
 Application Note

R01AN5643EJ0100 Rev.1.00 Page 1 of 189

Mar.25.21

RE01B Group

Bluetooth Low Energy Application Developer's Guide

Introduction

This application note describes how to develop a Bluetooth Low Energy application.

Target Device

RE01B Group

Related Documents

• Bluetooth Core Specification (https://www.bluetooth.com)

• Supplement of Bluetooth Core Specification (https://www.bluetooth.com)

• RE01B Group Product with 1.5-Mbyte Flash Memory User’s Manual: Hardware (R01UH0903)

• Getting Started Guide to Development Using CMSIS Package (R01AN5310)

• e2 studio Getting Started Guide (R20UT4204)

• Bluetooth Low Energy Profile Developer’s Guide (R01AN5638)

• Bluetooth Low Energy MCU Bluetooth Test Tool Suite operating instructions (R01AN4554)

• RE01B Group Hardware Design Guide (R01AN5471)

• Bluetooth Low Energy Sample code (using CMSIS Driver Package) (R01AN5606)

• RE01B Group IAR Embedded Workbench for Arm patch Setup Guide (R20AN0596)

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/
https://www.bluetooth.com/

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 2 of 189

Mar.25.21

Contents

1. Overview ... 6

1.1 Development Bluetooth Low Energy Application .. 6

1.2 Development environment .. 8

1.2.1 Hardware requirements ... 8

1.2.2 Software requirements .. 9

1.2.3 Tool .. 10

1.3 Available communication features ... 11

1.4 Basic communication features .. 13

1.5 BLE Protocol Stack Operation Overview... 15

1.6 Software structure ... 17

1.6.1 Primary functions ... 18

1.6.2 Surrounding functions ... 21

1.7 Flow of development ... 22

1.8 Use case of this document .. 23

1.9 Locating sections ... 24

2. Adjusting configuration option .. 25

2.1 Configuration Options .. 25

2.2 How to adjust RAM .. 28

2.3 How to configure BD address .. 29

2.3.1 How to use random address of device specific data ... 31

2.4 How to configure for minimum current consumption ... 32

2.4.1 Using MCU Low Power Consumption function ... 33

3. How to implement user code ... 36

4. app_lib ... 39

4.1 Abstraction API .. 39

4.2 Software Timer .. 41

4.3 Profile common .. 41

4.4 Logger ... 41

4.5 Command line ... 42

4.5.1 How to use the standard commands ... 43

4.5.2 How to create a user command .. 46

4.6 LED and Switch control ... 50

4.6.1 LED and Switch initialization ... 52

4.6.2 ON or OFF LED ... 52

4.6.3 Callback for pressing Switch ... 52

5. Advertising ... 53

5.1 Connecting to smartphone .. 53

5.2 Advertising Parameter ... 54

5.2.1 Adverting Type .. 54

5.2.2 Using the White List (Respond to a known device)... 55

5.2.3 Privacy ... 56

5.2.4 Concurrent Execution .. 56

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 3 of 189

Mar.25.21

5.3 Advertising Data / Scan Response Data ... 57

5.4 Start Advertising .. 57

5.5 Stop Advertising .. 57

5.6 Periodic Advertising ... 58

5.6.1 Non-Connectable Advertising Parameter .. 59

5.6.2 Periodic Advertising Parameter ... 59

5.6.3 Periodic Advertising Data .. 60

5.6.4 Start Periodic Advertising .. 60

5.6.5 Stop Periodic Advertising .. 62

5.7 Advertising Data / Scan Response Data / Periodic Advertising Data ... 63

5.7.1 Format ... 63

5.7.2 Advertising Data Update ... 66

5.7.3 Periodic Advertising Data Update ... 66

5.7.4 Buffer Size ... 67

5.8 Advertising with Abstraction API ... 68

5.8.1 White List (Respond to a known device) ... 68

5.8.2 Privacy ... 68

5.9 Connection with Smart Phone ... 70

5.10 Beacon .. 71

6. Scan .. 72

6.1 Start or stop scan .. 72

6.2 Scan parameters ... 72

6.2.1 Privacy ... 74

6.3 Received information by scan ... 75

6.4 Scan filtering .. 77

6.4.1 Using the White List (Receiving from known devices) .. 77

6.4.2 Duplicate advertising filtering .. 78

6.4.3 Discoverable mode filtering ... 78

6.4.4 Advertising Data filtering ... 78

6.5 Periodic Advertising Synchronization .. 79

6.5.1 Start Scan .. 80

6.5.2 Detect Periodic Advertiser ... 80

6.5.3 Register to the Periodic Advertiser List ... 80

6.5.4 Establish Periodic Advertising Sync .. 80

6.5.5 Receive Periodic Advertising ... 82

6.5.6 Lost Periodic Advertising Sync .. 82

6.5.7 Terminate Periodic Advertising Sync .. 82

7. Connection .. 83

7.1 Requesting Connection ... 83

7.1.1 Using the White List (Connection to a known device) ... 83

7.1.2 Privacy ... 84

7.2 Cancelling Connection Request .. 85

7.3 Multiple Connection ... 86

7.3.1 Connecting to multiple peripheral devices .. 87

7.3.2 Connection to multiple central devices .. 92

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 4 of 189

Mar.25.21

7.3.3 Multi role connection ... 96

7.4 Disconnection .. 101

8. Communication .. 102

8.1 Changing PHY ... 102

8.2 Changing maximum transmission packet length ... 105

8.3 Updating connection parameter .. 107

8.4 Changing MTU .. 112

8.5 Flow control ... 114

8.6 High throughput communication .. 116

8.6.1 Continuous transmission requests .. 116

8.6.2 GAP settings optimization ... 116

8.6.3 Bluetooth Low Energy and Throughput ... 117

8.6.4 Generic Access Profile (GAP) ... 118

8.6.5 Generic Attribute Profile (GATT) ... 123

8.6.6 Data type ... 126

9. Security ... 127

9.1 Pairing ... 127

9.1.1 Pairing Parameters .. 129

9.1.2 Key generation and registration .. 132

9.1.3 OOB (Out of Band) data transmission and reception.. 133

9.1.4 Pairing request .. 133

9.1.5 Response to pairing request ... 133

9.1.6 Pairing method .. 134

9.1.7 Key exchange .. 136

9.1.8 Completion of pairing .. 136

9.2 Bonding ... 137

9.2.1 Store local device keys .. 138

9.2.2 Store remote device keys .. 138

9.3 Encryption .. 139

9.3.1 Request Encryption ... 139

9.3.2 Respond to an encryption request .. 140

9.3.3 Completion of encryption ... 142

9.4 Privacy ... 143

9.4.1 Generate and resolve local device RPA ... 143

9.4.2 Resolve remote device RPA ... 146

10. Profile and service ... 147

10.1 Standard profile and Standard Service ... 148

10.2 APIs of GATT Procedure ... 154

10.2.1 Read operation .. 154

10.2.2 Write operation .. 155

10.2.3 WriteWithoutResponse operation .. 156

10.2.4 Notification operation ... 157

10.2.5 Indication operation ... 159

10.2.6 ReliableWrite operation ... 161

10.2.7 Broadcast Operation ... 163

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 5 of 189

Mar.25.21

10.3 Example of using GATT Procedure ... 165

10.3.1 Example for sending data from GATT client ... 165

10.3.2 Example for sending data from GATT server .. 168

11. Debugging ... 170

11.1 Using Logger function ... 171

11.2 Using Command line function ... 173

11.3 Using RF communication timing notification function .. 175

11.4 Checking Server operation .. 183

11.4.1 Using BTTS Beacon Scanning .. 183

11.4.2 Using BTTS Data Comm Master ... 184

11.4.3 Using GATT Browser .. 184

11.5 Checking Client operation ... 185

11.5.1 Using BTTS Beacon Advertising ... 185

11.5.2 Using BTTS Data Comm Slave ... 186

11.6 Others .. 188

11.6.1 MCU package .. 188

11.6.2 Generating MOT file .. 188

11.6.3 Outputting detail to MAP file .. 188

11.6.4 Optimization ... 188

11.6.5 Using %f with printf .. 188

Revision History .. 189

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 6 of 189

Mar.25.21

1. Overview

1.1 Development Bluetooth Low Energy Application

There are two methods of data communication using Bluetooth Low Energy (Bluetooth LE): broadcast
method and point-to-point method.

Figure 1.1 Bluetooth LE communication topology

In the broadcast method, the application data is sent in an advertisement packet. The receiving device
receives the advertisement packet by scanning. The Application perform this communication with the
Generic Access Profile (GAP) for device detection and connection. With this method, the data is
unidirectional communication from the broadcaster to the observer. Since no device is connected, the
advertisement packet can be received by any device.
Point-to-point communication is used for bidirectional communication. The point-to-point method connects
devices by GAP. Application data is sent and received by Generic Attribute Profile (GATT). GATT provides
communication by the server-client architecture on the communication path of GAP.GATT performs data
communication according to the application profile.

Figure 1.2 Bluetooth LE bidirectional communication

For the application that assumes using Bluetooth LE, Bluetooth SIG publishes the application profiles as
specifications. By implementing this application profile, a device can interconnect with existing devices that
are already working. When developing a new bidirectional communication application, design the application
profile as well as the user program.
The application profile defines the structure of application data exchanged between GATT server and clients
and the method of accessing the database, the setting of communication parameters by GAP, the method of
connecting devices, and the setting of security level.
This document describes how to implement a program for performing Bluetooth LE communication and
information that is a hint for application profile developing.
Renesas provides tools to assist with Bluetooth LE application development.
1. BLE Module

It provides the Bluetooth LE feature that complies with the Bluetooth Core Specification version 5.0
defined by Bluetooth SIG. The Bluetooth LE feature is provided in library format as a BLE protocol
stack. Bluetooth LE operation is performed by using the API. The BLE protocol stack notifies the
application of events related to Bluetooth LE by a callback function to reduce power consumption.

BLE module provides application library (app_lib) to assist application development in addition to BLE
protocol stack. By using app_lib, you can easily realize the basic operation of Bluetooth LE.

Observer

Broadcaster

Point to Point (1:1) Broadcast (1:m)

User Program
Bluetooth LE

Application Profile
User Program

Bluetooth LE
Application Profile

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 7 of 189

Mar.25.21

2. QE for BLE, QE Utility

QE for BLE is a QE tool for designing application profiles with GUI and code generation. Code
generation is performed based on the template file provided by the QE Utility.

By using these tools, the GATT part of the application profile is designed from the GUI and the API
(service API) for realizing the profile is generated. It is possible to generate not only the designed profile
but also the application profile API exposed to the Bluetooth SIG.

Finally, an example of the Bluetooth LE application development process and use of the Renesas tool is
shown.

Figure 1.3 Bluetooth LE application development procedure and auxiliary tools

Application Profile
develop

Application Profile
implement

Operation check

GATT Browser
BTTS

QE for BLE
QE Utility

BLE Module
 R_BLE_API
 app_lib

Development procedure Renesas

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 8 of 189

Mar.25.21

1.2 Development environment

1.2.1 Hardware requirements

Table 1.1 shows the hardware requirements for building and debugging the application.

Table 1.1 Hardware requirements

Hardware Description

Host PC Windows® 10 PC with USB interface.

MCU board The board with RE01B

Note: This document uses EB-RE01B for explanation.

On-chip debugging

emulators

GCC environment: Either of the following emulator.

E2 emulator [RTE0T00020KCE00000R]

E2 emulator Lite [RTE0T0002LKCE00000R]

J-Link

IAR environment: Either of the following emulator.

I-jet®

J-Link

Note: This document uses E2 emulator Lite for explanation.

USB cables Used to connect to the emulator and EB-RE01B.

Emulator: 1 USB A-miniB cable

Board: 1 USB A-microB cable

http://www.tessera.co.jp/eng/products/eb-re01b.html

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 9 of 189

Mar.25.21

1.2.2 Software requirements

Table 1.2 shows the software requirements for building and debugging the application.

Table 1.2 Software requirements

Software Version Description

GCC

environment

e² studio v21.1.0 or
later

Integrated development environment (IDE) for Renesas devices.

Note: This document uses e2studio for explanation.

GCC ARM
Embedded

v6.3.1 or
later

C/C++ compiler. (download from e² studio installer)

CMSIS Driver
Package

v1.0.0 or
later

Software package for developing applications for the RE

microcontroller series.

QE for BLE[RA,RE] v1.2.0 or
later

A plugin for e2studio to generate skeleton programs for application
and profile development.

IAR

environment

IAR Embedded
Workbench for ARM

v8.50.5 or
later

Integrated development environment (IDE) for ARM devices made
by IAR Systems.

Note: RE01B device file patch setup is required for v8.50.5 and
v9.10.1 environment. For the setup procedure, refer to "RE01B
Group IAR Embedded Workbench for Arm patch Setup Guide

(R20AN0596)".

IAR C/C++ Compiler

for ARM

v8.50.5 or

later
C/C++ compiler made by IAR Systems.

CMSIS Driver

Package

v1.0.0 or

later
Software package for developing applications for the RE

microcontroller series.

QE for BLE[RA,RE] - Use by overwriting the code that QE for BLE in e2studio generates to
IAR project.

Renesas Flash Programmer v3.06.01 or
later

Tool for programming the on-chip flash memory of Renesas
microcontrollers.

Integer types Uses ANSI C99 “Exact width integer types”. These types are defined
in stdint.h.

Endian Little endian.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 10 of 189

Mar.25.21

1.2.3 Tool

Application development is supported by the following tools.

Table 1.3 Supporting tools for application development

Tool Description

GATT Browser

Smartphone application to access to GATT Server. Bluetooth Low Energy basic
communication operation and GATT database structure and so on can be confirmed

by smartphone.

BTTS Tool suite to control RE01B connected with Windows PC and USB Serial and
evaluate three functions of RF, Beacon and Data Communication in Bluetooth Core
Specification 5.0. It can be also used when getting the Radio Law Certification for the
device.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 11 of 189

Mar.25.21

1.3 Available communication features

RE01B supports Bluetooth Low Energy (LE) features shown in Table 1.4 and can communicate with the
devices that have LE features.

Table 1.4 LE features

Bluetooth

version

LE features and description Remark

5.0 LE 2M PHY (2 Msym/s PHY for LE)

2Mbps PHY data rate.

High data throughput.

Low power consumption by
short communication time.

5.0 LE Coded PHY (LE Long Range)

500kbps/125kbps PHY data rate.

Extend communication distance.

5.0 LE Advertising Extensions

Enable Advertising by secondary channel.

(Up to 4 independent Advertising can be executed simultaneously

in RE01B.)

Expansion of Advertising Data/Scan Response Data size up from

31 bytes to 1650 bytes.

Advertising by Long Range.

Periodic Advertising is possible.

Wireless interference reduction.

Beacon information expansion.

Establishing connection in long-

distance.

Utilization of secondary channel.

5.0 LE Channel Selection Algorithm #2

Improving the channel hopping algorithm.

Wireless interference reduction.

5.0 High Duty Cycle Non-Connectable Advertising

Shorten minimum Advertising Interval (100ms→20ms).

Shortening the time to connect.

Higher frequency of beacon

transmission.

4.2 LE Data Packet Length Extension

Expand the data communication packet size (27 bytes→251
bytes).

High data throughput.

Low power consumption by
short communication time.

4.2 LE Secure Connections

Support the pairing with the Elliptic curve Diffie-Hellman (ECDH)

key exchange for passive eavesdropping protection.

Enhanced security.

4.2 Link Layer Privacy

Link Layer supports address resolution of Privacy feature.

Faster address resolution.

4.2 Link Layer Extended Scanner Filter Policies

4.1 Low Duty Cycle Directed Advertising

Support Low Duty Cycle Advertising for reconnection with known
devices.

4.1 32-bit UUID Support in LE

Support 32-bit UUID (extended to 128-bit when used by GATT).

4.1 LE L2CAP Connection-Oriented Channel Support

Support the communication using L2CAP credit based flow control
channel.

4.1 LE Privacy v1.1

Avoid the tracking from other LE devices by changing the BD
Address periodically.

Enhanced security.

4.1 LE Link Layer Topology

Support both Master and Slave roles, and can operate as Master
when connecting to one remote device and as Slave when

connecting to another remote device.

Enhanced topology.

4.1 LE Ping

Checks whether connection is maintained by a packet
transmission request including MIC field after connection
encryption.

Addendum 2 Appearance Data Type

Appearance characteristic can be used in GAP service.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 12 of 189

Mar.25.21

Bluetooth

version

LE features and description Remark

4.0 Bluetooth Low Energy

- Low Energy Controller
Low Energy Physical Layer (PHY)

Low Energy Link Layer (LL)

- Low Energy Host
Enhancements to L2CAP for Low Energy
Security Manager (SM)

- Enhancements to HCI for Low Energy

- Low Energy Direct Test Mode

- AES Encryption

- Enhancements to GAP for Low Energy

- Attribute Protocol (ATT)

- Generic Attribute profile (GATT)

Low Energy Controller is
mandatory feature.

Low Energy Host is mandatory
feature.

ATT is mandatory feature.

GATT is mandatory feature.

Note: BR/EDR (Basic Rate/Enhanced Data Rate) is not supported.

Note: The features except mandatory feature is optional feature (vendor dependent), so they may be not

supported by devices such as smartphone and so on.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 13 of 189

Mar.25.21

1.4 Basic communication features

The communication topology that can be constructed by the device that have LE features shown in Figure
1.4.

Figure 1.4 Communication topology

In Broadcast, the communication is performed without establishing Connection. Broadcaster (Advertiser)
executes Advertising and sends packets, and Observer (Scanner) executes Scan and receives packets.

Figure 1.5 Advertising and Scan

In Point-to-point, the communication is performed with establishing Connection. Peripheral (Advertiser)
executes Advertising and sends packets, and Central (Scanner) executes Scan and receives packets. One
device requests Connection to the device wanted to connect to as the Initiator, and the other device accepts
and Connection is established. Initiator becomes Master and the other becomes Slave. Once Connection is
established, Data communication is possible.

Observer

Broadcaster

Point-to-point (1:1)

Master Slave

Broadcast (1:m)

Note: Up to 7 units can be connected
simultaneously in RE01B.

Note: Up to 4 sets can be advertised
simultaneously in RE01B.

Master

Slave

39
ch

38
ch

39
ch

38
ch

time

Scan Interval
(20ms～less than 40.96s)

Scan

Scanner

Advertiser

Advertising packet

37
ch

Advertising Interval

(20ms～10485.759375s)

37
ch

Advertising Interval

(20ms～10485.759375s)

37
ch

Note: In actually, the random delay of 0 to 10 ms is added to Advertising Interval for each Advertising.

time

37ch 38ch

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 14 of 189

Mar.25.21

GAP (Generic Access Profile) commands control from Advertising and Scan to establishing Connection.
GATT (Generic Attribute Profile) commands control Data communication after establishing Connection. In
GATT, the side that provides services by storing the sensor data and so on as GATT database is called
Server, and the side that requests the service is called Client. Client can read and write to Server that has
the database. Server can do Indication and Notification to Client. When Client receives Indication, Client
returns the response by executing Confirmation. The following is an example when Master is Client and
Slave is Server.

Figure 1.6 Read and Write

Figure 1.7 Indication and Notification

Advertising is described in “5 Advertising”. Scan is described in “6 Scan”. Connection is described in “7
Connection”. Data communication is described in “8 Communication”.

Connection Interval
(7.5ms～4s)

Read
or Write

Frame Interval
(150µs)

Client→Server

time

Server→Client

Connection Interval

(7.5ms～4s)

Empty
packet

Frame Interval
(150µs)

Read
or Write
Response

Connection Interval
(7.5ms～4s)

Write
Without
Response

Connection Interval
(7.5ms～4s)

Frame Interval
(150µs)

Frame Interval
(150µs)

Connection Interval
(7.5ms～4s)

Frame Interval
(150µs)

Client→Server

time

Server→Client

Connection Interval

(7.5ms～4s)

Empty
packet

Frame Interval
(150µs)

Indication Confirmation

Connection Interval
(7.5ms～4s)

Notification

Connection Interval
(7.5ms～4s)

Frame Interval
(150µs)

Frame Interval
(150µs)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 15 of 189

Mar.25.21

1.5 BLE Protocol Stack Operation Overview

The BLE protocol stack controls the BLE peripheral functions and manages the execution of RF events. RF
event refers to one communication operation at each interval in the following four operation states specified
by Bluetooth LE.
⚫ Advertising
⚫ Scanning
⚫ Initiating
⚫ Connection

The BLE protocol stack provides the control interface for Bluetooth LE operation as R_BLE API. The BLE
peripheral functions generate an interrupt (BLEIRQ) corresponding to an RF event to the MCU. When
BLEIRQ occurs, it is necessary to call R_BLE_Execute and perform task processing according to the RF
event status. Also, when various R_BLE APIs are called, it is necessary to call R_BLE_Execute to perform
API task processing of the BLE protocol stack.

When BLE_CFG_RF_DEEP_SLEEP_EN is set to 1 in “2.1 Configuration Options”, when there is no task to
be executed by the BLE protocol stack, and when there is a time of 40ms or more before the start of the next
RF event time, transition to RF sleep mode to reduce the current consumption of the RF part. This time does
not mean the "interval time" of an RF event, but the "RF idle time" between the completion of one RF event
and the start of the next RF event. Therefore, it is necessary to set the RF event interval to 60ms or more in
consideration of the processing time of each layer in order to shift the RF part to sleep mode. In Scanning
operation, the time difference between the Scan interval and Scan window must also be set to 60ms or
more.
The BLE protocol stack performs RF sleep processing and RF wake-up processing to transition the RF part
to sleep mode. Figure 1.8 shows MCU/RF operation overview with RF sleep.

Figure 1.8 MCU/RF operation overview with RF sleep

While the MCU is idle, it is possible to transition the MCU to the low power consumption mode or execute
application processing. However, if the RF wakeup process by R_BLE_Execute is not performed before the
RF event starts, the RF event cannot be executed. Therefore, application processing must be implemented
so as not to interfere with the R_BLE_Execute call.
When BLE_CFG_RF_DEEP_SLEEP_EN is set to 0 in “2.1 Configuration Options ”, or when
BLE_CFG_RF_DEEP_SLEEP_EN is set to 1 but the RF sleep transition condition is not satisfied, the BLE
protocol stack dose not transition RF part to sleep mode. In this case, the current consumption during RF idle
time increases, but the MCU idle time that can be used by the application increases because RF sleep

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

R
F W

akeu
p

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval

RF idle time

RF sleep time

R
F W

akeu
p

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE
RF

SLEEP
RF

SLEEP
RF

SLEEP

MCU
IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

MCU
IDLE

MCU
IDLE

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 16 of 189

Mar.25.21

processing and RF wakeup processing are not performed. Figure 1.9 shows MCU/RF operation without RF
sleep.

Figure 1.9 MCU/RF operation overview without RF sleep

Regardless of the RF sleep state, if the application process continuously occupies the MCU and
R_BLE_Execute is not called, the connection may not be maintained. Therefore, it is recommended that the
application processing is short time. For processing that takes a long time, refer to "3 How to implement user
code" and execute the processing by dividing it into multiple times.

R_BLE_Execute
Event callback

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval

RF idle time

RF
Event

(Tx/Rx)
RF

IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
Event callback

MCU
IDLE

BLEIRQ
(RF event)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 17 of 189

Mar.25.21

1.6 Software structure

To develop the RE01B Bluetooth LE application, it is necessary to develop the application part and profile
part shown in Figure 1.10.

Figure 1.10 Software structure

Implementation

Supported by BLE module

Code-generated by QE for BLE

Bluetooth LE
architecture Application

GAP (Generic Access Profile) GATT (Generic Attribute Profile)

L2CAP (Logical Link Control and Adaptation Protocol)

ATT (Attribute Protocol)

HCI (Host Controller Interface)

LL (Link Layer)

PHY (Physical Layer)

 Host

 Controller

Hardware (RE01B)

BLE Protocol Stack (library)
- R_BLE_API
- Host stack (GAP, SMP, GATT, ATT, L2CAP)
- Scheduler
- HCI
- LL
- Others (Vendor Specific, MCU Low Power Consumption)

SMP (Security Manager Protocol)

Development auxiliary library
app_lib

- Abstraction API (abs)

- Software timer (timer)

- Profile common (profile_cmn)

- Logger (logger)

- Command Line (cli / cmd)

- LED and Switch control (board)

Application part
Application Framework

Profile part
Profile Framework

- Profile API

- GATT Database

Module /
Driver except
BLE

Add the user program using various API.

Generate the any profile using QE
for BLE.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 18 of 189

Mar.25.21

1.6.1 Primary functions

Constituting BLE module into the project in the integrated development environment e2studio enables to use
the library supporting Bluetooth LE protocol and driver. The skeleton program of the application part
(Application Framework) and the profile part (Profile Framework) can be code-generated by QE for BLE. As
for details of each function block, refer to the document shown in Table 1.5.

Table 1.5 Function blocks

Function blocks Reference document

BLE module

BLE Protocol Stack

app_lib

Bluetooth Low Energy Sample code (using CMSIS Driver Package) (R01AN5606)

Profile Framework Bluetooth Low Energy Profile Developer’s Guide (R01AN5638)

Application Framework This document

The functions provided by BLE Protocol Stack library and the development auxiliary library are shown in
Table 1.6.

Table 1.6 Functions provided by libraries

Functions API/Macro name Include header and Use

Bluetooth LE R_BLE_XXX

R_BLE_GAP_XXX

R_BLE_GATT_GetMtu

R_BLE_GATTS_XXX

R_BLE_GATTC_XXX

R_BLE_L2CAP_XXX

#include "r_ble_api.h"

Mandatory

⚫ R_BLE_GAP_XXX

Once registering callback function using R_BLE_GAP_Init, API
result can be received as BLE_GAP_EVENT_XXX as event.

⚫ R_BLE_GATTS_XXX

Once registering callback function using
R_BLE_GATTS_RegisterCb, API result can be received as
BLE_GATTS_EVENT_XXX event.

⚫ R_BLE_GATTC_XXX

Once registering callback function using
R_BLE_GATTC_RegisterCb, API result can be received as
BLE_GATTC_EVENT_XXX event.

⚫ R_BLE_L2CAP_XXX

Once registering callback function using
R_BLE_L2CAP_RegisterCfPsm, API result can be received as

BLE_L2CAP_EVENT_XXX event.

No need to register for R_BLE_XXX and R_BLE_GATT_GetMtu. API
result can be received immediately. R_BLE_XXX_Init,
R_BLE_XXX_RegisterCb, R_BLE_GAP_SetPairingParams can also

receive API result immediately.

Vendor Specific
(VS)

R_BLE_VS_XXX #include "r_ble_api.h"

⚫ Flow control function is available.

⚫ Device specific data management function is disabled in
default. (BLE_CFG_DEV_DATA_DF_BLOCK)

Note: Function to manage self BD address by using data flash.

R_BLE_VS_SetBdAddr and R_BLE_VS_GetBdAddr are available.

Once registering callback function using R_BLE_VS_Init, API result
can be received as BLE_VS_EVENT_XXX event.

MCU Low
Power
Consumption
(LPC)

R_BLE_LPC_XXX #include "r_ble_api.h"

Enabled in default (BLE_CFG_MCU_LPC_EN)

No need to register callback function. API result can be received
immediately.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 19 of 189

Mar.25.21

Functions API/Macro name Include header and Use

Abstraction API R_BLE_ABS_XXX #include "r_ble_api.h"

Enabled in default (BLE_CFG_ABS_API_EN)

Once registering callback function using R_BLE_ABS_Init, API result
can be received as BLE_GAP_EVENT_XXX /
BLE_GATTS_EVENT_XXX / BLE_GATTC_EVENT_XXX /
BLE_VS_EVENT_XXX event.

Software timer R_BLE_TIMER_XXX #include "r_ble_api.h"

Enabled in default (BLE_CFG_SOFT_TIMER_EN)

If using Abstraction API, enable this function.

Once registering callback function using R_BLE_TIMER_Create,
timing notification can be received when interrupting by timer.

Note: Use

In app_main.c, call R_BLE_TIMER_Init, R_BLE_TIMER_Create.

Profile common R_BLE_DISC_XXX

R_BLE_SERVC_XXX

R_BLE_SERVS_XXX

#include "r_ble_api.h"

Generated by QE for BLE.

⚫ R_BLE_DISC_XXX

Once registering callback function using R_BLE_DISC_Start,
Service Discovery result can be received.

⚫ R_BLE_SERVC_XXX

Once registering callback function using
R_BLE_SERVC_GattcCb, API result can be received.

⚫ R_BLE_SERVS_XXX

Once registering callback function using
R_BLE_SERVS_GattsCb, API result can be received as event.

⚫ Function to receive VS event in SERVS

It is necessary to passing the event data from callback function
registered by R_BLE_VS_Init or R_BLE_ABS_Init to
R_BLE_SERVS_VsCb as it is.

Logger BLE_BD_ADDR_STR

BLE_UUID_STR

BLE_LOG

BLE_LOG_ERR

BLE_LOG_WRN

BLE_LOG_DBG

#include "logger/r_ble_logger.h"

Enabled in default (BLE_CFG_LOG_LEVEL)

No need to register callback function.

Command Line R_BLE_CLI_XXX

R_BLE_CMD_AbsGapCb

R_BLE_CMD_VsCb

R_BLE_CMD_SetResetCb

#include "r_ble_api.h"

Enabled in default (BLE_CFG_CMD_LINE_EN)

Once registering callback function using R_BLE_CLI_RegisterCmds,
event can be received when interrupting by command line input.

⚫ Function to output log Abstraction API

It is necessary to passing the event data from GAP callback
function registered by R_BLE_GAP_Init or R_BLE_ABS_Init to
R_BLE_CMD_AbsGapCb as it is.

⚫ Function to output log of VS

It is necessary to passing the event data from VS callback
function registered by R_BLE_VS_Init or R_BLE_ABS_Init to

R_BLE_CMD_VsCb as it is.

⚫ Function to register callback function notifying reset

Once registering callback function using
R_BLE_CMD_SetResetCb, timing notification can be received
after BLE Protocol Stack is reset by “ble reset” command or

R_BLE_ABS_Reset.

Note: Use

Set BLE_CFG_CMD_LINE_EN to ”1”.

In app_main.c, define gsp_cmds.

In app_main function, call R_BLE_CLI_Init,
R_BLE_CLI_RegisterCmds, R_BLE_CMD_SetResetCb. In main

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 20 of 189

Mar.25.21

Functions API/Macro name Include header and Use

loop, call R_BLE_CLI_Process.

LED and Switch
control

R_BLE_BOARD_XXX #include "r_ble_api.h"

Enabled in default (BLE_CFG_BOARD_LED_SW_EN)

Once registering callback function using
R_BLE_BOARD_RegisterSwitchCb, timing notification can be

received when interrupting by pushing switch and so on.

Note: Use

Set BLE_CFG_BOARD_LED_SW_EN to ”1”.

In app_main function, call R_BLE_BOARD_Init and

R_BLE_BOARD_RegisterSwitchCb.

Profile API R_BLE_[service

name]_XXX
#include "r_ble_[service name].h"

Generated by QE for BLE.

Once registering callback function using R_BLE_[service name]_Init,
event can be received when receiving Write, Read, Indication,
Notification from remote device.

The type of BLE Protocol Stack library is selectable according to the feature used in the application. The
ROM/RAM code size can be reduced by selecting the type limited features. The features supported by each
type are shown in Table 1.7.

Table 1.7 BLE Protocol Stack types and its supporting features

BLE Feature
BLE Protocol Stack type

All features Balance Compact

LE 2M PHY Yes Yes No

LE Coded PHY Yes Yes No

LE Advertising Extensions Yes No No

LE Channel Selection Algorithm #2 Yes Yes No

High Duty Cycle Non-Connectable Advertising Yes Yes Yes

LE Data Packet Length Extension Yes Yes Yes

LE Secure Connections Yes Yes Yes

Link Layer privacy Yes Yes Yes

Link Layer Extended Scanner Filter policies Yes Yes No

Low Duty Cycle Directed Advertising Yes Yes Yes

32-bit UUID Support in LE Yes Yes Yes

LE L2CAP Connection Oriented Channel Support Yes No No

LE Link Layer Topology Yes Yes No

LE Ping Yes Yes Yes

Bluetooth Low Energy

- Enhancements to GAP for Low Energy

- - GAP Role

Central
Peripheral
Observer
Broadcaster

Central
Peripheral
Observer
Broadcaster

Peripheral
Broadcaster

Bluetooth Low Energy

- Generic Attribute profile (GATT)

- - GATT Role

Sever
Client

Sever
Client

Sever
Client

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 21 of 189

Mar.25.21

1.6.2 Surrounding functions

Using modules / drivers except BLE enables to use the MCU functions except BLE more easily. Modules /
Drivers used mainly are shown in Table 1.8.

Table 1.8 Modules / Drivers

Module / Driver name Comment

R_BLE BLE basic function

Mandatory for BLE software

R_SYSTEM Basic setting for MCU

Mandatory for clock setting and so on

Set and notify interruption event

Used by LED and Switch control function

Enable to notify to application by detecting interrupt from switch,

sensor and so on.

R_PIN Set and use general I/O pin

Used by LED and Switch control function

Enable to use I/O such as LED and switch and so on assigned to Pin.

R_USART Set and use action mode of UART serial communication

Used by Command Line function

R_CORE Set interrupt of timer and so on

Mandatory for controlling H/W(RF)

Used by Software timer function too

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 22 of 189

Mar.25.21

1.7 Flow of development

Develop as the following steps. As for detail, refer to “4. Create project” in “Bluetooth Low Energy Sample
code (using CMSIS Driver Package) (R01AN5606)”.

(1) Install integrated development environment e2studio, and QE for BLE.

(2) Import a project on e2studio.

Import "ble_project_server" in case of creating an application that executes Advertising, or
"ble_project_client" in case of creating an application that executes Scan.
(3) Add and change the code

Develop any application by referring to the following chapters.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 23 of 189

Mar.25.21

1.8 Use case of this document

An application that is connected as Slave from Master such as a PC or smartphone and operates as a GATT
server is general. Below is a basic application and its processing.

