Composite IMX8 8X data sheet wrkng QXP IEC Rev0 CAB2.mif

nxa15970

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications ...

See the security reference manual for this chip for a full list of security features. 10× tamper pins (up to 5 active or 10 passive) Voltage and Temperature tamper detection 64 kB Secure RAM (can be erased via tamper detection) System Control • 2× I2C tightly coupled with Cortex-M4 cores (1× per Cortex M4F core)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors

PDF preview unavailable. Download the PDF instead.

IMX8QXPIEC-DS
NXP Semiconductors Data Sheet: Technical Data

Document Number: IMX8QXPIEC Rev. 0, 05/2020
MIMX8QXnAVLFZAC MIMX8DXnAVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors

Package Information 21 x 21 mm package case outline

Ordering Information See Section 1.1Table 2 on page 5

1 Introduction
This data sheet contains specifications for the i.MX 8QuadXPlus and 8DualXPlus processors, which, along with the i.MX 8DualX processor , comprise the i.MX 8X Family (for i.MX 8DualX specifications, see i.MX 8DualX Industrial Processors [IMX8DXIEC]). The i.MX 8X processors consist of three to five Arm cores (two to four Arm Cortex®-A35 and one Cortex®-M4F). All devices include separate GPU and VPU subsystems as well as a failover-ready display controller. Advanced multicore audio processing is supported by the Arm cores and a high performance Tensilica® HiFi 4 DSP for pre- and post-audio processing as well as voice recognition. The i.MX 8X Family supports up to three displays with multiple display output options, including parallel, MIPI-DSI, and LVDS. Memory interfaces for this device include:
· LPDDR4 (no error correcting code [ECC])
· DDR3L (optional ECC)

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 System Controller Firmware (SCFW) Requirements5 1.3 Related resources . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 14 3.2 Recommended Connections for Unused Interfaces14
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Power supplies requirements and restrictions. . . . 25 4.3 PLL electrical characteristics . . . . . . . . . . . . . . . . . 28 4.4 On-chip oscillators. . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 34 4.6 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 41 4.7 Output Buffer Impedance Parameters. . . . . . . . . . 43 4.8 System Modules Timing . . . . . . . . . . . . . . . . . . . . 48 4.9 General-Purpose Media Interface (GPMI) Timing . 52 4.10 External Peripheral Interface Parameters . . . . . . . 61 4.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . 109
5 Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1 Boot mode configuration pins . . . . . . . . . . . . . . . 112 5.2 Boot devices interfaces allocation . . . . . . . . . . . . 112
6 Package information and contact assignments . . . . . . 114 6.1 FCPBGA, 21 x 21 mm, 0.8 mm pitch . . . . . . . . . 114
7 Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

· 2× Quad SPI or 1× Octal SPI (FlexSPI)

· eMMC 5.1, RAW NAND, and SD 3.0

NXP reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© 2018-2020 NXP B.V.

Introduction
A wide range of peripheral I/Os such as CAN, parallel or MIPI CSI camera input, Gigabit Ethernet, USB 2.0 OTG, USB 3.0 (8QuadXPlus/8DualXPlus only), ADC, and PCIe 3.0 provide impressive flexibility.
The i.MX 8QuadXPlus/8DualXPlus processors offer numerous advanced features as shown in this table.

Table 1. i.MX 8QuadXPlus/8DualXPlus advanced features

Function Multicore architecture provides 2×­ 4× Cortex-A35 and 1× Cortex-M4F cores Graphics Processing Unit (GPU)
Video Processing Unit (VPU)
Tensilica HiFi 4 DSP for pre- and post-processing

Feature
AArch64 for 64-bit support and new architectural features AArch32 for full backward compatibility with ARMv7 Cortex-A35 cores support ARM virtualization extensions. Cortex-M4F cores for real-time applications 4× Vec4 shaders with 16 execution units optimized for higher performance Supports OpenGL 3.0, 2.1,; OpenGL ES 3.1, 3.0, 2.0, and 1.1; OpenCL 1.2 Full Profile and 1.1; OpenVG 1.1; and Vulkan High-performance 2D Blit Engine H.265 decode (4Kp30) H.264 decode (4Kp30) WMV9/VC-1 imple decode MPEG 1 and 2 decode AVS decode MPEG4.2 ASP, H.263, Sorenson Spark decode Divx 3.11 including GMC decode ON2/Google VP6/VP8 decode RealVideo 8/9/10 decode JPEG and MJPEG decode H.264 encode (1080p30) 640 MHz Fixed-point and vector-floating-point support 32 KB instruction cache, 48 KB data cache, 512 KB SRAM (448 KB of OCRAM and 64 KB of TCM)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

2

NXP Semiconductors

Introduction

Table 1. i.MX 8QuadXPlus/8DualXPlus advanced features (continued)

Memory

Function

Display Controller
Display I/O Camera I/O and video Security

System Control

Feature
32-bit LPDDR4 @1200 MHz 40-bit DDR3L @933 MHz (ECC option)
1× Quad SPI which can be used to connect to an FPGA
2× Quad SPI or 1× Octal SPI (FlexSPI) for fast boot from SPI NOR flash
2× SD 3.0 card interfaces (note: if eMMC is used, then 1× SD 3.0 available in IOMUX)
1× eMMC5.1/SD3.0 (note: use of eMMC will restrict SD card availability to 1× SD 3.0 due to IOMUX restrictions)
RAW NAND (62-bit ECC support via BCH-62 module)
Supports up to 3 independent displays (2× MIPI or LVDS + 1× Parallel)
Up to 18-layer composition
Complementary 2D blitting engines and online warping functionality
Integrated Failover Path (SafeAssure) to ensure display content stays valid even in event of a software failure
Two MIPI-DSI/LVDS Combo PHYs (each up to 1080p60): Each single PHY can either be a 4-lane MIPI-DSI or a 4-lane channel LVDS interface for a total of 2 display interfaces. In combination, the two PHYs can be configured to be a single dual-channel LVDS interface. 1× 24-bit parallel LCD up to 720p60 (DDR bandwidth might limit the available resolution).
1× MIPI-CSI with 4-lanes
1× 8-bit/10-bit parallel CSI
Advanced High Assurance Boot (AHAB) secure & encrypted boot
Random Number Generator with a high-quality entropy source generator and Hash_DRBG (based on hash functions)
RSA up to 4096, Elliptic Curve up to 1023
AES-128/192/256, DES, 3DES, MD5, SHA-1, SHA-224/256/384/512
Dedicated Security Controller for Flashless SHE and HSM support, Trustzone, RTIC
Built-in ECDSA/DSA protocol support
See the security reference manual for this chip for a full list of security features.
10× tamper pins (up to 5 active or 10 passive)
Voltage and Temperature tamper detection
64 kB Secure RAM (can be erased via tamper detection) · 2× I2C tightly coupled with Cortex-M4 cores (1× per Cortex M4F core)
· The tightly coupled M4 I2C ports cannot be used for general-purpose use · System Control Unit (SCU):
· Power control, clocks, reset · Boot ROMs · PMIC interface · Resource Domain Controller

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

3

Introduction

Table 1. i.MX 8QuadXPlus/8DualXPlus advanced features (continued)

Function I/O
Packaging

Feature
1× PCIe 3.0 (1-lane) with L1 substate support
1× USBOTG 3.0 with PHY--USB 3.0 can be used as USB 2.0
1× USBOTG 2.0 (with PHY)
2× 1Gb Ethernet with AVB (can be used as 10/100 Mbps ENET with AVB)
3× CAN/CAN-FD Note: Legacy CAN mode supports both Mailbox (MB) and RX FIFO (with DMA support) operation. Flexible Data (FD) mode supports MB operation only. There is no enhanced RX FIFO or DMA support in FD mode.
6× UARTs: · 4× UARTs (3× with hardware flow control) · 1× UART tightly coupled with Cortex-M4F cores · 1× SCU UART (Note: SCU UART is dedicated to the SCU and not available for
general use)
10× I2C (note that there are two types of I2C: High-speed I2C ports with DMA support, and low-speed I2C ports with no DMA support, which are used in conjunction with a specific PHY interface--for example, for touchscreen): · 4× I2C: High Speed, DMA support · 4× I2C: Low Speed, no DMA support · 1× I2C: PMIC control (dedicated) · 1× I2C: Cortex M4F (dedicated) Note: I2C ports associated with a PHY (e.g. MIPI DSI) can be used generally but require the PHY to be powered on even if the PHY interface itself is not used.
4× SAI (SAI0 and SAI1 are transmit/receive; SAI2 and SAI3 are receive only)
1× Enhanced Serial Audio Interface (ESAI)
2× ASRC (Asynchronous Sample Rate Converter) (note: no I/O signals are directly connected to this module)
1× SPDIF (Tx and Rx)
1× 6-channel ADC converter
3.3 V/1.8 V GPIO
4× PWM channels
1× 6×8 KPP (Key Pad Port)
1× MQS (Medium Quality Sound)
4× SPI
Case FCPBGA 21 x 21 mm, 0.8 mm pitch

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

4

NXP Semiconductors

1.1 Ordering Information
For ordering information, contact an NXP representative at nxp.com.

Introduction

Part Number

Table 2. i.MX 8QuadXPlus Orderable part numbers

Options

Cortex-A35 Speed Grade

Cortex-M4F Speed Grade

Package

MIMX8QX6CVLFZAC With GPU, VPU, 24-bit Parallel 1.2 GHz LCD, DSP

264 MHz

21 mm X 21 mm, 0.8 mm pitch, FCPBGA
(lidded)

MIMX8QX5CVLFZAC With GPU, VPU, 24-bit Parallel 1.2 GHz LCD

264 MHz

21 mm X 21 mm, 0.8 mm pitch, FCPBGA
(lidded)

Table 3. i.MX 8DualXPlus Orderable part numbers

Part Number MIMX8DX6CVLFZAC

Options
With GPU, VPU, 24-bit Parallel LCD, DSP

Cortex-A35 Cortex-M4F

Speed

Speed

Grade

Grade

Package

1.2 GHz

264 MHz

21 mm X 21 mm, 0.8 mm pitch, FCPBGA (lidded)

MIMX8DX5CVLFZAC

With GPU, VPU, 24-bit Parallel LCD

1.2 GHz

264 MHz

21 mm X 21 mm, 0.8 mm pitch, FCPBGA (lidded)

1.2 System Controller Firmware (SCFW) Requirements
The i.MX 8 and 8X families require a minimum SCFW release version for correct operation and to prevent potential reliability issues.
The SCFW is released as part of a Board Support Package (e.g. Linux, Android) which may vary in version number for a specific BSP.
For example, NXP Yocto Linux release 4.14.98_2.3.0 contains SCFW version 1.3.0, NXP Yocto Linux release 4.14.98_2.0.0 GA contains SCFW version 1.2.10, whereas NXP Yocto Linux release 4.14.78_1.0.0GA contains SCFW version 1.1.10.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

5

Architectural Overview
The released SCFW version associated within each BSP is the minimum version required to correctly support the wider BSP functionality.
Customers should always check that they are using the specific SCFW binary delivered within their chosen BSP release. Customers should not mix newer BSP versions with older revisions of the SCFW.

1.3 Related resources
Table 4. Related resources

Type Reference manual
Data sheet Chip Errata Package drawing Hardware guide

Description
The i.MX 8DualX/8DualXPlus/8QuadXPlus Applications Processor Reference Manual (IMX8DQXPRM) contains a comprehensive description of the structure and function (operation) of the SoC.
This data sheet includes electrical characteristics and signal connections.
The chip mask set errata provides additional and/or corrective information for a particular device mask set.
Package dimensions are provided in Section 6, "Package information and contact assignments"."
Contact an NXP representative for access.

2 Architectural Overview
The following subsections provide an architectural overview of the i.MX 8QuadXPlus/8DualXPlus processor system.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

6

NXP Semiconductors

2.1 Block Diagram
The following figure shows the functional modules in the processor system.

Architectural Overview

1x UART 1x I2C 1x GPIO

10/100/1000M Ethernet + AVB
1x USB 3.0 PHY
1x USBOTG 2.0 OTG & PHY
1x eMMC 5.1 / SD 3.0 2x SD 3.0
(UHS-I)
RAW / ONFI 3.2 NAND Flash 2x Quad SPI / 1x Octal SPI NOR Flash 4x4 Keypad 32-bit GPIO I2C w/ DMA UART (5 Mb/s) CAN / CAN-FD ADC (6 channels)
SPDIF TX / RX
ESAI TX / RX MQS L/R
2x SAI TX / RX 2x SAI RX
24M and 32k XTALOSC Sources

User CM4 Complex

M4 Platform

M4 CPU

nvic

fpu

mpu

MMCAU

MCM

16KB code$ 16KB system$

256KB TCM w/ ECC

CPU Platform

4x ARM Cortex-A35

NEON

VFP

32KB I$

32KB D$

512KB L2 w/ ECC

TrustZone

LPIT LPUART

INTs LPI2C

WDOG RGPIO

PWM 2x MU

Connectivity Subsystem

NAND

USB3

2x uSDHC

2x USB2

2x ENET

Internal Memory OCRAM (256KB)

Low Speed I/O (LSIO) Subsystem

IEE

4x PWM

KPP

2x FlexSPI

14x MU

5x GPT

8x GPIO

ESAI ASRC SPDIF
SAI GPT

ASRC ACM MQS AUDMIX 4x SAI

PWM 4x LPSPI 4x LPUART 2x FTM
LCDIF

3x FlexCAN 4x LPI2C
1x ADC (4ch)
4x eDMA

Audio DMA (ADMA)
Subsystem
IRQs

System Control Unit

SCU CM4 Complex

M4 Platform

M4 CPU

nvic

fpu

mpu

MMCAU

MCM

16KB code$ 16KB system$

256KB TCM w/ ECC

LPIT LPUART

INTs LPI2C

WDOG RGPIO

PWM 2x MU

JTAGC Debug
DAP, CTI, etc
Boot ROM HAB
PMIC I/F

IOMUX Clock, Reset Power Mgmt
RDC Tempmon

Security SNVS SECO

OTP ADM CAAM

Security Controller
(M0+)

Memories 2x FlexSPI NAND CTRL (BCH62)

External Memory Interface

PG
PG BN PG

DDR Controller

SSI Bus

High Speed I/O Subsystem
PCIe

PHY

Imaging MJPEG MJPEG ISI
DEC ENC
Display Controller DPU
Graphics Processing Unit GPU
Video Processing Unit VPU

Parallel I/F
(in ADMA SS)
LPI2C
2x LVDS / MIPI-DSI
LPI2C
1x MIPI CSI2
LPI2C
Parallel I/F
LPI2C

DSP Core (part of ADMA SS)
HIFI4 DSP
32KB I$ 48KB D$ 512KB SRAM 64KB TCM

32-bit LPDDR4 (no ECC)
@1200 MHz 40-bit DDR3L
(w/ ECC) @933 MHz
x1 PCIe 3.0 (1 lane)
24-bit LCD Parallel Display
1x I2C
MIPI / LVDS Combo
1x I2C
MIPI-CSI2 (4-lanes)
1x I2C 8/10-bit
Parallel Camera
1x I2C

1x UART 1x I2C 1x GPIO
Dedicated

RNG
Tamper Detection Secure RTC

Secure JTAG
Ciphers (ECC, RSA)
64k Secure RAM

Mult-format Decode H.265 Dec (4k30) H.264 Dec (1080p60) H.264 Enc (1080p30)

4 shaders Vulkan, OGLES 3.1,
OCL 1.2, VG 1.1 2D Blit Engine

Figure 1. i.MX 8QuadXPlus/8DualXPlus System Block Diagram

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

7

Modules List
3 Modules List
The i.MX 8QuadXPlus/8DualXPlus processors contain a variety of digital and analog modules. This table describes the processor modules in alphabetical order.

Table 5. i.MX 8QuadXPlus/8DualXPlus modules list

Block Mnemonic ADC APBH-DMA
A35 ASRC
BCH-62 CAAM
CTI CTM DAP
DC DDR Controller
DPR

Block Name

Brief Description

Analog-to-Digital Converter

The analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within a SoC.

NAND Flash and BCH ECC DMA Controller

The AHB-to-APBH bridge provides the chip with a peripheral attachment bus running on the AHB's HCLK, which includes the AHB-to-APB PIO bridge for a memory-mapped I/O to the APB devices, as well as a central DMA facility for devices on this bus and a vectored interrupt controller for the Arm core.

Arm (CPU1)

2­4x Cortex-A35 CPUs with a 32KB L1 instruction cache and a 32 KB data cache. The CPUs share a 512 KB L2 cache.

Asynchronous Sample Rate Converter

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.

Binary-BCH ECC Processor

The BCH62 module provides up to 62-bit ECC for NAND Flash controller (GPMI2)

Cryptographic Accelerator and Assurance Module

CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). CAAM also implements a Secure Memory mechanism. In this device the security memory provided is 64 KB.

Cross Trigger Interface CTI sends signals across the chip indicating that debug events have occurred. It is used by features of the Coresight infrastructure.

Cross Trigger Matrix Cross Trigger Matrix IP is used to route triggering events between CTIs.

Debug Access Port

The DAP provides real-time access for the debugger without halting the core to: · System memory and peripheral registers · All debug configuration registers The DAP also provides debugger access to JTAG scan chains.

Display Controller

Dual display controller

DRAM Controller

· Memory types: LPDDR4 (no ECC) and DDR3L (ECC option) · One channel of 32-bit memory:
· LPDDR4 up to 1.2 GHz · DDR3L up to 933MHz

Display/Prefetch/ Resolve

The DPR prefetches data from memory and converts the data to raster format for display output. Raster source buffers can also be prefetched unconverted. The resolve process supports graphics and video formatted tile frame buffers and converts them to raster format. Embedded display memory is used as temporary storage for data which is sourced by the display controller to drive the display.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

8

NXP Semiconductors

Block Mnemonic eDMA
ENET ESAI
FTM FlexCAN

Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)

Modules List

Block Name

Brief Description

Enhanced Direct Memory Access

· 4× eDMA with a total of 96 channels (note: all channels are not assigned; see the product reference manual for more information): · 2× instances with 32 channels each · 2× instances with 16 channels each
· Programmable source, destination addresses, transfer size, plus support for enhanced addressing modes
· Internal data buffer, used as temporary storage to support 64-byte burst transfers, one outstanding transaction per DMA controller.
· Transfer control descriptor organized to support two-deep, nested transfer operations
· Channel service request via one of three methods: · Explicit software initiation · Initiation via a channel-to-channel linking mechanism for continuous transfers · Peripheral-paced hardware requests (one per channel)
· Support for fixed-priority and round-robin channel arbitration · Channel completion reported via interrupt requests · Support for scatter/gather DMA processing · Support for complex data structures via transfer descriptors · Support to cancel transfers via software or hardware · Each eDMA instance can be uniquely assigned to a different resource domain,
security (TZ) state, and virtual machine · In scatter-gather mode, each transfer descriptor's buffers can be assigned to
different SMMU translation

Ethernet Controller

2× 1 Gbps Ethernet + AVB (Audio Video Bridging, IEEE 802.1Qav)

Enhanced Serial Audio Interface

The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.

FlexTimer

Provides input signal capture and PWM support

Flexible Controller Area Communication controller implementing the CAN with Flexible Data rate (CAN FD)

Network

protocol and the CAN protocol according to the CAN 2.0B protocol specification.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

9

Modules List
Block Mnemonic FlexSpi (Quad SPI/Octal SPI)
GIC GPIO GPMI GPT
GPU HiFi 4 DSP I2C IEE

Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)

Block Name

Brief Description

Flexible Serial Peripheral Interface

· Flexible sequence engine to support various flash vendor devices, including HyperBusTM devices:
· Support for FPGA interface · Single, dual, quad, and octal mode of operation. · DDR/DTR mode wherein the data is generated on every edge of the serial flash
clock. · Support for flash data strobe signal for data sampling in DDR and SDR mode. · Two identical serial flash devices can be connected and accessed in parallel for
data read operations, forming one (virtual) flash memory with doubled readout bandwidth.

Generic Interrupt Controller

The GIC-500 handles all interrupts from the various subsystems and is ready for virtualization.

General Purpose I/O Modules

Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O.

General Purpose Media The GPMI module supports up to 8× NAND devices. 62-bit ECC (BCH) for NAND

Interface

Flash controller (GPMI). The GPMI supports separate DMA channels per NAND

device.

General Purpose Timer Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.

Graphics Processing 1× GC7000Lite with 4x Vec4 shader cores (16 execution units)

Audio Processor I2C Interface

A highly optimized audio processor geared for efficient execution of audio and voice codecs and pre- and post-processing modules to offload the Arm core.
I2C provides serial interface for external devices.

· Supports direct encryption and decryption of FlexSPI memory type · Provides decryption services (lower performance) for DRAM traffic · Supports I/O direct encrypted storage and retrieval · Support for a number of cryptographic standards:
· 128/256-bit AES Encryption (AES-CTR, AES-XTS mode options) · Multiple keys supported:
· Loaded via secure key channel from security block · Key selection is per access and based on source of transaction

IOMUXC JPEG/dec JPEG/enc

IOMUX Control
MJPEG engine for decode MJPEG engine for encode

This module enables flexible I/O multiplexing. Each I/O pad has default and several alternate functions. The alternate functions are software configurable. Provides up to 4-stream decoding in parallel.
Provides up to 4-stream encoding in parallel.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

10

NXP Semiconductors

Modules List

Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)

Block Mnemonic KPP LPIT-1 LPIT-2 LPSPI 0­3 M4F
MIPI CSI-2 MIPI-DSI/LVDS
MQS OCOTP_CTRL

Block Name

Brief Description

Key Pad Port

The Keypad Port (KPP) is a 16-bit peripheral that can be used as a 4 x 4 keypad matrix interface or as general purpose input/output (I/O).

Low-Power Periodic Interrupt Timer

Each LPIT is a 32-bit "set and forget" timer that starts counting after the LPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.

Configurable SPI

Full-duplex enhanced Synchronous Serial Interface. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals.

Arm (CPU3)

· Cortex-M4F core · AHB LMEM (Local Memory Controller) including controllers for TCM and cache
memories · 256 KB tightly coupled memory(TCM) (128 KB TCMU, 128 KB TCML) · 16 KB Code Bus Cache · 16 KB System Bus Cache · ECC for TCM memories and parity for code and system caches · Integrated Nested Vector Interrupt Controller (NVIC) · Wakeup Interrupt Controller (WIC) · FPU (Floating Point Unit) · Core MPU (Memory Protection Unit) · Support for exclusive access on the system bus · MMCAU (Crypto Acceleration Unit) · MCM (Miscellaneous Control Module)

MIPI CSI-2 Interface

The MIPI CSI-2 IP provides MIPI CSI-2 standard camera interface ports. The MIPI CSI-2 interface supports up to 1.5 Gbps for up to 4 data lanes

MIPI DSI/LVDS Combo interface

The MIPI DSI IP provides DSI standard display serial interface with 4 data lines. The DSI interface supports 80 Mbps to 1.05 Gbps speed per data lane. The LVDS is a high-performance 2-channel serializer that interfaces with LVDS displays. Note: This is a combination PHY interface. It includes the digital logic and physical interface pins for both MIPI DSI (4 data lanes) and LVDS (4 differential pairs plus one for clock). The interface can be pinned out either as MIPI DSI or as LVDS. However, it does not allow for simultaneous use on one interface

Medium Quality Sound Medium Quality Sound (MQS) is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins.

OTP Controller

The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent nonvolatility.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

11

Modules List
Block Mnemonic OCRAM
Parallel CSI
PCIe PRG PWM RAM 64 KB Secure RAM RAM 256 KB RNG
SAI SECO SJC

Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)

Block Name

Brief Description

On-Chip Memory Controller

The On-Chip Memory controller (OCRAM) module is designed as an interface between the system's AXI bus and the internal (on-chip) SRAM memory module. The OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.

Parallel CSI interface

The Parallel Port Capture Subsystem interfaces to Parallel CSI sensors and includes the following features: · Configurable interface logic to support the most commonly used parallel CMOS
sensors · Configurable master clock output to drive external sensor (24 MHz nominal) · Up to 150 MHz input clock from sensor · Input data formats supported:
· 8-bit/10-bit BT.656 · 8-bit/24-bit data port for RGB, YCbCr, and YUV data input · 8-bit/12-bit/10-bit/16-bit data port for Bayer data input Note: For some formats a single pixel is sent per clock, for others two or three are sent per clock.

PCI Express 3.0

The PCIe IP provides PCI Express Gen 3.0 functionality .

Prefetch/Resolve Gasket

The PRG is a gasket which translates system memory accesses to local display RTRAM accesses for display refresh. It works with the DPR to complete the prefetch and resolving operations needed to drive the display.

Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4×16 data FIFO to generate square waveforms.

Secure/non-secure RAM

Secure/non-secure Internal RAM, interfaced through the CAAM.

Internal RAM

Internal RAM, which is accessed through OCRAM memory controllers.

Random Number Generator

The purpose of the RNG is to generate cryptographically strong random data. It uses a true random number generator (TRNG) and a pseudo-random number generator (PRNG) to achieve true randomness and cryptographic strength. The RNG generates random numbers for secret keys, per message secrets, random challenges, and other similar quantities used in cryptographic algorithms.

I2S/SSI/AC97 Interface The SAI module provides a synchronous audio interface that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces.

Security Controller

Core and associated memory and hardware responsible for key management.

Secure JTAG Controller The SJC provides the JTAG interface, which is compatible with JTAG TAP standards, to internal logic. This device uses JTAG port for production, testing, and system debugging. Additionally, the SJC provides BSR (Boundary Scan Register) standard support, which is compatible with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

12

NXP Semiconductors

Block Mnemonic SNVS SPDIF
TEMPMON
UART
USB3/USB2

Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)

Modules List

Block Name Secure Non-Volatile Storage Sony Philips Digital Interconnect Format
Temperature Monitor
UART Interface

Brief Description
Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.
The Sony/Philips Digital Interface (SPDIF) audio block is a stereo transceiver that allows the processor to receive and transmit digital audio. The SPDIF transceiver allows the handling of both SPDIF channel status (CS) and User (U) data and includes a frequency measurement block that allows the precise measurement of an incoming sampling frequency.
The temperature monitor/sensor IP module for detecting high temperature conditions. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed; therefore, the read-out value may not be the reflection of the temperature value for the entire die.
· High-speed TIA/EIA-232-F compatible, up to 5.0 Mbps · Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s) · 9-bit or Multidrop mode (RS-485) support (automatic slave address detection) · 7, 8, 9, or 10-bit data characters (7-bits only with parity) · 1 or 2 stop bits · Programmable parity (even, odd, and no parity) · Hardware flow control support for request to send (RTS_B) and clear to send
(CTS_B) signals
The USB3/USB2 OTG module has been specified to perform USB 3.0 dual role and USB 2.0 On-The-Go (OTG) compatible with the USB 3.0, and USB 2.0 specification with OTG supplementary specifications. This controller supports
twoindependent USB cores (1× USB3.0 dual-role, 1× USB2.0 OTG) and includes
the PHY and I/O interfaces to support this operation. The full pinout of the USB 3.0 controller includes the signaling for both USB 3.0 and USB 2.0. This does not mean there is a separate USB 2.0 controller that can be used independently and simultaneously with USB 3.0. This device has an additional separate, independent USB 2.0 OTG controller which can be used simultaneously with this USB 3.0. Specific features requested for this updated module: · Super Speed (5 Gbps), High Speed (480 Mbps), full speed (12 Mbps) and low
speed (1.5 Mbps) · Fully compatible with the USB 3.0 specification (backward compatible with USB
2.0) · Fully compatible with the USB On-The-Go supplement to the USB 2.0
specification · Hardware support for OTG signaling · Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
implemented in hardware, which can also be controlled by software

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

13

Modules List

Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)

Block Mnemonic USBOH
uSDHC
VPU WDOG XTAL OSC24M XTAL OSC32K

Block Name

Brief Description

The USBOH module has been specified which performs USB 2.0 On-The-Go (OTG) and USB 2.0 Host functionality compatible with the USB 2.0 with OTG
supplement specification. This controller supports one independent USB core (1×
USB2.0 OTG) and includes the PHY and I/O interfaces to support this operation. Key features: · One USB2.0 OTG controller · High Speed (480 Mbps), full speed (12 Mbps) and low speed (1.5 Mbps) · Fully compatible with the USB 2.0 specification · Fully compatible with the USB On-The-Go supplement to the USB 2.0
specification · Hardware support for OTG signaling Host Negotiation Protocol (HNP) and Session Request Protocol (SRP) implemented in hardware, which can also be controlled by software

SD/eMMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller

The uSDHC is a host controller used to communicate with external low cost data storage and communication media. It supports the previous versions of the MultiMediaCard (MMC) and Secure Digital Card (SD) standards. Specifically, the uSDHC supports: · SD Host Controller Standard Specification v3.0 with the exception that all the
registers do not match the standards address mapping. · SD Physical Layer Specification v3.0 UHS-I (SDR104/DDR50) · SDIO specification v3.0 · eMMC System Specification v5.1

Video Processing Unit See the device reference manual for the complete list of the VPU's decoding/encoding capabilities.

