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PREFACE

It is a pleasure to welcome Professor Masoud Salehi as a coauthor to the fifth edition

of Digital Communications. This new edition has undergone a major revision and

reorganization of topics, especially in the area of channel coding and decoding. A new
chapter on multiple-antenna systems has been added as well.

The book is designed to serve as a text for a first-year graduate-level course for

students in electrical engineering. It is also designed to serve as a text for self-study

and as a reference book for the practicing engineer involved in the design and analysis

of digital communications systems. As to background, we presume that the reader has

a thorough understanding of basic calculus and elementary linear systems theory and

prior knowledge of probability and stochastic processes.

Chapter 1 is an introduction to the subject, including a historical perspective and

a description of channel characteristics and channel models.

Chapter 2 contains a review of deterministic and random signal analysis, including

bandpass and lowpass signal representations, bounds on the tail probabilities ofrandom
variables, limit theorems for sums of random variables, and random processes.

Chapter 3 treats digital modulation techniques and the power spectrum of digitally

modulated signals.

Chapter 4 is focused on optimum receivers for additive white Gaussian noise

(AWGN) channels and their error rate performance. Also included in this chapter is

an introduction to lattices and signal constellations based on lattices, as well as link

budget analyses for wireline and radio communication systems.

Chapter 5 is devoted to carrier phase estimation and time synchronization methods

based on the maximum-likelihood criterion. Both decision-directed and non-decision-

directed methods are described.

Chapter 6 provides an introduction to topics in information theory, including

lossless source coding, lossy data compression, channel capacity for different channel

models, and the channel reliability function.

Chapter 7 treats linear block codes and their properties. Included is a treatment

of cyclic codes, BCH codes, Reed-Solomon codes, and concatenated codes. Both soft

decision and hard decision decoding methods are described, and their performance in

AWGN channels is evaluated.

Chapter 8 provides a treatment of trellis codes and graph-based codes, includ-

ing convolutional codes, turbo codes, low density parity check (LDPC) codes, trel-

lis codes for band-limited channels, and codes based on lattices. Decoding algo-

rithms are also treated, including the Viterbi algorithm and its performance on AWGN

xvi



Preface XVII

channels, the BCJR algorithm for iterative decoding ofturbo codes, and the sum-product

algorithm.

Chapter 9 is focused on digital communication through band-limited channels.

Topics treated in this chapter include the characterization and signal design for band-

limited channels, the optimum receiver for channels with intersymbol interference and

AWGN, and suboptimum equalization methods, namely, linear equalization, decision-

feedback equalization, and turbo equalization.

Chapter 10 treats adaptive channel equalization. The LMS and recursive least-

squares algorithms are described together with their performance characteristics. This

chapter also includes a treatment of blind equalization algorithms.

Chapter 11 provides a treatment of multichannel and multicarrier modulation.

Topics treated include the error rate performance of multichannel binary signal and

M -ary orthogonal signals in AWGN channels; the capacity of a nonideal linear filter

channel with AWGN; OFDM modulation and demodulation; bit and power alloca-

tion in an OFDM system; and methods to reduce the peak-to-average power ratio in

OFDM.
Chapter 12 is focused on spread spectrum signals and systems, with emphasis

on direct sequence and frequency-hopped spread spectrum systems and their perfor-

mance. The benefits of coding in the design of spread spectrum signals is emphasized

throughout this chapter.

Chapter 13 treats communication through fading channels, including the charac-

terization of fading channels and the key important parameters of multipath spread and

Doppler spread. Several channel fading statistical models are introduced, with empha-

sis placed on Rayleigh fading, Ricean fading, and Nakagami fading. An analysis of the

performance degradation caused by Doppler spread in an OFDM system is presented,

and a method for reducing this performance degradation is described.

Chapter 14 is focused on capacity and code design for fading channels. After intro-

ducing ergodic and outage capacities, coding for fading channels is studied. Bandwidth-

efficient coding and bit-interleaved coded modulation are treated, and the performance

of coded systems in Rayleigh and Ricean fading is derived.

Chapter 15 provides a treatment of multiple-antenna systems, generally called

multiple-input, multiple-output (MIMO) systems, which are designed to yield spatial

signal diversity and spatial multiplexing. Topics treated in this chapter include detection

algorithms for MIMO channels, the capacity ofMIMO channels with AWGN without

and with signal fading, and space-time coding.

Chapter 16 treats multiuser communications, including the topics of the capacity

of multiple-access methods, multiuser detection methods for the uplink in CDMA
systems, interference mitigation in multiuser broadcast channels, and random access

methods such as ALOHA and carrier-sense multiple access (CSMA).
With 16 chapters and a variety of topics, the instructor has the flexibility to design

either a one- or two-semester course. Chapters 3, 4, and 5 provide a basic treatment of

digital modulation/demodulation and detection methods. Channel coding and decoding

treated in Chapters 7, 8, and 9 can be included along with modulation/demodulation

in a one-semester course. Alternatively, Chapters 9 through 12 can be covered in place

of channel coding and decoding. A second semester course can cover the topics of
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Introduction

In this book, we present the basic principles that underlie the analysis and design

of digital communication systems. The subject of digital communications involves the

transmission of information in digital form from a source that generates the information

to one or more destinations. Of particular importance in the analysis and design of

communication systems are the characteristics of the physical channels through which

the information is transmitted. The characteristics of the channel generally affect the

design of the basic building blocks of the communication system. Below, we describe

the elements of a communication system and their functions.

1.1

ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM

Figure 1.1-1 illustrates the functional diagram and the basic elements of a digital

communication system. The source output may be either an analog signal, such as an

audio or video signal, or a digital signal, such as the output of a computer, that is discrete

in time and has a finite number of output characters. In a digital communication system,

the messages produced by the source are converted into a sequence of binary digits.

Ideally, we should like to represent the source output (message) by as few binary digits

as possible. In other words, we seek an efficient representation of the source output

that results in little or no redundancy. The process of efficiently converting the output

of either an analog or digital source into a sequence of binary digits is called source

encoding or data compression.

The sequence of binary digits from the source encoder, which we call the informa-

tion sequence
,
is passed to the channel encoder. The purpose of the channel encoder

is to introduce, in a controlled manner, some redundancy in the binary information

sequence that can be used at the receiver to overcome the effects of noise and inter-

ference encountered in the transmission of the signal through the channel. Thus, the

added redundancy serves to increase the reliability of the received data and improves

1
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Output

signal

FIGURE 1.1-1

Basic elements of a digital communication system.

the fidelity of the received signal. In effect, redundancy in the information sequence

aids the receiver in decoding the desired information sequence. For example, a (trivial)

form of encoding of the binary information sequence is simply to repeat each binary

digit m times, where m is some positive integer. More sophisticated (nontrivial) encod-

ing involves taking k information bits at a time and mapping each k-bit sequence into

a unique n-bit sequence, called a code word. The amount of redundancy introduced by

encoding the data in this manner is measured by the ratio n/k. The reciprocal of this

ratio, namely k/n
,
is called the rate of the code or, simply, the code rate.

The binary sequence at the output of the channel encoder is passed to the digital

modulator
,
which serves as the interface to the communication channel. Since nearly

all the communication channels encountered in practice are capable of transmitting

electrical signals (waveforms), the primary purpose of the digital modulator is to map
the binary information sequence into signal waveforms. To elaborate on this point, let

us suppose that the coded information sequence is to be transmitted one bit at a time at

some uniform rate R bits per second (bits/s). The digital modulator may simply map the

binary digit 0 into a waveform so(t) and the binary digit 1 into a waveform s\ (t ). In this

manner, each bit from the channel encoder is transmitted separately. We call this binary

modulation. Alternatively, the modulator may transmit b coded information bits at a

time by using M = 2b distinct waveforms Si(t), i = 0, 1, . .
.

,

M —
1, one waveform

for each of the 2b possible b-bit sequences. We call this M-ary modulation (M > 2).

Note that a new b-bit sequence enters the modulator every b/R seconds. Hence, when
the channel bit rate R is fixed, the amount of time available to transmit one of the M
waveforms corresponding to a b-bit sequence is b times the time period in a system

that uses binary modulation.

The communication channel is the physical medium that is used to send the signal

from the transmitter to the receiver. In wireless transmission, the channel may be the

atmosphere (free space). On the other hand, telephone channels usually employ a variety

of physical media, including wire lines, optical fiber cables, and wireless (microwave

radio). Whatever the physical medium used for transmission of the information, the

essential feature is that the transmitted signal is corrupted in a random manner by a



Chapter One: Introduction 3

variety of possible mechanisms, such as additive thermal noise generated by electronic

devices; man-made noise, e.g., automobile ignition noise; and atmospheric noise, e.g.,

electrical lightning discharges during thunderstorms.

At the receiving end of a digital communication system, the digital demodulator

processes the channel-corrupted transmitted waveform and reduces the waveforms to

a sequence of numbers that represent estimates of the transmitted data symbols (binary

or M-ary). This sequence of numbers is passed to the channel decoder, which attempts

to reconstruct the original information sequence from knowledge of the code used by

the channel encoder and the redundancy contained in the received data.

A measure ofhow well the demodulator and decoder perform is the frequency with

which errors occur in the decoded sequence. More precisely, the average probability

of a bit-error at the output of the decoder is a measure of the performance of the

demodulator-decoder combination. In general, the probability of error is a function of

the code characteristics, the types of waveforms used to transmit the information over

the channel, the transmitter power, the characteristics of the channel (i.e., the amount

of noise, the nature of the interference), and the method of demodulation and decoding.

These items and their effect on performance will be discussed in detail in subsequent

chapters.

As a final step, when an analog output is desired, the source decoder accepts the

output sequence from the channel decoder and, from knowledge of the source encoding

method used, attempts to reconstruct the original signal from the source. Because of

channel decoding errors and possible distortion introduced by the source encoder,

and perhaps, the source decoder, the signal at the output of the source decoder is an

approximation to the original source output. The difference or some function of the

difference between the original signal and the reconstructed signal is a measure of the

distortion introduced by the digital communication system.

1.2

COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS

As indicated in the preceding discussion, the communication channel provides the con-

nection between the transmitter and the receiver. The physical channel may be a pair of

wires that carry the electrical signal, or an optical fiber that carries the information on a

modulated light beam, or an underwater ocean channel in which the information is trans-

mitted acoustically, or free space over which the information-bearing signal is radiated

by use of an antenna. Other media that can be characterized as communication channels

are data storage media, such as magnetic tape, magnetic disks, and optical disks.

One common problem in signal transmission through any channel is additive noise.

In general, additive noise is generated internally by components such as resistors and

solid-state devices used to implement the communication system. This is sometimes

called thermal noise. Other sources of noise and interference may arise externally to

the system, such as interference from other users of the channel. When such noise

and interference occupy the same frequency band as the desired signal, their effect

can be minimized by the proper design of the transmitted signal and its demodulator at
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the receiver. Other types of signal degradations that may be encountered in transmission

over the channel are signal attenuation, amplitude and phase distortion, and multipath

distortion.

The effects of noise may be minimized by increasing the power in the transmitted

signal. However, equipment and other practical constraints limit the power level in

the transmitted signal. Another basic limitation is the available channel bandwidth.

A bandwidth constraint is usually due to the physical limitations of the medium and

the electronic components used to implement the transmitter and the receiver. These

two limitations constrain the amount of data that can be transmitted reliably over any

communication channel as we shall observe in later chapters. Below, we describe some
of the important characteristics of several communication channels.

Wireline Channels

The telephone network makes extensive use of wire lines for voice signal transmission,

as well as data and video transmission. Twisted-pair wire lines and coaxial cable are

basically guided electromagnetic channels that provide relatively modest bandwidths.

Telephone wire generally used to connect a customer to a central office has a bandwidth

of several hundred kilohertz (kHz). On the other hand, coaxial cable has a usable

bandwidth of several megahertz (MHz). Figure 1.2-1 illustrates the frequency range of

guided electromagnetic channels, which include waveguides and optical fibers.

Signals transmitted through such channels are distorted in both amplitude and

phase and further corrupted by additive noise. Twisted-pair wireline channels are also

prone to crosstalk interference from physically adjacent channels. Because wireline

channels carry a large percentage of our daily communications around the country and

the world, much research has been performed on the characterization of their trans-

mission properties and on methods for mitigating the amplitude and phase distortion

encountered in signal transmission. In Chapter 9, we describe methods for designing

optimum transmitted signals and their demodulation; in Chapter 10, we consider the

design of channel equalizers that compensate for amplitude and phase distortion on

these channels.

Fiber-Optic Channels

Optical fibers offer the communication system designer a channel bandwidth that is

several orders of magnitude larger than coaxial cable channels. During the past two

decades, optical fiber cables have been developed that have a relatively low signal atten-

uation, and highly reliable photonic devices have been developed for signal generation

and signal detection. These technological advances have resulted in a rapid deploy-

ment of optical fiber channels, both in domestic telecommunication systems as well as

for transcontinental communication. With the large bandwidth available on fiber-optic

channels, it is possible for telephone companies to offer subscribers a wide array of

telecommunication services, including voice, data, facsimile, and video.

The transmitter or modulator in a fiber-optic communication system is a light

source, either a light-emitting diode (LED) or a laser. Information is transmitted by

varying (modulating) the intensity of the light source with the message signal. The light

propagates through the fiber as a light wave and is amplified periodically (in the case of
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FIGURE 1.2-1

Frequency range for guided wire

channel.

digital transmission, it is detected and regenerated by repeaters) along the transmission

path to compensate for signal attenuation. At the receiver, the light intensity is detected

by a photodiode, whose output is an electrical signal that varies in direct proportion

to the power of the light impinging on the photodiode. Sources of noise in fiber-optic

channels are photodiodes and electronic amplifiers.

Wireless Electromagnetic Channels

In wireless communication systems, electromagnetic energy is coupled to the prop-

agation medium by an antenna which serves as the radiator. The physical size and

the configuration of the antenna depend primarily on the frequency of operation. To

obtain efficient radiation of electromagnetic energy, the antenna must be longer than
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^ of the wavelength. Consequently, a radio station transmitting in the amplitude-

modulated (AM) frequency band, say at fc = 1 MHz [corresponding to a wavelength

of k = c/fc = 300 meters (m)], requires an antenna of at least 30 m. Other important

characteristics and attributes of antennas for wireless transmission are described in

Chapter 4.

Figure 1.2-2 illustrates the various frequency bands of the electromagnetic spec-

trum. The mode of propagation of electromagnetic waves in the atmosphere and in

1
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Frequency range for wireless electromagnetic channels. [Adaptedfrom Carlson (1975), 2nd
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FIGURE 1.2-3

Illustration of ground-wave propagation.

free space may be subdivided into three categories, namely, ground-wave propagation,

sky-wave propagation, and line-of-sight (LOS) propagation. In the very low frequency

(VLF) and audio frequency bands, where the wavelengths exceed 10 km, the earth

and the ionosphere act as a waveguide for electromagnetic wave propagation. In these

frequency ranges, communication signals practically propagate around the globe. For

this reason, these frequency bands are primarily used to provide navigational aids from

shore to ships around the world. The channel bandwidths available in these frequency

bands are relatively small (usually 1-10 percent of the center frequency), and hence the

information that is transmitted through these channels is of relatively slow speed and

generally confined to digital transmission. A dominant type of noise at these frequen-

cies is generated from thunderstorm activity around the globe, especially in tropical

regions. Interference results from the many users of these frequency bands.

Ground-wave propagation, as illustrated in Figure 1.2-3, is the dominant mode of

propagation for frequencies in the medium frequency (MF) band (0.3-3 MHz). This is

the frequency band used forAM broadcasting and maritime radio broadcasting. In AM
broadcasting, the range with ground-wave propagation of even the more powerful radio

stations is limited to about 150 km. Atmospheric noise, man-made noise, and thermal

noise from electronic components at the receiver are dominant disturbances for signal

transmission in the MF band.

Sky-wave propagation, as illustrated in Figure 1.2-4, results from transmitted sig-

nals being reflected (bent or refracted) from the ionosphere, which consists of several

layers of charged particles ranging in altitude from 50 to 400 km above the surface of

the earth. During the daytime hours, the heating of the lower atmosphere by the sun

causes the formation of the lower layers at altitudes below 120 km. These lower layers,

especially the D-layer, serve to absorb frequencies below 2 MHz, thus severely limiting

sky-wave propagation ofAM radio broadcast. However, during the nighttime hours, the

electron density in the lower layers of the ionosphere drops sharply and the frequency

absorption that occurs during the daytime is significantly reduced. As a consequence,

powerful AM radio broadcast stations can propagate over large distances via sky wave

over the F-layer of the ionosphere, which ranges from 140 to 400 km above the surface

of the earth.

FIGURE 1.2-4

Illustration of sky-wave propagation.
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A frequently occurring problem with electromagnetic wave propagation via sky

wave in the high frequency (HF) range is signal multipath. Signal multipath occurs

when the transmitted signal arrives at the receiver via multiple propagation paths at dif-

ferent delays. It generally results in intersymbol interference in a digital communication

system. Moreover, the signal components arriving via different propagation paths may
add destructively, resulting in a phenomenon called signalfading, which most people

have experienced when listening to a distant radio station at night when sky wave is

the dominant propagation mode. Additive noise in the HF range is a combination of

atmospheric noise and thermal noise.

Sky-wave ionospheric propagation ceases to exist at frequencies above approx-

imately 30 MHz, which is the end of the HF band. However, it is possible to have

ionospheric scatter propagation at frequencies in the range 30-60 MHz, resulting from

signal scattering from the lower ionosphere. It is also possible to communicate over

distances of several hundred miles by use of tropospheric scattering at frequencies in

the range 40-300 MHz. Troposcatter results from signal scattering due to particles

in the atmosphere at altitudes of 10 miles or less. Generally, ionospheric scatter and

tropospheric scatter involve large signal propagation losses and require a large amount

of transmitter power and relatively large antennas.

Frequencies above 30 MHz propagate through the ionosphere with relatively little

loss and make satellite and extraterrestrial communications possible. Hence, at fre-

quencies in the very high frequency (VHF) band and higher, the dominant mode of

electromagnetic propagation is LOS propagation. For terrestrial communication sys-

tems, this means that the transmitter and receiver antennas must be in direct LOS with

relatively little or no obstruction. For this reason, television stations transmitting in the

VHF and ultra high frequency (UHF) bands mount their antennas on high towers to

achieve a broad coverage area.

In general, the coverage area for LOS propagation is limited by the curvature of

the earth. If the transmitting antenna is mounted at a height h m above the surface of

the earth, the distance to the radio horizon, assuming no physical obstructions such

as mountains, is approximately d = \/l5h km. For example, a television antenna

mounted on a tower of 300 m in height provides a coverage of approximately 67 km.

As another example, microwave radio relay systems used extensively for telephone and

video transmission at frequencies above 1 gigahertz (GHz) have antennas mounted on

tall towers or on the top of tall buildings.

The dominant noise limiting the performance of a communication system in VHF
and UHF ranges is thermal noise generated in the receiver front end and cosmic noise

picked up by the antenna. At frequencies in the super high frequency (SHF) band above

10 GHz, atmospheric conditions play a major role in signal propagation. For example,

at 10 GHz, the attenuation ranges from about 0.003 decibel per kilometer (dB/km) in

light rain to about 0.3 dB/km in heavy rain. At 100 GHz, the attenuation ranges from

about 0.1 dB/km in light rain to about 6 dB/km in heavy rain. Hence, in this frequency

range, heavy rain introduces extremely high propagation losses that can result in service

outages (total breakdown in the communication system).

At frequencies above the extremely high frequency (EHF) band, we have the in-

frared and visible light regions of the electromagnetic spectrum, which can be used

to provide LOS optical communication in free space. To date, these frequency bands
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have been used in experimental communication systems, such as satellite-to-satellite

links.

Underwater Acoustic Channels

Over the past few decades, ocean exploration activity has been steadily increasing.

Coupled with this increase is the need to transmit data, collected by sensors placed

under water, to the surface of the ocean. From there, it is possible to relay the data via

a satellite to a data collection center.

Electromagnetic waves do not propagate over long distances under water except at

extremely low frequencies. However, the transmission of signals at such low frequencies

is prohibitively expensive because of the large and powerful transmitters required. The

attenuation of electromagnetic waves in water can be expressed in terms of the skin

depth ,
which is the distance a signal is attenuated by 1 /e. For seawater, the skin depth

8 = 250/ where / is expressed in Hz and 8 is in m. For example, at 10 kHz, the

skin depth is 2.5 m. In contrast, acoustic signals propagate over distances of tens and

even hundreds of kilometers.

An underwater acoustic channel is characterized as a multipath channel due to

signal reflections from the surface and the bottom of the sea. Because of wave mo-

tion, the signal multipath components undergo time-varying propagation delays that

result in signal fading. In addition, there is frequency-dependent attenuation, which is

approximately proportional to the square of the signal frequency. The sound velocity

is nominally about 1500 m/s, but the actual value will vary either above or below the

nominal value depending on the depth at which the signal propagates.

Ambient ocean acoustic noise is caused by shrimp, fish, and various mammals.

Near harbors, there is also man-made acoustic noise in addition to the ambient noise.

In spite of this hostile environment, it is possible to design and implement efficient and

highly reliable underwater acoustic communication systems for transmitting digital

signals over large distances.

Storage Channels

Information storage and retrieval systems constitute a very significant part of data-

handling activities on a daily basis. Magnetic tape, including digital audiotape and

videotape, magnetic disks used for storing large amounts of computer data, optical

disks used for computer data storage, and compact disks are examples of data storage

systems that can be characterized as communication channels. The process of storing

data on a magnetic tape or a magnetic or optical disk is equivalent to transmitting

a signal over a telephone or a radio channel. The readback process and the signal

processing involved in storage systems to recover the stored information are equivalent

to the functions performed by a receiver in a telephone or radio communication system

to recover the transmitted information.

Additive noise generated by the electronic components and interference from ad-

jacent tracks is generally present in the readback signal of a storage system, just as is

the case in a telephone or a radio communication system.

The amount of data that can be stored is generally limited by the size of the disk

or tape and the density (number of bits stored per square inch) that can be achieved by
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the write/read electronic systems and heads. For example, a packing density of 109 bits

per square inch has been demonstrated in magnetic disk storage systems. The speed at

which data can be written on a disk or tape and the speed at which it can be read back

are also limited by the associated mechanical and electrical subsystems that constitute

an information storage system.

Channel coding and modulation are essential components of a well-designed digital

magnetic or optical storage system. In the readback process, the signal is demodulated

and the added redundancy introduced by the channel encoder is used to correct errors

in the readback signal.

1.3

MATHEMATICAL MODELS FOR COMMUNICATION CHANNELS

In the design of communication systems for transmitting information through physical

channels, we find it convenient to construct mathematical models that reflect the most

important characteristics of the transmission medium. Then, the mathematical model for

the channel is used in the design of the channel encoder and modulator at the transmitter

and the demodulator and channel decoder at the receiver. Below, we provide a brief

description of the channel models that are frequently used to characterize many of the

physical channels that we encounter in practice.

The Additive Noise Channel

The simplest mathematical model for a communication channel is the additive noise

channel, illustrated in Figure 1 .3-1 . In this model, the transmitted signal s(t ) is corrupted

by an additive random noise process n(t). Physically, the additive noise process may
arise from electronic components and amplifiers at the receiver of the communication

system or from interference encountered in transmission (as in the case of radio signal

transmission).

If the noise is introduced primarily by electronic components and amplifiers at the

receiver, it may be characterized as thermal noise. This type of noise is characterized

statistically as a Gaussian noise process. Hence, the resulting mathematical model

for the channel is usually called the additive Gaussian noise channel. Because this

channel model applies to a broad class ofphysical communication channels and because

of its mathematical tractability, this is the predominant channel model used in our

communication system analysis and design. Channel attenuation is easily incorporated

into the model. When the signal undergoes attenuation in transmission through the

s(t)

Channel

n(t)

FIGURE 1.3-1

The additive noise channel.

r(t)=s(t) + n(t)
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channel, the received signal is

r(t ) = as(t) + n(t ) (1.3-1)

where a is the attenuation factor.

The Linear Filter Channel

In some physical channels, such as wireline telephone channels, filters are used to en-

sure that the transmitted signals do not exceed specified bandwidth limitations and thus

do not interfere with one another. Such channels are generally characterized mathemat-

ically as linear filter channels with additive noise, as illustrated in Figure 1.3-2. Hence,

if the channel input is the signal s(t ), the channel output is the signal

r(t) = s(t) c(t) + n(t)

=L c(r)s(t — r) dr + n(t)

(1.3-2)

where c(t) is the impulse response of the linear filter and denotes convolution.

The Linear Time-Variant Filter Channel

Physical channels such as underwater acoustic channels and ionospheric radio chan-

nels that result in time-variant multipath propagation of the transmitted signal may be

characterized mathematically as time-variant linear filters. Such linear filters are charac-

terized by a time-variant channel impulse response c(r
;
t), where c(x

;
t) is the response

of the channel at time t due to an impulse applied at time t
— r. Thus, r represents the

“age” (elapsed-time) variable. The linear time-variant filter channel with additive noise

is illustrated in Figure 1.3-3. For an input signal s(t), the channel output signal is

r(t) = s(t ) c(r
;
t) + n(t)

c(r; t)s(t — r) dr + n(t

)

(1.3-3)
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A good model for multipath signal propagation through physical channels, such as

the ionosphere (at frequencies below 30 MHz) and mobile cellular radio channels, is a

special case of (1.3-3) in which the time-variant impulse response has the form

L

c(r; t) = y^ak (t)S(r - rk ) (1.3-4)

k= 1

where the {a&(0} represents the possibly time-variant attenuation factors for the L
multipath propagation paths and {r^} are the corresponding time delays. If (1.3-4) is

substituted into (1.3-3), the received signal has the form

L

r(t) = y~2ak(t)s(t - xk) + n(t) (1.3-5)

k=\

Hence, the received signal consists of L multipath components, where the kth compo-

nent is attenuated by ak(t) and delayed by r

The three mathematical models described above adequately characterize the great

majority of the physical channels encountered in practice. These three channel models

are used in this text for the analysis and design of communication systems.

1.4

A HISTORICAL PERSPECTIVE IN THE DEVELOPMENT
OF DIGITAL COMMUNICATIONS

It is remarkable that the earliest form of electrical communication, namely telegraphy
,

was a digital communication system. The electric telegraph was developed by Samuel

Morse and was demonstrated in 1837. Morse devised the variable-length binary code

in which letters of the English alphabet are represented by a sequence of dots and

dashes (code words). In this code, more frequently occurring letters are represented by

short code words, while letters occurring less frequently are represented by longer code

words. Thus, the Morse code was the precursor of the variable-length source coding

methods described in Chapter 6.

Nearly 40 years later, in 1 875, Emile Baudot devised a code for telegraphy in which

every letter was encoded into fixed-length binary code words of length 5. In the Baudot

code
,
binary code elements are of equal length and designated as mark and space.

Although Morse is responsible for the development of the first electrical digital

communication system (telegraphy), the beginnings of what we now regard as modern

digital communications stem from the work of Nyquist (1924), who investigated the

problem of determining the maximum signaling rate that can be used over a telegraph

channel of a given bandwidth without intersymbol interference. He formulated a model

of a telegraph system in which a transmitted signal has the general form

s(t) = J2“ng(t-nT) (1.4-1)
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where g(t) represents a basic pulse shape and {an } is the binary data sequence of {±1}
transmitted at a rate of 1/T bits/s. Nyquist set out to determine the optimum pulse shape

that was band-limited to W Hz and maximized the bit rate under the constraint that the

pulse caused no intersymbol interference at the sampling time k/T, k = 0, ±1, ±2,

His studies led him to conclude that the maximum pulse rate is 2W pulses/s. This rate

is now called the Nyquist rate. Moreover, this pulse rate can be achieved by using

the pulses g(t) = (smlnWt)/2nW t

.

This pulse shape allows recovery of the data

without intersymbol interference at the sampling instants. Nyquist’s result is equivalent

to a version of the sampling theorem for band-limited signals, which was later stated

precisely by Shannon (1948b). The sampling theorem states that a signal of bandwidth

W can be reconstructed from samples taken at the Nyquist rate of 2IT samples/s using

the interpolation formula

S
sm[2jtW(t-n/2W)]

2ixW(t -n/2W)
(1.4-2)

In light of Nyquist’s work, Hartley (1928) considered the issue of the amount

of data that can be transmitted reliably over a band-limited channel when multiple

amplitude levels are used. Because of the presence of noise and other interference,

Hartley postulated that the receiver can reliably estimate the received signal amplitude

to some accuracy, say A s . This investigation led Hartley to conclude that there is a

maximum data rate that can be communicated reliably over a band-limited channel

when the maximum signal amplitude is limited to Amax (fixed power constraint) and

the amplitude resolution is A§.

Another significant advance in the development of communications was the work
of Kolmogorov (1939) and Wiener (1942), who considered the problem of estimating a

desired signal waveform s(t) in the presence of additive noise n(t), based on observation

of the received signal r{t) = s(t) + n(t). This problem arises in signal demodulation.

Kolmogorov and Wiener determined the linear filter whose output is the best mean-

square approximation to the desired signal s(t). The resulting filter is called the optimum
linear (Kolmogorov-Wiener) filter.

Hartley’s and Nyquist’s results on the maximum transmission rate of digital in-

formation were precursors to the work of Shannon (1948a,b), who established the

mathematical foundations for information transmission and derived the fundamental

limits for digital communication systems. In his pioneering work, Shannon formulated

the basic problem of reliable transmission of information in statistical terms, using

probabilistic models for information sources and communication channels. Based on

such a statistical formulation, he adopted a logarithmic measure for the information

content of a source. He also demonstrated that the effect of a transmitter power con-

straint, a bandwidth constraint, and additive noise can be associated with the channel

and incorporated into a single parameter, called the channel capacity. For example,

in the case of an additive white (spectrally flat) Gaussian noise interference, an ideal

band-limited channel of bandwidth W has a capacity C given by

WNqJ
C = W log2 1 + bits/s (1.4-3)
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where P is the average transmitted power and No is the power spectral density of the

additive noise. The significance of the channel capacity is as follows: If the information

rate R from the source is less than C(R < C ), then it is theoretically possible to achieve

reliable (error-free) transmission through the channel by appropriate coding. On the

other hand, if R > C, reliable transmission is not possible regardless of the amount of

signal processing performed at the transmitter and receiver. Thus, Shannon established

basic limits on communication of information and gave birth to a new field that is now
called information theory.

Another important contribution to the field of digital communication is the work
of Kotelnikov (1947), who provided a coherent analysis of the various digital commu-
nication systems based on a geometrical approach. Kotelnikov’s approach was later

expanded by Wozencraft and Jacobs (1965).

Following Shannon’s publications came the classic work of Hamming (1950) on

error-detecting and error-correcting codes to combat the detrimental effects of channel

noise. Hamming’s work stimulated many researchers in the years that followed, and a

variety of new and powerful codes were discovered, many of which are used today in

the implementation of modem communication systems.

The increase in demand for data transmission during the last four decades, coupled

with the development of more sophisticated integrated circuits, has led to the develop-

ment of very efficient and more reliable digital communication systems. In the course

of these developments, Shannon’s original results and the generalization of his results

on maximum transmission limits over a channel and on bounds on the performance

achieved have served as benchmarks for any given communication system design. The
theoretical limits derived by Shannon and other researchers that contributed to the de-

velopment of information theory serve as an ultimate goal in the continuing efforts to

design and develop more efficient digital communication systems.

There have been many new advances in the area of digital communications follow-

ing the early work of Shannon, Kotelnikov, and Hamming. Some of the most notable

advances are the following:

• The development of new block codes by Muller (1954), Reed (1954), Reed and

Solomon (1960), Bose and Ray-Chaudhuri (1960a,b), and Goppa (1970, 1971).

• The development of concatenated codes by Forney (1966a).

• The development of computationally efficient decoding of Bose-Chaudhuri-

Hocquenghem (BCH) codes, e.g., the Berlekamp-Massey algorithm (see Chien,

1964; Berlekamp, 1968).

• The development of convolutional codes and decoding algorithms by Wozencraft

and Reiffen (1961), Fano (1963), Zigangirov (1966), Jelinek (1969), Forney (1970b,

1972, 1974), and Viterbi (1967, 1971).

• The development of trellis-coded modulation by Ungerboeck (1982), Forney et al.

(1984), Wei (1987), and others.

• The development of efficient source encodings algorithms for data compression, such

as those devised by Ziv and Lempel (1977, 1978), and Linde et al. (1980).

• The development of low-density parity check (LDPC) codes and the sum-product

decoding algorithm by Gallager (1963).

• The development of turbo codes and iterative decoding by Berrou et al. (1993).
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1.5

OVERVIEW OF THE BOOK

Chapter 2 presents a review of deterministic and random signal analysis. Our primary

objectives in this chapter are to review basic notions in the theory of probability and

random variables and to establish some necessary notation.

Chapters 3 through 5 treat the geometric representation of various digital modula-

tion signals, their demodulation, their error rate performance in additive, white Gaussian

noise (AWGN) channels, and methods for synchronizing the receiver to the received

signal waveforms.

Chapters 6 to 8 treat the topics of source coding, channel coding and decoding, and

basic information theoretic limits on channel capacity, source information rates, and

channel coding rates.

The design of efficient modulators and demodulators for linear filter channels with

distortion is treated in Chapters 9 and 10. Channel equalization methods are described

for mitigating the effects of channel distortion.

Chapter 1 1 is focused on multichannel and multicarrier communication systems,

their efficient implementation, and their performance in AWGN channels.

Chapter 1 2 presents an introduction to direct sequence and frequency hopped spread

spectrum signals and systems and an evaluation of their performance under worst-case

interference conditions.

The design of signals and coding techniques for digital communication through

fading multipath channels is the focus of Chapters 13 and 14. This material is especially

relevant to the design and development of wireless communication systems.

Chapter 15 treats the use of multiple transmit and receive antennas for improv-

ing the performance of wireless communication systems through signal diversity and

increasing the data rate via spatial multiplexing. The capacity of multiple antenna

systems is evaluated and space-time codes are described for use in multiple antenna

communication systems.

Chapter 16 of this book presents an introduction to multiuser communication

systems and multiple access methods. We consider detection algorithms for uplink

transmission in which multiple users transmit data to a common receiver (a base

station) and evaluate their performance. We also present algorithms for suppressing

multiple access interference in a broadcast communication system in which a transmit-

ter employing multiple antennas transmits different data sequences simultaneously to

different users.

1.6

BIBLIOGRAPHICAL NOTES AND REFERENCES

There are several historical treatments regarding the development of radio and telecom-

munications during the past century. These may be found in the books by McMahon
(1984), Millman (1984), and Ryder and Fink (1984). We have already cited the classi-

cal works of Nyquist (1924), Hartley (1928), Kotelnikov (1947), Shannon (1948), and
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Hamming (1950), as well as some of the more important advances that have occurred

in the field since 1950. The collected papers by Shannon have been published by IEEE

Press in a book edited by Sloane and Wyner (1993) and previously in Russia in a

book edited by Dobrushin and Lupanov (1963). Other collected works published by

the TF.EE Press that might be of interest to the reader are Key Papers in the Development

ofCoding Theory, edited by Berlekamp (1974), and Key Papers in the Development of

Information Theory, edited by Slepian (1974).



Deterministic and Random Signal Analysis

In this chapter we present the background material needed in the study of the following

chapters. The analysis of deterministic and random signals and the study of different

methods for their representation are the main topics of this chapter. In addition, we
also introduce and study the main properties of some random variables frequently

encountered in analysis of communication systems. We continue with a review of

random processes, properties of lowpass and bandpass random processes, and series

expansion of random processes.

Throughout this chapter, and the book, we assume that the reader is familiar with

the properties of the Fourier transform as summarized in Table 2.0-1 and the important

Fourier transform pairs given in Table 2.0-2.

In these tables we have used the following signal definitions.

'i \t\<\

ri(/) =
< j

t = ±j sinc(f) =

,
0 otherwise

and

'l t> 0 (t + 1 -1 < r < 0

sgn(r) = < -l t < o A(0 = n(r) n(r) = <
—

/ + l o < t < l

„
0 t = 0 0 otherwise

The unit step signal u \(t) is defined as

'
1 t> 0

=
< \

t = 0

.0 t < 0

We also assume that the reader is familiar with elements of probability, random
variables, and random processes as covered in standard texts such as Papoulis and Pillai

(2002), Leon-Garcia ( 1 994), and Stark and Woods (2002).

17
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TABLE 2.0-1

Table of Fourier Transform Properties

Property Signal Fourier Transform

Linearity ax\(t) 4- fix2 (t) <*Xt(f) + px2 (f)

Duality X(t) *(-/)

Conjugacy x*(f) **(-/)

Time-scaling (a ^ 0) x(at )

Time-shift x(t -

1

0 )

Modulation gjhtfofj
c (t ) X(f - f0 )

Convolution x(t) y(t) X(f)Y(f)

Multiplication X (t)y(t) X(f) + Y(f)

Differentiation (jlTtffXif)

Differentiation in frequency t
nx(t) (&)

Integration f x{r)dz
J —OO

Wf + 4(0W)

Parseval’s theorem

poo

/ x(t)y'(t)dt =
J —OO

poo

/ X{f)Y\f)df
J —OO

Rayleigh’s theorem il"38
%

poo

/
\X(f)\

2
df

J —OO

2.1

BANDPASS AND LOWPASS SIGNAL REPRESENTATION

As was discussed in Chap. 1, the process of communication consists of transmission

of the output of an information source over a communication channel. In almost all

cases, the spectral characteristics of the information sequence do not directly match the

spectral characteristics of the communication channel, and hence the information signal

cannot be directly transmitted over the channel. In many cases the information signal

is a low frequency (baseband) signal, and the available spectrum of the communication

channel is at higher frequencies. Therefore, at the transmitter the information signal is

translated to a higher frequency signal that matches the properties of the communication

channel. This is the modulation process in which the baseband information signal is

turned into a bandpass modulated signal. In this section we study the main properties

of baseband and bandpass signals.

2.1-1 Bandpass and Lowpass Signals

In this section we will show that any real, narrowband, and high frequency signal

—

called a bandpass signal—can be represented in terms of a complex low frequency
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TABLE 2.0-2

Table of Fourier Transform Pairs

Time Domain Frequency Domain

<5(0 1

1 8(f)

8(t - t0 ) e-j2nft0

e ilnfot
8(f

-
/o)

cos(2nfot) i«(/-/o)+£*(/ + /o)

sin(27r/of) Jj8(f — fo) — jj8(f + /o)

nw sine(/)

sinc(0 n(/)

A(0 sinc
2
(/)

sinc
2
(0 A(/)

e~a,U-\{t ), a > 0
a+jfyzf

te~°"u-\(t), a > 0 1

(o'+/27r/)2

> 0)
2a

a2+(2nf)2

e~nt
2

e-nf2

sgn(/)
1

jnf

«-i(0 3*(/) + 757

S\t) j2jt/

SM (t) (7 2ir/)"

1
t

sgn(/)

oo

s(r - nTo)

n=—oo

OO

n=—oo

signal, called the lowpass equivalent of the original bandpass signal. This result makes

it possible to work with the lowpass equivalents of bandpass signals instead of directly

working with them, thus greatly simplifying the handling of bandpass signals. That is

so because applying signal processing algorithms to lowpass signals is much easier due

to lower required sampling rates which in turn result in lower rates of the sampled data.

The Fourier transform of a signal provides information about the frequency content,

or spectrum
,
of the signal. The Fourier transform of a real signal x(t) has Hermitian

symmetry
, i.e., X(—f) — X*(/), from which we conclude that \X(—f)\ = \X(f)\ and

ZX*(/) = —IX(f). In other words, for real x(t), the magnitude of X(f) is even and
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its phase is odd. Because of this symmetry, all information about the signal is in the

positive (or negative) frequencies, and in particular x(t) can be perfectly reconstructed

by specifying X(f ) for / > 0. Based on this observation, for a real signal x(t ), we
define the bandwidth as the smallest range of positive frequencies such that X(f) = 0

when |/| is outside this range. It is clear that the bandwidth of a real signal is one-half

of its frequency support set.

A lowpass
,
or baseband

,
signal is a signal whose spectrum is located around the

zero frequency. For instance, speech, music, and video signals are all lowpass signals,

although they have different spectral characteristics and bandwidths. Usually lowpass

signals are low frequency signals, which means that in the time domain, they are slowly

varying signals with no jumps or sudden variations. The bandwidth of a real lowpass

signal is the minimum positive W such that X(f) = 0 outside [— W, +W]. For these

signals tht frequency support
,
i.e., the range of frequencies for which X(f) ^ 0, is

[— W, +W]. An example of the spectrum of a real-valued lowpass signal is shown in

Fig. 2.1-1. The solid line shows the magnitude spectrum |X(/)|, and the dashed line

indicates the phase spectrum LX(f).

We also define the positive spectrum and the negative spectrum of a signal x(t) as

'X(f) f> 0 (X(f) f< 0

X+(f) = < 5*(0) / = 0 X_(/)=< 5*(0) / = 0 (2.1-1)

,0 /< 0 (o /> 0

It is clear that X+(f) = X(f)u-i(f), X_(/) = X{f)u^{-f) and X(f) = X+(f) +
X_(/). For a real signal x(t), since X(f) is Hermitian, we have X_(/) = A* (— /).

For a complex signal x(t), the spectrum X(f) is not symmetric; hence, the signal

cannot be reconstructed from the information in the positive frequencies only. For

complex signals, we define the bandwidth as one-half of the entire range of frequencies

over which the spectrum is nonzero, i.e., one-half of thtfrequency support of the signal.

This definition is for consistency with the definition of bandwidth for real signals. With

this definition we can state that in general and for all signals, real or complex, the

bandwidth is defined as one-half of the frequency support.

In practice, the spectral characteristics ofthe message signal and the communication

channel do not always match, and it is required that the message signal be modulated

by one of the many different modulation methods to match its spectral characteristics to
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x(f)

FIGURE 2.1-2

The spectrum of a real-valued bandpass signal.

the spectral characteristics of the channel. In this process, the spectrum of the lowpass

message signal is translated to higher frequencies. The resulting modulated signal is a

bandpass signal.

A bandpass signal is a real signal whose frequency content, or spectrum, is located

around some frequency ±/o which is far from zero. More formally, we define a bandpass

signal to be a real signal x(t) for which there exists positive fo and W such that the

positive spectrum of X(f), i.e., X+(/), is nonzero only in the interval [fo — W/2, fo +
W

/

2], where W/2 < fo (in practice, usually W /o). The frequency fo is called the

central frequency. Obviously, the bandwidth of x(t ) is at most equal to W. Bandpass

signals are usually high frequency signals which are characterized by rapid variations

in the time domain.

An example of the spectrum of a bandpass signal is shown in Figure 2.1-2. Note

that since the signal x(t) is real, its magnitude spectrum (solid line) is even, and its phase

spectrum (dashed line) is odd. Also, note that the central frequency fo is not necessarily

the midband frequency of the bandpass signal. Due to the symmetry of the spectrum,

X+(/) has all the information that is necessary to reconstruct X(f). In fact we can write

X(f) = X+(/) + *_(/) - X+(/) + Xl(-f) (2.1-2)

which means that knowledge of X+(f) is sufficient to reconstruct X{f).

2.1-2 Lowpass Equivalent of Bandpass Signals

We start by defining the analytic signal
,
or the pre-envelope

,
corresponding to x(t) as

the signal x+(t) whose Fourier transform is X+ (/). This signal contains only positive

frequency components, and its spectrum is not Hermitian. Therefore, in general, x+(t)

is a complex signal. We have

x+ (t) = dF- 1

[*+(/)]

= dr- 1 [X(/)M_ 1 (/)]

=m *Q«(»+;^)
= ~x(t) +

}
-x(t)

(2.1-3)
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X,(f) = 2X+(f + f0 )

Digital Communications

FIGURE 2.1-3

The spectrum of the lowpass equivalent of the

signal shown in Figure 2.1-2.

where x(t) = -X *x(t) is the Hilbert transform of x(t). The Hilbert transform of x(t) is

obtained by introducing a phase shift of — | at positive frequency components of x(t)

and | at negative frequencies. In the frequency domain we have

dT[*(0] = -jsgn(f)X(f) (2.1-4)

Some of the properties of the Hilbert transform will be covered in the problems at the

end of this chapter.

Now we define xft), the lowpass equivalent
,
or the complex envelope

,
of x(t), as

the signal whose spectrum is given by 2X+(f + fo), i.e.,

W) = 2X+(/ + fo) = 2X(f + fo)u.ff + fo) (2.1-5)

Obviously the spectrum of xft) is located around the zero frequency, and therefore it is

in general a complex lowpass signal. This signal is called the lowpass equivalent or the

complex envelope of x{t). The spectrum of the lowpass equivalent of the signal shown

in Figure 2.1-2 is shown in Figure 2.1-3.

Applying the modulation theorem of the Fourier transform, we obtain

x,(f) =

= 2x+(t)e~
j2n fot

= (*(/) + jx(t))e~J2,Tfat
(2.1-6)

=
(.x(t ) cos 27tfot + x(t) sin litfot)

+ j(x(t)cos27tfot — x(t) sin27r/oO (2.1-7)

From Equation 2.1-6 we can write

x(t) = Re [xi(t)e
j2nfot

]
(2.1-8)

This relation expresses any bandpass signals in terms of its lowpass equivalent. Using

Equations 2.1-2 and 2.1-5, we can write

X(f) = ± [Xt(f - /o) + Xf(—f - fo)] (2.1-9)

Equations 2.1-8, 2.1-9, 2.1-5, and 2.1-7 express x(t) and xft) in terms of each other

in the time and frequency domains.

The real and imaginary parts of xft) are called the in-phase component and the

quadrature component of x(t), respectively, and are denoted by Xi(t) and x
q
(t). Both

Xi(t) and x
q
(t ) are real-valued lowpass signals, and we have

xi(t) = Xi(t) + jx
q
(t) (2 . 1-10)
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Comparing Equations 2.1-10 and 2.1-7, we conclude that

Xi(t) = x(t) cos 2nfot + x(t ) sin 2jrfot

x
q
(t) = x(t) cos 2tcfot — x(t) sin27r/o£

Solving Equation 2.1-1 1 for x(t) and x(t) gives

x(t) = Xi(t) cos 2jcfot — x
q
(t ) sin 2jrfot

x(t) = x
q
(t) cos 2nfot + Xi(t) sin 2nfot

(2 . 1-11 )

(2 . 1-12)

Equation 2.1-12 shows that any bandpass signal x(t) can be expressed in terms of

two lowpass signals, namely, its in-phase and quadrature components.

Equation 2.1-10 expresses xi(t) in terms of its real and complex parts. We can

write a similar relation in polar coordinates expressing x(t) in terms of its magnitude

and phase. If we define the envelope and phase of x(t), denoted by rx (t) and 9x (t),

respectively, by

rx {t) = yjxfit) + x*(t) (2.1-13)

0x (t) = arctan
Xq^

(2.1-14)
Xi(t)

we have

x
l
(t) = rx(t)e^‘

) (2.1-15)

Substituting this result into Equation 2.1-8 gives

x(t) = Re [rx (t)e
K27tfo,+eAl))

]
(2.1-16)

resulting in

x(t) = rx (t) cos (2nf0 t + dx (t)) (2.1-17)

A bandpass signal and its envelope are shown in Figure 2.1-4.

FIGURE 2.1-4

A bandpass signal. The dashed curve denotes the envelope.
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It is important to note that xi(t )—and consequently xft), x
q
(t), rx (t), and 0x {t )

—

depends on the choice of the central frequency fo. For a given bandpass signal x(t ),

different values of fo—as long as X+(f) is nonzero only in the interval [fo — W/2, fo+
W/2], where W/2 < fo—yield different lowpass signals xft). Therefore, it makes
more sense to define the lowpass equivalent of a bandpass signal with respect to a

specific fo. Since in most cases the choice of fo is clear, we usually do not make this

distinction.

Equations 2.1-12 and 2.1-17 provide two methods for representing a bandpass

signal x(t) in terms of two lowpass signals, one in terms of the in-phase and quadrature

components and one in terms of the envelope and the phase. The two relations given in

Equations 2.1-8 and 2.1-12 that express the bandpass signal in terms of the lowpass

component(s) define the modulation process, i.e., the process of going from lowpass to

bandpass. The system that implements this process is called a modulator. The structure

of a general modulator implementing Equations 2.1-8 and 2.1-12 is shown in Fig-

ure 2.1-5(a) and (b). In this figure double lines and double blocks indicate complex
values and operations.

Similarly, Equations 2.1-7 and 2.1-11 represent how xi(t), or xft) and x
q
(t), can

be obtained from the bandpass signal x(t). This process, i.e., extracting the lowpass

signal from the bandpass signal, is called the demodulation process and is shown in

Figure 2.1-6(a) and (b). In these block diagrams the block denoted by ©^represents

a Hilbert transform, i.e., an LTI system with impulse response h(t) = ^ and transfer

function H(f) = -jsgn(f).

cos 2irf0t

-sin 27Tf0 t

(a) (b)

i

(c)

x(t)

FIGURE 2.1-5

A complex (a) and real (b) modulator. A general representation for a modulator is

shown in (c).
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cos 27rfQ t

(c)

FIGURE 2.1-6

A complex (a) and real (b) demodulator. A general representation for a demodulator is

shown in (c).

2.1-3 Energy Considerations

In this section we study the relation between energy contents of the signals introduced

in the preceding pages. The energy of a signal x(t) is defined as

/
oo

\x(t)\
2
dt (2.1-18)

-OO

and by Rayleigh’s relation from Table 2.0-1 we can write

/
OO pCO

\x(t)\
2 dt=

/
\X(f)\

2
dt (2.1-19)

-oo J—co

Since there is no overlap between X+(f) and X_(/), we have X+(f)X-(f) = 0,

and hence

/
oo

|X+(/) + X_(/)| 2 J/
-00

/

OO poo

\X+(f)\
2
df +

/
\X-{f)\

2
df

-oo J —CO

/
oo

\x+ (f)\
2
df

-00

= 2£x+

(2 . 1-20)
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On the other hand,

\x+(f)\
2
df

|

W)|
2

(2 . 1-21 )

This shows that the energy in the lowpass equivalent signal is twice the energy in the

bandpass signal.

We define the inner product oftwo signals x(t) and y(t) as

/
oo poo

x(t)y*(t)dt =
/

X(f)Y*(f)df
-OO J —OO

where we have used Parseval’s relation from Table 2.0-1. Obviously

£x = {X(t),x(t))

(2 . 1-22)

(2.1-23)

In Problem 2.2 we prove that if x{t) and y{t) are two bandpass signals with lowpass

equivalents xi(t ) and yft) with respect to the same /o, then

(x(t), y(t)) = ^Re [(x
t
(t), yi(t))] (2.1-24)

The complex quantity px>y ,
called the cross-correlation coefficient of x{t) and y(t ), is

defined as

Px,y —
(x(t), y(t ))

\/£x£y
(2.1-25)

and represents the normalized inner product between two signals. From 8Xl = 28X and

Equation 2.1-24 we can conclude that if x{t) and y{t) are bandpass signals with the

same /o, then

Px,y — Re (/2t/,.y/) (2.1—26)

Two signals are orthogonal if their inner product (and subsequently, their p) is

zero. Note that if pXuyi — 0, then using Equation 2.1-26, we have pXty = 0; but the

converse is not necessarily true. In other words, orthogonality in the baseband implies

orthogonality in the pass band, but not vice versa.

example 2.1-1 . Assume that m(t) is a real baseband signal with bandwidth W, and

define two signals x(t) = m(t) cos

2

jt

/

0 f and y(t) = m(t) sin2nf0 t, where /0 > W.
Comparing these relations with Equation 2.1-12, we conclude that

Xiit) = m(t) x
q
(t) = 0

yi(t) = 0 yq (t) = -m(t)
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or, equivalently,

Note that here

Therefore,

xi(t ) = m(t)

yi(t )
= -jrn(t )

/
oo

m 2
(t) = jSm

-OO

Ax,);
— — R^(y£m ) — 0

This means that x(f) and y(t) are orthogonal, but their lowpass equivalents are not

orthogonal.

2.1-4 Lowpass Equivalent of a Bandpass System

A bandpass system is a system whose transfer function is located around a frequency

f0 (and its mirror image — /o). More formally, we define a bandpass system as a system

whose impulse response h(t) is a bandpass signal. Since h(t) is bandpass, it has a

lowpass equivalent denoted by hft) where

h(t) = Re[h l (t)e
j2nfa

‘] (2.1-27)

If a bandpass signal x(t ) passes through a bandpass system with impulse response

hit), then obviously the output will be a bandpass signal y(t). The relation between the

spectra of the input and the output is given by

Y(f) = X(f)H(f) (2.1-28)

Using Equation 2.1-5, we have

Yi(f) = 2Y(f + f0)u- l (f + fo)

= 2X(f + f0)H(f + /0)K_i(/ + /o)

= i [2X(f + /o)m_i(/ + fo)} [2H(f + fo)u-i(f + /„)]

= Ix,(/)H,(/) (2.1-29)

where we have used the fact that for f > — fo, which is the range of frequencies of

interest, u2
_

x (f + fo) = w_i(/ + fo) = 1. In the time domain we have

y/(0 = ^/(0*/*/(0 (2.1-30)

Equations 2.1-29 and 2.1-30 show that when a bandpass signal passes through a

bandpass system, the input-output relation between the lowpass equivalents is very

similar to the relation between the bandpass signals, the only difference being that for

the lowpass equivalents a factor of
|

is introduced.
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2.2

SIGNAL SPACE REPRESENTATION OF WAVEFORMS

Signal space (or vector) representation of signals is a very effective and useful tool in

the analysis of digitally modulated signals. We cover this important approach in this

section and show that any set of signals is equivalent to a set of vectors. We show that

signals have the same basic properties of vectors. We study methods of determining an

equivalent set of vectors for a set of signals and introduce the notion of signal space

representation, or signal constellation
,
of a set of waveforms.

2.2-1 Vector Space Concepts

A vector v in an n-dimensional space is characterized by its n components v\ v2 •
• vn .

Let v denote a column vector, i.e., v «= [fi v2 •
• • v

lt \\ where A f

denotes the transpose

of matrix A. The inner product of two n-dimensional vectors v\ = [t>n v \2 •
• v\ n ]

f

and V2 = [t>2 i f22 •
* * v2n\ is defined as

n

(vu l>2 > =Vi -V2 -J2 Vl '' v2i
= V

2
V 1 (2.2-1)

i=

1

where AH denotes the Hermitian transpose of the matrix A, i.e., the result of first

transposing the matrix and then conjugating its elements. From the definition of the

inner product of two vectors it follows that

{V\, V2 ) = (t>2, t>i)* (2.2-2)

and therefore,

(v\, v2 ) + (v2 ,
v { )

= 2Re[(n, v2 )] (2.2-3)

A vector may also be represented as a linear combination of orthogonal unit vectors

or an orthonormal basis C;, 1 < i < n
,
i.e.,

n

V = (2.2-4)

1= 1

where, by definition, a unit vector has length unity and v
t
is the projection of the vector

v onto the unit vector e t , i.e., V[ = (v,ej). Two vectors V\ and v2 are orthogonal if

(v\,v2 ) = 0. More generally, a set of m vectors vk , 1 < k < m, are orthogonal if

(Vj, Vj) = 0 for all 1 < i, j < m, and i ^ j . The norm of a vector v is denoted by
||
v||

and is defined as

= «®, ®

»

1/2 = Vi\ (2.2-5)

which in the ^-dimensional space is simply the length of the vector. A set of m vec-

tors is said to be orthonormal if the vectors are orthogonal and each vector has a
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unit norm. A set of m vectors is said to be linearly independent if no one vector can be

represented as a linear combination of the remaining vectors. Any two n-dimensional

vectors V\ and v2 satisfy the triangle inequality

\\vi + v2 \\ < IM + ||i>2 ||
(2.2-6)

with equality if V\ and v2 are in the same direction, i.e., V\ = av2 where a is a positive

real scalar. The Cauchy-Schwarz inequality states that

l(»i,W2>l<l|wil|-||»2ll (2.2-7)

with equality if V\ = av2 for some complex scalar a. The norm square of the sum of

two vectors may be expressed as

I|V 1 + V2 II

2 = llvill
2 + IIV2 II

2 + 2Re[{vi, v2 )] (2.2-8)

If i>! and v2 are orthogonal, then (»i, v2 ) = 0 and, hence,

||t;i + V2
||

2 = ||vi|!
2

-i- ||r2 ||

2
(2.2-9)

This is the Pythagorean relation for two orthogonal n-dimensional vectors. From matrix

algebra, we recall that a linear transformation in an ^-dimensional vector space is a

matrix transformation of the form v' = Av, where the matrix A transforms the vector

v into some vector v
f

. In the special case where v
f — Xv, i.e.,

Av — Xv

where X is some scalar, the vector v is called an eigenvector of the transformation and

X is the corresponding eigenvalue.

Finally, let us review the Gram-Schmidt procedure for constructing a set of or-

thonormal vectors from a set of ^-dimensional vectors Vi, 1 < i < m. We begin by

arbitrarily selecting a vector from the set, say, v\. By normalizing its length, we obtain

the first vector, say,

v\

Hull
(2 .2-10)

Next, we may select v2 and, first, subtract the projection of v2 onto u i . Thus, we obtain

u’2 = v2
- ((|>2,«i))H1 (2 .2-11 )

Then we normalize the vector u f

2 to unit length. This yields

u2 (2 .2-12)

The procedure continues by selecting v 3 and subtracting the projections of v 3 into u i

and u2 . Thus, we have

u'3 = v 3
-

((»3, «1»«1 - ((»3, u2))u2 (2.2-13)

Then the orthonormal vector u 2 is

u 3 = (2.2-14)



30 Digital Communications

By continuing this procedure, we construct a set of N orthonormal vectors, where

N < min(m, ri).

2.2-2 Signal Space Concepts

As in the case of vectors, we may develop a parallel treatment for a set of signals. The
inner product of two generally complex-valued signals x\(t) and x2 (t) is denoted by

(*i(0, *2(0) an<3 defined as

/
oo

xi(t)x£(t)dt (2 .2-15)
-OO

similar to Equation 2 . 1-22 . The signals are orthogonal if their inner product is zero.

The norm ofa signal is defined as

/ poo \ 1/2

IIjcCOII = (J^
\x{t)\

2 dtj = vC (2 .2-16)

where 8X is the energy in x(t). A set ofm signals is orthonormal if they are orthogonal

and their norms are all unity. A set ofm signals is linearly independent if no signal can

be represented as a linear combination of the remaining signals. The triangle inequality

for two signals is simply

||*i(0 + *2(011 < ll*i(0ll + II *2(011 (2 .2-17 )

and the Cauchy-Schwarz inequality is

l<*i(0> *2(0)1 < ||*i(0ll • 11*2(011 = (2 .2-18 )

or, equivalently,

poo /*°° 1/2
r°°

/ *1 (0*2 (0^
7—00

< / \xy{t)\
2
dt

J—OO
/

\x2 (t)\
2
dt

J—00

with equality when x2 (t) = axft), where a is any complex number.

2.2-3 Orthogonal Expansions of Signals

In this section, we develop a vector representation for signal waveforms, and thus we
demonstrate an equivalence between a signal waveform and its vector representation.

Suppose that ^(0 is a deterministic signal with finite energy

£,= dt (2 .2-20)

Furthermore, suppose that there exists a set of functions {0/2 (O> w = 1
,
2,...,^} that

are orthonormal in the sense that

(0/i (0> 0m(O) 0n(O0m(O^
1 m = n

0 m 7^ n
(2 .2-21 )
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We may approximate the signal s(t) by a weighted linear combination of these func-

tions, i.e.,

K

?(0 = ^2sk<t>k(t) (2 .2-22)

k=l

where {,?&, 1 < k < K] are the coefficients in the approximation of s(t). The approx-

imation error incurred is

e(t) = s(t )
— ?(0

Let us select the coefficients {^} so as to minimize the energy £e of the approximation

error. Thus,

£e = -s(t)\
2
dt

K

S(t) ~
k=l

2

dt

(2.2-23)

(2.2-24)

The optimum coefficients in the series expansion of s(t ) may be found by differentiating

Equation 2.2-23 with respect to each of the coefficients {$&} and setting the first deriva-

tives to zero. Alternatively, we may use a well-known result from estimation theory

based on the mean square error criterion, which, simply stated, is that the minimum
of £e with respect to the {s^} is obtained when the error is orthogonal to each of the

functions in the series expansion. Thus,

/:
KO - ^skfait)

k= 1

4>*
n {t)dt = 0, n = 1,2, ...,K

Since the functions are orthonormal, Equation 2.2-25 reduces to

/
oo

s(t)<p*(t)dt, n = 1,2, . .
. , K

-OO

(2.2-25)

(2.2-26)

Thus, the coefficients are obtained by projecting the signal ^(0 onto each of the

functions {(/)n (t)}. Consequently, ?(r) is the projection of ^(0 onto the -dimensional

signal space spanned by the functions {(/)n (t)}, and therefore it is orthogonal to the error

signal e(t) = s(t )
— 7(t), i.e., (e(t), 7(t)) = 0. The minimum mean-square approxima-

tion error is

e(t)s*(t)dt

|^(0|
2
dt —

K

^2sk 4>k(t)s*(t)dt

k=

1

K

£s -Ei^i
2

(2.2-27)

(2.2-28)

(2.2-29)
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which is nonnegative, by definition. When the minimum mean square approximation

error = 0,

K poo

= M 2 = \s(t)\
2
dt (2.2-30)

*=i J -°°

Under the condition that S^n = 0, we may express s(t) as

K

s{t) = £>&(*) (2.2-31)

k=

1

where it is understood that equality of s(t) to its series expansion holds in the sense that

the approximation error has zero energy.

When every finite energy signal can be represented by a series expansion of the

form in Equation 2.2-31 for which = 0, the set of orthonormal functions {(j)n (t)}

is said to be complete.

example 2.2-1. trigonometric Fourier series: Consider a finite energy real sig-

nal s(t) that is zero everywhere except in the range 0 < t < T and has a finite number
of discontinuities in this interval. Its periodic extension can be represented in a Fourier

series as

s(t) =
k=

0

2nkt
CLk cos + bk sin

2nkt\
(2.2-32)

where the coefficients {dk, bk] that minimize the mean square error are given by

i r
T

dQ = j; JQ
s(-^ dt

_ [
T 2nkt

ak -—\ s(t)cos——dt, k= 1,2,3,...

bk

=^L

-n

(2.2-33)

T 2nkt
s(t) sin dt

,
k = 1, 2, 3,

.

The set of functions (1 /a/T, ^2/T cos2nkt/T
, +J2/T sm2nkt/T) is a complete

set for the expansion of periodic signals on the interval [0, T\, and, hence, the series

expansion results in zero mean square error.

EXAMPLE 2.2-2. exponential FOURIER SERIES: Consider a general finite energy sig-

nal s(t) (real or complex) that is zero everywhere except in the range 0 < t < T and

has a finite number of discontinuities in this interval. Its periodic extension can be

represented in an exponential Fourier series as

oo

s(t)= J2 xn e
J2n^ (2.2-34)

n=—oo

where the coefficients {xn } that minimize the mean square error are given by

1 f°°
Xn =rL x(t)e

j2n "

T ‘dt (2.2-35)
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The set of functions {^Jl/Te

i

2*! 1

} is a complete set for expansion of periodic signals

on the interval [0, T], and, hence, the series expansion results in zero mean square

error.

2.2-4 Gram-Schmidt Procedure

Now suppose that we have a set of finite energy signal waveforms {sm (t), m — 1,2,...,

M

}

and we wish to construct a set of orthonormal waveforms. The Gram-Schmidt

orthogonalization procedure allows us to construct such a set. This procedure is similar

to the one described in Section 2.2-1 for vectors. We begin with the first waveform

s\(t) 9
which is assumed to have energy £\. The first orthonormal waveform is simply

constructed as

01 (0 =
Sj(t)

V£i
(2.2-36)

Thus, 0i (0 is simply s\(t) normalized to unit energy. The second waveform is con-

structed from S2 (t) by first computing the projection of ^(O onto 0i(O> which is

C2l = (S2(t), 01 (0> = /
S2 (t)</>*(t)dt

J-oo

Then C2i0i(O is subtracted from ^(O to yield

72(f) = S2 (t)
-

(2.2-37)

(2.2-38)

This waveform is orthogonal to <pi(t), but it does not have unit energy. If £2 denotes

the energy of Y2 (t), i.e.,

/
oo

rl(t)dt
-00

the normalized waveform that is orthogonal to </>i (t ) is

72(f)
02(f) =

V£2

In general, the orthogonalization of the kth function leads to

7fc(f)

0t(f) —
ar^k

where

k-i

(2.2-39)

(2.2-40)

(2.2-41)Yk(t) = Skit )
-

'Y2
cki4>iit)

i=

1

/
OO

sk (t)4>*(t) dt, i = l, 2,...,k-

l

(2.2-42)
-OO

/
OO

yl(t)dt
-OO

(2.2-43)
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Thus, the orthogonalization process is continued until all the M signal waveforms

{^m (0} have been exhausted and TV < M orthonormal waveforms have been con-

structed. The dimensionality TV of the signal space will be equal to M if all the signal

waveforms are linearly independent, i.e., none of the signal waveforms is a linear

combination of the other signal waveforms.

example 2.2-3 . Let us apply the Gram-Schmidt procedure to the set of four wave-

forms illustrated in Figure 2.2-1. The waveform s\(t) has energy E\ = 2, so that

01 (0 =

Next we observe that C21 = 0; hence, ^(0 and 0 1
(t) are orthogonal. Therefore, 02 (f )

=

s2 = \J\

S

2 (t). To obtain 03(0, we compute c3 i and C32, which are c3 i = y/2

and C23 = 0. Thus,

r f-1 2<t<3
y,0 ) = s, (0 - V2*«)=|

0 otherwise

Since y3 (f) has unit energy, it follows that 03 (0 = YsO). Determining 04(0, we find

that C41 = —>/2, C42 = 0, and C43 = 1. Hence,

y4(t) = s4(t) + V20i(O - fa(t) - 0

Consequently, s^(t) is a linear combination of 0i(O and 03(O and, hence, 04(0 = 0.

The three orthonormal functions are illustrated in Figure 2.2-1 (b).

Once we have constructed the set oforthonormal waveforms {0^(01, we can express

the M signals {^m (0} as linear combinations of the {0„(O}- Thus, we may write

N

Sm(t ) = ^T
/

smn <l>n (t), m= 1,2 M (2.2-44)

n=

1

Based on the expression in Equation 2.2-44, each signal may be represented by the

vector

Sm — l/ral Sm2 *
‘

‘ SmN ] (2.2—45)

or, equivalently, as a point in the TV-dimensional (in general, complex) signal space with

coordinates {smn ,
n = 1

,
2,..., TV}. Therefore, a set of M signals {sm (t)}%=l can be

represented by a set ofM vectors {sm }jjf=1 in the TV-dimensional space, where TV < M.
The corresponding set of vectors is called the signal space representation

,
or con-

stellation
,
of {sm (0}m=i- If the original signals are real, then the corresponding vector

representations are inRN
;
and if the signals are complex, then the vector representations

are in C^. Figure 2.2-2 demonstrates the process of obtaining the vector equivalent

from a signal (signal-to-vector mapping) and vice versa (vector-to-signal mapping).

From the orthonormality of the basis {(/)n (t)} it follows that

roo N

£m = \sm {t)\
2
dt = \Smn\

2 = l|sm ||

2

J—OO 1

(2.2-46)
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(b)

FIGURE 2.2-1

Gram-Schmidt orthogonalization of the signal {sm (0, m = 1, 2, 3, 4} and the corresponding

orthonormal basis.

The energy in the mth signal is simply the square of the length of the vector or, equiv-

alently, the square of the Euclidean distance from the origin to the point sm in the

Af-dimensional space. Thus, any signal can be represented geometrically as a point in

the signal space spanned by the orthonormal functions {(j>n {t)}. From the orthonormality

of the basis it also follows that

(sk (t), si(t)} = (sk , Si) (2.2-47)

This shows that the inner product of two signals is equal to the inner product of the

corresponding vectors.
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<M0

(b)

FIGURE 2.2-2

Vector to signal (a), and signal to vector (b) mappings.

EXAMPLE 2.2-4. Let us obtain the vector representation of the four signals shown in

Figure 2.2-l(a) by using the orthonormal set of functions in Figure 2.2-l(b). Since

the dimensionality of the signal space is N = 3, each signal is described by three

components. The signal s\ (t) is characterized by the vector s i = (>/2, 0, 0)
r

. Similarly,

the signals s2 (t), s3 (t), and s4(0 are characterized by the vectors s2 = (0 , V2
,
0)',

5 3 = (V2 , 0, 1 y, and s 4 = (-V2 , 0, 1)', respectively. These vectors are shown in

Figure 2.2-3. Their lengths are ||si ||
= >/2, ||s'2

II
= \/2, IIS 3 II

= V3, and ||s4 ||
= V3,

and the corresponding signal energies are £k = \\Sk\\
2

,
k = 1, 2, 3, 4.

We have demonstrated that a set ofM finite energy waveforms {sm (0} can be rep-

resented by a weighted linear combination of orthonormal functions {</>„(»} of dimen-

sionality N < M. The functions {(j)n (t)} are obtained by applying the Gram-Schmidt

orthogonalization procedure on {.sm (f)}. It should be emphasized, however, that the

functions {0„(f)} obtained from the Gram-Schmidt procedure are not unique. If we
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4*2 FIGURE 2.2-3

The four signal vectors represented as points in

three-dimensional space.

alter the order in which the orthogonalization of the signals {sm (01 is performed, the

orthonormal waveforms will be different and the corresponding vector representation

of the signals {sm (01 will depend on the choice of the orthonormal functions {</>„(01-

Nevertheless, the dimensionality of the signal space N will not change, and the vectors

{sm } will retain their geometric configuration; i.e., their lengths and their inner products

will be invariant to the choice of the orthonormal functions {^(01-

example 2.2-5. An alternative set of orthonormal functions for the four signals in

Figure 2 .2-1 (a) is illustrated in Figure 2 .2-4(a). By using these functions to expand

K(01, we obtain the corresponding vectors S\ = (1, 1, 0)
r

,
S2 = (1, —1, 0)

r

,
S3 =

( 1
,

1
,
— iy, and S4 = (— 1

,
— 1

,

— 1 /, which are shown in Figure 2 .2-4(b). Note that

the vector lengths are identical to those obtained from the orthonormal functions (0„ (01-

<Ai (0 <W) WO

t 0 0

•-

(a)

<A2

FIGURE 2.2-4

An alternative set of orthonormal functions for the four signals in Figure 2 .2-1 (a) and the

corresponding signal points.
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Bandpass and Lowpass Orthonormal Basis

Let us consider the case in which the signal waveforms are bandpass and represented as

sm (t) = Re [smi(t)e
j2n ôt

] ,
m = 1, 2, . .

.

,

M (2.2-48)

where {smi(t)} denotes the lowpass equivalent signals. Recall from Section 2. 1-1 that if

two lowpass equivalent signals are orthogonal, the corresponding bandpass signals are

orthogonal too. Therefore, if {0„/(O, n = 1, • .
.

,

N] constitutes an orthonormal basis

for the set of lowpass signals {smi(t)}, then the set {</>„(0, n — 1, . .
.

,

iV} where

4>n(t) = V2 Re
[<

t>ni(t)e
j2n /o

'] (2.2-49)

is a set of orthonormal signals, where \fl is a normalization factor to make sure each

has unit energy. However, this set is not necessarily an orthonormal basis for

expansion of {sm (0, m = 1, . .
.

,

M). In other words, there is no guarantee that this set

is a complete basis for expansion of the set of signals {sm (t), m —
1 , . .

.

,

M}. Here our

goal is to see how an orthonormal basis for representation of bandpass signals can be

obtained from an orthonormal basis used for representation of the lowpass equivalents

of the bandpass signals.

Since we have

N

^m/(0 — ^
'

J SmlnQnl(t\ Jfl = 1, . . . ,
M (2.2—50)

n=

1

where

Smln — (^m/( 0n/(O)> ^72 — !>•••>

from Equations 2.2-48 and 2.2-50 we can write

*^m(0 — Re
N

\

£Wn/(0J ej2nfo
‘

L \n=l

n = l,...,N

m = 1, . .
. ,
M

(2.2-51)

(2.2-52)

or

sm (t) = Re
Ln=\

cos 2nfot — Im ^ ^
smln (Pnlif )

Ln=l

sinlnfot (2.2-53)

In Problem 2.6 we will see that when an orthonormal set of signals
{(t>ni(t), n =

1, . .
.

,

N] constitutes an iV-dimensional complex basis for representation of {smi(t),

m —
1, . .

.

,

M], then the set {4)n (t ), <fn (t ), n = 1, . .
.

,

N}, where

(j)n (t) = V2 Re [(/>ni(t)e
j27Tfot

]
= Vlfpniit) cos Infot - V2(/)nq (t)sm27tf0 t

4>n(t) = -V2 Im [<pni(t)e
j271 fot

]
= —*/2(j)ni (t) sin 2nfot - V24)nq (t)cos27tf0 t

(2.2-54)

constitutes a 2Af-dimensional orthonormal basis that is sufficient for representation of

M bandpass signals

sm {t) = Re [smi(t)e
j27tfot

]
, m = 1, . .

. , M (2.2-55)
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In some cases not all basis functions in the set of basis given by Equation 2.2-54 are

necessary, and only a subset of them would be sufficient to expand the bandpass signals.

In Problem 2.7 we will further show that

0(0 = -0(0 (2.2-56)

where 0(0 denotes the Hilbert transform of (j>{t ).

From Equation 2.2-52 we have

*^m(0 —

N

j2nf0 t

Kn=

1

= 5Z Re
[(Smln(/>nl(t))e

j2nfot
]

n=

1

=E
n=

1

(r)

^mln

V2

J
(0 _

^(O + -^0„(O
V2

(2.2-57)

where we have assumed that jm/„ = s
(

„Jn + js^\n . Equations 2.2-54 and 2.2-57 show

how a bandpass signal can be expanded in terms of the basis used for expansion of its

lowpass equivalent. In general, lowpass signals can be represented by an Af-dimensional

complex vector, and the corresponding bandpass signal can be represented by 2N-

dimensional real vectors. If the complex vector

Sml = sml2> • • • » ^m/v)

is a vector representation for the lowpass signal smi(t) using the lowpass basis

n — 1, . .
.

,

N), then the vector

t

sm = |
. .

. ,
. .

.

,

I
(2.2-58)

V2’ V2
!

V2’ V2’ V2

is a vector representation of the bandpass signal

sm (t) = Re [smi(t)e
j2n fot

]

when the bandpass basis {0„(O> 0n (O, n = l, . .
. ,
N] given by Equations 2.2-54 and

2.2-57 is used.

example 2.2-6 . Let us assume M bandpass signals are defined by

sm (t) = Re [Amg(t)e^^] (2.2-59)

where Am ’s are arbitrary complex numbers and g(t) is a real lowpass signal with energy

Eg. The lowpass equivalent signals are given by

^m/(0 — Amgit')

and therefore the unit-energy signal 0(0 defined by

gif)
0(0

is sufficient to expand all smi(t)’s.
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We have

Smlif ) — £g 0(0

thus, corresponding to each smi(t) we have a single complex scalar Am ^fEg =
(A^ + y'A^) i.e., the lowpass signals constitute one complex dimension (or,

equivalently, two real dimensions). From Equation 2.2-54 we conclude that

— g(t) cos 2nf0 t0(0

0(0 = -
\ hr g(t)sin2nfot

can be used as a basis for expansion of the bandpass signals.

Using this basis and Equation 2.2-57, we have

Smit) = 0(0

= Am git) cos litfat - A(Ag(t) sin 2nf0t

which agrees with the straightforward expansion of Equation 2.2-59. Note that in the

special case where all Am ’s are real, 0(0 is sufficient to represent the bandpass signals

and 0(0 is not necessary.

2.3

SOME USEFUL RANDOM VARIABLES

In subsequent chapters, we shall encounter several different types of random variables.

In this section we list these frequently encountered random variables, their probability

density functions (PDFs), their cumulative distribution functions (CDFs), and their

moments. Our main emphasis will be on the Gaussian random variable and many
random variables that are derived from the Gaussian random variable.

The Bernoulli Random Variable

The Bernoulli random variable is a discrete binary-valued random variable taking values

1 and 0 with probabilities p and 1 — p, respectively. Therefore the probability mass

function (PMF) for this random variable is given by

P[X = 1] = p P[X = 0] = 1 - p (2.3-1)

The mean and variance of this random variable are given by

E [X] = p

VAR [A] = p(\-p)
(2.3-2)
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The Binomial Random Variable

The binomial random variable models the sum of n independent Bernoulli random

variables with common parameter p. The PMF of this random variable is given by

P [X = k]=^jpk(l-p)n-k
,

k = 0,\,...,n (2.3-3)

For this random variable we have

E [X]
= np

VAR[X] = np{\ -p)
(2.3-4)

This random variable models, for instance, the number of errors when n bits are trans-

mitted over a communication channel and the probability of error for each bit is p.

The Uniform Random Variable

The uniform random variable is a continuous random variable with PDF

p(x) = l
b

o

~“ a < x < b

otherwise
(2.3-5)

where b > a and the interval [a, b ] is the range of the random variable. Here we have

E[X] = (2-3-6)

VAR [X] = (
^~ a)

(2.3-7)

The Gaussian (Normal) Random Variable

The Gaussian random variable is described in terms of two parameters me R and

a > 0 by the PDF

1 (x-m )
2

P(x) = .
2,2 (2.3-8)

\l2na 2

We usually use the shorthand form Af(m, a 2
) to denote the PDF of Gaussian random

variables and write X ~ a 2
). For this random variable

E [X] = m

VAR [X] = a 2
(2.3-9)

A Gaussian random variable with m = 0 and a = 1 is called a standard normal. A
function closely related to the Gaussian random variable is the O function defined as

Q(x) = PLV(0,1)>x] = -L r e-'idt
V2n Jx

(2.3-10)
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FIGURE 2.3-1

PDF and CDF of a Gaussian random variable.

The CDF of a Gaussian random variable is given by

F(x) =
f
X

1 0-m)2

= I e 2a 2 dt
7-oo V27TCT 2

1 (/-m)2

= 1—1 e 2ff
2

Jx

1
7= 1—1 e 2 dw

7^ V27T

= 1-2

(2.3-11)

where we have introduced the change of variable u = (t — m)/a. The PDF and the

CDF of a Gaussian random variable are shown in Figure 2.3-1.

In general if X ~ Af(m
,
a 2

), then

P [X>a] = Q

P[X <a] = Q

(2.3-12)

Following are some of the important properties of the Q function:

2(0) = 2(oo) = 0

Q(-oo) = 1 Q(-x) = 1 - 2M
Some useful bounds for the Q function for x >0 are

1 _£
Q(x) < ~ e 2

1

200 < —
7
= e 2

X\J2jz

Q(x) > —== e 2

(1 + X 2)a/27T
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FIGURE 2.3-2

Plot of Q(x) and its upper and lower bounds.

From the last two bounds we conclude that for large x we have

GOc) (2.3-16)
X\JL7t

A plot of the Q function bounds is given in Figure 2.3-2. Tables 2.3-1 and 2.3-2 give

values of the Q function.

TABLE 2.3-1

Table of Q Function Values

X Q(x) X QW X 0(X) X QM
0 0.500000 1.8 0.035930 3.6 0.000159 5.4 3.3320x 10

-8

0.1 0.460170 1.9 0.028717 3.7 0.000108 5.5 1.8990x 10
-8

0.2 0.420740 2 0.022750 3.8 7.2348 x 10"5 5.6 1.0718x 10
-8

0.3 0.382090 2.1 0.017864 3.9 4.8096xl0"5 5.7 5.9904x 10
-9

0.4 0.344580 2.2 0.013903 4 3.1671 xlO"5 5.8 3.3157x 10
-9

0.5 0.308540 2.3 0.010724 4.1 2.0658 xlO"5 5.9 1.8175x 10
-9

0.6 0.274250 2.4 0.008198 4.2 1.3346x 10"5 6 9.8659x10-’°

0.7 0.241960 2.5 0.006210 4.3 8.5399x 10"6 6.1 5.3034x10-’°

0.8 0.211860 2.6 0.004661 4.4 5.4125 xlO"6 6.2 2.8232x10"’°

0.9 0.184060 2.7 0.003467 4.5 3.3977xl0"6 6.3 1.4882x10"’°

1 0.158660 2.8 0.002555 4.6 2.1125xl0"6 6.4 7.7689x10"”

1.1 0.135670 2.9 0.001866 4.7 1.3008 x 10"6
6.5 4.0160x10"”

1.2 0.115070 3 0.001350 4.8 7.9333 xl0“7
6.6 2.0558x10"”

1.3 0.096800 3.1 0.000968 4.9 4.7918 xlO"7 6.7 1.0421x10"”

1.4 0.080757 3.2 0.000687 5 2.8665 xlO"7 6.8 5.2309x 10"’ 2

1.5 0.066807 3.3 0.000483 5.1 1.6983 xlO"7 6.9 2.6001 xlO" 12

1.6 0.054799 3.4 0.000337 5.2 9.9644x 10“ 8 7 1.2799x 10" 12

1.7 0.044565 3.5 0.000233 5.3 5.7901 xlO" 8 7.1 6.2378x 10" 13
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TABLE 2.3-2

Selected Q Function

Values

QM X

KT 1 1.2816

1(T2 2.3263

1(T3 3.0902

10~4 3.7190

10~5 4.2649

ur6 4.7534

io
-7 5.1993

0.5 xl0“5 4.4172

0.25 x 10
-5

4.5648

0.667 xl0~5 4.3545

Another function closely related to the Q function is the complementary error

function ,
defined as

2 f°° 2

erfc(x) = —= / e~
l

V* Jx
dt (2.3-17)

The complementary error function is related to the Q function as follows:

<2(x) = ^erfc (

]

2 \yfl) (2.3-18)

erfc(^) = 2Q(y/2x)

The characteristic function^ of a Gaussian random variable is given by

4>x(cd) = e
jcom-^2°2

(2.3-19)

Problem 2.21 shows that for an J\f(m ,
o 2

) random variable we have

E [(X — m)n

]

1 x 3 x 5 x • •
• x (2k- 1 )o

2k =
0

for n — 2k

for n = 2k + 1

(2.3-20)

from which we can obtain moments of the Gaussian random variable.

The sum ofn independent Gaussian random variables is a Gaussian random variable

whose mean and variance are the sum of the means and the sum of the variances of the

random variables, respectively.

tRecall that for any random variable X, the characteristic function is defined by <t>x(&)) = E[ej(oX ].

The moment generatingfunction (MGF) is defined by ©*(0 = E[etX ]. Obviously, &(t) = <P(—jt) and

OM = ®(jco).
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The Chi-Square (x
2
) Random Variable

If {Xi ,
i = 1, . .

.