Table 1.9 Basic application and process

Application Process Description

GATT server Advertising Refer to “5 Advertising”.

Connection When receiving a connection request from Master, BLE Protocol
Stack automatically establishes a connection and notifies
BLE_GAP_EVENT_CONN_IND.

Pairing Refer to “9 Security”.

Data communication

(Notification)

Refer to “8 Communication”.

GATT client Scan Refer to “6 Scan”.

Connection Refer to “7 Connection”.

Pairing Refer to “9 Security”.

Data Communication

(Read, Write)

Refer to “8 Communication”.

Other examples of applications that use various modules and Bluetooth LE functions with RE01B are shown
below.

GATT Server application that collects operation logs of industrial equipment and sensor data of healthcare
equipment and uploads them to Clients such as PCs and smartphones
→ Refer to "2.4 How to configure for minimum current consumption", "7.3 Multiple Connection" and "9
Security".

GATT Server application that transfers the data downloaded from Clients such as PCs and smartphones and
updates the firmware
→ Refer to "8.6 High throughput communication" and "9 Security".

GATT Server application that uploads the image data such as printers and scanners, voice data and audio
data of recording devices to Clients such as PCs and smartphones, and downloads the setting data from
Clients.
→ Refer to "8.6 High throughput communication".

GATT Server applications for electronic locks, OA devices, consumer devices, etc. that are operated by
multiple Clients such as smartphones
→ Refer to "7.3 Multiple Connection" and "9 Security".

Beacon application that periodically sends out multiple sensor data
→ Refer to "5.10 Beacon".

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 24 of 189

Mar.25.21

1.9 Locating sections

Memory map as for RAM, and Code Flash ROM (CF) in demo project in RE01B(R7F0E01BD2DNB) and
their section placement set by linker are shown in below.

 Memory map Section placement

0x20040000 RAM (256 KB) Application and BLE Protocol Stack library section
- .ramvect, .data, .ramobj(.rodata, .text), .bss, .heap, .stack

0x20000000 ：

 ：

 ：

 ：

 ：

 ：

 ：

 ：

0x0017F000 CF (Block 383) Application and BLE Protocol Stack library section
- .text

When enabling Device specific data management function, block 383 is
used in default.

0x0017E000 ：CF size 1.5 MB

 ：(4 KB * 384 block)

 ：

 ：

 ：

 ：

 ：

 ：

0x00010000 ：

0x0000F000 CF (Block 15)

 ：

 ：

0x00000000 CF (Block 0) .intvec, .OptionSetting, .text

Figure 1.11 Locating sections

It can be confirming actual section placement by map file. As for map file, refer to “11.6.3 Outputting detail to
MAP file”.

If using RE01B Start-Up Program Protection function, block 0 to 15 are protected. Therefore, block
(BLE_CFG_DEV_DATA_CF_BLOCK) where device specific data such as BD address is written are
specified as block 383 in default. As for BD address, refer to “2.3 How to configure BD address”.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 25 of 189

Mar.25.21

2. Adjusting configuration option

2.1 Configuration Options

The configuration options of the BLE module are located in the r_ble_cfg.h. The macro and setting range are
listed in Table 2.1.

Table 2.1 Configuration Options

Macro Setting range

(default)

Description

BLE_CFG_LIB_TYPE 0 - 2

(1)

Type of the BLE Protocol
Stack.

BLE_CFG_RF_DBG_PUB_ADDR Set any value.

({0xFF,0xFF,0xFF,0x50,0x90,0x74})

Initial Public Address.

BLE_CFG_RF_DBG_RAND_ADDR Set any value.

({0xFF,0xFF,0xFF,0xFF,0xFF,0xFF})

Initial Static Address.

BLE_CFG_RF_CONN_MAX 1 - 7

(2)

Maximum number of
simultaneous connections.

BLE_CFG_RF_CONN_DATA_MAX 27 - 251

(251)

Maximum packet data
length (bytes).

BLE_CFG_RF_ADV_DATA_MAX 31 - 1650

(252)

Maximum advertising data
length (bytes).

BLE_CFG_RF_ADV_SET_MAX 1 - 4

(1)

Maximum number of the
advertising set.

BLE_CFG_RF_SYNC_SET_MAX 1 - 2

(1)

Maximum number of
periodic sync set.

BLE_CFG_EVENT_NOTIFY_CONN_START 0 - 1

(0)

Enable or disable start
interrupt notification of a
connection complete event.

BLE_CFG_EVENT_NOTIFY_CONN_CLOSE 0 - 1

(0)

Enable or disable end
interrupt notification of a
connection complete event.

BLE_CFG_EVENT_NOTIFY_ADV_START 0 - 1

(0)

Enable or disable the
advertising event start
interrupt notification.

BLE_CFG_EVENT_NOTIFY_ADV_CLOSE 0 - 1

(0)

Enable or disable the
advertising event complete
interrupt notification.

BLE_CFG_EVENT_NOTIFY_SCAN_START 0 - 1

(0)

Enable or disable the scan
start interrupt notification.

BLE_CFG_EVENT_NOTIFY_SCAN_CLOSE 0 - 1

(0)

Enable or disable the scan
complete interrupt
notification.

BLE_CFG_EVENT_NOTIFY_INIT_START 0 - 1

(0)

Enable or disable the
notification that the scan
start interrupt has occurred
in sending a connection
request.

BLE_CFG_EVENT_NOTIFY_INIT_CLOSE 0 - 1

(0)

Enable or disable the
notification that the scan
complete interrupt has
occurred in sending a
connection request.

BLE_CFG_EVENT_NOTIFY_DS_START 0 - 1

(0)

Enable or disable the
RF_DEEP_SLEEP start
notification.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 26 of 189

Mar.25.21

Macro Setting range

(default)

Description

BLE_CFG_EVENT_NOTIFY_DS_WAKEUP 0 - 1

(0)

Enable or disable the
RF_DEEP_SLEEP wakeup
notification.

BLE_CFG_RF_CLVAL 0 - 15

(7)

Adjustment value of the
32MHz crystal oscillator.

BLE_CFG_RF_DDC_EN 0 - 1

(1)

Enable or disable the DC-
DC on the RF.

BLE_CFG_RF_SCA 250 - 500

(250)

Sleep Clock Accuracy
(SCA) for the RF slow
clock.

BLE_CFG_RF_MAX_TX_POW 0 - 1

(0)

Maximum transmit power
configuration.

BLE_CFG_RF_DEF_TX_POW 0 - 2

(0)

Default transmit power
level.

BLE_CFG_RF_DEEP_SLEEP_EN 0 - 1

(1)

Enable or disable the RF
Deep Sleep.

BLE_CFG_DEV_DATA_CF_BLOCK -1 - 383

(383)

The Code Flash (ROM)
block stored the device
specific data.

BLE_CFG_DEV_DATA_DF_BLOCK -

(-1)

Not support in RE01B.

BLE_CFG_GATT_MTU_SIZE 23 - 247

(247)

The MTU size (bytes) for
the GATT communication.

BLE_CFG_NUM_BOND -

(7)

Not support in RE01B.

BLE_CFG_EN_SEC_DATA -

(0)

Not support in RE01B.

BLE_CFG_SECD_DATA_DF_BLOCK -

(0)

Not support in RE01B.

BLE_CFG_CMD_LINE_EN 0 - 1

(1)

Enable or disable the
command line function.

BLE_CFG_BOARD_LED_SW_EN 0 - 1

(1)

Enable or disable support
the board LED & Switch
control.

BLE_CFG_LOG_LEVEL 0 - 3

(3)

Log level.

BLE_CFG_ABS_API_EN 0 - 1

(1)

Enable or disable support
the Abstraction API.

BLE_CFG_SOFT_TIMER_EN 0 - 1

(1)

Enable or disable support
the software time in
app_lib.

BLE_CFG_MCU_LPC_EN 0 - 1

(1)

Enable or disable support
the MCU low power
consumption control.

BLE_CFG_HCI_MODE_EN 0 - 1

(0)

Select start in HCI mode or
not.

BLE_CFG_SOFT_TIMER_AGT_CH 0 - 1

(1)

AGT channel for the
software timer function.

BLE_CFG_AUTO_READ_ADC_EN 0 - 1

(0)

Enable or disable the
automatically reading A/D
convertor

(ADC).

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 27 of 189

Mar.25.21

Macro Setting range

(default)

Description

BLE_CFG_MCU_PSM_OPE 0 - 1

(1)

Select MCU Power Supply
Mode during Operating
mode (OPE).

BLE_CFG_MCU_VBB_SSTBY 0 - 1

(1)

Enable or disable Back
Bias Voltage (VBB) control
of MCU power control
mode during Software
standby mode (SSTBY).

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 28 of 189

Mar.25.21

2.2 How to adjust RAM

Some configuration options affect the RAM size. Table 2.2 shows the additional RAM size if one is added to
the configuration option.

Table 2.2 Additional RAM size per configuration option

Configuration Options Setting range
(default)

Library
Additional

Size (bytes) SC display name Macro

Maximum number of
connections

BLE_CFG_RF_CONN_MAX
1 - 7
(2)

All features 1094

Balance 1086

Compact 1074

Maximum connection
data length

BLE_CFG_RF_CONN_DATA_MAX
27 - 251
(251)

All libraries 9

Maximum advertising
data length

BLE_CFG_RF_ADV_DATA_MAX
31 - 1650
(252)

All features
Described in

Table 2.3

Maximum advertising
set number *1

BLE_CFG_RF_ADV_SET_MAX
1 - 4
(1)

All features 308

Maximum periodic sync
set number *2

BLE_CFG_RF_SYNC_SET_MAX
1 - 2
(1)

All features 66

*1 : Simultaneous advertising number.
*2 : Maximum periodic synchronization number.

The additional RAM size of BLE_CFG_RF_ADV_DATA_MAX depends on

BLE_CFG_RF_ADV_SET_MAX. Table 2.3 shows the additional RAM size where
BLE_CFG_RF_ADV_DATA_MAX is changed from the RAM size when BLE_CFG_RF_ADV_DATA_MAX is
set to 0-252 bytes.

Table 2.3 Additional RAM size per BLE_CFG_RF_ADV_DATA_MAX and BLE_CFG_RF_ADV_SET_MAX

M
a

x
im

u
m

 a
d

v
e

rt
is

in
g
 s

e
t

n
u

m
b

e
r 1

BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1260 1261-1512 1513-1650

Additional size (bytes) 0 512 1024 1536 2048 2560 3072

2

BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1260 1261-1512 1513-1650

Additional size (bytes) 0 1024 2048 3072 4096 5120 6144

3

BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1260 1261-1650

Additional size (bytes) 0 1536 3072 4608 6144 7680

4

BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1650

Additional size (bytes) 0 2048 4096 6144 7168

Set the values of maximum advertising data length and maximum advertising set number so that they fall
within the following range.

4250 >= Maximum advertising data length * Maximum number of advertising sets

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 29 of 189

Mar.25.21

2.3 How to configure BD address

Bluetooth Device address (BD address) has the following types.

Table 2.4 BD address types

BD address type Description

Public

device address

Public address gotten upper 24 bits from IEEE.

Random

device address

Static

address

Random address where the most significant bit starts with 11 and
the remaining bits can be set randomly to be used.

Cx:xx:xx:xx:xx:xx or Dx:xx:xx:xx:xx:xx or Ex:xx:xx:xx:xx:xx or
Fx:xx:xx:xx:xx:xx

Note: Refer to Bluetooth Core Specification Vol 6, PartB, "1.3.2
Random Device Address".

Note: BLE Protocol Stack does not check address format.

Private

address

Non-resolvable

private address

Random address where the most significant bit starts with 00 and

the remaining bits can be dynamically regenerated.

0x:xx:xx:xx:xx:xx or 1x:xx:xx:xx:xx:xx or 2x:xx:xx:xx:xx:xx or
3x:xx:xx:xx:xx:xx

Resolvable

private address

(RPA)

Random address where the most significant bit starts with 01 and
the remaining bits can be dynamically regenerated and enhanced

with privacy feature.

4x:xx:xx:xx:xx:xx or 5x:xx:xx:xx:xx:xx or 6x:xx:xx:xx:xx:xx or
7x:xx:xx:xx:xx:xx

Bluetooth devices have an Identity address. Identity address is either Public device address or Static
address. The device using Privacy function requires an Identity address.

RE01B provides the function to store the static BD address such as Public device address and Static
address in the user area of the internal ROM. Code flash (CF) can be used as the user area. They are set as
follows in default by Configuration option.

Table 2.5 BD address configurations

Configuration option Initial value

BLE_CFG_DEV_DATA_CF_BLOCK 383 (CF block 383 is used)

BLE_CFG_RF_DBG_PUB_ADDR 74:90:50:FF:FF:FF (Firmware initial value of Public address)

BLE_CFG_RF_DBG_RAND_ADDR FF:FF:FF:FF:FF:FF (Firmware initial value of Random address)

BD address can be used by selecting either public address or random address when starting Advertising. For
details on how to use the set random address, refer to "2.3.1 How to use random address of device specific
data".

The adopted BD address is determined as below at application startup according to "6.2.4 BD address
adoption flow" in "Bluetooth Low Energy Sample code (using CMSIS Driver Package) (R01AN5606)".

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 30 of 189

Mar.25.21

Table 2.6 BD address adoption method

Priority BD address adoption method Initial value Description

1 CF is used.
(BLE_CFG_DEV_DATA_CF_BLOCK is set 0 to
383.)

Note: Because 0 to 15 are Start-Up Program
Protection blocks, when using Start-Up

Program Protection function, do not set 0 to15.

Note: CF is not used when setting -1.

For flash initialization:

Public address

FF:FF:FF:FF:FF:FF

Random address

FF:FF:FF:FF:FF:FF

Note: ALL 0x00 or 0xFF
is disable.

Used if writing BD address
together with the firmware at the
time of product shipment.

It can be rewriting by following
methods.

- Rewrite firmware by using
unique code function of
Renesas Flash
Programmer(RFP).

Note: By using RE01B memory
protection function, it can be
guarded against being rewritten

by third parties.

2 Firmware initial value is used.

BLE_CFG_RF_DBG_PUB_ADDR

BLE_CFG_RF_DBG_RAND_ADDR

Public address

74:90:50:FF:FF:FF

Random address

FF:FF:FF:FF:FF:FF

Note: ALL 0x00 or 0xFF
is disable.

Used if changing BD address on

debug temporarily.

3 Static value is used Public address

74:90:50:FF:FF:FF

Random address

XX:XX:XX:XX:XX:XX

Used when all of the above are
disabled.

Random address is generated

by MCU unique ID.

Other The managed RAM of BLE Protocol Stack is
used by rewriting.

Public address

XX:XX:XX:XX:XX:XX

Random address

XX:XX:XX:XX:XX:XX

Used if managing BD address
by application dynamically.

After
BLE_GAP_EVENT_STACK_ON
, rewrite by specifying Current
register in
R_BLE_VS_SetBdAddr.

As for details on rewriting to CF, refer to "5.6.3 Writing to user area (ROM)" in "Bluetooth Low Energy
Sample code (using CMSIS Driver Package) (R01AN5606)".
As for details on RE01B memory protection function, refer to "48.5.1.4 Startup Area Select" in "RE01B Group
Product with 1.5-Mbyte Flash Memory User’s Manual: Hardware (R01UH0903)".

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 31 of 189

Mar.25.21

2.3.1 How to use random address of device specific data

The following is a sample code for advertising with a random address determined by device-specific data.
Get the random address selected with R_BLE_VS_GetBdAddr and call R_BLE_ABS_StartLegacyAdv with
the random address obtained with the BLE_VS_EVENT_GET_ADDR_COMP event.

static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 (OMISSION)
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
};

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_VS_GetBdAddr(BLE_VS_ADDR_AREA_REG, BLE_GAP_ADDR_RAND);
 } break;
 (OMISSION)

static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 (OMISSION)
 switch (type)
 {
 case BLE_VS_EVENT_GET_ADDR_COMP:
 {
 st_ble_vs_get_bd_addr_comp_evt_t * p_get_addr =
 (st_ble_vs_get_bd_addr_comp_evt_t *)p_data->p_param;
 memcpy(gs_adv_param.o_addr, p_get_addr->addr.addr, BLE_BD_ADDR_LEN);
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;
 (OMISSION)

Code 2-1 Sample of using random address

Using Command line function, BD address of the managed RAM of BLE Protocol Stack can be checked and
rewritten with "vs addr get curr" and "vs addr set curr".

$ vs addr get curr pub

$ BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

 addr:36:35:34:33:32:31 pub on current register

$ vs addr get curr rnd

$ BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

 addr:D9:7C:E6:81:83:35 rnd on current register

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 32 of 189

Mar.25.21

2.4 How to configure for minimum current consumption

The following configurations make the current consumption minimize.

Table 2.7 Configurations for minimum current consumption

Configuration options Comments

MCU clock set HOCO clock: Enable

Frequency: 32MHz

Note: Configure in r_core_cfg.h.

Note: Make non-used clocks disable

or set minimum clock frequency.

ICLK/PCLKA：x1 (32MHz)

PCLKB：x1 (32MHz)

r_ble_cfg.h

component set

DC-DC on the RF: Enable
(BLE_CFG_RF_DDC_EN=1)

Note: Refer to “RE01B Group
Hardware Design Guide
(R01AN5471)”.

RF Deep Sleep: Enable
(BLE_CFG_RF_DEEP_SLEEP_EN=1)

MCU Low Power Consumption: Enable
(BLE_CFG_MCU_LPC_EN=1)

Note: Need to call
R_BLE_LPC_EnterLowPowerMode
API after calling R_BLE_Execute API
in main loop.

Command line function: Disable
(BLE_CFG_CMD_LINE_EN=0)

LED and Switch control function: Disable
(BLE_CFG_BOARD_LED_SW_EN=0)

RF maximum transmit power: +4dBm → +0dBm

(BLE_CFG_RF_MAX_TX_POW=0)

RF default transmit power: High → Mid → Low

(BLE_CFG_RF_DEF_TX_POW=2)

Note: The transmit current can be
reduced by lowering the RF transmit
power, but the communication range
will be shortened accordingly.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 33 of 189

Mar.25.21

2.4.1 Using MCU Low Power Consumption function

The MCU can be shifted to the low power consumption state even when using the BLE function. The basic
policy of the transition to Low power consumption state is as below.

• After completing the execution of R_BLE_Execute(), until the next R_BLE_Execute() is executed, BLE

Protocol Stack does not prevent MCU from the transitioning to Low power consumption state.

• After confirming that all the used components (including the BLE function) can shift MCU to Low power

consumption state, the application shifts MCU to Low power consumption state.

As a sample program code for low power consumption, a program code (r_ble_pf_lowpower.c) with the
following functions is provided.

• NORMAL+SLEEP mode, NORMAL+SSTBY mode, and VBB+SSTBY mode (*1) are available as Low

power consumption state.

*1: The transition to VBB + SSTBY requires BLE_CFG_MCU_VBB_SSTBY to be set to 1.

• Use R_BLE_LPC_Init() to initialize Low power consumption function.

• Use R_BLE_LPC_EnterLowPowerMode() to shift to Low power consumption state.

⎯ Disable MCU interrupts

⎯ Check that there is no problem even if each component shifts to Low power consumption state

⎯ Execute the transition processing to Low power consumption state of each component

⎯ Enter MCU to Low power consumption state

⎯ After MCU wakes-up from Low power consumption state, resume each component to the normal

state

• When BLE communication occurs, it resumes from Low power consumption state by RF interrupt.

However, since there is a possibility that RF interrupt may occur during processing for disabling

interrupts, check the status of BLE task once after disabling interrupts, If BLE task state is not free, skip

transition to Low power consumption state of MCU.

The operation status of each component in each low power consumption state is listed “12. Power-Saving
Functions” in “RE01B Group Product with 1.5-Mbyte Flash Memory User’s Manual: Hardware
(R01UH0903)”.
As for components other than the BLE function, if adding processing for transition and resume to Low power
consumption state, change the following locations of “r_ble_pf_lowpower.c”.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 34 of 189

Mar.25.21

(1) Checking transition to Low power consumption state

• VBB+SSTBY mode

In check_vbb_software_standby() function, add processing to check if there is no problem even if the

component enters to VBB+SSTBY mode. Add processing to the location of “/* add check for other

components */” comment in Code 2-2.

static bool check_vbb_software_standby(void)
{
 /* inhibit flag is true */
 if (g_inhibit_software_standby)
 {
 return false;
 }
 /* When the RF_SLEEP function is enabled and RF is active,
 * the transition to VBB mode is restricted because RF interrupts will be occured. */
 if((0 != r_ble_rf_power_save_mode()) &&
 (BLE_RF_STATE_POW_SAVE != R_BLE_GetRfPowerState()))
 {
 return false;
 }

 /* add check for other components */

 return true;
}

Code 2-2 Location to check for transition to VBB+SSTBY mode

• NORMAL+SSTBY mode

In check_normal_software_standby() function, add processing to check if there is no problem even if

entering to NORMAL+SSTBY mode. Add processing to the location of “/* add check for other

components */” in Code 2-3.

static bool check_normal_software_standby(void)
{
 /* inhibit flag is true */
 if (g_inhibit_software_standby)
 {
 return false;
 }

 /* add check for other components */

 return true;
}

Code 2-3 Location to check for transition to NORMAL+SSTBY mode

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 35 of 189

Mar.25.21

(2) Transition preparation processing to Low power consumption state

In suspend_peripherals() function, add the preparation processing for transition to Low power consumption
state of each component. Add the transition preparation processing according to each low power
consumption state to the location of “/* add implementation for transiting xxx mode */” in Code 2-4.
static void suspend_peripherals(lpc_low_power_mode_t mode)
{
 switch(mode)
 {
 case LPC_LP_NORMAL_SLEEP:
 {
 (OMISSION)

 /* add implementation for transiting the MCU sleep mode. */

 } break;
 case LPC_LP_NORMAL_SSTBY:
 case LPC_LP_VBB_SSTBY:
 {
#if (BLE_CFG_CMD_LINE_EN)
 R_BLE_CLI_Terminate();
#endif /* (BLE_CFG_CMD_LINE_EN) */

 /* add implementation for transiting the MCU software standby mode. */

 } break;
 (OMISSION)
}

Code 2-4 Location to add transition preparation for each low power consumption state

(3) Resume processing from Low power consumption state

In resume_peripherals() function, add the resume processing from Low power consumption state of each
component. Add the resume process according to each low power consumption state to the location of "/*
add implementation for transiting the active state. */" in Code 2-5.
static void resume_peripherals(lpc_low_power_mode_t mode)
{
 switch(mode)
 {
 case LPC_LP_NORMAL_SLEEP:
 {
 (OMISSION)

 /* add implementation for transiting the active state. */

 } break;
 case LPC_LP_NORMAL_SSTBY:
 case LPC_LP_VBB_SSTBY:
 {
 {
 extern ble_status_t R_BLE_SetRfWakeup(void);
 (void)R_BLE_SetRfWakeup();
 }
#if (BLE_CFG_CMD_LINE_EN)
 R_BLE_CLI_Init();
#endif /* (BLE_CFG_CMD_LINE_EN) */

 /* add implementation for transiting the active state. */

 } break;
 (OMISSION)
}

Code 2-5 Location to add resume processing from each low power consumption state

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 36 of 189

Mar.25.21

3. How to implement user code

As for basic implementation method of user code, refer to “5 How to implement user code” in “Bluetooth Low
Energy Sample code (using CMSIS Driver Package) (R01AN5606)”.

As for how to implement advertising of RF event shown in "1.5 BLE Protocol Stack Operation Overview",
refer to “5 Advertising”. As for scanning, refer to “6 Scan”. As for initiating, refer to “7 Connection”. As for
connection, refer to “8 Communication”.

In order to perform application development synchronized with RF event, it is necessary to use the Event
notification function and the RF communication timing notification function. The following shows how to use
their function.

Select the communication timing wanted to notify from the following settings and set it to "Enable".

Table 3.1 Configuration of RF communication timing notification

Configuration option Value

BLE_CFG_EVENT_NOTIFY_CONN_START 1: Enable

BLE_CFG_EVENT_NOTIFY_CONN_CLOSE 1: Enable

BLE_CFG_EVENT_NOTIFY_ADV_START 1: Enable

BLE_CFG_EVENT_NOTIFY_ADV_CLOSE 1: Enable

BLE_CFG_EVENT_NOTIFY_SCAN_START 1: Enable

BLE_CFG_EVENT_NOTIFY_SCAN_CLOSE 1: Enable

BLE_CFG_EVENT_NOTIFY_INIT_START 1: Enable

BLE_CFG_EVENT_NOTIFY_INIT_CLOSE 1: Enable

BLE_CFG_EVENT_NOTIFY_DS_START 1: Enable

BLE_CFG_EVENT_NOTIFY_DS_WAKEUP 1: Enable

The following is the sample that displays the log on the command line using R_BLE_SetEvent in the
reception of RF communication timing. This sample uses Command line function. Enable
BLE_CFG_CMD_LINE_EN.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 37 of 189

Mar.25.21

The following code makes logs of RF communication timing notification outputted.
[Device\BLE\platform\r_ble_pf_functions.c]
(OMISSION)

#define pf R_BLE_CLI_Printf
void rf_ntf_recv_event(void)
{
 pf("RF event has come!!\n");
}

(OMISSION)

void r_ble_rf_notify_event_start(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 }
}

(OMISSION)

void r_ble_rf_notify_event_close(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 }
}

(OMISSION)

void r_ble_rf_notify_deep_sleep(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch(param)
 {
 case BLE_EVENT_TYPE_RF_DS_START:
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 38 of 189

Mar.25.21

 case BLE_EVENT_TYPE_RF_DS_CLOSE:
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 }
}

(OMISSION)

Code 3-1 Sample log display of RF communication timing notification (r_ble_pf_functions.c)

The following code operates only the input and output of Command line function.

[app_main.c]
(OMISSION)

#include "r_ble_api.h"

(OMISSION)

void app_main(void)
{
 (OMISSION)
 /* Configure CommandLine */
 R_BLE_CLI_Init();
 (OMISSION)
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 (OMISSION)

Code 3-2 Sample log display of RF communication timing notification (app_main.c)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 39 of 189

Mar.25.21

4. app_lib

4.1 Abstraction API

The Abstraction API is intended to make it easier to use the functions often used in the BLE protocol stack.
The Abstraction API internally uses GAP, GATT server, GATT client, and Vendor Specific API to realize
each function. Table 4.1 shows the APIs called by the Abstraction APIs and the events notified as a result.
Refer to the API document (r_ble_api_spec.chm) for detailed specifications of each Abstraction API.

Table 4.1 APIs and Events used by the Abstraction API

Abstraction API Description API to use Events

R_BLE_ABS_Init

The initialization process is as
follows.
1. Initialize the host stack
2. GAP, GATTS, GATTC,
 Notify VS event
 For the callback of
 Register
3. Pairing parameters
 Configuration

R_BLE_GAP_Init BLE_GAP_EVENT_STACK_ON

R_BLE_GAP_SetPairingParams BLE_GAP_EVENT_LOC_VER_INFO

R_BLE_VS_Init

R_BLE_GATTS_SetDbInst

R_BLE_GATTS_Init

R_BLE_GATTS_RegisterCb

R_BLE_GATTC_Init

R_BLE_GATTC_RegisterCb

R_BLE_GAP_GetVerInfo

R_BLE_SECD_Init

R_BLE_SECD_ReadLocInfo

R_BLE_GAP_SetLocIdInfo

R_BLE_ABS_Reset
BLE protocol stack
Perform a reset.

R_BLE_Close

R_BLE_GAP_Terminate

R_BLE_Open

R_BLE_SetEvent

R_BLE_ABS_StartLegacyAdv

Set the parameters and
Advertising Data for Legacy
Advertising, and start
Advertising.

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

 BLE_GAP_EVENT_ADV_OFF

R_BLE_ABS_StartExtAdv
Set parameters for Extended
Advertising and Advertising
Data, and start Advertising

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

 BLE_GAP_EVENT_ADV_OFF

R_BLE_ABS_StartNonConnAdv

Set the parameters and
Advertising Data for Non-
Connectable Advertising and
start Advertising.

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

 BLE_GAP_EVENT_ADV_OFF

R_BLE_ABS_StartPerdAdv

Set parameters for Periodic
Advertising and Periodic
Advertising Data, and start
Advertising.

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_SetPerdAdvParam BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP

R_BLE_GAP_StartPerdAdv BLE_GAP_EVENT_PERD_ADV_ON

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 40 of 189

Mar.25.21

Abstraction API Description API to use Events

 BLE_GAP_EVENT_ADV_OFF

R_BLE_ABS_StartScan Set up Scan and start. R_BLE_GAP_StartScan

BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_SCAN_OFF

BLE_GAP_EVENT_SCAN_TO

BLE_GAP_EVENT_ADV_REPT_IND

R_BLE_ABS_CreateConn Create a connection request.

R_BLE_TIMER_Create BLE_GAP_EVENT_CREATE_CONN_COMP

R_BLE_GAP_CreateConn BLE_GAP_EVENT_CONN_CANCEL_COMP

R_BLE_TIMER_Start BLE_GAP_EVENT_CONN_IND

R_BLE_GAP_CancelCreateConn

R_BLE_TIMER_Delete

R_BLE_TIMER_Stop

R_BLE_TIMER_Delete

R_BLE_ABS_SetLocPrivacy
Sets the privacy of the local
device.

R_BLE_GAP_EnableRpa BLE_GAP_EVENT_RPA_EN_COMP

R_BLE_VS_GetRand BLE_VS_EVENT_GET_RAND

R_BLE_GAP_SetLocIdInfo BLE_GAP_EVENT_RSLV_LIST_CONF_COMP

R_BLE_GAP_ConfRslvList BLE_GAP_EVENT_PRIV_MODE_SET_COMP

R_BLE_GAP_SetPrivMode

R_BLE_ABS_StartAuth
The pairing will start.
If it is already paired,
encryption will start.

R_BLE_GAP_GetDevSecInfo BLE_GAP_EVENT_PAIRING_REQ

R_BLE_GAP_StartPairing BLE_GAP_EVENT_PASSKEY_ENTRY_REQ

R_BLE_GAP_ReplyPasskeyEntry BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ

R_BLE_GAP_ReplyNumComp BLE_GAP_EVENT_NUM_COMP_REQ

R_BLE_GAP_ReplyExKeyInfoReq BLE_GAP_EVENT_KEY_PRESS_NTF

R_BLE_GAP_StartEnc BLE_GAP_EVENT_PEER_KEY_INFO

R_BLE_GAP_ReplyLtkReq BLE_GAP_EVENT_EX_KEY_REQ

 BLE_GAP_EVENT_PAIRING_COMP

 BLE_GAP_EVENT_LTK_REQ

 BLE_GAP_EVENT_LTK_RSP_COMP

 BLE_GAP_EVENT_ENC_CHG

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 41 of 189

Mar.25.21

4.2 Software Timer

Refer to “3.5 Software timer” in “Bluetooth Low Energy Sample code (using CMSIS Driver Package)
(R01AN5606)”.

4.3 Profile common

This function provides the common interfaces (Service Discovery, GATT Client process, and GATT Server
process) in the BLE Profile. The interfaces are call by the code generated by the QE for BLE. Refer to “10
Profile and service” and “Bluetooth Low Energy Profile Developer’s Guide(R01AN5638)” for the details of the
profile common and the profile development.

4.4 Logger

Refer to “3.7 Logger” in “Bluetooth Low Energy Sample code (using CMSIS Driver Package) (R01AN5606)”.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 42 of 189

Mar.25.21

4.5 Command line

The command line feature provides a function to execute BLE control commands through a terminal
emulator that supports VT100 emulation. If you use the command line feature, set the configuration options
as Table 4.2.

Table 4.2 Configuration options for the command line feature

Configuration option Value

BLE_CFG_CMD_LINE_EN 1: Enable

By default, the commands in Table 4.3 are supported. For more information about the commands, refer to
“Bluetooth Low Energy Sample code (using CMSIS Driver Package) (R01AN5606)”.

Table 4.3 Supported Command List

Standard
Command

Subcommand Description

gap

adv Start Advertising.

scan Start Scan.

conn Send a Connection Request.

disconn Disconnect

device Display the connecting device list.

priv Enable privacy feature in the local device.

conn_cfg Configure a connection.

wl Register a remote device in the White List.

auth Start pairing or encryption.

sync Establish a Periodic Sync.

ver Display the version information.

vs

txp Set /Get the transmit power.

scheme Set the Coding Scheme of the Coded PHY.

test Operate the Direct Test Mode (DTM) to test the RF.

addr Set / Get the local BD_ADDR.

rand Generate a random number.

scan_ch_map Set/Get the scan channel map.

sys stby Set software standby mode.

ble
reset Reset the BLE Protocol Stack.

close Terminate the BLE Protocol Stack.

The following sections describe how to change the code to add the command line feature to your application.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 43 of 189

Mar.25.21

4.5.1 How to use the standard commands

(1) Include Header file

Include the below header files for the standard commands.

/* Include the header files for standard commands. */
#include "r_ble_api.h"

Code 4-1 Header files for the standard commands

(2) Initialization and registration of the commands

To use the command line feature, call the APIs in Table 4.4 in application initialization.

Table 4.4 APIs called in the command line feature initialization

API Description

R_BLE_CLI_Init Initialize the command line.

R_BLE_CLI_RegisterCmds Register the commands.

R_BLE_CMD_SetResetCb
Register a callback that restarts the BLE Protocol
Stack after reset.

An example of adding the command line APIs to application initialization is shown in below.

