
CircuitPython on Linux and Raspberry Pi
Created by lady ada

Last updated on 2021-05-01 09:02:28 PM EDT

2
4
4
4
6
6
6
7
8
8
8

10
10
10
12
12
17
17
18
19
19
22
23
23
26
28
29
29
33
33
34
37
37
41
41
44
44
47
47
47
47
48
48
49
50

Guide Contents

Guide Contents
Overview

Why CircuitPython?
CircuitPython on Microcontrollers

CircuitPython & RasPi
CircuitPython Libraries on Linux & Raspberry Pi
Wait, isn't there already something that does this - GPIO Zero?
What about other Linux SBCs?

Installing CircuitPython Libraries on Raspberry Pi
Prerequisite Pi Setup!
Update Your Pi and Python
Check I2C and SPI

Enabling Second SPI
Blinka Test
Digital I/O
Parts Used
Wiring
Blinky Time!
Button It Up
I2C Sensors & Devices
Parts Used
Wiring
Install the CircuitPython BME280 Library
Run that code!
I2C Clock Stretching
SPI Sensors & Devices
Using the Second SPI Port
Parts Used
Wiring
Install the CircuitPython MAX31855 Library
Run that code!
UART / Serial
The Easy Way - An External USB-Serial Converter
The Hard Way - Using Built-in UART

Disabling Console & Enabling Serial
Install the CircuitPython GPS Library
Run that code!
PWM Outputs & Servos
Update Adafruit Blinka
Supported Pins
PWM - LEDs
Servo Control

pulseio Servo Control
adafruit_motor Servo Control

More To Come!

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 2 of 59

51
52
52
52
52
52
53
53
54
54

54

54

CircuitPython & OrangePi
FAQ & Troubleshooting

Update Blinka/Platform Libraries
Getting an error message about "board" not found or "board" has no attribute
Mixed SPI mode devices
Why am I getting AttributeError: 'SpiDev' object has no attribute 'writebytes2'?
No Pullup/Pulldown support on some linux boards or MCP2221
Getting OSError: read error with MCP2221
Using FT232H with other FTDI devices.
I can't get neopixel, analogio, audioio, rotaryio, displayio or pulseio to work!
Help, I'm getting the message "error while loading shared libraries: libgpiod.so.2: cannot open shared object file:
No such file or directory"
When running the libgpiod script, I see the message: configure: error: "libgpiod needs linux headers version
>= v5.5.0"

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 3 of 59

Overview
� Please note! All the stuff in this guide works and we're improving and working on this code a bunch

so be sure to check back for updates!

Here at Adafruit we're always looking for ways to make making easier - whether that's making breakout

boards for hard-to-solder sensors or writing libraries to simplify motor control. Our new favorite way to

program is CircuitPython.

Why CircuitPython?
CircuitPython is a variant of MicroPython, a very small version of Python that can fit on a microcontroller.

Python is the fastest-growing programming language. It's taught in schools, used in coding bootcamps,

popular with scientists and of course programmers at companies use it a lot!

CircuitPython adds the Circuit part to the Python part. Letting you program in Python and talk to Circuitry

like sensors, motors, and LEDs!

CircuitPython on Microcontrollers
For a couple years now we've had CircuitPython for microcontrollers like our SAMD21 series with

Feather/Trinket/CircuitPlayground/Metro M0, as well as the ESP8266 WiFi microcontroller, nRF52

bluetooth microcontroller and SAMD51 series.

All of these chips have something in common - they are microcontrollers with hardware peripherals like

SPI, I2C, ADCs etc. We squeeze Python into 'em and can then make the project portable.

But...sometimes you want to do more than a microcontroller can do. Like HDMI video output, or camera

capture, or serving up a website, or just something that takes more memory and computing than a

microcontroller board can do...

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 4 of 59

https://www.adafruit.com/product/847
https://www.adafruit.com/product/2781
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/826
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/826
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/269
https://www.adafruit.com/product/270
https://www.adafruit.com/product/826
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/746
https://www.adafruit.com/product/954
https://www.adafruit.com/product/3309
https://www.adafruit.com/product/284
https://www.adafruit.com/product/70

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 5 of 59

CircuitPython & RasPi

CircuitPython Libraries on Linux & Raspberry Pi
The next obvious step is to bring CircuitPython back to 'desktop Python'. We've got tons of projects,

libraries and example code for CircuitPython on microcontrollers, and thanks to the flexibility and power of

Python it's pretty easy to get that code working with micro-computers like Raspberry Pi or other 'Linux with

GPIO pins available' single board computers.

We are not running the CircuitPython interpreter itself on the Linux machine. But we are running Python

code written to use the CircuitPython hardware API (busio.I2C , busio.SPI , etc.)

We'll use a special library called adafruit_blinka (https://adafru.it/BJS) (named after Blinka, the

CircuitPython mascot (https://adafru.it/BJT)) to provide the layer that translates the CircuitPython hardware

API to whatever library the Linux board provides. For example, on Raspberry Pi we use the python

RPi.GPIO (https://adafru.it/BJU) library. For any I2C interfacing we'll use ioctl messages to the /dev/i2c
device. For SPI we'll use the spidev python library, etc. These details don't matter so much because they

all happen underneath the adafruit_blinka layer.

The upshot is that any code we have for CircuitPython will be instantly and easily runnable on Linux

computers like Raspberry Pi.

In particular, we'll be able to use all of our device drivers - the sensors, led controllers, motor drivers,

HATs, bonnets, etc. And nearly all of these use I2C or SPI!

Wait, isn't there already something that does this - GPIO Zero?
Yes! We like and use GPIO Zero a lot (https://adafru.it/BJV), its an excellent hardware interfacing library for

Raspberry Pi. It's great for digital in/out, analog inputs, servos, some basic sensors, etc. In particular, one

cool thing it does is thread/event management so you can have code run, say, when a button is pressed.

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 6 of 59

https://pypi.org/project/Adafruit-Blinka/
https://www.adafruit.com/?q=blinka
https://pypi.org/project/RPi.GPIO/
https://gpiozero.readthedocs.io/en/stable/

GPIO Zero excels at that, but doesn't cover SPI/I2C sensors or drivers, which is where we got stuck: for

each sensor we had we'd write a driver in C/C++ for Arduino, CircuitPython using our hardware API, and

then Python using smbus or similar.

By letting you use CircuitPython on Raspberry Pi via adafruit_blinka, you can unlock all of the drivers and

example code we wrote! And you can keep using GPIO Zero for pins, buttons and LEDs. We save time and

effort so we can focus on getting code that works in one place, and you get to reuse all the code we've

written already.

What about other Linux SBCs?
Plus, we're adapting and extending adafruit_blinka to support other boards (https://adafru.it/DbB) such as

Allwinners and BeagleBone, even some smaller linux boards like Onion.io will be able to run CircuitPython

code.

