
The purpose of this document is to discuss design considerations that will enhance user
experience by fully utilizing the automation productivity features in Studio 5000 Logix Designer®.
The core features to be discussed are Subroutines, Add-On Instructions, Program Parameters
and the Logical Organizer. The design considerations and examples in this document are merely
suggestions. Users must determine which methodologies will best suit the needs of their
engineering team.

The below list summarizes the topics that
will be discussed.

•	 Progression of Code “Containers”
•	 Subroutines
•	 Add-On Instructions
•	 Programs with Parameters
•	 Interface Layer Design Recommendations
•	 Embedding Levels of Modularity
•	 Logical Organizer
•	 Controller Performance Considerations

It is assumed that the reader is familiar with the topics covered in the following design guides:

•	 The Logix5000™ Controller Design Considerations (Pub# 1756-RM094H-EN-P)
•	 The Logix5000 Controller Add-On Instructions Programming Manual (Pub# 1756-PM010F-EN-P)
•	 The Logix5000 Controller Program Parameters Programming Manual (Pub# 1756-PM021A-EN-P)

The development environment for Logix5000 controllers for Version 20 and below is named
RSLogix™ 5000. Beginning at Version 21, RSLogix 5000 was rebranded to Studio 5000 Logix
Designer. For the purposes of clarity, this document will address both products generically as the
Logix5000 design environment.

Modular Programming Tips in
Studio 5000 Logix Designer

2 | Modular Programming Tips in Studio 5000 Logix Designer

Progression of Code “Containers”
Let’s take a moment to discuss the progression of code “containers” that are available
within the Logix5000 design environment. When Logix controllers were first introduced,
code could be segmented into programs and routines. Users were limited in the number
of programs that could exist in an application. Because of this limitation, the majority of
code modules were in the form of routines and subroutines. As time progressed, Logix
controllers were being used for increasingly complex applications which caused an
increase in program size and complexity. This resulted in a need for more choices for code
segmentation.

In Version 16, a significant feature was introduced that gives users an additional method
of segmenting code into smaller code modules. The Add-On Instruction (AOI) is a
noteworthy feature because it is a true “definition.” This means the logic within the code
module exists in one place and can be used (instantiated) anywhere in the program.
Additionally, Parameters are passed much more efficiently in AOIs when compared to
subroutines. This improves scan-time performance as well as memory consumption within
the Logix controller. AOIs are not online editable which makes them excellent for smaller
code modules that will not require online edits after testing is complete. AOIs can be
easily transported between applications using import and export. AOIs are heavily used in
current releases and will be discussed later in this document.

In Version 24, a new feature has been added that enables Parameters to be passed
between individual programs. This allows a program to be used as a primary code
container without the use of Controller Scope tags to read and/or write data to other
programs. This functionality adds an additional layer of encapsulation when using
programs for code segmentation. Programs and associated Parameters can be configured
while online, which gives them an advantage when compared to AOIs. This makes
programs an excellent choice for code modules that may require ongoing online edits.
The Logical Organizer was also introduced in Version 24 to aid users in organizing code
modules. The Logical Organizer allows the user to define a multi-level, organization
hierarchy of folders, programs and phases that represent their system. The use of these
two features will be discussed extensively throughout this document.

These features combined cultivate a collaborative design environment that promotes
organization and reusability. If utilized to its full potential, the Logix5000 design
environment can help users create a library of common control functions that can be
leveraged across many applications. This can reduce time-to-market while increasing
overall code robustness.

Subroutines

This section will discuss some high-level design tips for using Subroutines. The Logix5000
Controller Design Considerations (Pub# 1756-RM094H-EN-P) is available on Literature
Library and contains excellent information on designing, creating and using Routines.

Modular Programming Tips in Studio 5000 Logix Designer | 3

Basic understanding of the topics covered in that reference manual are imperative to
properly designing and using Routines.

