
Technical Whitepaper
Cloud Integration

IBM API Connect
Deployment Whitepaper

2

Contents

 1 Abstract ..3

 2 Introduction ...3

 2.1 IBM API Connect Overview ...3
 2.1.1 Management server ...3
 2.1.2 API Gateway .. 4
 2.1.3 Developer Portal .. 4
 2.2 Terminology.. 4
 2.3 Cross-component data flows ... 5
 2.4 Relationship between logical concepts

and deployment components .. 7
 2.5 Environment separation ..8
 2.5.1 Shared Management service8
 2.5.2 Gateway service ..9
 2.5.3 Developer Portal ... 11
 2.5.4 Recommended environment separation 11
 2.5.5 Recommended practice for

API development and promotion 12

 3 Assessing your quality of service requirements 14

 3.1 Understanding key user
scenarios for API Connect ... 14

 3.2 Failure scenarios .. 14
 3.3 Questions for identifying

availability requirements .. 15

 4 Typical deployment patterns ...16

 4.1 Minimal development install .. 16
 4.2 Single region with high availability 17
 4.3 External and internal API exposure................................. 18
 4.4 Dual region with high availability 20
 4.5 Bluemix Dedicated deployment 21
 4.5.1 Single environment Bluemix Dedicated............. 22
 4.5.2 Two environment Bluemix Dedicated 23
 4.6 Hybrid gateway topology ..24
 4.7 Global deployment for geographical affinity 25
 4.7.1 Reduced topology global deployment 26

 5 Key points for multi-region deployments27

 5.1 Deployment components ...27
 5.2 API Gateway.. 28
 5.2.1 Resilience to failure of other tiers 30
 5.3 User interface traffic ... 31
 5.4 Management tier ... 32
 5.4.1 Configuration database ... 33

 5.4.1.1 Mitigating Split Brain Scenarios
with “Main Site” .. 34

 5.4.2 Analytics repository .. 35
 5.5 Developer Portal .. 38
 5.5.1 Failover and cluster sizing.. 39
 5.6 Business services .. 41
 5.7 Loopback runtime ... 41
 5.8 Supporting components.. 42
 5.9 Example deployment topology 42

 6 Operational topics .. 45

 6.1 Disaster recovery using backup and restore 45
 6.1.1 Management and Developer Portal 45
 6.1.2 Analytics .. 46
 6.2 Custom branding for APIs and

Developer Portal endpoints ...47
 6.2.1 API call branding ... 48
 6.2.2 Developer Portal branding 48
 7 Summary ... 49

 7.1 About the author ... 49

3

1 Abstract
This whitepaper describes the key concepts and topics you
will need to understand to deploy IBM API Connect v5 for
use in a production scenario. We will discuss the various
topologies that are typical for API Connect and the things that
need to be considered to ensure that your deployment will
successfully meet the relevant requirements for availability,
scalability, resilience and other aspects related to providing a
production quality of service for the solution.

The paper focuses largely on the on-premises API Connect
form factor which is deployed and administered by your team,
however there is also discussion of some aspects of the Bluemix
offerings where IBM is responsible for the deployment and
administration and you consume the offering “as a service”.

2 Introduction

2.1 IBM API Connect Overview
IBM API Connect is an end-to-end solution that quickly and
easily allows you to create, run, secure and manage access to
APIs. It provides a range of powerful capabilities through
which you can discover or define your API, implement that
API to connect with your existing backend services or create
new microservices to expose data assets. API Connect also
enables you to expose your APIs to your target application
developers whether they are inside or outside your organization
through a self-service Developer Portal that means new users of
your APIs can be up and running within minutes.

In this whitepaper, we will discuss the deployment and
administration aspects of API Connect and the way in which
you deploy the offering as part of your production
infrastructure. The following diagram shows the deployment
components that make up the API Connect solution.

Management
Server
Cloud Manager
API Manager
Analytics Runtime
Config Repository
Analytics Repository

APIC
Toolkit
API Designer
APIC Commands
Micro Gateway
Loopback

Target
Endpoint
Loopback

Laptop installation

Developer
Portal

api
API
Gateway
DataPower Gateway
Micro Gateway

Figure 1: Deployment components

2.1.1 Management server
The Management server is the central coordinator of the
whole solution;

• It hosts the Cloud Manager user interface through which
the system administrator deploys and configures the
solution

• It hosts the API Manager user interface that the API
provider users will use to define and configure the runtime
Catalog into which they will deploy APIs and manage their
lifecycle

• It contains a persistent database that is used to store the
configuration data about the system including details about;

 – Users and their permissions
 – Catalogs, Products and the APIs they contain
 – Developer Organizations, the Applications they own
and the Subscriptions that register those applications
as having access to Products

• It contains the Analytics component which persists data
about the set of API calls that have been invoked so that they
can be queried by the user to understand how successfully
the APIs are being used

4

2.1.2 API Gateway
The API Gateway is the core runtime component of
the system – it is responsible for responding to incoming
API calls from applications;

• Validating that the application that made the API call is
permitted to access the API (i.e. has an active subscription
to a product that contains the API operation)

• Enforcing the security constraints defined by the API such
as a requirement to authenticate using a protocol like
Basic Authentication or OAuth 2.0

• Enforcing rate limits so that the calling application cannot
invoke the API more frequently than the API provider has
specified

• Invoking the outbound request to the backend service or
services that are defined in the API implementation,
which may involve protocol transformation such as a REST
API calling out to a backend SOAP service

• Aggregating responses from potentially multiple backend
service calls and returning the relevant content of those
requests to the original caller

The API Gateway function might be provided by the
DataPower gateway - which is common in public or partner
scenarios where the gateway is hosted in the DMZ, or by the
MicroGateway – which is a lightweight Node.js based gateway
which is suited well to internally facing scenarios, particularly
where the administration of the gateway component itself will
be handled by the same project- or line-of-business team that
manages the APIs that it serves.

2.1.3 Developer Portal
The Developer Portal is the component through which
application developers that wish to consume the APIs will
access the system, including;

• Discovering the set of APIs that are made available
by an API provider

• Self-service registration of their own developer organization
account so that the application developer can authenticate
themselves to the system

• Self-service creation of an application identity through which
they will be allocated the Client ID and Client Secret
credentials that are required to identify their application
when making API calls

• Ability to subscribe the registered application to an
API Product to grant it permission to invoke APIs
(or request that they be granted that access, if the provider
of the API has decided the provider must approve
subscription requests)

The provider of the Developer Portal can customize the
look and feel of the Portal so that it matches the corporate
branding requirements of the enterprise, as in many cases the
Developer Portal will be the public face of your API program.

2.2 Terminology
In this whitepaper, the following definitions of terms
are used;

Table 1: Terminology

Term Definition

Region A physical location where infrastructure may be hosted in a way that it will not be affected by issues in other locations.
Commonly also described as a site or data centre, with its own independent power and networking connectivity etc.

A region may or may not have further sub-isolation characteristics such as semi-independent pods or availability zones.

High availability The ability of the solution to continue successful operation in the event of failure of a subset of the system components,
preferably without manual intervention.

Disaster recovery The process of recovering the successful operation of the solution in the event of a total loss of the current infrastructure -
for example recovering from backup into a new region.

Hot standby A deployment configuration in which a set of servers are actively running ready to instantaneously take over in the event
of a failure, but not actively serving traffic until that failover.

Cold standby A deployment configuration where the failover servers are in a stopped state until the point a failover is required, resulting
in a longer time window required to restore the normal operation of the solution.

Management service In API Connect, the name given to the cluster of Management servers that makes up the control plane of the solution.

Gateway service In API Connect, the name given to the cluster of Gateway servers that handle incoming API call traffic for deployed APIs.

5

Note that there are different interpretations about the meaning
disaster recovery compared to high availability depending on
the scope of “disaster” that you are referring to. Some customers
deploy a solution across two data centres in a hot standby
configuration and use the phrase “disaster recovery” to refer
to the process of failing over to the second site in the event of the
failure of the first site, however in this paper we describe that as
one of the cases of high availability, and use disaster recovery to
refer to the loss of all the deployed infrastructure.

2.3 Cross-Component Data Flows
The following diagram illustrates key data flows between the
various components of the system and their respective users.
Understanding the connections between the various components
of the system helps to position many of the requirements for
deploying IBM API Connect successfully for high scale usage.

App
Developer

Developer
Portal

Management
Server

APIC
Toolkit

Target Endpoint
Application
User

Application

API
Developer

Develop

Develop

Subscribe

Push info about
Products/APIs,
subscriptions

Create/delete sites

Register new app developers,
new applications, new subscriptions

Push info about
Product/APIs, subscriptions

Background
poll of Mgmt data

API event analytics data

Stage or Publish
Products/APIs

Cloud Manager
Org Admin

API Admin
Product Manager
Community Manager

api
API Gateway

Figure 2: Cross-component data flows

6

User interactions
The diagram above highlights several user roles and
the interactions that they have with the system;

• Cloud Manager role — the system administrators who
deploy and configure the infrastructure that makes up the
solution. These users work mainly in the Cloud Manager
user interface or with the appliance command-line.

• API Developer — designs and implements the APIs that
will be exposed through the product. Works mainly with
the API Connect Toolkit installed on their laptop

• Product Manager — responsible for publishing
API Products to a Catalog when they are ready to be
consumed. Works mainly in the API Manager user
interface on the Management server, or with the
API Connect Toolkit command-line interface

• Community Manager — manages the set of Developer
Organizations, Applications and Subscriptions that
consume the published Products. Works mainly in
the Community section of the Catalog in the
API Manager user interface

• Application Developer — implements the Application
that consumes the APIs. Discovers and subscribes to
APIs through the Developer Portal and then writes the
application that invokes the APIs through the API Gateway

Each of these users contributes to different stages in the
API’s lifecycle and has discrete actions they need to carry
out to achieve those goals. The availability expectations
they have of the system will be different, and dependent
on the actions that they perform.

System interactions
The components of the system exchange data at various
points to perform their necessary functions, largely
coordinated by the Management server. For example;

• When a Product is published to a Catalog by the
API Developer using the API Connect Toolkit the
Management server will forward a copy of the necessary
parts of that API to both the Developer Portal and the
API Gateway so that they can display the details about
that API or serve incoming API calls for it, respectively

• When an Application Developer logs in to the
Developer Portal and subscribes one of their
Applications to a new Product the details about that
new subscription are sent to the Management server
where they are persisted, and subsequently forwarded
to the API Gateway so that the gateway will accept
incoming API calls under the new subscription

Technical Whitepaper
Cloud Integration

7

2.4 Relationship between Logical Concepts and
Deployment Components
The following describes the logical concepts that make up
the API Connect solution;

Table 2: Selected logical concepts

Concept Description

Cloud A deployment of API Connect consisting of a single Management service (cluster) and associated Gateway
and Developer Portal services.

Provider organization Owns a set of APIs that will be deployed and managed through API Connect. Multi-tenancy support at this level which means
there may be many different provider organizations – for example one per project, line of business or team.

Each provider organization is logically isolated from the others with a different set of users that can configure or manage the
APIs that it contains.

Catalog Each provider organization will have one or more Catalogs that are the place to which Products (containing APIs) will be
staged or published.

There may be multiple catalogs in a provider organization to reflect the dev/test/pre-prod/prod stages of the API process,
or potentially to segregate different sets of APIs for different consumers, including externally facing consumers or
internally facing consumers.

Developer Portal (site) Each Catalog can have its own Developer Portal site configured, which is a website that application developers will use to
discover Products and subscribe to them. The site can be customized to have whatever look and feel the owner wishes, and
typically adopts the corporate branding of the enterprise that exposes it to fit in with the other public facing websites.

Gateway service Each Catalog is associated with a Gateway Service, which is the cluster of API Gateway servers that will be instructed to
serve the API requests for that Catalog.

Developer organization A developer organization exists within a Catalog as the representation of a business entity that wishes to consume APIs that
are exposed by the Catalog. For example, a 3rd party application development company would register themselves as a
developer organization (via the Developer Portal). Each developer in their company can then be registered as a user inside that
developer organization.

Application One or more Applications are registered by a Developer Organization to subscribe to APIs. The application will be allocated
the Client ID and Client Secret credentials that it will supply when invoking API calls.

8

Each deployment component shown in Figure 1 is deployed
as a cluster of one or more server instances depending on the
availability and resilience requirements of the deployment,
however the solution is designed with the ability to support
many different projects or teams sharing the same deployed
service instances;

• The Management service can support hundreds of provider
organizations, although in a typical on-premises deployment
there will generally be less than 20 - representing individual
project teams or lines of business

• The Management service can also support many hundreds
of catalogs, which at this level are only a logical subdivision of
the provider organization

• The Developer Portal service can support hundreds
of catalogs — each catalog will have its own site created
on the Portal cluster. For example, a cluster of three
Developer Portal servers might host 30 portal sites
across 18 provider organizations

• A single Gateway service can also support hundreds of
catalogs, however it is also possible to define multiple
Gateway services if you wish to segregate traffic for
different catalogs — for example a set of public facing
catalogs exposed through the DMZ in one Gateway service,
and internally facing catalogs using a second Gateway service

• Developer Organizations and Applications are logical
subdivisions within a catalog – in public facing API scenarios
it is common for there to be many hundreds or thousands
of these items within a catalog

2.5 Environment separation
The design, implementation, validation and deployment
of a new API to production is a process much like that of
a conventional business application — there are various
checkpoints that the API will go through before it is released
for use by real application developers, and your API Connect
deployments need to support that lifecycle.

