Low-voltage power distribution and control systems > Panelboards >

Pow-R-Line 1X, 2X and 3X panelboards

Contents
General Description 22.1-2
Panelboards Overview 22.1-2
Application Considerations and Definitions 22.1-4
Pow-R-Line 1X 22.1-7
Pow-R-Line 2X 22.1-8
Pow-R-Line 3X 22.1-9
Devices 22.1-11
Circuit Breaker Technical Data 22.1-11
Power Xpert Release Trip Unit for Molded Case Circuit Breakers 22.1-14
Metering Devices 22.1-16
Monitoring Equipment and Surge Protective Devices 22.1-17
Pow-R-Line Metering and Monitoring Options 22.1-18
Layouts and Dimensions 22.1-19
PRL1X Layout Guide 22.1-19
PRL2X Layout Guide 22.1-24
PRL3X Layout Guide 22.1-30
Additional Resources 22.1-32
Series Rated Combinations 22.1-32
Panelboard Selection Guide 22.1-43
Types PRL1X, 2X and 3X Modifications 22.1-46

Panelboards Overview

Choices to quickly change feeder breakers in electrical distribution equipment have evolved over the years. While using drawout switchgear with power air circuit breakers remains a highly reliable solution, requests for drawout molded case circuit breakers (MCCBs) have increased. And, customers need a wall-mounted panelboard solution with front-accessibility and front-connected equipment to meet space requirements and application needs.
Eaton's drawout MCCB Pow-R-Line ${ }^{\circledR}$ 4DX (PRL4DX) panelboard provides this solution.

This is the first design to offer twoand three-pole MCCBs in a mechanical drawout design. Breaker ratings from 20 A to 600 A use unique drawout cassettes. Breakers are inserted and removed via a mechanical removal system similar to other drawout designs associated with switchgear; however, these breakers are horizontally mounted in a traditional panelboard groupmounted manner.

Market and Segment Applications

While the drawout MCCB panelboard design may be substituted for nearly any traditional application with feeder MCCBs, it has been specifically designed to meet the needs of several industries, including:

- Electrical distribution systems where a changeout of circuit breakers is needed to upgrade equipment to a new process
- Data centers

■ Industrial facilities to minimize downtime

- Institutions
- Laboratories
- Healthcare facilities
- Critical load applications

Standards and Certifications

■ UL ${ }^{\circledR} 67$ Listed for wall-mounted applications from 600 A to 1200 A
■ National Electrical Code ${ }^{\circledR}$

Available Ratings

The panelboards are rated at 240 Vac , 480 Vac and 600 Vac . Fault current is available up to 200 kAIC at 240 Vac , 100 kAIC at 480 Vac and 65 kAIC at 600 Vac . The short-circuit current rating of the panelboard is determined by the low short-circuit current rating of the lowest rated overcurrent device in the panelboard.
Boxes and trims are UL 50 Listed and labeled. Both the box and the trim are painted ANSI-61 light gray. Deadfront covers are also painted ANSI-61 light gray to match box and trim.
Drawout feeder MCCBs are available in two- and three-pole offerings from 20 A to 600 A . Main breakers above 600 A are fixed-mounted using a traditional bolt-on design. Main breakers 600 A and below are available with either the traditional fixed-mounted, bolt-on design or in a drawout cassette. For drawout mains or feeders above 600 A, please use Eaton's switchboard offering.

Panelboard Options

- Copper and silver-plated copper
- Copper lugs
- Density-rated bus
- Ground bars
- Customer-owned meters
- Service entrance equipment construction
- Surge protective devices
- Seismically qualified panelboards

General Construction Features

Eaton's assembled panelboards are designed for sequence phase connection of branch circuit devices. This allows complete flexibility of circuit arrangement (single-, two- or three-poles) to allow balance of the electrical load on each phase.
Sturdy, rigid chassis assembly ensures accurate alignment of interior with panel front; prevents flexing and minimizes possibility of loosening or damage to current carrying parts during and after installation.

Four point in-and-out adjustment of panel interior is provided to meet critical depth dimensions on flush installations. This compensates for possible misalignment of box at installation.
Main lugs are mechanical solderless type and approved for copper and aluminum conductors.

Enclosures

Boxes are code-gauge galvanized steel except for column type panelboards, which include a painted box finished in ANSI-61 light gray to match the trim. Standard panelboard cabinets are designed for indoor use. Alternate types are available for outdoor and special purpose applications.

All enclosures are furnished in accordance with UL standards and include wiring gutters with proper wire bending space. Special cabinets can be provided at an additional charge.
The box dimensions shown are inside dimensions. For outside dimensions, add 0.25 -inch (6.4 mm).

Standard panelboard boxes are supplied without knockouts (blank endwalls).

EZ ${ }^{\text {TM }}$ Trim

The EZ Box and EZTrim are provided standard for Pow-R-Line 1X and Pow-RLine 2 X lighting panelboards, as well as Pow-R-Line 3X mid-range panelboards.

EZTrim Provides Standard Door-in-Door Construction With No Exposed Hardware or Sharp Ridges. No Tools are Required for Installation.

The trims for lighting and appliance branch circuit panelboards and small power distribution panelboards include a door with rounded corners and concealed hinges. A flush-type latch and lock assembly is included. All locks are keyed alike. These trims are available in both surface and flush mounted designs.

Fronts for power distribution panelboards use a unique breaker front cover design in which each device has a dedicated bolt-on steel cover. The individual covers form a single deadfront for the panelboard that is used in conjunction with two wiring gutter covers to complete the trim. A door is not finished as part of the standard offering on these panelboards but can be provided, for an additional charge, using a deeper than standard box.

Combination AFCI Circuit Breakers

Eaton's 125 Vac AFCI single- and two-pole, 15 A and 20 A bolt-on breakers in panelboards meet Article 210.12 of the NEC ${ }^{\circledR}$. See the NEC for definitions and details.

Pow-R-Line 1X, 2X and 3X

- Robust design using Eaton circuit breakers
■ Increased ratings (with Series Rated main circuit breakers) provide higher short-circuit ratings
■ Pow-R-Line 3X can accommodate branch breakers dual-mounted through 150 A and single-mounted through 225 A
- Lock and Door opening mechanism includes a positive slide catch and right- or left-hand installation
- Surface or flush trims
- UL tested and listed. Meets NEC and NEMA ${ }^{\circledR}$ standards

Application Considerations and Definitions

Standards

All Eaton's panelboards are designed to meet the following applicable industry standards, except where noted:

1. Underwriters Laboratories
a. Panelboards: UL 67
b. Cabinets, boxes and trims: UL 50

Note: Only panelboards containing UL listed devices can be UL labeled.
2. National Electrical Code
3. NEMA Standards: PB 1
4. Federal Specification W-P-115c

Circuit breaker-Type I Class 1
Fusible switch-Type II Class 1

Panelboard Selection Factors

In selecting a panelboard, the following factors must be considered:
a. Service (voltage and frequency).
b. Interrupting capacity (fully or series rated).
c. Ampere rating of main.
d. Ampere ratings of branches.
e. Installation environment.

Codes and standards mandates.

Panelboard Short-Circuit Rating

The short-circuit rating of Eaton's assembled panelboards are test verified by, and listed with, Underwriters Laboratories. Generally, these ratings are that of the lowest interrupting rated device in the panel.

Certain exceptions to this rule exist where branch devices have been UL tested in combination with specific main devices having a higher interrupting rating. Where these defined main breaker and branch breaker combinations are used, the series short-circuit rating of the assembled panelboard will be the same as the series tested rating of the approved rated main breaker. Available main and branch breaker combinations are tabulated on Page 22.1-32 through Page 22.1-42. All combinations shown are UL tested and listed.

These series ratings apply to panels having main devices, or main lug only panelboards fed remotely by the device listed in the series ratings chart as the main, for which UL listed tests were conducted.

Selective Coordination

Please refer to Molded Case Circuit Breakers Design Guides for detailed information on overcurrent protective device combinations for use on selectively coordinated systems.

Service Entrance Equipment

NEC Articles 230.F and G, and UL, require that:
a. Panels used as service entrance equipment must be located near the point where the supply conductors enter the building.
b. A panelboard having main lugs only shall have a maximum of six service disconnects to de-energize the entire panelboard from the supply conductors. Where more than six disconnects are required, a main service disconnect must be provided.
c. Must include connector for bonding and grounding neutral conductor.
d. A service-entrance-type UL label must be factory installed.
e. Ground fault protection of equipment shall be provided for solidly grounded wye electrical services of more than 150 V to ground, but not exceeding 600 V phase-to-phase for each service disconnecting means rated 1000 A or more.
Service entrance panels must be identified as such on the order entry to the manufacturing location.

Column Type Panelboards

The same general code restrictions apply as for standard width panels except where trough extensions are used.

Multi-Section Panelboards

When more than 42 overcurrent protective devices are required, two or more separate enclosures may be required. Separate fronts for each box are standard.

Interconnecting Multi-Section Panelboards

When a panelboard, for connection to one feeder, must be furnished in more than one section (box), each section must be furnished with main bus and terminals of the same rating, unless a main overcurrent device is provided in each section.
Sub-feed or through-feed provisions must also be added to provide connection capability to the second section.

Note: Sub-feed or through-feed lugs cannot be used on any panelboard that is not protected by a single main overcurrent device either in the panelboard or immediately upstream, i.e., service entrance panelboards with main lugs only using the six disconnect rule.

Sub-Feed Lugs (Figure 22.1-1)

Sub-feed lugs are one means of interconnecting multi-section panels. The sub-feed (second set of) lugs are mounted directly beside the main lugs. These are required in each section except the last panel in the lineup. The feeder cables are brought into the wiring gutter of the first section and connected to the main lugs. Another set of the same size cables are connected to the sub-feed lugs (Section 1) and are carried over to the main lugs of the adjacent panel. Cross connection cables are not furnished by Eaton. Sub-feed lugs are only available on main lug only panels.

Note: Sub-feed lugs may not be used on main lug only (six disconnect rule) service entrance panels.

Figure 22.1-1. Sub-Feed Lugs

Through-Feed Lugs (Figure 22.1-2)

Through-feed lugs are another method to interconnect multi-section panelboards. The incoming feeder cables are connected to the main lugs or main breaker at the bottom of panel (Section 1). Another set of lugs (through-feed) are located at the opposite end of the main bus. The interconnecting cables are connected to the through-feed lugs in Section 1 and are carried over to the main lugs in Section 2. The connection arrangement could be reversed, i.e., main lugs at top; throughfeed lugs at bottom end of panel. Cross cables are not furnished by Eaton.
Note: Through-feed lugs may not be used on main lug only (six disconnect rule) service entrance panels.

Figure 22.1-2. Through-Feed Lugs

Multiple Section PanelboardFlush Mounted

Shown below is the standard method for flush mounting multiple section lighting and distribution panelboards using standard flush trims.

Figure 22.1-3. Multiple Section PanelboardFlush Mounted-Dimensions in Inches (mm)

Branch Circuit Loading for

 Lighting PanelsThe size of mains and branches should be selected based on the following:
a. Lighting circuits: NEC Article 210, 215, 220 and 240.
b. Distribution circuits, actual or continuous loads: NEC Article 384.16.
c. Motor circuits: NEC Article 430.
d. Diversity factor.
e. Provision for future loading.

Overcurrent Protection

National Electrical Code Article 408 states a panelboard shall be protected by an overcurrent protective device having a rating not greater than that of the panelboard. The overcurrent protective device shall be located within or at any point on the supply side of the panelboard.

Exceptions to Article 408 selectively apply. Refer to the National Electrical Code Article 408 for specifics.

Ground Fault Protection

Ground fault protection (GFP) may be added to most panelboards using Eaton's integral molded case circuit breaker GFP and included feeder devices on power panelboards and mains on all panelboards.

Arcflash Reduction Maintenance System ${ }^{\text {TM }}$

Eaton's Arcflash Reduction Maintenance System is available on many molded case circuit breakers from 70 A to air power circuit breakers at 5000 A. Recognized by the 2011 National Electrical Code and the National Electrical Safety Code (NFPA 70E), the Arcflash Reduction Maintenance System allows breakers to trip quickly thus significantly reducing the available arc flash potential.

Ambient Temperatures

The primary function of an overcurrent device is to protect the conductor and its insulation against overheating. In selecting the size of the devices and conductors, consideration should be given to the ambient temperature surrounding the conductors within and external to the panelboard. Cumulative heating within the panelboard may cause premature operation of the overcurrent protective devices.

UL test procedures are based, in part, on 80% loading of panelboard branch circuit devices. Article 408 of the NEC limits the loading of overcurrent devices in panelboards to 80% of rating where in normal operation the load will continue for three hours or more.

Further derating may be required, depending on such factors as ambient temperature, duty cycle, frequency or altitude.
Exception:There is one exception to this rule in both UL and NEC. It applies to assemblies and overcurrent devices that have been approved for continuous duty at 100% of its rating. This exception is covered in NEC 210.20 (a). Also see Molded Case Circuit Breakers Design Guides for additional information.

Special Conditions

Standard panelboards, assembled with standard components, are adequate for most applications. However, special consideration should be given to those required for application under special conditions such as:
a. Excessive vibration or shock.
b. Frequencies above 60 cycles.
c. Altitudes above $6600 \mathrm{ft}(2012 \mathrm{~m})$.
d. Damp environment (possible fungus growth).
e. Compliance with federal, state and municipal electrical codes and standards.

Seismic Qualification

Refer to Power Distribution Systems Design Guides for information on seismic qualification for this and other Eaton products.

Harmonic Currents

Standard panelboard neutrals are rated for 100% of the panelboard current. However, because harmonic currents can cause overheated neutrals, an option is provided for neutrals to be rated at 200\% (1200 A maximum neutral for 600 A main bus) of the panelboard phase current. Panelboards with the 200% rated neutral are UL listed as suitable for use with nonlinear loads.
Prior to specifying the 200% rated neutral, Eaton recommends a harmonic survey be conducted of the distribution system, be it new or existing.

Surge Protective Devices (SPD)

The quality of power feeding sensitive electronic loads is critical to the reliable operation of any facility. In modern offices, hospitals and manufacturing facilities, the most frequent causes of microprocessor-based equipment downtime and damage are voltage transients and electrical noise.
Electrical loads and microprocessorbased equipment are highly susceptible to both high and low energy transients. High energy transients include lightning induced surges and power company switching. These high energy transients can destroy components instantly.

More frequently the electrical system experiences low energy transients and high frequency noise.

The effects of continual low energy transients and high frequency noise can cause erratic equipment performance or sudden failure of electronic circuit board components.

Eaton can provide protective and diagnostic systems integral to panelboards. The SPD is integrated into the panelboards using a "zero lead length" direct bus bar connection. Integral disconnect is used on all Pow-R-Line 4 panels.

Eaton SPDs May be Integrated

 into Most PanelboardsThe SPD protects sensitive electronic equipment from the damaging effects of high and low energy transients.

For complete product description and available ratings, refer to Surge Protection (SPD) \& Power Conditioning Products Design Guides.

Compact Panelboard Meter

Most Eaton panelboards can integrate a compact meter for reading the panelboard power and energy usage. Eaton's Power Xpert Meter 350 has ANSI $12.200 .5 \%$ accuracy, a bright backlit LCD display, real energy pulse output, phase loss alarm and optional RS-485 communication capability.

Pow-R-Line 1X

Pow-R-Line 1X

General Description

Panelboard Ratings

Voltage

- 240 Vac maximum

Main Lugs

■ 100-600 A

Main Breakers

■ 100-600 A

Branch Breakers

- 15-100 A
(Bolt-on or plug-on chassis)
Short-Circuit Current Ratings (Symmetrical)
- $240 \mathrm{Vac}: 10 \mathrm{kA}$ and 22 kA fully rated
- $240 \mathrm{Vac}: 22-200 \mathrm{kA}$ series rated

Service

■ Three-phase, four-wire 208Y/120V and 240/120 V delta
■ Single-phase, three-wire 120/240 V
■ Single-phase, two-wire 120 V
■ Three-phase, three-wire 208 V and 240 V

Suitable for service entrance applications when specified.

Mains

For available mains, refer to Table 22.1-1.
Main breakers, 100 A,Types BAB and QBH are horizontally mounted, same as branch breakers. All other main breakers are vertically mounted.

Branch Circuits

For available branch devices, refer to Table 22.1-2.

Main Lugs Only

The short-circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.

Main lugs only ampere ratings: $100,225,400$ and 600.

Main Circuit Breakers

The short-circuit rating shown is that of the main breaker only. The short-circuit rating of the assembled panelboard is the rating of the lowest fully rated main or branch device or the rating of an approved series rated combination.

