
The C-- Language Reference Manual

Simon Peyton Jones Thomas Nordin Dino Oliva Pablo Nogueira Iglesias

April 23, 1998

Contents

1 Introduction 3

2 Syntax definition 3

2.1 General . 3

2.2 Comments . 6

2.3 Names . 6

2.4 Name scope . 6

2.5 The import and export declarations . 6

2.6 Constants . 7

2.6.1 Integer and floating point numbers . 7

2.6.2 Characters and strings . 7

3 Fundamental concepts in C-- 7

3.1 Memory . 7

3.2 Data segment . 8

3.3 Code segment . 8

3.4 Types . 8

3.5 Local variables (or registers) . 8

3.6 Addresses . 9

3.7 Names . 9

3.8 Foreign language interface . 9

4 Data layout directives 9

4.1 Labels . 10

4.2 Initialisation . 10

4.3 Alignment . 12

1

5 Procedures 12

5.1 Procedure definition . 12

5.2 Statements . 13

5.2.1 skip; . 13

5.2.2 Declaration . 13

5.2.3 Assignment . 13

5.2.4 Memory write . 13

5.2.5 if and relational operations . 14

5.2.6 switch . 15

5.2.7 Local control labels and goto . 16

5.2.8 Procedure call . 17

5.2.9 jump . 18

5.2.10 return . 18

5.3 Foreign language interface . 19

6 Expressions 20

6.1 Introduction . 20

6.2 Memory read . 20

6.3 Operators, precedence, and evaluation order . 21

6.4 Primitives . 22

6.5 Exception handling . 23

6.6 Casting . 24

6.6.1 wordn . 24

6.6.2 floatn . 24

6.7 word operators and primitives . 24

6.7.1 + and - . 25

6.7.2 * . 25

6.7.3 / . 25

6.7.4 % . 26

6.7.5 neg and abs . 26

6.7.6 sign . 27

6.7.7 &, |, and ˆ . 27

6.7.8 ˜ . 27

6.7.9 << and >> . 28

6.8 float operators and primitives . 28

6.8.1 +f, -f, and *f . 29

2

6.8.2 /f . 29

6.8.3 signf . 29

6.8.4 negf and absf . 30

6.8.5 exponentf . 30

6.8.6 fractionf . 30

6.8.7 scalef . 31

6.8.8 succf and predf . 31

6.8.9 ulpf . 31

6.8.10 truncf . 31

6.8.11 roundf . 32

6.8.12 intpartf and fractpartf . 32

7 Further Work 33

1 Introduction

C-- is a portable assembly language designed to be a good backend for high level languages (par-

ticularly for those that make use of garbage-collection) and to run fast on a number of todays major

computer architectures. It is also designed to have as few dependencies as possible on the under-

lying hardware, but speed and ease of use has sometimes taken precedence over orthogonality and

minimality. C-- should be rich enough to be a viable backend for most mainstream and research

compilers.

This paper should be sufficiently self-supporting so that anyone who knows an imperative language

and is acquainted with computers should be able to write her/his own C-- programs after reading this

document.

2 Syntax definition

The syntax of C-- is given in Figures 1 and 2.

2.1 General

A C-- program file is written in eight bit ASCII characters. It consists in a sequence of data layout

directives (Section 4), and/or procedure definitions (Section 5), and/or import declarations, and/or

export declarations (Section 2.5), interleaved in any order.

A C-- compilation unit is a C-- program file that can be successfully compiled and that is suitable

for linking.

C-- does not support input/output. Nevertheless, it can be accomplished using a foreign language

call (Section 3.8).

3

Program program ! pal [program]

Pal pal ! data

j [conv] Name(arg
1

, : : : arg
n

) [data] block n � 0

j importName

1

, : : : Name

n

; n � 1

j exportName

1

, : : : Name

n

; n � 1

Data data ! data {datum
1

: : : datum

n

} n � 1

Datum datum ! Name :

j type[[sconst]][{expr
1

, : : : expr
n

}] ; n � 1

j type[]{expr
1

, : : : expr
n

} ; n � 1

j word1[]AsciiString ; Abbreviation

j word2[]UnicodeString ; Abbreviation

j alignn ; Alignment directive

Simple Constants sconst ! Num Integer constant

j ’char’ Ascii char: constant

j unicode(’char’) Unicode char: constant

Constants const ! sconst Simple constants

j FNum Float number constant

j Name Symbolic constant

j AsciiString String constant

j UnicodeString Unicode string constant

Strings AsciiString ! "char
1

: : : char

n

" n � 0

UnicodeString ! unicode("char
1

: : : char

n

") n � 0

Convention conv ! foreign convkind Convention declaration

Conventions convkind ! C Calling Conventions

j Pascal

j : : :

F ormal Arguments arg ! type Name

Type type ! wordn j floatm n 2 f1; 2; 4; 8g; m 2 f4; 8g

Block block ! {stm
1

: : : stm

n

} n � 0

Figure 1: C-- syntax

4

Statements stm ! skip; Null statement

j type Name

1

, : : : Name

n

; V ar: decl:; n � 1

j Name = expr ; Assignment

j type[{alignn}][expr] = expr ; Memory write; align: n

j if expr rel expr block [else block]

j switch[[sconst
1

..sconst
n

]] expr {swt
1

: : : swt

n

} n � 1

j block Scoping

j Name: Local control label

j gotoName ; Goto local label

j jump expr(expr
1

, : : : expr
n

) ; n � 0; Jump to expr

j [conv] [Name

1

, : : : Name

m

=] expr(expr
1

, : : : expr
n

) ; n; m � 0

j [conv] return(expr
1

, : : : expr
n

); n � 0

Expressions expr ! const

j Name V ariable or label

j type [{alignn}][expr] Memory read; align: n

j (expr)

j expr op expr

j prim(expr
1

, : : :,expr
n

) n � 1

Operators op ! +flag j -flag j *flag j /flag j %flag Arithmetic

j & j | j ˆ j << j >>flag j ˜ Bitwise

Primitives prim ! negflag j absflag j signflag

j exponentflag j fractionflag j scaleflag

j succflag j predflag j ulpflag

j truncflag j roundflag

j intpartflag j fractpartflag

j type flag Type Casts

F lags flag ! No F lag

j o UnOrdered

j u j t j ut Unsigned and Trapping

j f j fz j fn j fp F loating and Rounding

j ft j ftz j ftn j ftp F loating and Trapping

Relations rel ! ==flag j !=flag j >flag j <flag j >=flag j <=flag

Switch branch swt ! sconst

1

, : : : sconst
n

: block n � 1

j default : block

Figure 2: Statements in C--

5

2.2 Comments

Comments start with /* and end with */. They cannot be nested.

