FUJIFILM

FC1

User Guide

Manufacturer	EC Authorized Representative	<u>Australia Sponsor</u>
FUJIFILM SonoSite, Inc.	FUJIFILM SonoSite B.V.	FUJIFILM SonoSite Australasia Pty Ltd
21919 30th Drive SE	Joop Geesinkweg 140	114 Old Pittwater Road
Bothell, WA 98021 USA	1114 AB Amsterdam,	BROOKVALE, NSW, 2100
T: 1-888-482-9449 or 1-425-951-1200	The Netherlands	Australia
F: 1-425-951-1201		

Caution

United States federal law restricts this device to sale by or on the order of a physician.

CE 2797

SonoSite and the SonoSite logo are registered and unregistered trademarks of FUJIFILM SonoSite, Inc. in various jurisdictions.

DICOM is a registered trademark of the National Electrical Manufacturers Association.

All other trademarks are the property of their respective owners.

Part Number: P18536-07

Publication Date: June 2019

Copyright $\ensuremath{^\odot}$ 2019 FUJIFILM SonoSite, Inc. All Rights reserved.

Chapter 1: Introduction

Conventions	.1
Customer comments	.1
Open-source software	.2

Chapter 2: Getting Started

S.

Z Ш

N N N N

About the system	3
System controls	5
Screen layout	8
Touch panel	8
Preparing the system	9
Installing or removing the battery	10
Using AC power and charging the battery	11
Turning the system on or off	12
Logging in as a user	13
Urgent log in	13
Logging out	14
Waking up the system from sleep mode	14
Sorting a list	14
Entering text	15
Control panel	16
Preparing transducers	16
Connecting and removing transducers	18
Basic operating steps	18
Intended uses	19
Abdominal imaging applications	19
Cardiac imaging applications	20
Gynecology and infertility imaging applications	20
Interventional imaging applications	20
Pediatric and neonatal imaging applications	20
Superficial imaging applications	20
Vascular imaging applications	20

Chapter 3: System Setup

Security	21
About login permissions	
Adding and managing user accounts	22

Exporting exan	n data	25
Disposal		25
Specifying notificat	on and Doppler volumes	25
Setting the trackbal	I speed	26
Display setting		27
Power Setting: Conf	iguring power conservation	28
Configuring Store b	uttons	29
Configuring archivi	ng (image export)	32
Assigning functions	to function buttons	34
Defining the input of	of patient information	36
Configuring examin	ation image appearance	37
Configuring periphe	eral devices	40
Adjusting print	er settings	40
Adjusting foot-	switch settings	41
Barcode reader	and magnetic card reader setting	42
Specifying network	settings	43
Server connect	ion settings	44
Specifying DIC	OM settings	45
DICOM MWL se	tting	46
DICOM storage	operation	48
Setting timing	for DICOM network storage	50
Calibrating the disp	lay	50
Enabling automatic	image deletion (Data Configuration)	51
Database optimizat	ion	52
Output queue	(examination/image) operation	
(Output Manag	e)	53
Positioning the bod	y-mark display	53
Managing annotation	on lists	54
Managing measure	ment functions	56
Configuring me	easurements for all modes	56
	node default measurement tools	57
Specifying the	CF-mode or the M-mode default measurement	
tool		58
Configuring PV	I/CW/TDI-mode measurements	59
	eset-specific measurements	60
Setting Auto IN	IT (intima-media thickness) measurement	
(Optional)		61
	ings for examination types	
Assigning a fur	ction to the FREEZE button	63
Selecting the d	efault annotation type	63
	r-made annotation lists	
Selecting the p	riority cursor for steer-link priority	64

0	7
H	
Ż	2
C	5
C	5

Selecting the area for applying sound-speed compensation	б4
Starting the electrocardiogram automatically	
Selecting the standard of acoustic output	
Setting the calculation unit	
Setting Priority/Preset for each transducer	
Configuring examination defaults (Exam Type Setting)	67
Changing examination information display settings	
(Exam Type Format)	68
Changing patient information display settings	69
Restart setting (reexamination setting)	
Backing up and restoring presets	
Backing up and restoring presets	71
Backing up and restoring system settings	72
Backing up and restoring the Patient Log	
Resetting user configuration	74
Formatting the USB memory	75
Using USB memory	76
Inserting a USB memory	76
Removing a USB memory	77
Formatting the SSD	77
Viewing system information	77
Changing site information settings	78
Setting the system date and time	78
Setting the date and time display formats	79
Setting the language to display	79
Setting the login method for the FC1	80
Setting the license	80
Logs	81
Setting log acquisition	81
Setting audit log acquisition8	82

Chapter 4: Imaging

Getting familiar with the examination screen	
Information in the header	
Information in the footer	
Imaging modes	
2D mode	
M mode	
CD and PD modes	
PW, CW, and TDI modes	105

2	
	2
	こう

Controlling the image	
Showing or hiding data on the monitor	110
Magnifying the image	111
Adjusting the depth and gain of the image	111
Setting the sound speed	112
Setting the sweep speed	112
Setting the transmission frequency	113
Setting the transmission-output level	113
Raising or lowering the emphasis of edges	
Raising or lowering the level of sharpness	114
Adjusting image tone	114
Adjusting persistence	114
Setting the range of contrast	114
Setting the focus depth	115
Setting the color scale	115
Setting the filter cutoff frequency	116
Optimizing the image	116
Sizing mode images relative to each other	
Examination procedures	
Imaging modes and exams available by transducer	
Entering patient information	
Patient information fields	
Obtaining patient information by bar code or card reader	
Entering examination information	
Precautions before starting an exam	
Opening a patient's existing record from Patient Log	
Opening an existing examination record from USB memory	
Starting an examination from the DICOM work list	
Deleting patient information from the DICOM worklist	
Starting an examination from the Patient Log screen	137
Starting an examination from patient information	
(Optional, Japan only)	
Starting an examination from orders (Optional, Japan only)	
Restarting an examination	
Working with the Patient Log screen	
Finding patient records in the Patient Log screen	
Acquiring logs	
Deleting logs	
Editing patient examination records	
Deleting patient examination records	
Working with the Examination List screen	
Obtaining patient information from USB memory	145

S	
Ż	
E	
6	
Ö	

Selecting the preset	.146
Displaying or hiding a preset	.146
Working with imaging presets	.147
Selecting a transducer	
Precautions when connecting or disconnecting a transducer	.153
Viewing in Dual-screen mode	
Controlling the display of images in Dual-screen mode	
Viewing in Simultaneous Dual-screen mode	.158
Using the M or D cursor	
Viewing the ECG waveform display	
The ECG waveform and display formats	.160
Displaying and configuring the ECG waveform	
Performing cine search while the ECG waveform is on-screen	.162
Using triplex mode	.162
Performing a needle procedure	.163
Preparing for a needle procedure	.164
Needle procedure precautions	.164
Verifying the needle path	.165
Using the needle guide	.169
Needle profiling (Optional)	.171
Using Cine mode	.172
Cine search	.172
Annotating images	.174
Creating text annotations	.175
Closing the annotation screen	.180
Displaying annotations	.181
Using body marks	.181
Displaying a body mark	
Selecting body marks registered in a preset	.183
Closing the Body Mark screen	.183
Switching the TI type	.183
Playing clips back	.184
Displaying a raw-data image	.184
Deleting raw-data images	.186
Transferring images via a network	.186
Printing images	.187
Working with archived examinations and their images	.188
The Archive screen and controls	
Selecting archived examinations	
Locking archived examinations	
Exporting archived examinations	
Deleting archived exams	
-	

Viewing archived exam images	191
Deleting an archived raw-data image	192
Printing archived images	
Moving archived examinations over a network	194
Storing examination images	195
Reviewing examination images	
Deleting images	197
Printing exam images	
Managing the output queue of examinations and images	
Changing the transfer destination	
Changing printers	202
Deleting an examination or image from the queue	
Exporting examination data	203
Importing examination data	
Using a USB keyboard	
Ending an examination	209

Chapter 5: Measurements and Calculations

Measurement overview	211
User interface for measurement	212
Built-in measurement functions	214
Measurement operation overview	214
Measuring at points	216
Trace	223
Figure	226
Line	231
Auto Trace	233
Measurement using auxiliary lines	234
Deleting measurement tools	236
Setting and using the Set and Next button	237
Using the Set Default button	237
Specifying settings	238
Basic measurement	238
Functional overview	238
Measurement results display	243
2D mode	246
CD mode	258
M mode	260
D mode	263
Settings	274

S E

2

Normal States of the second se

Calculation formula	274
Abbreviations	278
Cardiac measurement	279
Functional overview	279
Cross-sectional views for measurement	284
Built-in measurement functions	287
Specifying the measures that are visible on CALCS tabs	302
All modes: Accessing the cardiac measurement tabs	303
All modes: Deleting measurements	303
2D (B) mode	303
M mode	315
D mode	320
Aortic stenosis	334
Aortic regurgitation	337
Mitral stenosis	344
Mitral regurgitation	350
Pulmonic regurgitation	355
Tricuspid valve flow	357
Tricuspid regurgitation	359
Qp/Qs	360
MPI (Myocardial Performance Index)	363
Worksheet/Report	365
Terms and abbreviations	367
Vascular measurement	373
Mode measurement functions	374
Built-in mode measurement functions	375
2D (B) mode	
Auto IMT (intima-media thickness) measurement (Optional)	403
D mode	
Measurement of upper and lower extremity artery	
Measurement of upper and lower extremity venous	
Vascular worksheet and report	
Abdominal Measurement	416
Functional Overview	
Built-in Measurement Functions	418
2D mode	
D-mode	
2D mode	436
Worksheet/Report	
Terms and Abbreviations	
Urological Measurement	
Functional Overview	442

S

North Strength Streng

Built-in Measurement Functions	
2D mode	
D-mode	454
Worksheet/Report	456
Terms and abbreviations	

Chapter 6: References for Measurement Accuracy

61
63
63
63
73
74
+ +

Chapter 7: Troubleshooting and maintenance

Troubleshooting
System does not turn on477
System image quality is poor477
There is no CPD image477
There is no color image478
There are no measurement selections478
Printing does not work478
System does not recognize the transducer
System does not mount the USB memory
System does not accept the data imported from USB
The external video is not working479
Patient information cannot be edited during examinations479
Patient information cannot be edited after examinations
Edited patient information is not reflected to the image
Barcode cannot be read correctly480
Patient information link with C@RNACORE cannot be used486
Order link with C@RNACORE cannot be used
When using order link with C@RNACORE, the examination
cannot be started with the transducer I want to use
Software licensing487
Maintenance

S

Z Ш

Normal States of the second se

Chapter 8: Cleaning and disinfecting

Before getting started	
Determining the required cleaning and disinfecting level	
Spaulding classifications	
Clean and disinfect system and transducer to a high level	
(semi-critical uses)	
Clean and disinfect system and transducer to a low level	
(non-critical uses)	
Storing the transducer	
Transporting the transducer	
Accessories	501

Chapter 9: Safety

S

 \mathbf{Z}

N N N N N

Ergonomic considerations	507
Positioning the system	
Positioning yourself	509
Taking breaks, exercising, and varying activities	510
Electrical safety	510
Electrical safety classification	514
Equipment safety	515
Battery safety	516
Clinical safety	518
Hazardous materials	519
Electromagnetic compatibility	519
Electrostatic discharge	521
Separation distance	
Compatible accessories and peripherals	522
Guidance and manufacturer's declaration	525
Immunity testing requirements	528
Labeling symbols	528
The label position on the FC1 system	532
Specifications	532
Dimensions	532
Environmental limits	533
Electrical specifications	533
Battery specifications	534
Standards	534
Electrical safety standards	

EMC standards classification	534
Acoustic standards	534
Biocompatibility standards	535

Chapter 10: Acoustic Output

ALARA principle	537
Applying the ALARA principle	537
Direct controls	538
Indirect controls	539
Receiver controls	539
Acoustic artifacts	539
Guidelines for reducing MI and TI	539
Output display	540
MI and TI output display accuracy	540
Factors that contribute to display uncertainty	540
Related guidance documents	541
Transducer surface temperature rise	541
Acoustic output measurement	542
In situ, derated, and water value intensities	
Tissue models and equipment survey	543
Acoustic output tables	544
Terms used in the acoustic output tables	601
Acoustic measurement precision and uncertainty	602
Terms	603
Abbreviations	605

Chapter 11: IT network

Functions	615
Network for connecting the device	615
Specification for the connection	615
Hardware specification	615
Software specification	615
Security	616
Data flow	616
Measures when failures occur in IT networks	617
Warnings and cautions for IT networks	618

S

No States and States a

Chapter 1: Introduction

This user guide provides information on preparing and using the FC1TM ultrasound system and on cleaning and disinfecting the system and transducers. It also provides references for calculations, system specifications, and safety and acoustic output information.

The guide is intended for a reader who is familiar with ultrasound technique and who has received training in sonography an clinical practices. Before using the system, you must receive such training.

See the applicable FUJIFILM SonoSite accessory user guide for information on using accessories and optional items. See the manufacturer's instructions for specific information about peripherals.

Conventions

Т

The document follows these conventions:

- A WARNING describes precautions necessary to prevent injury or loss of life.
- A Caution describes precautions necessary to protect the products.
- A Note provides supplemental information.
- Numbered and lettered steps must be performed in a specific order.
- Single-step procedures begin with this symbol: *.
- > Items in bulleted lists do not need to be performed in sequence.

Customer comments

Questions and comments are encouraged. FUJIFILM SonoSite is interested in your feedback regarding the system and the user guide. Please call FUJIFILM SonoSite at 888-482-9449 in the U.S. Outside the U.S., call the nearest FUJIFILM representative. You can also email FUJIFILM SonoSite at comments@sonosite.com.

For technical support, contact FUJIFILM SonoSite as follows.

Phone (U.S. or Canada)877-657-8118Phone (Outside U.S. or
Canada)425-951-1330, or call your local representative

Fax	425-951-6700
E-mail	ffss-service@fujifilm.com
Web	www.sonosite.com
Europe Service Center	Main: +31 20 751 2020
	English support: +44 14 6234 1151
	French support: +33 1 8288 0702
	German support: +49 69 8088 4030
	Italian support: +39 02 9475 3655
	Spanish support: +34 91 123 8451

Open-source software

This product uses third party's software that is made available as open source software or free software. This software is provided "as is" with no warranty of any kind as to its merchantability or fitness for any particular purpose. For information on open source software used in this product, please see the attached CD. If you would like to obtain a copy of the source code, please contact FUJIFILM SonoSite Technical Support.

Note

FUJIFILM has successfully performed verification and validation testing on all third party software and has confirmed its suitability to be used in the FC1 system.

Chapter 2: Getting Started

About the system

The FC1 ultrasound system is a portable, software-controlled device using all-digital architecture. The system has multiple configurations and feature sets used to acquire and display high-resolution, real-time ultrasound images. Features available on your system depend on your system configuration, transducer, and exam type.

A license key is required to activate the software. For more information, see "Software licensing" on page 487.

Figure 2-1: System Front Features

- 1 Control panel 2 Display
- 3 USB ports
- 4 Handle

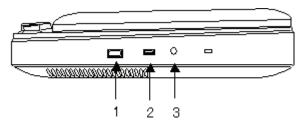


Figure 2-2: System Side Connectors

- 1 USB port 2 ECG
- **3** Earphone port

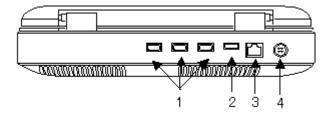
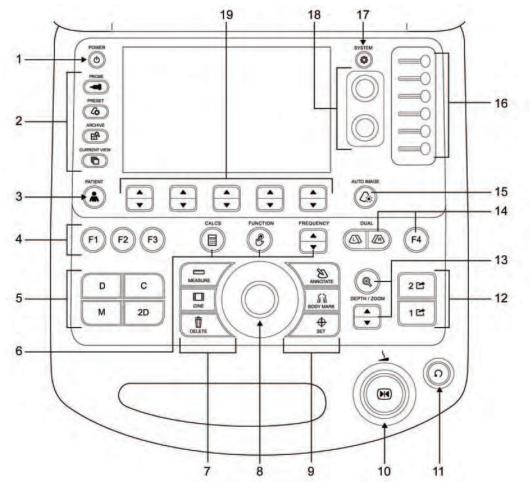
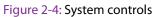




Figure 2-3: System Back Connectors

- 1 USB port
- 2 HDMI port
- 3 LAN port
- **4** Power connector

System controls

Table 2-1: System controls

	Control	Used for
1	POWER button	Turning on/off FC1

Table 2-1: System controls

	Control	Used for	
2	Menu buttons		
	PROBE button	Selecting the transducer.	
	PRESET button	Selecting the preset.	
	ARCHIVE button	Storing the image stored at past examinations.	
	CURRENT VIEW button	Viewing any images that have been stored in the current examination.	
3	PATIENT button	Toggling between the Patient Info screen and the examination screen.	
4	F-key (F1, F2, F3)	Carrying out a function assigned by the user.	
		For details on how to assign functions to the function buttons, see "Assigning functions to function buttons" on page 34 .	
5	Mode buttons		
	2D button	Activating 2D mode.	
	c button	Activating and deactivating the Color Doppler (CD) mode.	
	D button	Activating and deactivating the Pulsed Wave Doppler (PW) mode.	
	M button	Activating and deactivating the M mode.	
6	CALCS button	Performing measurements that are specific to a preset.	
	FUNCTION button	Selecting a trackball function from:	
		M/D cursor motion, Cine Search scroll, Caliper motion, Body Mark motion, Annotation motion, and ROI Zoom motion	
	FREQUENCY button	Specifying the transmission frequency of the 2D (B) mode.	
		In CD, PD, PW, CW, and TDI (PW) modes, this button toggles to the function to change the scale in PRF (pulse repetition frequency).	
7	MEASURE button	Displaying the dynamic caliper or calculation menu (for frozen images).	
		Pressing this button twice in succession in the PW mode activates the Auto-Dop Trace function.	
	CINE button	Activating the Cine mode to perform cine playback.	
	DELETE button	Correcting measurement results during measurement.	
8	Trackball	Moving the cursor, defining the size/position of ROI, positioning the measurement tools, etc.	

Table 2-1: System controls

	Control	Used for
9	ANNOTATE button	Entering arrows and annotations.
	BODY MARK button	Displaying or hiding the body patterns for the current examination.
	SET button	Selecting a function.
10	FREEZE button	Halting active imaging to display a frozen image on the screen.
	GAIN dial	Adjusting the gain of each screen mode.
11	Multi dial	Selecting from the following functions: Finely adjusting the Doppler angle in the PW mode. Rotating the transducer mark on each body pattern. Rotating the Arrow annotation mark. Deleting the trace line.
12	Store buttons	Storing or printing the ultrasound image currently displayed. For details on the setting of the STORE buttons, see "To configure Store buttons" on page 30.
13	DEPTH/ZOOM button	DEPTH: Changing the imaging depth of the display. ZOOM: Magnifying the image.
14	L button/ R button	Activating the Dual screen mode and switching the active image.
	F4 button	Selecting a function assigned by the user.
		For details on how to assign functions to the function buttons, see "Assigning functions to function buttons" on page 34.
15	AUTO IMAGE button	Enabling the image (brightness and resolution) optimization function.
16	DGC (Depth Gain Control) keys	Adjusting the gain for each depth of field.
17	SYSTEM button	Displaying the system configuration on the touch panel.
18	Dial menu buttons	Adjusting certain touch panel menu items.
19	Switch menu buttons	Each button corresponds to a function menu on the touch panel

Screen layout

Following are instructions on how to use and modify elements of the unit such as the touch panel, lists, and changes you can make to keyboard functions.

Touch panel

Activate a function by tapping its button on the touch panel. The way that you operate the button depends on the type of the button.

To select a function, tap the function's button on the touch panel. The display may change to show that the function is active. For instance, some buttons acquire a small orange dot when you select them. When you tap the function again, the display shows that the function is no longer active.

If the function has a submenu, tapping the function's touch-panel button opens the submenu. If the submenu has multiple pages, you can navigate among the pages by tapping switch-menu button 4 (the rocker button under **Page**).

To make the submenu disappear, tap Cancel.

For details about using a function, see the description of each function.

Note

If a button displayed on the touch panel is gray, the button is disabled—that is, it is unavailable and you cannot select it.

While the submenu screen is visible, only the power button, DGC (depth-gain compensation) key, Store button, and a function button to which the image storage function is assigned are enabled.

Touch panel controls and dial menu buttons

Certain functions are associated with dial buttons. Use the menu dial buttons to change the functions that are associated with dial buttons.

To reset the value of functions with dial buttons

- 1 If the function that you are interested in is not active, tap it to make it active.
- **2** To change the function's value, turn the dial button.

Note

If there is no item beside the dial menu buttons on the right side of the touch panel, then none is available to assign to either button.

Touch panel controls and switch menu buttons

Certain functions are associated with switch menu buttons. The switch menu buttons are numbered, from left to right, 1 through 5. Use the switch menu buttons to change the values of the functions that are associated with them.

To change the value of functions with switch menu buttons

- 1 If the function that you are interested in is not active, tap it to make it active.
- 2 To change the function's setting, press the top or bottom of the button.

Note

If there is no item above the switch menu buttons, then none is available to assign to either button.

Common operations on list screens

This section explains operations that are carried out on screens such as the Archive screen.

Table 2-2: What the touch panel buttons do

Touch panel button	What it does
Select All	Tapping Select All toggles between selecting all the items in the list and clearing all the selections.
First/Last	Pressing the upper side of switch menu button 1 (under First/Last) displays the first page of the list. Pressing the lower side displays the last page.
L/R Scroll	Pressing the upper side of switch menu button 2 (under L/R Scroll) scrolls the display to the right. Pressing the lower side scrolls the display to the left.
Page	Pressing the upper side of switch menu button 3 (under Page) displays the previous page. Tapping the lower side displays the next page.

Preparing the system

Caution

To reduce the risk of tripping, do not allow the power cord to intrude into walkways or workspaces.

The FC1 system requires that the battery be installed and charging before you use it.

Installing or removing the battery

	To avoid injury to the operator and to prevent damage to the ultrasound system, inspect the battery for leaks before installation.
WARNING	To avoid data loss and to conduct a safe system shutdown, always keep a battery in the system.
	For more information, see "Battery safety" on page 516.
Caution	Before using the ultrasound system, make sure the battery is installed.

To install the battery

- 1 Disconnect the power supply from the ultrasound system.
- 2 Turn the system upside down.
- 3 Place the battery into the battery compartment, at a slight angle. See Figure 2-5
- **4** Slide the battery inward until it locks into place.

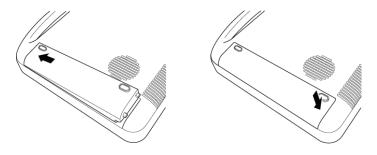


Figure 2-5: Install the battery

To remove the battery

- 1 Disconnect the power supply from the ultrasound system.
- **2** Turn the system upside down.
- **3** Insert your finger into the battery access port.
- **4** Press the battery release button on the side of the battery.
- **5** Lift the battery to remove it.

Using AC power and charging the battery

The battery charges when the system is connected to the AC power supply. A fully discharged battery recharges in fewer than five hours.

The system can run on AC power and charge the battery if AC power is connected to the system (or to the FC series stand to which the system is attached).

The system can run on battery power for up to one hour, depending on the imaging mode and the display brightness. When running on battery power, the system may not restart if the battery is low. To continue working when the battery is low, connect the system to AC power.

When using the system in the United States and running connected to a 240V supply system, connect the equipment using a center-tapped, single-phase supply circuit.

Caution

Verify that the hospital supply voltage corresponds to the power supply voltage range. See "Electrical specifications" on page 533.

During use of the FC1, do not touch the AC adapter, as it becomes and stays very hot, and there is risk of burns.

To operate the system using AC power

Be sure to keep the battery inserted in the system even if the system is connected to the AC power supply.

Caution Install the FC1 in a place where you can easily connect or disconnect the AC power cord. The equipment is not provided with the AC mains power switch. To disconnect the equipment from mains, use the appliance coupler or mains plug on the power supply cord.

- 1 Connect the AC adapter to the power connector on the FC1 system.
- 2 Push the cable in firmly to ensure a secure attachment.
- **3** Connect the AC power cord from the FC1 power supply to a hospital-grade electrical outlet.

Turning the system on or off

WARNING	When opening or closing the monitor of the FC1, take care to not let your fingers be caught between the monitor and the control panel of the FC1.
Caution	 Do not use the system if an error message appears on the display. If you see an error code: 1 Note the error code and turn the system off. 2 Call FUJIFILM SonoSite or your local representative.

The FC1 is powered by either AC or battery power.

The internal battery automatically charges if the AC adapter is connected to the FC1.

Caution Use only with AC adapter provided by FUJIFILM SonoSite, PN P18011

To start the FC1

- 1 Make sure that the FC1 system is connected to a hospital-grade power source or that the battery of the FC1 is fully charged.
- **2** Connect a transducer.
- **3** Press the power button.
- 4 Check the screen display of the FC1.

During initialization of the system, the opening screen appears on the main monitor and the touch panel, and all the buttons on the control panel are lit up.

When initialization has completed:

- The system automatically starts up in 2D-mode.
- A 2D-mode image appears in the image area.
- > The buttons for the 2D-mode appear on the touch panel.

To shut down the FC1

Before you press the power button, make sure that you hear the sound indicating that the saving of data is complete. If you press the power button before you hear the data-save completion sound, the saved data may be erased.

Pay attention since pressing the power button 10 seconds or longer will forcibly shutdown the FC1. If you force shutdown of the system, data inconsistency may result.

Force shutdown should be used only when the FC1 cannot be otherwise shut down.

Press the power button.

Caution

The **Power off** indication appears on the main monitor and the touch panel, the operation of FC1 stops, and then the power is turned off.

Logging in as a user

If login settings are configured, login authentication is required when the system is started, restarted, or woken from sleep mode.

For more information about user privileges and security settings, see "Security" on page 21

For more information about login settings, see "Setting the login method for the FC1" on page 80.

To log in

If login settings have been configured, follow this procedure.

- 1 Start the FC1.
- 2 On the login screen, type the user name and password and tap OK.

Urgent log in

In an emergency, you can use the urgent login feature to log in quickly as a guest and bypass the normal login procedure.

To perform an urgent login

- **1** Start the FC1.
- **2** On the login screen, enter a user name. You are not restricted to specific user names. A password is not required.

3 Tap Emergency.

Caution

Use the urgent login feature only in emergency situations. As an urgent login guest user, you can perform ultrasound scanning and save images and/or clips, but you cannot search or view patient information, or change security settings.

Logging out

You must log out of the FC1 system before another user can log in. You cannot log out during an examination. By default, during sleep mode, the system will log the current user out after a specified period of time. To stop the system from logging out users during sleep mode, see "To set the sleep and shutdown power settings" on page 28 and turn sleep mode to OFF.

For security reasons, remember to log out before turning the system off so that others cannot use your login privileges.

To log out

- 1 Tap [Other].
- **2** Tap [Logout].
- **3** On the confirmation page, tap OK.

The login screen appears

Waking up the system from sleep mode

The system goes into sleep mode if there is no user activity for a preset time. This conserves battery life while the system is on. To adjust the time for sleep delay, see "Power Setting: Configuring power conservation" on page 28.

To wake up the system

Press a key or the touch panel.

Sorting a list

Tapping one of the column names in a list sorts the list based on that column name and toggles between the sort orders: from ascending to descending, or vice-versa.

 \blacktriangleright The \triangle mark displayed next to the column name indicates that the list is sorted in ascending order.

mark indicates that the list is sorted in descending order.

Note

You cannot base the sorting of a list on multiple columns.

Entering text

If you have already typed any characters in the text box, those characters also appear in the text box of the virtual keyboard, and the text cursor shows at the end of the text.

To move the text cursor, tap the position where you want the text cursor to move to.

Note

You cannot type more characters than the maximum number of characters allowed for a given field.

To enter data

- 1 To open the virtual keyboard on the touch panel, do one of the following:
 - Tap in the text box.
 - Tap Keyboard.

The text cursor appears in the text box of the virtual keyboard, and character input becomes available.

2 Type on the virtual keyboard.

As you type characters, they appear in the text boxes of the virtual keyboard and the original screen.

buttons are like the Tab and Alt+Tab keys, respectively, on a physical keyboard: They The move the cursor (and the focus—where your entry will have an effect) from one entry item to the next (or previous).

To move the focus between items in a screen, tap \sim or \sim , according to where you want the focus to go.

Entering the date switches the virtual keyboard to the number or symbol input mode. When entering the date in Japanese format, the date can be entered in the Western calendar format, but also in the Japanese calendar format.

You can enter dates in any of the following three types of date formats (Japanese, American, or European):

- Japanese format: year, month, day
- American format: month, day, year
- European format: day, month, year

To close the virtual keyboard

* Tap Close.

Control panel

As you work with the control panel, you can use the trackball to do the following:

Move the cursor and specify the region of interest (ROI) and the PW gate in an image.

▶ Operate PAN.

You can also assign certain functions to the trackball. To change the functions assigned to the trackball, press the **FUNCTION** button.

Use the mode buttons to switch modes between 2D (B), M, CD, and PW.

For details on each button, see "System controls" on page 5.

For more information on the touch panel, see "Touch panel" on page 8.

Preparing transducers

Acoustic coupling gel is necessary during examinations. Some gels are incompatible with some transducer materials and may cause damage. FUJIFILM SonoSite recommends Aquasonic gel and provides a sample with the system.

Some transducer sheaths contain natural rubber latex and talc, which can cause allergic symptoms, such as itching, reddening, hives, swelling, fever, dyspnea, asthma-like symptoms, drop in blood pressure, and anaphylactic reaction or shock. If you observe such symptoms, stop using the product immediately and take appropriate measures.

WARNING

Some individuals may have an allergic reaction to some gels and sterilants.

To prevent contamination, the use of sterile transducer sheaths and sterile coupling gel is recommended for clinical applications of an invasive or surgical nature. To lessen the risk of contamination, apply the gel and sheath only when you are ready.

CautionTo avoid damage to the transducer, use only gels recommended by FUJIFILM
SonoSite. Using other gels can damage the transducer and void the warranty. If
you have questions about gels, contact FUJIFILM SonoSite or your local
representative.CautionFUJIFILM SonoSite recommends that you clean transducers after each use. For
general use, apply a liberal amount of gel between the transducer and the body.
For invasive or surgical use, apply a transducer sheath.If acoustic coupling gel adheres to the FC1, be sure to wipe it off. If the FC1 is
operated with a liquid such as acoustic coupling gel adhering to it, it may cause
malfunction.

To apply a transducer sheath

Caution

FUJIFILM SonoSite recommends the use of market-cleared, transducer sheaths for surgical applications.

- 1 Place gel inside the sheath.
- 2 Insert the transducer into the sheath.
- **3** Pull the sheath over the transducer and cable until the sheath is fully extended.
- 4 Secure the sheath using the bands supplied with it.
- 5 Check for and eliminate bubbles between the face of the transducer elements and the sheath.

Such bubbles between the face of the transducer and the sheath may affect the ultrasound image.

6 Inspect the sheath to ensure that it has no holes or tears.

Connecting and removing transducers

WARNING	Operate the FC1 system on a FC series stand or on a flat hard surface to allow good airflow below and behind the FC1. Note that the temperature of the FC1 may rise and the system may shut down automatically if no sufficient air intake and evacuation is allowed.
Caution	To avoid damaging the transducer connector, do not allow foreign material to get into the connector.

To connect a transducer

- **1** Disconnect the power supply from the FC1 ultrasound system.
- **2** Turn the system upside down after the monitor is closed.
- **3** Pull the transducer latch up and rotate it clockwise.
- **4** Insert the transducer connector into the system connector.
- **5** Turn the latch counterclockwise.
- 6 Press the latch down, securing the transducer connector to the system.

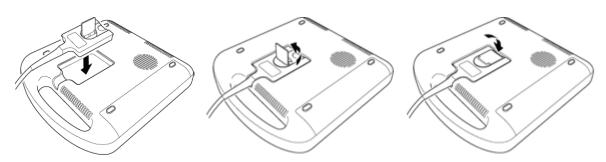


Figure 2-6: Connect the transducer

To remove a transducer

- 1 Raise the transducer latch and rotate it clockwise.
- **2** Pull the transducer connector away from the system.

Basic operating steps

1 Install the battery.

- 2 Attach a transducer.
- **3** Turn the system on after connecting the AC adapter.

For the power switch location, see "System controls" on page 5.

- 4 Press the **PATIENT** button, and enter the required information on the Patient Info screen.
- 5 Press a mode button: 2D (2D mode), M (M mode), C (Color Doppler mode), or D (Pulsed Wave Doppler mode).

Intended uses

The FC1 system is used with a transducer attached and powered by either battery or AC electrical power. The clinician is beside the patient and places the transducer onto (or into, for invasive procedures) the patient's body where needed to obtain the desired ultrasound image.

The system transmits ultrasound energy into the patient's body to obtain ultrasound images, as described below.

For the intended transducer and imaging modes for each exam type, see "Imaging modes and exams available by transducer" on page 119.

FDA clinical indications for use:

- Fetal OB/GYN
- Abdominal
- Intra-operative (Abdominal organs and vascular)
- Pediatric
- Small Organ (breast, thyroid, testicles, prostate)
- Neonatal Cephalic
- Trans-vaginal
- Musculo-skel. (Convent.)
- Musculo-skel. (Superfic.)
- Cardiac Adult
- Cardiac Pediatric
- Peripheral Vessel

Abdominal imaging applications

You can transabdominally assess the liver, kidneys, pancreas, spleen, gallbladder, bile ducts, transplanted organs, abdominal vessels, and surrounding anatomical structures for the presence or absence of pathology.

Cardiac imaging applications

You can assess the heart, cardiac valves, great vessels, surrounding anatomical structures, overall cardiac performance, and heart size for the presence or absence of pathology.

You can also do the following:

- Identify the presence and location of fluid around the heart and lungs, or assist in pericardiocentesis or thoracentesis
- Visualize blood flow through cardiac valves
- Obtain the patient's electrocardiogram (ECG), for timing cardiac events

Do not use an ECG that you obtain by ultrasound to diagnose cardiac WARNING arrhythmias. The FC1 is not designed for long-term cardiac-rhythm monitoring.

Gynecology and infertility imaging applications

You can transabdominally assess the uterus, ovaries, adnexa, and surrounding anatomical structures for the presence or absence of pathology.

Interventional imaging applications

You can use the FC1 for ultrasound guidance in biopsy and drainage procedures, vascular line placement, nerve blocks, and puncture during abdominal, breast, and neurological surgery.

Pediatric and neonatal imaging applications

You can assess the pediatric and neonatal abdominal, pelvic, and cardiac anatomy, pediatric hips, neonatal head, and surrounding anatomical structures for the presence or absence of pathology.

Superficial imaging applications

You can assess the breasts, thyroid, testicles, lymph nodes, hernias, musculoskeletal structures, soft-tissue structures, and surrounding anatomical structures for the presence or absence of pathology. You can use the system for ultrasound guidance in biopsy and drainage procedures, vascular line placement, peripheral nerve blocks, and spinal nerve blocks and taps.

Vascular imaging applications

You can assess, for the presence or absence of pathology, the carotid arteries, deep veins and arteries in the arms and legs, superficial veins in the arms and legs, great vessels in the abdomen, and various small vessels that feed organs.

Chapter 3: System Setup

You can configure FC1 system settings (for example, system date and time, power conservation, settings for measurement functions, presets, trackball sensitivity, and defaults such as initial examination types) that affect how you use the system.

Caution

When an examination is being performed (with a patient ID already registered), or when a large amount of data is stored in the output queue, and if you are logged in to the FC1 as a user, some settings are disabled. In addition, note that some settings are not reflected immediately.

Security

Caution

Healthcare providers who maintain or transmit health information are required by the Health Insurance Portability and Accountability Act (HIPAA) of 1996 and the European Union Date Protection Directive (95/46/EC) to implement appropriate procedures: to ensure the integrity and confidentiality of information and to protect against any reasonably anticipated threats or hazards to the security or integrity of the information or unauthorized users or disclosures of the information.

The **Security** page includes security settings that help you to meet the applicable security requirements listed in the HIPAA standard. Users are ultimately responsible for ensuring the security and protection of all electronic protected health information collected, stored, reviewed, and transmitted on the system.

About login permissions

There are two types of user accounts: Admin and User.

▶ Admin - A user that has been given administrator privileges. Admins are allowed access all functionality and patient/examination data without any restriction.

Caution

To protect patient and examination data, only assign Admin privileges to appropriate personnel and according to operational needs.

• User - Not allowed to edit or delete patient/examination data. The security settings and system settings that impact application behaviors cannot be accessed.

In addition, there is the default **Administrator** account that cannot be deleted or changed. Someone logged in to the Administrator account can perform the following tasks:

- All of the functions of a user Admin.
- Add users.
- Change the privilege level of any other user account.
- Change the password of any other user account.
- Delete any other user account.

Only the default Administrator account can change the security settings for other users.

Adding and managing user accounts

Access privileges are restricted by the user account type. Before creating or changing user accounts, determine the amount of access you want the user to have.

You can add up to 20 user accounts in the FC1 system (including the default Administrator account).

To add a new user

1 Log in to the default Administrator account.

The User Setting screen appears.

- **3** On page 3/4, tap **Security**. The **Security** screen appears.
- 4 Tap Login User. The Login User Setting List screen appears.
- 5 Tap a blank list item, and then tap Edit.

- **6** Enter information in the following fields:
 - User Name
 - User Password
 - User Password (Confirm)
- 7 If you want this user to have administrative privileges, select Admin.
- 8 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Note

• User names should be between 3 and 15 characters.

Passwords should be between 6 and 15 characters

To edit user settings

- **1** Log in to the default Administrator account.
- 2 Press the SYSTEM button (

The User Setting screen appears.

- **3** On page 3/4, tap **Security**. The **Security** screen appears.
- 4 Tap Login User. The Login User Setting List screen appears.
- 5 Tap a user name, and then tap Edit.
- **6** Change the following information as necessary:
 - User Name
 - User Password
 - User Password (Confirm)
- 7 If you want this user to have administrative privileges, select Admin.

8 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

To delete a user

- 1 Log in to the default Administrator account.
- 2 Press the SYSTEM button (

The User Setting screen appears.

- **3** On page 3/4, tap **Security**. The **Security** screen appears.
- 4 Tap Login User. The Login User Setting List screen appears.
- 5 Tap a user name, and then tap Delete.
- **6** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

To change a user password

- **1** Log in to the default Administrator account.
- 2 Press the SYSTEM button (

The User Setting screen appears.

- 3 On page 3/4, tap Security. The Security screen appears.
- 4 Tap Login User. The Login User Setting List screen appears.
- 5 Tap a user name, and then tap Edit.
- **6** Change the following information:
 - User Password
 - User Password (Confirm)

7 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Exporting exam data

You can export examination data saved in the FC1 system internal storage to a USB memory. When exporting exam data, observe the following:

- USB memory should have data security functionality.
- Use proper security measures to protect patient information, such as using secure passwords and storing in a secure location.

When using an unencrypted USB memory to store patient information, do not leave the memory unattended, and erase the data securely when you are finished using it. For more information about exporting exam data, see "Configuring archiving (image export)" on page 32.

Disposal

You are responsible for protecting any patient information stored on the FC1 system before it leaves the custody of your organization. When disposing of the FC1 system, or when transferring ownership, be sure to perform the following operations to delete all internal data:

- ▶ Restore the factory settings. See "Resetting user configuration" on page 74
- > Delete the audit log. See "Setting audit log acquisition" on page 82
- > Delete the user logins. See "To delete a user" on page 24

Specifying notification and Doppler volumes

You can set the volume for the following:

- Beeps (sounds when you save an image)
- Alarms (sounds when an error occurs or a warning message appears)
- Doppler

To adjust the volume settings

The User Setting screen appears.

- 2 On page 1/4, tap Device. The Common Setup screen appears.
- 3 Tap Volume Setting. The Volume Setting screen appears.
- **4** To change the beep volume or the alarm volume:
 - **a** Tap the green right-arrow virtual button (**IDD**) for either **Beep Volume** or **Alarm Sound**.
 - **b** On the **Beep Volume** or **Alarm Sound** screen that appears, do one of the following:
 - Tap **OFF** to mute the beep or alarm.
 - > Tap Low, Mid, or High to set the volume level of the beep or the alarm.
- **5** To adjust the Doppler volume, tap the left- or right-arrow virtual buttons (or) at the right of Doppler Volume.

You can set the Doppler volume from 0 to 100.

6 Tap OK to save the settings.

Press the SYSTEM button to return to the examination screen.

Setting the trackball speed

You can set the following aspects of responsiveness to rotation of the trackball:

- The vertical and horizontal speed of the cursor
- The speed of 2D and Strip Cine search movement

To set the trackball speed

1 Press the SYSTEM button (

- 2 On page 1/4, tap Device. The Common Setup screen appears.
- **3** Tap **Trackball Config**. The **Trackball Config** screen appears.
- 4 To increase or decrease the trackball sensitivity, tap the left- or right-arrow virtual buttons (or) for any of the following.

The range for each aspect of trackball sensitivity is 1 - 100. Decreasing the value makes the trackball more sensitive to movement.

Up/Down

Vertical operation of the trackball.

Left/Right

Horizontal operation of the trackball.

Cine Search (2D)

Cine loop review of 2D images.

For more information on Cine and Cine search, see "Using Cine mode" on page 172.

Cine Search (Strip)

Cine loop review of strip image.

5 Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Display setting

You can set the brightness level of the monitor and touch panel of the FC1, ECO mode, power settings, and test pattern printing. (ECO mode is a power-saving setting.)

To change brightness levels and power and ECO mode settings

1 Press the SYSTEM button (

The User Setting screen appears.

2 On page 1/4, tap Device. The Common Setup screen appears.

- 3 Tap Display. The Display screen appears.
- 4 To set the brightness of either the larger monitor or the touch panel, to the right of, respectively, Main Monitor Brightness or Touch Panel Brightness, tap either the right- or left-arrow virtual button (or).

You can set the brightness level from 1 to 10.

Note

You can set Main Monitor Brightness and Touch Panel Brightness only when Economy Mode Setting is set to OFF.

- **5** To enable the ECO mode, make sure that the **ON** virtual button to the right of **Economy Mode Setting** is selected (orange). To disable the ECO mode, make sure that the **OFF** virtual button is selected.
- **6** To use the AC power supply in the normal power supply connection mode, make sure that the **Normal** virtual button to the right of **External Power Connection** is selected. To use AC power supply in the ECO mode, tap **Economy**.

You can set External Power Connection only when Economy Mode Setting is set to ON.

7 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Power Setting: Configuring power conservation

Use the power settings (Sleep Timer with Battery, Sleep Timer with AC Power, Shutdown Timer with Battery, and Shutdown Timer with AC Power) to conserve power by controlling when the system goes into sleep mode (temporary suspension of the system) and/or shuts down entirely. With these settings, you specify, for either battery or AC power:

- > Whether the system automatically goes into sleep mode and/or shuts down
- > If you specify automatic power conservation, after how long a period of inactivity it occurs

To set the sleep and shutdown power settings

- 2 On page 1/4, tap Device. The Common Setup screen appears.
- 3 Tap Power Setting. The Power Setting screen appears.

- 4 To configure the Sleep Timer with Battery, Sleep Timer with AC Power, Shutdown Timer with Battery, and Shutdown Timer with AC Power settings:
 - **a** Make sure that the **ON** virtual button is selected (orange).
 - **b** To set the amount of idle time before the FC1 enters the sleep mode or shuts down, tap the right- or left-arrow virtual button (or) for the appropriate setting.

The possible ranges for these settings are:

- Sleep Timer with Battery and Sleep Timer with AC Power: 1 to 60 minutes
- > Shutdown Timer with Battery and Shutdown Timer with AC Power: 1 to 120 minutes
- c To disable sleep mode or automatic system shutdown for a particular source of power, tap OFF.
- **5** To change the **Shutdown Timer with AC Power** setting (the shutdown setting when the system is running on AC power):
 - a Press the down arrow on switch menu button 4 (the rocker button beneath Page).
 - **b** Change settings as for the other power settings.
- **6** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Configuring Store buttons

You can assign functions to two Store buttons, including the function that stores or prints images on the FC1 to a Store button.

You can also configure the Store3 button so that its function is assigned to one of the function (F1, F2, F3, and F4) buttons.

For information on assigning functions to the function buttons, see "Assigning functions to function buttons" on page 34.

Caution

Before you try to store images in the DICOM network storage device, make sure that the status icon (network icon) display is valid.

To configure Store buttons

The User Setting screen appears.

- 2 On page 1/4, tap Store. The Common Setup screen appears.
- **3** Tap the button to which you want to assign a function:
 - Store 1
 - Store 2
 - Store 3

You can assign functions only for the number of buttons displayed in the Store screen.

- 4 In the Raw Data row, decide whether you want this button's function to store raw data or not and select the ON or OFF virtual button (orange), accordingly.
- **5** To specify whether the button captures live stills (single frames) or clips (video sequences), in the Live Capture row, tap one of the following:
 - Still

When you press the Store button, the system captures a snapshot (a single frame) of the live ultrasound image.

The system either stores the image in the FC1's internal storage media or prints it, according to your settings.

Clip

When you press the Store button, the system captures a real-time sequence (clip) of the live ultrasound image and/or during cine playback and stores it in the FC1's internal storage media. For clips of an ECG display, set the duration with the **Beat** setting.

Note

The Beat setting is effective only when a live image is displayed. When you store a clip during cine playback, make sure that Beat is set to OFF.

- **6** To set the duration of captured clips:
 - When using the time other than ECG displays:

In the **Clip Time** row, tap the right- or left-arrow virtual button (

Setting duration is available only when, for Live Capture, you have selected Clip. The valid range is between 2 seconds and 60 seconds.

In the **Clip Type** row, tap [DICOM] or [AVI] to set the storage format of the clip (except the format of the ECG display).

Clips in the AVI format exported to USB memory cannot be imported to the FC1.

Clips in the AVI format cannot be stored in the DICOM network storage device. If you select AVI and tap OK, a message appears indicating that the clip cannot be stored.

Even when the AVI format is selected, if a still image is stored while the image is frozen, the still image is stored in DICOM format.

For ECG displays, to select the number of heartbeats to be recorded when the ECG waveform appears:

In the **Beat** row, tap the right-arrow virtual button (

- i In the **Beat** selection screen, tap a button to select from one to five heartbeats.
- ii To set the duration of the clip according to the Clip Time setting, tap OFF.

When storing heartbeat images, do not perform image adjustments. Otherwise the images cannot be stored.

Caution

Caution

When you specify the number of heartbeats with this setting, the maximum duration of the clip is 5 seconds. For this reason, image data for the specified number of heartbeats cannot be stored.

- 7 To store ultrasound images on the DICOM server:
 - a In the Network Output row, tap the right-arrow virtual button (
 - **b** On the Network Output selection screen, tap DICOM Server.

To store images on the DICOM Server, the system must be connected to it; to *not* store the images on the DICOM server, tap **Disable**.

- **8** To specify whether to use a printer, and whether to print in black-and-white or color:
 - **a** In the Use Printer row, tap the right-arrow virtual button (
 - **b** On the **Use Printer** selection screen, tap one of the following:

- **B&W**, to use a black-and-white printer
- Color, to use a color printer
- Disable, to not print images
- **9** To set JPEG compression quality:
 - a Tap Store.
 - **b** Tap AVI.
 - c Tap the right- or left-arrow virtual button (set the image quality of the clip in the AVI format.
 - d Tap OK to save the setting. Note: if you set a smaller value, the compression rate increases, although the image quality is degraded.
- 10 Tap OK to save the settings.

Configuring archiving (image export)

You use the archive settings to specify the following for images that you export to a USB memory for archiving:

- The image file formats and color settings
- Whether patient information is attached to the image and, if so, how you create the information

Caution

Although you can reduce image file sizes by compressing images, image compression degrades the image quality.

To select file-format and color settings for archived images

1 Press the **SYSTEM** button

- 2 On page 1/4, tap USB Image Export. The Common Setup screen appears.
- 3 Tap Export Config. The Export Config screen appears.
- 4 To select the file format of still images:

- a Tap the right-arrow virtual button (
- **b** Tap the desired file format: **DICOM**, **TIFF**, or **JPEG**.
- c With JPEG selected, to set the image quality of JPEG images, tap the right- or left-arrow virtual button (▲ or ▲) at the right of JPEG Compression Quality.

The range of possible compressions is 80% to 100%.

When you specify the TIFF or JPEG file format, the system also stores images in the DICOM format.

- 5 To specify the image quality for DICOM still images and for DICOM videos (DICOM clip images):
 - a Tap Tap to the right of DICOM Still Image Syntax or DICOM Clip Image Syntax, respectively.
 - **b** For each, tap one of the following compression levels:
 - Implicit VR Little Endian
 - Explicit VR Little Endian
 - JPEG Lossy
 - RLE Lossless
 - c Tap Close.
- 6 To access the next page of settings, press switch menu button 4 (the rocker button under Page).
- 7 To specify the image quality for the secondary capture image:
 - a Tap to the right of DICOM SC Image Syntax.
 - **b** In the **DICOM SC Image Syntax** box, tap either of the following:
 - Implicit VR Little Endian
 - Explicit VR Little Endian
 - c Tap Close.
- 8 To choose a color setting for storing images:
 - **a** Tap **I** to the right of **DICOM Color Setting**.
 - **b** In the **DICOM Color Setting** box, tap one of the following:

- RGB (Pixel)
- RGB (Plane)
- c Tap Close.
- **9** Tap **OK** to save the settings.

To specify patient info to be attached to archived images

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 1/4, tap USB Image Export. The Common Setup screen appears.
- **3** Tap Export Config. The Export Config screen appears.
- 4 To access the next page of settings, press switch menu button 4.
- 5 To de-identify the patient's personal information before exporting images, beside De-identify Patient Information, tap ON; to keep patient information with the exported images, tap OFF. Note that, to export files to a USB memory, De-identify Patient Information must be set to OFF; patient identity is displayed in the file that results.
- 6 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Assigning functions to function buttons

The FC1 has four function buttons. You can assign a function of your choice to each one.

To specify the function button settings

The User Setting screen appears.

2 On page 1/4, tap UI. The Common Setup screen appears.

- 3 Tap F-key Config. The F-key Config screen appears.
- 4 On the right end of the row for the function button (F1, F2, F3, or F4) whose assigned function you want to change, tap the right-arrow virtual button (
- 5 In the F1, F2, F3, or F4 selection screen, tap one of the following functions:
 - None
 - PD-mode
 - CW-mode
 - TDI-mode
 - > TH (Tissue Harmonic)
 - CH (Compound Harmonic)
 - SC (Spatial Compound)
 - Hide Pt Bar
 - Remove Data Fields
 - Worklist
 - Pat. Log
 - Exam List

The following functions are on page 2 of the screen. To see them, tap switch menu button 4 (the rocker button under **Page**).

- End Exam
- Report
- M/D Cursor
- Custom Presets
- Image Width
- L/R Invert
- U/D Invert
- ▶ ECG

- Store 3
- Needle Profiling
- Update
- Steer Shallow
- Steer Steep

For information on assigning functions to the Store buttons, see "To configure Store buttons" on page 30.

6 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Defining the input of patient information

In the Patient Input screen, you can specify the following:

- > The type of patient information that is available for data input when you start a session
- > The maximum length for each character in patient information

To specify aspects of patient-information input

1 Press the SYSTEM button (

- 2 On page 1/4, tap UI. The Common Setup screen appears.
- **3** Tap **Patient Input**. The **Patient Input** screen appears.
- 4 To specify the type of data that the user enters first when inputting patient data, tap the right-arrow virtual button (
- 5 In the Default Focus selection screen, tap either Patient ID or Accession No.
- 6 To force a maximum character length of a single byte for entry of patient information, make sure that the ON virtual button beside Compulsory input (1-byte char.) is selected (orange).
 - If instead you want to allow a double-byte character length, make sure that the OFF virtual button beside Compulsory input (1-byte char.) is selected.

- Single-byte characters are characters, numbers, and special characters in the western alphabet, excluding those with diacritical marks such as accents, cedillas, tildes, macrons, circumflexes, and umlauts.
- 7 Tap OK to save the settings.

Configuring examination image appearance

You can specify settings that affect the examination image as it appears on the FC1 system, including the following:

- > The image as related to steer direction in Doppler operation
- > Optimizing of acoustic (imagery) output when AUTO IMAGE is enabled:
 - Gain (enhancement)
 - Lateral-gain and depth-gain compensation
 - Sound speed compensation
 - Focus correction
- Electrocardiogram (ECG) waveform settings
- Probe orientation settings

To configure Doppler images

- 1 Press the SYSTEM button ().
 - The User Setting screen appears.
- 2 On page 1/4, tap Image. The Common Setup screen appears.
- 3 Tap Doppler. The Doppler screen appears.
- **4** To link the color region of interest (color ROI) with the steer direction of the PW cursor in the triplex mode, make sure that the **ON** virtual button beside **Link** is selected (orange).

To break the link, make sure that the **OFF** virtual button is selected.

5 To invert the signs of the velocity scale automatically if the steer direction is changed in the triplex mode, make sure that the **ON** virtual button beside **Auto U/D Invert** is selected.

To make inversion of the velocity-scale signs *not* automatic, make sure that the **OFF** virtual button is selected.

When automatic inversion of velocity-scale signs is enabled, turning off the linking of the color ROI with the steer direction of the PW cursor in the triplex mode also cancels automatic inversion of the velocity-scale signs.

6 Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

To configure the probe orientation mark

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 1/4, tap Image. The Common Setup screen appears.
- 3 Tap Probe Orientation. The Probe Orientation Mark screen appears.
- **5** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Note

Use the Cardiovascular preset.

To specify optimization function settings

1 Press the SYSTEM button (

- 2 On page 1/4, tap Image. The Common Setup screen appears.
- **3** Tap **Optimize**. The **Optimize** screen appears.

4 To obtain any of the following adjustments when you press the **AUTO IMAGE** button, for each of the following, make sure that the **ON** virtual button is selected (orange) for each of the adjustments.

To make the adjustment nonautomatic, tap OFF.

- Gain: for gain adjustment
- **DGC**: Depth-gain compensation
- LGC: Lateral-gain compensation
- Sound Speed: Sound speed compensation
- > Auto Focus: Focus correction
- 5 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

To specify ECG waveform settings

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 1/4, tap Image. The Common Setup screen appears.
- 3 Tap ECG. The ECG Config screen appears.
- **4** To adjust the display position of the ECG waveform:
 - **a** Tap the right-arrow virtual button (**D**) to the right of **Position**.
 - **b** Tap either **TOP** or **BOTTOM**, as desired.
- **5** To set the initial gain of the ECG waveform, to the right of **Initial Gain**, tap either the right- or left-arrow virtual button (or **I**).

You can set the initial gain between 0 to 100.

- 6 To adjust the sweep speed of the EGC waveform in the 2D, CD, or PD mode:
 - a Tap **I** to the right of **Sweep Speed**.

b On the displayed selection screen, tap the desired speed.

The possible sweep speeds are 1, 2, 3, 4, 6, 8, or 10 seconds).

Note

The sweep speed is set automatically for the M, PW, CW, and TDI modes.

7 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Configuring peripheral devices

You can adjust settings for printers and foot switches that are connected to the FC1.

Adjusting printer settings

Caution	When printing the image, make sure that the "SIDE" setting on the black-and- white printer is "STD". If the setting is not "STD", the image may not print correctly. For details on how to specify the setting, see the operation manual for the black-and-white printer.
Note	The settings that you can change in the FC1 system for black-and-white printers and color printers are the same. Therefore, the screens for changing printer settings are identical for either type of printer. The following procedure applies to both types of printers.
	If you use a Sony UP-X898MD printer, check "Table A.11 Printers and Devices" in its Service Manual, as some settings must be adjusted.

To specify printer settings

1 Press the SYSTEM button (

- 2 On page 1/4, tap Peripheral. The Common Setup screen appears.
- **3** Do one of the following:
 - a To change settings for a black and white printer, tap B&W Printer. The B&W Printer screen appears.
 - **b** To change settings for a color printer, tap **Color Printer**. The **Color Printer** screen appears.

4 To set the number of copies, to the right of Number of copies, tap either the left- or right-arrow virtual button (✓ or ►).

You can select from 1 to 5 copies.

- 5 To specify how many images you can print on a single sheet and how they're arranged, do the following:
 - **a** Tap the right-arrow virtual button (**I**) to the right of **Print Format**.
 - **b** On the **Print Format** screen, tap the layout you want for the printed images.

You can print up to four images on a page; the available layouts are 1x1, 1x2, 2x1, and 2x2.

- **6** To specify whether the paper orientation to the image is vertical (also called "portrait"—taller than it is wide), horizontal (also called "landscape"—wider than it is tall), or automatically chosen:
 - **a** Tap the right-arrow virtual button (**IDD**) to the right of **Paper Orientation**.
 - **b** In the Paper Orientation screen, tap the orientation you want: Vertical, Horizontal, or Auto.
- 7 To print the patient ID and exposure date and time, make sure that the **ON** virtual button to the right of **Caption** is selected (orange). To prevent the data from being printed, make sure that the **OFF** virtual button is selected (orange).
- 8 Tap OK to save the settings.

Press the SYSTEM button to return to the examination screen.

Adjusting foot-switch settings

To adjust foot-switch settings

1 Press the **SYSTEM** button (

- 2 On page 1/4, tap Peripheral. The Common Setup screen appears.
- 3 Tap Foot Switch. The Foot Switch screen appears.
- 4 To assign a function to one of the pedals:

b On the Left Pedal or Right Pedal selection screen, tap the function that you want to assign to the pedal.

You can assign the following functions to a pedal:

Freeze

- Store1, Store2, or Store3 (the function assigned to Store 1, Store 2, or Store 3, respectively). For more information on assigning a function to one of the Store buttons, see "To configure Store buttons" on page 30.
- None
- **5** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Barcode reader and magnetic card reader setting

To set the connection to barcode reader or magnetic card reader

The User Setting screen appears.

- **2** On page 1/4, tap **Peripheral**. The **Common Setup** screen appears.
- 3 Tap Peripheral Type. The Peripheral Connection Type screen appears.
- **4** Tap the right-arrow virtual button (**D**) at the right of **Select Connection** and tap the connection you want. Select None to not connect any peripheral, Barcode to connect a barcode reader, or Card to connect a magnetic card reader.
- **5** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

To specify a barcode reader

1 Press the **SYSTEM** button (

The User Setting screen appears.

2 On page 1/4, tap Peripheral. The Common Setup screen appears.

- 3 Tap Barcode Reader. The Barcode Reader screen appears.
- 4 To set the start position and length, tap either the right- or left-arrow virtual button (or).
- **5** Tap **OK** to save the settings.

To specify a magnetic card reader

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 1/4, tap Peripheral. The Common Setup screen appears.
- 3 Tap Card Reader. The Card Reader screen appears.
- 4 To set the start position and length, tap either the right- or left-arrow virtual button (e or).
- 5 Tap OK to save the settings.

Press the SYSTEM button to return to the examination screen.

Specifying network settings

If the FC1 system is connected to a Digital Imaging and Communications in Medicine (DICOM)-format network storage server, you can specify several kinds of settings.

To specify network settings

1 Press the SYSTEM button (

- 2 On page 1/4, tap Network and DICOM. The Common Setup screen appears.
- 3 Tap Network. The Network screen appears.
- 4 Set any of the following for this FC1 system:
 - IP Address

- Gateway Address
- Subnet Mask
- 5 In the Link Speed/Duplex row, from the list that appears when you tap the right-arrow virtual button (**I**), tap the communication speed and type that you prefer (Auto, 100MB/Full Duplex, or 100MB/Half Duplex).
- 6 Tap OK to save the settings.

Server connection settings

WARNING

Use our C@RNACORE product only with this function.

The FC1 can operate linked to the FUJIFILM C@RNACORE system to start examinations after obtaining patient information or orders.

C@RNACORE V4.0(B) and later support this function.

For more information about the link with the C@RNACORE system, see "Starting an examination from patient information (Optional, Japan only)" on page 137 and "Starting an examination from orders (Optional, Japan only)" on page 139.

To set the link with the C@RNACORE system (Optional)

1 Press the SYSTEM button (

- 2 On page 1/4, tap Network and DICOM. The Common Setup screen appears.
- 3 Tap C@RNACORE. The C@RNACORE screen appears.
- **4** Set the following for this FC1 system.
 - > Device Name (the station name of the FC1. 16 characters maximum.)
 - C@RNACORE Network Setting IP Address (IP address of the C@RNACORE server)
- 5 In the Connection Type (connection with the C@RNACORE server) row, tap the right-arrow virtual button (
- 6 On the displayed screen:

- Tap Patient Information Link to use patient information link. The patient information link button (appears at the left of ID on the Patient Info screen on the touch panel.
- Tap Order Link (MWL) to use order link. To use order link, DICOM and C@RNACORE's DICOM MWL must be configured. For more information, see "Specifying DICOM settings" on page 45 and "DICOM MWL setting" on page 46. For the procedure to start examinations from C@RNACORE, see the C@RNACORE Reference Guide.
- > Tap **OFF** to disable the link to C@RNACORE.
- 7 Tap Verify to confirm that link to the C@RNACORE system has been established properly.
- 8 Tap OK to save the settings.

Specifying DICOM settings

If the FC1 system is connected to a Digital Imaging and Communications in Medicine (DICOM)-format network storage server, you can specify its settings.

To specify DICOM settings:

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 1/4, tap Network and DICOM. The Common Setup screen appears.
- 3 Tap DICOM General. The DICOM General screen appears.
- **4** Set any of the following:

Table 3-1: DICOM settings

Setting	Description
AE Title	The application title. 16 characters maximum.
Station Name	The Station Name of the FC1. 16 characters maximum.
Port Number	Not used at present
TCP Timeout	The maximum transfer waiting time of the network (in seconds). 600 seconds maximum.

Table 3-1: DICOM settings

Setting	Description
Keep Alive Timeout	The period of time during which DICOM connection is maintained after the last data is transferred. 7,200 seconds maximum.
Exams are Restarted Using	The series of examinations. Tap . On the screen that appears, tap Prior Series or New Series .
Verification	Specify the setting at the time of DICOM data transfer.
Query on Display	The update timing of the worklist.
	To update the worklist automatically when the Worklist screen appears, tap ON .
	To update the worklist by using the button in the Worklist screen, tap OFF .
Maximum Entries	The maximum number of worklists that can be used (maintained). 3,000 worklists.
Modality	The modality at the time of querying the DICOM MWL. Tap . On the screen that appears, tap the modality (Blank , US [ultrasonic processor], or OT [others]).
Clear Order	Clear the worklist orders.
Default Character	The default character code.
	Use this setting to update the default character code of the data submitted to DICOM. For more information, see the DICOM conformance statement.

5 Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

DICOM MWL setting

When you press **SYSTEM**, **Network and DICOM**, and then **DICOM MWL**, the following operations are available for the worklist server setting in the selected list.

Table 3-2: DICOM MWL buttons

Button	Description
Edit	Allows you to edit the setting.
Delete	Allows you to delete the setting.

Table 3-2: DICOM MWL buttons

Button	Description
Ping	Allows you to check the network condition.
Verify	Allows you to verify the setting.

To set the DICOM Modality Worklist (MWL) (Optional)

1 Press the **SYSTEM** button

The User Setting screen appears.

- 2 On page 1/4, tap Network and DICOM. The Common Setup screen appears.
- **3** Tap **DICOM MWL**. The **DICOM MWL List** screen appears.
- 4 Tap the name of a worklist server or a blank line, and then tap Edit.

The DICOM MWL Server Config screen appears.

5 Set any of the following:

Table 3-3: DICOM MWL settings

Setting	Description
Use	To use MWL, tap Use. To not use MWL, tap Not use.
Device Name	Type the nickname of the connected worklist server (maximum 16 characters).
AE Title	Type the application title of the connected worklist server (maximum 16 characters).
IP Address	Type the IP address of the connected worklist server.
Port Number	Type the port number of the connected worklist server.
Transfer Syntax	Tap the green button on the right. On the screen that appears, tap the transfer syntax that you want to use.
Scheduled Proc Step Start Date	Tap the green button on the right. On the screen that appears, tap the date of the start of the examination (Today, Last 2 Days, Last 7 Days, or All).

6 Press the Ping button to test the connection with the MWL server.

7 Press the Verify button to test the communication with the MWL server.

Note

Even when multiple worklist servers are registered, you can use only one of them.

When multiple worklist servers are registered, set Use for only one of them.

DICOM storage operation

When you press **SYSTEM**, **Network and DICOM**, and then **DICOM Storage**, the following operations are available for the storage server setting in the selected list.

Table 3-4: DICOM Storage buttons

Button	Description
Edit	You can edit the setting.
Delete	You can delete the setting.
Ping	You can check the network condition.
Verify	You can verify the setting.

To set the DICOM storage (Optional)

1 Press the **SYSTEM** button

The User Setting screen appears.

- 2 On page 1/4, tap Network and DICOM. The Common Setup screen appears.
- 3 Tap DICOM Storage.

DICOM Storage List screen is displayed.

4 Select the connected storage server or a blank line, and then tap **Edit**.

DICOM Storage Server Config screen is displayed.

5 Set any of the following.

Table 3-5: DICOM Storage settings

Setting	Description
Device Name	Enter nickname of Storage server connected.
AE Title	Enter application title of Storage server connected.
	Maximum of 16 characters can be entered.
IP Address	Enter IP address of storage server connected.
Port Number	Enter the port number of the connected storage server.
Color Model	Tap on the right. On the displayed selection screen, tap the color model to be used. For instance: RGB (Pixel), RGB (Plane), or MONOCHROME2.
Single	Tap ON to use still image store, or tap OFF not to use still image store.
Single Transfer Syntax	Tap . On the displayed selection screen, tap the desired compression level of the DICOM still image (Implicit VR Little Endian, Explicit VR Little Endian, JPEG Lossy or RLE Lossless).
	When JPEG Lossy is selected, tap I or I to set the image quality (80% to 100%).
Multiple	Tap ON to use clip image store, or tap OFF not to use clip image store.
Multiple Transfer Syntax	Tap . On the displayed selection screen, tap the desired compression level of the DICOM clip (Implicit VR Little Endian, Explicit VR Little Endian, JPEG Lossy or RLE Lossless). When JPEG Lossy is selected, tap or to set the image quality (80% to 100%).
Casandany	
Secondary	Tap ON to use secondary capture image store, or tap OFF not to use secondary capture image store.
Secondary Transfer Syntax	Tap . On the displayed selection screen, tap the desired compression level of the secondary capture image (Implicit VR Little Endian or Explicit VR Little Endian).

6 Press the Ping button to test the connection with the DICOM server.

7 Press the Verify button to test the communication with the DICOM server.

Setting timing for DICOM network storage

If the FC1 system is connected to a Digital Imaging and Communications in Medicine (DICOM)-format network storage server, you can specify the timing for storing images on that server.

To specify DICOM network storage timing setting

- 1 To store images in the DICOM network storage device, make sure that the FC1 is connected to the DICOM server through Ethernet or that the status icon (network icon) display is valid.
- 2 Press the SYSTEM button (

The User Setting screen appears.

- 3 On page 1/4, tap Store. The Common Setup screen appears.
- 4 Tap Image Transfer. The Image Transfer Setup screen appears.
- **5** To select the timing of storage of the ultrasound image on the DICOM server, tap the right-arrow virtual button (
- 6 On the displayed selection screen:
 - > To store the image on the DICOM server when the Store button is pressed, tap Exam in Progress.
 - > To store the image on the DICOM server when the examination is over, tap Exam Completed.
- 7 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Calibrating the display

To view display-color test patterns

1 Press the SYSTEM button (

- 2 On page 1/4, tap Calibration. The Common Setup screen appears.
- 3 Tap Test Pattern. The Test Pattern screen appears.

- **4** Tap Start on the right side of the test pattern you want to view (Grayscale, Resolution, White, Black, Red, Green, or blue). The selected test pattern appears on the main monitor.
- 5 To exit the test pattern, tap Cancel.

To set the lookup table (LUT)

Note

The LUT must be updated whenever the system LCD is replaced. The number selected must match the number on the new LCD installed.

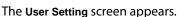
1 Press the **SYSTEM** button.

The User Setting screen appears.

- 2 On page 1/4, tap Calibration. The Common Setup screen appears.
- **3** Tap LCD LUT. The Update screen appears.
- 4 The following item can be set. Tap the monitor number to be used.
 15 / 16 / J5 / J6 / K5 / K6
- 5 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Enabling automatic image deletion (Data Configuration)


You can enable the system to automatically delete images after a certain period of time, and specify how long that period is.

Note

You can lock examinations you do not want to delete. For the procedure to lock examinations, see "Locking archived examinations" on page 190.

To specify automatic image deletion

1 Press the SYSTEM button (

2 On page 1/4, tap Data Config. The Data Management screen appears.

- **3** Tap Data Config. The Data Configuration screen appears.
- **4** To activate or deactivate automatic image deletion, make sure that the **ON** or **OFF** virtual button is selected (orange).

To set an auto delete time limit, the Auto Delete Image setting must be set to ON.

5 To decrease or increase the age (in months) at which the system automatically deletes an image record (the Auto Delete Time Limit), tap the right- or left-arrow virtual button (or), respectively.

The range for Auto Delete Time Limit is 1 to 36 months.

- 6 To have network or printer output appear automatically, make sure that Automatic appears in the Print/ Network Output field. To have this output controlled manually, tap the green arrow button and tap Manual on the screen that appears.
- 7 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

With automatic image deletion, the images are deleted automatically but the patient logs remain.
Up to 8000 patient logs can be recorded.
To avoid exceeding the maximum number of logs, delete patient information periodically.
To delete patient logs individually, use the Patient Log screen.
If you want to delete all patient logs, see "Resetting user configuration" on page 74.

Database optimization

To optimize the database

Caution

After using the FC1 for a long time, unnecessary empty spaces may appear in the database and the way data is stored may become more complex, therefore decreasing the system performance. Database optimization is used to resolve this problem.

1 Press the SYSTEM button (

- 2 On page 1/4, tap **Optimize Database**. The **Optimize Database** screen appears.
- **3** Tap **Start** to begin the process.

4 When prompted to confirm optimization, tap **OK** to confirm this process. At this point, you must restart the unit.

Output queue (examination/image) operation (Output Manage)

1 Press the SYSTEM button.

The User Setting screen appears.

2 On page 1/4, tap Output Manage. The Output Management screen appears.

For more information, see "Managing the output queue of examinations and images" on page 199

Positioning the body-mark display

You can choose where the body mark will appear by default in each mode's display setting.

To position the body-mark display

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 2/4, tap Body Mark. The Category/Library screen appears.
- 3 Tap Position. The Position screen appears.

You can specify body-mark display settings for the following screen modes:

- Single (for 2D (B), CD, and PD modes)
- Duplex (for M, PW, CW, and TDI modes)
- Dual Mode (for Dual-screen modes)
- Simul Dual Mode (for Simultaneous Dual-screen modes)
- **4** To specify (in single and duplex displays) the location on the monitor where you want the body mark to appear by default:

- **b** Depending on where you want the body mark's default location to be for this display setting, tap Left-Bottom, Left-Top, Right-Top, or Right-Bottom.
- **5** To specify (in Dual Mode and Simul Dual Mode displays) the location on the monitor where you want the body mark to appear by default:
 - a Tap the right-arrow virtual button () to the right of either Dual Mode or Simul Dual Mode. Either the Dual Mode or Simul Dual Mode screen appears.
 - **b** Depending on which corner of each of the two images you want to show the body mark's default location, tap one of the following:
 - ▶ To have the body-mark appear in the same place in both screens, tap Left-Bottom, Left-Top, Right-Top, or Right-Bottom.
 - > To configure a different location for each screen, tap LB/RB, RB/RB, LB/LB, LT/RT, RT/RT, or LT/LT.
- 6 Tap OK to save the settings.

Managing annotation lists

You can create, edit, and delete lists of annotations that you can add to examination images.

Annotation-list maximums:

- Number of annotation lists: 100
- Number of annotations per list: 30
- Number of characters per annotation: 20

To open the Annotation List screen

1 Press the SYSTEM button (

on (🐼).

- 2 On page 2/4, tap Annotate. The Category/Library screen appears.
- **3** Tap Annotation List. The Annotation List screen appears, showing any existing annotation lists.

To create an annotation list

- 1 With the Annotation List screen open, press switch menu button 4 (the rocker button under Page) until you reach an empty row in the list of existing annotation lists.
- 2 Tap the empty row, and then tap Edit List. The Annotation Config screen appears.
- 3 To name the annotation, tap the text box for List Name, type the name, and then tap Close.
- **4** To add an annotation to the list, tap the text box beside **Item** *n* (where *n* is the number of the item), type the name, and then tap **Close**.

To navigate among the pages of annotations, press switch menu button 4.

5 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

To edit an annotation list

- 1 With the Annotation List screen open, press switch menu button 4 (the rocker button under Page) to navigate to the annotation list that you want to edit.
- **2** Tap the annotation list that you want to edit, and then tap **Edit List**. The screen for editing the annotation list appears.
- **3** Tap the annotation that you want to change, and then correct it.
- **4** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

To delete an annotation list

- 1 With the Annotation List screen open, press switch menu button 4 (the rocker button under Page) to navigate to the annotation list that you want to delete.
- 2 Tap the annotation list that you want to delete, and then tap **Delete**.
- **3** When prompted to confirm the deletion, tap **OK**.
- **4** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Managing measurement functions

Of the measurement functions available for FC1, some are common to all display modes, and some are particular to certain display modes.

Manage settings for the measurement functions on the Measure screens.

Configuring measurements for all modes

The measurement settings that are common to all display modes are as follows:

- Continuous Measurement
- Beat
- Measure Unit (B,M) (for B and M mode)

The Beat setting determines the default number of heartbeats used as a basis for measurement.

To change common measurement settings

1 Press the SYSTEM button (

- 2 On page 2/4, tap Measure. The Measure screen appears.
- 3 Tap Common. The Common screen appears.
- **4** To change the control that you use to start the next measurement in continuous measurement, tap the right-arrow virtual button () to the right of **Continuous Measurement Setting**.
- 5 On the Continuous Measurement Setting screen:
 - ▶ To display the next caliper by pressing the **SET** button when continuous measurement is available, select **Set/Set**.
 - > To display the next caliper for the next measurement by tapping Next on the touch panel, select Set/Next.
- 6 To change the default number of heartbeats to use for measurement, tap the button to the right of Beat.
- 7 On the Beat screen, select from one to three heartbeats.

- 8 To change the calculation unit of B and M mode, tap the button to the right of Measure Unit (B.M).
- 9 At the Measure Unit (B,M) screen, select mm or cm.
- 10 Tap OK to save the settings.

Specifying 2D-mode default measurement tools

You can change the tool that is the default for several measurements and calculations.

To choose default tools for 2D-mode measurements and calculations

1 Press the SYSTEM button

The User Setting screen appears.

- 2 On page 2/4, tap Measure. The Measure screen appears.
- 3 Tap B mode. The B mode screen appears.
- 4 Tap the right-arrow virtual button (Image) on the row of the measurement or calculation for which you want to change the default tool.

The settings, the items that they change, and the measurement tools that you can choose from are as follows:

Initial Measure

MEASURE) in 2D The measurement that first appears when the user presses the **MEASURE** button mode.

The possible measurements are Distance, Trace, Area, Volume, Ratio Distance, Ratio Area, %Steno Dist, %Steno Area, and Angle.

Area

The default measurement tool for area measurements.

The possible measurement tools are Free Trace and Ellipse.

Ratio Area

2014

The default combination of measurement tools for calculating an area ratio.

The possible measurement tools are 2 Ellipse and Ellipse/Free Trace (Area).

Steno Area

The default tool for measuring the stenosis ratio and circumference and area.

The possible measurement tools are 2 Ellipse and Ellipse/Free Trace (Area).

Angle

The default tool for measuring an angle.

The possible measurement tools are 2 Line, 3 Line, or 3 Point.

- **5** In the selection screen for the measurement or calculation, tap the tool that you want to be the default for that measurement.
- **6** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Note

When you adjust the image parameter, the spectral trace is updated.

Specifying the CF-mode or the M-mode default measurement tool

You can select the measurement that is the first to appear when the user presses the **MEASURE** button

) in either CF mode or M mode.

To change the default measurement tool for CF mode or M mode

- 2 On page 2/4, tap Measure. The Measure screen appears.
- **3** Do one of the following:
 - **a** To choose CF mode, tap **CF mode**. The **CF mode** screen appears.

- **b** To choose M mode, tap **M mode**. The **M mode** screen appears.
- **4** Tap the right-arrow virtual button (**D**) on the **Initial Measure** row.
- **5** Depending on the mode whose default measurement tool you are setting, on the **Initial Measure** selection screen, choose one of the following:
 - For CF Mode, tap either Point Vel or Area Vel.
 - For M Mode, tap Distance, Time, HR, or Slope.
- 6 Tap OK to save the settings.

Configuring PW/CW/TDI-mode measurements

To change the PW/CW/TDI mode measurement settings

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 2/4, tap Measure. The Measure screen appears.
- 3 Tap D mode. The D mode screen appears.
- **4** Tap the right-arrow virtual button (>>>>) on the row of the measurement or calculation for which you want to change the default tool.

The settings, the items that they change, and the measurement tools that you can choose from are as follows:

Initial Measure

The possible measurements are Time, HR, Velocity, Trace, Accel, Decel, Velocity Trace, PI, RI, or Vessel Diam.

Trace

The default measure tool for tracing the Doppler waveform.

100.00

The possible measure tools are Free Trace or Auto Trace.

Trace Type

The possible types are Max, Average, and Both.

trackball

The possible types are Max or Average.

Envelope Type

The possible types are **Positive**, **Negative**, and **Alternative**.

- ▶ In the Trace Level row, tap either the right- or left-arrow virtual button (or) to set the trace level between 0% and 100%.
- 5 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Configuring preset-specific measurements

You can change the layout of the touch panel

To design application-specific displays on the touch panel

1 Press the SYSTEM button.

The User Setting screen appears.

- 2 On page 2/4, tap Calculation. The Calculation screen appears.
- 3 Tap TP Layout. The TP Layout screen appears.
- 4 On the **TP Layout** screen, tap the right-arrow virtual button (**>>**) for the application for which you want to change the layout of the touch panel.

The available applications are as follows:

- Cardiac
- Ped Heart
- Carotid

- **5** On the application's selection screen, tap the layout that you want the touch panel to have.
- **6** Tap **OK** to save the settings.

Setting Auto IMT (intima-media thickness) measurement (Optional)

You can customize the Auto IMT measurement menu.

For more information about Auto IMT measurement, see "Auto IMT (intima-media thickness) measurement (Optional)" on page 403.

To customize the Auto IMT measurement menu

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 2/4, tap Calculation. The Calculation screen appears.
- 3 Tap Auto IMT. The Carotid screen appears.
- **4** To set the width of the region of interest, tap the right- or left-arrow virtual button (or) at the right of **Width**.
- **5** Tap the right-arrow virtual button () on the right of **Priority Tab** to configure the tabs which you want to display prior to others in the initial startup.

Tap **B-Mode** or **AutoIMT** on the displayed selection screen.

6 Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Defining preset settings for examination types

This section explains the settings that make up the preset used for each examination.

To define the preset settings for an examination type

The User Setting screen appears.

- 2 On page 2/4, tap Preset Setting. The Exam Setting screen appears.
- **3** Tap the examination for which you want to define the preset settings.

You can set the preset menu for the following types of examinations (to access **Breast** and subsequent examination types, press switch menu button 4).

- Abdomen
- Small Parts
- Cardiac
- ▶ OB
- OB-Twin
- Fetal Heart
- Gyn
- Vascular
- Carotid
- Thyroid
- Breast
- MSK
- Ped
- Ped Heart
- Nerve
- Urology
- Neonate
- Arterial

Venous

The preset-specification screen, which is named for the type of examination that you have selected, appears.

Assigning a function to the FREEZE button

You can select a function to be activated when you press the FREEZE button (WW)

To select a freeze-shortcut function

- 1 To select the examination type for which you are specifying a freeze-shortcut function, see the procedure in "Defining preset settings for examination types" on page 61.
- 2 On the examination presets screen, tap the right-arrow virtual button (**D**) on the **Freeze Shortcut** row.
- **3** On the **Freeze Shortcut** selection screen, tap the function that you want pressing the **FREEZE** button to activate.

You can select one of the following: None, Annotation, Body Mark, Measure, and Calculation.

To specify that the **FREEZE** button only freeze the image and not activate a function, select **None**.

4 Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Selecting the default annotation type

To select arrows or text as the default type of annotation when the user presses the ANNOTATE button

1 To select the preset you want to set, see "Defining preset settings for examination types" on page 61.

The screen that appears shows the current settings for default annotation: text or arrows.

- 2 To change the default, tap the button on the Annotation Init row, and tap either Arrow or Text. The Annotation Init row now shows your choice.
- **3** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Selecting ready-made annotation lists

To select annotation lists of predefined annotations for ready use

- 1 To select the preset you want to set, see "Defining preset settings for examination types" on page 61.
- 2 On the examination presets screen, tap the button for Annotation List1, Annotation List1, or Annotation List3.
- **3** If you do not see the annotation list that you want on page 1 of the **Annotation List***n* selection screen (where *n* is **1**, **2**, or **3**), press switch menu button 4 to go to page 2.
- **4** Tap the annotation list that you want as one of your default lists of annotations.

For more information on using and creating annotation lists, see "Managing annotation lists" on page 54.

5 Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Selecting the priority cursor for steer-link priority

To select the steer-link priority

- 1 To select the preset you want to set, see "Defining preset settings for examination types" on page 61.
- 2 On the examination presets screen, tap the button for Steer Link.
- 3 On the Steer Link selection screen, tap M priority, CF priority, D priority, or Fix.
- **4** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Selecting the area for applying sound-speed compensation

To select the area for applying sound-speed compensation

- 1 To select the preset you want to set, see "Defining preset settings for examination types" on page 61.
- 2 To specify the area where sound speed compensation is applied, in the exam presets screen, tap Sound Speed.
 - > To apply it to the overall image, make sure that All is selected (orange).

- To apply it only to the ROI, make sure that **ROI** is selected.
- **3** Tap **OK** to save the settings.

Starting the electrocardiogram automatically

To specify that the electrocardiogram starts automatically when an examination is started

- 1 To select the preset you want to set, see "Defining preset settings for examination types" on page 61.
- 2 Make sure that the **ON** button for **ECG** is selected (orange).
- **3** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Selecting the standard of acoustic output

You can select one of three combinations of acoustic-output indices: MI (mechanical index) and one of the thermal indices:

- > TIS (soft-tissue thermal index)
- ▶ TIB (bone thermal index)
- TIC (cranial-bone thermal index)

To select a standard of acoustic output

- 1 To select the examination type, see "Defining preset settings for examination types" on page 61.
- 2 Tap the button for MI/TI.
- **3** Tap the desired combination of indices from the following:
 - MI, TIS
 - MI, TIb
 - MI, Tic
- 4 Tap OK to save the settings.

Setting the calculation unit

To set the unit of calculation

1 Press the SYSTEM button

The User Setting screen appears.

- 2 On page 2/4, tap Preset Setting. The Exam Setting screen appears.
- 3 Tap Cardiac. The Cardiac screen appears.
- 4 On page 2/2, in the Calc Unit section, tap the button. The Calc Unit screen appears.
- 5 Tap cm or mm to select the unit.

Note

You can choose a calculation unit only when you have selected Cardiac or Ped Heart. However, when area or volume is measured, this setting may not be reflected.

6 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Setting Priority/Preset for each transducer

You can choose the transducer that the priority preset will launch.

To set the priority preset:

1 Press the **SYSTEM** button

The User Setting screen appears.

- 2 On page 2/4, tap Probe/Preset. The Exam Setting screen appears.
- **3** Tap the transducer for which you want the priority to be set.
- **4** When that name appears on a new screen, tap the **button** on the right.

- **5** On the screen that appears, select the type of examination that the transducer will conduct (which is set by default for the probe you selected in step 4).
- **6** Tap **OK** to save the settings.

Configuring examination defaults (Exam Type Setting)

You can specify the following for each type of examination:

- > Whether it is available for selection when the user registers a patient
- > The transducer and preset that are selected by default for that type of examination

To specify examination settings for patient information registration

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 2/4, tap Exam Type Setting. The Exam Setting screen appears.
- 3 Tap the type of examination. The Exam Type Setting screen appears, with the examination types that you can choose from. These include ABDOMEN, SMALL PARTS, CARDIAC, OB, OB-TV, GYN-TV, FETAL HEART, GYN, VASCULAR, CAROTID, THYROID, BREAST, MUSC SKEL, PED, PED-HEART, NERVE, URO, NEO HEAD, OB TWIN ARTERIAL, and VENOUS.

To change pages of the Exam Type Setting screen, press switch menu button 4 (the rocker button beneath Page.)

Note

Some examination types may be unavailable.

When you select the examination type, the screen on which you specify its settings opens.

- **4** To display the examination type and make it available for the user to select during patient registration, on the **Valid** line, make sure that the **Enable** virtual button is selected (orange).
- **5** To select the examination type's default probe (the probe that is by default displayed for the examination type during patient registration):
 - **a** Tap the **button** for **Priority Probe**.

- **b** On the **Priority Probe** screen that appears, tap a transducer. You can choose among the following transducers: C60xf, P21xp, HFL38xp, C11xp, ICTxp, HFL50xp, C35xp, L25xp, and L38xp.
- **6** To select the examination type's default preset (the preset that is displayed by default for the examination type during patient registration):
 - **a** Tap the **button** for **Priority Preset**.
 - **b** On the **Priority Preset** screen, tap a preset. You can choose among the following presets: Abdomen / Small Parts / Cardiac / OB / OB-Twin / Fetal Heart / Gyn / Vascular / Carotid / Thyroid / Breast / MSK / Ped / Ped Heart / Nerve / Urology / Neonate / Arterial/ Venous

To switch among pages of the **Priority Preset** screen, press switch menu button 4.

7 Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Changing examination information display settings (Exam Type Format)

You can alter the appearance of the examination name that appears when you are preparing a report--either its full name or an abbreviation, as shown in the following list:

Table 3-6: Examination types

Examination type	Full name	Short name (abbreviation)
Abdomen	Abdominal	ABD
Breast	Breast	BREAST
Cardiac	Cardiac	CARD
Carotid	Carotid	CAROTID
Gynecology	Gynecology	GYN
Musculoskeletal	Musculoskeletal	MSK
Nerve	Nerve	NERVE
Obstetrical	Obstetrical	OB
Operative	Operative	OPE
Pediatric	Pediatric	PED

Table 3-6: Examination types

Examination type	Full name	Short name (abbreviation)
Small parts	Small part	SP
Thyroid	Thyroid	THYROID
Urology	Urology	URO
Vascular	Vascular	VASC

To change examination information display settings

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 2/4, tap Exam Type Format. The Exam Setting screen opens.
- 3 Tap Exam Info Name. The Exam Information Display Size screen appears.
- **4** For each examination type whose display size you want to change, tap either **Full** or **Short**. Use the Page button to see other examination types.
- 5 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Changing patient information display settings

You can alter how patient names appear (the order of first and last names) and change the unit used to display height (centimeters or meters).

To change patient information display settings

n (🙆).

The User Setting screen appears.

- 2 On page 2/4, tap Exam Type Format. The Exam Setting screen opens.
- 3 In the Exam Info section, tap Patient Info. The Patient Information Display Format screen appears.

- 4 If you want to change the middle name setting, in that field, tap the green arrow and tap Last First or Last First Middle.
- 5 If you want to change the height unit, in that field, tap the green arrow and tap the unit you want: cm (centimeters) or m (meters).
- **6** Tap **OK** to save the settings.

Restart setting (reexamination setting)

You can change the period in which reexamination is allowed on prior exam data (in the case of another later patient visit).

To change the period of reexamination

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page2/4, tap Restart. The Exam Setting screen appears.
- 3 Tap Restart. The Restart config screen is displayed.
- **4** To set the Maximum Age Of Restart, tap **•**. On the displayed selection screen, tap the maximum period to be used:
 - 1 Day / 2 Days / 1 Week / 1 Month / Unlimited
- 5 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Backing up and restoring presets

You can back up and restore the following:

- Presets
- System settings
- The Patient Information Log

When outputting data from the FC1 to a USB memory, the output data are encrypted to prevent the personal information leakage. The following output data are automatically encrypted.

In order to secure patient's health data, the output file used for back/up and restore will be encrypted. The file will not be visible in any systems except for FC1 Ultrasound System.

Backing up and restoring presets

You can save the presets that you have specified as one file in the USB memory.

To protect the data, save the presets in the USB memory periodically.

CautionBe sure to save presets to the USB memory every time that you change a preset.
Use the USB memory only for purposes mentioned in this User's guide. Using the
USB memory for other purposes may damage the FC1.
To back up all user settings, back up both the presets and the system settings.
To restore a preset, connect the USB memory in which the preset is stored and
then start FC1.

If necessary, you can restore a configuration immediately by retrieving the presets from the USB memory.

To back up presets

- 1 Connect the USB memory on which you back up presets to the USB connector.
- 2 Press the SYSTEM button (

The User Setting screen appears.

- **3** On page 3/4, tap **Backup**. The **Backup** screen appears.
- 4 To the right of Preset Configuration, tap Start.
- 5 When you are prompted to confirm starting the backup, tap **OK**. The user presets are saved in the USB memory.

To restore presets

- 1 Connect the USB memory that holds the backup of the presets to the USB connector.
- 2 Press the SYSTEM button (

The User Setting screen appears.

- **3** On page 3/4, tap **Restore**. The **Restore** screen appears.
- 4 To the right of Preset Configuration, tap Start.
- **5** When you are prompted to confirm restoration, tap **OK**.

Based on the data in the USB memory, the user presets are restored as the system restarts.

Backing up and restoring system settings

You can save the system settings (data customized by the user and examination settings) as a single file in the USB memory.

Be sure to save system settings to the USB memory periodically, and every time you change the user settings, particularly after the first time you change them.

Use the USB memory only for purposes mentioned in this *User's guide*. Using the USB memory for other purposes may damage the FC1.

To back up all user settings, back up both the presets and the system settings.

To restore a system setting, connect the USB memory in which the setting is stored and then start FC1.

If necessary, you can restore a configuration by retrieving the system settings from the USB memory.

To back up system settings

Caution

- 1 Connect the USB memory on which you back up system settings to the USB connector.
- 2 Press the SYSTEM button ().

The User Setting screen appears.

- **3** On page 3/4, tap **Backup**. The **Backup** screen appears.
- 4 To the right of System Configuration, tap Start.
- 5 When you are prompted to confirm starting the system backup, tap **OK**. The system settings are saved in the USB memory.