,

n} are iid (independent and identically distributed) zero-mean

Gaussian random variables with common variance a 2 and we define

* = X>,
2

/=i

then X is a x
2 random variable with n degrees offreedom. The PDF of this random

variable is given by

p(x) =
i /i

2»/2 r(!)<T»
x 2

0

_ x

e 2a2 X > 0

otherwise
(2.3-21)

where T(x) is the gammafunction defined by

t
x l

e
1

dt, (2.3-22)

The gamma function has simple poles at x = 0,-1, —2, —3, . . . and satisfies the

following properties. The gamma function can be thought of as a generalization of the

notion of factorial.

T(x + 1) = xT(x),

F(l) = 1

r
Q)

=^ (2.3-23)

n even and positive

^
1 2

_
|

—

-

~2
)^[f)

'3xl
n odd and positive

v 7
V 2 2

When n is even, i.e., n = 2m, the CDF of the x
2 random variable with n degrees

of freedom has a closed form given by

F(x) = {

x > 0

otherwise

(2.3-24)

The mean and variance of a x
2 random variable with n degrees of freedom are given by

E [X] = na 2

VAR[X] = 2na 4
(2.3-25)

The characteristic function for a x
2 random variable with n degrees of freedom is

given by

0(&>) =
1

1 — 2jaxj 2
(2.3-26)
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The special case ofa x
2 random variable with two degrees offreedom is ofparticular

interest. In this case the PDF is given by

P(x )
=

2<t2 x > 0

otherwise
(2.3-27)

This is the PDF of an exponential random variable with mean equal to 2a 2
.

The x
2 random variable is a special case of a gamma random variable. A gamma

random variable is defined by a PDF of the form

p(x) =
MXx)a

-
l e~u

r(o0

0

jc > 0

otherwise
(2.3-28)

where X, a > 0. A x
2 random variable is a gamma random variable with X = and

« = !•

Plots of the x
2 random variable with n degrees of freedom for different values of

n are shown in Figure 2.3-3.

The Noncentral Chi-Square (x
2
) Random Variable

The noncentral x
2 random variable with n degrees offreedom is defined similarly to a

X
2 random variable in which Xfs are independent Gaussians with common variance

a 2 but with different means denoted by m (
-

. This random variable has a PDF of the form

. n=2 s
2 +x ,

pr)
4 e 2-2 /|_i (

otherwise
p(x )

= t
2(jl (

^2^/x) X > 0 (2.3-29)

FIGURE 2.3-3

The PDF of the x
2 random variable for different values of n. All plots are shown for a = 1

.



Chapter Two: Deterministic and Random Signal Analysis 47

where s is defined as

=
\ E m*

(2.3-30)

and Ifix) is the modified Besselfunction of the first kind and order a given by

00 / r /9y*+2&

ia(x) =y — ,

f^kWia + k + iy
x > 0 (2.3-31)

where r(jc) is the gamma function defined by Equation 2.3-22. The function Iq(x) can

be written as

io(x) =y
~ / xk

and for x > 1 can be approximated by

\p2jtx

(2.3-32)

(2.3-33)

Two other expressions for Iq(x), which are used frequently, are

I0(x) = -
Jo

1 f
2n K

Io(x) = — e
x
™*df>

Jo

The CDF of this random variable, when n = 2m, can be written in the form

F(x) =
l-e„

otherwise

where Qm {cl, b) is the generalized Marcum Q function and is defined as

/

oo

x {-) e
~(x2+a2)/2

Im-i(ax) dx

m_1 /h\ k

= Q\(a, b) + e^a2+b2)/2 y(-) Ifiab)
TlW

In Equation 2.3-36, Q\{a,b) is the Marcum Q function defined as

tt
2+x2

Qfa,b) = / xe 2 Io(ax)dx
Jb

Qfa,b) = e
°

+2 X ( E )

b>a> 0
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This function satisfies the following properties:

Qi(x,0) = l

Qi(0, x) — e~^ (2.3-39)

(2i(a, b) « Q(b — a) for b 1 and b~S> b — a

For a noncentral y
1 random variable, the mean and variance are given by

E [X] = na 2 + s
2

VAR [X] = 2na4 + 4a 2
s
2

and the characteristic function is given by

4>(<y) =
1

1 — 2ja>a 2
g \—2jooa^-

(2.3-40)

(2.3-41)

The Rayleigh Random Variable

If X\ and X2 are two iid Gaussian random variables each distributed according to

A/XO, or
2
), then

x = Jx\ + x\ (2.3-42)

is a Rayleigh random variable. From our discussion of the x
2 random variables, it is

readily seen that a Rayleigh random variable is the square root of a x
2 random variable

with two degrees of freedom. We can also conclude that the Rayleigh random variable

is the square root of an exponential random variable as given by Equation 2.3-27. The
PDF of a Rayleigh random variable is given by

P(x )

2a2 X > 0

0 otherwise

and its mean and variance are

E[X] = ory/

|

VAR[X]=
(
2 —

(2.3-43)

(2.3-44)

In general, the nth moment of a Rayleigh random variable is given by

E [Xk

]
= (2a

2
)
k/2r Q + 1^

and its characteristic function is given by

Ox (tu) = 1
1 1 2 2

i,

a

+ J

7t mV
— coae 2

2

(2.3-45)

(2.3-46)
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where i
F\ (

a

,
b\ x) is the confluent hypergeometricfunction defined by

1 F1 (a, b\ x)

OO

E r(a + k)F(b)xk

T(d)T{b + k)k\

'

b + 0,- 1 ,

-

2,...

The function \F\{a,b\ x) can also be written as the integral

1 F1 (a, b
;
x) = ^ “ t)

b~a~ l

dt
r(b - a)T(a) J0

In Beaulieu (1990), it is shown that

ifi "'Ê Qk -
1 )k\

k=

0

(2.3-47)

(2.3-48)

(2.3-49)

The CDF of a Rayleigh random variable can be easily found by integrating the

PDF. The result is

F(x) = 1

0

x > 0

otherwise
(2.3-50)

The PDF of a Rayleigh random variable is plotted in Figure 2.3-4.

A generalized version of the Rayleigh random variable is obtained when we have

n iid zero-mean Gaussian random variables jX,-. 1 < i < n] where each X,- has an

0, a 2
) distribution. In this case

X = (2.3-51)

has a generalized Rayleigh distribution. The PDF for this random variable is given by

p(x) =
n-2 e

2Tt7«r(!)

0

x > 0

otherwise

(2.3-52)

p(x) FIGURE 2.3-4

The PDF of the Rayleigh random variable

for three different values of o

.
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For the generalized Rayleigh, and with n = 2m, the CDF is given by

F(x) = 1

0

- t~2 sr^m-i 1
2ff

2^k=o F x > 0

otherwise
(2.3-53)

The fcth moment of a generalized Rayleigh for any integer value of n (even or odd) is

given by

E [Xk

]
= Cla

2
)2 (2.3-54)

The Ricean Random Variable

If X\ and X2 are two independent Gaussian random variables distributed according to

J\f(m 1 ,
a 2

) and ,
cr

2
) (i.e., the variances are equal and the means may be different),

then

x = s]x\ + xl

is a Ricean random variable with PDF

p(x) -

0

x > 0

otherwise

(2.3-55)

(2.3-56)

where s = y m\ + m\ and Io(x) is given by Equation 2.3-32. It is clear that a Ricean

random variable is the square root of a noncentral x
2 random variable with two degrees

of freedom.

It is readily seen that for s = 0, the Ricean random variable reduces to a Rayleigh

random variable. For large s the Ricean random variable can be well approximated by
a Gaussian random variable.

The CDF of a Ricean random variable can be expressed as

F(x) =
1 -e.(j.j)
0

x > 0

otherwise
(2.3-57)

where Q\(a, b) is defined by Equations 2.3-37 and 2.3-38.

The first two moments of the Ricean random variable are given by

E [X
2

]
= 2a 2 + s

2

where K is the Rice factor defined in Equation 2.3-60.

(2.3-58)
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In general, the fcth moment of this random variable is given by

s* \
E [X k

]
= (2o

2)iT
^1 + -J

,FX 1; (2.3-59)

Another form of the Ricean density function is obtained by defining the Ricefactor

K as

K =
2a 2

If we define A = s
2 + 2cr

2
,
the Ricean PDF can be written as

p(x) - } A

' 0

x > 0

otherwise

(2.3-60)

(2.3-61)

For the normalized case when A = 1 (or, equivalently, when E [

X

2
]
= s

2 + 2a 2 = 1)

this reduces to

.. J 2(K + \)xe~
{K+^xl+

^)h (2x^K(K + 1)) x>0 „ ,pM =
0 otherwise

A plot of the PDF of a Ricean random variable for different values of K is shown

in Figure 2.3-5.

Similar to the Rayleigh random variable, a generalized Ricean random variable

can be defined as

X = (2.3-63)

FIGURE 2.3-5

The Ricean PDF for different values of K. For small K this random variable reduces to a

Rayleigh random variable, and for large K it is well .approximated by a Gaussian random

variable.
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where X[ ’s are independent Gaussians with mean ra, and common variance cr
2

. In this

case the PDF is given by

p(x) = <J
2 S 2

^ I'j-i (ff) x >0

otherwise

(2.3-64)

and the CDF is given by

1 0 otherwise
(2.3-65)

where

The kth moment of a generalized Ricean is given by

E[X*] =(2o 2
)U'

jL
'2<t2

r (*!*)

r(!)
lfi

n+k n s
2

2 ’ 2’ 2^ (2.3-66)

The Nakagami Random Variable

Both the Rayleigh distribution and the Rice distribution are frequently used to describe

the statistical fluctuations of signals received from a multipath fading channel. These

channel models are considered in Chapters 13 and 14. Another distribution that is

frequently used to characterize the statistics of signals transmitted through multipath

fading channels is the Nakagami m distribution. The PDF for this distribution is given

by Nakagami (1960) as

p(x) =
2

f
m\ m 2m— l^—mx 2/Q

r(m) \a) A e

0

x > 0

otherwise

where £2 is defined as

(2.3-67)

Q = E [X2

]
(2.3-68)

and the parameter m is defined as the ratio of moments, called thefading figure.

£2
2

m =
(X 2 - £2)'

m > (2.3-69)

A normalized version of Equation 2.3-67 may be obtained by defining another

random variable Y = X/^/Q (see Problem 2.42). The nth moment of X is

r
(
m + s) /gy

;2

L J r(m) \mj
(2.3-70)



By setting m = 1, we observe that Equation 2.3-67 reduces to a Rayleigh PDF.

For values of m in the range
\
<m < 1, we obtain PDFs that have larger tails than a

Rayleigh-distributed random variable. For values ofm > 1, the tail of the PDF decays

faster than that of the Rayleigh. Figure 2.3-6 illustrates the Nakagami PDF for different

values of m.

FIGURE 2.3-6

The PDF for the Nakagami m distribution, shown with Q = 1. m is the fading figure.
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The Lognormal Random Variable

Suppose that a random variable Y is normally distributed with meanm and variance a 2
.

Let us define a new random variable X that is related to Y through the transformation

Y = In X (or X = e
Y

). Then the PDF of X is

p(x) =
1 p— (In x-mfjla 2

\/27TCT 2 x

0

X > 0

otherwise
(2.3-72)

For this random variable

E[X] = e
m+-

. , . (2.3-73)

VAR [X] = e
2m+a

(e
a -

1J

The lognormal distribution is suitable for modeling the effect of shadowing of the

signal due to large obstructions, such as tall buildings, in mobile radio communications.

Examples of the lognormal PDF are shown in Figure 2.3-7.

Jointly Gaussian Random Variables

Ann x 1 column random vector X with components {X/, 1 < / < n] is called a

Gaussian vector
,
and its components are called jointly Gaussian random variables or

FIGURE 2.3-7

Lognormal PDF with a = 1 for different values of m.
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multivariate Gaussian random variables if the joint PDF of X^s can be written as

p(x) = -{(x-m)'C-'(x-m)

(2^r)"/2(detC) 1 /2
(2.3-74)

where m and C are the mean vector and covariance matrix, respectively, of X and are

given by

m = E[X]

C = E [(X - m)(X - m)‘]

From this definition it is clear that

Cij = COV [Xi9 Xj\

and therefore C is a symmetric matrix. From elementary probability it is also well

known that C is nonnegative definite.

In the special case of n = 2, we have

(2.3-75)

(2.3-76)

m = m\
m2

C = of peri &2

perio2 of

(2.3-77)

where

COVt*!,^]
P =

<7i<72

is the correlation coefficient of the two random variables. In this case the PDF
reduces to

i (^YY^YM^Y-2^1
)

p(xi,x2)=- < e !"-'2
) (2.3-78)

2no\Cf2 \/

1

— p
L

where mi ,
m2, erf and, of are means and variances of the two random variables and p

is their correlation coefficient. Note that in the special case when p
— 0 (i.e., when the

two random variables are uncorrelated), we have

p{x 1 ,
x2) =M (mi , of) x M (m2 , of)

This means that the two random variables are independent, and therefore for this case

independence and uncorrelatedness are equivalent. This property is true for general

jointly Gaussian random variables.

Another important property of jointly Gaussian random variables is that linear

combinations of jointly Gaussian random variables are also jointly Gaussian. In other

words, if X is a Gaussian vector, the random vector Y = AX, where the invertible

matrix A represents a linear transformation, is also a Gaussian vector whose mean and
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covariance matrix are given by

my = Amx

C Y = ACxA f
(2.3-79)

This property is developed in Problem 2.23.

In summary, jointly Gaussian random variables have the following important

properties:

1. For jointly Gaussian random variables, uncorrelated is equivalent to independent.

2. Linear combinations of jointly Gaussian random variables are themselves jointly

Gaussian.

3. The random variables in any subset ofjointly Gaussian random variables are jointly

Gaussian, and any subset of random variables conditioned on random variables in

any other subset is also jointly Gaussian (all joint subsets and all conditional subsets

are Gaussian).

We also emphasize that any set of independent Gaussian random variables is jointly

Gaussian, but this is not necessarily true for a set of dependent Gaussian random

variables.

Table 2.3-3 summarizes some of the properties of the most important random

variables.

2.4

BOUNDS ON TAIL PROBABILITIES

Performance analysis of communication systems requires computation of error proba-

bilities of these systems. In many cases, as we will observe in the following chapters,

the error probability of a communication system is expressed in terms of the probability

that a random variable exceeds a certain value, i.e., in the form of P [X > a]. Unfortu-

nately, in many cases these probabilities cannot be expressed in closed form. In such

cases we are interested in finding upper bounds on these tail probabilities. These upper

bounds are of the form P [X > a] < /3. In this section we describe different methods

for providing and tightening such bounds.

The Markov Inequality

The Markov inequality gives an upper bound on the tail probability of nonnegative

random variables. Let us assume that A is a nonnegative random variable, i.e., p(x )
= 0

for all x < 0, and assume a > 0 is an arbitrary positive real number. The Markov
inequality states that

P [X > a] <
E[X]

a
(2.4-1)
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To see this, we observe that

POO

E[X]= / xp{x)dx
Jo
POO

/ xp(x)dx
Ja

POO

a / xp{x)dx
Ja

= a P [X > a]

Dividing both sides by a gives the desired inequality.

>

>

(2.4-2)

Chernov Bound

The Chernov bound is a very tight and useful bound that is obtained from the Markov
inequality. Unlike the Markov inequality that is applicable only to nonnegative random
variables, the Chernov bound can be applied to all random variables.

Let X be an arbitrary random variable, and let 8 and v be arbitrary real numbers

(v ± 0). Define random variable Y by Y = e
vX and constant a by a = e

vS
. Obviously,

7 is a nonnegative random variable and a is a positive real number. Applying the

Markov inequality to Y and a yields

P [e
vX > e

vS

]
< = E [e

u(X-5)

]
(2.4-3)

The event {e
vX > e

v8
} is equivalent to the event {vX > v<5} which for positive or

negative values of v is equivalent to [X > 8} or {X < <5}, respectively. Therefore we
have

P [X > 5] < E [e
y(x'5)

]
,

for all v > 0 (2.4-4)

P [X < 6] < E [e
y(x"5)

]
,

for all v < 0 (2.4-5)

Since the two inequalities are valid for all positive and negative values of v, re-

spectively, it makes sense to find the values of v that give the tightest possible bounds.

To this end, we differentiate the right hand of the inequalities with respect to v and

find its root; this is the value of v that gives the tightest bound. From this point on,

we will consider only the first inequality. The extension to the second inequality is

straightforward.

Let us define function g(v) to denote the right side of the inequalities, i.e.,

g(v) = E [e
w(X-4

>]

Differentiating g(v), we have

g'(v) = e[(x- 8y(x
-s)

}

The second derivative of g(v) is given by

g"(v) = E [(X - S )

2
e
v(x~S)

]

(2.4-6)
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It is easily seen that for all v, we have g"(y) > 0 and hence g(v) is convex and g\v) is

an increasing function, and therefore can have only one root. In addition, since g(v) is

convex, this single root minimizes g(v) and therefore results in the the tightest bound.

Putting g'{y) = 0, we find the root to be obtained by solving the equation

E
[
Xevx

}
= 8 E [e

vX
]

(2.4-7)

Equation 2.4-7 has a single root v* that gives the tightest bound. The only thing that

remains to be checked is to see whether this v* satisfies the v * > 0 condition. Since g\v)

is an increasing function, its only root is positive if g'(0) < 0. From Equation 2.4-6 we
have

g'(0) = E[X]-8

therefore v* > 0 if and only if <5 > E [X].

Summarizing, from Equations 2.4-4 and 2.4-5 we conclude

P[X > 5] < e~vn E

?[X<8]< e~ v
*
& E

0V*X

„ v*X

for 8 > E [X]

for 8 < E [X]

(2.4-8)

(2.4-9)

where v* is the solution of Equation 2.4-7. Equations 2.4-8 and 2.4-9 are known as

Chernov bounds. Finding optimal v* by solving Equation 2.4-7 is sometimes difficult.

In such cases a numerical approximation or an educated guess gives a suboptimal

bound. The Chernov bound can also be given in terms of the moment generating

function (MGF) 0x(v) = E
[<
e
vX

]
as

P[X>8]< e- v
*
sex (,v% for 8 > E[X] (2.4-10)

P[X<8]< e“,,s0x (v*), for 8 < E[X] (2.4-11)

example 2.4-1. Consider the Laplace PDF given by

p(x) = L-W (2.4-12)

Let us evaluate the upper tail probability P \X > 6] for some 8 > 0 from the Chernov

bound and compare it with the true tail probability, which is

r°° 1 i

P[X>5]=
/

-e-x dx = -e-s
(2.4-13)

Js 2 2

First note that E [X ]
= 0, and therefore the condition <5 > E [X ] needed to use the

upper tail probability in the Chernov bound is satisfied. To solve Equation 2.4-7 for v>*,

we must determine E [XeyX
]
and E [e

vX
] . For the PDF in Equation 2.4-12, we find

that E [XeyX
]
and E

[
e
vX

]
converge only if — 1 < v < 1, and for this range of values

of v we have

E [Xe"
x

]

E [e
yX

]

2v

(V + l)2(v - l)
2

1

(2.4-14)

(1 + v)(l - v)
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Substituting these values into Equation 2.4-7, we obtain the quadratic equation

v
2
8 + 2v — 8 = 0

which has the solutions

— 1 =t Vl + 8 2

v = (2.4-15)

Since v>* must be in the (—1, +1) interval for E [XeyX
]
and E \e

vX
]
to converge, the

only acceptable solution is

*
-1 + VTT&1

V = (2.4-16)

Finally, we evaluate the upper bound in Equation 2.4-8 by substituting for v* from

Equation 2.4-16. The result is

P [X > 8] <
j-Vi+s2

2(—

1

+ VTTs 2
)

(2.4-17)

For 8 1, Equation 2.4-17 reduces to

8 *

P(X >S)< -e~s
(2.4-18)

We note that the Chernov bound decreases exponentially as 8 increases. Consequently,

it approximates closely the exact tail probability given by Equation 2.4-13.

example 2.4-2. In performance analysis ofcommunication systems over fading chan-

nels, we encounter random variables of the form

X = d2R 2 + 2RdN (2.4-19)

where d is a constant, R is a Ricean random variable with parameters s and o represent-

ing channel attenuation due to fading, and N is a zero-mean Gaussian random variable

with variance ^ representing channel noise. It is assumed that R and N are indepen-

dent random variables. We are interested to apply the Chernov bounding technique to

find an upper bound on P [X < 0]. From the Chernov bound given in Equation 2.4-5,

we have

P [X < 0] < E
[
e
vX

]
,

for all v < 0 (2.4-20)

To determine E [e
uX

] ,
we use the well-known relation

E[y] = E[E[T|X]] (2.4-21)

from elementary probability. We note that conditioned on R, X is a Gaussian random

variable with mean d2R 2 and variance 2R 2d2
No. Using the relation for the moment

generating function of a Gaussian random variable from Table 2.3-3, we have

E _ e
vd2R 2+v2d2NQR

2

= el

vd2(\+NQ v)R
2

(2.4-22)
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Now noting that R2
is a noncentral x

2 random variable with two degrees of freedom,

and using the characteristic function for this random variable from Table 2.3-3, we
obtain

E[evX
]
= E [E [e

vX
| /?] ]

= E e
vd2(l+N0v)R

2

(2.4-23)

J
vd2 (\+NQv)s2

= p \-2vd2 (\+NQ v)o2

1 — 2vd2
{\ + Nqv)o 2

where we have used Equation 2.4-21. From Equations 2.4-20 and 2.4-23 we conclude

that

J
vd2 (\+NQV)s2

P [X < 0] < min e i-^u+'V)-
2

(2.4-24)
v<o 1 — lvd2

{\ + Nqv)o 2

It can be easily verified by differentiation that in the range of interest (

v

< 0), the right-

hand side is an increasing function of X = vd2
( 1 + Nqv), and therefore the minimum

is achieved when X is minimized. By simple differentiation we can verify that X is

minimized for v = — resulting in

P [X < 0] <

JL
4Nq_

1+JL a2
2N0 (2.4-25)

If we use Equation 2.3-61 or 2.3-62 for the Ricean random variable, we obtain the

following bounds:

A2Kd2

4/Vq

?[X < 0] c
K + 1

e
K+ '+W (2.4-26)_

_L 1 _L A d2 v '

K + 1 + l]Vo'

and

z£_
4N0

P[X < 0] < —K + X

M e *+l+^ (2.4-27)_
^ + 1 + ^:

For the case of Rayleigh fading channels, in which s = 0, these relations reduce to

P [X < 0] < (2.4-28)

Chernov Bound for Sums of Random Variables

Let {Xi}, 1 < i < n, denote a sequence of iid random variables and define

(2.4-29)
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We are interested to find a bound on P [Y > S],where<5 > E [X]. Applying the Chernov

bound, we have

P [Y >8] = P

< E

Xi > nS

.1= 1

e
v{Hl i

xi-nS
)

(2.4-30)

= [E[e
v^]]\ v > 0

To find the optimal choice of v we equate the derivative of the right-hand side to

zero

— [E [e
v(X~S)

]

}

" = n [E [e
v(X_5)

]

] " E [(X - &)e
v(X~S)

}
= 0 (2.4-3 1

)

The single root of this equation is obtained by solving

E[XevX
]
=8E\evX

]
(2.4-32)

which is exactly Equation 2.4-7. Therefore, for the sum of iid random variables we
find the v* solution of Equation 2.4-7, and then we use

P [Y >8] < ,v*(X-8) = e
-nv*8 „v*X

(2.4-33)

example 2 .4-3 . The X/’s are binary iid random variables with P[X = 1] = 1

P [X = —1] = p, where p < \- We are interested to find a bound on

y>>°

We have E [X ] = p — (1 — p) = 2p — 1 <0. Assuming 6 = 0, the condition 8 > E [X ]

is satisfied, and the preceding development can be applied to this case. We have

E [XevX
]
= pe v - (1 - p)e~ v

(2.4-34)

and Equation 2.4-7 becomes

pe v - (1 - p)e~
v = 0 (2.4-35)

which has the unique solution

v* = - In
i,i -p

Using this value, we have

+(1-P)
P V 1 ~P

Substituting this result into Equation 2.4-33 results in

- 2yjp(\ - p)

E z'>°
U=i

< [4/7(1 - /7)]2

(2.4-36)

(2.4-37)

(2.4-38)
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Since for p < \
we have 4p(l — p) < 1, the bound given in Equation 2.4-38 tends to

zero exponentially.

2.5

LIMIT THEOREMS FOR SUMS OF RANDOM VARIABLES

If {Xi ,
i = 1, 2, 3, ...

}

represents a sequence of iid random variables, then it is intu-

itively clear that the running average of this sequence, i.e.,

(2.5-1)

should in some sense converge to the average of the random variables. Two limit

theorems, i.e., the law of large numbers (LLN) and the central limit theorem (CLT),

rigorously state how the running average of the random variable behaves as n becomes

large.

The (strong) law of large numbers states that if {X*
,

i = 1 , 2, . .
.

}

is a sequence of

iid random variables with E [X\] < oo, then

n z—

*

E [X\]

i=

1

(2.5-2)

where the type of convergence is convergence almost everywhere (a.e.) or convergence

almost surely (a.s.), meaning the set of points in the probability space for which the

left-hand side does not converge to the right-hand side has zero probability.

The central limit theorem states that if {X/, i
—

1, 2, . .
.

}

is a sequence of iid

random variables with m = E [X\] < oo and a 2 = VAR [Xi] < oo, then we have

Xi - m
G MO, l) (2.5-3)

The type of convergence in the CLT is convergence in distribution
,
meaning the CDF

of the left-hand side converges to the CDF of J\f{0, 1) as n increases.

2.6

COMPLEX RANDOM VARIABLES

A complex random variable Z = X + jY can be considered as a pair of real random

variables X and Y. Therefore, we treat a complex random variable as a two-dimensional

random vector with components X and Y. The PDF of a complex random variable is

defined to be the joint PDF of its real and complex parts. If X and Y are jointly

Gaussian random variables, then Z is a complex Gaussian random variable. The PDF
of a zero-mean complex Gaussian random variable Z with iid real and imaginary parts
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is given by

p(z) =
2na

2e

Ino 2-

6

2a2

Ml
2<j2

(2 .6- 1 )

(2.6-2)

For a complex random variable Z, the mean and variance are defined by

E[Z] = E[X] + jE[Y] (2.6-3)

VAR[Z] =E [|Z|
2

]
- |E[Z]|

2 = VAR [X] + VAR [F] (2.6-4)

2.6-1 Complex Random Vectors

A complex random vector is defined as Z = X + jY, where X and Y are real-valued

random vectors of size n. We define the following real-valued matrices for a complex

random vector Z.

Cx = E [(X - E[X])(X - E[X}Y] (2.6-5)

CY = E [(Y - E[Y])(Y - E[Y])‘] (2.6-6)

CXY = E [(X - E[X])(Y - E[Y]Y] (2.6-7)

Cyx = E [(Y - E[Y])(X - E[X])‘] (2.6-8)

Matrices Cx and Cy are the covariance matrices of real random vectors X and F,

respectively, and hence they are symmetric and nonnegative definite. It is clear from

above that Cyx = C^y .

The PDF of Z is the joint PDF of its real and imaginary parts. If we define the

2n -dimensional real vector

X
Y

(2.6-9)

then the PDF of the complex vector Z is the PDF of the real vector Z. It is clear that

Cz, the covariance matrix of Z, can be written as

Cz =
Cx
Cyx

Cxy

CY
(2.6-10)

We also define the following two, in general complex-valued, matrices

Cz = E[(Z-E[Z})(Z-E[Z})h
]

(2.6-11)

Cz = E [(Z - E[Z]) (Z - E[Z])1

}
(2.6-12)

where A

*

denotes the transpose and AH denotes the Hermitian transpose of A (A is

transposed and each element of it is conjugated). Cz and Cz are called the covariance

and the pseudocovariance of the complex random vector Z, respectively. It is easy to



Chapter Two: Deterministic and Random Signal Analysis 65

verify that for any Z, the covariance matrix is Hermitian^ and nonnegative definite. The
pseudocovariance is skew-Hermitian.

From these definitions it is easy to verify the following relations.

Cz

Cz

Cz

Cy

Cyx

CxY

Cx + CY + j (Cyx ~ Cxy ) (2.6-13)

Cx — Cy + j (Cxr + Cyx) (2.6-14)

- Re [Cz + Cz] (2.6-15)

1 Re [Cz — Cz ] (2.6-16)

- Im [Cz + Cz] (2.6-17)

llm [Cz-Cz] (2.6-18)

Proper and Circularly Symmetric Random Vectors

A complex random vector Z is called proper if its pseudocovariance is zero, i.e., if

Cz = 0. From Equation 2.6-14 it is clear that for a proper random vector we have

Cx = CY (2.6-19)

Cxy = -CYX (2.6-20)

Substituting these results into Equations 2.6-13 to 2.6-18 and 2.6-10, we conclude

that for proper random vectors

Cz

Cx

Cyx

Cz

2Cz + 2]Cyx

Cy = ^
Re[Cz ]

-Cxy = - Im[Cz ]

Cz Cxy

-Cxy Cx

(2 .6-21 )

(2 .6-22)

(2.6-23)

(2.6-24)

For the special case of n = 1, i.e., when we are dealing with a single complex

random variable Z = X + jY, the conditions for being proper become

VAR [X] = VAR [Y]

COV [A, Y] = -COV [7, X]

(2.6-25)

(2.6-26)

which means that Z is proper if X and Y have equal variances and are uncorrelated. In

this case VAR [Z] = 2 VAR [X]. Since in the case ofjointly Gaussian random variables

uncorrelated is equivalent to independent, we conclude that a complex Gaussian random

tMatrix A is Hermitian if A = AH
. It is skew-Hermitian if AH = —A.
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variable Z is proper if and only if its real and complex parts are independent with equal

variance. For a zero-mean proper complex Gaussian random variable, the PDF is given

by Equation 2.6-2.

If the complex random vector Z = X + jY is Gaussian, meaning that X and Y
are jointly Gaussian, then we have

where

p(z) = p(z) = e
-\lZ-m)'C-z \z-ih)

(2:r)n(detCz)5
(2.6-27)

m = E [Z] (2.6-28)

It can be shown that in the special case where Z is a proper n-dimensional complex

Gaussian random vector, with mean m = E [Z] and nonsingular covariance matrix Cz,
its PDF can be written as

p(Z )
= J__e

-4(z-m)tCz -'(Z-m)
(2.6-29)

n n det Cz

A complex random vector Z is called circularly symmetric or circular ifrotating the

vector by any angle does not change its PDF. In other words, a complex random vector

Z is circularly symmetric if Z and e
je Z have the same PDF for all 0. In Problem 2.34

we will see that if Z is circular, then it is zero-mean and proper, i.e., E [Z] = 0 and

E [ZZ r

]
= 0 . In Problem 2.35 we show that if Z is a zero-mean proper Gaussian

complex vector, then Z is circular. In other words, for complex Gaussian random
vectors being zero-mean and proper is equivalent to being circular.

In Problem 2.36 we show that if Z is a proper complex vector, then any affine

transformation of it, i.e., any transform of the form W = AZ + b, is also a proper

complex vector. Since we know that if Z is Gaussian, so is W , we conclude that if Z is

a proper Gaussian vector, so is W. For more details on properties of proper and circular

random variables and random vectors, the reader is referred to Neeser and Massey

(1993) and Eriksson and Koivunen (2006).

2.7

RANDOM PROCESSES

Random processes, stochastic processes, or random signals are fundamental in the study

of communication systems. Modeling information sources and communication chan-

nels requires a good understanding of random processes and techniques for analyzing

them. We assume that the reader has a knowledge of the basic concepts of random
processes including definitions of mean, autocorrelation, cross-correlation, stationar-

ity, and ergodicity as given in standard texts such as Leon-Garcia (1994), Papoulis and

Pillai (2002), Stark and Woods (2002). In the following paragraphs we present a brief

review of the most important properties of random processes.
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The mean mx (t) and the autocorrelation function of a random process X(t ) are

defined as

mx (t) = E[X(t)] (2.7-1)

Rxih, t2 )
= E [X(^)X*fe)] (2.7-2)

The cross-correlation function of two random processes X(t) and Y(t) is defined by

RxY(tut2 ) = E[X(f l )Y*(t2 )] (2.7-3)

Note that Rx (t2 ,
t\) = Rx (t\, t2 ), i.e., Rx (tu t2 ) is Hermitian. For the cross-correlation

we have RYX (t2 , fi) = RXY (tu t2 ).

2.7-1 Wide-Sense Stationary Random Processes

Random process X(t) is wide-sense stationary (WSS) if its mean is constant and

Rx (t\
,
*2 )

= Rx(?) where r = t\ — t2 . For WSS processes Rx(—r) = Rx (r). Two
processes X(t) and Y(t) are jointly wide-sense stationary if both X(t) and Y{t) are

WSS and RXy(tu h) = Rxy(j). For jointly WSS processes RYx{~ t )
= RXY (t ). A

complex process is WSS if its real and imaginary parts are jointly WSS.
The power spectral density (PSD) or power spectrum of a WSS random process

X(t) is a function Sx (f) describing the distribution of power as a function of frequency.

The unit for power spectral density is watts per hertz. The Wiener-Khinchin theorem

states that for a WSS process, the power spectrum is the Fourier transform of the

autocorrelation function Rx (t), i.e.,

Sx (f) = <^[Rx(t)] (2 .7-4)

Similarly, the cross spectral density (CSD) of two jointly WSS processes is defined as

the Fourier transform of their cross-correlation function.

Sxr(f) = ^[Rxy (t )] (2 .7-5 )

The cross spectral density satisfies the following symmetry property:

Sxy(f) = s*

x (f) (2 .7-6)

From properties of the autocorrelation function it is easy to verify that the power

spectral density of any realWSS process X(t) is a real, nonnegative, and even function of

/. For complex processes, power spectrum is real and nonnegative, but not necessarily

even. The cross spectral density can be a complex function, even when both X(t) and

Y{t) are real processes.

If X(t) and Y(t) are jointly WSS random processes, then Z(t) = aX(t) + bY(t) is

a WSS random process with autocorrelation and power spectral density given by

Rz(t) = \a\
2Rx (r) + \b\

2RY {x) + ab*RXY (r) + ba*Rrx (r)

Sz (f) = \a\
2Sx (f) + \b\

2SY (f) + 2Re[ab*SXY (f)}

(2.7-7)

(2.7-8)
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In the special case where a — b — 1, we have Z(t )
= X(t ) + Y(t), which results in

Rz(r) = Rx(t) + + Rxy(*) + Ryx(j) (2.7-9)

Sz (f) = Sx (f ) + 5r (/) + 2Re[5Xy(/)] (2.7-10)

and when a = 1 and £ = y, we have Z(t) = X(0 + yT(r) and

*z(t) — ^x(r ) + Ry(j) + j (Ryx(t) + /?xr(^)) (2.7-11)

SzU) = Sx (f) + SY (f) + 21m [5xr(/)] (2.7-12)

When a WSS process X(t) passes through an LTI system with impulse response

h{t) and transfer function H{f) = d^[h{t ) ], the output process Y{t) and X(r) are

jointly WSS and the following relations hold:

/

oo

h(t)dt (2.7-13)
-OO

*xr(T) = * A*(-r) (2.7-14)

Ry(r) = 1?x(t) /i(t) * h*(—r) (2.7-15)

my = m* H(0) (2.7-16)

5xr(/) = Sx(f)H*(f) (2.7-17)

<5y(/) = «Sx(/)|77(/)|
2

(2.7-18)

The power in a WSS process X(t) is the sum of the powers at all frequencies, and

therefore it is the integral of the power spectrum over all frequencies. We can write

/
oo

Sx(f)df (2.7-19)
-OO

Gaussian Random Processes

A real random process X(t) is Gaussian if for all positive integers n and for all

{tu t2 ,
. .

.

,

tn ), the random vector (X(fi), Xfe), • • • , X(tn)Y is a Gaussian random vec-

tor; i.e., random variables {X(^)}"=1 are jointly Gaussian random variables. Similar

to jointly Gaussian random variables, linear filtering of Gaussian random processes

results in a Gaussian random process, even when the filtering is time-varying.

Two real random processes X(t) and Y(t) are jointly Gaussian if for all positive

integers n
,
m and all (t \ ,

t2 , . .
. ,

tn ), and (t
[ ,

t
'

2 , . .
.

,

t'm ), the random vector

X(t2 ), . .
. ,

X(tn ), Y(t[), Y{t
r

2 ), . .
.

,

y(O)'

is a Gaussian vector. For two jointly Gaussian random processes X(t) and Y(t), being

uncorrelated, i.e., having

Rxy(t + r, t) = E [X(f + r)] E [T(0] for all t and r (2.7-20)

is equivalent to being independent.

A complex process Z(t) = X(t) + jY(t) is Gaussian if X(t) and Y(t) are jointly

Gaussian processes.
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White Processes

A process is called a white process if its power spectral density is constant for all

frequencies; this constant value is usually denoted by

sx (f) = y (
2 .7-21 )

Using Equation 2.7-19, we see that the power in a white process is infinite, indicating

that white processes cannot exist as a physical process. Although white processes are not

physically realizable processes, they are very useful, closely modeling some important

physical phenomenon including the thermal noise.

Thermal noise is the noise generated in electric devices by thermal agitation of

electrons. Thermal noise can be closely modeled by a random process N(t ) having the

following properties:

1. N(t) is a stationary process.

2. N(t ) is a zero-mean process.

3. N(t ) is a Gaussian process.

4. N(t ) is a white process whose power spectral density is given by

sN (f) = y = *y (2 -7_22)

where T is the ambient temperature in kelvins and k is Boltzmann ’s constant
,
equal

to 38 x 1(T23
J/K.

Discrete-Time Random Processes

Discrete-time random processes have similar properties to continuous time processes.

In particular the PSD of a WSS discrete-time random process is defined as the discrete-

time Fourier transform of its autocorrelation function

oo

Sx(f)= E Rx(m)e~Wm (2.7-23)

and the autocorrelation function can be obtained as the inverse Fourier transform of the

power spectral density as

r 1/2

Rx(m)=
/

Sx(f)ej2nfm df (2.7-24)
7- 1/2

The power in a discrete-time random process is given by

P = E [|X(n)|
2

]
= Rx (0) = /

7- 1/2

Sx(f)df (2.7-25)
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2.7-2 Cyclostationary Random Processes

A random process X(t) is cyclostationary if its mean and autocorrelation function are

periodic functions with the same period To. For a cyclostationary process we have

mx (t + To) = mx (t) (2.7-26)

Rx(fi + To, t2 + To) = Rx (t\, t2 ) (2.7-27)

Cyclostationary processes are encountered frequently in the study of communi-
cation systems because many modulated processes can be modeled as cyclostationary

processes. For a cyclostationary process, the average autocorrelation function is defined

as the average of the autocorrelation function over one period

1 f
T°

Rx(r) = —
/

Rx (t + r, t) dt (2.7-28)
To JO

The (average) power spectral density for a cyclostationary process is defined as the

Fourier transform of the average autocorrelation function, i.e.,

Sx (f) = <^~[RxCO] (2.7-29)

example 2.7-1. Let {an } denote a discrete-time WSS random process with mean
ma (n) = E [an ]

= ma and autocorrelation function Ra (m )
= E [an+m a*]. Define the

random process

oo

X(t) = J2 anS(t - nT) (2.7-30)

n=—oo

for an arbitrary deterministic function g(t). We have

oo

mx (t) = E[X(t)] = ma ^ g(t~nT) (2.7-31)

n=—oo

This function is obviously periodic with period T. For the autocorrelation function we
have

oo oo

Rx (t + r,t)= E
[
a"am] sit + t - nT)g*(t - mT) (2.7-32)

n=—oo m=—oo

oo oo

= m Ra(n ~ m)g(t + t - nT)g*(t - mT) (2.7-33)

n=—oo m=—oo

It can readily be verified that

Rx(t 1 T
,
t T) = Rx(t + r, t ) (2.7—34)

Equations 2.7-31 and 2.7-34 show that X(t ) is a cyclostationary process.
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2.7-3 Proper and Circular Random Processes
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For a complex random process Z(t) = X(t) + jY(t), we define the covariance and the

pseudocovariance, similar to the case of complex random vectors, as

Cz (t + r, t) = E [Z(t + r)Z*(f )] (2.7-35)

Cz it + r, 0 = E [Z(f + r)Z(f)] (2.7-36)

It is easy to verify that similar to Equations 2.6-13 and 2.6-14, we have

Czit + 0 — Cx(* + T
> 0 + Cy(f + t, t) + 7 (Cyx(^ + 0 — Cxyit + r, 0)

(2.7-37)

Cz(* + t, 0 = Cx(^ + t, 0 — Cy(t + r
, 0 + 7 iCyxit + t

, 0 + Cxyit + r, 0)
(2.7-38)

A complex random process Z(0 is proper if its pseudocovariance is zero, i.e.,

Cz(^ + r, 0 = 0- F°r a proper random process we have

C*(f + r, 0 = CY (t + r, 0 (2.7-39)

CVx(f + t, f) = —Cxyit + r, 0 (2.7-40)

and

Czit + T
, 0 = 2Cx{t + T, £) + j 2Cyxit + t, £) (2.7—41)

If Z(0 is a zero-mean process, then all covariances in Equations 2.7-35 to

2.7-41 are substituted with auto- or cross-correlations. When Z(t) is WSS, all auto-

and cross-correlations are functions of r only. A proper Gaussian random process is a

random process for which, for all n and all (^, • • • ,
fw ), the complex random vector

(Z(fi), Zfe), • • • ,
Z(tn )y is a proper Gaussian vector.

A complex random process Z(0 is circular if for all 0
,
Z(t) and e

je Z(t ) have the

same statistical properties. Similar to the case of complex vectors, it can be shown

that if Z(f) is circular, then it is both proper and zero-mean. For the case of Gaussian

processes, being proper and zero-mean is equivalent to being circular. Also similar to

the case of complex vectors, passing a circular Gaussian process through a linear (not

necessarily time-invariant) system results in a circular Gaussian process at the output.

2.7-4 Markov Chains

Markov chains are discrete-time, discrete-valued random processes in which the current

value depends on the entire past values only through the most recent values. In a j th-

order Markov chain, the current value depends on the past values only through the most

recent j values, i.e.,

P [X-n ~~ Xn
|

Xn— 1
= %n— 1 j

Xn—2 — Xn—2, • • • ]

— P \Xn — xn
|

Xn—\ — xn—\ ,
Xn—2 — xn—2 ,

• • • 5
Xn—j — Xn—j ] (2.7—42)
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It is convenient to consider the set of the most recent j values as the state of the

Markov chain. With this definition the current state of the Markov chain,

i.e., Sn = (Xn ,
Xn-\, . .

. ,
Xn-j+i), depends only on the most recent state Sn-\ =

(X„-u Xn-2,

X

n -j). That is,

P[5„ = sn |5„_i = s„-i, Sn-2 = sn-2 , . .

.

] = P[5„ = sn |5„_i = 5„_!] (2.7-43)

which represents a first-order Markov chain in terms of the state variable Sn . Note that

with this notation, Xn is a deterministic function of state Sn . We can generalize this

notion to the case where the state evolves according to Equation 2.7-43 but the output

—

or the value of the random process Xn—depends on state Sn through a conditional

probability mass function

P [Xn =xn \Sn =sn ] (2.7-44)

With this background, we define a Markov chain^ as a finite-state machine with

state at time n, denoted by Sn ,
taking values in the set {1, 2, ...

,

S} such that Equation

2.7-43 holds and the value of the random process at time n, denoted by Xn and taking

values in a discrete set, depends statistically on the state through the conditional PMF
P \Xn — xn |

Sn — sn ]

.

The internal development of the process depends on the set of states and the proba-

bilistic law that governs the transitions between the states. IfP [Sn |
Sn-\ ] is independent

of n (time), the Markov chain is called homogeneous. In this case the probability of

transition from state i to state j, 1 < /, j < S
,
is independent of n and is denoted

by Pu

Pij — P [Sn — j l*S«-i = / ] (2.7-45)

In a homogeneous Markov chain, we define the state transition matrix
,
or one-

step transition matrix
,
P as a matrix with elements P^. The element at row i and

column j denotes the probability of a direct transition from state i to state j. P is a

matrix with nonnegative elements, and the sum of each row of it is equal to 1. The
ra-step transition matrix gives the probabilities of moving from i to j in n steps. For

discrete-time homogeneous Markov chains, the n-step transition matrix is equal to P n
.

All Markov chains studied here are assumed to be homogeneous.

The row vector pin) = [p\(n) p2 (n) •
•

•
, ps(n)], where p t

(n) denotes the prob-

ability of being in state i at time n, is the state probability vector of the Markov chain

at time n. From this definition it is clear that

p(n) = pin - 1)P (2.7-46)

and

pin) = p(0)Pn
(2.7-47)

fStrictly speaking, this is the definition of a finite-state Markov chain (FSMC), which is the only class of

Markov chains studied in this book.
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If \imn-+oo Pn
exists and all its rows are equal, we denote each row of the limit by

p ,
i.e.,

In this case

lim P n

n-+oo

p

p

lp\

lim p(n ) = lim p(0)Pn = p(0)n—>oo n—>oo

P

P
= P

IPJ

(2.7-48)

(2.7-49)

This means that starting from any initial probability vector p(0), the Markov chain

stabilizes at the state probability vector given by p ,
which is called the steady-state

,

equilibrium
,
or stationary state probability distribution of the Markov chain. Since after

reaching the steady-state probability distribution these probabilities do not change, p
can be obtained as the solution of the equation

pP = p (2.7-50)

that satisfies the conditions p t
> 0 and J2i Pi — 1 (i-e., it is a probability vector). If a

Markov chain starts from state p, then it will always remain in this state, because pP =
p. Some basic questions are the following: Does pP = p always have a solution that is

a probability vector? If yes, under what conditions is this solution unique? Under what

conditions does lim^oo Pn
exist? If the limit exists, does the limit have equal rows?

If it is possible to move from any state of a Markov chain to any other state in a

finite number of steps, the Markov chain is called irreducible. The period of state i of a

Markov chain is the greatest common divisor (GCD) of all n such that Pain) > 0. State

i is aperiodic if its period is equal to 1. A finite-state Markov chain is called ergodic if

it is irreducible and all its states are aperiodic.

It can be shown that in an ergodic Markov chain lim^oo Pn always exists and

all rows of the limit are equal, i.e., Equation 2.7-48 holds. In this case a unique sta-

tionary (steady-state) state probability distribution exists and starting from any initial

state probability vector, the Markov chain ends up in the steady-state state probability

vector p.

example 2.7-2. A Markov chain with four states is described by the finite-state dia-

gram shown in Figure 2.7-1. For this Markov chain we have

ru o q

0 i 0

1

U 0 i oj

p = (2.7-51)
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FIGURE 2.7-1

State transition diagram for a FSMC.

It is easily verified that this Markov chain is irreducible and aperiodic, and thus ergodic.

To find the steady-state probability distribution, we can either find the limit of P n
as

n —

>

oo or solve Equation 2.7-50. The result is

[0.49541 0.19725 0.12844 0.17889] (2.7-52)

2.8

SERIES EXPANSION OF RANDOM PROCESSES

Series expansion of random processes results in expressing the random processes in

terms of a sequence of random variables as coefficients of orthogonal or orthonormal

basis functions. This type ofexpansion reduces working with random processes to work-

ing with random variables, which in many cases are easier to handle. In the following

we describe two types of series expansions for random processes. First we describe the

sampling theorem for band-limited random processes, and then we continue with the

Karhunen-Loeve expansion of random processes, which is a more general expansion.

2.8-1 Sampling Theorem for Band-Limited Random Processes

A deterministic real signal x(t) with Fourier transform X(f) is called band-limited if

X(f) = 0 for |/| > W, where W is the highest frequency contained in x(t). Such a

signal is uniquely represented by samples of x(t) taken at a rate of fs > 2W samples/s.

The minimum rate fN = 2W samples/s is called the Nyquist rate . For complex-

valued signals W is one-half of the frequency support of the signal; i.e., if W\ and Wi
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are the lowest and the highest frequency components of the signal, respectively, then

2W = W2 — W\. The signal can be perfectly reconstructed from its sampled values if

the sampling rate is at least equal to 2W. The difference, however, is that the sampled

values are complex in this case, and for specifying each sample, two real numbers are

required. This means that a real signal can be perfectly described in terms of 2W real

numbers per second, or it has 2W degrees offreedom or real dimensions per second.

For a complex signal the number of degrees of freedom is 4W per second, which is

equivalent to 2W complex dimensions or AW real dimensions per second.

Sampling below the Nyquist rate results in frequency aliasing. The band-limited

signal sampled at the Nyquist rate can be reconstructed from its samples by use of the

interpolation formula

00

x(t) = ^2 X

it——00

n

2

W

sine 2W n

2W (2 . 8- 1 )

where {x(n/2W)} are the samples of x(t) taken at t = n/2W, n — 0, ±1, ±2,

Equivalently, x(t) can be reconstructed by passing the sampled signal through an ideal

lowpass filter with impulse response h(t) = sinc(2W0- Figure 2.8-1 illustrates the

signal reconstruction process based on ideal interpolation. Note that the expansion of

x(t) as given by Equation 2.8-1 is an orthogonal expansion and not an orthonormal

expansion since

/:
sine

( n X ( m \ ’

2Wit sine 2w t I

Y 2Wj\ l 2W)\
dt = <

2W
0

n = m
n m (2 . 8-2)

A stationary stochastic process X(t) is said to be band-limited if its power spec-

tral density Sx(f) = 0 for |/| > W. Since Sx(f) is the Fourier transform of the

autocorrelation function Rx(j), it follows that Rx (r) can be represented as

00

Rx(r) =
n=—00

n

2

W

sine \2W r -
2W (2.8-3)

where {Rx {n/2W)} are samples of Rxij) taken at r = n/2W, n — 0, ±1, ±2,

Now, if X(t) is a band-limited stationary stochastic process, then X(t) can be repre-

sented as

00

x(t) =
n=—oo

n

2

w

sine 2W t —

Y

2WJ_
(2.8-4)

FIGURE 2.8-1

Sampling and reconstruction from

samples.
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where {X(n/2W)} are samples of X(t ) taken at t = n/2W
,
ra = 0, ±1, ±2, This is

the sampling representation for a stationary stochastic process. The samples are random

variables that are described statistically by appropriate joint probability density func-

tions. If X(t) is a WSS process, then random variables {X(n/2W)} represent a WSS
discrete-time random process. The autocorrelation of the sample random variables is

given by

= Rx

nW

J-W

n — m
2W

Sx(f)ei2nf
"-

(2.8-5)

df

If the process X(t) is filtered white Gaussian noise, then it is zero-mean and its power

spectrum is flat in the [— W, W] interval. In this case the samples are uncorrelated, and

since they are Gaussian, they are independent as well.

The signal representation in Equation 2.8-4 is easily established by showing that

(Problem 2.44)

oo

E
n=—oo

\X(t)~ >
' X

(n_
V2W

sine 2W t

n

2W
= 0 (2 .8-6)

Hence, equality between the sampling representation and the stochastic process X(t)

holds in the sense that the mean square error is zero.

2.8-2 The Karhunen-Loeve Expansion

The sampling theorem presented above gives a straightforward method for orthogonal

expansion of band-limited processes. In this section we present the Karhunen-Loeve

expansion, an orthonormal expansion that applies to a large class of random processes

and results in uncorrelated random variables as expansion coefficients. We present only

the results of the Karhunen-Loeve expansion. The reader is referred to Van Trees (1968)

or Loeve (1955) for details.

There are many ways in which a random process can be expanded in terms of a

sequence of random variables {Xn } and an orthonormal basis {(/>n(t)}. However, if we
require the additional condition that the random variables Xn be mutually uncorrelated,

then the orthonormal bases have to be the solutions of an eigenfunction problem given

by an integral equation whose kernel is the autocovariance function of the random
process. Solving this integral equation results in the orthonormal basis {(j.*)n (t )}, and

projecting the random process on this basis results in the sequence of uncorrelated

random variables {V„}.

The Karhunen-Loeve expansion states that under mild conditions, arandom process

X(t) with autocovariance function

Cx(ti, ti) = Rx (tu h) ~ mx(h)mx(t2) (2.8-7)
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can be expanded over an interval of interest [a ,
b ] in terms of an orthonormal basis

{4>n(t))T=i such that coefficients of expansion are uncorrelated. The </>„(0’s are

solutions (eigenfunctions) of the integral equation

b

Cx (t\, h)(j>„{t2)dt2 -
), a < t\ < b (2.8-8)

with appropriate normalization such that

The Karhunen-Loeve expansion is given by

(2.8-9)

OO

X(t) = ^X„4>n (t), a < t < b

n=

1

with the following properties:

1. Random variables Xn denoting the coefficients of the expansion are projections of

the random process X(t) on the basis functions, i.e.,

Xn = (X(t), 0n (O) = [

b

X(t)rn (f) dt (2.8-10)
Ja

2. Random variables Xn are mutually uncorrelated. Moreover, the variance of Xn

is Xn .

COV[Xn,Xm ]
= JJ;"

n m
(2.8-11)

10 n ^ m

3. We have

E[X(t)] = E[X(t )] - mx (t), act <b (2.8-12)

4. X(t) is equal to X(t) in the mean square sense

E[|X(r) - X(t)\
2
]
= 0, a < t < b (2.8-13)

5. The covariance Cx(t \ , ti) can be expanded in terms of the bases and the eigenvalues

as given in Equation 2.8-14. This is result is known as Mercer's theorem.

OO

Cx(h,t2 )
= '^2K<t>n(h)<l>n(t2), a<tu t2 <b (2.8-14)

n= 1

6. The eigenfunctions {(j>n(t)}%Li form a complete basis for expansion of all signals

g(t) which have finite energy in the interval [a, b]. In other words, if g(t) is such

that

rb

/
\g(t)\

2 dt<oo



78 Digital Communications

then we can expand it in terms of {</>n(0} as

oo

g(t) = a < t < b (2.8-15)

n— 1

where

gn = (
g(t ), 4>n(t)) = f g(t)4>*(t) dt

J a
(2.8-16)

Equation 2.8-13, which states the Karhunen-Loeve expansion, is usually written

in the form

oo

X(t )
= Xn a < t < b (2.8-17)

n=

1

where it is understood that the equality is in the mean square sense. The {(pn (t)} are

obtained by solving Equation 2.8-8 and normalizing the solutions, and the coefficients

{X,
? } are obtained by using Equation 2.8-10.

It is worthwhile noting that the Karhunen-Loeve expansion applies to bothWSS and

nonstationary processes. In the special case where the process is zero-mean, the autoco-

variance function Cx(t\, t2 ) is substituted with the autocorrelation function Rx(h, t2 ).

If the process X{t) is a Gaussian process, {X„} are independent Gaussian random

variables.

example 2 .8-1 . Let X(t) be a zero-mean white process with power spectral density

To derive the Karhunen-Loeve expansion for this process over an arbitrary interval

[a, b], we have to solve the integral equation

N0— 5(*i - t2 )<pn (t2)dt2 = KMi), a < t\ < b (2.8-18)

where ^<$(*i
—

12 ) is the autocorrelation function of the white process. Using the sifting

property of the impulse function, we have

No—
4>n(t\) = a < t\ < b (2.8-19)

From this equation we see that (j)n (t) can be any arbitrary function. Therefore, any

orthonormal basis can be used for expansion of white processes, and all coefficients of

the expansion Xn will have the same variance of ^

.

2.9

BANDPASS AND LOWPASS RANDOM PROCESSES

In general, bandpass and lowpass random processes can be defined as WSS processes

X(t) for which the autocorrelation function Rx(j) is either a bandpass or a lowpass

signal. Recall that the autocorrelation function is an ordinary deterministic function

with a Fourier transform which represents the power spectral density of the random
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process X(t). Therefore, for a bandpass process the power spectral density is located

around frequencies ±/o, and for lowpass processes the power spectral density is located

around zero frequency.

To be more specific, we define a bandpass (or narrowband) process as a real, zero-

mean, and WSS random process whose autocorrelation function is a bandpass signal.

Inspired by Equations 2.1-1 1, we define the in-phase and quadrature components

of a bandpass random process X(t ) as

Xi(t) = X(t)cos 27tf0 t + X (t) sin Infot
(2.9-1)

X
q
(t) = X(t) cos 2ttf()t — X(t)sin27tf0 t

We will now show that

1. Xi(t) and X
q
(t) are jointly WSS zero-mean random processes.

2. Xi(t) and X
q
(t) have the same power spectral density.

3. Xi(t) and X
q
(t) are both lowpass processes; i.e., their power spectral density is

located around f — 0.

We also define the lowpass equivalent process Xi(t) as

x
z(0 = *,(*) +WO (2.9-2)

and we will derive an expression for its autocorrelation function and power spectral

density. In addition we will see that Xi(t) is a propejr random process.

Since X(t) by assumption is zero-mean, so is X(t), its Hilbert transform. This is

obvious since the Hilbert transform is just a filtering operation. From this observation,

it is clear that X
t
(t) and X

q
(t) are both zero-mean processes.

To derive the autocorrelation function of X
t
(t), we have

Rx
l

(t + T,t) = E[X
i
(t + T)X

i
(t)]

= E [(X(t + r) cos 27tfo(t + r) + X(t + r) sin 2jzfo(t + r)) (2.9-3)

x (X(t ) cos 2jtfot + X(t) sin 27t/o01

Expanding this relation, we have

Rxi(t + r, t) = Rx(?) cos 27r/o(f + r) cos 2nfot

+ Rxx(t + r
,
t) cos 27tfo(t + r) sin 2itfot

\2.y—4)
+ RxX (t + r

’ 0 s in 2tt/o(£ + t) cos 2jtfot

+ Rxx(t + r, t ) sin27r/o(£ + r)sin27r/o^

79

Since the Hilbert transform is the result of passing the process through an LTI sys-

tem, we conclude that X(t) and X(t) are jointly WSS and therefore all the auto- and

cross-correlations in Equation 2.9-4 are functions of r only. Using Equations 2.7-17
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and 2.7-18, we can easily show that (see Problem 2.56)

RXX (r )
— ~ Rx(?)

R*x (t) = Rx(r) (2.9-5)

RXX (r )
= Rx(t)

Substituting these results into Equation 2.9-4 and using standard trigonometric

identities yield

Rx
,

(r) = Rx (r) cos(2tt/ot) + Rx (r) sin(27r/0r) (2.9-6)

Similarly, we can show that

RXq (r) = RXi (r) = Rx (r)cos(27tf0r) + Rx (r)sm(27tf0 r) (2.9-7)

RXixq
(?) = -RXqXi (r) = Rx (r) sin(27r/0 r) - Rx (r) cos(2ttfQ r) (2.9-8)

These relations show that X
t
(t) and X

q
(t) are zero-mean jointly WSS processes with

equal autocorrelation functions (and thus equal power spectral densities).

To derive the common power spectral density of X
t
(t) and X

q
(t) and their cross

spectral density, we derive the Fourier transforms of Equations 2.9-7 and 2.9-8. We
need to use the modulation property of the Fourier transform and the fact that the Fourier

transform of Rx (r) is equal to —jsgn(f)Sx (f). Given these facts, it is straightforward

to derive

Sxi(f) = SXq (f) =
Sx(f + fo) + Sx (f - fo)

0

SxjX
q (f)

= —Sx
qXi(f) —

j[Sx(f + fo) — SX (f — fo)]

0

\f\<fo
(2.9-9)

otherwise

I/I </o
otherwise

(2.9-10)

Equation 2.9-9 states that the common power spectral density of the in-phase and

quadrature components of X(t) is obtained by shifting the power spectral density ofX (t)

to left and right by fo and adding the results and then removing all components outside

[—fo, /o]. This result also shows that both Xi(t) and X
q
(t) are lowpass processes.

From Equation 2.9-10 we see that if Sx (f + fo) = Sx(f - fo) for |/| < /0 ,
then

Sx
t
x

q (f)
= 0 and consequently, RXixq

(t) = 0. Since X
t
(t) and X

q
(t) are zero-mean

processes, from RXixq {t) = 0we conclude that under this condition Xft) and X
q
(t)

are uncorrelated. One of the cases where we have Sx(f+ fo) = Sx (f — f0)fov\f\ < 0

occurs when Sx (f) is symmetric around fo, in which case the in-phase and quadrature

components will be uncorrelated processes.

We define the complex process Xi(t) = Xft) + jX
q
(t) as the lowpass equivalent

of X(t). Since Xft) and X
q
(t) are both lowpass processes, we conclude that Xi(t) is

also a lowpass process. Comparing Equations 2.9-7 and 2.9-8 with Equations 2.7-39

and 2.7-40, we can conclude that X\(t) is a proper random process, and therefore, from
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Equation 2.7-41, we have

81

Rx,(r) = 2RXl (x) + 2jRXqX,(r) (2.9-1 1)

= 2[Rx (r) + jRx (x)]e-^
fot (2.9-12)

where we have used Equations 2.9-7 and 2.9-8. Comparing Equations 2.9-12 and

2.1-6, we observe that Rxft) is twice the lowpass equivalent of Rx( r). In other words,

the autocorrelationfunction ofthe lowpass equivalentprocess Xft) is twice the lowpass

equivalent of the autocorrelationfunction of the bandpass process X(t).

Taking Fourier transform of both sides of Equation 2.9-12, we obtain

Sx,(f) =
4Sx (f + /o)

0

l/l</o
otherwise

(2.9-13)

and consequently,

Sx(f) = \[SXl (f - f0) + SXl(-f - fo)} (2.9-14)

We also observe that if X(t) is a Gaussian process, then X
t
(t), X

q
(t), and Xi(t) will

be jointly Gaussian processes; and since Xft) is Gaussian, zero-mean, and proper, we
conclude that Xi(t) is a circular process as well. In this case ifSx(f+ /o) = Sx(/ — /o)

for
| /| < fo, then Xft) and X

q
(t) will be independent processes.

example 2.9-1. White Gaussian noise with power spectral density of ^ passes

through an ideal bandpass filter with transfer function

\ 0 otherwise

where W < fo. The output, calledfiltered white noise
,
is denoted by X(t). This process

has a power spectral density of

*(/) = /$
\ 0 otherwise

Since Sx(f + fo) = Sx(f ~ fo) for I/I < /o» anh the process is Gaussian, Xi(f) and

X
q (f) are independent lowpass processes. Using Equation 2.9-9, we conclude that

Sx,(f) = SXq if) = {/°
I/I < W
otherwise

and from Equation 2.9-13, we conclude that

(2N0 \f\ < W
\0 otherwise
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2.10

BIBLIOGRAPHICAL NOTES AND REFERENCES

In this chapter we have provided a review of basic concepts and definitions in signal

analysis, the theory ofprobability, and stochastic processes. An advancedbook on signal

analysis that covers most of the material presented here in detail is the book by Franks

(1969). The texts by Davenport and Root (1958), Davenport (1970), Papoulis and Pillai

(2002), Peebles (1987), Helstrom (1991), Stark and Woods (2002), and Leon-Garcia

(1994) provide engineering-oriented treatments ofprobability and stochastic processes.

A more mathematical treatment of probability theory may be found in the text by Loeve

(1955). Finally, we cite the book by Miller (1964), which treats multidimensional

Gaussian distributions.

PROBLEMS

2.1 Prove the following properties of Hilbert transforms:

a. If x (t) = x(—t), then x(t )
= —x(—t).

b. If x (t) = —x(—t), then x(t) = x(—t).

c. If x(t) = coscoot ,
then x(t) = sin coot.

d. If x (?) = sin coot, then x(t) = — cos coot

.

e. x (t) = —x (t)

/
OO poo

x 2(t)dt= / x‘

oo J—OO

/
OO

x(t)x(t)dt = 0
oo

(t)dt

2.2 Let x(t) and y(t) denote two bandpass signals, and let xi(t) and yi(t) denote their lowpass

equivalents with respect to some frequency fo. We know that in general xi(t) and yi(t) are

complex signals.

1. Show that

fOO t

/
X(t)y(t)dt = - Re

2. From this conclude that Sx = \£Xn i.e., the energy in a bandpass signal is one-half the

energy in its lowpass equivalent.

/
oo

xi(t)y*(t)dt

•OO

2.3 Suppose that s(t) is either a real- or complex-valued signal that is represented as a linear

combination of orthonormal functions {fn (t)}, i.e.,

K

ho

=

y^skfk(t)
k= 1

m = n

m ^ n

where
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Determine the expressions for the coefficients {s^} in the expansion Si(t) that minimize the

energy

/

oo

I

s(t) - s(t)\
2
dt

-oo

and the corresponding residual error £e .

2.4

Suppose that a set ofM signal waveforms {sim (0} is complex-valued. Derive the equations

for the Gram-Schmidt procedure that will result in a set of A < M orthonormal signal

waveforms.

2.5 Carry out the Gram-Schmidt orthogonalization of the signals in Figure 2.2-1 (a) in the order

S4 (t ), ss(t), s\(t ), and thus obtain a set of orthonormal functions {fm (t)}. Then determine

the vector representation of the signals {$„(*)} by using the orthonormal functions

Also determine the signal energies.

2.6 Assuming that the set of signals {4>ni(t), n = 1, . .
.

,

N} is an orthonormal basis for rep-

resentation of {smi(t), m = 1, . .
.

,

M], show that the set of functions given by Equa-

tion 2.2-54 constitutes a 2N orthonormal basis that is sufficient for representation of M
bandpass signals given in Equation 2.2-55.

2.7 Show that

0(0 = “0(0

where 4>(t) denotes the Hilbert transform and 0 and 0 are given by Equation 2.2-54.

2.8 Determine the correlation coefficients among the four signal waveforms {$,•(*)} shown

in Figure 2.2-1 and their corresponding Euclidean distances.

2.9 Prove that si(t) is generally a complex-valued signal, and give the condition under which

it is real. Assume that s(t ) is a real-valued bandpass signal.

2.10

Consider the three waveforms fn (t) shown in Figure P2.10.

fi(t) f2 (t)

m
1

2

1

0 1 2 3 4

2

FIGURE P2.10
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a. Show that these waveforms are orthonormal.

b. Express the waveform x(t) as a linear combination of fn (t), n = 1, 2, 3, if

f
-1 VVI0

x(t) = < 1 1 < t < 3

l-l 3 <t <4

and determine the weighting coefficients.

2.11

Consider the four waveforms shown in Figure P2. 1 1

.

a. Determine the dimensionality of the waveforms and a set of basis functions.

b. Use the basis functions to represent the four waveforms by vectors Si ,
s 2 , S 3 ,

and s4 .

c. Determine the minimum distance between any pair of vectors.

si(0

2

1

0

-1

^2(0

1

0

-2

3 4 t

FIGURE P2.ll

2.12

Determine a set of orthonormal functions for the four signals shown in Figure P2. 12.

*i(0i

2 r

^2(0

2

0 12 3 *01
^3(0

0

s4(t)

1 2 3 t

0 1 2 *

FIGURE P2.12
2.13

A random experiment consists of drawing a ball from an urn that contains 4 red balls

numbered 1, 2, 3, 4 and three black balls numbered 1, 2, 3. The following events are

defined.

1. £

1

= The number on the ball is even.

2. £2 = The color of the ball is red, and its number is greater than 1

.

3. £3 = The number on the ball is less than 3.

4. £4 = E\ U £3

5 . £5 = £] u (£2 n £3)
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Answer the following questions.

1. Whatis£(£2)?

2. Whatis £(£3 |£2)?

3. What is £(£2 |£4£3 )?

4. Are £3 and £5 independent?
2.14

In a certain city three car brands A, B, C have 20%, 30% and 50% of the market share,

respectively. The probability that a car needs major repair during its first year of purchase

for the three brands is 5%, 10%, and 15%, respectively.

1 . What is the probability that a car in this city needs major repair during its first year of

purchase?

2. If a car in this city needs major repair during its first year of purchase, what is the

probability that it is made by manufacturer A?

2.15 The random variables X/, / = 1,2, .

.

. ,
n

,
have joint PDF p(x 1 ,

jc2 ,

.

. . ,
xn ). Prove that

p(xl,X2 , X3 ,...,X„) = p(xn |x„_i, . . . , Xi)p(xn-1 |x„_2, • • • , *l) • •
• P(x3 1*2. *l)p(*2 l*l)P(*l)

2.16 A communication channel with binary input and ternary output alphabets is shown in

Figure P2.16. The probability of the input being 0 is 0.4. The transition probabilities are

shown on the figure.

1 . If the channel output is A, what is the best decision on channel input that minimizes

the error probability? Repeat for the cases where channel output is B and C.

2. If a 0 is transmitted and an optimal decision scheme (the one derived in part 1) is used

at the receiver, what is the probability of error?

3. What is the overall error probability for this channel if the optimal decision scheme is

used at the receiver.

2.17 The PDF of a random variable X is p(x). A random variable Y is defined as

Y = aX + b

where a < 0. Determine the PDF of Y in terms of the PDF of X.

2.18 Suppose that X is a Gaussian random variable with zero mean and unit variance. Let

Y=aX 3 +b, a > 0

Determine and plot the PDF of Y.
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2.19

The noise voltage in an electric circuit can be modeled as a Gaussian random variable with

mean equal to zero and variance equal to 10
-8

.

1 . What is the probability that the value of the noise exceeds 10
-4

? What is the probability

that it exceeds 4 x 10
-4

? What is the probability that the noise value is between —2 x
10"4 and 10“4 ?

2. Given that the value of the noise is positive, what is the probability that it exceeds 1

0

-4
?

2.20

X is a J\T(0, a 2
) random variable. This random variable is passed through a system whose

input-output relation is given by y = g(x). Find the PDF or the PMF of the output random
variable Y in each of the following cases.

1. Square-law device, g(x) = ax 2
.

2. Limiter,

3. Hard limiter,

g(x) =

g(x) =

-b x < —b

b x > b

x \x\ < b

{

a x > 0

0 x = 0

b x < 0

4. Quantizer, g(x) = xn for an < x < an+ 1 ,
1 < n < N, where xn lies in the interval

[an ,
an+ 1 ] and the sequence {a\, a2 ,

. .
.

,

tfv+i) satisfies the conditions a\ = — oo,

<2w+i =oo and for i > j we have > aj.

2.21

Shows that for an J\T(m ,
a 2

) random variable we have

E[(X - mf 1 = / lx3x5x --‘ x (2A: - forn = 2k

|
0 for n = 2k + 1

2.22

a. Let Xr and X t
be statistically independent zero-mean Gaussian random variables with

identical variance. Show that a (rotational) transformation of the form

Yr + jYi = (Xr + jXi)eJ*

results in another pair (Yr ,
Y

t ) of Gaussian random variables that have the same joint

PDF as the pair (Xr ,
X

t ).

b. Note that

r^i A
\xr i

where A is a 2 x 2 matrix. As a generalization of the two-dimensional transformation

of the Gaussian random variables considered in (a), what property must the linear

transformation A satisfy ifthe PDFs forX and F, where Y = AX, X = (X\X2
- • • Xn ),

and Y = (Fj Y2 •
•

• Yn ) are identical?

2.23

Show that if X is a Gaussian vector, the random vector Y = AX, where the invertible

matrix A represents a linear transformation, is also a Gaussian vector whose mean and
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covariance matrix are given by

m Y = Amx

C Y = ACxA l2.24

The random variable Y is defined as

> = £*<
1= 1

where the X;, i = 1,2, . .
.

,

n, are statistically independent random variables with

_ f 1 with probability p
1

\0 with probability 1 — p

a. Determine the characteristic function of Y.

b. From the characteristic function, determine the moments E(Y ) and E(Y
2
).

2.25

This problem provides some useful bounds on Q(x).
u
2+v2

1. By integrating e 2 on the region u > x and v > x in M2
,
where x > 0, then

changing to polar coordinates and upper bounding the integration region by the region

r > a/2* in the first quadrant, show that Q(x) < \e~^ for all x > 0.

2. Apply integration by parts to

r
dy

and show that

a/27t(1 + x 2
)

< Q(x) <
Vlnx

for all x > 0.

3.

Based on the result of part 2 show that, for large x,

Q(X)
c\Fhz

2.26

Let X\, X2 ,
X3 , . .

.

denote iid random variables each uniformly distributed on [0, A],

where A > 0. Let Yn = min{Zi, X2 ,
. .

.

,

Xn }.

1. What is the PDF of Yn l
2. Show that if both A and n go to infinity such that j

= A., where A. > 0 is a constant,

the density function of Yn tends to an exponential density function. Specify this density

function.

2.27

The four random variables Xi, X2 ,
X3, X4 are zero-mean jointly Gaussian random

variables with covariance C/
7

- = E(X
t
Xj) and characteristic function Ox(&>i ,

co2 ,
0)3 ,

0)4 ).

Show that

E(X
l
X2X3XA )

— C12C34 + C13C24 + C14C23
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2.28 Let

®x (t) = E [e
,x

\

denote the moment generating function of random variable X.

1.

Using the Chernov bound, show that

InP [X > a] < — max(at — In ©x(0)
t>o

2.

Define

1(a) = max(at — ln©x(0)
t>o

as the large-deviation rate function of the random variable X
,
and let X\

,
X2 ,

. .
.

,

Xn

be iid. Define Sn = (X\ + X2 H + Xn )/n. Show that for a > E [X]

— In P [Sn >a]< -1(a)
n

or equivalently

P [5„ > a] < e-
nI(a)

Note: It can be shown that for a > E [X], we have P[Sn > a] = e
-« /(“)+0(")

; where

o(n) -> 0 as n oo. This result is known as the large-deviation theorem.

3.

Now assume the Xfs are exponential, i.e.,

. . (e~x x > 0

\o otherwise

Using the large-deviation result, show that

P [Sn >a]=an
e-

n((X- l)+0{n)

for a > 1.

2.29

From the characteristic functions for the central chi-square and noncentral chi-square

random variables given in Table 2.3-3, determine their corresponding first and second

moments.

2.30

The PDF of a Cauchy distributed random variable X is

a/n
p(x) = — -oo < X < oo

x L
-b a1

a. Determine the mean and variance of X.

b. Determine the characteristic function of X.

2.31

Let Rq denote a Rayleigh random variable with PDF

/roOo)
n

ro > 0

otherwise
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and R\ be Ricean with PDF

/j?,(n)= < ^ /o (^) e ^ ri -°
I 0 otherwise

Furthermore, assume that R0 and R\ are independent. Show that

P(R0 > Ri) =
^
e~ **2.32

Suppose that we have a complex-valued Gaussian random variable Z = X + jY, where

(X , 7) are statistically independent variables with zero mean and variance E [X2

]

=
E [y

2

]
= a 2

. Let R = Z + m, where m = m r + jmi and define R as R = A + jB.

Clearly, A = X + m r and B = Y + ra*. Determine the following probability density

functions:

1 . pA,B(a,b)

2. puMu
> 0X where U = V

A

2 + B 2 and <t> = tan
-1 B/

A

3. /7c/(M)

Note: In part 2 it is convenient to define 0 = tan
-1

(ra; /ra r ) so that

m r = y + m 2 cos 0, m, = y m
2 + m 2

sin 0

Furthermore, you must use Equation 2.3-34, defining /o(-) as the modified Bessel function

of order zero.

2.33

The random variable Y is defined as

where X,, i = 1,2, ..., n, are statistically independent and identically distributedrandom

variables each of which has the Cauchy PDF given in Problem 2.30.

a. Determine the characteristic function of Y.

b. Determine the PDF of Y.

c. Consider the PDF of Y in the limit as n —> oo. Does the central limit theorem hold?

Explain your answer.

2.34 Show that if Z is circular, then it is zero-mean and proper, i.e., E [Z] = 0 and E [ZZ r

]
=0.

2.35 Show that if Z is a zero-mean proper Gaussian complex vector, then Z is circular.

2.36 Show that if Z is a proper complex vector, then any transform of the form W = AZ + b

is also a proper complex vector.

2.37 Assume that random processes X(t) and Y(t) are individually and jointly stationary.

a. Determine the autocorrelation function of Z(t) = X(t) + Y(t).

b. Determine the autocorrelation function of Z(t) when X(t) and Y(t) are uncorrelated.

c. Determine the autocorrelation function of Z(t) when X(t) and Y(t) are uncorrelated

and have zero means.
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2.38 The autocorrelation function of a stochastic process X(t) is

Rx(r) = iN08(t )

Such a process is called white noise. Suppose x(t) is the input to an ideal bandpass filter

having the frequency response characteristic shown in Figure P2.38. Determine the total

noise power at the output of the filter.

FIGURE P2.38

2.39 A lowpass Gaussian stochastic process X{t) has a power spectral density

S(f)={
No 1/1 <s

\0 otherwise

Determine the power spectral density and the autocorrelation function of Y(t) = X2
{t).

2.40 The covariance matrix of three random variables X \ ,
X2 ,

and X3 is

Cn 0 C13-

0 C22 0

_ U31 0 U33 _

The linear transformation Y = AX is made where

A =

"1

0

1

0 O'

2 0

0 1

Determine the covariance matrix of Y

.

2.41 Let X(t) be a stationary real normal process with zero mean. Let a new process Y(t) be

defined by

Y{t) = X2
(t)

Determine the autocorrelation function of Y(t) in terms of the autocorrelation function of

X(t). Hint : Use the result on Gaussian variables derived in Problem 2.27.

2.42 For the Nakagami PDF, given by Equation 2.3-67, define the normalized random variable

X = R/*/Q. Determine the PDF of X.

2.43 The input X(t) in the circuit shown in Figure P2.43 is a stochastic process with E[X(t)] = 0

and Rx(?) = cr
2
S(r); i.e., X(t) is a white noise process.

a. Determine the spectral density Sy(f).

b. Determine RY (r) and E[Y2
(t)].
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Wv
R

X{t) c ^^ Y(t)

FIGURE P2.43

2.44 Demonstrate the validity of Equation 2.8-6.

2.45 Use the Chemoff bound to show that Q(x) < e~x2 /2
.

2.46 Determine the mean, the autocorrelation sequence, and the power density spectrum of the

output of a system with unit sample response

(l n = 0

l, 0 otherwise

when the input x{ri) is a white noise process with variance a 2
.

2.47 The autocorrelation sequence of a discrete-time stochastic process is R(k)
= Q)

1

*
1

.

Determine its power density spectrum.

2.48 A discrete-time stochastic process X(n) = X(nT) is obtained by periodic sampling of a

continuous-time zero-mean stationary process X(t ), where T is the sampling interval; i.e.,

fs = l/T is the sampling rate.

a. Determine the relationship between the autocorrelation function of X(t) and the auto-

correlation sequence of X(n).

b. Express the power density spectrum of X(n) in terms of the power density spectrum of

the process X(t).

c. Determine the conditions under which the power density spectrum of X(n) is equal to

the power density spectrum of X(t).

2.49 The random process V(t) is defined as

V(t) = X cos Infct — Y sinlnfct

where X and Y are random variables. Show that V{t) is wide-sense stationary if and only

if E(X) = E(Y ) = 0, E(X 2
) = E(Y2

), and E(XY) = 0.

2.50 Consider a band-limited zero-mean stationary stochastic process X(t) with power density

spectrum

sx (f) =
{

1

0

\f\<w
otherwise

X(t) is sampled at a rate fs = 1/ T to yield a discrete-time process X{n) = X{nT).

a. Determine the expression for the autocorrelation sequence of X(n).

b. Determine the minimum value of T that results in a white (spectrally flat) sequence.
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c. Repeat (b) if the power density spectrum of X{t) is

Sx(f)
0

\f\< w
otherwise2.51

Show that the functions

fk(t) = sine 2W

are orthogonal over the real line, i.e.,

£ = 0,± 1 ,±2 , ...

£/,„)//o..={‘
/2W k = j

otherwise

Therefore, the sampling theorem reconstruction formula may be viewed as a series expan-

sion of the band-limited signal s(t ), where the weights are samples of s(t) and the

are the set of orthogonal functions used in the series expansion.

2.52

The noise equivalent bandwidth of a system is defined as

1 f°°
b^ = gJ0

\H(f)\
2
df

where G = max
\
H(f)\

2
. Using this definition, determine the noise equivalent bandwidth

of the ideal bandpass filter shown in Figure P2.38 and the low-pass system shown in

Figure P2.43.

2.53

Suppose that N(t) is a zero-mean stationary narrowband process. The autocorrelation

function of the equivalent lowpass process Z{t ) = X{t) + jY(t) is defined as

Rz (r) = E [Z*(t)Z(t + r)]

a. Show that

E [Z(t)Z(t -hr)] = 0

b. Suppose Rz (t) = Nq8(t), and let

V = Z(t)dt

Determine E [V 2

]
and E

[
\V

\

2
]

.

2.54

Determine the autocorrelation function of the stochastic process

X(t) = A sin(27r/c t + 0)

where fc is a constant and © is a uniformly distributed phase, i.e.,
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2.55 Let Z{t) = X(t ) + jY(t) be a complex random process, where X(t) and Y{t) are real-

valued, independent, zero-mean, and jointly stationary Gaussian random processes. We
assume that X(t) and Y(t) are both band-limited processes with a bandwidth of W and a

flat spectral density within their bandwidth, i.e.,

Sx(f) = SY (f) =
(N0

\0

\f\<w
otherwise

1. Find E[Z(t)] and Rz (t + r, t), and show that Z{t) is WSS.
2. Find the power spectral density of Z(t).

3. Assume fait), fait), . .
.

,

fait) are orthonormal, i.e.,

/

oo r i . *

=
{ 0 l

=
erwise

and all 07 (O’ S are band-limited to [-W, W]. Define random variables Zj as the pro-

jections of Z(0 on the <t>j(t)
9

s, i.e.,

/
oo

Z(t)<p*(t)dt, j = 1,2, ... ,n
•OO

Determine E[Zj] and E[ZjZ%] and conclude that the Zj ’s are iid zero-mean Gaussian

random variables. Find their common variance.

4.

Let Zj = Zj r + jZji, where Zj r and Zj
t
denote the real and imaginary parts, respec-

tively, of Zj. Comment on the joint probability distribution of the 2n random variables

iZlr, Z\i, Z'lr, Z'li, • • • ,
Znr ,

Zni)

5.

Let us define

n

7= 1

to be the error in expansion of Z(£) as a linear combination of 0; (O’s. Show that

E[Zit)Z%] = 0 for all k = 1 , 2, In other words, show that the error Z(t) and all

the Zfc’s are uncorrelated. Can you say Z(£) and the Z*’ s are independent?

2.56 Let Xit) denote a (real, zero-mean, WSS) bandpass process with autocorrelation function

Rxit) and power spectral density Sxif ), where <Sx(0) = 0, and let Xit) denote the

Hilbert transform of Xit). Then Xit) can be viewed as the output of a filter, with impulse

response ^ and transfer function —jsgnif), whose input is Xit). Recall that when Xit)

passes through a system with transfer function //(/) and the output is Yit), we have

Syif) = Sx if)\Hif)\ 2 and SXY if) = Sx if)H*if).
1. Prove that R%iz) = Rx it).

2. Prove that RXxiz ) = —Rxi?)
3. If Z(f) = Xit) + jX(t), determine Sz if).
4. Define Xiit) = Zit)e~

j27t Q̂t
. Show that Xiit) is a lowpass WSS random process, and

determine <Sx,(/). From the expression for Sx,if), derive an expression for Rx,i t).
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2.57 A noise process has a power spectral density given by

Sn(f) =
I/I < 108

I/I > 108

This noise is passed through an ideal bandpass filter with a bandwidth of 2 MHz centered

at 50 MHz.
1 . Find the power content of the output process.