If you have a board you'd like to adapt check out the adafruit_blinka code on github (https://adafru.it/BJX),

pull requests are welcome as there's a ton of different Linux boards out there! You'll need to add a

detection element (https://adafru.it/Dyb) so we can tell what board you're running on, then the pin

definitions into adafruit_blinka above. As long as you're running a modern kernel, you'll have libgpiod for

GPIO, smbus for I2C and spidev for SPI all ready to go.

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 7 of 59

https://learn.adafruit.com/circuitpython-on-orangepi-linux
https://github.com/adafruit/Adafruit_Blinka
https://github.com/adafruit/Adafruit_Python_PlatformDetect

Installing CircuitPython Libraries on Raspberry Pi
� CircuitPython libraries and adafruit-blinka will work on any Raspberry Pi board! That means the

original 1, the Pi 2, Pi 3, Pi 4, Pi Zero, or even the compute module.

� At this time, Blinka requires Python version 3.6 or later, which means you will need to at least be

running Raspberry Pi OS Buster.

Prerequisite Pi Setup!
In this page we'll assume you've already gotten your Raspberry Pi up and running and can log into the

command line

Here's the quick-start for people with some experience:

1. Download the latest Raspberry Pi OS or Raspberry Pi OS Lite (https://adafru.it/Pf5) to your computer

2. Burn the OS image to your MicroSD card (https://adafru.it/dDL) using your computer

3. Re-plug the SD card into your computer (don't use your Pi yet!) and set up your wifi connection by

editing supplicant.conf (https://adafru.it/yuD)

4. Activate SSH support (https://adafru.it/yuD)

5. Plug the SD card into the Pi

6. If you have an HDMI monitor we recommend connecting it so you can see that the Pi is booting OK

7. Plug in power to the Pi - you will see the green LED flicker a little. The Pi will reboot while it sets up

so wait a good 10 minutes

8. If you are running Windows on your computer, install Bonjour support so you can use .local names,

you'll need to reboot Windows after installation (https://adafru.it/lPE)

9. You can then ssh into raspberrypi.local (https://adafru.it/jvB)

The Pi Foundation has tons of guides as well (https://adafru.it/BJY)

� We really really recommend the lastest Raspberry Pi OS only. If you have an older Raspberry Pi OS

install, run "sudo apt-get update" and "sudo apt-get upgrade" to get the latest OS!

Update Your Pi and Python
Run the standard updates:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install python3-pip

and

sudo pip3 install --upgrade setuptools

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 8 of 59

https://www.raspberrypi.org/software/operating-systems/
https://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card-for-your-raspberry-pi
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux#microsoft-windows
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started

� Python2 support has been dropped, so you will need to either use pip3 and python3 as commands

or set Python 3 as the default python install.

We put together a script to easily make sure your Pi is correctly configured and install Blinka. It requires

just a few commands to run. Most of it is installing the dependencies.

cd ~
sudo pip3 install --upgrade adafruit-python-shell
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/raspi-blinka.py
sudo python3 raspi-blinka.py

If your system default Python is Python 2 (which is likely on a

first install), it will ask to confirm that you want to proceed.

Choose yes.

It may take a few minutes to run. When it finishes, it will ask

you if you would like to reboot. Choose yes.

Once it reboots, the connection will close. After a couple of

minutes, you can reconnect.

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 9 of 59

https://learn.adafruit.com//assets/98682
https://learn.adafruit.com//assets/98683
https://learn.adafruit.com//assets/98684

Check I2C and SPI
The script will automatically enable I2C and SPI. You can run the following command to verify:

ls /dev/i2c* /dev/spi*

You should see the response

/dev/i2c-1 /dev/spidev0.0 /dev/spidev0.1

Enabling Second SPI
If you are using the main SPI port for a display or something and need another hardware SPI port, you can

enable it by adding the line

dtoverlay=spi1-3cs

to the bottom of /boot/config.txt and rebooting. You'll then see the addition of some /dev/spidev1.x

devices:

Blinka Test
Create a new file called blinkatest.py with nano or your favorite text editor and put the following in:

import board
import digitalio
import busio

print("Hello blinka!")

Try to great a Digital input
pin = digitalio.DigitalInOut(board.D4)
print("Digital IO ok!")

Try to create an I2C device
i2c = busio.I2C(board.SCL, board.SDA)
print("I2C ok!")

Try to create an SPI device
spi = busio.SPI(board.SCLK, board.MOSI, board.MISO)
print("SPI ok!")

print("done!")

Save it and run at the command line with

python3 blinkatest.py

You should see the following, indicating digital i/o, I2C and SPI all worked

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 10 of 59

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 11 of 59

Digital I/O
The first step with any new hardware is the 'hello world' of electronics - blinking an LED. This is very easy

with CircuitPython and Raspberry Pi. We'll extend the example to also show how to wire up a

button/switch and enable a pull-up resistor.

Even if you use a different library to create digital in/outs like GPIO Zero, there's a number of sensor

libraries that use a digital pin for resetting, or for a chip-select. So it's good to have this part working!

Parts Used
Any old LED will work just fine as long as its not an IR LED (you can't see those) and a 470 to 2.2K resistor

Diffused Blue 10mm LED (25 pack)

Need some big indicators? We are big fans of these huge diffused blue LEDs. They are really bright so

they can be seen in daytime, and from any angle. They go easily into a breadboard...

$9.95

In Stock

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 12 of 59

https://www.adafruit.com/product/847
https://www.adafruit.com/product/847

Through-Hole Resistors - 470 ohm 5% 1/4W - Pack of 25

ΩMG! You're not going to be able to resist these handy resistor packs! Well, axially, they do all of the

resisting for you!This is a 25 Pack of...

Out of Stock

Some tactile buttons or switches

Out of
Stock

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 13 of 59

https://www.adafruit.com/product/2781
https://www.adafruit.com/product/2781

Tactile Switch Buttons (12mm square, 6mm tall) x 10 pack

Medium-sized clicky momentary switches are standard input "buttons" on electronic projects. These work

best in a PCB but

$2.50

In Stock

We recommend using a breadboard and some female-male wires.

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 14 of 59

https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119

Premium Female/Male 'Extension' Jumper Wires - 40 x 6" (150mm)

Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires

are 6" (150mm) long and come in a 'strip' of 40 (4 pieces of each of ten rainbow...

$3.95

In Stock

You can use a Cobbler to make this a little easier, the pins are then labeled!

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 15 of 59

https://www.adafruit.com/product/826
https://www.adafruit.com/product/826

Adafruit Pi Cobbler + Kit- Breakout Cable for Pi B+/A+/Pi 2/Pi 3

The Raspberry Pi B+ has landed on the Maker World like a 40-GPIO pinned, quad-USB ported, credit card

sized bomb of DIY joy. And while you can use most of our great Model B accessories...