Watchdog

The Watchdog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line.

The 24 MHz clock source is an external crystal that acts as one of two main clock sources to the chip. The OSC24M is used as the source clock for subsystem PLLs. OSC24M can be turned off by the System Control Unit (SCU) during sleep mode.

The 32 KHz clock source is an external crystal that is one of two main clock sources to the chip. The OSC32K is intended to be always on and is distributed by the SCU to modules in the chip.

3.1 Special Signal Considerations
The package contact assignments can be found in Section 6, "Package information and contact assignments"." Signal descriptions are defined in the device reference manual.

3.2 Recommended Connections for Unused Interfaces
The recommended connections for unused analog interfaces can be found in the section, "Unused Input/Output Terminations," in the hardware development guide for this device.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

14

NXP Semiconductors

Electrical characteristics
4 Electrical characteristics
This section provides the device and module-level electrical characteristics for these processors.

4.1 Chip-level conditions
This section provides the device-level electrical characteristics for the SoC. See the following table for a quick reference to the individual tables and sections.
Table 6. Chip-level conditions

For these characteristics, ...
Absolute maximum ratings
FCPBGA package thermal resistance data
Operating ranges
External Input Clock Frequency
Maximum supply currents
USB 2.0 PHY typical current consumption in Power-Down Mode
USB 3.0 PHY typical current consumption in Power-Down Mode
Typical current consumption in Power-Down mode for USB 2.0 PHY embedded in USB 3.0 PHY

Topic appears ... on page 15 on page 17 on page 18 on page 20 on page 21 on page 24
on page 24
on page 24

4.1.1

Absolute Maximum Ratings
CAUTION
Stresses beyond those listed under Table 7 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the "Operating ranges" or other parameter tables is not implied. Exposure to absolute-maximum-rated conditions for extended periods will affect device reliability.

Parameter Description Core Supplies Input Voltage
DDR PHY supplies

Table 7. Absolute maximum ratings

Symbol

Min

VDD_A35

-0.3

VDD_GPU

VDD_MAIN

VDD_DDR_VDDQ

-0.3

Max

Units

1.2

V

1.75

V

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

15

Electrical characteristics

Table 7. Absolute maximum ratings (continued)

Parameter Description 1.0V IO supplies IO Supply for GPIO Type 1.8V IO Single supply
IO Supply for GPIO Type 1.8 / 2.5 / 3.3V IO Tri-voltage Supply IO Supply for GPIO Type 1.8 / 3.3V IO Dual Voltage Supply
SNVS Coin Cell USB VBUS (OTG2) USB VBUS (OTG1)

Symbol

Min

VDD_MIPI_1P0

-0.3

VDD_USB_OTG_1P0

VDD_ADC_1P8

-0.5

VDD_ADC_DIG_1P8

VDD_ANA0_1P8 (IO, analog,OSC SCU)

VDD_ANA1_1P8 (IO, analog,OSC SCU)

VDD_DDR_PLL_1P8 (memory PLLs)

VDD_MIPI_1P8 (PHY, GPIO)

VDD_MIPI_CSI_DIG_1P8 (PHY, GPIO)

VDD_PCIE_1P8 (PHY)

VDD_USB_1P8 (PHY, GPIO)

VDD_ENET0_VSELECT_1P8_2P5_3P3 -0.3

VDD_ENET0_1P8_2P5_3P3

VDD_ESAI_SPDIF_1P8_2P5_3P3

VDD_CAN_UART_1P8_3P3

-0.3

VDD_CSI_1P8_3P3

VDD_EMMC0_1P8_3P3

VDD_EMMC0_VSELECT_1P8_3P3

VDD_ENET_MDIO_1P8_3P3

VDD_MIPI_DSI_DIG_1P8_3P3

VDD_PCIE_DIG_1P8_3P3

VDD_QSPI0A_1P8_3P3

VDD_QSPI0B_1P8_3P3

VDD_SPI_MCLK_UART_1P8_3P3

VDD_SPI_SAI_1P8_3P3

VDD_TMPR_CSI_1P8_3P3

VDD_USB_3P3 (PHY & GPIO)

VDD_USDHC1_1P8_3P3

VDD_USDHC1_VSELECT_1P8_3P3

VDD_SNVS_4P2

-0.3

USB_OTG2_VBUS

-0.3

USB_OTG1_VBUS

-0.3

Max

Units

1.2

V

2.1

V

3.8

V

3.8

V

4.3

V

3.63

V

5.5

V

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

16

NXP Semiconductors

Electrical characteristics

Table 7. Absolute maximum ratings (continued)

Parameter Description

Symbol

Min

Max

Units

I/O Voltage for USB Drivers

USB_OTG1_DP/USB_OTG1_DN

-0.3

3.63

V

USB_OTG2_DP/USB_OTG2_DN

I/O Voltage for ADC

ADC_INx

Vin/Vout input/output voltage range (GPIO Vin/Vout Type Pins)

Vin/Vout input/output voltage range (DDR Vin/Vout pins)

-0.1

2.1

V

-0.3

OVDD+0.31

V

-0.3

OVDD+0.41,2

V

ESD immunity (HBM).

Vesd_HBMX

--

1000

V

ESD immunity (CDM).

Vesd_CDM

--

250

V

Storage temperature range

Tstorage

-55

150

°C

1 OVDD is the I/O supply voltage. 2 The absolute maximum voltage includes an allowance for 400 mV of overshoot on the I/O pins. Per JEDEC standard the allowed
signal overshoot must be derated if NVCC_DRAM exceeds 1.575 V.

4.1.2 Thermal resistance

4.1.2.1 FCPBGA package thermal resistance This table provides the FCPBGA package thermal resistance data.

Table 8. FCPBGA package thermal resistance data

Rating

Board Type1

Symbol

Value, 21x21 mm Unit package

Junction to Ambient Thermal Resistance2

JESD51-9, 2s2p

RJA

15.2

°C/W

Junction to Package Top Thermal Resistance2

JESD51-9, 2s2p

JT

0.1

°C/W

Junction to Case Thermal Resistance3

JESD51-9, 1s

RJC

0.7

°C/W

1 Thermal test board meets JEDEC specification for this package (JESD51-9).

2 Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this

report is solely for a thermal performance comparison of one package to another in a standardized specified

environment. It is not meant to predict the performance of a package in an application-specific environment.

3 Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the

mold surface temperature at the package top side dead center.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

17

Electrical characteristics
4.1.3 Operating Ranges
The following table provides the operating ranges of these processors.

VDD_A35

Symbol

VDD_GPU

VDD_MAIN2
VDD_DDR_VDDQ
VDD_DDR_PLL_1P8
VDD_MIPI_1P0 VDD_ANA0_1P8 VDD_ANA1_1P8
VDD_ADC_1P8 VDD_ADC_DIG_1P8 VDD_MIPI_1P8 VDD_MIPI_CSI_DIG_1P8 VDD_USB_1P8 VDD_PCIE_1P8

Table 9. Operating ranges1

Description

Mode Min Typ Max Unit

Comments

Power supply of Overdrive 1.05 1.10 1.15 V Max frequency: 1.2 GHz Cortex-A35 cluster Nominal 0.95 1.00 1.10 V Max frequency: 900 MHz

Power supply of GPU instance

Overdrive 1.05 1.10 1.15 V Max frequencies: · Shaders: 850MHz · Core: 700 MHz

Nominal

0.95 1.00 1.10 V Max frequencies: shaders: 372 MHz; core: 372 MHz

Power supply of remaining core logic

N/A

0.95 1.00 1.10 V Max freq.: HiFi4 DSP

640 MHz

Max freq.: M4 264 MHz

Max freq.: VPU 600 MHz

Power supplies of memory IOs

DDR3L 1.30 1.35 1.45 V Max frequency: 933 MHz to support DDR3L-1866

LPDDR4 1.06 1.10 1.17 V Max frequency: 1.2GHz to support LPDDR4-2400

Power supplies of memory PLLs

N/A

1.65 1.80 1.95 V PLL supply can be

merged with other 1.8V

supplies with proper on

board decoupling.

Power supplies of

N/A

0.95 1.00 1.10 V

--

PHYs (1.0V part)

Power supplies of IOs, analog and oscillator of the SCU

N/A

1.65 1.80 1.95 V These balls shall be

powered by a dedicated

supply

Power supplies of

N/A

1.65 1.80 1.95 V

--

PHYs (1.8V part)

and GPIO

operating at 1.8V

only.

Power supplies of PCIE PHY (1.8 V part)

1.71 1.80 1.89 V

--

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

18

NXP Semiconductors

Electrical characteristics

Table 9. Operating ranges1 (continued)

Symbol
VDD_USB_3P3
VDD_CAN_UART_1P8_3P3 VDD_CSI_1P8_3P3 VDD_EMMC0_1P8_3P3 VDD_EMMC0_VSELECT_1P8_3P3 VDD_ENET_MDIO_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_PCIE_DIG_1P8_3P3 VDD_QSPI0A_1P8_3P3 VDD_QSPI0B_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_TMPR_CSI_1P8_3P3 VDD_USDHC1_1P8_3P3 VDD_USDHC1_VSELECT_1P8_3P3

Description
Power supplies of PHYs (3.3V part) and GPIO operating at 3.3V only
Power supplies of GPIO supporting both 1.8V or 3.3V

Mode N/A

Min Typ Max Unit 3.00 3.30 3.60 V

Comments --

1.8V

1.65 1.80 1.95 V When VDD_USDHC1_1P8_3P 3 is used to support an SD card, then it shall be on a dedicated 1.8V/3.3V regulator.
When VDD_SIM0_1P8_3P3 is used to support a SIM card, it shall be on a dedicated 1.8V/3.3V regulator.
When VDD_TMPR_CSI_1P8_ 3P3 is used as a GPIO it can be connected to the 1.8/3.3V supply.

VDDs of this list targeting 1.8V can share 1.8V regulator of 1.8V only VDDs

VDD_ENET0_1P8_2P5_3P3

Power supplies of

VDD_ENET0_VSELECT_1P8_2P5_3P3 ethernet IOs

VDD_ESAI_SPDIF_1P8_2P5_3P3

VDD_SNVS_4P2

Power supply of SNVS

3.3V 1.8V 2.5V 3.3V N/A

VDDs of this list targeting 3.3V can share 3.3V regulator of 3.3V only VDDs

3.00 3.30 3.60 V

--

1.65 1.80 1.95 V

--

2.40 2.50 2.60 V

--

3.00 3.30 3.60 V

--

2.80 3.30 4.20 V It can be supplied by a backup battery: a coin cell or a super cap.

Output of embedded LDOs

VDD_PCIE_LDO_1P0_CAP

1.0V output of

N/A

-- 1.00 -- V

--

VDD_USB_SS3_LDO_1P0_CAP

embedded LDOs

VDD_SNVS_LDO_1P8_CAP

1.8V output of

N/A

-- 1.80 -- V

--

SNVS embedded

LDO

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

19

Electrical characteristics

Table 9. Operating ranges1 (continued)

Symbol

Description

Mode Min Typ Max Unit

Comments

Power supplies that shall be connected to output of an embedded LDO

VDD_TMPR_CSI_1P8_3P3 VDD_USB_OTG_1P0

--

N/A

-- 1.80 -- V Shall be connected to

VDD_SNVS_LDO_1P8_

CAP when used as a

tamper pin. In CSI mode

use an external 1.8 V

supply. In this case,

follow the 1.8 V I/O

specification above.

--

N/A

-- 1.00 -- V Shall be externally

connected to

VDD_USB_SS3_LDO_1

P0_CAP

Junction temperature

Junction temperature

--

--

-40 -- 105 °C

--

1 Voltage ranges are defined to group as many supplies as possible. Some supplies may have a wider range than listed here. 2 During low power state (see Section 4.1.6, "Low power mode supply currents"), this voltage can be dropped to 0.8 V +/- 3%
for retention.

4.1.4 External clock sources
Each processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI).
The RTC_XTALI is used for real time functions. It supplies the clock for real time clock operation and for slow-system and watchdog counters. The clock input can be connected to either an external oscillator or a crystal using the internal oscillator amplifier.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input requires a crystal using the internal oscillator amplifier.
The PCIe oscillator can be sourced internally or input to the chip. In both cases, it is a 100 MHz nominal clock using HCSL signaling to provide the PCIe reference clock.
The following table shows the interface frequency requirements.

Parameter Description RTC_XTALI Oscillator1,2 XTALI Oscillator4,2 PCIe oscillator5
Frequency accuracy

Table 10. External Input Clock Frequency

Symbol

Min

fckil

--

fxtal

--

f100M

--

--

--

Typ 32.7683/32.0
24 100 --

Max -- -- -- ±300

Unit kHz MHz MHz ppm

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

20

NXP Semiconductors

Electrical characteristics
1 External oscillator or a crystal with internal oscillator amplifier. 2 The required frequency stability of this clock source is application dependent. For recommendations, see the hardware
development guide for this device. 3 Recommended nominal frequency 32.768 kHz. 4 Fundamental frequency crystal with internal oscillator amplifier. 5 If using an external clock instead of the internal clock source, an HCSL-compatible clock is required.
The typical values shown in Table 10 are required for use with NXP board support packages (BSPs) to ensure precise time keeping and USB operations.

4.1.5

Maximum Supply Currents
NOTE Some of the numbers shown in this table are based on the companion regulator limits and not actual use cases. Work is in progress to provide use case­based numbers in future data sheet releases.

Table 11. Maximum supply currents

Symbol

Value Unit

Comments

VDD_A351 VDD_GPU1

2500 mA 2500 mA

VDD_MAIN

5000 mA

VDD_DDR_VDDQ

1200 mA Does not comprehend IO of memory

VDD_DDR_PLL_1P8

20 mA

VDD_ANA0_1P8

200 mA

VDD_ANA1_1P8

200 mA

VDD_MIPI_1P0

100 mA

VDD_MIPI_1P8

115 mA

VDD_ADC_DIG_1P8

18 mA

VDD_CAN_UART_1P8_3P3

30 mA

VDD_CSI_1P8_3P3

12 mA

VDD_EMMC0_1P8_3P3

30 mA

VDD_EMMC0_VSELECT_1P8_3P3 30 mA

VDD_ENET_MDIO_1P8_3P3

15 mA

VDD_ENET0_1P8_2P5_3P3

30 mA

VDD_ENET0_VSELECT_1P8_2P5_3 30 mA P3

VDD_ESAI_SPDIF_1P8_2P5_3P3

39 mA

VDD_MIPI_CSI_DIG_1P8

15 mA

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

21

Electrical characteristics

Table 11. Maximum supply currents (continued)

Symbol

Value Unit

Comments

VDD_MIPI_DSI_DIG_1P8_3P3

24 mA

VDD_PCIE_DIG_1P8_3P3

9 mA

VDD_QSPI0A_1P8_3P3

40 mA

VDD_QSPI0B_1P8_3P3

40 mA

VDD_SPI_MCLK_UART_1P8_3P3

36 mA

VDD_SPI_SAI_1P8_3P3

48 mA

VDD_TMPR_CSI_1P8_3P3

30 mA

VDD_USDHC1_1P8_3P3

30 mA

VDD_USDHC1_VSELECT_1P8_3P3 20 mA

VDD_ADC_1P8

5 mA

VDD_USB_OTG_1P0

36 mA Shall be externally connected to VDD_USB_SS3_LDO_1P0_CAP

VDD_USB_1P8

175 mA

VDD_USB_3P3

40 mA

VDD_PCIE_1P8

255 mA

VDD_SNVS_4P22

5 mA Start-up current

1 VDD_A35 and VDD_GPU can be combined with one power supply. 2 Under normal operating conditions, the maximum current on VDD_SNVS_4P2 is shown Table 11. During initial power on,
VDD_SNVS_4P2 can draw up to 5 mA if the supply is capable of sourcing that current. If less than 5 mA is available, the VDD_SNVS_LDO_1P8_CAP charge time will increase.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

22

NXP Semiconductors

Electrical characteristics
4.1.6 Low power mode supply currents
The following table shows the current core consumption (not including I/O) in selected low power modes.

Table 12. i.MX 8QuadXPlus/8DualXPlus Key State (KSx) power consumption

Mode

Test conditions

Supply

Max Unit

KS0 SNVS only, all other supplies OFF. RTC running, tamper not active, external 32K crystal.

VDD_SNVS_4P2 (4.2 V)

50 A

KS11

RAM and IO state retained. DRAM in self-refresh, associated I/O's OFF. 32K running, 24M, PLLs and ring oscillators OFF. PHYs are in idle state. A35 and GPU supplies OFF. MAIN2 dropped to 0.8 V.

VDD_ANAx_1P8 (1.8 V)

0.9 mA

VDD_A35 (OFF)

-- mA

VDD_GPU (OFF)

-- mA

VDD_MAIN (0.8 V)

33 mA

VDD_DDR_VDDQ (1.1 V) 0.5 mA

Total

28.6 mW

KS43

Leakage test, not intended as a customer use case. Overdrive conditions set, memories active, all sub-systems powered ON. Active power minimized.

VDD_ANAx_1P8 (1.8 V) VDD_A35 (1.1 V) VDD_GPU (1.1 V) VDD_MAIN (1.0 V) Total

3.5 mA 600 mA 250 mA 1100 mA 2541 mW

1 Maximum values are for 25 °C Tambient . 2 0.8 V nominal--voltage specification under this case is ± 3%. 3 Maximum values are for 105 °C Tjunction .

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

23

Electrical characteristics

4.1.7 USB 2.0 PHY typical current consumption in Power-Down mode
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition. The following table shows the USB interface typical current consumption in Power-Down mode.
Table 13. USB 2.0 PHY typical current consumption in Power-Down Mode

Current

VDD_USB_3P3 (3.3 V) 1 A

VDD_USB_1P8 (1.8 V) 0.06 A

VDD_USB_OTG_1P0 (1.0 V) 0.5 A

4.1.8 USB 3.0 PHY typical current consumption in Power-Down mode
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition. The following table shows the USB interface typical current consumption in Power-Down mode.

Table 14. USB 3.0 PHY typical current consumption in Power-Down Mode

Current

--

VDD_USB_1P8 (1.8 V)

VDD_USB_OTG_1P0 (1.0 V)

--

10 A

70 A

The following table shows the current consumption for the USB 2.0 PHY embedded in the USB 3.0 PHY.

Table 15. Typical current consumption in Power-Down mode for USB 2.0 PHY embedded in USB 3.0 PHY

Current--Host mode Current--Device mode

VDD_USB_3P3 (3.3 V)
22.6 A 12.6 

VDD_USB_1P8 (1.8 V)
12.7  85.7 

VDD_USB_OTG2_1P0VDD_U SB_OTG_1P0 (1.0 V)
81.5  78.5 

4.1.8.1 USB 3.0 Type-C connector considerations
The device supports USB 3.0 Type-C connection when used in conjunction with the following devices: · PTN36043 · PTN5150A · NX5P3090UK
NXP supports many other configurations and implementations for USB 3.0 Type-C connections. See NXP USB Type-C: True Plug'n Play .

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

24

NXP Semiconductors

Electrical characteristics
4.2 Power supplies requirements and restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to ensure the reliable operation of the device. Any deviation from these sequences may result in the following situations:
· Excessive current during power-up phase · Prevention of the device from booting · Irreversible damage to the processor
4.2.1 Power-up sequence
The device has the following power-up sequence requirements: · Supply group 0 (SNVS) must be powered first. It is expected that group 0 will typically remain always on after the first power-on. · Supply group 1 (MAIN and SCU) and group 0 must both be powered to their nominal values prior to boot. They must power up after or simultaneously with group 0. · Supply group 2 (I/O's and DDR interface) consists of those modules required to start the boot process by accessing external storage devices. These must be fully powered prior to POR release if booting from one of these supplies interfaces. They must power up after or simultaneously with group 1. · Supply group 3 consists of the remaining portions of the SoC. This includes nonboot I/O voltages and supplies for the major computational units. These can be sequenced in any order and as required to perform the desired functions for the intended application. They must power up after or simultaneously with group 2.
NOTE The definition of "power-up" refers to a stable voltage operating within the range defined in Table 9. This should be taken into consideration, along with the different capacitive loading on each rail, if considering simultaneous switch-on of the different supply groups.
4.2.2 Power-down sequence
The device processor has the following power-down sequence requirements: · Supply group 0 must be turned off last, after all other supplies.
· Supply group 1 can be turned off just prior to group 0.
All remaining supplies can be turned off prior to group 1.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

25

Electrical characteristics
NOTE
When switching off supply group 0 (SNVS), VDD_SNVS_4P2 must be discharged below 2.4 V before starting the next power-up sequence to ensure correct operation. This will generate a full SNVS reset, allowing correct operation on the next power-up sequence. This would also be a requirement to clear any security related flag as a result of an SNVS voltage drop, when tamper features are enabled.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

26

NXP Semiconductors

NXP Semiconductors

4.2.3 Power Supplies Usage
The following table shows the power supplies usage by group.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

Table 16. Power supplies usage

Supply Groups

Voltage

Group 0

2.4 - 4.2v

VDD_SNVS_4P2

1.8v internal LDO VDD_TMPR_CSI_1P8_3P31

Group 1

1.0v VDD_MAIN VDD_MIPI_1P0

1.8v VDD_ANAx_1P8

1.1 - 1.35v

1.8v

1.8v or 3.3v

1.8v or 3.3v switchable

3.3v

VDD_DDR_VDDQ Group 2

VDD_ADC_DIG_1P8 VDD_ADC_1P8
VDD_DDR_PLL_1P8 VDD_MIPI_1P8
VDD_MIPI_CSI_DIG_1P8 VDD_PCIE_1P8 VDD_USB_1P8

VDD_CAN_UART_1P8_3P3 VDD_CSI_1P8_3P3
VDD_EMMC0_VSELECT_1P8_3P3 VDD_ENET_MDIO_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_PCIE_DIG_1P8_3P3 VDD_QSPI0x_1P8_3P3
VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_SAI_1P8_3P3
VDD_TMPR_CSI_1P8_3P31 VDD_USDHC1_VSELECT_1P8_3P3

VDD_EMMC0_1P8_3P3 VDD_USB_3P3 VDD_USDHC1_1P8_3P3

1.1 - 1.1v

1.0v internal LDO's

1.8v or 2.5v or 3.3v

Group 3

VDD_A352 VDD_GPU2

VDD_USB_OTG_1P0

VDD_ENET0_1P8_2P5_3P3 VDD_ENET0_VSELECT_1P8_2P5_3P3

VDD_ESAI_SPDIF_1P8_2P5_3P3
1 Supply connection and Supply Group vary depending on use case. For use as tamper pin, it must be tied to the VDD_SNVS_LDO_1P8_CAP. If used as a CSI/SAI, it is tied to I/O supply.
2 VDD_A35 and VDD_GPU can be combined with one power supply.

Electrical characteristics

27

Electrical characteristics
4.3 PLL electrical characteristics
4.3.1 PLLs of subsystems
i.MX 8QuadXPlus/8DualXPlus embeds a large number of PLLs to address clocking requirements of the various subsystems. These PLLs are controlled through the SCU and not directly by Cortex-A or Cortex-M4F processors. A software API shall be used by those processors to access the PLL settings. Additional PLLs are specific to high-performance interfaces. These are described in the following sections.
This table summarizes the PLLs controlled by the SCU.

Subsystem Cortex-A35 GPU
DRC (DRAM Controller)

Table 17. PLLs controlled by SCU

PLL usage

Source clock

Locking range1 Min freq. Max freq.

Lock freq.

Subsystem

24

650

1300 · Overdrive: 1200

· Nominal: 9002

PLL #0: subsystem PLL #1: shaders Subsystem

24

648

1344 · Overdrive: 700

· Nominal: 7443

24

648

1344 · Overdrive: : 850

· Nominal: 7444

24

1250

2500 · LPDDR4: 2400

· DDR3L: 18665

Unit
MHz MHz MHz

DB (DRAM Block) Subsystem

24

Display Controller 0 PLL #0: subsystem

24

PLL #1: display clock #0

24

PLL #2: display clock #1

24

Imaging

Subsystem

24

ADMA6

PLL #0: subsystem

24

PLL #1: audio PLL #0

24

PLL #2: audio PLL #1

24

PLL #3: Parallel LCD display

24

Connectivity

PLL #0: Subsystem

24

PLL #1: PHY

24

HSIO (High-speed Subsystem

24

I/O)

LSIO (Low-speed Subsystem

24

I/O)

650

1300

1200

MHz

650

1300

800

MHz

650

1300

User-configurable MHz

650

1300

User-configurable MHz

650

1300

1200

MHz

650

1300

1280

MHz

650

1300

User-configurable MHz

650

1300

User-configurable MHz

650

1300

Pixel freq. ×N

MHz

650

1300

792

MHz

650

1300

1000

MHz

650

1300

800

MHz

650

1300

800

MHz

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

28

NXP Semiconductors

Electrical characteristics

Table 17. PLLs controlled by SCU (continued)

Subsystem

PLL usage

Locking range1

Source clock

Lock freq.

Unit

Min freq. Max freq.

Cortex-M4

Subsystem

24

650

1300

792

MHz

VPU

PLL #0: subsystem

24

650

1300

1200

MHz

MIPI-DSI

Subsystem

24

650

1300

864

MHz

MIPI-CSI

Subsystem

24

650

1300

720

MHz

SCU (System Controller Unit)

Subsystem

24

650

1300

1056

MHz

1 Operating frequencies are limited to only those supported by the SCFW. 2 1200 MHz is used to generate the overdrive frequency point, and 900 MHz for the nominal frequency point. See Table 9 to get
associated voltages. 3 700 MHz is used to generate the overdrive frequency point, and 744 is used to generate the nominal point (372 MHz). 4 850 MHz is used to generate the overdrive frequency point, and 744 is used to generate the nominal point (372 MHz) 5 2400 MHz is used to generate 1200 MHz when in LPDDR4 mode. 1866 MHz is used to generate 933 MHz when in DDR3L
mode. See Table 9 to get associated voltages. 6 The audio PLLs support on-the-fly frequency changes for clock synchronization applications, 25 Hz steps, up to a maximum
change of +/- 250 KHz is supported.

4.3.2 PLLs dedicated to specific interfaces
The following sections cover PLLs used for specific interfaces. Clock output frequency and clock output range refer to the output of the PLL. Additional clock dividers may be on the output path to divide the output frequency down to the targeted frequency. See the related sections in the reference manual for settings of these clock dividers.
4.3.2.1 Ethernet PLL This PLL is controlled by the SCU.

Reference clock Clock output frequency

Parameter

Table 18. Ethernet PLL

Value 24 1

Unit MHz GHz

4.3.2.2 USB 3.0 PLLs
USB 3.0 has two PLLs. One is embedded in Super-Speed PHY. The other one is embedded in the USB 2.0 OTG PHY that is part of the USB 3.0 interface.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

29

Electrical characteristics
The table below describes the PLL embedded in the Super-Speed PHY.

Table 19. USB 2.0 PLL embedded in Super Speed PHY

Reference clock Clock output frequency

Parameter

Value 24 5

Unit MHz GHz

The table below describes the PLL embedded in the USBOTG PHY.

Table 20. USB 2.0 PLL embedded in USBOTG PHY

Reference clock Clock output frequency

Parameter

Value 24 480

Unit MHz MHz

4.3.2.3 USB 2.0 OTG PLLs This PLL is embedded in the USB 2.0 OTG PHY (the one which is not part of the USB 3.0 feature).

Reference clock Clock output frequency

Parameter

Table 21. USB 2.0 OTG PLLs Value 24 480

Unit MHz MHz

4.3.2.4 PCIe PLLs
The PCIe interface has three PLLs: · One is used to generate the single, common 100 MHz reference clock to each lane · One Transmit and one Receive PLL in one lane
The table below shows the characteristics for the reference clock PLL.

