BigIN4: Instant, Interactive Insight Identification for
Multi-Dimensional Big Data

Qingwei Lin', Weichen Ke?, Jian-Guang Lou!, Hongyu Zhang?,
Kaixin Sui!, Yong Xu!, Ziyi Zhou'!, Bo Qiao!, Dongmei Zhang!
IMicrosoft Research, Beijing, China
2Peking University, Beijing, China, 3The University of Newcastle, Australia
{qlin,jlou,kasui, yox,v-ziz,v-boqiao,dongmeiz}@microsoft.com
weichenzero@gmail.com,hongyu.zhang@newcastle.edu.au

ABSTRACT

The ability to identify insights from multi-dimensional big data is
important for business intelligence. To enable interactive identifica-
tion of insights, a large number of dimension combinations need to
be searched and a series of aggregation queries need to be quickly
answered. The existing approaches answer interactive queries on
big data through data cubes or approximate query processing. How-
ever, these approaches can hardly satisfy the performance or ac-
curacy requirements for ad-hoc queries demanded by interactive
exploration. In this paper, we present BigIN4, a system for instant,
interactive identification of insights from multi-dimensional big
data. BigIN4 gives insight suggestions by enumerating subspaces
and answers queries by combining data cube and approximate query
processing techniques. If a query cannot be answered by the cubes,
BigIN4 decomposes it into several low dimensional queries that can
be directly answered by the cubes through an online constructed
Bayesian Network and gives an approximate answer within a sta-
tistical interval. Unlike the related works, BigIN4 does not require
any prior knowledge of queries and does not assume a certain data
distribution. Our experiments on ten real-world large-scale datasets
show that BigIN4 can successfully identify insights from big data.
Furthermore, BigIN4 can provide approximate answers to aggrega-
tion queries effectively (with less than 10% error on average) and
efficiently (50x faster than sampling-based methods).

CCS CONCEPTS

« Information systems — Data management systems;

KEYWORDS

Insight identification, approximate query processing, data cube,
interactive data analytics.

ACM Reference Format:

Qingwei Lin!, Weichen Ke?, Jian-Guang Lou!, Hongyu Zhang?, Kaixin Sui',
Yong Xul!, Ziyi Zhou!, Bo Qiaol, Dongmei Zhangl‘ 2018. BigIN4: Instant,
Interactive Insight Identification for Multi-Dimensional Big Data. In KDD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 18, August 19-23, 2018, London, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08... $15.00
https://doi.org/10.1145/3219819.3219867

’18: The 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, August 19-23, 2018, London, United Kingdom. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3219819.3219867

1 INTRODUCTION

The era of big data offers new opportunities for business intelli-
gence. It is now increasingly important to find insights from the
abundant multi-dimensional data in the elastic storage systems in
order to make better and faster decisions. Insights are interesting
facts that can be extracted from data and can help users obtain a
deep understanding of the data. For example, insights from a tablet
sales dataset can be "the total sales of company A have been in-
creasing over the past five years in the USA", or "tablets with small
sizes dominate the Australia market in 2017", and so on.

Insight identification has been a tedious task for data scientists
because insights are not straightforward to be discovered. Users
have to manually enumerate a set of dimensions and aggregate
functions before they can find interesting results. It is desirable to
have a tool to give automated insight suggestions interactively on
an interested set of conditions specified by the user to relieve the
hard trial-and-error process. Oftentimes a first set of query results
obtained from a data source may spark user interest for a second
query. The users may specify new filters if they would like to drill-
down the results or explore a different set of dimensions if they
fail to find interesting results on the current space. An interactive
system that supports both automated insight suggestions and user
exploration can greatly expedite the insight identification process.

A major challenge for such a system on big data is the long query
latency. Even the fastest database systems can take hours or days
to answer the simplest queries [1]. This is a critical problem for our
scenario. On one hand, automated insight mining needs to issue
a lot of aggregation queries to extract insights from the results.
The waiting time before getting the suggested insights would be
unacceptable if these queries cannot be answered efficiently. On
the other hand, when users look for interested dimensions or drill-
down the query results, it is important to give answers to the
exploration queries within a short time (usually in seconds) to keep
users engaged. Slow interactions will severely interrupt the user’s
interactive analysis. [14].

Much research work has been conducted to make query pro-
cessing faster and enable interactive exploration on big data. One
common technique is to create pre-aggregated data cubes for the
dataset so that answers for queries can be directly found from one of
the cubes. However, it is expensive to cover all possible aggregation
queries over big data with data cubes. Another technique is called

https://doi.org/10.1145/3219819.3219867
https://doi.org/10.1145/3219819.3219867

a
Queries not A

covered by
partial cube
Aat Aesz Aead
b1 At peaz Aead
[. 1 o ot Estimated Results
™ a2
———) t ca |
High Dimensional] ‘) —
Big Data) =
Low Dimensional -
Partial Cube Queries on
partial cube

Exact Results

Figure 1: An overview of the proposed approach

Approximate Query Processing (AQP) [7], which focuses on trading
off the accuracy of the answers for less response time and storage
space. AQP can provide approximate answers to queries within a
short time, which is suitable for interactive analysis. Traditional
AQP methods include sampling, histograms, and wavelets [5]. Al-
though effective, most existing methods require prior assumptions
on either data distribution or query workloads, which may not be
applicable to ad-hoc insight queries over real-world datasets.

In this paper, we propose BigIN4, an interactive insight iden-
tification system for multi-dimensional big data. BigIN4 can give
suggested insights automatically by iteratively enumerating sub-
spaces. The OLAP engine of BigIN4 can answer aggregation queries
over big data in seconds with estimated statistical intervals by com-
bining data cube and approximate query processing techniques.
Different from existing data cube based OLAP engines, BigIN4 only
requires a set of low dimensional data cubes for a dataset while
putting no restriction on queries. As shown in Figure 1, if BigIN4
fails to find a data cube to answer the query, it will call Dynam-
icBayes, a Bayesian Network based algorithm proposed in this
paper, to obtain an approximate answer from the data cubes. Unlike
many of the approximate query processing engines, it does not
require any prior knowledge about the data distribution or query
distribution.