Out of Stock

Out of
Stock

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 16 of 59

https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990

Assembled Pi T-Cobbler Plus - GPIO Breakout

This is the assembled version of the Pi T-Cobbler Plus. It only works with the Raspberry Pi Model Zero,

A+, B+, Pi 2, Pi 3 & Pi 4! (Any Pi with 2x20...

$7.95

In Stock

Wiring
Connect the Raspberry Pi Ground pin to the blue ground rail on the breadboard.

Connect one side of the tactile switch to Raspberry Pi GPIO #4

Connect the other side of the tactile switch to the ground rail

Connect the longer/positive pin of the LED to Raspberry Pi GPIO #18

Connect the shorter/negative pin of the LED to a 470ohm to 2.2K resistor, the other side of the

resistor goes to ground rail

Double-check you have the right wires connected to the right location, it can be tough to keep track of Pi

pins as there are forty of them!

No additional libraries are needed so we can go straight on to the example code

However, we recommend running a pip3 update!

pip3 install --upgrade adafruit_blinka

Blinky Time!
The finish line is right up ahead, lets start with an example that blinks the LED on and off once a second

(half a second on, half a second off):

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 17 of 59

https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028

import time
import board
import digitalio

print("hello blinky!")

led = digitalio.DigitalInOut(board.D18)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Verify the LED is blinking. If not, check that it's wired to GPIO #18, the resistor is installed correctly, and

you have a Ground wire to the Raspberry Pi.

Type Control-C to quit

Button It Up
Now that you have the LED working, lets add code so the LED turns on whenever the button is pressed

import time
import board
import digitalio

print("press the button!")

led = digitalio.DigitalInOut(board.D18)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.D4)
button.direction = digitalio.Direction.INPUT
button.pull = digitalio.Pull.UP

while True:
 led.value = not button.value # light when button is pressed!

Press the button - see that the LED lights up!

Type Control-C to quit

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 18 of 59

I2C Sensors & Devices
The most popular electronic sensors use I2C to communicate. This is a 'shared bus' 2 wire protocol, you

can have multiple sensors connected to the two SDA and SCL pins as long as they have unique addresses

(check this guide for a list of many popular devices and their addresses (https://adafru.it/BK0))

Lets show how to wire up a popular BME280. This sensor provides temperature, barometric pressure and

humidity data over I2C

We're going to do this in a lot more depth than our guide pages for each sensor, but the overall technique

is basically identical for any and all I2C sensors.

Honestly, the hardest part of using I2C devices is figuring out the I2C address (https://adafru.it/BK0) and

which pin is SDA and which pin is SCL!

� Don't forget you have to enable I2C with raspi-config!

Parts Used

Adafruit BME280 I2C or SPI Temperature Humidity Pressure Sensor

Bosch has stepped up their game with their new BME280 sensor, an environmental sensor with

temperature, barometric pressure and humidity! This sensor is great for all sorts...

$14.95

In Stock

We recommend using a breadboard and some female-male wires.

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 19 of 59

https://learn.adafruit.com/i2c-addresses
https://learn.adafruit.com/i2c-addresses
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/2652

Premium Female/Male 'Extension' Jumper Wires - 40 x 6" (150mm)

Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires

are 6" (150mm) long and come in a 'strip' of 40 (4 pieces of each of ten rainbow...

$3.95

In Stock

You can use a Cobbler to make this a little easier, the pins are then labeled!

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 20 of 59

https://www.adafruit.com/product/826
https://www.adafruit.com/product/826

Adafruit Pi Cobbler + Kit- Breakout Cable for Pi B+/A+/Pi 2/Pi 3

The Raspberry Pi B+ has landed on the Maker World like a 40-GPIO pinned, quad-USB ported, credit card

sized bomb of DIY joy. And while you can use most of our great Model B accessories...

Out of Stock

Out of
Stock

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 21 of 59

https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990

Assembled Pi T-Cobbler Plus - GPIO Breakout

This is the assembled version of the Pi T-Cobbler Plus. It only works with the Raspberry Pi Model Zero,

A+, B+, Pi 2, Pi 3 & Pi 4! (Any Pi with 2x20...

$7.95

In Stock

Wiring
Connect the Raspberry Pi 3.3V power pin to Vin

Connect the Raspberry Pi GND pin to GND

Connect the Pi SDA pin to the BME280 SDI

Connect the Pi SCL pin to to the BME280 SCK

Double-check you have the right wires connected to the right location, it can be tough to keep track of Pi

pins as there are forty of them!

After wiring, we recommend running I2C detection to verify that you see the device, in this case its

address 77

sudo i2cdetect -y 1

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 22 of 59

https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028

Install the CircuitPython BME280 Library
OK onto the good stuff, you can now install the Adafruit BME280 CircuitPython library.

As of this writing, not all libraries are up on PyPI so you may want to search before trying to install. Look

for circuitpython and then the driver you want.

(If you don't see it you can open up a github issue on circuitpython to remind us (https://adafru.it/tB7)!)

Once you know the name, install it with

pip3 install adafruit-circuitpython-bme280

You'll notice we also installed a dependancy called adafruit-circuitpython-busdevice. This is a great thing

about pip, if you have other required libraries they'll get installed too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 23 of 59

https://github.com/adafruit/circuitpython

The finish line is right up ahead. You can now run one of the (many in some cases) example scripts we've

written for you.

Check out the examples for your library by visiting the repository for the library and looking in the example

folder. In this case, it would be

https://github.com/adafruit/Adafruit_CircuitPython_BME280/tree/master/examples (https://adafru.it/BK1)

As of this writing there's only one example. But that's cool, here it is:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import adafruit_bme280

Create sensor object, using the board's default I2C bus.
i2c = board.I2C() # uses board.SCL and board.SDA
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)

OR create sensor object, using the board's default SPI bus.
spi = board.SPI()
bme_cs = digitalio.DigitalInOut(board.D10)
bme280 = adafruit_bme280.Adafruit_BME280_SPI(spi, bme_cs)

change this to match the location's pressure (hPa) at sea level
bme280.sea_level_pressure = 1013.25

while True:
 print("\nTemperature: %0.1f C" % bme280.temperature)
 print("Humidity: %0.1f %%" % bme280.relative_humidity)
 print("Pressure: %0.1f hPa" % bme280.pressure)
 print("Altitude = %0.2f meters" % bme280.altitude)
 time.sleep(2)

Save this code to your Pi by copying and pasting it into a text file, downloading it directly from the Pi, etc.

Then in your command line run

python3 bme280_simpletest.py

The code will loop with the sensor data until you quit with a Control-C

That's it! Now if you want to read the documentation on the library, what each function does in depth, visit

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 24 of 59

https://github.com/adafruit/Adafruit_CircuitPython_BME280/tree/master/examples

our readthedocs documentation at

https://circuitpython.readthedocs.io/projects/bme280/en/latest/ (https://adafru.it/BK2)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 25 of 59

https://circuitpython.readthedocs.io/projects/bme280/en/latest/

I2C Clock Stretching
In order to use certain I2C sensors, such as the BNO055 (https://adafru.it/fE0), BNO085 and the

CCS811 (https://adafru.it/BlK), you'll need to enable I2C clock stretching 'support' by greatly slowing down

the I2C clock on the Raspberry Pi using the device tree overlay.