Parameter Reference clock Clock output frequency

Table 22. PCIe reference clock PLLs

Value 24 100

Unit

Comments

MHz

--

MHz Used to generate internal 100 MHz reference clock to PCIe lanes

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

30

NXP Semiconductors

Electrical characteristics
The table below shows characteristics of the TX and RX PLLs used in each lane.

Parameter Reference clock Clock output range

Table 23. PCIe Transmit and Receive PLLs

Value 100 6 ~ 10

Unit

Comments

MHz From differential input clock pads or from internal PLL
GHz PCIe gen3: 8GHz to get 8GHz baud clock PCIe gen2: 10GHz to get 5GHz baud clock PCIe gen3: 10GHz to get 2.5GHz baud clock

4.3.2.5 MIPI-DSI/LVDS combo PLL The table below shows characteristics of the PLL embedded in the MIPI-DSI/LVDS combo PHY.

Parameter Reference clock Clock output range

Table 24. MIPI-DSI/LVDS combo PHY PLL

Value 24
0.75 ~ 1.05

Unit

Comments

MHz

--

GHz Dependent on targeted display configuration

4.4 On-chip oscillators

4.4.1 OSC24M
This block integrates trimmable internal loading capacitors and driving circuitry. When combined with a suitable 24 MHz external quartz element, it can generate a low-jitter clock. The oscillator is powered from VDD_ANA1_1P8. The internal loading capacitors are trimmable to provide fine adjustment of the 24 MHz oscillation frequency. It is expected that customers burn appropriate trim values for the selected crystal and board parasitics.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

31

Electrical characteristics

Figure 2. Normal Crystal Oscillation mode

Table 25. Crystal specifications

Parameter description

Min

Typ

Max

Unit

Frequency1 Cload2

--

24

--

MHz

--

18

--

pF

Maximum drive level

200

--

--

W

ESR

--

--

60



1 The required frequency accuracy is set by the serial interfaces utilized for a specific application and is detailed in the respective standard documents.
2 Cload is the specification of the quartz element, not for the capacitors coupled to the quartz element.

4.4.2 OSC32K
This block implements an internal amplifier, trimmable load capacitors and a bias network that when combined with a suitable quartz crystal implements a low power oscillator.
Additionally, if the clock monitor determines that the 32KHz oscillation is not present, then the source of the 32 KHz clock will automatically switch to the internal relaxation oscillator of lesser frequency accuracy.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

32

NXP Semiconductors

Electrical characteristics
CAUTION
The internal ring oscillator is not meant to be used in customer applications, due to gross frequency variation over wafer processing, temperature, and supply voltage. These variations will cause timing issues to many different circuits that use the internal ring oscillator for reference; and, if this timing is critical, application issues will occur. To prevent application issues, it is recommended to only use an external crystal or an accurate external clock. If this recommendation is not followed, NXP cannot guarantee full compliance of any circuit using this clock. The OSC32K runs from VDD_SNVS_LDO_1P8_CAP, which is regulated from VDD_SNVS. The target battery/voltage range is 2.8 to 4.2 V for VDD_SNVS, with a regulated output of approximately 1.75 V.

Table 26. OSC32K main characteristics

Parameter Min

Typ

Max

Comments

Fosc

--

32.768 kHz

-- This frequency is nominal and determined mainly by the crystal selected. 32.0 KHz is also supported.

Current

-- · xtal oscillator mode: 5 A

-- These values are for typical process and room

consumption

· 32K internal oscillator mode: 10 A

temperature. Values will be updated after silicon

characterization.

Bias resistor --

200 M

-- This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amplifier. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.

Target Crystal Properties

Cload

--

10 pF

-- Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.

ESR

--

50 k

100 k Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.

Frequency VPP RTC_XTALI Rise/fall time

Table 27. External input clock for OSC32K

Min

Typ

--

32.768 or 32

700

--

--

--

Max -- VDD_SNVS_LDO_1P8_CAP --

Unit kHz mV ns

Notes --
1,2,3 4

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

33

Electrical characteristics

1 The external clock is fed into the chip from the RTC_XTALI pin; the RTC_XTALO pin should be left floating. 2 The parameter specified here is a peak-to-peak value and VIH/VIL specifications do not apply. 3 The voltage applied on RTC_XTALI must be within the range of VSS to VDD_SNVS_LDO_1P8_CAP. 4 The rise/fall time of the applied clock are not strictly confined.

4.5 I/O DC Parameters
This section includes the DC parameters of the following I/O types: · XTALI and RTC_XTALI (clock inputs) DC parameters · General Purpose I/O (GPIO) DC parameters
NOTE The term `OVDD' in this section refers to the associated supply rail of an input or output.

1

or

pdat

0

Predriver

ovdd pmos (Rpu)
pad

Voh min Vol max

nmos (Rpd) ovss
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells
4.5.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters
For RTC_XTALI, VIH/VIL specifications do not apply. The high and low levels of the applied clock on this pin are not strictly defined, as long as the input's peak-to-peak amplitude meet the requirements and the input's voltage value does not exceed the limits.
4.5.2 General-purpose I/O (GPIO) DC parameters
4.5.2.1 Tri-voltage GPIO DC parameters The following tables show tri-voltage 1.8V, 2.5 V, and 3.3 V DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 9, unless otherwise noted.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

34

NXP Semiconductors

Electrical characteristics

Table 28. Tri-voltage 1.8 V GPIO DC parameters1

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage2,3

VOH

IOH= -0.1mA DSE=1

0.8 × OVDD

--

V

Low-level output voltage2,3

VOL

IOH= -2mA DSE=0
IOL= -0.1mA DSE=1

--

0.125 × OVDD V

High-Level input voltage2,4

VIH

Low-Level input voltage

VIL

Pull-up resistance

RPU

IOL= -2mA DSE=0 -- --
VIN=0V (Pullup Resistor) PUN = "L", PDN = "H"

0.625 × OVDD

OVDD

V

0

0.25 × OVDD V

15

50

k

Pull-down resistance

RDOWN

VIN=OVDD( Pulldown Resistor)

15

PUN = "H", PDN = "L"

50

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-1

1

A

PUN = "H", PDN = "H"

1 For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly. For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation, PSW_OVR = 0b1 and COMP = 0b010.
2 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the I/O Supply)
3 DSE is the setting of the PDRV register. High Drive mode is recommended for 3v3 and 2v5 modes. Low Drive mode is recommended for 1v8 mode.
4 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.

Parameter High-level output voltage2,3
Low-level output voltage2,3
High-Level input voltage2,4 Low-Level input voltage Pull-up resistance

Table 29. Tri-voltage 2.5 V GPIO DC parameters1

Symbol
VOH
V OL
V IH
VIL RPU

Test Conditions IOH= -2mA DSE=0 IOL= -2mA DSE=0 -- --
VIN=0V (Pullup Resistor) PUN = "L", PDN = "H"

Min 0.8 × OVDD
--
0.625 × OVDD 0 10

Max --
0.125 × OVDD
OVDD 0.25 × OVDD
100

Units V
V
V V k

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

35

Electrical characteristics

Table 29. Tri-voltage 2.5 V GPIO DC parameters1 (continued)

Parameter

Symbol

Test Conditions

Min

Max

Units

Pull-down resistance

RDOWN

VIN=OVDD( Pulldown

10

Resistor)

PUN = "H", PDN = "L"

100

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-1

PUN = "H", PDN = "H"

1

A

1 For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly. For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation, PSW_OVR = 0b1 and COMP = 0b010.
2 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the I/O supply.)
3 DSE is the setting of the PDRV register. High Drive mode is recommended for 3v3 and 2v5 modes. Low Drive mode is recommended for 1v8 mode.
4 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.

Table 30. Tri-voltage 3.3 V GPIO DC parameters1

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage2,3

V OH

IOH= -0.1mA

0.8 × OVDD

V

4DSE=1

Low-level output voltage2,3

VOL

IOH= -2mA 4DSE=0 IO4LD=S-0E.31=m1A

--

0.125 × OVDD V

High-Level input voltage2,4,3 Low-Level input voltage Pull-up resistance

VIH
VIL RPU

IOL= -2mA 4DSE=0
-- -- VIN=0V (Pullup Resistor) PUN = "L", PDN = "H"

0.725 × OVDD

OVDD

V

0

0.25 × OVDD V

10

100

k

Pull-down resistance

RDOWN

VIN=OVDD( Pulldown Resistor)

10

PUN = "H", PDN = "L"

100

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-2

2

A

PUN = "H", PDN = "H"

1 For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly. For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation, PSW_OVR = 0b1 and COMP = 0b010.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

36

NXP Semiconductors

Electrical characteristics
2 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the I/O Supply.)
3 DSE is the setting of the PDRV register. High Drive mode recommended for 3v3 and 2v5 modes. Low Drive mode is recommended for 1v8 mode.
4 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.
4.5.2.2 Dual-voltage GPIO DC parameters
The following two tables show dual-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 9, unless otherwise noted.

Table 31. Dual-voltage 1.8 V GPIO DC parameters

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage1,2

VOH Ioh= -0.1mA DSE=1

0.8 × OVDD

--

V

Low-level output voltage1,2

Ioh= -2mA DSE=0
VOL Iol= -0.1mA DSE=1

--

0.125 × OVD V

D

High-Level input voltage1,3

Iol= -2mA DSE=0

VIH

--

0.625 × OVD

OVDD

V

D

Low-Level input voltage Pull-up resistance

VIL

--

RPU Vin=0 V (Pullup Resistor) PUN = "L", PDN = "H"

0

0.25 × OVDD V

15

50

k

Pull-down resistance

Rdown Vin=OVDD( Pulldown Resistor)

15

PUN = "H", PDN = "L"

50

k

Input current (no PU/PD)

IIN VI = 0, VI = OVDD PUN = "H", PDN = "H"

-1

1

A

1 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the IO Supply.)
2 DSE is the setting of the PDRV register. High Drive mode is recommended for SD standard (3v3 mode) and MMC standard (1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode).
3 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 ns.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

37

Electrical characteristics

Table 32. Dual-voltage 3.3 V GPIO DC parameters

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage1,2

VOH

Ioh= -0.1mA DSE=1

0.8 × OVDD

--

V

Low-level output voltage1,2

VOL

Ioh= -2mA DSE=0
Iol= -0.1mA DSE=1

--

0.125 × OVDD V

High-Level input voltage1,3

VIH

Low-Level input voltage

VIL

Pull-upresistance

RPU

Iol= -2mA DSE=0
--
--
Vin=0V (Pullup Resistor) PUN = "L", PDN = "H"

0.725 × OVDD

OVDD

V

0

0.25 × OVDD V

10

100

k

Pull-down resistance

Rdown

Vin=OVDD( Pulldown Resistor)

10

PUN = "H", PDN = "L"

100

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-2

2

A

PUN = "H", PDN = "H"

1 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the I/O Supply.)
2 DSE is the setting of the PDRV register. High Drive mode is recommended for SD standard (3v3 mode) and MMC standard (1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode).
3 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.

4.5.2.3 Single-voltage GPIO DC parameters
Table 33 and Table 34 show single-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 9 unless otherwise noted.

Parameter High-level output voltage1,2

Table 33. Single-voltage 1.8 V GPIO DC parameters

Symbol VOH

Test Conditions IOH= -0.1mA
DSE = 000 or 001 IOH= -2mA
DSE = 010 or 011 IOH= -4mA
DSE = 100 to 110

Min OVDD × 0.8

Max

Units

--

V

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

38

NXP Semiconductors

Electrical characteristics

Table 33. Single-voltage 1.8 V GPIO DC parameters (continued)

Parameter

Symbol

Test Conditions

Min

Max

Units

Low-level output voltage1,2

VOL

IOL= 0.1mA DSE = 000 or 001

--

OVDD × 0.2

V

IOL= 2mA DSE = 010 or 011

High-Level input voltage2,3

VIH

Low-Level input voltage2,3

VIL

Pull-up resistance

RPU

IOL= 4mA DSE = 100 to 110
--
--
Vin=0V (Pullup Resistor) PUN = "L", PDN = "H"

0.65 × OVDD

OVDD

V

0

0.35 × OVDD V

20

90

k

Pull-down resistance

Rdown

Vin=OVDD( Pulldown Resistor)

20

PUN = "H", PDN = "L"

90

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-5

PUN = "H", PDN = "H"

5

A

Keeper Circuit Resistance

R_Keeper

VI =.3xOVDD, VI = .7x OVDD

20

PUN = "L", PDN = "L"

90

k

1 As programmed in the associated IOMUX (DSE field) register. 2 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3
V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the IO supply.) 3 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.

Parameter High-level output voltage1,2
Low-level output voltage1,2
High-Level input voltage2,3 Low-Level input voltage2,3 Pull-upresistance

Table 34. Single-voltage 3.3 V GPIO DC parameters

Symbol VOH
VOL
VIH VIL RPU

Test Conditions
IOH = -0.1mA DSE = 00 or 01
IOH= -2mA DSE = 10 or 11
IOL=0.1mA DSE = 00 or 01
IOL = 2mA DSE = 10 or 11
-- -- Vin=0 V (Pullup Resistor) PUN = "L", PDN = "H"

Min 0.8 × OVDD
--
0.75 × OVDD 0 20

Max

Units

--

V

0.2 × OVDD

V

OVDD

V

0.25 × OVDD

V

90

k

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

39

Electrical characteristics

Table 34. Single-voltage 3.3 V GPIO DC parameters (continued)

Parameter

Symbol

Test Conditions

Min

Max

Units

Pull-down resistance

Rdown

Vin=OVDD( Pulldown Resistor)

20

PUN = "H", PDN = "L"

90

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-5

PUN = "H", PDN = "H"

5

A

Keeper Circuit Resistance R_Keeper VI =.3xOVDD, VI = .7x OVDD

20

PUN = "L", PDN = "L"

90

k

1 As programmed in the associated IOMUX (DSE field) register. 2 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the IO supply.) 3 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.

4.5.3 DDR I/O DC parameters

4.5.3.1 LPDDR4 mode I/O DC parameters These parameters are guaranteed per the operating ranges in Table 9 unless otherwise noted.

Table 35. LPDDR4 DC parameters

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage1 Low-level output voltage1

VOH Out Drive = All setting

0.9 × VDDQ

--

V

(40,48,60,80,120,240)

unterminated outputs loaded

with 1pF capacitor load

VOL

Out Drive = All setting

--

(40,48,60,80,120,240)

unterminated outputs loaded

with 1pF capacitor load

0.1 × VDDQ

V

Input current (no ODT)

IIN

VI = VSSQ, VI = VDDQ

-2

2

A

DC High-Level input voltage

VIH_DC

--

VREF + 0.1

VDDQ

V

DC Low-Level input voltage

VIL_DC

--

VSSQ

VREF ­ 0.1

V

1 Maximum peak amplitude allowed for overshoot and undershoot area = 0.35 V. Maximum overshoot area above VDD/VDDQ 0.8 V-ns; maximum undershoot area below VSS/VSSQ 0.8 V-ns.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

40

NXP Semiconductors

4.5.3.2 DDR3L mode I/O DC parameters

Electrical characteristics

Table 36. SSTL DDR3L DC parameters

Parameter

Symbol

Test Conditions

Min

Max

Units

DC High-level output voltage 1 DC Low-level output voltage1

VOH Out Drive = All setting (40,60,120) unterminated outputs loaded with 1pF capacitor load
VOL Out Drive = All setting (40,60,120) unterminated outputs loaded with 1pF capacitor load

0.8 × VDDQ

--

V

--

0.2 × VDDQ V

Input termination resistance (ODT) to VDDQ/2 RTT 40  setting

36

44



60  setting

54

66

120  setting

100

140

Input current (no ODT)

IIN VI = VSSQ, VI = VDDQ

-2

2

A

DC High-Level input voltage

VIH_DC

VREF + 0.09 VDDQ

V

DC Low-Level input voltage

VIL_DC

VSSQ VREF ­ 0.09 V

1 Maximum peak amplitude allowed for overshoot and undershoot area = 0.35 V. Maximum overshoot area above VDD/VDDQ 0.8 V-ns; maximum undershoot area below VSS/VSSQ 0.8 V-ns.

4.6 I/O AC Parameters
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

From Output Under Test

Test Point CL

CL includes package, probe and fixture capacitance Figure 4. Load Circuit for Output

Output (at pad)

80%

20%

tr

tf

Figure 5. Output Transition Time Waveform

OVDD 80%
20%0 V

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

41

Electrical characteristics
4.6.1 General Purpose I/O (GPIO) AC Parameters

Table 37. General Purpose I/O AC Parameters1

Symbol

Parameter

Test Condition

Min Typ

Max

Unit

1.8 V application2

fmax Maximum frequency
tr Rise time tf Fall time

Load = 21 pF (PDRV = H, high --

--

drive, Type A, 33 

Load = 15 pF (PDRV = L, low drive, Type B, 50 

Measured between VOL and 0.4

--

VOH

Measured between VOH and 0.4

--

VOL

Driver 3.3 V application3

208
1.32 1.32

MHz
ns ns

fmax Maximum frequency

Load = 30 pF

--

--

52

MHz

tr Rise time

Measured between

--

--

3

ns

VOL and VOH

tf Fall time

Measured between

--

--

3

ns

VOH and VOL

1 All output I/O specifications are guaranteed for Accurate mode of the compensation cell operation. This is applicable for both DC and AC specifications.
2 All timing specifications in 1.8 V application are valid for High Drive mode (PDRV = H). In Low Drive mode (PDRV = L), the driver is functional.
3 All timing specifications in 3.3 V application are valid for Type B driver only. In Type A, the driver is functional.

Table 38. Dynamic input characteristics

Symbol

Parameter

Condition1,2

Min

Max

Unit

Dynamic Input Characteristics for 3.3 V Application

fop

Input frequency of operation

INPSL Slope of input signal at I/O

IOMAX High level input voltage

IOMIN Low level input voltage

-- Measured between 10% to 90% of the I/O swing
-- --

Dynamic Input Characteristics for 1.8 V Application

fop

Input frequency of operation

INPSL Slope of input signal at I/O

IOMAX High level input voltage

IOMIN Low level input voltage

-- Measured between 10% to 90% of the I/O swing
-- --

-- -- -- -0.3 V
-- -- -- -0.3 V

52

MHz

3.5

ns

3.3 V + 0.3 V V

--

208

MHz

1.5

ns

1.8 V + 0.3 V V

--

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

42

NXP Semiconductors

Electrical characteristics
1 For all supply ranges of operation. 2 The dynamic input characteristic specifications are applicable for the digital bidirectional cells.
4.7 Output Buffer Impedance Parameters
This section defines the I/O impedance parameters for the following I/O types: · General Purpose I/O (GPIO) output buffer impedance · Double Data Rate I/O (DDR) output buffer impedance for LPDDR4 and DDR3L modes
NOTE GPIO and DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 6).

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

43

Electrical characteristics

ipp_do

predriver

U,(V) VDD

OVDD PMOS (Rpu)
pad

Ztl , L = 20 inches

NMOS (Rpd)

OVSS

Vin (do)

Cload = 1p

0 U,(V) OVDD
Vref

Vref1

Vref2

t,(ns) Vout (pad)

0

Vovdd ­ Vref1

Rpu =

× Ztl

Vref1

t,(ns)

Rpd =

Vref2 × Ztl
Vovdd ­ Vref2
Figure 6. Impedance Matching Load for Measurement

4.7.1 GPIO output buffer impedance

4.7.1.1 Tri-voltage GPIO output buffer impedance

Parameter Output impedance Output impedance

Table 39. Tri-voltage 1.8 V GPIO output impedance DC parameters

Symbol ZO ZO

Test conditions 1DSE=0 1DSE=1

Typical 33 50

Units  

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

44

NXP Semiconductors

1 As programmed in the associated IOMUX (PDRV field) register.

Electrical characteristics

Table 40. Tri-voltage 2.5 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 As programmed in the associated IOMUX (PDRV field) register.

Typical 25 33

Units  

Table 41. Tri-voltage 3.3 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 As programmed in the associated IOMUX (PDRV field) register.

Typical 25 37

4.7.1.2 Dual-voltage GPIO output buffer impedance

Table 42. Dual-voltage 1.8 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 `As programmed in the associated IOMUX (PDRV field) register.

Typical 33 50

Units  
Units  

Table 43. Dual-voltage 3.3 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 As programmed in the associated IOMUX (PDRV field) register.

Typical 25 37

Units  

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

45

Electrical characteristics
4.7.1.3 Single-voltage 1.8 V GPIO output buffer drive strength The following table shows the GPIO output buffer drive strength (OVDD 1.8 V).

Table 44. Single-voltage GPIO 1.8 V output impedance DC parameters

Parameter

Symbol

Test conditions

1DSE=000

1DSE=001

1DSE=010

Output impedance

ZO

1DSE=011 1DSE=100

1DSE=101

1DSE=110

1DSE=111

1 As programmed in the associated IOMUX (DSE field) register.

Typical 200 100 55 40 30 24 20 18

4.7.1.4 Single-voltage 3.3 V GPIO output buffer drive strength The following table shows the GPIO output buffer drive strength (OVDD 3.3 V).

Units 

Table 45. Single-voltage GPIO 3.3 V output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=00 1DSE=01

1DSE=10

1DSE=11

1 As programmed in the associated IOMUX (DSE field) register.

Typical 400 200 100 50

Units 

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

46

NXP Semiconductors

Electrical characteristics
4.7.2 DDR I/O output buffer impedance
The following tables show DDR3L and LPDDR4 I/O output buffer impedance of the device. The ZQ Calibration cell uses a single register (ZQnPR0) to determine the target output buffer impedances of the pull-up driver and the pull-down driver, as well as the target on-die termination impedance. The resulting calibration setting is then applied to all DDR pads within the PHY complex. Table 46 and Table 48 show, respectively, the recommended ZQnPR0 field settings for the DDR3L and LPDDR4 I/Os to achieve the desired output buffer impedances. Table 47 and Table 49 show, respectively, the recommended ZQnPR0 field settings for the DDR3L and LPDDR4 I/Os to achieve the desired ODT settings.

Parameter
Recommended combinations for DQ /CA pins

Table 46. LPDDR4 I/O output buffer impedance

Typical

ZQnPR0 ZPROG_ASYM_PU_DRV
5 7 9 11

Impedance
80  60  48  40 

ZQnPR0 ZPROG_ASYM_PD_DRV
3 5 7 9

Impedance
120  80  60  48 

Table 47. LPDDR4 I/O on-die termination impedance

Parameter

Typical Impedance

Recommended combinations for DQ/CA pins

120.0  80.0  60.0  48.0  40.0 

ZQnPR0. ZPROG_HOST_ODT
3 5 7 9 11

Table 48. DDR3L I/O output buffer impedance

Parameter
Recommended combinations for DQ/CA pins

Typical Impedance

ZQnPR0. ZPROG_ASYM_PU_DRV

48.0 

9

40.0 

11

34.3 

13

ZQnPR0. ZPROG_ASYM_PD_DRV
9 11 13

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

47

Electrical characteristics

Table 49. DDR3L I/O on-die termination impedance

Parameter

Typical Impedance

Recommended combinations for DQ/CA pins

120.0  60.0  40.0 

ZQnPR0. ZPROG_HOST_ODT
1 3 5

NOTE
· Output driver impedance is controlled across PVTs using ZQ calibration procedure.
· Calibration is done against 240  external reference resistor.
· Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8 System Modules Timing
This section contains the timing and electrical parameters for the modules in each processor.

4.8.1 Reset Timing Parameters
The following figure shows the reset timing and Table 50 lists the timing parameters.

POR_B (Input)
CC1 Figure 7. Reset timing diagram

Table 50. Reset timing parameters

ID CC1

Parameter Duration of SRC_POR_B to be qualified as valid

Min Max

Unit

1

-- XTALOSC_RTC_ XTALI cycle

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

48

NXP Semiconductors

Electrical characteristics
4.8.2 WDOG reset timing parameters
The following figure shows the WDOG reset timing and Table 51 lists the timing parameters.

Figure 8. SCU_WDOG_OUT timing diagram

Table 51. WDOG1_B timing parameters

ID

Parameter

CC3 Duration of SCU_WDOG_OUT assertion

Min Max

1

--

Unit XTALOSC_RTC_ XTALI cycle

NOTE
XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 s.

4.8.3 DDR SDRAM­specific parameters (LPDDR4 and DDR3L)
The i.MX 8x Family of processors have been designed and tested to work with JEDEC JESD209-4A­ compliant LPDDR4 memory and with JEDEC JESD79-3-1 DDR3L compliant with DDR3L memory. Timing diagrams and tolerances required to work with these memories are specified in the respective documents and are not reprinted here.
Meeting the necessary timing requirements for a DDR memory system is highly dependent on the components chosen and the design layout of the system as a whole. NXP cannot cover in this document all the requirements needed to achieve a design that meets full system performance over temperature, voltage, and part variation; PCB trace routing, PCB dielectric material, number of routing layers used, placement of bulk/decoupling capacitors on critical power rails, VIA placement, GND and Supply planes layout, and DDR controller/PHY register settings all are factors affecting the performance of the memory system. Consult the hardware user guide for this device and NXP validated design layouts for information on how to properly design a PCB for best DDR performance. NXP strongly recommends duplicating an NXP validated design as much as possible in the design of critical power rails, placement of bulk/decoupling capacitors and DDR trace routing between the processor and the selected DDR memory. All supporting material is readily available on the device web page on

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

49

Electrical characteristics
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applicatio ns-processors/i.mx-8-processors:IMX8-SERIES .
Processors that demonstrate full DDR performance on NXP validated designs, but do not function on customer designs, are not considered marginal parts. A report detailing how the returned part behaved on an NXP validated system will be provided to the customer as closure to a customer's reported DDR issue. Customers bear the responsibility of properly designing the Printed Circuit Board, correctly simulating and modeling the designed DDR system, and validating the system under all expected operating conditions (temperatures, voltages) prior to releasing their product to market.

Table 52. i.MX 8 Family DRAM controller supported SDRAM configurations

Parameter
Number of Controllers Number of Channels Number of Chip Selects Bus Width Maximum Clock Frequency 1 Only 16-bit external memory configurations are supported.

LPDDR4
2 2 per controller 2 per channel 16 bit per channel1
1600 MHz

Table 53. i.MX 8QuadXPlus/8DualXPlus DRAM controller supported SDRAM configurations

Parameter Number of Controllers Number of Channels Number of Chip Selects Bus Width Maximum Clock Frequency

LPDDR4
2 per controller 2 per channel 16-bit per channel
1200 MHz

DDR3L 1
N/A 2 per controller 32-bit (optional 40-bit with ECC)
933 MHz

4.8.3.1 Clock/data/command/address pin allocations
These processors uses generic names for clock, data and command address bus (DCF--DRAM controller functions); the following table provides mapping of clock, data and command address signals for LPDDR4 and DDR3L modes.

Table 54. Clock, data, and command address signals for LPDDR4 and DDR3L modes

DDR_CK0_P DDR_CK0_N

Signal name

LPDDR4 CK_t_A CK_c_A

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

50

NXP Semiconductors

Electrical characteristics

Table 54. Clock, data, and command address signals for LPDDR4 and DDR3L modes (continued)

DDR_CK1_P DDR_CK1_N DDR_DQ_[15:0] DDR_DQ_[31:16] DDR_DQ_[39:32] DDR_DQS_N_[3:0] DDR_DQS_P_[3:0] DDR_DQS_N_4 DDR_DQS_P_4 DDR_DM_[3:0] DDR_DM_4 DDR_DCF00 DDR_DCF01 DDR_DCF03 DDR_DCF04 DDR_DCF05 DDR_DCF07 DDR_DCF08 DDR_DCF09 DDR_DCF10 DDR_DCF11 DDR_DCF12 DDR_DCF14 DDR_DCF15 DDR_DCF16 DDR_DCF17 DDR_DCF18 DDR_DCF19 DDR_DCF20 DDR_DCF21 DDR_DCF22 DDR_DCF23 DDR_DCF24

Signal name

LPDDR4 CK_t_B CK_c_B DQ[15:0]_A DQ[15:0]_B
DQS_N_[3:0] DQS_P_[3:0]
DM_[3:0]
CA2_A CA4_A CA5_A
CA3_A ODT_CA_A
CS0_A CA0_A CS1_A CKE0_A CKE1_A CA1_A CA4_B RESET_N CA5_B

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

51

Electrical characteristics

Table 54. Clock, data, and command address signals for LPDDR4 and DDR3L modes (continued)

DDR_DCF25 DDR_DCF26 DDR_DCF27 DDR_DCF28 DDR_DCF29 DDR_DCF30 DDR_DCF31 DDR_DCF32 DDR_DCF33

Signal name

LPDDR4 ODT_CA_B
CA3_B CA0_B CS0_B CS1_B CKE0_B CKE1_B CA1_B CA2_B

4.8.3.2 ECC for DDR3L
i.MX 8QuadXPlus/8DualXPlus supports up to 8-bit ECC when using DDR3L only. This is accomplished through the use of a fifth byte lane (DQS4[P:N],DM4, DQ[32:39]). When using the fifth byte lane, it is not a requirement that all DDR3L devices be identical, but it is required that all devices be able to operate with the same timing parameters. This can be easily accomplished by using memory containing the same die(s), but contained in different packages. Consult the DDR3L device datasheets for timing requirements. The fifth byte lane is for the exclusive use of ECC. If not using ECC, leave the pins as not connected. For LPDDR4 mode, pins DQS4[P:N],DM4, DQ[32:39] are not used and cannot be substituted for one of the other byte lanes. If using LPDDR4 mode, leave these pins as not connected.

