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ABSTRACT

This dissertation proposes a design for a machine structure which is ap-
propriate for APL and which evaluates programs in this language efficiently.

The approach taken is to study the semantics of APL operators and data
structures rigorously and analytically. We exhibit a compactly representable
standard form for select expressions, which are composed of operators which
alter the size and ordering of array structures. In addition, we present a set
of transformations sufficient to derive the equivalent standard form for any
select expression. The standard form and transformations are then extended
to include expressions containing other APL operators.

By applying the standard form transformations to storage access functions
for arrays, select expressions in the machine can be evaluated without having
to manipulate array values; this process is called beating. Drag-along is a
second fundamental process which defers operations on array expressions,
making possible simplifications of entire expressions through beating and also
leading to more efficient evaluations of array expressions containing several
operations.

The APL machine consists of two separate sub-machines sharing the same
memory and registers. The D-machine applies beating and drag-along to defer
simplified programs which the E-machine then evaluates. The major machine
registers are stacks, and programs are organized into logical segments.

The performance of the entire APL machine is evaluated analytically by
comparing it to a hypothetical naive machine based upon presently-available
implementations for the language. For a variety of problems examined, the
APL machine is the more efficient of the two in that it uses fewer memory
accesses, arithmetic operations, and temporary stores; for some examples,

the factor of improvement is proportional to the size of array operands.
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CHAPTERI
INTRODUCTION

an optimist is a guy that has never
had much experience

Don Marquis, archy and mehitabel

The electronic digital computer has progressed from being a dream, to an
esoteric curiosity, to its present pervasive and indispensable role in modern
society. Over the years, man's uses of computers have become increasingly
sophisticated. Of particular importance is the use of high-level programming
languages which have made machines more accessible to problem-solvers.

In general, the use of problem-oriented programming languages requires a
relatively complex translation process in order to present them to machines.
Although this can be done automatically by compilers, there is a wide gap to
bridge between the highly-structured concepts in a programming language such
as ALGOL, PL/I, or APL and the relatively atomic regime of today's computers.
In effect, there exists a mismatch between the kinds of tasks we want to present
to machines and the machines themselves. One possible way to eliminate this
difference is to investigate ways of structuring machines to bring them closer

to the kinds of problems people wish to solve with them,

A. A Programming Language

A particular programming language in which this mismatch with contemporary
machines is especially obvious is APL, based on the work of K. E. Iverson
(Iverson [1962]). APL is a concise, lﬁghly mathematical programming language
designed to deal with varray— structured data. APL programs generally contain

expressions with arrays as operands and which e\-raluate to arrays, while most



other languages require that array manipulations be expressed element-by-element.
To complement its use of arrays as operands, APL is rich in operators which
facilitate array calculations. Also, it is highly consistent internally both syntac-
tically and semantically, and hence could be called ""mathematical’. Because of

its use of structured data and its set of primitives which are quite different from
those of a classical digital computer, APL does not fit well onto ordinary machines.
It is possible to do so, and interpreters have been written for at least three dif-
ferent machines (Abrams [1966]; Berry [1968]; Pakin [1968]). Finally, because

of its mathematical properties, it is possible to discuss the seniantics of the
language rigorously and to derive significant formal results about expressions in

the language.

B. The Problem

The problem considered in this dissertation is to design a machine structure
which is appropriate to APL, !'"Machine structure’ here means a general func-
tional scheme and not a detailed logical design. The expected result is not a set
of specifications from which a circuit designer could produce a working device,
but rather a superstructure into which the features of the language fit cleanly.
Thus, this design must in some sense be natural for the language. For example,
the primitive operations and data structures should include those of APL. In
addition, the machine should take advantage of all available information in order
to execute programs as efficiently as possible. We use the word "machine' in
a very broad sense: what it really means here is "algorithm and not necessarily
any particular physical device. Such a machine could be implemented as a con-
ventional program or as a hardwired device or as a microprogram in an appropriate

system. For the purposes of this work, it doesn't really matter.



"APL" means any programming language which includes the semantics of
APL\360 (Pakin [1968]). We shall not be concerned with the particular syntax
of APL, although this currently appears to be the best way to represent the
semantic ideas of the language. In short, the machine should be able to handle
array-structured data with ease and should be able to evaluate functions on such
data using the operators of APL as basic primitives,

The approach taken is to invest a considerable amount of effort in the analysis
of the mathematical properties of the operators and data structures of APL and
to exploit these results in the design of the machine., Thus, a major part of this
work will be dedicated to a rigorous, mathematical investigation of APL expres-
sions., This study is contained in Chapter II. In Chapter III, the work of Chapter
II is related to the design of a machine, and the design goals are set forth in
detail. Chapter IV discusses the proposed machine design, and Chapter V is an
evaluation of the machine with respect to the goals of Chapter III.

It should be emphasized that the goal of designing an APL machine is a rather
broad one. Although there are clearly practical applications of such a design,
thaf is not the major focus of this work. Rather, we hope that by investigating
this language and machine in detail, it will be possible to learn something about
the basic processes in computing and find ways of reflecting these processes in
a machine structure. The results summarized in Chapter VI and the new research

problems suggested by this work indicate that this goal has been fulfilled.

C. Historical Perspective

For the purposes of this dissertation, we are primarily interested in previous
work inthe area of language-directed machine design (McKeeman [1967]; Barton [1965]).
To some extent, all machine design can be considered to be language-difected, in

that one wishes to implement some particular (machine) language in a piece of
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hardware. However, let us consider only the class of machines which might
better be called "higher language inspired'’; that is, machines which are based
in some way on languages capable of expressing concepts at a higher level than
are normally associated with assembly code.

The first such machine was reported in 1954, and was a relay device capable
of directly evaluating logical expressions (Burks, Warren, and Wright [1954]).

In addition, this machine used input in parenthesis-free (Polish) notation, thus
doubling its historical interest. The logic machine typifies one major class of
language-inspired machine designs in that its machine language is identical to the
high~level source language. The other major class of language-inspired designs
is more concerned with the processing of the semantics of the source language,
rather than direct acceptance of the exact language by the machine. In fact, most
designs fall between the two extremes, as even those which accept the source
language directly do some preliminary transformations on it to produce a simpler
intermediate language.

Other language-inspired machines accepting source language directly include
an ALGOL 60 machine (Anderson [1961]), two FORTRAN machines (Bashkow,
Sasson and Kronfeld [1967]; Melbourne and Pugmire [1965]), the ADAM machine,
based on a special symbol-oriented language (Mullery, Schauer and Rice [1963];
Meggitt [1964]), and a machine for EULER, a generalization of ALGOL (Weber
[1967]). Of these devices, some were to be implemented in hardware (e.g.,
Bashkow et al.; Mullery et al) while others were implemented in microprogram
(Meggitt; Weber).

Machines which are more concerned with semantic processing to the extent
that their machine languages are significantly different from a higher-level

language include the Burroughs B5000 (Barton [1961]; Burroughs [1963]) which is
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essentially an ALGOL machine, a PL/I machine (Sugimoto [1969]) and the Rice
University computer (Iliffe and Jadeit [1962]). Current work in this area includes
a PL/I machine (Wortman [197 0]) and a micro-computer capable of emulating
high-level processes easily (Lesser [19 69]).

Most of these efforts are not directly relevant to the work in this dissertation
and are thus reported here only for completeness. The common aspect of all these
designs is that they are concerned with the processing of more highly organized
information and programs than are found in the conventional von Neumann
type architectures. Most of them include generalized addressing schemes using
some modification of descriptors, as well as at least one stack.

Although the Burks, Warren, and Wright machine was the first to use Polish
notation as a machine language, the first commercially produced devices to do so
apparently were the English Electric KDF9 (Davis [1960]) and the Burroughs B5000,
Both of these machines included stacks. Other related efforts not yet mentioned
are two machines based on lower-level machine languages, but intended to deal
with high-level primitives. One of these (Iliffe [1968]) is based on extensive use
of descriptor logic for both programs and data, while the other (Myamlin and
Smirnov [1968]) is somewhat more closely oriented toward higher-level languages.
The latter, in particular, does run-time evaluation of infix arithmetic expressions.

Aside from the work of Burks et al., none of the designs in the literature seem
to be derived from explicit mathematical analysis of their input languages. Further,
except for simulations or actual performance, none of the papers in the literature
present satisfactory evaluations of their designs. This is not to say that the
designs are not satisfactory: to the contrary, the success of the Burroughs family
of computers and the KDF9 show that language-inspired designs are a viable ap-
proach to the developzﬁént of new machines. On the other hand, nobody seems to

have established exactly how viable such designs really are.
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D, Conclusion

Having briefly reviewed the developments of language-inspired machine design
to dafe, they can now be left in the background. The present approach is different
from those in the past in that it is based on a mathematical analysis of the seman-
tics of the source language. Also, the evaluation of the resulting design is analytic,
and gives a clear comparison of this APL machine to other similar devices. There
are, of course, similarities to the designs of the past. In particular, the use of
program segments, data descriptors, and stacks is not novel in itself, although
the machine developed here is substantially different from those mentioned in the
last section.
""The thing can be done, ' said the Butcher, 'T think,

The thing must be done, I am sure.

The thing shall be done! Bring me paper and ink,
The best there is time to procure. "

L. Carroll, The Hunting of the Snark




CHAPTER II

MATHEMATICAL ANALYSIS OF APL OPERATORS

This chapter examines the mathematical properties of some of the APL
operators. Mathematical definitions of the operators are given from which it is
possible to deduce their properties. We show that there is a standard form for
expressions containing selection operators, and that there is a complete set of
transformations to obtain it. A similar form which generalizes inner and outer
products is introduced with transformations appropriate to obtain it. Finally,
the relation between these operators and others in APL is discussed.

This kind of analysis is important for several reasons. First, in its own
right it contributes to the understanding of the operators and data-structures in
APL. Second, and most important for this work, it provides a strong mathematical
basis for the design of the machine to be discussed later. In particular, the ideas
discussed here are reflected in the drag-along and beating processes, which are

fundamental in the proposed machine design.

A. On Meta-Notation

APL is a programming language, and as such is best suited for describing
processes, while mathematics is primarily concerned with discussing relations
rather than processes. Thus, in order to do mathematics with APL, it is neces-
sary to use some notations that are not available in the language itself. Some of
these meta-notations are actually extensions of the language which might well be
included in APL to make it more powerful, while others are necessitated by the
analytic approach, and do not reflect shortcomings in APL. In the next section,

definitions of objects not in APL are clearly noted as such.



B. Preliminary Definitions

The definitions to follow are given partly in APL and partly in meta~-notation,
Hence this and the remaining sections in this chapter assume a minimal "reading
knowledge" of APL. The APL summary in Appendix A will be helpful to the reader

not fluent in this language. Also recommended are the APL\360 Primer (Berry

[1969]) and APL\360 Reference Manual (Pakin [1968]). At first, it might appear

that defining APL operators in terms of other (intuitively but not formally defined)
APL operators is elliptical. In fact, there is no circularity since the definitions
could be given in more primitive forms, but at the cost of less perspicuity. Since
the goal here is not the development of a coherent theory of APL expressions but
rather the illumination of the behavior of these expressions, the current mode of
explication was chosen. The use of "undefined" APL operators is made advisedly
and no special or esoteric applications of them are made in the following definitions.
The basic problem here is that of using a formalism to describe a formalism.,

At some point it is necessary to assume a previous knowledge of something in
order to avoid an infinite regress. '"Nothing can be explained to a stone; the
reé.der must understand something beforehand.'" (McCarthy [1964] s Do )

The definitions will be numbered Dn for easier reference. Theorems and
transformations will be numbered Tn and TRn, respectively. In APL expressioné
to follow, the convention that unparenthesized subexpressions associate to the
right will be used wherever this does not lead to confusion. Material which can
be skipped in the first reading is enclosed in heavy brackets. For the most part,
this includes formal statements in definitions which are necessary for proving
theorems and correctness of transformations, but which are not essential to

understanding the content of this chapter.



Identity: (Meta) If.= and & are expressions, then
ol <—RB
means they have identical values.
The sign ' is used for identity because the more traditional equality

sign ="' is reserved for use as a dyadic scalar operator in APL.

Conditional Expression: (Meta) The conditonal expression

IF B THEN A ELSE C
has as its value the value of 4 if B <> 1,the value of Cif B <= 0,and is
undefined otherwise.
McCarthy [1963] discusses formal properties of conditional expressions,

some of which are used in the proofs in this chapter.

Index Origin: (Meta) The index origin is the lower bound on subscripts in

APL expressions. It will be referred to as IORG.

In general, this work attempts to show explicit dependencies on index origin.

However, to do so throughout simply complicates many expressions without adding

insight. Whenever it is unstated we use 1-origin indexing.

D3.

Interval Function: If Nis a non-negative integer scalar, the interval

function of N,denoted by 1/, is a vector of length ¥ whose first element is
IORG, and whose successive elements increase by 1.

[Formally, \N <> IF N=0 THEN EMPTY VECTOR ELSE (11V—1),N+IORG—1.]

Thus, one representation for the empty vector is 10.

Odometer Function: (Meta) If Ris a vector of non-negative integers, the

odometer function of R, denoted by 1R, is a matrix with dimension (x/R),pR



whose rows are the mixed-radix representation to base R, of the (x/pR)

consecutive integers, starting with IORG. This extension is not a part

of APL, but is useful for discussing individual subscripts of an array.

[Formally, for each Ie1x/R, (1R)[I;] ;Q}_?QH?TI-IORG.]

Example: 13,2 <«

NEFENE NP

Ds. Row Membership: ELT is a function whose left operand is a vector and

whose right operand is a matrix, defined as follows:
L ELT R <> IF (pL)=(pR)(2] THEN V/RA.=L ELSE O.
That is, the relation is true (has value 1) if and only if the left operand

vector is identical to one of the rows in the right operand matrix.

Example: (1,3) ELT 13,2 <+ 0

(2,2) ELT 13,2 <+ 1

8

List:(Meta) If L is a vector, then the list of I, denoted by ;/L, is a
subscript list made up of the elements of . That is,

s/L < LL1130021;5...500pL1].

Example: ML 3/15] <= M[1;2;33435]

D7. Ravel: The ravel of ¥, denoted by,¥ , is a vector containing the elements
of M in row-major order. The dimension is
psM <> x/pM

If Mis a scalar, then ,V is a one-element vector.

- 10 -



[OtheI'Wise for each Ieix/pM, (,M)[I] « M ;/( 1pM)[I;]]]

Example: s

D8. Reshape: LetR be a vector of non-negative integers. Then the R reshape
of ¥ , denoted by RpM is an array with dimension R, whose elements are
taken from M (possibly with repetition) in row-major order.

Formally, for each [ ELT 1R,
(RoM)[ 5 /L] < (,M)LIORG+(x/pM) |RLL-IORG]

Example: (3,2)p16 <=1 2

34

5 6

4p1,2,3,4,5 < 1,2,3,4

(2,4)p13 <=1 2 3 1
2 312

Do. Partial Subscrioting: (Meta) M([X] S] denotes the partial subscripting

of array Malong the X th coordinate. In other words,
MILK] ST <> M ;...58;5...35]
4 4 4
1 K ppM
Formally,
and for each L ELT 1pMLL[K] S],
if S is a vector, then

(MLCK] SDLs /L] <> ML; /((K-1)4L) ,SCLLK]1],K+L]

and if S is a scalar, then

(MLLK] SDL5/L] <> MUs /((K-1)4L),5,(K-1)+L]

| .

- 11 -



D10. Subscripting: If ¥is a rankX array, then for any 51,52, ...,5KM1,5K

MLS1;...38KM138K] <> (... ((M[CppM] SKI)[L(ppM)-1] SKM11)...)[[1] S1]

The above simply gives a formal definition for array subscripting. It looks
more complex than it really is because APL uses a different syntax for subscripting
than for other operators. If we write SK X[KX] Minstead of M[[K] S], then the
value of the above expression can be rewritten as:

51 XC1] ... SKM1 X[ (ppM)-1 SK X[ppM] M

D1l. J-Function: Let LEN be a non-negative integer, ORG an integer, andSe0,1.

Then J LEN,ORG,S isan interval vector of length LEN whose least element

is ORG; if S <> 0 then successive elements increase by 1, else they decrease
by 1. Formally,

J LEN,ORG,S

<> IF S=0 THEN ORG+(1\LEN)-IQRG ELSE (LEN+ORG-1)-((1LEN)-IORG).

J-vectors are a generalization of the interval function. In particular, J-vectors
can have any origin, are invariant under changes of IORG, and can run forward

or backward.

1%

Exam; le: 49230 > 2933455

J 4,2,1 <> 5,4,3,2 and these relations are true for any IORG.

D12, Subarray: (Meta) LetM be any array and Fan array with dimension

(ppM),3. Then the subarray selected by , denoted FAM, is

FOMM < MUJ F[1313d F[2:31s ... 3d FlopM;1]
where the elements of Fare assumed to be in the domain of the above

expression.
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A subarray selected by this function is compact. The subarray function will be
used to provide a standard representation for all the various ways of selecting
compact subarrays.
Example: Let pM <> 10,15
and F <> 4 3 0
351
then FAM <> M[J 4,3,0 ; J 3,5,11]

«~ M(3,4,5,6 ; 7,6,5]

D13. Whole Array: (Meta) TFor any array M, the whole array of ¥, denoted

by AM, produces as a result the F such that FAy <~ M.

[Formally, A < Q(3,ppM)p(pM) ,((ppM)pIORG), (OOM)OO]

Example: If pM <> 6,10,32, then AM <> 6 1 0

101 0
and .IORG' ~— 1 32 1 0

D14. Cross Section: (Meta) LetM be any array, F an array with dimension

(ppM),2 such that
(i) FL311e0,1
(i) (~FL311)/FL;2] < (+/~FL311)p0
(iii) (FC;311/FC321) ELT FL311/p0M
Then the F cross section of ¥, denoted by FAM, is: pFAM <> (~F[;11)/pM

and for each L ELT 1pFAM, (FAMM)L3/L] <~ ML ;/(x/F)+(~F[;11)\L]

Cross section is used to formalize the subscripting of arrays by scalars. The
first column of 7 contains zeros for coordinates to be left intact. Condition (ii)
requires that if F[J;1] <> 0 then F[J;2] «> 0., This is primarily to make some
of the theorems easier to prove. Entries of 1 in 7[ ;1] correspond to coordinates

indexed by scalars in the corresponding element of F[ ;2] .
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Example: Let pM <> 4,7,13

F <«

R o R
R oN

0

then FAM <> M[2; 310]

D15. Take: If Mis any array and 4 is an integer vector with p4 <> ppM and
(14)<m , then A+M is an array of the same rank of ¥, as follows: for each
IerppM, if ALI]1=0 then include the first A[I] elements along the I th coordinate
of M; otherwise if ALTJ<0then take the last |ALI] elements.
Formally, A+M <> FAM

where F < Q(3,ppM)p( |4),(IORG+(A<0)x(pM)-|4),(ppM)p0

D16. Drop: I Mand 4Aare as above, then4yy is similar to the take except that
for each coordinate, the first (or last)lA[I] elements are ignored.
Formally, A+M <= GAM

where G <> &(3,ppM)p((pM)-|4),(IORG+0[A4),(ppM)pO

D17. Reversal: If ¥ is any array then¢[X]¥ is the reversal of ¥ along the Kt—h-

coordinate.
Formally ¢LKIM <> HAM
where H <> Q(3,ppM)p(AM)[31],(AM)[ ;2] ,K=1ppM

If the subscript on the operator is elided, it is taken to be ppX.

Example: Let M <> 1 2 3
4 56
7 8 9
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then, (2,2)4M <> 1 2 (2, 2)4M <> 2 3
45 56
(2,1)¢M <> 8 9 (T1,1)4M < 2 3
5 6
Q11 <> 7 8 9
L56
123

D18. Transpose: If M is any array and A is an integral vector satisfying

(1) pA > poM
(ii) A/AerppM i.e.,A contains only coordinate numbers of ¥
(iii) A/(1[/A)eA i.e., A is dense
then the transpose A8 of M byA is defined as follows:
1. ppA®M <> 1+([/A)-IORG
2. For each IeippAdM,
(pARM)LI] <> L/(A=I)/poM
3. Foreach L[ ELT 1p A8M,
(ASM)L3/L] <> ML;/LLA]]
In other words, A permutes the coordinates of ¥. Transpose can also

specify an arbitrary diagonal slice.

Example: Suppose M is a matrix with py <> 5,60 Thenifp «» (2,1)gv , and
IORG <> 1 we have ppR <> 142-1 <> 2 . Further, (pR)[1] < |/(1=2,1)/5,6 <> 6
(pR)[2] <> L /(2 <> 2,1)/5,6 <> 5 andforeach L ELT 16,5, R[;/L] <> M(;/(,L)[2,1]]
or R[LL[1]; LL2]1] <> M[LL2]; LL11].
Thus, R is the ordinary matrix transpose of y .

Now suppose M is same as above and R <> (1,1)8Y. Then, ppR <> 1+1-1 <> 1.

So the result is a vector. Then (pR)[1] <= |/(1=1,1)/5,6 <> 5.
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Then for each Le15, we have RLL] <> M[ ;/(,L)[1,11]

<~ ML ; L]

So R is the main diagonal of M.

D19. Compression: If ¥ is any vector and U is a logical vector of the same

length, theny/x is the result of suppressing from X all elements whose
corresponding entry in Uis O, For an arbitrary array X, U/[I] X compresses
X along the T th coordinate.

rFormally, forvector X, pU/X <> +/U and for each Ie1pU,

IF ULI1=1 THEN(U/X)[+/I+U] <> X[I]

This is not a constructive formula for (U/X)[I]; however, sucha

formula is too complex to be useful here. For any arrayX ,

U/LI] X < X[[I] U/ (pX)LI1].
e -

D20. Expansion: If X is any vector and Uis a logical vector with +/U <> pX,

then U\X is a vector with 0 elements wherever U/ has, and whose other
elements are taken from X in order.
The definition of expansion is extended to higher-dimensional arrays in
the same way as for compression.

Formally, pU\X <+ pU and for each Ie1plU,

(UNX)LI] <« IF ULI] THEN X[+/I4U] ELSE O

Example: (1,1,0,1,0)/1,2,3,4,5 «> 1,2,4

(1,1,0,1,0)\1,2,3 « 1,2,0,3,0
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C. The Standard Form for Select Expressions

In this section the selection operators considered are take, drop, reversal,
transpose, and subscripting by scalars or J-vectors. Because of the similarity
among the selection operators, we might expect that an expression consisting only
of selection operators applied to a single array could be expressed equivalently in
terms of some simpler set of operators. This expectation is fulfilled in the
standard form for select expressions, to be discussed below.

