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Abstract
Most modern applications are empowered by online services, so application developers frequently implement
authentication and authorization. Major online providers, such as Facebook and Microsoft, provide SDKs for
incorporating authentication services. This paper considers whether those SDKs enable typical developers to
build secure apps. Our work focuses on systematically explicating implicit assumptions that are necessary for
secure use of an SDK. Understanding these assumptions depends critically on not just the SDK itself, but on
the underlying runtime systems. We present a systematic process for identifying critical implicit assumptions
by building semantic models that capture both the logic of the SDK and the essential aspects of underlying
systems. These semantic models provide the explicit basis for reasoning about the security of an SDK. We
use a formal analysis tool, along with the semantic models, to reason about all applications that can be built
using the SDK. In particular, we formally check whether the SDK, along with the explicitly captured
assumptions, is sufficient to imply the desired security properties. We applied our approach to three widely
used authentication/authorization SDKs. Our approach led to the discovery of several implicit assumptions in
each SDK, including issues deemed serious enough to receive Facebook bug bounties and change the OAuth
2.0 specification. We verified that many apps constructed with these SDKSs (indeed, the majority of apps in
our study) are vulnerable to serious exploits because of these implicit assumptions, and we built a prototype

testing tool that can detect several of the vulnerability patterns we identified.

1 Introduction

Modern applications commonly consist of a client pro-
gram and an online service that provides functionality
such as cloud storage, social networking, and geograph-
ic data. Accessing the service requires authentication of
users and authorization of resource requests. Tradi-
tionally, the authentication and authorization mechan-
isms were provided by operating systems and carefully
implemented in a few core apps such as SSH, remote
desktop, etc; with modern apps, however, many develo-
pers end up needing to implement such mechanisms. To
aid this, major identity providers have developed SDKs
that developers can use to integrate authentication and
authorization into their apps such as the three SDKs we
study in this work: the Facebook PHP SDK, the
Microsoft Live Connect SDK, and the Windows 8
Authentication Broker SDK. According to our sampling
of popular apps in Windows App Store, 52% of them
use these SDKs (see Appendix A).

Authentication/authorization SDKSs are becoming a crit-
ical foundation for apps. However, no previous study
has rigorously examined the security these SDKs pro-
vide to real-world apps. Typically, SDK providers sim-
ply release SDK code, publish documentation and ex-
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amples, and leave the rest to app developers. An im-
portant question remains: if developers use the SDKs in
reasonable ways, will the resulting applications be se-
cure? We show in this paper that the answer today is
“No”. The majority of apps built using the SDKs we
studied have serious security flaws. This is not due to
direct vulnerabilities in the SDK, but rather because
achieving desired security properties by using an SDK
depends on many implicit assumptions that are not
readily apparent to app developers. These assumptions
are not documented anywhere in the SDK or its develo-
per documentation. In several cases, even the SDK pro-
viders are unaware of the assumptions (see Section 5.2).

The goal of our work is to systematically identify the
assumptions needed to use an SDK to produce secure
applications. We emphasize that it is not meaningful to
verify an SDK by itself. Instead, our goal is to explicate
the assumptions upon which secure use of the SDK
depends. We do this by devising precise definitions of
desired security properties, constructing an explicit mo-
del of the SDK and the complex services with which it
interacts, and systematically exploring the space of app-
lications that can be built using the SDK. Our approach
involves a combination of manual effort and automated
formal verification. Any counterexample found by the



verification tool indicates either (1) that our system
models are not accurate, in which case we revisit the
real systems to correct the model; or (2) that our models
are correct, but additional assumptions need to be
captured in the model and followed by application
developers. The explication process is an iteration of
the above steps so that we document, examine and re-
fine our understanding of the underlying systems for an
SDK. At the end, we get a set of formally captured as-
sumptions and a semantic model that allow us to make
meaningful assurances about the SDK: an application
constructed using the SDK following the documented
assumptions satisfies desired security properties.

We argue that explication should be part of the engin-
eering process of developing an SDK. Identified SDK
assumptions can either be removed by modifying the
SDK, or be documented precisely. In addition, in some
cases it is feasible to develop automatic tests that detect
common ways applications violate the assumptions (we
provide an example in Section 6.2).

Results. The work presented in this paper reflects a 12
person-month effort (six months of two lead authors) in
systematically explicating the three target SDKs. The
resulting models (https://github.com/sdk-security) are
publicly released so that the community can review and
enhance them. As a result of the explication process, we
uncovered many SDK assumptions (summarized in
Section 5). Some assumptions were especially serious
because they can be violated when an app developer
has a reasonable alternative interpretation of the develo-
per’s guide (dev guide) or when an app runs on certain
realistic platforms. These reports were treated very ser-
iously by the SDK providers: five cases that we re-
ported to Facebook have been fixed (three of which
were rewarded by Facebook bounties [14]). An issue
uncovered in the Live Connect SDK resulted in
Microsoft improving its dev guide. Our report to the
OAuth Working Group convinced the group to add a
subsection to the OAuth 2.0 draft.

With all the SDK assumptions specified, we were able
to successfully verify all the models with the uncovered
assumptions (Section 4). Uncovering these SDK as-
sumptions also enables effective app testing since a
violation of an assumption often leads to a successful
exploit. Our study shows that many released apps are
indeed vulnerable due to violations of these assump-
tions. We tested three sets of apps, including client apps
in Windows 8 App Store and service apps using Face-
book sign-on, and found that 78%, 86% and 67% of
these apps suffer from vulnerabilities related to the
implicit assumptions we uncovered (Section 6.2).

2 llustrative Example

To motivate our work, we describe a simple example in
the context of the Live Connect SDK. It illustrates what
can go wrong when SDKs are provided without thor-
oughly specifying their underlying security assumptions.

2.1 Intended Use

Suppose we want to develop an app using Live ID as
the Identity Provider (IdP). We start with the dev guide
for Live Connect [25]. The hyperlinks in the start page
lead us to a page of detailed instructions about “signing
users in” [26] which provides code shippets in
Javascript, C#, Objective-C and Java showing how to
use Live Connect SDK to sign users into a client app.
Ignoring the specifics in these different languages, all
the code snippets essentially cover the authentication
logic shown in Figure 1.

In the figure, wL stands for “Windows Live”. A
developer first needs to call WL.login. The call takes an
argument value, "wl.basic", indicating that the app will
need to read the user’s basic information after WL.login
returns an access token in step (2). The access token is a
concept in the OAuth protocol [22]. It is an opaque
string dynamically created by the Live ID server for
each call to WL.login. Once the app gets the access to-
ken, it calls the REST API me to get the user’s basic
info using this HTTP request:

https://apis.live.net/v5.0/me?access_token=ACCESS_TOKEN

The Live ID service responds with the user’s basic in-
formation in message (4), such as her full name and
user ID. This completes the process, authenticating the
user with the provided information.

2.2 Hazardous Use

The developer guide as depicted in Figure 1 is valid for
a client-only app, but it does not make it clear that the
same logic must not be used with an app that also incor-
porates an online service. Without stating this explicitly,
developers may be inclined to use the SDK insecurely
as shown in Figure 2. The interactions with the Live ID

(1) WL.login(applID, "wl.basic")

Live ID
Service

(2) access_token

(3) me(access_token) p /

<

4 .
(4) user info >

Figure 1. Authentication Logic for “Signing Users In”.
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Figure 2. Hazardous Use.

service are identical in the two figures. The only differ-
ence is that in the second scenario, the access token is
sent to the service app (i.e., the server side of the app)
in message (2+) and it is the service app that calls me to
authenticate the user.

This can lead to a serious vulnerability that allows any

app on the device to sign into the service app as the user.

The rogue app sends a request to the Live ID service for
an access token to view public information for the
victim, such as a profile record on Facebook. Live ID
responds with an access token. The problem is this
token, intended for authorizing access to the public
resource, is mistakenly used by the service app to auth-
enticate its owner as the victim. This allows the rogue
app to get into the victim’s account on the service app.
This mistake is fairly common in real-world apps. Al-
though we first observed it analyzing the Live Connect
SDK, we later found that many apps using the Face-
book SDK have the same issue. As described in Section
6.2, we tested 27 apps in the Windows 8 App Store and

found that 21 of them are vulnerable due to this mistake.