We have implemented BigIN4 and evaluated it on ten real-world
large-scale datasets. Our experiments show that BigIN4 can suc-
cessfully identify insights (with a precision of 95.88% and a recall of
96.07% on average) over high dimensional big data with billions of
records and tens of columns within 4.4 seconds. Moreover, BigIN4
can provide approximate answers to aggregation queries effectively
(with less than 10% error on average) and efficiently (50x faster
than sampling-based methods). We have also successfully applied
BigIN4 to industrial practice and multiple teams in Microsoft have
used it to analyze their business data.

In summary, in this paper we make the following contributions:

o We develop BigIN4, which supports instant, interactive in-
sight identification from multi-dimensional big data. Our
experimental results show that BigIN4 can identify insights
effectively and efficiently.

e We propose to combine data cube and AQP techniques in
order to give approximate answers to aggregation queries
quickly. More specifically, we propose DynamicBayes, a new

Android o
‘m

Outstanding #1 Dominance Top Two Outlier Increase

Figure 2: Example of insight types

AQP method that decomposes the high dimensional queries
into several low dimensional ones. Unlike the previous ap-
proaches, it does not require any prior knowledge about
future queries, nor any assumptions about the data distribu-
tion.

e We have successfully deployed BigIN4 inside Microsoft. We
also report the lessons learned during the deployment in this
paper.

The organization of the paper is as follows. We introduce back-
ground and motivation of our work in Section 2. Section 3 describes
our approach. Section 4 presents our experimental design and re-
sults. In Section 5, we present the success stories of our approach
in industrial practice. Section 6 surveys related work followed by
Section 7 that concludes this paper.

2 BACKGROUND AND MOTIVATION
2.1 Insight Identification

In the era of big data, there is an increasing demand on analyzing
data with large volumes in the business world. These data can be
collected from daily sales transactions, user click streams, appli-
cation download logs, and so on. It is critical for a company to
discover the insights hidden in these raw data in order to improve
their business. Figure 2 illustrates some insight types. In BigIN4,
we define insights as facts specified by the end users according to
their analysis needs. Some examples of insight definitions used in
this paper are as follows:

o Outstanding #1: a subspace is remarkably different from oth-
ers in terms of its aggregated measure value.

e Dominance: a majority of the total value can be attributed to
a single factor when broken down by another dimension.

e Top Two: two members of a dimension have much larger
values than other members of that dimension.

o Outlier: specific times with values significantly different from
the others in time series data.

o Increase/Decrease: upward or downward trends in time series
data.

Users can pick the insights they would like to show and specify
the threshold for each type of insight. They can also define more
customized types of insights. We refer the readers to [21] for more
details of the advanced insights.

2.2 Data Exploration

Insight identification is done by interactive data explorations on
multi-dimensional data. By "Exploration" we mean a series of ag-
gregation queries like SELECT SUM(Sales) WHERE Brand="Dell"
GROUP BY Region over multi-dimensional data. Multi-dimensional

Table 1: Sample Tablet Sales Data

Year CPU OS Region Brand Sales

2000 ARM iOS China Apple 17014
2000 x86 Windows US Amazon 657

2001 ARM Linux China Dell 39633
2001 ARM Android US Dell 37814
2001 ARM Android US Amazon 45859
2002 ARM iOS China Apple 76464
2002 x86 Windows US HP 725

Table 2: Data cube on {CPU, Brand}

CPU Brand SUM(Sales) Count
ARM Amazon 45859 1
ARM Dell 77447 2
ARM Apple 93478 2
x86 Amazon 657 1
x86 HP 725 1

data is a prevalent type of data, where a data column is either a di-
mension or a measure. Dimensions are used to group and filter the
data records. The values of dimensions are either categorical (e.g.,
"Brand") or ordinal (e.g., "Priority"). Measures reflect quantitative
properties that are related to the analytical task (e.g., "Sales"). The
values in measure columns are typically numerical values, which
can be computed by a set of aggregate functions (such as sum, count,
etc.). Answering analytical queries on multi-dimensional data is
called On-Line Analytical Processing (OLAP), which is a field that
has been extensively studied in the database community.
Building data cubes is a method for optimizing OLAP engines.
A data cube is a table that contains the pre-aggregated results on a
subset of the columns. Usually, a series of cubes are built for one
dataset, so that the answer to a query can be directly found out
from one data cube without doing online aggregation. However, a
critical drawback of this method is that it suffers from the curse
of dimensionality. A query is answerable only when its referring
columns are covered by one of the existing data cubes. In order to
answer all kinds of queries, the number of cubes grows exponen-
tially with the number of dimensions, which is extremely expensive
for both computing and storage, especially for big data. Reducing
the cost of building data cubes often restricts the dimensions that
can be asked together, making some queries "unanswerable". Once
an "unanswerable" query is posed to an OLAP engine, it has to be
processed by performing online aggregation on the raw data, which
would be prohibitively slow for interactive data exploration.

2.3 A Running Example

To better motivate our work, let us consider a Tablet Sales table as
shown in Table 1, which has the following columns: Year, CPU, OS,
Region, Brand, Sales. Sales is the measure column and all the other
columns are dimension columns.

Many insights can be discovered from the data in Table 1. For
example, "ARM CPU is the outstanding #1 in the US market", "An-
droid dominated the market in 2001", "The total sales of tablets have

been increasing in China", and so on. To identify these insights, we
need to issue many SQL-based aggregation queries (in the form of
SELECT Aggr(Measure) WHERE {K=v}) involving many different
combinations of dimension attributes. As an example, the insight
"The total sales of tablets have been increasing in China" can be ex-
tracted by querying SELECT SUM(Sales) WHERE Region="China"
GROUP BY Year. It would be tedious for a data scientist to enu-
merate the dimension attributes manually to find insights. BigIN4
can give automatic insight suggestions interactively on a user’s
interested set of conditions by searching through the attributes. We
will explain the details in Section 3.1.

