
1 Introduction
This application note describes the features offered by the
Cryptographic Services Engine (CSE) module which, for the
first time has been implemented on the MPC564xB/C device.
The module implements the security functions described in the
Secure Hardware Extension (SHE) functional specification1.
By reading this application note, the user will get an overview
of the reasons for implementing the CSE module and how it
can be used in typical automotive application use cases to help
protect application code and inter module communication.
This application note will show the basic features and will
provide the user a first guidance for the most typical functions
to be used with CSE in the form of a GreenHills example
project. However, it is not within the scope of this application
note to discuss the details of the SHE specification. This
application note will focus on the hardware features provided
by the CSE module and it is implied that the user is acquainted
with the content of the SHE specification.

Why is cryptography needed?

Today, the modern electronic industry has the same problem
which Julius Caesar faced 2000 years ago; about transmitting
information in a secure and trusted manner between parties.
Cryptography helps reaching this goal to exchange secure

1. SHE - Secure Hardware Extension functional specification
Version1.1 (rev4)
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information and to prove the authenticity. In the automotive area, cryptography helps to implement use-cases or systems like
the following:

• Immobilizers
• Component protection
• Secure flash updates
• Protecting data sets (e.g. mileage)
• Feature management via Digital-Right-Management (DRM)
• Secure communication
• IP protection
• Car to X communication

Many more use-cases exist already and will come in the future. It should be noted that CSE is not intended to be used to
encrypt the code flash contents.

1.1 AES algorithm
SHE defines that the Advanced Encryption Standard (AES) algorithm is used for cryptographic operations. The AES
algorithm is described in AES algorithm.

1.2 Cipher modes overview
Block ciphers like the AES algorithm, work with a defined granularity, often 64 bits or 128 bits. The simplest way to encode
data is to split the message in the cipher specific granularity. In this case, the cipher output will depend only on the key and
the input value. The drawback of this cipher mode, which is called Electronic Code Book (ECB), is that the same input
values will be decoded into the same output values. This allows attackers the opportunity to use statistical analysis (for
example, in a normal text some letter combinations occur much more often than others).

To overcome this issue other cipher modes were developed like the Cipher-block chaining (CBC), Cipher feedback (CFB),
Output feedback (OFB) and Counter (CTR) mode.

The CSE module supports only the ECB and the CBC mode which are described in the following section:

1.2.1 Electronic Codebook (ECB)
As described above this mode is the simplest one. And each block has no relationship with another block of the same
message or information. Figure 1 shows the block diagram of the ECB mode.

Figure 1. ECB block diagram
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Figure 2 shows the drawback of the ECB mode. Taking the Freescale logo as an example it is still visible in the encoded form
using this mode. It is obvious that this is not very secure.

Figure 2. Encoding using ECB mode

1.2.2 Cipher-block Chaining (CBC)
The Cipher-block (CBC) mode, invented 1976, is one of the most important cipher modes at all. In this mode the output of
the last encoding step is xor’ed with the input block of the actual encoding step. Because of this, an additional value for the
first encoding step is necessary which is called initialization vector (IV). Using this method each cipher block depends on the
plaintext blocks processed up to that point.

Figure 3 shows the block diagram of the CBC mode.

Figure 3. CBC block diagram

Figure 4 shows the encoding result of the Freescale logo using the CBC cipher mode. The difference from the ECB mode is
self-evident. In many applications ECB mode may not be appropriate.

Figure 4. Encoding using CBC mode

1.2.3 CMAC
A CMAC provides a method for authenticating messages and data. CMAC uses the AES algorithm. The CMAC algorithm
accepts as input a secret key and an arbitrary-length message to be authenticated, and outputs a CMAC. The CMAC value
protects both a message's data integrity as well as its authenticity, by allowing verifiers (who also possess the secret key) to
detect any changes to the message content.
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Figure 5 shows the components of a CMAC scheme.

Figure 5. Components of a CMAC scheme

1.3 Typical automotive security use cases
In the following sections, some automotive use-cases and how these could be supported by the CSE module are briefly
described. Many of these use-cases assume that the application code was verified with the CSE secure-boot-function before.

1.3.1 Secure Mileage
In the past, the mileage of cars were illegally reduced to increase the resale value of the vehicle. This essentially created a
negative impact on the OEM reputation and increased quality and warranty questions. For this reason the OEM has a strong
interest in preventing any illegal manipulation of the mileage. The CSE could help to protect the mileage data. The principle
idea is that the mileage is stored encrypted in a non-volatile flash area. Initially, the encoded mileage is read from the flash
memory (for example, EEPROM or EEPROM emulation) into the data memory. Before the value is used, it has to be
decrypted by the CSE and whenever the mileage is stored periodically back into the non-volatile memory the CSE has to
encode the mileage value again. This en- and decoding will only work if the CSE verified the application code without any
failures before.

1.3.2 Immobilizers
Today Immobilizers are standard equipment in every modern car. They prevent cars being stolen without the car key.
Additionally, the reduction of the overall number of stolen vehicles has a positive effect on insurance premiums.

A simple immobilizer implementation could look like this. The car key includes a transponder, a small cipher unit and a
unique cryptographic key. The immobilizer unit sends a random value, generated by the CSE, to the car key. The car key
encrypts this value with the internal AES engine and sends the result back to the immobilizer. The immobilizer has the same
secret key stored in the CSE and is able to decrypt back the random value.

Now, the immobilizer code is able to verify the answer from the car key if the result is correct and the engine could be
started.

1.3.3 Component Protection
Component protection prevents dismantling single ECU’s from a car and re-using it in other ones. Often cars are stolen
specifically to re-sell the single components into the aftermarket.
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The OEM can now address several issues with a secure component protection scheme. First they can reduce the number of
stolen cars, secondly they can prevent any negative impact on reputation and quality and thirdly they can protect their own
aftermarket business.