To restore system settings

- 1 Connect the USB memory that holds the backup of the system settings to the USB connector.
- 2 Press the SYSTEM buttor

The User Setting screen appears.

- **3** On page 3/4, tap **Restore**. The **Restore** screen appears.
- 4 To the right of System Configuration, tap Start. When you are prompted to confirm restoration, tap OK.

Based on the data in the USB memory, the system settings are restored, and the FC1 restarts.

Backing up and restoring the Patient Log

You can back up patient information (data set by the user) as a file in the USB memory.

By retrieving the patient information log that is stored in the USB memory, you can restore the previous configuration.

> To protect the data set by the user, save the patient information log in the USB memory periodically, as well as every time the data changes.

Do not use the USB memory for purposes other than those mentioned in this User's guide. Using the USB memory for other purposes may cause damage to the FC1.

Caution

In order to avoid re-specifying all the patient information settings when replacing the FC1, execute a backup immediately after completing the settings to create backup data in the USB memory.

To restore the patient information log, connect the USB memory in which the log is stored and then start FC1.

If necessary, you can restore a configuration by restoring the patient information log from the USB memory.

To back up the patient log

1 Connect the USB memory for backup of patient information log to the USB connector.

2 Press the SYSTEM button

The User Setting screen appears.

- 3 On page 3/4, tap Backup. The Backup screen appears.
- 4 To the right of Patient Log, tap Start.
- 5 When you are prompted to confirm starting the backup of the patient log, tap OK.

The patient information log is saved in the USB memory.

To restore the patient log

- 1 Connect the USB memory in which the backup data of patient information log is saved to the USB connector.
- 2 Press the SYSTEM button (

The User Setting screen appears.

- 3 On page 3/4, tap Restore. The Restore screen appears.
- 4 To the right of Patient Log, tap Start.
- 5 When you are prompted to confirm starting the restore operation, tap **OK**.
- 6 When the confirmation message appears, press the POWER button.

Based on the data in the USB memory, the patient information log is restored and the FC1restarts.

Note

Data that are the same both on USB memory and in the Patient Log are not copied.

Resetting user configuration

Use this function to clear any user configuration. You also reset any patient log or image data.

Resetting the configuration with **Patient Log/Image Data** deletes also the examinations and the patient data. You are advised to make a backup of examination images data in advance while referring to "Exporting examination data" on page 203.

Note

The date, network and monitor settings are not deleted.

To reset user configuration

The User Setting screen appears.

- 2 On page 3/4, tap Reset. The Reset screen appears.
- **3** Do one of the following:
 - a To delete system information (such as Store) set by the user, tap Start on the User Configuration line. (Date, Network, and Monitor settings are not deleted.)
 - **b** To delete examination and patient data (such as patient logs and images and clips obtained during examinations), tap Start on the Patient Log/Image Data line.
- 4 When a message saying that user configuration will be initialized appears, tap OK.
- 5 When a message saying that patient information will be initialized appears, tap OK. When the second screen appears, tap **OK** again.
- 6 You must restart the FC1 at this point to proceed.

Formatting the USB memory

When you format the USB memory, all the data on it are deleted.

To format the USB memory

Connect the USB memory to the USB connector.

The User Setting screen appears.

- 3 On page 3/4, tap Format USB. The Format USB screen appears.
- 4 Tap Start.
- 5 When you are prompted to confirm the formatting of the USB memory, tap OK.

The USB memory is formatted, and all the data on it are deleted.

Using USB memory

You can use a USB memory to do the following:

- Store various logs and setup configurations for import and export
- Archive images and clips

Images and clips are saved to internal storage and are organized in a sortable patient list.

You can archive the images and clips from the FC1 system to a PC using a USB memory. To view the images and clips stored in a USB memory on the ultrasound system, import them to the ultrasound system.

The system has four USB ports.

WARNING	 To avoid damaging the USB memory and losing patient data from it, observe the following: Do not remove the USB memory or turn off the ultrasound system while the system is exporting.
	Do not bump or otherwise apply pressure to the USB memory while it is attached to one of the FC1's USB ports. The connector could break.
Caution	If the USB icon does not appear in the system status area on-screen, the USB memory may be defective or password-protected. Turn the system off and replace the device.
Note	The system does not support password-protected USB memory. Make sure that the USB memory that you use does not have password protection enabled. See also "Troubleshooting" on page 477.

For more information about the device, see "Importing examination data" on page 205.

Inserting a USB memory

To insert a USB memory

Insert the USB memory into any of the FC1 USB ports. For more information about USB locations, see Figure 2-1, "System Front Features" on page 3.

When the USB icon appears, the USB memory is ready.

Removing a USB memory

Caution

Removing the USB memory while the system is exporting to it may cause the exported files to be corrupted or incomplete.

To remove a USB memory

- 1 If the system is exporting to the device, wait for the USB animation to stop, and then wait another five seconds.
- **2** Remove the USB memory from the port.

Formatting the SSD

The SSD is an internal storage device.

Formatting the SDD deletes the examinations and the patient data. You are advised to make a backup of examination images data in advance while referring to "Exporting examination data" on page 203.

To format the SSD

1 Press the **SYSTEM** button (

The User Setting screen appears.

- 2 On page 3/4, tap Format SSD. The Format SSD screen appears.
- 3 Tap Start. You are asked to confirm that you want internal memory to be formatted. Tap OK to confirm.
- **4** The SSD formatting begins. When it is done, you will be asked to restart the system.

Viewing system information

To display the System Information screen

1 Press the SYSTEM button (

رک

The User Setting screen appears.

2 On page 3/4, tap System Info. The System Information screen appears.

Changing site information settings

You can alter the information that appears about your site name and its address.

To change site information

1 Press the SYSTEM buttor

The User Setting screen appears.

- 2 On page 3/4, tap Site Info. The System screen appears.
- 3 Tap Site Info.
- 4 Tap any of the two fields (Site or Address) to see the keyboard. Enter the information and then press Close to return to the System screen.
- **5** Tap **OK** to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Setting the system date and time

Use the DateTime screen to specify the system's date and time. You can also choose whether to receive date and time information from the NTP (Network Time Protocol) server.

To set the system's date and time

1 Press the **SYSTEM** button

The User Setting screen appears.

- 2 On page 3/4, Tap Date and Language. The Date and Language screen appears.
- **3** Tap **Date Time**. The **DateTime** screen appears.
- **4** To change the date setting type, select **Manual** or **NTP**. If you tap **NTP**, the available fields are displayed below. Tap a field (the keyboard appears) and type the IP address of the NTP server.
- 5 Tap the date and time to be set: YYYY (year), MM (month), DD (day), hh (hour), mm (minute), and ss (second).

6 Tap or to set the selected item.

7 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Setting the date and time display formats

You can specify how to display date and time information.

To specify date and time display formats

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 3/4, tap Date and Language. The Date and Language screen appears.
- 3 Tap Date Time Format. The Date Display Format screen appears.
- 4 In the Date Format section, tap the green arrow button to see a choice of date formats: YYYY/MM/DD, MM/DD/ YYYY, or DD/MM/YYYY.
- **5** Tap the date format you want to use.
- 6 To display the seconds, tap ON in the Second Display section. To hide the seconds, tap OFF.
- 7 To use the 12-hour format, tap 12H in the Time Format section. To use the 24-hour format, tap 24H.
- 8 Tap OK to save the settings.

Press the **SYSTEM** button to return to the examination screen.

Setting the language to display

To change the language setting

1 Press the SYSTEM button ())

The User Setting screen appears.

2 On page 3/4, tap Date and Language. The Date and Language screen appears.

- 3 Tap Language. The Language screen appears.
- **4** Tap the right arrow button to change the language.
- 5 Tap OK to save the settings.

Setting the login method for the FC1

On the security settings page, you can configure the system to require users to login and enter passwords. You can also add and delete users and change passwords. The default Administrator login name is Administrator. If you don't have the administrator password, contact FUJIFILM SonoSite. (See "Customer comments" on page 1) Any user with administrative privileges can login as an administrator.

To set the login method:

The User Setting screen appears.

- 2 On page 3/4, tap Security. The Security screen appears.
- 3 Tap Login Common. The Login Common Setting screen appears.
- 4 Tap on.
- 5 Tap OK.

At this point, you must restart the unit.

Note

When the login setting is ON, the logout function is enabled. Tap the Others button, at the top right of the panel, to access it.

Setting the license

This part of the software provides instructions on how to obtain a license key, and a place to input that key.

To set the system license

The User Setting screen appears.

- 2 On page 4/4, tap System License. The License screen appears.
- 3 Tap System License, and then follow the instructions to obtain the license key.
- **4** Once you have obtained the license key, tap the first field to see a keyboard where you can type the numbers of the license. Type all the numbers.
- 5 Тар **ок**.

Logs

You can choose to acquire all logs stored in the FC1 (or specify the range of dates for these logs), and delete all logs.

Note

Logs have limited space and overwrite existing content when full.

Setting log acquisition

To set log acquisition behavior

1 Press the SYSTEM button ())

The User Setting screen appears.

- 2 On page 4/4, tap Get Log. The Get Log screen appears.
- **3** Do one or more of the following:
 - a if you want to acquire all logs, in the Get All Log row, tap Start.
 - **b** If you want to limit log acquisition to a certain time range, in the **Get Between Log** row, tap the date boxes to specify the range and tap **Start**.
- 4 When you are prompted to confirm this action, tap OK (or tap Cancel to cancel it).

To delete all logs

The User Setting screen appears.

- 2 On page 4/4, tap **Delete Log**. The **Delete Log** screen appears.
- 3 tap Start.

Setting audit log acquisition

Provides access to personal information, and allows you to save or export the audit log to maintain a record of security feature changes.

To set audit log acquisition behavior

The User Setting screen appears.

- 2 On page 4/4, tap Get Audit Log. The Get Audit Log screen appears.
- **3** To get specific audit logs, in the **Get Between Audit Log** row, specify the date or dates of the audit logs you want, and then tap **Start**.

When you are prompted to confirm this action, tap OK. (or tap Cancel to cancel it).

Note

The audit log is saved as a password-secured ZIP file. The password will be the same as user password that was used to log in to the FC1 system. Software that conforms to RFC3881 can view the exported audit log file.

To delete all audit logs

1 Press the SYSTEM button (

(

The User Setting screen appears.

- 2 On page 4/4, tap Delete Audit Log. The Delete Audit Log screen appears.
- 3 Tap Start.

To view the exported audit log

The exported audit log is XML and/or CSV file.

Software that conforms to RFC3881 can view XML file.

CSV file can be viewed in the most of generally available software.

CSV format is as follows:

- Event Time
- User ID
- Event Type ID
- Event Action
- Event Outcome
- Audit Enterprise Site ID
- Audit Source ID
- Participant Objects Type
- Participant Objects ID
- Participant Objects Name
- Alternative User ID
- Role ID
- Network Access Point
- Details XML

Note

csv file there is a limit to the read size. If the output is large it will be split.

Chapter 4: Imaging

Getting familiar with the examination screen

This section describes the information that is necessary for ultrasound diagnosis and that is common to all screen modes.

On the main monitor, the examination screen includes the following:

Header

The strip across the top of the monitor

The header displays patient and exam information, current date and time, and facility information. For more, see "Information in the header" on page 86.

Grayscale or color scale bar

At the top left, to the left of the acoustic output information

Acoustic output information

Transducer name, MI/TI value, frame rate, etc.

Examination image

The two parts of the image in the image area

Information added by the user

Information such as body marks, annotations, and measurement information

- > Above the footer, operation information including:
 - Frame rate
 - Current mode

- Operation interface information, such as the functions of the trackball, function buttons, and Store buttons
- > System information such as the amount of free space on internal storage media
- Footer

The strip across the bottom of the monitor

Information in the footer includes functional information, such as magnification ratio, number of heartbeats for ECG function, and cine memory. For more information, see "Information in the footer" on page 87.

In addition, you can show or hide the grayscale or color scale bar, the transducer name, and the AP (acoustic output) value and parameters for each mode.

Information in the header

The header may include information such as the following (depending on the types of information that the user has recorded and has chosen to show or hide):

- Patient information
 - > The patient name, and under it, the patient ID, date of birth, and age

If the date of birth is registered in the Japanese calendar format, it is converted to the Western calendar format.

If the age is less than one month, it displays with the number of weeks and the number of days (for example, 2w3d); if the age is one month or more, it displays with the number of months (for example, 1M).

- > The patient's gender, and under it, the patient's week of pregnancy (if applicable)
- Examination information
 - Examination type and presets
 - Patient accession number
 - Preset name
 - Operator name
- System information

- Facility name
- Current date and time

Information in the footer

The footer may include information such as the following (depending on the information that the user has recorded and has chosen to show or hide):

- Message display area, which displays status and other messages
- > The function assigned to the trackball
- > The function assigned to the multi dial
- Functions assigned to the Store buttons 1 and 2

When Store 3 is assigned to a function button, Store 3 also appears.

- System information
- The amount of data stored in an examination

This is equal to the count of recorded images, including clips.

The count rolls over at 300.

Connection status of optional devices

This displays the icon for each optional device that is currently connected to the FC1.

- USB keyboard.
- Barcode reader:
- Card reader:
- Foot switch:
- USB memory:

The green image of USB memory means that the amount of free space is more than 200MB.

The gray image of USB memory means that the amount of free space becomes 200MB or less.

Printer, black-and-white or color:

The following icons represent the print job's status. In each case, to represent a color printer, the icon for a black-and-white printer has the letter "C" superimposed.

- Printing in progress:
- 🕨 Error: 📥 or 븚
- Queuing:

If you format printing with multi-image output (in which several images may print in one print frame), the number of images in the queue is superimposed on the gray printer icon.

Network

- Connecting: S
- Communication in progress: S
- Error: Sor Sor

When there is no connection, no icon is displayed.

> The amount of free space on the internal storage media

The display changes in increments of 1%. If it becomes 20% or less, the color of the icon changes.

Table 4-7: Free space icon

Amount of free space	lcon
81% to 100%	•
61% to 80%	•
41% to 60%	•
21% to 40%	•

Table 4-7: Free space icon

Amount of free space	lcon
1% to 20%	•
0%	•

- AC power supply connection status
 - When the AC adapter is connected:

When there is no connection, no icon is displayed.

Internal battery charge status

The charge of the battery installed in the FC1 is displayed as an icon; the percentage of available power appears inside the battery icon, in increments of 1%.

Table 4-8: Charge status icon

Charging or discharging status and percentage of charge available	lcon
Charge in progress—21% to 100%	
Discharge in progress—21% to 100%	
0% to 20%	

Imaging modes

The availability of individual imaging modes depends on the transducer and exam type that you are using.

For details, see "Imaging modes and exams available by transducer" on page 119.

Each of the modes has a unique combination of controls. It shares some tasks with the other modes and has others that are unique to it. Thus, each of the following sections about modes describes a mode's controls and work procedure for accomplishing its unique tasks, and refers you to the sections that describe how to accomplish tasks that it shares with other modes.

2D mode

2D mode shows an arbitrary cross-section of biomedical tissue in a tomographic view.

Starting an examination or changing a transducer activates the 2D mode.

Note 2D mode may be represented in the touch panel and main monitor as B mode.

The 2D-mode examination screen

In the 2D-mode examination screen, note the following, in particular.

Probe orientation mark

The probe orientation mark indicates the direction of the transducer. The display of the probe orientation mark changes depending on the situation:

- Live image or active image in Dual screen mode: Green
- Frozen image or inactive image in Dual screen mode: Gray
- ▶ When the image is inverted vertically or horizontally, the probe orientation mark changes position accordingly.
- Mode mark (current mode identifier)

The mode mark (B) in the illustration indicates that the 2D mode image is displayed.

- > When a live image is displayed, this mark shows in light blue.
- When a frozen image is displayed, this mark shows in gray.
- Cine memory bar

The cine memory bar shows only when a frozen image is displayed or when you review images in the cine memory.

2D-mode controls

On the touch panel, the 2D-mode controls are on the **B** screen.

Table 4-9: 2D-mode controls

Control	What it does
Imaging Preset	Selects the imaging preset appropriate for your examination, on the touch panel. For information on working with imaging presets, see "Working with imaging presets" on page 147.

Table 4-9: 2D-mode controls

Control	What it does
Image Type	 Selects the image type. The options are: Fundamental Tissue Harmonic: This transmits at one frequency and receives at a higher harmonic frequency to reduce noise and clutter and improve resolution. Compound Harmonic: This image type has a mix of fundamental and harmonic frequencies. It is desirable for linear transducers, because it reduces noise. Spatial compound: Image with a mix of data obtained by transmitting ultrasound waves multi-directionally
Image Width	Widens or narrows the image width. Also moves the field of view position.
Trapezoid	Changes image to the Trapezoid display mode, in order to extend the field of view when using a linear transducer. Note: You can select the Trapezoid display mode only when a linear transducer is connected.
L/R	Inverts the image horizontally. WARNING: When performing a diagnosis based on an inverted image, check the direction of the transducer so as not to misunderstand the direction of scanning and the orientation of the image.
U/D	Inverts the image vertically. WARNING: When performing a diagnosis based on an inverted image, check the direction of the transducer so as not to misunderstand the direction of scanning and the orientation of the image.
Simul Dual	For details, see "Viewing in Simultaneous Dual-screen mode" on page 158.
Optimize	For details, see "Optimizing the image" on page 116.
M/D Cursor	For details, see "Using the M or D cursor" on page 159.

Table 4-9: 2D-mode controls

Control	What it does
ECG Mr-	Enables use and configuration of the ECG waveform display. For more information, including setting the sweep speed, see "Displaying and configuring the ECG waveform" on page 161.
Needle Guide	For details, see "Using the needle guide" on page 169.
Needle Profiling	For details, see "Needle profiling (Optional)" on page 171.

The following are controls that combine the touch panel and dial menu buttons:

Table 4-10: 2D-mode combination controls

Control	What it does
Sound Speed	Sets the sound speed. For details, see "Setting the sound speed" on page 112.
A Output	Sets the transmission output level. For details, see "Setting the transmission-output level" on page 113. Note: You cannot change the transmission output level when the image is frozen.
B Steer	Sets the steering angle on images in the 2D-mode.
Quick Angle	Changes the cursor's gate angle. To change the angle to plus or minus 45°, 60°, or 0°, tap Quick Angle , and then turn dial menu button 1 (the dial to the right of Quick Angle). The angles with the upper end of the graphic to the left are positive; the angles with the upper end of the graphic to the right are negative.
Cursor Steer	Changes the cursor's steering angle. To specify the steering angle, rotate dial menu button 1 (the dial menu button to the right of Cursor Steer). Note: • You can set the Cursor Steer angle only when a linear transducer is connected. • The steer angle can be set to 30 degrees only when the HFL38xp or HFL50xp transducer is connected.

The following are controls that combine the touch panel and switch menu buttons:

Table 4-11: 2D-mode combination	controls
---------------------------------	----------

Control	What it does
Edge	Sets the level of emphasis of edges. The range of values is 0 to 4. For details, see "Raising or lowering the emphasis of edges" on page 113.
Sharpness	Raises or lowers the level of sharpness. The range of values is 0 to 4. For details, see "Raising or lowering the level of sharpness" on page 114.
Мар	Selects the map for adjusting the tone of the 2D mode image. The possible maps are: • Grayscale: G1 to G11 • Pseudo color: I1 to I4 • Single color: C1 to C3 For details, see "Adjusting image tone" on page 114.
Persistence	Raises or lowers the persistence value. Persistence is frame correlation, which as it increases tends to suppress noise in the image. As you increase the value, the image becomes smoother. The range of values is 0 to 4. For details, see "Adjusting persistence" on page 114.
DR	Adjusts the dynamic range in the image. The dynamic range is the range of contrast in the image. You can increase or decrease the dynamic range in increments of 5. The range of values is 40 to 100. For details, see "Setting the range of contrast" on page 114.
Focus Depth	Sets the focus depth. For details, see "Setting the focus depth" on page 115. Note: You cannot change the focus depth when the image is frozen.
Speckle Reduct	Reduces speckling in the image. Along the bottom of the touch panel, tap Speckle Reduct , if it is not already active, and then press switch menu button 3 (the rocker button beneath Speckle Reduct) to raise or lower the value. The range of values is 0 to 4.

Table 4-11: 2D-mode combination controls

Control	What it does
Focus Number	Defines the number of focuses that you can set. Along the bottom of the touch panel, tap Focus Number , if it is not already active, and then press switch menu button 3 (the rocker button beneath Focus Number) to raise or lower the value. The maximum value is 2. Note: Increasing the number of focuses decreases the frame rate.
Gate Size	 Sets the cursor's gate size. 1 At the bottom of the touch panel, tap Gate Size, if it is not already active for switch menu button 4 (the rocker button beneath it). 2 Press the up- or down-arrow side of the rocker button to increase or decrease the gate size. Note: You cannot set the gate size when the image is frozen.

The following control is on the control panel:

Table 4-12: 2D-mode combination controls

Control	What it does
FREQUENCY button	 Changes the transmission frequency. To change the transmission frequency, press either the up- or down-arrow side of the FREQUENCY button ()). The current frequency is displayed at the bottom of the examination screen. Notes: The range of available frequencies depends on the transducer type that you are using. You cannot change the frequency when the image type is Compound (see "Image Type," in the first table in this section). In CD, PD, PW, CW, and TDI (PW) modes, this button toggles to the function to change the scale in PRF (pulse repetition frequency).

For more information on working with controls in 2D mode, see the following:

"Adjusting the depth and gain of the image" on page 111

- Adjusting gain compensation (depth gain compensation or lateral gain compensation): "Optimizing the image" on page 116.
- Using the M or D cursor, including setting its gate size, steering angle, and cursor angle: "Using the M or D cursor" on page 159.
- Using Dual and Simultaneous Dual screen modes: "Viewing in Dual-screen mode" on page 155 and "Viewing in Simultaneous Dual-screen mode" on page 158.

Working in 2D mode

To work in 2D mode

A 2D mode image is displayed on the main monitor, and the 2D button turns orange. The 2D screen appears on the touch panel.

- **2** To widen or narrow the image width:
 - **a** On the touch panel, tap Image Width. The region of interest (ROI) is displayed.
 - **b** Use the trackball to adjust the size of the image width.

A green outline showing the width of the image that you are setting the mode to appears slightly before the image changes to that width.

Note

Narrowing the image width increases the frame rate.

- c To toggle between the size setting and the position setting, press the SET button (
- **d** Use the trackball to adjust the position of the image.

A green outline showing the position of the image that you are setting the mode to appears slightly before the image changes to that position.

- **3** To set the steering angle of the 2D mode image:
 - **a** On the touch panel, tap **B Steer**.
 - **b** To specify the steering angle of the 2D mode image, rotate the dial menu button to the right of **B Steer**.

⊕

You can set the steering angle in increments of 15 degrees.

Caution

You can set the B Steer angle only when a linear transducer is connected.

- **4** Complete the part of the examination that requires 2D mode.
 - ▶ For information on viewing an ECG (electrocardiogram) during ultrasound examination, see "Viewing the ECG waveform display" on page 160.
 - ▶ For information on performing a needle procedure, see "Performing a needle procedure" on page 163.

5 To freeze the image, press the FREEZE button (Solution)

6 As necessary, save the image or perform measurements.

For details on saving a frozen image or a cine loop, see "Storing examination images" on page 195.

M mode

The M-mode examination screen

The M mode displays temporal changes (motions) of the region that you specify with the M cursor in the 2D mode image.

The M cursor, which appears on the 2D mode image, indicates the position of the M-mode line in the cross-sectional view.

Working in M mode includes configuring the mode's settings.

Caution

When working in M mode, make sure that the **M** tab is current on the touch panel. If the **B** tab is current, you are working in 2D mode, and are adjusting 2D-mode image parameters.

M-mode controls

The following controls are on the touch panel:

Table 4-13: M-mode controls

Control	What it does
Imaging Preset	Enables selecting the imaging preset appropriate for your examination, on the touch panel. For information on working with imaging presets, see "Working with imaging presets" on page 147.
Format	Enables changing the display sizes of the 2D-mode and M -mode images relative to each other. For details, see "Sizing mode images relative to each other" on page 117.
ECG	Enables use and configuration of the ECG waveform display. For more information, including setting the sweep speed, see "Displaying and configuring the ECG waveform" on page 161.

The following controls combine the touch panel and dial menu buttons:

Table 4-14: M-mode combination controls

Control	What it does
Sound Speed	Sets the sound speed. For details, see "Setting the sound speed" on page 112.
A Output	Sets the transmission output level. For details, see "Setting the transmission-output level" on page 113. Note: You cannot change the transmission output level when the image is frozen.

The following controls combine the touch panel and switch menu buttons.

Table 4-15: M-mode combination controls

Control	What it does
Edge	Sets the level of emphasis of edges. The range of values is 0 to 4. For details, see "Raising or lowering the emphasis of edges" on page 113.

Table 4-15: M-mode combination controls

Control	What it does
Мар	 Selects the map for adjusting the tone of the 2D -mode image. The possible maps are: Grayscale: G1 to G11 Pseudo color: I1 to I4 Single color: C1 to C3 For details, see "Adjusting image tone" on page 114.
DR	Adjusts the dynamic range in the image. The dynamic range is the range of contrast in the image. You can increase or decrease the dynamic range in increments of 5. The range of values is 40 to 100. For details, see "Setting the range of contrast" on page 114.
Sweep Speed	Sets the sweep speed in number of heartbeats per sweep. For details, see "Setting the sweep speed" on page 112.

For more information on adjusting depth and gain in M mode, see "Adjusting the depth and gain of the image" on page 111.

Working in M mode

To work in M mode

1 Press the M button.

Note

To activate the M mode while in another mode (live image), press the **M** button.

The 2D-mode and M-mode images show on the monitor, and the **M** button turns orange.

- 2 To adjust depth gain compensation (DGC), see "Optimizing the image" on page 116.
- **3** To freeze the image, press the **FREEZE** button (

5

For details on saving a frozen image or a cine loop, see "Storing examination images" on page 195.

CD and PD modes

CD mode provides information regarding the blood-flow velocity within the color region of interest (color ROI).

PD mode provides qualitative Doppler signal power information regarding the blood flow inside the PD region of interest (PD ROI).

The CD- and PD-mode examination screen

The color-focus mark of the CD/PD mode image is green when the image is live, and white when the image is frozen.

Notes

The mode mark indicates that the CD mode or PD mode image is displayed. When a live image is displayed, this mark has a light-blue background. When a frozen image is displayed, this mark has a gray background.

The cine memory bar appears only when a frozen image is on screen or when you review images in the cine memory.

CD- and PD-mode controls

The following controls are on the touch panel.

Control	What it does
Imaging Preset	Enables selecting the imaging preset appropriate for your examination, on the touch panel. For information on working with imaging presets, see "Working with imaging presets" on page 147.
ECG	Enables use and configuration of the ECG waveform display. For more information, including on setting the sweep speed, see "Displaying and configuring the ECG waveform" on page 161.
Invert	Enables inversion of the color map that indicates the blood-flow direction. The blood-flow direction is relative to the transducer: toward or away from it. Tap Invert .
Simul Dual	For details, see "Viewing in Simultaneous Dual-screen mode" on page 158.

Control	What it does
M/D Cursor	For details, see "Using the M or D cursor" on page 159.

The following controls combine the touch panel and dial menu buttons

Control	What it does
A Output	Sets the transmission output level. For details, see "Setting the transmission-output level" on page 113. Note: You cannot change the transmission output level when the image is frozen.
ROI Steer	 Sets the steering angle of the color ROI. To specify the steering angle, rotate the dial menu button to the right of ROI Steer. Note: You can set the ROI Steer angle only when a linear transducer is connected. The ROI Steer angle can be set to 30 degrees only when the HFL38xp or HFL50xp transducer is connected.
Scale	 Expands or contracts the color scale. For details, see "Setting the color scale" on page 115. Note: You cannot change the color scale when the image is frozen. The color scale can be expanded or contracted also by FREQUENCY button. To change the frequency in 2D (B) mode, press the 2D (B) button to return to 2D (B) mode, and then press the FREQUENCY button.
Quick Angle	Changes the cursor's gate angle. To change the angle to plus or minus 45°, 60°, or 0°, tap Quick Angle , and then turn dial menu button 1 (the dial to the right of Quick Angle). The angles with the upper end of the graphic to the left are positive; the angles with the upper end of the graphic to the right are negative.

Table 4-17: CD- and PD-mode combination controls

Control	What it does
Cursor Steer	 Changes the cursor's steering angle. To specify the steering angle, rotate dial menu button 1 (the dial menu button to the right of Cursor Steer). Note: You can set the Cursor Steer angle only when a linear transducer is connected. The steer angle can be set to 30 degrees only when the HFL38xp or HFL50xp transducer is connected.

The following controls combine the touch panel and switch menu buttons.

Table 4-18: CD- and PD-mode combination controls

Control	What it does
Balance	 Sets the level of display priority of the 2D mode and CD/PD mode images (that is, which type of image displays at the front of the screen). At the bottom of the touch panel, tap Balance, if it is not already active for switch menu button 1 (the rocker button beneath it). Press the up- or down-arrow side of switch menu button 1 to raise or lower the value. The range of values is 1 through 7.
Baseline	 Sets the baseline of the color map. At the bottom of the touch panel, tap Baseline, if it is not already active for switch menu button 1 (the rocker button beneath it). Press the up- or down-arrow side of switch menu button 1 to raise or lower the value. Note: When the baseline is changed, the velocity and color assignments change accordingly.
Мар	 Selects the map for adjusting the tone of the CD or PD mode image. The possible maps are: For CD mode, VDn and VEn, where n is 1 to 4 For PD mode, PDn, PVn, and DPDn, where n is 1 to 4, and DPVn, where n is 1 to 5 For details, see "Adjusting image tone" on page 114.

Table 4-18: CD- and PD-mode combination controls

Control	What it does
Flash Cancel	 Sets the level of filtering for flash artifacts that are generated as a result of movement of biomedical tissue such as the heart. At the bottom of the touch panel, tap Flash Cancel, if it is not already active for switch menu button 2 (the rocker button beneath it). Press the up- or down-arrow side of switch menu button 1 to raise or lower the value. The range of values is 0 through 4.
Persistence	Raises or lowers the persistence value. Persistence is frame correlation, which, as it increases, tends to suppress noise in the image. As you increase the value, the image becomes smoother. The range of values is 0 to 4. For details, see "Adjusting persistence" on page 114.
Filter	Sets the cutoff frequency of the filter for removing clutter in the CD- or PD-mode image persistence. The range of values is 1 through 6. The smaller the number, the lower the cutoff frequency, and the less clutter. For details, see "Setting the filter cutoff frequency" on page 116. Note: You cannot change the filter level when the image is frozen.
DR	Adjusts the dynamic range in the image. The dynamic range is the range of contrast in the image. You can increase or decrease the dynamic range in increments of 5. The range of values is 40 to 100. For details, see "Setting the range of contrast" on page 114. Note: You can change the dynamic range only when the system is in PD mode.
Focus Depth	Sets the focus depth. For details, see "Setting the focus depth" on page 115. Note: You cannot change the focus depth when the image is frozen.

Table 4-18: CD- and PD-mode combination controls

Control	What it does
CF Frequency	 Sets the transmission frequency of the CD or PD mode image. At the bottom of the touch panel, tap CF Frequency, if it is not already active for switch menu button 5 (the rocker button beneath it). Press the up- or down-arrow side of switch menu button 1 to raise or lower the value. Select the transmission frequency for these images. Note: You cannot change the transmission frequency when the image is frozen.
Gate Size	 Sets the cursor's gate size. 1 At the bottom of the touch panel, tap Gate Size, if it is not already active for switch menu button 4 (the rocker button beneath it). 2 Press the up- or down-arrow side of the rocker button to increase or decrease the gate size. Note: You cannot set the gate size when the image is frozen.

The following control is on the control panel

Table 4-19: CD- and PD-mode control panel

Control	What it does
C button	Shows or hides the region of interest (ROI), when either the PD mode or CD mode image is showing and is frozen.

For more information on working with controls in CD and PD modes, see the following:

- "Adjusting the depth and gain of the image" on page 111
- "Using the M or D cursor" on page 159

The information available for the M or D cursor includes setting its gate size, steering angle, and cursor angle.

"Viewing in Dual-screen mode" on page 155 and "Viewing in Simultaneous Dual-screen mode" on page 158.

Working in CD and PD modes

To work in CD and PD modes

1 To activate the CD mode, press the **c** button.

The CD mode image appears on the examination screen, and the **c** button turns orange.

2 To move between CD mode and PD mode while in either, in the touch panel, tap CD or PD in the Mode area according to which mode you want to view.

Or, if you have assigned activation of the PD mode to a function button, press that function button.

Caution

Note that to activate the CD mode while in another mode, you press the C button. To activate the PD mode, you press the function button that you have assigned to activate the PD mode.

- **3** To change the size or position of the color ROI:
 - **a** Use the trackball to adjust the size of the image width or the position of the image.
 - **b** To toggle between the size setting and the position setting, press the **SET** button (2)

4 To freeze the image, press the **FREEZE** button ().

When the image is frozen, you cannot use the following functions:

- CF Frequency
- A Output
- Filter
- Scale
- Focus Depth
- 5 As necessary, save the image or perform measurements.

For details on saving a frozen image or a cine loop, see "Storing examination images" on page 195.

PW, CW, and TDI modes

Use the PW, CW, and TDI modes to display information on the blood flow in the heart or in blood vessels, and the movement of cardiac muscle tissue.

The PW-, CW-, and TDI-mode examination screen

The scroll display of PW, CW, or TDI mode indicates that the PW/CW/TDI mode strip is displayed. It turns light blue when a live image is displayed, and it turns gray when a frozen image is displayed.

The PW, CW, or TDI cursor appears on the 2D-mode image. It indicates the position of the PW/CW/TDI mode strip. When the PW mode is active, the **D** button is orange.

PW-, CW-, and TDI-mode controls

The following are controls that operate from the touch panel:

Table 4-20: PW-	CW-, and TDI-mode controls
-----------------	----------------------------

Control	What it does
Imaging Preset	For selecting the imaging preset appropriate for your examination, on the touch panel. For information on working with imaging presets, see "Working with imaging presets" on page 147.
Format	Enables changing the display sizes of the 2D mode and PW, CW, or TDI mode images relative to each other. For details, see "Sizing mode images relative to each other" on page 117.
ECG Mr-	Enables using and configuring the ECG waveform display. For more information, including on setting the sweep speed, see "Displaying and configuring the ECG waveform" on page 161.
Invert	For inverting the color map that indicates the blood-flow direction and the strip display direction of the Doppler spectrum. The blood-flow direction is relative to the transducer: toward or away from it. Tap Invert .

Table 4-20: PW-, CW-, and TDI-mode controls

Control	What it does
Update area	Selects an image for updating in real time. Beside Update , tap either B , D , or Simul , according to which image or images you want updated.
	B: Update only the live 2D-mode image. The spectral trace of PW, CW, or TDI mode is not updated when the image parameter (for example, cursor steer) is adjusted.
	▶ D : Update only the live PW/CW/TDI-mode strip.
	Simul: Update both the live 2D-mode image and the live PW-mode strip.
	You can specify image updates only in PW mode (<i>not</i> CW or TDI modes). Note:
	You can specify image updates only when a live image is on screen.

The following are controls that combine the touch panel and dial menu buttons.

Table 4-21: PW-, CW-, and TDI-mode combination controls

Control	What it does
Quick Angle	Changes the cursor's gate angle. To change the angle to plus or minus 45°, 60°, or 0°, tap Quick Angle , and then turn dial menu button 1 (the dial to the right of Quick Angle). The angles with the upper end of the graphic to the left are positive; the angles with the upper end of the graphic to the right are negative.
A Output	Sets the transmission output level. For details, see "Setting the transmission-output level" on page 113. Note: You cannot change the transmission output level when the image is frozen.

Table 4-21: PW-, CW-, and TDI-mode combination controls

Control	What it does				
Scale	 Expands or contracts the velocity scale of the PW/CW/TDI mode strip. 1 On the right-hand side of the touch panel, tap Scale, if it is not already active for the dial menu button to its right. 				
	2 Turn the dial menu button to grow or shrink the color scale.				
	Note: You cannot change the velocity scale when the image is frozen. 				
	The velocity scale can be expanded or contracted also by FREQUENCY button. To change the frequency in 2D (B) mode, press the 2D (B) button to return to 2D (B) mode, and then press the FREQUENCY button.				
Cursor Steer	Changes the cursor's steering angle. To specify the steering angle, rotate dial menu button 1 (the dial menu button to the right of Cursor Steer). Note:				
	 You can set the Cursor Steer angle only when a linear transducer is connected. 				
	The steer angle can be set to 30 degrees only when the HFL38xp or HFL50xp transducer is connected.				
Audio Volume	 Sets the audio volume level. On the touch panel, tap Audio Volume, and then turn dial menu button 1 (the dial menu button to the right of Audio Volume). 				
	You can set an audio volume from 0 to 100.				
	Note: This control is not available in TDI mode.				

The following are controls that combine the touch panel and switch menu buttons.

Control	What it does
Baseline	 Moves the baseline for discriminating the blood flow direction (forward or reverse). 1 At the bottom of the touch panel, tap Baseline, if it is not already active for switch menu button 1 (the rocker button beneath it). 2 Press the up- or down-arrow side of the rocker button to move the baseline.
	As you press the rocker button, the baseline moves up or down in the display.
Мар	 Selects the map for adjusting the tone of the PW, CW, or TDI mode image. The possible maps are: Grayscale: G1 to G8 Pseudo color: I1 to I4
	For details, see "Adjusting image tone" on page 114.
Filter	Sets the cutoff frequency of the filter for removing clutter in the PW, CW, or TDI mode image persistence. The range of values is 1 through 12. The smaller the number, the lower the cutoff frequency, and the less clutter. For details, see "Setting the filter cutoff frequency" on page 116. Note: You cannot change the filter level when the image is frozen.
Gate Size	 Sets the cursor's gate size. 1 At the bottom of the touch panel, tap Gate Size, if it is not already active for switch menu button 4 (the rocker button beneath it). 2 Press the up- or down-arrow side of the rocker button to increase or decrease the gate size. Note: This control is not available for the CW mode. You cannot set the gate size when the image is frozen.
DR	Adjusts the dynamic range in the image. The dynamic range is the range of contrast in the image. Increase or decrease the dynamic range in increments of 5. The range of values is 40 to 100. For details, see "Setting the range of contrast" on page 114.

Table 4-22: PW-, CW-, and TDI-mode combination controls

Table 4-22: PW-, CW-, and TDI-mode combination controls

Sets the sweep speed in number of seconds per sweep. For details, see <u>"Setting the sweep speed</u> " on page 112.	
 Sets the transmission frequency of the PW-, CW, or TDI-mode strip. 1 At the bottom of the touch panel, tap Gate Size, if it is not already active for switch menu button 4 (the rocker button beneath it). 	
 2 Press the up- or down-arrow side of the rocker button to increase or decrease the gate size. Note: You cannot change the transmission frequency when the image is frozen. 	
F ⁽¹⁾ 2	

For more information on working with controls in CD and PD modes, see the following:

- "Adjusting the depth and gain of the image" on page 111
- "Using the M or D cursor" on page 159

The information available for the M or D cursor includes setting its gate size, steering angle, and cursor angle.

"Viewing in Dual-screen mode" on page 155 and "Viewing in Simultaneous Dual-screen mode" on page 158

Working in PW, CW, and TDI modes

To work in the PW, CW, and TDI modes

- 1 To change modes among PW, CW, and TDI, do one of the following:
 - > On the touch panel, beside Mode, tap PW, CW, or TDI, according to which mode you want to activate.
 - To activate the PW mode, press the **D** button.
 - > To activate the CW or TDI mode, do one of the following:
 - If the function for activating CW or TDI mode is not already assigned to a function button, assign it to one of them.
 - Press the function button assigned to activate CW or TDI mode.

2 To correct the angle of the PW or TDI cursor, rotate the multi dial (

You can specify an angle between -88 and +88 degrees.

Caution

When the Doppler angle exceeds 60 degrees, the margin of error progressively increases. Doppler angles greater than 60 degrees are displayed in red.

3 To freeze the image, press the **FREEZE** button (

When the image is frozen, the following functions (virtual buttons) are inactive.

- D Frequency
- A Output
- ▶ Filter
- Gate Size
- Scale
- Update
- 4 As necessary, save the image or perform measurements.

For details on saving a frozen image or a cine loop, see "Storing examination images" on page 195.

Controlling the image

Showing or hiding data on the monitor

You can show or hide the following elements on the monitor:

- Grayscale or color scale bar
- The transducer name
- AP (acoustic output)
- Parameters for each imaging mode

To show or hide data on the monitor

- 1 In any mode, tap Others. The Others screen appears.
- 2 Tap Remove Data Fields.

Magnifying the image

To change the magnification of the image

1 If the DEPTH/ZOOM button () is blue, press it to turn it orange.

The initial level of magnification is 1.25 times.

2 To increase or decrease the magnification, press the up- or down-arrow side of the rocker button (below the DEPTH/ZOOM button.

The available magnifications range from 1.25 times to 4.0 times.

When the image is magnified, the magnification ratio shows at the bottom left of the monitor.

- 3 To move the magnified image, use the trackball.
- **4** To return the image to normal size, press the **DEPTH/ZOOM** button again.

Adjusting the depth and gain of the image

To change the depth of the image

- 1 If the DEPTH/ZOOM button () is orange, press it to turn it blue.
- 2 To increase or decrease the depth of the image, press the up- or down-arrow side of the rocker button

) below the **DEPTH/ZOOM** button.

To change gain

Do one of the following:

- Turn the outer ring of the FREEZE button () to the right to increase the gain or to the left to decrease the gain.
- ▶ To increase or decrease gain for a certain depth of field within the image, slide the appropriate DGC key to the right (to increase the gain) or to the left (to decrease the gain).

=0
=Õ
=0
=0
=0
=0

Figure 4-1: DGC (Depth Gain Control) keys

• Tap **Optimize** and specify settings.

For more information on specifying gain and sound speed settings, see "Optimizing the image" on page 116

Setting the sound speed

To set the sound speed

- 1 On the right-hand side of the touch panel, tap **Sound Speed**, if it is not already active for the dial menu button to its right.
- 2 Turn the dial menu button to raise or lower the sound speed.

To optimize the sound speed for 2D mode

- 1 On the B tab, tap Optimize.
- 2 In the **Optimize** screen, make sure that **Sound Speed** is selected (orange).
- 3 Tap Close.

Setting the sweep speed

You can set the rate at which the waveform progresses.

To raise or lower the sweep speed

1 Along the bottom of the touch panel, tap Sweep Speed, if it is not already active.

2 Press the up- or down-arrow side of switch menu button 1 (the rocker button below Sweep Speed) to raise or lower the speed.

The range of values is from 1 to 7, inclusive.

Setting the transmission frequency

The transmission frequency influences resolution and the penetration of the image.

FREQUENC

To set the transmission frequency

• On the **FREQUENCY** button () on the control panel, press the upward-pointing arrow to raise the frequency, or the downward-pointing arrow to lower it.

Note

In CD, PD, PW, CW, and TDI (PW) modes, this button toggles to the function to change the scale in PRF (pulse repetition frequency).

Setting the transmission-output level

Note

You cannot change the transmission-output level when the image is frozen.

To set the transmission-output level

- 1 On the right-hand side of the touch panel, tap A Output, if it is not already active for the dial menu button to its right.
- 2 Turn the dial menu button to raise or lower the transmission output level.

Raising or lowering the emphasis of edges

To raise or lower the emphasis of edges

- 1 Along the bottom of the touch panel, tap Edge, if it is not already active.
- 2 Press the up- or down-arrow side of switch menu button 1 (the rocker button below Edge) to raise or lower the value.

The range of values is 0 to 4.

Raising or lowering the level of sharpness

To raise or lower the level of sharpness

- 1 Along the bottom of the touch panel, tap Sharpness, if it is not already active.
- 2 Press the up- or down-arrow side of switch menu button 1 (the rocker button below Sharpness) to raise or lower the value.

The range of values is 0 to 4.

Adjusting image tone

To select the map for adjusting the tone of the 2D mode image

- 1 Along the bottom of the touch panel, tap Map, if it is not already active.
- 2 Press the up- or down-arrow side of switch menu button 2 (the rocker button below Map) to cycle through and select the type of tone and its value:
 - Grayscale: G1 to G11
 - Pseudo color: I1 to I4
 - ▶ Single color: C1 to C3

Adjusting persistence

Persistence is frame correlation, which tends to suppress noise in the image as it increases. As you increase the value, the image becomes smoother.

To increase or lower persistence

- 1 Along the bottom of the touch panel, tap **Persistence**, if it is not already active.
- 2 Press the up- or down-arrow side of switch menu button 3 (the rocker button below **Persistence**) to raise or lower the value.

The range of values is 0 to 4.

Setting the range of contrast

An image's dynamic range is the range of contrast.

To adjust the dynamic range in the image

- 1 Along the bottom of the touch panel, tap **DR**, if it is not already active.
- 2 Press the up- or down-arrow side of switch menu button 4 (the rocker button below DR) to raise or lower the value.

You can increase or decrease the dynamic range in increments of 5. The range of values is 40 to 100.

Setting the focus depth

Note

You cannot change the focus depth when the image is frozen.

To raise or lower the focus depth

- 1 At the bottom of the touch panel, tap Focus Depth, if it is not already active.
- 2 Press the up- or down-arrow side of switch menu button 5 (the rocker button below Focus Depth) to raise or lower the depth of focus.

As you raise or lower the depth of focus, the depth-of-focus marker (a blue triangle on the examination display) rises or falls accordingly.

Setting the color scale

Note

You cannot change the color scale when the image is frozen.

To set the scale

1 On the right-hand side of the touch panel, tap **Scale**, if it is not already active for the dial menu button to its right.

The color scale can be set also by **FREQUENCY** button.

2 Turn the dial menu button to grow or shrink the color scale.

As you turn the dial menu button, the change is reflected in the color scale at the upper-left of the main monitor.

Setting the filter cutoff frequency

This filter removes clutter in the CD or PD mode image persistence.

Note

You cannot change the cutoff frequency when the image is frozen.

To set the frequency of the filter cutoff

- 1 At the bottom of the touch panel, tap Filter, if it is not already active.
- 2 Press the up- or down-arrow side of switch menu button 3 (the rocker button below Filter) to raise or lower the frequency for eliminating clutter.

For the range of values specific to the mode, see "CD and PD modes" on page 99 and "PW, CW, and TDI modes" on page 105. Lowering the value lowers the cutoff frequency and reduces clutter.

Optimizing the image

This section explains how to control gain, sound speed, and the portions of the image to which they are applied.

To optimize the image

1 On the 2D screen (B), tap Optimize.

The **Optimize** screen appears.

- **2** To enable the optimization feature, tap **Optimize Update**.
- **3** If **Optimize Update** is disabled (gray and unavailable), the optimization feature is already disabled.
- **4** To specify that gain be adjusted automatically:
 - For the entire image, tap Gain.
 - In the direction of depth, tap **DGC**.
 - In the lateral direction, tap **LGC**.
- **5** To specify the calculation position of sound speed correction, in the **Sound Speed** area, tap either **Full Screen** or **ROI** ("region of interest").

6 To minimize the deterioration of the resolution caused by the offset of the sound velocity, tap **Sound Speed** or **Auto Focus**.

Caution

You can select **Auto Focus** only when you have selected **ROI** in the **Sound Speed** area.

The 2D-mode image stops temporarily, and the system adjusts the sound velocity, after compensation.

- 7 To specify the gain offset value:
 - a Tap Set Offset.
 - **b** To adjust the gain offset precisely, press the up arrow or down arrow side of the rocker button below the **Gain Offset** box in the bottom-left corner of the touch panel.
- 8 To cancel the Gain Offset setting, tap Reset Offset.
- 9 To update the image with the settings that you have just specified, tap Optimize Update.

10 To close the Optimize screen, tap Close.

On the main monitor, the optimized values appear in green.

If a small ROI is specified, the estimated sound velocity value for image
optimization may decrease. For information on sizing the ROI, see "2D mode" on
page 89, "CD and PD modes" on page 99, and "PW, CW, and TDI modes" on
page 105.CautionWhen you use the 2D Steer function, the estimated sound velocity value for
image optimization may decrease. The estimated sound velocity value is used
for optimizing the image quality. Accordingly, it may be different from the
sound velocity value of the target of examination.
Sound speed compensation is applied only to the live 2D mode image.
Button operation and image condition and boot timing of auto image cannot
display suitable image. In that case, reboot auto image function by double
clicking AUTO IMAGE button to disenable this function and clicking again to
enable.

Sizing mode images relative to each other

To change the display sizes of two mode images relative to each other

1 On the touch panel, tap Format.

The Format selection screen appears.

- 2 Tap the button for the desired relative sizes of the two images:
 - 1:1 (): the two mode images occupy equal parts of the screen.
 - ▶ 2:1 (): the upper mode image occupies twice the vertical screen space as the lower mode image.

▶ 1:2 (the upper mode image occupies half the vertical screen space as the lower mode image.

The image appears in the selected display format on the main monitor.

Examination procedures

With the FC1, each examination has the following sequence.

1 Enter patient information.

Enter patient information (such as patient ID). When you have selected the examination type, the system displays the most appropriate transducer and preset for the selected examination.

For more information on entering patient information, see "Entering patient information" on page 124.

2 Start the examination.

Starting an examination creates a new examination file.

3 End the examination.

For more information on ending an examination, see "Ending an examination" on page 209.

4 Restart the examination.

The examination can be restarted. However, if the set period of reexamination expires, it is not possible to add a new image or data file to the examination. For more information on the period of reexamination, see "Restart setting (reexamination setting)" on page 70.

For more information on restarting an examination, see "Restarting an examination" on page 140.

Imaging modes and exams available by transducer

WARNING

To prevent misdiagnosis or harm to the patient, understand your system's capabilities before using it. The diagnostic capability differs for each transducer, exam type, and imaging mode. In addition, transducers have been developed to meet specific criteria, depending on their physical application. These criteria include biocompatibility requirements.

The transducer that you use determines the exam types that are available, and the exam type you select determines the imaging modes that are available. The following table relates the imaging modes to the transducer type and exam. The table uses these abbreviations:

- Abd
- Abdomen
- Bre
- Breast
- Crd
- Cardiac
- ▶ Gyn
- Gynecology
- Msk
- Musculoskeletal
- Neo
- Neonatal
- ▶ Nrv
- Nerve
- ► OB
- Obstetrical
- SmP

Small Parts

Vas

Vascular

Transducer	Exam type	Imaging mode					
		2D M Mode	Color	CPD	PW Doppler	CW Doppler	TDI PW Doppler
C60xf	Abd	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	Gyn	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	Vas	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	Msk	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	Nrv	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	OB	\checkmark	\checkmark	\checkmark	\checkmark	—	—
HFL38xp	Abd	\checkmark	\checkmark	\checkmark	\checkmark	_	—
	Bre	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	Msk	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	Nrv	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	SmP	\checkmark	\checkmark	\checkmark	\checkmark	—	-
	Vas	\checkmark	\checkmark	\checkmark	\checkmark	—	_

	5 5			•			
Transducer	Exam type	Imaging mode					
		2D M Mode	Color	CPD	PW Doppler	CW Doppler	TDI PW Doppler
P21xp	Abd	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Crd	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	OB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Gyn	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Vas	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C35xp	Abd	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	SmP	\checkmark	\checkmark	\checkmark	\checkmark	—	-
	OB	\checkmark	\checkmark	\checkmark	\checkmark	—	-
	Gyn	\checkmark	\checkmark	\checkmark	\checkmark	—	—
	Vas	\checkmark	\checkmark	\checkmark	\checkmark	—	-
	Msk	\checkmark	\checkmark	\checkmark	\checkmark	—	_
	Nrv	\checkmark	\checkmark	\checkmark	\checkmark	—	—

Entering patient information

Patient information may be edited after the exam is ended and before it is exported or archived. Information imported from a worklist cannot be edited.

	 During the examination, the patient information cannot be edited while exporting (output/input to USB memory, and/or DICOM storage transfer) and/ or when using a worklist.
Caution	After the examination, Edit cannot be used after exported (output/input to USB memory, and/or DICOM storage transfer).
	In case you do not want to edit the patient information nor start a new examination, you can tap Modify and press the PATIENT button to cancel the operation.

The **Patient Info** screen on the touch panel also appears on the monitor. As you enter data on the touch panel, it appears on the monitor. For information on hiding the patient's personal information, see the following procedure.

Caution

You cannot enter Kanji characters in the Name field.

You can obtain the following patient information from the bar-code reader or a card reader:

- Bar code: Patient ID and Accession No.
- Card reader: Patient ID, Accession No., DOB, and Gender. For information on how to do so, see "Obtaining patient information by bar code or card reader" on page 129.

To enter patient information

The Patient Info screen appears.

- 2 If you do not see the Patient Info screen, tap the Patient Info tab at the upper left of the touch panel.
- **3** Complete the information for each field of the screen.
 - ▶ For information on the information needed for each field, see "Patient information fields" on page 126.
 - > You can type information with either the virtual keyboard on the touch panel or with a USB keyboard. For information on using the virtual keyboard, see the following procedure.

- > To select values from a drop-down list, tap the downward-pointing green arrow (
- ▶ For some fields, such as the DOB (date of birth) fields, the cursor automatically moves from one field to the next.
- > For more information on completing the fields, see the following:
 - For all examinations, "Patient information fields" on page 126
 - "Gynecological examinations" on page 129
 - "Cardiovascular examinations" on page 129
- 4 To manually select a different transducer:
 - a Tap transducer; then, on the transducer selection screen that appears, tap the transducer that you will use.
 - b Tap Close.

Caution

The selection screen is displayed even if the transducer is not connected to the FC1. However, you will not be able to change the transducer selection. You also cannot change the transducer selection if there is only one transducer physically attached to the FC1 system.

5 To prevent the patient's personal information from appearing on the monitor, make sure that **Hide Info** is selected (orange).

Or, if you have assigned Hide Pt Bar to a function button, press that button.

6 When you have finished entering all data, on the Patient Info screen, tap OK.

The FC1 system is ready to begin the examination.

To type using the virtual keyboard

- 1 On the **Patient Info** screen or another -panel screen that requires manual data entry, on the touch panel, tap one of the following:
 - > The Keyboard virtual button
 - > The field in which you need to enter data
- 2 Type the information, using the keyboard-switching virtual buttons as necessary.
- **3** When you have finished typing the data, tap **Close**.

OK

- ▶ To move to the next field without leaving the keyboard, tap the keyboard, tap the
- To move to the previous field without leaving the keyboard, tap the key.

Patient information fields

Patient information fields include the following:

General information fields

Those patient information fields common to all examinations

Table 4-24: Patient information buttons	
ltem	Description
Patient Info	Displays the "Patient Info screen".
Exam Info	Displays the "Exam Info" screen for entering alphanumeric characters.
Hide Info	Displays or hides personal information of patients on the upper side of examination screen.
Keyboard	Displays the virtual keyboard.
Patient Log	Displays the patient list stored in the FC1. When a patient is selected from the list, information on the patient appears in the "Patient Info screen".
Worklist	Displays the worklist.
Exam List	Displays the examination list stored from the USB memory to the FC1. By using the examination data displayed in the list, the patient information can be entered in the "Patient Info screen".

Saves the input data and starts an examination.

Table 4-24: Patient information buttons

Table 4-25: General patient information fields

Field	Data required
ID	Patient identification number
Accession No.	Patient accession number

Table 4-25: General patient information fields

Field	Data required
Name	Patient name
YYYY, MM, and DD (to the right of DOB)	Year, month, and date of patient's birth If the language setting is set to Japanese, the Japanese calendar date format can be used. The date format can be configured in the System Setup menu.
AGE	Patient age This field is automatically completed when you complete the DOB fields. If the patient is less than one year old, the system enters 0 (zero) for the patient's age. You can enter the patient's age manually, before entering his or her birth date.
Gender	 Patient gender Possible values: M for male F for female O for others U for unknown When the patient's gender should not be registered, select U.
Exam Type	Type of examination The available examination types include: ABDOMEN, SMALL PARTS, CARDIAC, OB, FETAL HEART, GYN, VASCULAR, CAROTID, THYROID, BREAST, MUSCSKEL, PED, PED HEART, NERVE, URO, OB TWIN. These examination types are divided into smaller groups that have certain Patient Info screen fields in common. Changing the Exam Type value automatically changes the Preset value to match, and vice-versa. The transducer field automatically changes to display the desired transducer type for the chosen exam type (only when using Triple Transducer Connect (TTC)).
Preset	The preset for the examination type. Changing the Preset value automatically changes the Exam Type value to match, and vice-versa. The only time to manually select the preset is when it has been changed for the exam type.
Probe	The desired transducer type for the chosen exam type. This field changes automatically to reflect your choice of exam type (only when using Triple Transducer Connect (TTC)). The only time when you manually select the transducer is when it has been changed for the exam type.

- When Gender is not to be registered, tap U: unknown.
- Tap **Probe** only when the probe set in **Exam Type** is changed to another one.
- Tap **Preset** only when the preset set in **Exam Type** is changed to another one.

OB, Fetal Heart, or OB Twin examinations

Table 4-26: Patient information fields for OB, Fetal Heart, or OB Twin exams

Field	Data required
LMP, EGA, or BBT	LMP (patient's last menstrual period), EGA (date of previous examination and week of pregnancy at that time), or BBT (estimated ovulation date)
	To choose, tap . and then complete the YYYY, MM, and DD date boxes. If you have selected EGA, then the EGA MA appears, meaning week of pregnancy at the time of the last exam, with fields w and d.
EDD	Estimated date of delivery You can complete this field manually, but entering a date for LMP, EGA, or BBT completes it automatically.
MA	Current week of pregnancy You can complete this field manually, but entering a date for LMP or EGA completes it automatically.
Fetuses	Number of fetuses The system can measure at most five fetuses, regardless of the value that you enter. For an OB Twin examination, this field's value is 2 , by default.
G	The gravidity of the patient
Р	The parity of the patient
Α	The number of abortions that the patient has had
Е	The number of ectopic pregnancies that the patient has had

Gynecological examinations

Table 4-27: Patient information fields for Gynecological exams

Field	Data required
LMP or BBT	The patient's last menstrual period (LMP) or estimated ovulation date (BBT) To choose, tap . and then complete the YYYY, MM, and DD date boxes.
Day of Cycle	The day of the patient's menstrual cycle

Cardiovascular examinations

For the purposes of completing patient information, cardiovascular examinations include Cardio, Vascular, Carotid, and Thyroid examinations.

Table 4-28: Patient information fields for Cardiovascular exams

Field	Data required
н	The patient's height Maximum number of digits: 6
w	The patient's weight Maximum number of digits: 6
BSA	The patient's body surface area, automatically calculated from the patient's height, weight, and body classification.
	To select the patient's body classification, tap , and then select the body type that most closely matches the patient.
BP	The patient blood pressure. Enter the systolic value and the diastolic value.

Obtaining patient information by bar code or card reader

The patient information that you get from the bar code or card reader is entered automatically in the **Patient Info** screen.

After you use the barcode reader, be sure that patient information is correct. If it is not correct, you can modify it manually.

WARNING	Adding incorrect patient information could result in potential misdiagnosis / mistreatment, thus potentially harming the patient.
Caution	You cannot enter Kanji characters in the Name field.

Entering examination information

As with the **Patient Info** screen, changes that you make on the **Exam Info** screen on the touch panel appear on the main monitor as well.

To enter examination information

1 Press the **PATIENT** button () and then, on the touch panel, tap the **Exam Info** tab (or **Exam Info (Kanji)**) tab.

The Exam Info (Kanji) tab is available only when the language is set to Japanese.

The Exam Info screen appears.

2 In the text boxes, using either the virtual keyboard or a USB keyboard, type the appropriate information, as described in the following table.

Table 4-29: Exam information fields

Field	Data required
Study ID	The ID number of the study
Operator	The name of the operator (as shown)
Phys	The name of the attending physician (as shown)
Ref. Phys	The name of the referring physician (as shown)
Rep. Phys	The name of the reporting physician (as shown)
Req. Phys	The name of the requesting physician (as shown)
Department	The name of the department
Residence	The residence of the patient
Occupation	The occupation of the patient
Patient History	The medical history of the patient
Study Description	Details of the study
Patient State	The patient's symptoms
Comment	Comments regarding the patient, with a maximum of 50 characters

3 Tap the downward-pointing green arrow (**III**) to the right of **Body Part Examined**, and then tap one of the following buttons: **BREAST**, **ABDOMEN**, **PELVIS**, **HIP**, **HEAD**, **HEART**, **NECK**, **LEG**, or **ARM**.

- 4 To save the data and continue with the examination, tap OK.
- 5 After entering all the necessary items, to save the information, tap OK or press the FREEZE button (

Caution

If you press the **PATIENT** button without tapping **OK** or pressing the **FREEZE** button, the items entered in the **Patient Info** screen or **Exam Info** screen are not stored.

6 Make sure that the correct patient name and preset are displayed on the examination screen.

You are ready to start the examination.

Precautions before starting an exam

Before starting a new examination, be sure to register the following:

- On the Patient Info screen, the patient information such as the patient ID, attribute data, examination date, and clinical special items
- > On the Exam Info screen, examination information such as the accession number and the referring physician

These pieces of information are required to correctly start an examination or preset, and to correctly save examination data and images. The identifiers for patient information and examination information registered on the FC1 are patient ID, patient name, and examination date.

With the DICOM connection function (Optional), you can save images to the DICOM network storage device (archive server).

When examining a new patient, be sure to register and save the patient ID and name, and to check that you have selected the correct examination type and preset. Performing an examination without entering and saving the patient ID and name may result in the data's being mixed with that of another patient, resulting in misdiagnosis.

Caution

Saving an image without your having entered and saved the patient ID and name results in a patient ID's being assigned automatically to the image. You cannot then add or edit the patient name and other data afterward.

To ensure correct measurements, be sure to set the correct time before performing an examination.

Once Patient data is entered from Patient and Exam Info screen, the patient and exam data can not be modified. Please make sure that correct Patient an Exam information are entered.

Opening a patient's existing record from Patient Log

To view a patient's record

- 2 Tap Patient Log.
- 3 In the Patient ID column, tap the ID of the patient whose record you want to work with, and then tap Open.

Opening an existing examination record from USB memory

The examination list shows the examination records stored from the USB memory to the FC1. You can use the examination data displayed in the examination list to enter the patient information in the **Patient Info** screen.

To view an examination record

- 1 Press the PATIENT button (
- 2 Tap Exam List.
- **3** To choose the data by which you want to order the list of examinations, to the right of **Search Key**, tap the downward-pointing green arrow (
- 4 Tap either Patient ID, Patient Name, or Accession No.

The touch panel returns to the Exam List screen.

5 Tap the examination record that you want.

Starting an examination from the DICOM work list

You can obtain the patient information for a new examination from the DICOM work list. You select the items of patient information to be used on the **Worklist** screen.

Caution

MPPS is not supported and cannot be used at present.

On the **Patient Info** screen, tap **Worklist** to display the **Worklist** screen. The **Worklist** screen can also be displayed by pressing the F-key to which the function for displaying the **Worklist** screen is assigned.

Caution

When the F-key to which the function for displaying the Worklist screen is assigned is pressed during an examination, a confirmation message is displayed.

When you tap OK, the current examination ends and the Worklist screen appears.

When the connection with the DICOM worklist is enabled, if the desired patient information is obtained and stored successfully, it is displayed on the **Worklist** screen.

If the connection with the DICOM worklist is disabled, or if the FC1 has failed to obtain or store the patient information for some reason, the patient information already stored appears, or no patient information appears.

ltem	Description
Search key	Tap the search key to display a selection screen for "Patient ID", "Patient Name", "Accession No.", "Scheduled Procedure Step Start Date-Time", "Scheduled Procedure Step Description" and "Requested Procedure ID".
String	Enter the keyword for retrieving the patient information. Enter it using the virtual keyboard.
Sort buttons	Displays the examination list in ascending or descending order. The display order changes when the buttons are tapped.
Examination list	 Each item of patient information is displayed. The items to be displayed are as follows. Patient ID Patient Name (Displayed in Japanese only when the language setting is set to Japanese.) Accession No. SPS Start Date-Time SPS Description Requested Procedure ID Requested Procedure Description
Select All	All items in the examination list are selected.

Table 4-30: Worklist fields and controls

Table 4-30: Worklist fields and controls

ltem	Description
Find	Updates the worklist.
First/Last	Displays the first and last pages of the list alternately.
L/R Scroll	Scrolls the list to display the hidden items. The display can be scrolled horizontally by operating the switch menu button 2.
Page	Displays the next or previous page. The page can also be switched by operating the switch menu button 3. The current page number and the total number of pages of the list are displayed on the lower side.
Open	Displays the Patient Info screen with the selected patient information entered. If DOB is included in the selected information, the patient age is calculated again before displaying it. If no item is selected in the examination list, or if multiple items are selected, this button is disabled.
Query	Displays the search condition setting screen. By setting a search condition, the patient information that meets the specified condition is obtained from the DICOM worklist and stored in the FC1. For details, see "To find patient information in connected DICOM storage" on page 136. If the DICOM MWM is not available, this button is disabled.
Delete	Deletes the selected patient information. When this button is tapped, a confirmation message is displayed. Tap OK to delete the selected patient information. Tap Cancel to cancel the deletion. Multiple items in the examination list can be selected and deleted. If no patient information is selected in the examination list, this button is disabled.
Search	Starts retrieving the patient information based on the entries in "Search key " and "String ", and displays the search result in the examination list.
Close	Closes the Worklist screen without saving the settings.

Using the DICOM worklist to start an examination

When you have enabled the connection with the DICOM worklist, patient information that is obtained and stored successfully appears on the **Worklist** screen.

If the connection with the DICOM worklist is disabled, or if the FC1 system cannot obtain or store the patient information, the worklist shows only the patient information that has been stored on the FC1 system.

In the **DICOM Worklist** screen, there are two ways to find a patient's information that you want to start the examination with.

To start a new exam from the DICOM Worklist

- 1 Press the PATIENT button (
- 2 On the Patient Info screen, tap Worklist.

Or

If you have assigned the function for displaying the **Worklist** screen to a function button, press the button to which it is assigned.

Caution

If you press the button that you have assigned the function for displaying the **Worklist** screen during an examination, you are prompted to confirm that you want to end the current exam.

3 Select an examination from the list and tap **Open**.

To find patient information in the DICOM database

1 Open the Worklist.

To open the Worklist, see the procedure above "To start a new exam from the DICOM Worklist."

- 2 To select the field to search on:
 - a Tap the downward-pointing green arrow (
 - **b** On the selection screen that appears, tap the field in which you want to search: **Patient ID**, **Patient Name**, **Accession No.**, **Start Date**, **Req Proc ID**, **Sched Desc**, or **RP Desc**.
- **3** To search on a string within the selected field:
 - a In the text box next to String, using the virtual keyboard, type the string (or keyword) of interest.
 - **b** Tap Close.
- 4 Tap Search.

Caution

When you obtain patient information from the optional barcode reader or card reader, the patient ID that you have obtained appears in **Patient ID** on the search condition setting screen.

The patient information is retrieved based on the criteria you have specified in **Search key** and **String**, and the search result appears in the examination list.

Finding patient information in connected DICOM storage

Finding patient information in the Worklist **Query** screen retrieves the patient information from the DICOM worklist and stores it in the FC1.

To find patient information in connected DICOM storage

```
Note
```

If you want to display less information from the records you found, you can search by **Search Key** and **String** instead of the **Query** screen.

1 Open the Worklist.

For the procedure for opening the **Worklist**, see "Starting an examination from the DICOM work list" on page 132.

2 Tap Query.

The Query screen opens.

3 To define a search condition, type data in the following fields, as needed:

Field	Action
Patient ID	Enter the patient ID.
Last Name	Enter the last name of the patient.
First Name	Enter the first name of the patient.
Middle Name	Enter the middle name of the patient.
Accession Number	Enter the accession number.
Requested Procedure ID	Enter the requested procedure ID.
Scheduled Station AE Title	Enter the scheduled station AE title.
Find	Starts retrieving the patient information based on the above items. The FC1 system obtains the patient information that meets the specified condition from the DICOM worklist, stores it in the FC1 system, and displays it on the Worklist screen.
Close	Closes the screen without performing the search, and returns to the Worklist screen.

Table 4-31: Worklist query fields

Deleting patient information from the DICOM worklist

You can select and delete multiple items in the examination list.

To delete patient information from the DICOM worklist

1 Find the patient information that you want to delete.

For more information, see "Starting an examination from the DICOM work list" on page 132.

- 2 Tap Delete.
- 3 When you are prompted to confirm the deletion, tap **OK** to delete the selected patient information.

Or, to cancel the deletion, tap Cancel.

Starting an examination from the Patient Log screen

You can start a new examination with the patient information obtained from the archived examinations. You can access these archived exams on the **Patient Log** screen.

To start a patient exam

1 On the Patient Info screen, tap Patient Log to display the Patient Log screen. You can also display the Patient Log screen by pressing the F-key to which the function for displaying the Patient Log screen is assigned.

Caution

When the F-key to which the function for displaying the **Patient Log** screen is assigned is pressed during an examination, the confirmation message "Start an examination with a new patient?" appears.

2 When you tap OK, the current examination ends and the Patient Log screen appears.

Hint: After the patient information is selected on the **Patient Log** screen, a new examination can be started by correcting the displayed patient information and examination information.

Starting an examination from patient information (Optional, Japan only)

You can start a new examination using patient information managed by C@RNACORE. For details about the information that can be obtained from C@RNACORE, see the C@RNACORE Reference Guide.

WARNING

Use our C@RNACORE product only with this function.

To start an examination from patient information

1 Enter the C@RNACORE patient ID in ID at the right of the patient information link button () on the Patient Info screen.

Note

Enter a patient ID managed by C@RNACORE.

2 Tap the patient information link button (@).

The patient information based on the ID that you have entered is obtained from C@RNACORE and displayed on the **Patient Info** screen.

After using patient information link, make sure that the patient information is correct. If it is not correct, you can change it manually.

- 3 Either tap OK or press the FREEZE button (
- **4** After the examination starts, make sure that the correct patient name, presets, and other items appear in the upper section of the "examination screen".

The examination can now be started.

Hint

This function presumes that patient information entered using C@RNACORE in another location is opened on the FC1.

The link with C@RNACORE must be configured to use patient information link. For more information about the settings, see "Server connection settings" on page 44.

If you tap the patient information link button () without entering an ID, the patient information currently displayed on C@RNACORE is obtained.

Starting an examination from orders (Optional, Japan only)

You can start an examination on the FC1 by orders created by C@RNACORE. For details about the information that can be obtained from C@RNACORE, see the C@RNACORE Reference Guide.

Use our C@RNACORE product only with this function.

To avoid misdiagnosis or erroneously influencing the diagnosis results of the patient, end the examination before using order link. The previous patient's data may be combined with the current patient's data if order link is used without ending the examination. For details on how to end an examination, see "Ending an examination" on page 209.

WARNING

After using order link, make sure that the patient information is correct. If the patient information is not correct, a misdiagnosis or treatment failure may occur and negatively affect the patient.

IHE multiple hospital patient id (PIX) is not supported and cannot currently be used.

To start an examination from an order

Because this function uses a work list, patient information cannot be corrected by the FC1.

To start an examination using the correct patient information, enter the patient information manually. For details, see "Entering patient information" on page 124.

- 1 Start the FC1.
- 2 Examinations can now be started from order link. Start examinations from C@RNACORE.
- **3** If an examination is started from C@RNACORE, a confirmation message appears asking whether to start the examination using order content. To start the examination, tap **OK**.

Caution

Make sure that the patient ID and patient name on the message screen are correct.

4 After the examination starts, make sure that the correct patient name, presets, and other items appear in the upper section of the "examination screen".

The examination can now be started.

Hint

This function presumes that an examination on an FC1 installed nearby is started from C@RNACORE.

Note

The DICOM connection function (Optional) must be activated to use order link. The link with C@RNACORE must also be set. For more information about the settings, see "Server connection settings" on page 44.

It is required to configure the examination if you want to start the examination with a preset and the appropriate transducer selected from multiple transducers when using Triple Transducer Connect (TTC). For more information about the settings, see "Configuring examination defaults (Exam Type Setting)" on page 67.

Restarting an examination

Add new data files in any time before the period of reexamination; files cannot be added when exceeded. For more information on the period of reexamination, see "Restart setting (reexamination setting)" on page 70.

To restart the examination

- 1 Press the PATIENT button (
- 2 On the Patient Info screen, tap Patient Log.
- 3 Navigate to the name of the patient whose examination you want to restart.

For information on searching for a patient's record, see "Opening a patient's existing record from Patient Log" on page 132.

4 Tap the patient's record to select it, and then tap Restart.

Restart can be enabled any time before the period of reexamination.

Working with the Patient Log screen

You can find, edit, and delete patient records using this screen.

With automatic image deletion, the images are deleted automatically but the patient logs remain. Up to 8000 patient logs can be recorded. To avoid exceeding the maximum number of logs, delete patient information periodically. To delete patient logs individually, use the Patient Log screen. If you want to delete all patient logs, see "Resetting user configuration" on page 74.

Caution

Finding patient records in the Patient Log screen

To work with examinations on the Patient Log screen

1 On the Patient Info screen, tap Patient Log.

Or, press the F-key to which you have assigned the function to display the Patient Log screen.

Caution

When you use the F-key to open the **Patient Log** screen during an examination, you are prompted to confirm that you want to start a new examination.

2 To end the current examination and open the Patient Log screen, tap OK.

The Patient Log screen appears, showing the following fields:

Lock

Records that are locked appear with a representation of a padlock

Patient ID

The patient's identification number

Patient Name

If the language setting is Japanese, the name appears in Japanese only.

- Size (MB)
- Data Count (S/L/R/D)

The number of images in the examination. (S stands for still images, L for clips, R for raw data images, and D for setup screens.)

Study Date Time

The date and time that the examination started

Study Last Date Time

The date and time that the examination completed

Accession

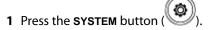
Patient accession number

3 Locate the patient examination record of interest by searching and navigating in the examination list.

Searching and navigating in the Patient Log is the same as navigating the examination list in the Exam List screen. For information on examination-list searches and navigation, see "Working with the Examination List screen" on page 143.

The search results appear in the examination list.

4 To lock or unlock one or more patient records, select the record or records, and then tap Lock.


When you lock a patient record, the record cannot be modified or deleted. The lock icon 🕅 appears by the Patient ID for the record. For more information, see "Locking archived examinations" on page 190.

5 To close the **Patient Log** screen, tap **Close**.

Acquiring logs

You can get logs created between certain dates, or all logs.

To acquire logs

The **User Setting** screen appears.

- 2 On page 4/4, tap Get Log. The Get Log screen appears.
- 3 Tap any part of the dates to see up arrows and down arrows, which you can use to change those values, and tap Start.

You are prompted to confirm your request. To confirm it, tap OK. To cancel it, tap Cancel.

Deleting logs

You can delete all logs in one step.

To delete logs

1 Press the SYSTEM button

The User Setting screen appears.

2 On page 4/4, tap **Delete Log**. The Delete Log screen appears.

3 Tap Start. You are prompted to confirm your request. To confirm it, tap OK. To cancel it, tap Cancel.

Editing patient examination records

To edit examination records

1 To open a patient's examination record, in the examination list, tap the patient's record, and then tap the **Open** button.

With the patient's record open, you can change the information in it.

2 To close the patient's record and return to the Patient Log screen, tap Patient Log.

Deleting patient examination records

Note

By deleting the record here, you also delete it in the Examination List. You cannot delete a record that is locked.

To delete a patient examination record

In the examination list, tap the patient's record, and then tap Delete.

When you are prompted to confirm that you want to delete the record and its exam and images, tap OK.

Working with the Examination List screen

You can start a new examination by using the patient information stored in the USB memory. You select the examination records of patient information to be used on the **Exam List** screen.

To view and work with patient information on the Exam List

1 On the Patient Info screen, tap Exam List.

Or, if you have assigned the function for displaying the Exam List screen to an F-key, press that key.

Caution

If an examination is in progress when you press the F-key to display the **Exam** List screen, you are prompted to confirm that you want to end the exam. To do so, tap **OK**.

The Exam List screen appears, showing the following fields:

Patient ID

The patient's identification number

Patient Name

If the language setting is Japanese, the name appears in Japanese only.

Accession

Patient accession number

- **2** To search the records in the examination list:
 - **a** To select the field to search on, tap the downward-pointing green arrow (**III**) to the right of **Search Key** and, in the selection screen that appears, tap the records field on which you want to search.
 - **b** To search on a string within the selected field, in the text box next to **String**, using the virtual keyboard, type the string (or keyword) of interest, and then tap **Close**.
 - **c** Tap the **Search** virtual button.

The search results appear in the examination list.

3 To sort the records in ascending or descending order on a field, tap the header for the field.

The visual indicator changes between \triangle and \bigtriangledown according to whether the sort order is descending or ascending, respectively.

- **4** To navigate within the examination list:
 - ▶ To go to the first or last page in the list (according to the last sort order), press the up or down arrow on switch menu button 1 (the rocker button underneath First/Last).
 - ▶ To view more fields in the patient records (such as Accession) by scrolling to the left or right, press the up or down arrow on switch menu button 2 (the rocker button underneath L/R Scroll).
 - ▶ To move from page to page in the examination list, press the up or down arrow on switch menu button 3 (the rocker button underneath **Page**).
- 5 To select all the patient records in the examination list, tap Select All.
- 6 To lock or unlock one or more patient records, select the record or records, and then tap Lock, to either lock or unlock them.

When you lock a patient record, the record cannot be modified or deleted. The lock icon appears by the Patient ID for the record.

To delete an examination record

- 1 Find and select the record or records that you want to delete, as in the above procedure, "To view and work with patient information on the Exam List."
- 2 Tap Delete.
- 3 When you are prompted to confirm that you want to delete the record and its exam and images, tap OK.

Or, to cancel the deletion, tap Cancel.

Note

By deleting the record here, you also delete it in the Patient Log. You cannot delete a record that is locked.

To edit an examination record

1 To open an examination record, in the examination list, select the record by tapping it, and then tap Open.

With the examination record open in the Patient Info screen, you can edit it.

2 To close the examination record and return to the Exam List, tap Exam List.

To start a new examination from the Exam List

With the record open for a patient, correct the displayed patient information and examination information.

To close the Exam List screen

Tap Close. Note that any settings are not saved.

Obtaining patient information from USB memory

Loading the patient information stored in the USB memory onto the FC1 loads all the patient information and displays it in the examination list.

Caution

When you load the USB memory, any patient information that is already loaded from the USB memory is overwritten.

To load all the patient information from USB memory to the FC1

1 Press the PATIENT button (

2 Tap Exam List and then, in the Exam List screen, tap Load.

If the USB memory is not connected to the FC1, this button is disabled.

Selecting the preset

Selecting a preset for an examination retrieves the optimal examination settings and image quality adjustment values for the intended use and the body part to be examined, which reduces the examination time. Selecting the type of examination on the **Patient Info** screen selects the transducer and preset most appropriate for the examination, enabling you to automatically obtain optimal examination images.

You can change the preset in the middle of an examination.

You can also select the desired preset on the Preset Change screen.

You cannot change the preset at the following times:

- While changing system settings
- When the Patient Info screen is displayed
- While reviewing examination images (whether current or archived)

PRESET

To select a preset

1 Press the **PRESET** button (

The **Preset** screen appears.

If a live image is displayed on the main monitor at that time, the image is frozen.

2 Tap the preset that you want to use.

The preset name displayed on the upper side of the main monitor changes to the name of the selected preset.

Displaying or hiding a preset

Use the Touch Panel Layout screen to change the presets that are available on the Preset screen.

To show or hide presets on the Preset screen

1 Press the **PRESET** button (

Caution

If you press the **PRESET** button while the **Preset** or **Touch Panel Layout** screen is open, the screen is closed and the settings that you have chosen on it are not saved.

The **Preset** screen appears.

2 Tap Touch Panel Layout.

The Touch Panel Layout screen appears, with all available presets showing.

3 Make sure that each preset that you want to appear on the Preset screen is selected (orange).

If a preset that you want to appear is black, tap it to make it orange.

4 To save your changes, tap OK.

Or, to close the screen without saving changes, tap **Close**.

Working with imaging presets

Imaging presets are sets of image-processing parameters. Available imaging presets vary depending on the type of examination and the transducer to be connected.

There are two types of imaging presets:

- Factory imaging presets registered at the factory
- Imaging presets that the user registers

You can add, delete, or modify imaging presets, except for the factory imaging presets.

You cannot change imaging presets at the following times:

- While changing system settings
- When the Patient Info screen is open
- > When examination images (of the current or an archived examination) are on screen

On the Imaging Preset [presetname] screen, you can:

Modify the imaging preset for a preset and connected transducer

For information on modifying an imaging preset, see "Modifying an imaging preset" on page 150.

Create a new imaging preset

For information on creating an imaging preset, see "Creating an imaging preset" on page 149.

Set an imaging preset as the default

For information on setting an imaging preset as the default, see "Setting a default imaging preset" on page 150.

To access the imaging presets for a preset

1 To change the imaging presets for the current preset when a live image is displayed, tap Imaging Preset, or:

To change the imaging presets for any preset:

- a Press the PRESET button (
- **b** Select a preset.
- c Tap Imaging Preset.

The Imaging Preset screen appears, and the live image displayed on the main monitor is frozen. (Note, however, that Imaging Preset is not available when an image is already frozen.)

Factory imaging presets appear in the top half of the screen, and user-created imaging presets appear in the bottom half.

- 2 To work with one of the imaging presets for the preset, tap the imaging preset that you want.
- 3 To access a different imaging preset for the same preset, return to the screen by tapping Imaging Preset.
- 4 Tap Close at any time to close the imaging preset screen without making any of your changes effective.
- 5 To return to the Preset screen from the Imaging Preset screen, press the PRESET button.

Renaming an imaging preset

Factory imaging resets cannot be modified, so you can rename only user-created imaging resets.

To rename or change the parameters of an imaging preset

1 Tap Imaging Preset on the touch panel.

The Imaging Preset screen appears.

- 2 Tap Management.
- 3 Press the switch menu button 1 (the rocker button under Change Category) to display the User screen.
- 4 Under Imaging Preset Name, tap the name of the imaging preset.

The virtual keyboard appears.

- **5** Change the name, using the virtual keyboard (or the USB keyboard).
- 6 Tap Close.

The name is finalized and displayed on the User screen.

Note

You cannot rename an imaging preset with a name that has already been registered. In addition, if you have not entered a name, an error message appears.

Creating an imaging preset

You can create a new imaging preset from the imaging parameters of the current imaging preset.

Restrictions on creating an imaging preset:

- > You can create a new imaging preset only when a live image is on-screen.
- The system supports a maximum of 10 enabled imaging presets. If 10 imaging presets have been enabled, the **Create** button is not available, and you cannot open the **Create** screen.

To create a new imaging preset

1 While a live image is on-screen, tap Imaging Preset.

Or, if you have assigned the function of displaying the **Create** screen to a function button, press that button.

The Imaging Preset Change screen appears, and the live image displayed on the main monitor is frozen.

- 2 On the Create screen, tap the New Imaging Preset Name text box.
- **3** Type a name for the new imaging preset, using the virtual keyboard or the USB keyboard.

- **4** To change the settings of the new or renamed imaging preset, see "Modifying an imaging preset" on page 150.
- 5 To register the new preset in the system and return to the Imaging Preset [presetname] screen, tap OK.

Or, to discard the name you just typed and return to the Imaging Preset [presetname] screen, tap Close.

Modifying an imaging preset

You can change image-processing parameters only for user-created imaging presets; for factory imaging presets, the **Modify** virtual button is not available.

To modify a user-created imaging preset

1 While a live image is on-screen, tap Imaging Preset on the touch panel.

The Imaging Preset screen appears, and the live image displayed on the main monitor is frozen.

2 Tap the user-created imaging preset you want to change.

The touch panel returns to the 2D (B) mode screen.

3 Make changes to the parameters in the 2D (**B**) mode screen.

Or, to make changes to the imaging preset in other modes, press the **C**, **D**, or **M** button on the control panel, and then make changes on those screens.

- 4 Tap Imaging Preset on the touch panel.
- 5 Tap Modify.
- 6 When you are prompted to confirm that you want to modify the imaging preset, tap OK.

The system overwrites the imaging preset that is in use with the changes you have made to the imageprocessing parameters.

Setting a default imaging preset

To set an imaging preset as a default

- 1 In the Imaging Preset screen, tap the imaging preset that you want to set as the default.
- 2 Tap Imaging Preset.

In the Imaging Preset screen, a small yellow dot in the upper-left corner of the button for the imaging preset of interest shows that it is selected.

3 To make it the default, tap Set Default.

Displaying or hiding an imaging preset

You can specify the imaging presets that appear on the Imaging Preset screen.

Press the switch menu button 1 (the rocker button under **Change Category**) to select factory imaging presets on the **Factory** screen, or user-created imaging presets on the **User** screen.

The User screen displays user-created imaging presets that are registered in the FC1 system.

To specify the imaging presets that appear on the Imaging Preset screen

1 To manage the current imaging preset when a live image is displayed, tap Imaging Preset.

Follow the procedure below if you want to manage a preset different from the current preset.

- a Press the PRESET button (
- **b** Select a preset.
- c Tap Imaging Preset.

The Imaging Preset screen appears, and the live image displayed on the main monitor is frozen.

2 Tap Management.

3 To move up or down a page in the list of imaging presets, press switch menu button 2 (the rocker button under **Page**).

If you don't see the imaging preset that you want to manage in one of the screens (categories), switch to the other.

4 To switch the **Imaging Preset** screen category between **Factory** and **User**, press switch menu button 1 (the rocker button under **Change Category**).

The current preset and all the imaging presets for the connected transducers registered in the FC1 are displayed on those two screens.

In the **E/D** (enable/disable) column, an orange check mark means that the imaging preset is visible (and so available for selecting) in the **Imaging Preset** screen.

5 To enable or disable an imaging preset for selection on the **Imaging Preset** screen for a preset, tap the imaging preset's check box to place or remove the orange check mark.

You can enable no more than ten imaging presets. If more than ten imaging presets are checked and you tap **OK**, an error message appears. Tap **OK**, and then decrease the number of selected imaging presets to ten or fewer.

6 To save your settings, close the screen, and return to the Imaging Preset screen, tap OK.

Or, to close the screen without putting your changes into effect, tap Close.

If you have saved your changes, the imaging presets that you have selected appear on the Imaging Preset screen.

Deleting an imaging preset

You can select and delete multiple imaging presets.

You can also delete an imaging preset that is currently in use. If you subsequently restart an examination for which you were using the deleted imaging preset, select the imaging preset General.

To delete an imaging preset

1 To delete the current imaging preset when a live image is displayed, tap Imaging Preset.

Or, to delete an imaging preset for any preset:

- a Press the PRESET button (
- **b** Select a preset.
- c Tap Imaging Preset.

The Imaging Preset screen appears, and the live image displayed on the main monitor is frozen.

2 Tap Management.

- **3** If the Factory screen is visible, press switch menu button 1 (the rocker button under Change Category) to display the User screen.
- 4 In the Check column, tap the check box to place a check for the imaging preset that you want to delete.
- 5 Tap Delete.
- 6 When you are prompted to confirm that you want to delete the imaging preset, tap OK.

Selecting a transducer

Transducers are also called *probes*; the **transducer** selection screen displays all the transducers that are currently connected to the FC1 system. You can select one of the connected transducers for use.

When you select a different transducer, you can also select the preset to use.

Precautions when connecting or disconnecting a transducer

If a live image is displayed on the main monitor, disconnecting a transducer from the FC1 or the FC series stand erases the image.

When a transducer is connected, a live 2D-mode image shows on the main monitor, and the 2D-mode menu screen appears on the touch panel.

Caution Before attaching or removing TTC, turn off the FC1 system.

While the transducer selection screen shows in the touch panel, note the following:

- > When a transducer is connected to an empty transducer port on the FC series stand:
 - > The display content of the transducer selection screen does not change.
 - > Closing and then opening the transducer selection screen updates the display content.
- > When a transducer is disconnected from the FC1 or FC series stand:
 - > The display content of the transducer selection screen does not change.
 - Tapping the disconnected transducer on the touch panel, however, displays a message and closes the **transducer** selection screen.
 - > Closing and then opening the transducer selection screen updates the display content.
- When you connect another transducer to the FC1 or FC series stand:
 - > The display content of the transducer selection screen does not change.
 - Tapping the previous transducer on the touch panel, however, displays a message and closes the transducer selection screen.
 - Closing and then opening the transducer selection screen updates the display content.
- If you select a transducer not applicable to the current preset, the preset changes to the priority preset of the selected transducer.

Note the following:

- > While a transducer or preset is selected on the touch panel, you cannot use the following functions:
 - Current view
 - Cine
 - Body mark display
 - Annotation display
 - Basic measurement
 - Preset-specific measurement
 - Patient information correction
 - User settings
- > You can display the transducer selection screen even if no transducer is connected to the FC series stand.
- > The image of each transducer on the transducer selection screen varies depending on the transducer type.

Image on button	Transducer type
CEOxf	Convex
HFL38xp	Linear
P21 xp	Sector

To select a transducer

1 Press the Probe button (

The transducer selection screen appears, and the transducer in use is turned on.

If a live image shows on the main monitor, the image is frozen.

2 To specify that the system use the current preset after you change the transducer, make sure that **Preset Lock** is selected (orange).

All the presets displayed below the transducers disappear.

Or, to change the preset when the transducer is changed:

- a Make sure that Preset Lock is not selected (that is, it is black).
- **b** Tap the current preset.

The **Preset** change screen appears.

For details on changing the Preset, see "Selecting the preset" on page 146.

On the **Preset** change screen, only the presets for the connected and selected transducer are turned on.

c Tap the preset that you want to use.

The screen returns to the transducer selection screen, and the preset that you selected is displayed under the transducer.

Note

After you change the preset for a transducer that is not in use, if you close the transducer selection screen without selecting the transducer, the settings on the **Preset** change screen are not saved.

Pressing the **Probe** button before saving changes closes the **transducer** selection screen without saving changes.

3 Tap the transducer that you want to use.

Viewing in Dual-screen mode

Dual-screen mode displays two images side by side on the main monitor. There are two types of Dual screen mode:

- Normal Dual-screen mode
- Simultaneous Dual-screen mode

Both types of Dual-screen modes are enabled in the 2D, CD, and PD modes. They are not enabled for the M or D mode.

When you are in a Dual-screen mode and press the **M** button () or **D** button (), the Dual-screen mode is terminated and operation switches to the selected screen mode.

In the normal Dual-screen mode:

- One of the two images displayed on the screen is *active*: live, selected, and updated. The index on the active image mark is green, and the functions available for the active image appear on the touch panel.
- > The other image is *inactive*: not live, not selected, and not updated. Its probe orientation mark is gray.