2.3 Names

Names are made up of letters, digits, underscore and dots. A name cannot begin with a number

character or with a dot followed by a number character. Upper and lower case are distinct. Imported

names should also follow these restrictions.

Names are identifiers for registers or memory addresses (Section 3.7).

The following are examples of legal C-- names:

x

foo

_912

aname12

_foo.name_abit_12.long

Sys.Indicators

These are two illegal C-- names:

.9Aname

3illegal

2.4 Name scope

Procedure and label names are always global inside a C-- compilation unit (or program). Local vari-

able names and local control labels are only in scope of the procedure body where they are declared.

There is no nested scoping of names inside a procedure. Procedure and label names may be used

before they are declared.

2.5 The import and export declarations

Names that are to be used outside of the C-- program must be exported with the export declaration.

Likewise, names that the C-- program uses and does not declare must be imported with the import

declaration. Only procedure and (pointer) label names may be exported.

Imported names should follow the syntatic restriction mentioned in Section 2.3.

An example where a few C external names are imported and a few C-- names are exported:

import printf, sqrt; /* C procedures used in this C-- program */

export foo, bar; /* To be used outside this C-- program */

Names that are explicitly exported and imported are guaranteed to be unchanged by the compiler. All

other names might be renamed.

An import or an export declaration may appear anywhere in the program where a data layout

directive or a procedure definition does.

6

2.6 Constants

Constants can be (signed) integers, (signed) floating point numbers, characters, strings and names.

C-- follows C’s syntax for denoting integer, floating point, character, and string constants.

2.6.1 Integer and floating point numbers

Integer constants have of type word. Floating point constants have type float. Their size is

architecture-dependent.

2.6.2 Characters and strings

Character and string constants are treated as integers and as pointer labels respectively. Character

constants are ASCII characters surrounded by single quotes. String constants are a sequence of ASCII

characters surrounded by double quotes.

A character constant is treated as an integer whose value is the character’s 8-bit ASCII code. There-

fore, character constants have type word1. C-- uses C’s escape sequences to denote special charac-

ters, such as \n for the new line and \t for the tabulator.

For example, character constant ’H’ is a word1 with value 72.

String constants are like labels that point to the first word1 of an array of word1s stored in static

memory. Therefore, they have type wordn where n is the particular architecture’s natural pointer

size. String constants are not automatically null-terminated.

For example, the string "Hello World" is viewed as a label that points to the first byte of the array

of bytes with values 72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, stored in static memory.

It is possible to have UTF-8 integers for single characters and for string characters.1

The syntax to specify an UTF-8 constant is:

unicode(constant)

where constant is a character constant or a string constant. The type of UTF-8 characters is word2,

for it requires two bytes—two ASCII characters—to code a Unicode character. UTF-8 strings are

pointers to the first word2 of an array of word2s stored in static memory, and therefore, they have

type wordn, where n is the architecture’s natural pointer size.

3 Fundamental concepts in C--

3.1 Memory

Memory is an array of bytes from which different sized types (Section 3.4) can be read and written.

The size of the addressable memory is implementation dependent (Section 3.6). All addresses and

1UTF-8 is an encoding of Unicode characters into 8-bit ASCII characters that does not use any of the ASCII

control characters to perform the coding. Unicode is an abbreviation for Universal Multiple-Octet Coded Charac-

ter Set (UCS), and it is defined in ISO/IEC 10646. It is an international standard for encoding computer char-

acter sets that differs from historical ASCII. UTF-8 stands for Universal Transformation Format, 8-Bit form. See

http://www.unicode.org/unicode/standard/utf8.html for more information.

7

offsets are specified in bytes. No guarantee about endianess is given, i.e. a portable program should

either not depend on a specific endianess or find it out.

3.2 Data segment

The data segment is the part of memory where the static, initialised or uninitialised, data is allocated.

The data segment is read/write, so the values stored can be changed at runtime. The size and initial

content of the data segment is determined at compile time (Section 4). C-- does not provide dy-

namic memory allocation natively, nonetheless, it can be accomplished with foreign language calls

(Section 3.8 and Section 5.3).

3.3 Code segment

The code segment is the part of memory where the executable program code is stored (Section 5).

The code segment consists of a series of procedure definitions.

C-- does not currently provide a mechanism for creating code at runtime.

3.4 Types

There are only two kinds of types provided by C--, namely word and float. These types can have

different sizes.

� The size of a word can be 1, 2, 4 or 8 bytes.

� The size of a float can be 4 or 8 bytes.

A type must be qualified with a size. Thus word1 and word2 are different types.

There is no pointer type. The wordn type can be used for pointers (addresses), where n is the

particular architecture’s natural pointer size, i.e.: n is the number of bytes needed to hold a memory

address in the particular architecture.

For example, a four byte word is specified as word4, an eight byte float is specified as float8 and

so on.

Types are used in

1. Declaration statements (Section 5.2.2), to declare the type of local variables.

2. Memory write statements and memory read expressions (Section 5.2.4 and Section 6.2,

respectively) to indicate the type of the value written/read.

3. Data layout directives (Section 4) to indicate the type of the allocated datum.

3.5 Local variables (or registers)

Any number of local variable names may be declared inside procedure bodies. They are typed storage

locations that don’t have an address. The term “local variable name” is interchangeable with the term

“register”, since there is an unlimited supply of (virtual) registers: i.e. a local variable name will be

8

mapped to a machine register if there is one available, otherwise it is mapped to a memory location

(e.g. the stack), but the mapping is transparent and local variables should be viewed as registers.

3.6 Addresses

To specify where in memory to read or write we need an address. Any expression that evaluates to

a wordn can be used as an address, where n is the architecture’s natural pointer size, i.e.: n is the

number of bytes needed to hold a memory address in the particular architecture.

Absolute addresses can be used but what they refer to is implementation dependent. Their type is also

wordn.

3.7 Names

A name declares either a register or a memory address. Register names are procedure’s local variables.

Memory address names are either labels (Section 4.1) or procedure names (Section 5).

3.8 Foreign language interface

The foreign language interface is a way for C-- programs to use other calling conventions for pro-

cedure inter-operation with foreign code. This interface is nearly 100% portable across architectures

(Section 5.3).

4 Data layout directives

Memory in the data segment is allocated using the data directive. A memory block is organised as

a sequence of typed data. Each datum is thought of as an array of bytes that may be initialised.