Series Rated Combinations

Refer to series rating tables beginning on Page 22.1-34 for the approved series rated combinations available for the branch circuit breakers listed in Table 22.1-2.

Table 22.1-1. Main Circuit Breakers

Breaker Frame Amperes	Breaker Type	Interrupting Rating (kA Symmetrical) at 240 Vac

100	PAB	10
100	QBHW	22
100	PDG2xF	18
225	PDG2xG,	65
	PDG3xG5*	
225	PDG2xM	100
225	PDG2xP	200
225	PDD2xF	22
225	PDD2xG	65
225	PDD2xM	100
225	PDD2xM	200
400	PDD3xGy	65
400	PDG3xG*	65
400	PDG3xM*	100
400	PDG3xP*	200
400	LHH	100
600	PDG3xG*	65
600	LGS	85
600	PDG3xM	100
600	PDG3xM	102

Table 22.1-2. Branch Circuit Breakers

Breaker Type	Ampere Rating	Number of Poles	Interrupting Rating (kA Symmetrical)		
			120 Vac	120/240 Vac	240 Vac
BAB, HOP BAB, HQP BAB, HQP	$\begin{aligned} & \hline 15-70 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2,3 \end{aligned}$	10	$\overline{10}$	$\frac{-}{10}$
BAB-D © 1 , HQP-D (1) BAB-C (2, HQP-B (2) BABRP (3) BABRSP (3)	$\begin{aligned} & 15-60 \\ & 15-30 \\ & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & \hline 1,2 \\ & 1,2 \\ & 1,2 \\ & 1,2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 10 \\ 10 \\ 10 \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 10 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$
QBGF, QBGFEP, QPGF, QPGFEP QBCAF (5)	$\begin{aligned} & 15-50 \oplus \\ & 15-50 \oplus \\ & 15-20 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1 \end{aligned}$	$\begin{array}{\|l} \hline 10 \\ 10 \\ 10 \end{array}$	$\begin{array}{\|l} 10 \\ 10 \\ 10 \end{array}$	$-$
$\begin{aligned} & \text { QBHW } \\ & \text { QBHW } \\ & \text { QBHW } \end{aligned}$	$\begin{aligned} & \hline 15-70 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2,3 \end{aligned}$	22	$\overline{22}$	$\frac{-}{-}$
QBHGF, QBGFEP QPHGF, QPHGFEP QBHCAF (5)	$\begin{aligned} & \hline 15-30 \\ & 15-30 \\ & 15-20 \end{aligned}$	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline 22 \\ 22 \\ 22 \end{array}$	-

(1) HID (High Intensity Discharge) rated breaker.
(2) Switching neutral breaker. Single-pole device requires two-pole space, two-pole device requires three-pole space.
(3) Solenoid operated breaker.
(4) 50 A is two-pole only.
(5) Arc fault breaker.

Pow-R-Line 2X

Pow-R-Line 2X

General Description

Panelboard Ratings

Voltage

- 240 Vac maximum

■ 480Y/277 Vac maximum
Note: PRL2X panelboards are suitable for use on three-phase, three-wire applications when derived from a three-phase, four-wire $480 \mathrm{Y} / 277 \mathrm{Vac}$ service where the neutral is not brought to the panelboard. For three-phase, three-wire 480 Vac delta services, use a PRL3X panelboard.

■ 250 Vdc maximum

Main Lugs

- 100-600 A

Main Breakers

■ 100-600 A

Branch Breakers

■ 15-100 A (bolt-on)

Short-Circuit Current Ratings (Symmetrical)

■ $240 \mathrm{Vac}: 65 \mathrm{kA}$ fully rated

- 240 Vac: $100-200 \mathrm{kA}$ series rated
- $480 \mathrm{Y} / 277 \mathrm{Vac}: 14 \mathrm{kA}$ fully rated

■ 480Y/277 Vac: 22-150 kA series rated
■ $250 \mathrm{Vdc}: 10 \mathrm{kA}$ and 14 kA fully rated

Service

■ Three-phase, four-wire $208 \mathrm{Y} / 120 \mathrm{~V}$ and 240/120 V delta and 480Y/277V
■ Single-phase, three-wire $120 / 240 \mathrm{~V}$
■ Single-phase, two-wire 120 V
■ Three-phase, three-wire 208 and 240 V

- Two-wire 125 Vdc
- Two-wire 250 Vdc

Suitable for service entrance applications when specified.

Mains

For available mains, refer to Table 22.1-3.
The GHB main breaker is horizontally mounted, same as branch breakers. All other main breakers are vertically mounted.

Branch Circuits

For available branch devices, refer to Table 22.1-4.

Main Lugs Only

The short-circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.

Main lugs only ampere ratings:
100,225 and 400.

Main Circuit Breakers

The short-circuit rating shown is that of the main breaker only. The short-circuit rating of the assembled panelboard is the rating of the lowest fully rated main or branch device or the rating of an approved series rated combination.

Series Rated Combinations

Refer to series rating tables beginning on Page 22.1-34 for the approved series rated combinations available for the branch circuit breakers listed in Table 22.1-4.

Table 22.1-3. Main Circuit Breakers

Breaker Frame (Amperes)	Breaker Type	Interrupting Rating (kA Symmetrical)		
		240 Vac	480Y/277 Vac	125/250Vdc
100	GHB ©	65	14	14
100	PDG2xF	18	14	10
225	PDG2xG, PDG3xG	65	35	10
225	PDG2xM	100	65	22
225	PDG2xP	200	100	22
225	PDD2xG	65	-	-
250	PDD2xM	100	-	-
250	PDD2xM	200	-	10
400	PDD3xGy	65	-	10
400	PDG3xG	65	25	-
400	PDG3xM*	100	65	22
400	LHH	100	65	22
400	PDG3xP*	200	100	22
600	PDG3xG*	65	55	42
600	LGS	65	65	42
600	PDG3xM*	100	100	
600	PDG3xM*	200		

(1) For use on 480Y/277 Vac systems only.

Table 22.1-4. Branch Circuit Breakers

Breaker Type	Ampere Rating	Number of Poles	Interrupting Rating (kA Symmetrical)				
			120 Vac	240 Vac	277 Vac	480Y/277 Vac	125/250 Vdc
GHB (2)	15-100	1	65	-	14	-	14
GHB (2)	15-100	2,3	-	65	-	14	14
GHO	15-30	1,2	65	-	14	-	-
HGHB	15-30	1	65	-	25	-	-
GHORSP (2)3	15-20	1,2	65	65	14	14	-
GHBGFEP	15-60	1	-	-	14	-	-

[^0]
Pow-R-Line 3X

Pow-R-Line 3X

General Description

Panelboard Ratings

Voltage

- 240 Vac maximum
- 480 Vac maximum
- 600 Vac maximum
- 250 Vdc maximum

Main Lugs

- 100-800 A

Main Breakers

■ 100-600 A

Branches

- $240 \mathrm{Vac} 15-225 \mathrm{~A}$
- $480 \mathrm{Vac} 15-225 \mathrm{~A}$
- 600 Vac $15-225 \mathrm{~A}$ (bolt-on)

Interrupting Capacity (Symmetrical)
■ 240 Vac: $10-200$ kA fully rated
■ 240 Vac: 22-200 kA series rated
■ 480 Vac: 14-100 kA fully rated
■ 480 Vac: 22-150 kA series rated
■ 250 Vdc : $10-22 \mathrm{kA}$ fully rated

Service

■ Three-phase, four-wire $208 \mathrm{Y} / 120 \mathrm{~V}$, 240/120 V delta and 480Y/277V
■ Single-phase, three-wire 120/240 V
■ Single-phase, two-wire 120 V
■ Three-phase, three-wire 240, 480 and 600 V
■ Two-wire 125 Vdc

- Two-wire 250 Vdc

Suitable for service entrance applications when specified.

Mains

For available mains, refer to Table 22.1-5.
Main breakers, 100, 150 and 225 A, Types PDG2xF, PDG2xG, PDG3xG, PDG2xM, HFDE and PDG2xP may be horizontally mounted, same as branch breakers. All other main breakers are vertically mounted.

Branch Circuits

For available branch devices, refer to Table 22.1-6.

Main Lugs Only

The short-circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.
Main lugs only ampere ratings: 100, 250, 400, 600 and 800.

Main Circuit Breakers

The short-circuit rating shown is that of the main breaker only. The short-circuit rating of the assembled panelboard is the rating of the lowest fully rated main or branch device, or the rating of an approved series rated combination.

Table 22.1-5. Main Circuit Breakers

Breaker Frame (Amperes)	Breaker Type	Interrupting Rating (kA Symmetrical)			
		$\mathbf{2 4 0 V a c}$	480 Vac	600 Vac	250 Vdc
$\begin{array}{\|l\|} \hline 100 \\ 100 \\ 100 \end{array}$	$\begin{array}{\|l} \text { PDG2xF } \\ \text { FCL } \\ \text { FB-P } \end{array}$	$\begin{gathered} \hline 18 \\ 200 \\ 200 \end{gathered}$	$\begin{array}{\|c\|} \hline 14 \\ 150 \\ 200 \\ \hline \end{array}$	$\frac{-}{-}$	$\begin{aligned} & \hline 10 \\ & \frac{10}{1} \end{aligned}$
225 225 225 225 225 225 225	PDG2xG, PDG3xG PDG2xM PDG2xP PDD2xF PDD2xG PDD2xM PDD2xM	65 100 200 22 65 100 200	$\begin{array}{\|r\|} \hline 35 \\ 65 \\ 100 \\ - \\ - \\ - \end{array}$	$\begin{array}{\|c} \hline 18 \\ 25 \\ 35 \\ - \\ - \\ - \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 22 \\ 22 \\ - \\ - \\ - \end{array}$
400 400 400 400 400 400 400	PDD3xGy PDG3xG PDG3xM* LHH PDG3xP* LCL LA-P	$\begin{array}{r} \hline 65 \\ 65 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \end{array}$	- 35 65 65 100 200 200	$\begin{gathered} - \\ 25 \\ 35 \\ - \\ 65 \\ - \\ 200 \end{gathered}$	$\begin{array}{\|l\|} \hline 10 \\ 10 \\ 22 \\ - \\ 22 \\ \overline{1} \end{array}$
$\begin{array}{\|l\|} \hline 600 \\ 600 \\ 400 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { PDG3xG* } \\ & \text { PDG3xM } \\ & \text { PDG3xM } \\ & \text { CLD (2) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 65 \\ 100 \\ 200 \\ 65 \end{gathered}$	$\begin{array}{\|r\|} \hline 35 \\ 65 \\ 100 \\ 35 \end{array}$	$\begin{aligned} & 18 \\ & 35 \\ & 50 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 42 \\ & 22 \end{aligned}$

(1) 100,000 AIC based on NEMA test procedure.
(2) 100% rated breaker. Requires copper bus. Not available inType 12, 4 or 4X enclosure.

Series Rated Combinations

Refer to series rating tables beginning on Page 22.1-34 for the approved series rated combinations available for the branch circuit breakers listed in Table 22.1-6.

Table 22.1-6. Branch Circuit Breakers

Breaker Type	Ampere Rating	Number of Poles	Interrupting Rating (kA Symmetrical) Volts						
			120 Vac	120/240 Vac	240Vac	480 Vac	600 Vac	125 Vdc	250Vdc
$\begin{aligned} & \hline \text { BAB } \\ & \text { BAB } \\ & \text { BAB } \end{aligned}$	$\begin{aligned} & 15-70 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 2,3 \end{array}$	$\begin{aligned} & 10 \\ & - \\ & \hline \end{aligned}$	$\overline{10}$	$\frac{-}{-}$	$\frac{-}{-}$	$-$	$\frac{-}{-}$	$-$
BAB-D (1) BAB-C (2) BABRP (3) BABRSP ${ }^{3}$	$\begin{aligned} & 15-60 \\ & 15-30 \\ & 15-30 \\ & 15-30 \end{aligned}$	$\begin{array}{\|l} \hline 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 10 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - - - -	$\frac{-}{-}$	$-$
QBGF, QBGFEP QBCAF (5)	$\begin{aligned} & 15-50(4) \\ & 15-20 \end{aligned}$	$1,2$	$\begin{array}{\|l\|} \hline 10 \\ 10 \end{array}$	$\begin{array}{\|l} \hline 10 \\ 10 \end{array}$	-	-	$-$	$-$	$-$
QBHW QBHW QBHW QBHGF, QBHGFEP QBHCAF (5)	$\begin{aligned} & 15-70 \\ & 15-100 \\ & 15-100 \\ & 15-50 \oplus \\ & 15-20 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 2,3 \\ 1,2 \\ 1 \end{array}$	$\begin{aligned} & \hline 22 \\ & - \\ & - \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & \overline{22} \\ & \overline{22} \\ & 22 \end{aligned}$	$\frac{-}{-}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$
$\begin{aligned} & \text { GHB ©(8) } \\ & \text { GHB © } \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-100 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \end{array}$	\|-	$-$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$-$	$\begin{aligned} & 14 \\ & - \end{aligned}$	$\overline{14}$
GHO (6)	15-30	1,2	-	-	65	14	-	-	-
HGHB (6)	15-30	1	-	-	65	25	-	-	-
GHBGFEP GHORSP (3)(2)	$\begin{aligned} & 15-60 \\ & 15-20 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1,2 \end{array}$	$\overline{-}$	$\overline{-}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$-$	14	-
$\begin{aligned} & \hline \text { PDG2xF }{ }^{(1)} \\ & \text { PDG2xF } \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-100 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \end{array}$	$-$	-	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 14 \end{aligned}$	$-$	10	$\overline{10}$
$\begin{aligned} & \hline \text { PDG2xG © } \\ & \text { PDG2xG, PDG3xG } \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-225 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \end{array}$	$-$	-	$\begin{aligned} & \hline 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\overline{18}$	10	$\overline{10}$
$\begin{aligned} & \text { PDG2xM (7) } \\ & \text { PDG2xM } \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-225 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \end{array}$	$-$	-	$\begin{array}{r} \hline 65 \\ 100 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\overline{25}$	10	$\overline{22}$
PDG2xP	15-225	2,3	-	-	200	100	35	-	22
$\begin{aligned} & \text { PDD2xF } \\ & \text { PDD } 2 \times G \\ & \text { PDD } 2 \times M \\ & \text { PDD } 2 \times M \end{aligned}$	$\begin{aligned} & 100-225 \\ & 100-225 \\ & 100-225 \\ & 100-225 \end{aligned}$	$\begin{array}{\|l} \hline 2,3 \\ 2,3 \\ 2,3 \\ 2,3 \\ \hline \end{array}$	-	-	$\begin{array}{\|r\|} \hline 22 \\ 65 \\ 100 \\ 200 \end{array}$	-	-	$\begin{array}{\|l} \hline 10 \\ 10 \\ 10 \\ 10 \end{array}$	-

(1) HID (High Intensity Discharge) rated breaker.
(2) Switching neutral breaker. Single-pole device requires two-pole space, two-pole device requires three-pole space.
(3) Solenoid operated breaker.
(4) 50 A is two-pole only.
(5) Arc fault breaker
(6) For use on $480 \mathrm{Y} / 277 \mathrm{Vac}$ systems only.
(7) Single-pole breaker rated 277 Vac .