/** some code is omitted **/

/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_ble_cmd
};

/** some code is omitted **/
/* Reset BLE Protocol Stack */
static void ble_host_stack_init(void)
{
 ble_init();
}

/** some code is omitted **/

/* Initialize BLE Protocol Stack */
static ble_status_t ble_init(void)
{
 ble_status_t status;

 /* Initialize host stack */
 status = R_BLE_ABS_Init(&gs_abs_init_param);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /** some code is omitted **/
}
/** some code is omitted **/

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 /** some code is omitted **/

 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds));

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 44 of 189

Mar.25.21

 R_BLE_CMD_SetResetCb(ble_host_stack_init);
 /** some code is omitted **/
}

Code 4-2 Sample of adding the command line initialization

(3) Callback

Add the functions in Table 4.5 to the callbacks to process the BLE events in executing command.

Table 4.5 Command line functions added to the callbacks

Callback Function Description

GAP Callback R_BLE_CMD_AbsGapCb
Process the events generated by the
gap command.

VS Callback R_BLE_CMD_VsCb
Process the events generated by the vs
command.

An example of adding the command line functions in Table 4.5 to the callback is shown in below.

/** some code is omitted **/
/* GAP Callback */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 R_BLE_CMD_AbsGapCb(type, result, p_data);
 /** some code is omitted **/
}

/** some code is omitted **/
/* Vendor Specific Callback */
void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_CMD_VsCb(type, result, p_data);
 /** some code is omitted **/
}
/** some code is omitted **/

Code 4-3 Sample of adding the command line function to the callbacks

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 45 of 189

Mar.25.21

(4) Main loop

To execute a command, add the below function to the application main loop.

Table 4.6 Command line function added to the main loop

API Description

R_BLE_CLI_Process
Process the characters input through a terminal
emulator.

An example of adding the command line function in Table 4.6 to the main loop is shown in below.
/* main loop */
void app_main(void)
{
 /** some code is omitted **/
 /* main loop */
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 /* Process Event */
 R_BLE_Execute();
 /** some code is omitted **/
 }
}

Code 4-4 Sample of adding the command line to the main loop

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 46 of 189

Mar.25.21

4.5.2 How to create a user command

In the command line feature, you can create your own commands by defining commands in the
st_ble_cli_cmd_t type variable. This section describes an example of creating a new command to operate
the custom profile LED Switch service Client (hereafter “lsc”) provided in the demo project.

(1) Include header files

Include r_ble_cmd.h and r_ble_clli.h for the command line interface.
/* Include the header files for command line. */
#include "cmd/r_ble_cmd.h"
#include "cli/r_ble_cli.h"

Code 4-5 Command line header files

(2) Command definition

Define command name, subcommand group, number of subcommands, and the message string output by
“help” command. For “lsc” command, define a command structure variable as shown below.
/* Command definition */
const st_ble_cli_cmd_t g_lsc_cmd =
{
 .p_name = "lsc", /* Command name */
 .p_cmds = lsc_sub_cmds, /* Subcommand group */
 .num_of_cmds = ARRAY_SIZE(lsc_sub_cmds), /* Number of subcommands */
 .p_help = "Sub Command: set_switch_state_ntf, write_led_blink_rate\n"
 "Try 'lsc sub-cmd help' for more information", /* Message for help */
};

Code 4-6 Sample of command definitions

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 47 of 189

Mar.25.21

(3) Subcommand definition

Define subcommand. For “lsc” command, define a subcommand structure variable as shown in below. If you
want to create a command such as the "Connection command” or "Scan command” that manually abort the
process, you need to set an abort handler. During execution of a command for which the abort handler is set,
no other command input will be accepted until the command execution is aborted by pressing Ctrl + C key.

/* Subcommand definition */
static const st_ble_cli_cmd_t lsc_set_switch_state_ntf_cmd =
{
 .p_name = "set_switch_state_ntf", /* Subcommand name */
 .exec = cmd_lsc_set_switch_state_ntf, /* Subcommand function */
 .p_help = "Usage: lsc set_switch_state_ntf conn_hdl value", /* Message for help */
};

/** some code is omitted **/

/* Subcommand definition */
static const st_ble_cli_cmd_t lsc_write_led_blink_rate_cmd =
{
 .p_name = "write_led_blink_rate", /* Subcommand name */
 .exec = cmd_lsc_write_led_blink_rate, /* Subcommand function */
 .p_help = "Usage: lsc write_led_blink_rate conn_hdl blink_rate", /* Message for help */
};

/** some code is omitted **/

/* Subcommand definition */
static const st_ble_cli_cmd_t lsc_conn_lss_cmd =
{
 .p_name = "conn_lss", /* Subcommand name */
 .exec = cmd_lsc_conn_lss, /* Subcommand function */
 .abort = abort_lsc_conn, /* Abort handler */
 .p_help = "Usage: lsc conn_lss XX:XX:XX:XX:XX:XX addr_type", /* Message for help */
};

/** some code is omitted **/

/* Subcommand group */
static const st_ble_cli_cmd_t * const lsc_sub_cmds[] =
{
 &lsc_set_switch_state_ntf_cmd, /* Subcommand */
 &lsc_write_led_blink_rate_cmd, /* Subcommand */
 &lsc_conn_lss_cmd, /* Subcommand */
};

Code 4-7 Sample of Subcommand definitions

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 48 of 189

Mar.25.21

(4) Subcommand function definition

Define the function to be processed when the subcommand is executed. For “lsc” command, define a
subcommand function as shown in below.

/*--
lsc set_switch_state_ntf command
--*/
static void cmd_lsc_set_switch_state_ntf(int argc, char *argv[])
{
 if (argc != 3)
 {
 pf("lsc %s: unrecognized operands\n", argv[0]);
 return;
 }

 uint16_t conn_hdl;
 conn_hdl = (uint16_t)strtol(argv[1], NULL, 0);

 long value = strtol(argv[2], NULL, 0);
 ble_status_t ret;
 ret = R_BLE_LSC_WriteSwitchStateCliCnfg(conn_hdl, (uint16_t *)&value);

 if (ret != BLE_SUCCESS)
 {
 pf("lsc %s: failed with 0x%04X\n", argv[0], ret);
 return;
 }
}

Code 4-8 Sample of Subcommand function definition

(5) Abort handler

Define a function to stop by pressing Ctrl + C key in executing subcommand. An example of an abort handler
is shown below.

/*--
lsc connect lss abort handler
--*/
static void abort_lsc_conn(void)
{
 R_BLE_GAP_CancelCreateConn();
}

Code 4-9 Sample of Abort handler

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 49 of 189

Mar.25.21

(6) Registering commands

After defining the command and subcommand, register the command using R_BLE_CLI_RegisterCmds()
API as shown in below so that it can be used as an application-specific command.

/* Registering commands */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_lsc_cmd /* Command to be added */
};

/** some code is omitted **/

void app_main(void)
{
 /** some code is omitted **/

 R_BLE_CLI_Init(); /* Initialize the command line */
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds)); /* Register commands */

 /** some code is omitted **/
 /* main loop */
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 /* Process Event */
 R_BLE_Execute();
 /** some code is omitted **/
 }
}

Code 4-10 Sample of initialization and command registration

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 50 of 189

Mar.25.21

4.6 LED and Switch control

Applications can use the LED and Switch control function to easily control the LEDs and Switch on the
board. When using Command Line Interface features, set the BLE_CFG_BOARD_LED_SW_EN
configuration option to “1”. LED and Push-switch on the board can be controlled by setting the configuration
options shown in Table 4.7 and Table 4.8 according to the board environment.

Table 4.7 LED and Push-switch Configuration Options

Configuration options (r_ble_board.c)

Macro Setting range

(default)
SW2_IRQ 0,1,5,6,7

(1)

LED2_PORT 000, 001, 002, 003, 012, 500, 505, 506, 102, 107, 112, 113, 606, 607, 608, 609, 300, 301, 305, 700,
701, 704, 200, 201, 207, 411, 412, 413
(506)

Table 4.8 IRQ Configuration Options

Configuration options (r_system_cfg.c)

Macro Setting range Description

SYSTEM_CFG_EVENT_NUMBER_PORT_IRQ0 SYSTEM_IRQ_EVENT_NUMBER_NOT_USED
or
SYSTEM_IRQ_EVENT_NUMBER0
(SYSTEM_IRQ_EVENT_NUMBER_NOT_USED)

Set whether to generate an
IRQ0 interrupt by inputting
P411 or P506.

SYSTEM_CFG_EVENT_NUMBER_PORT_IRQ1 SYSTEM_IRQ_EVENT_NUMBER_NOT_USED
or
SYSTEM_IRQ_EVENT_NUMBER1
(SYSTEM_IRQ_EVENT_NUMBER1)

Set whether to generate an
IRQ1 interrupt by inputting
P207 or P505.

SYSTEM_CFG_EVENT_NUMBER_PORT_IRQ5 SYSTEM_IRQ_EVENT_NUMBER_NOT_USED
or
SYSTEM_IRQ_EVENT_NUMBER5
(SYSTEM_IRQ_EVENT_NUMBER_NOT_USED)

Set whether to generate an
IRQ5 interrupt by inputting
P113.

SYSTEM_CFG_EVENT_NUMBER_PORT_IRQ6 SYSTEM_IRQ_EVENT_NUMBER_NOT_USED
or
SYSTEM_IRQ_EVENT_NUMBER6
(SYSTEM_IRQ_EVENT_NUMBER_NOT_USED)

Set whether to generate an
IRQ6 interrupt by inputting
P112.

SYSTEM_CFG_EVENT_NUMBER_PORT_IRQ7 SYSTEM_IRQ_EVENT_NUMBER_NOT_USED
or
SYSTEM_IRQ_EVENT_NUMBER7
(SYSTEM_IRQ_EVENT_NUMBER_NOT_USED)

Set whether to generate an
IRQ7 interrupt by inputting
P107.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 51 of 189

Mar.25.21

Modify the pin settings shown in Table 4.9 according to needs.

Table 4.9 Pin setting functions

Pin setting functions (pin.c)

Function Description

R_ICU_Pinset_CH0 Set either P411 or P506 as the input pin. By default, P411 is set.

R_ICU_Pinset_CH1 Set either P207 or P505 as the input pin. By default, P505 is set.

R_ICU_Pinset_CH5 Set P113 as the input pin.

R_ICU_Pinset_CH6 Set P112 as the input pin.

R_ICU_Pinset_CH7 Set P107 as the input pin.

Include the below header file to control LED and Push-switch.

/* Include LED and Push-switch control header file */
#include "board/r_ble_board.h"

Code 4-11 Inclusion of LED and Switch control header file

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 52 of 189

Mar.25.21

4.6.1 LED and Switch initialization

To control LED and Push-switch, R_BLE_BOARD_Init is call in application initialization.

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 /* Configure the board */
 R_BLE_BOARD_Init();
 /* some code is omitted. */

}

Code 4-12 LED and Switch control initialization

4.6.2 ON or OFF LED

The following APIs turns the LED on the board on or off.
⚫ R_BLE_BOARD_SetLEDState

⚫ R_BLE_BOARD_ToggleLEDState

R_BLE_BOARD_SetLEDState specifies the state to be set.
R_BLE_BOARD_ToggleLEDState reverses the LED state.

4.6.3 Callback for pressing Switch

Call R_BLE_BOARD_RegisterSwitchCb to register a function to process after pressing Switch.
An example of LED2 turned on/off by sw_cb when pressing SW2 is shown below.

static void sw_cb(void)
{
 R_BLE_BOARD_ToggleLEDState(BLE_BOARD_LED2);
}

/** some code is omitted **/

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 /* Configure the board */
 R_BLE_BOARD_Init();
 R_BLE_BOARD_RegisterSwitchCb(BLE_BOARD_SW2, sw_cb);
 /* some code is omitted. */
}

Code 4-13 Sample of callback allocated for Switch press

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 53 of 189

Mar.25.21

5. Advertising

Bluetooth LE device sends data to nearby scanning devices by advertising.

5.1 Connecting to smartphone

Figure 5.1 shows the advertising procedure in an application. Details of each step are explained in the
following chapters. If you use the Abstraction API, the procedure from 5.2 to 5.4 are performed by an
Abstraction advertising API call. Regarding to the way of using the API, refer to 5.8.

Figure 5.1 Advertising Procedure

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 54 of 189

Mar.25.21

5.2 Advertising Parameter

It is necessary to set the advertising parameters by R_BLE_GAP_SetAdvParam to starting advertising. If you
use the Abstraction API, the procedure does not need. The following sections describe the parameter
settings for some Use Cases.

5.2.1 Adverting Type

Select the advertising type from the below items and set a value in Figure 5.1 to the adv_prop_type field in
the st_ble_gap_adv_param_t structure.

⚫ Response to a connection request from remote device (Connectable or Non-Connectable)
⚫ Response to a scan request from remote device (Scannable or Non-Scannable)
⚫ Designation of remote address (Direct or Undirect)
⚫ Type of advertising that a remote device supports (legacy or extended advertising)
⚫ Maximum size of the Advertising Data

Table 5.1 Advertising type and the adv_prop_type field

Advertising Type Advertising PDU The adv_prop_type field value
legacy or
extended

Max Size(byte)

Connectable and
Scannable
Undirected *5

ADV_IND BLE_GAP_LEGACY_PROP_ADV_IND legacy 31

Connectable
Undirected

ADV_EXT_IND
BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_UNDIRECT extended 245*1*4

AUX_ADV_IND

Connectable
Directed

ADV_DIRECT_IND
BLE_GAP_LEGACY_PROP_ADV_DIRECT_IND or
BLE_GAP_LEGACY_PROP_ADV_HDC_DIRECT_IND

legacy 0

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_HDC_DIRECT

extended 239*1*4
AUX_ADV_IND

Non-Connectable
and
Non-Scannable
Undirected

ADV_NONCONN_IND BLE_GAP_LEGACY_PROP_ADV_NONCONN_IND legacy 31

ADV_EXT_IND
BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT extended

BLE_CFG_RF_
ADV_DATA_

MAX*4
AUX_ADV_IND

AUX_CHAIN_IND*2

Non-Connectable
and
Non-Scannable
Directed

ADV_EXT_IND
BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_HDC_DIRECT

extended
BLE_CFG_RF_
ADV_DATA_

MAX*4

AUX_ADV_IND

AUX_CHAIN_IND*3

Scannable
Undirected *5

ADV_SCAN_IND BLE_GAP_LEGACY_PROP_ADV_SCAN_IND legacy 31

ADV_EXT_IND
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT extended 0

AUX_ADV_IND

Scannable
Directed *5

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT

extended 0
AUX_ADV_IND

*1 : If the BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER is added to adv_prop_type, it’s Max Size -1

byte.

*2 : If the size of Advertising Data is 245 bytes or less (It’s reduced -18 bytes when using Periodic

advertising. It’s reduced -1 byte when using BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since

Advertising Data can be sent only with AUX_ADV_IND, AUX_CHAIN ID is not used.

*3 : If the size of Advertising Data is 239 bytes or less (It’s reduced -18 bytes when using Periodic

advertising. It’s reduced -1 byte when using BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since

Advertising Data can be sent only with AUX_ADV_IND, AUX_CHAIN ID is not used.

*4 : If the size of Advertising Data is 230 bytes or more, since Advertising Data is divided by HCI on the

receiver, combine them on the receiver if necessary.
*5 : The relationship between Scan Response Data and PDU and type is shown in Figure 5.3.

The supported advertising type depends on the BLE Protocol Stack library type. All features library supports
legacy and extended advertising. Balance and Compact libraries support only the legacy advertising. If a
scanner supports only the legacy advertising, it cannot receive extended advertising packets.
If the advertising type is extended and non-scannable, each PDU is sent in order shown in Figure 5.2. The
advDelay is a random delay from 0 to 10ms.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 55 of 189

Mar.25.21

Figure 5.2 Extended Advertising PDU

If the advertising type is scannable and the Scan Response Data is set, the Scan Response Data shown in
Table 5.2 are sent as Figure 5.3 against a scan request.

Table 5.2 Scan Response Data

Value set to the adv_prop_type field
Scan Response
Data PDU

legacy or
extended

Max Size
(Byte)

BLE_GAP_LEGACY_PROP_ADV_IND
BLE_GAP_LEGACY_PROP_ADV_SCAN_IND

SCAN_RSP legacy 31

BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT

AUX_SCAN_RSP
extended

BLE_CFG_RF_
ADV_DATA_

MAX*2 *3 AUX_CHAIN_IND*1

*1 : If the Scan Response Data is 253 bytes or less (It’s reduced -1 byte when using

BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since Scan Response Data can be sent only

with AUX_SCAN_RSP, AUX_CHAIN ID is not used.
*2 : If the BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER is added to adv_prop_type, it’s Max

Size -1 byte.
*3 : If the size of Scan Response Data is 230 bytes or more, since Scan Response Data is divided by

HCI on the receiver, combine them on the receiver if necessary.

Figure 5.3 Scannable Advertising PDU

The blue box shows the PDU from a remote device.

If the advertising type is Direct, set a remote device address to the p_addr_type and the p_addr field in the
st_ble_gap_adv_param_t structure.

5.2.2 Using the White List (Respond to a known device)

If the advertising type is Connectable and Scannable, using the White List can filter remote devices that
sends a request. If the requesting device BD_ADDR is known to the local device, perform the 1, 2 steps.

1. Register a known device BD_ADDR to the White List

Call R_BLE_GAP_ConfWhiteList to register a known device.

2. Set the Advertising filter policy
Set the value in Table 5.3 to the filter_policy field in the st_ble_gap_adv_param_t structure.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 56 of 189

Mar.25.21

Table 5.3 The value set to the filter_policy field

Value set to the filter_policy field Description

BLE_GAP_SCAN_ALLOW_

ADV_ALL(0x00)
Process scan and connection requests from all devices.

BLE_GAP_ADV_ALLOW_
SCAN_WLST_CONN_ANY(0x01)

Process connection requests from all devices and scan requests
from only devices that are in the White List.

BLE_GAP_ADV_ALLOW_
SCAN_ANY_CONN_WLST(0x02)

Process scan requests from all devices and connection requests
from only devices that are in the White List.

BLE_GAP_ADV_ALLOW_

SCAN_WLST_CONN_WLST(0x03)

Process scan and connection requests from only devices in the
White List.

5.2.3 Privacy

The privacy feature is available to prevent the other devices from tracing the advertising packets. Prepare for
the privacy feature in advance according to “9.4.1 Generate and resolve local device RPA”. Set the value in
Table 5.4 to the field in the st_ble_gap_adv_param_t structure and the address included in the advertising
packets are changed regularly.

Table 5.4 The parameters used for the privacy feature

Field Value Description

o_addr_type

BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

p_addr_type Specify the remote device identity address
registered by R_BLE_GAP_ConfRslvList().

―
p_addr

5.2.4 Concurrent Execution

If All features library is used, the number of the BLE_CFG_RF_ADV_SET_MAX value advertisings are
available concurrently. The advertisings are identified by the advertising handle shown by the adv_hdl field in
the st_ble_gap_ext_adv_param_t structure. In each of the procedures in Figure 5.1, the target advertising is
specified by the advertising handle.
Balance and Compact libraries are available only one advertising concurrently.
If the Abstraction API and the GAP API are simultaneously used, note that the advertising handle is not
available during advertising.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 57 of 189

Mar.25.21

5.3 Advertising Data / Scan Response Data

For details about setting Advertising Data / Scan Response Data, refer to “5.7 Advertising Data / Scan
Response Data / Periodic Advertising Data”.
For details updating Advertising Data / Scan Response Data setting, refer to “5.7.2 Advertising Data Update”.

5.4 Start Advertising

When starting advertising, call the following API.
ble_status_t R_BLE_GAP_StartAdv (uint8_t adv_hdl,
 uint16_t duration,
 uint8_t max_extd_adv_evts)

If using the All features library, the API specifies the advertising continuing period (duration x 10ms) or the
number of sending advertising packets (max_extd_adv_evts).

5.5 Stop Advertising

Connectable advertising terminates when the local device connects to a remote device.
The API for stopping advertising is as follows.

ble_status_t R_BLE_GAP_StopAdv (uint8_t adv_hdl)

If 252 bytes or more Extended Advertising data is to be updated, because it cannot be updated with a single
HCI command, the advertising needs to be stopped before update.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 58 of 189

Mar.25.21

5.6 Periodic Advertising

Periodic Advertising is used in case of sending at a fixed interval. The All features library supports Periodic
Advertising. Figure 5.4 shows the procedure for Periodic Advertising in application. The following sections
describes the details of Periodic Advertising procedure.

Figure 5.4 Periodic Advertising procedure

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 59 of 189

Mar.25.21

5.6.1 Non-Connectable Advertising Parameter

Set the advertising parameters by R_BLE_GAP_SetAdvParam to start Periodic Advertising. Non-
Connectable advertising in Table 5.1 is used for Periodic Advertising.

⚫ BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT

⚫ BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_DIRECT

⚫ BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_HDC_DIRECT

5.6.2 Periodic Advertising Parameter

When setting the Periodic Advertising parameters, call the following API.
ble_status_t R_BLE_GAP_SetPerdAdvParam(st_ble_gap_perd_adv_param_t * p_perd_adv_param)

Setting the Periodic Advertising parameters, AUX_SYNC_IND and AUX_CHAIN_IND PDUs in Table 5.5
follows the Non-Connectable Advertising PDUs (ADV_EXT_INDs and AUX_ADV_IND) the PDUs. Figure 5.5
shows the difference of the intervals by R_BLE_GAP_SetAdvParam and R_BLE_GAP_SetPerdAdvParam.

Table 5.5 Periodic Advertising PDU

Advertising Type Periodic Advertising PDU
legacy or
extended

Maximum Size
(Bytes)

Periodic Advertising
AUX_SYNC_IND

extended
BLE_CFG_RF_
ADV_DATA_

MAX*2 *3 AUX_CHAIN_IND*1

*1 : If the size of Periodic Advertising Data is 253 bytes or less (It’s reduced -1 byte when using

BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since Periodic Advertising Data can be

sent only with AUX_SYNC_IND, AUX_CHAIN ID is not used.

*2 : If the BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER is added to adv_prop_type, it’s

Max Size -1 byte.

*3 : If the size of Periodic Advertising Data is 248 bytes or more, since Periodic Advertising

Data is divided by HCI on the receiver, combine them on the receiver if necessary.

Figure 5.5 Periodic Advertising PDUs

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 60 of 189

Mar.25.21

5.6.3 Periodic Advertising Data

For details about setting Periodic Advertising Data, refer to “5.7 Advertising Data / Scan Response Data /
Periodic Advertising Data”.
For details updating Periodic Advertising Data, refer to “5.7.3 Periodic Advertising Data Update”.

5.6.4 Start Periodic Advertising

When starting Periodic Advertising, call the following API.
ble_status_t R_BLE_GAP_StartPerdAdv (uint8_t adv_hdl)

If the Non-Connectable advertising has not been started and the advertising PDUs has not been sent, the
Periodic Advertising PDU is not sent by calling this API.
An example of starting Periodic Advertising is shown below.

/* Advertising data */
static uint8_t gs_adv_data[] =
{

 /* Flag (mandatory) */
 2, /* Data Size */
 0x01, /* Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE |
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /* Data */

 /* Complete Local Name */
 9, /* Data Size */
 0x09, /* Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */
};

/* Periodic Advertising Data */
static uint8_t gs_perd_adv_data[] =
{

 /* Complete Local Name */
 9, /* Data Size */
 0xFF, /* Data Flag: Manufacturer Specific data type */
 0x36, 0x00,/* Company ID: Renesas Electronics Corporation */
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, /* Data */

};

/* some code is omitted. */
static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 ble_app_gapcb(type, result, p_data);
 st_ble_gap_adv_set_evt_t * p_adv_set_param;

 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON :
 {
 st_ble_gap_adv_param_t adv_param =
 {
 .adv_hdl = 0x02,
 .adv_prop_type = BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT,
 .adv_intv_min = 0x0200,
 .adv_intv_max = 0x0200,
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .filter_policy = BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_ANY,
 .adv_phy = BLE_GAP_ADV_PHY_1M,
 .sec_adv_phy = BLE_GAP_ADV_PHY_1M,
 };
 /* Set Advertising parameter */
 R_BLE_GAP_SetAdvParam(&adv_param);
 }
 break;

 case BLE_GAP_EVENT_ADV_PARAM_SET_COMP :
 {

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 61 of 189

Mar.25.21

 p_adv_set_param = (st_ble_gap_adv_set_evt_t *)p_data->p_param;
 st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = 0x02,
 .data_type = BLE_GAP_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_adv_data),
 .p_data = gs_adv_data ,
 };
 /* Set Advertising Data */
 R_BLE_GAP_SetAdvSresData(&adv_data_param);
 }
 break;

 case BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP :
 {
 /* Periodic Advertising Data parameter */
 st_ble_gap_adv_data_t perd_adv_data_param = {
 .adv_hdl = 0x02,
 .data_type = BLE_GAP_PERD_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_perd_adv_data),
 .p_data = gs_perd_adv_data ,
 };

 /* Set Periodic Advertising Data */
 R_BLE_GAP_SetAdvSresData(&perd_adv_data_param);
 }
 break;

 case BLE_GAP_EVENT_PERD_ADV_ON :
 {
 p_adv_set_param = (st_ble_gap_adv_set_evt_t *)p_data->p_param;
 /* Start Advertising */
 R_BLE_GAP_StartAdv(0x02, 0, 0);
 }
 break;

 case BLE_GAP_EVENT_ADV_DATA_UPD_COMP :
 {
 st_ble_gap_adv_data_evt_t * p_adv_data_set_param;
 p_adv_data_set_param = (st_ble_gap_adv_data_evt_t *)p_data->p_param;
 if(BLE_GAP_ADV_DATA_MODE == p_adv_data_set_param->data_type)
 {
 st_ble_gap_perd_adv_param_t perd_param =
 {
 .adv_hdl = 0x02,
 .prop_type = 0x0000,
 .perd_intv_min = 0x0100,
 .perd_intv_max = 0x0100,
 };
 /* Set Periodic Advertising parameter */
 R_BLE_GAP_SetPerdAdvParam(&perd_param);
 }
 else
 {
 if(BLE_GAP_PERD_ADV_DATA_MODE == p_adv_data_set_param->data_type)
 {
 /* Start Periodic Advertising parameter */
 R_BLE_GAP_StartPerdAdv(0x02);
 }
 }
 }
 break;

 default:
 break;
 }
}

Code 5-1 Sample of starting Periodic Advertising

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 62 of 189

Mar.25.21

5.6.5 Stop Periodic Advertising

The API for stopping Periodic Advertising is as follows.
ble_status_t R_BLE_GAP_StopPerdAdv(uint8_t adv_hdl)

This API stops only the PDUs in Table 5.5.
If 253 bytes or more Periodic Advertising data is to be updated, because it cannot be updated with a single
HCI command, the Periodic Advertising needs to be stopped before update.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 63 of 189

Mar.25.21

5.7 Advertising Data / Scan Response Data / Periodic Advertising Data

Setting Advertising Data / Scan Response Data / Periodic Advertising Data and updating those use
R_BLE_GAP_SetAdvSresData. The format of Advertising Data, Scan Response Data and Periodic
Advertising Data are same. The data_type field in the st_ble_gap_adv_data_t structure varies as Table 5.6.

Table 5.6 Value set to the data_type field

Data Type Value set to the data_type field

Advertising Data BLE_GAP_ADV_DATA_MODE(0x00)

Scan Response Data BLE_GAP_SCAN_RSP_DATA_MODE(0x01)

Periodic Advertising Data BLE_GAP_PERD_ADV_DATA_MODE(0x02)

If Scan Response data setting follows Advertising data setting, after calling R_BLE_GAP_SetAdvSresData to
set Advertising Data, confirm the Advertising Data setting completion and call R_BLE_GAP_SetAdvSresData
to set Scan Response Data in the GAP callback.

5.7.1 Format

Figure 5.6 shows the data format.

Figure 5.6 Advertising Data / Scan Response Data / Periodic Advertising Data format

Advertising Data / Scan Response Data / Periodic Advertising Data includes one more AD structures. Each
AD structure consists of Length and AD Type and AD Data. The Length is the sum of the size of AD type (1
byte) and the size of the AD Data. The AD Type defined by Bluetooth SIG is written in “Supplement to the
Bluetooth Core Specification (CSS)”. Table 5.7 shows the AD type often used.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 64 of 189

Mar.25.21

Table 5.7 AD Type and AD Data

Data type AD Type AD Data

Flags 0x01

Used for Connectable advertising.
The Flags value used for Bluetooth LE is as follows.

Octet Bit Description

0 0 LE Limited Discoverable Mode

0 1 LE General Discoverable Mode

0 2 BR/EDR Not Supported.

A scanner is available Discoverable Mode for filtering by the mode.
If adding Discoverable Mode, select Limited or General.

Service
UUID

Incomplete List of 16-bit Service UUIDs 0x02

UUID List.
The AD Type varies depending on the size.
If the AD Data includes all UUIDs, select Complete List.
If the AD Data include not all UUIDs, select Incomplete List.

Complete List of 16-bit Service UUIDs 0x03

Incomplete List of 32-bit Service UUIDs 0x04

Complete List of 32-bit Service UUIDs 0x05

Incomplete List of 128-bit Service UUIDs 0x06

Complete List of 128-bit Service UUIDs 0x07

Local
Name

Shortened Local Name 0x08 Strings that shows the head of the device name to the middle.

Complete Local Name 0x09 Complete Device Name.

Manufacturer Specific Data 0xFF

More than 2 bytes manufacturer specific data.
First 2 bytes shows the Company ID.
For details of the Company ID, refer to Assigned Number
(https://www.bluetooth.com/specifications/assigned-numbers/)

An example of setting the Advertising Data including Flags and Complete Local Name and the Scan
Response Data including Complete Local Name is shown below.

/* Advertising Data */
uint8_t gs_adv_data[] =
{
 /* Flags */
 2, /* Data Size: 2byte */
 0x01, /* AD type: Flags */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE |
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /* Data */

 /* Complete Local Name */
 9, /* Data Size: 9byte */
 0x09, /* AD type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */
};

/* Scan_Response Data */
uint8_t gs_sres_data[] =
{
 /* Complete Local Name */
 9, /* Data Size: 9byte */
 0x09, /* AD type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */

};
/* some code is omitted. */

/* Advertising Data parameter */
st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = 0x00,
 .data_type = BLE_GAP_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_adv_data),
 .p_data = gs_adv_data ,
};

/* Scan_Response Data parameter */
st_ble_gap_adv_data_t sres_data_param = {
 .adv_hdl = 0x00,
 .data_type = BLE_GAP_SCAN_RSP_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_sres_data),
 .p_data = gs_sres_data,
};

/* some code is omitted. */

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 65 of 189

Mar.25.21

/* Set Advertising Data */
R_BLE_GAP_SetAdvSresData(&adv_data_param);

/* some code is omitted. */

/* GAP Callback */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 /* some code is omitted. */
 case BLE_GAP_EVENT_ADV_DATA_UPD_COMP :
 st_ble_gap_adv_data_evt_t * p_adv_data_set_param;
 p_adv_data_set_param = (st_ble_gap_adv_data_evt_t *)p_data->p_param;
 if((0x00 == p_adv_data_set_param->adv_hdl) &&
 (BLE_GAP_ADV_DATA_MODE == p_adv_data_set_param->data_type))
 {
 R_BLE_GAP_SetAdvSresData(&sres_data_param);
 }
 break;

 /* some code is omitted. */

 }
}

Code 5-2 : Sample of setting Advertising Data and Scan Response Data

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 66 of 189

Mar.25.21

5.7.2 Advertising Data Update

If the requirement in Table 5.8 is fulfilled, the Advertising Data or the Scan Response Data can be updated in
advertising.

Table 5.8 Requirement for updating Advertising Data or Scan Response Data in advertising

Advertising type Requirement

Legacy advertising No requirement

Extended advertising The data length is 251 bytes or less.

Set the following parameters and call R_BLE_GAP_SetAdvSresData to update Advertising Data or Scan
Response Data.
st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = “Advertising handle of the advertising data to be update”,
 .data_type = “BLE_GAP_ADV_DATA_MODE or BLE_GAP_SCAN_RSP_DATA_MODE”,
 .data_length = “Size of the data to be updated”,
 .p_data = “Pointer to the data to be updated”,
};

Code 5-3 Parameters for updating Advertising Data / Scan Response Data

If updating 252 bytes or more Advertising Data in extended advertising, stop the advertising according to
“5.5” and update the data by R_BLE_GAP_SetAdvSresData.

5.7.3 Periodic Advertising Data Update

If the requirement in Table 5.9 is fulfilled, Periodic Advertising Data can be updated in advertising.

Table 5.9 Requirement for updating Periodic Advertising Data

Advertising type Requirement

Periodic Advertising The data length is 252 bytes or less.

Set the following parameters and call R_BLE_GAP_SetAdvSresData to update Periodic Advertising Data.
st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = “Advertising handle of the Periodic Advertising Data to be update”,
 .data_type = BLE_GAP_PERD_ADV_DATA_MODE,
 .data_length = “Size of the data to be updated”,
 .p_data = “Pointer to the data to be updated”,
};

Code 5-4 Parameters for updating Periodic Advertising Data

If updating 253 bytes or more Periodic Advertising Data in Periodic Advertising, stop the Periodic Advertising
according to “5.6.5” and update the data by R_BLE_GAP_SetAdvSresData.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 67 of 189

Mar.25.21

5.7.4 Buffer Size

The size of the buffer for Advertising Data / Scan Response Data in the BLE Protocol Stack is 4250 bytes.
As shown in Table 5.1, extended advertising can be set Advertising Data or Scan Response Data up to the
BLE_CFG_RF_ADV_DATA_MAX value. The sum of Advertising Data / Scan Response Data in advertising
simultaneously needs to be 4250 bytes or less.
The size of the buffer for Periodic Advertising Data in the BLE Protocol Stack is 4306 bytes. Periodic
Advertising can be set Periodic Advertising Data up to the BLE_CFG_RF_ADV_DATA_MAX value. The sum
of Periodic Advertising Data in Periodic Advertising simultaneously needs to be 4306 bytes or less.
Figure 5.7 and Figure 5.8 show a sample of Advertising Data in advertising simultaneously. Here the
BLE_CFG_RF_ADV_DATA_MAX value is 1650. R_BLE_GAP_GetRemainAdvBufSize() gets the free sizes
of the buffer for Advertising Data / Scan Response Data.