When to Consider Subroutines:

After a functional specification has been broken down into smaller, less complex
operations (code modules) it is time to start deciding which method to utilize to
encapsulate each module. When considering Subroutines, it is important to ask the
following questions for each proposed code module:

•	 Is the code module reusable?

•	 Can the logic for this code module reasonably fit into one routine?

•	 Is there a relatively small number of tags to be passed to and/or from the code module?

•	 Does the code module already exist in a legacy controller (PLC-5®, SLC™, or MicroLogix™)?

If the majority of the answers are “yes,” then Subroutines are a great option for that code
module. Subroutines have been around for a long time and many users are familiar
with how to design and use them. They can be created and used in standard and safety
applications and are easily transported between applications which makes them great
for building code libraries. Additionally, Subroutines allow the passing of User-Defined
Structures (UDT), which makes them very useful when a code module has a corresponding
custom defined structure of tags. All input and output Parameters are passed by “value.”
This means when the Subroutine is called, input parameter values are passed to the
Subroutine. Output Parameters are passed out of the Subroutine after the Subroutine has
completed execution. Subroutines are a great option for semi-complex algorithms that
can fit into a single routine and may require online editing.

When using Subroutines, remember the following:

•	 It can be hard to troubleshoot running code when a Subroutine is called from multiple 		
	 locations. It is highly recommended that users consider adding logic to the application 		
	 that allows an instance of a Subroutine to be isolated.

•	 Of all of the available code “containers.” Subroutines require the most overhead to pass
	 Parameters when called. If the application requires the absolute fastest scan-time, 		
	 consider using other methods.

•	 If a large number of tags must be passed, consider using UDTs or arrays.

•	 Subroutines are not global code containers. They can only be called from within the 		
	 program they reside.

Add-On Instructions

4 | Modular Programming Tips in Studio 5000 Logix Designer

This section will discuss some high-level design tips for using Add-On Instructions (AOIs).
The Logix5000 Controller Add-On Instructions Programming Manual (Pub# 1756-PM010F-
EN-P) is available on Literature Library and contains excellent information on designing,
creating and using AOIs. Basic understanding of the topics covered in that programming
manual are imperative to properly designing and using AOIs.

When to Consider AOIs:

When considering AOIs, it is important to ask the following questions for each proposed
code module.

•	 Is the code module reusable?

•	 Can the logic for this code module reasonably fit into one routine?

•	 Is there a low probability for online edits?

•	 Is there a relatively small number of tags to be passed to and/or from the code module?

•	 Does the user need to quickly know if the code within the module has changed?

•	 Does the code module require revision control?

If the majority of the answers are “yes,” then AOIs are a great option for that code module.
It is important to remember that AOIs are custom instructions that can be created and
used in standard and safety applications. They are primarily meant to give users a way to
create instructions that are not already available within the Logix5000 design environment.
This is a good rule-of-thumb to use when deciding if an algorithm or function is too
complex to implement using an AOI. For example, temperature conversions, flow
calculations and low-level device control are excellent examples for when an AOI should
be considered. These algorithms are similar in complexity and usability when compared
to existing instructions like Average (AVE), Timer On Delay (TON) and Count Up Instruction
(CTU). On the contrary, an AOI would not be a good choice for a high level, line control
algorithm that may contain hundreds or even thousands of rungs and Parameters. In this
case, using programs and multiple routines may be a better option. It is also possible for
complex functions to be broken down into smaller functions which can be designed into
several AOIs. These AOIs can then be embedded (cascaded) within one another to create
an AOI for a complex function. These two methods are discussed later in this document.
Finally, AOIs are true code “definitions.” This means the code exists in one place, but can be
called (instantiated) from anywhere in the application. If the logic in the AOI definition is
changed, then that change is reflected anywhere the AOI is used in the application.

When using AOIs, remember the following:

•	 AOIs cannot be edited while online. Keep this in mind when segmenting code into code 	
	 modules. If a code module will require regular updates or changes, using subroutines or 		
	 programs may be a better option.