2.3 Resolution

From one perspective, this is simply a matter of develo-
pers writing buggy apps, and the blame for the security
vulnerability rests with the app developers. We argue,
though, that the purpose of the SDK is to enable typical
developers to produce apps that use authentication and
authorization in a way that provides desired security
properties, and the prevalence of buggy apps created
using this SDK indicates a failure of the larger engin-
eering process. The developer exercised reasonable pru-
dence by using the access token to query the ID service
for user information and followed exactly the process
described in the SDK’s documentation (depicted in
Figure 1). The problem is lack of a deeper understand-
ing of the relationship between authentication and
authorization, and the role of the access token (i.e., why
is it safe to use the access token as shown in Figure 1
but not as used in Figure 2). Correct use depends on
subtle understanding of what kind of evidence each
message represents and whether or not the whole mes-
sage sequence establishes an effective proof for a
security decision. It is unrealistic to expect most

developers to understand these subtleties, especially
without clear guidance from the SDK.

We contacted the developers of some of the vulnerable
apps. A few apps have been fixed in response to our re-
ports. We also notified the OAuth Working Group (WG)
in June 2012 about these vulnerable apps.! Dick Hardt,
editor of OAuth 2.0 specification (RFC 6749) [22],
emailed us requesting language to be included in the
specification dealing with this issue. We proposed the
initial text and discussed with WG members. This
resulted in Section 10.16 “Misuse of Access Token to
Impersonate Resource Owner in Implicit Flow” being
added to the OAuth specification.

The key point this example illustrates is that security of
apps constructed with an SDK depends on an under-
standing of the external services the app depends on, as
well as subtleties in the use of tokens and assumptions
about evidence used in authentication and authorization
decisions. We believe the prevalence of vulnerable apps
constructed using current SDKSs is compelling evidence
that a better engineering process is needed, rather than
just passing the blame to overburdened developers. In
particular, we advocate for a process that explicates
SDKSs by systematically identifying the underlying as-
sumptions upon which secure usage depends.

3 Explicating SDKs

In order to explicate the SDKSs, we need to clearly de-
fine the desired security properties. This section intro-
duces our target scenario and threat model, and then de-
fines the desired security properties and overviews our
process for uncovering implicit SDK assumptions.

3.1 Scenario

A typical question about security is whether some pro-
perty holds for a system, even in the presence of an ad-
versary interacting with the system in an unconstrained
manner. We can view this as a software testing problem:
the system is a concrete program, while the adversary is
an abstract one (i.e., a test harness in the terminology of
software testing) that explores all interaction sequences
with the concrete system. In our scenario, however, the
target system is not concrete. We wish to reason about
all applications that can be built with the SDK follow-

1 Subsequently, we learned that John Bradley, a WG member,
had posted a blog post in January 2012 about a similar issue
[10]. The post considers the problem a vulnerability of the
protocol, while we view it as a consequence of an unclear
assumption about SDK usage because there are correct ways
to use OAuth for client+service authentication.



ing documented guidelines. Hence, we need to consider
both the client app and service as abstract modules.

Figure 3 illustrates the modules in our setup. There are
three main components: a client device, the application
server foo.com, and the identity provider (IdP). The
bottom layer of the client device is the client runtime,
such as the HTML engine or the HTTP layer. The mid-
dle layer is the client SDK. The client app, FooAppc, is
created by the developer to interact with the application
server. We assume FooAppc always uses the client
SDK for authentication and authorization. Like the cli-
ent, the application server has three layers: the service
runtime represents the server platform, such as PHP or
ASP.NET; the server side of the SDK we study; and the
application server code. We assume that FooApps does
not directly interact with the service runtime, but only
uses it via the service SDK. Note that both FooAppc
and FooApps identify themselves to IdP as “FooApp”
with an app ID pre-assigned by IdP. The IdP cannot tell
if the caller is a client or the application server.

The modules with brick pattern backgrounds are con-
crete modules with concrete implementations. They can
be divided into two layers. The SDK layer consists of
the Client SDK and the Service SDK. The underlying
system layer consists of the client runtime, the service
runtime, and the IdP. These are complex modules that
one typically does not understand in detail in the begin-
ning of the study. Developing a semantic model for
these components involves substantial systems investi-
gation effort (as described in Section 4.3) because the
seemingly clear SDK logic actually depends on a much
more mysterious (and often incompletely documented)
underlying layer. We consider the formal semantic
models resulting from this study as one of the main
contributions of this work.

The client and server application modules are abstract
modules. They do not have concrete implementations:
our goal is to reason about all possible apps built using
the SDK. Nevertheless, the app modules do have con-
straints on their behaviors: FooAppc and FooApps are
only allowed to use the target SDKs for authentication

Client Device Server (foo.com)

[ Foorpp, |
Client SDK <€ >| Service SDK |

| Service runtime |
L) |Identity Provider (IdP)|J

Figure 3. Modules in Client+Service App.

and authorization, and must not violate rules document-
ed in the SDK developer guides.

3.2 Threat Model

We want to reason about security properties of all apps
that could reasonably be constructed with the SDK. We
assume a malicious application, MalAppc, may be in-
stalled on the user’s device. MalAppc’s behavior is not
constrained by the client SDK, but it is limited to
functionality provided by the client runtime (e.g., it
cannot access cookies of other domains or handcraft
HTTP requests). The attacker also controls an uncon-
strained external machine, which we call “Mallory”. As
shown in Figure 4, we can think of Mallory as a
combination of a client and server that can freely com-
municate with the client, application server, and IdP.
We model MalAppc and Mallory as abstract modules.

3.3 Security Properties

Our analysis depends on a formal definition of the se-
curity properties the SDK is intended to provide.

Granularity: session. Informally, people often say
things like “a client is authenticated as Alice”, or “a ser-
ver is authorized on Alice’s behalf”. However, it is im-
portant to point out explicitly that it is not the client or
the server, but the session between them, that is authen-
ticated or authorized. More specifically, the end result
of an authentication/authorization protocol between a
client and a server is to know whom the session repre-
sents and what the session is allowed to do. It should
not affect the identity or permission of any other ses-
sion. Therefore, we always keep the session (identified
by its session ID) explicit in our modeling.

Basis of security: secrets and signed data. All mech-
anisms we study share a commonality: they use secrets
or data signed by the identity provider as unforgeable
evidence to differentiate some entities from others.
These secrets and signed data are either preconfigured
or generated at runtime at the underlying system layer.

V ->Ig Ma;l\ory I<- . V
F

FooApp. || @

>

Client SDK| 3

. | Service runtime |
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% |Identity Provider (IdP)|<J

Figure 4. Threat Model.
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We distinguish five types of secrets in the studied
SDKs: access tokens, Codes?, refresh tokens, app se-
crets and session IDs. The first four are protocol data in
OAuth, which we will explain in later examples. The
only identity-provider-signed data we have seen are
signed requests, defined by Facebook, and authentica-
tion tokens, defined by Live ID. They are signed data
structures containing some or all of the following data:
access token, Code, app ID and user ID.

The desired security properties, therefore, need to con-
sider what data the adversary may have obtained. This
is made explicit by adding a knowledge pool to the mo-
del. All secrets and signed data received by the attacker
are recorded in the knowledge pool, and can be used by
the attacker in all subsequent actions.

Desired security properties. We define the security
goal of the authentication/authorization SDKs based on
the protections they provide to apps. Apps written using
the SDK following explicit programming guidelines
should be protected from the following violations:

(1) Authentication violation. If some knowledge, «, is
about to be added to the pool, and k is sufficient to con-
vince the authentication logic of FooApps that the
knowledge holder is Alice, it implies that Mallory (and
MalAppc, since they share the knowledge pool) can au-
thenticate as Alice, which is an authentication violation.

(2) Authorization violation. Depending on the type of k,
there are two kinds of authorization violations. If k is
Alice’s access token, Alice’s Code, or the session 1D
for the session between FooAppc and FooApps, it im-
plies that Mallory has obtained the permission to do
whatever the session can do. Another authorization vio-
lation is when k is the app secret of FooApp. This
would allow Mallory to do whatever FooApps can do
on the identity provider.