It is common for customers to have a sequence of
“environments” in their deployment process, with the
expectation that the API infrastructure can support each
of those steps in an appropriate fashion, for example;

• Development
• Functional test
• Performance or Load test
• Pre-production / staging
• Production

API Connect provides a spectrum of options for isolating or
sharing various components of the system which can help
to strike a balance between fully isolated copies of the entire
deployment (which is best for isolation but has a higher
impact on administration overhead and licensing costs)
down to implementing all the environments with a single
deployment (low administration overhead but poor for isolation).

2.5.1 Shared Management Service
The Management service is synonymous with the scope of the
“cloud”, so if you want full isolation between two environments
then they must have different Management services —
which means a different set of Management servers for
each environment.

Sharing a Management service means there will be a single set
of administrator users who have access to the Cloud Manager
interface for carrying out administration activities — therefore
there is commonly a separate Management service for at least
the Production environment (often in an isolated network)
since not everyone in the development team will have a
business need for access to the Production environment.

9

As you saw in the previous sections the Management service
also handles the storage of API event analytics data for all the
Gateway servers defined underneath it, so there is a level of
“runtime” impact for the Management service. As a result,
any environments that expect high API call throughput
(such as Performance or Load test) should lean towards
having their own separate Management service in order
reduce the potential for the high API call traffic rate to
affect other environments.

The Management service is also the key component in the
process of upgrading API Connect from one release to another
or for applying Fix Pack updates within a version – the cluster is
always at a single version of API Connect and so if you upgrade
the Management cluster then you are recommended to update
all the related tiers to the matching version at the same time.
This can introduce friction if you deploy multiple Gateway
services to serve different types of traffic as there is then a
requirement to upgrade all the Gateway services at the same time.

2.5.2 Gateway Service
The Gateway service is a cluster of servers that are configured so
that they serve the same set of API calls. For full isolation,
a different set of servers should be defined inside each
Gateway service, but the DataPower gateway does provide the
ability to add the same servers to multiple Gateway services.

The effect in that case is to deploy a different DataPower
“domain” for each Gateway service that the server has been
added to, which provides a level of administrative isolation
between the APIs deployed to different Gateway services even
though the same DataPower servers are being used for both.

Each domain must be bound to a different combination of
network interface and IP address/port on the DataPower server
so this technique of using the same DataPower servers
in multiple Gateway services is often useful in the
following circumstances;

• Allow different catalogs to be bound to different network
interfaces - for example a public facing NIC, and an internally
facing NIC in the case where the DataPower server spans
multiple network zones

• Separate the data traffic for different environments, such
as Development traffic being routed over a different NIC
or port number. This might be used in conjunction with
the configuration of networking rules to ensure that
“development APIs” can’t contact “staging endpoints”
or similar

Note that the different Gateway services do not need to be
defined within the same Management service – you might
have isolated Management services (for other reasons) and
then choose to share the same DataPower servers, to increase
the utilisation of those servers – but at the risk of increasing
the potential for one cluster to affect the behaviour of the
other.

Importantly although different DataPower domains are
used for each Gateway service it is not currently possible
to pin resources to a given DataPower domain, so you can’t
(for example) divide the CPUs assigned to the DataPower
server across the two domains. Thus, there is a “noisy
neighbour” scenario where exceptionally high traffic in one
Gateway service could impact performance of the other,
and so sharing of DataPower servers is not recommended
for performance-sensitive scenarios.

10

The following diagrams illustrate the two cases — the first
diagram shows different DataPower servers as members of
each Gateway service so that there is no runtime impact of
the operation of Gateway service A on Gateway service B.
The second diagram has the advantage of using half the number
of DataPower servers, but at the risk of degradation in
performance of one Gateway service due to high throughput
in the other.

Gateway
service A

Gateway
service B

DataPower
server 1

DataPower
server 2

DataPower
server 3

DataPower
server 4

Figure 3: Two gateway services that do not share DataPower servers

Gateway
service A

Gateway
service B

DataPower
server 1

DataPower
server 2

Figure 4: Two gateway services that share DataPower servers

For additional information on this topic see the Knowledge
Center topic on “Adding multiple Gateway services that
share a single DataPower appliance”.
ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.
apic.cmc.doc/create_multiple_gateway_clusters.html

https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.cmc.doc/create_multiple_gateway_clusters.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.cmc.doc/create_multiple_gateway_clusters.html

11

2.5.3 Developer Portal
Currently it is necessary to deploy separate Developer Portal
servers for each Management service - it is not currently possible
to share Developer Portal servers across multiple Clouds.
Also, there is only one Developer Portal cluster for a
Management service (cloud), so you cannot use different sets
of Developer Portal servers for externally facing catalogs than
internal catalogs.

As noted in section 2.4 however a single cluster of Developer
Portal servers is capable of hosting Portals for many different
Catalogs at the same time.

2.5.4 Recommended Environment Separation
The specific set of environments used by each customer is often
subtly different and so there is no single answer to the question
of how to lay out the infrastructure for your environments
but the following guidelines are relatively common in their
use by customers. Each of the top-level bullets here represents a
separate Management service, typically with isolated resources
within the environment for the other tiers.

• Dev/test
 – A single Management service for both these purposes
 – Use different catalogs within the provider org to
separate development from test

 – Some customers have multiple development or
test catalogs if they wish to sub-divide further

 – Typically have a segregated set of Gateway instances
for dev/test use (separate from other environments),
but generally a single Gateway service unless there is
a need to isolate traffic between development and test
at a network level

• Performance or load test
 – True performance test environments should be fully
isolated from other infrastructure to give reliable,
repeatable results (ie no sharing of Management
service or Gateway services)

 – Some customers omit having a separate deployment
here and choose to use the dev/test cloud, with a
policy that normal development and testing is
suspended while performance testing takes place

 – As with all performance/load testing it is important
to estimate the peak requirements of the deployment,
which may be driven by seasonal or regular events
such as vacation seasons, end of month, end of
enrolment deadlines etc, and then test against an
appropriate margin in excess of the expected traffic
volumes so the size of the infrastructure for this
environment will mimic Production

• Pre-production / staging
 – Ideally this would be a direct copy of the Production
deployment (see below) to flush out as many issues as
possible before they reach production

 – In some cases pre-production might be implemented as a
separate logical catalog in the production deployment
as long as the potential interference between the two
is understood and accepted

• Production
 – Separate Management service
 – Fully isolated infrastructure, often in a protected
network zone (compared to Dev/test etc)

 – Restricted user access – deployments may be carried
out in an automated fashion using continuous delivery
pipelines like UrbanCode Deploy or Jenkins

12

2.5.5 Recommended Practice for API Development
and Promotion
A common question that follows from the separation of
environments like Dev, Test, Pre-Production, Production is
how it is recommended to manage the progression of APIs
through those various environments. As with other developed
components like applications there is a desire for the process
to be simple, reliable, reproducible and auditable – particularly
towards the end of the environment progression where the
Operations or production Administration team wants to be
able to roll out the updates to Production with a single
automated click rather than having to work through a
series of manual steps.

IBM API Connect v5 introduces important capabilities that
support this automated promotion of APIs through the lifecycle
in the form of the Developer Toolkit Command-Line Interface
(CLI) which provides a series of scriptable commands for
automating the deployment and management of Products
in a Catalog.

When developing an API or Product the API developer is
recommended to use the API Designer – a graphical interface
within the Developer Toolkit that provides the ability to
create, edit and test APIs locally on the developer’s laptop
without having to interact with the API Connect runtime
components (such as the Management, Gateway or Developer
Portal servers).

This “offline” development experience also has the advantage
that the files representing the Product, the APIs and all their
related artifacts are stored locally on the filesystem and so can
then also be integrated with an external source code control
system of your choice, which then becomes the basis for a
continuous deployment pipeline in which the API can be
automatically deployed to the relevant runtime catalog.

The following diagram illustrates the typical flow for
implementing a new API;

Figure 5: Developing an API using the offline Developer Toolkit

Note that the API Developer is publishing the Product directly
to the Catalog in the Management server – they are not making
use of the “Drafts” view that can be found in the API Manager.
This “Drafts” experience is primarily intended as a backwards
compatibility feature with the previous IBM API Management
v4 release, in which all development of APIs was done “online”
in the API Manager. In version 5 the recommendation is for
API Developers to use the Developer Toolkit to develop their APIs
locally on their laptop and not to make use of the Drafts view.

Management
Server

APIC
Toolkit

API
Developer

1. Uses the API Designer
to design, implement and
locally test the API

3. API Developer uses the
CLI to publish the Product to
the Management Server

apic publish MyProduct.yaml
–catalog sandbox

2. API Designer
writes the API to the
local file system

13

Once the API developer has finished their implementation and
testing work they will be ready to submit the new version of
the Product / API to the next stage in the delivery pipeline,
which might be “Test” or similar. It is at this point that
customers often start to introduce an automated delivery pipeline
to manage the evolution of the API in a more formal manner.

The automated delivery pipeline typically includes the following
steps as shown in Figure 6 below;

1. API developer commits the files representing the changes
they have made from their local filesystem to a source code
control system

2. A plugin to the source code control system provides the
ability to trigger a notification (or a job) when file changes
are detected

3. A job executes which extracts the source code onto the
job server

4. The job executes a script which uses the Developer Toolkit
CLI to publish the Product to the target API Connect cloud

5. The job executes a series of functional verification tests
6. If the tests are successful the job might then execute the

next job in the cycle, which might deploy and test the
changes to the Pre-Production cloud

API
Developer

1. Commits the modified files to
the source code repository

git add MyProduct.yaml
git commit -m “New attribute”
git push origin myBranch

2. The Jenkins Git Plugin
detects the change and triggers
the Jenkins “Test” job

3. Jenkins job checks out the code
git checkout origin...

4. Jenkins job uses the ToolKit CLI
to publish the product to the catalog

Management
Server

apic publish MyProduct.yaml -catalog sandbox

5. Jenkins job executes functional test
6. If successful, trigger the “PreProd” job

Figure 6: Automated delivery pipeline example

Note that API Connect does not mandate or depend on any
specific choice of tooling, so although Git and Jenkins are
shown in the example above you could use any source code
management (SCM) tool or job execution infrastructure that is
in place in your enterprise – the Developer Toolkit CLI provides
the necessary functionality in a way that it can be embedded
in any technology you choose.

14

3 Assessing your Quality
of Service Requirements

3.1 Understanding Key User Scenarios for API Connect
An easy trap to fall into when planning any production
deployment is for you or your stakeholders to make a
statement that the infrastructure must be 100% available.
We would all like our services to be available 100% of the
time but achieving that level of availability comes with a
financial and personnel price tag that not many organizations
are willing to pay when it comes to the crunch!

Instead we need to have an honest and open conversation with
our stakeholders to understand what the practical availability
requirements of the system are, and what the implications are
if those requirements are not met. We also need to take into
consideration that there are typically different availability
requirements for different data flows and user scenarios
within a deployment, which map into constraints on the
infrastructure that supports those scenarios.

In the context of API Connect the following represent the key
scenarios that you will want to understand from the perspective
of their impact to the business if there is a failure;

1. Deployed API calls — the ability to invoke APIs that have
already been deployed to the platform

2. Developer Portal viewing — ability for application
developers to view the documentation for existing APIs

3. Developer Portal updating — ability for new application
developers to register, or for app developers to subscribe
to products

4. Analytics collection — ability to collect new analytics event
data about incoming API calls

5. API Manager — ability to manage existing APIs or deploy
new ones through the user interface or command-line toolkit

6. Analytics query — ability to retrieve/view historical data
about API events

The set of items above is listed in a typical order of decreasing
priority, in that the highest importance aspect of the product
functionality to many customers is the availability and correct
functioning of existing deployed API calls. This is the bedrock
on which you are running your business and is the most
important part of the system so it typically sets an upper
bound on the availability requirements of the other scenarios.

For a public or partner facing API programme the next most
important thing is likely the Developer Portal since that is
also a public facing interface to your infrastructure. As shown
above it is useful to consider two variations of scenario around
the Developer Portal – the first “read only” view, and the
second “update” scenario. This acknowledges that
Application Developers will often just be browsing your
API catalog looking for useful services before they get to
the point of registering and subscribing to your APIs.