•	 AOIs pass Parameters much more efficiently than Subroutines. This is important if high-		
	 speed scan times are critical.

•	 Input and Output Parameters do not support complex structures. If UDTs are used, InOut 	
	 Parameters are required.

•	 InOut Parameters pass by reference, so it is possible for that value to change while the 		
	 AOI is executing.

•	 Unlike Subroutines, it is very easy to view each instance of AOI logic. This aids in 		
	 troubleshooting.

Modular Programming Tips in Studio 5000 Logix Designer | 5

•	 If a large number of tags must be passed to the AOI, consider using UDTs and arrays.

•	 AOIs are global code modules.

•	 AOIs are true “definitions.” Instances of an AOI can be called throughout the entire 		
	 application.

•	 An AOI can be signed. If any changes are made to the AOI, the signature must be 		
	 removed. This can provide quick verification of any changes in the instruction.

Programs with Parameters
This section will discuss some high-level design tips for using Programs with Parameters.
The Logix5000 Controller Program Parameters Programming Manual (Pub# 1756-PM021A-
EN-P) is available on Literature Library and contains excellent information on designing,
creating, and using Programs with Parameters. Basic understanding of the topics covered
in this programming manual are imperative to properly designing and using programs
with Parameters.

Program Parameters is one of the latest features available in the Logix5000 design
environment. Each program in an application will now have local tags and Parameters. The
primary purpose of Parameters in programs is to add an additional layer of encapsulation
by facilitating the sharing of data between programs without the use of Controller Scope
tags. Essentially, the user can specifically determine which data remains local (private) to a
program and which data is shared (public). Having the ability to clearly define a program’s
interface with other programs provides a similar look and feel as AOIs. Programs with
Parameters can also exist in safety applications. There are some additional rules that will be
in the next section regarding safety application implementation. Let’s take a closer look at
the similarities and differences between Programs with Parameters and AOIs.

Key Similarities:

•	 Input, Output and InOut Parameters are available in Programs and AOIs

•	 Input, Output and InOut Parameters are passed using the same methods in Programs 		
	 and AOIs

•	 Programs and AOIs can be easily transported between projects

•	 Both Programs and AOIs can be used in safety applications

Key Differences:

•	 Input and Output Parameters can be complex data types (i.e. arrays, strings, UDTs)
	 in programs

6 | Modular Programming Tips in Studio 5000 Logix Designer

•	 Public Parameters are only available in programs

•	 AOIs are true module “Definitions”

•	 Programs can contain many routines

•	 Programs can contain all four programming languages

•	 Programs support online edits

The differences mentioned above give programs a slight advantage over AOIs in certain
situations. When determining if a code module should reside in a program, consider the
questions below:

•	 Should the logic be split across multiple routines?

•	 Does the code module require use of multiple programming languages 			
	 (simultaneously)?

•	 Does the code module require Sequential Function Chart (SFC)?

•	 Is there a high probability for online edits after commissioning? 

If any of the questions above are answered “yes,” then Programs may be better suited for
that code module. Programs are unique since AOIs and routines can reside within them.
With that in mind, they naturally tend to be used as a higher level of modularity. The figure
below shows a generalized progression of the levels of modularity that are available in the
Logix5000 design environment.

Direct Access of Program Parameters

Direct Access allows two programs to share parameter references without configuring a
connection. Using the following images as an example, let’s assume the TankCtrl program
must obtain the Water Level which resides in the Valve program. Direct Access can be
used to acquire the value of the Water Level as long as it is configured as a Input, Output
or Public parameter. Direct Access can not be used to read/write values to local tags or
InOut Parameters.

Modular Programming Tips in Studio 5000 Logix Designer | 7

The image below shows a syntax example of how a user would use Direct Access in the
TankCtrl program to obtain the Water Level value in the Valve program. In this example, the
instruction below would reside in the TankCtrl program.