(3) Association violation. The ultimate goal of authenti-
cation/authorization is not only to know who the user is
or what she can do, but to correctly bind three pieces of
data: the user’s identity (i.e., the authentication result),
the user’s permissions (i.e., the authorization result),

and the session’s identity (usually known as session ID).

This association is actually the end result of authentica-
tion/authorization and is what the application logic de-
pends on after the process is accomplished. Mistakes in
the association (such as binding Mallory’s identity to
Alice’s permission, or binding Alice’s identity to Mal-
lory’s session) are security violations.

2 To avoid confusion with other meanings of “code”, such as
“source code”, we always capitalize the first letter to refer to
the “OAuth Code” in this paper.

3.4 The Process of Explicating SDKs

Figure 5 rearranges the modules (from Figure 4) and
combines the concrete modules one each layer into one.
The dashed line between abstract and concrete modules
represents the interface between the test harness and the
target system. The essential question is: what assump-
tions are necessary for FooApp to achieve the desired
security properties?

FooApp, ||FooApps|| MalApp,

R
---------------------------------
| SDK Layer Pool

-
L
=

(o)}
0]
~+
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Underlying System-Layer |

Figure 5. Modules Rearranged for Explicating.

Explicating SDKSs is a systematic investigation effort to
explicitly document our knowledge about these mod-
ules and examine the knowledge against defined securi-
ty goals. As shown in Figure 6, it is an iterative pro-
cess, in which we repeatedly refine our model and for-
mally check if it is sufficient to establish the security
properties or additional assumptions are needed. A
failed check (i.e., a counterexample in the model) indi-
cates either that our understanding of the actual systems
needs to be revisited or that additional assumptions are
needed to ensure the desired security properties.

The outcome of the process is the assumptions we ex-
plicitly added to the model. In Section 5.2, we show
that many of the uncovered assumptions can indeed be
violated in realistic situations.

Obtain new insights about
% components and incorporate
them into the model

Specify desired
security properties

pass
............................... Check model
output -
Documented fail

assumptions

<::‘ Refine model or add assumptions

Figure 6. Engineering Process for Explicating SDKSs.
4 Semantic Modeling

This section gives an overview of the semantic model-
ing effort for the three SDKs. The resulting models are
available at https.//github.com/sdk-security/. They reflect
six months of effort by our two lead authors (i.e., 12
person-months) in creating and refining the system
models.



4.1 Modeling language

To specify the semantics of the modules, we want a lan-
guage that has a suitable formal analysis technology for
verification. In the first period of our investigation, we
used Corral [24], a property checking tool that can per-
form bounded verification on a C program with embed-
ded assertions. Corral explores all possible execution
paths within a bound to check if the assertions can be
violated. Later, we re-implemented all the models in
Boogie [9], a language for describing proof obligations
that can then be tested using an SMT solver, which
allowed us to fully prove the desired properties. This
provides a higher assurance than the bounded verifica-
tion done by Corral, but the basic ideas and approach
are the same for both checking strategies. For con-
creteness, this section describes the Boogie version to
explain our modeling.

The key Boogie language features needed to understand
this paper are:

e The * symbol represents a non-deterministic Boolean
value.

e HAVOC v is a statement that assigns a non-deter-
ministic value to variable v.

e ASSERT(p) specifies an assertion that whenever the
program gets to this line, p holds.

e ASSUME(p) instructs Boogie to assume that p holds
whenever the program gets to this line.

e INVARIANT(p) specifies a loop invariant. Boogie
checks if p is satisfied at the entry of the loop, and
inductively prove p’s validity after each iteration.

If Boogie fails to prove an assertion or an invariant, it
reports a counter-example. This leads us to refine the
model, adding assumptions when necessary.

4.2 Modeling abstract modules

The test harness interacts with the concrete modules in
a non-deterministic manner. It implements the abstract
modules representing both the unknown (benign) appli-
cation and the attacker’s resources. The test harness
consists of a loop with the loop count depth. Each itera-
tion calls the function TestHarnessMakescCall. This func-
tion is implemented as a non-deterministic switch (i.e.,
a statement of “switch(*){...}”) that chooses to call
FooApp.Runs, MalAppcMakesCall, or MalloryMakesCall.
Eventually, through a series of non-deterministic
choices as shown in Figure 7, one of the functions in a
concrete module will be called.

Using the knowledge pool. As mentioned in Section
3.3, we use a knowledge pool to model the information

obtained by an attacker. Different types of knowledge,
such as access tokens, Codes, and session IDs, are ex-
plicitly differentiated. We do not consider attacks that
involve providing arguments of the incorrect type, e.g.,
giving a session ID to a function expecting an access to-
ken. There is an Addknowledge function for each know-
ledge type. After each call to MalAppcMakesCall and
MalloryMakesCall, the function AddKnowledge_Type is
called to add any acquired knowledge to the pool. There
is a corresponding DrawKnowledge_Type function for
non-deterministically drawing knowledge of a particu-
lar type from the knowledge pool. It is implemented us-
ing HAVOC i, where i is the array index of the piece of
knowledge non-deterministically chosen.

4.3 Modeling concrete modules

Concrete modules do not have any non-determinism.
The key aspects of building semantic models for the
concrete modules are summarized below.

Data types. The basic data types in the models are int
and several types for enumerables. We also define
structs and arrays over the basic types. In the actual sys-
tems, the authentication logic is constructed using string
operations such as concatenation, tokenization, equality
comparison, and name/value pair parsing. We found
that most string values are essentially enumerable, ex-
cept those of domain names and user names, which we
canonicalize as Alice, Mallory, foo.com, mallory.com,
etc. Thus, the basic types, structs, and arrays are
sufficient to model data used in the concrete modules.

SDKs. The sizes of these SDKs are moderate (all under
2000 lines) and their source code is public. The SDKs
we modeled were implemented in HTML, JavaScript
and PHP, so we needed to first translate the SDKs func-
tion-by-function into Boogie. We do this translation
manually, but it is not hard to imagine tools that could
mostly automate it. Table 1 shows two functions in the
Facebook PHP SDK and our corresponding Boogie
procedures. For getUserFromAvailableData, the changes
are essentially line-by-line translations. For getLogout-
Url, the PHP code performs a string operation and re-

P
depth=0 TestHarnessMakesCall |—>| deptﬁ

A
| FooApp_Runs | | MalApp MakesCall | | MalloryMakesCall |
N ¥ ¥ v ¥
CallClient CallFoo MalApp | | MalApp Calls || MalloryCalls
SDK AppcAPI | [callsidP| [ ClientRuntime IdP
JEES S ’.;’.,:."; ______ '.".f’.'. _______ g’;’x _—————— _..';'E}, -
A v A Y A K ¥ A v e A v e

[ Concrete modules |

Figure 7. Test Harness.
(Dotted lines represent non-deterministic choices.)



protected function getUserFromAvailableData() {
if (Ssigned_request) {

Sthis->setPersistentData('user_id',
Ssigned_request['user_id']);
return O;

Suser = Sthis->getPersistentData('user_id', Sdefault = 0);

Spersist_token =
Sthis->getPersistentData('access_token');

Saccess_token = Sthis->getAccessToken();

if (Saccess_token &&

I(Suser && Spersist_token == Saccess_token)) {
Suser = Sthis->getUserFromAccessToken();
if (Suser)

Sthis->setPersistentData('user_id', Suser);
else Sthis->clearAllPersistentData();
}
return Suser;

}

public function getLogoutUrl() {
return Sthis->getUrl(
'www', 'logout.php’,
array_merge(array(
'next' => Sthis->getCurrentUrl(),
'access_token' => Sthis->getAccessToken(), ), ...));

procedure {:inline 1} getUserFromAvailableData() returns (user:User) {
if (IdP_Signed_Request_Records__user_ID[signed_request] != _nobody) {

user := |dP_Signed_Request_Records__user_ID[signed_request];
call setPersistentData__user_id(user);
return;
}
call user := getPersistentData__user_id();
call persisted_access_token := getPersistentData__access_token();
call access_token := getAccessToken();
if (access_token >=0 &&
I(user != _nobody && persisted_access_token == access_token)) {
call user := getUserFromAccessToken(access_token);
if (user = _nobody) {
call setPersistentData__user_id(user);
}else {
call clearAllPersistentData();
}
}
return;
}
procedure {:inline 1} getLogoutUrl()
returns (APL_id: API_ID, next__domain: Web_Domain, next__API: API_ID,
access_token: int) {
API_id := API_id_FBConnectServer_login_php;
call access_token := getAccessToken();
call next__domain, next__API := getCurrentUrl();

}

Table 1. Example of a PHP function and its Boogie model.

turns a string. Our Boogie translation in this case is not

permissions_request(), RST2_srf() and  oauth20_

obviously line-by-line. For example, our procedure re-
turns a four-element vector instead of a string. The PHP
function calls getUrl and array_merge, which concaten-
ate substrings, therefore, are implicitly modeled by the
four-element return vector.