If the existence of a standard form is to be at all useful, there must be a way
to decide whether a particular expression has a standard form representation and
if so, there must be an effective method to obtain it. In the sequel we show that
every select expression has an equivalent standard form, and exhibit a set of
formal transformations which are sufficient to derive the standard form from an
arbitrary expression.

It may at first seem strange to include subscripting in the set of selection
operators, since its parameters are of a different kind than those for the other
select operators. In the other select operators such as take or drop, the left
operand is a count, which is independent of ways of accessing the argument array.
On the other hand, in subscripting the arguments act like maps rather than counts.
For example, an expression like A+¥ has meaning out of context, as long as the
values of 4 and¥ are known. Contrariwise the expression M(1;3] cannot be
evaluated without knowledge of the index origin. In the theorems and proofs to
follow, the major complications often come from this dichotomy in the way of
specifying select operations, rather than from the actual content of the material.
Subscripting is included because its effect is similar to the other selection

operators, all of which change only the dimensions and orderings of their operands.
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D21. Select Expression: Let & be any (well-formed) array-valued expression.

Then is as a select expression on & if it is a well-formed expression
consisting of an arbitrary number (including 0) of the following operators
applied to &:
(i) Take
(ii) Drop
(iii) Reversal
(iv) Transpose
(v) Subscripting by scalars of J-vectors
By extension, we will also include the subarray and cross section operators

in this class.

Example: Let ¥be a rank-3 array. Then by D21,
(2,1,3)8(PL21(4,76,3)¥M)[; ;3 J6,2,1]
is a select expression on ¥, but
-ML; 5 5,7,3,1]
is not because it contains the scalar operator '-' and the subscripting is not by

a scalar or J-vector. The definition also admits ¥ as a select expression on ¥.

D22, Equivalence Transformation: An equivalence transformation on expressions

is a rule of the form:
if set of assertions then & =>4
where & and ¥ are expressions. If the set of assertions is true, then expression

& may be replaced by expression %, and the truth of the assertions guarantees

that &=>%

For example (if X is any vector then ¢¢x=>X ) is an equivalence transformation,

sincé it is always true that if X is any vector, ¢dx « X.
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For any given transformation, it is necessary to prove that it is indeed
equivalence-preserving. If this is the case the transformation is said to be
correct. Note that the notions of expression and transformation and standard
form used here are informal ones. It is possible to make them rigorous, so as
to be acceptable to a logician, but that is irrelevant to the current aims and would
only serve to obfuscate the important mathematical relationships we are trying
to explicate. The correctness proof for each transformation will be called

"Proof of TRn''.

D23. Standard Form: A select expression on an array¥ is in standard form

(SF) if it is represented as ARFAGAMwhere A,F,G are all of the correct

size and domain.

In the remainder of this section, we introduce a set of equivalence transfor-
mations sufficient to transform most select expressions into standard form. In
the process we prove the correctness of each transformation. The effect of this

process is a proof of the following important theorem:

COMPLETENESS THEOREM 1: If &is any select expression on an arrayM,

then & can be transformed into an equivalent expression & in standard form.

In order to obtain an SF representation of an arbitrary select expression, we
must first be able to eliminate the operators take, drop, reversal and subscripting.

The first four transformations below do this.

TR1. IfMisany array and 4 is conformable to ¥ for take, then A+ => FAM

where F <> &(3,ppM)p(|4),(IORG+(A<0)x(pM)-]4),(ppM)p0 .
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TR2. If Mis any array and 4 is conformable to ¥ for drop, then AiM => FAM

where F <> Q(3,ppM)p( (pM)-14),(IORG+0TA),(ppM)p0.

TR3. If ¥is any array then ¢[XIM => FAM

where F <> Q(3,ppM)p(AM)[;11,(AM)[ ;2] ,K=1ppM.

These three transformations are obviously correct, as they follow directly from
the definitions of the operators take, drop, and reversal. Their proofs will thus

be omitted.

TR4. If M is any array then M[[K] J LEN,0RG,S] => FAM

where FLK;]1 <> LEN,0ORG,S and (KzippM)/[11F <> (Kz1ppM)/[1]AM

That the above is an equivalence transformation requires a small proof:
Proof of TR4:
We must prove that for any array ¥,
MLLK] J LEN,ORG,S] <> FAM

where F is as given in TR4. In order to prove the identity, we show first that both
quantities have the same dimensions. Then we show that corresponding elements
of each are identical.
Let R <> M[K] J LEN,0RG,S].
1. By definition, pR <> ((X-1)+pM),(p J LEN,0RG,S),K+pM

<> ((K-1)4pM),LEN ,K¥pM

and pFAM <> F[;1]
<> ((K-1)4(AaM)[511) ,LEN K+ (AM)[ 1]
<> ((K-1)+pM),LEN ,K¥pM

<——>pR
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2. Foreach L ELT 1pR,
RL;/L) <> MU /((K-1)4L),(J LEN,ORG,S)LLLK]1,KVL]
and (FAM)[;/L] <> (MLJ FL1:;] 3 J F[23] 5 ... 3 J FlppM;11[:/L]
<~ ML(J FL1;1)LL011]5 ... 5 (J FlppM;1)LLIMI]]
(by L3 in Appendix B).
But for each 7=K, (J F[I;1)[LLI]] < (J (pM)LI]1,I0RG,0)[LLI]]
< L[I] (by L4, Appendix B)
and (4 FLK;1)LLLK]1] < (J LEN,0RG,S)LLLK]]l. Therefore,
(FAM)L /L) <> MLLL1] 5 LL2]1 5 ... 5 LLK-11 ; (J LEN,O0RG,S)[LLK11;
LK+1]s ... ;LLppM]]
<> ML ;/((K-1)4L),(J LEN,ORG,S)LLLK]1],KVL]

«~— R[;/L]1 QFED.

The preceding proof of TR4 is reasonably simple, and is representative of
the kind of proof required. Although similar in style, the proofs of the remaining
transformations are more complex. Since they add little to the exposition, they
are given in Appendix B.

The following transformation makes it possible to reduce the number of

occurrances of adjacent subarray operators in an expression.

TR5. If Mis any array and Fand G are conformable for subarrays, then
FAGAM => HAM
where pH <> pF and for each Te1ppM, H[I;] <> L,0R,S

where J L,0R,S <> (J GLI;1)[J FLI;]]

Transformations TR1 through TR4 are used to eliminate instances of the
operators take, drop, reversal, and indexing from select expressions by trans-
forming them into equivalent expressions involving subarray and cross section

operators. TRS5 shows how to coalesce two adjacent occurrances of subarray into
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one. The remaining transformations, TR6 through TR10 are similar in spirit

and are used to permute the remaining operations into the order required by the

TR8.

TRI.

TRI10.

standard form.
TR6. If Mis any array and Fand G are conformable, then FAGAM => G'AF'AM,

where G' <« (~F[;11)/[11G
and F'[;1] < F[;1]
and F'[;2] <«

FL311x(GL321+((~GL531)xFL 521-I0RG) +(GL 53 1x(GL 31 1+I0RG+ 1-F[321)))

If ¥ is any array and F and G are conformable to¥ for cross section,
then FAGAM => HAM
where H[;11 < GL;1Iv(~GL;1I)\F[31]

and H[ ;2] <> GL321+(~GL ;1 )\FL ;21

If Mis any array and 7,4 are conformable to ¥ for subarray and transpose,
respectively, then

FAASM => AQFLA; 1AM,

If Mis any array, ¢ a scalar, Je1ppA8®M then
(AQM)[LJ1Q] => IF 1=ppAQM THEN BAM ELSE A'&BAM
where A' > (4zJ)/A-J<A

and Bl;1]l > J =4

and BL[;2] < @xB[;1].

If Mis any array and B and 4 are conformable for transpose, then
BRARM => CoM

where (C <« B[4].
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Now that we have transformations TR1 through TR10 which are proved correct
in Appendix B, we can outline a proof of Completeness Theorem 1. First
note that for any array M, M <> (1ppM)&(AM)A(((ppM) ,2)p0)AM.

1. Let & be any select expression on ¥ which satisfies the hypotheses of the
theorem. Apply TR1, TR2, and TR3 to & enough times to eliminate all instances
of the operators take, drop, and reversal. (In order to be absolutely rigorous,
we would have to prove a replacement theorem which says that if in an expression
-, an occurrance of a subexpression Z is replaced by an equivalent subexpression
B (i.e., B<>R"), then the resulting expressions?' is equivalent to . only
" > o . Call the result of this operation &'. Note that &' contains only
subscript, A, and & operations. Clearly &'<> & because we have applied
only equivalence transformations.

2. Now for each instance of an indexed quantity, substitute the equivalent
expression using partial indexing, as per definition D10. Write this using the
IX notation mentioned there and apply TR4 to eliminate all instances of J-vector

subscripts and call the resulting expression &'". It should be obvious that &"
has the form S1 61 S2 62 ... SN 6N M, where the S quantities are left operands
for the operators © and the 6's areA, & and IX in arbitrary order. Finally
substitute the expression (1ppM)R(AM)A(((ppM),2)p0)AM for ym,and note that this
subexpression, call it QN’ is in standard form. Call the resulting expression I,
and again note that 9]’N<—> E.

3. Consider the following algorithm: at each step, the input is
JFK < 51 61 82 62 ... SK 6K .Q’K, where QK is in standard form, i.e.,
Fi <> AKSFKAGKAM .
(a) I K < 0 then the algorithm is terminated. Otherwise, look at the operator

6K. Do step 1, 2, or 3 below depending on whether 9K is®, A or IX, respectively,

and return to step (a).
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1. 6K is transpose, § . Apply TR10 to the expression SKQ% <> SKRAKQFKAGKAM,
to get the equivalent QKQFKAGKAM, where QK < SK[AK] and call this Sg{_ T
2. OK is subarray, A . Apply transformations TR8 and TR5 to SKA% to
get SKA.% <> SKNKQFKAGKAM => AKQSK[AK; JAFKAGKAM => AKSFK'AGKAM, where FK'
is obtained by TRS5.
3. 6K is indexing by a scalar, Ix[J] . Apply transformations TR9, TR6,
and TR7 to SK IX[J]:?;{, getting
SK IX[J] AKQFKAGKAM => AK'SBKAFKAGKAM
=> AK'QFK'ABK'AGKAM
=> AK'QFK'AGK'AM.
In each of steps 1, 2, 3 above, a set of transformations was applied to the

subexpression SX QKS% of ,. Call the resulting subexpression & Since all

K K-1°
transformations were equivalence transforms, it is clear that SK QK% A A _1°
Let gK-l be the resulting expression from plugging 'g)K—l into FiK. Clearly

g'K_1<—+ gK. Finally observe that each #, is in standard form, Hence, in N steps,

K
the algorithm will terminate with result ?/6 > g‘i*—* e Q'N &, and g(') > 0’

which is in standard form. This is the desired result. QED.

So far, we have defined a standard form for a subset of select expressions
and exhibited a complete set of transformations for obtaining the standard form
representation of an arbitrary expression in this class. Moreover, the proof of
the completeness theorem gives an algorithm for obtaining the SFof an expression.
Note that there are alternate ways of formulating the standard form. For instance,
an equivalent formulation says that an expression is in standard form if it is
represented as ASB+CYv¢[ X1 DAM with B,C non-negative and X a vector of indices
so that the definition of ¢[K] extends in the obvious way. The choice of using

the meta-notation formulations was made for two major reasons. First, fewer
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transformations and therefore fewer proofs are needed to establish completeness.
Second, this formulation is closer to the way these results will be used in the
design of the machine.

Another point to note is that the standard form could be made more general,
by allowing more operators to be included in the set of selection operators. In
particular, compression and expansion might be included, as well as reshape
and catenation. The general rotation operator at first seems to be a possible
candidate for inclusion, but in fact does not fit in cleanly. This is primarily
because rotations involve taking residues of subscripts, which do not compose in
a simple way. A further extension would allow arbitrary indexing of select
expressions and perhaps extend operations on select expressions to operations
on their subscripts, as in the case ¢VLS1 <> V[¢S].

A final point concerns the significance of the SF and completeness results.
These results are important in that they establish forma.lly some of the relation-
ships between APL-like operators which informally may appear obvious. This
not only provides a useful tool for the programmer, who may make formal trans-
formations on his programs without a second thought, but it also provides a formal
basis for automatic transformation of programs and expressions. This second
property is heavily used in the design of the APL machine. Also important is
that results such as we have described aid in the understanding of array operators,
which might be used in generalizing them further or in strengthening the theoretical

foundation for operations on array data.

D. The Relation Between Select Operators and Reduction

Obviously there is more to APL than just selection operators. If the results
of the previous section are to be generally applicable, we must look into the

relationships between select operators and some of the other kinds of operators
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in an array language. One result that has been used implicitly in some of the
proofs in Section C is that selection operators are distributive with respect to
scalar arithmetic operators. For instance, (4+B)[S] <> A[S1+B[S] and

-9V <> ¢-v. This property follows immediately from the definition of scalar
arithmetic operators and the definitions of the select operators, and is stated

formally in the theorem T1 below:

T1l. Let 4andB be arrays with the same dimensions and ¥ and D be monadic
and dyadic scalar arithmetic operators and 7 a selection operator; then
(i) if A D B is defined,
I (ADB) < (L A)D(LB)

(ii) if M Ais defined

IMA—>MTA

T1 contains the restriction that4 D B and ¥ A be defined, in order to deal
with cases like ((1,1,1)+1,1,0)[1,2] in which the result is undefined as written
but is defined after distributing the indexing operator. This result is in fact more
general than as stated. It should be clear that the operator T can also be rotation,
compression, expansion (for some scalar operators) or operators such as ravel
or reshape. A similar result holds if one of Aor B is a scalar.

One of the most important constructions in APL is reduction which applies a
dyadic scalar operator between all elements ofa vector. Reduction is not an
operator in the sense we have been using, but is more like a functional. As will
be shown below, it is possible to change the order of select operators and reductions
as well as to permute the coordinates of the reducee. As in the previous section,
these facts will have direct use in the APL machine. The remainder of this section
defines reduction formally, and presents a set of equivalence transformations

for expressions involving reductions.
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D24. Reduction: IfD is a dyadic scalar operator and Vis a vector, then theD

reduction of v, written D/V, is a scalar defined as follows:
D/V <> IF (pV)>1 THEN VL11 D V{21 D ... D VlppV]
ELSE IF (pV) = 1 THEN V[11 ELSE (IDENTITY OF D)
In the expression above, the operators D associate to the right, as usual.
The identities of the scalar dyadic operators are listed in Appendix C.
If Mis any array and D is as above then the D reduction over theX th
coordinate of ¥ is defined as follows:
oD/LK] M <> ((K-1)4+pM),K¥pM
and for each L ELT 1pD/LK] M
(D/LK] ML 5/L] <> D/FAM
where FL3;1] <> Kz1ppM AND F[ ;2] <> F[ ;1 I\L
If the subscript X is elided in the expression D/[X] M, it is taken to be

the last coordinate of M,which is ppM in l-origin and [ /1ppM in general.

In order to do some of the proofs required by this section, we will need to use the

membership and ranking operators, so these operators are defined formally first.

D25. Membership: If 4is a scalar and B is any array, then the membership

relation AeB has value 1 if at least one of the elements of B is identical to
A, otherwise the value is 0. The dimension of the result is the same as
that of A, and the definition is extended element-by-element on 4.

[That js AeB < v/ ... v/Ao.:B]
S
ppB TIMES

D26. Ranking: If Bis a vector and 4 is a scalar, then B14 denotes the index

of Ain B, namely the least subscript I of B such that4 < B[I].

[Formally, B14 <> |/(4=B,A)/ 11+pB.]
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From the expression above, it is clear that if ~4<B then the result is

1+[ /1pB . The operation is extended to arbitrary arrays 4 element-by-

element.

Thus, if Ais any array, then for each L ELT 1p4,
(B14)[s/0] < L/(AL5/0] = B,AL;/L1)/11+pB.

An interesting question about reductions is under what circuﬁlstances can the
coordinates of the reducee be permuted, with reduction carried out on a different
coordinate, and still have the result remain the same? It is intuitively obvious,
for example, that +/[11 ¥ < +/[2] (2,1)8, when M‘is a matrix, since adding
the rows is the same as adding the columns of the transpose. Theorem T2 shows
that this kind of permuting can be carried out as long as the coordinates that are

left after reduction are in the same order.

T2, Let Mbe any array, D any scalar dyadic operator, X a scalar, and P any
permutation of 1pp¥, Then,
D/LK] M < D/[PLK1] PyM
if and only if

(PLKI#1ppM)/P11pP <> (Kz1ppM)/1ppM

Proof: See Appendix B.

The complicated condition in T2 is a formal statement of the requirement
that permutation by P does not disturb the ordering of the coordinates in M other
than K
Example: LetM be a rank-4 array. Then, by theorem T2, all of the following
are true:

+/[21M <~ +/[1] (2,1,3,4)aM
<> +/[3]1 (1,3,2,4)Q

<~ +/[u] (1,4,2,3)8M
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No other values of P satisfy the condition in T2, For instance if P <~ 4,2,1,3,
P[2] <> 2and PuipP <> 3,2,4,1. S0(2#1,2,3,4)/3,2,4,1 <+ 3,4,1 which is
not (2#1,2,3,4)/1,2,3,4 <> 1,3,4. This theorem suggests the following trans-

formation:

TR11l, If Mis any array and Dis a dyadic scalar operator, then
D/[K]1 M <> D/[LAST] A¥M.
where LASTis the index of the last coordinate of ¥ (op¥ for 1-origin and

[ /1ppM in general) and 4 <> (1K-1),LAST,((K-1)+1(ppM)-K)

TR11 above and TR12, TR13, and TR14 to follow can be used to transform a
select expression on a reduction to a reduction along the last coordinate of a

select expression.

TR12, If Mis any array and D a dyadic scalar operator then

ARD/M => D/(A,1+[ /A)&M.

TR13. If yis any array, D a dyadic scalar operator, then
GAD/M => D/G'AM

where G' < (pMM)p(,G),( 14pM),IORG,0.

TR14, If Mis any array, D a dyadic scalar operator, andg a scalar,

then (D/M)LLs1Q] => D/MLLJ1Q].

Proofs of TR11, TR13, TR14: Immediate from theorems T2, T3, T4.

Proof of TR12: See Appendix B.

Transformation TR11 forces all reductions to be along the last coordinate of
their operand array. TRI12, TR13, and TR14 permit reduction to be '"factored

out" of select expressions.
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Given these transformations, we can extend the completeness result of the previous

section as follows:

COMPLETENESS THEOREM 2: If & is an expression on an array ¥ containing

only selection operators and reductions, then it can be transformed into an
equivalent expression % of the form Qi /22/. . .QK/ % ' where the D ; are the reduction

operators in the order they appeared in & and where #' is in standard form.

Since the proof of this theorem is similar to that for the first completeness theorem,
it will be omitted. Such a proof depends on the correctness of transformations

TR11 through TR14, which follow from the theorems below:

T3, If Mis any array, D a dyadic scalar operator then

GAD/LKIM <« D/[K1G'AM

where (Kz1ppM)/[11G" <= G AND G'[K;] < (AMM)[K;]
Proof: See Appendix B.

T4. For any array ¥ and D a dyadic scalar operator,
GAD/M <> D/G'AM

where G' <> ((ppM),2)p(,G),0,0

Proof: See Appendix B,

The following example takes an expression and derives the standard form of

Completeness Theorem 2.
Example: Let oM <> 6,10,12,19 and consider the select expression with

reductions:

&« (2,1)8+/011(3,7, u)4x/[u1M

In each step, we note the transformations applied.
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1. &<(2,1)8+/0[31(3,1,2)8FAx/[4IM (TR11, TRI)

where F«s3 1 O
7 1 0
L 9 0

2, &<+ +/[31(2,1,3)8(3,1,2)8x/[ulGay  (TR12, TRI13)

where 7«3 1 0

7 1 0

b 9 0

19 1 0
3. &<+ +/[31(3,2,1)8x/[4]1GAM (TR10)
4. &< +/031x/[41(3,2,1,4)8GAM (TR12)

5., €« +/[3]1x/[4]1(3,2,1,4)RGAHAM

where FH <« by definition of 4

00
00
00
00
The above expression is in SF.

E. The General Dyadic Form — A Generalization of Inner and Outer Products

In APL there are three ways of applying dyadic scalar operators to a pair of

operands. The simplest, the scalar product, is the element-by-element application

of a scalar operator to corresponding elements of conformable arrays. The next

simplest is the outer product, in which the result is obtained by applying the

operator to all possible pairs of elements, one from each operand array, in a

specified order. Finally, the inner product is a generalization of ordinary matrix

product in linear algebra, except that arbitrary (conformable) arrays may partici-
pate as operands and any pair of operators may be used. Before proceeding, let

us present the formal definitions of inner and outer products.
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D27. Outer Product: If yand y are arbitrary arrays and D is any dyadic scalar

operator, then the D outer product of ¥ and v, written ¥ o.p ¥, is defined
as follows: pM o.D N <> (pM),pN. Then for each L ELT 1pM o.D N,

(M o.D N)[;/L] <> ML;/CppoMIML] D NL 3 /CppM)VL].

D28, Inner Product: If ¥ and Nare any arrays such that “14py4 <« 1+4p¥ and if

D and Fare two dyadic scalar operators, then theD-7 inner product of
M and N written ¥ D.F N, is defined as follows: pM D.F N <> (“1vpM),14pN
and for each L ELT 1oM D.F N, (M D.E N)[ /L] <> D/(GAM) F HAN,
where G[;11 <> ((T1+ppM)p1),0  GL32]1 <> ((T1+ppM)+L),0
HL;1] < 0,( 1+pphN)p1

H[ ;2] <> 0,(1-ppN)+L

If one of ¥ or¥ is a scalar, it is extended to a vector of the same length as
the reduction coordinate. In the sequel, we assume that all operands of inner

product are array-shaped (or have already been extended).

Example: (1,2,3) o.x 4,5 <> U4 5
8 10
12 15

(1,2,3) .+ 4,5,6 <> [/(1,2,3)+4,5,6
<> g
If Mand /V are conformable matrices, then
M+.x N
is the ordinary matrix product of linear algebra.
Although these three product forms appear to be different syntactically and
also in their effect, they are in fact intimately related, and can be considered
as aspects of the same thing. This section shows the close relationship between

scalar, inner, and outer products, and introduces a new (meta) form which
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includes these as special cases. We also investigate the effect of select operations
on this new construction called the general dyadic form (GDF), and show that it,
like the standard form on select expressions, is closed under application of select
operations.

