
Introduction
The STM32CubeH7 MCU Package is delivered with a rich set of examples running on STMicroelectronics boards. The
examples are organized by board, and are provided with preconfigured projects for the main supported toolchains (see figure
below).

Figure 1. STM32CubeH7 firmware components

Application level demonstrations

UtilitiesMiddleware level(1)

HAL and LL APIs

(1) The set of middleware components depends on the product Series.

User
application

Evaluation
boards

Discovery
boards

STM32 Nucleo
boards

Dedicated
boards

USB

Hardware Abstraction Layer (HAL)Board Support Package (BSP)

Utilities

CMSIS

Low-layer APIs (LL)

Touch
library Graphics Network

library FatFs RTOS

STM32Cube MCU Package examples for STM32H7 Series

AN5033

Application note

AN5033 - Rev 7 - June 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/stm32cubeh7?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033

1 Reference documents

The reference documents are available on http://www.st.com/stm32cubefw:
• Latest release of STM32CubeH7 firmware package
• Getting started with STM32CubeH7 for STM32H7 Series (UM2204)
• STM32CubeH7 demonstration platform (UM2222)
• Description of STM32H7 HAL drivers (UM2217)
• STM32Cube BSP driver development guidelines (UM2298)
• STM32Cube USB Device library (UM1734)
• STM32Cube USB host library (UM1720)
• Developing applications on STM32Cube with FatFs (UM1721)
• Developing applications on STM32Cube with RTOS (UM1722)
• Developing applications on STM32Cube with LwIP TCP/IP stack (UM1713)
• STM32Cube Ethernet IAP example (UM1709)

The microcontrollers of the STM32H7 Series are based on Arm® Cortex® cores.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5033
Reference documents

AN5033 - Rev 7 page 2/35

http://www.st.com/stm32cubefw

2 STM32CubeH7 examples

The examples are classified depending on the STM32Cube level they apply to. They are named as follows:
• Examples: these examples use only the HAL and BSP drivers (middleware components not used). Their

objective is to demonstrate the product/peripherals features and usage. They are organized per peripheral
(one folder per peripheral, e.g. TIM). Their complexity level ranges from the basic usage of a given
peripheral (e.g. PWM generation using timer) to the integration of several peripherals (e.g. how to use DAC
for signal generation with synchronization from TIM6 and DMA). The usage of the board resources is
reduced to the strict minimum.

• Examples_LL: these examples use only the LL drivers (HAL and middleware components not used). They
offer an optimum implementation of typical use cases of the peripheral features and configuration
procedures. The examples are organized per peripheral (a folder for each peripheral, such as TIM).

• Examples_MIX: these examples use both HAL and LL drivers. They offer an optimum implementation of
typical use cases of the peripheral features and configuration procedures. The examples are organized per
peripheral (a folder for each peripheral, such as DMA2D).

• Applications: the applications demonstrate the product performance and how to use the available
middleware stacks. They are organized either by middleware (a folder per middleware, e.g. USB Host) or by
product feature that require high-level firmware bricks (e.g. Audio). The integration of applications that use
several middleware stacks is also supported.

• Demonstrations: the demonstrations aim at integrating and running the maximum number of peripherals
and middleware stacks to showcase the product features and performance.

AN5033
STM32CubeH7 examples

AN5033 - Rev 7 page 3/35

• Template projects: the template projects are provided to allow the user to quickly build a firmware
application on a given board:
– Templates for boards based on single-core STM32H7 microcontrollers (STM32H743I-EVAL,

NUCLEOH743ZI, STM32H7B3I-EVAL, STM32H7B3I-DK, STM32H735G-DK, NUCLEO-H7A3ZI-Q and
NUCLEO-H723ZG): STM32CubeH7 contains one HAL and one LL template projects.

– Templates for boards based on dual-core STM32H7 microcontrollers (NUCLEO-H745ZI-Q,
STM32H45I-DISCO, STM32H747I-DISCO and STM32H747I-EVAL):
◦ One LL template project
◦ Four HAL template projects:

• BootCM4_CM7:
• The Arm® Cortex®-M7 and Cortex®-M4 cores are both running from different Flash

memory banks.
• The system configuration is performed by the Arm® Cortex®-M7.
• The Arm® Cortex®-M4 cores enters Stop mode after boot, and is then woken up by

Arm® Cortex®-M7 using a hardware semaphore.
• BootCM7_CM4Gated:

• The Arm® Cortex®-M4 boot is gated using Flash memory option bytes.
• The Arm® Cortex®-M7 and Cortex®-M4 cores are both running from different Flash

memory banks.
• The Arm® Cortex®-M7 core boots, performs the system configuration, and then

enables Arm® Cortex®-M4 boot through the RCC.
• BootCM4_CM7Gated:

• The Arm® Cortex®-M7 boot is gated using Flash memory option bytes.
• The Arm® Cortex®-M7 and Cortex®-M4 cores are both running from different Flash

memory banks.
• The Cortex®-M4 core boots , performs the system configuration, and then enables the

Cortex®-M7 boot through the RCC.
• BootCM7_CM4Gated_RAM:

• The Arm® Cortex®-M4 boot is gated using Flash memory option bytes.
• The Arm® Cortex®-M7 core and Arm® Cortex®-M4 core run from Flash memory bank 1

and from the D2 SRAM, respectively.
• The Arm® Cortex®-M7 core performs the following actions at boot time:

• system configuration
• loading of the Arm® Cortex®-M4 code into the D2 SRAM
• change of the Arm® Cortex®-M4 boot address and then enabling of Cortex®-M4

boot (through the RCC)
– Template for the STM32H750B-DK board based on Value line STM32H7 microcontrollers:

◦ ExtMem_Boot: reference boot code with execution from internal Flash memory. It configures
external memories, and then jumps to the user application located in an external memory. Two
use cases are possible, XiP and BootROM:
• XiP: this use case is intended for eXecution in Place from external Flash memory

(QUADSPI). In this case, the user application code shall be linked with the target execution
memory address in external Quad-SPI Flash memory.

• BootROM: this use case demonstrates how to boot from internal Flash memory, configure
the external SDRAM, copy user application binary from the SDMMC Flash memory or from
Quad-SPI Flash memory to the external SDRAM, and then jump to the user application. In
this case, the user application code shall be linked with the target execution memory
address in external SDRAM.

◦ Template_Project: typical template with execution from external memory. Different configurations
are available depending on the external memory boot capabilities:
• XiP from QUADSPI, data in internal SRAM

AN5033
STM32CubeH7 examples

AN5033 - Rev 7 page 4/35

• XiP from QUADSPI, data in external SDRAM
• BootROM: execution from external SDRAM, data in internal SRAM

Section ■ contains the list of examples provided with STM32CubeH7 MCU Package:
• Examples for boards based on single-core STM32H7 microcontrollers (STM32H743I-EVAL, NUCLEO-

H743ZI, STM32H750B-DK, STM32H7B3I-EVAL, STM32H7B3I-DK, STM32H735G-DK, NUCLEO-H7A3ZI-
Q and NUCLEO-H723ZG)
The STM32CubeH7 MCU Package contains one target project configuration per workspace (Arm® Cortex®-
M7 core). All single-core examples have the same structure:
– \Inc folder that contains all header files.
– \Src folder for the sources code.
– \EWARM, \MDK-ARM and \SW4STM32 (STM32H743I-EVAL, NUCLEO-H743ZI, STM32H750B-DK),

\STM32CubeIDE (STM32H7B3I-EVAL, STM32H7B3I-DK, STM32H735G-DK, NUCLEO-H7A3ZI-Q,
NUCLEO-H723ZG) folders that contain the preconfigured project for each toolchain.

– A readme.txt file describing the example behavior and the environment required to run the example.
• Examples for boards based on dual-core STM32H7 microcontrollers (NUCLEO-H745ZI-Q,

STM32H745I-DISCO, STM32H747I-DISCO and STM32H747I-EVAL):
The STM32CubeH7 MCU Package contains two target project configurations per workspace (one per core),
named STM32H7xyI_XXX_CM7 and STM32H7xyI_XXX_CM4. The projects can be configured individually
by setting the following options: target microcontroller, linker options, read-only (RO) and read/write (RW)
zones, and preprocessor symbols (CORE_CM4, CORE_CM7). This allows compiling user code linked and
programmed separately for each core and generating two binaries: CM7 and CM4.
The examples are structured as follows:
– Common drivers files, used both for Arm® Cortex®-M7 and Arm® Cortex®-M4 cores, and including:

◦ CMSIS core files
◦ CMSIS device files
◦ HAL driver files
◦ BSP files

– \EWARM, \MDK-ARM and \SW4STM32 folders containing the preconfigured projects
– One \Src and \Inc folder per core.
– A \Common folder hosting system and shared source files both for Arm® Cortex®-M7 and Arm®

Cortex®-M4 cores.
– A readme.txt file describing the example behavior and the environment required to run the example.

Figure 2 and Figure 3 illustrate the organization of the examples and projects within the STM32CubeH7 MCU
Package:

AN5033
STM32CubeH7 examples

AN5033 - Rev 7 page 5/35

https://www.st.com/en/product/stm32h743i-eval?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/nucleo-h743zi?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/nucleo-h743zi?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/stm32h750b-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/stm32h7b3i-eval?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/stm32h7b3i-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/stm32h735g-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/nucleo-h7a3zi-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/nucleo-h7a3zi-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/nucleo-h723zg?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/nucleo-h745zi-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/stm32h745i-disco?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/stm32h747I-disco?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033
https://www.st.com/en/product/stm32h747i-eval?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5033

Figure 2. STM32CubeH7 project tree

Figure 3. STM32CubeH7 project workspaces

To run the example, proceed as follows:
1. For single-core project examples (such as STM32H743I-EVAL board)

a. Browse to \\Projects\\STM32H743I-EVAL\\Examples.
b. Open \\GPIO, then the \\GPIO_EXTI folder.
c. Open the project using your preferred toolchain.
d. Rebuild all files and load your image into the target memory.
e. Run the example: each time you press the Tamper push-button, LED1 toggles (for more details, refer

to the example readme.txt file).