2. Write the output process in terms of the in-phase and quadrature components, and find

the power in each component. Assume /o = 50 MHz.
3. Find the power spectral density of the in-phase and quadrature components.

4. Now assume that the filter is not an ideal filter and is described by

|

H(/) |2 = n

F

- 49 49 MHz < |/| <51 MHz
\0 otherwise

Repeat parts 1, 2, and 3 with this assumption.



Digital Modulation Schemes

The digital data are usually in the form of a stream of binary data, i.e., a sequence

of Os and Is. Regardless of whether these data are inherently digital (for instance, the

output of a computer terminal generating ASCII code) or the result of analog-to-digital

conversion of an analog source (for instance, digital audio and video), the goal is to re-

liably transmit these data to the destination by using the given communication channel.

Depending on the nature of the communication channel, data can suffer from one or

more ofcertain channel impairments including noise, attenuation, distortion, fading, and

interference. To transmit the binary stream over the communication channel, we need to

generate a signal that represents the binary data stream and matches the characteristics

of the channel. This signal should represent the binary data, meaning that we should be

able to retrieve the binary stream from the signal; and it should match the characteristics

of the channel, meaning that its bandwidth should match the bandwidth of the channel,

and it should be able to resist the impairments caused by the channel. Since different

channels cause different types of impairments, signals designed for these channels can

be drastically different. The process of mapping a digital sequence to signals for trans-

mission over a communication channel is called digital modulation or digital signaling.

In the process of modulation, usually the transmitted signals are bandpass signals suit-

able for transmission in the bandwidth provided by the communication channel. In this

chapter we study the most commonly used modulation schemes and their properties.

3.1

REPRESENTATION OF DIGITALLY MODULATED SIGNALS

The mapping between the digital sequence (which we assume to be a binary sequence)

and the signal sequence to be transmitted over the channel can be either memoryless or

with memory ,
resulting in memoryless modulation schemes and modulation schemes

with memory. In a memoryless modulation scheme, the binary sequence is parsed into

subsequences each of length k ,
and each sequence is mapped into one of the sm (t).

95
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k k k

10 100 1 01 ..0 Modulator sjf)

FIGURE 3.1-1

Block diagram of a memoryless digital modulation scheme.

I <m <2k
,
signals regardless of the previously transmitted signals. This modulation

scheme is equivalent to a mapping from M = 2k messages to M possible signals, as

shown in Figure 3.1-1.

In a modulation scheme with memory ,
the mapping is from the set of the current

k bits and the past (L — 1 )k bits to the set of possible M = 2k messages. In this case

the transmitted signal depends on the current k bits as well as the most recent L — 1

blocks of k bits. This defines a finite-state machine with 2(L_1)* states. The mapping that

defines the modulation scheme can be viewed as a mapping from the current state and

the current input of the modulator to the set of output signals resulting in a new state of

the modulator. If at time instant l — 1 the modulator is in state Si-\ e {1, 2, . .
.

,

2
(L_1)*}

and the input sequence is h e {1, 2, . .
.

,

2*}, then the modulator transmits the output

smi (t) and moves to new state St according to mappings

mt = fm (St-uh) (3 . 1- 1 )

Si = fs (St-i, h) (3.1-2)

Parameters k and L and functions /m (-, •) and fs (-
, •) completely describe the modula-

tion scheme with memory. Parameter L is called the constraint length of modulation.

The case of L = 1 corresponds to a memoryless modulation scheme.

Note the similarity between Equations 3.1-1 and 3.1-2 on one hand and Equa-

tions 2.7-43 and 2.7-44 on the other hand. Equation 3.1-2 represents the internal

dynamics of a Markov chain where the future state depends on the current state and

the input Ii (which is a random variable), and Equation 3.1-1 states that the output

mi depends on the state through random variable Ii. Therefore, we can conclude that

modulation systems with memory are effectively represented by Markov chains.

In addition to classifying the modulation as either memoryless or having memory,

we may classify it as either linear or nonlinear. Linearity of a modulation method re-

quires that the principle of superposition apply in the mapping of the digital sequence

into successive waveforms. In nonlinear modulation, the superposition principle does

not apply to signals transmitted in successive time intervals. We shall begin by describ-

ing memoryless modulation methods.

As indicated above, the modulator in a digital communication system maps a

sequence of k binary symbols—which in case of equiprobable symbols carries k bits of

information—into a set of corresponding signal waveforms sm (t), 1 < m < M, where

M = 2k . We assume that these signals are transmitted at every Ts seconds, where Ts is

called the signaling interval. This means that in each second

R (3.1-3)
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symbols are transmitted. Parameter Rs is called the signaling rate or symbol rate. Since

each signal carries k bits of information, the bit interval T^, i.e., the interval in which

1 bit of information is transmitted, is given by

and the bit rate R is given by

T

log2 M

R = kRs = Rs log2 M

(3 . 1-4)

(3 . 1-5)

If the energy content of sm (t) is denoted by £m ,
then the average signal energy is

given by

M
£&vg — } ^ Pm^m (3 . 1—6)

m=

1

where pm indicates the probability of the rath signal (message probability). In the case

of equiprobable messages, pm = 1/M, and therefore.

M

m—\

(3 - 1-7 )

Obviously, if all signals have the same energy, then £m = £ and £avg = £. The average

energy for transmission of 1 bit of information, or average energy per bit
,
when the

signals are equiprobable is given by

P _ £avg _ _£i
bavg "

k "log2M
avg

If all signals have equal energy of £, then

£b = ^- =
log2 M

(3 . 1-8 )

(3 . 1-9)

If a communication system is transmitting an average energy of £bavg
per bit, and

it takes Tt seconds to transmit this average energy, then the average power sent by the

transmitter is

p _ ^bayg D cravg — rj,
— ^ C'bavg

which for the case of equal energy signals becomes

(3 . 1-10)

P = R£b (3 . 1-11 )

3.2

MEMORYLESS MODULATION METHODS

The waveforms sm (t) used to transmit information over the communication channel can

be, in general, of any form. However, usually these waveforms are bandpass signals

which may differ in amplitude or phase or frequency, or some combination of two
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or more signal parameters. We consider each of these signal types separately, begin-

ning with digital pulse amplitude modulation (PAM). In all cases, we assume that the

sequence of binary digits at the input to the modulator occurs at a rate of R bits/s.

3.2-1 Pulse Amplitude Modulation (PAM)

In digital PAM, the signal waveforms may be represented as

^m(0 = Am p(t), 1 < m < M (3.2—1)

where p(t) is a pulse of duration T and{Am ,
1 < m < M} denotes the set ofM possible

amplitudes corresponding to M = 2k possible A:-bit blocks of symbols. Usually, the

signal amplitudes Am take the discrete values

Am = 2m 1 -M, m = 1, 2, . .
. ,
M (3.2-2)

i.e., the amplitudes are ±1 , ±3, ±5,

,

±(Af — 1). The waveform p(t) is a real-valued

signal pulse whose shape influences the spectrum of the transmitted signal, as we shall

observe later.

The energy in signal sm (t) is given by

£
/

oo

A2
mp

2
(t)dt

-OO

- A 2 f~ ^mCP

where £p is the energy in p(t). From this,

M
fav*

“
M
2£p

M
2S.

m=

1

p M{Ml
1)

M 6

(M2 -
1)£„

(3.2-3)

(3.2-4)

(l
2 + 3

2 + 5
2 + • •

• + (M - l)
2

)

(3.2-5)

and

tM2 - 1)£p
4avg =

3 log2M (3 ‘2_6)

What we described above is the baseband PAM in which no carrier modulation is

present. In many cases the PAM signals are carrier-modulated bandpass signals with

lowpass equivalents of the form Am g(t), where Am and g(t) are real. In this case

sm (t) = Re [sml {t)e
i2nfct

]
(3.2-7)

= Re [Amg(t)e
j2jTfct

]
= Amg(t)cos(2nfct) - (3.2-8)
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where fc is the carrier frequency. Comparing Equations 3.2-1 and 3.2-8, we note that

if in the generic form of PAM signaling we substitute

P(0 = g(t) cos(2nfct) (3.2-9)

then we obtain the bandpass PAM. Using Equation 2.1-21, for bandpass PAM we have

A 2

f — fhup
<^m —

2

and from Equations 3.2-5 and 3.2-6 we conclude

(M2 - \)£g

and

p —
°avg —

^bavg —
(M2 - 1)Sg

(3.2-10)

(3.2-11)

(3.2-12)
6 log2 M

Clearly, PAM signals are one-dimensional (N = 1) since all are multiples of the

same basic signals. Using the result of Example 2.2-6, we get

Pit)
0(0 =

y/£p
(3.2-13)

as the basis for the general PAM signal of the form sm (t) = Am p(t ) and

0(0 = g(0cos 2nfc t (3.2-14)

as the basis for the bandpass PAM signal given in Equation 3.2-8. Using these basis

signals, we have

^m(0 — Am y

^ra(0 — Am ^j
^
0(0

for baseband PAM

for bandpass PAM

(3.2-15)

From above the one-dimensional vector representations for these signals are of the

form

— Am y Am = ±1, ±3, . . • , MM --1) (3.2-16)

ii >•3 Am = ±1, ±3, . .
. , ±(M --1) (3.2-17)

The corresponding signal space diagrams for M = 2, M = 4, and M — 8 are shown

in Figure 3.2-1.

The bandpass digital PAM is also called amplitude-shift keying (ASK). The map-

ping or assignment of k information bits to theM = 2k possible signal amplitudes may
be done in a number of ways. The preferred assignment is one in which the adjacent
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FIGURE 3.2-1

Constellation for PAM signaling.

(a)M = 2

00 01 10

(b)M = 4

000 001 011 010 110 111 101 100

(c)M=8

signal amplitudes differ by one binary digit as illustrated in Figure 3.2-1 . This mapping

is called Gray coding. It is important in the demodulation of the signal because the most

likely errors caused by noise involve the erroneous selection of an adjacent amplitude

to the transmitted signal amplitude. In such a case, only a single bit error occurs in the

A:-bit sequence.

We note that the Euclidean distance between any pair of signal points is

dmn — V II
Sm

=
I

Am An |

= 14

(3.2-18)

(3.2-19)

(3.2-20)

where the last relation corresponds to a bandpass PAM. For adjacent signal points

\Am — An \

= 2, and hence the minimum distance of the constellation is given by

drr\\X\ 2 (3.2-21)

We can express the minimum distance of anM-ary PAM system in terms of its £bavg
by solving Equations 3.2-6 and 3.2-12 for £p and £g , respectively, and substituting the

result in Equation 3.2-21. The resulting expression is

121og2 M c

M2 - 1

^bavg (3.2-22)

The carrier-modulated PAM signal represented by Equation 3.2-8 is a double-

sideband (DSB) signal and requires twice the channel bandwidth of the equivalent

lowpass signal for transmission. Alternatively, we may use single-sideband (SSB) PAM,
which has the representation (lower or upper sideband)

Sm(t) = Re [Am (g(t ) ± jg(t)) e
j2nfct

] ,
m = 1, 2, . . . , M (3.2-23)
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Signal

amplitude

FIGURE 3.2-2

Example of (a) baseband and (b) carrier-modulated PAM signals.

where g(t ) is the Hilbert transform of g(t). Thus, the bandwidth of the SSB signal is

one-half that of the DSB signal.

A four-amplitude level baseband PAM signal is illustrated in Figure 3.2-2(a). The

carrier-modulated version of the signal is shown in Figure 3.2-2(b).

In the special case of M = 2, or binary signals, the PAM waveforms have the

special property that si(0 = — Hence, these two signals have the same energy

and a cross-correlation coefficient of —1. Such signals are called antipodal. This case

is sometimes called binary antipodal signaling.

3.2-2 Phase Modulation

In digital phase modulation, the M signal waveforms are represented as

t(0 = Re m = 1, 2, . .
. ,
M

2tc
= g{t) cos

|2
txfc t +—(m - 1)

f 2n \ ( 2n
= g(t) cos -

1) )
cos 2ttfc t - g(t ) sin

(

- U )
sin27Tfc t

(3.2-24)
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where g(t) is the signal pulse shape and 0m = 2n(m — 1)/M, m = 1, 2, . .
.

,

Af, is

the M possible phases of the carrier that convey the transmitted information. Digital

phase modulation is usually called phase-shift keying (PSK). We note that these signal

waveforms have equal energy. From Equation 2.1-21,

£avg = £m = \£g (3.2-25)

and therefore,

c _ £g
^bavg “21og2 M

(3.2-26)

For this case, instead of £avg and £bavg we use the notation £ and £*,.

Using the result of Example 2.1-1, we note that g(t ) cos 2jtfcT and g(t) sm2nfc t

are orthogonal, and therefore (/>\(t) and 02(0 given as

(3.2-27)

(3.2-28)

can be used for expansion of sm (t), 1 < m < M, as

sm(0 — COS
27T \ £a (2Tt

—{m -
1)J

01(0 + Jy sin (^(™ “ D ^2(0 (3.2-29)

therefore the signal space dimensionality is N = 2 and the resulting vector representa-

tions are

(v

I

cos (^
(m 1}

) ’

V

^ sin
(^

(m “ 1}

)

j ’
m =

(3.2-30)

Signal space diagrams for BPSK (binary PSK, M = 2), QPSK (quaternary PSK,

M = 4), and 8-PSK are shown in Figure 3.2-3. We note that BPSK corresponds to

one-dimensional signals, which are identical to binary PAM signals. These signaling

schemes are special cases of binary antipodal signaling discussed earlier.

As is the case with PAM, the mapping or assignment of k information bits to the

M = 2k possible phases may be done in a number of ways. The preferred assignment

is Gray encoding, so that the most likely errors caused by noise will result in a single

bit error in the A;-bit symbol.

The Euclidean distance between signal points is

dmn — yj ll^m $n IP

1 — COS
2tc

~M
(m — n)

(3.2-31)
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0 1

M-= 2

(BPSK)

01

11 00

10

010
Oil

001
• •

no 000

in 100
•

101

•

M= 8

(Octal PSK)

M= 4

(QPSK)

FIGURE 3.2-3

Signal space diagrams for BPSK, QPSK,
and 8-PSK.

and the minimum distance corresponding to \m — n\ = 1 is

dmm — \ / ( 1 COS
2n

~M
— \ /28a shT

7

r

M (3.2-32)

Solving Equation 3.2-26 for Sg and substituting the result in Equation 3.2-32 result in

71

log2 M x sin
2 —

)
Sb (3.2-33)

For large values of M, we have sin ^ ^ and dnun can be approximated by

n- : log2 M
M2

(3.2-34)

A variant of four-phase PSK (QPSK), called ^-QPSK, is obtained by introducing

an additional rc/4 phase shift in the carrier phase in each symbol interval. This phase

shift facilitates symbol synchronization.

3.2-3 Quadrature Amplitude Modulation

The bandwidth efficiency ofPAM/SSB can also be obtainedby simultaneously impress-

ing two separate A:-bit symbols from the information sequence on two quadrature carriers

cos 2nfc t and sin 2nfc t. The resulting modulation technique is called quadrature PAM
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or QAM, and the corresponding signal waveforms may be expressed as

Sm (t) = Re [(Ami + jAmq )g{t)e
j2nfct

]

= Ami g(t) cos 2nfc t - Amqg(t)sin2nfc t, m = 1, 2, . .
. , M

(3.2-35)

where Ami and Amq are the information-bearing signal amplitudes of the quadrature

carriers and g(t) is the signal pulse. Alternatively, the QAM signal waveforms may be

expressed as

sm it) = Re [irm ej0m e
j2nfct

]

= rm cos (2nfc t + 6m )

(3.2-36)

where rm = yj

A

2
mi + A2

mq and 6m = tan
l (Amq/Ami ). From this expression, it is

apparent that the QAM signal waveforms may be viewed as combined amplitude (rm )

and phase (6m ) modulation. In fact, we may select any combination ofM\ -levelPAM and

M2-phase PSK to construct an M — M\M2 combined PAM-PSK signal constellation.

If Mi = 2n and M2 = 2m
,
the combined PAM-PSK signal constellation results in the

simultaneous transmission ofm + n — log2 M\M2 binary digits occurring at a symbol

rate R/(m + n).

From Equation 3.2-35, it can be seen that, similar to the PSK case, and <p2 (t)

given in Equations 3.2-27 and 3.2-28 can be used as an orthonormal basis for expansion

ofQAM signals. The dimensionality of the signal space for QAM is N = 2. Using this

basis, we have

^m(0 — Am i “^01 (0 + Amq <fc(0

which results in vector representations of the form

5
sml)

(3.2-37)

(3.2-38)

and

£m = ||Sm
II I

2 = y {Alt + A2
mq

)
(3.2-39)

Examples of signal space diagrams for combined PAM-PSK are shown in

Figure 3.2-4, for M = 8 and M — 16.

The Euclidean distance between any pair of signal vectors in QAM is

dmn — yj ll^ra $n IP

[(^m/ An i )
2 + (Amq Anq)2

]

(3.2-40)
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FIGURE 3.2-4

Examples of combined PAM-PSK constellations.

In the special case where the signal amplitudes take the set of discrete values

{(2m — 1 — M), m — 1,2,..., M }, the signal space diagram is rectangular, as shown

in Figure 3.2-5. In this case, the Euclidean distance between adjacent points, i.e., the

minimum distance, is

(3.2-41)

which is the same result as for PAM. In the special case of a rectangular constellation

with M = 22kl
,

i.e., M = 4, 16, 64, 256, . .
.

,

and with amplitudes of ±1, ±3, . .
.

,

±(VM — 1) on both directions, from Equation 3.2-39 we have

Vm Vm
^avg ~ M 2̂^2 (

Am + A«)

Sg 2M(M - 1)

2M X
3

M- 1 g

3
s

(3.2-42)
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from which

c M- i c
C'bavg — _ . TT C'p

3 log2 M
Using Equation 3.2-41, we obtain

J _ /61og2 M c
“min —

1 ^ _ |

^bavg

(3.2-43)

(3.2-44)

Table 3.2-1 summarizes some basic properties of the modulation schemes dis-

cussed above. In this table it is assumed that for PAM and QAM signaling, the ampli-

tudes are ±1, ±3, ...

,

dz(M — 1) and the QAM signaling has a rectangular \[M x \[M
constellation.

From the discussion of bandpass PAM, PSK, and QAM, it is clear that all these

signaling schemes are of the general form

sm (t) = Re [Am g{t)e
}lnfct

]
,

m = l,2,...,M (3.2-45)

where Am is determined by the signaling scheme. For PAM, Am is real, generally equal

to ±1, ±3, ...

,

=b(M —
1), for M-ary PSK, Am is complex and equal to

and finally for QAM, Am is a general complex number Am = Ami + jAm .
In this

sense it is seen that these three signaling schemes belong to the same family, and

PAM and PSK can be considered as special cases of QAM. In QAM signaling, both

amplitude and phase carry information, whereas in PAM and PSK only amplitude

or phase carries the information. Also note that in these schemes the dimensionality

of the signal space is rather low (one for PAM and two for PSK and QAM) and is

independent of the constellation size M. The structure of the modulator for this general

class of signaling schemes is shown in Figure 3.2-6, where 0i (t) and 02(0 are given by
Equation 3.2-27. Note that the modulator consists of a vector mapper, which maps each

of the M messages onto a constellation of size M, followed by a two-dimensional (or

one-dimensional, in case of PAM) vector to signal mapper as was previously shown in

Figure 2.2-2.

0l(O

FIGURE 3.2-6

A general QAM modulator.
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3.2-4 Multidimensional Signaling

It is apparent from the discussion above that the digital modulation of the carrier

amplitude and phase allows us to construct signal waveforms that correspond to two-

dimensional vectors and signal space diagrams. If we wish to construct signal wave-

forms corresponding to higher-dimensional vectors, we may use either the time domain
or the frequency domain or both to increase the number of dimensions. Suppose we
have A-dimensional signal vectors. For any N, we may subdivide a time interval of

length T\ = NT into N subintervals of length T = T\/N

.

In each subinterval of

length T, we may use binary PAM (a one-dimensional signal) to transmit an element

of the A-dimensional signal vector. Thus, the N time slots are used to transmit the

A-dimensional signal vector. If N is even, a time slot of length T may be used to

simultaneously transmit two components of the A-dimensional vector by modulating

the amplitude of quadrature carriers independently by the corresponding components.

In this manner, the A-dimensional signal vector is transmitted in ^NT seconds (^N
time slots). Alternatively, a frequency band of width NAf may be subdivided into N
frequency slots each of width A/. An A-dimensional signal vector can be transmitted

over the channel by simultaneously modulating the amplitude ofN carriers, one in each

of the N frequency slots. Care must be taken to provide sufficient frequency separation

A/ between successive carriers so that there is no cross-talk interference among the

signals on the N carriers. If quadrature carriers are used in each frequency slot, the N-
dimensional vector (even N ) may be transmitted in

|
N frequency slots, thus reducing

the channel bandwidth utilization by a factor of 2. More generally, we may use both

the time and frequency domains jointly to transmit an A-dimensional signal vector.

For example, Figure 3.2-7 illustrates a subdivision of the time and frequency axes into

12 slots. Thus, an N = 12-dimensional signal vector may be transmitted by PAM or

an N = 24-dimensional signal vector may be transmitted by use of two quadrature

carriers (QAM) in each slot.

Orthogonal Signaling

Orthogonal signals are defined as a set of equal energy signals sm (t), 1 < m < M, such

that

(sm (t), sn (t)) = 0, m ^ n and 1 < m, n < M (3.2-46)

/ FIGURE 3.2-7

Subdivision of time and frequency axes into distinct slots.
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With this definition it is clear that

<*m(0, *B (f)> = {o 1 <m,n<M (3.2-47)

Obviously the signals are linearly independent and henceN = M. The orthonormal

set {<(>j(t), 1 <i<N} given by

<Pj(t) = 1 <j<N (3.2-48)

can be used as an orthonormal basis for representation of {sm (t), 1 < m < M}. The

resulting vector representation of the signals will be

s, =(V£,0,0,...,0)

s2 = (0, Vs, o, . .
. , 0)

(3.2-49)

sm = (0 , 0 , . . . , 0 , \/£)

From Equation 3.2-49 it is seen that for all m ^ n we have

dmn — V2£ (3.2-50)

and therefore,

t^min — ^2£ (3.2-51)

in all orthogonal signaling schemes. Using the relation

II<0 (3.2-52)
log2 M

we conclude that

dmin —
\J2

log2 M (3.2-53)

Frequency-ShiftKeying (FSK) As a special case of the construction of orthogonal

signals, let us consider the construction of orthogonal signal waveforms that differ in

frequency and are represented as

sm (t) = Re [smi(t)e
j2nfct

] ,
1 <m < M, 0 <t<T

cos (2nfc t + 2nm A

/

1)

(3.2-54)

where

^m/(0 — e
j2nmAft

l < m < M
, 0 < t < T (3.2-55)
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The coefficient
y ^ is introduced to guarantee that each signal has an energy equal to

8. This type of signaling, in which the messages are transmitted by signals that differ

in frequency, is calledfrequency-shift keying (FSK). Note a major difference between

FSK and QAM signals (of which ASK and PSK can be considered as special cases). In

QAM signaling the lowpass equivalent of the signal is of the form Am g(t) where Am is

a complex number. Therefore the sum of two lowpass equivalent signals corresponding

to two different signals is of the general form of the lowpass equivalent of a QAM
signal. In this sense, the sum of two QAM signals is another QAM signal. For this

reason, ASK, PSK, and QAM are sometimes called linear modulation schemes. On the

other hand, FSK signaling does not satisfy this property, and therefore it belongs to the

class of nonlinear modulation schemes.

By using Equation 2.1-26, it is clear that for this set of signals to be orthogonal,

we need to have

Re
[/

tit = 0 (3.2-56)

for all m f^n. But

S„l(t)) = ^ [

T

dt
I Jo

= 2£ sm(7tT(m - n)Af) ejnT(m_n)Af

rcT(m — n)Af

(3.2-57)

and

28 sin(7r7\m — n)Af )

Rz[(smi(t),snl (t))] = — —— cos (nT(m
7il(m — n)Aj

28 sin (27T T(m — n)Af)

2nT(m — n)Af

= 2£sinc (2T(m — n)Af)

n)Af)

(3.2-58)

From Equation 3.2-58 we observe that sm (t) and sn (t ) are orthogonal for all m ^ n

if and only if sine (2T(m — n)Af) = 0 for all m ^ n. This is the case if Af = k/2T
for some positive integer k. The minimum frequency separation Af that guarantees

orthogonality is Af = 1/2T

.

Note that Af = ^ is the minimum frequency separation

that guarantees (smi(t), sni(t)) = 0, thus guaranteeing the orthogonality ofthe baseband,

as well as the bandpass, frequency-modulated signals.

Hadamard signals are orthogonal signals which are constructed from Hadamard
matrices. Hadamard matrices Hn are 2n x 2n matrices for n = 1, 2, . .

.

defined by the

following recursive relation

Ho = [ 1 ]

Hn+1 =
H
H

n

n

H
,

-H,

(3.2-59)
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With this definition we

H
i

H2

H3

1

1

'1

1

1

1

=

1

1

1

1

1

1

1

1

have

l'

-1

1 1 r
-1 1 -1

1 -1 -1

-1 -1 11111111'
-1 1-1 1-1 1 -1

1-1-1 1 1-1 -1

-1-1 1 1 -1 -1 1

1 1 1 -1 -1 -1 -1

-1 1 -1-1 1-1 1

1 -1 -1 -1-1 1 1

-1-1 1-1 1 1 -1

(3.2-60)

Hadamard matrices are symmetric matrices whose rows (and, by symmetry, columns)

are orthogonal. Using these matrices, we can generate orthogonal signals. For instance,

using H2 would result in the set of signals

S 1 = [V£ Vs Vs Vs]

*2 = [VS -Vs Vs -Vs ]

*3 = [V£ Vs -Vs -Vsi
s4 = [Vs -Vs -Vs Vs]

This set of orthogonal signals may be used to modulate any four-dimensional orthonor-

mal basis {07 (?)}^= i
to generate signals of the form

4

sm (t) = 1 < m < 4 (3.2-62)

7= 1

Note that the energy in each signal is 4£ , and each signal carries 2 bits of information,

hence £b = 2£.

Biorthogonal Signaling

A set of M biorthogonal signals can be constructed from ^

M

orthogonal signals by

simply including the negatives of the orthogonal signals. Thus, we require N = \M
dimensions for the construction of a set ofM biorthogonal signals. Figure 3.2-8 illus-

trates the biorthogonal signals for M = 4 and 6. We note that the correlation between

any pair of waveforms is p = — 1 or 0. The corresponding distances are d = 2\[£ or

\[2£ , with the latter being the minimum distance.
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020

>S2

-Si Si

>-S 2

M= 4

020

FIGURE 3.2-8

Signal space diagram for M = 4 and M = 6 biorthogonal signals.

Simplex Signaling

Suppose we have a set ofM orthogonal waveforms {.sm (0} or, equivalently, their vector

representation {s
,

m }. Their mean is

1
M

s = Sm (3.2-63)

m=

1

Now, let us construct another set of M signals by subtracting the mean from each of

the M orthogonal signals. Thus,

s'm =sm -s, m = 1, 2, . .
.

,

M (3.2-64)

The effect of the subtraction is to translate the origin of the m orthogonal signals to

the point s. The resulting signal waveforms are called simplex signals and have the

following properties. First, the energy per waveform is

IKJ
2 = l|Sm -S ||

2

„ 2 1

— £ — —£ "h
—£M M

= £ 1

1

M
Second, the cross-correlation of any pair of signals is

(3.2-65)

R® [Pmn] —
Is' INIs' I

-1/M 1

(3.2-66)

1-1/M M — 1

Hence, the set of simplex waveforms is equally correlated and requires less energy, by

the factor 1 — 1/M, than the set of orthogonal waveforms. Since only the origin was

translated, the distance between any pair of signal points is maintained at d = V2£,
which is the same as the distance between any pair of orthogonal signals. Figure 3.2-9

illustrates the simplex signals for M = 2, 3, and 4. Note that the signal dimensionality

is N = M — 1.
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M= 2 M = 3

02(O

M = 4

Note that the class of orthogonal, biorthogonal, and simplex signals has many

common properties. The signal space dimensionality in this class is highly dependent

on the constellation size. This is in contrast to PAM, PSK, and QAM systems. Also,

for fixed £&, the minimum distance d^n in these systems increases with increasing M.
This again is in sharp contrast to PAM, PSK, and QAM signaling. We will see later in

Chapter 4 that similar contrasts in power and bandwidth efficiency exist between these

two classes of signaling schemes.

Signal Waveforms from Binary Codes

A set ofM signaling waveforms can be generated from a set ofM binary code words

of the form

Cm = \Cm\ Cm2 *
*

* 171 = 1,2,..., M (3.2—67)

where cmj
= 0 or 1 for all m and j. Each component of a code word is mapped into an

elementary binary PSK waveform as follows:

0 <t <TC

0 <t<Tc

(3.2-68)

where Tc = T/N and Sc = S/N. Thus, the M code words {cm } are mapped into a set

ofM waveforms {.sm (f)}. The waveforms can be represented in vector form as

= \Sm\ $m2 ‘
’ * 171 = 1,2,..., M (3.2—69)
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Signal space diagrams for signals generated from binary codes.
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where smj
= ±^£/N for all m and j . Also N is called the block length of the code, and

it is the dimension of the M waveforms. We note that there are 2N possible waveforms

that can be constructed from the 2N possible binary code words. We may select a subset

ofM < 2n signal waveforms for transmission of the information. We also observe that

the 2n possible signal points correspond to the vertices of an A-dimensional hypercube

with its center at the origin. Figure 3.2-10 illustrates the signal points in N = 2 and 3

dimensions. Each of theM waveforms has energy £ . The cross-correlation between any

pair of waveforms depends on how we select the M waveforms from the 2N possible

waveforms. This topic is treated in detail in Chapters 7 and 8. Clearly, any adjacent

signal points have a cross-correlation coefficient

£(l - 2/A) N -2
P ~ £ ” N (3.2-70)

and a corresponding distance of

dmn = V2£(i - p) = V4€/N (3.2-71)

The Hadamard signals described previously are special cases of signals based on

codes.

3.3

SIGNALING SCHEMES WITH MEMORY

We have seen before that signaling schemes with memory can be best explained in

terms of Markov chains and finite-state machines. The state transition and the outputs

of the Markov chain are governed by

m = fm (Se- i , h)

Si = MSt-u h)
(3.3-1)
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FIGURE 3.3-1

Examples of baseband signals.

115

NRZ

NRZI

Delay

modulation

(Miller code)

Data

where h denotes the information sequence and mi is the index of the transmitted

signal

Figure 3.3-1 illustrates three different baseband signals and the corresponding data

sequence. The first signal, called NRZ (non-retum-to-zero), is the simplest. The binary

information digit 1 is represented by a rectangular pulse of polarity A, and the binary

digit 0 is represented by a rectangular pulse ofpolarity — A. Hence, theNRZ modulation

is memoryless and is equivalent to a binary PAM or a binary PSK signal in a carrier-

modulated system. The NRZI (non-retum-to-zero, inverted) signal is different from the

NRZ signal in that transitions from one amplitude level to another occur only when

a 1 is transmitted. The amplitude level remains unchanged when a 0 is transmitted.

This type of signal encoding is called differential encoding. The encoding operation is

described mathematically by the relation

bk = ak® bk- 1
(3.3-2)

where {a*} is the binary information sequence into the encoder, [bk] is the output se-

quence of the encoder, and © denotes addition modulo 2. When bk = 1, the transmitted

waveform is a rectangular pulse of amplitude A; and when bk = 0, the transmitted

waveform is a rectangular pulse of amplitude —A. Hence, the output of the encoder is

mapped into one of two waveforms in exactly the same manner as for the NRZ signal.

In other words, NRZI signaling can be considered as a differential encoder followed

by an NRZ signaling scheme.

The existence of the differential encoder causes memory in NRZI signaling. Com-
parison of Equations 3.3-2 and 3.3-1 indicates that bk can be considered as the state

of the Markov chain. Since the information sequence is assumed to be binary, there are

two states in the Markov chain, and the state transition diagram of the Markov chain is

shown in Figure 3.3-2. The transition probabilities between states are determined by

the probability of 0 and 1 generated by the source. If the source is equiprobable, all

transition probabilities will be equal to
^
and

P = 2

l

-2

1
-

2

1
2 -

(3.3-3)

Using this P, we can obtain the steady-state probability distribution as

P = 1

2

1

2
(3.3-4)
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State transition diagram for NRZI signaling.

FIGURE 3.3-3

The trellis diagram for NRZI signaling.

We will use the steady-state probabilities to determine the power spectral density of

modulation schemes with memory later in this chapter.

In general, if P [0* = 1] = 1 — P [ak = 0] = p, we have

P =
1 - p p

p 1 - p
(3.3-5)

The steady-state probability distribution in this case is again given by Equation 3.3-4.

Another way to display the memory introduced by the precoding operation is by

means of a trellis diagram. The trellis diagram for the NRZI signal is illustrated in

Figure 3.3-3. The trellis provides exactly the same information concerning the signal

dependence as the state diagram, but also depicts a time evolution of the state transitions.

3.3-1 Continuous-Phase Frequency-Shift Keying (CPFSK)

In this section, we consider a class of digital modulation methods in which the phase of

the signal is constrained to be continuous. This constraint results in a phase or frequency

modulator that has memory.

As seen from Equation 3.2-54, a conventional FSK signal is generated by shifting

the carrier by an amount m A/, 1 < m < M, to reflect the digital information that is

being transmitted. This type ofFSK signal was described in Section 3.2-4, and it is mem-
oryless. The switching from one frequency to another may be accomplished by having

M — 2k separate oscillators tuned to the desired frequencies and selecting one of theM
frequencies according to the particular A:-bit symbol that is to be transmitted in a signal

interval of duration T = k/R seconds. However, such abrupt switching from one oscil-

lator output to another in successive signaling intervals results in relatively large spectral

side lobes outside of the main spectral band of the signal; consequently, this method re-

quires a large frequency band for transmission of the signal. To avoid the use of signals
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having large spectral side lobes, the information-bearing signal frequency modulates

a single carrier whose frequency is changed continuously. The resulting frequency-

modulated signal is phase-continuous, and hence, it is called continuous-phase FSK
(CPFSK). This type ofFSK signal has memory because the phase of the carrier is con-

strained to be continuous. To represent a CPFSK signal, we begin with a PAM signal

d(t) =^ In g{t - nT ) (3.3-6)

where {/„} denotes the sequence of amplitudes obtained by mapping A:-bit blocks of

binary digits from the information sequence {an } into the amplitude levels ± 1 , ±3 , . .
.

,

d=(M — 1) and g(t) is a rectangular pulse of amplitude 1/2T and duration T seconds.

The signal d(t) is used to frequency-modulate the carrier. Consequently, the equivalent

lowpass waveform v(t) is expressed as

v(t) = J— e
i

[
4jtTfd I-oo

dW dz+<h]

T
(3.3-7)

where fd is the peakfrequency deviation and 0o is the initial phase of the carrier. The

carrier-modulated signal corresponding to Equation 3.3-7 may be expressed as

s(t) = cos \2nfc t + 0(f
;
I) + 0o] (3.3-8)

where 0(r, I) represents the time-varying phase of the carrier, which is defined as

(j)(t\ I) = 4nTfd f d(r)dr
J—oo

= 4nTfdfJ —o ^2 7ng(r - nT)

(3.3-9)

dr

Note that, although d(t) contains discontinuities, the integral of d(t) is continuous.

Hence, we have a continuous-phase signal. The phase of the carrier in the interval

nT <t <(n + \)T is determined by integrating Equation 3.3-9. Thus,

n-

1

<p(t; I) = 2nfdT ^ Ik + 2nfd q(t - nT)In
k=—oo

= 9n + 2nhln q(t — nT)

where h, 6n ,
and q(t) are defined as

(3.3-10)

h = 2fdT (3.3-11)

n— 1

en -nh
k=—oo

Ik (3.3-12)

<7(0 = <

r°.

|

IT
l

l 0

t < 0

0 <t <T
t > T

(3.3-13)
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We observe that 6n represents the accumulation (memory) of all symbols up to time

(n — 1)T. The parameter h is called the modulation index.

3.3-2 Continuous-Phase Modulation (CPM)

When expressed in the form of Equation 3.3-10, CPFSK becomes a special case of

a general class of continuous-phase modulated (CPM) signals in which the carrier

phase is

(j){t\ I) = 2tc ^2 hhkq(t — kT), nT < t < (n + 1)T (3.3-14)

k=—oo

where {4} is the sequence of M-ary information symbols selected from the alphabet

±1, ±3, . .
.

,

=b(M — 1), [hk) is a sequence of modulation indices, and q(t) is some
normalized waveform shape. When — h for all k ,

the modulation index is fixed

for all symbols. When the modulation index varies from one symbol to another, the

signal is called multi-h CPM. In such a case, the [hk] are made to vary in a cyclic

manner through a set of indices. The waveform q(t) may be represented in general as

the integral of some pulse g(t ), i.e.,

<7 (0 = f g(r)dT (3.3-15)
Jo

If g(t) = 0 for t > T, the signal is calledfull-response CPM. If g(t) ^ 0 for t > T, the

modulated signal is called partial-response CPM. Figure 3.3-4 illustrates several pulse

shapes for g(t) and the corresponding q(t). It is apparent that an infinite variety ofCPM
signals can be generated by choosing different pulse shapes g(t) and by varying the

modulation index h and the alphabet size M. We note that the CPM signal has memory
that is introduced through the phase continuity.

Three popular pulse shapes are given in Table 3.3-1. LREC denotes a rectangular

pulse of duration LT
,
where L is a positive integer. In this case, L — 1 results in a

CPFSK signal, with the pulse as shown in Figure 3.3-4(a). The LREC pulse for L = 2

is shown in Figure 3.3-4(c). LRC denotes a raised cosine pulse of duration LT. The
LRC pulses corresponding to L = 1 and L = 2 are shown in Figure 3.3-4(b) and (d),

respectively. For L > 1, additional memory is introduced in the CPM signal by the

pulse g(t).

The third pulse given in Table 3.3-1 is called a Gaussian minimum-shift keying

(GMSK) pulse with bandwidth parameter B
,
which represents the —3-dB bandwidth

of the Gaussian pulse. Figure 3.3-4(e) illustrates a set of GMSK pulses with time-

bandwidth products BT ranging from 0.1 to 1. We observe that the pulse duration

increases as the bandwidth of the pulse decreases, as expected. In practical applications,

the pulse is usually truncated to some specified fixed duration. GMSK with BT = 0.3

is used in the European digital cellular communication system, called GSM. From
Figure 3.3-4(e) we observe that when BT — 0.3, the GMSK pulse may be truncated

at \t\ = 1.5T with a relatively small error incurred for t > 1.5 T.
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FIGURE 3.3-4

Pulse shapes for full-response CPM (a, b) and partial-response CPM (c, d), and GMSK (e).

TABLE 3.3-1

Some Commonly Used CPM Pulse Shapes

LREC g(t) =
j

r_c
1 2LT o <t < LT

LRC m =
j

1°

'

2If (

otherwise

L - cos 0 < t < LT

1° otherwise

GMSK g(t) = i))-Q(2^B(t+ {))
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FIGURE 3.3-5

Phase trajectory for binary CPFSK.

It is instructive to sketch the set of phase trajectories 0(7; I) generated by all

possible values of the information sequence {/„}. For example, in the case of CPFSK
with binary symbols In = ±1, the set of phase trajectories beginning at time t — 0 is

shown in Figure 3.3-5. For comparison, the phase trajectories for quaternary CPFSK
are illustrated in Figure 3.3-6.

These phase diagrams are called phase trees. We observe that the phase trees

for CPFSK are piecewise linear as a consequence of the fact that the pulse g(t ) is

rectangular. Smoother phase trajectories and phase trees are obtained by using pulses

that do not contain discontinuities, such as the class ofraised cosine pulses. For example,

a phase trajectory generated by the sequence (1,— 1 ,— 1,— 1, 1, 1,-1, l)fora partial-

response, raised cosine pulse of length 3T is illustrated in Figure 3.3-7. For comparison,

the corresponding phase trajectory generated by CPFSK is also shown.

The phase trees shown in these figures grow with time. However, the phase of the

carrier is unique only in the range from 0 = 0 to 0 = 27T or, equivalently, from 0 = —n
to 0 = 7T . When the phase trajectories are plotted modulo 2n , say, in the range (— re

,
n),

the phase tree collapses into a structure called aphase trellis. To properly view the phase

trellis diagram, we may plot the two quadrature components x;(7; I) = cos 0(7 ;
I) and

x
q
(t\ /) = sin 0(7; /) as functions of time. Thus, we generate a three-dimensional plot

in which the quadrature components x
t
and xq appear on the surface of a cylinder of

unit radius. For example, Figure 3.3-8 illustrates the phase trellis or phase cylinder

obtained with binary modulation, a modulation index h = and a raised cosine pulse

of length 377

Simpler representations for the phase trajectories can be obtained by displaying

only the terminal values of the signal phase at the time instants t — nT. In this case,

we restrict the modulation index of the CPM signal to be rational. In particular, let us

assume that h = m/p, wherem and p are relatively prime integers. Then a full-response



Chapter Three: Digital Modulation Schemes 121

FIGURE 3.3-6

Phase trajectory for quaternary CPFSK.

CPM signal at the time instants t — nT will have the terminal phase states

Ttm 2izm (p — 1 )tcm
\0 , ={°,

P P

when m is even and

7im litm (2p — l)Ttm 1

p Jp p

(3 .3-16)

(3 .3-17)
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FIGURE 3.3-7

Phase trajectories for binary CPFSK (dashed) and binary, partial-response CPM based on

raised cosine pulse of length 3T (solid). [Source: Sundberg (1986), © 1986 IEEE]

FIGURE 3.3-8

Phase cylinder for binary CPM with h = \
and a raised

cosine pulse of length 3 T. [Source: Sundberg (1986),

© 1986 IEEE]

when m is odd. Hence, there are p terminal phase states when m is even and 2p states

whenm is odd. On the other hand, when the pulse shape extends over L symbol intervals

(partial-response CPM), the number of phase states may increase up to a maximum of

St , where

pML 1 even m
2pML~ l odd m

(3.3-18)

where M is the alphabet size. For example, the binary CPFSK signal (full-response,

rectangular pulse) with h = \
has St — 4 (terminal) phase states. The state trellis for

this signal is illustrated in Figure 3.3-9. We emphasize that the phase transitions from

one state to another are not true phase trajectories. They represent phase transitions for

the (terminal) states at the time instants t = nT

.

An alternative representation to the state trellis is the state diagram, which also

illustrates the state transitions at the time instants t = nT. This is an even more

compact representation of the CPM signal characteristics. Only the possible (terminal)

phase states and their transitions are displayed in the state diagram. Time does not

appear explicitly as a variable. For example, the state diagram for the CPFSK signal

with h = 1 is shown in Figure 3.3-10.
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FIGURE 3.3-9

State trellis for binary CPFSK with h =

FIGURE 3.3-10

State diagram for binary CPFSK with h
l

2
‘

Minimum-Shift Keying (MSK)

MSK is a special form of binary CPFSK (and, therefore, CPM) in which the modulation

index h = \
and g(t) is a rectangular pulse of duration T. The phase of the carrier in

the interval nT <t<(n + 1)T is

n-

1

4>{t\ I) = -7i ^2 h + xlnq(t - nT)
k——oo

1 (t-nT
— @n + -X Ifi (

~

(3.3-19)

nT <t<(n + 1)T

and the modulated carrier signal is

s(t) = A cos

= A cos

1 (t-nT
2rcfc t + 0n + —7t

I

n (
——

—

2?r
( fc + ^f

In
)

1 ~
\
n7tIn + 9n nT < t < (n + 1)T

(3.3-20)

Equation 3.3-20 indicates that the binary CPFSK signal can be expressed as a

sinusoid having one of two possible frequencies in the interval nT <f<(n + l)7\If



124 Digital Communications

we define these frequencies as

/i

Si

fc-

fc +

1

4T
1

4T

(3.3-21)

then the binary CPFSK signal given by Equation 3.3-20 may be written in the form

Si(t ) = A cos
1

2nfit + 9n +
2
nn(~ 1 )

1 — 1

i = 1,2 (3.3-22)

which represents an FSK signal with frequency separation of A/ — f2 — f\ — 1/2T.

From the discussion following Equation 3.2-58 we recall that A/ = 1/2T is the mini-

mum frequency separation that is necessary to ensure the orthogonality of signals s\(t)

and over a signaling interval of length T. This explains why binary CPFSK with

h = \
is called minimum-shift keying (MSK). The phase in the rath signaling interval is

the phase state of the signal that results in phase continuity between adjacent intervals.

Offset QPSK (OQPSK)

Consider the QPSK system with constellation shown in Figure 3.3-11. In this system

each 2 information bits is mapped into one of the constellation points. The constellation

and one possible mapping of bit sequences of length 2 are shown in Figure 3.3-11.

Now assume we are interested in transmitting the binary sequence 11000111. To

do this, we can split this sequence into binary sequences 1 1, 00, 01, and 1 1 and transmit

the corresponding points in the constellation. The first bit in each binary sequence

determines the in-phase (/) component of the baseband signal with a duration 2Tb ,
and

the second bit determines the quadrature (Q ) component of it, again of duration 2Tb .

The in-phase and quadrature components for this bit sequence are shown in Figure 3.3-

12. Note that changes can occur only at even multiples of Tb , and there are instances at

which both / and Q components change simultaneously, resulting in a change of 180°

in the phase, for instance, at t — 2Tb in Figure 3.3-12. The possible phase transitions

for QPSK signals, that can occur only at time instances of the form nTb , where n is

even, are shown in Figure 3.3-13.

°1 V£/2 ^ii

1

1

1

1

1

1

1

1
V£/2

-Vf/2
|

1

1

1

1

1

L

00 10

FIGURE 3.3-11

A possible mapping for QPSK signal.

M = 4
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FIGURE 3.3-12

The in-phase and quadrature components for QPSK.

FIGURE 3.3-13

Possible phase transitions in QPSK signaling.

To prevent 180° phase changes that cause abrupt changes in the signal, resulting

in large spectral side lobes, a version of QPSK, known as offset QPSK (OQPSK),

or staggered QPSK (SQPSK), is introduced. In OQPSK, the in-phase and quadrature

components of the standard QPSK are misaligned by Tb. The in-phase and quadrature

components for the sequence 11000111 are shown in Figure 3.3-14. Misalignment of

the in-phase and quadrature components prevents both components changing at the

same time and thus prevents phase transitions of 180°. This reduces the abrupt jumps

in the modulated signal. The absence of 180° phase jump is, however, offset by more

frequent ±90° phase shifts. The overall effect is that, as we will see later, standard

QPSK and OQPSK have the same power spectral density. The phase transition diagram

for OQPSK is shown in Figure 3.3-15.

The OQPSK signal can be written as

s(t) = A ^2 hng(t — 2nT) cos 2nfc t

+
OO

^ hn+ig(t -2nT - T)

Jl——OO

sin 2nfc t

(3.3-23)
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FIGURE 3.3-14

The in-phase and quadrature components for OQPSK signaling.

FIGURE 3.3-15

Phase transition diagram for OQPSK signaling.

with the lowpass equivalent of

Slit) = A
OO

X J2ng(t - 2nT)
n=—oo

“ j

OO

X ^n+igU - 2nT - T)

n=—oo

(3.3-24)

MSK may also be represented as a form of OQPSK. Specifically, we may express

(see Problem 3.26 and Example 3.3-1) the equivalent lowpass digitally modulated

MSK signal in the form of Equation 3.3-24 with

g(0 =
sin

2T
0 < t <2T
otherwise

(3.3-25)

Figure 3.3-16 illustrates the representation of an MSK signal as two staggered

quadrature-modulated binary PSK signals. The corresponding sum of the two quadra-

ture signals is a constant-amplitude, frequency-modulated signal.

It is also interesting to compare the waveforms forMSK with offset QPSK in which

the pulse g(t ) is rectangular for 0 < t < 2T, and with conventional QPSK in which the

pulse g(t) is rectangular for 0 < t < IT. Clearly, all three of the modulation methods
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FIGURE 3.3-16

Representation ofMSK as an OQPSK signal with

a sinusoidal envelope.

(c) MSK signal [sum of {a) and (&)]

result in identical data rates. The MSK signal has continuous phase; therefore, there

exist no jumps in its waveform. However, since it is essentially a frequency modulation

system, there are jumps in its instantaneous frequency. The offset QPSK signal with

a rectangular pulse is basically two binary PSK signals for which the phase transi-

tions are staggered in time by T seconds. Thus, the signal contains phase jumps of

±90° that may occur as often as every T seconds. OQPSK is a signaling scheme with

constant frequency, but there exist jumps in its waveform. On the other hand, the con-

ventional four-phase PSK signal with constant amplitude will contain phase jumps of

±180° or ±90° every 2T seconds. An illustration of these three signal types is given in

Figure 3.3-17.

QPSK signaling with rectangular pulses has constant envelope, but in practice

filtered pulse shapes like the raised cosine signal are preferred and are more widely

employed. When filtered pulse shapes are used, the QPSK signal will not be a constant-

envelope modulation scheme, and the 180° phase shifts cause the envelope to pass

through zero. Nonconstant envelope signals are not desirable particularly when used

with nonlinear devices such as class C amplifiers or TWTs. In such cases OQPSK is a

useful alternative to QPSK.
In MSK the phase is continuous—since it is a special case of CPFSK—but the

frequency has jumps in it. If thesejumps are smoothed, the spectrum will be more com-

pact. GMSK signaling discussed earlier in this chapter and summarized in Table 3.3-1

is a signaling scheme that addresses this problem by shaping the lowpass binary signal

before being applied to the MSK modulator and therefore results in smoother transi-

tions in frequency between signaling intervals. This results in more compact spectral

characteristics. The baseband signal is shaped in GMSK, but since the shaping occurs

before modulation, the resulting modulated signal will be of constant envelope.
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-90° phase shift +90° phase shift

FIGURE 3.3-17

MSK, OQPSK, and QPSK signals.

Linear Representation of CPM Signals

As described above, CPM is a nonlinear modulation technique with memory. However,

CPM may also be represented as a linear superposition of signal waveforms. Such a

representation provides an alternative method for generating the modulated signal at the

transmitter and/or demodulating the signal at the receiver. Following the development

originally given by Laurent ( 1986) ,
we demonstrate that binary CPM may be represented

by a linear superposition of a finite number of amplitude-modulated pulses, provided

that the pulse g(t) is of finite duration LT
,
where T is the bit interval. We begin with

the equivalent lowpass representation of CPM, which is

nT < t < (n + 1)T (3.3-26)

nT < t < (n + 1)T

k——oo

n—L n

— 7TH ^ ^ Ifc -|- 27Th Y, Ik^f - kT )

k=—oo k=n—L+

1

where

n

<p(t; /) = 2nh Y hqi* ~ kT),

(3.3-27)
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and q(t) is the integral of the pulse g(t ), as previously defined in Equation 3.3-15. The

exponential term exp| I)] may be expressed as

(

n-L \ L-

1

jnh ^2 Jk
)
II exp U2xhln-kq [t - (n - k)T]} (3.3-28)

k=—oo / k=

0

Note that the first term on the right-hand side of Equation 3.3-28 represents the cu-

mulative phase up to the information symbol In-L, and the second term consists of a

product of L phase terms. Assuming that the modulation index h is not an integer and

the data symbols are binary, i.e., /* = ±1, the fcth phase term may be expressed as

sin 7th
exp {j2nhln-kq [t - (n - fc)T]} = exp {j2nhln-kq [t - (n - k)T]}

sin 7th

sm{jth — 2nhq[t — (n — k)]T}

smith

sin{2nhq[t - (n - k)T]}
+ exp(j7thl„-k ) : :

smith
(3.3-29)

It is convenient to define the signal pulse so(t) as

r
sin 2nhq{t)

sin nh

So(t) = < sm[jrh-2nhq(t-LT)]

sin 7th

0 <t <LT

LT <t < 2LT

otherwise

(3.3-30)

Then

(

n-L \ L-

1

jnh Y2 h
)
IK** + (k + L ~ n)T ^

*=-00 / k=

0

+ exp(jnhIn-k )so[t - (k - n)T]} (3.3-31)

By performing the multiplication over the L terms in the product, we obtain a sum

of 2l terms, where 2L_1 terms are distinct and the other 2L
~ l terms are time-shifted

versions of the distinct terms. The final result may be expressed as

2L_1 —

1

exp [j<t>(f, I)] = ^2 ^2
einhAk," ck(t - nT) (3.3-32)

n k=

0

where the pulses Ck(t), for 0 < k < 2L_1 — 1, are defined as

L-

1

ck (t) = s0(0 TT so[t+(n+Lak'„)T], 0 <t<T xmin[L(2-a
(t

,
n)-«] (3.3-33)

1

1

n
n= 1

and each pulse is weighted by a complex coefficient exp (jithA^ jW ), where

n L—

1

Ak,n = ^ ^ hn ^ ^n—m^k,m (3.3—34)

m=-oo m= 1



130 Digital Communications

and the [ak,n = 0 or 1} are the coefficients in the binary representation of the index k ,

i.e.,

L—

1

k = Y, 2
m“Vm, k = 0, 1, ,

2
L~ l -

1 (3.3-35)

m=

1

Thus, the binary CPM signal is expressed as a weighted sum of 2L_1 real-valued pulses

{q(0}-

In this representation of CPM as a superposition of amplitude-modulated pulses,

the pulse co(t) is the most important component, because its duration is the longest

and it contains the most significant part of the signal energy. Consequently, a simple

approximation to a CPM signal is a partial-response PAM signal having co(t) as the

basic pulse shape.

The focus for the above development was binary CPM. A representation of M-ary
CPM as a superposition ofPAM waveforms has been described by Mengali and Morelli

(1995).

example 3.3-1. As a special case, let us consider the MSK signal, for which h — \
and g(t ) is a rectangular pulse of duration T. In this case,

n-

1

= - + * hqit - nT)

nT'

k=—oo

. TV ft
- n + —In

( Y nT < t < (n + 1)T

and

where

and

exp [j(j)(f, /)] = ^2 bn co(t - nT)

n

0 < t < IT

otherwise

fr — e
jxA 0,n/2 — e

jn(0n+I„)/2

The complex-valued modified data sequence {bn } may be expressed recursively as

bn = jbn-\In

so that bn alternates in taking real and imaginary values. By separating the real and the

imaginary components, we obtain the equivalent lowpass signal representation given

by Equations 3.3-24 and 3.3-25.
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3.4

POWER SPECTRUM OF DIGITALLY MODULATED SIGNALS

In this section we study the power spectral density of digitally modulated signals.

The information about the power spectral density helps us determine the required

transmission bandwidth of these modulation schemes and their bandwidth efficiency.

We start by considering a general modulation scheme with memory in which the current

transmitted signal can depend on the entire history of the information sequence and

then specialize this general formulation to the cases where the modulation system has a

finite memory, the case where the modulation is linear, and when the modulated signal

can be determined by the state of a Markov chain. We conclude this section with the

spectral characteristics of CPM and CPFSK signals.

3.4-1 Power Spectral Density of a Digitally Modulated Signal with Memory

Here we assume that the bandpass modulated signal is denoted by v(t) with a lowpass

equivalent signal of the form

oo

v,(t) = J2 Slit - nT; /„) (3.4-1)

n=—oo

Here si(t; In ) e {,$1/(0, S2i(t), . .
. ,

sMi(t)} is one of the possible M lowpass equiva-

lent signals determined by the information sequence up to time n, denoted by In =
(. .

.

,

In-2 ,
In- i ,

In )• We assume that In is stationary process. Our goal here is to deter-

mine the power spectral density of v(t). This is done by first deriving the power spectral

density of vi(t ) and using Equation 2.9-14 to obtain the power spectral density of v(t).

We first determine the autocorrelation function of Vi(t).

R
Vl

(t + r,t) = E [vi(t + T)v*(t)]

oo °o
(3 4_2)

= E E ^[siit + r-nT-I n)s*(t-mT-Im )}

Changing t to t + T does not change the mean and the autocorrelation function of vi(t),

hence vi(t) is a cyclostationary process; to determine its power spectral density, we
have to average R

Vl
(t + r, t) over one period T. We have (with a change of variable of

k = n — m)

Rv,(t) = — E E /
E + T - mT - kT\ Im+k)s*(t - mT ; Im )]

dt

k——oo m=—oo ^ 0

i 00 °° p—(m—l)T

= — E E /
E

\.

Sl iu + T “ kT
> h)sfiu; /o)] du

k=—oo m=—oo ^

1
°° r°°

= 7 E /
E

i
Sl iu

1
k=-oo J -°°

+ t —kT; IkX(u; /0)] du

(3.4-3)
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where in (a) we have introduced a change of variable of the form u = t — mT and we
have used the fact that the Markov chain is in the steady state and the input process { In }

is stationary. Defining

8k(r) = + r; Ik)s*(f, Jo)] dt

we can write Equation 3.4-3 as

|

oo

8k(r -kT)
k=—oo

(3.4-4)

(3.4-5)

The power spectral density of i'i(l). which is the Fourier transform of R
Vl (r). is

therefore given by

Sv,(f) = i J28k(r-kT)
L k

1 uu

= T Gk(f)e~
J-jlnkfT

k=—o

o

(3.4-6)

where Gk(f) denotes the Fourier transform of gk (t). We can also express Gk (f) in the

following form:

Gk(f) = d?
/

OO

E[j/(f + r; Ik)sf(t\I0)] dt
-OO

noo

E [si(t + r; Jo)] e~j2nfx dtdx
-OO

" poo poo

= E / / S[(t + r;

_J —oo J —oo

= E [S,(/; I k)S*{f ; J0 )]

(3.4-7)

~
j2,lf(t+r) sUt;Io)eJ

27T ft dtdT

where S/(/; /*) and S/(/; Io) are Fourier transforms of 57 (f; Ik) and si(t; 10 ),

respectively.

From Equation 3.4-7, we conclude that Go(/) = E [|S/(/; 10 )|

2

]
is real, and

G-k (f) = G£(/) for k > 1. If we define

G^(/) = G*(/) - G0(/) (3.4-8)

we can readily see that

G'_k (f) = Gk*(f )

Go(/) = 0
(3.4-9)
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Equation 3.4-6 can be written as

1 oc . oo

$„(/) = - E (Gt(/)-G0(/))«-^
t/T + - E Go(f)e~

j2,!kfT

k=—oo

oo
1

w

= ^ E G'k(fy
jljtkfT +

k=—oo

2
= - Re

T
EGi(/KiW/r
U=i

= 5f(/) + 5f(/)

k=—oo

^ £ Go (/)«(/ -f
k=—oo '

+ ^2 E G
° ( t / (

^ ~ r
k=—oo

' vi
* 1

d/

where we have used Equation 3.4-9 and the well-known relation

OO
1

OO / 7

k=—oo k=—oo

«$£>(/) and 5f(/), defined by

5^(/) = -Re E G*t/>
_/

U=i

^(Z) = ^2 E G
° f T ^

5 (^ ~ T
k——oo

(3.4-10)

(3.4-11)

(3.4-12)

represent the continuous and the discrete components of the power spectral density

of U/(f).

3.4-2 Power Spectral Density of Linearly Modulated Signals

In linearly modulated signals, which include ASK, PSK, and QAM as special cases,

the lowpass equivalent of the modulated signal is of the form

OO

vi(t)= E Ing(t-nT ) (3.4-13)

n=—oo

where {/„} is the stationary information sequence and g(t) is the basic modulation

pulse. Comparing Equations 3.4-13 and 3.4-1, we have

Slit, In) = In g(t ) (3.4-14)

from which

Gk (f) = E [S,(/; /*)#(/; Jo)]

= E[/*/*|G(/)| 2

]
(3.4-15)

= R[(k)\G{f)\
2
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where Ri(k) represents the autocorrelation function of the information sequence {/„},

and G(f) is the Fourier transform of g(t). Using Equation 3.4-15 in Equation 3.4-6

yields

1
oo

SVl(f)=j\G(D\
2 E Ri(k)e-^T

k=-°° (3.4-16)

= j\G{f)\
2
SAf)

where

oo

Si(f)= E Mk)e-j7*kfT
(3.4-17)

k=—oo

represents the power spectral density of the discrete-time random process {/„}.

Note that two factors determine the shape of the power spectral density as given in

Equation 3.4-16. The first factor is the shape of the basic pulse used for modulation.

The shape of this pulse obviously has an important impact on the power spectral density

of the modulated signal. Smoother pulses result in more compact power spectral den-

sities. Another factor that affects the power spectral density of the modulated signal is

the power spectral density of the information sequence [In ) which is determined by the

correlation properties of the information sequence. One method to control the power
spectral density of the modulated signal is through controlling the correlation proper-

ties of the information sequence by passing it through an invertible linear filter prior

to modulation. This linear filter controls the correlation properties of the modulated

signals, and since it is invertible, the original information sequence can be retrieved

from it. This technique is called spectral shaping by precoding.

For instance, we can employ a precoding of the form Jn = In + aln_ 1? and by

changing the value of a, we can control the power spectral density of the resulting

modulated waveform. In general, we can introduce a memory of length L and define a

precoding of the form

L

Jr — ^ ^ OtJcIn—k (3.4—18)

k=0

and then generate the modulated waveform

oo

vi(t)= E hg(t-kT) (3.4-19)

k——oo

Since the precoding operation is a linear operation, the resulting power spectral

density is of the form

i

<V/) = -|G(/)| 2

Y, ake
~i2nkfT Si(f ) (3.4-20)

1
k=0

Changing controls the power spectral density.

example 3.4-1. In a binary communication system In = ±1 with equal probability,

and the /„’ s are independent. This information stream linearly modulates a basic pulse
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of the form

g(t) = n
t

T

to generate

oo

v(t)= Y hgO-kT)
k=—oo

The power spectral density of the modulated signal will be of the form

«$»(/) = j\TsinC(Tf)\
2
S,(f)

To determine <S/(/), we need to find Rj(k )
= E [/n+*/*] . By independence of the {In }

sequence we have

o W _/E[|/I 2

]
= l * =

™-\E[W]E[/„*]=o M
0

0

and hence

Thus,

A precoding of the form

SKf) = Y Ri(k)e-
j2nkfT = 1

k——oo

Sv(f) = T sinc
2
(r/)

Jn — In T- Otln—l

where a is real would result in a power spectral density of the form

Sv {f) - rsinc
2
(r/) 1 1 + ae~i2nfT

\

2

or

sv(f) = Tsmc2
(Tf) (1 + a 2 + 2a cos(2nfT))

Choosing a = 1 would result in a power spectral density that has a null at frequency

f = Yf-
Note that this spectral null is independent of the shape of the basic pulse g(t );

that is, any other g(t ) having a precoding of the form /„ = /„ + In_ x will result in a

spectral null at f = Yf-

3.4-3 Power Spectral Density of Digitally Modulated Signals

with Finite Memory

We now focus on a special case where the data sequence {In } is such that In and /„+& are

independent for |A:| > K
,
where K is a positive integer representing the memory in the

information sequence. With this assumption, S/(/; Ik ) and S*(/; /o) are independent

fort > K
,
and by stationary have equal expected values. Therefore,

Gk(f) = |E [Si(f ; Jo)]

|

2 = GK+l (f), for |*| > K (3 .4-21 )



136 Digital Communications

Obviously, Gk+ i(/) is real. Let us define

Glif) = Gk {f) - GK+x(f) = Gk(f) - |E [5,(/; /0)]|
2

(3.4-22)

It is clear that G^(/) = 0 for |A:| > K and G'Lk(f) = G"
k*(f). Also note that

Go(/) = Go(/) - «,+,(/) = E [|5;(/ ;
/0)|

2

]
- |E[5/(/; /0)]|

2 = VAR[S,(/; /0)]

(3.4-23)

In this case we can write Equation 3.4-6 in the following form:

J

CXJ

|

LXJ

Sv,(f) = - E (Gk(f)-G K+l (f))e-
j2”kfT + - G K+l (f)e~J

k=—oo k=—oo

t K -i oo 7

= r E G*(/)e~W + ^ E G*+ 1 (/)<5(/--

jlnkfT

k=—K

= ^VAR[5
/(/;/0 )] + |Re

k=—oo

K
-jlnkfT

k= 1

^ oo

k=—oo

= S^(/) + «Sf(/)

rp2 ^ K+ 1 l

J, J
8 if

J,
k=—oo

(3.4-24)

The continuous and discrete components of the power spectral density in this case

can be expressed as

^G"(/)^jW|<S£f(/) = ^
VAR [5,(/; /0 )] + |

Re
U=1

^f
}

(/) = ^ E G*+i (V) 3 fr
_
r

k=—oo

(3.4-25)

Note that if Ga:+i (7 )
= 0 for A: = 0, ±1, ±2, . .

.

,

the discrete component of the

power spectrum vanishes. Since G*+i (/) = |E [£/(/; /o)]|
2

,
having E [>/(*; /0 )] = 0

guarantees a continuous power spectral density with no discrete components.

3.4-4 Power Spectral Density of Modulation Schemes
with a Markov Structure

The power spectral density of modulation schemes with memory was derived in Equa-

tions 3.4-6, 3.4-7, and 3.4-10. These results can be generalized to the general class of

modulation systems that can be described in terms of a Markov chain. This is done by

defining

In = (5n-l » In) (3.4-26)



Chapter Three: Digital Modulation Schemes

where Sn-\ e (1, 2, . .
.

,

K) denotes the state of the modulator at time n — 1 and In is

the rath output of the information source. With the assumption that the Markov chain is

homogeneous, the source is stationary, and the Markov chain has achieved its steady-

state probabilities, the results of Section 3.4-1 apply and the power spectral density

can be derived.

In the particular case where the signals generated by the modulator are determined

by the state of the Markov chain, the derivation becomes simpler. Let us assume that

the Markov chain that determines signal generation has a probability transition matrix

denoted by P. Let us further assume that the number of states is K and the signal

generated when the modulator is in state i, 1 < i < K, is denoted by su(t). The steady-

state probabilities of the states of the Markov chain are denoted by pt ,
1 < i < K, and

elements of the matrix P are denoted by Pu, i <u < K. With these assumptions

the results of Section 3.4-1 can be applied, and the power spectral density may be

expressed in the general form (see Tausworth and Welch, 1961)

s„</) = j;E

2 „
H— Re
T

J2p‘ Sii

i=

1

K K

i=l 7=1

i=

1

(3.4-27)

where Su(f) is the Fourier transform of the signal waveform su(t) and

K

s'u(t) = Suit) - PkSklit) (3.4-28)

k= 1

Pij(f) is the Fourier transform of rc-step state transition probabilities Pij(n), defined as

oo

Pijif) =E PiM)e~i27tnfT
(3.4-29)

n= 1

and K is the number of states of the modulator. The term P
tj
(n) denotes the probability

that the signal sj(t) is transmitted n signaling intervals after the transmission of Si(t).

Hence, [Pij(n)} are the transition probabilities in the transition probability matrix P n
.

Note that P^(l) = P/
y
-, the (/, y‘)th entry in P.

When there is no memory in the modulation method, the signal waveform transmit-

ted on each signaling interval is independent of the waveforms transmitted in previous

signaling intervals. The power density spectrum of the resultant signal may still be ex-

pressed in the form ofEquation 3 .4-27, if the transition probability matrix is replaced by

'Pi Pi Pk

p =
P\ Pi Pk

.Pi Pi Pk .

and we impose the condition that P n = P for all n > 1

(3.4-30)

expression for the power density spectrum becomes a function of the stationary state
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probabilities [pt } only, and hence it reduces to the simpler form

.
|2

1

s„</) = Yi E
n=—oo

K

i=l

s \f-f

+ ^Ea-(i-a)IW)I
2

i=1

r f
EEPiPi Re SdftSjtif)
i= 1 7=1

i<j

(3.4-31)

We observe that when
\

=° (3.4—32)

the discrete component of the power spectral density in Equation 3.4-31 vanishes. This

condition is usually imposed in the design of digital communication systems and is

easily satisfied by an appropriate choice of signaling waveforms (Problem 3.34).

example 3.4-2. Let us determine the power density spectrum of the baseband-

modulated NRZ signal described in Section 3.3. The NRZ signal is characterized by
the two waveforms s\(t) = g(t) and si(t) = — g(t ), where g(t) is a rectangular pulse

of amplitude A. For K = 2, Equation 3.4-31 reduces to

!
+—

r
'”ic</r (3.4-33)

where

|G(/)|
2 = (A7’)

2
sinc

2
(/7’)

Observe that when p = \, the line spectrum vanishes and Sv (f

)

reduces to

Sv(f) = j\G{f)\
2

(3.4-34)

example 3.4-3. The NRZI signal is characterized by the transition probability matrix

l_2 2 J

Notice that in this case P n = P for all n > 1. Hence, the special form for the

power density spectrum given by Equation 3.4-33 applies to this modulation format

as well. Consequently, the power density spectrum for the NRZI signal is identical to

the spectrum of the NRZ signal.

3.4-5 Power Spectral Densities of CPFSK and CPM Signals

In this section, we derive the power density spectrum for the class of constant-amplitude

CPM signals described in Sections 3.3-1 and 3.3-2. We begin by computing the auto-

correlation function and its Fourier transform.
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The constant-amplitude CPM signal is expressed as

s(r, I) = A cos[2trfc t + 0(f
; /)] (3.4-35)

where
oo

4>{f,I) = 2nh hq(t-kT) (3.4-36)

k=—oo

Each symbol in the sequence {In } can take one of the M values {±1, ±3,...,

±(M — 1)}. These symbols are statistically independent and identically distributed

with prior probabilities

Pn = P(h =n), n = ±1, ±3, . .
.

,

±(M - 1) (3.4-37)

where J2n R

n

= 1- The pulse g(t) = q\t ) is zero outside of the interval [0, LT],

q(t) = 0, t < 0, and q(t) = \
for t > LT.

The autocorrelation function of the equivalent lowpass signal

V,(t) = em 'n (3.4-38)

IS

Rvi(? + t; t) — E exp (3.4-39)

First, we express the sum in the exponent as a product of exponents. The result is

Rviif + t; t) E
oo

Y[ exp [j2nhlk[q(t + r — kT) — q(t — kT)]}

_k=—oo

(3.4-40)

Next, we perform the expectation over the data symbols {4}. Since these symbols are

statistically independent, we obtain

Rvi(? + 0

^ M-

1

Pn exp{j27thn[q(t + r

\ n odd

\

- kT) - q(t - kT)]}

(3.4-41)

Finally, the average autocorrelation function is

l r
T°

Rvi(j) = — Rvi(t + t)dt (3.4-42)
l Jo

Although Equation 3.4-41 implies that there are an infinite number of factors in

the product, the pulse g(t ) = q\t) = 0 for t <0 and t > LT
,
and q(t) = 0 for t < 0.

Consequently only a finite number of terms in the product have nonzero exponents.

Thus Equation 3.4-41 can be simplified considerably. In addition, ifwe let r = § +mT,
where 0 < £ < T and m — 0, 1, . .

.

,

the average autocorrelation in Equation 3.4-42

reduces to

Rvtds +mT )
=

f

M-

1

\n=-(M- 1 )

V n odd J

dt (3.4-43)
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Let us focus on R
Vl (^ +mT) for § +mT > LT. In this case, Equation 3.4-43 may

be expressed as

Rvtf + mT ) = [<t>,(h)]
m-L

A.(f ), m > L, 0 < £ < 7 (3.4-44)

where 0/(/z) is the characteristic function of the random sequence {/„}, defined as

4>/(A) = E[ejnhI"]

M-

1

= Pne
j7thn (3.4-45)

n=-(M- 1)

n odd

and a(£) is the remaining part of the average autocorrelation function, which may be

expressed as

m i rT 0

-rL j.
M-

1

exp
|
j2nhn

\n=-(M- 1)

-~q(t-kT)

: odd

m+1 ^ M-l

n e exp[j2nhnq(t + § — A:T)]
|

, n=—(M—
\ rc odd

m > L

(3.4-46)

Thus, /? V/ (r) may be separated into a product of A(§) and $/(/*) as indicated in Equa-

tion 3.4-44 forr = % + mT > LT and 0 < £ < T. This property is used below.

The Fourier transform of R
Vl (r) yields the average power density spectrum as

But

/
oo

R
VI

(x)e~^fr dt
-OO

f°°
= 2 Re /

R
Vl
(x)e~j27cfT dx

Jo

pOO pLl

/ R
Vl
(r)e~

j27tfz dr = / R
Vl
(r)e~j27tfz dx

Jo Jo
poo

+ /
R

Vl
(x)e-i2nfr dt

Jlt

(3.4-47)

(3.4-48)

With the aid of Equation 3.4-44, the integral in the range LT < r < oo may be

expressed as

R
Vl

(x)e
j2nfz dx

oo p(m+l)T

J2 /
Rv,{x)e~^dx

m=L JmT
(3.4-49)
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Now, let r = £ +mT . Then Equation 3.4-49 becomes

roo
00

rT

/
R

Vl
(r)e-j27tfx dt = V]

/ £„,(§+ m7>-' 27r/(?+mr) d£
JLT JO

= £ / *«)[*/(*)]
m-L -j27rf{%+mT) d$ (3.4-50)

oo r

= y'^(ft)e-^2;r/nr
/ A(£)e-;'

2;r/«+ir)^
Vo

A property of the characteristic function is \<&j(h)\ < 1. For values of h for which

|d>/(/0| < 1, the summation in Equation 3.4-50 converges and yields

^{h)e -jlnfnT _
1 - <t>i(h)e~j

2nfT
(3.4-51)

In this case, Equation 3.4-50 reduces to

£ .-< = ,_^ (

‘

)g
-wr jf

*.« + in.-™*" <e

(3.4-52)

By combining Equations 3.4-47, 3.4-48, and 3.4-52, we obtain the power density

spectrum of the CPM signal in the form

r r
LT

_ l
riL+Dr _ i

SVl (f) = 2Re jf Rv,{*)e~
j2nf% dr +

1 _ JLT
dr

(3.4-53)

This is the desired result when |4>/(ft)| < 1. In general, the power density spectrum

is evaluated numerically from Equation 3.4-53. The average autocorrelation function

R
Vl (r) for the range 0 < r < (L + 1) T may be computed numerically from Equa-

tion 3.4-43.

For values of h for which |d>/(/*)| = 1, e.g., h = K, where K is an integer, we can

(p/(h) = e
i2nv

, 0 < v < 1 (3.4-54)

Then the sum in Equation 3.4-50 becomes

-j2jtT(f-v/T)n 1 1

T T

(3.4-55)

Thus, the power density spectrum now contains impulses located at frequencies

fn =
r

^, 0 < v < 1, n = 0,1,2,... (3.4-56)

The result in Equation 3.4-55 can be combined with Equations 3.4-50 and 3.4-48 to

obtain the entire power density spectrum, which includes both a continuous spectrum

component and a discrete spectrum component.
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Let us return to the case for which
1
4>/(ft)| < 1. When symbols are equally proba-

ble, i.e.,

Pn = — for all nM
the characteristic function simplifies to the form

, M-

1

(3.4-57)

*/(A) = E Jnhn

n=-(M- 1)

nodd

1 sin Mnh
M sinnh

(3.4-58)

Note that in this case 0/(/z) is real. The average autocorrelation function given by

Equation 3.4-43 also simplifies in this case to

Rv,(?)

i rT [*/n
1 sin2nhM[q(t + r — kT) — q(t — kT )]

M sm2rch[q(t + r — kT) — q(t — kT)]

The corresponding expression for the power density spectrum reduces to

dt (3.4-59)

SVl (f) = 2

+

rLT

/ RVi(r ) coslnfr dr
Jo

l-<t>[(h)cos2nfT r

1 + <$>]{h) - 2<$>i(h)cos2nfT JLT

<&i(h) sin27r/r T

1 + tf(h) - 2<$>
{ (h)cos2nfT JLT

(L+l)T

R
Vl

(r) cos 2nfr dr (3.4-60)

(L+i)r

^(r) sin 2jrfz dr

Power Spectral Density of CPFSK

A closed-form expression for the power density spectrum can be obtained from Equa-

tion 3.4-60 when the pulse shape g(t) is rectangular and zero outside the interval

[0, T], In this case, q(t) is linear for 0 < t < T. The resulting power spectrum may be

expressed as

Sv(f) = T
1

M J2 An(f) +
n=\

2
MM
n= 1 m=

1

where

An (f) =

Bnmif)
=

sinn[fT - \(2n - 1 - M)h\

n[fT — j(2n — 1 — M)h]

cos(27rfT - anm )
- ^ cos anm

1 + <t>
2 — 2«t> cos 2nfT

a„ = nh(m + n — 1 — M)

cD = <D(h) =
sinMnh
M sin nh

(3.4-61)

(3.4-62)
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The power density spectrum of CPFSK for M = 2, 4, and 8 is plotted in Fig-

ures 3.4-1 to 3.4-3 as a function of the normalized frequency fT, with the modulation

index h = 2faT as a parameter. Note that only one-half of the bandwidth occupancy

is shown in these graphs. The origin corresponds to the carrier fc . The graphs illustrate

that the spectrum of CPFSK is relatively smooth and well confined for h < 1. As h

approaches unity, the spectra become very peaked, and for h = 1 when |0| = 1, we
find that impulses occur at M frequencies. When h > 1, the spectrum becomes much

FIGURE 3.4-1

Power spectral density of binary CPFSK.
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Spectral density for four-level CPFSK Spectral density for four-level CPFSK

Spectral density for four-level CPFSK

FIGURE 3.4-2

Power spectral density of quaternary CPFSK.

broader. In communication systems where CPFSK is used, the modulation index is

designed to conserve bandwidth, so that h < 1.

The special case of binary CPFSK with h —
^

(or fd = 1/4T) and 0 = 0

corresponds to MSK. In this case, the spectrum of the signal is

„ \6A 2T ( cos 2nfT
(3.4-63)

where the signal amplitude A = 1 in Equation 3.4-62. In contrast, the spectrum

of four-phase offset (quadrature) PSK (OQPSK) with a rectangular pulse g(t) of
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Spectral density for eight-level CPFSK

145

Spectral density for eight-level CPFSK

FIGURE 3.4-3

Power spectral density of octal CPFSK.

duration T is

Sv (f) = A 2T (3-4-64)

If we compare these spectral characteristics, we should normalize the frequency

variable by the bit rate or the bit interval Tb . Since MSK is binary FSK, it follows

that T = Tt in Equation 3.4-63. On the other hand, in OQPSK, T = 2Tb so that

Equation 3.4-64 becomes

Sv (f) = 2

A

2Tb (3-4-65)

The spectra of the MSK and OQPSK signals are illustrated in Figure 3.4-4. Note

that the main lobe ofMSK is 50 percent wider than that for OQPSK. However, the side

lobes in MSK fall off considerably faster. For example, if we compare the bandwidth

W that contains 99 percent of the total power, we find that W = 1.2/ Tb for MSK
and W ^ 8/7/ for OQPSK. Consequently, MSK has a narrower spectral occupancy

when viewed in terms of fractional out-of-band power above fTb = 1. Graphs for

the fractional out-of-band power for OQPSK and MSK are shown in Figure 3.4-5.

Note that MSK is significantly more bandwidth-efficient than QPSK. This efficiency

accounts for the popularity of MSK in many digital communication systems.

Even greater bandwidth efficiency than MSK can be achieved by reducing the

modulation index. However, the FSK signals will no longer be orthogonal, and there

will be an increase in the error probability.

Spectral Characteristics of CPM
In general, the bandwidth occupancy of CPM depends on the choice of the modulation

index /z, the pulse shape g(t), and the number of signals M. As we have observed
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Normalized frequency offset from carrier (f~f)Tb [(Hz/bit)/s]

FIGURE 3.4-4

Power spectral density of MSK and OQPSK. [Source: Gronemeyer and McBride (1976);

© IEEE.]

2WT = two-sided normalized bandwidth [(Hz/bit)/s]

FIGURE 3.4-5

Fractional out-of-band power (normalized

two-sided bandwidth = 2WT). [Source:

Gronemeyer and McBride (1976);

© IEEE.]

for CPFSK, small values of h result in CPM signals with relatively small bandwidth

occupancy, while large values of h result in signals with large bandwidth occupancy.

This is also the case for the more general CPM signals.
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dB FIGURE 3.4-6

Power spectral density for binary CPM with h = ~ and

different pulse shapes. [Source: Aulin et al. (1981);

© IEEE.]

The use of smooth pulses such as raised cosine pulses of the form

g(t) =
i

2LT Tf
0

0 <t <LT
otherwise

(3.4-66)

where L = 1 for full response and L > 1 for partial response, results in smaller band-

width occupancy and hence greater bandwidth efficiency than in the use of rectangular

pulses. For example, Figure 3 .4-6 illustrates the power density spectrum for binary CPM
with different partial-response raised cosine (LRC) pulses when h = ^ . For comparison,

the spectrum of binary CPFSK is also shown. Note that as L increases, the pulse g(t)

becomes smoother and the corresponding spectral occupancy of the signal is reduced.

The effect of varying the modulation index in a CPM signal is illustrated in Fig-

ure 3.4-7 for the case of M = 4 and a raised cosine pulse of the form given in

Equation 3.4-66 with L = 3. Note that these spectral characteristics are similar to the

dB FIGURE 3.4-7

Power spectral density for M = 4 CPM with 3RC and

different modulation indices. [Source: Aulin et al. (1981);

© IEEE.]
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ones illustrated previously for CPFSK, except that these spectra are narrower due to

the use of a smoother pulse shape.

3.5

BIBLIOGRAPHICAL NOTES AND REFERENCES

The digital modulation methods introduced in this chapter are widely used in digital

communication systems. Chapter 4 is concerned with optimum demodulation tech-

niques for these signals and their performance in an additive white Gaussian noise

channel. A general reference for signal characterization is the book by Franks (1969).

Of particular importance in the design of digital communication systems are the

spectral characteristics of the digitally modulated signals, which are presented in this

chapter in some depth. Of these modulation techniques, CPM is one of the most impor-

tant due to its efficient use of bandwidth. For this reason, it has been widely investigated

by many researchers, and a large number of papers have been published in the techni-

cal literature. The most comprehensive treatment of CPM, including its performance

and its spectral characteristics, can be found in the book by Anderson et al. (1986). In

addition to this text, the tutorial paper by Sundberg (1986) presents the basic concepts

and an overview of the performance characteristics of various CPM techniques.

The linear representation of CPM was developed by Laurent (1986) for binary

modulation. It was extended to M -ary CPM signals by Mengali and Morelli (1995).

Rimoldi (1988) showed that aCPM system can be decomposed into a continuous-phase

and a memoryless modulator. This paper also contains over 100 references to published

papers on this topic.

There are a large number of references dealing with the spectral characteristics of

CPFSK and CPM. As a point of reference, we should mention that MSK was invented

by Doelz and Heald in 1961. The early work on the power spectral density of CPFSK
andCPM was done by Bennett and Rice (1963), Anderson and Salz (1965), and Bennett

and Davey (1965). The book by Lucky et al. (1968) also contains a treatment of the

spectral characteristics of CPFSK. Most of the recent work is referenced in the paper

by Sundberg (1986). We should also cite the special issue on bandwidth-efficient mod-

ulation and coding published by the IEEE Transactions on Communications (March

1981), which contains several papers on the spectral characteristics and performance of

CPM. The generalization ofMSK to multiple amplitudes was investigated by Weber et

al. (1978). The combination of multiple amplitudes with general CPM was proposed by

Mulligan (1988) who investigated its spectral characteristics and its error probability

performance in Gaussian noise with and without coding.