Figure 5.7 Successful sample of setting Advertising Data

Figure 5.8 Failed sample of setting Advertising Data

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 68 of 189

Mar.25.21

5.8 Advertising with Abstraction API

If you use the Abstraction API, the procedure from setting advertising parameters to starting advertising are
performed by an Abstraction API call. Table 5.10 shows the advertising type supported by the Abstraction
API.

Table 5.10 Advertising type supported by the Abstraction API

Abstraction API
Legacy or
Extended

Advertising Type Advertising PDU
Advertising
handle

Maximum
Advertising
Data Size (Bytes)

R_BLE_ABS_StartLegacyAdv Legacy

Connectable and

ADV_IND 0 31 Scannable

Undirected

R_BLE_ABS_StartExtAdv Extended

Connectable ADV_EXT_IND

1

245
Undirected AUX_ADV_IND

Connectable ADV_EXT_IND
239

Directed AUX_ADV_IND

R_BLE_ABS_StartNonConnAdv

Legacy Non-Connectable and ADV_NONCONN_IND

2

31

Extended

Non-Scannable ADV_EXT_IND

BLE_CFG_RF_
ADV_DATA_
MAX

Undirected AUX_ADV_IND

 AUX_CHAIN_IND

Non-Connectable and ADV_EXT_IND

BLE_CFG_RF_
ADV_DATA_
MAX

Non-Scannable AUX_ADV_IND

Directed AUX_CHAIN_IND

R_BLE_ABS_StartPerdAdv Extended Periodic

ADV_EXT_IND

3
BLE_CFG_RF_
ADV_DATA_
MAX

AUX_ADV_IND

AUX_SYNC_IND

AUX_CHAIN_IND

If the Abstraction API and the GAP API are simultaneously used, note that the advertising handle is not
available during advertising.

5.8.1 White List (Respond to a known device)

The White List is available by R_BLE_ABS_StartLegacyAdv and R_BLE_ABS_StartExtAdv. According to the
following procedure, the White List can filter remote devices that sends a request.

1. Register a known device BD_ADDR to the White List

Call R_BLE_GAP_ConfWhiteList to register a known device.

2. Set the Advertising filter policy
Set the value in Table 5.3 to the filter field in the st_ble_abs_legacy_adv_param_t (if using
R_BLE_ABS_StartLegacyAdv) or the st_ble_abs_ext_adv_param_t (if using
R_BLE_ABS_StartExtAdv) structure .

5.8.2 Privacy

The privacy feature is available by R_BLE_ABS_StartLegacyAdv, R_BLE_ABS_StartExtAdv,
R_BLE_ABS_StartNonConnAdv, R_BLE_ABS_StartPerdAdv. Prepare for the privacy feature in advance
according to “9.4.1 Generate and resolve local device RPA”. Set the value in Table 5.11 to the fields in the

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 69 of 189

Mar.25.21

st_ble_abs_legacy_adv_param_t or the st_ble_abs_ext_adv_param_t or the
st_ble_abs_non_conn_adv_param_t structure. The address included in advertising packets is RPA and are
changed regularly.

Table 5.11 The parameters used for the privacy feature

Field Value Description

o_addr_type

BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

p_addr
Specify the remote device identity address
registered by R_BLE_GAP_ConfRslvList().

―

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 70 of 189

Mar.25.21

5.9 Connection with Smart Phone

Call R_BLE_ABS_StartLegacyAdv to send connectable Legacy Advertising packets to connect with Smart
Phone. An example of sending advertising packets to connect with Smart Phone is shown below.

/* Advertising Data */
static uint8_t gs_adv_data[] =
{
 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Flag: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */

};

/* Scan_Response Data */
static uint8_t gs_sres_data[] =
{
 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */

};

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 .slow_adv_intv = 0x00A0,
 .slow_period = 0,
 .p_adv_data = gs_adv_data,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .p_sres_data = gs_sres_data,
 .sres_data_length = ARRAY_SIZE(gs_sres_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .filter = BLE_ABS_ADV_ALLOW_CONN_ANY,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .o_addr = {0},
};

/** some code is omitted **/

/* Start Advertising */
R_BLE_ABS_StartLegacyAdv(&gs_adv_param);

Code 5-5 Sample of advertising for connecting with Smart Phone

When starting advertising, the BLE_GAP_EVENT_ADV_ON event is notified. After the event notification,
Smart Phone can detect the device to connect.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 71 of 189

Mar.25.21

5.10 Beacon

An example of sending non-connectable advertising packets as beacon by calling
R_BLE_ABS_StartNonConnAdv is shown below.

/* Advertising Data */
static uint8_t gs_adv_data[] =
{
 /* Flag */
 2, /**< Data Size */
 0x01, /**< Data Flag: Flag */
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED, /**< Data Value */

 /* Complete Local Name */
 9, /* Data Size */
 0x09, /* Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */

};

/* Advertising parameters */
static st_ble_abs_non_conn_adv_param_t gs_non_conn_adv_param =
{
 .p_addr = NULL,
 .p_adv_data = gs_adv_data,
 .adv_intv = 0x00A0,
 .duration = 0,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .adv_phy = BLE_GAP_ADV_PHY_1M,
 .sec_adv_phy = BLE_GAP_ADV_PHY_1M,
 .o_addr = {0},
};

/** some code is omitted **/

/* Start Advertising */
R_BLE_ABS_StartNonConnAdv (&gs_non_conn_adv_param);

Code 5-6 Sample of using R_BLE_ABS_StartNonConnAdv

When starting advertising, the BLE_GAP_EVENT_ADV_ON event is notified. After the event notification, a
remote device can detect the beacon by scan.
Smart Phone may support only the legacy advertising type of non-connectable advertising packet. Send
advertising packets which the scanner can detect the packets.

If you use iBeacon (Apple Inc) or Eddystone (Google), use non-connectable advertising. For more
information, refer to the following.

iBeacon : https://developer.apple.com/ibeacon/
Eddystone : https://developers.google.com/beacons/eddystone

https://developer.apple.com/ibeacon/
https://developers.google.com/beacons/eddystone

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 72 of 189

Mar.25.21

6. Scan

Bluetooth LE device receives advertising packets from other devices by scan. If your device scan, use the All
features or Balance type BLE Protocol Stack library. The All features library can receive the extended
advertising and legacy advertising packets. The Balance library receives only the legacy advertising packet.

6.1 Start or stop scan

Scan starts by calling one of the following APIs.

Start Scan API :

- R_BLE_GAP_StartScan
- R_BLE_ABS_StartScan

If the period parameter of the above APIs is set to other than 0, the scan stops after the period is expired.
Otherwise scan stops by calling the following API. If the target device is found or you want to change the
scan parameters, stop the scan.

Stop Scan API:

- R_BLE_GAP_StopScan

6.2 Scan parameters

Table 6.1 –Table 6.5 show the Start Scan APIs parameters.
[R_BLE_GAP_StartScan]: parameter 1(st_ble_gap_scan_param_t *), parameter 2(st_ble_gap_scan_on_t *)

Table 6.1 st_ble_gap_scan_param_t structure

Type Field Description

uint8_t o_addr_type
Address type included in a scan request packet with active
scan.

uint8_t filter_policy
The filter policy which packets from what kind of device can
be received.

st_ble_gap_scan_phy_param_t * p_phy_param_1M 1MPHY scan parameters.

st_ble_gap_scan_phy_param_t * p_phy_param_coded Coded PHY scan parameters.

Table 6.2 st_ble_gap_scan_phy_param_t structure

Type Field Description

uint8_t scan_type
Select active or passive scan.
If you use Scan Response Data, select active scan.

uint16_t scan_intv Scan interval.

uint16_t scan_window Scan window.

Table 6.3 st_ble_gap_scan_on_t structure

Type Field Description

uint8_t proc_type Scan procedure type.

uint8_t filter_dups
Specify whether receiving the same advertising packet from
the same device or not.

uint16_t duration Scan duration.

uint16_t period Scan period.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 73 of 189

Mar.25.21

[R_BLE_ABS_StartScan]

Table 6.4 st_ble_abs_scan_param_t structure

Type Field Description

st_ble_abs_scan_phy_param_t * p_phy_param_1M 1MPHY scan parameters.

st_ble_abs_scan_phy_param_t * p_phy_param_coded Coded PHY scan parameters.

uint8_t * p_filter_data Scan Filtering Data.

uint16_t fast_period Fast scan period.

uint16_t slow_period Slow scan period.

uint16_t filter_data_length Scan Filtering Data size.

uint8_t dev_filter
The filter policy which packets from what kind of device can
be received.

uint8_t filter_dups
Specify whether receiving the same advertising packet from
the same device or not.

uint8_t filter_ad_type AD_TYPE of Scan Filtering Data.

Table 6.5 st_ble_abs_scan_param_t structure

Type Field Description

uint16_t fast_intv Fast scan interval.

uint16_t slow_intv Fast scan window.

uint16_t fast_window Slow scan interval.

uint16_t slow_window Slow scan window.

uint8_t scan_type
Select active or passive scan.
If you use Scan Response Data, select active scan.

The scan interval, scan window, duration and period field specify the interval and period of scan.
Figure 6.1 shows those parameters relationship.

Figure 6.1 The relationship of scan interval, window, duration, period

The “fast_xxx” and “slow_xxx” fields of R_BLE_ABS_StartScan are set to change the scan frequency.
As use case, the fast scan increases a detection probability of the target device and the slow scan decreases
the scan frequency. Figure 6.2 shows the relationship between the fast scan and slow scan. Table 6.6 shows
the event regarding the fast scan and slow scan.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 74 of 189

Mar.25.21

Figure 6.2 The relationship between the fast scan and slow scan

Table 6.6 The event regarding the fast scan and slow scan

Library Type Scan Start Scan Switch Scan End

All features BLE_GAP_EVENT_SCAN_ON
BLE_GAP_EVENT_SCAN_TO
BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_SCAN_TO

Balance BLE_GAP_EVENT_SCAN_ON
BLE_GAP_EVENT_SCAN_OFF
BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_SCAN_OFF

6.2.1 Privacy

The privacy feature can set the address in a scan request to RPA. According to “9.4.1 Generate and resolve
local device RPA”, prepare for the privacy feature in advance. If the local device use RPA, call
R_BLE_GAP_StartScan. Table 6.7 shows the fields in the st_ble_gap_scan_param_t structure(Table 6.1) to
enable the privacy feature. Because the peer device address type in the scan request by
R_BLE_ABS_StartScan is fixed to public address, this API does not support the privacy feature.

Table 6.7 The parameters used for the privacy feature

Field Value Description

o_addr_type

BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
static address.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 75 of 189

Mar.25.21

6.3 Received information by scan

After calling the Start Scan API, the BLE Protocol Stack notifies receiving an advertising packet from another
device by BLE_GAP_EVENT_ADV_REPT_IND event. If the sender uses AUX_CHAIN_IND, Advertising
Data will be notified separately. Furthermore, since the size of Advertising Data that can be notified by the
receiver HCI is 229 byte or less, 230 byte or more Advertising Data will be notified separately. Combine them
on the receiver if necessary.

Figure 6.3 Dividing and combining Advertising Data

Received advertising packet is stored in a st_ble_gap_adv_rept_evt_t structure variable. Table 6.8 shows
st_ble_gap_adv_rept_evt_t structure.

Table 6.8 st_ble_gap_adv_rept_evt_t structure

Type Field Description

 uint8_t adv_rpt_type Advertising type.
 union {

 st_ble_gap_adv_rept_t * p_adv_rpt
If the Balance library is used, a received
advertising packet is notified by this field.

 st_ble_gap_ext_adv_rept_t * p_ext_adv_rpt

If the All features library is used, a received
advertising packet is notified by this field.
Note: Advertising Data of 230 bytes or more will be
notified separately.

 st_ble_gap_perd_adv_rept_t * p_per_adv_rpt

A received periodic advertising packet is notified
by this field.
Only the All features library can use the field.
Note: Periodic Advertising Data of 248 bytes or
more will be notified separately.

 } param;

Depending on the BLE Protocol Stack, the field of advertising varies. Table 6.9 and Table 6.10 show the
advertising field.

Table 6.9 st_ble_gap_adv_rept_t structure

Type Field Description

uint8_t num Number of received advertising. This field is always 1.

uint8_t adv_type Advertising packet type.

uint8_t addr_type Address type of received advertising packet.

uint8_t * p_addr Address of received advertising packet.

uint8_t len Size of received advertising data.

int8_t rssi Received advertising RSSI.

uint8_t * p_data Received advertising data.

Advertising Data (max 1650)Application

Payload

C
R

CHeader

(AUX_CHAIN_IND)

Advertising Data (max 1650)

Payload

P
a
y
lo

a
d

Payload

P
a
y
lo

a
d

Payload

P
a
y
lo

a
d

Application

Payload

C
R

CHeader

(AUX_ADV_IND)
Payload

C
R

CHeader

(AUX_CHAIN_IND)

Advertising Report

(BLE_GAP_EVENT_ADV_REPT_IND)
Advertising Report Advertising Report Advertising Report Advertising Report

Advertising Packet Advertising Packet Advertising Packet

Advertising Report

Scanner

Advertiser

Header Header Header Header Header Header

...

...

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 76 of 189

Mar.25.21

Table 6.10 st_ble_gap_ext_adv_rept_t structure

Type Field Description

uint8_t num Number of received advertising. This field is always 1.

uint8_t adv_type

Advertising packet type.
Note: When combining the divided Advertising Data, refer to the more
data bit to combine.

uint8_t addr_type Address type of received advertising packet.

uint8_t * p_addr Address of received advertising packet.

uint8_t adv_phy Primary PHY for Advertising.

uint8_t sec_adv_phy Secondary PHY for Advertising.

uint8_t adv_sid Advertising SID.

int8_t tx_pwr Tx power.

int8_t rssi Received advertising RSSI.

uint16_t perd_adv_intv Periodic advertising interval.

uint8_t dir_addr_type Address type included in Direct Advertising packet.

uint8_t * p_dir_addr Address included in Direct Advertising packet.

uint8_t len Size of received advertising data.

uint8_t * p_data Received advertising data.

For more information about the above structures, refer to the API document (r_ble_api_spec.chm).

An example of displaying the RSSI included in a received advertising packet is shown below.
/* GAP callback function */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 /** some code is omitted **/
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *adv_rept_evt_param =
 (st_ble_gap_adv_rept_evt_t *)data->p_param;

 switch (adv_rept_evt_param->adv_rpt_type)
 {
 /* receive legacy advertising PDU */
 case 0x00:
 {
 st_ble_gap_adv_rept_t *adv_rept_param =
 (st_ble_gap_adv_rept_t *)adv_rept_evt_param->param.p_adv_rpt;

 printf("RSSI : %d \n", adv_rept_param->rssi);
 } break;

 /* receive extended advertising PDU */
 case 0x01:
 {
 st_ble_gap_ext_adv_rept_t *ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)ext_adv_rept_param->
 param.p_ext_adv_rpt;

 printf("RSSI : %d \n", ext_adv_rept_param->rssi);
 } break;
 /** some code is omitted **/

Code 6-1 Sample of displaying the RSSI included in a received advertising packet

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 77 of 189

Mar.25.21

6.4 Scan filtering

It is possible to filter received advertising packets by scan. The filtering can be used if you want to notify the
essential advertising packets to your application.
The filtering by the APIs is as follows.

⚫ Using the White List

⚫ Duplicate advertising filtering

⚫ Discoverable mode filtering

⚫ Advertising Data filtering

6.4.1 Using the White List (Receiving from known devices)

If the BD_ADDR of the device which of advertising packets are to received is known, filter advertising
packets by this method. Before starting scan, perform the 1, 2 steps.

1. Register the BD_ADDR of the remote device which sends advertising packets by the White List.
Call R_BLE_GAP_ConfWhiteList to register a known device.

2. Set the below Scan Filter Policy parameters of the Start Scan API parameter to
BLE_GAP_SCAN_ALLOW_ADV_WLST(0x01).

⚫ The filter_policy field of the st_ble_gap_scan_param_t structure (R_BLE_GAP_StartScan)

⚫ The dev_filter field of the st_ble_abs_scan_param_t structure (R_BLE_ABS_StartScan)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 78 of 189

Mar.25.21

6.4.2 Duplicate advertising filtering

If you do not want to receive duplicate advertising packets from same device, set the duplicate filtering.
Set the below Scan Filter Policy parameters of the Start Scan API parameter to
BLE_GAP_SCAN_ALLOW_ADV_WLST(0x01).
⚫ The filter_policy field of the st_ble_gap_scan_param_t structure (R_BLE_GAP_StartScan)

⚫ The dev_filter field of the st_ble_abs_scan_param_t structure (R_BLE_ABS_StartScan)

The duplicate filtering can filter same advertising packet from 8 devices at most. If there are more than 9
advertising devices, same advertising packets of the 9th and subsequent devices cannot be filtered and the
application receives those.

6.4.3 Discoverable mode filtering

Advertising packets are filtered with Discoverable Mode because of the Flag AD_TYPE included in
advertising data. The Abstraction API does not support this feature. Table 6.11 shows the value to be set to
the proc_type field in the st_ble_gap_scan_on_t structure of R_BLE_GAP_StartScan.

Table 6.11 The value to be set for filtering with Discoverable Mode

Value Description

BLE_GAP_SC_PROC_OBS(0x00) Receive advertising packets without regard to Discoverable Mode.

BLE_GAP_SC_PROC_LIM(0x01) Receive advertising packets in LE Limited Discoverable Mode.

BLE_GAP_SC_PROC_GEN(0x02) Receive advertising packets in LE General Discoverable Mode.

6.4.4 Advertising Data filtering

The Abstraction API can filter by the data included in advertising data. Specify the data for filtering to the
following parameters in the st_ble_abs_scan_param_t structure.

p_filter_data: The filtered data.
filter_data_length: The filtered data size.
filter_ad_type: The AD_TYPE of the filtered data.
/* Scan filter data */
static uint8_t gs_filter_data[] =
{
 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan parameters */
static st_ble_abs_scan_param_t gs_scan_param =
{
 .p_phy_param_1M = &gs_scan_phy_param,
 .p_filter_data = gs_filter_data,
 .slow_period = 0,
 .filter_data_length = ARRAY_SIZE(gs_filter_data),
 .dev_filter = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,
};

Code 6-2 Sample of advertising data filtering

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 79 of 189

Mar.25.21

6.5 Periodic Advertising Synchronization

A scanner can establish a Periodic Advertising Synchronization (Sync) with an advertiser due to the
AUX_ADV_IND information. Figure 6.4 shows the procedure that a scanner establishes a Periodic
Advertising Sync in application. The following sections describes the details of Periodic Advertising Sync
procedure.

Figure 6.4 Periodic Advertising Sync procedure

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 80 of 189

Mar.25.21

6.5.1 Start Scan

Start scan according to “6.1 Start or stop scan”.

6.5.2 Detect Periodic Advertiser

The scanner can establish a Periodic Advertising Sync with the advertiser if the perd_adv_intv (shown in
Table 6.10) included in a received advertising packet is not 0. Specify the advertiser with the addr_type,
p_addr, adv_sid field in Table 6.10 according to “6.5.3 Register to the Periodic Advertiser List“ or “6.5.4
Establish Periodic Advertising Sync”.

6.5.3 Register to the Periodic Advertiser List

Select using the Periodic Advertiser List or the remote device address to point to the advertiser for
establishing a Periodic Advertising Sync. If using the Periodic Advertiser List, call
R_BLE_GAP_ConfPerdAdvList to register a known device.

6.5.4 Establish Periodic Advertising Sync

Call R_BLE_GAP_CreateSync to establish a Periodic Advertising Sync. When a Periodic Advertising Sync
has been established, the BLE_GAP_EVENT_SYNC_EST event is notified. To cancel establishing a
Periodic Advertising Sync after calling R_BLE_GAP_CreateSync, call R_BLE_GAP_CancelCreateSync.
When the cancellation has been completed, the BLE_GAP_EVENT_SYNC_EST event that the result is
BLE_ERR_NOT_YET_READY(0x0012) is notified.
The maximum number of Periodic Advertising Syncs is the value of the BLE_CFG_RF_SYNC_SET_MAX
option. An example of from starting scan to establishing a Periodic Advertising Sync is shown below.

/** some code is omitted **/

static st_ble_dev_addr_t gs_sync_advr;
static uint8_t gs_adv_sid;

static st_ble_abs_scan_phy_param_t gs_phy_param_1M =
{
 .fast_intv = 0x0200,
 .slow_intv = 0x0800,
 .fast_window = 0x0100,
 .slow_window = 0x0100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};

static st_ble_abs_scan_param_t gs_scan_param =
{
 .p_phy_param_1M = &gs_phy_param_1M,
 .p_phy_param_coded = NULL,
 .p_filter_data = NULL,
 .fast_period = 0x0100,
 .slow_period = 0x0000,
 .filter_data_length = 0,
 .dev_filter = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_DISABLE,
};

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 /** some code is omitted **/
 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartScan(&gs_scan_param);
 } break;

 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t * p_adv_rept_evt_param =
 (st_ble_gap_adv_rept_evt_t *)p_data->p_param;

 switch (p_adv_rept_evt_param->adv_rpt_type)
 {
 case 0x01:

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 81 of 189

Mar.25.21

 {
 st_ble_gap_ext_adv_rept_t * p_ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)p_adv_rept_evt_param->param.p_ext_adv_rpt;

 if(0x0000 != p_ext_adv_rept_param->perd_adv_intv)
 {
 /* found */
 memcpy(gs_sync_advr.addr, p_ext_adv_rept_param->p_addr,
 BLE_BD_ADDR_LEN);
 gs_sync_advr.type = p_ext_adv_rept_param->addr_type;
 gs_adv_sid = p_ext_adv_rept_param->adv_sid;
 R_BLE_GAP_ConfPerdAdvList(BLE_GAP_LIST_ADD_DEV,
 &gs_sync_advr,
 &gs_adv_sid,
 1);
 }

 } break;
 /** some code is omitted **/
 }
 } break;

 case BLE_GAP_EVENT_PERD_LIST_CONF_COMP:
 {
 R_BLE_GAP_CreateSync(NULL, 0, 100, 100);
 } break;

 case BLE_GAP_EVENT_SYNC_EST:
 {
 if(BLE_SUCCESS == result)
 {
 R_BLE_CLI_Printf("sync established.\n");
 }
 } break;

 /** some code is omitted **/
 }
}

/** some code is omitted **/

Code 6-3 Sample of establishing a Periodic Advertising Sync

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 82 of 189

Mar.25.21

6.5.5 Receive Periodic Advertising

After the Periodic Advertising Sync has been established with the advertiser, receiving a Periodic Advertising
packet is notified by the BLE_GAP_EVENT_ADV_REPT_IND event. A received Periodic Advertising packet
is stored in a st_ble_gap_adv_rept_evt_t type (Table 6.8) variable. Table 6.12 shows the
st_ble_gap_perd_adv_rept_t structure in case of Periodic Advertising.

Table 6.12 st_ble_gap_perd_adv_rept_t structure

Type Field Description

uint16_t sync_hdl Sync handle identifying an Established Periodic Advertising Sync.

int8_t tx_pwr Tx power

int8_t rssi RSSI

uint8_t rfu Reserved for future use

uint8_t data_status Status of Periodic Advertising Data
Note: When combining the divided Periodic Advertising Data, refer to
data_status to combine.

uint8_t len Periodic Advertising Data Size

uint8_t * p_data Periodic Advertising Data

6.5.6 Lost Periodic Advertising Sync

If the advertiser stops Periodic Advertising, loss of the Periodic Advertising Sync is notified by the
BLE_GAP_EVENT_SYNC_LOST event is notified.

6.5.7 Terminate Periodic Advertising Sync

If the scanner terminates the Periodic Advertising Sync, call BLE_GAP_TerminateSync. When the Periodic
Advertising Sync has been terminated, the BLE_GAP_EVENT_SYNC_TERM event is notified.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 83 of 189

Mar.25.21

7. Connection

7.1 Requesting Connection

Central device sends a connection request by the below APIs.
Connection Request API:
⚫ R_BLE_GAP_CreateConn

⚫ R_BLE_ABS_CreateConn

For more information about the above APIs parameters, refer to the following items in the API document.

 R_BLE_GAP_CreateConn:
 st_ble_gap_create_conn_param_t

 R_BLE_ABS_CreateConn:
 st_ble_abs_conn_param_t

7.1.1 Using the White List (Connection to a known device)

It is possible to send a connection request after registering a known device in the White List. If reconnecting
to the known device, use the White List. The procedure is as follows.

1. Register the BD_ADDR of the remote device which is reconnected by the White List.

Call R_BLE_GAP_ConfWhiteList to register a known device.

2. Set the following connection parameters

⚫ The init_filter_policy field in st_ble_gap_create_conn_param_t structure used by
R_BLE_GAP_CreateConn.

⚫ The filter field in st_ble_abs_conn_param_t structure used by the R_BLE_ABS_CreateConn.

Set the above parameters to BLE_GAP_INIT_FILT_USE_WLST(0x01) to send a connection
request to a known device in the White List.

An example of connecting a remote device registered in the White List is shown below.
/* remote device address */
dev.addr = {"Remote device BD_ADDR" };
dev.type = BLE_GAP_ADDR_PUBLIC;

/* register remote device to white list */
R_BLE_GAP_ConfWhiteList(BLE_GAP_LIST_ADD_DEV, &dev, 1);

/** some code is omitted **/

/* reconnect */
st_ble_gap_conn_param_t conn_1M = {
 .conn_intv_min = 0x0100,
 .conn_intv_max = 0x0100,
 .conn_latency = 0x0000,
 .sup_to = 0x03BB,
 .min_ce_length = 0xFFFF,
 .max_ce_length = 0xFFFF,
};

st_ble_gap_create_conn_param_t conn_param;
conn_param.init_filter_policy = BLE_GAP_INIT_FILT_USE_WLST;
conn_param.own_addr_type = BLE_GAP_ADDR_PUBLIC;

/* set connection parameters for 1M */
st_ble_gap_conn_phy_param_t conn_phy_1M = {
 .scan_intv = 0x0300,
 .scan_window = 0x0300,
 p_conn_param = &conn_1M,
};

conn_param.p_conn_param_1M = &conn_phy_1M;

R_BLE_GAP_CreateConn(&conn_param);

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 84 of 189

Mar.25.21

/** some code is omitted **/

Code 7-1 Connection Request using the White List

7.1.2 Privacy

The privacy feature can set the address in a connection request to RPA. According to “9.4.1 Generate and
resolve local device RPA”, prepare for the privacy feature in advance. If the local device use RPA, call
R_BLE_GAP_CreateConn. Table 7.1 shows the fields in the st_ble_gap_create_conn_param_t structure to
enable the privacy feature. Because the peer device address type in the connection request by
R_BLE_ABS_CreateConn is fixed to public address, this API does not support the privacy feature.

Table 7.1 The parameters used for the privacy feature

Field Value Description

own_addr_type

BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
static address.

remote_bd_addr_type
Specify the remote device address registered by
R_BLE_GAP_ConfRslvList.

―

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 85 of 189

Mar.25.21

7.2 Cancelling Connection Request

A connection request cannot be sent until the connection is established by previous connection request or
the connection request is cancelled. After sending a connection request, if you want to send another
connection request, cancel the previous connection request by BLE_GAP_CancelCreateConn. After
cancelling the request, the BLE_GAP_EVENT_CONN_IND event is notified with the result
BLE_ERR_INVALID_HDL(0x000E).

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 86 of 189

Mar.25.21

7.3 Multiple Connection

This chapter describes how to connect to multiple devices at the same time and the precautions to be taken
when doing so. With the BLE Protocol Stack, up to 7 devices can be connected simultaneously. The
connection procedure is the same as for one-to-one communication. The application specifies the connection
device using the connection handle that is notified when connecting. The connection handle is allocated for
the connection, so even if it is the same device, it will change when reconnecting.
The attribute handle for accessing the characteristic in the GATT database is device specific. When
connecting to multiple devices as a GATT client, it is necessary to hold an attribute handle for each GATT
server. By using Profile Common of app_lib, you can hold the attribute handle for each device up to 10 in the
order of connection.
When connecting from multiple devices as a GATT server, there are some such as Client Configuration
Characteristic Descriptor whose specifications hold values for each device. If accessed from multiple clients,
set the GATT database properties to hold the respective values.
An implementation example of application code that connects multiple devices for each expected use case is
explained.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 87 of 189

Mar.25.21

7.3.1 Connecting to multiple peripheral devices

It communicates with multiple peripheral devices, with itself as the central. For example, assume an
application that aggregates multiple sensor data. Here, the central device is the GATT client.

Figure 7.1 Connection with multiple peripheral devices

To ensure a reliable connection one by one, the central device connects in sequence with the completion of
service discovery as a break. Below shows a sequence chart and an implementation example when
connecting using app_lib of the BLE protocol stack. Repeat this procedure to connect multiple peripheral
devices.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 88 of 189

Mar.25.21

Figure 7.2 Sequence chart when connecting to a peripheral device (The circled numbers in the chart

correspond to the numbers in Code 7-3 below.)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 89 of 189

Mar.25.21

/* Scan phy parameters */
static st_ble_abs_scan_phy_param_t gs_scan_phy_param =
{
 /* TODO: Modify scan phy parameter. */
 .fast_intv = 0x200,
 .fast_window = 0x100,
 .slow_intv = 0x200,
 .slow_window = 0x100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};

/* Scan filter data */
static uint8_t gs_filter_data[] =
{
 /* TODO: Modify filter of advertise data. Value of Data Flag is defined in
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan parameters */
static st_ble_abs_scan_param_t gs_scan_param =
{
 /* TODO: Modify scan parameter. */
 .p_phy_param_1M = &gs_scan_phy_param,
 .p_filter_data = gs_filter_data,
 .slow_period = 0,
 .filter_data_length = ARRAY_SIZE(gs_filter_data),
 .dev_filter = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,
};

/* Connection phy parameters */
static st_ble_abs_conn_phy_param_t gs_conn_phy_param =
{
 /* TODO: Modify connection phy parameter. */
 .conn_intv = 0x0130,
 .conn_latency = 0x0000,
 .sup_to = 0x03BB,
};

/* Connection device address */
static st_ble_dev_addr_t gs_conn_bd_addr;

/* Connection parameters */
static st_ble_abs_conn_param_t gs_conn_param =
{
 .p_conn_1M = &gs_conn_phy_param,
 .p_addr = &gs_conn_bd_addr, /**< Set BD address of connecting device. */
 .filter = BLE_GAP_INIT_FILT_USE_ADDR,
 .conn_to = 5,
};

Code 7-2 Setting initial values for scan parameters and connection parameters

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 90 of 189

Mar.25.21

/* Connection handle */
uint16_t g_conn_hdl[BLE_CFG_RF_CONN_MAX];
static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON: /* (1) */
 {
 R_BLE_ABS_StartScan(&gs_scan_param);

 } break;

 case BLE_GAP_EVENT_CONN_IND: /* (4) */
 {

 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == BLE_GAP_INVALID_CONN_HDL)
 {
 g_conn_hdl[i] = p_gap_conn_evt_param->conn_hdl;
 }
 }

 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t*)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == p_gap_disconn_evt_param->conn_hdl)
 {
 g_conn_hdl[i] = BLE_GAP_INVALID_CONN_HDL;
 }
 }
 } break;

 case BLE_GAP_EVENT_ADV_REPT_IND: /* (2) */
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param = (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param = (st_ble_gap_ext_adv_rept_t
*)p_adv_rept_param->param.p_ext_adv_rpt;
 gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN)

 R_BLE_GAP_StopScan();
 } break;

 case BLE_GAP_EVENT_SCAN_OFF: /* (3) */
 {
 R_BLE_ABS_CreateConn(&gs_conn_param);
 }
 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-3 Implementation example of GAP callback function when connecting multiple units

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 91 of 189

Mar.25.21

/* XXX Service UUID */
static uint8_t XXXC_UUID[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };

/* Service discovery parameters */
static st_ble_disc_entry_t gs_disc_entries[] = {

 {
 .p_uuid = XXXC_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,

 .serv_cb = R_BLE_XXXC_ServDiscCb,

 },
};

static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 BLE_ABS_StartScan(&gs_scan_param); /* (6) */
 return;
}

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTC. Check BLE API reference for events. */

 case BLE_GATTC_EVENT_CONN_IND: /* (5) */
 {
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries), disc_comp_cb);
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-4 Implementation example of service discovery using Profile Common Library

If you register R_BLE_XXXC_ServDiscCb of Service API (r_ble_xxxc.c) generated by QE for BLE in
Discovery in Profile Common of app_lib (bold frame in Code 7-4), attribute handle of each device is retained
in Service API through Profile Common. By using the Service API, the application can access the GATT
database of each device using the connection handle without managing the attribute handle of each device.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 92 of 189

Mar.25.21

7.3.2 Connection to multiple central devices

It uses itself as a peripheral to communicate with multiple central devices. For example, it is assumed that
home appliances are controlled from multiple smartphones. Here, the peripheral device is the GATT server.

Figure 7.3 Connection with multiple central devices

Advertising stops when connected from Central. After connecting, it resumes advertising and accepts the
connection from another device.
Below show a sequence chart and an implementation example when connecting using app_lib of the BLE
protocol stack. Repeat this procedure to accept connections from multiple central devices.