A component protection system based on the CSE may look like this. The most valuable ECU’s will include a controller
which has a CSE module. A master node which may be assigned by design or dynamically with a specific algorithm will poll
all ECU’s of the component protection system and request a specific answer (e.g. the unique ID in encoded from). In this
case only ECU’s with the right secret key will be able to send back a valid response. Additionally, the master node can cross-
check the unique ID with a database of all assembled modules in this specific car.

This component check can be done periodically while the car is used. If the system detects an unauthorized ECU in the car
network it is able to react on it.

1.3.4 Flash programming/firmware updates
The CSE supports secure flash programming by the means of Cipher based message authentication code (CMAC)
calculation. The application code will verify each block of the new flash image by re-calculating the CMAC value and
compare it with the offline pre-calculated value which is part of the flash image. This check will only be verified when the
same secret key was used for the CMAC calculation. This use case is presented and discussed in AN4235 – Using CSE to
protect your application via a circle of trust.

2 CSE
The Cryptographic Services Engine (CSE) is a peripheral module that implements the security functions described in the
Secure Hardware Extension (SHE) Functional Specification Version 1.1.

Figure 6 shows a block diagram of the crypto module below.
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Figure 6. CSE module block diagram

The CSE design includes a host interface (via the peripheral bridge) with a set of memory mapped registers that are used by
the CPU to issue commands. Furthermore a system bus interface (via the crossbar interface) allows the CSE to directly access
system memory. Here the crypto module behaves like any other master. Through the host interface the user can configure and
control the CSE module, for example putting the module into low power mode, enabling interrupts for finished command
processing or suspending command processing. A status and error register will give further system information. For a
complete list of CSE commands please refer to the MPC564xB/C reference manual.2 Two dedicated blocks of system flash

2. MPC564xB/C Reference Manual latest revision available on https://www.freescale.com
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memory are used by the CSE for secure key and firmware storage. These blocks are not accessible by other masters from the
system and therefore are called secure flash. The command processing is done by a 32-bit CSE core with attached ROM and
RAM running at system frequency of the SoC. After system boot, the core comes out of reset and executes reset code from
the module ROM. This code will load the firmware from the secure flash into the module RAM and start executing from
there. This reduces the flash accesses by the crypto core.

The AES block is a slave to the crypto internal bus. It processes the encryption (plaintext→ ciphertext) and decryption
(ciphertext→ plaintext) and offers AES CMAC authentication.

The random number generator includes a pseudo number generator (PRNG) and a true number generator (TRNG) for seed
generation. The SHE specification defines that the seed value needs to be recalculated before random numbers can be
requested, i.e. in worst-case scenarios it is written on every power cycle/reset. In addition to the capabilities demanded by the
SHE specification CSE also supports using the TRNG independently of seed generation.

CSE controls external access to the secure flash via a test interface. When a part comes from the factory the test interface is
still open and is only closed after the user programs one or more user keys. The test interface will be re-opened only if the
part is reset to its factory state using the DEBUG CHALLENGE/AUTHORIZATION sequence. See Appendix C: Resetting
the secure flash to it’s factory State.

2.1 CSE features
The CSE implements a comprehensive set of cryptographic functions including secure key storage, AES encryption, secure
boot, AES CMAC authentication and random number generation. As an introduction to the user these features are explained
in the following sections. This introduction is intended to give a basic understanding of the features and with the demo code
supplied with this application note facilitates the first steps with the CSE module itself. To get a more detailed overview of
the register set please refer to the MPC564xB/C Reference Manual available at https://www.freescale.com.
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2.2 Details of contents of secure flash

2.2.1 Default secure flash content
When parts are received from the factory the secure flash is populated with CSE firmware, unique identification number
(UID) and secret key (SK). See section 2.7 Unique ID for more details about UID. The secure flash is otherwise erased. SK is
a random number whose value is never disclosed and is used as a key in the Pseudo Random Number Generator (PRNG).
The Public flash as shown in Figure 7 below refers to the flash area available to the user for application use. In case of the
MPC564xB/C this is up to 3 MB.

Figure 7. Flash content default state
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2.2.2 User defined secure flash content
Once the user wants to use the CSE module he may program keys for application use into the secure flash. KEY_1 to
KEY_10 (10 keys) are user keys which can be programmed by the user with his secrets for application use. Additionally
MASTER_ECU_KEY, BOOT_MAC_KEY and BOOT_MAC may also be programmed by the user. Please refer to section
2.2.3 Adding user defined content to secure flash for details how to do this. Additionally the user may program his
application code into the public flash area as on every other device.

Figure 8. User defined flash content

2.2.3 Adding user defined content to secure flash
In general, knowledge of a specific key is needed in order to update that specific key. MASTER_ECU_KEY is a key with
special meaning. It can be used to authorize updating other keys (BOOT_MAC_KEY, BOOT_MAC, BOOT_MAC_KEY
and all KEY_1 to KEY_10) without knowledge of those keys. See Table 5 “Memory Update Policy” of the SHE
specification. To add user keys the protocol as defined in the SHE specification must be used (section 9.1 Description of
memory update protocol). This ensures confidentiality, integrity, authenticity and protects against replay attacks. SHE
requires that in order to update the memory containing the keys the following must be calculated and passed to CSE:

• K1 = KDF(KAuthID, KEY_UPDATE_ENC_C)
• K2 = KDF(KAuthID,KEY_UPDATE_MAC_C)
• M1 = UID’|ID|AuthID - 256 bits
• M2 = ENCCBC,K1,IV=0(CID’|FID’|“0...0"95|KID’) -128 bits
• M3 = CMACK2(M1|M2) – 128 bits

Details of how to generate K1, K2 and M1 to M3 are contained in Appendix B.1 Generating M1, M2, M3. These values will
typically be derived on an offline computer and created as arrays in a header file. Registers CSE_P1, CSE_P2 and CSE_P3
are populated with the addresses of arrays M1, M2 and M3. The CSE_LOAD_KEY command must then be issued. In order
to check that the update was performed correctly CSE calculates:

• M4 = UID|ID|AuthID|M4* - 256 bits
• M5 = CMACK4(M4) – 128 bits

Registers CSE_P4 and CSE_P5 must be populated with the addresses of M4 and M5 respectively. Details of how to generate
M4 and M5 are contained in Generating M4, M5.

