
The project began as projects often do—with a reasonable

marketing plan, a functional specification and a realistic time

line. And it probably would have all worked exactly as planned

if the inevitable had not happened. The predictable change of

scope… “we need to add would it be possible to, we could

really improve the product if we just added, it can’t be that hard.

After all, it’s just software.”

But, let’s go back to the beginning—before the amoeba

evolved into the eagle. The project was simple enough, take

in a frequency, convert it to another based on a user-selected

setting and output it under certain conditions. It all could have

been done with a simple 8-bit micro, but we wanted extra

debugging capabilities and at that time the 908 had only one

break point, so we chose the HCS12 family. We didn’t want

to program in assembler, so C seemed the only reasonable

alternative and a good solution. Assembler would have worked

fine, but the overhead in managing consistent programming

standards and sorting out debugging because of naming

problems and register addressing errors was not worth the

extra risk.

Next, we started a search for a good ANSI compiler. We looked

at the CodeWarrior® tool set, but given the size of the project

and the limited functions we would be performing, it didn’t

seem reasonable to spend a significant amount of the budget

for the tool set and the large amount of documentation with

seemingly endless switches and options. This suggested a lot

of time would be spent just learning the interactive development

environment (IDE).

So we began to look into free and third-party C compilers. The

free compilers seemed to be stable enough, but it became

readily apparent that a lot of expertise would be required to set

up the system for compiling and linking, and the only support

was through Internet forums. At that point in time, we didn’t

have either the time or background to take the risk with that

many unknowns, so we focused on what seemed to be a good

third-party alternative product. The users in the forums said

great things about the stability and support of the full ANSI C

compiler, so we settled on using the chosen product.

Now that we had the compiler, the debugger was next. It would

have been nice to buy a $20,000 in-circuit emulator (ICE), but

that didn’t seem like a reasonable fit with our $300 compiler

or the budget, so we ruled it out rather quickly. Instead, we

looked into a product that required “no in-circuit emulator.” After

running the product in evaluation mode for a few days, I knew

we had made a good decision. The product had an excellent

and well thought out interface, was solid and had no crashes,

Robert Lewis—Design Alliance Partner

The Path to Success
Embedded processors and C

10 freescale.com/beyondbits

hang-ups, dumps, lockups or other usual issues. (The latter

features we are all aware of in the wonderful world of “bling”

web pages and little substance.) We could see this product was

going to work well.

We had just a few more tools to put together before we could

start. We needed a multi-pane editor, a source code repository

to track revisions and a source code analysis system for cross

referencing and finding symbols. The open-source product for

source code analysis was an amazing free product with a lot of

functionality but, alas, no documentation.

By now you may see the evolution toward what we failed to

see. We were effectively building our own IDE and therefore

would also be responsible for integrating and supporting every

aspect. Where there was no documentation, we would be

required to discover how to make the tool work. This proved to

be no small task.

As expected, it took a while to get the compiler and debugger

to work. The debugger was fine, but this was a new release for

the compiler and there was a lot of hair pulling trying to get the

object code to flash correctly and matching up correct access

to the paging register. Unfortunately, this problem occurred

while the compiler vendor was away on a much needed

vacation. In the end, we had good support from the debugger

group. They sorted out the inconsistencies in the compiler and

when the vendor returned, the compiler was changed to flash

and loaded correctly.

For a time, all went well, the code was in design and the coding

standard was more or less established with respect to naming

conventions, function calls and so forth. Then, the first change

came along. Instead of a simple BCD switch, we now needed

a four line by 16 character LCD display and a push button to

select the options. (“What options? A BCD switch doesn’t have

options… it has switches! They are on or off and they are read

at startup! Well we need a display and a switch…”)

Now we had to write routines to set up the LCD control

registers, strobe the address and data, write all the primitives

to position characters, build lines from characters and about

40 other display related routines. Having done that, an interrupt

handler had to be added for running the five-way switch.

Additional routines were needed to track where the cursor was

on any given line within the menu. There were now sets of lines

within sets of functions, so we needed a menu to keep track of

the options.

The code had grown, but was still manageable until the next

request came along, which was a way for users to save their

options. My response was, “if you use a BCD switch, you don’t

need to save anything, you just look at the switch.” Since that

suggestion was rejected, we moved on at first to a serial data

link. But now we also required a PC application. After bread

boarding a serial link and working with a sophisticated fourth-

generation tool for the PC application, I knew the inherent

error-prone connectivity of serial transfer was not for me. The

system would hang if it got out of sync, or if it miscued a byte

everything would get out of step and do bizarre things. The only

solution would be a significant amount of handshaking software.

After much casting about, we decided to add an SD card with a

FAT file system rather than use an active link to the PC. This is

where everything took a turn for the worse.

The SD card addition added about 20 KB to the object output

and a significant problem appeared. The debugger started

showing the code stepping off into regions that were completely

unrelated. At seemingly random times, the execution would

jump into unrelated functions. We spent days writing code

to try to trace possible stack problems and more time trying

to trap what could possibly be errant interrupts, all without

success. Finally, with the help of the author of the debugging

tool, we determined that the compiler was producing incorrect

symbol tables and linkages because of the order of the include

functions and because the functions were included in-line rather

then linked in. The vendor of the compiler gave us a work-

around and we were back in business again, albeit somewhat

worse for the wear. We trudged on waiting for a permanent fix,

but at least we were able to proceed.