Circuit Breaker Technical Data

Table 22.1-7. Electrical Characteristics of Circuit Breakers

Circuit Breaker Ratings				UL Listed Interrupting Ratings (kA rms Symmetrical)						
Type	Ampere Rating	Number of Poles	Volts AC	AC Rating, Volts					DC Rating, Volts (1)	
				120/240	240	277	480	600	125	250
BAB, HQP	$\begin{aligned} & \hline 15-70 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 120 / 240 \end{array}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$-$	-	$-$	$-$	-	$-$
BAB-H, HQP-H	15-100	2,3	240	-	10	-	-	-	-	-
BABRP, BABRSP	$\begin{aligned} & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$-$	$-$	$-$	-	-	$-$
QBGF, QPGF, QPGFEP QBGFEP	$\begin{aligned} & 15-50 \\ & 15-50 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$-$	$-$	$-$	$-$	$-$	$-$
QBAF, QBAG	$\begin{aligned} & 15-20 \\ & 15-20 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 120 / 240 \end{array}$	$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$	$-$	-	-	-	-	$-$
QBHW, QPHW	$\begin{aligned} & 15-70 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 120 / 240 \end{array}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$-$	$-$	$-$	$-$	-	$-$
QBHW-H, QPHW-H	15-100	2,3	240	-	22	-	-	-	-	-
QBHGF, QPHGF, QPHGFEP QBHGFEP	$\begin{aligned} & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 120 / 240 \end{array}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$-$	$-$	$-$	-	-	$-$
QBHAF, QBHAG	$\begin{aligned} & 15-20 \\ & 15-20 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 120 / 240 \end{array}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$-$	$-$	$-$	-	-	$-$
GHB	$\begin{aligned} & 15-100(2) \\ & 15-100 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 277 \\ & 480 Y / 277 \end{aligned}$	65	$\overline{-}$	14	$\begin{array}{\|c\|} \hline- \\ \hline 14 \text { © } \\ \hline \end{array}$	$-$	14	$\overline{14}$
GHO	15-30	1,2	277	65	-	14	-	-	-	-
HGHB	15-30	1	277	65	-	25	-	-	-	-
GHBGFEP	15-60	1	277	-	-	14	-	-	-	-
GHORSP	$\begin{aligned} & \hline 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 277 \\ 480 Y / 277 \end{array}$	65	$-$	$\begin{array}{\|l\|} \hline 14 \\ 14 \end{array}$	$\begin{array}{\|c\|} \hline-14 \text { © } \\ \hline \end{array}$	-	-	-
GHBS	$\begin{aligned} & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 480 \mathrm{Y} / 277 \end{aligned}$	65	$-$	$\begin{array}{\|l\|} \hline 14 \\ 14 \end{array}$	$\overline{14 \times 3}$	-	-	$-$
EGB	$\begin{aligned} & 15-125 \\ & 15-125 \end{aligned}$	$\begin{aligned} & 1 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 277 \\ & 480 \end{aligned}$	35	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	18	18	-	10	$\overline{10}$
EGS	$\begin{aligned} & 15-125 \\ & 15-125 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 277 \\ 480 \\ \hline \end{array}$	100	100	35	35	-	35	$\overline{35}$
EGH	$\begin{aligned} & 15-125 \\ & 15-125 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 277 \\ & 480 \end{aligned}$	200	$\overline{200}$	65	$\overline{-}_{65}$	-	42	$\overline{42}$
PDG2xF	$\begin{aligned} & \hline 15-100 \\ & 15-100 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \end{array}$	$\begin{aligned} & \hline 277 \\ & 480 \end{aligned}$	$-$	$\overline{18}$	14	-14	$-$	10	$\overline{10}$
PDG2xG, PDG3xG*	$\begin{aligned} & 15-150 \\ & 15-225 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \end{array}$	$\begin{aligned} & \hline 277 \\ & 600 \end{aligned}$	$-$	65	35	$-$	$\overline{18}$	$\begin{array}{\|l\|} \hline 10 \end{array}$	$\overline{10}$
$\begin{aligned} & \text { PDD2xF } \\ & \text { PDD2xG } \\ & \text { PDD3xGY } \end{aligned}$	$\begin{aligned} & 100-225 \\ & 100-225 \\ & 250-400 \end{aligned}$	$\begin{aligned} & \hline 2,3 \\ & 2,3 \\ & 2,3 \end{aligned}$	$\begin{aligned} & \hline 240 \\ & 240 \\ & 240 \end{aligned}$	-	$\begin{aligned} & 22 \\ & 65 \\ & 65 \end{aligned}$	-	$-$	-	$\begin{array}{\|l\|} \hline 10 \\ 10 \end{array}$	$\frac{-}{10}$
$\begin{aligned} & \text { PDG3xG* (4), PDF3xG © } \sqrt{4} \\ & \text { LHH © } \\ & \text { PDG3xG* } \\ & \text { CLD ©(5) } \end{aligned}$	$\begin{aligned} & 100-400 \\ & 150-400 \\ & 250-600 \\ & 300-600 \end{aligned}$	$\begin{aligned} & \hline 2,3 \\ & 2,3 \\ & 3 \\ & 2,3 \end{aligned}$	600 480 600 600	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} \hline 65 \\ 100 \\ 65 \\ 65 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 18 \\ & 25 \end{aligned}$	-	$\begin{array}{\|l\|} \hline 10 \\ 42 \\ 22 \\ 22 \text { © } \end{array}$

(1) DC ratings apply to substantially non-inductive circuits.
(2) DC rated single-pole, 15-70 A only.
(3) Rating $480 \mathrm{Y} / 277 \mathrm{Vac}$ maximum.
(4) Available with integral ground fault protection.
(5) 100\% rated breaker.
(6) DC rating not available with PXR trip units.

Table 22.1-7. Electrical Characteristics of Circuit Breakers (Continued)

Circuit Breaker Ratings					UL Listed Interrupting Ratings (kA rms Symmetrical)							
Type	Ampere Rating	Number of Poles	Voltage		AC Rating, Volts					DC Rating, Volts (1)		
			AC	DC	120/240	240	277	480	600	125	250	600
High Interrupting Capacity Circuit Breakers												
PDG2xM	$\begin{aligned} & 15-150 \\ & 15-225 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 277 \\ & 600 \end{aligned}$	-	-	$\overline{100}$	65 -	$-\overline{65}$	25	10	$\overline{22}$	-
$\begin{aligned} & \text { PDD2xM } \\ & \text { PDG3xM* (2, } \mathrm{PDF} 3 \times \mathrm{M}^{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 100-225 \\ 100-400 \end{array}$	$\begin{array}{\|l\|} \hline 2,3 \\ 2,3 \end{array}$	$\begin{aligned} & \hline 240 \\ & 600 \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 100 \\ 100 \\ \hline \end{array}$	-	$-\quad-$	35	10	$\overline{22}$	-

Current Limiting Circuit Breakers

$\begin{aligned} & \hline \text { PDG2xP } \\ & \text { PDD2xM } \end{aligned}$	$\begin{array}{r} 15-225 \\ 100-225 \end{array}$	$\begin{aligned} & 2,3 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 600 \\ & 240 \\ & \hline \end{aligned}$			$\begin{array}{\|l} 200 \\ 200 \\ \hline \end{array}$		100	35	$\overline{10}$	22	
$\begin{aligned} & \text { PDG3xP* (2) } \\ & \text { PDG3xM* (4) } \end{aligned}$	$\begin{aligned} & 100-400 \\ & 250-600 \end{aligned}$	$\begin{aligned} & 2,3 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	-	-	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	65 50	-	22	-

Current Limit-R ${ }^{\circledR}$ Circuit Breakers

$\begin{aligned} & \mathrm{FCL} \\ & \mathrm{LCL}(2) \end{aligned}$	$\begin{array}{\|c} 15-100 \\ 125-400 \end{array}$	$\begin{array}{\|l} \hline 2,3 \\ 2,3 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 480 \\ 480 \\ \hline \end{array}$	-	-	$\begin{array}{\|} 200 \\ 200 \\ \hline \end{array}$	-	150 200	-	-	-	-
TRI-PAC ${ }^{\circledR}$ Current Limiting Circuit Breakers												
$\begin{aligned} & \hline \text { FB-P } \\ & \text { LA-P } \end{aligned}$	$15-100$ $70-400$	2,3 2,3	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	-	-	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	-	200	200	-	(5)	-

(1) DC ratings apply to substantially non-inductive circuits.
(2) Available with integral ground fault protection.
(3) 100k based on NEMA test procedure.
(4) DC rating not available with PXR trip units.
(5) Non-interrupting trip type.

Terminal Wire Ranges, Pressure-Type AI/Cu Terminals Except as Noted

Where copper-aluminum terminals are supplied on designated panelboard types, best results are obtained if a suitable joint compound is applied when aluminum conductors are used.
Table 22.1-8. Standard Main Lug Terminals

Panel Type	Wire Size Ranges for Ampere Capacity						
	100 A	225A	250A	400 A	600 A	800 A	1200 A
Pow-R-Line 1X, 1XF, 1RX Pow-R-Line 2X, 2XF, 2RX Pow-R-Line 3X	$\begin{aligned} & \hline \# 12-1 / 0 \\ & \# 12-1 / 0 \\ & \# 12-1 / 0 \end{aligned}$	\#6-300 kcmil \#6-300 kcmil \qquad	-\#6-350 kcmil	(2) \#4-500 kcmil (2) \#4-500 kcmil (2) \#4-500 kcmi	(2) \#4-500 kcmil (1) (2) \#4-500 kcmil (1) (2) \#4-500 kcmil	(3) \#4-500 kcmil	-
Pow-R-Command	\#12-1/0	\#6-300 kcmil	-	\#4-500 kcmil	-	-	-
PRCE PRC100 PRC25	$\begin{aligned} & \hline \text { \#12-1/0 } \\ & \# 12-1 / 0 \\ & \# 12-1 / 0 \end{aligned}$	\#6-300 kcmil -\#6-300 kcmil	\#6-350 kcmil	(2) \#4-500 kcmil (2) \#4-500 kcmil (2) \#4-500 kcmi	-	-	-

(1) Not applicable PRL 1XF, 1RX, PRL 2XF, 2RX

Note: Optional 750 kcmil mechanical screw-type terminals are available upon request. Panelboard dimensions may be affected. Refer to Eaton.

Table 22.1-9. Standard Main Breaker and Branch Breaker Terminals

BreakerType	Ampere Rating	Wire Size Ranges
BAB, QBHW, BABRSP HOP, QPHW	$\begin{aligned} & 15-70 \\ & 90-100 \end{aligned}$	$\begin{array}{\|c} \hline \text { \#14-\#4 } \\ \# 8-1 / 0 \end{array}$
$\begin{aligned} & \text { PDD2xF, PDD2xG } \\ & \text { PDD2xM, PDD2xM (2) } \end{aligned}$	100-225	$\begin{aligned} & \text { \#4-4/0 or } \\ & \# 6-300 \mathrm{kcmil} \end{aligned}$
EGB, EGE, EGS, EGH	$\begin{aligned} & 15-50 \\ & 60-125 \end{aligned}$	$\begin{aligned} & \text { \#14-3/0 Al/Cu } \\ & \# 6-3 / 0 \mathrm{Al} / \mathrm{Cu} \end{aligned}$
$\begin{aligned} & \text { PDG2xF, PDG2xG } \\ & \text { PDG2xM, PDG2xP © } 2, \text { HFDDC (3) } \end{aligned}$	$\begin{array}{r} 15-100 \\ 125-225 \end{array}$	$\begin{gathered} \# 14-1 / 0 \\ \# 4-4 / 0 \end{gathered}$
FCL	15-100	\#14-1/0
GHB, HGHB, GHO, GHORSP	$\begin{aligned} & 15-50 \\ & 25-100 \end{aligned}$	$\begin{aligned} & \# 14-1 / 0 \\ & \# 10-1 / 0 \end{aligned}$
HJDDC ${ }^{3}$	70-250	\#4-350 kcmil
PDD3xGy	$\begin{aligned} & 250-350 \\ & 400 \end{aligned}$	250-500 kcmil (2) $3 / 0-250 \mathrm{kcmil}$ or (1) $3 / 0-500 \mathrm{kcmil}$
$\begin{aligned} & \hline \text { PDG3xG }^{*} \\ & \text { PDG3xM }^{*}, \text { PDG3xP* } \\ & \text { HKDDC ®3, PDF3xG © }^{2} \\ & \text { PDF3xM © } \end{aligned}$	$\begin{aligned} & 225 \\ & 350 \\ & 400 \end{aligned}$	(1) \#3-350 kcmil (2) $3 / 0-250 \mathrm{kcmil}$ or (2) $3 / 0-250 \mathrm{kcmil}$ or (1) $3 / 0-500 \mathrm{kcmil}$
LHH	150-400	\#2-500 kcmil (2) \#2-500 kcmil or (1) $500-750 \mathrm{kcmil}$
PDG3xG*, PDG3xM ${ }^{*}$, PDG3xM ${ }^{*}$	$\begin{aligned} & 250-400 \\ & 500-600 \end{aligned}$	(1) \#2-500 kcmil (2) \#2-500 kcmil
CLD (2)	300-500	(2) $250-350 \mathrm{kcmil}$

(2) Suitable for DC applications only.
(3) LHH is 400 A maximum.

Table 22.1-10. Fusible Switch Terminals

Ampere Rating	Wire Size Ranges
30	$\# 14-1 / 0$ 60 100
$214-1 / 0$	
$\# 14-1 / 0$	
400	$\# 4-300 \mathrm{kcmil}$
600	$250-750 \mathrm{kcmil}$ or (2) $3 / 0-250 \mathrm{kcmil}$
	(2) \#4-600 kcmil or (4) $3 / 0-250 \mathrm{kcmil}$

Power Xpert Release Trip Unit for Molded Case Circuit Breakers

Description

Eaton's Power Xpert Release (PXR) trip units are programmable communicating microprocessor-based low-voltage electronic trip unit systems for Eaton molded case circuit breakers. PXR trip units are available in four models: PXR 10, PXR 20, PXR 20D and PXR 25.

Standards and Certifications

The PXR trip units are listed by Underwriters Laboratories (UL) and Canadian Standards Association (CSA) for use in Frame PD-2, PD-3, PD-4, PD-5 and PD-6 molded case circuit breakers. All PXR units have also passed the IEC 60947-2 test program that includes EMC testing. All trip units meet the low-voltage and EMC directives and carry the CE mark.

Features

The PXR electronic trip units provide an enhanced and easy-to-use interface that enables end users and maintenance engineers to more easily change set points, test and configure circuit breakers, and review energy and power information. Also, the Power Xpert Protection Manager software provides the capability of secondary injection tests and reports on-demand without the need of expensive test kits.

Advanced features include:
■ Industry-first breaker health algorithms provide real-time monitoring and communication of breaker condition

- Cause of trip LED indication and trip event data storage
■ Zone selective interlocking (ZSI) verification and testing indication
- Adjustable Arcflash Reduction Maintenance System ${ }^{\text {TM }}$ (ARMS) settings
- LCD display with programmable settings

Arcflash Reduction Maintenance System (ARMS)

Power Xpert Protection Manager (PXPM) Software

PXR 25 Trip Unit Features

Table 22.1-11. Power Xpert Release (PXR) Features

Features	PXR 10	PXR 20	PXR 20D	PXR 25
Protection types	LSI	LSI/LSIG	LSI/LSIG	LSI/LSIG
Status indication	Standard	Standard	Standard	Standard
USB secondary injection testing	Standard	Standard	Standard	Standard
Programmable by USB port (PXPM)	Standard	Standard	Standard	Standard
Independent instantaneous adjustment	Standard	Standard	Standard	Standard
Adjustable L, S, I, G pickup and time		Standard	Standard	Standard
Cause of trip indication	Available through USB port (PXPM)	Standard	Standard	Standard
Load alarm indication with 2 levels		Standard	Standard	Standard
Programmable load alarm levels			Standard	Standard
Ground fault protection and alarm		Optional	Optional	Optional
Arcflash Reduction Maintenance System (ARMS) Available PD3, PD4, PD5, PD6		Optional	Optional	Optional
Zone selective interlocking (ZSI) with indication		Optional	Optional	Optional
Programmable relays		Optional	Standard	Standard
Modbus RTU communication		Optional	Standard	Standard
CAM module communication		Optional	Optional	Optional
Rotatable LCD display			Standard	Standard
Breaker health and diagnostic monitoring		Available through USB port (PXPM)	Standard	Standard
Voltage metering accurate to 0.5\%				Standard
Power and energy metering accurate to 1\%				Standard

Metering Devices

Power Xpert Meter 350

Power Xpert Meter 350

The Power Xpert Meter 350 (PXM350) is a revenue grade energy meter that delivers a cost-effective solution for energy and submetering applications. This DIN rail mounted, three-phase energy meter provides high accuracy in a small form factor. The user-friendly LCD display is ideal for building energy management, energy monitoring and metering systems.

Meter features include:

- Data collection and management for energy and multi-parameters measurement
- Demand measurement and forecasting of current, active power, reactive power and apparent power
■ System event logging with configurable parameter alarms
■ LCD display with backlight support
■ Electronic and physical sealing to prevent tampering

Power Xpert Meters 2000

The Power Xpert 2250 Meter

This meter provides all the core functions for monitoring power consumption and power quality, ethernet connectivity and onboard gateway card limits. This unit uses D/A technology to sample circuits at 400 samples per cycle for extremely accurate measurement of power factor and energy consumption. In addition, the meter has 256 MB for logging meter data.

The Power Xpert 2260 Meter

This meter adds the ability to monitor total harmonic distortion and the ability to set onboard meter limits. The meter also will illuminate LEDs on the faceplate, indicating that a limit has been exceeded and provides 512 MB for data logging.

The Power Xpert 2270 Meter

This meter adds the ability to monitor individual harmonics and visualize waveforms on your desktop using the embedded web server and raises the storage to 768 MB for data logging.