The key to the relationship between these apparently diverse constructions
is the generalized transpose operation. By applying a transpose to an outer product,
it is possible to write an expression which specifies a diagonal slice of the original
outer product. For example, if V is a vector, ¥ a matrix, then the expression
1 1 28Ve.+M describes the result of adding V to each of the columns of M. It
would be desirable to understand this expression to mean the result it describes,
namely the result of adding the vector V to the columns of ¥, rather than the process,
that is the transpose of the outer product of V and M. The difference is important
for two reasons. Using the first interpretation in a situation where the expression
must actually be evaluated, as in a program, requires only the pertinent elements
of the result to be computed. This is especially important when the operands are
large arrays. Second, some information is lost by ignoring the partial results.
For example, the expression ((1,2):(1,0))[1] is undefined in the literal sense
but the apparent intended interpretation gives the value 1. Both in the case of
select expressions and in transposes of outer products this is a serious problem,
as it is in direct conflict with the semantics of APL. Formally, the definition of
the language renders expressions such as the one just mentioned undefined, yet
this is really a matter of taste and style. My contention is that at worst this
kind of situation should be an ambiguous one, since it is essentially an instance
of a side effect. That is, the programmer writing such an expression should not
depend on the processor of his program to indicate that a domain error occurred

in the evaluation of an irrelevant partial result. If that is what he wants, there
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are direct ways of expressing it, such as writing A<(1,2)+(1,0), followed by A[1].
In any case, I have taken the view that what should be evaluated is the intent of
an expression, if this is perceivable, rather than the literal expression itself.
Except in cases which produce side effects, both approaches compute identical
values.

Theorems T5 and T6 which follow, establish the essential connections among

the product forms and the transpose.

T5. If Aand B are conformable for scalar product, and if D is a dyadic scalar

operator then A D B <> ((1pp4).1ppB)RA o.D B.
Proof: See Appendix B.

T6. If Yand Vare two arrays conformable for inner product and 0 and F are
dyadic scalar operators, then ¥ D.F N <> D/ASQM o.F N,
where 4 <> (1 1+ppM),(2p LAST1),( 1+ppM)+1 1+polN
and LAST1 is the index of second-to-last coordinates in¥ o .F N

(in 1-origin this is (ppM)+(ppN)-1and [ /1(ppM)+(ppN)-1 in general),

Proof: See Appendix B.
Example: (T6) If 4 andB are matrices then
A +.x B+~ +/(1,3,3,2)84 o.x B.
We can see this as follows:
(+/(1,3,3,2)84 o.x B)[I;J]
<> +/((1,3,3,2)84 o.x BYI;J;]
<> +/A[I;]xBL;J]

<« (4 +.x B)[I;J]
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In previous sections we have looked into the effect of select operators on
single arrays and scalar products. A natural question then is, what is the effect
of the select operators on inner and outer products. In order to approach an
answer, it was necessary to discover an alternate formulation of these constructions,
which facilitates this kind of analysis. Such an alternative is the general dyadic

form, defined below.

D29. General Dyadic Form: An expression on two array operands % and S,

with dyadic scalar operator D is in general dyadic form (GDF) if it is
expressed in the form: »
ARR' ©.D S
and the following conditions are satisfied;
(i) R'andS' are the standard forms of select expressions on F andsS.
(i) 4 is a conformable transpose vector for which each of (ppR')+4
and (ppR')+Aare in ascending order, and each contains no duplicate
values,

(iii) (pA®R'e.D S')[A] <> (pR'), pS'

The last condition guarantees that if 4 takes a diagonal slice of the outer product
R' o.p 5', then the length of corresponding coordinates in R' andS' are the same.
This can always be done by performing a take operation affecting these coordinates
(see TR1T7).
Example: If Vis a vector, ¥ and N matrices, then the following are in GDF:
(1,1,2)8V o.p M,
(1,3,2,3)8 o.D (2,1)80,

(1,1)8((1,1)8M) o.D V
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but the following are not in GDF because the conditions on 4 are not satisfied:
(1,3,3,2)8 o.D N
(1,1,1)8 o.D V
From definitions D27, D29 and Theorem T5, it is clear that the scalar product
and outer product of 7 and S by D are special cases of the GDF, obtained by taking
A > (1ppR),1ppSand 4 <> 1(ppR)+ppS, respectively; D28 and T6 indicate that
an inner product can be expressed as a reduction of a ’GDF.
In discussing the effect of select operators on GDF's, we will present a series
of transformations, with proofs of their correctness in Appendix B. In the following
transformations, let

F <> (ppR")*4 and G <> (ppR')VA.

TR15. KW <> AQR' o.D S' is in GDF then HAW => AQU o.D V where
U is the SF of R'" <> H[F;]AR'

V is the SF of S'"' <= H[G;1AS!'

TR16. If Wis as above and @ is a scalar, then W[[J1Q] => BQU o.D V
where B <> (J24)/A-J<A and
Uis the SF of IF JeF THEN R'[[F1J] @1 ELSE R'

Vis the SF of IF JeG THEN S'[[G\J] Q1 ELSE S'

TR17. If W is as above then B&W => (F',G')&U °.D V
where  F' <> (MeBLF1)/M
G' <> (MeB[G1)/M M < ([ /B)+1-I0RG
Uis the SF of R" «> (F"1BLF1)®(pB&W)[BLF11tR"

Vis the SF of S" <> (G"1BLG1)R(pBaW)[BLG1]+S!
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TRI18. If Yand NV are conformable for inner product and D and F are dyadic scalar
operators, then ¥ D.F N => D/ASM' o.F N'
where A <> (1 1+ppM), LAST1,( 1+ppM)+1pplN
M' is the SF of M
N' is the SF of (LASTN,1 1+ppN)&N
LAST1 is the index of the second-to-last coordinate of ¥ ©.E N.
( CopM)+(ppN)-1 in 1-origin; [/1(ppM)+(ppN)-1 in general)
LASTN is the index of the last coordinate of V.

( eol in 1-origin;[ /1ppN in general),
These transformations are sufficient to establish:

COMPLETENESS THEOREM 3: Let & be an expression consisting only of

reductions and select operators applied to a scalar product, inner product, or
outer product of expressions .« and B, where .« and & are select expressions
on arrays 4 and B respectively. Then & can be transformed into an equivalent
expression # of the form -D-1/22/' . .QK/Q", where &'isin GDF and the QI 's are
the reduction operators appearing in &, in the same order. If the original

expression & contained an inner product, QK is the first operator of the inner

product.
Proof: Similar to Completeness Theorem 1.

F. Conclusion

This chapter has discussed some of the formal mathematical properties of
the operators found in APL, Of particular interest are the completeness theorems,
which give conditions under which a subset of APL expressions can be put into

standard form. The general idea of the standard form is that sequences of selection
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operators on an expression can be transformed into a shorter sequence of opera-
tions on the same expression. In other words, if &is an expression and S1,...,3K
are selection operators, then there is a process for finding 4, 7, and G such that
S1 82 ... SKE<> AQFAGLE.
Completeness Theorem 3 further shows that, in essence, selection operations on
inner, outer, or scalar products can be absorbed into the individual operands.
Also by Completeness Theorems 2 and 3, reductions can be factored out of select
expressions.

Clearly, the whole story has not been told at this point; indeed, the contents
of this chapter barely scratch the surface of the general problem of analysis of
APL semantics. Even so, the results discussed are a sufficient base for the"
design of the APL machine discussed in the next chapters. In particular, the
analysis here provides a formal basis for the beating and drag-along processes,

which are the two foundations upon which the APL machine design rests.
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APPENDIX A

SUMMARY OF APL

Monadic form £B £ Dyadic form 4fB
Definition Name Name Definition
or example or example

+B. «> 0+B Plus + | Plus 243.2 «» 5,2
-B <+ 0-B Negative - | Minus 2-3.2 «> 1.2
xB <+ (B>0)-(B<0) Signum x | Times 2x3.,2 <> 6.4
#B <+ 1:B Reciprocal + | Divide 2$43.2 «+ 0.625
B | ra| La Ceiling r | Maximum 3[7 «> 7
3.14| 4 3
T3.14|73 T4 Floor L | Minimum 3L7 «+ 3
=B <«+> (2.71828..)*B|Exponential | » | Power 2%*3 «»> 8
O*N <+ N <+ »oN Natural e | Logarithm AeB «+ Log B base 4
logarithm A®B <++> (@B):e4
|73.14 <> 3.14 Magnitude | | Residue Case | A|B
A=0 B-(l4)xLB:|4
A=0,B20|B
A=0,B<0|Domain error
10 <> 1 Factorial ! | Binomial A'B <> (!B):('A4A)x!'B-A
!B «»> Bx!B-1 coefficient |2!5 «+ 10 3!5 «» 10
or !B <> Gamma(B+1)
?B <++ Random choice|Roll ? | Deal A Mixed Function (See
from 1B Table 3.8)
OB +»> Bx3.14159... |Pi times o | Circular See Table at left
~1 «> 0 ~0 +«>1 Not ~
A | and 4]BlaaBlavB|arB|avs
(-4)0B A AOB v | Or ofo| o 0 1 1
(1-B*x2)%x.5 |0] (1-B*2)x.5 ~ | Nand oji] o 1 1 0
Arcsin B |1| Sine B » | Noxr 1/0] O 1 1 0
Arccos B |2 | Cosine B 1]1] 1 1 0 0
_ Arctan B |3| Tangent B
( 14B*2)x.5 |4 | (1+B*2)*.5 < | Less Relations
Arcsinh B |[5| Sinh B < | Not greater Result is 1 if the
Arccosh B |6 | Cosh B = | Equal relation holds, 0
Arctanh B |7 | Tanh B 2 | Not less if it does not:
. > | Greater 357 «+ 1
Table of Dyadic o Functions z | Not Equal 7<3 «+> 0

Primitive Scalar Functions
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Name |Isign' | Definition or example?
Size e pP «+ 4 pE «+ 3 4 p5 ++ 10
Reshape VoA Reshape 4 to dimension V 3 4p112 «+ F
12pE ++ 112 O0pE «+ 10
Ravel SA LA ++ (x/pA)pA JE +»112 PS5 ++ 1
Catenate v,V P,12 «+> 2 35712 'T','HIS' <«+ '"THIS'
viAl P(2] +=3 P[4 3 2 1] «+7 5 3 2
Index34 MLA;4] E[1 3;3 2 1] <+ 3 2 1
11 10 9
ACA;.. E[1;] ++ 1 2 3 4 ABCD
..34] E[;1] «» 1 5 9 'ABCDEFGHIJKL'[E] «+ EFGH
IJKL
Index 1S First S integers = 14 «+ 1 2 3 4
generator3 ) 10 «+ an empty vector
Index of3 |Vi4° |Least index of 4 P13 2 5125
in v, oxr 1+pV PlE «++ 3 54 5
4 4l «> 3 5 5 5
Take VA Take or drop |V[(I] first 2 34X ++ ABC
L (V[1120) or last (v[I1<0)  _ EFG
Dro VA elements of coordinate I 24P «+ 5 17
GraEE upS3 [ The permutation which 33 6 3 2 «+ & 1 3 2
> would order 4 (ascend-
Grade- down38|y4 ing or descending) §3 5 3 2 «>» 2 1 3 4
1 3
Compress® v/a 1010/P +«+25 101 0/E «+ 5 1
’ 9 11
10 1/[1)E «++ 1 2 3 4 ++ 1 0 14E
9 10 11 12
A BCD
Expand$ V\4 10 1\12 «++ 10 2 1011 1\X «- E FGH
I JKL
DCBA IJKL
Reverse® A ¢X «+ HGFE $[11X +> oX «+ EFGH
LKJI $P «» 7 5 3 2 ABCD
: _ BCDA
Rotate® 404 3P «+ 7 2 3 5 «+ 1P 1 0 16X «+ EFGH
LIJK
AEI
11.7] Coordinate I of 4 2 18X «+ BFJ
becomes coordinate CGK
Transpose V[I] of result 1 18F «+ 1 6 11 DHL
R4 Transpose last two coordinates QE +» 2 1]E
0110
Membership |4e4 pWNeY «+ pW EeP «+ 1 0 1 0
' Per14 <> 1 1 0 0 0 000
Decode vav 1041 7 7 6 ++ 1776 24 60 6011 2 3 <+ 3723
Encode Vis 24 60 60713723 «+ 1 2 3 60 60713723 «+ 2 3
ml’ S?2S W?Y ++ Random deal of W elements from 1Y
Primitive Mixed Functions

1. Restrictions on argument ranks are indicated by: S for
scalar, v for vector, ¥ for matrix, A for Any. Except as
!:he first argument of S$i14 or S[A], a scalar may be used
instead of a vector. A one-element array may replace any
scalar.

2, Arrays used 1 2 3 u ABCD
in examples: P++ 2357 E«+ 5 6 7 8 X «+ EFGH

9 10 11 12 - IJKL

3. Function depends on index origin.

4. Elision of any index selects all along that coordinate.

5. The function is applied along the 1last coordinate; the
symbols #, %, and e are equivalent to /, \, and ¢,
rgspectively , except that the function is applied along the
first coordinate. If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.
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Type of Array| p4 ppdlpppA

Scalar 0 1
Vector Nl 1 1
Matrix M N| 2 1
3-Dimensional |l M N| 3 1

Dimension and RanK Vectors

Conformability Definition
p4A |oB |oAf.gB|requirements Z«Af.gB
Z«£f/AgB
4 Z+«f/AgB
U Z+f/AgB
u\v u=v z«f/AqB
V W| W Z[I)«£/AgB(;I]
TU T Z[I1«£/ALI;]1gB
Ulv w| w U=v Z[I)«£/AgB[;I]
T U\v T u=v Z[I)«£/ALI;]1gB
TU|VW|TW u=v Z[I;J1+£/A[I;1gB[;J]

Inner Products for Primitive Scalar Dyadic Functions f and g

Definition
pA |pB |pA-.gB Z+Ao .gB

Z«AgB
Z[I]«AgBLI]
Z[IT1«A[LI]gB

Z[I;J1«A[I1gBLJ]

Z[I;J1+AgB[I;J]

Z2LI;J1«A[I;J1gB
Z(I;J3;K]<«ALI1gBLJ;:K]
Z[I;J3;K)«A[I;J1gBLK]
W{2[I;J3;K;L])<«A(I;J19BLK;L]

3
Qoo Qo
|R<R<S W< <«
¥ ¥ x
MHQNRQaw
IIAISNIES
SSX

_HR

Outer Products for Primitive Scalar Dyadic Function g

Case pR Definition

R+1QV pV R<V

R<«1 28M |oM R+M

R«2 18M (pM)[2 1] RLI;J1+«M[J;I]
R<«1 18M L/oM RLIJ«M[I;I]
R+1 2 38T|eT R+T

R<1 3 28T |(pT)[1 3 2] R[I;J3K1«T[I;K;J]
R<2 3 18T |(pT)[3 1 2] ROI;J3K1«TLJ3K;I]
R«3 1 28T|(pT)[2 3 1] RII;J3;K1«T[K;I;J]
R«1 1 28T|(L/(pT)[(1 21),(pT)L[3] RLI;J])«T(I;I;J]
R<1 2 18T|(L/(pT)[1 31),(pT)[2] R[{I;J1«T[I;J;:I]
R«2 1 18T|(L/(pT)[2 31),(pT)[1] R{I;J]1«TlJ;I;:I]
R«1 1 1QT|L/pT RLIJ«TLI;I;I]

Transposition
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APPENDIX B

This appendix contains proofs for the transformations and theorems which
were deferred from the main part of Chapter II. They were omitted from the
text because they do not substantially contribute to the exposition of the material,
and are included here for completeness.

The various proofs are trying to establish the identity of two expressions &
and #., This is generally done in two steps: in step 1, p& <+ p# is shown and
in step 2, it is shown that the expressions are identical element-by-element.

Lemmas L1 through L9 state results used in the rest of this appendix. Since
they are all intuitively obvious, and since their proofs follow from the definitions,

these proofs will be omitted.

L1, If ¥is any array and Vis a vector, then

(MULK] V1)LLK] U] < MLLK] VIU]]

L2, If Mis any array, I<J , and U and V are vectors or scalars, then

(MLLJT VILLIT Ul < (MULIT] UDILI-0=ppU] V]

L3. Let M be any array and 51,52,...,5K be subscript vectors. Then
for each L ELT1pM[51:52;...;5K],
(MLS135525...58K1)[3/0] <> ML ;/T]

where T is a vector with 7[I] <> SI[L[I]]

for each IerppM.

L4, For any integral 4 (scalar or array) satisfying A>ToR¢ and (4- IORG)<LEN,
a. (J LEN,ORG,0)[A] <> ORG+A-IORG

b. (J LEN,0RG,1)[A] <> ORG+LEN+IQRG+ 1-A
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c. (J LEN,ORG,S)LA] <+ ORG+((~S)x(A-IORG))+(Sx(LEN+IORG+ 1-4))
d. -J LEN,ORG,S <= J LEN,(-(ORG+LEN-1)),~S
e, K+J LEN,ORG,S < J LEN,(ORG+K),S if ¥ is an integer

f. &J LEN,ORG,S <> J LEN,ORG,~S

If FAM is defined, then
(a) oFM «— F[;1]
(b) for each L ELT 1pFAM,

(FAM)L 5 /L] <= ML /FL321+((~F[331)x(L-I0RG) )+(FL ;3 1Ix(F[ 31 1+I0RG+ 1-L))]

a. U/XLS1 <+ XLU/S]

b. U\U/X <> UxX (if X is numeric)

c. U/UNX < X

d. U/V/X < (N\U)/X

e. (UAV)/X < (U/V)/(U/X)

f. U/(X DY)« (U/X) D (U/Y) forD a dyadic scalar operator
g. If Dis a dyadic scalar operator with 0 D 0 <> 0,

then U\(X D Y) <> (U\X) D (U\Y)

If O<ORG1-IORG and (ORG1+LEN1-IORG)<LEN then
a. (J LEN,0RG,0)[J LEN1,0RG1,S] <> J LEN1,(ORG+ORG1-I0RG),S

b. (J LEN,ORG,1)[J LEN1,0RG1,S] <> J LEN1,(ORG+LEN+IORG-(ORG1+LEN1)),~S.

If vand V are logical vectors with pV <> +/~U

then ~(UV(~U)\V) > (~UI\~V.

a. If Bis a vector and if for any A,AeB is all ones, then B[B14] « 4.
b. If P is a permutation of 1pP then if R <> P11pP, P[R] <> R[P] <> 1pP and
P <> Ri1pR. In other words, for permutation vectors, the ranking

operator is its own inverse.
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Proof of TR5:

1. pFAGAM <> pF[ ;11 > pHAM (by L5)
2. For each L ELT 1pFAGAM, (FAGAM)L;/L] < (GAM)[;/5]

where S[I] <> (4 FLI;1)ILLI]]
and (GAM)[;/S] <> ML ;/T]
where TLI] < (J GLI;1)ISCI]]
> (L GLI; DL FLI;3)ILLT]]
<~ ((g GLI; DLL FLI;1DILII]
But (EMM)[;/L1 <> M[;/U]
where ULI] < (4 HLI;1ILLI]]
<~ ((g GLI; HLg FLI;1I)ILLTI]
<~ T[I]
Thus, T <> U and (FAGM)[ ;/L] < (HAM)[;/L]1. QED.
We can give explicit formulas for 7 in TR5. First, A[;1] <> F[;1] and
H[ ;3] <> F[;3]2G[;3]. Finally, for each IevppM, H[I;2] <> IF 0=G[I;3]
THEN F[I;31+G[I;3]1-I0RG ELSE (IORG++/G[I31,21)-+/F[I;1,2].

Proof of TR6:

1, pFAGAMM < (~F[;1]1)/pGMM
<~ (~F[;11)/GL;11]
<> G'[31] <> pG'AF'AM

2., For each L ELT 1pFAGAM,

(FAGMM)[: /L] <> (GAM)[ :/L']  where L' <> (x/F)+(~F[;11)\L (by D14)

<~ M[;/5]
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where (by L5),
S < GL321+((~GL331)xL"-IORG)+(GL 531x(GL 51 J+I0RG+ 1-L")
<> GL3214((~GL331)x(x/F)+((~F[311)\L)-I0RG)
+(GL331x(GL 31 4I0RG+ 1-((x/F)+(~F[ ;11)\L))
(G'AF'AM)[ 5/L] < (F'aM)[ /7]
where T <> G'[32]1+((~G'[3;31)xL-IO0RG)+(G'[331Ix(G'[ ;11+I0RG+ 1-L))
Thus, (G'AF'MM)[ /L] > M3 /U]
where U <« (x/F'")+(~F'[;11)\T
< (x/F")+(~F'[31D\(G'[52]+((~G"[;3]1)xL-IORG)
+(G'[331x(G"[;11+I0RG+ 1-L)))
To complete the proof, we need to show that S <+ . By lemma L6g,
X\A+B <> (X\A)+(X\B),
and X\AxB <> (X\4)x(X\B).
Thus, writing F <> ~F'[;1] <> ~F[;1], and substituting for 7',
U <> (FL3;11x(FL313%GL321+((~GL;3])xF[ ;21-I0RG)
+(GL 331x(GL ;1 +I0RG+ 1-F[;21))))
+(E\G'[321)+((E\~G'[;31)x(E\L)-IORG)
+(E\G'[331)x(E\G'[311)+I0RG+ 1-E\L
But ENG'[ ;K] <> ExGL3K] <> (~F[;11)xGL ;K] for Ke1,2,3.
Making this substitution and commuting terms,
U <> ((FL3104~FL311)%(GL 521+( (~GL 331)x-T0RG)+GL 33 1xGL 31 1+I0RG-1)
+((~GL 331)x(FL 31 IxFT 321)+(~F[311)x(~F[ ;1 1)\L)
+GL331x(FL311x-F[;21)+(~F[311)x-(~F[311)\L .

But FL;11+~F[31] <> (pFL;1])p1 and does not contribute to the product in the
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first term. Also,
(~FL31D)x(~FL31N\L > (~F[311)\L.
U <> GL3;21+((~GL 331)x(x/F)+((~F[;11)\L)+I0RG)
+GL 331%GL 31 1+I0RG+ 1-((x/F)+(~FL311)\L)
<~ 5 QED.