4.9 General-Purpose Media Interface (GPMI) Timing
The GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 400 MB/s I/O speed, and individual chip select. It supports Asynchronous Timing mode, Source Synchronous Timing mode, and Toggle Timing mode, as described in the following subsections.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

52

NXP Semiconductors

Electrical characteristics
4.9.1 GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 9 through Figure 12 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 55 describes the timing parameters (NF1­NF17) that are shown in the figures.

.!.$?#,% .!.$?#%?"

NF1 NF3

NF2 NF4

.!.$?7%?"

NF5

.!.$?!,% .!.$?$!4!XX

NF6

NF7

NF8

NF9

Command

Figure 9. Command Latch Cycle Timing Diagram

.!.$?#,% .!.$?#%?" .!.$?7%?"

NF1
NF3 NF10
NF5

NF11

.!.$?!,% NAND_DATAxx

NF6
NF8 Address

NF7 NF9

Figure 10. Address Latch Cycle Timing Diagram

.!.$?#,% .!.$?#%?" .!.$?7%?"

NF1
NF3 NF10
NF5

NF11

.!.$?!,%

NF6

NF7

.!.$?$!4!XX

NF8

NF9

Data to NF

Figure 11. Write Data Latch Cycle Timing Diagram

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

53

Electrical characteristics

.!.$?#,%

.!.$?#%?" .!.$?2%?"

NF14 NF13

NF15

.!.$?2%!$9?"

NF12

NF16

NF17

.!.$?$!4!XX

Data from NF

Figure 12. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)

.!.$?#,% .!.$?#%?"
.!.$?2%?"

NF14 NF13

NF15

.!.$?2%!$9?"

NF12

NAND_DATAxx

NF16

NF17 Data from NF

Figure 13. Read Data Latch Cycle Timing Diagram (EDO Mode)

Table 55. Asynchronous Mode Timing Parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min

Max

NF1 NAND_CLE setup time

tCLS

(AS + DS) × T - 0.12 [see 2,3]

ns

NF2 NAND_CLE hold time

tCLH

DH × T - 0.72 [see 2]

ns

NF3 NAND_CEx_B setup time

tCS

(AS + DS + 1) × T [see 3,2]

ns

NF4 NAND_CEx_B hold time

tCH

(DH+1) × T - 1 [see 2]

ns

NF5 NAND_WE_B pulse width

tWP

DS × T [see 2]

ns

NF6 NAND_ALE setup time

tALS

(AS + DS) × T - 0.49 [see 3,2]

ns

NF7 NAND_ALE hold time

tALH

(DH × T - 0.42 [see 2]

ns

NF8 Data setup time

tDS

DS × T - 0.26 [see 2]

ns

NF9 Data hold time

tDH

DH × T - 1.37 [see 2]

ns

NF10 Write cycle time

tWC

(DS + DH) × T [see 2]

ns

NF11 NAND_WE_B hold time

tWH

DH × T [see 2]

ns

NF12 Ready to NAND_RE_B low

tRR4

(AS + 2) × T [see 3,2]

--

ns

NF13 NAND_RE_B pulse width

tRP

DS × T [see 2]

ns

NF14 READ cycle time

tRC

(DS + DH) × T [see 2]

ns

NF15 NAND_RE_B high hold time

tREH

DH × T [see 2]

ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

54

NXP Semiconductors

Electrical characteristics

Table 55. Asynchronous Mode Timing Parameters1 (continued)

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min

Max

NF16 Data setup on read NF17 Data hold on read

tDSR tDHR

-- 0.82/11.83 [see 5,6]

(DS × T -0.67)/18.38 [see 5,6] ns

--

ns

1 The GPMI asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1. 3 T = GPMI clock period -0.075ns (half of maximum p-p jitter). 4 NF12 is met automatically by the design. 5 Non-EDO mode. 6 EDO mode, GPMI clock  100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 13), NF16/NF17 are different from the definition in non-EDO mode (Figure 12). They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the device reference manual. The typical value of this control register is 0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

55

Electrical characteristics
4.9.2 GPMI Source Synchronous mode AC timing (ONFI 2.x compatible)
The following figure shows the write and read timing of Source Synchronous mode.

NF19 NF18
.!.$?#%?"

NAND_CLE NAND_ALE NAND_WE/RE_B NAND_CLK

NF23

NF25 NF26

NF25 NF26 NF22

NF24

NAND_DQS NAND_DQS Output enable
NAND_DATA[7:0]

NF20
NF21
CMD

NF20
NF21
ADD

NAND_DATA[7:0] Output enable

Figure 14. Source Synchronous Mode Command and Address Timing Diagram

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

56

NXP Semiconductors

.!.$?#%?"

NF18

.!.$?#,%

.!.$?!,%

NAND_WE/RE_B

.!.$?#,+

.!.$?$13
.!.$?$13 Output enable

NF23 NF23

NF25 NF25

NF27

Electrical characteristics
NF19

NF26 NF26

NF24 NF24

NF22

NF27

NF29

NF29

.!.$?$1;=
.!.$?$1;= Output enable

NF28

NF28

Figure 15. Source Synchronous Mode Data Write Timing Diagram

NF18

.!.$?#%?"

NF19

.!.$?#,%

NF23

NF25

NF26

NF24

NAND_ALE

NF23

NF25

NF26

NF24

.!.$?7%2%

NF25

NF22

.!.$?#,+

NF26

NF25

.!.$?$13
.!.$?$13 /UTPUTENABLE

.!.$?$!4!;=

.!.$?$!4!;= /UTPUTENABLE

Figure 16. Source Synchronous Mode Data Read Timing Diagram

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

57

Electrical characteristics

.!.$?$13

NF30

.!.$?$!4!;=

D0

D1

D2

D3

NF30

NF31

NF31

Figure 17. NAND_DQS/NAND_DQ Read Valid Window

Table 56. Source Synchronous Mode Timing Parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min

Max

NF18 NAND_CEx_B access time NF19 NAND_CEx_B hold time

tCE

CE_DELAY × T - 0.79 [see 2]

ns

tCH

0.5 × tCK - 0.63 [see 2]

ns

NF20 Command/address NAND_DATAxx setup time

tCAS

0.5 × tCK - 0.05

ns

NF21 Command/address NAND_DATAxx hold time

tCAH

0.5 × tCK - 1.23

ns

NF22 clock period NF23 preamble delay NF24 postamble delay

tCK

--

ns

tPRE

PRE_DELAY × T - 0.29 [see 2]

ns

tPOST

POST_DELAY × T - 0.78 [see 2]

ns

NF25 NAND_CLE and NAND_ALE setup time

tCALS

0.5 × tCK - 0.86

ns

NF26 NAND_CLE and NAND_ALE hold time

tCALH

0.5 × tCK - 0.37

ns

NF27 NAND_CLK to first NAND_DQS latching transition

tDQSS

T - 0.41 [see 2]

ns

NF28 Data write setup

tDS

0.25 × tCK - 0.35

ns

NF29 Data write hold

tDH

0.25 × tCK - 0.85

ns

NF30 NAND_DQS/NAND_DQ read setup skew

tDQSQ

--

2.06

--

NF31 NAND_DQS/NAND_DQ read hold skew

tQHS

--

1.95

--

1 The GPMI source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
2 T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

Figure 17 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference manual. Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

58

NXP Semiconductors

4.9.3 ONFI NV-DDR2 mode (ONFI 3.2 compatible)

Electrical characteristics

4.9.3.1 Command and address timing
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.9.1, "GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)"," for details.

4.9.3.2 Read and write timing
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 4.9.4, "Toggle mode AC Timing"," for details.

4.9.4 Toggle mode AC Timing

4.9.4.1

Command and address timing
NOTE Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See Section 4.9.1, "GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)"," for details.

4.9.4.2 Read and write timing

Figure 18. Toggle mode data write timing

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

59

Electrical characteristics

DEV?CLK .!.$?#%X?" .!.$?#,%

.&

.!.$?!,%

 .!.$?7%?" .!.$?2%?"
.!.$?$13 .!.$?$!4!;=

T#+

.&

T#+

T#+

.&

T#+

T#+

Figure 19. Toggle mode data read timing

Table 57. Toggle mode timing parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min.

Max.

NF1 NAND_CLE setup time

tCLS

(AS + DS) × T - 0.12 [see note2s,3]

NF2 NAND_CLE hold time

tCLH

DH × T - 0.72 [see note2]

NF3 NAND_CE0_B setup time

tCS

(AS + DS) × T - 0.58 [see notes,2]

NF4 NAND_CE0_B hold time

tCH

DH × T - 1 [see note2]

NF5 NAND_WE_B pulse width

tWP

DS × T [see note2]

NF6 NAND_ALE setup time

tALS

(AS + DS) × T - 0.49 [see notes,2]

NF7 NAND_ALE hold time

tALH

DH × T - 0.42 [see note2]

NF8 Command/address NAND_DATAxx setup time tCAS

DS × T - 0.26 [see note2]

NF9 Command/address NAND_DATAxx hold time tCAH

DH × T - 1.37 [see note2]

NF18 NAND_CEx_B access time

tCE CE_DELAY × T [see notes4,2]

--

ns

NF22 clock period NF23 preamble delay

tCK

--

--

ns

tPRE PRE_DELAY × T [see notes5,2]

--

ns

NF24 postamble delay

tPOST POST_DELAY × T +0.43 [see note2]

--

ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

60

NXP Semiconductors

Electrical characteristics

Table 57. Toggle mode timing parameters1 (continued)

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min.

Max.

NF28 Data write setup NF29 Data write hold NF30 NAND_DQS/NAND_DQ read setup skew NF31 NAND_DQS/NAND_DQ read hold skew

tDS6 tDH6 tDQSQ7 tQHS7

0.25 × tCK - 0.32 0.25 × tCK - 0.79
-- --

--

ns

--

ns

3.18

3.27

1 The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1. 3 T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter). 4 CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started
with enough time of ALE/CLE assertion to low level.
5 PRE_DELAY+1)  (AS+DS)
6 Shown in Figure 18. 7 Shown in Figure 19.

For DDR Toggle mode, Figure 19 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference manual. Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.10 External Peripheral Interface Parameters
The following subsections provide information on external peripheral interfaces.

4.10.1 LPSPI timing parameters
All LPSPI interfaces do not have the same maximum serial clock frequency. There are two groups. LPSPI interfaces which can operate at 60 MHz in Master mode and 40 MHz in Slave mode and the other group where interfaces operate at 40 MHz in Master mode and 20 MHz in Slave mode. The same performance is achieved at 1.8 V and 3.3 V unless otherwise stated.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

61

Electrical characteristics
Below are the LPSPI interfaces and their respective chip selects:

Table 58. LPSPI interfaces and chip selects

LPSPI interface

Chip select

60 MHz in Master mode and 40 MHz in Slave mode
40 MHz in Master mode and 20 MHz in Slave mode

SPI0, SPI2, SPI2b, SPI3 SPI1, SPI1b, SPI2c

Comment
SPI2 - default SPI2 balls SPI2b - muxed behind audio balls
SPI1 - muxed behind SAI balls SPI1b - muxed behind CSI balls SP2c - muxed behind uSDHC1 balls

4.10.1.1 LPSPI Master mode
Waveform is assuming LPSPI is configured in mode 0, i.e. TCR.CPOL=0b0 and TCR.CPHA=0b0. Timing parameters are valid for all modes using appropriate edge of the clock.

Figure 20. LPSPI Master mode

Table 59. LPSPI timings--Master mode at 60 MHz

ID

Parameter

-- SPIx_SCLK Cycle frequency
t1 SPIx_SCLK High or Low Time­Read SPIx_SCLK High or Low Time­Write
t2 SPIx_CSy pulse width t3 SPIx_CSy Lead Time(1)

Min -- 7.5
7.5 FCLK_PERIOD(2) x (PCSSCK
+ 1) / 2PRESCALE - 3

Max Unit

60 MHz

--

ns

--

ns

--

ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

62

NXP Semiconductors

Electrical characteristics

Table 59. LPSPI timings--Master mode at 60 MHz (continued)

ID

Parameter

Min

Max Unit

t4 SPIx_CSy Lag Time(3)

FCLK_PERIOD(2) x (SCKPCS + 1) / 2PRESCALE + 3

--

ns

t5 SPIx_SDO output Delay (CLOAD = 20 pF)

--

3

ns

t6 SPIx_SDI Setup Time

2

--

ns

t7 SPIx_SDI Hold Time

2

--

ns

1 This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers. 2 FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz. 3 This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.

Table 60. LPSPI timings--Master mode at 40 MHz

ID

Parameter

Min

Max Unit

-- SPIx_SCLK Cycle frequency

--

40 MHz

t1 SPIx_SCLK High or Low Time­Read SPIx_SCLK High or Low Time­Write

11

--

ns

t2 SPIx_CSy pulse width t3 SPIx_CSy Lead Time(1)
t4 SPIx_CSy Lag Time(3)

11 FCLK_PERIOD(2) x (PCSSCK
+ 1) / 2PRESCALE + 3 FCLK_PERIOD(2) x (SCKPCS
+ 1) / 2PRESCALE + 3

--

ns

--

ns

--

ns

t5 SPIx_SDO output Delay (CLOAD = 20 pF)

--

5

ns

t6 SPIx_SDI Setup Time

5

--

ns

t7 SPIx_SDI Hold Time

4

--

ns

1 This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers. 2 FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz. 3 This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

63

Electrical characteristics

Figure 21. LPSPI Slave mode

Table 61. LPSPI timings--Slave mode at 40 MHz

ID

Parameter

-- SPIx_SCLK Cycle frequency t1 SPIx_SCLK High or Low Time­Read
SPIx_SCLK High or Low Time­Write t2 SPIx_CSy pulse width t3 SPIx_CSy Lead Time (CS setup time) t4 SPIx_CSy Lag Time (CS hold time) t5 SPIx_SDO output Delay (CLOAD = 20 pF) t6 SPIx_SDI Setup Time t7 SPIx_SDI Hold Time

Min

Max

Unit

--

40

MHz

11

--

ns

11

--

ns

4

--

ns

2

--

ns

--

5

ns

2

--

ns

2

--

ns

Table 62. LPSPI timings--Slave mode at 20 MHz

ID

Parameter

-- SPIx_SCLK Cycle frequency
t1 SPIx_SCLK High or Low Time­Read SPIx_SCLK High or Low Time­Write
t2 SPIx_CSy pulse width
t3 SPIx_CSy Lead Time (CS setup time)

Min

Max

Unit

--

20

MHz

22

--

ns

22

--

ns

4

--

ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

64

NXP Semiconductors

Electrical characteristics

Table 62. LPSPI timings--Slave mode at 20 MHz (continued)

ID

Parameter

t4 SPIx_CSy Lag Time (CS hold time) t5 SPIx_SDO output Delay (CLOAD = 20 pF) t6 SPIx_SDI Setup Time t7 SPIx_SDI Hold Time

Min

Max

Unit

2

--

ns

--

18

ns

2

--

ns

2

--

ns

4.10.2 Serial audio interface (SAI) timing parameters
The timings and figures in this section are valid for noninverted clock polarity (I2S_TCR2.BCP = 0b0, I2S_RCR2.BCP = 0b0) and non-inverted frame sync polarity (I2S_TCR4.FSP = 0b0, I2S_RCR4.FSP = 0b0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_TXC / SAI_RXC) and/or the frame sync (SAI_TXFS / SAI_RXFS) shown in the figures below.
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.
NOTE SAI0 and SAI1 are transmit/receive capable. SAI2 and SAI3 are receive only.

4.10.2.1 SAI Master Synchronous mode
In this mode, transmitter clock and frame sync are used by both transmitter and receiver (I2S_TCR2.SYNC=0b00, I2S_RCR2.SYNC=0b01). In that case, SAI interface requires only 4 signals to be routed: SAI_TXC, SAI_TXFS, SAI_TXD and SAI_RXD. SAI_RXC and SAI_RXFS can be left unconnected. I2S_RCR2.BCI shall be set to 0b1 to get setup and hold times provided in Table 63.

Figure 22. SAI Master Synchronous mode

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

65

Electrical characteristics

Table 63. SAI timings--Master Synchronous mode

ID

Parameters

-- SAI TXC clock frequency t1 SAI TXC pulse width low / high t2 SAI TXFS output valid t3 SAI TXD output valid t4 SAI RXD input setup t5 SAI RXD input hold

Min -- 45% -- -- 1 4

Max 49.152
55% 2 2 -- --

Unit MHz SAI_TXC period
ns ns ns ns

4.10.2.2 SAI Master mode
In this mode, transmitter and/or receiver part are set to bring out transmit and/or receive clock. Frame sync can be either input or output.

Figure 23. SAI Master mode

Table 64. SAI timings--Master mode

ID

Parameters

-- SAI TXC / RXC clock frequency1

t1 SAI TXC / RXC pulse width low / high

t2 SAI TXFS / RXFS output valid

Min -- 45% --

Max 49.152
55% 2

Unit MHz TXC/RXC period
ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

66

NXP Semiconductors

Electrical characteristics

Table 64. SAI timings--Master mode (continued)

ID

Parameters

Min

Max

Unit

t3 SAI TXD output valid

--

2

ns

t4 SAI RXD/RXFS/TXFS input setup

6

--

ns

t5 SAI RXD/RXFS/TXFS input hold

0

--

ns

1 Given the high setup time requirement on inputs, receiver and transmitter, when using frame sync in input, are likely to run at a lower frequency. This frequency will be driven by characteristics of the external component connected to the interface.

4.10.2.3 SAI Slave mode
In this mode, transmitter and/or receiver parts are set to receive transmit and/or receive clock from external world. Frame sync can be either input or output.

Figure 24. SAI Slave mode

Table 65. SAI timings--Slave mode

ID

Parameters

-- SAI TXC/RXC clock frequency t11 SAI TXC/RXC pulse width low/high t12 SAI TXFS/RXFS output valid t13 SAI TXD output valid t14 SAI RXD/RXFS/TXFS input setup t15 SAI RXD/RXFS/TXFS input hold

Min -- 45% -- -- 1 4

Max 24.576
55% 13 13 -- --

Unit MHz TXC/RXC period
ns ns ns ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

67

Electrical characteristics
4.10.3 Enhanced serial audio interface (ESAI)
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.

SCKT (Input / Output)
FST (bit) out FST (word) out
Data Out FST (bit) in FST (word) in Flags Out

t1

t1

2t

2t

2t

t3 t4

t5

t6

First bit
4t

t5

t6

t7
Figure 25. ESAI Transmit timing

2t
Last bit
t3

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

68

NXP Semiconductors

Electrical characteristics

Figure 26. ESAI Receive timing
The following table shows the interface timing values. The ID field in the table refers to timing signals found in Figure 25 and Figure 26.

Table 66. Enhanced Serial Audio Interface (ESAI) Timing

ID

Parameters

Min Max

Condition1

Unit

--

Clock frequency

-- 24.576

--

t1

SCKT / SCKT pulse width high / low

45% 55%

--

t2

FST output delay

--

10

x ck

2

i ck

t3

TX data - high impedance / valid data

--

9

x ck

1

i ck

t4

TX data output delay

--

10

x ck

2

i ck

t5

FST - setup requirement

--

2

x ck

10

i ck

t6

FST - hold requirement

--

2

x ck

0

i ck

t7

Flag output delay

10

x ck

2

i ck

MHz SCKT / SCKR period
ns ns ns ns ns ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

69

Electrical characteristics

Table 66. Enhanced Serial Audio Interface (ESAI) Timing (continued)

ID

Parameters

Min Max

Condition1

Unit

t8

FSR output delay

7

x ck

ns

4

i ck a

t9

RX data pins - setup requirement

2

--

x ck

ns

10

i ck

t10

RX data pins - hold requirement

2

--

x ck

ns

0

i ck

t11

FSR - setup requirement

2

--

x ck

ns

10

i ck a

t12

FSR - hold requirement

2

--

x ck

ns

0

i ck a

t13

Flags - setup requirement

2

--

x ck

ns

10

i ck s

t14

Flags - hold requirement

2

--

x ck

ns

0

i ck s

--

RX_HF_CLK / TX_HX_CLK clock cycle

20

--

--

ns

--

TX_HF_CLK input to SCKT

10

--

ns

--

RX_HF_CLK input to SCKR

10

--

ns

1 i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (SCKT and SCKR are two different clocks) i ck s = internal clock, synchronous mode (SCKT and SCKR are the same clock)

4.10.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC
Timing
This section describes the electrical information of the uSDHC, including: · SD3.1/eMMC5.1 High-Speed mode AC Timing · eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing · HS400 AC timing--eMMC 5.1 only · HS200 Mode Timing · SDR50/SDR104 AC Timing

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

70

NXP Semiconductors

Electrical characteristics
4.10.4.1 SD3.1/eMMC5.1 High-Speed mode AC Timing The following figure depicts the timing of SD3.1/eMMC5.1 High-Speed mode, and Table 67 lists the timing characteristics.
SD4
SD2 SD1
SD5

SDx_CLK

SD3 SD6

Output from uSDHC to card SDx_DATA[7:0]

SD7 SD8

Input from card to uSDHC SDx_DATA[7:0]
Figure 27. SD3.1/eMMC5.1 High-Speed mode Timing

Table 67. SD3.1/eMMC5.1 High-Speed mode interface timing specification

ID

Parameter

Symbols

Min

Max

Unit

Card Input Clock

SD1 Clock Frequency (Low Speed) Clock Frequency (SD/SDIO Full Speed/High Speed) Clock Frequency (MMC Full Speed/High Speed) Clock Frequency (Identification Mode)
SD2 Clock Low Time SD3 Clock High Time SD4 Clock Rise Time SD5 Clock Fall Time

fPP1

0

400

fPP2

0

25/50

fPP3

0

20/52

fOD

100

400

tWL

7

--

tWH

7

--

tTLH

--

3

tTHL

--

3

eSDHC Output/Card Inputs SD_CMD, SD_DATA (Reference to SD_CLK)

kHz MHz MHz kHz ns ns ns ns

SD6 eSDHC Output Delay

tOD

­6.6

3.6

ns

eSDHC Input/Card Outputs SD_CMD, SD_DATA (Reference to SD_CLK)

SD7 eSDHC Input Setup Time

tISU

2.5

--

ns

SD8 eSDHC Input Hold Time4

tIH

1.5

--

ns

1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2 In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0­25 MHz. In high-speed mode, clock frequency can be any value between 0­50 MHz.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

71

Electrical characteristics
3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0­20 MHz. In high-speed mode, clock frequency can be any value between 0­52 MHz.
4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
4.10.4.2 eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing The following figure depicts the timing of eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode, and Table 68 lists the timing characteristics. Be aware that only SDx_DATA is sampled on both edges of the clock (not applicable to SD_CMD).

SD1

SDx_CLK

SD2

SD2

Output from eSDHCv3 to card SDx_DATA[7:0]

......

SD3 SD4

Input from card to eSDHCv3

SDx_DATA[7:0]

......

Figure 28. eMMC 5.1 timing Figure 29. eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode interface timing

Table 68. eMMC5.1 DDR 52 mode/SD3.150 mode interface timing specification

ID

Parameter

Symbols

Min

Max

Card Input Clock1

SD1 Clock Frequency (eMMC5.1 DDR) SD1 Clock Frequency (SD3.1 DDR)

fPP

0

52

fPP

0

50

uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)

SD2 uSDHC Output Delay

tOD

2.8

6.8

uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)

SD3 uSDHC Input Setup Time SD4 uSDHC Input Hold Time 1 Clock duty cycle will be in the range of 47% to 53%.

tISU

1.7

--

tIH

1.5

--

Unit
MHz MHz
ns
ns ns

4.10.4.3 HS400 AC timing--eMMC 5.1 only
Figure 30 depicts the timing of HS400. Table 69 lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

72

NXP Semiconductors

Electrical characteristics
HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6 and SD7 parameters in Table 71 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode.

Figure 30. HS400 timing

Table 69. HS400 interface timing specifications

ID

Parameter

Symbols

Min

Max

Unit

Card Input clock

SD1

Clock Frequency

fPP

0

200

Mhz

SD2

Clock Low Time

SD3

Clock High Time

tCL

0.46 × tCLK

0.54 × tCLK

ns

tCH

0.46 × tCLK

0.54 × tCLK

ns

uSDHC Output/Card inputs DAT (Reference to SCK)

SD4

Output Skew from Data of

tOSkew1

0.45

--

ns

Edge of SCK

SD5

Output Skew from Edge of

tOSkew2

0.45

--

ns

SCK to Data

uSDHC input/Card Outputs DAT (Reference to Strobe)

SD6

uSDHC input skew

SD7

uSDHC hold skew

tRQ

--

0.45

ns

tRQH

--

0.45

ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

73

Electrical characteristics
4.10.4.4 HS200 Mode Timing The following figure depicts the timing of HS200 mode, and Table 70 lists the HS200 timing characteristics.

SCK

SD1

SD2

SD3

SD4/SD5

8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC

SD6

SD7

SD8

Figure 31. HS200 Mode Timing

Table 70. HS200 Interface Timing Specification

ID

Parameter

Symbols

Min

Max

Card Input Clock

SD1 Clock Frequency Period SD2 Clock Low Time SD2 Clock High Time

tCLK tCL tCH

5.0 0.46 × tCLK 0.46 × tCLK

-- 0.54 × tCLK 0.54 × tCLK

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)

SD5 uSDHC Output Delay

tOD

­1.6

1

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1

SD8 Card Output Data Window 1HS200 is for 8 bits while SDR104 is for 4 bits.

tODW

0.5*tCLK

--

Unit
ns ns ns
ns
ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

74

NXP Semiconductors

Electrical characteristics
4.10.4.5 SDR50/SDR104 AC Timing The following figure depicts the timing of SDR50/SDR104, and Table 71 lists the SDR50/SDR104 timing characteristics.

SCK Output from uSDHC to card

SD1

SD2

SD3

SD5 SD4

SD6

SD7

Input from card to uSDHC

SD8
Figure 32. SDR50/SDR104 timing

Table 71. SDR50/SDR104 Interface Timing Specification

ID

Parameter

Symbols

Min

Max

Unit

Card Input Clock

SD1 SD2 SD3

Clock Frequency Period Clock Low Time Clock High Time

tCLK

4.8

--

ns

tCL

0.46 × tCLK 0.54 × tCLK

ns

tCH

0.46 × tCLK 0.54 × tCLK

ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)

SD4 uSDHC Output Delay

tOD

­3

1

ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)

SD5 uSDHC Output Delay

tOD

­1.6

1

ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)

SD6 uSDHC Input Setup Time

tISU

2.5

--

ns

SD7 uSDHC Input Hold Time

tIH

1.5

--

ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)1

SD8 Card Output Data Window

tODW

0.5 × tCLK

--

ns

1Data window in SDR100 mode is variable.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

75

Electrical characteristics
4.10.4.6 Bus Operation Condition for 3.3 V and 1.8 V Signaling
The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to those shown in "," and Table 31, "Dual-voltage 1.8 V GPIO DC parameters," on page 37Table 32, "Dual-voltage 3.3 V GPIO DC parameters," on page 38.
4.10.5 Ethernet Controller (ENET) AC Electrical Specifications
ENET interface supporting RGMII protocol in delay and non-delay mode. RGMII is used to support up to 1000 Mbps Ethernet as well as RMII protocol. RMII is used to support up to 100 Mbps Ethernet.
NOTE Both ENET0 and ENET1 support RGMII at 1.8 V and 2.5 V, and RMII at 3.3 V.