The API Manager interaction scenarios are often significantly
lower down the priority order compared to things like deployed
API calls because in a production environment new Products
or APIs are typically rolled out relatively infrequently and there
is a lower impact if a rollout must be delayed for a period due
to an outage of part of the infrastructure. These scenarios
become more important however if you are implementing true
continuous delivery where you may wish to publish new APIs
multiple times a day rather than only a couple of times a
month.

The requirements on the availability of the Analytics aspects
of the service are directly linked to what use you intend to make
of the data. If you are monetizing your API programme then
having a reliable record of how many API calls have been
made by a given application has a direct link to your revenue,
however if the analytics data is only for informational purposes
then it may not have a significant impact if you miss blocks of
data for a given period or are unable to query it immediately.

3.2 Failure Scenarios
There are a range of potential failure scenarios with any
infrastructure deployment and it is important to establish
which of them you need to be able to survive to meet your
business requirements. For high profile projects the answer
may well be “all of them” but in other cases it may be acceptable
that the service goes offline for a while because the stakeholders
have agreed that the cost to implement support for continuing
service during that scenario outweighs the cost to the business
given the expected frequency of the event.

15

The following lists a range of potential failure scenarios – in
each case you should consider how frequent the event to be,
what the impact would be to your service or business, and
how much effort/money you would be willing to invest to
prevent it from impacting your service;

1. Failure of a single node in an active data centre
2. Communication failure between two data centres
3. Loss of all function for a given component within a data centre
4. Loss of multiple instances across one or more data centres(?)
5. Loss of an entire data centre

It is also important to consider the impact of the other
services that API Connect depends upon, and what failure
scenarios they could trigger. One of the key dependencies that
API Connect has are the backend services that are being
managed by our APIs – there is limited value in deploying a
multi-region highly available infrastructure for API Connect if
the backend service is only present in a single region and has a
worse availability profile than the API endpoint you are
trying to expose;

• Where are your backend services located?
• What are the failure characteristics of those services?
• Are those backend services replicated in both data centres

so that it continues to function if one data centre fails?

3.3 Questions for Identifying Availability Requirements
To reach an accurate understanding of your availability
requirements it is often useful to survey your stakeholders
with concrete questions that help them quantify the impact
of availability on their business scenarios. Since the most
common response to questions about availability will be
“Yes – the system should always be available” we need to
phrase those questions in a way that enables the stakeholder
to give a more granular answer that quantifies the impact on
a scale rather than just giving a binary yes/no response.

The following questions are useful starting points in the dialog;

1. What is the impact to your business if your API calls are
down for 5 minutes?

 – What is the direct financial cost to your enterprise?
 – What is the reputational cost?
 – How does that impact change if the outage were
1 hour, 3 hours, 6 hours or 12 hours?

2. Who are your target application developers?
 – Are they internal / external to your organization?
 – Do they work “normal” business hours?
 – What time zone(s) are they located in, relative to
your deployment?

3. What is the impact to your business if application developers
are unable to view your API documentation for 1 hour?

 – What about 3 hours?
 – What if they could view the details of your APIs
but couldn’t subscribe to them?

4. How often do you expect each of the failure scenarios to occur?
 – What is the cost-benefit analysis of the business
impact of each event versus its predicted frequency?

5. How important is the analytics capability to your usage?
 – Are you using analytics for chargeback/billing?
 – What is the business cost if you were unable to
recover historical analytics data?

 – How much revenue would you lose per hour of
API call outage?

6. Do you need all components of the system to be available
in all locations?

 – If you have a three-region deployment does the
Developer Portal (for example) need to be available
in all three locations, or is it acceptable to run using a
single region in the event of a total outage of one region?

 – Might it be acceptable that the Developer Portal only
run in a single region, for example if the application
developers are internal to your organization and have
lower requirements on availability

7. How frequently do you expect to use each of the
components of the system?

 – How often will you be deploying new APIs?
 – How often will you be registering a new Application
Developer through the Developer Portal?

 – How often will an Application Developer register a
new subscription?

8. For multi-region deployments, do you want to maintain
the affinity of requests within a given region?

 – This may be more efficient from a latency perspective
 – What if a particular component within a region
has a failure?

16

4 Typical Deployment Patterns
There are a series of common deployment topologies that we
see being used across a wide range of customers. This section
describes those scenarios and highlights the benefits and
drawbacks to each of them against the goals that customers
typically have in mind.

The patterns are listed in approximately increasing order
of complexity starting with the simplest case and steadily
building up more powerful topologies to meet additional
deployment requirements. The contents of this section are
not intended to be taken as an exhaustive list of supported
scenarios – some customers mix-and-match certain aspects
of the scenarios described below or use similar deployment
topologies but with different requirements and motivations
behind their decisions – the goal is to describe the common
scenarios and reasoning that enable you to make an appropriate
decision about your own deployment topologies.

4.1 Minimal Development Install
The first deployment most customers undertake is a small
“development” installation. In the short term this gives your
Administration team the opportunity to become familiar with
the API Connect deployment components and how they sit
within your corporate infrastructure, but the main intention
of this style of deployment is to give your API developers a
sandbox in which they can experiment freely with APIs, their
implementation and usage without the risk of affecting users
who require a high level of availability or stability such as
production services.

Typically, a development installation will be contained within a
single region (data centre) and does not have strict requirements
on availability, so can be achieved using a single instance of each
deployment component as shown in the following diagram;

G

P

= Gateway

= Dev Portal

= Management

Note: Loopback infrastructure
omitted for illustration purposes

region

M

Figure 7: Minimal development install

This style of deployment is well suited for Proof of Concept
or simple functional validation scenarios in that it provides all
the capability and functionality of the API Connect offering,
without the need for the high availability or resilience aspects.
This means that it is not necessary to configure clusters of
multiple servers for each of the tiers (a single server may suffice)
and as a result it isn’t necessary to set up load balancing in
front of the clusters to route around failures.

For development or test installations it is common for the
API developers to have an increased level of access to
administer the deployment compared to one of the more
formal environments like Production or Pre-Production.
One example is where the API developer might be given
command-line and/or browser based access to the DataPower
instance (Gateway) for them to develop and test custom policy
implementations, or carry out low level debugging of API
call issues using the native DataPower capabilities. This more
permissive approach to access can help to make the API
development team more agile and productive in that they can
investigate and resolve problems themselves without having to
engage one of the system administration team, and so ensures
that API projects can be delivered more efficiently in a faster
time and with higher quality.

17

For some customers, the “development” environment still
comes with expectations and requirements around availability
and resilience and so the one-server-per-cluster approach
described above may be insufficient. That decision is often
determined based on the scope of impact an outage of the
system would cause – if the development environment is only
being used by a small number of developers in a single team
then the one-server-per-cluster approach may be acceptable,
but if the same development environment is shared by multiple
distinct teams or many API developers then the collective loss
of productivity from an outage may warrant either a single
resilient clustered deployment (as described in the next section)
or multiple independent deployment environments that can
each be used by a single team.

4.2 Single Region with High Availability
Adding high availability for API Connect within a single
region is a simple case of deploying multiple instances of each
component and configuring appropriate load balancing in
front of each cluster to route traffic around failures of any
individual component as shown in the following diagram.

G G G

P P P

region

M M M

Figure 8: Single region with high availability

The action of adding additional servers to the cluster
(for example adding servers to either the Gateway service or
the Management service via the Cloud Manager) is all that is
required to configure the necessary clustering and data
replication within the service – all the necessary setup
will be carried out automatically on your behalf without
the need for manual intervention.

You will determine the necessary number of servers that you
deploy in each cluster based on two key factors;

1. To provide high availability you require a minimum of two
servers per cluster but it is common to choose a minimum
of three servers so that the failure of any single node still
leaves two servers available to process the necessary traffic,
which avoids overloading the single remaining server

2. To successfully handle the single-node-failure scenario you
must ensure that under normal conditions each node has
sufficient spare capacity to handle a share of traffic from the
failed node(s). For example, in a 3-node deployment each
node must normally run at less than 66% CPU (or perhaps
60% CPU to be on the safe side) so that the remaining two
nodes can pick up their share of the additional traffic
without running out of capacity

For the Management and Developer Portal clusters these two
rules will typically always lead you to choose a cluster of three
servers since the overhead from users accessing the user
interfaces via their browser is not generally sufficient to result
in heavy load on the servers. The Gateway service however needs
careful sizing to be able to meet the traffic demands of your
deployed APIs, and very high API call rates may also require
some additional capacity in the Management service to handle
the processing of analytics events that are generated by the
Gateway. More details on sizing each of the clusters can be
found in Section 5.

18

Deploying multiple nodes within a cluster provides good
protection against the failure of an individual server process
but we also need to consider other failure scenarios that may
occur within a given region. For example, in a VMWare ESXi
deployment each of the servers are a virtual machine running
inside the ESXi server, so a failure of that ESXi server will
affect all the servers in the cluster. To mitigate this scenario
customers often choose to use multiple ESXi servers which
could be in different subnets, pods or availability zones within
the region to reduce the impact of other failures like network
interfaces etc. With each of these failure scenarios it is important
to identify how the deployment would react to the outage and
plan the topology so that it has sufficient resilience to handle
the failure.

The configuration of local load balancing (within the region/
data centre) has slightly different requirements depending on
which of the components are being managed, the details of
which are also discussed in Section 5. The two key scenarios
are stateless requests like API calls being routed to the
Gateway service, versus session-based web browser calls to the
API Manager / Cloud Manager or Developer Portal.

4.3 External and Internal API Exposure
Some API Connect customers have API programmes which
include both external/partner interactions as well as APIs
served for use entirely within the enterprise which leads to a
question of how to structure the logical and physical structure
of the deployment to meet those two use cases;

• There is commonly a significant separation between the set of
APIs made available to the externally facing subscribers and
those of the internally facing subscribers or the preferred
mechanism for authentication those application developers
to the Developer Portal, so often a separate Catalog is created
to service each scenario

• These Catalogs might be within a single Provider
Organization if there is overlap between the set of APIs
published to each group of consumers, or the Catalogs
might be in different Provider Organizations; the latter
being common if there are distinct groups of people
responsible for managing the APIs in each case

• Regardless of the logical layout there is still the question
of how much sharing of infrastructure there should be
between the two cases

The thought process in choosing the appropriate topology
for this scenario is similar to the discussion in section 2.5 on
Environment separation in that it is important to understand
that whenever there is sharing of infrastructure between two
use cases there is the potential that a change or an issue in the
shared infrastructure will affect both cases at once. For example,
it is not recommended to share infrastructure between a public
facing Production environment and an internally facing
development or test environment.

There is however a potentially valid scenario where both the
public facing and internally facing scenarios are the same “class”
of environment – typically if they are both Production services.
This can clearly be achieved with a single deployment if the
internal consumers are made to route their requests out to the
public facing network and then back in through the DMZ and
load balancer as shown in the following diagram, however this
is not generally desirable from a security or performance
perspective as it means internal traffic being routed over the
public network.

G G G

P P P

region

M M M

?

Figure 9: Forcing internal consumers to follow the same path as external

(not recommended)

19

To avoid the undesirable security and performance implications
an alternate approach is to configure a second Gateway service
so that externally facing APIs will be deployed to one cluster,
and internally facing APIs deployed to the other as shown in
the following diagram;

G G G

P P P

region

M M M

G G G

Figure 10: Separate Gateway service for internal and external traffic

This approach is used successfully by customers who are
comfortable with the following implications of the topology;

• There is a shared Management service and Developer
Portal cluster so any problems in those tiers could affect
both the externally facing and internally facing users at the
same time

• Upgrade is controlled by the (shared) Management service
so the external and internally facing Gateway services must
be upgraded at the same time, which introduces schedule
dependencies between the two use cases that may cause conflict
within the enterprise

• Since it has both externally and internally facing
components the cloud deployment will span multiple
network zones starting with the DMZ and reaching into
the protected or private network zones depending on your
network configuration. Some customers have network
security guidelines which restrict the number of zones a
set of connected servers can span which might prohibit
this type of deployment

Customers that are not comfortable with the conditions
described above arising from the shared Management service
can choose to deploy two separate Clouds – one to handle the
externally facing scenario and one for the internally facing
scenario as shown in the following diagram;

20

G G G

P P P

M M M

P P P

region

M M M

G G G

Figure 11: External and internal traffic using two separate clouds

4.4 Dual Region with High Availability
For on-premises customers the most common production
deployment scenario is to have a single cloud clustered across
two regions (data centres) as shown in the following diagram.

G G G

P P

region

Seville
200 km (for example)

Malaga

M M M

G G G

P P

region

M M M

Global LB

Figure 12: Dual regions with high availability

21

As shown in the diagram this approach provides two levels of
resilience – firstly there are two regions so there is isolation
from a total outage of a region, but also there are still multiple
servers in each region for a given component so there is high
availability within the region as well. The latter means that for
the simple “single server” failure scenarios both regions will
continue to function as normal.