Direct Access supports read capabilities for Input, Output and Public Parameters.
Additionally, Direct Access supports write capabilities to Input and Public Parameters.
Direct Access occurs in real-time and is un-buffered. All programming languages support
Direct Access of program Parameters.

Interface Layer Design Recommendations
Code modules have several main components. Besides the actual code, nearly all modules
must have a clearly defined interface. The interface layer will encompass all of the inputs
and outputs the code module requires to operate. This includes connections to physical
I/O, field devices and/or other code modules. This section will be covering design tips and
examples of how Parameters can be used to design the interface layer for a code module.

Input Parameters:

Input Parameters are primarily used for data that must flow IN to a code module. Input
Parameters are passed by value, meaning the data is passed when the subroutine, program
or AOI is called. If the data connected to an Input Parameter is changed by a higher priority
task while executing the code module, it will not be updated in the current execution of
the code module until it is called again. Users will no longer have to “buffer” input data
to prevent updates during program execution. Additionally, only ONE connection can
be made to an Input Parameter. If multiple code modules must have access to an Input
Parameter, then a separate Input Parameter must be created for each connection. Direct
Access could be used to avoid the use of multiple Input Parameters for one function within
a code module. This concept is known as “fanning.” The table highlights the behavior
differences between Subroutines, Programs and AOIs when using Input Parameters.

8 | Modular Programming Tips in Studio 5000 Logix Designer

Input Parameters

Subroutine AOI Program

Passed by Value Yes Yes Yes

Passed by Reference No No No

Connections Supported 1 1 1*

Parameters Supported 40 Unlimited 512**

Atomic Data Types Yes Yes Yes

Structures (UDTs) / Arrays Yes No Yes

Online Changes to Parameter
Reference or Connection Yes Yes Yes

* Direct Access could be used to simulate “fanning”

** 512 is the total count of all Parameters for one program

Examples:

•	 Passing Input module data to a code module

•	 Any operation that can be invoked by other code modules

•	 Passing data from an HMI to a code module

Output Parameters:

Output Parameters are primarily used for data that must flow OUT of a code module.
Output Parameters are passed by value, meaning the data is passed when the program
or AOI execution is complete. Multiple connections can be made to a single Output
parameter (this is known as “fanning”). Unlike Input Parameters, multiple code modules
can have connections to a single Output parameter. The summary below highlights
the behavior differences between Subroutines, Programs and AOIs when using Output
Parameters.

Output Parameters

Subroutine AOI Program

Passed by Value Yes Yes Yes

Passed by Reference No No No

Connections Supported 1 1 512*

Parameters Supported 40 Unlimited 512**

Atomic Data Types Yes Yes Yes

Structures (UDTs) / Arrays Yes No Yes

Online Changes to Parameter
Reference or Connection Yes Yes Yes

* This includes all connections to a parameters (member and sub-member)

** 512 is the total count of all parameters for one program

Examples:

•	 Passing data from a code module to an Output module

•	 Invoking operations in other code modules

•	 Allowing code module public attributes (i.e. Values, Statuses) to be accessible to other 		
	 code modules

Modular Programming Tips in Studio 5000 Logix Designer | 9

InOut Parameters:

InOut Parameters are primarily used for data that must be acquired and/or updated in
real-time. Because InOut Parameters are passed by reference rather than by value, they
are merely a pointer to the original data and closely resemble the behavior of an alias tag.
With this in mind, it is possible for InOut Parameter values to change during execution
of the code module. For both AOIs and Programs, InOut Parameters can only have ONE
connection. The summary below highlights the behavior differences between Programs
and AOIs when using InOut Parameters.

InOut Parameters

Subroutine AOI Program

Passed by Value n/a No No

Passed by Reference n/a Yes Yes

Connections Supported n/a 1 1

Parameters Supported n/a 40 512*

Atomic Data Types n/a Yes Yes

Structures (UDTs) / Arrays n/a Yes Yes

Online Changes to Parameter
Reference or Connection n/a Yes Yes**

* 512 is the total count of all parameters for one program.