AN5033
STM32CubeH7 examples

AN5033 - Rev 7 page 6/35

2. For dual-core project examples (such as STM32H747I-EVAL board):
a. Browse to \\Projects\\STM32H747I-EVAL\\Examples.
b. Open \\GPIO, then the \\GPIO_EXTI folder.
c. Open the project using your preferred toolchain
d. For each target STM32H747I_EVAL_CM4 and STM32H747I_EVAL_CM7 (based on Arm® Cortex®-M7

and Cortex®-M4, respectively):
i. Rebuild all files and load your image into the target memory.
ii. After loading the two images, reset the board in order to boot CPU1 (Cortex®-M7) and CPU2

(Cortex®-M4) at once.
iii. Each time you press the Tamper push-button:

1. LED1 toggles once when an EXTI interrupt for Cortex®-M7 is detected.
2. LED3 toggles once when an EXTI interrupt for Cortex®-M4 is detected.

For more details, refer to the example readme.txt file.
3. For Value line project example running on STM32H750B-DK board:

a. Browse to Projects\\STM32H750B-DK\\Templates\ExtMem_Boot.
b. Open the ExtMem_Boot project with your preferred toolchain.
c. Rebuild all files and load your image into the target internal Flash memory.
d. Browse to \\Projects\\STM32H750B-DK\\Examples.
e. Open \\GPIO, then the \\GPIO_IOToggle folder.
f. Open the project using your preferred toolchain (keep the XIP_QSPI_InternalSRAM default

configuration).
g. Rebuild all files and load your image into the external Quad-SPI Flash memory.
h. Run the example: LED1 toggles continuously (for more details, refer to the example readme.txt file).

Note: The principle of the STM32H750xx Value line application is to execute the user application from an external
memory (Quad-SPI Flash memory by default or SDRAM). The Templates\ExtMem_Boot projects boot from the
STM32H750xx internal Flash memory, configure external memories and then jump to the user application
hosted in an external memory of the STM32H750B-DK board.
The examples can be tailored to run on any compatible hardware: simply update the BSP drivers for your board,
provided it has the same hardware functions (LED, LCD display, push-buttons, etc.). The BSP is based on a
modular architecture that can be easily ported to any hardware by implementing the low-level routines.

AN5033
STM32CubeH7 examples

AN5033 - Rev 7 page 7/35

Table 1. STM32CubeH7 firmware examples

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

Templates
-

BootCM4_CM7

This project provides a reference template that can be used to
build any firmware application where both cores are used. It is
mainly dedicated for devices where CPU1 (Arm®Cortex®-M7)
and CPU2 (Arm®Cortex®-M4) are booting at once (with respect
to the configured boot Flash memory options). System
initialization, System clock, voltage scaling and L1-Cache
configurations are done by CPU1 (Arm®Cortex®-M7).

- - - X X X - - - X - -

BootCM4_CM7Gated

This project provides a reference template that can be used to
build any firmware application where both cores are used. It is
mainly dedicated for devices where CPU2 (Arm®Cortex®-M4) is
booting and CPU1 (Arm®Cortex®-M7) clock is gated.

- - - X X X - - - X - -

BootCM7_CM4Gated

This project provides a reference template that can be used to
build any firmware application where both cores are used. It is
mainly dedicated for devices where CPU1 (Arm®Cortex®-M7) is
booting and CPU2 (Arm®Cortex®-M4) clock is gated.

- - - X X X - - - X - -

BootCM7_CM4Gated_RAM

This project provides a reference template that can be used to
build any firmware application where both cores are used. It is
mainly dedicated for devices where CPU1 (Arm®Cortex®-M7 in
D1 Domain) is booting and CPU2 (Arm®Cortex®-M4 in D2
Domain) is gated (with respect to the configured boot Flash
memory options).

- - - X X X - - - X - -

ExtMem_Boot
This directory contains a set of sources files and pre-configured
projects that describe how to build an application for execution
from external memory using the ExtMem_Boot firmware.

- - X - - - - - - - - -

Starter project This project provides a reference template that can be used to
build any firmware application. X X - - - - X X X - X X

Template_Project

This project provides a reference template that can be used to
build any firmware application with execution from external
memory. This project is configured for STM32H750xx devices
using STM32CubeH7 HAL and running on STM32H750B-DISCO
board from STMicroelectronics.

- - X - - - - - - - - -

Total number of templates: 25 1 1 2 4 4 4 1 1 1 4 1 1

Templates_LL
- Starter project This project provides a reference template through the LL API

that can be used to build any firmware application. X X - X X X X X X X X X

Total number of templates_ll: 11 1 1 0 1 1 1 1 1 1 1 1 1

Examples - BSP
This project uses STM32CubeH7 HAL and BSP. It provides a
description of how to use the different BSP drivers for each
STM32H7 board.

X X X X X X X X X X X X

A
N

5033 - R
ev 7

page 8/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

ADC

ADC_AnalogWatchdog
This example provides a short description of how to use the ADC
peripheral to perform conversions with analog watchdog and out-
of-window interrupts enabled.

- - - - - - X X X - X -

ADC_DAC_Interconnect
This example describes how to configure and connect DAC
output to ADC input and use the analog watchdog to monitor
signal behavior.

X - - - - - X - - - X -

ADC_DMA_Transfer
This example describes how to configure and use the ADC to
convert an external analog input and get the result using a DMA
transfer through the HAL API.

X - - - - - X X X - X -

ADC_DifferentialMode
This example describes how to configure and use ADC2 to
convert an external analog input in Differential mode (difference
between external voltage on VINN and VINP).

- - - - - - X - X - X -

ADC_DualModeInterleaved This example describes how to use two ADC peripherals to
perform conversions in Dual interleaved mode. - X - X X X X - X X X -

ADC_InternalChannelConversion This example describes how to configure and use the ADC to
retrieve the system battery level. - - - - - - X - - - X -

ADC_OverSampler
This example describes how to configure and use the ADC to
convert an external analog input combined with oversampling
feature to increase resolution through the HAL API.

- - - - - - X - - - X -

ADC_Oversampling This example describes how to use an ADC peripheral with ADC
oversampling. - - - - - - - - X - - -

ADC_RegularConversion_Polling This example describes how to use the ADC in Polling mode to
convert data through the HAL API. - - - - - - X - - - X -

ADC_Regular_injected_groups

This example provides a short description of how to use the ADC
peripheral to perform conversions using the two ADC groups:
regular group for ADC conversions on main stream and injected
group for ADC conversions limited to specific events
(conversions injected within main conversion stream).

- - - - - X X - - - X -

CEC CEC_DataExchange This example shows how to configure and use the CEC
peripheral to receive and transmit messages. - - - - - - X - - - - -

COMP

COMP_AnalogWatchdog

This example shows how to use a pair of comparator peripherals
to compare a voltage level applied to a GPIO pin to two
thresholds: the internal voltage reference (VREFINT) and a fraction
of the internal voltage reference (VREFINT/4), in Interrupt mode.

X - - - - - X - - - X X

COMP_Interrupt
This example shows how to configure the comparator peripheral
to compare the external voltage applied to a specific pin to the
internal voltage reference.

X - - X - - X X X - X X

COMP_OutputBlanking This example shows how to use the comparator output blanking
feature. - - - - - - X - X - X -

CORDIC CORDIC_Sin_DMA This example shows how to use the CORDIC peripheral to
calculate array of sines in DMA mode. - - - - - - - X - - - X

A
N

5033 - R
ev 7

page 9/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

CRC

CRC_Bytes_Stream_7bit_CRC

This example shows how to configure the CRC using the HAL
API. The CRC (cyclic redundancy check) calculation unit
computes 7-bit CRC codes derived from buffers of 8-bit data
(bytes). The user-defined generating polynomial is manually set
to 0x65, that is X^7 + X^6 + X^5 + X^2 + 1, as used in the Train
Communication Network, IEC 60870-5[17].

X - - - - - X - X - X -

CRC_Data_Reversing_16bit_CRC

This example shows how to configure the CRC using the HAL
API. The CRC (cyclic redundancy check) calculation unit
computes a 16-bit CRC code derived from a buffer of 32-bit data
(words). Input and output data reversal features are enabled. The
user-defined generating polynomial is manually set to 0x1021,
that is X^16 + X^12 + X^5 + 1 which is the CRC-CCITT
generating polynomial.

- - - - - - - X - - - -

CRC_Example

This example shows how to configure the CRC using the HAL
API. The CRC (cyclic redundancy check) calculation unit
computes the CRC code of a given buffer of 32-bit data words,
using a fixed generator polynomial (0x4C11DB7).

X - - - - - X X X - X X

CRC_UserDefinedPolynomial

This example shows how to configure and use the CRC
calculation unit to compute an 8-bit CRC code for a given data
buffer, based on a user-defined generating polynomial. The
peripheral initialization is done using LL unitary service functions
for optimization purposes (performance and size).

- - - X - X X X X - X X

CRYP

CRYP_AESCCM_IT

This example shows how to use the CRYP peripheral to encrypt/
decrypt data (plaintext/ciphertext) in Interrupt mode using AES
with Combined Cipher Machine (CCM), and then generate the
authentication TAG .

X - - - - - X - - - - -

CRYP_AESGCM
This example shows how to use the CRYP peripheral to encrypt/
decrypt data (plaintext/ciphertext) using AES Galois/counter
mode (GCM) and generate the authentication TAG .

- - - X - - X - - - - -

CRYP_AESModes
This example shows how to use the CRYP peripheral to encrypt/
decrypt data (plaintext/ciphertext) using AES ECB, CBC and
CTR algorithms.

- - - - - - X - - - - -

CRYP_AESModes_DMA
This example shows how to use the CRYP peripheral to encrypt/
decrypt data (plaintext/ciphertext) using AES ECB algorithm in
DMA mode with swapping.

- - - - - - X - - - - -

CRYP_AES_GCM This example shows how to use the CRYP peripheral to encrypt
and decrypt data using AES with Galois/Counter mode (GCM). - - - - - - - X - - - -

CRYP_TDESModes
This example shows how to use the CRYP peripheral to encrypt/
decrypt data (plaintext/ciphertext) using TDES ECB and CBC
algorithms.