In this paper, we use Q(fK=v}) (or Q({v}) when no ambiguity
is introduced) to denote the answer for an insight query SELECT
Aggr(Measure) WHERE {K=v}. The constraints {K=v} also define a
subspace S, which contains all the records in the dataset satisfying
the constraints. We use SUM for Aggr if not otherwise specified in
this paper.

To enable quick query answering for interactive exploration, an
OLAP engine may build a set of data cubes for the dataset offline.
Suppose we have the following data cubes available in the cluster
memory: {CPU, Brand}, {CPU, OS}, {Year, CPU, Region}, and {Brand,
OS, Region/. The query Q(2001, China) is answerable because the
columns mentioned in this query {Year, Region] is a subset of an
existing cube {Year, CPU, Region]. In this case, it can be answered
in a very short time. On the other hand, Q(ARM, iOS, Apple, US) is
unanswerable, because there is no cube covering the column set
{CPU, OS, Brand, Region}. This query has to be executed on raw
data in common OLAP systems. We propose an algorithm to give
an estimated answer in seconds to the unanswerable queries in
Section 3.2.

3 THE PROPOSED APPROACH

In this section, we describe the details of BigIN4, which consists of
two major components: insight mining and query answering.

3.1 Insight Mining

An insight derived from a multi-dimensional dataset is associated
with a subspace. The subspaces form a lattice, where each node indi-
cates a subspace and each edge indicates a parent-child relationship.
Figure 3 shows an example of the subspace lattice. Given a multi-
dimensional subspace S by the user, BigIN4 searches for insights
by enumerating subsequent subspaces, aggregation functions, and
insight types. BigIN4 enumerates the subspaces in a top-down or-
der, starting from the user-defined subspace and iteratively adds
new dimensions and values to it until a user-specified depth is
reached. The insights are identified through the query answering
module (which will be described in Section 3.2) in each iteration.
The general insight mining algorithm is shown in Algorithm 1.

To improve the search efficiency, we also design a suite of per-
formance optimization techniques (e.g., pruning, ordering, sibling
cube, and computation sharing). For details, we refer the readers
to [21], which is dedicated to the extraction of top k insights from
multi-dimensional data.

3.2 Query Answering

A key problem for BigIN4 is how to estimate the answer for an unan-
swerable query. We propose DynamicBayes, a novel AQP algorithm

{Brand: Dell}

{Brand: Dell,
0s: Android)

{Region: USA}
{0S: Android,
Region: USA}

{0S: Android}
{Brand: Dell,
Region: USA}

{Brand: Dell,
0S: Android,
Region: USA}

Figure 3: An example of subspace lattice

Algorithm 1: InsightMining

Input: S: a user-defined subspace, 7: search depth
Output: Insights: the identified insights
1 Insights = @
2 D « Enumerate all descendants of S with depth ¢
3 foreach s in D do

4 C « Determine a set of aggregation functions for s
5 foreach c in C do

6 T « Determine a set of insight types for ¢ and s
7 foreach t in T do

8 i « Identify an insight based on < s, ¢, t >

through Query Answering

9 Insights < InsightsU < i >
10 end
11 end
12 end

13 return Insights

which can decompose the unanswerable queries into several low
dimensional answerable queries to estimate the answer through an
online constructed Bayesian Network (BN). The only requirement
for DynamicBayes is that all 2-d queries are answerable, which can
be easily satisfied when building the data cubes offline.

We treat each dimension A as a random variable and each at-
tribute a as a possible outcome of it. For a query Q(A=a), we define
P(a) = le]a), where N = }(Measure) for all records. P(a) can be
viewed as the probability of event A=a. DynamicBayes answers Q(a)
by estimating P(a) since N remains constant all the time. Consider
the running example described in Section 2.3, if we estimate P(ARM,
Amazon) = 0.21, Q(ARM, Amazon) can be answered with:

Q(ARM, Amazon) = P(ARM, Amazon) - N ~ 45814.

The intuition of query decomposition is that some dimensions
can be approximately viewed as (conditional) independent under
certain circumstances. If the dependency between events A=a and
B=b is weak given event C=c, the joint probability P(A=a, B=b, C=c)
can be estimated with P(a, b, ¢) ~ P(alc) - P(b|c) - P(c). If all the low
dimensional queries are answerable, the answer can be estimated
in a very short time by looking them up in the data cubes. Formally,
if we have a BN for a set of events W = {wy, wo...w, }, we can

@ q pc.d,e,h,if)

ﬁﬁﬁ Insight Query T~ .)z e

Low—dim;nsion == on 6 dimensions JN - w
C,D,EH,IF © “H) p(e)*p(c)

cuboids(2/3 dim)

Estimation with
Bayesian Network
on Low Dimensions

Low Dimension A Higher A Bayesian Network on
Cuboids Dimension Query Dimension Relationship

Figure 4: The decomposition of a high dimensional query
into low dimensional ones

Naive Bayesian Network

Tree Augmented Network Bayesian Network

Figure 5: Different kinds of Bayesian Models

estimate the joint probability of P(W) efficiently with:

P(W) ~ 1—[P(w|IN(w))

weW

where IN(w) is the direct predecessors of node w in the BN. For
example, consider the query Q(ARM, iOS, Apple, US) in Section 2.3.
Suppose the BN is the one shown in Figure 6(a), we can give an
estimated answer to it with:

P(ARM, US) - P(i0S,US) - P(Apple,US)
P(US)?

P(ARM, i0S, Apple, US) ~

Therefore, it is intuitive for us to build a BN to extract the de-
pendency between the dimensions in the data. Figure 4 outlines
the decomposition of a high dimensional insight query with a BN.