In discussion of Dual-screen mode, we refer to the left-hand image as *image A* and the right-hand image as *image B*.

Controlling the display of images in Dual-screen mode

Two Dual-screen mode buttons affect the monitor display:

- The left-hand button (
- The right-hand button (

To view one or both images in Dual-screen mode

- 1 To view the left-hand or right-hand image, press the left- or right-hand button, respectively.
- 2 To return to a single-image display, press either button twice.

The effect of pressing either button varies with the current state of the display. The following table tells the effect on each screen according to:

The current state of the display

• Which Dual-screen mode button you press

	When you press the left button		When you press the right button	
In this state	This happens in the left screen	This happens in the right screen	This happens in the left screen	This happens in the right screen
Single display with a live image	The live image is displayed and becomes active.	Nothing is displayed.	Nothing is displayed.	The live image is displayed and becomes active.
Single display with a frozen image	The frozen image is displayed and becomes active.	The frozen image is displayed.	The frozen image is displayed.	Nothing is displayed.
Dual- screen mode Left: Frozen image (active) Right: Non-display	The frozen image is displayed in the single screen mode.		The frozen image is displayed.	The same frozen image is displayed and becomes active.
Dual- screen mode Left: Live image (active) Right: Non-display	The live image is displayed in the single screen mode.		The live image is switched to the frozen image.	The live image is displayed and becomes active.
Dual- screen mode Left: Non-display Right: Live image (active)	The live image is displayed and becomes active.	The live image is switched to the frozen image.	The live image is displayed in the single- screen mode.	
Dual- screen mode Left: Non-display Right: Frozen image (active)	The same frozen image is displayed and becomes active.	The frozen image is displayed.	The frozen image is displayed in the single-screen mode.	
Dual- screen mode Left: Frozen image Right: Frozen image (active)	The frozen image becomes active.	The frozen image becomes inactive.	The right-hand frozen image is displayed in the single-screen mode.	
Dual- screen mode Left: Frozen image Right: Live image (active)	The frozen image is switched to the live image and becomes active.	The live image is switched to the frozen image and becomes inactive.	The right-hand live image is displayed in the single-screen mode.	

In this state	When you press the left button		When you press the right button	
	This happens in the left screen	This happens in the right screen	This happens in the left screen	This happens in the right screen
Dual- screen mode Left: Live image (active) Right: Frozen image	The left-hand live image is displayed in the single-screen mode.		The live image is switched to the frozen image and becomes inactive.	The frozen image is switched to the live image and becomes active.
Dual- screen mode Left: Frozen image (active) Right: Frozen image	The left-hand frozen image is displayed in the single-screen mode.		The frozen image becomes inactive.	The frozen image becomes active.

Viewing in Simultaneous Dual-screen mode

In Simultaneous Dual-screen mode, both the left-hand (A) and right-hand (B) images are updated.

You cannot change the view to Simultaneous Dual-screen mode when:

- A frozen image is displayed.
- > You are using the Trapezoid function on one of the images in the Dual-screen mode.
- > Any of the following are different between the images in the Dual-screen mode:
 - Angles of linear steer
 - > On or off settings of the spatial compound
 - Magnification ratios
 - Depths

To view the examination in Simultaneous Dual-screen mode

- * Tap Simul Dual on the touch panel.
- To turn off Simultaneous Dual-screen mode, tap Simul Dual.

When the Simultaneous Dual-screen mode is activated while in the Dual-screen mode, the active image displayed on the Dual-mode screen also becomes active on the Simultaneous Dual-mode screen. When the Simultaneous Dual-screen mode is activated while in the single-screen mode, the image is displayed on both sides and the left-hand image becomes active.

Tapping Simul Dual again while in the Simultaneous Dual-screen mode does the following:

- > It terminates the Simultaneous Dual-screen mode and returns to the normal Dual-screen mode.
- The active image on the Simultaneous Dual-mode screen becomes the active image on the Dual-mode screen.

Using the M or D cursor

The M and D cursors, which represent a sample volume gate, are available when you are in 2D, CD, or PD mode.

To use the M or D cursor

- 1 With one of the modes selected for which the M/D cursor is enabled, on the touch panel, tap M/D Cursor.
- 2 To move the cursor to the right or left or up or down within the region of interest (ROI), roll the trackball.

When the cursor reaches the boundary of the ROI, continuing to roll the trackball moves the ROI in the direction that you roll the trackball.

- 3 To increase or decrease the width of the sample volume gate, on the 2D, CD, or PD screen in the touch panel:
 - a If Gate Size is not selected, tap it.
 - **b** Press the up or down arrow on switch menu button 4 (the rocker button below **Gate Size**) until the gate size is what you want.
- **4** To change the steering angle of the CD/PD mode image for the D cursor, tap **Cursor Steer**, and then rotate dial menu button 1 (the dial to the right of **Cursor Steer**).

Caution

You can change the steering angle only when using a linear transducer.

The steering angle can be set to 30 degrees only when the HFL38xp or HFL50xp transducer is connected.

5 To change the angle to plus or minus 45°, 60°, or 0°, tap **Quick Angle**, and then turn dial menu button 1 (the dial to the right of **Quick Angle**).

6 To change the angle of the M or D cursor in 1° increments, turn the multi dial (\searrow

The angles with the upper end of the graphic to the left are positive; the angles with the upper end of the graphic to the right are negative.

Caution You can change the angle only when the M or D cursor is turned on.

Viewing the ECG waveform display

You can view the ECG (electrocardiogram) waveform in every screen mode and in any display format (singleimage display, Dual-screen mode, or Simultaneous Dual-screen mode). In all the display formats, the ECG waveform is displayed on the live image, not on the frozen image.

WARNINGTo prevent misdiagnosis, do not use the ECG waveform display function for the
diagnosis of heart rhythms. The optional ECG function of the FUJIFILM SonoSite
ultrasound system is not intended for diagnostic use.
To prevent electromagnetic interference with aircraft devices, do not use the
ECG cable on aircraft. Electromagnetic interference may affect the safety of
aircraft.CautionUse only the accessories recommended by FUJIFILM SonoSite, Inc. Connecting
any other accessory to the FC1 system may damage the system.
After defibrillation is performed, it may take about 1 minute until the ECG
waveform becomes stable.

The ECG waveform and display formats

In single-screen mode or Simultaneous Dual-screen mode, the ECG waveform is updated from the left end to the right end. When the leading end of the ECG waveform reaches the right end, it returns to the left end and continues. When you freeze and then unfreeze an image, the ECG waveform is cleared and then resumes from the left-hand end.

In the Dual-screen mode, the ECG waveform appears for each image active image.

Note

When you switch an active image to the inactive state, the ECG waveform is retained. Making an inactive image active clears the ECG waveform.

To display the heart rate in the ECG waveform

> On the Worksheet screen, manually input the heart rate.

Or, perform the HR measurement.

For information on performing the HR measurement, see the "HR" measurement in the M mode and D mode tables under "Basic measurement" on page 238.

Displaying and configuring the ECG waveform

The ECG waveform continuously displays the patient's heartbeat only when the image is live, not frozen. Therefore, you can turn on the ECG waveform display only when a live image is on screen.

To display and configure the ECG waveform

1 To show the ECG waveform and open the ECG screen, in any display mode screen, tap ECG.

Or, if you have assigned the function for displaying the ECG waveform to a function button, press that function button.

On the left side of the ECG waveform, the heart rate appears. (In the Dual-screen mode, the heart rate appears on each live image.)

You can set the sweep speed of the ECG waveform. For details, see "Setting the sweep speed" on page 112.

2 To hide the ECG waveform and close the ECG screen, tap Exit.

Or, to close the ECG screen but leave the ECG waveform visible, tap Close.

You can adjust the settings ECG Position, ECG Gain, and Sweep Speed regardless of whether the image is live or frozen.

- **3** To raise or lower the ECG waveform in the display, turn the dial menu button to the right of **ECG Position**.
- 4 To set the gain for the ECG waveform, turn the dial menu button to the right of ECG Gain.

The setting range is from 0 to 100. The current value appears below the label ECG Gain.

5 To set the scrolling speed of the ECG waveform, press the up or down arrow on switch menu button 2 (the rocker button underneath **Sweep Speed**).

Sweep speed can range from 1 to 7 seconds.

Caution

In the M, PW, CW, or TDI mode, you can change the sweep speed of the screen mode. The sweep speed of the ECG waveform is synchronized with that of the screen mode. For information on changing the sweep speed for a mode, see "Setting the sweep speed" on page 112.

6 To show or hide the ECG waveform:

While the image is frozen, do one of the following:

- > Tap Display, and then press the rocker button under Display.
- > When the ECG waveform is not showing, unfreeze the image.
- 7 To hide the ECG waveform, do one of the following:
 - Tap Exit on the touch panel.
 - > Press the function button to which you have assigned the function for displaying the ECG waveform.

Performing cine search while the ECG waveform is on-screen

To perform a Cine search while the ECG waveform is on-screen

1 Press the CINE button (

A cursor indicating the position of the image display appears on the ECG waveform.

2 To move the ECG waveform display area, move the cursor by rotating the trackball.

Changing the position of the image display within the ECG waveform display area does not change the ECG waveform. However, when the cursor indicating the position of the image display is at the left or right end of the ECG waveform display area, moving it farther away from center moves the ECG waveform display area to the other end of the waveform display.

Using triplex mode

You can view the 2D mode image, CD or PD mode image, and the PW or CW mode image simultaneously. This is called the *triplex mode*. You can also view images of the following modes simultaneously.

- > 2D mode, CD mode and PW mode images: CD/PW mode
- > 2D mode, PD mode and PW mode images: PD/PW mode

Note

The triplex mode is not available in TDI mode.

Performing a needle procedure

You can display the needle guideline (a line that guides insertion of the needle into the patient's body) on the 2D mode image, depending on the transducer that is connected to the FC1.

The needle guide assists the placement of the needle. The ultrasonic image of the anatomical region of interest and that of the needle show on the examination screen to help carry out the procedure.

When you connect a transducer with an attached needle guide to the ultrasound system, two guidelines appear on the image, indicating the expected insertion path of the needle. The guidelines and the depth marks assist in the procedure.

The guidelines are not intended for freehand needle procedure.

Preparing for a needle procedure

To avoid injury to the patient:

Use only the needle brackets, guides, supplies, components and accessories specified by FUJIFILM SonoSite, Inc or CIVCO. Other brands may not properly fit on FUJIFILM SonoSite transducers.

WARNING Use only the bracket compatible with the ultrasound system and transducer that you are using.

- Make sure that the bracket is attached properly.
- When using a multi-angle bracket, make sure that the angle setting (A, B, or C) of the bracket is the same as that of the ultrasound system.

You can use the needle guideline display function only with a transducer that is equipped with a single-angle or multi-angle needle guide bracket.

The needle guideline cannot be displayed on a frozen image.

Because this is an optional function that guides the needle, this function is available only for certain types of transducer. For more information, see the "Puncture user guide" or "L25 needle guide kit user guide" issued by FUJIFILM SonoSite, Inc

When you tap **Needle Guide** on the touch panel on the 2D mode (B tab) screen, the needle guideline appears on the 2D mode image, and the **Needle Guide** screen appears on the touch panel.

Needle procedure precautions

Caution

	To avoid damage or reduce the risk of infection to the patient, observe the following:
WARNING	Reusable needle guides must be sterilized after use.
	If the bracket needle guide or needle breaks during the procedure, verify that all pieces of the equipment are recovered.
Caution	To avoid damage to the transducer, use only gels recommended by FUJIFILM SonoSite. Using gels other than those that FUJIFILM SonoSite recommends can damage the transducer and void the warranty. If you have questions about gel compatibility, contact FUJIFILM SonoSite or your local representative.

During the procedure, observe the following precautions:

- ▶ For proper acoustic coupling, you must use acoustic coupling gel. Apply a liberal amount of gel between the transducer and the body. Although most gels provide suitable acoustic coupling, some gels are incompatible with some transducer materials. FUJIFILM SonoSite recommends Aquasonic gel and provides a sample with the needle guide kit.
- Use sterile gel when performing an invasive procedure.
- ▶ If the needle is not displayed at the target, ensure that you have selected the correct needle guide and have correctly attached the bracket and needle guide.
- ▶ The guide is intended to provide only an indication of the expected path of the needle. Identify the actual position of the needle with the ultrasound image of the needle on the screen.

Verifying the needle path

Verify the needle path before the procedure to make sure that the relationships between the system, transducer, and needle guide are correct.

WARNING	Before the needle path verification, inspect all the parts to make sure that they are not damaged.
	Perform the needle path verification before the procedure to ensure that the bracket, needle guide, and the needle are installed properly.
	Use a straight, new needle for each verification procedure to help get an accurate projection of the needle.
	Do not use a needle that has been used for any verification procedure.
	Do not use the needle guide if the needle is not following the intended path.

To verify the needle path, you need the following devices and instruments.

- Biopsy transducer
- Bracket

This is reusable; the type of the bracket varies depending on the transducer you want to use it with.

Needle guide kit (single use only)

The following transducers are supported with needle guidance, for the needle guides listed after each transducer type:

C60xf (multiple fixed angle)

- C35xp (multiple fixed angle, variable angle)
- ICTxp (fixed angle)
- HFL50xp (fixed angle, variable angle)
- HFL38xp (multiple fixed angle, variable angle)
- L38xp (multiple fixed angle, variable angle)
- L25xp (variable angle, transverse angle)
- P21xp (fixed angle)
- Ultrasound system
- > Tank filled with test object fluid (All World Scientific code 3480)

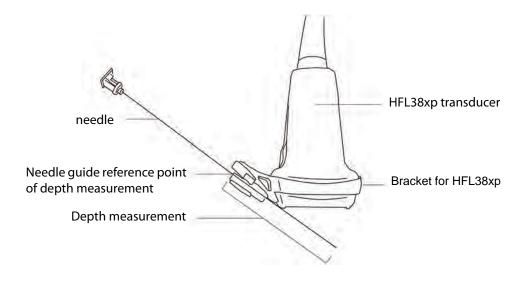


Figure 4-2: HFL38xp transducer with needle guide and needle attached

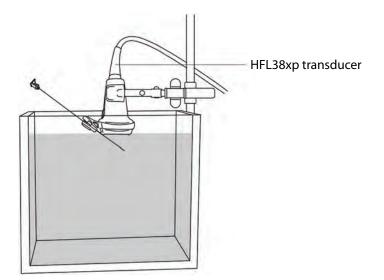


Figure 4-3: HFL38xp transducer set up on tank filled with test object fluid.

To verify the needle path

1 Attach the bracket to the transducer, and install the appropriate needle guide for the needle gauge.

See the user guide specific to your needle bracket for information on attaching the bracket and needle guide.

- **2** Set up the tank and transducer, and then insert the needle into the needle guide.
- **3** Immerse the transducer and needle no more than 1/4 to 1/2 inch (6.35 to 12.7mm) into the tank of test fluid (or distilled water).
- **4** Connect the transducer and turn on the ultrasound system.
- **5** Show the needle guideline.

For more information, see "Using the needle guide" on page 169.

6 Move the needle into the tank of test fluid until its ultrasound image is visible on the system display.

7 Verify that the needle, as seen on the system display, passes between the two guidelines.

The guideline is intended to provide only an indication of the expected path of the needle.

To avoid injury to the patient, if the displayed needle is protruding in an unexpected direction, make sure that the bracket and the needle guide are installed properly and that the direction of the transducer is correct.

WARNING

If the needle does not pass between the two guidelines even after verification, do not use the needle guide. Contact FUJIFILM SonoSite or your local representative.

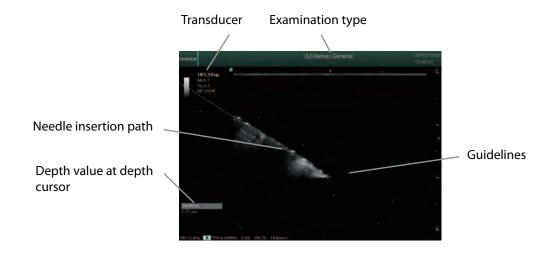


Figure 4-4: Example of needle insertion screen

Caution

The depth value at the depth cursor, as labeled in Figure 4-4, "Example of needle insertion screen" on page 168, is the measured distance between the reference point of depth measurement on the needle guide and the tip of the needle.

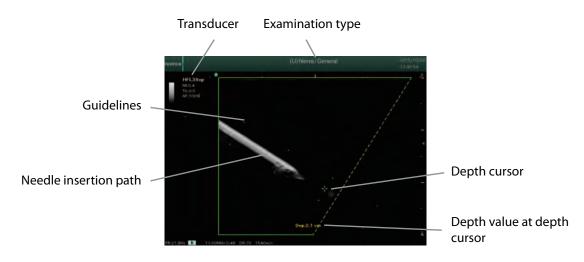


Figure 4-5: Example of biopsy guideline

Caution

The depth value at the depth cursor is the measured distance between the reference point of depth measurement on the needle guide and the tip of the needle

Using the needle guide

To use the needle guide

1 On the touch panel, with the 2D tab showing, tap Needle Guide.

Caution

You can select the needle guide only when a live image is on screen. (Note, however, that if the needle guide is on screen and you freeze the image, the needle guide remains on screen.)

The **Needle Guide** screen appears.

2 To select an angle, beside Angle, tap an available angle.

The angles that you can select vary depending on the transducer.

Once you select an angle, the guideline and area line of the selected angle appear on the examination display.

3 To select the display method of the needle guideline, beside Line Display, tap Area, Center, or Display OFF.

Note

Display Off is available only when a frozen image is on screen.

In the following step, needle distance is length of the needle from its insertion point to the location of a caliper that you are using for that measurement.

4 To show needle distance in the examination display, start a measurement, as described in "Starting a measurement" on page 214.

The distance measurement caliper appears. You can operate this caliper in the same way as the caliper for one of the measurement functions that measure distance (for details, see "Measurement overview" on page 211).

The start point of the caliper becomes the start point of the guideline on the side of the transducer direction marker.

The starting point of the guideline varies depending on the transducer connected to the FC1.

The color of the guideline and area line varies depending on the status of the image (live or frozen).

When the angle is 90 degrees, the guideline and area line are displayed at the center of the transducer.

	Before inserting the needle, check the position of the insertion pathway relative to the transducer, the needle guide, and the equipment.
	Before inserting the needle, ensure that the needle guide that you are using is free from damage.
	Insert the needle in a vertical direction to the guide line for the sake of emphasizing the needle position <i>in vivo</i> when using the transverse needle.
Contion	When you insert the needle into the body, it may bend.
Caution	Check the position of the needle on the ultrasound image
	When you are in dual mode, the needle guideline does not appear on the screen.
	When using a multi-angle needle guide, to avoid injury, match the angle of ultrasound system with that of the needle guide.
	Because the tip of needle inserted into the body is hard to see, check the position by moving the needle or by injecting fluid.
•	

5 To save the current needle guide setting as the default, tap **Set Default**.

The setting is applied the next time that the needle guideline is displayed.

- 6 To hide the needle guide and return to 2D mode, tap Exit.
- 7 To close the Needle Guide screen and show the 2D mode screen (B tab) on the touch panel, tap Close.

Needle profiling (Optional)

If you choose, you can use needle profiling, which makes needle guidance easier during the placement of catheters and during nerve-block procedures. This technology enhances linear structures within an outlined area on the screen. These linear structures are best enhanced when they are perpendicular to the angle guide.

Note

Linear structures are enhanced only in an outlined portion of the image. The area outside the outline remains unchanged.

Needle profiling is available for the following probes and presets:

Probe	Nrv	Msk	SmP
HFL38xp	\checkmark	\checkmark	
HFL50xp	\checkmark	\checkmark	\checkmark
L25xp	\checkmark	\checkmark	
L38xp	\checkmark		

To use needle profiling

- 1 On the touch panel, tap Needle Profiling.
- 2 On the touch panel, tap Target Depth.

The depth cursor appears on the monitor.

- **3** Use the trackball to move the depth cursor. The value of the depth at the position of this cursor appears (for example, **Dep:1.9cm**).
- **4** To invert the ROI horizontally, tap **Invert** on the touch panel. To turn it back, tap **Normal**.
- **5** To position the needle and the dashed angled line so that they are facing each other perpendicularly, in the **ROI** section, tap **Shallow**, **Medium**, or **Steep**.

6 Tap Close.

Caution	Avoid setting the gain too high when you use Needle Profiling, as unnecessarily high gain can cause artifacts in the image. In addition, respiratory and cardiac movement in the image may cause bright pulsating artifacts.
	When a live image is displayed, the depth cursor and the angled ROI line appear in green. When a frozen image appears, they appear in light blue.
	You can select Normal/Invert and ROI only when a live image is displayed.
Note	Use the Shallow , Medium , and Steep settings to make the needle and dashed angled line perpendicular to each other. The more perpendicular they are to each other, the more the linear structure is enhanced. Likewise, the more parallel the linear structure is to the angled line, the less it is enhanced.
	It is recommended to use a 17- to 25-gauge needle. Enhancement results can depend on the type and brand of needle used. For more information, consult the medical literature on needle visibility in ultrasound-guided procedures
	You can angle the needle up to 50 degrees from the transducer surface. Beyond 50 degrees, the needle may enhance less. (Needle profiling has little or not benefit in out-of-plane procedures. It is intended to plane procedures only.).

Using Cine mode

You can save raw data in the cine memory for re-accessing and playing back.

Pressing the **CINE** button () after freezing raw data displays the **Cine** screen on the touch panel, for playing back raw data. (This status is called *Cine mode*.)

The **CINE** button is active only when the image is frozen.

When you terminate Cine mode while playing back raw data, the playback status is retained the next time that the Cine mode is activated.

Cine search

To see frames from earlier in the examination, you can change the play position of raw data.

Raw data obtained from the cine memory is played back, in the range that you specify. When the playback reaches the frame specified as the end position, playback returns to the start position and starts again.

The playback condition varies depending on the display format and the screen mode, as shown below.

- > Dual-screen mode: Only the active raw data is played back.
- Simultaneous Dual -screen mode: Both sides of raw data are played back.
- M, PW, CW, or TDI mode: Only the raw data and waveform being updated are played back.

Caution

Note that performing a cine search erases any measurement results or calipers that are displayed on the main monitor.

To perform a cine search

1 Press the CINE button (

The **Cine** screen appears.

Caution

If the playback range is only one frame, you cannot select this item.

2 To set the range of the playback, tap one of the following:

```
► All
```

Plays all the frames saved in the cine memory.

Last Half

The last half of the raw data (the middle frame to the last frame saved in the cine memory) plays back.

Or, to set start and end points:

a Use the trackball to move the cursor displayed on the cine memory, and then tap Set Start.

The cursor position becomes the playback start position.

b Use the trackball to move the cursor displayed on the cine memory, and then tap **Set End**.

The cursor position becomes the playback end position.

- **3** To move the play position:
 - ▶ In 2D, CD, or PD mode, rotate the trackball to the right to move the play position forward, and to the left to move the play position backward.
 - > When you rotate the trackball left at the first frame, the play position returns to the last frame.

- ▶ In the M, PW, CW, or TDI mode, rotate the trackball to the right to move the play position backward, and to the left to move the play position forward.
- 4 To start playback, tap Play.
- 5 To pause playback, rotate the trackball any direction. (To restart playback, tap Play again.)

6 To stop playback, tap the Stop button (

- 7 To terminate the Cine mode, do one of the following:
 - Press the **CINE** button.
 - On the touch panel, tap Close.

The Cine screen on the touch panel closes, and the touch panel screen of the current mode reappears.

Annotating images

You can add four types of annotations to live and frozen images of an examination that is in progress:

Freeform text

You can enter text freely, using the virtual keyboard. For more information, see "Creating text annotations" on page 175.

Arrow

You can enter up to 15 arrows on the screen and move and turn them freely. For more information, see "Creating arrow annotations" on page 179.

POT

POT menus are fixed sets of annotations.

List item

You can specify terms to enter for each application as list items. You do so by using the List 1, List 2, and List 3 menus.

Note

The names of the list-item menus may change according to the preset. For example, for the Cardiac preset, the names are Card 1, Card 2, and Card 3.

For more information, see, in "Creating text annotations" on page 175, the procedure for entering list items.

When the examination is terminated, or when the transducer or preset is changed, the input annotations are erased.

Creating text annotations

This section describes the procedures for entering annotations.

Each examination supports a maximum of 15 text blocks.

The maximum number of characters per text block is 64.

Starting an annotation

To start an annotation

1 To enter text-annotation mode, press the **ANNOTATE** button.

Or, if you are using a USB keyboard, press the SPACE key.

The Annotation Mode screen appears on the touch panel, and a yellow text cursor appears on the main monitor.

If an arrow appears on the main monitor, tap the Text tab to display a yellow text cursor. (The default annotation type, text or arrow, depends on the preset.)

2 Use the trackball to move the text cursor to the desired position, where you can now create an annotation.

Or, to return the text cursor to the home position, tap Home.

3 Tap Keyboard and then, on the virtual keyboard, type to enter text.

By default, capital-letter entry is set for the virtual keyboard.

You can also use the USB keyboard to enter text.

4 To fix your text in place as a text block, move the text cursor.

The text you have fixed turns white.

Note

When the keyboard appears on the screen, the only actions you can perform are storing images and switching between insert and overwrite mode.

Creating an additional text annotation

To enter text at another position

▶ In text-annotation mode, use the trackball to move the text cursor to the desired position, type text, and then complete the procedure in "Starting an annotation" on page 175.

Changing text annotations

To delete characters

- 1 In text-annotation mode, use the trackball to move the text cursor to the characters to be deleted.
- 2 Tap Delete Text.

The character on the left side of the text cursor is deleted.

To delete a text annotation

1 In text-annotation mode, use the trackball to move the text cursor below the text annotation to be deleted.

		Û	
2	Tap Delete Word, or press the DELETE button (DELETE).

The word block on which the text cursor is placed is deleted.

Caution

Tapping **Delete Word** or pressing the **DELETE** button when the text cursor is not on a text annotation deletes the text annotation on the immediate left in the same line (or, if there is none on the left in the same line, the text annotation at the right end of the line above it).

To correct text

1 In text-annotation mode, use the trackball to move the text cursor to the text block to be corrected.

The text color changes to yellow.

- 2 To switch the input mode between insert and overwrite, press the SET button (
 - In insert mode, the text cursor is yellow.
 - In overwrite mode, the text cursor is green.
- 3 In the text box of the virtual keyboard, tap the point at which you want to start correcting.

- **4** Use the virtual keyboard to correct the text.
- 5 To finalize the text correction, move the text cursor.

The corrected text turns white.

To move a text block

- 1 In text-annotation mode, use the trackball to move the text cursor to the text block that you want to move.
- 2 Press the SET button (

The text turns red.

- **3** Use the trackball to move the text cursor to the desired position.
- 4 Press the SET button.

The text appears in yellow, and the position is finalized.

Adding POT menu items or list items to a text annotation

The four POT menus are arrayed along the bottom of the touch panel:

- Indicating orientation: Right or Left
- Prx/Mid/Dst Indicating position: Proximal, Mid, or Distal
- Long/Trans Indicating Longitudinal or Transverse
- Sag/Cor

Rt/Lt

Indicating Sagittal or Coronal

The three list item menus are List1, List2, and List3.

In each text block, you can enter at most:

- Four POT items (one for each menu)
- > Three list items (one for each menu)

After you add a POT item to an annotation, you can change it—until you move the text cursor from the entered-text box, at which point you cannot change it.

To add a POT menu item or list item to an annotation

1 In text-annotation mode, use the trackball to move the text cursor to the desired position.

To add a POT menu item or list item:

- a Tap the desired POT menu or list (List1, List2, or List3) to select it as required.
- **b** Press the POT menu or list switch menu button to cycle through the POT menu or list items to the one you want to add to the annotation.

If the POT menu item or list item that you want to add already appears, press the down-arrow side of the menu switch menu button.

- 2 To resume adding text, tap Keyboard.
- 3 In the text box, the text cursor remains at its position following your last addition of a POT menu or list item.

To correct a POT or list item

- 1 To change a POT or list item that you have added to an annotation, tap the appropriate switch menu button (below the POT menu or list).
- **2** To erase a POT or list item, do one of the following:
 - On the touch panel, tap **Delete Text**.
 - On the virtual keyboard, use the BACK SPACE key.
- **3** To finalize the annotation, move the text cursor.

Note

When you move the text cursor from the annotation, you can no longer change a POT menu or list item.

Moving the annotation's home position

To move the annotation's home position

- 1 To move the home position, move the text cursor to the desired location of the new home position, and then tap **Set Home**.
- **2** The current text cursor position becomes the new home position.

Deleting all annotations

To delete all the displayed annotations and arrows

▶ Tap Delete All.

Note

This action does not delete the body pattern.

Creating arrow annotations

You can add up to 15 arrows to a live or frozen image. When you have created them, you can move them and rotate them freely.

To add arrow annotations

1 Press the ANNOTATE button (

On the touch panel, the annotation screen appears.

2 If the Arrow tab is not already selected, tap it.

A green arrow appears at the center of the image area.

Caution

When an arrow is green, switching from the **Arrow** tab to the **Text** tab deletes the arrow.

3 Use the trackball to move the arrow to the desired position.

to rotate the arrow to the desired angle.

5 Press the **SET** button (2 **SET**)) to fix the position of the arrow.

The arrow that you just fixed turns white, and a new arrow appears.

Caution

Pressing the **DELETE** button erases the fixed arrows in the reverse order from that in which you created them.

Once the arrow is fixed, you cannot change its angle.

6 To enter additional arrows:

- **a** Do one of the following, depending on your last action:
 - If you created an arrow, rotate the trackball, to move the new arrow off the location of the arrow you have just fixed, to the location where you want the new arrow to be.
 - Or, to move the arrow to the center of the image area, tap Home.
 - ▶ If you created a text annotation, tap the Arrow tab.
- **b** Repeat steps 3 through 5.

Deleting arrow annotations

To delete an arrow annotation

> To erase the fixed arrows in the reverse order from that in which you created them, press the **DELETE** button

To delete all annotations and arrows

▶ Tap Delete All.

All annotations are deleted, the text cursor is returned to the home position, and the arrow is returned to the center of the image area.

Closing the annotation screen

To close the annotation screen

- Do one of the following:
 - Press the **ANNOTATION** button.
 - Tap Close.
 - ▶ If the USB keyboard is connected, press the **TEXT** key.

Text that is not yet finalized is finalized, all arrows that are not yet finalized are deleted, and the annotation screen is closed.

Finalized annotations remain displayed on the main monitor.

Displaying annotations

To display annotations

▶ If you have assigned the display-annotations function to the FREEZE button (^{SSD}), press it.

For details on assigning a function to the **FREEZE** button, see "Assigning a function to the FREEZE button" on page 63.

Using body marks

Use body marks to record the position and orientation of the transducer to the patient's body during an examination. Control body marks using the buttons on the **Body Mark** screen on the touch panel and those on the control panel of the FC1.

Ending the examination or changing a transducer or preset deletes the body marks.

Displaying a body mark

When you press the **BODY MARK** button while a live or frozen image is on the main monitor, the **Body Mark** screen appears on the touch panel.

You can display a body mark in both images in the Dual-screen mode or in the Simultaneous Dual-screen mode. For information on configuring the display of body marks, see "Positioning the body-mark display" on page 53.

Body marks available for the current examination appear in the touch panel.

To display, change, and move body marks

1 To show the Body Mark screen, press the BODY MARK button.

If you have assigned body-mark display to the **FREEZE** button (), you can display body marks by pressing this button. For details on assigning a function to the **FREEZE** button, see "Assigning a f

By default, the body mark appears in the lower left side of the examination image, with a green transducer mark on the body mark.

2 To move the body mark, tap Move. Use the trackball to move the body mark and transducer mark together.

In the Dual- or Simultaneous Dual-screen mode, when one body mark is displayed for each image, you can move the body mark only within the area of the active image. When only one body mark is displayed, you can move it across both images.

3 To return the body mark to the home position, tap **Home**.

The home position varies, depending on the screen mode.

4 To finalize the position of the body mark, tap **Move** again.

After you finalize the position of the body mark, the trackball can move only the transducer mark.

To change the body mark that is displayed

1 In the touch panel, on the Body Mark screen, tap the body mark that you want to change the body mark to.

To change to a body mark that is not showing in the Body Mark screen:

- 1 On the Body Mark screen, tap Library.
- 2 Tap the collection of body marks that contains the one you want to use.

The body-mark collections are as follows: Abdominal, Breast, Cardiac, Gyn/OB, Uro/Genital, Vascular, MSK, Other.

In the selected body-mark collection, tap the body mark that you want to show.

The selected body mark appears in the image area.

To remove a body mark and transducer mark

When a body mark is displayed, tap Blank.

The displayed body mark and transducer mark are hidden.

To rotate a transducer mark

When a body mark is displayed in the image area, rotate the multi dial () to rotate the transducer mark to the desired angle.

Selecting body marks registered in a preset

Body marks are registered for each preset. You can select the body mark to be displayed in the image area from among all the registered body marks.

To select from body marks registered in a preset

- 1 On the Body Mark tab, tap Library.
- 2 On the Library tab, tap an examination type.
- 3 Tap the icon of the body mark that you want displayed in the image area.
- 4 To move the body mark, tap Move, and then move the body mark and transducer mark with the trackball.
- **5** To return the body mark to its home position on the examination screen, tap **Home**.
- 6 To remove the body mark from the examination screen, tap Blank.
- 7 To return to the Library tab, tap Back.

Or, to return to the display mode screen, press the **BODY MARK** button (

Closing the Body Mark screen

To close the Body Mark screen

Press the BODY MARK button (

All displayed body marks are finalized, and the **Body Mark** screen is closed.

Switching the TI type

The type of thermal index (TI) used as the standard of acoustic output appears on screen.

During an examination, you can change the type of thermal index.

Caution

When a new examination is started, or when the transducer, preset or Imaging Preset is changed, the TI type is switched to the default.

To change the TI type during an examination

- 1 Tap the Others tab.
- 2 Press switch menu button 2 (the rocker button below Change TI) to cycle through the thermal-index types.

For more information on TI types, see "Selecting the standard of acoustic output" on page 65.

Playing clips back

Clips can be played back only when the image display format is 1 x 1.

However, when the image display format is 2×2 , tapping an image twice rapidly displays it by itself on-screen (that is, in the 1×1 image display format).

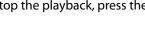
To play a clip back

- 1 Press the CURRENT VIEW button (
- 2 Select a clip.

With a clip selected, you can use the trackball to perform a cine search.

3 Press the FREEZE button (

The clip is played back.


4 To stop the playback, press the FREEZE button again.

Displaying a raw-data image

You can annotate and measure raw-data images (that is, images played back from raw data). Raw data handled on the FC1 is IQ data.

Note

To add annotations or measure against raw-data images of archived examinations, restart the examination and follow the procedure from step 1. For details on how to restart examinations, see "Restarting an examination" on page 140.

To display a raw-data image

2 Select a raw data image.

3 Tap Raw Data Process.

The information that was recorded when you stored the raw-data image appears on the main monitor, and the screen corresponding to the screen mode used when storing the raw image data appears on the touch panel.

When a raw data image is not displayed or when the image display format is 2 x 2, **Raw Data Process** is not available.

You can use the following functions with a raw-data image:

Cine

For more information, see "To use needle profiling" on page 171.

Body mark display

For more information, see"Using body marks" on page 181.

Annotation entry

For more information, see "Annotating images" on page 174.

Basic measurement

For more information, see "Basic measurement" on page 238.

Preset-specific measurement

Storage (frozen image or clip)

For more information, see "Storing examination images" on page 195.

Print

For more information, see "Printing exam images" on page 198.

Network transfer (frozen image or clip)

4 To finish working with raw data images, tap Raw Data Process again.

Deleting raw-data images

To delete a raw-data image

1 Press the CURRENT VIEW button

- 2 Display and then tap the raw data image that you want to delete.
- 3 Tap Delete Raw.

If you do not select (tap) a raw data image, Delete Raw is not available.

A trash-can icon appears on the image, indicating that the image is to be deleted.

Note

The image deletion settings (marks of trash cans) are retained even when you change pages.

- **4** To remove the deletion mark from an image, tap **Delete**.
- 5 To mark multiple images for deletion, repeat steps 2 and 3.
- **6** To finish marking examination images for deletion and delete the marked images, press the one of the following buttons, all of which exit review of current images:
 - **CURRENT VIEW**
 - ▶ 2D
 - ▶ PATIENT

7 When you are prompted to confirm deletion of the images that you have marked for deletion, tap **OK**.

Or, to cancel the deletion and remove the deletion mark (the trash can) from the image, tap Cancel.

What you see on the screen after deleting the image depends on which button you pressed for the exit operation.

If you cancel the deletion, the system still leaves current-image review, but without deleting the image.


Transferring images via a network

You can transfer images via the network only when the image display format is 1 x 1.

For details on how to assign a transfer destination to the Store button, see "Configuring Store buttons" on page 29.

To transfer an image over a network

1 Press the CURRENT VIEW button (

3 Press the Store button whose function is to transfer an image to the desired destination.

The system moves the displayed image to the destination assigned to the Store button.

Printing images

Images can be printed on one sheet in 1×1 , 1×2 , 2×1 , or 2×2 print formats. However, you can print only when the image display format is 1×1 .

You can configure the number of images and the orientation of paper with the system setup. For details, see "Adjusting printer settings" on page 40.

For details on how to assign the print function to a Store button, see "Configuring Store buttons" on page 29.

If the printing of some images is suspended, printing starts automatically when the examination is finished.

When you print a frozen image, the time that the image was saved appears both inside and outside the image.

To print an image

- **1** Connect the printer to the FC1.
- 2 Press the CURRENT VIEW button

- **3** Display and select the image you want to print.
- 4 To select multiple images, repeat Steps 2 and 3.
- **5** Press the Store button to which the print function is assigned.
- 6 Press the CURRENT VIEW button again.
- 7 When you are prompted to confirm printing, tap **OK**.

Working with archived examinations and their images

When you end an examination, it is automatically archived, and therefore is accessible on the Archive screen.

The Archive screen and controls

Some of the touch-panel controls are described in the following table. Those that are not listed are covered in the subsequent procedures.

Control	Description
Upper: First/Last Lower: First/Last	To move to the first or last page of one of the lists, tap Upper: First/Last (for the examination list) or Lower: First/Last (for the image list), if it is not already selected. Then press switch menu button 1 (the rocker button below this control).
Upper: L/R Slide Lower: L/R Slide	To shift the view of one of the lists to the right or left in order to see fields that are off the touch panel, tap Upper: L/R Slide (for the examination list) or Lower: L/R Slide (for the image list), if it is not already selected. Then press switch menu button 2 (the rocker button below this control).
Upper: Page Lower: Page	To move to the next or previous page in one of the lists, tap Upper: Page (for the examination list) or Lower: Page (for the image list), if it is not already selected, and then press switch menu button 3 (the rocker button below). The current page number and the total number of pages are displayed on the lower side.
Select All	To select all the examinations in the examination list, tap Select All.
Close	Closes the Archive screen.

Selecting archived examinations

To select archived examinations

1 Press the ARCHIVE button (

The Archive screen appears.

2 On the Archive screen, select an archived examination.

Or, to narrow the list of exams to review:

a Tap the downward-pointing green arrow (

b In the selection screen that appears, tap the records field in which you want to search.

You can select Patient ID, Patient Name, or Accession No.

- **c** To search on a string within the selected field, in the text box next to **String**, using the virtual keyboard, type the string (or keyword) of interest, and then tap **Close**.
- **d** Tap the **Search** virtual button.

The search results appear in the examination list, the upper box on the **Archive** screen that contains the list of archived examinations.

Following are the fields for each examination in the examination list:

- Lock If an examination is locked, this field contains a lock icon. You can sort examinations by whether they are locked or not.
- Patient ID
- Patient Name
- Size (MB) Image size.
- ▶ Data Count (S/L/R/D) The number of images in the examination. The number of images is displayed for each image type: S (Still image), L (Clip), and R (Raw data image).
- **Study Start Date Time -** The start time of the examination.
- **Study Last Date Time -** The time the examination was completed.
- Accession No. The accession number.
- Import Contains an icon indicating that the image is imported from the external memory media. You can sort based on whether an image is imported or not.
- Export Contains an icon indicating that the image has been exported to the external memory media. You can sort based on whether an image is exported or not.
- **Storage** Contains an icon indicating that the image is stored on the DICOM network storage.
- Print Contains an icon indicating that the image has been printed. You can sort based on whether an image has been printed or not.
- **3** To sort the listed examinations in ascending or descending order on a field, tap the header for the field.

The visual indicator on that field header toggles between a backward slash (\) and a forward slash (/) according to whether the sort order is descending or ascending, respectively.

4 To select one or more examinations, tap the examination(s) of interest.

Locking archived examinations

Locking an examination prevents it from being deleted.

To lock an archived exam

- 1 Select one or more archived exams, as described in "Selecting archived examinations" on page 188.
- 2 Tap Lock.
- **3** To unlock one or more locked examinations, select the examinations you want to unlock, and then tap **Lock** again.

If your selection of multiple examinations includes both locked and unlocked examinations, tapping Lock locks all the examinations.

If no examination is selected, Lock is unavailable.

Exporting archived examinations

For information on exporting archived examinations, see "Exporting examination data" on page 203.

Deleting archived exams

Caution

You cannot restore deleted examinations.

To delete an archived exam

- 1 Select one or more archived examinations, as described in "Selecting archived examinations" on page 188.
- 2 Tap Delete.
- **3** When prompted to confirm the deletion, tap **OK**.

Or, to cancel the deletion, tap Cancel.

Note

If no examination is selected or if a locked examination is selected, **Delete** is unavailable.

Only a raw-data image can be deleted from the examination that includes the raw data image.

Viewing archived exam images

When the image of an archived examination is on-screen, the following functions are unavailable:

To add annotations or measure against archived exam images, see "Displaying a raw-data image" on page 184

- Storage
- Network transfer
- Export
- Body mark operation
- Annotation entry
- Basic measurement
- A preset-specific measurement (except for the report display)

To view archived exam images

1 Select an archived examination, as described in "Selecting archived examinations" on page 188.

The examinations are highlighted, and their stored images are listed in the image list under the examination list.

The image (or images) taken from the first of the selected examinations appears first in the image list.

The images are listed with the following fields:

Preset

The type of examination

Single/Multiple

The type of image: Still or Clip

Size (MB)

The image size

Date Time

The date and time that the image was captured

2 To sort based on one of the fields in the image list box, tap the field header.

- **3** To invert the sort order for a field header, tap the header again.
- **4** To remove the selection of an examination, tap the examination again.

The examination's images are removed from the image list below.

5 With an examination selected in the examinations list, tap Open.

Images stored during the examination selected in the examination list appear on the main monitor.

You can tap **Open** only when a single examination is selected in the examination list. When multiple examinations are selected, **Open** is unavailable.

For details on what you can do with archived images, see the following sections.

6 To finish reviewing the images, tap Back, and then press the ARCHIVE button (

A live 2D mode image shows on the screen.

You can also finish reviewing the images of archived examinations by pressing the PATIENT or the 2D button

Deleting an archived raw-data image

To delete a raw-data image

- 1 Select one or more archived examinations, as described in "Selecting archived examinations" on page 188
- 2 Tap Delete Raw.
- 3 When prompted to confirm the deletion, tap **OK**.

Or, to cancel the deletion, tap Cancel.

All the raw-data images in the selected examination are deleted. Images other than the raw-data images are not deleted.

Note

If no examination is selected or if an examination including a raw-data image is not selected, **Delete Raw** cannot be selected.

Printing archived images

When you print an archived image, it is put into the print queue. It prints after you have exited Archive mode.

When you print a cine clip:

Note

- > You cannot print multiple frames in a clip.
- If you start printing an image (including raw-data images) and then try to delete it, the deletion is not carried out until after it has printed.

To print all images in an examination

- 1 Confirm that the printer you want to use is connected to the FC1.
- 2 Press the **ARCHIVE** button.

The Archive screen appears.

3 Select the examination containing the images you want to print and tap Print.

The printer selection screen appears.

4 Select a printer and tap Print. A confirmation message appears. Tap OK.

The printing starts.

To select and print images from examinations

1 Assign the printer you want to use to a Store button.

For the procedure for assignment to Store buttons, see "Configuring Store buttons" on page 29.

2 Press the **ARCHIVE** button.

The Archive screen appears.

- **3** Select an examination containing images you want to print and tap **Open**.
- 4 Press switch menu button 3 (the rocker button under **Page**) to browse the page until the image you want to print is displayed.
- **5** Press the Store button to which the printer has been assigned in step 1.

The printer icon appears on the top left corner of the screen and the image is scheduled for printing.

Note

If the **Store** button to which the printer has been assigned is pressed again, the printer icon disappears, and the print job is cleared.

- **6** Repeat the steps 4 and 5 to schedule for printing all images you want to print.
- 7 Press the **ARCHIVE** button. A confirmation message appears.

8 Тар **ок**.

The printing of all images scheduled for printing starts.

Moving archived examinations over a network

To move an archived examination over a network

- 1 Select one or more exams for transfer over the network, as described in "Selecting archived examinations" on page 188.
- 2 Tap Store.

The Archive Store screen appears.

If you have not selected an examination, Store is unavailable.

- 3 To re-sort the list of destinations based on any of the column headings in the list:
 - **a** Tap the header on which you want to sort the list.
 - **b** To reverse the sort order for that header, tap it again.

Caution

If the IP address or port number is not specified, **N/A** appears in the appropriate column. For information on setting the transfer destinations to be displayed in this list, contact your local dealer.

- 4 To view the next page of destinations, press menu switch button 3 (the rocker button under Page).
- **5** Tap the desired destination in the destination list.

You can select only one destination.

6 To remove the selection, tap the destination again.

7 To transfer the examination(s) to the selected destination, tap Send.

If no destination is selected, Send is unavailable.

8 When you are prompted to confirm the transfer, tap OK.

Or, to cancel the transfer, tap Cancel.

9 To return to the Archive screen, tap Back.

Importing archived examinations

To import an examination

1 Press the ARCHIVE button

2 Tap Import.

After the system creates the import list, the Exam Import screen appears.

- 3 Tap the examination or examinations that you want to import, and then tap Import.
- 4 When you are prompted to confirm that you want to complete the import, tap OK.

Or, to cancel the import, tap Cancel.

5 If you see a message that some images were not imported because they already reside in internal memory, tap **OK**.

The touch panel returns to the Archive screen.

Storing examination images

When you store an image from the current examination, whether a still image or a cine loop, you are saving it

to a file, which you access through the CURRENT VIEW button (

If there are no stored images from the current examination, then when you press **CURRENT VIEW** button, a message appears, telling you that there is no current view.

The following occurs by default:

The Store 1 button (stores still images.

▶ The Store 2 button (2 ℃) stores cine loops.

To store an examination image

- > To store a still image, press the **Store 1** button.
 - Or, to store a cine loop, press the **Store 2** button.

Reviewing examination images

You can review images that have been stored during the current examination.

To review examination images

1 Press the CURRENT VIEW button (

If there are no stored images, then when you press **CURRENT VIEW** button, a message appears, telling you that there is no current view.

Images stored during an examination are displayed in the 1 x 1 (a single image on the screen) or 2 x 2 (four images on the screen) image display format. In the 2 x 2 format, the order of images from newest to oldest is left-to-right, top-to-bottom.

The 1 x 1 image display format displays the last image stored during the examination.

- 2 To switch the image display format between 1 x 1 and 2 x 2, press switch menu button 4 (the rocker button under View).
- **3** To change the sort order of stored images:

Press switch menu button 2 (the rocker button under Sort), which cycles through the following sort orders:

- > Stored date time in descending order and then ascending order
- Image format in descending order and then ascending order

Image format in ascending order is as follows (descending is the reverse):

- Still images
- Clips

Raw images

Within each type of images, the images are sorted with the newest image at the top.

The current display order shows below Sort.

4 To select an image, tap the image on the touch panel.

The frame of the selected image turns green.

5 To finish reviewing examination images, press the **CURRENT VIEW** button again.

A live image shows on the main monitor, and the screen mode menu appears on the touch panel.

The following table describes other controls on the touch panel that are available when you are viewing stored images.

Table 4-32: Stored image controls

Control	Description
First/Last	To toggle between first and the last stored image, press switch menu button 1 (the rocker button under First/Last).
Sort	To change the sort order of examination images, press switch menu button 2 (the rocker button under Sort).
Page	To show the next page of images, press switch menu button 3 (the rocker button under Page).
Raw Data Process	To display the information recorded when storing the raw-data image, tap Raw Data Process. Raw Data Process is available only when the image display format is 1 x 1.

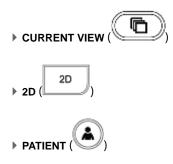
Deleting images

You can delete images that are stored in the FC1.

Caution

You cannot restore deleted images.

To delete an image


1 Select one or more images, as described in "Reviewing examination images" on page 196.

2 Tap Delete.

A trash-can icon appears on the image(s), marking them for deletion.

Note	The deletion marks remain even when you change pages. In the 1 x 1 image display format, the displayed image is deleted.
	In the 2 x 2 image display format, the selected image (the one with a green frame) is deleted.

- **3** To remove the deletion mark from an image, tap **Delete** again.
- **4** To delete the marked images, press the one of the following buttons, all of which exit the review of current images:

5 When you are prompted to confirm deletion of the images that you have marked for deletion, tap **OK** to confirm that the images should be deleted.

Or, to cancel the deletion and remove the deletion mark (the trash can) from the image, tap Cancel.

What you see on the screen after deleting the image depends on which button you pressed to exit.

If you cancel the deletion, the system still leaves the current image review, but without deleting the image.

Printing exam images

All the images of the selected examination can be printed.

Access any examination images for printing through the **Archive** screen, even those you have stored from the current examination. Therefore, for the procedure for printing images, see "Changing printers" on page 202.

Managing the output gueue of examinations and images

You can view and manage examinations and images that you want to print or move over the network. You can also see the status of and information for the examinations and images.

Each image or examination is output to the printer or storage device that you set as the destination for printing or storage. For information on setting printers and storage devices, see "Changing the transfer destination" on page 200 or "Changing printers" on page 202.

To view and manage images and examinations for printing or moving over the network

1 Press the SYSTEM button

Caution

The User Setting screen appears.

2 On page 1/4, tap Output Manage. The Output Management screen appears

To move examinations over the network, there must be at least one destination (DICOM server) in the **Destination** field.

To print images, there must be at least one printer in the **Destination** field.

Servers and printers are represented in the field by the following:

- Destination storage: s (storage device)
- Printer: P
- **3** Use the following controls to manage the queue:

Control	Description
First/Last	To move to the first or last page of the output queue, press switch menu button 1(the rocker button below First/Last).
L/R Scroll	To scroll the list horizontally, press switch menu button 2 (the rocker button below L/R Scroll).
Page	To move to the next or previous page, press switch menu button 3 (the rocker button below Page).
Select All	To select all the examinations in the list, tap Select All.

Control	Description
Close	Closes the Output Management screen.

4 To sort based on one of the fields in the image list box, tap the field header.

Caution

The statuses are **Stand by**, **Suspend** (waiting for the end of an examination before starting the examination transfer), **Wait**, **Output**, and **Error**.

- **5** To invert the sort order for a field header, tap the header again.
- 6 To delete the image or examination, tap Delete.
- 7 To start moving examinations over the network or printing the images in the output queue, tap Start.

Examinations are moved and images are printed in the chronological order in which they were added to the list, regardless of the sorting order based on **Patient ID** or **Patient Name**.

When a transfer or print request is complete, the examination or image is deleted from the output queue.

While you are moving data over the network or while printing, **Destination** and **Delete** are unavailable.

Note

If an error has occurred during the transfer or printing of an examination or image, only the transfer or printing of the examination or image is stopped. The transfer or printing of other examinations and images continue.

8 To stop a transfer or print job, tap Start again.

Changing the transfer destination

To change the destination storage device

1 Press the SYSTEM button (

The User Setting screen appears.

- 2 On page 1/4, tap Output Manage. The Output Management screen appears.
- **3** Check that **Start** is disabled (gray and unavailable), and then tap one or more examinations for which you want to change the storage destination.

(That is, tap one or more records whose destination has an **S** prefix in the **Destination** field.)

4 Tap **Destination** at the upper right of the touch panel.

Note

If multiple records are selected and if they have different destination printers, **Destination** is unavailable.

The **DICOM Destination** screen appears.

The following table describes controls in the **DICOM Destination** screen, in addition to those otherwise described in this procedure.

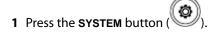
Area or control	Description
Destination list	Contains the transfer destination of the examination from this list. The list can hold a maximum of 10 destinations.
Page	To show the next page of images, press switch menu button 3 (the rocker button under Page).

- **5** To re-sort the list of destinations based on any of the column headings in the list:
 - **a** Tap the header on which you want to sort the list.
 - **b** To reverse the sort order for that header, tap it again.

Caution

If the IP address or port number is not specified, **N/A** appears in the appropriate column. For information setting the transfer destinations to be displayed in this list, contact your local dealer.

- **6** In the list of destinations, tap the desired transfer destination.
- 7 Tap Send.


Any examinations that are selected on the **Queue Administration** screen are moved to the selected destination.

Or, to close the **DICOM Destination** screen without saving changes and returning to the **Queue Administration** screen, tap **Back**.

When the transfer is complete, the **DICOM Destination** screen is closed, and the touch panel returns to the **Queue Administration** screen.

Changing printers

To change the printer

The User Setting screen appears.

- 2 On page 1/4, tap Output Manage. The Output Management screen appears.
- **3** Tap one or more images for which you want to change the printer.

That is, tap one or more records whose destination has a **P** prefix in the **Destination** field.

4 Tap **Destination** at the upper right of the touch panel.

Note

If multiple records are selected and if they have different destination printers, **Destination** is unavailable.

- 5 In the **Printer Destination** screen, tap the desired printer.
- 6 Tap Print.

Or, to close the screen without making any changes effective, tap Back.

Deleting an examination or image from the queue

If you delete an examination or image from the queue, the examination or image remains in the rest of the system.

To delete an examination or image from the queue

- 1 In the queue, tap one or more examinations or images that you want to delete.
- 2 Tap Delete.
- **3** When prompted to confirm the deletion, tap **OK**.
 - Or, to cancel the deletion, tap Cancel.

Exporting examination data

1....

You can export examination image data (still images, clips, and raw-data images) from the FC1 system's internal storage media to external media (USB memory).

. ..

...

	When exporting examination data, consider how much you are exporting. A large amount of examination data may take an extremely long time.
Caution	If it is necessary to store the images for a long period, export examination data periodically.
	AVI files exported to the USB memory cannot be imported to the FC1.

. . .

. . .

. .

To export examination data

- 1 Select an archived examination, as described in "Selecting archived examinations" on page 188.
- 2 Tap Export.

The Exam Export screen appears, with the existing export queue listed.

In addition to the controls described in this procedure, the Exam Export screen has the following controls

Control	Description
Select All	To select all the examinations in the list or (if all the examinations are selected) to cancel all selections in the list, tap Select All .
Page	To move to the next or previous page, press switch menu button 3 (the rocker button below Page).
First/Last	To move to the first or last page of the output queue, press switch menu button 1 (the rocker button below First/Last).
L/R Scroll	To scroll the list horizontally, press switch menu button 2 (the rocker button below L/ R Scroll).

Table 4-33: Export exam controls

The **Exam Export** screen also displays, beside **USB memory**, the total memory and available memory (in megabytes) in the external USB memory connected to the FC1.

- **3** To re-sort the list of examinations based on any of the column headings in the list:
 - **a** Tap the header according to which you want to sort the list.
 - **b** To reverse the sort order for that header, tap it again.

4 To select one or more examinations for exporting to external USB memory, tap the examinations.

Or, to remove the selection from an examination that you have selected, tap the examination again.

- **5** To modify export settings:
 - a Tap Export Setting.

The Export Config screen appears.

- **b** To select the file format of still images:
 - i Tap the right-arrow virtual button (
 - ii In the Still Image File Format selection screen, tap the desired file format: DICOM, TIFF, or JPEG.
 - iii The screen returns to the Export Config screen.
 - iv If you have selected JPEG, then to the right of **JPEG Compression Quality**, tap the right- or left-arrow virtual button (or) to set the compression rate of JPEG images (80% to 100%).

When you specify the TIFF or JPEG file format, the system also stores images in the DICOM format.

- c To specify the compression level for DICOM still images and for DICOM videos (DICOM clip images):
 - i Tap the **DICOM Still Image Syntax**.
 - ii On the DICOM Still Image Syntax selection screen, tap Implicit VR Little Endian, Explicit VR Little Endian, or JPEG Lossy.
- **d** To specify the compression level for DICOM videos (DICOM clip images):
 - i Tap the button to the right of DICOM Clip Image Syntax.
 - ii On the DICOM Clip Image Syntax selection screen, tap Implicit VR Little Endian, Explicit VR Little Endian, or JPEG Lossy.

Note

You can also use the **SYSTEM** button (()) to access export settings for specifying them. For more information, see "Configuring archiving (image export)" on page 32.

6 To export the archived examination, tap **Export**.

If there is no examination selected or if the external USB memory is not connected to the system, **Export** is unavailable.

If the examination that you are exporting is not in the DICOM format, a message tells you that the examination data can be exported but it cannot be imported.

a Tap OK to continue the export or Cancel to cancel the export.

If the examination that you are exporting already exists in the export destination, you are prompted to confirm that you want to overwrite the examination at the destination.

b Tap **OK** to continue the export or **Cancel** to cancel the export.

If the free space on the selected external USB memory is insufficient, a warning message appears.

- c Tap OK to return to the Exam Export screen.
- **d** Delete data in the external USB memory to increase the free space.
- e Resume this procedure.
- 7 When you are prompted to confirm the export, tap OK.

Or, to cancel the export, tap Cancel.

The screen displaying the progress of the exporting process appears. When the exporting process is complete, the screen is closed.

Disconnecting the external USB memory from the FC1 while the export process is in progress cancels the export. A message appears, telling you that the export process has been canceled.

8 To return to the Archive screen, tap Back.

Importing examination data

You can import examination image data (still images, clips, and raw data images) from external media (USB memory) to the internal storage media of the FC1.

Note the following requirements for importing examinations:

- > The image data must be from examinations performed with the FC1.
- > The examinations must be in the DICOM format.

Caution

When importing examination data, consider how much you are importing. A large amount of examination data may take an extremely long time.

Details on the menu displayed on the touch panel for importing examination data are described below.

To import examination data

- 1 Connect the external memory media in which the examination data is stored to the system.
- 2 Press the ARCHIVE button ().
- 3 Tap Import.

If no external USB memory is connected to the FC1, Import is unavailable:

After the system creates the import list, the **Exam Import** screen appears, listing the examinations that reside on the external memory.

In addition to the controls mentioned in this procedure, the Exam Import screen contains the following items

ltem	Description
Select All	Selects all the examinations in the list or, if all the examinations are selected, cancels all selections in the list.
Page	The switch menu button below Page opens the next or previous page.
First/Last	The switch menu button below First/Last shows the first or last page of the output queue.
L/R Scroll	The switch menu button below L/R Scroll scrolls the list horizontally.

Table 4-34: Exam import controls

- 4 To select the external media, if you have more than one connected to the system:
 - a Tap Source Drive.
 - **b** On the selection screen that appears, tap the external USB memory from which you want to import examinations.
- 5 To re-sort the list of examinations based on any of the column headings in the list:
 - **a** Tap the header on which you want to sort the list.
 - **b** To reverse the sort order for that header, tap it again.

WARNING

If the date and time that the examination was completed cannot be obtained from the examination data in the external media (USB memory), the **Study Last Date Time** field is left blank.

6 To select one or more examinations for importing, tap the examination.

Or, to remove the selection from an examination that you have selected, tap the examination again.

7 If you want to delete the examination or examinations that you have selected, tap Delete.

Otherwise, skip this step.

8 To import the selected examination, tap Import.

Troubleshooting:

- ▶ If there is no examination selected, Import is unavailable.
- If the examination selected for import is not in the DICOM format or was not performed with the FC1, a message tells you that the examination cannot be imported.

Tap OK, and then select another examination on the Exam Import screen.

▶ If the free space on the internal storage device of the FC1 is insufficient, a message tells you so.

Tap **OK** to return to the **Exam Import** screen.

Delete data in the FC1 to increase the free space on the internal storage device.

▶ If the examination that you want to import already resides in the internal storage device of the FC1, you are prompted to confirm that you want to overwrite the copy in internal storage.

Tap **OK** to overwrite the copy stored in internal storage with the copy that you are importing.

Or, to cancel importing the examination, tap Cancel.

9 When you are prompted to confirm the import, tap **OK**.

Or, to cancel the import, tap Cancel.

10 To return to the Archive screen, tap Back.

If the external media (USB memory) is disconnected from the FC1while the import process is in progress, a message advises you of what has happened, and the import process is canceled.

Using a USB keyboard

To use the USB keyboard

Caution

When the virtual keyboard is displayed, do not connect the USB keyboard to the FC1.

Table 4-35: USB keyboard mapping

Key	Name	Function
F1	NEW PATIENT	Displays the "Patient Info screen". To return to the examination screen, press this key again.
Prt Scr	Current Exam	Exam images of the current examination can be displayed.
PgDn	Pg Back	When this key is pressed while reviewing exam images, the previous image is displayed. When the first image is displayed, this key does not work.
PgUp	Pg Fwd	When this key is pressed while reviewing exam images, the next image is displayed. When the last image is displayed, this key does not work.
Insert	First/Last	Displays the first and last images of the current examination alternately.
Del	Delete	The function of this key is the same as that of the Delete button on the control panel.
Num Lock	Format	When this button is pressed while reviewing exam images, the display format is switched.
Pause	Archive	Exam images of archived examinations can be displayed.
Esc	End Exam	When this button is pressed during an examination, the examination ends.
F10	DICOM Queue	Displays the "Queue Administration screen".
F2	Del Word	Deletes the word on the left side of the text cursor.
F3	Del Text	Deletes the character on the left side of the text cursor.
F4	Set Home	Specifies the home position of the text cursor.
Space	Space	While entering text, a space is entered. In other cases, an arrow mark or annotation can be entered.
F5	Long/Trans/Sag/ Cor (for POT input)	Inputs "Long", "Trans", "Sag," and "Cor" in order.

Table 4-35: USB keyboard mapping

Кеу	Name	Function
F6	Rt/Lt (for POT input)	Inputs "Rt" and "Lt" alternately.
F7	Prox/Mid/Dst (for POT input)	Inputs "Prx", "Mid," and "Dst" in order.
F8	List 1	Inputs the items registered in List 1 in order.
F9	List 2	Inputs the items registered in List 2 in order.
Tab	Tab	Proceeds to the next input item.
Shift	Shift	When a character key is pressed while pressing this key, another character assigned to the character key is entered.
F11	Body Mark	When this key is pressed while pressing the Fn key (25), the body marks for the current examination are displayed.
F12	Annotation	When this key is pressed while pressing the Fn key (25), an arrow mark or annotation can be entered.
Scroll Lock	Needle Guideline	When this key is pressed while pressing the Fn key (25), the needle guideline can be displayed.
Fn	Function	Regular function key
Windows logo	Full width/half width	For the Japanese keyboard: toggle between full width and half width

Ending an examination

To end an examination

1 Press the F-key to which you have assigned End Exam or Worklist.

2 When you are prompted to confirm that you want to end the examination that is in progress, tap New.

Caution

In case you do not want to edit the patient information nor start a new examination, you can tap **Modify** and press the PATIENT button to cancel the operation.

Chapter 5: Measurements and Calculations

Measurement overview

Before you can perform measurements, you must freeze the image.

There are two types of measurements:

- Basic
- Specific to a preset

You can check the results of application-specific measurements on the **Report** screen, and edit the measurement values on the worksheet.

Note the following:

- The numerical data of application-specific measurements can be stored/exported/ imported in image format.
- Imported data can be viewed on the FC1.
- > Measurement results can be displayed/edited with the Report function of the FC1.
- ▶ To store measurement results in the displayed format, capture the Report screen (in the JPEG/DICOM format) by pressing the STORE button.
- To view the numerical data of application-specific measurements with the Report function, use the Restart function or select an examination on the "Archive screen." Assign the Report function to a function button before using the Report function.
- Some of the measurement procedures described below are available only for applicationspecific (or preset-specific) measurements. These are accessible if you are working in the

relevant preset, through the **CALCS** button (^(D)). For more information on particular measurements, see the following sections:

Basic measurement" on page 238

- Cardiac measurement" on page 279
- Vascular measurement" on page 373
- > "Auto IMT (intima-media thickness) measurement (Optional)" on page 403
- * "Abdominal Measurement" on page 416
- "Urological Measurement" on page 442

WARNING	When making measurements, display an appropriate image and use the appropriate measurement function. With regard to the measurement methods and measurement results, exercise proper clinical judgment.	
	At the time of diagnosis, evaluate the previous examination results described in medical records in addition to the measurement and calculation results for comprehensive judgment.	
Caution	You cannot save only the measurement result. To save the measurement result, you must save in addition at least one image used for the measurement.	

User interface for measurement

Control panel elements

When working with measurements, use the following buttons on the control panel.

Table 5-1: Control panel buttons

Button name	Image	Function
D, C, M, and 2D	0 C M 2D	Switch between imaging modes.
MEASURE	MEASURE	Performs basic measurements.
CALCS		Performs measurements that are specific to a preset. The preset that you choose determines the functionality.
Trackball	\bigcirc	Moves the measurement caliper.

Table 5-1: Control panel buttons

Button name	Image	Function
SET		Fixes the position of the measurement caliper.
Multi dial	\bigcirc	Rotates the measurement caliper.
FUNCTION	C	Function: Changes the function of the trackball.
DELETE	DELETE	Deletes a measurement result. Holding DELETE down deletes all measurement results.

Touch panel screen elements

The touch panel elements that are common to all the modes have the following uses:

> The 2D (B), C, M, and D tabs

Switch among modes for the image to be measured

Report

Displays reports for measurements that are specific to a preset

Next

Application-specific; takes you to the next measurement, depending on the setting

Measure tool

Change measurement tools

Set Default

Sets the selected Measure tool as the tool that is by default selected when you press the **MEASURE** button

Beat

Specifies the heart rate for measurement

Result Display

Displays or hides measurement results

Result Position

Changes the display position of measurement results

Trace Level

Adjusts the trace level during the automatic Doppler measurement

Trace Type

Switches the trace type during the automatic Doppler measurement

Built-in measurement functions

Measurement operation overview

You can perform various types of measurements with the following operations:

Table 5-2: Measurement operations

Operation	Туре	Description
Point	Single point	Measurement at a single point
	Multiple points	Measurement at multiple points
Trace	Free	Measurement with tracing
Figure	Circle	Approximation with a circle or sphere
	Ellipse	Approximation with an ellipse or spheroid
	Area length	Area-Length method
	Disk	Disk method
Line	Multiple	Measurement with crossed line segments
Auto Trace	Range specification	Automatic tracing of Doppler waveform within a specified range

Starting a measurement

The way that you start a measurement depends on what you want to do and the mode that you are working in.

The mode screens contain the following measurement items:

- > 2D (B): Distance, Area, Trace, %Steno Dist, %Steno Area, Volume, Ratio Dist, Ratio Area, Angle
- **C**: Point Vel, Area Vel (both are unavailable when you press the **MEASURE** button [
- D: Velocity, Trace, PI, Time, Accel, Decel, RI, Vol Flow (MnV), Velocity Trace, Vessel Diam, HR
- M: Distance, Time, Slope, HR

To start a measurement

- **1** Press one of the following buttons:
 - To perform basic measurements, press the **MEASURE** button.
 - To perform preset-specific measurements, press the CALCS button (
 - Depending on the preset, you may be able to press the FREEZE button (
- **2** Tap one of the measurement buttons on the touch panel:

The measurement buttons that appear depend on the mode that you are working in.

Or, if you pressed the **CALCS** button and the default measurement item has not been assigned, change the preset to perform an application-specific measurement.

Continuous measurement

In continuous measurement, fixing one caliper in place simultaneously creates the next caliper.

To initiate the next measurement by completing the current measurement

Press the SET button (

Caution

You must configure the **SET** button to display the next caliper. For information on setting this configuration, see "Configuring measurements for all modes" on page 56.

Depending on the measurement item, you may not be able to perform continuous measurement.

MEASURE

1)

Switching modes

In the CD, M, PW or triplex mode, you can use the prepared measurement functions for the displayed image.

To change the mode

• Tap the appropriate tab on the touch panel.

Measuring at points

Measuring at a single point

Single-point measurement measures the value at the position of the caliper. It can evaluate the following:

Table 5-3: Image modes and measurements

lmage mode	Measurement
2D (B)	
CF	Flow velocity
Μ	
Doppler waveform	Flow velocity, time

To measure at a single point

- 1 To display the start-point caliper, press either the **MEASURE**() or **CALCS**(), button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- **2** Use the trackball to adjust the start point.
- 3 Press the SET button (

Depending on the setting, you can perform this measurement continuously.

If you are measuring continuously, every time you fix a point, the next-point caliper is superimposed directly on the previous caliper. To set the next point, repeat steps 2 and 3.

Measuring at multiple points

In multiple-point measurement, you specify multiple calipers, and can evaluate the following values:

Table 5-4: Measurements at multiple points

Image mode	Measurement
2D (B)	Length, Angle
CF	
Μ	Length, Velocity, Time, HR
Doppler waveform	Velocity difference, Time, HR, RI, PG, etc.

For an example, the following procedure is for a basic measurement, in 2D mode, measuring distance.

To measure at two points (distance)

- 1 Press the **MEASURE**()) or **CALCS**()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 To display the start-point caliper, in the mode screen, tap the button (in this case, **Distance**) for the measurement that you want to take.
- **3** Use the trackball to adjust the start point.
- 4 Press the SET button (

The end-point caliper is superimposed directly on the start point.

5 Use the trackball to adjust the end point, and then press the SET button to fix the start point.

Depending on the setting, you can perform this measurement continuously.

Multiple points (distance)

The number of points that you set varies, depending on what you are measuring.

The following procedure is illustrated for 2D mode.

To measure at two points (distance)

- 1 Press the **MEASURE**()) or **CALCS**()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- **2** To display the start-point caliper, in the mode screen, tap the button (in this case, **Distance**) for the measurement that you want to take.
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The second point is superimposed on the start point.

4 Use the trackball to adjust the second point, and then press the **SET** button to fix the second point.

The end point is superimposed on the second point.

5 Use the trackball to adjust the end point, and then press the SET button to fix the end point.

Three points (angle)

The following procedure is illustrated for 2D mode.

To measure at three points that form an angle

- 1 Press the **MEASURE**() or **CALCS**() button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 To display the start-point caliper, in the mode screen, tap the button for the measurement you want to take (in this case, **Angle**, using the **3 Point** Measure tool).
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The second point is superimposed on the start point.

4 Use the trackball to adjust the second point, and then press the **SET** button to fix the second point.

Figure 5-1: The screen after you set two points

The third point is superimposed on the second point.

5 Use the trackball to adjust the third point, and then press the **SET** button to fix the third point.

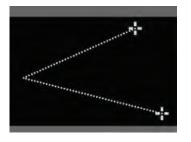


Figure 5-2: The screen after you set all three points

Single point (M distance)

The following example is for measuring distance in M mode.

To measure in M mode

- 1 Press the MEASURE()) or CALCS()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the CALCS button).
- 2 To display a vertical line and the start-point caliper, in the mode screen, tap the button for the measurement that you want to take (in this case, **Distance**).
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The end point is superimposed directly on the start point.

4 Use the trackball to adjust the end point, and then press the **SET** button to fix the end point.

Note that you are setting two points on the same line.

Multiple points (M distance)

The following example is of cardiac measurement in M mode for LV diastole.

To measure at a single point

- 1 Press the MEASURE
- **2** To display a vertical line and the start-point caliper, in the mode screen, tap the measurement button of interest.
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The second point is superimposed directly on the start point.

4 Use the trackball to adjust the second point, and then press the **SET** button to fix the second point.

The last point is superimposed directly on the second point.

5 Use the trackball to adjust the third point, and then press the **SET** button to fix the third point.

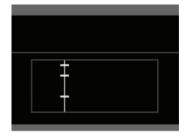


Figure 5-3: The screen after you set all three points

Two points (RI)

The following example is for measuring distance for two points in D mode for RI.

To measure two points in D mode for RI

- 1 Press the **MEASURE**()) or **CALCS**()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 To display a vertical line and the start-point caliper, in the mode screen, tap the button for the measurement that you want to take (in this case, **RI**).
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The end point is superimposed directly on the start point.

4 Use the trackball to adjust the end point, and then press the **SET** button to fix the end point.

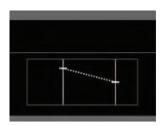


Figure 5-4: The screen after you set both points

Two points (S/D)

The following example is for measuring distance for two points in D mode for Velocity.

To measure two points in D mode for Velocity

- 1 Press the MEASURE()) or CALCS()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the CALCS button).
- **2** To display a horizontal line and the start-point caliper, in the mode screen, tap the button for the measurement that you want to take (in this case, **Velocity**).
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The end point and its horizontal line are superimposed directly on the start point and line.

4 Use the trackball to adjust the end point, and then press the SET button to fix the end point.

Two points (velocity)

The following example is for measuring distance for two points in D mode for Velocity.

To measure two points in D mode for Velocity

- 1 Press the MEASURE()) or CALCS()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the CALCS button).
- **2** To display crossed lines (the start point caliper), in the mode screen, tap the button for the measurement that you want to take.
- 3 Use the trackball to adjust the placement of the start point (the intersection of the crossed lines), and then

press the **SET** button () to fix the start point.

The next set of crossed lines is superimposed directly on the first set.

4 Use the trackball to adjust the second set of crossed lines, and then press the **SET** button to fix them.

Figure 5-5: The end state of the measurement

Two points (HR)

The following example is for measuring distance for two points in D mode for HR.

To measure two points in D mode for HR

1 Press the MEASURE button (

The examination screen displays a vertical line and the start-point caliper.

2 Use the trackball to adjust the placement of the start point, and then press the SET button (

The second point is superimposed directly on the start point.

3 Use the trackball to adjust the second point and its vertical line, and then press the SET button to fix them.

Trace

Measure a trace by drawing a tracing line from the start point to the end point.

Trace measurements can evaluate the following values:

Table 5-5: Trace measurement values

Image mode	Measurement
2D (B)	Length, area
CF	
Μ	
Doppler waveform	PI, VTI, average flow velocity, etc.

There are three kinds of traces:

- Free trace
- Trace area
- Free trace (velocity)

Free trace

The following example is for measuring distance on a free trace in 2D mode.

To measure a free trace in 2D mode

- 1 Press either the **MEASURE** () or **CALCS** () button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement you want to make (in this case, **Trace**).

3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The end point of the trace is superimposed on the start point.

4 Use the trackball to trace a line, and then press the **SET** button to fix the end point.

Trace area

The following example is for measuring an area defined by a free trace in 2D (B) mode.

To measure a free trace in 2D (B) mode

- 1 Press either the **MEASURE**()) or **CALCS**()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement you want to make (in this case, Area).
- 3 Press the switch menu button 2 (the rocker button beneath Measure tool) to select Free.
- 4 Use the trackball to adjust the placement of the start point, and then press the **SET** button (
- **5** Use the trackball to trace a line.
- **6** When the end point is where you want it, press the **SET** button to fix it.

If the start and end points are not at the same location, they are connected with a straight line. When the start and end points are close enough for the system to close it, the start caliper becomes smaller.

Figure 5-6: Completion of the traced area

Free trace (velocity)

The following example is for measuring Velocity trace in D mode.

To measure a free trace in D mode

- 1 Press either the MEASURE() or CALCS() button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the CALCS button).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement you want to make (in this case, **Velocity Trace**).
- 3 Make sure that in the Measure tool, Free is selected (displayed).

If Free does not appear, press the switch menu button 2 (the rocker button beneath Measure tool).

- 4 Use the trackball to adjust the placement of the start point, and then press the SET button (
- **5** Use the trackball to trace a line.
- 6 When the end point is where you want it, press the SET button to fix it.

A caliper appears on the highest and lowest flow velocity values within the traced range.

Figure 5-7: The screen with calipers showing highest and lowest flow velocities

- 7 If necessary, use the trackball to adjust the caliper on the highest flow velocity value, and then fix it.
- 8 If necessary, repeat with the lowest flow velocity value.

Press the **SET** button to fix the end point.

Figure 5-8: The screen with highest and lowest flow velocities adjusted

Figure

To carry out the measurement, you trace a line or connect the start point and the end point.

Figure measurements can evaluate the following values:

Table 5-6: Figure measurement values

Image mode	Measurement
2D (B)	Axial length, Area, Volume, Circumference
CF	Average flow velocity, Highest flow velocity
М	
Doppler waveform	

The figures that you can create are as shown here:

Circle

Ellipse

Area-Length

Disk (Simpson)

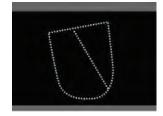


Figure 5-9: Examples of figures to create

Circle

To create a circle

- 1 Press either the **MEASURE**()) or **CALCS**()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement you want to make (in this case, Area).
- 3 Make sure that in the Measure tool, Ellipse is selected (displayed).

If Ellipse does not appear, press the switch menu button 2 (the rocker button beneath Measure tool).

4 Use the trackball to adjust the placement of the start point, and then press the **SET** button (

The end point is superimposed on the start point.

- 5 Use the trackball to enlarge or reduce the circle, and to move it.
 - Moving the end point away from the start point enlarges the circle.
 - Moving the trackball also rotates the circle around the start point. The circle always touches the start point.
- 6 When the end point is where you want it, press the **SET** button to fix it.

Ellipse

Begin creating an ellipse by creating a circle.

To create an ellipse for measurement purposes

- 1 To start by creating a circle. Follow the procedure in "Circle" on page 227.
- **2** Use the trackball to stretch or squeeze the circle into an ellipse (that is, to elongate or reduce the diameter perpendicular to the one that you created in drawing the circle).
- 3 Press the SET button (

Area-length

To measure the area enclosed by a trace

- 1 Press either the **MEASURE**() **CALCS**() button, depending on the context for the measurement (such as whether it is specific to a preset).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement that you want to make (in this case, area-length).
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The end point of the trace is superimposed on the start point.

4 Use the trackball to trace a line, and then press the **SET** button to fix the end point.

The start and end points are connected. The start-point caliper is at the midpoint, and the end point is on the traced line farthest from the midpoint.

Figure 5-10: The completed traced area

5 If necessary, use the trackball to move the end point on the traced line, and then press the SET button to fix the end point.

Figure 5-11: End point with its position adjusted

Disk (Simpson)

To measure the area of a disk (Simpson)

- 1 Press either the **MEASURE**() or **CALCS**() button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement you want to make (in this case, disk area).
- 3 Use the trackball to adjust the placement of the start point, and then press the SET button (

The end point of the trace is superimposed on the start point.

4 Use the trackball to trace a line, and then press the **SET** button to fix the end point.

The start and end points are connected. The start-point caliper is at the midpoint, and the end point is on the traced line farthest from the midpoint.

The diameter in the perpendicular direction appears.

Figure 5-12: The completed traced area

5 If necessary, use the trackball to move the end point on the traced line, and then press the SET button to fix the end point.



Figure 5-13: End point with its position adjusted

Line

You can make this measurement only with the 2D-mode Angle measurement tool.

2 Line (Angle)

3 Line (Angle)

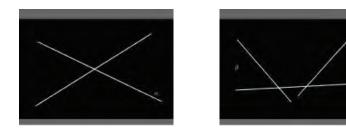


Figure 5-14: Example of line measurement

Two line (angle)

To measure two lines (angle)

- 1 Press either the **MEASURE** () or **CALCS** () button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement that you want to make (in this case, Angle).
- 3 Make sure that in the Measure tool, 2 Line is selected (displayed).

If 2 Line does not appear, press the switch menu button 2 (the rocker button beneath Measure tool).

The first line is horizontal.

- **4** Use the trackball to move the first line, and the multi dial () to rotate it.
- 5 Press the SET button (
- 6 Repeat steps 4 and 5 for the second line.

Allowing for variations in execution, the two lines look something like the following.

Figure 5-15: Two-line angle measurement

Three line (angle)

To measure three lines (angle)

- 1 Press either the MEASURE() or CALCS() button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the CALCS button).
- 2 In the mode screen, to display the start-point caliper, tap the button for the measurement that you want to make (in this case, Angle).
- **3** Make sure that in the **Measure tool**, **3 Line** is selected (displayed).

If 3 Line does not appear, press the switch menu button 2 (the rocker button beneath Measure tool).

The first line is horizontal.

- **4** Use the trackball to move the first line, and the multi dial () to rotate it.
- 5 Press the SET button (
- 6 Repeat steps 4 and 5 for the second line and third lines.

Allowing for variations in execution, the second line looks something like the alpha line in the following.

Allowing for variations in execution, the three lines look something like the following (the third line is the beta line).

Figure 5-16: Three-line angle measurement

Auto Trace

Table 5-7: Auto Trace measurements

Image mode	Measurement
2D (B)	
CF	
Μ	
Doppler waveform	Velocity, Pl

Caution

You can use Auto Trace in one heartbeat period. Do not use it in more than one heartbeat period.

Auto Trace (range specification)

To measure auto trace (range specification)

- 1 Press either the **MEASURE**()) or **CALCS**()) button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the **CALCS** button).
- 2 In the mode screen, to display the start-point caliper and vertical line, tap the button for the measurement that you want to make, and then use the trackball to adjust their position.
- **3** Press the **SET** button (

Figure 5-17: The first auto-trace line

4 Repeat steps 2 and 3 for the end-point caliper and its vertical line.

Automatic tracing of the Doppler waveform is performed within the range specified by the two lines.

A caliper appears on each of the maximum and minimum values.

Figure 5-18: Auto-trace with maximum and minimum values marked

Measurement using auxiliary lines

Image mode	Measurement
2D (B)	IMT measurement
CF	
Μ	
Doppler waveform	

IMT measurement

To perform IMT measurement

- 1 Press the CALCS
- 2 In the mode screen, to display the start point, tap the button for the measurement that you want to make, and then use the trackball to adjust its position.
- **3** Use the multi dial () to rotate the start point.
- 4 Press the SET button (
- **5** Use the trackball to adjust the placement of the start point, and then press the **SET** button to fix the start point.

The end point is superimposed on the start point.

6 Use the trackball to adjust the placement of the end point, and then press the **SET** button to fix the end point.

The start point caliper for the second measurement position appears.

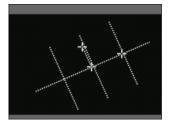


Figure 5-19: The start and end points of the first measurement position and the start point of the second

7 Use the trackball to adjust the start point and press the **SET** button.

The end point caliper for the second measurement position is superimposed on the start point.

8 Use the trackball to adjust the end point for the second measurement position and press the SET button.

The start-point caliper for the third measurement position appears.

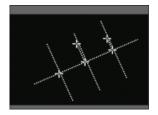


Figure 5-20: The start and end points of the first two measurement positions and the start point of the third

The end-point caliper for the third measurement position is superimposed on the start point.

9 Use the trackball to adjust the end point for the third measurement position and press the **SET** button to fix it.

The start-point caliper for measuring the vessel diameter appears.

Figure 5-21: The start-point caliper for measuring the vessel diameter

- 10 Use the trackball to adjust the start point and press the **SET** button to fix it.
- 11 The end-point caliper for measuring the vessel diameter is superimposed on the start point.
- 12 Use the trackball to adjust the end point and press the SET button to fix it.

Deleting measurement tools

You can delete measurement-tool instances on the examination image.

To delete measurement tools one by one

1 Press either the MEASURE() or CALCS() button, depending on the context for the measurement (such as whether it is specific to a preset, in which case you press the CALCS button).

2 In the mode screen, select the measurement tool that you want to delete, and then press the DELETE button

To delete all measurement tools simultaneously

- 1 Press either the **MEASURE** or **CALCS** button.
- 2 With the mode screen showing in the touch panel, do one of the following:
 - Tap Delete All.
 - > On the control panel, press and hold the **DELETE** button.
 - > On the control panel, press the **MEASURE** button to end basic measurement.

Setting and using the Set and Next button

To change Set/Next

In the Setup menu, select Set/Next for Continuous Measurement Setup.

For details on setting **Set/Next** for **Continuous Measurement Setup**, see "Configuring measurements for all modes" on page 56.

Next appears on the lower-left corner of the measurement screen.

To use the Set/Next button

- 1 When you press the **SET** button (), measurement is not terminated. Rather, the start-point caliper is activated, and you can change its position again.
- 2 When continuous measurement is available, you can start the next measurement by tapping Next. If there are no subsequent measurements, the measurement result is finalized.

Using the Set Default button

With Set Default, you specify the mode of the measure tool that is active when the user presses the MEASURE

(-		
button (MEASURE).	

Specifying settings

Various settings are available in both basic measurement and preset-specific measurement.

Details on the settings for basic measurement are described in "Basic measurement" on page 238.

In application-specific measurement, you can select one of the following for the timing for registering measurement data:

- When the user taps Enter
- > When one type of measurement is completed

By factory default, measurement data is registered when the user taps Enter.

Basic measurement

Functional overview

2D mode

Table 5-9: 2D-mode measurements

Measurement item	Measure tool	Description	Remarks
Distance		Measures the distance between the specified two points	
Area	Ellipse	Measures the diameter, circumference, and area by circling the target part	
	Free Trace	Measures the length of the trace line (the travel distance of the caliper) and the area circled with the trace line	
Trace		Measures the length of the trace line (the travel distance of the caliper)	

Table 5-9: 2D-mode measurements

Measurement item	Measure tool	Description	Remarks
%Steno Dist		Calculates the stenosis ratio by measuring the original vessel lumen diameter and the residual lumen diameter at the stenosis site with two lines	First line measures the original vessel lumen diameter. Second line measures the residual lumen diameter at the stenosis site.
%Steno Area	2 Ellipse	Calculates the stenosis ratio by measuring the original vessel lumen area and the residual lumen area at the stenosis site with two ellipses	First ellipse measures the original vessel lumen area. Second ellipse measures the residual lumen area at the stenosis site.
	Ellipse/Trace	Calculates the stenosis rate by measuring the original vessel lumen area with Ellipse and the residual lumen area with Free Trace	Ellipse measures the original vessel lumen area. Free Trace measures the residual lumen area at the stenosis site.

Measurement item	Measure tool	Description	Remarks
Volume		Calculates the volume of a spheroid by measuring the diameter in three different directions (long axis, short axis, and the longest diameter of cross-section perpendicular to the long axis) on two orthogonal cross-sections	 The following do not cancel the measurement: The screen is unfrozen. The Dual- screen mode is activated. The CF mode is turned on or off. The measurement value is held in memory until calculation becomes possible.
Ratio Dist		Calculates the ratio between two lines	
Ratio Area	2 Ellipse	Calculates the ratio between two areas measured with two ellipses	
	Ellipse/Trace	Calculates the ratio between the area measured with Ellipse and the one measured with Free Trace	
Angle	3 Line	Calculates the angle at the intersection of three lines by adjusting their position and angle	
	2 Line	Calculates the angle at the intersection of two lines by adjusting their position and angle	
	3 Point	Specifies the starting, middle, and ending points; connects the starting and middle points, and the middle and ending points, with a line; calculates the angle at the middle point	

CF mode

Table 5-10: CF-mode measurements

Measurement item	Measure tool	Description	Remarks
Point Velocity		Measures the flow velocity at the position specified by the caliper	Available only when the image is frozen
Area Velocity		Measures the flow velocity within the range specified by Ellipse	Available only when the image is frozen

M mode

Table 5-11: M-mode measurements

Measurement item	Measure tool	Description	Remarks
Distance		Calculates the distance between two points by specifying two calipers on the same time phase	
Time		Measures the time between the specified two lines	
HR		Measures the heart rate by specifying two lines and measuring the time between them	
Slope		Specifies two calipers; connects the specified two points and measures the time, amplitude, and velocity based on the gradient of the line	

D mode

Table 5-12: D-mode measurements

Measurement item	Measure tool	Description	Remarks
Velocity		Measures the blood velocity at the two points specified with calipers and calculates the flow velocity difference and the flow velocity ratio based on the measured values	

Table 5-12: D-mode measurements

Measurement item	Measure tool	Description	Remarks
Velocity Trace	Free	When a waveform is traced, displays a caliper on the maximum and minimum flow velocity points within the range and then measures each item	
	Auto	 Specifies the range of automatic tracing with two lines Displays a caliper on the maximum and minimum flow velocity points within the two lines and then measures each item 	
Time		Measures the time between the specified two lines	
HR		 Specifies the heart rate and two lines Measures the heart rate based on the number of heartbeats and the time between the two lines 	
Acceleration		Measures the acceleration between the two points specified with calipers	
Deceleration		Measures the deceleration between the two points specified with calipers	
PI	Free	When a waveform is traced, displays a caliper on the maximum and minimum flow velocity points within the range and then measures the pulsatility index	
	Auto	 Specifies the range of automatic tracing with two lines Displays a caliper on the maximum and minimum flow velocity points within the two lines and then measures the pulsatility index 	
RI		Measures the resistance index by specifying two points with calipers	

2D/D mode

Table 5-13: 2D/D-mode measurements

Measurement item	Measure tool	Description	Remarks
Volume Flow (MnV)		Measures the mean velocity on the D-mode image	
		Measures the cross-sectional area on the 2D-mode image	
		Calculates the flow volume, based on the measured values	

Measurement results display

By default, the measurements that you obtain appear in the lower left of the examination screen (on the main monitor).

To show or hide the measurement results

1 If the measurement screen for the mode you are in is not already showing, on the control panel, press the

2 To toggle between showing and hiding measurement results, press the switch menu button 4 (the rocker button under **Result Display**).

