Keysight Technologies B1507A Power Device Capacitance Analyzer

User's Guide

Notices

© Keysight Technologies 2014

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies as governed by United States and international copyright laws.

Manual Part Number

B1507-90000

Edition

Edition 1, October 2014

Keysight Technologies 1400 Fountaingrove Parkway Santa Rosa, CA 95403

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Keysight disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Keysight shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Kevsight and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hard ware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Keysight Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR

52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Declaration of Conformity

To get the latest version of the declaration of conformity, go to http://www.key-sight.com/go/conformity and type in the product number in the Search field.

Latest Information

To get the latest firmware/software/electronic manuals/specifications/support information, go to www.keysight.com and type in the product number in the Search field at the top of the page.

COMPLIANCE WITH GERMAN NOISE REQUIREMENTS

This is to declare that this product is in conformance with the German Regulation on Noise Declaration for Machines (Lärmangabe nach der Maschinenlärminformation-Verordnung -3.GSGV Deutschland).

Herstellerbescheinigung

GERÄUSCHEMISSION Lpa < 70 dB am Arbeitsplatz normaler Betrieb nach DIN 45635 T. 19

Manufacturer's Declaration

ACOUSTIC NOISE EMISSION Lpa < 70dB operator position normal operation per ISO 7779

South Korean Class A EMC declaration

This equipment is Class A suitable for professional use and is for use in electromagnetic environments outside of the home.

A급 기기

(업무용 방송통신기자재)

이 기기는 업무용(A급) 전자파적합기기로서 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정외의 지역에서 사용하는 것을 목적으로 합니다.

WARNING

High Voltage

is used in the operation of this equipment.

LETHAL VOLTAGE on CONTACT

may be present at measurement terminals, if you fail to take in all safety precautions!

- When the RED indicator lights, lethal voltage (±3000 V dc/pulse) may appear at measurement terminals.
- Usually use the interlock function.
- Do not operate the instrument unless another person is around the work space who is familiar with instrument operation and hazards or administering first aid.
- Potentials less than ±500 V may cause death under certain conditions. Therefore, adequate preventive measures must be taken at all times!

FIRST AID FOR ELECTRIC SHOCK

SPECIAL ATTENTION TO RESCUE IN SAFETY

- Never rush into an accidental situation.
- Take special attention to the following notices to prevent second accident.
 - Do NOT touch the CASUALTY or conductive surface with your hands unprotected.
 - Shut off high voltage at once.
 - Disconnect AC mains.
- If it is unsure to make safe, the following procedure will helps to protect your lives during the CASUALTY is rescued.
 - Stand on a dry insulating material; use a dry wooden or plastic implement to free the CASUALTY from contact with hazardous electrical source.
 - Ground the circuit to de-energize.

Free the CASUALTY from the LIVE conductor

CALL EMERGENCY

 Call your local Emergency number immediately, if any of signs or symptoms shown in the following table will be found.

http://en.wikipedia.org/wiki/Emergency_telephone_number#Emergency_numbers

DELAYED SYMPTOMS

- In some cases, electric shock can cause injuries that are not evident and symptoms may be delayed.
- Burns to the CASUALTY may be greater than they appear on the surface.
- For these reasons, all electric shock CASUALTY should be taken to hospital for advanced observation.

English	Deutsch	French	Japanese	Korean	Simplified Chinese	Traditional Chinese
Symptoms	Symptome	Symptômes	兆候	징후	征候	徽候
Cardiac arrest	Herz-Kreislauf-Stillsta nd	Arestation cardiopulmonaire	心肺停止	심폐 정지	心肺停止	心肺停止
Abnormal cardiac rhythm	Arrhythmia	Arythmie	不整脈	부정맥	脉律不齐	脈律不齊
Respiratory failure (difficult or absent breathing)	Respiratorischer Mißerfolg	Échec respiratoire	呼吸不全	호흡 부전	呼吸不全	呼吸不全
Muscle pain and contractions	Muskelschmerz und Zusammenziehungen	Douleur du muscle et contractions	筋肉痛 / 痙攣	근육통 / 수축	肌肉痛 / 痉挛	肌肉痛 / 痙攣
Seizures (heart beat stopped)	Herzlähmung	Paralysie cardiaque	心臟麻痺	심장 마비	心脏麻痹	心臟麻痺
Numbness and tingling	Eine Taubheit / Stachel	Un engourdissement / Une épine	痺れ / 刺痛	저리다 / 가시痛	发麻 / 刺痛	發麻 / 刺痛
Unconsciousness	Bewusstlosigkeit	Évanouissement	意識不明	의식 불명	意识不明	意識不明
Entrance and exit wound burns	Eine elektrische Schockspur	Une trace du choc électrique	感電跡	감전 자국	触电痕迹	觸電痕跡

First Aid for Electric Shock Procedure

Do not give compression-only CPR to infants and children — all infants and children who have a sudden cardiac arrest need conventional CPR. Also should not be used for adults whose cardiac arrest is from respiratory causes, or for an unwitnessed cardiac arrest.

D	Danger	Check for DANGER, make SAFE first to YOU, Others, and the CASUALTY.		
R	Response	Check for a RESPONSE.		
		Leave on back.		
		If not conscious,		
		 Ask others to emergency 	CALL for an ambulance immediately.	
		HELP to bring AED, ASAP	•	
		Start CPR by YOU.		
С	CPR	Start the center of chest compres	ssions (>100 compressions per minute) without	
	for ADULT only	stopping until emergency medic	cal services arrive.	
		One of the most famous chest c	ompression-only CPR is AHA Hands-Only CPR which	
		is without mouth-to-mouth rescu	e breaths.	
		http://handsonlycpr.org/		
		http://www.youtube.com/watch	?v=zuJkRpJ7Fxg	
		Rhythm of chest compression:		
		http://www.heart.org/HEARTORG/CPRAndECC/CommunityTraining/CommunityPro		
		grams/CPR-Week_UCM_427219_SubHomePage.jsp		
		http://www.youtube.com/watch?v=n5hP4DIBCEE&feature=player_detailpage		
		Continue CPR until		
		Signs of life return.		
		AED is ready to use.		
		Medical services arrive and take over.		
		rescue skill, should apply the follo	wing step.	
If no	If not, only keep chest compression until others help.			
Α	Airway	No foreign material	Foreign material	
		Leave on back, open airway.	Place in the recovery position, clear of objects.	
В	Breathing	30 compress & 2 breaths		
D	Defibrillator			
	V	If no AED available, continue CPR until qualified personnel arrives.		

**AED: Automated External Defibrillator **CPR: Cardio Pulmonary Resuscitation

XAHA: American Heart Association, Inc.

Reference

- AHA CPR & Emergency Cardiovascular Care (ECC)
 (http://www.heart.org/HEARTORG/CPRAndECC/CPR_UCM_001118_SubHomePage.jsp)
- AHA Hands-only CPR (http://handsonlycpr.org/)
- Save a Life (http://www.heart.org/HEARTORG/CPRAndECC/CommunityTraining/CommunityPrograms/CPR-Week_UCM_427219_SubHomePage.jsp)
- AHA CPR Translated Website
 (http://www.heart.org/HEARTORG/CPRAndECC/International/TranslatedWebsites/Tr
 anslated-Websites_UCM_303149_SubHomePage.jsp)
 Deutsch (http://www.american-heart.de/startseite)
 Japanese (http://eccjapan.heart.org/) available as of March, 2012))
- Chain of Survival (http://www.heart.org/HEARTORG/CPRAndECC/WhatisCPR/ECCIntro/Chain-of-Survival_UCM_307516_Article.jsp)
- ECC Guidelines Highlights 2010
 English (http://eccjapanheart.org/pdf/ECC_Guidelines_Highlights_2010.pdf)
 Japanese (http://eccjapanheart.org/pdf/ECC_Guidelines_Highlights_2010JP.pdf)
 Deutsch (http://www.american-heart.at/fileadmin/downloads/Guidelines2010-Highlights_D/Guidelines2010-Highlights_D.pdf)

International

- ILCOR (http://www.ilcor.org/home/)
- ILCOR CoSTR 2010 Consensus (http://www.ilcor.org/consensus-2010/costr-2010-documents/)

Europe

- ERC (https://www.erc.edu/)
- ERC Guidelines 2010 (http://www.cprguidelines.eu/2010/)
 Local language translation (https://www.erc.edu/index.php/doclibrary/en/185/1/)

America

- AHA (http://www.americanheart.org/)
- AHA Guidelines 2010 (http://guidelines.ecc.org/2010-guidelines-for-cpr.html)

Safety Summary

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual may impair the protections provided by the instrument. In addition, it violates safety standards of design, manufacture, and intended use of the instrument. Keysight Technologies assumes no liability for customer's failure to comply with these requirements.

Product manuals may be provided on CD-ROM or in printed form. Printed manuals are an option for many products. Manuals may also be available on the Web. Go to www.keysight.com and type the product model number in the Search field at the top of the page.

NOTE

Do not use this instrument in any manner not specified by the manufacturer. The protective features of this instrument may be impaired if it is used in a manner not specified in the operation instructions.

This instrument is an INDOOR USE product.

This instrument complies with INSTALLATION CATEGORY II for mains input and INSTALLATION CATEGORY I for measurement input terminals, and POLLUTION DEGREE 2 defined in IEC 61010-1.

If an instrument is marked CAT I (IEC Measurement Category I), or it is not marked with a measurement category, its measurement terminals must not be connected to line-voltage mains.

DANGEROUS PROCEDURE WARNINGS

Warnings, such as example below, shall be complied. Procedures throughout in this manual prevent you from potentially hazard. Their instructions contained in the warnings must be followed.

WARNING

Hazardous voltage, instrument maximum output voltage may appear at the measurement terminals (Force, Guard, and Sense) if Interlock terminal is closed. Open the Interlock terminal when the measurement terminals are accessible. Voltage applied to the terminals will be limited up to ± 42 V.

Do not work the interlock function intentionally in order to bring the output voltage to the safe level. While the high voltage indicator is lit, the dangerous voltage by the output voltage or the residual charge appears on the measurement terminal.

BEFORE APPLYING POWER

Verify that all safety precautions are taken. Make all connections to the instrument before applying power. Note the instrument's external markings described under "Safety Symbols".

GROUND THE INSTRUMENT

This is Safety Class I instrument. To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The power terminal and the power cable must meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

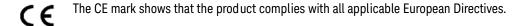
DO NOT REMOVE COVERS

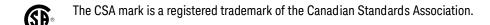
No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock do not remove covers.

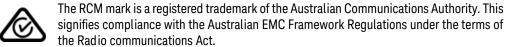
IN CASE OF DAMAGE

Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel. Return the instrument to a Keysight Technologies sales or service office for services and repair to ensure that safety features are maintained.

USE ONLY THE SPECIFIC ACCESSORIES


Specific accessories satisfy the requirements for specific characteristics for using the instrument. Use the specific accessories, cables, adapters, and so on for safety reasons.


Safety Symbols


The general definitions of safety symbols used on equipment or in manuals are listed below

		below.
	===	Direct current.
	~	Alternating current.
	Ť	Earth (ground) terminal.
	<u>_</u>	Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.
	\forall	Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.
	丄	Grounded terminal which indicates the earth potential.
		On supply.
	\bigcirc	Off supply.
	\bigcirc	Standby supply. The equipment will be marked with this symbol is not completely disconnected from AC mains when power switch is in the standby position.
	\Box	In position of a bi-stable push switch.
		Out position of a bi-stable push switch.
	1	Hazardous voltage and potential for electrical shock. Do not touch terminals that have this symbol when the equipment is on.
	<u>\sss\</u>	Hot surface. Avoid contact. Surfaces are hot and may cause personal injury if touched.
	$\overline{\bigvee}$	Caution, refer to accompanying documentation. The equipment will be marked with this symbol when it is necessary for the user to refer to the instruction manual.
WARNING		The warning sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personal.
CAUTION		The caution sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the equipment.

IEC Measurement Category I CATI

This ISM device complies with Canadian ICES-001. ICES/NMB-001 Cet appareil ISM est conforme à la norme NMB-001 du Canada.

ISM GROUP 1 This is the symbol for an Industrial, Scientific and Medical, Group 1 Class A product. (CISPR 11)

Korea's safety and EMC mark

China RoHS - Environmentally Green Product Label

China RoHS - Product with Toxic Substance 40 yr EPUP

The Chinese mark for paper-based packaging materials; Paperboard and Corrugated Fiberboard

Plastic Material Coding Identification

Power Supply and Measurement Safety

Power Supply Safety

This instrument can output high currents and voltages. Make sure that the load or device under test can safely handle the output current and voltage. Also, make sure that the connection leads can safely withstand the expected currents and are insulated for the expected voltages.

The instrument outputs may be connected so as to float relative to earth ground. Isolation or floating voltage ratings are indicated on the instrument, near the output terminal or the Circuit Common terminal. There is the danger of electric shock by touching the floated measurement terminals. Keep in mind it to protect yourself. And it is a reason of using the recommended accessories.

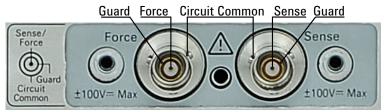
Voltage/Current Measurement Safety

Multimeters and other instruments capable of measuring high voltages and currents are subject to specific safety concerns because of the circuits to which they may be connected. To safely use these instruments, you need to understand the markings on the instrument near the input terminals, which include the Protection Limits and the IEC Measurement Category.

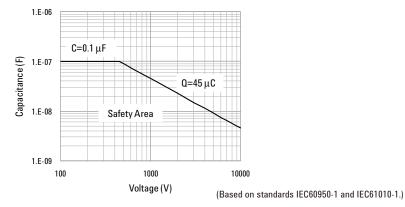
Protection Limits

Keysight multimeters and other voltage measurement instruments provide protection circuitry to prevent damage to the instrument and to protect against the danger of electric shock, provided the Protection Limits are not exceeded. To ensure safe operation of the instrument, do not exceed the Protection Limits shown on the input terminals.

Source/Monitor Terminals


Source/monitor unit, SMU, can simultaneously perform DC voltage or current output and measurement. Typical SMU has the Force, Guard, Sense, and Circuit Common terminals as shown below. Normally the Force, Guard, and Sense terminals are the same potential. Voltage marked around the terminals indicates the Protection Limits.

Force and Sense must be connected to a terminal of a device under test for the Kelvin connection which is effective for high current measurement and low resistance measurement. For the non-Kelvin connection to ease the connections, connect Force only. Do not connect Sense. It must be opened.


Guard should be extended to around the device terminal for reducing leakage current caused by a coaxial cable used. Guard must be never connected to anything at the device side.

Circuit Common should be connected to shielding of the coaxial cable used.

The following image is the Kelvin triaxial connector of Medium Power SMU.

To Avoid Risk of Residual Charge

This graph shows the load capacitance vs voltage characteristics generally considered as safety. Use the instrument within the safety area up to 0.1 μ F or 45 μ C according to the voltage. Also do not connect the capacitive load over the maximum load capacitance specified for the instrument, for example 10 nF for HVSMU.

Before touching the measurement terminal, confirm that it has been discharged enough. For that, ground and discharge the terminals over 10 seconds after stopping the high voltage output, and confirm that they have been safety voltage by using another volt meter.

If abnormal end of measurement, breaking of cable, or device damage occurs, do not touch the terminals until they are discharged enough.

Also if a series resistor is connected, do not touch the terminal until it is discharged enough.

High Voltage Shock Hazard

Keysight B1507A can force dangerous voltages (± 3000 Vdc for HVSMU and ± 100 Vdc for MPSMU) at the Force, Guard, and Sense terminals. To prevent electric shock hazard, the following safety precautions must be observed during the use of Keysight B1507A.

- Connect the instrument to an electrical ground (safety ground) by using three-conductor AC power cable.
- Before performing measurement, connect the interlock circuit to the Interlock terminal of this instrument.
- Confirm periodically that the interlock function works normally.
- Before touching the connections of the Force, Guard, and Sense terminals, turn the instrument off and discharge any capacitors of the measurement path. If you do not turn the instrument off, complete "all" of the following items, regardless of any instrument settings.
 - Terminate measurement by pressing the Stop key, confirm that the Measurement status indicator is not lit.
 - Confirm that the High Voltage indicator is not lit.
 - Open the Interlock terminal.
 - Discharge any capacitors if the capacitance is connected to an SMU.
- Warn workers in the vicinity of the instrument about hazardous conditions.

Gefahr durch Hochspannung

Von den Geräten Keysight B1507A können Spannungen an den Anschlüssen "Force", "Guard" und "Sense" von bis zu 3000 V ausgehen. Um elektrischem Schlag vorzubeugen, ist bei der Benützung der Geräte Keysight B1507A folgendes zu beachten.

- Verwenden Sie ein dreiphasiges AC-Stromkabel für die Gerätsteckvorrichtung (Eingang) und schließen Sie das Instrument an eine Erdung an (Sicherheitserdung).
- Vor der Messung verbinden Sie den Verriegelungsstromkreis mit dem Interlock-Anschluss dieses Instruments.
- Prüfen Sie in regelmäßigen Abständen, dass die Verriegelungsfunktion ordnungsgemäß funktioniert.
- Bevor Sie die Verbindungen zu den Anschlüssen "Force", "Guard" und "Sense" berühren, schalten Sie das Instrument aus und entladen alle Kondensatoren des Messwegs. Wenn Sie das Instrument nicht ausschalten, führen Sie, unabhängig von den Instrumenteinstellungen, alle folgenden Schritte durch.
 - Beenden Sie die Messung, indem Sie auf die Taste "Stop" drücken. Stellen Sie sicher, dass die Statusanzeige "Measurement" nicht leuchtet.
 - Stellen Sie sicher, dass die Anzeige "High Voltage" nicht leuchtet.
 - Öffnen des Interlock-Anschlusses.
 - Entladen Sie alle Kondensatoren, wenn die Kapazität mit einer SMU verbunden ist.
- Warnen Sie Mitarbeiter in der Umgebung des Instruments vor den Gefahren.

Danger de choc dû à une haute tension

Une tension dangereuse (max. ± pour HVSMU; 3000 Vdc, max. ± pour MPSMU; 100 Vdc) émanant du dispositif Keysight B1507A peut être sortie aux bornes Force, Guard et Sense. Les précautions suivantes doivent être obserées contre commotion électrique accidentelle.

- Utilisez un câble d'alimentation CA à trois conducteurs vers le coupleur secteur (entrée) et branchez l'instrument sur une mise électrique à la terre (prise de terre de sécurité).
- Avant de procéder aux mesures, connectez le circuit de sécurité à la borne Interlock de l'instrument.
- Vérifiez régulièrement le bon fonctionnement de la fonction de sécurité.
- Avant de toucher les connexions des bornes Force, Guard et Sense, mettez l'instrument hors tension et déchargez tout condensateur du chemin de mesure. Si vous ne mettez pas l'instrument hors tension, effectuez « toutes » les opérations ci-dessous, quels que soient les paramètres de l'instrument.
 - Terminez les mesures en appuyant sur la touche Stop ; vérifiez que l'indicateur d'état Measurement est éteint.
 - Vérifiez que le témoin High Voltage est éteint.
 - Ouvrez la borne Interlock.
 - Déchargez les éventuels condensateurs si la capacité est connectée à une unité SMU.
- Informez les personnes travaillant à proximité de l'instrument des conditions.

高電圧感電注意

Keysight B1507A の Force、Guard、Sense 端子には、危険電圧が出力されることがあります(HVSMU の場合は最大 ±3000 Vdc、MPSMU の場合は最大 ±100 Vdc)。 感電事故防止のため、Keysight B1507A の使用時には必ず以下の事柄を守ってください。

- 3極電源ケーブルを使用して本器を接地してください。
- 測定を開始する前にはインターロック回路を本器の Interlock 端子に接続してください。
- インターロック機能が正常であることを定期的に確認してください。
- Force、Guard、Sense 端子に繋がる接続部に触れる前には、本器の電源をオフしてください。また、測定系のキャパシタを放電してください。電源をオフしない場合は、以下の事項を全て実施してください。
 - Stop キーを押して Measurement インジケータが消灯したことを確認してください。
 - 高電圧警告(High Voltage) インジケータが消灯していることを確認してく ださい。
 - Interlock 端子を開放してください。
 - キャパシタが SMU に接続されているならば、キャパシタを放電してください。
- 周囲のほかの作業者に対しても、高電圧危険に対する注意を徹底してください。

Product Stewardship

Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/ electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE directive Annex 1, this product is classified as a "Monitoring and Control instrumentation" product.

Do not dispose in domestic household waste.

To return unwanted products, contact your local Keysight office or visit the following website for more information.

http://about.keysight.com/en/companyinfo/environment/

LCD Fluorescent Lamp

Certain products sold by Keysight contain a liquid crystal display (LCD); backlighting for the LCD is provided by a fluorescent lamp which contains mercury, and must be managed, recycled, and/or disposed in accordance with all applicable laws, ordinances and regulations.

For information on how to recycle or dispose of the fluorescent lamp contained in your own product, visit the following website.

http://about.keysight.com/en/quality/env_compliance.shtml

If you live in the U.S., also visit the following websites.

http://www.lamprecycle.org

http://www.eiae.org

If you have additional questions, please visit the following website.

http://www.keysight.com/go/contactus

Perchlorate Information

Perchlorate Material - special handling may apply. Visit the following website.

http://www.dtsc.ca.gov/hazardouswaste/perchlorate/

Equipment's real-time clock battery or coin cell battery may contain perchlorate and may require special handling when recycled or disposed of in California.

Precautionary Statement

Keysight B1507A Power Device Capacitance Analyzer operates in the Microsoft Windows environment. Keysight B1507A requires Keysight Easy Test Navigator software, a specially-designed Windows application program.

- About guarantee and support for Keysight B1507A
 Keysight Technologies guarantees and supports the performance of Keysight B1507A for the same condition as the preload condition when shipped from the factory.
- About updating Keysight Easy Test Navigator and the Windows Update
 Keysight Technologies confirms the operation of Easy Test Navigator patch programs and important Windows security patches, and provides recommended update information. Visit Keysight B1507A support site, download the patches, and perform the software update.
- About Windows application programs and peripherals (including driver)
 Using commercial products on Keysight B1507A is your responsibility. Keysight Technologies cannot provide compatibility information for commercial products. If problems arise, perform Keysight B1507A system recovery.
- About servicing

Bench repair service is available at your nearest Keysight Technologies service center. Be aware that the B1507A configuration might be updated to the latest one without notice because of support issues.

The internal hard disk drive (HDD) might be initialized during servicing. If peripherals are connected, they will be removed.

When Keysight B1507A is returned, the internal HDD might be initialized. Peripherals will be returned separately.

- Other notes
 - Back up the internal HDD to prevent loss of data by accident or failure.
 - Protect Keysight B1507A from computer viruses.
 - If you connect Keysight B1507A to the network, take care to protect it from computer virus.

Working in Comfort

To optimize your comfort and productivity, it is important that you set up your work area correctly and use your instrument properly. With that in mind, we have developed some set-up and use recommendations for you to follow based on established ergonomic principles. Improper and prolonged use of keyboards and input devices are among those tasks that have been associated with repetitive strain injury (RSI) to soft tissues in the hands and arms. If you experience discomfort or pain while using the instrument, discontinue use immediately and consult your physician as soon as possible. For more information on RSI you may wish to consult the *About Repetitive Strain* Injury section. Please study the recommendations described below. Included there are references to relevant parts of international standards, regulations and guidelines, such as ISO 9241 and the European Community Display Screen Equipment directive. You may also wish to consult your employer's human resources department or other relevant departments for guidance specific to your company.

About Repetitive Strain Injury

Because your comfort and safety are our primary concern, we strongly recommend that you use the instrument in accordance with established ergonomic principles and recommendations. Scientific literature suggests that there may be a relationship between injury to soft tissues -especially in the hands and arms- and prolonged improper use of keyboards or other equipment requiring repeated motions of the hands and forearms. This literature also suggests that there are many other risk factors that may increase the chance of such injury, commonly called Repetitive Strain Injury.

What is RSI?

Repetitive Strain Injury (RSI -also known as cumulative trauma disorder or repetitive motion injury) is a type of injury where soft tissues in the body, such as muscles, nerves, or tendons, become irritated or inflamed. RSI has been a reported problem for those who perform repetitive tasks such as assembly line work, meatpacking, sewing, playing musical instruments, and computer work. RSI also has been observed in those who frequently engage in activities such as carpentry, knitting, housework, gardening, tennis, windsurfing and lifting children.

What causes RSI?

The specific causes of RSI have not been established. Nevertheless, the incidence of RSI has been associated with a variety of risk factors, including:

- Too many uninterrupted repetitions of an activity or motion.
- Performing an activity in an awkward or unnatural posture.