Meter series benefits include:
■ Fully understand your facility's power quality

- Detailed event information; pinpoint the root causes of problems-or prevent them from occurring
- Measure, trend and analyze power via information through onboard web and comma separated values (CSV) exporting capabilities
■ Up to 768 MB of storage; typically 15 years of storage capability depending on the meter model and frequency of events
- Local or remote configuration

IQ 100/200

IO 130/140/150

Providing the first line of defense against costly power problems, Eaton's IQ 100 electronic power meters can perform the work of an entire wall of legacy metering equipment using today's technology.

- 24-bit AD converters that sample at more than 400 samples per cycle
- Meet ANSI C12.20 standards for accuracy of 0.5 percent
- Confidently used for primary revenue metering and submetering applications
- Direct-reading metered values such as watts, watt demand, watthours, voltage amperes (VA), VA-hours, vars, varhours and power factor
- Also available in Eaton's enclosed meter product

IO 250/260

The IQ 250 and IQ 260 electronic meters provide capabilities you wouldn't normally expect in an affordable, ultracompact meter-such as fast sampling rate and accurate metering for a full range of power attributes. Built-in slots allow for future upgrades.
■ Comprehensive metering

- High-end accuracy
- Self-test capability to validate accuracy
- Large, easy-to-read display
- Local or remote configuration
- Industry-standard communication protocols
■ Mix-and-match input/output options
- Integration with Eaton's Power Xpert Architecture
- Field-upgradeable

For information on other available power meters, visit www.eaton.com/meters.

Monitoring Equipment and Surge Protective Devices

Power Xpert Branch Circuit Monitor

Power Xpert Branch Circuit Monitor

Eaton's Power Xpert Branch Circuit Monitor (PXBCM) provides remote access to live energy readings and facilitates data integration for data center intensive industries, facilities working to optimize server capacity and companies with a critical need to maintain uptime. By combining monitoring capabilities down to the plug level with overload alerts, which indicate when circuits are close to exceeding thresholds, the PXBCM helps minimize or prevent downtime.

For more information, visit www.eaton.com/meters.

Power Xpert Gateway

Power Xpert Gateway

Eaton's Power Xpert Gateway (PXG) bridges the IT and facilities management worlds by bringing disparate panelboards, switchboards and other power equipment onto the network. The PXG takes the complexity out of connecting power equipment to the network. The web-enabled PXG is an out-of-the-box device that can support up to 96 devices, translate most industrial communication protocols, and offer user-selectable events and real-time trending. It also features e-mail notification of events, waveform capture and data/event logging-all with no special software. Adding basic meters or the utility's meter, the PXG assists in tracking energy usage. The PXG recognizes the interdependence of IT systems and power systems, and delivers what organizations need to bring these worlds together for seamless, end-to-end system reliability.
The PXG consolidates data available breakers, meters, motor controllers and protective relays, and presents the information in a variety of ways (a web browser being the most widely used method). The PXG is a stand-alone solution. As needs change and grow, the PXG can be integrated through Power Xpert Software into a broader solution that encompasses other intelligent hardware and can integrate with thirdparty network management systems (NMS) or building management systems (BMS) for system-wide monitoring and reporting of power and IT.

For detailed information, please visit www.eaton.com/meters.

Integrated Surge Protective Devices

Integrated Surge Protective Devices

Eaton integrates our industry-leading surge protective devices (SPD) into switchboards. Lead length is kept to a minimum to maximize SPD performance. SPD units are available with ratings up through 400 k , and are UL listed and labeled to UL 1449 3rd Edition.

All switchboards with integrated SPD units are connected to a lineside overcurrent protective device for disconnecting means. When applied on the lineside of a service entrance main, the disconnecting means does not count as a service disconnect per National Electrical Code Article 230.71[A].
For complete SPD product description, application and ratings, visit www.eaton.com/spd.

Pow-R-Line Metering and Monitoring Options

Device	Pow-R-Line 1X	Pow-R-Line 2X	Pow-R-Line 3X	Pow-R-Line 3E	Pow-R-Line 4X / 4F	
Power Xpert Meter 350	-	\square	\square	\square		
Veris E30 Branch Circuit Monitor	\square	\square	\square	\square		
Power Xpert Branch Circuit Monitor	\square	\square	\square	\square		
IQ 130/140/150					\square	
IQ 250/260					\square	
Power Xpert Meter 1000					\square	
Power Xpert Meter 2000					\square	
Power Xpert Multi-Point Meter					- (Type PRL4X only)	
Power Xpert Gateway					\square	

PRL1X Layout Guide

Technical Data and Specifications

Bussing

100-400 A:Tin-plated aluminum is standard, copper is available as an option.

600 A: Only copper density is available for these applications.

Boxes

Boxes are made from code-gauge galvanized steel.

Blank ends are supplied as standard, knockouts are available upon request.

EZTrim

Trims are made from code-gauge steel and painted ANSI 61 gray.

All panelboards have door-in-door as standard with multi-point catch and lock, and concealed mounting hardware.

Modifications
Table 22.1-12. Sub-Feed Lugs (Main Lugs Only)

Ampere Rating	Panel Height Addition
100	0 Inches (0 mm) 0 Inches $(0 \mathrm{~mm})$ 225

Table 22.1-13. Through-Feed Lugs

Ampere Rating	Information
100	See Table 22.1-15
225	See Table 22.1-15
400	See Table 22.1-15
600	See Table 22.1-15

Table 22.1-14. Sub-Feed Breakers (One Per Panel)

Ampere Rating	Breaker Type	Interrupting Rating (kA Symmetrical) at 240V
225	PDG2xG	65
225	PDG2xM	100
225	PDG2xP	200
225	PDD2xF	22
225	PDD2xG	65
225	PDD2xM	100
225	PDD2xM	200
400	PDD3xGy	65
400	PDG3xG*	65
400	PDG3xM	100
400	PDG3xP*	200
600	PDG3xG*	65
600	LGS	85
600	PDG3xM	100
600	PDG3xM	100

Shunt Trips

Shunt trips are available on breakers. BAB, HOP, QBHW and OPHW require one additional pole space for shunt trip, i.e., single-pole is two-pole size, two-pole is three-pole size and three-pole is four-pole size.

Ground Bar

Standard bolted in box. Aluminum is standard, copper is available as an option.

Enclosures

Types 1, 12, 3R, 4 and 4X.

Surge Protective Device (SPD)

Integrated onto panelboard chassis.
For complete product description and available ratings, refer to Surge Protection (SPD) \& Power Conditioning Products Design Guides.

Box Sizing and Selection

Box size for allType 1 panelboards are available from Table 22.1-15.

Instructions

1. Select the rating and type of mains required.
2. Count total number of branch circuit poles (including spaces) required in the panelboard. Do not count main breaker poles. Convert two- or three-pole branch breakers to single-poles, i.e., three-pole breaker, count as three poles.

Note: For horizontal mounted mains (BABType), use main lug table, include space in branch section for mains.
3. Using correct table, type of mains and ampere rating per Step 1, find total number of poles.

Note: Where total number of poles (Step 2) fall between number in table, use the next higher number.
4. Read box size across columns to the right.

Top and Bottom Gutters (Minimum)

5.50 inches (139.7 mm).

Side Gutters

20.00-inch (508.0 mm) wide box: 6.50 inches (165.1 mm).

Table 22.1-15. Type 1 Panelboards-Dimensions in Inches (mm)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions (1)(3)			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim
100 A											
Main breaker	BAB, QBHW (H)	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$-$	$\begin{aligned} & 15 \\ & 27 \\ & 39 \\ & 42 \end{aligned}$	$36.00(914.4)$ $48.00(1219.2)$ $48.00(1219.2)$ $60.00(1524.0)$	$\begin{array}{\|l} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \end{array}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2036 } \\ & \text { YS2048 } \\ & \text { YS2048 } \\ & \text { YS2060 } \end{aligned}$	LT2036S or F LT2048S or F LT2048S or F LT2060S or F	EZB2036R EZB2048R EZB2048R EZB2060R	EZT2036S or F EZT2048S or F EZT2048S or F EZT2060S or F
Main lugs	- - - -	-	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & 36.00(914.4) \\ & 36.00(914.4) \\ & 48.00(1219.2) \\ & 48.00(1219.2) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	5.75 (146.1) 5.75 (146.1) $5.75(146.1)$ 5.75 (146.1)	$\begin{array}{\|l} \text { YS2036 } \\ \text { YS2036 } \\ \text { YS2048 } \\ \text { YS2048 } \end{array}$	LT2036S or F LT2036S or F LT2048S or F LT2048S or F	EZB2036R EZB2036R EZB2048R EZB2048R	EZT2036S or F EZT2036S or F EZT2048S or F EZT2048S or F
	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$-$	$-$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$48.00(1219.2)$ $60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \end{array}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
Main breaker	$\begin{aligned} & \text { PDG2xF } \\ & \text { PDG2xGy } \\ & \text { PDG2xM } \\ & \text { PDG2xP } \\ & \text { (V) } \end{aligned}$	$-$	$-$	18 30 42 48	$\begin{aligned} & 36.00(914.4) \\ & 48.00(1219.2) \\ & 48.00(1219.2) \\ & 60.00(1524.0) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	5.75 (146.1) $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2036 } \\ & \text { YS2048 } \\ & \text { YS2048 } \\ & \text { YS2060 } \end{aligned}$	LT2036S or F LT2048S or F LT2048S or F LT2060S or F	$\begin{aligned} & \text { EZB2036R } \\ & \text { EZB2048R } \\ & \text { EZB2048R } \\ & \text { EZB2060R } \end{aligned}$	EZT2036S or F EZT2048S or F EZT2048S or F EZT2060S or F
		$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \\ \text { YS2072 } \end{array}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
Main lugs with 100 A throughfeed lugs or sub-feed breaker	-	PDG2xFPDG2xGPDG3xG*PDG2xMPDG2xP(V)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & \hline 48.00(1219.2) \\ & 48.00(1219.2) \\ & 60.00(1524.0) \\ & 60.00(1524.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \end{array}$	5.75 (146.1) $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \end{aligned}$	LT2048S or F LT2048S or F LT2060S or F LT2060S or F	EZB2048R EZB2048R EZB2060R EZB2060R	EZT2048S or F EZT2048S or F EZT2060S or F EZT2060S or F
			$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & 60.00(1524.0) \\ & 60.00(1524.0) \\ & 72.00(1828.8) \\ & 72.00(1828.8) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
Main breaker with 100 A through- feed lugs or sub-feed breaker	PDG2xFPDG2xFPDGDG3xPDG2xM(V)	PDG2xGPDG2xPDG3xGPDG2xMPDG2xP(V)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{array}{\|l\|} \hline 48.00(1219.2) \\ 48.00(1219.2) \\ 60.00(1524.0) \\ 60.00(1524.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ \hline \end{array}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	YS2048 YS2048 YS2060 YS2060	LT2048S or F LT2048S or F LT2060S or F LT2060S or F	EZB2048R EZB2048R EZB2060R EZB2060R	EZT2048S or F EZT2048S or F EZT2060S or F EZT2060S or F
			$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 72.00(1828.8) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2072 YS2072 YS2072	LT2072S or F LT2072S or F LT2072S or F	$\begin{aligned} & \text { EZB2072R } \\ & \text { EZB2072R } \\ & \text { EZB2072R } \end{aligned}$	$\begin{aligned} & \text { EZT2072S or } F \\ & \text { EZT2072S or } F \\ & \text { EZT2072S or } F \end{aligned}$
225 A											
Main lugs (1)	-	- - - -	$-$	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & 36.00(914.4) \\ & 36.00(914.4) \\ & 48.00(1219.2) \\ & 48.00(1219.2) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2036 } \\ \text { YS2036 } \\ \text { YS2048 } \\ \text { YS2048 } \end{array}$	LT2036S or F LT2036S or F LT2048S or F LT2048S or F	EZB2036R EZB2036R EZB2048R EZB2048R	EZT2036S or F EZT2036S or F EZT2048S or F EZT2048S or F
	-	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$-$	$\begin{aligned} & 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$48.00(1219.2)$ $60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \end{array}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
Main breaker (4)	PDD2xF PDD2xG, PDD2xM PDG2xG PDG2xM PDG2xP PDG3xG* (V)	$-$	$\begin{aligned} & - \\ & - \end{aligned}$	18 30 42 48	36.00 (914.4) $48.00(1219.2)$ $48.00(1219.2)$ $60.00(1524.0)$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	YS2036 YS2048 YS2048 YS2060	LT2036S or F LT2048S or F LT2048S or F LT2060S or F	EZB2036R EZB2048R EZB2048R EZB2060R	EZT2036S or F EZT2048S or F EZT2048S or F EZT2060S or F
		$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \\ & 84 \\ & \hline \end{aligned}$	$60.00(1524.0)$ $60.00(1524.0)$ 72.00 (1828.8) 72.00 (1828.8)	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	5.75 (146.1) 5.75 (146.1) 5.75 (146.1) $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \\ \text { YS2072 } \end{array}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
(2) Add 8.00 inches $(203.2 \mathrm{~mm})$ for SPD.
(3) 28.00 inches (711.2 mm) optional width is available for panelboards with high circuit counts.
(4) JD, JDC is same space requirement as 400 A PDD3xGy, PDG3xM*, PDG3xP*.

Table 22.1-15. Type 1 Panelboards-Dimensions in Inches (mm) (Continued)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions (1)(3)			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim

225 A (Continued)

Main lugs with 225 A throughfeed	-	$\begin{aligned} & \text { PDD2xF } \\ & \text { PDD } 2 \times G \\ & \text { PDD } 2 \times M \\ & \text { PDD } 2 \times M \end{aligned}$	$-$	$\begin{aligned} & 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & 36.00 \text { (914.4) } \\ & 48.00(1219.2) \\ & 48.00(1219.2) \\ & 60.00(1524.0) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2036 YS2048 YS2048 YS2060	LT2036S or F LT2048S or F LT2048S or F LT2060S or F	$\begin{aligned} & \text { EZB2036R } \\ & \text { EZB2048R } \\ & \text { EZB2048R } \\ & \text { EZB2060R } \end{aligned}$	EZT2036S or F EZT2048S or F EZT2048S or F EZT2060S or F
lugs or sub-feed breaker (5)		PDG2xG PDG2xM PDG2xP (V)	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
Main breaker with 225 A through-	$\begin{array}{\|l} \text { PDD2xF } \\ \text { D2xF } \\ \text { PDD2xG } \\ \text { PDD2xM } \end{array}$	$\begin{aligned} & \text { D2xM } \\ & \text { PDD } 2 \times M \\ & \text { PDG } 2 \times G \\ & \text { PDG } 2 \times M \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{array}{\|l} \hline 48.00(1219.2) \\ 48.00(1219.2) \\ 60.00(1524.0) \\ 60.00(1524.0) \end{array}$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \end{aligned}$	LT2048S or F LT2048S or F LT2060S or F LT2060S or F	$\begin{aligned} & \hline \text { EZB2048R } \\ & \text { EZB2048R } \\ & \text { EZB2060R } \\ & \text { EZB2060R } \end{aligned}$	EZT2048S or F EZT2048S or F EZT2060S or F EZT2060S or F
feed lugs or sub-feed breaker (4)	$\begin{aligned} & \text { PDD2xM } \\ & \text { PDG2xG, } \\ & \text { PDG2xM } \\ & \text { PDG2xP } \\ & \text { PDG3xG* } \end{aligned}$	$\begin{aligned} & \text { PDG2xP } \\ & \text { PDG3xG* } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 72.00(1828.8) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2072 YS2072 YS2072	LT2072S or F LT2072S or F LT2072S or F	EZB2072R EZB2072R EZB2072R	EZT2072S or F EZT2072S or F EZT2072S or F
Main lugs with 225 A dual sub-feed	-	-	$\begin{aligned} & \text { PDD2xF } \\ & \text { PDD2xG } \\ & \text { PDD2xM } \\ & \text { PDD2xM } \end{aligned}$	$\begin{array}{\|l} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	48.00(1219.2) $60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \hline \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \end{aligned}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
br			PDG2xG PDG2xM PDG2xP PDG3xG* (V)	54 60 72 84	$\begin{array}{\|l} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	$\begin{aligned} & \text { EZB2072R } \\ & \text { EZB2072R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main breaker with 225 A dual sub-feed breakers (4)	PDD2xF PDD2xG PDD2xM PDD2xM PDG2xG PDG2xM PDG2xP PDG3xG* (V)	-	PDD2xF PDD2xG PDD2xM PDD2xM PDG2xG PDG2xM PDG2xP PDG3xG* (V)	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \\ 54 \end{array}$	$60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $72.00(1828.8)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F EZT2072S or F