In the following sections, we will first introduce the dynamic
construction of BN and then describe DynamicBayes in detail.

3.2.1 Dynamic Construction of Bayesian Network. We use a spe-
cial form of network, Tree Augmented Network (TAN) [4] as the
skeleton of our BN. Figure 5 illustrates a Naive Bayesian Network.
a TAN, and a general Bayesian Network. TAN assumes that each
event depends on at most only one other event (so the network is a
tree). The reason we start from TAN is that although it is possible
to learn an optimal BN from data (such as the one proposed in
[3]), the process is too expensive for high-dimensional big data.
Besides, since usually we can only afford to maintain a set of low
dimensional data cubes, the complexity of our BN is largely lim-
ited. Under these conditions, TAN is a good balance point between
model complexity and computation efficiency. After the skeleton is
built, we continue to add more edges to it to maximize the use of in-
formation stored in the data cubes, while ensuring all the potential
sub-queries are answerable.

We learn the structure of the TAN from the information theory
perspective. Specifically, for a query Q({K=v}), we regard the condi-
tions {K=v} as the nodes and the absolute value of pairwise mutual
information (PMI) between them as the weight of the edges. PMI is

Figure 6: Two different Bayesian models for one query

defined as:
P(a,b)
P(a) - P(b)

A high absolute value of PMI(a, b) indicates a strong correlation
between events A=a and B=b. Conversely, a low absolute value of
PMI(a, b) suggests that they are nearly independent. Therefore, we
aim to keep the edges with high PMI when building our network.

One unique feature of our approach is that it builds the BN com-
pletely online, after a query is submitted to BigIN4. The reason
we design our network in a dynamic manner is that the statically
constructed BN based on column-wise mutual information is not
optimal for specific queries, especially those specifying a small
subspace. Since mutual information tends to ignore elements with
small fractions, queries specifying these elements will be answered
poorly because the columns are wrongly decomposed. For example,
the mutual information I(CPU, OS) is only 0.038 in Table 1, suggest-
ing that CPU and OS are approximately independent. The reason
for that is "ARM" dominates the CPU column, taking more than
99% share for the total measurement, and "ARM" does not have
an apparent relationship with OS. Therefore, a static BN would
consider CPU and OS independent. A possible static BN for the
sample data could be Figure 6(a), where CPU, OS, and Brand all
depend only on Region.

However, consider the following query: Q(x86, Windows, Mi-
crosoft, US). We can find from Table 1 that when CPU is x86, all the
tablets are Windows operating systems, which means that "x86"
and "Windows" are strongly correlated. In fact, PMI(x86, Windows)
is 5.06, much higher than 0.038. With the statically constructed net-
work, the system will still consider CPU and OS are independent
for this query. As a result, it could give incorrect answers to it. A
better network for this query is shown in Figure 6(b).

The root cause of this problem is that traditional Bayesian meth-
ods aim at approximating the discrete possibility distribution of
the full given dataset instead of optimizing the answers for each
aggregation query. Therefore, we propose building the network
dynamically as a better solution for an AQP module.

PMI(a, b) = log().

3.22 The DynamicBayes Algorithm. There are three steps in
DynamicBayes as illustrated in Figure 7. First, we construct a PMI
matrix to depict the mutual dependency relationship between query
dimensions. Calculating the PMI matrix is essentially answering
all 2-d combinational sub-queries of the referred column pairs, so
it can be done very quickly by consulting the data cubes. Second,
based on the PMI matrix, we create a maximum spanning tree as
the network skeleton. Finally, we add more dependency edges to
the network as long as all the potential low dimensional queries are
answerable. An edge x — y can be added if {x, y} UIN(y) is covered
by one of the data cubes and no cycle is introduced after adding

@

Az Q2| Az3 A4 v c

Q31| A32| A33| A34

g ® ®

Figure 7: The outline of DynamicBayes Algorithm

this edge. The details of the algorithm are described in Algorithm
2.

Besides the estimation value, we also provide the bounds of
the true value. The basic idea here is that the bound of a high
dimensional query can be deduced by a set of lower dimensional
queries (or a superset of the query subspace). Suppose the subspace
specified in the query is s. The upper and lower bounds for estimated
values are as follows:

Upper bound:

P(s) < min P(S)
sCS

Lower bound:

P(s) > mg;(P(S) — UpperBound[P(S — s)]
sC

Since these bounds always hold true, they can also be used to
bound the estimated answer given by the Bayesian Network.

Algorithm 2: DynamicBayes

Input: Q{K=v}: an aggregation query
Output: BN: the built Bayesian Network
16=9
foreach (a,b) inv X v do
3 e = Edge(start = a,end = b, weight = |PMI(a,b)|)
4 Addeto G
5 end

)

6 BN=MaximumSpanningTree(G)
7 Sort G.E according to weight in descending order
foreach e in G.E do

if Answerable({e.start, e.end} U IN(e.end)) and no cycle

]

©

after adding e then
10 Add eto BN
1 end
12 end

13 return BN

4 EXPERIMENTS

4.1 Experimental Design

To evaluate the proposed algorithm, we have conducted experi-
ments on ten large-scale real-world datasets as shown in Table
3. These datasets contain multi-dimensional data collected from
multiple Microsoft large-scale online service products. In order to
better demonstrate the performance of the AQP module in BigIN4,
we only create all the 2-d cubes for each dataset. In other words,
we build M? small cubes for a dataset with M dimensions.