PROBLEMS

3.1 Using the identity

2
n(n + 1)(2n + 1)

6
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show that

l
2 + 3

2 + 5
2 + • •

• + (M — l)
2

M{M 2 - 1)

6

and derive Equation 3.2-5.

3.2

Determine the signal space representation of the four signals Sk(t), k = 1, 2, 3, 4, shown

in Figure P3.2, by using as basis functions the orthonormal functions (p\(t) and 02 (O- Plot

the signal space diagram, and show that this signal set is equivalent to that for a four-phase

PSK signal.

*1 (0

4-

s4(t)

^2(0

t 0

0,(0

c
t 0

*3(0

.t

FIGURE P3.2

3.3 7T/4-QPSK may be considered as two QPSK systems offset by 7t/4 rad.

1. Sketch the signal space diagram for a 7T/4-QPSK signal.

2. Using Gray encoding, label the signal points with the corresponding data bits.

3.4 Consider the octal signal point constellations in Figure P3.4.

1. The nearest-neighbor signal points in the 8-QAM signal constellation are separated

in distance by A units. Determine the radii a and b of the inner and outer circles,

respectively.

2. The adjacent signal points in the 8-PSK are separated by a distance ofA units. Determine

the radius r of the circle.

FIGURE P3.4

8-PSK 8-QAM
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3. Determine the average transmitter powers for the two signal constellations, and compare

the two powers. What is the relative power advantage ofone constellation over the other?

(Assume that all signal points are equally probable.)

3.5 Consider the 8-point QAM signal constellation shown in Figure P3.4.

1 . Is it possible to assign 3 data bits to each point of the signal constellation such that the

nearest (adjacent) points differ in only 1 bit position?

2. Determine the symbol rate if the desired bit rate is 90 Mbits/s.

3.6 Consider the two 8-point QAM signal constellations shown in Figure P3.6. The minimum
distance between adjacent points is 2A. Determine the average transmitted power for each

constellation, assuming that the signal points are equally probable. Which constellation is

more power-efficient?

I • 1 . FIGURE P3.6

•
t

*
• t

•

(a) (b)

3.7

Specify a Gray code for the 16-QAM signal constellation shown in Figure P3.7.

7"

5o

3 o

in

-7 -5 -3 -1_ 13 5 7

-3o

-5o

— 7 •

FIGURE P3.7

3.8 In an MSK signal, the initial state for the phase is either 0 or tv rad. Determine the terminal

phase state for the following four input pairs of input data:

1. 00

2 . 01

3. 10

4. 11

3.9 Determine the number of states in the state trellis diagram for

1. A full-response binary CPFSK with h =
|
or |.

2. A partial-response L — 3 binary CPFSK with h =
|
or |.
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3.10 A speech signal is sampled at a rate of 8 kHz, and then encoded using 8 bits per sample.

The resulting binary data are then transmitted through an AWGN baseband channel via

M-level PAM. Determine the bandwidth required for transmission when

1. M = 4

2. M = 8

3. M = 16

3.11 The power density spectrum of the cyclostationary process

oo

v(t)= ^ Ing(t-nT

)

n=—oo

can be derived by averaging the autocorrelation function R v (t + r, t) over the period T
of the process and then evaluating the Fourier transform of the average autocorrelation

function. An alternative approach is to change the cyclostationary process into a stationary

process v&(t) by adding a random variable A, uniformly distributed over 0 < A < T, so

that

oo

UaO) = In g(t -nT - A)

n=—oo

and defining the spectral density of v(t) as the Fourier transform of the autocorrelation

function of the stationary process v&(t). Derive the result in Equation 3.4-16 by evaluating

the autocorrelation function of uA (0 and its Fourier transform.

3.12 Show that 16-QAM can be represented as a superposition of two four-phase constant-

envelope signals where each component is amplified separately before summing, i.e.,

s(t) = G(A n cos 2nfc t 4- Bn sin 2nfc t) + (C„ cos 27xfc t + Dn sin 27tfc t)

where {A„}, {Bn }, {C
/7 }, and {Dn }

are statistically independent binary sequences with

elements from the set {4-1, —1} and G is the amplifier gain. Thus, show that the resulting

signal is equivalent to

s(t) = ln cos 2tcfc t 4- Q n sin 27xfc t

and determine ln and Q n in terms of A n ,
Bn ,

Cn ,
and Dn .

3.13 Consider a four-phase PSK signal represented by the equivalent lowpass signal

«(o = ^3 In^ f
- nT )

where In takes on one of the four possible values y |(±1 ± j) with equal probability. The

sequence of information symbols {In } is statistically independent.

1. Determine and sketch the power density spectrum of u(t) when

f A 0 < t < T
**

\0 otherwise

2. Repeat Part 1 when

git)
A sin(7T t/T)

0

0 < t < T

otherwise
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3. Compare the spectra obtained in Parts 1 and 2 in terms of the 3-dB bandwidth and the

bandwidth to the first spectral zero.

3.14 A PAM partial-response signal (PRS) is generated as shown in Figure P3.14 by exciting

an ideal lowpass filter of bandwidth W by the sequence

Bn = hi hi — 1

at a rate l/T = 2

W

symbols/s. The sequence {/„} consists of binary digits selected

independently from the alphabet {1,-1} with equal probability. Hence, the filtered signal

has the form

°o
j

v{t)= ^2 Bng(t-nT ), T = —

-

n=—oo

Output

FIGURE P3.14

1. Sketch the signal space diagram for v(t), and determine the probability of occurrence

of each symbol.

2. Determine the autocorrelation and power density spectrum of the three-level sequence

{Bn }.

3. The signal points of the sequence {
Bn }

form a Markov chain. Sketch this Markov chain,

and indicate the transition probabilities among the states.

3.15 The lowpass equivalent representation of a PAM signal is

u{t) = Y^Ingit -nT)
n

Suppose g(t) is a rectangular pulse and

hi — &n &n—2

where [an } is a sequence of uncorrelated binary-valued ( 1 ,

— 1 ) random variables that occur

with equal probability.

1 . Determine the autocorrelation function of the sequence {/„}.

2. Determine the power density spectrum of u(t).

3. Repeat (2) if the possible values of the an are (0, 1).
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3.16

Use the results in Section 3.4-4 to determine the power density spectrum of the binary

FSK signals in which the waveforms are

Si(t) = sin cojt, i = 1,2, 0 < t < T

where co\ = nn/T and 002 = nur/T, n ^ m, and m and n are arbitrary positive integers.

Assume that p\ = p2 = \ •
Sketch the spectrum, and compare this result with the spectrum

of the MSK signal.

3.17 Use the results in Section 3.4-4 to determine the power density spectrum of multitone FSK
(MFSK) signals for which the signal waveforms are

2nnt
sn (t) = sin

,
n = 1, 2, . .

.

,

M, 0 < t < T

Assume that the probabilities pn = 1/M for all n. Sketch the power spectral density.

3.18 A quadrature partial-response signal (QPRS) is generated by two separate partial-response

signals of the type described in Problem 3.14 placed in phase quadrature. Hence, the QPRS
is represented as

s(t) = Re [v(t)eJ2
*fJ

]

where

v(t) = vc (t) + jv,(t )
= Bng(t - nT) + j^2 C„g{t - nT)

n n

and Bn = ln + /„_ 1
and Cn = Jn + Jn- \. The sequences {Bn } and [Cn ] are independent,

and In = ± 1
,
Jn = d= 1 with equal probability.

1 . Sketch the signal space diagram for the QPRS signal, and determine the probability of

occurrence of each symbol.

2. Determine the autocorrelations and power spectral density of vc (t), vs (t), and v(t).

3. Sketch the Markov chain model, and indicate the transition probabilities for the QPRS.

3.19

The information sequence {an }

<^_OQ is a sequence of iid random variables, each taking

values +1 and —1 with equal probability. This sequence is to be transmitted at baseband

by a biphase coding scheme, described by

00

s(t) = ^2 ang(t - nT)

77=—OO

where g(t) is shown in Figure P3.19.

gif)

1

0 It
2
1 T t

-If

FIGURE P3.19

1. Find the power spectral density of s(t).
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2. Assume that it is desirable to have a zero in the power spectrum at / = 1/7. To this

end, we use a precoding scheme by introducing bn = an + kan - 1 ,
where k is some

constant, and then transmit the {bn }
sequence using the same g(t). Is it possible to

choose k to produce a frequency null at / = 1/7? If yes, what are the appropriate

values and the resulting power spectrum?

3. Now assume we want to have zeros at all multiples of /o = 1 /47. Is it possible to have

these zeros with an appropriate choice of k in the previous part7 If not, then what kind

of precoding do you suggest to achieve the desired result?

3.20 The two signal waveforms for binary FSK signal transmission with discontinuous phase

are

so(t) =

s\(t) =

2Eh
- cos

2Eb

Tb
cos

,
A

2tt
( fc

- ~y
)

t + (

,
A/ 4

2tt
(
fc + -j-

)
t + 0i

0 < t < 7

0 < t < 7

where A/ = 1/7 fc ,
and 0O and 6\ are independent uniformly distributed random

variables on the interval (0, 27t). The signals so(t) and s\(t) are equally probable.

1. Determine the power spectral density of the FSK signal.

2. Show that the power spectral density decays as l// 2
for / fc .

3.21 The elements of the sequence {/nj^^oo are independent binary random variables taking

values of d=l with equal probability. This data sequence is used to modulate the basic pulse

u(t) shown in Figure P3. 21(a). The modulated signal is

+oo

X(t)= ^2 Inu(t-nT)
n=—oo

u( t

)

FIGURE P3.21(a)

0 T

1. Find the power spectral density of X(t).

2. If u\(t), shown in Figure P3.21(b), were used instead of u(t), how would the power

spectrum in part 1 change7

3. In part 2, assume we want to have a null in the spectrum at / = This is done by a

precoding of the form bn = In + a

I

n -\. Find the value of a that provides the desired

null.
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FIGURE P3.21(b)

A

0 IT

4. Is it possible to employ a precoding of the form bn = In + on In -i f°r some finite

N such that the final power spectrum will be identical to zero for ^ < I/I < 2f?If
yes, how? If no, why? (Hint: Use properties of analytic functions.)

3.22 A digital signaling scheme is defined as

oo

X(t) = [an u(t — nT) cos(27Tfc t) — bn u(t — nT) sin(27r/c f)]

n=—oo

where u(t) = A(t/2T),

(t+ 1 -1 <t <0
A (0 = < -t 4- 1 0 < t < 1

^ 0 otherwise

and each (an ,
bn ) pair is independent from the others and is equally likely to take any of

the three values (0, 1), (V3/2, -1/2), and (-V3/2, -1/2).

1 . Determine the lowpass equivalent of the modulated signal. Determine the in-phase and

quadrature components.

2. Determine the power spectral density of the lowpass equivalent signal; from this deter-

mine the power spectral density of the modulated signal.

3. By employing a precoding scheme of the form

f Cn — flu acin —\

\dn = bn +ab„-\

where a is in general a complex number, and transmitting the signal

oo

Y(t) = [cn u(t — nT)cos(2nfc t) — dn u(t — nT) sm(27t

f

c t)]

/7——OO

we want to have a lowpass signal that has no dc component. Is it possible to achieve

this goal by an appropriate choice of a? If yes, find this value.

3.23 A binary memoryless source generates the equiprobable outputs ^ which take

values in {0, 1}. The source is modulated by mapping each sequence of length 3 of the



156 Digital Communications

source outputs into one of the eight possible {or/
, <9; }?=1 pairs and generating the modulated

sequence

oo

s(t) = ^ an g(t
- «r)cos(27r/0 f + 8„)

n=—oo

where

{

2t/T 0<t<T/2
2-2t/T T/2<t<T
0 otherwise

1.

Find the power spectral density ofs(t) in terms ofa 2 = Xw=i I

a,-

1

2 and caeie‘

.

2.

For the special case of a0dd = a, aeyen — b
,
and (9/ = (i — determine the power

spectral density of s(t).

3.

Show that for a = b, case 2 reduces to a standard 8-PSK signaling scheme, and

determine the power spectrum in this case.

4.

If a precoding of the form bn = an ® an -\ (where ® denotes the binary addition) were

applied to the source outputs prior to modulation, how would the results in parts 1 , 2,

and 3 change?

3.24 An information source generates the ternary sequence {//j}^_ 00 . Each In can take one of

the three possible values 2, 0, and —2 with probabilities 1 /4, 1/2, and 1 /4, respectively.

The source outputs are assumed to be independent. The source outputs are used to generate

the lowpass signal

oo

v(t)= ^2 Ing{t-nT

)

n=—oo

1. Determine the power spectral density of the process v(t), assuming g(t) is the signal

shown in Figure P3.24.

2. Determine the power spectral density of

oo

w(t) = ^2 Jng(t - nT)

n=— oo

where Jn = /„_ i + /„ + /„+,

.

FIGURE P3.24
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3.25 The information sequence [an ] is an iid sequence taking the values —1, 2, and 0 with

probabilities 1 /4, 1/4, and 1 /2. This information sequence is used to generate the baseband

signal

oo

v(t) = an sine

11——OO

1. Determine the power spectral density of v(t).

2. Define the sequence {bn } as bn = an + an - \

— an-

2

and generate the baseband signal

00

u(t) = bn sine

Determine the power spectral density of u(t). What are the possible values for the bn

sequence?

3.

Now let us assume w(t) is defined as

00

w(t) = E cn sine

n=—oo

where cn = an + jcin~ 1
. Determine the power spectral density of w(t).

(Hint: You can use the relation Y,m=-oo e~j2nfmT = j Y,m=-oo ~ m / T )•)

3.26 Let {an }^L_00 denote an information sequence of independent random variables, taking

values of d=l with equal probability. A QPSK signal is generated by modulating a rectan-

gular pulse shape of duration 2T by even and odd indexed an ’s to obtain the in-phase and

quadrature components of the modulated signal. In other words, we have

. f 1 0 < t < 2T
&7-( f)=L .1 .

[0 otherwise

and we generate the in-phase and quadrature components according to

00

x
i (0 = - 2nT )

n=—00

00

xq(t) = a2n+i82At - 2nT )

11—— OO

Then xi(t) = Xi(t) 4- jxq
(t) and x(t) = Re [x/(0^

727r^° r

]
•

1. Determine the power spectral density of xi(t).

2. Now let x
q
(t) = Y1T=-oo a2n+\g2T

[t - (2n + 1)7"]; in other words, let the quadrature

component stagger the in-phase component by T. This results in an OQPSK system.

Determine the power spectral density of xi(t) in this case. How does this compare with

the result of part 1 ?

3. If in part 2 instead of g2T
(t) we employ the following sinusoidal signal

g\(t) =
sin

0

0 < t < IT

otherwise
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the resulting modulated signal will be an MSK signal. Determine the power spectral

density of xi(t) in this case.

4. Show that in the case of MSK signaling, although the basic pulse g\ ( t

)

does not have

a constant amplitude, the overall signal has a constant envelope.

3.27 {a,
z } /

c

Jl_00 is a sequence of iid random variables each taking 0 or 1 with equal probability.

1. The sequence bn is defined as bn = an -\ ® an where ® denotes binary addition

(EXCLUSIVE-OR). Determine the autocorrelation function for the sequence bn and

the power spectral density of the PAM signal

oo

V(t) = ^2 b"8(t -nT)

where

g(t)

{;

0 < t < T

otherwise

2. Compare the result in part 1 with the result when bn = an -\ + an .

3.28 Consider the signal constellation shown in Figure P3.28.

FIGURE P3.28

The lowpass equivalent of the transmitted signal is represented as

oo

Slit) = '^2 - nT)

n——oo

where g(t) is a rectangular pulse defined as

f 1 0 < t < T
^

\o otherwise

and the an ’s are independent and identically distributed (iid) random variables that can

assume the points in the constellation with equal probability.
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1. Determine the power spectral density of the signal si(t).

2. Determine the power spectral density of the transmitted signal s(t), assuming that the

carrier frequency is /o (assuming /o » 7 ).

3. Determine and plot the power spectral density of si(t) for the case when r\ = r2 (plot

the PSD as a function of /7).

3.29 Determine the autocorrelation functions for the MSK and offset QPSK modulated signals

based on the assumption that the information sequences for each of the two signals are

uncorrelated and zero-mean.

3.30 Sketch the phase tree, the state trellis, and the state diagram for partial-response CPM with

h = 1 and

g(t) =
1/47

0

0 < t < 27

otherwise

3.31

Determine the number of terminal phase states in the state trellis diagram for

1 . A full-response binary CPFSK with h = |
or |

.

2. A partial-response L = 3 binary CPFSK with h = |
or

3.32

In the linear representation of CPM, show that the time durations of the 2L 1

pulses {cfc(f)}

are as follows:

c0 (t) = 0
,

c\(t) = 0
,

C2(t) = c3 (t) = 0,

c4 (t) = c5 (t) = c6 (t) = c7 (t) = 0
,

t < 0 and t > (L + 1)7

t < 0 and t > (L — 1)7

t < 0 and t > (L — 2)7

t < 0 and t > (L — 3)7

C2^-(t) = : C2L- 1 (0 = 0, t < 0 and t > 7

3.33

Use the result in Equation 3.4-3 1 to derive the expression for the power density spectrum

of memoryless linear modulation given by Equation 3.4-16 under the condition that

sk (t) = Ik s(t), k = 1,2, ..., K

where Ik is one of the K possible transmitted symbols that occur with equal probability.

3.34

Show that a sufficient condition for the absence of the line spectrum component in Equa-

tion 3.4-31 is

K

5> s,(0 = 0

/=i

Is this condition necessary^ Justify your answer.



Optimum Receivers for AWGN Channels

In Chapter 3, we described various types of modulation methods that may be used to

transmit digital information through a communication channel. As we have observed,

the modulator at the transmitter performs the function of mapping the information

sequence into signal waveforms. These waveforms are transmitted over the channel,

and a corrupted version of them is received at the receiver.

In Chapter 1 we have seen that communication channels can suffer from a variety

of impairments that contribute to errors. These impairments include noise, attenuation,

distortion, fading, and interference. Characteristics of a communication channel deter-

mine which impairments apply to that particular channel and which are the determining

factors in the performance of the channel. Noise is present in all communication chan-

nels and is the major impairment in many communication systems. In this chapter we
study the effect of noise on the reliability of the modulation systems studied in Chap-

ter 3. In particular, this chapter deals with the design and performance characteristics

of optimum receivers for the various modulation methods when the channel corrupts

the transmitted signal by the addition of white Gaussian noise.

4.1

WAVEFORM AND VECTOR CHANNEL MODELS

The additive white Gaussian noise (AWGN) channel model is a channel whose sole

effect is addition of a white Gaussian noise process to the transmitted signal. This

channel is mathematically described by the relation

r(t) = sm (t) + n(t) (4.1-1)

where sm (t) is the transmitted signal which, as we have seen in Chapter 3 is one of

M possible signals; n(t) is a sample waveform of a zero-mean white Gaussian noise

process with power spectral density of TVo/2; and r(t) is the received waveform. This

channel model is shown in Figure 4.1-1.

160



Chapter Four- Optimum Receivers for AWGN Channels 161

Transmitted

signal

Channel

f
r(t)

- Received

r(t) = sm (t) + n(t

)

Noise

n(t)

FIGURE 4.1-1

Model for received signal passed through

an AWGN channel.

The receiver observes the received signal r(t) and, based on this observation, makes

the optimal decision about which message m, 1 < m < M, was transmitted. By an

optimal decision we mean a decision rule which results in minimum error probabil-

ity, i.e., the decision rule that minimizes the probability of disagreement between the

transmitted message m and the detected message m given by

Pe = P[m^m] (4 . 1-2 )

Although the AWGN channel model seems very limiting, its study is beneficial

from two points of view. First, noise is the major type of corruption introduced by many
channels. Therefore isolating it from other channel impairments and studying its effect

results in better understanding of its effect on all communication systems. Second,

the AWGN channel, although very simple, is a good model for studying deep space

communication channels which were historically one of the first challenges encountered

by communication engineers.

We have seen in Chapter 3 that by using an orthonormal basis {<pj (

t

), 1 < j < AT
each signal sm (t) can be represented by a vector sm e RN . It was also shown in

Example 2.8-1 that any orthonormal basis can be used for expansion of a zero-mean

white Gaussian process, and the resulting coefficients of expansion will be iid zero-

mean Gaussian random variables with variance No/2. Therefore, {<fij(t), 1 < j < A},

when extended appropriately, can be used for expansion of the noise process n(t). This

observation prompts us to view the waveform channel r(t) = sm (t) + n(t) in the vector

form r = sm + n where all vectors are A-dimensional and components of n are iid

zero-mean Gaussian random variables with variance No/2. We will give a rigorous

proof of this equivalence in Section 4.2. We continue our analysis with the study of the

vector channel introduced above.

4.1-1 Optimal Detection for a General Vector Channel

The mathematical model for the AWGN vector channel is given by

r=sm +n (4.1-3)

where all vectors are A-dimensional real vectors. The message m is chosen according

to probabilities Pm from the set of possible messages { 1 , 2, . .
.

,

M }. The noise compo-

nents nj, 1 < j < A, are iid, zero-mean, Gaussian random variables each distributed

according to J\f(0, Aq/2). Therefore, the PDF of the noise vector n is given by

El 2

7 = 1 J

2<r 2 = e N°p{n) =
\frcNo VTTVo

(4.1-4)
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sm Channel r

P(^n)

FIGURE 4.1-2

A general vector channel.

We, however, study a more general vector channel model in this section which is

not limited to the AWGN channel model. This model will later be specialized to an

AWGN channel model in Section 4.2. In our model, vectors sm are selected from a set

of possible signal vectors {sm ,
1 < m < M } according to prior or a priori probabilities

Pm and transmitted over the channel. The received vector r depends statistically on the

transmitted vector through the conditional probability density functions p(r\sm ). The

channel model is shown in Figure 4.1-2.

The receiver observes r and based on this observation decides which message was

transmitted. Let us denote the decision function employed at the receiver by g(r), which

is a function from RN into the set of messages {1,2,..., M}. Now if g(r) = m, i.e.,

the receiver decides that m was transmitted, then the probability that this decision is

correct is the probability that m was in fact the transmitted message. In other words,

the probability of a correct decision, given that r is received, is given by

P [correct decision \r] = P [m sent|r] (4.1-5)

and therefore the probability of a correct decision is

P [correct decision] = J
P [correct decision \r ] p(r) dr

(4.1-6)

= / P [m sent \r ]p{r)dr

Our goal is to design an optimal detector that minimizes the error probability or,

equivalently, maximizes P [correct decision]. Since p{r) is nonnegative for all r, the

right-hand side of Equation 4.1-6 is maximized if for each r the quantity P [m \r] is

maximized. This means that the optimal detection rule is the one that upon observing

r decides in favor of the message m that maximizes P \m \r ]. In other words,

rh = gopt(r) = arg max P[m\r] (4. 1-7)
1 <m<M

The optimal detection scheme described in Equation 4.1-7 simply looks among all

P [m \r ] for 1 < m < M and selects the m that maximizes P [m \r ]. The detector then

declares this maximizing m as its best decision. Note that since transmitting message

m is equivalent to transmitting sm ,
the optimal decision rule can be written as

m = goptO) = arg max P [sm \r ] (4. 1-8)
1 <m<M

MAP and ML Receivers

The optimal decision rule given by Equations 4.1-7 and 4.1-8 is known as the max-

imum a posteriori probability rule, or MAP rule. Note that the MAP receiver can be
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simplified to

m — arg max
1<m<M

Pm PiV I

$m)

P(r )

(4.1-9)

and since p(r) is independent ofm and for all m remains the same, this is equivalent to

m = arg max Pm p(r\sm ) (4.1-10)
1 <m<M

Equation 4.1-10 is easier to use than Equation 4.1-7 since it is given in terms of the

prior probabilities Pm and the probabilistic description of the channel p(r\sm ), both

directly known.

In the case where the messages are equiprobable a priori, i.e., when Pm = for

all 1 < m < M
,
the optimal detection rule reduces to

m = arg max p(r\sm )

\<m<M
(4.1-11)

The term p(r\sm ) is called the likelihood of message ra, and the receiver given by

Equation 4.1-11 is called the maximum-likelihood receiver
,
or ML receiver. It is im-

portant to note that the ML detector is not an optimal detector unless the messages are

equiprobable. TheML detector, however, is a very popular detector since in many cases

having exact information about message probabilities is difficult.

The Decision Regions

Any detector—including MAP and ML detectors—partitions the output space RN into

M regions denoted by D
\ ,
D2 ,

. .
.

,

DM such that if r e Dm ,
then ra = g(r) = ra, i.e.,

the detector makes a decision in favor of ra. The region Dm ,
1 < m < M, is called

the decision region for message m; and Dm is the set of all outputs of the channel that

are mapped into message m by the detector. If a MAP detector is employed, then the

Dm '

s constitute the optimal decision regions resulting in the minimum possible error

probability. For a MAP detector we have

Dm = {r g Rn : P [m \r ] > P [m \r ], for all 1 < m' < M and m' ^ m} (4.1-12)

Note that if for some given r two or more messages achieve the maximum a posteriori

probability, we can arbitrarily assign r to one of the corresponding decision regions.

The Error Probability

To determine the error probability of a detection scheme, we note that when sm is trans-

mitted, an error occurs when the received r is not in Dm . The symbol error probability

of a receiver with decision regions {Dm ,
1 < m < M } is therefore given by

M
Pe = ^2 P"> P i D>n km sent]

m= 1

M

— ^ ^ Pm Pe\m

in= 1

(4.1-13)
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where Pe
\

m denotes the error probability when message m is transmitted and is given by

°e\

m

— / p(j*\Sm)dr
J Dfu

= I P(r \Sm)dr

1 <m'<M

(4.1-14)

Using Equation 4.1-14 in Equation 4.1-13 gives

M
r

Pe = ^2 Pm
/

P(r I

—

1

1 <rm > <r A4 ^ t),n
t

sm)dr

m= 1 1 <m'<M *

(4.1-15)

Equation 4. 1-15 gives the probability that an error occurs in transmission of a symbol or

a message and is called symbol errorprobability or message errorprobability. Another

type of error probability is the bit errorprobability. This error probability is denoted by

Pt and is the error probability in transmission of a single bit. Determining the bit error

probability in general requires detailed knowledge of how different bit sequences are

mapped to signal points. Therefore, in general finding the bit error probability is not easy

unless the constellation exhibits certain symmetry properties to make the derivation of

the bit error probability easy. We will see later in this chapter that orthogonal signaling

exhibits the required symmetry for calculation of the bit error probability. In other cases

we can bound the bit error probability by noting that a symbol error occurs when at

least one bit is in error, and the event of a symbol error is the union of the events of the

errors in the k = log
2
M bits representing that symbol. Therefore we can write

Pb < Pe < kPb (4.1-16)

or

log
2
M

< Ph< Pe (4.1-17)

example 4.1-1. Consider two equiprobable message signals S
\
= (0, 0) and $2 =

(1 ,
1). The channel adds iid noise components n\ and ni to the transmitted vector each

with an exponential PDF of the form

(e
n n > 0

p(" )
=

\0 ii < 0

Since the messages are equiprobable, the MAP detector is equivalent to the ML
detector, and the decision region D\ is given by

D, = {r e R2
: p(r|s0 > p(r|s 2)}

Noting that p(r\s = (s^
,
^2 )) = p(n = r — s), we have

D
x
= {r e K2

: p„(r x
,r2 ) > p„(r x

- 1 ,r2
-

1)}
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FIGURE 4.1-3

Decision regions D\ and D2 .

where

Pn(n u n 2 )

e nx ni n
\ ,
n 2 > 0

0 otherwise

From this relation we conclude that if either r\ or r2 is less than 1, then the point r

belongs to D\, and if both r\ and r2 are greater than 1, we have e~n
~ ri < g-Cn-O-fo-O

and r belongs to D2 .

Note that in this channel neither r\ nor r2 can be negative, because signal and noise

are always nonnegative. Therefore,

D2 = {r e M2
: r\ > 1, r2 > l}

and

D
i = {r e M2

: r\
,
r2 > 0, either 0<ri < Ior0<r2< 1

}

The decision regions are shown in Figure 4. 1-3. For this channel, when $2 is transmitted,

regardless of the value of noise components, r will always be in D2 and no error will

occur.

Errors will occur only when s
\
= (0, 0) is transmitted and the received vector

r belongs to D2 ,
i.e., when both noise components exceed 1. Therefore, the error

probability is given by

Pe — - P [r e D2 |si = (0, 0) sent]

I
noO POO

=
2

e
~Hl dn\ / e~ni dn 2

1 9= % 0.0068
2

Sufficient Statistics

Let us assume that at the receiver we have access to a vector r that can be written in

terms of two vectors r
i
and r 2 ,

i.e., r = (r i, r 2 ). We further assume that sm ,
r i, and

r 2 constitute a Markov chain in the given order, i.e.,

P(r u r 2 \sm ) = p(r
x
\sm )p(r 2 \rx) (4.1-18)
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Under these assumptions r 2 can be ignored in the detection of sm ,
and the detection

can be based only on r \ . The reason is that by Equation 4. 1-10

m — argmax Pm p(r\sm )

1 <m<M

= argmax Pm p(r u r2 \sm )

1 <m<M

= argmax P,„p{r
{
\sm )p(r 2 \r

y )

\<m<M

= argmax Pm p(r i
|sm )

1 <m<M

(4.1-19)

where in the last step we have ignored the positive factor p{r 2 \r{) since it does not

depend on m. This shows that the optimal detection can be based only on r \

.

When the Markov chain relation among sm ,
iq, and r 2 as given in Equa-

tion 4.1-18 is satisfied, it is said that #q is a sufficient statistic for detection of sm .

In such a case, when r 2 can be ignored without sacrificing the optimality of the re-

ceiver, r 2 is called irrelevant data or irrelevant information . Recognizing sufficient

statistics helps to reduce the complexity of the detection process through ignoring a

usually large amount of irrelevant data at the receiver.

example 4.1-2. Let us assume that in Example 4.1-1, in addition to r, the receiver

can observe rt\ as well. Therefore, we can assume that r = (#q, r 2 ) is available at the

receiver, where #q = (r\,n\) and r 2 = r2 . To design the optimal detector, we notice

that having access to both r\ and n\ uniquely determines sm \
at the receiver; and since

Aii = 0 and s2 \
= 1, this uniquely determines the message m, thus making r 2 = r2

irrelevant. The optimal decision rule in this case becomes

J
1 if r\ — n\ = 0

\2 if r\ — n\ = 1

(4.1-20)

and the resulting error probability is zero.

Preprocessing at the Receiver

Let us assume that the receiver applies an invertible operation G(-) on the received

vector r. In other words instead of supplying r to the detector, the receiver passes r

through G and supplies the detector with p = G(r), as shown in Figure 4.1-4.

Since G is invertible and the detector has access to p, it can apply G -1
to p to obtain

G~ l

(p) = G~ ] (G(r)) = r. The detector now has access to both p and r; therefore the

s,

FIGURE 4.1-4

Preprocessing at the receiver.



Chapter Four: Optimum Receivers for AWGN Channels 167

optimal detection rule is

m = argmax Pm p(r, p\sm )

1<m<M

- argmax Pm p{r\sm)p{p\r) (AA-2Y)
1 <m<M V J

= argmax Pm p(r\sm )

1<m<M

where we have used the fact that p is a function of r and hence, when r is given, p
does not depend on sm . From Equation 4. 1-21 it is clear that the optimal detector based

on the observation of p makes the same decision as the optimal detector based on the

observation of r . In other words, an invertible preprocessing of the received information

does not change the optimality of the receiver.

example 4.1-3. Let us assume the received vector is of the form

r = sm + n

where n is a nonwhite (colored) noise. Let us further assume that there exists an

invertible whitening operator denoted by matrix W such that v = Wn is a white

vector. Then we can consider

p — Wr = Wsm + v

which is equivalent to a channel with white noise for detection without degrading the

performance. The linear operation denoted by W is called a whitening filter.

4.2

WAVEFORM AND VECTOR AWGN CHANNELS

The waveform AWGN channel is described by the input-output relation

r(t) = sm (t) + n{t) (4.2-1)

where sm (t) is one of the possible M signals ^(t ), . .
.

,

sm(0}> eac^ selecte(3

with prior probability Pm and n(t ) is a zero-mean white Gaussian process with power

spectral density Let us assume that using the Gram-Schmidt procedure, we have

derived an orthonormal basis [<pj(t), 1 < j < N] for representation of the signals and,

using this set, the vector representation of the signals is given by {sm ,
1 < m < M}.

The noise process cannot be completely expanded in terms of the basis {(pjit)}
1

}.=l .

We decompose the noise process n(t) into two components. One component, denoted

by n\{t) is part of the noise process that can be expanded in terms of {0y (O}f= i>
i-e ->

the projection of the noise onto the space spanned by these basis functions; and the

other part, denoted by n2 (t ), is the part that cannot be expressed in terms of this basis

function. With this definition we have

N

Ml (0 = nj4>j(t ), where n

j

= (.n{t), <pj(t))

j=

i

(4.2-2)
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and

W2(0 — n (t) ~ 72
1 (0 (4.2-3)

Noting that

N

sm (t) = X] where = (sm (t), <f>j(t)) (4.2-4)

j=i

and using Equations 4.2-2 and 4.2-3, we can write Equation 4.2-1 as

N

r(t) = ^2(smj + n j)4>j(t) + n 2 (t) (4.2-5)

;=

i

By defining

rj = smj +nj (4.2-6)

where

rj = (
Sm (t ), 0/0) + (72(0, 0/0) = (SmiO + 72(0, 0/0) = (KO, 0/0) (4.2-7)

we have

N

r(0 = ^2 00/0 + « 2 (0 »
where r

j = (KO, 0j (0 ) (4.2-8)

;=

i

From Example 2.8-1 we know that 72/s are iid zero-mean Gaussian random variables

each with variance ^ . This result can also be directly shown, by noting that the 72/s

defined by

-1: 72(00/0 dt (4.2-9)

are linear combinations of the Gaussian random process 72 (0 ,
and therefore they are

Gaussian. Their mean is given by

E[nj\ =E n{t)(j)j{t)dt

E [/2(0] (pj(t)dt

= 0

(4.2-10)

where the last equality holds since 72(0 is zero-mean, i.e., E [tz(0] = 0.
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We can also find the covariance of n
t
and nj as

COY [riiHj] = E [riirij]
— E [n/]E [nj

= E

roo poo

n{t)(j)i{t) dt / n{s)(j)j{s)ds
J —co

E [n(t)n(s)] (/>i(t)</)j(s) dt ds
J —oo J —oo

= No
f°° \ [

2 7-00 [J-

=

y

r to
^ J —oo

S(t — s)(p[(t)dt 4>j(s) ds

No
- J 2

0

(s)4>j(s)ds

i = J

i + J

(4.2-11)

where we have used the facts that n
t
and nj are zero-mean, and since n(t) is white,

its autocorrelation function is ^<5(r). In the last step we applied the orthonormality of

[(pj(t)}. Equation 4.2-1 1 shows that for i / j, rii and nj are uncorrelated and since they

are Gaussian, they are independent as well. It also shows that each nj has a variance

equal to ^

.

Now we study the properties of /^(O- We first observe that since the nf s are

jointly Gaussian random variables, the process n\(t) is a Gaussian process and thus

ft 2(0 = n(t) — which is a linear combination of two jointly Gaussian processes,

is itself a Gaussian process. At any given t we have

COV [njn2(t)] = E [njri2(t)]

= E [njn(t)\ — E \rijn\(t)]

no

o

N

E n(t) / n(s)<j>j(s)ds
J -oo J

-E nj^rnfad)
i= 1

N0 f
00 N0

= Y J
~ s )<l>j(s ) ds - Y0y(O

N0

2
<A/(0

(4.2-12)

= 0

where we have used the fact that E [njrii] = 0, except when i = j, in which case

E [njrij] = No/2.

Equation 4.2-12 shows that ft2(0 is uncorrelated with all nf s, and since they are

jointly Gaussian, ri 2 (t) is independent of all nj ’s, and therefore it is independent of n
i
(t).

Since ri 2 (t) is independent of sm (t) and we conclude that in Equation 4.2-8,

the two components of r(t), namely, JY and ri 2 (t), are independent. Since the
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first component is the only component that carries the transmitted signal, and the sec-

ond component is independent of the first component, the second component cannot

provide any information about the transmitted signal and therefore has no effect in the

detection process and can be ignored without sacrificing the optimality of the detector.

In other words ri 2 {t) is irrelevant information for optimal detection.

From the above discussion it is clear that for the design of the optimal detector, the

AWGN waveform channel of the form

r(t) = sm {t ) + n(t), 1 <m < M (4.2-13)

is equivalent to the V-dimensional vector channel

r = sm +n, 1 <m < M (4.2-14)

4.2-1 Optimal Detection for the Vector AWGN Channel

The additive AWGN vector channel is the vector equivalent channel to the waveform
AWGN channel and is described by Equation 4.2-14 in which the components of the

noise vector are iid zero-mean Gaussian random variables with variance The joint

PDF of the noise vector is given by Equation 4. 1-4. The MAP detector for this channel

is given by

m = arg max [Pm p(r\sm )]

1 <m<M
= arg max Pm [pn (r

- sm )]

1 <m<M

= arg max
1 <m<M

1

(a)

arg max
1 <m<M L

Pm e~

VttTVo

II
i-s„,

II

2 '

N
N0

Cb

)

= arg max
1 <m<M

(c)= arg max
1 <m<M L

In P,„

No

I

r $

n

i%

= arg max
1 <m<M

id)= arg max
1 <m<M

— lnPm - - ||r -sm ||

2

N0 1/9
In P,n

—
2

(ll r l |

2 + \\
S

I1

No 1 „

2
In Pm -£m

2r s„

(g)= arg max [rj,„ + r sm ]

1 <m<M

(4.2-15)

where we have used the following steps in simplifying the expression:

(a): is a positive constant and can be dropped.

{b)\ ln(-) is an increasing function.
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(c)
: ^ is positive and multiplying by a positive number does not affect the result of

arg max.

(d) :
\\r

\\

2 was dropped since it does not depend on m and ||sm ||

2 = £m .

(e) : We have defined

Vm = Y In p,n -
\
£m (4.2-16)

as the bias term.

From Equation 4.2-15, it is clear that the optimal (MAP) decision rule for an

AWGN vector channel is given by

m = argmax[?7m +r • sm ]

1 <m<M

_No, p
t]m —

^
^

(4.2-17)

In the special case where the signals are equiprobable, i.e., Pm = 1/M for all ra,

this relation becomes somewhat simpler. In this case Equation 4.2-15 at step (c) can

be written as

m — arg max
1 <m<M

N0

T ln
2

= arg max [-||r - s,„||
2

]

1 <m<M
(4.2-18)

= arg min ||r - sm ||

1 <m<M

where we have used the fact that maximizing — \\r — sm ||

2
is equivalent to minimizing

its negative, i.e., ||r — sm ||

2
,
which is equivalent to minimizing its square root ||r — sm ||

.

A geometric interpretation of Equation 4.2-18 is particularly convenient. The re-

ceiver receives r and looks among all sm to find the one that is closest to r using standard

Euclidean distance. Such a detector is called a nearest-neighbor, or minimum-distance,

detector. Also note that in this case, since the signals are equiprobable, the MAP and the

ML detector coincide, and both are equivalent to the minimum-distance detector. In this

case the boundaries of decisions Dm and Dm / are the set of points that are equidistant

from sm and sm >, which is the perpendicular bisector of the line connecting these two

signal points. This boundary in general is a hyperplane. For the case of N = 2 the

boundary is a line, and for Af = 3 it is a plane. These hyperplanes completely deter-

mine the decision regions. An example of a two-dimensional constellation (N = 2)

with four signal points (M = 4) is shown in Figure 4.2-1. The solid lines denote the

boundaries of the decision regions which are the perpendicular bisectors of the dashed

lines connecting the signal points.

When the signals are both equiprobable and have equal energy, the bias terms

defined as rjm = ^ In Pm — ^£m are independent of m and can be dropped from

Equation 4.2-17. The optimal detection rule in this case reduces to

m = arg max r • sm
1<m<M

(4.2-19)
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FIGURE 4.2-1

The decision regions for equiprobable signaling.

In general, the decision region Dm is given as

Dm = {r e RN : r • sm + rjm > r • sm > + rjm ', for all 1 <m'<M and m' ^ m}
(4.2-20)

Note that each decision region is described in terms of at most M — 1 inequalities. In

some cases some of these inequalities are dominated by the others and are redundant.

Also note that each boundary is of the general form of

I* ’ (Sm Sm') '
> T]m (4.2-21)

which is the equation of a hyperplane. Therefore the boundaries of the decision regions

in general are hyperplanes.

From Equation 2.2-47, we know that

/

oo

r(t)sm (t)dt (4.2-22)
-OO

and

/
oo

s
2

m (t)dt (4.2-23)
-OO

Therefore, the optimal MAP detection rule in an AWGN channel can be written in the

form

m = arg max
1<m<M

No

2
In Pm + r(t)sm (t)dt

1

2
s
2

m {t)dt (4.2-24)
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and the ML detector has the following form:

m = arg max
1<m<M

r{t)sm {t)dt
1

2
s
2

m {t)dt
—OO

(4.2-25)

At this point it is convenient to introduce three metrics that we will use frequently

in the future. We define the distance metric as

D(r,sm ) r - s„

i:
Cr(t )

- sm {t)f dt
(4.2-26)

denoting the square of the Euclidean distance between r and sm . The modified distance

metric is defined as

D'(r,sm )
= —2r sm + ||sm ||

2
(4.2-27)

and is equal to the distance metric when the term ||r||
2

,
which does not depend on ra,

is removed. The correlation metric is defined as the negative of the modified distance

metric and is given by

C(r,sm ) = 2r -sm - ||sm ||

2

f°° f
00

, (4.2-28)
= 2 r{t)sm {t)dt — / s

2

n
(t)dt

J — OO 7—00

It is important to note that using the term metric is just for convenience. In general,

none of these quantities is a metric in a mathematical sense. With these definitions the

optimal detection rule (MAP rule) in general can be written as

m = arg max [A^ In Pm - D(r
,
sm )]

1 <m<M

= arg max [N0 In Pm + C(r, sm )]

1 <m<M

(4.2-29)

and the ML detection rule becomes

m = arg max C(r, sm )

1 <m<M
(4.2-30)

Optimal Detection for Binary Antipodal Signaling

In a binary antipodal signaling scheme s\(t) = s(t)ands2(t) = —s(t). The probabilities

of messages 1 and 2 are p and 1 — p, respectively. This is obviously a case with

Af = 1, and the vector representations of the two signals are just scalars with s\ = \J~ES

and S2 = where £s is energy in each signal and is equal to Following

Equation 4.2-20, the decision region D\ is given as

D
i ^£b > —r \f£b + -y ln(l - p) - ]d£b

}

= {r :r > rth }

(4.2-31)
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FIGURE 4.2-2

The decision regions for antipodal signaling.^2

0 "th ^

where the threshold rth is defined as

r
th

=
Np

(4.2-32)

The constellation and the decision regions are shown in Figure 4.2-2.

Note that as p -> 0, we have r
th

-> oo and the entire real line becomes D2 ;

and when p -> 1, the entire line becomes D\, as expected. Also note that when

p — i.e., when the messages are equiprobable, rth = 0 and the decision rule reduces

to a minimum-distance rule. To derive the error probability for this system, we use

Equation 4.1-15. This yields

Pe = y2 Pm E f P(r \
Sfn ) dr

ill— 1 1 <m <2
»>V'»

= p JD p
(
r 5 =

)
dr + (1 - p) p(r

I d2

/

Hh

p K

s = — v£h ) dr

s = \/Eb )
dr + (1 — p) P \r s = —\j£h ) dr (4.2-33)

= P P
( N0

2
M [\f£b,

—
)
< r

th + (1 - P)P

= pQ
\f£b

—
rth

+ (i -p)Q
rth + \fP~b

where in the last step we have used Equation 2.3-12. In the special case where p =
we have rth = 0 and the error probability simplifies to

Pe=Q (4.2-34)

Also note that since the system is binary, the error probability for each message is equal

to the bit error probability, i.e., Pb = Pe .

Error Probability for Equiprobable Binary Signaling Schemes

In this case the transmitter transmits one of the two equiprobable signals s\(t) and

£2(0 over the AWGN channel. Since the signals are equiprobable, the two decision

regions are separated by the perpendicular bisector of the line connecting s\ and 52 .

By symmetry, error probabilities when s\ or S 2 is transmitted are equal, therefore

Pb = P [error | sj sent]. The decision regions and the perpendicular bisector of the line

connecting si and $2 are shown in Figure 4.2-3.

Since we are assuming that s
1
is sent, an error occurs if r is in D2 ,

which means the

distance between the projection of r — s
1
on S 2 — s

1 ,
i.e., point A, from s

1
is larger than
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FIGURE 4.2-3

Decision regions for binary equiprobable signals.

where d\ 2
= ||$2 — s\

II-
Note that since s\ is sent, n = r — s 1? and the projection of

r — s
i
on S2 — s

\
becomes equal to

n
. Therefore, the error probability is given by

or

Pb = P
n • (s 2 -si)

d\2
>

d\2

~2 (4.2-35)

Ph = P n (s 2 — s 0 >
dl

12
(4.2-36)

We note that n • (52 — s
\ ) is a zero-mean Gaussian random variable with variance

;

therefore, using Equation 2.3-12, we obtain

Pb = Q

= Q

(4.2-37)

Equation 4.2-37 is very general and applies to all binary equiprobable signaling

systems regardless of the shape of the signals. Since <2(-) is a decreasing function, in

order to minimize the error probability, the distance between signal points has to be

maximized. The distance d\ 2 is obtained from

/

oo

— s2 (t ))
2
dt (4.2-38)

-00

In the special case that the binary signals are equiprobable and have equal energy,

i.e., when £
Sl = £Sl = £, we can expand Equation 4.2-38 and get

4 = 4 + £S1 - 2{S [(t), s2 (t)) = 2£(1 - p ) (4.2-39)

where p is the cross-correlation coefficient between sy(t) and s2 (t) defined in

Equation 2.1-25. Since —1 < p < 1, we observe from Equation 4.2-39 that the binary

signals are maximally separated when p = —
1, i.e., when the signals are antipodal. In

this case the error probability of the system is minimized.
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FIGURE 4.2-4

Signal constellation and decision regions for

equiprobable binary orthogonal signaling.

Optimal Detection for Binary Orthogonal Signaling

For binary orthogonal signals we have

Si(t)sj(t)dt
£

0

i = J

i + j

l<i,j <2 (4.2-40)

Note that since the system is binary, £b = £. Here we choose <pj(t) = for j = 1,2,

and the vector representations of the signal set become

s
i = (V£b, o)

x 2 = (o, Vffc)
(4.2-41)

The constellation and the optimal decision regions for the case of equiprobable signals

are shown in Figure 4.2-4.

For this signaling scheme it is clear that d = \j2£b and

Pb = Q (4.2-42)

Comparing this result with the error probability of binary antipodal signaling given in

Equation 4.2-34, we see that a binary orthogonal signaling requires twice the energy

per bit of a binary antipodal signaling system to provide the same error probability.

Therefore in terms of power efficiency, binary orthogonal signaling underperforms

binary antipodal signaling by a factor of 2, or equivalently by 3 dB.

The term

£b

Yb = Tf (4.2-43)
Wo

which appears in the expression for error probability of many signaling systems is

called the signal-to-noise ratio per bit
,
or SNR per bit

,
or simply the SNR of the

communication system. Plots of error probability as a function of SNR/bit for binary

antipodal and binary orthogonal signaling are shown in Figure 4.2-5. It is clear from

this figure that the plot for orthogonal signaling is the result of a 3-dB shift of the plot

for antipodal signaling.
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SNR per bit, yb (dB)

FIGURE 4.2-5

Error probability for binary antipodal and binary

orthogonal signaling.

4.2-2 Implementation of the Optimal Receiver for AWGN Channels

In this section we present different implementations of the optimal (MAP) receiver for

the AWGN channel. All these structures are equivalent in performance and result in

minimum error probability. The underlying relation that is implemented by all these

structures is Equation 4.2-17 which describes the MAP receiver for an AWGN channel.

The Correlation Receiver

An optimal receiver for the AWGN channel implements the MAP decision rule given

by Equation 4.2-44.

m = arg max [>?,„ + r • sm ], where )?,„ = ^ In Pm - ]-Sm (4.2-44)

However, the receiver has access to r(t) and not the vector r. The first step to implement

Equation 4.2-44 at the receiver is to derive r from the received signal r(t). Using the

relation

/

oo

r(t)<pj(t)dt (4.2-45)
-OO

the receiver multiplies r(t) by each basis function (/>j(t) and integrates the result to

find all components of r. In the next step it finds the inner product of r with each

sm , 1 < m < M, and finally adds the bias terms rjm and compares the results and

chooses the m that maximizes the result. Since the received signal r(t) is correlated

with each (pj(t), this implementation of the optimal receiver is called a correlation

receiver.

The structure of a correlation receiver is shown in Figure 4.2-6.
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FIGURE 4.2-6

The structure of a correlation receiver with N correlators.

Note that in Figure 4.2-6, rjm
9

s and sm
9

s are independent of the received signal

r(t)\ therefore they can be computed once and stored in a memory for later access. The

parts of this diagram that need constant computation are the correlators that compute

r • sm for 1 < m < M.
Another implementation of the optimal detector is possible by noting that the

optimal detection rule given in Equation 4.2-44 is equivalent to

f°°
" N0 1

m = argmax rjm + / r(t)sm (t)dt
,

where rjm = — In Pm £m
1 <m<M |_ 7-oo J 2 2

(4.2-46)

Therefore, r • sm can be directly found by correlation r(t) with sm (ty s. Figure 4.2-7

shows this implementation which is a second version of the correlation receiver.

Note that although the structure shown in Figure 4.2-7 looks simpler than the

structure shown in Figure 4.2-6, since in most cases N < M (and in fact N M ), the

correlation receiver of Figure 4.2-6 is usually the preferred implementation method.

The correlation receiver requires N or M correlators, i.e., multipliers followed

by integrators. We now present an alternative implementation of the optimal receiver

called the matched filter receiver.

The Matched Filter Receiver

In both correlation receiver implementations we compute quantities of the form

/

oo

r{t)x(t)dt (4.2-47)
-OO

where x(t ) is either fij(t) or sm (t). If we define h(t) = x(T — t), where T is arbitrary,

and consider a filter with impulse response h(t), this filter is called a filter matched to
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Output

decision

FIGURE 4.2-7

The structure of the correlation receiver with M correlators.

x(t), or a matched filter. If the input r(t) is applied to this filter, its output, denoted by

y(0, is the convolution of r(t) and h(t) and is given by

y(t) = r(t) h(t)

/
OO

r(z)h{t — z)dz
-oo

/

OO

r{z)x{T — t + z)dz

From Equation 4.2-48 it is clear that

/

oo

r{z)x{z)dz
-OO

(4.2-48)

(4.2-49)

In other words, the output of the correlator rx can be obtained by sampling the output

of the matched filter at time t = T. Note that the sampling has to be done exactly at

time t — T
,
where T is the arbitrary value used in the design of the matched filter. As

long as this condition is satisfied, the choice of T is irrelevant; however from a practical

point of view, T has to be selected in such a way that the resulting filters are causal;

i.e, we must have h(t) = 0 for t < 0. This puts a practical limit on possible values of

T. A matched filter implementation of the optimal receiver is shown in Figure 4.2-8.

Another matched filter implementation with M filters matched to 1 <
m < M }

similar to the correlation receiver shown in Figure 4.2-7 is also possible.

FrequencyDomain Interpretation ofthe Matched Filter The matched filter to any

signal s(t) has an interesting frequency-domain interpretation. Since h(t) = s(T — t),

the Fourier transform of this relationship, using the basic properties of the Fourier



180 Digital Communications

FIGURE 4.2-8

The structure of a matched filter receiver with N correlators,

transform, is

H(f) = S*{f)e~^ tT
(4.2-50)

We observe that the matched filter has a frequency response that is the complex conju-

gate of the transmitted signal spectrum multiplied by the phase factor e
~ j2rr^T

,
which

represents the sampling delay of T. In other words, \H(f)\ = |S(/)|, so that the mag-

nitude response of the matched filter is identical to the transmitted signal spectrum. On
the other hand, the phase of H(f) is the negative of the phase of S(f) shifted by 2nfT.

Another interesting property of the matched filter is its signal-to-noise maximizing

property. Let us assume that r(t) = s(t) + n(t) is passed through a filter with impulse

response hit) and frequency response //(/), and the output, denoted by y(t) = ys (t ) +
v(t), is sampled at some time T. The output consists of a signal part, y5 (f), whose

Fourier transform is H(f)S(f) and a noise part, v(t), whose power spectral density is

Jy|//(/)|
2

. Sampling these components at time T results in

ys(T)=
/

H(f)S(f)eWdt (4.2-51)
J—OO

and a zero-mean Gaussian noise component, v(T), whose variance is

VAR [v(T)] =y J" l

ff (/)l
2 df = Y Sh (4 '2_52)

where £/, is the energy in h(t). Now let us define the SNR at the output of the filter

H(f) as

yf(T)

VAR [v(7)]
SNR, (4.2-53)
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From the Cauchy-Schwartz inequality given in Equation 2.2-19, we have

/

oo

H(f)S(f)eWdt
-OO

/
OO poo

\H(f)\
2
df-

/
\S(f)eJ

2^T
\

2
df

-oo J —OO

= £h £s

with equality if and only if H(f) = aS*(f)e l2ntT for some complex constant a.

Using Equation 4.2-54 in 4.2-53, we conclude that

£s £u 2£sSNR» -U - ^ (4 -2-55)

This shows that the filter H(f) that maximizes the signal-to-noise ratio at its output

must satisfy the relation H(f) = S^(f)e~
j27T^ T

;
i.e., it is the matched filter. It also

shows that the maximum possible signal-to-noise ratio at the output is

example 4.2-1. M = 4 biorthogonal signals are constructed from the two orthogonal

signals shown in Figure 4.2-9(a) for transmitting information over an AWGN channel.

The noise is assumed to have zero mean and power spectral density Let us

determine the basis functions for this signal set, the impulse responses of the matched

filter demodulators, and the output waveforms of the matched filter demodulators when
the transmitted signal is s\(t).

FIGURE 4.2-9

Basis functions and matched filter response for Example 4.2-1

.
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The M = 4 biorthogonal signals have dimensions N = 2. Hence, two basis

functions are needed to represent the signals. From Figure 4.2-9(a), we choose <fi\(t)

and 02(0 as

01 (0 = I J2/T 0 < t < {T

1° otherwise

02(0 = <
f V2/7
\ „

\T <t <T
o otherwise

(4.2-56)

The impulse responses of the two matched filters are

hdt) II 1 II J
V2/T \T <t <T

1° otherwise

f VVT 0 <t <l.T
h 2 (t)

II1
(N

II

1
o otherwise

(4.2-57)

and are illustrated in Figure 4.2-9(b).

If s\(t) is transmitted, the (noise-free) responses of the two matched filters are as

shown in Figure 4.2-9(c). Since y\(t) and y2 (t) are sampled at t = T

,

we observe that

yis(T) = yj
\A 2T and y2s (T) = 0. Note that \A 2T = £, the signal energy. Hence,

the received vector formed from the two matched filter outputs at the sampling instant

t — T is

r — (n, r2 ) = (Ve + n\,n 2 ) (4.2-58)

where n\ = y\ n (T) and n 2 = y2n (T) are the noise components at the outputs of the

matched filters, given by

ykn(T)=
/

n{t)(j)k {t) dt ,
k= 1,2

Jo

Clearly, E [nk ] =E [ykn (T)] = 0. Their variance from Equation 4.2-52 is

A^o _ 1

VAR [nk ] = ^£(pk
= -N0

Observe that the SNR for the first matched filter is

(V£)
2

2£
SNR0

lN0 No

(4.2-59)

(4.2-60)

(4.2-61)

which agrees with our previous result.

4.2-3 A Union Bound on the Probability of Error of Maximum
Likelihood Detection

In general, to determine the error probability of a signaling scheme, we need to use

Equation 4. 1-13. In the special case where the messages are equiprobable, Pm = 1/M
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and maximum likelihood detection is optimal. The error probability in this case becomes

Pe
1

M
1

M

M
Pe\m

in— 1

MEE„
in— l

D
>

p{r\sm)dr

(4.2-62)

For an AWGN channel the decision regions are given by Equation 4.2-20. Therefore,

for AWGN channels we have

Pe \m = ^2 p{r\sm)dr

1 <m'<M D>"’

= E L Pn(r-sm )dr

r

E
llr-g,» ||

z

e N
° dr

(4.2-63)

For very few constellations, decision regions Dm > are regular enough that the integrals

in the last line of Equation 4.2-63 or Equation 4.2-62 can be computed in a closed

form. For most constellations (for example, look at Figure 4.2-1) these integrals cannot

be put in a closed form. In such cases it is convenient to have upper bounds for the error

probability. There exist many bounds on the error probability under ML detection. The

union bound is the simplest and most widely used bound which is quite tight particularly

at high signal-to-noise ratios.

We first derive the union bound for a general communication channel and then

study the AWGN channel as a special case. First we note that in general the decision

region Dm ' under ML detection can be expressed as

Dm > = {r e Rn : p{r\sm >) > p(r\s k ), for all 1 < k < M and k ^ m }
(4.2-64)

Let us define Dmm > as

An/n' = {p(r\sm ’) > p(r|sm )} (4.2-65)

Note that Dmm > is the decision region for m' in a binary equiprobable system with

signals sm and sm >. Comparing the definitions of Dm > and Dmm /, we obviously have

Dm' c Dmm > (4.2-66)

hence

/
p(r\sm)dr <

/
p{r\sm )dr (4.2-67)

J D,„f J Dmm'

Note that the right-hand side of this equation is the error probability of a binary

equiprobable system with signals sm and sm > when sm is transmitted. We define the
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pairwise error probability
,
denoted by Pm ->m ' as

fm-m' = /
p(r|sm )rfr

JD„UU >

From Equations 4.2-63 and 4.2-67 we have

Pe\m — ^ ^
p{r\sm)dr

! D,„
1 <m'<M

~ ^ ^
7^/72—>• /77

'

1 <m'<M
/»V'»

(4.2-68)

(4.2-69)

and from Equation 4.2-62 we conclude that

1
M

/
P(r \

sm)dr

'”V'»

, M
= — y y p,h

772=1 1 </7/'<M

;»V/»

(4.2-70)

Equations 4.2-70 is the union bound for a general communication channel.

In the special case of an AWGN channel, we know from Equation 4.2-37 that the

pairwise error probability is given by

= Pb = Q (4.2-71)

By using this result, Equation 4.2-70 becomes

y Q\\p^m y , l V 2No
772=1 1 <m <M \ »

u

in
f^m

M
<— y y- 2M ^ ^

d
/

_ nwr~
4yVn

772= 1 1 <m'<M
m 1

(4.2-72)

where in the last step we have used the upper bound on the 2 function given in

Equation 2.3-15 as

Q(x) < (4.2-73)

Equation 4.2-72 is the general form of the union bound for an AWGN channel. If

we know the distance structure of the constellation, we can further simplify this bound.
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Let us define T(X), the distance enumeratorfunction for a constellation, as

T(X) = Y xd'"m '

1

(4.2-74)

= Y ad X<l2

all distinct d’s

where ad denotes the number of ordered pairs (m, m') such that m ± m' and ||sm —
sm i

||
= d. Using this function, Equation 4.2-72 can be written as

Pe < —T(X)2M ’

_i_
*=, 4"o

Let us define dm \ n ,
the minimum distance of a constellation, as

(4.2-75)

dmin = min ||sm -sm -||

1

Since Q( ) is decreasing, we have

Q
2N0

< Q
w

rai

2N0

Substituting in Equation 4.2-70 results in

Pe <(M-l)Q
2N0

(4.2-76)

(4.2-77)

(4.2-78)

Equation 4.2-78 is a looser form of the union bound in terms of the Q function and

dm in which has a very simple form. Using the exponential bound for the Q function we
have the union bound in the simple form

M -
1

Pe < e 4yv° (4.2-79)

The union bound clearly shows that the minimum distance of a constellation has

an important impact on the performance of the communication system. A good con-

stellation should be designed such that, within the power and bandwidth constraints, it

provides the maximum possible minimum distance; i.e., the points in the constellation

should be maximally separated.

example 4.2-2. Let us consider the 16-QAM constellation shown in Figure 4.2-10.

We assume that the distance between any two adjacent points on the constellation is

dmin . From Equation 3.2-44 we have

/ 6 log9 M „
[%~

^min — Y
—~ ~ £bavg = y

“ ^bavg (4.2-80)

Close observation of this constellation shows that from a total of 16 x 15 = 240

possible distances between any two points in the constellation, 48 are equal to dm \n ,

36 are equal to dm \n , 32 are 2dm \n , 48 are V5 dm jn ,
16 are V8 dm \n , 16 are 3dm [n ,

24 are

VlOdmin, 16 are and finally 4 are +/T%dm \ n . Note that each line connecting
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FIGURE 4.2-10

16-QAM constellation.
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any two points in the constellation is counted twice. Therefore, the distance enumerator

function for this constellation is given by

T(X) = 48X rf2 +36X zd2 +32X4d2 +48X 5rf2 + \6X Sd2 + 16X
9</2 +24X 1(w2 + l6X Ud

2

+4X 18''
2

(4.2-81)

where for ease of notation we have substituted dmm by d. The union bound becomes

(4.2-82)

A looser, but simpler, form of the union bound is obtained in terms of dmm as

M — 1 15 2£bav8

Pe < —-— e «o = — e s«o (4.2-83)

where in the last step we have used Equation 4.2-80.

In the case when d^m is large compared to No, i.e., when SNR is large, the first

term is the dominating term in Equation 4.2-82. In this case we have

48 _in 3 2£bdvg

Pe
< — e 4/vo = - e 5N° (4.2-84)~ 32 2

v 7

It turns out that for this constellation it is possible to derive an exact expression for

the error probability (see Example 4.3-1), and the expression for the error probability

is given by

Pe = 3Q
4£bav,

5N0

(4.2-85)

Plots of the exact error probability and the upper bounds given by Equations 4.2-83

and 4.2-84 are shown in Figure 4.2-1 1.

A Lower Bound on the Probability of Error

In an equiprobable M-ary signaling scheme, the error probability is given by

Pe =
1

M
M

P [Error |

m

sent]

m= 1

l

M p{r\sm )dr

(4.2-86)
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FIGURE 4.2-11

Comparison of the exact error probability and two upper bounds for rectangular 16-QAM.

From Equation 4.2-66 we have D c

m ,m c D c

m \
hence,

M
Pe > — Ve — M Z—

^

M “ J D c
,

p(r\sm )dr

m=

1

M
= 77E P(r\sm )drM

m=l J° '

1 „ ( dmm > \

(4.2-87)

Equation 4.2-87 is valid for all m' / m. To derive the tightest lower bound, we
need to maximize the right-hand side. Therefore we can write

1
M

> —V max QM ^ y m'y^m
777= 1

dir,

V2No
(4.2-88)
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Since the Q function is a decreasing function of its variable, choosing m' that maximizes

Q is equivalent to finding m' such that dmm > is minimized. Hence,

P, >
1

M

M

m=

1

VV2No)

/ dm

E e 1 min
(4.2-89)

where denotes the distance from m to its nearest neighbor in the constellation, and

obviously > dm[n . Therefore,

q
( dmin \ > \Q ^ ^ere exists at least one signal at distance dmin from sm

Va/T/Vo/ ~ [0 otherwise

(4.2-90)

By using Equation 4.2-90, Equation 4.2-89 becomes

Pe > —M
1 <m<M

3m' lkm-s /||=

G (4.2-91)

Denoting by /Vn-m the number of the points in the constellation that are at the distance

from dmm from at least one other point in the constellation, we obtain

<4 -2-92>

From Equations 4.2-92 and 4.2-78, it is clear that

4.3

OPTIMAL DETECTION AND ERROR PROBABILITY
FOR BAND-LIMITED SIGNALING

In this section we study signaling schemes that are mainly characterized by their low

bandwidth requirements. These signaling schemes have low dimensionality which is

independent from the number of transmitted signals, and, as we will see, their power

efficiency decreases when the number of messages increases. This family of signaling

schemes includes ASK, PSK, and QAM.

4.3-1 Optimal Detection and Error Probability for ASK or PAM Signaling

The constellation for an ASK signaling scheme is shown in Figure 4.3-1. In this con-

stellation the minimum distance between any two points is dmm which is given by

Equation 3.2-22 as

121og2 M c

M2 — 1
bavg (4.3-1)
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FIGURE 4.3-1

- • •———•- The ASK constellation.

The constellation points are located at {± |r/min ,
dz|r/min ,

. .
.

,

We notice there exist two types of points in the ASK constellation. There

are M — 2 inner points and 2 outer points in the constellation. If an inner point is

transmitted, there will be an error in detection if \n\ > fdm\n . For the outer points, the

probability of error is one-half of the error probability of an inner point since noise can

cause error in only one direction. Let us denote the error probabilities of inner points

and outer points by Pei and Peo ,
respectively. Since n is a zero-mean Gaussian random

variable with variance f Nq, we have

Pei = P
I
^

I > 2
^min = 2Q (d^]

W2Vo7
and for the outer points

Peo
2
Pei Q (^m)

The symbol error probability is given by

1
M

Pe = — ^ P [error \m sent]

in= 1

2(M — 2)Q
1

M
2(M - 1)

dn

M

V2Vo

Q[ ~^=)1

V2Vo/

fe)
+22

( V2Vo

Substituting for dm jn from Equation 4.3-1 yields

(4.3-2)

(4.3-3)

(4.3-4)

6 lo§2 ^bavg

M2 -
1 ^Vo~

^2Q
6 lo§2 M ^bavg

M2 - 1 "A
o" for large M

(4.3-5)

Note that the average SNR/bit is scaled by . This factor goes to 0 as M
increases, which means that to keep the error probability constant as M increases, the

SNR/bit must increase. For large M, doubling M—which is equivalent to increasing

the transmission rate by 1 bit per transmission—would roughly need the SNR/bit to

quadruple, i.e., an increase of 6 dB, to keep the performance the same. In other words,

as a rule of thumb, for increasing the transmission rate by 1 bit, one would need 6 dB

more power.

Plots of the error probability of baseband PAM and ASK as a function of the

average SNR/bit for different values of M are given in Figure 4.3-2. It is clear that
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-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22

SNR per bit, yh
(dB)

FIGURE 4.3-2

Symbol error probability for baseband PAM and ASK.

increasing M deteriorates the performance, and for largeM the distance between curves

corresponding to M and 2M is roughly 6 dB.

4.3-2 Optimal Detection and Error Probability for PSK Signaling

The constellation for an M-ary PSK signaling is shown in Figure 4.3-3. In this con-

stellation the decision region Di is also shown. Note that since we are assuming the

messages are equiprobable, the decision regions are based on the minimum-distance

detection rule. By symmetry of the constellation, the error probability of the system is

equal to the error probability when s\ = (\/£, 0) is transmitted. The received vector r

is given by

r = (ru r2 ) = (V£ + n
x
,n 2 ) (4.3-6)
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FIGURE 4.3-3

The constellation for PSK signaling.

It is seen that r\ and r2 are independent Gaussian random variables with variance

a 2 = ^ No and means s/~£ and 0, respectively; hence

1

2

+>l

P(r i , r2 )
= —— e wo (4.3-7)
nN0

Since the decision region D\ can be more conveniently described using polar

coordinates, we introduce polar coordinates transformations of (n ,
r2 ) as

V = \/rf + rl

© = arctan —
r

1

from which the joint PDF of V and © can be derived as

D _ v
2+£-2sf£ ucos6>

Pv,e(v,6) = —— e N»

nNo

Integrating over v, we derive the marginal PDF of 0 as

Pe(0) =
noO

/ pv , e(v,6)dv
o

1

2n
e ~Y,

sin
2
0

v e

(4.3-8)

(4.3-9)

(4.3-10)
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FIGURE 4.3-4

The PDF of © for ys = 1 , 2, 4, and 10.

in which we have defined the symbol SNR or SNR per symbol as

S
ys = —

No
(4.3-11)

Figure 4.3-4 illustrates p@(6) for several values of ys . Note that p@(6) becomes nar-

rower and more peaked about 0 = 0 as ys increases.

The decision region D\ can be described as D\ = [6 : —jt/M < 0 < n/M};
therefore, the message error probability is given by

Pe= 1
-

j'TT /M

— 7T /M
p@(0)d0 (4.3-12)

In general, the integral of p@(9) does not reduce to a simple form and must be

evaluated numerically, except for M = 2 and M — 4.

For binary phase modulation, the two signals s\(t) and ^(0 are antipodal, and

hence the error probability is

2Sh

\y
No

Pb = Q (4.3-13)
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When M = 4, we have in effect two binary phase-modulation signals in phase quadra-

ture. Since there is no crosstalk or interference between the signals on the two quadrature

carriers, the bit error probability is identical to that in Equation 4.3-13. On the other

hand, the symbol error probability for M — 4 is determined by noting that

Pc = (1 - Pbf (4.3-14)

where Pc is the probability of a correct decision for the 2-bit symbol. Equation 4.3-14

follows from the statistical independence of the noise on the quadrature carriers. There-

fore, the symbol error probability for M = 4 is

Pe= 1 ~Pc

For M > 4, the symbol error probability Pe is obtained by numerically integrating

Equation 4.3-12. Figure 4.3-5 illustrates this error probability as a function of the SNR
per bit for M — 2, 4, 8, 16, and 32. The graphs clearly illustrate the penalty in SNR per

bit as M increases beyond M = 4. For example, at Pe = 10
-5

,
the difference between

M = 4 and M = 8 is approximately 4 dB, and the difference between M — 8 and

M = 16 is approximately 5 dB. For large values of M, doubling the number of phases

SNR per bit, yb (dB)

FIGURE 4.3-5

Probability of symbol error for PSK signals.
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requires an additional 6 dB/bit to achieve the same performance. This performance is

similar to the performance of ASK signaling discussed in Section 4.3-1

.

An approximation to the error probability for large values ofM and for large SNR
may be obtained by first approximating p@(0). For £/No 1 and \0\ < p@(0) is

well approximated as

p@(0)^ J^cosO e~ y^m29 (4.3-16)

By substituting for p®(6) in Equation 4.3-12 and performing the change in variable

from 6 to u = y sin 0, we find that

/

7t/M rrr

J— cosO e~ Ys s,n 6 dO
-71 /

M

V 7T

2

Isj2ys sin(7t/M)

e
11 du

= sin

(4.3-17)

= 2Q
( \ /

(2 log2
M)

7T \ £b

where we have used the definition of the SNR per bit as

£b_ _ £ _ Vs

Nq Nq log
2
M log

2
M (4.3-18)

Note that this approximation^ to the error probability is good for all values of M.
For example, when M = 2 and M — 4, we have Pe = 2Q(^/2yb ) which compares

favorably with the exact probabilities given by Equations 4.3-13 and 4.3-15.

For the case when M is large, we can use the approximation sin ^ to find

another approximation to error probability for large M as

Pe ^2Q
2tt 2 log2 M Eb

M
~

2 Yo
for large M (4.3-19)

From Equation 4.3-19 it is clear that doubling M reduces the effective SNR per bit

by 6 dB.

The equivalent bit error probability for M-ary PSK is rather tedious to derive due to

its dependence on the mapping of k -bit symbols into the corresponding signal phases.

When a Gray code is used in the mapping, two k -bit symbols corresponding to adjacent

signal phases differ in only a single bit. Since the most probable errors due to noise

result in the erroneous selection of an adjacent phase to the true phase, most /c-bit

tA better approximation of the error probability at low SNR is given in the paper by Lu et al (1999)
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symbol errors contain only a single-bit error. Hence, the equivalent bit error probability

for M-ary PSK is well approximated as

Pi (4.3-20)

Differentially Encoded PSK Signaling

Our treatment of the demodulation of PSK signals assumed that the demodulator had

a perfect estimate of the carrier phase available. In practice, however, the carrier phase

is extracted from the received signal by performing some nonlinear operation that

introduces a phase ambiguity. For example, in binary PSK, the signal is often squared in

order to remove the modulation, and the double-frequency component that is generated

is filtered and divided by 2 in frequency in order to extract an estimate of the carrier

frequency and phase 0. These operations result in a phase ambiguity of 180° in the

carrier phase. Similarly, in four-phase PSK, the received signal is raised to the fourth

power to remove the digital modulation, and the resulting fourth harmonic of the carrier

frequency is filtered and divided by 4 to extract the carrier component. These operations

yield a carrier frequency component containing the estimate of the carrier phase 0, but

there are phase ambiguities of ± 90° and 180° in the phase estimate. Consequently, we
do not have an absolute estimate of the carrier phase for demodulation.

The phase ambiguity problem resulting from the estimation of the carrier phase 0
can be overcome by encoding the information in phase differences between successive

signal transmissions as opposed to absolute phase encoding. For example, in binary

PSK, the information bit 1 may be transmitted by shifting the phase of the carrier by

180° relative to the previous carrier phase, while the information bit 0 is transmitted

by a zero phase shift relative to the phase in the previous signaling interval. In four-

phase PSK, the relative phase shifts between successive intervals are 0°, 90°, 180°,

and —90°, corresponding to the information bits 00, 01, 11, and 10, respectively. The

generalization to M phases is straightforward. The PSK signals resulting from the

encoding process are said to be differentially encoded. The encoding is performed by

a relatively simple logic circuit preceding the modulator.

Demodulation of the differentially encoded PSK signal is performed as described

above, by ignoring the phase ambiguities. Thus, the received signal is demodulated

and detected to one of the M possible transmitted phases in each signaling inter-

val. Following the detector is a relatively simple phase comparator that compares

the phases of the demodulated signal over two consecutive intervals to extract the

information.

Coherent demodulation of differentially encoded PSK results in a higher probability

of error than the error probability derived for absolute phase encoding. With differen-

tially encoded PSK, an error in the demodulated phase of the signal in any given interval

will usually result in decoding errors over two consecutive signaling intervals. This is

especially the case for error probabilities below 0.1. Therefore, the probability of error

in differentially encoded M-ary PSK is approximately twice the probability of error for

M-ary PSK with absolute phase encoding. However, this factor-of-2 increase in the

error probability translates into a relatively small loss in SNR.
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4.3-3 Optimal Detection and Error Probability for QAM Signaling

In optimal detection of QAM signals, we need two filters matched to

The output of the matched filters r = (n,r2 ) is used to compute C(r,sm )
=

2r • sm — £m ,
and the largest is selected. The resulting decision regions depend on

the constellation shape, and in general the error probability does not have a closed

form.

To determine the probability of error for QAM, we must specify the signal point

constellation. We begin with QAM signal sets that have M = 4 points. Figure 4.3-6

illustrates two four-point signal sets. The first is a four-phase modulated signal, and the

second is a QAM signal with two amplitude levels, labeled A
i
and A 2 ,

and four phases.

Because the probability of error is dominated by the minimum distance between pairs of

signal points, let us impose the condition that dmjn = 2A for both signal constellations

and let us evaluate the average transmitter power, based on the premise that all signal

points are equally probable. For the four-phase signal, we have

favg = 2A 2
(4.3-22)

For the two-amplitude, four-phase QAM, we place the points on circles of radii A and

>/3A. Thus, dmin = 2A, and

£avg = I [2(3A
2
) + 2A 2

]
= 2A 2

(4.3-23)

which is the same average power as the M = 4-phase signal constellation. Hence, for all

practical purposes, the error rate performance of the two signal sets is the same. In other

words, there is no advantage of the two-amplitude QAM signal set over M = 4-phase

modulation.

Next, let us consider M = 8-QAM. In this case, there are many possible signal

constellations. We shall consider the four signal constellations shown in Figure 4.3-7,

all of which consist of two amplitudes and have a minimum distance between signal

points of 2A. The coordinates (Amc ,
Ams ) for each signal point, normalized by A, are

given in the figure. Assuming that the signal points are equally probable, the average

d = 7/4 ?
+ Aj

FIGURE 4.3-6

Two four-point signal constellations.
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Four eight-point signal constellations.

transmitted signal energy is

1

Af

A
~M

M

Y (
Amc + Alu)

m= 1

M

Y (
amc + ams)

(4.3-24)

where (amc ,
ams ) are the coordinates of the signal points, normalized by A.

The two signal sets (a) and (c) in Figure 4.3-7 contain signal points that fall on a

rectangular grid and have £avg = 6A 2
. The signal set (b) requires an average transmitted

energy £avg = 6.83A 2
,
and (d) requires £avg = 4.13

A

2
. Therefore, the fourth signal set

requires approximately 1 dB less energy than the first two and 1.6 dB less energy than

the third, to achieve the same probability of error. This signal constellation is known

to be the best eight-point QAM constellation because it requires the least power for a

given minimum distance between signal points.

For M > 16, there are many more possibilities for selecting the QAM signal points

in two-dimensional space. For example, we may choose a circular multiamplitude

constellation for M = 16, as shown in Figure 3.2-4. In this case, the signal points at a

given amplitude level are phase-rotated by relative to the signal points at adjacent

amplitude levels. This 16-QAM constellation is a generalization of the optimum 8-QAM
constellation. However, the circular 16-QAM constellation is not the best 1 6-pointQAM
signal constellation for the AWGN channel.

Rectangular QAM signal constellations have the distinct advantage of being easily

generated as two PAM signals impressed on the in-phase and quadrature carriers. In

addition, they are easily demodulated. Although they are not the best M-ary QAM
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signal constellations for M > 16, the average transmitted power required to achieve

a given minimum distance is only slightly greater than the average power required for

the best M -ary QAM signal constellation. For these reasons, rectangular M-ary QAM
signals are most frequently used in practice.

In the special case where k is even and the constellation is square, it is possible to

derive an exact expression for the error probability. This particular case was previously

studied in Section 3.2-3 in Equations 3.2-42 to 3.2-44. In particular, the minimum
distance of this constellation is given by

^min —
1 6 log2 M
M - 1

(4.3-25)

Note that this constellation can be considered as twoVm

-

ary PAM constellations in

the in-phase and quadrature directions. An error occurs if either n
\
or /r 2 is large enough

to cause an error in one of the two PAM signals. The probability of a correct detection

for this QAM constellation is therefore the product of correct decision probabilities for

constituent PAM systems, i.e.,

resulting in

Pc,M-QAM ^c, a/m-PAM \
^e,y/~M -PAM (4.3-26)

e,M -QAM = 1-1 ~ Pe,s[M -PAM

~^e,VM -PAM M r^e,vTTPAM

re,VM-PAM 2
Q

in which we need to substitute dmm from Equation 4.3-25 to obtain

But, from Equation 4.3-4,

,
a/M-PAM = 21 —

1 3 l0g2 M £bavg

m -
1 "flo"

(4.3-27)

(4.3-28)

(4.3-29)

Substituting Equation 4.3-29 into Equation 4.3-27 yields

(4.3-30)
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SNR per bit, yb (dB)

FIGURE 4.3-8

Probability of a symbol error for QAM.

For large M and moderate to high SNR per bit, the upper bound given in Equa-

tion 4.3-30 is quite tight. Figure 4.3-8 illustrates plots of message error probabil-

ity ofM -ary QAM as a function of SNR per bit. Although Equation 4.3-30 is obtained

for square constellations, for large M it gives a good approximation for general QAM
constellations with M = 2k

points which are either in the shape of a square (when k

is even) or in the shape of a cross (when k is odd). These types of constellations are

illustrated in Figure 3.2-5.

Comparing the error performance of M -ary QAM with M -ary ASK and MPSK
given in Equations 4.3-5 and 4.3-19, respectively, we observe that unlike PAM and

PSK signaling in which in the penalty for increasing the rate was 6 dB/bit, in QAM
this penalty is 3 dB/bit. This shows that QAM is more power efficient compared

with PAM and PSK. The advantage of PSK is, however, its constant-envelope

properties.

example 4.3-1. QPSK can be considered as 4-QAM with a square constellation.

Using Equation 4.3-30 with M = 4, we obtain

(4.3-31)
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which is in agreement wit Equation 4.3-15. For 16-QAM with a rectangular constel-

lation we obtain

P\6 = 3Q
4 £bavg

5 ^T

<3 Q
4 ^bavg

5 “tyT

(4.3-32)

For nonrectangular QAM signal constellations, we may upper-bound the error

probability by use of the union bound as

Pm<(M-1)Q
2N0

(4.3-33)

where dmm is the minimum Euclidean distance of the constellation. This bound may be

loose when M is large. In such a case, we may approximate PM by replacing M — 1 by

Nmin, where Amin is the largest number of neighboring points that are at distance dmin

from any constellation point. More discussion on the performance of general QAM
signaling schemes is given in Section 4.7.

It is interesting to compare the performance of QAM with that of PSK for any

given signal size M, since both types of signals are two-dimensional. Recall that by

Equation 4.3-17, for M-ary PSK, the probability of a symbol error is approximated as

Pm ^ 2Q (4.3-34)

For M-ary QAM, we may use the expression 4.3-30. Since the error probability is

dominated by the argument of the Q function, we may simply compare the arguments

of Q for the two signal formats. Thus, the ratio of these two arguments is

3

1ZM = M — \

2 sin
2

(-57M J

(4.3-35)

For example, when M = 4, we have 1ZM = 1. Hence, 4-PSK and 4-QAM yield com-
parable performance for the same SNR per symbol. This was noted in Example 4.3-1.

On the other hand, when M > 4, we find that 1ZM > 1, so that M-ary QAM yields bet-

ter performance than M-ary PSK. Table 4.3-1 illustrates the SNR advantage of QAM
over PSK for several values of M. For example, we observe that 32-QAM has a 7-dB

SNR advantage over 32-PSK.

TABLE 4.3-1

SNR Advantage of M-ary
QAM over M-ary PSK

M 10 log IZm

8 1 65

16 4 20

32 7 02

64 9.95
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4.3-4 Demodulation and Detection

ASK, PSK, and QAM have one- or two-dimensional constellations with orthonormal

basis of the form

for PSK and QAM and

0.(0

(hit)

—g{t) cos 2jtfc t

g(t)sin 2nfc t

t'g

4>i(0 = g(t) cos 2nfc t

(4.3-36)

(4.3-37)

for ASK. The optimal detector in these systems requires filters matched to (j)\{t) and

02 (0 - Since both the received signal r(t) and the basis functions are high frequency

bandpass signals, the filtering process, if implemented in software, requires high sam-

pling rates.