** InOut Parameter connections support online edits only using Partial Import Online (PIO)

Examples:

•	 Required when using a Message instruction in an AOI

•	 Required when passing any UDT structure or array into an AOI

•	 Connections to I/O Module status information (Allows the code module to monitor
	 real-time information)

Public Parameters:

Public Parameters are only available for programs and are primarily used for data that must
be available to all code modules. Public Parameters have the look and feel of controller
scope tags, however, they reside at the program scope. This makes Public Parameters an
excellent option for tag data that must be globally available (Read/Write) for other code
modules. When a Public Parameter changes value within a code module, it is immediately
available to higher priority tasks that are connected to that Parameter. Additionally,
multiple connections can be configured to a public parameter. Multiple connections can
also be made to members of a Public Parameter, including UDTs, Arrays and bits of an
atomic data type (i.e.: Signed Integer (INT), Double Integer (DINT) and Signed Short Integer
(SINT)). The summary below highlights design considerations for using Public Parameters.

10 | Modular Programming Tips in Studio 5000 Logix Designer

Public Parameters

Subroutine AOI Program

Passed by Value n/a n/a Yes

Passed by Reference n/a n/a See Note*

Connections Supported n/a n/a 512**

Parameters Supported n/a n/a 512***

Atomic Data Types n/a n/a Yes

Structures (UDTs) / Arrays n/a n/a Yes

Online Changes to Parameter
Reference or Connection n/a n/a Yes

* Public Parameters are updated in real-time from within the program where they reside

** This includes all connections to a parameter (member and sub-member).

*** 512 is the total count of all parameters for one program

Examples:

•	 Code module public attributes (i.e. Statuses, Values)

Standard/Safety Applications:

Program Parameters can support many types of connections. The tables below show a
quick reference of valid configurations when defining connections between two standard
programs or two safety programs.

* An InOut Parameter may only be connected to an Output Parameter if the InOut
Parameter is configured as a Constant.

Safety Applications:

There are some special rules that must be considered when implementing Program
Parameters within a safety application. This section will briefly discuss this topic. Under
no circumstances should code reside in a standard program to overwrite data in a safety
program (unless safety mapping is configured).
Standard programs can only read data from
a safety program. Standard program Input
Parameters can only connect to safety
program Output and Public Parameters.
Standard Input Parameters can also be
connected to safety tags at the controller
scope. The table shows a quick reference of
valid connections between standard and
safety programs.

Modular Programming Tips in Studio 5000 Logix Designer | 11

Embedding Levels of Modularity
It is common for large complex algorithms to be broken down into many smaller, less
complex code modules. In many cases, the smaller code modules can be embedded
(or cascaded) with one another in an effort to maintain a hierarchy of encapsulation.
Subroutines, AOIs and Programs all support embedding and can be highly utilized for
organization, ease of development and code reuse. This section will focus on the three
code containers as it pertains to embedding. Several design examples will be discussed to
show how embedding can be designed and implemented.

AOIs and Subroutines can be nested up to 25 levels. Only under rare circumstances
would this limit ever be reached. In most cases, three to five levels is more than sufficient
especially when AOIs are used in conjunction with subroutines. When using subroutines,
remember that they are not global entities. This means they can only be called from within
the program where they reside. Subroutines also require the most controller resources to
pass Parameters to and from the routine. If an application requires the absolute fastest scan
time, then subroutines should be used sparingly. Subroutines do have some significant
advantages. Subroutines are supported by legacy controllers including SLC, MicroLogix
and PLC-5. This allows users to quickly convert reusable code from legacy controllers to be
used in the latest Logix5000 design environment. Additionally, subroutines can be edited
online.