Underlying system layer. Unlike the SDK, which is
simple enough to model completely, the identity provi-
der, client runtime, and server runtime are very com-
plex and may not even have source code available.
Completely modeling every detail of these systems is
infeasible, but our analysis depends on developing suit-
able models of them. By studying the target SDKs, we
identified three aspects of these systems that need to be
carefully understood to perform verification. These as-
pects are the basis for the security goals the SDKs are
designed to achieve:

(1) The identity provider’s behaviors according to diff-
erent input arguments and various app settings in its
web portal. Each identity provider has a web page for
app developers to enter a number of app settings that
the identity provider needs to know, such as app ID,
app secret, service website domain, and return URL.
Many of these settings are critical for the identity
provider’s decision-making. Further, different inputs to
the provided APIs cause different responses. Because
we do not have the source code for the identity provi-
ders, we tested these behaviors by constructing different
requests and app settings. For example, in the models
we’ve built, the identity provider APIs dialog_

authorize_srf() ® involved 11, 8 and 6 if-statements
respectively, to describe different behaviors we observ-
ed in testing.

(2) Data passing on the client runtime. As with the
identity providers, we do not have access to source code
to understand detailed behaviors of the client runtime.
Our models were based on observations made during
testing. We focused on the client’s decision-making
about passing data from one server to another (by redir-
ection), delivering data to FooAppc or MalAppc, and
attaching cookies to outgoing requests. These decisions
are important for security. We maintain a cookie struc-
ture for each client app, i.e., FOoAppc or MalAppc. The
cookie structure contains a session ID field and some
optional fields specific to the SDK, such as
signed_request and authentication_token.

(3) Sessions, requests, and cookies on the service run-
time. In our model, the service runtime is a layer that
defines data structures for sessions, requests and cook-
ies for the service SDK and FooApps. (Note that al-
though cookies are in the headers of requests, we separ-
ate them to flatten the data structure.) The cookie struc-
ture is the same as previously described. The request
structure is defined according to the SDK’s specifica-

3 The APIs are accessed as https://www.facebook.com/
dialog/permissions.request, https://login.live.com/RST2.srf,
and https://login.live.com/oauth20_authorize.srf



tion. For example, requests for the Facebook PHP SDK
use a structure containing a Code, a state and an option-
al signed_request. The session structure contains a ses-
sion ID and a collection of session variables (keys) de-
fined by the SDK.

4.4 Security assertions

We use ASSERT statements to document and test the de-
sired security properties, covering each of the security
violations described in Section 3.3.

Authentication violation. An authentication violation
occurs when an attacker acquires some knowledge that
could be used to convince FooApps that the knowledge
holder is Alice. A simple example is the case we
described in Section 2.2, in which the knowledge is an
access token. In addition to access tokens, we also
consider ldP-signed data such as Facebook’s signed
messages or Live 1D’s authentication tokens. To detect
these violations, when a Facebook Signed Request k is
added to the knowledge pool, we assert that

k.user_ID != _alice && k.app_ID != _foo_app_ID &&
TokenRecordsOnldP[k.token].user_ID !=_alice

where TokenRecordsOnldP represents IdP’s database
storing the records of access tokens.*

Authorization violation. To detect authorization viola-
tions, we add ASSERT statements inside each AddKnow-
ledge_Type function. For example, the assertion in
function AddKnowledge_Code is:

ASSERT(!(c.user_ID == _alice && c.app_ID == _foo_app_ID))

This checks that the Code added to the knowledge pool
is not associated with Alice on FooApp. Similar asser-
tions are added to the Addknowledge functions for re-
fresh tokens and session IDs. The app secret is different
from the above knowledge types, because it is tied to
the app not the user. When k is an app secret, we assert
that k I=_foo_app_secret.

Association violation. At the return point of every web
API on FooAppS, we need to ensure the correct associ-
ation of the user ID, the permission (represented by an
access token or Code), and the session ID. For example,
for Facebook PHP SDK, the assertion is the following.
It This ensures that the three session variables of the
session identified by cookie.sessionID all involve the
same user. Concrete cases are given in Section 5.2.

% To improve presentation readability, the syntax of the above
predicate is slightly changed from the syntax allowed by

Boogie; see https://github.com/sdk-security/ for the exact syntax.

Sessions[cookie.sessionlID].user_ID ==
CodeRecordsOnldP[ Sessions]
cookie.sessionlD].code].user_ID
&& Sessions[cookie.sessionID].user_ID ==
TokenRecordsOnldP[Sessions[
cookie.sessionlD].token].user_ID

5 Results

We applied our approach to explicate the Facebook
PHP SDK, Live Connect SDK and Windows 8 Authen-
tication Broker. The Facebook PHP SDK is the only
server-side SDK provided on Facebook’s developers’
website and is currently among the most widely used
authentication/authorization SDKs. Facebook also has
SDKs for Android and iOS apps, which have many
concepts similar to the PHP SDK, but we have not stud-
ied them in detail. The Live Connect SDK is provided
by Microsoft for developing metro apps that use Live
ID as the identity provider. The Windows 8 Authentica-
tion Broker is for metro apps to use an OAuth-based
(not only Live ID) identity provider, such as Facebook
or Twitter.

5.1 Assumptions Explicated

The models resulting from our study formally capture
what we learned about the SDKs and the systems. Our
assumptions are specified in two ways: (1) all the
ASSUME statements that we added; (2) when we need to
assume particular program behaviors, such as a function
call must always precede another, we model the beha-
viors accordingly, and add comment lines to state that
the modeled behaviors are assumptions, rather than
concrete facts. All the assumptions are added in order
to satisfy the assertions that described in Section 4.4.
The assertions are fairly uniform — they are all about
sensitive data added to the knowledge pool and binding
errors in associating sessions, users and permissions.

Verification. After all the assumptions were added, the
models were automatically verified by Corral with the
bound ° set to 5, meaning that in the test harness (Figure
7), the counter of the main loop (variable depth) does
not exceed 5. Such a depth gives a reasonable confi-
dence that the security properties are achieved by the
models and the added assumptions: the properties could
only be violated by attacks consisting of six or more
steps. Running on a Windows server with two 2.67GHz
processors and 32GB RAM, it took 11.0 hours to check
the Facebook PHP SDK, 26.3 hours to check Live Con-
nect SDK and 15.1 hours to check the Windows 8 Au-
thentication Broker.

5> Corral is a fully automatic tool for exploring code paths
symbolically. The full automation, however, comes with the
limitation that it only performs a bounded search.