To alleviate this requirement, we can first demodulate the received signal to obtain

its lowpass equivalent signal and then perform the detection on this signal. The process

of demodulation was previously discussed in Section 2.1-2 and the block diagram of

the demodulator is repeated in Figure 4.3-9.

cos 2irfQ t

Demodulator

(c)

FIGURE 4.3-9

Complex (a) and real (b) demodulators. A general representation for a demodulator is shown

in (c).
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It is important to note that the demodulation process is an invertible process. We
have seen in Section 4.1-1 that invertible preprocessing does not affect optimality

of the receiver. Therefore, the optimal detector designed for the demodulated signal

performs as well as the optimal detector designed for the bandpass signal. The benefit of

the demodulator-detector implementation is that in this structure the signal processing

required for the detection is done on the demodulated lowpass signal, thus reducing the

complexity of the receiver.

Recall from Equations 2.1-21 and 2.1-24 that £x = ^£Xj and (x(t), y(t)) =

^
Re [(jq(r), yi(t))]. From these relations the optimal detection rule

( No 1 „ \
m = arg max r • sm + — In Pm - -£m (4.3-38)

1 <m<M \ 2 2 /

can be written in the following lowpass equivalent form

m = arg max Re [r
t

• s m[ ] + N0 In Pm - -£ml
1 <m<M \ 2

(4.3-39)

or, equivalently,

m = arg max l Re / ri(t)s*nl (t) dt
1<m<M \ \_J —oo

The ML detection rule is obviously

m = arg max I Re / rj(t)s
n̂l

(t) dt
1<m<M \ L/-oo

1

+ No In Pm - -
/

\s,„i(t )\

2
dt

)
(4.3-40)

£ J —OO

2 J-r,

\sm i(t)\
2
dt (4.3-41)

Equations 4.3-39 to 4.3-41 are baseband detection rules after demodulation.

The implementation of Equations 4.3-39 to 4.3-41 can be done either in the form

of a correlation receiver or in the form of matched filters where the matched filters

are of the form s*
nl
(T — t ) or 0*

;
(T — t). Figure 4.3-10 shows the schematic diagram

for a complex matched filter, and Figure 4.3-1 1 illustrates the detailed structure of a

complex matched filter in terms of its in-phase and quadrature components. Note that

for ASK, PSK, and QAM we have sm i{t) = Am g(t), where Am is in general a complex

number (real for ASK). Therefore <p\(t) = git)/ ^/£~g serves as the basis function, and

the signal points are represented by complex numbers of the form Am Also note

that for PSK detection the last term in Equation 4.3-41 can be dropped.

Throughout this discussion we have assumed that the receiver has complete knowl-

edge of the carrier frequency and phase. This requires full synchronization between the

>7(0

t

Sml(T ~ t)

= T

-OO *

i _ aD
rl(t)smi(t) dt

FIGURE 4.3-10

Complex lowpass equivalent matched filter.
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[j

"

0

0

rfite'na® dt
]

[j*. ri(tK,(t) dt
]

FIGURE 4.3-11

Equivalent lowpass matched filter.

transmitter and the receiver. In Section 4.5 we will study the case where the carrier

generated at the receiver is not in phase coherence with the transmitter carrier.

4.4

OPTIMAL DETECTION AND ERROR PROBABILITY
FOR POWER-LIMITED SIGNALING

Orthogonal, biorthogonal, and simplex signaling is characterized by high dimensional

constellations. As we will see in this section, these signaling schemes are more power-

efficient but less bandwidth-efficient than ASK, PSK, and QAM. We begin our study

with orthogonal signaling and then extend our results to biorthogonal and simplex

signals.

4.4-1 Optimal Detection and Error Probability for Orthogonal Signaling

In an equal-energy orthogonal signaling scheme, N = M and the vector representation

of the signals is given by

Si = (VE,0,...,0)

s 2 = (o, Vs , . . . , 0)

Sm = (0, . .
. , 0, VS)

(4.4-1)
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For equiprobable, equal-energy orthogonal signals, the optimum detector selects

the signal resulting in the largest cross-correlation between the received vector r and

each of the M possible transmitted signal vectors {sm }, i.e.,

m = arg max r • sm (4.4-2)
1 <m<M

By symmetry of the constellation and by observing that the distance between any pair of

signal points in the constellation is equal toV2S, we conclude that the error probability

is independent of the transmitted signal. Therefore, to evaluate the probability of error,

we can suppose that the signal s
\

is transmitted. With this assumption, the received

signal vector is

r = (VS + n\, n 2 ,
ft 3 ,

. .
.

,

nM )
(4.4-3)

where VS denotes the symbol energy and n i, ft 2 ,
. .

.

,

nM are zero-mean, mutually

statistically independent Gaussian random variables with equal variance <j„ = 4 No

.

Let us define random variables Rm , 1 < m < M, as

Rm — r ‘ (4.4—4)

With this definition and from Equations 4.4-3 and 4.4-1, we have

R\ = £ + VSn\
r- (4-4-5)

Rm = VS nm ,
2 < m < M

Since we are assuming that s\ was transmitted, the detector makes a correct decision

if R
{ > Rm for m = 2, 3, . .

.

,

M. Therefore, the probability of a correct decision is

given by

Pc = P [R

\

> R2 ,
R

1 > R3 ,
. .

. ,
R\ > Rm \s\ sent]

= P VS + n\ > ri 2 ,
VS + n

\
> n^,

,
VS + n\ > tim si sent

(4.4-6)

Events VS + n\ > ri2, VS + n\ > n 3 ,
. .

.

,

VS+ n\ > nM are not independent due

to the existence of the random variable n\ in all of them. We can, however, condition

on n
1
to make these events independent. Therefore, we have

Pc= P
J —oo

ft 2 < n + Vs, ft 3 < ft + VS, . .
. ,
nM < ft + Vs

1\M~ 1

Si sent, n\ = n pni (n)dn

ft 2 < ft + Vs s
1
sent, ftj = ft

\ M — 1

J
pn ,(n)dn

(4.4-7)

where in the last step we have used the fact that nm ’s are iid random variables for

m = 2, 3, . .
.

,

M. We have

P ri 2 < n Si sent, ti\ = n = 1-2 (4.4-8)
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Hence,

Pc = I

'°°
1

—oo -n/ttTVo

M -

1

a
2

e~ 7Jo dn

and

Pe = l ~ Pc = [1 - (1 Q(x ))
M ~

']
e

(4.4-9)

(4.4-10)

where we have introduced a new variable x n+
-r^ •

In general, Equation 4.4- 1 0 cannot

be made simpler, and the error probability can be found numerically for different values

of the SNR.

In orthogonal signaling, due to the symmetry of the constellation, the probabilities

of receiving any of the messages m = 2, 3, . .
.

,

M, when s\ is transmitted, are equal.

Therefore, for any 2 < m < M,

P P
P[s

/72
received \sy sent] = — = ——^— (4.4-11)M — 1 2* — 1

Let us assume that s
y
corresponds to a data sequence of length k with a 0 at the first

component. The probability of an error at this component is the probability of detecting

an sm corresponding to a sequence with a 1 at the first component. Since there are 2k ~ x

such sequences, we have

Pb 2
k-\ Pe

2k - 1

2k~ l

2k -
1

Pe (4.4-12)

where the last approximation is valid for k y>> 1

.

The graphs of the probability of a binary digit error as a function of the SNR per

bit, Sb/No ,
are shown in Figure 4.4-1 for M —

2, 4, 8, 16, 32, and 64. This figure

illustrates that, by increasing the number M of waveforms, one can reduce the SNR
per bit required to achieve a given probability of a bit error. For example, to achieve

Pb
= 10

-5
,
the required SNR per bit is a little more than 12 dB for M = 2; but if M

is increased to 64 signal waveforms (k = 6 bits per symbol), the required SNR per

bit is approximately 6 dB. Thus, a savings of over 6 dB (a factor-of-4 reduction) is

realized in transmitter power (or energy) required to achieve Pb = 10
-5

by increasing

M from M = 2 to M = 64. This property is in direct contrast with the performance

characteristics of ASK, PSK, and QAM signaling, for which increasing M increases

the required power to achieve a given error probability.

Error Probability in FSK Signaling

From Equation 3.2-58 and the discussion following it, we have seen that FSK signaling

becomes a special case of orthogonal signaling when the frequency separation A/ is
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FIGURE 4.4-1

Probability of bit error for orthogonal signaling.

o

£
23

X
o
£

-4 0 4 8 12 16 20

SNR per bit, yh (dB)

given by

A/ = A (4-4-13)

for a positive integer /. For this value of frequency separation the error probability of

M-ary FSK is given by Equation 4.4-10.

Note that in the binary FSK signaling, a frequency separation that guarantees

orthogonality does not minimize the error probability. In Problem 4. 1 8 it is shown that

the error probability of binary FSK is minimized when the frequency separation is of

the form

0.715
A/ =— (4.4-14)

A Union Bound on the Probability of Error in Orthogonal Signaling

The union bound derived in Section 4.2-3 states that

M -
1

Pe
< —-

—

e “o (4.4-15)

In orthogonal signaling dm \ n = >/2£, therefore,

M —
1

Pe
< e 2N« < Me 2N« (4.4-16)
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Using M = 2k and £b = £/k, we have

Pe < 2
ke~^ = e-t(^“

2ln2
) (4.4-17)

It is clear from Equation 4.4-17 that if

£b— > 2 In 2 = 1.39 ~ 1.42 dB (4.4-18)
No

then Pe -> oo as k -> oo. In other words, if the SNR per bit exceeds 1.42 dB, then

reliable communication t is possible.

One can ask whether the condition SNR per bit > 1.42 dB is necessary, as well as

being sufficient, for reliable communication. We will see in Chapter 6 that this condition

is not necessary. We will show there that a necessary and sufficient condition for reliable

communication is

— > In 2 = 0.693 ~ -1.6dB (4.4-19)
No

Thus, reliable communication at SNR per bit lower than — 1.6 dB is impossible. The

reason that Equation 4.4-17 does not result in this tighter bound is that the union bound

is not tight enough at low SNRs. To obtain the —1.6 dB bound, more sophisticated

bounding techniques are required. By using these bounding techniques it can be shown

that

Pe<

-i(^- 21 " 2
) t >41n2

In 2 < < 4 In 2

(4.4-20)

The minimum value of SNR per bit needed for reliable communication, i.e., —1.6 dB,

is called the Shannon limit. We will discuss this topic and the notion of channel capacity

in greater detail in Chapter 6.

4.4-2 Optimal Detection and Error Probability for Biorthogonal Signaling

As indicated in Section 3.2-4, a set of M — 2k biorthogonal signals is constructed

from ^

M

orthogonal signals by including the negatives of the orthogonal signals.

Thus, we achieve a reduction in the complexity of the demodulator for the biorthogonal

signals relative to that for orthogonal signals, since the former is implemented with

^
M cross-correlators or matched filters, whereas the latter requires M matched filters,

or cross-correlators. In biorthogonal signaling N = ^M, and the vector representation

tWe say reliable communication is possible if we can make the error probability as small as desired
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for signals are given by

s\ = -s N+

1

= (VS, 0, . .
.

,

0)

S 2 = Sn+2 = (0, VS, • • • , 0)

(4.4-21)

S N = -S 2N = (0, • • • , 0, VS)

To evaluate the probability of error for the optimum detector, let us assume that the

signal s\ (t ) corresponding to the vector s
\
= (V~S, 0, . .

.

,

0) was transmitted. Then the

received signal vector is

r = (VS + n\, n 2 ,
. .

.

,

nN ) (4.4-22)

where the {nm }
are zero-mean, mutually statistically independent and identically dis-

tributed Gaussian random variables with variance Since all signals are

equiprobable and have equal energy, the optimum detector decides in favor of the

signal corresponding to the largest in magnitude of the cross-correlators

1

C(r, sm ) = r • sm ,
1 < m < -M (4.4-23)

while the sign of this largest term is used to decide whether sm (t) or —sm (t) was

transmitted. According to this decision rule, the probability of a correct decision is

equal to the probability that r\ = VS + n\ > 0 and r\ exceeds \rm \
= \nm \

for

m — 2, 3, ...
,

^M. But

P|>ml < n \r
!
> 0] =

1

V^No J-r

1

e~x2/No dx

V2jt J -

*o/2 _n ,

e 2 dx

/*0/2

(4.4-24)

Then the probability of a correct decision is

M/2-1

Pc =
V2jt J -

No/
~ e 2 dx

7*0/2

from which, upon substitution for p(r\), we obtain

1 / 1
rv+y/28/NQ

x
2 \ v

2

Pc = -
7= / I

—
7= / e~

x~ dx
j

e~
v~ dv

V2n J-^2s/n0 \ -J2n J -(u+V2£:/a/0 ) J

p(r \)dr
1

M/2-1

(4.4-25)

(4.4-26)

where we have used the PDF of r\ as a Gaussian random variable with mean equal to

VS and variance \Nq. Finally, the probability of a symbol error Pe = 1 — Pc . Pc ,
and

hence, Pe may be evaluated numerically for different values ofM from Equation 4.4-26.

The graph shown in Figure 4.4-2 illustrates Pe as a function of S^/No, where S = kSt>

,

for M = 2,4, 8, 16, and 32. We observe that this graph is similar to that for orthogonal

signals (see Figure 4.4-1). However, in this case, the probability of error for M = 4

is greater than that for M = 2. This is due to the fact that we have plotted the symbol
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SNR per bit, yb
(dB)

FIGURE 4.4-2

Probability of symbol error for biorthogonal

signals.

error probability Pe in Figure 4.4-2. If we plotted the equivalent bit error probability,

we should find that the graphs for M = 2 and M — 4 coincide. As in the case of

orthogonal signals, as M -> oo (or k -> oo), the minimum required Sb/No to achieve

an arbitrarily small probability of error is —1.6 dB, the Shannon limit.

4.4-3 Optimal Detection and Error Probability for Simplex Signaling

As we have seen in Section 3.2-4, simplex signals are obtained from a set of orthogonal

signals by shifting each signal by the average of the orthogonal signals. Since the signals

of an orthogonal signal are simply shifted by a constant vector to obtain the simplex

signals, the geometry of the simplex signal, i.e., the distance between signals and the

angle between lines joining signals, is exactly the same as that of the original orthogonal

signals. Therefore, the error probability of a set of simplex signals is given by the same

expression as the expression derived for orthogonal signals. However, since simplex

signals have a lower energy, as indicated by Equation 3.2-65 the energy in the expression

for error probability should be scaled accordingly. Therefore the expression for the error

probability in simplex signaling becomes

Pe= 1 - Pc = [1 - (1 Q(x))
m -

n

0 ->/ M -

1

%)
dx (4.4-27)

This indicates a relative gain of 10 log over orthogonal signaling. For M = 2, this

gain becomes 3 dB; for M = 10 it reduces to 0.46 dB; and as M becomes larger, it
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becomes negligible and the performance of orthogonal and simplex signals becomes

similar. Obviously, for simplex signals, similar to orthogonal and biorthogonal signals,

the error probability decreases as M increases.

4.5

OPTIMAL DETECTION IN PRESENCE OF UNCERTAINTY:
NONCOHERENT DETECTION

In the detection schemes we have studied so far, we made the implicit assumption that

the signals {sm (t), 1 < m < M} are available at the receiver. This assumption was in

the form of either the availability of the signals themselves or the availability of an

orthonormal basis [</>j(t), i <j< N}. Although in many communication systems this

assumption is valid, there are many cases in which we cannot make such an assumption.

One of the cases in which such an assumption is invalid occurs when transmission

over the channel introduces random changes to the signal as either a random attenuation

or a random phase shift. These situations will be studied in detail in Chapter 1 3 . Another

situation that results in imperfect knowledge of the signals at the receiver arises when the

transmitter and the receiver are not perfectly synchronized. In this case, although the

receiver knows the general shape of {sm (t)}, due to imperfect synchronization with

the transmitter, it can use only signals in the form of {sm (t — td )}, where td represents

the time slip between the transmitter and the receiver clocks. This time slip can be

modeled as a random variable.

To study the effect of random parameters of this type on the optimal receiver

design and performance, we consider the transmission of a set of signals over the

AWGN channel with some random parameter denoted by the random vector 0. We
assume that signals {sw (f), 1 < m < M} are transmitted, and the received signal r(t)

can be written as

r(t) = sm (t; 0 ) + n(t) (4.5-1)

where 0 is in general a vector-valued random variable. By the Karhunen-Loeve expan-

sion theorem discussed in Section 2.8-2, we can find an orthonormal basis for expansion

of the random process sm it ; 0) and by Example 2.8-1, the same orthonormal basis can

be used for expansion of the white Gaussian noise process n(t). By using this basis, the

waveform channel given in Equation 4.5-1 becomes equivalent to the vector channel

r = sm
,
e + n (4.5-2)

for which the optimal detection rule is given by

m = argmax Pm p(r\m)
1<m<M

= argmax Pm
1 <m<M

= argmax Pm I pn (r - sm<e)p{0)d0
1<m<M J

/
p(r\m, 0)p(0)d0

(4.5-3)
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Equation 4.5-3 represents the optimal decision rule and the resulting decision

regions. The minimum error probability, when the optimal detection rule of Equa-

tion 4.5-3 is employed, is given by

Pe p(r\m, 0)p(0)d0 dr

Pair - sm ,#)p(0)d0 dr

(4.5-4)

Equations 4.5-3 and 4.5-4 are quite general and can be used for all types of uncertainties

in channel parameters.

example 4.5-1. A binary antipodal signaling system with equiprobable signals

s\(t) = s(t) and ^(O = ~s{t) is used on an AWGN channel with noise power spectral

density of ^ . The channel introduces a random gain of A which can take only non-

negative values. In other words the channel does not invert the polarity of the signal.

This channel can be modeled as

r(t) = A sm (t) + n(t) (4.5-5)

where A is a random gain with PDF p(A) and p(A) = 0 for A <0. Using Equa-

tion 4.5-3, and noting that p(r\m, A) = pn (r — Asm ), D\, the optimal decision region

for s\(t) is given by

f
POO Q-A^) 2 POO (,+A^)2

D] =
:

J
e N

<> p(A)dA > J
e No p(A)dA

which simplifies to

D\
2 ' Ajrh _ 2iA s/W)

e N° — € N{) p(A)dA > 0

(4.5-6)

(4.5-7)

Since A takes only positive values, the expression inside the parentheses is positive if

and only if r > 0. Therefore,

D\ — [r : r > 0}

To compute the error probability, we have

p(A) dA

(4.5-8)

(4.5-9)
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where the expectation is taken with respect to A. For instance, if A takes values 2 and

1 with equal probability, then

Pb
2No

J

It is important to note that in this case the average received energy per bit is £bavg =

\£b -\- \{\£b )
=

§ £*• In Problem 6.29 we show that Pb > Q (

4.5-1 Noncoherent Detection of Carrier Modulated Signals

For carrier modulated signals, {sm (r), 1 < m < M} are bandpass signals with lowpass

equivalents {sm i(t), 1 < m < M\ where

sm {t) = Re [smi(t)e
j2nfJ

]
(4.5-10)

The AWGN channel model in general is given by

r(t) = sm (t - td ) + n(t) (4.5-11)

where td indicates the random time asynchronism between the clocks of the transmitter

and the receiver. It is clearly seen that the received random process r(t) is a function of

three random phenomena, the message m, which is selected with probability Pm ,
the

random variable td ,
and finally the random process n{t).

From Equations 4.5-10 and 4.5-1 1 we have

r(t) = Re [sml (t ~ td )e
i2^ i,

-
,“ )

}
+ n(t

)

(4.5-12)
= Re [s,„i(t - td )e~

,27lf‘
,‘l e

j27lf<1

}
+n(t)

Therefore, the lowpass equivalent of sm (

t

— td ) is equal to sm i(t — tci)e~
j2nfc td

. In practice

td Ts ,
where Ts is the symbol duration. This means that the effect of a time shift of

size td on smi(t) is negligible. However, the term e
~ j2nfitd can introduce a large phase

shift 0 = —2nfc tci because even small values of td are multiplied by large carrier

frequency fc ,
resulting in noticeable phase shifts. Since td is random and even small

values of td can cause large phase shifts that are folded modulo 2n, we can model 0 as

a random variable uniformly distributed between 0 and 2n . This model of the channel

and detection of signals under this assumption is called noncoherent detection.

From this discussion we conclude that in the noncoherent case

Re [n(t)e
j2nf

<'] = Re [(e J*sm ,(.t) + n,{t)) e
j2nf

^] (4.5-13)

or, in the baseband

r,{t) = e
Jlp

sml (t) + m(t) (4.5-14)

Note that by the discussion following Equation 2.9-14, the lowpass noise process ni(t)

is circular and its statistics are independent of any rotation; hence we can ignore the

effect of phase rotation on the noise component. For the phase coherent case where
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the receiver knows 0, it can compensate for it, and the lowpass equivalent channel will

have the familiar form of

ri(t) = smi(t) + n,(t) (4.5-15)

In the noncoherent case, the vector equivalent of Equation 4.5-15 is given by

ri = eJ*sm , + n, (4.5-16)

To design the optimal detector for the baseband vector channel of Equation 4.5-16,

we use the general formulation of the optimal detector given in Equation 4.5-3 as

m = arg max f p,tl (ri
- eJ<psmt )d(p (4.5-17)

1 <m<M 271 Jo

From Example 2.9-1 it is seen that ni(t) is a complex baseband random process with

power spectral density of 2No in the [-W, W] frequency band. The projections of this

process on an orthonormal basis will have complex iid zero-mean Gaussian components

with variance 2No (variance No per real and imaginary components). Therefore we can

write

m = arg max
1 <m<M

Pm 1

2tt (4nN0 )
N

f
2jT Pl~eJ*sm i\\

2

I
e 4No d(p

o

(4.5-18)

Expanding the exponent, dropping terms that do not depend on m, and noting that

||sm/ ||

2 = 2£m ,
we obtain

Pm f
2n

—1— Re[r/ e J<i> smA I,m = arg max — e 2/v
« / e 2No 1 1 ",/J

d(j)

1 <m<M 271 Jo

Pm -TIT f
27T

iirRehr, sm,)e~J* 1 , ,= arg max — e 2No / e 2No 1 J
d(j)

1 <m<M 271 Jo

= arg max — e~wo I ^2A^ Re ['
r/ s,,^ e Ji4>

d<p

1 <m<M 271 Jo

p F p 2tt
,rm \ri s,„i\ cos(d)-9)= arg max — e 2/v

« / e 2N
® d<p

1 <m<M 271 Jo

(4.5-19)

where 0 denotes the phase of • smp Note that the integrand in Equation 4.5-19 is a

periodic function of 0 with period 2n
,
and we are integrating over a complete period;

therefore 0 has no effect on the result. Using the relation

1 r
2n

Io(x) = — / e
xcos<l,

d4> (4.5-20)
2n Jo

where Io(x) is the modified Bessel function of the first kind and order zero, we obtain

_^l (\r
t
-sm i |m = arg max Pm e 2A,o /0

——

—

1 <m<M \ 2A/q
(4.5-21)
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In general, the decision rule given in Equation 4.5-21 cannot be made simpler.

However, in the case of equiprobable and equal-energy signals, the terms Pm and £m
can be ignored, and the optimal detection rule becomes

m = arg max Iq

1 <m<M

1

1
*

l
• Sm i |

2N0

(4.5-22)

Since for x > 0, Io(x) is an increasing function of x, the decision rule in this case

reduces to

m = arg max |r/ • sm i\

1 <m<M
(4.5-23)

From Equation 4.5-23 it is clear that an optimal noncoherent detector first demod-
ulates the received signal, using its nonsynchronized local oscillator, to obtain r/(r), the

lowpass equivalent of the received signal. It then correlates 77 (r) with all smi(ty s and

chooses the one that has the maximum absolute value, or envelope. This detector is

called an envelope detector. Note that Equation 4.5-23 can also be written as

m = arg max
1 <m<M

ri(t)s*d (t) dt (4.5-24)

The block diagram of an envelope detector is shown in Figure 4.5-1 . Detailed block

diagrams for the demodulator and the complex matched filters shown in this figure are

given in Figures 4.3-9 and 4.3-1 1, respectively.

/ = T

FIGURE 4.5-1

Block diagram of an envelope detector.
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4.5-2 Optimal Noncoherent Detection of FSK Modulated Signals

For equiprobable FSK signaling, the signals have equal energy and the optimal detection

rule is given by Equation 4.5-23. Assuming that frequency separation between signals

is A/, the FSK signals have the general form

sm (t) = g{t) cos (2nfc t + 271 (m — 1)Aft)
(4.5-25)

= Re
,

1 <m<M
Hence,

sml (t) = s(Oe
/2" (m- 1)A/ '

(4.5-26)

where g(t) is a rectangular pulse of duration Ts and £
g = 2£s ,

where £s denotes

the energy per transmitted symbol. At the receiver, the optimal noncoherent detector

correlates ri(t ) with sm >i(t) for all 1 < m' < M. Assuming sm (t) is transmitted, from

Equation 4.5-24 we have

(s„,i(t) + ni{t))s*n,,(t)dt

/
OO

ni(t)s*mn {t)dt
-OO

But

) Is J0

2£ rT'—
/ e

i2n{m -m)Af
' dt

Ts Jo

2£o 1 gj2n(m—m')/±.fTs |

Ts jln(m — m')Af

= 2Ss e
j7T{m -m ')AtT

'sinc [(m - m')AfT,]

(4.5-27)

(4.5-28)

From Equation 4.5-28 we see that if and only if A/ = J-
for some integer k, then

(,smi(t ), sm 'i(t)) = 0 for all in' / m. This is the condition of orthogonality for FSK
signals under noncoherent detection. For coherent detection, however, the detector

uses Equation 4.3-41, and for orthogonality we must have Re smq(t))] = 0.

But from Equation 3.2-58

Re
— oo

= 2£s cos (7r(m — in)AfTs )
sine [(m —

= 2£s sine [2(m — m')AfTs ]

m)AfTs

(4.5-29)

Obviously, the condition for orthogonality in this case is A/ = It is clear from the

above discussion that orthogonality under noncoherent detection guarantees orthogo-

nality under coherent detection, but not vice versa.
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The optimal noncoherent detection rule for FSK signaling follows the general rule

for noncoherent detection of equiprobable and equal-energy signals and is implemented

using an envelope or a square-law detector.

4.5-3 Error Probability of Orthogonal Signaling with Noncoherent Detection

Let us assume M equiprobable, equal-energy, carrier modulated orthogonal signals are

transmitted over an AWGN channel. These signals are noncoherently demodulated at

the receiver and and then optimally detected. For instance, in coherent detection of

orthogonal FSK signals we encounter a situation like this. The lowpass equivalent of

the signals can be written as M iV-dimensional vectors (N = M)

s u = {\/2£s , 0, 0, . .
. , 0)

s 2/ = (0, 0, . .
. , 0)

Smi = (
0

,
0 , . .

. ,
0 , y/2£s )

Because of the symmetry of the constellation, without loss of generality we can

assume that sj/ is transmitted. Therefore, the received vector will be

r, = « /0
si/ + n, (4.5-31)

where w/ is a complex circular zero-mean Gaussian random vector with variance of each

complex component equal to 2No (this follows from the result of Example 2.9-1). The
optimal receiver computes and compares |r/ • sm j |, for all 1 < m < M. This results in

\

r
i -Si/I = \2£,e]4, +m -5 U |

\ri 5m/ |

= \n, • sm /|, 2 < m < M
(4.5-32)

For 1 < m < M
, rii • sm i

is a circular zero-mean complex Gaussian random variable

with variance 4£s No (2£s No per real and imaginary parts). From Equation 4.5-32 it is

seen that

Re [r/ • su] ~ J\f(2£s cos0, 2£
s
Nq)

Im [r/ • s\j] ~ J\f(2£s sin0, 2£SN0 )

Re [r/ • sm i] ~ 2£s Nq), 2 < m < M
(4.5-33)

Im [r
t

• sm j] ~ 2£
S
N0 ), 2 < m < M

From the definition of Rayleigh and Ricean random variables given Chapter 2 in

Equations 2.3-42 and 2.3-55, we conclude that random variables Rm , 1 < m < M,
defined as

Rm — |G $ml I
j

1 < m < M (4.5-34)
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are independent random variables, R\ has a Ricean distribution with parameters s = 2£s

and a 2 = 2£SN0 ,
and Rm ,

2 < m < M, are Rayleigh random variables^ with parameter

a 2 — 2£s Nq. In other words,

PR,{r\)

0

n > o

otherwise

(4.5-35)

and

PR,„(rm )
= !^e 2^

o-

0

Tm > 0

otherwise

(4.5-36)

for 2 < m < M. Since by assumption s u is transmitted, a correct decision is made at the

receiver if R\ > Rm for 2 < m < M. Although random variables Rm for 1 < m < M
are statistically independent, the events R] > R2 ,

R\ > R 3 ,
• • ,

R\ > Rm &re not

independent due to the existence of the common R\. To make them independent, we
need to condition on R\ = r\ and then average over all values of r\. Therefore,

Pc = P [R2 < R\, R3 < Ru • • • , Rm < R\]

P [/?2 < ru R3 < ru . .
. ,
Rm < r

{
\R

{
= r

{ }p R[ {r
x
)dr

x ^
pOO

= (P [*2 PR^dn
JO

But

P[^2 < n] = / PR2
(r2)dr2

= 1 — e 2a2

Using the binomial expansion, we have

M—
1 M— 1

1 — e 2a 2
v- JM- 1\ U

Substituting into Equation 4.5-37, we obtain

M—\

pc = j2(-on

ii—0

M-

1

M - l\ f
00

ri /jrA '? +y2

/
e 2°'2 —

/

0 — e 2a 2 dr
{

n Jo a 1 \o 1
)

=
ii—0

M-

1

-
1

/r Jo

2" 2

(M— l\ »>
2

f
00 n /5Ti\ (,,+1 )'i+^+T

= E<-»
( „

)* -

l
dr

'

(4.5-38)

(4.5-39)

(4.5-40)

tTo be more precise, we have to note that 0 is itself a uniform random variable, therefore to obtain the PDF
of Rm ,

we need to first condition on 0 and then average with respect to the uniform PDF This, however,

does not change the final result stated above
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By introducing a change of variables

=
s/n + 1 (4.5-41)

r' = r\ y/n + 1

the integral in Equation 4.5-40 becomes

Jo g a z

('I+O^+TTTT
1 f°° r

1

dr\ =
n + 1 Jo o 2

1

,
r's'\ s*+, 12— /o (
—5-

I e 2a 2 dr
a l

(4.5-42)

n + 1

where in the last step we used the fact that the area under a Ricean PDF is equal to 1

.

2 4 <r 2 P
Substituting Equation 4.5-42 into Equation 4.5-40 and noting that

we obtain

M-

1

n—

0

til h
n + 1 l n )

Then the probability of a symbol error becomes

M-

1

(-1>

n= 1

n + 1

'

,?+1
/ M -

1

n

n log2 M

g /;+l Nq

(4.5-43)

(4.5-44)

For binary orthogonal signaling, including binary orthogonal FSK with noncoher-

ent detection, Equation 4.5-44 simplifies to

1

Pb = -e 2No (4.5-45)

Comparing this result with coherent detection of binary orthogonal signals for which

the error probability is given by

Pb (4.5-46)

and using the inequality Q(x) < \e *2/2
,
we conclude that P^noncoh £ P/?coh, as ex-

pected. For error probabilities less than 10
-4

,
the difference between the performance

of coherent and noncoherent detection of binary orthogonal is less than 0.8 dB.

For M > 2, we may compute the probability of a bit error by making use of the

relationship

Pb
2k~ l

Pe
2k — l

(4.5-47)

which was established in Section 4.4-1. Figure 4.5-2 shows the bit error probability

as a function of the SNR per bit for M = 2, 4, 8, 16, and 32. Just as in the case

of coherent detection of M -ary orthogonal signals (see Figure 4.4-1), we observe that

for any given bit error probability, the SNR per bit decreases as M increases. It will

be shown in Chapter 6 that, in the limit as M ^ oo (or k — log2 M oo), the
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FIGURE 4.5-2

Probability of a bit error for noncoherent

detection of orthogonal signals.

probability of a bit error Pt can be made arbitrarily small provided that the SNR per

bit is greater than the Shannon limit of —1.6 dB. The cost for increasing M is the

bandwidth required to transmit the signals. For M-ary FSK, the frequency separation

between adjacent frequencies is A/ = 1 /Ts for signal orthogonality. The bandwidth

required for the M signals is W = M A/ = M/Ts .

4.5-4 Probability of Error for Envelope Detection

of Correlated Binary Signals

In this section, we consider the performance of the envelope detector for binary,

equiprobable, and equal-energy correlated signals. When the two signals are corre-

lated, we have

{

2£s m = m'
m, in =1,2 (4.5-48)

2t
s p m^m

where p is the complex correlation between the lowpass equivalent signals. The detector

bases its decision on the envelopes \rj -s\i
|

and \r
t
-s 2 / 1, which are correlated (statistically

dependent). Assuming that s\(t) is transmitted, these envelopes are given by

^1 = k/ -*1/1 = |2£s e
l(p +m -S|/|

R2 = \n s 2/l = \2£spe
J,p + n t S 2i\

(4.5-49)
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We note that since we are interested in the magnitudes of 2£s e
](t) +#i/ • s u and 2£spe^ +

iti • S 2 / ,
the effect of e J(f) can be absorbed in the noise component which is circular, and

such a phase rotation would not affect its statistics. From above it is seen that R\ is

a Ricean random variable with parameters s\ = 2£s and a 2 = 2£s No ,
and R2 is a

Ricean random variable with parameters 52 = 2£s \p\ and cr2 = 2£S N$. These two

random variables are dependent since the signals are not orthogonal and hence noise

projections are statistically dependent.

Since R\ and R2 are statistically dependent, the probability of error may be obtained

by evaluating the double integral

Pb = P(R2 >R {
)= / p(x\, x2)dx\ dx2 (4.5-50)

J0 Jx
1

where p{x
1 ,
x2 ) is the joint PDF of the envelopes R\ and R2 . This approach was first

used by Helstrom (1955), who determined the joint PDF of R\ and R2 and evaluated

the double integral in Equation 4.5-50.

An alternative approach is based on the observation that the probability of error

may also be expressed as

Pb = P(R2 > Ri) = P{R 2

2
> R2

\)
= P{R\ - R 2 > 0) (4.5-51)

But R\ — R\ is a special case of a general quadratic form in complex-valued Gaussian

random variables, treated later in Appendix B. For the special case under consideration,

the derivation yields the error probability in the form

Pb = Q\(a,b) - ^e~
c±^~ I0(ab) (4.5-52)

where

(4.5-53)

and Q\(a, b) is the Marcum Q function defined in Equations 2.3-37 and 2.3-38 and

Io(x) is the modified Bessel function of order zero. Substituting Equation 4.5-53 into

Equation 4.5-52 yields

Pb = Q\(a,b)- (4.5-54)

The error probability Pt, is illustrated in Figure 4.5-3 for several values of |p|;

Pb is minimized when p = 0, that is, when the signals are orthogonal. For this case,

a = 0, b = y/£b/No, and Equation 4.5-54 reduces to
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SNR per bit, yb (dB)

FIGURE 4.5-3

Probability of error for noncoherent detection of binary FSK.

From the properties of Q\(a,b) in Equation 2.3-39, it follows that

Q\ 10 ,
(4.5-56)

Substitution of these relations into Equation 4.5-54 yields the desired result given

previously in Equation 4.5-45. On the other hand, when \p\
= 1, a = b = and

by using Equation 2.3-38 the error probability in Equation 4.5-52 becomes Pb = ^,

as expected.

4.5-5 Differential PSK (DPSK)

We have seen in Section 4.3-2 that in order to compensate for phase ambiguity of

which is a result of carrier tracking by phase-locked loops (PLLs), differentially

encoded PSK is used. In differentially encoded PSK, the information sequence deter-

mines the relative phase, or phase transition, between adjacent symbol intervals. Since

in differential PSK the information is in the phase transitions and not in the absolute

phase, the phase ambiguity from a PLL cancels between the two adjacent intervals and

will have no effect on the performance of the system. The performance of the system

is only slightly degraded due to the tendency of errors to occur in pairs, and the overall

error probability is twice the error probability of a PSK system.

A differentially encoded phase-modulated signal also allows another type of de-

modulation that does not require the estimation of the carrier phase. Therefore, this type

of demodulation/detection of differentially encoded PSK is classified as noncoherent

detection. Since the information is in the phase transition, we have to do the detection



222 Digital Communications

over a period of two symbols. The vector representation of the lowpass equivalent of

the rath signal over a period of two symbol intervals is given by

s,ni = (V^Ss V2£s e
jem

),
1 < m < M (4.5-57)

where 0m = is the phase transition corresponding to the mth message. When
sm i

is transmitted, the vector representation of the lowpass equivalent of the received

signal on the corresponding two-symbol period is given by

ri = (n r2 ) = (\f2£s V2£s e
jdm

)e J(t) + (n u n 2i ) ,
1 < m < M (4.5-58)

where n\i and n 2i
are two complex-valued, zero-mean, circular Gaussian random

variables each with variance 2Af0 (variance No for real and imaginary components)

and 0 is the random phase due to noncoherent detection. The key assumption in this

demodulation-detection scheme is that the phase offset 0 remains the same over ad-

jacent signaling periods. The optimal noncoherent receiver uses Equation 4.5-22 for

optimal detection. We have

ra = argmax
|n • smi \

1 <m<M
= arg max y^2£~

s |n + r2e~
Jd,u

|

1 <m<M
I -if) I

2= arg max
|

r\ + r2 e
J

|

1 <m<M
= argmax (|ri

|

2 + |r2 |

2 + 2Re [rj72e“'
;0

"'])

r 1
(4.5-59)

= arg max Re |r* r2e
1

\

1 <m<M
= argmax \r\r2 \

cos (Zr2 — Lr\ — 0m )

1 <m<M
= argmax cos (Zr2 — Lr\ — 6m )

1 <m<M
= arg min |Zr2 — Zri — 6m \

1 <m<M

Note that a = Lr2 — Lr\ is the phase difference of the received signal in two adjacent

intervals. The receiver computes this phase difference and compares it with 6m =
—

1) for all 1 < ra < M and selects the ra for which 6m is closest to a, thus

maximizing cos(a — 6m ). A differentially encoded PSK signal that uses this method for

demodulation detection is called differential PSK (DPSK). This method of detection

has lower complexity in comparison with coherent detection of PSK signals and can

be used in situations where the assumption that 0 remains constant over two-symbol

intervals is valid. As we see below, there is a performance penalty in employing this

detection method.

The block diagram for the DPSK receiver is illustrated in Figure 4.5-4. In this

block diagram g(t) represents the baseband pulse used for phase modulation, Ts is the

symbol interval, the block with the Z symbol is a phase detector, and the block with Ts

introduces a delay equal to the symbol interval T
s .

Performance of Binary DPSK In binary DPSK the phase difference between

adjacent symbols is either 0 or n
,
corresponding to a 0 or 1 . The two lowpass equivalent
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0i

FIGURE 4.5-4

The DPSK receiver.

signals are

s u = (V2£s V2£s )

S 2l — (V2£y ~
)

(4.5-60)

These two signals are noncoherently demodulated and detected using the general ap-

proach for optimal noncoherent detection. It is clear that the two signals are orthogonal

on an interval of length 2TS . Therefore, the error probability can be obtained from

the expression for the error probability of binary orthogonal signaling given in Equa-

tion 4.5-45. The difference is that the energy in each of the signals s\(t) and ^(f) is

2£s . This is seen easily from Equation 4.5-60 which shows that the energy in lowpass

equivalents is 4£s . Therefore,

Pb
1 2£ s

= - e 2/v«

2

1 _£b— — e No

2

(4.5-61)

This is the bit error probability for binary DPSK. Comparing this result with coherent

detection of BPSK where the error probability is given by

Pb = Q (4.5-62)
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FIGURE 4.5-5

Probability of error for binary PSK and DPSK.

SNR per bit, yh (dB)

we observe that by the inequality Q(x) < *2/2
,
we have

Pb , coh 5: ^"^noncoh (4.5—63)

as expected. This is similar to the result we previously had for coherent and noncoherent

detection of binary orthogonal FSK. Here again the difference between the performance

of BPSK with coherent detection and binary DPSK at high SNRs is less than 0.8 dB.

The plots given in Figure 4.5-5 compare the performance of coherently detected BPSK
with binary DPSK.

Performance ofDQPSK Differential QPSK is similar to binary DPSK, except that

the phase difference between adjacent symbol intervals depends on two information

bits (k = 2) and is equal to 0, y, n, and ^ for 00, 01, 11, and 10, respectively,

when Gray coding is employed. Assuming that the transmitted binary sequence is 00,

corresponding to a phase shift of zero in two adjacent intervals, the lowpass equivalent

of the received signal over two-symbol intervals with noncoherent demodulation is

given by

r\ = (n r2)=(\/2S~s \fl£i
~)eJ 0 + (n, n 2 ) (4.5-64)

where n\ and n 2 are independent, zero-mean, circular, complex Gaussian random vari-

ables each with variance 2No (variance No per real and complex components). The

optimal decision region for 00 is given by Equation 4.5-59 as

D00 = {#•/ : Re [r*

r

2 \
> Re[r*r2e

_^] , for m = 1, 2, 3
}

(4.5-65)
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where r
x = y/2£se^ +n i

and r2 — +J2£s e

^

-f n 2 . We note that r\r2 does not depend

on 0. The error probability is the probability that the received vector r/ does not belong

to Doo. As seen from Equation 4.5-65, this probability depends on the product of two

complex Gaussian random variables r* and r2 . A general form of this problem, where

general quadratic forms of complex Gaussian random variables are considered, is given

in Appendix B. Using the result of Appendix B we can show that the bit error probability

for DQPSK, when Gray coding is employed, is given by

Pb= Q\(a,b)~ ^I0(ab)e~
c±^L~

(4.5-66)

where Qi(a,b) is the Marcum Q function defined by Equations 2.3-37 and 2.3-38,

7o(jc) is the modified Bessel function of order zero, defined by Equations 2.3-32 to

2.3-34, and the parameters a and b are defined as

a

b

Figure 4.5-6 illustrates the probability of a binary digit error for two- and four-phase

DPSK and coherent PSK signaling obtained from evaluating the exact formulas derived

in this section. Since binary DPSK is only slightly inferior to binary PSK at large SNR,

2£b

\ No
1 \

—

2£b

\
Vo

(4.5-67)
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and DPSK does not require an elaborate method for estimating the carrier phase, it

is often used in digital communication systems. On the other hand, four-phase DPSK
is approximately 2.3 dB poorer in performance than four-phase PSK at large SNR.

Consequently the choice between these two four-phase systems is not as clear-cut. One
must weigh the 2.3-dB loss against the reduction in implementation complexity.

4.6

A COMPARISON OF DIGITAL SIGNALING METHODS

The digital modulation methods described in the previous sections can be compared

in a number of ways. For example, one can compare them on the basis of the SNR
required to achieve a specified probability of error. However, such a comparison would

not be very meaningful, unless it were made on the basis of some constraint, such as

a fixed data rate of transmission or, equivalently, on the basis of a fixed bandwidth.

We have already studied two major classes of signaling methods, i.e., bandwidth and

power-efficient signaling in Sections 4.3 and 4.4, respectively.

The criterion for power efficiency of a signaling scheme is the SNR per bit that

is required by that scheme to achieve a certain error probability. The error probability

that is usually considered for comparison of various signaling schemes is Pe = 10
-5

.

The yb = required by a signaling scheme to achieve an error probability of 10
-5

is

a criterion for power efficiency of that scheme. Systems requiring lower yb to achieve

this error probability are more power-efficient.

To measure the bandwidth efficiency, we define a parameter r, called the spectral

bit rate, or the bandwidth efficiency, as the ratio of bit rate of the signaling scheme to

the bandwidth of it, i.e.,

r — — b/s/Hz (4.6-1)W
A system with larger r is a more bandwidth-efficient system since it can transmit at a

higher bit rate in each hertz of bandwidth. The parameters r and yb defined above are

the two criteria we use for comparison of power and bandwidth efficiency of different

modulation schemes. Clearly, a good system is the one that at a given yb provides the

highest r, or at a given r requires the least yb .

The relation between yb and the error probability for individual systems was dis-

cussed in detail for different signaling schemes in the previous sections. From the

expressions for error probability of various systems derived earlier in this chapter, it is

easy to determine what yb is required to achieve an error probability of 10
-5

in each

system. In this section we discuss the relation between the bandwidth efficiency and

the main parameters of a given signaling scheme.

4.6-1 Bandwidth and Dimensionality

The sampling theorem states that in order to reconstruct a signal with bandwidth W,
we need to sample this signal at a rate of at least 2W samples per second. In other
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words, this signal has 2W degrees of freedom (dimensions) per second. Therefore,

the dimensionality of signals with bandwidth W and duration T is N = 2WT. Al-

though this intuitive reasoning is sufficient for our development, this statement is not

precise.

It is a well-known fact, that follows from the theory of entire functions, that the

only signal that is both time- and bandwidth-limited is the trivial signal x(t) = 0. All

other signals have either infinite bandwidth and/or infinite duration. In spite of this fact,

all practical signals are approximately time- and bandwidth-limited. Recall that a real

signal x(t) has an energy £x given by

/
OO poo

x\t)dt= \X(f)\
2
df (4.6-2)

-OO J — OO

Here we focus on time-limited signals that are nearly bandwidth-limited. We assume

that the support of x(t), i.e., where x(t) is nonzero, is the interval [-T/ 2, T/2]; and

we also assume that x(t) is /7-bandwidth-limited to W, i.e., we assume that at most

a fraction rj of the energy in x{t) is outside the frequency band [-W, W]. In other

words,

1 l>w

-W
\X(f)\

2 df> 1 -rj (4.6-3)

The dimensionality theorem stated below gives a precise account for the number

of dimensions of the space of such signals x(t).

The Dimensionality Theorem Consider the set of all signals x{t) with support

[-T/2, T/2\ that are /7-bandwidth-limited to W. Then there exists a set of N orthonor-

mal signals^ {(pj(t), 1 < j < N} with support [-T/2, T/2] such that x(t) can be

e -approximated by this set of orthonormal signals, i.e.,

1

s'*

I'

OO

— OO

N

x(t) ~ 07 (O>07 (O

j=

1

2

dt < € (4.6-4)

where e = 1 2/7 and N = [2WT + 1J.

From the dimensionality theorem we can see that the relation

N ^ 2WT (4.6-5)

is a good approximation to the dimensionality of the space of functions that are roughly

time-limited to T and band-limited to W .

The dimensionality theorem helps us to derive a relation between bandwidth and

dimensionality of a signaling scheme. If the set of signals in a signaling scheme consists

of M signals each with duration Ts ,
the signaling interval, and the approximate band-

width of the set of signals is W, the dimensionality of the signal space is N = 2WTS .

tSignals <pj(t) can be expressed in terms of the prolate spheroidal wave functions
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Using the relation R s = 1 / 7^, we have

W =
R,N

~Y~

Since R = Rs log2 M, we conclude that

W =
RN

2 log2 M

and

R 2 log2 M
W ~ N

(4.6-6)

(4.6-7)

(4.6-8)

This relation gives the bandwidth efficiency of a signaling scheme in terms of the

constellation size and the dimensionality of the constellation.

In one-dimensional modulation schemes (ASK and PAM), N = 1 and r =
21og

2
M. PAM and ASK can be transmitted as single-sideband (SSB) signals.

For two-dimensional signaling schemes such as QAM and MPSK, we have N = 2

and r = log
2
M. It is clear from the above discussion that in MASK, MPSK, and

MQAM signaling schemes the bandwidth efficiency increases as M increases. As we
have seen before in all these systems, the power efficiency decreases as M is increased.

Therefore, the size of constellation in these systems determines the tradeoff between

power and bandwidth efficiency. These systems are appropriate where we have limited

bandwidth and desire a bit rate-to-bandwidth ratio r > 1 and where there is sufficiently

high SNR to support increases in M. Telephone channels and digital microwave radio

channels are examples of such band-limited channels.

For M -ary orthogonal signaling, N = M and hence Equation 4.6-8 results in

2 log2 M
M (4.6-9)

Obviously in this case as M increases, the bandwidth efficiency decreases, and for

large M the system becomes very bandwidth-inefficient. Again as we had seen before

in orthogonal signaling, increasing M improves the power efficiency of the system,

and in fact this system is capable of achieving the Shannon limit as M increases. Here

again the tradeoff between bandwidth and power efficiency is clear. Consequently,

M -ary orthogonal signals are appropriate for power-limited channels that have suffi-

ciently large bandwidth to accommodate a large number of signals. One example of

such channels is the deep space communication channel.

We encounter the tradeoff between bandwidth and power efficiency in many com-
munication scenarios. Coding techniques treated in Chapters 7 and 8 study various

practical methods to achieve this tradeoff.

We will show in Chapter 6 that there exists a fundamental tradeoff between band-

width and power efficiency. This tradeoff between r and S^/Nq holds as Pe tends to
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zero and is given by (see Equation 6.5-49)

£b_
>

2r ~l
N0

>
r

(4.6-10)

Equation 4.6-10 gives the condition under which reliable communication is possi-

ble. This relation should hold for any any communication system. As r tends to 0 (band-

width becomes infinite), we can obtain the fundamental limit on the required Eb/No in

a communication system. This limit is the — 1.6 dB Shannon limit discussed before.

Figure 4.6-1 illustrates the graph of r = R/W versus SNR per bit for PAM, QAM,
PSK, and orthogonal signals, for the case in which the error probability is Pm = 10

-5
.

Shannon’s fundamental limit given by Equation 4.6-10 is also plotted in this figure.

Communication is, at least theoretically, possible at any point below this curve and is

impossible at points above it.

FIGURE 4.6-1

Comparison of several modulation schemes at Pe = 10
-5

symbol error probability.
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4.7

LATTICES AND CONSTELLATIONS BASED ON LATTICES

In band-limited channels, when the available SNR is large, large QAM constellations

are desirable to achieve high bandwidth efficiency. We have seen examples of QAM
constellations in Figures 3.2-4 and 3.2-5. Figure 3.2-5 is particularly interesting since

it has a useful grid-shaped repetitive pattern in two-dimensional space. Using such

repetitive patterns for designing constellations is a common practice. In this approach

to constellation design, a repetitive infinite grid of points and a boundary for the con-

stellation are selected. The constellation is then defined as the set of points of the

repetitive grid that are within the selected boundary. Lattices are mathematical struc-

tures that define the main properties of the repetitive grid of points used in constellation

design. In this section we study properties of lattices, boundaries, and the lattice-based

constellations.

4.7-1 An Introduction to Lattices

An n-dimensional lattice is defined as a discrete subset of R" that has a group structure

under ordinary vector addition. By having a group structure we mean that any two

lattice points can be added and the result is another lattice point, there exists a point in

the lattice denoted by 0 that when added to any lattice point x the result is x itself, and

for any jc there exists another point in the lattice, denoted by —x, that when added to

x results in 0.

With the lattice definition given above, it is clear that Z, the set of integers, is a one-

dimensional lattice. Moreover, for any a > 0, the set A = aZ is a one-dimensional lat-

tice. In the plane, Z2
,
the set of all points with integer coordinates, is a two-dimensional

lattice. Another example of a two-dimensional lattice, called the hexagonal lattice
,
is the

set of points shown in Figure 4.7-1 . These points can be written asa(l,0) + fc^,^^,
where a and b are integers. The hexagonal lattice is usually denoted by A2 .

In general, an n-dimensional lattice A can be defined in terms of n basis vectors

gi G R”, 1 < i < n, such that any lattice point x can be written as a linear combination

FIGURE 4.7-1

The two-dimensional hexagonal

lattice.
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of gi* s using integer coefficients. In other words, for any x e A,

n

x = J2a.g, (4.7-1)

;=i

where ai e Z for 1 < i < n. We can also define A in terms of an n x n generator

matrix
,
denoted by G, whose rows are {g t , 1 < i < n}. Since the basis vectors can be

selected differently, the generator matrix of a lattice is not unique. With this definition,

for any x e A,

x =aG (4.7-2)

where a e Zn
is an n-dimensional vector with integer components. Equation 4.7-2

states that any /r-dimensional lattice A can be viewed as a linear transformation of Zn

where the transformation is represented by matrix G. In particular, all one-dimensional

lattices can be represented as aZ for some a > 0.

The generator matrix of Z2
is / 2 ,

the 2 x 2 identity matrix. In general the generator

matrix of Zn
is I n . The generator matrix of the hexagonal lattice is given by

G =
"1

1
_2

O'

vT
2 _

(4.7-3)

Two lattices are called equivalent if one can be obtained from the other by a

rotation, reflection, scaling, or combination of these operations. Rotation and reflection

operations are represented by orthogonal matrices. Orthogonal matrices are matrices

whose columns constitute a set of orthonormal vectors. If A is an orthogonal matrix,

then AA 1 = A fA = I. In general, any operation of the form aG on the lattice, where

a > 0 and G is orthogonal, results in an equivalent lattice. For instance, the lattice with

the generator matrix

V2 •fl

2 2

V2 V2
(4.7-4)

is obtained from Z2 by a rotation of 45°; therefore it is equivalent to Z2
. Note that

GG 1 — /.If after rotation the resulting lattice is scaled by V2, the overall generator

matrix will be

G =
1

-1

1

1

(4.7-5)

This lattice is the set of points in Z2
for which the sum of the two coordinates is even.

This lattice is also equivalent to Z2
. Matrix G in Equation 4.7-5, which represents a

rotation of 45° and a scaling of V2, is usually denoted by R. Therefore, RZ2 denotes

the lattice of all integer coordinate points in the plane with an even sum of coordinates.

It can be easily verified that R 2Z2 = 2Z2
.

Translating (shifting) a lattice by a vector c is denoted by A + c, and the result, in

general, is not a lattice because under a general translation there is no guarantee that 0

will be a member of the translated lattice. However, if the translation vector is a lattice
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FIGURE 4.7-2

QAM constellation.

point, i.e., if c e A, then the result of translation is the original lattice. From this we
conclude that any point in the lattice is similar to any other point, in the sense that all

points of the lattice have the same number of lattice points at a given distance. Although

translation of a lattice is not a lattice in general, the result is congruent to the original

lattice with the same geometric properties. Translation of lattices is frequently used to

generate energy-efficient constellations. Note that the QAM constellations shown in

Figure 4.7-2 consist of points in a translated version of Z2 where the shift vector is

(|, |); i.e., the constellation points are subsets of Z2 + (|, ^).

In addition to rotation, reflection, scaling, and translation of lattices, we introduce

the notion of the M-fold Cartesian product of lattice A. The M-fold Cartesian product

of A is another lattice, denoted by AM
,
whose elements are (M/?)-dimensional vectors

(X\, X 2 , . •
. , Xm

)

where each Xj is in A. We observe that Zn
is the n-fold Cartesian

product of Z.

The minimum distance dm in (A) of a lattice A is the minimum Euclidean distance

between any two lattice points; and the kissing number
,
or the multiplicity

,
denoted by

A^min(A), is the number of points in the lattice that are at minimum distance from a

given lattice point. If /r-dimensional spheres with radius
^min

2

(A)
are centered at lattice

points, the kissing number is the number of spheres that touch one of these spheres. For

the hexagonal lattice dmin(A 2 )
= 1 and Ar

m in(A 2 )
= 6. For Z'\ we have dmin (

Z

n
)
= 1

and Nm -m(Z
n
)
= 2n. In this lattice the nearest neighbors of 0 are points with n — 1 zero

coordinates and one coordinate equal to ±1

.

The Voronoi region of a lattice point x is the set of all points in M'2
that are closer to

x than any other lattice point. The boundary of the Voronoi region of a lattice point x
consists of the perpendicular bisector hyperplanes of the line segments connecting x to

its nearest neighbors in the lattice. Therefore, a Voronoi region is a polyhedron bounded
by Amin(A) hyperplanes. The Voronoi region of the point 0 in the hexagonal lattice is

the hexagon shown in Figure 4.7-3. Since all points of the lattice have similar distances

from other lattice points, the Voronoi regions of all lattice points are congruent. In

addition, the Voronoi regions are disjoint and cover M71

;
hence the Voronoi regions of

a lattice induce a partition of M'\
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FIGURE 4.7-3

The Voronoi region in the hexagonal lattice.

Thtfundamental volume of a lattice is defined as the volume of the Voronoi region

of the lattice and is denoted by V{A ). Since there exists one lattice point per fundamental

volume, we can define the fundamental volume as the reciprocal of the number of lattice

points per unit volume. It can be shown (see the book by Conway and Sloane (1999))

that for any lattice

V(A) = |det(G)| (4.7-6)

We notice that V (Z" )
= 1 and V(A 2 )

=
Rotation, reflection, and translation do not change the fundamental volume, the

minimum distance, or the kissing number of a lattice. Scaling a lattice A with generator

matrix G by a > 0 results in a lattice aA with generator matrix aG, hence

V (aA) = Idet(o'G)! = ot
n V (A) (4.7-7)

The minimum distance of the scaled lattice is obviously scaled by a. The kissing

number of the scaled matrix is equal to the kissing number of the original lattice.

The Hermite parameter of a lattice is denoted by yc (A) and is defined as

Yc(A) = - in(A)
, (4.7-8)

[V(A)]»

This parameter has an important role in defining the coding gain of the lattice. It is

clear that yc(Z
w
)
= 1 and yc(A2 ) = ^ ^ 1.1547.

Since 1 / V (A) indicates the number of lattice points per unit volume, we conclude

that among lattices with a given minimum distance, those with a higher Hermite pa-

rameter are denser in the sense that they have more points per unit volume. In other

words, for a given dmm ,
a lattice with high yc packs more points in unit volume. This is

exactly what we need in constellation design since dm -m determines the error probability

and having more points per unit volume improves bandwidth efficiency. It is clear from

above that A2 can provide 15% higher coding gain than the integer lattice Z2
.

Some properties of yc (A) are listed below. The interested reader is referred to the

paper by Forney (1988) for details.

1. yc (A) is a dimensionless parameter.

2. yc (A) is invariant to scaling and orthogonal transformations (rotation and reflection).
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3. For all M, yc {A) is invariant to the M-fold Cartesian product extension of the lattice;

i.e., yc (

A

m
) = yc (A).

Multidimensional Lattices

Most lattice examples presented so far are one- or two-dimensional. We have also

introduced the /r-dimensional lattice Zn which is an n -fold Cartesian product of Z. In

designing efficient multidimensional constellations, sometimes it is necessary to use

lattices different from Zn
. We introduce some common multidimensional lattices in

this section.

We have already introduced the two-dimensional rotation and scaling matrix R as

R =
1

-1

1

1

This notion can be generalized to four dimensions as

R =

11 0

-1 1 0

0 0 1

0 0-1

O'

0

1

1

(4.7-9)

(4.7-10)

It is seen that R 2 = 2

/

4 . Extension of this notion from 4 to 2n dimensions is straightfor-

ward. As a result, for any 2n-dimensional lattice A we have R 2A = 2A. In particular

R 2Z4 = 2Z4
. Note that RZ4

is a lattice whose members are 4-tuples of integers in

which the sum of the first two coordinates and the sum of the last two coordinates are

even. Therefore RZ4
is a sublattice of Z4

. In general, a sublattice of A, denoted by

A '

,

is a subset of points in A that themselves constitute a lattice. In algebraic terms, a

sublattice is a subgroup of the original lattice.

We already know that V(Z2
) = 1. From Equation 4.7-6, we have V(RZ4

)
=

|

det(/?)| = 4. From this it is clear that one-quarter of the points in Z4 belong to RZ4
.

This can also be seen from the fact that only one-quarter of points in Z 11 have the sum of

the first and the last two components both even. Therefore, we conclude that Z4 can be

partitioned into four subsets that are all congruent to RZ4
. We will discuss the notion

of lattice partitioning and coset decomposition of lattices in Chapter 8 in the discussion

of coset codes.

Another example of a multidimensional lattice is the four-dimensional Schlafli

lattice denoted by Z)4 . One generator matrix for this lattice is

2 0 0 0
'

10 0 1

0 10 1

0 0 11
(4.7-11)

This lattice represents all 4-tuples with integer coordinates in which the sum of the four

coordinates is even, similar to RZ? in a plane. For this lattice V(D4 )
=

|

det(G)| = 2,

and the minimum distance is the distance between points (0, 0, 0, 0) and (1, 1, 0, 0),
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thus dmm(D4 )
= V2. It can be easily seen that the kissing number for this lattice is

Nmm(D4 )
= 24 and

Yc(D4 )
= dmi^D4

l = 2l = V2 « 1.414 (4.7-12)
[V(D4 )]» 2?

This shows that D4 is approximately 41% denser than Z4
.

Sphere Packing and Lattice Density

For any /2-dimensional lattice A, the set of /2-dimensional spheres of radius

centered at all lattice points constitutes a set of nonoverlapping spheres that cover a

fraction of the /2-dimensional space. A measure of denseness of a lattice is the fraction

of the /r-dimensional space covered by these spheres. The problem of packing the space

with /2-dimensional spheres such that the highest fraction of the space is covered, or

equivalently, packing as many possible spheres in a given volume of space, is called

the sphere packing problem.

In the one-dimensional space, all lattices are equivalent to Z and the sphere packing

problem becomes trivial. In this space, spheres are simply intervals of length 1 centered

at lattice points. These spheres cover the entire length, and therefore the fraction of the

space covered by these spheres is 1 .

In Problem 4.56, it is shown that the volume of an /2-dimensional sphere with radius

R is given by Vn (R) = Bn R
n

,
where

Bn

TV 2

G! + 1)

(4.7-13)

The gamma function is defined in Equation 2.3-22. In particular, note that from Equa-

tion 2.3-23 we have

T
(|) ! n even and positive

VF 3x1
n odd and positive

V 2 2

Substituting Equation 4.7-14 into 4.7-13 yields

(4.7-14)

Bn =

71 2

ip
n even

n odd

(4.7-15)

Therefore,

n 2

R n

V„(R) = |)!

n even

(4.7-16)
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FIGURE 4.7-4

The volume of an /r-dimensional sphere with radius 1

.

Clearly, Bn denotes the volume of an /^-dimensional sphere with radius 1. A plot of Bn

for different values of n is shown in Figure 4.7-4. It is interesting to note that for large

n the value of Bn goes to zero, and it has a maximum at n = 5.

The volume of the space that corresponds to each lattice point is V(A), the fun-

damental volume of the lattice. We define the density of a lattice A, denoted by A(A),

as the ratio of the volume of a sphere with radius
dmn

^
A)

to the fundamental volume of

the lattice. This ratio is the fraction of the space covered by the spheres of radius /̂min

2

(A)

and centered at lattice points. From this definition we have

A(A) =
V(A)

Bn f dm [n(A)

V (A)

Bn
(

4(A)
2" \ W(A) y

Bn ^ / A \

^7 rc'(A )

(4.7-17)

where we have used the definition of yc (A) given in Equation 4.7-8.

example 4.7-1. To obtain the density of Z2
,
we note that for this lattice n —

2,

dm [n = 1, and V(Z2
)
= 1 . Substituting in Equation 4.7-17, we obtain

A(Z") =
Bj

i f ^/min(A)

V (A)

1 \ 7T
= ,|- = 7 = 0.7854 (4.7-18)



Chapter Four: Optimum Receivers for AWGN Channels 237

For A 2 we have n = 2, dm jn

a (a 2 )
=

—

y =
V (A) V 2 )

This shows that A2 is denser than Z2
.

7T

V3 V2
2

1, and V(A 2 )
= ^ . Therefore,

2

2V3
= 0.9069 (4.7-19)

It can be shown that among all two-dimensional lattices, A2 has the highest density.

Therefore the hexagonal lattice provides the best sphere packing in the plane.

example 4.7-2. For D4, the Schlafli lattice, we have n = 4, dm \n(Df) = y/2, and and

V(Df) = 2. Therefore,

A(A 2 )
=

F(A)

^min(A)

2
— = 0.6169
16

(4.7-20)

4.7-2 Signal Constellations from Lattices

A signal constellation C can be carved from a lattice by choosing the points of a

lattice, or a shifted version of it, that are within some region 1Z. The signal points

are therefore the intersection of the lattice points, or its shift, and region 1Z, i.e.,

C(A, 1Z) = (A + a) fl 1Z, where a denotes a possible shift in lattice points. For

instance, in Figure 4.7-2, the points of the constellation belong to Z2 + Q, |), and

the region 1Z is either a square or a cross-shaped region depending on the constella-

tion size. For M — 4, 16, 64, 1Z is a square; and for M = 8, 32 it has a cross shape.

The constellation size M is the number of lattice (or shifted lattice) points within the

boundary. Since V (A) is the reciprocal of the number of lattice points per unit volume,

we conclude that if the volume of the region 1Z, denoted by V(1Z), is much larger than

V(A), then

V(7Z)M ss —A (4.7-21)
V(A)

The average energy of a constellation with equiprobable messages is

1
M

5*vg = ^£ Hx-J
2

(4-7-22)

m— 1

For a large constellation we can use the continuous approximation by assuming that the

probability is uniformly distributed on the region 1Z, and by finding the second moment

of the region as

OT) = 77^7 [ Wxfdx (4.7-23)
V (7v) Jn

For large values of M, £(1Z) is quite close to £avg . Table 4.7-1 gives values of £(JZ) and

£avg for M = 16, 64, 256 for a square constellation. The last column of this table gives

the relative error in substituting the average energy with the continuous approximation.
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TABLE 4.7-1

Average Energy and Its Continuous Approximation

for Square Constellations

M ^avg sm SOD

5 8
16 0 06

2 3

21 32
64 0.015~2 T

85 128
256 0 004~2 ~Y

To be able to compare an n-dimensional constellation C with QAM, we define the

average energy per two dimensions as

Wd(O = -£avg = 52 \\xm II

2
(4.7-24)

n nM “
meC

Using the continuous approximation, the average energy per two dimensions can be

well approximated by

£mS/2D* [ \\xfdx (4.7-25)
nV(7Z) Jn

Error Probability and Constellation Figure of Merit

In a lattice-based constellation, each signal point has Nmjn nearest neighbors; therefore

at high SNRs we have

Pe ^ Nmin Q (4.7-26)

An efficient constellation provides large dimn at a given average energy. To study and

compare the efficiency of different constellations, we express the error probability as

Pe N
]min Q /

<^avg/2D

y
2^avg/2D N0

(4.7-27)

The term
Sav

^
D

represents the average SNR per two dimensions and is denoted by

SNRavg/2D. The numerator ofSNRavg/2D is the average signal energy per two dimensions,

and its denominator is the noise power per two dimensions. Ifwe define the constellation

figure ofmerit (CFM) as

CFM(C) = 4in(Q

^avg/2D(C)
(4.7-28)
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where £avg/2D(C) is given by Equation 4.7-24, we can express the error probability from

Equation 4.7-27 as

Nmin Q
ICFM(C) Siavg/2D

"VT
= tynin Q

ICFM(C)
• SNR

;•avg/2D

(4.7-29)

Clearly the constellation figure of merit determines the coefficient by which the £avg/2D(0
is scaled in the expression of error probability.

For a square QAM constellation from Equation 3.2-41 we have

j2 _ 6£avg

M - 1

(4.7-30)

Therefore,

CFM = (4.7-31)

Note that from Equation 4.3-30 we have

Pe*4Q
^avg

N0

= 4Q
CFM £avg
"~2~"

N0

(4.7-32)

which is in agreement with Equation 4.7-29. Also note that in a square QAM constel-

lation, for large M we can write

6 6
CFM ss — = — (4.7-33)M 2*

where k denotes the number of bits per two dimensions.

Coding and Shaping Gains

In Problem 4.57 we consider a constellation C based on the intersection of the shifted

lattice Z'
7 + Q, . .

.

,

and the boundary region 1Z defined as an /r-dimensional

hypercube centered at the origin with side length L. In this problem it is shown that

when n is even, and L = 2 e
is a power of 2, the number of bits per two dimensions,

denoted by {}, is equal to 21 + 2, and CFM(C) is approximated by

CFM(C) * A (4.7-34)

which is equal to what we obtained for a square QAM. Since the Zn with the cubic

boundary is the simplest possible n-dimensional constellation, its CFM is taken as the

baseline CFM to which the CFMs of other constellations are compared. This base-

line constellation figure of merit is denoted by CFMo. Note that in an /r-dimensional

constellation of size M, the number of bits per two dimensions is

P = - log
2
M

n
(4.7-35)
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Hence,

2^ =

From this and Equation 4.7-21, we have

'VW1"
_V(A)_

(4.7-36)

(4.7-37)

Using this result in Equation 4.7-34 gives the value of the baseline constellation figure

of merit as

CFM0 = f 6
~V(A)]”

.
F (7?-)_

From Equations 4.7-28 and 4.7-38 we have

CFM(Q ^ djm
^ ;;

[V{U)V<

cfm0 [V(a)]» 6£:avg/2D

(4.7-38)

(4.7-39)

Now we define the shaping gain of region 1Z as

YsOZ) =
6^-avg/2D

n[V(7^] 1+ ;

12 ||x||
2
rfx

n

(4.7-40)

where in the last step we used Equation 4.7-25. It can be shown that the shaping gain

is independent of scaling and orthogonal transformations of the region 1Z. It can also

be shown that ys (
1Z
M

)
= ys (7Z), where 1Z

M
denotes the M-fold Cartesian product of

the boundary region 1Z. From these, and the properties of yc (A), it is clear that scaling,

orthogonal transformation, and Cartesian product of A and 7Z have no effect on the

figure of merit of the constellation based on A and 7Z.

From Equation 4.7-39 we have

CFM(C) * CFM0 • yc (A) • ys (7Z) (4.7-41)

This relation shows that the relative gain of a given constellation over the baseline

constellation can be viewed as the product of two independent terms, namely, the fun-

damental coding gain ofthe lattice
,
denoted by yc(A) and given by Equation 4.7-8, and

the shaping gain ofregion 1Z
,
denoted by ys ('TZ) and given in Equation 4.7-40. The fun-

damental coding gain depends on the choice of the lattice. Choosing a dense lattice with

high coding gain that provides large minimum distance per unit volume, or, equivalently,

requires low volume for a given minimum distance, is highly desirable and improves the

performance. Similarly, the shaping gain depends only on the choice of the boundary of

the constellation, and choosing a region 7Z with high shaping gain improves the power

efficiency of the constellation and results in improved performance of the system.

In Problem 4.57 it is shown that if 7Z is an /r-dimensional hypercube centered at

the origin, then ys {lZ) = 1.
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example 4.7-3. For a circle of radius r, we have V(7Z) = nr 2 and

Therefore,

JJ
(x

2 + y
2
) dx dy

x 2+y 2 <r 2

n r

z
2 zdzdO

IT
4— r

2

Ys(K) =
n[V(1Z)]

l + T

12 f \\x\\
2 dx

Jn
2(tt r

2
)

2

67rr 4

- % 1.0472 - 0.2 dB

(4.7-42)

(4.7-43)

Recall that yc(A 2 ) ~ 1.1547 ~ 0.62 dB; therefore a hexagonal constellation with a

circular boundary is capable of providing an asymptotic overall gain of 0.82 dB over

the baseline constellation.

example 4.7-4. As a generalization of Example 4.7-3
,
let us consider the case where

1Z is an n -dimensional sphere of radius R and centered at the origin. In this case

\\x\\
l dx =

m
r
2 dVn {r)

r
2 d(Bn r")

/o

Bn /
nr

1l+x
dr

Jo

n /?+2

n + 2
-R

n

n “F 2
R 2

Vn(R)

Substituting this result into Equation 4.7-40 yields

Ys(n) =
n + 2 V,?(R)

12 R

(4.7-44)

(4.7-45)

Note that Vn (R) is the length of the side of an n-dimensional cube that has a volume

equal to an ^-dimensional sphere of radius R. Substituting for Vn (R) from Equa-

tion 4.7-16 results in

YsOl) =
(,

n

+ 2)tt

I 2 [r (! + i)]"

(4.7-46)

A plot of ys (JZ) for an rc-dimensional sphere as a function of n is shown in Figure 4.7-5.
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FIGURE 4.7-5

The shaping gain for an n-dimensional sphere.

It can be shown that among all possible boundaries in an n-dimensional space,

spherical boundaries are the most efficient. As the dimensionality of the space in-

creases, spherical boundaries can provide an asymptotic shaping gain of ^ which is

approximately 1.423 equivalent to 1.533 dB. Therefore, 1.533 dB is the maximum gain

that shaping can provide. Getting close to this bound requires high dimensional con-

stellations. For instance, increasing the dimensionality of the space to 100 will provide

a shaping gain of roughly 1.37 dB, and increasing it to 1000 provides a shaping gain

of 1.5066 dB.

Unlike shaping gain, the coding gain can be increased indefinitely by using high

dimensional dense lattices. However, such lattices have very large kissing numbers.

The effect of large kissing numbers dramatically offsets the effect of the increased

coding gain, and the overall performance of the system will remain within the bounds

predicted by Shannon and discussed in Chapter 6.

4.8

DETECTION OF SIGNALING SCHEMES WITH MEMORY

When the signal has no memory, the symbol-by-symbol detector described in the pre-

ceding sections of this chapter is optimum in the sense of minimizing the probability

of a symbol error. On the other hand, when the transmitted signal has memory, i.e., the

signals transmitted in successive symbol intervals are interdependent, then the optimum
detector is a detector that bases its decisions on observation of a sequence ofreceived sig-

nals over successive signal intervals. In this section, we describe a maximum-likelihood

sequence detection algorithm that searches for the minimum Euclidean distance path
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through the trellis that characterizes the memory in the transmitted signal. Another pos-

sible approach is a maximum a posteriori probability algorithm that makes decisions

on a symbol-by-symbol basis, but each symbol decision is based on an observation

of a sequence of received signal vectors. This approach is similar to the maximum a

posteriori detection rule used for decoding turbo codes, known as the BCJR algorithm,

that will be discussed in Chapter 8.

4.8-1 The Maximum Likelihood Sequence Detector

Modulation systems with memory can be modeled as finite-state machines which can

be represented by a trellis, and the transmitted signal sequence corresponds to a path

through the trellis. Let us assume that the transmitted signal has a duration of K symbol

intervals. If we consider transmission over K symbol intervals, and each path of length

K through the trellis as a message signal, then the problem reduces to the optimal

detection problem discussed earlier in this chapter. The number of messages in this case

is equal to the number of paths through the trellis, and a maximum likelihood sequence

detection (MLSD) algorithm selects the most likely path (sequence) corresponding to

the received signal r(t) over the K signaling interval. As we have seen before, ML
detection corresponds to selecting a path of K signals through the trellis such that the

Euclidean distance between that path and r(t) is minimized. Note that since

rKT
s

K nkT
s

\r{t) - s(t)\
2
dt =£ /

\r(t) - s(t )\

2
dt

) k= i

J(k-m

the optimal detection rule becomes

,
S
(K)\ = arg min £ Ik®

(s*
1^2

),
,
S(*>)eT k= 1

K

= arg min I>(r
(sf),s<2), ,S<*>)gT k= 1

(4.8-1)

(4.8-2)

where T denotes the trellis. The above argument applies to all modulation systems with

memory.

As an example of the maximum-likelihood sequence detection algorithm, let us

consider the NRZI signal described in Section 3.3. Its memory is characterized by the

trellis shown in Figure 3.3-3. The signal transmitted in each signal interval is binary

PAM. Hence, there are two possible transmitted signals corresponding to the signal

points s
i

= —^2 = where £b is the energy per bit.

In searching through the trellis for the most likely sequence, it may appear that

we must compute the Euclidean distance for every possible sequence. For the NRZI
example, which employs binary modulation, the total number of sequences is 2K .

However, this is not the case. We may reduce the number of sequences in the trellis

search by using the Viterbi algorithm to eliminate sequences as new data are received

from the demodulator.
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0/-V5 0/-V4 0/-V4 0/-V4 FIGURE 4.8-1

Trellis for NRZI signal.

The Viterbi algorithm is a sequential trellis search algorithm for performing ML
sequence detection. It is described in Chapter 8 as a decoding algorithm for convo-

lutional codes. We describe it below in the context of the NRZI signal detection. We
assume that the search process begins initially at state So- The corresponding trellis is

shown in Figure 4.8-1

.

At time t = T, we receive r\ = + n from the demodulator, and at t = 27\ we

receive r2 = s
2

n) + n 2 . Since the signal memory is 1 bit, which we denote by L = 1,

we observe that the trellis reaches its regular (steady-state) form after two transitions.

Thus, upon receipt of r2 at t = 2T (and thereafter), we observe that there are two signal

paths entering each of the nodes and two signal paths leaving each node. The two paths

entering node So at t = 2

T

correspond to the information bits (0, 0) and ( 1
,

1 ) or,

equivalently, to the signal points (— —\[£b) and (V£&, —y/£b), respectively. The

two paths entering node Si at t = IT correspond to the information bits (0, 1) and

( 1
,
0) or, equivalently, to the signal points (— V^b) and yf£b), respectively.

For the two paths entering node So, we compute the two Euclidean distance metrics

Do(0, 0) = {r\ + V£~b)
2 + (r2 + -M>)

2

^-9 /7=r- 9
(4.8-3)

D0 (l , 1) = (r, - V^b)
2 + (r2 + V^)2

by using the outputs r\ and r2 from the demodulator. The Viterbi algorithm compares

these two metrics and discards the path having the larger (greater-distance) metric.

^

The other path with the lower metric is saved and is called the survivor at t = IT

.

The
elimination of one of the two paths may be done without compromising the optimality

of the trellis search, because any extension of the path with the larger distance beyond

t = 2T will always have a larger metric than the survivor that is extended along the

same path beyond t = 2T

.

Similarly, for the two paths entering node S\ at t = 27\ we compute the two

Euclidean distance metrics

Di(0 ,
l) = (n + V£~b)

2 + (r2 - V^)2

Di(l,0) = (r, — V^)2 + (r2 ~ V^)2
(4.8-4)

tNote that, for NRZI, the reception of r

2

from the demodulator neither increases nor decreases the relative

difference between the two metrics Do(0, 0) and Dq(1
, 1). At this point, one may ponder the implications

of this observation In any case, we continue with the description of the ML sequence detection based on

the Viterbi algorithm
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by using the outputs r\ and r2 from the demodulator. The two metrics are compared, and

the signal path with the larger metric is eliminated. Thus, at t = 2T, we are left with two

survivor paths, one at node So and the other at node S \ . and their corresponding metrics.

The signal paths at nodes So and Si are then extended along the two survivor paths.

Upon receipt of at t = 37, we compute the metrics of the two paths entering

state So. Suppose the survivors at t = 2T are the paths (0, 0) at So and (0, 1) at Si.

Then the two metrics for the paths entering So at t = 3T are

A>(0, 0
, 0) = Do(0, 0) + (r3 + v^)2

A>(0, 1. D = £>i(0, l) + (r3 + V^)2
(4.8-5)

These two metrics are compared, and the path with the larger (greater-distance) metric

is eliminated. Similarly, the metrics for the two paths entering Si at t = 3T are

D[(0, 0, 1) = Do(0,0) + (/-3- V£~b)

2

D,(0, 1,0) = D,(0, l) + (/'3
- V^)2

(4.8-6)

These two metrics are compared, and the path with the larger (greater-distance) metric

is eliminated.

This process is continued as each new signal sample is received from the demodu-

lator. Thus, the Viterbi algorithm computes two metrics for the two signal paths entering

a node at each stage of the trellis search and eliminates one of the two paths at each

node. The two survivor paths are then extended forward to the next state. Therefore,

the number of paths searched in the trellis is reduced by a factor of 2 at each stage.

It is relatively easy to generalize the trellis search performed by the Viterbi algo-

rithm for M -ary modulation. For example, consider a system that employs M = 4 sig-

nals and is characterized by the four-state trellis shown in Figure 4.8-2. We observe that

each state has two signal paths entering and two signal paths leaving each node. The

memory of the signal is L — 1 . Hence, the Viterbi algorithm will have four survivors

at each stage and their corresponding metrics. Two metrics corresponding to the two

entering paths are computed at each node, and one of the two signal paths entering the



246 Digital Communications

node is eliminated at each state of the trellis. Thus, the Viterbi algorithm minimizes the

number of trellis paths searched in performing ML sequence detection.

From the description of the Viterbi algorithm given above, it is unclear how
decisions are made on the individual detected information symbols given the surviving

sequences. If we have advanced to some stage, say K
,
where K L in the trellis,

and we compare the surviving sequences, we shall find that with high probability all

surviving sequences will be identical in bit (or symbol) positions K — 5L and less. In

a practical implementation of the Viterbi algorithm, decisions on each information bit

(or symbol) are forced after a delay of 5L bits (or symbols), and hence the surviving

sequences are truncated to the 5L most recent bits (or symbols). Thus, a variable delay

in bit or symbol detection is avoided. The loss in performance resulting from the sub-

optimum detection procedure is negligible if the delay is at least 5L. This approach to

implementation of Viterbi algorithm is called path memory truncation.

example 4.8-1. Consider the decision rule for detecting the data sequence in an NRZI
signal with a Viterbi algorithm having a delay of 5L bits. The trellis for the NRZI
signal is shown in Figure 4.8-1. In this case, L = 1; hence the delay in bit detec-

tion is set to 5 bits. Hence, at t = 6T, we shall have two surviving sequences, one

for each of the two states and the corresponding metrics ^(bu &2 ,
£3 ,

£4 ,
£5 ,

b6 ) and

p^eib'i, b'2 , b'3 ,
b\, b'5 ,

b'6 ). At this stage, with probability nearly equal to 1, bit b\ will

be the same as b\ ;
that is, both surviving sequences will have a common first branch.

If b\ / b[, we may select the bit (b\ or b\) corresponding to the smaller of the two
metrics. Then the first bit is dropped from the two surviving sequences. At t = IT

,

the two metrics /x7 (b2 , h, b4 ,
b5 ,

b6 , 67 ) and p,i(b2 ,
b
3 ,

b'4 ,
b'

5 ,
b'
6 ,

b'
7 ) will be used to

determine the decision on bit &2 . This process continues at each stage of the search

through the trellis for the minimum-distance sequence. Thus the detection delay is fixed

at 5 bits."*"

4.9

OPTIMUM RECEIVER FOR CPM SIGNALS

We recall from Section 3.3-2 that CPM is a modulation method with memory. The
memory results from the continuity of the transmitted carrier phase from one signal

interval to the next. The transmitted CPM signal may be expressed as

s(t) = cos[2n

f

c t + (/>(t\ /)] (4.9-1)

where cp(t; /) is the carrier phase. The filtered received signal for an additive Gaussian

noise channel is

r(t) = s(t ) + n(t) (4.9-2)

tOne may have observed by now that the ML sequence detector and the symbol-by-symbol detector that

ignores the memory in the NRZI signal reach the same decision Hence, there is no need for a decision

delay. Nevertheless, the procedure described above applies in general.
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where

n(t) = Hi(t) cos 2nf(
t — n

c/
(t) sin 2nfc t (4.9-3)

4.9-1 Optimum Demodulation and Detection of CPM

The optimum receiver for this signal consists of a correlator followed by a maximum-
likelihood sequence detector that searches the paths through the state trellis for the

minimum Euclidean distance path. The Viterbi algorithm is an efficient method for

performing this search. Let us establish the general state trellis structure for CPM and

then describe the metric computations.