- - - - - - X - - - - -

Cortex CORTEXM_Cache
This example provides a description of how to do Data-cache
maintenance on a shared memory buffer accessed by two
masters (CPU and DMA).

X - - - - - X - - - - -

DAC DAC_DualConversion This example provides a short description of how to use the DAC
peripheral in Dual conversion mode. - - - - - - X - - - X -

A
N

5033 - R
ev 7

page 10/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
DAC

DAC_SignalsGeneration This example shows how to use the DAC peripheral to generate
several signals using the DMA controller. X X - X - X X X X - X X

DAC_SimpleConversion This example provides a short description of how to use the DAC
peripheral to perform a simple conversion. X - - - - - X - X - X -

DCMI

DCMI_CaptureMode
This example shows how to use the DCMI to interface with a
camera module and continuously capture images into a Camera
Frame Buffer located in external SDRAM.

- - - - X - - - - - - -

DCMI_SnapshotMode

This example shows how to use the DCMI to interface with a
camera module, capture a single image in Camera Frame Buffer
(320x240 with RGB565 format), and once the full frame camera
is captured display it on the LCD in ARGB8888 format.

- - - - X - - - - - - -

DFSDM DFSDM_AudioRecord This example shows how to use the DFSDM HAL API to perform
stereo audio recording. X - - X - - X X - - - -

DMA

DMAMUX_RequestGen

This example shows how to use the DMA with the DMAMUX
request generator to generate DMA transfer requests upon
LPTIM2 output signal, knowing that LPTIM2 is configured in
PWM with a 2s period.

X X X X X X X X X - X X

DMAMUX_SYNC This example shows how to use the DMA with the DMAMUX to
synchronize a transfer with LPTIM1 output signal. X - - - - - X - - - - -

DMA_FIFOMode
This example provides a description of how to use a DMA to
transfer a word data buffer from Flash memory to embedded
SRAM with FIFO mode enabled and through the HAL API.

- - - - - - X - - - - -

DMA_FLASHToRAM
This example shows how to use a DMA to transfer a word data
buffer from Flash memory to embedded SRAM through the HAL
API.

X - - - - - X - - - - -

DMA2D

DMA2D_BlendingWithAlphaInversion
This example provides a description of how to configure the
DMA2D peripheral in Memory-to-memory mode, Blending
transfer and Alpha inversion mode.

X X - X X - X X - - - -

DMA2D_MemToMemWithBlending
This example provides a description of how to configure the
DMA2D peripheral in Memory-to-memory mode and Blending
transfer mode.

- - X X X X X - - - - -

DMA2D_MemToMemWithBlendingAndCLUT

This example shows how to configure the DMA2D peripheral in
Memory-to-memory blending transfer mode and with indexed
256-color images (L8). It also shows how to use the DMA2D
foreground/background CLUT in L8 color mode.

X - - X X - X X - - - -

DMA2D_MemToMemWithPFCandRed

BlueSwap

This example shows how to configure the DMA2D peripheral in
Memory-to-memory transfer mode with pixel format conversion
and red and blue swap, and then display the result on the LCD.

X - - X X - X X - - - -

DMA2D_MemoryToMemory This example provides a description of how to configure the
DMA2D peripheral in Memory-to-memory transfer mode. - - - X X - X - - - - -

DMA2D_RegToMemWithLCD
This example shows how to configure the DMA2D peripheral in
Register-to-memory transfer mode and display the result on the
LCD.

- X - X X - X - - - - -

A
N

5033 - R
ev 7

page 11/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

DTS DTS_GetTemperature This example shows how to configure and use the DTS to get the
temperature of the die. X X - - - - - X X - - X

FDCAN

FDCAN_Classic_Frame_Networking This example shows how to configure the FDCAN peripheral to
send and receive Classic CAN frames in Normal mode. - - - - - X X - - - - -

FDCAN_Clock_calibration This example shows how to achieve clock calibration on an
FDCAN unit. - - - - - - X - - - - -

FDCAN_Com_IT This example shows how to achieve Interrupt Process
Communication between two FDCAN units. - - - - - - X - - - - -

FDCAN_Com_polling This example shows how to achieve Polling Process
Communication between two FDCAN units. - - - - - - X - - - - -

FDCAN_Image_transmission This example shows the gain in time obtained by the activation of
the Bit Rate Switching (BRS) feature. - - - - - X X - - - - -

FDCAN_Loopback This example shows how to configure the FDCAN to operate in
Loopback mode. X - - - - - X X - - - -

FLASH

FLASH_CoreConfiguration

This example guides the user through the configuration steps to
copy a dedicated program by CPU1 (Arm®Cortex®-CM7) to
Flash memory bank 2, to be executed by CPU2 (Arm®Cortex®-
CM4).

- - - X - X - - - - - -

FLASH_EraseProgram This example shows how to configure and use the FLASH HAL
API to erase and program the internal Flash memory. X X - - - - X X X - X X

FLASH_SwapBank
This example guides the user through the configuration steps to
program internal Flash memory bank 1 and bank 2, and swap
between both banks by means of the FLASH HAL API.

- - - - - - X - - - X -

FLASH_WriteProtection
This example shows how to configure and use the FLASH HAL
API to enable and disable the write protection of the internal
Flash memory.

X X - - - - X - X - - -

FMAC
FMAC_FIR_DMAToIT This example shows how to use the FMAC peripheral to perform

a FIR filter from DMA mode to Interrupt mode. - - - - - - - X - - - X

FMAC_IIR_PollingToDMA This example shows how to use the FMAC peripheral to perform
an IIR filter from Polling mode to DMA mode. - - - - - - - X - - - X

FMC

FMC_NOR

This example guides the user through the different configuration
steps for configuring the FMC controller to access the
PC28F128M29EWLA NOR Flash memory mounted on the
STM32H743I-EVAL evaluation board, by means of the HAL API.

- - - - - - X - - - - -

FMC_SDRAM This example describes how to configure the FMC controller to
access the SDRAM. X X X - - - X - - - - -

FMC_SDRAM_DataMemory This example describes how to configure the FMC controller to
access the SDRAM including heap and stack. - - - X - X X - - - - -

FMC_SDRAM_LowPower
This example describes how to configure the FMC controller to
access the SDRAM in low-power mode (SDRAM Self-refresh
mode).

- - - - - - X - - - - -

A
N

5033 - R
ev 7

page 12/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
FMC FMC_SRAM This example describes how to configure the FMC controller to

access the SRAM. X - - - - - X - - - - -

GFXMMU GFXMMU_DisplayCircularShape This example describe how to enable and use the GFXMMU
functionality to display an image with circular shape. X - - - - - - - - - - -

GPIO
GPIO_EXTI This example provides a description of how to configure external

interrupt lines. X X - X X X X X - X X X

GPIO_IOToggle This example describe how to configure and use GPIOs through
the HAL API. X X X - - - - - X - - -

HAL

HAL_TimeBase_RTC_ALARM
This example describes how to customize the HAL timebase
using an RTC alarm instead of the SysTick as main timebase
source.

X - - - - - X X X - X X

HAL_TimeBase_RTC_WKUP This example describes how to customize the HAL using an RTC
wakeup as main timebase source, instead of the SysTick. X - - - - - X X X - X X

HAL_TimeBase_TIM
This example describes how to customize the HAL using a
general-purpose timer as main timebase source, instead of the
SysTick.

X - - - - - X X X - X X

HASH

HASH_HMAC_SHA1MD5 This example describes how to use the HASH peripheral to hash
data with HMAC SHA-1 and HMAC MD5 algorithms. - - - - - - X - - - - -

HASH_SHA1MD5 This example shows how to use the HASH peripheral to hash
data with SHA-1 and MD5 algorithms. X - - - - - X X - - - -

HASH_SHA1MD5_DMA
This example describes how to use the HASH peripheral to hash
data using SHA-1 and MD5 algorithms when data are fed to the
HASH unit with DMA.

- - - - - - X - - - - -

HASH_SHA224SHA256_DMA This example describes how to use the HASH peripheral to hash
data with SHA224 and SHA256 algorithms. - - - X - - X - - - - -

HRTIM

HRTIM_Arbitrary_Waveform This example shows how to configure the HRTIM1 peripheral to
generate an arbitrary signal. - - - - - - X - - - X -

HRTIM_DAC_ADC_Interconnect This example shows how to use the interconnection feature
between HRTIM, DAC and ADC. - - - - - - X - - - X -

HRTIM_ExternalEvents This example shows how to use the external event to set and
reset the HRTIM. - - - - - - X - - - X -

HRTIM_FaultEvent This example shows how to configure the HRTIM peripheral in
PWM mode and configure and use the Fault event. - - - - - - X - - - X -

HRTIM_MultiplePWM This example shows how to configure HRTIM1 to generate up to
five PWM signals with different duty cycle for each HRTIM output. - - - X X X X - - X X -

HRTIM_PWM_DifferentFrequencies
This example shows how to configure HRTIM1 to generate up to
six PWM signals with different timebase configuration for each
slave timer.

- - - - - - X - - - X -

HSEM HSEM_CoreNotification This example describes how to use an embedded hardware
semaphore to exchange notifications between cores. - - - X X X - - - - - -

A
N

5033 - R
ev 7

page 13/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
HSEM

HSEM_CoreSync This example describes how to use an embedded hardware
semaphore to synchronize cores. - - - X X X - - - - - -

HSEM_ProcessSync
This example describes how to use a hardware semaphore to
synchronize processes. In this example, the hardware
semaphore (9) is used to synchronize two processes.

X - - - - - X - - - X -

HSEM_ReadLock This example describes how to enable, take, then release a
semaphore using two different processes. - - - - - - X - - - X -

HSEM_ResourceSharing This example describes how to use an embedded hardware
semaphore to share resources between cores. - - - X X X - - - - - -

I2C

I2C_EEPROM_fast_mode_plus
This example describes how to handle I2C data buffer
transmission/reception with DMA. In the example, the device
communicates with an I2C EEPROM.