Table 72. RGMII/RMII pin mapping

Pin name1

RGMII

RMII

Comment2

ENETx_RGMII_TXC

RGMII_TXC

RCLK50M

RCLK50M can be an input or an output. It's using different Alternate pin muxing modes. Refer to pin muxing for details.

ENETx_RGMII_TX_CTL

RGMII_TX_CTL

RMII_TXEN

--

ENETx_RGMII_TXD0

RGMII_TXD0

RMII_TXD0

--

ENETx_RGMII_TXD1

RGMII_TXD1

RMII_TXD1

--

ENETx_RGMII_TXD2

RGMII_TXD2

N/A

--

ENETx_RGMII_TXD3

RGMII_TXD3

N/A

--

ENETx_RGMII_RXC

RGMII_RXC

N/A

--

ENETx_RGMII_RX_CTL

RGMII_RX_CTL

RMII_CRS_DV

--

ENETx_RGMII_RXD0

RGMII_RXD0

RMII_RXD0

--

ENETx_RGMII_RXD1

RGMII_RXD1

RMII_RXD1

--

ENETx_RGMII_RXD2

RGMII_RXD2

RMII_RXER

RMII_RXER is mapped on ALT1 mode of pin muxing.

ENETx_RGMII_RXD3

RGMII_RXD3

N/A

--

ENETx_REFCLK_125M_25M RGMII_REF_CLK

N/A

RGMII_REF_CLK is optional for RGMII operation and dependent on the intended clock configuration.

ENETx_MDIO

RGMII_MDIO

RMII_MDIO

--

ENETx_MDC

RGMII_MDC

RMII_MDC

--

1 x can be 0 or 1. 2 Except for RCLK50M and RMII_RXER, all other RMII functions are using the same pin muxing mode as RGMII.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

76

NXP Semiconductors

4.10.5.1 RGMII
4.10.5.1.1 No-Internal-Delay mode This mode corresponds to the RGMIIv1.3 specification.

Electrical characteristics

Figure 33. RGMII timing diagram--No-Internal-Delay mode

Table 73. RGMII timings--No-Internal-Delay mode

ID

Parameter

Min

Typ

Max

Unit

TXC / RXC frequency

--

125

--

MHz

t1 Clock cycle

7.2

8

8.8

ns

t2 Data to clock output skew

-500

--

500

ps

t3 Data to clock input skew1(1)

1

--

2.6

ns

1 This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns is added to the associated clock signal.

4.10.5.1.2 Internal-delay mode This mode corresponds to RGMIIv2.0 specification.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

77

Electrical characteristics

Figure 34. RGMII timing diagram--Internal-Delay mode

Table 74. RGMII timing--Internal-Delay mode

ID

Parameter

TXC / RXC frequency t1 Clock cycle t2 TXD setup time t3 TXD hold time t4 RXD setup time t5 RXD hold time

Min

Typ

Max

--

125

--

7.2

8

8.8

1.2

--

--

1.2

--

--

0

--

--

2.5

--

--

Unit MHz ns ns ns ns ns

4.10.5.2 RMII
RMII interface is matching RMII v1.2 specification. In RMII mode, the reference clock can be generated internally and provided to the PHY through RCLK50M_OUT. Or, it come from and external 50MHz clock generator which is connected to the PHY and to i.MX8 through RCLK50M_IN pin.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

78

NXP Semiconductors

Electrical characteristics

Figure 35. RMII timing diagram
Timings in table below are covering both cases: reference clock generated internally or externally.

Table 75. RMII timing

ID

Parameter

t1 Reference clock Reference clock accuracy Reference clock duty-cycle
t2 RMII_TXEN, RMII_TXD output delay t3 RMII_CRS_DV, RMII_RXD setup time t4 RMII_CRS_DV, RMII_RXD hold time

Min

Typ

Max

Unit

--

50

--

MHz

--

--

50

ppm

35

--

65

%

2

--

12

ns

4

--

--

ns

2

--

--

ns

4.10.5.3 MDIO MDIO is the control link used to configure Ethernet PHY connected to i.MX8 device.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

79

Electrical characteristics

Figure 36. MDIO timing diagram

Table 76. MDIO timing

ID

Parameter

MDC frequency

t1 MDC high / low pulse width

t2 MDIO output delay

t3 MDIO setup time

t4 MDIO hold time

Min

Typ

Max

Unit

--

2.5

--

MHz

180

--

--

%

0

--

20

ns

10

--

--

ns

10

--

--

ns

4.10.6 CAN network AC Electrical Specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol specification. The processor has three CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

80

NXP Semiconductors

Electrical characteristics
4.10.7 I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. The following figure depicts the timing of the I2C module, and Table 77 lists the I2C module timing characteristics.

I2Cx_SDA

IC10

IC11

IC9

IC2 I2Cx_SCL
START

IC8

IC4

IC7

IC10b IC6

IC5 IC1

IC11b

START

Figure 37. I2C bus timing

IC3 STOP

START

Table 77. I2C Module Timing Parameters

Standard Mode

Fast Mode

ID

Parameter

Unit

Min

Max

Min

Max

IC1 I2Cx_SCL cycle time

10

--

2.5

-- µs

IC2 Hold time (repeated) START condition

4.0

--

0.6

-- µs

IC3 Set-up time for STOP condition

4.0

--

0.6

-- µs

IC4 Data hold time

01

3.452

01

0.92 µs

IC5 HIGH Period of I2Cx_SCL Clock

4.0

--

0.6

-- µs

IC6 LOW Period of the I2Cx_SCL Clock

4.7

--

1.3

-- µs

IC7 Set-up time for a repeated START condition

4.7

--

0.6

-- µs

IC8 Data set-up time

250

--

1003

-- ns

IC9 Bus free time between a STOP and START condition

4.7

--

1.3

-- µs

IC10/IC10b Rise time of both I2Cx_SDA and I2Cx_SCL signals IC11/IC11b Fall time of both I2Cx_SDA and I2Cx_SCL signals

--

1000

20 + 0.1Cb4 300 ns

--

300

20 + 0.1Cb4 300 ns

IC12 Capacitive load for each bus line (Cb)

--

400

--

400 pF

1 A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal in order to bridge the undefined region of the falling edge of I2Cx_SCL.
2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal. 3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx_SCL line is released. 4 Cb = total capacitance of one bus line in pF.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

81

Electrical characteristics

Table 78. I2C timing

Fast Mode Plus

ID

Parameter

Min

Max

IC1 SCL clock frequency

--

1

IC2 Hold time (repeated) START condition

260

--

IC3 Set-up time for STOP condition

260

--

IC4 Data hold time

0

--

IC5 HIGH Period of I2Cx_SCL Clock

260

--

IC6 LOW Period of the I2Cx_SCL Clock

500

--

IC7 Set-up time for a repeated START condition

260

--

IC8 Data set-up time

50

--

IC9 Bus free time between a STOP and START condition

500

--

IC10 Rise time of I2Cx_SDA signals

--

120

IC11 Fall time of I2Cx_SDA signals

12 (@3.3 V)

120

6.5 (@1.8 V)

IC10b Rise time of I2Cx_SCL signals

--

120

IC11b Fall time of I2Cx_SCL signals

12 (@3.3 V)

120

6.5 (@1.8 V)

IC12 Capacitive load for each bus line (Cb)

--

550

1 High-speed mode is only available for I2C modules in DMA, SCU and Cortex-M4 subsystems.

High Speed1 Unit
Min Max -- 3.4 MHz 160 -- ns 160 -- ns 0 70 ns 60 -- ns 160 -- ns 160 -- ns 10 -- ns 150 -- ns
10 80 ns 10 80 ns
10 40 ns 10 40 ns
-- 100 pF

4.10.8 MIPI-DSI/LVDS combo display output specifications
The physical pins of the combo display output controller can be used in LVDS mode or in DSI display mode.
4.10.8.1 MIPI-DSI/LVDS display bridge module parameters Maximum frequency support for combination MIPI-DSI/LVDS modules:

Function1,2 DSI Mix Mix

Table 79. MIPI-DSI/LVDS combo pins

Channel A DSI up to 1.05 Gb/per lane 4 pairs LVDS up to 1.05 Gb per pair DSI up to 1.05 Gb/per lane

Channel B DSI up to 1.05 Gb/per lane DSI up to 1.05 Gb/per lane 4 pairs LVDS up to 1.05 Gb per pair

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

82

NXP Semiconductors

Electrical characteristics

Table 79. MIPI-DSI/LVDS combo pins (continued)

Function1,2

Channel A

Channel B

LVDS (single channel)

4 pairs LVDS up to 1.05 Gb per pair

4 pairs LVDS up to 1.05 Gb per pair

LVDS (dual channel)

8 pairs LVDS up to 595 Mb per pair

1 For DSI the maximum clock speed is 1.05 GHz. 2 For LVDS in single-channel operation the maximum clock speed is 150 MHz; in dual-channel operation with a single
synchronized clock the maximum clock speed is 85 MHz.

4.10.8.2 LVDS display bridge (LDB) module electrical specifications
The MIPI DSI/LVDS interface is compatible with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits."

Table 80. LVDS Display Bridge (LDB) Electrical Specifications

Parameter Differential Voltage Output Voltage Output Voltage High Output Voltage Low Offset Static Voltage
VOS Differential Output short-circuited to GND Output short current

Symbol VOD Voh Vol VOS
VOSDIFF ISA ISB
ISAB

Test Condition

Min

100  Differential load
100  differential load (0 V Diff--Output High Voltage static)
100  differential load (0 V Diff--Output Low Voltage static)
Two 49.9  resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.
Difference in VOS between a One and a Zero state
With the output common shorted to GND

0.25 -- 0.925 1.125
-- -- --

Max 0.4 1.475

Units V V

--

V

1.275 V

--

mV

40

mA

12

mA

4.10.8.3 MIPI-DSI HS-TX specifications

Symbol
VCMTX1 |VCMTX|(1,0) |VOD|1

Table 81. MIPI high-speed transmitter DC specifications

Parameter High Speed Transmit Static Common Mode Voltage VCMTX mismatch when Output is Differential-1 or Differential-0 High Speed Transmit Differential Voltage

Min Typ Max Unit 150 200 250 mV -- -- 5 mV 140 200 270 mV

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

83

Electrical characteristics

Table 81. MIPI high-speed transmitter DC specifications (continued)

Symbol

Parameter

|VOD| VOHHS1

VOD mismatch when Output is Differential-1 or Differential-0 High Speed Output High Voltage

ZOS

Single Ended Output Impedance

ZOS

Single Ended Output Impedance Mismatch

1 Value when driving into load impedance anywhere in the ZID range.

Min Typ Max Unit -- -- 10 mV -- -- 360 mV 40 50 62.5  -- -- 10 %

Table 82. MIPI high-speed transmitter AC specifications

Symbol

Parameter

VCMTX(HF)

Common-level variations above 450 MHz

VCMTX(LF)

Common-level variation between 50-450 MHz

tR and tF1

Rise Time and Fall Time (20% to 80%)

1 UI is the long-term average unit interval.

Min Typ ---- ---- 100 --

Max 15 25 0.35 UI

Unit mVRMS mVPEAK
ps

4.10.8.4 MIPI-DSI LP-TX specifications

Table 83. MIPI low-power transmitter DC specifications

Symbol

Parameter

Min Typ Max Unit

VOH1

Thevenin Output High Level

1.1

1.2

1.3

V

VOL

Thevenin Output Low Level

­50

--

50

mV

ZOLP2

Output Impedance of Low Power Transmitter

110

--

--



1 This specification can only be met when limiting the core supply variation from 1.1 V till 1.3 V. 2 Although there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification
is met.

Table 84. MIPI low-power transmitter AC specifications

Symbol

Parameter

Min Typ Max Unit

TRLP/TFLP1 15% to 85% Rise Time and Fall Time

-- -- 25 ns

TREOT1,2,3

30% to 85% Rise Time and Fall Time

-- -- 35 ns

TLP-PULSE-TX4 Pulse width of the LP exclusive-OR clock: First LP exclusive-OR clock pulse after Stop 40 -- -- ns state or last pulse before Stop state

Pulse width of the LP exclusive-OR clock: All other pulses

20 -- -- ns

TLP-PER-TX Period of the LP exclusive-OR clock

90 -- -- ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

84

NXP Semiconductors

Electrical characteristics

Table 84. MIPI low-power transmitter AC specifications (continued)

Symbol

Parameter

Min Typ Max Unit

V/tSR1,5,6,7

Slew Rate @ CLOAD= 0 pF Slew Rate @ CLOAD= 5 pF

30 -- 500 mV/ns 30 -- 200 mV/ns

Slew Rate @ CLOAD= 20 pF

30 -- 150 mV/ns

Slew Rate @ CLOAD= 70 pF

30 -- 100 mV/ns

CLOAD

Load Capacitance

0 -- 70 pF

1 CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be < 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.
2 The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due to stopping the differential drive.
3 With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane. 4 This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches
between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section. 5 When the output voltage is between 15% and below 85% of the fully settled LP signal levels. 6 Measured as average across any 50 mV segment of the output signal transition. 7 This value represents a corner point in a piecewise linear curve.

4.10.8.5 MIPI-DSI LP-RX specifications

Table 85. MIPI low power receiver DC specifications

Symbol
VIH VIL VIL-ULPS VHYST

Parameter Logic 1 input voltage Logic 0 input voltage, not in ULP state Logic 0 input voltage, ULP state Input hysteresis

Min Typ Max Unit

880

--

1.3

mV

--

--

550

mV

--

--

300

mV

25

--

--

mV

Table 86. MIPI low power receiver AC specifications

Symbol

Parameter

Min Typ Max Unit

eSPIKE1,2 TMIN-RX3

Input pulse rejection Minimum pulse width response

--

--

20

--

VINT

Peak Interference amplitude

--

--

fINT

Interference frequency

450

--

1 Time-voltage integration of a spike above VIL when in LP-0 state or below VIH when in LP-1 state. 2 An impulse below this value will not change the receiver state. 3 An input pulse greater than this value shall toggle the output.

300

V.ps

--

ns

200

mV

--

MHz

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

85

Electrical characteristics
4.10.8.6 MIPI-DSI LP-CD specifications

Table 87. MIPI contention detector DC specifications

Symbol VIHCD VILCD

Parameter Logic 1 contention threshold Logic 0 contention threshold

Min Typ Max Unit

450

--

--

mV

--

--

200

mV

4.10.8.7 MIPI-DSI DC specifications

Table 88. MIPI input characteristics DC specifications

Symbol

Parameter

Min Typ Max Unit

VPIN ILEAK1

Pad signal voltage range Pin leakage current

­50

--

1350

mV

­10

--

10

A

VGNDSH

Ground shift

­50

--

50

mV

VPIN(absmax)2 Maximum pin voltage level

­0.15 --

1.45

V

TVPIN(absmax)3 Maximum transient time above VPIN(max) or below VPIN(min)

--

--

20

ns

1 When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is in LP receive mode.
2 This value includes ground shift. 3 The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1
transition or vice versa. For all other situations it must stay within the VPIN range.

4.10.9 PCIe 3.0 PHY Parameters
The TX and RX eye diagrams specifications are per the template shown in the following figure. The summary of specifications is shown in Table 89 and Table 90. Note that the time closure (1­A OPENING) in the eye templates needs not match jitter specifications in the Standards Specifications, as there are such discrepancies in some Standards Specifications. The design meets the tightest of specifications in case of discrepancy.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

86

NXP Semiconductors

Electrical characteristics

Figure 38. TX and RX eye diagram template

Table 89. PCIe transmitter eye specifications for example standards

UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax

ps

UI

ps

mV

PCI Express Gen 1 Transition Bit

400 0.75

0

300

0

800

12001

PCI ExpressGen 1 De-emphasized Bit 400 0.75

0

300

0

PCI Express Gen 2 Transition Bit

200 0.75

0

150

0

PCI Express Gen 2 De-emphasized Bit 200 0.75

0

150

0

1 VDIFFp-p eye opening is limited to VDDIO under matched termination conditions.

505

757

800

12001

379

850

Table 90. PCIe receiver eye specifications for example standards

UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax

ps

UI

ps

mV

PCI Express Gen 1 Transition Bit

400 0.4

0

160

0

175

PCI Express Gen 2 Transition Bit

200

0

0

0

0

100

PCI Express Gen 3 Virtual EYE1

125 0.3

0

38

0

25

1 PCIE 3.0 8 GT/s measured using PCIE reference equalizer + CDR per PCIE specification.

1200 1200 1300

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

87

Electrical characteristics

Table 91. PCIe differential output driver characteristics (including board and load)

Parameter

Min

Typ

Max

Units Notes

Output Rise and fall time TR, TF Output Rise/Fall matching

175

--

350

ps

1

--

--

20

%

1, 2

Output skewTOSKEW Initialization time from assertion of TXOE

--

--

50

ps

--

100

--

--

ns

--

Initialization time from assertion of TXENA

--

10

--

s

--

Transmission line characteristic impedance (ZO)

--

Driver output impedance, single ended (small signal @

--

Vout=Vcm)

50 1000

--



--

--



--

Output single ended voltage (RS= 33, RT= 50 ) VOH IOH@ 6 * IR VOL

0.65 -13 -0.20

0.71 -14.2 0.00

0.85 -17 0.05

V

3, 4

mA

V

3

Output common mode voltage (RS = 33, RT= 50 ) |VOCM| VOCM (DC) VOCM (AC)
Buffer induced deterministic jitter (absolute, pk-pk)

0.25 -0.015 -0.050
--

0.375 --

0.55 0.015 0.050
4

V

5

6

ps

7,8

Reference Buffer Dynamic Power (Digital)

--

0.015

0.66

A

9

Reference Buffer Dynamic Power (Analog)

--

2.8

3.14

mA

9

Output Buffer Dynamic Power (Digital)

--

0.035

1.8

A

9

Output Buffer Dynamic Power (Analog)

--

18.9

22.11

mA

9

1 When the output is transitioning between logic 0 and logic 1, or logic 1 and logic 0, and driving a terminated transmission line, the outputs monotonically transition between VOL and VOH, VOH, and VOL respectively. Target rise and fall times observed at the receiver and are primarily set by board trace impedance and Load capacitance. Rise and fall times are defined by 25% and 75% crossing points.
2 Calculated as: 2 × (TR­TF) / (TR+ TF) 3 IR is proportional to the reference current. Measured across RT. The primary contributor to output voltage spread is
VDD spread, and so a VDD tighter than ±10% may be required to achieve this spread. 4 Higher output voltages may occur depending on load, power supply, and selected output drive. Higher output voltages may
transiently occur during initialization period following TXENA assertion. 5 Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under DC conditions. 6 Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under AC conditions. 7 Measured under "clean power supply and ground" conditions, and after de-embedding the jitter of the input, measured over a
time span of 1000 cycles 8 Power supply induced jitter is included under this category, and the power supply variation is to be less than 8mVpp.
Note that customer has to be uncommonly careful with power supply fidelity due to the small jitter numbers. 9 Power consumption is simulated under the following conditions:
Typ: TT, VDD=1.0 V, VD18=1.8 V, 25 °C Max: FF, VDD=1.1 V, VD18=1.98 V, 125 °C Dynamic: TXENA=1, TXOE=1 Static: TXENA=0, TXOE=1

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

88

NXP Semiconductors

4.10.9.1 PCIE_REXT reference resistor connection The following figure shows the PCIE_REXT reference resistor connection.

Electrical characteristics

Figure 39. PCIE_REXT reference resistor connection
4.10.9.2 PCIE_REF_CLK Contact an NXP representative to obtain the hardware development guide for this device, which contains details on the PCIe reference clock requirements.
4.10.10 Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. The following figure depicts the timing of the PWM, and Table 92 lists the PWM timing parameters.

PWMn_OUT

Figure 40. PWM Timing

Table 92. PWM Output Timing Parameters

ID

Parameter

-- PWM Module Clock Frequency P1 PWM output pulse width high P2 PWM output pulse width low

Min

Max

0

ipg_clk

15

--

15

--

Unit MHz ns ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

89

Electrical characteristics
4.10.11 LCD controller (LCDIF) parameters
Figure 41 shows the LCDIF timing, and the table below lists the timing parameters.

LCDn_CLK (falling edge capture)
LCDn_CLK (rising edge capture)
LCDn_DATA[23:00] LCDn Control Signals

L1

L2

L3

L4 L5 L6 L7
Figure 41. LCD Timing

Table 93. LCD Timing Parameters

ID

Parameter

Symbol

Min

L1 LCD pixel clock frequency

tCLK(LCD)

--

L2 LCD pixel clock high (falling edge capture)

tCLKH(LCD)

6

L3 LCD pixel clock low (rising edge capture)

tCLKL(LCD)

6

L4 LCD pixel clock high to data valid (falling edge capture)

td(CLKH-DV)

-1

L5 LCD pixel clock low to data valid (rising edge capture)

td(CLKL-DV)

-1

L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1

L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1

Max Unit

80 MHz

--

ns

--

ns

1

ns

1

ns

1

ns

1

ns

4.10.11.1 LCDIF signal mapping The table below lists the details about the mapping signals.

Table 94. LCD Signal Parameters

Pin name

8-bit DOTCLK LCD 16-bit DOTCLK LCD 18-bit DOTCLK LCD 24-bit DOTCLK LCD 8-bit DVI LCD

IF

IF

IF

IF

IF

LCD_RS
LCD_VSYNC* (Two options)
LCD_HSYNC

-- LCD_VSYNC
LCD_HSYNC

-- LCD_VSYNC
LCD_HSYNC

-- LCD_VSYNC
LCD_HSYNC

-- LCD_VSYNC
LCD_HSYNC

CCIR_CLK --
--

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

90

NXP Semiconductors

LCD_DOTCLK LCD_ENABLE
LCD_D23 LCD_D22 LCD_D21 LCD_D20 LCD_D19 LCD_D18 LCD_D17 LCD_D16 LCD_D15 / VSYNC* LCD_D14 / HSYNC** LCD_D13 / LCD_DOTCLK
** LCD_D12 / ENABLE** LCD_D11 LCD_D10
LCD_D9 LCD_D8 LCD_D8 LCD_D7 LCD_D6 LCD_D5 LCD_D4 LCD_D3 LCD_D2 LCD_D1 LCD_D0 LCD_RESET LCD_BUSY / LCD_VSYNC

Electrical characteristics

Table 94. LCD Signal Parameters (continued)

LCD_DOTCLK

LCD_DOTCLK

LCD_DOTCLK

LCD_DOTCLK

--

LCD_ENABLE

LCD_ENABLE

LCD_ENABLE

LCD_ENABLE

--

--

--

--

R[7]

--

--

--

--

R[6]

--

--

--

--

R[5]

--

--

--

--

R[4]

--

--

--

--

R[3]

--

--

--

--

R[2]

--

--

--

R[5]

R[1]

--

--

--

R[4]

R[0]

--

--

R[4]

R[3]

G[7]

--

--

R[3]

R[2]

G[6]

--

--

R21]

R[1]

G[5]

--

--

R[1]

R[0]

-- -- -- -- -- R[2] R[1] R[0] G[2] G[1] G[0] B[1] B[0] LCD_RESET LCD_BUSY (or optional LCD_VSYNC)

R[0] G[5] G[4] G[3] G[3] G[2] G[1] G[0] B[4] B[3] B[2] B[1] B[0] LCD_RESET LCD_BUSY (or optional LCD_VSYNC)

G[5] G[4] G[3] G[2] G[2] G[1] G[0] B[5] B[4] B[3] B[2] B[1] B[0] LCD_RESET LCD_BUSY (or optional LCD_VSYNC)

G[4]
G[3] G[2] G[1] G[0] G[0] B[7] B[6] B[5] B[4] B[3] B[2] B[1] B[0] LCD_RESET LCD_BUSY (or optional LCD_VSYNC)

--
-- -- -- -- -- Y/C[7] Y/C[6] Y/C[5] Y/C[4] Y/C[3] Y/C[2] Y/C[1] Y/C[0] -- --

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

91

Electrical characteristics
4.10.12 FlexSPI (Quad SPI/Octal SPI) timing parameters
The FlexSPI interface can work in SDR or DDR modes. It can operate up to 60 MHz at 3.3 V, 166 MHz at 1.8 V SDR mode or 200 MHz at 1.8 V DDR mode. It supports single-ended and differential DQS signaling.
FlexSPI supports the following clocking scheme for a read data path:
· Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0)
· Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1). It means the I/O cannot be used for another feature.
· Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3)
4.10.12.1 SDR mode
4.10.12.1.1 SDR mode timing diagrams The following write timing diagram is valid for any FlexSPIn_MCR0[RXCLKSRC] value.

Figure 42. FlexSPI write timing diagram (SDR mode)
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x0 or 0x1.

Figure 43. FlexSPI read timing diagram (SDR mode)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

92

NXP Semiconductors

Electrical characteristics
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x3.

Figure 44. FlexSPI read with DQS timing diagram (SDR mode)
4.10.12.1.2 SDR mode timing parameter tables

Table 95. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (SDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output Delay t6 QSPIx[A/B]_DATAy Setup Time t7 QSPIx[A/B]_DATAy Hold Time 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

60

7.5

--

1

--

TCSS+0.5

--

TCSH

--

--

1

6

--

0

--

Unit MHz ns SCLK SCLK SCLK
ns ns ns

Table 96. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (SDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output Delay t6 QSPIx[A/B]_DATAy Setup Time t7 QSPIx[A/B]_DATAy Hold Time

Min

Max

--

166

2.7

--

1

--

TCSS+0.5

--

TCSH

--

--

1

1

--

2

--

Unit MHz ns SCLK SCLK SCLK
ns ns ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

93

Electrical characteristics 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Table 97. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (SDR mode)

ID

Parameter

-- QSPIx[A/B]_DQS Cycle frequency
t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width1 t3 QSPIx[A/B]_SSy_B Lead Time2 t4 QSPIx[A/B]_SSy_B Lag Time2
t5 QSPIx[A/B]_DATAy output Delay
t8 QSPIx[A/B]_DQS / QSPIx[A/B]_DATAy delta 1 Minimum is 2 SCLK cycles even if CSINTERVAL value is less than 2. 2 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

200

2.25

--

CSINTERVAL

--

TCSS+0.5

--

TCSH

--

--

1

-0.65

0.65

4.10.12.2 DDR mode 4.10.12.2.1 DDR mode timing diagrams

Unit MHz
ns SCLK SCLK SCLK
ns ns

Figure 45. FlexSPI write timing diagram (DDR mode)

Figure 46. FlexSPI read timing diagram (DDR mode)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

94

NXP Semiconductors

Electrical characteristics

QSPIx[A/B]_DQS

QSPIx[A/B]_DATAy

t9

t10

Figure 47. FlexSPI read with DQS timing diagram (DDR mode)

Table 98. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (DDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output valid time t6 QSPIx[A/B]_DATAy output hold time t7 QSPIx[A/B]_DATAy Setup Time t8 QSPIx[A/B]_DATAy Hold Time 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

30

15

--

1

--

(TCSS+0.5)/2

--

TCSH/2

--

6.5

--

6.5

--

6

--

0

--

Unit MHz ns SCLK SCLK SCLK ns ns ns
ns

Table 99. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (DDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output valid time t6 QSPIx[A/B]_DATAy output hold time t7 QSPIx[A/B]_DATAy Setup Time t8 QSPIx[A/B]_DATAy Hold Time 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

83

5.4

--

1

--

(TCSS+0.5)/2

--

TCSH/2

--

2

--

2

--

1

--

1

--

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020 NXP Semiconductors

Unit MHz ns SCLK SCLK SCLK ns
ns ns ns
95

Electrical characteristics

Table 100. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output valid time t6 QSPIx[A/B]_DATAy output hold time t9 QSPIx[A/B]_DATAy Setup Skew t10 QSPIx[A/B]_DATAy Hold Skew 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min -- 2.25 1 (TCSS+0.5)/2 TCSH/2 0.65 0.65 -- --

Max 200 -- -- -- -- -- -- 0.65 0.65

Unit MHz
ns SCLK SCLK SCLK
ns ns ns ns

4.10.13 Secure JTAG controller (SJC)
4.10.13.1 Internal pull-up/pull-down configuration The following table describes the default configuration of internal pull-ups and pull-downs of the JTAG interface. External pull-ups and pull-downs are needed when this interface is routed to a connector.

