MATHEMATICAL CRYPTOLOGY

Keijo Ruohonen
(Trandation by Jussi Kangas and Paul Coughlan)

2010

Contents

23

23
24
24
25

27
27
28
32

34
34
34
35
36
37
37
38
38
39
40
41

| INTRODUCTION

I NUMBER THEORY: PART 1
2.1Divisibility, Factors, Primes
2.2Representation of Integers in Different Bases
2.3 Greatest Common Divisor and Least Common Multiple
2.4 Congruence Calculus or Modular Arithmetic
2.5Residue Class Rings and Prime Fields
2.6 Basic Arithmetic Operations for Large Integers

— Addition and subtraction

— Multiplication

— Division

— Powers

— Integral root

— Generating a random integer

1 SOME CLASSICAL CRYPTOSYSTEMS AND
CRYPTANALYSES

3.1AFFINE. CAESAR

3.2HILL. PERMUTATION. AFFINE-HILL. VIGENERE

3.30ONE-TIME-PAD

3.4Cryptanalysis

IV ALGEBRA: RINGS AND FIELDS
4.1Rings and Fields

4.2 Polynomial Rings

4.3Finite Fields

V AES

5.1Background

5.2RIINDAEL
5.2.1Rounds
5.2.2Transforming BytesSubBytes)
5.2.3Shifting Rows BhiftRows)
5.2.4Mixing Columns MixColumns)
5.2.5Adding Round KeysAddRoundKey)
5.2.6Expanding the Key
5.2.7A Variant of Decryption

5.3RIIJNDAEL’s Cryptanalysis

5.4 Operating Modes of AES

42
42
44
46
47

48
48
49
52
53
57
59
62
63

65
65
66
69
70
72

74
74
77
78

85
85
86
87
88

89
89
90
91
92

94
94
95
98

VI PUBLIC-KEY ENCRYPTION

6.1 Complexity Theory of Algorithms

6.2 Public-Key Cryptosystems

6.3 Rise and Fall of Knapsack Cryptosystems
6.4 Problems Suitable for Public-Key Encryption

VIl NUMBER THEORY: PART 2
7.1Euler’s Function and Euler's Theorem
7.20rder and Discrete Logarithm
7.3Chinese Remainder Theorem

7.4 Testing and Generating Primes
7.5Factorization of Integers

7.6 Modular Square Root

7.7 Strong Random Numbers

7.8 Lattices. LLL Algorithm

VIII RSA

8.1 Defining RSA

8.2 Attacks and Defences

8.3 Cryptanalysis and Factorization

8.4 Obtaining Partial Information about Bits
8.5 Attack by LLL Algorithm

IX ALGEBRA: GROUPS
9.1 Groups

9.2Discrete Logarithm

9.3 Elliptic Curves

X ELGAMAL. DIFFIE-HELLMAN
10.1Elgamal’s Cryptosystem
10.2Diffie—Hellman Key-Exchange
10.3Cryptosystems Based on Elliptic Curves
10.4XTR

XINTRU

11.1Definition

11.1Encrypting and Decrypting
11.3Setting up the System
11.4Attack Using LLL Algorithm

XII HASH FUNCTIONS AND HASHES
12.1Definitions

12.2Birthday Attack

12.3Chaum-van Heijst—Pfitzmann Hash

100 Xl SIGNATURE

100 13.1Signature System

101 13.2RSA Signature

101 13.3Elgamal’s Signature

102 13.4Birthday Attack Against Signature

103 XIV TRANSFERRING SECRET INFORMATION
103 14.1Bit-Flipping and Random Choices

105 14.2Sharing Secrets

106 14.30blivious Data Transfer

107 14.4Zero-Knowledge Proofs

111 XV QUANTUM CRYPTOLOGY

111 15.1Quantum Bit

112 15.2Quantum Registers and Quantum Algorithms
114 15.3Shor’s Algorithm

116 15.4Quantum Key-Exchange

120 Appendix: DES

120 A.1 General Information
120 A.2 Defining DES

123 A.3 DES’ Cryptanalysis

124 References

128 Index

Foreword

These lecture notes were translated from the Finnish lectates for the TUT course "Mate-
maattinen kryptologia”. The laborious bulk translationswaken care of by the students Jussi
Kangas (visiting from the University of Tampere) and Pauli@idan (visiting from the Univer-
sity of Dublin, Trinity College). | want to thank the transtan team for their effort.

The notes form the base text for the course "MAT-52606 Matht#ral Cryptology”. They
contain the central mathematical background needed fargtahding modern data encryption
methods, and introduce applications in cryptography ami@dwa protocols.

Though the union of mathematics and cryptology is old, itlyezame to the fore in con-
nection with the powerful encrypting methods used during $®cond World War and their
subsequent breaking. Being generally interesting, they ssotold in several (partly) fictive
books meant for the general audiehce

The area got a whole new speed in the 1970’s when the complgpeh, fast and strong
computerized cryptosystem DES went live, and the revahatip public-key paradigm was
introduced? After this, development of cryptology and also the mathérsateeded by it—
mostly certain fields of number theory and algebra—has beerarkably fast. It is no exag-
geration to say that the recent popularity of number thead/agebra is expressly because of

1An example is Neal Stephenson’s splen@igptonomicon.
2Steven Levy’s boolCrypto. Secrecy and Privacy in the New Code War gives a bit romanticized description of
the birth of public-key cryptography.

iv

cryptology. The theory of computational complexity, whisblongs to the field of theoretical
computer science, is often mentioned in this context, batlifairness it must be said that it
really has no such big importance in cryptology. Indeediatlé mathematical problems for
use in cryptography are those that have been studied by tgematicians for so long that only
results that are extremely hard to prove still remain opeeaking the encryption then requires
some huge theoretical breakthrough. Such problems canupel io abundance especially in
number theory and discrete algebra.

Results of number theory and algebra, and the related #igusj are presented in their own
chapters, suitably divided into parts. Classifying protdeof number theory and algebra into
computationally "easy” and "hard” is essential here. Therfer are needed in encrypting and
decrypting and also in setting up cryptosystems, the lgttarantee strength of encryption. The
fledgling quantum cryptography is briefly introduced togetwith its backgrounds.

Only few classical cryptosystem—in which also DES and thearéAES must be included
according to their description—are introduced, much maofermation about these can be
found e.g. in the referencesaBER, MOLLIN and SA\LOMAA. The main concern here is in
modern public-key methods. This really is not an indicatdthe old-type systems not being
useful. Although the relevance of old classical methodsskeu quite rapidl§y newer methods
of classical type are widely used and have a very importdatinofast mass-encryption. Also
stream encrypting, so important in many applications, tdneated here. The time available for
a single course is limited. A whole different chapter woudddorrect implementation and use
of cryptosystems, which in a mathematics course such asahnisot really be touched upon.
Even very powerful cryptosystem can be made inefficient éth implementation and careless
use?

Keijo Ruohonen

3As an example of this it may be mentioned that the US Army fiedshual FM 34-40-2Basic Cryptanalysisis
publicly available in the web. The bookaBER also contains material quite recently (and possibly ytillassified
as secret.

4A great book on this topic is Bruce Schneie®srets and Lies. Digital Security in a Networked World.

Chapter 1

Introduction

Encryptionof a message means the information in it is hidden so thatrenyuino’s reading (or
listening to) the message, can’t understand any of it utie&she catreakthe encryption. An
original plain message is call@taintextand an encrypted oreeyptotext.When encrypting you
need to have a so-callégy, a usually quite complicated parameter that you can useaogeh
the encryption. If the encrypting procedure remains ungbdrfor a long time, the probability
of breaking the encryption will in practise increase sulssdly. Naturally different users need
to have their own keys, too.

The receiver of the messagdecryptsit, for which he/she needs to have his/her own key.
Both the encrypting key and decrypting key are very valuéimiean eavesdropper, using the
encrypting key he/she can send encrypted fake messagesiagdthe decrypting key he/she
can decrypt messages not meant to him/her. In symmetricasygiems both the encrypting
key and the decrypting key are usually the same.

An encrypting procedure can encrypt a continuous streamrabsls Etream encryption
or divide it into blocks block encryptioh Sometimes in block encryption the sizes of blocks
can vary, but a certain maximum size of block must not be eded@eHowever, usually blocks
are of the same size. In what follows we shall only examinelbencryption, in which case it's
sufficient to consider encrypting and decrypting of an aalbjtmessage block, and one arbitrary
message block may be considered as the plaintext and itgptedrversion as the cryptotext.

An encryption procedure isymmetricjf the encrypting and decrypting keys are the same
or it's easy to derive one from the other. ionsymmetriencryption the decrypting key can't
be derived from the encrypting key with any small amount ofkvdn that case the encrypting
key can be public while the decrypting key stays classifigus Kind of encryption procedure
is known aspublic-key cryptographycorrespondingly symmetric encrypting is callsecret-
key cryptographyThe problem with symmetric encrypting is the secret keyritistion to all
parties, as keys must also be updated every now and then.

Symmetric encryption can be characterized as a so cafigdosystemvhich is an ordered
quintet(P,C, K, E, D), where

e P s the finitemessage spadplaintexts).
e (' is the finitecryptotext spacécryptotexts).
e K is the finitekey space.

o forevery keyk € K thereis arencrypting functior, € E and adecrypting functiom,
D. FE is called theencrypting function spacehich includes every possible encrypting
function andD is called thedecrypting function spacehich includes every possible
decrypting function.

CHAPTER 1. INTRODUCTION 2

e di(ex(w)) = w holds for every message (block)and keyk.

It would seem that an encrypting function musifjective,so that it won't encrypt two different
plaintexts to the same cryptotext. Encryption can still sedom, and an encrypting function
can encrypt the same plaintext to several different crgstst so an encrypting function is not
actually a mathematical function. On the other hand, engrggdunctions don’t always have
to be injective functions, if there’s a limited amount of ipk&xts which correspond to the same
cryptotext and it's easy to find the right one of them.

lain- crypto- | chan-crypto- plain- .
sendef P —— | - receiver
text % Text nel [text A text
key K key
distribution distribution

Almost all widely used encryption procedures are based eualt®in number theory or
algebra (group theory, finite fields, commutative algebv#. shall introduce these theories as

we need them.

"So in order to remove the contingent and subjective elesieam

cryptography there have been concerted efforts in recarsye

transform the field into a branch of mathematics, or at ledstach

of the exact sciences. In my view, this hope is misguidedabse in
its essence cryptography is as much an art as a science.”

(N. KosLITZ, 2010)

Chapter 2
NUMBER THEORY. PART 1

2.1 Divisibility. Factors. Primes

Certain concepts and results of number thé@gme up often in cryptology, even though the
procedure itself doesn’t have anything to do with numbeotje The set of all integers is
denoted byZ. The set of nonnegative integdi§ 1,2, ... } is called the set ofiatural numbers
and it's denoted bw.

Addition and multiplication of integers are familiar comtative and associative operations,
with identity element$ and1 respectively. Also recall the distributive lawy + z) = zy + xz
and the definitions of opposite number: = (—1)x and subtractionr — y = = + (—1)y.
Division of integers means the following operation: When dividingraegerx (dividend by
an integen # 0 (divisor), z is to be given in the form

T=qy+r

where the integer is calledremainderand fulfills the conditior) < r < |y|. The integely
is calledquotient. Adding repeatedly-y or y to x we see that it's possible to writein the
desired form. If it's possible to give in the form

r=4qY,

whereg is an integer then it’s said thatis divisible byy or thaty dividesz or thaty is a factor
of z or thatz is a multiple ofy, and this is denoted by | =. The so-calledrivial factors of an
integerz are+1 and+z. Possible other factors anentrivial.

The following properties of divisibility are quite obvious

(1) 0is divisible by any integer, but divides only itself.
(2) 1 and—1 divide all integers, but are divisible only by themselved ag one another.
(3) If y | z andz # 0 then|y| < |z|.

(4) If x | y andy | z then alsor | z (in other words, divisibility is transitive).

Number theoryis basically just the theory of integers. There are howeviéerént extensions of number
theory. For example, we can include algebraic numbers—srafgbolynomials with integral coefficients—which
leads us taalgebraic number theorwery useful in cryptology, see e.g.dg8LITz. On the other hand, number
theory can be studied using other mathematical formalisimsexampleanalytic number theorgtudies integers
using procedures of mathematical analysis—integralgsand so on—and this too is usable in cryptology, see
SHPARLINSKI.

CHAPTER 2. NUMBER THEORY. PART 1 4

(5) If x | yandz | z then alsar | y + =.
(6) If x | y andz is an integer then | yz.

The result of division is unique since, if

T=qy +7r1 = @y + o,

whereq, ¢2, 1, 2 are integers and < r,r, < |y|, theny dividesr; — r,. From the fact that
|r1 — ro| < |y] it then follows thatr; = r, and further that; = g¢».

An integer that has only trivial factors is calledivisible. An indivisible integer is grime
numberor just aprimé?, if itis > 2. The first few primes are

2,3,5,7,11,13,17,19,23, 29, 31, 37,41, 43,47,53, .. .

2 is the only even prime. One basic task is to test whether oamattural number is a prime.
An integer, which is> 2 and is not a prime, is callecbmposite.

Theorem 2.1.If the absolute value of an integeris 2 then it has gprime factor.
Proof. If |z| > 2 then a prime factop of = can be found by the following algorithm:
1. Setz + .
2. If zisindivisible therp = |z|.
3. If z is divisible, we take its nontrivial factar. Then set < u and move back to #2.

The procedure stops because in the third stegets smaller and smaller, so ultimatelyvill
be a prime. O

Corollary. The number of primes is infinite.

Proof. An infinite list of primes can be obtained by the following pedure, known already to
ancient Greeks. (It is not believed to produce all primegyédwer, but this is an open problem.)

1. SetP <+ 2. HereP is a sequence variable.

2. IfP=pq,...,p, then compute: = p; - - - p, + 1. Notice that none of the primes in the
sequencé divide = (remember uniqueness of division).

3. By Theorem 2.1z has a prime factop, which is not any of the primes in the sequence
P. Find some such, and sefP «+ P, p and return to #2.

The first few primes produced by the proceduredare 43, 13, 53,5,6221 671, ... O
Basic tasks concerning primes are for example the following
(1) Compute thex™" prime in order of magnitude.
(2) Compute the: first primes in order of magnitude.
(3) Compute the largest (resp. smallest) prime, which is (resp.> z).

(4) Compute primes, which are .

2The set of all primes is sometimes denotedPby

CHAPTER 2. NUMBER THEORY. PART 1 5

Theorem 2.2. An integerx # 0 can be written as a product of primes (disregarding the sign)
this is the so-calledactorization.In particular, it is agreed that the numbéris the so-called
empty product, that is, a product which has no factors.

Proof. The algorithm below produces a sequence of primes, whoskipres= +x:
1. Set7 + NULL (the empty sequence).
2. If x = £1 then we returry, and stop. Remember that the empty produet is

3. If z # 1 then we find some prime factor of x (Theorem 2.1). Nowr = py. Set
T < T,pandx + y and go back to #2.

This procedure stops because in the third st¢gets smaller, and is eventualy 1 whereafter
we halt at #2. In particular, the empty sequence is returhedH +1. 0J

Later we will show that this factorization is in fact uniqué@&n we disregard permutations
of factors, see Section 2.3. Naturally, one basic task isitbthie factorization of a given integer.
This is computationally very hard, see Section 7.5.

2.2 Representations of Integers in Different Bases

The most common way to represent an integer is to use theidamdcimal representatioar
in other words bas&b representation. Baserepresentation, called thenary representation,
is also often used and so is baseetal representatioand base-6 hexadecimal representation.
The general base representation is given by

Theorem 2.3.If k£ > 2 then every positive integercan be represented uniquely in the form
T = k"™ + ap1 k"t A+ - 4 ark + ag

where0 < ag, ay,...,a, < k—1anda, > 0. This is calledbasek representatioof =, where
k is thebase (numberr radixandn + 1 is thelengthof the representation.

Proof. The representation, i.e. the sequengea,, 1, ..., aq, IS obtained by the following al-
gorithm:

1. SetK «+ NULL (the empty sequence).
2. Dividez by the radixk:
x =qk +r (quotientqg, remainder-).
SetKC «+ r, K andz + q.
3. If x = 0 then returnC and quit. Else repeat #2.

x gets smaller and smaller in #2 with each iteration and sotthesplure stops eventually in #3.
The baseék: representation is unique because if

T =a,k" + a1 k" 4 ark Fag = b k™ F by K™+ bk + by,

CHAPTER 2. NUMBER THEORY. PART 1 6

where0 < ag,aq,...,a,,b9,b1,...,b,, < k—1anda,,b, > 0andn > m, then we first
conclude that = m. Indeed, ifn > m then we also have

bnk™ 4 by K™ bk by < (k= DK+ (E-DE" P (k= Dk+ k-1
|

< K™ < B < ank™ + a1 KN+ ark + ag,

which is a contradiction. S@ = m, that is, the length of the representation must be unique.
Similarly we can conclude that, = b,,, because i, > b, then

bk + by k" bk by < (@ — DE "+ (k—DE" P (k= Dk + k-1
=ak" —1
< ankn _'_an—lknil _'_ ct +a1k + ao,

which is also a contradiction. Again in the same way we carcclewie that:,, ; = b,_; and so
on. U

Representation of the numbeis basically an empty sequence in every base. This of course
creates problems and so we agree on the convention thapiteseatation of is 0. Conversion
between base representations, the so-caleohge of baser radix transformationjs a basic
task concerning integers.

Theorem 2.4. The length of the baske+epresentation of a positive integeris
[log),] + 1 = [log(x +1)]
wherelog, is the basek logarithm3

Proof. If the basek representation of isz = a,k" +a,_1 k"' +- - -+ a1k + ao then its length
iss =n+ 1. Itis apparent that > k", and on the other hand that

e<(k-—1k"+(k-DE""+ 4+ (k- Dk+k—1=F" -1 < g
Sincek*™! <z < k*, thens — 1 < log,, z < s and so
s = |log, x| + 1.
Then againk*~! < z + 1 < k*, whences — 1 < log,(z + 1) < sand so

s = logy(x + 1] -

2.3 Greatest Common Divisor and Least Common Multiple

Thegreatest common divisdg.c.d) of the integers: andy is the largest integetwhich divides
both integers, denoted
d = ged(z,y).

The g.c.d. exists if at least one of the integerandy is # 0. Note that the g.c.d. is positive.
(It's often agreed, however, thatd(0,0) = 0.) If ged(z,y) = 1 then we say that andy have
no common divisorer that they ar&oprime.

3Remember that change of base of logarithms is done by thesfatoy, = Inz/ In k. Here|z | denotes the
so-calledfloor of z, i.e. the largest integer which s . Correspondinglyfz] denotes the so-callezkiling of z,
i.e. the smallest integer which is z. These floor and ceiling functions crop up all over numbeothke

CHAPTER 2. NUMBER THEORY. PART 1 7

Theorem 2.5. (Bézout’s theorem)he g.c.dd of the integers: andy, at least one of which is
=# 0, can be written in the form

d = c1x + oy (the so-calledBézout forn)

wherec; and ¢, are integers, the so-calleBiézout coefficientsAlso, ifx,y # 0, then we may
assume thafir;| < |y| and|cs| < |z|.

Proof. Bézout's form and the g.c.d. are produced by the following so-callé@eneralized)
Euclidean algorithmHere we may assume that< » < y, without loss of generality. Denote
GCD(:Ea y) - (d7 C1, 02)'

(Generalized) Euclidean algorithm:
1. If 2z = 0 then we come out of the algorithm withCD(z, y) = (v, 0, 1) and quit.

2. If x > 0 then first we dividey with z: y = gz + r, where0 < r < x. Next we find
GCD(r,z) = (d, e, e2). Now

d=er+ex =e(y—qx)+ ez = (62 —e1q)x + e1y.
We end the algorithm by returningCD(z, y) = (d, e2 — e1¢q, e1) and quit.

Sincer = y — gz, ged(zx, y) dividesr and hencexed(z,y) < ged(z,r). Similarly ged(z, r)
dividesy and thugzed(x, r) < ged(z, y), soged(z, r) = ged(z, y). Hence #2 produces the cor-
rect result. The recursion ends after a finite number oftitana becausmin(r, z) < min(z, y),
and so every time we calkCD (iterate) the minimum value gets smaller and is eventually

If z,y # 0 then apparently right before stopping in #1 in the recursverhavey = ¢qx and
r = 0 andd = z, whence at that point; = 1 < y andc, = 0 < x. On the other hand, every
time when in #2 we have = gz + r andd = e;r + esx, Wherele;| < x and|ey| < r, then
e; ande, have opposite signs and thlgs — e1q| = |ea| + |e1]lg < r + zq = y. So, the new
coefficientsc; = e; — eaq andey, = e will then also satisfy the claimed conditions. O

Example. As a simple example, let's compwtel(15, 42) and its Bézout form. We use inden-
tation to indicate recursion level:

ged(15,42) =7
42=2-15+12, g =2
ged(12,15) =7
15=1-12+3,¢=1

ged(3,12) =2
12=4-310,qg=4
ged(0,3) =7

GCD(0,3) = (3,0,1)
GCD(3,12) = (3,1 —0-4,0) = (3,1,0)
GCD(12,15) = (3,0 —1-1,1) = (3,-1,1)
GCD(15,42) = (3,1 — (=1)-2,—1) = (3,3, —1)

So, the g.c.d. i8 and the Bézout form 8= 3 - 15+ (—1) - 42.
You can get the next result straight from Bézout’s theorem:

Corollary. If the integerz divides the integers andy, at least one of which i 0, then it also
dividesged(z, y).

CHAPTER 2. NUMBER THEORY. PART 1 8

NB. Due to this corollaryged(zx, y) is often defined as the common divisoradind y, which

is divisible by every common divisor of these integers. Haids to the same concept of g.c.d.
Such a definition is also suitable for the situatior- y = 0 and gives the formulged(0,0) = 0
(mentioned above).

Another corollary of Bézout's theorem is uniqueness ofdeeation of integers, see Theo-
rem 2.2.

Theorem 2.6. Factorization of an integet # 0 is unique.

Proof. Assume the contrary: There exists an integewhich has (at least) two different fac-
torizations. We may assume thais positive and that is the smallest positive integer that has
this property. Thus > 2, since the only factorization df is the empty product. Now we can
write x as a product of primes with respect to two different factatians:

_ il ig 7 _ jl j2 j
T=pipy - Pn =0 % Gy

wherep,, . . ., p, are different primes and likewisg, . . ., ¢,, are different primes and, . . ., i,,
as well asjy, ..., j,, are positive integers. In fact, we also know that the primes. ., p,
differ from the primesy, .. ., ¢,,. If, for example,p; = ¢, then the integex/p; would have

two different factorizations and/p; < x, a contradiction. So we know thgtd(p,,q;) = 1, in
Bézout’s form

1 =cip1 +cqr.
But it follows from this that

A7l = (e + 0a)d T e g = apg T e g+ o,

from which we see further that divides the product~'¢J> - - - ¢/, in other words,

QG =
Because: and q{1_1q§2 ---¢/m have unique factorizations (they are both smaller thjnit
follows from this thai, is one of the primeg,, . . ., ¢,, which is a contradiction. So the contrary
is false and factorization is unique. O

When giving a rational number in the form'y, it is usually assumed thatd(z,y) = 1, in
other words, that the numbenisth the smallest term&his is very important when calculating
with large numbers, to prevent numerators and denomin&toms growing too large. Such
reduced form is naturally obtained by dividimgandy by ged(z, v), so in long calculations the
g.c.d. must be determined repeatedly.

It's important to notice that the bounds of the coefficienentioned in Bézout’s theorem,
i.e. |c1] < |y| and|cs| < |z|, are valid in every step of the Euclidean algorithm. This way
intermediate results won't get too large. On the other h#mel Euclidean algorithm does not
even take too many steps:

Theorem 2.7.When computingcd(z, y), where0 < x < y, the Euclidean algorithm needs no
more than|2 log, y + 1| divisions.

Proof. If x = 0 (no divisions) orx = y (one division) there’s nothing to prove, so we can
concentrate on the case< = < y. The proof is based on the following simple observation
concerning division: Every time we divide integersand b, where0 < a < b, and write

b = ga + r (quotientq, remainder-), we have

b=qga+r>a+r>2r

CHAPTER 2. NUMBER THEORY. PART 1 9

When computinged(z,) using the Euclidean algorithm we get a sequence

y=qx—+nr 0<r <ux),
T=qri+rys (0<ry <ry),
7’1:Q3T2+T3 (0<T3<T’2),

ri—o =qri—1+ 1 (0 <1 <rq),

T—1 = qi+17

with [4 1 divisions. Ifl = 2k + 1 is odd then by our observation above

+1

1<rm <2 M o<22r 4< <27 5 <o <270 < Q’k’ly =2"29y< 2’%y,
and ifl = 2k is even then

—k+1

l
1<m<2b o< 2 4<--- <2 ro < 27Fp < 272y,

So, in any casg > 25 which means that (taking bagdegarithms)2 log, y > [, and the result
follows. O

Thus we see that applying the Euclidean algorithm is not Valprious, [2log, y + 1] is
proportional to the length of the binary representatiop Fheorem 2.4). If you want to know
more about the computational efficiency of the Euclideaoritigm, see e.g. KUTH.

The greatest common divisor of more than two integers,, ..., zy

d = ged(zy, 2o, ..., xN)

is defined in same way as for two integers, so it’s the largasiger which divides all the
numbers in the sequenag, z-, ..., xx. Again we require that at least one of the numbers is
0. We may agree thaty # 0. This kind of g.c.d. can be computed by applying the Eucldea
algorithm/N — 1 times, since

Theorem 2.8. ged(xy, xo, ..., zN) = ged(zq, ged (o, . .., TN))
= ged(xy, ged(xe, ged(xs, ..., ged(zn_1,2N) -+)))
and furthermore the g.c.d. can be written in Bézout’s form
ged(zy, X, ..., xN) = 171 + oy + -+ - + CNTN.
Proof. For a more concise notation we denote
d = ged(xy, xo,...,xxy) and d = ged(xy, ged(zg, ged(zs, ..., ged(xy_1,zN) - +))).

By Bézout's theorem
ged(zy_1,2N8) = e1xy_1 + €N

and further
ged(xy_o, ged(zn_1,2N)) = esxy_o + esged(Ty_1,TN) = €38N _o + €161 N1 + €469 N
and so on, so eventually we see that for some integers. , cy

!
d =C1T1 +Cxy+ -+ CNTN-

CHAPTER 2. NUMBER THEORY. PART 1 10

From here it follows, thatl | &' and sod < d’. On the other hand? divides bothz, and the
g.c.d.
ged(xy, ged(xs, ..., ged(zn_1,zn) -+).

The g.c.d. above divides both andgcd(zs, ..., ged(zy_1,2y) - -+). Continuing in this way

we see that!’ divides each number;, x», . .., xx and thereforel’ < d. We can thus conclude
thatd = d'. O
If the numberse,, z,, . .., zy are 0 then they have factorizations

€T; = ip{ilpgiQ . -p%jM (i=1,2,...,N),

where we agree that, = 0 whenever the prime, is not a factor ofr;. It then becomes
apparent that
d _ min(jit,..,jn1) min(jiz,...inv2) | min(iiag,..inar)
ged(@y, @9, ..., TN) = Py %) Py .
The trouble when using this result is that factorizatiores rwt generally known and finding
them can be very laborious.

The least common multipld.c.m) of the integerse, z», . .., zy is the smallest positive
integer that is divisible by every number, x, ..., zy, we denote it byem(zy, xo, ..., xy).
For the l.c.m. to exist we must have, z,, .. .,z # 0. Remembering the factorizations above,
we can see that

lcm(xl Lo, ... xN) _ prlnaX(ju ~~~~~ jN1)pglaX(j12 ----- JN2) || .pIAI;[aX(le ~~~~~ jNM).
The l.c.m. is also obtained recursively using the Euclidalgorithm, without knowledge of
factors, since

Theorem 2.9. lem(zy, 9, ..., zx) = lem(zy, lem(z,, ..., zN))
= lem(zy, lem(zg, lem(xg, . . . lem(zy—1, zn) -+ +)))
and
|12

lem(zq, 29) = ——————.
(21, 22) ged(zy, o)

Proof. The first formula of the theorem follows from the factoripatiformula, since the expo-

nent ofpy in lem(zq, lem(xo, . .., xy)) IS max(jix, max(jo, - - -, jnx)) @nd on the other hand

max(jix, max(jok, - - -, nk)) = max(ju, ok, - - -, jvx) (K =1,2,..., M).

The second formula follows from the factorization formutaveell, since the exponent of the
prime factorp;, in x5 IS j1, + jor @nd on the other hand

max (jix, jor) = Jik + Jor — min(Jig, jor)- 0

NB. We see from the factorization formula that the g.c.d. of nloa@ two numbers is also the
(positive) common divisor of these numbers that is divedilyl every other common divisor and
this property is often used as the definition. Correspongimge can see that the I.c.m. is the
(positive) common multiple of these numbers that dividesyesther common multiple of the
numbers and this property is also often used as its definiByrthese alternative definitions it
is usually agreed thatcd(0,0,...,0) = 0 andlem(0, z,...,zy5) = 0.

CHAPTER 2. NUMBER THEORY. PART 1 11

2.4 Congruence Calculus or Modular Arithmetic

The idea oftongruence calculuis that you compute only with the remainders of integersgisin
a fixed divisor (or several of them), the so-calleddulusn > 1. Congruence calculus is also
often calledmodular arithmetic.

We say that integers andy arecongruent modulan, denoted

r=y modm (aso-calleccongruencg

if z—y is divisible bym. This might be read as”is congruent tgy modulom” or just "z equals
y modulom”. Then again, ifr — y is indivisible bym, it's said thatr andy areincongruent
modulom and this is denoted by # y mod m. Note thatr = 0 mod m exactly whenz is
divisible bym, and that every number is congruent to every other numbeuhoad

The congruence = y mod m says that when dividing andy by m the remainder is the
same, or in other words; andy belong to the sameesidue classnodulom. Every integer
always belongs to one residue class modul@and only in one. There are exactly residue
classes moduler, as there are: different remainders.

Obviouslyz is always congruent to itself modute and if x = y mod m, then alsq; = =
mod m and—x = —y mod m. Furthermore, ift = y mod m andy = z mod m then also
r = z mod m, in this case we may write

r=y =z modm.

(Congruence of integers is thus an example of an equivaletetgon.) For basic computing of
congruences we have the rules

Theorem 2.10.(i) If r =y mod m andu =v mod mthenz +u =y + v mod m.
(ii) If cisaninteger and: =y mod m thencx = cy mod m.
(i) f z =y mod m andu = v mod m thenzu = yv mod m.
(iv) If z =y mod m andn is a positive integer then™ = y™ mod m.

Proof. (i) If z — y = km andu — v = Im then(z + u) — (y + v) = (k + [)m.
(i) If x —y = km thencx — cy = ckm.
(i) This follows from (ii), sincezu = yu = yv mod m.
(iv) This follows from (iii). O

You can compute with congruences pretty much in the same wayith normal equations,
except that division and reduction are not generally altb(vee get back to this soon).

If you think about remainders, in calculations you can usgiateger that has the same
remainder when divided by the modulus, results will stiltbe same, in other words, the result
is independent of the choice of the representative of thdueslass. For simplicity certain sets
of representatives, so-callegsidue systemsre however often used:

e positive residue system1, ..., m — 1 (that is, the usual remainders);
e symmetric residue systea(m — 1)/2,...,0,1,...,(m — 1)/2 for oddm;
e symmetric residue systea{m — 2)/2,...,0,1,...,m/2 for evenm;

e negative residue system(m — 1),...,—1,0.

CHAPTER 2. NUMBER THEORY. PART 1 12

The positive residue system is the usual choice. In geremglset ofn integers, which are not
congruent modulen, form a residue system module. From now on the residue of a number
x modulom in the positive residue system—in other words, the remainfle when divided
by the modulen—is denoted byz,mod m).

Division (or reduction) of each side of a congruence is notegally allowed and can only
be done under the following circumstances.

Theorem 2.11.zu = yu mod misthesameas =y mod m/ ged(u, m), SO you can divide
an integer out of a congruence if you divide the modulus bygtbal. of the modulus and the
integer that's being divided out. (Note thatifis a factor ofu thenm/ ged(u, m) = 1.)

Proof. We first start from the assumption = yu mod m or (x —y)u = km. Then we denote
d = ged(u, m), uw = du’ andm = dm’. We have thaged (v, m’) = 1 andm’ = m/ ged(u, m)
and further thatz — y)u’ = km’. By Bézout's theorem = c;u’ + com/, from which it follows
that
r—y=cu(r—y)+cm(z—y)=(ck+ ca(x —y))m/,

or in other words that = y mod m/ ged(u, m), as claimed.

Next we start from the assumption thats y mod m/d or thatz — y = km/d. From this
it follows that(x — y)d = km and furthermoréx — y)u = v'km. Sozu = yu mod m. O

In particular, you can divide an integer that has no commotofa with the modulus out of
the congruence without dividing the modulus.

Corollary. If ged(z, m) = 1 then the numberg + kx (k = 0,1,...,m — 1) form a residue
system module:, no matter what integey is.

Proof. Now we haven numbers. Ify + iz = y + jz mod m, where0 < i,j < m — 1, then
ix = jx mod m and by Theorem 2.11 we know that= ; mod m. Soi — j = km, but
becausd) < i,5 < m — 1 this is possible only whei = 0, i.e. wheni = j. So different
numbers are not congruent. O

Using the same kind of technique we see immediately thatdfx, m) = 1, thenz has an
inverse modulan, in other words, there exists an integesuch that

ry =1 mod m.

In this case we also write™* = y mod m or 1/x = y mod m.* This kind of inverse is
obtained using the Euclidean algorithm, since by Bézobéoteml = ¢z + com and so
r7! = ¢; mod m. On the other hand, cd(z, m) # 1 thenz can’t have an inverse modulo
m, as we can easily see. Note thatifl = y mod mtheny™' =2 mod mor(z7 ') ==«
mod m. Inverses modula: (when they exist) satisfy the usual rules of calculus of pswEor
example,

(zy) '=2"'y! modm and z7"=(H"=(2")"" modm (n=1,2...).

Those numbers of a residue system for whigted(z, m) = 1 form the so-callededuced
residue systemThe respective residue classes are calbetliced residue classesodulom.
We can easily see thatif = y mod m thenged(z, m) = ged(y,m). This means there is
exactly the same amount of numbers in two reduced residuersganodulan (they are the
numbers coprime tan) and that the numbers of two reduced residue systems canifeel pa

4This inverse must not be confused with the rational nuniier

CHAPTER 2. NUMBER THEORY. PART 1 13

off by their being congruent modula. That is, there is a bijection between any two reduced
residue systems moduia. The amount of numbers in a reduced residue system moduso
calledEuler’s (totient) functiondenoteds(m). It's needed for example in RSA cryptosystem.
The most common reduced residue system is the one that iedoont of the positive residue
system. Also note that jf is a prime theri, 2, ..., p— 1 form a reduced residue system modulo

pandg(p) =p— 1.

2.5 Residue Class Rings and Prime Fields

Integers are divided into residue classes, according to which numier. ., m — 1 they are
congruent to modulen. The class that the integerbelongs to is denoted by. Note that

T = x + km, no matter what integer is. We can define basic arithmetic operations on residue
classes using their "representatives” as follows:

T+y=rty , T-y=7-y and T =" (n=0,1,...).

The result of the operation is independent of the choice efépresentatives, which is easy to
confirm. The operation is thus well-defined. The basic priggeof computing with integers
will transfer to residue classes:

(1) + and- are associative and commutative.
(2) Distributivity holds.

(3) Every class: has aropposite class-q, i.e. a class-a such thatt + (—a) = 0. If a = 7,
then obviously—a = —x.

(4) 0 and1 "behave” as they should, i.e.+ 0 = aanda -1 = a. Also0 # 1, if m > 1.

In the algebraic sense residue classes mogduform a so-calleding, see Chapter 4 and
the course Algebra 1. Thigsidue class ring module: is denoted byZ,,. 7Z, is singularly
uninteresting—and some do not think of it as a ring at all.

If ged(z, m) = 1 then the residue clagshas aninverse clasg~! for whichz - 77! = 1.
Naturally, if 7! = y mod m thenz™! = 7. If gcd(z,m) # 1 then there does not exist such
an inverse class. We have that every residue class othed ti@san inverse class exactly when
the modulusn is a prime. In this case the residue class ring is also callednae field. So
in prime fields division, meaning multiplication by the imge class, is available. The smallest
and most common prime field is thénary fieldZ,, whose members are the elemehend1
(calledbits, and mostly written without the overlining @sand1).

Arithmetical operations in residue class rings can be feared in a natural way to arith-
metical operations of matrices and vectors formed of reslasses. This way we get to use
the familiar addition, subtraction, multiplication, posgeand transposition of matrices. Deter-
minants of square matrices also satisfy the basic calounlatiles. Just as in basic courses, we
note that a square matrix has an inverse matrix, if its detemt (which is a residue class in
Z,,) has an inverse class. Note that it is not enough for the mi@tiant to be# 0, because when
using Cramer’s rule to form the inverse matrix we need dwisnodulom by the determinant.
In prime fields it is of course enough for the determinant te@

CHAPTER 2. NUMBER THEORY. PART 1 14

2.6 Basic Arithmetic Operations for Large Integers

Operation of modern cryptosystems is based on arithmetmalputations of large integers.
They must be executable quickly and efficiently. Efficiesa&algorithms are often compared
using numbers of basic steps needed to execute the algoréhsus the maximum lengtN’
of the input numbers. A basic step could be for example amdiBubtraction or multiplication
of the decimald), 1,...,9. The most common of these comparison notations is the $edcal
O-notation. In this caseO(f(N)) denotes collectively any functiog(/V) such that starting
from some lower limitN" > N, we have|g(N)| < Cf(N) whereC' is a constant. Actual
computational complexity is discussed in Section 6.1.

The customary functionsz| (floor of z, i.e. the largest integer which is z) and [z]
(ceiling of z, i.e. smallest integer which s z) are used for rounding when needed.