Namet Assumption® consequence of violation exploit opportunit vendor
(SDK) P q P pp y response
In FooAppcMakesAcCall, we The ASSERT in T.a’ble 1 V.V'” When the SDK is used in Counter-
Al . . be false. Mallory’s session L measure on
assume FooAppC.cookie.sessionlD . . . S, subdomaining situations, e.g., .
(FB) | liceSessi is associated with Alice’s cloud domains service
== _alicesession. user ID. platform
A2 For any PHP page, if getUser is Alice’s user ID will be When FooApps contains a PHP
(FB) | called, then getAccessToken must associated with Mallory’s page that directly returns the SDK code fix
be called subsequently. access token. user 1D
Bgfore getlogoutUrl returns to App access token is added When a PHP page does not
A3 client, we assume - .
to the knowledge pool have the second code snippet SDK code fix
(FB) logoutURL.params.access_token (owned by the adversary) shown in the dev guide
I= getApplicationAccessToken(). y Y)- 9
In saveRefreshToken on FOOApPs, Alice’s e fresh t_oken will When the term “user id on the .
A4 be associated with B S Dev guide
we assume \ . site” in the dev guide is inter- o~
(LC) A . Mallory’s session on s revision
user_id !=refresh_token.user_id. preted as the user’s Live ID
FooApps.
In .,
(VAV,SA) callAuthenticateAsyncFromMalApp, é(l)'gs :oicgg(s)i\tsg?g or When a client allows automatic | See Section
we assume (app_id == _MalAppID obtained by MalAppc. login or one-click login 5.2.3
| | user ==_Mallory).
A6 We assume FooAppC always logs | Alice’s session will be When request forgery Notifyin
(FB) | inas Alice, i.e., the firstargument | associated with Mallory’s protection for app logon is g
. e Ao oo - - developers
of dialog_oauth is “_Alice”. user 1D and access token. missing or ineffective

Table 2. Critical assumptions uncovered in our study.
2 FB stands for Facebook PHP SDK, LC for Live Connect and WA for Windows Auth Broker
b Boogie syntax does not allow the dot operator to refer to a child element. For simplicity of presentation, we use it in this column.

The verification being bounded is a limitation of the
models built for Corral, so we subsequently re-imple-
mented all three models in Boogie language [9].
Verification of Boogie models is not automatic. It re-
quires human effort to specify preconditions and post-
conditions for procedures, as well as loop invariants
(i.e., the invariant clauses). The Boogie verifier checks
that (1) every precondition is satisfied by the caller; (2)
if all preconditions of the procedure are satisfied, then
all the postconditions will be satisfied when the proce-
dure returns; (3) every loop invariant holds initially,
and if it holds before an iteration then it will still hold
after the iteration. By induction, the verified properties
hold for an infinite number of iterations. Rewriting the
three models in Boogie took 14 person-days of effort,
including a significant portion on specifying
appropriate loop invariants. The Boogie modeling did
not find any serious case missed in the Corral modeling,
but provides a higher level of confidence.

Examining the assumptions in the real world. We
manually examined each assumption added to assess
whether it could be violated in realistic exploits. This
effort requires thinking about how apps may be
deployed and executed in real-world situations. Table 2
summarizes the assumptions uncovered by our study
that appear to be most critical. These assumptions can
be violated in the real world, and the violations result in
security compromises. Based on our experience in
communicating with SDK providers, finding realistic
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violating conditions is a crucial step to convincing them
to treat the cases with high priority. This step requires
extensive knowledge about systems, and does not
appear to be easily automated. We describe these
assumptions in more detail in Section 5.2. Table 3 lists
some assumptions uncovered that, if violated, would
also lead to security compromises. But, unlike the as-
sumptions in Table 2, we have not found compelling
realistic exploits that violate these assumptions. A few
additional assumptions, listed in Appendix B, are
needed to complete the verification. They correspond to
some simplifications we made to the models. It is un-
clear if their violations lead to security compromises,
but we make it explicit that we have not considered the
situations violating these assumptions.

5.2 Confirmed Exploitable Assumptions

This subsection explains each of the critical assump-
tions in Table 2. These results show concretely how the
SDK’s security assurance depends on actual system
behaviors and app implementations, illustrating the im-
portance of explicating the underlying assumptions up-
on which secure use of the SDK relies.

5.2.1 Facebook SDK

Assumptions Al, A2, A3, and A6 concern the Face-
book PHP SDK.



name assumption consequence of violation proposed fix
B1 Result of getAccessToken returned to clientis | App access token is added to the Develop checker to examine the
(FB) | not equal to getApplicationAccessToken() knowledge pool. traffic from FooApps
B2 In dialog_oauth, we assume Alice’s access token or Code for Devfl(_)p checke_r :[,0 examine 'f.
- ) ) - - the “Site Domain” app setting is
(FB) | FooApp.site_domain != Mallory_domain FooApp is obtained by Mallory.
properly set
B3 Before FooAppc sends a (non-NULL) request, A!lce S sessmzn will be associated Enhance dev guide to require a
we assume with Mallory’s user 1D and access -
(FB) ) . runtime check on FooAppc
request.signed_request.userld == _Alice token.
Alice’s authentication token for Develop checker to examine if
B4 In HandleTokenResponse, we assume | il M . .
(LC) | auth_token.app_ID == foo_app_ID Ma App will be used by Ma ory Fhe S|gr_1ature in the auth_token
- - - = to log into FooApps as Alice is verified.
In constructRPCookiefromMallory, we Alice’s ID associate with . .
B5 . , - Enhance dev guide to require a
assume (RP_Cookie.access_token.user_ID == Mallory’s access token, or vice .
(LC) ' o runtime check on FooApps
RP_Cookie.authentication_token.user_ID) versa

Table 3. Assumptions uncovered that would lead to security vulnerabilities if violated but no realistic exploits known.

Assumption Al. This assumption states that the cookie
associated with Alice’s client must match Alice’s ses-
sion ID. Figure 8 is a screenshot of the usage instruc-
tions given in the readme file in the Facebook PHP
SDK [17]. It seems straightforward to understand: the
first code snippet calls getUser to get the logged-in
user’s ID (it returns null if the user is not logged in).
The second snippet demonstrates how to make an API
call, such as me. The third snippet toggles between
login and logout, so that a logged-in user will get a
logoutURL and a logged-out user will get a loginURL in
the response.

The SDK’s implementation for the getUser method is
very simple. It calls the getUserFromAvailableData

Usage

The examples are a good place to start. The
minimal you'll need to have is:

require 'facebook-php-sdk/src/facebock.php”;
$facebook = new Facebook(array(
"appId® => "YOUR APP ID’.

"secret” => "YOUR APP SECRET",

/7 Get User ID
fuser $facebook->getUser();

To make API calls:

if ($user) {

try {

/{ Proceed knowing you have a logged in
user who's authenticated.

$user_profile $facebook->api( /me’);

} catch (FacebookfApiException $e) {
error_log(%e);
fuser null;

3
¥

Login or logout url will be needed depending on
current user state.

if ($user) {
$logoutUrl = $facebook-»>getlLogoutUrl();
} else {
$loginUrl
¥

$facebook-»getloginUrl();

Figure 8. Facebook PHP SDK usage instructions.
(Screenshot from https://github.com/facebook/facebook-php-
sdk/blob/master/readme.md)
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function shown in Table 1. There are two statements
(italicized in Table 1) calling setPersistantData, which
is to set a PHP session variable denoted as
_SESSION['user_id']. Setting _SESSION['user_id'] is a
binding operation because it associates the user’s iden-
tity with the session, which may affect the predicate
that we define against association violations — speci-
fically, if Alice’s user ID is assigned to the
_SESSION['user_id'] of Mallory’s session, it would allow
Mallory to act on FooApps as Alice. Because the ses-
sion ID is a cookie in the HTTP request, the assertion
must depend on how a client runtime handles cookies.

Violating the assumption using subdomaining.
Normally, because of the same-origin-policy of the
client, cookies attached to one domain are not attached
to another. However, the policy becomes interesting
when we consider a cloud-hosting scenario. In fact,
Facebook’s developer portal makes it very easy to
deploy the application server on Heroku, a cloud plat-
form-as-a-service. Each service app runs in a
subdomain under herokuapp.com (€.g., FOOApps’s sub-
domain runs as foo.herokuapp.com). Of course, Mallory
can similarly run a service as mallory.herokuapp.com.

The standard cookie policy for subdomains allows code
on mallory.herokuapp.com t0 set a cookie for the parent
domain herokuapp.com. When the client makes a request
to foo.herokuapp.com, the cookie will also be attached to
the request. Therefore, if Alice’s client visits the site
mallory.herokuapp.com, Mallory will be able to make the
client’s cookie hold Mallory’s session ID. Thus,
FooApps binds Alice’s user ID to Mallory’s session.