Main lugs	- - - -	- - - -	- - - -	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{aligned} & \hline 48.00(1219.2) \\ & 48.00(1219.2) \\ & 60.00(1524.0) \\ & 60.00(1524.0) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { YS2048 } \\ \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \end{array}$	LT2048S or F LT2048S or F LT2060S or F LT2060S or F	$\begin{aligned} & \hline \text { EZB2048R } \\ & \text { EZB2048R } \\ & \text { EZB2060R } \\ & \text { EZB2060R } \end{aligned}$	EZT2048S or F EZT2048S or F EZT2060S or F EZT2060S or F
	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - - -	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \end{array}$	$\begin{aligned} & 60.00(1524.0) \\ & 60.00(1524.0) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \end{aligned}$	$\begin{array}{\|l} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \end{array}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2090S or F	EZB2060R EZB2060R EZB2072R EZB2090R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2090S or F
Main breaker	PDD3xGy PDG3xG* PDG3xM* PDG3xP LHH (V)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - - -	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	48.00 (1219.2) $60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$	20.00 (508.0) 20.00 (508.0) $20.00(508.0)$ $20.00(508.0)$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \end{aligned}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	$\begin{aligned} & \text { EZB2048R } \\ & \text { EZB2060R } \\ & \text { EZB2060R } \\ & \text { EZB2072R } \end{aligned}$	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
		- - - -	- - - -	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$\begin{aligned} & \hline 72.00(1828.8) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	20.00 (508.0) 20.00 (508.0) $20.00(508.0)$ $20.00(508.0)$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	$\begin{aligned} & \hline \text { EZB2072R } \\ & \text { EZB2072R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main lugs with throughfeed lugs	- - - -	- - - -	- - - -	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{aligned} & \hline 48.00(1219.2) \\ & 60.00(1524.0) \\ & 60.00(1524.0) \\ & 72.00(1828.8) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2048 YS2060 YS2060 YS2072	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
	-	-	-	$\begin{aligned} & 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	72.00 (1828.8) 72.00 (1828.8) $90.00(2286.0)$ $90.00(2286.0)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F

[^1]Table 22.1-15. Type 1 Panelboards-Dimensions in Inches (mm) (Continued)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions (1)(3)			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim

400 A (Continued)

Main breaker with throughfeed lugs	PDD3xGy PDG3xG* PDG3xM* PDG3xP* LHH (V)	$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & \hline 60.00(1524.0) \\ & 72.00(1828.8) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2060 YS2072 YS2072 YS2090	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
		-	$1-$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \end{array}$	$\begin{aligned} & \hline 90.00(2286.0) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \hline \text { YS2090 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2090S or F LT2090S or F LT2090S or F	$\begin{aligned} & \hline \text { EZB2090R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2090S or F EZT2090S or F EZT2090S or F
Main lugs with 225 A or 100 A sub-feed breaker or dual sub-feed breaker	-	PDD2xFPDD2xGPDD2xMPDG2xGPDG2xMPDG3xG**(V)	PDD2xF PDD2xM PDG2xG, PDG2xP PDG3xG (V)	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$	20.00 (508.0) 20.00 (508.0) $20.00(508.0)$ $20.00(508.0)$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	$\begin{aligned} & \hline \text { EZB2060R } \\ & \text { EZB2060R } \\ & \text { EZB2072R } \\ & \text { EZB2072R } \end{aligned}$	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
				$\begin{array}{\|l} 54 \\ 60 \\ 72 \\ 84 \end{array}$	$72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$ $90.00(2286.0)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main breaker with 225 A or 100 A sub-feed breaker	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG* } \\ & \text { PDG3xM } \\ & \text { PDG3xP* } \\ & \text { (V) } \end{aligned}$	PDD2xG PDD2xM PDD2xM PDG2xG PDG2xM PDG2xP PDG3xG* (V)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
			$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 90.00(2286.0) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2090 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2090S or F LT2090S or F LT2090S or F	$\begin{aligned} & \text { EZB2090R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 225 A or 100 A dual sub-feed breaker	PDD3xGy PDG3xG* PDG3xM* PDG3xP* LHH (V)	-	PDD2xF PDD2xG PDD2xM PDD2xM PDG2xG PDG2xM PDG2xP PDG3xG (V)	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & \hline 72.00(1828.8) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	$\begin{aligned} & \text { EZB2072R } \\ & \text { EZB2072R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
				$\begin{array}{\|l} 54 \\ 60 \\ 72 \end{array}$	$\begin{aligned} & 90.00(2286.0) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	$\begin{aligned} & \text { EZB2090R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2090S or F EZT2090S or F EZT2090S or F
Main lugs with 400 A sub-feed breaker	-	PDD3xGy PDG3xG PDG3xP* PDG3xM* LHH (V)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \hline \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
			$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 90.00(2286.0) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \hline \text { YS2090 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2090S or F LT2090S or F LT2090S or F	$\begin{aligned} & \hline \text { EZB2090R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 400 A sub-feed breaker	$\begin{array}{\|l} \hline \text { PDD3xGy } \\ \text { PDG3x } \\ \text { PDG3xM** } \\ \text { PDG3 } \\ \text { LHH } \\ \text { (V) } \end{array}$	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xP* } \\ & \text { LHH } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \\ 54 \end{array}$	$\begin{array}{\|l} \hline 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2072 YS2090 YS2090 YS2090 YS2090	LT2072S or F LT2090S or F LT2090S or F LT2090S or F LT2090S or F	EZB2072R EZB2090R EZB2090R EZB2090R EZB2090R	EZT2072S or F EZT2090S or F EZT2090S or F EZT2090S or F EZT2090S or F

Main lugs	- - - -	- - - -	- - - -	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 48.00(1219.2) \\ 48.00(1219.2) \\ 60.00(1524.0) \\ 60.00(1524.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \end{aligned}$	LT2048S or F LT2048S or F LT2060S or F LT2060S or F	EZB2048R EZB2048R EZB2060R EZB2060R	EZT2048S or F EZT2048S or F EZT2060S or F EZT2060S or F
	-	-	-	54	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
	-	-	-	60	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
	-	-	-	72	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
	-		-	84	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
Main	PDG3xG*	-	-	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
breaker	PDG3xM*	-	-	30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
	PDG3xM*	-	-	42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
		-	-	48	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
		-	-	54	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
		-	-	60	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
		-	-	72	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
		-	-	84	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F

[^2]Table 22.1-15. Type 1 Panelboards-Dimensions in Inches (mm) (Continued)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions (1) ${ }^{\text {(2) }}$			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim

600 A (Continued)

Main lugs with throughfeed lugs	$-$	$-$	- - - -	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$48.00(1219.2)$ $60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \end{array}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
	$-$	$-$		$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2072 YS2072 YS2090 YS2090	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main breaker with throughfeed lugs	PDG3xG*PDG3xMPDG3xM(V)	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 48 \end{array}$	$\begin{aligned} & \hline 60.00(1524.0) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2060 YS2072 YS2090	LT2060S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2090S or F
		$-$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	EZT2090S or F EZT2090S or F EZT2090S or F
Main lugs with 225 A or 100 A sub-feed breaker or dual sub-feed breaker	-	PDD2xF PDD2xG PDG2xG PDG2xP PDG3xG* (V)	$\begin{array}{\|l} \hline \text { PDD2xF } \\ \text { PDD2xG } \\ \text { PDD2xM } \\ \text { (V) } \end{array}$	$\begin{array}{\|l} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
				$\begin{array}{\|l} 54 \\ 60 \\ 72 \end{array}$	$\begin{aligned} & 90.00(2286.0) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { YS2090 } \\ \text { YS2090 } \\ \text { YS2090 } \end{array}$	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 225 A or 100 A sub-feed breaker or dual sub-feed breaker	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM* } \\ & \text { (V) } \end{aligned}$	(V)	DD2xF, (V)	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \end{array}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2072 YS2090 YS2090	LT2072S or F LT2090S or F LT2090S or F	$\begin{aligned} & \hline \text { EZB2072R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2072S or F EZT2090S or F EZT2090S or F
				$\begin{array}{\|l\|} \hline 48 \\ 54 \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { YS2090 } \\ \text { YS2090 } \end{array}$	$\begin{aligned} & \text { LT2090S or } F \\ & \text { LT2090S or } F \end{aligned}$	$\begin{array}{\|l\|} \hline \text { EZB2090R } \\ \text { EZB2090R } \end{array}$	$\begin{aligned} & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \end{aligned}$
Main lugs with 400 A sub-feed breaker	-	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xM* } \\ & \text { PDG } 3 \times \text { P* }^{*} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{array}{\|l} \hline 60.00(1524.0) \\ 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \end{array}$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
			$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	$\begin{array}{\|l\|} \hline \text { EZB2090R } \\ \text { EZB2090R } \\ \text { EZB2090R } \end{array}$	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 400 A sub-feed breaker	PDG3xG*PDG3xM*(V)	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM* } \\ & \text { PDG3xP } \\ & \text { (V) } \end{aligned}$	-	$\begin{array}{\|l} \hline 18 \\ 30 \\ 42 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2072 YS2090 YS2090	LT2072S or F LT2090S or F LT2090S or F	$\begin{array}{\|l\|} \hline \text { EZB2072R } \\ \text { EZB2090R } \\ \text { EZB2090R } \\ \hline \end{array}$	$\begin{aligned} & \text { EZT2072S or } F \\ & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \end{aligned}$
			-	$\begin{array}{\|l\|} \hline 48 \\ 54 \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \hline \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	$\begin{aligned} & \text { LT2090S or F } \\ & \text { LT2090S or } F \end{aligned}$	$\begin{aligned} & \hline \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	$\begin{aligned} & \text { EZT2090S or F } \\ & \text { EZT2090S or } F \end{aligned}$
Main lugs with 600 A sub-feed breaker	-	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM* } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2060 } \\ \text { YS2072 } \\ \text { YS2072 } \\ \text { YS2090 } \end{array}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
			-	$\begin{array}{\|l} 54 \\ 60 \\ 72 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	$\begin{array}{\|l} \hline \text { EZB2090R } \\ \text { EZB2090R } \\ \text { EZB2090R } \\ \hline \end{array}$	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 600 A sub-feed breaker	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM* } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { PDG3xM* } \\ & \text { LGU } \\ & \text { (V) } \end{aligned}$	- - -	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \end{aligned}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2072 YS2090 YS2090	LT2072S or F LT2090S or F LT2090S or F	$\begin{array}{\|l} \hline \text { EZB2072R } \\ \text { EZB2090R } \\ \text { EZB2090R } \end{array}$	EZT2072S or F EZT2090S or F EZT2090S or F
			-	$\begin{array}{\|l\|} \hline 48 \\ 54 \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { YS2090 } \\ \text { YS2090 } \end{array}$	LT2090S or F LT2090S or F	$\begin{array}{\|l} \hline \text { EZB2090R } \\ \text { EZB2090R } \end{array}$	$\begin{aligned} & \text { EZT2090S or F } \\ & \text { EZT2090S or } F \end{aligned}$

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
(2) Add 8.00 inches (203.2 mm) for SPD.
(3) 28.00 inches (711.2 mm) optional width is available for panelboards with high circuit counts.

PRL2X Layout Guide

Pow-R-Line 2X

Technical Data

Bussing

100-400 A:Tin-plated aluminum is standard, copper is available as an option.

600 A : Only copper density is available for these applications.

Boxes

Boxes are made from code-gauge galvanized steel.

Blank ends are supplied as standard, knockouts are available upon request.

EZTrim

Trims are made from code-gauge steel and painted ANSI 61 gray.

All panelboards have door-in-door as standard with multi-point catch and lock, and concealed mounting hardware.

Modifications
Table 22.1-16. Sub-Feed Lugs (Main Lugs Only)

Amperes	Panel Height Addition
100	0 Inches (0 mm) 025

Table 22.1-17. Through-Feed Lugs

Amperes	Information
100	See Table 22.1-19
225	See Table 22.1-19
400	See Table 22.1-19
600	See Table 22.1-19

Table 22.1-18. Sub-Feed Breakers (One Per Panel)

Ampere Rating	Breaker Type	Interrupting Rating (kA Symmetrical)	
		240V	480Y/277V
225	PDG2xG	65	35
225	PDG2xM	100	65
225	PDG2xP	200	100
225	PDD2xG	65	-
225	PDD2xM	100	-
225	PDD2xM	200	-
400	PDG3xG	65	35
400	PDG3xM	100	65
400	PDG3xP*	200	100

Shunt Trips

Shunt trips are available on breakers. GHB breakers with shunt trips require three-pole frame.

Ground Bar

Standard bolted in box. Aluminum is standard. Copper is available as an option.

Enclosures

Types 1, 12, 3R, 4/4X.

Surge Protective Device (SPD)

Integrated onto panelboard chassis. For complete product description and available ratings, refer to Surge Protection (SPD) \& Power Conditioning Products Design Guide.

Box Sizing and Selection

Box size for alltype 1 panelboards are available from Table 22.1-19.

Instructions

1. Using description on the required panelboard, select the rating and type of mains required.
2. Count total number of branch circuit poles (including spaces) required in the panelboard. Do not count main breaker poles. Convert two- or three-pole branch breakers to single-poles. i.e., three-pole breaker, count as three poles.
Note: For horizontal mounted mains (GHBType), use main lug table, include space in branch section for mains.
3. Using correct table, type of mains and ampere rating per Step 1 , find total number of poles.

Note: Where total number of poles (Step 2) fall between number in table, use the next higher number.
4. Read box size across columns to the right.

Top and Bottom Gutters (minimum)

5.50 inches (139.7 mm).

Side Gutters

20.00 -inch (508.0 mm) wide box: 5.50 inches (139.7 mm).