We implemented BigIN4 on a cluster of three machines, each
equipped with 256GB memory, 32 CPU cores (2.60GHz) and a 40TB

Table 3: The evaluation datasets

No. Name #Rows #Dims Cube Size Ratio
A Sales 1.12B 9 249K 0.02%
B Subscription 131B 12 438K 0.03%
C LifetimeEvents 852M 14 765K 0.09%
D CrpApiUsage 251B 13 1349K 0.05%
E OnlineAct 1.24B 26 3562K 0.29%
F IntentionalAct 1.32B 10 247K 0.02%
G BizChat 2.48B 13 523K 0.02%
H ApiQosEvent 924M 24 1035K 0.11%
I SharedFile 1.18B 31 2047K 0.17%
J JobMetaData 2.16B 25 1046K 0.05%

disk. We deployed Hadoop and Spark on this cluster and all the
experiments are conducted on it. The datasets are stored in the
HDFS with 3 replicas. To facilitate the examination of insights and
the exploration of data, we also develop a drag-and-drop based GUI
frontend for BigIN4.

To evaluate our approach, we design experiments to address the
following research questions:

RQ1: Can BigIN4 identify insights effectively and efficiently? This
RQ evaluates the ability of BigIN4 to successfully identify insights
from multi-dimensional datasets. We show that insight identifi-
cation can be accomplished even without perfect answers to the
queries. We perform the evaluation for each insight type separately
and calculate the percentage of insights that are successfully identi-
fied and the total time spent on insight identification. For evaluation,
we compare the results of BigIN4 with the results obtained from
SparkSQL, which is one of the most widely-used systems for big
data analytics. The latter serves as the ground truth for insight
queries but takes much longer time to complete. In order to obtain
the ground truth in a reasonable time, we limit the maximum search
depth to 4 in this experiment. We use the default thresholds for the
parameters for defining insights.

RQ2: Can BigIN4 answer aggregation queries effectively and effi-
ciently? In this RQ, we further evaluate the effectiveness of BigIN4
in answering queries against big data. We address two major ques-
tions regarding our DynamicBayes algorithm:

e DynamicBayes does not learn the optimal Bayesian Network.
Is the learned network adequate to describe the dependency
among the dimensions?

e DynamicBayes is an online algorithm. Is the overhead of
building the network small enough for interactive queries?

The queries we use in the experiments are randomly generated
from a typical OLAP query template: SELECT SUM(Measure) WHERE
condition GROUP BY column. The total number of columns in
WHERE and GROUP BY is randomly determined from 2 to 7, and
the value for filter columns are also randomly picked from all the
possible values appeared in the dataset. In total, we generate 3000
unique queries for each dataset. We filter out queries specifying an
empty subspace.

We compare our algorithm with three baselines: 1) uniform sam-
pling (US), which builds one uniform sample; 2) stratified sampling

(SS), which builds a stratified sample on all columns; and 3) multiple
stratified sampling (MSS), which builds a set of stratified samples in
the way similar to the optimization framework used in BlinkDB [1].
We do not consider history workloads in deciding which samples to
build because we do not have prior knowledge about future queries.
The size of the samples for each dataset is the same as the total size
of the cube set.

RQ3: Can DynamicBayes outperform the statically constructed
Bayesian Network? In this RQ, we compare the effectiveness of
DynamicBayes (constructing a Bayesian Network online) and a
static Bayesian Network (constructing a Bayesian Network offline),
and evaluate the usefulness of DynamicBayes in BigIN4. We show
the necessity of building the network online in this RQ.

Evaluation Metrics: We evaluate the effectiveness of insight
identification (RQ1) using the Precision and Recall metrics, which
are widely adopted in machine learning and data mining.

We evaluate the effectiveness of BigIN4 in approximate query
processing (RQ2 and RQ3) using the SMAPE (symmetric mean
absolute percentage error) metric, which is an average error rate
defined as:

1+ |Er—-A
SMAPEz_Zu
n & |Et| + |Asl

where E; is the estimated answer and A; is the ground-truth value.
SMAPE is a fair metric for error evaluation because it is symmetric
for both underestimation and overestimation. The value of SMAPE
is from 0 to 1. The smaller the better.

4.2 Experimental Results
RQ1: Can BigIN4 identify insights effectively and efficiently?

Table 4 shows the precision and recall values achieved by BigIN4.
Clearly, BigIN4 can achieve comparative results as SparkSQL within
a much shorter time. As ground truth, the precision and recall
achieved by SparkSQL are all 100%. BigIN4 achieves above 92% pre-
cision (on average 95.88%) and above 93% recall (on average 96.07%)
in identifying all kinds of insights. The average time required by
BigIN4 to identify all insights is only 4.4 seconds, while the time
required by SparkSQL is 17.7 minutes. The speedup is 241x. Overall,
our experimental results confirm the effectiveness and efficiency of
BigIN4 in identifying insights.

RQ2: Can BigIN4 answer aggregation queries effectively and effi-
ciently?

Table 5 shows the evaluation results for all the 10 datasets. On
average, our approach performs much better than the sampling
approaches (0.09 vs. 0.19 in terms of error rates). BigIN4 also gives
more stable results than sampling approaches as indicated by its
low standard deviation of error rates.

Table 6 shows the average response time for queries in BigIN4.
The results show that BigIN4 is 5000x faster than SparkSQL (8.3ms
vs. 42.3s). BigIN4 is also 50x faster than sampling-based methods.
The average response time for each dataset is less than 20ms, fur-
ther justifying that BigIN4 provides quick response to the queries.
BigIN4 is faster than sampling because BigIN4 stores aggregated
results instead of samples. For answerable queries, these results
can be quickly found out without online aggregation. Although
the Bayesian Network is calculated online, all the data needed for

Table 4: The identification of insights

BigIN4 SparkSQL
Type Precision Recall Time Time
o éffﬁ) (; ;)/037;) 285 B4m
Top Two (2932/?5) (22/821 4.7s 7.8m
Increase (zg/‘g]) (Zi/lzzj) 6.2s 32.1m
Decrease (112;)1(7;) (?2/11?) 5.7s 29.8m
Dominance (Z/ZZ) (ZZE) 3.2s 8.6m
Outlier (Zi/?;(z) (216/?5) 3.9s 19.6m
Average 95.88% 96.07% 4.4s 17.7m