Figure 7.4 Sequence chart when connecting to a central device (The circled numbers in the chart

correspond to the numbers in Code 7-6 below.)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 93 of 189

Mar.25.21

/* Advertising data */
static uint8_t gs_adv_data[] =
{
 /* TODO: Modify advertise data. Value of Data Flag is defined in
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan response Data */
static uint8_t gs_sres_data[] =
{
 /* TODO: Modify scan response data. Value of Data Flag is defined in
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .slow_adv_intv = 0x300,
 .slow_period = 0,
 .p_adv_data = gs_adv_data,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .p_sres_data = gs_sres_data,
 .sres_data_length= ARRAY_SIZE(gs_sres_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .filter = BLE_ABS_ADV_ALLOW_CONN_ANY,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
};

Code 7-5 Advertise packet and parameter settings

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 94 of 189

Mar.25.21

uint16_t g_conn_hdl[BLE_CFG_RF_CONN_MAX];

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {

 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == BLE_GAP_INVALID_CONN_HDL)
 {
 g_conn_hdl[i] = p_gap_conn_evt_param->conn_hdl;
 }

 }
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param = (st_ble_gap_disconn_evt_t*)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == p_gap_disconn_evt_param->conn_hdl)
 {
 g_conn_hdl[i] = BLE_GAP_INVALID_CONN_HDL;
 }
 }
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-6 Example implementation of GAP callback function when accepting connections from
multiple centrals

In Bluetooth Low Energy, the master (central device) controls the communication timing. Therefore, when
multiple central devices are connected, the communication timing may accidentally collide and disconnect
early. To prevent this, it is recommended to update the connection parameters so that there is a margin in
slave latency and supervision timeout time. For updating connection parameters, refer to "8.3 Updating
connection parameter".
The GATT server may expose a common characteristic value to all connected GATT clients, or may expose
a different value for each client. For example, when exposing different values for each client such as Client
Configuration Characteristic Descriptor, check “Peer Specific” of Aux Properties on the characteristic screen
of QE for BLE. As a result, the table of values and options held in the GATT database of the BLE Protocol
Stack are changed, and different values are held for up to 7 clients. A database value is returned for each
client accessed.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 95 of 189

Mar.25.21

Figure 7.5 Setting to retain the value of characteristic for each device

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 96 of 189

Mar.25.21

7.3.3 Multi role connection

In Bluetooth Low Energy communication, different GAP roles can be implemented for multiple devices that
connect at the same time. It communicates centrally to one device and as a peripheral to another device.
Here, the local device is the GATT server for the central device and the GATT client for the peripheral
device.

Figure 7.6 Multi roll connection example

Multi roll connections both advertise and scan to connect to both central and peripheral devices. Applications
that make multi roll connections retain the connection handle and GAP role. GAP role of Local Device for the
connection is posted in the BLE_GAP_EVENT_CONN_IND event. Below shows an implementation example
of the GAP callback function when connecting as a central and peripheral. GAP callback function is
implemented for each role. For scan and advertising settings, refer to Code 7-4(Scan) and Code
7-5(Advertise) above.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 97 of 189

Mar.25.21

/* Connection handle */
uint16_t g_central_conn_hdl;

static void ble_central_gapcb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartScan(&gs_scan_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;
 if(0x00 == p_gap_conn_evt_param->role)
 {
 g_central_conn_hdl = p_gap_conn_evt_param->conn_hdl;
 }
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t *)p_data->p_param;
 if(p_gap_disconn_evt_param->conn_hdl == g_central_conn_hdl)
 {
 g_central_conn_hdl = BLE_GAP_INVALID_CONN_HDL;
 }
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;
 if(p_conn_upd_req_evt_param->conn_hdl == g_central_conn_hdl)
 {
 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 .min_ce_length = 0xFFFF,
 .max_ce_length = 0xFFFF,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 }
 } break;
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param =
 (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)p_adv_rept_param->param.p_ext_adv_rpt;

 gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN);

 R_BLE_GAP_StopScan();
 } break;

 case BLE_GAP_EVENT_SCAN_OFF:
 {
 R_BLE_ABS_CreateConn(&gs_conn_param);
 }break;

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 98 of 189

Mar.25.21

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-7 Example of GAP callback function when connecting as a central role

/* Connection handle */
uint16_t g_peripheral_conn_hdl;

static void ble_peripheral_gapcb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param = (st_ble_gap_conn_evt_t *)p_data->p_param;
 if(0x01 == p_gap_conn_evt_param->role)
 {
 g_peripheral_conn_hdl = p_gap_conn_evt_param->conn_hdl;
 }
 }
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 if(p_conn_upd_req_evt_param->conn_hdl == g_peripheral_conn_hdl)
 {
 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 .min_ce_length = 0xFFFF,
 .max_ce_length = 0xFFFF,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t *)p_data->p_param;
 if(p_gap_disconn_evt_param->conn_hdl == g_peripheral_conn_hdl)
 {
 g_peripheral_conn_hdl = BLE_GAP_INVALID_CONN_HDL;
 }
 } break;

 default:
 {
 /* Do Nothing */
 }break;
}

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 99 of 189

Mar.25.21

Code 7-8 Example of GAP callback function when connected as a peripheral device

GAP callback function is implemented for each role.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 ble_peripheral_gapcb(type, result, p_data);
 ble_central_gapcb(type, result, p_data);
}

Code 7-9 Call GAP callback function for each role

Applications with multi role connections may implement both GATT clients and GATT servers. Use QE for
BLE to generate service API for both GATT client and GATT server. On the QE for BLE service screen,
check both the server and client and generate the code.

Figure 7.7 Select GATT Role on Service Screen

 This time, when it is a central device, it operates as a GATT client, so service discovery is performed when it
is connected to a peripheral device.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 100 of 189

Mar.25.21

/* XXX Service UUID */
static uint8_t XXXC_UUID[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };

/* Service discovery parameters */
static st_ble_disc_entry_t gs_disc_entries[] = {

 {
 .p_uuid = XXXC_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_XXXC_ServDiscCb,
 },
};
static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 return;
}

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTC. Check BLE API reference for events. */

 case BLE_GATTC_EVENT_CONN_IND:
 {
 if(g_central_conn_hdl == p_data->conn_hdl)
 {
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries),
disc_comp_cb);
 }
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-10 Implementation example of service discovery as a central device

If you register R_BLE_XXXC_ServDiscCb of Service API (r_ble_xxxc.c) generated by QE for BLE in
Discovery in Profile Common of app_lib (bold frame in Code 7-10), attribute handle of each device is
retained in Service API through Profile Common. By using the Service API, the application can access the
GATT database of each device using the connection handle without managing the attribute handle of each
device.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 101 of 189

Mar.25.21

7.4 Disconnection

If the currently established link is disconnected, call the following API.
ble_status_t R_BLE_GAP_Disconnect(uint16_t conn_hdl, uint8_t reason)

Specify the connection handle with the conn_hdl parameter and the disconnection reason with the reason
parameter. Normally, 0x13 (REMOTE USER TERMINATED CONNECTION) is specified as the
disconnection reason. For more information about the disconnection reason, refer to “Bluetooth Core
Specification Vol. 2 Part D, 2 Error Code Descriptions”. Central and peripheral device can call this API.

When the disconnection occurs, the BLE_GAP_EVENT_DISCONN_IND event is notified to the application.

If the local device disconnects the link by R_BLE_GAP_Disconnect, the reason field in the
st_ble_gap_disconn_evt_t structure notified in the BLE_GAP_EVENT_DISCONN_IND event is 0x16
(Connection Terminated by Local Host).

If the remote device disconnects the link, the reason field in the st_ble_gap_disconn_evt_t structure notified
in the BLE_GAP_EVENT_DISCONN_IND event is specified as the reason why the remote device
disconnects.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 102 of 189

Mar.25.21

8. Communication

In Bluetooth Low Energy, you can adjust the communication speed and power consumption to suit your
application by changing the communication parameters. This chapter describes how to set communication
parameters using the BLE Protocol Stack. The optional feature may not be supported by the remote device.

Table 8.1 Bluetooth version and supported features and parameters

Communication
Parameter

Feature name Bluetooth
Version

Description

PHY LE 2M PHY
LE Coded PHY
LE 1M PHY

5.0 (optional)
5.0 (optional)
4.0

Double the symbol rate
Forward error correction code added
-

Maximums transmit
packet length

LE Data Length
Extension

4.2 (optional) Maximum number of transmitted bytes
27 → 251 bytes

Connection parameters - 4.0 -

MTU - 4.0 -

The following explains how to use the API to change the communication parameters. Refer to the API
document (r_ble_api_spec.chm) included in the "Bluetooth Low Energy Sample code (using CMSIS Driver
Package) (R01AN5606)" for details on the API.

8.1 Changing PHY

PHY is a parameter that indicates the physical layer modulation method and coding scheme. Changing this
parameter, it is expected that throughput and radio wave reach will be improved. The modulation method
and coding scheme are shown below.
⚫ LE 1M PHY

This is the basic modulation method of Bluetooth Low Energy. Compatible with all Bluetooth Low
Energy devices. Set for applications that connect to an unspecified number of devices.

⚫ LE 2M PHY

This is a modulation method that doubles the symbol rate from LE 1M PHY and shortens the packet
transmission time. It is used when performing high throughput communication. Since the packet
transmission time is shortened, you can expect a reduction in power consumption.

⚫ LE Coded PHY

A modulation method in which a forward error correction code (coding scheme) of 1/2 or 1/8 is added to
the header and payload of the packet. Improves packet arrival rate. It increases the certainty of data
arrival and makes it possible to extend the communication distance compared to the past.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 103 of 189

Mar.25.21

To change the PHY, use the R_BLE_GAP_SetPhy function of GAP API. For the argument, specify the
connection handle whose settings you want to change, the modulation scheme for transmission (tx_phys),
the modulation scheme for reception (rx_phys), and the coding scheme for transmission (phy_options). The
receiving coding scheme does not change.
Figure 8.1 show the sequence chart when changing the PHY from the local device. In the figure, the local
device is the central. Local device can change it from either role.

Figure 8.1 Sequence chart when changing PHY

The sample code when changing the PHY to LE Coded PHY (S=8) is shown below. Multiple PHYs can be
specified by bit sum.

st_ble_gap_set_phy_param_t set_phy = {
 .tx_phys = BLE_GAP_SET_PHYS_HOST_PREF_CD | BLE_GAP_SET_PHYS_HOST_PREF_1M,
 .rx_phys = BLE_GAP_SET_PHYS_HOST_PREF_CD | BLE_GAP_SET_PHYS_HOST_PREF_1M,
 .phy_options = BLE_GAP_SET_PHYS_OP_HOST_PREF_S_8
};

R_BLE_GAP_SetPhy(conn_hdl, &set_phy);

Code 8-1 Code to change PHY to LE Coded PHY (S=8)

Due to the change of PHY, two events are notified to the application. These events are notified to the GAP
callback function (gap_cb).
⚫ BLE _GAP_EVENT_PHY_SET_COMP

Notified when the controller layer of the local device accepts the PHY change.

⚫ BLE_GAP_EVENT_PHY_UPD

Notified when the remote device accepts the PHY change. The notified event data, tx_phy and rx_phy,
represent the actual PHY used when transmitting from the local device to the remote device and from
the remote device to the local device, respectively.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 104 of 189

Mar.25.21

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_PHY_SET_COMP:
 {
 if(BLE_SUCCESS == result)
 {
 st_ble_gap_conn_hdl_evt_t *event_data =
 (st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /*PHY parameter change in event_data->conn_hdl reaches Link Layer */
 }
 else if(BLE_ERR_INVALID_HDL == result)
 {
 st_ble_gap_conn_hdl_evt_t *event_data =
 (st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /*The connection for event_data->conn_hdl was not found.*/
 }
 else
 {
 /* Do Nothing */
 }
 } break;

 case BLE_GAP_EVENT_PHY_UPD:
 {
 st_ble_gap_phy_upd_evt_t * event_data =
 (st_ble_gap_phy_upd_evt_t *)p_data->p_param;
 } break;
 }

}

Code 8-2 Event that occurs when PHY is changed

When the PHY is changed, the transmission time for the transmission packet length changes. The BLE
Protocol Stack will also automatically change the maximum transmission packet length described later
according to the PHY. When changed to LE Coded PHY, the maximum transmission packet length is set to

251 bytes and the transmission time is set to 27 bytes, 2704sec. If changing the maximum send packet
length to 28 bytes or more, see "8.2 Changing maximum transmission packet length" below.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 105 of 189

Mar.25.21

8.2 Changing maximum transmission packet length

This parameter sets the maximum packet length in the Link Layer. When transmitting and receiving
application data that exceeds 23 bytes, you can perform efficient communication by extending the
transmitting packet length. Packet length extension requires the remote device to support the LE Data
Packet Length Extension feature developed in Bluetooth 4.2.
To change the maximum transmission packet length, specify the maximum number of bytes to be
transmitted and the maximum transmission time. The packet transmission time is depended on the PHY
settings in the previous chapter. The maximum transmitting packet length and maximum transmit time that
can be set depending on whether the LE Data Packet Length Extension and LE Coded PHY are supported
are shown below.

Table 8.2 Relationship between PHY and maximum transmit packet length and maximum transmit time

LE Data Packet Length
Extension

LE Coded PHY feature
supported

Parameters with names
ending in “Octets”

Parameters with names
ending in “Time"

Min Max Min Max

No No 27 27 328 328

Yes No 27 251 328 2120

No Yes 27 27 328 2704

Yes Yes 27 251 328 17040

Bluetooth Core Specification V5.00 Vol 6, Part B
When connected to a remote device, the BLE Protocol Stack request to change the maximum transmission
packet length to the value specified by BLE_CFG_RF_CONN_DATA_MAX.
To change the maximum transmission packet length, use the R_BLE_GAP_SetDataLen function of GAP
API. For the argument, specify the connection handle whose settings you want to change, the maximum
number of bytes to send, and the maximum send time. Enter the maximum transmission time in
microseconds. The BLE Protocol Stack gives priority to the smaller of the specified maximum number of
transmission bytes and maximum transmission time. Figure 8.2 show the sequence chart when changing the
maximum transmission packet length.

Figure 8.2 Sequence chart when changing the maximum transmission packet length

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 106 of 189

Mar.25.21

Below is an example of expanding the packet length to 251 bytes when using the LE 1M PHY.

uint16_t tx_octets = 251;
uint16_t tx_time = 2120;

R_BLE_GAP_SetDataLen(conn_hdl, tx_octets, tx_time);

Code 8-3 Example of transmit packet length change request

Two events are notified to the application by changing the transmission packet length. These events are
notified to the GAP callback function (gap_cb).
⚫ BLE_GAP_EVENT_SET_DATA_LEN_COMP

Occurs when the change in transmitted packet length is accepted by the controller layer.

⚫ BLE_GAP_EVENT_DATA_LEN_CHG
Occurs when the send packet length changes with the remote device. This does not occur if the other
party does not support LE Data Packet Length Extension.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_SET_DATA_LEN_COMP:
 {
 st_ble_gap_conn_hdl_evt_t * event_data =

(st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /* Do Nothing */
 } break;
 case BLE_GAP_EVENT_DATA_LEN_CHG:
 {
 st_ble_gap_data_len_chg_evt_t * event_data =

(st_ble_gap_data_len_chg_evt_t *)p_data->p_param;
 /* Do Nothing */
 } break;
 }

}

Code 8-4 Change packet length event

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 107 of 189

Mar.25.21

8.3 Updating connection parameter

Connection parameters are parameters related to communication frequency. Setting connection parameters
is important for the efficient operation of your application. The connection parameters include the following
items.
⚫ Connection Interval

The interval between packet exchanges. Shortening the connection interval improves throughput and
power consumption. On the contrary, if you lengthen the connection interval, the power consumption will
decrease.

⚫ Slave Latency

The number of times the slave will ignore packets from the master. When the slave receives a packet
from the master, it returns a response. If there is no data to be transmitted from the slave, the packet
from the master can be ignored for the number of times set for slave latency. The slave does not have
to return the response for that number of times, so the power consumption can be reduced.

Figure 8.3 Schematic diagram of slave latency and connection event

⚫ Supervision Timeout

This is the time from when the packet reception is stopped until the disconnection. If no packet arrives
within this time after the last packet is received, it is determined to be disconnected. Set to perform
packet exchange more than once within the supervision timeout period.

𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑜𝑢𝑡(𝑚𝑠𝑒𝑐) > (1 + 𝑆𝑙𝑎𝑣𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑛𝑢𝑚𝑏𝑒𝑟)) ∗ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑚𝑠𝑒𝑐) ∗ 2

⚫ Connection Event Time

Specify the connection event time that occurs at each connection interval. If 0 is set, packets will be
exchanged only once for each round trip per connection event, and if 0xffff is specified, packets will be
exchanged until the next connection event or until the More Data bit is not set.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 108 of 189

Mar.25.21

When the connection event time is set to 0

When the connection event time is set to 0xffff

Figure 8.4 Schematic diagram of connection event time and packet exchange

The master determines and changes the connection parameters, but slaves can request the changes. Also,
the connection parameters can be updated any number of times during the connection. The application
flexibly updates the connection parameters to achieve efficient data communication. For example, it is
effective to change the connection interval at the following cases.
⚫ In case that application will set connection interval shorter.

If there is no data to send for a while

Perform data communication simultaneously with multiple communication partners

⚫ In case that application will set connection interval longer.

Run service discovery

Send small data in a short time at once

Figure 8.5 show the sequence chart for updating the connection parameters. The local device is the central
and the remote device is the peripheral. For connection parameter updates, the PDUs that the Link Layer
interacts with will depend on the role of the device being updated and support for the procedure, but at the
application level, there is not much difference. For other roles, please refer to the API document
(r_ble_api_spec.chm) included in "Bluetooth Low Energy Sample code (using CMSIS Driver Package)
(R01AN5606)" for details of PDUs exchanged in Link Layer.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 109 of 189

Mar.25.21

Figure 8.5 Sequence chart when updating connection parameters

Use R_BLE_GAP_UpdConn function of GAP_API for request/response of connection parameter update.
The following is an example of requesting to update the connection parameters from the local device.

st_ble_gap_conn_param_t conn_param = {
 .conn_intv_min = 0x0006, //Connection Interval
 .conn_intv_max = 0x0006,
 .conn_latency = 0x0000, //Slave Latency
 .sup_to = 0x0C80, //Supervision timeout
 .max_ce_length = 0xffff, //Connection event time
 .min_ce_length = 0xffff
};

R_BLE_GAP_UpdConn(conn_hdl , BLE_GAP_CONN_UPD_MODE_REQ , 0 , &conn_param);

Code 8-5 Implementation example of connection parameter update request

The application is notified of two events by updating the connection parameters. These events are notified to
the GAP callback function (gap_cb).
⚫ BLE_GAP_EVENT_CONN_PARAM_UPD_REQ

Notified when a request to update connection parameters is received from the remote device.
Implement the process of whether to accept the request.

⚫ BLE_GAP_EVENT_CONN_PARAM_UPD_COMP

You will be notified when the connection parameters have been updated. The result variable contains
information about whether the request to update the connection parameters was accepted, and the
event variable contains the connection parameters used in the actual connection.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 110 of 189

Mar.25.21

The following is an implementation example of the response to the connection parameter update request
from the remote device. In this example, it accepts all requests from remote devices. This process is
implemented in app_main.c generated by QE for BLE.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {

case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
{

 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
(st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,

.min_ce_length = 0xFFFF,

.max_ce_length = 0xFFFF,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);

 } break;
 }

}

Code 8-6 Implementation example of response to connection parameter update request event

When connecting to a smartphone, update of connection parameters may not be accepted depending on the
OS. For example, for iOS, design guidelines for accessories for Apple devices

(https://developer.apple.com/jp/accessories/Accessory-Design-Guidelines-JP.pdf)
If the remote device rejects, BLE_ERR_INVALID_ARG(0x0003) is stored in the result variable at the time of
BLE_GAP_EVENT_CONN_PARAM_UPD_COMP event notification.
The following is an implementation example in which the parameters are updated and request again after
being rejected by the remote device.

https://developer.apple.com/jp/accessories/Accessory-Design-Guidelines-JP.pdf

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 111 of 189

Mar.25.21

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {

case BLE_GAP_EVENT_CONN_PARAM_UPD_COMP:
{
 if(BLE_ERR_INVALID_ARG == result)
{

 st_ble_gap_conn_param_t conn_param = {
 .conn_intv_min = 0x0028, /* Connection Interval */
 .conn_intv_max = 0x0028,
 .conn_latency = 0x0000, /* Slave Latency */
 .sup_to = 0x0C80, /* Supervision timeout */
 .max_ce_length = 0xffff, /* Connection event time */
 .min_ce_length = 0xffff

 };

 R_BLE_GAP_UpdConn(conn_hdl ,
BLE_GAP_CONN_UPD_MODE_REQ ,
0 ,
&conn_param);

}

} break;
 }

}

Code 8-7 Request to update connection parameters after being rejected by remote device

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 112 of 189

Mar.25.21

8.4 Changing MTU

MTU represents the maximum packet length in GATT. The initial value is the minimum value of 23 bytes.
This is called the default MTU. The maximum size when performing data communication by Read
Characteristic Value, Write Characteristic Value, Write Without Response, Notification, and Indication
operations, which are the main procedures of GATT, depends on the MTU.
When the default MTU is used, the client uses GATT Read Long Characteristic Value to read data greater
than 22 bytes and Write Long Characteristic Value to write data greater than 20 bytes. These procedures
have higher communication overhead than Read Characteristic Value and Write Characteristic Value. Also,
with the default MTU, data greater than 20 bytes cannot be sent by Notification or Indication from the server.
The MTU can be changed from the GATT client only once during the connection.
To minimize overhead, adjust the relationship between MTU and maximum send packet length to be below.

𝑀𝑇𝑈(𝑏𝑦𝑡𝑒) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑦𝑡𝑒) − 4(𝑏𝑦𝑡𝑒)
Figure 8.6 show the sequence chart when changing the MTU.

Figure 8.6 Sequence chart when changing MTU

To change the MTU, use the R_BLE_GATTC_ReqExMtu function of GATT Client API. Specify the supported
MTU as an argument.

uint16_t mtu = 247
R_BLE_GATTC_ReqExMtu(conn_hdl, mtu);

Code 8-8 MTU change request example

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 113 of 189

Mar.25.21

Two events are notified to the application by changing the MTU. These events are notified to the GATT client
or GATT server callback functions (gattc_cb, gatts_cb).
⚫ BLE_GATTS_EVENT_EX_MTU_REQ

The server is notified when an MTU change request is received from a client device (gatts_cb). The
server returns the MTU it supports in this event.

⚫ BLE_GATTC_EVENT_EX_MTU_RSP

The client is notified when it receives an Exchange MTU Response from the server device (gattc_cb).
The smaller of the MTU supported by itself and the MTU included in the response is the actual MTU
used.

Code 8-9 show an example implementation of a response to a GATT server Exchange MTU Request. For
the response, use R_BLE_GATTS_RspExMtu function of GATT Server API. For the argument, specify the
MTU supported by the local device. This process is implemented in R_BLE_SERVS_GattsCb function
provided by Profile Common Server Library of app_lib. The size of the MTU returned by the GATT server is
set in the BLE_CFG_GATT_MTU_SIZE configuration option. If you want to generate GATT server code from
QE for BLE, your application does not need to implement MTU response.

static void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t
*p_data)
{
 switch (type)
 {
 case BLE_GATTS_EVENT_EX_MTU_REQ:
 {
 R_BLE_GATTS_RspExMtu(p_data->conn_hdl, BLE_CFG_GATT_MTU_SIZE);
 } break;
 }
}

Code 8-9 Example of response to MTU change request

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 114 of 189

Mar.25.21

8.5 Flow control

The BLE Protocol Stack has a flow control function to send large application data in a short time. To realize
the flow control function, the BLE protocol stack has 10 send buffers for application communication. When
the flow control function is enabled, the application is notified of events according to the number of empty
send buffers.
The table below shows the number of empty buffers and event notification timing. The event is triggered
when the application repeatedly calls the send function and the number of empty buffers decreases to the
set lower limit. In response to this event, the application stops calling the send function and prevents the
buffer from overflowing.

Figure 8.7 Number of empty buffers and events

When the BLE Protocol Stack transmits to the remote device, the number of empty buffers increases. An
event occurs when the number of empty buffers reaches the set upper limit. The event is triggered when the
application repeatedly calls the send function and the number of empty buffers decreases to the set lower
limit. Upon receiving this event, the call to the send function is resumed. By repeating this, large data can be
transmitted efficiently.

Figure 8.8 Number of empty buffers and events

The flow control function is enabled by the R_BLE_VS_SetTxLimit function and
R_BLE_VS_StartTxFlowEvtNtf function of Vendor Specific API.
Use the R_BLE_VS_SetTxLimit function to set the lower limit and upper limit of the empty number of the
buffer where the event occurs. Execute the R_BLE_VS_StartTxFlowEvtNtf function to enable event
notification.

/* Enable Vender Specific Tx Flow Control */
#define LOW_WATER_MARK (3)
#define HIGH_WATER_MARK (7)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 115 of 189

Mar.25.21

R_BLE_VS_SetTxLimit(LOW_WATER_MARK, HIGH_WATER_MARK);
R_BLE_VS_StartTxFlowEvtNtf();

Code 8-10 Start of flow control feature

The flow control feature notifies the application of the BLE_VS_EVENT_TX_FLOW_STATE_CHG event.
Information indicating the current buffer status is stored in this event variable. An example of using the flow
control function is shown below. In this example, when the empty number in the buffer recovers to the High
Water Mark, the send function is called only (10-Low Water Mark) times and continuous transmission is
performed so that the buffer does not overflow. R_BLE_ServsCharNotification function is a sample. Please
rewrite to the function of the service used.

static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_SERVS_VsCb(type, result, p_data);

 switch(type)
 {
 case BLE_VS_EVENT_TX_FLOW_STATE_CHG:
 {
 /* Apprize TxFlowState changed to txflow API */

 st_ble_vs_tx_flow_chg_evt_t * evt_data=
(st_ble_vs_tx_flow_chg_evt_t *)p_data->p_param;

 if(BLE_VS_TX_FLOW_CTL_ON == evt_data->state)
 {
 for (int i=0; i<(10-LOW_WATER_MARK); i++)

 {
 R_BLE_ServsCharNotification(conn_hdl, &app_data);
 }

 }
 else
 {
 /* Do Nothing */
 }
 } break;

}

Code 8-11 Implementation example of sending by flow control feature event

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 116 of 189

Mar.25.21

8.6 High throughput communication

When performing high-throughput communication using Bluetooth Low Energy, it is important to set the
communication parameters to optimal values (GAP settings optimization) and to call the send function
continuously using the flow control function (Continuous transmission requests).

8.6.1 Continuous transmission requests

Continuous transmission requests uses the Tx flow control feature of the Vendor Specific API provided by
the BLE protocol stack. This function executes callback function to transmit when the transmit buffer has
space. For the Tx flow control feature of the BLE protocol stack, refer API document (r_ble_api_spec.chm).
The application realizes highspeed communication by receiving this callback function and continuously
transmitting.

8.6.2 GAP settings optimization

The GAP settings optimization changes the setting of GAP parameter to the optimum value to realize
highspeed communication.

Table 8.3 GAP settings for high-speed communication

parameter value

Connection Interval 50 (msec)

PHY 2M PHY

Max packet length 251 (byte)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 117 of 189

Mar.25.21

8.6.3 Bluetooth Low Energy and Throughput

In this chapter, we explain briefly the relationship between the Bluetooth low energy communication
mechanism and throughput. For details on communication standards, please refer to the Bluetooth
specifications. Bluetooth Low Energy has three major layers. Controller and Host are connected by Host
Controller Interface (HCI). Application and Host are connected by API (R_BLE_API in BLE Module) (Figure
8.9)
In Bluetooth Low Energy, the Link Layer of the controller controls the actual communication path and
transmission / reception interval. The operation of this Link Layer is important to achieve highspeed
communication. The behavior of the Link Layer is set by the GAP of the Host Layer.
On the other hand, when sending meaningful data for application, the GATT of the host layer is used. In
GATT, the profile determines the application data transmission procedure and the data structure to be
transmitted and received. The design of this profile is also important for achieving highspeed communication.

Figure 8.9 Three major layer in Bluetooth Low Energy

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 118 of 189

Mar.25.21

8.6.4 Generic Access Profile (GAP)

Generic Access Profile (GAP) defines the procedure for detecting connectable devices and establishing
connections. GAP sets the operation of Link Layer and realizes these procedures.

8.6.4.1 Device detection and connection establishment

In Bluetooth Low Energy, a connection is established by one device transmitting (advertising) its own device
information and the other device performing device detection (scanning) and connection request (initiating).
The device that performs scanning and connection request is the central device, and the device that
advertises is the peripheral device. Central determines parameters related to connection maintenance such
as frequency map and communication interval (connection interval) after connection is established. The GAP
will manage the following information.

⚫ Connection Interval

⚫ PHY

⚫ Maximum Packet Length

⚫ Information for Pairing

⚫ etc.

8.6.4.2 Communication after establishing connection

In Bluetooth Low Energy, after the connection is established, the device exchanges radio frames with a
connection event that occurs at each connection interval. In the Link Layer, the central is the master and the
peripherals are the slaves. Radio frames are transmitted by the master in time with pre-shared connection
events. (Figure 8.10)

Figure 8.10 Exchange of connection event and radio frame

The connection is maintained by exchanging radio frames at the connection event. If there is additional data
to send to either device, the More Data Bit in the radio frame will be set and the connection event will be
extended. The connection event ends when the More Data Bit of each other is no longer set or when an
error occurs in the received packet. Once the connection event ends, radio frames are not exchanged until
the next connection event (Figure 8.11). In order to realize highspeed communication, it is important to
communicate using this More Data.

Figure 8.11 Communication by More Data

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 119 of 189

Mar.25.21

8.6.4.3 Setting the connection interval

Figure 8.12 shows a schematic diagram of Link Layer operation when the connection interval is changed.
Even if the connection interval is changed, if communication by More Data is stable, there will be no
significant change in throughput. Note that If the connection interval is shortened extremely, the overhead of
waiting time for each interval will hinder throughput.
Figure 8.13 shows the relationship between the connection interval and throughput assuming that the
communication environment is good and frame exchange is always successful. The settings of GAP and
GATT are PHY: 2M PHY, maximum packet length is 251 bytes, MTU is 247 bytes, and 244 bytes of
application data are always notified. If the connection interval is 7.5msec, it will be about 1040kbps.
The throughput per connection interval is calculated from the waiting time Toverhead immediately before the
connection event, the minimum transfer time Tframe for the radio frame to make a round trip, and the
application data length (Ldata). If the packet length is 251 bytes, Tframe will be about 1.408 msec.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑘𝑏𝑝𝑠) = 𝑓𝑙𝑜𝑜𝑟(
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

𝑇𝑓𝑟𝑎𝑚𝑒

) ∗ 8 ∗ 𝐿data ∗
1

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

Figure 8.12 Change in connection interval and number of radio frames

Figure 8.13 The relationship connection interval and throughput

If the communication environment is good, the throughput will not be affected even if the connection interval
becomes long, but if the communication by using the More Data bit is interrupted due to a communication
error, the difference in the connection interval will have a large effect (Figure 8.14). When a communication

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 120 of 189

Mar.25.21

error occurs, each device waits until the next connection event, so if the connection interval increases, the
throughput decreases.

Figure 8.14 Connection interval and throughput when communication error occurs

Figure 8.15 shows the relationship between connection interval, probability of frame exchange failure, and
throughput. GAP settings are PHY: 2M PHY, maximum packet length 251 bytes, MTU 247 bytes, and the
value when 244 bytes of application data are always notified. The expected value of throughput per
connection interval is plotted.

Figure 8.15 Relationship between frame exchange failure probability and throughput

To change the connection interval, execute the gap conn_cfg update command. To change using
R_BLE_API, use R_BLE_GAP_UpdConn. For details about the API, refer to "API document
(r_ble_api_spec.chm)".

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 121 of 189

Mar.25.21

8.6.4.4 Setting the PHY

Figure 8.16 shows a schematic diagram of Link Layer operation when the physical layer (PHY) settings are
changed. When the physical layer PHY is changed, the air frame occupation time changes. If the data length
is the same, the air occupation time will be about half in 1M PHY, as it is in 2M PHY. If the occupied time of
one frame in the air is short, the number of packets transmitted / received per unit time increases, and the
throughput improves.

Figure 8.16 Schematic diagram when using 2M PHY

To change the PHY, execute the gap conn_cfg phy command. To change using R_BLE_API, use
R_BLE_GAP_SetPhy. For details about the API, refer to "API document (r_ble_api_spec.chm)".

8.6.4.5 Setting the Maximum packet length

Figure 8.17 shows a schematic diagram of Link Layer operation when the maximum packet length is set to a
high value and data with a large packet length is transmitted. The application information can be efficiently
transmitted by minimizing the header information of the radio frame and the transmission / reception interval.

Figure 8.17 Schematic diagram of Link Layer when changing packet length

To change the Maximum packet length, execute the gap conn_cfg data_len command. To change from
R_BLE_API, use R_BLE_GAP_SetDatalen. For details about the API, refer to "API document
(r_ble_api_spec.chm)".

8.6.4.6 Setting the encryption of communication

Figure 8.18 shows a schematic diagram of Link Layer operation when communication is encrypted. Through
encryption, the data for checking packet integrity (4 bytes) is carried in the radio frame, which may reduce
the throughput.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 122 of 189

Mar.25.21

Figure 8.18 Schematic diagram of Link Layer in encrypted communication

To encrypt communication, execute the gap auth start command. When performing encryption from
R_BLE_API, use R_BLE_GAP_StartEnc or R_BLE_GAP_StartPairing. You can also use
R_BLE_ABS_StartAuth of Abstraction API of app_lib. For details on these APIs, refer to the “API document
(r_ble_api_spec.chm)”.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 123 of 189

Mar.25.21

8.6.5 Generic Attribute Profile (GATT)

In Bluetooth Low Energy, the information for detecting and connecting (advertising and scanning, initiating) a
communication device and for continuous communication after the connection is made is managed by the
GAP.
On one hand, the communication procedure of application data (sensor data etc.) is determined by Generic
Attribute Profile (GATT). GATT implements a client-server architecture over the communication path
established by GAP. The client reads / writes data from / to the GATT database held by the server using a
predetermined procedure. At this time, the server returns a response to the client. On the other hand, it is
also possible for the server to notify to the client (Figure 8.19). All applications that perform Bluetooth low
energy data communication perform data communication according to GATT.