Table 22.1-19. Type 1 Panelboards-Dimensions in Inches (mm)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions in Inches (mm) (1)2			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim
100 A											
Main breaker	$\begin{aligned} & \hline \begin{array}{l} \text { GHB } \\ \text { (H) } \end{array} \end{aligned}$	$1-$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 27 \\ & 39 \\ & 42 \end{aligned}$	$36.00(914.4)$ $48.00(1219.2)$ $48.00(1219.2)$ $60.00(1524.0)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	YS2036 YS2048 YS2048 YS2060	LT2036S or F LT2048S or F LT2048S or F LT2060S or F	EZB2036R EZB2048R EZB2048R EZB2060R	$\begin{aligned} & \text { EZT2036S or } F \\ & \text { EZT2048S or } F \\ & \text { EZT2048S or } F \\ & \text { EZT2060S or } F \end{aligned}$
Main lugs	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{aligned} & 36.00(914.4) \\ & 36.00(914.4) \\ & 42.00(1219.2) \\ & 48.00(1219.2) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2036 } \\ & \text { YS2036 } \\ & \text { YS2042 } \\ & \text { YS2048 } \end{aligned}$	LT2036S or F LT2036S or F LT2042S or F LT2048S or F	EZB2036R EZB2036R EZB2042R EZB2048R	EZT2036S or F EZT2036S or F EZT2042S or F EZT2048S or F
	$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$-$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \end{array}$	$\begin{aligned} & \hline 48.00(1219.2) \\ & 60.00(1524.0) \\ & 60.00(1524.0) \\ & 72.00(1828.8) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \hline \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \end{aligned}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
Main breaker	PDG2xF PDG2xG PDG3xG PDG2xM, PDG2xP (V)	- - - -	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{aligned} & \hline 36.00(914.4) \\ & 42.00(1219.2) \\ & 48.00(1219.2) \\ & 60.00(1524.0) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2036 } \\ & \text { YS2042 } \\ & \text { YS2048 } \\ & \text { YS2060 } \end{aligned}$	LT2036S or F LT2042S or F LT2048S or F LT2060S or F	$\begin{aligned} & \text { EZB2036R } \\ & \text { EZB2042R } \\ & \text { EZB2048R } \\ & \text { EZB2060R } \end{aligned}$	EZT2036S or F EZT2042S or F EZT2048S or F EZT2060S or F
		$1-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \end{array}$	$60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2060 YS2060 YS2072 YS2072	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	$\begin{aligned} & \text { EZT2060S or } F \\ & \text { EZT2060S or } F \\ & \text { EZT2072S or } F \\ & \text { EZT2072S or } F \end{aligned}$
Main lugs with 100 A throughfeed lugs or sub-feed breaker	-	$\begin{array}{\|l} \text { PDG2xF } \\ \text { PDG2xG } \\ \text { PDG3xG } \\ \text { PDG2xM } \\ \text { PDG2xP } \\ \text { (V) } \end{array}$		$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & \hline 48.00(1219.2) \\ & 48.00(1219.2) \\ & 60.00(1524.0) \\ & 60.00(1524.0) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \end{aligned}$	LT2048S or F LT2048S or F LT2060S or F LT2060S or F	EZB2048R EZB2048R EZB2060R EZB2060R	EZT2048S or F EZT2048S or F EZT2060S or F EZT2060S or F
			$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 54 \\ 60 \\ 72 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & 60.00(1524.0) \\ & 60.00(1524.0) \\ & 72.00(1828.8) \\ & 72.00(1828.8) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \\ \text { YS2072 } \end{array}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
Main breaker with 100A throughfeed lugs or sub-feed breaker	PDG2xF PDG2xG PDG2xM, PDG2xP (V)	$\begin{array}{\|l} \text { PDG2xF } \\ \text { PDG2xG } \\ \text { PDG2xM, } \\ \text { PDG2xP } \\ \text { (V) } \end{array}$	- - - -	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{array}{\|l\|} \hline 48.00(1219.2) \\ 48.00(1219.2) \\ 60.00(1524.0) \\ 60.00(1524.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \end{aligned}$	LT2048S or F LT2048S or F LT2060S or F LT2060S or F	EZB2048R EZB2048R EZB2060R EZB2060R	EZT2048S or F EZT2048S or F EZT2060S or F EZT2060S or F
			$-$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \end{array}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 72.00(1828.8) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \hline \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2072S or F LT2072S or F LT2072S or F	$\begin{array}{\|l\|} \hline \text { EZB2072R } \\ \text { EZB2072R } \\ \text { EZB2072R } \end{array}$	$\begin{aligned} & \text { EZT2072S or } F \\ & \text { EZT2072S or } F \\ & \text { EZT2072S or } F \end{aligned}$
225 A											
Main lugs ${ }^{4}$	-	- - - -	-	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & 36.00(914.4) \\ & 36.00(914.4) \\ & 42.00(1219.2) \\ & 48.00(1219.2) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \hline \text { YS2036 } \\ & \text { YS2036 } \\ & \text { YS2042 } \\ & \text { YS2048 } \end{aligned}$	LT2036S or F LT2036S or F LT2042S or F LT2048S or F	EZB2036R EZB2036R EZB2042R EZB2048R	EZT2036S or F EZT2036S or F EZT2042S or F EZT2048S or F
	-	- - - -	$-$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & \hline 48.00(1219.2) \\ & 60.00(1524.0) \\ & 60.00(1524.0) \\ & 72.00(1828.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \end{aligned}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
Main breaker ${ }^{4}$	$\begin{aligned} & \text { PDG2xF } \\ & \text { PDG2xG } \\ & \text { PDG3xG } \\ & \text { PDG2xM } \\ & \text { PDG2xP } \\ & \text { (V) } \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{array}{\|l\|} \hline 36.00(914.4) \\ 42.00(1219.2) \\ 48.00(1219.2) \\ 60.00(1524.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2036 YS2042 YS2048 YS2060	LT2036S or F LT2042S or F LT2048S or F LT2060S or F	EZB2036R EZB2042R EZB2048R EZB2060R	EZT2036S or F EZT2042S or F EZT2048S or F EZT2060S or F
		- - - -	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$\begin{array}{\|l} \hline 60.00(1524.0) \\ 60.00(1524.0) \\ 72.00(1828.8) \\ 72.00(1828.8) \\ \hline \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	$\begin{aligned} & \text { EZB2060R } \\ & \text { EZB2060R } \\ & \text { EZB2072R } \\ & \text { EZB2072R } \end{aligned}$	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
(2) Add 8.00 inches $(203.2 \mathrm{~mm})$ for SPD and metering.
(3) 28.00 inches (711.2 mm) optional width is available for panelboards with high circuit counts.
(4) JD, JDC is same space requirement as 400 A PDD $3 x G y$, PDG3xM*, PDG3xP*.

Table 22.1-19. Type 1 Panelboards-Dimensions in Inches (mm) (Continued)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions in Inches (mm) (1)(3)			Catalog Number			
	$\begin{aligned} & \text { Main } \\ & \text { Breaker } \end{aligned}$	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim
225 A											
Main lugs with 225 A throughfeed lugs or sub-feed breaker (4)	-	$\begin{aligned} & \text { PDG2xF } \\ & \text { PDG2xG } \\ & \text { PDG3xG } \\ & \text { PDG2xM } \\ & \text { PDG2xP } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$42.00(1219.2)$ $48.00(1219.2)$ $60.00(1524.0)$ $60.00(1524.0)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2042 } \\ \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \end{array}$	LT2042S or F LT2048S or F LT2060S or F LT2060S or F	EZB2042R EZB2048R EZB2060R EZB2060R	EZT2042S or F EZT2048S or F EZT2060S or F EZT2060S or F
			$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 54 \\ 60 \\ 72 \\ 84 \end{array}$	$\begin{array}{\|l} \hline 60.00(1524.0) \\ 60.00(1524.0) \\ 72.00(1828.8) \\ 72.00(1828.8) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	$\begin{aligned} & \text { EZB2060R } \\ & \text { EZB2060R } \\ & \text { EZB2072R } \\ & \text { EZB2072R } \end{aligned}$	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
Main breaker with 225 A throughfeed lugs or sub-feed breaker (4)	PDG2xF PDG2xG PDG3xG PDG2xM PDG2xP (V)	PDG2xF PDG2xG PDG3xG PDG2xM PDG2xP (V)	- - - -	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	$42.00(1219.2)$ $48.00(1219.2)$ $60.00(1524.0)$ $60.00(1524.0)$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	5.75 (146.1) $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2042 } \\ \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \end{array}$	LT2042S or F LT2048S or F LT2060S or F LT2060S or F	$\begin{aligned} & \text { EZB2042R } \\ & \text { EZB2048R } \\ & \text { EZB2060R } \\ & \text { EZB2060R } \end{aligned}$	EZT2042S or F EZT2048S or F EZT2060S or F EZT2060S or F
			-	$\begin{array}{\|l} 54 \\ 60 \\ 72 \end{array}$	$\begin{array}{\|l\|} \hline 72.00 \text { (1828.8) } \\ 72.00 \text { (1828.8) } \\ 72.00(1828.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2072 YS2072 YS2072	LT2072S or F LT2072S or F LT2072S or F	$\begin{aligned} & \text { EZB2072R } \\ & \text { EZB2072R } \\ & \text { EZB2072R } \end{aligned}$	EZT2072S or F EZT2072S or F EZT2072S or F
Main lugs with 225 A dual sub-feed breaker (4)	-	-	PDG2xF PDG2xG PDG3xG PDG2xM PDG2xP (V)	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	48.00 (1219.2) $60.00(1524.0)$ $60.00(1524.0)$ 72.00 (1828.8)	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \end{array}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
				$\begin{array}{\|l} 54 \\ 60 \\ 72 \\ 84 \end{array}$	$\begin{array}{\|l} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{array}{\|l\|} \hline \text { YS2072 } \\ \text { YS2072 } \\ \text { YS2090 } \\ \text { YS2090 } \end{array}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	$\begin{aligned} & \text { EZB2072R } \\ & \text { EZB2072R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main breaker with 225 A dual sub-feed breakers (4)	 PDG2xF PDG2xG PDG3xG PDG2xM PDG2xP (V)	-	PDG2xF PDG2xG PDG3xG PDG2xM PDG2xP (V)	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60.00(1524.0) \\ 60.00(1524.0) \\ 72.00(1828.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2060 YS2060 YS2072	LT2060S or F LT2060S or F LT2072S or F	$\begin{array}{\|l\|} \hline \text { EZB2060R } \\ \text { EZB2060R } \\ \text { EZB2072R } \\ \hline \end{array}$	EZT2060S or F EZT2060S or F EZT2072S or F
				$\begin{array}{\|l\|} \hline 48 \\ 54 \end{array}$	$\begin{array}{\|l\|} \hline 72.00 \text { (1828.8) } \\ 72.00(1828.8) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2072S or F LT2072S or F	$\begin{array}{\|l\|} \hline \text { EZB2072R } \\ \text { EZB2072R } \end{array}$	$\begin{aligned} & \text { EZT2072S or } F \\ & \text { EZT2072S or } F \end{aligned}$
400 A											
Main lugs	-	-	- - - -	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 42.00(1219.2) \\ 48.00(1219.2) \\ 60.00(1524.0) \\ 60.00(1524.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2042 } \\ \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \\ \hline \end{array}$	LT2042S or F LT2048S or F LT2060S or F LT2060S or F	EZB2042R EZB2048R EZB2060R EZB2060R	EZT2042S or F EZT2048S or F EZT2060S or F EZT2060S or F
	-	-	-	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline 60.00(1524.0) \\ 60.00(1524.0) \\ 72.00(1828.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F	$\begin{array}{\|l\|} \hline \text { EZB2060R } \\ \text { EZB2060R } \\ \text { EZB2072R } \end{array}$	EZT2060S or F EZT2060S or F EZT2072S or F

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
(2) Add 8.00 inches (203.2 mm) for SPD and metering.
(3) 28.00 inches (711.2 m) optional width is available for panelboards with high circuit counts.
(4) JD, JDC is same space requirement as 400 A PDD $3 x G y$, PDG $3 \times \mathrm{M}^{*}$, PDG3xP*.

Table 22.1-19. Type 1 Panelboards-Dimensions in Inches (mm) (Continued)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions in Inches (mm) (1)(3)			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim

400 A (Continued)

Main breaker	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xM* } \\ & \text { PDG3xP* } \end{aligned}$	$\frac{-}{-}$	- - - -	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	$48.00(1219.2)$ $60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ 20.00 (508.0)	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{array}{\|l\|} \hline \text { YS2048 } \\ \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \end{array}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
	LHH (V)	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$-$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \\ & \hline \end{aligned}$	YS2072 YS2072 YS2090 YS2090	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main lugs with throughfeed lugs	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{array}{\|l\|} \hline 48.00(1219.2) \\ 60.00(1524.0) \\ 60.00(1524.0) \\ 72.00(1828.8) \end{array}$	$\begin{array}{\|l\|} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	YS2048 YS2060 YS2060 YS2072	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
	-	$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \\ \hline \end{array}$	$72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$ $90.00(2286.0)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	$\begin{aligned} & \text { EZT2072S or } F \\ & \text { EZT2072S or } F \\ & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \end{aligned}$
Main breaker with through-	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xM* } \\ & \text { PDG3xP } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{array}{\|l} \hline 60.00(1524.0) \\ 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \end{array}$	20.00 (508.0) $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	$\begin{array}{\|l} \text { EZB2060R } \\ \text { EZB2072R } \\ \text { EZB2072R } \\ \text { EZB2090R } \end{array}$	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
	LHH (V)	$-$	$-$	$\begin{array}{\|l} 54 \\ 60 \\ 72 \end{array}$	$\begin{aligned} & \hline 90.00(2286.0) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	EZT2090S or F EZT2090S or F EZT2090S or F
Main lugs with 225 A or 100 A sub-feed	-	$\begin{array}{\|l} \text { PDG2xF } \\ \text { PDG2xG } \\ \text { PDG3xG } \\ \text { PDG2xM, } \end{array}$	$\begin{array}{\|l} \text { PDG2xF } \\ \text { PDG2xG } \\ \text { PDG3xG } \\ \text { PDG2xM, } \end{array}$	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l} 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{array}{\|l\|} \hline \text { YS2060 } \\ \text { YS2060 } \\ \text { YS2072 } \\ \text { YS2072 } \end{array}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
breaker or dual sub-feed breaker		PDG2xM (V)	PDG2xM (V)	$\begin{array}{\|l} \hline 54 \\ 60 \\ 72 \\ 84 \end{array}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	5.75 (146.1) $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	YS2072 YS2072 YS2090 YS2090	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main breaker with 225 A or 100 A	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xP* } \\ & \text { LHH } \end{aligned}$	$\begin{aligned} & \text { PDG3xG } \\ & \text { PDG3xP* } \\ & \text { PDG } 2 x M \text {, } \\ & \text { PDG } 2 x \text { P } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{aligned} & \hline 60.00(1524.0) \\ & 72.00(1828.8) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \end{aligned}$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
sub-feed breaker	(V)	(V)	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	$\begin{aligned} & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \end{aligned}$
Main breaker with 225 A or 100 A	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xM* } \\ & \text { PDG3xP** } \end{aligned}$	-	$\begin{aligned} & \text { PDG } 2 x F \\ & \text { PDG } 2 \times G \\ & \text { PDG } 3 \times G \\ & \text { PDG } 2 \times \mathrm{M} \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & \hline 72.00(1828.8) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	YS2072 YS2072 YS2090 YS2090	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
dual sub-feed breaker			PDG2xP (V)	$\begin{array}{\|l} 54 \\ 60 \\ 72 \end{array}$	$\begin{array}{\|l} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	EZT2090S or F EZT2090S or F EZT2090S or F
Main lugs with 400 A sub-feed breaker	-	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG } 3 \times \mathrm{M}^{*} \\ & \text { PDG } 3 \times \text { P* }^{*} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
		LHH (V)	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	54 60 72	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 400 A	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xM } \end{aligned}$	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xM* } \end{aligned}$	-	18 30 42	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2072 YS2090 YS2090	LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2090S or F EZT2090S or F
sub-feed breaker	$\begin{aligned} & \text { PDG3xP* } \\ & \text { LHH } \\ & \text { (V) } \end{aligned}$	PDG3xP* LHH (V)	-	48 54	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00 \text { (508.0) } \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	$\begin{aligned} & \text { LT2090S or } F \\ & \text { LT2090S or } F \end{aligned}$	$\begin{aligned} & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	$\begin{aligned} & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \end{aligned}$

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
(2) Add 8.00 inches (203.2 mm) for SPD and metering.
(3) 28.00 inches (711.2 mm) optional width is available for panelboards with high circuit counts.

Table 22.1-19. Type 1 Panelboards-Dimensions in Inches (mm) (Continued)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions in Inches (mm) (1)(3)			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim
600 A											
Main lugs	$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - - -	$\begin{aligned} & \hline 18 \\ & 30 \\ & 42 \\ & 48 \end{aligned}$	$42.00(1219.2)$ $48.00(1219.2)$ $60.00(1524.0)$ $60.00(1524.0)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2042 } \\ & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \end{aligned}$	LT2042S or F LT2048S or F LT2060S or F LT2060S or F	$\begin{aligned} & \text { EZB2042R } \\ & \text { EZB2048R } \\ & \text { EZB2060R } \\ & \text { EZB2060R } \end{aligned}$	EZT2042S or F EZT2048S or F EZT2060S or F EZT2060S or F
	$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & \hline 60.00(1524.0) \\ & 60.00(1524.0) \\ & 72.00(1828.8) \\ & 90.00(2286.0) \end{aligned}$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2090S or F	EZB2060R EZB2060R EZB2072R EZB2090R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2090S or F
Main breaker	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM } \\ & \text { PDG } 3 \times M^{*} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 18 \\ 30 \\ 42 \\ 48 \\ \hline \end{array}$	$60.00(1524.0)$ $60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$	20.00 (508.0) 20.00 (508.0) $20.00(508.0)$ $20.00(508.0)$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \end{aligned}$	LT2060S or F LT2060S or F LT2072S or F LT2072S or F	EZB2060R EZB2060R EZB2072R EZB2072R	EZT2060S or F EZT2060S or F EZT2072S or F EZT2072S or F
		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \\ & 84 \end{aligned}$	$72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$ $90.00(2286.0)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main lugs with throughfeed lugs	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{array}{\|l} \hline 48.00(1219.2) \\ 60.00(1524.0) \\ 60.00(1524.0) \\ 72.00(1828.8) \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \text { YS2048 } \\ & \text { YS2060 } \\ & \text { YS2060 } \\ & \text { YS2072 } \end{aligned}$	LT2048S or F LT2060S or F LT2060S or F LT2072S or F	EZB2048R EZB2060R EZB2060R EZB2072R	EZT2048S or F EZT2060S or F EZT2060S or F EZT2072S or F
	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 54 \\ 60 \\ 72 \\ 84 \end{array}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	$\begin{aligned} & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2072S or F LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2072S or F EZT2090S or F EZT2090S or F
Main breaker with throughfeed lugs	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM } \\ & \text { PDG } 3 \times \text { M }^{*} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	- - - -	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	$20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$ $20.00(508.0)$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{array}{\|l} \hline \text { YS2060 } \\ \text { YS2072 } \\ \text { YS2072 } \\ \text { YS2090 } \end{array}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
		-	-	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{array}{\|l} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	$\begin{aligned} & \text { YS2090 } \\ & \text { YS2090 } \\ & \text { YS2090 } \end{aligned}$	LT2090S or F LT2090S or F LT2090S or F	$\begin{aligned} & \text { EZB2090R } \\ & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	$\begin{aligned} & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \end{aligned}$
Main lugs with 225 A or 100 A sub-feed breaker or dual sub-feed breaker	-	PDG2xF PDG2xG PDG3xG PDG2xM PDG2xP (V)	PDG2xF PDG2xG PDG3xG PDG2xM PDG2xP (V)	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$\begin{array}{\|l\|} \hline 60.00(1524.0) \\ 72.00(1828.8) \\ 72.00(1828.8) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
				$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2090 YS2090 YS2090	$\begin{aligned} & \text { LT2090S or } F \\ & \text { LT2090S or } F \\ & \text { LT2090S or } F \end{aligned}$	EZB2090R EZB2090R EZB2090R	$\begin{aligned} & \text { EZT2090S or F } \\ & \text { EZT2090S or } F \\ & \text { EZT2090S or } F \end{aligned}$
Main lugs with 400 A sub-feed breaker	-	$\begin{aligned} & \text { PDD3xGy } \\ & \text { PDG3xG } \\ & \text { PDG3xM } \\ & \text { PDG3xP* } \\ & \text { LHH } \\ & \text { (V) } \end{aligned}$	$-$	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \\ \hline \end{array}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	$\begin{array}{\|l\|} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \\ \hline \end{array}$	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(14.1)$	$\begin{aligned} & \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
			$-$	$\begin{array}{\|l\|} \hline 54 \\ 60 \\ 72 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 90.00(2286.0) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 400 A sub-feed breaker	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM } \end{aligned}$ (V)	PDD3xGy PDG3xG PDG3xM* PDG3xP* LHH (V)	-	$\begin{array}{\|l} \hline 18 \\ 30 \\ 42 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.75(146.1) \\ 5.75(146.1) \\ 5.75(146.1) \\ \hline \end{array}$	YS2072 YS2090 YS2090	$\begin{array}{\|l} \text { LT2072S or } F \\ \text { LT2090S or } F \\ \text { LT2090S or } F \\ \hline \end{array}$	EZB2072R EZB2090R EZB2090R	$\begin{array}{\|l} \text { EZT2072S or } F \\ \text { EZT2090S or } F \\ \text { EZT2090S or } F \end{array}$
			$-$	$\begin{array}{\|l\|} \hline 48 \\ 54 \end{array}$	$\begin{aligned} & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & 20.00 \text { (508.0) } \\ & 20.00 \text { (508.0) } \end{aligned}$	$\begin{array}{\|l} \hline 5.75(146.1) \\ 5.75(146.1) \end{array}$	$\begin{array}{\|l} \hline \text { YS2090 } \\ \text { YS2090 } \end{array}$	$\begin{aligned} & \text { LT2090S or } F \\ & \text { LT2090S or } F \end{aligned}$	$\begin{aligned} & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	$\begin{aligned} & \text { EZT2090S or F } \\ & \text { EZT2090S or } F \end{aligned}$