Recall that the carrier phase for a CPM signal with a fixed modulation index h may
be expressed as

4>(t\ /) = 2nh Y hq(t~kT)
k——oo

"-L n
(4 .9-4)

= nh 'Y h + Y^ hq(t — kT)
k=—oo k=n —L+l

= 6n + 6(t; /), nT < t < (n + 1 )T

where we have assumed that q(t) = 0 for t <0, q{t) = ^
for t > LT, and

q(t) = f g(r)dz (4.9-5)
Jo

The signal pulse g(t) = 0 for t <0 and t > LT . For L = 1, we have a full response

CPM, and for L > 1, where L is a positive integer, we have a partial response CPM
signal.

Now, when h is rational, i.e., h = m/

p

where m and p are relatively prime positive

integers, the CPM scheme can be represented by a trellis. In this case, there are p phase

states

f Ttm 271m
®S = 0 , ,

,

l P P

when m is even, and 2p phase states

0 ,
= 0

7im

(p — \)nm

(2p — l)nm

(4.9-6)

(4.9-7)

when m is odd. If L = 1, these are the only states in the trellis. On the other hand, if

L > 1 ,
we have an additional number of states due to the partial response character

of the signal pulse g(t). These additional states can be identified by expressing 0(t; /)

given by Equation 4.9-4 as

n — 1

6{t\ /) = 27rh hq{t ~ ^T) + 2nhln q{t — nT)

k—H — L~\~ 1

(4.9-8)
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The first term on the right-hand side of Equation 4.9-8 depends on the information

symbols {In -\ ,
In - 2 ,

. .
. ,

In-L+ 1 ), which is called the correlative state vector
,
and rep-

resents the phase term corresponding to signal pulses that have not reached their final

value. The second term in Equation 4.9-8 represents the phase contribution due to

the most recent symbol In . Hence, the state of the CPM signal (or the modulator) at

time t = nT may be expressed as the combined phase state and correlative state
,

denoted as

5, {0n ,
1

,7 — ], In — 2 ,
• • • 5 In—L+ l} (4.9-9)

for a partial response signal pulse of length LT
,
where L > 1. In this case, the number

of states is

pML 1 (even m)

2pM L ~ l (odd m)
(4.9-10)

when h = m/ p.

Now, suppose the state of the modulator at t = nT is Sn . The effect of the new
symbol in the time interval nT < t < (n + \)T is to change the state from Sn to Sn+ \.

Hence, at t = (n + l)T, the state becomes

^n+ \ — (^/7+ l? ^72 — 1? • • • ? In —L+2 )

where

^72+1 ^27 + 7ZhIn-L+\

example 4.9-1. Consider a binary CPM scheme with a modulation index h = 3/4
and a partial response pulse with L = 2. Let us determine the states Sn of the CPM
scheme and sketch the phase tree and state trellis.

First, we note that there are 2/7 = 8 phase states, namely,

0s = {0, ±^7T, ±^7T, =b|7T, 7r}

For each of these phase states, there are two states that result from the memory of the

CPM scheme. Hence, the total number of states is Ns = 16, namely,

(0, 1), (0, -1), (7r, 1), (7t, -1), (ijr,
1) ,

Qjr, -1)
,

(ijr,
1) ,

(ijr, -1) ,

(\jl, 1) , (| It, -1)
,
(-|7r, 1) ,

(-±JT, -1)
,

(-ijT,
1) ,

(-ijT, -1) ,

(-f*,!), (-?*,-!)

If the system is in phase state 0n = — and /„_ i

= —1, then

^77+ 1

= ^72 T 7ZHIn —\

— 1 w 3 _ _ _

The state trellis is illustrated in Figure 4.9-1. A path through the state trellis corre-

sponding to the sequence (1 ,

—
1 ,

— 1 ,

— 1 , 1 , 1) is illustrated in Figure 4.9-2.
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In- 1) (0n + „ /„) FIGURE 4.9-1

In order to sketch the phase tree, we must know the signal pulse shape g(t). Figure

4.9-3 illustrates the phase tree when g(t) is a rectangular pulse of duration 2T, with

initial state (0, 1).

Having established the state trellis representation of CPM, let us now consider the

metric computations performed in the Viterbi algorithm.

Metric Computations

By referring to the mathematical development for the derivation of the maximum like-

lihood demodulator given in Section 4.1, it is easy to show that the logarithm of the

probability of the observed signal r{t) conditioned on a particular sequence of trans-

mitted symbols I is proportional to the cross-correlation metric

CMn (I) =
rin+ DT

I r{t) cos[coc t + <p(t; /)] dt
—oo

r(n+])T
(4.9-11)

JnT

= CMn _ {
(I) + r{t) cos[ruc r + 6{t\ I) + 6n ] dt



Digital Communications

FIGURE 4.9-2

A single signal path through the trellis.

<Kt, i)

3 _t y \ z
FIGURE 4.9-3

Phase tree for L = 2 partial response CPM
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The term CMn -\{I) represents the metrics for the surviving sequences up to time nT

,

and the term

Vn {I\ dn )
=

/*(/?+

1

)T

I
r(t ) cos [coc t + 6{t\ I) + 6n ] dt

nT
(4.9-12)

represents the additional increments to the metrics contributed by the signal in the

time interval nT < t < (n + 1 )T

.

Note that there are M L
possible sequences

/ = (/„, /
/7
_ 1? ,

In _ L+i ) of symbols and p (or 2p) possible phase states {6n }. There-

fore, there are pM L
(or 2pM L

) different values of vn (I, 6n ) computed in each sig-

nal interval, and each value is used to increment the metrics corresponding to the

pM L ~ l surviving sequences from the previous signaling interval. A general block di-

agram that illustrates the computations of vn {I\ 0n ) for the Viterbi decoder is shown in

Figure 4.9-4.

Note that the number of surviving sequences at each state of the Viterbi decod-

ing process is pM L ~ ]

(or 2pM L ~ x

). For each surviving sequence, we have M new
increments of vn (I\ 0n ) that are added to the existing metrics to yield pM L

(or 2pM L
)

sequences with pM L
(or 2pM L

) metrics. However, this number is then reduced back

to pML~ l

(or 2pML~ l

) survivors with corresponding metrics by selecting the most

probable sequence of theM sequences merging at each node of the trellis and discarding

the other M —
1 sequences.

4.9-2 Performance of CPM Signals

In evaluating the performance of CPM signals achieved with maximum-likelihood

sequence detection, we must determine the minimum Euclidean distance of paths

through the trellis that separate at the node at t = 0 and remerge at a later time at

the same node. The distance between two paths through the trellis is related to the

corresponding signals as we now demonstrate.

Suppose that we have two signals 57 (r) and sj(t) corresponding to two phase

trajectories 0(r
; //) and <p(t\ I j). The sequences /,• and I

j

must be different in their

first symbol. Then, the Euclidean distance between the two signals over an interval of

FIGURE 4.9-4

Computation of metric increments

V„(T, 0n ).
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length NT, where 1 /

T

is the symbol rate, is defined as

nNT

dfj = J
[Si (t)- Si (t)]

2
dt

nNT nNT nNT
= / sf(t)dt+ /

s
2
j(t)dt — 2 / Si(t)sj(t)dt

Jo Jo Jo

nNT

/
cos [0(f; li) - 0(f; //)]^f

Jo

2£ f
NT

— IN£ — 2— / cos[(T>c t + I i)]cos[(T>c t + (p(t; I j)]dt (4.9-13)
T Jo

2£ rNT
= 2N£

T

2£ f
NT

= —
/

{1 - cos[0(f; //) - 0(r, /,-)]}</*
r jo

Hence the Euclidean distance is related to the phase difference between the paths in the

state trellis according to Equation 4.9-13.

It is desirable to express the distance dfj in terms of the bit energy. Since £ =
£b log

2
M, Equation 4.9-13 may be expressed as

4 = 2Sb &fj

where &} is defined as

^2 =
log

2
M nNT

{1 — cos[0(£; //) — 4>(t; /,)]} dt

(4.9-14)

(4.9-15)
T Jo

Furthermore, we observe that 0(r; //) — <p(t\ I /)
= <p(t\ 7

,

— I j), so that, with § =
I j, Equation 4.9-15 may be written as

S
2 = l0g2 ^ nNT

/ [1 - cos (p(t^)]dt (4.9-16)
Jo

where any element of § can take the values 0, ±2, ±4, . .
.

,

±2(M — 1), except that

§o / 0.

The error rate performances for CPM is dominated by the term corresponding to

the minimum Euclidean distance, and it may be expressed as

Pm = KSmm Q (

J^S 2

mh (4.9-17)

where KSmn is the number of paths having the minimum distance

5min = J
im min 5,7

N-^OO l,J
'

riog.M r
NT

= lim min <
/ [1 — cos 0(r; 7, — /,-)] dt

N-+oo ij
[ T Jo

(4.9-18)

We note that for conventional binary PSK with no memory, N = 1 and 5^in =
8>\2 = 2. Hence, Equation 4.9-17 agrees with our previous result.

Since <5^in
characterizes the performance of CPM, we can investigate the effect on

<5^in resulting from varying the alphabet size M, the modulation index h, and the length

of the transmitted pulse in partial response CPM.
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First, we consider full response (L = 1) CPM. If we take M = 2 as a beginning,

we note that the sequences

/, = + i ,- i ,/2 ,/3

Ij — — C +1, h
(4.9-19)

which differ for k = 0, 1 and agree for k > 2, result in two phase trajectories that merge

after the second symbol. This corresponds to the difference sequence

§ = {2 ,

-2
,
0

,
0 ,...} (4.9-20)

The Euclidean distance for this sequence is easily calculated from Equation 4.9-16,

and provides an upper bound on S^
in

. This upper bound for CPFSK with M — 2 is

4(h) = 2
sin 2ith

1

2nh
M = 2 (4.9-21)

For example, where h = which corresponds to MSK, we have d2
B
(I) = 2, so that

(I)
< 2.

For M > 2 and full response CPM, it is also easily seen that phase trajectories

merge at t = 2 T. Hence, an upper bound on S^
in
can be obtained by considering the

phase difference sequence § = {a, —

a

, 0, 0, . . .} where a = ±2, ±4, . .
.

,

±2(M — 1).

This sequence yields the upper bound for M-ary CPFSK as

9 { f sm2knh \

)

d° (h) -
{
(21°^ M)

0 - ~2k^r) }
(4 -9-22)

The graphs of d\{h) versus h for M = 2, 4, 8, 16 are shown in Figure 4.9-5.

It is apparent from these graphs that large gains in performance can be achieved by

increasing the alphabet size M. It must be remembered, however, that S^
in

(/i) < d2
B {h).

That is, the upper bound may not be achievable for all values of h.

FIGURE 4.9-5

The upper bound dB as a function of the

modulation index h for full response CPM
with rectangular pulses. [From Aulin and

Sundberg (1984). © 1984 John Wiley Ltd.

Reprinted with permission of the publisher.]
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The minimum Euclidean distance <^in
(h) has been determined, by evaluating

Equation 4.9-16, for a variety of CPM signals by Aulin and Sundberg (1981). For

example, Figure 4.9-6 illustrates the dependence of the Euclidean distance for binary

CPFSK as a function of the modulation index h, with the number N of bit obser-

vation (decision) intervals (

N

= 1, 2, 3, 4) as a parameter. Also shown is the upper

bound d\(h) given by Equation 4.9-21. In particular, we note that when h =

<$min Q) = 2 ,
which is the same squared distance as PSK (binary or quaternary) with

N = 1. On the other hand, the required observation interval for MSK is N = 2

intervals, for which we have <$^in Q) = 2. Hence, the performance of MSK with a

Viterbi detector is comparable to (binary or quaternary) PSK as we have previously

observed.

We also note from Figure 4.9-6 that the optimum modulation index for binary

CPFSK is h = 0.715 when the observation interval is N = 3. This yields <^in (0.715)
=

2.43, or a gain of 0.85 dB relative to MSK.
Figure 4.9-7 illustrates the Euclidean distance as a function of h forM = 4 CPFSK,

with the length of the observation interval A as a parameter. Also shown (as a dashed

line where it is not reached) is the upper bound d\ evaluated from Equation 4.9-22.

Note that <$^in achieves the upper bound for several values of h for some N. In particular,

note that the maximum value of d\, which occurs at h ^ 0.9, is approximately reached

for N = 8 observed symbol intervals. The true maximum is achieved at h = 0.914

with N = 9. For this case, <$^in (0.914) = 4.2, which represents a 3.2-dB gain over

MSK. Also note that the Euclidean distance contains minima at h = |, ^, |, 1, etc.

These values of h are called weak modulation indices and should be avoided. Similar

results are available for larger values ofM and may be found in the paper by Aulin and

Sundberg (1981) and the text by Anderson et al. (1986).

FIGURE 4.9-6

Squared minimum Euclidean distance as a function

of the modulation index for binary CPFSK. The
upper bound is d\ .

[From Aulin and Sundberg

(1981), © 1981 IEEE.}
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d\h ) FIGURE 4.9-7

Squared minimum Euclidean distance as a

function of the modulation index for

quaternary CPFSK. The upper bound is d\.

\From Aulin and Sundberg (1981 ), © 1981

IEEE.]

Large performance gains can also be achieved with maximum-likelihood sequence

detection of CPM by using partial response signals. For example, the distance bound

d\(h) for partial response, raised cosine pulses given by

(l ( 2nt
1 — cos

g(t) =l2LT\ 2LT

0

0 <t<LT

otherwise

(4.9-23)

is shown in Figure 4.9-8 for M = 2. Here, note that, as L increases, d\ also achieves

higher values. Clearly, the performance of CPM improves as the correlative memory
L increases, but h must also be increased in order to achieve the larger values of d\.

Since a larger modulation index implies a larger bandwidth (for fixed L), while a larger

memory length L (for fixed h) implies a smaller bandwidth, it is better to compare the

Euclidean distance as a function of the normalized bandwidth 2WTb ,
where W is the 99

percent power bandwidth and Tb is the bit interval. Figure 4.9-9 illustrates this type

of comparison with MSK used as a point of reference (0 dB). Note from this figure

that there are several decibels to be gained by using partial response signals and higher

signaling alphabets. The major price to be paid for this performance gain is the added

exponentially increasing complexity in the implementation of the Viterbi detector.
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FIGURE 4.9-8

Upper bound d\ on the minimum
distance for partial response (raised

cosine pulse) binary CPM. [From

Sandberg (1986), © 1986 IEEE.]

FIGURE 4.9-9

Power bandwidth tradeoff for partial

response CPM signals with raised cosine

pulses. W is the 99 percent inband power

bandwidth. [From Sandberg (1986), ©
1986 IEEE.]
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The performance results shown in Figure 4.9-9 illustrate that a 3-4 dB gain relative

to MSK can be easily obtained with relatively no increase in bandwidth by the use of

raised cosine partial response CPM and M — 4. Although these results are for raised

cosine signal pulses, similar gains can be achieved with other partial response pulse

shapes. We emphasize that this gain in SNR is achieved by introducing memory into

the signal modulation and exploiting the memory in the demodulation of the signal. No
redundancy through coding has been introduced. In effect, the code has been built into

the modulation and the trellis-type (Viterbi) decoding exploits the phase constraints in

the CPM signal.

Additional gains in performance can be achieved by introducing additional redun-

dancy through coding and increasing the alphabet size as a means of maintaining a fixed

bandwidth. In particular, trellis-coded CPM using relatively simple convolution codes

has been thoroughly investigated and many results are available in the technical litera-

ture. The Viterbi decoder for the convolutionally encoded CPM signal now exploits the

memory inherent in the code and in the CPM signal. Performance gains of the order of

4-6 dB, relative to uncoded MSK with the same bandwidth, have been demonstrated

by combining convolutional coding with CPM. Extensive numerical results for coded

CPM are given by Lindell (1985).

Multi-/* CPM
By varying the modulation index from one signaling interval to another, it is possible

to increase the minimum Euclidean distance 5^in
between pairs of phase trajectories

and, thus, improve the performance gain over constant-/* CPM. Usually, multi-/* CPM
employs a fixed number H of modulation indices that are varied cyclically in successive

signaling intervals. Thus, the phase of the signal varies piecewise linearly.

Significant gains in SNR are achievable by using only a small number of different

values of /*. For example, with full response (L = 1) CPM and H — 2, it is possible to

obtain a gain of 3 dB relative to binary or quaternary PSK. By increasing H to H — 4,

a gain of 4.5 dB relative to PSK can be obtained. The performance gain can also be

increased with an increase in the signal alphabet. Table 4.9-1 lists the performance

TABLE 4.9-1

Maximum Values of the Upper Bound for Multi-/* Linear Phase CPMa

M H Max d\

dB gain

compared

with MSK hi h2 /*3 /*4 h

2 1 2.43 0.85 0.715 0715
2 2 40 30 05 0.5 0.5

2 3 4 88 3.87 0.620 0 686 0714 0 673

2 4 5 69 4 54 0.73 0 55 0 73 0 55 0 64

4 1 4 23 3 25 0 914 0.914

4 2 6.54 5.15 0.772 0 772 0.772

4 3 7 65 5 83 0 795 0.795 0 795 0.795

8 1 6.14 4.87 0.964 0 964

8 2 7 50 5 74 0 883 0 883 0.883

8 3 8 40 6 23 0 879 0 879 0.879 0.879

aFrom Aulin and Sundberg (1982b)
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0 0 5 1 0

FIGURE 4.9-10

Upper bounds on minimum squared

Euclidean distance for various M and H
values. [From Aulin and Sandberg

(1982b), © 1982 IEEE.]

gains achieved with M = 2, 4, and 8 for several values of H. The upper bounds on the

minimum Euclidean distance are also shown in Figure 4.9-10 for several values of M
and H. Note that the major gain in performance is obtained when H is increased from

H = 1 to H = 2. For H > 2, the additional gain is relatively small for small values of

{hi}. On the other hand, significant performance gains are achieved by increasing the

alphabet size M.
The results shown above hold for full response CPM. One can also extend the

use of multi-/r CPM to partial response in an attempt to further improve performance.

It is anticipated that such schemes will yield some additional performance gains, but

numerical results on partial response, multi-/r CPM are limited. The interested reader

is referred to the paper by Aulin and Sundberg (1982b).

4.9-3 Suboptimum Demodulation and Detection of CPM Signals

The high complexity inherent in the implementation of the maximum-likelihood

sequence detector for CPM signals has been a motivating factor in the investigation of
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reduced-complexity detectors. Reduced-complexity Viterbi detectors were investigated

by Svensson (1984), Svensson et al. (1984), Svensson and Sundberg (1983), Aulin et

al. (1981), Simmons and Wittke (1983), Palenius and Svensson (1993), and Palenius

(1991). The basic idea in achieving a reduced-complexity Viterbi detector is to design a

receiver filter that has a shorter pulse than the transmitter. The receiver pulse gR(t) must

be chosen in such a way that the phase tree generated by gR(t) is a good approximation

of the phase tree generated by the transmitter pulse gr(t). Performance results indicate

that a significant reduction in complexity can be achieved at a loss in performance of

about 0.5 to 1 dB.

Another method for reducing the complexity of the receiver for CPM signals is to

exploit the linear representation ofCPM, which can be expressed as a sum of amplitude-

modulated pulses as given in the papers by Laurent (1986) and Mengali and Morelli

(1995). In many cases of practical interest the CPM signal can be approximated by a

single amplitude-modulated pulse or, perhaps, by a sum of two amplitude-modulated

pulses. Hence, the receiver can be easily implemented based on this linear representa-

tion of the CPM signal. The performance of such relatively simple receivers has been

investigated by Kawas-Kaleh (1989). The results of this study indicate that such sim-

plified receivers sacrifice little in performance but achieve a significant reduction in

implementation complexity.

4.10

PERFORMANCE ANALYSIS FOR WIRELINE AND RADIO
COMMUNICATION SYSTEMS

In the transmission of digital signals through an AWGN channel, we have observed that

the performance of the communication system, measured in terms of the probability of

error, depends solely on the received SNR, St/No, where St is the transmitted energy

per bit and ^No is the power spectral density of the additive noise. Hence, the additive

noise ultimately limits the performance of the communication system.

In addition to the additive noise, another factor that affects the performance of a

communication system is channel attenuation. All physical channels, including wire

lines and radio channels, are lossy. Hence, the signal is attenuated as it travels through

the channel. The simple mathematical model for the attenuation shown in Figure 4. 10-1

may be used for the channel. Consequently, if the transmitted signal is s(t), the received

signal, with 0 < a < 1 is

r(t) = as(t) + n(t) (4.10-1)

FIGURE 4.10-1

Mathematical model of channel with

attenuation and additive noise.

Attenuation Noise

a n(t)

Transmitted

signal
Channel

Received

signal

s(t) c r(t) = as(t) + n(t)
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Then, if the energy in the transmitted signal is £b ,
the energy in the received signal

is a 2£b . Consequently, the received signal has an SNR a 2£b /No. Hence, the effect of

signal attenuation is to reduce the energy in the received signal and thus to render the

communication system more vulnerable to additive noise.

In analog communication systems, amplifiers called repeaters are used to pe-

riodically boost the signal strength in transmission through the channel. However,

each amplifier also boosts the noise in the system. In contrast, digital communication

systems allow us to detect and regenerate a clean (noise-free) signal in a transmission

channel. Such devices, called regenerative repeaters
,
are frequently used in wireline

and fiber-optic communication channels.

4.10-1 Regenerative Repeaters

The front end of each regenerative repeater consists of a demodulator/detector that

demodulates and detects the transmitted digital information sequence sent by the pre-

ceding repeater. Once detected, the sequence is passed to the transmitter side of the

repeater, which maps the sequence into signal waveforms that are transmitted to the

next repeater. This type of repeater is called a regenerative repeater.

Since a noise-free signal is regenerated at each repeater, the additive noise does

not accumulate. However, when errors occur in the detector of a repeater, the errors are

propagated forward to the following repeaters in the channel. To evaluate the effect of

errors on the performance of the overall system, suppose that the modulation is binary

PAM, so that the probability of a bit error for one hop (signal transmission from one

repeater to the next repeater in the chain) is

Pb = Q
2£&

No

Since errors occur with low probability, we may ignore the probability that any one bit

will be detected incorrectly more than once in transmission through a channel with K
repeaters. Consequently, the number of errors will increase linearly with the number

of regenerative repeaters in the channel, and therefore, the overall probability of error

may be approximated as

Pb^KQ 2£b_

N0
(4 . 10-2)

In contrast, the use of K analog repeaters in the channel reduces the received SNR by

K
,
and hence, the bit-error probability is

Pb ^ Q
2£b

KN0
(4 . 10-3 )

Clearly, for the same probability of error performance, the use of regenerative repeaters

results in a significant saving in transmitter power compared with analog repeaters.
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Hence, in digital communication systems, regenerative repeaters are preferable. How-
ever, in wireline telephone channels that are used to transmit both analog and digital

signals, analog repeaters are generally employed.

example 4.10-1. A binary digital communication system transmits data over a wire-

line channel of length 1000 km. Repeaters are used every 10 km to offset the effect of

channel attenuation. Let us determine the S^/Nq that is required to achieve a proba-

bility of a bit error of 10
-5

if (a) analog repeaters are employed, and (b) regenerative

repeaters are employed.

The number of repeaters used in the system is K = 100. If regenerative repeaters

are used, the S^/Nq obtained from Equation 4.10-2 is

which yields approximately 1 1.3 dB. If analog repeaters are used, the S^/No obtained

from Equation 4.10-3 is

lO
-5 = Q (J

2£b
)

VV 100N
°

)

which yields £b/No % 29.6 dB. Hence, the difference in the required SNR is about

18.3 dB, or approximately 70 times the transmitter power of the digital communication

system.

4.10-2 Link Budget Analysis in Radio Communication Systems

In the design of radio communication systems that transmit over line-of-sight

microwave channels and satellite channels, the system designer must specify the size

of the transmit and receive antennas, the transmitted power, and the SNR required to

achieve a given level of performance at some desired data rate. The system design

procedure is relatively straightforward and is outlined below.

Let us begin with a transmit antenna that radiates isotropically in free space at a

power level of Pj watts as shown in Figure 4.10-2. The power density at a distance d

from the antenna is PT /4nd2 W/m2
. If the transmitting antenna has some directivity in

FIGURE 4.10-2

Isotropically radiating antenna.
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a particular direction, the power density in that direction is increased by a factor called

the antenna gain and denoted by G 7. In such a case, the power density at distance d is

PrGj /And2 W/m2
. The product PjGj is usually called the effective radiated power

(ERP or EIRP), which is basically the radiated power relative to an isotropic antenna,

for which Gy = 1

.

A receiving antenna pointed in the direction of the radiated power gathers a portion

of the power that is proportional to its cross-sectional area. Hence, the received power

extracted by the antenna may be expressed as

_ PtGtAr

And2
(4.10-4)

where Ar is the effective area of the antenna . From electromagnetic field theory, we
obtain the basic relationship between the gain Gr of an antenna and its effective area

as

Ar = GrX 2

An
ITT (4.10-5)

where X = c/f is the wavelength of the transmitted signal, c is the speed of light

(3 x 108
m/s), and / is the frequency of the transmitted signal.

If we substitute Equation 4.10-5 for Ar into Equation 4.10-4, we obtain an

expression for the received power in the form

PjGjGr
(-And/X )

2
(4.10-6)

The factor

L s

X

And
(4.10-7)

is called the free-space path loss. If other losses, such as atmospheric losses, are

encountered in the transmission of the signal, they may be accounted for by intro-

ducing an additional loss factor, say L a . Therefore, the received power may be written

in general as

Pr = PtGrG R L s L a (4.10-8)

As indicated above, the important characteristics of an antenna are its gain and its

effective area. These generally depend on the wavelength of the radiated power and

the physical dimensions of the antenna. For example, a parabolic (dish) antenna of

diameter D has an effective area

Ar = \nD 2
T, (4.10-9)

where \nD2
is the physical area and rj is the illumination efficiencyfactor, which falls

in the range 0.5 < rj < 0.6. Hence, the antenna gain for a parabolic antenna of diameter

D is

(4.10-10)
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(a) Beamwidth of antenna (b) Antenna pattern

FIGURE 4.10-3

Antenna beamwidth and pattern.

As a second example, a horn antenna of physical area A has an efficiency factor of 0.8,

an effective area of A R = 0.8 A, and an antenna gain of

10A
=^ (4.10-11)

Another parameter that is related to the gain (directivity) of an antenna is its

beamwidth, which we denote as and which is illustrated graphically in Figure

4.

10-

3. Usually, the beamwidth is measured as the —3 dB width of the antenna pattern.

For example, the — 3 dB beamwidth of a parabolic antenna is approximately

& B = 70(A/D)° (4.10-12)

so that Gj is inversely proportional to ©|. That is, a decrease of the beamwidth by a

factor of 2, which is obtained by doubling the diameter D, increases the antenna gain

by a factor of 4 (6 dB).

Based on the general relationship for the received signal power given by Equation

4.10-

8, the system designer can compute PR from a specification of the antenna gains

and the distance between the transmitter and the receiver. Such computations are usually

done on a power basis, so that

(Pr)dB = (/V)dB + (Gt)cIB + (Gr)dB + (T^)dB + (T
fl )dB (4.10-13)

example 4.10-2. Suppose that we have a satellite in geosynchronous orbit (36,000

km above the earth’s surface) that radiates 100 W of power, i.e., 20 dB above 1 W (20

dBW). The transmit antenna has a gain of 17 dB, so that the ERP = 37 dBW. Also,

suppose that the earth station employs a 3-m parabolic antenna and that the downlink

is operating at a frequency of 4 GHz. The efficiency factor is rj = 0.5. By substituting

these numbers into Equation 4. 10-10, we obtain the value of the antenna gain as 39 dB.

The free-space path loss is

L
s = 195.6dB

No other losses are assumed. Therefore, the received signal power is

(^)dB = 20+ 17 + 39 - 195.6

= — 1 19.6dBW
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or, equivalently,

PR = 1.1 x 1(T
i2W

To complete the link budget computation, we must consider the effect of the

additive noise at the receiver front end. Thermal noise that arises at the receiver front

end has a relatively flat power density spectrum up to about 10 12 Hz, and is given as

No = ksTo W/Hz (4.10—14)

where kR is Boltzmann’s constant (1 .38 x 10
-23

W-s/K) and Tq is the noise temperature

in Kelvin. Therefore, the total noise power in the signal bandwidth W is NoW.
The performance of the digital communication system is specified by the Sb/No

required to keep the error rate performance below some given value. Since

it follows that

Sb _ Tb PR _ 1 Pr

~No ” ^vT ” R
(4.10-15)

(4.10-16)

where (Sb / A^o)ieq is the required SNR per bit. Hence, ifwe have PR /No and the required

SNR per bit, we can determine the maximum data rate that is possible.

example 4.10-3. For the link considered in Example 4. 1 0-2, the received signal power
is

PR = 1.1 x 10“ 12 W (-119.6 dBW)

Now, suppose the receiver front end has a noise temperature of 300 K, which is typical

for a receiver in the 4-GHz range. Then

A^o =4.1 x 10“ 21 W/Hz

or, equivalently, —203.9 dBW/Hz. Therefore,

— = —119.6 + 203.9 = 84.3 dB Hz
N0

If the required SNR per bit is 10 dB, then, from Equation 4. 10-16, we have the available

rate as

RdB = 84.3 - 10

= 74.3 dB (with respect to 1 bit/s)

This corresponds to a rate of 26.9 megabits/s, which is equivalent to about 420 PCM
channels, each operating at 64,000 bits/s.

It is a good idea to introduce some safety margin, which we shall call the link

margin MdB, in the above computations for the capacity of the communication link.

Typically, this may be selected as MdB = 6 dB. Then, the link budget computation for
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the link capacity may be expressed in the simple form

^dB = nJ dB Hz Nq) req

= (^r)dBW + (Gr)dB + (G/?)dB

+ (^cz)dB + (AQdB ~ (A^o)dBW/Hz
£b \ _
#0 / req

^dB

(4.10-17)

4.11

BIBLIOGRAPHICAL NOTES AND REFERENCES

In the derivation of the optimum demodulator for a signal corrupted by AWGN, we
applied mathematical techniques that were originally used in deriving optimum receiver

structures for radar signals. For example, the matched filter was first proposed by

North (1943) for use in radar detection, and it is sometimes called the North filter. An
alternative method for deriving the optimum demodulator and detector is the Karhunen-

Loeve expansion, which is described in the classical texts by Davenport and Root

(1958), Helstrom (1968), and Van Trees (1968). Its use in radar detection theory is

described in the paper by Kelly et al. (1960). These detection methods are based on

the hypothesis testing methods developed by statisticians, e.g., Neyman and Pearson

(1933) and Wald (1947).

The geometric approach to signal design and detection, which was presented in

the context of digital modulation and which has its roots in Kotelnikov (1947) and

Shannon’s original work, is conceptually appealing and is now widely used since its

use in the text by Wozencraft and Jacobs (1965).

Design and analysis of signal constellations for the AWGN channel have received

considerable attention in the technical literature. Of particular significance is the perfor-

mance analysis of two-dimensional (QAM) signal constellations that has been treated

in the papers of Cahn (1960), Hancock and Lucky (1960), Campopiano and Glazer

(1962), Lucky and Hancock (1962), Salz et al. (1971), Simon and Smith (1973),

Thomas et al. (1974), and Foschini et al. (1974). Signal design based on multidimen-

sional signal constellations has been described and analyzed in the paper by Gersho

and Lawrence (1984).

The Viterbi algorithm was devised by Viterbi (1967) for the purpose of decod-

ing convolutional codes. Its use as the optimal maximum-likelihood sequence detec-

tion algorithm for signals with memory was described by Forney (1972) and Omura
(1971). Its use for carrier modulated signals was considered by Ungerboeck (1974) and

MacKenchnie (1973). It was subsequently applied to the demodulation of CPM by

Aulin and Sundberg (1981), Aulin et al. (1981), and Aulin (1980).

Our discussion of the demodulation and detection of signals with memory refer-

encedjournal papers published primarily in the United States. The authors have recently

learned that maximum-likelihood sequential detection algorithms for signals with mem-
ory (introduced by the channel through intersymbol interference) were also developed

and published in Russia during the 1960s by D. Klovsky. An English translation of

Klovsky’s work is contained in his book coauthored with B. Nikolaev (1978).
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PROBLEMS4.1

Let Z(t) = X(t) + jY(t) be a complex-valued, zero-mean white Gaussian noise process

with autocorrelation function Rz (r) = NoS(r). Let fm (t), m = 1, 2, . .
.

,

M, be a set of

M orthogonal equivalent lowpass waveforms defined on the interval 0 < t < T. Define

Nmr = Re

1. Determine the variance of Nmr .

2. Show that E[NmrNkr ]
= 0 for k •=£ m.

m = 1, 2, . .
. ,
M4.2

The correlation metrics given by Equation 4.2-28 are

N N

C(r
,
Sin )

— 2 ^ ^
TnSmn ^ ^ ^mn ’

wz = 1, 2, . . . ,
M

where

and

r(t) (pn (t) dtr-f

-f nn — /

Jo

e equi\

r, sm ) = 2 [ r(t)sm (t)dt — [
Jo Jo

(0 0n(O

Show that the correlation metrics are equivalent to the metrics

C(r,sm ) = 2 I r(t)sm(t)dt- [ sl(t)dt

4.3

In the communication system shown in Figure P4.3, the receiver receives two signals r\

and r2 ,
where r2 is a “noisier” version of r\. The two noises yi\ and n2 are arbitrary

—

not necessarily Gaussian, and not necessarily independent. Intuition would suggest that

since r2 is noisier than r \ ,
the optimal decision can be based only on r \ ; in other words,

r2 is irrelevant. Is this true or false? If it is true, give a proof; if it is false, provide a

counterexample and state under what conditions this can be true.

FIGURE P4.3
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4.4 A binary digital communication system employs the signals

sQ (t) = 0 0 < t < T
s\(t) = A 0 < t < T

for transmitting the information. This is called on-off signaling. The demodulator cross-

correlates the received signal r(t) with s(t) and samples the output of the correlator at

t + T

.

a. Determine the optimum detector for an AWGN channel and the optimum threshold,

assuming that the signals are equally probable.

b. Determine the probability of error as a function of the SNR. How does on-off signaling

compare with antipodal signaling9

4.5 A communication system transmits one of the three messages m
\ ,
m 2 ,

and m 3 using signals

s\(t), S2 (t), and s$(t). The signal s^(t) = 0, and ^(O and 52 (0 are shown in Figure P4.5.

The channel is an additive white Gaussian noise channel with noise power spectral density

equal to No/ 2.

FIGURE P4.5

1. Determine an orthonormal basis for this signal set, and depict the signal constellation.

2. If the three messages are equiprobable, what are the optimal decision rules for this

system? Show the optimal decision regions on the signal constellation you plotted in

part 1 .

3. If the signals are equiprobable, express the error probability of the optimal detector in

terms of the average SNR per bit.

4. Assuming this system transmits 3000 symbols per second, what is the resulting trans-

mission rate (in bits per second)?

4.6 Suppose that binary PSK is used for transmitting information over an AWGN with a power

spectral density of = 10
“ 10 W/Hz. The transmitted signal energy is £& = \A 2 T

,

where T is the bit interval and A is the signal amplitude. Determine the signal amplitude

required to achieve an error probability of 10
-6 when the data rate is

1 . 10 kilobits/s

2 . 100 kilobits/s

3. 1 megabit/s

4.7 Consider a signal detector with an input

r = =LA + n
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where +A and —A occur with equal probability and the noise variable n is characterized

by the (Laplacian) PDF shown in Figure P4.7.

1 . Determine the probability of error as a function of the parameters A and a .

2. Determine the SNR required to achieve an error probability of 1

0

-5
. How does the SNR

compare with the result for a Gaussian PDF9

4.8 The signal constellation for a communication system with 16 equiprobable symbols is

shown in Figure P4.8. The channel is AWGN with noise power spectral density of No/ 2.

k ^2
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FIGURE P4.8

1. Using the union bound, find a bound in terms of A and N0 on the error probability for

this channel.

2. Determine the average SNR per bit for this channel.

3. Express the bound found in part 1 in terms of the average SNR per bit.

4. Compare the power efficiency of this system with a 16-level PAM system.

4.9 A ternary communication system transmits one of three equiprobable signals s(t), 0,

or —s(t) every T seconds. The received signal is ri(t) = s(t ) + z(t), ri(t ) = z(t ),

or r/(0 = —s(t) + z(t), where z(t) is white Gaussian noise with E[z(7)] = 0 and

R
z (t) = E[z(0z*(t)] = 2No8(t — r). The optimum receiver computes the correlation

metric

U = Re ri(t)s*(t)dt
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and compares U with a threshold A and a threshold —A.lfU > A, the decision is made
that s(t) was sent. If U < —A, the decision is made in favor of —s(t). If —A < U < A,

the decision is made in favor of 0.

1. Determine the three conditional probabilities of error* Pe given that s(t) was sent, Pe

given that —s(t) was sent, and Pe given that 0 was sent.

2. Determine the average probability of error Pe as a function of the threshold A
,
assuming

that the three symbols are equally probable a priori.

3. Determine the value of A that minimizes Pe .

4.10

The two equivalent lowpass signals shown in Figure P4.10 are used to transmit a binary

information sequence. The transmitted signals, which are equally probable, are corrupted

by additive zero-mean white Gaussian noise having an equivalent lowpass representation

z(t) with an autocorrelation function

Rz( r) = E [z\t) z (t + t)] = 2NoS(t)

1 . What is the transmitted signal energy 7

2. What is the probability of a binary digit error if coherent detection is employed at the

receiver?

3. What is the probability of a binary digit error if noncoherent detection is employed at

the receiver9

A

-A h

s2 (0 .

0

-A

3 T
4

1
T t

FIGURE P4.10
4.11

A matched filter has the frequency response

H(f) =
1
- e

-j2xfT

1 . Determine the impulse response h{t) corresponding to //(/).

2. Determine the signal waveform to which the filter characteristic is matched.

4.12 Consider the signal

f (A / T)t cos 271fc t 0 <t <T
s(t) = <

[
0 otherwise

1 . Determine the impulse response of the matched filter for the signal.

2. Determine the output of the matched filter at t = T.

3. Suppose the signal s(t) is passed through a correlator that correlates the input s(t) with

s(t). Determine the value of the correlator output at t = T. Compare your result with

that in part 2.

4.13 The two equivalent lowpass signals shown in Figure P4.13 are used to transmit a bi-

nary sequence over an additive white Gaussian noise channel. The received signal can be

expressed as

n(t) = Sj(t) + z(t ), 0 <t <T, i = 1,2



270 Digital Communications

where z(t) is a zero-mean Gaussian noise process with autocorrelation function

Rz (r) = E |V (r)z(r + t)] = 2N0S(r)

1. Determine the transmitted energy in s\(t) and ^(0 and the cross-correlation coeffi-

cient P\2-

2. Suppose the receiver is implemented by means of coherent detection using two matched

filters, one matched to s\(t) and the other to s2 (t). Sketch the equivalent lowpass impulse

responses of the matched filters.

*i(0.

A A

FIGURE P4.13

o

-A

T\ t

0

-A

T t

3. Sketch the noise-free response of the two matched filters when the transmitted signal

is S2 (t).

4. Suppose the receiver is implemented by means of two cross-correlators (multipliers

followed by integrators) in parallel. Sketch the output of each integrator as a function

of time for the interval 0 < t < T when the transmitted signal is s2 (t).

5 Compare the sketches in parts 3 and 4. Are they the same9 Explain briefly.

6. From your knowledge of the signal characteristics, give the probability of error for this

binary communication system.

4.14 A binary communication system uses two equiprobable messages s\(t) = pit) and ^(O =
—pit). The channel noise is additive white Gaussian with power spectral density Nq/2.

Assume that we have designed an optimal receiver for this channel, and let the error

probability for the optimal receiver be Pe .

1 . Find an expression for Pe .

2. If this receiver is used on an AWGN channel using the same signals but with the noise

power spectral density TV, > No, find the resulting error probability Pi and explain how
its value compares with Pe .

3. Fet Pe i
denote the error probability in part 2 when an optimal receiver is designedfor

the new noise power spectral density N\ . Find Pe \
and compare it with Pi

.

4. Answer parts 1 and 2 if the two signals are not equiprobable but have prior probabilities

p and 1 — p.

4.15 Consider a quaternary (M = 4) communication system that transmits, every T seconds,

one of four equally probable signals: s\(t), —s\(t), s2 (t), —s2 (t). The signals s\ (t) and

s2 (t) are orthogonal with equal energy. The additive noise is white Gaussian with zero

mean and autocorrelation function R
z
(z) = Nq/28(t). The demodulator consists of two

filters matched to s\(t) and s2 (t), and their outputs at the sampling instant are U\ and U2 .

The detector bases its decision on the following rule:

U\ > \u2 \

=» Jj(0 U, < -\U2 \

=> -styt)

u2 > |U,| => s2 (t) U2 < -If/,
I

=* -s2 (t)

Since the signal set is biorthogonal, the error probability is given by (1 — Pc ), where

Pc is given by Equation 4.4-26. Express this error probability in terms of a single inte-

gral, and thus show that the symbol error probability for a biorthogonal signal set with
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M = 4 is identical to that for four-phase PSK. Hint : A change in variables from U\ and

U2 to W\ = U\ + U2 and W2 — U
\

— U2 simplifies the problem.4.16

The input s(t) to a bandpass filter is

s{t) = Re[5o(0e‘
,27r^ ,

j

where jq(0 is a rectangular pulse as shown in Figure P4. 16(a).

1. Determine the output y(t) of the bandpass filter for all t > 0 if the impulse response

of the filter is

git) = Re [h(t)e
j2n}j

]

where h(t) is an exponential as shown in Figure P4. 16(b).

2. Sketch the equivalent lowpass output of the filter.

3. When would you sample the output of the filter if you wished to have the maximum
output at the sampling instant^ What is the value of the maximum output?

4. Suppose that in addition to the input signal s(t), there is additive white Gaussian noise

n(t) = Re [z(t)e
j2nfct

]

where Rz (r) = 2N0 8(t). At the sampling instant determined in part 3, the signal sample

is corrupted by an additive Gaussian noise term. Determine its mean and variance.

5. What is the signal-to-noise ratio y of the sampled output?

6. Determine the signal-to-noise ratio when h(t ) is the matched filter to s(t), and compare

this result with the value of y obtained in part 5.

FIGURE P4.16

4.17 Consider the equivalent lowpass (complex-valued) signal si(t), 0 < t < T, with energy

e= f m)\ 2
dt

JO

Suppose that this signal is corrupted by AWGN, which is represented by its equivalent

lowpass form z(t). Hence, the observed signal is

n(t) = Si(t ) + z(t), 0 < t < T

The received signal is passed through a filter that has an (equivalent lowpass) impulse

response hi(t). Determine hi(t) so that the filter maximizes the SNR at its output (at

t — T).

4.18 In Section 3.2-4 it was shown that the minimum frequency separation for orthogonality

of binary FSK signals with coherent detection is A/ = 1/272 However, a lower error

probability is possible with coherent detection of FSK if A/ is increased beyond \/2T

.

Show that the optimum value of A/ is 0.715 / 7\ and determine the probability of error for

this value of A/.

4.19 The equivalent lowpass waveforms for three signal sets are shown in Figure P4.19. Each

set may be used to transmit one of four equally probable messages over an additive white
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Gaussian noise channel. The equivalent lowpass noise z(t) has zero-mean and autocorre-

lation function R z (r) = 2/Vo<5(r).

1 . Classify the signal waveforms in sets I, II, III. In other words, state the category or class

to which each signal set belongs.

2. What is the average transmitted energy for each signal set?

3. For signal set I, specify the average probability of error if the signals are detected

coherently.

4. For signal set II, give a union bound on the probability of a symbol error if the detection

is performed (i) coherently and (li) noncoherently.

5. Is it possible to use noncoherent detection on signal set III? Explain.

6. Which signal set or signal sets would you select if you wished to achieve a spectral bit

rate (r = R/W) of at least 2? Explain your answer.

FIGURE P4.19

4.20 For the QAM signal constellation shown in Figure P4.20, determine the optimum decision

boundaries for the detector, assuming that the SNR is sufficiently high that errors occur

only between adjacent points.
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4.21 Two quadrature carriers cos 27rfc t and smln

f

c t are used to transmit digital information

through an AWGN channel at two different data rates, 10 kilobits/s and 100 kilobits/s.

Determine the relative amplitudes of the signals for the two carriers so that St/No for the

two channels is identical.

4.22 When the additive noise at the input to the demodulator is colored, the filter matched

to the signal no longer maximizes the output SNR. In such a case we may consider the

use of a prefilter that “whitens” the colored noise. The prefilter is followed by a filter

matched to the prefiltered signal. Toward this end, consider the configuration shown in

Figure P4.22.

1 . Determine the frequency response characteristic of the prefilter that whitens the noise,

in terms of s„(f), the noise power spectral density.

2. Determine the frequency response characteristic of the filter matched to s(t).

3. Consider the prefilter and the matched filter as a single “generalized matched filter.”

What is the frequency response characteristic of this filter?

4. Determine the SNR at the input to the detector.

FIGURE P4.22

4.23

Consider a digital communication system that transmits information via QAM over a

voice-band telephone channel at a rate of 2400 symbols/s. The additive noise is assumed

to be white and Gaussian.

1. Determine the St/No required to achieve an error probability of 10
-5

at 4800 bits/s.

2. Repeat part 1 for a rate of 9600 bits/s.

3. Repeat part 1 for a rate of 19,200 bits/s.

4. What conclusions do you reach from these results?

4.24

Three equiprobable messages m i, m2, and m3 are to be transmitted over an AWGN channel

with noise power spectral density
^
Nq. The messages are

J
1 0 < t < T

\ 0 otherwise

1

S2 (t) = -

s

3 (t ) = < -1

0

0 <t <\T

\T <t <T
otherwise

1 . What is the dimensionality of the signal space?

2. Find an appropriate basis for the signal space.

3. Draw the signal constellation for this problem.

4. Derive and sketch the optimal decision regions R
\ ,
R 2 ,

and R 3 .

5. Which of the three messages is most vulnerable to errors and why? In other words,

which of P(error
|

m
x
transmitted), i = 1, 2, 3, is largest?

4.25

A QPSK communication system over an AWGN channel uses one of the four equiprobable

signals st(t) = Acos(2nfc t + in/2), where i = 0, 1, 2, 3, fc is the carrier frequency,

and the duration of each signal is T. The power spectral density of the channel noise is

No/2.
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1. Express the message error probability of this system in terms of A, T, and /Vo (an

approximate expression is sufficient).

2. If Gray coding is used, what is the bit error probability in terms of the same parameters

used in part 1 ?

3. What is the minimum (theoretical minimum) required transmission bandwidth for this

communication system9

4. If, instead of QPSK, binary FSK is used with s\(t) = Bcos2nfc t and x2 (t) =
B cos(27ifc + Af)t where the duration of the signals is now T\ and Af = jf-,

deter-

mine the required T\ and B in terms of T and A to achieve the same bit rate and the

same bit error probability as the QPSK system described in parts 1-3.

4.26 A binary signaling scheme over an AWGN channel with noise power spectral density of

uses the equiprobable messages shown in Figure P4.26 and is operating at a bit rate of

R bits/s.

*i(0

2 —

1

1 t

T_ T
2

FIGURE P4.26

s
2
(t)

2

!

t

T_ T
2

1. What is
jy

f°r this system (in terms of Nq and R)7

2. What is the error probability for this system (in terms of Nq and R)1

3. By how many decibels does this system underperform a binary antipodal signaling

system with the same

4. Now assume that this system is augmented with two more signals s2 (t) — —s\(t)

and S4 (t) = —

s

2 (t ) to result in a 4-ary equiprobable system. What is the resulting

transmission bit rate?

5. Using the union bound, find a bound on the error probability of the 4-ary system

introduced in part 4.

4.27 The four signals shown in Figure P4.27 are used for communication of four equiprobable

messages over an AWGN channel. The noise power spectral density is

1. Find an orthonormal basis, with lowest possible N
,
for representation of the signals.

2. Plot the constellation, and using the constellation, find the energy in each signal. What
is the average signal energy and what is £bavg?

3. On the constellation that you have plotted, determine the optimal decision regions for

each signal, and determine which signal is more probable to be received in error.

4. Now analytically (i.e., not geometrically) determine the shape of the decision region

for signal s\(t), i.e., D j, and compare it with your result in part 3.
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^(0 s4 (t)

FIGURE P4.27

4.28

Consider the four-phase and eight-phase signal constellations shown in Figure P4.28.

Determine the radii r\ and r2 of the circles such that the distance between two adjacent

points in the two constellations is d. From this result, determine the additional transmitted

energy required in the 8-PSK signal to achieve the same error probability as the four-phase

signal at high SNR, where the probability of error is determined by errors in selecting

adjacent points.4.29

Digital information is to be transmitted by carrier modulation through an additive Gaus-

sian noise channel with a bandwidth of 100 kHz and Nq = 10“ 10 W/Hz. Determine the

maximum rate that can be transmitted through the channel for four-phase PSK, binary

FSK, and four-frequency orthogonal FSK, which is detected noncoherently.

4.30

A continuous-phase FSK signal with h = - is represented as

I 28b ( nt \ 1 2Sb ( 7Tt \
s(t) = =bW cos cos 2nfc t d= \ sin sin 2nfc t, 0 < t < 2Tb

V Tb \27W V Tb \2Tb J
where the =b signs depend on the information bits transmitted.

1 . Show that this signal has constant envelope.

2. Sketch a block diagram of the modulator for synthesizing the signal.

3. Sketch a block diagram of the demodulator and detector for recovering the information.
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4.31 Consider a biorthogonal signal set with M = 8 signal points. Determine a union bound

for the probability of a symbol error as a function of £b/NQ . The signal points are equally

likely a priori.

4.32 Consider an M-ary digital communication system where M = 2
N

,
and N is the dimension

of the signal space. Suppose that the M signal vectors lie on the vertices of a hypercube

that is centered at the origin. Determine the average probability of a symbol error as a

function of £s /Nq where £s is the energy per symbol,
^ No is the power spectral density of

the AWGN, and all signal points are equally probable.

4.33 Consider the signal waveform

n

s(t) = Y^ciPit - iTc )

;=i

where p(t) is a rectangular pulse of unit amplitude and duration Tc . The {c
f
-

} may be

viewed as a code vector c = (c\ c2 •
•

• c„), where the elements c,- = ±1. Show that the

filter matched to the waveform s(t) may be realized as a cascade of a filter matched to

p(t) followed by a discrete-time filter matched to the vector c. Determine the value of the

output of the matched filter at the sampling instant t = nTc .

4.34 A Hadamard matrix is defined as a matrix whose elements are zb 1 and whose row vectors

are pairwise orthogonal. In the case when n is a power of 2, an n x n Hadamard matrix is

constructed by means of the recursion given by Equation 3.2-59.

1. Let Ci denote the i th row of an n x n Hadamard matrix. Show that the waveforms

constructed as

n

Si(t) = ^2 c
’ k P ~ kT̂ < ' = 1.2, . .

.

,

n

k= I

are orthogonal, where p(t) is an arbitrary pulse confined to the time interval 0 < t < Tc .

2. Show that the matched filters (or cross-correlators) for the n waveforms {si(t)} can be

realized by a single filter (or correlator) matched to the pulse p(t) followed by a set of

n cross-correlators using the code words {c, }.

4.35 The discrete sequence

rk = -J~£ck + n k ,
k = 1 , 2, . .

.

,

n

represents the output sequence of samples from a demodulator, where ck = =b 1 are elements

of one of two possible code words, c\ = [1 1 ••• l]andc2 = [l 1 •• 1 — 1
• • • — 1].

The code word c 2 has w elements that are + 1 and n — w elements that are — 1 ,
where w

is some positive integer. The noise sequence [n k ]
is white Gaussian with variance a 2

.

1. What is the optimum maximum-likelihood detector for the two possible transmitted

signals?

2. Determine the probability of error as a function of the parameters (a 2
, £, w).

3. What is the value of w that minimizes the error?
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4.36

In on-off keying of a carrier modulated signal, the two possible signals are

s0 (t) = 0,

The corresponding received signals are

s
\ (0 = y

cos 2nfc t, 0 < t < Th

r(t) = n(t), 0 < t < Tb

r(t) = cos (2nfc t + 0) + n(t), 0 < t < Tb

where 0 is the carrier phase and n{t) is AWGN.
1 . Sketch a block diagram of the receiver (demodulator and detector) that employs non-

coherent (envelope) detection.

2 . Determine the PDFs for the two possible decision variables at the detector corresponding

to the two possible received signals.

3 . Derive the probability of error for the detector.

4.37

This problem deals with the characteristics of a DPSK signal.

1 . Suppose we wish to transmit the data sequence

110100010110
by binary DPSK. Let s(t) = A cos (27ifc t + 6) represent the transmitted signal in any

signaling interval of duration T

.

Give the phase of the transmitted signal for the data

sequence. Begin with 6 = 0 for the phase of the first bit to be transmitted.

2 . If the data sequence is uncorrelated, determine and sketch the power density spectrum

of the signal transmitted by DPSK.

4.38

In two-phase DPSK, the received signal in one signaling interval is used as a phase reference

for the received signal in the following signaling interval. The decision variable is

D = Re(Vm V;_
1
)^0
“
0
”

where

Vk = 2£e(i6k ~^ + Nk

represents the complex-valued output of the filter matched to the transmitted signal u(t);

Nk is a complex-valued Gaussian variable having zero mean and statistically independent

components.

1 . Writing V* = X* + yT*, show that D is equivalent to

1 1

2

1 1

2

1 1

2

1 „ 1

+
2
O'* + I'm- 1) -(Xm -Xm -i) -(Ym - y„,_i)

2 . For mathematical convenience; suppose that 6k = 0k-

i

. Show that the random variables

U i, U2, t/3, and U4 are statistically independent Gaussian variables, where U\ =
i(x,„ + V2 = {(Y„ + Ym -i), U3 = \(Xn - and UA = \(Ym - Fm _,).

3 . Define the random variables W\ = + t/| and W2 = U
3

2 + U\. Then

D = W
x
— W2 { 0

“
0
”

Determine the probability density functions for W\ and W2.
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Determine the probability of error Pb ,
where

/•OO

Pb — P{D < 0) = P(W[ - W2 < 0) = / P(W2 > W\\wi)p(w\)dw]
Jo

4.39

Assuming that it is desired to transmit information at the rate of R bits/s, determine the

required transmission bandwidth of each of the following six communication systems, and

arrange them in order of bandwidth efficiency, starting from the most bandwidth-efficient

and ending at the least bandwidth-efficient.

1. Orthogonal BFSK
2. 8PSK

3. QPSK
4. 64-QAM
5. BPSK
6. Orthogonal 16-FSK

4.40

In a binary communication system over an additive white Gaussian noise channel, two

messages represented by antipodal signals s\(t) and s2 (t )
= —s\(t) are transmitted. The

probabilities of the two messages are p and 1 - p, respectively, where 0 < p < 1/2. The

energy content of the each message is denoted by £, and the noise power spectral density

is

1 . What is the expression for the threshold value rth such that for r > rth the optimal detector

makes a decision in favor of s

\

(O 9 What is the expression for the error probability?

2. Now assume that with probability of 1 /2 the link between the transmitter and the receiver

is out of service and with a probability of 1/2 this link remains in service. When the

link is out of service, the receiver receives only noise. The receiver does not know

whether the link is in service. What is the structure of the optimal receiver in this case?

In particular, what is the value of the threshold r
th in this case? What is the value of the

threshold if p = 1 /2? What is the resulting error probability for this case (p = 1 /2)?

4.41

A digital communication system with two equiprobable messages uses the following

signals:

siO) = < 2

0

0 < t < 1

1 < t < 2

otherwise

si(t) = <

1

-2

0

0 < t < 1

1 < t < 2

otherwise

1 . Assuming that the channel is AWGN with noise power spectral density Nq /2, determine

the error probability of the optimal receiver and express it in terms of £b/N0 . By how

many decibels does this system underperform a binary antipodal signaling system?

2. Assume that we are using the two-path channel shown in Figure P4.41

Modulator
sm (t)

n \{t)

A r ,(0

ih(t)

r
2(0

FIGURE P4.41
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in which we receive both r\(t) and r2 (t) at the receiver. Both iiy{t) and n 2 {t) are inde-

pendent white Gaussian processes each with power spectral density No/2. The receiver

observes both r\(t ) and r2 {t) and makes its decision based on this observation. Deter-

mine the structure of the optimal receiver and the error probability in this case.

3. Now assume that r\{t) = Asm {t) + n\{t) and r2 (t) = sm (t) + n 2 {t), where m is the

transmitted message and A is a random variable uniformly distributed over the interval

[0, 1]. Assuming that the receiver knows the value of A, what is his optimal decision

rule? What is the error probability in this case? {Note: This last question, regarding the

error probability, is asked from you, and you do not know the value of A.)

4. If the receiver does not know the value of A, what is his optimal decision rule?

4.42 Two equiprobable messages mi and m 2 are to be transmitted through a channel with input

X and output Y related by Y = pX + N

,

where A is a zero-mean Gaussian noise with

variance o 2 and p is a random variable independent of the noise.

1. Assuming an antipodal signaling scheme {X = =LA) and a constant p = 1, what is the

optimal decision rule and the resulting error probability?

2. With antipodal signaling, if p takes ±1 with equal probability, what will be the optimal

decision rule and the resulting error probability?

3. With antipodal signaling, if p takes 0 and 1 with equal probability, what will be the

optimal decision rule and the resulting error probability?

4. Assuming an on-off signaling (X = 0 or A) and p taking ±1 with equal probability,

what will be the optimal decision rule?

4.43 A binary communication scheme uses two equiprobable messages m = 1,2 corresponding

to signals s\(t) and s2 (t), where

s\(t) = x(t)

s2 (t) = x(t — 1)

and x(t) is shown Figure P4.43.

x(t)

FIGURE P4.43

The power spectral density of the noise is No /2.

1 . Design an optimal matched filter receiver for this system. Carefully label the diagram

and determine all the required parameters.

2. Determine the error probability for this communication system.

3. Show that the receiver can be implemented using only one matched filter.

4. Now assume that s\{t) = x(t) and

f x(t — 1) with probability 0.5
s2 (t) = <

[
x(t) with probability 0.5
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In other words, in this case for m = 1 the transmitter always sends x(t), but for m = 2

it is equally likely to send either x(t) or x(t — 1). Determine the optimal detection rule

for this case, and find the corresponding error probability.4.44

Let X denote a Rayleigh distributed random variable, i.e.,

fx(x)
x > 0

x < 0

1.

2.

3.

4.

5.

Determine E [Q(/3X)], where ft is a positive constant. {Hint: Use the definition of the

Q function and change the order of integration.)

In a binary antipodal signaling, let the received energy be subject to a Rayleigh dis-

tributed attenuation; i.e., let the received signal be r(t) = asm (t) + n(t), and therefore,

Pb = Q (yj ^
,
where a 2 denotes the power attenuation and a has a Rayleigh PDF

similar to X. Determine the average error probability of this system.

Repeat part 2 for a binary orthogonal system in which Pb

Find approximations for the results of parts 2 and 3 with the assumption that a 2

^ 1

,

and show that in this case both average error probabilities are proportional to === where

SNR = 2cr
2 #.No

Now find the average of e~^a\ where f5 is a positive constant and a is a random variable

distributed as fx(x). Find an approximation in this case when /3a 2 » 1. We will later

see that this corresponds to the error probability of a noncoherent system in fading

channels.

4.45

In a binary communication system two equiprobable messages s
\
= (1,1) and s 2 =

(—1, —1) are used. The received signal is r — s + n, where n = (n j, n 2 ). It is assumed

that n\ and n 2 are independent and each is distributed according to

f{n) = L-'"'

Determine and plot the decision regions D\ and D2 in this communication scheme.

4.46

Two equiprobable messages are transmitted via an additive white Gaussian noise channel

with noise power spectral density of^ = 1 . The messages are transmitted by the following

two signals

ri o<t<\
S

\ (0 = < _ ,

0 otherwise

and s2 (t) = s\(t — 1). It is intended to implement the receiver by using a correlation-type

structure, but due to imperfections in the design of the correlators, the structure shown
in Figure P4.46 has been implemented. The imperfection appears in the integrator in the

upper branch where instead of fQ
l

we have
5

. The decision device, therefore, observes rj

and r2 and based on this observation has to decide which message was transmitted. What
decision rule should be adopted by the decision device for an optimal decision?
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FIGURE P4.46

4.47 A baseband digital communication system employs the signals shown in Figure P4.47(a)

for transmission of two equiprobable messages. It is assumed the communication problem

studied here is a “one-shot” communication problem; i.e., the above messages are transmit-

ted just once, and no transmission takes place afterward. The channel has no attenuation,

and the noise is AWG with power spectral density

1 . Find an appropriate orthonormal basis for the representation of the signals.

2. In a block diagram, give the precise specifications of the optimal receiver using matched

filters. Label the block diagram carefully.

3. Find the error probability of the optimal receiver.

4. Show that the optimal receiver can be implemented by using just one filter (see block

diagram shown in Figure P4.47(b)). What are the characteristics of the matched filter

and the sampler and decision device?

S
}

(t) s
2
(t)

A A

0

-J
/

T
2

0 T
2

(a)

T
t

AWGN

(b)

FIGURE P4.47
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5. Now assume the channel is not ideal, but has an impulse response of c(t) = 8{t) +
^8(t - y ). Using the same matched filter you used in part 4, derive the optimal decision

rule.

6. Assuming that the channel impulse response is c(t) = 8(t) + a8(t — T), where a is

a random variable uniformly distributed on [0, 1], and using the same matched filter,

derive the optimal decision rule.

4.48 A binary communication system uses antipodal signals siC) = s(t) and s2 (t) = —s(t)

for transmission of two equiprobable messages m\ and m 2 . The block diagram of the

communication system is given in Figure P4.48.

FIGURE P4.48

Message Si(t) is transmitted through two paths to a single receiver, and the receiver

makes its decision based on the observation of both received signals r\ (t) and r2 (t). How-
ever, the upper channel is connected by a switch S which can either be closed or open.

When the switch is open, r\(t) = n\(t); i.e., the first channel provides only noise to the

receiver. The switch is open or closed randomly with equal probability, but during the

transmission it will not change position. Throughout this problem, it is assumed that the

two noise processes are stationary, zero-mean, independent, white and Gaussian processes

each with a power spectral density of No /2.

1 . If the receiver does not know the position of the switch, determine the optimal decision

rule.

2. Now assume that the receiver knows the position of the switch (the switch is still equally

likely to be open or closed). What is the optimal decision rule in this case, and what is

the resulting error probability?

3. In this part assume that both the transmitter and the receiver know the position of the

switch (which is still equally likely to be open or closed). Assume that in this case the

transmitter has a certain level of energy that it can transmit. To be more specific, assume

that in the upper arm ast(t) and in the lower arm /3 Si(t) is transmitted, where a, ft
> 0

and a 2 + /3
2 = 2. What is the best power allocation strategy by the transmitter (i.e.,

what is the best choice for a and /3), what is the optimal decision rule at the receiver,

and what is the resulting error probability?

4.49 The block diagram of a two-path communication system is shown in Figure P4.49. In

the first path noise n\(t) is added to the transmitted signal. In the second path the signal

is subject to a random amplification A and additive noise n 2 (t). The random variable A
takes values =tl with equal probability. The transmitted signal is binary antipodal, and

the two messages are equiprobable. Both n\(t) and n 2 (t) are zero-mean, white, Gaussian

noise processes with power spectral densities N\/2 and N2 /2, respectively. The receiver

observes both r\(t) and r2 (t).
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n
x

(t)

1 . Assuming that the two noise processes are independent
,
determine the structure of the

optimum receiver and find an expression for the error probability.

2. Now assume N\ = N2 = 2 and E[n
1
n 2 ] = 1 /2, where n

\

and n 2 denote the projections

of n\(t) and n 2 (t) on the unit signal in the direction of s(t) (obviously the two noise

processes are dependent). Determine the structure of the optimum receiver in this case.

3. What is the structure of the optimal receiver if the noise processes are independent

and the receiver has access to r(t) = r\(t) + r2 (t) instead of observing r\(t) and r2 (t)

separately?

4. Determine the optimal decision rule if the two noise processes are independent and A
can take 0 and 1 with equal probability [receiver has access to both r\(t) and r2 (t)].

5. What is the optimal detection rule in part 4 if we assume that the upper link is similar

to the lower link but with A substituted with random variable B where B = 1 — A (the

lower link remains unchanged)?

4.50 A fading channel can be represented by the vector channel model r = asm + n
,
where a

is a random variable denoting the fading, whose density function is given by the Rayleigh

distribution

P(a) =
2ae a '

0

a > 0

a < 0

1 . Assuming that equiprobable signals, binary antipodal signaling, and coherent detection

are employed, what is the structure of the optimal receiver?

2. Show that the bit error probability in this case can be written as

Pb
1

2
1
- Pb/Np \

1 + Eb/N0 )

and for large SNR values we have

Pb *
1

4Sb/N0

3.

Assuming an error probability of 10~5
is desirable, determine the required SNR per bit

(in dB) if (i) the channel is nonfading and (ii) the channel is a fading channel. How much

more power is required by the fading channel to achieve the same bit error probability?
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4. Show that if binary orthogonal signaling and noncoherent detection are employed, we
have

1

Pb ~
2 + £b/N0

4.51 A multiple access channel (MAC) is a channel with two transmitters and one receiver.

The two transmitters transmit two messages, and the receiver is interested in correct de-

tection of both messages. A block diagram of such system in the AWGN case is shown in

Figure P4.51.

FIGURE P4.51

The messages are independent binary equiprobable random variables, and both modu-
lators use binary antipodal signaling schemes. We have s

i (0 = ±g\ (t) and s2 (t) = ±g2(0
depending on the values of m\ and m 2 ,

and g\(t) and g2 (t) are two unit energy pulses each

with duration T (gi(0 and g2 (t) are not necessarily orthogonal). The received signal is

r(t) = si(0 + s2 (t) + n(t), where n(t) is a white Gaussian process with a power spectral

density of No/2.

1. What is the structure of the receiver that minimizes P(m\ ^ m\) and P(m 2 / m 2)l

2. What is the structure of the receiver that minimizes P((m
\ ,
m 2 ) ^(mi, m 2))l

3. Between receivers designed in parts 1 and 2, which would you label as the real optimal

receiver? Which has a simpler structure?

4. What are the minimum error probabilities p ]

and p 2
for the receiver in part 1 and p ]2

for the receiver in part 2?

4.52 The constellation for an MPSK modulation system is shown in Figure P4.52. Only point

s
i
and its decision region are shown here. The shaded area (extended to infinity) shows

the error region when s
\
is transmitted.

1. Express R in terms of 8,6, and M.
2. Using the value of R and integrating over the gray area, show that the error probability

for this system can be written as

1 £ sin2 F
Pe = — / e No d6

* Jo

3. Find the error probability for M = 2, and by equating it with the error probability of

BPSK, conclude that Q(x) can be expressed as

<200 = ~ e~^-o d6
* Jo
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FIGURE P4.52

4.53 A communication system employs M signals {sm (t)} =̂l for transmission ofM equiproba-

ble messages. The receiver has two antennas and receives two signals r\ (t )
= sm (t)+ n\{t)

and r2(0 = sm (0 + 722(0 by these antennas. Both n\(t) and 722(0 are white Gaussian

noises with power spectral densities Nq\/2 and N02/2, respectively. The receiver makes

its optimal detection based on the observation of both 7q (0 and 7
*

2 (0 - It is further assumed

that the two noise processes are independent.

1 . Determine the optimal decision rule for this receiver.

2. Assuming /V0 i
= N02 = No, determine the optimal receiver structure.

3. Show that under the assumption of part 2, the receiver needs to know only r\ (t) + r2 (0-

4 . Now assume the system is binary and employs on-off signaling (i.e., s\(t) = s(t ) and

s2 (t) = 0), and show that the optimal decision rule consists of comparing r\ + ar2 with

a threshold. Determine a and the threshold (in this part you are assuming noise powers

are different).
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5. Show that in part 4, if noise powers are equal, then a = 1, and determine the error

probability in this case. How does this system compare with a system that has only one

antenna, i.e., receives only4.54

A communication system employs binary antipodal signals with

s\(t) c
0 < t < 1

otherwise

and S2 (t) = The received signal consists of a direct component, a scattered com-

ponent, and the additive white Gaussian noise. The scattered component is a delayed

version of the basic signal times a random amplification A. In other words, we have

r(t) = s(t) + As(t — 1) + n(t), where s(t) is the transmitted message, A is an exponential

random variable, and n(t) is a white Gaussian noise with a power spectral density of N$/2.

It is assumed that the time delay of the multipath component is constant (equal to 1 ) and

A and n(t) are independent. The two messages are equiprobable and

fA(a)
e

a a > 0

0 otherwise

1 . What is the optimal decision rule for this problem? Simplify the resulting rule as much
as you can.

2. How does the error probability of this system compare with the error probability of a

system which does not involve multipath? Which one has a better performance?

4.55 A binary communication system uses equiprobable signals s\ (t) and ^(0

5|(r) = y/2£b <t>\(t)cos{2nfc t

)

s2 (t) = y/lSb <t>2 {t)co${2nfc t)

for transmission of two equiprobable messages. It is assumed that 4>\(t) and 02(O are

orthonormal. The channel is AWGN with noise power spectral density of No/2.

1 . Determine the optimal error probability for this system, using a coherent detector.

2. Assuming that the demodulator has a phase ambiguity between 0 and 0 (0 < 0 < n)

in carrier recovery, and employs the same detector as in part 1 ,
what is the resulting

worst-case error probability?

3. What is the answer to part 2 in the special case where 0 = n/21

4.56 In this problem we show that the volume of an ^-dimensional sphere with radius R, defined

by the set of all x e IR" such that ||jc|| < R, is given by Vn (R) = B„Rn
,
where

Bn

1. Using change of variables, show that

Vn (R) =

71 2

+ 1

dx
i
dx2 . . . dxn = Bn R

n

xj+xj+ +x?,<R 2

where Bn is the volume on an ^-dimensional sphere of radius 1, i.e., Bn = V(l).
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2. Consider n iid Gaussian random variables U, / = 1,2,. . ,
n

,
each distributed accord-

ing to J\f(0, 1). Show that the probability that Y = (Y\, Y2 ,
...

,

Yn ) would lie in ihe

area between two spheres of radii R and R — e, where € > 0 is very small such that

j ,
can be approximated as

?[R-€<\\Y\\<R] = p(y ) [Vn (R) - Vn (R - e)]

_ €nR n ~ i Bn _Rl

(2n )
n /2

3. Note that p(y) is a function of ||y||. From this show that we can also approximate

P [R-€ <
| K ||

< R] as

?[R-€<\\Y\\<R]*pm (R)€

where pm (
m

) denoted the PDF of ||F||.

4.

From parts 2 and 3 conclude that

P,y.(O
nr” 1 B„ _,±

(2ji )
n !2

5.

Using the fact that p ]]Y]]
(r) is a PDF and therefore its integral over the positive real line

is equal to 1, conclude that

nB„

(27T )
n /2

r
/7_1 e"T dr = 1

0

6.

Using the definition of the gamma function given by Equation 2.3-22 as

show that

and conclude that

r(.*)= / x > 0

dr =
\2J

Bn

r(f + i)

4.57 Let Ul + . .
.

,

denote the ^-dimensional integer lattice shifted by 1/2, and let

12 be an n -dimensional hypercube centered at the origin with side length L which defines

the boundary of this lattice. We further assume that n is even and L = 2l
is a power of 2;

the number of bits per two dimensions is denoted by /3, and we consider a constellation C

based on the intersection of the shifted lattice Zn + Q
,
^ ,

. .
.

,

and the boundary region

12 defined as an rc-dimensional hypercube centered at the origin with side length L.

1 . Show that p = 2t + 2.

2. Show that for this constellation the figure of merit is approximated by

CFM(C) * ^
Note that this is equal to the CFM for a square QAM constellation.

3. Show the shaping gain of 12 is given by ys (12) = 1.
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4.58 Recall that MSK can be represented as a four-phase offset PSK modulation having the

lowpass equivalent form

v(t) = 'Y^[hu(t - 2kTb ) + jJk u(t - 2kTb - Tb )]

k

where

f
sin(7it/2Tb ) 0 < t < 2Tb

u(t) = <

1 0 otherwise

and {//<} and {/^} are sequences of information symbols (±1).

1 . Sketch the block diagram of an MSK demodulator for offset QPSK.
2. Evaluate the performance of the four-phase demodulator for AWGN if no account is

taken of the memory in the modulation.

3. Compare the performance obtained in part 2 with that for Yiterbi decoding of the MSK
signal.

4. The MSK signal is also equivalent to binary FSK. Determine the performance of non-

coherent detection of the MSK signal. Compare your result with parts 2 and 3.

4.59 Consider a transmission line channel that employs n — 1 regenerative repeaters plus the

terminal receiver in the transmission of binary information. Assume that the probability of

error at the detector of each receiver is p and that errors among repeaters are statistically

independent.

1 . Show that the binary error probability at the terminal receiver is

P„=
l

-[l-(l-2pT]

2. If p = 10
-6

and n = 100, determine an approximate value of Pn .

4.60 A digital communication system consists of a transmission line with 100 digital (regener-

ative) repeaters. Binary antipodal signals are used for transmitting the information. If the

overall end-to-end error probability is 10
-6

,
determine the probability of error for each

repeater and the required £b/No to achieve this performance in AWGN.

4.61 A radio transmitter has a power output of Pt = 1 W at a frequency of 1 GHz. The

transmitting and receiving antennas are parabolic dishes with diameter D = 3 m.

1. Determine the antenna gains.

2. Determine the EIRP for the transmitter.

3. The distance (free space) between the transmitting and receiving antennas is 20 km.

Determine the signal power at the output of the receiving antenna in decibels.

4.62 A radio communication system transmits at a power level of 0. 1 W at 1 GHz. The trans-

mitting and receiving antennas are parabolic, each having a diameter of 1 m. The receiver

is located 30 km from the transmitter.

1. Determine the gains of the transmitting and receiving antennas.

2. Determine the EIRP of the transmitted signal.

3. Determine the signal power from the receiving antenna.

4.63 A satellite in synchronous orbit is used to communicate with an earth station at a distance

of 40,000 km. The satellite has an antenna with a gain of 15 dB and a transmitter power
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of 3 W. The earth station uses a 10-m parabolic antenna with an efficiency of 0.6. The

frequency band is at / = 1 GHz. Determine the received power level at the output of the

receiver antenna.

4.64 A spacecraft located 100,000 km from the earth is sending data at a rate of R bits/s. The

frequency band is centered at 2 GHz, and the transmitted power is 10 W. The earth station

uses a parabolic antenna, 50 m in diameter, and the spacecraft has an antenna with a gain

of 10 dB. The noise temperature of the receiver front end is Tq = 300 K.

1 . Determine the received power level.

2. If the desired S^/No = 10 dB, determine the maximum bit rate that the spacecraft can

transmit.

4.65 A satellite in geosynchronous orbit is used as a regenerative repeater in a digital commu-
nication system. Consider the satellite-to-earth link in which the satellite antenna has a

gain of 6 dB and the earth station antenna has a gain of 50 dB. The downlink is operated

at a center frequency of 4 GHz, and the signal bandwidth is 1 MHz. If the required Sjj/Nq

for reliable communication is 15 dB, determine the transmitted power for the satellite

downlink. Assume that Nq = 4.1 x 10
-21 W/Hz.



5

Carrier and Symbol Synchronization

w e have observed that in a digital communication system, the output of the demod-

ulator must be sampled periodically, once per symbol interval, in order to recover the

transmitted information. Since the propagation delay from the transmitter to the re-

ceiver is generally unknown at the receiver, symbol timing must be derived from the

received signal in order to synchronously sample the output of the demodulator.

The propagation delay in the transmitted signal also results in a carrier offset, which

must be estimated at the receiver if the detector is phase-coherent. In this chapter, we
consider methods for deriving carrier and symbol synchronization at the receiver.

5.1

SIGNAL PARAMETER ESTIMATION

Let us begin by developing a mathematical model for the signal at the input to the re-

ceiver. We assume that the channel delays the signals transmitted through it and corrupts

them by the addition of Gaussian noise. Hence, the received signal may be expressed as

r(t) = s(t — r) + n(t)

where

s(t) = R&[si(t)e
j2nfct

]
(5.1-1)

and where t is the propagation delay and si(t) is the equivalent low-pass signal.

The received signal may be expressed as

r(t) = Re{ [st (t
- T)ej(t> + z(t)\ e

j2nfct
} (5.1-2)

where the carrier phase 0, due to the propagation delay t, is 0 = —

2

tt/c t. Now, from

this formulation, it may appear that there is only one signal parameter to be estimated,

namely, the propagation delay, since one can determine 0 from knowledge of fc and t.

However, this is not the case. First of all, the oscillator that generates the carrier signal

290
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for demodulation at the receiver is generally not synchronous in phase with that at the

transmitter. Furthermore, the two oscillators may be drifting slowly with time, perhaps

in different directions. Consequently, the received carrier phase is not only dependent

on the time delay r . Furthermore, the precision to which one must synchronize in time

for the purpose of demodulating the received signal depends on the symbol interval

T. Usually, the estimation error in estimating r must be a relatively small fraction of

T

.

For example, ±1 percent of T is adequate for practical applications. However, this

level of precision is generally inadequate for estimating the carrier phase, even if 0
depends only on r . This is due to the fact that fc is generally large, and, hence, a small

estimation error in r causes a large phase error.

In effect, we must estimate both parameters r and 0 in order to demodulate and

coherently detect the received signal. Hence, we may express the received signal as

r{t) = s(t\ 0, r) + n(t) (5.1-3)

where 0 and r represent the signal parameters to be estimated. To simplify the notation,

we let 0 denote the parameter vector {0, r}, so that r) is simply denoted by

s(t] 0).

There are basically two criteria that are widely applied to signal parameter esti-

mation: the maximum-likelihood (ML) criterion and the maximum a posteriori proba-

bility (MAP) criterion. In the MAP criterion, the signal parameter vector 0 is modeled

as random and characterized by an a priori probability density function p(0). In the

maximum-likelihood criterion, the signal parameter vector 0 is treated as deterministic

but unknown.

By performing an orthonormal expansion of r(t) using N orthonormal functions

we may represent r(t) by the vector of coefficients (r\ 7*2 • • • rN )
= r. The joint

PDF of the random variables {r\ 7*2 • •
• rN ) in the expansion can be expressed as p(r \0).

Then, the ML estimate of 0 is the value that maximizes p(r \0). On the other hand,

the MAP estimate is the value of 0 that maximizes the a posteriori probability density

function

= p(r\0)p(0)

P(r )

(5.1-4)

We note that if there is no prior knowledge of the parameter vector 0, we may
assume that p(0) is uniform (constant) over the range of values of the parameters. In

such a case, the value of 0 that maximizes p(r \0) also maximizes p{0\r). Therefore,

the MAP and ML estimates are identical.

In our treatment ofparameter estimation given below, we view the parameters 0 and

r as unknown, but deterministic. Hence, we adopt theML criterion for estimating them.

In the ML estimation of signal parameters, we require that the receiver extract

the estimate by observing the received signal over a time interval To > T, which is

called the observation interval. Estimates obtained from a single observation interval are

sometimes called one-shot estimates. In practice, however, the estimation is performed

on a continuous basis by using tracking loops (either analog or digital) that continuously

update the estimates. Nevertheless, one-shot estimates yield insight for tracking loop

implementation. In addition, they prove useful in the analysis of the performance ofML
estimation, and their performance can be related to that obtained with a tracking loop.
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5.1-1 The Likelihood Function

Although it is possible to derive the parameter estimates based on the joint PDF of the

random variables (r\ r2 •
• • rN ) obtained from the expansion of r(t), it is convenient to

deal directly with the signal waveforms when estimating their parameters. Hence, we
shall develop a continuous-time equivalent of the maximization of p(r |0).

Since the additive noise n(t) is white and zero-mean Gaussian, the joint PDF p(r \9)

may be expressed as

where

(5.1-5)

(5.1-6)

where T0 represents the integration interval in the expansion of r(t) and s(t\ 9).

We note that the argument in the exponent may be expressed in terms of the signal

waveforms r{t) and s{t\ 9 ), by substituting from Equation 5.1-6 into Equation 5.1-5.

That is,

1 If
Jim -z~2 - Sn(0)]

2 = TT / tr(0 “ s ({ '
0 )]

2 dt (5.1-7)
Af^oo 2a 1 ^ N0 Jto

where the proof is left as an exercise for the reader (see Problem 5.1). Now, the max-
imization of p(r\9 ) with respect to the signal parameters 9 is equivalent to the maxi-

mization of the likelihoodfunction.

A(0) = exp j-2- [r{t )
- s(t; 0)f dt^ (5.1-8)

Below, we shall consider signal parameter estimation from the viewpoint ofmaximizing

A (0).

5.1-2 Carrier Recovery and Symbol Synchronization

in Signal Demodulation

Symbol synchronization is required in every digital communication system which trans-

mits information synchronously. Carrier recovery is required if the signal is detected

coherently.

Figure 5.1-1 illustrates the block diagram of a binary PSK (or binary PAM) signal

demodulator and detector. As shown, the carrier phase estimate 0 is used in generating

the reference signal g(t ) cos(27xfc t + 0) for the correlator. The symbol synchronizer
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Output

FIGURE 5.1-1

Block diagram of a binary PSK receiver.

controls the sampler and the output of the signal pulse generator. If the signal pulse is

rectangular, then the signal generator can be eliminated.

The block diagram of anM-ary PSK demodulator is shown in Figure 5.1-2. In this

case, two correlators (or matched filters) are required to correlate the received signal

with the two quadrature carrier signals g{t) cos(27xfc t + 0) and g(t ) sin(27rfc t + 0),

where 0 is the carrier phase estimate. The detector is now a phase detector, which

compares the received signal phases with the possible transmitted signal phases.

The block diagram of a PAM signal demodulator is shown in Figure 5.1-3. In this

case, a single correlator is required, and the detector is an amplitude detector, which

FIGURE 5.1-2

Block diagram of an M-ary PSK receiver.
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Received

signal

FIGURE 5.1-3

Block diagram of an M-ary PAM receiver.

compares the received signal amplitude with the possible transmitted signal amplitudes.

Note that we have included an automatic gain control (AGC) at the front end of the

demodulator to eliminate channel gain variations, which would affect the amplitude

detector. The AGC has a relatively long time constant, so that it does not respond to the

signal amplitude variations that occur on a symbol-by-symbol basis. Instead, the AGC
maintains a fixed average (signal plus noise) power at its output.

Finally, we illustrate the block diagram of a QAM demodulator in Figure 5.1-4.

As in the case ofPAM, an AGC is required to maintain a constant average power signal

FIGURE 5.1-4

Block diagram of a QAM receiver.
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at the input to the demodulator. We observe that the demodulator is similar to a PSK
demodulator, in that both generate in-phase and quadrature signal samples (X ,

Y) for

the detector. In the case ofQAM, the detector computes the Euclidean distance between

the received noise-corrupted signal point and the M possible transmitted points, and

selects the signal closest to the received point.

5.2

CARRIER PHASE ESTIMATION

There are two basic approaches for dealing with carrier synchronization at the receiver.