This is done by adding a line in /boot/config.txt . Log in to a terminal on your Pi and open that file in Nano,

or your text editor of choice:

sudo nano /boot/config.txt

Scroll down until you find a block like:

Uncomment some of all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on
dtparam=i2s=on
dtparam=spi=on

This block might vary depending on what you've enabled in raspi-config . Directly below it, add the

following:

Clock stretching by slowing down to 10KHz
dtparam=i2c_arm_baudrate=10000

The default baudrate may be 100KHz or 1MHz, by slowing it down to 10KHz or more, you may be able to

be slow enough to avoid missing clocks.

In Nano, your screen should look like this:

Next, save the file and exit (in Nano, press Ctrl-X, y for yes, and Enter).

Now you can reboot your Pi and proceed to testing your I2C device:

sudo reboot

If you still get bad data, try slowing it down more, maybe to 5 KHz or 1 KHz rate. Reboot after each change

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 26 of 59

https://www.adafruit.com/product/2472
https://www.adafruit.com/product/3566

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 27 of 59

SPI Sensors & Devices
SPI is less popular than I2C but still you'll see lots of sensors and chips use it. Unlike I2C, you don't have

everything share two wires. Instead, there's three shared wires (clock, data in, data out) and then a unique

'chip select' line for each chip.

The nice thing about SPI is you can have as many chips as you like, even the same kind, all share the three

SPI wires, as long as each one has a unique chip select pin.

The formal/technical names for the 4 pins used are:

SPI clock - called SCLK, SCK or CLK

SPI data out - called MOSI for Microcomputer Out Serial In. This is the wire that takes data from the

Linux computer to the sensor/chip. Sometimes marked SDI or DI on chips

SPI data in - called MISO for Microcomputer In Serial Out. This is the wire that takes data to the Linux

computer from the sensor/chip. Sometimes marked SDO or DO on chips

SPI chip select - called CS or CE

Remember, connect all SCK, MOSI and MISO pins together (unless there's some specific

reason/instruction not to) and a unique CS pin for each device.

� WARNING! SPI on Linux/Raspberry PI WARNING!

SPI on microcontrollers is fairly simple, you have an SPI peripheral and you can transfer data on it with

some low level command. Its 'your job' as a programmer to control the CS lines with a GPIO. That's how

CircuitPython is structured as well. busio does just the SPI transmit/receive part and busdevice handles

the chip select pin as well.

Linux, on the other hand, doesn't let you send data to SPI without a CS line, and the CS lines are fixed in

hardware as well. For example on the Raspberry Pi, there's only two CS pins available for the hardware SPI

pins - CE0 and CE1 - and you have to use them. (In theory there's an ioctl option called no_cs but this

does not actually work)

The upshot here is - to let you use more than 2 peripherals on SPI, we decided to let you use any CS pins

you like, CircuitPython will toggle it the way you expect. But when we transfer SPI data we always tell the

kernel to use CE0. CE0 will toggle like a CS pin, but if we leave it disconnected, its no big deal

The upshot here is basically never connect anything to CE0 (or CE1 for that matter). Use whatever chip

select pin you define in CircuitPython and just leave the CE pins alone, it will toggle as if it is the chip

select line, completely on its own, so you shouldn't try to use it as a digital input/output/whatever.

� Don't forget you have to enable SPI with raspi-config!

� If you have installed a PiTFT from another guide, you will need to "uninstall" that before you can use

the main spi ports.

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 28 of 59

Using the Second SPI Port
The Raspberry Pi has a 'main' SPI port, but not a lot of people know there's a second one too! This is

handy if you are using the main SPI port for a PiTFT or other kernel-driven device. You can enable this SPI

#1 by adding (https://adafru.it/Oaa)

dtoverlay=spi1-3cs

to the bottom of /boot/config.txt and rebooting. You'll then see the addition of some /dev/spidev1.x

devices.

Here's the wiring for SPI #1:

SCK_1 on GPIO #21

MOSI_1 on GPIO #20

MISO_1 on GPIO #19

SPI #1 CS0 on GPIO 18

SPI #1 CS1 on GPIO 17

SPI #1 CS2 on GPIO 16

like the main SPI, we'll use CE0 as our default but don't connect to it! Use any other pin and leave that one

unused. Then update your scripts to use

spi = busio.SPI(board.SCK_1, MOSI=board.MOSI_1, MISO=board.MISO_1)

Parts Used
OK now that we've gone thru the warning, lets wire up an SPI MAX31855 thermocouple sensor, this

particular device doesn't have a MOSI pin so we'll not connect it.

Thermocouple Amplifier MAX31855 breakout board (MAX6675 upgrade)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 29 of 59

https://elinux.org/RPi_SPI
https://www.adafruit.com/product/269

Thermocouples are very sensitive, requiring a good amplifier with a cold-compensation reference. The

MAX31855K does everything for you, and can be easily interfaced with any...

$14.95

In Stock

Thermocouple Type-K Glass Braid Insulated

Thermocouples are best used for measuring temperatures that can go above 100 °C. This is a bare wires

bead-probe which can measure air or surface temperatures. Most inexpensive...

$9.95

In Stock

We recommend using a breadboard and some female-male wires.

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 30 of 59

https://www.adafruit.com/product/269
https://www.adafruit.com/product/270
https://www.adafruit.com/product/270

Premium Female/Male 'Extension' Jumper Wires - 40 x 6" (150mm)

Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires

are 6" (150mm) long and come in a 'strip' of 40 (4 pieces of each of ten rainbow...

$3.95

In Stock

You can use a Cobbler to make this a little easier, the pins are then labeled!

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 31 of 59

https://www.adafruit.com/product/826
https://www.adafruit.com/product/826

Adafruit Pi Cobbler + Kit- Breakout Cable for Pi B+/A+/Pi 2/Pi 3

The Raspberry Pi B+ has landed on the Maker World like a 40-GPIO pinned, quad-USB ported, credit card

sized bomb of DIY joy. And while you can use most of our great Model B accessories...

Out of Stock

Out of
Stock

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 32 of 59

https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990

Assembled Pi T-Cobbler Plus - GPIO Breakout

This is the assembled version of the Pi T-Cobbler Plus. It only works with the Raspberry Pi Model Zero,

A+, B+, Pi 2, Pi 3 & Pi 4! (Any Pi with 2x20...

$7.95

In Stock

Wiring
Connect the Raspberry Pi 3.3V power pin to Vin

Connect the Raspberry Pi GND pin to GND

Connect the Pi SCLK pin to the MAX31855 CLK

Connect the Pi MISO pin to to the MAX31855 DO

Connect the Pi GPIO 5 pin to to the MAX31855 CS

https://adafru.it/BKi

Double-check you have the right wires connected to the right location, it can be tough to keep track of Pi

pins as there are forty of them!