[^3](2) Add 8.00 inches $(203.2 \mathrm{~mm})$ for SPD and metering.
(3) 28.00 inches (711.2 mm) optional width is available for panelboards with high circuit counts.

Table 22.1-19. Type 1 Panelboards-Dimensions in Inches (mm) (Continued)

Panelboard Types	Types and Mounting Position (H) = Horizontal / (V) = Vertical			Maximum Number of Branch Circuits Including Provisions	Box Dimensions in Inches (mm) (1)(3)			Catalog Number			
	Main Breaker	Sub-Feed Breaker	Dual Sub-Feed Breaker		Height	Width	Depth	YS Box	LTTrim	EZ Box	EZTrim
600 A (Continued)											
Main lugs with 600 A sub-feed breaker	-	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG } 3 \times \mathrm{M}^{*} \\ & \text { PDG } 3 \times \mathrm{M}^{*} \\ & \text { (V) } \end{aligned}$	- - - -	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \\ 48 \end{array}$	$60.00(1524.0)$ $72.00(1828.8)$ $72.00(1828.8)$ $90.00(2286.0)$	20.00 (508.0) 20.00 (508.0) 20.00 (508.0) 20.00 (508.0)	$5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$ $5.75(146.1)$	$\begin{aligned} & \hline \text { YS2060 } \\ & \text { YS2072 } \\ & \text { YS2072 } \\ & \text { YS2090 } \end{aligned}$	LT2060S or F LT2072S or F LT2072S or F LT2090S or F	EZB2060R EZB2072R EZB2072R EZB2090R	EZT2060S or F EZT2072S or F EZT2072S or F EZT2090S or F
			-	$\begin{aligned} & \hline 54 \\ & 60 \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 90.00(2286.0) \\ & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & \hline 20.00(508.0) \\ & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2090 YS2090 YS2090	LT2090S or F LT2090S or F LT2090S or F	EZB2090R EZB2090R EZB2090R	EZT2090S or F EZT2090S or F EZT2090S or F
Main breaker with 600 A sub-feed breaker	$\begin{aligned} & \text { PDG3xG* } \\ & \text { PDG3xM }^{*} \\ & \text { PDG3xM } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \hline \text { PDG3xG* } \\ & \text { PDG3xM } \\ & \text { PDG3xM } \\ & \text { (V) } \end{aligned}$	-	$\begin{array}{\|l\|} \hline 18 \\ 30 \\ 42 \end{array}$	$\begin{array}{\|l\|} \hline 72.00(1828.8) \\ 90.00(2286.0) \\ 90.00(2286.0) \end{array}$	$\begin{array}{\|l\|} \hline 20.00(508.0) \\ 20.00(508.0) \\ 20.00(508.0) \end{array}$	$\begin{aligned} & \hline 5.75(146.1) \\ & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2072 YS2090 YS2090	LT2072S or F LT2090S or F LT2090S or F	EZB2072R EZB2090R EZB2090R	EZT2072S or F EZT2090S or F EZT2090S or F
			-	$\begin{array}{\|l} 48 \\ 54 \end{array}$	$\begin{aligned} & 90.00(2286.0) \\ & 90.00(2286.0) \end{aligned}$	$\begin{aligned} & 20.00(508.0) \\ & 20.00(508.0) \end{aligned}$	$\begin{aligned} & 5.75(146.1) \\ & 5.75(146.1) \end{aligned}$	YS2090 YS2090	LT2090S or F LT2090S or F	$\begin{aligned} & \text { EZB2090R } \\ & \text { EZB2090R } \end{aligned}$	EZT2090S or F EZT2090S or F

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
(2) Add 8.00 inches (203.2 mm) for SPD and metering.
(3) 28.00 inches (711.2 mm) optional width is available for panelboards with high circuit counts.

PRL3X Layout Guide

Pow-R-Line 3X

Technical Data and Specifications

Bussing

100-400 A: Tin-plated aluminum is standard, copper is available as an option. Density rated bus is also available as an option.
600 A: Only copper density is available for these applications. Density rated bus is also available as an option.

800 A (main lug only): Only copper density is available for these applications.

Boxes

Boxes are made from code-gauge galvanized steel.

Blank ends are supplied as standard, knockouts are available upon request.

EZTrim

Trims are made from code-gauge steel and painted ANSI 61 gray.

All panelboards have door-in-door as standard with multi-point catch and lock, and concealed mounting hardware.

Modifications
Table 22.1-20. Sub-Feed Lugs (Main Lugs Only)

Ampere Rating	Added Panel Height
100	$0 X$
250	1X

Table 22.1-21. Through-Feed Lugs

Ampere Rating	Added Panel Height
100	2 X
250	5 X
400	8 X
600	

Note: Sub-feed breakers and through-feed lugs cannot be supplied in the same panel.

Table 22.1-22. Sub-Feed Breakers (One Per Panel)

Ampere Rating Breaker Type Interrupting Rating (kA Symmetrical) Added Panel Height $\mathbf{2 4 0 V}$ 480V
400 PDG3xG 65 35 400 PDG3xM * 100 65 400 PDG3xP* 200 100

Note: Sub-feed breakers and through-feed lugs cannot be supplied in the same panel.

Note: Twin mounted J-Frame sub-feed breakers are available. Requires 20X panel height addition.

Shunt Trips

Shunt trips are available on breakers. BAB and QBHW require one additional pole space for shunt trip, i.e., single-pole is two-pole size, two-pole is three-pole size and three-pole is four-pole size. GHB breakers with shunt trip require threepole frame.

Remote Control Switches

ASCO 920 can be bus connected and mounted in panel for main or sub-main (split-bus) applications.

Time Clocks

Time clocks are mounted at the top or bottom of the panel, either in extended end gutters or in a separate enclosure under a separate door.

Ground Bar

Standard bolted in box. Aluminum is standard. Copper is available as an option.

Enclosures

Types 12, 3R, 4/4X.
Note: Type 12, 3R, 4/4X enclosures are not available for 800 A applications.

Top and Bottom Gutters (Minimum)
All mains: 5.50 inches (139.7 mm).
Side Gutters (Minimum)
4.00 inches (101.6 mm).

Table 22.1-23. Type 1 Box Sizes-Dimensions in Inches (mm)

Maximum Panel Height X Units	Box Dimensions		
	Height	Width	Depth
100-400 A			
14X	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)
23X	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)
31X	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)
40X	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)
53X	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)
600-800 A			
23X	48.00 (1219.2)	28.00 (711.2)	5.75 (146.1)
31X	60.00 (1524.0)	28.00 (711.2)	5.75 (146.1)
40X	72.00 (1828.8)	28.00 (711.2)	5.75 (146.1)
53X	90.00 (2286.0)	28.00 (711.2)	5.75 (146.1)

Panel Layout Instructions

1. Select:
a. Required mains (lugs or breaker), refer to Table 22.1-5 for main breaker information.
b. Neutral where required, refer to Table 22.1-7.
c. Branch circuits as required.
2. Layout panel as shown in Table 22.1-24, using appropriate " X " dimensions.
3. Using total X units (panel height) find box height in inches from Table 22.1-23. (When total X units come out to an uneven number, use next highest number, i.e., if total X comes out 25 X , use 31X.)

Surge Protective Device (SPD) Integrated onto panelboard chassis. For complete product description and available ratings, refer to Surge Protection (SPD) \& Power Conditioning Products Design Guides.

Table 22.1-24. Layout Example

(1) GHB, GHO and HGHB breakers cannot be mixed on same connector as BAB, QBHW.
(2) Sizing shown is for 100% rated neutral with mechanical lugs. For 200% rated neutral with mechanical lugs, add 3X. For special lug arrangements, contact Eaton.
(3) Maximum of six breakers per panel.
(4) Add 5 X for 200 kA maximum SPD.
(5) Horizontally mounted 15-225 A main breakers PDG2xF, PDG2xG, PDG2xM, PDG2xP, may be furnished as branch breaker construction. Branch breakers single-, two- or three-pole as required, may be located opposite these main breakers (150 A maximum).
(6) FB-P and LA-P top mounting only.
(7) LCL, LA-P main breaker requires 6.50 inch (165.1 mm) deep box.

Series Rated Combinations

UL permits panelboards to be labeled with a short-circuit rating of up to 200,000 A symmetrical where UL listed combinations of main and branch circuits are used.

These combinations consist of main breakers or fusible devices connected ahead of, and in series with approved conventional devices.

Two arrangements are acceptable and comply with UL standards for panelboards. The main circuit breaker may be installed in the panel as a main device (Figure 22.1-4), or it may be mounted remote (Figure 22.1-5) from the panel. In either case, the approved main and branch combinations must be followed. These arrangements are acceptable and are UL listed having been tested in accordance with UL standards.

From the tables on Page 22.1-34 through Page 22.1-42, specific combinations of main devices (upstream) and branch devices (downstream), series connected and electrically adjacent in the system, may be selected to qualify the assembled panelboard for the short-circuit ratings shown. Series ratings apply only to those Eaton breakers listed and published. Do not use "Classified" breakers.

Figure 22.1-4. Main Device

Figure 22.1-5. Mounted Remote

Industry standards and the NEC require protection of the entire electrical distribution system from damage due to short-circuit faults. Article 230.205 of the NEC states that service entrance equipment shall be suitable for the short-circuit current available at its supply terminals. The entire distribution system is required to meet this standard. Series rated systems have become an effective method of meeting these requirements.

There are three protection systems used to protect low voltage power distribution equipment.They are:

- Fully rated protection
- Fully rated, selectively coordinated protection
- Series rated protection

Fully Rated Protection-Where all overcurrent devices are rated for the full prospective short-circuit current at their line side terminals throughout the system.

Selectively Coordinated Protection-

A fully rated system where the overcurrent device closest to the fault will open first, thus isolating the faulty circuit.

Series Rated Protection-A shortcircuit interrupting rating assigned to a combination of two or more over-current protective devices that are connected in series and in which the rating of the downstream device(s) in the combination is less than the series rating.

Series ratings are also known in the industry as integrated ratings, series combination ratings and series connected ratings.

UL Issues

In a series rated system, all of the overcurrent devices in series in the protective scheme must have been tested and listed by Underwriters Laboratories for series combination use in the system.

All Eaton's series ratings are in full compliance with all applicable requirements of the latest editions of UL 489, 891 and 67.

The UL Recognized Component Directory (theYellow Book) contains breaker manufacturers' series connected listings. These are intended ONLY as a guideline for use by others who are responsible for their own testing, labeling and listing. Therefore, the UL Recognized Component Directory cannot be used to interpret series connected ratings in assembled equipment. The assembled equipment must also be UL tested for series ratings.

Code Issues

The fault current contribution of motors connected between series rated breakers must be considered. Article 240.86 in the NEC states that for series ratings, the sum of the motor full-load currents cannot exceed 1% of the interrupting rating of the lower rated circuit breaker. The actual fault current contribution from induction motors is about four times their full-load current (impedance value of 25%). For example, if the downstream branch circuit breakers used in a series rated combination have an interrupting rating of $14,000 \mathrm{~A}$ rms symmetrical for a 480 V system, the maximum allowable motor contribution to that panel from the branch circuit breakers is $140 \mathrm{~A}(1 \%)$. For typical induction motors, this is equivalent to a total horsepower at 480 V of approximately 115 horsepower.

Requirements of the NEC (NFPA-70) for series ratings may be met by equipment marked with ratings adequate for the available fault current at the point of application in the electrical system. Eaton panelboards and switchboards are marked consistent with NEC Article 240.83.

Additionally, Article 110.22 requires field marking on equipment where series ratings are used.This label is supplied standard with all Eaton panelboards and switchboards.

NEC Required Caution Label
Note: The NEC requires the installer to properly apply and complete this label. Label(s) must be placed on all equipment where series ratings are used.

Fuse Application Considerations

Fuses can be used instead of circuit breakers in fully rated, selectively coordinated and series connected protection systems. See the tables on Page 22.1-42 through
Page 22.1-42 for fuse breaker data applied to series connected designs.

Don't apply fuses using the up-over-down method, which has been recommended by some fuse manufacturers for sizing a current-limiting fuse that protects a downstream molded case circuit breaker with a specified rms symmetrical interrupting rating. The method can lead to erroneous and unsafe conclusions, and should not be used.
Example: Assume a specific type of current-limiting fuse rated 2000 A. Then using the figure below:

1. Draw a vertical line from the prospective short-circuit current of 200 kA to intersect the typical peak let-through curve at "A."
2. Draw a horizontal line left from Point " A " to intersect the
"prospective peak" curve at " B ."
3. Drop a vertical line from " B " to intersect the horizontal axis and read the recommended rating, 65 kA rms, concluding that a circuit breaker with a 65 kA interrupting capacity will be protected by a specified 2000 A current-limiting fuse.

This conclusion is wrong when the downstream service has a blow-open contact assembly, as does a molded case circuit breaker or similar device.

The reason:The up-over-down method ignores dynamic impedance (the inherent current-limiting of the downstream molded case circuit breaker). Such impedance is developed directly by the forces of the let-through current created when the contacts are blown open.
For proper application of current-limiting fuses, always refer to recommendations by the manufacturer of the circuit breaker, which are based on actual test data.

Figure 22.1-6. Old Up-Over-Down Chart

Applying Series Ratings

The following is provided to use the series rating tables on the following pages.
Step 1. Determine the available system voltage and fault current.

Step 2. Select the appropriate table using the system voltage.

Step 3. Use the appropriate "Series Equipment Rating" column equal to, or greater than, the available fault current, to determine the allowable combinations of main (upstream) and branch (downstream) overcurrent devices. Main devices are shown in bold/ shaded areas. Respective branch breakers are shown directly below their associated main device. If a rating is not initially found in a column, first look to the columns to the right for higher "Series Equipment Ratings" within the same table. If still not found, use ratings from table of a higher system voltage (higher numbered tables).

Example 1:

240 V, three-phase, three-wire, AC system with available fault current of $37,438 \mathrm{~A}$. Main (upstream) device is a three-pole, 150 A, PDG2xG breaker. The branch (downstream) breakers are two- and three-pole, 20,30 and $60 \mathrm{~A}, 240 \mathrm{~V}, \mathrm{BAB}$ breakers.