Unlike Subroutines, AOIs are global and can be called from anywhere in the application.
The mechanism used for passing Parameters in and out of an AOI are also much more
efficient than Subroutines. This results in faster execution. AOIs offer built in revision control
as well as giving users the opportunity to seal the logic with a signature. This will allow
users to quickly determine if an AOI has been changed. AOIs also allow users to develop
instruction help information so end users are able to quickly find information on how to
configure or use a particular instruction. Additionally, when using AOIs, remember that
they do not support online edits.

Of the three code containers within the Logix5000 design environment, Programs are
the only container that cannot be embedded in other programs from an execution
perspective. Programs are the highest level of modularity this document analyzes.
Routines and AOIs live in programs, which clearly supports the concept of embedding.
Parameters can be leveraged in programs to expose outside data directly to lower level
code modules like AOIs and Subroutines. Let’s take a look at a few examples of how
different levels of modularity can be embedded to produce an organized solution that is
easy to troubleshoot and completely reusable.

AOI Embedded in a Program:

In this example, let’s assume we have a baking application that has oven temperature
control broken into zones. At the highest level, we have a program named Zone_01. Within
that program, there are several routines which contain the logic required for monitoring
and controlling the temperature. Let’s assume the application requires the Zone_01
entry temperature to be converted from Celsius to Fahrenheit. First, we can create an
Input Parameter at the program level and make a connection to the entire thermocouple
structure. The image shows an example of this connection.

12 | Modular Programming Tips in Studio 5000 Logix Designer

Next we create or reuse an AOI that converts Celsius to Farenheit.

Finally, we instantiate the AOI in the
CM_EntryTemp routine and directly
reference the program input parameter
as the AOI temperature input. In this
example, Channel 1 contains the Zone 1
entry temperature.

AOI Embedded in an AOI:

In this example, the T_EQU (Time Equal) AOI is used from the PlantPAx library. This AOI
compares two Date-and-Time-of-Day (DateTime) variables and will set the “Output” bit
if they are equal. The algorithm for T_EQU must add a time value to the two DateTime
variables. To do this, an additional AOI is embedded in the T_EQU AOI. Let’s take a look at
the example:

When a user imports the T_EQU AOI into an
application, all AOIs that are embedded are also
imported. The image to the left shows the Add-On
Instructions folder after the T_EQU AOI was imported.

The T_EQU AOI calls the T_ADD AOI. The image below shows the rung that calls the
T_ADD AOI.

This AOI will have two
parameters, Temp_IN_C and
Temp_OUT_F.

The backing tags and parameters
for these two instances reside
within the T_EQU AOI.

Zone_01 Program Properties

Input Parameter created.
The data type is the
module defined tag for the
thermocouple module.

Connection is made to the
thermocouple module input
tag (controller scope).

Modular Programming Tips in Studio 5000 Logix Designer | 13

The image below shows an instance of the T_EQU AOI. This example takes a complex
process and breaks it into smaller, more manageable pieces. After code modules are
developed to solve each small piece, they are reassembled to provide a solution for the
original problem statement.

Logical Organizer
In Studio 5000 Logix Designer Version 24, the “Logical Organizer” was introduced. The
Logical Organizer allows users to create a multi-level, organizational hierarchy of folders,
programs and phases to represent their system. This provides a paradigm shift from how
the “controller executes code” to how the “user views the system.” Users will have the
ability to create, edit or delete programs from the Logical Organizer. This resembles the
existing functionally available in the Controller Organizer. The Logical Organizer also allows
you to drag/drop programs and program structures (sub-programs) within the same
application or across multiple instances of Studio 5000 Logix Designer. This is particularly
powerful if a code library is in the form of an ACD file. Additionally, the Logical Organizer
hierarchy is stored in the controller and is recoverable on an upload. This section will
cover a simple example of how the Logical Organizer can be implemented to organize
applications.

Baking Example

The images below show a good representation of the Controller Organizer (execution
view) and the Logical Organizer (system view). The Controller Organizer shows each task
and the programs that are to be executed in that task. In many cases, code modules
that are not related will exist in the same task. This can make troubleshooting tricky for
someone who is not familiar with the program structure. The Logical Organizer allows the
user to group programs into a logical hierarchy that makes it much easier for someone
familiar with the system or process to find code quickly.