CSE
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2.3 Secure storage for cryptographic keys
The CSE provides secure, non-volatile storage for cryptographic keys as described in the SHE functional specification. The
keys are stored in 15 memory slots, with one ROM slot, 13 non-volatile slots and one RAM slot as shown in the Table 1
below. The first four slots have a dedicated use, the other slots are available for application specific keys. The BOOT_MAC
slot is loaded with a MAC value used by the secure boot process. This can be performed automatically by the CSE under
specific circumstances or by user software. All other slots are used for encryption or message authentication keys. The
SECRET_KEY slot is programmed with a random value during device fabrication. All CSE encryption and message
authentication commands specify a key by its Key ID.

Table 1. Key slot

Slot Name Key ID Memory Type Count
er

[bits]

Key Flags (every key has a size of one bit) Default Factory State

Write
Protec

tion

Disabl
e Boot

Disabl
e

Debug

Disabl
e

Wildca
rd

Key
Usage

Plain
Key

SECRET_KEY 0x0 Read-only ̶ ̶ ̶ ̶ ̶ ̶ ̶ Written by Freescale

MASTER_KEY 0x1 NVM 28 √ √ √ √ ̶ ̶ Empty

BOOT_MAC_
KEY

0x2 28 √ √ √ √ ̶ ̶ Empty

BOOT_MAC 0x3 28 √ √ √ √ ̶ ̶ Empty

KEY<n>
(n=1..10)

0x4..0
xD

28 √ √ √ √ √ ̶ Empty

RAM_KEY 0xE ̶ ̶ ̶ ̶ ̶ ̶ √ Undefined after every
reset

UID Read-only ̶ ̶ ̶ ̶ ̶ ̶ ̶ Written by Freescale

2.3.1 Key Attributes
Each key has 6 flags associated with it. These determine how and under what conditions that key can be used.

2.3.1.1 Write Protection Flag (WP)
If set, the key cannot ever be updated even if an authorizing key (secret) is known. This flag should be set with caution.
Setting this flag is an irreversible step. Setting this flag will prevent the part from being reset to factory state. See section
Appendix C Resetting the Secure flash to it’s Factory State.

2.3.1.2 Boot Protection Flag (BP)
If set, the key cannot be used if the MAC value calculated in the SECURE_BOOT step did not match the BOOT_MAC value
stored in secure Flash.

2.3.1.3 Debugger Usage Protection Flag (DU)
If set, the key cannot be used if a debugger is (or has ever been) connected to the MCU since it was last reset.
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2.3.1.4 Wildcard Protection Flag (WC)
If set, the key cannot be updated using by supplying a special wildcard (UID=0).

2.3.1.5 Key Usage Flag (KU)
This flag determines if a key can be used for encryption/decryption or for MAC generation/verification (CMAC). If the flag
is set, the key is used for MAC generation/verification. If the flag is clear, the key is used for encryption.

2.3.2 Key Counter
Each user key has a counter which must be increased on every update. The counter is 28 bits long. The new counter value is
used in the derivation of M2 when a key is being updated. See Generate M2.

2.3.3 KeyID
Each key has an identifying number associated with it. This number is used to identify the key being updated and the key
authorizing the update. The following table shows the KeyID for each key.

Table 2. KeyIDs

Key KeyID

MASTER_ECU_KEY 1

BOOT_MAC_KEY 2

BOOT_MAC 3

KEY_1 4

KEY_2 5

KEY_3 6

KEY_4 7

KEY_5 8

KEY_6 9

KEY_7 10

KEY_8 11

KEY_9 12

KEY_10 13

RAM_KEY 14
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2.4 AES-128 encryption and decryption
The CSE supports AES-128 encryption and decryption in ECB (Electronic Codebook) and CBC (Cipher Block Chaining)
modes of operation as described in chapter 1. The key is selected from one of the memory slots which must be enabled for
the encryption (KU =0; see section 2.3.1 Key Attributes). A plain text key can be loaded into the RAM_KEY slot using the
LOAD_PLAIN_KEY command for keys that are not stored in a non-volatile memory slot. However, as this method implies a
potential security risk, this might only be useful for development or debug purposes only.

2.5 AES-128 CMAC authentication
The CSE uses the AES-128 CMAC algorithm for message authentication. The key for the CMAC operation is selected from
one of the memory slots which must be enabled for the authentication (KU =1; see section 2.3.1 Key Attributes). A plain text
key can be loaded into the RAM_KEY slot using the LOAD_PLAIN_KEY command for keys that are not stored in a non-
volatile memory slot. The VERIFY_MAC command supports comparison of a calculated MAC with an input MAC value.

2.6 Random number generation
The CSE has both a Pseudo Random Number Generator (PRNG) and a True Random Number Generator (TRNG). The
PRNG has a 128-bit state variable and uses AES in output feedback mode to generate pseudo random values. A key derived
from the SECRET_KEY is used for the PRNG. The RND command updates the state of the PRNG and returns the 128-bit
random value. The EXTEND_SEED command can be used to add entropy to the PRNG state. The PRNG state is initialized
after each reset with the INIT_RNG command which uses the TRNG to generate a 128-bit seed value for the PRNG. The
CSE_SR[RIN] flag is set when the PRNG is initialized. The INIT_RNG and TRNG_RND commands use the TRNG to
generate truly random values. The TRNG hardware runs off of a slower clock derived from the system clock. The
CSE_CR[DIV] field needs to be configured for these commands such that the TRNG clock is between 500 kHz and 2 MHz.
Random values generated by the TRNG are checked with a statistical test to verify proper operation of the TRNG. If the test
fails, a TRNG error (EC=0x12) is returned. Due to the statistical nature of this test, there is a very small probability (<10-9)
that a properly operating TRNG will return an error. If an TRNG error is returned, the command can be issued again.