Table 5: The SMAPE of different AQP methods

Dataset Us SS MSS BigIN4

Avg. Std. Avg. Std. Avg. Std. Avg. Std
A 047 037 035 031 016 0.14 0.10 0.08
B 055 024 036 026 021 010 0.13 0.02
C 034 035 031 025 015 0.06 0.02 0.02
D 053 027 019 022 021 013 0.15 0.06
E 040 038 032 026 018 0.10 0.07 0.02
F 043 041 035 027 019 011 005 0.03
G 031 037 026 023 023 0.15 0.07 0.02
H 042 036 031 0.18 0.20 0.04 0.09 0.03
I 055 041 036 032 0.24 008 0.12 0.12
J 029 035 0.18 0.21 0.16 0.05 0.11 0.07

Average 0.43 035 030 025 0.19 0.10 0.09 0.05

that computation can also be directly found from the cubes, which
introduced minimal overhead.

We also give the error distributions on dataset A (Figure 8). The
distribution is similar on other datasets. BigIN4 can answer 82%
queries with less than 10% errors. An interesting fact is that BigIN4
gives perfect answers to 77% of the queries whose dimensionality
ranges from 2 to 7 using only information from 2-d data cubes.

Overall, the evaluation results confirm the effectiveness and effi-
ciency of the proposed approach in answering aggregation queries.

RQ3: Can DynamicBayes outperform the statically constructed
Bayesian Network?

In this experiment, we compute the mutual information and build
the Bayesian Network with our algorithm in an offline manner. We
answer all the queries that need to be estimated with statically
constructed Bayesian Network. The average SMAPE values of the
two algorithms on the 10 datasets are shown in Table 7. Dynamic
BN outperforms the static one on all datasets. The average SMAPE
achieved by Static BN and Dynamic BN is 22.01% and 9.21% respec-
tively. The results justify our view that static Bayesian Network
cannot describe the relationship properly under a certain subspace
given by the query.

Table 6: Average query response time of three methods

Dataset SparkSQL MSS BigIN4
A 65.6s 515.7ms 14.3ms
B 23.9s 3453ms 6.6ms
C 27.3s 276.8ms 6.2ms
D 92.7s 756.4ms 18.2ms
E 51.6s 672.3ms 12.1ms
F 43.8s 364.5ms 4.1ms
G 23.2s 186.8ms 3.4ms
H 36.8s 465.6ms 6.7ms
I 27.3s 275.3ms 4.4ms
J 30.6s 286.7ms 6.8ms

Average 42.3s 4145ms 8.3ms

Table 7: The SMAPE comparison between statically and dy-
namically constructed Bayesian Network

Dataset Static Dynamic ‘ Dataset Static Dynamic
A 20.32% 10.49% F 9.67% 5.28%
B 30.27% 13.32% G 9.62% 7.17%
C 18.65% 1.69% H 23.76% 8.92%
D 34.29% 14.82% I 32.89% 11.64%
E 20.46% 6.74% J 20.17% 11.12%
80— B
60 N

)

)

S

S 40| g

o

)

=20 |

ol & O D &= — == = — |

T T T T T T T T T 1

(=3 (=3 = [\~ w > w (=) ~ [* \O

R R S S (= (=1 (=4 (=4 (=4 S (=
LEIFSFFERRT

(=4 [N~ w > (S (o)) ~ 0] O —

R S S S (=1 (=1 (=3 (=3 S (=

MR] R NS %

SMAPE

Figure 8: The error distribution on dataset A

4.3 Discussions

In this section, we discuss the results and point out some assump-
tions in our approach:

e We find that high dimensional big data tends to be sparsely
distributed. Usually, an attribute in one dimension could be
completely determined by another dimension. In the Tablet
Sales example, when CPU="x86", OS can only be "Windows".
Therefore, a query specifying CPU="x86" and OS="Windows"
can be reduced to a query specifying only CPU="x86". Our
DynamicBayes algorithm is very good at discovering such
determination relationships because the PMI between such
dimensions is high. By automatically grouping these columns

together, BigIN4 can implicitly achieve dimension reduction
on queries.

e We only consider pairwise PMIL Some situations may require
calculating high dimensional PMI to better describe the com-
plex dependency among the dimensions. However, our ex-
periments, along with previous experiments with Bayesian
Network, have shown that this scenario is not common in
reality [3, 4].

e DynamicBayes assumes that for two subspaces s and S, if
s C S, then Q(s) < Q(S). In this way, some aggregation
functions, like MIN and AVG, cannot be directly processed
by DynamicBayes, nor if the data contains negative values
in the measure column. Nevertheless, negative values can
be converted to positive ones by adding an offset to all the
values; MIN can be turned to MAX by mapping each value v
to 1/v; and AVG can be calculated as SUM/COUNT.

o We target mainly at aggregating SQL queries on a single fact
table. We do not support nested queries or join queries. More-
over, BigIN4 primarily supports point queries. Although our
method potentially supports range queries, we believe more
optimizations remain to be done for them.

5 SUCCESS STORIES AND LESSONS LEARNED

Hundreds of big datasets from multiple Microsoft products were
imported into BigIN4. People used BigIN4 include program man-
agers, developers, testers, salespersons, DevOps, data scientists, and
researchers. The sizes of data analyzed by BigIN4 range from a few
gigabytes to hundreds of terabytes and their row numbers range
from 107 to 10!, Most datasets have 10 - 30 columns. The widest
dataset has more than 200 columns.

BigIN4 has been adopted by multiple product teams in Microsoft.
We share some success stories here:

Data Hub Team: the team maintains a large number of big
datasets collected from multiple Microsoft services. Many teams
perform analysis on those big datasets to improve the service qual-
ity. Before BigIN4 was deployed, users have to manually perform
queries on the big datasets, wait a long time for the results, and
refine their queries with the results from the previous queries. With
BigIN4, users can receive instant and automatically suggested in-
sights from their big datasets at any subspace they are interested
in, making the analysis faster and more targeted. The team has
put BigIN4 on their web portal as an advanced tool for big data
analysis.