- Maintaining static posture for prolonged periods.
- Failing to take frequent short breaks.
- Other environmental and psychosocial factors.

In addition, there have been reports associating the occurrence of RSI with the use of keyboards, mice, and other input devices. Also, certain medical conditions, such as rheumatoid arthritis, obesity and diabetes, may predispose some people to this type of injury.

What if I experience discomfort?

If you are experiencing any discomfort, seek professional medical advice immediately. Typically, the earlier a problem is diagnosed and treated, the easier it is to resolve.

Mice and Other Input Devices

Various aspects of using mice and other input devices may increase your risk of discomfort or injury. Observing the following recommendations may reduce that risk.

- Try to keep your hand, wrist, and forearm in a neutral position while using your mouse or other input device.
- If you use your thumb to rotate the ball on a trackball or spaceball, keep it in a relaxed, natural shape, and maintain a neutral posture in your hand, wrist, and forearm.
- Hold the mouse gently by draping your fingers over it. Keep your hand relaxed and fingers loose. Do not grip the mouse tightly.
- It takes very little pressure or force from your fingers to activate the buttons or scroll
 wheel on your mouse, scrolling mouse, trackball, or other input device. Using too
 much force can place unnecessary stress on the tendons and muscles in your hands,
 wrists, and forearms.
- If you are using a scrolling mouse, be sure to keep your fingers and hand in a relaxed, neutral position when activating the scroll wheel. Also, this type of mouse features software that can minimize the number of mouse movements or button clicks.
- When using a mouse, trackball, or other input device, position it as close to the keyboard as possible, and keep it at the same level as you do not have to stretch while using it.
- Be sure to keep your mouse and trackball clean. Regular removal of accumulated dust and dirt helps ensure proper tracking and reduces unnecessary hand and wrist motions.

In This Manual

This manual describes the product overview, installation information, measurement operation, and software reference information of Keysight Technologies B1507A.

This manual consists of the following chapters:

- Chapter 1, "Introduction"
 This chapter describes basic features of Keysight B1507A.
- Chapter 2, "Installation"
 This chapter describes installation and maintenance.
- Chapter 3, "How To Perform Measurement"
 This chapter explains how to perform measurement by using Keysight B1507A.
- Chapter 4, "GUI Reference"
 This chapter provides the reference information of Keysight Easy Test Navigator software.

1. Introduction

Overview	1-3
Mainframe	1-4
Test Fixture and Selector	1-4
Mainframe Front View	1-5
Mainframe Rear View	1-8
<u></u>	
<u></u>	
<u></u>	
Test Fixture Front View	1-12
A	
Measurement Terminals	
<u> </u>	
Test Fixture Rear View	1-15
^	
<u> </u>	1-16
Software	1-17
Easy Test Navigator Software	
EasyEXPERT Software	
Utility Software	1-18
Accessories	1-20
Options	1-22
Measurement Resources	1-23
GNDU - Ground Unit	
About SMU	
MPSMU - Medium Power SMU	
HVSMU - High Voltage SMU	1-28
MFCMU - Multi Frequency CMU	
, ,	

2.	Installation	
	<u>^</u>	
	<u> </u>	2-3
	Requirements	2-4
	Power Requirements	2-4
	Operating Environment	2-4
	Storaging/Shipping Environment	2-4
	Installation Requirements	2-5
	<u> </u>	2-5
	Power Cable	2-6
	<u> </u>	2-6
	Inspection and Installation	2-8
	To Inspect Shipment	2-8
	To Perform Initial Setup	2-9
	To Connect Selector and Test Fixture	2-11
	<u> </u>	2-11
	To Check Operation of Selector	2-13
	To Change Windows Logon Setting	2-13
	To Change GPIB Address	
	To Enable System Controller	2-15
	Connecting Accessories	2-16
	<u>^</u>	2-16
	3-pin Inline Package Socket Module	2-17
	<u> </u>	2-17
	Accessories for Connecting a DUT	2-18
	<u> </u>	2-18
	Maintenance.	2-19
	Cleaning	
	Self-test and Diagnosis.	
	,	

	Calibration	2-19
	Before Shipping to Service Center To Make Backup To Check Module Slots To Collect Equipment and Accessories.	2-20 2-20 2-20
3.	How To Perform Measurement	
	How To Perform Capacitance Measurement Preparing Measurement Executing Measurement Setting Parameters	3-4 3-5
	How To Perform I/V Measurement Preparing Measurement Executing Measurement Setting Parameter	3-10 3-11
	How To Calculate Power Loss	3-19
	Displaying and Operating Graph	3-26
4.	GUI Reference	
	Software Palette	4-3
	Capacitance Measurement Software	4-5
	Toolbar	

Work Area Data List Dialog Boxes Summary of Files.	4-28 4-30
Summary of Files. I/V Measurement Software. GUI Overview. Main Menu. Toolbar. Work Area.	4-32 4-33 4-34 4-36
Data List Dialog Boxes Summary of Files	4-57 4-59
Power Loss Calculation Software. GUI Overview. Main Menu. Toolbar. Work Area. Data List. Dialog Boxes Summary of Files.	4-62 4-63 4-65 4-67 4-74 4-76 4-77
Common GUI Components	

1 Introduction

Introduction

This chapter describes the basic functions and features of Keysight B1507A Power Device Capacitance Analyzer, and consists of the following sections.

- "Overview"
- "Mainframe Front View"
- "Mainframe Rear View"
- "Test Fixture Front View"
- "Test Fixture Rear View"
- "Software"
- "Accessories"
- "Options"
- "Measurement Resources"

Overview

Keysight B1507A Power Device Capacitance Analyzer provides a complete solution for the evaluation of power device capacitance (such as input, output, and reverse transfer capacitances). Intuitive GUI allows you to automatically measure all capacitances under a wide range of operating voltages. In addition, it makes it easy to switch back and forth between leakage tests (to verify the device is not damaged) and capacitance measurements without having to do any recabling.

The B1507A can help identify substandard devices under actual circuit operating voltage biases (up to 3 kV). This is an ideal complement to conventional IV test equipment (such as curve tracers) that do not have either capacitance or leakage testing capabilities.

The furnished software presents the user with an intuitive user interface that makes it easy to characterize devices without going through any formal training. Integrated switching circuitry within the test fixture supports fully-automated testing, with the ability to automatically make the correct connections for all types of capacitance measurements. This includes the insertion of DC blocking capacitors and AC blocking resistors as well as making the connections necessary for correct gate and drain/collector leakage measurements.

Unique plug-in style device test fixture socket adapter helps to eliminate cable connection and other human-related errors.

The B1507A contains the mainframe, the test fixture, the connection cables, and the control software. For the furnished accessories, see Table 1-1.

Mainframe

Mainframe is equipped with the measurement resources listed below, the 15-inch touch screen LCD panel, hard disk drive, DVD drive, USB, LAN, GPIB, GPIO interfaces, and so on. For more information on the measurement resources, see "Measurement Resources" on page 1-23.

- HVSMU, high voltage source/monitor unit, 1 ea.
- MFCMU, multi frequency capacitance measurement unit, 1 ea.
- MPSMU, medium power source/monitor unit, 1 ea.
- GNDU, ground unit, 1 ea.

The B1507A provides an intuitive graphical user interface, touch screen LCD, stylus pen, USB keyboard, and USB mouse for easy and effective measurement and analysis on the Windows environment, and supports the following B1507A control software. For more information, see "Software" on page 1-17.

- Easy Test Navigator software
- EasyEXPERT software

Test Fixture and Selector

The test fixture is required to connect your device under test (DUT). The following furnished accessories are available.

- Socket module for connecting a 3-pin inline package device
- Accessories for connecting other type of device
 - Connection wire
 - Clip
 - Banana pin adapter

The selector is connected between the mainframe and the test fixture. And it is used for switching the IV measurement and the CV measurement.

NOTE

Selector may emit a noise sound during operation. However it is not abnormal status.

Mainframe Front View

This section describes the front view of the mainframe.

1. Standby switch

Turns on/off the mainframe. Pressing the button in the ON state makes it in the standby state. The green LED lights when it is in the ON state.

NOTE

Opening measurement terminals

Open the measurement terminals at the device side when turning the B1507A on. Also disconnect the device from the measurement terminals and open the measurement terminals after the measurement. If you leave the connection with the device, the device may be damaged by unexpected operations or charge-up of measurement cables.

2. HDD access indicator

This green LED lights in the access status of HDD or DVD drive. Do not turn the instrument off during this LED lights.

Introduction Mainframe Front View

3. LCD adjustment keys

LCD Off enables or disables the LCD panel. The green LED lights when the LCD is disabled.

Four keys are available for adjusting brightness. Use + and - to adjust it and then press *Set* to fix it. Pressing *Cancel* instead of *Set* cancels the adjustment.

4. USB interfaces

USB, 2 ports. For keyboard, mouse, and so on.

To remove USB devices from the instrument, use "Safely Remove Hardware" on Windows taskbar. If it is not used, the instrument may cause the internal USB communication error. If the error occurs, turn the instrument off and disconnect the power cable from it. Leave it about 30 seconds before rebooting it, and connect the power cable again, and then turn the instrument on.

5. LCD panel

15 inch TFT XGA display, 1024×768 resolution. Displays the Windows screen, the B1507A control software window, and so on. Touch screen operation is available when the Touch Panel Off indicator does not light.

To adjust the touch panel, use Microchip TSHARC Control Panel which is opened by selecting *Microchip TSHARC Control Panel* from the Start menu.

6. Stop key

Stops the present measurement or source output immediately.

7. High voltage status indicator

This red LED lights when a source channel applies dangerous voltage.

8. Measurement status indicator

This green LED lights when a measurement channel performs measurement.

9. Rotary knob

Works on the execution environment of the B1507A control software. Rotating the knob moves the marker on the graph, or increases/decreases/changes the value in the active entry field. Pressing the knob sets or enters the value.

10. Softkeys

Seven softkeys are available for the B1507A control software. Used to select an alternative for the entry field specified or the dialog box.

11. DVD-R drive

For data backup, software update, and so on. With the option DR1, the drive is changed to the DVD-ROM drive.

12. Touch Panel Off key

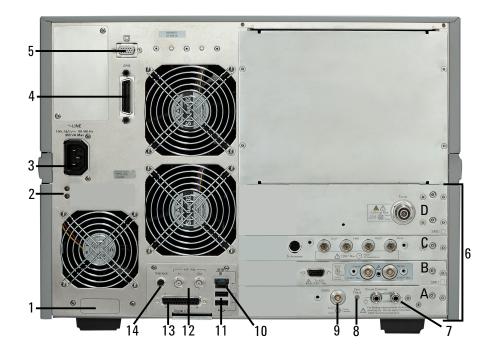
Works on the execution environment of the B1507A control software. Enables or disables the touch screen operation. The green LED lights when the touch screen is disabled.

Mainframe Rear View

This section describes the rear view of the mainframe.

WARNING

To avoid electrical shock and instrument damage, turn the all instruments off before connecting or disconnecting measurement cable.


Mettez la machine hors tension pour fixer le connecteur ou pour retirer le connecteur de l'unité centrale.

WARNING

There are potentially hazardous voltages (\pm 3000 Vdc for HVSMU and \pm 100 Vdc for MPSMU) present at the Force, Sense, and Guard terminals of the instruments. To prevent electrical shock, the following safety precautions must be observed during the use of instruments.

- Connect the instrument to an electrical ground (safety ground) by using three-conductor AC power cable.
- Connect the mainframe Interlock terminal to the selector Interlock terminal by using an interlock cable. Also connect the selector Interlock terminal to the test fixture Interlock terminal by using an interlock cable.
- Confirm periodically that the interlock function works normally.
- Before touching the connections on the Force, Sense, and Guard terminals in the test fixture, turn the instruments off and discharge any capacitors. If you do *not* turn the instruments off, complete *all* of the following items, regardless of the instrument settings.
 - Press the front panel Stop key to set the source output off.
 - Confirm that the front panel High Voltage indicator is not lit.
 - Open the Interlock terminal (open the fixture cover).
 - Discharge any capacitors connected to a measurement resource.
- Warn persons working around the instrument about dangerous conditions.

1. Serial number

You need this *serial number* when using Keysight Technologies telephone assistance program.

2. LED status indicator

For troubleshooting. Followings are some examples.

• Both LEDs turn off:

The instrument is in the standby state and Standby switch is OFF position.

One LED turns green:

Power supply works normally.

• Both LEDs turn orange:

The instrument is in the standby state and Standby switch is ON position.

3. LINE input receptacle

AC power cable is connected to this receptacle.

Introduction Mainframe Rear View

4. GPIB interface

Use an Keysight 82357A USB/GPIB interface or Keysight 10833A/B/C/D GPIB cable to connect to an external computer or equipment.

5. Video output terminal

VGA connector. For an external display. Signal to the built-in LCD is also applied to this terminal.

6. Measurement Resources

See A to D described later.

7. Circuit Common $(\frac{1}{2})$ and frame ground $(\frac{1}{2})$ terminals

Normally, connect the terminals together by using the shorting bar. For floating measurement, remove the shorting bar.

WARNING

If the Circuit Common terminal is *not* connected to the frame ground terminal (for floating measurement), a potential shock hazard may present. Do not touch any of measurement circuit at any time while a floating measurement is in progress.

CAUTION

For floating measurement, do not apply dangerous voltage to the Circuit Common terminal. Failure to heed this caution may result in damage to the instrument.

8. Zero Check terminal

Ground reference point of the instrument.

CAUTION

The Zero Check terminal can be used for the service purpose only. For the normal operation, leave this terminal open and do not connect anything to this terminal. Connecting anything can damage the instrument.

9. GNDU terminal

0 V constant voltage source. Used for the reference of measurement ground. Triaxial connector.

10. LAN interface

RJ45 connector.

11. USB interfaces

USB, 2 ports. For keyboard, mouse, or peripherals.

To remove USB devices from the instrument, use "Safely Remove Hardware" on Windows taskbar. If it is not used, the instrument may cause the internal USB communication error.

If the error occurs, turn the instrument off and disconnect the power cable from it. Leave it about 30 seconds before rebooting it, and connect the power cable again, and then turn the instrument on.

12. Ext Trig terminals

Two BNC connectors, one for trigger input, and one for trigger output. For details about the trigger function, see *Programming Guide*.

13. Digital I/O terminal

Used to connect the test fixture.

14. Interlock terminal

Used to connect the test fixture. If the fixture cover is open, maximum output is limited to ± 42 V.

To verify the interlock function, perform the Interlock Open/Close test on the Main Frame tab screen of the EasyEXPERT Configuration window.

WARNING

Dangerous voltage, instrument maximum output voltage may appear at Force, Sense, and Guard terminals if the fixture cover is closed.

A. GNDU/ADC

Ground unit (GNDU) and A/D converter.

⚠ B. MPSMU

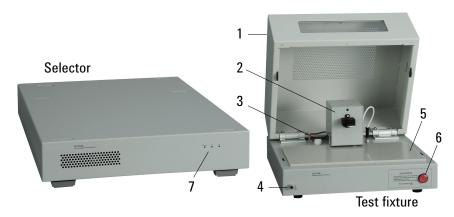
Medium power source/monitor unit (MPSMU) has two triaxial connectors, force and sense, for the Kelvin connections.

⚠ C. MFCMU

Multi frequency capacitance measurement unit (MFCMU) has four coaxial connectors, Lcur, Lpot, Hpot, and Hcur, for the four-terminal pair connection.

CAUTION

Do not apply voltage more than ±25 V to the MFCMU input terminals. Failure to heed this caution may result in damage to the MFCMU.



↑ D. HVSMU

High voltage source/monitor unit (HVSMU) has the force connector.

Test Fixture Front View

This section describes the front view of the test fixture and selector.

1. Fixture cover

The fixture cover should be closed to avoid electrical shock by touching measurement terminals and to prevent a device under test from external noise.

When the fixture cover is open, maximum output voltage is limited to ± 42 V.

WARNING

Hazardous voltage, instrument maximum output voltage may appear at the Force, Sense, and Guard terminals if the fixture cover is closed.

WARNING

Make sure that the cover is closed properly before starting measurement. Do not perform the measurement when a wire is protruding from the fixture cover.

Assurez-vous que le couvercle est fermé correctement avant de commencer la mesure. Ne pas effectuer la mesure lorsqu'un câble dépasse du couvercle de l'appareil.

2. 3-pin inline package socket module

Attach the module to the measurement terminals if your device under test (DUT) is a 3-pin inline packaged device.

↑ 3. Measurement terminals

Connects the connection wire or attaches the socket module for connecting your DUT. For more information, see "Measurement Terminals" on page 1-13.

- 4. Terminal for connecting wrist strap
- 5. DUT stage (silicon plate)

↑ 6. Hazardous voltage status indicator

This red LED lights when a measurement resource applies dangerous voltage. This indicator is connected to the mainframe via the Interlock terminal and works with the High Voltage indicator on the mainframe front panel.

Warming labels written in French, German, and Japanese are furnished. Attach the label to the front panel of the fixture if you need.

WARNING

The red light indicates that hazardous voltage (maximum \pm 3000 Vdc) may appear at measurement terminals. Check this indicator before accessing.

Le témoin rouge indique qu'une tension dangereuse (± 3000 V Max) risque d'apparaître au niveau des bornes de mesure. Vérifiez cet indicateur avant d'accéder.

7. Status indicator

Power LED turns yellow when the AC power is applied to the test fixture.

Power LED turns green when the test fixture is ready to use.

IV LED lights when the B1507A is in the IV measurement condition.

CV LED lights when the B1507A is in the capacitance measurement condition.

↑ Measurement Terminals

WARNING

Set the instrument output off before connecting or disconnecting connection wire.

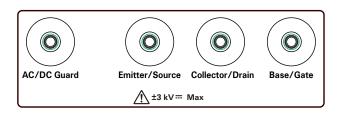
Press the mainframe front panel Stop key to set the source output off. And confirm that the mainframe front panel High Voltage indicator is not lit.

WARNING

Do not connect or disconnect your device under test (DUT) while Keysight B1507A is applying voltage or current. Otherwise, the DUT may be damaged.

When you touch the DUT after measurement, devise a countermeasure of residual charge and heat to prevent electrical shock and burn. Use glove and any tool. Also have enough time for discharge and radiation.

Pour éviter toute électrocution et tout risque d'endommagement de l'appareil, ne retirez pas les câbles pendant le fonctionnement.


Lorsque vous touchez le MST après la mesure, élaborez une contre-mesure de la charge résiduelle et du chauffage afin d'éviter tout choc électrique et toute brûlure. Utilisez des gants et des outils. Prévoyez également du temps pour la décharge et la radiation.

CAUTION

Never connect the terminals to any output, including circuit common and chassis ground. Connecting other output may damage the connected one.

NOTE

To use the 3-pin inline package socket module, attach it to the Base/Gate, Collector/Drain, and Emitter/Source terminals. Then do not use the AC/DC Guard terminal.

If you do not use the 3-pin inline package socket module, connect your device under test (DUT) to the terminals by using connection wire, clip, adapter, and so on.

1. Base/Gate terminal

Connect the terminal to the gate or base terminal of DUT.

2. Collector/Drain terminal

Connect the terminal to the drain or collector terminal of DUT.

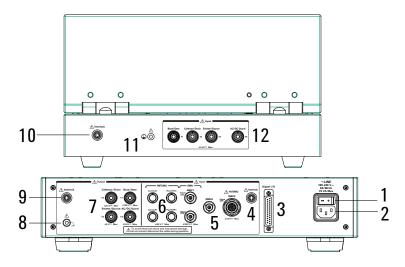
3. Emitter/Source terminal

Connect Force and Sense to the source or emitter terminal of DUT.

4. AC/DC Guard terminal

When the CV LED lights, this terminal works as the AC guard.

When the IV LED lights, this terminal works as the DC guard.


In the most cases, never connect anything to this terminal for safety and to prevent instrument damage.

5. Chassis common terminal

Use for grounding or shielding.

Test Fixture Rear View

This section describes the rear view of the test fixture and selector. For connecting the cables, see "To Connect Selector and Test Fixture" on page 2-11.

1. Power switch

Turns on/off the test fixture.

2. LINE input receptacle

AC power cable is connected to this receptacle.

3. Digital I/O terminal

This terminal is used to connect the Digital I/O cable from the mainframe Digital I/O terminal.

↑ 4. Interlock terminal

This terminal is used to connect the interlock cable from the mainframe Interlock terminal. The interlock cable is included in the system cable.

The following measurement resources in the mainframe are connected by using the system cable.

HVSMU

Introduction Test Fixture Rear View

- MPSMU
- GNDU
- ♠ 6. Connectors for connecting the CMU cable

The connectors are used to connect the CMU cable from the MFCMU in the mainframe.

↑ 7. Connectors for connecting the system cable from the test fixture

The connectors are used to connect the system cable for connecting the test fixture.

↑ 8. Earth terminal

Screw terminal for earthing. This terminal is used to connect the earthing wire for connecting the test fixture. The wire is included in the system cable.

- 9. Interlock terminal
 This terminal is used to connect the interlock cable for connecting the test
 - fixture. The interlock cable is included in the system cable.
- 10. Interlock terminal

 This terminal is used to connect the interlock cable from the selector.

WARNING Potentially hazardous voltage may be present at the test fixture measurement terminals when the Interlock terminals are shorted on the test fixture.

11. Earth terminal

Screw terminal for earthing. This terminal is used to connect the earthing wire from the selector.

12. Connectors for connecting the system cable from the selector

The connectors are used to connect the system cable from the selector.

Software

Keysight B1507A realizes easy and effective measurement and analysis on the Windows environment using an intuitive graphical user interface, touch screen LCD, stylus pen, keyboard, and mouse. The following software is previously installed or stored in the mainframe.

- "Easy Test Navigator Software"
- "EasyEXPERT Software"
- "Utility Software"

Easy Test Navigator Software

The Easy Test Navigator software provides measurement control programs for power device characterization. It supports various types of measurement task with ease-of-use and simple operation. Some of the functions are listed below. For more information on the Easy Test Navigator software, see Chapters 3 and 4.

- Programs included:
 - Three-terminal device capacitance measurement program
 - I/V characteristics measurement program
 - Device power loss calculation program
- Ready-to-use measurement templates for typical power device characteristics measurements
- Ability to automatically accumulate measurement data on the HDD in exportable formats

EasyEXPERT Software

The EasyEXPERT software is an application program for controlling Keysight B1500 series. Some of the functions are listed below. For more information, see Keysight EasyEXPERT *User's Guide*.

- Single measurement, repeat measurement, and append measurement
- Module selector control
- Measurement/setup data management by workspace
- Graph display and analysis with markers, cursors, and lines; and auto analysis
- Data import/export capability, data output by CSV/XML format, and graph output by EMF/BMP/GIF/PNG format
- Maintenance; self-test and self-calibration
- Remote control function from an external computer

The EasyEXPERT has the following measurement execution environments.

- Application test
- Classic test
- · Tracer test
- Quick test

NOTE

Application Library

The EasyEXPERT contains an application library that is a set of test definitions. The application test can be performed by selecting a test definition and setting the test condition for the actual DUT (device under test).

All test definitions are just sample. If the samples damage your devices, Keysight Technologies is NOT LIABLE for the damage.

Utility Software

Followings are the utility software available for the B1507A. For more information on the utility software, see Keysight EasyEXPERT *User's Guide Vol. 2*.

- Desktop EasyEXPERT software
 EasyEXPERT software runs on an external Windows PC. Not installed.
- 4155/4156 setup file converter

Program for converting the 4155/4156 measurement setup files (file extension MES or DAT) into EasyEXPERT classic test setup files. This program is stored in the following folder.

cprogram folder>\Agilent\B1500\EasyEXPERT\415xC\Conversion\

• MDM file converter

Program for converting EasyEXPERT data files (file extension XTR or ZTR) into Keysight IC-CAP MDM files. This program is stored in the following folder.

• Prober control programs

Execution files for controlling the probers listed below. The files are stored in the following folder.

Probers supported:

- Cascade Microtech Summit 12K or S300
- SUSS MicroTec PA200 or PA300
- Vector Semiconductor VX-2000 or VX-3000
- sleep.exe program

Execution file for inserting a wait time in the test execution flow of an EasyEXPERT application test. This file is stored in the following folder.

cprogram folder>\Agilent\B1500\EasyEXPERT\Utilities\

NOTE

Notations

<program folder> is as follows. Then, <system drive> is the drive the B1507A control software has been installed.

For Windows 7 64 bit version, <system drive>:\Program Files (x86)

For Windows 7 32 bit version, Vista, or XP, <system drive>:\Program Files

Accessories

Furnished accessories and the available accessories for Keysight B1507A are listed in Tables 1-1 and 1-2.