In exchange for the additional resilience that comes from
running in two locations there are some new areas that need
to be considered in the deployment;

1. For load balancing we must now consider not only “local”
load balancing (within the region/site), but also “global”
load balancing that allocates traffic between the regions.
Global load balancing typically takes the form of either simple
DNS configuration, or using a managed DNS provider such
as Dyn or Amazon Route 53

2. Depending on the type of traffic it may be appropriate
either to spray traffic evenly across both regions, or in
some cases customers may choose to route all traffic of a
given type to a single “primary” region to achieve certain
other goals resulting in a hot standby style configuration.
More discussion of the reasons why that might be desirable
can be found in section 5.

 – Note that even if user traffic is being routed in a hot
standby fashion to a single region the API Connect
deployment infrastructure itself is always active/active
to ensure the necessary data replication takes place to
allow the second region to immediately serve the same
traffic workload if the primary region becomes
unavailable

 – As such there is no “standby” server configuration for
high availability in API Connect — that scenario is
better described as “disaster recovery” and is achieved
by restoring a backup into a new set of deployment
infrastructure as discussed in section 6.1

3. Since the deployment now spans two distinct geographic
locations there is an increased risk that the network
connectivity between those locations will be less reliable
than within a single location – for example higher latency/
response time, packet loss, or the two locations to become
disconnected from each other for a period. Each of those
cases can affect the replication of state between the two
regions and so increases the set of failure scenarios that
should need to consider in testing your deployment.

It is important to note that to successfully handle the case where
a single region is completely unavailable you must size both
regions so that they can each handle the total traffic workload of
your deployment – for example if API call traffic is generally
sprayed evenly across two regions then each region must be
running at less than 50% utilisation so that one region has
capacity to pick up the traffic from the other region in the
event of a failure.

Following the line of questions in section 3.3 an additional
point for consideration is that you may have decided that not
all functions have to be present in all regions. If so, you will
have made a conscious decision that if the “wrong” region
becomes unavailable then you may not be able to carry out
certain actions – for example deploying new APIs.

4.5 Bluemix Dedicated Deployment
IBM Bluemix Dedicated is a hosted Bluemix environment that
is dedicated to your sole use and so provides enhanced security,
privacy and performance when compared to Bluemix Public.
The functionality provided by API Connect in Bluemix is largely
identical to the on-premises deployment but the administration
and operational management of the deployment is carried out by
IBM rather than you as the customer – this means that you
and your team can focus on the higher-level tasks of defining
and managing your APIs without having to commit time and
resource to the deployment and day-to-day management
activities.

As the IBM team handle the administration and operational
management of your Bluemix Dedicated deployment the
low-level details are not discussed in detail in this whitepaper –
the infrastructure will be put in place by the IBM team on
your behalf following similar guidelines as discussed here,
but adapted for the specifics of the Bluemix deployment
infrastructure. The following sub-sections describe the
Bluemix Dedicated topologies at a high level to give the
background you need to understand the deployment options
as you engage with the IBM team.

For more information on Bluemix Dedicated in general
please see the following site;
ibm.com/cloud-computing/bluemix/dedicated

https://www.ibm.com/cloud-computing/bluemix/dedicated

22

4.5.1 Single Environment Bluemix Dedicated
A single Bluemix Dedicated environment (the default option for
Bluemix Dedicated) is analogous to the “single region with high
availability” topology described in section 4.2 in that it provides
resilience within the region but not to failures of the whole region.
As the customer, you can choose which data centre your Bluemix
Dedicated deployment is placed into from the list of 25 of more
IBM Cloud data centres so you can align the deployment with
the needs of your consumers, your on-premises data centre
location or other factors.

Since the administration of the deployment is handled by IBM
you will be consuming the offering “as a service” and you will
experience the deployment as a single logical service as shown in
the diagram below. Internally IBM will carry out an appropriate
deployment to provide high availability within the region
using a default pattern which forms the starting point for all

VPN

G

P

region

Customer on-premises
data center

M

Bluemix
applications /

runtimes

IBM Bluemix
Dedicated
IBM Bluemix
Dedicated

Target
endpoint

LDAP

Figure 13: Single environment Bluemix Dedicated deployment

Bluemix Dedicated deployments. The size of your specific
deployment might then be determined based on information
you provide about the expected volume of traffic, style of
usage etc. That information will come in part from the predicted
API call volume that you purchase but will also typically involve
further technical conversation between IBM and the customer,
for example to discuss your typical traffic patterns/peaks and
expected rate of API call concurrency, which are not reflected
directly in the purchasing metrics.

As shown in the diagram below one of the important aspects of
Bluemix Dedicated is that there is the option to have a private
network tunnel to connect the Bluemix Dedicated internal
network to your customer on-premises network, typically using
either a VPN or DirectLink connection. It is common for the
network routing to be configured so that the API Manager
interface is only accessible through this VPN connection

23

since the users of that interface are typically a restricted set of
people within your organization. Similarly, it is common for the
backend services that are being managed by API Connect to
be accessed over this private network link when APIs are invoked
to protect that data flow. By contrast the Gateway and Developer
Portal interfaces are often configured to be accessible over the
public internet, for example so that they are available to your
partners and deployed applications in the wild. Each Bluemix
Dedicated customer has slightly different requirements so the
IBM team will work with you to determine what is appropriate in
your case.

IBM also configures appropriate local load balancing for
the deployment so that you can access the API Manager,
Gateway, and Developer Portal endpoints without needing to
be aware of the exact server topology that has been put in place
on your behalf.

The net result for Bluemix Dedicated is that you can avoid
spending your time and resource handling the system
administration aspects of the solution and focus on the creation,
deployment and management of your business APIs.

4.5.2 Two Environment Bluemix Dedicated
To provide higher availability and resilience IBM provides
the option of a two environment Bluemix Dedicated deployment
as shown in the following diagram. Like the dual region
topology described in section 4.4 this topology ensures that
your API Connect infrastructure can continue functioning
even in the event of an outage of one of the regions.

The same topics and questions are relevant in considering this
topology as for the on-premises deployment case – for example
how you configure the global load balancing capability for the
deployment and whether to route traffic actively to both
regions or just one of them depending on the type of workload
in question.

VPN VPN

Customer on-premises
data center

Target
endpoint

LDAP

region B

Global load
balancing

region A

IBM Bluemix
Dedicated
IBM Bluemix
Dedicated

IBM Bluemix
Dedicated
IBM Bluemix
Dedicated

Bluemix
applications /
runtimes - B

Bluemix
applications /
runtimes - A

GG

P P

MM

Figure 14: Two environment Bluemix Dedicated

24

As administrators of the deployment the IBM team have a
recommended pattern of deployment that they will discuss
with you which builds on their experience of managing API
Connect deployments on behalf of other similar customers
and they will discuss your requirements in the context of this
recommended pattern.

An important note for two-environment Bluemix Dedicated
is that the API Connect deployment is configured to form a single
logical cloud clustered across both regions so that each location
can serve requests identically and you can fail over from one to
the other without interruption in traffic. By contrast the
Bluemix applications and runtimes are two independent
(not clustered) pieces of infrastructure so any applications you
deploy - including Loopback applications as part of API
Connect – must be deployed to both locations separately to
provide the same application functionality in both regions.

The two-environment Bluemix Dedicated topology is most
commonly used for providing higher availability within a given
geographical area where the two deployment regions are
relatively close together – for example Amsterdam and

Paris in Europe. This ensures that the consumers of the
deployed APIs have relatively consistent latency in
communicating with each deployment location.

4.6 Hybrid Gateway Topology
There is an emerging trend for some customers to pursue a
hybrid deployment topology where certain components of the
API Connect deployment are separated into different locations.
This is often part of an enterprise’s progression from a traditional
on-premises-only infrastructure towards a goal of running more
systems “in the cloud”. In this context hybrid topologies provide
useful stepping stones in gradually moving from one approach
to the other.

The most common hybrid topology we see customers asking for
is the “hybrid gateway” topology shown in the following diagram,
in which a customer wants to have the Gateway endpoint
deployed in their on-premises network. In this case the
Management and Developer Portal endpoints are deployed
in Bluemix but the API call traffic is routed directly to the
customer’s data centre;

VPN

GG G

P

region

Customer on-premises
data center

M

Bluemix
applications /

runtimes

IBM Bluemix
Dedicated
IBM Bluemix
Dedicated

LDAP Target
endpoint

Figure 15: Hybrid gateway topology

25

There are several different reasons why this scenario is of
interest to customers;

1. The customer already has an on-premises DataPower
gateway deployment which exposes endpoints publicly
through the DMZ and they want to use API Connect to
deploy APIs to that existing infrastructure, but don’t want
to be responsible for managing the “extra” API Connect
infrastructure (e.g. Management and Developer Portal
services) themselves

2. Highly performance or availability-critical scenarios
where the customer wants to place the Gateway in the
same immediate network location as the target endpoints
to optimise the API call path and avoid traversing the private
network connection between the Bluemix Dedicated region
and the on-premises data centre

Separating the Gateway component from the other parts of
API Connect as in this hybrid gateway topology introduces
some additional considerations for this style of deployment
as described below – in most cases these aspects are acceptable
when compared to the benefits the topology brings but it
is important to be aware of the implications when making
your decision;

• Shared administration of the Gateway instances
 – The on-premises Gateway instances are administered
primarily by the customer since they run in the
on-premises network, but API Connect requires the
ability to configure some aspects of those instances and
deploy API definitions so that they can be acted on

 – This means that both the customer administrators
and IBM have some level of shared administration
responsibility for the infrastructure, and can
increase complexity when updates are required
to the configuration or there are issues that must be
diagnosed, either because it may not initially be clear
which party is responsible or because it requires
coordination between the two organizations

• Transmission of Analytics events
 – As described in section 2.1 the Management service is
responsible for storing the API event analytics data
that is generated by the Gateway so that it can be
queried later

 – In this hybrid gateway topology the analytics data flows
from the on-premises Gateway to the Management
service in the cloud via the private network link which
means that there is an increase in network latency and
risk of interruption in connectivity for the data flow
compared to the Gateway running adjacent to the
Management service

 – This means that for high API call traffic rates it is
important to size the bandwidth provided by the
private network link, and there is an increased risk
that API event data may be lost if the Gateway is not
able to transfer the data to the Management service
fast enough to keep up with the incoming traffic

4.7 Global Deployment for Geographical Affinity
One of the most advanced topologies is a global deployment
in which multiple regions are spread across continents to
provide a single logical cloud. This is typically driven by
scenarios in which the same set of APIs are to be exposed
to one or more applications for which client requests originate
from anywhere in the world, and there is a strong desire to
minimize response time by ensuring that the API request is
served entirely within the closest deployment region to the caller.

As with all multi-region deployments the global load balancing
configuration is very important in routing traffic to the correct
deployment region. In the diagram shown below the API call
traffic has global load balancing configured so that the request is
routed to the geographically closest access point for the caller –
for example application requests from users in Europe are served
by the European deployment region.

What is often overlooked when first considering this scenario
is the location of the backend services that the Gateway is
forwarding requests to. Ideally the backend service endpoints
(and all their dependencies) should also be replicated in all
deployment regions to minimize latency for the requests and
ensure availability of the end-to-end API call; there is reduced
benefit from having Gateway instances in each geography if
there is only a single instance of the backend service in an
individual geography since if that backend service cannot be
reached then all API calls will fail. One key scenario that may
mitigate that impact is if API responses can be cached locally
by the Gateway so that most API calls never need to contact
the target service.

26

G G G

P

M M M

P

G G G

M M M

G G G

P

M M M

United States Europe Asia-Pacific

Global load balancing

Figure 16: Global deployment for geographical affinity

4.7.1 Reduced Topology Global Deployment
A global deployment with three (or more) regions increases
the risk of network partitioning and the potential for resulting
replication problems so it is especially important to consider
whether all the deployment components need to be deployed
in all regions. Instead of the fully replicated topology shown
in Figure 16 in some cases you might choose a reduced
topology like that shown below if certain requirements are
met, for example;

• All the application developers are internal, so less reliance
on the Developer Portal availability

• API developers / administrators are mostly internal and/
or in a single geography, so less need to replicate the
Management service

This creates a “satellite gateway” region that only has the
Gateway instances deployed (and hopefully replicated copies of
the target service endpoints locally as well as mentioned above),
and reduces the extent of the Management and Developer
Portal services. The satellite gateway approach does however
have the same implications as the hybrid gateway case in
section 4.6 because the Management service is always outside
the local region.

G G G

P

M M M

G G G G G G

M M M

United States Europe Asia-Pacific

Global load balancing

P P

Figure 17: Reduced replication global deployment

27

5 Key Points for
Multi-Region Deployments
In this section, we discuss each of the major deployment
components in turn and highlight the key points of interest
when putting in place your deployment topology and the
infrastructure that surrounds it.

5.1 Deployment Components
You will hopefully remember the following component
overview diagram from section 2.1 where we introduced
the major components of the API Connect deployment.