X - - - - - X - - - - -

I2C_TwoBoards_ComDMA This example describes how to handle I2C data buffer
transmission/reception between two boards via DMA. - - - - - - - X X - X X

I2C_TwoBoards_ComIT This example describes how to handle I2C data buffer
transmission/reception between two boards, using an interrupt. - - - - - - - X X - X X

I2C_TwoBoards_ComPolling This example describes how to handle I2C data buffer
transmission/reception between two boards in Polling mode. - - - - - - - X X - X X

I2C_WakeUpFromStop
This example describes how to perform I2C data buffer
transmission/reception between two instances using an interrupt,
when one core is in Stop mode.

- - - X - - X - X - X X

IWDG IWDG_WindowMode
This example describes how to periodically update the IWDG
reload counter, and simulate a software fault that generates a
MCU IWDG reset when a programmed time period has elapsed.

X - - X X X X X - X X X

JPEG

JPEG_DecodingFromFLASH_DMA

This example demonstrates how to decode a JPEG image stored
in the internal Flash memory using the JPEG hardware decoder
in DMA mode, and display the final ARGB8888 image on the
LCD mounted on the board.

X - X X X X X - - - - -

JPEG_DecodingUsingFs_DMA

This example demonstrates how to read a JPEG file from an SD
card memory using FatFs, decode it using the JPEG hardware
decoder in DMA mode, and display the final ARGB8888 image
on the KoD DSI-LCD mounted on the board or on an HDMI
monitor connected through the DSI-HDMI bridge board
(MB1232.A).

- - - X X - X - - - - -

JPEG_DecodingUsingFs_Interrupt

This example demonstrates how to read a JPEG file from the SD
card memory using FatFs, decode it using the JPEG hardware
decoder in Interrupt mode, and display the final ARGB8888
image on the KoD DSI-LCD mounted on the board or on an
HDMI monitor connected through the DSI-HDMI bridge board
(MB1232.A).

- - - X X - X - - - - -

A
N

5033 - R
ev 7

page 14/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
JPEG

JPEG_DecodingUsingFs_Polling

This example demonstrates how to read a JPEG file from the SD
card memory using FatFs, decode it using the JPEG hardware
decoder in Polling mode, and display the final ARGB8888 image
on the KoD DSI-LCD mounted on the board or on an HDMI
monitor connected through the DSI-HDMI bridge board
(MB1232.A).

- - - X X - X - - - - -

JPEG_EncodingFromFLASH_DMA
This example demonstrates how to read an RGB image stored in
the internal Flash memory, encode it using the JPEG hardware
encoder in DMA mode, and save it into an SD card.

X X - X X - X - - - - -

JPEG_EncodingUsingFs_DMA
This example demonstrates how to read a BMP file from an SD
card memory using FatFs, encode it using the JPEG hardware
encoder in DMA mode, and save it into the SD card.

- - - X X - X - - - - -

JPEG_MJPEG_VideoDecoding

This example demonstrates how to use the hardware JPEG
decoder to decode an MJPEG video file located on the microSD
and display the final ARGB8888 video on the KoD DSI-LCD
mounted on the board or on an HDMI monitor connected through
the DSI-HDMI bridge board (MB1232.A).

- - - X X - X - - - - -

JPEG_MJPEG_VideoDecodingFromOSPI
This example demonstrates how to use the hardware JPEG
decoder to decode an MJPEG video file located in the external
Octo-SPI Flash memory and display it on the LCD-TFT screen.

X X - - - - - - - - - -

JPEG_MJPEG_VideoDecodingFromQSPI

This example demonstrates how to use the hardware JPEG
decoder to decode an MJPEG video file located in the external
Quad-SPI Flash memory and display the final ARGB8888 video
on the KoD DSI-LCD mounted on board or on an HDMI monitor
connected through the DSI-HDMI bridge board (MB1232.A).

- - - X X - X - - - - -

LCD_DSI

LCD_DSI_CmdMode_DoubleBuffer

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive the KoD LCD mounted on the board in DSI Command
mode with dual buffer display.

- - - X X - - - - - - -

LCD_DSI_CmdMode_PartialRefresh

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive the KoD LCD mounted on the board in DSI Command
mode with partial refresh display.

- - - X X - - - - - - -

LCD_DSI_CmdMode_SingleBuffer

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive the KoD LCD mounted on the board in DSI Command
mode with single buffer display.

- - - X X - - - - - - -

LCD_DSI_CmdMode_TearingEffect

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive the KoD LCD mounted on the board in DSI Command
mode with tearing effect management based on DSI link.

- - - X X - - - - - - -

LCD_DSI_CmdMode_TearingEffect_ExtPin

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive the KoD LCD mounted on the board in DSI Command
mode with tearing effect management based on DSI TE pin.

- - - X X - - - - - - -

A
N

5033 - R
ev 7

page 15/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
LCD_DSI

LCD_DSI_ULPM_Data

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive the KoD LCD mounted on the board and manage entry and
exit in DSI ULPM mode on data lane only. In this mode, the DSI
PHY state machine enters in low-power state on data lane thus
allowing to save power when the LCD does not need to display
any image.

- - - X X - - - - - - -

LCD_DSI_ULPM_DataClock

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive the KoD LCD mounted on the board and manage entry and
exit in DSI ULPM mode on data lane and clock lane.

- - - X X - - - - - - -

LCD_DSI_VideoMode_DoubleBuffering

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive, in DSI Video mode, the KoD LCD mounted on the board or
an HDMI monitor connected through the DSI-HDMI bridge board
(MB1232.A). The display is based on two buffers.

- - - X X - - - - - - -

LCD_DSI_VideoMode_SingleBuffer

This example provides a description of how to use the embedded
LCD DSI controller (using LTDC and DSI Host peripherals) to
drive, in DSI Video mode, the KoD LCD mounted on the board or
an HDMI monitor connected through the DSI-HDMI bridge board
(MB1232.A). The display is based on a single buffer.

- - - X X - - - - - - -

LPTIM

LPTIM_Encoder This example shows how to configure the LPTIM peripheral in
Encoder mode. - - - - - - X - - - X -

LPTIM_PWMExternalClock
This example describes how to configure and use LPTIM to
generate a PWM at the lowest power consumption, using an
external counter clock and the HAL LPTIM API.

- - - - - - X - X - X -

LPTIM_PWM_LSE
This example describes how to configure and use LPTIM to
generate a PWM in low-power mode using the LSE as a counter
clock and the HAL LPTIM API.

X - - - - - X - X - X -

LPTIM_PulseCounter This example describes how to configure and use, through the
LPTIM HAL API, the LPTIM peripheral to count pulses. - X - X X X X - X X X X

LPTIM_Timeout
This example describes how to implement a low-power timeout to
wake up the system using the LPTIM, through the HAL LPTIM
API.

- - - - - - X - X - X -

LTDC

LTDC_ColorKeying This example describes how to enable and use the LTDC color
keying functionality. X - - - - - X - - - - -

LTDC_ColorKeying_FromOSPI This example describes how to enable and use the LTDC color
keying functionality and use the Octo-SPI memory. X X - - - - - X - - - -

LTDC_Display_1Layer
This example provides a description of how to configure the
LTDC peripheral to display an RGB image of size 480x272 and
format RGB565 (16 bits/pixel) on the LCD using only one layer.

- - X - - X X - - - - -

LTDC_Display_2Layers This example describes how to configure the LTDC peripheral to
display two layers at the same time. - X X - - X X X - - - -

A
N

5033 - R
ev 7

page 16/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

MDMA

MDMA_DMA2D_Triggering This example describes how to use the MDMA with hardware
trigger set to the DMA2D transfer complete flag. - - - X X - X - - - - -

MDMA_GPDMA_Triggering This example describes how to use the MDMA with hardware
trigger set to D2 Domain GP-DMA transfer complete flag. - - - - - - X - - - - -

MDMA_LTDC_Triggering This example describes how to use the MDMA with hardware
trigger set to the LTDC line interrupt Ffag. X - - - - - X X - - - -

MDMA_LinkedList

This example describes how to use the MDMA to perform a list of
transfers. The transfer list is organized as a linked-list. Each time
the current transfer completes, the MDMA automatically reloads
the next transfer parameters and starts the transfer without CPU
intervention.

X - X - - - X X X - X X

MDMA_LinkedList_ColorsComp

This example demonstrates how to use the MDMA in Linked-list
mode to extract RGB colors from an ARGB8888 image, resize
each subimage (with a decimation factor /2) and display the
resulting RGB decimated subimages on the LCD.

- - - X X - X - - - - -

MDMA_RepeatBlock_Rotation
This example provides a description of how to use the MDMA in
Repeat block trigger mode to copy an RGB565 image to the LCD
frame buffer.

X X - X X X X X - - - -

MDMA_RepeatBlock_ZoomOut
This example provides a description of how to use the MDMA in
Repeat block trigger mode to decimate an RGB565 image and
copy it to the LCD frame buffer.

- - - X X X X - - - - -

MMC
MMC_ReadWrite_DMA

This example performs write and read transfers to the MMC card
in SDMMC internal DMA mode, and calculates write and read
transfer speed.

- - - - - X - - - - - -

MMC_ReadWrite_IT This example performs write and read transfers to the MMC card
in Interrupt mode and calculates write and read transfer speed. - - - - - X - - - - - -

OPAMP

OPAMP_Calibration This example shows how to calibrate the OPAMP peripheral. - - - - - - - X X - X -

OPAMP_Follower This example shows how to configure the OPAMP peripheral in
Follower mode interconnected with DAC and COMP. X - - - - - X - X - X X

OPAMP_PGA_ExternalBias This example shows how to configure the OPAMP peripheral in
PGA mode with bias voltage for the Non-inverting mode. - - - X - - X - - - X -

OSPI

OSPI_HyperRAM_MemoryMapped
This example describes how to write and read data in Memory-
mapped mode to/from the Octo-SPI HyperRAM memory and
compare the result with an intensive access.

- - - - - - - X - - - -

OSPI_NOR_MemoryMapped_DTR

This example describes how to erase part of the Octo-SPI NOR
memory, write data in Interrupt mode, and access the Octo-SPI
NOR memory in Memory-mapped mode to check the data in a
forever loop. The memory is configured in Octal DTR mode.

X X - - - - - X - - - -

OSPI_NOR_ReadWrite_DMA
This example describes how to erase part of the Octo-SPI NOR
memory, write data in DMA mode, read data in DMA mode, and
compare the result in a forever loop.