Windows Team: the team used BigIN4 to obtain insights for
system-related datasets. Big data storage and computing are de-
ployed on different platforms inside the team to meet different
requirements, which brings great difficulty for BigIN4 deployment.
However, after trying out BigIN4 on one platform, the team in-
vested efforts to contribute a set of data adaptors in order to make
BigIN4 work on other data platforms across the team.

The product teams also provided valuable feedback to improve
our system. We share some lessons learned during the deployment:

First, we confirm that many users do not know where to start
when faced with a new dataset, especially for big data. This is
because users can obtain an overview of small data using tools like
Microsoft Excel or Powerview, but obtaining an overview of big data

is prohibitively slow. The insight mining feature of BigIN4 offers
data scientists a good and quick starting point for analyzing the data.
Although the insight types are pre-defined, they can inspire the
users for further explorations. According to our interviews, users
of BigIN4 sometimes need other types of insights (we provided
interfaces for adding new insight types), but they also start with
the basic insights BigIN4 suggests to them.

Second, a good data visualization component is critical for inter-
active insight identification. Apart from core algorithms, we also
built a user-friendly UI that provides a drag-and-drop interface for
typical data operations such as filtering, rolling-up, and breaking-
down. Although Ul is not the core of BigIN4, it played a critical role
in improving the user experience.

Third, data cleaning is also important for an insight mining
system. Many real-world datasets are diverse and noisy, which could
bring many challenges to data analysis. Therefore, we implemented
a data schema analysis module that gives the users hints on columns
that might not fit for big data analysis (like IDs, JSONS, etc.). This
feature not only ensured the stability and performance of the system
but also helped with user adoption.

6 RELATED WORK
6.1 Insight Mining and Data Exploration

Data exploration is about efficiently extracting knowledge from
data [2]. In the database community, several approaches have been
proposed for efficient data exploration [22, 24, 27]. Our previous
work [21] proposes an insight extraction solution, which can return
top k interesting insights to users automatically.

Data cube plays an essential role in OLAP engines of many multi-
dimensional data warehouses. Over the years, a large amount of
work has been proposed to improve the effectiveness and efficiency
of queries over data cubes. For example, Wu et al. [23] proposed
an online aggregation system called COSMOS, which organizes
queries into a dissemination graph to exploit the dependencies
across queries. It also combines answers from ancestor nodes to
generate the online aggregates for a node. Their work is effective
in handling multiple aggregation queries, while we focus on giving
answers to a single aggregation query. Riedewald et al. [17] pro-
posed Iterative Data Cubes, which provides a modular framework
for combining one-dimensional aggregation techniques to create
optimal, high-dimensional data cubes. Their approach could also
reduce query cost by creating iterative data cubes, while our work
reduces query cost through approximate query processing.

6.2 Approximate Query Processing

Approximate Query Processing (AQP) [5, 7, 14] focuses on giving
approximate answers in a very short time, which is especially mean-
ingful for decision making, data visualization, and hypothesis test-
ing [15]. We briefly introduce some widely used AQP approaches
here.

Online Aggregation (OLA): In online aggregation, the query
answers are continuously refined as more data is scanned [9]. Users
can stop the query process at any time when they are satisfied with
the accuracy. However, for some queries, OLA still requires a long
time to find enough records before giving satisfactory answers. In

interactive query answering where quick answers are expected for
all kinds of queries, OLA is not a good solution.

Sampling: Sampling provides approximate answers by making
one or more samples from the original data and doing queries
on the sample instead of the full data. It is a simple yet powerful
method because it avoids the curse of dimensionality. It can be easily
applied to high dimensional data and can answer a wide range of
queries with the same sample files. BlinkDB [1] is a representative
AQP framework which builds a set of stratified samples for the
original data. It exploits the past workloads and data sparseness
when building the samples. However, when using sampling as the
data synopsis method, the quality of answers relies heavily on the
quality of samples. Uniform sampling works badly on skew data,
and stratified sampling requires future queries known as a priori.
Since query workloads are not available for newly imported data,
sampling is not a proper solution for our scenario. Yan et al. [25]
proposed a stratified sampling method which aims to solve measure
skewness. However, their work is done on one-dimensional data
and is hard to extend to high dimensional situations.

Histograms and wavelets: Histograms and wavelets are both
data synopsis methods which aim to summarize records that are
"close" with fewer records [5, 20]. Although they work well in
one-dimensional scenarios, their complexity grows exponentially
with the number of dimensions. Moreover, these synopsis methods
mostly focus on minimizing global error and do not provide opti-
mization for specific queries. As a result, some of the queries may
suffer from a surprising high error rate.

Result Reusing: Recent work in AQP focuses on refining query
accuracy with the results of the past queries. For example, IDEA
[6] leverages several common patterns in data discovery to give an-
swers with the past results without accessing the data again. Verdict
[16] builds a model for underlying data distribution through "Data-
base Learning". BigIN4 focuses on giving accurate approximate
answers without knowledge about data and queries. It does not
need any past query to estimate answers. Still, we can incorporate
the idea of result reusing into BigIN4 in our future work.

7 CONCLUSION

Insight identification over big data has become increasingly im-
portant for business intelligence. In this paper, we present BigIN4,
an interactive insight identification system for multi-dimensional
big data. BigIN4 answers queries by combining data cube and ap-
proximate query processing techniques. The advantage of BigIN4
is that it does not require any prior knowledge of data or future
queries. When a query cannot be directly answered by the cubes,
BigIN4 will calculate a Bayesian Network for it, decompose the
query into several low dimensional answerable queries, and then
give an estimated answer to the original query. Experiments on
real-world datasets have shown that BigIN4 can identify insights
effectively and efficiently. It is able to provide approximate answers
quickly with less than 10% error on average. BigIN4 is now used by
multiple product teams in Microsoft to analyze their business data.