This AOI appears clean and
simple. It utilizes other smaller
code modules (AOIs) to solve a
complex problem.

PreMix equipment
module lives in the
PreMix Unit module.
Both are programs.

Mixers and Outfeed_
Conveyors live in same
task in the Controller
Organizer. They are in
two different Unit folders
in the Logical Organizer.

All programs associated
with the Vertical Form,
Fill, and Seal process are
grouped in one folder.

14 | Modular Programming Tips in Studio 5000 Logix Designer

Remember, complex folder and program structures support import/export. Additionally,
folders and programs support drag and drop from within an application or across multiple
instances of Studio 5000® (Version 24). Right-click, drag and drop (with configuration)
implements a “deep” copy. This imports all sub folders, programs, AOIs and associated data
structures. This makes ACD files a great repository for code modules.

Controller Performance Considerations
The following section will walk through three examples comparing the performance of
Subroutines, AOIs and Programs. The scan-times shown will reflect the amount of time
taken to pass the Parameters into and out of the code container. This scan time will be
dynamic; varying depending on the type and number of Parameters configured.

Small Code Module

This example code module will have five Input Parameters, five Output Parameters, and
three InOut Parameters. The breakdown is as follows:

Input BOOL DINT REAL UDT** Array*** String Total

Subroutine 1 2 2 0 0 0 5

AOI 1 2 2 0 0 0 5

Program 1 2 2 0 0 0 5

Output BOOL DINT REAL UDT** Array*** String Total

Subroutine 2 1 2 1* 1* 1* 8

AOI 2 1 2 0 0 0 5

Program 2 1 2 0 0 0 5

InOut BOOL DINT REAL UDT** Array*** String Total

Subroutine Not Supported

AOI 0 0 0 1 1 1 3

Program 0 0 0 1 1 1 3
* InOut Parameters are not supported in Subroutines. The structures were added as Outputs
for this example.

** The UDT will contain 10 members, 5 DINTs and 5 REALs

*** The array will be 10 DINTs

Subroutine:
With no logic in the Subroutine, the amount of time required to pass values in and
out of the Subroutine is roughly 39us.

AOI:
With no logic in the AOI, the amount of time required to pass values in and out of the AOI
is roughly 14us.

Program:
To test the program parameter overhead, several additional steps must be taken. First, we
determined the overhead associated when calling a program with no logic or Parameters
configured. The value was roughly 15us. Next, we added the applicable Input, Output and
InOut Parameters to the program and made connections to controller tags. The scan time
was measured at roughly 49us. Finally, the program overhead must be subtracted from the
program with Parameters scan time. This will give us a rough estimate of the time required
to pass the Parameters to and from a program. The value for this test was roughly 34us.

Modular Programming Tips in Studio 5000 Logix Designer | 15

Medium Code Module

This example code module will have 10 Input Parameters, 10 Output Parameters, and 20
InOut Parameters. The breakdown is as follows:

Input BOOL DINT REAL UDT** Array*** String Total

Subroutine 2 4 4 5* 4* 1* 20

AOI 2 4 4 0 0 0 10

Program 2 4 4 0 0 0 10

Output BOOL DINT REAL UDT** Array*** String Total

Subroutine 3 2 5 5* 3* 2* 20

AOI 3 2 5 0 0 0 10

Program 3 2 5 0 0 0 10

InOut BOOL DINT REAL UDT** Array*** String Total

Subroutine Not Supported

AOI 0 0 0 10 7 3 20

Program 0 0 0 10 7 3 20
* InOut Parameters are not supported in Subroutines. The structures were added as Outputs
for this example.

** The UDT will contain 10 members, 5 DINTs and 5 REALs

*** The array will be 10 DINTs

Subroutine:
With no logic in the Subroutine, the amount of time required to pass values in and
out of the Subroutine is roughly 140us.