X X - - - - - - - - - -

A
N

5033 - R
ev 7

page 17/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
OSPI OSPI_RAM_MemoryMapped

This example describes how to write and read data in Memory-
mapped mode to/from the Octo-SPI HyperRAM memory, and
compare the result in a forever loop.

X - - - - - - - - - - -

OTFDEC

OTFDEC_DataDecrypt This example describes how to decrypt data located in the Octo-
SPI external Flash memory using the OTFDEC peripheral. X X - - - - - X - - - -

OTFDEC_EncryptionDecryption

This example shows how to use OTFDEC to encrypt, decrypt
and execute PI calculation algorithm stored in external NOR
Flash memory. USART1 is used to verify that decryption and
executing instructions are done correctly.

X X - - - - - - - - - -

OTFDEC_ExecutingAesInstruction

This example shows how to use the OTFDEC to decrypt and
execute PI calculation algorithm stored in external NOR Flash
memory using the embedded cryptographic IP standard AES-128
counter mode to encrypt the binary image. USART1 is used to
verify that decryption and executing instructions are done
correctly.

X X - - - - - - - - - -

OTFDEC_ExecutingCryptedInstruction
This example shows how to use the OTFDEC to decrypt and
execute crypted instructions stored in external NOR Flash
memory.

X - - - - - - X - - - -

PSSI PSSI_Transmit_Receive_DMA

This example describes how to perform PSSI data buffer
transmission/reception between the on-board PSSI configured as
a slave and a master simulated by another board. This project is
configured for STM32H7A3xxQ devices using STM32CubeH7
HAL and running on an STMicroelectronics NUCLEO-H723ZG
board.

- - - - - - - - X - - X

PWR

PWR_D1ON_D2OFF This example shows how to run the system with only D1 domain
in Run mode while D2 domain is in Standby mode. - - - X X X - - - X - -

PWR_D2ON_D1OFF This example shows how to run the system with only D2 domain
in Run mode while D1 domain is in Standby mode. - - - X X X - - - X - -

PWR_Domain3SystemControl

This example shows how to maintain a basic system activity in
low-power mode with D3 Domain only, by ensuring the
communication between the D3SRAM, the BDMA and the
LPUART when the system is in Stop mode.

- - - X X X X - - X X -

PWR_Hold_Mechanism

This example shows how to use the hold mechanism to allow the
system to be re-initialized by a master CPU. This enables the
master CPU to be woken up both by its own wakeup sources and
by the wakeup sources of the slave CPU. The slave CPU
remains on hold until it is released by the master CPU.

- - - X X X - - - X - -

PWR_STANDBY This example shows how to enter Standby mode and wake up
from this mode using an external reset or a WKUP pin. - X - X - X X - X - X -

PWR_STANDBY_RTC This example shows how to enter Standby mode and wake up
from this mode using an external reset or the RTC wakeup timer. X X - X X X X X X X X X

PWR_STOP2_RTC
This example shows how to enter Stop mode with main domain
in DStop2 and wake up from this mode using the RTC wakeup
timer with memory shut-off option enabled.

X X - - - - - - X - - -

A
N

5033 - R
ev 7

page 18/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
PWR

PWR_STOP_DataRetain
This example shows how to retain data in D3SRAM when the
system enters Stop mode with D1 domain in Standby mode, to
guarantee low-power consumption.

- - - - - - X - - - X -

PWR_STOP_RTC
This example shows how to enter Stop mode and wake up from
this mode using the RTC wakeup timer as wakeup source event.
This event is connected to EXTI_Line19.

- - - X X X X X - X X -

PWR_STOP_STANDBY
This example shows how to enter Stop/Standby mode and wake
up from this mode using an external reset or a WKUP pin
connected to the user button.

- - X - - - - - - - - -

PWR_VOS0_480MHZ

This example shows how to over-clock the system to 480 MHz
with VOS0. In this example, when the
USE_VOS0_480MHZ_OVERCLOCK define (located in main.h)
is set to zero, the SystemClock_Config_400MHz() function is
used to set the Flash latency and configure the system clock as
well as the Arm®Cortex®-M7 and Arm®Cortex®-M4 frequencies
at 400 MHz and 200 MHz, respectively.

- - - - - - - - - X X -

QSPI

QSPI_ExecuteInPlace
This example describes how to execute part of the code from the
Quad-SPI memory. To do this, a section is created where the
function is stored.

- - - - - - X - - - - -

QSPI_MemoryMapped

This example describes how to erase part of the Quad-SPI
memory, write data in DMA mode, and access to Quad-SPI
memory in Memory-mapped mode to check the data in a forever
loop.

- - - - - - X - - - - -

QSPI_MemoryMappedDual

This example describes how to erase part of the Quad-SPI
memory, write data in Interrupt mode, and access to Quad-SPI
memory in Memory-mapped dual mode to check the data in a
forever loop.

- - X X - X X - - - - -

QSPI_ReadWriteDual_DMA

This example describes how to use Quad-SPI interface in Dual
mode. It erases part of the Quad-SPI memory, writes data in
DMA mode, reads data in DMA mode, and compares the result in
a forever loop.

- - - - - - X - - - - -

QSPI_ReadWrite_DMA This example describes how to erase part of the Quad-SPI
memory, read and write data in DMA mode. - - - - - - X - - - - -

QSPI_ReadWrite_IT
This example describes how to erase part of the Quad-SPI
memory, write data in Interrupt mode, read data in Interrupt
mode, and compare the result in a forever loop.

- - - - - - X - - - - -

RAMECC RAMECC_ErrorCount This example describes how to enable and activate notifications
for RAMECC RAMs. - - - - - - - - - X - -

RCC RCC_ClockConfig
This example demonstrates how to configure the system clock
(SYSCLK) and modify the clock settings in Run mode, using the
RCC HAL API.

X X - X X X X X X X X X

RNG RNG_MultiRNG
This example demonstrates how to configure the RNG through
the HAL API. This example uses the RNG to generate 32-bit long
random numbers.

X X - X - X X X X - X X

A
N

5033 - R
ev 7

page 19/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

RTC

RTC_ActiveTamper This example describes how to program active tampers. X - - - - - - - - - - -

RTC_Alarm This example describes how to configure and generate an RTC
alarm using the RTC HAL API. X X X X X X X X X X X X

RTC_Tamper
This example describes how to configure the RTC to write/read
data to/from RTC Backup registers. It also demonstrates the
tamper detection feature.

- X - - - - X X X - X X

RTC_TimeStamp This example demonstrates how to configure the RTC HAL API
to use the timestamp feature. - X - - - - X X X - X X

SAI
SAI_AudioPlay This example shows how to use the SAI HAL API to play an

audio file in DMA circular mode and handle the buffer update. X - - - - - X X - - - -

SAI_AudioPlayback This example shows how to use the SAI to play back audio data
coming from two microphones. - - - - - X X - - - - -

SD

SD_ReadWrite_DMA This example shows how to support DMA mode for a microSD
card. X - - - - - X - - - - -

SD_ReadWrite_DMADoubleBuffer
This example performs write and read transfers to/from an SD
card in SDMMC internal DMA mode, and calculates write and
read transfer speeds.

X - - - - - X X - - - -

SD_ReadWrite_DMA_HS This example shows how to support DMA mode for a microSD
card. X - - - - - X - - - - -

SD_ReadWrite_IT
This example performs write and read transfers to/from an SD
card in SDMMC internal DMA mode, and calculates write and
read transfer speeds.

X - - - - - X X - - - -

SPDIFRX SPDIFRX_AudioPlay
This example shows how to use the SPDIFRX HAL API to
receive audio data and then play them through the Codec by
using the SAI interface.

- - - - X - - - - - - -

SPI

SPI_FullDuplex_ComDMA This example shows how to perform data buffer transmission/
reception between two boards via SPI using DMA. - - - - - - - - X X X X

SPI_FullDuplex_ComIT This example shows how to perform data buffer transmission/
reception between two boards via SPI in Interrupt mode. - - - - - - - - X X X X

SPI_FullDuplex_ComPolling This example shows how to perform data buffer transmission/
reception between two boards via SPI in Polling mode. - - - - - - - - X - X X

TIM

TIM_6Steps This example shows how to configure the TIM1 peripheral to
generate six steps. X - - - - - X - - - X -

TIM_Asymetric This example shows how to configure the TIM peripheral to
generate an asymmetric signal. - - - - - - X - X - X -

TIM_Combined This example shows how to configure the TIM1 peripheral to
generate three PWM combined signals with TIM1 channel 5. - - - - - - X - - - X -

TIM_ComplementarySignals

This example shows how to configure the TIM1 peripheral to
generate three complementary TIM1 signals, insert a defined
dead time value, use the break feature, and lock the desired
parameters.

- - - - - - X - - - X -

A
N

5033 - R
ev 7

page 20/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

(Continued)
TIM

TIM_DMA
This example shows how to use the DMA with TIMER update
request to transfer data from memory to TIMER capture compare
register 3 (TIMx_CCR3).

- X - - X X X - X - X X

TIM_DMABurst This example shows how to update the TIMER channel 1 period
and the duty cycle using the TIMER DMA burst feature. - - - - - - X X - - X -

TIM_InputCapture This example shows how to use the TIM peripheral to measure
the frequency of an external signal. - - - - - - X - - - X -

TIM_OCToggle This example shows how to configure the TIMER peripheral to
generate four different signals with four different frequencies. - - - - - - X - - - X -

TIM_OnePulse
This example shows how to use the TIMER peripheral to
generate a single pulse when a rising edge of an external signal
is received on the TIMER input pin.

- - - - - - X - - - X -

TIM_PWMOutput This example shows how to configure the TIMER peripheral in
PWM (pulse width modulation) mode. X - - X - - X - - X X -

TIM_Synchronization This example shows how to synchronize TIM1 with TIM3 and
TIM4 timers in Parallel mode. - - - - - - X - X - X -

TIM_TimeBase
This example shows how to configure the TIMER peripheral to
generate a 1-second timebase with the corresponding interrupt
request.