Proof of TR7:

1. pFAGMM <> (~F[;11)/pGMM <> (~F[;11)/(~GL311)/pM
> ((~GL;1\~FL311) /oM (by L6d)
pHAM <> (~H[311)/pM <> (~(GL;11Iv(~GL;11)\F[;11)) /oM
> ((~GL31D\~FL;11) /oM (by L8)
<> pFAGAM
2. For each L ELT 1pFAGAM,
(FAGMM)L3/L1 <> (GAM)L s/ (x/F)+(~FL311)\L] <> M[;/5]
where S «> (x/G)+(~G[;11)\(x/F)+(~F[;11)\L
(HAM)YC 5/L] <> ML /(x/H)+(~H[31I)\L] < ML ;/T]
where T <> ((GL;13v(~GL;1D\FL;11)x(GLs21+(~GL;1\FL521))
+(~(GL31)V(~GL 31 D\FL311))\L
Expanding the products, and noting that
GL;1Iv(~GL;1DN\FL31] <> GL;11+(~GL;1\FL 1],
we get
T <> (x/G)+(GL31Ix(~GL ;1 DNFL321)+(GL321x(~GL ;1 \FL;11)

+(((~GL 31 DN\FL31 D x(~GLs1D\FL32 )+ ((~GL 31 D\~FL11)\L.
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So we must show that S <> T, In simplifying T, we use the following, in
order: I Uand V are logical vectors,
Ux(~U)\X <> (pU)p0
(UNX)X(U\Y) <> U\XxY (L6g)
U\V\X <> (U\V)\X
Also recall from the definition of A that GL ;2] contains zeros wherever
GL31] does. Thus, we rewrite 7':
T > (x/G)+(GL;21x(~GL3s1DN\FL311)+((~GL 31 D\ (x/F))+((~GL31I\~FL311)\L
But the second term goes away because of G[;21's zeros.
T <> (x/G)+((~GL; 1D\ (x/F))+(~GL;1 D\ (~FL ;1 D\L
> (x/G)+(~GLs1 D\ ((x/F)+(~F[;11)\L)
<~ S QED.

Proof of TRS:

Clearly the ranks of both expressions are identical.
1, pFARM > FL[31] (by L5)
Now, for each Ie1ppA®F[A;]1AM
(pASFLA; 1AM)LIT <> L/(A=I)/pF[A;1MM <> L/(A=I)/F[A;1]
> L/FL(4=I)/431] (by L6a)
> |/(+/A=I)pF[I31] «> F[I;1] <> (pFARM)[I]
2. TFor each L ELT 1pFAANM,
(FAASM)[ 5 /L] <> (ASM)[;/Q] <> ML ;/QLA]]
where QLI] < (g FLI;1ILLII]
(AQFCA; 1ML /L] < (FLA;18M)[3/LLAT] <> M[;/S]
where SLI] <> (g (FLA; DIT;1)I(LLADCIT]
<~ (4 FLALII;1)LLLACIII]
<> QLALI]] < (QLAD)LI]

Thus Q[A] < S, QED.,
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Proof of TR9: The case of (pAqy) « 1 is trivial and will be omitted. Otherwise,
1. pp(AMILJI1Q] <> (ppA@M)-1 < ([/4)-1 (in 1-origin)
PPA'QBAMM < [ /A" <> [/ (A=2J)/A-J<A <> [ /((AzJ)/A-A<J)[L,E,G] (x)
where L,E,G exhausts 1p4 and such that A/A[L]<J and
A/ALE]=J and A/ALG1>J . (This is possible by commutativity of I.)
(%) « [/(J#ALL,E,G])/ALL,E,G1-J<A[L,E,G]
<~ [/(((pALLT)p1) ,((pALE])p0),(pALG1)p1)/(ALL],ALE],ALG])
-((pALL,E1)p0),(pALG])p1
<~ [/ALL],(ALG1-1) < ([/ALLIII(T/ALGI)-1
If J <> [/Athen ALG] «> 10and the result is [ /A[L] < ([/A)-1, Otherwise,
A[G] is non-empty and [/A[G] <> [ /A, so the result is still([/4)-1, since 4
exhausts 1p4, by definition, Thus the ranks of both expressions are identical,
We now show the dimensions to be indentical.
For each Ie1([/4)-1,
(pA'QBAM)LI] <> L/(I=A")/pBAM > L/(I=(A=J)/A-J<A)/(A=J)/pM
> L/((AzJ)/I=A-J<A)/(A=T ) /oM > |/((AzT)AT=A-J<A)/oM (by Lée)
By case analysis, we find that

(AzJ )NI=A-J<A <> IF I<J THEN I=A ELSE (I+1)=4

> A=I+I2J
Thus, (pA'SBAM)(I] <> L/(A=I+I2J)/oM <> (pANM)[I+I>J]  (by DI8)
and  (p(AWNL[JIQNIIT <> ((J=1pA)/pASM)[I] |
> (pARM)L((J#1pA)/1ppASM)[TT]
— (pASM)[I+I2J] <> (pA'8®BAM)[I]

Therefore both expressions have the same dimension.
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2, Foreach [ ELT 1p(AQM)[[J1Q],
((AM)LLII@DL/L] < (AM)[5/((J-1)4L0),Q,(J-1)+L]
<> ML3/(((J-1)4L),Q,(J-1)¥L)[A]]
Call this subscript vector S.
(A'QBAMM)[3/L] <> (BAM)L;/LLA'1] <> ML ;/(x/B)+(~BL;11)\L[A']]
Call this subscript vector T. It remains to show that S <> T'. First,
pS «> pT. For each I€1pS,
S[I] <> (((J-1)+L),Q,(J-1)¥L)[ALT]]
<> IF ALI]<J THEN LUA[I1] ELSE IF A[Il=J THEN @ ELSE ((J-1)+L)[A[I-J]]
So, S <> (@xJ=A)+(J=2A)xLLA-J<A].
T <> (@xJ=A)+(J2A)\LL(42J ) /A-I<A] <> (QxJ=A)+(J2A)\(J2A)/LLA-J<A]
> (@xJ=A)+(J#A)xLLA-J<A]
<~ S  QED.

Proof of TR10: As in the proof of TR9, the hard part of this proof is to show that

the two expressions BRA®Y and B[A1& have the same dimension.

1, Clearly BLAI® is well-defined since A exhausts 1pB and pB[A] <= ppM.
Also, ppB[Al®M <> [/BLA] <> [ /B <> ppBRA®M. By definition of transpose,
for each Ie1ppBRAYM,

(pBRASM)[I] <> L/(I=B)/pAQM <> L/(pAQM)[(I=B)/1ppA8M].
Let us write R <> AQ and T <> (I=B)/1ppR. The remainder of this part
depends primarily on the associativity and commutativity of minimum (L).
(pBRASM)[I] <> L/(pR)LT] <> L/(pR)LTL11], (pRLTC2]],...,(pR)[TLppT]]
<> L/(L/(A=TC11)/oM),(L/(A=TC21)/pM), ... ,(L/(A=TLppT1)/pM)
<~ L/((A=TC11)/pM) ,((A=T[2])/0M), ..., ((A=TLppT1)/oM)
<~ L/(A=TC11)Vv(A=T[2])v...v(A=TLppT])) /oM

<~ L/(AeT) /oM (by D25)
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Now I=B[A] <+ (I=B)[A] sinceI is scalar. Also note that ((7=B)[41)[K] «> 1
if and only if A[KleT. Thus,I=B[A] +> AeT and
(pBLAISM)[I] <> L/(I=B[A])/oM
> L/ (AeT)/pM <> (pBRASM)[I].
2, For each L ELT 1pBRA8M,
(BRASM) [ ;/L] <> (AQM)[;/LLB1]
<~ M[;/(LIBI)[A]]
< M[;/L[BLA]1]]
<~ (B[AlsM)[;/L]
QED.

Proof of Theorem T2:

The gg_lZi_f part is easiest, as it depends only on the dimensions of the expressions
involved. Only if part:
By hypothesis, D/[X]1 M < D/[P[K]] PRM.
Thus, the dimensions of both expressions are identical. Specifically,
PD/LK] M <> ((K-1)4pM), K¥pM <> (Kz1ppM)/pM
and pD/LPLK]1] M < (PLK]z1ppP8M)/oPQM
But, since P is a permutation of 1pp¥ thenpP <> ppM
and pPRM < (pM)[Pi1ppM] <> (pM)[P11pP]
Also, ppP8M < ppM. Hence,
pD/LPLK1] M <~ (PLKI#1poM)/(pM)[Pr11pP]
<~ (pM)L(PLKI=1ppM)/P11pP] (%)  (by Léa)
and pD/LKIM <= (pM)L (Kz1ppM)/1ppM] (*%)
But (*) <> (**) by hypotheses. Thus, the subscripts of (p¥) are indentical

for each expression, i.e.,

(PLK1210pM)/P11pP <> (Kz1ppM)/1ppoM.
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We now proceed with the difficult part of the proof:

If part:

1.

We must show that oD/[X1 M <> pD/[P[X1] P8M,
oD/LK]1 M <> ((K-1)+pM), K¥pM <> (Kz1ppM)/pM < (pM)[ (Kz1ppM)/1ppM]
But ppPSM <> [/P <> ppM. So for each ITei1ppM,
(pPRM)LI] > L/(P=I)/pM <> L/(pM)L(P=I)/10pM] <> (pM)[(P=I)/1ppM]

since P has exactly one element equal to I.

<~ (pM)[P1I] (by D26)
Hence, opP® <> (pM)[Pr1pP]. Now,
pD/[PLK]] PRM <> (PLK]=1ppPOM)/pPOM > (PLK1#1ppM)/(pM)[P110P]

< (pM)L(PLKI210pM)/Pr1pP] > (oM)[(Kz1ppM)/1ppM]
by hypothesis

<> pD/L[K] M.
Thus, the dimensions are identical.
The two expressions are identical element-by-element.
For each L ELT 1pD/LXK] M, (D/LK] M)[;/L] <> D/FAM
where FL;1] < Kz1ppM
and F[32]1 < F[;10\L

(D/LPLK]1] PaM)[ /L] <> D/GAPYM

where GL ;1] <> P[K]z1ppM
and G[;2] < G[;10\L
Let us examine these two reducees element-by-element. First note that
they have the same rank. For, oFAM <> (K=1ppM)/pM < (pM)[K]
and pGAPSM <> (P[KI=1ppM)/pPRM

< (pPRM)[PLK]]

<> L/(PLK]=P)/pM

<~ (pM)[K].
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For each ITe1(pM)[K],
(FAM)LI] <> ML ;/R]
where R <> (x/F)+(~F[;11)\TI
> ((Kz1ppM)\L)+(K=1ppM)\I
> (L,I)[(1K-1),(ppM),(K-1)+1(ppM)-K]
(GAPRM)[I] <> (PRM)L;/(x/G)+(~G[;11)\I]
<~ (PQM)L 3/ ((PLEIz1ppM)\L)+(P[K]=1ppM)\I]
<~ M[;/5]
where S > ((L,I)[(1P[K]—1),(1+pL),(PtK]-1)+1(pL)—(P[K]-1)J)[P]
((L,I)L(PLK]-1),(ppM) , (PLK]I-1)+1(ppM)-PLK] 1)[P]
To complete the proof, we must show that £ <> 5.
In order to look more closely at S, we must find out more about P. Let
T <= PuiipP.
Then by hypothesis,
(PLK121ppM) /T <> (Kz1ppM)/1ppM < (1K-1),K+1(ppM)-K.
Since Pis a permutation, A/(1pP)eP and we would expect to have A/(1pT)eT.
The above equation gives all of T except for the element which equals X.
There are pT places in T that X could occur, falling into three cases. By
examining each of these cases, we can deduce the structure of P,and thus the
value of S.
(a) PLK] <= K. ThenT <+ (1K-1),K,K+1(ppM)-K <> 1ppM.
Thus, P <> 1ppM and S < R.

(b) PLKI<K. Then, T «> (1PLK]1-1),K,((P[K]-1)+1(X-1)-(P[K]1-1)),K+1(ppM)-K
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(c)

and by lemma L9
P > TuipT
<> (\P[K]1-1),(1+(PLK]1-1)+1(X-PLK]1)) ,P[K],K+1(ppM)-K
<> (1P[K]1-1),(P[KI+1K-P[K]),PLK],K+1(ppM)-K
and then
S «> (L,1)L(1PLK]-1),((PLK]-1)+1K-P[K]1) ,(ppM) ,K+1(ppM)-K]
<> (L,I)[(1K-1),(ppM) ,K+1(ppM)-K] < R~
PL[K1>K. In this case, T <> (1K-1),(K+1P[K]1-K) ,K,P[K1+1(ppM)-PlK]
and P <> T11pT <> (1K-1),P[K],((K-1)+1P[K]-K) ,P[K1+1(ppM)-PLK].
Then, S <> (L,I)[(1K-1),(ppM),((K-1)+1P[K]-K) ,(PLK1-1)+1(ppM)-P[K]]
< (L,I)L(1K-1),(ppM), (K-1)+1(ppM)-K] <> R.
Hence, in all cases S <> R and therefore FAM < GAPRM
for each L ELT 1pD/LK]1 M,

and thus D/[K] M <> D/[P[K]] PaM. QED.

Proof of TR12:

1,

The ranks of both expressions are clearly equal. Then, for each Ie1ppARD/M,
(pARD/M)LI] <> L/(A=I)/oD/M <> L/(A=I)/ 14pM

But also, for each Ic1pp(4,1+[/4)QM,

(p(4,1+ /AYMILI] <> L/(I=A,14T/A) /oM <> L/((I=A)/"1+pM) ,(I=1+[/A)/ 14pM

SO pD/ (4,141 /A)SM > “14p(A,1+[/A)QM <> pARD/M

For each I ELT 1pARD/M,
(ARD/M)L5/L] <> (R/M)L;/LLAT] <> D/FAM

where FL[311 < ([/1ppM)=1ppM <> (("1+ppM)p1),0

and F[;2]1 <> F[;1\L[A] < L[A],O

(D/ (A, 1+ /A)QM)L3/L] <> D/GA(A,1+[ /A)M
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where  G[;11 <= ([/10p(4,1+[/A)QM)z1pp (4,14 /A)M
— ((T1+pp(A,1+[ /A)QM)p1),0
> ((ppARD/M)p1),0
GL;2] <> GL;1N\L < L,0
A typical element of this reducee is
(GA(A,1+T/A)QM)LI] > ((A,1+T /)&M) [/ (x/G)+(~GL 31 1)\TI]
— ((A,1+774)Q)[5/(L,0)+((pL)p0),I]
— M[;/(L,I)[A,1+[ /AT <> M[;/LLAT,I] < (FAM)LI]
Thus, the two reducees are equal. QED.

Proof of Theorem T3:

1. pGAD/[K] M < GL;1]
oD/[K] G'AMM < (Kz1ppM)/pG'AM
<> (Kz1ppM)/G'[31] <> G[ ;11 <> pGAD/[K] M
2. For each L ELT 1pGAD/[K] M,
(Gop/LK] MYL5/L] <> (D/LK] M)L;/S] <> D/FAM

where S «> GL[;21+((~G[ ;31)xL-IORG)+G[ :31xGL ;1 1+I0RG+ 1-L

and F[:1] <> K#z1ppM

and FL:;2] <= F[;10\S

(D/LK] G'AM)[ /L] <> D/F'AG'AM

where F'[;1] <> K#1ppGAM <> Kz1ppM and F'[;2] <> F'[;1]\L

But by TR6, F'AG'AM <> G'AF"AM

where G'" <> (~F'[;11)/[11G" < (AM)[K;]

and F'"[;1] <> F'[;1] < F[311,

FU'[52] < F'[513xG 0521+ ((~G'[331)xF'[321-I0RG)+G'[;31xG"[51]

+I0RG+ 1-F'[ ;2]
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But F'[;11xF'[;2] <> F'[;2]

and for Je1,2,3.
F'[311xG'[3J] <> FL31\GL;5J]

Thus, distributing the F'[:1]term and substituting,

F"[;2] <> (FL;2aNGL:21)+((FL32 IN(~GL331))x(FL ;2 I\L)-IORG)
+(FL32NGL33D)=(FL31 NGL31 D +I0RG 1-FL311\L

> F[3;1IN\GL 321+ ((~GL 331)*xL-IORG)+G[ 331xG[ 31 1+I0RG+ 1-L
<« F[;1I\S <> F[;2]

Hence F'" <> F

and  GMAFWAM <> GUAFAM < FAM QED.

Proof of Theorem T4:

1. pGAD/M <> (~GL311)/oD/M <> (~GL311)/ 14pM
PD/G'AM <> “14pG'AM > T1¥(~G'[31]1) /oM > T14((~G[311),1)/poM
> (~G[311)/ 14pM <> pGAD/M
2, TForeach L ELT 1pGAD/M,
(GAD/M)L LT < (D/MYL5/(%/G)+(~GL 311)\L] <> D/FAM
where F[;1]1 <> ([/1ppM)#1ppM
F[;2] < FL AN/ +H(~GL1DN\L > (x/G')+ FL31IN(~GL31\L
Further, (R/G'M)L3/L] <> D/F'AG'AM <> D/HAM
where F'[:1]1 <> ([ /1ppG'AM)=1ppG' AM
and F'[;2] < F'[;11\L
and, by TR7, A[;1]1 <> G'[;1Iv(~G'[;1D\F'[;1]

H( ;2] < G'[s21+(~G'[;2aD\F'[;2]
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Now for each Ieci1ppFAM,
(FAM)LI] <> MLs/(x/F)+(~FL;1\I]
<~ ML;/((x/G")+FL;1 IN(~GL 31 D\L)+(~FL;1I)\T]
<> ML;/((x/G)+(~GL;11)\L),I]
since FL;11 <> ((T1+ppM)p1),0
and (~G'[31\F'[;1] <> ((~GL[;11),1)\F'[51]
> ((~GL311), )NCL4F[51]), 147 [51]
< ((~GL;1 D\ 1+ppG'AM)p1),0 < (~G[511),0
So H[ ;1] <> G'[;1Iv(~G[311),0 <> (G[311,0)v(~G[311),0 <> ([/1ppM)=10pM
H(;2] < (GL3521,0)+((~GLs11,0\F'[52]
— (GL;21,0)+((~GL3;1 D\ 1¥F'[52]),0 <> (GL;21+(~GL ;1 1)\L),0
and thus (HAM)[I] <> ML/ (x/H)+(~H[;11)\TI]
<> ML3/(GL320+(~GL311)\L) ,I1 <> (FAM)[I]
and so HAM < FAM.

Therefore GAD/M <= D/G'AM. QED.

Proof of Theorem T5: There are two main cases.

a.

One of 4Aor B is a scalar and is extended to the size of the other operand.
Suppose 4 is scalar, Then, 4 °.D B <> A D B, by definition, and
(1ppA) ,1ppB <> (10),1ppB <> 1ppB, which is the identity transpose, and
similarly if Bis a scalar.
A and Bare arrays of identical dimension. Then
pp((1ppA) ,1ppB)RA ©.D B <> ([/(1ppA),1ppB)+1-I0RG

<> ([/1ppA)+1-I0RG <> ppA
and for each TIe1pp4d,

(p(C1ppA) ,1ppB)RA °.D B)[I] <« L/ (I=(1ppA),1ppB)/(pA),pB
<> L/ (I=1ppA)/pA > (pA)LI]

Thus, p4A D B <> p((1ppA),1ppB)84 °.D B.
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2, Foreach L ELT 1pA D B,
(((1ppA),1ppB)®RA °.D B)[3/L] <> (4 ».D B)Ls/L,L] <> A[3/L]1 D BL;/L]
<~ (A D B)[;/L] QED.

Proof of Theorem T6:

1, ppAQM o.F N <= ([/A)+1-I0RG <> [/1(ppM)+(ppN)-1 <> 1+ppM D.F N
For each Iec1pA®M o.F N,
(pA®M o.F N)LIT <> L/(I=A)/pM o.E N « L/(I=4)/(pM) ol
<> IF Te1v 1+ppM THEN (pM)[I] ELSE IF Ie( 1+ppM)+1 1+pplN
THEN (pN)[2+I-poM] ELSE L/("14pM),14oN.
So, pARM o.F N <> (T1+pM),(14pN), 1tpM
and therefore pD/ASM o.F N <> ~14pA®M o.F N
< (T14pM) ,14pN <> oM D.F N
2, Foreach L ELT 1pM D.E N,
(M D.E N)U3/L] <> D/(GAM) E HAN
where G and H are as in D28. Also, (D/A®M o.F N)[;/L] <> D/ENARM o.F N
where E[;1] <> (("1+ppA8M o.F N)p1),0 <> ((ppM D.F N)p1),0
and E[;2] < E[;11\L < L,0
To complete the proof, we must show that the two reducees above are identical.
Clearly both have the same dimension, namely ~14pM.
Then for each Teip 1tpM,
((GaM) F HAN)LI] <> (GAM)LI] F (HAN)LI]
<> M[s/((T1+ppM)4L) ,I1 E N[3/I,(- 1+ppN)tL]
(EAASM o .F N)LI] <> (AQM o.F N)[;/L,I1 «<> (M o.F N)[;/(L,I)[A]]
— (M o.F N)[3/((T1+ppM)+L) ,I,T,(- 1+ppN)4L]
> ML;/((C1+ppM)*L) ,I1 F NL3/I,(- 1+pplN)4L]

<~ ((GAM) F HAN)[I]
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Thus, (GAM) F HAN <> EA&M o.F N, and so theD reductions of each are
identical. QED.

Proof of TR15:

1, The ranks of both expressions are the same since the subarray operator

does not affect ranks. So for each IeippW,

(pARU ©.D V)LI1 <> L/(I=4)/pU o.D V.
But oU ©.D V <> (H[F;]AR') o.D H[G;1AS'-
<> (pHLF;1AR") ,pHLG;1AS!
<> H[F;11,H[G;1] < H[F,G;1] <> H[A;1]

Thus, (pARU ©.D VILI] <> L/(I=A)/H[A31] <> L/H[(I=4)/A;1] < H[I;1]

and therefore PARU ©.D V <> H[;1] <> pHAW.
2, For each I ELT 1pHAW,

(HMW)L3/L] <> (A8R' o.D S')[;/P] <> (R' ».D S")[;/P[A]]
< R'[;/PLF1]1 D S'[;/PLG]]
where P <> H[;21+((~H[331)xL-IORG)+H[ ;31xHL ;1 1+I0RG+ 1-L
(AQU °.D V)[3/L] <> (R"™ o.D S™M[;/L[A]]
<> (HLF;1AR')Ls/LLF1] D (HLG;1AS')[;/LLG]]
< R'[3/T1 D S'[;/7T'1]
where T <> HLF;21+((~H[F;31)xLLF1-I0RG)+H[F;31xH[F;11+I0RG+ 1-L[F]
<+~ P[F] and similarly,
7' <> P[G]

Then (A®U °.D V)[3;/L] <> R'[;/P[F1]1 D S'[:/PLG1] < (HAW)L;/L1].