Install the CircuitPython MAX31855 Library
OK onto the good stuff, you can now install the Adafruit MAX31855 CircuitPython library.

As of this writing, not all libraries are up on PyPI so you may want to search before trying to install. Look

for circuitpython and then the driver you want.

Add to Cart

https://adafru.it/BKi

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 33 of 59

https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028
https://cdn-learn.adafruit.com/assets/assets/000/056/795/original/max.fzz?1530483015

(If you don't see it you can open up a github issue on circuitpython to remind us (https://adafru.it/tB7)!)

Once you know the name, install it with

pip3 install adafruit-circuitpython-max31855

You'll notice we also installed a few other dependancies called spidev, adafruit-pureio, adafruit-

circuitpython-busdevice and more. This is a great thing about pip, if you have other required libraries

they'll get installed too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!
The finish line is right up ahead. You can now run one of the (many in some cases) example scripts we've

written for you.

Check out the examples for your library by visiting the repository for the library and looking in the example

folder. In this case, it would be

https://github.com/adafruit/Adafruit_CircuitPython_MAX31855/tree/master/examples (https://adafru.it/BKj)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 34 of 59

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_MAX31855/tree/master/examples

As of this writing there's only one example. But that's cool, here it is:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import digitalio
import adafruit_max31855

spi = board.SPI()
cs = digitalio.DigitalInOut(board.D5)

max31855 = adafruit_max31855.MAX31855(spi, cs)
while True:
 tempC = max31855.temperature
 tempF = tempC * 9 / 5 + 32
 print("Temperature: {} C {} F ".format(tempC, tempF))
 time.sleep(2.0)

Save this code to your Pi by copying and pasting it into a text file, downloading it directly from the Pi, etc.

Then in your command line run

python3 max31855_simpletest.py

The code will loop with the sensor data until you quit with a Control-C

� Make sure you have a K-type thermocouple installed into the sensor breakout or you will get an error

like the one below!

That's it! Now if you want to read the documentation on the library, what each function does in depth, visit

our readthedocs documentation at

https://circuitpython.readthedocs.io/projects/max31855/en/latest/ (https://adafru.it/BKk)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 35 of 59

https://circuitpython.readthedocs.io/projects/max31855/en/latest/

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 36 of 59

UART / Serial
After I2C and SPI, the third most popular "bus" protocol used is serial (also sometimes referred to as

'UART'). This is a non-shared two-wire protocol with an RX line, a TX line and a fixed baudrate. The most

common devices that use UART are GPS units, MIDI interfaces, fingerprint sensors, thermal printers, and a

scattering of sensors.

One thing you'll notice fast is that most linux computers have minimal UARTs, often only 1 hardware port.

And that hardware port may be shared with a console.

There are two ways to connect UART / Serial devices to your Raspberry Pi. The easy way, and the hard

way.

We'll demonstrate wiring up & using an Ultimate GPS with both methods

Adafruit Ultimate GPS Breakout - 66 channel w/10 Hz updates

We carry a few different GPS modules here in the Adafruit shop, but none that satisfied our every desire -

that's why we designed this little GPS breakout board. We believe this is...

$39.95

In Stock

The Easy Way - An External USB-Serial Converter
By far the easiest way to add a serial port is to use a USB to serial converter cable or breakout. They're not

expensive, and you simply plug it into the USB port. On the other end are wires or pins that provide

power, ground, RX, TX and maybe some other control pads or extras.

Here are some options, they have varying chipsets and physical designs but all will do the job. We'll list

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 37 of 59

https://www.adafruit.com/product/746
https://www.adafruit.com/product/746

them in order of recommendation.

The first cable is easy to use and even has little plugs that you can arrange however you like, it contains a

CP2102

USB to TTL Serial Cable - Debug / Console Cable for Raspberry Pi

The cable is easiest way ever to connect to your microcontroller/Raspberry Pi/WiFi router serial console

port. Inside the big USB plug is a USB<->Serial conversion chip and at...

$9.95

In Stock

The CP2104 Friend is low cost, easy to use, but requires a little soldering, it has an '6-pin FTDI compatible'

connector on the end, but all pins are broken out the sides

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 38 of 59

https://www.adafruit.com/product/954
https://www.adafruit.com/product/954

Adafruit CP2104 Friend - USB to Serial Converter

Long gone are the days of parallel ports and serial ports. Now the USB port reigns supreme! But USB is

hard, and you just want to transfer your every-day serial data from a...

$5.95

In Stock

Both the FTDI friend and cable use classic FTDI chips, these are more expensive than the CP2104 or

PL2303 but sometimes people like them!

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 39 of 59

https://www.adafruit.com/product/3309
https://www.adafruit.com/product/3309

FTDI Friend + extras

Long gone are the days of parallel ports and serial ports. Now the USB port reigns supreme! But USB is

hard, and you just want to transfer your every-day serial data from a...

$14.75

In Stock

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 40 of 59

https://www.adafruit.com/product/284
https://www.adafruit.com/product/284

FTDI Serial TTL-232 USB Cable

Just about all electronics use TTL serial for debugging, bootloading, programming, serial output, etc. But

it's rare for a computer to have a serial port anymore. This is a USB to...

$17.95

In Stock

You can wire up the GPS by connecting the following

GPS Vin to USB 5V or 3V (red wire on USB console cable)

GPS Ground to USB Ground (black wire)

GPS RX to USB TX (green wire)

GPS TX to USB RX (white wire)

Once the USB adapter is plugged in, you'll need to figure out what the serial port name is. You can figure

it out by unplugging-replugging in the USB and then typing dmesg | tail -10 (or just dmesg) and looking for

text like this:

At the bottom, you'll see the 'name' of the attached device, in this case its ttyUSB0 , that means our serial

port device is available at /dev/ttyUSB0

The Hard Way - Using Built-in UART
If you don't want to plug in external hardware to the Pi you can use the built in UART on the RX/TX pins.

But, if you do this, you'll lose the serial console, so if you're using a PiUART or console cable or HAT that

lets you connect directly to the console, that will no longer work and you'll have to use the

HDMI+Keyboard or ssh method of running commands!

This isn't a big deal, in fact the serial login-console isn't even enabled by default on Raspbian anymore,

but it's worth a warning!

Disabling Console & Enabling Serial
Before wiring up, make sure you have disabled the console.

Add to Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 41 of 59

https://www.adafruit.com/product/70
https://www.adafruit.com/product/70

Run sudo raspi-config and select the following:

Interfacing Options

Serial

Select No on enabling the login shell

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 42 of 59

https://learn.adafruit.com//assets/59443
https://learn.adafruit.com//assets/59444
https://learn.adafruit.com//assets/59445

Select Yes on enabling serial port hardware

Once complete you should have no console and yes on serial interface:

Then reboot

Once you've rebooted, you can use the built in UART via /dev/ttyS0

Wire the GPS as follows:

GPS Vin to 3.3V (red wire)

GPS Ground to Ground (black wire)

GPS RX to TX (green wire)

GPS TX to RX (white wire)

Install the CircuitPython GPS Library
OK onto the good stuff, you can now install the Adafruit GPS CircuitPython library.