Here is an example that allocates and initializes some memory. In particular, it allocates 8 datums

of types word4, word2, float8, word4, word1, word2, word1 and word8 respectively. The

example is explained in more detail in the remainder of this section:

data {

foo: word4[4]{1,2,3,ff}; /* ff is a forward reference */

word2[4]{1,2};

ff: float8[2]{2.8,3.1}; word4[2]{ff,foo};

str: word1[]"Hello world\0";

ustr: word2[]unicode("Hello world\0");

word1;

xs: word8[]{"This is an", "array of", "word8’s"};

}

There may be any number of data layout directives in a C-- program.

9

4.1 Labels

Labels are the means to refer to the allocated memory. They should be viewed as pointers and not as

memory locations. A label declaration consists of a name followed by a colon. Once declared, a label

is a name (and so an expression) that refers (points) to a memory address. Therefore it has wordn

type, where n is the particular architecture’s natural pointer size. Labels may be used before their

are declared, e.g. label ff is used in the initialisation of the data directive’s first datum before it is

declared pointing to the third.

Note that labels do not provide any information about the type of the data pointed to by them.

A label points to the first byte after its declaration. Here is an example in which four labels point to

the same datum:

data { foo: label1: label2: bar: word4} /* just allocates */

Memory is always allocated without padding inside a single data layout directive, so it is possible

to find any given data in the data segment by starting from a label and adding the right offset, as in,

for example, the read expression word2[foo+4]. Indeed, foo+4 does not have to point to the

beginning of a data element. It may point to any other data byte, but it is assumed by C-- that it is

2-byte aligned.

To align a label (and hence the datum it points to) to a specific boundary, an alignment directive

(Section 4.3) has to be placed before the label. In the following example, foo and bar might or

might not be the same address, but bar is guaranteed to be aligned on an eight byte boundary.

data { foo: align8;

bar: word4{0};

}

It is be possible to have a stupid data layout directive with no labels that is inaccessible.

4.2 Initialisation

Memory is allocated by specifying the type of the datum, the number of datum’s elements to allocate,

and the initial value for each element. The particular syntax is:

type[n]{constant-list};

where n specifies how many elements of the type type have to be allocated, and constant-list pro-

vides the initial value (of type type) for each allocated element, in the form of a comma-separated list

of constants or constant expressions (i.e. expressions whose value is known at compile time).

There are a number of possible variants:

1. If [n] is not provided, only one element is allocated. The {constant-list}may or may not be

provided. If provided, it should contain only one constant or constant expression to which the

element is initialised. If not provided, no initial value is given. For example:

data { lb1: word1; }

/* Allocates one byte (contains garbage) */

data { lb2: word1{17}; }

/* Allocates one byte and initialises it to (ASCII code) 17 */

10

data { lb3: word4{17}; }

/* Allocates one 4-byte word and initialises it to integer 17 */

2. If [n] is provided, then n elements are allocated. The {constant-list} may or may not be

provided. If not provided, no initial value is given. If provided, it should contain c constants

or constant expressions, such that c � n. Element i (i : 0 : : : (n � 1)) is initialised to the

value of the constant or constant expression j (j : 0 : : : (c� 1)) in {constant-list}, such that

j = i mod c. For example:

data { lb1: word1[17]; }

/* Allocates 17 bytes (that contain garbage) */

data { lb2: word1[17]{0}; }

/* Allocates 17 bytes and initialises all of them to 0 */

data { lb3: word4[6]{1,2,3}; }

/* Allocates six 4-byte words and initialises them

* to 1,2,3,1,2,3 respectively.

*/

data { lb4: word4[6]{1,2,3,1,2,3}; }

/* Allocates six 4-byte words and initialises them

* to 1,2,3,1,2,3 respectively.

*/

data { lb5: word4[4]{1,2,3}; }

/* Allocates four 4-byte words and initialises them

* to 1,2,3,1 respectively.

*/

3. There is also the possibility to have abbreviations when n = c.

type[]{constant-list}; is an abbreviation for type[c]{constant-list};

word1[]"char
1

: : : char

n

"; is an abbreviation for word1[n]{’char
1

’, : : :,’char
n

’};

word2[]unicode("char
1

: : : char

n

"); is an abbreviation for

word2[n]{unicode(’char
1

’),. . .,unicode(’char
n

’)};

For example:

data { s1: word1[6]{’h’,’e’,’l’,’l’,’o’,’\0’}; }

data { s2: word1[]"hello\0"; }

/* Both directives allocate 7 bytes and initialise

* them to the same ASCII code integers.

*/

data { f1: float8[3]{3.5, 4.4, 6.98}; }

data { f1: float8[] {3.5, 4.4, 6.98}; }

/* Both directives allocate three 8-byte floats and initialise

* them to the same floating point numbers.

*/

Since the initialised value might have dependencies on the endianess, the only way to guarantee that

a memory read (Section 6.2) gets the same initialised (or written) value, is to read the datum or the

element with the same type as it was initialised (or written). For example, if a datum was initialised

with data {foo: word2{17};}, if read back with word1[foo] the value might be 0 or 17

depending on the architechture, but if read with word2[foo] it is guaranteed to be 17.

11

4.3 Alignment

For performance reasons, and also to comply with some architecture requirements, it is sometimes

necessary to specify the alignment of data. The alignn directive inserts padding as needed, ensuring

that the next datum is placed on an n byte boundary. The value of the padding is unspecified.

In the following example, foo is aligned to a 4-byte boundary and bar to an 8-byte boundary. In both

cases padding may be inserted: for example, between the last byte of the word4 and the first byte of

the float8 (the datum pointed to by bar) there may be padding in order to place the float8 on

an 8-byte boundary.

data { align4;

foo: word4{1};

align8;

bar: float8{1.7};

}

5 Procedures

Procedures are the means to place information in the code segment. They are very similar to high-

level language procedures. Procedures can optionally take arguments, contain static data declarations

and return values.

5.1 Procedure definition

A procedure definition has the following syntax:

conv proc name(type arg
1

,. . .,type arg
n

)

{ body }

where:

� conv is the (optional) calling convention declaration (Section 5.3) needed for inter-operation.

� proc name is the procedure name, which stands for the procedure entry point address and, as a

name, will be an expression (Section 3.7). It may be also used in call (Section 5.2.8) and jump

(Section 5.2.9) statements.

� type arg

1

,. . ., type arg

n

is the formal argument list. Each formal argument consists of a

name preceded by its type. If the procedure takes no arguments, the list should be empty.

Unlike C, procedures with a variable number of arguments are not supported. The formal

arguments are only in scope of the procedure body.