Finally, the result is in GDF sinceU and Vare in SF and the value of A still

satisfies the required conditions. QED.
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Proof of TR16:

1. pWlLJ] Q1 <> (J=1ppW)/pW. To determine pBRU °.D V we must first find
pU o.D V.
pU <> pRM" <> IF JeF THEN oR'[[F1J] Q] ELSE pR'
There are two cases:
a. JeF. Then,
PR <> pR'[[F1J] Q] «> ((F1d)=1ppR")/pR"
< ((F1J)=1ppR" )/ (pW)[F] (by D29)
<~ (pW)L((F1J)z1pF)/F]
<~ (pW)L(F=J)/F]
<~ (((J-1)roW), (oW )LJ ], J¥pW) [ (FzJ)/F]
<~ (((J-1)+pW) ,JYpW)L(FzJ)/F-J<F]
since J does not occur in (FzJ)/F
<~ (pWLLJ] @D L(FzJ)/F-J<F]
b, If ~JeFthen (FzJ) <> (pF)pl. So in this case,
PR" <> pR' > (pW)[F] <> (pW[[J] Q1)[(F=J)/F-J<F]
So oU <> (pWLL[J] Q1) (F2J)/F-J<F] and similarly,
oV <> (pWLLJ] @II(G2J)/G-J<G].
Therefore, oU o.D V <> (pWL[J]1 Q1)L ((FzJ)/F-J<F),(GzJ)/G-I<G]
<~ (pWLlJ] @D (J2F,G)/(F,G)-J<F,G]
> (pWlLJ] @1 [(J2A)/A-J<A]
Then for each Ie1ppBRU °.D V,
(pBRU °.D V)LI] <> L/(I=B)/pU °.D V
> L/(I=(J24)/A-d<A)/(pWLI[J] Q1) (J2A)/A-J<A]
<~ L/(pWL[J] Q1) (I=(J2A)/A-T<A)/(J2A)/A-T<A]

> (pWL[J] Q1)II]
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and thus pBRU o.D V < pW[[J]1 Q1.
2, TForeach L ELT 1poWL[J]1 Q1,
(WLLIJ @DLs/L] <= WL/ ((J-1)40),Q, (J-1)¥L]
<~ (R'" °.D S")[;/(((J-1)4L),Q,(J-1)¥L)LA]]
<~ R'[3/TCF1]1 D S'[5/TLG]]
where T <> ((J-1)4L),Q,(J-1)+L.
(BRU °.D V)[3/L] <= (R"™ ».D S"™[;/LLB]]
— R"[5/(ppR™+LLBI] D S"[5/(ppR")YLLBI]
Consider the R'" term above. There are two cases, as before:
a, ~JeF. Then,
Rnls/CppR™MALIBI] <> R'([5/(ppR")ALL(J#A) /A-J<A]]
— R'[;/LL(ppR" )4 (J2A) /A-J<A]]
<> R'[3/LL(J=F)/F-J<F1] <> R'[;/LIF-J<F]1]
— R'[5/(((J-1)4L) ,Q, (J-1)VL)[F1] <> R'[;/T[F]1]
b, JeF.
R[5/ (ppR")4LIBI] <> (R'[[F1J] QD[ 3/LL(C 1+ppR" )4 (J=A) /A-I<A]]
<~ (R'LLFJ] @D /LL(J2F)/F-J<F]]
< (R'[[F\J] @D[;/LLC 1+ )4 F],LI(FJ)VF-1]]
because ' is in ascending order and +/J=F <> 1
> R'[3/LLC 1+F1JJ)4F],Q,LL 1+ (F1J)vF1]
— R'[5/(((J-1)4L) ,Q,(J-1 VL)L ((T1+F1J )AF) ,FLJI ], (F1I)VF]]
because of F''s order
<~ R'[;/T[F1]
And similarly, S"[;/(ppR")YL[B1] <> S'[;/T[G]]
Thus (W{[J] Q1)[;/L]1 <> (BRU o.D V)[;/L1].
Finally, it is clear that the result is in GDF since U and V are in SF and B

satisfies the necessary conditions. QED.
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Proof of TR17:

1, pp(F',G')QU o.D V <> ([/F',G'")+1-I0RG
<> ([ /((MeBLF1)/M),(MeBLG]1)/M)+1-I0RG <> ([/(MeB[F,G1)/M)+1-IORG

<> ([/M)+1-I0RG <> ([/1(I'/B)+1-I0RG)+1-I0RG

<~ ((([/B)+1-I0RG)+I0RG-1)+1-I0RG «+> ([/B)+1-I0ORG +> ppBYW
For each Ie1ppB8W,
(pBQW)[I] «> L/(I=B)/oW
and (p(F',G')QU ©.D VILI] <> L/(I=F"',G")/pU o.D V
< L/(I=F',G")/(pR"),pS"
So we must findpR" and pS''.
pR™ <> o(F'1BLF1)R(pB8W)[BLFI14R!
ppR" <= ([ /F'"1BLF1)+1-I0RG <+ ([ /1pF')+1-I0RG <> pF'
Then, for each Je1ppR",
(pR"™M[J] <= L/(J=F"\BLF1)/p(pBRW)[BLF]1tR!'
<> | /(J=F"\BL[F1)/(pBSW)[B[F]]
<> L/(pBQW)[(J=F'"\B[F1)/BL[F]1]
<~ L/(pBRW)L(F'[J1=BLF]1)/BLF]]
< (pBRW)[F'[J]]
Hence pR" <> (pB&W)[F']
and similarly, oS" <> (pB&W)[G'],
and thus (p(F',G')&U °.D V)[I1 <> L/(I=F',G')/(pBRW)[F',G']
<~ L/ (pBRW)[(I=F',G')/F',G']
<> (pB8W)LI]

and therefore p(F',G')QV o.D V <> pBYW.

-61-



2, For each L[ ELT 1pB8W,
(BRW)[5/L] <> (R' ».D S")[;/LLBLA]]]
<> R'[;/(ppR'")ALIBLAII] D S'[;/(ppR')YLIBLAI]]
< R'[;/L[BLF11] D S'[;/LIBLG]1]]
((F',G")QU °.D V)[3/L] <> (R o.D S"™[;/LLF',G']]

«— R"[;/LLF']1]1 D S"[;/LLG']]

So we must calculate the 7" and 5" terms above.
RUL;/LIF'1] <> ((F'1BLF1)R(pBSW)(BLF114R")[;/LLF']]
<> ((pBQW)LBLFII4R")[;/LLF'[F'"1BLF11]1]
<> ((pBRW)[BLF114R")[;/LI[BLF1]
<~ R'[;/LIB[F]]1]
since L ZLL 1pB®W
implies LIBLF11 ELT 1(pB&W)[BLF]]
Similarly, S"[;/L[G']] <> S'[;/LLBLG1]]
Thus, ((F',G')QU o.D V)[3/L] <> R'[3/LIBLF11]1 D S'[3/LLBLG]]]
<~ (B&W)[;/L]
Finally, observe that the result is in GDF since U and ¥ are in SF and 7' and
G' are in order and contain no duplications by construction. QED.

Proof of TR18:

Immediate from T6.
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APPENDIX C

IDENTITY ELEMENTS

Dyadic
Function
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Right
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0
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CHAPTER Il

STEPS TOWARD A MACHINE DESIGN

Never do today what you can
Put off till tomorrow,

William Brighty Rands
procrastinatibn is the

art of keeping
up with yesterday

Don Marquis, archy and mehitabel

As demonstrated in Chapter II, there is a high degree of power and internal
consistency in the APL operators and data structures. This makes it possible to
write simple expressions which have the same semantic content as several state-
ments in comparable programming languages. This chapter discusses how to
exploit these features in the design of an APL machine,

In general, APL programs contain less detail than corresponding programs
in languages like ALGOL 60, FORTRAN, or PL/I. For instance, the maximum
value in a vector, V', of data can be expressed as [/V in APL while ALGOL requires
the following:

MAX:=smallestnumberinmachine;

for:=1 step 1 until N do

if V[I]>MAX then MAX:=V[]:
While this aspect of APL often makes programs shorter and less intricate than,
say, AALGOL programs, it also requires that an evaluator of APL be more complex
than one for ALGOL, especially if such expressions are to be evaluated efficiently.
On the other hand, a machine doing APL has greater freedom since its behavior is
specified less explicitly. In effect, APL programs can be considered as descriptions

of their results rather than as recipes for obtaining them. Further, the language



renders many of these descriptions obvious, both to the human reader and to a
machine, as in the case of [/V, while other languages encode them so intricately
that the original intention of the programmer is hidden., In the example above,
an APL machine can choose any method it pleases to find the maximum value
while an ALGOL machine doesn't know what result is expected.

This feature of APL also has some drawbacks in that some expressions for
results require unnecessary computations if calculated literally as written, For
instance, the expression 3+(2x-V)gspecifies a result which is the first 3 elements
of twice the negative of V., Presumably the programmer is only interested in these
three elements. However, the literal interpretation of this expression proceeds
as follows:

1. Negate V (and store it somewhere),

2, Multiply the previous result by 2 (and store it).

3. Take the first 3 elements of the last result.

In case V is large, this process is grossly inefficient. The negation requires (pV)
fetches and stores as well as (pV) spaces for the value to be stored. The multi-
plication requires another(pV) fetches, stores, and multiplies. In fact, the
desired result could have been found simply by negating the first three elements
of V and multiplying by 2, Clearly, we would like the APL machine to be able to

evaluate such programs efficiently!

A. Drag-Along and Beating

One approach to efficient and natural evaluation of APL expressions is to
exploit the mathematical properties of the language to simplify calculations. In
the machine, this approach is embodied in two fundamental new processes: drag-

along and beating.
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Drag-along is the process of deferring evaluation of operands and operators
as lohg as possible. By examining a deferred expression it may be possible to
| simplify it in ways which are impossible when only small parts of the expression
are available, In effect, drag-along makes the machine context-sensitive, while
most machines are context-free.
Consider the drag-along evaluation of the example in the last section. If we
assume a stack machine, the machine code for this expression might be
1, LOAD V
2. NEGATE
3, LOAD 2
4, MULTIPLY
5, TAKE 3
The immediate execution of this sequence was already shown., Suppose now that
we temporarily defer instructions in a buffer instead of executing them as they
appear. After the first instruction, the buffer contains
LOAD V
After instruction 2, we have
LOAD V
NEGATE V)
where the pointer connects the negation with its deferred operand, V. After
instruction 4, the buffer contains
LOAD V
NEGATE ) }
LOAD 2 : >
MULTIPLY

The evaluation of the TAKE is different from the previous operators since it is a

selection operator, TAKE can examine the contents of the buffer and change them,
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as below. Note that the deferred expression is equivalent to the original expression.
The process of making the changes in the buffer is called beating.

LOAD 3tV (Note change in this instruction)

NEGATE )

LOAD 2

MULTIPLY )
When values must finally be computed, only the desired elements will be accessed
and used. Thus, drag-along facilitates beating.

The other aspect of drag-along is that it eliminates intermediate array-shaped
results with consequent savings of stores, fetches, and space. In an expression
such as 4+B+C+D the literal execution proceeds in three steps:

T1<C+D

T2<B+T1

T3«A+T2
If the variables 4,B,C,D are vectors, each step above requires a vector-sized
temporary store and the last two steps require fetches to get the previous results
as operands, With drag-along, the entire expression is deferred finally to be
evaluated element-by-element as:

for r«1 stepl until o4 do
T3[I1«ALIT1+BLI1+CLI1+DLI]

This requires no extra fetches, stores, or temporary space to obtain the desired
result.

In the machine, drag-along will be applied to all array operands & and ¥ and
to all monadic and dyadic operators y0pP and DQP for which

(MOP &)L 5 /L] <> MOP'(F1& ) ;/L]

and

(€ DOPF)L /L] < (FL E)I /L] DOP' (F2F) /L]
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where F1 and F2 are simple functions of arrays and MOP' and DOP' are similar to
MOP andDOP . An example of a function which is not dragged-along by the machine
is grade-up which is essentially a sort of its operand. Grade-up obviqusly does
not fit into the above scheme since F1 also becomes a sorting function which is

not simple as required.

B. Beating and Array Representation

Beating is the machine equivalent of calculating standard forms of select ex-
presSions. If the effort to do beating followed by an evaluation of a standard form
is less than that to evaluate an expression directly, then the process is worthwhile,
We will see in the following chapters that this is in fact the case.

In order to apply beating we must specify a representation of the standard
form. One possibility is to maintain the 4,7, and G values for each array in an
expression to allow calculation of the standard form

AQFAGAM
as defined in Chapter II. However, these arrays contain redundant information
and it is desirable to find a more compact representation.

If we choose to represent arrays in row-major order we can utilize the rep-
resentation of the storage access function as the representation of standard forms.
In this way, beating will consist of applying the transformations of Chapter II to
the mapping functions for arrays.

In the following discussion we can assume without loss of generality that the

index origin is zero. Situations where it is different reduce to the zero case by

subtracting ZIORG from all subscripts. Let4 be a rank-V array. Then, assuming
that each element in4 is to occupy one word in memory, the elementA[;/L] will be

located at

VBASE+(p4)LL (%)
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where VBASE is the address of 4[0;0;...;0]. Thus, subscripts of arrays stored
in row-major order are representations of numbers in a mixed-radix number
system (Knuth [1968] p. 297). This representation is especially suitable for arrays
in APL because APL arrays are rectangular, dense, and homogeneous. Further,
this representation does not favor any array coordinate over another which is
essential in APL,

We can generalize the access function slightly by writing it in the form:

VBASE+ABASE++/DELXL (%x)

where ABASE is an additive constant, in this case zero, andDEL is the weighting

vector used to calculate the base value in (*) above., DEL is computed by
DELLN1+1

DELLI1«DELLI+11x(pA)LI+1] for each Iel-1.

Example: Let¥ be a matrix with dimension 2,3, ThenDEL<>3,1 and we set ABASE«>0.
The layout of ¥ in memory is

VBASE

v +1 +2 +3 +4 +5

MLO;0] | MCO;1] | ML0;2] | M[1;0] | M[1;1] | M[1;2]

Given this formulation of the storage access function, it is only necessary to
transform ABASE and DEL in order to obtain the effect of evaluating selection opera-
tions on an array.

Example: If¥ is the matrix in the previous example, then the mapping function

for (2,1)8 has the same VBASE. For the transpose we use ABASE'«>0and DEL'<+>1,3.
Note that the change in DEL corresponds to permuting it by 2,1. This new function
uses the same values that were stored for¥, but accesses them as if they were

the transpose (2,1)8. To verify this, note that the address for ((2,1)8)[I;J]
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is
VBASE+ABASE ' ++/DEL"'xI ,J <+ VBASE+ABASE'+(1xI)+(3xJ)
<> VBASE+ABASE+(3xJ )+(1xTI)
<> VBASE+ABASE++/DELx%J , I
which is the location of M[J;I1 < ((2,1)8M)LI;J].

This can be done for any selection operator by using transformations analogous
to those in Chapter II. Appendix A shows the beating transformations on access
functions for arrays. In the machine, beating is also applied to expressions con-
taining reductions, scalar operators, and inner and outer products, based on the

results in Chapter Il

C. Summary

At this point we have outlined the framework of a machine for APL. It is
pleasing to know that it will work since it is justified by theoretical results
developed earlier. The remainder of this dissertation discusses the structural
details of a machine based on the beating and drag-along processes and gives an
evaluation of its effectiveness. Let us outline some goals that such a design should
satisfy:

1. The machine language should be close to APL. That is, it should contain
all primitives in the language and in a similar form. While it is well-known how
to design a machine to accept APL directly there is no particular advantage to
doing so. We are primarily concerned with processing the semantics of the
language, not its syntax., Thus there is no loss of generality in letting the machine
language be a Polish string version of APL, This has the further advantage of

freeing the machine from the particular external syntax of APL.
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2, The machine should be general and flexible. In particular, it should
not be so deeply committed to evaluating APL as to be useless for other purposes.

3. The machine should do as much as possible automatically. This includes
storage management, control, and simplification of expressions. The programmer
should not have to be aware of the structure and internal functioning of the machine
at a level much beyond that specified in an APL program,

4, The machine should do simple things simply and complex tasks in pro-
portion to their complexity. In other words, the work required for the machine
to execute a program or expression should be related in some straightforward
way to the program's complexity.

5, The machine should be efficient. This is perhaps the most important
focus of this work., Of course, the question of efficiency is related to the current
technology; at present, a major bottleneck in evaluating array-valued expressions
is use of memory. Thus we concentrate on reducing memory accessing and tem-
porary storage space in the evaluation of APL programs.

6. The machine design should be elegant, clean, and perspicuous.
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APPENDIX A
TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS INDUCED BY

SELECTION OPERATORS

1. The storage access function for an array M contains the following information:

RANK <~ ppM

RVEC <~ pM

VBASE location of first element of .

ABASE constant term of access polynomial

DEL vector of coefficients of access polynomial

Then, the element M ;/L] is located at
VBASE+ABASE++/DELXL
2, This section lists the transformations on storage access functions which are
used to effect beating of selection operators. These transformations are given
as program segments written in index origin zero. It is assumed that the parameters

to the various selection operators are conformable and in the proper domain,

.o Qi
ABASE < ABASE+DEL+.x(Q<0)xRVEC-|Q
RVEC < 1@ :

b, @M

ABASE < ABASE+DEL+.x(§>0)x|Q
RVEC < RVEC-1Q

c. QLJIM

ABASE <« ABASE+DELLJ 1x(RVEC[J1-1)
DEL[J] < -DEL[J]
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d. s

R <« RVEC

D <« DEL

RANK <« 1+([/4)

I <0

DEL < RANKADEL

RVEC <« RANKARVEC

RANK  REPEAT

BEGIN

RVECLI] « L/(I=4)/R
DELLI] <« +/(I=A)/D
I« I+1

END

e. ML[JISCALAR]

ABASE <« ABASE+DELLJ 1xSCALAR
DEL <« (J21RANK)/DEL

RVEC <« (J#1RANK)/RVEC

RANK <« RANK-1

f. MI[K]1J LEN,ORG,S]

ABASE « ABASE+DEL[ K1xORG+(LEN-1)
RVEC[K] <« LEN
IF S=1 THEN DEL[K] <« -DELLK]
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CHAPTER IV

THE MACHINE

This chapter contains a functional description of a machine designed to process
the semantic content of APL programs.

In general, the description will be given in English, although algorithmic
descriptions will be used as necessary to provide clarifications. The section will
be written in the S’cyle of a programming manual, with the addition of explanations
and rationales as required.

The APL machine (APLM) is conceptually composed of two separate machines,
each with its own language, sharing the same registers and data structures. The
D-machine (DM) accepts APL-like machine code and does all the necessary analysis
on expressions, The DM produces code for the E-machine (EM), and in the process
does some simplificatibn of incoming expressions using drag-along and beating.

The E-machine does all the actual computations of values in the system. By using
a stacking location counter based on the organization of machine code into segments,
the overall control scheme for the machine is quite simple.

The current chapter consists of five sections which present the APLM in a
logical sequence. Section A discusses the data structures and other manipulable
objects in the machine, and explains how they are managed in the machine's
memory. Section B continues by explaining the stacks and other registers in the
machine, followed by a discussion of the overall machine control, in Section C.
Finally, the details of the D-machine and the E-machine are set forth in Sections
D and E, respectively. Exémples are used liberally throughout, to clarify opera-

tional details of the APL machine.
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A. Data Structures and Other Objects

The manipulable objects in the machine fall into three main classes: data
values, descriptors and program segments, This section will describe these
three kinds of objects and how they are represented in the machine,

Scalars are the simplest kind of data. In APL, a scalar is an array of
rank-0. In practice, a scalar is a different kind of object than an array, and is
so treated in the machine. Although arrays are stored in the memory, M, of the
machine, scalars are not. They appear only in the machine registers, in particular
the value stack, and as immediate operands in a code string. In a real machine,
scalars would have an attribute of type, determining the kind of representation to
use for encoding and decoding them. In this work, we will assume that this is
handled automatically, and that all scalar data are the size of a single machine
word.

The most important data structure in the APLM is the array. The represen-
tation of an array is divided into two parts. The first is the value array which is
a row-major order linearization of the elements of the array. The second part

is a descriptor array (DA) for an array, which contains the rank, dimension, and

storage mapping function for the array. This separation makes it possible to have
multiple DA's, not necessarily identical, referring to the same value array, which

makes beating possible. In this chapter, descriptor arrays will be shown in the

form:
@ARR RC=2 LEN=05
+01 VB=VARR AB=000
+02 RANK=2 .
+03 R(1)=003 D(1)=02
+04 R(2)=002 D(2)=01

@ARR is the address in memory of the first word of the descriptor array for the

array named ARR, which is shown above. The first word contains a reference
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count (RC) and a length (LEN) field, as explained in the discussion on memory

in the APLM. The rank of the array is recorded in the third word of the DA;

words after that contain the elements of the dimension vector, labeled R(I). Thus

in this case, PARR is 3, 2. The second word in the DA encodes the base address

of the value part of the array (labelled VB for VBASE) and the constant term in

the storage mapping function (here labelled AB for ABASE). Finally, the DA

contains the coefficients of the storage mappihg polynomial, DEL (la.belled-D(I)

here). Recall that for an array ARR, the element ARR[;/L] is located at '
VBASE + ABASE + +/DEL x (L - IORG);

This formula is the storage mappihg function for any' array.

In addition to array descriptors, the machine contains descriptors for
J-vectors. Recall from Chapter II that a J-vector is a vector of consecutive
integers which can be specified by a length, an origin, and a direction bit. We
assume that these three quantities can be encoded into a descriptor by the
function JCODE(length, origin, direction) and that there are appropriate decoding
functions. (See Appendix A.)

Finally, programs in the machine are represented internally as program
segments. A program segment is any sequence of machine commands and operands,

and is referenced by a segment descriptor. Segment descriptors contain an

encoding of the beginning address of a segment (relative to the beginning of the
function they are a part of) and the length of the segment. There is also a bit
which indicates the execution mode for the segment (see Section C).