In response to our report, Facebook developed a coun-
termeasure, which has been applied on the Heroku plat-
form. It generates a new session ID (unknown to
Mallory) when a client is authenticated. Facebook
offered us a bounty three times the normal Bug Bounty
amount for reporting this issue, as well as the same




award each for Assumptions A2 and A3 discussed
next.’

Assumption A2. This assumption is a case in which
Corral actually discovered a valid path for violating an
assertion completely unexpected to us. The path indi-
cated that if a PHP page on FooApps only calls getUser
(e.g., only has the first code snippet from Figure 8),
Mallory is able to bind her user ID to Alice’s session.
The consequence is especially damaging if the session’s
access token is still Alice’s. Corral precisely suggested
the possibility (see Table 1): if there is a signed_request
containing Mallory’s user ID, then the first setPersis-
tentData call will be made, followed by a return. The
method sets _SESSION['user_id'] to Mallory’s ID without
calling getAccessToken, which would otherwise keep
the access token consistent with the user ID. Therefore,
the association between the user ID and the access to-
ken is incorrect. The session will operate as Mallory’s
account using Alice’s access token. After investigating
our report about this, Facebook decided to add checking
code before processing the signed request to the SDK to
avoid the need for this assumption.

Assumption A3. This assumption requires that any
PHP page that includes the third snippet in Figure 8
must also include the second snippet. In the example
code in the figure, it is not obvious why the second
snippet is required before the third snippet. However,
when we modeled getAccessToken, as shown in Table 4,
we realized that in Facebook’s authentication mechan-
ism there are two subcategories of access token: user
access token, which is basically what people usually
refer to as “access token”, and application access token,
which is described in Facebook’s dev guide [18]. The
application access token is provided to a web service
for a number of special purposes, such as “publishing
instances of ‘secure Open Graph actions’”. In fact, the
app secret can be derived solely from the application
access token, so it is a serious authorization violation if
Mallory or MalAppc can obtain it.

Method getLogoutUrl in snippet 3 constructs a URL to
send back to the client. The URL contains the result of
getAccessToken. To obtain the application access token,
Mallory only needs to send a request that hits a failure
condition of getUserAccessToken, which prevents
Sthis->accessToken from being overwritten in the bold
line in Table 4. We confirmed that this can be done by
using an invalid Code in the request.

6 We donated all three bounties to charities. The donations
were one-to-one matched by Facebook.
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public function getAccessToken() {

Sthis->accessToken= Sthis->getApplicationAccessToken();

Suser_access_token = Sthis->getUserAccessToken();

if (Suser_access_token) {
Sthis->accessToken=S$Suser_access_token;

return Sthis->accessToken;

Table 4. SDK source code of getAccessToken

Interestingly, getAccessToken is also called by getUser
in snippet 1 in Figure 8. If a PHP page includes
snippet 2, the access token will be used to call a REST
API. When it is an application access token, the API
will raise an exception, which foils the exploit. That is
why snippet 2 is required before snippet 3.

In response to our report on this issue, Facebook
modified the SDK so that getLogoutUrl now calls get-
UserAccessToken instead of getAccessToken, thus avoid-
ing the need for developers to satisfy this assumption.

Assumption A6. This assumption requires that the user
on FooAppc should not be Mallory. Otherwise, Mallory
would be able to associate its access token and user id
with Alice’s session. In Section 6.2, we show that many
apps (14 out of 21 tested) indeed violate this assump-
tion. Moreover, this association violation can be parti-
cularly damaging when the service app has its own
credential system, and supports linking a Facebook 1D
to Alice’s password-protected account. Once the link-
ing can be done in the session, Mallory will be able to
sign into Alice’s account using Mallory’s Facebook ID.
We confirmed that among the 14 service apps which
violate the assumption, 6 of them support linking, and
thus allow Mallory to login as Alice. We reported this
issue to Facebook, who undertook the effort of
notifying app and website developers.

5.2.2 Live Connect

Assumption A4 concerns how the Live Connect SDK
handles “single sign-on for apps and websites” [27].
The sample /LiveSDK/Samples/PHP/OAuthSample [28]
demonstrates how to implement a PHP service app that
allows single sign-on. This sample code is essentially
the dev guide given as a program skeleton, with
comment blocks for app developers to implement. The
core of the problem lies in the following function,
whose implementation is empty except for a comment:
function saveRefreshToken(SrefreshToken) {
// save the refresh token associated with the
// userid on the site.

}

This is precisely what we call a binding operation. The
refresh token is the input parameter, but it is not clear
where the user id comes from. Within the scope of this



function, the only place to obtain a user ID is from a
cookie called AUTHCOOKIE, which contains the user’s
Live ID. However, the SDK’s logic is not sufficient to
ensure that Alice’s refresh token is associated with her
user ID. Appendix C provides technical details.

We built a proof-of-concept exploit to send to Micro-
soft. The Live ID team responded that our attack is
valid, but it “does not reflect the scenarios we are tar-
geting”. The target scenario is a website which has its
own credential system, such as a university website, so
“the user id on the site” means, for example, the student
ID. We replied to the team that an unclear context like
this was exactly what we believe needs to be uncovered
and at least documented clearly (indeed, explicating
such assumptions is one of our main goals). In this case,
the context was almost completely hidden: the
OAuthSample sample is the only sample provided in
ILiveSDK/Samples/PHP/, SO it is expected to target more
generic scenarios. This is why if saveRefreshToken tar-
gets a specific scenario, the context must be made
explicit. The team replied us that they would “add more
comments to that code to make the sample code clear
on this.” Recently we found that the comment has been
revised to “save the refresh token and associate it with
the user identified by your site credential system.” This
change was also made in the ASP.NET version of the
sample code.

5.2.3 Windows Authentication Broker

Assumption A5 concerns the Windows 8 Web Authen-
tication Broker, used by Windows 8 apps with OAuth-
based identity providers. For concreteness of presenta-
tion, we assume the Facebook Identity Provider. In the
Auth Broker, the only function for authentication is
authenticateAsync. Figure 9 illustrates the data passing
through this function when the app requests an access
token. The key observation is that the client does not
conform to the same-origin policy, because the 302
response is in the context of https.//facebook.com, while
on Windows 8, an app runs in its own domain, ms-
appx://packagelD. Without the same-origin-policy, we
were unable to see why Alice’s access token for
FooApp is guaranteed to be passed to FooAppc, not
MalAppc. To test this, we implemented a proof-of-

[ms—appx://packageID Alice’s client
Clientapp
https://facebook.com (requestUri, 1 access

token

callbackUri)
v

Visit https://requestUri
Facebook ¥

IdP

[

~| authenticateAsync

HTTP 302: redir to
https://callbackUri
#access_token=xxx&...

Figure 9. Data flow through authenticateAsync.
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concept MalAppc. It indeed got the access token, which
allowed it to do everything FooAppc can do.

We reported this finding to Microsoft and Facebook,
and learned their differing perspectives about the re-
sponsibility and severity of this issue. Microsoft consid-
ered it “a shortcoming of the OAuth protocol and not
specific to our implementation.” Facebook pointed out
that when authenticateAsync is called, an embedded
browser window (usually called a WebView) is always
prompted for Facebook password. This lowered the se-
verity of the attack. We consider this a shaky security
basis: if authenticateAsync someday allows a user to
login automatically or with one click without using a
password, the basis will become invalid.

We investigated how SDKs on other platforms handle
the data passing, and found a similar issue with the
Facebook SDK for Android. However, on Android,
there is a mechanism to skip the password prompt to get
the access token automatically. In response to our re-
port, Facebook is developing a fix for its Android SDK.

6 Automated Testing

One additional value of explicating the SDKSs is that it
may be possible to provide tools that test apps for viola-
tions of critical assumptions. Such tests may not be able
to guarantee the app always upholds the assumption,
but rather focus on testing apps for common vulnerabil-
ity patterns identified as a result of the explicating pro-
cess. We developed a prototype to show the feasibility
of building such a tester.