� body is the procedure body enclosed in curly braces. It may consists of a sequence of state-

ments, such as local variable declarations, assignments, memory reads, local control label dec-

larations, gotos, etc. It is unspecified what happens if control flows off the edge of a procedure

body, that is, every control path in a procedure body should finish in a jump (Section 5.2.9) or

in a return (Section 5.2.10) statement. Therefore, a procedure body should have at least one

statement.

12

The return type needs not be specified in the definition.

For example, procedure foo is defined as a procedure that expects one word4 argument. Inside the

procedure body, the local variable (or register) x is declared, followed by an assignment statement

and a jump statement to procedure bar.

foo(word4 y) {

word4 x;

x = y + 1;

jump bar(x);

}

5.2 Statements

5.2.1 skip;

This is just the null statement and can be inserted anywhere an ordinary statement can. It does not

have any effects. It is used for clarity instead of the error-prone stand-alone semicolon.

5.2.2 Declaration

A declaration statement has the following syntax:

type name

1

,. . .,name
n

;

It declares the local variable names name
1

: : : name

n

of type type. These names will be mapped to

(virtual) machine registers. As names, they are also expressions of type type.

Local variables have to be declared before they are used.

A declaration statement may appear anywhere inside the procedure body. All declarations are treated

as if they were declared at the beginning of the procedure body. All the local variable names must be

unique. It is not possible to redeclare a name.

5.2.3 Assignment

An assignment statement has the following syntax:

name = expr ;

It stores the value of expr in the local variable (or register) name, where expr has the same type as

name.

5.2.4 Memory write

A memory write statement has the following syntax:

wordn[expr
1

] = expr

2

;

13

to write wordn values, or

floatn[expr
1

] = expr

2

;

to write floatn values.

Expression expr
1

has type wordn, where n is the particular architecture’s natural pointer size, and its

value is the memory address in which the value of expr
2

is written. Expression expr
1

will typically

contain one or more labels. Expression expr

2

should be of type wordn or floatn respectively,

otherwise the value written in memory is unspecified.

The following example stores the ASCII integer code of ’A’ in the 4th byte of the datum pointed to

by label

word1[label+4] = ’A’;

The address yielded by expr
1

is assumed aligned to the size of the type, namely, n. A memory write

can optionally be qualified with an alignment flag {aligna}, so the syntax is now:

wordn{aligna}[expr
1

] = expr

2

;

floatn{aligna}[expr
1

] = expr

2

;

A few examples of memory writes with flagged alignment:

� float8{align4}[label]= expr does a 8-byte write but assumes that label is aligned

to a 4 byte boundary.

� word4{align1}[label]= expr does a 4-byte write but assumes that label is aligned

to a byte boundary (pointer to a byte).

� word1{align4}[label]= expr does a 1-byte write but assumes that label is aligned

to a 4 byte boundary.

5.2.5 if and relational operations

Conditional execution of code is accomplished with the if statement. It has the following syntax:

if expr
1

rel expr

2

{ . . .} else { . . .}

The else branch is optional and the statement blocks may be empty, as in if x == 0 {}, but the

curly braces are mandatory even for single statements, as in

if x == 0 { x = x + 1;}

The condition test is very simple: it consists of a relational operation, rel, that takes two expressions

as arguments. The term “operation” is used instead of “operator”, therefore avoiding confusion with

C-- operators that are used in expressions (Section 6). Relational operations are only used in if

condition tests; they cannot be used anywhere else.

This is the set of relational operations:

14

Name Relation

== Equality

!= NonEquality

> Greater Than

>= Greater Than or Equal

< Less Than

<= Less Than or Equal

They can all be combined with these flags:

F lag Meaning

Signed comparison (default)

u Unsigned comparison

f F loating point comparison

fo F loating point unordered comparison; if supported

When the condition test holds, the block of statements immediately following the condition test is

executed. Otherwise, if an optional else branch has been specified, its block of statements is exe-

cuted. After execution of the any of these blocks, control resumes at the first statement after the if

or if/else.

In the following example, >= is used in the if test condition without a flag (default signed compari-

son), and != is used combined with flag u to test whether the unsigned integer held in x is zero.

f(word4 x)

{

word4 y;

y = 0;

if y >= word4[foo+8] {

y = y + 1;

return (y);

} else {

x = x -u 1;

if x !=u 0 {

y = y + 2;

}

return (y);

}

}

5.2.6 switch

The switch statement performs multiway branching depending on the value of a word expression.

The particular syntax is:

switch [sconst
1

..sconst
n

] expr {

15

sconst

11

, : : :,sconst
1i

: { : : :}
...

sconst

m1

, : : : ,sconst
mj

: { : : :}

default : { : : :}

}

where:

� expr is an expression that yields a word value.

� sconst

k1

, : : :,sconst
kl

: { : : :} is branch k (k : 1 : : : m), in which multiple simple-constant2

alternatives (l : 1 : : : i; j : : :) may be specified.

When the value of expr is any of sconst
k1

: : : sconst

kl

, branch k is taken, executing its block

of statements and resuming control at the first statement after the switch. There is no fall

through between different branches: C-- assumes that earlier branches are more likely to be

taken.

� default is the (optional) default branch that is taken when none of the others are taken. The

effect is unspecified if none of the branches are taken—none of the sconst

ij

match expr’s

value—and no default branch is provided.

� [sconst
1

..sconst
n

] is an (optional) range of simple constants in which the value of expr is

guaranteed to be. This range is a hint to the compiler. No bounds checking is performed at

run-time to see whether expr’s value is in the range.

In the following example, expression x+23 is assumed to yield a value in between 0 and 7. If the

value is 1,2 or 3, then the first branch is taken. If the value is 5, then the second branch is taken. If

the value is 0,4,6, or 7, then the default branch is taken.

switch [0..7] x + 23 {

1,2,3 : { y = y + 1;}

5 : { y = x + 1; x = y;}

default : { y = f();

if y == 0 { x = 1;}

}

}

5.2.7 Local control labels and goto

Local control labels are used in conjuction with the goto statement to alter the control flow within a

procedure body. A local control label declaration consists of a label name followed by a colon. This

kind of control label is not a name in the sense of Section 3.7, and so, it should not be confused with

the pointer labels mentioned so far. The only thing that can be done with a local control label is to

provide it as argument to goto statements.

In turn, a goto statement transfers control to the label it takes as argument. Only a local control label

can be the argument of a goto.

2That is, word integers or characters. See Figure 1.