1. Go to the 240 V table (Table 22.1-26).
2. Look down under the 42 kA column. This rating is not shown.
3. Look to the columns to the right. This rating is shown under the 65 kA column, and therefore is valid.

Example 2:

$480 \mathrm{Y} / 277 \mathrm{~V}$, three-phase, four-wire, AC system with available fault current of 62,097 A. Main (upstream) device is a three-pole, 250 A breaker. The branch (downstream) breakers are two- and three-pole, 60, 70 and 100 A FDB breakers.

1. Go to the $480 \mathrm{Y} / 277 \mathrm{~V}$ table (Table 22.1-29).
2. Look down under the 65 kA column. This rating is not shown.
3. Look to the columns to the right. This rating is still not shown.
4. Look at the table with the next higher system voltage (480 V , Table 22.1-30).
5. This rating is shown under the 65 kA column, and therefore is valid.

Example 3

$208 \mathrm{Y} / 120 \mathrm{~V}$, three-phase, four-wire, AC system with available fault current of $56,438 \mathrm{~A}$. Main (upstream) device is a three-pole, 225 A, PDD2xG breaker. The branch (downstream) breakers are single-pole, 20 A BAB (120/240 V), and two- and three-pole, 70 A BAB (240 V).

1. Go to the 240 V table (Table 22.1-26).
2. Look under the 65 kA column. This rating is shown under the 65 kA column, and therefore is valid for the two- and three-pole (240 V) breakers.
3. Look at the $120 / 240 \mathrm{~V}$ table (Table 22.1-25) for the single-pole (120/240 V) rating.
4. Look under the 65 kA column. This rating is shown under the 65 kA column, and therefore is valid for the single-pole ($120 / 240 \mathrm{~V}$) breakers.

Other Applications of Series Ratings

Series ratings can also be applied under the following guidelines:
Any FULLY RATED breaker can be applied upstream, downstream, or in the middle of, any of the series ratings stated in the tables.

Any series rating stated in the tables may have additional branch breakers of the EXACT SAMETYPE further downstream in that rating.

COMBINING SERIES RATINGS is allowed under certain conditions. Main and branch series ratings may be combined if:

Breakers A, B and C are in series respectively from main to branch. Breakers A and B series rate together, breakers A and C series rate at the same interrupting rating level (or higher), it is allowable to use A, B and C together at the $A-B$ series rating.
It is improper to combine series ratings under the following condition:

Breakers A, B and C are in series respectively from main to branch. Breakers A and B series rate together, breakers B and C series rate at the same interrupting rating level (or higher), it is NOT allowable to use A, B and C together at the A-B or B-C series rating. However, combining multiple overcurrent devices as in this example, can be accomplished if all devices in the series combination have been tested together and listed in triple rating Table 22.1-38.
Main devices shown centered at top in shaded area, respective branch devices shown directly below.

Table 22.1-25. 120/240 Vac—Breaker/Breaker Series Ratings
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

Table 22.1-25. 120/240 Vac—Breaker/Breaker Series Ratings (Continued)
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

(1) Single-pole version is restricted to 15-70 A.
(2) Not valid with PDF3xM.

Series Rated Combinations

Table 22.1-26. 240 Vac-Breaker/Breaker-Series Ratings
For single- and two-pole 120/240V rated breakers (BA, BAB, HQP, OBHW, QPHW), see Table 22.1-25.
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

(1) Valid on two- and three-pole breaker only. Not valid for single-pole.

Table 22.1-27. 240 Vac—Breaker/Breaker—Series Ratings
For single- and two-pole 120/240 V rated breakers (BA, BAB, HOP, QBHW, OPHW), see Table 22.1-25.
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

(1) Valid on two- and three-pole breakers only. Not valid for single-pole.
(2) Not valid with PDF3xM.

Main devices shown in shaded area, respective branch devices shown directly below.
Table 22.1-28. 277 Vac-Breaker/Breaker Series Ratings
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to single-pole branch breakers only. For two- and three-pole branch breakers, see other tables.

(1) Not valid with PDG3xG*.
(2) Not valid with HFDE.
(3) Not valid with JDB.
(4) Not valid with PDF3xG.
(5) Not valid with PDF3xM.

Table 22.1-29. 480Y/277 Vac—Breaker/Breaker Series Ratings
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to two- and three-pole branch breakers only. For single-pole branch breakers, see Table 22.1-28.

[^4]Main devices shown in shaded area, respective branch devices shown directly below.
Table 22.1-30. 480 Vac-Breaker/Breaker Series Ratings
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

(1) Not valid with HFDE.

Table 22.1-31. 600 Vac—Breaker/Breaker Series Ratings
Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Table 22.1-32. 120/240 Vac-Fuse/Breaker Series Ratings
Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below.

Main devices shown in shaded area, respective branch devices shown directly below.
Table 22.1-33. 240 Vac-Fuse/Breaker Series Ratings
For single- and two-pole 120/240 V rated breakers (BA, BAB, HOP, QBHW, OPHW), see Table 22.1-25.
Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below.

(1) Valid on two- and three-pole breakers only. See Table 22.1-32 for single-pole.

Table 22.1-34. 277 Vac Fuse/Breaker Series Ratings
Main fuse class are shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to single-pole branch breakers only. For two- and three-pole branch breakers, consult other tables.

Main Fuse Maximum Amperes	Series Equipment Rating-kA Symmetrical						
	65		100			200	
100			J	T		R	
			GHQ GHORSP	GHO GHORSP		GHB	
200	J	T	J	T	R		
	GHO GHQRSP	$\begin{aligned} & \text { GHO } \\ & \text { GHORSP } \end{aligned}$	$\begin{aligned} & \text { PDG2xF } \\ & \text { PDG2xG } \\ & \text { PDG2xM } \end{aligned}$	$\begin{array}{\|l} \text { PDG2xF } \\ \text { PDG2xG } \\ \text { PDG2xM } \end{array}$	GHB		
400						J	T
						GHB	GHB

Table 22.1-35. 480Y/277 Vac-Fuse/Breaker Series Ratings
Main fuse class shown centered at top, in shaded area.
Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only.
For single-pole branch breakers, see Table 22.1-34.

Table 22.1-36. 480 Vac-Fuse/Breaker Series Ratings
Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main Fuse Maximum Amperes	Series Equipment Rating-kA Symmetrical					
	100	$\mathbf{2 0 0}$				
100			R			
200	J	T				
	PDG2xF PDG2xG	PDG2xF PDG2xG PD				

Table 22.1-37. 600 Vac-Fuse/Breaker Series Ratings
Main fuse class shown centered at top, in shaded area.
Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main Fuse Maximum Mmperes	$\mathbf{1 0 0}$	Series Equipment Rating-kA Symmetrical
Ampo		

100			R			
			PDG2xG PDG3xG* PDG2xM PDG2xP			
200	J	T	R			
	PDG2xG PDG3xG* PDG2xP	PDG2xM PDG2xP	$\begin{array}{\|l} \text { PDG3xG* } \\ \text { PDG2xM } \end{array}$			
400	J	T	R			
			PDG3xG* PDG3xM* PDG3xP*			
600				J	T	
				PDG3xG PDG3xM PDG3xP	PDG3xG* PDG3xM* PDG3xP*	

Table 22.1-38. Triple Series Ratings

Main Fuse Class and Maximum Amperes	Tenant Main Type	Branch Type	System Voltage	Short- Circuit Series Rating (kA, Sym.)
L-6000	PDD3xGy, PDG3xGBGB	K, GDHB, PDG2xF ©	240	100
L-6000	PDD3xGy, PDG3xGGB	K, GDHBB	$120 / 240$	100
L-6000	PDD3xGy PDG3xPG	FD ©, FDB	240	100
L-6000	PDD3xGy PDG3xG*		240	100
L-6000	JDB	GB, GHB	240	100
L-6000	JDB	GB, GHB	$120 / 240$	100
L-6000	PDG2xG	GB, GHB	240	100
L-6000	PDG2xG	GB, GHB	$120 / 240$	100
L-6000	PDG2xG	BAB_H, HOP_H QBHW_H, QPHW_H	240	100
L-6000	PDG2xG	BA, BAB HQP (15-70 A)	$120 / 240$	100
L-6000	PDG2xF	BAB_H, HOP_H	240	100
L-6000	PDG2xF	BA, BAB, HOP	$120 / 240$	100

[^5]
Panelboard Selection Guide

Table 22.1-39. Product Types

Table 22.1-39. Product Types (Continued)

Table 22.1-39. Product Types (Continued)

Pow-R-Command	Multipoint Metering Distribution Panelboard	Elevator Control Panelboard
Bolt-on or plug-on circuit breakers 240 or $480 \mathrm{Y} / 277 \mathrm{Vac}$	Bolt-on circuit breakers 600 Vac or 600 Vdc maximum	Bolt-on fusible switches 600 Vac maximum
Main lugs only 400 A maximum	Type PRL4X panelboard specially formatted to provide a compact and flexible multipoint metering solution for 250-1200 A applications	Controls for up to four elevators in a single panelboard
Main circuit breaker 400 A maximum		Main lugs only 800 A maximum
Branch circuit breakers 225 A maximum Single-, two- and three-pole		Branch overcurrent devices 15-200 A fusible switches with Class J fuse clips maximum
Single- and two-pole remote operated circuit breakers		
Integral load switching and dimming controls		Designed to meet specific sections various codes impacting elevators

Table 22.1-40. Panelboard Selection Guide

Panelboard Type	Device Type	Maximum Voltage Rating		Maximum Main Rating, Amperes		Branch Circuits Ampere Range	Short-Circuit Current Ratings rms Symmetrical Amperes, AC	
		AC	DC	$\begin{array}{\|l} \hline \text { Main Lugs } \\ \text { Only } \\ \hline \end{array}$	Main Device		Fully Rated (kA)	$\begin{aligned} & \text { Series Rated } \\ & \text { (kA) } \end{aligned}$
Pow-R-Line 1X (1)	Breaker	240	-	600	600	15-100	10-22	22-200
Pow-R-Line 2X (1)	Breaker	$\begin{array}{\|l\|} \hline 240 \\ 480 \mathrm{Y} / 277 \end{array}$	250	$\begin{aligned} & \hline 600 \\ & 400 \text { (2) } \end{aligned}$	$\begin{aligned} & \hline 600 \\ & 400 \text { (2) } \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 65 \\ & 14 \end{aligned}$	$\begin{aligned} & 65-200 \\ & 22-150 \end{aligned}$
Pow-R-Line 3X (1)	Breaker	$\begin{aligned} & 240 \\ & 480 \\ & 600 \end{aligned}$	250	$\begin{aligned} & 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 15-225 \\ & 15-225 \\ & 15-225 \end{aligned}$	$\begin{aligned} & 10-200 \\ & 14-100 \\ & 14-35 \end{aligned}$	$\begin{aligned} & 22-200 \\ & 22-150 \\ & - \end{aligned}$
Pow-R-Line 3E (1)	Breaker	480	250	600	600	15-125	35-65	35-100
Pow-R-Line 4X (1)	Breaker	$\begin{aligned} & \hline 240 \\ & 480 \\ & 600 \end{aligned}$	600	$\begin{aligned} & \hline 1200 \\ & 1200 \\ & 1200 \end{aligned}$	$\begin{array}{\|l\|} \hline 1200 \\ 1200 \\ 1200 \end{array}$	$\begin{array}{\|l\|} \hline 15-1200 \\ 15-1200 \\ 15-1200 \\ \hline \end{array}$	$\begin{aligned} & 10-200 \\ & 14-200 \\ & 14-200 \end{aligned}$	$\begin{aligned} & \hline 22-200 \\ & 22-150 \\ & - \end{aligned}$
Pow-R-Line 4F (1)	Fusible switch	$\begin{aligned} & 240 \\ & 600 \end{aligned}$	250	$\begin{aligned} & 1200 \\ & 1200 \end{aligned}$	$\begin{array}{\|l\|} \hline 1200 \\ 1200 \end{array}$	$\begin{array}{\|l\|} \hline 30-1200 \\ 30-1200 \end{array}$	$\begin{array}{\|l\|} \hline 100-200 \\ 100-200 \end{array}$	-
Pow-R-Line 4DX	Breaker	$\begin{aligned} & 240 \\ & 480 \end{aligned}$	$-$	$\begin{aligned} & \hline 1200 \\ & 1200 \end{aligned}$	$\begin{array}{\|l\|} \hline 1200 \\ 1200 \end{array}$	20-600 Drawout 15-1200 Fixed	$\begin{array}{\|c\|} \hline 100 \\ 65 \end{array}$	-
Pow-R-Line 1XF	Fusible switch	240	-	400	400	15-30	200	200
Pow-R-Line 2XF	Fusible switch	480Y/277	-	400	400	15-30	200	200
Pow-R-Line 1X-LX	Breaker	240	-	225	225	15-30	10-22	18-200
Pow-R-Line 2X-LX	Breaker	480Y/277	125/250	225	225	15-30	14	25-150
Pow-R-Line 1RX	Breaker	240	-	225	225	15-100	10-22	22-100
Pow-R-Line 2RX	Breaker	480Y/277	-	225	225	15-100	14	22-150
Elevator control panelboard (1)	Fusible	480	-	800	800	15-200	10-200	14-100

(1) Available with surge protective device (SPD) and metering.
(2) Amperage rating for DC voltage.

Types PRL1X, 2X and 3X Modifications

Types PRL1X, 2X and 3X

Modifications Selection Guide
Table 22.1-41. Modifications-Alphabetical Index

Modification	Available on Panelboard Types		
	PRL1X	PRL2X	PRL3X
Ambient compensating breakers	No	No	Yes
Branch circuit monitoring	Yes	Yes	Yes
Bus density	Yes	Yes	Yes
Cabinets-special:Types 2, 3R, 4, 4X, 12	Yes	Yes	Yes
Complete assembly	Yes	Yes	Yes
Compression type lugs, mains only	Yes	Yes	Yes
Concealed trim clamps (LT trim)	Yes	Yes	Yes
Conduit covers	Yes	Yes	Yes
Copper lugs	Yes	Yes	Yes
Copper main bus	Yes	Yes	Yes
Directory frame-metal	Yes	Yes	Yes
Doors, special	Yes	Yes	Yes
Electronic trip units	Yes	Yes	Yes
Fungus-proof	Yes	Yes	Yes
Ground bar	Yes	Yes	Yes
Ground fault protection (zero sequence)	No	No	No
Handle lockoff device	Yes	Yes	Yes
Hinges, special (LT trim)	Yes	Yes	Yes
Increased dimensions	Yes	Yes	Yes
Increased panel bus rating	Yes	Yes	Yes
Interiors to fit existing boxes	Yes	Yes	Yes
Locks, special (LT trim)	Yes	Yes	Yes
Metering devices	Yes	Yes	Yes
Molded case switches	Yes	Yes	Yes
Nameplates engraved	Yes	Yes	Yes
Neutral rated 200\%	Yes	Yes	Yes
Painting and special coating	Yes	Yes	Yes
Permanent circuit numbers	Yes	Yes	Yes
Remote control switches (ASCO 920)	No	No	Yes
Service entrance	Yes	Yes	Yes
Shunt trips	Yes	Yes	Yes
Split bus or meter loop	No	No	Yes
Sub-feed breakers	Yes	Yes	Yes
Sub-feed lugs	Yes	Yes	Yes
Surge protective device (SPD)	Yes	Yes	Yes
Tamperproof screws (LT trim)	Yes	Yes	Yes
Terminals, copper only for breakers	Yes	Yes	Yes
Through-feed lugs	Yes	Yes	Yes
Time clock space only	Yes	Yes	Yes
Touchup paint	Yes	Yes	Yes

Eaton

1000 Eaton Boulevard
Cleveland, OH 44122
United States
Eaton.com

[^0]: (2) For use on $480 \mathrm{Y} / 277 \mathrm{Vac}$ systems only.
 (3) Solenoid operated breaker.

[^1]: (1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
 (2) Add 8.00 inches $(203.2 \mathrm{~mm})$ for SPD.
 (3) 28.00 inches (711.2 mm) optional width is available for panelboards with high circuit counts.
 (4) JD, JDC is same space requirement as 400 A PDD3xGy, PDG3xM*, PDG3xP*.

[^2]: (1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.
 (2) Add 8.00 inches (203.2 mm) for SPD.
 (3) 28.00 inch (711.2 mm) optional width is available for panelboards with high circuit counts.

[^3]: (1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.

[^4]: © Not valid with PDG3xG*.
 (8) Not valid with HFDE.

[^5]: (1) Valid on two- and three-pole breakers only. Not valid for single-pole.