Table 1-1 Furnished Accessories

Description	Quantity
System cable between mainframe and selector	1
System cable between selector and fixture	1
CMU cable	1
Digital I/O cable	1
3-pin inline package socket module	1
Connection wire, 200 mm	4
Banana pin adapter for connection wire	4
Mini alligator clip	4
USB keyboard	1
USB mouse	1
Stylus pen	1
Power cable	2
Product Reference CD-ROM	1

Table 1-2 Available Accessories

Model Number	Option Item	Description
16444A		Accessories for B1500 series
	16444A-001	USB keyboard
	16444A-002	USB mouse
	16444A-003	Stylus pen
16493G		Digital I/O connection cable
	16493G-001	1.5 m length
	16493G-002	3 m length
N1300A		CMU connection cable
	N1300A-001	1.5 m length
	N1300A-002	3 m length

Options

Options available for Keysight B1507A are listed in Table 1-3.

Table 1-3 Options

Option Item	Description		
Calibration			
B1507A-A6J	ANSI Z540-1-1994 Calibration		
B1507A-UK6	Commercial calibration certificate with test data		
Documentation			
B1507A-ABA	User's Guide, English		
B1507A-ABJ	User's Guide, Japanese		
Drive option			
B1507A-DR1	Replace a built-in DVD-R drive with a read-only DVD drive		

Measurement Resources

Keysight B1507A is equipped with the following measurement resources.

- "GNDU Ground Unit"
- "MPSMU Medium Power SMU"
- "HVSMU High Voltage SMU"
- "MFCMU Multi Frequency CMU"

See Keysight EasyEXPERT *User's Guide Vol. 1* for the functions available for Keysight EasyEXPERT software. See *Programming Guide* for the functions available for the GPIB remote mode.

GNDU - Ground Unit

The ground unit (GNDU) is a 0 V constant voltage source, and used for the reference of measurement ground. Also the GNDU can sink up to ± 4.2 A, so it is effective for using MPSMU or HVSMU. Figure 1-1 is a simplified circuit diagram of GNDU.

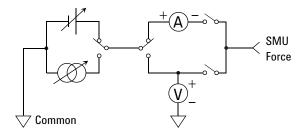
Figure 1-1 Simplified GNDU Circuit Diagram

About SMU

Source/monitor unit (SMU) can apply DC voltage or current, and can measure DC current or voltage. Figure 1-2 is a simplified SMU circuit diagram.

The MPSMU can perform the following operations:

- · Apply voltage and measures current or voltage
- Apply current and measures current or voltage


The HCSMU, MCSMU, and HVSMU can perform the following operations:

- Apply voltage and measures current and/or voltage
- Apply current and measures current and/or voltage

NOTE

To select the SMU operation mode in the GPIB remote condition, enter the CMM command.

Figure 1-2 Simplified SMU Circuit Diagram

Compliance

The SMU has a compliance feature that limits output voltage or current to prevent damage to the device under test. When the SMU applies voltage, you can specify current compliance. When the SMU applies current, you can specify voltage compliance. For details on the compliance, see Keysight EasyEXPERT *User's Guide Vol. 1*.

MPSMU - Medium Power SMU

This section describes typical specification of the medium power source/monitor unit (MPSMU).

- Maximum voltage, current, output power: ± 100 V, ± 100 mA, 2 W
- Minimum range: 0.5 V, 1 nA
- Output/measurement value and resolution: see Table 1-4 to Table 1-7.

Figure 1-3 MPSMU Output and Measurement Ranges

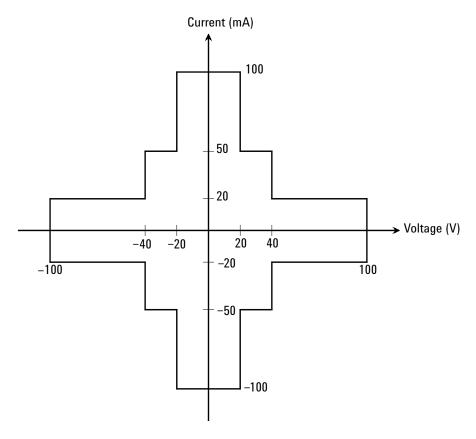


Table 1-4 MPSMU Output Voltage Ranges and Resolutions

Range	Output Value	Setting Resolution	Maximum Current
0.5 V	$0 \le V \le 0.5 V$	25 μV	± 100 mA
2 V	$0 \le V \le 2V$	100 μV	± 100 mA
5 V	$0 \le V \le 5 V$	250 μV	± 100 mA
20 V	$0 \le V \le 20 V$	1 mV	± 100 mA
40 V	$0 \le V \le 20 V$	2 mV	± 100 mA
	$20 \text{ V} < V \le 40 \text{ V}$	2 mV	± 50 mA
100 V	$0 \le V \le 20 V$	5 mV	± 100 mA
	$20 \text{ V} < V \le 40 \text{ V}$	5 mV	± 50 mA
	$40 \text{ V} < V \le 100 \text{ V}$	5 mV	± 20 mA

Table 1-5 MPSMU Output Current Ranges and Resolutions

Range	Output Value	Setting Resolution	Maximum Voltage
1 nA	$0 \le I \le 1.15 \text{nA}$	50 fA	± 100 V
10 nA	$0 \le I \le 11.5 \text{nA}$	500 fA	± 100 V
100 nA	$0 \le \mathbf{I} \le 115 \mathrm{nA}$	5 pA	± 100 V
1 μΑ	$0 \le I \le 1.15 \mu\text{A}$	50 pA	± 100 V
10 μΑ	$0 \le I \le 11.5 \mu\text{A}$	500 pA	± 100 V
100 μΑ	$0 \le I \le 115 \mu\text{A}$	5 nA	± 100 V
1 mA	$0 \le I \le 1.15 \mathrm{mA}$	50 nA	± 100 V
10 mA	$0 \le I \le 11.5 \text{ mA}$	500 nA	± 100 V
100 mA	$0 \le I \le 20 \mathrm{mA}$	5 μΑ	± 100 V
	$20 \text{ mA} < I \le 50 \text{ mA}$	5 μΑ	± 40 V
	$50 \text{ mA} < I \le 100 \text{ mA}$	5 μΑ	± 20 V

Table 1-6 MPSMU Measurement Voltage Values and Resolutions

Damas	Measurement	Measurem	ent Resolutions
Range	Value ^a	High Speed ADC	High Resolution ADC
0.5 V	$0 \le V \le 0.55 V$	25 μV	0.5 μV
2 V	$0 \le V \le 2.2 \text{ V}$	100 μV	2 μV
5 V	$0 \le V \le 5.5 V$	250 μV	5 μV
20 V	$0 \le V \le 22 V$	1 mV	20 μV
40 V	$0 \le V \le 44 V$	2 mV	40 μV
100 V	$0 \le V \le 100 \text{ V}$	5 mV	100 μV

Table 1-7 MPSMU Measurement Current Values and Resolutions

Dongo	Measurement	Measurem	ent Resolutions
Range	Value ^a	High Speed ADC	High Resolution ADC
1 nA	$0 \le I \le 1.15 \text{nA}$	50 fA	10 fA
10 nA	$0 \le I \le 11.5 \mathrm{nA}$	500 fA	10 fA
100 nA	$0 \le I \le 115 \text{ nA}$	5 pA	100 fA
1 μΑ	$0 \le I \le 1.15 \mu\text{A}$	50 pA	1 pA
10 μΑ	$0 \le I \le 11.5 \mu\text{A}$	500 pA	10 pA
100 μΑ	$0 \le I \le 115 \mu\text{A}$	5 nA	100 pA
1 mA	$0 \le I \le 1.15 \text{ mA}$	50 nA	1 nA
10 mA	$0 \le I \le 11.5 \text{ mA}$	500 nA	10 nA
100 mA	$0 \le I \le 100 \text{ mA}$	5 μΑ	100 nA

a. This column is applied to the auto ranging or the limited auto ranging. For fixed ranging, maximum measurement value is **Range** column value.

HVSMU - High Voltage SMU

This section describes typical specification of the high voltage source/monitor unit (HVSMU).

- Maximum voltage/current: 3000 V/4 mA, -3000 V/-4 mA, 1500 V/8 mA, or -1500 V/-8 mA
- Maximum output power: 12 W
- Minimum range: 200 V, 1 nA
- Output/measurement value and resolution: see Table 1-8 and Table 1-9.

CAUTION

Never connect the HVSMU Force and Guard terminals to any output, including circuit common, chassis ground, or any other measurement resource such as SMU. Connecting other measurement resource may damage the connected one.

Figure 1-4 HVSMU Output and Measurement Ranges

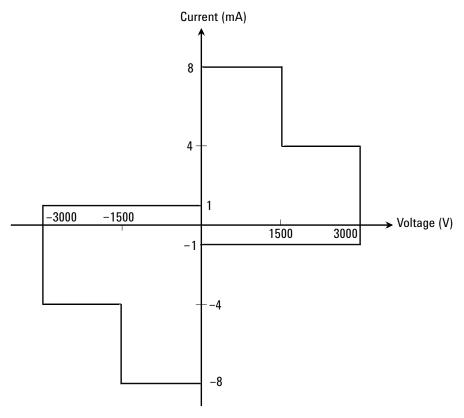


Table 1-8 HVSMU Voltage Ranges and Resolutions

Range	Output Value and Measurement Value	Setting/ Measurement Resolution	Maximum Current Imax
200 V	$0 \le V \le 200 \text{ V}$	200 μV	8 mA
500 V	$0 \leq V \leq 500 \text{ V}$	500 μV	8 mA
1500 V	$0 \le V \le 1500 V$	1.5 mV	8 mA
3000 V	$0 \le V \le 3000 V$	3 mV	4 mA

Table 1-9 HVSMU Current Ranges and Resolutions

Range	Output Value and Measurement Value	Setting/ Measurement Resolution	Maximum Voltage Vmax
1 nA ^a	$0 \leq I \leq 1.15 \text{ nA}$	10 fA	3000 V
10 nA	$0 \le I \le 11.5 \mathrm{nA}$	100 fA	3000 V
100 nA	$0 \le I \le 115 \text{ nA}$	100 fA	3000 V
1 μΑ	$0 \le I \le 1.15 \mu\text{A}$	1 pA	3000 V
10 μΑ	$0 \le I \le 11.5 \mu\text{A}$	10 pA	3000 V
100 μΑ	$0 \le I \le 115 \mu\text{A}$	100 pA	3000 V
1 mA	$0 \le I \le 1.15 \text{ mA}$	1 nA	3000 V
10 mA	$0 \le I \le 8 \text{ mA}$	10 nA	1500 V
	$0 \le I \le 4 \text{ mA}$		3000 V

a. DC only

MFCMU - Multi Frequency CMU

This section describes typical specification of the multi frequency capacitance measurement unit (CMU). The CMU performs the impedance measurement and returns the specified measurement data such as Cp-G.

- Measurement parameters: See Table 1-10.
- AC signal, output frequency:

1 kHz to 5 MHz

Setting resolution: 1 mHz (1 kHz to), 10 mHz (10 kHz to), 0.1 Hz (100 kHz to), or 1 Hz (1 MHz to 5 MHz)

• AC signal, output level:

10 mVrms to 250 mVrms, 1 mV resolution

• DC bias:

0 to \pm 25 V, using MFCMU internal DC bias

0 to \pm 3000 V, using HVSMU and high voltage bias-tee

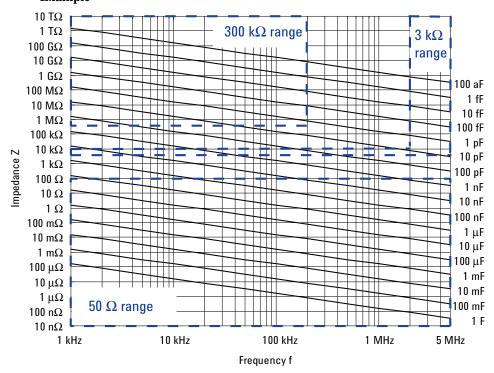
• Measurement range:

For the fixed ranging mode, measurement range (impedance range) must be specified to perform measurement. Table 1-11 shows the available measurement ranges and the corresponding impedance value. And Figure 1-5 shows the calculation example of the impedance vs frequency characteristics of a capacitive load. Use these information to decide the measurement range.

Impedance *Z* is calculated by the following formula.

$$Z = 1 / (2\pi f C)$$

where f is frequency (Hz) and C is capacitance (F).


 Table 1-10
 Measurement Parameters

Primary Parameter	Secondary Parameter
R (resistance, Ω)	X (reactance, Ω)
G (conductance, S)	B (susceptance, S)
Z (impedance, Ω)	θ (phase, radian)
Z (impedance, Ω)	θ (phase, degree)
Y (admittance, S)	θ (phase, radian)
Y (admittance, S)	θ (phase, degree)
Cp (parallel capacitance, F)	G (conductance, S)
Cp (parallel capacitance, F)	D (dissipation factor)
Cp (parallel capacitance, F)	Q (quality factor)
Cp (parallel capacitance, F)	Rp (parallel resistance, Ω)
Cs (series capacitance, F)	Rs (series resistance, Ω)
Cs (series capacitance, F)	D (dissipation factor)
Cs (series capacitance, F)	Q (quality factor)
Lp (parallel inductance, H)	G (conductance, S)
Lp (parallel inductance, H)	D (dissipation factor)
Lp (parallel inductance, H)	Q (quality factor)
Lp (parallel inductance, H)	Rp (parallel resistance, Ω)
Ls (series inductance, H)	Rs (series resistance, Ω)
Ls (series inductance, H)	D (dissipation factor)
Ls (series inductance, H)	Q (quality factor)

Table 1-11 Measurement Range for Fixed Ranging Mode

Impedence 7	Measurement range (impedance range)		
Impedance Z	$1 \text{ kHz} \leq \text{ f} \leq 200 \text{ kHz}$	$200 \text{ kHz} < f \le 2 \text{ MHz}$	$2 \text{ MHz} < f \le 5 \text{ MHz}$
$0 \le Z < 100 \Omega$	50 Ω	50 Ω	50 Ω
$100 \ \Omega \le \ Z < 300 \ \Omega$	100 Ω	100 Ω	100 Ω
$300 \Omega \le Z < 1 k\Omega$	300 Ω	300 Ω	300 Ω
$1 \text{ k}\Omega \leq Z < 3 \text{ k}\Omega$	1 kΩ	1 kΩ	1 kΩ
$3 \text{ k}\Omega \leq Z < 10 \text{ k}\Omega$	3 kΩ	3 kΩ	3 kΩ
$10 \text{ k}\Omega \leq Z < 30 \text{ k}\Omega$	10 kΩ	10 kΩ	
$30 \text{ k}\Omega \leq Z < 100 \text{ k}\Omega$	30 kΩ	30 kΩ	
$100 \text{ k}\Omega \le Z < 300 \text{ k}\Omega$	100 kΩ		
300 kΩ ≤ Z	300 kΩ		

Figure 1-5 Impedance vs Frequency Characteristics of Capacitive Load, Calculation Example

2 Installation

Installation

This chapter describes how to install Keysight B1507A.

- "Requirements"
- "Inspection and Installation"
- "Connecting Accessories"
- "Maintenance"
- "Before Shipping to Service Center"

WARNING

To avoid electrical shock and instrument damage, turn the all instruments off before connecting or disconnecting measurement cable.

Mettez la machine hors tension pour fixer le connecteur ou pour retirer le connecteur de l'unité centrale.

WARNING

The mainframe and the test fixture are heavy and require a two person lift.

Le châssis principale et l'équipement de test sont lourds et nécessitent un levage par deux personnes.

CAUTION

Do not grab the fixture cover when lifting the test fixture.

WARNING

There are potentially hazardous voltages (\pm 3000 Vdc for HVSMU and \pm 100 Vdc for MPSMU) present at the Force, Guard, and Sense terminals of the instruments. To prevent electrical shock, the following safety precautions must be observed during the use of instruments.

- Connect the instrument to an electrical ground (safety ground) by using three-conductor AC power cable.
- Connect the mainframe Interlock terminal to the selector Interlock terminal by using an interlock cable. Also connect the selector Interlock terminal to the test fixture Interlock terminal by using an interlock cable.
- Confirm periodically that the interlock function works normally.
- Before touching the connections on the Force, Guard, and Sense terminals
 in the test fixture or the shielding box, turn the instruments off and
 discharge any capacitors. If you do not turn the instruments off, complete
 all of the following items, regardless of the instrument settings.
 - Press the front panel Stop key to set the source output off.
 - Confirm that the front panel High Voltage indicator is not lit.
 - Open the Interlock terminal (open the fixture cover or the shielding box access door).
 - Discharge any capacitors connected to a measurement resource.
- Warn persons working around the instruments about dangerous conditions.

Requirements

This section describes the requirements for the environment this instrument is used.

- "Power Requirements"
- "Operating Environment"
- "Storaging/Shipping Environment"
- "Installation Requirements"
- "Power Cable"

Power Requirements

This instrument can operate from any single-phase AC power source supplying $100/240 \text{ V } (\pm 10 \text{ \%})$ at 50/60 Hz. The maximum power consumption is shown below.

• Mainframe: 900 VA

Selector: 70 VA

Operating Environment

This instrument must be operated within the following environmental conditions:

Temperature: +5 °C to +40 °C

Humidity: 20 % to 70 % RH, no condensation

Altitude: 0 to 2,000 m (6,561 ft.)

Storaging/Shipping Environment

This instrument must be stored/shipped within the following environmental conditions:

Temperature: $-20 \,^{\circ}\text{C}$ to $+60 \,^{\circ}\text{C}$

Humidity: 10 % to 90 % RH, no condensation

Altitude: 0 to 4,600 m (15,092 ft.)

Installation Requirements

WARNING

Do not operate the instrument in dusty environment, or in the presence of flammable gasses, corrosive gasses, or fumes.

Ne pas utiliser l'appareil dans un endroit poussiéreux, ou en présence de gaz inflammables, corrosifs ou de fumée.

- Environmental conditions for this instrument are documented in the previous page. In principle, this instrument should only be operated indoors in a controlled environment.
- Install the instrument horizontal place then face the roof up.
- The dimensions of this instrument are shown below. Fan cools the instrument by
 drawing air through the sides and exhausting it out the back. The instrument
 must be installed in a location that allows sufficient space at the sides and back
 of the instrument for adequate air circulation.
 - Mainframe: $420 \text{ mm (W)} \times 575 \text{ mm (D)} \times 330 \text{ mm (H)}$
 - Selector: $420 \text{ mm (W)} \times 575 \text{ mm (D)} \times 75 \text{ mm (H)}$
 - Test fixture: 340 mm (W) \times 345 mm (D) \times 200 mm (H)

If the airflow is restricted, the internal operating temperature will be higher. This may reduce the instrument's reliability, or cause the thermal-protection circuits to turn the instrument off.

• Make sure that there is enough space for connecting/disconnecting the power cable easily.

Power Cable

WARNING

FIRE HAZARD: Use only the power cable supplied with your instrument. Using other types of power cable may cause overheating of the power cable, resulting in fire.

SHOCK HAZARD: The power cable provides the chassis ground through a third conductor. Be sure to connect to a three-conductor type power outlet with the correct pin grounded.

RISQUE D'INCENDIE : utilisez uniquement le câble d'alimentation fourni avec votre appareil. L'utilisation d'autres types de câble d'alimentation peut provoquer une surchauffe du câble d'alimentation et provoquer un incendie.

RISQUE DE CHOC ÉLECTRIQUE: le câble d'alimentation fournit la masse du châssis par le biais d'un troisième conducteur. Assurez-vous de connecter la prise d'alimentation de type trois conducteurs avec la broche correcte mise à la terre.

NOTE

The detachable power cable may be used as an emergency disconnecting device. Removing the power cable will disconnect AC input power to the instrument.

Connect the power cable to the IEC 320 connector on the rear of the instrument. If the wrong power cable was shipped with your instrument, contact your nearest Keysight Sales and Support Office.

The AC input on the back of your instrument is a universal AC input. It accepts nominal line voltages in the range of 100 to 240 VAC.

Option 900	Option 901	Option 902	Option 903
Spinot State of the State of th	A DOME	5	and the second s
 Plug: BS 1363/A, 250 V, 10 A PN: 8120-4420 	 Plug: AS/NZS 3112, 250 V, 10 A PN: 8120-4419 	 Plug: IEC 60277-1, 250 V, 10 A PN: 8121-1226 	 Plug: NEMA 5-15P, 125 V, 10 A PN: 8120-6825
Option 904	Option 906	Option 912	Option 917
 Plug: NEMA 6-15P, 250 V, 10 A PN: 8120-3996 	• Plug: SEV 1011, 250 V, 10 A • PN: 8120-4416	 Plug: SB 107-2-D1, 250 V, 10 A PN: 8121-1655 	 Plug: IS 1293 and IS 6538, 250 V, 10 A PN: 8121-1690
Option 918	Option 919	Option 920	Option 921
 Plug: JIS C 8303, 125 V, 12 A PN: 8121-0743 	 Plug: Israel SI 32, 250 V, 10 A PN: 8121-0724 	 Plug: IRAM 2073, 250 V, 10 A PN: 8121-0725 	 Plug: CEI 23-16, 250 V, 10 A PN: 8121-0722
Option 922	Option 923	Option 927	Option 930
 Plug: GB 1002 figure 3, 250 V, 10 A PN: 8120-8376 	 Plug: SANS 164-1, 250 V, 10 A PN: 8121-0564 	 Plug: NEMA WD-6, 250 V, 10 A PN: 8120-0674 	Plug: NBR 14136, 250 V, 10 APN: 8121-1809
Option 931	Option 932		
 Plug: CNS 10917-2, 125 V, 10 A PN: 8121-1635 	 Plug: CS 0017, 250 V, 10 A PN: 8121-1638 		

Inspection and Installation

Do the following when this instrument arrived.

- "To Inspect Shipment"
- "To Perform Initial Setup"
- "To Connect Selector and Test Fixture"
- "To Check Operation of Selector"

Do the following setup if you need.

- "To Change Windows Logon Setting"
- "To Change GPIB Address"
- "To Enable System Controller"

To Inspect Shipment

- 1. Before unpacking any components, inspect all boxes for any signs of damage that might have occurred during shipment, such as:
 - dents
 - scratches
 - cuts
 - water marks

If you suspect any damage, contact Keysight Technologies.

2. When you open the boxes that contain the instrument and accessories, check the components against the contents lists attached to the boxes.

If anything is missing, contact Keysight Technologies.

After the inspection, move the instrument and accessories to the installation site. For the requirements for the installation site, see "Requirements" on page 2-4.

To Perform Initial Setup

- 1. Place the mainframe at the installation site.
- 2. Make sure that the Standby switch is set to off.
- 3. On the rear panel, connect the Circuit Common terminal to the frame ground terminal by using a shorting-bar.
- 4. If you use the furnished USB keyboard and/or USB mouse, connect it to an USB port of the mainframe.
- 5. Connect the power cable from the mainframe to an AC power outlet.
- Open the measurement terminals and press the Standby switch to turn on the mainframe.
 - If the mainframe is operating correctly, the power-on self-test is automatically performed. If problems arise, contact Keysight Technologies.
- 7. Follow the Windows setup wizard and complete the initial setup.
 - a. Set the system display language to English. The language must be English. If you set another language, you must perform the system recovery of the B1507A. See Keysight EasyEXPERT *User's Guide Vol.* 2 for the system recovery.
 - b. Set Country or region, Time and currency, and Keyboard layout.
 If you use the furnished USB keyboard, the Keyboard layout must be US.
 - c. Accept the End User License Agreement.
 - d. Set Time zone, date and time.

If the mainframe has been already connected to your site LAN, you can proceed the network connection setup. If you connect the mainframe to the network, take care to protect it from computer virus.

You can set other setup of Windows after the initial setup. It is your responsibility. NOTE Keysight Technologies cannot guarantee the performance and provide compatibility information for all B1507As under several conditions. If problems arise perform

information for all B1507As under several conditions. If problems arise, perform Keysight B1507A system recovery.

To perform recovery, see Keysight EasyEXPERT User's Guide Vol. 2.

Installation
Inspection and Installation

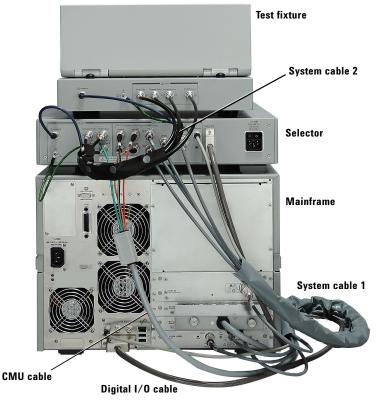
Users listed in Table 2-1 are available just after the initial setup.