To change the location of the measurement-results display

1 If the measurement screen for the mode you are in is not already showing, on the control panel, press the

2 To toggle between positions, press the switch menu button 5 (the rocker button under Result Position).

LV mass

When A epi, A endo, and LVL are measured, the following items display

Table 5-14: LV mass measurement items

LV mass			Measurement item
t		cm	Mean LV myocardial thickness

Table 5-14: LV mass measurement items

LV mass		Measurement item
LVM	g	LV mass
LVMI	g/ml ²	LV mass index

Cardiac measurement (D mode)

Pulmonary vein: When PVS, VTI, and PVD VTI are measured, the following item display

Table 5-15: Pulmonary vein measurement item

Pulmonary vein			Measurement item
Pv SYS Frac		%	PV systolic filling fraction

Cardiac measurement (aortic regurgitation)

Aortic regurgitant volume: PISA method

When the AR trace has already been measured, the following items display:

Table 5-16: AR volume measurement items

AR volume			Measurement item
RV (PISA)		ml	AR regurgitant volume flow
ERO (PISA)		cm ²	AR effective regurgitant orifice area
FR (PISA)		ml/s	AR regurgitant fraction

Abdominal measurement (2D mode)

Pancreas size measurement: example of main monitor display)

Table 5-17: Pancreas measurement items

Pancreas			Measurement item
head		cm	Pancreas head diameter
body		cm	Pancreas body diameter
tail		cm	Pancreas tail diameter

Table 5-17: Pancreas measurement items

Pancreas		Measurement item
P-duct	cm	Pancreas duct diameter

Renal measurement (example of main monitor display)

Table 5-18: Renal measurement item

Rt/ Renal-A			Measurement item
Dist		mm	Renal artery diameter

Abdominal measurement (D mode)

Aorta measurement (example of main monitor display)

Table 5-19: Aorta measurement items

Aorta AP prox.			Measurement item
Peak V		cm/s	Peak velocity
Max V		cm/s	Maximum velocity
Min V		cm/s	Minimum velocity
MnV		cm/s	Mean velocity
PI			Pulsatility index
RI			Resistance index
S/D			S/D ratio

Renal artery measurement

Table 5-20: Renal artery measurement items

Rt. Renal Art.			Measurement item
Max V		cm/s	Maximum velocity
Min V		cm/s	Minimum velocity
MnV	,	cm/s	Mean velocity
PI			Pulsatility index

Table 5-20: Renal artery measurement items

Rt. Renal Art.		Measurement item
RI		Resistance index
S/D		S/D ratio

Abdominal measurement (2D mode)

Hip angle measurement (example of main monitor display)

Table 5-21: Hip angle measurement items

Hip angle right			Measurement item
α		0	Bony roof angle (angle alpha)
β		0	Cartilage roof angle (angle beta)

Urological measurement (2D mode)

Bladder volume measurement (example of main monitor display)

Table 5-22: Bladder volume measurement items

Void volume			Measurement item
Pre-Post.		ml	Void volume

2D mode

With the factory settings of basic measurement for 2D mode, you can measure distance without tapping **Distance** on the touch panel.

Distance

To measure the distance between two points

- 1 On the control panel, press the MEASURE button (
- MEASURE).
- 2 If Distance is not already selected on the measurement selection screen of the touch panel, tap it.

Distance is the factory default selection for selecting measurements.

The start-point caliper appears on the screen.

3 Use the trackball to move the start-point caliper (the + mark), and then, to fix it, press the SET button

The end-point caliper appears, superimposed on the start-point caliper.

4 Use the trackball to move the end point, and then fix it by pressing the **SET** button.

The distance as measured between the two points appears in the lower left of the main monitor. The distance is measured from the first point to the second, so it is assigned to the first point.

To measure more than one straight-line distance at once, repeat steps 3 and 4.

5 Multiple measurements are listed each below the previous one.

The following illustration shows the examination image with three measurements. Note the display of the measurements in the lower left. Note also that the distance is reported for the starting point of each measurement. The distance is thus reported as the distance from the starting point.

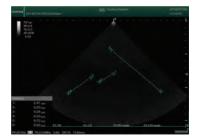


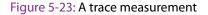
Figure 5-22: Three straight line measurements

Trace

A trace measurement measures the length of the freehand line that you create with the trackball.

To create a trace measurement

- 1 On the control panel, press the MEASURE button (
- 2 Tap Trace.


The start-point caliper (a + mark) appears on the screen.

- 3 Use the trackball to move the start point, and then, to fix it, press the SET button (
- **4** The end-point caliper appears, superimposed on the start-point caliper.
- **5** Use the trackball to move the end point.

A line tracing the movements of the trackball appears on the screen.

6 To fix the end point of the trace and the trace, press the **SET** button.

The trace line is also fixed, and the distance between the two points is evaluated.

The distance following the trace is measured and appears in the lower left of the main monitor. The distance is measured from the first point to the second, so it is assigned to the first point.

Area

With the factory setting, Ellipse is the default Measure tool.

To measure an area with Ellipse

- 1 Tap Area to display the start-point caliper (the + mark).
- 2 Use the trackball to move the start point, and then fix it by pressing the SET button (
- **3** The end-point caliper appears, superimposed on the start point.
- **4** Moving the end point with the trackball, adjust the diameter of the circle, and then fix it by pressing the **SET** button.

⊕ a∈ī

- **5** To make the circle an ellipse, do one of the following:
 - > To narrow the circle's width, rotate the trackball upward.
 - > To widen the width of the circle, rotate the trackball downward.
- **6** When the width of the circle or ellipse is fixed, the area of the circle is evaluated.

To measure an area with Trace

▶ For the procedure, see "Trace" on page 223.

The measurement display looks like the following:

Table 5-23: Trace measurement item

Area			Measurement item
Area(1)	•_	cm	Measurement result
Circ(1)		cm	Measurement result

Volume

The volume is calculated by measuring the diameter in three different directions on two orthogonal cross-sections.

We recommend that you create two orthogonal cross-sections (long and short axes) on the Dual screen before measuring.

To calculate volume with two orthogonal cross-sections on two screens

1 Use the L/R buttons (for the Dual screen to display a long-axis cross-section on one screen and a short-axis cross-section on the other screen.

- **3** To display the start-point caliper, tap **Volume**.
- 4 To draw the first line (the X axis), use the trackball to move the start point, and then fix it by pressing the SET

button (

The end-point caliper appears, superimposed on the start point.

- **5** Move the end point with the trackball, and then fix it by pressing the **SET** button.
- **6** To draw the second line (the Y axis), repeat steps 4 through 5.
- 7 On the short-axis cross-section, measure the length of the first and second lines (the X and Y axes).

For the procedure to do so, see "Trace" on page 223.

- 8 On the long-axis cross-section, measure the length of the third line (the Z axis) in the same way.
- **9** When you have measured the length of the first, second, and third lines, the volume is evaluated.

Figure 5-24: Measurement of three axes

To calculate volume with two orthogonal cross-sections on a single screen

- 2 To display the start-point caliper, tap Volume.
- **3** On the short-axis cross-section, measure the length of the first and second lines (the X and Y axes).

For the procedure to do so, see "Distance" on page 246.

- **4** Unfreeze the image.
- **5** On the long-axis cross-section, measure the length of the third line (the Z axis) in the same way.
- 6 When you have measured the length of the first, second, and third lines, the volume is evaluated.

The measurement display looks like the following:

Table 5-24: Volume measurement items

Volume			Measurement item
x(1)	·_	cm	Longest diameter of short-axis cross-section
y(1)		cm	Shortest diameter of short-axis cross-section
z(1)	·_	cm	Longest diameter of long-axis cross-section
vol(1)	·_	cm ³	Volume

Ratio

You can calculate the ratio between two measured values (distance or area).

Ratio distance

To calculate the ratio between two distance values

- 2 To display the start-point caliper, tap Ratio Dist.
- 3 To measure the distance between the first two points, use the procedure in "Distance" on page 246.
- 4 Measure the distance between the second two points in the same way.
- **5** When you have measured the distance between the first two points and that between the second two points, the ratio is evaluated.

Table 5-25: Ratio measurement items

Ratio dist			Measurement item
A(1)	·_	cm	Distance between the first two points
B(1)	•_	cm	Distance between the second two points
A/B(1)	<u>`</u> _		Ratio (Dist1)/(Dist2)

Ratio area

To calculate the ratio between two area values

1 Press the MEASURE button (

- 2 Tap Ratio Area to display the start-point caliper.
- 3 Press the switch menu button 2 (the rocker button under Measure tool) to switch to Ellipse/Trace.

With the factory setting, Ellipse/Trace is the default initial setting for the tool.

Figure 5-25: Example of two areas

Or, to measure the area ratio between two ellipses, press the switch menu button 2 to switch Measure tool to 2 Ellipses.

- **4** Measure the first area by following the procedure described in "Area-length" on page 228.
- 5 Measure the second area by following the procedure described in "Trace" on page 223.

Or, if you are measuring the areas of two ellipses, repeat step 4.

6 When you have measured the two areas, the ratio is evaluated.

The measurement display looks like the following:

Table 5-26: Ratio are	a measurement items
-----------------------	---------------------

Ratio Area			Measurement item
A(1)	· _	cm ²	First area
B(1)	<u> </u>	cm ²	Second area

Table 5-26: Ratio area measurement items

Ratio Area			Measurement item
A/B(1)	·_		Ratio (Area1)/(Area2)

%Stenosis (Stenosis ratio)

The following two types of methods are available for evaluating the stenosis ratio:

- Calculation based on diameter: %Steno Dist
- Calculation based on cross-sectional area: %Steno Area

%Stenosis distance

To obtain the ratio between two stenosis distance measurements

- 1 Press the MEASURE button (
- 2 Tap %Steno Dist to display the start-point caliper for the original vessel lumen diameter.
- **3** Use the trackball to move the start point, and then fix it by pressing the **SET** button (
- **4** The end-point caliper appears, superimposed on the start point.
- 5 Use the trackball to move the end point, and then fix it by pressing the SET button.

The original vessel lumen diameter is measured.

- **6** Measure the residual lumen diameter at the stenosis site in the same way.
- 7 When you have measured both diameters, the stenosis ratio is evaluated.

The measurement display looks like the following:

Table 5-27: Stenosis distance measurement items

%Steno dist			Measurement item
V(1)	•_	cm	Original vessel lumen diameter
R(1)	·_	cm	Residual lumen diameter at stenosis site

Table 5-27: Stenosis distance measurement items

%Steno dist			Measurement item
Steno(1)	<u> </u>	%	Stenosis ratio (V - R)/V x 100

%Stenosis area

To obtain the ratio between two stenosis distance measurements

1 Press the MEASURE button (

2 Tap %Steno Area to display the start-point caliper.

With the factory setting, the Measurement tool is by default set to Ellipse/Trace

To evaluate the stenosis ratio between two ellipses, switch the measure tool to **2 Ellipses** by pressing the switch menu button 2 (the rocker button under **Measure tool**).

- **3** Measure the original vessel lumen area by following the procedure described in "Trace area" on page 224.
- **4** Measure the residual lumen area at the stenosis site by following the procedure described in "Trace" on page 223.
- **5** When you have measured the original vessel lumen area and the residual lumen area, the stenosis ratio is evaluated.

Figure 5-26: Measuring the percent stenosis area

The measurement display looks like the following:

Table 5-28: Stenosis area measurement items

%Steno dist			Measurement item
V(1)	·_	cm ²	Original vessel lumen area
R(1)	· _	cm ²	Residual lumen area at stenosis site
Steno(1)	·_	%	Stenosis ratio (V - R)/V x 100

Z).

Angle

The following three methods are available for angle measurement.

Three line (3 Line)

Use three lines to calculate two angles. You can use this method for measuring hip dislocation.

Two line (2 Line)

Use two lines to calculate two angles.

Three point (3 Point)

Specify three points to calculate an angle.

With the factory setting, **3 Line** is the default method.

3 Line

To calculate two angles with three lines

- 2 Tap Angle.
- 3 Make sure that under Measure tool, 3 Line shows.

If **3 Line** is not on-screen, press the switch menu button 2 (the rocker button under **Measure tool**) until **3 Line** appears.

Three lines appear.

- **4** Use the trackball to adjust the position of the first line.
- 5 Rotate the multi dial ()) to adjust the angle of the first line.
- 6 Press the SET button (
- 7 Repeat steps 4 through 6 to adjust the second line and then the third line.

The angle between the first and second lines and the angle between the first and third lines are measured.

Figure 5-27: Three lines, defining two angles

Note

The normal values (α =60°, β =55°) are set as the initial angles for this measurement.

The measurement display looks like the following:

Angle			Measurement item
α(1)		0	Angle between the first and second lines (Bony roof angle)
β(1)		0	Angle between the first and third lines (Cartilage roof angle)

2 Line

To calculate two angles with two lines

- 1 Press the MEASURE button (MEASURE).
- 2 Tap Angle.
- 3 Three lines appear.
- 4 To switch the measure tool to 2 Line, press the switch menu button 2 (the rocker button under Measure tool).
- **5** Use the trackball to adjust the position of the first line.
- 6 Rotate the multi dial ()) to adjust the angle of the first line.
- 7 Press the SET button (
- 8 Repeat Steps 5 through 7 to fix the second line.
- **9** The angle between the first and second lines is measured.

The measurement display looks like the following:

Table 5-30: 2-line angle measurement items

Angle			Measurement item
α(1)		0	Angle between the first and second lines
β(1)		0	180 - α

3 Point

To calculate an angle with three points

- 1 Press the MEASURE button (MEASURE).
- 2 Tap Angle.

Three lines appear.

- 3 To switch the measure tool to 3 Point, press the switch menu button 2 (the rocker button under Measure tool).
- 4 Use the trackball to move the start-point caliper (the + mark), and then press the **SET** button (

The second point appears, superimposed on the start point.

5 Use the trackball to move the second point, and then fix it by pressing the **SET** button.

The end point appears, superimposed on the second point.

Use the trackball to move the end point, and then fix it by pressing the SET button.

When you have fixed all three points, the angle between the line connecting the start and middle points and the one connecting the middle and end points is measured.

The measurement display looks like the following:

Table 5-31: 3-point angle measurement item

Angle			Measurement item
α(1)		0	Angle made by three points

CD mode

The CD mode measurement screen has two measurement tools:

- > Point Vel, for measuring velocity at a point
- > Area Vel, for measuring velocity over an area

Caution

You can use the Point Vel and Area Vel measurement tools only when the displayed image is frozen.

Point velocity

To measure flow velocity at a specified point

2 Tap Point Vel.

The point caliper (the + mark) appears.

3 Use the trackball to move the point caliper, and then press the **SET** button (

The flow velocity at the specified point is measured.

The measurement display looks like the following:

Point Vel			Measurement item
1		cm/s	Point velocity

Area velocity

To measure flow velocity for an area

- 1 Make sure that the image is frozen.
- 2 Press the MEASURE button (
- 3 Tap Area Vel.

The point caliper (the + mark) appears.

4 To specify the area, use the procedure in "Ellipse" on page 228.

After you have specified the area, the maximum and average values of the color-flow or power Doppler within the area are measured.

The measurement display looks like the following:

Table 5-33: Area velocity measurement item

Area Vel			Measurement item
maxV	·_	cm/s	Maximum flow velocity
ave V	·_	cm/s	Average flow velocity

M mode

The CF mode measurement screen has the following measurement tools:

- Distance
- ▶ Time
- Slope
- ► HR

Distance

This tool measures the distance between two points on the same time phase of the M-mode image.

To measure distance between two points

- 1 Press the MEASURE button (
- 2 Tap Distance.

The start-point caliper appears.

3 Use the trackball to move the start point, and then press the **SET** button (

The end-point caliper appears, superimposed on the start point.

4 Use the trackball to move the end point, and then fix it by pressing the **SET** button.

The distance between the two points is measured.

When a single measurement is performed, the measurement display looks like the following:

Table 5-34: Distance measurement item

Distance			Measurement item
Dist(1)	•_	cm	Measurement result

Time

This tool measures the time between two points on the M-mode image.

To measure time between two points

- 1 Press the MEASURE button
- 2 Tap Time.

The start-point caliper appears on a vertical line.

3 Use the trackball to move the start point and line, and then press the SET button (

The end-point caliper and line appear, superimposed on the start point and line.

4 Use the trackball to move the end point and line, and then fix them by pressing the **SET** button.

The time between the first and second lines is measured.

When you perform a single measurement, the measurement display looks like the following

Table 5-35: Time measurement item

Time			Measurement item
⊿ t(1)	_	ms	Time between two points

HR (heart rate)

This tool measures the heart rate based on the time between two points on the M-mode image.

To measure time between two points

- 1 Press the MEASURE button (
- **2** Tap **HR**.

The start-point caliper appears on a vertical line.

3 To change the number heartbeats used for calculating the passage of time, press switch menu 3 (the rocker button under **Beat**).

The possible number of beats is 1, 2, or 3.

To change the default Beat setting, see "Configuring measurements for all modes" on page 56.

⊕

4 Use the trackball to move the start point and line, and then press the SET button (

The end-point caliper and line appear, superimposed on the start point and line.

5 Use the trackball to move the end point and line, and then fix them by pressing the **SET** button.

The heart rate is evaluated based on the time between the first and second lines.

When you perform a single measurement, the measurement display looks like the following:

Table 5-36: Heart rate measurement items

HR			Measurement item
∠ t(1)	-	ms	Time between two points (corresponding to heartbeat(s))
HR	_	bpm	Heart rate
(1)	_	beat	Number of heartbeats

Slope (velocity measurement)

This tool measures the time and velocity between two points on the M-mode image.

To measure time between two points

- 1 Press the MEASURE button
- 2 Tap Slope.

The start-point caliper appears on a vertical line.

3 Use the trackball to move the start point and line, and then press the SET button (

The end-point caliper and line appear, superimposed on the start point and line.

4 Use the trackball to move the end point and line, and then fix them by pressing the **SET** button.

The two points are joined by a dotted line.

The velocity, amplitude, and time are evaluated based on the gradient of the line between the two points.

When a single measurement is performed, the measurement display looks like the following:

Table 5-37: Slope measurement items

Slope			Measurement item
dist(1)		ms	Distance between two points
∠ t(1)		ms	Time difference between two points
V(1)		cm/s	Velocity (Distance between two points)/(\angle t)

D mode

The D-mode measurement screen includes the following measurement tools:

- Velocity
- Trace
- ► PI
- ▶ Time
- Accel
- Decel
- ▶ RI
- Volume Flow (MnV)
- Velocity Trace
- Vessel Diam
- ► HR

Velocity

When you specify two points, this tool calculates the blood velocity difference and velocity ratio.

To measure blood velocity difference and ratio

- 1 Press the MEASURE button (
- 2 Tap Velocity.

The start-point caliper appears on a horizontal line.

3 Use the trackball to move the start point and line, and then press the **SET** button (

The end-point caliper and line appear, superimposed on the start point and line.

4 Use the trackball to move the end point and line, and then fix them by pressing the **SET** button.

The two points are joined by a dotted line.

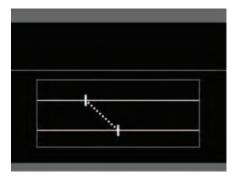


Figure 5-28: Start and end points for measuring blood-flow velocities and their ratio

The tool measures the blood velocity at the two points and calculates the flow-velocity difference and the flow-velocity ratio between the two points.

When a single measurement is performed, the measurement display looks like the following:

Velocity			Measurement item
V(1)	·_	cm/s	Blood velocity at start point
V(2)	•_	cm/s	Blood velocity at end point
∠ V(1)	<u> </u>	cm/s	Velocity difference
PPG(1)	•_	mmHg	Pressure gap of maximum blood velocity

Table 5-38: Velocity measurement items

Velocity			Measurement item
Ratio(1)	·_		Blood velocity ratio

PI (Pulsatility index)

The PI measurement tool calculates blood-flow information such as PI, RI (resistance index), and S/D (systolic-to-diastolic ratio) by tracing the Doppler waveform.

The following two types of tracing methods are available.

Auto

Each value is calculated by automatically tracing the Doppler waveform between two lines.

With the factory setting, Auto is the default.

Free

Each value is calculated with free tracing.

To calculate blood-flow information

- 1 Press the MEASURE button
- 2 Tap PI.
- **3** To select a measure tool:

Press the switch menu button 2 (the rocker button under Measure tool) to switch between Auto and Free.

- When using Auto, specify a range equivalent to one heartbeat period.
- > When using Free, you can adjust PSV (peak systolic flow velocity) and EDV (end diastolic velocity).

For details, see "RI (resistance index)" on page 268.

4 Use the trackball to move the first line and fix it by pressing the SET button (

The second line appears.

5 Use the trackball to move the second line and fix it by pressing the **SET** button.

Ð

6 When the second line is fixed, the waveform between the first and second lines is traced, and each value is evaluated.

The measurement display looks like the following:

PI			Measurement item
MnV(1)	·_	cm/s	Mean velocity
MnPG(1)		mmHg	Mean pressure gap
PSV(1)	•_	cm/s	Peak systolic flow velocity
EDV(1)		cm/s	End diastolic velocity
PI(1)			Pulsatility Index
RI(1)	·_		Resistance Index

Time

To measure the time between two points on the Doppler waveform

- 1 Press the MEASURE button
- 2 Tap Time.

The start-point caliper appears on a vertical line.

3 Use the trackball to move the start point and line, and then press the SET button (

The end-point caliper and line appear, superimposed on the start point and line.

4 Use the trackball to move the end point and line, and then fix them by pressing the **SET** button.

Figure 5-29: Doppler waveform with the start and end points set

5 The tool measures the time between the first and second lines.

When a single measurement is performed, the measurement display looks like the following:

Table 5-40: Time measurement item

Time			Measurement item
⊿ t(1)	-	ms	Time between two points

Acceleration or deceleration

The tool calculates acceleration or deceleration when you specify two points.

To calculate acceleration or deceleration

2 Tap Accel or Decel.

The start-point caliper appears on a vertical line.

3 Use the trackball to move the start point and line, and then press the SET button (

The end-point caliper and line appear, superimposed on the start point and line.

4 Use the trackball to move the end point and line, and then fix them by pressing the **SET** button.

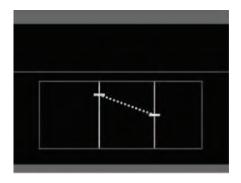


Figure 5-30: Start and end points for evaluating acceleration or deceleration

5 The tool evaluates the acceleration or deceleration between the first and second lines.

The measurement display for acceleration looks like the following:

Table 5-41: Velocity acceleration measurement items

Velocity			Measurement item
⊿ t(1)	·_	ms	Time between two points
∠ V(1)	·_	m/s	Velocity difference between two points
ACC(1)	·_	m/s ²	Acceleration

The measurement display for deceleration looks like the following:

Table 5-42: Velocity deceleration measurement items

Velocity			Measurement item
⊿ t(1)	·_	ms	Time between two points
∠ V(1)	·_	m/s	Velocity difference between two points
DEC(1)	<u> </u>	m/s ²	Deceleration

RI (resistance index)

The tool calculates the resistance index by specifying two points, PSV (peak systolic flow velocity) and EDV (end diastolic velocity).

To calculate the resistance index

- 1 Press the MEASURE button
- 2 Tap RI.

The start-point caliper appears on a vertical line.

3 Use the trackball to move the start point and line, and then press the **SET** button (

The end-point caliper and line appear, superimposed on the start point and line.

- 4 Use the trackball to move the end point and line, and then fix them by pressing the SET button.
- **5** The RI measurement tool evaluates the resistance index between the first and second points.

The measurement display looks like the following:

Table 5-43: Resistance index measurement items

RI			Measurement item
PSV(1)	·_	cm/s	Peak systolic flow velocity
EDV(1)	·-	cm/s	End diastolic velocity
RI(1)	•_		Resistance index
S/D(1)	•-		Systolic / Diastolic velocity ratio

Velocity trace

This tool traces the Doppler waveform, to calculate information on blood flow, such as:

- ► VTI
- Mean velocity
- Mean pressure gap

The following two types of tracing methods are available:

Auto

Each value is calculated by automatically tracing the Doppler waveform between two lines.

In the factory setting, Auto is the default.

▶ Free

Each value is calculated with free tracing.

To calculate blood-flow information

- 1 Press the MEASURE button
- 2 Tap Vessel Diam.
- 3 In the screen's upper image, draw the blood vessel's diameter, using the technique for drawing the diameter that is described in Figure 5-9, "Examples of figures to create" on page 227.
- 4 Tap Trace.
- 5 Press the switch menu button 2 (the rocker button under Measure tool) to select Auto or Free.

Note

When you use Auto, specify a range equivalent to one heartbeat period.

- If you use Auto:
- **a** Use the trackball to move the first line, and then press the **SET** button (

The second line appears, superimposed on the first.

b Use the trackball to move the second line, and then fix it by pressing the **SET** button.

Figure 5-31: Doppler waveform with two lines set

If you use Free:

c Use the trackball to trace the waveform.

To trace the waveform, use the technique described in "Trace" on page 247.

d Press the **SET** button to fix the trace line.

A caliper is displayed on the maximum and minimum flow velocity values within the specified range.

e Use the trackball to move the caliper to the maximum flow velocity value, and then fix it by pressing the SET button.

When you rotate the trackball to the left, the caliper moves toward the start point of the trace line.

When you rotate the trackball to the right, the caliper moves toward the end point.

f Move the caliper to the minimum flow velocity value by repeating step c, and then fix it by pressing the **SET** button.

When the maximum and minimum flow velocities are fixed, each value is evaluated.

The measurement display looks like the following:

Table 5-44: Velocity trace measurement items

Velocity trace			Measurement item
VTI(1)		m	Velocity time integral
MnV(1)	•_	cm/s	Mean velocity
MnPG	` _	mmH g	Mean pressure gap
PSV(1)	·_	cm/s	Peak systolic flow velocity
EDV(1)	•_	cm/s	End diastolic velocity
PI(1)	·_		Pulsatility index
RI(1)	•_		Resistance index
S/D(1)	· _		Systolic / diastolic velocity ratio

Volume flow

This tool calculates flow volume based on the mean velocity measured on the Doppler waveform and the cross-sectional area (CSA) measured on the B-mode image.

Caution	Select the Doppler mode before measurement.
	You can also measure blood-flow volume by measuring Vessel Diam and then Velocity Trace.

To calculate blood-flow volume

- 1 Press the MEASURE button (MEASURE).
- 2 Tap Velocity Trace in the Vol Flow (MnV) group to specify the tracing range with two lines.

Auto and Free are available for Velocity Trace. With the factory setting, Auto is the default.

3 To measure the cross-sectional diameter, tap **Vessel Diam**.

The **Circle** and **Distance** measurement tools are available for **Vessel Diam**. In the factory setting, **Distance** is the default.

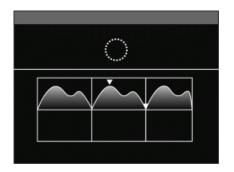


Figure 5-32: Measurement tools for flow volume

When you have measured velocity (with Velocity Trace) and vessel diameter, the flow volume is calculated.

The measurement display looks like the following:

Table 5-45: Flow volume measuremen	nt items for velocity tra	ace
------------------------------------	---------------------------	-----

Velocity trace			Measurement item
TAP(1)	·_	m/s	Time averaged peak (Only when Trace type is 'Both')
PI(1)	•_		Pulsatility index (with TAP or MnV)
RI(1)	·_		Resistance index
MnV(1)	·_	m/s	Mean velocity

Volume Flow			Measurement item
CSA(2)	·_	cm ²	Cross-sectional area
CSD(2)	·_	cm	Cross-sectional diameter
VF(2)		ml/min	Volume Flow (with MnV)

Volume flow is calculated using the MnV value. To set the MnV value with Auto Trace, change Trace Type on the touch panel. To set the default calculation method, change Trace Measure Type on page 57.

When Trace type is 'Both', PI and RI are always calculated from peak trace.

HR (heart rate)

Note

To evaluate the heart rate on the Doppler waveform

- 1 Press the MEASURE button (
- **2** Tap **HR** to display the first line.
- **3** To change the number of heartbeats used for calculating the passage of time, press switch menu 3 (the rocker button under **Beat**).

The possible number of beats is 1, 2, or 3.

To change the default Beat setting, see "Configuring measurements for all modes" on page 56.

4 Use the trackball to move the first line, and then press the **SET** button (

The second line appears, superimposed on the first.

5 Use the trackball to move the second line, and then fix it by pressing the SET button.

Figure 5-33: Doppler waveform with two lines set

The measurement tool evaluates the time between the first and second lines and the heart rate.

When a single measurement is performed, the measurement display looks like the following:

Table	5-46:	Time	measurement	items
-------	-------	------	-------------	-------

Time			Measurement item
⊿ t(1)	-	ms	Time between two points
HR(1)	_	bpm	Heart rate
(1)	_	beat	Number of heartbeats

Settings

For details on configuring the measurement settings, see "Managing measurement functions" on page 56.

Calculation formula

2D mode

Table 5-47: Formula for 2D mode calculations

Name	Formula
Distance	=\/{(X2-X1)^2+(Y2-Y1)^2}

Table 5-47: Formula for 2D mode calculations

Name	Formula
Area	$=\pi\times(LA)\times(SA)/4$
	LA,SA[cm,mm] (Circle: LA=SA)
Stenosis	= (V)-(R) /(V)*100
	Distance: V,R[cm,mm]
	Area: V,R[cm ² ,mm ²]
Ratio	=(Dist1)/(Dist2)
	Dist1,Dist2[cm,mm]
	=(Area1)/(Area2)
	Area1,Area2[cm ² ,mm ²]
Volume	=($\pi/6$)×(x-ax)×(y-ax)×(z-ax)
	x-ax,y-ax,z-ax[cm,mm]

M mode

Table 5-48: Formula for M mode calculations

Name	Formula
M-Distance	=(Y2)-(Y1)
M-Time	=(T2)-(T1)
	T2,T1[ms]
M-HR	=(60*@)/ 🛆 t @(Input value)[beat,cycle]
	⊿ t[s]
Slope	=(dist)/(<u>/</u> t)
	dist[cm,mm], ⊿ t[ms]

D mode

Table 5-49: Formula for D mode calculations

Name	Formula	
D-Time	=(T2)-(T1)	
	T2,T1[ms]	
D-HR	=(60*@)/ 🛆 t @(Input value)[beat,cycle]	
	⊿ t[s]	
Velocity		
PG	=4((V1)^2)	
	V1[m/s]	
⊿v	= (V1)-(V2)	
V1/V2	= (V1)/(V2)	
	V1,V2[cm/s,m/s]	
VelocityTrace		
VTI	=∫Vel(t)dt	
MnV	=(VTI)/ ⊿ t	
MnPG	= $(4/ \Delta t)$ [Vel^2(t)dt (Δt = Flow duration)	
PI	= ((PSV)-(EDV))/(MnV) PSV ≥ EDV	
RI	= ((PSV)-(EDV))/(PSV) PSV ≥ EDV	
S/D	= (PSV)/(EDV)	
Acceleration,Deceleration		
ACC or DEC	= (

B/D mode

Table 5-50: Formula for B/D mode calculations

Name	Formula
VolumeFlow	
VelocityTrace:	
MnV	=(VTI)/ <u>/</u> t
VesselDiam:	
CSA	=(π/4)×(CSD)^2
CSD	:diameter
FV	=(MnV)×(CSA)×(60sec)×(Coef) Coef=1.0

Abbreviations

Table 5-51: Abbreviations used

Abbreviation	Full spelling
⊿t	Difference in time
⊿v	Difference in velocity
ACC	Acceleration
Ave	Average
Coef	Coefficient
CSA	Cross-sectional area
CSD	Cross-sectional diameter
DEC	Deceleration
Diam	Diameter
Dist	Distance
EDV	End diastolic velocity
HR	Heart rate
Len	Length
MnPG	Mean pressure gradient
MnV	Mean velocity
PG	Pressure gradient
PI	Pulsatility index
PSV	Peak systolic flow velocity
R	Residual
RI	Resistance index
S/D	Systolic diastolic ratio, SD ratio
Steno	Stenosis
V	Velocity
Vel	Velocity

Table 5-51: Abbreviations used

Abbreviation	Full spelling	
VF	Volume Flow	
Vol	Volume	
VTI	Velocity time integral	

Cardiac measurement

Functional overview

For terms and abbreviations used in the measuring tools, see "Terms and abbreviations" on page 367.

2D (B) mode

Table 5-52: Descriptions of cardiac 2D-mode measurements

Measurement item	Description	Remarks
Distance/Area measurement	Aortic diameter, Aortic annulus diameter, Valsalva diameter, Sinotubular junction diameter, Valve area, Left atrial diameter, Left ventricular outflow tract diameter, Mitral annular distance, Left ventricular dimension, Wall thickness, Wall fractional thickening, Factional shortening, Ejection fraction, Left ventricular volume, Stroke volume, Cardiac output, Myocardial mass, Right / Left atrial longitudinal / transverse dimension, Right ventricular dimension, Right ventricular wall thickness, and Right ventricular fractional area change	Teichholz method Pombo method Gibson method ASE method Penn-Cube method
LV volume measurement	Left ventricular volume, Left ventricular length, Ejection fraction, Stroke volume, Cardiac output, and Left ventricular length difference	AL method MOD method
LA volume measurement	Left atrial volume, Left atrial length, Ejection fraction, and Left atrial length difference	AL method MOD method

Table 5-52: Descriptions of cardiac 2D-mode measurements

Measurement item	Description	Remarks
LV mass measurement	Left ventricular mass	ASE method Penn-Cube method AL method TE method

M-mode

Table 5-53: Summary of cardiac M-mode measurements

Measurement item	Description	Remarks
AO measurement	Right ventricular outflow tract diameter, Aortic diameter, Left atrial diameter, Left ventricular pre-ejection period and Left ventricular ejection time	
MV measurement	Mitral valve C-E amplitude, C-A amplitude, E-F slope, etc. and E point to septal separation	
LV measurement	Left ventricular dimension, Wall thickness, Wall fractional thickening, Factional shortening, Ejection fraction, Stroke volume, Cardiac output and Myocardial mass	Teichholz method Pombo method Gibson method ASE method Penn-Cube method

D mode

Table 5-54: Summary of cardiac D-mode measurements

Measurement item	Description	Remarks
Aortic valve flow	Peak velocity, Mean velocity, Pressure gradient, and VTI	
Left ventricular outflow tract flow	Peak velocity, Mean velocity, Pressure gradient, VTI, Left ventricular pre- ejection period, Ejection time, and Acceleration time	
Aortic regurgitation	Peak velocity, VTI, End diastolic pressure gradient, and PHT	

Table 5-54: Summary of cardiac D-mode measurements

Measurement item	Description	Remarks	
Mitral valve flow	E wave peak velocity, A wave peak velocity, E wave DcT, A wave duration, Peak velocity, Mean velocity, Pressure gradient, VTI, and PHT		
Mitral annulus flow	Peak velocity, Mean velocity, Pressure gradient, and VTI		
Mitral regurgitation	Peak velocity, Mean velocity, Pressure gradient, VTI, and dP/dt		
Pulmonary vein flow	Systolic wave peak velocity, Diastolic wave peak velocity, VTI, A wave velocity, and A wave duration	Time interval difference of A duration (PV-MV)	
Pulmonary artery flow	Peak velocity, Pressure gradient, Right ventricular pre ejection period, Ejection time, and Acceleration time		
Pulmonic regurgitation	Peak velocity, Mean velocity, End diastolic pressure gradient, and VTI	Estimation of pulmonary artery pressure at end diastole	
Tricuspid valve flow	E wave peak velocity, A wave peak velocity, E wave DcT, A wave duration, Peak velocity, Mean velocity, Pressure gradient, VTI, and PHT		
Tricuspid regurgitation	Peak velocity and Pressure gradient	Estimation of pulmonary artery pressure at systole	
MPI	Myocardial Performance Index of right and left ventricles	(=Tei Index)	

Table 5-55: Table. Summary of cardiac measurements for disease assessment

Purpose of measurement	Description	Remarks
Aortic stenosis Aortic valve area calculation	Assessment of severity: calculate the aortic valve area and the pressure gradient between the left ventricle and the aorta.	Planimetry method Continuity equation

Table 5-55: Table. Summary of cardiac measurements for disease assessment

Purpose of measurement	Description	Remarks
Aortic regurgitation Regurgitant volume calculation	With the qualitative assessment, LVEDP is estimated and the regurgitant volume is assessed based on the regurgitation waveform. With the quantitative assessment, the regurgitant volume, effective regurgitant orifice area, regurgitant fraction, etc. are calculated.	PHT method PISA method PW Doppler method (=Volumetric method)
Mitral stenosis Mitral valve area calculation	The severity is assessed by calculating the mitral valve area and the pressure gradient between the left ventricle and the left atrium.	Planimetry method PISA method
Mitral regurgitation Regurgitant volume calculation	With the quantitative assessment, the regurgitant volume, effective regurgitant orifice area, regurgitant fraction, etc. are calculated.	PISA method PW Doppler method (=Volumetric method)
Left ventricular systolic function and volume assessment	The left ventricular fractional shortening and the ejection fraction are calculated based on the left ventricular dimension. With the left ventricular volume measurement, the left ventricular volume and the ejection fraction are assessed. The dP/dt value is calculated based on the mitral regurgitation waveform. The LV PEP/ET value (pre-ejection period divided by ejection time) decreases based on systolic failure.	Teichholz method Pombo method Gibson method AL method MOD method
Right/Left atrium assessment	Atrial enlargement is assessed by measuring the longitudinal and transverse dimension. With the left atrial volume measurement, the left atrial volume and the ejection fraction are assessed.	AL method MOD method
Left ventricular diastolic function assessment	Mitral valve flow measurement Mitral annular velocity measurment Pulmonary vein flow measurement	TDI method

Table 5-55: Table. Summary of cardiac measurements for disease assessment

Purpose of measurement	Description	Remarks
Right ventricle assessment	The right ventricular overload is assessed based on the measurement of right ventricular wall thickness and/or right ventricular dimension. The systolic function is assessed based on the right ventricle fractional area change and RV PEP/ET measurements.	
Estimation of pulmonary artery pressures		
Qp/Qs	Shunt diseases such as atrial septal defect and ventricular septal defect are assessed by calculating the pulmonic to systemic flow ratio based on the pulmonic circulation volume and the systemic circulation volume.	
MPI	The systolic and diastolic functions can be assessed with MPI (=Tei Index).	

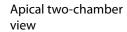
Cross-sectional views for measurement

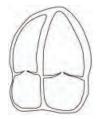
2D (B) mode

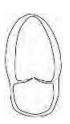
Table 5-56: Left sternal border approach

Left ventricular long axis view

Short axis view at aortic valve level (Right ventricular outflow tract)

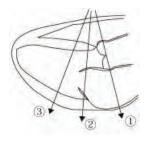

Short axis view at mitral valve level

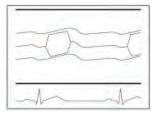

Short axis view at papillary muscle level


Table 5-57: Apical approach

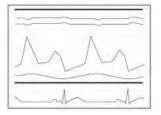
Apical four-chamber view

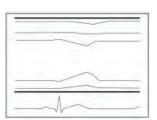
Apical long axis view



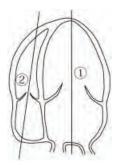


M mode


Table 5-58: M-mode trace examples

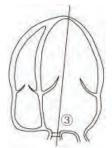

Table 5-58: M-mode trace examples

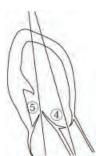
1 M-mode image of aortic valve


2 M-mode image of mitral valve

3 M-mode image of left ventricle

D mode


Table 5-59: Examples of cross-sectional views for recording blood-flow waveforms



- ① Mitral valve waveform
 - Mitral annulus waveform
 - Mitral regurgitation waveform
- ② Tricuspid valve waveform
 - Tricuspid regurgitation waveform

Table 5-59: Examples of cross-sectional views for recording blood-flow waveforms

③ Pulmonary vein waveform

④ Left ventricular outflow tract waveform

Aortic valve waveform

Aortic regurgitation waveform

⁽⁵⁾ Mitral valve waveform

Mitral regurgitation waveform

⑥ Right ventricular outflow tract waveform

Pulmonary artery flow waveform

Pulmonic regurgitation waveform

⑦ Tricuspid valve waveform

Tricuspid regurgitation waveform

Built-in measurement functions

2D (B) mode

AO tab

Table 5-60: Measurements on the AO tab

Measurement item	Display item	Unit	Remarks
AV ann	AV ann	cm, mm	
AoD Val	AoD Val	cm, mm	
STJ	STJ	cm, mm	
LAD	LAD	cm, mm	
LVOT	LVOT	cm, mm	Used for calculating LVOT SV,
RVOT	RVOT	cm, m	
AVA trace	AVA (planimetry)	cm ²	
	AVAI (planimetry)	cm^2/m^2	BSA needs to be input
AR radius	radius	cm	Used for AR PISA method

MV tab

Table 5-61: Measurements on the MV tab

Measurement item	Display item	Unit	Remarks
MVA trace	MVA (planimetry)	cm ²	
MR radius	radius	cm	Used for MR PISA method
MS radius	radius	cm	Used for MS PISA method
MS angle	angle	0	Used for MS PISA method
MA distA	distA	cm, mm	Used for calculating MVann SV
MA distB	distB	cm, mm	Used for calculating MVann SV

LV tab

Table 5-62: Measurements on the LV tab

Measurement item	Display item	Unit	Remarks
LV diastole	IVSd	cm, mm	Teichholz, Pombo, Gibson
	LVDd	cm, mm	
	LVPWd	cm, mm	
	EDV	ml	
	LVM	g	ASE, Penn-Cube
	LVMI	g/m ²	BSA needs to be input
LV systole	IVSs	cm, mm	Teichholz, Pombo, Gibson
	LVDs	cm, mm	
	LVPWs	cm, mm	
	ESV	ml	
	FS	%	Displayed when LV diastole and
	EF	%	systole are measured
	SV	ml	
	СО	l/min	HR needs to be input
	SI	ml/m ²	BSA needs to be input
	CI	l/min/m ²	
	IVSFT	%	Displayed when IVSd and IVSs are measured
	LVPWFT	%	Displayed when LVPWd and LVPWs are measured
RVWd	RVWd	cm, mm	
RVDd	RVDd	cm, mm	
RVWs	RVWs	cm, mm	
RVDs	RVDs	cm, mm	

LV Vol tab

Table 5-63: Measurements on the LV Vol tab

Measurement item	Display item	Unit	Remarks
LV4 diast	EDV4	ml	MOD, AL
	area, 4d	cm ²	
	L4d	cm, mm	
LV4 sys	ESV4	ml	MOD, AL
	area, 4s	cm ²	
	L4s	cm, mm	
	EF4	%	
LV2 diast	EDV2	ml	MOD, AL
	area, 2d	cm ²	
	L2d	cm, mm	
LV2 sys	ESV2	ml	MOD, AL
	area, 2s	cm ²	
	L2s	cm, mm	
	EF2	%	

Table 5-63: Measurements on the LV Vol tab

Measurement item	Display item	Unit	Remarks
Biplane	EDV	ml	Displayed when LV4 diast, LV4 sys,
	ESV	ml	LV2 diast, and LV2 sys are measured MOD, AL
	EF	%	
	SV	ml	
	СО	l/min	HR needs to be input
	EDVI	ml/m ²	BSA needs to be input
	ESVI	ml/m ²	
	SI	ml/m ²	
	CI	l/min/m ²	
	Ld diff	%	Length difference between 4ch and
	Ls diff	%	2ch

LA Vol tab

Table 5-64: Measurements on the LA Vol tab

Measurement item	Display item	Unit	Remarks
LA4 max	V4 max	ml	MOD, AL
	area, 4max	cm ²	
	L4 max	cm, mm	
LA4 min	V4 min	ml	MOD, AL
	area, 4min	cm ²	
	L4 min	cm, mm	
	EF4	%	
LA2 max	V2 max	ml	MOD, AL
	area, 2max	cm ²	
	L2 max	cm, mm	
LA2 min	V2 min	ml	MOD, AL
	area, 2min	cm ²	
	L2 min	cm, mm	
	EF2	%	
Biplane	V max	ml	Displayed when LA4 max, LA4 min,
	V min	ml	LA2 max, and LA2 min are measured MOD, AL
	EF	%	
	VI max	ml/m ²	BSA needs to be input
	VI min	ml/m ²	
	L max diff	%	Length difference between 4ch and
	L min diff	%	2ch

LV mass tab

Table 5-65: Measurements on the LV mass tab

Measurement item	Display item	Unit	Remarks
LV Mass (AL)	A epi	cm ²	
	A end	cm ²	
	LVL	cm, mm	
	t	cm, mm	Calculated based on A epi, A end,
	LVM (AL)	g	and LVL
	LVMI (AL)	g/m ²	BSA needs to be input
LV Mass (TE)	A epi	cm ²	
	A end	cm ²	
	a	cm, mm	
	d	cm, mm	
	t	cm, mm	Calculated based on A epi, A end, a
	LVM (TE)	g	and d
	LVMI (TE)	g/m ²	BSA needs to be input

Atrial tab

Table 5-66: Measurements on the Atrial tab

Measurement item	Display item	Unit	Remarks
Atrial dimension	LAL	cm, mm	
	LAT	cm, mm	
	RAL	cm, mm	
	RAT	cm, mm	

RV tab

Table 5-67: Measurements on the RV tab

Measurement item	Display item	Unit	Remarks
RVD (4ch)	RVD (4ch)	cm, mm	
RV FAC	RVd area	cm ²	
	RVs area	cm ²	
	RV FAC	%	Calculated based on RVd area and RVs area

Shunt tab

Table 5-68: Measurements on the Shunt tab

Measurement item	Display item	Unit	Remarks
Systemic diam	Sys diam	cm, mm	Used for calculating Qp/Qs
Pulmonic diam	Pulmo diam	cm, mm	

M mode

AO tab

Table 5-69: Measurements on the AO tab

Measurement item	Display item	Unit	Remarks
RVOT	RVOT	cm, mm	
LA/AO	AoD	cm, mm	
	LAD	cm, mm	
	LA/AO		Calculated based on AoD and LAD
LVPEP/ET	PEP	ms	
	ET	ms	
	PEP/ET		Calculated based on LV PEP and LVET

LV tab

Table 5-70: Measurements on the LV tab

Measurement item	Display item	Unit	Remarks
LV diastole	IVSd	cm, mm	Teichholz, Pombo, Gibson
	LVDd	cm, mm	
	LVPWd	cm, mm	
	EDV	ml	
	LVM	g	ASE, Penn-Cube
	LVMI	g/m ²	BSA needs to be input
LV systole	IVSs	cm, mm	Teichholz, Pombo, Gibson
	LVDs	cm, mm	
	LVPWs	cm, mm	
	ESV	ml	
	FS	%	Displayed when LVDd and LVDs are
	EF	%	measured
	SV	ml	
	СО	l/min	HR needs to be input
	SI	ml/m ²	BSA needs to be input
	CI	l/min/m ²	
	IVSFT	%	Displayed when IVSd and IVSs are measured
	LVPWFT	%	Displayed when LVPWd and LVPWs are measured
RVWd	RVWd	cm, mm	
RVDd	RVDd	cm, mm	
RVWs	RVWs	cm, mm	
RVDs	RVDs	cm, mm	
HR	HR	bpm	

MV tab

Table 5-71: Table. Measurements on the MV tab

Measurement item	Display item	Unit	Remarks
CE amp	CE amp	cm, mm	
CA amp	CA amp	cm, mm	
	E/A		Calculated based on CE amp and CA
	A/E		amp
EF slope	EF slope	cm/s	
EPSS	EPSS	cm, mm	

D mode

AO tab

Table 5-72: Table. Measurements on the AO tab

Measurement item	Display item	Unit	Remarks
AoV vel	Vel	m/s, cm/s	
	PG	mmHg	
AoV trace	VTI	cm	Used for calculating AVA by
	PV	m/s, cm/s	continuity equation
	PPG	mmHg	
	MnV	m/s, cm/s	
	MnPG	mmHg	
LVOT vel	Vel	m/s, cm/s	
	PG	mmHg	

Table 5-72: Table. Measurements on the AO tab

Measurement item	Display item	Unit	Remarks
LVOT trace	VTI	cm	Used for calculating:
	PV	m/s, cm/s	LVOT SV and CO AVA by continuity equation
	PPG	mmHg	LVOT/AoV (VTI) Regurgitant volume of AR (PISA), AR
	MnV	m/s, cm/s	(PW Doppler), and MR (PW Doppler)
	MnPG	mmHg	
	HR	bpm	
	Ratio (VTI)		LVOT VTI to AoV VTI ratio
LVPEP	PEP	ms	
LVET	ET	ms	
LV AcT	AcT	ms	
LV PEP/ET	PEP/ET		Based on LVPEP and LVET
LV AcT/ET	AcT/ET		Based on LV AcT and LVET
AR trace	VTI	cm	Used for calculating regurgitant
	PV	m/s, cm/s	volume of AR (PISA) and AR (PED)
	PPG	mmHg	
	MnV	m/s, cm/s	
	MnPG	mmHg	
ARed V	V	m/s, cm/s	
	PG	mmHg	
AR PHT	PHT	ms	
	DcT	ms	
	Vmax	m/s	
	Slope	cm/s ²	

MV tab

Table 5-73: Measurements on the MV tab

Measurement item	Display item	Unit	Remarks
MV flow	E vel	m/s, cm/s	
	E PG	mmHg	
	A vel	m/s, cm/s	
	A PG	mmHg	
	E/A		Calculated based on MV E vel and
	A/E		MV A vel
	DcT	ms	
	A dur	ms	Used for calculating Diff A dur
MV trace	VTI	cm	
	PV	m/s, cm/s	
	PPG	mmHg	
	MnV	m/s, cm/s	
	MnPG	mmHg	
MVA (PHT)	PHT	ms	
	MVA (PHT)	cm ²	
	DcT	ms	
	Vmax	m/s	
MVann trace	VTI	cm	Used for calculating regurgitant
	PV	m/s, cm/s	volume of AR (PW Doppler), MR (PISA), and MR (PW Doppler)
	PPG	mmHg	
	MnV	m/s, cm/s	
	MnPG	mmHg	
MS Vmax	Vmax	m/s, cm/s	Used for calculating MVA (PISA)
(MVA PISA)	PGmax	mmHg	

Table 5-73: Measurements on the MV tab

Measurement item	Display item	Unit	Remark
MR trace	VTI	cm	
	PV	m/s, cm/s	
	PPG	mmHg	
	MnV	m/s, cm/s	
	MnPG	mmHg	
MR Vmax	Vmax	m/s, cm/s	
	PGmax	mmHg	
MR dP/dt	dt	ms	
	Vel 1	m/s, cm/s	
	Vel 2	m/s, cm/s	
	dP/dt	mmHg	

PV tab

Table 5-74: Measurements on the PV tab

Measurement item	Display item	Unit	Remarks
PV flow (vel)	PVS vel	m/s, cm/s	
	PVD vel	m/s, cm/s	
	DcT	ms	
	PVA vel	m/s, cm/s	
	PVA dur	ms	
	S/D		Calculated based on PVS vel and PVD vel
	A dur (PV-MV)	ms	Calculated based on PVA dur and MV A dur
PV flow (VTI)	PVS VTI	cm	
	PVS PV	m/s, cm/s	
	PVD VTI	cm	
	PVD PV	m/s, cm/s	
	PV Sys. Frac.	%	Calculated based on PVS VTI and PVD VTI

Pulmo tab

Table 5-75: Measurements on the Pulmo tab

Measurement item	Display item	Unit	Remarks
PA vel	Vmax	m/s, cm/s	
	PGmax	mmHg	
RVPEP	PEP	ms	
RVET	ET	ms	
RV AcT	AcT	ms	
RV PEP/ET	PEP/ET		Calculated based on RVPEP and RVET

Table 5-75: Measurements on the Pulmo tab

Measurement item	Display item	Unit	Remarks
RV AcT/ET	AcT/ET		Calculated based on RV AcT and RVET
PR Vmax	Vmax	m/s, cm/s	
	PGmax	mmHg	
PRed vel	vel	m/s, cm/s	
	PG	mmHg	
	PAP ed	mmHg	RA press needs to be input
RA press	RA press	mmHg	Estimated right atrial pressure is input manually

TV tab

Table 5-76: Measurements on the TV tab

Measurement item	Display item	Unit	Remarks
TV flow	E vel	m/s, cm/s	
	EPG	mmHg	
	A vel	m/s, cm/s	
	A PG	mmHg	
	E/A		Calculated based on MV E vel and
	A/E		MV A vel
	DcT	mmHg	
	A dur	ms	
TV trace	VTI	cm	
	PV	m/s, cm/s	
	PPG	mmHg	
	MnV	m/s, cm/s	
	MnPG	mmHg	
TR Vmax	Vmax	m/s, cm/s	
	PGmax	mmHg	
	PAP sys	mmHg	RA press needs to be input
RA press	RA press	mmHg	Estimated right atrial pressure is input manually

Shunt tab

Table 5-77: Measurements on the Shunt tab

Measurement item	Display item	Unit	Remarks
Systemic VTI	Sys VTI	cm	Used for calculating Qp/Qs
Pulmonic VTI	Pulmo VTI	cm	

MPI tab

Table 5-78: Measurements on the MPI tab

Measurement item	Display item	Unit	Remarks
MV c-o time	c-o time	ms	Used for calculating LV MPI
LVET	ET	ms	Linked with ET on AO tab
	LV MPI		Calculated based on above two items
TV c-o time	c-o time	ms	Used for calculating RV MPI
RVET	ET	ms	Linked with ET on Pulmo tab
	RV MPI		Calculated based on above two items

Table 5-79: TDI

Measurement item	Display item	Unit	Remarks
e' (Sep)	e' (Sep)	cm/s	Measure by TDI-PW mode
a' (Sep)	a' (Sep)	cm/s	
e' (Lat)	e' (Lat)	cm/s	
a' (Lat)	a' (Lat)	cm/s	
e' (Inf)	e' (Inf)	cm/s	
a' (Inf)	a' (Inf)	cm/s	
e' (Ant)	e' (Ant)	cm/s	
a' (Ant)	a' (Ant)	cm/s	

Specifying the measures that are visible on CALCS tabs

To specify the measurement items for the Cardiac preset

1 Display a report, and then switch to the Worksheet.

For information on how to do so, see "Worksheet/Report" on page 365.

2 Tap the button whose visible measurement items you want to change.

The buttons represent groups of measurement items for the current preset.

3 In the Check column, make sure that a check mark is present for the measurement items that you want to be visible.

If the check mark is not present, tap in the column.

There may be more than one page of measurement items to select.

- 4 If there is more than one page of measurement items, then to see other pages, press switch menu button 4 (the rocker button under Worksheet Page).
- 5 When you have finished, tap Close.

All modes: Accessing the cardiac measurement tabs

The procedures in the following sections tell you to select a tab, such as the AO tab, LV tab, etc. To make these tabs appear, use the following procedure.

Note

When you switch modes, such as switching to CW mode when you are in 2D (B) mode, you may have to perform this step again.

To access measurement tabs

) to freeze the image, and then press the CALCS In an examination, press the FREEZE button (

All modes: Deleting measurements

To delete measurements on the examination display

2D (B) mode

Aorta

You can measure AV ann, AoD val, STJ, or LAD with the following procedure.

To measure AV ann, AoD val, STJ, or LAD

1 Press the 2D button, and display the left ventricular long-axis view.

- 2 Press the CALCS button, and then the AO tab.
- 3 On the touch panel, tap the desired measurement (AV ann, AoD val, STJ, or LAD).
- **4** Use the trackball to move the caliper to the start point and press the **SET** button (
- **5** Use the trackball to move the next caliper to the end point, and then press the **SET** button to finalize the measurement.

Note

With regard to LAD, measure the maximum end systolic diameter by selecting an appropriate image in the cine memory.

The measurement display looks like the following:

Table 5-80: AV ann measurement item

AV ann			Measurement item
AV ann	_ · _	cm	Aortic annulus diameter

Table 5-81: AoD val measurement item

AoD val			Measurement item
AoD val	_ · _	cm	Valsalva diameter

Table 5-82: STJ measurement item

LTS			Measurement item
STJ		cm	Sinotubular junction diameter

Table 5-83: LAD measurement item

LAD			Measurement item
LAD	_ · _	cm	Left atrial diameter
When you measure AoV and LAD			, the following result appears:
LA/AO	•_		LAD to AoV ratio

Left ventricular

When you measure IVS, LVD, and LVPW in this order, use the following procedure to select LV diastole and LV systole.

Note

To display SI and CI, you must input BSA.

When you select one of the items, only the selected item is measured.

To measure IVS, LVD, and LVPW

- 1 Display the left ventricular end diastolic or systolic view within the same cardiac cycle.
- 2 Press the CALCS button, and then the LV tab.
- 3 Select the LV tab on the touch panel, and tap LV diastole or LV systole.
- 4 Move the caliper to the start point of IVS measurement and press the SET button (
- **5** Move the displayed calipers to the end point of IVS, left ventricular posterior wall, and the ending point of LVPW, and fix them by pressing the **SET** button.

The measurement display looks like the following:

Table 5-84: LV diastole and systole measurement items

LV diastole			Measurement item
IVSd	· _	cm	Interventricular septum thickness, end diastole
LVDd	·_	cm	LV dimension, end diastole
LVPWd		cm	LV posterior wall thickness, end diastole
EDV		ml	LV end diastolic volume
LVM (ASE)	· _	g	LV mass

LV systole			Measurement item
IVSs		cm	Interventricular septum thickness, end systole
LVDs	·-	cm	LV dimension, end systole
LVPWs	·-	cm	LV posterior wall thickness, end systole
ESV	·_	ml	LV end systolic volume
When you meas	sure LV d	iastole and L\	/ systole, the following measurements appear:
FS	_•_	%	Fractional shortening
EF		%	LV ejection fraction
			rements including LVMI, IVSFT, LVPWT, SV, SI, CO, and/ n the Report screen.
Note		The formula	a used is set beforehand.
		For CO and	/or Cl, you must input HR.

For LVMI, SI, and/or CI, you must input BSA.

LV volume

To complete the procedure

- **1** Press the **2D** button, and display the end diastolic apical four-chamber view.
- 2 Press the FREEZE button and the CALCS button.
- 3 Select the LV vol (AL) tab on the touch panel, and tap LV4 vol (AL).
- 4 Place the caliper on the mitral annulus on one side and press the SET button (

Use the trackball to trace the left ventricular endocardium up to the mitral annulus on the other side (end point) and press the **SET** button.

The tool measures the LV area.

- **5** A line indicating the left ventricular length is automatically drawn from the midpoint of the line between the two mitral annuluses.
- **6** Use the trackball to correct the axis and the position of cardiac peak when necessary and press the **SET** button.

The tool measures LVL.

- 7 Display the end systolic view within the same cardiac cycle.
- **8** Press the function button and repeat Steps 4 through 6.
- 9 Display the end diastolic apical two-chamber view. Select LV2 vol using the touch panel.
- **10** Repeat Steps 4 through 8.
 - Note

Exclude papillary muscle or trabeculae carneae from cardiac muscle. Trace the outside of them.

The measurement display looks like the followingg:

Table 5-85: LV4 measurement items

LV4 vol			Measurement item
area, 4d		cm ²	LV area, end diastole, 4ch
L4d		cm	LV length, end diastole, 4ch
EDV4		ml	LV end diastolic volume, 4ch
area, 4s		cm ²	LV area, end systole, 4ch
L4s		cm	LV length, end systole, 4ch
ESV4		ml	LV end systolic volume, 4ch
When LV4 volur	ne is mea	asured, th	ne following item displays:
EF4		%	LV ejection fraction, 4ch
LV2 vol			Measurement item
area, 2d		cm ²	LV area, end diastole, 2ch
L2d		cm	LV length, end diastole, 2ch
EDV2		ml	LV end diastolic volume, 2ch
area, 2s		cm ²	LV area, end systole, 2ch

LV2 vol		Measurement item
area, 2d	 cm ²	LV area, end diastole, 2ch
L2d	 cm	LV length, end diastole, 2ch
EDV2	 ml	LV end diastolic volume, 2ch
area, 2s	 cm ²	LV area, end systole, 2ch
L2s	 cm	LV length, end systole, 2ch
ESV2	 ml	LV end systolic volume, 2ch

LV2 vol			Measurement item
When LV2 volume is measured, th		asured, th	ne following item displays:
EF2		%	LV ejection fraction, 2ch

When LV4 volume and LV2 volume are measured, the following items are calculated using the Biplane method:

Table 5-86: LV measurement items

Vol			Measurement item
EDV		ml	LV end diastolic volume
ESV		ml	LV end systolic volume
EF		%	LV ejection fraction

You must input BSA in order to display EDVI, ESVI, SI and Cl.

Note	The measurements including SV, SI, CO, CI, EDVI, ESVI, LVLd diff, and/or LVLs diff are displayed on the Report screen.				
	The formula used is set beforehand.				
	For CO and/or CI, you must input HR.				

LA volume

To complete the procedure

- 1 Press the 2D button, and display a maximum size of left atrium in four-chamber view within the cardiac cycle.
- 2 Press the FREEZE button and the CALCS button.
- 3 Select LA Vol (AL) tab on the touch panel, and tap LA4 vol (AL).
- 4 Place the caliper on the mitral annulus on one side, and then press the SET button (
- **5** Use the trackball to trace the left atrial cavity up to the mitral annulus on the other side (end point) and press the **SET** button.

The LA area is measured.

A line indicating the left atrial length is automatically drawn from the midpoint of the line between the two mitral annuluses.

6 If necessary, use the trackball to correct the axis and the distance to the superior wall of the left atrial, and then press the SET button.

LAL is measured.

- 7 Press the function button to switch the trackball function to cine search, and display a minimum size of the left atrium within the same cardiac cycle.
- 8 Press the function button again, and repeat Steps 4 to 6.
- 9 Display two-chamber view. On the touch panel, select LA2 vol (AL).
- **10** Repeat Steps 4 through 8.
 - Note

When tracing, exclude the pulmonary vein from the left atrial lumen.

Table 5-87: LA4 vol measurement items

LA4 vol			Measurement item
area, 4max	·_	cm ²	LA maximum area, 4ch
L4 max	·_	cm	LA maximum length, 4ch
V4 max	·_	ml	LA maximum volume, 4ch
area, 4min		cm ²	LA minimum area, 4ch
L4 min		cm	LA minimum length, 4ch
V4 min		ml	LA minimum volume, 4ch
When LA4 volume is measured, t			he following item appears:
EF4	·	%	LV ejection fraction, 4ch

LA2 vol			Measurement item
area, 2max	·_	cm ²	LA maximum area, 2ch
L2 max	·_	cm	LA maximum length, 2ch
V2 max	•_	ml	LA maximum volume, 2ch
area, 2min		cm ²	LA minimum area, 2ch
L2 min		cm	LA minimum length, 2ch

LA2 vol			Measurement item		
V2 min		ml	LA minimum volume, 2ch		
When LA2 volume is measured, the following item appears.					
EF2	<u> </u>	%	LV ejection fraction, 2ch		

When LA4 volume and LA2 volume are measured, the following items are calculated using the method shown in the table.

To display LAVI max and LAVI min, you must input BSA.

Table 5-88: Volume measurement items

LA2 vol			Measurement item
V max	<u>`</u> -	ml	LA maximum volume
V min	<u> </u>	ml	LA minimum volume
EF	<u>`</u>	%	LA ejection fraction

Note

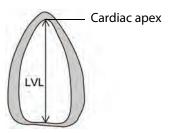
LAVI max, LAVI min, L max diff and/or LAL min diff are displayed on the Report screen.

Ð

To display LAVI, you must input BSA.

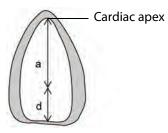
LV mass

To complete the procedure using the Area-length (AL) method


- 1 Press the 2D button, and display the end diastolic left ventricular short-axis view at the papillary muscle level.
- 2 Press the FREEZE button and the CALCS button.
- 3 Select the LV Mass tab on the touch panel, and tap LV Mass (AL).

The A epi measuring tool, a trace-area free trace tool, is automatically selected.

- 4 Place the caliper on the epicardial surface and press the SET button (
- **5** Trace the epicardial surface up to the end point and press the **SET** button.


The measuring tool selection automatically changes to A endo, which is also a trace-area free trace tool.

- **6** Trace the endocardial surface by following the procedure described in Steps 4 and 5.
- 7 Display the end diastolic four-chamber or two-chamber view.
- 8 Measure the distance between the mitral annulus level and the cardiac peak using the trackball and press the **SET** button.

To complete the procedure using the Truncated ellipsoid (TE) method

- 1 Display the end diastolic left ventricular short-axis view at the papillary muscle level.
- 2 On the touch panel, tap LV Mass (TE).
- **3** Carry out steps 4 through 7 of the area-length (AL) method.
- **4** Measure the long-axis distance between the papillary muscle and the cardiac apex (a).
- 5 Measure the long-axis distance between the papillary muscle and the mitral annulus level (d).

WARNING

When tracing the epicardial and endocardial surfaces, exclude trabeculae carneae or papillary muscle.

Select each button to perform each measurement again.

When measuring A epi or A endo, you can select **Free** or **Ellipse** by using the switch menu button 2 (the rocker button under **Measure tool**) to switch the measure tool.

When measuring the long-axis distance, select the view (four-chamber or twochamber) that displays the long axis longer.

The measurement display looks like the following:

Table 5-89: LV mass measurement items

Note

LV mass (AL)			Measurement item		
A epi	·_	cm ²	Epicardial area		
A endo	·_	cm ²	Endocardial area		
LVL	<u>`</u> _	cm	LV length		
When you measure A epi, A endo, and LVL, the following measurements appear:					
t	<u>`</u> _	cm	Mean LV myocardial thickness		
LVM	<u> </u>	g	LV mass		

LV mass (TE)			Measurement item			
А ері	·_	cm ²	Epicardial area			
A endo	<u> </u>	cm ²	Endocardial area			
а	<u> </u>	cm	Left ventricular length (Cardiac apex - Papillary muscle level)			
d	· _	cm	Left ventricular length (Papillary muscle - Mitral annulus level)			
When you measure A epi, A endo, a, and d, the following measurements appear:						
t	•_	cm	Mean LV myocardial thickness			
LVM	•_	g	LV mass			

To display LVMI, you must input BSA.

LVMI is displayed on the Report screen.

Atrial

To complete the procedure

- 1 Press the 2D button, display the apical four-chamber view and select the time phase in which the atria are fully expanded.
- 2 Press the FREEZE button and the CALCS button.
- **3** Select the Atrial tab on the touch panel, and tap Atrial dimension.

By default, the LAL tool is selected.

- **4** Measure the following distances:
 - From the mitral annulus level to the superior wall
 - From the left atrial cavity to the interatrial septum on the left atrial side
 - From the tricuspid annulus level to the superior wall of the right atrium
 - From the right atrial cavity to the interatrial septum on the right atrial side

The measurement display looks like the following:

Table 5-90: Atrial dimension measurement items

Atrial dimension			Measurement item
LAL	·_	cm	LA longitudinal dimension
LAT		cm	LA transverse dimension
RAL	·_	cm	RA longitudinal dimension
RAT	•_	cm	RA transverse dimension

Right ventricular

To complete the RVD (4ch) procedure

- 1 Press the 2D button, and display the end-diastolic apical four-chamber view.
- 2 Press the FREEZE button and the CALCS button.
- 3 Select the RV tab on the touch panel, and tap RVD (4ch).

- 4 Place the caliper on the right ventricular endocardium and press the SET button (a
- 5 Measure the distance to the IVS on the right ventricular side and press the SET button.

To complete the RV FAC procedure

- 1 Press the 2D button, and display the end diastolic apical four-chamber view.
- 2 Press the FREEZE button and the CALCS button.
- 3 On the touch panel, tap RV FAC.
- 4 Place the caliper on the tricuspid annulus on one side and press the SET button (
- **5** Trace the right ventricular endocardial surface up to the tricuspid annulus on the other side (end point) and press the **SET** button.
- 6 Press the function button to switch the trackball function to cine search, and display the end systolic image.
- 7 To return to measurement, press the function button again.
- 8 Measure the area in the same way as in steps 4 and 5.

The measurement display looks like the following:

Table 5-91: RVD) measurement items
-----------------	---------------------

RVD (4ch)			Measurement item
RVD (4ch)	cm		RV transverse dimension, diastole (4ch)
RV FAC			Measurement item
RVd area	· _	cm ²	RV area, diastole
RVs area	·_	cm ²	RV area, systole
When you measure the RVd area			and RVs area, the following measurement appears:
RV FAC	•_	%	RV fractional area change

M mode

Aorta

When you select LA/AO or LV PEP/ET, two measurements are performed continuously. When you select one of the other items (RVOT, AoD, LAD, LVPEP, or LVET), only the measurement that you select is performed.

To measure the RVOT

- 1 Press the **M** button and record the M-mode image of the aortic valve.
- 2 Press the FREEZE button and the CALCS button.
- **3** Select the **AO** tab on the touch panel, and tap **RVOT**.
- 4 Place the caliper on the end-diastolic right ventricular endocardium and press the SET button

5 Place the caliper on the aortic anterior wall and press the SET button.

To measure the LA/AO

- 1 Select the AO tab.
- 2 On the touch panel, tap LA/AO.
- **3** Measure AoD, and then LAD.
- 4 Place the caliper on the end-diastolic and aortic anterior wall and press the SET button (
- **5** 5Place the caliper on the aortic posterior wall and press the **SET** button.
- 6 Move the caliper to the time phase where the left atrium is fully expanded, place it on the left atrial anterior wall, and press the **SET** button.
- 7 Place the caliper on the left atrial posterior wall and press the **SET** button.

To measure the LV PEP/ET

- 1 Select the AO tab.
- 2 On the touch panel, tap LV PEP/ET.

- **3** Measure LVPEP, and then LVET.
- 4 Place the caliper on the onset of the ECG Q wave and then press the SET button (2014)
- **5** Place the caliper on the opening point of aortic valve and press the **SET** button.
- 6 Place the caliper on the closing point of aortic valve and press the **SET** button.

Table 5-92	RVOT	measurement items
------------	------	-------------------

RVOT			Measurement item
RVOT	·_	cm	Right ventricular outflow tract diameter
LA/AO			Measurement item
AoD		cm	Aortic diameter
LAD		cm	Left atrial diameter
When you measure AoV and LAD			, the following measurement appears:
LA/AO			LAD to AoV ratio
LV PEP/ET			Measurement item
PEP	_	ms	LV pre ejection period
ET	_	ms	LV ejection time
When you measure PEP and ET, th			ne following measurement appears:
PEP/ET	·_		PEP to ET ratio

Left ventricular

In the following procedures, when you select one of the items, only the item that you selected is measured.

When you measure IVS, LVD, and LVPW in this order, select LV diastole and LV systole and follow the procedure below.

⊕ set

To complete the RVW/RVD procedure

- 1 Press the **M** button and record the M-mode image of the left ventricle.
- 2 Press the FREEZE button and the CALCS button.
- 3 On the touch panel, still in M mode, tap the LV tab and select the item from RVWd, RVDd, RVWs and RVDs.
- **4** Measure the distance which you selected.

To complete the LV diastole, LV systole procedure

- 1 Select the LV tab.
- 2 On the touch panel, tap LV diastole.
- **3** Place the caliper on the start point of IVS measurement and press the **SET** button (
- **4** Place the displayed calipers on the end point of IVS, left ventricular posterior wall, and the end point of LVPW, and fix them by pressing the **SET** button.
- 5 On the touch panel, tap LV systole.
- **6** Use the trackball and the **SET** button to measure as you did for LV diastole.

The measurement display looks like the following.

Table 5-93: Left ventricular measurement items

RVWd			Measurement item
RVWd	<u>`</u> _	cm	RV wall thickness, diastole
RVDd			Measurement item
RVDd	·_	cm	RV diameter, diastole
LV diastole			Measurement item
LV diastole		cm	Measurement item Interventricular septum thickness, end diastole
	`-	cm cm	

LV diastole			Measurement item		
When you measure IVSd, LVDd an		l, LVDd ar	nd LVPWd, the following measurements appear:		
EDV		ml	LV end-diastolic volume		
LVM	•_	g	LV mass		
RVWs			Measurement item		
RVWs	<u>`</u>	cm	RV wall thickness, systole		
RVDs			Measurement item		
RVDs	<u>`</u>	cm	RV diameter, systole		
LV systole			Measurement item		
IVSs	:-	cm	Interventricular septum thickness, end systole		
LVDs	<u></u>	cm	LV dimension, end systole		
LVPWs	·_	cm	LV posterior wall thickness, end systole		
When you meas	sure LVD	s, the foll	owing item appears:		
ESV	<u>.</u>	ml	LV end-systolic volume		
When you meas	sure LV d	iastole ar	nd LV systole, the following measurements appear:		
FS		%	Fractional shortening		
EF		%	LV ejection fraction		
			easurements including LVMI, IVSFT, LVPWT, SV, SI, CO, ed on the Report screen.		
Note		The for	The formula used is set beforehand.		
		For CO	and/or CI, you must input HR.		
		For LVI	N, SI, and/or CI, you must input BSA.		

Mitral valve

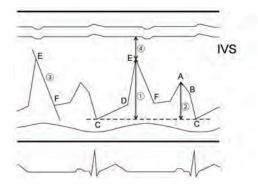


Figure 5-34: Reference for CE amp and CA amp

To complete the CE amp, CA amp procedure

- **1** Record the M-mode image of the mitral valve.
- 2 Press the FREEZE button and the CALCS button.
- **3** On the touch panel, select the MV tab, then tap **CE amp**.

In Figure 5-34: ① indicates the measurement point.

- 4 Place the caliper on Point E, and press the SET button (
- **5** Place the caliper level with Point C and press the **SET** button to measure the C-E amplitude.
- **6** On the touch panel, tap CA **amp** and repeat steps as above to measure the C-A amplitude ②.

To measure the E-F slope ③

- 1 On the touch panel, select the **MV** tab.
- 2 On the touch panel, tap EF slope.
- **3** Place the caliper on Point E in Figure 5-34, and press the **SET** button (
- **4** Use the trackball to align the displayed line with the E-F slope, and press the **SET** button.

To measure the distance between the IVS and Point E 4

- 1 On the touch panel, select the MV tab.
- 2 On the touch panel, tap EPSS.
- 3 Place the caliper on the IVS on the left ventricular side and press the SET button (
- 4 Place the caliper on Point E, and press the **SET** button.

For these procedures, the measurement display looks like the following:

CE amp			Measurement item
CE amp	·_	cm	C-E amplitude
CA amp			Measurement item
CA amp	· _	cm	C-A amplitude
When you measure C-E amp and			C-A amp, the following measurements appear:
E/A	· _		CE amp to CA amp ratio
A/E	·-		CA amp to CE amp ratio
EF slope			Measurement item
EF slope	·-	cm/s	Mitral valve E-F slope
EPSS			Measurement item
EPSS	<u>-</u> -	cm	E point to septal separation

D mode

Aortic valve

To measure flow velocity with a caliper: AoV vel and LVOT vel

1 Press the 2D button and display the apical left ventricular long-axis view.

⊕ set

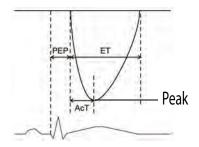
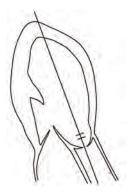

- 2 Record each waveform in PW or CW mode, and press the **FREEZE** button and the **CALCS** button.
- 3 Select the AO tab on the touch panel, and tap either AoV vel or LVOT vel.
- **4** Place the caliper on the peak velocity, and then press the **SET** button (

Table 5-95: Aortic valve measurement items

AoV vel			Measurement item
vel	·-	m/s	Aortic valve velocity
PG	·_	mmHg	Aortic valve pressure gradient
LVOT vel			Measurement item
LVOT vel vel	<u>`</u> _	m/s	Measurement item Left ventricular outflow tract velocity

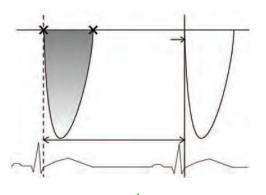
To complete the LV PEP/ET and LV AcT/ET procedure

- 1 Select the **AO** tab on the touch panel.
- 2 On the touch panel, tap either LV PEP, LVET, or LV AcT and use the calipers to measure the time referring to the figure below.
 - ▶ For LVPEP, measure the time between the start point of the ECG Q wave and the start point of the waveform.
 - For LVET, measure the time between the start and end points of the waveform.
 - For LV AcT, measure the time between the start point and the peak of the waveform.



LVPEP			Measurement item
PEP	-	ms	LV pre ejection period
LVET			Measurement item
ET	-	ms	LV ejection time
When you measure LVPEP and LV			ET, the following measurement appears:
PEP/ET	·_		LV PEP to ET ratio
LVAcT			Measurement item
AcT	_	ms	LV acceleration time
When you mea	sure LVET	and LV A	AcT, the following measurement appears.
AcT/ET	·_		LV AcT to ET ratio

Perform the following two procedures.


To measure cardiac output with LVOT trace

- 1 Press the 2D button and display the apical long axis view.
- 2 Record the left ventricular outflow tract waveform, and press the **FREEZE** button and the **CALCS** button.

3 Select the **AO** tab on the touch panel, and tap **LVOT trace**.

- **4** Press the **SET** button () at the starting point of the left ventricular outflow tract flow.
- 5 Use the trackball to trace the outline of the waveform and press the SET button at the end point.
- **6** On the touch panel, tap the HR.
- 7 Place the caliper on the start point of the waveform, press the SET button, and then press the SET button again at the start point of the next waveform.

Note

For HR, any number can be entered on the worksheet.

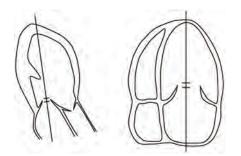
To complete the LVOT procedure

- 1 Press the 2D button.
- 2 Display the systolic left ventricular outflow tract in the left ventricular long-axis view.
 - To enlarge the image, press the **DEPTH/ZOOM** button (), and then press the up-arrow side of the rocker button below.
- **3** Press the **FREEZE** button and the **CALCS** button.
- 4 Select the AO tab on the touch panel, and tap LVOT.
- 5 Measure the left ventricular outflow tract diameter with calipers, and press the SET button (

Measure either of these two items first, as necessary.

⊕ set

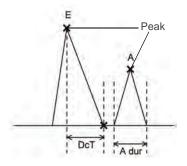
Table 5-97: LVOT trace measurement items


LVOT trace			Measurement item
VTI	:-	cm	Left ventricular outflow tract flow VTI
PV		m/s	LVOT peak velocity
PPG	·_	mmHg	LVOT peak pressure gradient
MnV	·_	m/s	LVOT mean velocity
MnPG	<u>`</u> -	mmHg	LVOT mean pressure gradient
HR			Measurement item
HR		bpm	Heart rate
LVOT			Measurement item
LVOT	<u>`</u>	cm	Left ventricular outflow tract diameter
area		m ²	LVOT cross-sectional area
When you measure LVOT VTI, HR, a		T VTI, HR, a	nd LVOT, the following items appear
LVOT SV	<u>`</u>	ml	Stroke volume
Note			surements including SI, CO, and/or CI are displayed or y SI and CI, you must input BSA.

Mitral valve

To complete the MV flow procedure

1 Press the D button, in the apical long-axis view or apical four-chamber view, and record the blood flow at the mitral valve leaflet tips level in the PW mode.


2 Press the FREEZE button and the CALCS button.

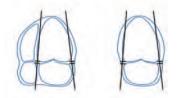
3 Select the MV1 tab on the touch panel, and tap MV flow.

By default, the MV E vel tool is selected.

- 4 Place the caliper on the peak of the E wave and press the SET button (
- **5** Use the trackball to align the line that appears with the deceleration slope of the E wave, and press the **SET** button.
- 6 Place the caliper on the peak of the A wave, and press the SET button.
- 7 To measure the A wave duration:

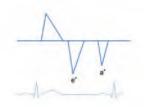
- **a** Place the caliper on the start point of the A wave, and press the **SET** button.
- **b** Place the caliper on the end point of the A wave, and press the **SET** button.

Table 5-98: MV flow measurement items


MV flow			Measurement item
E vel	:-	m/s	MV E velocity
E PG	· _	mmHg	MV E vel pressure gradient
DcT	_	ms	MV E wave deceleration time
A vel	· _	m/s	MV A velocity
A PG	· _	mmHg	MV A vel pressure gradient
A dur	_	ms	MV A wave duration
When you meas	sure MV E	vel and N	IV A vel, the following item appears:
E/A	· _		MV E vel to A vel ratio

Mitral Annulus Velocity (TDI-PW mode)

To calculate the mitral annulus velocity


The operation procedure applies to the following calculation:

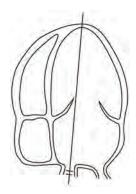
- e' (Sep), a' (Sep), e' (Lat), a' (Lat), e' (Inf), a' (Inf), e' (Ant), a' (Ant)
- 1 Press the **D** button and select the **TDI** tab on the touch panel.
- **2** Display the apical four-chamber (4ch) or two-chamber (2ch) view, and select the TDI mode on the touch panel. And then record the PW wave form.
- **3** Press the **FREEZE** button and the **CALCS** button.

4 Select the TDI tab and then e' (Sep) on the touch panel.

5 Move caliper to top of the e' wave and press **SET**.

The measurement display looks like the following:

Table 5-99: Mitral annulus velocity measurement items

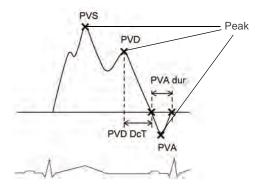

e'(Sep)			Measurement Part
e'(Sep)		cm /s	e' velocity (Sep)
When you meas	sure MV E	vel, the	display looks like the following:
E/e'(Sep)			E vel / e'(Sep) ratio
a'(Sep)			Measurement Part
a'(Sep)		cm /s	a' velocity (Sep)
e'(Lat)			Measurement item
e'(Lat)	·_	cm /s	e' velocity (Lat)
When you meas	sure MV E	vel, the	display looks like following:
E/e'(Lat)			E vel / e'(Lat) ratio
a'(Lat)			Measurement item
a'(Lat)	·_	cm /s	a' velocity (Lat)
e'(Inf)			Measurement item
e'(lnf)	·_	cm /s	e' velocity (Inf)
When you meas	sure MV E	vel, the	display looks like the following:
E/e'(Inf)	•_		E vel / e'(Inf) ratio

a'(Inf)			Mearsurement item
a'(Inf)	· _	cm /s	a' velocity (Inf)
e'(Ant)			Measurement item
e'(Ant)	·-	cm /s	e' velocity (Ant)
When you meas	sure MV E	Evel, the	display looks like the following:
E/e'(Ant)	·_		E vel / e'(Ant) ratio
a'(Ant)			Measurement item
a'(Ant)	·_	cm /s	a' velocity (Ant)

Pulmonary vein

To complete the PV flow (vel) procedure

- 1 Press the D button, display the apical four-chamber view, and record the pulmonary vein flow that flows into the left atrium in the PW-mode.
- 2 Press the FREEZE button and the CALCS button.



3 Select the PV tab on the touch panel, and tap PV flow (vel).

By default, the PVS vel tool is selected.

- 4 Place the caliper on the peak of the PVS wave, and press the SET button (
- **5** Place the caliper on the peak of the PVD wave and press the **SET** button.

- **6** Use the trackball to align the line that appears with the deceleration slope of the PVD wave and press the **SET** button.
- 7 Place the caliper on the peak of the PVA wave and press the **SET** button.
- **8** To measure the PVA wave duration:
 - **a** Place the caliper on the start point of the PVA wave, and then press the **SET** button.
 - **b** Place the caliper on the end point of the PVA wave, and then press the **SET** button.

PV flow (vel)			Measurement item
PVS vel	·-	m/s	PV systolic wave peak velocity
PVD vel	·-	m/s	PV diastolic wave peak velocity
PVD DcT		ms	PV diastolic wave deceleration time
PVA vel	·-	m/s	PV A wave peak velocity
PVA dur		ms	PV A wave duration
When you measure PVS vel and P			VD vel, the following measurement appears:
S/D	·-		PVS velocity to PVD velocity ratio
When you meas	sure MV A	dur and	PVA dur, the following measurement appears:
A dur (PV-MV)	•_	ms	Time interval difference of A duration (PVA - MV A)

To complete the PV flow (VTI) procedure

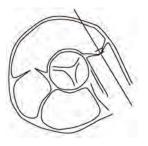
- 1 Press the **D** button.
- **2** Display the apical four-chamber view and record the pulmonary vein flow that flows into the left atrium in the PW-mode.
- 3 Select the PV tab on the touch panel, and tap PV flow (VTI).
- 4 Place the caliper on the starting point of the PVS wave, and press the SET button (
- 5 Trace the outline of the PVS wave and press the SET button at the ending point.
 - > You can trace with either Free Trace or Auto Trace.
 - To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under Measure tool).
- 6 Place the caliper on the starting point of the PVD wave, and press the **SET** button.

Trace the outline of the PVD wave and press the **SET** button at the end point.

The measurement display looks like the following:

Table 5-101: PV flow (VTI) measurement items

PV flow (VTI)			Measurement item
PVS VTI	·_	cm	PV systolic wave VTI
PVS PV	· _	m/s	PV systolic wave peak velocity
PVD VTI		cm	PV diastolic wave VTI
PVD PV	•_	m/s	PV diastolic wave peak velocity
When PVS VTI and PVD VTI are m			easured, the following measurement shows:
PV Sys.Frac.		%	PV systolic filling fraction


Pulmonic artery

Measuring flow velocity with a caliper

To complete the PA vel procedure

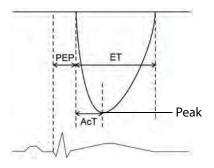
1 Press the **D** button, display the right ventricular outflow tract view and record the waveform in the PW or CW mode.

2 Press the FREEZE button and the CALCS button.

- 3 Select the Pulmo tab on the touch panel, and tap PA vel.
- 4 Place the caliper on the peak velocity, and press the SET button (

The measurement display looks like the following:

Table 5-102: PA vel measurement items


PA vel			Measurement item
Vmax	· _	m/s	PA velocity
PGmax	·_	mmHg	PA pressure gradient

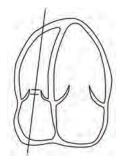
RV PEP/ET and RV AcT/ET

To complete an RVPEP, RVET, or RV AcT measurement

- 1 Press the **D** button.
- 2 On the touch panel, tap the item that you want to measure (RVPEP, RVET, or RV AcT), and use the calipers to measure the times labeled in the figure below:
 - ▶ For RVPEP, measure the time between the starting point of the ECG Q wave and the start point of the waveform.

- For RVET, measure the time between the start and end points of the waveform.
- For RV AcT, measure the time between the start point and the peak of the waveform.

Table 5-103: RVPEP, RVET, and R AcT measurement items


RVPEP			Measurement item
PEP	_	ms	RV pre ejection period
RVET			Measurement item
ET	_	ms	RV ejection time
When you meas	sure RVPE	EP and R\	/ET, the following measurement appears:
PEP/ET	_•		RV PEP to ET ratio
RVAcT			Measurement item
AcT	—	ms	RV acceleration time
When you meas	sure RVE	and RV	AcT, the following measurement appears:
AcT/ET	_•		RV AcT to ET ratio

Tricuspid valve

To complete the TV flow procedure

1 Press the D button, display the apical four-chamber view, and record the blood flow at the tricuspid valve leaflet tips level in the PW-mode.

2 Press the FREEZE button and the CALCS button.

3 Select the **TV** tab on the touch panel, and tap **TV** flow.

By default, the TV E vel tool is selected.

- 4 Place the caliper on the peak of the E wave, and press the SET button (
- **5** Use the trackball to align the displayed line with the deceleration slope of the E wave and press the **SET** button.
- 6 Place the caliper on the peak of the A wave, and press the SET button.
- 7 To measure the A wave duration:
 - **a** Place the caliper on the start point of the A wave, and then press the **SET** button.
 - **b** Place the caliper on the end point of the A wave, and press the **SET** button.

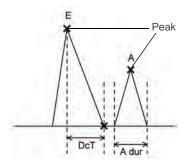


Table 5-104: TV flow measurement items

TV flow			Measurement item
E vel	·-	m/s	TV E wave peak velocity
E PG	<u>`</u> _	mmHg	TV E vel pressure gradient
DcT	_	ms	TV E wave deceleration time
A vel		m/s	TV A wave peak velocity
A PG	<u>`</u> _	mmHg	TV A vel pressure gradient
TA dur	_	ms	TV A wave duration
When TV E vel a	nd TV A	vel are me	asured, the following measurements show:
E/A	:-		TV E vel to A vel ratio
A/E	·_		TV A vel to E vel ratio

Aortic stenosis

Aortic valve area: Planimetry method

Display the stenotic valve orifice and trace it to measure the aortic valve area.

To measure the aortic valve area by planimetry


- 1 Press the 2D button.
- 2 Display the aortic valve level short axis view.

3 To enlarge the image of the most widely opened valve orifice at systole, press the **DEPTH/ZOOM** button

), and then press the up-arrow side of the rocker button below.

- 4 Press the FREEZE button and the CALCS button, select the AO tab On the touch panel, and tap AVA trace.
- 5 Place the caliper on the inner side of the valve orifice, and then press the SET button (
- 6 Trace the lumen, place the caliper on the end point, and then press the SET button.

Table 5-105: AVA trace measurement items

AVA trace			Measurement item
AVA	·_	cm ²	Aortic valve area (Planimetry method)

To display AVAI, you must input BSA. AVAI is displayed on the Report screen.

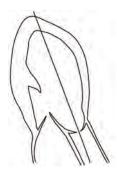
Continuity equation

The aortic valve stenosis area is calculated based on the principle of conservation of flow (the amount of blood flowing into a lumen is equal to that flowing out of the lumen).

To calculate the aortic valve area (AVA), measure the following items.

AoV trace

For information on measuring the AoV trace, see the following procedure.


LVOT SV

For information on LVOT procedures, see "To measure cardiac output with LVOT trace" on page 322.

To calculate the AVA

1 Press the D button, display the apical long axis view, etc., and record the trans aortic valve flow in the CW-mode.

2 Press the FREEZE button and the CALCS button.

- 3 Select the AO tab on the touch panel, and tap AoV trace.
- 4 Place the caliper on the start point of the waveform, and press the SET button (
- **5** Use the trackball to trace the outline of the waveform.
 - > You can trace with either the Free Trace or the Auto Trace measure tool.
 - To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under **Measure tool**).
- 6 Place the caliper on the end point of the blood flow waveform, and press the SET button.

The measurement display looks like the following:

Table 5-106: AoV trace measurement items

AoV trace			Measurement item
VTI	·_	cm	Aortic valve flow VTI
PV	·_	m/s	AoV peak velocity

Table 5-106: AoV trace measurement items

AoV trace			Measurement item
PPG	·-	mmHg	AoV peak pressure gradient
MnV	·_	m/s	AoV mean velocity
MnPG	·_	mmHg	AoV mean pressure gradient

When you measure AoV VTI, AoV PV, LVOT VTI, LVOT PV, and LVOT, the following measurements appear:

Table 5-107: AA (continuity) measurement item

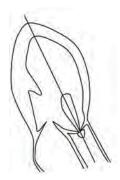
AVA (continuity)			Measurement item
AVA VTI		cm ²	AVA by continuity equation by VTI
AVA PV	·_	cm ²	AVA by continuity equation by peak velocity
AVAI VTI	·_	cm ² /m ²	AVA index by continuity equation by VTI
AVAI PV	<u> </u>	cm ² /m ²	AVA index by continuity equation by peak velocity
Ratio (VTI)			LVOT VTI to AoV VTI ratio

Note

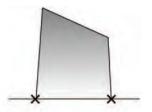
To check items that are not displayed on the main monitor, place a check on the worksheet to check it on a report.

Aortic regurgitation

Aortic regurgitation waveform measurement


Aortic regurgitation waveform

Trace the waveform to measure each item. The regurgitant volume is calculated.