Figure 8.19 GATT architecture

In GATT, communication is focused on the feature of the application. The feature of an application is called a
"service", and the data required for that feature is called a "characteristic." A "profile" is a set of features
(services) required to realize an application and defines the communication specifications of the application.
When performing GATT communication, it is necessary to share in advance information about the feature
(service) as an application and the data (characteristics) necessary to realize that feature. The server store
information about the service it has and the characteristic that the service has in a database.
Figure 3.12 shows the relationship between profile, service, and characteristic when using a thermometer as
an example. The features of the thermometer application are temperature measurement and device
information. Features and data are kept on the GATT database as services and characteristics.

Figure 8.20 Application Data and GATT database

Simply by establishing a connection, the client does not have service information for the server. The client
queries the server for a particular service using a procedure called service discovery (Figure 8.21). This
procedure gives the client information about the services the client wants on the server and handle
information about the data in the database. The client uses this to handle information to read and write to the
database.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 124 of 189

Mar.25.21

Figure 8.21 Service discovery operation

In the characteristic, the data and its structure are decided, but in addition, the procedure of exchanging data
between the client and the server is also decided. If there are additional options for the data and
communication procedure determined by the characteristic, they are described in the characteristic
descriptor.
Transmission and reception of characteristic data is performed according to the procedure determined by the
characteristic. Table 8.4 summarizes the typical procedures. These procedures are characterized by the
direction of data transmission and whether or not to wait for a response from the other. A procedure that
requires a response cannot perform the same procedure before receiving a response from the other. Figure
8.22 shows a schematic diagram of the Read operation in which the client reads the server data. Data
communication by GATT is performed based on the handle information.

Table 8.4 Typical communication procedure of GATT communication

Procedure name operation Direction to transmit Response

require

Read Read From client to server Yes

Write Write From client to server Yes

Write Without Response Write From client to server No

Indication Notify From server to client Yes

Notification Notify From server to client No

Figure 8.22 Read operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 125 of 189

Mar.25.21

8.6.5.1 No response operation (Notification / Write Without Response)

With Notification or Write Without Response operation, the next packet can be transmitted without waiting for
the response from the opposition. Therefore, More Data communication can be performed by continuously
sending transmission requests. Figure 8.23 shows a schematic diagram of the Notification operation in the
Link Layer.

Figure 8.23 Schematic diagram of Link Layer during Notification operation

In the figure above, the slave acts as a server and performs a Notification. Slave and master are roles in the
Link Layer and have no relationship with GATT role.

8.6.5.2 Response operation (Indication / Write)

In Indication and Write operations, after transmitting it is necessary to wait for the response from the other
device before transmitting the next data. Therefore, a request to transmit the next data cannot be sent in one
connection event, and more data communication cannot be performed. Figure 8.24 shows a schematic
diagram of Link Layer operation for Indication. It takes twice as long as the connection interval to transmit
one data packet.

Figure 8.24 Schematic diagram of Link Layer during Indication operation

In the figure above, the slave acts as a server and performs Indication. Slave and master are roles in the
Link Layer and have no relationship with GATT role.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 126 of 189

Mar.25.21

8.6.6 Data type

Use the st_ble_seq_data_t structure defined by Profile Common Library. This structure has members that
mean the start address of array data and length of array data. The encode / decode functions for this
structure are implemented in the Profile Common Library. Therefore, you can transmit and receive array data
without implementing the encode / decode functions.

Figure 8.25 Transmitting array data using st_ble_seq_data_t structure

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 127 of 189

Mar.25.21

9. Security

This section describes the security functions provided by the Bluetooth Low Energy.

9.1 Pairing

Pairing has to be done to use the Bluetooth security function. In the case such as the following, pairing is
necessary.
⚫ The remote device sets security requirement for the access to the GATT service.
⚫ The local device resolves the remote device address.

Pairing exchanges the keys with a remote device. The keys to be exchanged are followings.

⚫ LTK (Long Term Key)

Encryption uses LTK.

⚫ IRK (Identity Resolving Key)
Privacy function uses IRK.

⚫ CSRK (Connection Signature Resolving Key)
Signed data transmission uses CSRK.

Pairing mechanism has LE Legacy pairing and LE Secure Connections.
LE Secure Connections is supported from Bluetooth version 4.2. LE legacy pairing is the paring mechanism
is used by the device which does not support LE Secure Connections.
If a remote device supports LE Secure Connections, the BLE Protocol Stack performs LE Secure
Connections. If a remote device does not support LE Secure Connections, the BLE Protocol Stack performs
LE Legacy Pairing.
The pairing procedure in an application shows Figure 9.1. The following sections describe the details of
pairing steps.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 128 of 189

Mar.25.21

Figure 9.1 Pairing procedure in application

Set Pairing Parameter

Transmit / Receive OOB Data

Generate and register keys

Respond to pairing request

Respond to pairing method

Complete pairing

Exchange keys

[Pairing by OOB is enabled.]

[Pairing by OOB is disabled.]

[Local device starts pairing.]

[Remote device starts pairing.]

Start pairing

Step automatically performed by ABS API .

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 129 of 189

Mar.25.21

9.1.1 Pairing Parameters

Set the pairing parameters before starting the pairing procedure. The pairing parameters are set with the
following APIs. Call the API before starting pairing.

R_BLE_GAP_SetPairingParams
R_BLE_ABS_Init

Table 9.1 shows the pairing parameters. The following sections describes the details of the parameters.

Table 9.1 Pairing Parameters

 API R_BLE_ABS_Init R_BLE_GAP_SetPairingPara

ms

Value Range QE for BLE default settings

R_BLE_ABS_Init

Parameter

Structure

st_ble_abs_pairing_para

m_t

st_ble_gap_pairing_param_t

1. Input Output capabilities iocap iocap BLE_GAP_IOCAP_DISPLAY_
ONLY(0x00)

BLE_GAP_IOCAP_
NOINPUT_NOOUTPUT(0x03)

BLE_GAP_IOCAP_DISPLAY_
YESNO(0x01)

BLE_GAP_IOCAP_KEYBOARD_
ONLY(0x02)

BLE_GAP_IOCAP_NOINPUT_
NOOUTPUT(0x03)

BLE_GAP_IOCAP_KEYBOARD_
DISPLAY(0x04)

2. MITM Protection Request mitm mitm BLE_GAP_SEC_MITM_BEST_
EFFORT(0x00)

BLE_GAP_SEC_MITM_
BEST_EFFORT(0x00)

BLE_GAP_SEC_MITM_
STRICT(0x01)

3. Bonding No parameter
Fixed to BLE_GAP_
BONDING(0x01)

bonding BLE_GAP_BONDING_NONE(0x00) BLE_GAP_BONDING(0x01)

BLE_GAP_BONDING(0x01)

4.
Encryption
Key Size

Max Size No parameter
Fixed to 16

max_key_size 7～16 16

Min Size max_key_size min_key_size 16

5.
Exchange
Key type

Keys that local
device
distributes

loc_key_dist loc_key_dist 0 (Keys are not distributed.) BLE_GAP_KEY_DIST_
ENCKEY(0x01)

BLE_GAP_KEY_DIST_ENCKEY(0x0
1)

Keys that local
device requests
to distribute

rem_key_dist rem_key_dist BLE_GAP_KEY_DIST_IDKEY(0x02) 0

BLE_GAP_KEY_DIST_SIGNKEY(0x0
4)

6. Key Press Notification
Support

No parameter
Fixed to BLE_GAP_
SC_KEY_PRESS_
NTF_NOT_SPRT

key_notf BLE_GAP_SC_KEY_PRESS_NTF_
NOT_SPRT(0x00)

BLE_GAP_SC_KEY_PRESS
_NTF_NOT_SPRT(0x00)

BLE_GAP_SC_KEY_PRESS_NTF_
SPRT(0x01)

7. LE Secure Connections
Request

sec_conn_only sec_conn_only BLE_GAP_SC_BEST_EFFORT(0x00) BLE_GAP_SC_BEST_
EFFORT(0x00)

BLE_GAP_SC_STRICT(0x01)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 130 of 189

Mar.25.21

1. Input Output capabilities

Table 9.4 shows the input capability (Table 9.2) and the output capability (Table 9.3) that local device
supports.

Table 9.2 Input capability

Input capability Description

No Input Device cannot indicate “Yes” and “No”.

Yes / No Device can indicate “Yes” and “No”.

Keyboard Device can indicate “Yes” and “No” and input numbers 0 through 9.

Table 9.3 Output capability

Output capability Description

No Output Device cannot display 6-digit number.

Numeric output Device can display 6-digit number.

Table 9.4 Input Output capability

Output

No output Numeric output

Input No input NoInputNoOutput
BLE_GAP_IOCAP_NOINPUT_NOOUTPUT(0x03)

DisplayOnly
BLE_GAP_IOCAP_DISPLAY_ONLY(0x00)

Yes / No NoInputNoOutput
BLE_GAP_IOCAP_NOINPUT_NOOUTPUT(0x03)

DisplayYesNo
BLE_GAP_IOCAP_DISPLAY_YESNO(0x01)

Keyboard KeyboardOnly
BLE_GAP_IOCAP_KEYBOARD_ONLY(0x02)

KeyboardDisplay
BLE_GAP_IOCAP_KEYBOARD_DISPLAY(0x04)

2. MITM(Man-In-The-Middle) protection

Table 9.5 shows settings for the MITM protection request parameter.

Table 9.5 MITM Protection

MITM Protection Settings

Depending on remote device BLE_GAP_SEC_MITM_BEST_EFFORT(0x00)

Yes BLE_GAP_SEC_MITM_STRICT(0x01)

Completing pairing with the pairing method except Just Works according to “9.1.6 Pairing method” enables
the MITM protection.

3. Bonding

Table 9.6 shows the bonding parameter settings which indicate whether or not the device does bonding. For
more details about bonding, refer to “9.2 Bonding”.

Table 9.6 Bonding

Bonding Type Settings

No bonding BLE_GAP_BONDING_NONE(0x00)

Bonding BLE_GAP_BONDING(0x01)

If the application uses R_BLE_ABS_Init, the bonding type is fixed to “Bonding”.

4. Encryption Key Size

Select encryption key size between 7 to 16 bytes. It recommends that the encryption key size is 16 bytes
because the short encryption key size causes to reject access to the remote device.

5. Type of key exchanged by pairing

Table 9.7 shows the type of keys which local device distributes and requests the remote device to distribute
in pairing.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 131 of 189

Mar.25.21

Table 9.7 Key Type

Key type Settings

LTK BLE_GAP_KEY_DIST_ENCKEY(0x01)

IRK BLE_GAP_KEY_DIST_IDKEY(0x02)

CSRK BLE_GAP_KEY_DIST_SIGNKEY(0x04)

6. Key Press Notification support

Key Press Notification is used when Passkey Entry is selected according to “9.1.6 Pairing method”. If Key
Press Notification is supported, the event is notified to the remote device when the local device key is
pressed. Specify the feature support with the value in Table 9.8.

Table 9.8 Key Press Notification support

Key Press Notification Support Value

Not Support BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT(0x00)

Support BLE_GAP_SC_KEY_PRESS_NTF_SPRT(0x01)

If the Abstraction API is enabled, the Key Press Notification support is fixed to “Not Support”.

7. LE Secure Connections Requirement

Determine whether pairing is permitted by only LE Secure Connections or not with the parameter in Table
9.9.

Table 9.9 Secure Connections Only Requirement

LE Secure Connections Only Requirement Value

Depending on the remote device BLE_GAP_SC_BEST_EFFORT(0x00)

Required BLE_GAP_SC_STRICT(0x01)

An example of setting the pairing parameters by R_BLE_GAP_SetPairingParams is shown below.
st_ble_gap_pairing_param_t pairing_param = {
 .iocap = BLE_GAP_IOCAP_NOINPUT_NOOUTPUT,
 .mitm = BLE_GAP_SEC_MITM_BEST_EFFORT,
 .bonding = BLE_GAP_BONDING,
 .max_key_size = 16,
 .min_key_size = 16,
 .loc_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .rem_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .key_notf = BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT,
 .sec_conn_only = BLE_GAP_SC_BEST_EFFORT,
};

R_BLE_GAP_SetPairingParams(&pairing_param);

Code 9-1 An example of setting pairing parameter

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 132 of 189

Mar.25.21

9.1.2 Key generation and registration

Generate IRK and CSRK distributed by “9.1.7 Key exchange”. The random number generated by
R_BLE_VS_GetRand can be used as IRK or CSRK. The generated keys are registered by the APIs in Table
9.10.

Table 9.10 The APIs used for key generation

Key API for key generation

IRK R_BLE_ABS_SetLocPrivacy*1 or
R_BLE_GAP_SetLocIdInfo

CSRK R_BLE_GAP_SetLocCsrk
*1 : R_BLE_ABS_SetLocPrivacy generates and registers the local device IRK.

An example of key generation and registry is shown below.
/** some code is omitted **/
/* IRK generation */
R_BLE_VS_GetRand(0x10);
/** some code is omitted **/

/* Vendor Specific Callback function */
void vscb(uint16_t event_type, ble_status_t result,
 st_ble_vs_evt_data_t * p_event_data)
{

 /** some code is omitted **/
 case BLE_VS_EVENT_GET_RAND
 {
 st_ble_vs_get_rand_comp_evt_t * p_rand_param;
 p_rand_param = (st_ble_vs_get_rand_comp_evt_t *)p_event_data->p_param;
 /* register local IRK and identity address */
 R_BLE_GAP_SetLocIdInfo(&loc_bd_addr, p_rand_param);
 } break;

 /** some code is omitted **/
}

Code 9-2 An example of key generation and registry

If the application does not use RPA (Resolvable Private Address), it does not need to generate and register
the local device IRK. If the application does not communicate with the signed data, it does not need to
generate and register the local device CSRK. It does not need to generate and register the local device LTK
on the application before start pairing.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 133 of 189

Mar.25.21

9.1.3 OOB (Out of Band) data transmission and reception

If local device and remote device have a common means of communications except Bluetooth (OOB) , the
data for pairing can be transmitted and received by OOB. The data consists of confirm value (16 bytes) and
random value (16 bytes). It needs to meet the condition in Table 9.11 to do pairing by OOB. If OOB is
available, the data is transmitted and received before starting pairing.

Table 9.11 The condition to do pairing by OOB

Pairing mechanism Condition

LE Secure Connections The one device can transmit the data for pairing by OOB and the other can receive it.

LE legacy pairing Both devices can transmit and receive the data for pairing by OOB.

When pairing data is received from the remote device by OOB, register the remote device address and
received data with R_BLE_GAP_SetRemOobData. This informs the remote device that OOB was able to
receive the data when exchanging the pairing parameters.
If the local device sends data by OOB, call R_BLE_GAP_CreateScOobData. This API generates confirm
value (16 bytes) and random value (16 bytes) according to SMP specifications. When data generation is
complete, the BLE_GAP_EVENT_SC_OOB_CREATE_COMP event is notified. Send the generated data in
OOB to the remote device.

9.1.4 Pairing request

Call the below APIs to request to start pairing from local device.
R_BLE_ABS_StartAuth
R_BLE_GAP_StartPairing

The APIs can be called from both Central and Peripheral.

9.1.5 Response to pairing request

If a pairing request is received from a remote device, BLE_GAP_EVENT_PAIRING_REQ event is notified.
Respond with the request event by R_BLE_GAP_ReplyPairing.

An example of responding a pairing request is shown as below.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 case BLE_GAP_EVENT_PAIRING_REQ :
 {
 st_ble_gap_pairing_info_evt_t * p_param;
 p_param = (st_ble_gap_pairing_info_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyPairing(p_param->conn_hdl, BLE_GAP_PAIRING_ACCEPT);
 }
 break;
 /** some code is omitted **/

Code 9-3 Response to a pairing request

If the Abstraction API is enabled, when receiving BLE_GAP_EVENT_PAIRING_REQ event, call
R_BLE_GAP_ReplyPairing to automatically respond to a pairing request.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 134 of 189

Mar.25.21

9.1.6 Pairing method

By starting pairing or responding to pairing request, local device and the remote device exchange pairing
parameters. After exchanging the parameters, both devices select a pairing method in Table 9.12 and
perform the pairing method.

Table 9.12 Pairing Method

Pairing Method Description MITM Protection
OOB The application does not need to handle the pairing,

because the BLE Protocol Stack processes the OOB data
previously received/transmitted.

Enable

Passkey Entry The one device displays a 6-digit number, the other inputs
the number.

Enable

Numeric Comparison Both devices display a 6-digit number. Check if two
numbers are same.

Enable

Just Works The application does not need to handle the pairing,
because it is automatically performed.

Disable

According to 1-3, the pairing method is determined.
1. If the OOB data is received/transmitted before pairing, the OOB pairing method is selected.

2. If the OOB data is not received/transmitted and both devices do not require the MITM protection, the
Just Works pairing method is selected.

3. If the OOB data is not received/transmitted and which device requires the MITM protection, the
pairing method is determined according to Table 9.13.

Table 9.13 Pairing Method Selection

Peripheral Central

DisplayOnly DisplayYesNo KeyboardOnly NoInputNoOutput KeyboardDisplay

DisplayOnly Just Works Just Works Passkey Entry Just Works Passkey Entry

DisplayYesNo Just Works Just Works
(LE legacy pairing)

Passkey Entry Just Works Passkey Entry
(LE legacy pairing)

Numeric Comparison
(LE Secure

Connections)

Numeric Comparison
(LE Secure

Connections)

KeyboardOnly Passkey
Entry

Passkey Entry Passkey Entry Just Works Passkey Entry

NoInputNoOutput Just Works Just Works Just Works Just Works Just Works

KeyboardDisplay Passkey
Entry

Passkey Entry
(LE legacy pairing)

Passkey Entry Just Works Passkey Entry
(LE legacy pairing)

Numeric Comparison
(LE Secure

Connections)

Numeric Comparison
(LE Secure

Connections)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 135 of 189

Mar.25.21

The pairing events and the API used for the response differ from the selected pairing method.

⚫ Just Works, OOB
No events are notified to an application. It is not necessary to respond with APIs.

⚫ Passkey Entry
[Input device]
BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event which requires to input 6-digit number is notified to
an application. If the application receives the event and the remote device displays a 6-digit number, the
application inputs the number by R_BLE_GAP_ReplyPasskeyEntry. By input “gap auth passkey
xxxxxx(6-digit passkey)”, the command line feature calls R_BLE_GAP_ReplyPasskeyEntry to respond to
BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event.
If the Key Press Notification support is ON(Table 9.8), the type of the input keys is notified to the remote
device.

[Display device]
BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ event which requires to display 6-digit number is notified
to an application. If the application receives the event, display the number. When the command line is
enabled, the 6-digit number is shown. If remote device supports the Key Press Notification feature, the
input key information is notified to the application with BLE_GAP_EVENT_KEY_PRESS_NTF event. After
the remote device has completed to input the keys, continue to the next section.

⚫ Numeric Comparison
BLE_GAP_EVENT_NUM_COMP_REQ event which requires to check whether the number displayed on
both devices are same. If the application receives the event, display the number. After checking the
number displayed on the remote device, send the result by R_BLE_GAP_ReplyNumComp.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 136 of 189

Mar.25.21

9.1.7 Key exchange

After the completion of the pairing method, both devices exchange keys. The link with the remote device is
encrypted before key exchange and the completion is notified by BLE_GAP_EVENT_ENC_CHG event.
When the keys are distributed from the remote device, BLE_GAP_EVENT_PEER_KEY_INFO event is
notified. Refer to “9.2.1 Store local device keys” for storing the keys received in the event.

When the local device is required to distribute the keys, BLE_GAP_EVENT_EX_KEY_REQ event is notified.
The local device responds to the request with R_BLE_GAP_ReplyExKeyInfoReq. An example of the
response to the key distribution request is shown below.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 case BLE_GAP_EVENT_EX_KEY_REQ :
 {
 st_ble_gap_conn_hdl_evt_t * p_param;
 p_param = (st_ble_gap_conn_hdl_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyExKeyInfoReq(p_param->conn_hdl);
 }
 break;
 /** some code is omitted **/

Code 9-4 Sample of responding to a key distribute request

If the Abstraction API is enabled, when BLE_GAP_EVENT_EX_KEY_REQ is notified, call
R_BLE_GAP_ReplyExKeyInfoReq to automatically respond to the key distribution request.

9.1.8 Completion of pairing

When pairing has been completed, the BLE_GAP_EVENT_PAIRING_COMP event is notified. If the pairing
is successful, the event result is BLE_SUCCESS(0x00). Any other value indicates a pairing failure.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 137 of 189

Mar.25.21

9.2 Bonding

The bonding process stores the keys exchanged during pairing. Because of bonding, pairing does not need
to be done in reconnecting a paired device. Figure 9.2 shows the procedure of bonding and reset the keys to
the BLE Protocol Stack.

Note: RE01B does not have a data flash area, so writing bonding information to the non-volatile area is

currently not supported. Bonding information is store only in RAM and is erased when the power is

turned off.

Figure 9.2 Boding procedure

Start Pairing

Complete pairing

Store remote device keys

Store remote device
key information

Generate local device keys

Store local device keys

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 138 of 189

Mar.25.21

9.2.1 Store local device keys

If the local device uses the privacy feature, the IRK and the identity address registered by
R_BLE_GAP_SetLocIdInfo or R_BLE_ABS_SetLocPrivacy need to be stored.
If the local device sends/receives signed data packets, the CSRK registered by R_BLE_GAP_SetLocCsrk
needs to be stored.

9.2.2 Store remote device keys

Store remote device keys and key information received by the following events.
BLE_GAP_EVENT_PEER_KEY_INFO (key)
BLE_GAP_EVENT_PAIRING_COMP (key information)

An example of storing remote device keys is shown in below.
case BLE_GAP_EVENT_PAIRING_COMP :
 {
 if(BLE_SUCCESS == event_result)
 {
 st_ble_gap_pairing_info_evt_t * p_param;
 p_param = (st_ble_gap_pairing_info_evt_t *)p_event_data->p_param;
 /* Add code storing p_param->auth_info. */
 }
 }
 break;

case BLE_GAP_EVENT_PEER_KEY_INFO :
 {
 st_ble_gap_peer_key_info_evt_t * p_param;
 p_param = (st_ble_gap_peer_key_info_evt_t *)p_event_data->p_param;
 /* Add code storing p_param->key_ex_param. */

 }
 break;

Code 9-5 Sample of storing received keys

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 139 of 189

Mar.25.21

9.3 Encryption

Bluetooth LE enables secure communication by encrypting data packets.
The encryption in reconnection after pairing uses the key exchanged by pairing.

9.3.1 Request Encryption

After pairing and bonding, call the one of the following APIs to request encryption when the local device
reconnects with the remote device.
R_BLE_ABS_StartAuth
R_BLE_GAP_StartEnc

Depending on the remote device implementation, the remote device does not respond an encryption request
from a peripheral device. In this case, if the above API is called, pairing may start.

The encryption request sequence is shown below.

(1) Encryption request from local device(master)

Figure 9.3 Sequence of encryption request from local device(master)

R_BLE &

Host Stack
ControllerApp Slave A

Link Established

R_BLE_GAP_StartEnc()

[Encryption

from Master]

LTK exchanged

R_BLE API

R_BLE Event

HCI_LE_Start_Encryption

LL_ENC_REQ

LL_ENC_RSP

HCI_Command_Status

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_ENC_CHG

ABS API

R_BLE_ABS_StartAuth()

ABS API

R_BLE_GAP_GetDevSecInfo()

R_BLE_GAP_StartEnc()

Use ABS API

Not use ABS API

alt

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 140 of 189

Mar.25.21

(2) Encryption request from local device(slave)

Figure 9.4 Sequence of encryption request from local device(slave)

9.3.2 Respond to an encryption request

When receiving an encryption request from a remote device, BLE_GAP_EVENT_LTK_REQ event is notified.
Call R_BLE_GAP_ReplyLtkReq with the parameter notified the event to respond to the encryption request. If
the encryption is complete successfully, BLE_GAP_EVENT_LTK_RSP_COMP event is notified. If it fails,
remove the remote device LTK and do pairing again.

An example of an encryption request event and respond API is shown below.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result,
 st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 /* Receive encryption request from a remote device */
 case BLE_GAP_EVENT_LTK_REQ :
 {
 st_ble_gap_ltk_req_evt_t * p_param;
 p_param = (st_ble_gap_ltk_req_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyLtkReq(p_param->conn_hdl, p_param->ediv,
 p_param->p_peer_rand, BLE_GAP_LTK_REQ_ACCEPT);
 }
 break;
 /** some code is omitted **/

Code 9-6 Sample of responding an encryption request in the event

R_BLE &

Host Stack
ControllerABS API Master A

R_BLE_GAP_Reply_LTK_Req()

[Encryption

from Slave]

R_BLE API

R_BLE Event

HCI_LE_Long_Term_Key_Request_Reply

LL_ENC_REQ

LL_ENC_RSP

HCI_LE_Long_Term_Key_Request

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_LTK_REQ

HCI_Command_Complete

BLE_GAP_EVENT_ENC_CHG

R_BLE_GAP_StartEnc()

security request
LL_Data_Packet / LL_Ack

ABS API

App

R_BLE_GAP_StartEnc()

R_BLE_GAP_GetDevSecInfo()
R_BLE_ABS_StartAuth()

Use ABS API

R_BLE_GAP_Reply_LTK_Req()

BLE_GAP_EVENT_LTK_REQ

Link Established

LTK exchanged

Not use ABS API

Use ABS API

Not use ABS API

alt

alt

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 141 of 189

Mar.25.21

If using Abstraction API, it automatically responds with a remote device.

The local device requires to respond to the encryption request when it reconnects to a paired smart phone.
The sequence of response to an encryption request is shown below.

(1) Response to an encryption request from remote device(master)

Figure 9.5 Sequence of response to an encryption request from remote device(master)

(2) Response to an encryption request from remote device(slave)

Figure 9.6 Sequence of response to an encryption request from remote device(slave)

R_BLE &

Host Stack
ControllerApp Master A

R_BLE_GAP_Reply_LTK_Req()

[Encryption

from Slave]

R_BLE API

R_BLE Event

HCI_LE_Long_Term_Key_Request_Reply

LL_ENC_REQ

LL_ENC_RSPHCI_LE_Long_Term_Key_Request

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_LTK_REQ

HCI_Command_Complete

BLE_GAP_EVENT_ENC_CHG

ABS API

Link Established

LTK exchanged

BLE_GAP_EVENT_LTK_REQ

R_BLE_GAP_Reply_LTK_Req()

Use ABS API

Not use ABS API

alt

R_BLE &

Host Stack
ControllerABS API Slave A

[Encryption

from Master]

R_BLE API

R_BLE Event

HCI_LE_Start_Encryption

LL_ENC_REQ

LL_ENC_RSP

HCI_Command_Status

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_ENC_CHG

LL_Data_Packet / LL_Ack
security request

BLE_GAP_EVENT_PAIRING_REQ

App

Link Established

LTK exchanged

R_BLE_GAP_ReplyPairing()

BLE_GAP_EVENT_PAIRING_REQ

Confirm that

pairing has been done.

R_BLE_GAP_ReplyPairing()

Use ABS API

Not use ABS API

alt

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 142 of 189

Mar.25.21

9.3.3 Completion of encryption

If the encryption has been completed successfully, BLE_GAP_EVENT_ENC_CHG event is notified. If the
encryption has been failed because the remote device lost the LTK, BLE_GAP_EVENT_PAIRING_COMP
event with result: BLE_ERR_SMP_LE_LOC_KEY_MISSING(0x2014) is notified. If the event is received,
delete the local device LTK and do pairing again and encrypt.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 143 of 189

Mar.25.21

9.4 Privacy

The privacy feature allows local device to change the address not to be identified from other devices. There
are two privacy mode: Network Privacy Mode and Device Privacy Mode. In Network Privacy Mode, both local
device and remote device use RPA. In Device Privacy Mode, only local device uses RPA. Default is Network
Privacy Mode.

The following describes how to use the privacy feature.

9.4.1 Generate and resolve local device RPA

Before local device uses RPA, perform the following step1-4. The API calls in step 1-4 can replace
R_BLE_ABS_SetLocPrivacy.

1. Register local device key (IRK) and BD address

Call R_BLE_VS_GetRand to generate the random value (16 bytes) notified by

BLE_VS_EVENT_GET_RAND event as IRK. The IRK and identity address are registered by

R_BLE_GAP_SetLocIdInfo into the BLE Protocol Stack. The IRK is distributed to the remote device in

pairing.

2. Register the IRK in the Resolving List

Call R_BLE_GAP_ConfRslvList to register the IRK generated by 1 in the Resolving List. A set of

identity address and IRK of a remote device needs to be registered to associate with the local device

IRK. If only the local device is uses RPA or it is in unpaired state, register a dummy remote device

identity address and IRK to associate with the local device IRK. The completion is notified by

BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event.

3. Set Privacy Mode

If Network Privacy Mode which is the default is used, the procedure does not need to be done.

Call R_BLE_GAP_SetPrivMode to set the privacy mode. The completion is notified by

BLE_GAP_EVENT_PRIV_MODE_SET_COMP event.

4. Start RPA feature

Call R_BLE_GAP_EnableRpa to enable the RPA generation and resolution. The completion is notified

by BLE_GAP_EVENT_RPA_EN_COMP event.

An example of the 1-4 procedure is shown below.
/** some code is omitted **/
#include "sec_data/r_ble_sec_data.h"
/** some code is omitted **/
st_ble_dev_addr_t gs_loc_bd_addr;
st_ble_dev_addr_t gs_rem_bd_addr;

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .p_addr = &gs_rem_bd_addr,
 .o_addr_type = BLE_GAP_ADDR_RPA_ID_PUBLIC,
 /** some code is omitted **/
};
/** some code is omitted **/

/* Vendor Specific callback function */
void vscb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 /** some code is omitted **/
 case BLE_VS_EVENT_GET_RAND :
 {
 st_ble_vs_get_rand_comp_evt_t * p_rand_param;
 p_rand_param = (st_ble_vs_get_rand_comp_evt_t *)p_data->p_param;
 R_BLE_GAP_SetLocIdInfo(&gs_loc_bd_addr, p_rand_param->p_rand);

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 144 of 189

Mar.25.21

 /* store local id info */
 R_BLE_SECD_WriteLocInfo(&gs_loc_bd_addr, p_rand_param->p_rand, NULL);

 /* Dummy remote address & remote IRK */
 st_ble_gap_rslv_list_key_set_t peer_irk;

 memset(peer_irk.remote_irk, 0xAA, BLE_GAP_IRK_SIZE);
 peer_irk.local_irk_type = BLE_GAP_RL_LOC_KEY_REGISTERED;
 memset(gs_rem_bd_addr.addr, 0x55, BLE_BD_ADDR_LEN);
 gs_rem_bd_addr.type = BLE_GAP_ADDR_PUBLIC;

 /* Add local IRK to resolving list */
 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV, &gs_rem_bd_addr, &peer_irk, 1);
 }
 break;
 /** some code is omitted **/
 }
}

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 /** some code is omitted **/
 case BLE_GAP_EVENT_RSLV_LIST_CONF_COMP :
 {
 st_ble_gap_rslv_list_conf_evt_t * p_rslv_list_conf;
 p_rslv_list_conf = (st_ble_gap_rslv_list_conf_evt_t *)p_data->p_param;
 if(BLE_GAP_LIST_ADD_DEV == p_rslv_list_conf->op_code)
 {
 uint8_t priv_mode;
 priv_mode = BLE_GAP_NET_PRIV_MODE ;

 /* Set Network Privacy Mode. */
 R_BLE_GAP_SetPrivMode(&gs_rem_bd_addr, &priv_mode, 1);
 }
 }
 break;

 case BLE_GAP_EVENT_PRIV_MODE_SET_COMP :
 {
 /* Enable RPA. */
 R_BLE_GAP_EnableRpa(BLE_GAP_RPA_ENABLED);
 }
 break;

 case BLE_GAP_EVENT_LOC_VER_INFO:
 {
 st_ble_gap_loc_dev_info_evt_t * ev_param;
 ev_param = (st_ble_gap_loc_dev_info_evt_t *)p_data->p_param;
 gs_loc_bd_addr = ev_param->l_dev_addr;
 /* Generate IRK */
 R_BLE_VS_GetRand(BLE_GAP_IRK_SIZE);
 } break;

 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 /* Start advertising */
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;
 /** some code is omitted **/
 }
}

Code 9-7 Prepare for using RPA in the local device (1)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 145 of 189

Mar.25.21

An example using R_BLE_ABS_SetLocPrivacy is shown below.
/** some code is omitted */
st_ble_dev_addr_t gs_rem_bd_addr;

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .p_addr = &gs_rem_bd_addr,
 .o_addr_type = BLE_GAP_ADDR_RPA_ID_PUBLIC,
 /** some code is omitted */
};
/** some code is omitted */

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 case BLE_GAP_EVENT_LOC_VER_INFO:
 {
 R_BLE_ABS_SetLocPrivacy(NULL, BLE_GAP_DEV_PRIV_MODE);
 } break;

 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 /* Start advertising */
 memset(gs_adv_param.p_addr->addr, 0x55, BLE_BD_ADDR_LEN);
 gs_adv_param.p_addr->type = BLE_GAP_ADDR_PUBLIC;
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;
 /** some code is omitted */
 }
}

Code 9-8 Prepare for using RPA in the local device (2)

When the local device Advertising or Scan or Connection operation with specified the RPA as own address,
the packet includes the RPA.

[Advertising]
When setting the advertising parameters by R_BLE_GAP_SetAdvParam, configure the parameters in Table
5.4.

[Scan]
When setting the scan parameters by R_BLE_GAP_StartScan, configure RPA as own address type.