Table 2-1 Users Available Just After the Initial Setup

User Account	Description
Keysight B1500 User	Account for automatic logon. Password is not set to this account.
keysightOnly	Account for Keysight service personnel. Do not delete this account. This account is password protected.
Administrator	Administrator. Password is not set to this account.

You can add users after the initial setup. Add users as you need.

To Connect Selector and Test Fixture


WARNING

 \bigwedge

To avoid electrical shock and instrument damage, turn the all instruments off before connecting or disconnecting measurement cable.

Mettez la machine hors tension pour fixer le connecteur ou pour retirer le connecteur de l'unité centrale.

Figure 2-1 B1507A Rear View

Connect the system cables between the mainframe, selector, and test fixture as shown in Figure 2-1. Also see Tables 2-2 and 2-3.

- 1. Connect the System cable between the mainframe and the selector.
- 2. Connect the CMU cable.
- 3. Connect the Digital I/O cable.

4. Connect the System cable between the selector and the test fixture.

Table 2-2 System Cable Connections between Mainframe and Selector

Mainframe		Label of Cable		Selector				
System Cable 1								
Interlock		none	none	Interlock				
GNDU		GNDU	GNDU	GNDU				
SMU1	Sense	1S	1S	Sense (1S)	SMU			
	Force	1F	1F	Force (1F)	SMU1			
SMU2	Force	2	2	Force (2F)	HVSMU SMU2			
CMU Cable								
MFC	MFCMU		HP	Hpot (HP)	MFCMU			
		Lpot	LP	Lpot (LP)				
		Heur	НС	Hcur (HC)				
		Leur	LC	Lcur (LC)				
Digital I/O Cable								
Digital I/O		none	none	Digital I/O				

Table 2-3 System Cable Connections between Selector and Test Fixture

Selector	Label of Cable		Test Fixture					
System Cable 2								
AC/DC Guard	T4	T4	AC/DC Guard					
Emitter/Source	Т3	Т3	Emitter/Source					
Base/Gate	T1	T1	Base/Gate					
Collector/Drain	T2	T2	Collector/Drain					
Earth terminal	none	none	Earth terminal					
Interlock	none	none	Interlock					

To Check Operation of Selector

- 1. Complete the cable connections described in "To Connect Selector and Test Fixture" on page 2-11.
- 2. Connect the power cable from the selector to an AC power outlet.
- 3. Connect the power cable from the mainframe to an AC power outlet.
- 4. Open the measurement terminals of the test fixture and close the fixture cover.
- 5. Set the selector power switch to the ON position to turn on the selector.
- 6. Press the mainframe Standby switch to turn on the mainframe.
- 7. After boot up, launch the Capacitance Measurement software.
- 8. Click the Configuration > Module menu to display the Module Configuration dialog box.
- 9. Perform diagnosis of the selector by using the Module Configuration dialog box. If problems arise, contact Keysight Technologies.

To Change Windows Logon Setting

Windows automatic logon has been enabled initially. If you want to change this setting, select *All Programs* > *Control Auto Logon* from the Start menu. Control Auto Logon is displayed on the browser. Then click one of the following buttons on the browser and follow the setup script.

- Enable Auto Logon
- Disable Auto Logon

NOTE

If you set a password for the user account *Keysight B1500 User*, disable the automatic logon.

To Change GPIB Address

When this instrument is shipped from the factory, the GPIB address is set to 17. To change the GPIB address, perform the following procedure.

- 1. If the EasyEXPERT software is running, terminate it as shown below:
 - a. Select the menu function *File* > *Exit* on the EasyEXPERT main screen.
 - b. Click [x] at the upper right corner of the Start EasyEXPERT button.
- 2. Select *All Programs > Keysight IO Libraries Suite > Keysight Connection Expert* from the Start menu. Keysight Connection Expert window appears.
- 3. At the *Instrument I/O on this PC* area, select GPIB0, and click the Change Properties... button. Keysight 82350 PCI GPIB Interface GPIB0 window appears.
- 4. Change the GPIB Address value.
- 5. Remove the check from the *Auto-discover instruments connected to this interface* box.
- 6. Click the OK button on Keysight 82350 PCI GPIB Interface GPIB0 window.
- 7. On the Reboot Required dialog box, click the Reboot Now button, and reboot the mainframe.

To Enable System Controller

To allow this instrument to control external GPIB devices, perform the following procedure. After the procedure, you cannot control the instrument from an external computer.

- 1. If the EasyEXPERT software is running, terminate it as shown below:
 - a. Select the menu function *File > Exit* on the EasyEXPERT main screen.
 - b. Click [x] at the upper right corner of the Start EasyEXPERT button.
- 2. Select *All Programs > Keysight IO Libraries Suite > Keysight Connection Expert* from the Start menu. Keysight Connection Expert window appears.
- 3. At the *Instrument I/O on this PC* area, select GPIB0, and click the Change Properties... button. Keysight 82350 PCI GPIB Interface GPIB0 window appears.
- 4. Set the GPIB Address value to 21 that is the typical address number for the system controller.
- 5. Check the *System Controller* box.
- 6. Remove the check from the *Auto-discover instruments connected to this interface* box.
 - This disables the automatic device detection. So the Connection Expert cannot detect the instruments connected to the GPIB interface by itself.
- 7. Click the OK button on Keysight 82350 PCI GPIB Interface GPIB0 window.
- 8. On the Reboot Required dialog box, click the Reboot Now button, and reboot the mainframe.

NOTE

To Disable System Controller

To disable the system controller, change the steps 4 and 5 for setting the GPIB Address value to *not* 21 and removing the check from the *System Controller* box, and perform the procedure to the step 8.

Connecting Accessories

The test fixture is used to connect your device under test (DUT). The B1507A is furnished with the following accessories.

- "3-pin Inline Package Socket Module"
- "Accessories for Connecting a DUT"

WARNING

Set the instrument output off before connecting or disconnecting connection wire.

Press the mainframe front panel Stop key to set the source output off. And confirm that the mainframe front panel High Voltage indicator is not lit.

WARNING

To prevent electrical shock and DUT damage, do not connect or disconnect the DUT while the instrument is applying voltage or current.

When you touch the DUT after measurement, devise a countermeasure of residual charge and heat to prevent electrical shock and burn. Use glove and any tool. Also have enough time for discharge and radiation.

Pour éviter toute électrocution et tout risque d'endommagement de l'appareil, ne retirez pas les câbles pendant le fonctionnement.

Lorsque vous touchez le MST après la mesure, élaborez une contre-mesure de la charge résiduelle et du chauffage afin d'éviter tout choc électrique et toute brûlure. Utilisez des gants et des outils. Prévoyez également du temps pour la décharge et la radiation.

3-pin Inline Package Socket Module

Use the socket module to connect a three-terminal inline packaged device. See the following simple instruction.

Requirements

- 3-pin inline package socket module
- DUT

Procedure

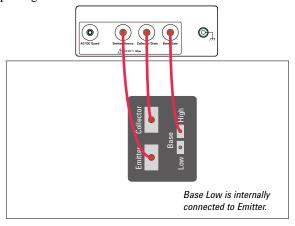
- 1. If the earthing wire is not connected to the socket module, connect it.
- 2. Attach the socket module directly to the Base/Gate, Collector/Drain, and Emitter/Source terminals of the test fixture.
- 3. Connect the earthing wire of the socket module to the chassis common terminal.
- 4. Set your DUT on the socket.
- 5. Close the fixture cover and perform measurement.

DUT————————————————————————————————————	Chassis
	Socket module

WARNING

Hazardous voltage, instrument maximum output voltage may appear at the measurement terminals if the fixture cover is closed.

WARNING


Open the Guard terminal of the test fixture. Do not connect anything to it.

NOTE

Short plate is furnished with the socket module. It is used for performing the short correction before the capacitance measurement. Set it on the socket before the short correction and remove it after the correction.

Accessories for Connecting a DUT

Use the connection wire, clip, adapter, and so on to connect a device other than 3-pin inline package.

Requirements

- Connection wire, clip, adapter, and so on. Use the furnished accessories.
- DUT (other than 3-pin inline package device)

Procedure

- 1. Put your DUT on the DUT stage (silicon plate). The device size should be smaller than approximately 280 mm (W) \times 140 mm (D) \times 100 mm (H).
- 2. Connect your DUT to the measurement terminals of the test fixture by using connection wire, clip, adapter, and so on.
- 3. Close the fixture cover and perform measurement.

WARNING

Hazardous voltage, instrument maximum output voltage may appear at the measurement terminals if the fixture cover is closed.

WARNING

Open the AC/DC Guard terminal to avoid electrical shock, instrument damage, or DUT damage. Do not connect anything to this terminal which may have the same potential as the Collector/Drain terminal.

WARNING

Make sure that the cover is closed properly before starting measurement. Do not perform the measurement when a wire is protruding from the fixture cover.

Assurez-vous que le couvercle est fermé correctement avant de commencer la mesure. Ne pas effectuer la mesure lorsqu'un câble dépasse du couvercle de l'appareil.

Maintenance

Maintenance should be performed periodically to keep the instrument in good condition.

Cleaning

Before performing cleaning, turn off the instrument, and disconnect power cable from the rear panel. Use a dry cloth to clean the external case parts.

To prevent electrical shock, do not perform cleaning when the instrument is turned on, and do not use a wet cloth.

Self-test and Diagnosis

This instrument provides the following functions to check the operation. Perform the following functions as necessary. Open the measurement terminals to perform self-test, self-calibration, or diagnosis.

- Self-test
- Self-calibration
- Diagnosis

If problems arise, contact Keysight Technologies.

NOTE

Interlock Open/Close test and High Voltage LED test

Interlock function limits the maximum output voltage to \pm 42 V when the measurement terminal is touchable. For safety, this function must be checked before using the instrument after power on at least once a day by performing the diagnosis.

Calibration

Calibration and adjustments must be performed periodically so that the instruments satisfy the specifications, and keep a good condition. It is recommended to perform the calibration once a year at least. For the calibration and adjustments, contact Keysight Technologies. Trained service personnel will perform the calibration and adjustments.

Before Shipping to Service Center

Before shipping this instrument to service center, you have to do following:

- "To Make Backup"
- "To Check Module Slots"
- "To Collect Equipment and Accessories"

To Make Backup

If the internal hard disk drive (HDD) is failed, you will lose all data stored in the HDD. So it is important to make backup constantly.

Before shipping the instrument to the service center, make backup of data in the HDD. And keep the backup media in trust. You may need to perform data recovery of the instrument returned from the service center.

If the HDD is replaced, the instrument will be returned with the latest revision of the software.

To Check Module Slots

Do not remove the plug-in module from the mainframe. The instrument must be shipped with all modules. The module cannot be repaired or calibrated without the mainframe.

If a module is removed and installed, the specifications are not guaranteed. The specifications are guaranteed after the calibration is performed at Keysight Technologies service center.

To Collect Equipment and Accessories

The mainframe, test fixture, and all connection cables are required for servicing and must be shipped to the service center. For details, contact the service center.

WARNING

To prevent electrical shock, turn off the instrument and remove the power cable before removing the connection cables.

Mettez la machine hors tension pour fixer le connecteur ou pour retirer le connecteur de l'unité centrale.

How To Perform Measurement

3

How To Perform Measurement

This chapter describes how to measure the power devices by using Keysight B1507A and Keysight Easy Test Navigator Software, and consists of the following sections:

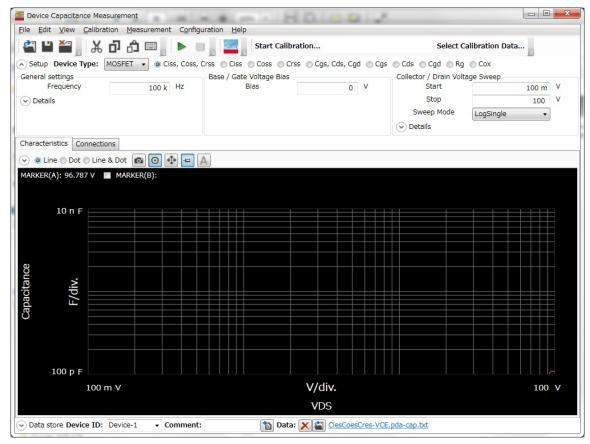
• How To Perform Capacitance Measurement

This section describes how to perform the measurement using the capacitance measurement software.

• How To Perform I/V Measurement

This section describes how to perform the measurement using the I/V measurement software.

• How To Calculate Power Loss


This section describes how to calculate the power loss using the power loss calculation software.

How To Perform Capacitance Measurement

This section describes how to perform a measurement using the capacitance measurement software and consists of the following sub-sections:

- Preparing Measurement
- Executing Measurement
- Setting Parameter

Figure 3-1 Capacitance Measurement Software

How To Perform Measurement
How To Perform Capacitance Measurement

Preparing Measurement

WARNING

Set the instrument output off before connecting or disconnecting connection wire.

Press the mainframe front panel Stop key to set the source output off. And confirm that the mainframe front panel High Voltage indicator is not lit.

WARNING

To prevent electrical shock and DUT damage, do not connect or disconnect the DUT while the instrument is applying voltage or current.

When you touch the DUT after measurement, devise a countermeasure of residual charge and heat to prevent electrical shock and burn. Use glove and any tool. Also have enough time for discharge and radiation.

Step 1. Prepare the test fixture and other accessories to connect your device under test (DUT).

For more information on the test fixture and its accessories, see the following sections:

- "To Connect Selector and Test Fixture" on page 2-11
- "3-pin Inline Package Socket Module" on page 2-17
- "Accessories for Connecting a DUT" on page 2-18

Step 2. Connect the test fixture and, 3-pin inline package socket module or other accessories that is adequate for your DUT.

For more information, see the following sections:

- "To Connect Selector and Test Fixture" on page 2-11
- "3-pin Inline Package Socket Module" on page 2-17
- "Accessories for Connecting a DUT" on page 2-18

Step 3. Turn the instrument on.

Don't connect your DUT to the test fixture at this time.

Executing Measurement

NOTE

This section explains the procedure using an example that selects MOSFET as a device type of DUT and Ciss, Coss, Crss as a measurement item.

Execute a measurement as follows:

- **Step 1.** On the software palette, click the Capacitance Measurement icon Capacitance Measurement software (Figure 3-1) opens.
- **Step 2.** At the Setup area in work area, select a device type of your DUT and a measurement item to be measured.

Device Type

Select a device type from the Device Type drop-down list.

NOTE

This example selects MOSFET.

Measurement Item

From the radio buttons located on the right of a Device Type selection, which is MOSFET in this example, select a measurement item to be measured.

NOTE

This example selects Ciss, Coss, Crss.

NOTE

For information on the available device types and measurement items, see Table 3-1 on page 3-8

By selecting a device type and measurement item, the setup items displayed in the Setup area are automatically switched. **Step 3.** Enter the measurement frequency in the Frequency of General settings located at the left part of Setup area.

General settings		
Frequency	100 k	Hz
○ Details		


By clicking the Details chevron, the area expands to set more detail conditions.

For more information on setting items, see "Setup" on page 4-11.

Step 4. Enter the bias voltage value in the Bias of Base/Gate Voltage Bias at the center of Setup area.

Base / Gate Voltage Bias		
Bias	0	V

Step 5. Enter or select the voltage sweep conditions in the Collector/Drain Voltage Sweep at the right of Setup area.

Start Enter a start voltage value of sweep.

Stop Enter a stop voltage value of sweep.

Sweep Mode Select a sweep mode.

LinearSingle One-way linear sweep from the Start to the

Stop.

LogSingle One-way logarithmic sweep from the Start

to the Stop.

Linear-Double Linear-sweep from the Start to the Stop and

then return linear-sweep from the Stop to

the Start.

LogDouble Logarithmic-sweep from the Start to the

Stop and then return logarithmic-sweep

from the Stop to the Start.

By clicking the **Details** chevron, the area expands to set more detail conditions.

For more information on setting items, see "Setup" on page 4-11.

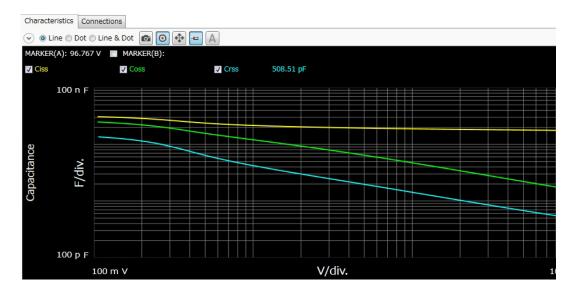
Step 6. Click the Start Calibration... button in the toolbar to measure the calibration data of measurement path.

Follow the instruction displayed on the dialog to measure the open and short calibration data.

If you have measured and saved the calibration data of measurement path, click the Select Calibration Data... button in the toolbar to select and load the stored calibration data.

Step 7. Set your DUT on the test fixture and click the Start Measurement button start a measurement.

You can stop the measurement by clicking the Stop Measurement button during a measurement execution.



NOTE

If your DUT is diode, connect the cathode of your DUT to the Collector/Drain terminal of the test fixture and the anode of your DUT to the Emitter/Source terminal of the test fixture.

Step 8. Click the Characteristics tab to display the Characteristics area.

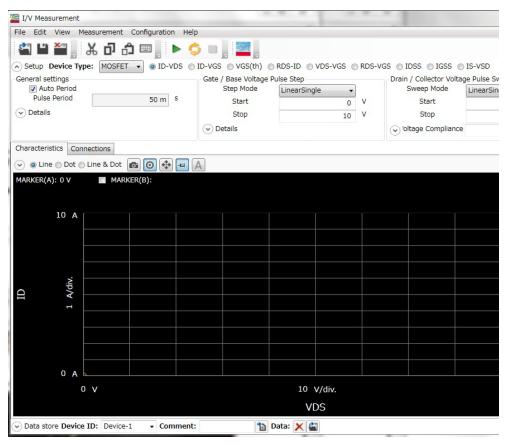
After a measurement is finished, a measured capacitance characteristics curve is displayed on the Characteristics area. This example shows the Ciss, Coss, and Crss, characteristics curves.

How To Perform Measurement How To Perform Capacitance Measurement

For the operation on the graph display, see "Displaying and Operating Graph" on page 3-26.

Setting Parameters

Table 3-1 Available Device Types and Measurement Items


Device Type	Measurement Item	Description
MOSFET	Ciss	Ciss (Input capacitance) - Vds characteristics
	Coss	Coss (Output capacitance) - Vds characteristics
	Crss	Crss (Feedback capacitance) - Vds characteristics
	Ciss, Coss, Crss	Ciss, Coss, and Crss characteristics
	Cgs	Cgs (Gate to Source capacitance) - Vds characteristics
	Cds	Cds (Drain to Source capacitance) - Vds characteristics
	Cgd	Cgd (Gate to Drain capacitance) - Vds characteristics
	Cgs, Cds, Cgd	Cgs, Cds, and Cgd characteristics
	Rg	Rg (Gate resistance) - Vgs characteristics
	Cox	Cox (Gate oxide film capacitance) - Vgs characteristics
IGBT	Cies	Cies (Input capacitance) - Vce characteristics
	Coes	Coes (Output capacitance) - Vce characteristics
	Cres	Cres (Feedback capacitance) - Vce characteristics
	Cies, Coes, Cres	Cies, Coes, and Cres characteristics
	Cge	Cge (Gate to Emitter capacitance) - Vce characteristics
	Cce	Cce (Collector to Emitter capacitance) - Vce characteristics
	Cgc	Cgc (Gate to Collector capacitance) - Vce characteristics
	Cge, Cce, Cgc	Cge, Cce, and Cgc characteristics
	Rg	Rg (Gate resistance) - Vge characteristics
Diode	CT	Total capacitance at reverse bias to bias voltage characteristics
Generic	Collector/Drain Voltage Sweep	Cp-G model capacitance between Collector/Drain terminal and Emitter/Source terminal to Vce/Vds characteristics
	Base/Gate Voltage Sweep	Cs-Rs model capacitance between Base/Gate terminal and Emitter/Source terminal to Vbe/Vgs characteristics

How To Perform I/V Measurement

This section describes how to perform a measurement using the I/V measurement software and consists of the following sub-sections:

- Preparing Measurement
- · Executing Measurement
- Setting Parameter

Figure 3-2 I/V Measurement Software

Preparing Measurement

WARNING

Set the instrument output off before connecting or disconnecting connection wire.

Press the mainframe front panel Stop key to set the source output off. And confirm that the mainframe front panel High Voltage indicator is not lit.

WARNING

To prevent electrical shock and DUT damage, do not connect or disconnect the DUT while the instrument is applying voltage or current.

When you touch the DUT after measurement, devise a countermeasure of residual charge and heat to prevent electrical shock and burn. Use glove and any tool. Also have enough time for discharge and radiation.

Step 1. Prepare the test fixture and other accessories to connect your device under test (DUT).

For more information on the test fixture and its accessories, see the following sections:

- "To Connect Selector and Test Fixture" on page 2-11
- "3-pin Inline Package Socket Module" on page 2-17
- "Accessories for Connecting a DUT" on page 2-18

Step 2. Connect the test fixture and, 3-pin inline package socket module or other accessories that is adequate for your DUT.

For more information, see the following sections:

- "To Connect Selector and Test Fixture" on page 2-11
- "3-pin Inline Package Socket Module" on page 2-17
- "Accessories for Connecting a DUT" on page 2-18

Step 3. Turn the instrument on and then connect your DUT to the test fixture.

If your DUT is diode, connect a cathode terminal of your DUT to the Collector/Drain terminal of test fixture and a anode terminal of your DUT to the Emitter/Source terminal of test fixture.

Executing Measurement

NOTE

This section explains the procedure using an example that selects MOSFET as a device type of DUT and ID-VDS as a measurement item.

Execute a measurement as follows:

- **Step 1.** On the software palette, click the I/V Measurement icon ____. The I/V Measurement software (Figure 3-2) opens.
- Step 2. At the Setup area in work area, select a device type and measurement item to be measured.

Device Type

From the Device Type drop-down list, select a device type.

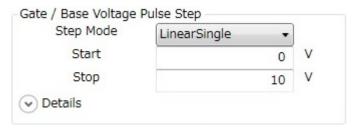
NOTE

This example selects MOSFET.

Measurement Item

From the radio buttons located on the right of a Device Type selection, which is MOSFET in this example, select a measurement item to be measured.

NOTE


This example selects ID-VDS.

NOTE

For information on the available device types and measurement items, see Table 3-2 on page 3-17

By selecting a device type and measurement item, the setup items displayed in the Setup area are automatically switched.

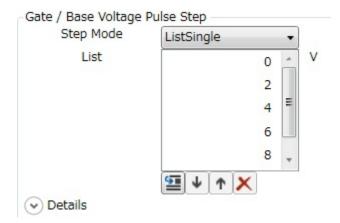
Step 3. Enter or select the setup conditions for the gate of MOSFET in Gate/Base Voltage Pulse Step at the center of Setup area.

Selecting Step Mode

From the Step Mode drop-down list, select a step mode of pulse voltage output.

LinearSingle Outputs voltage level changes from the Start value to the

Stop value at equal intervals.


ListSingle Specify the output voltages of each step in the List.

Each step voltage in the List will be output in order from top

to bottom.

NOTE

This example selects the ListSingle.

To change step values

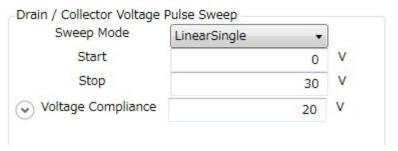
Click the value in the List and you can change it to new value.

To insert new step value

Select the step value immediately after where you want to insert new step value and click the Insert button .

• To change an output order of step values

Click the Move Down and the Move Up buttons or up an order of the selected step value.


• To delete a step value

Click the Delete button 🔀 to delete the selected step value.

By clicking the **Details** chevron, the area expands to set more detail conditions.

For more information on setting items, see "Setup" on page 4-38.

Step 4. Enter or select the setup conditions for the drain of MOSFET in Drain/Collector Voltage Pulse Sweep at the right side of Setup area.

Select or specify a sweep mode, a sweep start value, a sweep stop value, and a voltage compliance.

Sweep Mode

Select a sweep mode from the Sweep Mode drop-down list.

LinearSingle One-way linear sweep from the Start (sweep start value) to

the Stop (sweep stop value).

LogSingle One-way logarithmic sweep from the Start (sweep start

value) to the Stop (sweep stop value).

LinearDouble Linear-sweep from the Start (sweep start value) to the Stop

(sweep stop value) and then return linear-sweep from the

Stop to the Start.