To measure the aortic-regurgitation waveform with AR trace

1 Press the D button, display the apical long axis view, etc., and record the aortic regurgitation waveform in the CW-mode.

2 Press the FREEZE button and the CALCS button.

- 3 Select the AO tab on the touch panel, and tap AR trace.
- 4 Place the caliper on the start point of the waveform and press the SET button (
- **5** Use the trackball to trace the outline of the waveform.
- 6 Place the caliper on the end point of the blood flow waveform and press the SET button.

The measurement display looks like the following:

Table 5-108: AR trace measurement items

AR trace			Measurement item
VTI	·_	cm	Aortic regurgitation VTI
PV	·_	m/s	AR peak velocity
PPG		mmHg	AR peak pressure gradient
MnV	·_	m/s	AR mean velocity
MnPG	·_	mmHg	AR mean pressure gradient

AR PHT (Pressure Half Time)

Measure the time interval for the peak pressure gradient of the aortic regurgitation decreases by half.

To measure the aortic-regurgitation waveform with AR PHT

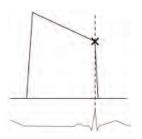
- **1** Press the **CALCS** button.
- 2 Select the AO tab on the touch panel, and tap AR PHT.
- 3 Place the caliper on the peak of the waveform, and press the SET button (
- **4** Use the trackball to align the displayed line with the deceleration slope of the waveform, and press the **SET** button.

÷

The measurement display looks like the following:

Table 5-109: AR PHT measurement items

AR PHT			Measurement item
PHT		ms	AR pressure half time
DcT		ms	AR deceleration time
Vmax		m/s	AR maximum velocity
Slope	_•_	cm/s ²	AR slope


End-diastolic pressure gradient between left ventricle and aorta

Measure the pressure gradient between the left ventricle and the aorta based on the aortic regurgitation waveform.

To measure the aortic-regurgitation waveform with ARed V

- **1** Press the **CALCS** button.
- 2 Select the AO tab on the touch panel, and tap ARed V.

3 Place the caliper on the end diastole (peak of the ECG R wave), and press the SET button (

The measurement display looks like the following:

Table 5-110: ARed V measurement items

ARed V			Measurement item
V	•_	m/s	AR end-diastolic velocity
PG	·_	mmHg	AR end-diastolic pressure gradient

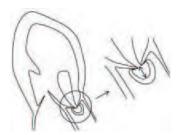
Aortic regurgitant volume: PISA method

At the upstream side of the regurgitant orifice, hemispherical suction flow is formed with accelerated blood flow. Proximal isovelocity surface area (PISA) is the surface area of the hemisphere. The effective regurgitant orifice area and the regurgitant volume are calculated by measuring the color aliasing radius and the regurgitant blood flow.

Measure the following two items and manually input Alias vel.

AR trace

For information on measuring the AR trace, see "Aortic regurgitation waveform measurement" on page 337.


AR radius (PISA)

To measure the aortic-regurgitant volume with AR radius (PISA)

1 Press the 2D button and C button

Ð

2 Display AR in the apical long axis view, etc.

- **3** Decrease the color scale to around 40cm/s to make the display PISA larger.
- **4** To enlarge PISA further, press the **DEPTH/ZOOM** button (), and then press the up-arrow side of the rocker button below.
- **5** Press the CALCS button, select the AO tab on the touch panel, and tap AR radius.
- 6 Place the caliper on the center of PISA (the coaptation point of valve cusps) and press the **SET** button

- 7 Use the trackball to measure the PISA radius, and press the **SET** button.
- 8 Manually input the velocity value of the color bar in Alias vel. on the worksheet. See "Worksheet/Report" on page 365.

The measurement display looks like the following:

Table 5-111: AR volume measurement items

AR (PISA)			Measurement item
radius	<u>`</u>	cm	AR PISA radius
When you have measured AR tra			ce, the following items appear:
RV	·-	ml	AR regurgitant volume flow
ERO	·_	cm ²	AR effective regurgitant orifice area
FR	·_	ml/s	AR flow rate
When you have measured LVOT S			V, the following item appears:
RF	·_	%	AR regurgitant fraction

Depending on the measurement order, results may not be displayed on the main monitor; you can verify them on the Report screen.

Aortic regurgitant volume: PW Doppler method

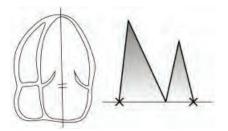
The ejection flow volume at LVOT is the sum of the aortic regurgitant volume (AR RV) and the original stroke volume. Accordingly, the aortic regurgitant volume is measured by subtracting MVann SV from LVOT SV.

Measure the following items in the desired order to calculate the aortic regurgitant volume.

LVOT SV, in D mode

For information on completing the procedure, see "To measure cardiac output with LVOT trace" on page 322.

MVann trace, in D mode, on the MV 2 tab

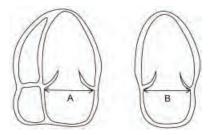

For information, see the following procedure.

MA distA and MA distB, in 2D (B) mode, on the MV tab

For information, see the following procedure.

To perform the MVann trace

- 1 For the MVann SV measurement, press the **D** button.
- **2** Display the apical four-chamber or two-chamber view, and record the inflow waveform at the mitral annulus level in the PW-mode.


- 3 Press the CALCS button, select the MV 2 tab on the touch panel, and tap MVann trace.
- 4 Place the caliper on the start point of the waveform, and press the SET button (
 - > You can trace with either the Free Trace or the Auto Trace measure tool.

SET

- To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under Measure tool).
- **5** Use the trackball to trace the outline of the waveform, place the end point at the end of the waveform, and press the **SET** button.

To perform the MA distA and MA distB measurement

- 1 Press the 2D button, and then display the apical four-chamber or two-chamber view.
- 2 Press the CALCS button, select the MV tab, and then MA distA or MA distB on the touch panel and measure the annulus diameter.

You can measure A and B in the desired order.

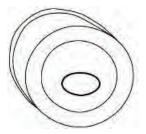
The measurement display looks like the following:

Table 5-112: MA distA and MA distB measurement items
--

MV ann trace			Measurement item
VTI	·_	cm	Mitral annulus flow VTI
PV	•_	m/s	MVann peak velocity
PPG	•_	mmHg	MVann peak pressure gradient
MnV	·_	m/s	MVann mean velocity
MnPG	·_	mmHg	MVann mean pressure gradient
MA distA			Measurement item
distA		cm	Mitral annular distance A
MA distB			Measurement item
distB		cm	Mitral annular distance B

When you have measured MVann VTI, MA distA and MA distB, MVann SV is calculated. When you have measured LVOT SV, the following items show.

AR (PWD)			Measurement item
RV		ml	Aortic regurgitant volume
RF	•_	ml	Aortic regurgitant fraction


Mitral stenosis

Mitral valve area: Planimetry method

Display the stenotic valve orifice and trace it to measure the mitral valve area.

To measure the mitral-valve area by planimetry

- 1 Press the 2D button.
- 2 Display the mitral valve level short axis view.

To enlarge the image of the most widely opened valve orifice at diastole, press the DEPTH/ZOOM button

(), and then press the up-arrow side of the rocker button below.

Note

The distance between the anterior and posterior leaflets of the opened mitral valve should be the same on both the left ventricular long axis view and the left ventricular short axis view. If the short axis view is positioned closer to the left atrium, it may result in overestimation of the valve area.

3 Press the CALCS button, select the MV tab on the touch panel, and tap MVA trace.

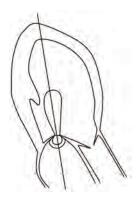
- 4 Place the caliper on the inner side of the valve orifice, and then press the SET button (
 - > You can trace with either the Free Trace or the Ellipse measure tool.
 - > To switch to Free Trace or Ellipse, press the switch menu button 2 (the rocker button under Measure tool).
- 5 Trace the lumen, place the caliper on the end point, and then press the SET button.

Table 5-113: MVA trace measurement item

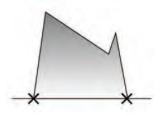
MVA trace			Measurement item
MVA	·-	cm ²	Mitral valve area (Planimetry method)

Mitral stenosis waveform measurement

The waveform of accelerated stenotic blood flow is recorded to calculate the items for stenotic severity assessment. Select the proper view including apical four-chamber view or apical long axis view on which the blood flow can be recorded at an appropriate angle.


Mitral stenosis waveform

Trace the waveform to calculate each item.


To complete the mitral stenosis waveform MV trace procedure

1 Press the **D** button, display the apical four-chamber view or long axis view, and record the trans mitral valve flow in the CW-mode.

2 Press the FREEZE button and the CALCS button.

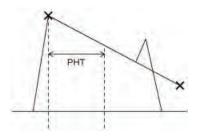
- 3 Select the MV 2 tab, and then MV trace on the touch panel.
- 4 Place the caliper on the start point of the waveform, and then press the SET button (
- **5** Use the trackball to trace the outline of the waveform.
 - > You can trace with either the Free or the Auto measure tool.
 - ▶ To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under **Measure tool**).
- 6 Place the caliper on the end point of the blood flow waveform, and then press the SET button.

The measurement display looks like the following:

Table 5-114: MV trace measurement items

MV trace			Measurement item
VTI	<u>`</u>	cm	Mitral valve flow VTI
PV	•_	m/s	MV peak velocity

Table 5-114: MV trace measurement items


MV trace			Measurement item
PPG	•_	mmHg	MV peak pressure gradient
MnV	· _	m/s	MV mean velocity
MnPG	· _	mmHg	MV mean pressure gradient

Mitral valve area: PHT

Measure the time interval for the peak pressure gradient of the mitral stenosis flow decreases by half. Based on the measured value, MVA is estimated.

To complete the MVA PHT procedure

- 1 Press the D button and the CALCS button.
- 2 Select the MV 2 tab on the touch panel, and tap MVA (PHT).
- 3 Place the caliper on the peak of the waveform, and press the SET button (
- 4 Use the trackball to align the displayed line with the deceleration slope, and then press the **SET** button.

The measurement display looks like the following:

Table 5-115: MVA (PHT) measurement items

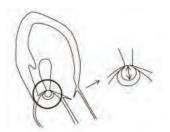
MVA (PHT)			Measurement item
PHT		ms	Mitral valve pressure half time
MVA (PHT)	•_	cm ²	Mitral valve area (PHT)
DcT		ms	Mitral valve E wave deceleration time
Vmax	·_	m/s	Mitral valve peak velocity

Mitral valve area: PISA method

At the upstream side of the regurgitant orifice, hemispherical suction flow is formed with accelerated blood flow. Proximal isovelocity surface area (PISA) is the surface area of the hemisphere. The valve area is calculated by measuring the color aliasing radius and measuring the blood flow waveforms in stenotic, etc.

Measure the following three items in the desired order and manually input Alias vel.

MS radius and MS angle

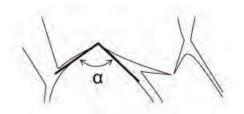

2D (B) mode, on the MV tab

MS Vmax

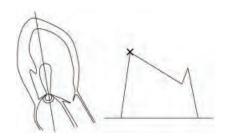
D mode, on the MV2 tab

To measure the mitral valve area, using the PISA method

- 1 To measure MS radius and MS angle:
 - **a** Press the C button.
 - **b** Display the MS flow in the Color Doppler mode.
 - c To enlarge the display of PISA, decrease the color scale to about 40cm/s.
 - **d** To enlarge PISA further, press the **DEPTH/ZOOM** button (), and then press the up-arrow side of the rocker button below.



- e Select the MV tab on the touch panel, and tap MS radius.
- f Place the caliper on the center of PISA (the coaptation point of valve cusps), and press the SET button



g Use the trackball to measure the PISA radius, and press the SET button.

- **h** Manually input the velocity value of the color bar in Arias vel. See "Worksheet/Report" on page 365.
- i Turn off the color to change to (2D) B mode, and then tap MS angle.
- **j** Measure the angle α between the anterior and posterior leaflets of the mitral valve.

- 2 To measure MS Vmax:
 - **a** Change to CW mode, record the MS flow, and press the **FREEZE** button and the **CALCS** button.
 - **b** On the touch panel, tap **MS Vmax**, and measure the peak velocity with the caliper.

The measurement display looks like the following:

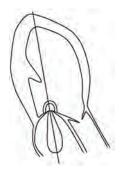
Table 5-116: MV measurement items

MS radius			Measurement item
radius	•_	cm	Mitral stenosis flow PISA radius
PMS angle			Measurement item
angle	_	0	Mitral leaflet opening angle
MS Vmax (PISA)			Measurement item
Vmax		m/s	Mitral stenosis maximum velocity

MS Vmax (PISA)			Measurement item
PGmax	·_	mmHg	Mitral stenosis maximum pressure gradient

When you measure the above four measurements, the following result shows.

MVA cm ² Mitral valve area	MS PISA			Measurement item
	MVA		cm ²	Mitral valve area


Note To check result that is not displayed on the main monitor, check it on a report.

Mitral regurgitation

Measuring the mitral regurgitation waveform


To complete the MR Vmax procedure

- 1 Press the **D** button.
- **2** Record the mitral regurgitation waveform in the CW mode, and press the **FREEZE** button and the **CALCS** button.

3 On the touch panel, tap the MV 2 tab, and then tap MR Vmax.

4 Place the caliper on the peak of the waveform, and press the SET button (

The measurement display looks like the following:

Table 5-117: MR Vmax measurement items

MR Vmax			Measurement item
Vmax	•_	m/s	MR maximum velocity
PGmax	· _	mmHg	MR maximum pressure gradient

Mitral regurgitant volume: PISA method

At the upstream side of the regurgitant orifice, hemispherical suction flow is formed with accelerated blood flow. Proximal isovelocity surface area (PISA) is the surface area of the hemisphere. The effective regurgitant orifice area and the regurgitant volume are calculated by measuring the color aliasing radius and tracing the regurgitant blood flow.

Measure the following two items in the desired order, and then manually input Alias vel.

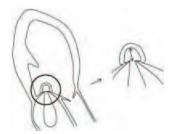
MR radius

In 2D (B) mode, use the MV tab.

MR trace

In D mode, use the MV 2 tab.

For information on measuring MVann SV, see "Aortic regurgitant volume: PW Doppler method" on page 342.


To measure MR radius

- 1 Press the 2D button.
- **2** Display the MR in the Color Doppler mode.
- 3 Decrease the color scale to around 40cm/s to expand the PISA in view.

- **4** To enlarge PISA further, press the **DEPTH/ZOOM** button (), and then press the up-arrow side of the rocker button below.
- **5** Select the **MV** tab on the touch panel, and tap **MR radius**.
- 6 Place the caliper on the center of the PISA (the coaptation point of the valve cusps) and press the SET button

7 Use the trackball to measure the PISA radius, and then press the SET button.

8 Manually input the velocity value of the color bar in Arias vel. See "Worksheet and report" on page 413.

To measure using an MR trace

- 1 Select CW mode, record the mitral regurgitation waveform, and press the **FREEZE** button and the **CALCS** button.
- 2 On the touch panel, tap the MV 2 tab, and then tap MR trace.
- 3 Place the caliper on the start point of the waveform and press the SET button (
- **4** Use the trackball to trace the outline of the waveform.
 - > You can trace with either the Free or the Auto measure tool.
 - ▶ To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under **Measure tool**).
- **5** Place the caliper on the end point of the blood flow waveform and press the **SET** button.

The measurement display looks like the following:

Table 5-118: MR measurement items

MR radius			Measurement item
radius	` _	cm	MR PISA radius
MR trace			Measurement item
VTI	·-	cm	Mitral regurgitation VTI
PV	·_	m/s	MR peak velocity
PPG	·_	mmHg	MR peak pressure gradient
MnV	· _	m/s	MR mean velocity
MnPG	· _	mmHg	MR mean pressure gradient
MR PISA			Measurement item
RV	<u>`</u> _	ml	MR regurgitant volume
ERO	·_	cm ²	MR effective regurgitant orifice area
FR		ml/s	MR flow rate
When you have MVann SV, see t			, the following measurement shows. For measuring
RF	·_	%	MR regurgitant fraction
			on the measurement order, results may not be displ ou can verify them on the Report screen.

Mitral regurgitant volume: PW Doppler method

The ejection flow volume at the mitral valve is the sum of the MR regurgitant volume (MR RV) and the original stroke volume. Accordingly, the MR regurgitant volume is measured by subtracting LVOT SV from MVann SV.

Measure the following items in the desired order to calculate the MR regurgitant volume.

LVOT SV

For the procedure, see "To measure cardiac output with LVOT trace" on page 322.

MVann SV

For the procedure, see "Aortic regurgitant volume: PW Doppler method" on page 342.

The measurement display looks like the following:

Table 5-119: MR (PWD) measurement items

MR (PWD)			Measurement item
RV	·_	ml	MR regurgitant volume
RF	•_	%	MR regurgitant fraction

MR dP/dt

The mitral regurgitation waveform reflects the pressure gradient between the left ventricle and the left atrium. If the left ventricular systolic function deteriorates, the left ventricular pressure increases gradually and this value decreases.

To measure the MR dP/dt

1 In the CW mode, and record the mitral regurgitation waveform.

It is recommended that you set the scale of the waveform to around 4m/s and extend Sweep Speed to the maximum.

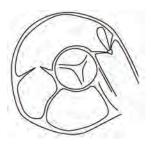
- 2 On the touch panel, tap the MV 2 tab, and then tap MR dP/dt.
- 3 Place the caliper at about 1m/s (Vel 1) on the outline of the MR flow, and press the SET button

4 Place the caliper at about 3m/s (Vel 2) on the outline of the MR flow, and press the **SET** button.

The measurement display looks like the following:

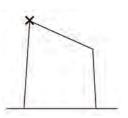
Table 5-120: MR dP/dt measurement items

MR d/dt			Measurement item
dt	·_	ms	Time between Vel 1 and Vel 2
Vel 1	•_	m/s	Velocity at the first point
Vel 2	·_	m/s	Velocity at the second point
dP/dt	<u> </u>	mmHg	Left ventricular pressure increase rate


Pulmonic regurgitation

Estimating pulmonary artery mean pressure

It is reported that there is a good correlation between the maximum pressure gradient of the pulmonic regurgitation and the pulmonary artery mean pressure.


To obtain PR Vmax

1 Press the **D** button and then switch to CW mode.

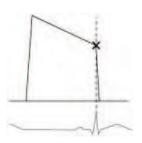
- 2 Record the pulmonic regurgitation waveform in the CW mode, and press the FREEZE button and the CALCS button.
- **3** On the touch panel, tap the **Pulmo** tab, and then tap **PR Vmax**.

4 Place the caliper on the peak of PR flow, and press the SET button (

The measurement display looks like the following:

Table 5-121: PR Vmax measurement items

PR Vmax			Measurement item
Vmax	_ · _	m/s	Pulmonic regurgitation maximum velocity
PGmax		mmHg	Pulmonic regurgitation maximum pressure gradient


Estimating pulmonary artery pressure at end diastole

It is reported that there is a good correlation between the pulmonary artery pressure at end diastole (calculated by adding the right atrial pressure to the end diastolic pressure gradient of the pulmonic regurgitation) and the pulmonary artery wedge pressure. Enter the estimated right atrial pressure manually onto the Worksheet (see "Worksheet/Report" on page 365).

To complete the procedure

- 1 Select D mode, and then switch to CW mode.
- 2 Record the pulmonic regurgitation waveform in the CW mode, and press the **FREEZE** button and the **CALCS** button.
- 3 On the touch panel, tap the Puimo tab, and then tap PRed vei.

4 Place the caliper on the end diastole of the PR flow, and press the SET button (

5 On the Worksheet, in the RA Press column, manually input the estimated right atrial pressure.

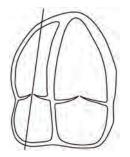
The measurement display looks like the following:

Table 5-122: Pulmonary artery pressure measurement items

PRed vel			Measurement item
vel	•_	m/s	PR end diastolic velocity
PG	•_	mmHg	PR end diastolic pressure gradient

When you have entered PRed PG and RA press, the following measurement appears.

PAP ed			Measurement item	
PAP ed	· _	mmHg	Estimated PA pressure at end diastole	
Note		lf results are screen.	e not displayed on the main monitor, you can verify th	em on the Report

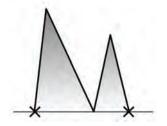

Tricuspid valve flow

Measuring tricuspid valve flow velocity

Measure the high-velocity blood flow after tricuspid annuloplasty or due to tricuspid stenosis, a prosthetic valve, etc.

To measure tricuspid valve flow

1 Record the trans tricuspid valve flow in the CW-mode, and press the **FREEZE** button and the **CALCS** button.



2 On the touch panel, tap the TV tab, and then TV trace.

You can trace with either the Free or the Auto measure tool.

To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under **Measure tool**).

- **3** Place the caliper on the start point of the waveform and press the **SET** button (2
- **4** Use the trackball to trace the outline of the waveform.
- **5** Place the caliper on the end point of the waveform and press the **SET** button.

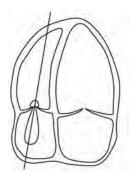
The measurement display looks like the following:

Table 5-123: TV trace measurement items

TV trace			Measurement item
VTI		cm	Tricuspid valve flow VTI
PV		m/s	TV peak velocity

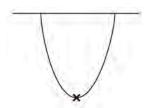
Table 5-123: TV trace measurement items

TV trace			Measurement item
PPG	·_	mmHg	TV peak pressure gradient
MnV	·_	m/s	TV mean velocity
MnPG		mmHg	TV mean pressure gradient


Tricuspid regurgitation

Estimating pulmonary artery pressure at systole

The pulmonary artery pressure at systole is estimated by adding the estimated right atrial pressure to the maximum pressure gradient between the right ventricle and the right atrium, measured with the waveform of tricuspid regurgitation. You manually enter the estimated right atrial pressure onto the Worksheet (see "Worksheet/Report" on page 365).


To measure tricuspid valve flow

1 Record the tricuspid regurgitation waveform in the CW-mode, and press the **FREEZE** button and the **CALCS** button.

2 On the touch panel, tap the TV tab, and then TR Vmax.

3 Place the caliper on the peak of the TR flow and press the SET button (

4 Press RA press, and manually input the estimated right atrial pressure in the RA Press column on the Worksheet.

The measurement display looks like the following:

Table 5-124: TR Vmax and PAP sys measurement items

TR Vmax			Measurement item
Vmax	·_	m/s	TR maximum velocity
PGmax	·_	mmHg	TR maximum pressure gradient

When you have entered TR PGmax and RA press, the following measurement appears.

PAP sys			Measurement item	
PAP sys	·_	mmHg	Estimated PA pressure at systole	
Note		If results are not displayed on the main monitor, you can verify them on screen.		em on the Report

Qp/Qs

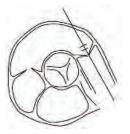
The ratio between the pulmonic flow and the systemic flow is calculated in the case of shunt diseases such as atrial septal defect and ventricular septal defect. Measure the following items in order:

- **1** Systemic flow
 - **a** Systemic diam
 - **b** Systemic VTI

- 2 Pulmonic flow
 - a Pulmonic diam
 - **b** Pulmo VTI

To measure systemic flow

- 1 Press the 2D button, display the left ventricular long axis view and enlarge the systolic left ventricular outflow tract.
- 2 Press the FREEZE button and the CALCS button.
- 3 On the touch panel, tap the Shunt tab, and then Systemic Diam.
- **4** Use the calipers to measure the outflow tract diameter.
- 5 Press the D button, display the apical long axis view and record the left ventricular outflow tract flow, in the PW mode.


- 6 Press the FREEZE button and the CALCS button.
- 7 On the touch panel, tap the Shunt tab, and then tap Systemic VTI.
 - > You can trace with either the Free or the Auto measure tool.
 - To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under **Measure tool**).
- 8 Place the caliper on the start point of the waveform and press the SET button (2
- **9** Use the trackball to trace the outline of the waveform.

10 Place the caliper on the end point of the waveform and press the **SET** button.

To measure pulmonic flow

- 1 Press the 2D button.
- 2 Display the right ventricular outflow tract and enlarge the systolic right ventricular outflow tract.
- **3** On the touch panel, tap the Shunt tab, and then **Pulmonic diam**.
- **4** Use the calipers to measure the outflow tract diameter.
- 5 Press the D button and record the right ventricular outflow tract flow, in the PW mode.

- 6 Press the FREEZE button and the CALCS button.
- 7 On the touch panel, tap the Shunt tab, and then tap Pulmonic VTI.
 - > You can trace with either the Free or the Auto measure tool.
 - ▶ To switch to either Free Trace or Auto Trace, press the switch menu button 2 (the rocker button under Measure tool).
- 8 Place the caliper on the starting point of the waveform, and press the SET button (
- **9** Use the trackball to trace the outline of the waveform.

10 Place the caliper on the ending point of the waveform, and press the **SET** button.

The measurement display looks like the following:

Table 5-125: Systemic and pulmonic measurement items

Systemic diam			Measurement item		
Sys diam	•_	cm	Systemic diameter		
Systemic VTI			Measurement item		
Sys VTI	•_	cm	Systemic flow VTI		
Sys Vmax	·_	m/s	Systemic flow maximum velocity		
Pulmonic diam	1		Measurement item		
Pulmo diam	•_	cm	Pulmonic flow diameter		
Pulmonic VTI			Measurement item		
Pulmo VTI	·_	cm	Pulmonic flow VTI		
Pulmo Vmax	·_	m/s	Pulmonicic flow maximum velocity		
When you have	measure	d the above	items, the following results appear:		
Qp/Qs	·_		Pulmonic to Systemic flow ratio		

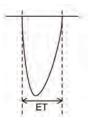
MPI (Myocardial Performance Index)

It is said that the MPI value increases in the case of cardiac failure. To calculate the MPI of right and left heart, measure the following items.

1 LV MPI: MV c-o time (the mitral valve closing to opening time), LVET

2 RV MPI: TV c-o time (tricuspid valve closing to opening time), RVET

To complete the procedure


- 1 Press the **D** button, and record the atrioventricular valve flow of left or right heart.
- 2 Press the FREEZE button and the CALCS button.
- 3 Select the MPI button on the touch panel, and tap MV c-o time or TV c-o time.

To see the MPI tab, tap the 🔛 button.

4 Use the calipers to measure the time between MVC/TVC to MVO/TVO (the interval from closing to opening of the atrioventricular valve).

- 5 Record the ejection flow of left or right heart, and press the **FREEZE** button and the **CALCS** button.
- 6 On the touch panel, tap LVET or RVET.
- 7 Use the calipers to measure each ejection time.

The measurement display looks like the following:

Table 5-126: MPI measurement items

MV c-o time			Measurement item
c-o time		ms	MV closing to opening time

LVET			Measurement item
ET		ms	LV ejection time

When you measure the above two items, the following item show.

LV MPI			Measurement item
LV MPI	. _		LV myocardial performance index
TV c-o time			Measurement item
c-o time		ms	Tricuspid valve closing to opening time
RVET			Measurement item
ET		ms	RV ejection time

When you measure the above two items, the following item show.

RV MPI		Measurement item
RV MPI	• _	RV myocardial performance index

Worksheet/Report

To display the Report screen of the cardiac measurement, press the **FREEZE** button to freeze the image and then operate the switch menu button.

Study Info			
Height	173.50	cm	
Weight	63.70	kg	
BSA	1.764	m²	
SBP	120	mmHg	
DBP	67	mmHg	

Figure 5-35: Study Information screen

Exam Info	
Study ID:	TEST
Operator:	SONO HANAKO

Figure 5-36: Exam Information screen

Aorta (B)		
LVOT	2.6 cm	

Figure 5-37: Cardiac_Report screen

Switching the page of Report screen

If the report results cannot be displayed within one page, the number of the report pages is displayed at the lower side of the touch panel.

To switch the page, operate the paddle button under the Report Page.

Switching to the Worksheet

Select the Worksheet button at the right side of the touch panel.

Switching between Multiple Reports

Tap a report displayed on the touch panel.

Editing Values on Worksheet

Tap the category you want to edit to display the Worksheet edition screen for cardiac measurement.

On the Worksheet screen, the measurement values (measurement results) of the cardiac measurement are displayed. The displayed values can also be corrected or deleted.

In addition, measurement items to be used and displayed can be specified on the Worksheet screen.

Specifying information items on the Study / Exam Information screen

Information items to be displayed on the screens such as the Report screen can be specified by placing a check mark in the check box on the left-hand side of each information item on the worksheet.

Specifying measurement items for the Cardiac measurement

The measurement items for the Cardiac measurement can be specified by placing a check mark in the check box on the left-hand side of each measurement item on the worksheet.

Editing and saving the content of Worksheet

While editing, characters are indicated in red and an asterisk is displayed.

After the content is edited, tap Update and then operate the switch menu button 2.

When the changes are reflected, characters are indicated in white.

Switching the page of Worksheet

If the content of the worksheet cannot be displayed within one page, the number of the worksheet pages is displayed at the lower side of the touch panel.

To switch the page, operate the paddle switch under Worksheet Page. To switch the block in the Worksheet, tap **Select Edit Block** and then operate the switch menu button 3.

Setting the value to be displayed at the time of continuous measurement

Tap **Value** and then operate the switch menu button 2 to select the measurement value to be displayed on the Worksheet from among the following.

- Average value of the continuous measurement
- Value of the last measurement

Switching to the Report screen

Select the Report button at the right side of the touch panel.

Terms and abbreviations

Abbreviation	Definition
2ch	apical two-chamber view
4ch	apical four-chamber view
а	Left Ventricular Length (Apical-Papillary Muscle)
A dur	A wave duration
A dur(PV-MV)	Time interval difference of A duration (PVA - MV A)
A endo	Endocardial Area
A epi	Epicardial Area
A vel	A velocity
A/E	A vel to E vel ratio
AcT	Acceleration time

Abbreviation	Definition
AcT/ET	AcT to ET ratio
Alias vel	Aliasing velocity
AoD	Aortic diameter
AoD val	Valsalva diameter
AR	Aortic regurgitation
AR FR	AR flow rate
AR radius	AR PISA radius
AR RF	AR regurgitant fraction
AR RV	AR regurgitant volume
ARed V	AR end-diastolic velocity
AV ann	Aortic annulus diameter
AVA (Planimetry)	Aortic valve area by planimetry
AVA PV	AVA by continuity equation by peak velocity
AVA VTI	AVA by continuity equation by VTI
AVAI VTI	AVA index by continuity equation by VTI
AVAI	Aortic valve area index
AVAI PV	AVA index by continuity equation by peak velocity
BSA	Body surface area
CA amp.	C-A amplitude
CE amp.	C-E amplitude
CI	Cardiac index
СО	Cardiac output
d	Left ventricular length (PM-MVA)
DcT	Deceleration time
diast	diastole

Abbreviation	Definition
E vel	E velocity
E/A	E vel to A vel ratio
EF	Ejection fraction
EF slope	Mitral valve E-F slope
EPSS	E point to septal separation
ERO	Effective regurgitant orifice area
ET	Ejection time
FS	Factional shortening
HR	Heart rate
IVSd	Interventricular septum thickness, end diastole
IVSs	Interventricular septum thickness, end systole
LA	Left atrial
LA area, max	LA area, maximum
LA area, min	LA area, minimum
LA/AO	LAD to AoD ratio
LAD	LA diameter
LAL	LA longitudinal dimension
LAL max	LA maximum length
LAL max diff	LA length difference, maximum
LAL min	LA minimum length
LAL min diff	LA length difference, minimum
LAT	LA transverse dimension
LAV max	LA maximum volume
LAV min	LA minimum volume
LAVI max	LA maximum volume index

Abbreviation	Definition
LAVI min	LA minimum volume index
LV	Left ventricular
LV area, d	LV area, end diastole
LV area, s	LV area, end systole
LVDd	LV dimension, end diastole
LVDs	LV dimension, end systole
LVEDV	LV end-diastolic volume
LVEDVI	LV end-diastolic volume index
LVESV	LV end-systolic volume
LVESVI	LV end-systolic volume index
LVLd	LV length, end diastole
LVLd diff	LV length difference, end diastole
LVLs	LV length, end systole
LVLs diff	LV length difference, end systole
LVM	LV mass
LVMI	LV mass index
LVOT	LV outflow tract
LVOT vel	LVOT velocity
LVPWd	LV posterior wall thickness, end diastole
LPWFT	LV posterior fractional thickening
LVPWs	LV posterior wall thickness, end systole
MA distA	Mitral annular distance A
MA distB	Mitral annular distance B
MnPG	Mean pressure gradient
MnV	Mean velocity

Abbreviation	Definition
MPI	Myocardial performance index
MR	Mitral regurgitation
MR FR	MR flow rate
MR PV	MR peak velocity
MR radius	MR PISA radius
MR RF	MR regurgitant fraction
MR RV	MR regurgitant volume
MR Vmax	MR maximum velocity
MS angle	Mitral leaflet opening angle
MS PGmax	Mitral stenosis maximum pressure gradient
MS radius	Mitral stenosis flow PISA radius
MS Vmax	Mitral stenosis maximum velocity
MV	Mitral valve
MV c-o time	MV closing to opening time
MVA	Mitral valve area
MVann	Mitral annulus
MVann SV	Stroke volume by MVann
PA	Pulmonary artery
PA PGmax	PA maximum pressure gradient
PA Vmax	PA maximum velocity
PAP ed	PA pressure at end diastole
PAP sys	PA pressure at systole
PEP	Pre ejection period
PEP/ET	PEP to ET ratio
PG	Pressure gradient

Abbreviation	Definition	
PHT	Pressure half time	
PPG	Peak pressure gradient	
PR	Pulmonic regurgitation	
PR PGmax	PR maximum pressure gradient	
PR Vmax	PR maximum velocity	
PRed PG	PR end-diastolic pressure gradient	
PRed vel	PR end-diastolic velocity	
Pulmonic diam	Pulmonic diameter	
Pulmonic VTI	Pulmonic flow VTI	
PV	Pulmonary vein	
PV Sys. Frac.	PV systolic filling fraction	
PVA	PV A wave	
PVA dur	PVA duration	
PVD	PV diastolic wave	
PVS	PV systolic wave	
Qp/Qs	Pulmonic to Systemic flow ratio	
RA	Right atrial	
RA press	Estimated right atrial pressure	
RAL	RA longitudinal dimension	
RAT	RA transverse dimension	
RV	Right ventricular	
RV FAC	RV fractional area change	
RVD	RV dimension, end diastole (4ch)	
RVd area	RV area, end diastole	
RVDd	RV diameter, diastole	

Abbreviation	Definition
RVOT	RV outflow tract
RVs area	RV area, end systole
S/D	PVS velocity to PVD velocity ratio
SI	Stroke index
SV	Stroke volume
sys	systole
Systemic diam	Systemic diameter
Systemic VTI	Systemic flow VTI
t	Mean LV myocardial thickness
TR	Tricuspid regurgitation
TR PGmax	TR maximum pressure gradient
TR Vmax	TR maximum velocity
TV	Tricuspid valve
TV c-o time	TV closing to opening time
VTI	Velocity time integral

Vascular measurement

Vascular measurement has several categories: Carotid Artery Measurement, Upper Extremity Arterial, Upper Extremity Venous, Lower Extremity Arterial, and Lower Extremity Venous.

Auto IMT (intima-media thickness) measurement (Optional) is included in Carotid Artery Measurement.

Mode measurement functions

The following tables describe the measurement functions of each mode.

Table 5-128: B mode measurement functions

Measurement item	Description	Remarks
Carotid artery measurement	Distance Area %Steno Dist %Steno Area IMT Auto IMT	(Right · Left)
Upper and lower extremity vascular measurement	Distance Area %Steno Dist %Steno Area	(Right · Left) (prox. · mid. · dist.)

Table 5-129: D mode measurement functions

Measurement item	Description	Remarks
Carotid artery measurement	PSV, EDV MnV PI ,RI	(Right · Left)
	PSV, EDV MnV PI, RI	(Right · Left) (prox. · mid. · dist.)

Built-in mode measurement functions

Table 5-130: B mode, carotid artery measurement

Measurement item	Display item	Unit	Remarks
CCA (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	CCA (Common Carotid Artery)
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
	IMT1 IMT2 IMT3 Max Mean Len	mm mm mm mm mm	(Based on IMT1 to 3) (Based on IMT1 to 3) Vessel diameter
ECA (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	ECA (External Carotid Artery)
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
	IMT1 IMT2 IMT3 Max Mean Len	mm mm mm mm mm	(Based on IMT1 to 3) (Based on IMT1 to 3) Vessel diameter

Table 5-130: B mode, carotid artery measurement

Measurement item	Display item	Unit	Remarks
ICA (Right · Left)	Dist Area	mm mm ²	ICA (Internal Carotid Artery)
-prox. -mid. -dist.	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
	IMT1 IMT2 IMT3 Max Mean Len	mm mm mm mm mm	(Based on IMT1 to 3) (Based on IMT1 to 3) Vessel diameter
Vert A (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	Vert A (Vertebral Artery)
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
	IMT1 IMT2 IMT3 Max Mean Len	mm mm mm mm mm	(Based on IMT1 to 3) (Based on IMT1 to 3) Vessel diameter

Table 5-130: B mode, carotid artery measurement

Measurement item	Display item	Unit	Remarks
Subclav A (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	Subclav A (Subclavian Artery)
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
	IMT1 IMT2 IMT3 Max Mean Len	mm mm mm mm mm	(Based on IMT1 to 3) (Based on IMT1 to 3) Vessel diameter
Innom A (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	Innom A (Innominate Artery)
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
	IMT1 IMT2 IMT3 Max Mean Len	mm mm mm mm mm	(Based on IMT1 to 3) (Based on IMT1 to 3) Vessel diameter

Table 5-130: B mode, carotid artery measurement

Measurement item	Display item	Unit	Remarks
BIF (Right · Left)	Dist Area	mm mm ²	BIF (Bifurcation)
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
Auto IMT (Right · Left) – Far – Near	Max Mean Width	mm mm mm	
Plaque (Right · Left)	Dist	mm	

Table 5-131: B mode, upper extremity artery measurement

Measurement item	Result	Unit	Remarks
AA (Right · Left)	Dist Area	mm mm ²	Axilllary artery
	%Steno-Dist Dist1 Dist2	%mm m mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-131: B mode, upper extremity artery measurement

Measurement item	Result	Unit	Remarks
BA (Right · Left)	Dist Area	mm mm ²	Brachial artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
DBA (Right · Left)	Dist Area	mm mm ²	Brachial artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
Bas A (Right · Left)	Dist Area	mm mm ²	Basilic artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
RA (Right · Left)	Dist Area	mm mm ²	Radial artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-131: B mode, upper extremity artery measurement

Measurement item	Result	Unit	Remarks
UA (Right · Left)	Dist Area	mm mm ²	Ulnar artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
SPA (Right · Left)	Dist Area	mm mm ²	Superficial Palmar Arches artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
Graft (Right · Left)	Dist Area	mm mm ²	Graft
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-132: B mode, upper extremity venous measurement

Measurement item	Result	Unit	Remarks
IJV (Right · Left)	Dist Area	mm mm ²	Internal Jugular vein
	%Steno-Dist Dist1 Dist2	%mm m mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
ScV (Right · Left)	Dist Area	mm mm ²	Subclavian vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
AV (Right · Left)	Dist Area	mm mm ²	Axillary vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
BV (Right · Left)	Dist Area	mm mm ²	Brachial vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-132: B mode, upper extremity venous measurement

Measurement item	Result	Unit	Remarks
RV (Right · Left)	Dist Area	mm mm ²	Radial vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
UV (Right · Left)	Dist Area	mm mm ²	Ulnar vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
UCV (Right · Left)	Dist Area	mm mm ²	Upper Cephalic vein
-prox. -mid. -dist.	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
FCV (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	Forearm Cephalic vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-132: B mode, upper extremity venous measurement

Measurement item	Result	Unit	Remarks
UBasV (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	Upper Basilic vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
FBasV (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	Forearm Basilic vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-133: B mode, lower extremity artery measurement

Measurement item	Result	Unit	Remarks
CIA (Right · Left)	Dist Area	mm mm ²	Common Iliac artery
	%Steno-Dist Dist1 Dist2	%mm m mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-133: B mode, lower extremity artery measurement

Measurement item	Result	Unit	Remarks
EIA (Right · Left)	Dist Area	mm mm ²	External Iliac artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
CFA (Right · Left)	Dist Area	mm mm ²	Common Femoral artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
DFA (Right · Left)	Dist Area	mm mm ²	Deep Femoral artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
SFA (Right · Left) -prox. -mid. -dist.	Dist Area	mm mm ²	Superficial Femoral artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-133: B mode, lower extremity artery measurement

Measurement item	Result	Unit	Remarks
PopA (Right · Left)	Dist Area	mm mm ²	Popliteal artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
ATA (Right · Left)	Dist Area	mm mm ²	Anterior Tibial artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
PerA (Right · Left)	Dist Area	mm mm ²	Perineal artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
PTA (Right · Left)	Dist Area	mm mm ²	Posterior Tibial artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-133: B mode, lower extremity artery measurement

Measurement item	Result	Unit	Remarks
DPA (Right · Left)	Dist Area	mm mm ²	Dorsalis Pedis artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
IIA (Right · Left)	Dist Area	mm mm ²	Internal Iliac artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-134: B mode, lower extremity venous measurement

Measurement item	Result	Unit	Remarks
ClV (Right · Left)	Dist Area	mm mm ²	Common Iliac vein
	%Steno-Dist Dist1 Dist2	%mm m mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-134: B mode, lower extremity venous measurement

Measurement item	Result	Unit	Remarks
ElV (Right · Left)	Dist Area	mm mm ²	External Iliac vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
CFV (Right · Left)	Dist Area	mm mm ²	Common Femoral vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
PopV (Right · Left)	Dist Area	mm mm ²	Popliteal vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
ATV (Right · Left)	Dist Area	mm mm ²	Anterior Tibial vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-134: B mode, lower extremity venous measurement

Measurement item	Result	Unit	Remarks
PerV (Right · Left)	Dist Area	mm mm ²	Perineal vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
PTV (Right · Left)	Dist Area	mm mm ²	Posterior Tibial artery
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
DFV (Right · Left)	Dist Area	mm mm ²	Deep Femoris vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
llV (Right · Left)	Dist Area	mm mm ²	Internal Iliac vein
	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-134: B mode, lower extremity venous measurement

Measurement item	Result	Unit	Remarks
GSV (Right · Left)	Dist Area	mm mm ²	Great Saphenous vein
-prox. -mid. -dist.	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
LSV (Right · Left) -prox.	Dist Area	mm mm ²	Lesser Saphenous vein
-mid. -dist.	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)
SFV (Right · Left) -prox.	Dist Area	mm mm ²	Superficial Femoral vein
-piox. -mid. -dist.	%Steno-Dist Dist1 Dist2	% mm mm	(Based on Dist1 and Dist2)
	%Steno-Area Area1 Area2	% mm ² mm ²	(Based on Area1 and Area2)

Table 5-135: D mode, carotid artery measurement

Measurement item	Display item	Unit	Remarks
CCA (Right · Left) -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Common Carotid Artery

Table 5-135: D mode, carotid artery measurement

Measurement item	Display item	Unit	Remarks
ECA (Right · Left) -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	External Carotid Artery
ICA (Right · Left) -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Internal Carotid Artery
Vert A (Right · Left) -prox. -mid. -dist.	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Vertebral Artery
Subclav A	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Subclavian Artery
Innom A (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Innominate Artery
BIF (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	BIF (Bifurcation)

Table 5-136: D mode, upper extremity artery measurement

Measurement item	Display item	Unit	Remarks
ScA (Right · Left)	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Subclavian Artery
AA (Right · Left)	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Axillary artery
BA (Right · Left)	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Brachial artery
DBA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Deep Brachial artery
Bas A (Right · Left)	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Basilic artery
RA	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Radial artery

Table 5-136: D mode, upper extremity artery measurement

Measurement item	Display item	Unit	Remarks
UA (Right · Left)	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Ulnar artery
SPA (Right · Left)	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Superficial Palmar Arches artery
Graft (Right · Left) -prox. -mid. -dist. -outflow -inflow	PSV EDV MnV Pl Rl S/D	cm/s cm/s cm/s 	Graft

Table 5-137: D mode, upper extremity venous measurement

Measurement item	Display item	Unit	Remarks
UCV (Right · Left) -prox. -mid. -dist.	MnV	cm/s	Upper Cephalic vein
FCV (Right · Left) -prox. -mid. -dist.	MnV	cm/s	Forearm Cephalic vein
UBasV (Right · Left) -prox. -mid. -dist.	MnV	cm/s	Upper Basilic vein

Table 5-137: D mode, upper extremity venous measurement

Measurement item	Display item	Unit	Remarks
FBasV (Right · Left) -prox. -mid. -dist.	MnV	cm/s	Forearm Basilic vein
IJV (Right · Left)	MnV	cm/s	Internal Jugular vein
SCV (Right · Left)	MnV	cm/s	Subclavian vein
AV (Right · Left)	MnV	cm/s	Axillary vein
BV (Right · Left)	MnV	cm/s	Brachial vein
RV (Right · Left)	MnV	cm/s	Radial vein
UV (Right · Left)	MnV	cm/s	Ulnar vein

Table 5-138: Lower extremity artery measurement

Measurement item	Display item	Unit	Remarks
CIA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Common Iliac artery
EIA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	External Iliac Artery

Table 5-138: Lower extremity artery measurement

Measurement item	Display item	Unit	Remarks
CFA (Right · Left) -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Common Femoral artery
DFA (Right · Left) -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Deep Femoral artery
SFA (Right · Left) -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Superficial Femoral artery
PopA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Popliteal artery
ATA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Anterior Tibial artery
PerA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Perineal artery

Table 5-138: Lower extremity artery measurement

Measurement item	Display item	Unit	Remarks
PTA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Posterial Tibial artery
DPA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Dorsalis Pedis artery
llA (Right · Left)	PSV EDV MnV PI RI S/D	cm/s cm/s cm/s 	Internal Iliac artery

Table 5-139: Lower extremity venous measurement

Measurement item	Display item	Unit	Remarks
CIV (Right · Left)	MnV	cm/s	Common Iliac vein
ElV (Right · Left)	MnV	cm/s	External Iliac vein
CFV (Right · Left)	MnV	cm/s	Common Femoralcvein
PopV (Right · Left)	MnV	cm/s	Popliteal vein
PTV (Right · Left)	MnV	cm/s	Posterior Tibial vein
PerV (Right · Left)	MnV	cm/s	Perineal vein
ATV (Right · Left)	MnV	cm/s	Anterior Tibial vein

Table 5-139: Lower extremity venous measurement

Measurement item	Display item	Unit	Remarks
llV (Right · Left)	MnV	cm/s	Internal Iliac vein
DFV (Right · Left)	MnV	cm/s	Deep Femoral vein
GSV (Right · Left) -prox. -mid. -dist.	MnV	cm/s	Great Saphenous vein
LSV (Right · Left) -prox. -mid. -dist.	MnV	cm/s	Lesser Saphenous vein
SFV (Right · Left) -prox. -mid. -dist.	MnV	cm/s	Superficial Femoral vein

2D (B) mode

Vascular measurement on a B-mode image

This section explains how to use the measurement functions listed in "Built-in mode measurement functions" on page 375 for B mode.

In B mode, you can measure the following:

- Vessel diameter (Distance)
- Area (Area)
- Stenosis ratio (%Steno Distance and %Steno Area)

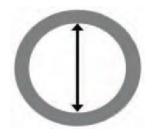
For the carotid artery, you can also measure intima-media thickness (IMT).

For each vessel, you measure regions such as right/left (Rt./Lt.), and proximal/middle/distal (prox/mid/dist). The displayed measurement menu varies, depending on the selected vessel.

Measuring distance

This section explains the procedure for measuring distance. As an example, the procedure uses the right common carotid artery measurement (Rt.CCA). Note that you must have the Carotid preset selected to see the Rt. CCA measurement.

To measure distance


- 1 In 2D (B) mode, on the touch panel, tap the Rt.CCA button of CCA.
- 2 Display the longitudinal section of Rt.CCA.
- **3** On the touch panel, tap **Distance**.

A caliper mark (+) appears on the monitor.

4 When the measurement regions such as **prox**, **mid**, and **dist** show on the measurement menu, tap the button for the desired region.

You do not need to measure all the regions.

5 Measure the diameter of the right common carotid artery.

6 Press the SET button (

The Rt.CCA distance measurement is finalized.

The measurement display looks like the following:

Table 5-140: Rt.CCA distance measurement item

Rt.CCA			Measurement item
Dist	<u>`</u> -	mm	

Measuring area

This section explains the procedure for measuring area. As an example, the procedure uses the right common carotid artery measurement (Rt.CCA). Note that you must have the Carotid preset selected to see the Rt. CCA measurement.

To measure area

- 1 On the touch panel, tap the 2D (B) tab.
- 2 Select the Rt.CCA button of CCA.
- **3** Display the transverse section of Rt.CCA.
- 4 On the touch panel, tap the Area button.

A caliper mark (+) appears on the monitor.

5 When the measurement regions such as prox, mid, and dist show on the measurement menu, tap the button for the desired region.

You do not need to measure all the regions.

6 Trace the lumen of the right common carotid artery.

- > You can trace with either the Free trace (manual tracing) or the Ellipse measure tool.
- > To switch to Free or Ellipse, press the switch menu button 2 (the rocker button under Measure tool).

- ▶ For information on using these tools, see "Trace" on page 223 and "Ellipse" on page 228.
- 7 Press the SET button (

The area measurement of Rt.CCA is finalized.

The measurement display looks like the following:

Table 5-141: Rt.CCA area measurement item

Rt.CCA			Measurement item
Area	·_	mm	

Measuring %Stenosis (stenosis ratio)

You can calculate the stenosis ratio based on either of the following:

- Diameter (%Steno Dist)
- Cross-sectional area (%Steno Area)

Calculating stenosis ration based on %Steno Distance

The following procedure uses Rt.CCA as an example. Note that you must have the Carotid preset selected to see the Rt. CCA measurement.

To measure the stenosis ratio based on diameter

- 1 On the touch panel, tap the 2D (B) tab.
- 2 Select the Rt.CCA button of CCA.

The touch panel screen switches.

- **3** Display the longitudinal section of Rt.CCA.
- 4 On the touch panel, tap %Steno Distance.

For more information on measuring distance for a stenosis ratio, see "%Stenosis (Stenosis ratio)" on page 253.

A caliper mark (+) appears on the monitor.

5 When the measurement regions such as prox, mid, and dist show on the measurement menu, tap the button for the desired region.

You do not need to measure all the regions.

- **6** Measure the diameter of the right common carotid artery.
- 7 Measure the diameter of the stenotic segment.

The %Steno Distance measurement of Rt.CCA is finalized.

The measurement display looks like the following:

Table 5-142: Rt.CCA steno distance measurement items

Rt.CCA			Measurement item
Dist1		mm	
Dist2	· _	mm	
Steno	·_	%	

Calculating stenosis ratio based on %Steno Area

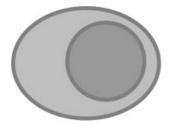
The following procedure uses Rt.CCA as an example. Note that you must have the Carotid preset selected to see the Rt. CCA measurement.

To measure the stenosis ratio based on area

- 1 On the touch panel, tap the 2D (B) tab.
- 2 Select the Rt.CCA button of CCA.
- **3** Display the transverse section of Rt.CCA.
- 4 On the touch panel, tap %Steno Area.

For more information on measuring area for a stenosis ratio, see "Calculating stenosis ratio based on %Steno Area" on page 400.

A caliper mark (+) appears on the monitor.


5 When the measurement regions such as prox, mid, and dist show on the measurement menu, tap the button for the desired region.

You do not need to measure all the regions.

6 Trace the lumen of the right common carotid artery.

7 Trace the area of the stenotic segment.

- > You can trace with either the Free trace (manual tracing) or the Ellipse measure tool.
- > To switch to Free or Ellipse, press the switch menu button 2 (the rocker button under Measure tool).
- ▶ For information on using these tools, see "Trace" on page 223 and "Ellipse" on page 228.
- 8 Press the SET button (

The %Steno Area measurement of Rt.CCA is finalized.

The measurement display looks like the following:

Table 5-143: Rt.CCA steno area measurement items

Rt.CCA			Measurement item
Area1	<u>`</u> _	mm ²	
Area2	•_	mm ²	

Table 5-143: Rt.CCA steno area measurement items

Rt.CCA			Measurement item
Steno	·_	%	

Measuring IMT

This section explains the procedure for measuring the IMT (intima-media thickness). As an example, the procedure uses the right common carotid artery measurement (Rt.CCA). Note that you must have the Carotid preset selected to see the Rt. CCA measurement.

To measure IMT

- 1 On the touch panel, tap the **B** tab.
- 2 Select the Rt.CCA button of CCA.
- **3** Display the longitudinal section of Rt.CCA.
- 4 On the touch panel, tap IMT.

An auxiliary line appears.

- 5 With the trackball, move the line, and then, with the multi dial (), adjust its angle.
- 6 Press the Set button

A caliper mark (+) appears on the monitor.

7 Measure the most-thickened part of the right common carotid artery.

This measurement is IMT1.

8 Measure the thickness of the right common carotid artery at the peripheral side.

This measurement is IMT2.

9 Measure the thickness of the right common carotid artery at the center side.

This measurement is IMT3.

10 Measure the vessel diameter.

All measurements are finalized.

Table 5-144: Rt.CCA IMT n	measurement items
---------------------------	-------------------

Rt.CCA			Measurement item
IMT1	· _	mm	IMT at most thickened part
IMT2	·_	mm	IMT at periphery side
IMT3	· _	mm	IMT at center side
Max	· _	mm	Maximum IMT value
Mean	· _	mm	Mean IMT value
Diam		mm	Vessel diameter
Width		mm	Width of auxiliary line

Auto IMT (intima-media thickness) measurement (Optional)

To ensure high quality images, all patient images must be obtained by qualified and trained individuals.

To avoid patient injury, IMT results should not be used as a sole diagnostic tool. All IMT results should be interpreted in conjunction with other clinical information or risk factors.

To avoid measurement errors, all measurements must be of the common carotid artery (CCA). This tool is not intended for measuring the bulb or the internal carotid artery (ICA).

WARNING

To avoid incorrect calculations, verify that the patient information, date, and time settings are accurate.

To avoid misdiagnosis or erroneously influencing the results of patient examination, start a new patient information form before starting a new patient examination and performing calculations. Starting a new patient information form clears the previous patient's data. The previous patient's data will be combined with the current patient if calculations and examinations are performed without creating a new patient information form. For the procedure to create a new patient information form, see "Entering patient information" on page 124. The transducers and presets that can be used with Auto IMT (intima-media thickness) measurement (Optional) are as follows.

Probe	Carotid
HFL38xp	\checkmark
HFL50xp	\checkmark
L25xp	\checkmark
L38xp	\checkmark

To automatically measure IMT

1 Freeze the B-mode image and press the CALCS button.

Note

In order to perform correct measurement, an image with the direction of the common carotid artery (CCA) parallel to the body surface must be obtained before freezing the image.

- 2 Select the Rt.IMT Far1 button.
- **3** Use the trackball to place the IMT tool on top of the region of interest.
- **4** Adjust the tool and edit it as necessary. For more information about the IMT tool, see "IMT tool menu" on page 405.
- 5 Press the SET button (

Rt.IMT Far1 measurement is confirmed.

The measurement values are as shown in the table below.

Table 5-145: Rt.IMT Far1 measurement items

Rt.IMT Far1 (rig media thicknes		ia-	Measurement item
Max	·_	mm	Max. IMT value

Table 5-145: Rt.IMT Far1 measurement items

Rt.IMT Far1 (right intima- media thickness far 1)		1a-	Measurement item
Mean	·_	mm	Mean IMT value
Width	•_	mm	Measured width

Because of ultrasound characteristics, normally IMT measurement of posterior wall is more accurate than IMT measurement of anterior wall. Anterior wall IMT measures the distance between the adventitia and the posterior edge of the lumen, while posterior wall IMT measures the distance between the lumen and the anterior edge of the adventitia. IMT Far: Measures the posterior wall IMT.

IMT Near: Measures the anterior wall IMT.

IMT tool menu

Note

You can select the following menu items while using the IMT tool.

Menu item	Description	
Width	Adjusts the tool width in 1 mm increments. Rotate the multi dial to the right to increase the width, or to the left to decrease the width.	
Adven	Adjusts the adventitia-media line. Rotate the dial menu button to the right to raise the line, or to the left to lower the line.	
Lumen	Adjusts the lumen-intima line. Rotate the dial menu button to the right to raise the line, or to the left to lower the line.	
Note	Adven and Lumen IMT lines can be adjusted individually.	

Table 5-146: Description of menu items

D mode

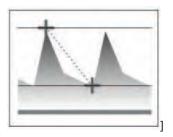
Measuring blood flow

As an example of the procedure for measuring blood flow, the procedure uses the right common carotid artery measurement (Rt.CCA; note that you must have the Carotid preset selected to see the Rt. CCA measurement). You can measure other vessels and regions in the same way. With this measurement item, you can measure the blood flow of CCA, ECA, ICA, VertA, Subclav A, Rt. Innom A, etc.

The measurement regions of each vessel are as follows:

- Right (rt.) and left (lt.).
- Anterior (pre), proximal (prox), middle (mid), distal (dist), etc.

D mode displays the Doppler image of the common carotid artery.


To measure blood flow

- 1 On the touch panel, tap the **D** tab.
- 2 Select the Rt.CCA button of CCA.

The touch panel screen switches.

- **3** Display the longitudinal section of Rt.CCA.
- **4** To measure PSV and EDV:
 - a Tap the PSV, EDV button.
 - **b** Place the caliper on the PSV point, and then press the **SET** button (
 - c Place the next caliper on the EDV point, and then press the SET button to finalize the measurement.

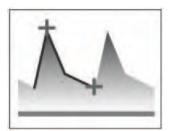
5 To measure MnV:

- a Tap the MnV button.
- **b** Use the caliper to trace the target waveform.

For measuring MnV, PI or RI, you can trace with either the Velocity Trace (manual tracing) or Auto Velocity Trace measure tool.

To change to either Velocity Trace or Auto Velocity Trace, press the switch menu button 2 (the rocker button under **Measure tool**).

For details on the procedure of each method, see "Velocity trace" on page 269.


c Press the SET button.

The waveform is displayed automatically, and the MnV value is calculated.

- 6 To measure PI or RI:
 - a Tap the PI or RI button.
 - **b** Use the caliper to trace the target waveform.
 - c Press the SET button.

The measurement is finalized, and the MnV, PI, RI and S/D values are calculated.

The measurement display looks like the following:

Rt.CCA			Measurement item (PSV, EDV)
PSV	•_	m/s	Peak systolic velocity
EDV	•_	m/s	End-diastolic velocity
S/D			S/D
Rt.CCA			Measurement item (MnV)
⊿t	·_	ms	Time between two points
⊿ t (ET)	·_	ms	Ejection time
HR	•_	bpm	Heart rate
MaxV	•_	m/s	Maximum velocity
MinV	•_	m/s	Minimum velocity
MnV	·_		Mean velocity
S/D			S/D ratio
		beat	Number of heartbeats

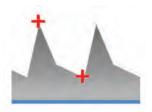
Rt.CCA			Measurement item (PI, RI)
⊿t	<u>`</u> _	ms	Time between two points
⊿ t (ET)	<u> </u>	ms	Ejection time
HR	•_	bpm	Heart rate
MaxV	•_	m/s	Maximum velocity
MinV	•_	m/s	Minimum velocity
MnV	·_		Mean velocity
PI			Pulsatility Index
RI			Resistance Index
S/D			S/D ratio
		beat	Number of heartbeats

Measurement of upper and lower extremity artery

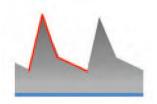
In this measurement, measure upper and lower extremity artery.

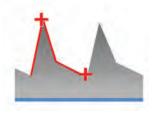
- Upper Extremity Artery
 - ScA, AA, BA, DBA, BasA, RA, UA, SPA, Graft
- Lower Extremity Artery
 - CIA , EIA , CFA , DFA , SFA , PopA , ATA , PreA , PTA , DPA , IIA

Each vein has the parts which are Rt/Lt, pre , prox. , mid , dist, inflow and outflow to measure the blood flow.


In this section, there is example of examination to measure Rt.Sca. However, you can use same operating procedure for each parts and veins.

To measure Upper and lower extremity artery


- 1 Display the Doppler image of Subclavian Artery.
- 2 Tap the Rt. UEA tab. If there is no Rt. UEA tab, tap with or to display the tab.
- **3** Tap Rt ScA. An image similar to the following appears:


- 4 Select the **PSV and EDV** button.
- **5** Move the caliper to PSV and press **SET**.
- 6 Next, move the caliper to the EDV and press SET.

- 7 Select the MnV button.
- 8 Trace the waveform you want to measure by using the caliper.

- 9 Press SET and the calculated value of MnV appears.
- 10 Select PI, RI.
- 11 Trace the waveform you want to measure by using the caliper.

12 Press SET and the calculated values of MnV, PI,RI, and S/D appear.

There are two ways to trace Doppler:

- Velocity Trace which traces Doppler manually
- Auto Velocity

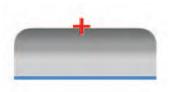
Each measurement has different operating procedure to trace the wave form.

Measurement of upper and lower extremity venous

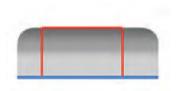
In this measurement item, measure the upper extremery venous and lower extremity venous.

- Upper Extremity Artery/VENOUS
 - UCV, FCV, UBaV, FBaV, IJV, ScV, AV, BV, RV, UV
- Lower Extremity Artery/VENOUS

GSV , LSV , CIV , SFV , PopV , PTV , PreV , ATV , IIV , DFV


Each vein has the parts which are Rt/Lt, pre, prox, mid, and dist to measure the blood flow.

In this section, there is example of examination to measure Lt.ScV. However, you can use same operating procedure for each veins and parts.


- 1 Display the Doppler image of subclavian vein.
- 2 Select the Lt. UEV2 tab on the touch panel. If there is no Lt. UEV2 tab, tap or to display the tab.
- 3 Tap Lt. ScV. An image similar to the following appears:

- 4 Select the Peak V button
- 5 Move caliper to Peak V point and Press the SET.

- 6 Select MnV button.
- 7 Trace the wave form which you want to measure by using caliper
- 8 Press SET and the caluculated value of MnV appears.

There are two ways to trace Doppler:

- Velocity Trace which traces Doppler manually
- Auto Velocity

Each measurement has different operating procedure to trace the wave form.

Vascular worksheet and report

In addition to **Study Information** and **Exam Information**, the Vascular report screen has these categories: Carotid Artery, IMT, Upper Extremity Arterial, Upper Extremity Venous, Lower Extremity Arterial, and Lower Extremity Venous.

For more information on working with the report and worksheet, see the following:

- "Vascular worksheet and report" on page 412
- "Displaying a report" on page 413
- "Editing values on a worksheet" on page 414
- "Saving changes on a worksheet" on page 415
- Specifying the worksheet's continuous-measurement calculation" on page 415

Table 5-148: Terms and abbreviations, carotid artery

Name	Formal nomenclature
CCA	Common carotid artery
BIF	Bifurcation
ECA	External carotid artery
ICA	Internal carotid artery
IMT	Intimal medial thickness
Vert. A	Vertebral artery

Table 5-148: Terms and abbreviations, carotid artery

Name	Formal nomenclature
Subclav A	Subclavian artery

Worksheet and report

Displaying a report

To display application-specific measurement data for a current examination

- 1 Press the FREEZE button () to freeze the image, and then press the CALCS button (
- 2 Press either arrow on the switch menu button 1(the rocker button beneath Report).

Report screens appear.

To display application-specific measurement data for an archived examination:

1 Press the SYSTEM button

The User Setting screen appears.

- 2 On page 1/1, tap UI. The UI screen appears.
- 3 Tap F-Key Config. Assign the report function to any function button.
- 4 Tap Archive screen.
- 5 Tap an examination and press the function button to which the report function has been assigned.

Changing pages on the Report screen or worksheet

If the report results cannot be displayed within one page, the number of the report pages is displayed at the lower side of the touch panel.

To switch the page

> Press switch menu button 4 (the rocker button under Page).

Switching between the report and the worksheet

To switch between the Report and the Worksheet

At the right side of the touch panel, tap **Report** or **Worksheet**, as appropriate.

Editing values on a worksheet

The **Worksheet** screen displays the measurement values (measurement results) of the cardiac or vascular measurement.

You can also specify the measurement items to be used and displayed on the Worksheet screen.

To correct or delete the displayed values

> Place the cursor in the value's text box and either correct or delete the value.

Making information items visible on the Study or Exam Information screen

To specify the information items to be displayed on screens such as the Report screen

- 1 Tap the Study Info or Exam Info button, depending on whose visible items you want to change.
- 2 In the Check column, make sure a check mark is present for the measurement items that you want to be visible.

If the check mark is not present, tap in the column.

There may be more than one page of measurement items to select.

- **3** If there is more than one page of measurement items, then to see other pages, press switch menu button 4 (the rocker button under **Worksheet Page**).
- 4 When you have finished, tap Close.
- 5 Place a check mark in the check box on the left-hand side of each information item on the worksheet.

Specifying measurement items for the Cardiac measurement

To specify the measurement items for the Cardiac measurement

1 Tap the button whose visible measurement items you want to change.

The buttons represent groups of measurement items for the current preset.

2 In the Check column, make sure that a check mark is present for the measurement items that you want to be visible.

If the check mark is not present, tap in the column.

There may be more than one page of measurement items to select.

3 If there is more than one page of measurement items, then to see other pages, press switch menu button 4 (the rocker button under **Worksheet Page**).

4 When you have finished, tap Close.

Saving changes on a worksheet

As you edit, content that you change turns red, and an asterisk appears.

To save the content

After you have edited the content, tap **Update**, and then operate the switch menu button 2.

Saved changes turn white.

Specifying the worksheet's continuous-measurement calculation To specify calculation of the Worksheet value during continuous measurement

- **1** On the touch panel, tap **Value**.
- 2 Press the switch menu button to select the measurement value to be displayed on the Worksheet.

The possible values are:

- Average value of the continuous measurement
- Value of the last measurement

Abdominal Measurement

Functional Overview

Table 5-149: 2D mode

Measurement item	Description
Liver/Spleen Measurement	Distance Area SI (Spleen Index)
Bile duct/Shunt measurement	Distance
Gall bladder measurement	Distance Wall Thickness
Pancreas measurement	Distance
Aorta measurement	Distance
Bowel measurement	Distance Wall Thickness
Liver measurement	Distance Volume
Hip dislocation measurement	Angle

Table 5-150: D-mode

Measurement item	Description
Liver/Spleen Measurement	Peak Velocity Mean Velocity
Bile duct/Shunt measurement	Peak Velocity Mean Velocity
Aorta measurement (prox · mid · dist)	Peak Velocity PSV , EDV Mean Velocity PI, RI, S/D

Table 5-150: D-mode

Measurement item	Description
Renal artery measurement (Right · Left)	PSV, EDV Mean Velocity PI, RI, S/D

Built-in Measurement Functions

Table 5-151: 2D mode

Measurement item	Display item	Unit
Liver (Right · Left)	L1 L2	cm cm
Spleen SI=a x b	a b Sl	cm cm
Hepatic Vein	Dist	mm
SMV (Superior mesenteric vein)	Dist	mm
Splenic Vein	Dist	mm
PS Confince (Confluence)	Dist	mm
Main PV	Dist	mm
PV (Right · Left)	Dist Dist	mm mm
Shunt	Shunt	mm
GB	GB L GB W GB Wall	cm cm cm
CBD	prox. mid. dist.	mm mm mm
Pancreas	head body tail P-Duct	cm cm cm cm
Renal (Right · Left)	L W A-P Vol.	cm cm cm cm ³
Renal Artery (Right · Left)	Renal A	cm

Table 5-151: 2D mode

Measurement item	Display item	Unit
Adrenal (Right · Left)	L W A-P	cm cm cm
Aorta (AP · Trans) AP and Trans for each item	prox. mid. dist.	cm cm cm
CIA (Right · Left) Right and Left for each item	prox. mid. dist.	cm cm cm
Appendix	Appendix Appendix Wall	cm mm
Pylorus	Pylorus Pylorus Wall	cm mm

Table 5-152: 2D Mode (Hip Angle)

Measurement item	Display item	Unit
Hip Angle (Right · Left)	α β	°(degree) °(degree)

Table 5-153: D-Mode

Measurement item	Display item	Unit
Aorta -prox. -mid. -dist.	Peak V PSV EDV MnV PI RI S/D	cm/s cm/s cm/s

Table 5-153: D-Mode

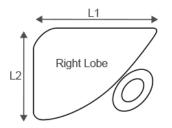
Measurement item	Display item	Unit
CIA (Right · Left) -prox. -mid. -dist.	Peak V PSV EDV MnV PI RI S/D	cm/s cm/s cm/s cm/s
Celiac Art. -1 -2	Peak V PSV EDV MnV PI RI S/D	cm/s cm/s cm/s cm/s
SMA -1 -2 -3	Peak V PSV EDV MnV PI RI S/D	cm/s cm/s cm/s
Hepatic A -Common -Rt. -Lt.	Peak V PSV EDV MnV PI RI S/D	cm/s cm/s cm/s cm/s
Splenic A	Peak V PSV EDV MnV PI RI S/D	cm/s cm/s cm/s cm/s

Table 5-153: D-Mode

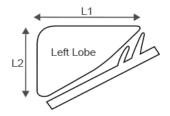
Measurement item	Display item	Unit
IMA	Peak V PSV EDV MnV PI RI S/D	cm/s cm/s cm/s cm/s
Hepatic Vein	Peak V MnV	cm/s cm/s
SMV	Peak V MnV	cm/s cm/s
Splenic Vein	Peak V MnV	cm/s cm/s
PS Conflnce (Confluence)	Peak V MnV	cm/s cm/s
PV -Main PV	Peak V	cm/s
-Rt. -Lt.	MnV	cm/s
Shunt -pre. -prox. -mid. -dist.	Peak V MnV	cm/s cm/s

2D mode

Liver Size Measurement


This section explains the procedure for measuring the size of the right or left lobe of liver.

Both the right and left lobes are measured with the same procedure.


To measure liver size

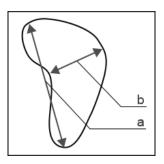
1 On a frozen 2D image of the right or left lobe of a liver, select the Liver/Spleen tab on the touch panel.

- 2 Select the LiverSize button. The touch panel is switched to the sequence screen.
- **3** To measure the right lobe:
 - **a** The Rt.L1 button is lit. Measure the L1 diameter on the right lobe image.
 - **b** The Rt.L2 button is lit. Measure the L2 diameter on the right lobe image.

- 4 To measure the left lobe:
 - a The Lt.L1 button is lit. Measure the L1 diameter on the left lobe image.
 - **b** The Lt.L2 button is lit. Measure the L2 diameter of the left lobe image.
- 5 Press the **SET** button. The Liver Size measurement is finalized.

When measuring the left lobe first, start measurement by selecting the Lt.L1 button directly.

Table 5-154: Liver size measurement items


Liver Size			Measurement item
Rt.L1		cm	Right lobe diameter (L1)
Rt.L2	•_	cm	Right lobe diameter (L2)
Lt.L1	•_	cm	Left lobe diameter (L1)
Lt.L2	<u>`</u> _	cm	Left lobe diameter (L2)

Spleen Size Measurement

The section explains the procedure for measuring the size of the spleen to calculate Spleen Index.

To measure spleen size

- 1 On a frozen 2D image of the spleen, select the Liver/Spleen tab on the touch panel.
- 2 Select the SpleenSize button. The touch panel is switched to the sequence screen.
- **3** The a button is lit. Measure the length of the spleen (a).
- 4 The **b** button is lit. Measure the thickness of the spleen (b).
- **5** Press the **SET** button. The Spleen Size measurement is finalized and Spleen Index (SI = a x b) is calculated.

Table 5-155: Spleen size measurement items

Spleen Size			Measurement item
a	•_	cm	Spleen length (a)
b	•_	cm	Spleen thickness (b)
SI(axb)	·-	cm ³	Spleen Index (SI = $a \times b$)

Hepatic Vein Measurement

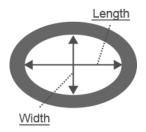
The diameter of the vessels such as Hepatic Vein, SMV, Splenic Vein, PS Confluence, Main PV, PV, etc. is measured.

This section explains the procedure for measuring Hepatic Vein as an example. Other vessels can also be measured in the same way.

To measure the hepatic vein

- 1 On a frozen 2D image of the hepatic vein, select the Liver/Spleen tab on the touch panel.
- 2 Select the HepaticVein button.
- **3** The touch panel screen is switched and a caliper mark (+) is displayed.
- **4** Measure the diameter of the hepatic vein and press the **SET** button. The Hepatic Vein measurement is finalized.

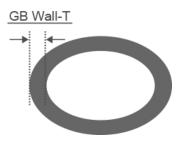
Table 5-156: Hepatic vein measurement items


Hepatic Vein			Measurement item
Dist	•_	cm	Hepatic vein diameter

GB (Gall Bladder) Size Measurement

The section explains the procedure for measuring the size of the gall bladder and the thickness of the gallbladder wall.

To measure gall bladder size


- 1 On a frozen 2d cross-sectional image of the gall bladder, press the **GB** tab on the touch panel.
- 2 Select the GB Size button. The touch panel is switched to the sequence screen.
- 3 The GBL button is lit. Measure the length of the gall bladder.
- 4 The **GB w** button is lit. Measure the width of the gall bladder.
- 5 Press the SET button. The GB Size measurement is finalized.

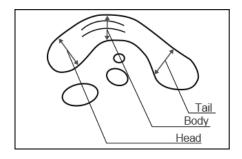
To measure gall bladder wall thickness

1 On a frozen 2D cross-sectional image of the gall bladder, select the **GB Wall** button.

- 2 The touch panel is switched and a caliper mark (+) is displayed.
- **3** Measure the thickness of the gallbladder wall and press the **SET** button. The GB Wall measurement is finalized.

Table 5-157: GB wall thickness measurement items

GB			Measurement item
GB L	· _	cm	Length
GB W	•_	cm	Width
GB Wall	·-	cm	Gallbladder wall thickness


Pancreas Size Measurement

This section explains the procedure for measuring the size of the pancreas and the diameter of the pancreas duct.

Not all the measurement regions are displayed on the same screen. Switch to an appropriate sectional view as necessary.

To measure pancreas size

- 1 On a frozen 2D, cross-sectional image of the pancreas, select the **Pancreas** tab on the touch panel.
- 2 Select the Pancreas Size button. The touch panel is switched to the sequence screen.
- **3** The head button is lit. Measure the pancreas head.
- **4** The **body** button is lit. Measure the pancreas body.
- 5 The tail button is lit. Measure the pancreas tail.
- 6 Press the SET button. The Pancreas Size measurement is finalized.

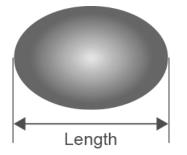
To measure pancreas duct diameter

- 1 On a frozen 2D, cross-sectional image of the pancreas, select the **Panc Duct** button.
- 2 A caliper mark (+) is displayed on the monitor.
- **3** Measure the diameter of the pancreas duct and press the **SET** button. The Panc Duct measurement is finalized.

Table 5-158: Pancreas measurement items

Pancreas			Measurement item
Head	:-	cm	Pancreas head diameter
Body	· _	cm	Pancreas body diameter
Tail	· _	cm	Pancreas tail diameter
P-Duct	•_	cm	Pancreas duct diameter

Renal Measurement

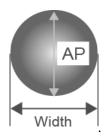

The size of the liver and the diameter of the renal artery are measured.

This section explains the procedure for measuring the right liver as an example.

Both the right and left livers are measured with the same procedure.

To measure liver size

- 1 On a frozen 2D image of the liver (longitudinal or transverse), select the Renal tab on the touch panel.
- 2 Select the Rt.Renal Vol button. The touch panel is switched to the sequence screen.
- **3** The L button is lit. Measure the length on the image of the longitudinal section.
- **4** The **w** button is lit. Measure the width on the image of the transverse section.
- **5** The **AP** button is lit. Measure the anteroposterior diameter on the image of the transverse section.
- 6 Press the SET button. The Rt.Renal measurement is finalized and the volume is calculated.



To measure renal artery diameter

- 1 On a frozen 2D image of the liver (longitudinal or transverse), select the Rt.Renal Art button.
- **2** The touch panel is switched and a caliper mark (+) is displayed on the monitor.
- **3** Measure the diameter of the renal artery and press the **SET** button. The Rt.Renal Art measurement is finalized.

Note

Perform measurement so that L, W, and AP are crossed at right angles

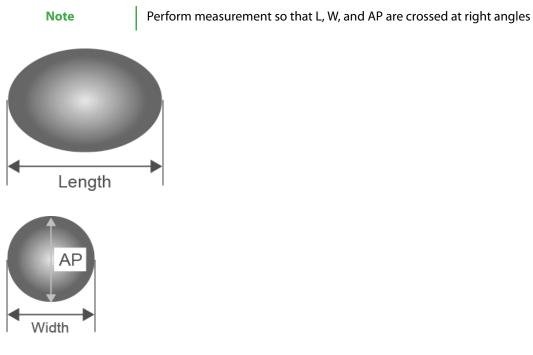
Table 5-159: Renal measurement items

Rt. Renal Vol			Measurement item
L	- -	cm	Length
W	· _	cm	Width
AP	•_	cm	Anteroposterior diameter
Vol.	· _	cm ³	Renal volume

Rt. RenalArt			Measurement item
Dist	•_	mm	Renal artery diameter

Adrenal Size Measurement

The size of the adrenal is measured.


This section explains the procedure for measuring the right adrenal as an example.

Both the right and left adrenals are measured with the same procedure.

To measure adrenal size

- 1 On a frozen 2D image of the adrenal, select the **Renal** tab on the touch panel.
- 2 Select the Rt.Adrenal Size button. The touch panel is switched to the sequence screen.
- 3 The L button is lit. Measure the length on the image of the longitudinal section.
- 4 The w button is lit. Measure the width on the image of the transverse section.
- **5** The **AP** button is lit. Measure the anteroposterior diameter on the image of the transverse section.

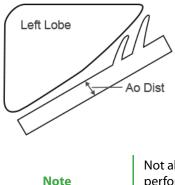
6 Press the SET button. The Adrenal Size measurement is finalized.

Table 5-160: Adrenal measurement items

Rt Adrenal Size	2		Measurement item
L	•_	cm	Length
W	·_	cm	Width
AP		cm	Anteroposterior diameter

Aorta Measurement

The blood vessel diameter of the aorta and CIA is measured.


This section explains the procedure for measuring Aorta AP prox. as an example.

Other vessels and regions such as AP/trans and prox./mid/dist are measured with the same procedure.

To measure the aorta

- 1 On a frozen 2D image of the aorta, select the Aorta on the touch panel.
- 2 Select the prox. of Aorta AP and measure the proximal region (prox) of the aorta.

- **3** Select the mid button to measure the middle region (mid.) of the aorta.
- 4 Select the dist button to measure the distal region (dist.) of the aorta.
- 5 Press the SET button. The Aorta AP prox. measurement is finalized.

Not all the regions (prox., mid. and dist.) need to be measured. When performing the measurement only at a target region, select the corresponding button directly.

Table 5-161: Aorta measurement items

Aorta AP			Measurement item
prox	•_	mm	Proximal region
mid	•_	mm	Middle region
dist	•_	mm	Distal region

Bowel Measurement

The diameter and wall thickness of the appendix and pylorus are measured.

This section explains the procedure for measuring the appendix as an example.

Each region is measured with the same procedure.

To measure the bowel

- 1 On a frozen 2D image of the appendix, select the **Bowel** tab on the touch panel.
- 2 Select the Appendix button.
- 3 The touch panel is switched and a caliper mark (+) is displayed on the monitor.

4 Measure the appendix diameter and press the **SET** button. The Appendix measurement is finalized.

Table 5-162: Bowel measurement items

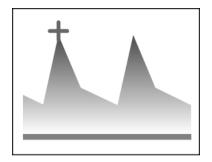
Appendix			Measurement item
Dist	·_	cm	Appendix diameter

D-mode

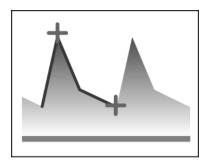
Aorta Measurement

The blood flow of Aorta, CIA, Celiac Art, SMA, Hepatic Art, Splenic Art, IMA, etc. is measured.

The measurement regions of each vessel are right/left (Rt./Lt.), longitudinal/transverse section (AP/trans), proximal/middle/distal (prox/mid/dist), etc.


This section explains the procedure for measuring Aorta AP prox. as an example. Other vessels and regions are measured with the same procedure.

To measure the aorta


- 1 On a frozen Doppler trace of the aorta, select the Aorta 1 tab on the touch panel.
- 2 Select the prox. of Aorta AP. The touch panel screen is switched.

- 3 To measure peak V:
 - a Select the Peak V button.
 - **b** Place the caliper on the Peak V point and press the SET button to finalize the measurement.

- 4 To measure PI and RI:
 - **a** Select the PI,RI button.
 - **b** Use the caliper to trace the target waveform.
 - c Press the SET button. The measurement is finalized and the MnV, PI, RI and S/D values are calculated.

As the methods for tracing the Doppler waveform, Velocity Trace (manual tracing) or Auto Velocity Trace can be selected. For details on the procedure of each method, see "Velocity trace" on page 269".

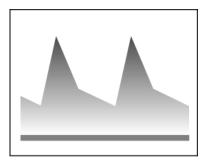
Table 5-163: Aorta measurement items

Aorta AP prox.			Measurement item
Peak V	•_	cm/s	Peak velocity
Max V	· _	cm/s	Maximum velocity
Min V	· _	cm/s	Minimum velocity
MnV	•_	cm/s	Mean velocity
PI	•_		Pulsatility index
RI	·_		Resistance index

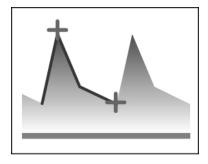
Table 5-163: Aorta measurement items

Aorta AP prox.		Measurement item
S/D	•_	S/D ratio

Renal Art (Renal Artery) Measurement


The blood flow of the liver is measured.

This section explains the procedure for measuring the right renal artery as an example.


Both the right and left renal arteries are measured with the same procedure.

To measure the renal artery

- 1 On a frozen Doppler image of the right renal artery, select the **Renal Art** tab on the touch panel.
- 2 Select the Rt.Renal-A button of Renal Art. The touch panel screen is switched.

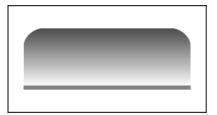
- **3** To measure PI and RI:
 - a Select the PI,RI button.
 - **b** Use the caliper to trace the target waveform.
- 4 Press the SET button. The measurement is finalized and the PSV, EDV, MnV, PI, RI and S/D values are calculated.

As the methods for tracing the Doppler waveform, Velocity Trace (manual tracing) or Auto Velocity Trace can be selected. For details on the procedure of each method, see "Velocity trace" on page 269".

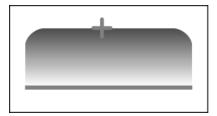
Table 5-164: Renal artery measurement items

Rt. Renal Art.			Measurement item
Max V	·_	cm/s	Maximum velocity
Min V	· _	cm/s	Minimum velocity
MnV	· _	cm/s	Mean velocity
PI	•_		Pulsatility index
RI	· _		Resistance index
S/D			S/D ratio

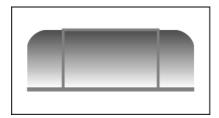
Vein Measurement


The blood flow of Hepatic Vein, PS Confluence, SMV, Splenic Vein, PV, Shunt is measured.

The measurement regions of each vessel are right/left (Rt./Lt.), anterior/proximal/middle/distal (pre/prox/mid/dist), etc.


This section explains the procedure for measuring Hepatic V. as an example. Other vessels and regions are measured with the same procedure.

To measure veins


- 1 On a frozen Doppler image of the hepatic vein, select the Vein tab on the touch panel.
- 2 Select the Hepatic Vein button. The touch panel screen is switched.

- **3** To measure peak V:
 - a Select the Peak V button.
 - **b** Place the caliper on the Peak V point and press the **SET** button to finalize the measurement.

- **4** To measure MnV:
 - **a** Select the **MnV** button.
 - **b** Use the caliper to trace the target waveform.
 - c Press the SET button. The measurement is finalized and the MnV value is calculated.

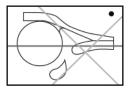
As the methods for tracing the Doppler waveform, Velocity Trace (manual tracing) or Auto Velocity Trace can be selected. For details on the procedure of each method, see "Velocity trace" on page 269".

Table 5-165: Hepatic vein measurement items

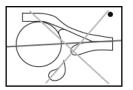
Hepatic Vein			Measurement item
Peak V	· _	cm/s	Peak velocity
MnV	<u> </u>	cm/s	Mean velocity

2D mode

Hip Angle Measurement

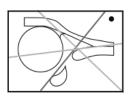

The hip angle of neonate/infant is measured with the lateral approach.

This section explains the procedure for measuring the angle of the right hip as an example.

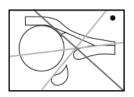

Both the right and left hips are measured with the same procedure.

To measure hip angle

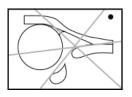
- 1 On a frozen 2D image of the hip with the lateral approach, select the Hip tab on the touch panel.
- 2 Select the HipAngleRight button. Three lines are displayed on the monitor.



3 Use the trackball to adjust the vertical position of the baseline, and rotate the multi dial to adjust the angle of the baseline.



4 Press the **SET** button. Line 2 for measuring the angle α can be adjusted.


5 Use the trackball to adjust the vertical position of Line 2, and rotate the multi dial to adjust the angle of Line 2.

6 Press the **SET** button. Adjust Line 3 in the same way as Line 2 to measure the angle β.

7 Press the SET button. The Hip Angle measurement is finalized.

Line 2 is displayed with the angle α set to 60 degrees, and Line 3 is displayed with the angle β set to 55 degrees. Both angles can be measured based on these normal angles.

Table 5-166: Hip angle measurement items

Rt.Angle			Measurement item
α		o	Bony roof angle (Angle α)
β		o	Cartilage roof angle (Angle β)

Worksheet/Report

Report Display

This section explains the Report screen of the abdominal measurement.

The Abdominal report screen is divided into eight categories (Aorta, Bowel, GB, Liver/Spleen, PV/Shunt, Pancreas, Renal and Hip Angle) in addition to Study Information and Exam Information.

Study Info		
Height	175.30 cm	
Weight	65.90 kg	
BSA Type	Oriental(Adult)	
BSA	1,804 m²	

Figure 5-38: Study Information screen

Exam Info		
Study ID	TEST	
Operator	SONO HANAKO	

Figure 5-39: Exam Information screen

Liver/ Spleen						
	L1			L2		
Liver Size						
Rt.		12.63	cm		9.71	
Lt.		8.72	cm		3.83	cm

Figure 5-40: Abdominal Report screen <Report Screen (Category_Aorta (B)>

Switching the page of Report screen

If the report results cannot be displayed within one page, the number of the report pages is displayed at the lower side of the touch panel.

To switch the page, operate the switch menu button under Report Page.

Switching to the Worksheet

Select the Worksheet at the right side of the touch panel.

Editing Values on Worksheet

This section explains the Abdominal Worksheet screen.

On the Worksheet screen, the measurement values (measurement results) of the abdominal measurement are displayed. The displayed values can also be corrected or deleted.

In addition, measurement items to be used and displayed can be specified on the Worksheet screen.

Specifying information items on the Study / Exam Information screen

Information items to be displayed on the screens such as the **Report** screen can be specified by placing a check mark in the check box on the left-hand side of each information item (e.g. Refering Phys) on the worksheet.

Specifying measurement items for the Abdominal measurement

The measurement items for the Abdominal measurement can be specified by placing a check mark in the check box on the left-hand side of each measurement item (e.g. Aorta (B)_Aorta AP_prox) on the worksheet.

Switching the page of Worksheet

If the content of the worksheet cannot be displayed within one page, the number of the worksheet pages is displayed at the lower side of the touch panel.

To switch the page, operate the switch menu button under Worksheet Page.

Switching to the Report screen

Select the **Report** button at the right side of the touch panel.

Terms and Abbreviations

Table 5-167: Liver/Spleen

Name	Formal Nomenclature
Liver	Liver
Spleen	Spleen
Hepatic Vein	Hepatic Vein
SMV	Superior Mesenteric Vein
Splenic Vein	Splenic Vein
PV	Portal Vein
PS Conflnce	PS Confluence

Table 5-168: Bile duct/Shunt

Name	Formal Nomenclature
CBD	Common Bile Duct
Shunt	Shunt

Table 5-169: Gall bladder

Name	Formal Nomenclature
GB	Gall Bladder

Table 5-170: Pancreas

Name	Formal Nomenclature
Pancreas	Pancreas
Pancreas Duct	Pancreas Duct

Table 5-171: Artery

Name	Formal Nomenclature
Aorta	Abdominal Aorta
CIA	Common Iliac Artery

Table 5-171: Artery

Name	Formal Nomenclature
Celiac Art	Celiac Artery
SMA	Superior Mesenteric Artery
Hepatic A	Hepatic Artery
Splenic A	Splenic Artery
IMA	Inferior Mesenteric Artery
Renal Artery	Renal Artery

Table 5-172: Kidney

Name	Formal Nomenclature
Kidney	Kidney
Adrenal	Adrenal

Table 5-173: Bowel

Name	Formal Nomenclature
Appendix	Appendix
Appendix Wall	Appendix Wall
Pylorus	Pylorus
Pylorus Wall	Pylorus Wall

Table 5-174: Hip joint

Name	Formal Nomenclature
Bony roof line	Bony roof line
Cartilage roof line	Cartilage roof line

Urological Measurement

Functional Overview

Table 5-175: 2D mode

Measurement item	Description
Seminal vesicles measurement	Distance
Testicular measurement	Distance Volume
Bladder measurement (prox · mid · dist)	Distance Volume Void Volume
	Distance (Ureter)
Renal measurement	Distance Volume
Renal cortex measurement	Distance
Adrenal measurement	Distance

Table 5-176: D-mode

Measurement item	Description
Renal artery measurement (Right · Left) (prox · mid · dist)	Peak Velocity PSV , EDV Mean Velocity Pl ,Rl , S/D
Interlobular arteries measurement (Right · Left) (prox · mid · dist)	Peak Velocity PSV , EDV Mean Velocity PI ,RI , S/D
Arcuate artery measurement (Right · Left) (prox · mid · dist)	Peak Velocity PSV , EDV Mean Velocity PI ,RI , S/D

Built-in Measurement Functions

Table 5-177: 2D mode

Measurement item	Display item	Unit
SV (Seminal Vesicles) (Right · Left)	AP RL SI	cm cm cm
Tst (Testis) (Right · Left)	L W AP Vol.	cm cm cm cm ³
Bladder	L W AP Vol.	cm cm cm ml
Pre-Bladder	L W AP Vol.	cm cm cm ml
Post-Bladder	L W AP Vol.	cm cm cm ml
Pre-Post Bl Vol.	Vol.	ml
Ureter (Right · Left)	prox. mid. dist.	mm mm mm
Renal (Right · Left)	L W AP Vol.	cm cm cm cm ³
Cortex (Right · Left)	T1 T2 T3	mm mm mm

Table 5-177: 2D mode

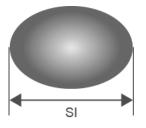
Measurement item	Display item	Unit
Adrenal (Right · Left)	L W AP	mm mm mm

Table 5-178: D-mode

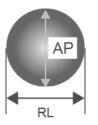
Measurement item	Display item	Unit
Renal (Right · Left) -org. -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	m/s m/s
InterLob Art. (Right · Left) -org. -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	m/s m/s
Arcuate Art. (Right · Left) -org. -prox. -mid. -dist.	PSV EDV MnV PI RI S/D	m/s m/s

2D mode

SV (Seminal Vesicles) Size Measurement


The size of the seminal vesicles is measured.