Table 101. JTAG default configuration for internal pull-up/pull-down

Ball name

Internal pull setting1 Typical pull value

Unit

JTAG_TMS JTAG_TCK JTAG_TDI TEST_MODE_SELECT 1 PU = pull-up; PD = pull-down

PU

50

K

PD

PU

PD

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

96

NXP Semiconductors

Electrical characteristics
4.10.13.2 JTAG timing parameters Figure 48 depicts the SJC test clock input timing. Figure 49 depicts the SJC boundary scan timing. Figure 50 depicts the SJC test access port. Signal parameters are listed in Table 102.

JTAG_TCK (Input)

VIH SJ3

SJ2
VM VIL

SJ1 SJ2 VM
SJ3

Figure 48. Test Clock Input Timing Diagram

JTAG_TCK (Input) Data Inputs Data Outputs Data Outputs Data Outputs

VIL SJ6 SJ7

VIH

SJ4

SJ5

Input Data Valid

Output Data Valid

SJ6 Output Data Valid
Figure 49. Boundary system (JTAG) timing diagram

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

97

Electrical characteristics

JTAG_TCK (Input) VIL
JTAG_TDI JTAG_TMS
(Input)
JTAG_TDO (Output)
JTAG_TDO (Output)
JTAG_TDO (Output)

SJ10 SJ11 SJ10

VIH

SJ8

SJ9

Input Data Valid

Output Data Valid

Output Data Valid

Figure 50. Test Access Port Timing Diagram

Table 102. JTAG Timing

ID

Parameter1,2

SJ0

JTAG_TCK frequency of operation 1/(3xTDC)1

SJ1

JTAG_TCK cycle time in crystal mode

SJ2

JTAG_TCK clock pulse width measured at VM2

SJ3

JTAG_TCK rise and fall times

SJ4

Boundary scan input data set-up time

SJ5

Boundary scan input data hold time

SJ6

JTAG_TCK low to output data valid

SJ7

JTAG_TCK low to output high impedance

SJ8

JTAG_TMS, JTAG_TDI data set-up time

SJ9

JTAG_TMS, JTAG_TDI data hold time

SJ10

JTAG_TCK low to JTAG_TDO data valid

SJ11

JTAG_TCK low to JTAG_TDO high impedance

1 TDC = target frequency of SJC 2 VM = mid-point voltage

All Frequencies

Min

Max

0.001

22

45

--

22.5

--

--

3

5

--

24

--

--

40

--

40

5

--

25

--

--

44

--

44

Unit
MHz ns ns ns ns ns ns ns ns ns ns ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

98

NXP Semiconductors

Electrical characteristics

4.10.14 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 103, Figure 51, and Figure 52 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
Table 103. SPDIF Timing Parameters

Parameter
SPDIF_IN Skew: asynchronous inputs, no specs apply
SPDIF_OUT output (Load = 50pf) · Skew · Transition rising · Transition falling
SPDIF_OUT output (Load = 30pf) · Skew · Transition rising · Transition falling
Modulating Rx clock (SPDIF_SR_CLK) period
SPDIF_SR_CLK high period
SPDIF_SR_CLK low period
Modulating Tx clock (SPDIF_ST_CLK) period
SPDIF_ST_CLK high period
SPDIF_ST_CLK low period

Timing Parameter Range

Symbol

Unit

Min

Max

--

--

0.7

ns

--

--

--

--

--

--

1.5

ns

24.2

31.3

-- -- --
srckp
srckph
srckpl
stclkp
stclkph
stclkpl

-- -- --
40.0
16.0
16.0
40.0
16.0
16.0

1.5

ns

13.6

18.0

--

ns

--

ns

--

ns

--

ns

--

ns

--

ns

SPDIF_SR_CLK (Output)

srckpl VM

srckp

srckph VM

Figure 51. SPDIF_SR_CLK Timing Diagram

SPDIF_ST_CLK (Input)

stclkpl VM

stclkp

stclkph VM

Figure 52. SPDIF_ST_CLK Timing Diagram

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

99

Electrical characteristics
4.10.15 UART I/O configuration and timing parameters

4.10.15.0.1 UART Transmitter The following figure depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 104 lists the UART RS-232 serial mode transmit timing characteristics.

UARTx_TX_DATA (output)

UA1
Start Bit

Bit 0

UA1 Bit 1 Bit 2 Bit 3 Bit 4

Bit 5

Bit 6

Bit 7

POSSIBLE PARITY BIT
Par Bit STOP
BIT

UA1 UA1
Figure 53. UART RS-232 Serial Mode Transmit Timing Diagram

NEXT START
BIT

Table 104. UART RS-232 Serial Mode Transmit Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA1 Transmit Bit Time

tTbit

1/Fbaud_rate1 ­ Tref_clk2 1/Fbaud_rate + Tref_clk

--

1 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] × (OSR+1)).
2 Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).

4.10.15.0.2 UART Receiver The following figure depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 105 lists serial mode receive timing characteristics.

UARTx_RX_DATA (input)

UA2

UA2

POSSIBLE PARITY BIT

Start Bit

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4

Bit 5

Bit 6

Bit 7 Par Bit STOP
BIT

UA2 UA2

Figure 54. UART RS-232 Serial Mode Receive Timing Diagram

NEXT START
BIT

Table 105. RS-232 Serial Mode Receive Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA2

Receive Bit Time1

tRbit

1/Fbaud_rate2 ­ 1/(16 × Fbaud_rate)

1/Fbaud_rate +

--

1/(16 × Fbaud_rate)

1 The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit, but accumulation tolerance in one frame must not exceed 3/((OSR+1) × Fbaud_rate).
2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] × (OSR+1)).

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

100

NXP Semiconductors

Electrical characteristics
4.10.15.0.3 UART IrDA Mode Timing The following subsections give the UART transmit and receive timings in IrDA mode.

UART IrDA Mode Transmitter The following figure depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 106 lists the transmit timing characteristics.

UA3

UA3

UA4

UA3

UA3

UARTx_TX_DATA (output)
Start Bit

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Figure 55. UART IrDA Mode Transmit Timing Diagram

POSSIBLE PARITY BIT

STOP BIT

Table 106. IrDA Mode Transmit Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA3 Transmit Bit Time in IrDA mode tTIRbit

1/Fbaud_rate1 ­ Tref_clk2

1/Fbaud_rate + Tref_clk

--

UA4

Transmit IR Pulse Duration

tTIRpulse (TNP+1)/(OSR+1) × (1/Fbaud_rat (TNP+1)/(OSR+1) × (1/Fbaud_rat --

e) ­ Tref_clk

e) + Tref_clk

1 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] × (OSR+1)).
2 Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).

UART IrDA Mode Receiver The following figure depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 107 lists the receive timing characteristics.

UA5

UA5

UA6

UA5

UA5

UARTx_RX_DATA (input)
Start Bit

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Figure 56. UART IrDA Mode Receive Timing Diagram

POSSIBLE PARITY BIT

STOP BIT

Table 107. IrDA Mode Receive Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA5 Receive Bit Time1 in IrDA mode tRIRbit

1/Fbaud_rate2 ­ 1/(16 × Fbaud_rate)

1/Fbaud_rate +

--

1/(16 × Fbaud_rate)

UA6 Receive IR Pulse Duration

tRIRpulse

1.41 s

(5/16) × (1/Fbaud_rate)

--

1 The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/((OSR+1) × Fbaud_rate).

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

101

Electrical characteristics 2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] ×
(OSR+1)).
4.10.16 USB 2.0 PHY Parameters
4.10.16.1 USB 2.0 PHY Transmitter specifications This section describes the transmitter specifications for USB2.0 PHY.
4.10.16.1.1 USB 2.0 PHY full-speed/low-speed transmitter specifications The following table lists the full-speed/low-speed (FS/LS) transmitter specifications for USB2.0 PHY.

Table 108. USB 2.0 PHY FS/LS transmitter specifications

Symbol

Description

VOL Output Voltage Low VOH Output Voltage High (Driven) VOSE1 Single Ended One (SE1) VCRS Output Signal Cross Over Voltage TFR Driver Rise Time - FS TLR Driver Rise Time - LS TFF Driver Fall Time - FS TLF Driver Fall Time - LS TFRFM Differential Rise and Fall Time Matching - FS TLRFM Differential Rise and Fall Time Matching - LS ZHSDRV Driver Output Resistance (Also serves as HS Termination) TDJ1 Source Jitter (Next Transition) - FS TDJ2 Source Jitter (Paired Transition) - FS TFDEOP Source Jitter (Differential to SE0 transition) - FS TFEOPT Source SE0 interval of EOP - FS TDDJ1 Source Jitter in downstream direction (Next Transition) - LS TDDJ2 Source Jitter in downstream direction (Paired Transition) - LS TUDJ1 Source Jitter in upstream direction (Next Transition) - LS TUDJ2 Source Jitter in upstream direction (Paired Transition) - LS TLDEOP Source Jitter in upstream direction (Differential to SE0 transition) - LS TLEOPT Source SE0 interval of EOP - LS

Min Typ Max Units

0 -- 0.3

V

2.8 -- 3.6

V

0.8 --

--

V

1.3 -- 2.0

V

4--

20

ns

75 -- 300

ns

4--

20

ns

75 -- 300

ns

90 -- 111.11 %

80 -- 125

%

40.5 -- 49.5



-3.5 -- 3.5

ns

-4 --

4

ns

-2 --

5

ns

160 -- 175

ns

-25 --

25

ns

-14 --

14

ns

-95 --

95

ns

-150 -- 150

ns

-40 -- 100

ns

1.25 -- 1.5

s

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

102

NXP Semiconductors

Electrical characteristics
4.10.16.2 USB 2.0 PHY high-speed transmitter specifications The following table lists the high-speed (HS) transmitter specifications for USB 2.0 PHY.

Table 109. USB 2.0 PHY HS transmitter specifications

Symbol/Parameter HSOI VHSTERM VHSOL VCHIRPJ VCHIRPK ZHSDRV THSR THSF HS Eye Opening: Template 1
HS Eye Opening: Template 2
HS Jitter: Template 1
HS Jitter: Template 2

Description

Min Typ Max Units

High Speed Idle Level

-10 --

10

mV

Termination Voltage in High Speed

-10 --

10

mV

High Speed Data Signaling Low

-10 --

10

mV

Chirp J (Differential Voltage)

700 -- 1100 mV

Chirp K (Differential Voltage)

-900 -- -500 mV

Driver Output Resistance

40.5 -- 49.5



Rise Time (10% to 90%)

100 --

--

ps

Fall Time (10% to 90%)

100 --

--

ps

Differential eye opening at 37.5% US and 62.5% UI for a -300 -- 300 mV hub measured at TP2 and for a device without a captive cable measured at TP3.

Differential eye opening at 37.5% US and 62.5% UI for a -175 -- 175 mV device with a captive cable measured at TP2.

Peak-Peak Jitter at Zero crossing for a hub measured at TP2 and for a device without captive cable measured at TP3.

----

15

%UI

-- -- 312.5 ps

Peak-Peak Jitter at Zero crossing for a device with captive --

cable measured at TP2.

--

--

25

%UI

-- 520.83 ps

4.10.16.3 USB 2.0 PHY receiver specifications This section describes the receiver specifications implemented in USB 2.0 PHY.
4.10.16.3.1 USB 2.0 PHY full-speed/low-speed (FS/LS) receiver specifications

Table 110. USB 2.0 PHY FS/LS receiver specifications

Symbol VIH VIHZ VIL VTH VCM TJR1

Description Input Voltage Level - High (Driven) Input Voltage Level - High (Floating) Input Voltage Level - Low Switching Threshold Common Mode Range Receiver Jitter Budget (Next Transition) - FS

Min Typ Max Units

2

----

V

2.7 -- 3.6

V

--

-- 0.8

V

0.8 -- 2.0

V

0.8 -- 2.5

V

-18.5 -- 18.5 ns

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

103

Electrical characteristics

Table 110. USB 2.0 PHY FS/LS receiver specifications (continued)

Symbol TJR2 TFEOPR TUJR1 TUJR2 TDJR1 TDJR2 TLEOPR

Description Receiver Jitter Budget (Paired Transition) - FS Receiver EOP Interval of EOP - FS US Port Differential Receiver Jitter (Next Transition) - LS US Port Differential Receiver Jitter (Paired Transition) - LS DS Port Differential Receiver Jitter (Next Transition) - LS DS Port Differential Receiver Jitter (Paired Transition) - LS Receiver EOP Interval of EOP - LS

Min -9 82 -152 -200 -75 -45 670

Typ Max

--

9

----

-- 152

-- 200

-- 75

-- 45

----

Units ns ns ns ns ns ns ns

4.10.16.3.2 USB 2.0 PHY high-speed receiver specifications The following table lists the high-speed (HS) receiver specifications for USB 2.0 PHY.

Table 111. USB 2.0 PHY HS receiver specifications

Symbol/Parameter

Description

Min Typ Max Units

VHSCM

HS RX input common mode voltage range.

-50 -- 500 mV

ZHSDRV

HS RX input termination (Same as Driver output resistance).

40.5 -- 49.5 

HSRX Jitter: Template 3

HS RX Peak-Peak Jitter specification at differential zero crossing for a --

device with captive cable when signal applied at TP2.

--

-- 20 %UI -- 416.66 ps

HSRX Jitter: Template 4 HS RX Peak-Peak Jitter specification at differential zero crossing for a -- -- 30 %UI

device without captive cable at TP3 and for a hub at TP2.

-- -- 625 ps

HSRX Input Eye Opening: HS RX differential sensitivity specification at 40% and 60% UI for a -275 -- 275 mV

Template 3

device with captive cable when signal is applied at TP2.

HSRX Input Eye Opening: HS RX differential sensitivity specification at 35% and 65% UI for a -150 -- 150 mV

Template 4

device without captive cable when signal is applied at TP3 and for a

hub when a signal is applied at TP2.

4.10.16.3.3 USB 2.0 PHY high-speed envelope detector specifications The following table lists the high-speed (HS) Envelope Detector Specifications of USB 2.0 PHY.

Table 112. USB 2.0 PHY HS envelope detector specifications

Symbol VHSSQ VHSDSC

Description HS Squelch Detection threshold (differential signal amplitude) HS Disconnect Detection threshold (differential signal amplitude)

Min Typ Max Units 100 -- 150 mV 525 -- 625 mV

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

104

NXP Semiconductors

Electrical characteristics
4.10.16.4 USB 2.0 PHY full-speed/high-speed terminations specification The following table lists the full-speed/low-speed (FS/LS) Terminations Specification of USB 2.0 PHY.

Table 113. USB 2.0 PHY FS/LS terminations specification

Symbol RPU
RPD VTERM

Description Bus Pull-Up resistor on US Port in IDLE State Bus Pull-Up resistor on US Port in ACTIVE State Bus Pull-Down resistor on DS Port Termination Voltage for US Port Pull-Up (RPU)

Min Typ

900

--

1425

--

14.25 --

3.0

--

Max 1575 3090 24.8 3.6

Units
  K V

4.10.16.5 Voltage threshold specification The following table lists the OTG Comparator Specifications of USB2.0 PHY.

Table 114. USB 2.0 PHY OTG comparator specifications

Symbol sessvld vbusvalid

Description B-Device Session Valid threshold VBUS Valid threshold

Min

Typ

Max

0.8

--

4.0

4.4

--

4.75

4.10.17 USB 3.0 PHY parameters
The following content is from the USB 3.0 PHY specifications.
4.10.17.1 USB 3.0 PHY external component

Units V V

Table 115. USB 3.0 PHY external component specifications

Name Min Typ Max Units

Descriptions

rext 497.5 500 502.5  There needs to be an external resistor component connected at rext ball while the internal resistor or current is getting calibrated. Package routing from rext ball to its respective bump should not contribute more than 0.05 .

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

105

Electrical characteristics
4.10.17.2 USB 3.0 PHY transmitter module

Table 116. USB 3.0 PHY transmitter module electrical specifications

Symbol

Description

Min Typ

Max

Unit

Voltage/current parameters

VTX-DIFFp VTX-DIFFp-p VTX-DIFFp-p-LOW1 ITX-SHORT RLTX-DIFF
RLTX-CM ZTX-DIFF-DC
UI TTX-MAX-JITTER TTX-RJ-PLL-sigma LTLAT-10

Programmable output voltage

50 --

500

mV

swing (single-ended)

Programmable differential

100 --

1000

mV

peak-to-peak output voltage

Low power differential p-p TX

400 --

1200

mV

voltage swing

Transmit lane short-circuit current

----

100

mA

Transmitter differential return loss

----

0 < -20dB < 100Mhz

Db

100Mhz < -18dB < 300Mhz

300Mhz < -16dB < 600Mhz

600Mhz < -10dB < 2500Mhz

2500Mhz < -9dB < 4875Mhz

4875Mhz < -8dB < 11200Mhz

11200Mhz < -5dB < 16800Mhz

and -3dB beyond that

Transmitter common mode return

----

50Hz < -8dB < 15000Mhz

dB

loss

DC differential TX impedance

80 100

120



Unit Interval

199.94 --

200.06

ps

Transmitter total jitter

----

0.4

UI

(peak-to-peak) (Tj)

After application of TX jitter transfer -- --

2.42

ps

function

Transmitter data latency

----

210

UI

Voltage parameters

VTX-CM-DC-ACTIVE-IDLE-DELTA Absolute Delta of DC Common

0--

100

mV

Mode Voltage during L0 and

Electrical Idle.

VTX-IDLE-DIFF-AC-p

Electrical Idle Differential Peak

0--

20

mV

Output Voltage

VTX-CM-DC-LINE-DELTA

Absolute Delta of DC Common

0--

25

mV

Mode Voltage between D+ and D-

VTX-RCV-DETECT

The amount of voltage change

0--

600

mV

allowed during Receiver Detection

TTX-IDLE-SET-TO-IDLE

Maximum time to transition to a

----

8

ns

valid Electrical Idle after sending an

EIOS

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

106

NXP Semiconductors

Electrical characteristics

Table 116. USB 3.0 PHY transmitter module electrical specifications (continued)

Symbol TTX-IDLE-TO-DIFF-DATA VTX-CM-AC-PP TEIExit
ftol

Description

Min Typ

Maximum time to transition to valid -- -- diff signaling after leaving Electrical Idle

Tx AC peak-peak common mode voltage (5.0 GT/s)

20 --

Time to exit Electrical Idle (L0s) state and to enter L0

----

Tx signal characteristics

TX Frequency Long Term Accuracy -300 --

fSSC

Spread-Spectrum Modulation

Frequency

t20-80TX

TX Rise/Fall Time

tskewTX

TX Differential Skew

1 For USB 3.0, no EQ is required

30 --
0.2 -- ----

Max 8
150 5
300 33 0.41 20

Unit ns
mVpp Txsysclk
ppm of Fbaud
kHz UI ps

4.10.17.3 USB 3.0 PHY receiver module

Table 117. USB 3.0 PHY receiver module electrical specifications

Symbol

Description

Min Typ Max Unit

Comments

Voltage Parameters

VRX-DIFF(p-p)

Differential input voltage

100 -- 1200 mV

--

(peak-to-peak) (that is, receiver

eye voltage opening)

VRX-IDLE-DET-DIFF(p-p Differential input threshold voltage 100 -- 300 mV USB3 LFPS

)

(peak-to-peak) to detect idle

(LFPS)

Vcm, acRX VRX-CM-AC

RX AC Common Mode Voltage
Receiver common-mode voltage for AC coupling

--

-- 100 mVp-p Simulated at 250 MHz

--

0 150 mV

--

ZRX-DIFF-DC RLRX-DIFF

Differential input impedance (DC)

80 100 120

Receiver differential return loss

Same as -- -- TX RL

W 100  ± 10%

dB

--

Jitter Parameters

TRX-MAX-JITTER

Receiver total jitter tolerance

0

-- 0.66 UI Incoming Jitter:

USB3 = 0.43UI DJ + 0.23UI RJ

USB3 numbers are with REFC-TLE

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

107

Electrical characteristics

Table 118. PLL module electrical specifications

Parameter

Symbol

Description

Min

Typ

Max Units

Input Reference Clock

REF CLK Frequency
REF CLK Duty Cycle
REF CLK Frequency
REF CLK RJ Tolerance
REF CLK Duty Cycle
Divided Reference Frequency

REF CLK --
REF CLK --
-- --

--

19.2 19.2/24/25/26/38.4 38.4 MHz

--

47

--

53 MHz

--

40 40/48/50/52/100 100 MHz

Integrated jitter from 10 kHz to 16 MHz -- after applying appropriate PLL ref clock transfer function and the protocol JTF

--

37

--

0.5 ps

--

63 %

--

19.2

--

38.4 MHz

Dividers

Input division

IPDIV<7:0>

--

Feedback division pll_fbdiv_high<9:0>

--

pll_fbdiv_low<9:0>

--

Feedback fractional

--

--

division range

Number of fractional bits

--

This includes one bit for sign

1

--

255 Counts

2

--

1025 Counts

2

--

1025 Counts

>-2

--

<2 Counts

--

27

-- Bits

VCO

Clock frequency

--

Output full rate clocks

--

5000

-- MHz

VCO frequency

--

VCO oscillation frequency

--

5000

-- MHz

Output clock

--

This includes SSC deviation

frequency tolerance

-5300

--

300 ppm

SSC modulation rate

--

As applicable for USB3.0

30

--

33 kHz

Output clock RJ sigma for TX

--

After application of TX jitter transfer

--

function

--

2.42 ps

Output clock RJ sigma for RX

--

After application of RX jitter transfer

--

function

--

1.40 ps

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

108

NXP Semiconductors

Electrical characteristics
4.11 Analog-to-digital converter (ADC)
The following table shows the ADC electrical specifications for VREFH=VDD_ADC_1P8.

Table 119. ADC electrical specifications (VREFH=VDD_ADC_1P8)

Symbol

Description

Min

Typ1

Max

Unit Notes

VADIN CADIN RADIN RAS fADCK Csample Ccompare Cconversion DNL INL ENOB

Input Voltage Input capacitance Input Resistance Analog Source Resistance ADC Conversion Clock Frequency Sample cycles Fixed compare cycles Conversion cycles Differential Non-Linearity Integral Non-Linearity Effective Number of Bits

VREFL

--

VREFH

V

--

--

4.5

--

pF

--

--

500

--

--

--



--

5

k

2

--

24

--

MHz

--

3.5

--

131.5

--

3

--

17.5

--

cycles

--

Cconversion = Csample + Ccompare

cycles

--

--

± 0.6

-0.5 to +1.1 LSB

4

--

± 0.9

±1.1

LSB

4

--

--

--

--

5,6,7

Avg = 1

10.1

10.4

--

Bits

Avg = 2

10.5

10.7

--

Bits

Avg = 16

11.1

11.3

--

Bits

SINAD

Signal to Noise plus Distortion

SINAD=6.02 x ENOB + 1.76

dB

--

EG EO IVDDA18

Gain error Offset error Supply Current

--

-0.29

--

%FSV

8

--

0.01

--

%FSV

9

--

480

--

A

10

Iin,ext,leak

External Channel Leakage Current

--

30

500

nA

--

EIL

Input leakage error

RAS * Iin

mV

--

1 Typical values assume VDD_ADC_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.
2 This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15  analog source resistance. The RAS/CAS (analog source capacitance) time constant should be kept to < 1 ns.
3 See Figure 57. 4 ADC conversion clock at max frequency and using linear histogram. 5 Input data used for test was 1 kHz sine wave. 6 Measured at VREFH = 1.8 V and pwrsel = 2. 7 ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content. 8 Error measured at fullscale at 1.8 V. 9 Error measured at zero scale at 0 V.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

109

Electrical characteristics 10 Power Configuration Select, PWRSEL, is set to 10 binary.
The following table shows the ADC electrical specifications for 1VVREFH<VDD_ADC_1P8.

Table 120. ADC electrical specifications (1VVREFH<VDD_ADC_1P8)

Symbol

Description

Min

Typ1

Max

Unit Notes

VADIN CADIN RADIN RAS fADCK Csample Ccompare Cconversion DNL INL ENOB

Input Voltage Input capacitance Input Resistance Analog Source Resistance ADC Conversion Clock Frequency Sample cycles Fixed compare cycles Conversion cycles Differential Non-Linearity Integral Non-Linearity Effective Number of Bits

VREFL

--

VREFH

V

--

--

4.5

--

pF

--

--

500

--

--

--



--

5

k

2

--

24

--

MHz

--

3.5

--

131.5

--

3

--

17.5

--

cycles

--

Cconversion = Csample + Ccompare

cycles

--

--

± 0.6

-0.5 to +1.1 LSB

4

--

± 0.9

±1.1

LSB

4

--

--

--

--

5,6,7

Avg = 1

9.5

9.7

--

Bits

Avg = 2

9.9

10.1

--

Bits

Avg = 16

10.8

11

--

Bits

SINAD

Signal to Noise plus Distortion

SINAD=6.02 x ENOB + 1.76

dB

--

EG EO IVDDA18

Gain error Offset error Supply Current

--

0.29

--

0.01

--

480

--

%FSV

8

--

%FSV

9

--

A

10

Iin,ext,leak

External Channel Leakage Current

--

30

500

nA

--

EIL

Input leakage error

RAS * Iin

mV

--

1 Typical values assume VDD_ANA_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.
2 This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15  analog source resistance. The RAS/CAS (analog source capacitance) time constant should be kept to < 1 ns.
3 See Figure 57. 4 ADC conversion clock at max frequency and using linear histogram. 5 Input data used for test was 1 kHz sine wave. 6 Measured at VREFH = 1 V and pwrsel = 2. 7 ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content. 8 Error measured at fullscale at 1.0 V.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

110

NXP Semiconductors

9 Error measured at zero scale at 0 V. 10 Power Configuration Select, PWRSEL, is set to 10 binary.
The following figure shows a plot of the ADC sample time versus RAS.

Electrical characteristics

Figure 57. Sample time vs. RAS

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

111

Boot mode configuration
5 Boot mode configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.
5.1 Boot mode configuration pins
The following table provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of FORCE_BOOT_FROM_FUSE. After it is blown, the Boot mode pin is ignored by ROM; ROM receives 'boot mode' from the BT_MODE_FUSES fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is `0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the Boot mode pins, see the "System Boot, Fusemap, and eFuse" chapter of the device reference manual for more details.

Interface BOOT_MODE[0] BOOT_MODE[1] BOOT_MODE[2] BOOT_MODE[3]

Table 121. Fuse and associated pins used for Boot

IP Instance Input Input Input Input

Allocated Pads During Boot SCU_BOOT_MODE0 SCU_BOOT_MODE1 SCU_BOOT_MODE2 SCU_BOOT_MODE3

Comment Boot mode selection

5.2 Boot devices interfaces allocation
The following table lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate.

Table 122. Interface allocation during boot

Interface IP Instance

Allocated Pads During Boot

Comment

eMMC SD

USDHC0

EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0, EMMC0_DATA1, EMMC0_DATA2, EMMC0_DATA3, EMMC0_DATA4, EMMC0_DATA5, EMMC0_DATA6, EMMC0_DATA7, EMMC0_RESET_B

USDHC1

USDHC1_CD_B, USDHC1_CLK, USDHC1_CMD, USDHC1_CD_B is used by first (A0) silicon only.

USDHC1_DATA0, USDHC1_DATA1,

Second (B0) silicon uses USDHC1_DATA3 for

USDHC1_DATA2, USDHC1_DATA3,

CD (Card Detect).