How To Perform Measurement How To Perform I/V Measurement

LogDouble Logarithmic-sweep from the Start (sweep start value) to the

Stop (sweep stop value) and then return logarithmic-sweep

from the Stop to the Start.

Start, Stop

Enter the sweep start value in the Start and the sweep stop value in the Stop.

Voltage Compliance

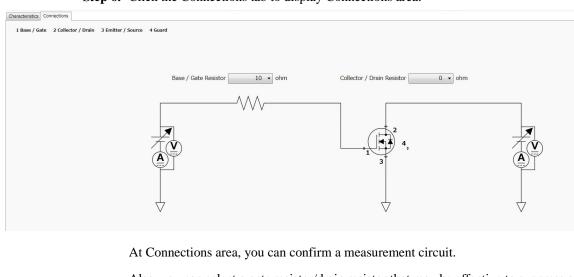
Enter the voltage compliance value in the Voltage Compliance.

If the output voltage of measurement unit connected to a drain terminal is more than this value, a measurement unit stops the output.

By clicking the **Details** chevron, the area expands to set more detail conditions.

For more information on setting items, see "Setup" on page 4-38.

Step 5. Enter the setup conditions for the pulse output in General settings at the left side of Setup area.


Auto Period Automatic adjustment for the pulse period.

To enable this function, mark the check box.

Pulse Period Pulse period.

However, if the Auto Period function is enabled, the pulse period is automatically adjusted to a minimum period

corresponding to the pulse width.

Step 6. Click the Connections tab to display Connections area.

Also, you can select a gate resistor/drain resistor that may be effective to suppress a device oscillation during measurement.

Base/Gate Resistor

You can select a gate resistor from this drop-down list.

A gate resistor may be effective to suppress a device oscillation during large current measurement.

NOTE

You can select a gate resistor only if a measurement resource is MCSMU.

In this example, which selects MOSFET as a device type and ID-VDS as a measurement item, the default measurement resource is MCSMU and you can select a gate resistor.

Collector/Drain Resistor

You can select a drain resistor from this drop-down list.

A drain resistor may be effective to suppress a over current during a break-down measurement

NOTE

You can select a drain resistor only if a measurement resource is HVSMU.

How To Perform Measurement How To Perform I/V Measurement

In this example, which selects MOSFET as a device type and ID-VDS as a measurement item, the default measurement resource is UHCU and a drain resistor is fixed to $0\,\Omega$.

Step 7. Click the Start Measurement tool button **b** to start a measurement.

Or, click the Repeat Measurement tool button ot repeat a measurement.

After starting a measurement, you can stop a measurement by clicking the Stop Measurement tool button .

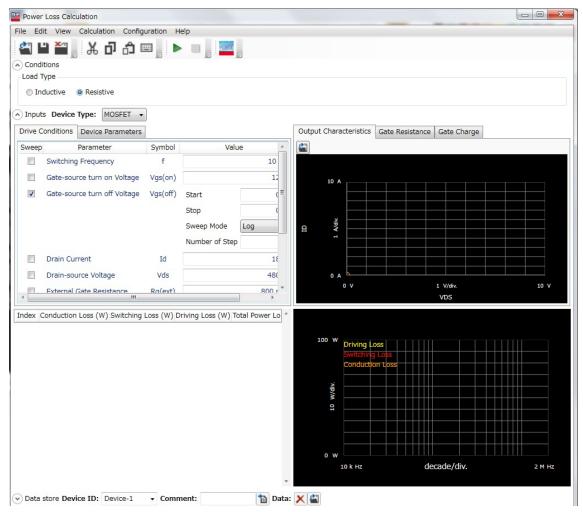
Step 8. Click the Characteristics tab to display the Characteristics area.

After a measurement is finished, a measured I/V characteristics curve is displayed on the Characteristics area. This example shows an ID-VDS characteristics curve.

For the operation on the graph display, see "Displaying and Operating Graph" on page 3-26.

Setting Parameter

Table 3-2 Available Device Types and Measurement Items


Device Type	Measurement Item	Description
MOSFET	ID-VDS	ID-VDS output characteristics
	ID-VGS	ID-VGS transmission characteristics
	RDS-ID	RDS (Drain to Source resistance) - ID characteristics
	VDS-VGS	VDS-VGS characteristics
	RDS-VGS	RDS (Drain to Source resistance) - VGS characteristics
	IDSS	Drain leak current - VDS characteristics
	IGSS	Gate leak current - VGS characteristics
	IS-VSD	Forward current of body diode - VSD characteristics
IGBT	IC-VCE	IC-VCE output characteristics
	IC-VGE	IC-VGE transmission characteristics
	VCE-VGE	VCE-VGE characteristics
	VCE(sat)	VCE(sat) (Collector to Emitter saturation voltage) - IC characteristics
	ICES	Collector leak current - VCE characteristics
	IGES	Gate leak current - VGE characteristics
Diode	IF-VF	Forward bias current - voltage characteristics
	IR-VR	Reverse bias current - voltage characteristics
Generic		Free setup on the measurement units connection and measurement conditions.

How To Calculate Power Loss

This section describes how to calculate the power loss at a switching device using the power loss calculation software and consists of the following sub-sections:

- Calculating Power Loss
- Extracted Parameters By Power Loss Calculation

Figure 3-3 Power Loss Calculation Software

The power loss calculation software calculates the power loss from the drive conditions and the device characteristics parameters of DUT.

There are the following two ways to specify the parameters for calculation:

- Specify the parameter values from the datasheet of DUT.
 - If you want to calculate the power loss of DUT at the different drive conditions or there are the parameters that are not specified in the datasheet, you may specify the predicted values.
- Measure the switching device by the I/V measurement software, capacitance
 measurement software, and gate charge measurement software at your desired
 drive conditions and store the measurement data. Then, the power loss
 calculation software read the stored measurement data and extract the required
 drive conditions and characteristics parameters for power loss calculation.

This section explains the procedure that specify the measurement data file of DUT.

Calculating Power Loss

Step 1. Prepare the measurement data

The power loss calculation software uses the following measurement data files to calculate the power loss. So, measure the DUT at your desired drive conditions and save the measured data.

Measurement data file of I/V measurement software

Prepare a measurement data file that measured either one of the following measurement item.

- ID-VDS
- RDS-ID
- VDS-VGS
- RDS-VGS
- Measurement data file of capacitance measurement software

Prepare the measurement data files that measured the following measurement items.

- Rg
- Crss

How To Perform Measurement How To Calculate Power Loss

- Measurement data file of gate charge measurement software
 Prepare a measurement data file that measured any measurement item.
- **Step 2.** On the software palette, click the Power Loss Calculation icon . The Power Loss Calculation software (Figure 3-3) opens.
- **Step 3.** Select the assumed load type to calculate the power loss in the Conditions area on the work area.

Inductive Inductive load

Resistive Resistive load

Step 4. Specify the measurement data files to be used for power loss calculation and load them.

- 1. Specify the measurement data file of the I/V measurement software to load.
 - a. Click the Output Characteristics tab at the right of work area to display the Output Characteristics area.

b. Click the Load Measurement Data button at the upper-left corner of the Output Characteristics area.

After the dialog box opens, specify the measurement data of I/V measurement software.

The characteristics graph of the loaded measurement item is displayed.

- Specify the Rg measurement data file of the capacitance measurement software to load.
 - a. Click the Gate Resistance tab to display the Gate Resistance area.
 - b. Click the Load Measurement Data button at the upper-left corner of the Gate Resistance area.

After the dialog box opens, specify the Rg measurement data of capacitance measurement software.

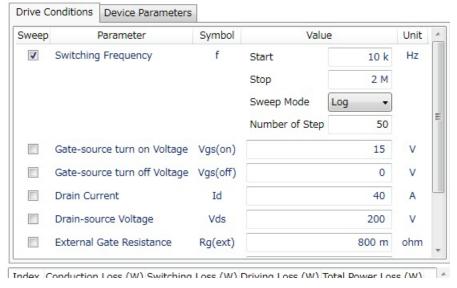
The loaded Rg characteristics graph is displayed.

- 3. Specify the Crss measurement data file of the capacitance measurement software to load.
 - a. Click the Reverse Transfer Capacitance tab to display the Revers Transfer Capacitance area.
 - b. Click the Load Measurement Data button at the upper-left corner of the Reverse Transfer Capacitance area.

After the dialog box opens, specify the Crss measurement data of capacitance measurement software.

The loaded Crss characteristics graph is displayed.

- 4. Specify the measurement data file of the gate charge measurement software to load.
 - a. Click the Gate Charge tab to display the Gate Charge area.
 - b. Click the Load Measurement Data button at the upper-left corner of the Gate Charge area.


After the dialog box opens, specify the measurement data of gate charge measurement software.

The gate charge characteristics graph of the loaded measurement item is displayed.

For the drive conditions and the device parameters for power loss calculation that extracted from the loaded measurement data, see "Measurement Data and Extracted Drive Conditions and Device Parameters for Power Loss Calculation" on page 25".

You can confirm or change the drive conditions for power loss calculation by clicking the Drive Conditions tab at the left of work area.

Also, you can confirm or change the device parameters for power loss calculation by clicking the Device Parameters tab.

Step 5. Select a drive condition or device parameter to be swept and specify the sweep condition.

If you select a drive condition parameter to be swept, click the Drive Condition tab and mark the check box of the desired drive parameter.

If you select a device parameter to be swept, click the Device Parameters tab and mark the check box of the desired device parameter.

This example select a switching frequency to be swept.

- 1. Click the Drive Conditions tab and mark the check box of the Switching Frequency parameter to select.
- 2. Specify the sweep condition in the Value column.

Start Sweep start value

Stop Sweep stop value

Sweep Mode Sweep mode

Log (logarithmic sweep) or Linear (linear sweep)

Number of

Step Number of sweep steps

Step 6. Specify the drive conditions that are not extracted from the loaded measurement data.

- Click the Drive Conditions tab at the left of work area to display the Drive Conditions area.
- Specify the following drive conditions that are not extracted from the measurement data.

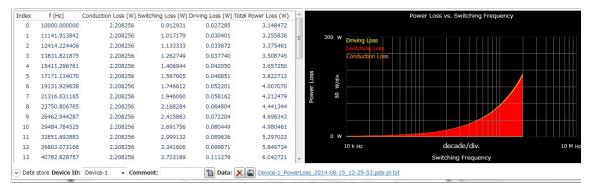
Switching

Frequency Switching frequency

In this example, this parameter already specified by Step.4.

Rg(ext) Gate input resistance in the external drive circuit

Irms, D Irms: Effective drain current (the root mean square of the


load current)
D: Duty cycle.

Specify Irms or D.

The relation between Irms and D is Irms = $Id \times D$.

Step 7. Click the Start button of toolbar to start the power loss calculation.

Step 8. After the calculation is completed, the list of calculated values are displayed at the left of the Results area and the trend chart of swept parameter and calculated values are displayed at the right of the Results area.

List

The following calculated data are displayed in list format.

Index Index number of sweep step.

Sweep Parameter Sweep parameter and its step values.

Conduction Loss Calculated conduction loss

Switching Loss Calculated switching loss

Driving Loss Calculated driving loss

Total Power Loss Sum total of the conduction loss, switching loss, and

driving loss.

For the calculation formula for each power loss, see "Results" on page 4-72.

Trend Chart

3-24

The sweep parameter is assigned to X-axis, and the conduction loss, switching loss, and driving loss are assigned to Y-axis and accumulated in this order.

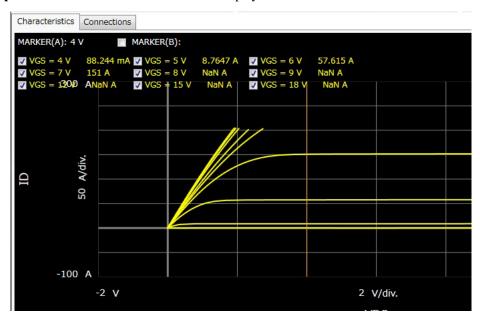
You can change the minimum and maximum values on the X and Y-axises by clicking the value.

Extracted Parameters By Power Loss Calculation

Table 3-3 Measurement Data and Extracted Drive Conditions and Device Parameters for Power Loss Calculation

Measurement Data		Extracted Drive	Extracted Device
Measurement Software	Measurement Item	Conditions Parameters	
I/V Measurement	ID-VDS, RDS-ID, RDS-VGS, or VDS-VGS		Rds(on) ^a
Capacitance Measurement	Rg		Rg ^b
	Crss		Qsw ^c
Gate Charge Measurement	Any measurement items	Vgs(on), Vgs(off), Id, Vds	Qg(on), Qg(off), Qsw, Vgs(pl)

- a. Extracted from Vgs(on)
- b. Extracted from Vgs(off)
- c. Extracted from Vgs(off) and Vds(off)


Displaying and Operating Graph

This section describes the common graph operation within the measurement softwares and consists of the followings:

- How To Select and Display Characteristics Curve
- How To Use the Marker

How To Select and Display Characteristics Curve

Step 1. Select the characteristics curves to display.

The check boxes for the available characteristics are displayed at the upper left on the graph area.

Mark the check boxes for the desired characteristics to display.

You can select the multiple characteristics to display.

Step 2. Select the line type of curve.

By the radio buttons at the top of graph area, you can select the line type of curve from the Line, Dot, or Line&Dot.

Step 3. Change the minimum and maximum values of X and Y-axises

If the auto scale mode button is selected, the X and Y-axises of the graph are automatically changing to fit the measured data during measurement execution.

If the fixed scale mode button \blacksquare is selected and the auto-scale button \blacksquare is clicked, the X and Y-axises of the graph are changed to fit the measured data.

Or, you can change the minimum and maximum values of X and Y-axises by clicking the value.

How To Use the Marker

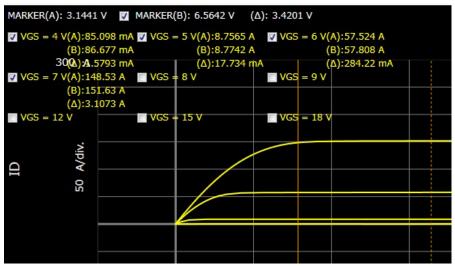
You can use the domain marker and/or trace marker to read the value on the curve.

The following table shows the measurement softwares and their furnished marker function.

Marker	Description	Applied Software
Domain Marker	Vertical line marker. The marker moves in the direction of X and you can read the X-axis value of the marker and Y-axis values of the intersections of marker and characteristics curves.	I/V measurement, Capacitance measurement, Gate charge measurement
Trace Marker	Circle marker. The marker moves on a characteristics curve and you can read the X and Y-axis values of the marker.	I/V measurement, Capacitance measurement,

Using the domain marker

Step 1. If the trace marker is displayed, click the trace marker mode button o to change to the domain marker mode .

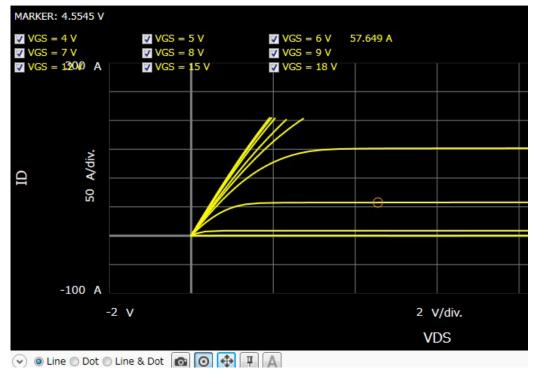

Step 2. Marker A (Vertical line) is displayed.

To move the marker, use the rotary nob or mouse.

The MARKER(A): at the upper left of graph area shows the X-axis value of marker A and the Y-axis value of the intersection of the marker and each characteristics curve is displayed at the right of characteristics curve name.

The following information is displayed at the top of graph area:

MARKER(B): X-axis value of marker B


 (Δ) X-axis value of marker B - X-axis value of marker A

The Y-axis values of the intersection of the markers and each characteristics curve, and the differences of Y-axis values between the mark A interaction and the mark B interaction (B-A) are displayed at the right of characteristics curve name.

Using the trace marker

Step 1. If the domain marker is displayed, click the domain marker mode button to change to the trace marker mode .

Step 2. The trace marker (circle) is displayed.

You can move the trace marker on the characteristics curve using the rotary nob or mouse.

The MARKER: at the upper left of graph shows the X-axis value of the marker and the Y-axis value is displayed at the right of the characteristics curve name.

Keysight Easy Test Navigator software provides dedicated measurement software for power device characterization. It supports various types of measurement tasks with ease-of-use and simple operation.

This chapter describes reference information of the Keysight Easy Test Navigator software, and covers the following topics.

- "Software Palette"
- "Capacitance Measurement Software"
- "I/V Measurement Software"
- "Power Loss Calculation Software"

For how to perform the measurements, see Chapter 3.

For the EasyEXPERT software, see EasyEXPERT User's Guide.

Software Palette

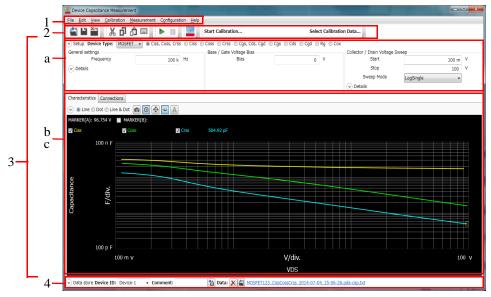
The Software Palette provides a complete list of the B1507A's measurement software and also allows this software to be launched. The Software Palette lists icons with the measurement software names. You can start the measurement software by clicking the icons or software names. And, you can also start it by pressing the softkeys on the front panel, shown the correspondence by lines on the Software Palette.

The Software Palette is displayed in fullscreen mode after powering up the B1507A. The Software Palette can be minimized to access the Windows desktop.

The following shows the icons and texts displayed on the Software Palette, and actions by clicking them.

	Capacitance Measurement	Starts the capacitance measurement software. See "Capacitance Measurement Software" on page 4-4.
	I/V Measurement	Starts the I/V measurement software. See "I/V Measurement Software" on page 4-32.
DIPORPSW)	Power Loss Calculation	Starts the power loss calculation software. See "Power Loss Calculation Software" on page 4-61.
	Minimize	Minimizes the Software Palette. This is useful when you access the Windows desktop. When you click the icon on the taskbar, the Software Palette appears again.

Capacitance Measurement Software


Capacitance measurement software provides:

- Automated measurement circuit configuration for three-terminal device capacitance measurement (e.g. Ciss, Coss and Crss), with no need to manually modify any device connections
 - With DC bias (sweep) control up to 3 kV for Collector/Drain terminal
 - With DC bias (sweep) control up to 100 V for Base/Collector terminal
- Automated correction for every measurement path
- Stable measurements even if the low-side load capacitance changes due to a bias change (load adaptive gain-phase compensation)
- Predefined templates for typical capacitance measurements of both enhancement and depletion type MOSFETs, IGBTs and Diodes

GUI Overview

The GUI (Graphical User Interface) of the capacitance measurement software is comprised of the following areas.

Figure 4-1 Capacitance Measurement Software GUI

1. "Main Menu" on page 4-6

This provides the functions needed for various operations in the menu format.

2. "Toolbar" on page 4-9

This provides the functions that are very frequently used in the button format.

3. "Work Area" on page 4-11

This area provides the functions to set the measurement conditions and observe the measurement results. This is separated to the following areas.

- a. "Setup" on page 4-11
- b. "Characteristics" on page 4-20
- c. "Connections" on page 4-24
- 4. "Data List" on page 4-28

Capacitance Measurement Software

This area provides the functions regarding the saving of the measurement data files

For the dialog boxes displayed during this software operation, see "Dialog Boxes" on page 4-30.

For the files handled by this software, see "Summary of Files" on page 4-31.

Main Menu

Figure 4-2 Main Menu

File	Edit	View	Calibration	<u>M</u> easurement	Configuration	Help
1111	Edit	V 10-11	Cambradon	Medical Chilene	Coming and a dom	1100

The following shows the structure of the main menu.

File Menu

Displays the following menu items to operate the setup file and measurement data file. For the kinds of the files and file extensions, see "Summary of Files" on page 4-31.

New Creates a new setup.

This destroys the setup that you are editing, and creates a new

setup.

Open... Opens an existing setup file or measurement data file.

This opens the file selection dialog box, destroys the setup that you are editing, and then opens the file selected in the dialog

box.

Save Saves the setup that you are editing to the original setup file.

Save Setup As... Saves the setup that you are editing to the specified setup file.

This opens the file selection dialog box, and saves the present

setup to the specified setup file.

Save Data As... Saves the present setup data and measurement data to the

specified measurement data file.

This opens the file selection dialog box, and saves the present setup data and measurement data to the specified measurement

data file.

Change Device

ID... Changes the device ID recorded in the measurement data file.

This opens the Change Device ID dialog box, and changes the device ID recorded in the selected measurement data file(s). See "Change Device ID Dialog Box" on page 4-30.

Recent Setup Files

Lists a maximum of 10 names of the setup files that were recently edited, as menu items. You can easily open a setup file

by using them.

Exit Exits the capacitance measurement software. Unsaved data is

destroyed.

Edit Menu Displays the following menu items to edit the setup.

Cut Moves the selected text to the clipboard.

Copy Copies the selected text to the clipboard.

Paste Pastes the text from the clipboard to the insertion point.

On-screen

keyboard... Displays the on-screen keyboard.

View Menu Displays the following menu items for the display setting.

Go to Palette Displays the Software Palette in fullscreen mode.

Main Window Displays the following menu item.

Fullscreen Changes the display style of the main

window.

If this is marked, the main window does not

have the titlebar and is displayed in

fullscreen mode.

If this is unmarked, the main window has

the titlebar and is displayed in the regular

window style.

This is initially marked.

Color Settings... Opens the Color Setting dialog box to set the color for parts in

this software. See "Color Setting Dialog Box" on page 4-30.

Calibration Menu Displays the following menu items for the calibration.

Start Starts to get the calibration data.

Capacitance Measurement Software

Open or short the measurement circuit according to instructions

of the wizard.

Select Data Opens the file selection dialog box, and then applies the

selected calibration data file to the measurement.

Measurement Menu Displays the following menu items for controlling the measurement.

Start Starts a measurement. During the measurement, the

measurement status indicator on the front panel lights up.

To stop the measurement, select the Measurement > Stop menu, click the Stop Measurement button on the toolbar, or press

the Stop key on the front panel.

Stop Stops the measurement.

Configuration Menu

Displays the following menu item to administrate the configuration of the built-in modules in the mainframe and test fixture.

Module... Opens the Module Configuration dialog box. See "Module

Configuration Dialog Box" on page 4-78.

Help Menu

Displays the following menu item.

About... Opens the About Box dialog box. See "About Box Dialog Box"

on page 4-30.

Toolbar

Figure 4-3 Toolbar

The toolbar has five tool button groups. The following shows the tool buttons in the tool button groups.

File tool button group Open Opens an existing setup file or measurement data file. This opens the file selection dialog box, destroys the setup that you are editing, and then opens the file selected in the dialog box. Saves the setup that you are editing to the original setup Save Exit Exits the capacitance measurement software. Unsaved data is destroyed. Edit tool button group Cut Moves the selected text to the clipboard. \mathcal{X} Copy Copies the selected text to the clipboard. ᆌ **Paste** Pastes the text from the clipboard to the insertion point. On-screen Displays the on-screen keyboard. keyboard

Measurement tool button group

GUI Reference Capacitance Measurement Software

Start
Measurement

Starts a measurement. During the measurement, the measurement status indicator on the front panel lights

up

To stop the measurement, select the Measurement > Stop menu, click the Stop Measurement button on the toolbar, or press the Stop key on the front panel.

Stop Measurement Stops the measurement.

View tool button group

*(

Go to Palette Displays the Software Palette in fullscreen mode.

Calibration tool button group

Start Calibration... Starts to get the calibration data.

Open or short the measurement circuit according to

instructions of the wizard.

Select Calibration Data...

Opens the file selection dialog box, and then applies the selected calibration data file to the measurement.

Work Area

In this area, set the measurement conditions and observe the measurement results. This is separated to the following areas.

- "Setup" on page 4-11
- "Characteristics" on page 4-20
- "Connections" on page 4-24

Setup

Figure 4-4 Setup

This is an area to select the device type and its measured parameters, and enter your measurement conditions

Device Type

Select the device type of your DUT from below.

- "MOSFET"
- "IGBT"
- "Diode"
- · "Generic"

Select Generic to execute more general measurements for device other than above types.

MOSFET

You can select one of the following capacitance and resistance parameter measurements for "MOSFET" device type.