16

In the following example, the goto statement forces the control flow to resume to the very first

statement after the label declaration.

bar()

{

label:

word8[foo] = 18;

word8[foo+4*8] = word8[bar];

goto label;

return();

}

5.2.8 Procedure call

A call statement invokes a procedure in the conventional way of function invocation, so all the invok-

ing procedure’s local variables are saved across the call. The particular syntax is:

name

1

,. . .,name
n

= conv expr(expr
1

,. . .,expr
m

);

where:

� name

1

,. . .,name
n

= is the local variable name list. The results returned back by the proce-

dure are stored in each variable in the order in which they are returned, from left to right, by

the invoked procedure’s return statement (Section 5.2.10). If the invoked procedure returns

no values, the name list should be omitted, otherwise the values of the names are unspecified

after the call.

� conv is the (optional) calling convention declaration needed for inter-operating with foreign

code. (Section 5.3)

� expr is any expression that evaluates to a procedure address. It will typically be a (procedure)

name.

� expr

1

,. . .,expr
m

is the (optional) actual argument list, where each actual argument expr
i

is

an expression. All the expressions are passed by value to the called procedure. If no arguments

are passed, the list should be empty, as in, for example, x = f();.

It is unspecified what the effects are if the number and the types of the actual arguments in a call

statement do not match the number and the types of the formal arguments of the invoked procedure.

It is also unspecified what the effects are if the number and the types of the names in the name list do

not match the number and the types of the results returned by the invoked procedure.

Call statements are not expressions and so cannot be used inside expressions. Procedure calls are

complete statements. Things such as y = f(g(x)) + 1; are not allowed. Recall, however, that

procedure names, as such, are expressions with the procedure address as value.

The following example is self-explanatory:

foo()

{

word4 x, y;

x, y = bar(5);

17

return (x,y);

}

bar(word4 x)

{

return (x, x+1);

}

5.2.9 jump

The jump statement performs a control jump but carrying parameters. It has as target any expression

that evaluates to a procedure address and can optionally transfer arguments to that procedure. The

syntax is:

jump expr(expr
1

,. . .,expr
n

);

where:

� expr is any expression that evaluates to a procedure address. It will typically be a (procedure)

name.

� expr

1

,. . .,expr
n

is the (optional) actual argument list, where each actual argument expr
i

is

an expression. All the expressions are passed by value to the target procedure. If no arguments

are passed, the list should be empty, as in, for example, jump bar ();.

All local variables die when jumping. It is unspecified what the effects are if the number and the types

of the actual arguments in a jump statement do not match the number and the types of the formal

arguments of the invoked procedure. An example of an infinite loop with no stack growth:

bar(word4 x, word4 y)

{

jump bar(y, x); /* Loop forever */

}

5.2.10 return

The return statement transfers control back to the call statement issued by an invoking procedure.

Optionally, it can also transfer values back. All the local variables of the procedure issuing the

return die when returning. The syntax is:

return (expr
1

,. . .,expr
n

);

where expr
i

are the expressions whose values will be returned. If no values are returned, the expres-

sion list should be empty, as in return ();. Note that in C--, a procedure may return multiple

values.

The return statement may be qualified with the calling convention to be used (Section 5.3)

It is unspecified what the effects are if the number and the types of the values returned do not match

between a return and the call statement.

18

bar(word4 z)

{

return (1+z, z/3);

{

foo(word4 z)

{

return ();

{

5.3 Foreign language interface

To use a foreign language calling convention for a procedure, the name of the calling convention

should be declared before the procedure name with the foreign keyword. Here, foo uses the

standard C calling convention.

export foo;

foreign C foo()

{

word4 x;

jump bar(x);

}

The calling convention should be also specified in the same way in call statements and in return

statements, if it is not C--’s calling convention.

import printf, fun;

goo()

{

word4 i;

foreign C fun(5);

/* fun has type int -> void */

foreign C i = printf(str, arg);

/* printf() returns an int */

return ();

}

bar(word4 a)

{

a = a + 1;

foreign C return (a); /* uses C’s convention to return ’a’ */

}

There supported calling conventions are:

1. C

2. Pascal

All foreign language functions/procedures must have been imported with import declarations. All

C-- procedures directly invoked from a foreign language must have been exported with export dec-

larations.

19

When calling a C-- procedure from a foreign program, the types and sizes of the actual arguments

should match the types and sizes of the formal arguments in the particular platform, otherwise the

effects are unspecified. The same applies for the types and sizes of returned values.

When inter-operating with foreign languages, since the size of a particular foreign language type may

differ between platforms, and since C-- types always has fixed-size types, it is impossible for C--

to be completely platform independent when inter-operating with foreign languages.

6 Expressions

6.1 Introduction

An C-- expression can be a constant, a name, a memory read, a primitive, or an operator applied

to other expressions. C-- makes a distinction between integer and floating point expressions, i.e.,

expressions that yield words or floats as result.

The integer and floating point model is based on the LIA-1 standard (ISO/IEC 10967-1:1994(E)) and

if there are any inconsistencies between this manual and LIA-1, the LIA-1 standard is correct, unless

otherwise noted.

Signed and unsigned numbers are not distinguished. Instead, like any other assembler, it is the oper-

ations that are typed.

The type of any subexpression is always known and there are no automatic type casts or type conver-

sions.

The following sections cover all the C-- operators, all the C-- primitives, and the memory read

expression.

6.2 Memory read

Memory read expressions have the following syntax:

wordm[expr]

Type: wordn! wordm

to read a wordm value, and

floatm[expr]

Type: wordn! floatm

to read a floatm value.

Expression expr has type wordn, where n is the particular architecture’s natural pointer size. Its

value is the address of the memory location to read from. It will typically contain one or more labels.

The size m indicates how many bytes to read from that location.

The following example expression reads a 4-byte word from the second byte pointed to by label p:

20

word4[p+1]

The address yielded by expr is assumed aligned to an m-byte boundary. A memory read can option-

ally be qualified with an alignment flag {aligna}. The syntax is:

wordm{aligna}[expr]

floatm{aligna}[expr]

A few examples of memory reads with flagged alignment:

� float8{align4}[label] reads a 8-byte float but assumes that label is aligned to a

4 byte boundary.

� word4{align1}[label] reads a 4-byte word but assumes that label is aligned to a

byte boundary (pointer to a byte).

� word1{align4}[label] reads 1-byte but assumes that label is aligned to a 4 byte

boundary.

6.3 Operators, precedence, and evaluation order

C-- operators are typed, i.e. there is a different set of operators for the two types provided by

C--. The following table lists the available operators for signed words and floats. Operators for

unsigned words can be obtained appending the u flag to the signed word operators.

Each operator in the table is described in more detail in Section 6.7 and Section 6.8.