Each defined function (program) is a segment, and logical subparts of the
function may also be represented as segments. As will be seen later, it is easy
to activate and de-activate segments in the APL machine. Briefly, the advantages

of organizing programs in segments is that these are the logical units of a program,
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while other organizations, such as paging, do not allow this kind of natural cor-
respondence of form and function (pardon the pun!). An important property of
APLM instructions is that they contain no absolute addresses except for references
to NT, which remain constant in any compilation. All internal references to

other parts of a program are relative, Thus, all programs are relocatable,

Each function has a corresponding function descriptor, which is similar to

a DA. A function descriptor contains the following information:

FVBASE location in M of beginning of function segment
FLEN length of function segment

FIORG index origin for this function

FISR logical variable -1 if function has a result
FPARS number of parameters

FLCL total number of local names

In addition, the rest of the function descriptor contains a list of all local names

in the function, in the order: result (if any), parameters (if any), local variables
(if any). The function descriptor for a function is used in calling and returning

from functions, as will be discussed in Section D.

Main memory in the machine is a linear ari-ay of words named M. The only
objects which reside in M are arrays, DA's, and program segments. All other
objects are stored in the machine's registers. In addition to M, there is an array
NT, the Nametable, which is an abbreviated symbol table., Every identifier in the
active workspace has an entry in NT, which contains descriptive information and
either an actual value or a pointer to where it can be found in M. Scalars and
J-vector descriptors are stored directly in NT. Thus, all references to variables
and functions in the machine go through the NT. This organization allows for

dynamic allocation and relocation of space in M, without having to alter any
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program references. The operation of NT is described more fully in the next
section under machine registers. Constant array values within a function are
stored as part of the program segment; they are addressed relative to the beginning
of the function, and so, too, remain relocatable.

Within M, two different allocation mechanisms are used, one for functions
and array values, and one for descriptor arrays. The reasons for this are that,
because of drag-along and beating, DA's are expected to have a shorter lifetime
than functions or array values. Further, in a given function, locally at least, it
is likely that DA's will be of similar sizes. Thus, it is feasible to keep an
available space list for DA's, with the hope that erased spaces can be reused
intact. We would therefore expect more efficient use of M by DA's than by array
values.

The free memory space (M) is arranged as follows: functions and array
values are allocated from the lowest address (BOTM) towards the top of M and
DA's are allocated from the top (TOPM)down. The space in the middle is the POOL,
with boundaries BOTP and TOPP. Each entry in M has a header word containing
an encoding of a reference count (see Collins [1965]), the length of the entry, and
a filler count. The latter field is used when space slightly larger than necessary
is allocated. Each time a reference to an entry is added or deleted, the reference
count field is adjusted. When a reference count goes to zero, meaning that there
are no uses of the entry anywhere in the system, the entry is made available in
one of two ways. If it is adjacent to the POOL, it is merged with POOL. Other-
wise, it is added to the appropriate availability list, of which there are two, one
for DA's and one for functions and array values.

The availability lists are doubly linked, and each enfry contains a header

similar to those for active entries, When space is needed, the appropriate
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availability list is searched using the first-fit method (Knuth [1968] 436, ff). If

a fit is found, the space is allocated and the availability list adjusted. Otherwise,
space is taken from the POOL. If a request for M-space is made which cannot

be honored because there is not enough contiguous space available, a garbage
collection is made. The two halves of M are garbage-collected separately. In
collecting array space, all the DA's are scanned and a linked list is set up which
ties together all DA's pointing tb the same entry. Then arrays are compacted
towards BOTM, with the links used to adjust the VBASE fields in the referent DA's.,
If enough space is still not available, the DA's are also compacted, using a A
similar algorithm. Some coalescing of available space is also done by the al-

location algorithm, GETSPACE. Figure 1 illustrates how M is structured.

B. Machine Registers

This section describes the registers and register-like structures in the APL
machine., The present description covers only the logical functions performed by
these registers and does not make any demands on how they are actually to be
implemented. Although most of the registers are not directly accessible to the
programmer, thorough knowledge of their use is important to understanding the
functioning of the machine.

There are several registers related to memory accessing and allocation,
The most important of these is the Nametable, NT. NT is an associatively ad-
dressed stack, each entry of which contains a name field, a tag, and a value.
The name field of an entry contains an index for the identifier associated with the
entry. Permissible tags in NT are ST, for scalar quantities, JT, for encoded
Jd-vectors, UT, for undefined identifiers, DT, for arrays, and FT for functions,
ST and JT entries contain the actual value in their value field, while DT and FT

entries have descriptor addresses in their value fields.
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When a function is called, an entry is pushed to NT for each of the function's
local variables and parameters, as listed in the function descriptor., Similarly,
when a function is de-activated, the reverse process occurs. Each time a variable
is accessed, NT is searched associatively from the top (latest entry). If a hit is
not found, then the desired variable must be global, and it is entered into NT.

This mode of maintaining the NT makes identifier behavior correspond to APL's
"dynamic block structure' and facilitates recursive function calls,

The most important registers in the APL machine are four stacks. The use
of stacks permits elimination of addresses from most instructions and simplifies
the evaluation of recursive and nested programs.

1, Value Stack (VS)

VS is the main stack in the machine and is used in the evaluation of expressions
and in function calls. Each VS entry consists of a tag and a value part, as in NT
entries. In addition to scalars and function or DA pointers, VS can contain segment
descriptors, partially-evaluated addresses, function marks, and names.

2, Location Counter Stack (LS)

Recall that machine code is organized into segments, characterized by a
starting address and a length. Each LS entry contains the starting address of a
segment (ORQG), its length (LEN), a relative count, pointing to the next instruction
to be executed (REL), and control information. Each time a segment is activated,
its beginning address and length are pushed to LS, and the REL field is set to zero,
The address of the next instruction is then determined from the REL and ORG fields
on the top of LS. After each instruction fetch, the REL field at the top of LS is
incremented. When this value is equal to the length of the segment, the segment
is terminated by popping the top of LS, thereby reactivating the next entry. The

control information in LS is used to coordinate it with the other stacks in the machine.
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3. Iteration Control Stack (IS)

Array-valued APL expressions implicitly specify an index set for the expres-
sions. In this machine, IS is used to control (nested) iterations over this index
set in the element-by-element evaluation of array-valued expressions. The
operation of IS is coupled with LS as follows: when a set of iterations is begun,
the limits of the iteration are pushed into the iteration stack, and a segment is
activated containing the range of the iterations. Then, for each instruction in
the code segment, the necessary index values are taken from IS. When the segment
is completed, the entries in IS are stepped and if the required iterations are not
exhausted, the segment is re-initialized and repeated with the new IS values.
Eventually, the iterations are completed and the segment in the range also is
completed, in which case IS and LS are both popped, returning the machine to the
place it was to resume after the iterated code was completed. (See Section D,)

The IS behaves essentially like a nest of FORTRAN DO's. Each entry contains
a counter (CTR) (to origin zero), the maximum value of the counter (MAX),
direction bit (i.e., count up or down) (DIR) and control information. Although
the IS is partially accessible to the machine code, it is for the most part main-
tained automatically. Like LS, IS could probably be incorporated into the value
stack, since these three stacks generally work in parallel. However, by separating
these stacks by their functions, the machine design becomes cleaner and more
perspicuous.
4. Instruction Buffer (QS)

Unlike LS and IS, the instruction buffer QS is logically separate from the
value stack., QS is not strictly a stack, since it is possible to access and alter
information at places other than its top. In the D-machine, instructions are

fetched from M, some of which are executed immediately, and others of which
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are either evaluated by beating or are deferred in QS by drag-along. In entering
instructions in QS, the DM may change other related QS entries. When the
E-machine is activated, instructions are fetched from QS and executed directly,
generally in conjunction with VS and IS. QS contains operation and value fields,
similar to VS, a LINK field used to reference other deferred instructions, and
an AUX field, which is a logical vector acting as an access mask for array entries
(see Section E).

A final four registers in the machine are mentioned primarily for completeness.
These are:

"IORG Index origin of current active function

FBASE Base address in M of current active function

FREG VS index of function mark for current active function

ISMK IS index of topmost IS entry containing 1 in its MARK field.

The use of these registers is shown in the examples in following sections.

C. Machine Control

The purpose of the APL machine is to transform a set of data (the input) into
a second set (the output) according to encoded transformation rules (the program)
which are interpreted according to a predetermined scheme (the machine). This
entire process is called the evaluation of the program and input.

In the APL machine, programs are evaluated in two separate but related sub-
machines, The D-machine takes its instructions from main memory, M, in the
form of Polish APL code, and does all the necessary domain testing and storage
allocation for the various operands. In addition, the DM does simplification of
incoming expressions by drag-along and beating. The output of the D-machine is
values in VS and transformed code in the QS, in the form of instruction segments

for the E-machine. At critical points, determined either by the programmer and
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the DM, control is passed to the E-machine, which executes the simplified
instructions in QS, producing values in VS and M. When done, the EM passes
control back to the DM, which resumes where it left off,

The division of labor between the two submachines is logically similar to that
between a compiler and its target machine. The DM plays the role of the algebraically
simplifying compiler, whose source language is essentially APL, and whose
target language is E-machine code. The E-machine as the target of the DM's
transformations is a conceptually simple computer which does nothing but compute
values. Given this scheme, a question which naturally arises is, Why bother with
the D-machine at all? Why not use a separate compiler in software and let it
produce code for a mé.chine similar to our E-machine? Unfortunately, this is
impossible, since the behavior of the D-machine is dependent not only on the
source code (program), but is also dyhamically dependent on the data. For instance,
consider a simple APL expression such as A + B, We would like the source code
for this expression to be something conceptually like

LOAD B (i.e., "load" B to the value stack)

LOAD A

ADD (i.e., add the values on top of the value stack and leave the

result there.)
The problem here is that we would like the machine to do different things depending
on the data. In \particular, if both A and B are scalars at the time the above code
is executed, it would be desirable to have the LOAD instructions push the actual
scalar values to the stack, and to have the ADD do the actual addition. But if A
and B are conformable arrays, the desired action is to defer the entire operation
(both LOADs and the ADD) in the instruction buffer, to be performed later by the

E-machine.
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No compiler would be able to make these decisions a prioriunless it knew
what data was to be used in running the program, or unless variables were suf-
ficiently restricted by declarations. Further, much of the work done by the D-
machine is domain testing, including rank and dimension checking, on dynamically-
specified variables. Since this process is data~-dependent, it must be performed
dynamically,

Both the D-machine and the E-machine share all the registers and the memory
of the entire APL machine. Further, both are controlled by a central cycle
routine, shown in Fig. 2. The key to the overall control of the APLM is the
location counter stack, LS, which contains active segments for both the DM and
the EM. In Fig. 2 we see that a major machine cycle takes the form:

a. Check to see if the current active segment has been completed. If not,
proceed to step b, otherwise see if this segment is under control of the
itera_,tion stack. If it is, then step the iteration stack; in case IS does not
overflow, then reset the REL field to the beginning of the segment and
repeat this step. If the segment is not under control of IS or if it is and
the iteration stack overflowed, then de-activate the segment and repeat
this step.

b. Calculate the effective address of the current instruction and update the
location counter stack.

c. Select the appropriate machine, determined by the D/E bit in the current
active segment. If the DM is selected, then defer any arrays referenced
on the top of the value stack to the instruction buffer; also, fetch the
instruction and (if necessary) the second word of the instruction from
memory. Finally, decode and interpret the instruction and return to

step a.
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D. The D-Machine

The D-machine evaluates programs written in "machine language' by generating
instructions in QS to be executed later by the E-machine. As discussed in Chapter
III, the use of a Polish string for the machine language rather than "raw' APL frees
the APLM from the particular concrete syntax of APL without sacrificing any of the
semantic content.

Most of the instructions in the APLM correspond directly to the APL primitives;
those which do not are the control instructions, which comprise a more powerful
set in the machine than are provided in the source language. All operands in DM
instructions are either relative addresses within the program segment or are NT
references or are immediate values. As a result, all programs in the machine
are relocatable. Since only constant data is contained in function segments,
programs are likewise re-entrant.

The D-machine instruction set is listed in Tables 1-1, 1-2, and 1-3. The
instructions are divided into three classes: storage management instructions,
control instructions, and operator instructions. It is clear from Table 1 that no
systems functions are included in the D-machine's repertoire. In a real imple-
mentation of an APL machine, these instructions would have to be provided,
although for the current work, they are irrelevant. The remainder of this section
discusses the instructions of the D-machine, with examples to clarify the details.

0. A Guide to the Examples

The examples used in this chapter include program listings, register dumps,
and memory dumps. In showing program excerpts, we generally also show the
APL source expression, and give values, or at least attributes, for the operands.
Programs are shown in assembly language format, except that absolute addresses

are given, Althoughnothinghas been said of the mannerin which D-machine instructions
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TABLE 1-1

Storage Management and Control Instructions

Opcode Operand Description

A. Storage Management Instructions

LDS scalar Load scalar

LDSEG seg~descr Load segment descriptor

LDJ jcode 1,0, s Load J-vector

LDIS K Load iteration stack counter, K from top of IS
LDCON K Load constant array, starting at FBASE +K
LDN N Load name N

LDNF N Load name N and fetch value

ASGN Assign (and discard value)

ASGNV Assign and leave value

B. Control Instructions

JMP K Jump by K (signed) in current segment
JMPO K Jump by K in current segment only if top
of VSis 0

Pop VS in either case
JMP1 K Same as JMPO except test for 1
LEAVE De-activate this segment

(1 €., pop LS and also IS if necessary.)

RETURN Return from current function

ITM Iterate and mark

DO Call E-machine to work on top of VS

DOI | Same as DO except that temporary space is

allocated for the result, if any, and the result

is left on top of VS
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Operator

TABLE 1-2

Scalar Arithmetic Operators

Definition

CIR
DEAL
COMB
AND
OR
NAND
NOR
LT
LE
EQ
GE
GT
NE

B. Monadic

PLUS
MINUS
SGN
RECIP
ABS
FLOOR
CEIL
EXP
LOGE
PI
RAND
FAC
NOT

NV IVIIAAL I <> =200 % Tr—— e X | +

] =00 ® % Mr—— o X | +

Add

Subtract

Multiply

Divide

Modulus

Minimum
Maximum

Power

Logarithm
Circular functions
Random deal
Binomial coefficient or beta function
Logical and
Logical or
Logical nand
Logical nor

Less than

Less than or equal
Equal

Greater than or equal
Greater than

Not equal

Plus

Minus

Signum

Reciprocal
Absolute value
Floor

Ceiling

Exponential (base e)
Logarithm (base e)
Pi times

Random number
Factorial or gamma function
Logical not
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TABLE 1-3
Remaining Operators in D-Machine

Operator APL Definition

——— i — - — e e e e T g e s g S S e S D e e e e i e S B S B e S S S B S e i e e

A. Selection

TAKE 4 Take

DROP v Drop

REV K oLK] Reverse along K-g--h coordinate
TRANS Q Generalized transpose

INX K [[X] Index on Kﬂl- coordinate

B. Evaluated Immediately

BASE

Base value (Decode)

L
REP T Representation (Encode)
GDU A Grade up
GDD ¥ Grade down
CAT K R Catenate (top K on VS)
RAV s Ravel
URHO 0 Dimension
DRHO 0 Restructure
UIOTA 1 Interval
C. Deferrable
ROT K dLK] Rotate on Kt—h- coordinate
EPS € Membership
DIOTA 1 Rank
CMPRS K /LK] Compress on K—tll- coordinate
EXPND K \[X] Expand on K@- coordinate
SUBS K L Subscript with K expressions in VS
D. Compound
RED K OP OP/LK] Reduce along gD coordinate by OP
General dyadic form with OP

GDF OP ---
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are encoded, we have chosen, for purposes of illustration, to show them as oneor
two word quantities, depending on whether or not they have operands., All operand
addresses are shown symbolically and comments are used to explain the program
structure. In the register dumps, most of the material is self-explanatory. Field
headings are summarized in Appendix A, The top of each stack is indicated by an
arrow. Descriptor array addresses, which are pointers to the memory, are in the
form @A, for variable A, and value addresses in M are of the form VA, Again, in
the real machine, these would in fact be numerical addresses, but the symbolic
form is much clearer for examples. Fields in DA's are labelled mnemonically.
Segment descriptors in VS or QS are shown in the form SCODE(SEG.X, m), where
m is 0 or 1 depending on whether the segment is a DM or an EM segment, and X
is the segment symbolic name (arbitrary). EM segments are delimited by ''brackets"
along the right side of the QS display, in the format XY, meaning that segment X
starts here and segment Y ends here. The LINK field of QS contains relative pointers
and is interpreted according to the opcode. The contents of the AUX field is to be
interpreted as a logical vector, although in fact it may be encoded differently in an
actual APLM.
1. Storage Management Instructions

This class includes all instructions concerned primarily with the storing and
fetching of data. Each of the load instructions pushes a value to the value stack.
Of these, four have immediate operands; LDS, LDSEG, LDJ, and LDN push their
operands to VS with tags ST, SGT, JT, a.nd“NPT fespecti\fely, LDIS‘ K loads as a
scalar the current value of the CNT field of the iteration stack element K entries
from the top of IS. LDNF N refers to variable N in the nametable, and enters the
current value of the variable (from NT) into VS, In the case of NT entries with tag

DT (i.e., arrays), the reference count of the DA is increased by 1 when it is
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entered into VS, and the VS tag is set to FDT. The LDCON K instruction is used
to access a constant array stored in a function segment, Its operand K is a pointer
relative to the function origin pointing to the beginning of the DA for the constant
value. This DA is copied to the DA area of M, its VBASE is éet to the beginning
of the function (FBASE), and its ABASE is set to K. The DA pointer is pushed to
VS with tag FDT. |

Althougﬁ aJl the load instructions just described push a value to VS, such
values do not always remain there. At the beginning of each D-machine cycle, the
top of VS is examined for tags FDT, DT, and JT (see Fig. 2); If one of these is
present, then the entry is deferred inAQS, because it is array-valued. This is
done by pushing an E-machine instruction to QS of the form

OoP @ARR 0 MASK.

OP is IFA, IA, or 1J, depending on whether the VS tag was FDT, DT, or JT;
@ARR is the DA pointer that was in the VS value field, and MASK is an access
mask. The access mask in this case is a logical vector whose last K bits are 1
when ARR is a rank-K array. It will be used by the DM in beating and by the EM
in accessing this array. The LINK fieldin E—machinewinstructions of this type is
unused, and thus is shown as 0 above. The VS entry is then replaced by a segment
descriptor with tag SGT pointing to the one-word QS segment containing the deferred
operand. In general, this entire process is invisible in the examples below, and
the load instructions which generate array values can be thought of as doing the
deferral themselves.

Although ASGN and ASGNV are operators, they are included as storage
management instructions because they have the side-effect of causing values to
be stored. These instructions expect the top of VS to contain a destination, either

as a name (tag NPT) or as a QS descriptor pointing to a segment containing only
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TABLE 2

Interpretation of ASGN and ASGNV in the D-Machine

Top of VS (Top-1) of VS Action
a. tag=NPT or tag=ST Do immediate assignment. That is, store
tag=SGT and the scalar value in NT or in M, as appro-
deferred ex- priate.
pression has
one element
b. tag=NPT tag=SGT and Do immediate assignment,
deferred segment
is a J-vector
c. tag=NPT tag=SGT and Do immediate assignment,
deferred segment
is a single DA
with reference
count of 1 and
value also has
reference count
of 1
d. tag=NPT tag= SGT and Allocate space for a DA and value of the
deferred segment size necessary to store the result. Defer
is any arbitrary the assignment in QS, as for scalar arith-
array expression metic operators.
e. tag=SGT and tag=SGT and Check ranks and dimensions for conformability,

deferred seg-
ment consists
of a QS entry

with opcode IA

deferred segment
is any arbitrary
array expression

If the lhs variable is a J-vector, it must first
be explicitly evaluated. If the rhs expression
contains instances of the lhs variable with dif-
ferent permutations, then the rhs expression
is evaluated to temporary space. Finally,

the assignment is deferred as above,
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an IA instruction; the second entry in VS is the right-hand side of the assignment.
There are several possible actions taken by the DM in interpreting assignments,
depending on the VS contents. These cases are éxplained in Table 2, We have
assumed that "evil" side effects do not appear in the code; their treatment is
straightforward, but uninteresting. Also, it should be noted that although the
strategies outlined in Table 2 could be modified to alter the machine's performance,
the case analysis remains the same,

The final storage management instructions are INPUT and OUTPUT, which
are left further unspecified. These could be conceived of as read-only and write-
only (serial) strings, which are used as primitives for writing functions such as
0 and(l .

2, Control Instructions

The control instructions of the APLM are all concerned with directing the
flow of control among statements at the source-language level, and are all evaluated
by the D-machine.

The three jump instructions, JMP, JMPO, and JMP1 are used to alter the
flow of control among statements in a function. Since no jumps are allowed out-
side of a function, there is little difficulty in specifying this operation. All that
is necessary is to change the value of the relative pointer in the current segment
on LS. CYCLE is a special case of JMP, which sets the rel'ative pointer to 0,
causing the current (D-mode) segment to be repeated. LEAVE pops LS and also
IS, if the segment is involved in an iteration. RETURN performs similarly
in returning from a call on a function. In addition, it automatically erases the
locals for the current function from NT.

The interpretation of the DO instruction depends on the top value on VS, If

the top of VS is a scalar then the DO acts as a no-op, If the tag is SGT, then the
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segment described on VS is activated by pushing the segment descriptor to LS,

with VS being popped. In case thetagis NPT, the corresponding NT tag is examined,
and if the tag is FT, then the named function is activated, as described in the next
paragraph; all other cases are no-ops. The DOI instruction is similar to DO

except that if the top is VS and has tag NPT, the value referenced is copied to new
space, while if the tag is SGT, temporary space is allocated for the result and

the segment is evaluated. Thus, after executing a DOI, the top of VS contains an
entry with tag ST, JT, or FDT,

When a DO instruction encounters a function name on top of VS, the following
actions take place:

1, The function descriptor, referenced by the NT entry for the function, is
fetched. It is expected that all parameters to the function have been evaluated
and placed on top of VS, so that the topmost value is the leftmost parameter. The
parameter count, FPAR, in the function descriptor is fetched, and the top of VS
checked to see that there are that many values already there. If not, an error is
signaled. Otherwise, the machine goes through the list of local variables in the
function descriptor, making an entry in NT for each one. Each new tag in NT is
set to UT, for undefined, unless it corresponds to a parameter. Parameter values
are placed in NT and popped from the value stack in order.