6.1 Design

Figure 10 shows our testing framework. For each vul-
nerability pattern to test, the test case defines the ac-
tions of the tester app, the proxy, and a set of server-
side tester APIs (e.g., PHP or ASP.NET files). The
tester app behaves as MalAppc. The proxy does the ne-
cessary traffic manipulations for requests and responses.
It also behaves as the unconstrained machine Mallory.
Tester APIs implement specific checks for session
states, especially for the associations we focus on.

We implemented test cases checking for violations of
four assumptions: the vulnerability described in Sec-
tion 2 (about using an access token for authentication),
and vulnerabilities corresponding to the violations of
assumptions Al (concerning the session ID across sub-
domains), A6 (about Mallory’s user ID associated with
Alice’s session) and A4 (about binding the user ID with
refresh token). Only the test for A4 requires a tester
API on the app server.



Test Set Number of Apps | Vulnerable
1 (Section 2) 27 21 (78%)
2 (assumption A1) 7 6 (86%)
3 (assumption A6) 21 14 (67%)

Tester’s device S App server
Manipulate
TesterApp| | trafficand
mimic Mallory’s
FooApp. behaviors 1dP

Figure 10. Testing Framework.
(Grey hoxes constructed for testing.)

In the first test, the tester app performs the IdP’s sign-
on steps as Alice, requests an access token, then pre-
sents the token to the app server to see if the authenti-
cation succeeded. In the second test (regarding Al), if
the app server’s hostname is foo.a.com, the proxy
creates another hostname mallory.a.com. The test fol-
lows the steps described in Section 5.2.1. Eventually
the proxy checks if the authentication is successful, but
the associated session ID is identical to that of Mal-
lory’s session on foo.a.com. In the third test (for A6), the
proxy observes the HTTP request that FooAppc sends
to Facebook. It finds out which type of data is used as
the proof for authentication (a.k.a., the authenticator),
which can be either a Code or signed request. The
proxy also tries to find a field named state, which is an
argument supported by Facebook to prevent request
forgery for login [16]. The proxy then replaces the
authenticator and the state field (if it exists) with the
ones that Mallory’s session owns. After sending the
request, the proxy checks whether Mallory can associ-
ate her Facebook ID with Alice’s session, and reports a
violation if it sees a successful server response.

The fourth test (A4) requires the help of a tester APl on
the server because it tests whether the refresh token is
associated with an appropriate user I1D. The test uses the
proxy to manipulate the AUTHCOOKIE in the request
header so that it contains Mallory’s authentication to-
ken in Alice’s request. The proxy then mimics Mallory
to call the tester API, which calls readRefreshToken and
checks if it returns Alice’s refresh token.

6.2 Results

In general, the testing framework is designed for app
developers so that they can avert the common pitfalls in
their own implementations. Nevertheless, since some of
the tests do not need tester APIs on the server, they can
be used with access to the apps alone. This opens the
possibility of a third party (such as the SDK provider)
performing the tests on submitted apps.

We tried using the tests to check Windows 8 and
Facebook apps found in the wild. The sets of apps that
we tested are named Set 1, Set 2 and Set 3, correspond-
ing to the first three aforementioned tests respectively.
The test apps were obtained as objectively as possible.
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Table 5. Test Results.

To construct set 1, we queried “Facebook” in the free
apps in Windows 8 App Store, which returned about
572 apps. We ranked the apps by user ratings and
examined the apps with a rating of 3+ stars. Apps
without a backend service were excluded. We then
selected apps that authenticate users through identity
providers. This left us with a total of 27 apps.

Set 2 was constructed by doing a Google query for
“herokuapp.com login”, which gave us many URLS on
herokuapp.com. We visited each URL to see if the
website ran a PHP server and appeared reasonably
functional. This gave us a list of 20 websites. We then
examined the traffic of each website to determine if it
used the Facebook PHP SDK. Seven of the sites did,
and these were used for Set 2.

To construct Set 3, we used the Google search query
“login.php” and visited the first 40 result pages’ to
examine which URLs correspond to PHP websites that
support Facebook sign-on. We found 21 candidate
websites that comprise Set 3.

Table 5 shows the number and percentage of apps that
matched the vulnerability pattern in each set. The
results for Set 1 show that 78% of tested services with
Facebook sign-on mechanism indeed use the access
token for server-side authentication. The results for
Set 2 reinforce the value of our SDK analysis — when
we studied the SDK, we only hypothesized the possibil-
ity of this vulnerability. The vulnerability we conceived
on a hypothetical service app (FooApps) accurately re-
flects the reality of 86% of services tested in Set 2. The
results for Set 3 indicate that 67% of the tested apps
would allow Mallory’s Facebook ID to be associated
with Alice’s session. This violation is mainly due to
missing or insufficient request forgery protections for
user login. This association mistake can be particularly
dangerous when the service apps support certain
functionalities. For example, we found that many ser-
vice apps have their own credential systems, and allow
a user to link her Facebook ID to her password-
protected account. After the linking, the user can use a
Facebook login to sign into the password-protected
account. When assumption A6 is violated, Mallory is
able to link her Facebook ID to Alice’s account in the

" We needed to examine so many result pages because most
webpages matched the query “login.php” for reasons not
about our intent, e.g., popular pages containing both words
“login” and “php” are often considered a match.



session, and thus able to sign into Alice’s account. We
confirmed that 6 of the service apps could be exploited
in this way.

7 Related Work

The idea of formally verifying properties of software
systems goes back to Alan Turing [34], although it only
recently became possible to automatically verify inter-
esting properties of complex, large scale systems. Our
work makes use of considerable advances in model
checking that have enabled model checkers to work
effectively on models as complex as the ones we use
here. Our work is most closely related to other work on
inferring and verifying properties of interfaces such as
APIs and SDKs, which we review briefly next.

APl and SDK misuses. It is no longer a mystery that
APIls and SDKs can be misunderstood and the results
often include security problems. On various UNIX sys-
tems, setuid and other related system calls are non-trivi-
al for programmers to understand. Chen et al. “demysti-
fied” (that is, explicated) these functions by comparing
them on different UNIX versions and formally model-
ing these system calls as transitions in finite state auto-
mata [11]. Wang et al. showed logic bugs in how
websites integrate third-party cashier services and sin-
gle-sign-on services [35][36]. Many of the bugs found
appear to result from website developers’ confusions
about API usage. Georgiev et al. showed that SSL certi-
ficate validations in many non-browser applications are
broken, which make the applications vulnerable to
network man-in-the-middle attacks [19]. Our work
started from a different perspective — our primary goal
is not to show that SDKs can be misused, but to argue
that these misuses are so reasonable that it is SDK pro-
viders’ lapse not to explicate the SDKs to make their
assumptions clear. We expect that our approach could
be adapted to other contexts such as third-party pay-
ment and SSL certificate validation.

Interface Verification. Many researchers have con-
sidered issues related to verifying interfaces and their
use. Spinellis and Louridas [32] propose a static anal-
ysis framework for verifying Java API calls. Library
developers are required to write imperative checking
code for each API to assist the verification process.
Henzinger et al. [1][7] propose languages and tools to
help model the interfaces and find assumptions that
need to be met for two APIs to be compatible, i.e., there
is no environment for which they reach an error state.
JIST [2] uses a similar approach to synthesize interface
specifications for Java classes. This line of work is
complementary to ours. Our main effort has been to
systematically understand systems and construct se-
mantic models. Currently, we manually add assump-
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tions when counterexamples are found in the models.
The assumptions could be considered as a type of
“interface specifications” of the SDKs. We believe that
our semantic models would be even more valuable with
tools that can automatically synthesize high-quality as-
sumptions.

Software testing. Static techniques such as the Static
Driver Verifier (SDV) for Windows drivers [4] and dy-
namic analysis such as symbolic execution [3][12] and
fuzz testing [13][20] are widely studied in software test-
ing community. To test websites’ of single-sign-on
authentications, Bai et al. developed AUTHSCAN [5],
which is a technology to automatically recover an au-
thentication protocol from concrete website implemen-
tations.