Ciss, Coss, Crss

Creates new settings to measure the characteristics of the input capacitance, output capacitance, and reverse transfer capacitance for the drain-source voltage in order.

Ciss

Creates new settings to measure the characteristics of the input capacitance for the drain-source voltage.

Capacitance Measurement Software

Coss

Creates new settings to measure the characteristics of the output capacitance for the drain-source voltage.

Crss

Creates new settings to measure the characteristics of the reverse transfer capacitance for the drain-source voltage.

· Cgs, Cds, Cgd

Creates new settings to measure the characteristics of the gate-source capacitance, drain-source capacitance, and gate-drain capacitance for the drain-source voltage in order.

Cgs

Creates new settings to measure the characteristics of the gate-source capacitance for the drain-source voltage.

• Cds

Creates new settings to measure the characteristics of the drain-source capacitance for the drain-source voltage.

Cgd

Creates new settings to measure the characteristics of the gate-drain capacitance for the drain-source voltage.

Rg

Creates new settings to measure the characteristics of the gate resistance for the gate-source voltage.

Cox

Creates new settings to measure the characteristics of the gate oxide capacitance for the gate-source voltage.

IGBT

You can select one of the following capacitance and resistance parameter measurements for "IGBT" device type.

Cies, Coes, Cres

Creates new settings to measure the characteristics of the input capacitance, output capacitance, and reverse transfer capacitance for the collector-emitter voltage in order.

Cies

Creates new settings to measure the characteristics of the input capacitance for the collector-emitter voltage.

Coes

Creates new settings to measure the characteristics of the output capacitance for the collector-emitter voltage.

Cres

Creates new settings to measure the characteristics of the reverse transfer capacitance for the collector-emitter voltage.

Cge, Cce, Cgc

Creates new settings to measure the characteristics of the gate-emitter capacitance, collector-emitter capacitance, and gate-collector capacitance for the collector-emitter voltage in order.

• Cge

Creates new settings to measure the characteristics of the gate-emitter capacitance for the collector-emitter voltage.

• Cce

Creates new settings to measure the characteristics of the collector-emitter capacitance for the collector-emitter voltage.

• Cgc

Creates new settings to measure the characteristics of the gate-collector capacitance for the collector-emitter voltage.

Rg

Creates new settings to measure the characteristics of the gate resistance for the gate-emitter voltage.

Diode

You can select the following capacitance parameter measurements for "Diode" device type.

CT

Creates new settings to measure the characteristics of the total anode-cathode capacitance for the reverse bias voltage.

Generic

You can select one of the following measurements for "Generic" device type.

• Collector/Drain Voltage Sweep

Capacitance Measurement Software

Creates new settings to measure the Cp-G model capacitance between the collector/drain and the emitter/source terminals for the swept collector-emitter or drain-source voltage.

• Base/Gate Voltage Sweep

Creates new settings to measure the Cs-Rs model capacitance between the base/gate and the emitter/source terminals for the swept base-emitter or gate-source voltage.

General settings

In this area, you can set the following measurement conditions.

Frequency

Specify the output frequency of the AC signal from MFCMU. Setting range: 1 kHz to 1 MHz

· AC Level

Specify the output level of the AC signal from MFCMU. Setting range: 0 to 250 mV

N PLC

Specify the measurement time (integral time) in the number of power line cycle. Setting range: 1 to 100

• Phase Compensation

Specify one from the following phase compensation modes.

Auto

Uses the predefined phase compensation data.

Adaptive

Compensates the phase at each measurement point before the measurement.

It is useful when you cannot measure in the Auto compensation mode by MFCMU oscillation.

The following parameter can be shown or hidden by clicking the chevron \odot of the Details.

- AC Level
- N PLC
- Phase Compensation

Base/Gate drive settings

Specify the output settings for the base-collector or gate-source voltage. You can set them up depending on the types of the selected measurement: forcing the constant bias voltage or sweeping the bias voltage.

Base/Gate Voltage Bias:

You can specify the following parameters to force the constant bias voltage.

Bias

Specify the bias voltage. Setting range: -100 V to +100 V

Base/Gate Voltage Sweep:

You can specify the following parameters to sweep the bias voltage.

Start

Specify the sweep start value. Setting range: -100 V to +100 V

Stop

Specify the sweep stop value. Setting range: -100 V to +100 V

Sweep Mode

Select one from the following sweep modes.

- LinearSingle (Sweep from start to stop in a linear incremental step)
- LogSingle (Sweep from start to stop in a logarithmic incremental step)
- LinearDouble (Sweep from start to stop to start in a linear incremental step)
- LogDouble (Sweep from start to stop to start in a logarithmic incremental step)
- · Number of Step

Specify the number of sweep steps from start to stop.

Setting range: 1 to 1001

Hold Time

Specify the hold time of the sweep start voltage. At the sweep start point, the start voltage is forced for more than the specified time. Setting range: 0 to 655.35 s

D 1 TF:

Delay Time

Capacitance Measurement Software

Specify the delay time of the measurement at each sweep step. The measurement is executed after waiting for more than the specified time at each sweep step. Setting range: 0 to 65.535 s

Zero Bias Time

Keeps 0 V at every terminal for more than the specified time after one sweep measurement.

Setting range: 0 to 99.9 s

In the measurement of the same capacitance parameter as shown in the following table, the characteristics results by the single measurement and the continuous measurement may have the difference depending on the bias voltage condition between the measurements. This parameter is used to cancel the dependence on the bias voltage condition in the continuous measurement.

Device Type	Continuous Measurement	Single Measurement
MOSFET	Ciss, Coss, Crss	• Ciss
		• Coss
		• Crss
	Cgs, Cds, Cgd	• Cgs
		• Cds
		• Cgd
IGBT	Cies, Coes, Cres	• Cies
		• Coes
		• Cres
	Cge, Cce, Cgc	• Cge
		• Cce
		• Cgc

The following parameter can be shown or hidden by clicking the chevron \odot of the Details.

Number of Step

- · Hold Time
- Delay Time
- Zero Bias Time

Collector/Drain drive settings

Specify the output settings for the collector-emitter or drain-source voltage. You can set them up depending on the types of the selected measurement: forcing the constant bias voltage or sweeping the bias voltage.

Collector/Drain Voltage Bias:

You can specify the following parameters to force the constant bias voltage.

Bias

```
Specify the bias voltage.
Setting range: -3000 V to +3000 V
```

Collector/Drain Voltage Sweep:

You can specify the following parameters to sweep the bias voltage.

Start

```
Specify the sweep start value.
Setting range: -3000 V to +3000 V
```

Stop

```
Specify the sweep stop value.
Setting range: -3000 V to +3000 V
```

· Sweep Mode

Select one from the following sweep modes.

- LinearSingle (Sweep from start to stop in a linear incremental step)
- LogSingle (Sweep from start to stop in a logarithmic incremental step)
- LinearDouble (Sweep from start to stop to start in a linear incremental step)
- LogDouble (Sweep from start to stop to start in a logarithmic incremental step)
- Number of Step

Specify the number of sweep steps from start to stop. Setting range: 1 to 1001

· Hold Time

Capacitance Measurement Software

Specify the hold time of the sweep start voltage. At the sweep start point, the start voltage is forced for more than the specified time. Setting range: 0 to 655.35 s

· Delay Time

Specify the delay time of the measurement at each sweep step. The measurement is executed after waiting for more than the specified time at each sweep step. Setting range: 0 to 65.535 s

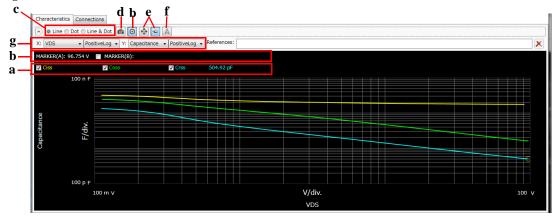
Zero Bias Time

Keeps 0 V at every terminal for more than the specified time after one sweep measurement.

Setting range: 0 to 99.9 s

In the measurement of the same capacitance parameter as shown in the following table, the characteristics results by the single measurement and the continuous measurement may have the difference depending on the bias voltage condition between the measurements. This parameter is used to cancel the dependence on the bias voltage condition in the continuous measurement.

Device Type	Continuous Measurement	Single Measurement
MOSFET	Ciss, Coss, Crss	• Ciss
		• Coss
		• Crss
	Cgs, Cds, Cgd	• Cgs
		• Cds
		• Cgd
IGBT	Cies, Coes, Cres	• Cies
		• Coes
		• Cres
	Cge, Cce, Cgc	• Cge
		• Cce
		• Cgc


The following parameter can be shown or hidden by clicking the chevron \odot of the Details.

- Number of Step
- Hold Time
- Delay Time
- Zero Bias Time

Characteristics

Figure 4-5

Characteristics

This page shows the graph of the specified parameter characteristics as the measurement result. To display this page, click the Characteristics tab.

a. Displaying Characteristic Curves

The data for the X and Y-axes are assigned according to the parameter characteristics specified in the Setup.

If the graph has multiple characteristic curves for different measurement conditions, the measurement conditions are displayed on the graph with the check boxes. Marking the check box displays the characteristic curve for the measurement condition. You can mark multiple check boxes for the measurement conditions.

You can change the minimum and maximum values on the X and Y-axes by clicking the value.

b. Markers

This graph supports two kinds of markers: Domain marker and Trace marker. You can switch these markers by clicking the Marker button shown in the bottom part of the graph.

: Marker button when the Domain marker is used.

: Marker button when the Trace marker is used.

The Domain marker can read multiple characteristic values for the X-axis position.

The Domain marker supports two markers (A and B). Marker A is always available. To use the Marker B, mark the check box for the Marker B. The Marker B is a break line. To move the marker position, use the rotary knob or mouse.

The marker annotation on the graph has X-axis values for markers, and a difference value (Δ) between the Marker B and A (B-A). And, each curve annotation has Y-axis values and difference values (Δ) between the Marker B and A (B-A).

The Trace marker can read the characteristic value with tracing each characteristic curve. It is useful when you want to read the characteristic value on double sweep result.

The marker annotation on the graph has X-axis value for the marker. And, the traced curve annotation has Y-axis value.

c. Curve Representation

The curves can be represented as Line, Dot, or combination (Line & Dot). Select any curve representation using the radio buttons shown in the bottom part of the graph.

d. Reference Traces

You can register the presently-displayed curves as reference traces to compare with other measurement results on the graph. If you register them as reference traces, the reference traces are displayed as break lines on the graph when you open other measurement data files or execute the next measurement. To register as the reference traces, click the Capture button shown in the bottom part of the graph.

You can register a maximum of 10 reference traces. The measurement data files registered as the reference traces are listed in the References field under the Capture button. You can show or hide the reference traces using the check boxes at the head of the measurement data file names. The References field can be shown or hidden by clicking the chevron under the graph.

To remove unnecessary reference traces, select the measurement data file in the References field, and then click the Remove button X.

The registration of the reference traces is cleared when you exit the capacitance measurement software.

e. Auto Scale

Clicking the Auto Scale button fits the measurement data at that time in the graph scale.

If the auto scale mode is selected by using the Scale mode button, the measurement data is automatically fit according to the progress of the measurement.

If the fixed scale mode is selected by using the Scale mode button, the scale is fixed until changing the scale manually or clicking the Auto Scale button.

: Scale mode button during selecting the auto scale mode.

: Scale mode button during selecting the fixed scale mode.

Capacitance Measurement Software

f. Trace Labels

The step values for the characteristic curves can be shown or hidden by clicking the Trace Label button A.

In the case that multiple curves (Ciss, Coss, and Crss of MOSFET, and so on) are displayed on the graph, the parameter name display is useful to identify which curve is for which parameter.

g. X/Y Data

You can select the data and scale for the X and Y-axes. As default, the data for the X and Y-axes are assigned according to the parameter characteristics specified in the Setup.

The X/Y data field can be shown or hidden by clicking the chevron \odot under the graph.

Select one from the following scales.

Linear

Linear scale

PositiveLog

Logarithm scale for positive data

NegativeLog

Logarithm scale for negative data

Select data for X and Y-axes. The data corresponding to the parameter specified in the Setup is represented as Capacitance, Conductance, or Resistance.

For example, in the case of the Ciss measurement, Cp is represented as Capacitance and G is represented as Conductance. In like manner, in the case of the Rs measurement, Rs is represented as Resistance and Cs is represented as Capacitance.

Cp

Parallel capacitance on the Cp-G model

• G

Conductance on the Cp-G model

Cs

Serial capacitance on the Cs-Rs model

Rs

Serial resistance on the Cs-Rs model

Ls

Serial inductance on the Ls-Rs model

Lp

Parallel inductance on the Lp-G model

• R

Resistance on the R-X (impedance) model

• X

Reactance on the R-X (impedance) model

• G

Conductance on the G-B (admittance) model

• B

Susceptance on the G-B (admittance) model

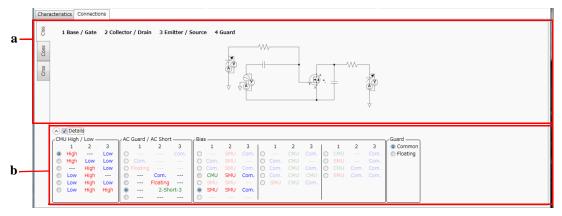
• VGS (for MOSFET)/VGE (for IGBT)

Gate-source voltage or base-emitter voltage

• IG

Gate or base current

• VDS (for MOSFET)/VCE (for IGBT)


Drain-source voltage or collect-emitter voltage

• ID (for MOSFET)/IC (for IGBT)

Drain or collector current

Connections

Figure 4-6 Connections

This page shows the measurement circuit that is automatically connected according to your specified measurement conditions. To display this page, click the Connections tab.

a. Measurement Circuit

On the measurement circuit, the measurement terminals, the measurement resources, and the built-in capacitance and resistance are displayed. The following shows the relationship between the terminal numbers and the measurement terminals.

- 1: Base/Gate terminal
- 2: Collector/Drain terminal
- 3: Emitter/Source terminal.
- 4: Guard terminal

NOTE

If DUT is a diode, connect the cathode terminal to 2. Collector/Drain terminal, and the anode terminal to 3. Emitter/Source terminal.

In the case that the specified parameter characteristics has multiple measurements such as Ciss, Coss, and Crss measurements, the measurement circuits are respectively separated for the measurements by left-side tabs.

b. Details

This area is hidden as default. You can show this area under the measurement circuit by clicking the chevron \odot of the Details.

This area shows the connection status for the terminals in the table format. To edit the settings, mark the check box in this area. You can set up the connections by the combination of the following items.

CMU High/Low

Select a combination of connections between the DUT terminals (1 to 3) and the CMU terminals (High and Low).

High Connects the DUT terminal to the High terminal of CMU.Low Connects the DUT terminal to the Low terminal of CMU.

No connection

AC Guard/AC Short

Select a combination of connections between the DUT terminals (1 to 3) and AC Guard terminal, or AC short connection between the DUT terminals 2 and 3.

Com. Connects the DUT terminal to the circuit common directly.

Floating Connects the DUT terminal to the selected bias source or

the circuit common via the built-in capacitor.

2-Short-3 Shorts between DUT terminals 2 and 3 via the built-in

capacitor.

--- No connection

Bias

Select a combination of connections between the DUT terminals (1 to 3) and the DC bias source (SMU, CMU, or Common).

CMU Uses the bias source in the CMU that is connected.

SMU Connects the DUT terminal to an SMU as the bias source.

Com. Connects the DUT terminal to the circuit common.

--- No connection

Guard

Select a connection between the DUT terminal 4 and AC Guard terminal.

Com. Connects the DUT terminal 4 to circuit common directly.

Floating Connects the DUT terminal 4 to the selected bias source or

the circuit common via the built-in capacitor.

GUI Reference Capacitance Measurement Software

The following table shows applicable connections between the DUT terminals and the measurement resources. The rightmost column shows the potential at the DUT terminal 4 when it is connected to the AC Guard terminal in the built-in capacitor (Floating connection). In the table, the blank cell means "same as above".

Table 4-1Applicable Connections

CMU High/Low			AC Guard/AC Short			Bias			Guard	
1	2	3	1	2 3		1	2	3	Floating	
High		Low		Com.		CMU	Com.	Com.	AC Guard	
						SMU	Com.	Com.	AC Guard	
				Floating		CMU	SMU	Com.	Terminal 2	
						SMU	SMU	Com.	Terminal 2	
						CMU		Com.	AC Guard	
						SMU		Com.	AC Guard	
				2-Sho	rt-3	CMU	SMU	Com.	Terminal 2	
						SMU	SMU	Com.	Terminal 2	
High	Low	Low				CMU	Com.	Com.	AC Guard	
						SMU	Com.	Com.	AC Guard	
	High	Low	Com.			Com.	SMU	Com.	AC Guard	
			Floating			SMU	SMU	Com.	AC Guard	
							CMU	Com.	AC Guard	
						SMU	CMU	Com.	AC Guard	
Low	High				Com.	Com.	SMU	Com.	AC Guard	
						SMU	SMU	Com.	AC Guard	
						Com.	CMU	Com.	AC Guard	
						SMU	CMU	Com.	AC Guard	
Low	High	Low				Com.	SMU	Com.	AC Guard	

GUI Reference Capacitance Measurement Software

CM	CMU High/Low		AC Guard/AC Short		Bias			Guard	
1	2	3	1	2	3	1	2	3	Floating
						SMU	SMU	Com.	AC Guard
						Com.	CMU	Com.	AC Guard
						SMU	CMU	Com.	AC Guard
Low	High	High				Com.	CMU	CMU	AC Guard

Data List

Figure 4-7 Data List

The data list area provides the following functions regarding the saving of the measurement data files.

- Set the device ID to be recorded to the measurement data file
 See "Device ID" on page 4-28.
- Enter a comment to be recorded to the measurement data file
 See "Comment" on page 4-28.
- Operations for the latest measurement data file See "Data" on page 4-29.
- Access to the measurement data files that were automatically saved See "Data store" on page 4-29.

The setup data and measurement data are automatically saved to a new measurement data file at the end of the measurement. At this time, you can also record a device ID to identify your DUT and a comment. And, the destination folder of the measurement data file for auto-saving is predefined. You can set the device ID and comment, and change the destination folder using this area.

Device ID

Enter device ID string to the Device ID field. The maximum 10 recently-entered device IDs can be kept as history, and you can also select one from the history list.

The entered device ID is automatically saved to the measurement data file at the end of the measurement.

You can also change the device ID in the latest measurement data file after the measurement here. To change it, change the device ID in the Device ID field, and then click the Apply button .

Comment

Enter a comment string to the Comment field.

The entered comment is automatically saved to the measurement data file at the end of the measurement.

You can also change the comment in the latest measurement data file after the measurement here. To change it, change the comment in the Comment field, and then click the Apply button .

Data

The Data field shows the latest auto-saved or last-opened measurement data file name. You can do the following operations.

- Open the measurement data file by clicking the Open button <a>
- Rename the measurement data file by clicking the measurement data file name.
- Delete the measurement data file by clicking the Delete button X.

Data store

Using the following fields, you can change the destination folder of the auto-saved measurement data file, and access the auto-saved measurement data files.

The following fields can be shown or hidden by clicking the chevron \odot next to "Data store".

Data folder

Shows the absolute path of the auto-saved measurement data file. To change this, click the Browse button to open the folder selection dialog box. Select your desired folder in the dialog box.

For the initial setting of the data folder, see "Summary of Files" on page 4-31.

Recent data

Shows up to 10 auto-saved measurement data files that were automatically saved recently, in the hyper-link format. Clicking the hyper-link opens the selected measurement data file. This destroys the presently-editing data.

If the number of the auto-saved measurement data files is over ten, this field shows "more...". Clicking this opens the file selection dialog box. Select a measurement data file to open.

Dialog Boxes

Change Device ID Dialog Box

The Change Device ID dialog box is used to change the device ID in all selected measurement data files at once.

Device ID field Enter a new device ID. You can also select it from the history.

Add... button Opens the file selection dialog box to select the measurement

data file(s) that you want to change the device ID. The selected

files are displayed into the list.

Remove button Excludes the selected measurement data file from the list.

Execute button Changes the device ID.

Close button Closes this dialog box.

This dialog box is opened by selecting the main menu File > Change Device ID....

Color Setting Dialog Box

The Color Setting dialog box is used to set colors of parts in this software.

The graph elements supported by this dialog box are graph background, X and Y-axes, graph grid, graph text, marker, and three traces. Clicking the color pattern opens the dialog box for selecting a color.

The setting in the Color Setting dialog box is saved as a user setting.

Apply button Applies the present setting to the graph.

Reset button Resets to the default setting.

OK button Applies the present setting to the graph, and closes this dialog

box.

Cancel button Closes this dialog box without applying the present setting.

This dialog box is opened by selecting the main menu View > Color Settings....

About Box Dialog Box

The About Box dialog box displays the model number, the software revision number, download URL for software updating, and so on.

This dialog box is opened by selecting the main menu Help > About....

Summary of Files

The following shows the summary of the files handled by the capacitance measurement software.

Table 4-2 Summary of Files

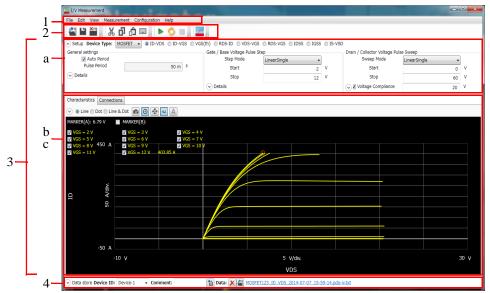
File Type	Description	Extension	Folder as Initial Setting
Setup File	Setup data You can save this if needed.	*.pda-cap	(You can specify the folder when saving the data)
Measurement Data File	Setup data and measurement data including the device ID and comment This is automatically saved after the measurement. You can optionally save this.	*.pda-cap.txt	C:\Users\ <user name="">\ Documents\Keysight\ SeriesB150x\PowerDevice Analyzer\DeviceCapacitan ce\DataStore (You can change this)</user>
Calibration Data File	Calibration data This is automatically saved after the calibration execution.	*.pda-cap.cal	C:\ProgramData\Keysight\ SeriesB150x\PowerDevice Analyzer\DeviceCapacitan ce\UserCalibrationData
	Factory Default Calibration data This is used when there is no user calibration data.		C:\ProgramData\Keysight\ SeriesB150x\PowerDevice Analyzer\DeviceCapacitan ce\CalibrationData

File name of Measurement Data File on Auto-saving

An auto-saved measurement data file is named as the following rule.

- 1. Concatenates the device ID, date and time on save by an underscore (_).
- 2. Concatenates the file extension (.pda-cap.txt) to the end of the "step 1" string.
- 3. If the "step 2" file name duplicates the existing file name, concatenates the serial number from 2 enclosed by brackets and the file extension to the end of the "step 1" string.

I/V Measurement Software


I/V Measurement Software provides:

- Voltage/current sweep/spot measurements
- DC/pulse outputs
- Linear/log sweep with both single (one-way) and double (round-trip) capability for the primary sweep source (similar to the collector supply of a conventional curve tracer)
- Linear/list sweep capability for the secondary sweep source (corresponding to the step generator of a conventional curve tracer)
- The ability to assign the primary sweep source or the secondary sweep source to either the collector/drain terminal or to the base/gate terminal.
- Intuitive and interactive sweep/spot measurement operation using rotary knob.
- Predefined templates for typical MOSFET, IGBT and Diode I/V measurements.

GUI Overview

The GUI (Graphical User Interface) of the I/V measurement software is comprised of the following areas.

Figure 4-8 I/V Measurement Software GUI

1. "Main Menu" on page 4-34

This provides the functions needed for various operations in the menu format.

2. "Toolbar" on page 4-36

This provides the functions that are very frequently used in the button format.

3. "Work Area" on page 4-38

This area provides the functions to set the measurement conditions and observe the measurement results. This is separated to the following areas.

- a. "Setup" on page 4-38
- b. "Characteristics" on page 4-52
- c. "Connections" on page 4-55
- 4. "Data List" on page 4-57

I/V Measurement Software

This area provides the functions regarding the saving of the measurement data files

For the dialog boxes displayed during this software operation, see "Dialog Boxes" on page 4-59.

For the files handled by this software, see "Summary of Files" on page 4-60.

Main Menu

Figure 4-9 Main Menu

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>M</u> easurement	Configuration	<u>H</u> elp	
--------------	--------------	--------------	---------------------	---------------	--------------	--

The following shows the structure of the main menu.

File Menu

Displays the following menu items to operate the setup file and measurement data file. For the kinds of the files and file extensions, see "Summary of Files" on page 4-60.

New Creates a new setup.

This destroys the setup that you are editing, and creates a new

setup.