2. A function mark entry is pushed to VS, with tag FMT containing an
encoding of the current values of FREG, IORG, and the name of the function being
activated.

3. IORG is set to the value in the function descriptor, and FREG is set to
the VS index of the function mark, v

4., An entry is pushed into LS for the segment described by FVBASE and
FLEN in the function descriptor. FBASE is initialized to FVBASE, and the process

is completed.
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The segment just activated contains all the code for the function. When a RETURN
is executed within this function, the following occurs:

1. LSis popped, thereby de-activating the function.

2, The function name, encoded in the function mark onVS, is used to access
the function descriptor and then popped. If there is a result, the value is pushed
to VS, and its NT entry erased. All other NT entries for locals in the function,
together with their values, are also erased.

3. FREG and IORG are restored from the values in the function mark on VS,
The function mark is deleted and the result, if any, is moved into its place.

4, Finally, FBASE is set to point to the current active function (if any) by
accessing its function descriptor through its name in the newly-exposed function
mark,

3. Operator Instructions

The operator instructions correspond to the primitive operators in APL,
They can be considered in four groupings, and are so discussed in the rest of this
section. Part a discusses the scalar arithmetic operators (Table 1-2); part b
contains a description of the selection operators which are evaluated by beating
(Table 1-3A); part ¢ describes those operators which are generally executed
immediately (Table 1-3B); and part d covers remaining deferrable operators as
well as the compound operators (Table 1-3C, D).

a. Scalar arithmetic operators

If the top of VS contains two scalar values (or one if the operator is monadic)
then the operation is done immediately, leaving a result in VS and popping the
operand(s). This process is illustrated in Example 1. In fact, the operation is
pushed to QS and the E-machine is activated to perform the actual evaluation, but

this micro-process is invisible to the user.
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The other possible cases occur when the top two elements of VS are segment
descriptors for deferred code in QS or when one is a segment descriptor and the
other is a scalar. If one of the operands is a scalar, it is entered into QS and its
VS entry is replaced by an appropriate segment descriptor, reducing it to the
case of two segment descriptors in VS,

The D-machine compares the ranks and dimensions of the two operands for
conformability and signals an error if they don't match., Otherwise, the operation
is deferred by drag-along in QS and the top of VS adjusted so that it contains a
segment descriptor pointing to the entire deferred expression in QS. Because of
the stack discipline in the machine, the deferred code for both operands will
always be contiguous in QS. The link field of the QS entry for the operator (with
opcode OP) is a relative backwards pointer to the earliest deferred operand in
the deferred subexpression. The AUX field is the same as the AUX field of the
two operands (see Example 2),

b. Selection Operators

The selection operators are evaluated in the D-machine by beating, the process
of performing a selection operation on an array-valued expression by changing
the storage mapping functions of its constituent array operands. The mathematical
analysis of Chapter II legitimizes this approach, and guarantees that the trans-
formations used in beating produce the correct results. Before proceeding, let
us define what it means for an array-valued expression to be beatable.

An array-valued expression deferred in QS is beatable if any of the following
conditions apply:

(i) It is a single QS entry with opcode IFA or 1J.
(ii) It is a consecutive pair of QS entrieé; of the 'form
S scalar 0 0

IRD ptr 0 R.
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EXAMPLE 1 - SCALAR OPERATURy SCALAR OPERANDS

REGISTER DUMP

NEWIT = 0 IORG = C FREG = 00GGO F3ASE = 20200
REL ORG LEN O/E IS FN NwT QP
LS:
1 010 1 000 J10c o) ol L ol ool
-->
EFFECTIVE ADDR = 0210 IN M
TAG VALUE oP VALUE LINK  AUX
vSs: -+ QS:+ +
I oo | cos I =-->1
I ST { 256 |
I sT | 32 |
-=>|
EXAMPLE 1-1: BEFORE EXECUTING ADD AT M(210)
. REGISTER DUMP
- NEWIT =0 I0RG = 0O FREG = 00C00 FBASE = 0020C
REL ORG LEN D/E IS FN NwT QP
LS: === *
I ot 1 coo | 100FiO01OI11L OGO
{960 { co0 L 001 {1} 0l oOo O] 00l
-
EFFECTIVE ADDR = 0000 IN QS
TAG VALUE [e1 VALUE LINK  AUX
vSs: + QS: +
I oo cee I 00 | oP | ADD | |
| sT | 256 I =-=>1
I st | 32 |
|

THE ADD INSTRUCTICN AT M{210) HAS BEEN FETCHEL, DECGDED,

AND DEFERRED IN QS. SINCE BOTH UPERANDS ARE

SCALARS,

THE DEFERRED SEGMENT [S ACTIVATED IMMEDIATELY. (NOTE LS)

EXAMPLE 1-2: AFTER DECODING ADD; UPERATION UEFERRED I[N QS

EXAMPLE L - SCALAR UPERATOR, SCALAR OPERANDS

REGISTER DuUMP

NEWIT = 0 10RG = 0 FREG = 0000C FBASE = 002C0
REL ORG LEN O/E IS FN NaT QP
Ls: + . bomepmmm =t
foirtoooid1cotl ol clitriolool
1001 b ocO 1 0L L1 Q1o olool
-=> |
EFFECTIVE ADDR = 0001 I[N QS
TAG  VALUE op VALUE LINK  AUX
vs: Qs:
bee | aee | 00 | op | ADO l i
[ | 288 1 -=>1
-=>1

EXAMPLE 1-3: AFTER E-MACHINE EXECUTION OF ADD; QS SEGMENT EXHAUSTED

RFGISTER DUMP

NEWIT = 0 I0RG = 0 FREG = 00000 FBASE = 0020C

REL ORG LEN D/E IS FN NwT QP

LS: +
1ol 1000 {100 01o0]1L1o01col
-=> |
EFFECTIVE ADDR = 0211 IN M
TAG  VALUE op VALUE LINK  AUX
30 + Qs:
oo | .es I =-=>
{ ST | 288 1
-=>|

EXAMPLE 1-4: AFTER RETURN TC D-MACHINE. RESULT OF ADD IS ON VS



EXAMPLE 2 - SCALAR QOPERATURs ARRAY OPERANDS

- . ———— — ————— ——— -~ ——— -~ —

REGISTER DUMP
NEWIT = O IORG = O FREG = 00C0O FBASE = 00200

REL ORG LEN D/E IS FN NnT QP

[ R e B R S R it Stk St Tt 3

l oo tcoofcotlololliciool
--> |

EFFECTIVE ADDR = 0210 INM

TAG  VALUE op VALUE  LINK  AUX

VS ¢=——— R bt D Skttt St + R e e e ettt DL Dt bt DS 4
I oo | coe I 00 | IFA | aA | | 0111 | AA
| SGT | SCODE(SEG.A,1) i O1 | IFA | aB | ) o111 | B8
| SGT | SCODE{SEG.B8,1) | -=-> |

-->|

ARRAYS WITH DA®*S AT 1000 AND 1010 ARt GF RANK 3 (NOTE &S AuX FIELDS).
NEXT INSTRUCTION IS ADC AT M(210)

EXAMPLE 2-1: BEFORE EXECUTING ADD

- e -~ ———— — ——— —— ———————— ———— — — - —_—— -~ —— -

REGISTER LUMP
NEWIT = O IORG = O FREG = 00CO00 FBASE = 0020C

REL ORG LEN D/E IS FN NwT QP
LS: #-————pmmmec e e pmm—pm—m = ¢

| o1L 1000 J 1001 0| ¢ 110100l
-=> |

EFFECTIVE ADDR = 0211 IN M

TAG VALUE op VALUE LINK AUX
L e e e SN A - g e el Dbt Rt Lol g
| oo | cee | 00 | IFA | aA | | o111 | C_
| SGT | SCODE(SEG.Cy1) {f oL | 1FA | a8 J 1 o111 |
-->1 02 |1 oPp | ADD | 02 § 2111 | _C
-=> |

EXAMPLE 2-2: AFTER DEFERRING ADD
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(iii) It is a QS segment consisting of a scalar monadic operator operating

on a beatable sub-segment., That is, it is of form:

code for operand

o o o

OP optype 1 R

(iv) It is a QS segment consisting of a pair of beatable operands combined
by a dyadic scalar operator. One of these operands can optionally

be a scalar value. The form is:

code for right opnd

code for left opnd

o o o

LA R 4

OP optype k R

(v) It is a pair of beatable operands combined by GDF. The form is
similar to case (iv) above. |
(vi) It is a reduction of a beatable operand, in the form:

BRED 0 k 0

6ode -for reducee A

© o o

OP reduce-op A
SGV SEG.A
S -length

ITM
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(vii) Inadditionto(i) through (vi) above, a single QS entry with opcode IA
is beatable, although it does not enter into the recursive definition.
When a selection operation is interpreted by the D-machine, the array-valued
operand is first checked for conformability. If the operand is beatable, then it
is beaten, according to the transformations shown in Chapter I, Appendix A. In
this process, if a DA to be transformed has a reference count of 1, indicating that
it is a local tempofary result, then the DA can be modified directly. If the reference
count is greater than 1, then a copy must be made, and the copy is beaten. If the
result of a beating operation is a scalar value, then the segment is turned over to
the E-machine, which evaluates it and leaves the scalar result on the top of VS,
When the operand of a selection operation is not beatable, there are two
possible strategies to follow: In the case of the TRANS operation, there is no
choice: the operand must be evaluated by the E-machine and a temporary value
stored, which is then beaten as above. Otherwise, the selection operation can
be treated as a special case of subscripting, in which case an appropriate set of
E-machine instructions is dragged-along in QS. (See Section d. for an explanation
of subscripting.) The choice of strategies is a second-order design decision,
and need not be made at this time, since either approach is viable, Example 3
illustrates both beating of selection operators and drag-along of scalar operators.
The DM code shown for the statement is a straightforward translation of the
APL statement into Polish, Note that the vector 2, 2 is a constant and is
"compiled" into the function segment, This approach avoids having to keep array-
valued constants in the memory with other array quantities; to do so would require
having an entry in NT for each such constant, and would complicate the storage
management functions. In Examples 3-1 and 3-2, the state of the machine before

executing the sample code is shown; the values of the variables M and N are not
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EXAMPLE 3: DRAG-ALONG AND BEATING IN THE D-MACHINE

Consider the APL expression

R<(2,1)Q(GL1IM)+(2, 2)4N
At the time this is to be evaluated, pM«>2,2 andpN<«>3,4 . Assume that R
has no current value., The machine code for this statement is shown as follows,

starting at location 250 in memory.

Addr Op Operand Comments
250 LDNF N

252 LDCON 90 Refers to constant 2, 2with DA at 290

254 TAKE
255 LDNF

257 REV 0 (Recall 0-base in all machine code)

259 ADD

260 LDJ JCODE(2,1,1) This is the vector 2,1

262 TRANS

263 LDN R

265 ASGN Assign (and discard value)

266 coe

290 RC=1 LEN=4 DA header

291 VB=0 AB=94 DA for constant vector2 ,'? .
292 RANK=1 gtfaefaosrerzgzn A for description
293 R(1)=2 D(1)=1

294 RC=1 LEN=3 Header for value array

295 2 } Value

296 -2
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given, as they are irrelevant for this example. LS contains a descriptor for a
D-machine segment of length 100, which is the main segment of the function F, '
The effective address is the sum of the REL field of LS and FBASE, the beginning
of the value part of function F. VS contains a function mark fbr F which was
placed there when F was called.

In 3-3 and 3-4; the LDNF and LDCON instructions have been executed. Note
that each caused the deferral of an IFAﬂinstruction (fetch array element inthe E-machine)
in QS. Also, for each deferred instruction, a QS segment descriptor was pushed
to VS. The LDCON instruction allocated space and made a copy of the descriptor
array for the constant which was in the function segment; the new DA is named T1.
The VBASE for the constant is 200, the same as the FBASE of the function,

The TAKE operation (3-5, 6) is evaluated by the DM using beating. The
descriptor arréy T2 was created for the result, and was derived from the DA for
N by the transformations listed in Chapter III, Appendix A. It is easy to see that
this DA is in fact the correct one. Also note that T1 is no longer needed, and has
been erased. At this point, VS contains a segment descriptor which points to the
QS segment describing the result of the computation to data, which is the evaluation
of the subexpression (2, 2)44 .

Examples 3-7 through 3-9 show the next LDNF instruction and the evaluation
of the reversal operation by beating. The process in this case is similar to that
for the TAKE. The ADD operation is deferred in 3-10 because both of its operands
were array values. The LINK field of the ADD in QS is 2, referring to the operand
2 elements earlier in QS. The top of VS now contains a descriptor for the entire
subexpression in QS which has been evaluated at this point, The LDJ instruction

(3-11) is executed similarly to LDNF and LDCON in that it defers a value in QS.
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The TRANS instruction takes the transpose of the entire expression which
has been dragged along so far. In this case, since its operand is a sum, the
transpose is applied to both terms. Notice that although the deferred code in QS
has not been altered (3-12), the DA's which it references have been (3-13). The
LDN R instruction pushes a value with tag NPT to VS (3-14) as the next instruction
is an ASGN (3-15). This instruction notes that R was undefined (see NT, in
Example 3-1) and allocates space for its DA and its value array. The space is
allocated based on the knowledge of the size of the result deferred in QS. In
3-15, we see the deferral of the assignment. The POP instruction in QS disposes
of the value after it has been assigned (in deferring ASGNV, no POPS are used).
In 3-16, the state of memory shows the new DA for R; also note that the address
of the DA for R (@R) has been entered in NT by the ASGN evaluation,

c. Other Operators (Executed Directly)

The "other operators' include all those APL primitives which cannot be
deferred conveniently, or which are evaluated immediately in the D-machine.
BASE is in this class because it has a scalar result, while REP, GDU, GDD are
included because they require rather complex calculations involving their entire
operands simultaneously, which are impossible or difficult to do element-by-element,
URHO is easily done by the D-machine, and so is not deferred, as is UIOTA,
which produces a J-vector as result. The catenation operator, with operand K,
is a direction to catenate the top K elements of VS to form a vector. This is
done immediately (with the result being put in temporary space). The remainder
of the operators in this class are dealt with differently, depending on the values

of their operands.
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EXAMPLE 3 - DRAG-ALGNG AND BEATING

MEMORY DUMP

ADDR CONTENTS ADDR CUNTENTS NT: TAG CONTENTS
aM RC=1 LEN=CS aN RC=1 LEN=05 F FT ofF

+01 vB=VM AB=0C0 +Cl  VvB=VN A8=000 L] ot an

+02 RANK=2 +02 RANK=?2 N o1 N

403 RU1)=002 D(1)=02 403 R(1)=003 D(1)=04& R ut 0

+04 R{2)=002 D(2)=Cl +C4 RI12)=004 L(2)=01

EXAMPLE 3~-1: MEMORY BEFORE EXECUTING EXAMPLE CODE

REGISTER DuMP

NEWIT = 0 IORG = 1 HREG = 00C00 FBASE = 0200

REL ORG LEN D/E IS FN NaT P
[ e e e e e S Sy
| €50 1000 1 1CO b Gl Ooi1 11O ool
-=> 1

EFFECTIVE ADDR = 0250 IN M

TAG  VALUE op VALUE LINK  AUX
vS: + QS: . —— .
| FMT | *#FN MARK FOR F& | --> |
-=>1

EXAMPLE 3-23 REGISTERS BEFOUKE EXECUTING EXAMPLE CODE

REGISTER DUMP

NEWIT = O 10RG = 1 FREG = 00000 FBASE = 00200
REL ORG LEN D/E IS FN NwT P

LS: bbbt

1 056 1 COO | kuC I D1 01 L H01co
!

-—->

EFFECTIVE ADDR = 0254 in M

TAG  VALUE up VALUE LINK  AUX
vs: -+ QST e—— —
| FMT | #FN MARK FOR F®= | 00 | IFA | aN | 1 0011 | AA
| SGT | SCODE(SEG.A,1) | o1 | IFA | aTl ] | 0001 { BB
| SGT | SCOOE(SEG.B,1) b ==>
--).

LONF  PUSHED QS{0;) AND VS(13)
LOCON PUSHED QS(1:) AND VS(2:)

EXAMPLE 3-3: AFTER LONF AND LOCON

EXAMPLE 3 - DRAG-ALUNG AND BEATING

FEMORY DUNP

ADOR CONTENTS ADDR CCNTENTS ADDR CONTENTS

S —— +

aM RC=1 LEN=0Y aN RC=2 LEN=05 oll RC=1 LEN=04
+01  ve=VM AB=000 +01  vB=VN AB=000 +01 vB=200 AB=094
+02 RANK=2 +02 HANK=1 +02 RANK=1

+03 R{1)=C02 D(1)=02 403 R(1)=003 D(1)=04 403 R({1)=002 D(1)=01
+04 R(21=002 D(2)=01 +04 R(2)=004 Di2)=01

DA FOR N NOW HAS REFCO OF 2. T1 IS A CUPY OF THE DA FUR THE VECTOR 2,-2

EXAMPLE 3-4: MEMORY AFTER LOCGON

REGISTER DUMP

NEWIT = O 10RG = 1 FREG = 00000 FBASE = 00200
REL ORG LEN D/E IS FN NWT P
LS: —t———t Py ]
1 05¢ 1 0CO L 1cO L0l 011 JoOY oCi
>

EFFECTIVE ADDR = 0254 IN M

TAG  VALUE up VALUE LINK  AUX
VSie—- . + QS:e + B e St
| FMT | *FN MARK FUR F* | 00 | IFA | &T2 | | 0011 | AA
| SGV | SCODE(SEG.As1) I -->
-=>1
THE TAKE HAS ALTERED THE DA FOR N, CREATING A NEW COPY.
EXAMPLE 3-5: REGISTERS AFTER TAKE OPERATUR
MEMORY DUMP
ADDR CONTENTS ADDR CONTENTS ADDR CONTENTS
* ———
aM RC=1 LEN=05 anN RC=1 LEN=05 ar2 RC=1 LEN=0S5
+01  vi=VvM AB=000 +01 VB=VN AB=090 +01  VvB=VN AB=002
+02 RANK=2 +02 RANK=2 +02 RANK=2

+03  R{1)=002 0(1)=02 403 k{1}=003 D(1)=04 +03 R(1)=002 D(1)=04
+04 R(2)=002 D(2)=01 +04 R12)=004 D(2)=01 +04 R{2)=002 D(2)=01

THE NEW UA AT 3T2 CONTAINS THE STORAGE ACCESS FUNCTION FOR THE

TAKE OPERATIUN ON Ny WHICH WAS PRGDUCED BY BEATING. NOTE IN PARTICULAR
THAT THE VBASE OF T2 IS VN, WHICH POINTS TO THE VALUE ARRAY GF Ns» AND
THAY THE DIMENSION OF T2 IS 242 o+ AS SPECIFIED BY THE TAKE OPERATUR.
THE ABASE HAS CHANGED FROM O TG 2, TO ACCOUNT FUR THE -2 ELEMENT IN THE
PARAMETER (l.E. TAKE FRCM THE END). FINALLY, NOTE THAT THE VALUE UF DEL
IN T2 IS THE SAME AS THAT FOR N.

EXAMPLE 3-6: MEMORY AFTER TAKE OPERATOR
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EXAMPLE 3 - DRAG-ALONG AND BEATING

REGISTER DUMP
NEWIT = 0 1ORG = 1 FREG = 00CCC FBASE = 00200
REL ORG LEN O/E IS FN NwlT QP
LS: ¢-- +
| 056 1
|

e mm

000 L1001 0ot | olcol

-—>

EFFECTIVE ADDR = 0256 IN M

EXAMPLE 3 - DRAG-~ALONG AND BEATING

TAG VALUE [itd VALUE LINK  AUX
VSie-- WS+ + —t—————
| FMT | ®FN MARK FOR F* | 00 | IFA | a¥2 | | 0G11 | AA
| SGI | SCODE(SEG.A,1) I oL | IFA | am | | 00ll | B8
| SGT | SCODE(SEG.Bs1) | -=>1
-=>|
EXAMPLE 3-7: AFTER LDNF M
REGISTER DUMP
NEWIT = 0 T0RG = 1 FREG = 06COC FBASE = 002C0

REL URG LEN D/E IS FN NaT QP
LS: $=ceemt- b_———t - +

1 058 1 600 | 100401 011101 o00]|
|

-=>
EFFECTIVE ADDR = €258 IN M
TAG  VALUE oe VALUE LINK  AuX
VSt e mm e mcn e e ccemccnn = (SI4 —-——— Lttt 3
| £MT | ®FN MARK FOR F* | 00 | IFA | aT2 | | 0oLl | AA
| SGT | SCUDE(SEG.A,1) | o1 { tFA | &T3 i | 0011 | 88
| SGT | SCCDE(SEG.8,1) | --> |
-=>1

EXAMPLE 3-8B: AFTER REV

MEMORY DUMP

ADDR CONTENTS ADDR CCNTENTS ADDR CCNTENTS
am RC=1 LEN=05 N RC=1 LEN=0S ar2 RC=1 LEN=05
+01 Ve=VM AB=009 +01 VvB=VN AB=000 +01  vB=VN AB=002
+02 RANK=2 +C2 RANK=2 +«02 RANK=2
403 R(1)=002 0(1)=02 +03 R{1)=003 0O(1)=04 +03 R(1)=002 D(L)=04
+04 R(2)=002 D(2)=01 +04 R(2)=004 D(2)=0L +04 R(2)=002 D(2)=01
&T13 RC=1 LEN=05
+01 VB=VM A8=002
+02 RANK=2
+03 R(11=002 D(1)=-2
+C4e R{2)=0C2 0(2)=01

NOTICE THE NEw DA, 413 , WHICH CUNTAINS THt ACCESS FUNCTION FOR THE
REVERSAL ON M , THE PARTS WHICH nAVE CHANGED FRUM THE DA AT @M ARE
ABASEs WHICH IS NOw 2¢ AND DEL(L)y WHICH IS -2 INSTEAD CF 2. THESE
CHANGES ACCOUNY FOR THE REVERSAL OF M , ANALUGOUSLY TU THE WAY THE DA
AT aT2 ACCOUNTS FOR THE TAKE OUPERATIUN ON N .