Addition and subtraction

The common methods of addition and subtraction by hand tedearn in school can be pro-
grammed more or less as they are. Addition and subtractiowibers of lengthV and M
requiresO(max(N, M)) steps, which is easy to confirm.

Multiplication

The usual method of integer multiplication by hand is alstafile for a computer, but it is not
nearly the fastest method. In this method multiplicationwibers of lenghtv and M requires
O(N M) steps, which can be lot.

Karatsuba’s algorithnmis faster than the traditional algorithm. The algorithm ikird of
"divide and conquer” procedure. For multiplication of pog& numbers: andm in decimal
representation we first write them in the form

n=al0*+b and m =cl0* +d

wherea, b, c,d < 10¥ and the maximum length of the numberisor 2k — 1. One of the
numbers: andc can be zero, but not both of them. In other words, at least btieee numbers
is written in baset0* representation. Then

nm = (al0* 4 b)(c10* + d) = y10** 4 (z — y — 2)10* + 2,

where
r=(a+Db)(c+d), y=ac and z=1bd,

so we need just three individual “long” multiplications eitégers (and not four as you may
originally think). When these three multiplications

(a+0b)(c+d), ac and bd

are performed in the same way by dividing each of them inteetfshorter multiplications and
so on, whereby we eventually end up using a simple multipboaable, we get Karatsuba’s
algorithm (where we denot@ROD(n, m) = nm):

Karatsuba’s multiplication algorithm:
1. If n =0orm = 0, we return0 and quit.

2. We reduce the case to one in which both the multiplier aadrtbltiplicand are positive:

CHAPTER 2. NUMBER THEORY. PART 1 15

(2.1) Ifn < 0andm > 0, orn > 0 andm < 0, we compute¢ = PROD(|n/|, |m|), return
—t and quit.

(2.2) If n < 0 andm < 0, we compute = PROD(—n, —m), returnt and quit.
3. If n,m < 10, we look upPROD(n, m) in the multiplication table, and quit.

4. I1f n > 10 orm > 10, we writen andm in the formn = a10* 4+ b andm = ¢10* + d
wherea, b, ¢, d < 10*, as above. In decimal representation this is easy.

5. We computée®ROD(a + b, ¢ + d), PROD(a, ¢) andPROD(b, d), return (the easily ob-
tained)

PROD(n, m) = 10**PROD(a, c) 4+ 10*(PROD(a + b, ¢ + d)
— PROD(a, ¢) — PROD(b, d)) + PROD(b, d)

and quit.

The procedure ends since the maximum length of the numberg baultiplied is reduced to
about half in every iteration.

If we multiply two numbers of lengtiv and denote by<' (V) an approximate upper bound
on the number of basic arithmetical operations on the nusihdr, . .., 9 needed, then it is
apparent thaf((V) is obtained using a recursion formula

K(N) — aN +3K(N/2)if N is even
= aN +3K((N +1)/2)if Nis odd

where the coefficienty is obtained from the number of required additions and suabtnas,
depending on the algorithm used. A certain approximate éédanthe number of required
basic operations is given by

Theorem 2.12.1f N = 2! thenK (N) = (2a + 1)3! — a2!1 = (2a + 1) N'°823 — 2aN.

Proof. The value is correct, wheN = 1. If the value is correct whe®v = 2! then it is also
correct whenV = 2t since

=« + =« + o+ — 3« = (2a+ —Q . O
K 2H—1 2l+1 3K 2l 21+1 3(2 1 31 3 21+1 2 1 3l+1 21+2
aturally the number of basic operations for very ®Dbtained by the theorem, that IS
N lly th ber of basi [f | btained by the th hat i
(20 + 1)N'#2% — 20N = O(N'#2%) = O(N"5%),

is substantially smaller thaf(N?). For example, itV = 2!2 = 4096 then N2 /N'o&23 =~ 32,
There are even faster variants of Karatsuba’'s procedureewhenbers are divided into more
than two parts, see for examplel®NOTTE.

The fastest multiplication algorithms use the so-callest feourier transformation (FFT),
see for example IPSON or CRANDALL & POMERANCE. In this case the number of basic
operations i$)(N In N In(In N)). See also the course Fourier Methods.

CHAPTER 2. NUMBER THEORY. PART 1 16
Division

Common "long division” that is taught in schools can be tfangd to a computer, although
the guessing phase in it is somewhat hard to execute efficiétite base number is large, see
KNUTH. The number of basic operationg¥$ N?) whereN is the length of the dividend. Also
a division algorithm similar to Karatsuba’s algorithm issgible and quite fast.

Division based on Newton’s method, familiar from basic s&g, is very efficient. First we
assume that both the diviser and the dividend: are positive, and denote the length of the
dividend by N and the length of the divisor b¥/. Since the case¥y < M andN = M are
easy, we assume that > M. We denote the result of the divisian= ¢m + r (quotientq and
remainder) by DIV (n, m) = (¢, 7). Note that thery = |[n/m|.

We start by finding the inverse of the divisor. To find the robthe function f(z) =
m — 1/z,i.e.1/m, we use the Newton iteration

f(z:)
f'(s)
However, since we can only use multiplication of integers,s@mputd = 10" /m, i.e. the

root of the functiong(z) = m — 10V /z, for which we correspondingly get the exact Newton
iteration

2
= 2x; — mx;.

Tiy1 = T; —

ma? 2
L = 2 i —Z.

0y - T

To be able to stay purely among integers, we use a versioriiténation that is rounded to

integers:
m |y
Yir1 = 2Y; — 1007 | 1oVt || -

Divisions by powers ofl0 are trivial in the decimal system. The purpose of using thigi
calculate|l], by taking the floor[n10~" ||| we then obtain the quotient by some trial and
error, and finally get the remainder using the quotient.

The following properties are easy to confirm:

Tip1 = 275 —

o 2y — |m10~M[y?10M-N || > 2y — y?/1, in other words, rounding to integers does not
reduce values of iterants.

o If z # [then2z — 2%/I < . So the exact iteration approacHefsom below. Because
m/10M < 1, for the rounded iteration we correspondingly get

2 2
m Y m Y L,
B < B _ < | 22 =

Ly
<2y — 7Y -2 <Il+2

o If z < [then2z — 2%/] > z. So the exact iteration is strictly growing as long as itésan
are< [. The same applies for the rounded iteration also.

5Such an algorithm is described for example in the bookMOTTE and in the old Finnish lecture notesB-
HONEN, K.: Kryptologia and is very well analyzed in the reportBNIKEL, C. & ZIEGLER, J.: Fast Recursive
Division. Max Planck Institut fur Informatik. ForschungsberidiPI-1-98-1-022 (1998).

CHAPTER 2. NUMBER THEORY. PART 1 17

We denote
[= Yi + €;

whereg; is the error. Newton’s methods agaadratic,i.e. they double the amount of the correct
numbers in every step, and so it is here togy; Ik [then

1
el =1 —ys <1—=2yi 1+ 47 = 56

[

1

~| =

By repeating this and noting that- 10V ~* we get (assuming again thgt< [)

=7\

2
|€Z_| < %6121 < 1 <1 2) <. < l’(1+2+22+"'+2i_1)63i _ l1’2iegi < 10(1721')(N7M)€gi.
Now it is required that 0(!~2)(N-M) 2" < 1 Assuming thate,| < 10V~ this is equivalent to

. [1 N-M w
2 O

(confirm!). We choose then

10M 10M
yo = 10N M {—J or yo=10""M [——‘ :
m m

depending on which is nearer the numhér! /m, the floor or the ceiling, whenck,| <
10¥=M /2. So it suffices to choose

N-—-M
I'=|logy——F| = ﬂogz(N - M) - 10g2(10g10 2ﬂ
log;, 2

as the number of iterations.

Using the iteration rounded to integers produces a strigpthyving sequence of integers,
until we obtain a value that is in the interJall + 2). Then we can stop and check whether it is
the obtained value or some preceding value that is the adrfecThe whole procedure is the
following (the output isDIV (n, m)):

Division using Newton’s method:

1. If n =0, we return(0, 0) and quit.

2. If m =1, we return(n, 0) and quit.

3. Ifm < 0, we computddIV(n, —m) = (q,r), return(—q, r) and quit.

4. If n <0, we computddIV(—n,m) = (¢q,r), return(—qg — 1, m —r), if r > 0, or (—¢, 0),
if » =0, and quit.

5. SetN <« length of dividend» and M <« length of divisorm.
6. If N < M, we return(0, n) and quit.

7. If N = M, we compute the quotieqt This is easy, since now < g < 9. (By trying
out, if not in some other way.) We retufn, n — mq) and quit.

CHAPTER 2. NUMBER THEORY. PART 1 18
8. If N > M, we compute 10 /m|. Again this is easy, since < [10”/m] < 10. (By
trying out or in some other way.)

9. If 10M/m — [10M/m| < 1/2, that is, 2 - 10 — 2m|10™/m] < m, we set
yo < 10M=M[10M/m|. Otherwise we sep, < 107~ (|10™ /m]| + 1). Note that
in the latter casg, > [and at least one iteration must be performed.

10. We iterate the recursion formula

m y?
visr =2~ | 107 | Tovw

starting from the valug, until - > 1 andy;,; < ;.

11. We check by multiplications which one of the numbegrs; — 1, ... is the correct!|
and set < |/].

12. We sett + [nk/10"] (essentially just a multiplication) and check by multiplions
again which numberor ¢+ 1 is the correct quotientin the divisionDIV (n,m) = (¢, 7).
We then returiiq, n — mq) and quit.

The procedure in #12 produces the correct quotient becasaseffall » < m and

n—r _n 10V
q= < — < —.
m m m
Further, ifDIV(10Y,m) = (k,7’) thenr’ < m and
nk (gm+r)(10Y —¢) qr’ n r(10N —¢)
10y m10N I TS I

The middle term on the right hand side is in the interaall, 0] and the last term is in the
interval[0, 1). Sogq is eithert or¢ + 1.

Because the maximum numbkof iterations is very small—about the logarithm of the dif-
ference of the lengthv of the dividend and the lengti of the divisor—and in an iteration step
there always are three multiplications and one subtractfontegers of maximum length)\M
(some of which remain constant), division is not essentialbre laborious than multiplication.
Trying out numbers in #7 and #8 does not take that many stéperei

NB. There are many different variants of this kind of diviSidldlRANDALL & POMERANCE
handles the topic with a wider scope and gives more refegence

Powers

Raising the number to then™ powera™ takes too much time if you just repeatedly multiply by
a, since you need then| — 1 multiplications, while it in fact suffices to use at m@stog, |n||
multiplications:

Method of Russian peasants:
1. If n = 0 then we return the powdrand quit.

2. Ifn <0,wesets + a ! andn « —n.

CHAPTER 2. NUMBER THEORY. PART 1 19

3. If n > 1, we compute the binary representatigh;_; - - - b, of n wherej = |log, n] (the
length ofn as binary number minus one, see Theorem 2.4).

4. Seti + 0 andz < 1 andy < a.
5. If i = j then we return the powery and quit.
6. Ifi < jand

6.1 b; = 0 then we sey < y? andi < i + 1 and go to #5.
6.2 b; = 1 then we set + xy andy < y? andi < i + 1 and go to #5.

Correctness of the algorithm is a straightforward consegeef binary representation:
In| = 0,27 +b; 12771 4+ 512 + by

and

a[|n‘ — aijjabj—12j_l Ce ab12ab0_

It's convenient to compute bits of the binary representattdbn one by one when they are
needed, and not all at once. Nowj it= 0, only one multiplication is needed in #6 since then
x = 1. Similarly, wheni = j, only one multiplication is needed in #5. For other values of
1 two multiplications may be needed, so the maximum overathioer of multiplications is
14+ 1+2(j — 1) =24, as claimed.

Actually this procedure works for every kind of power andoalghen multiplication is not
commutative, for example for powers of polynomials and ma$. When calculating powers
modulom products must be reduced to the (positive) residue systedulma:, so that the
numbers needed in calculations won'’t get too large. This yaycan quickly compute very
high modular powers.

The procedure takes its name from the fact that Russian mpsagaed this method for
multiplication when calculating with an abacus and you daink of « - n as then™ power
of a with respect to addition. Apparently the algorithm is velg.o

Integral root

Theintegral I'" root® of a nonnegative integeris |n'/!|. The most common of these roots is
of course thantegral square roo(/ = 2). Denote the length of in binary representation by
N.
We can use the same kind of Newton method for computing agrisiteoot as we used for
division.” For calculating the root of the functiorl — n, i.e.n'/!, we get the Newton iteration
[—1 n

Tit1 = l$i+ 1

l;

However, because we want to compute using integers, we taieration rounded to integers:

e[} (e)]

and use addition, multiplication and division of integers.
The following properties are easy to confirm (e.g. by findirggemal values):

6In some texts it'gn'/!], and in some texts'/! rounded to the nearest integer.
It may be noted that the procedure that used to be taught sotfor calculating square roots by hand is also
similar to long division.

CHAPTER 2. NUMBER THEORY. PART 1 20

1 n -1 n . . .
o |- ((I-Dy+|— < ——y + ——, so rounding to integers does not increase
l yl—l l lyl—l

iterant values.

o If z # n/'andz > 0 then

[—-1 n 1
/1
] x+lxl*1>n .

So the exact iteration approaches the root from "above” tii®@rounded version we get
correspondingly

(=) 2 [(o)

e If z > n'/'"then

The exact iteration is strictly decreasing. The same isftvuthe rounded version.

Denote

1/1
n'/ =Yi— &

and choosg, = 2/"/! as the starting value. This can be quickly computed usinglj@rithm

of Russian peasants. Sinee< 2V theny, > n!/!. First we estimate the obtaineglas follows:
€0 = Yo — U/l — o[N/IT _ 11 < oN/l+1-1/l _ 1/l _ o o(N=1/l _ ,1/1 < v

This Newton’s method is also quadratic. We only confirm thee¢a= 2. (The general case is

more complicated but similar.) #;_1, y; > n'/! then

[—-1 n 1 n
O<e=y—n"'<—yi1+—5—n' = i+ == — 'y
l ly;) L

1 2 _n 1/l 1 1/172 I
Inl/t (?/1—1 + n—2)/1 2n yi—l) Il (Y1 —n/")* = YT €1

<

: : L . 1 :
Repeating this estimation we get (denoting: —— for brevity)

Inl/l
2 2. 19i-1 oi
6 <ae < a-ate , <o <@t
21 2 -1 2 11 (_€o 2 1/171—2
=a" e =a (ag)” =ln''—=) <n/l77.
Int/t

If we now want to have; < 1 then it's sufficient to take:!///!~2" < 1, so (confirm!) a

maximum of |
0gy M
I=1]1 1
s (1)|

iterations is needed. Hence the sufficient number of it@natis proportional téog, NV, which
is very little. So, calculation of an integral root is abostdemanding as division.

NB. Because:!/ 2" = 2, we are only interested in values lfvhich are at most as large as
the length of, others can be dealt with with little effort.

CHAPTER 2. NUMBER THEORY. PART 1 21
Iteration rounded to integers produces a strictly decngasequence of integers, until we
hit a value in the intervain!/! — 2, n'/").

I" root

Newton’s method for computing integral
1. If n =0o0rn = 1then we returm and quit.

2. Sety, <+ 2/V/!l whereN is the length of: in binary representation.

e[} (e)

starting fromy, until y; 1 > v;.

3. Repeat the iteration

4. Check which one of the numbeysy; +1, ... is the correct integral rodt»'/!|, and quit.
Generating a random integer
Random bit sequences are commonly generated usshitaegistef of p order modul:
Ti = a17i—1 + aori—g + -+ -+ apr;—, mod 2

whereay, as, ..., a, are constant bitso(or 1, a, = 1). First we need the initial "seed” bits
ro,T1,--.,7p—1. Here we calculate using the positive residue system matliiather words,
using bits. Of course the obtained sequenge, ., ... is not random in any way, indeed, it is
obtained using a fully deterministic procedure and is ghcdlength of period is at mog¥).
When we choose the coefficients a, . . ., a,—; conveniently, we get the sequence to behave
"randomly” in many senses, the period is long and so on, seeXample KNUTH. In the
simplest cases almost every coefficient is zero.

Shift registers of the type

Ti =Ti—qg +7Ti—p mod 2,

wherep is a prime and; is chosen conveniently, often produce very good random Bitene
choices, where the numbgrcan be replaced by the number ¢, are listed in the table below.

q (p — qgworks also)| p q (p — q works also)
1279 216,418

2281 715,915, 1029

3217 67,576

W =
=g N otw o
W W N ==

3 4423 271,369, 370, 649, 1393, 1419, 2098
5,6 0689 84,471,1836, 2444, 4187
,6,7,13 19937 881,7083, 9842

89 38 23209 1530,6619, 9739

127 1,7,15,30,63 44497 8575,21034

521 32,48, 158, 168 110503 25230, 53719

607 105,147,273 132049 7000, 33912, 41469, 52549, 54454

These values were found via a computer sedr8mall values of of course are not very useful.

8A classic reference is @.oMB, S.W.: Shift Register Sequencésgean Park Press (1982)

9The original articles are ERLER, N.: On Primitive Trinomials Whose Degree is a Mersenne Benb.
Information and Controll5 (1969), 67—69 and ERINGA, J.R. & BLOTE, H.W.J. & COMPAGNER, A.: New
Primitive Trinomials of Mersenne-Exponent Degrees for dtan Number Generationnternational Journal of
Modern Physic€£3 (1992), 561-564.

CHAPTER 2. NUMBER THEORY. PART 1 22

In matrix form in the binary field,, see the previous section, the shift register is the fol-
lowing. Denote

ay Gz -+ Gp—1 Gy

Titp-1 1 0 -« 0 0

r; = TH.pi2 and A=|0 1 --- 0 0
Ti 0o 0 --- 1 0

A is the so-calledompanion matrixf the shift register. Then
r; 1 = Ar; mod 2

and hence
r,=A'ryg mod2 (i=0,1,...).

The matrix powerA’ can be quickly computed modutausing the method of Russian peasants.
So, perhaps a bit surprisingly, we can quite quickly comperi@s of the sequeneg, 7,1, . ..
"ahead of time” without computing that many intermediatate. Note that for the bitstream to
be "random”, the matriR; = (r;,...,r;4,—1) Obtained fromp consecutive vectors; should
be invertible, i.edet(R;) Z 0 mod 2, at some stage. Then you can solve the equaiiB) =
R;;1 mod 2 for the matrixA. For large values op all these calculations naturally tend to
become difficult.

Random integerare obtained from random bit sequences using binary reqtasm. Ran-
dom integersy, s, ... of maximum binary length are obtained by dividing the sequence into
consecutive blocks of bits and interpreting the blocks as binary numbers.

NB. Generating random bits and numbers needed in encryptionite gemanding. "Badly”
generated random bits assist in breaking the encryptiont.a@me may say with good reason
that generation of random numbers has lately progresseufgigntly largely due to the needs
of encryption.

The shift register generator above is quite sufficient fostial” purposes, even for light
encrypting, especially for larger values @f For a shift register generator to be cryptologically
strong, it should not be too predictable and for thiswust be large, too large for practice. There
are better methods, for example the so called Blum-Blunbk-§éuerator, which we discuss in
Section 7.7. See al$BOLDREICH.

Another common random number generator is the so-chiledr congruence generatdt
generates a sequeneg x1, ... of random integers in the interval 1, . .., m using the recur-
sion congruence

Tix1 =ar; +b mod m

wherea andb are given numbers—also the "seed” inpytis given. By choosing the numbers
a andb conveniently we get good and fast random number generatoichvare suitable for
many purposes. (See for exampl®&rH.) Ther and-operation in Maple used to be based on
a linear congruence generator where= 999 999 999 989 (a prime),a = 427419669 081 and

)l () o) (5) i

Since
the sequence, =1, ... can also be calculated very quickly "in advance” using théhoe of
Russian peasants, even for large numbeenda. On the other hand, ged(z; —z;_1,m) = 1,
as it sooner or later will be, we can solve the congruence — z; = a(z; — z,-1) mod m
for a, and then get = z;,; — ax; mod m. For pretty much the same reasons as for the shift
register generator, the linear congruence generator jgalpgically very weak.

Chapter 3

SOME CLASSICAL CRYPTOSYSTEMS
AND CRYPTANALYSES

3.1 AFFINE. CAESAR

To be able to use the results of number theory from the pregettiapter, symbols of plaintext
must be encoded as numbers and residue classes. If theké ayenbols to be encoded, we
can use residue classes modifo In fact, we may think the message to be written using these
residue classes or numbers of the positive residue system.

In the affine cryptosysterAFFINE a message symbol(a residue class modula repre-
sented in the positive residue system) is encrypted in th@fimg way:

er, (1) = (ai + b, mod M).

Herea andb are integers and has an inverse clagsnodulo}M, in other wordgcd(a, M) = 1.
The encrypting key; is formed by the paita, b) and the decrypting ke, by the pair(c, b)
(usually represented in the positive residue system). Eloeygting function is

dk2(]) = (C(] - b)? mod M)

So the length of the message block is one. Hence affine emagyigtalso suitable for stream
encryption. When choosing andb from the positive residue system the number of possible
values ofa is ¢(M), see Section 2.4, and all in all there ax@\/) M different encrypting keys.
The number of encrypting keys is thus quite small. Some galue

B(10) =4, $(26) = 12, ¢(29) = 28, $(40) = 16.

The special case where = 1 is known as theCaesar cryptosystet@BAESAR. A more
general cryptosystem, where
€k, (Z) = (p@)v mod M)

andp is a polynomial with integral coefficients, isn’t really ntumore useful as there are still
very few keys (why?).

NB. AFFINE resembles the linear congruence generator discubséore. The cryptosystem
HILL, to be introduced next, resembles the shift registeegator. This is not totally coinciden-
tal, random number generators and cryptosystems do haveam@ection: often you can obtain
a strong random number generator from a strong cryptosyspessibly a not too useful such,
though.

23

CHAPTER 3. SOME CLASSICAL CRYPTOSYSTEMS AND CRYPTANALYSES 24

3.2 HILL. PERMUTATION. AFFINE-HILL. VIGENERE

In Hill's ! cryptosystentILL we use the same encoding of symbols as residue classdslmo
M as in AFFINE. However, now the block is formed @fresidue classes considered as a
d-vector. Hill’s originald was2. The encrypting key is d x d matrix H that has an inverse
matrix modulo)/, see Section 2.5. This inverse matkix ! = K modulo) is the decrypting
key.
A message block
i=(i1,...,1%q)

is encrypted as
eu(i) = (iH, mod M),

and decrypted similarly as
ex(j) = (JK, mod M).

Here we calculate moduld/ in the positive residue system.

There are as many encrypting keys as there are invertiklel matrices moduld/. This
number is quite hard to compute. However, usually there &atively large number of keys if
d is large.

A special case of HILL is PERMUTATION or the so-callpeérmutation encryptionHere
H is apermutation matrixin other words, a matrix that has exactly one element equaiéan
every row and in every column all other elements being ze¥ose that in this casBl—! = HT,
or thatH is an orthogonal matrix. In permutation encrypting the sgtalof the message block
are permutated using the constant permutation giveH by

A more general cryptosystem is AFFINE-HILL or théine Hill cryptosystemComparing
with HILL, now the encrypting ke, is a pair(H, b), whereb is a fixedd-vector modulal/,
and the decrypting kel is the corresponding pafK, b). In this case

ex, (1) = (iH 4+ b, mod M)

and
€k2(j) = ((J - b)K> mod M)

From this we obtain a special case, the so-caligenéré encryptionVIGENERE by choosing
H = 1, (d x d identity matrix). (This choice oH isn't suitable for HILL!) In Vigeneére’s
encryption we add in the message block symbol by symbol a &eyof lengthd modulo M .

Other generalizations of HILL are the so-calkedor cryptosystemshat are realized using
mechanical and electro-mechanical devices. The mostiamakample is the famous ENIGMA
machine used by Germans in the Second World War. 3eeBAA or BAUER.

3.3 ONE-TIME-PAD

Message symbols are often encoded binary numbers of arcergaiimum length, for example
ASCII encoding or UNICODE encoding. Hence we may assumetti@imessage is a bit
vector of lengthM. If the maximum length of the message is known in advance aog/pting
is needed just once then we may choose a random bit vbdiar vector modul@) of length
M as the key, the so-callemhe-time-padwhich we add to the message modalduring the

ILester S. Hill (1929)
2Blaise de Vigenére (1523-1596)

CHAPTER 3. SOME CLASSICAL CRYPTOSYSTEMS AND CRYPTANALYSES 25

encryption. The encrypted message vector obtained ag issalso random (why?) and a
possible eavesdropper won'’t get anything out of it withdwt key. During the decrypting we
correspondingly add the same vedbtaio the encrypted message, si2te= 0 mod 2. In this
way we get the so-calleohe-time-pad cryptosyste@NE-TIME-PAD.

3.4 Cryptanalysis

The purpose ofryptanalysigs to break the cryptosystem, in other words, to find the deary
key or encrypting key, or to at least produce a method whidhletius get some information
out of encrypted messages. In this case it is usually asstimethe cryptanalyzer is an eaves-
dropper or some other hostile party and that the cryptaealjmows which cryptosystem is
being used but does not know the key being used.

A cryptanalyzer may have different information available:

(CO) just some, maybe random, cryptotestyptotext only,

(KP) some, maybe random, plaintext and the correspondyatext known plaintex
(CP) achosen plaintext and the corresponding cryptotéxigen plainteXt

(CC) achosen cryptotext and the corresponding plaintdydgen cryptotext

Classical attack methods are often basedrequency analysjghat is, knowledge of the
fact that in long cryptotexts certain symbols, symbol pagsnbol triplets and so on, occur at
certain frequencies. Frequency tables have been preparddef ordinary English language,
American English and so on.

NB. If a message is compressed before encrypting, it will losgesaf its frequency information,
see the course Information Theory.

We now take as examples cryptanalyses of the cryptosystscissded above.
AFFINE

In affine encryption the number of the possible keys is ugwsatiall, so they can all be checked
one by one in a CO attack in order to find the probable plaint@gparently this won’t work
if there is no recognizable structure in the message. Onttier dhland, we can search for a
structure in the cryptotext, in accordance with frequerablds, and in this way find KP data,
for example the most common symbol might be recognized.

In a KP attack it is sufficient to find two message-symbol-togymbol pairs(i,, j;) and
(12, j2) such thated(i; — i, M) = 1. Such a pair is usually found in a long cryptotext. Then

the matrix
17 1
9 1

is invertible modula)/ and the key is easily obtained:

()=) (5) o
(1) == (L) () o

or

CHAPTER 3. SOME CLASSICAL CRYPTOSYSTEMS AND CRYPTANALYSES 26

In a CP attack the symbol paifs,, j;) and(is, j2) can actually be chosen. In a CC attack it is
sufficient to choose a long cryptotext. Because it is quisy ¢éabreak, AFFINE is only suitable
for a light covering of information from casual readers.

HILL and AFFINE-HILL

The number of keys in Hill's cryptosystem is usually largepecially ifd is large. A CO attack
does not work well as such. By applying frequency analysises&P data can in principle be
found, especially it/ is relatively small. In a KP attack it is sufficient to find mage-block-
cryptoblock pairgiy, j1), - - ., (i4, ja) Such that the matrices

i Jh
S=1: and R =
ig Ja
are invertible modulal/. Note that in fact it is sufficient to know one of these masice

invertible, the other will then also be invertible. Of coai$ can be directly chosen in a CP
attack andR in a CC attack. IS andR are known, the ke¥ is easily obtained:

R=SH mod M or H=S"'R mod M.

HILL is difficult to break, if one doesn'’t at least have some #&a available, especially if
d is large and/or the cryptanalyzer does not know the valuk 6 the other hand, a KP attack
and especially a CP or a CC attack is easy—uvery little dataeslad—so HILL is not suitable
for high-end encryption.

AFFINE-HILL is a little harder to break than HILL. In a KP atfia you need message-

block-cryptoblock pairgiy, ji1), - - ., (ig11, jar1) Such that the matrices
I — g4 J1 = Jan
S = : and R =
ig —ig11 Ja — Jar

are invertible modulal/. Note again, that it is actually sufficient to know that onetlodse
matrices is invertible. In a CP atta&kcan be directly chosen, as cBnin a CC attack. IfS

andR are known H is easily obtained in the same manner as above. V#hénknown,b is

easily obtained.

VIGENERE

VIGENERE was a widely used cryptosystem in its heydays.risking was improved on with
time, reaching a quite respectable level of ingenuity. Tis¢ $itep is to findl. There are specific
methods for this, and in VIGENERE is usually quite large. After this we can applgduency
analysis. See SNSON or SALOMAA or BAUER.

ONE-TIME-PAD

If the key is not available to the cryptanalyzer, ONE-TIMEBPis impossible to break in a
CO attack. However, if the same key is used many times, wedliscome to a VIGENERE-
encrypting.

Chapter 4
ALGEBRA: RINGS AND FIELDS

4.1 Rings and Fields

An algebraic structurds formed of a setd. There must be one or more computing operations
defined on this set’'s elements and these operations musivfetbme calculation rules. Also
usually a special role is given to some element(s) of

Aringis a structurek = (A, @, ®, 0, 1) whered® is the ring’saddition operation(is the
ring’s multiplication operation(is the ring’szero elementandl is the ring’sidentity element
(and0 # 1). If ®,®,0 and1 are obvious within the context then the ring is often simply
denoted byA. It is also required that the following conditions hold true

(1) @ and® arecommutativeoperations, in other words, always

aPb=b®da and a®Ob=>b0Oa.

(2) ® and® areassociativeoperations, in other words, always
(a®b)dec=a®(bdc) and (a®b)Oc=a® (bOc).

It follows from associativity that long sum and product ¢tsatan be written using paren-
theses in any (allowed) way you like without changing theileften they are written
completely without parentheses, for exam@{eb a; @ --- D ap Ora; ©® as @ - - - © ag.
Especially we get in this wamultiplesandpowers that is, expressions

k

ka=a®---®Pa and a"=a®---Oa
———— —_———
k times k times

and, as special caség, = 0, la = a, a° = 1 anda' = a.
(3) 0d a =aandl ® a = a (note how these are compatible with multiples and powers).
4) a® (bdc)=(a®b) @ (a®c) (distributivity).

(5) For every element there is aradditive inverseor opposite elementa, which satisfies
(—a) ® a = 0. Using additive inverses we obtasubtractiona © b = a ® (—b) and
negative multiple$—k)a = k(—a).

NB. To be more precise, this kind of ring is a so-calledcommutative ring with identitya
proper ring is an even more general concept in the algebraitss. See the course Algebra 1.
In future what we mean by a ring is this kind of commutative rith identity.

27

CHAPTER 4. ALGEBRA: RINGS AND FIELDS 28

If the following condition (6) is also valid in addition to éhabove ones, theR is a so-called
field:

(6) For every element # 0 there is amultiplicative) inverse: !, for whicha © a=! = 1.
Using inverses we obtaitivisiona/b = a ® b~! andnegative powera=* = (a~1)*.

It is usually agreed that multiplication and division must pperformed before addition and
subtraction, which allows us to leave out a lot of parentbegs@om these conditions we can
derive many "familiar” calculation rules, for example

a@b_a b

—(a®b) =(—a)®b and c@d_CQd'

So, every field is also a ring. Familiar rings which are notfedre for example the ring of
integersZ and variougpolynomial rings.e.g. polynomial rings with rational, real, complex or
integral coefficients, denoted I§)[z], R[z], C[z] andZ[z]. Computational operations in these
rings are the common and-, the zero element i8, and the identity element is Also Z,,
(residue classes modute) forms a ring, so a residue class ring is truly a ring, seei@e&. 5.

Familiar fields areaumber fieldsthe field of real numberR, +, -, 0, 1), the field of rational
numbers(Q, +, -,0,1) and the field of complex numbe(&, +,-,0, 1), and e.g. the field of
rational functions with real coefficient® (z), +, -, 0, 1) and theprime field{Z,, +, -, 0, 1) (see
Section 2.5). These are usually denoted brieffRb¥), C, R(x) andZ,.

4.2 Polynomial Rings

Polynomials defined formally using the elements of a fi€lds coefficients, form the so-called
polynomial ringof F, denoted by#'[x]. A polynomial is written as the familiar sum expression
using a dummy variable (herns:

p(z) = ay® a1r D axx® ® --- P ay,a™, whereag,a,...,a, € F anda, # 0.

Thezero polynomiails the empty sum. In the usual way the zero polynomidl'pf is identified
with the zero elemernl of ' and constant polynomials with the corresponding elemenis o
Further, thedegreeof a polynomialp(z), denotedleg(p(x)), is defined in the usual way as the
exponent of the highest power ofin the polynomial (the degree abovers It is agreed that
the degree of the zero polynomial sl (just for the sake of completeness). The coefficient
of the highest power af in the polynomial is called thkeading coefficien{abovea,,). If the
leading coefficient is= 1, then the polynomial is a so-call@edonic polynomialConventionally
the terml1z’ can be replaced hy’ and the tern{—1)z* by ©z%, and a ternmDz’ can be left out
altogether.

Addition, subtractiorand multiplication of polynomials are defined in the usual way us-
ing coefficients and the corresponding computational dgers of the field. Let’s study these
operations on the generic polynomials

pi(z) =ag D a1 D asx® © - Daa” and py(x) = by © bir D box® © - - D ba™
wherea,,, b,, # 0. (So we assume here thatz), p2(x) # 0.) Then

p1(z) B pa(z) = co B 13 @ 2 B - -+ D g’

CHAPTER 4. ALGEBRA: RINGS AND FIELDS 29

wherek = max(n, m) and
a; ®b;, ifit <n,m
g =Ra,fm<i<n

b, ifn <i<m.

Note that ifn = m thenc, can be= 0, in other words, the degree of the sum can<bé.
Further, theopposite polynomiabdf p,(x) is

—pa(a) = (=bo) & (=b1)z ® (~bp)2® & - -+ ® (=by) 2™
and we get the subtraction in the form
p1(z) © p2(z) = p1(x) © (—p2(2)).

Multiplication is defined as follows:

p1(2) Opa(x) = co B 1z B 22” B -+ By
where
C; = @ a; ® bs-
t+s=1
Hence

deg(p1(7) © pa(r)) = deg(pi(x)) + deg(pa(z)).

It is easy, although a bit tedious, to confirm that {i#&x], ©, ©®, 0, 1) obtained in this way is
indeed a ring.
Furthermoregivisionis defined for polynomiala(z) andm(z) # O in the form

a(r) = q(z) ©m(x) ©r(x) , deg(r(z)) < deg(m(z))

(quotientq(x) andremainderr(x)). Remember it was agreed that the degree of the zero poly-
nomial is—1. The result of the division is unambiquous, because if

a(r) = qi(x) © m(x) & ri(r) = g(x) © m(x) © ra(x)
wheredeg(ri(z)), deg(ra(z)) < deg(m(z)) then
ri(x) © ra(z) = (@2(2) © qu(x)) © m(x).

But deg(r1(z) © r5(x)) < deg(m(z)), so the only possibility is that,(z) © ¢, (x) is the zero
polynomial. i.eq(z) = ¢2(z), and further that, (z) = ro(z).

Division can be performed by the following algorithm, whittten also shows that division
is possible (the output is denoted BYV (a(z), m(z)) = (¢(z), r(x))):

Division of polynomials:

1. Setg(x) < 0 andn < deg(a(z)) andk «+ deg(m(z)). Denote the leading coefficient
of m(x) by my.

2. If n < k, return(¢(x), a(z)), and quit.
3. Find the leading coefficient, of a(x).

CHAPTER 4. ALGEBRA: RINGS AND FIELDS 30

4. Set
a(z) + a(z) © (a, @my) ©@ 2" F © m(x)
and
q(w) < q(2) & (an Omy") © 2" "
andn < deg(a(x)) and go to #2.

Each time we repeat #4 the degregets smaller and so eventually we come out at #2.

Further, we can define factors and divisibility as in Secfidh If a(z) = ¢(z) © m(z), we
say thatu(x) is divisibleby m(x) or thatm(z) is afactor of a(x). A polynomial which has no
factors of lower degree other than constant polynomialaliedirreducible.

When dividinga(z) by m(z) the remainder(x) is said to be a residue af(x) modulo
m(zx), compare the corresponding concept for integers in Se2tibnn(z) acts as anodulus.
Here it is assumed that the modulus is at least of degrééhe same kind of notation is also
used as for integers: If the residues:0f) andb(x) modulom(x) are equal, we denote

a(x) =b(x) mod m(x)

and say that(x) is congruent tob(z) modulom(z). The same calculation rules apply to
polynomial congruences as for integers.

The residue class:(x) = r(z) corresponding to the residu¢z) is formed by all those
polynomialsa(z) whose residue module(z) is r(x). All residue classes modute(x) form
the so-calledesidue class ringr factor ring or quotient ringF[z]/m(z).} It is easy to see, in
the same way as for integers, that residue classes medulpcan be given and be calculated

with by "using representatives”, in other words,

~—

a1(x) @ as(z) = ar1(x) D az(z) , —alx)=—a(z

a1(x) © as(x) = a1(x) © az(x) , ka(x) = ka(x)

Y

a1(x) ® az(z) = a1(x) ® az(xz) and a(z) = a(z)¥,

and the result does not depend on the choice of the repréigsesta(The operations are thus
well-defined.) The most common representative system isehéormed by all possible re-
mainders, or polynomials of at most degreg(m(z)) — 1. HenceF'[z]/m/(x) is truly a ring.

Furthermore, just as we showed that every elemefit,afther than the zero elemehhas
an inverse, we can show that every element'pf] /p(x) other than the zero eleme@thas an
inverse, assuming that the modujys) is an irreducible polynomial. For this purpose we need
the greatest common divisor of two or more polynomial$’ir] and the Euclidean algorithm
for polynomials.

The greatest common divisdg.c.d.) of the polynomials(z) andb(z) of F[z] (not both
the zero polynomial) is a polynomial(xz) of the highest degree that divides batfx) and
b(x), denotedi(z) = ged(a(z),b(z)). Note that such greatest common divisor is not unique,
since ifd(z) = ged(a(z),b(z)) then alsoc ® d(x), wherec # 0 is constant polynomial, is
ged(a(zx), b(z)). Itis therefore often required thdfz) is a monic polynomial.