Management
Server
Cloud Manager
API Manager
Analytics Runtime
Config Repository
Analytics Repository

APIC
Toolkit
API Designer
APIC Commands
Micro Gateway
Loopback

Target
Endpoint
Loopback

Laptop installation

Developer
Portal

api
API
Gateway
DataPower Gateway
Micro Gateway

Figure 18: Deployment components

The following sub-sections will look at each component in
turn and deep dive inside the component where relevant to
discuss the details of the way it works and the requirements it
has in relation to the deployment topology. Each sub-section
starts with the following “at a glance” table that allows you
to get an immediate overview of the key points, and then
goes in to more details on the background and reasons
behind those statements.

Table 3: At a glance: Example

Session affinity

Load balancing

Persistence

Replication

Failover behaviour

Deployment location

Cluster sizing

28

5.2 API Gateway

Session affinity None – requests are stateless

Load balancing Round-robin distribution for both global and local load balancing

Persistence Only for domain configuration that provides the framework for serving APIs

Rate limit data is stored in-memory only – no persistence

Replication Rate limit information is replicated between peers using IP multicast

Failover behaviour No failover required (independent instances) unless using AO for front-side load balancing

Deployment location Suitable for DMZ deployment if desired

Cluster sizing Varies in line with API traffic rate

Table 4: At a glance: API Gateway

API call processing is typically the most important component of
the system from an availability and resilience perspective and is
designed to be largely stateless (and not require session affinity)
so that the system can be scaled efficiently and maximise
performance. To support this goal, well defined customer APIs
are also implemented to be stateless in nature from the
perspective of the Gateway tier, so that any instance can be
selected to process the incoming request.

Since the Gateway processing itself is stateless the load balancing
configuration can be configured to a stateless technique as well,
and we recommend using “round robin” for local load balancing
in order to evenly spray traffic across the available nodes within
the region. Some customers also consider a “least connections”
or “fastest response time” policy for local load balancing,
however this can lead to unexpected behaviour in failure
scenarios since in many cases an error response will be
returned immediately (eg couldn’t access the backend service)
which may cause the load balancer to route more and more
traffic to the failing node because it observes faster response times.

The global load balancing policy (for selecting a region) will
following one of two patterns depending on your preference
of whether both regions actively serve traffic;

1. Round-robin approach for global load balancing - for example
a simple DNS mapping that configures the external
endpoints for both regions, and allocates each address at
random to clients, or a more intelligent DNS allocation
based on health-check knowledge of the endpoints

2. Routing all traffic to a “primary” data centre – even though
the Gateway tier can serve traffic statelessly in both locations
some customers choose to route traffic to a primary site under
normal conditions, perhaps to have more efficient connectivity
to backend systems, or simplify the steady-state topology

29

Note on simple DNS configuration:

If you choose to use simple DNS configuration with multiple
service endpoints for your global load balancing policy it is
important to consider the time it will take for a client application
to pick up any changes you make to that configuration.
For example, if region 1 fails then any client applications that
were given the region 1 endpoint from DNS will continue to use
that endpoint until they next refresh from the DNS server, even
though all the requests may be failing. This means that you should
configure the DNS time to live (TTL) to a short time interval such
as 1 or 5 minutes to instruct the client app to refresh its DNS
selection regularly – the TTL will dictate the duration of time for
which clients may experience failing requests in the event of total
failure of a region.

It is also important to test regularly that the client applications
do in fact honour the DNS TTL setting otherwise some clients
may never pick up the DNS changes you make and all their
requests will be failing, even though the other location is
successfully serving traffic.

Although multi-endpoint DNS configuration is cost effective
and easy to configure, the failure case described above
often mean that customers will look at more powerful
(and thus more expensive / less simple to configure)
solutions to minimize the client applications’ experience
of outage scenarios.

Persistence and replication of data within the Gateway falls
into one of the following categories;

• API Connect domain configuration — each instance has a local
copy persisted to disk. No replication to other instances
is required

• API configuration data — each instance has a local in memory
copy of the data. No replication to other instances required.
Must be reloaded from the Management tier if a DataPower
instance is restarted, during which time that instance will not
be able to successfully serve API traffic

• Rate limit state data — stored in-memory and replicated
between instances using IP Multicast with a replication
interval of the order of 10ms. See below for more discussion

• OAuth token data is self-contained within the token so does
not need to be replicated or persisted across the cluster,
as long as all the instances are using the same cryptographic
configuration data — which will be configured automatically
by API Connect

Since replication of rate limit data (SLM peering in
DataPower terms) is carried out over IP Multicast the
observed behaviour for multi-region deployments is
sensitive to the network configuration that is put in place.
In most networks IP Multicast packets are restricted to
transmission within the local subnet so a gateway service which
spans two regions (typically two or more subnets) will only be
able to replicate data within each region. If round-robin global
load balancing has been configured across both regions this
will mean that clients for a single application (clientID) might
be able to invoke twice the number of API calls that is specified
by the rate limit – one quota for each region. If rate limit
enforcement is particularly important to your scenario you may
choose to mitigate this behaviour by either routing all API
traffic to a single active data centre, or by configuring your
network to allow the multicast packets to propagate between
the two (or more) regions.

As each individual instance can serve traffic independently
of the others there is no specific failover required if one of the
instances fails – the other instances will happily accept their
additional share of the traffic. In the event of a failure there
may be a small window of rate limit data which may not have
been replicated, but this is typically only a few milliseconds so
does not represent a major concern to most customers.

30

There is one main scenario where failover may be relevant to the
Gateway which is if you are using the Application Optimisation
(AO) feature to provide self-load balancing of incoming
requests across the Gateway cluster instead of using an
external load balancer. In that scenario one of the Gateway
instances will be the current owner of the virtual IP address that
represents the cluster, and if that instance fails the cluster
must elect a new instance to become the owner of the
IP address. The AO takeover process uses gratuitous ARP,
which is typically configured with a granularity of around 10
seconds for the failure to be detected and another instance
to begin serving new connections.

DataPower is a component with a long heritage of security
and hardening and as such is well suited for a deployment
location in the demilitarized zone (DMZ) for externally facing
scenarios. Some customers have guidelines which require use of
the physical DataPower appliance form factor when placed in
the DMZ but increasingly customers are also comfortable
with deploying the virtual appliance option in the DMZ
as well. For internally facing scenarios the DataPower
gateway can also be used (in any form factor), but some
customers also consider the MicroGateway, particularly if
they want to assign ownership of the Gateway infrastructure
to the same that owns the set of APIs or microservices that it
is fronting.

The cluster sizing decision for the API Gateway is based on the
volume of the API call traffic. As discussed in section 4.2 you will
need at least two or three instances to provide resilience to failures
of individual instances, but you still need to determine whether to
deploy additional nodes beyond that number to serve your
API traffic. The exact capacity of a Gateway instance is
very dependent on the style and complexity of APIs that you
deploy there – for example simple APIs that are effectively just a
proxy to an existing backend service are faster and more efficient
to execute than if you are aggregating responses from multiple
backend services or doing protocol transformation from SOAP
to REST. Your performance profile will also depend on how
much CPU, memory and disk you have allocated to your
Gateway instances, and whether they are physical or
virtual instances, which makes giving generic guidance
inaccurate or misleading. Our recommendation is to engage
your local IBM technical sales contact to facilitate a discussion
about your specific APIs / deployment topology which they can
use to help provide guidance on the recommended instance size
and cluster size.

5.2.1 Resilience to Failure of Other Tiers
The Gateway tier interacts with the Management service to both
consume metadata about the deployed APIs/Plans, and to send
API event data to the Management service’s analytics store.

The Gateway makes a series of poll requests to the Management
service approximately every 20-30 minutes to refresh its view of
the APIs that are deployed and the application subscriptions etc.
It has a full list of Management servers in the cluster and will pick
one that can be contacted, but even if all the Management servers
are unavailable the API traffic will continue to be served
successfully based on the latest locally stored view of the
configuration state. Note that this was not always the case so if
you are running a version of API Connect earlier than v5.0.7.0
and DataPower firmware 7.5.2.4 then API calls may begin
to fail after a period of time if the Management service
cannot be contacted.

The Gateway also generates API event analytics records that log
metadata about the API invocations that are being processed
such as response time, HTTP response code etc, and may also
log the payload of the request and response body if the
“Activity Log” policy has been configured in the API assembly.
In order that the client’s API request be completed as quickly
as possible that API event record is sent to the Management
service asynchronously (on a separate thread) and may also be
batched with other API event records if the API traffic rate
is sufficiently high. The records are stored in an in-memory
buffer before they are transmitted, so if all the Management
servers are unavailable the data will be retained in memory and
retried a little later, however there is the possibility that if the
duration of the Management service outage is long enough, or
the API traffic rate is high enough then the in-memory buffer
will become full and some analytics data may have to be
discarded. There is also a maximum data size on the memory
buffer so it will be used up faster if you have payload logging
enabled. Note that mainline processing of API requests is
not affected if the memory buffer becomes full – only that the
analytics records for those calls may be lost. In scenarios
where the historical analytics data is not being actively used
this does not generally present a problem, but if you are
billing your application consumers directly based on the
specific number of API calls they make then this potential loss
of data represents a window of lost revenue because of the
Management service outage.

31

5.3 User Interface Traffic

Session affinity Replication of user HTTP Session state exists for API Manager, Cloud Manager and Developer Portal for failover, but
recommended to route back to same instance under normal conditions

Load balancing Support recommendation to route back to same instance by configuring both global and local load balancing for session
affinity-based load balancing (eg sticky sessions or similar)

Persistence HTTP session replication is in-memory only

Replication HTTP session replication takes places over TCP/IP

Failover behaviour N/A

Deployment location N/A

Cluster sizing N/A

Table 5: At a glance: User interface traffic

This section discusses the aspects related to user interface traffic
handling in API Connect. From a deployment component
perspective, this covers two separate areas - with the API
Manager and Cloud Manager user interfaces being served
by the Management service, and the Developer Portal user
interface being served (unsurprisingly!) by the Developer
Portal cluster, however the requirements and recommendations
for these two cases are largely the same so we have combined
them into a single section here.

The “sameness” of the two scenarios stems from the fact that
user interface sessions take place under an HTTP session that
is established with the relevant server infrastructure and so the
default assumption is that the networking infrastructure will
maintain session affinity and ensure that all requests for that
session be routed back to the same server instance that served
the original request.

In fact, API Connect implements HTTP session replication out
of the box for each of the three user interfaces so it is possible to
have subsequent requests routed to any node in the cluster,
however in practice there is a small chance of some race
conditions causing errors due to replication of data around the
cluster if you were to implement a true stateless/round robin load
balancing approach;

• The HTTP session may not be replicated immediately to
other nodes in the cluster so there is the potential for “not
authorized” errors to occur when the user first starts up the
UI and establishes their session

• Read requests might be served by a “local” database read-cache
so there is the potential for write actions that have just been
made to not be reflected immediately in read requests

As a result, we still recommend to maintain the session affinity
model for load balancing under normal conditions, and fall
back to an alternate server only in the error cases where the
initial server may have been taken offline or had a failure.

At a technical level, the HTTP session replication capability
in both the Management service and the Developer Portal
use a standard TCP/IP mechanism for replicating the
necessary data between the servers in the cluster so there
is no extra work required to maintain that replication if the
cluster is deployed across multiple regions or subnets (in
contrast to if it were replicated using IP Multicast).

The replicated session data is stored in-memory only and is not
persisted to disk. This means that if you were to stop the entire
Management service (all servers in the cluster) and then bring it
back up again the user would have to create a new HTTP session.
A total copy of the session data is replicated (in memory) to all
servers in the cluster so if there are one or more Management
servers active then the session data will be retained, including
re-replicating it to other servers once they come online.
As a result, the only time that session data would be lost
(and the user have to create a new HTTP session) is during
an upgrade scenario or a total infrastructure outage, which is
not typically a major concern.

32

5.4 Management Tier

Session affinity As described for UI traffic in section 5.3

Load balancing As described for UI traffic in section 5.3

Persistence Configuration data (APIs, Products, Apps, Subscriptions etc) in a persistent database

API call and audit analytics data stored in integrated ElasticSearch instance

Replication Persistent database uses a primary + multiple secondary model, with fully copy replication

ElasticSearch is a sharded replicated data store (partial copy on each node, where suitable)

Failover behaviour For the persistent DB, one of the “secondary” Management servers is responsible for electing the new primary. Secondary
servers are also able to serve read requests even when not connected to the primary.

ElasticSearch is a peer-based model so remaining nodes continue to function, but data from the failed node may need to
be redistributed to the remaining instances.

Deployment location Private or protected zone. Not recommended for deployment in the DMZ

Cluster sizing At least two (or three) nodes in each region to achieve high availability.

UI or CLI-based traffic load not generally sufficient to require additional nodes.

High API call rate or payload logging scenarios may drive need for additional nodes for analytics storage.