Open... Opens an existing setup file or measurement data file.

This opens the file selection dialog box, destroys the setup that you are editing, and then opens the file selected in the dialog

box.

Save Saves the setup that you are editing to the original setup file.

Save Setup As... Saves the setup that you are editing to the specified setup file.

This opens the file selection dialog box, and saves the present

setup to the specified setup file.

Save Data As... Saves the present setup data and measurement data to the

specified measurement data file.

This opens the file selection dialog box, and saves the present setup data and measurement data to the specified measurement

data file.

Change Device

ID... Changes the device ID recorded in the measurement data file.

This opens the Change Device ID dialog box, and changes the device ID recorded in the selected measurement data file(s). See "Change Device ID Dialog Box" on page 4-59.

Recent Setup Files

Lists a maximum of 10 names of the setup files that were recently edited, as menu items. You can easily open a setup file

by using them.

Exit Exits the I/V measurement software. Unsaved data is destroyed.

Edit Menu

Displays the following menu items to edit the setup.

Cut Moves the selected text to the clipboard.

Copy Copies the selected text to the clipboard.

Paste Pastes the text from the clipboard to the insertion point.

On-screen

keyboard... Displays the on-screen keyboard.

View Menu

Displays the following menu items for the display setting.

Go to Palette Displays the Software Palette in fullscreen mode.

Main Window Displays the following menu item.

Fullscreen Changes the display style of the main

window.

If this is marked, the main window does not

have the titlebar and is displayed in

fullscreen mode.

If this is unmarked, the main window has the titlebar and is displayed in the regular

window style.

This is initially marked.

Color Settings... Opens the Color Setting dialog box to set the color for parts in

this software. See "Color Setting Dialog Box" on page 4-59.

Measurement Menu

Displays the following menu items for controlling the measurement.

Start Starts a measurement. During the measurement, the

measurement status indicator on the front panel lights up.

I/V Measurement Software

Repeat Starts a repeat measurement. During the measurement, the

measurement status indicator on the front panel lights up. This allows you to observe the measurement result with

changing the setup.

To stop the measurement, select the Measurement > Stop menu, click the Stop Measurement button on the toolbar, or press

the Stop key on the front panel.

Stop Stops the measurement.

Configuration Menu

Displays the following menu item to administrate the configuration of the built-in modules in the mainframe and test fixture.

Module... Opens the Module Configuration dialog box. See "Module

Configuration Dialog Box" on page 4-78.

Help Menu

Displays the following menu item.

About... Opens the About Box dialog box. See "About Box Dialog Box"

on page 4-59.

Toolbar

Figure 4-10 Toolbar

The toolbar has four tool button groups. The following shows the tool buttons in the tool button groups.

File tool button group

Exit

Ç.	Open	Opens an existing setup file or measurement data file.
		This opens the file selection dialog box, destroys the setup that you are editing, and then opens the file selected in the dialog box.
ы	Save	Saves the setup that you are editing to the original setup file.

Exits the I/V measurement software. Unsaved data is

destroyed.

Edit tool	button	group
-----------	--------	-------

Moves the selected text to the clipboard.

Copies the selected text to the clipboard.

Paste Pastes the text from the clipboard to the insertion point.

On-screen Displays the on-screen keyboard.

Measurement tool button group

Start Starts a measurement. During the measurement, the Measurement measurement status indicator on the front panel lights

up.

Repeat Starts a repeat measurement. During the measurement,
Measurement the measurement status indicator on the front panel

lights up.

This allows you to observe the measurement result with

changing the setup.

To stop the measurement, select the Measurement > Stop menu, click the Stop Measurement button on

the toolbar, or press the Stop key on the front panel.

Stop Stops the measurement.

Measurement

View tool button group

Go to Palette Displays the Software Palette in fullscreen mode.

Work Area

In this area, set the measurement conditions and observe the measurement results. This is separated to the following areas.

- "Setup" on page 4-38
- "Characteristics" on page 4-52
- "Connections" on page 4-55

Setup

Figure 4-11 Setup

This is an area to select the device type and its measured I/V characteristics, and enter your measurement conditions.

Device Type

Select the device type of your DUT from below.

- MOSFET
- IGBT
- Diode
- Generic

Select the Generic to execute more general measurements for device other than above types.

MOSFET

You can select one of the following I/V characteristics measurements for "MOSFET" device type.

• ID-VDS

Creates new settings to measure the output characteristics.

ID-VGS

Creates new settings to measure the transfer characteristics.

• VGS(th)

Creates new settings to measure the threshold voltage.

RDS-ID

Creates new settings to measure the drain-source resistance characteristics for the drain current.

VDS-VGS

Creates new settings to measure the drain-source voltage characteristics for the gate-source voltage.

RDS-VGS

Creates new settings to measure the drain-source resistance characteristics for the gate-source voltage.

IDSS

Creates new settings to measure the drain leak current characteristics for the drain-source voltage.

IGSS

Creates new settings to measure the gate leak current characteristics for the gate-source voltage.

IS-VSD

Creates new settings to measure the forward characteristics of the body diode for the source-drain voltage.

IGBT

You can select one of the following I/V characteristics measurements for "IGBT" device type.

IC-VCE

Creates new settings to measure the output characteristics.

IC-VGE

Creates new settings to measure the transfer characteristics.

VGE(th)

Creates new settings to measure the threshold voltage.

VCE-VGE

Creates new settings to measure the collector-emitter voltage characteristics for the gate-emitter voltage.

• VCE(sat)

GUI Reference

I/V Measurement Software

Creates new settings to measure the collector-emitter saturation voltage characteristics for the collector current.

ICES

Creates new settings to measure the collector leak current characteristics for the collector-emitter voltage.

IGES

Creates new settings to measure the gate leak current characteristics for the gate-emitter voltage.

IF-VF

Creates new settings to measure the free-wheel diode forward characteristics.

Diode

You can select one of the following I/V characteristics measurements for "Diode" device type.

IF-VF

Creates new settings to measure the forward bias characteristics.

IR-VR

Creates new settings to measure the reverse bias characteristics.

Generic

Set your measurement conditions in "General settings" on page 4-40, "Gate/Base drive settings" on page 4-42, and "Drain/Collector drive settings" on page 4-42 for "Generic" device type.

General settings

In this area, you can set the following measurement conditions for DC output measurement or pulse output measurement.

For DC output measurement:

• Step Time

Specify the period between steps for the staircase sweep. Setting range: 500 µs to 5 s

Aperture

Specify the measurement time at each step for the staircase sweep. Setting range: $2 \mu s$ to 20 ms

Hold Time

Specify the hold time of the sweep start voltage. At the sweep start point, the start voltage is forced for more than the specified time.

Setting range: 0 to 655.35 s

For pulse output measurement:

Auto Period

Enable or disable the automatic adjustment for the pulse period. To enable this, mark the check box.

Pulse Period

Specify the pulse period.

Setting range: 5 ms to 5 s

If the Auto Period is enabled, this is automatically adjusted to minimum period corresponding to the pulse width.

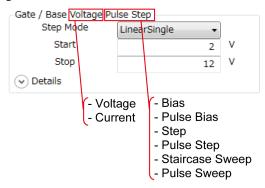
Aperture

Specify the measurement time at each pulse.

Setting range: 2 µs to 20 ms

Hold Time

Specify the hold time of the sweep start voltage. At the sweep start point, the start voltage is forced for more than the specified time.


Setting range: 0 to 655.35 s

The following parameter can be shown or hidden by clicking the chevron \odot of the Details.

- Aperture
- · Hold Time

Gate/Base drive settings

Set the output voltage/current to the gate/base terminal. One of the following types is automatically selected depending on the selected characteristics measurement. The selected type is displayed on the title of this terminal setting area as shown in the following figure.

For the setting items of the types, see below.

- "Bias" on page 4-43
 Outputs the constant bias voltage/current.
- "Pulse Bias" on page 4-43
 Outputs the voltage or current pulse that the peak output is constant.
- "Step" on page 4-44
 Outputs the constant voltage/current that the level is changed every time a sweep measurement is finished.
- "Pulse Step" on page 4-45
 Outputs the voltage/current pulse that the peak level is changed every time a sweep measurement is finished.
- "Staircase Sweep" on page 4-47 Outputs the staircase-swept voltage/current.
- "Pulse Sweep" on page 4-48
 Outputs the staircase-swept pulse voltage/current.

Drain/Collector drive settings

Set the output voltage/current to the drain/collector terminal. One of the following types is automatically selected depending on the selected characteristics measurement. The selected type is displayed on the title of this terminal setting area.

For the setting items of the types, see below.

"Bias" on page 4-43
 Outputs the constant bias voltage/current.

- "Pulse Bias" on page 4-43
 Outputs the voltage or current pulse that the peak output is constant.
- "Step" on page 4-44
 Outputs the constant voltage/current that the level is changed every time a sweep measurement is finished.
- "Pulse Step" on page 4-45
 Outputs the voltage/current pulse that the peak level is changed every time a sweep measurement is finished.
- "Staircase Sweep" on page 4-47 Outputs the staircase-swept voltage/current.
- "Pulse Sweep" on page 4-48
 Outputs the staircase-swept pulse voltage/current.

Bias

The terminal outputs the constant voltage or current.

Set the following parameters.

Source

Specify an output voltage/current value.

The following parameters can be shown or hidden by clicking the chevron \odot of the Details.

• Resource/Output Mode/Output Sequence

You can change the settings of this terminal using the pull-down menu. For details, see "Resource/Output Mode/Output Sequence" on page 4-50.

Compliance

Specify a current/voltage compliance value.

If the output exceeds this, the sweep measurement is terminated.

Voltage Compliance

Specify a voltage compliance value for UHCU.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Available for UHCU.

Pulse Bias

The terminal outputs the voltage or current pulse that the peak output is constant.

Set the following parameters.

Source

I/V Measurement Software

Specify a pulse peak voltage/current value.

The following parameters can be shown or hidden by clicking the chevron ⊙ of the Details.

• Resource/Output Mode/Output Sequence

You can change the settings of this terminal using the pull-down menu. For details, see "Resource/Output Mode/Output Sequence" on page 4-50.

Base

Specify a pulse base voltage/current value.

Compliance

Specify a current/voltage compliance value.

If the output exceeds this, the sweep measurement is terminated.

Voltage Compliance

Specify a voltage compliance value for UHCU.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Available for UHCU.

Peak Delay

Specify a delay time from the beginning point of the pulse period to the raising point.

Peak Width

Specify a period of the pulse peak.

The terminal outputs the constant voltage or current that the level is changed every time a sweep measurement is finished.

Set the following parameters.

Step Mode

Step

Select one from the following level change operation.

- LinearSingle: Constant level is changed by a constant step value.
- ListSingle: Constant level is changed according to the listed levels.
- Start

Specify the first step value.

Available for the "LinearSingle" Step Mode.

Stop

Specify the last step value. Available for the "LinearSingle" Step Mode.

The following parameters can be shown or hidden by clicking the chevron \odot of the Details.

Resource/Output Mode/Output Sequence

You can change the settings of this terminal using the pull-down menu. For details, see "Resource/Output Mode/Output Sequence" on page 4-50.

Number of Step

Specify the number of steps.

Available for the "LinearSingle" Step Mode.

List

Create the list of the output levels. Available for the "ListSingle" Step Mode.

To insert a new step entry before the selected step value, click the Insert button.

To delete the selected step value, click the Delete button **≥**.

Compliance

Specify a current/voltage compliance value.

If the output exceeds this, the sweep measurement is terminated.

• Power Compliance

Specify the power compliance value.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Not available for HVSMU.

Voltage Compliance

Specify a voltage compliance value for UHCU.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Available for UHCU.

Pulse Step

The terminal outputs the voltage or current pulse that the peak level is changed every time a sweep measurement is finished.

GUI Reference

I/V Measurement Software

Set the following parameters.

• Step Mode

Select one from the following level change operations.

- LinearSingle: Peak level is changed by a constant step value.
- ListSingle: Peak level is changed according to the listed levels.

Start

Specify the first pulse peak value. Available for the "LinearSingle" Step Mode.

Stop

Specify the last pulse peak value. Available for the "LinearSingle" Step Mode.

List

Create the list of the output levels. Available for the "ListSingle" Step Mode.

To insert a new step entry before the selected step value, click the Insert button .

To move the selected step value up/down, click the Move button ...

To delete the selected step value, click the Delete button **४**.

The following parameters can be shown or hidden by clicking the chevron \odot of the Details.

Resource/Output Mode/Output Sequence

You can change the settings of this terminal using the pull-down menu. For details, see "Resource/Output Mode/Output Sequence" on page 4-50.

• Base

Specify a pulse base voltage/current value.

• Number of Step

Specify the number of steps. Available for the "LinearSingle" Step Mode.

Compliance

Specify a current/voltage compliance value. If the output exceeds this, the sweep measurement is terminated.

Power Compliance

Specify the power compliance value.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Not available for HVSMU.

• Voltage Compliance

Specify a voltage compliance value for UHCU.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Available for UHCU.

· Peak Delay

Specify a delay time from the beginning point of the pulse period to the raising point.

Peak Width

Specify a period of the pulse peak.

Staircase Sweep

The terminal outputs the staircase-swept voltage/current.

Set the following parameters.

Sweep Mode

Select one from the following sweep modes.

- LinearSingle (Sweep from start to stop in a linear incremental step)
- LogSingle (Sweep from start to stop in a logarithmic incremental step)
- LinearDouble (Sweep from start to stop to start in a linear incremental step)
- LogDouble (Sweep from start to stop to start in a logarithmic incremental step)
- Start

Specify the sweep start value.

Stop

Specify the sweep stop value.

The following parameters can be shown or hidden by clicking the chevron \odot of the Details.

• Resource/Output Mode/Output Sequence

GUI Reference

I/V Measurement Software

You can change the settings of this terminal using the pull-down menu. For details, see "Resource/Output Mode/Output Sequence" on page 4-50.

Number of Step

Specify the number of sweep steps from start to stop.

Compliance

Specify a current/voltage compliance value.

If the output exceeds this, the sweep measurement is terminated.

• Power Compliance

Specify the power compliance value.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Not available for HVSMU.

• Voltage Compliance

Specify a voltage compliance value for UHCU.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Available for UHCU.

Pulse Sweep

The terminal outputs the staircase-swept pulse voltage/current.

Set the following parameters.

Sweep Mode

Select one from the following sweep modes.

- LinearSingle (Sweep from start to stop in a linear incremental step)
- LogSingle (Sweep from start to stop in a logarithmic incremental step)
- LinearDouble (Sweep from start to stop to start in a linear incremental step)
- LogDouble (Sweep from start to stop to start in a logarithmic incremental step)

Start

Specify the sweep start value.

• Stop

Specify the sweep stop value.

The following parameters can be shown or hidden by clicking the chevron ♥ of the Details.

Resource/Output Mode/Output Sequence

You can change the settings of this terminal using the pull-down menu. For details, see "Resource/Output Mode/Output Sequence" on page 4-50.

• Base

Specify a pulse base voltage/current value.

· Number of Step

Specify the number of sweep steps from start to stop.

Compliance

Specify a current/voltage compliance value.

If the output exceeds this, the sweep measurement is terminated.

Power Compliance

Specify the power compliance value.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Not available for HVSMU.

• Voltage Compliance

Specify a voltage compliance value for UHCU.

To enable this, mark the check box.

If the output exceeds this, the sweep measurement is terminated.

Available for UHCU.

Peak Delay

Specify a delay time from the beginning point of the pulse period to the raising point.

· Peak Width

Specify a period of the pulse peak.

GUI Reference I/V Measurement Software

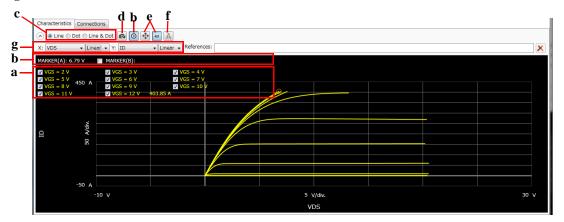
Resource/Output Mode/Output Sequence

Depending on the selected characteristics measurement, the pre-defined output mode and sequence are automatically selected. If necessary, you can change the measurement resource, the output mode, and the output sequence. Table 4-3 shows the available alternatives for the gate/base terminal, and Table 4-4 shows the available alternatives for the drain/collector terminal.

Table 4-3 Available Resource/Output Mode/Output Sequence for Gate/Base Terminal

Measurement Resource	Output Mode	Output Sequence	
• MPSMU	• V	Constant	
MPSMU is connected to this terminal.	Specifies the DC voltage output. • VPulse	Specifies the constant bias output sequence.	
	Specifies the pulse voltage output. I Specifies the DC current output. IPulse Specifies the pulse current output.	 Step Specifies the step bias output sequence. Sweep Specifies the sweep output sequence. 	

Table 4-4 Available Resource/Output Mode/Output Sequence for Drain/Collector Terminal


Measurement Resource	Output Mode	Output Sequence	
• Open	• V	Constant	
No connection. This terminal is opened. • HVSMU HVSMU is connected to this terminal. • MPSMU MPSMU is connected to this terminal.	Specifies the DC voltage output. VPulse Specifies the pulse voltage output. I Specifies the DC current output. IPulse Specifies the pulse current output.	Specifies the constant bias output sequence. • Step Specifies the step bias output sequence. • Sweep Specifies the sweep output sequence.	

The combinations of the Output Mode and Output Sequence decide the types as shown in the following table.

Туре	Output Mode	Output Sequence	
Bias	V or I	Constant	
Pulse Bias	VPulse or IPulse	Constant	
Step	V or I	Step	
Pulse Step	VPulse or IPulse	Step	
Staircase Sweep	V or I	Sweep	
Pulse Sweep	VPulse or IPulse	Sweep	

Characteristics

Figure 4-12 Characteristics

This page shows the graph of the specified I/V characteristics as the measurement result. To display this page, click the Characteristics tab.

a. Displaying Characteristic Curves

The data for the X and Y-axes are assigned according to the I/V characteristics specified in the Setup.

If the graph has multiple characteristic curves for different measurement conditions, the measurement conditions are displayed on the graph with the check boxes. Marking the check box displays the characteristic curve for the measurement condition. You can mark multiple check boxes for the measurement conditions.

You can change the minimum and maximum values on the X and Y-axes by clicking the value.

b. Markers

This graph supports two kinds of markers: Domain marker and Trace marker. You can switch these markers by clicking the Marker button shown in the bottom part of the graph.

: Marker button when the Domain marker is used.

: Marker button when the Trace marker is used.

The Domain marker can read multiple characteristic values for the X-axis position.

The Domain marker supports two markers (A and B). Marker A is always available. To use the Marker B, mark the check box for the Marker B. The Marker B is a break line. To move the marker position, use the rotary knob or mouse.

The marker annotation on the graph has X-axis values for markers, and a difference value (Δ) between the Marker B and A (B-A). And, each curve annotation has Y-axis values and difference values (Δ) between the Marker B and A (B-A).

The Trace marker can read the characteristic value with tracing each characteristic curve. It is useful when you want to read the characteristic value on double sweep result.

The marker annotation on the graph has X-axis value for the marker. And, the traced curve annotation has Y-axis value.

c. Curve Representation

The curves can be represented as Line, Dot, or combination (Line & Dot). Select any curve representation using the radio buttons shown in the bottom part of the graph.

d. Reference Traces

You can register the presently-displayed curves as reference traces to compare with other measurement results on the graph. If you register them as reference traces, the reference traces are displayed as break lines on the graph when you open other measurement data files or execute the next measurement. To register as the reference traces, click the Capture button shown in the bottom part of the graph.

You can register a maximum of 10 reference traces. The measurement data files registered as the reference traces are listed in the References field under the Capture button. You can show or hide the reference traces using the check boxes at the head of the measurement data file names. The References field can be shown or hidden by clicking the chevron under the graph.

To remove unnecessary reference traces, select the measurement data file in the References field, and then click the Remove button \times .

The registration of the reference traces is cleared when you exit the I/V measurement software.

e. Auto Scale

Clicking the Auto Scale button fits the measurement data at that time in the graph scale.

If the auto scale mode is selected by using the Scale mode button, the measurement data is automatically fit according to the progress of the measurement.

If the fixed scale mode is selected by using the Scale mode button, the scale is fixed until changing the scale manually or clicking the Auto Scale button.

: Scale mode button during selecting the auto scale mode.

: Scale mode button during selecting the fixed scale mode.

GUI Reference

I/V Measurement Software

f. Trace Labels

The step values for the characteristic curves can be shown or hidden by clicking the Trace Label button A.

In the case that multiple curves are displayed on the IV-VDS characteristic graph of MOSFET, IC-VCE characteristic graph of IGBT, and so on, the step value display is useful to identify which curve is for which step value.

g. X/Y Data

You can select the data and scale for the X and Y-axes. As default, the data for the X and Y-axes are assigned according to the I/V characteristics specified in the Setup.

The X/Y data field can be shown or hidden by clicking the chevron \odot under the graph.

Select one from the following scales.

Linear

Linear scale

PositiveLog

Logarithm scale for positive data

NegativeLog

Logarithm scale for negative data

Select data for X and Y-axes corresponding to the specified device type. The following shows data corresponding to the device type.

For MOSFET:

VDS: Drain-source voltage

ID: Drain current

• RDS: Drain-source resistance

• VGS: Gate-source voltage

· IG: Gate current

• IS: Forward direction current of body diode (source current)

• VSD: Forward direction voltage of body diode (source-drain voltage)

For IGBT:

• VCE: Collector-emitter voltage

IC: Collector current

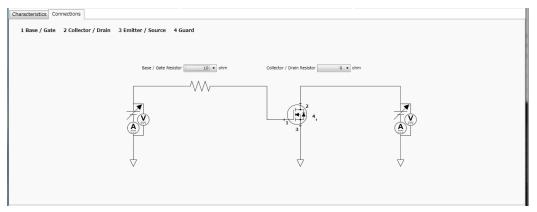
• VGE: Gate-emitter voltage

• IG: Gate current

For Diode:

VF: Forward direction voltage

• IF: Forward direction current


• VR: Reverse direction voltage

• IR: Reverse direction current

For Generic: same as data for MOSFET

Connections

Figure 4-13 Connections

This page shows the measurement circuit that is automatically connected according to your specified measurement conditions. To display this page, click the Connections tab.

On the measurement circuit, the measurement terminals, the measurement resources, and the built-in capacitance and resistance are displayed. The following shows the relationship between the terminal numbers and the measurement terminals.

- 1: Base/Gate terminal
- 2: Collector/Drain terminal
- 3: Emitter/Source terminal
- 4: Guard terminal

GUI Reference I/V Measurement Software

NOTE

If DUT is a diode, connect the cathode terminal to 2. Collector/Drain terminal, and the anode terminal to 3. Emitter/Source terminal.

Base/Gate Resistor

If the MCSMU is specified to the Base/Gate terminal as the measurement resource, you can select one from the following base/gate resistances.

- 0 Ω
- 10 Ω
- 100 Ω
- 1 kΩ

The base/gate resistance is effective to restrain the oscillation of DUT that occurs during the ultra high current measurement and so on.

Collector/Drain Resistor

If the MVSMU is specified to the Collector/Drain terminal as the measurement resource, you can select one from the following collector/drain resistances.

- 0 Ω
- 100 kΩ

The collector/drain resistance is effective to restrain the over current that occurs during the breakdown measurement and so on.

Data List

Figure 4-14 Data List

The data list area provides the following functions regarding the saving of the measurement data files.

- Set the device ID to be recorded to the measurement data file See "Device ID" on page 4-57.
- Enter a comment to be recorded to the measurement data file
 See "Comment" on page 4-57.
- Operations for the latest measurement data file See "Data" on page 4-58.
- Access to the measurement data files that were automatically saved
 See "Data store" on page 4-58.

The setup data and measurement data are automatically saved to a new measurement data file at the end of the measurement. At this time, you can also record a device ID to identify your DUT and a comment. And, the destination folder of the measurement data file for auto-saving is predefined. You can set the device ID and comment, and change the destination folder using this area.

Device ID

Enter device ID string to the Device ID field. The maximum 10 recently-entered device IDs can be kept as history, and you can also select one from the history list.

The entered device ID is automatically saved to the measurement data file at the end of the measurement.

You can also change the device ID in the latest measurement data file after the measurement here. To change it, change the device ID in the Device ID field, and then click the Apply button .

Comment

Enter a comment string to the Comment field.

The entered comment is automatically saved to the measurement data file at the end of the measurement.

GUI Reference I/V Measurement Software

You can also change the comment in the latest measurement data file after the measurement here. To change it, change the comment in the Comment field, and then click the Apply button .

Data

The Data field shows the latest auto-saved or last-opened measurement data file name. You can do the following operations.