Theorem 4.1. (Bézout's theorem])f at least one of the polynomiaig§x) andb(x) is nonzero
then any g.c.d. of theirs can be written in the form

d(z) =c1(z) ©®a(x) @ co(z) © b(x) (Bézout's forn).

In addition, ifa(z), b(x) # 0, it may be assumed thatg(c,(x)) < deg(b(z)) anddeg(ca(x)) <
deg(a(z)).

LA similar notation is often used for integet&;, = Z/m.

CHAPTER 4. ALGEBRA: RINGS AND FIELDS 31

Proof. The proof is quite similar to the proof of Theorem 2.5. We deriéCD(a(x), b(z)) =
(d(x),c1(x), ca(x)) and assume thateg(a(z)) < deg(b(z)). The (Generalized) Euclidean
algorithmneeded in the proof is the following recursion:

The (Generalized) Euclidean algorithm for polynomials:
1. If a(z) = 0 then we returrGCD(a(z), b(x)) = (b(x), 0, 1), and quit.

2. If a(x) # 0 is a constant polynomial, we retufaCD(a(x),b(z)) = (a(x),1,0), and
quit.

3. If deg(a(z)) > 1 then we find the residue(z) of b(z) moduloa(x), in other words,
we write b(z) = ¢(z) © a(z) & r(z) wheredeg(r(z)) < deg(a(x)). Then we find
GCD(r(x),a(z)) = (d(x),e1(x), e2(x)). Becausel(z) = e;(x) ® r(z) ® ex(z) © a(x),
thend(x) = ged(a(z), b(x)) and

d(x) = (e2(2) © ex(x) © q(2)) © alx) ® ex(x) © b(x).
We returnGCD(a(x),b(x)) = (d(z), ea(x) © e1(z) ® q(x), e1(x)), and quit.

The process ends sinaén(deg(r(z)), deg(a(x))) < min(deg(a(z), deg(b(x))), in other words,
each time we callzCD the minimum degree gets lower. O

If ged(a(x), m(x)) is a constanf # 0 then by multiplying both sides of Bézout’s form by
£~ we obtain
1=-¢i(x) ®al(x) ®ey(r) ®m(x).

Hence in this case(z) has an inverse; () modulom(x), i.e. a(z) has an inverse;(z) in
F[z]/m(zx). (Assuming thatleg(m(z)) > 1.) At the same time we have a method for finding
the inverse.
In the special case whepgzr) is an irreducible polynomial of'[x] and its degree is at least
1 the factor ringF'[z|/p(z) is a field. Elements of this field are usually written in theides
form
CoDATD®er’® - ® eyt

wheren = deg(p(z)) and the coefficientsy, i, . . ., ¢, are elements of’, that is, essentially
asn-vectors whose components areAn Note that in this forne,,_; can be= 0. If p(z) is of
the first degree theR'[z]/p(x) = F, that is, we return to the original field.

Example. Irreducible polynomials oR [x] are, except for the constants, either of the first or the
second degree. (This statement is equivalent to the Funuairtbeorem of algebra, see the
course Complex Analysis.) We obtain from the foriRemnd from the lattefC. So for example

C = R[z]/(«? + 1). On the other hand, irreducible polynomials®fz] are constants or of the
first degree, so that doesn’t lead us anywhere.

A polynomial ring R[x] can also be formed using the elements of the firags coefficients,
in this way we obtain for example the polynomial ring withager coefficient&|x]. In such
polynomial rings addition, subtraction and multiplicatiare defined as usual, but division is not
generally possible. By studying the division algorithmetbmes clear thativision is defined
if the leading coefficient of the dividing polynomial has awmerse inR. In the special case
wherethe divisor is a monic polynomial division is defined in anyypomial ring. Hence the
residue class ring[z]/m(x) is defined only if the leading coefficient of(x) has an inverse in
R, and always ifn(z) is a monic polynomial.

This kind of division is needed for example in the NTRU crygtstem, see Chapter 11.

CHAPTER 4. ALGEBRA: RINGS AND FIELDS 32

4.3 Finite Fields

Prime fields were denoted %}, in Section 2.5 or as residue classes modulo a prime number
A prime field is one example of finite field,but there are others. To obtain these we choose
an irreducible polynomiaP (z) from the polynomial ringZ, [x] of the prime fieldZ,. Residues
modulo P(x) form the fieldZ,[z]/P(z) the elements of which are usually expressed in the
form

o+t e+ -+t
wheren = deg(P(z)) andcy, . ..,c,—1 € Z,, Or essentially as vectorsy, ¢y, . .., ¢,—1). This
field is finite, it has as many elements as there are residudslmg(z) (that is,p™).

It can be shown (passed here), that every possible finitedaide obtained in this way—
including the prime fieldZ, itself. So the number of elements in a finite field is always a
power of a prime number. There are many ways to construcefiigtds, in particular, there
are usually more than one irreducible polynomial to choosefin Z,[x], but all finite fields
with p™ elements are structurally the same, that is, they are igumoto any fieldZ,[x]/P(x)
wheredeg(P(z)) = n. Hence there is essentially only one finite field withelements, and it's
denoted byF,. or by GF(p").? For each powep™ there exists aff,», in other words, you can
find irreducible polynomials of all degrees> 1 in the polynomial ringzZ,,[z].

NB. If we take an irreducible polynomidP(z) of degreem with coefficients in the finite field
[F,», i.e. an irreducible element of the polynomial rifig. x|, then—as noted—the factor ring
F,~»/P(x) of residues moduld(x) is a field that hagp™)™ = p™™ elements. This field must
belF,~~, and it is isomorphic to somé,[z]/Q(x) whereQ(z) is an irreducible polynomial of

degreenm in Z,|x].

In practice calculating in a finite fielf,» is done by expressing the elements as residue
classes modulo some irreducible polynomiéilr) € Z,[x] of degreen. The operations are
carried out by using representatives of degree no highanthal, or residues, to which results
are also reduced modul®(z) by division. If p and/orn is large, these operations are obviously
very laborious by hand. There are other representationfirfive fields. Representation as
powers of primitive elements is used a lot in some cryptasyst(see Chapter 10).

Example. To construcif,s we may choose the irreducible polynomigly) = 1+xz+2%+ 2% +
2% in Z,[z] of degrees. Let's check thaf’(x) is indeed irreducible using the Maple program:

> | rreduc(1+x+x"3+x"4+x"8) nod 2;

true

Elements of',s are in the residue form
bo + bll' + bQI‘Q + bgl‘g + b4l‘4 + b5l‘5 + b@[[’ﬁ + b7[[’7

whereby, .. ., b; are bits, essentially as bit vecto(8y, by, bs, bs, b, b5, bg, b7). Using theGF
library of Maple we can calculate in finite fields, althougk & bit clumsy. Let’s try the library
onFys:

> GF256: =GF(2, 8, 1+X+X"3+x"4+Xx"8):
> a: =GF256[Convertln] (x);

'GF” = "Galois’ field”. Of courseZ,, = F, = GF(p).

CHAPTER 4. ALGEBRA: RINGS AND FIELDS 33

a:=z mod 2
> GF256[‘"] (a, 1200);
(2" +2+ 2%+ 23+ 2 + 24+ 1) mod 2
> c: =GF256[i nverse](a);
ci="+2>+22+1) mod 2
> GF256[“ +'] (a, GF256[‘"~] (c, 39));
(z"+2°+2°+1) mod 2

So here we calculated in residue form the element®, 2= and =z + z3°. The command
Conver t | n converts a polynomial to Maple’s inner representation.
If you don’t know any suitable irreducible polynomial&f[z], Maple will find one for you:

> GF81: =GF(3, 4):
> GF81[extension];

(T*+T3+2T +1) mod 3

The choice can be found by using et ensi on command. So here we got as a result the
irreducible polynomiall + 2z + 23 + x* of Z3[z].

Matrix and vector operations in finite fields are defined asaliby the operations of their
elements. In this way we can apply addition, subtractioritiplication, powers and transposes
of matrices, familiar from basic courses. Also determisasftsquare matrices follow the fa-
miliar calculation rules. Just as in basic courses, we rfided square matrix has an inverse
matrix if and only if its determinant is not the zero elemehthe field.

Besides cryptology, finite fields are very important for ecorrecting codes. They are dis-
cussed more in the courses Finite Fields and Coding Theargd@ferences are 8ELIECE
and LbL & NIEDERREITERaNd also GQRRETT. The mass encryption system AES, which is
in general use nowadays, is based on the finite figldsee the next chapter.

Chapter 5
AES

5.1 Background

AES (Advanced Encryption Standaisia fast symmetric cryptosystem for mass encryption. It
was developed through competition, and is based oRtBRDAEL systenpublished in 1999
by Joan Daemen and Vincent Rijmen from Belgium, se&MeEN & RIIMEN. AES replaced
the old DES system (Data Encryption Standard, see Appepdbd)shed in 1975.

AES works on bit symbols, so the residue classes (bis)d1 of Z, can be considered
as plaintext and cryptotext symbols. The workings of RIJNHDAcan be described using the
field Fys and its polynomial rindf.s [z]. To avoid confusion we useas the dummy variable in
the polynomial ring and as the dummy variable for polynomials#3 needed in defining and
representing the fieldl,s. Furthermore, we denote addition and multiplicatiofirya by & and
®, the identity element is denoted hiyand the zero element 1§, Note that because= —1
in Z,, the additional inverse of an elementZn[z], Fys and inFys[z] is the element itself. So
subtractions is the same as additian, in this case.

5.2 RIINDAEL

In the RIJINDAEL system the lengthy of the plaintext block and the length of the key are
independently either28, 192 or 256 bits. Dividing by32 we get the numbers
s Ik
BT 3y 8N4 k=g
Bits are handled as bytes ®bits. An8-bit byteb;bs - - - by can be considered as an element of
the finite fieldF,s, which has the residue representathgn- by + by + bya® + by + bsa® +
bex® + b727, see the example in Section 4.3 and note the order of terms.
The key is usually expressed ad & Nk matrix whose elements are bytes. If the key is,
byte by byte,
k = kookiokaoksokoiki1kar - - - k33,NK—1

then the corresponding matrix is

koo kor koo -+ kong—1
K — kio ki kg - King—1
koo kot koo -+ ko ng—1
k3o k31 ksa -r k31

34

CHAPTER 5. AES 35
Note how the elements of the matrix are indexed starting zern. Similarly, if the input block
(plaintext block) is, byte by byte,

a = Gppa10020230Q01311021 * * - A3 Ng—1

then the corresponding matrix is

Gpo Qo1 Ap2 - (4o ,Ng-1
A — @10 @11 Q12 A1 Np—1
Q20 Q21 Q22 -+ A2 Ng—1
Q3o aAz1 Az -+ A3 Ng—1

During encryption we are dealing with a bit sequence of leihgtthe so-calledtate.Like the
block, it is also expressed byte by byte in the form df:a Ng matrix:

So0 So1 So2 " So,Ng-—1
S — S10 S11 S12 " S1,Np-1
S20 S21 S22 S2 Np-1
8§30 S31 S32 c S3Np-1

Elements of the matriceK, A andS are bytes oR bits, which can be interpreted as ele-
ments of the fieldF,s. In this way these matrices are matrices over this field. Aaotvay to
interpret the matrices is to consider their columns as sempgeof elements of the field,s of
length4. These can be interpreted further, from top to bottom, afficmats of polynomials
with maximum degre& from the polynomial ringFys[z]. So, the stat& mentioned above
would thus correspond to the polynomial sequence

S00 D S102 D $202° B $302° , So1 D 5112 D s2:12° D 5312° ...,
SO7NB—1 e, SLNB—lZ e, SQ’NB7122 &, 537NB—123'

For the representation to be unique, a given fixed irredagiblynomial of degre& from Z, x|
must be used in the constructioniaf. In RIINDAEL it is the so-calle@RIJINDAEL polynomial

p(r) =1+z+2°+ 2"+ 2°

which, by the way, is the same as in the example in Section 4.3.

5.2.1 Rounds

There is a certain numbéf of so-calledoundsin RIINDAEL. The number of rounds is given
by the following table:

NR NB =4 NB = 6 NB = 8
Nk =4 10 12 14
Nk =6 12 12 14
Nk =8 14 14 14

The " round receives as its input the current si@tand its own so-calledound keyR,;. In
particular, we need the initial round kdé¥,. In each round, except for the last one, we go
through the following sequence of operations:

S + SubBytes(S)

S <+ ShiftRows(S)

S < MixColumns(S)

S + AddRoundKey(S, R;)

CHAPTER 5. AES 36

The last round is the same except that we dvipColumns.

The encrypting key i®xpandedirst and then used to distribute round keys to all rounds.
This and the different operations in rounds are discussedpgrone in the following sections.
Encrypting itself then consists of the following steps:

e Initialize the stateS < AddRoundKey (A, Ry).
e N — 1 "usual” rounds.
e The last round.

When decrypting we go through the inverse steps in revedss.or

5.2.2 Transforming Bytes SubBytes)
In this operation each bytg; of the state is transformed in the following way:

1. Interprets;; as an element of the fielfl,s and compute its inversg*jl. It is agreed here
that the inverse of the zero element is the element itself.

2. Expands;,' in eight bitsb;bsbsbsbsbabi by, denote
b(x) = by + by + byx? + bsx® + byx* 4 bsz® + bga® + byz” (a polynomial inZ;[x])
and compute
Vig)=bx)(1+o+2°+2° + 2"+ (1 +2+2°+2% mod 1+ 2%
The result
V(z) = by + Vo + bya? + bya® + ot + bia® + bja® + bra”

is interpreted as a byte bbb, bib,b b or as an element df,s. By the way, division by
1+ 2% in Zy[x] is easy since

2F = gkmed 8) 1654 1 + 28,

The operation in #2 may also be done by using matrices. Wedpely an affine transformation
in Lo

b, 1000111 1\ /b 1
b, 1100011 1]|fb 1
b 1110001 1][b 0
ol _ 1111000 1|k, |0
Bl "]1 111100 0]|bs 0
b, 0111110 0]/]bs 1
b, 001 111 10]||b 1
b, 0001111 1/)\b 0

Byte transformation is done in reverse order during theygewn. Because itL,[z]
1=ged(l+a+2® +2° +a* 14 2%

(easy to verify using the Euclidean algorithm), the polyman + = + 2 + 2® + z* has an
inverse modulal + 2® and the occuring x 8 matrix is invertible modul®. This inverse is
x4+ 23 + 25,

Transforming the byte is in all a nonlinear transformatiwhjch can be given in one table,
the so-calledRIINDAEL S-boxThis table can be found for example inddLIN and STINSON.

CHAPTER 5. AES 37

5.2.3 Shifting Rows BhiftRows)

In this operation the elements of the rows of the matrix repnéation of the state are shifted
left cyclically in the following way:

shift row 0 row 1 row 2 row 3
Ny =4 | noshift 1element 2elements 3elements
Ny =6 | noshift 1element 2elements 3elements
Ng =8 | noshift 1element 3elements 4 elemenpts

While decrypting rows are correspondingly shifted rightlaally.

5.2.4 Mixing Columns MixColumns)

In this transformation columns of the state matrix are mteted as polynomials of maximum
degree3 in the polynomial ringF,s[z]. Each column (polynomial) is multiplied by the fixed
polynomial

c(z) = co® 1z D ca2® B 3z’ € Fos[z]

modulol @ z* where
co=x , ci=c=1 and c3=1+=.
Dividing by the polynomiall & z* in Fys[2] is especially easy since

k = Z(k,mod 4)

z mod 1@ 2*.

Alternatively the operation can be considered as a lineastormation off"ys:

36¢ Cp C3 C2 S0i
S _ |G ¢ ¢ C2 || Su
8'21- Ca C1 Cp C3 S2i
Sf»,i C3 C C1 (o S3i

When decrypting we divide by the polynomigk) modulol & z%. Althoughl @ z* is not
an irreducible polynomial of's[2]*, ¢(z) has an inverse modutbs 2, because

1= ged(c(z), 1@ 2%).
The inverse is obtained using the Euclidean algorithm (fambmpute!) and it is
d(z) = dy ® di1z ® dy2® © ds2?
where
do=1+2>+2> and ds=1+z+ 25

do=x+22+2> |, di=1+2° |,

So, when decrypting the column (polynomial) is multiplieg &) modulol1 @ z* and the
operation is thus no more complicated than when encryptmmatrix form inlFs

S0; d() d3 d2 d1 86i
S1; . d1 do dg d2 8,11-
S9; - dg dl do d3 8,21-
S3; dg dg d1 do Sgi

it happensto be- (1 @ z)*.

CHAPTER 5. AES 38

5.2.5 Adding Round Keys AddRoundKey)

The round key is as long as the state. In this operation thedr&ay is added to the state byte
by byte modul®. The inverse operation is the same.

5.2.6 Expanding the Key

Theround keyR, Ry, . .., Ry, are obtained from the encrypting key by expanding it and then
choosing from the expanded key certain parts for differenhds. The length of the expanded
key in bits islg(Ng + 1). Divided into bytes it can be expressed asxa Ng(Ng + 1) matrix,
which hasNg(Ng + 1) columns of lengtht:

W0, Wi, -« o, WNp (Ng+1)—1-
Denote the columns of the key (matii&) correspondingly:
ko, ki, ..., Ky 1.
The expanded key is computed using the following method:
1. Setw; « k; (i =0, ..., Nx — 1).

2. Define the remainingy;’s recursively by the following rules where addition of vexd in
F,s is done elementwise in the usual fashion:

2.1 Ifi =0 mod Nx then compute: = 2%/ in the fieldF,: and set

W, < W;_n, ® SubByte(RotByte(w;_1)) ®

OO o=

Here the operatioBubByte means transforming every element (byte) of the col-
umn. OperatiorRotByte does a cyclic shift of one element up in a column.

2.2 If Ng =8 andi =4 mod Nk, set
W, < W;_n, D SubByte(w;_;)

where the operatiofubByte is the same as in #2.1.
2.3 Otherwise simply set

W; < Wi_n O W,_q.

Now the round keyR,; of the i round is obtained from the colummng;n,,, ..., Wit Ng—1
(:=0,1, ..., Ng). In particular, from the firstVg columns we get the initial round kdy,,.

NB. Expansion of the key can be made in advance, as long as thgpsingr key is known.
Anyway, the:’/V«’s can be computed beforehand in the fiElg.

CHAPTER 5. AES 39

5.2.7 A Variant of Decryption

A straightforward procedure for decrypting follows theléoVing chain of operations—they are
the inverse operations of the encrypting operations that¢ wéroduced before:

S + AddRoundKey(S, Ryy)
S < ShiftRows*(S)
S « SubBytesfl(S)

S < AddRoundKey(S, Ry, -1)
S < MixColumns™'(S)

S < ShiftRows™*(S)

S < SubBytes !(S)

S + AddRoundKey(S, R,)
S < MixColumns(S)

S < ShiftRows *(S)

S < SubBytes !(S)

S + AddRoundKey(S, Ry)
The order of the operations can, however, also be invertest, Ehe order of row shifting and

transforming bytes does not matter, the former operate®wa and the latter on bytes. The
same goes for the inverted operations. Second, the opesatio

S < AddRoundKey(S, R;)
S + MixColumns*(S)

can be replaced by the operations

S < MixColumns(S)
S + AddRoundKey(S, MixColumns ' (R))

In this way decrypting can also follow the chain
S < AddRoundKey (S, Ry;,)

S + SubBytes !(S)

S < ShiftRows™*(S)

S < MixColumns™'(S)

S < AddRoundKey (S, MixColumns ' (R, 1))

CHAPTER 5. AES 40

S < SubBytes !(S)

S < ShiftRows™*(S)

S < MixColumns™'(S)

S < AddRoundKey (S, MixColumns ' (R, _2))

S < SubBytes !(S)

S < ShiftRows ' (8S)

S < MixColumns(S)

S + AddRoundKey(S, MixColumns ™ *(R.))

S < SubBytes !(S)
S < ShiftRows *(8S)
S < AddRoundKey(S, MixColumns ' (Ry))

which reminds us very much of the encrypting process. Herdd&BAEL encrypting and
decrypting are very similar operations.

5.3 RIINDAEL's Cryptanalysis

RIJNDAEL is built to withstand just about every known attackthis kind of cryptosysterhlts
designers Joan Daemen and Vincent Rijmen gave an extereseegtion of the construction
principles in a public documentAEMEN, J. & RIIMEN, V.: AES Proposal: Rijndag1999),
which they later expanded to the bookEMEN & RIIMEN. It should be mentioned that linear
cryptanalysis and differential cryptanalysis, that wenechinvestigated in connection with
DES, are efficiently prevented in RIINDAEL in their variowsrhs. These cryptanalyses are
explained e.g. in BNSON (see also Appendix).

On the other hand, RIJINDAEL is actually the only "better” gtysystem where the (single)
S-box can be written in a comparatively simple algebraiofor Fys:

8

S(b) = So EB @(SZ @ b25572i71)

i=1

for suitable elementsy, s1, s9, $3, 84, S5, Sg, S7, Sg Of Fas. Continuing from here it is relatively
easy to derive an explicit algebraic formula for the wholergption process! This has raised
the question whether such formulas can be inverted effigielitthe answer is yes, it would
seem that RIINDAEL can be broken after all. This is a mattdively investigation, so far no
weaknesses have been found.

2Here among other things ideas of the Finnish mathematic@isakNyberg were used. SeerBERG, K.:
Differentially Uniform Mappings for Cryptographyproceedings of EuroCrypt '93. Lecture Notes in Computer
Sciencer65. Springer—Verlag (1994), 55-64.

3See for example ERGUSON N. & SCHROEPPEL R. & WHITING, D.: A Simple Algebraic Representation
of Rijndael.Proceedings of SAC '01. Lecture Notes in Computer Sci2@b8 Springer—Verlag (2001), 103-111
and MURPHY, S. & RoBsHAwW, M.J.B.: Essential Algebraic Structure Within the ABSoceedings of Crypto
'02. Lecture Notes in Computer Scier2#42 Springer—\Verlag (2002), 1-16 andGRTOIS, N. & PIEPRZYK,

J.: Cryptanalysis of Block Ciphers with Overdefined SystefrisquationsProceedings of AsiaCrypt '02. Lecture
Notes in Computer Scien@2801 Springer—Verlag (2002), 267-287.

CHAPTER 5. AES 41

5.4 Operating Modes of AES

The usual way of using AES is to encrypt one long message lalbakime with the same key,
the so-calledECB moddelectronic codebook).

Another way, the so-calle@BC modgcipher block chaining), is to always form a sum of
a message block; and the preceding cryptobloek ; bit by bit modulo2, i.e.w; ® ¢;_1, and
encrypt it, using the same keyall the time. In the beginning we need an initial (cryptoj{o
Schematically CBC mode is the following operation:

w, W, W,

Co—>é—> AES AES T» ------ AES (—»C,

.

k k

A change in a message block causes changes in the followiptptrocks in CBC mode. This
way CBC mode can be used fauthenticatioror the so-calledMAC (message authentication
code) in the following way. The initial block can e.g. be f@dof justO-bits. The sender
has a message that is formed of message blagks. ., w,, and he/she computes, using CBC
mode, the corresponding cryptobloaks. . ., ¢, applying a secret kek. The sender sends the
message blocks ang to the receiver. The receiver also has the kegnd he/she can check
whether the:, is valid by using the key.

In the so-calledDFB modegoutput feedback) AES is used to transform the key in a proce-
dure similar to ONE-TIME-PAD encrypting. Starting from ar@n "initial key” x, we get a
key streamk, ..., k, by encrypting this key over and over using AES,is obtained by en-
crypting xq. Again, when encrypting we use the same secrettkaly the time. Schematically:

Ko—»| AES AES ——»------ AES
1 Kl l K2 Kml 1 Kn
Wl W2 Wml Wn
CZ Cn—l

c, C

n

OFB mode gives rise to a variant, the so-call€B modgcipher feedback), where the key
r; Of the key stream is formed by encrypting the preceding ofyfjock. Againk, is obtained

by encrypting the initial block;.
W, W,

C,—»| AES AES —»------ T» AES —»é—»Cn

! Lo S

k k k

This variant can be used for authentication much as the CB&emwhich it also otherwise
resembles.
There are also other modes, for example the so-c&lled moddcounter mode).

Chapter 6
PUBLIC-KEY ENCRYPTION

6.1 Complexity Theory of Algorithms

Computational complexitg about the resources needed for computational solvingaiftaem
versus the size of the problem. Size of the problem is medswyré¢helength V of the input,
resources are usualtyme,that is, the number of computational steps required,spate that
is, the maximum memory capacity needed for the computafitemy problems are so-called
recognition problemsvhere the solution is a yes-answer. A nice reference comgeatassical
complexity theory is WPCROFT& U LLMAN, later results are discussed e.g. in R Ko.

To make complexity commensurable, we must agree on a mathmaamodel for algo-
rithms, for example computing with Turing machines, seedberse Theory of Automata,
Formal Languages or Mathematical Logic. There deterministicversion of the algorithm
model, where the algorithm does not have the possibilithtmse, and aondeterministiver-
sion, where the next step of the algorithm may be chosen froitelff many possible steps.
To be able to say that a nondeterministic algorithm doesesalproblem we must make the
following assumptions:

The algorithm stops, no matter what steps are chosen.

The algorithm can stop in a state, where it has not solvedribtegm.

e When the algorithm stops in a state where it has solved thielgomg then the solution
must be correct. The solution is not necessarily unique.

In recognition problems, a situation where the algorithresionot give any yes-answers
is interpreted as a no-answer.

In problems other than the recognition problems, everytiopa nondeterministic algo-
rithm must lead to a solution (output) by some choice of steps

It is often a good idea to consider a nondeterministic algortas a verifying method for a
solution, not a method for producing it.

Complexity is mostly examined as asymptotic, in other wpedsisidering sufficiently large
problems, and not separating time/space complexitiegtiffat only by a constant multiplier.
After all, linear acceleration and space compression ayieaany algorithm model. Although
choice of the algorithm model has a clear effect on complekitdoes not have any essential
meaning, in other words, it does not change the complexatysels into which problems are di-
vided according to their complexity. Complexity is oftene using the)-notationO(f(N)),

42

CHAPTER 6. PUBLIC-KEY ENCRYPTION 43

see Section 2.6. Without going any further into algorithmdels, we define a few important
complexity classes.

The time complexity clas® (deterministic-polynomial-time probleiis composed of the
problems, where using a deterministic algorithm solving pinoblem with input of lengthV
takes a maximum of(N) steps, ang is a polynomial which depends on the problem. For
example, basic computational operations on integers amggting g.c.d. are if®, see Chapter
2.

The time complexity clasd/P (nondeterministic-polynomial-time problejris composed
of the problems, where using a nondeterministic algoritietaisg the problem with input of
the length/V takes a maximum of(/N) steps, and agaip is a polynomial depending on the
problem. For example compositeness of integers i87: Just guess (nondeterminism!) two
factors & 1) and check by multiplication whether the guess was correct.

The time complexity class-—\ P (complementary-nondeterministic-polynomial-time prob-
lemg is formed of those recognition problems that have their giement in\/P. Thecom-
plementbf a problem is obtained when the yes- and no-answers arelteged. For example,
recognition of primes is iro—N"P, since its complement is testing compositeness, which is in
NP. Itis not very hard to show that primality testing isMP, but it is much more difficult to
show that it is irnP, see Section 7.4.

Apparently? C NP and for recognition problems al$® C co-NP. Is either of these a
proper inclusion? This is an open problem and a very famoaslors commonly believed that
both inclusions are proper. Neither is it known whetheresithf the equationd/P = co-N"P
andP = NP N co=N'P holds for recognition problems. The prevalent belief ig thay do
not.

The space complexity clagaSPA CE (deterministic-polynomial-space problensformed
of those problems, where using a deterministic algorithiiisg the problem with input of
length of N takes a maximum gf(N') memory units, ang is a polynomial depending on the
problem. For example, basic computational operationstefygrs and computing g.c.d. are in
PSPACE.

The space complexity clas§ PSPACE (nondeterministic-polynomial-space problems
comprises those problems, where using a nondeterminigticidam solving the problem with
input of lengthN takes a maximum of(N) memory units, ang is a polynomial, again de-
pending on the problem. It is not very difficult to concludatth

NP CPSPACE = NPSPACE,

but it is not known whether or not the inclusion is proper.

An algorithm may contain generation of ideal random numbeingch makes iprobabilistic
or stochastic. A stochastic algorithm may fail from time to time, in other ms, it may not
produce a result at all and gives up on solving the problerah &igorithms are calleldas Vegas
algorithms.On the other hand, a stochastic algorithm may sometimesipecal wrong answer.
These algorithms are callédonte Carlo algorithms.Note that every Las Vegas algorithm is
easily transformed into a Monte Carlo algorithm (how?).

The polynomial time complexity class corresponding to Mo@arlo algorithms i8PP
(bounded-probability-polynomial-time proble)ndn this case the algorithm must produce a
correct result with probability at least wherep > 1/2 is a fixed number not depending on the
input. The relationship between clas&B8P and NP is pretty much open—for example it is
not known whether one is a subset of the other.

Thinking about the future quantum computers we may definpahgomial time complex-
ity classBQP (bounded-error-quantum-polynomial-time problgmSonsidering applications

CHAPTER 6. PUBLIC-KEY ENCRYPTION 44

to encrypting, it is interesting to notice that factoripatiof numbers and computing discrete
logarithms belong to this class (the so-cal&br algorithmssee Section 15.3).

The function of the algorithm may sometimes be just to canwee problem to another, in
this case we are talking aborgduction. If problem A can be reduced to another problésn
using reduction operating in deterministic polynomialeginwve get a deterministic polynomial-
time algorithm forA from a deterministic polynomial-time algorithm fét.! A problem is said
to be N'P-hard, if every problem in\/P can be reduced to it using a deterministic polynomial-
time algorithm. AnNP-hard problem is\VP-completeif it is itself in A/P. An N"P-complete
problem is the "worst kind” of problem in the sense that if autd be shown to be in deter-
ministic polynomial time then every problem.xi? would be in? and NP = P. Nowadays
over a thousand/’P-complete problems are known, and, depending on how theyaaneted,
maybe even more.

Theorem 6.1. If someNP-complete recognition problem is ikP N co—N"P then for recog-
nition problems\N'P = co-N"P.

Proof. Assume that som@/P-complete recognition probler® is in NP N co-N"P. Now
we shall examine an arbitrary recognition probleimin A’P. SinceC' is N'P-complete, A
can be reduced t@' in deterministic polynomial time. Hence the complementdo€an be
reduced to the complement 6f, which is also inNP, in deterministic polynomial time. So
Ais in co-N'P. A was arbitrary and s&/P C co—-N"P. As an immediate consequence also
co-NP C NP, and thus\N P = co-N"P. O

Because it is commonly believed th&tP # co—A"P, no N'P-complete recognition problem
would thus be ilWVP N co-N"P.

The old division of problems based on computing time is ihi practically possible ones
(tractable problempsand to ones that take too much computing tinmgréctable problemps
Problems inP are tractable and the others are intractable. Since it isTammm belief that
NP + P, N'P-complete problems should be intractable. In practice gveblems in the class
BPP are possible to solve: just apply the algorithm on the pmobé® many times that the
probability of half of these producing wrong results is ngigple. Hence it is natural to demand
in cryptology that encrypting and decrypting functions eré®. It is, however, important to
remember that encrypting may include stochastic elements.

6.2 Public-Key Cryptosystems

There are at least two keys in a public-key cryptosystem oasymmetric cryptosystem: the
public key and the secret key, or several of them. For theesé@y to remain a secret it
must be computationally very challenging to calculate theret key starting from the public
key. The public key can be left in a "place” where anyone whatwdo can take it and use
it to send encrypted messages to the owner of the secret kéys@emingly simple idea was
first announced by Whitfield Diffie and Martin Hellman and ipdadently by Ralph Merkle in
19762

INote that even if the output of the polynomial-time reduei®longer than its input, the length of the output is
still polynomially bounded by the length of the input, andttbhomposition of two polynomials is a polynomial. A
similar phenomenon hardly ever occurs in other functioes#a. For example, the composition of two exponential
functions is not an exponential function.

2The original reference is IBFIE, W. & HELLMAN, M.: New Directions in CryptographyEEE Transactions
on Information TheoryT-22 (1976), 644—654. It became known later that James Elli$fo@di Cocks and Mal-
colm Williamson came up with the same idea a bit earlier, ey tvorked for the British intelligence organization

CHAPTER 6. PUBLIC-KEY ENCRYPTION 45

It might seem a good idea to arrange the keys so that cryptiralsing CO data and the
public key would be computationally very demanding, é\gP-complete. Quite obviously
such cryptanalysis is iN/P: Just guess the plaintext and encrypt it using the public Eegn
if there are stochastic elements in the encrypting this wiaikce the random choices can be
guessed, too.

This cryptanalysis problem may also be considered as a ngeamgproblem, the so-called
cryptorecognition:”Is w the plaintext corresponding to the cryptotexn the triple (w, k, ¢)
wherek is the public key?” Cryptorecognition is iR if encrypting is deterministic, so making
it more complex requires stochastic encrypting. We wonvvéner get very far this way either,
because

Theorem 6.2. If for some cryptosystem cryptorecognition ASP-complete, theWP =
co-N"P.

Proof. The cryptorecognition problem is obviously iP since the stochastic parts can be
guessed. On the other hand, it is als@irNP because it is a cryptotext then there is just
one plaintext corresponding to it, otherwise decryptingiitveucceed. Now let’'s guess some
plaintextw’ and encrypt it using the public key. If the result isc then comparev with w’,
and accept the tripléw, k, ¢) if w # w'. If the encrypting ofw’ does not give: or w = w’, the
procedure will end without giving a result. So cryptoreciign is in NP N co—-A/P and the
result follows from Theorem 6.1. O

Hence it would seem that cryptorecognition cannaf\B-complete in practice. The result
also shows that stochastic cryptosystems are not that maitdr bthan deterministic ones.
Usually when we speak about public-key systems we also orest-callecbne-way func-
tions: A functiony = f(z) is one-way if computing from x is tractable but computing from
y is intractable, possibly eveP-complete. If the encrypting function of a public-key syste
is ey, then the functiorn(c, k) = (ex(w), k) = f(w, k) is ideally one-way. Note that because
the public keyk is always available, it is included in the value of the fuanti On the other
hand, for a fixed public key the corresponding secret key gives a so catteg doorwhich
can be used to computefrom c very fast. Existence of the trap door of course means that the
encrypting function is not really one-way for a fixéd

NB. Connecting trap doors tdvP-complete problems has proved to be difficult. In practice
having the trap door restricts an otherwig€éP-complete problem to a subproblem that is
not N'P-complete, and usually not even very demanding. In factast ot been proved of
any cryptosystem-related function, that should ideallyobe-way, that it is really one-way.
There is theéP = NP problem haunting in background, of course. Problems on wigicod
cryptosystems can be based are ones with open complexitisasa In this case breaking
the system would also mean a theoretical breakthrough inpbexity theory and algorithm
development. All this, and also Theorem 6.2, means that leaityptheory does not quite have
such an important role in cryptology as it is often given, eig/ptography is often mentioned
as the practical application of complexity theory 'par elkeece’.

Protocols which cannot be executed by secret-key systeansfin possible when public-
key cryptosystems are used. As examples we takdicationandsignature. If B wants to
verify that a message is sent by A, the message must confarmiation that sufficiently un-
ambiguously specifies A as its sender. In this case the follgvequirements are natural:

GCHQ (Government Communications Headquarters) which ig tivhir ideas remained classified and were not
published until 1997.

CHAPTER 6. PUBLIC-KEY ENCRYPTION 46

(i) Both A and B must be able to protect themselves againstifiaéssages. An outside agent
C must not be able to pose as A.

(i) A must be able to protect herself against B’s fake messawhich he claims to be sent
and signed by A.

(i) A must not be able to deny sending a message she in fdctefid.

Denote bye, andeg the public-key encrypting functions of A and B, and &y anddg the
corresponding decrypting functions. Here it is assumetigharypting is deterministic. The
procedure is the following:

1. A sends the messageto B in the forme = eg(da(w)).
2. B computeg,(dg(c)) = ea(da(w)) = w. Note thate, andd, are inverse functions.

Conditions (i) and (iii) are satisfied since only A knowss. There must be some recognizable
content of correct type in the message, otherwise the messaght be totally meaningless.
Condition (ii) is also valid since it would be practically possible for B to generate the right
kind of message because he does not kaipwif the signature is all that matters and not keeping
the message safe, it is enough for A to send B the (airi,(w)). This simplest version of
verification/signature is vulnerable and there are betiatiopols, see Chapter 13.

6.3 Rise and Fall of Knapsack Cryptosystems

An example of the effects of the preceding section’s comple&onsiderations is the fate of the
well-known public-key system KNAPSACKor theknapsack system.

The knapsack system is based on the so-c&iteghsack problenits input is(a, m) where
a = (a,as,...,a,) is a vector of positive integers amd is a positive integer, represented in
some base. The problem is to writeas a sum of (some of) the componentapbr then state
that this is not possible. In other words, the problem is twode bits:, cs, . . ., ¢, such that

n

E c;a; =M,

=1

or then state that this is not possible at all. In the corredpw recognition problem it is
sufficient just to state whether or not the choice is possiblee knapsack problem is clearly
in N'P: Just guess,, cs, . . ., ¢, and test whether the guess is correct. It is in fact known to be
NP-complete.

KNAPSACK-encrypting is done in the following way. The megsaymbols are bits and the
length of the message blocknis A message block = b1b, - - - b, (bit sequence) is encrypted
as the number

c=ep(w) = Zbiai.
i=1

The public keyk is a. Apparently this kind of encrypting is iR. Cryptanalysis starting from
anda is N'P-complete.

SKNAPSACK is "historically” remarkable as it is one of the figsublic-key crypto systems, the original ref-
erence is MRKLE, R. & HELLMAN, M.: Hiding Information and Signatures in Trapdoor KnagsadEEE
Transactions in Information Theoly—24 (1978), 525-530.