Operator type flags it can take class Description

* wordn� wordn! wordn t, u, h Arithmetic Integer multiplication

*f floatn� floatn! floatn t, z, n, p Arithmetic Floating point multiplication

/ wordn� wordn! wordn t, u Arithmetic Integer division

/f floatn� floatn! floatn t, z, n, p Arithmetic Floating point division

+ wordn� wordn! wordn t, u Arithmetic Integer addition

+f floatn� floatn! floatn t, z, n, p Arithmetic Floating point addition

- wordn� wordn! wordn t, u Arithmetic Integer substraction

-f floatn� floatn! floatn t, z, n, p Arithmetic Floating point substraction

% wordn� wordn! wordn t Arithmetic Integer modulo

˜ wordn! wordn Bitwise Complement

& wordn� wordn! wordn Bitwise AND

| wordn� wordn! wordn Bitwise OR

ˆ wordn� wordn! wordn Bitwise XOR

<< wordn� wordn! wordn Bitwise Left shift

>> wordn� wordn! wordn u Bitwise Right shift

Operators should have as arguments expressions of the appropriate type, otherwise the result may be

unspecified.

21

The next table lists the C-- operators in decreasing order of precedence. Operators in the same row

have the same precedence. The reader can see that C-- operators follow the precedence order and

the associativity of their C counterparts.

Operators Associates

˜ right

* *f / /f % left

+ +f - -f left

<< >> left

& left

ˆ left

| left

6.4 Primitives

C-- provides a set of primitive operators besides those described above. The general syntax of a

primitive is:

prim name(expr
1

,. . . expr
n

)

where expr
i

are expressions and prim name is the primitive’s name. A primitive name is not a name

in the sense of Section 3.7. Primitive names alone are not expressions that stand for the primitive’s

entry point address, since primitives are not procedures but built-in operators. Primitives can only be

used inside expressions using the syntax given above.

There are word primitives and float primitives. The following table lists all the C-- primitives.

See Sections 6.7 and 6.8 for detailed information on each particular primitive.

Primitive Type

word primitives abs wordn! wordn

neg wordn! wordn

sign wordn! wordn

float primitives absf floatn! floatn

exponentf floatn! wordn

fractionf floatn! floatn

fractpartf floatn! floatn

intpartf floatn! floatn

negf floatn! floatn

predf floatn! floatn

roundf floatn� wordn! floatn

scalef floatn� wordn! floatn

signf floatn! wordm

succf floatn! floatn

truncf floatn� wordn! floatn

ulpf floatn! floatn

22

6.5 Exception handling

Operators may cause system exceptions such as, for example, overflow or divide-by-zero. Operators

can keep record of the exception resulted from their application if they are appended with the t

(trap) flag. The exception kind is recorded in the global register3 Sys.Indicators, which is a bit

vector with a bit for every kind of exception. To find out which exception has ocurred, C-- provides

some predefined global constants. They are also bit vectors, with the particular bit that encodes the

exception set to 1 and all the others set to 0.

System exceptions and constants are listed in the following table:

Exceptions lia1except ! Sys.IntegerOverflow

j Sys.FloatingOverflow

j Sys.Underflow

j Sys.Undefined

j Sys.Inexact IEC 559

j Sys.DivideByZero IEC 559

j Sys.Invalid IEC 559

Constants lia1info ! Sys.wordn.MaxSigned

j Sys.wordn.MinSigned

j Sys.wordn.MaxUnSigned

j Sys.wordn.MinUnSigned

j Sys.floatn.Radix

j Sys.floatn.Precision

j Sys.floatn.ExpMin

j Sys.floatn.ExpMax

j Sys.floatn.Denorm

j Sys.floatn.IEC559

j Sys.floatn.Max

j Sys.floatn.Min

j Sys.floatn.MinN

j Sys.floatn.Epsilon

It is easy to find out the kind of exception that has resulted from an operator application using the

bitwise operators on Sys.Indicators and the appropriate global constants. For example, to

capture, handle, and clean up an overflow exception that resulted from the application of a word

addition operator, one could write:

foo(word4 y) {

word4 x;

x = y +t y

if Sys.Indicators & Sys.IntegerOverflow {

/* Write here code to handle exception */

/* Clear handled exception */

Sys.Indicators = Sys.Indicators & ˜Sys.IntegerOverflow;

}

3Sys.Indicators may be viewed as a global variable, but indeed, it is the only possible global variable in a C--

program.

23

}

The Sys.Indicators register can be treated as any other register, i.e. it can be cleared, bits can

be flipped and so on.

6.6 Casting

6.6.1 wordn

Type: wordm! wordn

Accepts flags: u

With t flag it sets: N/A

Description:
If n > m, it typecasts returning the higher order bits.

If n < m, it typecasts returning a value in which the new higher order bits are either

filled with the highest order bits of its argumet value (sign extension), or filled with

zeroes used with the u flag.
Example expression: word4(’A’)—sign extension. word2u(abyte)—zero fill.

6.6.2 floatn

Type: wordm! floatn

Accepts flags: t

With t flag it sets: Sys.FloatingOverflow

Description:
Typecasts an integer into a floating point number, if t is used it raises

Sys.FloatingOverflow if the argument is to big to fit.
Example expression: float8(foo)

6.7 word operators and primitives

All wordn types are bounded and the min and max values are provided as constants : Sys.wordn.MaxSigned,

Sys.wordn.MinSigned, Sys.wordn.MaxUnSigned and Sys.wordn.MinUnSigned.

The following definitions will be used to explain the individual operators. I denotes the set of possible

integer values. N denotes the subset of I of positive integer values.

I = fx 2 Z j Sys.wordn.MinSigned� x � Sys.wordn.MaxSignedg

N = fx 2 Z j Sys.wordn.MinUnSigned� x � Sys.wordn.MaxUnSignedg

wrap

I

(x) = x modulo (Sys.wordn.MaxSigned� Sys.wordn.MinSigned+ 1)

wrap

I

(x) 2 I

wrap

N

(x) = x modulo (Sys.wordn.MaxUnSigned� Sys.wordn.MinUnSigned+ 1)

wrap

N

(x) 2 N

24

6.7.1 + and -

Type: wordn � wordn! wordn

Accepts flags: t and u

With t flag it sets: Sys.IntegerOverflow

Description:

x� y = x� y if x� y 2 I

= wrap

I

(x� y) if x� y =2 I

x�

t

y = x� y if x� y 2 I

= Sys.IntegerOverflow if x� y =2 I

x�

u

y = x� y if x� y 2 N

= wrap

N

(x� y) if x� y =2 N

x�

ut

y = x� y if x� y 2 N

= Sys.IntegerOverflow if x� y =2 N

Example expression: foo + 17

6.7.2 *

Type: wordn � wordn! wordn

Accepts flags: t, u, and h

With t flag it sets: Sys.IntegerOverflow

Description:

x � y = x � y if x � y 2 I

= wrap

I

(x � y) if x � y =2 I

x �

t

y = x � y if x � y 2 I

= Sys.IntegerOverflow if x � y =2 I

x �

u

y = x � y if x � y 2 N

= wrap

N

(x � y) if x � y =2 N

x �

ut

y = x � y if x � y 2 N

= Sys.IntegerOverflow if x � y =2 N

x �

h

y = high(x � y) the higher order bits

x �

uh

y = high(x � y) the higher order bits

Example expression: foo * 17

6.7.3 /

Type: wordn � wordn! wordn

Accepts flags: t and u

25

With t flag it sets: Sys.IntegerOverflow or Sys.Undefined

Description:

x=y = bx=yc if bx=yc 2 I

= wrap

I

(bx=yc) if bx=yc =2 I

= undefined value if y = 0

x=

t

y = bx=yc if y 6= 0 and bx=yc 2 I

= Sys.IntegerOverflow if y 6= 0 and bx=yc =2 I

= Sys.Undefined if y = 0

x=

u

y = bx=yc if bx=yc 2 N

= wrap

N

(bx=yc) if bx=yc =2 N

= undefined value if y = 0

x=

ut

y = bx=yc if y 6= 0 and bx=yc 2 N

= Sys.IntegerOverflow if y 6= 0 and bx=yc =2 N

= Sys.Undefined if y = 0

Example expression: foo / 17

6.7.4 %

Type: wordn � wordn! wordn

Accepts flags: t

With t flag it sets: Sys.Undefined

Description:

x%y = x� (bx=yc � y) if y 6= 0

= undefined value if y = 0

x%

t

y = x� (bx=yc � y) if y 6= 0

= Sys.Undefined if y = 0

Example expression: foo % 17

6.7.5 neg and abs

Type: wordn! wordn

Accepts flags: t

With t flag it sets: Sys.IntegerOverflow

Description:

26

neg(x) = �x if � x 2 I

= wrap

I

(�x) if � x =2 I

negt(x) = �x if � x 2 I

= Sys.IntegerOverflow if � x =2 I

abs(x) = jxj if jxj 2 I

= wrap

I

(jxj) if jxj =2 I

abst(x) = jxj if jxj 2 I

= Sys.IntegerOverflow if jxj =2 I

Example expression: neg(foo)

6.7.6 sign

Type: wordn! wordn

Accepts flags: N/A

With t flag it sets: N/A

Description:

sign(x) = 1 if x � 0

= 0 if x = 0

= �1 if x � 0

Example expression: sign(foo)

6.7.7 &, |, and ˆ

Type: wordn � wordn! wordn

Accepts flags: N/A

With t flag it sets: N/A

Description:

x&y = x AND y Bitwise AND

x|y = x OR y Bitwise OR

xˆy = x XOR y Bitwise XOR

Example expression: foo & 17

6.7.8 ˜

Type: wordn! wordn

Accepts flags: N/A

With t flag it sets: N/A

Description:

˜x = NOT x Bitwise complement

27

Example expression: ˜ 17

6.7.9 << and >>

Type: wordn � wordn! wordn

Accepts flags: u

With t flag it sets: N/A

Description:

x<<n Left shift n bits logically

x>>n Right shift n bits logically

x>>
u

n Right shift n bits arithmeticaly

Example expression: foo << 17

6.8 float operators and primitives

The individual operators will just have a short description, for a more through discussion on the

different operators consult, LIA-1 or IEC559 as appropriate.

The representation used for floating point numbers is: it is either zero or

X = �g � r

e

= �0:f

1

f

2

: : : f

p

� r

e

where 0:f
1

f

2

: : : f

p

is the p-digit fraction g (represented in base, or radix, r) and e is the exponent.

The exponent e is an integer in [emin, emax]. The fraction digits are integers in [0, r � 1]. If the

floating point number is normalized, f
1

is not zero, and hence the minimum value of the fraction g

is 1=r and the maximum value is 1� r

�p.

This description gives rise to five parameters that completely characterize the values of a floating

point type and they are available as word valued constants in C-- :

ParameterName Specifies

Sys.floatn.Radix base (r)

Sys.floatn.Precision number of radix digits provided (p)

Sys.floatn.ExpMin smallest exponent value (emin)

Sys.floatn.ExpMax largest exponent value (emax)

Sys.floatn.Denorm 1 if type has denormalized values; 0 if not

Sys.floatn.IEC559 1 if type conforms to IEC559; 0 if not

If Sys.floatn.IEC559 is equal to 1, most floating point operators support the four different

rounding modes defined by IEC559. This is accomplished by adding a flag signifying which rounding

mode is desired. The different flags and their rounding modes are:

F lag Round to

Nearest

z Zero

p Positive Infinity

n Negative Infinity

A few definitions that we will use for explaining the individual operators:

28

r 2 Z The radix of F

p 2 Z The precision of F

emin 2 Z The smallest exponent of F

emax 2 Z The largest exponent of F

denorm 2 Boolean Whether F contains denormalized values

F

N

= f0;�i � r

e�p

j i; e 2 Z; r

p�1

� i � r

p

� 1; emin � e � emaxg

F

D

= f�i � r

e�p

j i; e 2 Z; 1 � i � r

p�1

� 1; e = eming

F = F

N

[F

D

if denorm = True

F = F

N

if denorm = False

fmax = maxfz 2 F j z > 0g = (1� r

�p

) � r

emax

fmin

N

2 minfz 2 F

N

j z > 0g = r

emin�1

fmin

D

2 minfz 2 F

D

j z > 0g = r

emin�p

fmin 2 minfz 2 F j z > 0g = fmin

D

if denorm = True

= fmin

N

if denorm = False

epsilon = r

1�p

6.8.1 +f, -f, and *f

Type: floatn � floatn! floatn

Accepts flags: t, z, n, and p

With t flag it sets: Sys.FloatingOverflow or Sys.Underflow

Supported rounding modes (if IEC559): all

Description:
The usual basic arithmetic operators with the proper rounding and trapping notifi-

cation.
Example expression: foo +f 17.0

6.8.2 /f

Type: floatn � floatn! floatn

Accepts flags: t, z, n, and p

With t flag it sets: Sys.FloatingOverflow or Sys.Underflow or Sys.Undefined

Supported rounding modes (if IEC559): all

Description:
The usual basic arithmetic division with the proper rounding and trapping notifica-

tion.
Example expression: foo /f 17.0

6.8.3 signf

Type: floatn! wordm

Accepts flags: N/A

With t flag it sets: N/A

Supported rounding modes (if IEC559): N/A

29

Description:

signf(x) = 1 if x � 0:0

= 0 if x = 0:0

= �1 if x � 0:0

Example expression: signf(-12.450)