2.7 Unique ID
Unique Identifier Number (UID) is unique for every part and is programmed into the secure flash when it is tested in wafer
form. UID is 120 bits long. UID can be used during inter ECU communications to confirm that external controllers have not
been substituted. If Wildcard is disabled for a specific key, then that key cannot be updated without specific knowledge of the
UID of the part being updated. See Section 2.3.1 Key Attributes. UID is also used in the process for resetting part to their
factory state. See Appendix C: Resetting the Secure Flash to it’s Factory State.

UID can be obtained by issuing the CSE_GET_UID command.

2.7.1 Example code for retrieving UID from secure flash
uint32_t get_id_challenge[4]  = {0xE6FE097D, 0xBC723E2C, 0xF0EA416F, 0xE68AD33E}; /* user 
selects these values*/
uint32_t GET_ID_UID[4];
uint32_t UID_MAC[4];

    while (CSE.SR.B.BSY ==1){} /*wait until CSE is idle*/

    CSE.P1.R = (vuint32_t)&get_id_challenge; /* input challenge value*/
    CSE.P2.R = (vuint32_t)&GET_ID_UID; /* output UID*/
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    CSE.P3.R = 0;
    CSE.P4.R = (vuint32_t)&UID_MAC; /* output challenge response */
    CSE.CMD.R= CSE_GET_ID;

The CSE will return 0 if the MASTER_ECU_KEY is empty. UID_MAC is populated with a 128-bit MAC calculated over
the concatenation of a 128-bit input challenge value, UID and CSE_SR[24:31]. GET_ID_UID is 128 bits with the 8 least
significant bits set to 0.

2.8 Updating user keys
After a part's user keys are programmed into the secure flash and the part is no longer in it's factory state, it may be necessary
to update one or more keys. SHE describes a mechanism for doing this and this has been implemented in the CSE module via
the CSE_LOAD_KEY command. If a key has Write Protection set, it will no longer be possible to update that key.

2.8.1 Authorization
In order to keep keys secure, SHE requires that an authorizing key (secret) be known before an update to a specific key can
be attempted.

Table 3. Key update overview

Key (Secret) which must be known to update a Key

Slot to update MASTER ECU
KEY

BOOT MAC KEY BOOT MAC KEY <N> RAM KEY

MASTER ECU
KEY

√

BOOT MAC KEY √ √

BOOT MAC √ √

KEY<N> √ √

RAM KEY √

Knowledge of MASTER_ECU_KEY enables updating of all user keys except RAM_KEY. Knowledge of BOOT_MAC
enables BOOT_MAC and BOOT_MAC_KEY to be updated. Knowledge of a sepcific KEY_<N> enables that specific
KEY_<N> to be updated. Knowledge of any KEY_<N> enables the RAM_KEY_<N> to be updated.

2.8.2 Update process
The process for updating a given key is the same as that described in section 2.3 Secure storage for cryptographic keys. If the
key to be updated is not Wildcard protected the UID=0 may be used in the generation of M1 and M3. Otherwise the UID will
need to be established for the part being updated and this UID used in the generation of M1 and M3. UID can be established
as described in section 2.7 Unique ID. In section 2.3 Secure storage for cryptographic keys, the key being updated has initial
value of 0 and the authorizing key is the key itself. This is a very specific case for a part in it's factory state. Substitution of
the authorizing key value will be required in all other cases.
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2.8.3 Erasing all keys
A procedure for erasing the user content of the secure flash is described in Appendix C Resetting the secure flash to its
factory state.

2.9 Secure Boot

2.9.1 Authenticating Boot Code
CSE has a mechanism which allows users to authenticate boot code in flash. The MCU can be configured so that on every
boot a section of code is authenticated and the generated MAC will be compared with a value previously stored in Secure
flash. This is supported only for flash boot modes. It is not supported for other boot modes (serial download, wakeup to
RAM) as this may present a potential security issue.

The key used to authenticate the boot code is called BOOT_MAC_KEY. A value for comparison is stored in secure flash and
is called BOOT_MAC. Extra information is added to the start of the boot block after the Reset Configuration Half Word
(RCHW). These parameters are provided to the CSE as inputs to a CMAC operation. If the boot code is not authenticated
keys which are marked as boot protected cannot be used.

Table 4. Example of extra information added to the start of the boot block

Address Content Comment

0x0 0x15A Reset Configuration Half Word

0x4 0x10 Start address for BOOT_MAC
calculation

0x8 0x1000 Length of code to be authenticated in
bytes (4 KB)

0xC This address is skipped

0x10 Code starts here

In this example the boot code starts at 0x10 and CSE will authenticate 4 KB of code. Address 0xC is skipped because CSE
can authenticate code significantly faster if authentication starts on a 64-bit boundary.

2.9.2 Adding BOOT_MAC to secure flash automatically using the
CSE

Parts from the factory have no user keys stored in the secure flash.The CSE will calculate and store BOOT_MAC in secure
flash if the following sequence is followed:

1. Program the code flash with code to be protected (including boot code start address and length parameters at address
RCHW+4 and RCHW+8)

2. Program BOOT_MAC_KEY into secure flash (other user keys may be programmed at this time too), See 2.3 Secure
storage for cryptographic keys.

3. Reset the part; CSE calculates BOOT_MAC and stores it in secure flash
4. Reset the part again; CSE confirms previously calculated BOOT_MAC and set CSE.SR[BOK]=1 ( Secure Boot OK

bit)
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After this procedure keys marked as Boot Protected can be used by application code. On subsequent booting, provided
BOOT_MAC_KEY has not been erased and the code flash is not erased, CSE will calculate a MAC over the identified boot
code and if the output value matches the value stored in secure flash (BOOT_MAC) set CSE.SR[BOK]=1. This process is
represented in Figure 11.

Figure 9. CSE Boot Process on MPC564xB/C
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2.10 Code flash update procedure
During software development and at other times during an ECU’s life cycle it may be necessary to change the code flash
which is authenticated by the BOOT_MAC. This means that the BOOT_MAC calculated by the CSE will not match the
BOOT_MAC stored in the secure flash. In this scenario cryptographic services which used keys marked as Boot Protected
will be unavailable. The BOOT_MAC stored in secure flash must be updated to avoid this situation. There are 2 scenarios
which lead to different methods for updating the stored BOOT_MAC.