CHAPTER 6. PUBLIC-KEY ENCRYPTION a7

Without any help KNAPSACK decrypting would also BéP-complete. The trap door is
gotten by starting from some simple knapsack problem whaih ke solved irP, and then
disguising it as an ordinary arbitrary knapsack problerne d bf the latter knapsack problem is
then published as the public key. Using the trap door inféionahe knapsack probleifa, ¢)
can be restored to its original easily solved form, and is thay the encrypted message can
be decrypted. But this does not lead to a strong cryptosystewther words, by using the
trap door we don’t obtain a disguised knapsack system, whbiggganalysis would be\/P-
complete, or even very difficult. In fact different variamEKNAPSACK have been noticed
to be dangerously weak and so they are not used anymore. Akme@in attack against basic
KNAPSACK is the so-calle@hamir attacksee e.g. SLOMAA .

6.4 Problems Suitable for Public-Key Encryption

As the knapsack problem, the types of problems found useafplublic-key encryption are

usually problems of number theory or algebra, often oridynaf merely theoretical interest

and quite abstract. This has brought many problems thaeearére considered to be purely
mathematical to serve as bases of practical cryptosystémgarticular, results of algebraic
number theory and theory of algebraic curves have becomeremty and widely used, to

the amazement of mathematicians who believed they wereimgpiik a very theoretical and

"useless” field.

Some examples:

| Cryptosystem | Problem type |
RSA, RABIN Factoring the product of two large primes.
ELGAMAL, DIFFIE-HELLMAN, XTR | Computing discrete logarithm in a cyclic group
MENEZES-VANSTONE, CRANDALL | Computing logarithm in a cyclic group deter-
mined by an elliptic curve

ARITHMETICA Conjugate problem in a group

NTRU Finding the smallest vector of a number lattice

MCELIECE, NIEDERREITER Decoding an algebraic-geometric linear code
(Goppa’s code)

The exact complexity of the first four of these is not knownybkeer the problems are iNP.
Finding the smallest vector of a number lattice and decodirigmear code (see the course
Coding Theory) are known to b&P-complete problems, so considering NTRU, MCELIECE
and NIEDERREITER the situation should be similar to KNAP3AQvhich for that matter
they distantly resemble. Indeed, some weaknesses are fiotingse systents The large size
of keys needed in MCELIECE has seriously limited its use. NTi®however in use, to some
extent. The drawback of ARITHMETICA is in the difficulty of filng a suitable group—all
choices so far have turned out to be bad in one way or in another

In the sequel we will discuss the systems RSA, ELGAMAL, DIEFHELLMAN, XTR,
MENEZES-VANSTONE and NTRU. A good general presentation loarfound e.g. in the
book GARRETT.

4See for example ENTEAUT, A. & SENDRIER, N.: Cryptanalysis of the Original McEliece Cryptosystem.
Proceedings of AsiaCrypt '98. Lecture Notes in ComputeeiS®1514 Springer—Verlag (2000).

Chapter 7
NUMBER THEORY. PART 2

7.1 Euler’s Function and Euler’'s Theorem

We return to Euler’s function(m), already mentioned in Section 2.4, which gives the count of
those numbers in the intervall < x < m, for whichged(z, m) = 1, or the number of reduced
residue classes modute. Note thatp(1) = 1.

Theorem 7.1.(i) If pis a prime andk > 1 then
o(p") =p"(p - 1).
In particular, ¢(p) = p — 1.

(i) If ged(m,n) = 1then
¢(mn) = ¢(m)¢(n)
(multiplicativity of ¢).

Proof. (i) Every p™ of the numberd, 2, .. ., p* is divisible byp. Hence there arg® — p*/p =
p"~!(p — 1) numbers that are coprime to

(i) Write the numberd, 2, ..., mn in an array as follows:

1 2 3 SRR 1)
n+1 n-+2 n+3 - 2n
2n +1 2n + 2 2n+ 3 - 3n

(m—1n+1 (m—1)n+2 (m—1)n+3 -+ mn

The casess = 1 andm = 1 are trivial so we may assume thatm > 2. Numbers in any
column are mutually congruent moduto On the other hand, by the Corollary of Theorem
2.11 numbers in any column form a residue system moguldhere arep(n) columns with
numbers coprime ta. (Remember that it = y mod n thenged(z,n) = ged(y,n).) Each
of these columns has(m) numbers coprime te:. These are the numbers coprimerie, and
there arep(m)¢(n) of them. O

Using the factorization o ‘
T =PIy PN
(see Theorems 2.2 and 2.6) we obtain, using the theorem,
o(x) = d(pi)o(PF) - d(pw) =P 'pE P T o = D2 — 1) -+ (py — 1),

48

CHAPTER 7. NUMBER THEORY. PART 2 49

Because factorization is a computationally demandingatfmer, ¢(z) is not practically com-
putable in this way unless the factorization is given bdfarel. However, we can see from this
fairly easily that ifz is a composite number, thef{z) < = — 1, and thatp(z) > /= when
x > 0.

An essential result e.g. in defining the cryptosystem RSA is

Theorem 7.2. (Euler’s theorem)If ged(z, m) = 1 then
2™ =1 mod m.

Proof. Choose the reduced residue systgnys., ..., jsm) from the positive residue system
modulom. Then the numbersj,, zjs, . . ., xj4(n) also form a reduced residue system since by
the Corollary of Theorem 2.11 they are not congruent andlaceprime tom. So, the numbers
TJ1, Lo, - - ., Tgmy ANAJ1, Ja, . . ., Jem) @re pairwise congruent in some order:

zjp =ji,, modm (k=1,2,...,¢(m)).
By multiplying both sides of these congruences we obtain

2 g gy - “Je(m) = JiJ2 - Jem) mod m

and sincescd(jijz - -+ Jigm), m) = 1, by dividing outjja - - - jigm), furtherz®™ =1 mod m.
0]

As an immediate consequence we get
Theorem 7.3. (Fermat's little theorem)If p is a prime andr is not divisible byp then
2»1'=1 mod p.

Euler’'s theorem is often useful when we compute powers nwodul In addition to using
the algorithm of Russian peasants, we first reduce the expamadulop(m). If & = qgp(m)+r
(division) then

gh = et — (p#magr = 19. 2" = 2" mod m.

Furthermore, it is immediately noticed that
7 =220 mod m

and that ift = [mod ¢(m) thenz* = 2! mod m. (Assuming of course all the time that
ged(x,m) = 1.) Fermat's little theorem is especially useful when conmpowers modulo a
prime. For instance, i is prime then always

¥ =z mod p.

7.2 Order and Discrete Logarithm

The smallest number> 1 (if one exists) such that’ = 1 mod m, is called theorder of z
modulom. Basic properties of order are the following:

Theorem 7.4.(i) The order exists exactly whead(z, m) = 1.

(i) If 27 =1 mod m and the order ofr modulom is i theni divides;. In particular, as a
consequence of Euler’s theorendividesg(m).

CHAPTER 7. NUMBER THEORY. PART 2 50

(i) If the order ofr modulom is i then the order of/ modulom is

lem(i, j) i
j ged(i,)

(see Theorem 2.9).

(iv) If the order ofz modulom is i and the order ofy modulom is j andged(i, j) = 1 then
the order ofry modulom isij.

Proof. (i) When ged(x, m) = 1 then at least:*™ = 1 mod m (Euler's theorem). On the

other hand, ifged(z,m) # 1 then obviously alsgcd(z‘,m) # 1, and hencer’ # 1
mod m wheni > 1.

(i) If 27 =1 mod m but the ordei of x does not dividg then; = ¢i + r wherel < r <
(division) and

=2 1 =2"(2") = 2" =27 =1 mod m,
and: would not be the smallest possible.

(iii) If the order ofz modulom isi and the order of? modulom is then first of alli | ;I (item
(ii)) andj | j1, solem(i, 5) | jl, i.e.lem(i, j)/j is a factor ofl. Secondly(z?)'em@)/7i = 1
mod m, sol divideslem(i, j)/j (item (i) again). Thereforé = lem(i, j)/j.

(iv) If the order ofz modulom is i and the ordey modulom is 7 andged (i, j) = 1 then first
of all

(zy)" = 2'y" =y" mod m,

so the order ofzy)" modulom is the same as the order gf which is; (item (iii)). But
if the order ofzy modulom is k then the order ofzy)’ modulom is k/ ged(i, k) (item
(iii) again). Hencej | k. Itis shown similarly that | k. Becausegcd(i, 7) = 1, it must
be thatij | k. On the other hand,

(zy)? = (¢ (')’ =1 mod m,
whence it follows that: | ij (item (ii)). Thereforek = ij. O

If the order ofg modulom is the largest possible, i.eé(m), and1l < g < m theng is a
so-calledprimitive rootof m or aprimitive root modulan. Of course, in this case necessarily
ged(g, m) = 1. Since then the powers

1797 g27 A ’g(b(m)il
are not congruent—otherwise the smaller power could beedout from the congruence and a

lower order forg would be obtained—and there asén) of them, they actually form a reduced
residue system. The following property of primitive roatgjiven without proot.

Theorem 7.5. A numberm > 2 has primitive roots if and only if it is eithe? or 4 or of the
form p* or 2p* wherep is an odd prime. In particular, every prime has primitive teo

The proof is not very difficult but quite long—the cases= 2 andm = 4 are of course trivial. It can be found
in almost every elementary number theory book, see for el@®pRPINSKI. Some cryptology books contain
this proof as well, see for exampleRENAKIS or GARRETT.

CHAPTER 7. NUMBER THEORY. PART 2 51

On the other hand, it is easy to deduce the number of diffgn@mitive roots, when they exist:

Theorem 7.6. If there are primitive roots modula: then there arep(¢(m)) of them? In
particular, a primep has¢(p — 1) primitive roots.

Proof. If ¢ is a primitive root ofm then those numbers
(¢', modm) (i=1,2,...,6(m)—1)

for which ged (i, ¢(m)) = 1 are primitive roots ofn, and in fact exactly all of them (Theorem
7.4 (iii)). Hence, if the numbemn has primitive roots at all, there aggo(m)) of them. O

The following well-known characterization of primes is ainted immediately from the
above.

Theorem 7.7. (Lucas’ criterium for primality) A numberp > 2is a prime if and only if there
exists a number whose order modples p — 1.

Proof. If p is prime, it has a primitive root of order— 1.

Then again, if there exists a numberof orderp — 1 modulop thenp must be prime.
Otherwise¢(p) < p — 1 and hence the order af cannot bep — 1 because — 1 | ¢(p)
(Theorem 7.4 (ii)). O

It might be mentioned that no powerful general algorithneskarown for finding primitive
roots, not even for primes. On the other hand, if the factbrg(o:) are known then the fol-
lowing result gives a useful test for a primitive root:ef Such a test is needed e.g. in setting
up certain cryptosystems, see Section 10.1. In the geresal@ven computing(m) is a very
demanding task for large valuesaf not to mention its factorization.

Theorem 7.8. (Lucas'’s criterium for primitive root) A numberl < g < m is a primitive root
of m if and only ifgcd(g, m) = 1 andg?™/7 £ 1 mod m for every prime factot of ¢(m).

Proof. If ¢ is a primitive root ofm then apparentlycd(g, m) = 1 andg?™/? £ 1 mod m for
every prime factor; of ¢(m), since the order of is ¢(m).

Then again, ifgcd(g, m) = 1 andg®™/? £ 1 mod m for every prime factog of ¢(m),
the order: of g divides¢(m) (Theorem 7.4 (ii)), in other wordsy(m) = il. If [= 1 then
i = ¢(m) andg is a primitive root. Anything else is out of the question,crnf! > 1 then!
would have a prime factay and/ = ¢'t and

g¢(m)/q/ - gil/q/ =¢"=(¢")'=1"=1 modm. O

Furthermore, combining these two Lucas’ criteria we obtain

Theorem 7.9. (Lucas—Lehmer criterium for primality) A numberp > 2 is a prime if and
only if there exists a numbersuch thaty?' = 1 mod p and g~/ £ 1 mod p for every
prime factorg of p — 1.

Proof. If pis a prime then we take a primitive root modutoasg.

Now let's assume that for a numbgme haveg? ' = 1 mod p andg®Y/7 £ 1 mod p
for every prime factor; of p — 1. Thenp | g?~! — 1, soged(g, p) = 1. Further, ifj is the order
of g modulop thenj | p — 1 (Theorem 7.4. (ii)). Now we conclude, just as in the precgdin
proof, thatj = p — 1 and further, by Lucas’ criterium, thatis a prime. O

2This is the reason why the odd-looking expressi¢n(m)) appears in cryptography here and there.

CHAPTER 7. NUMBER THEORY. PART 2 52

Because, for a primitive roaj of m, the numberdl, g, ¢°, ..., ¢*™~! form a reduced
residue system modulm, then for every numbet coprime tom there exists exactly one
exponent in the intervadl < y < ¢(m) for which¢¥ = = mod m. This exponent is called the
discrete logarithnor theindexof modulom in basey. No efficient algorithms for calculating
discrete logarithms are known, e.g. the cryptosystem EL@ANS based on this. We get back
to this later. There is of course a nondeterministic polyratime algorithm starting from the
input (m, g, z): First just guess an indgxand then check whether it is correct. Exponentiation
using the algorithm of Russian peasants and reducing thét reedulom is in polynomial
time.

7.3 Chinese Remainder Theorem
If factors of the modulus: are known, i.e. we can write
m=miimsg---Mg,

the congruences =y mod m; (i = 1,2, ..., k) naturally follow fromz = y mod m. If the
modulus is a large number, it may often be easier to complg tisese smaller moduli. This
can be done very generally, if the factons, ms, . . ., m; are pairwise coprime, in other words,
if gcd(m;, m;) = 1 wheni # j:

Theorem 7.10. (Chinese remainder theorer) If the numbersy,, v, . ..,y are given and
the modulim,,ms, ..., m; are pairwise coprime then there is a unique integemodulo
myms - - - my, that satisfies thé congruences

r=y; modm; (=12,...,k).

Proof. DenoteM = mymy---my and M; = M/m; (i = 1,2,...,k). Since them;'s are
pairwise coprimeged(M;, Ms, ..., My) = 1 andged(m;, M;) = 1 (i = 1,2,...,k). The
following procedure produces a solutior{if there is one!), and also shows that the solution is
unique modulad\/:

1. CRT algorithm:

1. Using the Euclidean algorithm we wriged (M, Ms, ..., M;) = 1in Bézout's form (see
Theorem 2.8)
1=c My +coMy+ -+ - + ¢ M.

2. Returnx = ¢y Myy, + coMoys + - -+ + ¢, My, mod M, e.g. in the positive residue
system.

The procedure works if a solution exists, because it follommediately from the congruences
xr = y; mod m,; thate; M,z = ¢;M;y; mod M (i = 1,2,...,k), and by addition we obtain
further

r=1-2= (0 My + oMy + -+ cxMy)x = c; Myyy + coMoys + -+ - + e Myyr mod M.

3The name "Chinese remainder theorem” (CRT) comes from tttetiiat Chinese mathematicians knew this
result a long time ago, at least in the case 2.

CHAPTER 7. NUMBER THEORY. PART 2 53

It still must be shown that a solution exists. Because applgré/; = 0 mod m if i # j,
and on the other hantl = ¢; My + oMy + - -+ + ¢, My, we havec, M; = 1 mod m; (i =
1,2,...,k). Therefore

=My + coMoys + -+ -+ My =y; mod m; (i=1,2,...,k).

1

Because now; = M. * mod m;, we can moreover conclude that the solution can also be

(2

obtained in another way:

2. CRT algorithm:

1. ComputeV; = M, ' mod m; (i = 1,2, ..., k) by the Euclidean algorithm.

2. Returnt = y; M Ny +ys MyNo+- - -+yp M, N, mod M (in the positive residue system).
O

The proof gives an algorithm (actually two of them) for finglithe number: mentioned
in the theorem. Apparently this algorithm is polynomiahé when the input consists of the
numbersy;, ys, . . ., yx andmy, mo, ..., my. Other algorithms are known, for example the so-
calledGarner algorithmwhich is even faster, see e.gRENDALL & POMERANCE.

NB. In a way the Chinese remainder theorem gives a fitting (irdaton) of functions of the
form
y = fz(m) = (z, mod m)

through the "points” (m;, y;), something that can be used in certain cryptoprotocols. The
Chinese remainder theorem is very useful in many contextpoél reference iI®ING & PEI
& SALOMAA .

7.4 Testing and Generating Primes

It took a long time before the first nondeterministic polynaltime algorithm for primality
testing was found. It is the so-calld®tatt algorithm# The algorithm is based on Lucas’
criteria. The inputis a number > 2 whose binary length i8/. Denote the number of the steps
of the algorithm byl’(n) and

YES if n is prime

PRATT(n) =
(n) {FAIL if the test does not produce a result with the choices made.

From Section 6.1 we recall that if the algorithm works thea ithputn is a composite number
if and only if PRATT (n) = FAIL for every possible choice.

Pratt’s algorithm:
1. If n =2o0rn = 3, returnYES and quit () test steps).

2. If nis > 3 and even (division by), the algorithm gives up anBRATT(n) = FAIL
(0 test steps).

4The original reference is#ATT, V.R.: Every Prime has a Succint CertificaBAM Journal on Computing
(1976), 198-221.

CHAPTER 7. NUMBER THEORY. PART 2 54

3. Guess (nondeterminism) an integen the intervall < z <n — 1.

4. Check whether™ ! = 1 mod n using the algorithm of Russian peasants and reducing
modulon by divisions (test step). If this is not so then the algorithm gives up and
PRATT(n) = FAIL.

5. Guess (nondeterminism) prime factgxs. .., p, of n — 1, where each assumed prime
factor may occur several time8 (est steps). Lengths of these numbers in the binary
representation arg, ..., P,. Note thatP,,..., P, < N —landthat < k < N.

6. Check, by calling Pratt’s algorithm recursively, whetttee numbers,, .. ., p; are truly
primes (a maximum of'(p;) + - - - + T'(px) test steps). If SOm@RATT (p;) = FAIL
then the algorithm gives up altRATT (n) = FAIL.

7. Check by multiplication whether, - - -p, = n — 1 (1 test step). If this is not so, the
algorithm gives up an@RATT(n) = FAIL.

8. Check whethet™ Y/Pi £ 1 mod n (i = 1,..., k) by the algorithm of Russian peasants
and divisions (a maximum of test steps). If this is true, retuES, otherwise the
algorithm gives up an®®RATT (n) = FAIL.

Now we get following recursion inequality far(n):
k
T(n)<2+k+> T(p), T(2)=0, T(3)=0
i=1
Using this we can find an upper bound fB(n). It is easy to see recursively that for example
L(n) = 4log, n — 4 is such an upper bound, siné¢2) = 0 and(3) > 0 and

k k
T(n)<2+k+Y Lip)=2+k+ Y (4logyp; —4)

i=1 i=1

=2+ k+4logy(pr---pr) — 4k =2 — 3k +4logy(n — 1)
< —4 +4logy,n = L(n).

On the other hand, it take3(N?) steps to perform each test step (there are better estimates)
andL(n) is proportional taV (Theorem 2.4). So, the overall timedg N*).
In the “old aristocracy” of primality testing are teleman—Pomerance—Rumely feahd
its variants. The test is based on some quite advanced algetumber theory, it is determinis-
tic and fast. Testing a numberfor primality takes at most

O((ln n)cln(ln(ln n)))

steps where is (small) constant, and hence itis not quité-but almost, since thie(In(Inn))
does grow very slowly. On the other hand, both theoreticatigt considering implementation,
itis hard to handle. See for exampl&®KNAKIS.

A recent celebrated result in number theory is the fact thatadity testing is inP. This
was proved by the Indians Manindra Agrawal, Neeraj Kayal Mitoh Saxena in 2002. The
proved complexity of the algorithm i©((Inn)®) but heuristically a complexitY)((Inn)%) is
obtained. However, as of yet there are no very fast impleatiemis, although the algorithm is
guite short to present (the inputis> 2):

SThe original reference is BLEMAN, L. & POMERANCE, C. & RUMELY, R.: On Distinguishing Prime Num-
bers from Composite Numbemnnals of Mathematic$17(1983), 173—-206.

5The article reference is@RAWAL, M. & K AYAL , N. & SAXENA, N.: PRIMES is in PAnnals of Mathematics
160(2004), 781-793.

CHAPTER 7. NUMBER THEORY. PART 2 55

Agrawal-Kayal-Saxena algorithm:

1. Find out whether. is a higher power of an integer in other words, whether it can be
expressed as = r! wherel > 2. (Because theh= log, n/log, r < log, n, the number
of possible values of we must try out is proportional to the length of After finding
these we compute the integr&lroot of n for every candidatéusing Newton’s algorithm
from Section 2.6 and see if it4 power is= n.) If n is such a power, return "NO” and
quit.

2. Find an integem such that the order of modulom is > (log, n)?. (This can be done
by trying out numbers. A much more difficult thing is to shovatlisuch anm need not
be too large.)

3. Check whethern has a prime factor in the interval 3, ..., m (perhaps by trying out
numbers and using the Euclidean algorithm). If it has, retdO” and quit.

4. Examine whether the congruences

(x+1)"=2"+i moda2™ -1 (i=1,2,...,|v/mlogyn])

hold in the polynomial rindZ,,[x]. (For this we need the algorithm of Russian peasants
and divisions. Note that regardless of the value: afivision by the monic polynomial
™ — 1 is defined inZ,[z]. See Section 4.2.) If they do not all hold true, return "NOtan
quit.

5. Return "YES” and quit.

A nice exposition of the algorithm and its working is in théi@de GRANVILLE, A.: It Is Easy
to Determine Whether a Given Integer Is PrirBelletin of the American Mathematical Society
42 (New Series) (2004), 3—-38.

Some very useful primality tests are probabilistic, in otwerds, they produce the correct
result with high probability. For example the so-calMiller—Rabin test is such a test. The
test is based on Fermat’s little theorem, according to whfch is a prime and: is an integer
such thaged(z,n) = 1thenz"™! =1 mod n. Let's writen in the form

n=1+2'm,
wherem is odd. Ifn is odd then > 1 and
0O=a""'—1=2"-1=(=""-1)=* " +1) modn,

and because is a prime it divides either? '™ — 1 or 22~ "™ 4 1, but not both of them (why?).
If n dividesz? '™ — 1 then we can go through the same operation again. And so om thie
we conclude that either for some numbet 0,1, ..., — 1 we have

2im =_1

x mod n,

or if this is not true, eventually
™ =1 mod n.

"The original references areIM.ER, G.L.: Riemann’s Hypothesis and Tests for Primaldgurnal of Com-
puter and System SciencE3(1976), 300-317 and &BIN, M.O.: Probability AlgorithmsAlgorithms and Com-
plexity (J.F. TRAauB, Ed.). Academic Press (1976), 35-36. The algorithm is somestalso known aSelfridge’s
test.

CHAPTER 7. NUMBER THEORY. PART 2 56

If it now happens for an integer such thaiged(z,n) = 1 andz™ # +1 mod n, that for all
numbers =1,2,...,1—1 ,
2™ =1 modn

then we can only conclude thatis not a prime after all. Similarly if we run into an> 0 such
thatz>™ # +1 mod n. On the other hand, when we try out several numbers, for ebeamp
certain "small” primese = 2,3,5,7,11,..., we obtain evidence of a kind for the primality
of n. As a matter of fact, this evidence can be made very strongsimgiseveral well-chosen
numberse. This is so also in a probabilistic sense, with a random @hof¢he numbet in the
intervall < x <n — 1.

In the following it is assumed that given or randomly chosst humbers, z», ..., x; are

available.
Miller—Rabin primality test:
1. If nis even, the case is clear, return the result and quit.
. Ifnisodd, set + 0 andm < n — 1.

. Setl + [+ 1andm <« m/2.

2
3
4. If mis even, go to #3. (The maximum number of these roundsgs n |.)
5. Setj + 0.

6

. If 5 <k, setj < j + 1 andz < z,. Otherwise return "PRIME” (supposed information)
and quit.

7. If z™ = 1 mod n or ged(x,n) = n then go to #6. Then again, if < gecd(z,n)
< n, return "COMPOSITE” (certain information) and quit. (Couatp powers using the
algorithm of Russian peasants, the g.c.d. using the Ewclidégorithm.)

8. Set; «+ 0.

9. If 22™ = 1 mod n, return "COMPOSITE” (certain information) and quit. (Coutp
powers by repeated squarings starting from the power in&8ube to keep the interme-
diate results!)

10. If22™ = —1 mod n, go to #6.

11. Ifi =[—1, return "COMPOSITE” (certain information) and quit. Othese seti <+ i+1
and go to #9.

NB. This is the so-called "bottom-up” version of the test. Theralso a "top-down” version,
wherei is decreased, see e.g. the lecture n(Re®HONEN, K.: Symbolinen analyysiThere
appears to be no significant difference in speed betweese th@sversions.

So, the test is not "rock-solid”. There are composite nurslieat it returns as primes, these
are calledstrong pseudoprimef®r the test numbers,, z,, ..., x,. For example25 326 001
= 2251 - 11251 is a strong pseudoprime for the test numbeend5. For a fixed value of
the time complexity of the test i9(/V?), as it is easy to see (agaMis the length of:). As a
probabilistic algorithm the Miller—Rabin test is of the MerCarlo type. It can be shown that for
a single randomly chosenfrom the intervall < = < n — 1 the test produces the wrong result
with a probability no higher that/4, see the original referenceaRIN or e.g. GRANDALL &

CHAPTER 7. NUMBER THEORY. PART 2 57

POMERANCE or KRANAKIS or GARRETT. By repeating the test we get a certainty as good as
we want®

Besides primality testing, generating primes of a givemgikns an essential task. A prime
of length/N can be chosen randomly by first choosing a random integengttiéV, see Section
2.6, and then testing it for primality by the Miller—Rabirste This prime generation is quite
fast. If we denote byr(x) the number of the primes less than or equat teve get a famous
asymptotic estimate:

Theorem 7.11. (Prime number theorem)lim m(z) =
z—oo x/Inx

The proof is difficult! Hence, of the numbers of magnitudapproximately one in everynn
is a prime. This is enough for random search of primes to gokiyui The random number
generators of Section 2.6 are good enough for this purpaselder result

m(x)

Theorem 7.12. (Chebychev’'s theorem)g < < g whenx > 5.

x/Ilnx

gives rough quantitative bounds. It guarantees that threratdeast

™
lnn

primes among the numbets2, . .. n, and that in the intervaln, n] there are at least

n 9m
SInn SInm

primes. For example, in the interv@l0*®, 10'°!] there are thus at least something like

7 . 10151 9 . 10150
1208In10 1200In10

~919.10™8

primes, much more actually. Primes also occur fairly umifiyr

Theorem 7.13. (Bertrand’s postulatd) Whenn > 2, there is at least one primg in the
intervaln < p < 2n.

Theorem 7.14. (Dirichlet—de la Vallée-Poussin theorem) m > 2 then primes are distributed
asymptotically equally among the reduced residue classeitam.

Primes and primality testing are widely discussed RAE8DALL & POMERANCE.

7.5 Factorization of Integers

From the fact that primality testing is iR it follows immediately that factorization of integers
is in N'P: just guess the prime factors and test their primality. @ilthh primality testing is
in P and also quite fast in practice, factorization appears ta baghly demanding task. It is
enough to give a method that finds a nontrivial fact@f an integem > 2, or then confirms

8There are other Monte Carlo type primality tests, for exanpé so-calleGolovay—Strassen algorithrsee
€.g. S\LOMAA or KRANAKIS.
9The postulate was actually proved by Chebychev.

CHAPTER 7. NUMBER THEORY. PART 2 58

thatn itself is a prime. After that we can continue recursivelynfrthe numberg andn/d. Of
course, we should start with primality testing, after whisdtmay assume thatis not a prime.

The following well-known algorithm often finds a factor fon @dd composite number,
assuming that for some prime facioof n there are no prime powers dividipg- 1 larger than
b. From this condition it follows that — 1 is a factor oft! (doesn't it?).

Pollard’s p — 1-algorithm1°:

1. Seta + 2.

2. lterate setting < (a/,mod n) for j =2,...,b.

3. Computel = ged(a — 1, n).

4. If 1 < d < n, return the factotl, otherwise give up.

Assume thap is a prime factor ofr which satisfies the given condition. After #2 apparently
a = 2 mod n and thus alsa = 2" mod p. By Fermat’s little theorem”~! = 1 mod p.
As was notedp — 1 | bl whences =1 mod p. So,p | @ — 1 and thug | d. Itis possible that
a = 1, though, in which case a factor cannot be found.
The time complexity of the algorithm is

O(bBN? + N?)

whereN and B are the binary lengths of the numberandb, respectively. From this it is seen
thatb should be kept as small as possible compared wifior the algorithm to work fast. On
the other hand, ib is too small, too many prime factors are precluded and therigihgn does
not produce a result.

More exact presentation and analysis of Pollapd’d -algorithm and many other algorithms
can be found in the referenceseREL and (RANDALL & POMERANCE. Pollard’sp — 1-
algorithm has been generalized in many ways, for exampleast-callednethod of elliptic
curvesand toWilliams’ p + 1-algorithm.

A very classical algorithm for finding factors is the so-edllest division algorithmin this
algorithm we first try out factor@ and3 and after that factors of formik + 1 up to [/n].
Integral square root can be computed fast, as was noted. @W$eadhis procedure is rather
time-consuming. Test division is a so-callsigve method.There are much more powerful
sieve methods, for instance thaadratic sieveand thenumber field sieveThe estimated time
complexities for the fastest algorithms at the moment avergin the following table. Shor’s
algorithm, see Section 15.3, is not included, since quamimumputers do not really exist yet.

Algorithm Time complexity *

<€(1+0(1))w /Innln(ln n))

O
Method of elliptic curves O (1+o(1)) 21“1’1“(1”1’)) (p is the smallest prime factor af)
O

Quadratic sieve

Number field sieve

o
<€<1-92+o<1>><1nn)vsan(lnn))zxs)

* The notationf(n) = o(1) means thatlim f(n) = 0. More generally, the notatiofi(n) = o(g(n)) means
that lim f(n)/g(n) = 0. nree
n— oo

0The original reference is®.LARD, J.M.: Theorems on Factorization and Primality TestiPmceedings of
the Cambridge Philosophical Societg (1975), 521-528. The algorithm can be varied in a number wagsder
to make it more powerful, this is just a basic version.

CHAPTER 7. NUMBER THEORY. PART 2 59

7.6 Modular Square Root

The number is called asquare root ofy modulom or a so-callednodular square rooif

2=y mod m.

Usually this square root is represented in the positiveltessystem. We see immediately that
if = is a square root aj modulom then so i —z,mod m). Thus there are usually at least two
modular square roots, often many more.

There does not necessarily have to be any square root meduld numbery that has
square root(s) modula is called agquadratic residuenodulom, and a numbey that has no
square roots module: is called aquadratic nonresiduenodulom. Apparently at least the
numbers) and 1 are quadratic residues. In the general case testing quadeatduosity or
guadratic nonresiduosity modute is a difficult computational task.

If the numbery is a quadratic residue modute and the factorization of: is

m = py'py iy
and some square roo} of y moduIOp;j (j =1,2,..., M) is known, then we can obtain more
square roots of modulom using the Chinese remainder theorem. Note thatsfa quadratic
residue modulan then it is also quadratic residue modulo evpj*”y since every square root
of y modulom is also its square root modujfh@. Solve forx modulom the congruence system

r=+x; mod p’

xr = +xe mod py

r = fxp) mod pyyf

by using the CRT algorithm. The solution is uniquely deteradi modulan = pi'p2 - - - pi.
Any of the2* combinations of the signg may be chosen. Then

2’ = (£2;)* =y mod pj»j

and s | 2* —y (j = 1,2,..., M). Since they/ are coprime we have: | 2> —y,i.e.2’> =y
mod m. By going through all choices for the square roojs—there may well be several of
them—and all--sign combinations we actually obtain every square rogtmiodulom.

So, the situation is reduced to computing square roots noopliines or prime powers.
Computing square roots modulo higher powers of primes ig anbre difficult and it is not
discussed her€. On the other hand, square roots modulo a priman be computed fast by the
so-calledShanks algorithmThere are always exactly two square rootg @hodulop, unless
y =0 mod p, since ifx is a square root and is another then

2 12

r=y=2" modp or (z—2)(z+2')=0 modp

and eitherp | x — 2/, i.e.x =2’ modp,orp | x + 2/, i.e.2’ = —z mod p. Andify =0
mod p, then the only square root (s as it is easy to see.

If p > 2 then apparently all quadratic residues modulare obtained when we take the
squares of the numbebsl, ..., (p — 1)/2 modulop. These squares are not congruent modulo
p (why?), so there is one more of the quadratic residues tlreqguhdratic nonresidues, and this
one quadratic residue s Whethery is a quadratic residue or a quadratic nonresidue magdulo
can be decided quickly, the cages- 2 andy = 0 mod p being of course trivial.

1IA so-called Hensel lifting, much as the one in Section 1k 8geded there, see e.CARETT.

CHAPTER 7. NUMBER THEORY. PART 2 60

Theorem 7.15. (Euler’s criterium) If pis an odd prime ang £ 0 mod p theny is a quadratic
residue modulg if and only if

1

yp% =1 mod p.
(Modular powers are computed quickly using the algorithrRosian peasants.)

Proof. If y is a quadratic residue, that is, for somee havey = 2> mod p, then by Fermat’s
little theoremz?~! = 1 mod p (note thatged(x, p) = 1 sincey Z 0 mod p). So

y 2 =2P"'=1 mod p.

Conversely, ify®»5/2 = 1 mod p then we take a primitive rogt modulop. In this case
we havey = ¢ mod p for some: becausecd(y,p) = 1, and

p=1,

p—1
g2'=y 2 =1 modp.

But since the order oj isp — 1, (p — 1)i/2 must be divisible by — 1. Hencei is even and,

has the square roots-¢"/?, mod p) modulop. O

If pis of the formp = 4] — 1, i.e.p = 3 mod 4, then by using Euler’s criterium we
immediately get those two square rootgjefassuming of course that% 0 mod p. They are
(£y®+/4 mod p), since

2 _
(:I:y%l> = y%l = yple =y mod p.

One of these two modular square roots is actually a quadestidue itself, this is the so-called
principal square rootand the other is a quadratic nonresidue. To see this, firgt,df a is
both a square root af and a quadratic residue modyléthen—z cannot be a quadratic residue.

Otherwiser = 22 = —22 mod p for some numbers; andz,, and—1 = (z;2,)? mod p,
i.e. —1 is a quadratic residue modupo However this is not possible by Euler’s criterium since
(—1)P=1/2 = (~1)%=1 = —1. On the other hand these modular square roots cannot both be

guadratic nonresidues, otherwise there will be too manierit

The casep = 4l + 1 is much more complicated, oddly enough, and we need Shanks’
algorithm to deal with it.

Before we go to Shanks’ algorithm, we can now state that tfoes not have higher powers
of primes as factors—in other words, is square-free—and the factorization

m=pip2---Pm

is known then the situation concerning quadratic residnessguare roots modula is quite
simple:

e y is a quadratic residue moduto if and only if it is a quadratic residue modulo egch
(j=1,2,..., M), and this is very quickly decided using Euler’s criterium.

o After computing the square roats of y modulop; using Shanks’ algorithm, we obtain
all 2™ square roots of modulom applying the CRT algorithm as above.

Furthermore we obtain

Theorem 7.16.1f m is odd and square-fregcd(y, m) = 1, i.e.y is not divisible by any of the
primesp;, andy is a quadratic residue modula then there are exactlg square roots of
modulom whereM is the number of prime factors of.

CHAPTER 7. NUMBER THEORY. PART 2 61

Proof. Otherwise for some; we haver; = —z; mod p;, i.e.2z; = 0 mod p;. Thus,
becausg; is odd,z; =0 mod p; and furthery = 27 = 0 mod p;. O

If the primesp; are all= 3 mod 4 then exactly one of thes®” square roots of modulom
in the theorem is obtained by the CRT algorithm choosinggypal square roots af modulo
eachp;. This square root is therincipal square roobf y modulom.

Corollary. If m is odd and square-free, is a quadratic residue modulm, andz is a square
root ofy modulom then the square roots gfmodulom are exactly(zw;,mod m) (: = 1,2,.. .,
2M) where)M is the number of prime factors of andw;, ws, . .., w,n are the square roots of
1 modulom.

NB. All this depends very much on the factorizatiommofbeing available. Already in the
case wherel = 2 and the factors are not known deciding whetheis quadratic residue
modulom or not, and in the positive case finding its square roots modulis very laborious.
Even knowing one of the square root pairs does not help. Asteemaf fact, if we know
square rootsr; andx, of y modulom = p;p, such thatr; # +x, mod m then the numbers
ged(m, z1 £+ xo) are the primesp; and p,. Many cryptosystems and protocols, e.g. RSA, are
based on these observations.

And then the Shanks algorithm:

Shanks’ algorithm:
1. If p = 2, return(y,mod 2) and quit. Ify =0 mod p, return0 and quit.

2. Ify®=Y/2 £ 1 mod p theny does not have square roots moduloy Euler’s criterium.
Return this information and quit.

3. If p=3 mod 4, return(y®+Y/4 mod p) and quit.

4. Then again ifp = 1 mod 4, write p — 1 = 2% wheret is odd ands > 2. This is
accomplished by repeated divisions Byand no more thamlog,(p — 1)| of them are
needed.

5. Randomly choose a numbefrom the intervall < v < p. Now if u»~1/2 =1 mod p,
give up and quit. By Euler’s criterium is in this case a quadratic residue moduland
for the sequel a quadratic nonresidue will be needed. Hérmoehinice of: succeeds with
a probability 0f50%.

6. Setv < (u',mod p). Then the order of modulop is 25. This is because ifis this order,
thenit | 2t and soi | 2°. On the other handy2* % 1 mod p for k < s, otherwise
w2 =1 mod p.

7. Setz <+ (y**Y/2 mod p). Thenz? = y'y mod p. In a sense is an "approximate”
square root ofy modulop, and using it we can find the correct square root in the form
r = (zv=",;mod p).

8. Find the said correct square root, in other words, a nuindigch that

==y modp, ie. v¥=2y =9y modp.

