantum bits.

4. A and B choose their key-bits from those quantum bits that they measured in the same
bases. This way they get the same bits. About half of the measured quantum bits are then
included in the key.

NB. Nowadays quantum key-echange is used for some quite long distances, and it is thought to
be absolutely safe. There are other, different protocols, see e.g.NIELSEN & CHUANG.

It is interesting to note that a key-exchange procedure similar to the first one above can be
accomplished using ”classical electricity” as well, as theso-calledKish cipher,see the figure
below.

A
UA,1 BR1

R2 R2

R1

C

UB,2

UB,1

UA,2

The two parties A and B both have two resistors with (different) resistancesR1 andR2 (exactly
the same for each). ResistanceRi is connected in series with noise voltageUA,i or UB,i. The
intensities (power spectral densities) of these noises areof the same form as that of the thermal

3This is the so-called Einstein–Podolsky–Rosen paradox. Actual classical information is not transferred with a
speed higher than that of light, since A cannot choose her measurement results and thus she cannot transmit to B
any message she chose in advance. Moreover, A’s quantum bitsare already fixed by the first measurement, so she
is not able to try it again either.
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noises of the resistors4, i.e., combined these intensities are of the formERi whereE is a con-
stant. Using switches A and B randomly connect one of these resistor + noise generator units.
When both A and B do this, a circuit is closed with current intensityI = E/(RA+RB) (Ohm’s
law) whereRA andRB are the resistances chosen by A and B, respectively. A and B measure
the current, so they know both resistances. If A and B choose the same resistance, eitherR1 or
R2, no bit is determined. This happens approximately half the time. On the other hand, each
time they choose different resistances, a key bit is determined (say,0 if A choosesR1 and1
otherwise). An outside party C may then measure the current but this gives no information of
the bit. Similarly C may measure voltage against ground without getting any information, the
intensity of this voltage isERARB/(RA +RB). And there is not much anything else C can do.

This procedure works perfectly in an ideal situation and if Aand B do the switching at
exactly the same time. On the other hand, if e.g. they agree that A switches first and B after
that, it may be possible for C to quickly measure the resistance A chose without her noticing
this. C may then act as a ”man-in-the-middle” posing as A for Band as B for A and finally
get the whole key. This ”man-in-the-middle” attack, as wellas other attacks, can be made
considerably more difficult by certain additional arrangements.5

4According to the so-called Johnson–Nyquist formula the intensity of the thermal noise of a resistanceR in
temperatureT is 4kTR wherek is Boltzmann’s constant.

5See the original reference KISH, L.B.: Totally Secure Classical Communication Utilizing Johnson(-like)
Noise and Kirchhoff’s Law.Physics Letters A352 (2006), 178–182. The procedure has been strongly criticized
on various physical grounds, yet it has been physically implemented as well.
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DES

A.1 General Information

DES (Data Encryption Standard)is a symmetric cryptosystem developed by IBM in the early
1970’s. It is based on the LUCIFER system developed earlier by IBM. DES was published in
1975 and was certified as an encryption standard for ”unclassified” documents in USA in 1977.
After this it has been used a lot in different circumstances,also as the triple system 3-DES.
Many cryptosystems similar to DES are known: SAFER, RC5, BLOWFISH etc.

Mainly because of its far too small keysize DES is now mostly abandoned and replaced by
AES.

A.2 Defining DES

DES operates with bit symbols, so the residue classes (bits)0 and1 of Z2 can be considered
as the plaintext and cryptotext symbols. The length of the plaintext block is64. The keyk is
56 bits long. It is used in both encrypting and decrypting. In broad lines DES operates in the
following way:

1. The bit sequencex0 is formed of the plaintextx by permutating the bits ofx by a certain
fixed permutation (the so-calledinitial permutation) πini. Then we write

x0 = πini(x) = L0R0

whereL0 contains the first32 bits ofx0 andR0 the rest.

2. Compute the sequenceL1R1, L2R2, . . . , L16R16 by iterating the following procedure16

times:
{

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1, ki)

where⊕ is bitwise addition modulo2 (known also by the
nameXOR), f is a function which is given later, andki is
the key of theith iteration, obtained fromk by permuting
48 of its bits into a certain order. An iteration step is
depicted on the right.

⊕

Li–1 Ri–1

f ki

Li Ri

3. Apply the inverse permutationπ−1

ini
(the so-calledfinal permutation) to the bit sequence

R16L16.

120
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We still need to give the permutationπini, define the functionf , and give the key sequence
k1, k2, . . . , k16, for encrypting to be defined.

First let’s see the definition of the functionf . The first argumentR of f is a bit sequence
of length32 and the second argumentK is a bit sequence of length48. The procedure for
computingf is the following:

1. The first argumentR is expandedusing theexpanding
functionE. We take the first32 bits of R into E(R),
duplicate half of them and then permute them. Bits are
taken according to the table on the right, read from left
to right and from top to bottom.

2. ComputeE(R) ⊕ K = B and write the result as a cate-
nation of eight6-bit bit sequences:

B = B1B2B3B4B5B6B7B8.

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

3. Next we use eight so-calledS-boxesS1, . . . , S8.
EachSi is a fixed4 × 16 table, formed of the
numbers0, 1, . . . , 15. When a bit sequence of
length of6

Bi = b1b2b3b4b5b6

is obtained,Si(Bi) = Ci is computed in the fol-
lowing way. The bitsb1b6 give the binary rep-
resentation of the indexr (r = 0, 1, 2, 3) of a
certain row. The remaining bitsb2b3b4b5 give
the binary representations (s = 0, 1, . . . , 15) of
a certain column. (The rows and columns ofSi

are indexed starting from zero.) NowSi(Bi) is
the binary representation of the number in the
intersection of therth row and thesth column
of Si, initial zeros added if needed to get four
bits. The bit sequencesCi are catenated to the
bit sequence

C = C1C2C3C4C5C6C7C8.