2.10.1 Scenario 1: No key is write protected and all user keys can be
erased and re-programmed

In this case the DEBUG_CHAL and DEBUG_AUTH commands can be used to set the secure flash back to its factory state.
See Appendix C Resetting the Secure flash to it’s Factory State. The DEBUG_CHAL and DEBUG_AUTH commands will
only work on a part which has no keys marked as Write Protected. All user keys must be known in this scenario, as they will
all be erased by this process and one must know them in order to restore them to their previous values. After successfully
running the DEBUG_CHAL and DEBUG_AUTH commands, the user keys section of the secure flash will be erased. New
keys can be programmed into the secure flash as described in 2.3 Secure storage for cryptographic keys. The procedure
which causes the CSE to generate BOOT_MAC should be followed. See Adding BOOT_MAC to secure flash automatically
using the CSE .

NOTE

The values at RCHW+4 (contains start address for BOOT_MAC) and RCHW+8 (contains BOOT_MAC code length in
bytes) must be populated correctly.

2.10.2 Scenario 2: One or more keys is write protected and all user
keys cannot be erased. (or not all user keys are known)

In this case the DEBUG_CHAL and DEBUG_AUTH commands cannot be used to set the secure flash back to its factory
state. In order to update the BOOT_MAC a new value for it must be derived and the key updated as described in section 2.8
Updating User Keys.

There are 2 methods which can be used to derive the new BOOT_MAC. These are described in the following sections.

2.10.2.1 Mehod 1 : Use the LOAD_RAM_KEY command and use the CSE
to generate the new BOOT_MAC

In this method the RAM key is loaded by issuing the CSE_LOAD_PLAIN_KEY command. The CSE_GENERATE_MAC
command can be used to derive the new BOOT_MAC. If the code flash has already been programmed the following code
can be used to derive the new BOOT_MAC value.

    #define BOOT_BLOCK_START_ADDR 0;
    volatile unsigned long long length ;
    vuint32_t * code_start_ptr;
    vuint32_t * code_length_ptr;
    vuint32_t * boot_block_ptr;
    
    boot_block_ptr = (uint32_t * )BOOT_BLOCK_START_ADDR ;
    code_start_ptr = boot_block_ptr + 1; /* get the code start address from the code flash*/
    code_length_ptr = boot_block_ptr + 2; /* get the code length in bytes from the code 
flash*/
    

CSE
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    length = (*code_length_ptr) * 8;   /* CSE_GENERATE_MAC takes bits as its input */

    CSE.P1.R = (uint32_t) &BOOT_MAC_KEY;
    CSE.CMD.R= CSE_LOAD_PLAIN_KEY; /* Load the BOOT_MAC_KEY as plain text to the RAM_KEY*/
        
    if (CSE.ECR.R != CSE_NO_ERR) {failcount++;}

    while (CSE.SR.B.BSY ==1){} /*wait until CSE is idle*/

    CSE.P1.R = CSE_RAM_KEY; /* RAM key */
    CSE.P2.R = (unsigned long long)&length; /* msg length */
    CSE.P3.R = (vuint32_t)*code_start_ptr;
    CSE.P4.R = (vuint32_t)&NEW_BOOT_MAC;
    CSE.CMD.R= CSE_GENERATE_MAC; /* generate the new BOOT_MAC value*/

The new BOOT_MAC value can be used to update the BOOT_MAC values stored in secure flash.

2.10.2.2 Method 2 : Generate the new BOOT_MAC offline
In this method an external program must be used. The hex data for binary image should be input to a program which can
calculate a new BOOT_MAC value using the BOOT_MAC_KEY. The new BOOT_MAC value can be used to update the
BOOT_MAC values stored in secure flash.

2.11 CSE Run Modes
On MPC564xB/C two run modes are supported. These control wether the main core of the MPC564xB/C (called e200z4
core) is gated by the CSE in flash boot modes.

2.11.1 Parallel Run Mode
In parallel run mode the e200z4 core is released in parallel to the CSE. The SECURE_BOOT command is executed by the
CSE in parallel to the e200z4 booting.

In this run mode the system frequency can be changed to 120 Mhz without interrupting the CSE. Because of this, this mode is
typically much faster at authenticating code than sequential mode, for e.g., 128 KB of code can be authenticated in 4.8 ms.

2.11.2 Sequential Run Mode
In sequential Run mode the e200z4 core is released after CSE has executed the SECURE_BOOT command . The e200z4
core is clock gated by system logic until the SECURE_BOOT command has been completed by the CSE. A timeout
mechanism (set in hardware to 16M x 16Mhz IRC clocks =~ 1 second) prevents a CSE execution error from preventing
system boot. In this Run mode the system frequency cannot be changed from the default 16 MHz IRC . Because of this, this
mode is much slower at authenticating code than sequential mode for e.g., 128 KB of code can be authenticated in 25 ms.

2.11.3 Changing between Parallel and Sequential modes
Parts leaving the factory will have the CSE Run mode set to parallel by default. The shadow flash at the locations noted
below are erased.

CSE
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To change the CSE to run in sequential mode the shadow flash must be programmed as follows:

Table 5. Shadow flash contents required for sequential mode

0xFF_C000 + Offset Content Comment

0x10 0x05AA55AF Start Word

0x14 0x00000000

0x18 0xFFFFFFFF

0x1C 0xFFFFFFFF

0x20 0xFFFFFFFF NVUSRO_1 ;LS bit =0 for sequential
mode

0x24 0x00400000

0x28 0xFFFFFFFF

0x2c 0xFFFFFFFF

0x30 0xFFFFFFFF Stop Word

0x34 0xFFFFFFFF

0x38 0xFFFFFFFF

0x3C 0xFFFFFFFF

Note that if the STCU is required to be enabled, the Stop Word will be in a different location to that shown above. Refer to
the section “Programming NVUSRO_1 and STCU fault grading parameters” in the User Manual .