CHAPTER 7. NUMBER THEORY. PART 2 62

Such a number exists because the modular equation = 1 mod p has2:~! roots?
(solving forw) and they ardv? mod p) (j = 0,1,...,2°7t — 1). Since(y’,mod p) is
one of the roots, the numbécan be found recursively in the binary form

[=by 9224 by 3253+ 4+ b2+ by
as follows:
8.1 The bith, is found when both sides of the congruenée= y* mod p are raised to
the (2°=2)™ power since
b 0if (", mod p) =1
°~) 1 otherwise.
8.2 The bitb, is found, when both sides of the congruenée= y* mod p are raised
to the(2°~3)™" power since

. 0if (4 "0 ~2%° mod p) = 1
] 1 otherwise.

Note that here we need the already obtailied
8.3 Using the obtained bitg andb; we similarly find the following bit,, and so on.

9. Return(£zv~' mod p) and quit.

It is quite easy to see that the algorithm is polynomial-tamd produces the correct result with
an approximate probability af0%. It is a Las Vegas type stochastic algorithm.

7.7 Strong Random Numbers

Cryptologically strong random numbers are needed for exampprobabilistic cryptosystems
where random numbers are used in the encryption. Encryptiegand the same message can
then produce different results at different times. Manyt@cols also use random numbers.

Many otherwise quite good traditional random number gdnesasuch as the shift register
generator introduced in Section 2.6, have proved to be daagly weak in cryptography. The
specific needs of cryptology started an extensive resediggbenidorandom numbers, theoreti-
cally as well as in practice.

The Blum—-Blum—Shub generatbtis a simple random number generator, whose strength
is in its connections to quadratic residuosity testing.c8jras of now, no fast algorithms are
known for the testing, even probabilistic ones not to mendeterministic, the BBS generator
is thought to be strong in the cryptological sense, see eA@RGTT Or STINSON.

Squaring a quadratic residuemodulon produces a new quadratic residueNow if y has
a principal square root, it must be and so in this case we are actually talking about permuting
quadratic residues. This permutation is so powerfully cemiding that it can be used as a
random number generator.

12Here we need from polynomial algebra the result that an atgebquation ofi" degree has at mogifferent
roots. See for example the course Algebra 1 or Symbolic Cdimgpor some elementary algebra book.

13The original reference is BJM, L. & BLUM, M. & SHUB, M.: A Simple Unpredictable Random Number
GeneratorSIAM Journal on Computing5 (1986), 364—383.

CHAPTER 7. NUMBER THEORY. PART 2 63

The BBS generator produces a sequence of random bits. Tleeagenneeds two primes
p andq, kept secret, of approximately same length. The condjiieng = 3 mod 4 must be
satisfied, too, for the principal square roots to exist. deno= pq. If the goal is to produceé
random bits, the procedure is the following:

Blum—-Blum-Shub generator:

1. Choose a random numbeyfrom the intervall < s, < n. Randomness is very impor-
tant here, and for that the random number generators inteatlun Section 2.6 are quite
sufficient. Indeed, some choices lead to very short seqseacel the random number
generator starts repeating itself quite soon, which is of$® a serious deficiency. This
is discussed thoroughly in the original article.

2. Repeat the recursion

s; = (s ,, mod n)

[times and compute the bits

b = (s;, mod 2) (i=1,2,...,1).

3. Return(by, by, ..., b;) and quit.

NB. Cryptologically strong random number generators and gopgtosystems have a lot in
common, as a matter of fact, many cryptosystems can be dramsdl to cryptologically strong
random number generators, see é3pLDREICH and SHPARLINSKI and the articleAIELLO,

W. & RAJAGOPALAN, S.R. & VENKATESAN, R.: Design of Practical and Provably Good
Random Number Generatodaurnal of Algorithm<9 (1998), 358-389.

7.8 Lattices. LLL Algorithm

If vi,..., vy are linearly independent vectorsRf then thelattice'* generated by them is the
set of the points
(vi,...,vg) ={aavi+-+cavi|c,...,c €Z}

of R. The vectorsvy, ..., v, are called théase vector®r thebasisof the lattice, and: is
the dimensionof the lattice. A lattice has infinitely many baseskif> 1. So, a central task
considering lattices is to find a "good” basis which includeteast one short vector and whose
vectors do not meet at very sharp angles. Such a basis resethblnatural basis & .
Thediscriminantof the lattice isD = | det(V)| whereV is the matrix whose columns are
vy, ..., Vg. D is the volume of thé-dimensional parallelepiped spanned by the base vectors,
and does not depend on the choice of the basis of the lattlus.i¥ because a matrx, used
for changing the basis, and its inver€e! must have integral elements, in which case both
det(C) anddet(C™!) = det(C)~! are also integers and hendéet (C) = +1. After the change
of basis the discriminant isdet(CV)| = |det(C)det(V)| = D. The discriminant offers a
measure to which other quantities of the lattice can be coedpa
The celebratetienstra—Lenstra—Lovasz algorittf(LLL algorithm) gives a procedure for
constructing a good basis for a lattice, in the above meat@ense, starting from a given basis.
The resulting basis is a so-calletL reduced baseAfter getting the base vectots, . .., v, as
an input, the algorithm produces a new basis. . ., u;, for the lattice(v, ..., v), for which

14Research of lattices belongs to the so-cafjedmetric number theoryr Minkowski's geometry.
15The original reference iSENSTRA, A.K. & L ENSTRAJR., H.W. & LoVvAsz, L: Factoring Polynomials with
Rational CoefficientsMathematische Annale261(1982), 515-534.

CHAPTER 7. NUMBER THEORY. PART 2 64

1. ||| < 2°7 Ds,

2. |luy]| < 2"2 X\ where) is the length of the shortest nonzero vector of the lattind, a

3. [fJul < 275 D.
Items 1. and 2. guarantee that the new base vegte short both compared with the discrimi-
nant and with the shortest nonzero vector of lattice. Iteigu@rantees that the angles spanned
by the new vectors are not too small. A measure of approxirodtegonality of the basis
uy,...,u;is how closg|u|| - - - ||u| is to D, since|luy|| - - - ||uy|| = D for orthogonal vectors
a, ..., Uk

For the time complexity of the LLL algorithm there is the asdite

O(K (nmax([|vall,..., [[vel))*),

but usually it is a lot faster in practice. However, note tiae is polynomial only in the size
of the vectors, not in the size of the dimension. Performaridche algorithm depends also on
how the vectors/, . . ., v, are given and how you compute with them. Naturally, an easg ca
is when the vectors have integral elements.

The LLL algorithm won’t be discussed any further here, itéated in much more detail for
example in @HEN. Suffice it to say that it is extremely useful in a number ofteats.

Chapter 8
RSA

8.1 Defining RSA

RSA'S secret keyk, consists of two large primgsandg of approximately equal length, and a
numberb (the so-calledlecrypting exponehsuch that

ged(b, ¢(pg)) = ged(b, (p —1)(¢ — 1)) = 1.

The public keyk; is formed of the number = pg (multiplied out), and the number (the
so-calledencrypting exponehsuch that

ab=1 mod ¢(n).
Note thath does have an inverse moduton). The encrypting function is
er, (w) = (w*, mod n),

and the decrypting function is

er,(¢) = (c*, mod n).

For encrypting to work, a message block must be coded as egeinin the interval) < w <

n—1. Both encrypting and decrypting are done quickly using tger&thm of Russian peasants.
The following small special case of the Chinese remaindswrém will be very useful:

Lemma. z =y mod nifand only if bothr =y mod pandz =y mod gq.
When setting up an RSA cryptosystem, we go through the fatig\steps:
1. Generate random primgsandgq of desired length, see Section 7.4.
2. Multiply p andgq to get the numben = pq, and compute(n) = (p — 1)(¢ — 1) as well.

3. Find a random numbérfrom the intervall < b < ¢(n) — 1 such thaged (b, ¢(n)) = 1,
by generating numbers randomly from this interval and camguhe g.c.d.

4. Compute the inverseof b modulo¢(n) using the Euclidean algorithm.

5. Publish the paik; = (n,a).

1The original reference is IREST, R.L. & SHAMIR, A. & ADLEMAN, L.: A Method for Obtaining Digi-
tal Signatures and Public Key Cryptosysteil@@mmunications of the Association for Computing Machiridry
(1978), 120-126.

65

CHAPTER 8. RSA 66

Now let’s verify that decrypting works. First of all, gicd(w, n) = 1 then by Euler’s theorem
for some numbetwe have

b

c (wa)b — w® = w1+l¢(n) — w(,wd)(n))l —w-1=w mod n.

Then again, igcd(w, n) # 1, we have three cases:

e w = (0. Now apparently
=W’ =0"=0 modn.

e p | wbutw # 0. Noww = pt whereged(q,t) = 1. Clearly

b=w®=w mod p.

()

On the other hand, by Fermat’s little theorem for some nurhiaer have
w® = w M — (WM = (wPDE = (I) P = 1 =w mod g.
By the lemma® = w® = w mod n.

e ¢ | wbutw # 0. We handle this just as we did the previous case.

NB. The above mentioned conditignd(w,n) # 1 does not bode well: Either the message
is directly readable or it hap or ¢ as a factor, in which case using the Euclidean algorithm
ged(w,n) can be obtained and thus the whole system can be broken. @fecahis also
happens igcd(c,n) # 1, but because does not have higher powers of primes as factors and
c=w® mod n, in fact

ged(e,n) = ged(w®, n) = ged(w, n).

8.2 Attacks and Defences

RSA can be made very safe but this requires that certain damgiehoices are avoided. Note
that KP data is always available in public-key systems. Casedo be avoided was already
indicated in the note above, but it is very rare. Other thithgs should be kept in mind are the
following:

(A) The absolute value of the differenge- ¢ must not be small! Namely, if—¢ > 0 is small
then(p — ¢)/2 is small too, andp + ¢)/2 is just a bit larger tha/pg = \/n (check!).

On the other hand,
2 2
_(p+tq pP—q
n=|—-—-—~1 —|—] -
2 2

To find the factorg andg of n we try out integers one by one starting frogin | until we
hit a number: such thatr> — n = 4% is a square. When thisis found, we immediately
obtainp = x + y andq = = — y. Becausen itself is not square[\/n| = |v/n] + 1.
Computing the integral square root is quite fast, see Seetio.

(B) We must keep an eye on the factor structure@f) when choosing the primgsandg.
If ged(p — 1,9 — 1) is large then

(p—1(g—-1)
ged(p—1,q—1)

u=lm(p—1,g—1) =

CHAPTER 8. RSA 67

(©)

(D)

(E)

is small (see Theorem 2.9). On the other hapd(a, u) = 1 (why?) andz has an inverse
b modulow. Thisd’ will also work as a decrypting exponent because we can nove wri
all =1+ luandu = t(p — 1) = s(q — 1) for some numberg ¢ ands, and by Fermat's
little theorem

& =w® =t = ww") =wwP Y =w-1=w mod p.
(Here of course: = w® mod p.) Similarly ¢ = w mod ¢ and by the lemma also
& = w mod n. If uis much smaller tham(n) thent' can be found by trying out
numbers. The conclusion is that- 1 andg — 1 should not have a large common divisor.

A situation wheres(n) has only small prime factors must be avoided, too. Exceppiitha
this situation we can try to factor by Pollard’'sp — 1-algorithm and similar algorithms,
it may also be possible to go through all candidatdsr ¢(n), for whichged(f,a) = 1,
compute the inverse afmodulo f, decrypt some cryptotext, and in this way fin@:) by
trial and error. Note that ib(n) = (p — 1)(¢ — 1) andn are known we can easily obtain
p andgq as the roots of the second degree equation

(z—p)(x—q) =2+ (¢(n) —n— 1)z +n=0.

The roots

—o(n) +n+1+/(d(n) —n—1)2—4n
2
can be computed quite quickly using integral square root.

T2 =

Usingiterated encryptingve can either facton or find the plaintextv, when the corre-
sponding cryptotext is available. Compute the sequence

ai+1

¢ = (¢, mod n) = (cai, mod n) = (w* ,modn) , ¢ =c,

recursively untilged(c; — ¢, n) # 1. If this succeeds, there are two possibilities:

e gcd(c; — e,m) = porged(c; — ¢,n) = ¢: In this casep andq are found and the
system is broken.

e gcd(c; — ¢, n) = n: Inthis case necessarily = ¢;_; and the plaintextis found. b
has a recognizable content, it will be found already in tleeeding iteration round!

Does the procedure succeed every time? By Euler’'s theorem
a®@™) =1 mod ¢(n),
i.e. we can writex?®™) — 1 = [$(n), and further
Coomy-1 = W = WO — (™) =1 =w mod n,

so at least = ¢(¢(n)) suffices. On the other hand(¢(n)) > /n, so that this bound for
the number of iterations is not very interesting.

Apparently very small decrypting exponents must bed@aj since they can be found by
trying out numbers. As a matter of fact, certain methods nmagessible to find even
fairly large decrypting exponents. For exampleh ik n%2?, it can be found using the
LLL algorithm.?

2See BONEH, D. & DURFEE, G.: Cryptanalysis of RSA with Private KeylLess Tham?2°2. Proceedings of
EuroCrypt '99. Lecture Notes in Computer Scied&®2 Springer—Verlag (1999), 1-11.

CHAPTER 8. RSA 68

A small encrypting exponent can also do harm, even if theygicrg exponent is large.
If for examplew® < n thenw can be easily obtained fromby taking the integrah™
root. See also Section 8.5.

(F) It goes without saying that if there is such a small humiifepossible messages that
they can be checked out one by one then the encrypting carokerbrlf all messages
are "small” then this can be done quite conveniently by theatedmeet-in-the-middle
procedure.Here we assume that < 2!, in other words, that the length of the message
in binary representation is [. Because by the Prime number theorem there are only few
possible large prime factors af, it is fairly likely that w will be of form

w = wiwy Where wy, wy < (2”21
(at least for large enougdh, in which case the corresponding encrypted message is
¢ =wjw; mod n.

[2!/2] is obtained by the algorithm of Russian peasants and byatixtgathe integral
square root if needed. The procedure is the following:

1. Sort the number§®,mod n) (i = 1,2,3,..., [2//?]) according to magnitude, in-
cluding thei’'s in the list £ obtained. Computing the numbes,mod n) by the
algorithm of Russian peasants takes ti@'/2N*) whereN is the length of., and
sorting with quicksort take® (12!/2) time steps.

2. Go through the numberg;j—%mod n) (j = 1,2,3,...,[2"%]) checking them
against the listC—this is easy, since the list is in order of magnitude. If welfin
aj such that

—a -a

c) " =1" modn

then we have foundv = ij (meeting in the middle). Using binary search and
computing powers by the algorithm of Russian peasants take®) (2!/2(1 + N?)).

If it so happens that™' mod n does not exist theged(j,n) # 1 and a factor of,

is found.

The overall time isD(2!/2(1 + N?)), which is a lot less tha@', assuming of course that
the list£ can be stored in a quickly accessible form.

The problem of small messages can be solved ysaugling in other words by adding

random decimals (or bits) in the beginning of the decimabfpary) representation of the
message, so that the message becomes sufficiently long.u@eca new padding needs
to be taken every time. In this way even single bits can be agessand safely encrypted.

NB. In items (B) and (C) safety can be increased by confining tethealledsafe primesor
Germain’s numberg andg, i.e. to primeg andq such thatp — 1) /2 and(q — 1) /2 are primes.
Unfortunately finding such primes is difficult—and it is ngee known whether or not there
infinitely many of them. Some cryptologists even think thexeso few Germain numbers it is
not actually safe to use them!

A particularly unfortunate possibility in item (D) is thdtd iteration succeeds right away.
Then it can happen that | ¢ or ¢ | ¢, but what is much more likely is that the message is a
so-calledfixed-point message other words, a messagesuch that

c = e, (w) =w.

Apparently0, 1 andn — 1 are such messages. But there are usually many more of them!

CHAPTER 8. RSA 69

Theorem 8.1. There are exactly
(I+ged(a—1,p—1))(1 +ged(a—1,q—1))

fixed-point messages.

Proof. Denotel = ged(a — 1,p — 1) andk = ged(a — 1, ¢ — 1) and take some primitive roots
g1 andg, modulop andgq, respectively. Then the order gf ' modulop is (p — 1)/l and the
order of g3~ modulog is (¢ — 1)/k, see Theorem 7.4 (iii). Hence the only numbeéns the
interval0 < ¢ < p — 1 such that

(g9")'=1 modp or (¢i)*=g; mod p,

are the numbers .
z'j:jpT G=0,1,...,1—1).

Similarly the only numbersin the intervald < i < ¢ — 1 such thatg})* = ¢ mod ¢, are the
numbers

q—1

hm:mT (m=0,1,...,k—1).

Apparently every fixed-point messagesatisfies the congruences = w mod p, ¢, and vice
versa. Hence exactly all fixed-point messages are obtapné¢adebChinese remainder theorem
from the(+ 1)(k + 1) congruence pairs

{xEO mod p {ZEEO mod p {ngij mod p {ngij mod p

=0 mod ¢ z = ¢gi mod ¢ r=0 modq z = ¢g' mod ¢

(G=0,1,....,1—landm =0,1,.... k—1). [

Of course, there should not be many fixed-point messagesuBedn practice and bothp
andgq are odd, generally there are at leéist+ 2)(1 + 2) = 9 fixed-point messages. Especially
difficult is the situation where — 1 | « — 1 andg — 1 | @ — 1. In this case there arfg + p —
1)(1 + ¢ — 1) = n fixed-point messages, that &) messagesre fixed-point messages. df
andg, are known and the number of fixed-point messages is relatvedll, they can be found
in advance and avoided later.

Some much more complicated ideas have been invented fdtibgelRSA. These are intro-
duced for example in MLLIN. None of these has turned out to be a real threat so far.

8.3 Cryptanalysis and Factorization

Breaking RSA is hard because the factorsuafannot be computed in any easy way. In the
public key there is also the encrypting exponentThe following result shows that there is
no easy way to obtain additional information outagfeither. In other words, an algorithr,
which compute$ from n anda, can be transformed to a probabilistic algorithm, which loan
used to quickly factor.

If a square rootw of 1 modulon is known somehow and # +1 mod n, then the factors
of n can be quickly computed using this square root, becausgthen)(w + 1) =0 mod n
and one of the numberg:d(w + 1,n) equalsp. The following algorithm uses this idea and
the assumed algorithr trying to factorn. In a way the algorithm resembles the Miller—Rabin
algorithm.

CHAPTER 8. RSA 70

Exponent algorithm:
1. Choose a random messagel < w < n.
. Computel = ged(w, n) using the Euclidean algorithm.

. If 1 < d < n, returnd andn/d and quit.

2
3
4. Computeé using the algorithm! and sety < ab — 1.
5. If y is now odd go to #7.

6

. Ifyiseven, sey < y/2 and go to #5. Ifhb — 1 = 2°r wherer is odd, we cycle this loop
s times. Note that in this case< log,(ab — 1) < 2log, n, i.e. s is comparable to the
length ofn.

7. Computev = (w¥,mod n) by the algorithm of Russian peasants.
8. Ifw=1 mod n, we give up and quit.

9. If w # 1 mod n, setw’ < w andw + (w?*mod n) and go to #9. This loop will be
cycled no more than times, sinceib — 1 = 2°r is divisible by ¢(n) and on the other
hand by Euler’s theorem®™ = 1 mod n.

10. Eventually we obtain a square regtof 1 modulon such thats’ Z 1 mod n. Now if
w' = —1 mod n, we give up and quit. Otherwise we compute ged(w’ — 1, n), return
t andn/t, and quit.

The procedure is a probabilistic Las Vegas type algorithner&h#1 is random. It may be
shown that it produces the correct result at least with poiiba 1 /2, see for example BNSON
or SALOMAA .

Despite the above results it has not been shown that bre&&#gwould necessarily lead
to factorization ofn. On the other hand, this would make RSA vulnerable to attasksg CC
data, indeed CC data may be thought of as random broken texpto

8.4 Obtaining Partial Information about Bits

Even if finding the message itself would seem to be difficudtjld it be possible to find some
partial information about the message, such as whether ¢éissage is even or odd, or in which
of the intervald) < w < n/20rn/2 < w < nitis? Here we assume of course thas odd.
If for example we encrypt a single bit by adding a random pagltl the binary representation,
parity of the message would give away the bit immediately.

In this way we obtain two problems:

(1) Compute thearity of w
par(c) = (w, mod 2)

starting from the cryptotext = e, (w).

half(c) — f—wJ

n

(2) Compute thdalf of w

starting from the cryptotext = e, (w).

CHAPTER 8. RSA 71

These two problems are not independent:

Lemma. The functiongar andhalf are connected by the equations
half(c) = par((2%¢, mod n)) and par(c) = half((27 %, mod n)).

Proof. First we denote
¢ = (2%, mod n) = ((2w)*, mod n).

If now half(c) = 0then0 < 2w < n, i.e.2w is the plaintext corresponding t§ andpar(c¢’) =
0. Again, if half(c) = 1 thenn/2 < w < n,i.e.0 < 2w —n < n. Thus in this caséw — n is
the plaintext corresponding tdand it is odd sgar(c’) = 1.
The latter equality follows from the former. If we denate= (2-%c,mod n) then by the
above
half (¢") = par((2°¢”, mod n)) = par((2*2™“w*, mod n)) = par(c). O

Hence it suffices to consider the functibalf. Now let's compute the numbers
¢; = half(((2'w)®, mod n)) (0 <i < |log,n)).

Here of cours&‘w can be replaced by the "correct” messdgev,mod n) if needed. Hence
¢; = 0 exactly when dividin@‘w by n the remainder is in the intervil, n/2), in other words,
exactly whenw is in one of the intervals

(G=0,1,...,20 —1).

Becauser is odd, the following logical equivalences hold:

c0:0<:>0§w<g

O0<=0< <norn< <3n
C1 = w — — w N
! = 4 9 4

0<—=0< <norn< <3norn< <5nor3n< <7n
Cy = w< = —<w < — —<w < — — <w < —=
2 = 8 4 8 2 8 4 8

Thusw can be found ifflog, n| + 1 steps by binary search.

Allin all we can conclude by this that an algorithm, which qauites one of the functionsr
or half, can be transformed to an algorithm for decrypting an abjitmessage in polynomial
time. So, the information about a message carried by thesgifuns cannot be found in any
easy way.

NB. On the other hand, if we know some number of decimals/biteafécrypting key or of the
primesp or ¢, we can compute the rest of them quickly, Ge@PERSMITH D.: Small Solutions
to Polynomial Equations, and Low Exponent RSA VulneraiesitJournal of Cryptologyl0
(1997), 233-260.

CHAPTER 8. RSA 72

8.5 Attack by LLL Algorithm

Very often the beginning of a plaintext is fixed and the vaeadxtension is short. In such
situations one should not use a very small encrypting exptondn this case the plaintext is of
form

wW=x+Yy
wherex remains always the same apds the small variable part. Let's agree that < Y.
The choice oft” is revealed later, of courseé is an integer. A negativg is also possible here,
whatever that might mean! The corresponding cryptotext is

c=((x +y)* mod n).

A hostile outside party now knows the public kiy, a), ¢, z andY and wants to find. For
this the polynomial

Pit)=T+t)"—c= iﬁiti

of Z,[t] is used, where the coefficients are represented in the positive residue system and
d, = 1. So, we are seeking a numhgsuch thaty| <Y andP(y) =0 mod n.
Consider then the + 1-dimensional latticévy, ..., v, 1) where

vi=(n,0,...,0) , vo=(0,nY,0,...,0) , wv3=(0,0,nY%0,...,0) ,...,
Vg = (0, ey 0, TLYa_l, 0) s Vat+1 = (do, d1Y, dQYQ, ce ,da_lya_l, Ya).

See Section 7.8. When the LLL algorithm is applied to this Ww&am a new basia, ..., u,. 1,
from which we only needh;. Now the discriminant of the lattice is

n 0 o .- 0 0
0 nY o .- 0 0
2
D _ 0 0 TLY e 0 0 _ naY1+2+"'+a _ naya(a;l)
0 0 0 -~ nYol! 0
do diY d2Y2 s da,1YG_1 Y@

S0 |
g || < 25 Da+i = 2inatiYs,

u; can naturally be written as a linear combination of the oafjbase vectors with integer
coefficients:

U =evy+ -+ €a+1Vat+1 = (f07 f1Y7 f2Y27 R faYa)

where
fi = €i+1n+€a+1di (Z = O,l,...,(l— 1) and fa = €q+1-

Hence
fi=eqr1d; modn (i=0,1,...,a).

Now we take the polynomial

Qt) = Z fit'.
=0

CHAPTER 8. RSA 73

Because”(y) = 0 mod n, we have also
Qly) = Z fiy' = Z ar1diy’ = €t Zdiyi =e.1P(y) =0 mod n.
1=0 =0 1=0

Furthermore, by the triangle inequality, the estimjgte< Y and the Cauchy—Schwarz inequal-
ity,

a) a) a))
QU < D 1/ <D AT =D 1AV < (a+ 1)2]l
=0 1=0 =0
At this point we can give an estimate for. Choose & such that
(a+ 1)%2%n#1Y% <n, le.(check!) YV < 2_%((1 + 1)_%71@(@2“).

Hence|Q(y)| < n. Because, on the other har@d(y) = 0 mod n it must be that)(y) = 0.
So, the desired can also be found by any numerical algorithm for finding thetsmf the
polynomial equatiorQ)(y) = 0 with integral coefficients. There may be several altermstiv
hopefully one of them will turn out to be the correct one.

The method is fast i& is small enough. The maximum length of the vectors .., v, iS
proportional to the length af * and the LLL algorithm is polynomial-time in this length. Gret
other hand, the LLL algorithm is slow for large valuesassfremember it wasn’t polynomial-
time in the length of the dimension—and the numerical seafchots is then laborious also.

On the other hand, for large values@@fa rather smalt” and hencey must be chosen, which
further limits usefulness. If is of order103"’, we obtain the following connection between the
decimal length of; anda using the choice oY above:

507, ©

N w B
@ ? @
o

maximal length of/

[HEN
<@
o

OO0OO0OO0OO0O0O00O0O0O00OO0OO0O0O0O0O0
— T T T T[T T

10 20 30 40 50
a

Chapter 9
ALGEBRA: GROUPS

9.1 Groups

A groupis an algebraic structur@ = (A, ®, 1) where® is a binary computational operation,
the so-calledyroup operationandl is the so-calleddentity elemenof the group. In addition
it is required that the following conditions hold:

1) (a@b)©c=ae (bGc) (©isassociative).
2 a®l=10a=a.

(3) For every element there exists a unique elememt!, the so-callednverseof a, for
whicha ®at'=a'®a = 1.

Furthermore, it is naturally assumed thab b is defined for all elements andb, and that the
result is unique. The group operation is often read "timesf @alledproduct If in addition

4) a®b=boa (©iscommutative)

then we say that! is acommutative group.
Because of the associativity we can write

ar ©ag ©---Oay

without parentheses, the result does not depend on how teethases are set. Furthermore we
denote, as in Section 4.1,

A"=a®---0a, a"=a'l® ---0a! and =1
—— ~ ~~ -~

n copies n copies

and the usual rules of power calculus hold. Powers can alsotmputed using the algorithm
of Russian peasants.

NB. Commutative groups are also often calladditive groups. In this case the following
additive notation and nomenclature is commonly used: Thagoperation is denoted lay or
+ etc. and callecsum. It is often read "plus”. The identity element is calleéro elemenand
denoted by or 0 etc. The inverse~! is calledopposite elemergnd denoted by-a. A power
a™ is calledmultiple and denoted byia. Compare with the notations in Section 4.1.

1A commutative group is also callésbelian group.

74

CHAPTER 9. ALGEBRA: GROUPS 75

The simplest group is of course thévial group where there is only one element (the iden-
tity element). Other examples of groups are:

e The familiar group(Z, +, 0) (integers and addition) is usually denoted briefly jusZby
Inverses are opposite numbers and the group is commutative.

e (Z,+,0) (residue classes module and addition) is also a commutative group, inverses
are opposite residue classes. This is a calledrés@lue class groupnodulom, and
denoted briefly byZ,,.

e Nonsingulam x n matrices with real elements form the gro@"*", -, I,,) with respect
to matrix multiplication. This group is not commutative (@ssn = 1). The identity
element is they x n identity matrixI,, and inverses are inverse matrices.

¢ If we denote reduced residue classes moduloy Z* , see Section 2.4, thei’ .-, 1) is
a commutative group, inverses are inverse classes. Ndtéhtharoduct of two reduced
residue classes is also a reduced residue class. Thisesl ¢a#group of unitsof Z,,,,
denoted briefly by jusZ;,, and it hass(m) elements (reduced residue classes).

e From every ringk = (A, ®,®,0,1), see Section 4.1, isdditive groupR™ = (A, @, 0)
can be extracted. Moreover, from every figld= (A, ®, ®,0, 1) also itsmultiplicative
group F* = (A — {0}, ®, 1) can be extracted, it is also called group of unitg-of

For an element of a group(A4, ®, 1) the smallest number> 1 (if one exists) such that
a' = 1is called theorder of a. Basic properties of order are same as for the order of a numbe
modulom in Section 7.2, and the proofs are also the same (indeed, mattulom is the same
as order in the grou?)):

e If o/ = 1 then the order of, divides;.

e If the order ofa is i then the order of’ is

ged(i,j)
e If the order ofa isi thena=! = @'~ 1.

i _lem(i, 5)

e If, in a commutative group, the order afis ¢ and the order ob is j andged(i, j) = 1
then the order of ® bisij.

e Elements of finite groups always have orders.

If the size of a finite grougs = (A, ®,1) is N and for some element

A = {1797927"'791\[71}7

in other words, all elements of the group are powerg thfen the group is called@yclic group
andg is called itsgenerator.In this case we often writé' = (g). Note that the order of then
must be/N (why?). An infinite group can also be cyclic, we then requiratt

A={1,g%" g% ..}

A cyclic group is naturally always commutative.
Apparently for instancé& andZ,, are cyclic withl and1 as their generators. If there exists
a primitive root modulon thenZ? is cyclic with the primitive root as its generator.

CHAPTER 9. ALGEBRA: GROUPS 76

NB. A finite cyclic group(g) with NV elements has a structure equal (or isomorphic) to that of
ZN:
gi ng _ g(i-l-j,mod N and (gi)—l _ g(—i,mod N)

Computing inZy is easy and fast, as we have seen. On the other hand, computifngis not
necessarily easy at all if the connection betwgéand: is not easy to compute. This is used
in numerous cryptosystems, see the next chapter. We getdodnik when considering discrete
logarithms.

The multiplicative grougF,. of the finite fieldF,. is always cyclic. Its generators are
calledprimitive elementsThis was already stated in Theorem 6.4 for the prime #gldvhose
generators are also called primitive roots modgulolf G = (A, ®,1) is a group andd =
(B,®,1), whereB is subset ofA, is also group therf{ is a so-calledsubgroupof G. For
example(2Z, +,0), where2Z is the set of even integers, is a subgrouf.o€yclic subgroups,
that is,subgroups generated by single elemeats,important subgroups: If the orderofs i
then in the subgroufr) generated by we take

B=1{1,a,d ...,a" '}
And if « does not have an order then
B={1a"a* ...}

It is easy to see that this is a subgroup. A basic property lofjisaups of finite groups is the
following divisibility property. Denote the cardinalityf @ setC' by |C/|.

Theorem 9.1. (Lagrange’s theorem)f G = (A, ®, 1) is a finite group andd = (B, ®,1) is
its subgroup thehB| divides|A|. In particular, the order of every element@fdivides| A|.

Proof. Consider the sets
a®H={a®b|be B},

the so-calledeft cosets|f c is in the left coset: ©® H thenc = a ® banda = ¢ ® b~! where
be B.Hencec® H Ca® Handa ® H Cc® H,s0a® H = c¢® H. Thus two left cosets
are always either exactly the same or completely disjoiatA$s partitioned into a number of
mutually disjoint left cosets, each of which hd$ elements. Note tha® itself is the left coset
10H. O

If G; = (A1, ®1, 1) andG, = (As, ®2, 15) are groups then thedlirect products the group
G x Gy = (C,®,(11,1,))
where the set of elements is the Cartesian product
C=A; x Ay ={(ar,a2) | a1 € Ay jaay € Ay}
and the operatiom and inverses are defined by
(a1,a2) @ (by,by) = (a1 ®1 by, a3 O by) and (ay,a9)™ ' = (a7t a5).

It is easy to see that th&; x G, defined in this way is truly a group. The idea can extended,
direct product€y, x G5 x GG3 of three groups can be defined, and so on. Without proofs we now
present the following classical result, which shows thatgloup<Z,, can be used to essentially
chacterize every finite commutative group using direct pobst

CHAPTER 9. ALGEBRA: GROUPS 77

Theorem 9.2. (Kronecker’'s decomposition)Every commutative finite group is structurally
identical (or isomorphic) to some direct product
ZP? X Zp? X X Zpik

wherep, ..., p, are different primes and,,...,i, > 1. Here we may agree that the empty
direct product corresponds to the trivial groyd }, so that it is included, too.

9.2 Discrete Logarithm
In a cyclic goup(g) we define thaliscrete logarithmin the basey by
log,a =j exactlywhen a=g’.

Furthermore we will assume that in a finite cyclic group wifrelements() < log,a < N — 1.

For example inZ the logarithm is trivial: The only bases atel andlog, ,a = +a. It
is also quite easy in the group,,: The base is somé wheregcd(i,m) = 1, andlog;j
= (4571, mod m). But already discrete logarithms iy, are anything but trivial for a large
prime p, and have proved to be very laborious to compute. Also disdogarithms in many
other groups are difficult to compute. Even if the graugtself is not cyclic, and discrete
logarithm is not defined irt7 itself, in any case discrete logarithms are defined in itdicyc
subgroups.

Now let's take a closer look at the logarithm#, also often calledndex. The problem is
to find a numbey in the intervald < j < p — 2 such thaty’ = b mod p, when the generator
(primitive root) g andb are given e.g. as decimal numbers in the positive residuersy<learly
this problem is in\/P: Guess; and test its correctness by exponentiation using the ahgori
of Russian peasants. On the other hand, deterministicain be computed by simple search
and the algorithm of Russian peasants in estimated @@€ln p)?) and in polynomial space.
By computing in advance as preprocessing the so-cailek table in other words, the pairs

(i,(¢", mod p)) (i=0,1,...,p—2)

sorted by the second component, the problem can be solvedlyngnial time and space,
excluding the index table, but then there is an overheadpérpolynomial time and space. A
sort of intermediate form is given by

Shanks’s baby-step-giant-step algorithm:

1. Setm «+ [1/p —1]. The integral square ro¢t/p — 1] is quick to compute and
|Vp—1]if p—1lisasquare,iem—1=[/p—1]?
|v/p — 1] + 1 otherwise.

[Vp—1]=

2. Compute the pairs
(i, (g™, mod p)) (i=0,1,...,m —1) (thegiant step}

and sort them by the second component. As a result we havsstldg | In this we need
the algorithm of Russian peasants and a fast sorting ahgoyfior example quicksort.

CHAPTER 9. ALGEBRA: GROUPS 78

3. Compute the pairs
(k,(bg™", mod p)) (k=0,1,...,m —1) (thebaby steps
and sort them by the second component, as well. In this waybigrothe listC,.
4. Find a pair(i, y) from the listC, and a pairk, z) from the list£, such thaty = z.
5. Return(mi + k,mod p — 1) and quit.

If these pairs can be found, the obtained number(mi+k,mod p—1) is the correct logarithm,
since in this case we can writei + k = t(p — 1) + j and

-k

mi —

g™ = bg mod p, ie b=g"F=("Ng=1-¢’=¢ modp.

On the other hand, the algorithm always returns a resultesib = ¢ mod p and0 < j <
p — 2 then using divisiory can be expressed in the forim= mi + k where0 < k£ < m, whence

also . . .
Y b— p—
1="——X< < < =+/p—1<m.
vp—1

J
m m m
The baby-step-giant-step algorithm can be implementedia® () and spacé (m).

Other algorithms for computing discrete logarithn?f are for example Pollard’s kanga-
roo algorithm, see Section 12.2, tRehlig—Hellman algorithnand the so-calleohdex calculus
method see for example 8NSON and S\LOMAA . The Pohlig—Hellman algorithm is reason-
ably fast ifp — 1 has only small prime factors. All these algorithms can beegalired to
computing discrete logarithms &f.., also a very laborious task.

9.3 Elliptic Curves

Geometrically arelliptic? curvemeans a curve of third degree, satisfying the implicit eiqumat
y2 + a1xy + asy = 3+ a2x2 + asx + ag.

Note the special indexing of coefficients, which is tradib An additional requirement is that
the curve is smooth, in other words, that the equations

ary = 3x% + 2ax + ay
2y+ a1 +a3=0
obtained by differentiating both sides, are not both siamébusly satisfied in the curve. Geo-

metrically this guarantees that the curve has a tangengrygoint. Using implicit derivation,
familiar from basic courses,

dy_3:c2+2a2x+a4—a1y and dr 2y 4+ a1x + as
dr 2y + a1 + as dy 322 +2a97 + as — a1y’

When both horizontal and vertical tangents are allowedpthy situation where a tangent may
not exist is when the numerator and the denominator botlskani

2The name comes from the fact that certain algebraic fungjona f(x), related to computing lengths of arcs
of ellipses by integration, satisfy such third degree eiquat

CHAPTER 9. ALGEBRA: GROUPS 79

Originally an elliptic curve was of course real, orlkf. The curve can be considered in
any fieldFF (the so-calledield of constanfs which the coefficients come from, however. In this
case the curve is the set of all pairs y), which satisfy the defining equation. Although the
smoothness condition does not necessarily have any "geicin@eaning in this case, it turns
out to be very important.

Quite generally we can confine ourselves to simpler ellipives of the form

V=@ ar®b
(the so-calledVeierstral3 short forjrwhere the equations

0=32%®a
2y=0

are not simultaneously satisfied (the smoothness conjlitidere the notationg = 21 and
3 = 31 are used. Assuming that# 0 and3 # 0, eliminatingz andy from the equations

V=G ar®eb
0=32"da
2y=0

(which is not very difficult, try it) we see that this corress to the condition
4a® @ 276* # 0.

A special property of this simpler type of curves is that they symmetric with respect to the
x-axis, in other words, if a pointz, y) is in the curve then so is the poifit, —y).