- - X - - - X - X - X -

UART

LPUART_WakeUpFromStop This example shows how to configure an LPUART to wake up
the MCU from Stop mode when a given stimulus is received. X - - - - - X - - - - -

UART_HyperTerminal_DMA
This example describes an UART transmission (transmit/receive)
in DMA mode between a board and an HyperTerminal PC
application.

X - - - - - X - - - - -

UART_HyperTerminal_IT
This example describes an UART transmission (transmit/receive)
between a board and an HyperTerminal PC application by using
an interrupt.

X - - - - - X - - - - -

UART_Printf This example shows how to re-route the C library printf function
to the UART. X X - - - - X X - - - -

UART_TwoBoards_ComDMA This example describes UART transmission (transmit/receive) in
DMA mode between two boards. - - - - - - - - X - X -

UART_TwoBoards_ComIT This example describes UART transmission (transmit/receive) in
Interrupt mode between two boards. - - - - - - - - X - X -

UART_TwoBoards_ComPolling This example describes UART transmission (transmit/receive) in
Polling mode between two boards. - - - - - - - - X - X X

UART_WakeUpFromStopUsingFIFO This example shows how to use UART HAL API to wake up the
MCU from Stop mode using the UART FIFO level. X - - X X X X - - X - -

USART USART_SlaveMode
This example describes an USART-SPI communication (transmit/
receive) between two boards with the USART configured as a
slave.

- - - - - - - - X - X X

A
N

5033 - R
ev 7

page 21/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples

WWDG

WWDG_Example
This example describes how to periodically update the WWDG
counter and simulate a software fault that generates an MCU
WWDG reset when a predefined time period has elapsed.

- - - X X X X - - X X -

WWDG_ResetAfterSwFailure
This example describes how to periodically update the WWDG
counter and simulate a software fault that generates an MCU
WWDG reset when a predefined time period has elapsed.

X X - - - - - X X - - X

Total number of examples: 647 70 34 13 61 51 40 135 52 53 21 79 38

Examples_LL

ADC ADC_AnalogWatchdog
This example shows how to use an ADC peripheral with an ADC
analog watchdog to monitor a channel and detect when the
corresponding converted data are outside the window thresholds.

- - - - - - - - - - - X

COMP

COMP_CompareGpioVsVrefInt_IT

This example shows how to use a comparator peripheral to
compare, in Interrupt mode, a voltage level applied on a GPIO
pin to the internal voltage reference (VREFINT). This example is
based on the STM32H7xx COMP LL API. The peripheral
initialization uses LL unitary service functions for optimization
purposes (performance and size).

- - - - - - - - X - X X

COMP_CompareGpioVsVrefInt_IT_Init

This example shows how to use a comparator peripheral to
compare, in Interrupt mode, a voltage level applied on a GPIO
pin to the internal voltage reference (VREFINT). This example is
based on the STM32H7xx COMP LL API. The peripheral
initialization uses the LL initialization function to demonstrate LL
init usage.

- - - - - - - - - - - X

CORDIC CORDIC_CosSin This example shows how to use the CORDIC peripheral to
calculate cosine and sine. - - - - - - - - - - - X

CORTEX CORTEX_MPU
This example introduces the MPU feature. It configures a
memory area as privileged read-only and attempts to perform
read and write operations in different modes.

- - - - - - - - - - - X

CRC

CRC_CalculateAndCheck

This example shows how to configure the CRC calculation unit to
compute a CRC code for a given data buffer, based on a fixed
generator polynomial (default value 0x4C11DB7). The peripheral
initialization is done using LL unitary service functions for
optimization purposes (performance and size).

- - - - - - - - X - - X

CRC_UserDefinedPolynomial

This example shows how to configure and use the CRC
calculation unit to compute an 8-bit CRC code for a given data
buffer, based on a user-defined generating polynomial. The
peripheral initialization is done using LL unitary service functions
for optimization purposes (performance and size).

- - - - - - - - - - - X

CRS CRS_Synchronization_IT

This example shows how to configure the clock recovery service
in Interrupt mode through the STM32H7xx CRS LL API. The
peripheral initialization uses LL unitary service functions for
optimization purposes (performance and size).

- - - - - - - - - - - X

DAC DAC_GenerateWaveform_TriggerHW

This example shows how to use the DAC peripheral to generate
a voltage waveform from a digital data stream transferred by
DMA. It is based on the STM32H7xx DAC LL API. The peripheral
initialization uses LL unitary service functions for optimization
purposes (performance and size).

- - - - - - - - X - X X

A
N

5033 - R
ev 7

page 22/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples_LL

(Continued)
DAC DAC_GenerateWaveform_TriggerHW_Init

This example shows how to use the DAC peripheral to generate
a voltage waveform from a digital data stream transferred by
DMA. It is based on the STM32H7xx DAC LL API. The peripheral
initialization uses LL initialization functions to demonstrate LL init
usage.

- - - - - - - - - - - X

DMA

DMA_CopyFromFlashToMemory

This example shows how to use a DMA to transfer a word data
buffer from Flash memory to embedded SRAM. The peripheral
initialization uses LL unitary service functions for optimization
purposes (performance and size).

- - - - - - - - X - - X

DMA_CopyFromFlashToMemory_Init

This example shows how to use a DMA to transfer a word data
buffer from Flash memory to embedded SRAM. The peripheral
initialization uses LL initialization functions to demonstrate LL init
usage.

- - - - - - - - - - - X

DMA2D DMA2D_MemoryToMemory

This example shows how to configure the DMA2D peripheral in
Memory-to-memory transfer mode. The example is based on the
STM32H7xx DMA2D LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (performance
and size).

- X - - - - - X - - - -

EXTI

EXTI_ToggleLedOnIT

This example shows how to configure the EXTI and use GPIOs
to toggle the user LEDs available on the board when a user
button is pressed. It is based on the STM32H7xx LL API. The
peripheral initialization uses LL unitary service functions for
optimization purposes (performance and size).

- - - - - - - - X - - X

EXTI_ToggleLedOnIT_Init

This example shows how to configure the EXTI and use GPIOs
to toggle the user LEDs available on the board when a user
button is pressed. This example is based on the STM32H7xx LL
API. The peripheral initialization uses LL initialization functions to
demonstrate LL init usage.

- - - - - - - - - - - X

GPIO

GPIO_InfiniteLedToggling

This example shows how to configure and use GPIOs to toggle
the on-board user LEDs every 250 ms. This example is based on
the STM32H7xx LL API. The peripheral is initialized with LL
unitary service functions to optimize for performance and size.

- - - - - - - - X - - X

GPIO_InfiniteLedToggling_Init

This example shows how to configure and use GPIOs to toggle
the on-board user LEDs every 250 ms. This example is based on
the STM32H7xx LL API. The peripheral is initialized with LL
initialization function to demonstrate LL init usage.

- - - - - - - - - - - X

I2C

I2C_OneBoard_Communication_IT

This example shows how to handle the reception of one data
byte from an I2C slave device by an I2C master device. Both
devices operate in Interrupt mode. The peripheral is initialized
with LL unitary service functions to optimize for performance and
size.

- - - - - - - - - - - X

I2C_OneBoard_Communication_IT_Init

This example shows how to handle the reception of one data
byte from an I2C slave device by an I2C master device. Both
devices operate in Interrupt mode. The peripheral is initialized
with LL initialization function to demonstrate LL init usage.

- - - - - - - - - - - X

A
N

5033 - R
ev 7

page 23/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples_LL

IWDG IWDG_RefreshUntilUserEvent

This example shows how to configure the IWDG peripheral to
ensure periodical counter update and generate an MCU IWDG
reset when a user push-button is pressed. The peripheral is
initialized with LL unitary service functions to optimize for
performance and size.

- - - - - - - - X - - X

PWR
PWR_EnterStandbyMode This example shows how to enter Standby mode and wake up

from this mode by using an external reset or a wakeup interrupt. - - - - - - - - - - - X

PWR_EnterStopMode This example shows how to enter Stop mode. - - - - - - - - - - - X

RCC RCC_OutputSystemClockOnMCO This example shows how to configure MCO pins (PA8 and PC9)
to output the system clock. - - - - - - - - X - - X

RNG

RNG_GenerateRandomNumbers

This example shows how to configure the RNG to generate 32-bit
long random numbers. The peripheral initialization uses LL
unitary service functions for optimization purposes (performance
and size).

- - - - - - - - X - - X

RNG_GenerateRandomNumbers_IT

This example shows how to configure the RNG to generate 32-bit
long random numbers using interrupts. The peripheral
initialization uses LL unitary service functions for optimization
purposes (performance and size).

- - - - - - - - - - - X

RTC

RTC_Alarm

This example shows how to configure the RTC LL API to
configure and generate an alarm using the RTC peripheral. The
peripheral initialization uses LL unitary service functions for
optimization purposes (performance and size).

- - - - - - - - X - X X

RTC_Alarm_Init
This example shows how to configure the RTC LL API to
configure and generate an alarm using the RTC peripheral. The
peripheral initialization uses the LL initialization function.

- - - - - - - - - - - X

SPI

SPI_FullDuplex_ComIT
This example shows how to perform SPI data buffer
transmission/reception between two instances in the same board
by using interrupts.

- - - - - - - - - - X X

SPI_OneBoard_FullDuplex_IT

This example shows how to perform SPI data buffer
transmission/reception between two instances in the same board
by using interrupts. This example is based on the STM32H7xx
SPI LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (performance and size).

- - - - - - - - X - - -

SPI_OneBoard_HalfDuplex_DMA_Init

This example shows how to configure GPIO and SPI peripherals
to transmit bytes from an SPI master device to an SPI slave
device in DMA mode. This example is based on the STM32H7xx
SPI LL API. The peripheral initialization uses the LL initialization
function to demonstrate LL init usage.

- - - - - - - - - - - X

TIM TIM_PWMOutput

This example shows how to use a timer peripheral to generate a
PWM output signal and update the PWM duty cycle. This
example is based on the STM32H7xx TIM LL API. The peripheral
initialization uses LL unitary service functions for optimization
purposes (performance and size).