As the MPC564xB/C is targeted for body and gateway applications, several system low power modes are implemented in the
device which are discussed in detail in AN4240 - Low Power Modes on MPC56xxB. It is not within the scope of this
document to discuss these modes again. However, as in the so called Standby mode, the biggest part of the SoC is internally
disconnected from the supply rails, this mode also has an effect on the functionality of the CSE module. For the standby
mode there are two possibilities to come back into the normal run mode. Either the user can configure the device to boot from
RAM and execute code from there or to boot from flash which is the same as a power on reset (POR).

If the user chooses to boot from RAM the CSE will not execute the SECURE_BOOT command. Therefore, the boot
protected keys will not be available for use after wakeup in RAM. However, the user can issue the INIT_CSE command by
application code which will:

• Download the firmware from the Secure flash into the CSE RAM
• Copy any valid keys in Secure flash to the local memory of the CSE

The SECURE_BOOT command can not be issued by application code, because according to the specification it will not
possible to start the CSE from unverified RAM code. This results in the fact that, boot protected keys will not be available for
the application after wakeup in RAM.

If the user chooses to boot from flash, this is the same as a POR and the SECURE_BOOT command will be executed by the
CSE. Therefore the boot protected keys will be available after wakeup in flash.

3 Example use cases-mini lifecycle
To ease the introduction for the user, an example project is delivered with this application note. This code should be general
example of how to use the CSE during a typical life cycle of a device from delivery through reprogramming as well as device
recovery back into the default state again. It is not intended to showcase a complete application but should be understood as a
starting point to facilitate the entry and provide the user with the basic prerequisites to start with the CSE. Furthermore, the
user should be aware that this is a example code only and not intended for production software whatsoever. It was tested on

Example use cases-mini lifecycle
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the MPC56xx Freescale evaluation motherboard with a MPC5646xB/C 208LQFP daughter card. The example project
contains several use cases. The project is using the GHS compiler 5.1.7 and Lauterbach debugger. The software concept of
the single examples is described on a case by case basis in Appendix D.

4 Conclusion
By showing the reasons for cryptography in general, and example automotive security use-cases the need for cryptography
becomes obvious. To protect the cryptographic keys from software attacks, the control over those keys moved from the
software domain to the hardware domain. The MPC564xB/C device is now the first device in the Freescale portfolio offering
the security features specified in the Secure Hardware Extension (SHE) functional specification completely in hardware
offering a higher security standard to OEM’s in the future when using this device.

The discussions and explanations in this document provide an overview of the features the CSE module implements and how
these features can be used. With the example code simulating a mini-lifecycle from first silicon, over re-programming up to
setting everything back into the default state will give the reader the means to start working with this module. This is
complemented with an explanatory video which can be found in the references.

For a more detailed discussion about how the CSE module can be used to protect application code please refer to application
note AN4235 - Using CSE to protect your application via a circle of trust.

5 Glossary
AES – Advanced Encryption Standard

CSE – Cryptograhpic Service Engine

CBC – Cipher Block Chaining

CFB – Cipher Feedback

CMAC – Cipher based message authentication code

CTR – Counter (cipher mode)

ECB – Electronic Codebook

GHS – Green Hills

OEM – Original Equipment Manufacturer

OFB – Output Feedback

POR – Power on Reset

PRNG – Pseudo Random Number Generator

RCHW – Reset Configuration Half Word

RNG – Random Number Generator

SHE – Secure Hardware Extension

SK – Secret Key

Conclusion
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Appendix A 

A.1 AES algorithm
The Advanced Encryption Standard (AES) algorithm was selected and specified by the US National Institute of Standard and
Technology (NIST) [FIPS197] after a public championship. The designers of the algorithm are Joan Daemen and Vincent
Rijmen. For this reason often the algorithm is called Rijndael-Algorithm.
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The AES algorithm is a symmetric cipher; for this encryption and decryption use the same key. The key value is 128, 192 or
256 bits width. Independent of the key size the block size is always 128 bits width according to the NIST standard3 . Figure
A-1 shows a general program flow of AES-128 (AES with 128-bit width key).

Figure A-1.

The algorithm is based on the following four functions: SubBytes, ShiftRows, MixColumns and AddRoundKey. The sub-
keys are derived from the main key.

A.1.1 AES basic functions
The functional description below is focused only on a 128-bit key implementation. But implementations for longer keys
(192-bit or 256-bit) are similar.

A.1.1.1 SubBytes
The SubBytes function replaces each byte of the 128-bit input value by a value of a 16x16 constant array which is called S-
Box. The high-nibble of each input byte is used as the y- and the low-nibble as the x-coordinate of the S-Box.

3. The original Rijndael algorithm supports block sizes of 128, 192 and 256 bits.

AES algorithm
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A.1.1.2 ShiftRows
The ShiftRows function interprets the input value as an 4x4 array and rotates the second row by one, the third row by two and
the fourth row by 3 bytes to the left.

A.1.1.3 MixColumns
The input values are interpreted again as a 4x4 array. Every column will be modulo multiplied with a predefined matrix.

A.1.1.4 AddRoundKey
The 128-bit input value is xor’ed with the iteration specific sub-key value.

A.1.1.5 SubKey Generation
The SubKeys are generated by allocating a 44x4 byte array as shown in Figure A-2.

Figure A-2. 44x4 key array

The first 4x4 block is filled up with the main key. The remaining cells are determined by the following two rules:

Rule #1: Columns where the index could be divided by 4 are calculated by the following:
1. Rotate the column before (Wi-1) by one byte up.
2. Replace the four byte values by the S-Box like in the SubBytes functions
3. XOR the column with the column of a pre-defined matrix called Rcon.

Rule #2: All other columns are generated by xor-ing wi-1 with wi-4.