So, exceptions will be fields whe= 0 (for example the field§'s.) or where3 = 0 (for
exampleFs.). In the former the equations are of the form

vV ®ay =12 @ br®c (thesupersingulacase)

and
Vory=2>®ar> @b (thenonsupersingulacase),

and in the latter
V=2 Qar* ®brde.

In addition, the corresponding smoothness conditions lvélineeded, too. Even though for
instance the fieldg,~ are very important in cryptography, in what follows we wakfsimplicity
confine ourselves only to fields for which the above-mentiosigort formy? = 23 @© ax @ b,
where4a® @ 270 # 0, is possible. Other forms are considered e.g. bySYNGTON and
BLAKE & SEROUSSI& SMART.

For geometric reasons it has been known for a long time thaa f@al elliptic curve, or
rather for its points, a computational operation can be ddfinhich makes it a commutative
group. The corresponding definition can also be made in diblels, in which case we also
obtain a commutative group. These groups are simply calige@|liptic curves.Because there
are a lot of elliptic curves, we obtain in this way abundartlicysubgroups, convenient for
cryptosystems based on discrete logarithms.

Now let’s first consider the group operationlit for the sake of illustration. The identity
element of the group is somewhat artificial, it is a "poiat”in infinity in the direction of the
y-axis. Positive and negative infinities are identified. laggeed that all lines parallel to the
y-axis intersect at this poir®. Geometrically the group operatid@h for the pointsP and @
produces the poink = P H @, and the opposite point P by the following rule:

CHAPTER 9. ALGEBRA: GROUPS 80

1. Draw aline through the poinfd and@. If P = @, this line is the tangent line at the point
P. Smoothness guarantees that a tangent exists.

2. If the drawn line is parallel to thg-axis thenRk = O.

3. OtherwiseR is the reflection of the point of intersection of the line ahd turve, with
respect to thec-axis. It is possible that the line is tangent to the curvé’ifwhen the
point of intersection an@® merge), in which cas& is the reflection ofP, or in @) (the
point of intersection and merge), in which cas& is the reflection of).

4. — P is the reflection ofP with respect to the-axis. In particular—O = O.

Apparently the operatiold is commutative. Interpreting this rule suitably we see irdrately
that PEHO = OB P = P (in particular,OBH O = O) and thatPEHH —P = —PH P = O, asin
a group it should be.

Example. On the right there is the elliptic curve

=
|

yr=a3—5x+1

I
n

in R? drawn by the Maple program. Also shown is the group opera-
tion of the points

N
h

P=((1-v29)/2,(3—-+v29)/2) and Q=(0,1) D VA e
of the curve. The resultis

R=((1++29/2,—(3+/29)/2).

Note how the curve has two separate parts, of which one i®dlos
and the other infinite. Not all elliptic curves are bipartitethis way.

We will now compute the result of the operatiéhtH () = R in general. The casd’3 = O
and/or@) = O are easy. If the points a® = (z1,y;) andQ = (z2,49), P # Q andz; =
then apparently; = —y,, SOR = O or P = —(). Hence we move on to cases in which either
x1 # x9 OF P = Q. First let’s deal with the former case. A parametric repnésion of the line
throughP and@ is then

y=uy1+ (y2 —y)t.
Let's substitute these into equatigh— 2® — axz — b = 0 of the elliptic curve:

{ZE =1 + (x9 — x1)t

(y1 + (Y2 — y)t)? — (21 + (z2 — 21)t) — a(zy + (22 — 21)t) — b=0.

The left side is a third-degree polynomia(t) in the variablet. Since the pointP is in the
curve (corresponding tb= 0) and so is the poin®) (corresponding té = 1), the polynomial
p(t) is divisible byt(t — 1), i.e.p(t) = q(¢)t(t — 1) for some first-degree polynomialt).
Furthermore we obtain from the equatigit) = 0 the parameter valug corresponding to the
third intersection poinfzs, ys3). A division shows that

q(t) = (y2 — y1)> = 3a1 (w2 — 1) — (22 — 11)*(t + 1)

and so)
(y2 — 1) _ 2m 4w

($2 - $1)3 Lo — 7

t3:

CHAPTER 9. ALGEBRA: GROUPS 81
Substituting these to the parametric representation dfribeve obtain

1‘3:>\2—l‘1—$2
ys = Mxs — x1) + U1

)\:?/2—91

Lo — T1

where

(slope of the line), and finally
PHQ =R = (23, —y3).

Here it may be thatzs, y3) = P or (x3,y3) = Q. Note that(xs, y3) is always defined.
We still need to consider the cage=) = (z1,y1), and compute

PHP=2P=R.

If y; = 0, the tangent of the curve is apparently parallel tosytbaxis andR = O or —P = P
Thus we move on to the cage # 0. The slope of the tangent is

dy 322 +a
de 2y

Hence a parametric representation of tangent line drawmeipointP is

T =11+ 2yt
y =y + (322 + a)t.
Substituting these into the equation of the curve as befarebtain the polynomial

p(x) = (y1 + (32] + a)t)® — (v1 + 2uit)® — a(zy + 2y1t) — b

Since the poinf is in the curve (corresponding to= 0), p(t) is divisible byt, in other words,
p(t) = q(t)t. By division we obtain

q(t) = ((3:6% + a)2 — 123:13/%)15 — Syi’tz.

One root of the equatiog(t) = 0 ist = 0 and the other is

by — (32 +a)® 3ay
8y; 2y

The intersection pointrs, y2) is obtained by substituting this into the parametric repméstion
To =)\2 — 2[[’1
Y2 = AMa2 —21) + 1

\ 313 +a
211

where

(slope of the line). Finally we obtain

2P =R = (.TQ, —’yz)

CHAPTER 9. ALGEBRA: GROUPS 82

Again it can be thaP = (x5, y2). Also in this caséxs, y,) is always defined.

These computational formulas can be used in any field in wthierelliptic curve can be
written in the short formy? = 23 ® ax ® b whereda® @ 270> # 0. In other fields some-
what different formulas are needed, seed(iTz or WASHINGTON or BLAKE & SEROUSSI&
SMART.

All'in all we conclude that forming the opposite element isyeéeflection), the group op-
eration is commutative and quite easy to compute. Howegenaativity of the operation is
difficult to prove starting from the formulas above. The eatrworld, thinking about proper-
ties of elliptic curves, is the so-callg@ojective geometryn which the group operation itself
occurs naturally. Associativity ift? follows fairly directly from classical results of projeeti
geometry for curves of the third degree. The following re@uhnslated) can be found in an old
Finnish classitof projective geometry, from which associativity followasay:

"If two lines a andb intersect a third-degree curve in the poims, Ay, As; By, B, Bs,
respectively, the third intersection poirtts, Cs, C5 of the linesA, By, A; B,, A3 Bs and
the curve are collinear”

In other fields associativity must be proved separately argdquite an elaborate task, see for
example VASHINGTON. Note that in other fields also commutativity must be proeubsately,
but this is fairly easy. Both laws are symbolic identities tsey can be verified symbolically.
Let's do it by using the Maple program. Apparently cases incviat least one of the elements
is O are trivial, so they can be ignored.

Let’s begin with commutativity. First we define the group mgieon by

> eco: =proc(u,vV)
I ocal | anbda, xx, yy;
lambda: =(v[2]-u[2])/(v[1]-u[1]);
xx: =l ambda”2-u[1] -v[1] ;
yy: =l anbda* (xx-u[1]) +u[2] ;

[xx,-yyl;
end:

and then check the commutative law:
> Ar=eco([x[1],y[1]],[x[2],y[2]]);

2 2
(e e (272 2 e

> Br=eco([x[2],y[2]],[x[1],y[1]]);

2 2
[7@1 — y2)2 —x2 —z1,— (y1 — ¥2) <7(y1 —va) 232 — 1‘1) (21— 22) " — yo]
(w1 — w2) (w1 — z2)
> nornmal (A-B);
[0,0]

Let’s then verify associativity in the case of no doublings.

Ar=eco([x[1],y[1]],eco([x[2],y[2]],[x[3],y[3]1])):

B: =eco(eco([x[1],y[1]].[x[2],y[2]1).[x[3].y[3]]):

C:. =nuner (normal (A-B)):

max(degree(C 1] ,y[1]),degree(C1],y[2]),degree(C1],y[3]),
degree(C[2],y[1]),degree(C 2],y[2]),degree(C[2],y[3]));

11

V V VYV

We need to substitute the equation of the curve raised tehjgbwers:

SNYSTROM, E.J.:Korkeamman geometrian alkeet sovellutuksin€ava (1948).

CHAPTER 9. ALGEBRA: GROUPS 83

> yhtal ot:={seq(y[1] M(2«i)=(x[1] *3+axx[1] +b)"i,i=1..5),
seq(y[2] (21) =(x[2] *3+a*x[2] +b)"i,i=1..5)
seq(y[3]"(2xi)=(x[3]"3+a*x[3] +b)"i,i=1..5)
seq(y[1] ~M(2*i +1) =y[1] »(x[1] *3+a*x[1] +b) i, i =1..5),
seq(y[2] ~(2*i +1) =y[2] *(x[2] *3+a*x[2] +b) ~i , i =1..5),
seq(y[3] (2+i +1) =y[3] *(x[3] *3+a*x[3] +b) i, i =1..5)}:
> normal (subs(yhtal ot, C));

[0,0]

Numbers of terms are pretty large:

> nops(C[1]), nops(C[2]);
1082, 6448

Verification by hand would thus be quite tedious, but assivtia can also be proved mathe-
matically using some ingenuity. Let’'s then check assogtgtin a remaining case which has
one doubling:

PH(QHBQ)=(PHQ)HQ.
(The other cases are checked similarly.) First we define ¢hlthg by

> ecs: =proc(u)

I ocal | anmbda, xx, yy;

| ambda: =(3xu[1] *2+a)/ 2/ u[2]

xx: =l ambdan2- 2xu[1] ;

yy: =l anbda* (xx-u[1]) +u[2] ;

[xx,-yyl;

end:

A =eco([x[1],y[1]],ecs([x[2].,y[2]])):

B:=eco(eco([x[1],y[1]],[x[2],y[2]]),[x[2],y[2]]):

C:. =nuner (nor mal (A-B))

max(degree(C[1],y[1]), degree(C[1],y[2]),
degree(C[2],y[1]),degree(C[2],y[2]));

vV V VYV

15

Again we need to substitute the equation of the curve raséiyher powers:

> yhtal ot: ={seq(y[1] M(2xi)=(x[1] *3+a*xx[1] +b) i, i =1..7)
seq(y[2]M(2+xi)=(x[2] "3+a*x[2] +b)"i,i=1..7)
seq(y[1] "M(2*i +1) =y[1] *(x[1] *3+a*x[1] +b) i, i =1..7),
seq(y[2] *(2xi +1) =y[2] *(x[2] "3+a*x[2] +b) Mi , i =1..7)}:
> normal (subs(yhtal ot, C));

[0,0]

Elliptic curves are very variable as groups. However, Kakeg's decomposition tells us
that finite elliptic curves are direct products of residuassl groups. In fact, we get an even
more accurate result:

Theorem 9.3. (Cassels’ theoremAn elliptic curve over the finite fiell, is either cyclic or
structurally identical (i.e. isomorphic) to a direct prodi¥,,, x Z,, of two residue class groups
such thatn; | nq,q — 1.

Considering the size of the group we know that

Theorem 9.4. (Hasse’s theoremlf there are N elements in an elliptic curve over the finite
fieldF, then
q+1-2/g<N<qg+1+2q

CHAPTER 9. ALGEBRA: GROUPS 84

Astonishingly enough, if the coefficients of an elliptic earare in some subfield, it is enough
to know how many of its elements are in this subfield:

Theorem 9.5. Assume that’ is an elliptic curve over the field',, that there areg +1 — a
elements in it (cf. Hasse’s theorem), and that the roots efefjuationz? — az + ¢ = 0 are
a and 5. Then, if we consideF’ as an elliptic curve over the fielf,~, there are exactly
"+ 1—a™ — ™ elements in it. Note that becauBg is a subfield off,~, £ can also be
interpreted as an elliptic curve ovét,~. See Section 4.3.

Proofs of these theorems require some fairly deep algelwaicber theory! Hence there
are approximately as many elements in an elliptic curve tiverfieldF, as there are iif,.
Some quite powerful algorithms are known for computing thace number of the elements,
the so-calledSchoof algorithm and its followers, see WsHINGTON or BLAKE & SEROUSSI
& SMART.

It is not easy to find even one of these many elements. As a mudtfact, we do not
know any polynomial-time deterministic algorithm for gesting elements of elliptic curves
over finite fields. If; = p*, one (slow) way is of course to generate random pairg), where
z,y € F,, using the representation of the fiéff as residue classes of polynomialsZp|x]
modulo somé:™"-degree indivisible polynomial df,[z]—see Section 4.3—and test whether
the pair satisfies the equation of the elliptic curve. By ldastheorem, an element is found by
a single guess with an approximate probabilityl ¢§. The following Las Vegas type algorithm
produces an element of the curve in the positive residuesysh a prime field, wherep > 3:

1. Choose a random numbefrom the interval < x < p and set
z + (2 + ax 4+ b, mod p).

By Hasse’s theorem this produces a quadratic residuigh an approximate probability
of 50%, since from each we obtain two values af, unless: = 0.

2. If 2 =0, return(z, 0) and quit.

3. If 2P=D/2 £ 1 mod p, give up and quit. By Euler’s criterium is then a quadratic
nonresidue modulp.

4. Compute the square roafs andy, of z modulop by Shanks’ algorithm, returi, y;)
and(z, y») and quit.

The algorithm is apparently polynomial-time and producessalt with an approximate proba-
bility of 25%. Recall that Shanks’ algorithm produces a result with gar@pmate probability
of 50%.

NB. By random search we can now find e.g. an elenmiént O of the elliptic curve and a
(large) primer such thatrP = O, whence the order aoP is r (the order of P must divider
anyway). The cyclic subgrouf@®) is then sufficient for the needs of cryptography. Another
(slow) way is to choose a random eleméhand test its order, which of course should be large.
For this we can use a version of Shanks’ baby-step-giamtadtgorithm. By iterating and using
properties of order—see Section 9.1—elements of evenrlogler may then be found.

Nevertheless, the issue is quite complicated and use pfieliurves in cryptography is not
straightforward. See for exampROSING or BLAKE & SEROUSSI& SMART.

Good references ared8LITz and WASHINGTON and e.g. 8VERMAN & TATE or COHEN
or CRANDALL & POMERANCE.

4See for example WSHINGTON or CRANDALL & POMERANCE.
5The original reference is&100F, R.: Elliptic Curves over Finite Fields and the Computaté®quare Roots
modp. Mathematics of Computatiaht (1985), 483-494. The algorithm is difficult and also diffidolimplement.

Chapter 10
ELGAMAL. DIFFIE-HELLMAN

10.1 Elgamal’s Cryptosystem

Elgamal’s cryptosystehELGAMAL can be based on any finite grodp= (A, ®, 1) in whose
large cyclic subgroup&:) discrete logarithniog,, is difficult to compute. Such groups are for
instanceZ; and more generally; .., in particularF., and elliptic curves over finite fields.
The public key is the triple
k1 = (G,a,b)

whereb = a?. The secret key i&, = y. Note that the public key holds the information of the
secret key because= log, b, but it is not easy to obtain it from the public key. Encryptis
nondeterministic. For that we randomly choose a numtiesm the intervaD < x < [wherel

is the order of.. If it is not wished forl to be published, or it is not known, we can alternatively
give some larger upper bound, for example the number of elesstig which had as a factor,
see Lagrange’s theorem. The encrypting function is

er, (w,z) = (a®, w©b*) = (¢1, o).
Thus the message block must be interpreted as an eleméntidfe decrypting function is
di,(c1,02) = 2 © ;Y.
Decrypting works since
di,(a®,w O) =wob* O @)YV =wod? 0 =w.

The idea is to "maskiv by multiplying it by b, = is supplied viaa®.

For setting up ELGAMAL in the multiplicative grou@, of a prime field we choose both
and the primitive root: modulop simultaneously. Moreover, it is to be kept in mind that 1
should have a large prime factor so that discrete logaritannot be quickly computed (see
Section 7.2) e.g. by the Pohlig—Hellman algorithm. Thisgyoethe following way:

1. Choose a large random primpeand a smaller random numbewhich can be factored.

2. If 2¢gr+1is aprime, sep < 2qr+ 1. Note that in this casg— 1 has a large prime factor
g. Otherwise we return to #1.

1The system was developed by Taher Elgamal in 1984. The atiggference is EGAMAL , T.: A Public Key
Cryptosystem and a Signature Scheme Based on DiscreteittomgadEEE Transactions on Information Theory
IT-31 (1985), 469-472. Discrete logarithmsZj were used in this cryptosystem.

85

CHAPTER 10. ELGAMAL. DIFFIE-HELLMAN 86

3. Randomly choose a numbefrom the intervall < a < p.

4. Test by Lucas’ criterium whetheris a primitive root modulg. The prime factors of
p — 1 needed here, that i8,and¢ and the known prime factors ef are now easy to
obtain.

5. If a is a primitive root modul®, choose a random numbgfrom the intervall < y < p,
returnp, a andy, and quit. Otherwise return to #3.

NB. In a groupZ?, using an elemeritof order much lower thap must be avoided. Otherwise
it is easy to try out candidate valuegor the order and compute

ch=wb) =w) =w"-1=w" mod p.

If the candidate happens to be the correct ordel,dhe whole cryptosystem is transformed into
a deterministic system resembling RSA, possibly easikebrby e.g. the meet-in-the-middle
attack, see Section 8.2. An exception is the case whereb’ mod p for somei andc}, =

mod p, but there are very few of these choicesi$ small.

10.2 Diffie—Hellman Key-Exchange

ELGAMAL allows many parties to publish their public keys hin the same system: Each
party just chooses its owpnand publishes the correspondiamg ELGAMAL is in fact a later
modification of one of the oldest public-key systems, Ehfie-Hellman key-exchange system
DIFFIE-HELLMAN.

The setting here is the same as in ELGAMAL. Each paggain chooses a random number
x; from the intervall < x; < [or from some larger interval, and publishés. The common
key of the parties andj is in that case:”*7, which they both can compute quickly from the
published information and from their own secret numbes.

Breaking DIFFIE-HELLMAN consists of the following two opaions. First, compute;
from a®:. Second, comput@™®)* = a**. In this way it is equivalent to solving the following
problem:

DHP: Given(G, a, b, c), computeh'®sa ¢,

This problem is the so-callediffie—Hellman problemThe complexity of the Diffie—Hellman
problem is not known, computing discrete logarithms nalyisolves that too. Note that the
order of appearance é6fandc does not actually matter since

blogac — (alogab)logac — (aloga c)logab — Clogab'
ELGAMAL's decrypting is also equivalent to the Diffie—Helém problem. If DHP can be
quickly solved, we can first compute
- bloga a® _ blOga c1
quickly and then
Co b =w,

and ELGAMAL is broken. On the other hand, if ELGAMAL is brokeme can quickly compute
w = co ® b~* from the cryptotextc,, co) and the public information, in which case we can also
quickly compute

blogacl _ ba: — <02—1 ® w)—1.

Because; is random element dfz) this means that DHP can be solved quickly.

CHAPTER 10. ELGAMAL. DIFFIE-HELLMAN 87

10.3 Cryptosystems Based on Elliptic Curves

A finite cyclic subgroup of an elliptic curve can be used toigeElgamal’s cryptosystem. Nat-
urally in this cyclic group discrete logarithm must be diflicto compute or the Diffie-Hellman
problem must be difficult to solve. Unfortunately in certalhiptic curves (supersingular elliptic
curves) over finite fields these problems are solved relgtopgackly by the so-called/ienezes—
Okamoto—Vanstone algorithrand these must be avoided, seed(iTz or WASHINGTON or
BLAKE & SEROUSSI& SMART.? It might be mentioned that Shanks’ baby-step-giant-step
algorithm is suitable for computing discrete logarithmeliiptic curves, and so is the Pohlig—
Hellman algorithm, but they are not always fast.

One difficulty naturally is that construction of cyclic subgps of elliptic curves is labo-
rious. Another difficulty is that when ELGAMAL for finite fieklapproximately doubles the
length of message (the pair construction), ELGAMAL forgilt curves approximately quadru-
ples it. Recall that, by Hasse’s theorem, there are appmteiynas many points in an elliptic
curve as there are elements in the field. This is avoided bygusimore powerful variant of
ELGAMAL, the so-calledMenezes—Vanstone systelBNEZES—VANSTONE. The public key
of the system is a tripl¢; = (E, a,) whereE is an elliptic curve over a prime field, where
p > 3, « is the generating element in a cyclic subgroupgpfands = aa. The secret key is
ks = a. A message block is a pdiw, , wy) of elements ofZ, represented in the positive residue
system.

The encrypting function is defined in the following way:

ekl((wlaMZ)ax) = (?/o,yla?h)

where
Yo =xr¢ , Y1 = (Clwla mod p) y Y2 = (Czw% mod p)7

x is a random number—compare to ELGAMAL—and the numhgrandc, are obtained by
representing the point3 = (¢, ¢) of the elliptic curve in the positive residue systemmust
be chosen so that, c; # 0 mod p. The decrypting function is

diy (Y0, 91, 92) = (31631, mod p), (y2c3 ", mod p)).
Note thatc; andc, are obtained by from y,, since
ayo = a(za) = (ax)a = z(aa) = xf = (1, Ca).

Theidea s, asin ELGAMAL, to use the elliptic curve to "mask®& message. Like ELGAMAL
MENEZES-VANSTONE also approximately doubles the lengthmafssage, two elements of
Z,, are encrypted to four.

NB. Space can also be saved by "compressing” elements of thaielturve into smaller
space. Compressing and decompressing take more time,thdwy example, in the prime
field Z, an element (point)x, y) of an elliptic curve can be compressed iritg i) wherei =
(y,mod 2), sincey can be computed fron® +ax +b by Shanks’ algorithm and choice of sign is
determined by. (If (x, y) is a point of the curve then so(s,p—y),andp—y=1—-y=1—1
mod 2.)

2|t is also an unfortunate feature that the most convenigsidsed finite field&»~» seem to be worse than the
others. See for exampleABDRY, P. & HESS F. & SMART, N.P.: Constructive and Destructive Facets of Weil
Descent on Elliptic Curveslournal of Cryptologyl5 (2002), 19-46. The further we get in the mathemathically
quite demanding theory of elliptic curves, the more suchlkueases seem to be revealed.

CHAPTER 10. ELGAMAL. DIFFIE-HELLMAN 88

A third difficulty in using elliptic curves is in encoding mesges to points of the curve. One
way to do this is the following. We confine ourselves to eitigiurves over the prime field,
here for simplicity, the procedure generalizes to othetdifelds, too.

1. Encode the message block first to a numhesuch thatn + 1 < p/100.

2. Check in the same way as in the algorithm of Section 9.3hdnehe elliptic curve has a
point (z, y) such thatt00m < z < 100m + 99.

3. If such a point(x, y) is found, choose it to serve as the counterpart of the message
Otherwise give up. It may be noted that giving up here is varg,rsince it has been
shown that the algorithm does it with an approximate prdighf 2100 &~ 103,

Of course this procedure slows the encrypting process dnbiwte that decoding is quite fast,
though:m = [2/100].

NB. An advantage of cryptosystems based on elliptic curvesnwbmpared to RSA, is that
the currently recommended key-size is much smaller. A"tagptosystem CRANDALL using
elliptic curves, patented by Richard Crandall, might be trered here, too. It is based on the
use of special primes, so-calldkersenne numbers.

10.4 XTR

A newer quite fast variant of DIFFIE-HELLMAN or ELGAMAL typeryptosystem is obtained
in the unit groups of certain finite fields, the socal@R system. In XTR we work in a
cyclic subgroup (of a large sizg of F; wherep is a large prime and | p> —p+ 1. In
such subgroups we can represent the elements in a small apddast implementations of
computing operations are possible. So, the question islynost of a suitable choice of the
group, regarding implementation. There are other similac@dures, for example the so-called
CEILIDH system.

3The original reference isENSTRA, A.K. & V ERHEUL, E.R.: The XTR Public Key Syster®roceedings of
Crypto '00. Lecture Notes in Computer Scierd@8Q Springer—Verlag (2000), 1-19. The name originates from
the words "Efficient Compact Subgroup Trace Representatii it?

Chapter 11
NTRU

11.1 Definition

The NTRU cryptosystetrs a cryptosystem based on polynomial rings and their resaiass
rings, which in a way resembles RIJNDAEL. Like RIINDAEL,stmostly inspired by the so-
called cyclic codes in coding theory, see the course Codiepily. The construction of NTRU
is a bit more technical than that of RSA or ELGAMAL.

In NTRU we first choose positive integens p andq wherep is much smaller thag and
ged(p, ¢) = 1. One example choice is = 107, p = 3 andq = 64. The system is based on the
polynomial ringsZ,[z] andZ,|z], and especially on the residue class rifgge]/(z" — 1) and
Z,|z]/(z™ —1). See Section 4.2 and note th#t— 1 is a monic polynomial in both polynomial
rings, so we can divide by it.

So, remainders are important when dividingdy— 1, that is, polynomials of,[z] and
Z,|z] of maximum degree — 1. Computing with these i, [x]/ (2" — 1) and inZ,[z]/(z™ — 1)
is easy since addition is the usual addition of polynomiatsia multiplication

k — ,.(k,mod n)

x x mod z" — 1.

In the sequel we use the following notation. A{x) is a polynomial with integral coef-
ficients then the polynomiaP,,(z) of Z,,[z] is obtained fromP(x) by reducing its coeffi-
cients modulan. Moreover, such &,,)(xz) —or rather its coefficients4s represented in the
symmetric residue systesee Section 2.4. Considering addition and multiplicatibpatyno-
mials we see quite easily that #(z) = P(z) + Q(z) and S(z) = P(2)Q(z) in Z[z] then
Ry () = Py (x) + Qny(x) @andSgy (2) = Py (2)Qmy (@) I Zy, [x]. Furthermore, we see
thatif P(x) € Z[z] is of degree no higher than—1 then so isP,,,)(z) € Z,[z]. In this case the
polynomialP,,,, (z) can be considered as a polynomial of the residue clasZiifig] /(" —1).

For setting up the system we choose two secret polynonfial$ and g(z) of Z[x], of
degree no higher tham — 1. From these we get the polynomigig)(x) andg,)(z) of Z,[x],
and the polynomialg(, (x) and g, (x) of Z,[z]. As noted, f,)(x) and g, (x) can also be
interpreted as polynomials of the residue class #Apg]/(z" — 1). Similarly the polynomials
f@(x) andg, (z) can be interpreted as polynomials of the residue classzjng/(z" — 1).
Interpreted this way we also require from the polynomigjs(x) and f, (x) —or from the
original polynomial f (z) —that there are polynomialB,(z) € Z,[z] and F,(z) € Z,[z] of
degree no higher than— 1 such that

Fy(z)fpy(z) =1 moda”™ -1 and Fy(z)fy(z) =1 modz" —1.

1The origin of the name is unclear, the original referencedsESTEIN J. & PIPHER, J. & SILVERMAN, J.H.:
NTRU: A Ring-Based Public Key Cryptosysteroceedings of ANTS IIl. Lecture Notes in Computer Science
1423 Springer—Verlag (1998), 267—288. The idea is a couple afsselder.

89

CHAPTER 11. NTRU 90

In other words F,(z) is the inverse off,, () in Z,[z]/(z" — 1) and F,(z) is correspondingly
the inverse off(,(z) in Z,[z]/(z™ — 1). Further we compute i, [z]

h(z) = Fy(z)gp(z) mod 2™ — 1.

Apparently we may assume that the degrek(af) is at most: — 1, so it can also be interpreted
as a polynomial of the residue class rifigz|/(z" — 1).

Now, the public key is(n, p, ¢, h(z)) and the secret key i6f(;,)(z), F(z)). A message
is encoded as an element®f[z]/ (2" — 1), i.e.. the message is a polynomia(x) of Z,[x]
of degree no higher tham — 1. In particular,w(z) is represented using the symmetric residue
systemmodulop. If p = 3 then the coefficients af(z) are—1, 0 and1l. A w(x) represented this
way can be transformed to a polynomial,) (=) of Z, x|, just reduce the coefficients modujo
Note that this expressly requires a fixed representatioonefficients!

11.2 Encrypting and Decrypting

For encrypting we choose a random polynomiat) of maximum degree. — 1. From this
we get the polynomiab,) () in the polynomial ringZ,[z| and the polynomiab, (z) in the
polynomial ringZ,[x], which can be interpreted further as polynomials of thedi@sclass rings
Zy|z]/(z™ — 1) andZ,[z]/(z™ — 1), respectively. Encrypting is performed#iy[z]/(z™ — 1) in
the following way:

c(z) = pdg) (x)h(z) + wg(z) mod 2" — 1.

In decrypting we first compute
a(x) = fig(x)e(xr) mod 2" —1

in Z,[z]/(z™ —1), andrepresent the coefficients @fr) in the symmetric residue system modulo
¢. Again in this representation(x) can be transformed to the polynomial,(z) of Z,[x]
by reducing the coefficients modujo After this the message itself is ideally obtained by
computing

w'(z) = Fp(z)ap) () mod 2™ —1

in Z,[z]/(z™ — 1), and by representing the coefficientswd{z) using the symmetric residue
system modul@.

But it is not necessarily true that'(x) = w(z)! Decrypting works only for a suitable
choice of the polynomials used—at least with high probghilFirst of all, we note that in
Zq[2]/(z" — 1)

a(z) = fg)(x)e(x) = fig)(@) (o) (2)h(T) + wig) (7))
= pf(g) (@) F4(2) Do) (%) 9(q) (2) + fig) (x)w(g) (x)
= pd(g) () g(g) () + fig)(@)w(g(z) mod 2™ — 1.

If now p is much smaller thap and the absolute values of the coefficients of the polynamial
é(x), g(x), f(x) andw(z) are small, it is highly probable that in computipg,)(z)g) () +
fio(@)wp(z) mod 2™ — 1 coefficients need not be reduced modylat all when representig
them in the symmetric residue system modul¢Recall the "easy” multiplication above!) From
this it follows that the polynomialg,)(z), g¢,(x) and f(,)(x) are also obtained from the poly-
nomialse) (), g¢g)(z) and f, (x) by just taking their coefficients moduje—all coefficients
being again represented in the symmetric residue systerd-than

ag) (%) = po) (2)96) (2) + fip) (2)w (@) = f(z)w(z) mod 2" —1

CHAPTER 11. NTRU 91

in Z,[z]/(z™ — 1). Hence (again ifZ,[z]/(z" — 1)) itis very probable that
w'(z) = Fy(z)ap (z) = Fp(z) fip) (2)w(z) = w(z) mod 2" — 1,

i.e. decrypting succeeds.

11.3 Setting up the System

So, errorless decrypting is not automatic but requiresttteaparameters and polynomials used
are chosen conveniently, and even then only with high prtibalDenote byP, ; ; the set of
the polynomials of degree no higher than- 1 such that coefficients are= 1, j coefficients
are= —1 and the remaining coefficients are &ll0. The following choices are recommended:

n p q [z g(x) ¢()
251 2 239 € Pasim20 € Pas1,20 € Pasir0
107 3 64 € Piorisaa € Pioriziz € Piorss
167 3 128 € Puere1,60 € Pisr2020 € Pier,8,18
903 3 256 € Psozoi6215 € Psos a2 € Prsosss5s

lf—as above—p = r!' andq = 2 wherer, andr, are different primes, the polynomial
f(z) and its inverse$),(x) and F,,(z) can be found by the following procedure. (Otherwise the
procedure is further complicated by use the Chinese reraathéorem.)

1. Take a random polynomigl(z) with integral coefficients whose degree is at most 1
(possibly as indicated in the table above).

2. Check using the Euclidean algorithm thatl(f(,,)(z), 2" — 1) = 1in Z,,[z] and that
ged(fry) (z),2™ — 1) = 1in Z,,[z], see Section 4.2. If this is not true, give up.

3. Then by Bézout’s theorem we get, by using the Euclideaoritifgn, polynomials, (),
ki(x), 1 (x) andhy(z), k2 (), [o(x) with integral coefficients such that

1=hi(z)f(x)+k(x)(a"=1)+rl(z) and 1= hy(x)f(x)+ke(x)(z" —1)+rals(x)

whereh, (x) arehsy(x) of maximum degreg, k(x), andks(z) of maximum degree — 1,
and/;(x) andly(x) of maximum degre@n — 1. In addition we may apparently assume
that the coefficients of the polynomidls(z), k1 (x) andhy(z), ko(x) are in the symmetric
residue systems modutg andr,, respectively.

4. Denotej, = [log, 7,] andj, = [log, i |, whence2’t > i; and272 > i,.

5. Computé
Fy(z) = hy(x) H (T+72"1(2)*) mod 2" —T1 inZ[x]/(a" —1)
and
F,(z) = ha(z) H (T+73"12(2)*") mod 2" —T1 inZ,x]/(z" — 1),

return the results anfi(x) and quit.

2This operation is the so-callddensel lift. The empty products occuring in the cages= 0 andj, = 0 are
1.

CHAPTER 11. NTRU 92

The procedure usually produces a result immediately. Thdtres correct, since (verify!)
Fy(z) fpy(z) =1 — () =1 mod 2" —1 inZ,x]/(z" — 1)

and
Fy(z) fip(z) =1 — r2?L(z)** =1 mod 2" —1 inZg[x]/(z™ —1).

The polynomialy(z) is chosen randomly (say, within the limits allowed by theeab

11.4 Attack Using LLL Algorithm

NTRU uses polynomials of degree no higher than 1, which can be interpreted asvectors
(here column vectors). For these polynomials

f(@)=fo+ fix+-+ fuaa" ",
g@)=go+ g+ + gpa"!
h(l‘) = ho + hll‘ + s + hn_lxnfl

and

the vectors are

F= (foo frseesfot) &= (90101, rgn1) and b= (ho,hu, .. ho1).
As above

h(z) = Fy(z)g@(x) moda™ -1, ie. fi(z)h(z)=geyp(r) modaz"—1

in Zy[z]/ (2™ — 1). Remember thak,(z) is the inverse off(,(z) in Z,[z]/(z" — 1). If we take
the matrix

ho hi -+ hyy

hpno1 ho -+ hpo
H = : 1 :0 .. : i

hy hy - hg

then the above equation can be written in the form
fH=g modq.

Note how the structure of the matrdX nicely handles reduction modui@ — 1.
The vectors above bring to mind lattices. The dimension afi@kle lattice is howeveln.
Now let’s take the&n x 2n matrix
oL, | H

(in block form) wherd,, is then x n indentity matrix ,O,, is then x n zero matrix and # 0 is
a real number. Clearl¥ is nonsingular, denote the lattice generated by its rowd\dy. Note
thatM is obtained from the public key.

Becausef(, (z)h(z) = g(y)(z) mod 2™ — 1, theninZ[z]/(z" — 1)

f(@)h(z) = g(x) + gk(x) mod z" — 1

for some polynomiak(z) with integral coefficients of degree at most- 1. Whenk(z) is
represented as above asran 1-dimensional column vectd, this equation can also be written
in the form

fH = g + ¢k.

CHAPTER 11. NTRU 93

Furthermore in matrix form we get the equation
(F|k)M = (6f|g) .

This shows that then-vector (0f |g) is in the lattice(M). Because the coefficients ¢fx)
andg(z) are small, we are talking about a short vector of the lattyea convenient choice of
the numbep we can make it even shorter. (Iﬁf\g) is short enough, it can often be found by
the LLL algorithm and used to break the system.

NB. The recommended parameters of NTRU above are chosen pyecigaevent this kind
of attacks by the LLL algorithm. As of now no serious wealeeesBsNTRU have been found,
despite some claims to the opposite. It should be mentitragdunlike RSA and ELGAMAL, it
is not known either that NTRU could be broken using quantumpeaing, see Chapter 15.

Chapter 12
HASH FUNCTIONS AND HASHES

12.1 Definitions

A hashis a word of fixed length that describes a message "accuratelygh”. The message can
then be quite long. The procedure which gives the hashinglisccahash functionBecause
the number of possible hashes is smaller than the number sdages, a hash fucntion is not
one-to-one, in other words, in some cases it gives the sastefbaseveral messages. This is
calledcollision. For a hash function to be usable it should naturally be quic&imputable from
the message, but also such that a hostile party cannot effictake advantage of collisions in
any way. Bearing this in mind we define several different epts:

e A hash functiom is weakly collision-free for the messagsf it is computationally hard
to find another messagé such that(w) = h(w').

e A hash functiom is weakly collision-fredf for any given message it is computationally
hard to find another messagésuch that:(w) = h(w’).

e A hash function is strongly collision-freef it is computationally hard to find messages
w andw’ such thath(w) = h(w'), in other words, if it is hard to find a messagefor
which h is notweakly collision-free.

e A hash functiom: is one-wayif for any given hash it is hard to find a message such
thath(w) = t.

These definitions are not quite exact in that we do not consigi@putational complexity here.
If the message space is finite—as it usually is—complexéidpan asymptotic concept, cannot
really be defined at all.

NB. Other nomenclatures are used too. Weakly collision-freghHfanctions are also called
second preimage resistastrongly collision-free hash functions are also calledtjosllision-
free,and one-way hash functions are also calfgedimage resistant.

There is a connection between one-way and strongly catlisiee hashing:

Theorem 12.1.1f the message spadé&’ is finite and the hash space ©sand |W| > 2|7,
where| - | denotes cardinality of sets, then a strongly collisiorefrash functiork is one-way.
To put it more exactly, an algorithmd which invertsh can be transformed to a Las Vegas type
probabilistic algorithm which finds a collision with at legzrobability 1 /2.

94

CHAPTER 12. HASH FUNCTIONS AND HASHES 95

Proof. Denote byM,, the set of the messages with the same hash asnd byD the family of
all these sets. Then
DI =|T| and) |D|=|W|.
DeD

The following Las Vegas algorithm finds a collision or givgs u

1. Choose a random message V.

2. Compute the hash= h(w).

3. Find a message’ such that:(w’) = ¢ using the algorithm.
4

. Ifw’ # w, returnw andw’ and quit. Otherwise give up and quit.