One is to multiplex, usually in frequency, a special signal, called a pilot signal, that

allows the receiver to extract and, thus, to synchronize its local oscillator to the carrier

frequency and phase of the received signal. When an unmodulated carrier component

is transmitted along with the information-bearing signal, the receiver employs a phase-

locked loop (PLL) to acquire and track the carrier component. The PLL is designed

to have a narrow bandwidth so that it is not significantly affected by the presence of

frequency components from the information-bearing signal.

The second approach, which appears to be more prevalent in practice, is to derive

the carrier phase estimate directly from the modulated signal. This approach has the

distinct advantage that the total transmitter power is allocated to the transmission of

the information-bearing signal. In our treatment of carrier recovery, we confine our

attention to the second approach; hence, we assume that the signal is transmitted via

suppressed carrier.

In order to emphasize the importance of extracting an accurate phase estimate,

let us consider the effect of a carrier phase error on the demodulation of a double-

sideband, suppressed carrier (DSB/SC) signal. To be specific, suppose we have an

amplitude-modulated signal of the form

s(t) = A(t ) cos(2nfc t + 0) (5.2-1)

If we demodulate the signal by multiplying s(t ) with the carrier reference

c(t )
= cos(2nfc t + 0) (5.2-2)

we obtain

c(t)s(t) = \A(t) cos(0 — 0) + |
A(t) cos(4nfc t + 0 + 0)

The double-frequency component may be removed by passing the product signal

c(t)s(t) through a low-pass filter. This filtering yields the information-bearing signal

y(O = lA(/)cos(0-0) (5.2-3)

Note that the effect of the phase error 0 — 0 is to reduce the signal level in voltage

by a factor cos(0 — 0) and in power by a factor cos
2
(0 — 0). Hence, a phase error of

10° results in a signal power loss of 0. 13 dB, and a phase error of 30° results in a signal

power loss of 1.25 dB in an amplitude-modulated signal.
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The effect of carrier phase errors in QAM and multiphase PSK is much more

severe. The QAM and M-PSK signals may be represented as

s(t) = A{t) cos(27xfc t + 0) — B(t ) sin(27Tfc t + 0) (5.2-4)

This signal is demodulated by the two quadrature carriers

d(t) = cos(2nfc t + <j>)
(5.2-5)

cq (t) = - sin(2nfc t + 4>)

Multiplication of s(t) with c,(t) followed by low-pass filtering yields the in-phase

component

yi(t) = \A(t) cos(0 — 0) — \B(t) sin(0 — 0) (5.2-6)

Similarly, multiplication of s(t) by c
q
(t) followed by low-pass filtering yields the

quadrature component

yQ (t) = \B{t) cos(0 - 0) + \
A(t) sin(0 - 0) (5.2-7)

The expressions 5.2-6 and 5.2-7 clearly indicate that the phase error in the demodulation

of QAM and M-PSK signals has a much more severe effect than in the demodulation

of a PAM signal. Not only is there a reduction in the power of the desired signal

component by a factor cos2 (<p — 0), but there is also crosstalk interference from the

in-phase and quadrature components. Since the average power levels of A(t) and B(t)

are similar, a small phase error causes a large degradation in performance. Hence, the

phase accuracy requirements for QAM and multiphase coherent PSK are much higher

than for DSB/SC PAM.

5.2-1 Maximum-Likelihood Carrier Phase Estimation

First, we derive the maximum-likelihood carrier phase estimate. For simplicity, we
assume that the delay r is known and, in particular, we set r = 0. The function to be

maximized is the likelihood function given in Equation 5.1-8. With 0 substituted for 0,

this function becomes

A(0) = exp {-T [r(t) - s(t; <p)f dt

= exp {
— 2- [ r

2
(t)dt + ^-[ r{t)s(t\(j))dt - 2- f s

2
(t;<p)dt

l No JTo No JTo No Jt0

(5.2-8)

Note that the first term of the exponential factor does not involve the signal parameter 0.

The third term, which contains the integral of s
2
(t\ 0), is a constant equal to the signal

energy over the observation interval 7o for any value of 0. Only the second term, which

involves the cross correlation of the received signal r(t ) with the signal s(t
; 0), depends
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on the choice of 0. Therefore, the likelihood function A(0) may be expressed as

A (0) = C exp

' 2

_N~oL r{t)s(t\ 0) dt (5.2-9)

where C is a constant independent of 0.

The ML estimate 0ml is the value of 0 that maximizes A(0) in Equation 5.2-9.

Equivalently, the value 0ml also maximizes the logarithm of A (0), i.e., the log-

likelihood function

Al(0)
2

No L r(t)s(t; (j))dt (5.2-10)

Note that in defining AL (0) we have ignored the constant term In C.

example 5.2-1. As an example of the optimization to determine the carrier phase,

let us consider the transmission of the unmodulated carrier A cos 2nfc t. The received

signal is

r(t) = A cos(27rfc t + 0) + n(t)

where 0 is the unknown phase. We seek the value 0, say 0ml

,

that maximizes

2A fAL (0) = — /
r(t) cos(2nfc t + </>)dt

No Jtq

A necessary condition for a maximum is that

dAL ((j))

d(j)

This condition yields

or, equivalently,

0ml = - tan
-1

/
r(t) sin(27rfc t + 4>ml) dt =0

Jt0

/ r(t) sin 2n

f

c t dt / r(t) cos 2nfc t dt
IT0 / JTq

(5.2-11)

(5.2-12)

We observe that the optimality condition given by Equation 5.2-1 1 implies the use of a

loop to extract the estimate as illustrated in Figure 5.2-1 . The loop filter is an integrator

whose bandwidth is proportional to the reciprocal of the integration interval To. On the

other hand, Equation 5.2-12 implies an implementation that uses quadrature carriers

to cross-correlate with r(t). Then 0ml is the inverse tangent of the ratio of these two

correlator outputs, as shown in Figure 5.2-2. Note that this estimation scheme yields

0ML explicitly.

r(t)

<5> Jr
0O dt

vco
sin (2nfc t + 0ML )

FIGURE 5.2-1

A PLL for obtaining the ML estimate of the phase of an

unmodulated carrier.
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FIGURE 5.2-2

A (one-shot) ML estimate of the phase of an

unmodulated carrier.

This example clearly demonstrates that the PLL provides the ML estimate of the

phase of an unmodulated carrier.

5.2-2 The Phase-Locked Loop

The PLL basically consists of a multiplier, a loop filter, and a voltage-controlled os-

cillator (VCO), as shown in Figure 5.2-3. If we assume that the input to the PLL is

the sinusoid cos(27Tfc t + 0) and the output of the VCO is sin(27rfc t + 0), where 0
represents the estimate of 0, the product of these two signals is

e(t ) = cos(27xfc t + 0) sin(27r/c f + 0) (5.2-13)

= ^
sin(0 — 0) + \

sin(47Tfc t + 0 + 0)

The loop filter is a low-pass filter that responds only to the low-frequency compo-

nent i sin(0 — 0) and removes the component at 2fc . This filter is usually selected to

have the relatively simple transfer function

G(s) =
1 + x2s

1 + X\ s
(5.2-14)

where x\ and x2 are design parameters (x\ > x2 ) that control the bandwidth of the loop.

A higher-order filter that contains additional poles may be used if necessary to obtain

a better loop response.

The output of the loop filter provides the control voltage v{t) for the VCO. The

VCO is basically a sinusoidal signal generator with an instantaneous phase given by

2Jtfc t + 0(0 = 27xfc t + KL v{z)dx (5.2-15)

Input

signal

signal

J Loop

filter

r

VCO

FIGURE 5.2-3

Basic elements of a phase-locked loop (PLL).
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FIGURE 5.2-4

Model of phase-locked loop.
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v{t)

vco

where K is a gain constant in rad/V. Hence,

$(t) = K f v(r)dr (5.2-16)

By neglecting the double-frequency term resulting from the multiplication of the input

signal with the output of the VCO, we may reduce the PLL into the equivalent closed-

loop system model shown in Figure 5.2-4. The sine function of the phase difference

0 — 0 makes this system non-linear, and, as a consequence, the analysis of its perfor-

mance in the presence of noise is somewhat involved, but, nevertheless, it is mathemat-

ically tractable for some simple loop filters.

In normal operation when the loop is tracking the phase of the incoming carrier,

the phase error 0 — 0 is small and, hence,

sin(0 - 0) ^ 0 - 0 (5.2-17)

With this approximation, the PLL becomes linear and is characterized by the closed-

loop transfer function

H(s) =
KG{s)/s

1 + KG(s)/s
(5.2-18)

where the factor of
\
has been absorbed into the gain parameter K. By substituting

from Equation 5.2-14 for G(s ) into Equation 5.2-18, we obtain

H(s) =
1 + r2s

l + (r2 + l/^> + (ri/^> 2
(5.2-19)

Hence, the closed-loop system for the linearized PLL is second-order when G(s ) is

given by Equation 5.2-14. The parameter r2 controls the position of the zero, while K
and T\ are used to control the position of the closed-loop system poles. It is customary

to express the denominator of H(s ) in the standard form

D(s) = s
2 + 2t;con s + col (5.2-20)

where f is called the loop dampingfactor and con is the natural frequency of the loop. In

terms of the loop parameters, con = ^/K/ri, and f = con {x2 + 1/K)/2, the closed-loop

transfer function becomes

«m=
sz + 2£con s + col

(5.2-21)
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(o/a)n

FIGURE 5.2-5

Frequency response of a second-order loop. [From Phaselock Techniques, 2nd edition
, by F. M.

Gardner, © 1979 by John Wiley and Sons, Inc. Reprinted with permission of the publisher.]

The (one-sided) noise-equivalent bandwidth (see Problem 2.52) of the loop is

_
r|(l/r2

2 + K/n)
eq

4(r2 + l/K) (5.2-22)

_ 1 + (t2con )
2

8$/con

The magnitude response 20 log \H(co)\ as a function of the normalized frequency

Q)/con is illustrated in Figure 5.2-5, with the damping factor f as a parameter and

T\ 1 . Note that f = 1 results in a critically damped loop response, f < 1 produces

an underdamped response, and f > 1 yields an overdamped response.

In practice, the selection of the bandwidth of the PLL involves a tradeoff between

speed of response and noise in the phase estimate, which is the topic considered below.

On the one hand, it is desirable to select the bandwidth of the loop to be sufficiently

wide to track any time variations in the phase of the received carrier. On the other hand,

a wideband PLL allows more noise to pass into the loop, which corrupts the phase

estimate. Below, we assess the effects of noise in the quality of the phase estimate.

5.2-3 Effect of Additive Noise on the Phase Estimate

In order to evaluate the effects of noise on the estimate of the carrier phase, let us assume

that the noise at the input to the PLL is narrowband. For this analysis, we assume that
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the PLL is tracking a sinusoidal signal of the form

s(t ) = A c cos[27Tfc t + cj){t )] (5.2-23)

that is corrupted by the additive narrowband noise

n(t) = x(t ) cos 2jxfc t — y(0 sin 2nfc t (5.2-24)

The in-phase and quadrature components of the noise are assumed to be statistically

independent, stationary Gaussian noise processes with (two-sided) power spectral den-

sity \ No W/Hz. By using simple trigonometric identities, the noise term in Equation

5.2-24 can be expressed as

n{t )
= rii(t) cos[27Tfc t + — n

q
(t) sm[2nfc t + 0(01 (5.2-25)

where

rii(t) = x(t)cos</>(t) + y(t) sin

n
q
(t )
= —x(t)sin^>(t) + y(t) cos <p(t)

(5.2-26)

We note that

n
t
{t) + jn

q (t ) = |
x(t) + jy(t)]e jm

so that the quadrature components n
t
(t) and n

q
{t) have exactly the same statistical

characteristics as x(t) and y(£).

If s{t) + n(t) is multiplied by the output of the VCO and the double-frequency

terms are neglected, the input to the loop filter is the noise-corrupted signal

e(t )
= A c sin A0 + n

t
{t) sin A0 — n

q
{t) cos A

0 5 2 27
= A c sin A0 + n\{t)

where, by definition A0 = 0 — 0 is the phase error. Thus, we have the equivalent

model for the PLL with additive noise as shown in Figure 5.2-6.

When the power Pc = ^A2
C
of the incoming signal is much larger than the noise

power, we may linearize the PLL and, thus, easily determine the effect of the additive

noise on the quality of the estimate 0. Under these conditions, the model for the

«i(0

VCO

FIGURE 5.2-6

Equivalent PLL model with additive noise.
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FIGURE 5.2-7

Linearized PLL model with additive noise.

«i(0

linearized PLL with additive noise is illustrated in Figure 5.2-7. Note that the gain

parameter A c may be normalized to unity, provided that the noise terms are scaled by

1/Ac ,
i.e., the noise terms become

nAt) na (t

)

n2 {t) = sm A 4> cos A0 (5.2-28)
A c A c

The noise term n2 {t) is zero-mean Gaussian with a power spectral density No/2A2
.

Since the noise n2 {t) is additive at the input to the loop, the variance of the phase error

A0, which is also the variance of the YCO output phase, is

Nn
= ^jo

I
H(f)\

2
df (5.2-29)

_ N()Beq

where Z?eq is the (one-sided) equivalent noise bandwidth of the loop, given in Equation

5.2-22. Note that is simply the ratio of total noise power within the bandwidth of

the PLL divided by the signal power. Hence,

a 2

0

1

Yl

where yl is defined as the signal-to-noise ratio

SNR = yL
A^O^eq

(5.2-30)

(5.2-31)

The expression for the variance <r? of theYCO phase error applies to the case where

the SNR is sufficiently high that the linear model for the PLL applies. An exact analysis

based on the non-linear PLL is mathematically tractable when G(s )
= 1, which results

in a first-order loop. In this case, the probability density function for the phase error

may be derived (see Yiterbi, 1966) and has the form

P(A0) =
exp(yL cos A0)

27tIo(yl)
(5.2-32)

where yL is the SNR given by Equation 5.2-31 with Beq being the appropriate noise

bandwidth of the first-order loop, and /q(-) is the modified Bessel function of order zero.
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FIGURE 5.2-8

Comparison of VCO phase variance for exact and approximate

(linear model) first-order PLL. [From Principles of Coherent

Communication, by A. J. Viterbi; ©1966 by McGraw-Hill Book
Company. Reprinted with permission of the publisher ]

From the expression for p(A0), we may obtain the exact value of the variance for

the phase error on a first-order PLL. This is plotted in Figure 5.2-8 as a function of

1 /yl. Also shown for comparison is the result obtained with the linearized PLL model.

Note that the variance for the linear model is close to the exact variance for Yl > 3.

Hence, the linear model is adequate for practical purposes.

Approximate analyses ofthe statistical characteristics of the phase error for the non-

linear PLL have also been performed. Of particular importance is the transient behavior

of the PLL during initial acquisition. Another important problem is the behavior ofPLL
at low SNR. It is known, for example, that when the SNR at the input to the PLL drops

below a certain value, there is a rapid deterioration in the performance of the PLL.

The loop begins to lose lock and an impulsive type of noise, characterized as clicks, is

generated which degrades the performance of the loop. Results on these topics can be

found in the texts by Viterbi (1966), Lindsey (1972), Lindsey and Simon (1973), and

Gardner (1979), and in the survey papers by Gupta (1975) and Lindsey and Chie (1981).

Up to this point, we have considered carrier phase estimation when the carrier

signal is unmodulated. Below, we consider carrier phase recovery when the signal

carries information.

5.2-4 Decision-Directed Loops

A problem arises in maximizing either Equation 5.2-9 or 5.2-10 when the signal s(t;4>)

carries the information sequence [In }. In this case we can adopt one of two approaches:

either we assume that [In } is known or we treat {In } as a random sequence and average

over its statistics.

In decision-directed parameter estimation, we assume that the information se-

quence {In } over the observation interval has been estimated and, in the absence of

demodulation errors, In = In ,
where In denotes the detected value of the information

In . In this case s(t\<t>) is completely known except for the carrier phase.

To be specific, let us consider the decision-directed phase estimate for the class of

linear modulation techniques for which the received equivalent low-pass signal may
be expressed as

n(t) = e^}4> ^git -nT) + z(t )
•= si(t)e~

J</> + z(t

)

n

(5.2-33)
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where sft ) is a known signal if the sequence {In } is assumed known. The likelihood

function and corresponding log-likelihood function for the equivalent low-pass signal

are

A(0) = Cexp{Re — [ ri(t)s*(t)e^dt]
{ [No Jto

A L (<p) = Re
|

3- n(t)s?(t)dt

(5.2-34)

(5.2-35)

Ifwe substitute for 5-
/ (t) in Equation 5.2-35 and assume that the observation interval

Tq = KT, where K is a positive integer, we obtain

f 1 ^l1 rin+or

= Re{^±|'&

n(t)g*(t - nT)dt

(5.2-36)

where, by definition

r{n+\)T

yn = /
n(t)g*(t - nT)dt

JnT
(5.2-37)

Note that yn is the output of the matched filter in the nth signal interval. TheML estimate

of 0 is easily found from Equation 5.2-36 by differentiating the log-likelihood

A l(4>) = Re 53 7
»y»

j

cos (j) Im
^

j*
y
^

sin ^

with respect to 4> and setting the derivative equal to zero. Thus, we obtain

/K-

1

\ / /K-

1

0ml = — tan
-l ME On / rME 7«>’«

\n=

0

\n=

0

(5.2-38)

We call 0ml in Equation 5.2-38 the decision-directed (or decision-feedback) carrier

phase estimate. It is easily shown (Problem 5. 10) that the mean value of0Ml is 0, so that

the estimate is unbiased. Furthermore, the PDF of 0ml can be obtained (Problem 5.1 1)

by using the procedure described in Section 4.3-2.

The block diagram of a double-sideband PAM signal receiver that incorporates

the decision-directed carrier phase estimate given by Equation 5.2-38 is illustrated in

Figure 5.2-9.

Another implementation of the PAM receiver that employs a decision-feedback

PLL (DFPLL) for carrier phase estimation is shown in Figure 5.2-10. The received

double-sideband PAM signal is given by A{t) cos(2ttfc t + 0), where A{t) = Am g{t)

and g(t ) is assumed to be a rectangular pulse of duration T. This received signal is

multiplied by the quadrature carriers eft) and c
q
(t), as given by Equation 5.2-5, which
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FIGURE 5.2-9

Block diagram of double-sideband PAM signal receiver with decision-directed carrier phase

estimation.

are derived from the YCO. The product signal

r(t) cos(2nfc t + 4>) = \[A(t) + «,(/)] cos A<p

— +

n

q
(t ) sin Acj) + double-frequency terms

is used to recover the information carried by A(t). The detector makes a decision on

the symbol that is received every T seconds. Thus, in the absence of decision errors,

it reconstructs A(t) free of any noise. This reconstructed signal is used to multiply the

product of the second quadrature multiplier, which has been delayed by T seconds

to allow the demodulator to reach a decision. Thus, the input to the loop filter in the

absence of decision errors is the error signal

e(t ) = ^A(t){[A(t) + sin A0 — n
q
(t) cos A0}

+ double-frequency terms

= \

A

2
(t) sin Acj) + ^A(t)[rii(t) sin Acj) — n

q
(t) cos Acj)]

+ double-frequency terms

(5.2-40)

FIGURE 5.2-10

Carrier recovery with a decision-feedback PLL.
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FIGURE 5.2-11

Block diagram of QAM signal receiver with decision-directed carrier phase estimation.

The loop filter is low-pass and, hence, it rejects the double-frequency term in e(t).

The desired component is A2
{t) sin A0, which contains the phase error for driving the

loop.

The ML estimate in Equation 5.2-38 is also appropriate for QAM. The block dia-

gram of a QAM receiver that incorporates the decision-directed carrier phase estimate

is shown in Figure 5.2-1 1.

In the case ofM-ary PSK, theDFPLL has the configuration shown in Figure 5.2-12.

The received signal is demodulated to yield the phase estimate

~ 2tt
@m — 1 )M

which, in the absence of a decision error, is the transmitted signal phase 9m . The
two outputs of the quadrature multipliers are delayed by the symbol duration T and

multiplied by cos 9m and sin 9m to yield

r(t) cos(2ixfc t + 0) sin 9m

— 2
[A cos 9m + rii(t )] sin 9m cos(0 0)

— \[A sin 9m + n
q
(t )] sin0m sin(0 — 0)

+ double-frequency terms

r(t ) sin(2jrfc t + 0) cos 9m

= — \
[

A

cos 9m + rii (0] cos 9m sin(0 — 0)

— \
[A sin 9m + n

q (Q] cos 9m cos(0 — 0)

+ double-frequency terms

(5.2-41)
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FIGURE 5.2-12

Carrier recovery for M -ary PSK using a decision-feedback PLL.

The two signals are added to generate the error signal

e(t) = -\A sin(<f>
-

<j>) + \m{t) sin(0 - 4> - 6m ) (5.2-42)

+ \n
q
(t) cos (<p ~4> — 0m ) + double-frequency terms

This error signal is the input to the loop filter that provides the control signal for the

YCO.
We observe that the two quadrature noise components in Equation 5.2-42 appear

as additive terms. There is no term involving a product of two noise components as

in an Mth-power law device, described in the next section. Consequently, there is no

additional power loss associated with the decision-feedback PLL.

This M-phase tracking loop has a phase ambiguity of 360°/M, necessitating the

need to differentially encode the information sequence prior to transmission and differ-

entially decode the received sequence after demodulation to recover the information.

TheML estimate in Equation 5.2-38 is also appropriate for QAM. TheML estimate

for offset QPSK is also easily obtained (Problem 5. 12) by maximizing the log-likelihood

function in Equation 5.2-35, with si(t ) given as

Slit) = £„ In g(t - nT ) + j £„ Jn g(t -nT- \T) (5.2-43)

where In = ±1 and Jn = ±1.
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Finally, we should also mention that carrier phase recovery for CPM signals can

also be accomplished in a decision-directed manner by use of a PLL. From the optimum

demodulator for CPM signals, which is described in Section 4.3, we can generate an

error signal that is filtered in a loop filter whose output drives a PLL. Alternatively, we
may exploit the linear representation ofCPM signals and, thus, employ a generalization

of the carrier phase estimator given by Equation 5.2-38, in which the cross correlation

of the received signal is performed with each of the pulses in the linear representation.

A comprehensive description of carrier phase recover techniques for CPM is given in

the book by Mengali and D’Andrea (1997).

5.2-5 Non-Decision-Directed Loops

Instead of using a decision-directed scheme to obtain the phase estimate, we may treat

the data as random variables and simply average A (0) over these random variables

prior to maximization. In order to carry out this integration, we may use either the

actual probability distribution function of the data, if it is known, or, perhaps, we may
assume some probability distribution that might be a reasonable approximation to the

true distribution. The following example illustrates the first approach.

example 5.2-2. Suppose the real signal s(t) carries binary modulation. Then, in a

signal interval, we have

s(t )
= A cos 2nfc t, 0 < t < T

where A = ±1 with equal probability. Clearly, the PDF of A is given as

p(A) = \S(A - 1) + \S(A + 1)

Now, the likelihood function A (0) given by Equation 5.2-9 may be considered as

conditional on a given value of A and must be averaged over the two values. Thus,

A(0)
/

oo

A(4>)p(A)dA
-OO

= 2
exP

2 r
T

/ r(t) cos(27rfc t + 0) dt
JoNo

+ \
exp

cosh

2 r
1

~N~oJo
r(t ) cos(27Tfc t + 0) dt

2 r
N~o Jo

r(t) cos(27Tfc t + 0) dt

and the corresponding log-likelihood function is

2 rT

Al(0) = In cosh
No j

r(t) co$>(2nfc t + 0) dt (5.2-44)

Ifwe differentiate A^ (0) and set the derivative equal to zero, we obtain theML estimate

for the non-decision-directed estimate. Unfortunately, the functional relationship in
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Equation 5.2-44 is highly non-linear and, hence, an exact solution is difficult to obtain.

On the other hand, approximations are possible. In particular,

[
x-x 2

In cosh x = <
2

1 w
(W « 1)

(M » l)

(5.2-45)

With these approximations, the solution for 0 becomes tractable.

In this example, we averaged over the two possible values of the information

symbol. When the information symbols are M-valued, where M is large, the averaging

operation yields highly non-linear functions of the parameter to be estimated. In such

a case, we may simplify the problem by assuming that the information symbols are

continuous random variables. For examples, we may assume that the symbols are zero-

mean Gaussian. The following example illustrates this approximation and the resulting

form for the average likelihood function.

example 5.2-3. Let us consider the same signal as in Example 5.2-2, but now we
assume that the amplitude A is zero-mean Gaussian with unit variance. Thus,

p(A) = e
~Al

/2

If we average A(0) over the assumed PDF of A, we obtain the average likelihood A(0)

in the form

A (0) = C exp
L
N0 /

~i
2

r(t) cos(27rfc t + 0) dt (5.2-46)

and the corresponding log-likelihood as

Al (0)

'

2 f
T— / r(t) cos(27rfc t + 0) dt

_N0 Jo
(5.2-47)

We can obtain the ML estimate of 0 by differentiating A^(0) and setting the derivative

to zero.

It is interesting to note that the log-likelihood function is quadratic under the Gaus-

sian assumption and that it is approximately quadratic, as indicated in Equation 5.2-45

for small values of the cross correlation of r{t) with s{t\ 0). In other words, if the cross

correlation over a single interval is small, the Gaussian assumption for the distribution

of the information symbols yields a good approximation to the log-likelihood function.

In view of these results, we may use the Gaussian approximation on all the symbols

in the observation interval 7o = KT . Specifically, we assume that the K information

symbols are statistically independent and identically distributed. By averaging the like-

lihood function A(0) over the Gaussian PDF for each of the K symbols in the interval

To = KT, we obtain the result

A(0) = C exp
i
2

r(t ) cos(27xfc t + 0) dt (5.2-48)
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FIGURE 5.2-13

Non-decision-directed PLL for carrier phase estimation of PAM signals.

Ifwe take the logarithm ofEquation 5 .2-48, differentiate the resulting log-likelihood

function, and set the derivative equal to zero, we obtain the condition for the ML esti-

mate as

K~ l r(n+l)T
^

r(n+\)T

y / r(t ) cos(27Tfc t + 0) dt / r(t) sin(27rfc t + 0) dt = 0 (5.2-49)

n=0
JnT JnT

Although this equation can be manipulated further, its presentform suggests the tracking

loop configuration illustrated in Figure 5.2-13. This loop resembles a Costas loop,

which is described below. We note that the multiplication of the two signals from the

integrators destroys the sign carried by the information symbols. The summer plays the

role of the loop filter. In a tracking loop configuration, the summer may be implemented

either as a sliding-window digital filter (summer) or as a low-pass digital filter with

exponential weighting of the past data.

In a similar manner, one can derive non-decision-directed ML phase estimates for

QAM and M-PSK. The starting point is to average the likelihood function given by

Equation 5.2-9 over the statistical characteristics of the data. Here again, we may use the

Gaussian approximation (two-dimensional Gaussian for complex-valued information

symbols) in averaging over the information sequence.

Squaring loop The squaring loop is a non-decision-directed loop that is widely

used in practice to establish the carrier phase of double-sideband suppressed carrier

signals such as PAM. To describe its operation, consider the problem of estimating the

carrier phase of the digitally modulated PAM signal of the form

s(t) = A(t) cos(2nfc t + 0) (5.2-50)

where A(t) carries the digital information. Note that £[s(Q] = E[A(t)] = 0 when the

signal levels are symmetric about zero. Consequently, the average value of s(t ) does

not produce any phase coherent frequency components at any frequency, including

the carrier. One method for generating a carrier from the received signal is to square

the signal and, thus, to generate a frequency component at 2fc ,
which can be used to

drive a PLL tuned to 2fc . This method is illustrated in the block diagram shown in

Figure 5.2-14.
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demodulator Frequency

divider

FIGURE 5.2-14

Carrier recover using a square-law device.

The output of the square-law device is

s
2
(t) = A2

(t) cos
2
(2ttfc t + 0)

= \
A2

(t) + ^
A2

(t)cos(4nfc t + 20)

(5.2-51)

Since the modulation is a cyclostationary stochastic process, the expected value of

s
2
(t) is

E[s 2
(t)] = \E[A2

(t)] + \E[A2
(t )] cos(47r/c f + 20) (5.2-52)

Hence, there is power at the frequency 2fc .

Ifthe output ofthe square-law device is passed through a band-pass filter tuned to the

double-frequency term in Equation 5.2-5 1 ,
the mean value of the filter is a sinusoid with

frequency 2/c ,
phase 20, and amplitude

^
E[A 2

(t)]H(2fc ), where H(2fc ) is the gain of

the filter at / = 2fc . Thus, the square-law device has produced a periodic component

from the input signal s(t). In effect, the squaring of s(t) has removed the sign information

contained in A(t) and, thus, has resulted in phase-coherent frequency components at

twice the carrier. The filtered frequency component at 2fc is then used to drive the PLL.

The squaring operation leads to a noise enhancement that increases the noise power

level at the input to the PLL and results in an increase in the variance of the phase error.

To elaborate on this point, let the input to the squarer be s(t ) + n(t ), where s(t ) is

given by Equation 5.2-50 and n(t) represents the band-pass additive Gaussian noise

process. By squaring s(t ) + n(t ), we obtain

y(t) = s
2
(t ) + 2s(t)n(t) + n

2
(t) (5.2-53)

where s
2
(t ) is the desired signal component and the other two components are the sig-

nal x noise and noise x noise terms. By computing the autocorrelation functions and

power density spectra of these two noise components, one can easily show that both

components have spectral power in the frequency band centered at 2fc . Consequently,

the band-pass filter with bandwidth BbP
centered at 2/c ,

which produces the desired si-

nusoidal signal component that drives the PLL, also passes noise due to these two terms.
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Since the bandwidth of the loop is designed to be significantly smaller than the

bandwidth BbP
of the band-pass filter, the total noise spectrum at the input to the PLL

may be approximated as a constant within the loop bandwidth. This approximation

allows us to obtain a simple expression for the variance of the phase error as

1

YlSl

where Sl is called the squaring loss and is given by

sL = (i +
fibp/25eq

V Yl

(5.2-54)

(5.2-55)

Since SL < 1, SI
1
represents the increase in the variance of the phase error caused by

the added noise (noise x noise terms) that results from the squarer. Note, for example,

that when yL = Bbp/2B&q ,
the loss is 3 dB.

Finally, we observe that the output of the YCO from the squaring loop must be

frequency-divided by 2 to generate the phase-locked carrier for signal demodulation.

It should be noted that the output of the frequency divider has a phase ambiguity of

180° relative to the phase of the received signal. For this reason, the data must be

differentially encoded prior to transmission and differentially decoded at the receiver.

Costas loop Another method for generating a properly phased carrier for a double-

sideband suppressed carrier signal is illustrated by the block diagram shown in

Figure 5.2-15. This scheme was developed by Costas (1956) and is called the Costas

loop. The received signal is multiplied by cos(27Tfc t + 0) and sm(2nfc t + 0), which
are outputs from the YCO. The two products are

yc {t) = [j(0 + n(t)\ cos(2Ttfct + 0)

= + rii(t)\ cos A0 + \n
q
(t) sin A0

+ double-frequency terms (5.2-56)

ys (t) = fs(0 + n(t)\ sin(2n

f

c t + 0)

= \[A(t) + sin A0 — ^n
q
(t)cos A0

+ double-frequency terms

FIGURE 5.2-15

Block diagram of Costas loop.
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where the phase error A0 = 0 — 0. The double-frequency terms are eliminated by the

low-pass filters following the multiplications.

An error signal is generated by multiplying the two outputs of the low-pass filters.

Thus,

e(t) = ±{[A(f) + rii(t)]
2 - n 2

(t)} sin(2A <p)

(5.2-57)
- \n

q
(t)[A(t) + rii(t)] cos(2A0)

This error signal is filtered by the loop filter, whose output is the control voltage that

drives the VCO. The reader should note the similarity of the Costas loop to the PLL
shown in Figure 5.2-13.

We note that the error signal into the loop filter consists of the desired term

A2(£)sin2(0 — 0) plus terms that involve signal x noise and noise x noise. These

terms are similar to the two noise terms at the input to the PLL for the squaring method.

In fact, if the loop filter in the Costas loop is identical to that used in the squaring loop,

the two loops are equivalent. Under this condition, the probability density function of

the phase error and the performance of the two loops are identical.

It is interesting to note that the optimum low-pass filter for rejecting the double-

frequency terms in the Costas loop is a filter matched to the signal pulse in the

information-bearing signal. If matched filters are employed for the low-pass filters,

their outputs could be sampled at the bit rate at the end of each signal interval, and the

discrete-time signal samples could be used to drive the loop. The use of the matched

filter results in a smaller noise into the loop.

Finally, we note that, as in the squaring PLL, the output of the YCO contains a

phase ambiguity of 180°, necessitating the need for differential encoding of the data

prior to transmission and differential decoding at the demodulator.

Carrier estimation for multiple phase signals When the digital information is

transmitted via M-phase modulation of a carrier, the methods described above can

be generalized to provide the properly phased carrier for demodulation. The received

M-phase signal, excluding the additive noise, may be expressed as

s(t) = A cos
27T

2nfc t + 0 + —-(m - 1)M m = 1,2, ...,M (5.2-58)

where 2tt(m — 1)/M represents the information-bearing component of the signal phase.

The problem in carrier recovery is to remove the information-bearing component and,

thus, to obtain the unmodulated carrier cos(27rfc t + 0). One method by which this

can be accomplished is illustrated in Figure 5.2-16, which represents a generalization

of the squaring loop. The signal is passed through an Mth-power-law device, which

generates a number of harmonics of fc . The band-pass filter selects the harmonic

cos(27TMfc t + M0) for driving the PLL. The term

2tv—(m — 1)M = 2jt(m — 1) = 0 (mod 2tt), m = 1, 2, . .
.

,

MM
Thus, the information is removed. The VCO output is sin(27rMfc t + M0), so this

output is divided in frequency by M to yield sin(27rfc t + 0), and phase-shifted by
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Output

FIGURE 5.2-16

Carrier recovery with Mth-power-law device for M-ary PSK.

rad to yield cos(27Tfc t+<j>). These components are then fed to the demodulator. Although

not explicitly shown, there is a phase ambiguity in these reference sinusoids of 360°/M,

which can be overcome by differential encoding of the data at the transmitter and

differential decoding after demodulation at the receiver.

Just as in the case of the squaring PLL, the Mth-power PLL operates in the presence

of noise that has been enhanced by the Mth-power-law device, which results in the

output

y(t) = [s(?) + n(t)]
M

The variance of the phase error in the PLL resulting from the additive noise may be

expressed in the simple form

n-l
°ML

Yl
(5.2-59)

where yi is the loop SNR and 5^ is the M-phase power loss. 5ml has been evaluated

by Lindsey and Simon (1973) for M = 4 and 8.

Another method for carrier recovery in M-ary PSK is based on a generalization

of the Costas loop. That method requires multiplying the received signal by M phase-

shifted carriers of the form

sin
n

2tTfc t + <p + —(k- 1)M k= 1,2, ...,M

low-pass-filtering each product, and then multiplying the outputs of the low-pass filters

to generate the error signal. The error signal excites the loop filter, which, in turn,

provides the control signal for the VCO. This method is relatively complex to implement

and, consequently, has not been generally used in practice.

Comparison ofdecision-directed with non-decision-directed loops We note that

the decision-feedback phase-locked loop (DFPLL) differs from the Costas loop only in
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the method by which A{t) is rectified for the purpose of removing the modulation. In

the Costas loop, each of the two quadrature signals used to rectify A(t) is corrupted by

noise. In the DFPLL, only one of the signals used to rectify A(t) is corrupted by noise.

On the other hand, the squaring loop is similar to the Costas loop in terms of the noise

effect on the estimate 0. Consequently, the DFPLL is superior in performance to both

the Costas loop and the squaring loop, provided that the demodulator is operating at

error rates below 10
-2

where an occasional decision error has a negligible effect on 0.

Quantitative comparisons of the variance of the phase errors in a Costas loop to those

in DFPLL have been made by Lindsey and Simon (1973), and show that the variance

of the DFPLL is 4-10 times smaller for signal-to-noise ratios per bit above 0 dB.

5.3

SYMBOL TIMING ESTIMATION

In a digital communication system, the output of the demodulator must be sampled

periodically at the symbol rate, at the precise sampling time instants tm = mT+ r ,
where

T is the symbol interval and r is a nominal time delay that accounts for the propagation

time of the signal from the transmitter to the receiver. To perform this periodic sampling,

we require a clock signal at the receiver. The process of extracting such a clock signal

at the receiver is usually called symbol synchronization or timing recovery.

Timing recovery is one ofthe most critical functions that is performed at the receiver

of a synchronous digital communication system. We should note that the receiver must

know not only the frequency (1/T) at which the outputs of the matched filters or

correlators are sampled, but also where to take the samples within each symbol interval.

The choice of sampling instant within the symbol interval of duration T is called the

timing phase.

Symbol synchronization can be accomplished in one of several ways. In some

communication systems, the transmitter and receiver clocks are synchronized to a

master clock, which provides a very precise timing signal. In this case, the receiver

must estimate and compensate for the relative time delay between the transmitted and

received signals. Such may be the case for radio communication systems that operate

in the very low frequency (YLF) band (below 30 kHz), where precise clock signals are

transmitted from a master radio station.

Another method for achieving symbol synchronization is for the transmitter to

simultaneously transmit the clock frequency \/T or a multiple of 1/T along with

the information signal. The receiver may simply employ a narrowband filter tuned to

the transmitted clock frequency and, thus, extract the clock signal for sampling. This

approach has the advantage of being simple to implement. There are several disadvan-

tages, however. One is that the transmitter must allocate some of its available power to

the transmission of the clock signal. Another is that some small fraction of the available

channel bandwidth must be allocated for the transmission of the clock signal. In spite

of these disadvantages, this method is frequently used in telephone transmission sys-

tems that employ large bandwidths to transmit the signals ofmany users. In such a case,

the transmission of a clock signal is shared in the demodulation of the signals among
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the many users. Through this shared use of the clock signal, the penalty in the transmitter

power and in bandwidth allocation is reduced proportionally by the number of users.

A clock signal can also be extracted from the received data signal. There are a num-

ber of different methods that can be used at the receiver to achieve self-synchronization.

In this section, we treat both decision-directed and non-decision-directed methods.

5.3-1 Maximum-Likelihood Timing Estimation

Let us begin by obtaining theML estimate of the time delay r . If the signal is a baseband

PAM waveform, it is represented as

r(t) = s(f, r) + n(t) (5.3-1)

where

s(t-, r) = J2 tnSd -nT- r) (5.3-2)

n

As in the case ofML phase estimation, we distinguish between two types of timing

estimators, decision-directed timing estimators and non-decision-directed estimators.

In the former, the information symbols from the output of the demodulator are treated as

the known transmitted sequence. In this case, the log-likelihood function has the form

A L (r) = CL / r(t)s(t\x)dt
J To

If we substitute Equation 5.3-2 into Equation 5.3-3, we obtain

Al(t) = CL ^2 In f r(t)g(t — nT — r)dt

n Jto

— Cl ^
'

2nyn (r)

n

where yn (t ) is defined as

yn (t) = I
r(t)g(t — nT — z)dt

JTo

A necessary condition for f to be the ML estimate of r is that

JA^(r) \ d
— / An ~7Z

,

'7bdr

d f
= /

r(t)g(t — nT — z)dt
„ dr JTo

- ^2 Jn-^[yn(r)] = 0

(5.3-3)

(5.3-4)

(5.3-5)

(5.3-6)

The result in Equation 5.3-6 suggests the implementation of the tracking loop

shown in Figure 5.3-1. We should observe that the summation in the loop serves as

the loop filter whose bandwidth is controlled by the length of the sliding window in

the summation. The output of the loop filter drives the voltage-controlled clock (VCC),

or voltage-controlled oscillator, which controls the sampling times for the input to the
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I„

FIGURE 5.3-1

Decision-directed ML estimation of timing for baseband PAM.

loop. Since the detected information sequence {/„} is used in the estimation of r, the

estimate is decision-directed.

The technique described above forML timing estimation of baseband PAM signals

can be extended to carrier modulated signal formats such as QAM and PSK in a

straightforward manner, by dealing with the equivalent low-pass form of the signals.

Thus, the problem ofML estimation of symbol timing for carrier signals is very similar

to the problem formulation for the baseband PAM signal.

5.3-2 Non-Decision-Directed Timing Estimation

A non-decision-directed timing estimate can be obtained by averaging the likelihood ra-

tio A(r ) over the PDF of the information symbols, to obtain A(r), and then differentiat-

ing either A(r) or In A(r) = KL (x) to obtain the condition for the maximum-likelihood

estimate fml •

In the case of binary (baseband) PAM, where In = ±1 with equal probability, the

average over the data yields

Al(t) = J2 ln c°sh[C;yn (r)] (5.3-7)

n

just as in the case of the phase estimator, Since In cosh x ^ \x 2
for small x, the

square-law approximation

AL(r)«lC2
E„y„

2
(T) (5.3-8)

is appropriate for low signal-to-noise ratios. For multilevel PAM, we may approximate

the statistical characteristics of the information symbols {In } by the Gaussian PDF,

with zero-mean and unit variance. When we average A(r) over the Gaussian PDF, the

logarithm of A(r) is identical to AL (r) given by Equation 5.3-8. Consequently, the

non-decision-directed estimate of r may be obtained by differentiating Equation 5.3-8.

The result is an approximation to the ML estimate of the delay time. The derivative of

Equation 5.3-8 is

= (5.3-9)

where yn (r) is given by Equation 5.3-5.
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FIGURE 5.3-2

Non-decision-directed estimation of timing for binary baseband PAM.

An implementation of a tracking loop based on the derivative of A L (r) given

by Equation 5.3-7 is shown in Figure 5.3-2. Alternatively, an implementation of a

tracking loop based on Equation 5.3-9 is illustrated in Figure 5.3-3. In both structures,

we observe that the summation serves as the loop filter that drives the YCC. It is

interesting to note the resemblance of the timing loop in Figure 5.3-3 to the Costas

loop for phase estimation.

Early-late gate synchronizers Another non-decision-directed timing estimator

exploits the symmetry properties of the signal at the output of the matched filter or

correlator. To describe this method, let us consider the rectangular pulses(0,0 <t<T,
shown in Figure 5.3-4a. The output of the filter matched to s(t) attains its maximum
value at time t = T, as shown in Figure 5.3-4b. Thus, the output of the matched filter

is the time autocorrelation function of the pulse s(t). Of course, this statement holds

for any arbitrary pulse shape, so the approach that we describe applies in general to

any signal pulse. Clearly, the proper time to sample the output of the matched filter for

a maximum output is at t = T
,
i.e., at the peak of the correlation function.

In the presence of noise, the identification of the peak value of the signal is generally

difficult. Instead of sampling the signal at the peak, suppose we sample early, at t = T—

8

and late at t — T + <5. The absolute values of the early samples \y[m(T — 5)]| and the

late samples \y[m(T + <5)]| will be smaller (on the average in the presence of noise)

FIGURE 5.3-3

Non-decision-directed estimation of timing for baseband PAM.
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FIGURE 5.3-4

Rectangular signal pulse (a) and its

matched filter output (b).

than the samples of the peak value \y(mT)\. Since the autocorrelation function is even

with respect to the optimum sampling time t = T, the absolute values of the correlation

function at t = T — 8 and t = T+

8

are equal. Under this condition, the proper sampling

time is the midpoint between t = T — 8 and t = T + <5. This condition forms the basis

for the early-late gate symbol synchronizer.

Figure 5.3-5 illustrates the block diagram of an early-late gate synchronizer. In

this figure, correlators are used in place of the equivalent matched filters. The two

correlators integrate over the symbol interval T, but one correlator starts integrating

8 seconds early relative to the estimated optimum sampling time and the other in-

tegrator starts integrating 8 seconds late relative to the estimated optimum sampling

time. An error signal is formed by taking the difference between the absolute values

of the two correlator outputs. To smooth the noise corrupting the signal samples, the

error signal is passed through a low-pass filter. If the timing is off relative to the op-

timum sampling time, the average error signal at the output of the low-pass filter is

nonzero, and the clock signal is either retarded or advanced, depending on the sign

of the error. Thus, the smoothed error signal is used to drive a YCC, whose output

is the desired clock signal that is used for sampling. The output of the YCC is also

used as a clock signal for a symbol waveform generator that puts out the same basic

pulse waveform as that of the transmitting filter. This pulse waveform is advanced and

delayed and then fed to the two correlators, as shown in Figure 5.3-5. Note that if the

signal pulses are rectangular, there is no need for a signal pulse generator within the

tracking loop.

FIGURE 5.3-5

Block diagram of early-late gate synchronizer.
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We observe that the early-late gate synchronizer is basically a closed-loop control

system whose bandwidth is relatively narrow compared to the symbol rate l/T. The
bandwidth of the loop determines the quality of the timing estimate. A narrowband loop

provides more averaging over the additive noise and, thus, improves the quality of the

estimated sampling instants, provided that the channel propagation delay is constant

and the clock oscillator at the transmitter is not drifting with time (or drifting very

slowly with time). On the other hand, if the channel propagation delay is changing

with time and/or the transmitter clock is also drifting with time, then the bandwidth of

the loop must be increased to provide for faster tracking of time variations in symbol

timing.

In the tracking mode, the two correlators are affected by adjacent symbols. How-
ever, if the sequence of information symbols has zero-mean, as is the case for PAM and

some other signal modulations, the contribution to the output of the correlators from

adjacent symbols averages out to zero in the low-pass filter.

An equivalent realization ofthe early-late gate synchronizer that is somewhat easier

to implement is shown in Figure 5.3-6. In this case the clock signal from the YCC is

advanced and delayed by 5, and these clock signals are used to sample the outputs of

the two correlators.

The early-late gate synchronizer described above is a non-decision-directed es-

timator of symbol timing that approximates the maximum-likelihood estimator. This

assertion can be demonstrated by approximating the derivative of the log-likelihood

function by the finite difference, i.e.,

dAi{x) ^ A^(r + 5) — A^(r — 5)

dr 28
(5.3-10)

FIGURE 5.3-6

Block diagram of early-late gate synchronizer—an alternative form.
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If we substitute for AL (r) from Equation 5.3-8 into Equation 5.3-10, we obtain the

approximation for the derivative as

dAL {x)

dr K<* +#-*-«>]
n

^E
| \JT

- nT - x -S)dt

—
|j

r(t)g(t — nT — x + S)dt

j

(5.3-11)

But the mathematical expression in Equation 5.3-1 1 basically describes the functions

performed by the early-late gate symbol synchronizers illustrated in Figures 5.3-5

and 5.3-6.

5.4

JOINT ESTIMATION OF CARRIER PHASE AND SYMBOL TIMING

The estimation of the carrier phase and symbol timing may be accomplished separately

as described above or jointly. Joint ML estimation of two or more signal parameters

yields estimates that are as good and usually better than the estimates obtained from

separate optimization of the likelihood function. In other words, the variances of the

signal parameters obtained fromjoint optimization are less than or equal to the variance

of parameter estimates obtained from separately optimizing the likelihood function.

Let us consider the joint estimation of the carrier phase and symbol timing. The

log-likelihood function for these two parameters may be expressed in terms of the

equivalent low-pass signals as

A lOP, t) = Re |L <p,x)dt (5.4-1)

where $/(*; 0, r) is the equivalent low-pass signal, which has the general form

Si(f, 4>, x) = ^2 !ng(t - nT -x) + j ^2 - nT -x) (5.4-2)

n n

where {/„} and {./,,} are the two information sequences.

We note that, for PAM, we may set Jn = 0 for all n, and the sequence {/„} is real.

For QAM and PSK, we set Jn = 0 for all n and the sequence {/„} is complex-valued.

For offset QPSK, both sequences {/„} and
{ J,, }

are nonzero and w(t) = g(t — \T).

For decision-directed ML estimation of </> and r, the log-likelihood function

becomes

^J2i^yn(r)-jj:xn(x)]^AL ((p, x) = Re (5.4-3)
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where

yn (r) = f r(t)g*(t -nT - t

)

dt
J To

xn (z) = / r(t)w*(t — nT — r)dt
JTo

Necessary conditions for the estimates of 4> and r to be the ML estimates are

(5.4-4)

dAL (4>, r)

d(j>

= 0,

dA L (4>, t)

at
= o (5.4-5)

It is convenient to define

Mr) + jB(r) = 2-£ [/>„(r) - ;V>n (r)] (5.4-6)
Jy/o —

With this definition, Equation 5.4-3 may be expressed in the simple form

AL (</>, r) = A(r)cos0 — Z?(r)sin0 (5.4-7)

Now the conditions in Equation 5.4-5 for the joint ML estimates become

dAl(0, r) _
d(j)

9Al(0, r) _
3r

From Equation 5.4-8, we obtain

-A(r)sin0 — B(r)cos<p = 0

3A(r) 3B(r)
cos (/>

—- sin 4> = 0
3r 3r

0ml = — tan
-l

LA(tml) J

The solution to Equation 5.4-9 that incorporates Equation 5.4-10 is

‘ dB(r)
A(r)— b fi(r)-

3r 3r
= 0

J r=rML

(5.4-8)

(5.4-9)

(5.4-10)

(5.4-11)

The decision-directed tracking loop for QAM (or PSK) obtained from these equa-

tions is illustrated in Figure 5.4-1.

Offset QPSK requires a slightly more complex structure for joint estimation of 0
and r. The structure is easily derived from Equations 5.4-6 to 5.4-1 1.

In addition to the joint estimates given above, it is also possible to derive non-

decision-directed estimates of the carrier phase and symbol timing, although we shall

not pursue this approach.

We should also mention that one can combine the parameter estimation problem

with the demodulation of the information sequence {/„}. Thus, one can consider the

joint maximum-likelihood estimation of [In }, the carrier phase 0, and the symbol timing

parameter r. Results on these joint estimation problems have appeared in the technical

literature, e.g., Kobayashi (1971), Falconer (1976), and Falconer and Salz (1977).
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FIGURE 5.4-1

Decision-directed joint tracking loop for carrier phase and symbol timing in QAM and PSK.

5.5

PERFORMANCE CHARACTERISTICS OF ML ESTIMATORS

The quality of a signal parameter estimate is usually measured in terms of its bias

and its variance. In order to define these terms, let us assume that we have a sequence

of observations (x\ X2 X3 •
• • xn ) = x

,
with PDF p(jc |0), from which we extract an

estimate of a parameter 0. The bias of an estimate, say 0(jc ), is defined as

bias = £[0(x)] - 0 (5.5-1)

where 0 is the true value of the parameter. When £[0 (jc)] = 0, we say that the estimate

is unbiased. The variance of the estimate 0(x) is defined as

of = E{mx)]2
}
- {E[j>(x)]}

2
(5.5-2)

In general <r? may be difficult to compute. However, a well-known result in pa-

rameter estimation (see Helstrom, 1968) is the Cramer-Rao lower bound on the mean
square error defined as

Emx)-cp]2}> |A £[
^)]J j

e JL lnp(x\<p)

|

(5.5-3)

Note that when the estimate is unbiased, the numerator of Equation 5.5-3 is unity and

the bound becomes a lower bound on the variance of cr| of the estimate 0 (jc), i.e.,

2

(5.5-4)
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Since In p(x\<f>) differs from the log-likelihood function by a constant factor inde-

pendent of 0, it follows that

a
2
1 f 3 1

_0<p H ^-rinAW
_d<p

= -E

Therefore, the lower bound on the variance is

or? > 1 /E

a
2

d(j>
2
In A (<p)

r d i
2

} /
’

a
2

7T”7 ln A (0)
_
ufp HA

(5.5-5)

(5.5-6)

This lower bound is a very useful result. It provides a benchmark for comparing

the variance of any practical estimate to the lower bound. Any estimate that is unbiased

and whose variance attains the lower bound is called an efficient estimate.

In general, efficient estimates are rare. When they exist, they are maximum-
likelihood estimates. A well-known result from parameter estimation theory is that

any ML parameter estimate is asymptotically (arbitrarily large number of observa-

tions) unbiased and efficient. To a large extent, these desirable properties constitute the

importance ofML parameter estimates. It is also known that anML estimate is asymp-

totically Gaussian distributed (with mean 0 and variance equal to the lower bound given

by Equation 5.5-6.)

In the case of the ML estimates described in this chapter for the two signal param-

eters, their variance is generally inversely proportional to the signal-to-noise ratio, or,

equivalently, inversely proportional to the signal power multiplied by the observation

interval T0 . Furthermore, the variance of the decision-directed estimates, at low error

probabilities, are generally lower than the variance of non-decision-directed estimates.

In fact, the performance of the ML decision-directed estimates for 0 and r attain the

lower bound.

The following example is concerned with the evaluation of the Cramer-Rao lower

bound for the ML estimate of the carrier phase.

example 5.5-1. The ML estimate of the phase of an unmodulated carrier was shown
in Equation 5.2-1 1 to satisfy the condition

where

L:
r(t

)

sin(27r/c t + <f>ML)dt - 0 (5.5-7)

r{t) = s{t\ (f>) + n(t)
(5 5—8)

= A cos(27rfc t + 0) + n(t)

The condition in Equation 5.5-7 was derived by maximizing the log-likelihood function

A l(<P) = E [ r(t)s(t;4>)dt
No J 7o

(5.5-9)
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The variance of 0Ml is lower-bounded as

<7 ? >
0ML —

>

>

{^ j
E[r{t)] cos(2n

f

c t + (j>) dt

\£[ dt
y' = *L

\N0 JTo / A 2
7o

No/ Tp _ A^O^eq

A 2 ” A 2

(5.5-10)

where the factor 1 / To is simply the (one-sided) equivalent noise bandwidth of the ideal

integrator and NoBeq is the total noise power.

From this example, we observe that the variance of the ML phase estimate is

lower-bounded as

a\ >
0ML —

Yl
(5.5-11)

where yl is the loop SNR. This is also the variance obtained for the phase estimate from

a PLL with decision-directed estimation. As we have already observed, non-decision-

directed estimates do not perform as well due to losses in the non-linearities required

to remove the modulation, e.g., the squaring loss and the Mth-power loss.

Similar results can be obtained on the quality of the symbol timing estimates

derived above. In addition to their dependence on the SNR, the quality of symbol

timing estimates is a function of the signal pulse shape. For example, a pulse shape that

is commonly used in practice is one that has a raised cosine spectrum (see Section 9.2).

For such a pulse, the rms timing error (<r?) as a function of SNR is illustrated in

Figure 5.5-1, for both decision-directed and non-decision-directed estimates. Note the

significant improvement in performance of the decision-directed estimate compared

with the non-decision-directed estimate. Now, if the bandwidth of the pulse is varied,

the pulse shape is changed and, hence, the rms value ofthe timing error also changes. For

example, when the bandwidth of the pulse that has a raised cosine spectrum is varied,

FIGURE 5.5-1

Performance of baseband symbol timing estimate

for fixed signal and loop bandwidths. [From

Synchronization Subsystems: Analysis and Design,

by L. Franks, 1981. Reprinted with permission of the

author.]
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Excess bandwidth factor/?

[Bandwidth = (1 + ft)/2T]

FIGURE 5.5-2

Performance of baseband symbol timing estimate for fixed

SNR and fixed loop bandwidths. [From Synchronization

Subsystems: Analysis and Design, by L. Franks
, 1981.

Reprinted with permission ofthe author, ]

the rms timing error varies as shown in Figure 5.5-2. Note that the error decreases as

the bandwidth of the pulse increases.

In conclusion, we have presented the ML method for signal parameter estimation

and have applied it to the estimation of the carrier phase and symbol timing. We have

also described their performance characteristics.

5.6
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Carrier recovery and timing synchronization are two topics that have been thoroughly
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decision-directed phase estimation methods were described in Proakis et al. (1964) and

Natali and Walbesser (1969). The work on decision-directed estimation was motivated

by earlier work of Price (1962a,b). Comprehensive treatments of phase-locked loops

first appeared in the books by Viterbi (1966) and Gardner (1979). Books that cover

carrier phase recovery and time synchronization techniques have been writtenby Stiffler

(1971), Lindsey (1972), Lindsey and Simon (1973), Meyr and Ascheid (1990), Simon

et al. (1995), Meyr et al. (1998), and Mengali and D’Andrea (1997).

A number of tutorial papers have appeared in IEEEjournals on the PLL and on time

synchronization. We cite, for example, the paper by Gupta (1975), which treats both

analog and digital implementation of PLLs, and the paper by Lindsey and Chie (1981),

which is devoted to the analysis of digital PLLs. In addition, the tutorial paperby Franks

(1980) describes both carrier phase and symbol synchronization methods, including

methods based on the maximum-likelihood estimation criterion. The paper by Franks

is contained in a special issue of the IEEE Transactions on Communications (August

1980) devoted to synchronization. The paper by Mueller and Muller (1976) describes

digital signal processing algorithms for extracting symbol timing and the paper by

Bergmans (1995) evaluates the efficiency of data-aided timing recovery methods.

Application of the maximum-likelihood criterion to parameter estimation was

first described in the context of radar parameter estimation (range and range rate).
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Subsequently, this optimal criterion was applied to carrier phase and symbol timing

estimation as well as to joint parameter estimation with data symbols. Papers on these

topics have been published by several researchers, including Falconer (1976), Mengali

(1977), Falconer and Salz (1977), and Meyers and Franks (1980).

The Cramer-Rao lower bound on the variance of a parameter estimate is derived

and evaluated in a number of standard texts on detection and estimation theory, such

as Helstrom (1968) and Van Trees (1968). It is also described in several books on

mathematical statistics, such as the book by Cramer (1946).

PROBLEMS

5.1 Prove the relation in Equation 5.1-7.

5.2 Sketch the equivalent realization of the binary PSK receiver in Figure 5.1-1 that employs

a matched filter instead of a correlator.

5.3

Suppose that the loop filter (see Equation 5.2-14) for a PLL has the transfer function

G(s) =
1

s + \/2

a. Determine the closed-loop transfer function H(s) and indicate if the loop is stable.

b. Determine the damping factor and the natural frequency of the loop.

5.4

Consider the PLL for estimating the carrier phase of a signal in which the loop filter is

specified as

G(s) =
K

1 + t\S

a. Determine the closed-loop transfer function H(s) and its gain at / = 0.

b. For what range of values of X\ and K is the loop stable?

5.5

The loop filter G(s ) in aPLL is implemented by the circuit shown in Figure P5 .5 . Determine

the system function G(s) and express the time constants X\ and r2 in terms of the circuit

parameters.

Ri FIGURE P5.5
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T
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5.6

The loop filter G(s) in a PLL is implemented with the active filter shown in Figure P5.6.

Determine the system function G(s) and express the time constants t\ and r2 in terms of

the circuit parameters.
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FIGURE P5.6

5.7

Show that the early-late gate synchronizer illustrated in Figure 5.3-5 is a close approxi-

mation to the timing recovery system illustrated in Figure P5.7.

FIGURE P5.7

5.8 Based on an ML criterion, determine a carrier phase estimation method for binary on-off

keying modulation.

5.9 In the transmission and reception of signals to and from moving vehicles, the transmitted

signal frequency is shifted in direct proportion to the speed of the vehicle. The so-called

Doppler frequency shift imparted to a signal that is received in a vehicle traveling at a

velocity v relative to a (fixed) transmitter is given by the formula

where X is the wavelength, and the sign depends on the direction (moving toward or moving
away) that the vehicle is traveling relative to the transmitter. Suppose that a vehicle is

traveling at a speed of 1 00 km/h relative to a base station in a mobile cellular communication

system. The signal is a narrowband signal transmitted at a carrier frequency of 1 GHz.
a. Determine the Doppler frequency shift.

b. What should be the bandwidth of a Doppler frequency tracking loop if the loop is de-

signed to track Doppler frequency shifts for vehicles traveling at speeds up to 100 km/h?

c. Suppose the transmitted signal bandwidth is 2 MHz centered at 1 GHz. Determine the

Doppler frequency spread between the upper and lower frequencies in the signal.

5.10 Show that the mean value of theML estimate in Equation 5.2-38 is 0, i.e., that the estimate

is unbiased.

5.11 Determine the PDF of the ML phase estimate in Equation 5.2-38.

5.12 Determine the ML phase estimate for offset QPSK.
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5.13 A single-sideband PAM signal may be represented as

um (t) = Am [gT (t) cos 27tfc t - gT (t) sin 2irfc t]

where gr(t) is the Hilbert transform of gr(t) and Am is the amplitude level that conveys the

information. Demonstrate mathematically that a Costas loop cannot be used to demodulate

the SSB PAM signal.

5.14 A carrier component is transmitted on the quadrature carrier in a communication system

that transmits information via binary PSK. Hence, the received signal has the form

r(t) = ±\/2Ps cos(2ir

f

c t + 0) + \f2Pc sin(2n

f

c t + 0) + n(t)

where 0 is the carrier phase and n(t) is AWGN. The unmodulated carrier component is

used as a pilot signal at the receiver to estimate the carrier phase.

a. Sketch a block diagram of the receiver, including the carrier phase estimator.

b. Illustrate mathematically the operations involved in the estimation of the carrier phase 0

.

c. Express the probability of error for the detection of the binary PSK signal as a function

of the total transmitted power PT = Ps + Pc . What is the loss in performance due to

the allocation of a portion of the transmitted power to the pilot signal? Evaluate the loss

for Pd Pt = 0.1.

5.15 Determine the signal and noise components at the input to a fourth-power (M = 4) PLL
that is used to generate the carrier phase for demodulation of QPSK. By ignoring all noise

components except those that are linear in the noise n(t), determine the variance of the

phase estimate at the output of the PLL.

5.16 The probability of error for binary PSK demodulation and detection when there is a carrier

phase error 0e is

P2(<t>e) = Q

Suppose that the phase error from the PLL is modeled as a zero-mean Gaussian random

variable with variance cr£ n . Determine the expression for the average probability of

error (in integral form).

5.17 Determine the ML estimate of the time delay r for the QAM signal of the form

s(t) = Re[s/(L r)e-i
2nfct

]

where

si(t; r) = ^2 7«S(* ~nT -x)
n

and {/„) is a sequence of complex-valued data.

5.18 Determine the joint ML estimate of r and 0 for a PAM signal.

5.19 Determine the joint ML estimate of r and 0 for offset QPSK.
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An Introduction to Information Theory

This chapter deals with fundamental limits on communications. By fundamental

limits we mean the study of conditions under which the two fundamental tasks in

communications—compression and transmission—are possible. In this chapter we will

see that for some important source and channel models, we can precisely state the limits

for compression and transmission of information.

In Chapter 4, we considered the optimal detection of digitally modulated signals

when transmitted through anAWGN channel. We observed that some modulation meth-

ods provide better performance than others. In particular, we observed that orthogonal

signaling waveforms allow us to make the probability of error arbitrarily small by let-

ting the number of waveforms M ^ oo, provided that the SNR per bit yb > — 1 .6 dB.

However, if yb falls below — 1.6 dB, then reliable communication is impossible. The
value of —1.6 dB is an example of a fundamental limit for communication systems.

We begin this chapter with a study of information sources and source coding.

Communication systems are designed to transmit the information generated by a source

to some destination. Information sources may take a variety of different forms. For

example, in radio broadcasting, the source is generally an audio source (voice or music).

In TV broadcasting, the information source is a video source whose output is a moving
image. The outputs of these sources are analog signals and, hence, the sources are

called analog sources. In contrast, computers and storage devices, such as magnetic or

optical disks, produce discrete outputs (usually binary or ASCII characters), and hence

are called discrete sources.

Whether a source is analog or discrete, a digital communication system is designed

to transmit information in digital form. Consequently, the output of the source must be

converted to a format that can be transmitted digitally. This conversion of the source

output to a digital form is generally performed by the source encoder, whose output

may be assumed to be a sequence of binary digits.

In the second half of this chapter we focus on communication channels and trans-

mission of information. We develop mathematical models for important channels and

introduce two important parameters for communication channels—channel capacity

and channel cutoff rate—and elaborate on their meaning and significance.

330
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Later in Chapters 7 and 8, we consider signal waveforms generated from either

binary or nonbinary sequences. We shall observe that, in general, coded waveforms

offer performance advantages not only in power-limited applications where R/W < 1,

but also in bandwidth-limited systems where R/W > 1

.

6.1

MATHEMATICAL MODELS FOR INFORMATION SOURCES

Any information source produces an output that is random; i.e., the source output is

characterized in statistical terms. Otherwise, if the source output were known exactly,

there would be no need to transmit it. In this section, we consider both discrete and ana-

log information sources, and we postulate mathematical models for each type of source.

The simplest type of a discrete source is one that emits a sequence of letters selected

from a finite alphabet. For example, a binary source emits a binary sequence of the form

100101110 • •
•

,
where the alphabet consists of the two letters {0, 1}. More generally, a

discrete information source with an alphabet of L possible letters, say {jci ,
x2 , . .

.

,

xl },

emits a sequence of letters selected from the alphabet.

To construct a mathematical model for a discrete source, we assume that each letter

in the alphabet {x \ ,
x2 , . .

.

,

xl} has a given probability of occurrence. That is,

pk = P [X = xk \ , 1 <k<L
where

X> = i

k=l

We consider two mathematical models of discrete sources. In the first, we assume

that the output sequence from the source is statistically independent. That is, the current

output letter is statistically independent of all past and future outputs. A source whose

output satisfies the condition of statistical independence among output letters is said

to be memoryless. If the source is discrete, it is called a discrete memoryless source

(DMS). The mathematical model for aDMS is a sequence of iid random variables {X/}.

If the output of the discrete source is statistically dependent, such as English text,

we may construct a mathematical model based on statistical stationarity. By definition,

a discrete source is said to be stationary if the joint probabilities of two sequences of

length n
,
say, a\, tf2 , . .

.

,

an and ai+m ,
a2+m , . .

.

,

an+m ,
are identical for all n > 1 and

for all shifts m. In other words, the joint probabilities for any arbitrary length sequence

of source outputs are invariant under a shift in the time origin.

An analog source has an output waveform x(t) that is a sample function of a

stochastic process X(t). We assume that X(t) is a stationary stochastic process with

autocorrelation function Rx (t) and power spectral density Sx(f)• When X(t) is a

band-limited stochastic process, i.e., Sx(f ) = 0 for |/| > W , the sampling theorem

may be used to represent X(t) as

( n \ . ( n Y-— smc 2W [t
\2W) v ™)\ (6 . 1-1 )



332 Digital Communications

where {X(n/2W)} denote the samples of the process X(t ) taken at the sampling

(Nyquist) rate of fs = 2W samples/s. Thus, by applying the sampling theorem, we
may convert the output of an analog source to an equivalent discrete-time source. Then
the source output is characterized statistically by the joint PDF p(x \ ,

x2 , . .
.

,

xm ) for

allra > 1 ,
where Xn = X(n/2W), 1 < n < m, are the random variables corresponding

to the samples of X(t).

We note that the output samples {X(n/2W)} from the stationary sources are gen-

erally continuous, and hence they cannot be represented in digital form without some
loss in precision. For example, we may quantize each sample to a set of discrete values,

but the quantization process results in loss of precision, and consequently the original

signal cannot be reconstructed exactly from the quantized sample values. Later in this

chapter, we shall consider the distortion resulting from quantization of the samples

from an analog source.

6.2

A LOGARITHMIC MEASURE OF INFORMATION

To develop an appropriate measure of information, let us consider two discrete random
variables X and Y with possible outcomes in the alphabets 3? and 3/, respectively.

Suppose we observe some outcome Y = y and we wish to determine, quantitatively,

the amount of information that the occurrence of the event Y = y provides about

the event X = x. We observe that when X and Y are statistically independent, the

occurrence of Y = y provides no information about the occurrence of the event X — x.

On the other hand, when X and Y are fully dependent such that the occurrence of

Y = y determines the occurrence ofX = x, then the information content is simply that

provided by the event X = x. A suitable measure that agrees with the intuitive notion

of information is the logarithm of the ratio of the conditional probability

P[X = x\Y = y]±F[x\y]

divided by the probability

P[X = x]±F[x]

That is, the information content provided by the occurrence of the event Y = y about

the event X = x is defined as

/<*;*> =iog^ (6.2-DPW
I(x\ y) is called the mutual information between x and y. The mutual information

between random variables X and Y is defined as the average of I(x\ y) and is given by

/(X; F) =^E P tX = x
’
F = ^ 7(x;y)

xegrye&r

=EE p [x=x ’
F = ^ log

xe'jryed/

P[*|y]

PW
(6 .2-2)
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The units of I{X\ Y) are determined by the base of the logarithm, which is usually

selected as either 2 or e. When the base of the logarithm is 2, the units of I(X\ Y ) are

bits
;
and when the base is e

,
the units of I(X

;
Y) are called nats (natural units). (The

standard abbreviation for log
e

is In.) Since

In a = In 2 log2 a = 0.693 15 log2 a

the information measured in nats is equal to In 2 times the information measured in

bits.

Some of the most important properties of the mutual information are given below.

Some of these properties are proved in problems at the end of this chapter.

1. I(X\ Y) = 7(7; X)

2. I(X
;
Y) > 0, with equality if and only if X and Y are independent

3. I(X\ Y) < min{| |, \3/ |} where |

if
|

and
| 3/ \

denote the size of the alphabets

When the random variables X and Y are statistically independent, P [x \y ]
= P [jc]

and hence I(X\ Y) — 0. On the other hand, when the occurrence of the event Y = y
uniquely determines the occurrence of the event X = x, the conditional probability in

the numerator of Equation 6.2-1 is unity, hence

/(*; y) = log—^ = - logP [X = x] (6.2-3)
P [X = x]

and

ax- y) = - Z p tx = *• Y = yi i°gp t* = *]

xe^ryed!/

= -^P[X = x]logP[X = x]

(6.2-4)

The value of I(X ; Y) under this condition, which is denoted H(X ) and is defined by

H(X) = -^P[X = x]logP[X = x] (6.2-5)

X G 'if

is called the entropy of the random variable X and is a measure of uncertainty or

ambiguity in X. Since knowledge of X completely removes uncertainty about it, H(X)
is also a measure of information that is acquired by knowledge of X, or the information

content of X per source output. The unit for entropy is bits (or nats) per symbol, or per

source output. Note that in the definition of entropy, we define 0 log 0 = 0. It is also

important to note that both entropy and mutual information depend on the probabilities

of the random variables and not on the values the random variables take.

If an information source is deterministic, i.e., for one value of X the probability

is equal to 1 and for all other values of X the probability is equal to 0, the entropy of

the source is equal to zero, i.e., there is no ambiguity in this source, and the source

does not convey any information. In Problem 6.3 we show that for a DMS source with

alphabet size
|

'8?
|, the entropy is maximized when all outputs are equiprobable. In this

case H(X) = log|^|.
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FIGURE 6.2-1

The binary entropy function.

H
b{p)

The most important properties of the entropy functions are as follows:

1. 0 < H(X) <\og\T\
2. I(X

;
X)

= H(X)
3. I(X\ 7) < min{H(X), H(Y)}

4. If Y = g(X), then H(Y) < H(X)

example 6.2-1. For a binary source with probabilities p and 1 — p we have

H(X) = -p log p-(l- p) log(l - p) (6.2-6)

This function is called the binary entropyfunction and is denoted by Hb(p). A plot of

Hb(p) is shown in Figure 6.2-1.

Joint and Conditional Entropy

The entropy of a pair of random variables (X , 7), called the joint entropy of X and 7,

is defined as an extension of the entropy of a single random variable as

H(X, Y) = — P[X = x, Y = y]logP[X = x,Y = y] (6.2-7)

(jcj)erx rV

When the value of random variable X is known to be x, the PMF of 7 becomes
P [7 = y \X = x] and the entropy of 7 under this condition becomes

^(y|X = Jt) = -53P[r = y|X = x]logP[7 = y|X = x] (6.2-8)

yer-y

The average of this quantity over all possible values of X is denoted by H(Y\X ) and is

called the conditional entropy ofY given X.

H(Y\X) = [X = x] H(Y\X = x)

jcg'r

= - Y, P\-X = x,Y = y]logP[Y = y\X = x]

(x,y)e,rxty

(6.2-9)
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From Equations 6.2-7 and 6.2-9 it is easy to verify that

H(X, Y) = H(X) + H(Y\X) (6.2-10)

Some of the important properties of joint and conditional entropy are summarized

below.

1. 0 < H{X\Y) < H(X), with H(X\Y) = H(X) if and only if X and Y are indepen-

dent.

2. H(X
,
Y) = H(X) + H(Y \X) = H(Y) + H(X\Y) < H(X) + H(Y ), with equality

H(X
,
Y) = H(X) + H(Y) if and only if X and Y are independent.

3. /(X; Y) = H(X) - H(X\Y) = H(Y) - H(Y |X) = H(X) + H(Y) - H(X
, 7).

The notion of joint and conditional entropy can be extended to multiple random

variables. For joint entropy we have

H(XU x2 , . .
. , Xn )

= - E P[X 1 =xu X2 = x2,...,Xn =xn ]

Xx ,X2 ,...,X„ (6.2—11)
xlogP[Xi = jci, X2 = x2 , ... ,Xn = xn-i]

The following relation between joint and conditional entropies is known as the chain

rulefor entropies.

H(X1, X2 , . .
. , Xn) = H(X0 + H(X2 |Xi) + H(X3 \Xu X2)

+ 1- H(Xn \Xi, X2 , .

,

Xn-i)
l°'Z

Using the above relation and the first property of the conditional entropy, we have

n

H(Xr , X2 , . .
. , Xn ) < Y, H(Xi) (6.2-13)

i=

1

with equality if X/’s are statistically independent. If X/’s are iid, we clearly have

H(XU X2 , . .
.

,

Xn )
= nH(X) (6.2-14)

where H(X) denotes the common value of the entropy of X*-’s.

6.3

LOSSLESS CODING OF INFORMATION SOURCES

The goal of data compression is to represent a source with the fewest bits such that best

recovery of the source from the compressed data is possible. Data compression can be

broadly classified into lossless and lossy compression. In lossless compression the goal

is to minimize the number of bits in such a way that perfect (lossless) reconstruction

of the source from compressed data is possible. In lossy data compression the data

are compressed subject to a maximum tolerable distortion. In this section we study

the fundamental bounds for lossless compression as well as some common lossless

compression algorithms.
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6.3-1 The Lossless Source Coding Theorem

Let us assume that a DMS is represented by independent replicas of random variable

X taking values in the set ^ = {a\, a.2 ,
. .

.

,

a^} with corresponding probabilities

Pi, P2 ,
. .

.

,

Pn • Let jc denote an output sequence of length n for this source, where

n is assumed to be large. We call this sequence a typical sequence if the number of

occurrences of each at in jc is roughly np t
for 1 <i<N. The set of typical sequences

is denoted by A.

The law of large numbers, reviewed in Section 2.5, states that with high probability

approaching 1 as n oo, outputs of any DMS will be typical. Since the number of

occurrences of at in jc is roughly npi and the source is memoryless, we have

N

logP[X = Jf]

1= 1

N

= np< lo§ P‘

i=l

= —nH(X)

(6.3-1)

Hence,

P [X = x\ as 2~""(X)
(6.3-2)

This states that all typical sequences have roughly the same probability, and this common
probability is

2~nHm
.

Since the probability of the typical sequences, for large n, is very close to 1, we
conclude that the number of typical sequences, i.e., the cardinality of A, is roughly

\A\ « 2
nli(X)

(6.3-3)

This discussion shows that for large n, a subset of all possible sequences, called

the typical sequences, is almost certain to occur. Therefore, for transmission of source

outputs it is sufficient to consider only this subset. Since the number oftypical sequences

is 2nHm
,
for their transmission nH(X ) bits are sufficient, and therefore the number of

required bits per source output, i.e., the transmission rate, is given by

nH(X)
R ^ = H(X) bits per transmission (6.3-4)

n

The informal argument given above can be made rigorous (see the books by Cover

and Thomas (2006) and Gallager (1968)) in the following theorem first stated by

Shannon (1948).

SHANNON’S FIRST THEOREM (LOSSLESS SOURCE CODING THEOREM) Let X denote a

DMS with entropy X. There exists a lossless source code for this source at any rate R
if R > H(X). There exists no lossless code for this source at rates less than H(X).

This theorem sets a fundamental limit on lossless source coding and shows that the

entropy of a DMS, which was defined previously based on intuitive reasoning, plays a

fundamental role in lossless compression of information sources.
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Discrete Stationary Sources

We have seen that the entropy of aDMS sets a fundamental limit on the rate at which the

source can be losslessly compressed. In this section, we consider discrete sources for

which the sequence of output letters is statistically dependent. We limit our treatment

to sources that are statistically stationary.

Let us evaluate the entropy of any sequence of letters from a stationary source.

From the chain rule for the entropies stated in Equation 6.2-12, the entropy of a block

of random variables X\X2 •
•

• Xk is

k

H{X xX2 •
• • xk ) = Y, H(X t \XiX2 Xi-0 (6.3-5)

i=

1

where H{X
t
\X\X2 •

•
• 0 is the conditional entropy of the ith symbol from the

source, given the previous i
— 1 symbols. The entropy per letter for the fc-symbol block

is defined as

Hk(X) = jH(X l X2 ---Xk ) (6.3-6)
k

We define the entropy rate of a stationary source as the entropy per letter in Equa-

tion 6.3-6 in the limit as k -> oo. That is,

H^X) 4 lim Hk {X) = lim \h(X xX2 •
• • Xk ) (6.3-7)

k^-oo k—

>

oo k

The existence of this limit is established below.

As an alternative, we may define the entropy rate of the source in terms of the con-

ditional entropy H(Xk\X\X2 •
•

• Xk-\) in the limit as k approaches infinity. Fortunately,

this limit also exists and is identical to the limit in Equation 6.3-7. That is,

= lim H(Xk \X xX2
•

• Xk-i) (6.3-8)
k^-oo

This result is also established below. Our development follows the approach in Gallager

(1968).

First, we show that

H{Xk \X x
X2 •

•
• Xk-0 < H(Xk^ \X xX2 •

• • Xk.2 ) (6.3-9)

for k > 2. From our previous result that conditioning on a random variable cannot

increase entropy, we have

H(Xk \XiX2 •
• • < H(Xk \X2X3 •

• • Xk-i) (6.3-10)

From the stationarity of the source, we have

H(Xk \X2X3 •
•

• Xk- x ) = H{Xk_ x \X xX2 •
•

• Xik-z) (6.3-11)

Hence, Equation 6.3-9 follows immediately. This result demonstrates that

H{Xk \X\X2 •
•

• Xk-\) is a nonincreasing sequence in k.

Second, we have the result

Hk(X)>H(Xk \XiX2---Xk-i) (6.3-12)
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which follows immediately from Equations 6.3-5 and 6.3-6 and the fact that the last

term in the sum of Equation 6.3-5 is a lower bound on each of the other k — 1 terms.

Third, from the definition of Hk{X ), we may write

Hk(X) = \[H(X x X2 •
• • Xk-i) + H(Xk \X x

•
•

• X*_0]
k

= l[(k- 1 )ffi_i(X) + H(Xk \X 1
• • • Xu)] (6.3-13)

k

k- 1 1
< —;—Hk^{X) + THk(X)

k k

which reduces to

Hk (X) < Hk- X
(X) (6.3-14)

Hence, Hk(X) is a nonincreasing sequence in k.

Since Hk(X) and the conditional entropy H(Xk \X\ •
•

• Xk~\) are both nonnegative

and nonincreasing with k, both limits must exist. Their limiting forms can be established

by using Equations 6.3-5 and 6.3-6 to express Hk+j{X) as

Hk+j (X) = -I— H(X xX2 •
•

• X*_0
k + j

+ r^—[H(Xk \X 1 ---Xk^) + H(Xk+l \X 1 ---Xk )

(6-3-15)

1c + j

+ + H(Xk+j \X 1 ---Xk+j_ 1 )\

Since the conditional entropy is nonincreasing, the first term in the square brackets

serves as an upper bound on the other terms. Hence,

Hk+j(X) < —J_ H{X xX2
• Xu) + H(Xk \X 1

X2 Xk-i) (6.3-16)
k + j k + j

For a fixed k
,
the limit of Equation 6.3-16 as j oo yields

Hoo(X) < H{Xk \X xX2 •
•

• Xk-i) (6.3-17)

But Equation 6.3-17 is valid for all k\ hence, it is valid for k ->> oo. Therefore,

Hoo(X) < lim H(Xk \X lX2
• • • Xk-{) (6.3-18)

k-+oo

On the other hand, from Equation 6.3-12, we obtain in the limit as k oo

Hoo(X) > lim H(Xk |XjX2 •
•

• Xt_0 (6.3-19)
k—>00

which establishes Equation 6.3-8.
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From the discussion above the entropy rate of a discrete stationary source is de-

fined as

HM = lim H(Xk \XU X2 , . .
. ,
Xk- x ) = lim \ H(XU X2 , . .

.

,

Xk ) (6.3-20)
&->oo k^oo lc

It is clear from above that if the source is memoryless, the entropy rate is equal to the

entropy of the source.

For discrete stationary sources, the entropy rate is the fundamental rate for compres-

sion of the source such that lossless recovery is possible. Therefore, a lossless coding

theorem for discrete stationary sources, similar to the one for discrete memoryless

sources, exists that states lossless compression of the source at rates above the entropy

rate is possible, but lossless compression at rates below the entropy rate is impossible.

6.3-2 Lossless Coding Algorithms

In this section we study two main approaches for lossless compression of discrete

information sources—the Huffman coding algorithm and the Lempel-Ziv algorithm.

The Huffman coding algorithm is an example of a variable-length coding algorithm
,

and the Lempel-Ziv algorithm is afixed-length coding algorithm.

Variable-Length Source Coding

When the source symbols are not equally probable, an efficient encoding method is

to use variable-length code words. An example of such encoding is the Morse code,

which dates back to the nineteenth century. In the Morse code, the letters that occur more

frequently are assigned short code words, and those that occur infrequently are assigned

long code words. Following this general philosophy, we may use the probabilities of

occurrence of the different source letters in the selection of the code words. The problem

is to devise a method for selecting and assigning the code words to source letters. This

type of encoding is called entropy coding.

For example, suppose that aDMS with output letters a \ ,
a2 ,

<23 , <24 and correspond-

ing probabilities P(a\) = P{a2 ) = and P(a3 )
= P(a,4 ) = |

is encoded as

shown in Table 6.3-1. Code I is a variable-length code that has a basic flaw. To see the

flaw, suppose we are presented with the sequence 001001 •••

.

Clearly, the first symbol

corresponding to 00 is a2 . However, the next 4 bits are ambiguous (not uniquely decod-

able). They may be decoded either as a403 or as a\a2a\. Perhaps, the ambiguity can be

TABLE 6.3-1

Variable-Length Codes.

Letter P[a»] Code I Code II Code III

a\
1

2
1 0 0

1

4
00 10 01

<33
1

8
01 110 Oil

<34
1

8
10 111 111
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FIGURE 6.3-1

Code tree for code II in Table 6.3-1.

l l l

resolved by waiting for additional bits, but such a decoding delay is highly undesir-

able. We shall consider only codes that are decodable instantaneously, i.e., without any

decoding delay. Such codes are called instantaneous codes.