- - - - - - - - X - - X

A
N

5033 - R
ev 7

page 24/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Examples_LL

(Continued)
TIM TIM_PWMOutput_Init

This example shows how to use a timer peripheral to generate a
PWM output signal and update the PWM duty cycle. This
example is based on the STM32H7xx TIM LL API. The peripheral
initialization uses LL initialization function to demonstrate LL init.

- - - - - - - - - - - X

USART

USART_Communication_Rx_IT

This example shows how to configure GPIO and USART
peripherals to receive characters from an HyperTerminal (PC) in
Asynchronous mode using an interrupt. The peripheral
initialization uses LL unitary service functions for optimization
purposes (performance and size).

- - - - - - - - X - - X

USART_Communication_Rx_IT_Init

This example shows how to configure GPIO and USART
peripherals to receive characters from an HyperTerminal (PC) in
Asynchronous mode using an interrupt. The peripheral
initialization uses the LL initialization function to demonstrate LL
init.

- - - - - - - - - - - X

WWDG WWDG_RefreshUntilUserEvent

This example shows how to configure the WWDG to periodically
update the counter and generate an MCU WWDG reset when a
user button is pressed. The peripheral initialization uses the LL
unitary service functions for optimization purposes (performance
and size).

- - - - - - - - - - - X

Total number of examples_ll: 52 0 1 0 0 0 0 0 1 13 0 4 33

Examples_MIX

CRC CRC_PolynomialUpdate This example shows how to use the CRC peripheral through the
STM32H7xx CRC HAL and LL API. - - - - - - - - X - - X

DMA DMA_FLASHToRAM

This example shows how to use a DMA to transfer a word data
buffer from Flash memory to embedded SRAM through the
STM32H7xx DMA HAL and LL API. The LL API is used for
performance improvement.

- - - - - - - - X - - X

DMA2D DMA2D_MemToMemWithLCD

This example shows how to configure the DMA2D peripheral in
Memory-to-memory transfer mode and display the result on the
LCD. The DMA2D LL APIs are used for performance
improvement.

- X - - - - - X X - - X

Total number of examples_mix: 8 0 1 0 0 0 0 0 1 3 0 0 3

Applications

Audio Audio_playback_and_record
This application shows how to use the different functionalities of
the SAI (Serial Audio Interface) to ensure audio record and
playback via ST MEMS microphones (MP34DT01).

- - - - - - X - - - - -

Display

LTDC_AnimatedPictureFromSDCard This example shows how to display an animated picture stored
on the LCD on the microSD card. - X - - - - X - - - - -

LTDC_Paint
This application describes how to configure the LCD
touchscreen, attribute an action related to a configured touch
zone, and save a BMP picture on the USB disk.

- - X - - - X - - - - -

LTDC_PicturesFromSDCard This example shows how to use LTDC layers to display pictures
stored on the SD card on the LCD. X X - - - - X - - - - -

EEPROM EEPROM_Emulation
This application describes the software solution for substituting
standalone EEPROM by emulating the EEPROM mechanism
using the STM32H743x on-chip Flash memory.

- - - - - - X - X - X -

A
N

5033 - R
ev 7

page 25/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Applications

ExtMem_Code

Execution

ExtMem_Boot
This directory contains a set of sources files and pre-configured
projects that describe how to build an application for execution
from external memory using the ExtMem_Boot firmware.

X X - - - - X X - - - -

ExtMem_Application\FreeRTOS This application shows how to implement thread creation using
CMSIS RTOS API with execution from external memory. X X - - - - X X - - - -

ExtMem_Application\LedToggling This application provides a sample LED toggling program with
execution from external memory. X X - - - - X X - - - -

FPU FPU_Fractal

This application explains how to use the STM32H7 floating-point
units (FPU), and demonstrates the benefits it brings. The
CortexM7 FPU is an implementation of the ARM FPv5-SP
double-precision FPU.

- - - X X - X - - - - -

FatFs FatFs_uSD_Standalone

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. The objective is to develop an application making the
most of the features offered by FatFs to configure a microSD
drive.

- - - - - - - - - - X -

FatFs

FatFs_CopyFiles

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. This example develops an application that exploits FatFs
features to configure two microSD drives and copy files from the
first instance to the second.

X - - - - - - - - - - -

FatFs_Dual_Instance

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. The objective is to develop an application making the
most of the features offered by FatFs to configure a microSD and
an USB drive.

- - - X - - - - - - - -

FatFs_MultiAccess_RTOS

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module, FreeRTOS as an RTOS module based on using CMSIS-
OS V2 wrapping layer common APIs.

- X - - - - - - - - - -

FatFs_MultiDrives

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. This example develops an application that exploits FatFs
features, with multidrive (SDRAM, microSD) configurations.

- X - - - - X - - - - -

FatFs_RAMDisk

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module, to develop an application exploiting FatFs offered
features with RAM disk (SRAM) drive configuration.

- - - - - - X - X - - -

FatFs_SDRAMDisk

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. The objective is to develop an application making the
most of the features offered by FatFs to configure a RAMDisk
drive.

- - - - - - X - - - - -

A
N

5033 - R
ev 7

page 26/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Applications

(Continued)
FatFs

FatFs_Shared_Device

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. The objective is to develop an application making the
most of the features offered by FatFs to access the eMMC card.

- - - - - X - - - - - -

FatFs_USBDisk_RTOS

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module and STM32 USB On-The-Go (OTG) host library, in Full-
speed (FS) and High-speed (HS) modes, to develop an
application exploiting FatFs offered features with USB disk drive
configuration.

- - - - - - X - - - - -

FatFs_USBDisk_Standalone

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module and STM32 USB On-The-Go (OTG) host library, in Full-
speed (FS) and High-speed (HS) modes, to develop an
application exploiting FatFs offered features with USB disk drive
configuration.

- - - - - - X - - - - -

FatFs_uSD_DMA_RTOS

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module, to develop an application exploiting FatFs offered
features with microSD drive in RTOS mode configuration.

- - - - - - X - - - - -

FatFs_uSD_DMA_Standalone

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. This example develops an application that exploits FatFs
features to configure a microSD drive.

- X - - - - X - - - - -

FatFs_uSD_RTOS

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module, to develop an application exploiting FatFs offered
features with microSD disk drive configuration.

- - - - - - - X - - - -

FatFs_uSD_Standalone

This application describes how to use STM32Cube firmware with
FatFs middleware component as a generic FAT file system
module. The objective is to develop an application making the
most of the features offered by FatFs to configure a microSD
drive.

- - - - - - X X - - - -

FreeRTOS

FreeRTOS_AMP_Dual_RTOS
This application shows how to use FreeRTOS message buffers
to exchange data between the two cores. Each core has his own
FreeRTOS instance.

- - - - - X - - - X - -

FreeRTOS_AMP_RTOS_BareMetal This application shows how to use FreeRTOS message buffers
to exchange data between the two cores. - - - - - X - - - X - -

FreeRTOS_HwSemaphoreCoreSync This application shows how to use an embedded hardware
semaphore to send notifications between the two cores. - - - X X - - - - - - -

FreeRTOS_LowPower This application shows how to enter and exit low-power mode
with CMSIS RTOS API. - X - - - - - - X - - -

FreeRTOS_MPU This application aims at describing how to use the MPU feature
of FreeRTOS. - - - - - - X - - - X -

A
N

5033 - R
ev 7

page 27/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Applications

(Continued)
FreeRTOS

FreeRTOS_Mail This application shows how to use mail queues with CMSIS
RTOS API. - - X - - - - - - - - -

FreeRTOS_Mutexes This application shows how to use mutexes with CMSIS RTOS
API. X - - - - - - - X - - -

FreeRTOS_Queues This application shows how to use message queues with CMSIS
RTOS API. - - - - - - - - X - - -

FreeRTOS_Semaphore This application shows how to use semaphores with CMSIS
RTOS API. - X - - - - - X X - - X

FreeRTOS_SemaphoreFromISR This application shows how to use semaphores from ISR with
CMSIS RTOS API . - - - - - - X - X - X -

FreeRTOS_ThreadCreation This application shows how to implement thread creation using
CMSIS RTOS API. - X X - - - X X X - X X

FreeRTOS_Timers This application shows how to use timers of CMSIS RTOS API. X - - - - - - - X - - -

IAP

IAP_Binary_Template
This directory contains a set of sources files to build the
application to be loaded into Flash memory using in-application
programming (IAP) through USART.

- - - - - - X - - - - -

IAP_Main
This directory contains a set of sources files and pre-configured
projects that describe how to build an in-application programming
(IAP) that uses an USART interface to load an application binary.

- - - - - - X - - - - -

LibJPEG
LibJPEG_Decoding This application demonstrates how to use the libjpeg API to

decode a JPEG file. - - - - - - X X - - - -

LibJPEG_Encoding This application demonstrates how to use the libjpeg API to
encode and decode a BMP image into a JPEG file. - - - - - - X X - - - -

LwIP

LwIP_HTTP_Server_Netconn_RTOS

This application guides STM32Cube HAL API users to run an
http server application based on Netconn API of LwIP TCP/IP
stack The communication is done with a web browser application
in a remote PC.

- - - - - - X X - - X X

LwIP_HTTP_Server_Raw

This application guides STM32Cube HAL API users to run a http
server application based on Raw API of LwIP TCP/IP stack. The
communication is done with a web browser application in a
remote PC.

- - - - - - X - - - - -

LwIP_HTTP_Server_Socket_RTOS

This application guides STM32Cube HAL API users to run a http
server application based on Socket API of LwIP TCP/IP stack.
The communication is done with a web browser application in a
remote PC.

- - - - - - X X - - - X

LwIP_TCP_Echo_Client

This application guides STM32Cube HAL API users to run TCP
Echo Client application based on Raw API of LwIP TCP/IP stack.
To run this application, open a command prompt window on the
remote PC.

- - - - - - X - - - - -

LwIP_TCP_Echo_Server

This application guides STM32Cube HAL API users to run TCP
Echo Server application based on Raw API of LwIP TCP/IP
stack. To run this application, Open a command prompt window
on the remote PC.