Next came the statement that the character display was “under

whelming” and devalued the product—we needed a graphics

display. Nothing too fancy. It could be simply monochrome,

something that was not as crude and archaic as our current

character display. My reply that a “BCD switch was stylish,

compact and came in a variety of colors” was taken as neither

constructive nor helpful.

The addition of the graphics routines with the font tables

added another 20 KB to the object code and further problems

appeared in the code execution. The compiler appeared to be

having problems with setting the paging register. The vendor

of the compiler was dedicated to doing his best to support the

product, but it was also apparent from cross posts in the forums

that his company was devoting their time to a new compiler for

a different manufacturer’s product.

This was the last straw; we had to finally admit that if we were

going to maintain the code base we had developed, we needed

a product that had guaranteed stability. The only option was

to rethink using the CodeWarrior tool set. We were not naïve

enough to think that the CodeWarrior IDE would be without its

own particular brand of problems, but we did know that large

multinational companies like Freescale that made the processor

The Path to Success 11

and provided the tool set would have a very strong motivation

to keep the tool set current and operational.

So, we bought the full version of the CodeWarrior IDE but

without the full version of Processor Expert™ beans. This

version allowed us to build any size of code base and it also

had some basic Processor Expert objects. At the time, we

knew nothing about the Processor Expert beans. It seemed

that just mastering the CodeWarrior tool set would be enough

to start with.

I went through some of the training modules on the Freescale

Web site, and the process seemed less daunting than I had first

imagined. Next, I started to convert the code. I never adjusted

any of the compiler or linker switches but used the defaults.

In about two days, we had the code compiling and linking

without error. There were very few changes since the compiler

we had used was ANSI-compliant. The main changes were

in the file system naming, pragma statements and building

against the CodeWarrior definition files for the port and ECT

assignments. The file system had used a few reserved function

names such as fopen(), fclose() that were found in the ANSI

library. They were easily corrected by renaming our function

calls to fopen_imn, and so on. The pragma changes were

obvious and very simple to correct.

We loaded the code and ran it, and to our amazement it

worked perfectly—the first time. Not only that, but because

the CodeWarrior IDE was an optimizing compiler and our old

compiler was not, the CodeWarrior code was more than 30

percent smaller and significantly faster. All of the problems and

bugs we encountered in our previous code base disappeared.

And, as a bonus, our old friend the (no in-circuit emulator)

debugger worked with the CodeWarrior ELF output. We could

use either the CodeWarrior debugger or our previously chosen

tool to debug. We currently use the X-Gate processor; therefore

we most often need to use the CodeWarrior debugger.

In hindsight, what can be learned from all of this? Even though

I had been doing very large control system projects for more

than 30 years, I was still caught by the trivial traps I had often

cautioned others against. When it was not my money, I bought

the best tools and whatever else was needed to ensure the

fastest project completion with the least risk. When it was

my money (partly), I traded my time for a lower cost tool set

because I trusted my expertise to make it all work; and it did…

up to a point. But there comes a point at which you cannot

control the outcome of a project when others are involved. If

I were to calculate my time at even a very low rate, we paid

for the CodeWarrior tool set several times over. Additionally,

that doesn’t account for the emotional expense or the lost

revenue due to the project being late. Sometimes, it may not

be an option to come up with the money for tool set. However,

now with the free CodeWarrior tool set supporting up to 32 KB

program sizes and with a compiler that optimizes so well, a lot

of projects can be built that would previously not have fit. Later,

once the project is large enough, there may be the funds to

afford the extra expense.

When you are dependent on a small vendor with a small

customer base, that vendor can be influenced by factors that

they cannot control. The loss of a key employee, sickness and

change in revenue base, for example, can remove any vendor’s

ability to deliver.

This may not be a factor worth considering in all projects.

Whether this plays a part in your decision process depends on

the end user. If your product is one-of-a-kind and a personal

customer that you can support locally and quickly with a work

around, there may be no risk at all. You may never encounter

compiler and linker bugs, either because your code base is

small or so thoroughly tested from past projects that the new

code is easily debugged and separate. However, if you are

building a product that will go into a real-time control system

or be manufactured in any sizable volume, finding an error

once the product is with the end user could cause a sizeable

revenue consequence and loss of credibility. This type of project

needs an immediate response, and it may be wise to rethink

your “insurance policy.” That is, when you pay the extra money

for a proven, supported product, you can escalate the support

problem and get a response. This may not solve the problem

immediately, but it’s better than being told “gee we’ve never

seen this before; check on the forum to see if anyone else has a

suggestion.” That is a very lonely feeling in a crisis.

Did I mention our journey through the twilight zone of Processor

Expert beans? No? Well, perhaps another time.

12 freescale.com/beyondbits

Robert Lewis is an engineer at iMn MicroControl Ltd. He holds Bachelor of Science and Master of Science degrees in electrical
engineering, with a specialty in microprocessor-based systems.