USDHC1_RESET_B, USDHC1_VSELECT

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

112

NXP Semiconductors

Boot mode configuration

Table 122. Interface allocation during boot (continued)

Interface IP Instance

Allocated Pads During Boot

Comment

NAND

GPMI

EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0, EMMC0_DATA1, EMMC0_DATA2, EMMC0_DATA3, EMMC0_DATA4, EMMC0_DATA5, EMMC0_DATA6, EMMC0_DATA7, EMMC0_STROBE, EMMC0_RESET_B, USDHC1_CD_B, USDHC1_CMD, USDHC1_DATA0, USDHC1_DATA1, USDHC1_DATA2, USDHC1_DATA3, USDHC1_RESET_B, USDHC1_VSELECT, USDHC1_WP

8 bit boot from CS0 only, but will drive CS1 to high when booting if specified in fuse.
Single-ended DQS: · USDHC1_CD_B
Single-ended RE: · USDHC1_VSELECT
Differential DQS: · _N use USDHC1_WP · _P use USDHC1_CD_B
Differential RE: · _N use USDHC1_RESET_B · _P use USDHC1_VSELECT

Quad SPI

QSPI0

QSPI0A_DATA0, QSPI0A_DATA1,

4, dual-4, or 8 bit

QSPI0A_DATA2, QSPI0A_DATA3, QSPI0A_DQS,

QSPI0A_SCLK, QSPI0A_SS0_B,

QSPI0A_SS1_B, QSPI0B_DATA0,

QSPI0B_DATA1, QSPI0B_DATA2,

QSPI0B_DATA3, QSPI0B_DQS, QSPI0B_SCLK,

QSPI0B_SS0_B, QSPI0B_SS1_B

USB

USB-OTG1 USB_OTG1_DN, USB_OTG2_DN, USB_OTG1_DP, USB_OTG2_DP, USB_OTG1_ID, USB_OTG2_ID, USB_OTG1_VBUS, USB_OTG2_VBUS

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

113

Package information and contact assignments
6 Package information and contact assignments
This section contains package information and contact assignments for the following package(s): · FCPBGA, 21 x 21 mm, 0.8 mm pitch
6.1 FCPBGA, 21 x 21 mm, 0.8 mm pitch
This section includes the following information for the 21 x 21 mm, 0.8 mm pitch package: · Mechanical package drawing · Ball map · Contact assignments

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

114

NXP Semiconductors

Package information and contact assignments
6.1.1 21 x 21 mm package case outline
The following figure shows the top, bottom, and side views of the 21 x 21 mm package.

Figure 58. 21 x 21 mm Package Top, Bottom, and Side Views

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

115

Package information and contact assignments
The following notes pertain to the preceding figure, "21 x 21 mm Package Top, Bottom, and Side Views."
Figure 59. Notes on 21 x 21 mm Package Top, Bottom, and Side Views

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

116

NXP Semiconductors

Package information and contact assignments
6.1.2 21 x 21 mm, 0.8 mm pitch ball map
The following page shows the 21 x 21 mm, 0.8 mm pitch ball map.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

117

Package information and functional contact assignments for FCPBGA, 21 x 21 mm, 0.8 mm pitch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

VSS_MAI

DDR_DQ

DDR_DQ

PCIE0_T

PCIE_CT

PCIE0_R

USB_SS3

VSS_MAI

USB_SS3

EMMC0_

EMMC0_

USDHC1_

USDHC1_

ENET0_R

ENET0_R

VSS_MAI

A

N

31

28

X0_N

RL0_WA

X0_P

_TX_N

N

_RX_P

DATA1

DATA6

VSELECT

DATA0

GMII_TX

GMII_RX

N

KE_B

_CTL

D0

DDR_DQ

DDR_DQ

DDR_DQ1

VSS_MAI

PCIE0_T

PCIE0_R

VSS_MAI

USB_SS3

USB_SS3

VSS_MAI

EMMC0_

USDHC1_

USDHC1_

ENET0_R

ENET0_R

ENET0_

ESAI0_T

B

30

29

6

N

X0_P

X0_N

N

_TX_P

_RX_N

N

DATA4

RESET_B

DATA1

GMII_TX

GMII_RX

MDIO

X1

D1

_CTL

VSS_MAI

C

N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

USB_SS3 _TC3

VSS_MAI N

VSS_MAI N

EMMC0_ DATA0

VSS_MAI N

USDHC1_ CMD

VSS_MAI N

ENET0_R GMII_RX
D1

VSS_MAI N

ESAI0_T X3_RX2

VSS_MAI N

DDR_DQ

DDR_DM

DDR_DQ

DDR_DQ1

PCIE_CT

PCIE_RE

USB_OT

USB_OT

USB_OT

EMMC0_

EMMC0_

USDHC1_

USDHC1_

ENET0_R

ENET0_

ESAI0_T

SPDIF0_T

D

S3_P

2

S2_P

9

RL0_CLK

FCLK100

G2_REXT

G2_DN

G1_DP

CMD

DATA7

WP

DATA2

GMII_RX

MDC

X0

X

REQ_B

M_N

C

DDR_DM

E

3

DDR_DQ S3_N

DDR_DQ S2_N

DDR_DQ1 8

DDR_DQ1 7

PCIE_RE FCLK100
M_P

USB_SS3 _REXT

VSS_MAI N

USB_OT G2_DP

USB_OT G1_DN

EMMC0_ DATA2

USDHC1_ CD_B

USDHC1_ DATA3

ENET0_R GMII_TX
D2

VSS_MAI N

ESAI0_S CKT

VSS_MAI N

SPDIF0_E XT_CLK

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

PCIE_RE

USB_SS3

USB_OT

VSS_MAI

VSS_MAI

EMMC0_

VSS_MAI

ENET0_R

ENET0_R

ESAI0_FS

ESAI0_T

SPI3_SD

F

N

N

N

N

N

F_QR

_TC0

G2_ID

N

N

STROBE

N

GMII_TX

EFCLK_12

R

X4_RX1

O

D3

5M_25M

DDR_DQ

G

27

DDR_DQ 26

DDR_DQ 23

DDR_DQ 20

DDR_ZQ

PCIE0_PH Y_PLL_R EF_RETU
RN

VDD_PCI E_1P8

USB_SS3 _TC2

USB_OT G1_ID

EMMC0_ CLK

EMMC0_ DATA5

USDHC1_ CLK

ENET0_R GMII_TX
D0

ENET0_R GMII_RX
D2

ESAI0_FS T

SPDIF0_ RX

SPI3_SDI

MCLK_IN 0

DDR_DQ

DDR_DQ

DDR_DQ

DDR_DQ

PCIE_CT

PCIE_RE

USB_SS3

USB_OT

USB_OT

EMMC0_

EMMC0_

ENET0_R

ENET0_R

ESAI0_S

VSS_MAI

UART1_T

H

24

25

22

21

RL0_PER

XT

_TC1

G2_VBU

G1_VBUS

DATA3

RESET_B

GMII_TX

GMII_RX

CKR

N

SPI3_SCK

X

ST_B

S

C

D3

VSS_MAI

J

N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

ESAI0_T X5_RX0

SPI3_CS0

VSS_MAI N

SAI0_TX C

DDR_DC

DDR_DC

DDR_DC

DDR_DC

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

ESAI0_T

UART1_C

SAI0_TX

K

F29

F27

F28

F25

N

N

N

N

N

N

N

N

N

X2_RX3

SPI3_CS1

TS_B

D

DDR_DC

L

F18

DDR_DC F32

DDR_DC F31

DDR_DC F26

VSS_MAI N

VDD_PCI E_DIG_1P
8_3P3

VDD_PCI E_LDO_1 P0_CAP

VDD_US B_3P3

VDD_US B_OTG_1
P0

VDD_EM MC0_1P8
_3P3

VDD_US DHC1_VS ELECT_1P
8_3P3

VDD_EN ET0_VSE LECT_1P8 _2P5_3P
3

VDD_EN ET_MDIO _1P8_3P3

VSS_MAI N

MCLK_O UT0

UART1_R X

SAI0_TX FS

SAI1_RX C

VDD_US

VDD_EM

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VDD_DD

VDD_AN

B_SS3_L

VDD_US

MC0_VS

VDD_US

VDD_EN

VSS_MAI

MCLK_IN

VSS_MAI

SAI1_RX

SAI0_RX

M

N

N

N

N

N

R_VDDQ

A0_1P8

DO_1P0_

B_1P8

ELECT_1P

DHC1_1P8

ET0_1P8_

N

1

N

D

D

CAP

8_3P3

_3P3

2P5_3P3

DDR_DC

N

F19

DDR_DC F17

DDR_CK1 _N

DDR_DC F30

VDD_DD R_VDDQ

VDD_DD R_VDDQ

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_GP U

VDD_ES AI_SPDIF _1P8_2P5
_3P3

VSS_MAI N

UART1_R TS_B

SPI2_SDI

VSS_MAI N

SAI1_RXF S

DDR_DC

DDR_DC

DDR_CK1

DDR_DC

VSS_MAI

VDD_MA

VSS_MAI

VDD_MA

VSS_MAI

VDD_GP

VDD_GP

VDD_MA

VSS_MAI

SPI2_SD

P

F22

F20

_P

F33

N

IN

N

IN

N

U

U

IN

N

SPI2_CS0

SPI0_SCK

O

SPI0_SDI

VSS_MAI

R

N

VSS_MAI N

VSS_MAI N

VDD_DD R_VDDQ

VSS_MAI N

VDD_DD R_VDDQ

VDD_MA IN

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_GP U

VSS_MAI N

VDD_SPI _MCLK_ UART_1P
8_3P3

VSS_MAI N

SPI2_SCK

SPI0_SD O

SPI0_CS0

SPI0_CS1

DDR_DC

DDR_DC

DDR_DC

DDR_DC

VSS_MAI

VDD_DD

VDD_MA

VSS_MAI

VDD_MA

VSS_MAI

VDD_GP

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

T

F07

F23

F24

F21

N

R_VDDQ

IN

N

IN

N

U

N

N

N

N

N

N

DDR_DC

U

F03

DDR_DC F01

DDR_DC F05

DDR_DC F04

VSS_MAI N

VDD_DD R_VDDQ

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_GP U

VDD_SPI _SAI_1P8
_3P3

VSS_MAI N

ADC_VR EFH

ADC_VR EFL

ADC_IN1

ADC_IN0

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VDD_MA

VSS_MAI

VDD_MA

VSS_MAI

VDD_GP

VSS_MAI

VDD_MA

VSS_MAI

VDD_AD

V

N

N

N

N

N

IN

N

IN

N

U

N

IN

N

C_1P8

ADC_IN3

ADC_IN2

ADC_IN5

DDR_DC

W

F00

DDR_DC F11

DDR_CK 0_P

DDR_DC F16

VSS_MAI N

VDD_DD R_VDDQ

VDD_MA IN

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_GP U

VSS_MAI N

VDD_AD C_DIG_1P
8

VSS_MAI N

ADC_IN4

VSS_MAI N

VSS_MAI N

VSS_MAI N

DDR_DC

DDR_DC

DDR_CK

DDR_DC

VSS_MAI

VDD_DD

VDD_MA

VSS_MAI

VDD_MA

VSS_MAI

VDD_MA

VDD_CA

VSS_MAI

VSS_MAI

VSS_MAI

FLEXCAN

FLEXCAN

Y

F14

F15

0_N

F12

N

R_VDDQ

IN

N

IN

N

IN

N_UART

N

N

N

0_TX

0_RX

_1P8_3P3

VSS_MAI

AA

N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VDD_DD R_VDDQ

VDD_DD R_VDDQ

VSS_MAI N

VDD_A35

VDD_A35

VDD_A35

VSS_MAI N

VDD_MA IN

VDD_MIP I_DSI_DI G_1P8_3
P3

VSS_MAI N

UART0_T X

FLEXCAN 2_TX

FLEXCAN 1_RX

FLEXCAN 1_TX

DDR_DQ1

DDR_DC

DDR_DC

DDR_AT

VSS_MAI

VDD_MA

VSS_MAI

VSS_MAI

VDD_AN

VSS_MAI

MIPI_DSI

VSS_MAI

UART0_

FLEXCAN

AB

4

F08

F09

O

N

IN

N

VDD_A35

VDD_A35

VDD_A35

N

A1_1P8

N

0_I2C0_S

N

RX

2_RX

DA

DDR_DQ1

AC

5

DDR_DQ1 2

DDR_DC F10

DDR_DT O0

VDD_DD R_PLL_1P
8

VDD_DD R_VDDQ

VDD_MA IN

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_MA IN

VSS_MAI N

VDD_SN VS_4P2

VSS_MAI N

MIPI_DSI1 _I2C0_S
DA

MIPI_DSI 0_I2C0_S
CL

VSS_MAI N

UART2_T X

VSS_MAI

VSS_MAI

VSS_MAI

DDR_VR

VSS_MAI

VDD_DD

VDD_MA

VDD_MIP

VDD_MIP

VSS_MAI

VDD_MA

VDD_TM

VSS_MAI

SCU_WD

MIPI_DSI1

MIPI_DSI

UART2_

AD

N

N

N

EF

N

R_VDDQ

IN

I_1P8

I_1P0

N

IN

PR_CSI_1

N

OG_OUT

_GPIO0_

0_GPIO0

RX

P8_3P3

00

_00

DDR_DQ

AE

S1_N

DDR_DQ1 3

DDR_DQ 01

DDR_DT O1

VSS_MAI N

VDD_DD R_VDDQ

VDD_QS PI0B_1P8
_3P3

VDD_QS PI0A_1P8
_3P3

VDD_MIP I_1P8

VDD_MIP I_1P0

VDD_MIP I_CSI_DI
G_1P8

VDD_CSI _1P8_3P3

VDD_SN VS_LDO_ 1P8_CAP

VSS_MAI N

TEST_M ODE_SEL
ECT

JTAG_TC K

MIPI_DSI1 _I2C0_S
CL

MIPI_DSI 0_GPIO0
_01

DDR_DQ

DDR_DM

DDR_DQ

DDR_DQ

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

SCU_GPI

VSS_MAI

JTAG_TD

MIPI_DSI1

AF

S1_P

1

00

03

N

N

N

N

N

N

N

N

N

O0_00

N

O

_GPIO0_

01

VSS_MAI

AG

N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

SCU_PMI C_STAN
DBY

POR_B

VSS_MAI N

JTAG_T MS

DDR_DQ1

DDR_DQ1

DDR_DQ

DDR_DQ

QSPI0B_

QSPI0A_

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

ON_OFF_

SCU_GPI

PMIC_I2

JTAG_TD

AH

0

1

S0_N

02

SS0_B

DATA3

N

N

N

N

N

N

N

BUTTON

O0_01

C_SDA

I

DDR_DQ

AJ

08

DDR_DQ 09

DDR_DQ S0_P

DDR_DM 0

QSPI0B_ SS1_B

QSPI0B_ DATA2

QSPI0A_ DATA2

MIPI_DSI 0_DATA3
_N

MIPI_DSI 0_DATA1
_N

MIPI_DSI 0_CLK_N

MIPI_DSI 0_DATA0
_N

MIPI_DSI 0_DATA2
_N

CSI_D06

CSI_D03

SCU_BO OT_MOD
E3

SCU_BO OT_MOD
E0

PMIC_IN T_B

PMIC_I2 C_SCL

VSS_MAI

VSS_MAI

VSS_MAI

VSS_MAI

QSPI0B_

QSPI0A_

QSPI0A_

MIPI_DSI

MIPI_DSI

MIPI_DSI

MIPI_DSI

MIPI_DSI

VSS_MAI

SCU_BO

ANA_TES

AK

N

N

N

N

DQS

SS1_B

DATA0

0_DATA3

0_DATA1

0_CLK_P

0_DATA0

0_DATA2

CSI_PCLK

CSI_D00

N

OT_MOD

T_OUT_N

_P

_P

_P

_P

E1

DDR_DQ

AL

32

DDR_DQ 34

DDR_DQ 06

DDR_DQ 07

QSPI0B_ DATA1

QSPI0A_ DQS

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

CSI_VSY NC

CSI_D01

SCU_BO OT_MOD
E2

VSS_MAI N

ANA_TES T_OUT_P

DDR_DQ

DDR_DQ

DDR_DQ

QSPI0B_

QSPI0B_

QSPI0A_

MIPI_DSI1

MIPI_DSI1

MIPI_DSI1

MIPI_CSI

MIPI_CSI

MIPI_CSI

CSI_MCL

RTC_XT

AM

33

04

05

DATA3

DATA0

SS0_B

_DATA2_

_CLK_N

_DATA3_

0_DATA1

0_DATA0

0_I2C0_S

K

CSI_D07

CSI_D05

ALO

XTALO

N

N

_N

_N

DA

VSS_MAI

AN

N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

MIPI_DSI1 _DATA0_
N

MIPI_DSI1 _DATA1_
N

MIPI_CSI 0_DATA3
_N

MIPI_CSI 0_CLK_N

MIPI_CSI 0_DATA2
_N

MIPI_CSI 0_MCLK_
OUT

VSS_MAI N

CSI_D04

VSS_MAI N

VSS_SCU _XTAL

VSS_SCU _XTAL

DDR_DQ

DDR_DQ

DDR_DM

DDR_DQ

DDR_DQ

QSPI0A_

MIPI_DSI1

MIPI_DSI1

MIPI_DSI1

MIPI_CSI

MIPI_CSI

MIPI_CSI

MIPI_CSI

RTC_XT

AP

35

S4_P

4

36

37

SCLK

_DATA2_

_CLK_P

_DATA3_

0_DATA1

0_DATA0

0_GPIO0

0_I2C0_S

CSI_EN

CSI_D02

ALI

XTALI

P

P

_P

_P

_01

CL

VSS_MAI

DDR_DQ

DDR_DQ

DDR_DQ

QSPI0B_

QSPI0A_

MIPI_DSI1

MIPI_DSI1

MIPI_CSI

MIPI_CSI

MIPI_CSI

MIPI_CSI

CSI_RES

CSI_HSY

PMIC_ON

VSS_SCU

AR

N

S4_N

39

38

SCLK

DATA1

_DATA0_

_DATA1_

0_DATA3

0_CLK_P

0_DATA2

0_GPIO0

ET

NC

_REQ

_XTAL

P

P

_P

_P

_00

i.MX 8QuadXPlus/8DualXPlus Industrial Applications Processors, Rev. 0 05/2020

NXP Semiconductors

118

Package information and contact assignments
6.1.3 21 x 21 mm power supplies and functional contact assignments
The following table shows the power supplies contact assignments for the 21 × 21 mm package

Table 123. 21 x 21 mm power supplies contact assignments

Power rail

Ball reference

VDD_A351

AA15,AA17,AA19,AB16,AB18,AB20

VDD_ADC_1P8

V28

VDD_ADC_DIG_1P8

W25

VDD_ANA0_1P8

M14

VDD_ANA1_1P8

AB24

VDD_CAN_UART_1P8_3P3

Y24

VDD_CSI_1P8_3P3

AE23

VDD_DDR_PLL_1P8

AC9

VDD_DDR_VDDQ

AA11,AA9,M12,N9,N11,R7,R11,T12,U11,W11,Y12,AC11,AD12,AE11

VDD_EMMC0_1P8_3P3

L19

VDD_EMMC0_VSELECT_1P8_3P3

M20

VDD_ENET_MDIO_1P8_3P3

L25

VDD_ENET0_1P8_2P5_3P3

M24

VDD_ENET0_VSELECT_1P8_2P5_3P3

L23

VDD_ESAI_SPDIF_1P8_2P5_3P3 VDD_GPU1

N25 N23,P20,P22,R21,T22,U23,V20,W21

VDD_MAIN

AA23,AB12,AC13,AC17,AC21,AD14,AD22,N15,N19,P12,P16,P24,R13,R17,T14,T 18,U15,U19,V12,V16,V24,W13,W17,Y14,Y18,Y22

VDD_MIPI_1P0

AD18,AE19

VDD_MIPI_1P8

AD16,AE17

VDD_MIPI_CSI_DIG_1P8

AE21

VDD_MIPI_DSI_DIG_1P8_3P3

AA25

VDD_PCIE_1P8

G13

VDD_PCIE_DIG_1P8_3P3

L11

VDD_PCIE_LDO_1P0_CAP

L13

VDD_QSPI0A_1P8_3P3

AE15

VDD_QSPI0B_1P8_3P3

AE13

VDD_SNVS_4P2

AC25

VDD_SNVS_LDO_1P8_CAP

AE25

VDD_SPI_MCLK_UART_1P8_3P3

R25

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

119

Package information and contact assignments

Table 123. 21 x 21 mm power supplies contact assignments (continued)

Power rail

Ball reference

VDD_SPI_SAI_1P8_3P3

U25

VDD_TMPR_CSI_1P8_3P3

AD24

VDD_USB_1P8

M18

VDD_USB_3P3

L15

VDD_USB_OTG_1P0

L17

VDD_USB_SS3_LDO_1P0_CAP

M16

VDD_USDHC1_1P8_3P3

M22

VDD_USDHC1_VSELECT_1P8_3P3

L21

VSS_MAIN

A17, A3, A33, AA1, AA13, AA21, AA27, AA3, AA5,AA7,AB10,AB14,AB22,AB26,AB30,AC15,AC19,AC23,AC27,AC33,AD10,AD2, AD20,AD26,AD4,AD6,AE27,AE9,AF10,AF12,AF14,AF16,AF18,AF20,AF22,AF24,A
F26,AF30,AG1,AG11,AG13,AG15,AG17,AG19,AG21,AG23, AG25,AG27,AG3,AG33,AG5,AG7,AG9,AH14,AH16,AH18,AH20,AH22,AH24,AH26
,AK2,AK30,AK4,AK6,AK8,AL13,AL15,AL17,AL19,AL21,AL23,AL25,AL33, AN1,AN11,AN13,AN27,AN3,AN31,AN5,AN7,AN9,AR3,B14,B20,B8,C1,C11,C13,C1
7,C19,C23,C27,C3,C31,C35,C5,C7,C9,E15,E29,E33, F10,F18,F2,F20,F24,F4,F6,F8,H30,J1,J11,J13,J15,J17,J19,J21,J23,J25,J27,J3,J3
3,J5,J7,J9,K10,K12,K14,K16,K18,K20,K22,K24,K26,L27,L9,M10,M2,M26, M30,M4,M6,M8,N13,N17,N21,N27,N33,P10,P14,P18,P26,R1,R15,R19,R23,R27,R
3,R5,R9,T10,T16,T20,T24,T26,T28,T30,T32,T34,U13,U17,U21,U27,U9, V10, V14,V18,V2,V22,V26,V4,V6,V8,W15,W19,W23,W27,W31,W33,W35,W9,Y10,Y16,
Y20,Y26,Y28,Y30

VSS_SCU_XTAL 1 VDD_A35 and VDD_GPU can be combined with one power supply.

AN33,AN35,AR33

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

120

NXP Semiconductors

Package information and contact assignments
The following table shows functional contact assignments for the 21 × 21 mm package.

Ball
U35 U33 V32 V30 W29 V34 U29 U31 AK34 AL35 AK28 AL29 AP30 AJ27 AN29 AM30 AJ25 AM28 AR29 AL27 AP28 AM26 AK26 AR27 G19 D20 C21 A21 E21 H20 B22 G21 A23

Ball Name
ADC_IN0 ADC_IN1 ADC_IN2 ADC_IN3 ADC_IN4 ADC_IN5 ADC_VREFH ADC_VREFL ANA_TEST_OUT_N ANA_TEST_OUT_P CSI_D00 CSI_D01 CSI_D02 CSI_D03 CSI_D04 CSI_D05 CSI_D06 CSI_D07 CSI_HSYNC CSI_VSYNC CSI_EN CSI_MCLK CSI_PCLK CSI_RESET EMMC0_CLK EMMC0_CMD EMMC0_DATA0 EMMC0_DATA1 EMMC0_DATA2 EMMC0_DATA3 EMMC0_DATA4 EMMC0_DATA5 EMMC0_DATA6

Table 124. 21 x 21 mm functional contact assignments

Power Domain

Ball

Type
1

Default

Mode

Reset Condition2

Default Function

Default Default Direction Pull

VDD_ADC_DIG_1P8

GPIO ALT0

VDD_ADC_DIG_1P8

GPIO ALT0

VDD_ADC_DIG_1P8

GPIO ALT0

VDD_ADC_DIG_1P8

GPIO ALT0

VDD_ADC_DIG_1P8

GPIO ALT0

VDD_ADC_DIG_1P8

GPIO ALT0

VDD_ADC_1P8

ANA

VDD_ADC_1P8

ANA

VDD_SCU_ANA_1P8

ANA

VDD_SCU_ANA_1P8

ANA

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_TMPR_CSI_1P8_3P3

GPIO ALT0

VDD_CSI_1P8_3P3

GPIO ALT0

VDD_CSI_1P8_3P3

GPIO ALT4

VDD_CSI_1P8_3P3

GPIO ALT0

VDD_CSI_1P8_3P3

GPIO ALT0

VDD_EMMC0_1P8_3P3

FASTD ALT4

VDD_EMMC0_1P8_3P3

FASTD ALT0

VDD_EMMC0_1P8_3P3

FASTD ALT0

VDD_EMMC0_1P8_3P3

FASTD ALT0

VDD_EMMC0_1P8_3P3

FASTD ALT0

VDD_EMMC0_1P8_3P3

FASTD ALT0

VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0

VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0

VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0

ADMA.ADC.IN0 ADMA.ADC.IN1 ADMA.ADC.IN2 ADMA.ADC.IN3 ADMA.ADC.IN4 ADMA.ADC.IN5
ADC_VREFH ADC_VREFL SCU.DSC.TEST_OUT_N SCU.DSC.TEST_OUT_P CI_PI.CSI_D02 CI_PI.CSI_D03 CI_PI.CSI_D04 CI_PI.CSI_D05 CI_PI.CSI_D06 CI_PI.CSI_D07 CI_PI.CSI_D08 CI_PI.CSI_D09 CI_PI.CSI_HSYNC CI_PI.CSI_VSYNC CI_PI.CSI_EN LSIO.GPIO3.IO01 CI_PI.CSI_PCLK CI_PI.CSI_RESET LSIO.GPIO4.IO07 CONN.EMMC0.CMD CONN.EMMC0.DATA0 CONN.EMMC0.DATA1 CONN.EMMC0.DATA2 CONN.EMMC0.DATA3 CONN.EMMC0.DATA4 CONN.EMMC0.DATA5 CONN.EMMC0.DATA6

INPUT INPUT INPUT INPUT INPUT INPUT

PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K)

INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT

PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

121

Package information and contact assignments

Table 124. 21 x 21 mm functional contact assignments (continued)

Ball

Ball Name

Power Domain

Ball

Type
1

Default

Mode

Reset Condition2

Default Function

Default Default Direction Pull

D22

EMMC0_DATA7

VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0

H22

EMMC0_RESET_B

VDD_EMMC0_VSELECT_1P8_3P3 GPIO ALT4

F22

EMMC0_STROBE

VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0

D30

ENET0_MDC

VDD_ENET_MDIO_1P8_3P3

GPIO ALT4

B32

ENET0_MDIO

VDD_ENET_MDIO_1P8_3P3

GPIO ALT0

F28 ENET0_REFCLK_125M_25M

VDD_ENET_MDIO_1P8_3P3

GPIO ALT4

B30

ENET0_RGMII_RX_CTL

VDD_ENET0_1P8_2P5_3P3

FASTD ALT0

D28

ENET0_RGMII_RXC

VDD_ENET0_1P8_2P5_3P3

FASTD ALT0

A31

ENET0_RGMII_RXD0

VDD_ENET0_1P8_2P5_3P3

FASTD ALT0

C29

ENET0_RGMII_RXD1

VDD_ENET0_1P8_2P5_3P3

FASTD ALT0

G27

ENET0_RGMII_RXD2

VDD_ENET0_1P8_2P5_3P3

FASTD ALT0

H26

ENET0_RGMII_RXD3

VDD_ENET0_1P8_2P5_3P3

FASTD ALT0

A29

ENET0_RGMII_TX_CTL VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4

H24

ENET0_RGMII_TXC

VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4

G25

ENET0_RGMII_TXD0

VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4

B28

ENET0_RGMII_TXD1

VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4

E27

ENET0_RGMII_TXD2

VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4

F26

ENET0_RGMII_TXD3

VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4

F30

ESAI0_FSR

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

G29

ESAI0_FST

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

H28

ESAI0_SCKR

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

E31

ESAI0_SCKT

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

D32

ESAI0_TX0

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

B34

ESAI0_TX1

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

K28

ESAI0_TX2_RX3

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

C33

ESAI0_TX3_RX2

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

F32

ESAI0_TX4_RX1

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

J29

ESAI0_TX5_RX0

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

Y34

FLEXCAN0_RX

VDD_CAN_UART_1P8_3P3

GPIO ALT0

Y32

FLEXCAN0_TX

VDD_CAN_UART_1P8_3P3

GPIO ALT4

AA33

FLEXCAN1_RX

VDD_CAN_UART_1P8_3P3

GPIO ALT0

AA35

FLEXCAN1_TX

VDD_CAN_UART_1P8_3P3

GPIO ALT4

AB34

FLEXCAN2_RX

VDD_CAN_UART_1P8_3P3

GPIO ALT0

AA31

FLEXCAN2_TX

VDD_CAN_UART_1P8_3P3

GPIO ALT4

AE31

JTAG_TCK

VDD_ANA1_1P8

TEST ALT0

CONN.EMMC0.DATA7 LSIO.GPIO4.IO18
CONN.EMMC0.STROBE LSIO.GPIO5.IO11
CONN.ENET0.MDIO LSIO.GPIO5.IO09
CONN.ENET0.RGMII_RX_CTL CONN.ENET0.RGMII_RXC CONN.ENET0.RGMII_RXD0 CONN.ENET0.RGMII_RXD1 CONN.ENET0.RGMII_RXD2 CONN.ENET0.RGMII_RXD3 LSIO.GPIO4.IO30 LSIO.GPIO4.IO29 LSIO.GPIO4.IO31 LSIO.GPIO5.IO00 LSIO.GPIO5.IO01 LSIO.GPIO5.IO02 ADMA.ESAI0.FSR ADMA.ESAI0.FST ADMA.ESAI0.SCKR ADMA.ESAI0.SCKT ADMA.ESAI0.TX0 ADMA.ESAI0.TX1 ADMA.ESAI0.TX2_RX3 ADMA.ESAI0.TX3_RX2 ADMA.ESAI0.TX4_RX1 ADMA.ESAI0.TX5_RX0 ADMA.FLEXCAN0.RX LSIO.GPIO1.IO16 ADMA.FLEXCAN1.RX LSIO.GPIO1.IO18 ADMA.FLEXCAN2.RX LSIO.GPIO1.IO20 SCU.JTAG.TCK

INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT

PD(50K) PU(50K) PD(50K) PD(50K) PU(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

122

NXP Semiconductors

Ball
AH34 AF32 AG35 G35 M28 L29 AN21 AR21 AM22 AP22 AM20 AP20 AN23 AR23 AN19 AR19 AR25 AP24 AP26 AM24 AN25 AJ19 AK20 AJ21 AK22 AJ17 AK18 AJ23 AK24 AJ15 AK16 AD32 AE35 AC31 AB28

Package information and contact assignments

Table 124. 21 x 21 mm functional contact assignments (continued)

Ball Name

Power Domain

Ball

Type
1

Default

Mode

Reset Condition2

Default Function

Default Default Direction Pull

JTAG_TDI JTAG_TDO JTAG_TMS MCLK_IN0 MCLK_IN1 MCLK_OUT0 MIPI_CSI0_CLK_N MIPI_CSI0_CLK_P MIPI_CSI0_DATA0_N MIPI_CSI0_DATA0_P MIPI_CSI0_DATA1_N MIPI_CSI0_DATA1_P MIPI_CSI0_DATA2_N MIPI_CSI0_DATA2_P MIPI_CSI0_DATA3_N MIPI_CSI0_DATA3_P MIPI_CSI0_GPIO0_00 MIPI_CSI0_GPIO0_01 MIPI_CSI0_I2C0_SCL MIPI_CSI0_I2C0_SDA MIPI_CSI0_MCLK_OUT MIPI_DSI0_CLK_N MIPI_DSI0_CLK_P MIPI_DSI0_DATA0_N MIPI_DSI0_DATA0_P MIPI_DSI0_DATA1_N MIPI_DSI0_DATA1_P MIPI_DSI0_DATA2_N MIPI_DSI0_DATA2_P MIPI_DSI0_DATA3_N MIPI_DSI0_DATA3_P MIPI_DSI0_GPIO0_00 MIPI_DSI0_GPIO0_01 MIPI_DSI0_I2C0_SCL MIPI_DSI0_I2C0_SDA

VDD_ANA1_1P8 VDD_ANA1_1P8 VDD_ANA1_1P8 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_CSI_DIG_1P8 VDD_MIPI_CSI_DIG_1P8 VDD_MIPI_CSI_DIG_1P8 VDD_MIPI_CSI_DIG_1P8 VDD_MIPI_CSI_DIG_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3

TEST TEST TEST GPIO GPIO GPIO CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI GPIO GPIO GPIO GPIO GPIO DSI DSI DSI DSI DSI DSI DSI DSI DSI DSI GPIO GPIO GPIO GPIO

ALT0 ALT0 ALT0 ALT0 ALT0 ALT4
ALT0 ALT0 ALT0 ALT0 ALT4
ALT0 ALT0 ALT0 ALT0

SCU.JTAG.TDI SCU.JTAG.TDO SCU.JTAG.TMS ADMA.ACM.MCLK_IN0 ADMA.ACM.MCLK_IN1 LSIO.GPIO0.IO20 MIPI_CSI0.CKN MIPI_CSI0.CKP MIPI_CSI0.DN0 MIPI_CSI0.DP0 MIPI_CSI0.DN1 MIPI_CSI0.DP1 MIPI_CSI0.DN2 MIPI_CSI0.DP2 MIPI_CSI0.DN3 MIPI_CSI0.DP3 MIPI_CSI0.GPIO0.IO00 MIPI_CSI0.GPIO0.IO01 MIPI_CSI0.I2C0.SCL MIPI_CSI0.I2C0.SDA LSIO.GPIO3.IO04 MIPI_DSI0.CKN MIPI_DSI0.CKP MIPI_DSI0.DN0 MIPI_DSI0.DP0 MIPI_DSI0.DN1 MIPI_DSI0.DP1 MIPI_DSI0.DN2 MIPI_DSI0.DP2 MIPI_DSI0.DN3 MIPI_DSI0.DP3 MIPI_DSI0.GPIO0.IO00 MIPI_DSI0.GPIO0.IO01 MIPI_DSI0.I2C0.SCL MIPI_DSI0.I2C0.SDA

INPUT PU(50K) OUTPUT HiZ
INPUT PU(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K)
Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z INPUT PD(50K) INPUT PD(50K) INPUT PU(50K) INPUT PU(50K) INPUT PD(50K) Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z INPUT PD(50K) INPUT PD(50K) INPUT PU(50K) INPUT PU(50K)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

123

Package information and contact assignments

Table 124. 21 x 21 mm functional contact assignments (continued)

Ball

Ball Name

Power Domain

Ball

Type
1

Default

Mode

Reset Condition2

Default Function

Default Default Direction Pull

AM16

MIPI_DSI1_CLK_N

AP16

MIPI_DSI1_CLK_P

AN15

MIPI_DSI1_DATA0_N

AR15

MIPI_DSI1_DATA0_P

AN17

MIPI_DSI1_DATA1_N

AR17

MIPI_DSI1_DATA1_P

AM14

MIPI_DSI1_DATA2_N

AP14

MIPI_DSI1_DATA2_P

AM18

MIPI_DSI1_DATA3_N

AP18

MIPI_DSI1_DATA3_P

AD30

MIPI_DSI1_GPIO0_00

AF34

MIPI_DSI1_GPIO0_01

AE33

MIPI_DSI1_I2C0_SCL

AC29

MIPI_DSI1_I2C0_SDA

AH28

ON_OFF_BUTTON

D10 PCIE_CTRL0_CLKREQ_B

H10

PCIE_CTRL0_PERST_B

A11

PCIE_CTRL0_WAKE_B

F12

PCIE_REF_QR

D12

PCIE_REFCLK100M_N

E11

PCIE_REFCLK100M_P

H12

PCIE_REXT

G11 PCIE0_PHY_PLL_REF_RETURN

B12

PCIE0_RX0_N

A13

PCIE0_RX0_P

A9

PCIE0_TX0_N

B10

PCIE0_TX0_P

AJ35

PMIC_I2C_SCL

AH32

PMIC_I2C_SDA

AJ33

PMIC_INT_B

AR31

PMIC_ON_REQ

AG31

POR_B

AK14

QSPI0A_DATA0

AR13

QSPI0A_DATA1

AJ13

QSPI0A_DATA2

VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_SNVS_LDO_1P8_CAP VDD_PCIE_DIG_1P8_3P3 VDD_PCIE_DIG_1P8_3P3 VDD_PCIE_DIG_1P8_3P3 VDD_PCIE_1P8 VDD_PCIE_1P8 VDD_PCIE_1P8 VDD_PCIE0_1P0 VDD_PCIE_LDO_1P0_CAP VDD_PCIE_LDO_1P0_CAP VDD_PCIE_LDO_1P0_CAP VDD_PCIE_LDO_1P0_CAP VDD_PCIE_LDO_1P0_CAP VDD_ANA1_1P8 VDD_ANA1_1P8 VDD_ANA1_1P8 VDD_SNVS_LDO_1P8_CAP VDD_ANA1_1P8 VDD_QSPI0A_1P8_3P3 VDD_QSPI0A_1P8_3P3 VDD_QSPI0A_1P8_3P3

DSI

MIPI_DSI1.CKN

DSI

MIPI_DSI1.CKP

DSI

MIPI_DSI1.DN0

DSI

MIPI_DSI1.DP0

DSI

MIPI_DSI1.DN1

DSI

MIPI_DSI1.DP1

DSI

MIPI_DSI1.DN2

DSI

MIPI_DSI1.DP2

DSI

MIPI_DSI1.DN3

DSI

MIPI_DSI1.DP3

GPIO ALT0

MIPI_DSI1.GPIO0.IO00

INPUT

GPIO ALT0

MIPI_DSI1.GPIO0.IO01

INPUT

GPIO ALT0

MIPI_DSI1.I2C0.SCL

INPUT

GPIO ALT0

MIPI_DSI1.I2C0.SDA

INPUT

ANA

SNVS.ON_OFF_BUTTON

GPIO ALT0

HSIO.PCIE0.CLKREQ_B

INPUT

GPIO ALT0

HSIO.PCIE0.PERST_B

INPUT

GPIO ALT0

HSIO.PCIE0.WAKE_B

INPUT

PCIE

HSIO.PCIE_IOB.REF_QR

PCIE

HSIO.PCIE_IOB.EXT_REFCLK100M_N

PCIE

HSIO.PCIE_IOB.EXT_REFCLK100M_P

PCIE

HSIO.PCIE.REXT

PCIE

HSIO.PCIE0.PLL_REF_RETURN

PCIE

HSIO.PCIE0.RX0_N

PCIE

HSIO.PCIE0.RX0_P

PCIE

HSIO.PCIE0.TX0_N

PCIE

HSIO.PCIE0.TX0_P

SCU ALT0

SCU.PMIC_I2C.SCL

INPUT

SCU ALT0

SCU.PMIC_I2C.SDA

INPUT

SCU ALT0

SCU.DSC.PMIC_INT_B

INPUT

ANA

SNVS.PMIC_ON_REQ

SCU ALT0

SCU.DSC.POR_B

INPUT

FASTD ALT0

LSIO.QSPI0A.DATA0

INPUT

FASTD ALT0

LSIO.QSPI0A.DATA1

INPUT

FASTD ALT0

LSIO.QSPI0A.DATA2

INPUT

Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z PD(50K) PD(50K) PU(50K) PU(50K)
PD(50K) PD(50K) PU(50K)
PU(50K) PU(50K) PU(50K)
PU(50K) PD(50K) PD(50K) PD(50K)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

124

NXP Semiconductors

Ball
AH12 AL11 AP12 AM12 AK12 AM10 AL9 AJ11 AM8 AK10 AR11 AH10 AJ9 AP32 AM32 M34 J35 K34 L33 L35 M32 N35 AJ31 AK32 AL31 AJ29 AF28 AH30 AG29 AD28 E35 G31 D34 R33 R35

Package information and contact assignments

Table 124. 21 x 21 mm functional contact assignments (continued)

Ball Name

Power Domain

Ball

Type
1

Default

Mode

Reset Condition2

Default Function

Default Default Direction Pull

QSPI0A_DATA3 QSPI0A_DQS QSPI0A_SCLK QSPI0A_SS0_B QSPI0A_SS1_B QSPI0B_DATA0 QSPI0B_DATA1 QSPI0B_DATA2 QSPI0B_DATA3 QSPI0B_DQS QSPI0B_SCLK QSPI0B_SS0_B QSPI0B_SS1_B
RTC_XTALI RTC_XTALO SAI0_RXD
SAI0_TXC SAI0_TXD SAI0_TXFS SAI1_RXC SAI1_RXD SAI1_RXFS SCU_BOOT_MODE0 SCU_BOOT_MODE1 SCU_BOOT_MODE2 SCU_BOOT_MODE3 SCU_GPIO0_00 SCU_GPIO0_01 SCU_PMIC_STANDBY SCU_WDOG_OUT3 SPDIF0_EXT_CLK SPDIF0_RX SPDIF0_TX SPI0_CS0 SPI0_CS1

VDD_QSPI0A_1P8_3P3

FASTD ALT0

VDD_QSPI0A_1P8_3P3

FASTD ALT0

VDD_QSPI0A_1P8_3P3

FASTD ALT4

VDD_QSPI0A_1P8_3P3

FASTD ALT4

VDD_QSPI0A_1P8_3P3

FASTD ALT4

VDD_QSPI0B_1P8_3P3

FASTD ALT0

VDD_QSPI0B_1P8_3P3

FASTD ALT0

VDD_QSPI0B_1P8_3P3

FASTD ALT0

VDD_QSPI0B_1P8_3P3

FASTD ALT0

VDD_QSPI0B_1P8_3P3

FASTD ALT0

VDD_QSPI0B_1P8_3P3

FASTD ALT4

VDD_QSPI0B_1P8_3P3

FASTD ALT4

VDD_QSPI0B_1P8_3P3

FASTD ALT4

VDD_SNVS_LDO_1P8_CAP

ANA

VDD_SNVS_LDO_1P8_CAP

ANA

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_ANA1_1P8

SCU ALT0

VDD_ANA1_1P8

SCU ALT0

VDD_ANA1_1P8

SCU ALT0

VDD_ANA1_1P8

SCU ALT0

VDD_ANA1_1P8

GPIO ALT0

VDD_ANA1_1P8

GPIO ALT0

VDD_ANA1_1P8

SCU ALT0

VDD_ANA1_1P8

SCU ALT1

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT0

VDD_ESAI_SPDIF_1P8_2P5_3P3 GPIO ALT4

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

LSIO.QSPI0A.DATA3 LSIO.QSPI0A.DQS LSIO.GPIO3.IO16 LSIO.GPIO3.IO14 LSIO.GPIO3.IO15 LSIO.QSPI0B.DATA0 LSIO.QSPI0B.DATA1 LSIO.QSPI0B.DATA2 LSIO.QSPI0B.DATA3 LSIO.QSPI0B.DQS LSIO.GPIO3.IO17 LSIO.GPIO3.IO23 LSIO.GPIO3.IO24 SNVS.RTC_XTALI SNVS.RTC_XTALO ADMA.SAI0.RXD
ADMA.SAI0.TXC ADMA.SAI0.TXD ADMA.SAI0.TXFS ADMA.SAI1.RXC ADMA.SAI1.RXD ADMA.SAI1.RXFS SCU.DSC.BOOT_MODE0 SCU.DSC.BOOT_MODE1 SCU.DSC.BOOT_MODE2 SCU.DSC.BOOT_MODE3 SCU.GPIO0.IO00 SCU.GPIO0.IO01 SCU.DSC.PMIC_STANDBY SCU.WDOG0.WDOG_OUT ADMA.SPDIF0.EXT_CLK ADMA.SPDIF0.RX LSIO.GPIO0.IO11 ADMA.SPI0.CS0 ADMA.SPI0.CS1

INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT

PD(50K) PD(50K) PD(50K) PU(50K) PU(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PU(50K) PU(50K)

INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PU(50K) OUTPUT HiZ OUTPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K) INPUT PD(50K)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

125

Package information and contact assignments

Ball
P30 P34 R31 P28 R29 N31 P32 J31 K30 H32 G33 F34 AE29 AB32 AA29 K32 N29 L31 H34 AD34 AC35 E19 D18 G17 H18 D16 E17 F16 D14 H16 E13 B18 A19 F14 H14

Table 124. 21 x 21 mm functional contact assignments (continued)

Ball Name

Power Domain

Ball

Type
1

Default

Mode

Reset Condition2

Default Function

Default Default Direction Pull

SPI0_SCK SPI0_SDI SPI0_SDO SPI2_CS0 SPI2_SCK SPI2_SDI SPI2_SDO SPI3_CS0 SPI3_CS1 SPI3_SCK SPI3_SDI SPI3_SDO TEST_MODE_SELECT UART0_RX UART0_TX UART1_CTS_B UART1_RTS_B UART1_RX UART1_TX UART2_RX UART2_TX USB_OTG1_DN USB_OTG1_DP USB_OTG1_ID USB_OTG1_VBUS USB_OTG2_DN USB_OTG2_DP USB_OTG2_ID USB_OTG2_REXT USB_OTG2_VBUS USB_SS3_REXT USB_SS3_RX_N USB_SS3_RX_P USB_SS3_TC0 USB_SS3_TC1

VDD_SPI_SAI_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3
VDD_ANA1_1P8 VDD_CAN_UART_1P8_3P3 VDD_CAN_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_SPI_MCLK_UART_1P8_3P3 VDD_CAN_UART_1P8_3P3 VDD_CAN_UART_1P8_3P3
VDD_USB_3P3 VDD_USB_3P3 VDD_USB_3P3
VDD_USB_3P3 VDD_USB_3P3 VDD_USB_3P3 VDD_USB_3P3
VDD_USB_1P8 VDD_USB_SS3_LDO_1P0_CAP VDD_USB_SS3_LDO_1P0_CAP
VDD_USB_3P3 VDD_USB_3P3

GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO SCU GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO OTG OTG OTG OTG OTG OTG OTG OTG OTG USB3 USB3 USB3 GPIO GPIO

ALT0 ALT0 ALT4 ALT0 ALT0 ALT0 ALT4 ALT0 ALT0 ALT0 ALT0 ALT4 ALT0 ALT0 ALT4 ALT0 ALT4 ALT0 ALT4 ALT0 ALT4
ALT0 ALT0

ADMA.SPI0.SCK ADMA.SPI0.SDI LSIO.GPIO1.IO06 ADMA.SPI2.CS0 ADMA.SPI2.SCK ADMA.SPI2.SDI LSIO.GPIO1.IO01 ADMA.SPI3.CS0 ADMA.SPI3.CS1 ADMA.SPI3.SCK ADMA.SPI3.SDI LSIO.GPIO0.IO14 SCU.TCU.TEST_MODE_SELECT ADMA.UART0.RX LSIO.GPIO1.IO22 ADMA.UART1.CTS_B LSIO.GPT0.CLK ADMA.UART1.RX LSIO.GPIO0.IO21 ADMA.UART2.RX LSIO.GPIO1.IO23 CONN.USB_OTG1.DN CONN.USB_OTG1.DP CONN.USB_OTG1.ID CONN.USB_OTG1.VBUS CONN.USB_OTG2.DM CONN.USB_OTG2.DP CONN.USB_OTG2.ID CONN.USB_OTG2.RTRIM CONN.USB_OTG2.VBUS CONN.USB_SS3.REXT CONN.USB_SS3.RX_M_LN_0 CONN.USB_SS3.RX_P_LN_0 ADMA.I2C1.SCL ADMA.I2C1.SCL

INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT

PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K) PD(50K)

INPUT INPUT

Hi-Z Hi-Z PD(50K) PD(50K)

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

126

NXP Semiconductors

Package information and contact assignments

Table 124. 21 x 21 mm functional contact assignments (continued)

Ball

Ball Name

Power Domain

Ball

Type
1

Default

Mode

Reset Condition2

Default Function

Default Default Direction Pull

G15

USB_SS3_TC2

VDD_USB_3P3

GPIO ALT0

ADMA.I2C1.SDA

INPUT PD(50K)

C15

USB_SS3_TC3

VDD_USB_3P3

GPIO ALT0

ADMA.I2C1.SDA

INPUT PD(50K)

A15

USB_SS3_TX_N

VDD_USB_SS3_LDO_1P0_CAP USB3

CONN.USB_SS3.TX_M_LN_0

B16

USB_SS3_TX_P

VDD_USB_SS3_LDO_1P0_CAP USB3

CONN.USB_SS3.TX_P_LN_0

E23

USDHC1_CD_B

VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT0

CONN.USDHC1.CD_B

INPUT PU(50K)

G23

USDHC1_CLK

VDD_USDHC1_1P8_3P3

FASTD ALT4

LSIO.GPIO4.IO23

INPUT PD(50K)

C25

USDHC1_CMD

VDD_USDHC1_1P8_3P3

FASTD ALT0

CONN.USDHC1.CMD

INPUT PU(50K)

A27

USDHC1_DATA0

VDD_USDHC1_1P8_3P3

FASTD ALT0

CONN.USDHC1.DATA0

INPUT PU(50K)

B26

USDHC1_DATA1

VDD_USDHC1_1P8_3P3

FASTD ALT0

CONN.USDHC1.DATA1

INPUT PU(50K)

D26

USDHC1_DATA2

VDD_USDHC1_1P8_3P3

FASTD ALT0

CONN.USDHC1.DATA2

INPUT PU(50K)

E25

USDHC1_DATA3

VDD_USDHC1_1P8_3P3

FASTD ALT0

CONN.USDHC1.DATA3

INPUT PU(50K)

B24

USDHC1_RESET_B

VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT4

LSIO.GPIO4.IO19

INPUT PU(50K)

A25

USDHC1_VSELECT

VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT4

LSIO.GPIO4.IO20

INPUT PD(50K)

D24

USDHC1_WP

VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT0

CONN.USDHC1.WP

INPUT PD(50K)

AP34

XTALI

VDD_ANA1_1P8

ANA

SCU.DSC.XTALI

AM34

XTALO

VDD_ANA1_1P8

ANA

SCU.DSC.XTALO

1 FASTD are GPIO balls configured for high speed operation using the FASTRZ control. 2 Reset condition shown is before boot code execution. For pad changes after boot code execution, see the System Boot chapter
of the device reference manual. 3 SCU_WDOG_OUT was previously named JTAG_TRST_B; it has been renamed because its functionality has changed.

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

127

Package information and contact assignments
The following table shows DDR pin function.

Ball Name

Ball

DDR_ATO

AB8

DDR_CK0_N

Y6

DDR_CK0_P

W5

DDR_CK1_N

N5

DDR_CK1_P

P6

DDR_DCF00

W1

DDR_DCF01

U3

DDR_DCF03

U1

DDR_DCF04

U7

DDR_DCF05

U5

DDR_DCF07

T2

DDR_DCF08

AB4

DDR_DCF09

AB6

DDR_DCF10

AC5

DDR_DCF11

W3

DDR_DCF12

Y8

DDR_DCF14

Y2

DDR_DCF15

Y4

DDR_DCF16

W7

DDR_DCF17

N3

DDR_DCF18

L1

DDR_DCF19

N1

DDR_DCF20

P4

DDR_DCF21

T8

DDR_DCF22

P2

DDR_DCF23

T4

DDR_DCF24

T6

DDR_DCF25

K8

DDR_DCF26

L7

DDR_DCF27

K4

DDR_DCF28

K6

Table 125. DRAM pin function
LPDDR4 function --
DDR_CK0_N DDR_CK0_P DDR_CK1_N DDR_CK1_P
CA2_A CA4_A CA5_A
-- -- -- CA3_A ODT_CA_A CS0_A CA0_A CS1_A CKE0_A CKE1_A CA1_A CA4_B RESET_N CA5_B -- -- -- -- -- ODT_CA_B CA3_B CA0_B CS0_B

DDR3L function --
DDR_CK0_N DDR_CK0_P DDR_CK1_N DDR_CK1_P
A5 A6 A7 A8 A9 RAS# A3 ODT A1 A0 A2 -- -- A4 A12 RESET_N A14 A15 BA0 BA1 BA2 CAS# ODT1 A13 A10 CS_N[0]

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

128

NXP Semiconductors

Ball Name DDR_DCF29 DDR_DCF30 DDR_DCF31 DDR_DCF32 DDR_DCF33
DDR_DM0 DDR_DM1 DDR_DM2 DDR_DM3 DDR_DM4 DDR_DQ00 DDR_DQ01 DDR_DQ02 DDR_DQ03 DDR_DQ04 DDR_DQ05 DDR_DQ06 DDR_DQ07 DDR_DQ08 DDR_DQ09 DDR_DQ10 DDR_DQ11 DDR_DQ12 DDR_DQ13 DDR_DQ14 DDR_DQ15 DDR_DQ16 DDR_DQ17 DDR_DQ18 DDR_DQ19 DDR_DQ20 DDR_DQ21 DDR_DQ22

Ball K2 N7 L5 L3 P8 AJ7 AF4 D4 E1 AP6 AF6 AE5 AH8 AF8 AM4 AM6 AL5 AL7 AJ1 AJ3 AH2 AH4 AC3 AE3 AB2 AC1 B6 E9 E7 D8 G7 H8 H6

Package information and contact assignments

Table 125. DRAM pin function (continued)

LPDDR4 function CS1_B CKE0_B CKE1_B CA1_B CA2_B
DDR_DMI0 DDR_DMI1 DDR_DMI2 DDR_DMI3
-- DDR_DQ00 DDR_DQ01 DDR_DQ02 DDR_DQ03 DDR_DQ04 DDR_DQ05 DDR_DQ06 DDR_DQ07 DDR_DQ08 DDR_DQ09 DDR_DQ10 DDR_DQ11 DDR_DQ12 DDR_DQ13 DDR_DQ14 DDR_DQ15 DDR_DQ16 DDR_DQ17 DDR_DQ18 DDR_DQ19 DDR_DQ20 DDR_DQ21 DDR_DQ22

DDR3L function CS_N[1] CKE0 CKE1 A11 WE#
DDR_DMI0 DDR_DMI1 DDR_DMI2 DDR_DMI3 DDR_DMI4 DDR_DQ00 DDR_DQ01 DDR_DQ02 DDR_DQ03 DDR_DQ04 DDR_DQ05 DDR_DQ06 DDR_DQ07 DDR_DQ08 DDR_DQ09 DDR_DQ10 DDR_DQ11 DDR_DQ12 DDR_DQ13 DDR_DQ14 DDR_DQ15 DDR_DQ16 DDR_DQ17 DDR_DQ18 DDR_DQ19 DDR_DQ20 DDR_DQ21 DDR_DQ22

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

129

Package information and contact assignments

Table 125. DRAM pin function (continued)

Ball Name DDR_DQ23 DDR_DQ24 DDR_DQ25 DDR_DQ26 DDR_DQ27 DDR_DQ28 DDR_DQ29 DDR_DQ30 DDR_DQ31 DDR_DQ32 DDR_DQ33 DDR_DQ34 DDR_DQ35 DDR_DQ36 DDR_DQ37 DDR_DQ38 DDR_DQ39 DDR_DQS0_N DDR_DQS0_P DDR_DQS1_N DDR_DQS1_P DDR_DQS2_N DDR_DQS2_P DDR_DQS3_N DDR_DQS3_P DDR_DQS4_N DDR_DQS4_P DDR_DTO0 DDR_DTO1 DDR_VREF
DDR_ZQ

Ball G5 H2 H4 G3 G1 A7 B4 B2 A5 AL1 AM2 AL3 AP2 AP8 AP10 AR9 AR7 AH6 AJ5 AE1 AF2 E5 D6 E3 D2 AR5 AP4 AC7 AE7 AD8 G9

LPDDR4 function DDR_DQ23 DDR_DQ24 DDR_DQ25 DDR_DQ26 DDR_DQ27 DDR_DQ28 DDR_DQ29 DDR_DQ30 DDR_DQ31 -- -- -- -- -- -- -- --
DDR_DQS0_N DDR_DQS0_P DDR_DQS1_N DDR_DQS1_P DDR_DQS2_N DDR_DQS2_P DDR_DQS3_N DDR_DQS3_P
-- -- -- -- -- --

DDR3L function DDR_DQ23 DDR_DQ24 DDR_DQ25 DDR_DQ26 DDR_DQ27 DDR_DQ28 DDR_DQ29 DDR_DQ30 DDR_DQ31 DDR_DQ32 DDR_DQ33 DDR_DQ34 DDR_DQ35 DDR_DQ36 DDR_DQ37 DDR_DQ38 DDR_DQ39
DDR_DQS0_N DDR_DQS0_P DDR_DQS1_N DDR_DQS1_P DDR_DQS2_N DDR_DQS2_P DDR_DQS3_N DDR_DQS3_P DDR_DQS4_N DDR_DQS4_P
-- -- -- --

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

130

NXP Semiconductors

7 Release Notes
This table provides release notes for the data sheet.

Rev. Number

Date

0 05/2020 · Initial draft

Table 126. Data sheet release notes Substantive Change(s)

Release Notes

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020

NXP Semiconductors

131

How to Reach Us:
Home Page: nxp.com
Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, Vision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.
© 2018-2020 NXP B.V.
Document Number: IMX8QXPIEC Rev. 0
05/2020


Acrobat Distiller 19.0 (Windows)