- - - - - - X X - - - X

A
N

5033 - R
ev 7

page 28/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Applications

(Continued)
LwIP

LwIP_TFTP_Server This application guides STM32Cube HAL API users to run a tftp
server application for STM32H7xx devices. - - - - - - X - - - - -

LwIP_UDPTCP_Echo_Server_Netconn_

RTOS

This application guides STM32Cube HAL API users to run a
UDP/TCP Echo Server application based on Netconn API of
LwIP TCP/IP stack. To run this application, open a command
prompt window on the remote PC.

- - - - - - X - - - - -

LwIP_UDP_Echo_Client

This application guides STM32Cube HAL API users to run a UDP
Echo Client application based on Raw API of LwIP TCP/IP stack.
To run this application, Open a command prompt window on the
remote PC.

- - - - - - X - - - - -

LwIP_UDP_Echo_Server

This application guides STM32Cube HAL API users to run UDP
Echo Server application based on Raw API of LwIP TCP/IP
stack. To run this application, Open a command prompt window
on the remote PC.

- - - - - - X X - - - X

OpenAMP

OpenAMP_PingPong
This application shows how to use OpenAMP middleware to
create a communication channel (called rpmsg channel) between
cores and send bidirectional messages.

- - - X X X - - - - - -

OpenAMP_RTOS_PingPong
This application shows how to use OpenAMP MW to create a
communication channel (called rpmsg channel) between cores
and send bidirectional messages.

- - - X X X - - - - - -

ResourcesManager
ResourcesManager_SharedResources This application shows how to use the ResourcesManager to

share resources between cores. - - - X X X - - - - - -

ResourcesManager_UsageWithNotification This application shows how to use the ResourcesManager to
share resources between cores. - - - X X X - - - - - -

STemWin

STemWin_HelloWorld
This directory contains a set of source files that implement a
simple "Hello World" application based on STemWin for
STM32H7B3xxQ devices.

X X X X X X X - - - - -

STemWin_SampleDemo
This directory contains a set of source files that implement a
sample demonstration application allowing to demonstrate some
of the STemWin Library capabilities on STM32H7B3xxQ devices.

X X X - - X X - - - - -

STemWin_acceleration
This directory contains a set of source files that implement a
simple "acceleration" application based on STemWin for
STM32H7xx devices.

- - - X X - - - - - - -

STemWin_animation
This directory contains a set of source files that implement a
simple "animation" application based on STemWin for
STM32H7xx devices.

- - - X X - - - - - - -

STemWin_fonts
This directory contains a set of source files that implement a
simple "fonts" application based on STemWin for STM32H7xx
devices.

- - - X X - - - - - - -

STemWin_memory_device
This directory contains a set of source files that implement a
simple "memory device" application based on STemWin for
STM32H7xx devices.

- - - X X - - - - - - -

A
N

5033 - R
ev 7

page 29/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Applications

USB_

Device

Audio_Standalone

This application is a part of the USB device library package using
STM32Cube firmware. It describes how to use the USB device
application based on the AUDIO Class implementation of an
audio streaming (the output is a speaker/headset) capability on
STM32H7xx devices.

- - - X - - X - - - - -

CDC_Standalone

This application is a part of the USB device library package using
STM32Cube firmware. It describes how to use the USB device
application based on the Device Communication Class (CDC)
following the PSTN subprotocol on STM32H747xx devices. It
uses the OTG-USB and UART peripherals.

- - - X - - X - - - - -

CustomHID_Standalone

This application is a part of the USB device library package using
STM32Cube firmware. It describes how to use the USB device
application based on the Custom HID Class on STM32H747xx
devices.

- - - X X - X - - - - -

DFU_Standalone
This application is a compliant implementation of the Device
Firmware Upgrade (DFU) capability to program the embedded
Flash memory through the USB peripheral.

X X - X X X X X X - - X

DualCore_Standalone

This application is a part of the USB device library package using
STM32Cube firmware. It describes how to use the USB device
application based on the STM32H7xx multicore support feature
integrating the Device Communication Class (CDC) and Human
Interface (HID) in the same project.

- - - X - - X - - - - -

HID-CM4_MSC-CM7

This application is a part of the USB device library package using
STM32Cube firmware. It describes how to use the USB device
application based on the STM32H7xx multicore support feature
integrating the Mass Storage Class (MSC) and Human Interface
(HID) in the same project.

- - - X - - - - - - - -

HID_LPM_Standalone

The STM32H7xx devices support the USB Link Power
Management Protocol (LPM-L1) and complies with the USB 2.0
LPM-L1 ECN. The hpcd.Init.lpm_enable in the usbd_conf.c must
be set to 1 to enable the support for LPM-L1 protocol in the USB
stack.

- - - - - - X - - - - -

HID_Standalone This application shows how to use of the USB device application
based on the Human Interface (HID). X X X X X X X X X - - X

MSC_Standalone

This application is a part of the USB device library package using
STM32Cube firmware. It describes how to use the USB device
application based on the Mass Storage Class (MSC) on
STM32H7xx devices.

- - - X X - X - - - - -

USB_Host

AUDIO_Standalone

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use the USB host
application based on the Audio OUT class on STM32H7xx
devices.

- - - - - - X - - - - -

CDC_Standalone

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use the USB host
application based on the Communication Class (CDC) on
STM32H7xx devices.

- - - X - - X - - - - -

A
N

5033 - R
ev 7

page 30/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Applications

(Continued)
USB_Host

DualCore_Standalone

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use the USB host
application based on the STM32H7xx multicore support feature
integrating Mass Storage (MSC) and Human Interface (HID) in
the same project.

- - - X - - X - - - - -

DynamicSwitch_Standalone

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use dynamically
switch, on the same port, between available USB host
applications on STM32H7xx devices.

- - - - - - X - - - - -

FWupgrade_Standalone

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use USB host
application based on the In-Application programming (IAP) on
STM32H7xx devices.

- - - X - - X - - - - -

HID_RTOS

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use USB host
application based on the Human Interface Class (HID) on
STM32H7xx devices.

- - - X - - X - - - - -

HID_Standalone

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use the USB host
application based on the Human Interface Class (HID) on
STM32H7B3XXQ devices.

X X - X X X X X X - - X

MSC_RTOS

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use the USB host
application based on the Mass Storage Class (MSC) on
STM32H7x devices.

- - - X - - X - - - - -

MSC_Standalone

This application is a part of the USB host library package using
STM32Cube firmware. It describes how to use the USB host
application based on the Mass Storage Class (MSC) on
STM32H7XXQ devices.

X X X X X X X X X - - X

Wi-Fi ClockAndWeather
This application provides a description on how to use the
MXCHIP EMW3080B Wi-Fi module in a clock and weather
porogram based on TouchGFX graphical library.

- - - - - - - X - - - -

mbedTLS

Crypto_Selftest

This application implements a set of cryptographic features on
the STM32H753I-EVAL board. It is based on the mbedTLS self-
test functions of individual mbedTLS components selectively
chosen in a single configuration file "mbedtls_config.h".

- - - - - - X X - - - -

SSL_Client This application describes how to run an SSL client application
based on mbedTLS cryptographic library and LwIP TCP/IP stack. - - - - - - X - - - - -

SSL_Server This application describes how to run an SSL server application
based on mbedTLS cryptographic library and LwIP TCP/IP stack. - - - - - - X - - - - -

Total number of applications: 199 13 17 7 27 17 13 55 19 13 2 6 10

Demonstrations - Demo
The STM32Cube demonstration platform comes on top of the
STM32Cube as a firmware package that offers a full set of
software components based on a modular architecture.

X X X X X X X X X X X X

A
N

5033 - R
ev 7

page 31/35

A
N

5033

Le
ve

l

M
od

ul
e

na
m

e

Pr
oj

ec
t n

am
e

D
es

cr
ip

tio
n

ST
M

32
H

7B
3I

-E
VA

L

ST
M

32
H

7B
3I

-D
K

ST
M

32
H

75
0B

-D
K

ST
M

32
H

74
7I

-E
VA

L

ST
M

32
H

74
7I

-D
IS

C
O

ST
M

32
H

74
5I

-D
IS

C
O

ST
M

32
H

74
3I

-E
VA

L

ST
M

32
H

73
5G

-D
K

N
U

C
LE

O
-H

7A
3Z

I-Q

N
U

C
LE

O
-H

74
5Z

I-Q

N
U

C
LE

O
-H

74
3Z

I

N
U

C
LE

O
-H

72
3Z

G

(Continued)
Demonstrations Total number of demonstrations: 12 1 1 1 1 1 1 1 1 1 1 1 1

Total number of projects: 954 86 56 23 94 74 59 193 76 85 29 92 87

A
N

5033 - R
ev 7

page 32/35

A
N

5033

Revision history

Table 2. Document revision history

Date Version Changes

12-May-2017 1 Initial release.

05-Sep-2017 2 Updated applications and demonstrations in Table 1: STM32CubeH7 firmware examples.

02-Jan-2018 3
Updated Section 1: Reference documents.

Updated Table 1: STM32CubeH7 firmware examples.

27-Jun-2018 4

Added Arm wordmark notice in Section 1 Reference documents.

Replaced STM32Cube embedded firmware by STM32Cube MCU Package in the whole document.

Updated Table STM32CubeH7 firmware examples.

27-Mar-2019 5

• Single-core architecture examples running on STM32H743I-EVAL anrd NUCLEO-H743ZI: no
changes compare to previous document revision.

• Added dual-core architecture examples running on STM32H747I-EVAL STM32H745I-DISCO,
STM32H747I-DISCO, STM32H750B-DK and NUCLEO-H745ZI-Q.

• Added support for LL drivers.

19-Dec-2019 6

Added STM32H7B3I-EVAL, STM32H7B3I-DK and NUCLEO-H7A3ZI-Q.

Added UM2298 in Section 1 Reference documents.

Added Examples_MIX in Section 2 STM32CubeH7 examples.

30-Jun-2020 7 Added STM32H735G-DK and NUCLEO-H723ZG boards.

AN5033

AN5033 - Rev 7 page 33/35

Contents

1 Reference documents .2

2 STM32CubeH7 examples .3

Revision history .33

AN5033
Contents

AN5033 - Rev 7 page 34/35

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

AN5033

AN5033 - Rev 7 page 35/35

http://www.st.com/trademarks

	1 Reference documents
	2 STM32CubeH7 examples
	Revision history