As of this writing, not all libraries are up on PyPI so you may want to search before trying to install. Look

for circuitpython and then the driver you want.

(If you don't see it you can open up a github issue on circuitpython to remind us (https://adafru.it/tB7)!)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 43 of 59

https://learn.adafruit.com//assets/59446
https://learn.adafruit.com//assets/59441
https://github.com/adafruit/circuitpython

Once you know the name, install it with

pip3 install adafruit-circuitpython-gps

You'll notice we also installed a dependancy called pyserial. This is a great thing about pip, if you have

other required libraries they'll get installed too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!
The finish line is right up ahead. You can now run one of the (many in some cases) example scripts we've

written for you.

Check out the examples for your library by visiting the repository for the library and looking in the example

folder. In this case, it would be

https://github.com/adafruit/Adafruit_CircuitPython_GPS/tree/master/examples (https://adafru.it/Ca9)

Lets start with the simplest, the echo example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple GPS module demonstration.
Will print NMEA sentences received from the GPS, great for testing connection
Uses the GPS to send some commands, then reads directly from the GPS
import time
import board
import busio

import adafruit_gps

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
These are the defaults you should use for the GPS FeatherWing.
For other boards set RX = GPS module TX, and TX = GPS module RX pins.
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

for a computer, use the pyserial library for uart access
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

If using I2C, we'll create an I2C interface to talk to using default pins
i2c = board.I2C()

Create a GPS module instance.
gps = adafruit_gps.GPS(uart) # Use UART/pyserial
gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface

Initialize the GPS module by changing what data it sends and at what rate.
These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
the GPS module behavior:
https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Turn on the basic GGA and RMC info (what you typically want)
gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
Turn on just minimum info (RMC only, location):
gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 44 of 59

https://github.com/adafruit/Adafruit_CircuitPython_GPS/tree/master/examples

Turn off everything:
gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Tuen on everything (not all of it is parsed!)
gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

Set update rate to once a second (1hz) which is what you typically want.
gps.send_command(b"PMTK220,1000")
Or decrease to once every two seconds by doubling the millisecond value.
Be sure to also increase your UART timeout above!
gps.send_command(b'PMTK220,2000')
You can also speed up the rate, but don't go too fast or else you can lose
data during parsing. This would be twice a second (2hz, 500ms delay):
gps.send_command(b'PMTK220,500')

Main loop runs forever printing data as it comes in
timestamp = time.monotonic()
while True:
 data = gps.read(32) # read up to 32 bytes
 # print(data) # this is a bytearray type

 if data is not None:
 # convert bytearray to string
 data_string = "".join([chr(b) for b in data])
 print(data_string, end="")

 if time.monotonic() - timestamp > 5:
 # every 5 seconds...
 gps.send_command(b"PMTK605") # request firmware version
 timestamp = time.monotonic()

We'll need to configure this code to work with our UART port name.

If you're using a USB-to-serial converter, the device name is probably /dev/ttyUSB0 - but check

dmesg to make sure

If you're using the built-in UART on a Pi, the device name is /dev/ttyS0 - note that last character is a

zero

Comment out the lines that reference board.TX , board.RX and busio.uart and uncomment the lines that

import serial and define the serial device, like so:

Define RX and TX pins for the board's serial port connected to the GPS.
These are the defaults you should use for the GPS FeatherWing.
For other boards set RX = GPS module TX, and TX = GPS module RX pins.
#RX = board.RX
#TX = board.TX

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
#uart = busio.UART(TX, RX, baudrate=9600, timeout=3000)

for a computer, use the pyserial library for uart access
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=3000)

And update the "/dev/ttyUSB0" device name if necessary to match your USB interface

Whichever method you use, you should see output like this, with $GP "NMEA sentences" - there probably

wont be actual location data because you haven't gotten a GPS fix. As long as you see those $GP strings

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 45 of 59

sorta like the below, you've got it working!

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 46 of 59

PWM Outputs & Servos
Adafruit Blinka supports PWMOut! This means you can easily pulse LEDs and control servos from your

Raspberry Pi using any GPIO pin! This page will walk you through wiring up an LED and a servo, and

provide an example for each.

Update Adafruit Blinka
Before getting started, make sure you're running the latest version of Adafruit Blinka. If you have not

already installed it, run the following:

pip3 install adafruit-blinka

If you've previously installed it, you should run a pip3 update:

pip3 install --upgrade adafruit-blinka

Once you're certain that you are running the latest version of Adafruit Blinka, you can continue!

Supported Pins
PWMOut is supported on all GPIO pins on the Raspberry Pi! They are independent, and each can have a

different frequency and duty cycle.

PWM - LEDs
This example will show you how to use PWM to pulse fade an LED.

First, wire up the LED to the Raspberry Pi.

LED - (negative) to Pi GND

LED + (positive) to 470Ω resistor

470Ω resistor to Pi GPIO5

Double-check you have the right wires connected to the right location, it can be tough to keep track of

pins as there are forty of them!

No additional libraries are needed, so we can go straight on to the example code.

Run the following code:

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 47 of 59

https://learn.adafruit.com//assets/93078

import time
import board
import pwmio

led = pwmio.PWMOut(board.D5, frequency=5000, duty_cycle=0)

while True:
 for i in range(100):
 # PWM LED up and down
 if i < 50:
 led.duty_cycle = int(i * 2 * 65535 / 100) # Up
 else:
 led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
 time.sleep(0.01)

Verify that the LED is pulsing. If not, check that it's wired to GPIO #5, the resistor is installed correctly, and

you have a ground wire to the Raspberry Pi.

Type control-C to quit.

Servo Control
In order to use servos, we take advantage of pulseio . You have two options. You can use the raw pulseio
calls to set the frequency to 50 Hz and then set the pulse widths. Or, you can use adafruit_motor which

manages servos for you quite nicely.

This section will cover both options.

Install adafruit_motor by running pip3 install adafruit-circuitpython-motor

First, wire up a servo to your Raspberry Pi:

Servo power (red wire) to Raspberry Pi 5V

Servo ground (black/brown wire) to Raspberry Pi

ground

Servo signal (yellow/white wire) to Raspberry Pi GPIO5

pulseio Servo Control
Run the following code:

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 48 of 59

https://learn.adafruit.com//assets/93080

import time
import board
import pwmio

Initialize PWM output for the servo (on pin D5):
servo = pwmio.PWMOut(board.D5, frequency=50)

Create a function to simplify setting PWM duty cycle for the servo:
def servo_duty_cycle(pulse_ms, frequency=50):
 period_ms = 1.0 / frequency * 1000.0
 duty_cycle = int(pulse_ms / (period_ms / 65535.0))
 return duty_cycle

Main loop will run forever moving between 1.0 and 2.0 mS long pulses:
while True:
 servo.duty_cycle = servo_duty_cycle(1.0)
 time.sleep(1.0)
 servo.duty_cycle = servo_duty_cycle(2.0)
 time.sleep(1.0)

The servo should sweep back and forth repeatedly. If it does not, verify your wiring matches the diagram

above.