AOI:
With no logic in the AOI, the amount of time required to pass values in and out of the AOI
is roughly 42us.

Program:
To test the program parameter overhead, several addition steps must be taken. First, we
determined the overhead associated with calling a program with no logic or Parameters
configured. The value was roughly 15us. Next, we added the applicable Input, Output and
InOut Parameters to the program and made connections to controller tags. The scan time
was measured at roughly 65us. Finally, the program overhead must be subtracted from the
program with Parameters scan time. This will give us a rough estimate of the time required
to pass the Parameters to and from a program. The value for this test was roughly 50us.

16 | Modular Programming Tips in Studio 5000 Logix Designer

Large Code Module

This example code module will have 20 Input Parameters, 20 Output Parameters, and 40
InOut Parameters. The breakdown is as follows:

Input BOOL DINT REAL UDT** Array*** String Total

Subroutine 4 8 8 10* 5* 5* 40

AOI 4 8 8 0 0 0 20

Program 4 8 8 0 0 0 20

Output BOOL DINT REAL UDT** Array*** String Total

Subroutine 6 4 10 10* 5* 5* 40

AOI 6 4 10 0 0 0 20

Program 6 4 10 0 0 0 20

InOut BOOL DINT REAL UDT** Array*** String Total

Subroutine Not Supported

AOI 0 0 0 20 10 10 40

Program 0 0 0 20 10 10 40

* InOut Parameters are not supported in Subroutines. The structures were added as Outputs
for this example.

** The UDT will contain 10 members, 5 DINTs and 5 REALs

*** The array will be 10 DINTs

Subroutine:
With no logic in the Subroutine, the amount of time required to pass values in and out of
the Subroutine is roughly 299us.

AOI:
With no logic in the AOI, the amount of time required to pass values in and out of the
AOI is roughly 68us.

Program:
To test the program parameter overhead, several addition steps must be taken. First, we
determined the overhead associated with calling a program with no logic or Parameters
configured. The value was roughly 15us. Next, we added the applicable Input, Output and
InOut Parameters to the program and made connections to controller tags. The scan time
was measured at roughly 95us. Finally, the program overhead must be subtracted from the
program with Parameters scan time. This will give us a rough estimate of the time required
to pass the Parameters to and from a program. The value for this test was roughly 80us.

Modular Programming Tips in Studio 5000 Logix Designer | 17

Test Results

The figure below indicates that subroutines require the most overhead in the controller to
pass Parameters to and from a subroutine. The tests above could have been optimized by
“packing” most of the individual Input and Output Parameters for a Subroutine into a UDT.
This would have reduced the amount of separate Parameters being passed. However, to
get a true “apples to apples” comparison, the parameter structure was designed as closely
as possible across the three code containers.

AOIs require the least amount of overhead to pass Parameters, especially if InOut
Parameters are used. Programs with Parameters are slightly slower than AOIs. As the size
of the code module increases, the disparity in overhead between AOIs and Programs
becomes less apparent. Our tests above indicate that a program by itself will introduce a
small amount of overhead. From a pure scan-time performance perspective, small code
modules should be designed in AOIs and placed into higher-level Programs. This will
reduce the overall number of small programs in an application, thus optimizing scan time
performance.

Each container has clear advantages when implemented properly for certain use-cases.
Knowing how each container operates will help users choose the correct combination
to take full advantage of the positive synergies between code modules. Using all three
methods can significantly increase code performance, robustness and reusability.
Ultimately, it is up to the user to determine which methods to use when designing an
application. In most cases, there is more than one viable solution.

18 | Modular Programming Tips in Studio 5000 Logix Designer

Allen-Bradley, ControlLogix, FactoryTalk and Rockwell Automation are trademarks of Rockwell Automation Inc.
Microsoft and Azure are trademarks of the Microsoft Corporation.

Publication 9324-WP007A-EN-P – August 2015	 Copyright © 2015 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.