Table 6: At a glance: Management tier

As mentioned in section 2.1.1 there are two main functions
provided by the Management service which determine
the characteristics of the cluster from a deployment and
failover perspective;

• Configuration database which stores the details of APIs that
you have deployed to a Catalog, application developers that
have registered as a developer organization, their Applications
and Subscriptions etc

• Analytics repository (ElasticSearch) that stores the
historical record of API events that have been processed
by the API Gateway and can be retrospectively queried
via the API Manager interface

These functions, and the server in which they reside are not
security hardened to the level that would needed for the instance
to be deployed in an internet facing zone, so the servers in the
Management service should be deployed in a private or protected
deployment location, and not in the DMZ.

The following subsections discuss each of the main functions
in turn;

33

5.4.1 Configuration Database
The configuration database stores all the data about the objects
that you have configured in the Cloud Manager and the
API Manager, for example the server instance details,
the definitions of the APIs that you have deployed to your
Catalogs, the user memberships and role allocations. It also
stores the authoritative view of the “Community” information
that is set up through the Developer Portal – for example the
list of developer organizations, the users contained in those
developer organizations, the Applications that they have
registered and the Subscriptions they have made to associate
their Application with Products that have been published.

Inside the Management servers, API Connect uses an
Informix database to provide the persistence capability –
the database is self-managing and as a user of API Connect
you will never interact with it directly – all access takes place
through the web browser or REST API interfaces that are
provided by the offering.

The database uses a “primary + multiple secondary” full-copy
replication model where there is a single primary server in
the cluster, which is the only server that can process requests
to write/update data to the database. Each server in the cluster
receives a full copy of the database and the non-primary
(referred to as “RSS”, for “remote standalone secondary”)
servers are all read-capable, so if your request happens to be
routed to one of the secondary servers it will be processed by
that local server if it is reading data from the database, but if it
is a request to write data then the secondary server will forward
on the request (transparently to the calling application code)
to the primary.

One of the non-primary servers is also nominated as the
“active arbitrator” (AA) which means it is responsible for
triggering the failover process by nominating a new primary if
the original one fails or cannot be contacted. For multi-region
deployments, this style of leader election can sometimes
result in the creation of an additional primary server –
described as split-brain or cloud disassociation, which
led to the inclusion of the “main site” feature which is
described in the next subsection.

The general access pattern for the configuration database is
typically quite lightweight in that both read and write operations
are typically triggered by a human user in either the Cloud
Manager or the API Manager user interfaces, or via a CLI
or REST API call at the direct request of a human being.
This means that it is not generally necessary to have a cluster
size of more than the standard two or three Management
servers that are needed to provide high availability in each
region. The load on the Management service will be higher
if you are putting in place a continuous delivery pipeline that
triggers the deployment or subscription of APIs multiple times
per hour, however even this is unlikely to load the system to
the point that additional nodes would need to be deployed.
(Note: there is also an impact on cluster sizing from the
analytics processing as described in section 5.4.2)

34

5.4.1.1 Mitigating Split Brain Scenarios with “Main Site”
As noted in the preceding section, one of the non-primary (RSS)
database servers is nominated as the “active arbitrator” (AA),
whose role it is to nominate a new server to take over as the
primary (P) if the original primary fails or cannot be contacted.
In multi-region deployments, this can lead to creation of an
additional primary server if the primary server and the active
arbitrator happen to land in different regions as shown in the
following diagram;

M (P)

M (RSS)

M (RSS. AA)

M (RSS)

M (P)

M (RSS)

M (RSS. AA)

M (P)

Region A Region B

1. Network link failure

3. Two primaries
(bad!)

2. Can’t see primary,
so nominates a new

one it can see

Region A Region B

Figure 20: Split brain scenario (before “main site”)

Once the second primary has been created we are in a state of
“cloud dissociation” or split brain in that write activity may be
being served by either region, but when the network link is
re-established the two sides of the link will not be able to join
back together as a single cluster because they have inconsistent
views of the data state. Recovering from this situation requires
some complicated administrative actions so we want to avoid
the potential for this issue to occur.

The “main site” feature is designed to prevent the possibility
of a cross-region cloud dissociation by giving the administrator
the ability to constrain the set of servers which are eligible to

participate in the automatic failover process – effectively limiting
which servers can take on the active arbitrator role, and which
can become primary. This effectively nominates one of the
regions as a “main” location, and disables the “HA” capabilities
of Management servers in all the other regions so that they
cannot become primary, so that in the event of a network
partition between regions there is no opportunity for
a second primary to be created, as shown in the
following diagram;

M (P)

M (RSS, AA) M (RSS)

M (P)

M (RSS. AA)

Region A Region B

1. Network link failure

Region A Region B

M (RSS)

M (RSS)

M (RSS)

3. Single primary,
success!2. AA can still see the

primary because they
are in the same region

Region A Mgmt servers are
the “main site”

Region B Mgmt servers have
had HA disabled

Figure 21: Network partition, with main site

Although the main site feature solves the common failure scenario
where the network between the two regions fails or is disrupted
we have done so at the expense of some reduction in resilience
in a less common failure scenario – where the whole of the main
site region fails. The second region has had its eligibility to
become primary disabled as part of the main site configuration,
so it is not permitted to nominate a primary, and there is no way
it can know automatically whether the main site region
has failed permanently, or whether it will be coming back
again soon – it is still able to serve read requests but any write
requests will fail because the RSS servers cannot forward them
to a primary server.

35

To resolve this scenario the human administrator must decide that
the main site region will not be coming back and is then able to
issue some simple administrative commands in the second region
to tell those servers that they are now permitted to take on the
primary and active arbitrator roles – effectively directing the
servers in the second region that they are now the main site as
shown in the following diagram;

M (P)

M (R SS, AA) M (R SS)

M (P)

M (R SS. AA)

Region A Region B

1. Region A fails
entirely, no primary.

Region A Region B

M (R SS)

2. Administrator enables
region 2 for P / AA roles
using CLI commands

M (P)

M (R SS, AA)

Region B Mgmt servers
have had HA disabled

Figure 22: Administrative re-enablement after region failure

Once the servers in the second region have negotiated the
primary and active arbitrator roles the system returns to normal
function and is able to continue serving both read and write
requests.

More details about the main site functionality including the specific
CLI commands that are executed to enable/disable the main site
functionality can be found in the Knowledge Center here;
(or search for “main site”)
ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.
apic.overview.doc/capic_overview_main_site.html

5.4.2 Analytics Repository
The analytics repository stores historical data about the set of
API calls that have been processed by the API Gateway as well
as audit information about the creation, modification or deletion
of APIs or state changes within the API lifecycle. This data
is persisted and queried using ElasticSearch, which is well
suited for this type of write-once/read-many style access
pattern.

Replication in ElasticSearch works by allocating each data item
(such as a record about an API being invoked) to an “index”
and then dividing the contents of each index into a series of
“shards” which allows the data contained in the index to be
horizontally distributed across the available set of nodes, and
for data processing to be carried out concurrently on each
shard to improve performance. To provide resilience for the data
storage API Connect configures the embedded ElasticSearch
index so that as well as a “primary shard” there is also a
“replica shard” which stores a copy of the data contained in
that shard on a different instance, so that the data will still
be available if an individual server is lost un-recoverably.

For high API call throughput scenarios, a large volume
of historical analytics data will be generated and stored in
your deployment – a rough rule of thumb is approximately
1KB per API call by default. Significantly more data will be
stored if you have chosen to enable the “activity-log” policy in

https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.overview.doc/capic_overview_main_site.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.overview.doc/capic_overview_main_site.html

36

your API implementations as this policy will cause the HTTP
request and/or response headers, and/or the API request/
response body payloads to be logged, which may be 10s or 100s
of KBs per API call depending on your APIs. To store this large
volume of data ElasticSearch distributes the shards (both
primary and replica shards) across the available set of servers
such that each server contains a subset of the shards. This
means for a fixed volume of data stored, the more Management
servers you add (after two) to your Management service the
lower the disk usage will be on each server as shown in the
following diagram;

One server - single copyP1 P2 P3

Two servers - both servers have
a full copyP1 P2 R3 R1 R2 P3

Three (or more) servers - data
is shared across the available
servers

P1 R3 R2 P3 R1 P2

Figure 23: Example showing ElasticSearch distribution of 3 primary (P) and replica (R) shards across a cluster of varying sizes

The primary consideration for cluster sizing the Management
service in relation to analytics is to ensure that the total disk
size across the servers is sufficient to store the API event data.
API Connect stores the historical analytics data for a period
of 90 days so you must consider the total volume of
API traffic over that 3-month period when estimating
your disk space requirements.

37

The following give some rough estimates on the number of
Management server instances that you will need for various
API call volumes, assuming the recommended 300GB disk size
for each Management server, and that none of your APIs enable
the “activity-log” policy;

Number of Management
servers (300GB disk)

Approximate API call traffic rate Notes

2 100 million API calls/month Fully copy of data on each server

Roughly 1kb data storage per API call

3 months’ data stored, so 100GB per month

3 150 million API calls/month 150GB/month data accumulation, so 450GB data every 90 days.

Two copies of each item (primary/replica) so 900GB total data storage required

4 200 million API calls/month

5 250 million API calls/month

Table 7: Approximate estimated analytics storage for a given Management cluster size

The following formula (used to generate the table above) enables
you to calculate the number of management nodes that are
required to store the analytics data based on the volume of
API calls, disk size and estimated event size;

C = Number of API calls/month, in millions (eg 150)

E = Event size, in bytes (eg 1024 for cases where the headers
 and payload are not logged)

D = Management node disk size, in GB (eg 300)

N = (the answer) The number of Management instances
 required to store the analytics data

N = math.ceiling of
(C * E * 106 * 2 * 3)

(10243 * D)

Once your deployment is up and running if you find that you
are beginning to run out of disk space for analytics data then there
are two options available to you to add additional storage capacity;

1. Deploy one or more additional Management servers —
the data will be distributed across the available servers
which helps to spread the load for processing the data
across a larger pool of infrastructure

2. Add additional disks to each of the existing Management
servers to provide increase the amount of available storage
on the existing servers.

As indicated by the table above, for very high API traffic rates you
will generally need to apply a combination of both these options
to provide the necessary storage capacity while constraining your
deployment to a manageable number of servers.

Details on how to add an additional disk to a Management
server (option 2) can be found in the Knowledge Center topic
on “Adding a new data disk to a Management appliance”;
ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.
apic.install.doc/tapic_add_new_data_disk.html

https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.install.doc/tapic_add_new_data_disk.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.install.doc/tapic_add_new_data_disk.html

38

5.5 Developer Portal

Session affinity As described for UI traffic in section 5.3

Load balancing As described for UI traffic in section 5.3

Persistence Embedded variant of MySQL provides storage for the Drupal content-management items like blogs/forums, as well as
local cache for API/Product and developer org/application data

Replication Full copy of data in each instance, taking place over standard TCP/IP connectivity

Failover behaviour Quorum/majority-based algorithm for determining whether an instance is permitted to process requests. All active in-
stances can serve both read and write requests. Instances which cannot contact a quorum of expected peers will refuse to
process any requests (reads or writes)

Deployment location Private or protected zone. Not recommended for deployment in the DMZ.

Additional security by isolating from other instances within the network zone.

Cluster sizing Largely driven by HA and regional resilience – but also related to concurrent number of logged-in application developers

Table 8: At a glance: Developer Portal

The Developer Portal is a Drupal content management system
that has been customized to meet the use cases required for
managing APIs. Drupal sits on top of a MySQL-style database to
provide its persistence so the resilience behaviours
discussed here are generally inherited from the MySQL
behaviour. Additionally, some aspects of the Portal
configuration are persisted to the local disk of the Developer
Portal nodes, and replicated around the cluster to provide
resilience.

The primary purpose of the persistence in the Developer Portal
service is to store the “content” that you configure within
the Portal, or that application developers insert – for example
customizations that you make to the theme of the site in order
to reflect your corporate branding or desired look and feel
(which is stored directly on the file system), or the content of
blog posts, forum questions or other generated content that
you may enable through the Drupal infrastructure (which is
stored in the database).

Both the MySQL database and the file system storage are fully
replicated across each instance, so that there a full copy in
every server in the cluster. Both also use TCP/IP-based

connections to carry out the replication activity, so only
standard network connectivity is required – there is no
dependency on multicast or similar advanced protocols.

As with the Management service, the Developer Portal instances
are not security hardened to the extent that you would expect
for it to be suitable to deploy the instances in the DMZ,
so the correct deployment location for the Portal instances
is in the protected or private zones. The Drupal content
management system provides a wide spectrum of advanced
capabilities that can be customized by the administrator, and
so has an increased attack surface compared to a “single
function” process, so some customers also choose to
place the Portal instances into a restricted network zone
that cannot communicate freely with other instances in the
protected/private zone – this reduces the scope of the problem
if a security exposure allows a malicious application developer
user to get more powerful access than was intended. Note that
you cannot isolate the Developer Portal instances entirely
from the rest of the network as there is a requirement to
talk back to the Management service but the set of instances/
ports can be restricted to a permitted whitelist of endpoints.