This section explains the procedure for measuring the right seminal vesicle as an example.


Both the right and left seminal vesicles are measured with the same procedure.

To measure seminal vesicles size

- 1 On a frozen 2D image of the seminal vesicle (longitudinal and transverse sections), select the **SV/Testis** tab on the touch panel.
- 2 Press the Rt.SV button. The touch panel is switched to the sequence screen.
- **3** The Rt.SV-RL button is lit. Measure the right-left diameter on the image of the transverse section.
- **4** The **Rt.SV-SI** button is lit. Measure the supero-inferior diameter on the image of the longitudinal section.
- **5** The **Rt.SV-AP** button is lit. Measure the anteroposterior diameter on the image of the transverse section.
- **6** Press the **SET** button. The measurement of Rt.SV is finalized.

Longitudinal

Transverse

Note

Perform measurement so that RL, AP and SI are crossed at right angles.

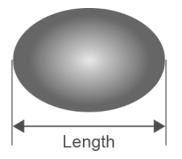
Table 5-179: Seminal vesicles measurement items

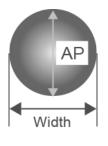
Rt. SV			Measurement item
RL	·_	cm	Right-left diameter
SI	·_	cm	Supero-inferior diameter

Table 5-179: Seminal vesicles measurement items

Rt. SV			Measurement item
AP	<u></u>	cm	Anteroposterior diameter

Testicular Volume Measurement


The volume of the testis is measured.


This section explains the procedure for measuring the right testis as an example.

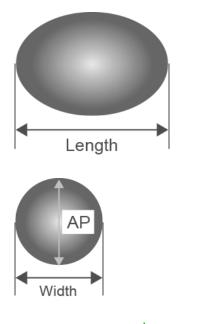
Both the right and left testes are measured with the same procedure.

To measure testicular volume

- 1 On a frozen 2D image of the seminal vesicle (longitudinal and transverse sections), Select the **SV/Testis** tab on the touch panel.
- 2 Select the Rt.Testis button. The touch panel is switched to the sequence screen.
- **3** The L button is lit. Measure the length on the image of the longitudinal section.
- 4 The w button is lit. Measure the width on the image of the transverse section.
- 5 The AP button is lit. Measure the anteroposterior diameter on the image of the transverse section.
- 6 Press the SET button. The measurement of Rt.Testis is finalized and the volume is calculated.

Note

Perform measurement so that L, W and AP are crossed at right angles.


Table 5-180: Testicular volume measurement items

Testicular Volu	me		Measurement item
L	·_	cm	Length
W	•_	cm	Width
AP	·-	cm	Anteroposterior diameter
Vlo	·_	cm ³	Testicular volume

Bladder Size Measurement

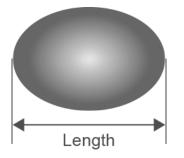
This section explains the procedure for measuring the size of the bladder.

- 1 On a frozen 2D image of the bladder (longitudinal and transverse sections), press the **Bladder** tab on the touch panel.
- 2 Select the Bladder Size button. The touch panel is switched to the sequence screen.
- **3** The L button is lit. Measure the length on the image of the longitudinal section.
- 4 The w button is lit. Measure the width on the image of the transverse section.
- **5** The **AP** button is lit. Measure the anteroposterior diameter on the image of the transverse section.
- 6 Press the SET button. The Bladder Size measurement is finalized.

Note

Perform measurement so that L, W and AP are crossed at right angles.

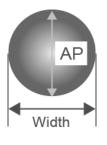
Table 5-181: Bladder size measurement items


Bladder Size			Measurement item
L	- -	cm	Length
W	·_	cm	Width
AP	·-	cm	Anteroposterior diameter

Bladder Volume Measurement

The void volume is measured by calculating the difference between the bladder volumes before and after urination.

To measure bladder volume before urination


- 1 On a frozen 2D image of the bladder (longitudinal and transverse sections) before urination, select the **Bladder** tab on the touch panel.
- 2 Select the Pre.BladderVoI. button. The touch panel is switched to the sequence screen.
- 3 Measure L, W and AP in the same way as the Bladder Size measurement.
- **4** Press the **SET** button. The measurement of Pre.BladderVol. is finalized and the volume is calculated.

To measure bladder volume after urination

- 1 On a frozen 2D image of the bladder (longitudinal and transverse sections) after urination, measure L, W and AP in the same way as the Pre.BladderVol. measurement.
- **2** Press the **SET** button. The measurement of Post.BladderVol. is finalized and the volume is measured.

At the same time, the Void Volume is calculated.

Note

Perform measurement so that L, W and AP are crossed at right angles.

Table 5-182: Bladder volume measurement items

Pre.Bladder Vol.			Measurement item
L	·_	mm	Length
W	· _	mm	Width
AP	· _	mm	Anteroposterior diameter
Vol.	· _	ml	Bladder volume
Post.Bladder V	ol.		Measurement item
L	•_	mm	Length

Post.Bladder Vol.			Measurement item
W	•_	mm	Width
AP	· _	mm	Anteroposterior diameter
Vol.	· _	ml	Bladder volume
Void Vol.			Measurement item
Pre-Post	· _	ml	Void volume

Ureter Distance Measurement

The diameter of the ureter is measured.

This section explains the procedure for measuring the size of the right ureter as an example.

Both the right and left ureters are measured with the same procedure.

To measure ureter diameter

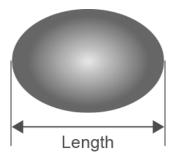
- 1 On a frozen 2D image of the ureter, select the **Bladder** tab on the touch panel.
- 2 Press the prox button of Rt.Ureter Distance and measure the proximal region (prox.) of the ureter.
- **3** Select the mid button and measure the middle region (mid.) of the ureter.
- 4 Select the dist and measure the distal region (dist.) of the ureter.
- 5 Press the SET button. The Ureter measurement is finalized.

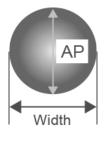
Not all the regions (prox., mid. and dist.) need to be measured. When performing the measurement only at a target region, select the corresponding button directly.

Table 5-183: Ureter distance measurement items

Rt.Ureter			Measurement item
prox	·_	mm	Proximal region
mid	· _	mm	Middle region
dist	·_	mm	Distal region

Renal Volume Measurement


The volume of the kidney is measured.


This section explains the procedure for measuring the right kidney as an example.

Both the right and left kidneys are measured with the same procedure.

To measure renal volume

- 1 On a frozen 2D image of the kidney (longitudinal and transverse sections), select the **Renal** tab on the touch panel.
- 2 Select the Rt.Renal button. The touch panel is switched to the sequence screen.
- **3** The L button is lit. Measure the length on the image of the longitudinal section.
- **4** The **w** button is lit. Measure the width on the image of the transverse section.
- **5** The **AP** button is lit. Measure the anteroposterior diameter on the image of the transverse section.
- 6 Press the SET button. The measurement of Rt.Renal is finalized and the volume is calculated

Note

Perform measurement so that L, W and AP are crossed at right angles.

Table 5-184: Renal volume measurement items

Rt. Renal			Measurement item
L		cm	Length
W	•_	cm	Width
AP	· _	cm	Anteroposterior diameter
Vol.	· _	cm ³	Renal volume

Cortex Thickness Measurement

The thickness of the renal cortex is measured.

This section explains the procedure for measuring the right cortex as an example.

Both the right and left cortices are measured with the same procedure.

To measure the thickness of the renal cortex

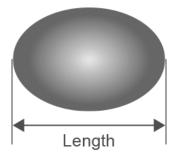
- 1 On a frozen 2D image of the cortex, select the **Renal** tab on the touch panel.
- 2 Select the Rt.Cortex. button. The touch panel is switched to the sequence screen.
- **3** The **T1** button is lit. Measure the first position.
- 4 The T2 button is lit. Measure the second position.
- 5 The T3 button is lit. Measure the third position.
- 6 Press the SET button. The Cortex measurement is finalized.

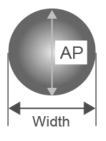
Not all the positions (T1, T2 and T3) need to be measured. When performing the measurement only at a target position, select the corresponding button directly.

Table 5-185: Cortex thickness measurement items

Rt.Cortex			Measurement item
T1		mm	Thickness1
T2	•_	mm	Thickness2
Т3	•_	mm	Thickness3

Adrenal Size Measurement


The size of the adrenal gland is measured.


This section explains the procedure for measuring the right adrenal gland as an example.

Both the right and left adrenal glands are measured with the same procedure.

To measure adrenal gland size

- 1 On a frozen2 D image of the adrenal gland, select the Renal tab on the touch panel.
- 2 Select the Rt.Adrenal button. The touch panel is switched to the sequence screen.
- **3** The L button is lit. Measure the length on the image of the longitudinal section.
- 4 The w button is lit. Measure the width on the image of the transverse section.
- **5** The **AP** button is lit. Measure the anteroposterior diameter on the image of the transverse section.
- 6 Press the SET button. The Adrenal Size measurement is finalized.

Note

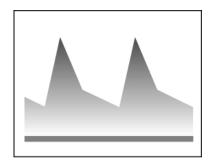
Perform measurement so that L, W and AP are crossed at right angles.

Table 5-186: Adrenal size measurement items

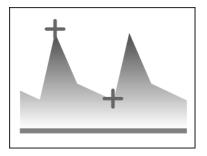
Adrenal Size			Measurement item
L	· _	mm	Length
W	· _	mm	Width
AP	·_	mm	Anteroposterior diameter

D-mode

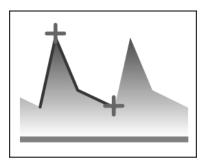
Renal Art (Renal Artery) Measurement


The blood flow of the kidney is measured.

This section explains the procedure for measuring the right renal artery as an example.


Both the right and left renal arteries are measured with the same procedure. Other items are also measured in the same way.

To measure the renal artery


- 1 On a frozen Doppler image of the right renal artery, Select the Renal Art tab on the touch panel.
- 2 Select the org. button of Rt.Renal. The touch panel is switched.

- **3** To measure PSV and EDV:
 - **a** Select the PSV,EDV button.
 - **b** Place the caliper on each point and press the SET button to finalize the measurement.

- **4** To measure PI and RI:
 - a Select the PI,RI button.
 - **b** Use the caliper to trace the target waveform.
 - c Press the SET button. The measurement is finalized and the MnV, PI, RI and S/D values are calculated.

As the methods for tracing the Doppler waveform, Velocity Trace (manual tracing) or Auto Velocity Trace can be selected.

For details on the procedure of each method, see "4.18.5 Velocity Trace".

Table 5-187: Renal artery measurement items

Rt. Renal Art			Measurement item
⊿t (ET)	·_	ms	Ejection time
HR		bpm	Heart rate
MaxV	•_	m/s	Maximum velocity
MinV	•_	m/s	Minimum velocity
MnV	· _		Mean velocity

Table 5-187: Renal artery measurement items

Rt. Renal Art			Measurement item
⊿t	·_		Time between two points
PI			Pulsatility Index
RI			Resistance Index
S/D			S/D ratio
		beat	Number of heartbeats

Worksheet/Report

Report Display

This section explains the Report screen of the urological measurement.

The URO report screen is divided into four categories (SV, Testis, Bladder and Renal) in addition to Study Information and Exam Information.

Exam Info		
Study ID	TEST	
Operator	SONO HANAKO	

Figure 5-41: Study Information screen

Study Info		
Height	175.30 cm	
Weight	65.90 kg	
BSA Type	Oriental(Adult)	
BSA	1.804 m ²	

Figure 5-42: Exam Information screen

Bladder					
Bladder Size					
L	W		AP		
7.47 cr	n 4.76	cm	6.45	cm	

Figure 5-43: URO_Report screen <Report Screen (Category_SV>

Switching the page of Report screen

If the report results cannot be displayed within one page, the number of the report pages is displayed at the lower side of the touch panel.

To switch the page, operate the switch menu button under Report Page.

Switching to the Worksheet

Select the Worksheet at the right side of the touch panel.

Editing Values on Worksheet

This section explains the URO Worksheet screen.

On the Worksheet screen, the measurement values (measurement results) of the urological measurement are displayed. The displayed values can also be corrected or deleted.

In addition, measurement items to be used and displayed can be specified on the Worksheet screen.

Specifying information items on the Study / Exam Information screen

Information items to be displayed on the screens such as the Report screen can be specified by placing a check mark in the check box on the left-hand side of each information item (e.g. Refering Phys) on the worksheet.

Specifying measurement items for the Urological measurement

The measurement items for the Urological measurement can be specified by placing a check mark in the check box on the left-hand side of each measurement item (e.g. URO_SV-AP_Rt.) on the worksheet.

Switching the page of Worksheet

If the content of the worksheet cannot be displayed within one page, the number of the worksheet pages is displayed at the lower side of the touch panel.

To switch the page, operate the switch menu button under Worksheet Page.

Switching to the Report screen

Select the Report button at the right side of the touch panel.

Terms and abbreviations

Table 5-188: Measurement terms and abbreviations

Term/Abbreviation	Formal Nomenclature
Adrenal	Adrenal
AP	Antero posterior diameter
Arcuate	Arcuate Artery
BIF	Bifurcation
Bladder	Bladder
Cortex	Renal cortex
dist.	distal
EDV	end diastolic velocity
InterLob	Interlobular Arteries
L	Length
Lt.	Left
mid.	mid
PI	pulsatility index
Post Bladder Vol.	Post Bladder Volume
Pre Bladder Vol.	Pre Bladder Volume
prox.	proximal
PSV	peak systolic flow velocity
Renal	Renal
Renal Art	Renal Artery
RI	resistance index
RL	Right-Left diameter
Rt.	Right
S/D	systolic diastolic ratio, SD ratio
SI	Supero inferior diameter

Table 5-188: Measurement terms and abbreviations

Term/Abbreviation	Formal Nomenclature
SV	Seminal Vesicles
T1	Cortex Thickness 1
T2	Cortex Thickness 2
Т3	Cortex Thickness 3
Testis Vol.	Testicular Volume
Ureter	Ureter
Void Vol.	Void Bladder Volume
Vol.	Volume
W	Width

Chapter 6: References for Measurement Accuracy

Measurement accuracy

A H V The measurements provided by the system do not define a specific physiological or anatomical parameter. Rather, the measurements are of a physical property, such as distance, for the clinician to evaluate. The accuracy values require that you can place the calipers over one pixel. The values do not include acoustic anomalies of the body.

The linear distance measurement components have the accuracy and range shown in the following tables.

Table 6-1: 2D measurement, calculation accuracy, and range

2D mode measurement accuracy and range	System tolerance ¹	Accuracy by	Test method ²	Range (cm)
Axial distance	$< \pm 2\%$ plus 1% of full scale	Acquisition	Phantom	0-26 cm
Lateral distance	$< \pm 2\%$ plus 1% of full scale	Acquisition	Phantom	0-35 cm
Diagonal distance	$<\pm2\%$ plus 1% of full scale	Acquisition	Phantom	0-44 cm
Area ³	< ±4% plus (2% of full scale/ smallest dimension) * 100 plus 0.5%	Acquisition	Phantom	0.01-720 cm ²
Circumference ⁴	< ±3% plus (1.4% of full scale/ smallest dimension) * 100 plus 0.5%	Acquisition	Phantom	0.01-96 cm

1. Full scale for distance implies the maximum depth of the image.

2. An RMI 413a model phantom with 0.7 dB/cm MHz attenuation was used.

3. The area accuracy is defined using the following equation:% tolerance = ((1 + lateral error) * (1 + axial error) - 1) * 100 + 0.5%.

4. The circumference accuracy is defined as the greater of the lateral or axial accuracy and by the following equation: % tolerance = ((maximum of 2 errors) * 100) + 0.5%.

Table 6-2: M- mode measurement, calculation accuracy, and range

M mode measurement accuracy and range	System tolerance	Accuracy by	Test method	Range
Distance	< +/- 2% plus 1% of full scale ¹	Acquisition	Phantom ²	0-26 cm
Time	< +/- 2% plus 1% of full scale ³	Acquisition	Phantom ⁴	0.01-10 sec
Heart Rate	< +/- 2% plus (Full Scale ³ * Heart Rate/100) %	Acquisition	Phantom ⁴	5-923 bpm

1. Full scale for distance implies the maximum depth of the image.

2. An RMI 413a model phantom with 0.7 dB/cm MHz attenuation was used.

3. Full scale for time implies the total time displayed on the scrolling graphic image.

4. FUJIFILM SonoSite special test equipment was used.

Table 6-3: PW Doppler mode measurement, calculation accuracy, and range

Doppler mode measurement accuracy and range	System tolerance	Accuracy by	Test method ¹	Range
Velocity cursor	< +/- 2% plus 1% of full scale ²	Acquisition	Phantom	0.01 cm/sec - 550 cm/sec

Table 6-3: PW Doppler mode measurement, calculation accuracy, and range

Doppler mode measurement accuracy and range	System tolerance	Accuracy by	Test method ¹	Range
Time	< +/- 2% plus 1% of full scale ³	Acquisition	Phantom	0.01 - 10 sec

1. FUJIFILM SonoSite special text equipment was used.

2. Full scale for frequency or velocity implies the total frequency or velocity magnitude, displayed on the scrolling graphic image.

3. Full scale for time implies the total time displayed on the scrolling graphic image.

Sources of measurement errors

In general, two types of errors can be introduced into the measurement:

Acquisition Error

This includes errors introduced by the ultrasound system electronics relating to signal acquisition, signal conversion, and signal processing for display. Additionally, computational and display errors are introduced by the generation of the pixel scale factor, application of that factor to the caliper positions on the screen, and the measurement display.

Algorithmic Error

The error introduced by measurements, which are input to higher order calculations. This error is associated with floating-point versus integer-type math, which is subject to errors introduced by rounding versus truncating results for display of a given level of significant digit in the calculation.

Measurement publications and terminology

The following topics list the publications and terminology used for each calculation result.

Terminology and measurements comply with AIUM published standards.

Cardiac references

Acceleration (ACC) in cm/s²

Zwiebel, W.J. Introduction to vascular ultrasonography. 4th ed., W.B. Saunders Company, (2000), 52.

ACC = abs (delta velocity/delta time)

Acceleration time (AT) in msec

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 219.

Aortic valve area (AVA) by continuity equation in cm²

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 393, 442.

 $A_2 = A_1 * V_1 / V_2$

where:

- A₂ = Ao valve area
- $A_1 = LVOT$ area; $V_1 = LVOT$ velocity; $V_2 = Ao$ valve velocity
- LVOT = Left Ventricular Outflow Tract
- ▶ AVA (PV_{LVOT}/PV_{AO}) * CSA_{LVOT}

```
AVA (VTI_{LVOT}/VTI_{AO}) * CSA_{LVOT}
```

Body surface area (BSA) in m²

Grossman, W. Cardiac catheterization and angiography. Philadelphia: Lea and Febiger, (1980), 90.

```
BSA = 0.007184 * Weight<sup>0.425</sup> * Height<sup>0.725</sup>
```

Weight = kilograms

Height = centimeters

Cardiac index (CI) in l/min/m²

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 59.

CI = CO/BSA

where:

- CO = Cardiac Output
- BSA = Body Surface Area

Cardiac output (CO) in l/min

Oh, J.K., J.B. Seward, A.J. Tajik The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 59.

CO = (SV * HR)/1000

where:

- ► CO = Cardiac Output
- SV = Stroke Volume
- HR = Heart Rate

Cross sectional area (CSA) in cm²

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 383.

CSA = 0.785 * D²

where:

D = diameter of the anatomy of interest

Deceleration time in msec

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 453.

time a - time b

Delta pressure: delta time (dP:dT) in mmHg/s

Otto, C.M. Textbook of clinical echocardiography. 2nd ed., W.B. Saunders Company, (2000), 117, 118.

32 mmHg/time interval in seconds

E:A ratio in cm/sec

E:A = velocity E/velocity A

E/Ea ratio

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 225.

E Velocity/Ea velocity

where:

E velocity = Mitral Valve E velocity

Ea = annular E velocity, also known as: E prime

Effective regurgitant orifice (ERO) in mm²

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 455.

 $ERO = 6.28 (r^2) * Va/MR Vel$

where:

- ▶ r = radius
- Va = aliasing velocity

Ejection fraction (EF), percent

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 40.

EF = ((LVEDV - LVESV)/LVEDV) * 100%

where:

- ▶ EF = Ejection Fraction
- LVEDV = Left Ventricular End Diastolic Volume
- LVESV = Left Ventricular End Systolic Volume

Elapsed time (ET) in msec

ET = time between velocity cursors in milliseconds

Heart rate (HR) in bpm

HR = 3-digit value input by user or measured on M Mode and Doppler image in one heart cycle

Interventricular septum (IVS) fractional thickening, percent

Laurenceau, J. L., M.C. Malergue. The essentials of echocardiography. Le Hague: Martinus Nijhoff, (1981), 71.

IVSFT = ((IVSS – IVSD)/IVSD) * 100%

where:

- IVSS = Interventricular septum thickness, end systole
- IVSD = Interventricular septum thickness, end diastole

Isovolumic relaxation time (IVRT) in msec

Reynolds, Terry. *The echocardiographer's pocket reference*. School of Cardiac Ultrasound, Arizona Heart Institute, (1993), 146.

|time a - time b|

Left atrium/aorta (LA/Ao)

Feigenbaum, H. Echocardiography. Philadelphia: Lea and Febiger, (1994), 206, Figure 4-49.

Left ventricular end volumes (Teichholz) in ml

Teichholz, L.E., T. Kreulen, M.V. Herman, et. al. "Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence or absence of asynergy." *American Journal of Cardiology* (1976), 37:7.

 $LVESV = (7.0 * LVDS^3)/(2.4 + LVDS)$

where:

- LVESV = Left Ventricular End Systolic Volume
- LVDS = Left Ventricular Dimension at Systole
- LVEDV = (7.0 * LVDD³)/(2.4 + LVDD)

where:

- LVEDV = Left Ventricular End Diastolic Volume
- LVDD = Left Ventricular Dimension at Diastole

Left ventricular mass in gm

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 39.

LV Mass = 1.04 [(LVID + PWT + IVST)³ - LVID³] * 0.8 + 0.6

where:

- LVID = Internal Dimension
- PWT = Posterior Wall Thickness
- IVST = Interventricular Septal Thickness
- ▶ 1.04 = Specific gravity of the myocardium
- 0.8 = Correction factor

Left ventricular volume: biplane method in ml

Schiller, N.B., P.M. Shah, M. Crawford, et.al. "Recommendations for quantitation of the left ventricle by twodimensional echocardiography," *Journal of American Society of Echocardiography* September-October 1989, 2:362.

$$\mathbf{V} = \left(\frac{\pi}{4}\right) \sum_{i=1}^{n} \mathbf{a}_{i} \, \mathbf{b}_{i} \left(\frac{\mathbf{L}}{n}\right)$$

where:

- V = Volume in ml
- ▶ a = Diameter
- b = Diameter
- n = Number of segments (n=20)
- ▶ L = Length
- ▶ i = Segment

Left ventricular volume: single plane method in ml

Schiller, N.B., P.M. Shah, M. Crawford, et.al. "Recommendations for quantitation of the left ventricle by twodimensional echocardiography," *Journal of American Society of Echocardiography* September-October 1989, 2:362.

$$\mathbf{V} = \left(\frac{\pi}{4}\right) \sum_{i=1}^{n} \mathbf{a}_{i}^{2} \left(\frac{\mathbf{L}}{\mathbf{n}}\right)$$

where:

- ► V = Volume
- ▶ a = Diameter
- n = Number of segments (n=20)
- L = Length
- ▶ i = Segment

Left ventricular dimension (LVD) fractional shortening, percent

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual 2nd ed., Lippincott, Williams, and Wilkins, (1994), 43-44.

LVDFS = ((LVDD - LVDS)/LVDD) * 100%

where:

- LVDD = Left Ventricle Dimension at Diastole
- LVDS = Left Ventricle Dimension at Systole

Left ventricular posterior wall fractional thickening (LVPWFT), percent

Laurenceau, J. L., M.C. Malergue. The essentials of echocardiography. Le Hague: Martinus Nijhoff, (1981), 71.

LVPWFT = ((LVPWS - LVPWD)/LVPWD) * 100%

where:

- LVPWS = LV posterior wall thickness, end systole
- LVPWD = LV posterior wall thickness, end diastole

Mean velocity (Vmean) in cm/s

Vmean = mean velocity

Mitral valve area (MVA) in cm²

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 391, 452.

MVA = 220/PHT

where:

PHT = pressure half time

Note

220 is an empirical derived constant and may not accurately predict mitral valve area in mitral prosthetic heart valves. The mitral valve area continuity equation may be used in mitral prosthetic heart valves to predict the effective orifice area.

MV flow rate in cc/sec

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 396.

 $Flow = 6.28 (r^2) * Va$

where:

▶ r = radius

Va = aliasing Velocity

Pressure gradient (PGr) in mmHG

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 64.

 $PGr = 4 * (Velocity)^2$

Peak E Pressure Gradient (E PG)

 $E PG = 4 * PE^2$

Peak A Pressure Gradient (A PG)

 $A PG = 4 * PA^2$

Peak Pressure Gradient (PGmax)

 $PGmax = 4 * PV^2$

Mean Pressure Gradient (PGmean)

PGmean = Average of pressure gradients/Duration of flow

Pressure half time (PHT) in msec

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 391.

PHT = DT * 0.29

where:

DT = deceleration time

Proximal isovelocity surface area (PISA) in cm²

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 125.

 $PISA = 2\pi r^2$

where:

2π = 6.28

r = aliasing radius

Qp/Qs

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 400.

Qp/Qs = SV Qp site/SV Qs site

SV sites vary depending upon the location of the shunt.

Regurgitant fraction (RF) in percent

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 125.

RF = RV/MVSV

where:

- RV = Regurgitant Volume
- MV SV = Mitral Stroke Volume

Regurgitant volume (RV) in cc

Reynolds, Terry. *The echocardiographer's pocket reference*. School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 396, 455.

RV = ERO * MR VTI

Right ventricular systolic pressure (RVSP) in mmHg

Reynolds, Terry. *The echocardiographer's pocket reference*. School of Cardiac Ultrasound, Arizona Heart Institute, (1993), 152.

 $RVSP = 4 * (Vmax TR)^2 + RAP$

where:

RAP = Right Atrial Pressure

S/D

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed., School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 217.

S velocity/ D velocity

where:

- S velocity = Pulmonary vein S wave
- D velocity= Pulmonary vein D wave

Stroke index (SI) in cc/m²

Mosby's medical, nursing, & allied health dictionary, 4th ed. (1994), 1492.

SI = SV/BSA

where:

- SV = Stroke Volume
- BSA = Body Surface Area

Stroke volume (SV) Doppler in ml

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed. Lippincott, Williams, and Wilkins, (1999), 40, 59, 62.

SV = (CSA * VTI)

where:

- CSA = Cross-Sectional Area of the orifice (LVOT area)
- VTI = Velocity Time Integral of the aortic valve

Stroke volume (SV) 2D and M mode in ml

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed. Lippincott, Williams, and Wilkins, (1994), 44.

SV = (LVEDV - LVESV)

where:

- SV = Stroke Volume
- LVEDV = End Diastolic Volume
- LVEDSV = End Systolic Volume

Velocity time integral (VTI) in cm

Reynolds, Terry. *The echocardiographer's pocket reference*. 2nd ed. School of Cardiac Ultrasound, Arizona Heart Institute, (2000), 383.

VTI = sum of abs (velocities [n])

where:

Auto Trace = distance (cm) blood travels with each ejection period. Velocities are absolute values.

Obstetrical references

Estimated date of delivery (EDD) by last menstrual period (LMP)

The date entered into the patient information for LMP must precede the current date.

Results are displayed as month/day/year.

EDD = LMP date + 280 days.

Gestational age (GA) by last menstrual period (LMP)

The gestational age derived from the LMP date entered on the patient information form.

Result is displayed in weeks and days, and is calculated as follows:

GA(LMP) = System date - LMP date

Gestational age (GA) by last menstrual period (LMPd) derived from established due date (Estab. DD)

Same as GA by Estab. DD.

The gestational age derived from the system derived LMP using the Established Due Date entered on the patient information form.

Result is displayed in weeks and days, and is calculated as follows:

GA(LMPd) = System Date - LMPd

Last menstrual period derived (LMPd) by established due date (Estab. DD)

Result is displayed as month/day/year.

LMPd(Estab. DD) = Estab. DD - 280 days

General references

+/x or S/D ratio

+/x = abs (Velocity A/Velocity B)

where:

- A = velocity cursor +
- B = velocity cursor x

Acceleration index (ACC)

Zwiebel, W.J. Introduction to vascular ultrasonography, 4th ed., W.B. Saunders Company, (2000), 52.

ACC = abs (delta velocity/delta time)

Elapsed time (ET)

ET = time between velocity cursors in milliseconds

Hip angle/d:D ratio

Graf, R. "Fundamentals of sonographic diagnosis of infant hip dysplasia," *Journal of Pediatric Orthopedics* Vol. 4, No. 6: 735-740, 1984.

Morin, C., Harcke, H., MacEwen, G. "The infant hip: Real-time US assessment of acetabular development," *Radiology* 177: 673-677, December 1985.

Intima media thickness (IMT)

Howard G, Sharrett AR, Heiss G, Evans GW, Chambless LE, Riley WA, et al. "Carotid artery intima-medial thickness distribution in general populations as evaluated by B-mode ultrasound." ARIC Investigators. Atherosclerosis Risk in Communities. *Stroke* (1993), 24:1297-1304.

O'Leary, Daniel H., MD and Polak, Joseph, F., MD, et al. "Use of sonography to evaluate carotid atherosclerosis in the elderly. The Cardiovascular Health study," *Stroke* (September 1991), 22,1155-1163.

Redberg, Rita F., MD and Vogel, Robert A., MD, et al. "Task force #3—What is the spectrum of current and emerging techniques for the noninvasive measurement of atherosclerosis?" *Journal of the American College of Cardiology* (June 4, 2003), 41:11, 1886-1898.

Percent area reduction

Taylor K.J.W., P.N. Burns, P. Breslau. Clinical applications of Doppler ultrasound, Raven Press, N.Y., (1988), 130-136.

Zwiebel W.J., J.A. Zagzebski, A.B. Crummy, et al. "Correlation of peak Doppler frequency with lumen narrowing in carotid stenosis," *Stroke* 3: (1982), 386-391.

% Area Reduction = (1 - A2(cm²)/A1(cm²)) * 100

where:

- A1 = original area of the vessel in square cm
- A2 = reduced area of the vessel in square cm

Percent diameter reduction

Handa, Nobuo et al., "Echo-Doppler velocimeter in the diagnosis of hypertensive patients: The renal artery Doppler technique," *Ultrasound in Medicine and Biology* 12:12 (1986), 945-952.

% Diameter Reduction = (1 - D2(cm)/D1(cm)) * 100

where:

- ▶ D1 = original diameter of the vessel in cm
- D2 = reduced diameter of the vessel in cm

Pressure gradient (PGr) in mmHG

Oh, J.K., J.B. Seward, A.J. Tajik. The echo manual. 2nd ed., Lippincott, Williams, and Wilkins, (1999), 64.

4 * (Velocity)²

Peak E Pressure Gradient (E PG)

 $E PG = 4 * PE^2$

Peak A Pressure Gradient (A PG)

 $A PG = 4 * PA^2$

Peak Pressure Gradient (PGmax)

 $PGmax = 4 * PV^2$

Mean Pressure Gradient (PGmean)

 $PGmean = 4 * Vmax^2$

Pulsatility index (PI)

Kurtz, A.B., W.D. Middleton. Ultrasound--the requisites. Mosby Year Book, Inc., (1996), 469.

PI = (PSV - EDV)/V

where:

- PSV = peak systolic velocity
- EDV = end diastolic velocity
- ▶ V = mean flow velocity throughout the entire cardiac cycle

Resistance index (RI)

Kurtz, A.B., W.D. Middleton. Ultrasound--the requisites. Mosby Year Book, Inc., (1996), 467.

RI = abs ((Velocity A – Velocity B)/Velocity A) in measurements

where:

- A = velocity cursor +
- B = velocity cursor x

Time averaged mean (TAM) in cm/s

TAM = mean (mean Trace)

Time averaged peak (TAP) in cm/s

TAP = peak (peak Trace)

Volume (Vol)

Beyer, W.H. Standard mathematical tables, 28th ed., CRC Press, Boca Raton, FL, (1987), 131.

Volume flow (VF) in ml/min

Allan, Paul L. et al. Clinical Doppler ultrasound, 4th ed. Harcourt Publishers Limited. (2000), 36-38.

One of the following, depending on the Live Trace setting:

VF = CSA * TAM * .06

VF = CSA * TAP * .06

Chapter 7: Troubleshooting and maintenance

This chapter contains information that will help you correct problems with system operation, enter a software license, and take proper care of the system, transducer, and accessories.

Troubleshooting

HA

If you encounter difficulty with the system, check whether your problem and its solution are in the following list. If they are not, or if the problem persists, contact FUJIFILM SonoSite Technical Support.

System does not turn on

- 1 Check all power connections.
- **2** Remove the AC adapter and battery, wait for 10 seconds, and then reinstall the battery and reconnect the AC adapter.
- **3** Ensure that the battery is charged.

System image quality is poor

- **1** Adjust the viewing angle of the display.
- 2 Adjust the brightness.
- **3** Adjust the gain.

For details on how to adjust the gain, see "Adjusting the depth and gain of the image" on page 111.

There is no CPD image

Adjust the gain.

For details on how to adjust the gain, see "Adjusting the depth and gain of the image" on page 111.

There is no color image

Adjust the gain or the PRF scale.

For details on how to adjust the gain, see "Adjusting the depth and gain of the image" on page 111. For more information on the PRF scale, see "Indirect controls" on page 539.

There are no measurement selections

• Ensure the desired exam type has been selected and that the image is frozen. Press the CALCS button.

Printing does not work

- 1 Set Start in Output Management to ON. For the detailed procedure, see "Managing the output queue of examinations and images" on page 199.
- **2** Select the printer on the Store Button setup page.

For more information on assigning functions to Store buttons, see "Configuring Store buttons" on page 29.

- **3** Check the printer connections.
- 4 Ensure that the printer is turned on and set up properly.
- 5 Review the printer manufacturer's instructions.

Printing does not work with UP-X898MD

Caution

After installation of the UP-X898MD printer, you must configure the printer to emulate the **DRV**: **897** driver.

If you do not switch to the appropriate printer driver, the printer will not work.

- 1 On the printer, press the joystick (menu lever) to display the menu.
- **2** Using the joystick, scroll to **DIGITAL**, and then press the joystick to select.
- **3** Using the joystick, scroll to **DRIVER**, and then press the joystick to start.
- 4 Using the joystick, scroll to DRV: 897, and then press the joystick to select.

System does not recognize the transducer

Disconnect and reconnect the transducer.

System does not mount the USB memory

- 1 Make sure that:
 - Password protection is not enabled for the USB memory.
 - The USB memory is not defective.
- **2** Use the USB memory included with the system.

System does not accept the data imported from USB

- 1 Make sure that the data are present in the DICOM format on the USB memory.
- 2 Re-export the original data in the DICOM format onto the USB memory.
- **3** Contact your system administrator.

The external video is not working

1 Make sure that the system is securely attached to the DVD Recorder.

Note that the system does not work with the Image Store function.

2 Delete any unwanted images or clips from the patient exam.

See "Deleting images" on page 197.

Patient information cannot be edited during examinations

- Images transferred to DICOM Storage exist.
- ▶ The work list is in use.

In the cases above, the patient information cannot be edited.

If Exam in Progress is selected in the "Setting timing for DICOM network storage" on page 50, the patient information can also be edited by selecting OFF for Start on the Output Management screen while there is no transferred image. For details, see "Managing the output queue of examinations and images" on page 199.

Patient information cannot be edited after examinations

- Images transferred to DICOM Storage exist.
- The work list is in use.
- An examination has been output or input to the USB drive.
- Images have accumulated in the output queue.

In the cases above, the Edit button is unavailable.

Edited patient information is not reflected to the image

Information in the header of the saved image has not been updated.

Information in the header is reflected only to the DICOM tag information.

Barcode cannot be read correctly

1 Set the peripheral used to a barcode.

See "Barcode reader and magnetic card reader setting" on page 42.

If the above procedures cannot solve problems, it is necessary to specify a barcode reader correctly. See the following examples for reference to set correctly.

Barcode reader can read the following three types.

Code128, NW-7(CODABAR), and/or Code39

Patient ID Reading by Barcode [CODE128]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-1: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	0	0
Patient ID Length	8	8
Accession No. Start Position	9	9
Accession No. Length	1	1

- **2** Press the PATIENT button.
- **3** Read the following Table 7-2 barcode by means of barcode reader.

Table 7-2: Barcode value

ltem	Value	Barcode
ID	ABCabc01	

Patient ID Reading by Barcode [NW-7(CODABAR)]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-3: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	1	0
Patient ID Length	5	5
Accession No. Start Position	7	7
Accession No. Length	1	1

- **2** Press the PATIENT button.
- **3** Read the following Table 7-4 barcode by means of barcode reader.

Table 7-4: Barcode value

ltem	Value	Barcode
ID	00123	

Patient ID Reading by Barcode [CODE39]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-5: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	0	0
Patient ID Length	8	8
Accession No. Start Position	9	9
Accession No. Length	1	1

2 Press the PATIENT button.

3 Read the following Table 7-6 barcode by means of barcode reader.

Table 7-6: Barcode value

ltem	Value	Barcode
ID	ABC01234	

Receipt Number Reading by Barcode [CODE128]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-7: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	9	9
Patient ID Length	1	1
Accession No. Start Position	0	0
Accession No. Length	8	8

2 Press the PATIENT button.

3 Read the following Table 7-8 barcode by means of barcode reader.

Table 7-8: Barcode value

ltem	Value	Barcode
Receipt number	ABCabc01	

Receipt Number Reading by Barcode [NW-7(CODABAR)]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-9: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	7	7
Patient ID Length	1	1
Accession No. Start Position	1	0
Accession No. Length	5	5

- **2** Press the PATIENT button.
- **3** Read the following Table 7-10 barcode by means of barcode reader.

Table 7-10: Barcode value

ltem	Value	Barcode
Receipt number	00123	

Receipt Number Reading by Barcode [CODE39]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-11: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	9	9
Patient ID Length	1	1
Accession No. Start Position	0	0
Accession No. Length	8	8

2 Press the PATIENT button.

3 Read the following Table 7-12 barcode by means of barcode reader.

Table 7-12: Barcode value

ltem	Value	Barcode
Receipt number	ABC01234	

Patient ID and Receipt Number Reading by Barcode [CODE128]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-13: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	0	0
Patient ID Length	5	5
Accession No. Start Position	5	5
Accession No. Length	7	7

2 Press the PATIENT button.

3 Read the following Table 7-14 barcode by means of barcode reader.

Table 7-14: Barcode value

ltem	Value	Barcode
ID	ID123	
Receipt number	AN12345	

Patient ID and Receipt Number Reading by Barcode [NW-7(CODABAR)]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-15: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	1	0
Patient ID Length	5	5
Accession No. Start Position	6	5
Accession No. Length	7	7

- **2** Press the PATIENT button.
- **3** Read the following Table 7-16 barcode by means of barcode reader.

Table 7-16: Barcode value

ltem	Value	Barcode
ID	00123	
Receipt number	1234567	

Patient ID and Receipt Number Reading by Barcode [CODE39]

1 Specify a barcode reader.

See "To specify a barcode reader" on page 42.

Table 7-17: Barcode reader parameter

ltem	Parameter (DataLogic)	Parameter (Jadak)
Patient ID Start Position	0	0
Patient ID Length	5	5
Accession No. Start Position	5	5
Accession No. Length	7	7

2 Press the PATIENT button.

3 Read the following Table 7-18 barcode by means of barcode reader.

Table 7-18: Barcode value

ltem	Value	Barcode
ID	ID123	
Receipt number	AN12345	

Patient information link with C@RNACORE cannot be used

- > Check that the patient ID entered on the FC1 Patient Info screen is correct.
- Check that the LAN cable is connected.
- Check that the C@RNACORE version support patient information link. See "Server connection settings" on page 44.
- Check that a device name compatible with C@RNACORE has been entered. For more information, see "Server connection settings" on page 44.

Order link with C@RNACORE cannot be used

- Check that the FC1 is turned on.
- Check that the LAN cable is connected.
- > Check that the examination screen or Patient Info screen is displayed.
- Check that the DICOM and DICOM MWL settings are correct. See "Specifying DICOM settings" on page 45 and "DICOM MWL setting" on page 46.

- > Check that the C@RNACORE version support order link. See "Server connection settings" on page 44.
- Check that a device name compatible with C@RNACORE has been entered. For more information, see "Server connection settings" on page 44.

When using order link with C@RNACORE, the examination cannot be started with the transducer I want to use

- > Check that the transducer is connected.
- Check that the examination type setting is appropriate. For more information about the settings, see "Configuring examination defaults (Exam Type Setting)" on page 67.

Software licensing

FUJIFILM SonoSite software is controlled by a license key. After you install new software, the system prompts you for a license key. You must obtain one key for each system or transducer that uses the software.

The software will operate for a short time (the grace period) without a license key. During the grace period, all system functions are available. After the grace period, you cannot use the system until you enter a valid license key

Caution

After the grace period expires, all system functions except licensing are unavailable until a valid license key is entered.

To obtain a license key for your software, contact FUJIFILM SonoSite Technical Support. You will need to provide the following information. For the steps to obtain this information, see "Viewing system information" on page 77.

The following information is required to obtain a license key:

- ARM version
- PCBA serial number
- Name of person installing the upgrade
- > System serial number (can be found on the bottom of the system)

After you obtain a license key, enter it into the system.

To enter a license key

1 Turn on the system.

The license update screen appears.

- 2 Type the license key in the Enter license number field.
- 3 Select OK on-screen.
- **4** If you entered a valid license key but the license update screen appears, verify that you entered the license key correctly.

If the license update screen still appears, contact FUJIFILM SonoSite Technical Support.

5 When you are prompted to restart the system, press the **POWER** button ()) to turn the system off, and then press it again to turn it back on.

Maintenance

WARNING

Do not modify the FC1 ultrasound system.

No periodic or preventive maintenance is required for the system, transducer, or accessories other than cleaning and disinfecting the transducer after every use (see "Cleaning and disinfecting" on page 489). There are no internal components that require periodic testing or calibration. All maintenance requirements are described in this *User guide*. Performing maintenance procedures not described in this *User guide* may void the product warranty.

Contact FUJIFILM SonoSite Technical Support for any maintenance questions.

Chapter 8: Cleaning and disinfecting

This section updates the instructions for cleaning and disinfecting the ultrasound system, transducers, and accessories.

Use the FUJIFILM SonoSite recommendations when cleaning or disinfecting your ultrasound system, transducer, and accessories. Use the cleaning recommendations in the peripheral manufacturer's instructions when cleaning or disinfecting your peripherals.

The system and transducers must be cleaned and disinfected after each exam. It is important to follow these cleaning and disinfecting instructions without skipping any steps.

See www.sonosite.com/transducers, for transducer images.

Before getting started

- ▶ Follow the disinfectant manufacturer's recommendations regarding appropriate personal protective equipment (PPE), such as protective eyewear and gloves.
- Inspect the system to determine that it is free of any unacceptable deterioration, such as corrosion, discoloration, pitting, or cracked seals. If damage is evident, discontinue use, and contact FUJIFILM SonoSite or your local representative.
- Confirm that cleaning and disinfecting materials are appropriate for your facility's use. FUJIFILM SonoSite tests cleaners and disinfectants for use with the FUJIFILM SonoSite systems and transducers.
- Disinfectants and cleaning methods listed in this chapter are recommended by FUJIFILM SonoSite for efficacy and material compatibility with the products.
- Ensure that the disinfectant type and the solution strength and duration are appropriate for the equipment and application.
- Follow manufacturer recommendations and local regulations, when preparing, using and disposing of chemicals.

Ensure that cleaning and disinfecting solutions and wipes are not expired.

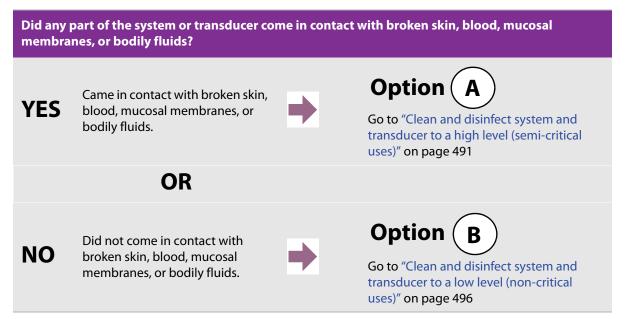
WARNING

Some cleaners and disinfectants can cause an allergic reaction to some individuals.

Do not allow cleaning solution or disinfectant into the system connectors, or transducer connector.

Caution

Do not use strong solvents such as thinner or benzene, or abrasive cleansers, since these will damage the exterior surfaces. Use only FUJIFILM SonoSite recommended cleaners or disinfectants.


Determining the required cleaning and disinfecting level

WARNING

The cleaning instructions contained in this chapter are based on requirements mandated by the American Food and Drug Administration (FDA). Failure to follow these instructions may result in cross contamination and patient infection.

The level of cleaning and disinfecting required for the system is dictated by the type of tissue it contacts during use. Use Table 8-1 to determine the level of cleaning and disinfecting required.

Table 8-1: Choosing a cleaning and disinfecting method

Spaulding classifications

Spaulding classifications (non-critical, semi-critical) determine the approach for cleaning and disinfecting medical equipment based on the device, the way it has been used, and the risk of infection. The system and transducers are designed for use within the Spaulding classifications of non-critical and semi-critical uses.

Option A Clean and disinfect system and transducer to a high level (semi-critical uses)

Use this procedure to clean and high-level disinfect the ultrasound system and transducer whenever it has come into contact with blood, broken skin, mucosal membranes, or bodily fluids.

Follow the manufacturer's instructions when using cleaners and disinfectants. The cleaners and disinfectants listed in the procedure are both chemically compatible and have been tested for efficacy with the system and transducers. Confirm that the cleaners and disinfectants are appropriate for your facility's use.

WARNING	To avoid electrical shock, before cleaning, disconnect the system from the power supply.
	Wear the appropriate personal protective equipment (PPE) recommended by the chemical manufacturer, such as eyewear and gloves.
Caution	Do not skip any steps or abbreviate the cleaning and disinfecting process in any way.
	Do not spray cleaners or disinfectants directly on the system surfaces or on system and transducer connectors. Doing so may cause solution to leak into the system, damaging it and voiding the warranty.
	Do not attempt to disinfect a transducer or transducer cable using a method or chemical that is not included here. This can damage the transducer and void the warranty.
	Use only FUJIFILM SonoSite recommended cleaners and disinfectants. Using a non- recommended disinfecting solution or incorrect solution strength can damage the System and transducer and void the warranty. Follow the disinfectant manufacturer's recommendations for solutions strengths.
Note	You must clean and disinfect both the ultrasound system and the transducer after each use, but only the transducer can be disinfected to a high level.

To clean and disinfect the system and transducer

- 1 Turn off the system by pressing the Power button.
- 2 **Unplug** the power cord from the outlet.
- **3 Remove** the disposable transducer sheath, if applicable.
- **4 Disconnect** the transducer from the system. Temporarily place it where it will not cross-contaminate clean equipment or surfaces while you clean the ultrasound system.

- **5** Clean the exterior surfaces of the ULTRASOUND SYSTEM to remove any debris or bodily fluids. Use the following procedure:
 - **a** Use either a pre-moistened wipe or a soft cloth dampened with cleaner or disinfectant. Choose a cleaner from the list of approved cleaners.

Approved cleaners/disinfectants for the ultrasound system:

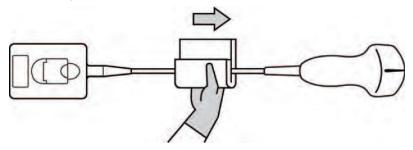
Cleaner/disinfectant	Minimum wet contact time ^a
SaniCloth AF3 ^b	3 minutes
SaniCloth Plus	3 minutes
PI-Spray II	10 minutes

^a For maximum effectiveness, the component being cleaned must remain wet with disinfectant for a minimum period of time.

^b Qualified for use as an intermediate-level disinfectant for mycobacteria. Refer to the cleaners and disinfection document available at www.sonosite.com for a complete list of the most current cleaners and disinfectants.

- **b** Remove all gel, debris, and bodily fluids from the system.
- **c** With a new wipe, clean the system, including the display, by wiping from clean areas to the soiled areas. This method helps to avoid cross-contamination.
- **d** Observe the minimum wet contact time and refer to manufacturer's instructions. Monitor the system for wet appearance. Re-apply with a new wipe if no longer wet.
- e Allow the ultrasound system to air dry in a clean, well-ventilated space.
- 6 Clean the ultrasound system STAND to remove any debris or bodily fluids.
- 7 Clean the TRANSDUCER CABLE AND BODY to remove any debris or bodily fluids. Use the following procedure:

a Use either a premoistened wipe or a soft cloth dampened with cleaner or disinfectant. Choose a cleaner from the list of approved cleaners.


Approved cleaners/disinfectants for the transducer:

Product	Compatible Transducer	Minimum wet contact time ^a
SaniCloth AF3 ^b	C11xp, C35xp, C60xf, HFL38xp, HFL50xp, ICTxp, L25xp, L38xp, P21xp	3 minutes
SaniCloth Plus	HFL38xp, HFL50xp, ICTxp	3 minutes
PI-Spray II	C11xp, C60xf, HFL38xp, HFL50xp, ICTxp, L25xp, L38xp, P21xp	10 minutes

^a For maximum effectiveness, the component being cleaned must remain wet with disinfectant for a minimum period of time.

^b Qualified for use as an intermediate-level disinfectant for mycobacteria. Refer to the cleaners and disinfection document available at www.sonosite.com for a complete list of the most current cleaners and disinfectants.

- **b** Remove all gel, debris, and bodily fluids from the transducer.
- **c** With a new wipe, clean the cable and transducer, starting from the cable, wiping toward the scanhead. This method helps to avoid cross-contamination.

Caution

Do not allow moisture near the electronic components of the connector.

- **d** Observe the minimum wet contact time and refer to manufacturer's instructions. Monitor the transducer for wet appearance. Re-apply with a new wipe if no longer wet.
- 8 Verify that all gel, debris, and bodily fluids have been removed from the system and transducer. If necessary, repeat steps 5, 6, and 7 with a new wipe.

WARNING

Failure to remove all gel, debris, and bodily fluid could leave contaminants on the probe.

9 Prepare the disinfectant for use.

a Choose a high-level disinfectant from the list of approved disinfectants.

Disinfectant ^a	Compatible transducers	Temperature	Disinfectant soak duration
Cidex	C11xp, C35xp, C60xf, HFL38xp, HFL50xp, ICTxp, L25xp, L38xp, P21xp	25°C, 77°F	45 minutes
Cidex OPA	C11xp, C60xf, HFL38xp, HFL50xp, ICTxp, L25xp, L38xp, P21xp	20°C, 68°F	12 minutes
Revital-Ox RESERT	C35xp	20°C, 68°F	8 minutes

Refer to the cleaners and disinfection document available at **www.sonosite.com** for a complete list of the most current cleaners and disinfectants.

- **b** Check the expiration date on the bottle to ensure the disinfectant has not expired.
- **c** Mix or check that the disinfection chemicals have the concentration recommended by the manufacturer (for example, a chemical strip test).
- **d** Check that the temperature of the disinfectant is within the manufacturer's recommended limits.

10 **Perform** a high-level disinfection of the transducer. Use the following procedure:

a Immerse the transducer in a high-level disinfectant solution.

WARNING	High-level disinfectants can cause harm to the patient if not completely removed from the transducer. Follow the manufacturer's rinse instructions to remove chemical residue.
Caution	Do not soak the transducer longer than recommended by the chemical manufacturer.
	${\sf Do} {\sf not} {\sf immerse} {\sf the} {\sf transducer} {\sf connector} {\sf in} {\sf any} {\sf disinfectant} {\sf solution}.$
	Use only FUJIFILM SonoSite recommended cleaners and disinfectants. Using a non- recommended disinfecting solution or incorrect solution strength can damage or discolor the transducer and void the warranty.

b Ensure that the connector and most of the cable remain out of the fluid. You may submerge 2 inches (5 cm) of the cable proximal to the transducer scanhead.

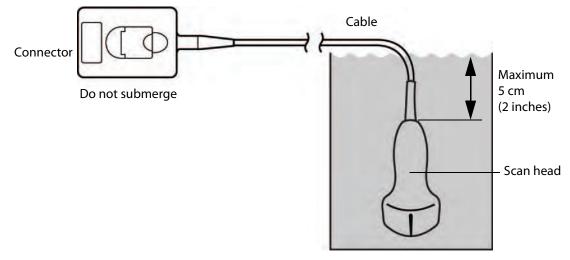


Figure 8-1: Transducer component names

- 11 Rinse the transducer 3 separate times using the following procedure:
 - **a** Rinse the transducer in clean, running water according to the disinfectant manufacturer's instructions (at least 1 minute).
 - **b** Ensure that the connector and at least 12-18 inches (31-46 cm) of the cable from the connector remain out of the fluid.
 - c Replace the rinse water before beginning the next rinse.
- 12 **Dry** the transducer with a sterile lint-free cloth.
- 13 **Dispose** of the disinfectant according to the manufacturer's guidelines.
- 14 **Examine** the transducer and cable for damage, such as cracks or splitting where fluid can enter.

If damage is evident, discontinue use of the transducer, and contact FUJIFILM SonoSite or your local representative.

Option (B) Clean and disinfect system and transducer to a

low level (non-critical uses)

Use the following procedure to clean and disinfect the ultrasound system and transducer **if it <u>has not</u> come into contact with blood, broken skin, mucosal membranes, or bodily fluids**.

If the system or transducer has come into contact with any of the following, use the high-level cleaning and disinfection procedure. See "Clean and disinfect system and transducer to a high level (semi-critical uses)" on page 491.

WARNING

- BloodBroken skin
- Mucosal membranes
- Bodily fluids

Follow the manufacturer's instructions when using cleaners and disinfectants. The materials listed in the table below are chemically compatible with the system and transducers. Confirm that the cleaners and disinfectants are appropriate for your facility's use.

WARNING	To avoid electrical shock, before cleaning, disconnect the system from the power supply.
	Wear the appropriate personal protective equipment (PPE) recommended by the chemical manufacturer, such as eyewear and gloves.
Caution	Do not spray cleaners or disinfectants directly on the system surfaces or on system and transducer connectors. Doing so may cause solution to leak into the system, damaging it and voiding the warranty.
	Use only FUJIFILM SonoSite-recommended cleaners and disinfectants. Using a non- recommended disinfecting solution or incorrect solution strength can damage the System and transducer and void the warranty. Follow the disinfectant manufacturer's recommendations for solutions strengths.
	Do not attempt to disinfect a transducer or transducer cable using a method or chemical that is not included here. Doing so can damager the transducer and void the warranty.

To clean and disinfect the system and transducer

- 1 Turn off the system by pressing the Power button.
- **2 Unplug** the power cord from the outlet.
- **3 Remove** the transducer sheath, if applicable.

- **4 Disconnect** the transducer from the system. Temporarily place it where it will not cross-contaminate clean equipment or surfaces while you clean the ultrasound system.
- **5** Clean the exterior surfaces of the ULTRASOUND SYSTEM to remove any debris or bodily fluids. Use the following procedure:
 - **a** Use either a pre-moistened wipe or a soft cloth dampened with cleaner and disinfectant. Choose a cleaner from the list of approved cleaners.

Approved cleaners/disinfectants for the ultrasound system:

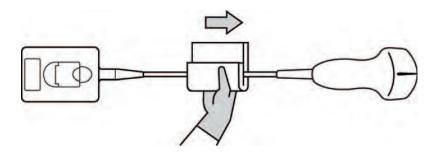
Cleaner/disinfectant	Minimum wet contact time ^a
SaniCloth AF3 ^b	3 minutes
SaniCloth Plus	3 minutes
PI-Spray II	10 minutes

^a For maximum effectiveness, the component being cleaned must remain wet with disinfectant for a minimum period of time.

^b Qualified for use as an intermediate-level disinfectant for mycobacteria. Refer to the cleaners and disinfection document available at www.sonosite.com for a complete list of the most current cleaners and disinfectants.

- **b** Remove all gel, debris, and bodily fluids from the system.
- **c** With a new wipe, clean the system, including the display, by wiping from clean areas to the soiled areas. This method helps to avoid cross-contamination.
- **d** Observe the minimum wet contact time and refer to manufacturer's instructions. Monitor the system for wet appearance. Re-apply with a new wipe if no longer wet.
- 6 Clean the ultrasound system STAND to remove any debris or bodily fluids.
- 7 Clean the TRANSDUCER CABLE AND BODY to remove any debris or bodily fluids. Use the following procedure:

a Use either a pre-moistened wipe or a soft cloth dampened with cleaner or disinfectant. Choose a cleaner from the list of approved cleaners.


Approved cleaners/disinfectants for the transducer:

Product	Compatible Transducer	Minimum wet contact time ^a
SaniCloth AF3 ^b	C11xp, C35xp, C60xf, HFL38xp, HFL50xp, ICTxp, L25xp, L38xp, P21xp	3 minutes
SaniCloth Plus	HFL38xp, HFL50xp, ICTxp	3 minutes
PI-Spray II	C11xp, C60xf, HFL38xp, HFL50xp, ICTxp, L25xp, L38xp, P21xp	10 minutes

^a For maximum effectiveness, the component being cleaned must remain wet with disinfectant for a minimum period of time.

^b Qualified for use as an intermediate-level disinfectant for mycobacteria. Refer to the cleaners and disinfection document available at **www.sonosite.com** for a complete list of the most current cleaners and disinfectants.

- **b** Remove all gel, debris, and bodily fluids from the transducer.
- **c** With a new wipe, clean the cable and transducer, starting from the cable, wiping toward the scanhead. This method helps to avoid cross-contamination.

Caution

Do not allow moisture near the electronic components of the connector.

- **d** Observe the required wet contact time and refer to manufacturer's instructions. Monitor the transducer for wet appearance. Re-apply with a new wipe if no longer wet.
- 8 Verify that all gel, debris, and bodily fluids have been removed from the system and transducer. If necessary, repeat steps 5, 6, and 7 with a new wipe.
- **9** Allow the ultrasound system, including the console and transducer, to air dry in a clean, well-ventilated space.

10 Examine the system, transducer and cable for damage, such as cracks or splitting where fluid can enter.

If damage is evident, do not use the transducer. Instead, contact FUJIFILM SonoSite or your local representative.

Storing the transducer

To store the transducer

- 1 Make sure the transducer has been cleaned and disinfected as detailed in the previous section.
- 2 Store the transducer so that it hangs freely and vertically, and observe the following precautions:
 - > Store the transducer away from any contaminated transducers.
 - Store the transducer in an environment that is safe and has good airflow. Do not store the transducer in closed containers or where condensation may occur.
 - Avoid direct sunlight and exposure to x-rays. Recommended storage temperature range is between 0° C (32° F) and +45° C (113° F).
 - ▶ If using a wall-mounted rack for storage, ensure that:
 - ▶ It is securely mounted.
 - > The storage slots do not mar the transducer or cause damage to the cable.
 - > The rack is sized and positioned to prevent the transducer from inadvertently falling.
 - Make sure the connector is supported and secure.

Transporting the transducer

When transporting the transducer, you must take precautions to protect the transducer from damage and avoid cross-contamination. Be sure to use a container approved by your organization.

To transport a soiled transducer for cleaning

A soiled transducer is one that has been contaminated and must be cleaned before using it in an exam.

1 Place the transducer in a clean, approved container.

To prevent cross-contamination or unprotected exposure of personnel to biological material, containers used to transport contaminated transducers should carry an ISO biohazard label similar to the following:

WARNING

Caution

Ensure the transducer is dry before placing it in a closed container. Condensation from a damp transducer can damage the connector.

- **2** Transport the transducer in the container to the point of processing. Do not open the container until the transducer is ready to be cleaned.
 - **Caution** Do not leave the transducer in a sealed container for long periods of time.

To transport a clean transducer

A clean transducer is one that has completed the cleaning and disinfection process, has been stored properly, and is ready to be used in an examination.

- 1 Place the transducer in a clean, approved container. To identify the transducer as clean, containers used to transport clean transducers should carry a cleanliness verification sticker or certificate.
- 2 Transport the transducer in the container to the point of use. Do not open the container until the transducer is ready to be used.

To ship a transducer

WARNING

Whenever possible, avoid shipping a contaminated transducer. Before shipping, ensure the transducer has been cleaned and disinfected using the steps detailed in this chapter or according to special instructions received from FUJIFILM SonoSite. If you are returning the transducer to FUJIFILM SonoSite, document the disinfection on a "Declaration of Cleanliness," and attach it to the packing list.

- 1 Place the transducer in the shipping container and seal it. Do not allow any part of the transducer to protrude from the container.
- **2** Ship the transducer using the following precautions:
 - Clearly label the container as fragile.

- > Do not stack items on top of the shipping container.
- ▶ Do not exceed the shipping temperature range: -35° C (-31° F) to +65° C (149° F).
- > Do not open the shipping container until it reaches its final destination.
- > After arrival, the transducer must be cleaned and disinfected before it can be used in an exam.

Accessories

To clean and disinfectant the stand or Triple Transducer Connect, (TTC), see "Cleaning and disinfecting the stand or Triple Transducer Connect (TTC)" on page 502.

To clean the footswitch see "Cleaning the footswitch" on page 502.

To clean ECG cables, see "Cleaning ECG cables" on page 503.

To clean the ECG slave cable, refer to the ECG Slave Cable & Adapter Kit User Guide.

To clean the battery, see "Cleaning and disinfecting the battery" on page 504.

To clean the trackball, see "Cleaning the trackball" on page 504.

Use the cleaning and disinfecting recommendations in the peripheral manufacturer's instructions when cleaning or disinfecting peripherals.

Cleaning and disinfecting accessories

Clean accessories prior to disinfecting. You can disinfect the exterior surface of accessories using a recommended disinfectant. Refer to the cleaners and disinfection document available at www.sonosite.com.

WARNING

To avoid electrical shock, always disconnect the power supply before cleaning the PowerPark.

To clean and disinfect accessories

- 1 If necessary, unplug the power supply, and detach any cables.
- 2 Clean the exterior surfaces of the accessory using a soft cloth lightly dampened in a mild soap or detergent cleaning solution to remove any particulate matter or body fluids.

Apply the solution to the cloth rather than the surface.

3 Mix the disinfectant solution compatible with the accessory, following disinfectant label instructions for solution strengths and disinfectant contact duration. Refer to the cleaners and disinfection document available at www.sonosite.com.

- **4** Wipe surfaces with the disinfectant solution. Follow the manufacturer's instructions for the disinfecting solution, including exposure time and temperature for effective disinfection.
- **5** Air dry or towel dry with a clean cloth.

Cleaning and disinfecting the stand or Triple Transducer Connect (TTC)

To clean and disinfect the stand or TTC

You can clean and disinfect the exterior surface of the stand or TTC using a recommended cleaner or disinfectant.

- **1** Do one of the following:
 - If cleaning the stand, unplug the power supply, detach any cables from the system, and remove the system.
 - ▶ If cleaning the TTC, remove it from the system platform.
- 2 Clean the surfaces using a soft cloth lightly dampened in a mild soap or detergent cleaning solution.

Apply the solution to the cloth rather than the surface.

- **3** Wipe the surfaces with the disinfecting solution. Follow the manufacturer's instructions for the disinfecting solution, including exposure time and temperature for effective disinfection.
- **4** Air dry or towel dry with a clean cloth.

Cleaning the footswitch

Caution

To avoid damaging the footswitch, do not sterilize. It is not intended for use in a sterile environment.

To clean the footswitch

Use the disinfecting recommendations in the peripheral manufacturer's instructions when disinfecting the footswitch.

- 1 Dampen a non-abrasive cloth with a recommended cleaner or disinfectant.
- 2 Wring out cloth until slightly wet and then gently rub soiled area until clean.

Cleaning ECG cables

Note

ECG cables are reusable, and are non-sterile when provided.

To clean ECG cables

WARNING Do not immerse ECG cables in any liquid.

You may clean ECG cables as many as 15 times using the following procedure:

- **1** Remove the cables from the system.
- 2 Clean the surface using a soft cloth or gauze pad lightly dampened with one of the following agents:
 - Green soap
 - Green soap tincture (US Pharmacopoeia) or alcohol free hand soap
 - > 2% glutaraldehyde solution (e.g. Cidex)
 - Sodium hypochlorite (10% bleach solution)

Apply the solution to the cloth rather than the surface.

- **3** Wipe all exposed surfaces with the dampened cloth.
- 4 Repeat step 2 and 3 with a clean cloth or gauze pad.
- **5** Dry all exposed surfaces with a clean, dry cloth or gauze pad.

To sterilize the ECG cable

Caution

Do not use an autoclave, gamma radiation, or steam to sterilize the ECG cable.

To avoid damage, sterilize ECG cables only when necessary. Replace cables after 10 sterilization cycles.

- 1 Sterilize ECG cables using ethylene oxide (EtO) sterilization methods.
- 2 To dissipate the ethylene oxide, aerate the cables. Follow all necessary safety precautions.

Cleaning and disinfecting the battery

Caution

To avoid damaging the battery, do not allow cleaning solution or disinfectant to come in contact with the battery terminals.

To clean and disinfect a battery (wipe method)

- **1** Remove the battery from the system.
- 2 Clean the surface using a soft cloth lightly dampened in a mild soap or detergent cleaning solution.

Note

Apply the solution to the cloth rather than the surface.

- **3** Wipe the surfaces with the disinfection solution. Sani-Cloth HB, Sani-Cloth Wipes, or 70% isopropyl alcohol is recommended.
- 4 Air dry.

Cleaning the trackball

If any foreign matter (such as dust) gets under the trackball, remove the trackball (following the procedure below) and then clean the inside of the device. To clean the trackball itself, see the User's Guide.

To remove the trackball

1 Remove the trackball retainer by rotating it counterclockwise and lifting it out.

Figure 8-2: Removing the trackball retainer

At this point the trackball is exposed.

Figure 8-3: Trackball retainer removed

2 Remove the trackball.

Figure 8-4: Trackball removed

CHAP

Chapter 9: Safety

This chapter contains ergonomic, electrical, and clinical safety information required by regulatory agencies. The information applies to the ultrasound system, transducer, accessories, and peripherals. This chapter also defines labeling symbols, specifications, and standards.

For safety information regarding the "As low as reasonably achievable" (ALARA) principle and acoustic output, see "Acoustic Output" on page 537.

Ergonomic considerations

These guidelines for healthy scanning are intended to assist you in the comfortable and effective use of your ultrasound system.

Use of an ultrasound system may be linked to musculoskeletal disorders $(MSDs)^{1,2,3}$. Use of an ultrasound system is defined as the physical interaction between the operator, the ultrasound system, and the transducer. To prevent musculoskeletal disorders, follow the guidelines in this section: When using an ultrasound system, as with many similar physical activities, you may experience occasional discomfort in your hands, fingers, arms, shoulders, eyes, back, or other parts of your body. However, if you experience symptoms such as constant or recurring discomfort, pain, throbbing, aching, tingling, numbness, burning sensations, or stiffness, do not ignore these warning signs. Promptly see a qualified health professional. Symptoms such as these can be linked with MSDs. MSDs can be painful and may result in potentially disabling injuries to the nerves, muscles, tendons, or other parts of the body. Examples of MSDs include carpal tunnel syndrome and tendonitis.

While researchers are not able to definitively answer many questions about MSDs, there is a general agreement that certain factors are associated with their occurrence, including preexisting medical and physical conditions, overall health, equipment and body position while doing work, frequency of work,

duration of work, and other physical activities ⁴. This chapter provides guidelines that may help you work more comfortably and may reduce your risk of MSDs^{5,6}.

- Magnavita, N., L. Bevilacqua, P. Mirk, A. Fileni, and N. Castellino. "Work-related musculoskeletal complaints in sonologists." *Occupational Environmental Medicine*. 41:11 (1999), 981-988.
- Craig, M. "Sonography: An occupational hazard?" Journal of Diagnostic Medical Sonography. 3 (1985), 121-125.
- 3. Smith, C.S., G.W. Wolf, G. Y. Xie, and M. D. Smith. "Musculoskeletal pain in cardiac ultrasonographers: Results of a random survey." *Journal of American Society of Echocardiography*. (May1997), 357-362.
- 4. Wihlidal, L.M. and S. Kumar. "An injury profile of practicing diagnostic medical sonographers in Alberta." *International Journal of Industrial Ergonomics*. 19 (1997), 205-216.
- 5. Habes, D.J. and S. Baron. "Health hazard report 99-0093-2749." University of Medicine and Dentistry of New Jersey. (1999).
- Vanderpool, H.E., E.A. Friis, B.S. Smith, and K.L. Harms. "Prevalence of carpal tunnel syndrome and other work-related musculoskeletal problems in cardiac sonographers." *Journal of Medicine.* 35:6 (1993), 605-610.

Positioning the system

To promote comfortable shoulder, arm, and hand postures

• Use a stand to support the weight of the ultrasound system.

To minimize eye and neck strain

WARNING

- If possible, position the system within reach.
- Adjust the angle of the clinical display to minimize glare.

▶ If using a stand, adjust its height so that the display is at or slightly below eye level. When lowering the stand, do not hold the handle, but instead hold the portion of the stand close to the column pole.

Positioning yourself

To support your back during an exam

- Use a chair that
 - Supports your lower back
 - Adjusts to your work surface height
 - Promotes a natural body posture
 - Allows quick height adjustments
- Always sit or stand upright. Avoid bending or stooping.

To minimize reaching and twisting

- Use a bed that is height-adjustable.
- Position the patient as close to you as possible.
- Face forward.
 - Avoid twisting your head or body.
- Move your entire body front to back, and position your scanning arm next to or slightly in front of you.
- > To minimize reaching, stand for difficult exams.
- > Position the ultrasound system or display directly in front of you.
- Provide an auxiliary monitor for patient viewing.

To promote comfortable shoulder and arm postures

- Keep your elbows close to your side.
- Relax your shoulders in a level position.
- Support your arm on a support cushion or pillow, or rest it on the bed.

To promote comfortable hand, wrist, and finger postures

- > Hold the transducer lightly in your fingers.
- Minimize the pressure that you apply on the patient.
- Keep your wrist in a straight position.

Taking breaks, exercising, and varying activities

To effectively allow your body to recover from physical activity and help you avoid MSDs

- Minimize scanning time.
- Take breaks.

Some ultrasound tasks may require longer or more frequent breaks. However, simply changing tasks can help some muscle groups relax while others remain or become active.

- > To work efficiently, use the software and hardware features correctly.
- Keep moving.

To avoid sustaining the same posture, vary your head, neck, body, arm, and leg positions.

Do targeted exercises.

Targeted exercises can strengthen muscle groups, which may help you avoid MSDs.

Contact a qualified health professional to determine stretches and exercises that are right for you.

Electrical safety

This system meets EN60601-1, Class I/internally powered equipment requirements and Type BF and Type CF isolated patient-applied parts safety requirements.

This system complies with the applicable medical equipment requirements published in the Canadian Standards Association (CSA), European Norm Harmonized Standards, and Underwriters Laboratories (UL) safety standards.

For maximum safety, observe the following warnings and cautions.

WARNING	To avoid discomfort or minor risk of patient injury, keep hot surfaces away from the patient.
WARNING	Under certain circumstances, the transducer connector and back of the display enclosure can reach temperatures that exceed EN60601-1 limits for patient contact. Therefore, only the operator shall handle the system. This does not include the transducer face.
	If the connector exceeds the specified temperature and is exposed to the patient, it may make the patient uncomfortable or injure him or her. Do not allow patient contact with parts of the system other than the transducers or ECG leads.
WARNING	To avoid the risk of injury, do not operate the system in the presence of flammable gases or anesthetics. Explosion can result.

WARNING	To avoid the risk of electrical shock or injury, do not open the system enclosures. All internal adjustments and replacements, except battery replacement, must be made by a qualified technician. Check all fasteners and connections to avoid injury.
	To avoid the risk of electrical shock: This equipment must be connected only to a supply mains with protective grounding.
	Use only properly grounded equipment. Shock hazards exist if the power supply is not properly grounded. Grounding reliability can be achieved only when the equipment is connected to a receptacle marked "Hospital Only," "Hospital Grade," or an equivalent. The grounding wire must not be removed or disabled.
	When using the system in an environment where the integrity of the protective earth conductor arrangement is in doubt, operate the system on battery power only, without using the power supply.
WARNING	Do not touch any of the following, under these conditions:
	The power supply and the patient at the same time
	The ungrounded signal input/output connectors on the back of the ultrasound system
	The system battery contacts (inside the battery compartment)
	The system transducer connector, when the transducer or Triple Transducer Connect (TTC) is disconnected
	The system transducer connector on the TTC, if no transducers are connected

Do not connect the system's power supply or a FC1 stand system to a multiple portable socket outlet (MPSO) or extension cord.
Before using the transducer, inspect the face of the transducer elements, housing, and cable.
Do not use the transducer if the transducer or cable is damaged.
Always disconnect the power supply from the system before cleaning the system.
Do not use any transducer that has been immersed beyond the specified cleaning or disinfection level.
See "Troubleshooting and maintenance" on page 477.
Use only accessories and peripherals recommended by FUJIFILM SonoSite, including the power supply.
Connection of accessories and peripherals not recommended by FUJIFILM SonoSite could result in electrical shock. Contact FUJIFILM SonoSite or your local representative for a list of accessories and peripherals available from or recommended by FUJIFILM SonoSite.
Use commercial-grade peripherals recommended by FUJIFILM SonoSite on battery power only. Do not connect these products to AC mains power when using the system to scan or diagnose a patient/subject.
Contact FUJIFILM SonoSite or your local representative for a list of the commercial-grade peripherals available from or recommended by FUJIFILM SonoSite.
To avoid the risk of electrical shock and fire hazard:
 Inspect the power supply, AC power cords, cables, and plugs on a regular basis to ensure that they are not damaged.
Use the power cord set that connects the power supply of the ultrasound system or the stand to mains power only with the power supply or FC1 stand system.
You must not use them to connect other devices to mains power.
To prevent injury to the operator or a bystander, remove the transducer from patient contact before the application of a high-voltage defibrillation pulse.
To avoid possible electrical shock or electromagnetic interference, verify proper operation and compliance with relevant safety standards for all equipment before clinical use.
Connecting additional equipment to the ultrasound system constitutes configuring a medical system.

Do not use the system if an error message appears on the image display. Instead:

- 1 Note the error code.
- 2 Call FUJIFILM SonoSite or your local representative.

Caution

3 Turn off the system by pressing and holding the power key until the system powers down.

To avoid increasing the system and transducer connector temperature, do not block the airflow to the ventilation holes on the side of the system

To avoid burn injury, while using the device, do not touch the AC adapter, as it becomes hot.

Electrical safety classification

Table 9-1: Electrical classifications for system elements

Electrical classification	System element
	The ultrasound system is classified as Class I equipment when powered from the AC power supply or mounted on the stand, because the AC power supply is a Class 1 protectively grounded power supply.
Class I equipment	The stand has no protective grounding. Ground bond testing is not applicable to the ultrasound system or the stand.
	AC powered peripherals that may be used with the system are Class I and are individually protectively grounded. Ground bond testing may be conducted on each AC powered peripheral.
Internally powered equipment	Ultrasound system not connected to the power supply (battery only)
Type BF applied parts	Ultrasound transducers
Type CF applied parts	ECG module/ECG leads
IPX-7 (watertight equipment)	Ultrasound transducers
IPX-8 (watertight equipment)	Foot switch
Non AP/APG	Ultrasound system power supply, FC1 stand system, and peripherals. Equipment is not suitable for use in the presence of flammable anesthetics.

Equipment safety

To protect your ultrasound system, transducer, and accessories, follow these precautions.

	Excessive bending or twisting of cables can cause a failure or intermittent operation.
	Improper cleaning or disinfecting of any part of the system can cause permanent damage. For cleaning and disinfecting instructions, see "Maintenance" on page 488.
	Do not submerge the transducer connector in solution. The cable is not liquid- tight beyond the transducer connector/cable interface.
Caution	Do not use solvents such as thinner or benzene, or abrasive cleaners on any part of the system.
	Remove the battery from the system if the system is not likely to be used for some time.
	Do not spill liquid on the system.
	When lowering the stand of the stand cart, do not hold the handle; instead, hold the portion of the stand close to the column pole.
	Close the FC1 display before transporting the system, to avoid injury.

Battery safety

To prevent the battery from bursting, igniting, or emitting fumes and causing personal injury or equipment damage, observe the following precautions.

	The battery has a safety device. Do not disassemble or alter the battery.
	Charge the batteries only when the ambient temperature is between 0° and 40°C (32° and 104°F).
	Do not short-circuit the battery by directly connecting the positive and negative terminals with metal objects.
	Do not touch battery contacts.
WARNING	Do not heat the battery or discard it in a fire.
	Do not expose the battery to temperatures over 60°C (140°F). Keep it away from fire and other heat sources.
	Do not charge the battery near a heat source, such as a fire or heater.
	Do not leave the battery in direct sunlight.
	Do not pierce the battery with a sharp object, hit it, or step on it.
	Do not use a damaged battery.
	Do not solder a battery.
	The polarity of the battery terminals is fixed and cannot be switched or reversed. Do not force the battery into the system.
	Do not connect the battery to an electrical power outlet.
WARNING	Do not continue recharging the battery if it does not recharge after two successive six-hour charging cycles.
	Do not ship a damaged battery without instructions from FUJIFILM SonoSite Technical Support.
	If the battery leaks or emits an odor, remove it from all possible flammable sources.
	Periodically check to make sure that the battery charges fully. If the battery fails to charge fully, replace it.

To avoid having the battery become damaged and causing equipment damage, observe the following precautions:

- > Do not immerse the battery in water or allow it to get wet.
- > Do not put the battery into a microwave oven or pressurized container.
- If the battery emits an odor or heat, is deformed or discolored, or in any way appears abnormal during use, recharging or storage, immediately remove it and stop using it. If you have any questions about the battery, consult FUJIFILM SonoSite or your local representative.
- ▶ Store the battery between -20°C (-4°F) and 60°C (140°F).
- Use only FUJIFILM SonoSite batteries.
- Do not use or charge the battery with non-FUJIFILM SonoSite equipment. Only charge the battery with the system.

Caution

Clinical safety

Nonmedical (commercial)-grade peripheral monitors have not been verified or validated by FUJIFILM SonoSite as being suitable for diagnosis.

To avoid the risk of a burn hazard, do not use the transducer with highfrequency surgical equipment. Such a hazard may occur in the event of a defect in the high-frequency surgical neutral electrode connection.

Do not use the system if it exhibits erratic or inconsistent behavior. Discontinuities or nonimage display in the scanning sequence indicate a hardware failure that must be corrected before use.

Some transducer sheaths contain natural rubber latex and talc, which can cause allergic reactions in some individuals. Refer to 21 CFR 801.437, User labeling, for devices that contain natural rubber.

After attaching the transducer cover to the transducer, make sure that the cover is free from holes or crevices.

Perform ultrasound procedures prudently. Use the ALARA ("as low as reasonably achievable") principle and follow the prudent use information concerning the mechanical index (MI) and the thermal index (TI).

WARNING

FUJIFILM SonoSite does not currently recommend a specific brand of acoustic standoff. If an acoustic standoff is used, it must have a minimum attenuation of .3dB/cm/MHz.

Some FUJIFILM SonoSite transducers are approved for intraoperative applications if a market-cleared sheath is used.

To avoid injury or reduce the risk of infection to the patient, observe the following:

- Follow Universal Precautions when inserting and maintaining a medical device for interventional and intraoperative procedures.
- Appropriate training in interventional and intraoperative procedures as dictated by current relevant medical practices as well as in proper operation of the ultrasound system and transducer is required. During vascular access, the potential exists for serious complications, including (without limitation) the following: pneumothorax, arterial puncture, guidewire misplacement, and risks normally associated with local or general anesthesia, surgery, and postoperative recovery.

WARNING	To avoid device damage or patient injury, do not use the P21xp needle guide bracket on patients with pacemakers or medical electronic implants. The needle guide bracket for the P21xp transducers contains a magnet that is used to ensure that the bracket is correctly oriented on the transducer. The magnetic field, in direct proximity to the pacemaker or medical electronic implant, may have an adverse effect.
WARNING	The foot switch is not designed to be sterilized. Avoid using the foot switch in an environment where sterilization is required.

Hazardous materials

WARNING	Products and accessories may contain hazardous materials. Ensure that products and accessories are disposed of in an environmentally responsible manner and meet federal and local regulations for disposing of hazardous materials.
WARNING	The liquid crystal display (LCD) contains mercury. Dispose of the LCD properly in accordance with local regulations.

Electromagnetic compatibility

The ultrasound system has been tested and found to comply with the electromagnetic compatibility (EMC) limits for medical devices to IEC60601-1-2:2007. These limits are designed to provide reasonable protection against harmful interference in a typical medical installation.

following actions to eliminate the source(s):

WARNING	The FC1 ultrasound system should not be used adjacent to or stacked with other equipment. If such use occurs, verify that the FC1 ultrasound system operates normally in that configuration.
	Medical electrical equipment requires special precautions regarding EMC and must be installed and operated according to these instructions. Portable and mobile RF communications equipment can affect the ultrasound system.

Electromagnetic interference (EMI) from other equipment or interference

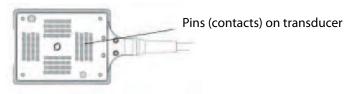
sources could result in performance disruption of the ultrasound system. Evidence of disruption may include image degradation or distortion, erratic readings, equipment ceasing to operate, or other incorrect functioning. If this occurs, survey the site to determine the source of disruption, and take the

Caution

	Turn equipment in the vicinity off and on to isolate disruptive equipment.
	Relocate or re-orient interfering equipment.
	Increa se distance between the interfering equipment and your ultrasound system.
	Manage use of frequencies close to ultrasound system frequencies.
	Remove devices that are highly susceptible to EMI.
Continu	Lower power from internal sources within facility control (such as paging systems).
Caution	Label devices susceptible to EMI.
	Educate clinical staff to recognize potential EMI-related problems.
	Eliminate or reduce EMI with technical solutions (such as shielding).
	 Restrict use of personal communicators (cell phones, computers) in areas with devices susceptible to EMI.
	Share relevant EMI information with others, particularly when evaluating new equipment purchases that may generate EMI.
	Purchase medical devices that comply with IEC 60601-1-2 EMC Standards.
Caution	To avoid the risk of increased electromagnetic emissions or decreased immunity, use only accessories and peripherals recommended by FUJIFILM SonoSite. Connection of accessories and peripherals not recommended by FUJIFILM SonoSite to the ultrasound system may result in malfunction of the ultrasound system or other medical electrical devices in the area. Contact FUJIFILM SonoSite or your local representative for a list of accessories and peripherals available from or recommended by FUJIFILM SonoSite. See the FUJIFILM SonoSite accessories user guide.

The FC1 ultrasound systems contains an IEEE 802.11 transmitter that utilizes ISM frequency bands from 2.412 to 2.484 GHz and implements three different methods of transmissions:

- ▶ 802.11b with Direct Sequence Spread Spectrum (DSSS) at 17 dBm ± 2.0 dBm @ 11 Mbps
- ▶ 802.11g with Orthogonal Frequency Division Multiplexing (OFDM) at 14 dBm ± 2 dBm @ 54 Mbps
- ▶ 802.11n with Orthogonal Frequency Division Multiplexing (OFDM) at 14 dBm + 2 dBm @ MCS7


Electrostatic discharge

Caution

Electrostatic discharge (ESD), or static shock, is a naturally occurring phenomenon. ESD is common in conditions of low humidity, which can be caused by heating or air conditioning. ESD is a discharge of the electrical energy from a charged body to a lesser or noncharged body. The degree of discharge can be significant enough to cause damage to a transducer or an ultrasound system. The following precautions can help reduce ESD: antistatic spray on carpets, antistatic spray on linoleum, and antistatic mats.

WARNING

Unless following ESD precautionary procedures, do not connect to or touch (with body or hand-held tools) pins (contacts) of connectors that have the ESD Sensitive Devices label:

Electrostatic sensitive devices label

Figure 9-1: The transducer connector is an example of an electrostatically-sensitive device.

ESD precautionary procedures include the following:

- All staff involved must receive training about ESD, including the following at a minimum: an explanation of the ESD warning symbol, ESD precautionary procedures, an introduction to the physics of electrostatic charge, the voltage levels that can occur in normal practice, and the damage that can occur to electronic components if equipment is touched by an individual who is electrostatically charged (IEC 60601-1-2, section 5.2.1.2 d).
- Prevent the buildup of electrostatic charge. For example, use humidification, conductive floor coverings, nonsynthetic clothing, ionizers, and minimizing insulating materials.
- Discharge your body to earth.
- Use a wrist strap to bond yourself to the ultrasound system or to earth.

Separation distance

Recommended separation distances between portable and mobile RF communications equipment and the FC1 ultrasound system

The FC1 ultrasound system is intended for use in an electromagnetic environment in which radiated radio frequency (RF) disturbances are controlled. The customer or the user of the FC1 ultrasound system can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the FC1 ultrasound system as recommended below, according to the maximum output power of the communications equipment.

Rated maximum	Separation distance according to frequency of transmitter (Meters)			
output power of transmitter (Watts)	150 kHz to 80 MHz d=1.2 <mark>√</mark>	80 MHz to 800 MHz d=1.2 🐙	800 MHz to 2.5 GHz d=2.3 ,	
0.01	0.12	0.12	0.23	
0.1	0.38	0.38	0.73	
1	1.2	1.2	2.3	
10	3.8	3.8	7.3	
100	12	12	23	

Table 9-2: Recommendations for separation distance

For transmitters rated at a maximum output power not listed above, the recommended separation distance (d) in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies. These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

Compatible accessories and peripherals

FUJIFILM SonoSite has tested the FC1 ultrasound system with the following accessories and peripherals and has demonstrated compliance with the requirements of IEC60601-1-2:2007.

You may use these FUJIFILM SonoSite accessories and third-party peripherals with the FC1ultrasound system.

Use of the accessories with medical systems other than the FC1 ultrasound system may result in increased emissions or decreased immunity of the medical system.

WARNING

Use of accessories other than those specified may result in increased emissions or decreased immunity of the ultrasound system.

Table 9-3: Accessories and peripherals compatible with FC1 ultrasound system

Description	Maximum cable length	Part number
C11xp transducer ^a	6.0 ft/1.8 m	P14564
C35xp transducer ^a	5.5 ft/1.7 m	P19617
C60xf transducer ^a	5.5 ft/1.7 m	P18024
HFL38xp transducer ^a	5.7 ft/1.7 m	P16038
HFL50xp transducer ^a	5.7 ft/1.7 m	P14567
ICTxp transducer ^a	5.7 ft/1.7 m	P14562
L25xp transducer ^a	7.5 ft/2.3m	P14566
L38xp transducer ^a	5.5 ft/1.7 m	P14565
P21xp Transducer ^a	6.0 ft/1.8 m	P14563
AC adapter bracket	-	P17141
Accessory Box	—	P17309
Battery pack	_	P17147
Barcode scanner	4.9ft/1.5m	P14166
Barcode scanner (Japan only)	6.3 ft/1.9 m	P18738
Black & white printer	—	P13745
Black & white printer	-	P20006
Color printer (Japan only)	_	P18248
Color printer box/bracket (Japan only)	-	P18702

Table 9-3: Accessories and peripherals compatible with FC1 ultrasound system

Description	Maximum cable length	Part number
Digital video recorder (Japan only)	_	P18286
ECG module (Japan)	5.8 ft/1.8 m	P15170
ECG module (EU)	5.8 ft/1.8 m	P15171
ECG leads	2.0 ft/0.6 m	
FC1 Stand	-	P17313
Footswitch	9.8 ft/3.0 m	P14689
Magnetic card reader	5.8 ft/1.8 m	P18739
Power supply	4.9 ft/1.5 m	P18011
Triple transducer connect	—	P18967
USB keyboard	4.6ft/1.4m	P11856
USB memory	—	P16967
USB memory stick with data security functionality	-	P21206
AC power cord	7.9 ft/2.4 m	
DVR brick	5.8 ft/1.8 m	
HDMI cable	3.3 ft/1.0 m	
LAN cable	49.2 ft/15.0 m	

^aFor transducers, maximum cable length is measured between the strain reliefs. The stated lengths do not include the lengths of cable in the following locations: underneath the strain reliefs, inside the transducer enclosure, or inside the transducer connector.

Guidance and manufacturer's declaration

WARNING

Other equipment, even equipment that complies with CISPR emission requirements, can interfere with the FC1 ultrasound system.

The FC1 ultrasound system is intended for use in the electromagnetic environment specified in the following tables. The customer or the user of the FC1 ultrasound system should assure that it is used in such an environment.

Emissions test	Compliance	Electromagnetic environment	
RF emissions CISPR 11	Group 1	The FC1 ultrasound system uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference with nearby electronic equipment.	
RF emissions CISPR 11	Class A		
Harmonic emissions IEC 61000-3-2	Class A	The FC1 ultrasound system is suitable for use in all establishments other than domestic and those directly connected to the public low-voltage power supply network that supplies buildings used for	
Voltage fluctuations/flicker emissions IEC 61000-3-3	Complies	domestic purposes.	