4. The bit sequenceC of length of32 is permuted
using the fixed permutationπ. The bit sequence
π(C) obtained this way is thenf(R, K).

⊕

R K

E

E(R)

B1 B2 B3 B4 B5 B6 B7 B8

f(R,K)

π

S1 S2 S3 S4 S5 S6 S7 S8

C1 C2 C3 C4 C5 C6 C7 C8

The operation is illustrated above. We may note thatE andπ are linear operations, in other
words, they could be replaced by multiplication of a bit vector by a matrix. On the other hand,
S-boxes are highly non-
linear. The definitions of
S-boxes can be found in
the literature (for exam-
ple STINSON). On the
right is S2, given as an

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

example, and below the permutationsπini andπ (c.f. E):
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πini :

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

π :

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

The key sequencek1, k2, . . . , k16 can be computed iteratively in the following way:

1. The keyk is given in an expanded form such that every eigth bit is a parity-check bit.
So there is always an odd number of1’s in a byte and the length of the key is64 bits. If
the parity check shows that there are errors in the key, it will not be taken into use. Then
again, if there are no errors in the key, the parity check bitsare removed, and we come to
original56-bit key. First a fixed bit permutationπK1 is applied to the key. Write

πK1(k) = C0D0

whereC0 andD0 are bit sequences of length28.

2. Compute the sequenceC1D1, C2D2, . . . , D16D16 by iterating the following procedure16

times: {

Ci = σi(Ci−1)

Di = σi(Di−1)

whereσi is a cyclic shift of the bit sequence by1 or 2 bits to the left. Ifi = 1, 2, 9, 16

then the shift is1 bit, otherwise it is2 bits.

3. Apply the fixed variationπK2 of 48 bits toCiDi. In this way we obtainki = πK2(CiDi).

We must still give the permutationπK1 and the variationπK2:

πK1 :

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

πK2 :

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

k

C0 D0

σ1

k1

πK1

πK2

σ1

C1 D1

σ2 σ2

σ16 σ16

C16 D16 πK2 k16
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The key generating process is illustrated in the above figure.
Decrypting goes essentially by same system but using the keysequencek1, k2, . . . , k16 in

reverse order and inverting the permutations. Then
{

Li−1 = Ri ⊕ f(Li, ki)

Ri−1 = Li.

The modes of operation of DES are the same as for AES, see Section 5.4.

A.3 DES’ Cryptanalysis

Everything else in DES’ structure is linear—that is, doableby matrix multiplications—except
the S-boxes. If the S-boxes were affine, i.e. if they could be replaced by matrix multiplications
and addition of vectors, DES would essentially be some form of AFFINE-HILL and therefore
easy to break. S-boxes are not however affine. Some of the design principles of DES’ S-boxes
were made public later:

(1) Each row of an S-box is a permutation of the numbers0, 1, . . . , 15.

(2) An S-box is not an affine function of its inputs (and so not alinear function, either).
Actually it is required that no output bit of an S-box is ”near” a linear function of the
input bits.

(3) Changing one bit in the input of an S-box changes at least two bits in the output.

(4) The outputs of an S-box with inputsx andx⊕001100 differ by at least two bits, no matter
what6-bit sequencex is.

(5) The outputs of an S-box with inputsx andx ⊕ 11b1b200 differ, no matter what6-bit
sequencex is and no matter what bitsb1 andb2 are.

(6) For each6-bit sequenceB = b1b2b3b4b5b6 6= 000000 there are32 (= 26/2) different input
pairsx1, x2 such thatx1 ⊕ x2 = B. Of the corresponding32 output pairsy1, y2 no more
than two can have the same sumy1 ⊕ y2.

There are
256 = 72 057 594 037 927 936

keys of DES, a fairly small number by modern standards. This makes it possible to use the
following simple KP attack. If the plaintextw and the corresponding cryptotextc are known,
we go through the keys until we find a key with which this encrypting can be done. There may,
however, be several applicable keys. The procedure does notrequire anything in addition to
time and fast processors, and it is easily parallelized, thememory requirements are minimal,
too. DES can be installed in very fast hardware, and processors specifically designed to break
DES are possible.

A CP attack is obtained in the following way. Choose a plaintext w and encrypt it using all
possible keys of the key space. Tabulate the results. Now, ifby the DES to be broken we can
encryptw and obtain the corresponding cryptotext, then by a table search we find a key. This
method is of course useful only if it is used for finding several keys, in which case the table can
be used repeatedly. The procedure does not require much additional time (after preparing the
table), but it does require a great deal of memory space.
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There are also procedures where there is a trade-off betweentime and memory space, sort
of intermediate forms of the procedures above. In AES there are at least

2128 = 340 282 366 920 938 463 463 374 607 431 768 211 456

keys which is thought to prevent the above attacks well enough.
The KP attack on AFFINE-HILL introduced in Section 3.4—and actually on AFFINE

also—used differences of plaintexts and the correspondingcryptotexts moduloM to break the
system, by removing the nonlinearity caused by affinity. Such a procedure is calleddifferential
cryptanalysis. A similar procedure can be applied to DES in KP and CP attacks to remove
some of the effects of nonlinearity of S-boxes. The minus-side of this is the large number of
plaintext-cryptotext pairs needed.Linear cryptanalysistries to use linear dependences between
some input and output bits, that may appear in certain inputs. These do exist in DES, and it
seems that originally they went totally unnoticed! AES is built to to withstand all these crypt-
analyses.
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