EXAMPLE 3-9: AFTER REV

REGISTER DUMP
NEWIT = 0 IORG = 1

FREG = 00CCC

REL  URG LEN D/E IS FN NaT QP
LS: t--mmetocem—t~ Lt ST . -+
| 059 L o00 L 1ccl oV o1 lodtoci
|

-->

EFFECTIVE ADODR = 0259 InM

FBASE = 00200

TAG  VALUE oe VALUE LINK  AUX
vs: == -==+  QS: - -
| FMT | ®FN MARK FOk F* | 00 | IFA | T2 | | o011 | C_
| SGT | SCUDE(SEG.C,1) | o1 ) IFA | a13 | 1 0011
~=>1 02 : 0P | ADD I 02 | oolL | _C
-=>

EXAMPLE 3-10: AFTER ADL



EXAMPLE 3 - DRAG-ALONG ANC BEATING

REGISTER DUMP

NEWIT = O 10RG = 1 FREG = 00C00

EXAMPLE 3 - DRAG-ALCNG AND BEATING

REL ORG LEN O/E IS FN Nl 4P

LS:

1 o611 000 ) 1cCl Ol OO

-

EFFECTIVE ADDR = 0261 IN M

————
[l

(1)
oo

- L0T -

TAG VALUE

23] + ¢+ QS:ze

| FNT | #FN MARK FOR F* | 00 |

{ SGT | SCODE(SEG.Cy1} | 01 | IFA

) SGV | SCUDE(SEG.Ds 1) I o2 | op
->| 23 | W

--> |

EXAMPLE 3-113 AFTER LDJ
REGISTER DUMP
NEWIT = O 10RG = 1 FREG = 00600

REL ORG LEN DO/E IS FN NV

LS:

MEMORY DUMP

ADOR CONTENTS ADDR CONTENTS ADDR CCNTENTS

a RC=1 LEN=05 N RC=1 LEN=05 al2 RC=1 LEN=05
+01 vB=VvM AB=000 +01 VvB=VN AB=000 +01  vB=VN AB=002
+02 RANK=2 +02 RANK=2 +02 RANK=2

+03 R(1)=002 O(1)=02 +03 R(1)=003 D(1)=04 +03 R(1)s002 0(1)=01
+04 R{2)=002 D(2)=01 +04 R(2)=004 D(2)=01 404 R{2)=002 DL2)=04

ar3 RC=1 LEN=05
+01  vB=vM AB=002
*02 RANK=2

+03 R(1)=002 DI1)=0]}
+04 R(2)=002 DI2)=-2

THE EFFECT OF THE TRANSPUSE WAS TO ALTER THt DA®S AT aT2 AND aT3,
THE CHANGE IN BOTH CASES WAS TO INTERCHANGE R(L) wWITH R{2), ANV

O(1) WiITH D(2). 1T SHOULD BE INTUITIVELY CLEAR THAT THESE DA*S WiLL
NOW ACCESS THE TRANSPOSES OF THEIR PREVIOUS VALUES.

EXAMPLE 3-133 MEMORY AFTER TRANS (NOTE ALTERED DA*S)

-=>
EFFECTIVE ADDR = 0262 IN M
TAG  VALUE

J 062 1000 b t0Cl OO l11])oOI
I

vSse QS:

| FAT | OFN MARK FOR F* | 00 | IFA
| SGT | SCODE(SEG.Cy1) | 01 | IFA
-=->1 02 | op

-=> |

EXAMPLE 3-123 REGISTERS AFTER TRANS

REGISTER DUMP
NEWIT = O 10RG = 1 FREG = 00000 FBASE = 00200

REL ORG LEN D/E IS FN NwT QP
LSs » +
| Co4 1 000 1 1CC 1O ) Cl1 1O OO0
|

-->
EFFECTIVE AUDR = 0264 IN M
TAG VALUE op VALVE LINK  AUX
VSie ¢ QS:+
| FMT | ®FN MARK FOR F® | 00 | IFA | aT2 ] | 0011 | C_
| SGT ) SCODE(SEG.Cs1) I 01 1 LFA | aT3 | | o011 |
I NPT | R I 02 | uP | ADOD | 02 | o011 | _C

-=>1 -=> 1

EXAMPLE 3=~14: AFTER LON R



- 80T ~

EXAMPLE 3 - DRAG-ALCNG AND BEAY[NG_

RFGISTER DUMP

NEWIT = 0O IORG = ] FREG = 00000 FBASE = 00200
REL ORG LEN D/E IS FN NwT QP
[ Ty S e Tt Tt Sl Stk st Dl 3
| 665 | 00 L 1CO { O 1 2 )1 10 11o00I
- |
EFFECTIVE ADDR = 0265 IN M
TAG  VALUE aP VALUE LINK AUX
VSi+ L Dl -+ QS:+ + it DDl SOt P
| FMT | *FN MARK FOR F* | 0C | IFA | aT2 I | ooll |
| SGT | SCODE(SEG.Esl) | O1L | IFA | a¥3 | I o011 |
-=>| 02 | oP | ADOD | 02 | o011l |
03 | IFA | aRr | I oolil |
04 | OP | ASGN | 02 ] o011 |
29 | POP | O | | ooil |
-=> |
EXAMPLE 3-15: REGISTERS AFTER ASGN
MEMORY DUMP
ADDR CONTENTS ADDR CUNTENTS NT: TAG CUNTENTS
——— e —— e ———————— ———e cectecmcfrcccccccccccccn—-
aM RC=1 LEN=05 arz2  Rre=1 LEN=05 £ FI oF
+01  vB=VM AB=000 +01 VB=VN A8=002 M 0T aM
+02 RANK=2 +02 RANK=2 N DT aN
+03 R(1)=002 D(1)=02 403 R(1)=002 D(1LI=01 R DT aR
+04 R(2)=002 D(2)=01 +04 R(2)=002 D(2)=04
&N RC=1 LEN=C5 &T3  RC=1 LEN=0S
+01  VB=VN A8=000 +01 VvB=vM AB=002
+02 RANK=2 +02 RANK=2
+03 R(1)=003 D(1)=04 +03 R({1)=002 D(1)=01
+04 R(2)=004 D(2)=01 +04 R(2)=002 D(2)==2
aR RC=1 LEN=05
+01 VB8=VR A8=000
+02 RANK=2
+03 R{1)=002 D(1)=02
#04 R{2)=002 D(2)=01

EXAMPLE 3-16:

MEMORY AFTER ASGN



RAV and DRHO are difficult to defer in general because of the complex
calculations nécessa.ry to access an arbitrary element of the result. However,
there are special cases which are easy to defer, as follows:

(i) The right operand is a scalar or single-element quantity. The RAV
of such a value is a J-vector if it is an integer, or at worst is an
explicit one-element vector, Similarly, the DRHO of such a value
is deferred in QS as follows:

S value 0 0

IRD T1 0 R
where @T1 is a DA for the result and R is the encoding of the rank,
The IRD instruction is essentially a note to the D~machine that the
result has dimension described in T1,

(ii) The right operand B is an expression deferred in the form of (i) above.
In this case, all that has to be done is change the descriptor array
@i,

(iii) The right operand is of the form
IFA @W 0 R
and @W points to 2 DA which has not been altered by any select
operations which upsét the ordering of the value part, That is, if
W is the array specified by @W and D is the vector containing the
value part, then iyl ;/L1«sD[ (pc)1L] for all appropriate values of L.
In this case, RAV is evaluated by providing a new DA with rank 1 and
dimension x /pi/ « DRHO can be deferred if */pA , where A is the
left operand of the ]f)RHO, is less than or equal to x/pC also by
providing a new DA with dimension 4.
If none of the above apply,q then RAV and DRHO are evaluated immediately by

creating temporary values in M,
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d. Other Operators and Compound Operators (Deferrable)

The D-machine evaluates this subclass of operator instructions by deferring
E-machine code in QS. The expansions are detailed in Appendix C and should be
easy to understand with a knowledge of the way the E-machine works., We will
here discuss only the SUBS instruction and the compound operators, as their
behavior is somewhat more complex.

The SUBS K operation corresponds to the symbol [ in an APL program,
When decoded, it expects the top of VS to contain a QS segment descriptor for a
rank-K quantity and the next K entries on VS to be either scalars or QS segment
descriptors for the subscript expressions. An empty subscript position is created
by the LDSEG instruction with its operand a segment descriptor SCODE(0, 0, 0) of
length 0,

There are two important cases to consider:

(i) If the subscriptee is beatable, then the subscript expressions are
examined in turn, starting from the rightmost (deepest in VS) to
find scalars or J-vectors. If found for, say, the It'l—1 coordinate,
the equivalent of INX I with that operand is performed on the sub-
scriptee by beating, causing new DA's to be created for it. The VS
entry for this subscript is then deleted if it was a scalar. If it was
a J-vector, then the VS entry is changed to the empty segment and
the QS entry is deleted by moving all of QS down 1 to fill in the space
(with appropriate adjustments to descriptors). If, after all subscripts
have been examined it is found that the remaining stacked subscripts
are either empty or non-existent, then the result already exists, in
standard form, in QS. In this case, the remaining empty segment

descriptors are removed from VS and the result is the QS descriptor
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at the top of VS, Otherwise, the remaining subscripts are treated
as in the second case, described in the next paragraph.

(ii) If there are explicit non-scalar or non-J-vector subscript expressions
and/or the subscriptee is not beatable, then the subscripts must be
dragged along in QS., This is done by creating temporary index ac-
cumulators (opcode XT) in QS and generating E-machine code to
activate the necessary subscript evaluations at the right times. If
the subscriptee is a reduction, QS is transformed according to the
transformation (OP/A) [# ] —> OP/A[# ;] and evaluation continues
as above, The details of the subscript expansion are shown in
Appendix C. Example 4 illustrates the process which has just been
described.

In evaluating a GDF, the machine first examines the operands. If they contain
deferred operators, then they are evaluated to temporary space first. This is
done to avoid unnecessary recalculation of subexpressions necessary to compute
a GDF. It also guarantees the possibility of applying SF transforms to GDF ex-
pressions by beating., Then all that is necessary is to alter the access masks in
the AUX fields of the deferred left operand in QS to provide the proper access
method for the E-machine. This is illustrated in Example 5 below, If the GDF
reduces to a simple case, e.g., if one of the operands is a scalar, then the ex-
pression is treated as a normal scalar operator expression (see part a above).

Efficient evaluation of reductions along coordinate K of the reducee R (in the
E-machine) depend on transformation TR11 (see Chapter II) which allows permu-
tation of the reduction coordinate by transposing the reducee. In evaluating a

REDUCE along coordinate K the reducee is first checked to see if it fits into one
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of the special cases of reduction:

(i) Empty reduction coordinate., The result is then an array with value
((Kz1ppR)/pR)oIDENT where R is. the reducee and IDENT is the
identity element for the reduction operator.

(ii) Reduction coordinate of length 1. The result is then p[[X] QRG]
If reducee is a scalar, the result is 7.
(iii) Reducee is a vector. In this case, the reduction is activated im-
mediately in the E-machine, since the result is a scalar.
If none of the special cases is satisfied, the reduction is deferred by first doing
the transpose of TR11 if necessary, and generating the deferred code in QS as

shown in Appendix C.
EXAMPLE 4: SUBSCRIPTING IN D-MACHINE

Consider the APL expression A[ 14;;2;V] where A is a rank-4 array with
pA<>5,4,6,3 and V<—»3,2,1,2 , with the index origin ITORG <> 1. The D-machine

for evaluating this expression is

250 LDNF v Vector V

252  LDS 2 Scalar 2

254 LDSEG SCODE(0,0,0) Empty subscript

256 LDS 4 Scalar 4

258 UIOTA Gives 14

259 LDNF A Array A

261 SU BS 4 Do the subscript, expected operand rank is 4
263 er "

The following memory and register dumps show the steps the D-machine goes through

to evaluate this expression.
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EXAMPLE 4 - SUBSCRIPTING IN D-MACHINE

MEMORY DUMP

-

ADDR CONTENTS ADDR CCNTENTS NT: TAG CUNTENTS

aA RC=1 LEN=0T av RC=1 LEN=04 A [} oA
+01  v8=Vl AB=0C0 +Cl  vB=vy AB=000 v orv av
+02 RANK=4 +02 RANK=]

+03 R(1)=005 O{1)=72 +23
+04 R{2)=004 D(2)=18
+05 R(3)=006 D{31=03
+06 RU4)=003 D(4)=014

R{1)=004 D{1)=01

EXAMPLE 4-1: MEMORY BEFORE EXECUTING EXAMPLE CODE

REGISTER DUMP

NEWIT = O 10RG = 1 FREG = 00COC FBASE = 0020C

REL ORG LEN D/E LS FN NwT P

LS: ¢ + + +
| 061 1 coof10c i ol ol iciocl
|

-->
EFFECTIVE ADDR = Q261 INM
TAG VALUE ol 4 VALUE LINK  AUX
VS~ + —— + QS:e - -+
[T | oo | 00 | LFA | av | { o001
| SGT | SCODE(SEG.A,1} I 01 | 14 | JCODE(4sle0) | | 0001
I sT | 2 I 02 | IFA | 24 | i
| SGT | SCODE(SEG.NILsO) | -->
| SGT | SCUDELSEG.BW1) |
| SGT | SCODE(SEG.Csl) |
-=>1

vS CONTENTS ARE THE SUBSCRIPTS AND SUBSCRIPTEE. NUTE THE ACCESS MASKS

IN THE AUX FIELD OF Q5. THEY INDICATE THAT
VECTURSy AND A IS A RANK-4& ARRAY.

EXAMPLE 4-2: AFTER ALL BUT THE SUBS OPLRATUR

V  AND THE J-VECTUR ARE

EXAMPLE 4 - SUBSCRIPTING IN C-MACHINE

REGISTER DUMP

NEWIT = O T10RG = 1 FREG = 00000 FBASE = 00200

REL ORG LEN O/E IS FN NwT QP

+ . *
1 063 1 000 0 10C 40 011401 OC
|

EFFECTIVE ADDR = 0263 INM

TAG  VALUE P VALUE LINK  AUX
vsie ¢ Qs: + *
ee | .on | 00 | JMP | 0 | o6 |
| SGT | SCOLEISEG.Dy1) I oLl 1FA | av | { oool |
--> C2 1 IFA | aTl | | o111 |
03 | XT | XCODEIOe3,41) 10314
04 | XT | XCODE(Os341) [} [} |
05 | XT | XCODE(D,2,1) ] |
06 1 IxL | 0 | | 0100 |
07 1 xS | 0 | 04 | |
08 | Ixt | © | | o010 |
09 | xs | o 105 | }
10 | ISC | SCUDE(SEG.Esl) | t ooo1 |
111 xs o 1 06 | )
12 | SG | SCODE(SEG.Fel) | 09 | |
13 ) IRD | T2 | 1 o1t |
- |
VS AND Q5 HAVE BEEN TRANSFURMED BY THE SUBS OPERATION, THE SCALAR

SUBSCRIPT REDUCED THE RANK OF A 8Y 1, AND THE INTERVAL VECTOR
SHORTENED THE FIRST COQRCINATE (SEE VDA AT aTll. THE REST OF THE
CCDE GENERATED IN QS IS FOR CALCULATING EXPLICIT SUSSCRIPT VALUES,
WHICH ARE KEPT IN THE X1 ENVRIES. THESE ENTRIES CONSTITUTE A
PSEUDO-ITERATION STACK. (SEE SECTIUN E)

EXAMPLE 4-3: REGISTEKS AFTER SuUBS

"mo
nmi

MEMDRY DuMP

ADDR CONTENTS ADDR CONTENTS ADDR CCNTENTS

——— et +
3A RC=1 LEN=Q7 av RC=2 LEN=04 T2 RC=1 LEN=06
401 ve=vl AB=0(0 +01  VB=vVv AB=00C +01l  vB= A8=C00
+02 RANK =4 402 RANK=1 +02 RANK=3

+03 R{1)=005 O11)=72 403 RU1)=004 DI(1)=01 403 R{1)=004 Dtl)=sl6
+04 R(2)=004 O(2)=18 +04 R{2)=004 DI2)=04
+05 R(3)=006 D(31=013 ol ] RC=1 LEN=06 +05 RI(3)=004 D{3)=01
+06 R{4)=003 D(4)=01 +01 vB=VA AB=003

+02 RANK=3

403 RU1}=004 DU1)=T72
+04 RE21=004 D(2)=16
+C5 R{3)=003 0(3)=01

EXAMPLE 4-4: MEMURY AFTER 5SuBS



EXAMPLE 5: GDF IN D-MACHINE

In the example expression, Mec.xN, bothM and N are matrices with pM—4,3

and NV<>p3,2, D-machine code for this expression is

250  LDNF N
252  LDNF M

254  GDF MUL Do GDF
256 ...

Examples 5-1,2 show the machine state before evaluating this code. In 5-3, the
GDF operation has been deferred in QS. Notice that the access mask of M
in the AUX field of QS has been changed. The IRD entry, whose operand DA gives
the dimension of the result, contains 1111 in its AUX field, which instructs the
EMto use a 4-level iteration stack to evaluate the expression. The 1100 AUX for
M says that M-indices come from the two highest iterations, while the 0011 AUX
for N indicates that N is to use the two lowest,

An equivalent formulation of the contents of QS at this point is that it represents
the GDF in the form:

for I := 0 step 1 until 3 do

for J := 0 step 1 until 2 do
for K = 0 step 1 until 2 do
for L = 0 step 1 until 1 do

RESULT [L;J;K;L] = M[I;9] xN(K;L];
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EXAMPLE 5 — GOF IN D-MACHINE

REGISTER DUMP

NEWIT = 0 10RG = L FREG = 00000 FBASE = 00200

REL ORG LEN D/E IS FN NwY QP

LS: o +
| o5 y 000  1cC 101 01 o ool
- |

EFFECTIVE ADDR = 0254 INM

TAG  VALUE oP VALUE LINK  AUX
vS: * + QSsze + »
I oo | oee { 00 | IFA | aN ] | 0011 | AA
| SGV ) SCODE(SEG.A¢l) ) OL | IFA | oM | | o011 | BB
| SGT | SCODE{(SEG.8,1) P -=>1
-=>

EXAMPLE 5-13 REGISTERS BEFORE GOF

MEMORY DUMP
ADDR CONTENTS

ADDR CONTENTS

L L RC=1 LEN=05 N RC=1 LEN=05
+01 VvesvM AB=000 401 VB=VN AB=000
+02 RANK=2 +02 RANK=2

+03 R(1)=004 D(1)=03 03 R(11=003 DE1)=02
+04 R{2)=003 D(2)=01 +C6 R{2)=002 D(2)=01

EXAMPLE 5-23 MEMORY BEFORE GOF

EXANPLE 5 - GDF IN D-MACHINE

REGISTER OUMP

NEWIT = 0 IURG = 1 FREG = 00000 FBASE = 00200
REL ORG LEN D/€ IS FN NWT QP

Ls: . . . -

|1 056 J 000 1 1COJ 01 OL 11O OO0I
-—) l

EFFECTIVE ADDR = 0256 IN M

TAG VALUE oe VALUE LINK  AUX

vs: 4+ QS:e + +

oo | veo I 00 | IFA | &N ] 1 ooll | ¢

| SGT | SCODE(SEG.Cy1) | 0l | IFA | am | 1 1100 |
-> 02 | GOP | MuL | f 11|

03 | IRD | o7l | [0 93 ¥ U 4
-=> |
EXAMPLE 5-3: AFTER GOF - NUTE CHANGED Aux FILELDS IN QS
MEMORY DUMP
ADDR CONTENTS ADDR CUNTENTS ADDR CONTENTS
an RC=2 LEN=05 N RC=2 LEN=0S vl RC=1 LEN=OT
+01 vBavM AB8=000 +0l vB=VN AB=000 +01 ve= AB=000
+02 RANK=2 +02 RANK=2 02 RANK =4
403 R(1)=004 D(1)=03 403 R{1)=003 0{1)=02 403 R{1)=004 D(1)=i8
+04 R(2)=003 D(2)=01 +04 R(2)=002 D{2)=01 +04 R(2)=003 D(2)=06
+05 R(3)=003 0{3)=02
406 R(4)=002 O(4)=01

8Tl  WAS CREATED SIMPLY TO RECCRD VHE RANK AND DIMENSION VECTOR OF

THE RESULT OF OOING THE OQUTER PRODUCT.

THE OPCODE

IR CiN QSU33 D)

SIGNIFIES THAT ITS QPERAND DA IS DESCRIPTIVE, AND IS NOT TO BE

EXECUTED.

IN THE E-MACHINE, IRD

EXAMPLE 5-4: MEMORY AFTER GDF

1S IGNORED.



E. The E-Machine

The E-machine is a simple stack-oriented computer which evaluates array-
valued expressions by iterating element-by-element over their index sets. The
EM takes its instructions from the instruction buffer (QS), where they were put
by the D-machine. Other machine registers are used in the same way as in the DM,

The central task of the EM is to access individual array elements in computing
array-valued expressions, As most of the complexity of the E-machine is related
to this task, we first discuss the accessing mechanisms in the EM. Given this,
it is a simple matter to explain the instruction set of the machine,
1, Array Accessing

a. Indexing Environment

Array reference instructions are entered in QS in the form

IFA @VAR 0 MASK

where @VAR is the address of a DA in M, and MASK is a logical access mask.
When such an instruction is first entered in QS by the D-machine, it is done without
regard to its context in the input expression. The E-machine must, in order to

evaluate it, determine its context, which takes the form of an indexing environment

for an array reference. The indexing environment of an instruction in QS is
determined by how the segment containing the instruction was activated, which in
turn relates to the form of the original expression input to the D-machine,

(i) If the QP field of the top of LS is zero, then the environment is simple,
and array references within this segment are based directly on the
iteration stack. A simple environment arises in variables not affected by
explicit subscripting or which are not operands in expressions which cause
expansions to be made by the DM. For example, in the statement A<B+C,

all variables have simple environment.
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(ii) If the QP field of LS is non-zero, then the environment is complex, and
array references in this segment are controlled by a pseudo-iteration
stack. In the statement A<«B+C[V;W], A and B will have simple environ-
ments, but C will be complex as the reference to C is embedded in a
segment resulting from the expansion of the subscript operator. Note
that this concept is recursive. For example, we can also say that the
environment of the subexpression CLV;W] is simple., This recursiveness
allows arbitrary levels of subscript nesting to be handled by the drag-
along scheme of the D-machine.

The segment containing the IFA @C instruction is activated in the

EM by an SG instruction referring to a sequence of entries in QS of the
form:

XT XCODE(a, ml, cl)

XT XCODE(b, m2, c2).
Here, a and b are indices for C calculated from the subscripts V and W
by the expanded subscript code in QS. These quantities are, in turn,
computed from the current values in IS. ml and}mz are the maximum
permissible values of a and b derived from pC, and cl and c2 are change
flags. Thus, these XT entries correspond to the CNT, MAX, and CH
fields of the iteration stack, a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>