6.8.4 negf and absf

Type: floatn! floatn

Accepts flags: N/A

With t flag it sets: N/A

Supported rounding modes (if IEC559): N/A

Description:

negf(x) = �x

absf(x) = jxj

signf(x) = 1:0 if x � 0:0

= 0:0 if x = 0:0

= �1:0 if x � 0:0

Example expression: negf(foo)

6.8.5 exponentf

Type: floatn! wordn

Accepts flags: t

With t flag it sets: Sys.Undefined

Supported rounding modes (if IEC559): N/A

Description:

exponentf(x) = blog

r

jxjc + 1 if x 6= 0:0

= Sys.Undefined if x = 0:0

Example expression: exponentf(foo)

6.8.6 fractionf

Type: floatn! floatn

Accepts flags: N/A

With t flag it sets: N/A

Supported rounding modes (if IEC559): N/A

Description:

fractionf(x) = x=r

exponentf(x)
if x 6= 0:0

= 0 if x = 0:0

Example expression: fractionf(foo)

30

6.8.7 scalef

Type: floatn � wordn! floatn

Accepts flags: t, z, n, and p

With t flag it sets: Sys.FloatingOverflow or Sys.Underflow

Supported rounding modes (if IEC559): all

Description:

Scales its argument by an integer power of the radix.

Example expression: scalef(17.0, 3)

6.8.8 succf and predf

Type: floatn! floatn

Accepts flags: t

With t flag it sets: Sys.FloatingOverflow

Supported rounding modes (if IEC559): N/A

Description:

succf(x) = minfz 2 F j z > xg if x 6= fmax

= Sys.FloatingOverflow if x = fmax

predf(x) = maxfz 2 F j z < xg if x 6= �fmax

= Sys.FloatingOverflow if x = �fmax

Example expression: succf(17.0)

6.8.9 ulpf

Type: floatn! floatn

Accepts flags: t

With t flag it sets: Sys.Underflow or Sys.Undefined

Supported rounding modes (if IEC559): N/A

Description:

ulpf(x) = r

e

F

(x)�p

if x 6= 0 and r

e

F

(x)�p

2 F

= Sys.Underflow if x 6= 0 and r

e

F

(x)�p

=2 F

= Sys.Undefined if x = 0

Example expression: ulpf(17.0)

6.8.10 truncf

Type: floatn � wordn! floatn

Accepts flags: N/A

With t flag it sets: N/A

Supported rounding modes (if IEC559): N/A

Description:

31

truncf(x; n) = bx=r

e

F

(x)�n

c � r

e

F

(x)�n

if x � 0

= �truncf(� x; n) if x < 0

Example expression: truncf(17.0, 3)

6.8.11 roundf

Type: floatn � wordn! floatn

Accepts flags: t, z, n, and p

With t flag it sets: Sys.FloatingOverflow

Supported rounding modes (if IEC559): all

Description:

roundf(x; n) = rn

F

(x; n) if jrn

F

(x; n)j � fmax

= Sys.FloatingOverflow if jrn

F

(x; n)j > fmax

Example expression: roundf(17.0, 3)

6.8.12 intpartf and fractpartf

Type: floatn! floatn

Accepts flags: N/A

With t flag it sets: N/A

Supported rounding modes (if IEC559): N/A

Description:

intpartf(x) = signf(x) � bjxjc

fractpartf(x) = x� intpartf(x)

Example expression: intpartf(17.0, 3)

32

7 Further Work

This is the TO DO list. It lists all the open issues and the stuff that remains to be added to this manual.

DATE: Mon Apr 20 11:58:56 BST 1998

Expressions and constants

� Type conversion (not casting, but conversion):

float ! word

word ! float

� Casting float ! word.

� Add w/ carry operator missing.

� How to define symbolic name constants.

� Be more specific about number constants and their syntax. Saying that they’re like C’s is not enough.

� Regarding pointers.

Pointer arithmetic, e.g.: float4[ptr + i] = float4[ptr];

If natural pointer size is 8 then ptr has type word8; adding integer offset register i (say, of type word4), if num-

bers have word4 type then expression ptr+i needs a explicit casting: ptr + word8(i). More architecture-

dependancy in the code. (See “Preprocessing”)

Also, C-- has only one pointer type wordn, where n is the architecture’s natural pointer size. Could that cause

troubles for architectures that offer two or more pointer sizes? Maybe not because we could just get the bigger (less

restrictive) size, but I am not sure if that makes sense.

� Easy to tell expression type.

Preprocessing

C’s preprocessing directives can be used in C-- (it would be easy to do, the C-- compiler just passes the C preprocessor to

the C-- program before compiling it). It would help for offset-calculation expressions in architectures where the type of an

integer is say word4 and the type of a label is word8, and lots of typecast have to be done (since casting is not automatically

done), for offsets, in expressions like:

word4[label+ word8(3)] = 43;

where the integer is typecast, we could have:

#ifdef ... /* pointer size == integer size == 8*/

#then

#define CAST(x) (x)

#else /* pointer size != integer size == 4 */

#define CAST(x) word8((x))

word4[label+CAST(3)] = 43;

to avoid to modify the C-- code anytime we want to port the code. For more complicated expressions rewriting will be

tedious.

Talk about preprocessing in the manual.

Data layout directives

Allow expressions in data declarations to specify the number of elements. These expressions should have values known at

compile-time. That is, instead of type[sconst]... , it should be: type[expr]... in Figure 1.

33

Procedures and statements

� Local declarations. Why the block as an statement?

The manual says that no nested scoping is possible in NESTED SCOPING section.

� Stack directive.

� Which calling conventions are there? Now: C, Pascal.

� Have optional list in return, e.g., instead of return ();, just return;?

� switch: could it take also expressions as alternatives? Right now each alternative must be a list of constants, but

the former is not difficult to implement, although it is inefficient.

Explain better how the optional range improves compiler performance in the switch statement.

� Static data in procedures: global or local scope? Indicate in manual.

Static data declarations in procedures. The following has been removed from Section 5:

When declaring static data in a procedure, the data has to be declared between the name plus formal argument list,

and the procedure body. In memory, the data will be placed immediately before the procedure’s entry point, so that

the procedure name points to the memory after the data. In the following example, word4[foo - 4] has the

value 4711.

foo()

data { word4{31415, 4711}; }

{

word4 x;

x = x + 1;

return(x);

}

34