Appendix B 

B.1 Memory Update Protocol

B.1.1 Generating M1, M2, M3
In order to generate M1, M2 and M3 the following steps must be performed.
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B.1.2 Generate K1
K1 = KDF(KAuthID, KEY_UPDATE_ENC_C)

• KDF is key derivation function which derives a secret key (K1) from a secret value.
• KAuthID – Authorizing key value. In the case where a part from the factory has no keys programmed ( the Secure Flash

is erased) the value stored in flash does not have a valid checksum and CSE does not copy it to RAM at initialization,
hence this value, in the CSE’s RAM, is zero. In this case we are using AuthID = ID (i.e. the authorizing key will be the
key itself)

• KEY_UPDATE_ENC_C – Constant value defined by SHE as:

0x01015348_45008000_00000000_000000B0

B.1.3 Generate K2
K2 = KDF(KAuthID,KEY_UPDATE_MAC_C)

• KEY_UPDATE_MAC_C – Constant value defined by SHE as :

0x01025348_45008000_00000000_000000B0

B.1.4 Generate M1
M1 = UID’|ID|AuthID

• AuthID can be either ID (number of key being updated) or MASTER_ECU_KEY number (0x1)
• UID’ can be 0 (Wildcard value) because WC flag = 0 on parts from the factory
• UID is 120 bit and ID and AuthID are 4 bits each

B.1.5 Generate M2
M2 = ENCCBC,K1,IV=0(CID’|FID’|“0...0"95|KID’)

• Run a CBC encryption using K1 (as defined previously) with Initial Value (IV) =0
• The message for encryption is a concatenation of:
• CID - the new counter value (28 bits). 0x0000001 in this case
• FID - New Protection flags - WP | BP | DP | KU | WC (5 bits)
• 95 zeros to fill first 128 bit block with zeros
• KID - The new key value (128 bits)

B.1.6 Generate M3
M3 = CMACK2(M1|M2)

• A CMAC is performed over M1 and M2 using key K2

Memory Update Protocol
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B.1.7 Generating M4, M5
When the CSE_LOAD_KEY command is issued CSE derives M4 and M5. These values can be independently generated
offline and compared against those generated by the CSE.

B.1.8 Generating K3
K3 = KDF(KEYID,KEY_UPDATE_ENC_C)

• KEY_UPDATE_ENC_C – Constant value defined by SHE as:

0x01025348_45008000_00000000_000000B0

B.1.9 Generate M4
M4 = UID|ID|AuthID|M4*

• M4 is a concatenation of:
• UID – Unique ID (120 bits)
• ID – number of key updated (4 bits)
• AuthID – number of key authorizing the update (4 bits)
• M4* - the encrypted counter value; prior to encryption the counter value (28 bits) is padded with a 1 and 99 0’s.

The key for the ECB encryption is K3 (derived as above)

B.1.10 Generate M5
M5 = CMACK4(M4)

• K4 = KDF (KEYID,KEY_UPDATE_MAC_C)

If M4 and M5 match to what was calculated offline and CSE returns NO_ERROR in the CSE_ECR (Error Code
Register) then the LOAD_KEY command was successful.

NOTE
If a key has it’s Write Protect (WP) attribute set, the key cannot ever be
updated or erased. See Section 2.3.1 Key Attributes. Write Protection should
only be used when the user is absolutely certain that the key never needs to be
changed or erased. Setting Write Protection on any single key will mean that
the part cannot be reset to its factory state using the DEBUG CHALLENGE/
AUTHORIZATION sequence. See section Appendix C Resetting the Secure
flash to it’s Factory State.

Memory Update Protocol
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B.2 Example code for updating a key (secret)
uint32_t M1 [4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFF11};
uint32_t M2 [8] = {0xff8b75f7, 0x3e6ad5a1, 0x729423c6, .. , 0xf0cc28ec};
uint32_t M3 [4] = {0x57f51382, 0x4cfd1ba7, 0xd7593939, 0x4c8d0036};
uint32_t M4_output [8] ;
uint32_t M5_output [4] ;
while (CSE.SR.B.BSY ==1){} /*wait until CSE is idle*/
CSE.P1.R = (vuint32_t)&M1 ; /* address where CSE will look for M1*/
CSE.P2.R = (vuint32_t)&M2 ; /* address where CSE will look for M2*/
CSE.P3.R = (vuint32_t)&M3; /* address where CSE will look for M3*/
CSE.P4.R = (vuint32_t)&M4_output; /* address where CSE will write M4*/
CSE.P5.R = (vuint32_t)&M5_output; /* address where CSE will write M5*/
CSE.CMD.R= CSE_LOAD_KEY;

Appendix C 

C.1 Appendix C Resetting the secure flash to its factory state
SHE describes a mechanism for resetting the secure flash to the state it was in when it left the factory. The mechanism is only
applicable if no user key has been write protected. The process is described in section 11 of the SHE spec “failure analysis of
SHE/Resetting of SHE”. CSE has implemented this mechanism by way of 2 commands. These are CSE_DEBUG_CHAL and
CSE_DEBUG_AUTH. Successfully issuing these commands will result in the part having no user keys (BOOT_MAC,
BOOT_MAC_KEY, KEY1..KEY10 are all erased).

The TRNG must be initialized prior to the CSE_DEBUG_CHAL command being issued. The TRNG is initialized by
executing the CSE_INIT_RNG command. The TRNG is used in deriving a challenge value. The CSE_CR[DIV] field needs
to be configured for these commands such that the TRNG clock is between 500 kHz and 2 MHz.

/* set up DIVIDER for TRNG*/

CSE.CR.B.DIV = 29; /* for 120 Mhz Fsys - gives 2 Mhz TRNG clock*/

/* initialize RNG */

CSE.CMD.R= CSE_INIT_RNG;

The RIN bit must be checked to confirm that the TRNG was correctly initialized

if (CSE.SR.R & 0x00000020 != 0x00000020 ) {failcount++;} /* check RIN bit is set*/

The CSE will provide a challenge value when the CSE_DEBUG_CHAL command is issued.