[Connection]
When create a connection by R_BLE_GAP_CreateConn, configure RPA as own address type.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 146 of 189

Mar.25.21

9.4.2 Resolve remote device RPA

Remote device RPA is resolved according to the following procedure.

1. Start RPA feature

Call R_BLE_GAP_EnableRpa to enable the RPA generation and resolution. The completion is notified

by BLE_GAP_EVENT_RPA_EN_COMP event.

2. Pairing

Receive the remote device IRK and identity address by pairing.

3. Register remote device key (IRK) and BD address

Call R_BLE_GAP_ConfRslvList to register the remote device IRK and identity address in the

Resolving List. The local device IRK is also registered at that time. If the local device does not use

RPA, register a dummy IRK. The completion of the registry is notified by

BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event.

4. Set Privacy Mode

If Network Privacy Mode which is the default is used, the procedure does not need to be done.

Call R_BLE_GAP_SetPrivMode to set the privacy mode. The completion is notified by

BLE_GAP_EVENT_PRIV_MODE_SET_COMP event.

5. Resolve RPA

After the 1-3 procedure, the BLE Protocol Stack can resolve the remote device RPA included in the

received packet. Because of RPA resolution, the remote device address included in the event notified

to the application becomes identity address.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 147 of 189

Mar.25.21

10. Profile and service

Profiles in Bluetooth LE communication are mechanisms for ensuring interoperability between devices by
defining the services and communication protocols that application share. Profile-based data communication
is achieved by accessing a common data structure called GATT database. As shown in Figure 10.1, the
GATT database consists of one or more multiple services and the characteristics they contain. Services
consist of one or more characteristic that enable profile functionality, and characteristics define data
structures and access procedures. The procedure for accessing characteristics is called GATT procedure,
and this procedure defines how to send and receive data.

The user profile can be designed using QE for BLE. For information on how to design profiles using QE for
BLE, refer “RE01B Group Bluetooth Low Energy Profile Developer’s Guide (R01AN5638)”.

This chapter introduces the profiles and services provided by Renesas and explains APIs for each GATT
procedure including examples of how to use them.

Figure 10.1 Data structure of GATT database

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 148 of 189

Mar.25.21

10.1 Standard profile and Standard Service

Standard profiles and services can be used in user applications using QE for BLE. RE01B supports the
standard profiles and services listed in Table 10.1. Table 10.2 lists the characteristics that make up each
standard service.

Table 10.1 Profile supported by RE01B

Usage Profile Service

Healthcare

Blood Pressure Profile BLS DIS

Health Thermometer Profile HTS DIS

Heart Rate Profile HRS DIS

Glucose Profile GLS DIS

Pulse Oximeter Profile
PLXS DIS BAS CTS

BMS

Continuous Glucose Monitoring Profile CGMS DIS BMS

Reconnection Configuration Profile RCS BMS

Insulin Delivery Profile
IDS DIS BAS CTS

BMS IAS

Sports and Fitness

Cycling Power Profile CPS DIS BAS

Cycling Speed and Cadence Profile CSCS DIS

Running Speed and Cadence Profile RSCS DIS

Location and Navigation Profile LNS DIS BAS

Weight Scale Profile
WSS BCS DIS BAS

CTS UDS

Fitness Machine Profile FTMS DIS UDS

Environmental Sensing Profile ESS DIS BAS

Radio tag
Find Me Profile IAS

Proximity Profile IAS LLS TPS

Smartphone

Alert Notification Profile ANS

Phone Alert Status Profile PASS

Time Profile CTS NDCS RTUS

HID (Human
Interface Device)

HID over GATT Profile HIDS DIS BAS

Scan Parameters Profile SCPS

Industrial equipment Automation IO Profile AIOS

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 149 of 189

Mar.25.21

Table 10.2 Structure of standard service

Service Characteristic GATT Procedure

Alert Notification Service

ANS

Supported New Alert Category Read

New Alert Notify

Supported Unread Alert Category Read

Unread Alert Status Notify

Automation IO Service

AIOS

Digital 0 Read, Write, WriteWithoutResponse,
Notify

Digital 1 Read, Write, WriteWithoutResponse,
Notify

Analog 0 Read, Write, WriteWithoutResponse,
Notify

Analog 1 Read, Write, WriteWithoutResponse,
Notify

Aggregate Read, Notify

Battery Service

BAS

Battery Level Read, Notify

Blood Pressure Service

BLS

Blood Pressure Measurement Indicate

Intermediate Cuff Pressure Notify

Blood Pressure Feature Read

Body Composition
Service

BCS

Body Composition Feature Read

Body Composition Measurement Indicate

Continuous Glucose
Monitoring Service

CGMS

CGM Measurement Notify

CGM Feature Read

CGM Status Read

CGM Session Start Time Read, Write

CGM Session Run Time Read

Record Access Control Point Write, Indicate

CGM Specific Ops Control Point Write, Indicate

Current Time Service

CTS

Current Time Read, Write, Notify

Local Time Information Read, Write

Reference Time Information Read

Cycling Power Service

CPS

Cycling Power Measurement Notify, Broadcast

Cycling Power Feature Read

Sensor Location Read

Cycling Power Vector Notify

Cycling Power Control Point Write, Indicate

Cycling Speed and
Cadence Service

CSCS

CSC Measurement Notify

CSC Feature Read

Sensor Location Read

SC Control Point Write, Indicate

Device Information Manufacturer Name String Read

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 150 of 189

Mar.25.21

Service Characteristic GATT Procedure

Service

DIS
Model Number String Read

Serial Number String Read

Hardware Revision String Read

Firmware Revision String Read

Software Revision String Read

System ID Read

IEEE 11073-20601 Regulatory
Certification Data List

Read

PnP ID Read

Environmental Sensing
Service

ESS

Descriptor Value Changed Indicate

Temperature 0 Read, Notify

Temperature 1 Read, Notify

Elevation 0 Read, Notify

Elevation 1 Read, Notify

Fitness Machine Service

FTMS

Fitness Machine Feature Read

Treadmill Data Notify

Cross Trainer Data Notify

Step Climber Data Notify

Stair Climber Data Notify

Rower Data Notify

Indoor Bike Data Notify

Training Status Read, Notify

Supported Speed Range Read

Supported Inclination Range Read

Supported Resistance Level Range Read

Supported Power Range Read

Supported Heart Rate Range Read

Fitness Machine Control Point Write, Indicate

Fitness Machine Status Notify

GAP Service

GAP

Device Name Read, Write

Appearance Read

Peripheral Preferred Connection
Parameters

Read

Central Address Resolution Read

Resolvable Private Address Only Read

GATT Service

GATT
Service Changed Indicate

Glucose Service

GLS

Glucose Measurement Notify

Glucose Measurement Context Notify

Glucose Feature Read

Record Access Control Point Write, Indicate

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 151 of 189

Mar.25.21

Service Characteristic GATT Procedure

Health Thermometer
Service

HTS

Temperature Measurement Indicate

Temperature Type Read

Intermediate Temperature Notify

Measurement Interval Read, Write, Indicate

Heart Rate Service

HRS

Heart Rate Measurement Notify

Body Sensor Location Read

Heart Rate Control Point Write

Human Interface Device
Service

HIDS

Protocol Mode Read, WriteWithoutResponse

Report Read, Write, Notify

Report Map Read

Boot Keyboard Input Report Read, Write, Notify

Boot Keyboard Output Report Read, Write, WriteWithoutResponse

Boot Mouse Input Report Read, Write, Notify

HID Information Read

HID Control Point WriteWithoutResponse

Immediate Alert Service

IAS
Alert Level WriteWithoutResponse

Insulin Delivery Service

IDS

IDD Status Changed Read, Indicate

IDD Status Read, Indicate

IDD Annunciation Status Read, Indicate

IDD Features Read

IDD Status Reader Control Point Write, Indicate

IDD Command Control Point Write, Indicate

IDD Command Data InformativeText, Notify

IDD Record Access Control Point Write, Indicate

IDD History Data InformativeText, Notify

Link Loss Service

LLS
Alert Level Read, Write

Location and Navigation
Service

LNS

LN Feature Read

Location and Speed Notify

Position Quality Read

LN Control Point Write, Indicate

Navigation Notify

Next DST Change
Service

NDCS

Time with DST Read

Object Transfer Service

OTS

OTS Feature Read

Object Name Read, Write

Object Type Read

Object Size Read

Object First-Created Read, Write

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 152 of 189

Mar.25.21

Service Characteristic GATT Procedure

Object Last-Modified Read, Write

Object ID Read

Object Properties Read, Write

Object Action Control Point Write, Indicate

Object List Control Point Write, Indicate

Object List Filter 0 Read, Write

Object List Filter 1 Read, Write

Object List Filter 2 Read, Write

Object Changed Indicate

Phone Alert Status
Service

PASS

Alert Status Read, Notify

Ringer Setting Read, Notify

Ringer Control point WriteWithoutResponse

Pulse Oximeter Service

PLXS

PLX Spot-Check Measurement Indicate

PLX Continuous Measurement Notify

PLX Features Read

Record Access Control Point Write, Indicate

Reconnection
Configuration Service

RCS

RC Feature Read

RC Settings Read, Notify

Reconnection Configuration Control
Point

Write, Indicate

Reference Time Update
Service

RTUS

Time Update Control Point WriteWithoutResponse

Time Update State Read

Running Speed and
Cadence Service

RSCS

RSC Measurement Notify

RSC Feature Read

Sensor Location Read

SC Control Point Write, Indicate

Scan Parameters
Service

SCPS

Scan Interval Window WriteWithoutResponse

Scan Refresh Notify

Tx Power Service

TPS
Tx Power Level Read

User Data Service

UDS

First Name Read, Write

Last Name Read, Write

Email Address Read, Write

Age Read, Write

Date of Birth Read, Write

Gender Read, Write

Weight Read, Write

Height Read, Write

VO2 Max Read, Write

Heart Rate Max Read, Write

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 153 of 189

Mar.25.21

Service Characteristic GATT Procedure

Resting Heart Rate Read, Write

Maximum Recommended Heart Rate Read, Write

Aerobic Threshold Read, Write

Anaerobic Threshold Read, Write

Sport Type for Aerobic and Anaerobic
Thresholds

Read, Write

Date of Threshold Assessment Read, Write

Waist Circumference Read, Write

Hip Circumference Read, Write

Fat Burn Heart Rate Lower Limit Read, Write

Fat Burn Heart Rate Upper Limit Read, Write

Aerobic Heart Rate Lower Limit Read, Write

Aerobic Heart Rate Upper Limit Read, Write

Anaerobic Heart Rate Lower Limit Read, Write

Anaerobic Heart Rate Upper Limit Read, Write

Five Zone Heart Rate Limits Read, Write

Three Zone Heart Rate Limits Read, Write

Two Zone Heart Rate Limit Read, Write

Database Change Increment Read, Write, Notify

User Index Read

User Control Point Write, Indicate

Language Read, Write

Weight Scale Service

WSS

Weight Scale Feature Read

Weight Measurement Indicate

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 154 of 189

Mar.25.21

10.2 APIs of GATT Procedure

QE for BLE generates APIs depending on the GATT procedure set to the characteristic. This section
describes how to implement each GATT procedure that can be configured from QE for BLE.
In following description, we will use function name and event name which will be generated from QE for BLE.
Abbreviation of the service is set to “XXX” and abbreviation of characteristic is set to “YYY” in QE for BLE.

10.2.1 Read operation

Read operation is procedure of the GATT client to check the data configured in the GATT database of the
GATT server. Using this procedure is recommended when checking the configuration and status of the
GATT server.

GATT server:
When GATT server receives “Read Request”, BLE Protocol Stack transmits “Read Response” with the value
set in the GATT database. The event “BLE_XXX_EVENT_YYY_READ_REQ” occurs after receiving “Read
Response” but before determining the data to be send in “Read Response”. If you want to change the data
to be transmitted, use function “R_BLE_XXX_SetYYY()” to change the value set in the GATT database. You
can also send errors by using the function “R_BLE_GATTS_SetErrRsp()”.

GATT client:
“Read Request” can be transmitted by using the function “R_BLE_XXX_ReadYYY()” in Application. The
event “BLE_XXX_EVENT_YYY_READ_RSP” notifies the data received in “Read Response” to the
application. The data notified in this event is in form of a structure in Field of QE for BLE because decode
function is used in BLE Protocol Stack. Read operation is completed when the event “BLE_XXX_EVENT
_YYY_READ_RSP” is notified. You can start following operation after this event.

Figure 10.2 Flow of Read operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 155 of 189

Mar.25.21

10.2.2 Write operation

Write operation is procedure to change the GATT database of the GATT server by sending data from the
GATT client. GATT client can check whether the submitted data is reflected in the GATT database in
response from the GATT server. Using this procedure is recommended when you want to change the
settings of the GATT server.

GATT server:
Data received in “Write Request” is notified to the application by the event
“BLE_XXX_EVENT_YYY_WRITE_REQ” and “BLE_XXX_EVENT_WRITE_COMP”. The data notified in this
event is in form of a structure in Field of QE for BLE because decode function is used in BLE Protocol Stack.
Event “BLE_XXX_EVENT_WRITE_REQ” is an event to check the data received by “Write Request” before
being written to the GATT database. If you receive invalid data, use function “R_BLE_GATTS_SetErrRsp()”
to send an error and the data would not be reflected in the GATT database. If you do not send an error, BLE
Protocol Stack sends “Write Response”, so you do not need to add any process to respond in application.
Event “BLE_XXX_EVENT_YYY_WRITE_COMP” is an event after the data received by “Write Request” is
reflected in the GATT database and “Write Response” is sent. Process that references GATT database
directly or corresponds to the data received by “Write Request” should be added after this event.

GATT client:
You can sent “Write Request” by using the function “R_BLE_XXX_WriteYYY()” in application. Result of the
Write operation can be checked by the event “BLE_XXX_EVENT_YYY_WRITE_RSP”. Write operation is
completed when the event “BLE_XXX_EVENT _YYY_WRITE_RSP” is notified. You can start following
operation after this event.

Figure 10.3 Flow of Write operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 156 of 189

Mar.25.21

10.2.3 WriteWithoutResponse operation

WriteWithoutResponse operation is procedure to change the GATT database of the GATT server by sending
data from the GATT client. Because there is no response from the GATT server, it is possible to continuously
transmit data from GATT client and lower power consumption of GATT server devices, while it is not possible
to verify that the data sent by GATT client is reflected in the GATT database. Using this procedure is
recommended when you need low power consumption on your device, or when you need to send data
continuously from GATT client.

GATT server:
Data received in “Write Command” is notified to application by the event
“BLE_XXX_EVENT_YYY_WRITE_CMD”. The data notified in this event is in form of a structure in Field of
QE for BLE because decode function is used in BLE Protocol Stack. When the event
“BLE_XXX_EVENT_YYY_WRITE_CMD” is notified, changes to the GATT database are not reflected, so do
not add any action that directly references the GATT database.

GATT client:
You can send “Write Command” by using the function “R_BLE_XXX_WriteWithoutResponseYYY()” in
application. WriteWithoutResponse operation is completed when the function
“R_BLE_XXX_WriteWithoutResponseYYY()” is used. You can start following operation after this event.

Figure 10.4 Flow of WriteWithoutResponse operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 157 of 189

Mar.25.21

10.2.4 Notification operation

Notification operation is procedure to send data from the GATT server to the GATT client. For Notification
operation, the CCCD must have been added as descriptor. The GATT client must also set the CCCD to the
appropriate value before the operation. Because there is no response from the GATT client, it is possible to
send data continuously from the GATT server, but it is not possible to verify that the GATT client received the
data sent from GATT server. Using this procedure is recommended when you want to send data
continuously from the GATT server.

GATT server:
Before the operation, verify that the CCCD has been changed to appropriate value. Make sure that
“BLE_GATTS_CLI_CNFG_NOTIFICATION (0x0001)” is written in the event
“BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP”, which is the event after the Write operation of
CCCD. You can send “Handle Value Notification” by using the function “R_BLE_XXX_NotifyYYY()”. If the
value of CCCD has not changed, the function “R_BLE_XXX_NotifyYYY()” returns the
macro ”BLE_ERR_INVALID_OPERATION” and does not send ” Handle Value Notification” from GATT
server. Notification operation is completed when the function “R_BLE_XXX_NotifyYYY()” is used. You can
start following operation after this event.

GATT client:
Before the operation, it is necessary to change the value of CCCD to the appropriate value. Write
“BLE_GATTS_CLI_CNFG_NOTIFICATION (0x0001)” to CCCD of characteristic which performs Notification
operation. Data received in “Handle Value Notification” is notified to the application by the event
“BLE_XXX_EVENT_YYY_HDL_VAL_NTF”. The data notified in this event is in form of a structure in Field of
QE for BLE because decode function is used in BLE Protocol Stack.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 158 of 189

Mar.25.21

Figure 10.5 Flow of Notification operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 159 of 189

Mar.25.21

10.2.5 Indication operation

Indication operation is procedure to send data from GATT server to GATT client. For Indication operation,
the CCCD must have been added as descriptor. The GATT client must also set the CCCD to the appropriate
value before the operation. GATT server can verify that GATT client has received data sent from GATT
server in a response from GATT client.

GATT server:
Before the operation, verify that the CCCD has been changed to appropriate value. Make sure that
“BLE_GATTS_CLI_CNFG_INDICTION (0x0002)” is written in the event
“BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP”, which is the event after the Write operation of
CCCD. You can send “Handle Value Indication” by using the function “R_BLE_XXX_IndicateYYY()”. If the
value of CCCD has not changed, the function “R_BLE_XXX_IndicateYYY()” returns the
macro ”BLE_ERR_INVALID_OPERATION” and does not send ”Handle Value Indication” from GATT server.
Indication operation is completed when the event “BLE_XXX_EVENT_YYY_HDL_VAL_CNF” is notified. You
can start following operation after this event.

GATT client:
Before the operation, it is necessary to change the value of CCCD to the appropriate value. Write
“BLE_GATTS_CLI_CNFG_INDICATION (0x0002)” to CCCD of characteristic which performs Indication
operation. Data received in “Handle Value Indication” is notified to the application by the event
“BLE_XXX_EVENT_YYY_HDL_VAL_IND”. The data notified in this event is in form of a structure in Field of
QE for BLE because decode function is used in BLE Protocol Stack. After the event
“BLE_XXX_EVENT_YYY_HDL_VAL_IND”, BLE Protocol Stack sends “Handle Value Confirmation”, so you
do not need to add any process to respond in application.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 160 of 189

Mar.25.21

Figure 10.6 Flow of Indication operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 161 of 189

Mar.25.21

10.2.6 ReliableWrite operation

The ReliableWrite operation is procedure to send data from GATT client to GATT server, ensure that the
correct values are written, and then reflect it in the GATT database. There are two steps for ReliableWrite
operation. In first step, GATT client sends data using “Prepare Write Request” and GATT server holds it in
queue. GATT client can verify that the correct data is being written in “Prepare Write Response”. In second
step, GATT server reflects the data held in queue in GATT database when receives “Execute Write
Request”. Using this procedure is recommended when you want to highly reliable data communication.
APIs of ReliableWrite operation is not included in the API of service generated from QE for BLE, so it must
be implemented using APIs from BLE Protocol Stack. In addition, Characteristic Extended Properties
Descriptor must have been added as a descriptor for ReliableWrite operation.

GATT server:
Before the operation, reserve a queue for receiving data using function
“R_BLE_GATTS_SetPrepareQueue()”. Size of the queue to be reserved should be greater than the total size
of the characteristic which is able to ReliableWrite operation (if the total size is 6, specify value greater than
or equal to 7). Data received in “Prepare Write Request” is notified to the application in the event
“BLE_XXX_EVENT_YYY_WRITE_REQ”. The event “BLE_XXX_EVENT_YYY_WRITE_COMP” notifies the
application that GATT server received “Execute Write Request” and data held in the queue is reflected in
GATT database.

GATT client:
You can send “Prepare Write Request” using the function “R_BLE_GATTC_ReliableWrites()” in application.
You can receive “Prepare Write Response” for each data transmitted, and you can check the data in the
event “BLE_GATTC_EVENT_RELIABLE_WRITE_TX_COMP”. After verifying that GATT server is receiving
the correct data, use the function “R_BLE_GATTC_ExecWrite()” to send “Execute Write Request” for
reflecting data in GATT database. If confirmed data is incorrect, use the function
“R_BLE_GATTC_ExecWrite()” to send “Execute Write Request” to discard the data held by GATT server.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 162 of 189

Mar.25.21

Figure 10.7 Flow of ReliableWrite operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 163 of 189

Mar.25.21

10.2.7 Broadcast Operation

Broadcast operation is procedure for transmitting data without connection to an unspecified number of
devices. The sender device is called Broadcaster and uses the Advertising operation. The receiver device is
called Observer and uses the Scan operation. Because of the communication without a connection, there is
no limit in number of devices that can communicate at once, but it cannot be guaranteed that the receiver
device is receiving data.

APIs of Broadcast operation is not included in the API of service generated from QE for BLE, so it must be
implemented using APIs from BLE Protocol Stack. In addition, Server Characteristic Configuration Properties
Descriptor must have been added as a descriptor for Broadcast operation.

GATT server (Broadcaster):
Advertising operation is used for sending data. For an overview of advertising operation, refer to “5.
Advertising”.
Note that when Advertising as Broadcast operation, there are following limitations:
⚫ For the advertising type specification (5.2.1), set adv_prop_type field with value indicated in “Non-

Connectable and Non-Scannable Undirected” or “Non-Connectable and Non-Scannable Directed” in
Table 5.1.

⚫ For Advertising Data configuration (5.7), you can communicate service data by setting AD structure
which has “service Data (0x16 for 16-bit UUIDs, 0x21 for 128-bit UUIDs)” for AD type and service
UUIDs and data for AD data. If you want to configure AD structure with AD type of ”Flags (0x01)”, do not
set “LE Limited Discoverable Mode” or “LE General Discoverable Mode”.

GATT client (Observer):
Scan operation is used for receiving data. For an overview of scan operation, refer to “6. Scan”. There are no
restrictions on the scan operation but set scan parameters so that you can receive the Advertising Event sent
by Broadcaster.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 164 of 189

Mar.25.21

Figure 10.8 Flow of Broadcast operation

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 165 of 189

Mar.25.21

10.3 Example of using GATT Procedure

In this section, we will show how to implement GATT procedure in user application with use cases using
LED Switch Service used in the demo application. Table 10.3 shows the configuration of the LED Switch
Service.

Table 10.3 Structure of LED Switch Service

Service Characteristic GATT Procedure

LED Switch Service

LSS

LED Blink Rate Read, Write

Switch State Notify

10.3.1 Example for sending data from GATT client

Use case: Change GATT server device’s LED blink rate by pushing GATT client device’s switch
Use LSS LED Blink Rate characteristic to change the blinking speed of the GATT server-side LED when the
switch on the GATT client-side board is pressed. After the switch is pressed, GATT client uses Read
operation to check the current LED Blink Rate value, and then uses Write operation to send the new value.
The GATT server changes the LED Blink speed by using received value.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 166 of 189

Mar.25.21

/* some code is omitted */

#include "timer/r_ble_timer.h"
static uint32_t gs_timer_hdl;
#include "board/r_ble_board.h"

/* some code is omitted */

static void timer_cb(uint32_t timer_hdl)
{
 R_BLE_BOARD_ToggleLEDState(BLE_BOARD_LED2);
}

/* some code is omitted */

static void lss_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t
*p_data)
{
 switch(type)
 {
 case BLE_LSS_EVENT_BLINK_RATE_WRITE_COMP:
 {
 uint8_t rate = *(uint8_t *)p_data->p_param;
 if (0 == rate)
 {
 R_BLE_TIMER_Stop(gs_timer_hdl);
 R_BLE_BOARD_SetLEDState(BLE_BOARD_LED2, false);
 }
 else
 {
 R_BLE_TIMER_UpdateTimeout(gs_timer_hdl, rate * 100);
 }
 } break;

 default:
 break;
 }
}

/* some code is omitted */
void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_TIMER_Init();
 R_BLE_TIMER_Create(&gs_timer_hdl, 1, BLE_TIMER_PERIODIC, timer_cb);

 R_BLE_BOARD_Init();

/* some code is omitted */
}

Code 10-1 Implementation in app_main.c for GATT server

Referring received data to timer

Blink LED in each callback of
Timer

Add library for using Timer and
LED

Initialization of Timer and
LED

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 167 of 189

Mar.25.21

/* some code is omitted */

#include "board/r_ble_board.h"
#define LED_RATE_LOW (0x01)
#define LED_RATE_HIGH (0xff)

/* some code is omitted */

static void sw_cb(void)
{
 R_BLE_LSC_ReadBlinkRate(g_conn_hdl);
}

/* some code is omitted */

static void lsc_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t
*p_data)
{
 switch(type)
 {
 case BLE_LSC_EVENT_BLINK_RATE_READ_RSP:
 {
 uint8_t read_rate = *(uint8_t *)p_data->p_param;
 uint8_t write_rate = 0;
 if (LED_RATE_LOW == read_rate)
 {
 write_rate = LED_RATE_HIGH;
 }
 else
 {
 write_rate = LED_RATE_LOW;
 }

 R_BLE_LSC_WriteBlinkRate(g_conn_hdl, &write_rate);
 } break;

 default:
 break;
 }
}

/* some code is omitted */

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_BOARD_Init();
 R_BLE_BOARD_RegisterSwitchCb(BLE_BOARD_SW2, sw_cb);

/* some code is omitted */
}

Code 10-2 Implementation in app_main.c for GATT client

Start Read operation in callback of
switch input

Start Write operation depending on
received value

Add library for using switch

Initialization of switch

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 168 of 189

Mar.25.21

10.3.2 Example for sending data from GATT server

Use case: Blink GATT client device’s LED by pressing GATT server device’s switch
Blink the GATT client-side LED using LSS Switch State characteristic each time a switch on the GATT
server-side board is pressed. GATT server sends the number of times it was pressed using the Notification
operation each time the switch is pressed. The GATT client side lights up when received value is odd
number and turns off received value is even number.

/* */

#include "board/r_ble_board.h"

/* some code is omitted */

static uint8_t switch_count = 0;

/* some code is omitted */

static void sw_cb(void)
{
 switch_count++;
 R_BLE_LSS_NotifySwitchState(g_conn_hdl, &switch_count);
}

/* some code is omitted */

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_BOARD_Init();
 R_BLE_BOARD_RegisterSwitchCb(BLE_BOARD_SW2, sw_cb);

/* some code is omitted */
}

Code 10-3 Implementation in app_main.c for GATT server

Start Notification operation in
callback of switch input

initialization of switch

Add library for using switch

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 169 of 189

Mar.25.21

/* some code is omitted */

#include "board/r_ble_board.h"

/* some code is omitted */

static void lsc_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t
*p_data)
{
 switch(type)
 {
 case BLE_LSC_EVENT_SWITCH_STATE_HDL_VAL_NTF:
 {
 uint8_t ntf_state = *(uint8_t *)p_data->p_param;
 if (ntf_state % 2 == 0)
 {
 R_BLE_BOARD_SetLEDState(BLE_BOARD_LED2, false);
 }
 else
 {
 R_BLE_BOARD_SetLEDState(BLE_BOARD_LED2, true);
 }

 } break;

 default:
 break;
 }
}

/* some code is omitted */

static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 static uint16_t s_cccd_req;
 s_cccd_req = BLE_GATTS_CLI_CNFG_NOTIFICATION;
 R_BLE_LSC_WriteSwitchStateCliCnfg(g_conn_hdl, &s_cccd_req);
 return;
}

/* some code is omitted */

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_BOARD_Init();

/* some code is omitted */

}

Code 10-4 Implementation in app_main.c for GATT client

Blink LED depending on
received value

Initialization of LED

Write CCCD after discovery
is completed

Add library for using
LED

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 170 of 189

Mar.25.21

11. Debugging

GATT Server application needs to confirm Advertising, Connection, GATT database, Indication, Notification,
Read Response, Write Response. Beacon Scanning and Data Comm Master of BTTS, and GATT Browser
are available.

The GATT Client application needs to confirm Scan, Connection, Service Discovery, Read Request, Write
Request, and Confirmation. Beacon Advertising and Data Comm Slave of BTTS are available.

Note: Not all functions can be evaluated with GATT Browser or BTTS.

Logger function is available for application survey. Using Logger function enables to output logs to the debug
console on e2studio or IAR.

As for GATT Browser, refer to "GATTBrowser for Android Smartphone Application Instruction manual
(R01AN3802)" or "GATTBrowser for iOS Smartphone Application Instruction manual (R21AN0017)".

As for BTTS, refer to "Bluetooth Test Tool Suite operating instructions (R01AN4554)". As for Logger function
details, refer to "3.7 Logger" in "Bluetooth Low Energy Sample code (using CMSIS Driver Package)
(R01AN5606)".

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 171 of 189

Mar.25.21

11.1 Using Logger function

If changing BLE_DEFAULT_LOG_LEVEL before including r_ble_logger.h, the log level can be changed. If it
is set to 0, the log output will be disabled. If the log level is set as 1, BLE_LOG_ERR, if set as 2,
BLE_LOG_ERR / BLE_LOG_WRN, if set as 3, BLE_LOG_ERR / BLE_LOG_WRN / BLE_LOG_DBG macro
functions are enabled, if setting as 4 or more and using BLE_LOG macro function, the log level can be
expanded.

If changing BLE_LOG_TAG before including r_ble_logger.h, the log tag can be extended.

The following is an example of code that extends the log level and checks arguments of
R_BLE_ABS_StartLegacyAdv. Logger function is used in app_main.c and the newly created source file
(r_ble_appapp.c).

[app_main.c]
#define BLE_DEFAULT_LOG_LEVEL (4)
#define BLE_LOG_TAG "app_main"
#include "logger/r_ble_logger.h"
#define BLE_LOG_XXX(...) BLE_LOG(4, "XXX", __VA_ARGS__)
extern void appapp(void);

(OMISSION)

 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 BLE_LOG_ERR("R_BLE_ABS_StartLegacyAdv");
 BLE_LOG_WRN("interval=%d", (uint32_t)(gs_adv_param.slow_adv_intv * 0.625));
 for(int i=0; i<gs_adv_param.adv_data_length; i++){
 BLE_LOG_DBG("data[%02X]", gs_adv_param.p_adv_data[i]);
 }
 appapp();
 BLE_LOG_XXX("advlen=%d, sreslen=%d", gs_adv_param.adv_data_length,
gs_adv_param.sres_data_length);
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
(OMISSION)

Code 11-1 Code example for checking arguments of R_BLE_ABS_StartLegacyAdv (app_main.c)

[r_ble_appapp.c]
#include "r_ble_api.h"
#define BLE_DEFAULT_LOG_LEVEL (5)
#define BLE_LOG_TAG "appapp"
#include "logger/r_ble_logger.h"
#define BLE_LOG_YYY(...) BLE_LOG(5, "YYY", __VA_ARGS__)
extern st_ble_abs_legacy_adv_param_t gs_adv_param;

void appapp(void)
{
 for(int i=0; i<gs_adv_param.sres_data_length; i++){
 BLE_LOG_YYY("data[%02X]", gs_adv_param.p_sres_data[i]);
 }
}

Code 11-2 Code example for checking arguments of R_BLE_ABS_StartLegacyAdv (r_ble_appapp.c)

One line is displayed by one logger call, therefore line breaks are not required.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 172 of 189

Mar.25.21

app_main: [ERR] (gap_cb:259) R_BLE_ABS_StartLegacyAdv
app_main: [WRN] (gap_cb:260) interval=160
app_main: [DBG] (gap_cb:262) data[02]
app_main: [DBG] (gap_cb:262) data[01]
app_main: [DBG] (gap_cb:262) data[06]
app_main: [DBG] (gap_cb:262) data[05]
app_main: [DBG] (gap_cb:262) data[08]
app_main: [DBG] (gap_cb:262) data[52]
app_main: [DBG] (gap_cb:262) data[42]
app_main: [DBG] (gap_cb:262) data[4C]
app_main: [DBG] (gap_cb:262) data[45]
app_main: [DBG] (gap_cb:262) data[11]
app_main: [DBG] (gap_cb:262) data[06]
app_main: [DBG] (gap_cb:262) data[E0]
app_main: [DBG] (gap_cb:262) data[FC]
app_main: [DBG] (gap_cb:262) data[8E]
app_main: [DBG] (gap_cb:262) data[8E]
app_main: [DBG] (gap_cb:262) data[96]
app_main: [DBG] (gap_cb:262) data[B4]
app_main: [DBG] (gap_cb:262) data[01]
app_main: [DBG] (gap_cb:262) data[AB]
app_main: [DBG] (gap_cb:262) data[67]
app_main: [DBG] (gap_cb:262) data[42]
app_main: [DBG] (gap_cb:262) data[05]
app_main: [DBG] (gap_cb:262) data[5F]
app_main: [DBG] (gap_cb:262) data[26]
app_main: [DBG] (gap_cb:262) data[19]
app_main: [DBG] (gap_cb:262) data[83]
app_main: [DBG] (gap_cb:262) data[58]
appapp: [YYY] (appapp:18) data[09]
appapp: [YYY] (appapp:18) data[09]
appapp: [YYY] (appapp:18) data[52]
appapp: [YYY] (appapp:18) data[42]
appapp: [YYY] (appapp:18) data[4C]
appapp: [YYY] (appapp:18) data[45]
appapp: [YYY] (appapp:18) data[2D]
appapp: [YYY] (appapp:18) data[44]
appapp: [YYY] (appapp:18) data[45]
appapp: [YYY] (appapp:18) data[56]
app_main: [XXX] (gap_cb:265) advlen=27, sreslen=10
receive BLE_GAP_EVENT_ADV_ON result : 0x0000, adv_hdl : 0x0000

Figure 11.1 Logs displayed by Logger function

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 173 of 189

Mar.25.21

11.2 Using Command line function

Enable Command line function and code-generate, referring to "1.6.1 Primary functions". The code for using
the standard Command line function built into the library is below.