OAuth Protocol analyses. Bansal et al. [6] modeled
OAuth 2.0 protocol and verified it using ProVerif [8].
They also built a library for future researchers to model
web APIs into ProVerif language more easily. Pai et al.
[31] used Alloy framework [23] to verify OAuth 2.0
and discovered a previously known vulnerability. Sun
et al. discussed a number of website problems affecting
OAuth’s effectiveness, such as not using HTTPS,
having XSS and CSRF bugs [33]. Although the three
SDKs we studied are based on OAuth, our work does
not focus particularly on the OAuth protocol. The fact
that all three studied SDKs are based on OAuth is main-
ly because of its widespread adoption, but the security
issues we found concern the SDKs and services rather
than flaws inherent in the OAuth protocol.

8 Final Remarks

Security exploits nearly always stem from attackers
finding ways to violate assumptions system implement-
ers relied upon. Such assumptions are often not care-
fully documented, and often only implicit in the minds
of the system designers. Our study of three important
authentication and authorization SDKs supports the
need for systematically explicating SDKs to uncover
these assumptions. We advocate that a systematic ex-
plication process should be part of the engineering
process for developing SDKs. Although our current
process still requires considerable manual effort in
understanding and modeling system behaviors, we
believe the need for this effort reveals flaws in the
current engineering processes: SDK developers,
including those building widely-used security-focused
SDKs, have not systematically understood or
documented the SDKs’ behaviors for producing secure
applications. In our study, we found assumptions that
were critical to secure use of the SDKSs, but that were
not clearly documented and were subtle enough to be
missed by the majority of tested apps.
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Appendix A. Prevalence of SDKs.

To understand how widely-used different SDKs are we
first searched for keyword “Facebook” in the Windows
App Store and filtered the results by selecting free and
trial apps only, which left us with a total of 572 apps.
We then sorted the results by users’ rating, after which
we went through the top of the list one by one to check
if the app has Facebook or Live connect SSO built-in.
We also monitored network traffic using Fiddler on
those apps that have SSO feature, and this allows us to
eliminate the ones that do not run an online service. We
excluded non-English apps and also apps that do not
work properly. After the selection process we came up
with a total of 27 apps as listed below:

App Name SDK(s)
Soluto WA(FB)
Givit Unknown
Fliptoast WA(FB)
Donelo Unknown
IM+ WA(FB)/LC
Interference Live
Norton Satellite Unknown
Slide Ur buddy WA(FB)
EuroCup Unknown
Shufflr WA(FB)
Social Umami Unknown
SumAttack WA(FB)
Guess Who WA(FB)
Flixpicks WA(FB)/LC
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TwentyOne Unknown
Apyo Unknown
Where's my stuff Unknown
Mahjong 31 Unknown
Tic Challenge WA(FB)
Color orbs Unknown
tagmap WA(FB)
word gap LC
word town Unknown
noots Unknown
RecipeHouse WA(FB)
Alaska Airlines Unknown
Captain Dash LC

WA(FB): Windows Auth Broker using Facebook 1dP

LC: Live Connect

Unknown: We could not identify the observed authentication
traffic.

Appendix B. Additional Assumptions.

The following assumptions were needed to complete
the verification, but not included in Table 2 or Table 3
since they do not appear to have any likely security
consequences.

C1: (Live Connect)

There are two sets of Live Connect APIs, one of
Microsoft apps and services, such as Skydrive, the other
for non-Microsoft apps and services. We assume the
two sets of APIs cannot be called together, i.e., any
sequence of calling these APIs is confined to only one
of the two sets.

C2: (Live Connect, Windows Auth Broker)

We assume no possibility of executing a script provided
by Mallory/MalAppc inside FooAppc. (Actually, we
are concerned that DOM methods like InvokeScript and
ScriptNotify may violate this assumption, but have not
yet identified a clear security issue.)

C3: (all)

As explained in Section 4.2, we assume that access
token, Code, authentication token, app secret, app ID,
user ID, session ID and so on are of different types,
although in reality they are all strings. We do not allow
type mismatches.



Appendix C. Details about assumption A4

The entry function of a PHP page is handlePageRequest,
shown below. It allows a client app to present a Code or
a refresh token in the HTTP request in order to
authenticate into the service app.

function handlePageRequest()
{ SCode = $_GET[CODE];
if (lempty($Code))
{ Stoken = requestTokenByCode(SCode);
handleTokenResponse(Stoken);
return;

}

SrefreshToken = readRefreshToken();
if (lempty(SrefreshToken))
{ Stoken = requestTokenByRefreshToken(SrefreshToken);
handleTokenResponse(Stoken);
return;
}
}

function handleTokenResponse(Stoken) {
SauthCookie = $_COOKIE[AUTHCOOKIE];
ScookieValues = parseQueryString(SauthCookie);
if (lempty(Stoken))
{ ScookieValues|[ACCESSTOKEN] =
Stoken->{ACCESSTOKEN} ;
ScookieValues[AUTHENTICATION_TOKEN] =
Stoken->{AUTHENTICATION_TOKEN};
ScookieValues[SCOPE] = Stoken->{SCOPE};

if (lempty(Stoken->{ REFRESHTOKEN })) {
saveRefreshToken(Stoken->{ REFRESHTOKEN });
}
b
L2: setrawcookie(AUTHCOOKIE,ScookieValues,...);
}

L1:

HandlePageRequest uses either the Code or the refresh
token to request a data structure called “token” from the
IdP (i.e., Live ID service). The “token” is a structure
that contains an access token field, a refresh token field,
a scope field and others. (The term “token” here is
confusing since we are discussing so many different
types of tokens in the paper, and this “token” is not
even one of them, but a structure containing them. We
stick to the term in order to explain the source code, but
this notion of “token” is particular to this appendix
section.)

The token is passed to handleTokenResponse, which
updates a cookie AUTHCOOKIE using the token: it
constructs an array cookieValues, calls saveRefresh-
Token at Line L1, and tries to set the cookie using
cookieValues at Line L2.

Functions readRefreshToken and saveRefreshToken
are shown verbatim below. They are empty except for
the comment lines.
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function readRefreshToken() {
// read refresh token of the user identified by the site.
return null;

}

function saveRefreshToken(SrefreshToken) {
// save the refresh token associated with the user id
on the site.

}

For saveRefreshToken, app developers are instructed to
“save the refresh token associated with the user id on
the site”. This is precisely what we call a binding
operation. When we tried to build the semantic model,
it was necessary to understand precisely the instruction.
“The refresh token” of course refers to the function pa-
rameter, but where to get “the user id”? Within the
function scope of saveRefreshToken, the only place to
obtain a user ID is from the AUTHCOOKIE, because both
cookieValues and token are just local variables inside
handleTokenResponse. Thus, the only way to implement
saveRefreshToken appears to be something like:

SauthCookie = $_COOKIE[AUTHCOOKIE];

SaCV = parseQueryString(SauthCookie);

saveToDatabase(refreshToken,
$aCV[AUTHENTICATION_TOKEN]->{USER_ID});

The vulnerability. For a binding operation, we need to
examine if there is an association violation. In this case,
the refresh token comes from the Code, which is an
argument in the HTTP request, and the user ID comes
from the cookie. An association violation occurs when
we make two calls to handlePageRequest (i.e., two post
requests to callback.php), one with Mallory’s code, the
other with Alice’s. The details are given below. It
results in Mallory getting Alice’s permission.

(i) When Alice’s client visits mallory.com, it will
execute a script that posts a request to foo.com/
callback.php?Code=[MalloryValidCode], in which
MalloryValidCode is the code that Mallory obtained in
his own authentication with foo.com. This request
makes _COOKIE[AUTHCOOKIE] contain the authentica-
tion token of Mallory, which contains her user ID.

(ii) The script then starts a normal authentication
by posting a request to login.live.com/oauth20_auth-
orize.srf?client_id=[FooApplID]&redi-
rect_uri=https://foo.com/callback.php&....

The Live ID server will redirect the client to
foo.com/callback.php?code=[AliceValidCode].  Note
that at Line L1, the cookie is unchanged since step (i).
Thus, saveRefreshToken binds Mallory’s user ID with
the refresh token obtained using AliceValidCode. From
this point, when Mallory makes request to foo.com, the
PHP code will retrieve the refresh token, and thus the
session actually possesses Alice’s permission.