Type control-C to quit.

adafruit_motor Servo Control
Run the following code:

import time
import board
import pwmio
from adafruit_motor import servo

create a PWMOut object on Pin D5.
pwm = pwmio.PWMOut(board.D5, duty_cycle=2 ** 15, frequency=50)

Create a servo object.
servo = servo.Servo(pwm)

while True:
 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
 servo.angle = angle
 time.sleep(0.05)
 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
 servo.angle = angle
 time.sleep(0.05)

The servo should sweep back and forth in steps. If it does not, verify your wiring matches the diagram

above.

Type control-C to quit.

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 49 of 59

More To Come!
That's just a taste of what we've got working so far

We're adding more support constantly, so please hold tight and visit the adafruit_blinka github

repo (https://adafru.it/BJX) to share your feedback and perhaps even submit some improvements!

If you'd like to contribute, but aren't sure where to start, check out the following guides:

Adding a Single Board Computer to PlatformDetect for Blinka (https://adafru.it/JFy)

Adding a Single Board Computer to Blinka (https://adafru.it/KEF)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 50 of 59

https://github.com/adafruit/Adafruit_Blinka
https://learn.adafruit.com/adding-a-single-board-computer-to-platformdetect-for-blinka
https://learn.adafruit.com/adding-a-single-board-computer-to-blinka

CircuitPython & OrangePi
CircuitPython & OrangePi (https://adafru.it/DbB)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 51 of 59

https://learn.adafruit.com/circuitpython-on-orangepi-linux

FAQ & Troubleshooting
There's a few oddities when running Blinka/CircuitPython on linux. Here's a list of stuff to watch for that we

know of!

This FAQ covers all the various platforms and hardware setups you can run Blinka on. Therefore, some of

the information may not apply to your specific setup.

Update Blinka/Platform Libraries
Most issues can be solved by forcing Python to upgrade to the latest blinka / platform-detect libraries.

Try running

sudo python3 -m pip install --upgrade --force-reinstall adafruit-blinka Adafruit-PlatformDetect

�
�
Getting an error message about "board" not found or "board" has no
attribute
Somehow you have ended up with either the wrong board module or no board module at all.

DO NOT try to fix this by manually installing a library named board . There is one out

there (https://adafru.it/NCE) and it has nothing to do with Blinka. You will break things if you install that

library!

The easiest way to recover is to simply force a reinstall of Blinka with:
python3 -m pip install --upgrade --force-reinstall adafruit-blinka

�
�
Mixed SPI mode devices
Due to the way we share an SPI peripheral, you cannot have two SPI devices with different 'mode/polarity'

on the same SPI bus - you'll get weird data

95% of SPI devices are mode 0, check the driver to see mode or polarity settings. For example:

LSM9DS1 is mode 1 (https://adafru.it/NCF), please use in I2C mode instead of SPI

MAX31865 is phase 1 (https://adafru.it/NCG), try using this on a separate SPI device, or read data

twice.

�
�
Why am I getting AttributeError: 'SpiDev' object has no attribute
'writebytes2'?
This is due to having an older version of spidev (https://adafru.it/JEi). You need at least version 3.4. This

should have been taken care of (https://adafru.it/NCH) when you installed Blinka, but in some cases it

does not seem to happen.

To check what version of spidev Python is using:

$ python3

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 52 of 59

https://pypi.org/project/board/
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS1/blob/master/adafruit_lsm9ds1.py#L408
https://github.com/adafruit/Adafruit_CircuitPython_MAX31865/blob/master/adafruit_max31865.py#L97
https://pypi.org/project/spidev/
https://github.com/adafruit/Adafruit_Blinka/blob/8a4686cbc7ebd7f338f64517fa42db4dc5b5c78c/requirements.txt#L6

Python 3.6.8 (default, Oct 7 2019, 12:59:55)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import spidev
>>> spidev.__version__
'3.4'
>>>

If you see a version lower then 3.4 reported, then try a force upgrade of spidev with (back at command

line):

sudo python3 -m pip install --upgrade --force-reinstall spidev

�
�
No Pullup/Pulldown support on some linux boards or MCP2221
Some linux boards, for example, AllWinner-based, do not have support to set pull up or pull down on their

GPIO. Use an external resistor instead!

�
�
Getting OSError: read error with MCP2221
If you are getting a stack trace that ends with something like:

return self._hid.read(64)
File "hid.pyx", line 122, in hid.device.read
OSError: read error

Try setting an environment variable named BLINKA_MCP2221_RESET_DELAY to a value of 0.5 or higher.

Windows:

set BLINKA_MCP2221_RESET_DELAY=0.5

Linux:

export BLINKA_MCP2221_RESET_DELAY=0.5

This is a value in seconds to wait between resetting the MCP2221 and the attempt to reopen it. The reset

is seen by the operating system as a hardware disconnect/reconnect. Different operating systems can

need different amounts of time to wait after the reconnect before the attempt to reopen. Setting the

above environment variable will override the default reset delay time, allowing it to be increased as

needed for different setups.

�

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 53 of 59

�
Using FT232H with other FTDI devices.
Blinka uses the libusbk driver to talk to the FT232H directly. If you have other FTDI devices installed that

are using the FTDI VCP drivers, you may run into issues. See here for a possible workaround:

https://forums.adafruit.com/viewtopic.php?f=19&t=166999 (https://adafru.it/doW)

�
�
I can't get neopixel, analogio, audioio, rotaryio, displayio or pulseio to
work!
Some CircuitPython modules like may not be supported.

Most SBCs do not have analog inputs so there is no analogio
Few SBCs have neopixel support so that is only available on Raspberry Pi (and any others that have

low level neopixel protocol writing

Rotary encoders (rotaryio) is handled by interrupts on microcontrollers, and is not supported on SBCs

at this time

Likewise pulseio PWM support is not supported on many SBCs, and if it is, it will not support a carrier

wave (Infrared transmission)

For display usage, we suggest using python Pillow library or Pygame , we do not have displayio
support

We aim to have, at a minimum, digitalio and busio (I2C/SPI). This lets you use the vast number of driver

libraries

For analog inputs, the MCP3xxx library (https://adafru.it/CPN) will give you AnalogIn objects. For PWM

outputs, try the PCA9685 (https://adafru.it/tZF). For audio, use pygame or other Python3 libraries to play

audio.