/* generate challenge value */

CSE.P1.R = (vuint32_t)&challenge ; /* challenge is declared as 4 x uint32_t */

CSE.CMD.R= CSE_DEBUG_CHAL;

The UID for the part in question is added to challenge output and an authorization value is derived using KDEBUG

KDEBUG is defined as :
• KDEBUG = KDF(MASTER_ECU_KEY ,DEBUG_KEY_C)

• DEBUG_KEY_C = 0x01035348_45008000_00000000_000000B0

• The authorization value is calculated as follows:

Example code for updating a key (secret)
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• AUTHORIZATION= CMACKDEBUG(CHALLENGE|UID)

• For development purposes this may be calculated using the CSE
• /* load RAM_key with KDEBUG*/

CSE.P1.R = (uint32_t) &KDEBUG;
CSE.CMD.R= CSE_LOAD_PLAIN_KEY;
while (CSE.SR.B.BSY ==1){} /*wait until CSE is idle*/
challenge_UID [0] = challenge[0];
challenge_UID [1] = challenge[1];
challenge_UID [2] = challenge[2];
challenge_UID [3] = challenge[3];
challenge_UID [4] = UID[0];
challenge_UID [5] = UID[1];
challenge_UID [6] = UID[2];
challenge_UID [7] = UID[3];
/* generate CMAC based on challenge|UID using KDEBUG */
CSE.P1.R = CSE_RAM_KEY; /* RAM key */
CSE.P2.R = (unsigned long long)&length; /* msg length : 248 in this case (UID is 120 
bits )*/
CSE.P3.R = (vuint32_t)&challenge_UID;
CSE.P4.R = (vuint32_t)&authorization;
CSE.CMD.R= CSE_GENERATE_MAC;

AUTHORIZATION is passed to CSE and CSE_DEBUG_AUTH is issued.

/* issue authorization command */
CSE.P1.R = (vuint32_t)&authorization ;
CSE.CMD.R = CSE_DEBUG_AUTH;

If the CSE_DEBUG_AUTH command is successfully executed, CSE will respond with CSE_NO_ERROR in CSE_ECR
(error code register).

Appendix D 

D.1 Example code
All examples are running on a Freescale Evaluation board. Basic mode initialization of the part is done and the PLL is setup
to run at 120 MHz. Examples A.1 to A.3 are running from RAM as they update the system or secure flash. The example
programs mentioned in A.4 are running from flash. The examples were tested using the GreenHills Compiler 5.1.7 and a
Lauterbach Debugger. In the folder called Lauterbach scripts, you can find toplevel *.cmm scripts with the same name as the
testcase. Use these scripts to run the examples. The main scripts usually call subscripts. These subscripts can also be run
standalone.

For the testcases a set of pre-calculated keys and values are used which are shown in the following table. These values can be
found in some of the header files provided with the examples. To use user-defined keys the user needs to use offline scripts to
calculate the necessary values.
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Table D-1. Example key values used in project

Slot Name Key ID [hex] Address
offset [hex]

Key Flags
[bin] (Write-,
Boot-, Debug
Protection,
Key Usage,
Wildcard)

128-bit Key [hex] word0, word1, word2, word3

BOOT_MAC_
KEY

0x2 0x060 00011 12340000 00000000 00000000 00005678

KEY_1 0x4 0x0A0 00001 2FF8B03C 5C540546 5A9C94BD 2D863279

KEY_2 0x5 0x0C0 00001 85852FF8 E7860C89 B3AB9D63 B8D6288F

KEY_3 0x6 0x0E0 01001 A36FF144 FB6D5E2C DA0D2894 DA0D2894

KEY_4 0x7 0x100 00101 86078C1A BCDCC6B6 C52C851D E5652BF5

KEY_5 0x8 0x120 00011 043A1A50 DB3954D2 22FEB37F 1F678FCA

KEY_6 0x9 0x140 00001 4B957750 4B957750 6F75C3E0 5C8DCD59

KEY_7 0xA 0x160 00011 2b7e1516 28aed2a6 abf71588 09cf4f3c

KEY_8 0xB 0x180 00111 10AF4B5B 024195B9 1730D7F5 94C87E19

KEY_9 0xC 0x1A0 00001 93346F4C 6A8ABCCD 37D52249 291F4138

KEY_10 0xD 0x1C0 01011 68B674CB 8198A250 3A285100 F4DDC40A

D.1.1 Update a fresh part to be able to encrypt-decrypt
Assuming that the Code and Data flash as well as the secure memory is empty (delivery state), this example can be used to
program some predefined keys into the secure memory. The M1 to M5 values for updating have been pre-calculated and are
taken from the update_keys.h file. If the user wants to use his own keys, these values need to be recalculated with offline
scripts, which are not part of this application note. The example will then ask for an application *.elf file to be programmed
into the flash. After two resets the CSE will have calculated the BOOT_MAC with the parameters defined in the RCHW and
stored it into the Secure flash. The CSE must show the BOK Flag in the status register.

NOTE
For the application to be programmed into the flash, it is essential that a valid RCHW is
used. Otherwise the CSE might issue a “system memory error”.

D.1.2 Reprogramming of a programmed part
Assuming a part with keys programmed in the Secure flash, and an application in the Code flash, this example can be used to
directly program the application code in Code flash and update the keys accordingly, so that the SECURE_BOOT
mechanism is successful with a new BOOT_MAC is calculated over the new application file. Basically, this example is a
combination of A.1 and A.3 as it will erase everything and then update the fresh part accordingly.

Example code
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D.1.3 Recovery to default state again
Assuming a part with keys programmed in the Secure flash and an application in the Code flash, this example can be used to
get the part back into the delivery state. This means this example will erase all keys in the Secure flash with the debug
challenge and authorization protocol. It will also erase the Code and Data flash. The user is then able to start programming
again.

D.1.4 Pin toggle test programs
There are two separate demo applications provided with the code. Both programs toggle an LED on the board and run
standalone from flash. The *.elf files are provided to have flash code with a valid RCHW configuration available for testing
the SECURE_BOOT mechanism with two different files. For first tests, it is recommended to use these files when prompted
to program an *.elf file by the demo applications.

Z4_flash_Pin_Blink_VLE_standalone toggles LED1 on the EVB

Z4_flash_Pin_Blink2_VLE_standalone toggles LED3 on the EVB
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