We just need to show that the algorithm gives a result witkeasti probabilityt /2:

o My —1 1 1 Dl -1
P(A collision is found) = Z | |M‘ — T _ 7 Z Z \ |‘D|

weW DeD weD
1 1 (W17
:WZ(‘D‘_”:W<Z'D'_21> =
DeD DeD DeD
W - w2 _ 1 .
U 2

It is obvious that for extensively and continuously usedhh@asictions strong collisions
should not occur essentially at all. Because of this it wagecu surprise, when in 2004 the
Chinese Xiaoyun Wang, Dengguo Feng, Xuejia Lai and Hongb&oW¥uad collisions in many
commonly used hash functions. In addition to that, WanguNigisa Yin and Yu noted that
collisions can be found relatively easily even in SHA-the "flagship” of hash functions. De-
veloping good hash functions appears to be even more difflwan it was thought.

12.2 Birthday Attack

If the number of possible hashes is small, collisions canoed by trying out: Just choose
k random messages,, . . ., wy, compute the hashes= h(w;), and check whether collisions
occur. This simple procedure is called thiethday attack. Now let's estimate probabilities
for the birthday attack to succeed. In this case we may asshatelifferent hashes occur

1This "Chinese attack” is discussed in many talks in the exfeesProceedings of Crypto '05. Lecture Notes
in Computer Sciencg621 Springer—\Verlag (2005) jRroceedings of EuroCrypt '05. Lecture Notes in Computer
Science3494 Springer—\Verlag (2005).

2The name comes from the fact that if we have large enough grpgople then the probability of at least two
of them having the same birthday (day of the year) is highnisipproximation and noting that177/365 =
22.49 it is seen that it suffices to have at least 23 people in themimuthe probability of same birthdays to be at
leastl /2. In this case the exact computation gives

1 2 23 -1
P=(1- 1———)... (1= = (.493.
(365) (365) (365) 0493

CHAPTER 12. HASH FUNCTIONS AND HASHES 96

with at least approximately equal frequency. Otherwisegtimdability of finding collisions just
increases. The probability for no collisions to occur isaently

Pnyk:n(n—l)(n—ggk...(n—kJrl): (1_%) (1_%)__(1_1{:;1)

wheren is the number of hashes. Since it is well-known thia (1 + ﬁ) = ¢%, we obtain
further the estimate n—00 n

L -
pﬁk o 12— (k=1) e’%

n,

(Heren is of course large and much larger thfah Hence the probability of finding at least one
collision is o)

Qn,k:]-_Pn,kgl_e 2n

This way we get an estimate férwhen@),, , = @ is given:
k(k—1)
" T~ p(1 —
S = In(1-Q)
or
B —k+2nn(l —Q) =0

or
1

ke (1+\/1—8n1n(1—Q)>.
By choosing) = 1/2 we conclude that a collision is found with probability2 if

1
ke (1 VI 8nln2> ~ \onn2 = 1.177/m.

Thus for example for a@0-bit hash the birthday attack succeeds with probability if & is
slightly larger thar2?® = 1048 576. Consequently, hashes should be significantly longer, for
instance in SHA-1 hash length i$0 bits, and therk should be slightly larger thap®® =

1.2 - 10* for the birthday attack to succeed. On the other hand, thén&le attack” shows
somewhat amazingly thatkaof order2% = 5.9 - 10*° may already suffice.

Birthday attacks sometimes occur in a bit different formjakihgoes as follows. We first
choosé:; messages, . . ., wy, randomly, and then independently anotherandom messages
wy, . . ., wy,, and seek collisions of the for(w;) = h(w?}), so-calledcross-collisionsDenote
the possible cases by the symbols

T, = "There is a collision in the messages, . . . , wy,.”
T, = "There is a collision in the messages, . . ., w;,, "
Ti, = "There is a cross-collision.”

and the complementary cases by overlining as usual. Apfhatben for example
P(Ty) = Qux, , P(T9)=P.y, , P(TyandTy) = P4, Py, etc.
Further, apparently B B B
P(T, andTy andT'13) = Py g+, -
By the rules for probabilities, from this we get the conchtibprobability

P _ (k1+ko)(ky+ko+1)
i al sl T kitks ~, € 2n _kyko
P(Ty, | T, andT,) = =tk o~ —e .

- kq(k1+1)+ko(kot1)
Pn,k‘lpn,kg e 1 2n2 2

CHAPTER 12. HASH FUNCTIONS AND HASHES 97

On the other hand, it is very unlikely that many collisionswg and a few collisions really do
not change the probability of a cross-collision by much,@sgared to the situation where no
collisions occur. (Remember thais large and that; andk, are small compared to it.) Hence

k1ko
v .

P(Ty, | Ty or/andTy) = e~ andso P(Ty) e

3

So, if we want the probability of cross-collision to bg2 we should choose (verify!)
kiks =2 nln2.
Hence it is enough to choose
ki, ks = vVnln2 2 0.833/n.

This latter type birthday attack resembles Shanks’ babg-gtant-step algorithm in some
ways, see Section 9.2. As a matter of fact, a very similargdistic algorithm for computing
discrete logarithms can be derived from it. The baby-siepigstep algorithm of course has
the advantage of being deterministic, and even somewhatrfa®n the other hand, modular
exponentiation is a randomizing operation, so it can be us#dte random choices, and we get
a powerful and very space-efficient probabilistic algarittor computing the discrete logarithm
b = log, a modulop (a prime):

Pollard’s kangaroo algorithm:

1. DenoteJ = |log,p| andN = [,/p|, and choose the numbersaandc’ randomly from
the interval), 1,...,p — 1. (Note that/ and N are quickly computed.)

2. Compute the numbeg, using the recursion

Q(ti—h mod J)

ti = (ti-1g ,mod p) , to= (g% mod p).
(Because: is known, these recursion steps are called jumpstah@ kangarog. If we
denote
N
d = Z 2(ti,mod J)
=0

thenty = (g°*¢ mod p).

3. Compute the numbers

Q(wj_l,mod J) b-c

w; = (wj_19 ,mod p) , wy = (¢**, mod p) = (ag®, mod p)

one by one using recursion. (Becausis not known, these steps are called jumps of a
wild kangaroo) Simultaneously we compute the numbers

Dj = Dj_y + 2o Dy =0,
recursively, whencey; = ("< mod p).

4. If we find a valud < N such thaty; = ¢ (cross-collision) then

c+d — b+c'+D; ct+d—c'—Dy

g g mod p, e g =a mod p.

In this case we returb= (¢ + d — ¢ — D;,mod p — 1) and quit. Then again, if we have
computed all the numbets,, wy, . .., wy without any cross-collisions occuring, we give
up and quit.

CHAPTER 12. HASH FUNCTIONS AND HASHES 98

By the birthday attack principle, a cross-collision is fdun this situation with at least probabil-
ity 1/2. Note that if a cross-collision is found already for somandw,, wherel < i < N, then

it is also found fort because the recursions are identical. By repeating theigdgomany
times choosing a new randatheach time, but not a new it is very likely that we will eventu-
ally be able to compute However, because the number of steps needéd.%), this is not a
polynomial-time algorithm, although it is fast. On the athand, no lists are stored—compare
to the baby-step-giant-step algorithm—so the space nesdedy small.

12.3 Chaum-van Heijst—Pfitzmann Hash

As an example of a simple hash function we considerGhaum—van Heijst—Pfitzmann hash
functionhcyp. For this we need a primesuch thaty = (p—1)/2 is also a prime, i.e. a Germain
number, see Section 8.2. Furthermore we need two diffem@mitjve rootsa and 5 modulo

p. In addition we assume that the discrete logarithm log,, 5 cannot be computed easily. A
messagéw,, wy) consists of two numbers; andws, in the intervalo, 1, ..., ¢ — 1, and

henp (W, we) = (a* 52, mod p).

Finding even one collision okcyp Makes it possible to compute the discrete logarithm
log,, 8 fast:

Theorem 12.2.1f different messaggsu, , wy) and(w?, wh) are known such thatcpp (wq, we) =
henp(w], wh) then the discrete logarithma can be computed fast.

Proof. The hashes are the same, that is,
a1 = 14" mod p.
Becauses = a® mod p, this is equal to
w2wy)=(Wi—w) = 1 14 .

a is a primitive root modulg, soa(wy, — wh) — (w] — wy) is divisible by its order modulep,
i.e. byp — 1, see Theorem 7.4 (ii). Therefore

a(wy —wy) = wy; —w; mod p — 1.

Now let’s denotel = ged(wy — w), p — 1). Then, by the above congruendds also a factor of
w; — wj. From this it follows thatv, # w). Namely, ifw, = w) thenw; # w| andd = p — 1.
This is however impossible sin¢e; — wj| < ¢ <p — 1.

We denote further

/ /
- - —1
u:% ; v="1"""" and r:pT.
Thenged(u,r) = 1 and, by Theorem 2.11,
au=v modr, i.e. a=u'v modr.

Thus the possible values ofin the positive residue system module- 1 are

1

a=(u"v,modr)+ir (i=0,1,...,d—1).

On the other hand, the possible valuesdadre 1, 2, ¢ andp — 1. Becausew, # w) and
lwy —wh| < ¢ < p—1, eitherd = 1 or d = 2. So the discrete logarithmis easy to find, it is
either(u=tv,mod r) or (u=tv,mod r) + r. O

CHAPTER 12. HASH FUNCTIONS AND HASHES 99

Thushgyp is strongly collision-free and by Theorem 12.1 it is also-ovay.

NB. The CHP hash function is too slow to be very useful, many dtasi functions are much
faster to compute. Another problem lies in the difficulty mdiiing enough Germain’s numbers.
On the other hand, as the "Chinese attack” shows, more ancem@aknesses are found in fast

hash functions.

Chapter 13
SIGNATURE

13.1 Signature System
A signature systeris a quintet P, A, K, S, V'), where

e P is the finitemessage space.

A is the finitesignature space.

K is the finitekey spaceEachkeyis a pair(ks, k,) wherek; is the secresigning keyand
k. is the publicverifying key.

e For each signing ke, there is asigning functions,, € S. For a message we have
sk (w) = (w, u) whereu is thesignatureof the message. S is the space of all possible
signing functions.

e For each verifying key, there is averifying functionv,, € V. V is the space of all
possible verifying functions.

e For each message and for a key(ks, k,) we have

CORRECT ifsy, (w) = (w, u)
Ukv (w7) = H

FALSE otherwise.
The public verifying key is left available for everyone taeyshe secret signing key is personal
and only the signer has it. The signed messagg (&) = (w, u). If a receiver wants he/she can
verify the signature by the verifying function. Usually dtable hashing:(w) of the message
w is used when signing. This has the advantage of allowing #&sage to be quite long.

The signature must satisfy the following basic conditions:

e An outside party who does not know the signing key, cannadl sesigned message that
can be verified in the name of a real signer, or at least suctsaage should not contain
any meaningful information. In particular, an outside parannot detach a signature
from a real signed message and use it as the signature oeamogssage.

e The signer cannot later on deny having signed a correcthesignessage.

Many cryptosystems can immediately be transformed to tigeaystems, and have in fact
originally been signature systems.

100

CHAPTER 13. SIGNATURE 101

13.2 RSA Signature

A signature system is obtained from RSA by defining
ks = (n,b) and k, = (n,a),
and

CORRECT, ifw =u* modn

sk (w) = (w, (w’, mod n)) and vy, (w,u) = {FALSE otherwise

Apparently faking this signature in one way or another isiemjant to breaking RSA. An
outside party can however choose a signatut®y takingw = (u*,mod n) as the message.
Such a message does not contain any information, though tisedoes not work if an one-
way hash functiork is used. In that case, = (n,a, h) and
CORRECT ifi(w) = u* mod n
= h(w)®, mod and =
st (w) = (w, (A(w)’, mod n)) e, (w0,) {FALSE otherwise.

RSA can also be used to get a so-caldidd signature If A wishes to sign a message of
B, without knowing its content, the procedure is the follogein

1. B chooses a random numbksuch thatged(l,n) = 1, computes the number =
(I*w,mod n) and sends it to A.

2. A computes the signatureé = (t*,mod n) as if the message would beand sends it to
B.

3. B computes the number= (I~'v/;mod n).

Because A does not know the numbgne/she does not get any information about the message
w. On the other hand, is the correct signature of the messagesince

T = 179 = 17 1% = 17w = w® mod n.

13.3 Elgamal’s Signature

Elgamal’s cryptosystem can be transformed into a signaystem by choosing the grodp=
Z;;, wherep is large prime, a pr'|m|.t|ve roai.moduIOp andb = (ayzmold D). Thg ve.rlfylng key
is nowk, = (p,a,b) and the signing key i&; = (p,a,y). The signing function is;_ (w) =
(w, ¢, d) where
c=(a*,mod p) and d= ((w—yc)z™', mod p—1)

andz is a random number, chosen from the intetval = < p— 1, such thaged(z,p—1) = 1.
Now zd = w — yc + k(p — 1) for some numbek. The verifying function is

CORRECT ift°c? = a® mod p

Vg, (W, ¢, d) = _

FALSE otherwise.

Verifying a correct signature will then succeed, since bynta’s little theorem
bccd = aycaa:d — ayc—l—w—yc-ﬁ-k(p—l) _ aw(ap—l)k =aq¥-1=qa* mod .

To forge a signature one should be able to compwtedd without knowingy andx. We
then note the following:

CHAPTER 13. SIGNATURE 102

e If the forger first chooses som&nd then tries to obtain the correspondihge/she must
computelog,(a*b~¢) modulop. This is essentially computing the discrete logarithm in
G. Note that becausg:d(xz,p — 1) = 1, alsoc is a primitive root modulg, see Theorem
7.4 (iii).

e Then again, if the forger chooses first sothand then tries to find the corresponding
he/she must solve the equation

bed = a® mod p.
No fast algorithms are known for solving such equations.

o If the forger tries to send a signed message, even a randonphefstie might try to first
choosec andd and then find some suitabte. But in this case he/she must compute
log,, (b°c?) modulop.t

NB. DSS (Digital Signature Standard), a modification of Elgamaignature, is quite exten-
sively used, see e.§TINSON or MENEZES& VAN OORSCHOT& VANSTONE.

13.4 Birthday Attack Against Signature

If hashing is used in signing and it is possible to change tessage a little bit here and there
without essentially altering its meaning, it is also poksito apply a birthday attack to get
cross-collisions in the following way, see Section 12.2:

1. If the length of the hashes used in signin@ibits, the forger finds, say3/2 + 2 places
where the message to be signed can be changed without reatligiag it essentially—
for example adding or removing commas and spaces, makintj smacent mistakes
and so on. This wag?/?*2 versions of the correct message are obtained, the hashes of
which the forger then computes.

2. Correspondingly, the forger find3/2 + 2 places in the fake message he/she chooses,
where it can be varied without changing the meaning, and coesghe2”/2+2 hashes of
the fake messages obtained this way.

3. The forger seeks a possible cross-collision in these &gh Isets by sorting in the same
way as in the baby-step-giant-step algorithm. It can bedotery certainly, if the hashes
of the messages may be considered as having been born ragndoroé the probability
of success is in this case approximately

_ 9B/2+2,B/2+2

1—e 28 =1-—¢1=220.999999 887.

The condition considering randomness is not very demandginge a good hash func-
tion is already randomizing and small differences in messaguse large differences in
hashes.

4. The forger leaves the version of the correct message magun the cross-collision to
be signed. If the signer does not notice the difference oplsimioes not care, the forger
now has a version of the fake message he/she chose whichehasrthsame hash, and
gets it signed by the signer as well!

1There are however other ways for obtaining a random signessage! It is also possible to sign some other
random messages by using a single received signature.1$es\.

Chapter 14

TRANSFERRING SECRET
INFORMATION

14.1 Bit-Flipping and Random Choices

Generating of random bit ("bit-flipping”) is easy, if we hatrasted party to perform it. If such
a party is not available, bit-flipping is still possible by @per method. In what follows in the
bit-flipping proceduré A flips a random bit for B. At first only B knows the result but i€h
chooses to do so, he can tell it to A. Even if B does not tell #saiit to A, he still can’t change
the bit he got and this way he can't cheat by telling the wroibgpbA, without it being revealed
to A at some point. This way B isommitted to the bithat he got.

The procedure works in the following way, see Section 7.6:

1. A chooses two different large primgsndq and sends the produet= pq to B.

2. B randomly chooses a numbefrom the intervall < u < n/2 and sends the modular
square
z = (u?, mod n)

to A.

3. A computes the four square rootszofmodulon:
(£x, mod n) and (+y, mod n).

This is possible since A knows the factorsaf Denote the smaller of the numbers
(£z,mod n) by 2/, and correspondingly the smaller of the numbletg,mod n) by v'.
Thenu is one of the numbers andy’.

4. A cannot know which of the numbersandy’ is u, so she guesses. It is of no use for A
to send B the number she guessed, because if it happens reot titvén B can factor..
Instead A finds the first bit on the right in which the binarynegentations of’ andy’
differ, and sends this bit to B in the form "Th#& bit of your numberis ...".

5. B tells A if the guess was correct (the flipped bitl)sor incorrect (the flipped bit i8).
Even if B does not tell the result to A, he is still bound to ilasannot change it.

The original reference is IBsM, M.: Coin Flipping by Telephone. A Protocol for Solving Imgsible Prob-
lems.SIGACT New$1981), 23-27.

103

CHAPTER 14. TRANSFERRING SECRET INFORMATION 104

6. Finally B reveals: to A and A reveals the factorization ef B cannot fool A, since he
only knows one of the square roatsandy’, otherwise B would be able to facter

NB. As is usual, it is here assumed that when choosing a numb&ndomly we won't get a
number such thatced(u, n) # 1. Indeed, this is highly unlikely if is large.

Generalizing, we can choose a random integer from a givenvait by flipping the bits of
its binary representation one by one, and removing inigabg if needed.

Another random choice situation is when, for both A and:Biumbers from the numbers
1,2, ..., N are chosen randomly such that both know their own numberaditthe numbers
of the other. Furthermore, it is required that A and B dondrehany of the numbers. If the
above bit-flipping might be thought of as "coin tossing” thtars could be thought of as "card
dealing”. The procedure is following:

1. A and B agree on a large prime

2. A chooses a secret numhefrom the intervall < a < p— 1 such thaged(a,p—1) =1,
and computes the numbe&r= (a~!,mod p — 1).

3. B chooses a secret numbdrom the intervall < b < p — 1 such thaged(b,p — 1) = 1,
and computes the numb&r= (b~ mod p — 1).

4. The numbers are encoded as the numbeys= (¢**! mod p) (i = 1,2,..., N) where
g is a primitive root modulg. ¢ andp can be found in the same way as in setting up
ELGAMAL, see Section 10.1. The numbetsare all quadratic nonresidues modglo
since exponents of quadratic residues are even.

5. B computes the numbefs = (¢?;mod p) (i = 1,2,...,N), permutes them randomly
and sends them to A. Note that becabss odd, information of a numbet; being a
guadratic residue module passes this encoding process by Euler’s criterium, since by
Fermat’s little theorens? ' = 1 mod p and hence!” "/ = +1 mod p. Because of

this, all¢;’s were chosen to be quadratic nonresidues mogtdostart with. On the other
hand, obtaining; from j3; would require computing a discrete logarithnip.
6. A choosegk of these numbers, say,, ..., 5, , computes the numbers
a; = (B}, mod p) = (c?jb, mod p) (j=1,2,...,k),

and sends them and the numbgys , ..., 5, to B. Again obtaining3;, from «; would
require computing a discrete logarithm.

7. B computes the numbers
v = (a?/, mod p) = (¢, mod p) (j=1,2,....k)
and sends them to A. Compare this to decrypting of RSA.
8. A computes her numbers = (v ,mod p) (j = 1,2,..., k).

9. B computes his numbets = (g’;,mod p)(=k+1,...,2k).

CHAPTER 14. TRANSFERRING SECRET INFORMATION 105

14.2 Sharing Secrets

If ¢t andv are positive integers and< v then a(¢, v)-threshold schemis a procedure which is
used to distribute a secrstto v parties so that any— 1 parties won’t get anything out of the
secret but any parties get to know it in full (théhreshold.

Threshold schemes are usually carried out by some kindefdatation. A certain function
Jpr....pe» the so-calleanterpolant,is defined fully when its parameteys, . . ., p, are known. The
parameters themselves are obtained if we know the valuégdtihction in at least different
points:

v () =v ((=1,2,...,0vwherev > t).

On the other hand, values in ahy- 1 points do not define the parameters unambiguously. The
secretS is the functionf,, . ,,, or its parameters,, ..., p; or just some of them. Each party
is given a value of the function, the so-callgldare. This is done secretly by a trusted outside
party, the so-calledistributorD.

One way to get an interpolant is to use a polynomial

t—1

p(x) =5® @ijrlin-

j=1

This is calledShamir’s threshold schenddt can be carried out in any fiel&l with more thary
elements. The most common choice is a prime figJdvhereq > v. The secret is the constant
term S = p; of p(z). Itis known that a polynomial of degree no higher than 1 is fully
determined when its values are knowntidifferent points. On the other hand, a polynomial
won't be determined unambiguously, if the degree is 1 and there are less thanpoints.

In particular, the polynomial’s constant term is not deteed in this way, unless a value is
specifically given in the point = 0. This is because if the constant teSrwere uniquely
determined by — 1 valuesy; = p(z;) in different pointsz; # 0 (: = 1,2,...,t — 1) then the
remaining parameters, . . ., p; would be determined by the equations

Oy 08) = @ijx G=1,2,...,t—1).

As is seenS can be anything, so no information abguis revealed.
The interpolation itself can be carried out using a lineatay of equations—the matrix
of which is a so-called Vandermonde matrix—or for examplgraage’s interpolation (see the

basic courses):
@yj @@ (zj0x) O (z O).

k#]

@%@Q T O T)” Lo .

k#]
Points where values gf(z) are computed can be public, in which case the shares woulgsbe j
these values. Then computation$fs just computation of a linear combination of the shares
with known coefficients, possibly precomputed.
The scheme itself is the following:

In this case

2The original reference istB\MIR, A.: How to Share a SecreEommunications of the Association for Com-
puting Machinery22 (1979), 612-613.

CHAPTER 14. TRANSFERRING SECRET INFORMATION 106

Shamir’s threshold schme:

1. D chooses a field andv different elements, uo, . . ., u,, # 0 of F', and communicates
u; to thei" party ¢ = 1,2, ...,v). The secref is an element of.

2. D secretly and randomly chooses 1 element, . . ., p; of the field F.

3. D computes the shares

t—1

wlzs@@ijrl@ug (i:1727"'7v)1

j=1

and communicates to each party its share, without lettiagther parties know anything
about it.

4. When the parties,, is, . . ., i; want to know the secret, they interpolate and comgute
For example, using Lagrange’s interpolation

t t
S = @w@. ® @ (wip © ugy) ™" O wy,.
j=1

k=1
k#j

NB. Sharing secrets must not be confused with a very similargutore, the so-calledispersal

of information,where you disperse a file intopieces, any of which suffice to reconstruct the
file quickly. The difference is that- 1 pieces can now perfectly well give a lot of information
about the file, possibly not the whole file, however. Disdersaformation has to do with error-
correcting codes (see the course Coding Theory), and thgedied parts are usually much
smaller than the shares above. The original referendeAsIN, M.O.: Efficient Dispersal of
Information for Security, Load Balancing, and Fault Toteze. Journal of the Association for
Computing Machiner36 (1989), 335-348.

There are other ideas for sharing secrets. Many secrengheghemes are based on coding
theory. The Chinese remainder theorem can be used in thgpatdéon, too, e.g. in the so-
calledMignotte threshold schemsge for example NG & PEI & SALOMAA.

14.3 Oblivious Data Transfer

The party A wants to transfer a secret to the party B, but ithnsuway that the secret may or
may not be transferred. Of course B knows whether the se@sttransferred or not, but A
should not know this. In fact, from A's point of view, the setrs transferred with probability
1/2. A simple procedure for this would be the following. Hereuasial,n is a product of two
different large primep andq. The secret may be thought to be these two primes, the raaksec
could then e.g. be encrypted by RSA usingSo, in the beginning A knows andq while B
does not.

1. B chooses a numberfrom the intervall < = < n, computegz?,mod n), and sends it
to A.

2. A computes the four square roots

(£z, mod n) and (Zy, mod n)

CHAPTER 14. TRANSFERRING SECRET INFORMATION 107

of (z*;mod n) modulon, and sends one of them to B. Because A knows the factors of
she can do this quite quickly. A cannot however know whichhef¢quare roots is. See
Section 7.6.

3. B checks whether the square root he got from Ais-z mod n. In the positive case
B does not get the secret. Otherwise B gets to know numbargly such that:? = />
mod n andx # +y mod n, and is able to factor and in this way learns the secret. A
cannot know whether or not B got the secret, unless B chooded this to A.

14.4 Zero-Knowledge Proofs

There are two parties in anteractive proof systenthe proverP and theverifier V. They send

messages to each other and perform computations basedrmorskages they receive, including

random number generating if necessary. The goal of P is teimos V that he knows some

property of some object. The object could be e.g. a mathealatsult and the property its

truth, but of course it could be something quite differermogher goal of P is not to transmit to

V any other information than that he knows this property.slikicalledzero-knowledge proof.
The basic requirements of a zero-knowledge proof are thewoig:

() The probability of P successfully fooling V is very small

If, for example, P does not know the proof of a mathematicsllitebut claims to do so,
then his chances of fooling V should be minuscule.

(1) If P truly knows the property, he can prove this to V begamy reasonable doubt.

(1) V won't get from P any information that he could not obtdimself without P, computing
in polynomial time if needed.

In this case V could actually simulate the proof protocolatypomial time as if P would
participate in it, but without P. Note that there are no restns on the complexity of
computations of P. The simulation must be exact enough tcertakpossible to tell it
apart from the "real” one, computing in polynomial time.

Despite condition (1), V might, after some very long contations, be able to get more infor-
mation, possibly the whole property. So, instead of (llI3tt@nger condition is required in the
so-calledperfect zero-knowledge proof:

(") vV won't get from P any information that he could not get by ketf without P.

Here too V computes in polynomial time, but the simulatiorstmuow be fully identical
to the "real” one.

Sometimes the zero-knowledge proof defined by the condit{tyr(11l) above is called
computational zero-knowledge prodd, distinguish it from perfect zero-knowledge proof. It
should be noted that the above conditions do not really graetedefinitions. These defini-
tions are actually much more complicated, see for exampl&s®N or GOLDREICH. The
difference between computational and perfect zero-knagéeproofs is in the comparison of
stochastic distributions: In perfect zero-knowledge gdoeal” and simulated distributions
must be identical, in computational zero-knowledge pratitsonly required that the distribu-
tions cannot be separated by polynomial-time computations

CHAPTER 14. TRANSFERRING SECRET INFORMATION 108

The following protocoal gives a perfect zero-knowledge proof of the fact thata quadratic
residue modulo: wheren = pg andp andq are two different large primes, assuming that
ged(z,n) = 1. Here the problem is QADRATICRESIDUES and the proof is a square root.of
modulon.

1. Repeat the following times:

1.1 P chooses a random numbdrom the intervall < v < n such thaged(v,n) = 1,
computes the numbegr= (v?,mod n), and sends it to V.

1.2 V chooses randomly a kit(0 or 1) and sends it to P.

1.3 P computes the number= (u’v,mod n) whereu is a square root af modulon,
and sendsitto V.

1.4 V checks that? = 2’y mod n.

2. If the check passes every time for each of threunds, V concludes that P really knows
x is a quadratic residue moduto

Theorem 14.1.The above protocol gives a perfect zero-knowledge prodhéoproblenQUAD-
RATICRESIDUES

Proof. If P does not know a square root of he must cheat and send to B the numbef v,
and either the number = (2%, mod n) (exposed ifh = 1) or the numbey = (z2z~! mod n)
(exposed ifb = 0). Thus the probability for P to cheat without getting cauight/2*, which
can be made as small as wanted. Then again, if P really knogsaesrootu, he of course
passes the test every time.

V can simulate P’s part perfectly in this protocol. The idethat VV generates triplés, b, z)
where

® mod n.

Y= 22x
Let’s show that if V chooses the Bitand the number completely randomly, these triples have
a distribution identical to the "right” one, where P is invetl and chooses a randam

We say that the tripléy, b, 2) is feasible if
e 1 <y<mnandged(y,n) =1,

e bisOorl, and

e 1 <z<nandz? =2 mod n.

There are2¢(n) feasible triples, because there arg:) possible choices of andb can be
chosen in two different ways, and these choices determifote that sincgcd(z,n) = 1 and
ged(y,n) = 1, thenged(z,n) = 1 also.
Feasible triples occur in the protocol equally probably wReis involved, since P chooses

v from amongp(n) different alternatives, and four possible square roatsrrespond to ong.
Wheny andb have been chosen, there are four possible choices f8tso in the simulation
performed by V feasible triples are equiprobable when V skeso randomly from the interval

1 < z < nandged(z,n) = 1, andb is chosen randomly. O

3The original reference is G.DWASSER S. & MICALI, S. & RACKOFF, C.: The Knowledge Complexity of
Interactive Proof SystemSIAM Journal on Computin@8 (1989), 186—208.

CHAPTER 14. TRANSFERRING SECRET INFORMATION 109

Let's also take an example of a (computational) zero-kndgaeproof. The problem is to
prove that there is a so-called Hamiltonian circuit in a ¢rtaf graph consists ofverticesand
edgesthat connect vertices. Usually not all vertices are coretebly edges. Adamiltonian
circuit is a path which forms a circuit through all vertices of thepravisiting each vertex
exactly once and returning to the starting vertex. The pablcgeds via the edges. (See the
course Graph Theory.) Finding out whether or not there is mili@nian circuit in a suitably
encoded graph is known to be AffP-complete recognition problemAf1iLTON CIRCUIT. The
following protocof gives a zero-knowledge proof to this problem.

1. Repeat the following times. The input is the graphi where the vertices are denoted by
1,2,...,n.

1.1 P arranges the vertices in a random order and sendstthe tis, . . ., v, obtained
this way (encoded in bitsgncryptedto V. P also sends to V the x n matrix
D = (d;;) (the so-callecadjacency matrixencrypted element by elemenhere
the diagonal elements are(and

] lifthere is an edge connecting the vertiegandv;
] 0 otherwise,

wheni # j. Because of the symmetry it is enough to send only the upjaergie.
Each element of the matrix is encrypted by its own key. Theyaton must lead
to commitment, that is, P must not be able to change the gatphlby changing
keys, compare with bit-flipping. Naturally, the encryptisrassumed to be strong
enough, in other words nothing can be got from an encryptad polynomial time.

1.2 V chooces a bii randomly and sends it to P.

1.3 If b = 0, P decrypts the list;, vs, . . ., v, and the whole matrid for V by sending
her the decrypting keys. Then againb = 1, P decrypts for V only the elements
diyiys digis, - - -, d;,iy Of the matrixD where the vertices;, , v;,, . .., v;, in this order
form a Hamiltonian circuit (in which case the elements are-al).

1.4 Ifb = 0, V checks whether he got the correct graph. The decrypted lis;, . . . , v,
gives the order of the vertices ahdgives the edges. Then againb i 1, V checks
whether the obtained elements of the matrix-aré.

2. Ifthe check passes in each of theounds, V concludes that P really does know a Hamil-
tonian circuit ofG.

The commitment mentioned in #1.1 is obtained for exampléefollowing way. Here the
large primep and the primitive rooy modulop are made public.

1. In the beginning V chooses and then sends to P a random munitmen the interval
1 <r < p. P cannot quickly compute the discrete logarittug), » modulop.

2. P randomly chooses a numhgefrom the intervald < y < p — 1 (the secret key) and
sends to V the number = (r’¢¥, mod p) whereb is the bit to be encrypted. Each ele-
ment of Z; is in the positive residue system both of the fofg#,mod p) and of the form

4The original reference seems to be1, M: How to Prove a Theorem So No One Else Can Claim It.
Proceedings of the International Congress of Mathematieia986. American Mathematical Society (1988),
1444-1451.

CHAPTER 14. TRANSFERRING SECRET INFORMATION 110

(rg¥,mod p), soc does not reveal anything of the bitWhichever the bit is, the distribu-
tion of c remains the same. On the other hand, P cannot change thieybthanging, to
somey’, otherwise

¢ =r¢gY modp or r¢g=¢Y modp,

r=g¢*¥) mod p,
and P would immediately obtaing, » modulop from this.

Theorem 14.2.The above protocol gives a zero-knowledge proof for thelpraBlIAMILTON -
CIRCUIT.

Proof. If P does not know a Hamiltonian circuit, he is able to cheatifeceives the bit= 0,
but not if he receives the bit= 1. Then again, if P knows a Hamiltonian circuit of some other
graphG’ with n vertices, he can cheat if he receives thebbit 1, but not if he receives the bit
b = 0. So, the probability for P to succesfully cheat all the timé/i2*, which can be made as
small as we want. Then again, if P knows a Hamiltonian cirotit7, he of course passes the
test every time.

V can simulate the protocol in polynomial time also withoud\fhat V does is the following.
V chooses a random bit If b = 0, V orders the vertices randomly and encrypts the list
obtained this way. Further, V gets the adjacency mddrixnd encrypts it. Then again,iif= 1,
V encrypts only some random elemenqts,, d,,i,, . . ., d;,;, where the indexing is cyclic each
index occurring exactly two times, and each element is. For the sake of completeness, V
can encrypt something else to obtain the right amount ofygted data. Because the encryption
used is strong, the encrypted element sequences are vendisiwhether they come from the
correct adjacency matrix or not. In other words, computmgelynomial time the difference
cannot be seen, and the occuring distributions cannot lseaen. This does not mean that the
distributions should be exactly the same! O

HAMILTON CIRCUIT is an /N P-complete problem to which other recognition problems in
NP can be reduced, see Section 6.1. Hence V can always perfelmaseduction, if needed,
and we have

Theorem 14.3. Zero-knowledge proofs can be given to all positive soliohrecognition
problems inVP.

A perfect zero-knowledge proof of ak"P-complete recognition problem is however thought
to be impossible, in other words, the theorem is expecteé falbe for perfect zero-knowledge
proofs. Actually, a result much more general than Theorer isknown:

Theorem 14.4. (Shamir’s theorem) Recognition problems for whose positive solutions there
are zero-knowledge proofs are exactly the recognition lgnois inPSPACE.

5The original reference ist®\MIR, A.: IP = PSPACE. Journal of the Association for Computing Machinery
39(1992), 869-877.

Chapter 15
QUANTUM CRYPTOLOGY

15.1 Quantum Bit

The values) and1 of the classical bit correspond in quantum physics to cormpithonormal
base vectors, denoted traditionally [y and|1). We can think then that we operate @%
considered as a Hilbert space géiantum bitor qubitis a linear combination of the form

b= Oé(]‘0> + Oél|1>
(a so-calledsuperpositiohwherea, anda; are complex numbers and
Ib]l* = lao|* + Jaa |* = 1.

In particular,|0) and |1) themselves are quantum bits, the so-cafjede quantum bits.lt is
important that physically a quantum bit can be initializedhe of them.

A quantum physicameasurementf b results either inf0) or in |1) —denoted briefly just
by 0 and1. So, the measurement always involves the basis used. Angdadthe probabilistic
interpretation of quantum physics, the reslis obtained with probabilityc,|? and the result
1 with probability |a |*.

A quantum bit is a quantum physicstiateand it can be transformed to another state in one
time step, provided that the transformation is linear aadniatrixU is unitary, i.e.U~! is the
conjugate transpodg’ of U. Hence also

Ub = ([0) + p1|1), where (g(l]) =U (O‘O) ,

a

is a quantum bit (state). Note in particular that

* * 50 * * [67) " " o7
Bol? + 182 = (85 B7) (fﬁ) — (o o7)U'U (al) ~ (a; o) <a1) .
(Complex conjugation is here denoted by an asterisk.) Nogvrecall some basic properties of
unitary matrices:

1. The identity matriX, is unitary. It is not necessary to do anything in a time step.

2. If U; andU, are unitary therlJ, U,is also unitary. This means a quantum bit can be
operated on several times in consecutive time steps, ppssing different operations,
and the result is always a legitimate quantum bit. This is#x&ow a quantum computer
handles quantum bits.

111

CHAPTER 15. QUANTUM CRYPTOLOGY 112

3. If U is unitary thenU' is also unitary. When a quantum bit is operated on and another
guantum bit is obtained, then the reverse operation is a\wegitimate, too. A quantum
computer does not lose information, and is thexersible.It has been known long that
every algorithm can be replaced by a reversible algorithims Was first proved by the
French mathematician Yves Lecerf in 1962. Later it was shthai this does not even
increase complexity very muchHence reversibility is not a real restriction considering
computation, of course it makes designing quantum algostmore difficult.

15.2 Quantum Registers and Quantum Algorithms

Quantum bits can be merged into quantum registers of a gamegth. The mathemathical
operation used to do this is the so-callémnecker producor tensor product. Kronecker’s
product of the matricedA = (a;;) (ann; x my matrix) andB = (b;;) (anny x my Matrix) is
thenyns X myms matrix

(lnB a,lgB R almlB
A ® B _ ang QQ%B R a,gm.lB
anllB an12B T anlmQB

(in block form). As a special case we get Kronecker’s proaiidivo vectors {n, = mo =
1). The following basic properties of Kronecker’s produat guite easy to prove. Here it is
assumed that the occurring matrix operations are well-eefin

1. Distributivity: (AT +A)B=A; B+ A,®B
A®(B;+By))=A®B; +A®B,
2. Associativity: (A®B)®C=A®(B®C)

As a consequence of this a chain of consecutive Kroneckevdugts can be written
without parentheses.

3. Multiplication by a scalar: (cA) ® B =A ® (¢cB) = ¢(A ® B)

4. Matrix multiplication of Kronecker’s products (this e much follows directly from
multiplication of block matrices):

(A1 ® B1)(A; ®By) = (A1A,) ® (B1By)
5. Matrix inverse of Kronecker’s product (follows from theuliplication law):
(AB)'=A"'2B!
6. Conjugate transpose of Kronecker’s product (followgctily from conjugate transposi-

tion of block matrices):
(A®B) = AT @ B!