39

Note:

Unlike the Management instances – which are sealed
appliances – the Developer Portal instances do provide the
ability for the user to reach the operating system on which
the Portal infrastructure is running, for example via SSH.
Having direct access to the operating system is very powerful
from the perspective of being able to execute commands to
configure and maintain the infrastructure but you are strongly
recommended not to make any unsupported changes to the
configuration since doing so will make it difficult or impossible
for the IBM team to provide support should you need it, and
such changes might be overwritten the next time an upgrade
takes place. If you are in any doubt whether a change is
permitted please contact the IBM support team before
making the change.

5.5.1 Failover and Cluster Sizing
MySQL is different to some conventional databases in that
every active server serves both read and write requests, so there
isn’t the concept of failover in the same way that there is for
technologies where only a single “primary” instance can serve
the write requests.

By default, however MySQL implements a quorum approach
to determining whether a given instance is permitted to serve
incoming requests – each instance will periodically poll its
peers to determine whether they can be contacted, and only if
the instance can see the majority of its peers will it permit itself
to serve incoming workload. Any instances which cannot see
the majority of its peers will refuse to serve any requests
(read or write) and will return errors to the calling application –
this is a defence mechanism which aims to avoid the equivalent
split brain scenarios that we discussed in section 5.4.1.1 by
ensuring that an instance will only process requests if it is
connected to the majority of instances in the cluster.

This requirement for quorum can lead to some unusual
deployment topologies as it encourages you to deploy different
numbers of instances in each region – for example in a two-region
deployment you might have three instances in one region and
two in the other, effectively making the first region a primary
region that can carry on transparently if the second region is lost.
Like the Management node “main site” function discussed in
section 5.4.1.1 the drawback of nominating a primary region is
that an administrative command must be executed in the
secondary region to allow it to become active if the primary
region fails, because the two remaining instances will not be
able to see a quorum of the expected servers. The specific
administration commands to achieve this for the Developer
Portal are described in the Knowledge Center topic on
“Performing manual failover for Developer Portal servers”;
ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.
ibm.apic.install.doc/capic_install_portal_manual_failover.html

Controlling the failover behaviour of the system based on the
number of nodes that are deployed into each region is not ideal
and so there are also some configuration actions that you can
apply to maintain failover behaviour while keeping an equal
number of instances in each region as described in the
Knowledge Center topic on “High Availability configurations
for the Developer Portal”. Note that even with an equal
number of nodes in each location the commands described here
are effectively nominating a “main site” and so in the event of the
failure of the primary region it is still necessary to apply the
administrative commands described in the previous paragraph.
ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.
apic.install.doc/capic_portal_ha_config.html

https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.install.doc/capic_install_portal_manual_failover.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.install.doc/capic_install_portal_manual_failover.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.install.doc/capic_portal_ha_config.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.install.doc/capic_portal_ha_config.html

40

Cluster sizing for the Developer Portal service is determined
by three main motivators;

• Number of application developers that will be concurrently
logged in to the Portal

• Resilience and failover amongst the defined regions
• MySQL cluster size scalability

For many customers, the total number of application developers
will be relatively small because they are internal to your enterprise
or members of a small defined set of partners that develop
applications on your behalf. It is generally only if you have
large numbers of partners or are offering a truly public
API programme where you expect to get thousands (or more)
developers that you will need to consider adding extra instances to
support the concurrent user load, over and above what you would
already be considering to support your HA requirements.

The guidance given at the beginning of this whitepaper has a
general recommendation to deploy multiple instances of a server
type in each region so that the failure of a single instance does not
cause a complete outage in that region, however in the case of
the Portal there is also a constraint on the total number of
instances in the cluster because the MySQL cluster replication
does not scale well as the number of instances in the cluster
increases beyond around five or six instances.

The following table gives some example topologies that
embody the recommended trade-off between the total number
of instances in the cluster, and the desire to give resilience to
failure within a single region. Note that here we are talking
about the number of regions in which the Developer Portal
capability is deployed, which may not be all the regions
covered by the API Connect deployment, as described in
section 4.7.1.

Number of regions exposing the
Developer Portal capability

Recommended instance configuration

One Minimum 2 for high availability, preferably 3.

Scale up to 5 depending on traffic requirements

Two 2 instances in each region, configuring the segment/weight commands as in the linked Knowledge Center topics above

Three 1 instance in each region, as described in the Knowledge Center topic above. Note that in this case the concern about
the MySQL replication performance with large numbers of instances outweighs the desire to have the extra resilience of
multiple instances within a region

Table 9: Developer Portal instance layout based on number of deployment regions

41

5.6 Business Services
Your business services are implemented outside the scope of
API Connect, and may encompass a wide range of characteristics
depending on the type of service and its implementation. The
following table discusses some typical / desirable
characteristics of your backend services as it relates to ideal
integration with API Connect;

Session affinity Ideally should not require session affinity, to maximize scalability and resilience

Load balancing Round robin (no session affinity)

Persistence Some form of persistence to store the business data, but style/type is specific to the service

Replication Ideally the service instances are independent, but using a shared persistence store

Failover behaviour No failover required (independent instances)

Deployment location Private or protected zone. Not generally deployed in the DMZ.

Cluster sizing Varies in line with backend traffic rate (which may be less than API traffic rate if response caching is in use)

Table 10: At a glance: Business services

5.7 Loopback Runtime

Session affinity Loopback applications themselves are typically stateless as the data is persisted elsewhere, so no affinity requirements at
the instance level

Load balancing Round-robin distribution for both global and local load balancing.

May configure affinity within the same region as the Gateway for performance efficiency

Persistence No persistence inside the loopback application itself

Replication Instances are independent of each other, no replication between them

Failover behaviour No failover required (independent instances)

Deployment location Private or protected zone. Not recommended for deployment in the DMZ.

Cluster sizing Varies in line with API traffic rate

Table 11: At a glance: Loopback runtime

The loopback cluster in which the “Create/Run” parts of
API Connect execute are generally stateless and have no
persistence of their own, as they act as a bridge to an external
data source within the enterprise. As such there is no affinity
requirement and so round-robin load balancing is generally the
best approach.

42

Since each instance is stateless there is also no need for
replication of data between the instances, and so no real
concept of failover beyond the behaviour of the load balancer
to route around instances that may be unavailable at a given
point in time.

These characteristics give significant flexibility in how the
instances are “clustered” because from the perspective of
serving runtime API traffic it doesn’t matter whether the
instances are part of a single cluster, multiple independent
clusters, or un-clustered standalone instances. There is
simplicity from an administration perspective in having a single
cluster that is managed by a central coordinator such as a
Collective so that it is only necessary to publish the loopback
application once (and the coordinator distributes it to all the
worker nodes), however for cross-region resilience you might
have a separate cluster in each region - at the expense of having
to publish the application twice.

As you would expect, cluster sizing in this case is driven by the
volume of API calls to the APIs that are implemented by the
loopback instances; starting with a minimum of two or three
instances to provide high availability and then adding additional
instances if the API throughput or concurrent request rate
requires it.

5.8 Supporting Components
As well as the core components of API Connect that we have
discussed above there are several supporting components
which are critical to the successful and reliable operation of the
deployment, and it is important to take these items fully into
account when planning the resilience of your installation.

• NTP — There is a strong requirement that the various
instances within the API Connect deployment should have a
consistent view of the current time and retain that consistent
view on an ongoing basis to enable the successful operation of
the replication protocols that synchronize data between the
different instances. Configuring NTP servers for each of the
deployed instances is the most logical choice to achieve this
requirement, but it is also important to make sure that the
NTP servers themselves are giving a consistent view of the
time, particularly if you are using different NTP servers in
each deployment region

• DNS — DNS or hostname resolution is also likely to form
an important part of your deployment infrastructure,
whether it be for the public facing “branded” endpoints like
api.mycompany.com and developer.mycompany.com, or for

internal components of the system that provide routing to
load balancers or the individual instances themselves.
As highlighted in section 5.2 you may be using DNS as a
simple mechanism to control routing of traffic to different
regions so it is important that you can update those settings
whenever you need to, and to have the change propagate
reliably to your consumers in the expected timeframe

• LDAP for User Interface access — All the API Connect
user interfaces (Cloud Manager, API Manager, Developer
Portal) can be configured to authenticate against an external
LDAP user registry if you wish them to. This has the
advantage of letting users log in with their existing
credentials to avoid having to remember separate passwords,
but does mean that the LDAP server must be highly available
and resilient. You should ensure you have considered the
failure cases such as when the whole of a single region goes
down – is the LDAP server replicated to the second region
so that users can continue to log in successfully?

• LDAP for API calls — The same requirements described
above apply when an LDAP server is used to provide
authentication services for an API call – for example when
the API Developer applies Basic Authentication or OAuth 2.0
authentication to an API. Since API calls are typically the
highest importance aspect of the deployment the reliability
and availability of the LDAP server is also critically important

• SMTP — There are various scenarios in API Connect in
which an email notification can be generated and sent a user,
for example when an application developer is registering
themselves for the first time and needs to verify their identity
by clicking the activation link, or when one of their
applications is approaching the rate limit for its API calls,
and the developer has configured that they wish to be
notified before their application is prevented from making
further API calls. As a result, it is important that the SMTP
server you configure is also highly available and has a
suitable failover approach so that it continues to be
available from both/all deployment regions in the event
of a failure

5.9 Example Deployment Topology
The following diagram shows an example deployment
topology which highlights some of the aspects that we have
discussed in this section, including the deployment location
for each component. The example shows a single-region
deployment however the network layout applies equivalently to
any additional locations;

43

Figure 24: Example deployment topology

Public zone Mobile application client

1. API request / response

Web application client

API consumer

10. IBM Developer Portal

Gateway zone

External LDAP

Reverse proxy or
DataPower WAF

Developer Portal
cluster

Management and Developer Portal zones

7. Push
configuration

6. Pull configuration
Push analytics 9. Pull

configuration /
make API calls

8. Push
configuration

Collective
member

Collective controller

Collective
member Node. js

Other internal
services

Protected zone
API Developer

Administrator

2. DataPower
administration

5. Portal
administration3. API Manager

4. CMC / Management
administration

15. ODR
update

11. API definition
code push /
credential pull

389,636

Firewall

Infrastructure services Applications / services

16. Push
configuration

389,636

123 53

25

Management
cluster

12. Node. js code push

17

14

13

Gateway cluster

Optional component API Connect component

Peripheral communications Internal communications

Data communications

Security communications

Developer communications Administration communications

Firewall

On-demand
routing

API Connect
Developer Toolkit

DNS

LDAP for
Portal users

NTP

IDP: End-user
authentication

SMTP
server

44

You can see the Gateway cluster deployed in an internet-facing
network zone (ie the DMZ), but the Management and
Developer Portal clusters behind an additional firewall.
In this case, there is a separate network zone defined for
the Management/Portal clusters which provides an additional
level of protection in communication with the Protected zone
where the backend services and applications reside.

The diagram also highlights some of the key data f lows
between the components of the system that we have discussed
in the preceding sections, including some of the specific port
numbers and protocols on which that communication takes
place. More detail on the low-level networking requirements
can be found in the accompanying KnowledgeCenter topic here,
from which this diagram is taken;
ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.
apic.install.doc/overview_apimgmt_portreqs.html

https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.install.doc/overview_apimgmt_portreqs.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.install.doc/overview_apimgmt_portreqs.html

45

6 Operational Topics

6.1 Disaster Recovery using Backup and Restore
The multi-region deployment approaches described in this
whitepaper give the ability to deploy a highly available solution
which can survive outages ranging from individual server failures
to entire regions with little or no manual intervention.

Many customers consider the switchover to a second active or
“hot standby” region to be a form of disaster recovery, where the
disaster has taken out their first/primary data centre, however for
the purposes of this whitepaper (as defined in section 2.2)
we are defining disaster recovery as “the process of recovering
the successful operation of the solution in the event of a total
loss of the current infrastructure” – i.e. all of the existing
deployed infrastructure has been lost, whether that be a single
or multiple region deployment.

Under that definition, the process of disaster recovery is about
standing up new infrastructure to support the service and
restoring appropriate configuration/state from the original
deployment into that new infrastructure, typically in the form
of backups. You will need to identify how/where you will
deploy the new API Connect infrastructure that will become
your new deployment, and how the state from the original
deployment will then be restored into that new infrastructure.
Clearly this will be a time-consuming process so it is important
to predict, test and document the elapsed time between making
the decision to trigger the disaster recovery policy and the
completion of the work required to begin serving your production
workload once again.