- Open the measurement data file by clicking the Open button <a>
- Rename the measurement data file by clicking the measurement data file name.
- Delete the measurement data file by clicking the Delete button X.

Data store

Using the following fields, you can change the destination folder of the auto-saved measurement data file, and access the auto-saved measurement data files.

The following fields can be shown or hidden by clicking the chevron \odot next to "Data store".

Data folder

Shows the absolute path of the auto-saved measurement data file. To change this, click the Browse button to open the folder selection dialog box. Select your desired folder in the dialog box.

For the initial setting of the data folder, see "Summary of Files" on page 4-60.

Recent data

Shows up to 10 auto-saved measurement data files that were automatically saved recently, in the hyper-link format. Clicking the hyper-link opens the selected measurement data file. This destroys the presently-editing data.

If the number of the auto-saved measurement data files is over ten, this field shows "more...". Clicking this opens the file selection dialog box. Select a measurement data file to open.

Dialog Boxes

Change Device ID Dialog Box

The Change Device ID dialog box is used to change the device ID in all selected measurement data files at once.

Device ID field Enter a new device ID. You can also select it from the history.

Add... button Opens the file selection dialog box to select the measurement

data file(s) that you want to change the device ID. The selected

files are displayed into the list.

Remove button Excludes the selected measurement data file from the list.

Execute button Changes the device ID.

Close button Closes this dialog box.

This dialog box is opened by selecting the main menu File > Change Device ID....

Color Setting Dialog Box

The Color Setting dialog box is used to set colors of parts in this software.

The graph elements supported by this dialog box are graph background, X and Y-axes, graph grid, graph text, marker, and trace. Clicking the color pattern opens the dialog box for selecting a color.

The setting in the Color Setting dialog box is saved as a user setting.

Apply button Applies the present setting to the graph.

Reset button Resets to the default setting.

OK button Applies the present setting to the graph, and closes this dialog

box.

Cancel button Closes this dialog box without applying the present setting.

This dialog box is opened by selecting the main menu View > Color Settings....

About Box Dialog Box

The About Box dialog box displays the model number, the software revision number, download URL for software updating, and so on.

This dialog box is opened by selecting the main menu Help > About....

Summary of Files

The following shows the summary of the files handled by the I/V measurement software.

Table 4-5 Summary of Files

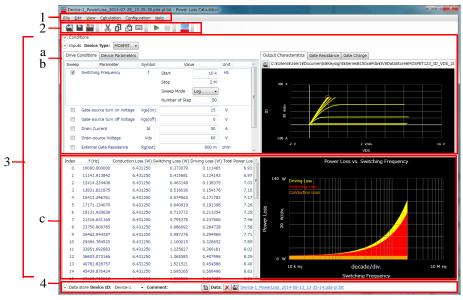
File Type	Description	Extension	Folder as Initial Setting
Setup File	Setup data You can save this if needed.	*.pda-iv	(You can specify the folder when saving the data)
Measurement Data File	Setup data and measurement data including the device ID and comment This is automatically saved after the measurement. You can optionally save this.	*.pda-iv.txt	C:\Users\ <user name="">\ Documents\Keysight\Serie sB150x\PowerDeviceAnal yzer\IV\DataStore (You can change this)</user>

File name of Measurement Data File on Auto-saving

An auto-saved measurement data file is named as the following rule.

- 1. Concatenates the device ID, date and time on save by an underscore (_).
- 2. Concatenates the file extension (.pda-iv.txt) to the end of the "step 1" string.
- 3. If the "step 2" file name duplicates the existing file name, concatenates the serial number from 2 enclosed by brackets and the file extension to the end of the "step 1" string.

Power Loss Calculation Software


Power loss calculation software provides:

- Calculation of switching device power loss for:
 - Hard switching mode
 - · Soft switching mode
- Inputs to characterize the following parameters:
 - Gate resistance
 - · On resistance
 - · Gate charge
 - · Gate switching charge
 - Equivalent output capacitance (energy related)
 - Equivalent output capacitance (time related)
 - Input parameter assistance using related measurement data including:
 - Display of source measurement data
- Switching condition parameter input
 - Support of parameter sweep for one parameter
- Power loss calculation results of:
 - Total power loss
 - Conductive power loss
 - Driving power loss
 - Switching power loss (inductive load)
 - Graph representation of loss components for optional parameter sweep

GUI Overview

The GUI (Graphical User Interface) of the Power loss calculation software is comprised of the following areas.

Figure 4-15 Power Loss Calculation Software GUI

1. "Main Menu" on page 4-63

This provides the functions needed for various operations in the menu format.

2. "Toolbar" on page 4-65

This provides the functions that are very frequently used in the button format.

3. "Work Area" on page 4-67

This area provides the functions to set the calculation conditions and observe the calculation results. This is separated to the following areas.

- a. "Conditions" on page 4-67
- b. "Inputs" on page 4-67
- c. "Results" on page 4-72
- 4. "Data List" on page 4-74

This area provides the functions regarding the saving of the calculation data files

For the dialog boxes displayed during this software operation, see "Dialog Boxes" on page 4-76.

For the files handled by this software, see "Summary of Files" on page 4-77.

Main Menu

Figure 4-16 Main Menu

File	Edit	View	Calculation	Configuration	Help
			Carcalacion	<u>oo</u> rmigaradon	11C-1P

The following shows the structure of the main menu.

File Menu

Displays the following menu items to operate the setup file and calculation data file. For the kinds of the files and file extensions, see "Summary of Files" on page 4-77.

New Creates a new setup.

This destroys the setup that you are editing, and creates a new

setup.

Open... Opens an existing setup file or calculation data file.

This opens the file selection dialog box, destroys the setup that you are editing, and then opens the file selected in the dialog

box

Save Saves the setup that you are editing to the original setup file.

Save Setup As... Saves the setup that you are editing to the specified setup file.

This opens the file selection dialog box, and saves the present

setup to the specified setup file.

Save Data As... Saves the present setup data and calculation data to the

specified calculation data file.

This opens the file selection dialog box, and saves the present setup data and calculation data to the specified calculation data

file.

Change Device

ID... Changes the device ID recorded in the calculation data file.

GUI Reference

Power Loss Calculation Software

This opens the Change Device ID dialog box, and changes the device ID recorded in the selected calculation data file(s). See "Change Device ID Dialog Box" on page 4-76.

Recent Setup Files

Lists a maximum of 10 names of the setup files that were recently edited, as menu items. You can easily open a setup file

by using them.

Exit Exits the power loss calculation software. Unsaved data is

destroyed.

Edit Menu Displays the following menu items to edit the setup.

Cut Moves the selected text to the clipboard.Copy Copies the selected text to the clipboard.

Paste Pastes the text from the clipboard to the insertion point.

On-screen

keyboard... Displays the on-screen keyboard.

View Menu Displays the following menu items for the display setting.

Go to Palette Displays the Software Palette in fullscreen mode.

Main Window Displays the following menu item.

Fullscreen Changes the display style of the main

window.

If this is marked, the main window does not

have the titlebar and is displayed in

fullscreen mode.

If this is unmarked, the main window has

the titlebar and is displayed in the regular

window style.

This is initially marked.

Color Settings... Opens the Color Setting dialog box to set the color for parts in

this software. See "Color Setting Dialog Box" on page 4-76.

Calculation Menu Displays the following menu items for controlling the calculation.

Start Starts a calculation.

To stop the present calculation, select the Calculation > Stop menu, click the Stop Calculation button on the toolbar, or press the Stop key on the front panel.

Stop Stops the measurement.

Help Menu Displays the following menu item.

About... Opens the About Box dialog box. See "About Box Dialog Box"

on page 4-76.

Toolbar

Figure 4-17 Toolbar

The toolbar has four tool button groups. The following shows the tool buttons in the tool button groups.

File tool button group

	2 2 2 2 2 2 2 2 2 P	
3	Open	Opens an existing setup file or calculation data file.
		This opens the file selection dialog box, destroys the setup that you are editing, and then opens the file selected in the dialog box.
	Save	Saves the setup that you are editing to the original setup file.
X a	Exit	Exits the power loss calculation software. Unsaved data is destroyed.
Edit t	ool button group	
Ж	Cut	Moves the selected text to the clipboard.
ō	Сору	Copies the selected text to the clipboard.
â	Paste	Pastes the text from the clipboard to the insertion point.

GUI Reference

Power Loss Calculation Software

On-screen keyboard

Displays the on-screen keyboard.

Calculation tool button group

Start Calculation

Starts a measurement. During the measurement, the measurement status indicator on the front panel lights up.

To stop the calculation, select the Calculation > Stop menu, click the Stop Calculation button ■ on the toolbar, or press the Stop key on the front panel.

Stop Calculation

Stops the calculation.

View tool button group

Go to Palette

Displays the Software Palette in fullscreen mode.

Work Area

In this area, set the calculation conditions and observe the calculation results. This is separated to the following areas.

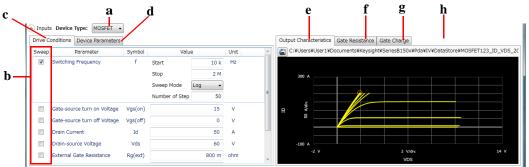
- "Conditions" on page 4-67
- "Inputs" on page 4-67
- "Results" on page 4-72

Conditions

Figure 4-18 Conditions

This is an area to specify your assumption to calculate the power loss on your switching device.

This area can be shown or hidden by clicking the chevron ♥ of the Conditions.


Load Type

Select the assumed load type to calculate the power loss. You can select one from the following load types.

Inductive: Inductive loadResistive: Resistive load

Inputs

Figure 4-19 Inputs

GUI Reference

Power Loss Calculation Software

This is an area to specify the device type of your DUT, and driving condition and device characteristic parameters that are used as the input data for calculation. The driving condition parameters and device characteristic parameters are separated by tabs.

Other than manually entering the parameter values with referring the device data sheet, you can also enter them using existing measurement data files. This area is equipped with the functions to read existing measurement data files, display the characteristic curve graphs, and extract some parameter values from them. The following measurement data files are readable.

- I/V measurement data file
- · Capacitance measurement data file
- Gate charge measurement data file

They are separated by tabs.

This area can be hidden or shown by clicking the chevron \odot of the Inputs.

a. Device Type

Select the device type of your DUT from below.

MOSFET

b. Sweep Parameter

Select one parameter that is swept to observe the loss changes for the changes of this parameter, from the driving condition parameters and device characteristic parameters. To select it, mark the check box of the parameter. As the default, the Switching Frequency parameter in the Driving parameters is selected.

Specify the following items for the selected parameter as the sweep parameter.

Start

Specify the sweep start value.

Stop

Specify the sweep stop value.

• Sweep Mode

Select one from the following sweep modes.

- Linear (Sweep from start to stop in a linear incremental step)
- Log (Sweep from start to stop in a logarithmic incremental step)
- Number of Step

Specify the number of sweep steps from start to stop.

c. Drive Conditions

Specify the driving condition parameter values.

• f: Switching Frequency

Specify the switching frequency.

• Vgs(on): Gate-source turn on Voltage

Specify the gate-source voltage required to turn the device on.

• Vgs(off): Gate-source turn off Voltage

Specify the gate-source voltage required to turn the device off.

• Id: Drain Current

Specify the On-state drain current.

• Vds: Drain-source Voltage

Specify the Off-state drain-source voltage.

• Rg(ext): External Gate Resistance

Specify the gate resistance included in the external driving circuit.

Irms: Effective Drain Current

Specify the effective drain current (the root mean square of the load current).

The effective drain current (Irms) is the product of the drain current (Id) and the duty cycle (D).

• D: Duty Cycle

Specify the duty cycle within the range from 0 to 1.

d. Device Parameters

Specify the device characteristic parameter values.

• Qg(on): Gate Charge at on

Specify the On-state gate charge.

Qg(on) – Qg(off) is regarded as the gate charge required to turn the device on.

• Qg(off): Gate Charge at off

Specify the Off-state gate charge.

Qg(on) – Qg(off) is regarded as the gate charge required to turn the device on.

• Rg: Gate Resistance

Specify the gate resistance.

• Qsw: Gate Switching Charge (Crss)

GUI Reference

Power Loss Calculation Software

Specify the required gate charge (Mirror Charge) so that the drain-source voltage is same as the gate-source voltage when the device state changes from Off to On.

• Vgs(pl): Gate Plateau Voltage

Specify the gate plateau voltage.

• Rds(on): On Resistance

Specify the On-state resistance.

e. Output Characteristics

Specify the measurement data file taken by the I/V measurement software. To read the file, click the Load Measurement Data button in the top left corner. The file selection dialog box opens to read the file. The file name to be read is displayed next to the Load Measurement Data button. And, the output characteristic data is displayed on the graph.

The measurement data file that has any of the following output characteristics is readable.

- ID-VDS
- RDS-ID
- VDS-VGS
- RDS-VGS

The following parameter value is extracted from the Vgs(on) parameter value specified in the Drive Conditions and the output characteristic data to be read.

- Device Parameters
 - Rds(on): On Resistance

You can change the minimum and maximum values on the X and Y-axes by clicking the value.

f. Gate Resistance

Specify the Rg characteristic measurement data file taken by the capacitance measurement software. To read the file, click the Load Measurement Data button in the top left corner. The file selection dialog box opens to read the file. The file name to be read is displayed next to the Load Measurement Data button. And, the Rg characteristic data is displayed on the graph.

The following parameter value is extracted from the Vgs(off) parameter value specified in the Drive Conditions and the Rg characteristic data to be read.

Device Parameters

• Rg: Gate Resistance

You can change the minimum and maximum values on the X and Y-axes by clicking the value.

g. Reverse Transfer Capacitance

Specify the Crss characteristic measurement data file taken by the capacitance measurement software. To read the file, click the Load Measurement Data button in the top left corner. The file selection dialog box opens to read the file. The file name to be read is displayed next to the Load Measurement Data button. And, the Crss characteristic data is displayed on the graph.

The following parameter value is extracted from the Vgs(off) and Vds(off) parameter values specified in the Drive Conditions and the Crss characteristic data to be read.

- Device Parameters
 - Qsw: Gate Switching Charge

You can change the minimum and maximum values on the X and Y-axes by clicking the value.

h. Gate Charge

Specify the measurement data file taken by the gate charge measurement software. To read the file, click the Load Measurement Data button in the top left corner. The file selection dialog box opens to read the file. The file name to be read is displayed next to the Load Measurement Data button. And, the gate charge characteristic data is displayed on the graph.

The following parameter values are extracted from the gate charge characteristic data to be read.

- Drive Conditions
 - Vgs(on): Gate-source turn on Voltage
 - Vgs(off): Gate-source turn off Voltage
 - Id: Drain Current
 - Vds: Drain-source Voltage
- Device Parameters
 - Qg(on): Gate Charge at on
 - Qg(off): Gate Charge at off
 - Qsw: Gate Switching Charge (Crss)

Power Loss Calculation Software

• Vgs(pl): Gate Plateau Voltage

You can change the minimum and maximum values on the X and Y-axes by clicking the value.

Results

Figure 4-20 Results

a							b	
Index	f (Hz)	Conduction Loss (W)	Switching Loss (W) D	riving Loss (W) To	otal Power Los			Power Loss vs. Switching Frequency
0	10000.000000	6.431250	0.373079	0.111465	6.91			
1	11141.913842	6.431250	0.415681	0.124193	6.97	140 W		
2	12414.224406	6.431250	0.463148	0.138375	7.03:	140 W	Driving Loss	
3	13831.821875	6.431250	0.516036	0.154176	7.10		Conduction Loss	ss
4	15411.296761	6.431250	0.574963	0.171782	7.17			
5	17171.134070	6.431250	0.640619	0.191398	7.26	(A)		
6	19131.929638	6.431250	0.713772	0.213254	7.35	r Loss W/div.		
7	21316.631165	6.431250	0.795278	0.237606	7.46			
8	23750.806785	6.431250	0.886092	0.264738	7.58	Power 20 W		
9	26462.944287	6.431250	0.987276	0.294969	7.71	ш		
10	29484.784525	6.431250	1.100015	0.328652	7.85			
11	32851.692883	6.431250	1.225627	0.366181	8.02			
12	36603.073166	6.431250	1.365583	0.407996	8.20	0 W		
13	40782.828757	6.431250	1.521521	0.454586	8.40	٠	10 k Hz	decade/div. 10 M Hz
14	45439.876424	6.431250	1.695265	0.506496	8.63		10 K 112	
15	50628,718810	6.431250	1.888850	0.564333	8.88			Switching Frequency

This area shows the power loss data in the list and the trend chart formats, that was calculated along your parameter settings specified in the Inputs.

a. List Shows the loss data for the swept parameter values as the calculation result in the list format.

Index

Shows the index number of the sweep step.

• Sweep parameter

Shows the sweep parameter value specified in the Inputs.

• Conduction Loss

Shows the conduction loss as the calculation result.

This is calculated from the following expression.

$$Rds(on) \times Irms^2$$

Switching Loss

Shows the switching loss as the calculation result.

This is calculated from either of the following expressions.

When the Load Type specified in the Conditions is "Inductive":

$$\frac{1}{2} \times f \times Vds \times Id \times \{Rg + Rg(ext)\} \times Qsw \times \left\{ \frac{1}{Vgs(on) - Vgs(pl)} + \frac{1}{Vgs(pl) - Vgs(off)} \right\}$$

When the Load Type is "Resistive":

$$\frac{1}{6} \times f \times Vds \times Id \times \{Rg + Rg(ext)\} \times Qsw \times \left\{ \frac{1}{Vgs(on) - Vgs(pI)} + \frac{1}{Vgs(pI) - Vgs(ofI)} \right\}$$

Driving Loss

Shows the driving loss as the calculation result.

This is calculated from the following expression.

$$f \times \{Qg(on) - Qg(off)\} \times \{Vgs(on) - Vgs(off)\}$$

Total Power Loss

Shows the total sum of the conduction loss, switching loss, and driving loss.

b. Trend Chart

Shows the loss data for the swept parameter values as the calculation result in the trend chart format. Where, the sweep parameter is assigned to the data for the X-axis, and the conduction loss, switching loss, and driving loss are assigned to the data for the Y-axis and are accumulated in this order.

You can change the minimum and maximum values on the X and Y-axes by clicking the value.

Data List

Figure 4-21 Data List

The data list area provides the following functions regarding the saving of the calculation data files.

- Set the device ID to be recorded to the calculation data file
 See "Device ID" on page 4-74.
- Enter a comment to be recorded to the calculation data file See "Comment" on page 4-74.
- Operations for the latest calculation data files
 See "Data" on page 4-75.
- Access to the calculation data files that were automatically saved See "Data store" on page 4-75.

The setup data and calculation data are automatically saved to a new calculation data file at the end of the calculation. At this time, you can also record a device ID to identify your DUT and a comment. And, the destination folder of the calculation data file for auto-saving is predefined. You can set the device ID and comment, and change the destination folder using this area.

Device ID

Enter device ID string to the Device ID field. The maximum 10 recently-entered device IDs can be kept as history, and you can also select one from the history list.

The entered device ID is automatically saved to the calculation data file at the end of the calculation.

You can also change the device ID in the latest calculation data file after the calculation here. To change it, change the device ID in the Device ID field, and then click the Apply button .

Comment

Enter a comment string to the Comment field.

The entered comment is automatically saved to the calculation data file at the end of the calculation.

You can also change the comment in the latest calculation data file after the calculation here. To change it, change the comment in the Comment field, and then click the Apply button .

Data

The Data field shows the latest auto-saved or last-opened calculation data file name. You can do the following operations.

- Open the calculation data file by clicking the Open button <a>
- Rename the calculation data file by clicking the calculation data file name.
- Delete the calculation data file by clicking the Delete button 🗶.

Data store

Using the following fields, you can change the destination folder of the auto-saved calculation data file, and access the auto-saved calculation data files.

The following fields can be shown or hidden by clicking the chevron \odot next to "Data store".

Data folde	r

Shows the absolute path of the auto-saved calculation data file. To change this, click the Browse button to open the folder selection dialog box. Select your desired folder in the dialog box.

For the initial setting of the data folder, see "Summary of Files" on page 4-77.

Recent data

Shows up to 10 auto-saved calculation data files that were automatically saved recently, in the hyper-link format. Clicking the hyper-link opens the selected calculation data file. This destroys the presently-editing data.

If the number of the auto-saved calculation data files is over ten, this field shows "more...". Clicking this opens the file selection dialog box. Select a calculation data file to open.

Dialog Boxes

Change Device ID Dialog Box

The Change Device ID dialog box is used to change the device ID in all selected calculation data files at once.

Device ID field Enter a new device ID. You can also select it from the history.

Add... button Opens the file selection dialog box to select the calculation data

file(s) that you want to change the device ID. The selected files

are displayed into the list.

Remove button Excludes the selected calculation data file from the list.

Execute button Changes the device ID.

Close button Closes this dialog box.

This dialog box is opened by selecting the main menu File > Change Device ID....

Color Setting Dialog Box

The Color Setting dialog box is used to set colors of parts in this software.

The graph elements supported by this dialog box are graph background, X and Y-axes, graph grid, graph text, three trends on the trend charge, and traces on the characteristic graphs. Clicking the color pattern opens the dialog box for selecting a color.

The setting in the Color Setting dialog box is saved as a user setting.

Apply button Applies the present setting to the graph.

Reset button Resets to the default setting.

OK button Applies the present setting to the graph, and closes this dialog

box.

Cancel button Closes this dialog box without applying the present setting.

This dialog box is opened by selecting the main menu View > Color Settings....

About Box Dialog Box

The About Box dialog box displays the model number, the software revision number, download URL for software updating, and so on.

This dialog box is opened by selecting the main menu Help > About....

Summary of Files

The following shows the summary of the files handled by the power loss calculation software.

Table 4-6 Summary of Files

File Type	Description	Extension	Folder as Initial Setting
Setup File	Setup data You can save this if needed.	*.pda-pl	(You can specify the folder when saving the data)
Calculation data File	Setup data and calculation data including the device ID and comment This is automatically saved after the calculation. You can optionally save this.	*.pda-pl.txt	C:\Users\ <user name="">\ Documents\Keysight\Serie sB150x\PowerDeviceAnal yzer\PowerLoss\DataStore (You can change this)</user>

File name of calculation data File on Auto-saving

An auto-saved calculation data file is named as the following rule.

- 1. Concatenates the device ID and date and time on save by an underscore (_).
- 2. Concatenates the file extension (.pda-pl.txt) to the end of the "step 1" string.
- 3. If the "step 2" file name duplicates the existing file name, concatenates the serial number from 2 enclosed by brackets and the file extension to the end of the "step 1" string.

Common GUI Components

This section describes the following GUI components commonly used in the Keysight Easy Test Navigator software.

"Module Configuration Dialog Box" on page 4-78

Module Configuration Dialog Box

You can do the following operations in the Module Configuration dialog box.

- Checking the revision of the firmware
- Setting the power line cycle
- Checking the status of the hardware modules
- Resetting the hardware modules
- Executing the self-test
- Executing the self-calibration
- Executing the self-diagnostics

This dialog box is opened by selecting the main menu Configuration > Module....

Firmware Revision Shows the revision of the firmware.

Line Frequency

Select the power line frequency from below. This is used as the PLC value for the measurement time setting.

- 50 Hz
- 60 Hz

Module Status

Shows the module's model numbers and the result of the self-test, self-calibration, and self-diagnostics for the modules as the status.

The following tables shows the configuration and status.

Table 4-7 **Configuration and Status**

Configuration	Status
GNDU : B1500-66505	• Pass
MPSMU (SMU1): B1511B	It is passed.
MFCMU: B1520A	• Fail
HVSMU (SMU2) : B1513C	It is failed in the self-test or self-calibration.
	Unavailable
	It is not acknowledged.
Device Capacitance Selector	• Pass
	It is passed.
	• Fail
	It is failed in the self-diagnostics.
	Unavailable ^a
	It is not acknowledged.

a. This also occurs when it is turned off.

Operation Buttons You can do the following operations using the buttons below.

- Resetting the hardware modules
- Executing the self-test
- Executing the self-calibration
- Executing the self-diagnostics

Reset button Initializes and re-acknowledges all the modules.

Executes the self-test for all the modules. Self Test button

Self Calibration

button Executes the self-calibration for all the modules.

Diagnosis button Executes the self-diagnostics for all the output selectors.

Connect the output terminals according to the displayed

instructions during the diagnostics execution.

GUI Reference Common GUI Components

Error Log

Shows the error messages when errors occur for the above button operations. The error messages are cleared when you do any new operation.

This information is subject to change without notice.

© Keysight Technologies 2014

Edition 1, October 2014