ACKNOWLEDGEMENT

We thank the intern students Xuewei Chen, Weizi Wang, Pu Zhao,
Kaize Ding, Banghuai Li, Chenggang Li, Yuchen Sun, Mingchao Sun,

and Zhenzhen Wang for the development and experiments, and
our product team partners for their collaboration and suggestions
on the applications of BigIN4. We also thank all the members of
Software Analytics team at MSRA for the discussions.

REFERENCES

[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,

and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response

times on very large data. In Proc. of the 8th ACM European Conference on Computer
Systems. ACM, 29-42.
Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
2015. Spark sql: Relational data processing in spark. In Proc. SSIGMOD ’15. ACM,
1383-1394.
[3] Jie Cheng, Russell Greiner, Jonathan Kelly, David Bell, and Weiru Liu. 2002.
Learning Bayesian networks from data: an information-theory based approach.
Artificial intelligence 137, 1-2 (2002), 43-90.
[4] C Chow and Cong Liu. 1968. Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory 14, 3 (1968),
462-467.
[5] Graham Cormode, Minos Garofalakis, Peter] Haas, and Chris Jermaine. 2012.
Synopses for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases 4, 1-3 (2012), 1-294.
[6] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. 2017. Revisiting reuse for approximate query processing. Proc. VLDB
Endowment 10, 10 (2017), 1142-1153.
[7] Minos N Garofalakis and Phillip B Gibbons. 2001. Approximate Query Processing:
Taming the TeraBytes.. In VLDB.
[8] Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. 2001. Efficient computation of
iceberg cubes with complex measures. In ACM SIGMOD Record, Vol. 30. 1-12.
[9] Joseph M Hellerstein, Peter] Haas, and Helen] Wang. 1997. Online aggregation.
In Acm Sigmod Record, Vol. 26. ACM, 171-182.
Prasanth Jayachandran, Karthik Tunga, Niranjan Kamat, and Arnab Nandi. 2014.
Combining user interaction, speculative query execution and sampling in the
DICE system. Proc. VLDB Endowment 7, 13 (2014), 1697-1700.
Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. 2014.
Distributed and interactive cube exploration. In Proc. ICDE 2014. IEEE, 472-483.
Micheline Kamber, Jiawei Han, and Jenny Chiang. 1997. Metarule-guided mining
of multi-dimensional association rules using data cubes.. In KDD, Vol. 97. 207.
Xiaolei Li, Jiawei Han, and Hector Gonzalez. 2004. High-dimensional OLAP: A
minimal cubing approach. In Proc. VLDB "04. VLDB Endowment, 528-539.
[14] Barzan Mozafari. 2017. Approximate query engines: Commercial challenges and
research opportunities. In Proc. SIGMOD ’17. ACM, 521-524.

[15] Barzan Mozafari and Ning Niu. 2015. A Handbook for Building an Approximate
Query Engine. IEEE Data Eng. Bull. 38, 3 (2015), 3-29.

[16] Yongjoo Park, Ahmad Shahab Tajik, Michael Cafarella, and Barzan Mozafari.
2017. Database learning: Toward a database that becomes smarter every time. In
Proc. SIGMOD ’17. ACM, 587-602.

[17] Mirek Riedewald and Divyakant Agrawal. 2005. Dynamic Multidimensional

Data Cubes for Interactive Analysis of Massive Datasets. In Encyclopedia of

Information Science and Technology, First Edition. IGI Global, 924-929.

Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi. 2001. Flexible data

cubes for online aggregation. In Proc. ICDT 01. Springer, 159-173.

[19] Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi. 2002. Managing and

analyzing massive data sets with data cubes. In Handbook of massive data sets.

Springer, 547-578.

Cristina Sirangelo. 2005. Approximate Query Answering on Multi-dimensional

Data. Ph.D. Dissertation. PhD Thesis, University of Calabria.

[21] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. 2017. Extracting

top-k insights from multi-dimensional data. In Proc. SIGMOD °17. 1509-1524.

Hunter Whitney. 2012. Data insights: new ways to visualize and make sense of

data. Morgan Kaufmann.

Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. 2010. Continuous sampling for online

aggregation over multiple queries. In Proc. SIGMOD ’10. ACM, 651-662.

Tianyi Wu, Dong Xin, Qiaozhu Mei, and Jiawei Han. 2009. Promotion analysis

in multi-dimensional space. Proc. VLDB Endowment 2, 1 (2009), 109-120.

Ying Yan, Liang Jeff Chen, and Zheng Zhang. 2014. Error-bounded sampling for

analytics on big sparse data. Proc. VLDB Endowment 7, 13 (2014), 1508-1519.

Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. 2015.

G-ola: Generalized on-line aggregation for interactive analysis on big data. In

Proc. SIGMOD ’15. ACM, 913-918.

Yan Zhang and Yiyu Jia. 2011. EProbe: An efficient subspace probing framework.

In ICTAI 2011 23rd IEEE International Conference on. IEEE, 841-848.

Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. 2011. Graph cube: on

warehousing and OLAP multidimensional networks. In Proc. SIGMOD ’11. ACM,

853-864.

[2

=
2

= =
N

ey
)

oy
&

[20

[22

[23

[24

™~
2

[26

[27

[28

	Abstract
	1 Introduction
	2 BACKGROUND AND MOTIVATION
	2.1 Insight Identification
	2.2 Data Exploration
	2.3 A Running Example

	3 The Proposed Approach
	3.1 Insight Mining
	3.2 Query Answering

	4 Experiments
	4.1 Experimental Design
	4.2 Experimental Results
	4.3 Discussions

	5 Success Stories and Lessons Learned
	6 Related Work
	6.1 Insight Mining and Data Exploration
	6.2 Approximate Query Processing

	7 Conclusion
	References