As a reminder, there are three basic areas of persistent state in
API Connect;

• Management service configuration database - APIs,
Products, Apps, Subscriptions, Users etc

• Management service analytics data – API call event data and
record of user actions

• Developer Portal – content management and filesystem
data such as blogs, forums, themes

In preparing and testing your disaster recovery plan you will need
to document what types of data you need to be able to recover in
the event of a total loss of your existing infrastructure – the
configuration database is effectively mandatory since that
contains all the information about your APIs, subscribers etc,
and it is likely that it is also important to recover the Developer
Portal content since that includes any custom theme for your
portal, and public collateral like blog posts, forum articles etc.
You may however be willing to accept that historical analytics
data need not be recovered in the event of a disaster, depending
on the style of usage you make of it, and the frequency with
which you expect to be triggering the disaster recovery policy.

The Gateway service contains largely transient state and so it
may not be necessary to take backups of the Gateway servers
themselves – when restoring the new deployment from your
Management configuration database backup the necessary
information about APIs and their subscribers will be pushed
freshly to the Gateway instances you have deployed even if
they were not part of the original deployment.

6.1.1 Management and Developer Portal
The Management service configuration database and Developer
Portal database both have documented commands with which
you can generate a backup file that can be later used to restore
the configuration. Your operational infrastructure will need to
control how frequently to take those backups, and arrange for
them to be stored in an appropriate location so that the backups
are not also lost when your disaster occurs – for example
a different data centre than any of the deployed
infrastructure components. The command to take the
backup of the Management database includes the ability
to push directly to an FTP/SFTP server, while in the
Developer Portal case you will need to trigger a separate
call to upload the generated backup to the fileserver.

46

Since backups are a point-in-time snapshot of the system state it
is also important to consider the frequency with which you need
to take backups – what duration of data are you willing to have
lost if the disaster scenario occurs? This again will be a
trade-off between the implications of losing data, the
frequency of the occurrence, and the cost to implement
the solution. An important case is that restoring to a
point-in-time backup will roll back the creation of any new
APIs, updates to existing APIs, or the registration of any new
application developers/subscribers against your API estate.
The latter can be undesirable particularly if they are external
partners who thought they had registered but suddenly are no
longer able to successfully invoke your APIs, but if the disaster
scenario is only expected to be triggered once every 5-10
years (for example) then it may be acceptable to only take
backups daily or weekly, with an acceptance of the risk and
implications that brings.

Details on the backup/restore process for the Management
service and Developer Portal are available in the Knowledge
Center in the following topics;

• Management
 – ibm.com/support/knowledgecenter/SSMNED_5.0.0/
com.ibm.apic.overview.doc/overview_backupcli_
apimgmt.html

• Developer Portal
 – ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/
com.ibm.apic.install.doc/tapim_portal_disaster_
recovery.html

6.1.2 Analytics
By contrast to the discussion above on the Management service
and Developer Portal, there is not currently a mechanism by
which you can take an external backup of the data stored in the
analytics repository, which includes historical data about
API invocations, and records of user actions such as create/
delete of APIs etc.

In v5.0.7.0 and later you can mitigate this issue by configuring
your deployment to export analytics data to a 3rd party system
such as an external ElasticSearch, Kafka or Syslog target.
You might choose to do this in addition to having the data
retained within the API Connect analytics store (which allows
you to continue to use the analytics visualization capability
inside API Connect) or instead of logging to the embedded
analytics store. In the latter case your only store of the
analytics data is in the external system and the requirements
around resilience/failover are transferred to that system.
More information about configuring external targets for
analytics data can be found in the Knowledge Center here;
ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.
ibm.apic.cmc.doc/tapim_analytics_configuringanalytics.html

If the 3rd party export mechanism described above is not suitable
for your scenario and it is critical that you are able to restore
analytics data then the remaining option to explore is whether
your virtualization platform provides backup/restore capabilities
for the individual virtual machines that make up the deployment
in a way that is suitable for implementing disaster recovery
into a different data centre / hypervisor instance. Capabilities
like taking a VMWare snapshot are generally intended only for
short-term recovery points – for example taking a snapshot
before an upgrade to be able to roll back in the event there is
an issue, but your VMWare administrator may also be able to
recommend an alternative technology approach that does work
well for disaster recovery scenarios. Note that if you snapshot
the entire virtual machine instance then it is not necessary to
generate/restore the individual backup files that were described
in the preceding section as that data will already be contained
within the virtual machine image.

https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.overview.doc/overview_backupcli_apimgmt.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.overview.doc/overview_backupcli_apimgmt.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.overview.doc/overview_backupcli_apimgmt.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.install.doc/tapim_portal_disaster_recovery.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.install.doc/tapim_portal_disaster_recovery.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.install.doc/tapim_portal_disaster_recovery.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.cmc.doc/tapim_analytics_configuringanalytics.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.cmc.doc/tapim_analytics_configuringanalytics.html

47

6.2 Custom Branding for APIs and
Developer Portal Endpoints
For partner- or public-facing API programmes the API Gateway
and Developer Portal endpoints form a part of the public face
of your enterprise; applications developers come to your
Developer Portal, typically over the Internet, to see what
services you are offering and how they sign up to use them,
and subsequently applications will embed the details of the
Gateway endpoints that you expose. As a result, those endpoints
are commonly “branded” using the same DNS name as your
corporate internet presence, with a prefix to differentiate the
two cases – common practice being to use the following;

• https://developer.mycompany.com (for Developer Portal)
• https://api.mycompany.com (for API calls)

Successfully implementing this style of custom branded
endpoint requires three main types of action which are
carried out by different user roles within your organization;

1. Configure the API Connect endpoint to use your
custom hostname (eg API endpoint or Developer Portal
URL in the Catalog settings respectively) - this is the
responsibility of the catalog administrator inside the
provider organization (eg someone who has the role of
Owner, Administrator, Publisher, or custom role that has
been assigned the “edit catalog” permission)

2. Configure your deployment to present an appropriate
TLS certificate matching the custom hostname when a
request reaches your infrastructure so that the caller knows
they can trust the endpoint – depending on where you have
chosen to terminate incoming TLS connections this
might be the responsibility of your load balancer
administration team, or Cloud Manager administrator

3. Configure your DNS setup so that your custom hostname
resolves to the correct IP address(es) when the caller does
their DNS lookup, which is handled by your DNS domain
owner or networking team

The following diagram illustrates these three steps;

G G G

P P P

region

5. 10. 117. 123 6. 10. 117. 234 Load balancer IP address

Application API developer

API call (application invocation)
URL: https://api.mycompany.com
DNS: api.mycompany.com
(3) DNS name resolves to 5.10.117.123

Developer Portal (user with browser)
URL: https://developer.mycompany.com
DNS: developer.mycompany.com
(3) DNS name resolves to 6.10.117.234

(2) TLS termination in the load balancer

(1) Configure catalog with the desired hostname
 (API and/or DevPortal endpoints)

Figure 25: Steps involved in custom branding

https://developer.mycompany.com
https://api.mycompany.com

48

Note that for on-premises deployments (which are managed
by the customer) the three tasks above will be handled within
your own team, but for deployments in Bluemix Public and
Bluemix Dedicated steps 2 and 3 will be the joint responsibility of
the customer organization and the IBM API Connect /
Bluemix Operations team;

• The TLS certificate will be generated by the customer
organization (as the owner of the “mycompany.com” domain)
typically through a trusted certificate authority such as
DigiCert so that the endpoint will automatically be trusted by
browsers and common application client environments.
That TLS cert will then be given to the IBM API Connect
Operations team who will deploy it to the Bluemix
infrastructure so that it is presented when an application
connects to that endpoint

• The IBM API Connect Operations team will share a DNS
name such as “branding.api.eu.apiconnect.ibmcloud.com”
which is configured to resolve to the necessary IP address,
and the customer’s DNS administrator configures a CNAME
from the custom hostname “api.mycompany.com” to the
IBM-provided DNS name

6.2.1 API Call Branding
The steps required for configuring the Catalog with a
custom hostname for API calls are described in the following
Knowledge Center topic – specifically you will be setting the
“Custom Gateway URL” property to your branded hostname;
ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.
apic.apionprem.doc/create_env.html

In v5.0.4.0 and later the Gateway uses the incoming hostname
from your API call to detect which Provider Organization and
Catalog the request is intended for, so the full path of your
API call will be as follows;

• Unbranded:
– https://api.internalname.com/<providerOrg>/<catalog

Name>/<apiRoot>/<operation>
• Branded:

– https://api.mycompany.com/<apiRoot>/<operation>

Note that prior to v5.0.4.0 this automatic catalog detection
was not in place so it was necessary to configure a separate
component in front of the Gateway (for example using
advanced features of the load balancer) to detect the
incoming hostname and rewrite the URL so that it was in the
“unbranded” form when the request was forwarded on to the
Gateway.

It is common to carry out the TLS termination in the load
balancer as this is a corporate networking requirement in many
customer organizations, but also API Connect does not provide
the ability to configure different TLS certificates per Catalog
so an external component like a load balancer must be used in
front of the Gateway to present the TLS certificate if there is
going to be more than one Catalog in the deployment.

6.2.2 Developer Portal Branding
The hostname for the Developer Portal is configured as the
“Portal URL” when the Developer Portal is enabled within the
Catalog settings as described in the following Knowledge
Center topic. Note that Portal URL is not the same as the
“Hostname for Developer Portal API Calls”, the latter also
being configured in the Catalog settings but having a
different purpose.
ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.
ibm.apic.apionprem.doc/create_env.html

It is best to carefully consider your choice of Portal URL
before you create the Catalog as changing it after the portal
has been created requires several steps to update the Drupal
configuration as well as the Management service view.

As with the API Gateway it is common to carry out TLS
termination in the load balancer or other component in
front of the Developer Portal cluster as API Connect
does not provide the ability to configure an individual
TLS certificate per developer portal site.

It is important to note that the Portal URL used by the customer
to access the portal site must exactly match what is configured
in API Connect, and thus the Drupal infrastructure –
the hostname/URL cannot be changed as the request passes
through the network between the user and the portal cluster
since the Drupal infrastructure uses its internal view of the
URL to generate things like activation links, password reset
notification emails and authentication endpoints for use in
OAuth, OpenID Connect etc.

https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.apionprem.doc/create_env.html
https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.apionprem.doc/create_env.html
http://ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.apionprem.doc/create_env.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.apionprem.doc/create_env.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.apionprem.doc/create_env.html

49

7 Summary
Congratulations - you’ve made it to the end of this whitepaper
on API Connect deployment!

Over the course of the preceding sections we have discussed a
series of topics which will hopefully have given you a detailed
insight into the way that API Connect works and how it can
be deployed into a variety of architectures to support production
level reliability and availability;

• In section 2 we introduced API Connect, the major
components that comprise the solution, and introduced the
necessary terminology and logical concepts to give you the
context for the rest of the whitepaper

• In section 3 we talked about the key user scenarios, related
failure scenarios and the questions you should ask yourself
as part of the process of determining your availability and
resilience requirements

• Section 4 introduced typical deployment patterns starting
with a minimal development installation and progressing
through high availability configurations within a single
region up to multi-region global deployments and various
cloud/hybrid scenarios

• In section 5 we looked in detail at each of the major
deployment components of the system and the aspects
of their operation that affect the way that you deploy
or manage the solution at runtime

• Lastly in section 6 we covered some related operational
topics including disaster recovery and custom branding

We hope that you have found this whitepaper a useful reference
and that it helps you to successfully deploy API Connect in large
scale production scenarios for your enterprise. As always,
we welcome your comments and feedback via our
DeveloperWorks Community here – tag your questions
in the Community space with “API Connect”;
developer.ibm.com/apiconnect

7.1 About the Author
Matt Roberts is an Architect within the IBM API Connect
product development team where he focuses on production
quality of service scenarios and the deployment and management
of API Connect in Bluemix/SaaS.

Matt is based in the IBM Hursley Lab in the United Kingdom
and prior to API Connect held a range of architect and technical
leadership roles across the IBM integration portfolio including
API Management, Cast Iron, WebSphere Application Server/
ESB and IBM MQ. Matt also spent three years as a Senior IT
Consultant providing leading edge on-site IT consultancy to
IBM customers across the UK and Europe as part of the IBM
Software Services for WebSphere team.

You can find Matt on LinkedIn here:
www.linkedin.com/in/matrober

Matt would like to thank the members of the broader API
Connect team who provided input to this whitepaper and
reviewed the drafts before publication including Quentin
Presley, Evan Jardine-Skinner, Shiu-fun Poon, Layne Miller,
Chris Dudley, Mark Nesbitt, Dan Whitacre and Jim Thorpe.
Credit also goes to Lara Baker-Olin for the example deployment
topology diagram shown in section 5.9.

https://developer.ibm.com/apiconnect/
https://www.linkedin.com/in/matrober/

© Copyright IBM Corporation 2017

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
June 2017

IBM, the IBM logo and ibm.com are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

This document is current as of the initial date of publication and may
be changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM
PRODUCTS ARE WARRANTED ACCORDING TO THE TERMS
AND CONDITIONS OF THE AGREEMENTS UNDER WHICH
THEY ARE PROVIDED.

Please Recycle

IGW12361-USEN-00

http://www.ibm.com/legal/copytrade.shtml