[app_main.c]
#include "r_ble_api.h"
/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_ble_cmd
};

(OMISSION)

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 R_BLE_CMD_AbsGapCb(type, result, p_data);
(OMISSION)

static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_CMD_VsCb(type, result, p_data);
(OMISSION)

void app_main(void)
{
 (OMISSION)
 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds));
 R_BLE_CMD_SetResetCb(ble_init);
 (OMISSION)

 /* main loop */
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 (OMISSION)

Code 11-3 Example of using the command line function

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 174 of 189

Mar.25.21

From the terminal, the input example of Scan → Connect → Disconnect is below.

$
$ gap scan 0x09 0x52
74:90:50:FF:FF:FF pub ff 0000
74:90:50:FF:FF:FF pub ff 0000
74:90:50:FF:FF:FF pub ff 0000

$ receive BLE_GAP_EVENT_SCAN_OFF result : 0x0000

$ gap conn 74:90:50:ff:ff:ff pub
receive BLE_GAP_EVENT_CONN_IND result : 0x0000
gap: connected conn_hdl:0x0020, addr:74:90:50:FF:FF:FF pub

$ receive BLE_GAP_EVENT_DATA_LEN_CHG result : 0x0000, conn_hdl : 0x0020
tx_octets : 0x00fb
tx_time : 0x0848
rx_octets : 0x00fb
rx_time : 0x0848

$ gap disconn 0x20
$ receive BLE_GAP_EVENT_DISCONN_IND result : 0x0000
gap: disconnected conn_hdl:0x0020, addr:74:90:50:FF:FF:FF pub, reason:0x16

$
$

Only Advertising that includes data whose Complete Local Name (0x09) starts with “R”
(0x52) will be scanned.
Note: When "gap scan 0x09 0x52,0x42" is specified, only Advertising that includes data
whose Complete Local Name (0x09) starts with "RB" will be scanned.
Note: The gap scan command is stopped by pressing [Ctrl]+[c] or gap scan stop.

Specify the BD address and address type to
connect.

Specify the connection handle and
disconnect.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 175 of 189

Mar.25.21

11.3 Using RF communication timing notification function

The sample displaying logs with "rf log on" command to check the RF communication timing is below. This
sample uses Command line function and RF communication timing notification function. Enable these
functions and code-generate, referring to "1.6.1 Primary functions" and "3 How to implement user code".
Newly create r_ble_cmd_rf.h in “src” folder.

[src\r_ble_cmd_rf.h]
#include "r_ble_api.h"

#ifndef R_BLE_CMD_RF_H_
#define R_BLE_CMD_RF_H_

typedef struct
{
 uint32_t elapsed_time;
 uint16_t event_type;
 uint16_t event_data;
 uint8_t start_end;
} st_ble_rf_log_t;

#define BLE_RF_LOG_NUM_MAX 1000
extern st_ble_rf_log_t gs_rf_log[BLE_RF_LOG_NUM_MAX];
extern uint32_t gs_rf_log_idx;
extern uint32_t gs_timer_elapsed_time;
extern const st_ble_cli_cmd_t g_rf_cmd;
extern void save_rf_log(uint16_t event_type, uint16_t event_data, uint8_t start_end);

#endif /* R_BLE_CMD_RF_H_ */

Code 11-4 Sample to display log of RF communication timing (r_ble_cmd_rf.h)

Newly create r_ble_cmd_rf.c in “src” folder.

[src\r_ble_cmd_rf.c]
#include "r_ble_api.h"
#include "r_ble_cmd_rf.h"

#if (BLE_CFG_CMD_LINE_EN == 1) && (BLE_CFG_HCI_MODE_EN == 0)

#define pf R_BLE_CLI_Printf
st_ble_rf_log_t gs_rf_log[BLE_RF_LOG_NUM_MAX];
uint32_t gs_rf_log_idx = 0;
uint32_t gs_timer_elapsed_time = 0;
extern uint32_t pl_get_elapsed_time_ms2(bool expired);

void save_rf_log(uint16_t event_type, uint16_t event_data, uint8_t start_end)
{
 gs_rf_log[gs_rf_log_idx].elapsed_time = gs_timer_elapsed_time;
 gs_rf_log[gs_rf_log_idx].event_type = event_type;
 gs_rf_log[gs_rf_log_idx].event_data = event_data;
 gs_rf_log[gs_rf_log_idx].start_end = start_end;
 gs_rf_log_idx++;
 if(gs_rf_log_idx >= BLE_RF_LOG_NUM_MAX){
 gs_rf_log_idx = 0;
 }
}

static void show_rf_log(uint32_t elapsed_time, uint16_t event_type, uint16_t event_data, uint8_t
start_end)
{
 switch(event_type)
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 if(start_end == 1){ pf("%010d,ConnS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,ConnE,%d\n", elapsed_time, event_data); }
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 if(start_end == 1){ pf("%010d,AdvS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,AdvE,%d\n", elapsed_time, event_data); }
 } break;

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 176 of 189

Mar.25.21

 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 if(start_end == 1){ pf("%010d,ScanS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,ScanE,%d\n", elapsed_time, event_data); }
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 if(start_end == 1){ pf("%010d,InitS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,InitE,%d\n", elapsed_time, event_data); }
 } break;
 case 0x0004:/*BLE_EVENT_TYPE_RF_DS_START*//*BLE_EVENT_TYPE_RF_DS_CLOSE*/
 {
 if(start_end == 1){ pf("%010d,SleepS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,SleepE,%d\n", elapsed_time, event_data); }
 } break;
 default:
 {
 } break;
 }
}

static uint32_t log_cnt = 0;
static void show_rf_logs(void)
{
 show_rf_log(gs_rf_log[log_cnt].elapsed_time, gs_rf_log[log_cnt].event_type,
gs_rf_log[log_cnt].event_data, gs_rf_log[log_cnt].start_end);
 log_cnt++;
 if(log_cnt >= BLE_RF_LOG_NUM_MAX)
 {
 log_cnt = 0;
 }
 else
 {
 R_BLE_SetEvent(show_rf_logs);
 }
}

static void exec_rf_log(int argc, char *argv[])
{
 ble_status_t status;
 if (strcmp(argv[1], "on") == 0)
 {
 R_BLE_CLI_Printf("time,type,data\n");
 R_BLE_SetEvent(show_rf_logs);
 }
 else
 {
 pf("rf %s: unrecognized operands\n", argv[0]);
 }
}

static const st_ble_cli_cmd_t rf_log_cmd = {
 .p_name = "log",
 .exec = exec_rf_log,
 .p_help = "Usage: rf log (on)\n"
 "Show rf_event or not",
};

static const st_ble_cli_cmd_t * const rf_sub_cmds[] = {
 &rf_log_cmd,
};

const st_ble_cli_cmd_t g_rf_cmd = {
 .p_name = "rf",
 .p_cmds = rf_sub_cmds,
 .num_of_cmds = ARRAY_SIZE(rf_sub_cmds),
 .p_help = "Sub Command: log\n"
 "Try 'rf sub-command help' for more information",
};

const st_ble_cli_cmd_t g_rf_cmd;

#endif /* (BLE_CFG_CMD_LINE_EN == 1) && (BLE_CFG_HCI_MODE_EN == 0) */

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 177 of 189

Mar.25.21

Code 11-5 Sample to display log of RF communication timing (r_ble_cmd_rf.c)

Newly create r_ble_timer_sotb2.c in “src” folder. This code uses the timer of AGT0.

#include "r_ble_api.h"
#include "r_ble_cmd_rf.h"

#if (BLE_CFG_HCI_MODE_EN == 0) && (BSP_CFG_RTOS_USED == 0)

#include "r_core_cfg.h"

static uint32_t gs_timer_clock_hz;
static uint32_t gs_us_per_tick;
static uint32_t gs_current_timeout_tick;
static uint32_t gs_current_timeout_ms;
static uint32_t gs_elapsed_timeout_ms;

#define USE_AGT_CH BLE_CFG_SOFT_TIMER_AGT_CH
#define AGT_AGTI_PRIORITY (3) ///< AGTn_AGTI priority value(set to 0 to 3, 0 is
highest priority.)

#if (USE_AGT_CH == 1)
#define AGTn AGT0
#define AGT_MSTPDn MSTPD3
#define AGTn_AGTI_EVENT_NUM SYSTEM_CFG_EVENT_NUMBER_AGT0_AGTI
#define AGT_IESR_VAL (0x00000013)
#define AGT_SYSTEM_LOCK SYSTEM_LOCK_AGT0
#else /* (USE_AGT_CH == 1) */
#define AGTn AGT1
#define AGT_MSTPDn MSTPD2
#define AGTn_AGTI_EVENT_NUM SYSTEM_CFG_EVENT_NUMBER_AGT1_AGTI
#define AGT_IESR_VAL (0x00000006)
#define AGT_SYSTEM_LOCK SYSTEM_LOCK_AGT1
#endif /* (USE_AGT_CH == 1) */

#define TIMER_ENTER_CRITICAL() GLOBAL_INT_DISABLE()
#define TIMER_EXIT_CRITICAL() GLOBAL_INT_RESTORE()

void pl_start_timer2(uint32_t timeout_ms);

static void timer_cb2(void)
{
 /* interrupt disable */
 TIMER_ENTER_CRITICAL();

 /* Disable AGTn_AGTI interrupt */
 R_NVIC_DisableIRQ(AGTn_AGTI_EVENT_NUM);

 /* interrupt restore */
 TIMER_EXIT_CRITICAL();

 pl_start_timer2(63000);
}

void pl_init_timer2(void)
{
 /* Lock AGTn resource */
 if(0 != R_SYS_ResourceLock(AGT_SYSTEM_LOCK))
 {
 __WFI();
 return;
 }

 /* interrupt disable */
 TIMER_ENTER_CRITICAL();

 /* Clear AGTn module stop */
 MSTP->MSTPCRD_b.AGT_MSTPDn = 0U;

 /* Initialize AGTn */
 AGTn->AGTCR = 0x00U;

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 178 of 189

Mar.25.21

 AGTn->AGTMR1_b.TCK = 4U; /* TCK[2:0] -> 1 0 0: AGTLCLK(LOCO:32.768kHz)>>AGTMR2.CKS */

 AGTn->AGTMR2_b.CKS = 5U; /* CKS[2:0] -> 1 0 1: 1/32 -> 32.768kHz/32=1.024kHz=1cycle 977usec */
 AGTn->AGTMR2_b.LPM = 0U; /* Normal mode */

 gs_timer_clock_hz = 32768 >> AGTn->AGTMR2_b.CKS;
 gs_us_per_tick = (uint32_t)(1000000 / gs_timer_clock_hz);

 /* When AGTLCLK is selected as the count source, AGT_MSTPDn needs to be 1. */
 MSTP->MSTPCRD_b.AGT_MSTPDn = 1U;

 /* Initialize AGTn(AGTn_AGTI) interrupt handler */
 /* Register AGTn_AGTI interrupt handler */
 if ((-1) == R_SYS_IrqEventLinkSet(AGTn_AGTI_EVENT_NUM, AGT_IESR_VAL, timer_cb2))
 {
 __WFI();
 return;
 }

 /* AGT0_AGTI priority setting */
 R_NVIC_SetPriority(AGTn_AGTI_EVENT_NUM, AGT_AGTI_PRIORITY);
 if (R_NVIC_GetPriority (AGTn_AGTI_EVENT_NUM) != AGT_AGTI_PRIORITY)
 {
 __WFI();
 return;
 }

 /* interrupt restore */
 TIMER_EXIT_CRITICAL();
}

void pl_start_timer2(uint32_t timeout_ms)
{
 /* interrupt disable */
 TIMER_ENTER_CRITICAL();

 /* Disable AGTn_AGTI interrupt */
 R_NVIC_DisableIRQ(AGTn_AGTI_EVENT_NUM);

 gs_current_timeout_ms = MIN(timeout_ms, 63000);
 gs_elapsed_timeout_ms = 0;

 /* Clear AGTn module stop */
 MSTP->MSTPCRD_b.AGT_MSTPDn = 0U;

 /* Set AGTn counter */
 gs_current_timeout_tick = (gs_current_timeout_ms * gs_timer_clock_hz) / 1000;
 AGTn->AGT = (uint16_t)(gs_current_timeout_tick);

 /* Start AGTn count */
 AGTn->AGTCR_b.TEDGF = 0U;
 AGTn->AGTCR_b.TUNDF = 0U;
 AGTn->AGTCR_b.TCMAF = 0U;
 AGTn->AGTCR_b.TCMBF = 0U;
 AGTn->AGTCR_b.TSTART = 1U;

 /* When AGTLCLK is selected as the count source, AGT_MSTPDn needs to be 1. */
 MSTP->MSTPCRD_b.AGT_MSTPDn = 1U;

 /* Enable AGTn_AGTI interrupt */
 R_SYS_IrqStatusClear(AGTn_AGTI_EVENT_NUM);
 R_NVIC_ClearPendingIRQ(AGTn_AGTI_EVENT_NUM);
 R_NVIC_EnableIRQ(AGTn_AGTI_EVENT_NUM);

 /* interrupt restore */
 TIMER_EXIT_CRITICAL();
}

uint32_t pl_get_elapsed_time_ms2(bool expired)
{
 uint32_t elapsed_time_from_prev_update_ms;
 uint32_t total_elapsed_timeout_ms;

 uint16_t cmstr;

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 179 of 189

Mar.25.21

 uint16_t cmcnt;
 uint16_t cmudf;

 /* interrupt disable */
 TIMER_ENTER_CRITICAL();

 /* Clear AGTn module stop */
 MSTP->MSTPCRD_b.AGT_MSTPDn = 0U;
 cmstr = AGTn->AGTCR_b.TSTART;
 cmudf = AGTn->AGTCR_b.TUNDF;
 cmcnt = (uint16_t)(gs_current_timeout_tick - AGTn->AGT);
 /* When AGTLCLK is selected as the count source, AGT_MSTPDn needs to be 1. */
 MSTP->MSTPCRD_b.AGT_MSTPDn = 1U;

 if (expired)
 {
 elapsed_time_from_prev_update_ms = gs_current_timeout_ms - gs_elapsed_timeout_ms;
 gs_elapsed_timeout_ms = gs_current_timeout_ms;
 }
 else if (cmstr)
 {
 if(cmudf)
 {
 cmcnt = gs_current_timeout_tick;
 }
 total_elapsed_timeout_ms = ((uint32_t)cmcnt * gs_us_per_tick) / 1000;
 elapsed_time_from_prev_update_ms = total_elapsed_timeout_ms - gs_elapsed_timeout_ms;
 gs_elapsed_timeout_ms = total_elapsed_timeout_ms;
 }
 else
 {
 elapsed_time_from_prev_update_ms = 0;
 }
 /* interrupt restore */
 TIMER_EXIT_CRITICAL();

 return elapsed_time_from_prev_update_ms;
}

#endif /* (BLE_CFG_HCI_MODE_EN == 0) && (BSP_CFG_RTOS_USED == 0) */

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 180 of 189

Mar.25.21

The following code saves the RF communication timing notification as logs.

[Device\BLE\platform\r_ble_pf_functions.c]
extern uint32_t gs_timer_elapsed_time;
#include "r_ble_cmd_rf.h"

void r_ble_rf_notify_event_start(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 save_rf_log(BLE_EVENT_TYPE_CONN, 0x0000, 0x01);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 save_rf_log(BLE_EVENT_TYPE_ADV, 0x0000, 0x01);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 save_rf_log(BLE_EVENT_TYPE_SCAN, 0x0000, 0x01);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 save_rf_log(BLE_EVENT_TYPE_INITIATOR, 0x0000, 0x01);
 } break;
 }
}
void r_ble_rf_notify_event_close(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 save_rf_log(BLE_EVENT_TYPE_CONN, 0x0000, 0x02);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 save_rf_log(BLE_EVENT_TYPE_ADV, 0x0000, 0x02);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 save_rf_log(BLE_EVENT_TYPE_SCAN, 0x0000, 0x02);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 save_rf_log(BLE_EVENT_TYPE_INITIATOR, 0x0000, 0x02);
 } break;
 }
}

void r_ble_rf_notify_deep_sleep(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch(param)
 {
 case BLE_EVENT_TYPE_RF_DS_START:
 {
 save_rf_log(0x0004, 0x0000, 0x01);
 } break;
 case BLE_EVENT_TYPE_RF_DS_CLOSE:
 {
 save_rf_log(0x0004, 0x0000, 0x02);
 } break;
 }
}

Code 11-6 Sample to display RF communication timing log (save log)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 181 of 189

Mar.25.21

The following code starts the timer of AGT0 and registers rf command.

[app_main.c]
#include "r_ble_api.h"

#include "r_ble_cmd_rf.h"
/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_rf_cmd,
};
extern void pl_init_timer2(void);
extern void pl_start_timer2(uint32_t timeout_ms);

(OMISSION)

void app_main(void)
{
 (OMISSION)
 /* Create timer */
 pl_init_timer2();
 pl_start_timer2(63000);
 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds));
 R_BLE_CMD_SetResetCb(ble_init);
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 (OMISSION)

Code 11-7 Sample to display RF communication timing log (timer count increment)

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 182 of 189

Mar.25.21

When inputting "rf log on" command, the following logs will be outputted.

[Log of Advertising→Connection]
0000019851,AdvS,0
0000019854,AdvE,0
0000019854,SleepS,0
0000020286,SleepE,0
0000020289,AdvS,0
0000020292,AdvE,0
0000020293,SleepS,0
0000020728,SleepE,0
0000020731,AdvS,0
0000021069,ConnS,0
0000021070,ConnE,0
0000021392,ConnS,0
0000021394,ConnE,0
0000021715,ConnS,0
0000021715,ConnE,0
0000022038,ConnS,0
0000022038,ConnE,0
0000022360,ConnS,0
0000022361,ConnE,0
0000022683,ConnS,0
0000022684,ConnE,0
0000022686,SleepS,0
0000023025,SleepE,0
0000023028,ConnS,0
0000023029,ConnE,0
0000023029,SleepS,0
0000023370,SleepE,0
0000023373,ConnS,0
0000023374,ConnE,0

[Log of Scan→Connection]
0000002629,ScanS,0
0000002776,ScanE,0
0000002776,SleepS,0
0000002918,SleepE,0
0000002920,ScanS,0
0000003067,ScanE,0
0000003067,SleepS,0
0000003209,SleepE,0
0000003211,ScanS,0
0000003234,InitS,0
0000003261,InitE,0
0000003287,InitS,0
0000003314,InitE,0
0000003341,InitS,0
0000003368,InitE,0
0000003395,InitS,0
0000003442,ConnS,0
0000003442,ConnE,0
0000003761,ConnS,0
0000003763,ConnE,0
0000004081,ConnS,0
0000004082,ConnE,0
0000004401,ConnS,0
0000004402,ConnE,0
0000004405,SleepS,0
0000004734,SleepE,0
0000004736,ConnS,0
0000004737,ConnE,0
0000004737,SleepS,0
0000005080,SleepE,0

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 183 of 189

Mar.25.21

11.4 Checking Server operation

11.4.1 Using BTTS Beacon Scanning

Using Beacon Scanning enables to output the Advertising reception status as logs from Slave. In the
example below, Advertising where Advertising Interval is 480 ms is received. It can be seen being received
at intervals of 484 ms from 49 seconds 172 to 49 seconds 656. It can be also see receiving Scan response
data after each Advertising.

[17] 15:08:49:172 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x0013
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0D p_data = 0x02,0x01,0x06,0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

[18] 15:08:49:174 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x001B
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0A p_data = 0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

[19] 15:08:49:656 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x0013
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0D p_data = 0x02,0x01,0x06,0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

[20] 15:08:49:658 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x001B
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0A p_data = 0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

0x00 : Advertising Report.
0x01 : Extended Advertising Report.
0x02 : Periodic Advertising Report.

Connectable advertising &&
Scannable advertising &&
Legacy advertising PDU

Connectable advertising &&
Scannable advertising &&
Scan response &&
Legacy advertising PDU

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 184 of 189

Mar.25.21

11.4.2 Using BTTS Data Comm Master

Using Data Comm Master enables to check Write Response by executing consecutive Write Request to
Server application that added the following Throughput service with QE for BLE.

CUSTOM SERVICE
UUID: 9CEF3D10-7FAB-49DC-AB89-762C9079FE96
PRIMARY SERVICE

CUSTOM CHARACTERISTIC
UUID: 9CEF3D11-7FAB-49DC-AB89-762C9079FE96
Properties: Write / Write Without Response

CUSTOM CHARACTERISTIC
UUID: 9CEF3D12-7FAB-49DC-AB89-762C9079FE96
Properties: Indicate / Notify
Descriptors:
Client Characteristic Configuration
UUID: 0x2920

In the following example, Write Request with Connection Interval of 1000 ms is sent. Since Write Response
is received at the next connection event and Write Request is sent at the next connection event, it can be
seen transmitting at about 2000 ms intervals from 16 seconds 332 to 18 seconds 349.

[61] 16:58:16:332 (result = 0x0000)
R_BLE_GATTC_WriteChar
 conn_hdl : 0x0020
 write_data ->
 attr_hdl : 0x0012
 value ->
 value_len : 0x00F4
 value : (OMISSION because of long data)

[62] 16:58:18:348 (result = 0x0000)
BLE_GATTC_EVENT_CHAR_WRITE_RSP
 value_hdl : 0x0012

[63] 16:58:18:349 (result = 0x0000)
R_BLE_GATTC_WriteChar
 conn_hdl : 0x0020
 write_data ->
 attr_hdl : 0x0012
 value ->
 value_len : 0x00F4
 value : (OMISSION because of long data)
[64] 16:58:20:365 (result = 0x0000)
BLE_GATTC_EVENT_CHAR_WRITE_RSP
 value_hdl : 0x0012

11.4.3 Using GATT Browser

It enables to check the GATT database, Indication, Notification, Read Response, Write Response by
connecting to Client application.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 185 of 189

Mar.25.21

11.5 Checking Client operation

11.5.1 Using BTTS Beacon Advertising

Using Beacon Advertising enables to send Advertising to Client. If using Command line function on Client
side, Scan is checked.
If adding the following code, start of Scan and reception of Advertising are displayed.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_SCAN_ON:
 {
 R_BLE_CLI_Printf("receive BLE_GAP_EVENT_SCAN_ON result : 0x%04x\n", result);
 } break;
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 R_BLE_CLI_Printf("receive BLE_GAP_EVENT_ADV_REPT_IND result : 0x%04x\n", result);
 } break;
 (OMISSION)

Code 11-8 Display example of starting Scan and receiving Advertising on client side

The following is the execution result. Since Advertising by Beacon Advertising is non-connectable,
Connection will fail.

$ gap scan 0x09 0x52
receive BLE_GAP_EVENT_SCAN_ON result : 0x0000
74:90:50:FF:FF:FF pub ff 0000
receive BLE_GAP_EVENT_ADV_REPT_IND result : 0x0000
receive BLE_GAP_EVENT_SCAN_OFF result : 0x0000

$ receive BLE_GAP_EVENT_CONN_IND result : 0x000e

$

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 186 of 189

Mar.25.21

11.5.2 Using BTTS Data Comm Slave

Using Data Comm Slave enables to check Confirmation by executing continuous Indication to Client
application that added the following Throughput service with QE for BLE. Connection, Service Discovery,
and Write Request are also checked.

CUSTOM SERVICE (Please set the abbreviation of this service to “th”)
UUID: 9CEF3D10-7FAB-49DC-AB89-762C9079FE96
PRIMARY SERVICE

CUSTOM CHARACTERISTIC
UUID: 9CEF3D11-7FAB-49DC-AB89-762C9079FE96
Properties: Write / Write Without Response

CUSTOM CHARACTERISTIC (Character abbreviation should be thin)
UUID: 9CEF3D12-7FAB-49DC-AB89-762C9079FE96
Properties: Indicate / Notify
Descriptors:
Client Characteristic Configuration
UUID: 0x2920

When Connection parameter update request is notified by the remote device, the local device must return
Response. Add the following code inside GAP callback in app_main.c.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 .min_ce_length = 0xFFFF,
 .max_ce_length = 0xFFFF,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 } break;
 (OMISSION)

Code 11-9 Sample response to connection parameter update request

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 187 of 189

Mar.25.21

It is necessary to execute Write Request to enable Indication to Throughput characteristic of Throughput
service of Data Comm Slave. Add the following code inside disc callback in app_main.c. It is called when
Service Discovery discovers Server side Throughput service.

static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 {
 uint16_t s_cccd_req;
 s_cccd_req = BLE_GATTS_CLI_CNFG_NOTIFICATION | BLE_GATTS_CLI_CNFG_INDICATION;
 R_BLE_THC_WriteThinCliCnfg(g_conn_hdl, &s_cccd_req);
 }
 (OMISSION)

Code 11-10 Example of enabling Indication in disc callback

In the following example, Indication with Connection Interval of 1000 ms is sent. Since Confirmation is
received at the next connection event and Indication is sent at the next connection event, it can be seen
transmitting data at the interval of about 2000 ms from 25.266 seconds to 27.286 seconds.
[62] 19:03:25:266 (result = 0x0000)
R_BLE_GATTS_Indication
 conn_hdl : 0x0060
 ind_data ->
 attr_hdl : 0x0005
 value ->
 value_len : 0x0014
 value : 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13

[63] 19:03:27:286 (result = 0x0000)
BLE_GATTS_EVENT_HDL_VAL_CNF
 attr_hdl : 0x0005

[64] 19:03:27:286 (result = 0x0000)
R_BLE_GATTS_Indication
 conn_hdl : 0x0060
 ind_data ->
 attr_hdl : 0x0005
 value ->
 value_len : 0x0014
 value : 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13

[65] 19:03:29:207 (result = 0x0000)
BLE_GATTS_EVENT_HDL_VAL_CNF
 attr_hdl : 0x0005

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 188 of 189

Mar.25.21

11.6 Others

11.6.1 MCU package

Refer to “RE01B Group Product with 1.5-Mbyte Flash Memory User’s Manual: Hardware (R01UH0903)”.

11.6.2 Generating MOT file

When checking [Project] → [Properties] → [C/C++ Build] → [Settings] → [Tool Settings] → [Cross ARM GNU
Create Flash Image] → [General] → [Output file format] to "Motorola S-record", MOT file is generated.

11.6.3 Outputting detail to MAP file

When checking [Project] → [Properties] → [C/C++ Build] → [Settings] → [Tool Settings] → [Cross ARM C
Linker] → [Misscellaneous] → [Cross reference (-Xlinker --cref)] to ON, the details of MAP file are outputted.

11.6.4 Optimization

When setting [Project] → [Properties] → [C/C++ Build] → [Settings] → [Tool Settings] → [Optimization] →
[Optimization Level] to "None (-O0)", the memory contents can be confirmed during debugging.

11.6.5 Using %f with printf

When checking [Project] → [Properties] → [C/C++ Build] → [Settings] → [Tool Settings] → [Cross ARM C
Linker] → [Miscellaneous] → [Use float with nano printf (-u _printf_float)] to ON, %f can be used with printf.

RE01B Group Bluetooth Low Energy Application Developer's Guide

R01AN5643EJ0100 Rev.1.00 Page 189 of 189

Mar.25.21

Revision History

Rev. Date

Description

Page Summary

1.00 Mar.25.2021 — First edition issued.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Development Bluetooth Low Energy Application
	1.2 Development environment
	1.2.1 Hardware requirements
	1.2.2 Software requirements
	1.2.3 Tool

	1.3 Available communication features
	1.4 Basic communication features
	1.5 BLE Protocol Stack Operation Overview
	1.6 Software structure
	1.6.1 Primary functions
	1.6.2 Surrounding functions

	1.7 Flow of development
	(1) Install integrated development environment e2studio, and QE for BLE.
	(2) Import a project on e2studio.
	(3) Add and change the code

	1.8 Use case of this document
	1.9 Locating sections

	2. Adjusting configuration option
	2.1 Configuration Options
	2.2 How to adjust RAM
	2.3 How to configure BD address
	2.3.1 How to use random address of device specific data

	2.4 How to configure for minimum current consumption
	2.4.1 Using MCU Low Power Consumption function
	(1) Checking transition to Low power consumption state
	(2) Transition preparation processing to Low power consumption state
	(3) Resume processing from Low power consumption state

	3. How to implement user code
	4. app_lib
	4.1 Abstraction API
	4.2 Software Timer
	4.3 Profile common
	4.4 Logger
	4.5 Command line
	4.5.1 How to use the standard commands
	(1) Include Header file
	(2) Initialization and registration of the commands
	(3) Callback
	(4) Main loop

	4.5.2 How to create a user command
	(1) Include header files
	(2) Command definition
	(3) Subcommand definition
	(4) Subcommand function definition
	(5) Abort handler
	(6) Registering commands

	4.6 LED and Switch control
	4.6.1 LED and Switch initialization
	4.6.2 ON or OFF LED
	4.6.3 Callback for pressing Switch

	5. Advertising
	5.1 Connecting to smartphone
	5.2 Advertising Parameter
	5.2.1 Adverting Type
	5.2.2 Using the White List (Respond to a known device)
	5.2.3 Privacy
	5.2.4 Concurrent Execution

	5.3 Advertising Data / Scan Response Data
	5.4 Start Advertising
	5.5 Stop Advertising
	5.6 Periodic Advertising
	5.6.1 Non-Connectable Advertising Parameter
	5.6.2 Periodic Advertising Parameter
	5.6.3 Periodic Advertising Data
	5.6.4 Start Periodic Advertising
	5.6.5 Stop Periodic Advertising

	5.7 Advertising Data / Scan Response Data / Periodic Advertising Data
	5.7.1 Format
	5.7.2 Advertising Data Update
	5.7.3 Periodic Advertising Data Update
	5.7.4 Buffer Size

	5.8 Advertising with Abstraction API
	5.8.1 White List (Respond to a known device)
	5.8.2 Privacy

	5.9 Connection with Smart Phone
	5.10 Beacon

	6. Scan
	6.1 Start or stop scan
	6.2 Scan parameters
	6.2.1 Privacy

	6.3 Received information by scan
	6.4 Scan filtering
	6.4.1 Using the White List (Receiving from known devices)
	6.4.2 Duplicate advertising filtering
	6.4.3 Discoverable mode filtering
	6.4.4 Advertising Data filtering

	6.5 Periodic Advertising Synchronization
	6.5.1 Start Scan
	6.5.2 Detect Periodic Advertiser
	6.5.3 Register to the Periodic Advertiser List
	6.5.4 Establish Periodic Advertising Sync
	6.5.5 Receive Periodic Advertising
	6.5.6 Lost Periodic Advertising Sync
	6.5.7 Terminate Periodic Advertising Sync

	7. Connection
	7.1 Requesting Connection
	7.1.1 Using the White List (Connection to a known device)
	7.1.2 Privacy

	7.2 Cancelling Connection Request
	7.3 Multiple Connection
	7.3.1 Connecting to multiple peripheral devices
	7.3.2 Connection to multiple central devices
	7.3.3 Multi role connection

	7.4 Disconnection

	8. Communication
	8.1 Changing PHY
	8.2 Changing maximum transmission packet length
	8.3 Updating connection parameter
	8.4 Changing MTU
	8.5 Flow control
	8.6 High throughput communication
	8.6.1 Continuous transmission requests
	8.6.2 GAP settings optimization
	8.6.3 Bluetooth Low Energy and Throughput
	8.6.4 Generic Access Profile (GAP)
	8.6.4.1 Device detection and connection establishment
	8.6.4.2 Communication after establishing connection
	8.6.4.3 Setting the connection interval
	8.6.4.4 Setting the PHY
	8.6.4.5 Setting the Maximum packet length
	8.6.4.6 Setting the encryption of communication

	8.6.5 Generic Attribute Profile (GATT)
	8.6.5.1 No response operation (Notification / Write Without Response)
	8.6.5.2 Response operation (Indication / Write)

	8.6.6 Data type

	9. Security
	9.1 Pairing
	9.1.1 Pairing Parameters
	9.1.2 Key generation and registration
	9.1.3 OOB (Out of Band) data transmission and reception
	9.1.4 Pairing request
	9.1.5 Response to pairing request
	9.1.6 Pairing method
	9.1.7 Key exchange
	9.1.8 Completion of pairing

	9.2 Bonding
	9.2.1 Store local device keys
	9.2.2 Store remote device keys

	9.3 Encryption
	9.3.1 Request Encryption
	(1) Encryption request from local device(master)
	(2) Encryption request from local device(slave)

	9.3.2 Respond to an encryption request
	(1) Response to an encryption request from remote device(master)
	(2) Response to an encryption request from remote device(slave)

	9.3.3 Completion of encryption

	9.4 Privacy
	9.4.1 Generate and resolve local device RPA
	9.4.2 Resolve remote device RPA

	10. Profile and service
	10.1 Standard profile and Standard Service
	10.2 APIs of GATT Procedure
	10.2.1 Read operation
	10.2.2 Write operation
	10.2.3 WriteWithoutResponse operation
	10.2.4 Notification operation
	10.2.5 Indication operation
	10.2.6 ReliableWrite operation
	10.2.7 Broadcast Operation

	10.3 Example of using GATT Procedure
	10.3.1 Example for sending data from GATT client
	10.3.2 Example for sending data from GATT server

	11. Debugging
	11.1 Using Logger function
	11.2 Using Command line function
	11.3 Using RF communication timing notification function
	11.4 Checking Server operation
	11.4.1 Using BTTS Beacon Scanning
	11.4.2 Using BTTS Data Comm Master
	11.4.3 Using GATT Browser

	11.5 Checking Client operation
	11.5.1 Using BTTS Beacon Advertising
	11.5.2 Using BTTS Data Comm Slave

	11.6 Others
	11.6.1 MCU package
	11.6.2 Generating MOT file
	11.6.3 Outputting detail to MAP file
	11.6.4 Optimization
	11.6.5 Using %f with printf

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