Table 9-4: Guidance and manufacturer's declaration - Electromagnetic emissions

Table 9-5: Guidance and manufacturer's declaration - Electromagnetic immunity

Immunity test	IEC 60601 test level	Compliance level	Electromagnetic environment
Electrostatic Discharge (ESD) IEC 61000-4-2	±2.0KV, ±4.0KV, ± 6.0KV contact ±2.0KV, ±4.0KV, ± 8.0KV air	± 2.0KV, ±4.0KV, ±6.0KV contact ± 2.0KV, ±4.0KV, ±8.0KV air	Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.
Electrical fast Transient/burst IEC 61000-4-4	\pm 2KV on the mains \pm 1KV on signal lines	\pm 2KV on the mains \pm 1KV on signal lines	Mains power quality should be that of a typical commercial or hospital environment.

Immunity test	IEC 60601 test level	Compliance level	Electromagnetic environment
Surge IEC 61000-4-5	+/-1KV line(s) to line(s) +/-2KV line(s) to earth	+/-1KV line(s) to line(s) +/-2KV line(s) to earth	Mains power quality should be that of a typical commercial or hospital environment.
Voltage dips, short interruptions, and voltage variations on power supply input lines IEC61000-4-11	<5% U _T (>95% dip in U _T) for 0.5 cycle 40% U _T (60% dip in U _T) for 5 cycles 70% U _T (30% dip in U _T) for 25 cycles <5% U _T (>95% dip in U _T) for 5s	<5% U _T (>95% dip in U _T) for 0.5 cycle 40% U _T (60% dip in U _T) for 5 cycles 70% U _T (30% dip in U _T) for 25 cycles <5% U _T (>95% dip in U _T) for 5s	Mains power quality should be that of a typical commercial or hospital environment. If the user of the FC1 ultrasound system requires continued operation during power mains interruptions, it is recommended that the FC1 ultrasound system be powered from an uninterruptible power supply or a battery.
Power Frequency Magnetic Field IEC 61000-4-8	3 A/m	3 A/m	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.
Conducted RF IEC 61000-4-6	3 Vrms 150 kHz to 80 MHz	3 Vrms	Portable and mobile RF communications equipment should be used no closer to any part of the FC1 ultrasound system, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Recommended separation distance: $d = 1.2\sqrt{P}$

Table 9-5: Guidance and manufacturer's declaration - Electromagnetic immunity

Immunity test	IEC 60601 test level	Compliance level	Electromagnetic environment
Radiated RF IEC 61000-4-3	3 Vim 80MHz to 2.5 GHz	3 V/m	$d = 1.2\sqrt{P}$ 80 MHz to 800 MHz $d = 2.3\sqrt{P}$ 800 MHz to 2.5 GHz Where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and d is the recommended separation distance in meters (m). Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey ^a , should be less than the compliance level in each frequency range ^b . Interference may occur in the vicinity of equipment marked with the following symbol:

Table 9-5: Guidance and manufacturer's declaration - Electromagnetic immunity

 U_T is the AC mains voltage before application of the test level.

At 80 MHz and 800 MHz, the higher frequency range applies.

These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

^aField strengths from fixed transmitters such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the FUJIFILM SonoSite ultrasound system is used exceeds the applicable RF compliance level above, the FUJIFILM SonoSite ultrasound system should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the FUJIFILM SonoSite ultrasound system.

^bOver the frequency range 150 kHz to 80 MHz, field strengths should be less than 3 V/m.

Caution

FCC: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- > This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

Immunity testing requirements

The FC1 ultrasound system complies with the essential performance requirements specified in IEC 60601-1-2 and IEC 60601-2-37. Results of immunity testing show that the FC1 ultrasound system meets these requirements and is free from the following:

- Noise on a waveform or artifacts or distortion in an image or error of a displayed numerical value that cannot be attributed to a physiological effect and that may alter the diagnosis
- > Display of incorrect numerical values associated with the diagnosis to be performed
- Display of incorrect safety-related indications
- Production of unintended or excessive ultrasound output
- > Production of unintended or excessive transducer assembly surface temperature
- Production of unintended or uncontrolled motion of transducer assemblies intended for intra-corporeal use

Labeling symbols

The following symbols are used on the products, packaging, and containers.

Table 9-6: Labeling symbols

Symbol	Definition
\sim	Alternating current (AC)

Symbol	Definition
CE	Class 1 device indicating manufacturer's declaration of conformance with Annex VII of 93/42/EEC
C E 2797	Class 1 device requiring verification by the Notified Body of sterilization or measurement features, or to a Class IIa, IIb, or III device requiring verification or auditing by the Notified Body to applicable Annex(es) of 93/42/EEC
\mathbf{V}	Attention; see the User guide.
\bigotimes	Device complies with relevant Australian regulations for electronic devices.
LOT	Batch code, date code, or lot code type of control number
&	Biological risk
	Device complies with relevant Brazilian regulations for electromedical devices.
	Canadian Standards Association. The "C" and "US" indicators next to this mark signify that the product has been evaluated according to the applicable CSA and ANSI/UL Standards, for use in Canada and the US, respectively.
	Canadian Standards Association component certification mark.
REF	Catalog number
X	Collect separately from other household waste (see European Commission Directive 93/86/EEC). Refer to local regulations for disposal.
Corrugated Recycles	Corrugated recycle
A	Dangerous voltage

Symbol	Definition
\sim	Date of manufacture
	Manufacturer
	Direct current (DC)
Ť	Do not get wet.
	Do not stack over n high, where n represents the number on the label.
	Electrostatic-sensitive devices
FC	Device complies with relevant FCC regulations for electronic devices.
I	Fragile
GEL	Gel
STERILER	Sterilized using irradiation
STERILE EO	Sterilized using ethylene oxide
	Hot
	Device emits a static (DC) magnetic field.
	Nonionizing radiation
	Paper recycle

Symbol	Definition
SN	Serial number type of control number
97. 97.	Temperature limitation
Ó	Atmospheric pressure limitation
Ì	Humidity limitation
IPX7	Submersible. Protected against the effects of temporary immersion.
IPX8	Watertight equipment. Protected against the effects of extended immersion.
Ŷ	Handle transducer with care.
	Follow manufacturer's instructions for disinfecting time.
	Disinfect transducer.
*	Type BF patient applied part
	(B = body, F = floating applied part)
	Defibrillator proof type CF patient applied part
1	Pollution Control Logo. (Applies to all parts/products listed in the China RoHS disclosure table. May not appear on the exterior of some parts/products because of space limitations.)
	China Compulsory Certificate mark ("CCC Mark"). A compulsory safety mark for compliance with Chinese national standards for many products sold in the People's Republic of China.
ŢÌ	Follow instructions for use.

The label position on the FC1 system

Specifications

Dimensions

System

- Length: 13.0 in. (33.1 cm)
- Width: 12.25 in. (31.1 cm)
- Height: 3.0 in (7.7 cm) (when the monitor is closed)

Display

- Length: 9.6 in. (24.3 cm)
- Height: 7.33 in. (18.6 cm)
- Diagonal: 12.1 in. (30.6 cm)

Environmental limits

Note

The temperature, pressure, and humidity limits apply only to the ultrasound system, transducers, and battery.

Operating (system, battery, and transducer)

10- 35°C (50-95°F), 15-95% R.H.

700 to 1060hPa (0.7 to 1.05 ATM)

Shipping and storage (system and transducer)

-35-65°C (-31-149°F), 15-95% R.H.

500 to 1060hPa (0.5 to 1.05 ATM)

Shipping and storage (battery)

-20-60°C (-4-140°F) (1 month), -20-45°C (-4-113°F) (3 month), -20-20°C (-4-68°F) (1 year), 15-95% R.H.

500 to 1060hPa (0.5 to 1.05 ATM)

Operating (bracket and needle guide)

10- 35°C (50-95°F), 15-95% R.H.

Shipping and storage (bracket and needle guide)

-35-65°C (-31-149°F), 15-95% R.H.

Electrical specifications

Power supply: PN P18011

- Input: 100-240 VAC, 2.5-1.2A , 50/60 Hz
- Output: +13.5VDC, 11.1A, 150W Max, Class 1, continuous operation.

FC1 stand

Input: 100-240 VAC, 50/60 Hz, 8.0-3.3 A

Battery specifications

The battery comprises twelve lithium-ion cells plus electronics, a temperature sensor, and battery contacts.

Run time is up to 1 hour, depending on imaging mode and display brightness.

Standards

Electrical safety standards

IEC 60601-1: Edition 3.1 (2012-08) + Corr..1 (2012) – Medical electrical equipment - Part 1: General requirement for basic safety and essential performance

IEC 60601-2-37:2007 Medical Electrical Equipment – Part 2-37: Particular requirements for the basic safety and essential performance of ultrasonic medical diagnostic and monitoring equipment (for use in conjunction with IEC60601-1:2005/2012)

Mains connected components shall comply with nationally recognized standards such as CAN/CSA-C22.2 No. 60601-1:08 and ANSI/AAMI ES60601-1:2005

IEC 61157:1992 – Standard Means for the Reporting of the Acoustic Output of Medical Diagnostic Ultrasonic Equipment.

EMC standards classification

CISPR 11, International Electrotechnical Commission, International Special Committee on Radio Interference. Industrial, Scientific, and Medical (ISM) Equipment—Radio-Frequency Disturbance Characteristics—Limits and Methods of Measurement. Classification for the ultrasound system, FC1 Stand system, accessories, and peripherals when configured together: Group 1, Class A.

IEC 60601-1-2:2007, Medical Electrical Equipment—Part 1-2: General Requirements for Safety—Collateral Standard: Electromagnetic Compatibility—Requirements and Tests.

Acoustic standards

NEMA UD 2-2004, Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment.

NEMA UD 3-2004, Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment, American Institute of Ultrasound in Medicine.

Biocompatibility standards

AAMI/ANSI/ISO 10993-1, Biological evaluation of medical devices—Part 1: Evaluation and testing (2009).

AAMI/ANSI/ISO 10993-5, Biological evaluation of medical devices—Part 5: Tests for In Vitro cytotoxicity (2009).

AAMI/ANSI/ISO 10993-10, Biological evaluation of medical devices—Part 10: Tests for irritation and delayed-type hypersensitivity (2002).

AAMI/ANSI/ISO 10993-11, Biological evaluation of medical devices—Part 11: Tests for systemic toxicity (2006).

AAMI/ANSI/ISO 10993-12, Biological evaluation of medical devices—Part 12: Sample preparation and reference materials (2007).

Chapter 10: Acoustic Output

This chapter contains safety information required by regulatory agencies pertaining to acoustic output. The information applies to the ultrasound system, transducer, accessories, and peripherals.

ALARA principle

"As low as reasonably achievable" (ALARA) is the guiding principle for the use of diagnostic ultrasound. Sonographers and other qualified ultrasound users, using good judgment and insight, determine the exposure that is "as low as reasonably achievable." There are no set rules to determine the correct exposure for every situation. The qualified ultrasound user determines the most appropriate way to keep exposure low and bioeffects to a minimum, while obtaining a diagnostic examination.

A thorough knowledge of the imaging modes, transducer capability, system setup, and scanning technique is necessary. The imaging mode determines the nature of the ultrasound beam. A stationary beam results in a more concentrated exposure than a scanned beam, which spreads that exposure over the area of scanning. The transducer capability depends on the frequency, penetration, resolution, and field of view. The default system presets are reset with each new patient. It is the scanning technique of the qualified ultrasound user along with patient variability that determines the system settings throughout the exam.

The variables that affect the way the qualified ultrasound user implements the ALARA principle include patient body size, location of the bone relative to the focal point, attenuation in the body, and ultrasound exposure time. Exposure time is an especially useful variable, because the qualified ultrasound user can control it. The ability to limit the exposure over time supports the ALARA principle.

Applying the ALARA principle

The system imaging mode that the qualified ultrasound user selects is determined by the diagnostic information required.

> 2D imaging provides anatomical information.

- CPD imaging provides information about the energy or amplitude strength of the Doppler signal over time at a given anatomical location and is used for detecting the presence of blood flow.
- Color imaging provides information about the energy or amplitude strength of the Doppler signal over time at a given anatomical location and is used for detecting the presence, velocity, and direction of blood flow.
- Tissue Harmonic Imaging uses higher received frequencies to reduce clutter and artifact, and improve resolution on the 2D image.

Understanding the nature of the imaging mode used allows the qualified ultrasound user to apply the ALARA principle.

Prudent use of ultrasound requires that patient exposure to ultrasound be limited to the lowest ultrasound output for the shortest time necessary to achieve acceptable diagnostic results. Decisions that support prudent use are based on the type of patient, exam type, patient history, ease or difficulty of obtaining diagnostically useful information, and potential localized heating of the patient due to transducer surface temperature.

The system has been designed to ensure that temperature at the face of the transducer elements will not exceed the limits established in Section 42 of IEC 60601-2-37: Particular requirement for the safety of ultrasound medical diagnostic and monitoring equipment. See "Transducer surface temperature rise" on page 541. In the event of a device malfunction, redundant controls will limit transducer power. This is accomplished by an electrical design that limits both power supply current and voltage to the transducer.

The sonographer uses the system controls to adjust image quality and limit ultrasound output. The system controls are divided into three categories relative to output:

- Controls that directly affect output
- Controls that indirectly affect output
- Receiver controls

Direct controls

The system does not exceed a spatial peak temporal average intensity (ISPTA) of 720 mW/cm² for all imaging modes. The mechanical index (MI) and thermal index (TI) may exceed values greater than 1.0 on some transducers in some imaging modes. You can monitor the MI and TI values and adjust the controls to reduce these values. For more information, see "Guidelines for reducing MI and TI" on page 539. An additional way to fulfill the ALARA principle is to set the MI or TI values to a low index value and then to modify this level until a satisfactory image or Doppler mode is obtained. For more information on MI and TI, see IEC 60601-2-37:2007: Annex CC.

Indirect controls

The controls that affect imaging mode, freeze, and depth also indirectly affect output. The imaging mode determines the nature of the ultrasound beam. Tissue attenuation is directly related to transducer frequency. The higher the PRF (pulse repetition frequency), the more output pulses occur over a period of time.

Receiver controls

The receiver controls are the gain controls. Receiver controls do not affect output. They should be used, if possible, to improve image quality before using controls that directly or indirectly affect output.

Acoustic artifacts

An acoustic artifact is information, present or absent in an image, that does not properly indicate the structure or flow being imaged. Helpful artifacts aid in diagnosis; others hinder proper interpretation. Examples of artifacts include:

- Shadowing
- Through transmission
- Aliasing
- Reverberations
- Comet tails

For more information on detecting and interpreting acoustic artifacts, see Kremkau, Frederick W. *Diagnostic ultrasound: Principles and instruments*. 7th ed., W.B. Saunders Company (Oct. 17, 2005).

Guidelines for reducing MI and TI

The following are general guidelines for reducing MI or TI. If multiple parameters are given, the best results may be achieved by minimizing these parameters simultaneously. In some modes, changing these parameters does not affect MI or TI. Changes to other parameters may also result in MI and TI reductions. Please note the MI and TI values on the screen.

MI: Higher Frequency Settings

TI: Lower frame rate or shallower focus depth

Output display

The system meets the AIUM output display standard for MI and TI (See "Related guidance documents" on page 541). MI and TI shall be displayed when either the MI or TI is greater than or equal to a value of 1.0

Even when MI is less than 1.0, the system provides a continuous real-time display of MI in all imaging modes, in increments of 0.1.

The system meets the output display standard for TI and provides a continuous real-time display of TI in all imaging modes, in increments of 0.1.

NoteThe TI consists of three user-selectable indices, and only one of these is displayed
at any one time. In order to display TI properly and meet the ALARA principle, the
user selects an appropriate TI, based on the specific exam being performed.
FUJIFILM SonoSite provides a copy of AIUM Medical Ultrasound Safety, which
contains guidance on determining which TI is appropriate (see "Related guidance
documents" on page 541).

MI and TI output display accuracy

The accuracy result for the MI is stated statistically. With 95% confidence, 95% of the measured MI values will be within +15% to -22% of the displayed MI value.

The accuracy result for the TI is stated statistically. With 95% confidence, 95% of the measured TI values will be within +19% to -33% of the displayed TI value. The values equate to +1dB to -3dB.

A displayed value of 0.0 for MI or TI means that the calculated estimate for the index is less than 0.05.

Factors that contribute to display uncertainty

The net uncertainty of the displayed indices is derived by combining the quantified uncertainty from three sources: measurement uncertainty, system and transducer variability, and engineering assumptions and approximations made when calculating the display values.

Measurement errors of the acoustic parameters when taking the reference data are the major source of error that contributes to the display uncertainty. Measurement error is described in "Acoustic measurement precision and uncertainty" on page 602.

The displayed MI and TI values are based on calculations using a set of acoustic output measurements that were made using a single reference ultrasound system with a single reference transducer that is representative of the population of transducers of that type. The reference system and transducer are chosen from a sample population of systems and transducers taken from early production units, and they are selected based on having an acoustic output that is representative of the nominal expected acoustic output for all transducer/ system combinations that might occur. Of course, every transducer/system combination has its own unique characteristic acoustic output, and will not match the nominal output on which the display estimates are

based. This variability between systems and transducers introduces an error into displayed value. By testing sample acoustic output during production, the amount of error introduced by the variability is bounded. The sampling testing ensures that the acoustic output of transducers and systems being manufactured stays within a specified range of the nominal acoustic output.

Another source of error is the assumptions and approximations that are made when deriving the estimates for the display indices. Chief among these assumptions is that the acoustic output, and thus the derived display indices, are linearly correlated with the transmit drive voltage of the transducer. Generally, this assumption is very good, but it is not exact, and thus some error in the display can be attributed to the assumption of voltage linearity.

Related guidance documents

Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, FDA, 1997.

Medical Ultrasound Safety, American Institute of Ultrasound in Medicine (AIUM), 1994. (A copy is included with each system.)

Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment, NEMA UD2-2004.

Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment, American Institute of Ultrasound in Medicine, 1993.

Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment, NEMA UD3-2004.

Guidance on the interpretation of TI and MI to be used to inform the operator, Annex HH, BS EN 60601-2-37 reprinted at P05699.

Transducer surface temperature rise

The following table lists the measured surface temperature rise from ambient $(23^{\circ}C \pm 3^{\circ}C)$ of transducers used on the ultrasound system. The temperatures were measured in accordance with EN 60601-2-37 section 42, with controls and settings positioned to give maximum temperatures.

Test	C60xf	HFL38xp	HFL50xp	L25xp	P21xp	С35хр	C11xp	L38xp	ІСТхр
Still air	13.7	9.6	11.5	12.6	16.3	13.7	12.6	10.3	7.6
Simulated use	8.1	7.7	8.0	8.7	9.1	8.0	7.3	7.2	3.9

Table 10-1: Transducer surface temperature rise, external use (°C)

Acoustic output measurement

Since the initial use of diagnostic ultrasound, the possible human biological effects (bioeffects) from ultrasound exposure have been studied by various scientific and medical institutions. In October 1987, the American Institute of Ultrasound in Medicine (AIUM) ratified a report from its Bioeffects Committee ("Bioeffects Considerations for the Safety of Diagnostic Ultrasound," *J Ultrasound Med.*, Sept. 1988: Vol. 7, No. 9 Supplement). The report, sometimes referred to as the Stowe Report, reviewed available data on possible effects of ultrasound exposure. Another report, "Bioeffects and Safety of Diagnostic Ultrasound," dated January 28, 1993, provides more current information.

The acoustic output for this ultrasound system has been measured and calculated in accordance with "Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment" (NEMA UD2-2004), and "Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment" (NEMA UD3-2004).

In situ, derated, and water value intensities

All intensity parameters are measured in water. Since water does not absorb acoustic energy, these water measurements represent a worst-case value. Biological tissue does absorb acoustic energy. The true value of the intensity at any point depends on the amount of energy, the type of tissue, and the frequency of the ultrasound passing through the tissue. The intensity value in the tissue, *In situ*, has been estimated by using the following formula:

In situ = Water [e-(0.23alf)]

where:

- In situ = In situ intensity value
- Water = Water intensity value
- ▶ e = 2.7183
- ▶ a = attenuation factor (dB/cm MHz)

Attenuation factor (a) for various tissue types are given below:

- ▶ Brain = 0.53
- ▶ Heart = 0.66
- ▶ Kidney = 0.79
- ▶ Liver = 0.43
- Muscle = 0.55
- I = skinline to measurement depth in cm
- ▶ f = center frequency of the transducer/system/mode combination in MHz

Since the ultrasonic path during the exam is likely to pass through varying lengths and types of tissue, it is difficult to estimate the true *in situ* intensity. An attenuation factor of 0.3 is used for general reporting purposes; therefore, the *in situ* value commonly reported uses the formula:

In situ (derated) = Water $[e^{-(0.069)f}]$

Since this value is not the true in situ intensity, the term "derated" is used to qualify it.

The maximum derated and the maximum water values do not always occur at the same operating conditions. Therefore, the reported maximum water and derated values may not be related by the *in situ* (derated) formula. For example: Consider a multizone array transducer that has maximum water value intensities in its deepest zone, but also has the smallest derating factor in that zone. The same transducer may have its largest derated intensity in one of its shallowest focal zones.

Tissue models and equipment survey

Tissue models are necessary to estimate attenuation and acoustic exposure levels in situ from measurements of acoustic output made in water. Currently, available models may be limited in their accuracy because of varying tissue paths during diagnostic ultrasound exposures and uncertainties in the acoustic properties of soft tissues. No single tissue model is adequate for predicting exposures in all situations from measurements made in water, and continued improvement and verification of these models is necessary to make exposure assessments for specific exam types.

A homogeneous tissue model with attenuation coefficient of 0.3 dB/cm MHz throughout the beam path is commonly used when estimating exposure levels. The model is conservative in that it overestimates the *in situ* acoustic exposure when the path between the transducer and site of interest is composed entirely of soft tissue. When the path contains significant amounts of fluid, as in many first and second-trimester pregnancies scanned transabdominally, this model may underestimate the *in situ* acoustic exposure. The amount of underestimation depends on each specific situation.

Fixed-path tissue models, in which soft-tissue thickness is held constant, sometimes are used to estimate *in situ* acoustic exposures when the beam path is longer than 3 cm and consists largely of fluid. When this model is used to estimate maximum exposure to the fetus during transabdominal scans, a value of 1 dB/cm MHz may be used during all trimesters.

Existing tissue models that are based on linear propagation may underestimate acoustic exposures when significant saturation due to nonlinear distortion of beams in water is present during the output measurement.

The maximum acoustic output levels of diagnostic ultrasound devices extend over a broad range of values:

A survey of 1990 equipment models yielded MI values between 0.1 and 1.0 at their highest output settings. Maximum MI values of approximately 2.0 are known to occur for currently available equipment. Maximum MI values are similar for real-time 2D-mode and M-mode imaging.

Computed estimates of upper limits to temperature elevations during transabdominal scans were obtained in a survey of 1988 and 1990 pulsed Doppler equipment. The vast majority of models yielded upper limits less than 1° and 4°C (1.8° and 7.2°F) for exposures of first-trimester fetal tissue and second-trimester fetal bone, respectively. The largest values obtained were approximately 1.5°C (2.7°F) for first-trimester fetal tissue and 7°C (12.6°F) for second-trimester fetal bone. Estimated maximum temperature elevations given here are for a "fixed path" tissue model and are for devices having ISPTA values greater than 500 mW/cm². The temperature elevations for fetal bone and tissue were computed based on calculation procedures given in Sections 4.3.2.1-4.3.2.6 in "Bioeffects and Safety of Diagnostic Ultrasound" (AIUM, 1993).

Acoustic output tables

The tables in this section indicate the acoustic output for the system and transducer combinations with a TI or MI equal to or greater than one. These tables are organized by transducer model and imaging mode. For a definition of terms used in the tables, see "Terms used in the acoustic output tables" on page 601.

Transducer model: C60xf Operating mode: 2D (B)	
Transducer model: C60xf Operating mode: 2D (B)/M	547
Transducer model: C60xf Operating mode: 2D (B)/Color	548
Transducer model: C60xf Operating mode: PW Doppler	549
Transducer model: C60xf Operating mode: 2D (B)/ PW Doppler	550
Transducer model: C60xf Operating mode: 2D (B)/Color/PW Doppler (Triplex)	551
Transducer model: HFL38xp Operating mode: 2D (B)	552
Transducer model: HFL38xp Operating mode: 2D (B)/M	553
Transducer model: HFL38xp Operating mode: 2D (B)/Color	
Transducer model: HFL38xp Operating mode: PW Doppler	555
Transducer model: HFL38xp Operating mode: 2D (B)/PW Doppler	556
Transducer model: HFL38xp Operating mode: 2D (B)/Color/PW Doppler (Triplex)	557
Transducer model: HFL50xp Operating mode: 2D (B)	558
Transducer model: HFL50xp Operating mode: 2D (B)/M mode	559
Transducer model: HFL50xp Operating mode: 2D (B)/Color	560
Transducer model: HFL50xp Operating mode: PW Doppler	561
Transducer model: HFL50xp Operating mode: 2D (B)/PW Doppler	562
Transducer model: HFL50xp Operating mode: 2D (B)/Color/PW Doppler (Triplex)	563
Transducer model: L25xp Operating mode: 2D (B)	564
Transducer model: L25xp Operating mode: 2D (B)/M	565
Transducer model: L25xp Operating mode: 2D (B)/Color	
Transducer model: L25xp Operating mode: PW Doppler	567
Transducer model: L25xp Operating mode: 2D (B)/PW Doppler	568

Transducer model: L25xp Operating mode: 2D (B)/Color/PW Doppler (Triplex)	569
Transducer model: P21xp Operating mode: 2D (B)	
Transducer model: P21xp Operating mode: 2D (B)/M	571
Transducer model: P21xp Operating mode: 2D (B)/Color	572
Transducer model: P21xp Operating mode: PW Doppler	573
Transducer model: P21xp Operating mode: 2D (B)/PW Doppler	574
Transducer model: P21xp Operating mode: 2D (B)/Color/PW Doppler (Triplex)	575
Transducer model: P21xp Operating mode: CW Doppler	576
Transducer Model: L38xp Operating Mode: 2D	577
Transducer Model: L38xp Operating Mode: 2D/M	578
Transducer Model: L38xp Operating Mode: 2D/color	
Transducer Model: L38xp Operating Mode: PW Doppler	580
Transducer Model: L38xp Operating Mode: 2D/PW Doppler	581
Transducer Model: L38xp Operating Mode: 2D/color/PW Doppler (Triplex)	582
Transducer Model: C11xp Operating Mode: 2D	583
Transducer Model: C11xp Operating Mode: 2D/M	
Transducer Model: C11xp Operating Mode: 2D/Color	
Transducer Model: C11xp Operating Mode: PW Doppler	586
Transducer Model: C11xp Operating Mode: 2D/PW Doppler	
Transducer Model: C11xp Operating Mode: 2D/Color/PW Doppler (Triplex)	588
Transducer Model: ICTxp Operating Mode: 2D	589
Transducer Model: ICTxp Operating Mode: 2D/M	
Transducer Model: ICTxp Operating Mode: 2D/Color	591
Transducer Model: ICTxp Operating Mode: PW Doppler	592
Transducer Model: ICTxp Operating Mode: 2D/PW Doppler	
Transducer Model: ICTxp Operating Mode: 2D/Color/PW Doppler (Triplex)	594
Transducer Model: C35xp Operating Mode: 2D	595
Transducer Model: C35xp Operating Mode: 2D/M	
Transducer Model: C35xp Operating Mode: 2D/Color	
Transducer Model: C35xp Operating Mode: PW Doppler	
Transducer Model: C35xp Operating Mode: 2D/PW Doppler	599
Transducer Model: C35xp Operating Mode: 2D/Color/PW Doppler (Triplex)	600

Table 10-2: Transducer model: C60xf

Operating mode: 2D (B)

				TIS		TIB		
	Index label			Scan	Non	Nonscan		тіс
				Scall	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Global Maximum Index Value		1.0	0.4	-	-	-	1.0
	p _{r.3}	(MPa)	1.56					
	W _o	(mW)		34.0	-		-	125.0
U	min of $[W_{3}(z_{1)}, I_{TA.3}(z_{1})]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					-	
ciato	z@PII. _{3max}	(cm)	4.7					
ssoe	$d_{eq}(Z_{sp})$	(cm)					-	
¥	F _c	(MHz)	2.22	2.59	-	-	-	2.18
	Dim of A	X (cm)		5.6	-	-	-	5.7
	Dim of A _{aprt}	Y (cm)		1.3	-	-	-	1.3
	PD	(µsec)	0.63					
_	PRF	(Hz)	2416					
tior	p _r @PII _{max}	(MPa)	2.14					
Other formati	d _{eq} @PII _{max}	(cm)					-	
Other Information	Focal Length	FL _x (cm)		10	-	-		13
.=		FL _y (cm)		7.1	-	-		7.1
	I _{PA.3} @MI _{max}	(W/cm ²)	146.7					
	Control 1: Frequency		4 MHz	5 MHz				4 MHz
ng ol sns	Control 2: THI		On	On				On
perating control ndition	Control 3:							
Operating control conditions	Control 4:							
0 0	Control 5:							

Table 10-3: Transducer model: C60xf

Operating mode: 2D (B)/M

				TIS	TIB		
Index label			S com	Non	scan	Non-	тіс
			Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global Maximum Index Value		1.0	0.4	-	0.1	0.3	1.1
P _{r.3}	(MPa)	1.56					
W _o	(mW)		31.7	-		8.5	129.6
min of $[W_{3(z_{1})} _{TA.3(z_{1})}]$	(mW)				8.7		
Z ₁	(cm)				3.1		
Z _{bp}	(cm)				2.9		
Z _{sp}	(cm)					4.3	
z@PII _{.3max}	(cm)	4.7					
$d_{eq}(Z_{sp})$	(cm)					0.37	
F _c	(MHz)	2.22	2.59	-	2.18	2.22	2.18
Dim of A	X (cm)		5.6	-	2.3	1.3	5.7
	Y (cm)		1.3	-	1.3	1.3	1.3
PD	(µsec)	0.63					
PRF	(Hz)	2229					
p _r @PII _{max}	(MPa)	2.14					
d _{eq} @PII _{max}	(cm)					0.34	
Focal Length	FL _x (cm)		10	-	13		13
	FL _y (cm)		7.1	-	7.1		7.1
PA.3@MI _{max}	(W/cm ²)	146.7					
Control 1: Frequency		4 MHz	5 MHz		4 MHz		4 MHz
Control 2: THI		On	On		On		On
Control 3:							
Control 4:							
Control 5:							
	aximum Index Value $D_{r,3}$ W_0 min of $[W_{3i}(Z_{1i},I_{TA,3i}(Z_{1i})]$ Z_1 Z_2 Z_3p Z_4 Z_5p Z_6 Z_5p Z_6	aximum Index Value $D_{r,3}$ (MPa) N_0 (mW)min of $[W_{31}Z_{11},I_{TA,3}Z_{11}]$ (mW) Z_1 (cm) Z_{bp} (cm) Z_{p} (mHz) Z_{p} (mHz) $D_{1,max}$ (MPa) D_{p} (Hz) D_{p} (Largel) D_{q}	aximum Index Value 1.0 $D_{r,3}$ (MPa) 1.56 N_0 (mW) 1.56 N_0 (mW) 1.6 min of [$W_{.31}Z_{11}$, I _{TA.32} Z_{11}] (mW) 1.0 Z_1 (cm) 1.0 Z_{p} (cm) 2.22 D_{eq} X_{cm} 1.0 D_{eq} Q_{eq} 0.63 PR (Hz) 2229 D_{eq} (MPa) 2.14 D_{eq} PL_x (cm) 1.0 D_{eq} PL_x (cm) 1.0 PA_{eq} PL_x (cm) 1.0 <td>Scan Scan aximum Index Value 1.0 0.4 $D_{r,3}$ (MPa) 1.56 N_0 (mW) 31.7 min of $[W_{3j}Z_{1j}]_{TA,3j}Z_{1j}]$ (mW) - Z_{1} (cm) - Z_{p} (cm) - Z_{sp} (cm) 4.7 Z_{op} (cm) - Z_{ap} (cm) 5.6 D_{max} (MPa) 2.22 D_{max} (MPa) 2.14 D_{apt1}^{max} (mN) - D_{ape1}^{max} (cm) - D_{ape1}^{max} (MPa) 2.14 D_{ape1}^{max} (cm) - D_{ape1}^{max} (cm) - D_{ape1}^{max} (MPa) 2.14 D_{ape1}^{max} (cm) - D_{ape1}^{max} (cm) - D_{ape1}^{max} (MPa) 2.14 D_{ape1}^{max} (m) - D_{ape1}^{max} (m) - D_{ape1}^{max} (m)<td>Index label M.I. Scan Non aximum Index Value 1.0 0.4 - $\Delta_{r,3}$ (MPa) 1.56 . . N_0 (mW) 1.56 . . . M_0 (mW) 1.56 . . . M_0 (mW) 1.0 1.0 . . M_0 (mW) 1.3 . . . M_1 (cm) M_1 (cm) 4.7 M_2 (cm) 4.7 M_2 (cm) 4.7 M_2 (cm) 1.3 M_2 (cm) 0.633 M_4 (cm)<td>Index label M.I. Scan No-construction aximum Index Value 1.0 0.4 - 0.1 $\Delta_{a,a}$ (MPa) 1.56 - - - $\Delta_{a,a}$ (MPa) 1.56 31.7 - - min of [W.₃(Z₁), I_{1A,3}(Z₁)] (mW) - - 3.1 Z₁ (cm) - - - 3.1 Z₂ (cm) - - - - Z₄ (cm) - - - - Z₄ (cm) - - - - - Z₄ (cm) 1.3 - 1.3 - - Z₄ (mHz) 2.14 - - - - Z₄ (cm) 1.3 - - - - Z₄ (cm) - 1.3 - - - Z₄ (cm) 1.4 - -<!--</td--><td>Index label M.I. Scan Non-scan Non-scan aximum Index Value 1.0 0.4 - 0.1 0.3 $\Delta_{c,3}$ (MPa) 1.56 31.7 - 8.5 N_0 (mW) 31.7 - 8.7 3.1 Z_{ap} (cm) - 3.1 2.9 4.3 Z_{ap} (cm) - 0.37 5.6 - 0.37 Z_{ap} (cm) 2.22 2.59 - 2.18 2.22 $Dim of A_{apr1}$ Y (cm) 1.3 1.3 1.3 1.3 PD (µsec) 0.63 - 2.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 1.6 - 0.34 - $Pa_a@MI_max$ (mW) 1.46.7 - - - $Pa_a@MI_max$</td></td></td></td>	Scan Scan aximum Index Value 1.0 0.4 $D_{r,3}$ (MPa) 1.56 N_0 (mW) 31.7 min of $[W_{3j}Z_{1j}]_{TA,3j}Z_{1j}]$ (mW) - Z_{1} (cm) - Z_{p} (cm) - Z_{sp} (cm) 4.7 Z_{op} (cm) - Z_{ap} (cm) 5.6 D_{max} (MPa) 2.22 D_{max} (MPa) 2.14 D_{apt1}^{max} (mN) - D_{ape1}^{max} (cm) - D_{ape1}^{max} (MPa) 2.14 D_{ape1}^{max} (cm) - D_{ape1}^{max} (cm) - D_{ape1}^{max} (MPa) 2.14 D_{ape1}^{max} (cm) - D_{ape1}^{max} (cm) - D_{ape1}^{max} (MPa) 2.14 D_{ape1}^{max} (m) - D_{ape1}^{max} (m) - D_{ape1}^{max} (m) <td>Index label M.I. Scan Non aximum Index Value 1.0 0.4 - $\Delta_{r,3}$ (MPa) 1.56 . . N_0 (mW) 1.56 . . . M_0 (mW) 1.56 . . . M_0 (mW) 1.0 1.0 . . M_0 (mW) 1.3 . . . M_1 (cm) M_1 (cm) 4.7 M_2 (cm) 4.7 M_2 (cm) 4.7 M_2 (cm) 1.3 M_2 (cm) 0.633 M_4 (cm)<td>Index label M.I. Scan No-construction aximum Index Value 1.0 0.4 - 0.1 $\Delta_{a,a}$ (MPa) 1.56 - - - $\Delta_{a,a}$ (MPa) 1.56 31.7 - - min of [W.₃(Z₁), I_{1A,3}(Z₁)] (mW) - - 3.1 Z₁ (cm) - - - 3.1 Z₂ (cm) - - - - Z₄ (cm) - - - - Z₄ (cm) - - - - - Z₄ (cm) 1.3 - 1.3 - - Z₄ (mHz) 2.14 - - - - Z₄ (cm) 1.3 - - - - Z₄ (cm) - 1.3 - - - Z₄ (cm) 1.4 - -<!--</td--><td>Index label M.I. Scan Non-scan Non-scan aximum Index Value 1.0 0.4 - 0.1 0.3 $\Delta_{c,3}$ (MPa) 1.56 31.7 - 8.5 N_0 (mW) 31.7 - 8.7 3.1 Z_{ap} (cm) - 3.1 2.9 4.3 Z_{ap} (cm) - 0.37 5.6 - 0.37 Z_{ap} (cm) 2.22 2.59 - 2.18 2.22 $Dim of A_{apr1}$ Y (cm) 1.3 1.3 1.3 1.3 PD (µsec) 0.63 - 2.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 1.6 - 0.34 - $Pa_a@MI_max$ (mW) 1.46.7 - - - $Pa_a@MI_max$</td></td></td>	Index label M.I. Scan Non aximum Index Value 1.0 0.4 - $\Delta_{r,3}$ (MPa) 1.56 . . N_0 (mW) 1.56 . . . M_0 (mW) 1.56 . . . M_0 (mW) 1.0 1.0 . . M_0 (mW) 1.3 . . . M_1 (cm) M_1 (cm) 4.7 M_2 (cm) 4.7 M_2 (cm) 4.7 M_2 (cm) 1.3 M_2 (cm) 0.633 M_4 (cm) <td>Index label M.I. Scan No-construction aximum Index Value 1.0 0.4 - 0.1 $\Delta_{a,a}$ (MPa) 1.56 - - - $\Delta_{a,a}$ (MPa) 1.56 31.7 - - min of [W.₃(Z₁), I_{1A,3}(Z₁)] (mW) - - 3.1 Z₁ (cm) - - - 3.1 Z₂ (cm) - - - - Z₄ (cm) - - - - Z₄ (cm) - - - - - Z₄ (cm) 1.3 - 1.3 - - Z₄ (mHz) 2.14 - - - - Z₄ (cm) 1.3 - - - - Z₄ (cm) - 1.3 - - - Z₄ (cm) 1.4 - -<!--</td--><td>Index label M.I. Scan Non-scan Non-scan aximum Index Value 1.0 0.4 - 0.1 0.3 $\Delta_{c,3}$ (MPa) 1.56 31.7 - 8.5 N_0 (mW) 31.7 - 8.7 3.1 Z_{ap} (cm) - 3.1 2.9 4.3 Z_{ap} (cm) - 0.37 5.6 - 0.37 Z_{ap} (cm) 2.22 2.59 - 2.18 2.22 $Dim of A_{apr1}$ Y (cm) 1.3 1.3 1.3 1.3 PD (µsec) 0.63 - 2.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 1.6 - 0.34 - $Pa_a@MI_max$ (mW) 1.46.7 - - - $Pa_a@MI_max$</td></td>	Index label M.I. Scan No-construction aximum Index Value 1.0 0.4 - 0.1 $\Delta_{a,a}$ (MPa) 1.56 - - - $\Delta_{a,a}$ (MPa) 1.56 31.7 - - min of [W. ₃ (Z ₁), I _{1A,3} (Z ₁)] (mW) - - 3.1 Z ₁ (cm) - - - 3.1 Z ₂ (cm) - - - - Z ₄ (cm) - - - - Z ₄ (cm) - - - - - Z ₄ (cm) 1.3 - 1.3 - - Z ₄ (mHz) 2.14 - - - - Z ₄ (cm) 1.3 - - - - Z ₄ (cm) - 1.3 - - - Z ₄ (cm) 1.4 - - </td <td>Index label M.I. Scan Non-scan Non-scan aximum Index Value 1.0 0.4 - 0.1 0.3 $\Delta_{c,3}$ (MPa) 1.56 31.7 - 8.5 N_0 (mW) 31.7 - 8.7 3.1 Z_{ap} (cm) - 3.1 2.9 4.3 Z_{ap} (cm) - 0.37 5.6 - 0.37 Z_{ap} (cm) 2.22 2.59 - 2.18 2.22 $Dim of A_{apr1}$ Y (cm) 1.3 1.3 1.3 1.3 PD (µsec) 0.63 - 2.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 1.6 - 0.34 - $Pa_a@MI_max$ (mW) 1.46.7 - - - $Pa_a@MI_max$</td>	Index label M.I. Scan Non-scan Non-scan aximum Index Value 1.0 0.4 - 0.1 0.3 $\Delta_{c,3}$ (MPa) 1.56 31.7 - 8.5 N_0 (mW) 31.7 - 8.7 3.1 Z_{ap} (cm) - 3.1 2.9 4.3 Z_{ap} (cm) - 0.37 5.6 - 0.37 Z_{ap} (cm) 2.22 2.59 - 2.18 2.22 $Dim of A_{apr1}$ Y (cm) 1.3 1.3 1.3 1.3 PD (µsec) 0.63 - 2.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 0.63 - 1.3 1.3 PD (µsec) 1.6 - 0.34 - $Pa_a@MI_max$ (mW) 1.46.7 - - - $Pa_a@MI_max$

Table 10-4: Transducer model: C60xf

Operating mode: 2D (B)/Color

Index label				TIS		TIB		
		M.I.	C.com	Non	Nonscan		ΤΙϹ	
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Global Maximum Index Value		1.0	0.3	-	-	-	0.6
	p _{r.3}	(MPa)	1.56					
	W _o	(mW)		21.2	-		-	69.3
U	min of $[W_{\cdot_{3(}}z_{_{1)}},I_{_{TA,3(}}z_{_{1)}}]$	(mW)				-		
usti	Z ₁	(cm)				-		
aco eter	Z _{bp}	(cm)				-		
Associated acoustic parameter	Z _{sp}	(cm)					-	
ciat par	z@PII. _{3max}	(cm)	4.7					
sso	$d_{eq}(Z_{sp})$	(cm)					-	
Ā	F _c	(MHz)	2.22	3.17	-	-	-	3.14
	Dim of A _{aort}	X (cm)		4.5	-	-	-	4.5
		Y (cm)		1.3	-	-	-	1.3
	PD	(µsec)	0.63					
_	PRF	(Hz)	479					
itio	p _r @PII _{max}	(MPa)	2.14					
Other	$d_{eq} @PII_{max}$	(cm)					-	
Other information	Focal Length	FL _x (cm)		16	-	-		20
.=		FL _y (cm)		7.1	-	-		7.1
	I _{PA.3} @MI _{max}	(W/cm ²)	146.7					
D S	Control 1: 2D Frequency	' THI	4 MHz / On	5 MHz / On				4 MHz / On
trol	Control 2: Color Frequence	:y	3.2 MHz	3.2 MHz				3.2 MHz
Operating control conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
ۆ s	Control 4: Color PRF		3226 Hz	3226 Hz				3226 Hz
	Control 5:							

Table 10-5: Transducer model: C60xf

Operating mode: PW Doppler

				TIS		TIB		
Index label			M.I.	Non	scan	Non-	TIC	
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Global Maximum Index Value		0.7	-	-	0.7	2.1	1.3
	p _{r.3}	(MPa)	1.25					
	W _o	(mW)		-	-		60.0	113.2
U	min of $[W_{3}(z_{1)}, I_{TA,3}(z_{1})]$	(mW)				39.1		
usti	Z ₁	(cm)				3.2		
Associated acoustic parameter	Z _{bp}	(cm)				3.3		
ed :	Z _{sp}	(cm)					3.8	
ciat	z@PII. _{3max}	(cm)	1.2					
SSOC	$d_{eq}(Z_{sp})$	(cm)					0.35	
Ä	F _c	(MHz)	3.16	-	-	2.23	2.25	2.23
	Dim of A _{aort}	X (cm)		-	-	2.9	1.2	2.9
		Y (cm)		-	-	1.3	1.3	1.3
	PD	(µsec)	0.82					
~	PRF	(Hz)	2000					
tion	p _r @PII _{max}	(MPa)	2.06					
Other formati	$d_{eq}@PII_{max}$	(cm)					0.33	
Other information	Focal Length	FL _x (cm)		-	-	13		13
.=		FL _y (cm)		-	-	7.1		7.1
	I _{PA.3} @MI _{max}	(W/cm ²)	119.8					
	Control 1: Frequency		3.2 MHz			2.22 MHz	2.22 MHz	2.22 MHz
ing ol ons	Control 2: PRF		2000 Hz			3125 Hz	9091 Hz	3125 Hz
Operating control conditions	Control 3: Sample Volume	e Position	6.0 cm			13 cm	5.0 cm	13 cm
op∉ co	Control 4:							
0	Control 5:							

Table 10-6: Transducer model: C60xf

Operating mode: 2D (B)/ PW Doppler

				TIS		TIB		
	Index label			Scan	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Global Maximum Index Value		1.0	0.4	-	0.8	1.9	1.6
	p _{r.3}	(MPa)	1.61					
	W _o	(mW)		35.8	-		56.7	141.0
U	min of $[W_{\cdot_{3(}} z_{_{1),}} I_{_{TA,3(}} z_{_{1)}}]$	(mW)				70.7		
usti	Z ₁	(cm)				3.2		
acol	Z _{bp}	(cm)				3.3		
Associated acoustic parameter	Z _{sp}	(cm)					4.3	
ciat	z@PII _{.3max}	(cm)	4.8					
2200	$d_{eq}(Z_{sp})$	(cm)					0.34	
¥	F _c	(MHz)	2.63	2.57	-	2.23	2.24	2.23
	Dim of A	X (cm)		5.7	-	2.9	1.3	2.9
	Dim of A _{aprt}	Y (cm)		1.3	-	1.3	1.3	1.3
	PD	(µsec)	0.50					
_	PRF	(Hz)	500					
tior	p _r @PII _{max}	(MPa)	2.28					
Other formati	d _{eq} @PII _{max}	(cm)					0.32	
Other information	Focal Length	FL _x (cm)		16	-	13		16
-=		FL _y (cm)		7.1	-	7.1		7.1
	I _{PA.3} @MI _{max}	(W/cm ²)	186.3					
g sc	Control 1: 2D Frequency /	'THI	5 MHz / On	5 MHz / On		4 MHz / Off	4 MHz / On	5 MHz / On
atin trol tior	Control 2: PW Frequency		3.2 MHz	3.2 MHz		2.22 MHz	2.22 MHz	2.22 MHz
Operating control conditions	Control 3: PW PRF		2000 Hz	1000 Hz		3125 Hz	3125 Hz	3125 Hz
đ ~ 8	Control 4: PW Sample Vol Position	ume	6.0 cm	16 cm		13 cm	6.0 cm	16 cm

Table 10-7: Transducer model: C60xf

Operating mode: 2D (B)/Color/PW Doppler (Triplex)

				TIS		TIB		
Index label			M.I.	S com	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global Maximum Index Value		1.0	0.3	-	0.8	1.6	1.8	
	p _{r.3}	(MPa)	1.61					
	W _o	(mW)		19.8	-		44.9	169.4
U	min of $[W_{\cdot_{3(}}z_{_{1)}},I_{_{TA,3(}}z_{_{1})}]$	(mW)				70.7		
usti	Z ₁	(cm)				3.2		
aco	Z _{bp}	(cm)				3.3		
Associated acoustic parameter	Z _{sp}	(cm)					3.8	
ciat	z@PII. _{3max}	(cm)	4.8					
sso	$d_{eq}(Z_{sp})$	(cm)					0.35	
Ä	F _c	(MHz)	2.63	3.15	-	2.23	2.25	2.23
	Dim of A _{aprt}	X (cm)		4.8	-	2.9	1.2	2.9
		Y (cm)		1.3	-	1.3	1.3	1.3
	PD	(µsec)	0.50					
_	PRF	(Hz)	250					
tion	p _r @PII _{max}	(MPa)	2.28					
Other formati	$d_{eq}@PII_{max}$	(cm)					0.35	
Other nformation	Focal Length	FL _x (cm)		20	-	13		16
.=		FL _y (cm)		7.1	-	7.1		7.1
	I _{PA.3} @MI _{max}	(W/cm ²)	186.3					
D SC	Control 1: 2D Frequency /	'THI	5 MHz / On	5 MHz / On		4 MHz / Off	4 MHz / On	5 MHz / On
trol	Control 2: Color Frequence	у	2.5 MHz	3.2 MHz		3.2 MHz	2.5 MHz	3.2 MHz
Operating control conditions	Control 3: PW Frequency		3.2 MHz	2.22 MHz		2.22 MHz	2.22 MHz	2.22 MHz
Q , S	Control 4: PW PRF		2000 Hz	3125 Hz		3521 Hz	6579 Hz	3125 Hz
	Control 5: PW Sample Vol	Position	6.0 cm	20 cm		13 cm	5.0 cm	16 cm

Table 10-8: Transducer model: HFL38xp

Operating mode: 2D (B)

		TIS			TIB			
Index label		м.і.	C com	Non	scan	Non-	тіс	
			Jean	A _{aprt} ≤1	A _{aprt} >1	scan		
aximum Index Value		0.9	0.5	-	-	-	0.8	
O _{r.3}	(MPa)	1.98						
N _o	(mW)		18.3	-		-	38.9	
min of $[W_{3(z_{1})}, I_{TA,3(z_{1})}]$	(mW)				-			
Z ₁	(cm)				-			
Z _{bp}	(cm)				-			
Z _{sp}	(cm)					-		
z@PII _{.3max}	(cm)	1.5						
$d_{eq}(Z_{sp})$	(cm)					-		
c	(MHz)	4.96	5.87	-	-	-	5.44	
Dim of A	X (cm)		3.0	-	-	-	3.0	
	Y (cm)		0.4	-	-	-	0.4	
PD	(µsec)	0.33						
PRF	(Hz)	5000						
o _r @PII _{max}	(MPa)	2.35						
d _{eq} @PII _{max}	(cm)					-		
Focal Length	FL _x (cm)		5	-	-		5	
	FL _y (cm)		2.5	-	-		2.5	
_{PA.3} @MI _{max}	(W/cm ²)	175.9						
Control 1: Frequency		9 MHz	10 MHz				10 MHz	
Control 2: THI		On	On				On	
Control 3:								
Control 4:								
Control 5:								
	aximum Index Value Dr.3 No No min of [W.3(Z1),ITA.3(Z1)] 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27	aximum Index Value $D_{r,3}$ (MPa) N_0 (mW)min of $[W_{33}Z_{13},I_{TA,3}Z_{13}]$ (mW) Z_1 (cm) Z_{bp} (cm) Z_{p} (mHz) D_{q} (µsec) D_{p} (µsec) PR_{p} (Hz) D_{q} (PI) D_{q} (Lang) D_{q} PI_{max} D_{q} PL_{x} $D_{p,3}$ M_{max} $D_{p,3}$ M_{max} $D_{p,3}$ $Control 3:$ $D_{p,1}$ $Control 4:$	aximum Index Value 0.9 $D_{r,3}$ (MPa) 1.98 N_0 (mW) 1.98 N_0 (mW) 1.08 N_0 (mW) 1.08 $nin of [W_{\cdot3} z_{1,1} I_{TA.3} (Z_1)]$ (mW) 1.08 Z_1 (cm) 1.08 Z_{p} (cm) 1.09 Z_{p} (cm) 1.08 Z_{p} (cm) 1.08 Z_{p} (cm) 1.09 Z_{p} (cm) 1.09 Z_{p} (cm) 1.09 Z_{p} (cm) 1.00 Z_{p} (cm) 1.00 Z_{p} (cm) 1.00 $D_{10ma} A_{apt}$ (MPa) 2.35 D_{eq} (PI) 1.00 D_{eq} FL, (cm) 1.00 D_{eq} FL, (cm) 1.00 D_{eq} FL, (cm) 1.00 D_{eq} Mmax (W/cm2) 1.00 D_{eq} FL, (cm) 1.00 1.00 P_{eq} Mmax	Scan Scan aximum Index Value 0.9 0.5 $P_{r,3}$ (MPa) 1.98 N_0 (mW) 18.3 min of $[W_{3j}Z_{1j}]_{TA,3j}Z_{1j}]$ (mW) 18.3 Z_{1} (cm) - Z_{p} (cm) - Z_{sp} (cm) 1.5 Z_{sp} (cm) 1.5 $Z_{q}(Z_{sp})$ (cm) 3.0 $Z_{q}(Z_{sp})$ (mHz) 4.96 5.87 D_{10} Y (cm) 0.4 2.5 D_{10} (MPa) 2.35 - $D_{q}(PII_{max})$ (MPa) 2.35 - $Q_{q}(QPII_{max})$ (cm) 5 - $Q_{q}(QPII_{max})$ (cm) - - $Q_{q}(QPII_{max})$ (Cm) 5 - $Q_{q}(QPII_{max})$ (cm) 5 - $Q_{q}(QPII_{max})$ (V/cm2) 175.9 - $Q_{q}(QPII_{max})$ V 10 MHz - $Q_{q}(QPII_{max})$ On On -	Index Label M.1. Scan Non aximum Index Value 0.9 0.5 - $\Delta_{r,3}$ (MPa) 1.98 - N_0 (mW) 18.3 - N_0 (mW) 18.3 - M_0 (mW) 18.3 - M_0 (cm) 1.5 1.5 $\Delta_{pq}(Z_{sp})$ (cm) 1.5 - $\Delta_{qq}(Z_{sp})$ (cm) 1.5 - $\Delta_{qq}(Z_{sp})$ (cm) 3.0 - $\Delta_{qq}(Z_{sp})$ (cm) 0.4 - $\Delta_{qq}(Z_{sp})$ (cm) 0.4 - $\Delta_{qq}(Z_{sp})$ (cm) 0.4 - $Dim of A_{aprt}$ (Hz) 5.87 - Δ_{qq} (Ll) 0.4 - $Dim of A_{aprt}$ (Hz) 2.35 - D_{qq} (Cm) 1.5 - D_{qq} (PA) 2.5 - D_{qq}	Index label M.i. Scan No- aximum Index Value 0.9 0.5 - - $\Delta_{a,a}$ (MPa) 1.98 - - $\Delta_{a,a}$ (MPa) 1.98 - - $\Delta_{a,a}$ (mW) 18.3 - - $\Delta_{a,a}$ (mW) 18.3 - - $\Delta_{a,a}$ (cm) - - - $\Delta_{a,a}$ (cm) - - - $\Delta_{a,a}$ (cm) - - - $\Delta_{a,a}$ (cm) 1.5 - - $\Delta_{a,a}$ (cm) 3.0 - - $\Delta_{a,a}$ (cm) 0.4 - - $\Delta_{a,a}$ (cm) - - - $\Delta_{a,a}$ (cm) 5 - - $\Delta_{a,a}$ (cm) - - - $\Delta_{a,a}$ $\Delta_{a,a}$ - - $\Delta_{a,a}$	NumNumScanNon-scanScanNon-scanaximum Index Value0.90.5-Agent Colspan="4">ScanAgent Colspan="4">Non-scanScanAgent Colspan="4">Non-scanScanO.90.5-ScanAgent Colspan="4">ScanAgent Colspan="4">Non-scanScanO.9ScanNon-scanO.90.5-ScanAgent Colspan="4">ScanNon-scanOnO.9O.5-ScanAgent Colspan="4">ScanAgent Colspan="4">ScanScanScanScanScanOnOnScanScanScanAgent Colspan="4">ScanScanScanColspan="4">ScanScanScanColspan="4">ScanScanScanColspan="4">ScanScanColspan="4">ScanScanColspan="4">ScanScanColspan="4">ScanScan <th co<="" td=""></th>	

Table 10-9: Transducer model: HFL38xp

Operating mode: 2D (B)/M

					TIS	Aaprt>1 scan - 0.1 0.7 - 1.9 34.4 - - - - - - - - - - - - - - - - - - - 0.32 - - 0.32 - - 0.9 3.0 - 0.4 0.4 - 0.31 - - - 5 - - 5.2,5		
	Index label		M.I.	C.com	Non	iscan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.9	0.4	0.1	-	0.1	0.7
	p _{r.3}	(MPa)	1.98					
	W _o	(mW)		16.2	1.9		1.9	34.4
U	min of $[W_{{3(}}z_{_{1)}},I_{_{TA,3(}}z_{_{1})}]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					1.4	
ciat	z@PII. _{.3max}	(cm)	1.4					
2506	$d_{eq}(Z_{sp})$	(cm)					0.32	
¥	F _c	(MHz)	4.96	5.87	5.87	-	5.23	5.44
	Dim of A	X (cm)		3.0	0.9	-	0.9	3.0
	Dim of A _{aprt}	Y (cm)		0.4	0.4	-	0.4	0.4
	PD	(µsec)	0.33					
-	PRF	(Hz)	4417					
tior	p _r @PII _{max}	(MPa)	2.35					
Other formati	d _{eq} @PII _{max}	(cm)					0.31	
Other Information	Focal Length	FL _x (cm)		5	8	-		5
±.		FL _y (cm)		2.5	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	175.9					
	Control 1: 2D Frequency		9 MHz	10 MHz	10 MHz		10 MHz	10 MHz
ng ol sns	Control 2: THI		On	On	On		On	On
Operating control condition:	Control 2: THI Control 3: Control 4:							
on co	Control 4:							
0	Control 5:							

Table 10-10: Transducer model: HFL38xp

Operating mode: 2D (B)/Color

					TIS		TIB	
	Index label		M.I.	Scan	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.9	0.4	-	-	-	0.4
	p _{r.3}	(MPa)	1.98					
	W _o	(mW)		12.3	-		-	19.0
U	min of $[W_{\cdot_{3(}} z_{_{1)}}, I_{_{TA,3(}} z_{_{1})}]$	(mW)				-		
usti	Z ₁	(cm)				-		
aco	Z _{bp}	(cm)				-		
Associated acoustic parameter	Z _{sp}	(cm)					-	
ciat oara	z@PII _{.3max}	(cm)	1.4					
ssoe	$d_{eq}(Z_{sp})$	(cm)					-	
Ä	F _c	(MHz)	4.96	6.99	-	-	-	5.38
	Dim of A _{aprt}	X (cm)		1.9	-	-	-	1.9
	DIIII OI A _{aprt}	Y (cm)		0.4	-	-	-	0.4
	PD	(µsec)	0.33					
-	PRF	(Hz)	447					
tior	p _r @PII _{max}	(MPa)	2.35					
Other ormati	$d_{eq} @PII_{max}$	(cm)					-	
Other Information	Focal Length	FL _x (cm)		5	-	-		5
=.		FL _y (cm)		2.5	-	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	175.9					
D SC	Control 1: 2D Frequency /	'THI	9 MHz / On	10 MHz / On				10 MHz / On
trol	Control 2: Color Frequence	.y	7.27 MHz	7.27 MHz				5.34 MHz
Operating control conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
9 S	Control 4: Color PRF			10000 Hz				11364 Hz
	Control 5:							

Table 10-11: Transducer model: HFL38xp

Operating mode: PW Doppler

					TIS		TIB	
	Index label		M.I.	C com	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.7	-	0.6	-	1.3	0.9
	p _{r.3}	(MPa)	1.63					
	W _o	(mW)		-	23.3		16.4	23.3
U	min of $[W_{3}(z_{1)}, I_{TA,3}(z_{1})]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					1.5	
ciato para	z@PII. _{3max}	(cm)	1.6					
5506	$d_{eq}(Z_{sp})$	(cm)					0.16	
Ä	F _c	(MHz)	5.40	-	5.37	-	5.44	5.37
	Dim of A _{aort}	X (cm)		-	0.8	-	0.6	0.8
		Y (cm)		-	0.4	-	0.4	0.4
	PD	(µsec)	0.53					
~	PRF	(Hz)	5000					
tior	p _r @PII _{max}	(MPa)	2.09					
Other formati	$d_{eq} @PII_{max}$	(cm)					0.15	
Other information	Focal Length	FL _x (cm)		-	6	-		6
.=		FL _y (cm)		-	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	154.7					
	Control 1: Frequency		5.34 MHz		5.34 MHz		5.34 MHz	5.34 MHz
ng ol sno	Control 2: PRF		5000 Hz		8064 Hz		13514 Hz	8064 Hz
Operating control conditions	Control 3: Sample Volume	e Position	2.5 cm		6.0 cm		2.5 cm	6.0 cm
Dpe CO	Control 4:							
0	Control 5:							

Table 10-12: Transducer model: HFL38xp

Operating mode: 2D (B)/PW Doppler

					TIS		TIB	
	Index label		M.I.	Scan	Non	scan	Non-	тіс
				SCall	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		0.9	0.5	0.5	-	1.0	1.2
	p _{r.3}	(MPa)	1.98					
	W _o	(mW)		18.3	16.4		13.1	48.7
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				-		
usti	Z ₁	(cm)				-		
aco	Z _{bp}	(cm)				-		
Associated acoustic parameter	Z _{sp}	(cm)					1.5	
ciat	z@PII _{.3max}	(cm)	1.4					
2506	$d_{eq}(Z_{sp})$	(cm)					0.16	
Ä	F _c	(MHz)	4.96	5.87	7.01	-	5.44	5.87
	Dim of A	X (cm)		3.0	0.8	-	0.6	3.0
	Dim of A _{aprt}	Y (cm)		0.4	0.4	-	0.4	0.4
	PD	(µsec)	0.33					
-	PRF	(Hz)	1000					
tior	p _r @PII _{max}	(MPa)	2.35					
Other nformation	d _{eq} @PII _{max}	(cm)					0.15	
je o	Focal Length	FL _x (cm)		8	4	-		8
. ≚		FL _y (cm)		2.5	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	175.9					
	Control 1: 2D Frequency /	ТНІ	9 MHz / On	10 MHz / On	10 MHz / On		9 MHz / On	10 MHz / On
ol ons	Control 2: PW Frequency		5.34 MHz	7.27 MHz	7.27 MHz		5.34 MHz	7.27 MHz
perating control inditior	Control 3: PW PRF		5000 Hz	3125 Hz	11111 Hz		13514 Hz	3125 Hz
<u> </u>	Control 4: PW Sample Volume Position		2.0 cm	8.0 cm	4.0 cm		2.5 cm	8.0 cm
	Control 5:							

Table 10-13: Transducer model: HFL38xp

Operating mode: 2D (B)/Color/PW Doppler (Triplex)

					TIS		TIB	
	Index label		M.I.	Com	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		0.9	0.3	0.5	-	1.0	0.9
	p _{r.3}	(MPa)	1.98					
	W _o	(mW)		10.5	16.4		13.1	26.5
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				-		
Associated acoustic parameter	Z ₁	(cm)				-		
ciated acou parameter	Z _{bp}	(cm)				-		
ed	Z _{sp}	(cm)					1.5	
ciat	z@PII _{.3max}	(cm)	1.4					
	$d_{eq}(Z_{sp})$	(cm)					0.16	
Ä	F _c	(MHz)	4.96	6.99	7.01	-	5.44	5.37
	Dim of A _{aprt}	X (cm)		1.5	0.8	-	0.6	0.8
	DIIII OI A _{aprt}	Y (cm)		0.4	0.4	-	0.4	0.4
	PD	(µsec)	0.33					
-	PRF	(Hz)	500					
tior	p _r @PII _{max}	(MPa)	2.35					
Other nformation	$d_{eq}@PII_{max}$	(cm)					0.15	
o lõ	Focal Length	FL _x (cm)		5	4	-		6
.=		FL _y (cm)		2.5	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	175.9					
	Control 1: 2D Frequency /	THI	9 MHz / On	10 MHz / On	10 MHz / On		8 MHz / Off	10 MHz / On
ing ol ons	Control 2: Color Frequence	у	7.27 MHz	7.27 MHz	7.27 MHz		7.27 MHz	7.27 MHz
Operating control conditions	Control 3: PW Frequency		5.34 MHz	7.27 MHz	7.27 MHz		7.27 MHz	5.34 MHz
Dpe co	Control 4: PW PRF		5000 Hz	3125 Hz	11111 Hz		4032 Hz	8064 Hz
5 0	Control 5: PW Sample Vol Position	ume	2.0 cm	5.0 cm	4.0 cm		2.5 cm	6.0 cm

Table 10-14: Transducer model: HFL50xp

Operating mode: 2D (B)

					TIS	Non Aaprt≤1 Aaprt>1 Non Aaprt≤1 Aaprt>1 Aaprt Aaprt≤1 Aaprt Aaprt Aaprt≤1 Aaprt Aaprt Aaprt≤1 Aaprt Aaprt Aaprt≤1 Aaprt Aaprt Aaprt<1	TIB	
	Index label		M.I.	C.com	Non	scan	Non-	ΤΙϹ
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.9	0.3	-	-	-	0.6
	p _{r.3}	(MPa)	2.12					
	W _o	(mW)		12.5	-		-	36.0
U	min of $[W_{3}(z_{1)}, I_{TA.3}(z_{1})]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					-	
ciat	z@PII. _{3max}	(cm)	1.5					
	$d_{eq}(Z_{sp})$	(cm)					-	
Ϋ́	F _c	(MHz)	5.62	4.89	-	-	-	4.89
	Dim of A	X (cm)		3.8	-	-	-	3.8
	Dim of A _{aprt}	Y (cm)		0.4	-	-	-	0.4
	PD	(µsec)	0.21					
_	PRF	(Hz)	5375					
tion	p _r @PII _{max}	(MPa)	2.51					
Other formatio	$d_{eq}@PII_{max}$	(cm)					-	
Other Information	Focal Length	FL _x (cm)		8	-	-		8
.⊆		FL _y (cm)		2.5	-	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	212.9					
	Control 1: Frequency		12 MHz	10 MHz				10 MHz
ng ons	Control 2: THI		On	On				On
perating control onditior	Control 3:							
Operating control conditions	Control 4:							
0 0	Control 5:							
do o o								

Table 10-15: Transducer model: HFL50xp

Operating mode: 2D (B)/M mode

					TIS		TIB	
	Index label		M.I.	C.com	Nor	iscan	Non-	ТІС
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		0.9	0.4	⊴0.1	-	0.1	0.7
	p _{r.3}	(MPa)	2.12					
	W _o	(mW)		12.3	1.0		1.2	36.4
U	min of $[W_{3}(z_{1)}, I_{TA.3}(z_{1})]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed :	Z _{sp}	(cm)					1.6	
ciat	z@PII. _{3max}	(cm)	1.5					
2200	$d_{eq}(Z_{sp})$	(cm)					0.19	
Ä	F _c	(MHz)	5.62	6.69	6.67	-	4.97	6.69
	Dim of A _{aprt}	X (cm)		3.8	0.9	-	0.6	3.8
		Y (cm)		0.4	0.4	-	0.4	0.4
	PD	(µsec)	0.21					
_	PRF	(Hz)	250					
tior	p _r @PII _{max}	(MPa)	2.51					
Other formati	$d_{eq} @PII_{max}$	(cm)					0.18	
Other information	Focal Length	FL _x (cm)		8	8	-		8
.=		FL _y (cm)		2.5	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	212.9					
	Control 1: Frequency		12 MHz	7 MHz	7 MHz		10 MHz	7 MHz
ing ol ons	Control 2: THI		On	Off	Off		On	Off
Operating control condition:	Operating Control 2: THI Control 3: Control 4:							
on co	Control 4:							
0	Control 5:							

Table 10-16: Transducer model: HFL50xp

Operating mode: 2D (B)/Color

					TIS		TIB	
	Index label		м.і.	S com	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.9	0.4	-	-	-	0.5
	p _{r.3}	(MPa)	2.20					
	W _o	(mW)		12.0	-		-	21.6
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				-		
Associated acoustic parameter	Z ₁	(cm)				-		
aco	Z _{bp}	(cm)				-		
ciated acou parameter	Z _{sp}	(cm)					-	
ciat	z@PII _{.3max}	(cm)	1.5					
SSO	$d_{eq}(Z_{sp})$	(cm)					-	
Ä	F _c	(MHz)	5.95	7.46	-	-	-	7.46
	Dim of A _{aprt}	X (cm)		2.2	-	-	-	2.2
	Dini Ol A _{aprt}	Y (cm)		0.4	-	-	-	0.4
	PD	(µsec)	0.43					
c	PRF	(Hz)	2250					
atio	p _r @PII _{max}	(MPa)	2.76					
Other formati	$d_{eq} @PII_{max}$	(cm)					-	
Other Information	Focal Length	FL _x (cm)		5	-	-		5
		FL _y (cm)		2.5	-	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	470.5					
D SC	Control 1: 2D Frequency /	THI	12 MHz / On	7 MHz / Off				7 MHz / Off
trol	Control 2: Color Frequence	y	6.15 MHz	8 MHz				8 MHz
Operating control conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
ð ° °	Control 4: Color PRF		5000 Hz	7042 Hz				7042 Hz
	Control 5:							

Table 10-17: Transducer model: HFL50xp

Operating mode: PW Doppler

					TIS		TIB	
	Index label		M.I.	Sear	Non	Nonscan Nonscan aprt≤1 $A_{aprt}>1$ Scan aprt≤1 $A_{aprt}>1$ 1.5 aprt≤1 $A_{aprt}>1$ 24.7 aprt≤1 - 30 aprt≤1 - - aprt≤2 - - aprt≤1 - <th>тіс</th>	тіс	
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.7	-	0.9	-	1.5	1.2
	p _{r.3}	(MPa)	1.70					
	W _o	(mW)		-	30.0		24.7	30.0
U	min of $[W_{\cdot_{3(}} z_{\scriptscriptstyle 1),} I_{\scriptscriptstyle TA.3(} z_{\scriptscriptstyle 1)}]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					1.7	
ciat	z@PII _{.3max}	(cm)	1.7					
5500	$d_{eq}(Z_{sp})$	(cm)					0.18	
Ä	F _c	(MHz)	6.01	-	6.00	-	6.07	6.08
	Dim of A _{aprt}	X (cm)		-	0.8	-	0.6	0.8
	DIIII OI A _{aprt}	Y (cm)		-	0.4	-	0.4	0.4
	PD	(µsec)	0.48					
~	PRF	(Hz)	5000					
tior	p _r @PII _{max}	(MPa)	2.27					
Other formati	$d_{eq} @PII_{max}$	(cm)					0.17	
Other Information	Focal Length	FL _x (cm)		-	6	-		6
.=		FL _y (cm)		-	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	145.7					
	Control 1: Frequency		6.15 MHz		6.15 MHz		6.15 MHz	6.15 MHz
ng J ons	Control 2: PRF		5000 Hz		8064 Hz		13514 Hz	8064 Hz
Operating control conditions	도 보 문 문 Control 3: Sample Volume Position		3.0 cm		6.0 cm		3.0 cm	6.0 cm
on Co	Control 4:							
0	Control 5:							

Table 10-18: Transducer model: HFL50xp

Operating mode: 2D (B)/PW Doppler

					TIS		TIB	
	Index label		M.I.		Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		0.9	0.5	0.7	-	1.1	1.1
	p _{r.3}	(MPa)	2.18					
	W _o	(mW)		16.3	24.0		18.7	32.8
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				-		
usti	Z ₁	(cm)				-		
aco	Z _{bp}	(cm)				-		
ciated acou parameter	Z _{sp}	(cm)					1.7	
Associated acoustic parameter	z@PII _{.3max}	(cm)	1.7					
2506	$d_{eq}(Z_{sp})$	(cm)					0.19	
Ä	F _c	(MHz)	5.50	6.82	6.08	-	6.04	6.00
	Dim of A	X (cm)		4.2	0.8	-	0.6	0.8
	Dim of A _{aprt}	Y (cm)		0.4	0.4	-	0.4	0.4
	PD	(µsec)	0.25					
-	PRF	(Hz)	1080					
tior	p _r @PII _{max}	(MPa)	2.83					
Other nformation	d _{eq} @PII _{max}	(cm)					0.18	
je o	Focal Length	FL _x (cm)		8	6	-		6
. ≚		FL _y (cm)		2.5	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	250.0					
	Control 1: 2D Frequency /	тні	12 MHz / On	7 MHz / Off	7 MHz / Off		7 MHz / Off	10 MHz / On
ol ons	Control 2: PW Frequency		6.15 MHz	6.15 MHz	6.15 MHz		6.15 MHz	6.15 MHz
perating control inditior	Control 3: PW PRF		5000 Hz	3125 Hz	8064 Hz		8064 Hz	8064 Hz
Operating control conditions	Control 4: PW Sample Volume Position		2.5 cm	8.0 cm	6.0 cm		3.0 cm	6.0 cm
	Control 5:							

Table 10-19: Transducer model: HFL50xp

Operating mode: 2D (B)/Color/PW Doppler (Triplex)

					TIS		TIB	
	Index label		M.I.		Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	1aximum Index Value		0.9	0.3	0.7	-	1.0	1.2
	p _{r.3}	(MPa)	2.18					
	W _o	(mW)		8.6	24.0		24.0	35.3
U	min of $[W_{{3(}}z_{_{1),}}I_{_{TA.3(}}z_{_{1)}}]$	(mW)				-		
usti	Z ₁	(cm)				-		
acol	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					1.3	
Associated acoustic parameter	z@PII _{.3max}	(cm)	1.7					
2500	$d_{eq}(Z_{sp})$	(cm)					0.31	
Ä	F _c	(MHz)	5.50	6.82	6.08	-	6.08	6.08
	Dim of A	X (cm)		4.2	0.8	-	0.8	0.8
	Dim of A _{aprt}	Y (cm)		0.4	0.4	-	0.4	0.4
	PD	(µsec)	0.25					
_	PRF	(Hz)	540					
Other nformation	p _r @PII _{max}	(MPa)	2.83					
Other ormatio	d _{eq} @PII _{max}	(cm)					0.29	
o Ifor	Focal Length	FL _x (cm)		8	6	-		6
.⊑		FL _y (cm)		2.5	2.5	-		2.5
	I _{PA.3} @MI _{max}	(W/cm ²)	250.0					
	Control 1: 2D Frequency /	ТНІ	12 MHz / On	7 MHz / Off	7 MHz / Off		10 MHz / On	10 MHz / On
ing ol ons	Control 2: Color Frequence	у	6.15 MHz	6.15 MHz	6.15 MHz		6.15 MHz	6.15 MHz
Operating control conditions	Control 3: PW Frequency		6.15 MHz	6.15 MHz	6.15 MHz		6.15 MHz	6.15 MHz
Dpe co	Control 4: PW PRF		5000 Hz	3125 Hz	5000 Hz		5000 Hz	8064 Hz
0	Control 5: PW Sample Vol Position	ume	2.5 cm	8.0 cm	6.0 cm		6.0 cm	6.0 cm

Table 10-20: Transducer model: L25xp

Operating mode: 2D (B)

Index label		M.I.	TIS			TIB	
			C com	Nonscan		Non-	тіс
			Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global Maximum Index Value		0.7	0.3	-	-	-	0.5
(MF	Pa)	1.90					
(m\	N)		9.9	-		-	18.9
$_{3(z_{1)},I_{TA.3(z_{1})}]$ (m)	N)				-		
(cm	า)				-		
(cm	า)				-		
(cm	ו)					-	
(cm	า)	1.2					
(cm	า)					-	
(MF	Hz)	6.86	6.15	-	-	-	6.15
Х	(cm)		2.6	-	-	-	2.6
rt Y	(cm)		0.3	-	-	-	0.3
(µse	ec)	0.21					
(Hz	:)	5882					
(MF	Pa)	2.36					
(cm	ו)					-	
gth FL _x	(cm)		5	-	-		5
FL _y	(cm)		2.7	-	-		2.7
(W/	/cm²)	352.9					
Control 1: Frequency		8 MHz	12 MHz				12 MHz
စ် – ရို Control 2: THI		Off	On				On
Control 2: IHI Gottrol 3:							
Derating Control 2: THI Control 3: Control 4:							
Control 5:							
	ndex Value (MF (m) (m) (3,3(Z1),1 _{TA.3} (Z1)] (m) (cm (cm (cm (cm (cm (cm (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ndex Value (MPa) (mW) (mW) (mW) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (mHz) (mHz) (mHz) (mHz) (mHz) (mHz) (mHz) (mHz) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	ndex Value 0.7 (MPa) 1.90 (mW) 1.90 (mW) 1.90 (mW) 1.2 (cm) 1.2 (cm) 1.2 (cm) 1.2 (cm) 6.86 (Cm) 6.86 (MHz) 6.86 (MHz) 6.86 (MHz) 6.88 (MHz) 1.2 (m) 1.2 (cm) 1.2 (cm) 1.2 (cm) 1.2 (cm) 1.2 (cm) 1.2 (cm) 1.2 (cm) 1.2 (cm) 1.2 (mHz) 1.2	Image: Note of the second	Scan $A_{apt} \leq 1$ ndex Value 0.7 0.3 - (MPa) 1.90 9.9 - (mW) 9.9 - - (mW) 9.9 - - (cm) - - - (cm) - - - (cm) 1.2 - - (cm) 1.2 - - (cm) 1.2 - - (cm) 0.3 - - (cm) 0.3 - - (mHz) 6.86 6.15 - (mHz) 6.86 6.15 - (mHz) 5882 - - (MPa) 2.36 - - (m) 2.36 - - (m) 352.9 - - Frequency 8 MHz 12 MHz -	Scan $A_{aprt} \leq 1$ $A_{aprt} > 1$ ndex Value 0.7 0.3 - - (MPa) 1.90 9.9 - - (mW) 9.9 - - - (mW) - - - - $(agz_1), I_{TA,3g}(Z_1)$ (mW) - - - $(agz_1), I_{TA,3g}(Z_1)$ (mW) - - - (cm) - - - - (cm) 1.2 - - - (cm) 1.2 - - - (cm) 1.2 - - - (mHz) 6.86 6.15 - - - (mHz) 6.86 6.15 - - - (mHz) 6.86 6.15 - - - (mHz) 5.882 - - - - $(mhez)$ 2.36 - - -	Scan $A_{aprl} \le 1$ $A_{aprl} \ge 1$ $scan$ ndex Value 0.7 0.3 - - (MPa) 1.90 - - - (mW) 9.9 - - - (mW) 9.9 - - - (mW) 9.9 - - - (cm) Image: City It factor (Cm) - - - (cm) Image: City It factor (Cm) - - - - (cm) 1.2 Image: City It factor (Cm) Image: City It factor (Cm) - - - - (cm) 1.2 Image: City It factor (Cm) Image: City It factor (Cm) - - - (MHz) 6.866 6.15 - - - - (MHz) 5882 Image: City It factor (Cm) Image: City It factor (Cm) - - - (mmage: City It factor (Cm) Image: City It factor (Cm) Image: City It factor (Cm) Image

Table 10-21: Transducer model: L25xp

Operating mode: 2D (B)/M

				TIS		TIB	
Index label		M.I.	Sean	Non	scan	Non-	тіс
			Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
laximum Index Value		0.7	0.3	⊴0.1	-	0.1	0.5
p _{r.3}	(MPa)	1.90					
W _o	(mW)		9.5	1.1		0.8	19.4
min of $[W_{\cdot_{3(}} z_{_{1)}}, I_{_{TA,3(}} z_{_{1)}}]$	(mW)				-		
Z ₁	(cm)				-		
Z _{bp}	(cm)				-		
Z _{sp}	(cm)					1.2	
z@PII _{.3max}	(cm)	1.2					
$d_{eq}(Z_{sp})$	(cm)					0.17	
F _c	(MHz)	6.86	6.15	6.15	-	6.18	6.15
Dim of A	X (cm)		2.6	0.8	-	0.5	2.6
	Y (cm)		0.3	0.3	-	0.3	0.3
PD	(µsec)	0.21					
PRF	(Hz)	250					
p _r @PII _{max}	(MPa)	2.36					
d _{eq} @PII _{max}	(cm)					0.16	
Focal Length	FL _x (cm)		5	5	-		5
	FL _y (cm)		2.7	2.7	-		2.7
I _{PA.3} @MI _{max}	(W/cm ²)	352.9					
Control 1: Frequency		8 MHz	12 MHz	12 MHz		12 MHz	12 MHz
Control 2: THI		Off	On	On		On	On
Control 3:							
Control 4:							
Control 5:							
	Aaximum Index Value $P_{r,3}$ W_0 min of $[W_{.3}(Z_{1}), I_{TA.3}(Z_{1})]$ Z_1 Z_{bp} Z_{sp} Z_{sp} $Z_{opPII_{.3max}}$ $d_{eq}(Z_{sp})$ F_c Dim of A_{aprt} PD PRF P_{C} DIM of A_{aprt} PD PRF P_{c} DIM of A_{aprt} P_{c} DIM of A_{aprt} P_{c} DIM of A_{aprt} P_{c} P_{c} DIM of A_{aprt} P_{c} P_{c} DIM of A_{aprt} P_{c}	Aximum Index Value $p_{r,3}$ (MPa) W_0 (mW) min of [W. ₃ (z ₁),I _{TA.3} (z ₁)] (mW) z_1 (cm) z_{bp} (cm) Z_{bp} (cm) Z_{sp} (cm) $z_{opHI_{3max}}$ (cm) $d_{eq}(Z_{sp})$ (cm) P_{c} (MHz) D_{im} of A_{aprt} (MHz) P_{in} (usec) PRF (Hz) p_{i} @PII _{max} (cm) d_{eq} @PII _{max} (cm) f_{eq} @PI<	Aximum Index Value 0.7 $p_{r.3}$ (MPa) 1.90 W_0 (mW) 1.90 w_0 (mW) 1.90 min of $[W_{.3}(Z_{1}),I_{TA.3}(Z_{1})]$ (mW) 1.2 z_1 (cm) 1.2 z_{bp} (cm) 1.2 Z_{sp} (cm) 1.2 $d_{eq}(Z_{sp})$ (cm) 1.2 $d_{eq}(Z_{sp})$ (cm) 6.86 $Dim of A_{aprt}$ (MHz) 6.86 PD (µsec) 0.21 PRF (MPa) 2.36 $d_{eq}@PII_{max}$ (cm) 1.2 $P_{ag}@MI_{max}$ (MPa) 3.52.9 Focal Length F_{L_y} (cm) 1.2 $I_{PA.3}@MI_{max}$ (W/cm2) 352.9 Control 1: Frequency 8 MHz 2 Control 2: THI Off 1.2 Control 3:	Aximum Index Value 0.7 0.3 $p_{r.3}$ (MPa) 1.90 9.5 W_0 (mW) 9.5 min of [W. ₃ (z_{1} , $ _{TA.3}(z_{1})] (mW) 1.20 z_1 (cm) 1.2 Z_{bp} (cm) 1.2 Z_{op} (cm) 1.2 z_{qe}PII.3max (cm) 1.2 d_{eq}(Z_{sp}) (cm) 2.6 D_{in} of A_{aprt} (MHz) 6.86 6.15 Dim of A_{aprt} (MHz) 0.3 1 PL (cm) 2.6 1 PRF (MEz) 0.21 1 p_{qe}QPIImax (MPa) 2.36 1 p_{qe}QPIImax (cm) 1 1 PL_x (cm) Incertified 1 1 Plocal Length FL_x (cm) 5 2 I_{pA,3}@MI_{max} (W/cm2) 352.9 1 I_{pA,3}@MI_{max} Off On 1 $	Index label M.I. Scan Normalized statements $P_{r,3}$ (MPa) 1.90 ≤ 0.1 $p_{r,3}$ (MPa) 1.90 ≤ 0.1 W_0 (mW) 9.5 1.1 min of [W.3(71,1/rA3(71)] (mW) 1 1 Z_1 (cm) 1 1 1 Z_{p} (cm) 1.2 1 1 Z_{ap} (cm) 0.3 0.3 3 D_{apri} (MHz) 6.86 6.15 6.15 P_{apri} (Hz) 2.00 1 1 P_{apri} (MPa) 2.36 1 1 P_{apa} P_{a	Index label M.h. Scan Image: Normal system in the sys	Index label M.I. $3 Can$ $Non-3can$ Non-3can Asximum Index Value 0.7 0.3 ≤ 0.1 $A_{asr} > 1$ 0.1 ρ_{c3} (MPa) 1.90 ≤ 0.1 $=$ 0.1 W_0 (mW) 9.5 1.1 0.8 $=$ Z_1 (cm) $=$ $=$ $=$ $=$ Z_{ap} (cm) $=$ $=$ $=$ $=$ Z_{ap} (cm) 1.2 $=$ $=$ $=$ $=$ $Qeq(Z_{ap})$ (cm) 1.2 $=$ $=$ $=$ $=$ $Dim of A_{aprt}$ (MHz) 6.86 6.15 6.15 $=$ 6.18 $Dim of A_{aprt}$ (Hz) 250 $=$ $=$ $=$ $=$ $=$ $=$ $=$ $QeqPII_{max}$ (MPa) 2.36 $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$

Table 10-22: Transducer model: L25xp

Operating mode: 2D (B)/Color

					TIS		TIB	
	Index label		м.і.	6	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.7	0.4	-	-	-	0.5
	p _{r.3}	(MPa)	1.90					
	W _o	(mW)		11.8	-		-	13.9
U	min of $[W_{{3(}}z_{_{1),}}I_{_{TA.3(}}z_{_{1)}}]$	(mW)				-		
usti `	Z ₁	(cm)				-		
aco etei	Z _{bp}	(cm)				-		
Associated acoustic parameter	Z _{sp}	(cm)					-	
ciat	z@PII. _{3max}	(cm)	1.2					
SSO	$d_{eq}(Z_{sp})$	(cm)					-	
Ä	F _c	(MHz)	6.86	7.17	-	-	-	7.17
	Dim of A _{aort}	X (cm)		1.2	-	-	-	1.2
	Dini Ol A _{aprt}	Y (cm)		0.3	-	-	-	0.3
	PD	(µsec)	0.21					
-	PRF	(Hz)	961					
tior	p _r @PII _{max}	(MPa)	2.36					
Other formati	$d_{eq} @PII_{max}$	(cm)					-	
Other information	Focal Length	FL _x (cm)		5	-	-		5
.=		FL _y (cm)		2.7	-	-		2.7
	I _{PA.3} @MI _{max}	(W/cm ²)	352.9					
D S	Control 1: 2D Frequency /	THI	8 MHz / Off	12 MHz / On				12 MHz / On
trol	Control 2: Color Frequence	y	7.27 MHz	7.27 MHz				7.27 MHz
Operating control conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
δ° θ	Control 4: Color PRF		4000 Hz	4000 Hz				4000 Hz
	Control 5:							

Table 10-23: Transducer model: L25xp

Operating mode: PW Doppler

					TIS		TIB	
	Index label		M.I.	Scan	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	1aximum Index Value		0.7	-	0.4	-	0.7	0.6
	p _{r.3}	(MPa)	1.90					
	W _o	(mW)		-	11.9		8.0	11.9
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					1.2	
ciat	z@PII _{.3max}	(cm)	1.2					
2506	$d_{eq}(Z_{sp})$	(cm)					0.15	
¥	F _c	(MHz)	7.16	-	7.22	-	7.27	7.16
	Dim of A	X (cm)		-	0.6	-	0.4	0.6
	Dim of A _{aprt}	Y (cm)		-	0.3	-	0.3	0.3
	PD	(µsec)	0.40					
_	PRF	(Hz)	3125					
r tion	p _r @PII _{max}	(MPa)	2.32					
the ma	d _{eq} @PII _{max}	(cm)					0.14	
lfor O	Focal Length	FL _x (cm)		-	6	-		6
.⊆		FL _y (cm)		-	2.7	-		2.7
	I _{PA.3} @MI _{max}	(W/cm ²)	177.3					
	Control 1: Frequency		7.27 MHz		7.27 MHz		7.27 MHz	7.27 MHz
ng lo ons	Control 2: PRF		3125 Hz		7042 Hz		11111 Hz	7042 Hz
ntro ditio	Control 3: Sample Volume Position		2.0 cm		6.0 cm		2.0 cm	6.0 cm
one col	Control 4:							
0 0	Control 5:							
Operating Other control information conditions	PRF pr@PII _{max} d _{eq} @PII _{max} Focal Length I _{PA.3} @MI _{max} Control 1: Frequency Control 2: PRF Control 3: Sample Volume Control 4:	(μsec) (Hz) (MPa) (cm) FL _x (cm) FL _y (cm) (W/cm ²)	3125 2.32 177.3 7.27 MHz 3125 Hz	-	6 2.7 7.27 MHz 7042 Hz		0.14 7.27 MHz 11111 Hz	6 2.7 7.27 N 7042 H

Table 10-24: Transducer model: L25xp

Operating mode: 2D (B)/PW Doppler

					TIS		TIB	
	Index label		M.I.	Scan	Non	scan	Non-	тіс
				SCall	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.8	0.3	0.4	-	0.6	0.6
	p _{r.3}	(MPa)	2.04					
	W _o	(mW)		9.8	11.0		7.4	13.0
U	min of $[W_{{3(}}z_{_{1),}}I_{_{TA.3(}}z_{_{1)}}]$	(mW)				-		
usti	Z ₁	(cm)				-		
acol	Z _{bp}	(cm)				-		
ciated acou parameter	Z _{sp}	(cm)					1.1	
ciat	z@PII _{.3max}	(cm)	1.0					
Associated acoustic parameter	$d_{eq}(Z_{sp})$	(cm)					0.16	
¥	F _c	(MHz)	6.50	6.30	7.14	-	7.16	7.22
	Dim of A	X (cm)		2.5	0.6	-	0.4	0.6
	Dim of A _{aprt}	Y (cm)		0.3	0.3	-	0.3	0.3
	PD	(µsec)	0.21					
-	PRF	(Hz)	920					
tior	p _r @PII _{max}	(MPa)	2.32					
Other nformation	d _{eq} @PII _{max}	(cm)					0.15	
o Je	Focal Length	FL _x (cm)		8	6	-		6
.=		FL _y (cm)		2.7	2.7	-		2.7
	I _{PA.3} @MI _{max}	(W/cm ²)	177.4					
	Control 1: 2D Frequency /	тні	13 MHz / On	12 MHz / On	12 MHz / On		12 MHz / On	12 MHz / On
ing ol ons	Control 2: PW Frequency		7.27 MHz	8.8 MHz	7.27 MHz		7.27 MHz	7.27 MHz
perating control inditior	Control 3: PW PRF		3125 Hz	2000 Hz	3125 Hz		3125 Hz	7042 Hz
Operating control conditions	Control 4: PW Sample Volume Position		1.5 cm	8.0 cm	6.0 cm		2.0 cm	6.0 cm
	Control 5:							

Table 10-25: Transducer model: L25xp

Operating mode: 2D (B)/Color/PW Doppler (Triplex)