Some libraries, like Adafruit_CircuitPython_DHT (https://adafru.it/Beq) will try to bit-bang if pulsein isn't

available. Slow linux boards (<700MHz) may not be able to read the pins fast enough), you'll just have to

try!

�
�
Help, I'm getting the message "error while loading shared libraries:
libgpiod.so.2: cannot open shared object file: No such file or directory"
It looks like libgpiod may not be installed on your board.

Try running the command: sudo apt-get install libgpiod2

�
�
When running the libgpiod script, I see the message: configure: error:
"libgpiod needs linux headers version >= v5.5.0"
Be sure you have the latest libgpiod.sh script and run it with the -l or --legacy flag:

./libgpiod.sh --legacy

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 54 of 59

https://forums.adafruit.com/viewtopic.php?f=19&t=166999
https://github.com/adafruit/Adafruit_CircuitPython_MCP3xxx
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://github.com/adafruit/Adafruit_CircuitPython_DHT

All Raspberry Pi Computers Have:

1 x I2C port with busio (but clock stretching is not

supported in hardware, so you must set the I2C bus

speed to 10KHz to 'fix it')

2 x SPI ports with busio

1 x UART port with serial - note this is shared with the

hardware console

pulseio.pulseIn using gpiod

neopixel support on a few pins

No AnalogIn support (Use an MCP3008 or similar to add

ADC)

No PWM support (Use a PCA9685 or similar to add

PWM)

Google Coral TPU Dev Boards Have:

1 x I2C port with busio

1 x SPI ports with busio

1 x UART port with serial - note this is shared with the

hardware console

3 x PWMOut support

pulseio.pulseIn using gpiod

No NeoPixel support

No AnalogIn support (Use an MCP3008 or similar to add

ADC)

Orange Pi PC Plus Boards Have:

1 x I2C port with busio

1 x SPI ports with busio

1 x UART port with serial

pulseio.pulseIn using gpiod

No NeoPixel support

No AnalogIn support (Use an MCP3008 or similar to add

ADC)

No PWM support (Use a PCA9685 or similar to add

PWM)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 55 of 59

https://learn.adafruit.com//assets/77099
https://learn.adafruit.com//assets/77100
https://learn.adafruit.com//assets/77102

Orange Pi R1 Boards Have:

1 x I2C port with busio

1 x SPI port with busio

1 x UART port with serial

No NeoPixel support

No AnalogIn support (Use an MCP3008 or similar to add

ADC)

No PWM support (Use a PCA9685 or similar to add

PWM)

Odroid C2 Boards Have:

1 x I2C port with busio

No SPI support

1 x UART port with serial - note this is shared with the

hardware console

No NeoPixel support

No AnalogIn support (Use an MCP3008 or similar to add

ADC)

No PWM support (Use a PCA9685 or similar to add

PWM)

DragonBoard 410c Boards Have:

2 x I2C port with busio

1 x SPI port with busio

1 x UART port with serial

No NeoPixel support

No AnalogIn support (Use an MCP3008 or similar to add

ADC)

No PWM support (Use a PCA9685 or similar to add

PWM)

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 56 of 59

https://learn.adafruit.com//assets/77105
https://learn.adafruit.com//assets/77107
https://learn.adafruit.com//assets/77714

NVIDIA Jetson Nano Boards Have:

2 x I2C port with busio

2 x SPI ports with busio

2 x UART port with serial - note one of these is shared

with the hardware console

No NeoPixel support

No AnalogIn support (Use an MCP3008 or similar to add

ADC)

No PWM support (Use a PCA9685 or similar to add

PWM)

FT232H Breakouts Have:

1x I2C port OR SPI port with busio

12x GPIO pins with digitalio

No UART

No AnalogIn support

No AnalogOut support

No PWM support

If you are using Blinka in FT232H mode (https://adafru.it/FWD),

then keep in mind these basic limitations.

SPI and I2C can not be used at the same time since they

share the same pins.

GPIO speed is not super fast, so trying to do arbitrary bit

bang like things may run into speed issues.

There are no ADCs.

There are no DACs.

UART is not available (its a different FTDI mode)

MCP2221 Breakouts Have:

1x I2C port with busio

4x GPIO pins with digitalio

3x AnalogIn with analogio

1x AnalogOut with analogio

1x UART with pyserial

No PWM support

No hardware SPI support

If you are using Blinka in MCP2221 mode, then keep in mind

these basic limitations.

GPIO speed is not super fast, so trying to do arbitrary bit

bang like things may run into speed issues.

UART is available via pyserial , the serial COM port

shows up as a second USB device during enumeration

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 57 of 59

https://learn.adafruit.com//assets/80798
https://learn.adafruit.com//assets/81745
https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h
https://learn.adafruit.com//assets/86115

© Adafruit Industries https://learn.adafruit.com/circuitpython-on-raspberrypi-linux Page 58 of 59

© Adafruit Industries Last Updated: 2021-05-01 09:02:28 PM EDT Page 59 of 59

	Guide Contents
	Overview
	Why CircuitPython?
	CircuitPython on Microcontrollers

	CircuitPython & RasPi
	CircuitPython Libraries on Linux & Raspberry Pi
	Wait, isn't there already something that does this - GPIO Zero?
	What about other Linux SBCs?

	Installing CircuitPython Libraries on Raspberry Pi
	Prerequisite Pi Setup!
	Update Your Pi and Python
	Check I2C and SPI
	Enabling Second SPI

	Blinka Test
	Digital I/O
	Parts Used
	Wiring
	Blinky Time!
	Button It Up
	I2C Sensors & Devices
	Parts Used
	Wiring
	Install the CircuitPython BME280 Library
	Run that code!
	I2C Clock Stretching
	SPI Sensors & Devices
	Using the Second SPI Port
	Parts Used
	Wiring
	Install the CircuitPython MAX31855 Library
	Run that code!
	UART / Serial
	The Easy Way - An External USB-Serial Converter
	The Hard Way - Using Built-in UART
	Disabling Console & Enabling Serial

	Install the CircuitPython GPS Library
	Run that code!
	PWM Outputs & Servos
	Update Adafruit Blinka
	Supported Pins
	PWM - LEDs
	Servo Control
	pulseio Servo Control
	adafruit_motor Servo Control

	More To Come!
	CircuitPython & OrangePi
	FAQ & Troubleshooting
	Update Blinka/Platform Libraries
	Getting an error message about "board" not found or "board" has no attribute
	Mixed SPI mode devices
	Why am I getting AttributeError: 'SpiDev' object has no attribute 'writebytes2'?
	No Pullup/Pulldown support on some linux boards or MCP2221
	Getting OSError: read error with MCP2221
	Using FT232H with other FTDI devices.
	I can't get neopixel, analogio, audioio, rotaryio, displayio or pulseio to work!
	Help, I'm getting the message "error while loading shared libraries: libgpiod.so.2: cannot open shared object file: No such file or directory"
	When running the libgpiod script, I see the message: configure: error: "libgpiod needs linux headers version >= v5.5.0"