1The original references areelcERF, M.Y.: Machines de Turing réversibles. Récursive insdltdenn € N
de I'équatioru = 6™u, ouf est un "isomorphisme de code€omptes Rend®&57(1963), 2597-2600 andavIN,
R.Y. & SHERMAN, A.T.: A Note on Bennett's Time-Space Tradeoff for RevesiBomputationSIAM Journal
on Computindl9(1990), 673—-677.

CHAPTER 15. QUANTUM CRYPTOLOGY 113

7. Kronecker’s products of unitary matrices are also uwit@rollows from the above.)

When two quantum bitb; = ay|0) + a;|1) andbs = 5,|0) + (;]1) are to be combined to
a two-qubitregister,it is done by taking Kronecker’s product:

b1 @by = apfo(|0) ®10)) + aofi(|0) @ (1)) + a1 fo([1) @ [0)) + arfi(|1) @ [1)).

(More exactly, itis the register’s contents that is definerel) A traditional notation convention
here is
|0) ® |0) =|00) ,]0)®]|1)=101) etc.

It is easy to see tha00), |01), |10), |11) is an orthonormal basis, in other words, the register’s
dimension is four. If we wish to operate on the register’d fitgantum bit byU; and to second
by U, (both unitary matrices) then this is done by the unitary mdtl; ® U,, because by the
multiplication law

(U; ® Uz)(by ® by) = (Uyby) ® (Uzby).

In particular, if we want to operate only on the first quantutrbly the matrixU, it is done by
choosingU; = U andU, = I,. In the same way we can operate only on the second quantum
bit. But in a two-qubit register we can operate also by a ganamitary4 x 4 matrix, since

the register is a legitimate quantum physical state. Witk kind of operating we can link

the quantum bits of the registers. Quantum physical linkingalledentanglementand it is

a computational resource expressly typical of quantum caatipn, such a resource does not
exist in classical computation.

In a similar way we can form registers of three or more quariiisy) operate on its quantum
bits, either on all of them or just one, and so on. Generaklydimension of a register of
guantum bits i2™. Base vectors can then be thought to correspond, via biegrgsentation,
to integers in the intervdl, . . . , 2™ — 1, and we adopt the notation

‘k> = ‘bmflbmf2 to b1b0>

when the binary representation bfis b,, _1b,, 2 - - - b1bg, possibly after adding initial zeros.
Several registers can be combined to longer registers #Smgecker’s products, and we can
operate on these either all together or only one and so on.

Despite the register’s dimensi@i being possibly very high, many operations on its quan-
tum bits are physically performable, possibly in severapst and the huge unitary matrices
are not needed in practice. In this case the step sequenakleid aguantum algorithmlt is
important that entanglements too are possible and usefulantum algorithms.

In the the sequel the following operations are central. Shgwhat they can be performed
by using quantum algorithms is somewhat difficullerek is as above.

e From the inputk) ® |0 ---0) we computdk) @ |(w*,mod n)) wherew andn < 2™ are
given fixed integers.

e From the input: we compute its so-calleguantum Fourier transformation

2m—1
1 2mijk

Folll) = 55 3 € 1))

J=0

wherei is the imaginary unit. Quantum Fourier transformation vgomkuch as the "or-
dinary” discrete Fourier transformation, in other wordgicks periodic parts from the
input sequence, see the course Fourier Methods.

2See for example $0R, P.W.: Polynomial-Time Algorithms for Prime Factorizatiand Discrete Logarithms
on a Quantum Compute8lAM Journal on Computing6 (1997), 1484—-1509 or MLSEN & CHUANG.

CHAPTER 15. QUANTUM CRYPTOLOGY 114

15.3 Shor’s Algorithm

Today’s quantum computers are very small and have no pahctieaning. Handling bigger
guantum registers with quantum computers would howevemnntieat procedures central for
the safety of for example RSA and ELGAMAL, such as factormaand computing discrete
logarithms modulo a prime, could be performed in polynortirae. Indeed, these problems
are in the clas®8QP. This was shown by Peter Shor in 1994. Let’s see Shor’s faetioon
algorithm here. See the referencec® mentioned in Footnote 2.

Shor’s factorization algorithm is very similar to the expon algorithm for cryptanalysis
of RSA in Section 8.3. The mysterious algorithm A, that appddhere, is just replaced by a
guantum algorithm. Of course, the numbeto be factored can here have many more prime
factors than just two. The "classical part” of the algoritisithe following when the input is
the integem > 2:

Shor’s factorization algorithm:
1. Check whether is a prime. If it is then returm and quit.

2. Check whether is a higher power of some integer, compare to the Agrawalakay
Saxena algorithm in Section 7.4. if = «!, wheret > 2, we continue by finding the
prime factors ofu from which we then easily obtain the factorsraf This part, as the
previous one, is included only to take care of some "easyasibns quickly.

Choose randomly a numberfrom the intervall < w < n.

Computel = ged(w, n) by the Euclidean algorithm.

If 1 < d < n, continue fromd andn/d.

If d = 1, compute with the quantum computer a number 0 such thatv™ =1 mod n.
If r is odd, go to #9.

If ~ is even, set <— r/2 and go to #7.

© © N o 0 &~ W

Computev = (w",mod n) by the algorithm of Russian peasants.
10. Ifw =1 mod n, give up and quit.
11. fw # 1 mod n, setw’ < w andw <+ (w?mod n), and go to #11.

12. Eventually we obtain a square ragtof 1 modulon such thaty’ £ 1 mod n. If now
w' = —1 mod n, give up and quit. Otherwise compute- ged(w’ — 1,7n) and continue
from ¢ andn/t. Note that because’ + 1 # 0 mod n and on the other hand? — 1 =
(W +1)(w —1) =0 mod n, some prime factor of is a factor of’ — 1.

As in Section 8.3, it can be proved thatifis composite, the algorithm finds a factor with at
least probabilityl /2.

So, #6 is left to be performed with the quantum computer. Thrs be done based on the
fact that(w’,mod n) is periodic with respect tg and a period- can be found by a quantum
Fourier transformation. The procedure itself is the follogv

CHAPTER 15. QUANTUM CRYPTOLOGY 115

6.1 Choose a number® such that? < 2™ < 2n?.
6.2 Initialize two registers of length to zeros:[0---0) ® [0---0).

6.3 Apply the quantum Fourier transformation to the firsisty:

2m—1
.FQ(|O >)®‘0 <2m/2 Z e S ‘]) ®|00>

1 .
= 2 Z 7)®10---0)
=0

Now we have a uniform superposition of the integérs. ., 2™ — 1 in the first register.
The quantum computer is ready to handle them all simultasigbu

6.4 Compute by a suitable operation (see the previous s¢diimultaneously

2m—1

. Z /) @ |(w, mod n)).

The registers are now entangled in the quantum physicagsens

6.5 Measuring the second register we obtain the integand the registers are

2m—1
YY) @)
ijU;mod n

where~ is a scaling constant and the indice®ccur periodically. Scaling is needed
because after the measuring we must have a quantum phytsiteal s

6.6 Apply the quantum Fourier transformation to the firsiseg:

2m—12m—1
DRI
€
2m/2
j=

wl=v mod n

) ® |v).

6.7 Measure the first register. The redtik then obtained with probability;(7)|? where

2m—1

_
g(l)— om/2 Z e

. J=0
wI=v mod n

But ¢(1) is, ignoring the coefficient, a discrete Fourier transfdioraof a sequence in
which 1 occurs with the same period as #6.5, other elements being zeros.

The above-mentioned probability is illustrated below, whve = 8 andr = 10. These
values are of course far too small to be very interesting atfice.» corresponds to the
frequency2® /10 = 25.6, which can be seen very clearly together with its multiplegs
very likely that the measurddwill be near one of these.

CHAPTER 15. QUANTUM CRYPTOLOGY 116

0.1 4
0.08- 4
0.06 - 4
0.04 b

0.02- b

e el e

Il
0 50 100 150 200 250

6.8 In this way we obtain a valuewhich is an approximate multiple of the frequer&y/r,
i.e. there is g such that
Jj .l
r om’
Because < ¢(n) < n — 1, r might be found by trying out numbers around the rational
numberl/2™. In any case, using the condition ferin #1, we can very probably find the
correctr using so-called Diophantine approximation, see the rater&10R in Footnote
2.

All in all, we are talking about a kind of probabilistic polgmial-time algorithm using
which we can find periods of quite long sequences. Such anitgdgowould have a lot of
applications, e.g. in group theory, if only we had large quancomputers.

15.4 Quantum Key-Exchange

A quantum bit can be represented in many orthonormal basesauBe measuring is always
connected to an orthonormal basis and results in one of tbe Wectors, we can measure a
guantum bit, pure in one basis, in another basis and get amyobthe latter basis’ vectors.
Another important quantum-physical property is that it @ possible to duplicate a quantum
bit or state (théNo-cloning theorensee e.g. NELSEN & CHUANG).

First let's take an orthonormal basi®), |1), denoteds;, and then another basis), |—),
denoteds,, where

! 1
V2 V2

B, is then orthonormal too. The measurer can decide in whicls beegshe measures. For
example, when measuring the quantum bit

+) (10) +11)) and |-) (10) = 11)).

1 1
0) =)+ 1)

CHAPTER 15. QUANTUM CRYPTOLOGY 117

in the basig3,, the measurer gets-) with probability 1 /2.
Quantum key-exchange can be done in many ways. One way toggetret key for two
parties A and B is the following:

1. A sends a sequence of bits to B, interpreting them as puetgo bits and choosing for
each bit the basis she usés,or B>, and when using, identifying, say0 with |—) and
1 with |+). A also remembers her choices of bases.

2. After obtaining the quantum bits sent by A, B measures tbleoosing randomly a basis,
B, or B,, for each received quantum bit, and remembers his choicbss#s and the
measured results.

3. B sends to A the sequence of bases he chose using a classinakl.
4. A tells B which of their choices of bases were the same usiclgssical channel.

5. A and B use only those bits for the key, which are obtainechfthese common choices
of bases. Indeed, these are the bases where B’s measurauenpgre quantum bits
identical to the ones sent by A. About half of the bits sent thilis be used.

If an outside party C tries to interfere in the key-exchamiher by trying to obtain the key
by measuring quantum bits sent by A or by trying to send B quariiits of his own, he is very
likely caught. (As a consequence of the No-cloning theort@mmannot copy quantum bits for
later use.) First of all, when measuring the quantum bitslsg®, C must choose the badis
or B,. This choice is the same as A's in about half of the cases. Gssiese quantum bits to
B, who believes they came from A. Then a lot of the bits choseA land B for their secret
key in #5 will be different. This is naturally revealed latsay, by using AES and letting the
first encrypted messages sent be equipped with parity cloecasne other test sequences. The
same will be true, of course, if C tries to send B quantum Hits®own choice instead of As
guantum bits.

Another key-exchange procedure based on a somewhat diffgraciple is the following:

1. Both A and B initialize a set of registers of length two, le&xthe state
1
V2

This can be done (verify!) by first initializing the registeo the staté00) = |0) ® |0)
and then applying the unitary matrix

(|00) + |11)) (a so-calledBell stat9.

10 0 1
1101 1 0
vV2lo1r -1 o0
10 0 -1

The basisB; is used in all registers, but also for the baijswe have a Bell state, since
computing the Kronecker products it is easy to see that

1 1

V2 V2

In Bell's state both positions contain the same pure quariitmn other words, the
guantum bits are entangled. Physically the quantum bitbeaeparated and taken very

(100) + 11)) = —=(| ==) + [++)).

CHAPTER 15. QUANTUM CRYPTOLOGY 118

far from each other without destroying the entanglementak®es the first quantum bits,
and B the second, remembering their order. Another poggyilsl that a trusted third

party initializes the Bell states and then distributesrtjaantum bits to A and B. Ideally
all this happens hidden from outsiders. The "halves” of tledl Btates reside with A and
B, waiting to be taken into use.

If A and B can be absolutely sure that they received theirvési of the Bell states
without any outside disturbing, they get their secret kag-simply by measuring their
guantum bits in the same basis (agreed on beforehand). 8ecdihe entanglement
they will get the same bits, even though these are randons Hdppens even if A and
B do their measurements so closely following each other tthatinformation cannot
be exchanged with the speed of lightDtherwise a procedure similar to the one above
should be used as follows.

2. When A and B need the key, A measures her quantum bits (gtegtiantum bits) and
chooses randomly the baslis, or 5;, for each quantum bit. After this, B measures his
guantum bits and chooses the basis randomly for each qudnituBecause the quantum
bits are entangled, they get the same results if they arg tistnsame basis.

3. A tells B her choices of bases using a classical channgs, announcing that the key-
exchange began. This way the actual key distribution capromeed faster than light. B
then tells A which of their choices of bases were the samenagsng a classical chan-
nel. An outside party cannot use this information, since deschot know the measured
guantum bits. An outside party can however try to mess thipgs.g. by sending B faked
choices of bases in A's name. This will be revealed eventaalipointed out earlier. That
will also happen if an outside party succeeded in meddlirig Ws or B's quantum bits.

4. A and B choose their key-bits from those quantum bits they imeasured in the same
bases. This way they get the same bits. About half of the nnedguantum bits are then
included in the key.

NB. Nowadays quantum key-echange is used for some quite lalagcks, and it is thought to
be absolutely safe. There are other, different protocas,e&sg.NIELSEN & CHUANG.

It is interesting to note that a key-exchange procedurelairo the first one above can be
accomplished using "classical electricity” as well, as sloecalledKish cipher,see the figure
below.

A Upa Ry Ry Ug 1 B

—/ I ey I
omH ¢ |lommoc-
Ro Ug,

Ro

= Ua2

The two parties A and B both have two resistors with (diff¢yeesistances; and R, (exactly
the same for each). Resistangeis connected in series with noise voltagg; or Ug ;. The
intensities (power spectral densities) of these noiseefatee same form as that of the thermal

3This is the so-called Einstein—Podolsky—Rosen paradotughclassical information is not transferred with a
speed higher than that of light, since A cannot choose hesamement results and thus she cannot transmit to B
any message she chose in advance. Moreover, A's quantuarbitdready fixed by the first measurement, so she
is not able to try it again either.

CHAPTER 15. QUANTUM CRYPTOLOGY 119

noises of the resistdfsi.e., combined these intensities are of the fdti; whereE is a con-
stant. Using switches A and B randomly connect one of thesistog + noise generator units.
When both A and B do this, a circuit is closed with currentisiéy I = E/(Ra + Rg) (Ohm’s
law) whereR, and Ry are the resistances chosen by A and B, respectively. A andd&3ume
the current, so they know both resistances. If A and B chdoseame resistance, either or
R3, no bit is determined. This happens approximately half itme.t On the other hand, each
time they choose different resistances, a key bit is detexth{say if A choosesR; and1
otherwise). An outside party C may then measure the currgrthis gives no information of
the bit. Similarly C may measure voltage against ground auitlgetting any information, the
intensity of this voltage i$' Ry Rg/(Ra + Rgp). And there is not much anything else C can do.

This procedure works perfectly in an ideal situation and ibAd B do the switching at
exactly the same time. On the other hand, if e.g. they agmeAttswitches first and B after
that, it may be possible for C to quickly measure the rest&ak chose without her noticing
this. C may then act as a "man-in-the-middle” posing as A far8l as B for A and finally
get the whole key. This "man-in-the-middle” attack, as wadl other attacks, can be made
considerably more difficult by certain additional arrangens®

4According to the so-called Johnson—Nyquist formula therisity of the thermal noise of a resistangen
temperaturd’ is 4kT R wherek is Boltzmann’s constant.

5See the original referencel&H, L.B.: Totally Secure Classical Communication Utilizinghhson(-like)
Noise and Kirchhoff’s Law.Physics Letters 852 (2006), 178-182. The procedure has been strongly criticize
on various physical grounds, yet it has been physically émanted as well.

Appendix:
DES

A.1 General Information

DES (Data Encryption Standar@y a symmetric cryptosystem developed by IBM in the early
1970's. It is based on the LUCIFER system developed eanidBM. DES was published in
1975 and was certified as an encryption standard for "unélegsdocuments in USA in 1977.
After this it has been used a lot in different circumstanedso as the triple system 3-DES.
Many cryptosystems similar to DES are known: SAFER, RC5, BIKISH etc.

Mainly because of its far too small keysize DES is now modbigraloned and replaced by
AES.

A.2 Defining DES

DES operates with bit symbols, so the residue classes (basp 1 of Z, can be considered
as the plaintext and cryptotext symbols. The length of tlaénpéxt block is64. The keyk is
56 bits long. It is used in both encrypting and decrypting. Iodaf lines DES operates in the
following way:

1. The bit sequence, is formed of the plaintext by permutating the bits of by a certain
fixed permutation (the so-calleditial permutation m;,;. Then we write

To = Wini(x) = Lo Ry
whereL, contains the firs82 bits of v, and i, the rest.

2. Compute the sequenég R, Ly R, . .., L1gR¢ by iterating the following procedures

times:
L= R4 Lia Ri1
Ri=L,_1 @ f(Ri—1, ki)
whered is bitwise addition modul@ (known also by the - f k
nameXOR), f is a function which is given later, aridis
the key of the'" iteration, obtained fronk by permuting

48 of its bits into a certain order. An iteration step is
depicted on the right.

3. Apply the inverse permutatior],! (the so-calledinal permutatiof to the bit sequence
R16L16-

120

Appendix: DES 121

We still need to give the permutatian,;, define the functiory, and give the key sequence
k1, ko, ..., kg, fOr encrypting to be defined.

First let's see the definition of the functigh The first argumenk of f is a bit sequence
of length 32 and the second argumeht is a bit sequence of lengdd8. The procedure for
computingf is the following:

1. The first argumenkR is expandedusing theexpanding 39 1 2 3 4 5
function £. We take the firsB2 bits of R into F(R), 4 5 6 7 8 9
duplicate half of them and then permute them. Bits are

. ' 8 9 10 11 12 13
taken according to the table on the right, read from left 12 13 14 15 16 17
to right and from top to bottom. 16 17 18 19 20 21

20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

2. Computel(R) & K = B and write the result as a cate-
nation of eighi-bit bit sequences:

B == BlBngB4B5B6B7Bg.

3. Next we use eight so-call&iboxess, . . ., Ss.
EachsS; is a fixed4 x 16 table, formed of the
numbers), 1,...,15. When a bit sequence of
length of6

Bi - b1b2b3b4b5b6

is obtainedS;(B;) = C; is computed in the fol- ER) |—
lowing way. The bit$, b4 give the binary rep-
resentation of the index (r = 0,1,2,3) of a ¥
certain row. The remaining bltlﬁzbgb4b5 give

the binary representation(s = 0, 1, ..., 15) of

a certain column. (The rows and cqumnsSl;)f
are indexed starting from zero.) No%y(B

the binary representation of the number in the
intersection of the'" row and thes" column

of .S;, initial zeros added if needed to get four| €
bits. The bit sequences; are catenated to the
bit sequence)

O = C1CyC5C4C5CCCs. "
4. The bit sequenc€ of length of32 is permuted
using the fixed permutation The bit sequence f(RK)

7(C') obtained this way is thefi(R, K).

The operation is illustrated above. We may note thaand = are linear operations, in other
words, they could be replaced by multiplication of a bit wediy a matrix. On the other hand,
S-boxes are highly non-

linear. The definitionsof| 15 1 8 14 6 11 3 4 9
S-boxescanbe foundin 3 13 4 7 15 2 8§ 14 12
the literature (forexam-| 0 14 7 11 10 4 13 1 5
ple SriNsoN). Onthe | 13 8 10 1 3 15 4 2 11

2 13 12 0 5 10
1 10 6 9 11 5
12 6 9 3 2 15
7 12 0 5 14 9

right is Ss, given as an
example, and below the permutatiang andr (c.f. F):

Appendix: DES 122

58 50 42 34 26 18 10 2 16 7 20 21

60 52 44 36 28 20 12 4 29 12 28 17

62 54 46 38 30 22 14 6 1 15 23 26

o 64 56 48 40 32 24 16 8 o 5 18 31 10
UUBT 49 41 33 25 17 9 1 12 8 24 14
59 51 43 35 27 19 11 3 32 21 3 9

61 53 45 37 29 21 13 5 19 13 30 6

63 55 47 39 31 23 15 7 22 11 4 25

The key sequenck,, k-, . . ., kig can be computed iteratively in the following way:

1. The keyk is given in an expanded form such that every eigth bit is atypaheck bit.
So there is always an odd numberlds in a byte and the length of the key@4 bits. If
the parity check shows that there are errors in the key, itneil be taken into use. Then
again, if there are no errors in the key, the parity checkdrgésremoved, and we come to
original 56-bit key. First a fixed bit permutationk; is applied to the key. Write

WKl(k’) = CODO
whereC, and D, are bit sequences of lengiB.

2. Compute the sequencg D, C5Ds, . .., DigD1g by iterating the following proceduris
times:
C; = Ui(Ci—1>
D, = Ui<Di—1)
whereg; is a cyclic shift of the bit sequence Kyor 2 bits to the left. Ifi = 1,2,9,16
then the shift id bit, otherwise it i2 bits.
3. Apply the fixed variationrk, of 48 bits toC; D;. In this way we obtairk; = mk(C;D;).
We must still give the permutatior; and the variationrgs:

57 49 41 33 25 17 9 k"@

1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

Co | Do
KLl 63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29

D1

21 13 5 28 20 12 4

Cy

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8

116 7 27 20 13 2

T2 41 52 31 37 47 55 -
30 40 51 45 33 48

A4 49 39 56 34 53

46 42 50 36 29 32

Appendix: DES 123

The key generating process is illustrated in the above figure
Decrypting goes essentially by same system but using theségyence:, k-, . .., kig in
reverse order and inverting the permutations. Then

Loy =R ® f(Li, ki)
Ri—l - LZ

The modes of operation of DES are the same as for AES, se®&&ci.

A.3 DES’ Cryptanalysis

Everything else in DES’ structure is linear—that is, dodyematrix multiplications—except
the S-boxes. If the S-boxes were affine, i.e. if they coulddpdaced by matrix multiplications
and addition of vectors, DES would essentially be some fardFs-INE-HILL and therefore
easy to break. S-boxes are not however affine. Some of thgrdesnciples of DES’ S-boxes
were made public later:

(1) Each row of an S-box is a permutation of the numitets. . ., 15.

(2) An S-box is not an affine function of its inputs (and so ndinaar function, either).
Actually it is required that no output bit of an S-box is "néarlinear function of the
input bits.

(3) Changing one bit in the input of an S-box changes at l@asbits in the output.

(4) The outputs of an S-box with inputsandz ¢ 001100 differ by at least two bits, no matter
what6-bit sequence: is.

(5) The outputs of an S-box with inputsand x @ 11b,b,00 differ, no matter what-bit
sequence is and no matter what bits andb, are.

(6) For each6-bit sequence3 = by bybsbsbsbs # 000000 there ares2 (= 2°/2) different input
pairsz, r, such thatr; ¢ x, = B. Of the corresponding2 output pairsy;, y» N0 more
than two can have the same symd 5.

There are
256 — 72057594 037 927 936

keys of DES, a fairly small number by modern standards. Tlakes it possible to use the
following simple KP attack. If the plaintext and the corresponding cryptotexare known,
we go through the keys until we find a key with which this entirygpcan be done. There may,
however, be several applicable keys. The procedure doegoire anything in addition to
time and fast processors, and it is easily parallelizednteenory requirements are minimal,
too. DES can be installed in very fast hardware, and procesgecifically designed to break
DES are possible.

A CP attack is obtained in the following way. Choose a plainteand encrypt it using all
possible keys of the key space. Tabulate the results. Ndyy, iie DES to be broken we can
encryptw and obtain the corresponding cryptotext, then by a tableckeae find a key. This
method is of course useful only if it is used for finding seVkeys, in which case the table can
be used repeatedly. The procedure does not require muctioadditime (after preparing the
table), but it does require a great deal of memory space.

Appendix: DES 124

There are also procedures where there is a trade-off betiveerand memory space, sort
of intermediate forms of the procedures above. In AES theratleast

2128 — 340282 366 920 938 463 463 374 607 431 768 211 456

keys which is thought to prevent the above attacks well enoug

The KP attack on AFFINE-HILL introduced in Section 3.4—anctually on AFFINE
also—used differences of plaintexts and the corresponayyotexts moduld/ to break the
system, by removing the nonlinearity caused by affinity.isaprocedure is calledifferential
cryptanalysis. A similar procedure can be applied to DES in KP and CP attackgmove
some of the effects of nonlinearity of S-boxes. The minde sf this is the large nhumber of
plaintext-cryptotext pairs neededinear cryptanalysigries to use linear dependences between
some input and output bits, that may appear in certain inplitese do exist in DES, and it
seems that originally they went totally unnoticed! AES idttio to withstand all these crypt-
analyses.

References

10.

11.

12.

13.

14.

15.

16.

BAUER, F.L.: Decrypted Secrets. Methods and Maxims of Cryptogra@@yringer—
Verlag (2006)

BLAKE, I. & SEROUSS| G. & SMART, N.: Elliptic Curves in CryptographyCambridge
University Press (2000)

BUCHMANN, J.: Introduction to CryptographySpringer—Verlag (2004)

. COHEN, H.: A Course in Computational Algebraic Number TheoBpringer—\Verlag

(2000)

CRANDALL, R. & POMERANCE, C.: Prime Numbers. A Computational Perspective.
Springer—Verlag (2005)

DAEMEN, J. & RIIMEN, V.: Design of Rijndael. AES—The Advanced Encryption Stan-
dard. Springer—Verlag (2002)

DING, C. & PEl, D. & SALOMAA, A: Chinese Remainder Theorem. Applications in
Computing, Coding, CryptographWworld Scientific (1999)

Du, D.-Z. & Ko, K.-I: Theory of Computational Complexityiley (2000)

GARRETT, P.: Making, Breaking Codes. An Introduction to Cryptologrentice—Hall
(2007)

GOLDREICH, O.: Modern Cryptography, Probabilistic Proofs, and Pseudatamness.
Springer—\Verlag (2001)

GOLDREICH, O.: Foundations of Cryptography. Basic Tool€ambridge University
Press (2007)

GoLDREICH, O.: Foundations of Cryptography. Basic Applicatio@ambridge Univer-
sity Press (2009)

HOFESTEIN J. & PIPHER, J. & SLVERMAN, J.H.: An Introduction to Mathematical
Cryptography.Springer—Verlag (2008)

HopCROFT J.E. & ULLMAN, J.D.: Introduction to Automata Theory, Languages, and
Computation Addison—-Wesley (1979)

KaTz, J. & LINDELL, Y.: Introduction to Modern CryptographyChapman & Hall /
CRC (2008)

KNUTH, D.E.: The Art of Computer Programming Vol. 2: Seminumerical Alldgpons.
Addison—Wesley (1998)

125

References 126

17. KoBLITZ, N.: A Course in Number Theory and CryptograpByringer—Verlag (2001)
18. KoBLITZ, N.: Algebraic Aspects of Cryptograph$pringer—Verlag (2004)

19. KONHEIM, A.G.: Cryptography. A PrimeiWiley (1981)

20. KrRANAKIS, E.: Primality and CryptographyWiley (1991)

21. LibL, R. & NIEDERREITER H.: Finite Fields.Cambridge University Press (2008)
22. LipsoN, J.D.: Elements of Algebra and Algebraic Computidgldison—Wesley (1981)
23. Mao, W.: Modern Cryptography. Theory and Practid@earson Education (2004)
24. McELIECE, R.J.:Finite Fields for Computer Scientists and Enginedfkiwer (1987)

25. MENEZES A. & VAN OORSCHOT P. & VANSTONE, S.: Handbook of Applied Cryp-
tography.CRC Press (2001)

26. MIGNOTTE, M.: Mathematics for Computer Algebr&pringer—\Verlag (1991)
27. MoLLIN, R.A.: An Introduction to CryptographyChapman & Hall / CRC (2006)
28. MoLLIN, R.A.: RSA and Public-Key Cryptograph@hapman & Hall / CRC (2003)

29. MoOLLIN, R.A.: Codes. The Guide to Secrecy from Ancient to Modern Ti@keapman
& Hall / CRC (2005)

30. NIELSEN, M.A. & CHUANG, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

31. AR, C. & PELZL, J.: Understanding Cryptography. A Textbook for Students and
Practitioners.Springer—Verlag (2009)

32. RESEL, H.: Prime Numbers and Computer Methods for Factorizatiddirkhauser
(1994)

33. RosEN, K.H..: Elementary Number Theorkongman (2010)
34. RoSING, M.: Implementing Elliptic Curve Cryptographllanning Publications (1998)
35. SALOMAA, A.: Public-Key CryptographySpringer—Verlag (1998)

36. SCHNEIER, B.: Applied Cryptography. Protocols, Algorithms, and Soura@€in C.
Wiley (1996)

37. $Houp, V.: A Computational Introduction to Number Theory and AlgelCambridge
University Press (2005)

38. SHPARLINSKI, I.: Cryptographic Applications of Analytic Number Theory. Qdexity
Lower Bounds and PseurandomneBskhauser (2003)

39. SERPINSKI, W.: Elementary Theory of NumbeiSlsevier (1988)

40. SLVERMAN, J.H. & TATE, J.: Rational Points on Elliptic CurvesSpringer—Verlag
(1992)

References

41.
42.

43.

44,

127

SriINsON, D.R.: Cryptography. Theory and Practic€hapman & Hall / CRC (2006)

TRAPPE, W. & WASHINGTON, L.C.: Introduction to Cryptography with Coding Theory.
Pearson Education (2006)

WAGSTAFF, S.S.:Cryptanalysis of Number Theoretic Ciphe@hapman & Hall / CRC
(2003)

WASHINGTON, L.C.: Elliptic Curves. Number Theory and Cryptograpl@hapman &
Hall / CRC (2008)

Index

Index

Abelian group 74

addition 14,27,28

additive group 74

additive inverse 27
Adleman—-Pomerance—Rumely algorithm 54
AES 34,120,124

AFFINE 23,25

affine cryptosystem 23,25

affine Hill's cryptosystem 24,26,124
AFFINE-HILL 24,26,124
Agrawal-Kayal-Saxena algorithm 54
algebraic number theory 3

algebraic structure 27
algebraic-geometric code 47
algorithm 42

analytic number theory 3
ARITHMETICA 47

authentication 41
baby-step-giant-step algorithm 77,84,97
base number 5

base representation 5

base vector 63

basis 63

Bell's state 117

Bertrand'’s postulate 57

Bézout's coefficients 7

Bézout's form 7,9,30

Bézout's theorem 7,30

binary field 13

binary representation 5

birthday attack 95,102

bit 13

bit-flipping 103

blind signature 101

block encryption 1

Blum-Blum—Shub generator 61
bounded-error-quantum-polynomial-time

128

Chinese remainder theorem 52
chosen cryptotext 25
chosen plaintext 25

cipher feedback 41

CO data 25

co-N"P 43

collision 94

collision-free 94
commitment 103
commutative group 74
companion matrix 22
complementary-nondeterministic-polynomial-time 43
complexity 42

composite humber 4
congruence 11,30
conjugate problem 47
coprime 6

coset 76

counter mode 41

CP data 25

CRANDALL 47,88
cross-collision 96

CRT algorithm 52,53
cryptanalysis 25,40,69,123
cryptorecognition 45
cryptosystem 1

cryptotext 1

cryptotext only 25
cryptotext space 1

CTR mode 41

cyclic group 47,75
decomal representation 5
decrypting exponent 65
decrypting function 1
decrypting function space 1
decryption 1

degree 28

problem 43 DES 120
bounded-probability-polynomial-time problem 43deterministic 42

BPP 43

BOP 43

CAESAR 23

Caesar cryptosystem 23
Cassels’ theorem 83

CC data 25

ceiling 6

CFB mode 41
Chaum-van Heijst—Pfitzmann hash 98
Chebychev’s theorem 57
Chinese attack 95

deterministic-polynomial-space 43
deterministic-polynomial-time 43
differential cryptanalysis 40,124
DIFFIE-HELLMAN 47,86
Diffie—Hellman key-exchange 86
Diffie—Hellman problem 86

direct product 76

Dirichlet—De la Vallée-Poussin theorem 57
discrete logarithm 47,52,77,85,97
discriminant 63

dividend 3

Index

divisibility 3,30

division 3,16,28,29

divisor 3

DSS 102

ECB mode 41
Einstein—Podolsky—Rosen paradox 118
electronic codebook 41
ELGAMAL 47,85
Elgamal’s cryptosystem 85
Elgamal’s signature 101
elliptic curve 47,58,78,87
encrypting exponent 65
encrypting function 1
encrypting function space 1
encryption 1

ENIGMA 24

entanglement 113
Euclidean algorithm 7,31
Euler’s criterium 60

Euler’s function 13,48,65
Euler’'s theorem 49
expansion of key 38
exponent algorithm 70,114
factor 3,5,30

factor ring 30

factorization 5,8,69
Fermat’s little theorem 49
field 28,32

finite field 32

fixed-point message 68
floor 6

frequency analysis 25
g.c.d. 6,9,30

Galois’ field 32

Garner’s algorithm 53
generator 75

Germain’s number 68,98
Goppa’s code 47

graph 109

greatest common divisor 6,9,30
group 47,74

group of units 75
Hamiltonian circuit 109
hash function 94

hash 94

Hasse’s theorem 83,87
Hensel’s lifting 59,91
hexadecimal representation 5
HILL 24,26

Hill's cryptosystem 24,26
identity element 27
incongruent 11

129

index 77

index calculus method 78

index table 77

indivisible 4

integral root 19

interactive proof system 107
interpolant 105

interpolation 53 105

intractable 44

inverse 12,28

irreducible 30

iterated encrypting 67
Karatsuba’s algorithm 14

key 1

key space 1,100

KNAPSACK 46

knapsack problem 46

knapsack system 46

known plaintext 25

KP data 25

Kronecker’'s decomposition 77
Kronecker’s product 112
Lagrange’s theorem 76,85

Las Vegas algorithm 43

lattice 47,63

leading coefficient 28

least common multiple 10
Lenstra—Lenstra—Lovasz algorithm 63,67,72,92
linear congruence generator 22,23
linear cryptanalysis 40,124

LLL algorithm 63,67,72,92

LLL reduced base 63

Lucas’ criterium for primality 51
Lucas’ criterium for primitive root 51
Lucas—Lehmer criterium for primality 51
LUCIFER 120

MAC 41

man-in-the-middle 119
MCELIECE 47

measurement 111
meet-in-the-middle 68,86
MENEZES-VANSTONE 47,87
Menezes—Vanstone system 87
message authentication code 41
message space 1,100

method of elliptic curves 58
method of Russian peasants 18
Mignotte’s treshold scheme 106
Miller—Rabin test 55

mixing columns 37

modular arithmetic 11

modular inverse 12

Index

modular square root 59
modulus 11,30

monic polynomial 28

Monte Carlo algorithm 43
multiple 3,27,74

multiplication 14,27,28

natural numbers 3

negative residue system 11
Newton’s method 16,19
NIEDERREITER 47
nondeterministic 42
nondeterministic-polynomial-space 43
nondeterministic-polynomial-time 43
nonsupersingular 79
nonsymmetric encryption 1
nontrivial factor 3

NP 43,110

NP-complete 44,110

NP-hard 44

NPSPACE 43

NTRU 47,89

number field 28

number field sieve 58

number theory 3

O-notation 14,42

oblivious data transfer 106

octal representation 5

OFB mode 41
Okamoto—Vanstone algorithm 87
one-time-pad cryptosystem 25,26
one-way 94

one-way function 45

operating mode 41

opposite class 13,74

opposite element 27

opposite polynomial 29

order 49,75

output feedback 41

P 43

padding 68

perfect zero-knowledge proof 107
PERMUTATION 24

permutation cryptosystem 24
plaintext 1

Pohlig—Hellman algorithm 78,85
Pollard’sp — 1-algorithm 58
Pollard’s kangaroo algorithm 97
polynomial 28

polynomial ring 28

positive residue system 11
power 18,27,74

Pratt’s algorithm 53

130

preimage resistant 94
prime field 13,28,32

prime number 4

Prime number theorem 57,68
primitive element 76
primitive root 50

principal square root 60
probabilistic algorithm 43
PSPACE 43,110

public key 1

public-key cryptography 1
pure quantum bit 111
quadratic nonresidue 59
quadratic residue 59,108
quadratic sieve 58
guantum algorithm 113
quantum bit 111

quantum cryptology 111
quantum Fourier transformation 113
quantum key-exchange 116
guantum register 112

qubit 111

quotient 3,29

quotient ring 30

RABIN 47

radix 5

random integer 22

randon number generator 21,23,62
recognition problem 42
reduced residue class 12
reduced residue system 12
reduction 44

remainder 3,29

residue class 11,30
residue class ring 13,30
residue system 11
reversible algorithm 112
RIJNDAEL 34

ring 27

rotor cryptosystem 24
round 35

round key 38

RSA 47,65

RSA signature 101

S-box 36,121

safe prime 68

Schoof’s algorithm 84
second preimage resistant 94
secret key 1

secret-key cryptography 1
SHA-1 95

Shamir's theorem 110

Index 131

Shamir’s treshold scheme 105
Shanks’ algorithm 61,87
Shanks’ baby-step-giant-step algorithm 77,84,97
sharing secrets 105

shift register generator 21,23
shifting rows 37

Shor’s algorithm 44,114
sieve method 58

signature 45,100

signature space 100
signing key 100

square-free 60

state 111

stochastic algorithm 43
stream encryption 1

strong pseudoprime 56
strong randon number 62
strongly collision-free 94
subgroup 76

subtraction 14,28
supersingular 79

symmetric encryption 1
symmetric residue system 11,89
tensor product 112

test division algorithm 58
tractable 44

transforming bytes 36

trap door 45

treshold scheme 105

trivial factor 3

unitary matrix 111
verification 45

verifying key 100
VIGENERE 24,26
Vigenére's encryption 24,26
weakly collision-free 94
Weierstral®’ short form 79
Williams’ p + 1-algorithm 58
XTR 47,88

zero element 27,74

zero polynomial 28
zero-knowledge proof 107

	MCkansi
	MCE
	MC1
	MC2
	MC3
	MCL