					TIS		TIB	
	Index label		м.і.	Scan	Non	scan	Non-	тіс
				SCall	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		0.8	0.1	0.3	-	0.6	0.6
	p _{r.3}	(MPa)	2.04					
	W _o	(mW)		3.3	9.5		6.4	13.4
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				-		
Associated acoustic parameter	Z ₁	(cm)				-		
ciated acou parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					1.2	
ciat	z@PII _{.3max}	(cm)	1.0					
5506	$d_{eq}(Z_{sp})$	(cm)					0.15	
¥	F _c	(MHz)	6.50	8.45	7.22	-	7.27	7.22
	Dim of A _{aprt}	X (cm)		1.3	0.6	-	0.4	0.6
		Y (cm)		0.3	0.3	-	0.3	0.3
	PD	(µsec)	0.21					
c	PRF	(Hz)	460					
Othe r information	p _r @PII _{max}	(MPa)	2.32					
Othe ormat	d _{eq} @PII _{max}	(cm)					0.14	
D C C	Focal Length	FL _x (cm)		8	6	-		6
. <u> </u>		FL _y (cm)		2.7	2.7	-		2.7
	I _{PA.3} @MI _{max}	(W/cm ²)	177.4					
	Control 1: 2D Frequency /	'THI	13 MHz / On	12 MHz / On	12 MHz / On		12 MHz / On	12 MHz / On
ng lo ons	Control 2: Color Frequence	:y	7.27 MHz	8.8 MHz	7.27 MHz		7.27 MHz	7.27 MHz
Operating control conditions	Control 3: PW Frequency		7.27 MHz	7.27 MHz	7.27 MHz		7.27 MHz	7.27 MHz
Dpe co con	Control 4: PW PRF		3125 Hz	7042 Hz	5000 Hz		5000 Hz	7042 Hz
0	Control 5: PW Sample Vol Position	ume	1.5 cm	8.0 cm	6.0 cm		2.0 cm	6.0 cm

Table 10-26: Transducer model: P21xp

Operating mode: 2D (B)

					TIS		TIB	
	Index label		M.I.	Scan	Non	scan	Non-	TIC
				Scall	A _{aprt} ≤1	A _{aprt} >1	scan	
Global I	Maximum Index Value		0.9	0.9	-	-	-	2.4
	p _{r.3}	(MPa)	1.37					
	W _o	(mW)		75.8	-		-	181.5
U	min of $[W_{{3}}z_{1),}I_{TA.3}z_{1)}]$	(mW)				-		
usti	Z ₁	(cm)				-		
Associated acoustic parameter	Z _{bp}	(cm)				-		
ed a	Z _{sp}	(cm)					-	
ciat	z@PII _{.3max}	(cm)	4.5					
5506	$d_{eq}(Z_{sp})$	(cm)					-	
¥	F _c	(MHz)	2.12	2.49	-	-	-	2.08
	Dim of A	X (cm)		2.1	-	-	-	2.1
	Dim of A _{aprt}	Y (cm)		1.3	-	-	-	1.3
	PD	(µsec)	0.82					
_	PRF	(Hz)	4311					
tior	p _r @PII _{max}	(MPa)	1.82					
Other formati	$d_{eq} @PII_{max}$	(cm)					-	
Other information	Focal Length	FL _x (cm)		13	-	-		13
=.		FL _y (cm)		9	-	-		9
	I _{PA.3} @MI _{max}	(W/cm ²)	154.6					
	Control 1: Frequency		2.0 MHz	3.0 MHz				2.0 MHz
ng ol sns	Control 2: THI		Off	On				Off
ntro ditio	Operating Control 2: THI Control 3: Control 4:							
Operating control conditions	Control 4:							
0 0	Control 5:							

Table 10-27: Transducer model: P21xp

Operating mode: 2D (B)/M

				TIS		TIB	
Index label		M.I.	Sear	Non	scan	Non-	тіс
			Scall	A _{aprt} ≤1	A _{aprt} >1	scan	
laximum Index Value		0.9	0.9	-	0.1	0.3	2.5
p _{r.3}	(MPa)	1.37					
W _o	(mW)		74.7	-		12.6	189.4
min of $[W_{3(z_{1)}}I_{TA.3(z_{1})}]$	(mW)				9.3		
Z ₁	(cm)				2.6		
Z _{bp}	(cm)				2.7		
Z _{sp}	(cm)					5.8	
z@PII. _{.3max}	(cm)	4.5					
$d_{eq}(Z_{sp})$	(cm)					0.51	
F _c	(MHz)	2.12	2.49	-	1.69	1.69	2.08
Dim of A	X (cm)		2.1	-	2.0	2.0	2.1
	Y (cm)		1.3	-	1.3	1.3	1.3
PD	(µsec)	0.82					
PRF	(Hz)	250					
p _r @PII _{max}	(MPa)	1.82					
d _{eq} @PII _{max}	(cm)					0.48	
Focal Length	FL _x (cm)		13	-	10		13
	FL _y (cm)		9	-	9		9
I _{PA.3} @MI _{max}	(W/cm ²)	154.6					
Control 1: Frequency		2.0 MHz	3.0 MHz		2.0 MHz	2.0 MHz	2.0 MHz
Control 2: THI		Off	Off		Off	Off	On
Control 3:							
Control 4:							
Control 5:							
	Aximum Index Value $P_{r,3}$ W_0 min of $[W_{\cdot3(Z_1), I_{TA,3(Z_1)}]$ Z_1 Z_{bp} Z_{sp} $Z_{oPII, 3max}$ $d_{eq}(Z_{sp})$ F_c Dim of A_{aprt} PD PRF $p_{OPII, max}$ $d_{eq}@PII_{max}$ Focal Length $I_{PA,3}@MI_{max}$ Control 1: Frequency Control 2: THI Control 3: Control 4:	Aximum Index Value $p_{r,3}$ (MPa) W_0 (mW) min of [W. ₃ (z ₁),I _{TA.3} (z ₁)] (mW) z_1 (cm) z_{bp} (cm) Z_{bp} (cm) Z_{sp} (cm) Z_{sp} (cm) $Q^{eq}(Z_{sp})$ (cm) f_c (MHz) D_{in} of A_{aprt} (MHz) PD (µsec) PRF (Hz) $p_{q}^{Q}PII_{max}$ (cm) $d_{eq}^{Q}PII_{max}$ (cm) $f_{eq}^{Q}PII_{max}$ (cm) $f_{eq}^{Q}^{Q}PII_{eq}^{Q}PI$	Aximum Index Value 0.9 $p_{r,3}$ (MPa) 1.37 W_0 (mW) 1.37 W_0 (mW) 1.37 $min of [W_{.3}(z_{1}), I_{TA.3}(z_{1})]$ (mW) 1 z_1 (cm) 1 z_{bp} (cm) 1 Z_{sp} (cm) 1 Z_{sp} (cm) 4.5 $d_{eq}(Z_{sp})$ (cm) 2.12 $Dim of A_{aprt}$ (MHz) 2.12 PD (µsec) 0.82 PRF (MPa) 1.82 $q_{eq}@PII_{max}$ (cm) 1 $P_{aq}@MI_{max}$ (cm) 1 Focal Length FL, (cm) 1 $I_{p,3}@MI_{max}$ (W/cm ²) 154.6 Control 1: Frequency 2.0 MHz 2.0 MHz Control 2: THI	Scan Scan Aximum Index Value 0.9 0.9 $p_{r.3}$ (MPa) 1.37 W_0 (mW) 74.7 min of $[W_{.3j}Z_{1j}]_{TA,3j}Z_{1j}]$ (mW) 74.7 z_1 (cm) 74.7 Z_{p} (cm) 74.7 Z_{q} (cm) 74.7 Z_{q} (cm) 74.7 Z_{q} (cm) 74.7 D_{q} X_{1} 2.12 D_{max} (cm) 1.3 PD (µsec) 0.82 P_{q} 1.82 1.3 p_{q} P_{L_{y} 1.3 p_{q} P_{L_{y} 1.3	Index label M.I. Scan Normalized Asymmetry (MPa) $p_{r,3}$ (MPa) 1.37 - - w_0 (mW) 1.37 - - w_0 (mW) 1.37 - - $min of [W_{33}c_{1,1} \Gamma_{A,3}c_{1,1}]$ (mW) - - - z_1 (cm) - - - - Z_p (cm) - - - - Z_{p0} (cm) 4.5 - - - Z_qPH_{3max} (cm) 4.5 - - - Z_qOPH_{3max} (cm) 2.12 2.49 - - $D_{mot} A_{aprt}$ (MHz) 2.12 2.49 - - - P_r (cm) 1.33 - - - - - - $P_moth_A_{aprt}$ (MPa) 1.82 - - - - - - - - - -	Index label M.i. Scan INUM Aaximum Index Value 0.9 0.9 - 0.1 Λ_{xin} (MPa) 1.37 - - W_0 (mW) 1.37 - - min of [W.g/z], Ir_A3/Z] (mW) 74.7 - 9.3 Z_1 (mW) - - 9.3 Z_1 (cm) - - 2.6 Z_{p0} (cm) - - 2.6 Z_{p0} (cm) - - 2.6 Z_{q0} (cm) - - - 2.6 Z_{q0} (cm) - - - - - Z_{q0} (cm) 1.3 - - - - $D_{mot} A_{apt}$ MPan 1.82 2.14 2.04 - - P_{q} (cm) 0.82 - - - - - $p_{q0}PH_{max}$ (MPa)	Index label M.I. $3 Can$ $Non-3can$ Non-3can Aximum Index Value 0.9 0.9 - 0.1 0.3 $\rho_{.3}$ (MPa) 1.37 - 12.6 12.6 W_0 (mW) 74.7 - 9.3 2.6 2.6 z_1 (cm) - 2.6 2.6 2.6 2.6 Z_{pp} (cm) 4.5 - 1.69 1.69 5.8 $2(q_{p})$ (cm) 4.5 - - 0.51 5.8 $Q_{eq}(Z_{up})$ (cm) 2.12 2.49 - 1.69 1.69 $Dim of A_{uprt}$ Y (cm) 1.3 - 1.3 1.3 3.0 PRF (Hz) 250 - <td< td=""></td<>

Table 10-28: Transducer model: P21xp

Operating mode: 2D (B)/Color

					TIS		TIB	
	Index label		M.I.	S com	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.9	1.1	-	-	-	2.4
	p _{r.3}	(MPa)	1.37					
	W _o	(mW)		107.6	-		-	150.2
U	min of $[W_{{3(}}z_{_{1)}},I_{_{TA,3(}}z_{_{1})}]$	(mW)				-		
usti	Z ₁	(cm)				-		
aco	Z _{bp}	(cm)				-		
Associated acoustic parameter	Z _{sp}	(cm)					-	
ciat	z@PII _{.3max}	(cm)	4.5					
SSO	$d_{eq}(Z_{sp})$	(cm)					-	
Ä	F _c	(MHz)	2.12	1.99	-	-	-	1.99
	Dim of A _{aort}	X (cm)		1.2	-	-	-	1.2
	Diffi Of A _{aprt}	Y (cm)		1.3	-	-	-	1.3
	PD	(µsec)	0.82					
_	PRF	(Hz)	646					
itio	p _r @PII _{max}	(MPa)	1.82					
Other formati	$d_{eq} @PII_{max}$	(cm)					-	
Other information	Focal Length	FL _x (cm)		б	-	-		б
		FL _y (cm)		9	-	-		9
	I _{PA.3} @MI _{max}	(W/cm ²)	154.6					
D S	Control 1: 2D Frequency /	THI	2.0 MHz / Off	3.0 MHz / Off				3.0 MHz / Off
trol	Control 2: Color Frequence	y	2.0 MHz	2.0 MHz				2.0 MHz
Operating control conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
9 S	Control 4: Color PRF		4808 Hz	13158 Hz				13158 Hz
	Control 5:							

Table 10-29: Transducer model: P21xp

Operating mode: PW Doppler

			TIS			TIB	
Index label		M.I.	Scon	Non	scan	Non-	тіс
			SCall	A _{aprt} ≤1	A _{aprt} >1	scan	
aximum Index Value		0.7	-	-	0.7	2.4	1.8
p _{r.3}	(MPa)	1.05					
W _o	(mW)		-	-		82.2	82.2
min of $[W_{3}(z_{1)}, I_{TA.3}(z_{1})]$	(mW)				53.0		
Z ₁	(cm)				1.6		
Z _{bp}	(cm)				1.7		
Z _{sp}	(cm)					1.4	
z@PII _{.3max}	(cm)	4.2					
$d_{eq}(Z_{sp})$	(cm)					0.62	
F _c	(MHz)	2.00	-	-	2.83	1.99	1.99
Dim of A	X (cm)		-	-	0.8	0.8	0.8
DITT OF A _{aprt}	Y (cm)		-	-	1.3	1.3	1.3
PD	(µsec)	1.30					
PRF	(Hz)	3125					
p _r @PII _{max}	(MPa)	1.41					
d _{eq} @PII _{max}	(cm)					0.47	
Focal Length	FL _x (cm)		-	-	4		4
	FL _y (cm)		-	-	9		9
PA.3@MI _{max}	(W/cm ²)	64.7					
Control 1: Frequency		2.0 MHz			2.96 MHz	2.0 MHz	2.0 MHz
Control 2: PRF		3125 Hz			11111 Hz	11111 Hz	11111 Hz
Control 3: Sample Volume	Position	6.0 cm			4.0 cm	4.0 cm	4.0 cm
Control 4:							
Control 5:							
	aximum Index Value $P_{r,3}$ W_0 min of $[W_{\cdot 3(Z_{1}), I_{TA,3(Z_{1})}]$ Z_1 Z_{5p}	aximum Index Value $P_{r.3}$ (MPa) W_0 (mW)min of $[W_{.3}(Z_1), I_{TA.3}(Z_1)]$ (mW) Z_1 (cm) Z_{p} (cm) Z_{p} (cm) Z_{sp} (cm) P_{rader} (MHz) P_{rader} (Hz) P_{rader} (MPa) d_{eq} (MPa) d_{eq} (cm)Focal Length FL_x (cm) P_{rader} (W/cm²)Control 1: Frequency(W/cm²)Control 2: PRFControl 3: Sample Volume FositionControl 4:V	aximum Index Value0.7 $\rho_{r.3}$ (MPa)1.05 W_0 (mW)(mW) $min of [W_{.3}(Z_1),I_{TA.3}(Z_1)]$ (mW)(mW) Z_1 (cm)(cm) Z_1 (cm)(cm) Z_2p (cm)4.2 Z_{pp} (cm)4.2 Z_{pp} (cm)2.00 Z_{qp} (cm)2.00 Z_{qp} (cm)2.00 Z_{qp} (cm)1.01 Z_{qp} (cm)1.01 Z_{qp} (cm)1.01 Z_{qp} (cm)1.01 P_{ra} (Lagence)1.30 P_{ra} (MPa)1.41 P_{p} (MPa)1.41 P_{qq} (Cm)1.41 $P_{pa,3}$ (M/cm2)64.7 $P_{pA,3}$ (W/cm2)64.7 $Control 1: Frequency$ 2.0 MHz $Control 2: PRF$ 3125 Hz $Control 3: Sample Volume Position6.0 cm$	aximum Index Value0.7Scan $p_{r,3}$ (MPa)1.05- W_0 (mW)1.05- W_0 (mW)min of $[W_{\cdot3}(Z_1), I_{TA,3}(Z_1)]$ (mW) Z_1 (cm) Z_{p} (cm) Z_{p} (cm) Z_{p} (cm)4.2- $Z_{q}PII_{3max}$ (cm)4.2- $d_{eq}(Z_{sp})$ (cm) F_c (MHz)2.00- $Dim of A_{aprt}$ (MHz)2.00- $Dim of A_{aprt}$ (MPa)1.30- PR (Hz)3125- $p_{q}@PII_{max}$ (MPa)1.41- $P_{pA,3}@MI_{max}$ (W/cm2)64.7- $P_{PA,3}@MI_{max}$ (W/cm2)64.7- $Control 1: Frequency$ 2.0 MHz- $Control 2: PRF$ 3125 Hz- $Control 3: Sample Volume Position6.0 cm-Control 4:$	Index labelM.I.ScanNon Appris1aximum Index Value0.7Appris1 $\rho_{r,3}$ (MPa)1.05 W_0 (mW)1.05 W_0 (mW)min of $[W_{-3}Z_{1}]_{T_{n,3}}Z_{1}]$ (mW) Z_{1} (cm) Z_{5p} (cm) Z_{6p} (cm)4.2 Z_{6p} (cm)4.2 Z_{6p} (cm)2.00 $Z_{6q}(Z_{5p})$ (cm)2.00 P_{7} (cm)1.30 P_{7} (mPa)1.41 P_{10} (MPa)1.41 P_{10} (Pa)1.41 P_{10} P	Index label M.I. Scan Normal Matrix aximum Index Value 0.7 - - 0.7 $\mu_{r,3}$ (MPa) 1.05 - - - $\mu_{r,3}$ (MPa) 1.05 - - - μ_{0} (mW) - - - - min of [W. ₃₇ z_{1} , $I_{TA,37} z_{1}$] (mW) - - - 53.0 z_{1} (cm) - - - 1.6 - z_{1} (cm) - - 1.6 - <td>Index label M.I. $Non-scan$ Non-scan aximum Index Value 0.7 - - 0.7 2.4 ρ_{c_3} (MPa) 1.05 - - 0.7 2.4 W_0 (mW) - - 0.7 2.4 W_0 (mW) - - 82.2 min of [W.3z1, Jr.3g2, J] (mW) - - 53.0 Z_{ap} (cm) - 1.6 - Z_{ap} (cm) - 1.6 - 1.4 Z_{ap} (cm) 4.2 - - 0.62 - $Geq(Z_{ap})$ (cm) 2.00 - - 2.83 1.99 $Dim of A_{aprt}$ Y (cm) - - 1.3 3.3 PD (µsec) 1.30 - - - - - - - - - - - - - - - - -</td>	Index label M.I. $Non-scan$ Non-scan aximum Index Value 0.7 - - 0.7 2.4 ρ_{c_3} (MPa) 1.05 - - 0.7 2.4 W_0 (mW) - - 0.7 2.4 W_0 (mW) - - 82.2 min of [W.3z1, Jr.3g2, J] (mW) - - 53.0 Z_{ap} (cm) - 1.6 - Z_{ap} (cm) - 1.6 - 1.4 Z_{ap} (cm) 4.2 - - 0.62 - $Geq(Z_{ap})$ (cm) 2.00 - - 2.83 1.99 $Dim of A_{aprt}$ Y (cm) - - 1.3 3.3 PD (µsec) 1.30 - - - - - - - - - - - - - - - - -

Table 10-30: Transducer model: P21xp

Operating mode: 2D (B)/PW Doppler

					TIS		TIB	
	Index label		м.і.	C com	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.9	0.9	-	0.6	2.2	2.7
	p _{r.3}	(MPa)	1.27					
	W _o	(mW)		72.6	-		79.0	204.5
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				63.5		
usti	Z ₁	(cm)				3.4		
acol	Z _{bp}	(cm)				2.8		
ciated acou parameter	Z _{sp}	(cm)					5.0	
Associated acoustic parameter	z@PII _{.3max}	(cm)	5.4					
2506	$d_{eq}(Z_{sp})$	(cm)					0.41	
Ä	F _c	(MHz)	2.14	2.49	-	1.99	2.01	2.10
	Dim of A _{aprt}	X (cm)		2.1	-	2.1	1.6	2.1
		Y (cm)		1.3	-	1.3	1.3	1.3
	PD	(µsec)	0.81					
-	PRF	(Hz)	860					
tior	p _r @PII _{max}	(MPa)	1.90					
Other nformation	$d_{eq}@PII_{max}$	(cm)					0.38	
o lo	Focal Length	FL _x (cm)		16	-	20		20
.=		FL _y (cm)		9	-	9		9
	I _{PA.3} @MI _{max}	(W/cm ²)	151.7					
	Control 1: 2D Frequency /	THI	2.0 MHz / Off	3.0 MHz / Off		3.0 MHz / Off	3.0 MHz / Off	2.0 MHz / Off
ing ol ons	Control 2: PW Frequency		2.0 MHz	2.96 MHz		2.0 MHz	2.0 MHz	2.0 MHz
perating control nditior	Control 3: PW PRF		3125 Hz	1000 Hz		3125 Hz	2000 Hz	1000 Hz
Operating control conditions	Control 4: PW Sample Volume Position		8.0 cm	16 cm		20 cm	8.0 cm	20 cm
	Control 5:							

Table 10-31: Transducer model: P21xp

Operating mode: 2D (B)/Color/PW Doppler (Triplex)

					TIS		TIB	
	Index label		M.I.	S com	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		0.9	0.6	-	0.5	1.9	1.9
	p _{r.3}	(MPa)	1.27					
	W _o	(mW)		55.1	-		59.8	132.3
U	min of $[W_{{3(}}z_{1),}I_{TA.3(}z_{1)}]$	(mW)				40.1		
usti	Z ₁	(cm)				1.8		
ciated acou oarameter	Z _{bp}	(cm)				2.5		
ed a	Z _{sp}	(cm)					3.8	
Associated acoustic parameter	z@PII _{.3max}	(cm)	5.4					
	$d_{eq}(Z_{sp})$	(cm)					0.41	
Ă	F _c	(MHz)	2.14	2.10	-	2.82	2.00	2.82
	Dim of A	X (cm)		2.1	-	1.6	1.2	1.6
	Dim of A _{aprt}	Y (cm)		1.3	-	1.3	1.3	1.3
	PD	(µsec)	0.81					
-	PRF	(Hz)	430					
tior	p _r @PII _{max}	(MPa)	1.90					
Other formati	d _{eq} @PII _{max}	(cm)					0.38	
Other nformation	Focal Length	FL _x (cm)		20	-	8		8
.=		FL _y (cm)		9	-	9		9
	I _{PA.3} @MI _{max}	(W/cm ²)	151.7					
	Control 1: 2D Frequency /	ТНІ	2.0 MHz / Off	2.0 MHz / Off		3.0 MHz / On	2.0 MHz / Off	3.0 MHz / On
ng ons	Control 2: Color Frequence	y	2.0 MHz	2.96 MHz		2.0 MHz	2.0 MHz	2.0 MHz
Operating control conditions	Control 3: PW Frequency		2.0 MHz	2.0 MHz		2.96 MHz	2.0 MHz	2.96 MHz
Dpe co	Control 4: PW PRF		3125 Hz	1000 Hz		6250 Hz	3125 Hz	6250 Hz
5 0	Control 5: PW Sample Vol Position	ume	8.0 cm	20 cm		8.0 cm	6.0 cm	8.0 cm

Table 10-32: Transducer model: P21xp

Operating mode: CW Doppler

				TIS		TIB	
Index label		M.I.	6	Non	scan	Non-	TIC
			Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
laximum Index Value		0.1	-	1.1		3.1	2.5
p _{r.3}	(MPa)	0.10					
W _o	(mW)		-	110.4		111.6	112.8
min of $[W_{\cdot_{3(}} z_{_{1),}} I_{_{TA,3(}} z_{_{1)}}]$	(mW)						
Z ₁	(cm)						
Z _{bp}	(cm)						
Z _{sp}	(cm)					3.4	
z@PII _{.3max}	(cm)	3.6					
$d_{eq}(Z_{sp})$	(cm)					0.50	
F _c	(MHz)	2.00	-	2.00		2.00	2.00
Dim of A	X (cm)		-	0.8		0.8	0.8
DITT OF A _{aprt}	Y (cm)		-	1.3		1.3	1.3
PD	(µsec)	N/A					
PRF	(Hz)	N/A					
p _r @PII _{max}	(MPa)	0.13					
d _{eq} @PII _{max}	(cm)					0.48	
Focal Length	FL _x (cm)		-	10			10
	FL _y (cm)		-	9			9
I _{PA.3} @MI _{max}	(W/cm ²)	0.4					
Control 1: Sample Volume	e Position	6 cm		10 cm		6 cm	16 cm
Control 2:							
Control 3:							
Control 4:							
Control 5:							
	Aaximum Index Value $P_{r,3}$ W_0 min of $[W_{.3}(Z_{1}), I_{TA,3}(Z_{1})]$ Z_1 Z_{bp} Z_{sp} Z_{sp} $Z_{opPII_{.3max}}$ $d_{eq}(Z_{sp})$ F_c Dim of A_{aprt} PD PRF $p_{.}@PII_{.max}$ $d_{eq}@PII_{.max}$ Focal Length $I_{PA,3}@MI_{.max}$ Control 1: Sample Volume Control 2: Control 3: Control 4:	Aximum Index Value Pr.3 (MPa) Wo (mW) min of [W.3(Z1), ITA.3(Z1)] (mW) Z1 (cm) Z2, 0 (cm) Z5, 0 (cm) Z9PII_3max (cm) deq(Zsp) (cm) D1m of Aaprt (MPa) PD (µsec) PRF (Hz) p_@PII_max (MPa) deq@PII_max (cm) Focal Length FL_x (cm) IA_3@MI_max (W/cm²) Control 1: Sample Volum= Vosition Control 3: Control 4: V	Aximum Index Value 0.1 $p_{r,3}$ (MPa) 0.10 W_0 (mW) (mW) min of [W.3(Z1),ITA.3(Z1)] (mW) (MPa) z_1 (cm) (Cm) z_{bp} (cm) (Cm) Z_{sp} (cm) 3.6 $z_{qPII_{3max}}$ (cm) 3.6 $d_{eq}(Z_{sp})$ (cm) 2.000 T_{c} (MHz) 2.00 T_{c} (MHz) 2.00 PD (µsec) N/A PRF (MPa) 0.13 $q_{eq}@PII_{max}$ (Cm) 1 $P_{aq}@PII_{max}$ (MPa) 0.13 $f_{aq}@PII_{max}$ (Cm) 1 $f_{aq}@PII_{max}$ (Cm) 1 $I_{p,a}@MI_{max}$ (MPa) 0.13 $I_{p,a,3}@MI_{max}$ 0.4 1 $I_{p,a,3}@MI_{max}$ 0.4 1 $I_{p,a,3}@MI_{max}$ 0.4 1 $I_{p,a,3}@MI_{max}$ 0.4 1 $I_{p,a,3}@MI_{max}$ 6 1 $I_{p,a,3}@$	Aximum Index Value 0.1 - $p_{r.3}$ (MPa) 0.10 - W_0 (mW) - - W_0 (mW) - - min of [$W_{.3(Z_1)}$] (mW) - - Z_1 (cm) - - Z_{bp} (cm) - - Z_{sp} (cm) - - Z_{apl} (cm) 3.6 - $d_{eq}(Z_{sp})$ (cm) - - P_{c} (MHz) 2.00 - $Dim of A_{aprt}$ (MHz) 2.00 - P_{T} (cm) - - - $Pimen f A_{aprt}$ (MHz) 2.00 - P_{T} (cm) - - - P_{T} (cm) - - - P_{apart} (MPa) 0.13 - P_{apart} FL _x (cm) - - P_{apare} FL _x (cm) -	Index label M.i. Scan Normalized statements Aximum Index Value 0.1 - 1.1 $p_{r,3}$ (MPa) 0.10 - - W_0 (mW) 0.10 - - - W_0 (mW) - 110.4 - - W_0 (mW) - - - - - W_0 (mW) -	Index label M.i. Scan $Iorrel Iorrel Io$	Index label M.I. $R.I.$ $R.$

Table 10-33: Transducer Model: L38xp

Operating Mode: 2D

					TIS		TIB	
	Index label		M.I.	C.com	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		1.1	0.7	—	—	—	1.8
	p _{r.3}	(MPa)	2.44					
	W ₀	(mW)		29.9	—		—	101.2
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acol	z _{bp}	(cm)				—		
ciated Aco Parameter	z _{sp}	(cm)						
ciat Par	z@PII _{.3max}		1.1					
Associated Acoustic Parameter	d _{eq} (z _{sp})	(cm)						
	f _c	(MHz)	4.62	5.15		_		5.15
	Dim of A _{aprt}	X (cm)		3.8	—	—	—	3.8
	Dimorraprt	Y (cm)		0.4	—	—	—	0.4
	PD	(µsec)	0.30					
	PRF	(Hz)	9950					
ion .	p _r @PII _{max}	(MPa)	2.63					
Other ormati	d _{eq} @PII _{max}	(cm)					—	
Other Information	Focal Length	FL _x (cm)		8	—	—		8
_	Focal Length	FL _y (cm)		2.5		_		2.5
	I _{PA.3} @MI _{max}	(W/cm²)	265.4					
	Control 1: Frequency		9 MHz	6.5 MHz				9 MHz
ol ons	Control 2: THI		On	Off				On
perating Control Indition	Control 3: Depth							
Operating Control Conditions	Control 4:							
5 0	Control 5: Needle Vision							

Table 10-34: Transducer Model: L38xp

Operating Mode: 2D/M

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	ΤΙϹ
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		1.1	0.5	—	0.1	0.1	1.2
	p _{r.3}	(MPa)	2.44					
	W ₀	(mW)		18.2	—		3.6	64.7
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				2.6		
ustic	z ₁	(cm)				1.0		
Acou	z _{bp}	(cm)				1.3		
ciated Aco Parameter	z _{sp}	(cm)					1.0	
ciat Par	z@PII _{.3max}		1.1					
8 –	d _{eq} (z _{sp})	(cm)					0.47	
4	f _c	(MHz)	4.62	6.03		4.64	4.64	4.64
	Dim of A _{aprt}	X (cm)		3.8	_	1.4	1.4	3.8
	Dim Of A _{aprt}	Y (cm)		0.4	—	0.4	0.4	0.4
	PD	(µsec)	0.30					
	PRF	(Hz)	9084					
tion	p _r @PII _{max}	(MPa)	2.63					
Other ormati	d _{eq} @Pll _{max}	(cm)					0.46	
Other Information	Focal Length	FL _x (cm)		8	—	8		8
_	Focal Length	FL _y (cm)		2.5	_	2.5		2.5
	I _{PA.3} @MI _{max}	(W/cm²)	265.4					
	Control 1: Frequency		9 MHz	6.5 MHz		9 MHz	9 MHz	9 MHz
ing ol ons	Control 2: THI		On	Off		On	On	On
perating Control ondition	Control 3:							
Operating Control Conditions	Control 4:							
- 0	Control 5:							

Table 10-35: Transducer Model: L38xp

Operating Mode: 2D/color

					TIS		TIB	
	Index Label		M.I.	S com	Non	-scan	Non-	ΤΙϹ
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		1.1	0.6	—	—	—	1.0
	p _{r.3}	(MPa)	2.44					
	W ₀	(mW)		20.7	—		—	50.6
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				_		
ciated Aco Parameter	z _{sp}	(cm)					_	
ciat Par	z@PII _{.3max}		1.1					
Associated Acoustic Parameter	d _{eq} (z _{sp})	(cm)						
<	f _c	(MHz)	4.62	6.29	_	_	_	4.56
	Dim of A _{aprt}	X (cm)		2.9	_	_	—	2.9
	Dim Of A _{aprt}	Y (cm)		0.4	—	—	—	0.4
	PD	(µsec)	0.30					
	PRF	(Hz)	2554					
ion .	p _r @PII _{max}	(MPa)	2.63					
Other ormati	d _{eq} @Pll _{max}	(cm)					—	
Other nformation	Fo col Longth	FL _x (cm)		8	—	—		8
_	Focal Length	FL _y (cm)		2.5	—	—		2.5
	I _{PA.3} @MI _{max}	(W/cm²)	265.4					
D SI	Control 1: 2D Frequency	/THI	9 MHz / On	6.5 MHz / Off				5 MHz / Off
trol	Control 2: Color Frequen	cy	4.45 MHz	6.67 MHz				4.45 MHz
Operating Control Conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
ð ° ô	Control 4: Color PRF Control 5:	Control 4: Color PRF		3226 Hz				8064 Hz

Table 10-36: Transducer Model: L38xp

Operating Mode: PW Doppler

					TIS		TIB	
	Index Label		м.і.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.8	—	—	0.6	1.1	1.0
	p _{r.3}	(MPa)	1.62					
	W ₀	(mW)		—	—		14.5	34.3
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				20.2		
Istic	z ₁	(cm)				1.2		
Acou	z _{bp}	(cm)				1.3		
ciated Aco Parameter	z _{sp}	(cm)					1.5	
Associated Acoustic Parameter	z@PII.3max		1.1					
Vsso	d _{eq} (z _{sp})	(cm)					0.15	
4	f _c	(MHz)	4.57	_	—	6.40	6.41	6.40
	Dim of A	X (cm)		—	—	1.4	0.5	1.4
	Dim of A _{aprt}	Y (cm)		—	—	0.4	0.4	0.4
	PD	(µsec)	0.64					
	PRF	(Hz)	4000					
tion	p _r @PII _{max}	(MPa)	1.84					
Other ormati	d _{eq} @Pll _{max}	(cm)					0.15	
Other Information	Fo col Longeth	FL _x (cm)		—	—	8		8
_	Focal Length	FL _y (cm)		_	—	2.5		2.5
	I _{PA.3} @MI _{max}	(W/cm²)	117.6					
	Control 1: Frequency		4.45 MHz			6.67 MHz	6.67 MHz	4.45 MHz
ing ol ons	Control 2: PRF		4000 Hz			5000 Hz	9091 Hz	9091 Hz
Operating Control Conditions	Control 3: Sample Volume	Position	2.0 cm			8.0 cm	2.5 cm	8.0 cm
Ope Con	Control 4:							
- 0	Control 5:							

Table 10-37: Transducer Model: L38xp

Operating Mode: 2D/PW Doppler

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan		A _{aprt} >1	scan	
Global N	Aaximum Index Value		1.1	0.6	—	0.5	0.9	1.9
	p _{r.3}	(MPa)	2.37					
	W ₀	(mW)		19.7	—		11.6	94.8
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				16.1		
ustic	z ₁	(cm)				1.2		
Acou	z _{bp}	(cm)				1.3		
ciated Aco Parameter	z _{sp}	(cm)					1.5	
ciat Par	z@PII _{.3max}		1.1					
Associated Acoustic Parameter	d _{eq} (z _{sp})	(cm)					0.15	
<	f _c	(MHz)	4.61	6.13	_	6.40	6.41	5.12
	Dim of A _{aprt}	X (cm)		3.8	—	1.4	0.5	3.8
	Dim of A _{aprt}	Y (cm)		0.4	—	0.4	0.4	0.4
	PD	(µsec)	0.30					
	PRF	(Hz)	1000					
r tion	p _r @PII _{max}	(MPa)	2.60					
Other Information	d _{eq} @Pll _{max}	(cm)					0.15	
nfor O	Focal Length	FL _x (cm)		8	—	8		8
_	r ocar Lengtri	FL _y (cm)		2.5	—	2.5		2.5
	I _{PA.3} @MI _{max}	(W/cm²)	231.5					
	Control 1: 2D Frequency/	тні	9 MHz / On	6.5 MHz / Off		9 MHz / On	9 MHz / On	5 MHz / Off
ng ol sns	Control 2: PW Frequency		4.45 MHz	6.67 MHz		6.67 MHz	6.67 MHz	4.45 MHz
perating Control Inditior	Control 3: PW PRF		4000 Hz	3125 Hz		5000 Hz	9091 Hz	3125 Hz
0°00	Control 4: PW Sample Volume Position Control 5: Needle Vision		2.0 cm	8.0 cm		8.0 cm	2.5 cm	8.0 cm

Table 10-38: Transducer Model: L38xp

Operating Mode: 2D/color/PW Doppler (Triplex)

					TIS		TIB	
	Index Label		м.і.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		1.1	0.3	—	0.5	0.9	1.2
	p _{r.3}	(MPa)	2.37					
	W ₀	(mW)		11.6	—		11.6	48.0
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				16.1		
ustic	z ₁	(cm)				1.2		
Acou	z _{bp}	(cm)				1.3		
ciated Aco Parameter	z _{sp}	(cm)					1.5	
ciat Para	z@PII _{.3max}		1.1					
Associated Acoustic Parameter	d _{eq} (z _{sp})	(cm)					0.15	
4	f _c	(MHz)	4.61	5.12	_	6.40	6.41	6.40
	Dim of A _{aprt}	X (cm)		3.8	—	1.4	0.5	1.4
	Dim of A _{aprt}	Y (cm)		0.4	—	0.4	0.4	0.4
	PD	(µsec)	0.30					
	PRF	(Hz)	500					
r tion	p _r @PII _{max}	(MPa)	2.60					
Other Information	d _{eq} @Pll _{max}	(cm)					0.15	
0 ufor	Focal Length	FL _x (cm)		8	—	8		8
_	rocar Lengtri	FL _y (cm)		2.5	_	2.5		2.5
	I _{PA.3} @MI _{max}	(W/cm²)	231.5					
	Control 1: 2D Frequency/	ГНІ	9 MHz/ On	5 MHz/ Off		9 MHz/ On	9 MHz/ On	5 MHz/ Off
ing ol	Control 2: Color Frequence	у	4.45 MHz	4.45 MHz		4.45 MHz	4.45 MHz	4.45 MHz
Operating Control Conditions	Control 3: PW Frequency		4.45 MHz	4.45 MHz		4.45 MHz	4.45 MHz	6.67 MHz
O C O	Control 4: PW PRF		4000 Hz	3125 Hz		5000 Hz	9091 Hz	5000 Hz
	Control 5: PW Sample Vol Position	ume	2.0 cm	8.0 cm		8.0 cm	2.5 cm	8.0 cm

Table 10-39: Transducer Model: C11xp

Operating Mode: 2D

					TIS			
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Maximum Index Value		0.8	0.4	—	—	—	0.6
	p _{r.3}	(MPa)	1.68					
	W ₀	(mW)		17.6	—		—	22.6
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				—		
ciated Aco Parameter	z _{sp}	(cm)					—	
Associated Acoustic Parameter	z@PII _{.3max}		1.6					
Asso	d _{eq} (z _{sp})	(cm)					_	
4	f _c	(MHz)	4.49	5.08	_	—	—	5.08
	Dim of A _{aprt}	X (cm)		1.6	—	—	—	1.6
	Diffi of Aaprt	Y (cm)		0.5	—	—	—	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	5398					
r tion	p _r @PII _{max}	(MPa)	1.83					
Other ormati	d _{eq} @PII _{max}	(cm)					—	
Other Information	Focal Length	FL _x (cm)		8				8
_	i ocai Lengtii	FL _y (cm)		4.5	—	—		4.5
	I _{PA.3} @MI _{max}	(W/cm²)	118.4					
	Control 1: Frequency		9 MHz	5 MHz				5 MHz
Operating Control Conditions	Control 2: THI		On	Off				Off
Operating Control Conditions	Control 3:							
d Ŭ Ū	Control 4:							
	Control 5:							

Table 10-40: Transducer Model: C11xp

Operating Mode: 2D/M

					TIS		TIB	
	Index Label		M.I.	6	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Maximum Index Value		0.8	0.4	—	0.2	0.1	0.5
	p _{r.3}	(MPa)	1.61					
	W ₀	(mW)		14.5	—		0.8	19.7
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				1.1		
ustic	z ₁	(cm)				1.3		
Acou	z _{bp}	(cm)				1.4		
ciated Aco Parameter	z _{sp}	(cm)					1.6	
ciat Para	z@PII _{.3max}		1.7					
Associated Acoustic Parameter	d _{eq} (z _{sp})	(cm)					0.20	
4	f _c	(MHz)	4.49	5.12	—	4.71	4.63	5.12
	Dim of A _{aprt}	X (cm)		1.6	_	1.3	0.6	1.6
	Din of A _{aprt}	Y (cm)		0.5	—	0.5	0.5	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	5334					
r tion	p _r @PII _{max}	(MPa)	1.89					
Other nformation	d _{eq} @PII _{max}	(cm)					0.20	
0 Ufor	Focal Length	FL _x (cm)		8	—	8		8
_	i ocai Echigan	FL _y (cm)		4.5	_	4.5		4.5
	I _{PA.3} @MI _{max}	(W/cm²)	121.0					
	Control 1: Frequency		9 MHz	9 MHz		9 MHz	9 MHz	5 MHz
Operating Control Conditions	Control 2: THI		On	On		On	On	Off
Operating Control Conditions	Control 3:							
d O D								
	Control 5:							

Table 10-41: Transducer Model: C11xp

Operating Mode: 2D/Color

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.7	0.3	—	—	—	0.4
	p _{r.3}	(MPa)	1.58					
	W ₀	(mW)		14.0	—		—	16.0
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				—		
ciated Aco Parameter	z _{sp}	(cm)					_	
ciat Par	z@PII _{.3max}		1.7					
Associated Acoustic Parameter	d _{eq} (z _{sp})	(cm)					—	
	f _c	(MHz)	4.48	4.29	_	_	—	4.29
	Dim of A _{aprt}	X (cm)		1.1				1.1
	·	Y (cm)		0.5	—	—	—	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	6024					
ion	p _r @PII _{max}	(MPa)	1.87					
Other ormati	d _{eq} @PII _{max}	(cm)					—	
Other Information	Focal Length	FL _x (cm)		5	—	—		5
-	Focal Length	FL _y (cm)		4.5	—	—		4.5
	I _{PA.3} @MI _{max}	(W/cm²)	119.5					
s S	Control 1: 2D Frequency/	ТНІ	9 MHz / On	9 MHz / On				9 MHz / On
rol ion	Control 2: Color Frequence	Control 2: Color Frequency		4.2 MHz				4.2 MHz
Operating Control Conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
g Q Q	Control 4: Color PRF		6024 Hz	6024 Hz				6024 Hz
	Control 5:							

Table 10-42: Transducer Model: C11xp

Operating Mode: PW Doppler

					TIS		TIB	
	Index Label		M.I.	6	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Maximum Index Value		0.4	—	—	0.4	1.0	0.8
	p _{r.3}	(MPa)	0.92					
	W ₀	(mW)		—	—		13.9	28.4
<i>.</i>	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				19.5		
ustic	z ₁	(cm)				1.3		
Acou	z _{bp}	(cm)				1.4		
ciated Aco ⁹ arameter	z _{sp}	(cm)					1.5	
Associated Acoustic Parameter	z@PII _{.3max}		1.6					
Asso	d _{eq} (z _{sp})	(cm)					0.19	
4	f _c	(MHz)	4.24	—	—	4.22	4.24	4.22
	Dim of A _{aprt}	X (cm)		_	_	1.3	0.6	1.3
	Dim Of A _{aprt}	Y (cm)		—	—	0.5	0.5	0.5
	PD	(µsec)	1.06					
	PRF	(Hz)	7042					
r tion	p _r @PII _{max}	(MPa)	1.15					
Other ormati	d _{eq} @Pll _{max}	(cm)					0.19	
Other nformation	Focal Length	FL _x (cm)		—	—	8		8
_	r ocar Length	FL _y (cm)		—	—	4.5		4.5
	I _{PA.3} @MI _{max}	(W/cm²)	39.6					
	Control 1: Frequency		4.2 MHz			4.2 MHz	4.2 MHz	4.2 MHz
cing ol	Control 2: PRF		7042 Hz			7042 Hz	7042 Hz	7042 Hz
Dperating Control Conditions	Control 2: PRF Control 3: Sample Volume Control 4:	e Position	2.0 cm			8.0 cm	2.0 cm	8.0 cm
u C D	Control 4:							
	Control 5:							

Table 10-43: Transducer Model: C11xp

Operating Mode: 2D/PW Doppler

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.7	0.1	—	0.3	0.8	0.7
	p _{r.3}	(MPa)	1.56					
	W ₀	(mW)		5.7			11.1	27.0
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				15.6		
ustic	z ₁	(cm)				1.3		
Acol	z _{bp}	(cm)				1.4		
ciated Aco Parameter	z _{sp}	(cm)					1.5	
Associated Acoustic Parameter	z@PII _{.3max}		1.7					
Asso	d _{eq} (z _{sp})	(cm)					0.19	
4	f _c	(MHz)	4.5	5.11	—	4.22	4.24	4.25
	Dim of A _{aprt}	X (cm)		1.6	_	1.3	0.6	1.3
	Dim Of A _{aprt}	Y (cm)		0.5	—	0.5	0.5	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	530					
rion	p _r @PII _{max}	(MPa)	1.86					
Other ormati	d _{eq} @PII _{max}	(cm)					0.19	
Other Information	Focal Longth	FL _x (cm)		8	—	8		8
-	Focal Length	FL _y (cm)		4.5	—	4.5		4.5
	I _{PA.3} @MI _{max}	(W/cm²)	105.5					
	Control 1: Frequency/THI		9 MHZ/ On	5 MHz / Off		5 MHz / Off	9 MHZ/ On	5 MHz / Off
ng ol sno	Control 2: PW Frequency		4.2 MHz	4.2 MHz		4.2 MHz	4.2 MHz	4.2 MHz
erati ontro ditio	Control 3: PW PRF		7042 Hz	2000 Hz		7042 Hz	7042 Hz	7042 Hz
Ŭ	Control 4: PW Sample Volume Position		2.0 cm	8.0 cm		8.0 cm	2.0 cm	8.0 cm
Operating Control Conditions	Control 4: PW Sample Volume							

Table 10-44: Transducer Model: C11xp

Operating Mode: 2D/Color/PW Doppler (Triplex)

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.7	0.1	—	0.3	0.8	0.8
	p _{r.3}	(MPa)	1.56					
	W ₀	(mW)		4.4	—		11.1	27.8
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				15.6		
ustic	z ₁	(cm)				1.3		
Acol	z _{bp}	(cm)				1.4		
ciated Aco Parameter	z _{sp}	(cm)					1.5	
Associated Acoustic Parameter	z@PII _{.3max}		1.7					
Asso	d _{eq} (z _{sp})	(cm)					0.19	
×	f _c	(MHz)	4.50	5.11	_	4.25	4.24	4.25
	Dim of A _{aprt}	X (cm)		1.6	_	1.3	0.6	1.3
	Dim of A _{aprt}	Y (cm)		0.5	—	0.5	0.5	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	260					
Lion	p _r @PII _{max}	(MPa)	1.86					
Other ormati	d _{eq} @PII _{max}	(cm)					0.19	
Other Information	Focal Length	FL _x (cm)		8		8		8
=	i ocai Lengtri	FL _y (cm)		4.5	—	4.5		4.5
	I _{PA.3} @MI _{max}	(W/cm²)	101.5					
	Control 1: 2D Frequency	/ THI	9 MHz / On	5 MHz / Off		5 MHz / Off	9 MHz / On	5 MHz / Off
ng ol ons	Control 2: Color Frequence	y	4.2 MHz	6.1 MHz		6.1 MHz	4.2 MHz	6.1 MHz
Operating Control Conditions	Control 3: PW Frequency		4.2 MHz	4.2 MHz		6.1 MHz	4.2 MHz	4.2 MHz
Operating Control Conditions	Control 4: PW PRF		7042 Hz	2000 Hz		7042 Hz	7042 Hz	7042 Hz
- 0	Control 5: PW Sample Vol Position	ume	2.0 cm	8.0 cm		8.0 cm	2.0 cm	8.0 cm

Table 10-45: Transducer Model: ICTxp

Operating Mode: 2D

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	/laximum Index Value		0.7	0.3	—	—	—	0.5
	p _{r.3}	(MPa)	1.43					
	W ₀	(mW)		15.9	—		—	16.3
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				—		
Associated Acoustic Parameter	z _{sp}	(cm)					—	
ciat Pari	z@PII _{.3max}		1.7					
vsso	d _{eq} (z _{sp})	(cm)					_	
4	f _c	(MHz)	4.63	4.56	—	—	—	4.56
	Dim of A _{aprt}	X (cm)		1.1	_	_	—	1.1
	Diff Of Aprt	Y (cm)		0.5	—	—	—	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	8000					
r tion	p _r @PII _{max}	(MPa)	1.70					
Other ormati	d _{eq} @Pll _{max}	(cm)					—	
Other Information	Focal Length	FL _x (cm)		8				8
_	i ocai Lengtii	FL _y (cm)		4.4	—	—		4.4
	I _{PA.3} @MI _{max}	(W/cm²)	88.8					
	Control 1: Frequency		9 MHz	9 MHz				9 MHz
ing ol ons	Control 2: THI		On	On				On
Operating Control Conditions	Control 3:							
Co Ŭ	Control 4:							
	Control 5:							

Table 10-46: Transducer Model: ICTxp

Operating Mode: 2D/M

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global I	Maximum Index Value		0.7	0.3	≤0.1	—	0.1	0.5
	p _{r.3}	(MPa)	1.43					
	W ₀	(mW)		15.8	1.0		0.8	17.3
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				_		
ciated Aco Parameter	z _{sp}	(cm)					1.9	
ciat Par	z@PII.3max		1.7					
Associated Acoustic Parameter	d _{eq} (z _{sp})	(cm)					0.21	
4	f _c	(MHz)	4.63	4.56	4.56	—	4.65	4.56
	Dim of A	X (cm)		1.1	0.9	—	0.7	1.1
	Dim of A _{aprt}	Y (cm)		0.5	0.5	—	0.5	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	7986					
r tion	p _r @PII _{max}	(MPa)	1.70					
Other nformation	d _{eq} @PII _{max}	(cm)					0.20	
o Jfor	Focal Length	FL _x (cm)		8	8	—		8
_	i ocai Lengtii	FL _y (cm)		4.4	4.4	—		4.4
	I _{PA.3} @MI _{max}	(W/cm²)	88.8					
	Control 1: Frequency		9 MHz	9 MHz	9 MHz		9 MHz	9 MHz
ing ol ons	Control 2: THI		On	On	On		On	On
Operating Control Conditions	Control 3:							
o Ŭ O	Control 4:							
	Control 5:							

Table 10-47: Transducer Model: ICTxp

Operating Mode: 2D/Color

					TIS		TIB	
	Index Label		M.I.	-	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.7	0.3	—	—	—	0.4
	p _{r.3}	(MPa)	1.43					
	W ₀	(mW)		13.4	—		—	13.5
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)						
Associated Acoustic Parameter	z _{bp}	(cm)				—		
ciated Aco Parameter	z _{sp}	(cm)					—	
ociat Par	z@PII _{.3max}		1.7					
Assc	d _{eq} (z _{sp})	(cm)					—	
	f _c	(MHz)	4.63	5.85	_		—	5.85
	Dim of A _{aprt}	X (cm)		0.9	—		—	0.9
	·	Y (cm)		0.5	—	—	—	0.5
	PD	(µsec)	0.29					
_	PRF	(Hz)	2222					
tior	p _r @PII _{max}	(MPa)	1.70					
Other nformation	d _{eq} @Pll _{max}	(cm)					—	
D O	Focal Length	FL _x (cm)		8	—	—		8
		FL _y (cm)		4.4	—	—		4.4
	I _{PA.3} @MI _{max}	(W/cm²)	88.8					
g St	Control 1: Frequency / THI		9 MHz / On	9 MHz / On				9 MHz / On
trol	Control 2: Color Frequency	/	6.15 MHz	6.15 MHz				6.15 MHz
Operating Control Conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
σΥθ	Control 4: Color PRF Control 5:		4000 Hz	4000 Hz				4000 Hz

Table 10-48: Transducer Model: ICTxp

Operating Mode: PW Doppler

					TIS		TIB	
	Index Label		м.і.	6	Non-	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.5	—	0.3	—	0.8	0.5
	p _{r.3}	(MPa)	1.24					
	W ₀	(mW)		—	15.2		13.0	15.2
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
Istic	z ₁	(cm)				_		
VcoL ter	z _{bp}	(cm)				_		
ciated Aco Parameter	z _{sp}	(cm)					1.9	
Associated Acoustic Parameter	z@PII.3max		1.2					
Vsso	d _{eq} (z _{sp})	(cm)					0.20	
4	f _c	(MHz)	5.93	—	4.48	—	4.47	4.48
	Dim of A _{aprt}	X (cm)		_	0.9	_	0.7	0.9
	Diff Of A _{aprt}	Y (cm)		—	0.5	—	0.5	0.5
	PD	(µsec)	0.45					
	PRF	(Hz)	4000					
rion	p _r @PII _{max}	(MPa)	1.94					
Other ormati	d _{eq} @PII _{max}	(cm)					0.19	
Other nformation	Focal Length	FL _x (cm)			8	—		8
-	Focal Length	FL _y (cm)		—	4.4	—		4.4
	I _{PA.3} @MI _{max}	(W/cm²)	89.4					
	Control 1: Frequency		6.15 MHz		4.45 MHz		4.45 MHz	4.45 MHz
ing ol ons	Control 2: PRF		4000 Hz		7042 Hz		7042 Hz	7042 Hz
Operating Control Conditions	Control 3: Sample Volume	Position	4.0 cm		8.0 cm		4.0 cm	8.0 cm
Co Č Ob	Control 4:							
	Control 5:							

Table 10-49: Transducer Model: ICTxp

Operating Mode: 2D/PW Doppler

					TIS		TIB	
	Index Label		M.I.	6	Non-	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.6	0.2	0.3	—	0.7	0.5
	p _{r.3}	(MPa)	1.39					
	W ₀	(mW)		7.7	12.1		10.4	15.0
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				—		
ciated Aco Parameter	z _{sp}	(cm)					1.9	
Associated Acoustic Parameter	z@PII _{.3max}		1.6					
Asso	d _{eq} (z _{sp})	(cm)					0.20	
-	f _c	(MHz)	4.65	5.41	4.48	_	4.48	4.48
	Dim of A _{aprt}	X (cm)		2.4	0.9	_	0.7	0.9
	Diff Of A _{aprt}	Y (cm)		0.5	0.5	—	0.5	0.5
	PD	(µsec)	0.29					
	PRF	(Hz)	800					
ion	p _r @PII _{max}	(MPa)	1.77					
Other ormati	d _{eq} @PII _{max}	(cm)					0.19	
Other Information	Fo col Longth	FL _x (cm)		5.0	8	—		8
<u> </u>	Focal Length	FL _y (cm)		4.4	4.4	_		4.4
	I _{PA.3} @MI _{max}	(W/cm²)	82.1					
	Control 1: 2D Frequency/	ГНІ	9 MHz/ On	5.5 MHz / Off	9 MHz / On		9 MHz/ On	9 MHz / On
ng ol sno	Control 2: PW Frequency		6.15 MHz	6.15 MHz	4.45 MHz		4.45 MHz	4.45 MHz
Operating Control Conditions	Control 3: PW PRF		4000 Hz	2000 Hz	7042 Hz		7042 Hz	7042 Hz
Operating Control Conditions	Control 4: PW Sample Volume Position		3.0 cm	5.0 cm	8.0 cm		4.0 cm	8.0 cm
	Control 5:							

Table 10-50: Transducer Model: ICTxp

Operating Mode: 2D/Color/PW Doppler (Triplex)

					TIS		TIB	
	Index Label		м.і.	6	Non-	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		0.6	0.3	0.3	—	0.7	0.5
	p _{r.3}	(MPa)	1.39					
	W ₀	(mW)		9.6	12.1		10.4	15.1
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acol	z _{bp}	(cm)				—		
ciated Aco Parameter	z _{sp}	(cm)					1.9	
Associated Acoustic Parameter	z@PII _{.3max}		1.6					
Asso	d _{eq} (z _{sp})	(cm)					0.20	
	f _c	(MHz)	4.65	5.89	4.48	_	4.48	4.48
	Dim of A _{aprt}	X (cm)		1.4	0.9	—	0.7	0.9
	Diff Of Aaprt	Y (cm)		0.5	0.5	—	0.5	0.5
	PD	(µsec)						
	PRF	(Hz)	400					
r tion	p _r @PII _{max}	(MPa)	1.77					
Other ormati	d _{eq} @PlI _{max}	(cm)					0.19	
Other nformation	Focal Length	FL _x (cm)		8	8			8
_	rocal Length	FL _y (cm)		4.4	4.4	—		4.4
	I _{PA.3} @MI _{max}	(W/cm²)	82.1					
	Control 1: 2D Frequency /	тні	9 MHz / On	5.5 MHz / Off	9 MHz / On		9 MHz / On	9 MHz / On
ng ol ons	Control 2: Color Frequenc	у	6.15 MHz	4.45 MHz	6.15 MHz		4.45 MHz	6.15 MHz
Operating Control Conditions	Control 3: PW Frequency		6.15 MHz	6.15 MHz	4.45 MHz		4.45 MHz	4.45 MHz
Operating Control Conditions	Control 4: PW PRF		4000 Hz	2000 Hz	7042 Hz		4032 Hz	7042 Hz
- 0	Control 5: PW Sample Vol Position	ume	3.0 cm	8.0 m	8.0 cm		4.0 cm	8.0 cm

Table 10-51: Transducer Model: C35xp

Operating Mode: 2D

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Maximum Index Value		1.0	0.8	—	—	—	1.0
	p _{r.3}	(MPa)	1.89					
	W ₀	(mW)		33.9	—		—	84.0
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				—		
ciated Aco Parameter	z _{sp}	(cm)					—	
Associated Acoustic Parameter	z@PII _{.3max}		3.3					
Asso	d _{eq} (z _{sp})	(cm)					_	
4	f _c	(MHz)	3.54	5.10	_	—	—	3.37
	Dim of A _{aprt}	X (cm)		3.8	—	—	—	4.1
	Diffi of Aaprt	Y (cm)		0.8	—	—	—	0.8
	PD	(µsec)	0.37					
	PRF	(Hz)	5730					
r tion	p _r @PII _{max}	(MPa)	2.67					
Other ormati	d _{eq} @PII _{max}	(cm)					—	
Other Information	Focal Length	FL _x (cm)		10				10
_	i ocai Lengtii	FL _y (cm)		5	—	—		5
	I _{PA.3} @MI _{max}	(W/cm²)	242.7					
	Control 1: Frequency		8 MHz	6 MHz				8 MHz
Operating Control Conditions	Control 2: THI		On	Off				On
Operating Control Conditions	Control 3:							
d Ŭ Ū	Control 4:							
	Control 5:							

Table 10-52: Transducer Model: C35xp

Operating Mode: 2D/M

					TIS		TIB	
	Index Label		м.і.	6	Non	scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global I	Maximum Index Value		1.0	0.6	—	0.1	0.2	1.1
	p _{r.3}	(MPa)	1.89					
	W ₀	(mW)		25.3	—		3.9	85.0
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				4.3		
ustic	z ₁	(cm)				2.1		
Acou	z _{bp}	(cm)				2.2		
ciated Aco ² arameter	z _{sp}	(cm)					3.1	
Associated Acoustic Parameter	z@PII.3max		3.3					
Asso	d _{eq} (z _{sp})	(cm)					0.25	
4	f _c	(MHz)	3.57	5.39	—	3.42	3.57	3.38
	Dim of A	X (cm)		3.7	_	2.0	1.0	4.1
	Dim of A _{aprt}	Y (cm)		0.8	—	0.8	0.8	0.8
	PD	(µsec)	0.37					
	PRF	(Hz)	250					
r tion	p _r @PII _{max}	(MPa)	2.64					
Other Information	d _{eq} @PII _{max}	(cm)					0.24	
0 nfor	Focal Length	FL _x (cm)		10	—	10		10
_	i ocai Lengtii	FL _y (cm)		5	—	5		5
	I _{PA.3} @MI _{max}	(W/cm²)	239.3					
	Control 1: Frequency		8 MHz	8 MHz		8 MHz	8 MHz	8 MHz
cing ol ions	Control 2: THI		On	Off		On	On	On
Operating Control Conditions	Control 3:							
d Ŭ Ď								
	Control 5:							

Table 10-53: Transducer Model: C35xp

Operating Mode: 2D/Color

					TIS		TIB	
	Index Label		м.і.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	laximum Index Value		1.0	0.9	—	—	—	1.4
	p _{r.3}	(MPa)	1.82					
	W ₀	(mW)		45.2	—		_	100.6
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				—		
ustic	z ₁	(cm)				—		
Acou	z _{bp}	(cm)				—		
Associated Acoustic Parameter	z _{sp}	(cm)						
ciat Par	z@PII _{.3max}		3.3					
Asso	d _{eq} (z _{sp})	(cm)					_	
1	f _c	(MHz)	3.58	4.56	_	_	_	4.56
	Dim of A _{aprt}	X (cm)		2.7	—	—	—	2.7
		Y (cm)		0.8	—	—		0.8
	PD	(µsec)	0.37					
	PRF	(Hz)	2500					
r tion	p _r @PII _{max}	(MPa)	2.68					
Other ormati	d _{eq} @PII _{max}	(cm)					—	
Other nformation	Focal Length	FL _x (cm)		10				10
=	i ocai Lengtii	FL _y (cm)		5	—	—		5
	I _{PA.3} @MI _{max}	(W/cm²)	234.7					
D SI	Control 1: 2D Frequency/7	ГНІ	8 MHz / On	8 MHz / On				8 MHz / On
trol	Control 2: Color Frequenc	у	3.64 MHz	4.71 MHz				4.71 MHz
Operating Control Conditions	Control 3: Color Box Size		Narrow	Narrow				Narrow
σ́° Υ	Control 4: Color PRF Control 5:		2500 Hz	13158 Hz				13158 Hz

Table 10-54: Transducer Model: C35xp

Operating Mode: PW Doppler

					TIS		TIB	
	Index Label		M.I.	6	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Maximum Index Value		0.7	—	—	0.7	1.5	1.4
	p _{r.3}	(MPa)	1.52					
	W ₀	(mW)		—	—		41.7	80.0
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				34.3		
ustic	z ₁	(cm)				1.9		
Acou	z _{bp}	(cm)				1.8		
Associated Acoustic Parameter	z _{sp}	(cm)					3.1	
ciat Para	z@PII.3max		3.0					
Asso	d _{eq} (z _{sp})	(cm)					0.23	
4	f _c	(MHz)	4.58	_	—	4.52	4.66	4.61
	Dim of A _{aprt}	X (cm)		_	_	1.5	0.8	2.0
	Dim Of A _{aprt}	Y (cm)		—	—	0.8	0.8	0.8
	PD	(µsec)	0.64					
	PRF	(Hz)	3125					
Lion	p _r @PII _{max}	(MPa)	2.30					
Other ormatio	d _{eq} @PII _{max}	(cm)					0.22	
Other nformation	Focal Length	FL _x (cm)		—	—	7		10
-	rocal Length	FL _y (cm)		—	—	5		5
	I _{PA.3} @MI _{max}	(W/cm²)	132.9					
	Control 1: Frequency		4.71 MHz			4.71 MHz	4.71 MHz	4.71 MHz
ing ol ons	Control 2: PRF		3125 Hz			5000 Hz		5000 Hz
Operating Control Conditions	Control 3: Sample Volume	Position	4.0 cm			7.0 cm	4.0 cm	10 cm
o b Co tí	Control 2: PRF Control 3: Sample Volume Control 4:							
	Control 5:							

Table 10-55: Transducer Model: C35xp

Operating Mode: 2D/PW Doppler

				TIS		TIB	
Index Label		м.і.	6	Non	-scan	Non-	тіс
			Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Aaximum Index Value		0.9	0.7	—	0.6	1.5	1.3
p _{r.3}	(MPa)	1.75					
W ₀	(mW)		27.2	_		40.4	75.9
min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				27.5		
z ₁	(cm)				1.9		
z _{bp}	(cm)				1.8		
z _{sp}	(cm)					3.4	
z@PII _{.3max}		3.3					
d _{eq} (z _{sp})	(cm)					0.25	
f _c	(MHz)	3.65	5.43	_	4.52	3.63	4.61
Dim of A	X (cm)		3.6	—	1.5	1.1	2.0
Diffi Of Aaprt	Y (cm)		0.8	—	0.8	0.8	0.8
PD	(µsec)	0.38					
		1.93					
d _{eq} @PII _{max}						0.24	
Focal Length	~		9	—	7		10
rocal Length	FL _y (cm)		5	—	5		5
I _{PA.3} @MI _{max}	(W/cm²)	193.4					
Control 1: 2D Frequency /	тні	8 MHz / On	6 MHZ / Off		6 MHz / Off	8 MHz / On	8 MHz / Off
Control 2: PW Frequency		4.71 MHz	3.64 MHz		4.71 MHz	3.64 MHz	4.71 MHz
Control 3: PW PRF		3125 Hz	2000 Hz		5000 Hz	3125 Hz	5000 Hz
Control 4: PW Sample Volu Position Control 5:	ume	4.0 cm	9.0 cm		7.0 cm	5.0 cm	10 cm
	Aaximum Index Value Pr.3 W0 min of [W.3(z1),ITA.3(Z1)] Z1 Zbp Zsp Zsp Z@PII.3max deq(Zsp) fc Dim of Aaprt PD PRF PD PRF Pr@PII.max deq@PII.max deq@PII.max Control 1: 2D Frequency / Control 2: PW Frequency Control 3: PW PRF Control 4: PW Sample Volu	Aaximum Index Value $P_{r,3}$ (MPa) W_0 (mW) w_0 (mW)min of [W_3(z_1),ITA.3(z_1)](mW) z_1 (cm) z_{bp} (cm) z_{bp} (cm) z_{sp} (cm) $z_{gPII_{3max}}$ (cm) $d_{eq}(z_{sp})$ (cm) f_c (MHz)Dim of A_{aprt} X (cm)PD(µsec)PRF(Hz) $p_r@PII_{max}$ (MPa) $d_{eq}@PII_{max}$ (cm) $f_{eq}@PII_{max}$ (cm) $f_{eq}@PII_{max}$ (cm) $P_{A.3}@MI_{max}$ (W/cm²)Control 1: 2D Frequency / THIControl 3: PW PRF(W/cm²)Control 4: PW Sample VolumePositionV	Aximum Index Value0.9Pr.3(MPa)1.75W0(MWa)1.75W0(MWa)(MWa)rin of [W_3(z_1),ITA.3(z_1)](MWa)1Zbp(Cma)(Cma)Zbp(Cma)(Cma)Zsp(Cma)3.3deq(Zsp)(Cma)3.65fc(MHz)3.65Dim of AaprtX (cma)3.65PD(MEa)0.38PRF(Hz)4.74Pr@PIImax(MPa)1.93deq@PIImax(MPa)1.93deq@PIImax(MPa)1.93fbcal LengthFLx (cma)1.93.4IPA.3@MImax(W/cma)1.93.4Control 1: 2D Frequency/THI& MHz / OnControl 2: PW Frequency/Control 3: PW PRF3.125 HzControl 3: PW PRF4.0 cmaSotion\$4.0 cma	Aaximum Index Value0.9Scan $P_{r.3}$ 0.90.7 $P_{r.3}$ (MPa)1.75 W_0 (mW)27.2min of $[W_3(z_1),I_{TA,3}(z_1)]$ (mW)27.2 z_1 (cm)2 z_{bp} (cm)1 z_{bp} (cm)1 z_{p} (cm)1 $z_{op}PI_{3max}$ Cm 3.3 $d_{eq}(z_{sp})$ (cm)3.65 f_c (MHz)3.65 $Dim of A_{aprt}$ X (cm)0.8PD(µsec)0.38PD(µsec)0.38PRF(Hz)47.4 $q_{eq}@PII_{max}$ (Cm)1.93 $d_{eq}@PII_{max}$ (mPa)1.93 $P_{A_3}@MI_{max}$ (M/cm)193.4 $P_{A_3}@MI_{max}$ (M/cm2)193.4 $P_{A_3}@MI_{max}$ (M/cm2)193.4Control 1: 2D Frequency \top A_1 Ti MHz $Control 2: PW Frequency \lorA_1 CmP_{ontrol 4: PW Sample Volume \blacklozengeA_0 cmP_{ontrol 4: PW Sample Volume \blacklozengeA_0 cmP_{ontrol 4: PW Sample Volume \blacklozengeA_0 cm$	Index LabelM.i.ScanNormalized statementsPr.30.90.7	Index LabelM.i.Normal ScanNormal Normal ScanNormal Sc	<table-container>Index LabelM.I.ScanNor-Nor-Nor-Aaximum Index Value0.90.7-0.61.5Pr.3(MPa)1.75-0.61.5Wo(MWa)1.7527.2-40.4min of [W,3/c1,1,T_A,3(z1)](MW)27.2-1.9zp(Cm)2-1.927.5zho(Cm)-4.041.93.4zpp(Cm)-1.83.4zpp(Cm)-1.83.4geq(2sp)(Cm)3.655.43-4.52fc(MH2)3.655.43-1.5fc(MH2)3.655.43-1.5pmof A_{aprt}(MH2)3.655.43-1.5PR(MH2)3.655.43-1.5PRF(MH2)1.93-0.80.8PRF(H2)474-1.51.1pq@PII_{max}(MPa)1.93-7.regalmax(Cm)1.93-7.fcal LengthFL_x(cm)9-7.fcal LengthK(m2)193.4fcal Length/max(Wrm)193.4fcal Length/max(Wrm)193.4fcal Length/maxfcal Length/maxfcal Len</table-container>

Table 10-56: Transducer Model: C35xp

Operating Mode: 2D/Color/PW Doppler (Triplex)

					TIS		TIB	
	Index Label		M.I.	6 ann	Non	-scan	Non-	тіс
				Scan	A _{aprt} ≤1	A _{aprt} >1	scan	
Global N	Aaximum Index Value		0.9	0.3	—	0.6	1.2	1.5
	p _{r.3}	(MPa)	1.75					
	W ₀	(mW)		12.6			32.6	90.3
	min of $[W_{.3}(z_1), I_{TA.3}(z_1)]$	(mW)				27.5		
ustic	z ₁	(cm)				1.9		
Acol	z _{bp}	(cm)				1.8		
ciated Aco Parameter	z _{sp}	(cm)					3.1	
Associated Acoustic Parameter	z@PII _{.3max}		3.3					
Asso	d _{eq} (z _{sp})	(cm)					0.23	
	f _c	(MHz)	3.65	4.59	_	4.52	4.66	4.61
	Dim of A _{aprt}	X (cm)		2.7	—	1.5	0.8	2.0
	·	Y (cm)		0.8	—	0.8	0.8	0.8
	PD	(µsec)	0.38					
	PRF	(Hz)	290					
r tion	p _r @PII _{max}	(MPa)	1.93					
Other ormati	d _{eq} @Pll _{max}	(cm)					0.22	
Other Information	Focal Length	FL _x (cm)		10		7		10
_	r ocar Length	FL _y (cm)		5	—	5		5
	I _{PA.3} @MI _{max}	(W/cm²)	193.4					
	Control 1: 2D Frequency /	тні	8 MHZ / On	8 MHz / Off		6 MHz / Off	8 MHz / On	8 MHz / Off
ing ol	Control 2: Color Frequenc	у	3.64 MHz	4.71 MHz		3.64 MHz	3.64 MHz	4.71 MHz
Operating Control Conditions	Control 3: PW Frequency		4.71 MHz	4.71 MHz		3.64 MHz	3.64 MHz	4.71 MHz
Ope Cone	Control 4: PW PRF		3125 Hz	5000 Hz		5000 Hz	9091 Hz	5000 Hz
- 0	Control 5: PW Sample Volu Position	ume	4.0 cm	10 cm		7.0 cm	4.0 cm	10 cm

Terms used in the acoustic output tables

Table 10-57: Acoustic output terms and definitions

Term	Definition
I _{spta.3}	Derated spatial peak, temporal average intensity in units of milliwatts/cm ² .
Tl type	Applicable thermal index for the transducer, imaging mode, and exam type.
TI value	Thermal index value for the transducer, imaging mode, and exam type.
MI	Mechanical index.
I _{pa.3} @MIm ax	Derated pulse average intensity at the maximum MI in units of W/cm ² .
TIS	(Soft-tissue thermal index) is a thermal index related to soft tissues. TIS scan is the soft-tissue thermal index in an auto-scanning mode. TIS non-scan is the soft-tissue thermal index in the non-autoscanning mode.
TIB	(Bone thermal index) is a thermal index for applications in which the ultrasound beam passes through soft tissue, and a focal region is in the immediate vicinity of bone. TIB non-scan is the bone thermal index in the non-autoscanning mode.
TIC	(Cranial bone thermal index) is the thermal index for applications in which the ultrasound beam passes through bone near the beam entrance into the body.
A _{aprt}	Area of the active aperture measured in cm ² .
P _{r.3}	Derated peak rarefactional pressure associated with the transmit pattern, giving rise to the value reported under MI (megapascals).
Wo	Ultrasonic power, except for TISscan, in which case it is the ultrasonic power passing through a one-centimeter window in units of milliwatts.
W _{.3} (z ₁)	Derated ultrasonic power at axial distance z1 in units of milliwatts.
I _{SPTA.3} (Z ₁)	Derated spatial-peak temporal-average intensity at axial distance z1 (milliwatts per square centimeter).
z1	Axial distance corresponding to the location of maximum $[min(W.3(z), ITA.3(z) \times 1 \text{ cm}^2)]$, where $z > zbp$ in centimeters.
zbp	1.69 $\sqrt{(A_{uprt})}$ in centimeters.
Z _{sp}	For MI, the axial distance at which pr.3 is measured. For TIB, the axial distance at which TIB is a global maximum (for example, zsp = zb.3) in centimeters.

Table 10-57: Acoustic output terms and definitions

Term	Definition
d _{eq} (z)	Equivalent beam diameter as a function of axial distance z, and equal to $\sqrt{(4/(\pi))((W_0)/(Ir_4(z)))}$, where ITA(z) is the temporal-average intensity as a function of z in centimeters.
fc	Center frequency in MHz.
Dim. of A _{aprt}	Active aperture dimensions for the azimuthal (x) and elevational (y) planes in centimeters.
PD	Pulse duration (microseconds) associated with the transmit pattern, giving rise to the reported value of MI.
PRF	Pulse repetition frequency associated with the transmit pattern, giving rise to the reported value of MI in Hertz.
pr@PII _{max}	Peak rarefactional pressure at the point where the free-field, spatial-peak pulse intensity integral is a maximum in megapascals.
$d_{eq}@PII_{max}$	Equivalent beam diameter at the point where the free-field, spatial-peak pulse intensity integral is a maximum in centimeters.
FL	Focal length, or azimuthal (x) and elevational (y) lengths; if different, measured in centimeters.

Acoustic measurement precision and uncertainty

All table entries have been obtained at the same operating conditions that give rise to the maximum index value in the first column of the table. Measurement precision and uncertainty for power, pressure, intensity, and other quantities that are used to derive the values in the acoustic output table are shown in the table below. In accordance with Section 6.4 of the Output Display Standard, the following measurement precision and uncertainty values are determined by making repeated measurements and stating the standard deviation as a percentage.

Quantity	Precision (% of standard deviation)	Uncertainty (95% confidence)
Pr	1.9%	+11.2%
Pr _{.3}	1.9%	+12.2%
Wo	3.4%	+10%
fc	0.1%	+4.7%

Table 10-58: Acoustic measurement precision and uncertainty

Quantity	Precision (% of standard deviation)	Uncertainty (95% confidence)
PII	3.2%	+12.5 to -16.8%
PII.3	3.2%	+13.47 to -17.5%

Terms

For ultrasound terms not included in this glossary, see *Recommended ultrasound terminology*, Third Edition, published in 2011 by the American Institute of Ultrasound in Medicine (AIUM).

Table 10-59: Terms and definitions

Terms	Definitions
as low as reasonably achievable (ALARA)	The guiding principle of ultrasound use, which states that you should keep patient exposure to ultrasound energy as low as is reasonably achievable for diagnostic results.
caliper	One of the points used to define a measurement.
curved array transducer	Identified by the letter C (curved or curvilinear) and a number (60). The number corresponds to the radius of curvature of the array expressed in millimeters. The transducer elements are electrically configured to control the characteristics and direction of the acoustic beam. For example, C60xf.
depth	Refers to the depth of the display. A constant speed of sound of 1530 meters/ second is assumed in the calculation of echo position in the image.
in situ	In the natural or original position.
LCD	Liquid crystal display.
linear array transducer	Identified by the letter L (linear) and a number (38). The number corresponds to the radius of width of the array, expressed in millimeters. The transducer elements are electrically configured to control the characteristics and direction of the acoustic beam. For example, L38xp.
mechanical index (MI)	An indication of the likelihood of mechanical bioeffects occurring: the higher the MI, the greater the likelihood of mechanical bioeffects.
МІ/ТІ	See mechanical index (MI) above and Thermal index (TI) below in this list.
NTSC	National Television Standards Committee. A video format setting. See also PAL below in this list.

Table 10-59: Terms and definitions

Terms	Definitions
PAL	Phase Alternating Line. A video format setting. See also NTSC above in this list.
phased array	A transducer designed primarily for cardiac scanning. Forms a sector image by electronically steering the beam direction and focus.
skinline	A depth on the display that corresponds to the skin/transducer interface.
Tissue Doppler Imaging	A pulsed-wave Doppler technique used to detect myocardial motion.
thermal index (TI)	The ratio of total acoustic power to the acoustic power required to raise tissue temperature by 1°C under defined assumptions.
TIB (bone thermal index)	A thermal index for applications in which the ultrasound beam passes through soft tissue and a focal region is in the immediate vicinity of bone.
TIC (cranial bone thermal index)	A thermal index for applications in which the ultrasound beam passes through bone near the beam entrance into the body.
TIS (soft tissue thermal index)	A thermal index related to soft tissues.
Tissue Harmonic Imaging	Transmits at one frequency and receives at a higher harmonic frequency to reduce noise and clutter and improve resolution.
transducer	A device that transforms one form of energy into another form of energy. Ultrasound transducers contain piezoelectric elements, which when excited electrically, emit acoustic energy. When the acoustic energy is transmitted into the body, it travels until it encounters an interface, or change in tissue properties. At the interface, an echo is formed that returns to the transducer, where this acoustic energy is transformed into electrical energy, processed, and displayed as anatomical information.
variance	Displays a variation in Color Doppler flow imaging within a given sample. Variance is mapped to the color green and is used to detect turbulence.

Abbreviations

Abbreviation	Definition
+/x	"+" Caliper/"×" Caliper Ratio
А	"A" Wave Peak Velocity
A PG	"A" Wave Peak Pressure Gradient
A2Cd	Apical 2 Chamber diastolic
A2Cs	Apical 2 Chamber systolic
A4Cd	Apical 4 Chamber diastolic
A4Cs	Apical 4 Chamber systolic
AAA	Abdominal Aortic Aneurysm
AAo	Ascending Aorta
Abd	Abdomen
abs	absolute value
AC	Abdominal Circumference
ACA	Anterior Cerebral Artery
ACC	Acceleration Index
ACO	Automatic Cardiac Output
ACoA	Anterior Communicating Artery
Adur	"A" wave duration
AFI	Amniotic Fluid Index
AI	Aortic Insufficiency
AI PHT	Aortic Insufficiency Pressure Half Time
AL	Atlas Loop
Ann D	Annulus Diameter
ANT F	Anterior Far
ANT N	Anterior Near

Abbreviation	Definition
Ao	Aorta
AoD	Aortic Root Diameter
Apical	Apical View
APTD	Anteroposterior Trunk Diameter
AT	Acceleration (Deceleration) Time
	Average Ultrasound Age
AUA	Calculated by averaging the individual ultrasound ages for the fetal biometry measurements performed during the exam. The measurements used to determine the AUA are based on the selected OB calculation authors.
AV	Aortic Valve
AV Area	Aortic Valve Area
AVA	Aortic Valve Area
BA	Basilar Artery
Bifur	Bifurcation
ВР	Blood Pressure
BPD	Biparietal Diameter
BPM	Beats per Minute
Bre	Breast
BSA	Body Surface Area
CCA	Common Carotid Artery
CI	Cardiac Index
СМ	Cisterna Magna
СО	Cardiac Output
CPD	Color Power Doppler
Crd	Cardiac
CRL	Crown Rump Length

Abbreviation	Definition
CW	Continuous Wave Doppler
CxLen	Cervix Length
D	Diameter
DCCA	Distal Common Carotid Artery
DECA	Distal External Carotid Artery
DICA	Distal Internal Carotid Artery
Dist	Distal
dP/dt	Delta Pressure: Delta Time
E	"E" Wave Peak Velocity
E PG	"E" Wave Peak Pressure Gradient
E/A	E:A Ratio
E/e'	E velocity = Mitral Valve E velocity divided by the annular e' velocity
ECA	External Carotid Artery
ECG	Electrocardiogram
ECICA	Extracranial Internal Carotid Artery
ECVA	Extracranial Vertebral Artery
EDD	Estimated Date of Delivery
	Estimated Date of Delivery by Average Ultrasound Age
EDD by AUA	The estimated date of delivery calculated from the measurements performed during the exam.
EDD by LMP	Estimated Date of Delivery by Last Menstrual Period
	The due date calculated from the user-entered LMP.
EDV	End Diastolic Velocity
EF	Ejection Fraction
EF slope	E-F Slope

Abbreviation	Definition
	Estimated Fetal Weight
EFW	Calculated from the measurements performed during the exam. The measurements used to determine EFW are defined by the currently selected EFW calculation author.
Endo	Endocardial
Ері	Epicardial
EPSS	"E" Point Septal Separation
	Established Due Date
Estab. DD	A user-entered due date based on previous exam data or other available information. The LMP is derived from the Established Due Date and is listed in the patient report as LMPd.
ET	Elapsed Time
FH	Femoral Head
FHR	Fetal Heart Rate
FL	Femur Length
FM (Right and Left)	Foramen Magnum (same as SO)
FTA	Fetal Trunk Area
GA	Gestational Age
GA by LMP	Gestational Age by Last Menstrual Period
GA Dy LIMP	The fetal age calculated using the date of the Last Menstrual Period (LMP).
	Gestational Age by derived Last Menstrual Period
GA by LMPd	The fetal age calculated using the Last Menstrual Period (LMPd) derived from the Estab. DD.
Gate	Depth of Doppler Gate
GS	Gestational Sac
Gyn	Gynecology
НС	Head Circumference
HL	Humerus Length

Abbreviation	Definition
HR	Heart Rate
ICA	Internal Carotid Artery
IMT	Intima Media Thickness
IVRT	Iso Volumic Relaxation Time
IVS	Interventricular Septum
IVSd	Interventricular Septum Thickness, End Diastole
IVSFT	Interventricular Septum Fractional Thickening
IVSs	Interventricular Septum Thickness, End Systole
LA	Left Atrium
LA/Ao	Left Atrium/Aorta Ratio
LAT F	Lateral Far
LAT N	Lateral Near
Lat V	Lateral Ventricle
LMP	Last Menstrual Period
LIVIF	The first day of the last menstrual period. Used to calculate gestational age and EDD.
LMPd	derived Last Menstrual Period
	Calculated from the user-entered Estab. DD.
LV	Left Ventricular
LV Area	Left Ventricular Area
LV mass	Left Ventricular mass
LV Volume	Left Ventricular Volume
LVd	Left Ventricular diastolic
LVD	Left Ventricular Dimension
LVDd	Left Ventricular Dimension, End Diastole
LVDFS	Left Ventricular Dimension Fractional Shortening
LVDs	Left Ventricular Dimension, End Systole

Abbreviation	Definition
LVEDV	Left Ventricular End Diastolic Volume
LVESV	Left Ventricular End Systolic Volume
LVET	Left Ventricular Ejection Time
LVO	Left Ventricular Opacification
LVOT	Left Ventricular Outflow Tract
LVOT Area	Left Ventricular Outflow Tract Area
LVOT D	Left Ventricular Outflow Tract Diameter
LVOT VTI	Left Ventricular Outflow Tract Velocity Time Integral
LVPW	Left Ventricular Posterior Wall
LVPWd	Left Ventricular Posterior Wall Thickness, End Diastole
LVPWFT	Left Ventricular Posterior Wall Fractional Thickening
LVPWs	Left Ventricular Posterior Wall Thickness, End Systole
LVs	Left Ventricular systolic
MCA	Middle Cerebral Artery
MCCA	Mid Common Carotid Artery
MECA	Mid External Carotid Artery
MI	Mechanical Index
MICA	Mid Internal Carotid Artery
Mid	Middle
MM	M Mode
MR PISA	Mitral Regurgitation Proximal Iso Velocity Surface Area
MR/VTI	Mitral Regurgitation/Velocity Time Integral
Msk	Musculoskeletal
MV	Mitral Valve
MV Area	Mitral Valve Area

Abbreviation	Definition
MV Regurgitant Fraction	Mitral Valve Regurgitant Fraction
MV Regurgitant Volume	Mitral Valve Regurgitant Volume
MV/VTI	Mitral Valve/Velocity Time Integral
MVA	Mitral Valve Area
MV ERO	Mitral Valve Effective Regurgitant Orifice
MV PISA Area	Mitral Valve Proximal Iso Velocity Surface Area
MV Rate	Mitral Valve Rate
Neo	Neonatal
Nrv	Nerve
NST	Non-stress test
NTSC	National Television Standards Committee
ОВ	Obstetrical
OFD	Occipital Frontal Diameter
PAL	Phase Alternating Line
РСАр	Posterior Cerebral Artery Peak
PCCA	Proximal Common Carotid Artery
РСоА	Posterior Communicating Artery
PECA	Proximal External Carotid Artery
PGmax	Maximum Pressure Gradient
PGmean	Mean Pressure Gradient
PGr	Pressure Gradient
PHT	Pressure Half Time
PI	Pulsatility Index
PICA	Proximal Internal Carotid Artery

Abbreviation	Definition
PISA	Proximal Isovelocity Surface Area
Plaq	Plaque
POST F	Posterior Far
POST N	Posterior Near
PRF	Pulse Repetition Frequency
Prox	Proximal
PSV	Peak Systolic Velocity
PV	Pulmonic Valve
P. Vein	Pulmonary Vein
PW	Pulsed Wave Doppler
Qp/Qs	Pulmonary blood flow divided by systemic blood flow
RA	Right Atrial (pressure)
RI	Resistance Index
RVD	Right Ventricular Dimension
RVDd	Right Ventricular Diameter, Diastole
RVDs	Right Ventricular Diameter, Systole
RVOT D	Right Ventricular Outflow Tract Diameter
RVOT VTI	Right Ventricular Outflow Tract Velocity Time Integral
RVSP	Right Ventricular Systolic Pressure
RVW	Right Ventricular Free Wall
RVWd	Right Ventricular Free Wall, Diastole
RVWs	Right Ventricular Free Wall, Systole
S/D	Systolic/Diastolic Ratio
SFV	Superficial Femoral Vein
SI	Stroke Index

Abbreviation	Definition
Siphon	Siphon (internal carotid artery)
SM	Submandibular
SmP	Small Parts
SO	Suboccipital
Sup	Superficial
SV	Stroke Volume
TAM	Time Average Mean
ТАР	Time Average Peak
TCD	Trans-cerebellum Diameter (OB measurement) Transcranial Doppler (exam type)
TDI	Tissue Doppler Imaging
ТНІ	Tissue Harmonic Imaging
ТІ	Thermal Index
TICA	Terminal Internal Carotid Artery
TRmax	Tricuspid Regurgitation (peak velocity)
тт	Transtemporal
TTD	Transverse Trunk Diameter
TV	Tricuspid Valve
TVA	Tricuspid Valve Area
UA	Ultrasound Age
UA	Calculated on the mean measurements taken for a particular fetal biometry
Umb A	Umbilical Artery
VA	Vertebral Artery
Vert A	Vertebral Artery
Vas	Vascular
Ven	Venous

Abbreviation	Definition
VF	Volume Flow
Vmax	Peak Velocity
Vmean	Mean Velocity
Vol	Volume
VTI	Velocity Time Integral
YS	Yolk Sac

Chapter 11: IT network

Functions

This device can be connected to an IT network to perform the following functions.

- The examination data (still images, clips) acquired with this device can be stored in PACS (Picture Archiving and Communication System) by DICOM communication.
- This device can receive examination orders from HIS (Hospital Information System)/RIS (Radiology Information System) by DICOM communication and start them.
- The time of this device can be set correctly by checking the NTP server that is based on NTP (Network Time Protocol).

Network for connecting the device

To ensure safety, use an IT network that is isolated from the external environment by a firewall.

Specification for the connection

Hardware specification

- Specification: 100BASE-TX/10BASE-T
- Connector: RJ45
- Connection cable: UTP type, straight LAN cable, Category 5/5e (CAT 5/5E)

Software specification

- This device is connected to PACS and HIS/RIS by DICOM standard. Refer to the DICOM Conformance Statement of this device for details.
- This device is connected to NTP server by NTP (RFC 5905). The time acquisition from NTP server is done every time at startup of this device.

Security

- ▶ This device uses the following ports in the application level (the seventh layer of OSI model). All other ports are closed.
 - Port for DICOM communication
 - It is the port number specified in the system setting by user.
 - Port for the device maintenance
 - TCP/22222, TCP/50100 and TPC/55555. How to use these ports is undisclosed and inadvertent access from the outside is prevented by use of ID/Password/Special-protocol.

This device prevents users from loading software and executing it. Software that is not within the specification of this device, such as Web browser and e-mail is not installed in this device. The anti-virus software is not installed in this device.

Data flow

1 DICOM

HIS/RIS -----> FC1 -----> PACS Study order Study data (DICOM MWL) (DICOM Storage)

*Please refer to the DICOM Conformance Statement for FC1 for details.

```
2 NTP
```

Time inquiry ----->

FC1

NTP Server

<-----Time Response

Measures when failures occur in IT networks

Connection to an IT Network may become at times unreliable, and this may lead to failure to perform the functions described in section 21.1. As a result, the following hazardous situations may occur:

Failure of the IT- Network	Impact on the equipment	Hazardous Situation	Countermeasures of FC1 (for your reference)
IT-Network has become unstable.	Unable to transmit exam data to a PACS. Delay of transmission of exam data to a PACS.	Delay of diagnosis.	FC1 has internal memory and exam data is stored in it. After IT-Network has returned to stable, FC1 will start to transmit exam data automatically.
	Incorrect data to a PACS.		
IT-Network has	Unable to get order data from a HIS/RIS. Delay of getting order data from a HIS/RIS.	Delay of exam.	FC1 has capability of entering order data by itself.
become unstable.	Incorrect data from a HIS/RIS.	Incorrect exam.	FC1 uses TCP/IP and DICOM Protocol. Integrity of the data is ensured by them.
IT-Network has	Unable to get the time	Incorrect exam data	FC1 has capability of entering data and time by itself.
become unstable.	from an NTP server.	Incorrect time data.	FC1 always indicates the date and the time on the main screen.

Failure of the IT- Network	Impact on the equipment	Hazardous Situation	Countermeasures of FC1 (for your reference)
Firewall has broken down.	Attack via network. Infection by computer viruses.	Manipulation of exam data. Leak of exam data.	FC1 closes unnecessary network ports.
			FC1 protects network ports for device maintenance purpose by dedicated network protocol, ID and password.
			FC1 prevent a user from loading software and executing it.

Warnings and cautions for IT networks

WARNING in previously unidentified risks to patients, operators or third parties. Before connecting the equipment to an uncontrolled IT Network, make sure that all potential risks resulting from such connections, were identified and evaluate suitable countermeasures were put in place. IEC 80001-1:2010 provides guida addressing these risks.	l ed, and
When the setting of the IT network to which this device is connected has been changed, check that the change does not affect this device and take measur necessary. Changes to the IT network include: Changes in network configuration (IP address, router, etc.) 	
Connection of additional items	
WARNING Disconnection of items	
Update of equipment	
Upgrade of equipment	
Any changes to the IT network could introduce new risks requiring additionate evaluation to be performed.	al

FUJIFILM

P18536-07