Code II in Table 6.3-1 is uniquely decodable and instantaneous. It is convenient to

represent the code words in this code graphically as terminal nodes of a tree, as shown

in Figure 6.3-1 . We observe that the digit 0 indicates the end of a code word for the first

three code words. This characteristic plus the fact that no code word is longer than three

binary digits makes this code instantaneously decodable. Note that no code word in this

code is a prefix of any other code word. In general, the prefix condition requires that

for a given code word Cr of length k having elements (b\, b2 ,
• • • , bk), there is no other

code word of length l < k with elements (b\, b2 ,
. .

.

,

b{) for 1 < l < k — 1. In other

words, there is no code word of length l < k that is identical to the first l binary digits

of another code word of length k > l. This property makes the code words uniquely

and instantaneously decodable.

Code III given in Table 6.3-1 has the tree structures shown in Figure 6.3-2. We
note that in this case the code is uniquely decodable but not instantaneously decodable.

Clearly, this code does not satisfy the prefix condition.

Our main objective is to devise a systematic procedure for constructing uniquely

decodable variable-length codes that are efficient in the sense that the average number

of bits per source letter, defined as the quantity

L

R =Y/
nkp (ak ) (6.3-21)

k=

1

is minimized. The conditions for the existence of a code that satisfies the prefix condition

are given by the Kraft inequality.

The Kraft Inequality

The Kraft inequality states that a necessary and sufficient condition for the existence

of a binary code with code words having lengths n\ < n2 < • • • < nL that satisfy the

prefix condition is

L

Y 2“"* < 1 (6.3-22)

k=

1

a
\

i ai i a3 FIGURE 6.3—2

Code tree for code III in Table 6.3-1.

l l l
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First, we prove that Equation 6.3-22 is a sufficient condition for the existence of

a code that satisfies the prefix condition. To construct such a code, we begin with a

full binary tree of order n = hl that has 2n terminal nodes and two nodes of order k

stemming from each node of order k — 1, for each k, l < k < n. Let us select any

node of order n\ as the first code word C\. This choice eliminates 2n
~nx terminal nodes

(or the fraction 2~ni of the 2n terminal nodes). From the remaining available nodes of

order ri 2 ,
we select one node for the second code word C2 . This choice eliminates 2n

~ni

terminal nodes (or the fraction 2~ni of the 2n terminal nodes). This process continues

until the last code word is assigned at terminal node n = nL . Since, at the node of order

j < L, the fraction of the number of terminal nodes eliminated is

j l

5^ 2-"* < J2 2
~nk - 1

k= 1 k=

1

(6.3-23)

there is always a node of order k > j available to be assigned to the next code word.

Thus, we have constructed a code tree that is embedded in the full tree of 2n nodes

as illustrated in Figure 6.3-3, for a tree having 16 terminal nodes and a source output

consisting of five letters with n\ = 1, ri 2 = 2, n 3
= 3, and = 4.

To prove that Equation 6.3-22 is a necessary condition, we observe that in the code

tree of order n = hl, the number of terminal nodes eliminated from the total number

of 2n terminal nodes is

L

2
n~nt < T (6.3-24)

k=

1

Hence,

L

2“"‘ < 1 (6.3-25)

k= 1

and the proof of Kraft inequality is complete.

The Kraft inequality may be used to prove the following version of the lossless

source coding theorem, which applies to codes that satisfy the prefix condition.

FIGURE 6.3-3

Construction of binary tree code embedded in a full tree.

l

l

l
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SOURCE CODING theorem for prefix codes Let X be a DMS with finite entropy

H(X) and output letters at ,
1 < i < N, with corresponding probabilities of occurrence

Pi, 1 < i < N. It is possible to construct a code that satisfies the prefix condition and

has an average length R that satisfies the inequalities

H(X )
< R < H(X) + 1 (6.3-26)

To establish the lower bound in Equation 6.3-26, we note that for code words that have

length rii,l < i < N, the difference H(X) — R may be expressed as

N
i

N

H(X) - R =^ Pi log2 — - ^2 PM
i= l

Pi
i=

l

/=i

N
_ o -rii

= pi lo&—
Use of the inequality In x < x — 1 in Equation 6.3-27 yields

H(X)-R<Qog2 e)jr Pi (—-l
tr v p‘

< (log2 e) 2 1 <0

(6.3-27)

(6.3-28)

where the last inequality follows from the Kraft inequality. Equality holds if and only

if pi — 2~n
‘ for 1 < i < N.

The upper bound in Equation 6.3-26 may be established under the constraint that

rii, 1 < i < N ,
are integers, by selecting the {^} such that 2~Hi < p t < 2~ni+l

. But if

the terms pi > 2~n '

1 are summed over 1 < i < N, we obtain the Kraft inequality, for

which we have demonstrated that there exists a code that satisfies the prefix condition.

On the other hand, if we take the logarithm of pt
< 2~ni+l

,
we obtain

log pi < -m + 1

or, equivalently,

rii < 1 - log pi

(6.3-29)

(6.3-30)

If we multiply both sides of Equation 6.3-30 by pi and sum over 1 < i < N, we
obtain the desired upper bound given in Equation 6.3-26. This completes the proof of

Equation 6.3-26.

We have now established that variable-length codes that satisfy the prefix condition

are efficient source codes for any DMS with source symbols that are not equally

probable. Let us now describe an algorithm for constructing such codes.

The Huffman Coding Algorithm

Huffman (1952) devised a variable-length encoding algorithm, based on the source

letter probabilities P(xi),i = 1,2 ,
. .

.

,

L. This algorithm is optimum in the sense

that the average number of binary digits required to represent the source symbols is a

minimum, subject to the constraint that the code words satisfy the prefix condition, as
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defined above, which allows the received sequence to be uniquely and instantaneously

decodable. We illustrate this encoding algorithm by means of two examples.

example 6.3-1. Consider a DMS with seven possible symbols x \ ,
X2 , . .

.

,

xj having

the probabilities of occurrence illustrated in Figure 6.3-4. We have ordered the source

symbols in decreasing order of the probabilities, i.e., P(x i) > Pfe) > • • • > P{x7 ).

We begin the encoding process with the two least probable symbols x§ and x1 . These two

symbols are tied together as shown in Figure 6.3-4, with the upper branch assigned

a 0 and the lower branch assigned a 1. The probabilities of these two branches are

added together at the node where the two branches meet to yield the probability 0 .01 .

Now we have the source symbols x\, ... ,x5 plus a new symbol, say x'
6 ,

obtained by

combining x& and X7 . The next step is to join the two least probable symbols from

the set x\, X2 ,
x$, X4 ,

x$, x'
6

. These are X5 and x'
6 ,
which have a combined probability

of 0.05. The branch from x5 is assigned a 0 and the branch from x '

6
is assigned a 1.

This procedure continues until we exhaust the set of possible source letters. The result

is a code tree with branches that contain the desired code words. The code words are

obtained by beginning at the rightmost node in the tree and proceeding to the left. The

resulting code words are listed in Figure 6.3-4. The average number of binary digits

per symbol for this code is R = 2.21 bits per symbol. The entropy of the source is

2. 1

1

bits per symbol.

We make the observation that the code is not necessarily unique. For example, at

the next to the last step in the encoding procedure, we have a tie between x\ and x
3 ,

since these symbols are equally probable. At this point, we chose to pair x\ with *2 . An
alternative is to pair X2 with x3

. Ifwe choose this pairing, the resulting code is illustrated

in Figure 6.3-5. The average number of bits per source symbol for this code is also

2.21. Hence, the resulting codes are equally efficient. Secondly, the assignment of a 0

to the upper branch and a 1 to the lower (less probable) branch is arbitrary. We may

0 35

0 30

0.20

0 10

0 04

0 005

0 005

FIGURE 6.3-4

An example of variable-length source

encoding for a DMS.

Letter Probability Self-information Code

Xi 0.35 1.5146 00

x2 0.30 1.7370 01

*3 0.20 2.3219 10

X4 0.10 3.3219 110

X5 0.04 4.6439 1110

x6 0.005 7.6439 11110

Xl 0.005 7.6439 11111

H(X) = 2.11 R = 2.21
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0.35

0.30

0.20

0.10

0 04

0 005

0.005

0

0

() 0 65

() 0.35

]

() 0 15

1

0 0.05

L

0 01
1 i

1

FIGURE 6.3-5

An alternative code for the DMS in Example
6.3-1.

Letter Code

Xi 0

*2 10

*3 110

X4 1110

*5 11110

X6 111110

X7 linn

R = 2.21

simply reverse the assignment of a 0 and 1 and still obtain an efficient code satisfying

the prefix condition.

example 6.3-2. As a second example, let us determine the Huffman code for the

output of a DMS illustrated in Figure 6.3-6. The entropy of this source is H(X) =
2.63 bits per symbol. The Huffman code as illustrated in Figure 6.3-6 has an average

length of R = 2.70 bits per symbol. Hence, its efficiency is 0.97.

FIGURE 6.3-6

Huffman code for Example 6.3-2.

Letter Code

*i 00

*2 010

*3 Oil

X4 100

*5 101

X6 110

x7 1110

*8 mi
H(X) = 2.63 R = 2.70
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TABLE 6.3-2

Huffman code for Example 6.3-3

Letter Probability Self-information Code

X\ 0.45 1.156 1

*2 0.35 1.520 00

*3 0.20 2.330 01

H(X) == 1.513 bits/letter

R\ = 1.55 bits/letter

Efficiency = 97.6%

The variable-length encoding (Huffman) algorithm described in the above exam-

ples generates a prefix code having an R that satisfies Equation 6.3-26. However, in-

stead of encoding on a symbol-by-symbol basis, a more efficient procedure is to encode

blocks of 7 symbols at a time. In such a case, the bounds in Equation 6.3-26 become

JH(X) <Rj< JH(X ) + 1, (6.3-31)

since the entropy of a 7-symbol block from a DMS is JH(X), and Rj is the average

number of bits per 7-symbol blocks. If we divide Equation 6.3-31 by 7, we obtain

H(X) < y < H(X ) + j
(6.3-32)

where Rj/J = R is the average number of bits per source symbol. Hence R can be

made as close to H(X) as desired by selecting 7 sufficiently large.

example 6.3-3. The output of aDMS consists of letters x \ ,
*2 ,

and *3 with probabili-

ties 0.45, 0.35, and 0.20, respectively. The entropy of this source is H{X) = 1.513 bits

per symbol. The Huffman code for this source, given in Table 6.3-2, requires R\ = 1.55

bits per symbol and results in an efficiency of 97.6 percent. If pairs of symbols are en-

coded by means of the Huffman algorithm, the resulting code is as given in Table 6.3-3.

The entropy of the source output for pairs of letters is 2H(X) = 3.026 bits per symbol

TABLE 6.3-3

Huffman code for encoding pairs of letters

Letter pair Probability Self-information Code

.* 1*1 0.2025 2.312 10

*1*2 0.1575 2.676 001

*2*1 0.1575 2.676 010

*2*2 0.1225 3.039 Oil

*1*3 0.09 3.486 111

*3*1 0.09 3.486 0000

*2*3 0.07 3.850 0001

*3*2 0.07 3.850 1100

*3*3 0.04 4.660 1101

2H(X) = 3.026 bits/letter pair

R2 = 3.0675 bits/letter pair

k~Ri =: 1.534 bits/letter

Efficiency = 98.6%
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pair. On the other hand, the Huffman code requires R2 = 3.0675 bits per symbol pair.

Thus, the efficiency of the encoding increases to 2H(X)/R2 = 0.986 or, equivalently,

to 98.6 percent.

In summary, we have demonstrated that efficient encoding for aDMS may be done

on a symbol-by-symbol basis using a variable-length code based on the Huffman algo-

rithm. Furthermore, the efficiency of the encoding procedure is increased by encoding

blocks of J symbols at a time. Thus, the output of a DMS with entropy H(X ) may be

encoded by a variable-length code with an average number of bits per source letter that

approaches H(X ) as closely as desired.

The Huffman coding algorithm can be applied to discrete stationary sources as

well as discrete memoryless sources. Suppose we have a discrete stationary source

that emits J letters with Hj{X) as the entropy per letter. We can encode the sequence

of J letters with a variable-length Huffman code that satisfies the prefix condition by

following the procedure described above. The resulting code has an average number of

bits for the J -letter block that satisfies the condition

H{X 1
•

•
• Xj) < Rj < H(X x

•
• • Xj) + 1 (6.3-33)

By dividing each term of Equation 6.3-33 by /, we obtain the bounds on the average

number R = Rj/J of bits per source letter as

Hj(X) <R< Hj{X) + j
(6.3-34)

By increasing the block size /, we can approach Hj(X ) arbitrarily closely, and in the

limit as / 00
,
R satisfies

Hoo(X) <R< Hoo(X) + € (6.3-35)

where € approaches zero as 1//. Thus, efficient encoding of stationary sources is

accomplished by encoding large blocks of symbols into code words. We should em-

phasize, however, that the design of the Huffman code requires knowledge of the joint

PDF for the /-symbol blocks.

The Lempel-Ziv Algorithm

From our preceding discussion, we have observed that the Huffman coding algorithm

yields optimal source codes in the sense that the code words satisfy the prefix condition

and the average block length is a minimum. To design a Huffman code for a DMS,
we need to know the probabilities of occurrence of all the source letters. In the case

of a discrete source with memory, we must know the joint probabilities of blocks of

length n > 2. However, in practice, the statistics of a source output are often unknown.

In principle, it is possible to estimate the probabilities of the discrete source output by

simply observing a long information sequence emitted by the source and obtaining the

probabilities empirically. Except for the estimation of the marginal probabilities {pk},

corresponding to the frequency of occurrence of the individual source output letters,

the computational complexity involved in estimating joint probabilities is extremely

high. Consequently, the application of the Huffman coding method to source coding

for many real sources with memory is generally impractical.
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In contrast to the Huffman coding algorithm, the Lempel-Ziv source coding

algorithm does not require the source statistics. Hence, the Lempel-Ziv algorithm be-

longs to the class of universal source coding algorithms. It is a variable-to-fixed-length

algorithm, where the encoding is performed as described below.

In the Lempel-Ziv algorithm, the sequence at the output of the discrete source is

parsed into variable-length blocks, which are calledphrases. A new phrase is introduced

every time a block of letters from the source differs from some previous phrase in the

last letter. The phrases are listed in a dictionary, which stores the location of the existing

phrases. In encoding a new phrase, we simply specify the location of the existing phrase

in the dictionary and append the new letter.

As an example, consider the binary sequence

10101101001001110101000011001110101100011011

Parsing the sequence as described above produces the following phrases:

1, 0, 10, 11, 01, 00, 100, 111, 010, 1000, Oil, 001, 110, 101, 10001, 1011

We observe that each phrase in the sequence is a concatenation of a previous phrase with

a new output letter from the source. To encode the phrases, we construct a dictionary as

shown in Table 6.3-4. The dictionary locations are numbered consecutively, beginning

with 1 and counting up, in this case to 16, which is the number ofphrases in the sequence.

The different phrases corresponding to each location are also listed, as shown. The code

words are determined by listing the dictionary location (in binary form) of the previous

phrase that matches the new phrase in all but the last location. Then, the new output

letter is appended to the dictionary location of the previous phrase. Initially, the location

0000 is used to encode a phrase that has not appeared previously.

TABLE 6.3-4

Dictionary for Lempel-Ziv algorithm

Dictionary location Dictionary contents Code word

1 0001 1 00001

2 0010 0 00000

3 0011 10 00010

4 0100 11 00011

5 0101 01 00101

6 0110 00 00100

7 0111 100 00110

8 1000 111 01001

9 1001 010 01010

10 1010 1000 oino
11 1011 Oil 01011

12 1100 001 01101

13 1101 110 01000

14 1110 101 00111

15 mi 10001 10101

16 1011 11101
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The source decoder for the code constructs an identical copy of the dictionary at

the receiving end of the communication system and decodes the received sequence in

step with the transmitted data sequence.

It should be observed that the table encoded 44 source bits into 16 code words of

5 bits each, resulting in 80 coded bits. Hence, the algorithm provided no data com-

pression at all. However, the inefficiency is due to the fact that the sequence we have

considered is very short. As the sequence is increased in length, the encoding procedure

becomes more efficient and results in a compressed sequence at the output of the source.

How do we select the overall length of the table? In general, no matter how large

the table is, it will eventually overflow. To solve the overflow problem, the source

encoder and source decoder must use an identical procedure to remove phrases from

the respective dictionaries that are not useful and substitute new phrases in their place.

The Lempel-Ziv algorithm is widely used in the compression of computer files.

The “compress” and “uncompress” utilities under the UNIX® operating system and

numerous algorithms under the MS-DOS operating system are implementations of

various versions of this algorithm.

6.4

LOSSY DATA COMPRESSION

Our study of data compression techniques thus far has been limited to discrete infor-

mation sources. For continuous-amplitude information sources, the problem is quite

different. For perfect reconstruction of a continuous-amplitude source, the number of

required bits is infinite. This is so because representation of a general real number
in base 2 requires an infinite number of digits. Therefore, for continuous-amplitude

sources lossless compression is impossible, and lossy compression through scalar or

vector quantization is employed. In this section we study the notion of lossy data com-

pression and introduce the rate distortion function which provides the fundamental limit

on lossy data compression. To introduce the rate distortion function, we need to gen-

eralize the notions of entropy and mutual information to continuous random variables.

6.4-1 Entropy and Mutual Information for Continuous Random Variables

The definition of mutual information given for discrete random variables may be ex-

tended in a straightforward manner to continuous random variables. In particular, if X
and Y are random variables with joint PDF p(x, y) and marginal PDFs p(x ) and p(y),

the average mutual information between X and Y is defined as

p(y\x)p(x)
/(X; Y)=

/
p(x)p(y\x) log -

, ;
dx dy (6-^D

J-oo J-oo p(x)p(y)

Although the definition of the average mutual information carries over to continuous

random variables, the concept of entropy does not. The problem is that a continu-

ous random variable requires an infinite number of binary digits to represent it ex-

actly. Hence, its self-information is infinite, and, therefore, its entropy is also infinite.
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Nevertheless, we shall define a quantity that we call the differential entropy of the

continuous random variable X as

/
oo

p(x)\ogp(x)dx (6.4-2)
-OO

We emphasize that this quantity does not have the physical meaning of self-information,

although it may appear to be a natural extension of the definition of entropy for a discrete

random variable (see Problem 6.15).

By defining the average conditional entropy of X given Y as

/
oo poo

/
p(x,y)logp(x\y)dxdy (6.4-3)

-OO J—OO

the average mutual information may be expressed as

I(X\ Y) = H(X) - H(X\Y) (6.4-4)

or, alternatively, as

I(X\ Y) = H(Y) - H(Y\X ) (6.4-5)

In some cases of practical interest, the random variable X is discrete and Y is

continuous. To be specific, suppose that X has possible outcomes x
t
,i = 1, 2, . .

.

,

n,

and Y is described by its marginal PDF p(y). When X and Y are statistically dependent,

we may express p(y) as

n

p(y) = p(y\x^ P [*<•] (6.4-6)

i=

1

The mutual information provided about the event X = jt; by the occurrence of the event

Y = y is

/(*,-; y) = log

= log

Ky|x,)P[X]

p(y)P[xi]

p(y\xd

p(y)

(6.4-7)

Then the average mutual information between X and Y is

/(X; Y) =T p(y\x
{ ) P [*,] log dy (6.4-8)

J-oo p(y)

example 6.4-1. Suppose that X is a discrete random variable with two equally prob-

able outcomes x\ = A and X2 = —A. Let the conditional PDFs p(y\xt), i = 1, 2, be

Gaussian with mean jq and variance a 2
. That is,

p(y\A) = _L_ e
-0-AW

V27Tcr

p(y\-A) = _L_ e76+*>W
sjlna

(6.4-9)
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The average mutual information obtained from Equation 6.4-8 becomes

/(X; 7)

where

=\L
00 r

, i

p(y\A )
, , , .m p(y\-A)

p(y\A ) log + Ky|-A)log
p(y) p(y)

dy (6.4-10)

p(y) = ^[p(y\A) + p(y\-A)] (6.4-11)

Later in this chapter it will be shown that the average mutual information I(X\ Y) given

by Equation 6.4-10 represents the channel capacity of a binary-input additive white

Gaussian noise channel.

6.4-2 The Rate Distortion Function

An analog source emits a message waveform x(t) that is a sample function of a stochastic

process X(t). When X(t) is a band-limited, stationary stochastic process, the sampling

theorem allows us to represent X{t) by a sequence of uniform samples taken at the

Nyquist rate.

By applying the sampling theorem, the output of an analog source is converted

to an equivalent discrete-time sequence of samples. The samples are then quantized

in amplitude and encoded. One type of simple encoding is to represent each discrete

amplitude level by a sequence of binary digits. Hence, if we have L levels, we need

R = log2 L bits per sample if L is a power of 2, or R = [log2 LJ + 1 if L is not a power

of 2. On the other hand, if the levels are not equally probable and the probabilities of

the output levels are known, we may use Huffman coding to improve the efficiency

of the encoding process.

Quantization of the amplitudes of the sampled signal results in data compression,

but it also introduces some distortion of the waveform or a loss of signal fidelity. The
minimization of this distortion is considered in this section. Many of the results given

in this section apply directly to a discrete-time, continuous-amplitude, memoryless

Gaussian source. Such a source serves as a good model for the residual error in a

number of source coding methods.

In this section we study only the fundamental limits on lossy source coding given

by the rate distortion function. Specific techniques to achieve the bounds predicted

by theory are not covered in this book. The interested reader is referred to books and

papers on scalar and vector quantization, data compression, waveform, audio and video

coding referenced at the end of this chapter.

We begin by studying the distortion introduced when the samples from the in-

formation source are quantized to a fixed number of bits. By the term distortion
,
we

mean some measure of the difference between the actual source samples {x^} and the

corresponding quantized values {xk} which we denote by d(xk,Xk). For example, a

commonly used distortion measure is the squared-error distortion, defined as

d{xk , xk ) = (xk - xk )

2
(6.4-12)

If d(xk , Xk) is the distortion measure per letter, the distortion between a sequence

of n samples xn and the corresponding n quantized values xn is the average over the n
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source output samples, i.e.,

1
"

d(xn ,xn )
= - y2d(xk , xk ) (6.4-13)

n L—
k=\

The source output is a random process, and hence the n samples in Xn are random

variables. Therefore, d(Xn ,
Xn ) is a random variable. Its expected value is defined as

the distortion D, i.e.,

1
"

D = E [d(Xn , !„)] = - E [d(Xk ,
Xk )]

= E [d(X, X)] (6.4-14)
" k=

l

where the last step follows from the assumption that the source output process is

stationary.

Now suppose we have a memoryless source with a continuous-amplitude output X
that has a PDF p(x), a quantized amplitude output alphabet X

,
and a per letter distortion

measure d(x,x). Then the minimum rate in bits per source output that is required to

represent the output X of the memoryless source with a distortion less than or equal to

D is called the rate distortion function R(D) and is defined as

R(D) = min I(X
;
X) (6.4-15)

p(x\x):E[d(X,X)]<D

where I(X\ X) is the mutual information between X and X. In general, the rate R(D)
decreases as D increases, or conversely R(D) increases as D decreases.

As seen from the definition of the rate distortion function, R(D) depends on the

statistics of the source p(x) as well as the distortion measure d(x, x). A change in either

of these two would change R(D). We also mention here that for many source statistics

and distortion measures there exists no closed form for the rate distortion function

R(D).

The rate distortion function R(D) of a source is associated with the following

fundamental source coding theorem in information theory.

SHANNON’S THIRD THEOREM [SOURCE CODING WITH A FIDELITY CRITERION—
SHANNON (1959)] A memoryless source X can be encoded at rate R for a distortion

not exceeding D if R > R(D). Conversely, for any code with rate R < R(D) the

distortion exceeds D.

It is clear, therefore, that the rate distortion function R(D) for any source represents

a lower bound on the source rate that is possible for a given level of distortion.

The Rate Distortion Function for a Gaussian

Source with Squared-Error Distortion

One interesting model of a continuous-amplitude, memoryless information source is the

Gaussian source model. For this source statistics and squared-error distortion measure

d(x
,
x) = (x — x)

2
,
the rate distortion function is known and is given by

filog^ 0 < D < a 2

[0 D > a2
Rg(D) = (6.4-16)
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FIGURE 6.4-1

Rate distortion function for a continuous-amplitude,

memoryless Gaussian source.

where a 2
is the variance of the source. Note that Rg(D) is independent of the mean

E[X] of the source. This function is plotted in Figure 6.4-1.

We should note that Equation 6.4-16 implies that no information need be trans-

mitted when the distortion D > a 2
. Specifically, D = cr

2 can be obtained by using

m = E [X ] in the reconstruction of the signal.

If in Equation 6.4-16 we reverse the functional dependence between D and R
,
we

may express D in terms of R as

D
g
(R) = 2

~2Ra2
(6.4-17)

This function is called the distortion rate function for the discrete-time, memoryless

Gaussian source.

When we express the distortion in Equation 6.4-17 in decibels, we obtain

10 log Dg
(R) = —6

R

+ 10 log a 2
(6.4-18)

Note that the mean square error distortion decreases at the rate of 6 dB/bit.

Explicit results on the rate distortion functions for general memoryless non-

Gaussian sources are not available. However, there are useful upper and lower bounds

on the rate distortion function for any discrete-time, continuous-amplitude, memoryless

source. An upper bound is given by the following theorem.

THEOREM: upper bound ON R(D) The rate distortion function of a memoryless,

continuous-amplitude source with zero mean and finite variance a 2with respect to

the mean square error distortion measure is upper-bounded as

1 cr
2

9
R(D) < - log2 0 < D < a 2

(6.4-19)

A proof of this theorem is given by Berger (1971). It implies that the Gaussian

source requires the maximum rate among all other sources with the same variance

for a specified level of mean square error distortion. Thus the rate distortion function

R(D) of any continuous-amplitude memoryless source with finite variance a 2
satisfies

R(D )
< Rg (D). Similarly, the distortion rate function of the same source satisfies the

condition

D(R) < Dg(R )
= 2~2R

(j
2

(6.4-20)
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A lower bound on the rate distortion function also exists. This is called the Shannon

lower bound for a mean square error distortion measure and is given as

R*(D) = H(X) - 1 log2 2neD (6.4-21)

where H(X ) is the differential entropy ofthe continuous-amplitude, memoryless source.

The distortion rate function corresponding to Equation 6.4-21 is

D*(R) = A_2-2[r- h{X)]
(6.4-22)

2ne

Therefore, the rate distortion function for any continuous-amplitude, memoryless

source is bounded from above and below as

R*(D) < R(D) < Rg(D) (6.4-23)

and the corresponding distortion rate function is bounded as

D*(R) < D(R) < Dg (R) (6.4-24)

The differential entropy of the memoryless Gaussian source is

Hg (X) = 1 log2 2nea
2

(6.4-25)

so that the lower bound R*(D) in Equation 6.4-21 reduces to Rg (D). Now, ifwe express

D*(R) in terms of decibels and normalize it by setting a 2 —
1 (or dividing D*(R) by

<j
2
), we obtain from Equation 6.4-22

101ogZ)*CR) = -6R - 6[Hg(X) - H(X)]

or, equivalently,

101og = 6[*w - ^(X)] dB

= 6[Rg(D) - R*(D)] dB

(6.4-26)

(6.4-27)

The relations in Equations 6.4-26 and 6.4-27 allow us to compare the lower bound

in the distortion with the upper bound which is the distortion for the Gaussian source.

We note that D*(R) also decreases at —6 dB/bit. We should also mention that the

differential entropy H(X) is upper-bounded by Hg
(X), as shown by Shannon (1948b).

Rate Distortion Function for a Binary Source with Hamming Distortion

Another interesting and useful case in which a closed-form expression for the rate

distortion function exists is the case of a binary source with p — P[X = 1] = l —

P [X = 0]. From the lossless source coding theorem, we know that this source can be

compressed at any rate R that satisfies R > H(X) = Hb(p) and can be recovered

perfectly from the compressed data. However if the rate falls below Hb(p), errors will
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occur in compression of this source. A measure of distortion that represents the error

probability is the Hamming distortion
,
defined as

f 1 x^x
d{x,x)=l „ (6.4-28)

10 x = x

The average distortion, when this distortion measure is used, is given by

E [d(X, X)] = 1 xP[X ^ X] + 0 xP[X = X]

= ?[X^X] (6.4-29)

= Pe

It is seen that the average ofHamming distortion is the error probability in reconstruction

of the source.

The rate distortion function for a binary source and with Hamming distortion is

given by

R(D) =
Hb (p) - Hb(D )

0

0<D< min{p, 1 — p]

otherwise
(6.4-30)

Note that as D -> 0, we have R(D ) Hb(p) as expected.

example 6.4-2. A binary symmetric source is to be compressed at a rate of 0.75 bit

per source output. For a binary symmetric source we have p ~ \
and Hb(p) = 1 . Since

the compression rate, 0.75, is lower than the source entropy, error-free compression

is impossible and the best error probability is found by solving R(D) = 0.75, where
D is Pe because we employ the Hamming distortion. From Equation 6.4-30 we have

R(Pe) = Hh{p)-Hb{Pe ) = 1-Hb(Pe ) = 0.75. Therefore, Hb(Pe ) = 1-0.75 = 0.25,

from which we have Pe =0.04169. This is the minimum error probability that can be

achieved using a system of unlimited complexity and delay.

6.5

CHANNEL MODELS AND CHANNEL CAPACITY

In the model of a digital communication system described in Chapter 1, we recall that

the transmitter building blocks consist of the discrete-input, discrete-output channel

encoder followed by the modulator. The function of the discrete channel encoder is to

introduce, in a controlled manner, some redundancy in the binary information sequence,

which can be used at the receiver to overcome the effects of noise and interference

encountered in the transmission of the signal through the channel. The encoding process

generally involves taking k information bits at a time and mapping each k-bit sequence

into a unique n-bit sequence, called a codeword. The amount of redundancy introduced

by the encoding of the data in this manner is measured by the ratio n/k. The reciprocal

of the ratio, namely k/n, is called the code rate and denoted by Rc .

The binary sequence at the output of the channel encoder is fed to the modulator,

which serves as the interface to the communication channel. As we have discussed, the



Chapter Six: An Introduction to Information Theory 355

modulator may simply map each binary digit into one of two possible waveforms; i.e.,

a 0 is mapped into s\(t) and a 1 is mapped into ^(O- Alternatively, the modulator may
transmit q -bit blocks at a time by using M = 2q possible waveforms.

At the receiving end of the digital communication system, the demodulator pro-

cesses the channel-corrupted waveform and reduces each waveform to a scalar or a

vector that represents an estimate of the transmitted data symbol (binary or M-ary).

The detector, which follows the demodulator, may decide whether the transmitted bit

is a 0 or a 1. In such a case, the detector has made a hard decision. If we view the

decision process at the detector as a form of quantization, we observe that a hard deci-

sion corresponds to binary quantization of the demodulator output. More generally, we
may consider a detector that quantizes to Q > 2 levels, i.e., a Q -ary detector. If M-ary

signals are used, then Q > M. In the extreme case when no quantization is performed,

Q — oo. In the case where Q > M, we say that the detector has made a soft decision.

The quantized output from the detector is then fed to the channel decoder, which

exploits the available redundancy to correct for channel disturbances.

In the following sections, we describe three channel models that will be used to

establish the maximum achievable bit rate for the channel.

6.5-1 Channel Models

In this section we describe channel models that will be useful in the design of codes.

A general communication channel is described in terms of its set of possible in-

puts, denoted by and called the input alphabet
;
the set of possible channel out-

puts, denoted by 3/ and called the output alphabet
;
and the conditional probabil-

ity that relates the input and output sequences of any length n
,
which is denoted by

P[ji, y2 , •
. yn |x 1 ,x2 , where x = (xu x2 ,

and y = <ji, y2 , . .
.

,

y„)

represent input and output sequences of length n, respectively. A channel is called

memoryless if we have

n

p [y I

x ] = Ifp [>< \*i 1 for a11 n (6.5-1)

i= 1

In other words, a channel is memoryless if the output at time i depends only on the

input at time i.

The simplest channel model is the binary symmetric channel, which corresponds

to the case with = 3/ — {0, 1}. This is an appropriate channel model for binary

modulation and hard decisions at the detector.

The Binary Symmetric Channel (BSC) Model

Let us consider an additive noise channel and let the modulator and the demodu-

lator/detector be included as parts of the channel. If the modulator employs binary

waveforms and the detector makes hard decisions, then the composite channel, shown

in Figure 6.5-1, has a discrete-time binary input sequence and a discrete-time binary

output sequence. Such a composite channel is characterized by the set — {0, 1} of
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FIGURE 6.5-1

A composite discrete input, discrete output channel formed by including the modulator and the

demodulator as part of the channel.

possible inputs, the set of 3/ — {0, 1} of possible outputs, and a set of conditional

probabilities that relate the possible outputs to the possible inputs. If the channel noise

and other disturbances cause statistically independent errors in the transmitted binary

sequence with average probability p, then

P[F = 0|X = 1] = P[y = 1 \X = 0] = p

P[7 = 1|X = 1] = P[F = 0|X = 0] = l-p (6.5-2)

Thus, we have reduced the cascade of the binary modulator, the waveform channel,

and the binary demodulator and detector to an equivalent discrete-time channel which

is represented by the diagram shown in Figure 6.5-2. This binary input, binary output,

symmetric channel is simply called a binary symmetric channel (BSC). Since each

output bit from the channel depends only on the corresponding input bit, we say that

the channel is memoryless.

The Discrete Memoryless Channel (DMC)

The BSC is a special case of a more general discrete input, discrete output channel. The
discrete memoryless channel is a channel model in which the input and output alphabets

13?and 3? are discrete sets and the channel is memoryless. For instance, this is the case

when the channel uses an M-ary memoryless modulation scheme and the output of

the detector consists of Q -ary symbols. The composite channel consists of modulator-

channel-detector as shown in Figure 6.5-1, and its input-output characteristics are

described by a set of MQ conditional probabilities

P [y\x] for x e e 3/ (6.5-3)

The graphical representation of a DMC is shown in Figure 6.5-3.

Output

FIGURE 6.5-2

Binary symmetric channel.

l

i ~p
l



Chapter Six: An Introduction to Information Theory 357

FIGURE 6.5-3

Discrete memoryless channel.

In general, the conditional probabilities {P [y \x]} that characterize a DMC can be

arranged in an
|

'W
|

x
|
3/

|

matrix of the form P = [ptj], 1 < i <
\

^ |, 1 < j < \3/ |.

P is called the probability transition matrix for the channel.

The Discrete-Input, Continuous-Output Channel

Now, suppose that the input to the modulator comprises symbols selected from a finite

and discrete input alphabet with
| |

= M, and the output of the detector is

unquantized, i.e., 3/ — ®L This leads us to define a composite discrete-time memoryless

channel that is characterized by the discrete input X, the continuous output Y, and the

set of conditional probability density functions

p(y \x), x e fjeK (6.5-4)

The most important channel of this type is the additive white Gaussian noise (AWGN)
channel, for which

Y = X + N (6.5-5)

where N is a zero-mean Gaussian random variable with variance a 2
. For a given X — x,

it follows that Y is Gaussian with mean x and variance a 2
. That is,

1 (y-x)2

P(y \x) = 2- 2 (6.5-6)
V2ttct 2

For any given input sequence Xi, i = 1, 2, . .
.

,

n, there is a corresponding output

sequence

Yi = Xi + Ni, i = l,2,...,rc (6.5-7)

The condition that the channel is memoryless may be expressed as

n

p(yu yi, , yn \x\,x2 , . .

.

,.xn ) = Hp(j,|^)
i=

1

(6.5-8)
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The Discrete-Time AWGN Channel

This is a channel in which gf = gf = R. At each instant of time i
,
an input x

t
e R is

transmitted over the channel. The received symbol is given by

yi = Xi + rit (6.5-9)

where n
t ’s are iid zero-mean Gaussian random variables with variance a 2

. In addition,

it is usually assumed that the channel input satisfies a power constraint of the form

E [

X

2
]
< P (6.5-10)

Under this input power constraint, for any input sequence of the form x = (x \ ,
*2 , . .

.

,

xn ), where n is large with probability approaching 1, we have

-£*? = -
II* II

2 </* (6.5-11)
n “ n

The geometric interpretation of the above constraint is that the input sequences to the

channel are inside an rc-dimensional sphere of radius \fnP centered at the origin.

The AWGN Waveform Channel

We may separate the modulator and the demodulator from the physical channel, and

we consider a channel model in which the inputs are waveforms and the outputs are

waveforms. Let us assume that such a channel has a given bandwidth W
,
with ideal

frequency response C(f) = 1 within the frequency range [-W, +W], and the signal

at its output is corrupted by additive white Gaussian noise. Suppose that x(t) is a

band-limited input to such a channel and y(t) is the corresponding output. Then

y(t) = x(t) + n(t) (6.5-12)

where n(t) represents a sample function of the additive white Gaussian noise process

with power spectral density of Usually, the channel input is subject to a power

constraint of the form

E[X2
(t)] < P (6.5-13)

which for ergodic inputs results in an input power constraint of the form

1 f
T>2

9
lim — /

x
2
(t)dt < P (6.5-14)

T^oo T J-T/2

A suitable method for defining a set of probabilities that characterize the channel

is to expand x(t ), y(t), and n{t) into a complete set of orthonormal functions. From the

dimensionality theorem discussed in Section 4.6-1, we know that the dimensionality of

the space of signals with an approximate bandwidth of W and an approximate duration

of T is roughly 2WT. Therefore we need a set of 2W dimensions per second to expand

the input signals. We can add adequate signals to this set to make it a complete set

of orthonormal signals that, by Example 2.8-1, can be used for expansion of white
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processes. Hence, we can express x{t ), y{t ), and n(t) in the form

x(t) = y^ xj(/>j(t)

j

n(t) = J2 n j<Pj(t) (6.5-15)
j

y(t) = '52yj<t>j(t)

j

where {yj }, {xj }, and {nj} are the sets of coefficients in the corresponding expansions,

e.g.,

/
oo

y(t)<pj(t)dt
-OO

/
OO

(x(t) + n(t))<j)j(t)dt

-OO

(6.5-16)

= x
j + n

j

We may now use the coefficients in the expansion for characterizing the channel.

Since

yj = xj + nj (6.5-17)

where n/s are iid zero-mean Gaussian random variables with variance a 2 = it

follows that

p(yj\Xj) = -- 7— Jn
«

J

, i = 1,2,... (6.5-18)
y 7X JMo

and by the independence of n/s

N

p{y i, yi, , yN\xi,x2 ,
...,xN )

= ~[[p(yj\xj) (6.5-19)

j=i

for any N. In this manner, the AWGN waveform channel is reduced to an equivalent

discrete-time channel characterized by the conditional PDF given in Equation 6.5-18.

The power constraint on the input waveforms given by Equation 6.5-14 can be written as

= lim -x2WTE[X2
\

(6.5-20)
T—

y

oo T

= 2WE [X
2
]

< P

where the first equality follows from orthonormality ofthe {<f>j(t), j = 1,2,..., 2WT},

the second equality follows from the law of large numbers applied to the sequence
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{xj, 1 < j < 2WT], and the last inequality follows from Equation 6.5-14. From
Equation 6.5-20 we conclude that in the discrete-time channel model we have

E[X2]<2^ (6.5-21)

From Equations 6.5-19 and 6.5-21 it is clear that the waveform AWGN channel

with bandwidth constraint W and input power constraint P is equivalent with 2W uses

per second of a discrete-time AWGN channel with noise variance of a 2 = ^ and an

input power constraint given by Equation 6.5-21.

6.5-2 Channel Capacity

We have seen that the entropy and the rate distortion function provide the fundamental

limits for lossless and lossy data compression. The entropy and the rate distortion

function provide the minimum required rates for compression of a discrete memoryless

source subject to the condition that it can be losslessly recovered, or can be recovered

with a distortion not exceeding a specific D, respectively. In this section we introduce

a third fundamental quantity called channel capacity that provides the maximum rate

at which reliable communication over a channel is possible.

Let us consider a discrete memoryless channel with crossover probability of p. In

transmission of 1 bit over this channel the error probability is p ,
and when a sequence

of length n is transmitted over this channel, the probability of receiving the sequence

correctly is (1 — p)
n which goes to zero as n -> oo. One approach to improve the per-

formance of this channel is not to use all binary sequences of length n as possible inputs

to this channel but to choose a subset of them and use only that subset. Of course this

subset has to be selected in such a way that the sequences in it are in some sense “far

apart” such that they can be recognized and correctly detected at the receiver even in

the presence of channel errors.

Let us assume a binary sequence of length n is transmitted over the channel. If n is

large, the law of large numbers states that with high probability np bits will be received

in error, and as n -> oo, the probability of receiving np bits in error approaches 1. The

number of sequences of length n that are different from the transmitted sequence at np

positions (np an integer) is

(

n \ nl

np
J

(np)l(n(l - p))\

By using Stirling’s approximation that states for large n we have

nl ^ \f2nn n
n
e~

n

Equation 6.5-22 can be approximated as

(6.5-22)

(6.5-23)

n

np
~ 2nHb(p) (6.5-24)
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This means that when any sequence of length n is transmitted, it is highly probable

that one of the 2nHb ^p) that are different from the transmitted sequence in np positions

will be received. Ifwe insist on using all possible input sequences for this channel, errors

are inevitable since there will be considerable overlap between the received sequences.

However, if we use a subset of all possible input sequences, and choose this subset

such that the set of highly probable received sequences for each element of this subset

is nonoverlapping, then reliable communication is possible. Since the total number of

binary sequences of length n at the channel output is 2n
,
we can have at most

2n
~

2nHb {p)
2
n(l-Hb (p))

(6 .5-25 )

sequences of length n transmitted without their corresponding highly probable received

sequences overlapping. Therefore, in n uses of the channel we can transmitM messages,

and the rate, i.e., the information transmitted per each use of the channel, is given by

R = — log2 Af = 1 — Hb (p)
n

(6 .5-26)

The quantity 1 — H^p) is the maximum rate for reliable communication over a binary

symmetric channel and is called the capacity of this channel. In general the capacity of

a channel, denoted by C, is the maximum rate at which reliable communication
,
i.e.,

communication with arbitrary small error probability, over the channel is possible.

For an arbitrary DMC the capacity is given by

C = max I(X\ Y)
p

(6 .5-27 )

where the maximization is over all PMFs of the form p = (^pi, P2 ,
• • •

, P ir] J
on the

input alphabet 5T. The pd s naturally satisfy the constraints

Pi >0 i = 1, 2, ...

,

I

Ha = i

i=i

(6 .5-28 )

The units ofC are bitsper transmission or bitsper channel use
,
if in computing I(X

\
Y)

logarithms are in base 2, and nats per transmission when the natural logarithm (base e)

is used. If a symbol enters the channel every xs seconds, the channel capacity is C/rs

bits/s or nats/s.

The significance of the channel capacity is due to the following fundamental the-

orem, known as the noisy channel coding theorem.

SHANNON’S SECOND THEOREM—THE NOISY CHANNEL CODING THEOREM (SHANNON 1948)

Reliable communication over a discrete memoryless channel is possible if the commu-
nication rate R satisfies R < C, where C is the channel capacity. At rates higher than

capacity, reliable communication is impossible.

The noisy channel coding theorem is of utmost significance in communication

theory. This theorem expresses the limit to reliable communication and provides a

yardstick to measure the performance of communication systems. A system performing
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near capacity is a near optimal system and does not have much room for improvement.

On the other hand a system operating far from this fundamental bound can be improved

mainly through coding techniques described in Chapters 7 and 8. Although we have

stated the noisy channel coding theorem for discrete memoryless channels, this theorem

applies to a much larger class of channels. For details see the paper by Yerdu and Han
(1994).

We also note that Shannon’s proof of the noisy channel coding theorem is noncon-

structive and employs a technique introduced by Shannon called random coding. In

this technique instead of looking for the best possible coding scheme and analyzing its

performance, which is a difficult task, all possible coding schemes are considered and

the performance of the system is averaged over them. Then it is proved that if R < C,

the average error probability tends to zero. This proves that among all possible coding

schemes there exists at least one code for which the error probability tends to zero. We
will discuss this notion in greater detail in Section 6.8-2.

example 6.5-1. For a BSC, due to the symmetry of the channel, the capacity is

achieved for a uniform input distribution, i.e., for P [X = 1] = P [X = 0] = The
maximum mutual information is given by

C = 1 + p log 2p + (1 - p) log 2(1 — p) = 1 — H(p) (6.5-29)

This agrees with our earlier intuitive reasoning. A plot of C versus p is illustrated

in Figure 6.5-4. Note that for p = 0, the capacity is 1 bit/channel use. On the other

hand, for p = the mutual information between input and output is zero. Hence, the

channel capacity is zero. For
\ < p < 1, we may reverse the position of 0 and 1 at the

output of the BSC, so that C becomes symmetric with respect to the point p = f
. In

our treatment of binary modulation and demodulation given in Chapter 4, we showed
that p is a monotonic function of the SNR per bit. Consequently when C is plotted as

a function of the SNR per bit, it increases monotonically as the SNR per bit increases.

This characteristic behavior of C versus SNR per bit is illustrated in Figure 6.5-5 for

the case where the binary modulation scheme is antipodal signaling.

The Capacity of the Discrete-Time Binary-InputAWGN Channel We consider

the binary-input AWGN channel with inputs =bA and noise variance a 2
. The transition

probability density function for this channel is defined by Equation 6.5-6 where x =
=tA. By symmetry, the capacity of this channel is achieved by a symmetric input PMF,
i.e., by letting P [X = A\ = P[X = —A] = Using these input probabilities, the

FIGURE 6.5-4

The capacity of a BSC.



Chapter Six: An Introduction to Information Theory 363

FIGURE 6.5-5

The capacity plot versus SNR per bit.

capacity of this channel in bits per channel use is given by

C = \[ P(y\A ) l°S2 ^YY dy + 1 [
Ky|~A)log2

p(j
^ ^ dy (6.5-30)

2 J-oo p(y ) 2 y_oo p(y )

The capacity in this case does not have a closed form. In Problem 6.50 it is shown that

the capacity of this channel can be written as

(6.5-31)

where

1 (u-x)2

7Se ' 1082
2

1 + e~2ux
du (6.5-32)

Figure 6.5-6 illustrates C as a function of the ratio Note that C increases monoton-

ically from 0 to 1 bit per symbol as this ratio increases. The two points shown on this

plot correspond to transmission rates of
\
and Note that the required to achieve

these rates is 0.188 and —0.496, respectively.

Capacity of Symmetric Channels It is interesting to note that in the two channel

models described above, the BSC and the discrete-time binary-input AWGN channel,

the choice of equally probable input symbols maximizes the average mutual infor-

mation. Thus, the capacity of the channel is obtained when the input symbols are

equally probable. This is not always the solution for the capacity formulas given in

Equation 6.5-27, however. In the two channel models considered above, the channel

transition probabilities exhibit a form of symmetry that results in the maximum of
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FIGURE 6.5-6

The capacity of binary input AWGN channel.

I(X\ Y) being obtained when the input symbols are equally probable. A channel is

called a symmetric channel when each row of P is a permutation of any other row

and each column of it is a permutation of any other column. For symmetric channels,

input symbols with equal probability maximize I(X;Y). The resulting capacity of a

symmetric channel is

C = log2 \gf\-H(p) (6.5-33)

where p is the PMF given by any row of P. Note that since the rows of P are permuta-

tions of each other, the entropy of the PMF corresponding to each row is independent

of the row. One example of a symmetric channel is the binary symmetric channel for

which p = (p, 1 — p) and
| ]

= 2, therefore C = 1 — /4(p).

In general, for an arbitrary DMC, the necessary and sufficient conditions for the

set of input probabilities {P [jc]} to maximize I(X; Y) and, thus, to achieve capacity on

a DMC are that (Problem 6.52)

/(x; Y) = C for all x E 'EY? with P [x] > 0
(6.5-34)

I(x;Y)<C for all x e T with P[jc] = 0

where C is the capacity of the channel and

VPnf/ LJJ

(6.5-35)
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Usually, it is relatively easy to check if the equally probable set of input symbols

satisfies the conditions given in Equation 6.5-34. If they do not, then one must determine

the set of unequal probabilities {P [x]} that satisfies Equation 6.5-34.

/ The Capacity ofDiscrete-TimeAWGN Channel with an Input Power Constraint

Here we deal with the channel model

Yi = Xi + Nt (6.5-36)

where Ni ’s are iid zero-mean Gaussian random variables with variance a 2 and input X
is subject to the power constraint

E [X2
]
< P (6.5-37)

For large n
,
the law of large numbers states that

-
\\y\\

2 -> E [X2
] + E [N2

]
< P + cr

2
(6.5-38)

n

Equation 6.5-38 states that the output vector y is inside an rc-dimensional sphere of

radius \/n(P + a 2
). If x is transmitted, the received vector y = x + n satisfies

-\\y - x\\
2 = -\\nf ^ a 2

(6.5-39)
n n

which means if x is transmitted, with high probability y will be in an rc-dimensional

sphere of radius \/na 2 and centered at jc. The maximum number of spheres of radius

\!no 2 that can be packed in a sphere of radius \Jn{P + a 2
) is the ratio of the volumes

of the spheres. The volume of an rc-dimensional sphere is given by Vn = BnRn
,
where

Bn is given by Equation 4.7-15. Therefore, the maximum number of messages that can

be transmitted and still be resolvable at the receiver is

M =

which results in a rate of

Bn (y\/n{P + cr
2))"

Bn

1 1 ( P
R = - log2 M = - log2 [l + ~2

n 2 V <t
z

—
I

1 H
2

<7
Z

bits/transmission

(6.5-40)

(6.5-41)

This result can be obtained by direct maximization of I(X; Y ) over all input PDFs
p(x ) that satisfy the power constraint E[X2

] < P. The input PDF that maximizes

I(X
;
Y) is a zero-mean Gaussian PDF with variance P. A plot of the capacity for this

channel versus SNR per bit is shown in Figure 6.5-7. The points corresponding to

C = \
and C = ^

are also shown on the figure.

The Capacity ofBand-Limited Waveform AWGN Channel with an Input Power

Constraint As we have seen by the discussion following Equation 6.5-21
,
this channel

model is equivalent to 2IT uses per second of a discrete-timeAWGN channel with input
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FIGURE 6.5-7

The capacity of a discrete-time AWGN channel.

power constraint of^ and noise variance ofa 2 = ^ . The capacity of this discrete-time

channel is

c = 1 log2 ^1
+ 1 log2 ^1 + bits/channel use (6.5-42)

Therefore, the capacity of the continuous-time channel is given by

C = 2W xI,og
2 (l +^7)

= «'log2 (. +^) bi.s/s (6.5^3)

This is the celebrated equation for the capacity of a band-limited AWGN channel with

input power constraint derived by Shannon (1948b).

From Equation 6.5^13, it is clear that the capacity increases by increasing P, and

in fact C —^ oo as P —^ oo. However, the rate by which the capacity increases at

large values of P is a logarithmic rate. Increasing W ,
however, has a dual role on the

capacity. On one hand, it causes the capacity to be increased because higher bandwidth

means more transmissions over the channel per unit time. On the other hand, increasing

W decreases the SNR defined by This is so because increasing the bandwidth

increases the effective noise power entering the receiver. To see how the capacity

changes as W -> oo, we need to use the relation ln(l + x) -> x as x 0 to get

= + = bi ‘s/s <6.5-W>

It is clear that the having infinite bandwidth cannot increase the capacity indefinitely,

and its effect is limited by the amount of available power. This is in contrast to the
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effect of having infinite power that, regardless of the amount of available bandwidth,

can increase the capacity indefinitely.

To derive a fundamental relation between the bandwidth and power efficiency of a

communication system, we note that for reliable communication we must have R < C
which in the case of a band-limited AWGN channel is given by

R<w>ogi( l +
l£w)

<6 '5^5)

Dividing both sides by W and using r = R/W, as previously defined in Equation 4.6-1

as the bandwidth efficiency, we obtain

Using the relation

we obtain

r < log2

£ = PTS

log2 M log2 M

r<lofe
(

1 +
lb£)

=h>&
(

1

from which we have

P

(6.5-46)

(6.5-47)

(6.5-48)

(6.5-49)

This relation states the condition for reliable communication in terms of bandwidth

efficiency r and which is a measure of power efficiency of a system. A plot of

this relation is given in Figure 4.6-1. The minimum value of for which reliable

communication is possible is obtained by letting r 0 in Equation 6.5-49, which

results in

— > In 2 « 0.693 ~ - 1 .6 dB (6.5-50)
Nq

This is the minimum required value of
fj

2- for any communication system. No system

can transmit reliably below this limit ancf in order to achieve this limit we need to let

r 0, or equivalently, W oo.

6.6

ACHIEVING CHANNEL CAPACITY WITH ORTHOGONAL SIGNALS

In Section 4.4-1, we used a simple union bound to show that, for orthogonal signals,

the probability of error can be made as small as desired by increasing the number M
of waveforms, provided that £t/No > 2 In 2. We indicated that the simple union bound

does not produce the smallest lower bound on the SNR per bit. The problem is that the

upper bound used in Q(x) is very loose for small x.
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An alternative approach is to use two different upper bounds for Q(x ), depending

on the value of x. Beginning with Equation 4.4-10 and using the inequality (1 — x)n >
1 — nx, which holds for 0 < x < 1 and n > 1, we observe that

1 - [1 - <(M- 1)000 < Me~xl/2
(6.6-1)

This is just the union bound, which is tight when x is large, i.e., for x > xo, where xo

depends on M. When x is small, the union bound exceeds unity for large M. Since

1 - [1 - 2001
M-1 < 1 (6.6-2)

for all x, we may use this bound for x < xo because it is tighter than the union bound.

Thus Equation 4.4-10 may be upper-bounded as

Pe <
a/27T Jxo

(6.6-3)

where y = Jk
The value of xo that minimizes this upper bound is found by differentiating the

right-hand side of Equation 6.6-3 and setting the derivative equal to zero. It is easily

verified that the solution is

e*°
/2 = M (6.6-4)

or, equivalently,

*o = V21nM = ^2 In 2 log2 M = V2fcln2 (6.6-5)

Having determined xo, we now compute simple exponential upper bounds for the

integrals in Equation 6.6-3. For the first integral, we have

1 r = _L r^~x
°) /V2

</2n J—oo J_OO

= Q{V2y-xo),

< e-(v^-o)
2

/2

The second integral is upper-bounded as follows:

M
\p2jx fJxo ?

-s/2 v dx =
M

o-Yl2

fj XoV2?r Ao-^/x/2

'Me-y/2

Me~y /2e~ {
Xt>~'/y 2̂

)

e
u du

*o < \/2y

Xo < y/2

y

e
-"

2

du

(6 .6-6)

<
xo < \[YTl

*o > Vy72

(6.6-7)

Combining the bounds for the two integrals and substituting e
xo!2 for M, we obtain

Pe <
e-(V^-*0

)

2

/2 + e(xl-y)/2

e
-(^-x0

)

2

/2 + e^y)i2e
-(x0-^/Vri)

2

0 < xo < y/y/2

s/y12 < xo < «J2

y

(6.6-8)
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In the range 0 < xq < vV/2, the bound may be expressed as

Pe < gW-y)/2

( 1 + e-(^-V>V2)
2N

\ < 2e(
xZ~y ')/2

, 0<xo< \fyfi (6.6-9)

In the range *Jy/2 < *o < V^Y *
the two terms in Equation 6.6-8 are identical. Hence,

< 2e-(^~x°)
2/2

, v9/2 < *0 < \/2y (6.6-10)

Now we substitute for xq and y. Since xo = 2 InM = \/2k In 2 and y = /cy/9 ,
the

bounds in Equations 6.6-9 and 6.6-10 may be expressed as

2e-Hyh
-21n2)/2

In Af < \y

\y < InM < y
(6 .6-11 )

The first upper bound coincides with the union bound presented earlier, but it is loose

for large values of M. The second upper bound is better for large values of M. We
note that Pe 0 as k oo (M oo) provided that y\> > In 2. But In 2 is the

limiting value of the SNR per bit required for reliable transmission when signaling

at a rate equal to the capacity of the infinite-bandwidth AWGN channel, as shown in

Equation 6.5-50. In fact, when the substitutions yo = \Jlk In 2 = y/2RT\nl and

y = 8/No — TP/No = TCqo In 2, which follow from Equation 6.5-44, are made into

the two upper bounds given in Equations 6.6-9 and 6.6-10, the result is

2x2 ^( 2 ^°° R
)

2 X 2
-r ('/c~~v^)

0 — R <
4 Coo

| Coo <R<C<
(6.6-12)

Thus we have expressed the bounds in terms of and the bit rate in the channel.

The first upper bound is appropriate for rates below \Coq, while the second is tighter

than the first for rates between \Coq and CD

c

. Clearly, the probability of error can

be made arbitrarily small by making T — 00 (M -> oo for fixed R), provided that

R < Cqo = P/(No In 2). Furthermore, we observe that the set of orthogonal waveforms

achieves the channel capacity bound as M -> 00
,
when the rate R < C^.

6.7

THE CHANNEL RELIABILITY FUNCTION

The exponential bounds on the error probability for M-ary orthogonal signals on an

infinite-bandwidth AWGN channel given by Equation 6.6-12 may be expressed as

Pe < 2 X 2~TE{r) (6.7-1)



370 Digital Communications

FIGURE 6.7-1

Channel reliability function for the infinite-bandwidth

AWGN channel.

The exponential factor

E(R) =
0<R<\Coo

-C
4 '-'o < R < Coo

(6.7-2)

in Equation 6.7-2 is called the channel reliability function for the infinite-bandwidth

AWGN channel. A plot of E(R)/COQ is shown in Figure 6.7-1. Also shown is the

exponential factor for the union bound on Pe ,
given by Equation 4.4-17, which may be

expressed as

1 i 1

< - x 2~T^Cx~R\ 0 <R< -Coo (6.7-3)

Clearly, the exponential factor in Equation 6.7-3 is not as tight as E(R), due to the

looseness of the union bound.

The bound given by Equations 6.7-1 and 6.7-2 has been shown by Gallager (1965)

to be exponentially tight. This means that there does not exist another reliability func-

tion, say EfR ), satisfying the condition EfR) > E(R) for any R. Consequently, the

error probability is bounded from above and below as

Ki2~
te(r) <Pe

< Ku
2~te(r)

(6.7-4)

where the constants have only a weak dependence on T in the sense that

1 1

lim — In Ki — lim — In Ku = 0 (6.7-5)
T t-+oo T

Since orthogonal signals are asymptotically optimal for large Af
,
the lower bound

in Equation 6.7-4 applies for any signal set. Hence, the reliability function E(R) given

by Equation 6.7-2 determines the exponential characteristics of the error probability

for digital signaling over the infinite-bandwidth AWGN channel.

Although we have presented the channel reliability function for the infinite-

bandwidth AWGN channel, the notion of channel reliability function can be applied to

many channel models. In general, for many channel models, the average error proba-

bility over all the possible codes generated randomly satisfies an expression similar to
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Equation 6.7-4 of the form

Ki2~
nE(R) < Pe < Ku

2~nE(R> (6.7-6)

where E(R) is positive for all R < C. Therefore, if R < C, it is possible to arbitrarily

decrease the error probability by increasing n. This, of course, requires unlimited de-

coding complexity and delay. The exact expression for the channel reliability function

can be derived for just a few channel models. For more details on the channel reliability

function, the interested reader is referred to the book by Gallager (1968).

Although the error probability can be made small by increasing the number of

orthogonal, biorthogonal, or simplex signals, with R < C^, for a relatively modest

number of signals, there is a large gap between the actual performance and the best

achievable performance given by the channel capacity formula. For example, from

Figure 4.6-1, we observe that a set ofM = 16 orthogonal signals detected coherently

requires an SNR per bit of approximately 7 .5 dB
,
to achieve a bit error rate of Pe = 1

0“5
.

In contrast, the channel capacity formula indicates that for a C/W = 0.5, reliable

transmission is possible with an SNR of —0.8 dB, as indicated in Figure 6.5-7. This

represents a rather large difference of 8.3 dB/bit and serves as a motivation for searching

for more efficient signaling waveforms. In this chapter and in Chapters 7 and 8, we
demonstrate that coded waveforms can reduce this gap considerably.

Similar gaps in performance also exist in the bandwidth-limited region of

Figure 4.6-1, where R/W > 1 . In this region, however, we must be more clever in

how we use coding to improve performance, because we cannot expand the bandwidth

as in the power-limited region. The use of coding techniques for bandwidth-efficient

communication is treated in Chapters 7 and 8.

6.8

THE CHANNEL CUTOFF RATE

The design ofcoded modulation for efficient transmission ofinformation may be divided

into two basic approaches. One is the algebraic approach, which is primarily concerned

with the design of coding and decoding techniques for specific classes of codes, such as

cyclic block codes and convolutional codes. The second is the probabilistic approach,

which is concerned with the analysis of the performance of a general class of coded

signals. This approach yields bounds on the probability of error that can be attained for

communication over a channel having some specified characteristic.

In this section, we adopt the probabilistic approach to coded modulation. The

algebraic approach, based on block codes and on convolutional codes, is treated in

Chapters 7 and 8.

6.8-1 Bhattacharyya and Chernov Bounds

Let us consider a memoryless channel with input alphabet and output alphabet SY
which is characterized by the conditional PDF p(y \x). By the memoryless assumption
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of the channel

n

p(y\x) = \\_piyi\xi) (6 .8- 1 )

i=

1

where x = (jci ,
*2 ,

• •
. ,
xn ) and y = (yi , j2 , . .

.

,

yn ) are input and output sequences of

length n . We further assume that from all possible input sequences of length n
,
a subset of

sizeM = 2k denoted by jc i ,
jc 2 ,

. .
.

,

Jtm and called codewords is used for transmission.

Let us represent by Pe
\

m the error probability when xm is transmitted and a maximum-
likelihood detector is employed. By the union bound and using Equations 4.2-64 to

4.2-67 we can write

M
P

e\m = ^ ^
f [j ^ L)m ' \xm sent]

m'=

1

m’^m
(6.8-2)M V 7

— ^ ^
P[j ^ Dmm' \Xm Sent]

m'=

1

ra'/m

where Dmm > denotes the decision region for m f

in a binary system consisting of xm and

xm r and is given by

Anm' = {y • P(y\Xm') > P(.V \xm )}

j 1

p(y\xm')

= \y : ln -T-.—r >
p(y\xm )

°}

in which we have defined

= {y : Z„

Zynm’ — In

>0}

p(y \Xm>)

p(y\x ,„

)

(6.8-3)

As in Section 4.2-3, we denote P|j e Dmm i \xm sent] by Pm
error probability, or PEP. It is clear from Equation 6.8-3 that

(6.8-4)

' and call itpairwise

— P VZmm' 0 \xm ]

<E[e
AZ

»™'|*,n]

(6.8-5)

where in the last step we have used the Chernov bound given by Equation 2.4-4, and

the inequality is satisfied for all A > 0. Substituting for Zmm > from Equation 6.8-4, we
obtain

Pm-±m> < e piylXm) P(y\*m)
y^r!/n

= P
X
(y\Xm')P

l~X
(y\Xm ) A. > o

yZrfj"

(6 .8-6)



Chapter Six: An Introduction to Information Theory 373

This is the Chernov boundfor the pairwise error probability. A simpler form of this

bound is obtained when we put A = \

.

In this case the resulting bound

Pm->m' < 53 Vp(y\xm)p(y\Xm') (6.8-7)

y€rVn

is called the Bhattacharyya bound. If the channel is memoryless, the Chernov bound

reduces to

P / <1 m—>ra / _ n
1=

1

^ j P (.yi\xm'i)p (yi\Xmi) A > 0

The Bhattacharyya bound for a memoryless channel is given by

P / <1 ra—H72' _ nX! Vp(yi\xm'i)p(yi\xmi)
2=1

(6 . 8-8 )

(6.8-9)

Let use define two functions A^^ and AX1jX2 ,
called Chernov and Bhatacharyya

parameters
,
respectively, as

A^
X2 = y2p

l
(y\x2)p

l

-\y\xi)

(6 .8-10)

axux2
= 53 Vp(y\xi)p(y\x2)

y^r'/

Note that AW = A,,.* = 1 for all x\ e r
9?. Using these definitions, Equations 6.8-8

and 6.8-9 reduce to

n

Pm^m'< A>0 (6 '8-U )

1= 1

and

Pm^m' < II A x, (6.8-12)

1= 1

example 6.8-1. Assume xm and xm < are two binary sequences of length n which

differ in d components; d is called the Hamming distance between the two sequences.

If a binary symmetric channel with crossover probability p is employed to transmit xm
and jtm ', we have

n

=
II xfp{ 1 - p) + ( 1 - p)p (6.8-13)

1=1
xmi 7^xm f

i

= (\/4p(l - p)j

where we have used the fact that if xm i
= xmn, then AXmhXm/j = 1.
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If, instead of the BSC, we use BPSK modulation over anAWGN channel, in which

0 and 1 in each sequence are mapped into —\fSc and and Sc denotes energy per

component, we will have

n

Pm^m' < JJ
/=!

Xmi^Xm /j

(y-V^)2

"0 e
O’+V^)2

"o dy

= n
i=

1

xmi

e
§c
Nq

1

e

d

(6.8-14)

In both cases the Bhattacharyya bound is of the form Ad
,
where for the BSC

_£c
A = ->/4p(l — p) and for an AWGN channel with BPSK modulation A = e . If

p / \
and £c > 0, in both cases A < 1 and therefore as d becomes large, the error

probability goes to zero.

6.8-2 Random Coding

Let us assume that instead of having two specific codewords xm and jtm /, we generate

all M codewords according to some PDF p(x ) on the input alphabet Sf. We assume

that all codeword components and all codewords are drawn independently according

to p(x). Therefore, each codeword xm = (xm i,xm2 ,
. .

.

,

xmn ) is generated according

to n-=i p(xm i). If we denote the average of the pairwise error probability over the set

of randomly generated codes by Pm^m ', we have

m^m' = £ ^ ^ Pm^m'
xme^ n xm/e^ n

n

— s n (p(xm^p(xm,i^x,i^xm,^

=n 12 12 P(X>n^P(Xm'i)A2^xmll

xmi e'.rxm/i e'<r

,XiG^X2G'^

n

X > 0

(6.8-15)
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Let us define

R0(p, X) = — log2 pix^pixi)^
_x\e^x2 ^P/’

•*2

= -log2 [E[A
(

x%2

A > 0 (6.8-16)

where Xj and X2 are independent random variables with joint PDF p(x\)p(x2 ). Using

this definition, Equation 6.8-15 can be written as

P
,

^7 < 2-nMp ’
k) X > 0 (6.8-17)

We define Pe
\

m as the average of Pe
\

m over the set of random codes generated using

p(x). Using this definition and Equation 6.8-2, we obtain

M

m'=

1

M
2~nRo(p,^)

m'=

1

m'^in

_ 2~n(Ro(p,V-Rc) x > o

(6.8-18)

We have used the relation M = 2k = 2nRc
,
where Rc = - denotes the rate of the code.

Since the right-hand side of the inequality is independent of m, by averaging over m
we have

Pe < 2~n(Mp^ )
- Rc) X > 0 (6.8-19)

where Pe is the average error probability over the ensemble of random codes generated

according to p{x). Equation 6.8-19 states that if Rc < Ro(p, A), for some input PDF
p(x) and some A > 0, then for n large enough, the average error probability over

the ensemble of codes can be made arbitrarily small. This means that among the set

of codes generated randomly, there must exist at least one code for which the error

probability goes to zero as n oo. This is an example of the random coding argument

first introduced by Shannon in the proof of the channel capacity theorem.

The maximum value of Ro(p, A) over all probability density functions p(x) and all

A > 0 gives the quantity Rq
,
known as the channel cutoff rate, defined by

/?o = max sup Ro(p, A)
p(x) X>0

= max sup
p(*) l>0

-log2 Xv X2

(6 . 8-20)

Clearly if either ^or S/or both are continuous,, the corresponding sums in the devel-

opment of Rq are substituted with appropriate integrals.
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For symmetric channels, the optimal value of A that maximizes the cutoff rate is

A = ^
for which the Chernov bound reduces to the Bhattacharyya bound and

fl° = max -log2 [E[A Xl ,x2 ]]

= max — log2
p{x)

p(xWp(y\x)J
ye ;/ \xe<r

(6 .8-21 )

In addition to these channels, the PDF maximizing Ro(p, A.) is a uniform PDF; i.e.,

if g = |^|, we have p(x) = ~ for all x € 3/ In this case we have

R0 = - log2
|

Z
J2 (Z
ye;]/ \xe pr

= 21og2 Q - log2
yer?/\xe<r )

Using the inequality

ZvWWJ ^Z^*)
and summing over all y, we obtain

Z (z
ye;y\xepr / xe^-r ye;/

= Q

Employing this result in Equation 6.8-22 yields

R0 = 21og2 Q - log2

< log2 Q

Z ZV^w
ye;// \xe,r

(6 .8-22)

(6.8-23)

(6.8-24)

(6.8-25)

as expected.

For a symmetric binary-input channel, these relations can be further reduced. In

this case

AX,,X2

A x\/x2

1 X\ = X2
(6.8-26)

where A is the Bhattacharyya parameter for the binary input channel. In this case

Q — 2 and we obtain

Ro = ~ log2

1 +

A

2 (6.8-27)

= l-log2 (l + A)

Since reliable communication is possible at all rates lower than the cutoff rate, we
conclude that Ro < C. In fact, we can interpret the cutoff rate as the supremum of the



Chapter Six: An Introduction to Information Theory 377

rates at which a bound on the average error probability ofthe form is possible.

The simplicity of the exponent in this bound is particularly attractive in comparison

with the the general form of the bound on error probability given by 2~nE(̂Rc\ where

E(RC ) denotes the channel reliability function. Note that Ro — Rc is positive for all

rates less than Ro, but E(RC ) is positive for all rates less than capacity. We will see in

Chapter 8 that sequential decoding of convolutional codes is practical at rates lower

than R0 . Therefore, we can also interpret Ro as the supremum of the rates at which

sequential decoding is practical.

example 6.8-2. For a BSC, with crossover probability p we have ^ = {0, 1}.

Using the symmetry of the channel, the optimal X is
^
and the optimal input distribution

is a uniform distribution. Therefore,

R0 = 2 log2 2 - log2 ^2
(
X Vp(y\x )

y=0,l Vt=0,l )

— 2 log2 2 - log2 i - p + Vp) + (Vp + V 1 - p)

= 2 log2 2 - log2 (2 + A\Jp(l - p)')

2
- l°g2

1 + V4/Kl - p)

(6.8-28)

We could also use the fact that A = 1 — p) and use Equation 6.8-27 to obtain

7?o = 1 - log2 (l + A) = 1 - log2 (l + y/ApO - p)) (6.8-29)

A plot of Ro versus p is shown in Figure 6.8-1. The capacity of this channel C =
1 — Hb(p) is also shown on the same plot. It is observed that C > Rq, for all p.

p

FIGURE 6.8-1

Cutoff rate and channel capacity plots for a binary symmetric channel.
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If the BSC channel is obtained by binary quantization of the output of an AWGN
channel using BPSK modulation, we have

P = Q (6.8-30)

where £c denotes energy per component of x. Note that with this notation the total

energy in x is £ = n£c ;
and since each x carries k = log2 M bits of information, we

have £b = j
= |£c ,

or £c = Rc£b ,
where Rc = |

is the rate of the code. If the rate of

the code tends to Rq
,
we will have

P = Q (VRoYb)

where yb = £b/No- From the pair of relations

p = Q Yb)

0

Ro - log2

(6.8-31)

(6.8-32)

1 + V4P(! - P)

we can plot Rq as a function of Yb- Similarly, from the pair of relations

P = Q Yb)

C = 1 - Hb(p)

(6.8-33)

we can plot C as a function of yb . These plots that compare Ro and C as functions of yb
are shown in Figure 6.8-2. From this figure it is seen that there exists a gap of roughly

2-2.5 dB between Rq and C.

FIGURE 6.8-2

Capacity and cutoff rate for an output quantized BPSK scheme.
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example 6.8-3. ForanAWGN channel with BPSK modulation we have 8?= {±>/Sc}.

The output alphabet 3/ in this case is the set of real numbers R. We have

^2 Vp(yw
1

VjtTVo

(?+V^)
2

£ A^o +

= 2 + 2
1

V^a/q

)
,2+£c
No dy

sc

= 2 + 2e No

1 (y-^cf
e No

's/tvNq

dy

(6.8-34)

Finally, using Equation 6.8-22, we have

Ro = 2 log2 2 — log2 (2 + 2e "»)

= log2

= log2

2

nr
l+e *i

2

— R1+e CN
o

(6.8-35)

Here A = e~ Sc ^N° and using Equation 6.8-27 will result in the same expression for Ro .

A plot of Ro ,
as well as capacity for this channel which is given by Equation 6.5-31,

is shown in Figure 6.8-3.

In Figure 6.8-4 plots of Ro and C for BPSK with continuous output (soft decision)

and BPSK with binary quantized output (hard decision) are compared.

Cb/N0 dB

FIGURE 6.8-3

Cutoff rate and channel capacity plots for an AWGN channel with BPSK modulation.
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FIGURE 6.8-4

Capacity and cutoff rate for a hard and soft decision decoding of a BPSK scheme.

Comparing the Rq’s for hard and soft decisions, we observe that soft decision has

an advantage of roughly 2 dB over hard decision. Ifwe compare capacities, we observe

a similar 2-dB advantage for soft decision. Comparing Ro and C, we observe that in

both soft and hard decisions, capacity has an advantage of roughly 2-2.5 dB over Rq.

This gap is larger at lower SNRs and decreases to 2 dB at higher SNRs.

6.9

BIBLIOGRAPHICAL NOTES AND REFERENCES

Information theory, the mathematical theory of communication, was founded by

Shannon (1948, 1959). Source coding has been an area of intense research activity

since the publication of Shannon’s classic papers in 1948 and the paper by Huffman

(1952). Over the years, major advances have been made in the development of highly

efficient source data compression algorithms. Of particular significance is the research

on universal source coding and universal quantization published by Ziv (1985), Ziv and

Lempel (1977, 1978), Davisson (1973), Gray (1975), and Davisson et al. (1981).

Treatments of rate distortion theory are found in the books by Gallager (1968),

Berger (1971), Viterbi and Omura (1979), Blahut (1987), and Gray (1990). For practical

applications of rate distortion theory to image and video compression, the reader is

referred to the IEEE Signal Processing Magazine , November 1998, and to the book by
Gibson et al. (1998). The paper by Berger and Gibson (1998) on lossy source coding

provides an overview of the major developments on this topic over the past 50 years.

Over the past decade, we have also seen a number of important developments

in vector quantization. A comprehensive treatment of vector quantization and signal
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compression is provided in the book of Gersho and Gray (1992). The survey paper by

Gray and Neuhoff (1998) describes the numerous advances that have been made on the

topic of quantization over the past 50 years and includes a list of over 500 references.

Pioneering work on channel characterization in terms of channel capacity and

random coding was done by Shannon (1948a, b; 1949). Additional contributions were

subsequently made by Gilbert (1952), Elias (1955), Gallager (1965), Wyner (1965),

Shannon et al. (1967), Forney (1968), and Viterbi (1969). All these early publications are

contained in the IEEE Press book entitled Key Papers in the Development ofInformation

Theory ,
edited by Slepian (1974). The paper by Verdu (1998) in the 50th Anniversary

Commemorative Issue of the Transactions on Information Theory gives a historical

perspective of the numerous advances in information theory over the past 50 years.

The use of the cutoff rate parameter as a design criterion was proposed and devel-

oped by Wozencraft and Kennedy (1966) and by Wozencraft and Jacobs (1965). It was

used by Jordan (1966) in the design of coded waveforms for M-ary orthogonal signals

with coherent and noncoherent detection. Following these pioneering works, the cutoff

rate has been widely used as a design criterion for coded signals in a variety of different

channel conditions.

For comprehensive study of the ideas introduced in this chapter, the reader is

referred to standard texts on information theory including Gallager (1968) and Cover

and Thomas (2006).

PROBLEMS

6.1 Prove that In u <u — 1 and also demonstrate the validity of this inequality by plotting In u

and u — 1 on the same graph.

6.2 X and Y are two discrete random variables with probabilities

P(X = x,Y = y) = P(x,y)

Show that I(X\ Y) > 0, with equality if and only if X and Y are statistically independent.

Hint: Use the inequality In u < u — 1, for 0 < u < 1, to show that —I(X\ Y) < 0.

6.3 The output of a DMS consists of the possible letters x\, jt2 ,
• • > xn ,

which occur with

probabilities p \ , p2 , . .
.

,

pn ,
respectively. Prove that the entropy H(X) of the source is at

most log ft. Find the probability density function for which H(X) = log n.

6.4 Let X be a geometrically distributed random variable, i.e.,

P(X = k) = p(l - pf-
1

,
k= 1,2,3,...

1. Find the entropy of X.

2. Given that X > K, where K is a positive integer, what is the entropy of XI

6.5 Two binary random variables X and Y are distributed according to the joint distribu-

tions P(X = Y = 0) = P(X = 0, Y = 1) = P(X = Y = 1) = ±. Compute

H(X), H(Y), H(X\Y), H(Y\X), and H(X, Y).
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6.6

Let X and Y denote two jointly distributed, discrete-valued random variables.

1

.

Show that

ff(X) = -£)/>(*,;y)log/>(x)

H(Y) = -J2P(x,y)logP(v)
x,y

2. Use the above result to show that

H(X, Y) < H{X) + H(Y)

When does equality hold?

3. Show that

H(X\Y) < H(X)

with equality if and only if X and Y are independent.

6.7 Let Y = g(X ), whdre g denotes a deterministic function. Show that, in general, H(Y) <
H(X). When does equality hold?

6.8 Show that, for statistically independent events,

n

H(X lX2 ---Xn ) =YJ
H(X

i )

i=

1

6.9 Show that

/(X3 ;
X2 \X x ) = H(X3 \X x )

- H(X3 \X x
X2 )

and that

H(X3 \X x
)>H(X3 \X xX2 )

6.10 Let X be a random variable with PDF px (x ), and let Y = aX + b be a linear transforma-

tion of X
,
where a and b are two constants. Determine the differential entropy H(Y) in

terms of H(X).

6.11 The outputs x\, x2 ,
and x3 of a DMS with corresponding probabilities p\ = 0.45, p2 =

0.35, and p3 = 0.20 are transformed by the linear transformation Y = aX + b
,
where

a and b are constants. Determine the entropy H(Y) and comment on what effect the

transformation has had on the entropy of X.

6.12 A Markov process is a process with one-step memory, i.e., a process such that

p(xn \xn- X ,xn-2 ,xn-3 , . ..) = p(xn \xn-i)

for all n. Show that, for a stationary Markov process, the entropy rate is given by

H(Xn\Xn- X )
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6.13

A first-orderMarkov source is characterized by the state probabilities P (x* ), i = 1 , 2, . .
.

,

L
,

and the transition probabilities P(xk\xi), k = 1,2 , . .
.

,

L, and k ^ i. The entropy of the

Markov source is

L

H(X ) = J2 P(Xk)H(X\xk )

k= 1

where H(X \xk) is the entropy conditioned on the source being in state x Determine the

entropy of the binary, first-order Markov source shown in Figure P6.13, which has the

transition probabilities P(x2 |*i) = 0.2 and P(x \\x2 ) = 0.3. Note that the conditional

entropies H(X \x\) and H(X \x2 ) are given by the binary entropy functions Hb(P(x2 \x\))

and Hb(P(x i\x2 )), respectively. How does the entropy of the Markov source compare with

the entropy of a binary DMS with the same output letter probabilities P(xi) and P(x2)?

P(x
2
IXj)

P(x
x
\x£

FIGURE P6.13

6.14

Show that, for aDMC, the average mutual information between a sequence X \ ,
X2 , .

.

•

,

Xn

of channel inputs and the corresponding channel outputs satisfies the condition

n

/(X,X2 •
• • X„; YM Yn )

<^ I(Xr,
Y,)

1= 1

with equality if and only if the set of input symbols is statistically independent.

6.15

Determine the differential entropy H(X) of the uniformly distributed random variable X
with PDF

p(x) =
0

0 < x < a

otherwise

for the following three cases:

1 . a = 1

2. a = 4

3. a = l
Observe from these results that H(X) is not an absolute measure, but only a relative

measure of randomness.

6.16 A DMS has an alphabet of five letters x
t ,

i = 1
,
2, . .

.

,

5, each occurring with probability

^ . Evaluate the efficiency of a fixed-length binary code in which

1. Each letter is encoded separately into a binary sequence.

2. Two letters at a time are encoded into a binary sequence.

3. Three letters at a time are encoded into a binary sequence.

6.17 Determine whether there exists a binary code with codeword lengths (n\,n 2 ,ri 2 ,
n4 )

=

( 1
,
2

,
2

,
3 ) that satisfy the prefix condition.
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6.18 Consider a binary block code with 2n codewords of the same length n. Show that the Kraft

inequality is satisfied for such a code.

6.19 A DMS has an alphabet of eight letters xi, i = 1, 2, . .
.

,

8
,
with probabilities 0.25, 0.20,

0.

15. 0.12, 0.10, 0.08, 0.05, and 0.05.

1 . Use the Huffman encoding procedure to determine a binary code for the source output.

2. Determine the average number R of binary digits per source letter.

3. Determine the entropy of the source and compare it with R.

6.20 A discrete memoryless source produces outputs {a\
,

<22 ,
<23 ,

<24 ,
<25 ,

<26 }. The corresponding

output probabilities are 0.7, 0.1, 0.1, 0.05, 0.04, and 0.01.

1. Design a binary Huffman code for the source. Find the average codeword length.

Compare it to the minimum possible average codeword length.

2. Is it possible to transmit this source reliably at a rate of 1 .5 bits per source symbol?

Why?
3. Is it possible to transmit the source at a rate of 1.5 bits per source symbol employing

the Huffman code designed in part 1 ?

6.21 A discrete memoryless source is described by the alphabet X — [x\,X2 , . .

.

,x&], and

the corresponding probability vector p = {0.2,0.12,0.06,0.15,0.07,0.1,0.13,0.17}.

Design a Huffman code for this source; find L, the average codeword length for the

Huffman code; and determine the efficiency of the code defined as

H(X)

6.22 The optimum four-level nonuniform quantizer for a Gaussian-distributed signal amplitude

results in the four levels <21 ,
<22 ,

<23 ,
and <24 ,

with corresponding probabilities of occurrence

p { = p2 = 0.3365 and p3 = p4 = 0.1635.

1 . Design a Huffman code that encodes a single level at a time, and determine the average

bit rate.

2. Design a Huffman code that encodes two output levels at a time, and determine the

average bit rate.

3. What is the minimum rate obtained by encoding J output levels at a time as J -> 00 ?

6.23 A discrete memoryless source has an alphabet of size 7, = {x\, X2 ,
x3 ,

X4 ,
X5 ,

x$, *7 },

with corresponding probabilities {0.02, 0.11, 0.07, 0.21, 0.15, 0.19, 0.25}.

1 . Determine the entropy of this source.

2. Design a Huffman code for this source, and find the average codeword length of the

Huffman code.

3. A new source S^= {yi , y2 , ys} is obtained by grouping the outputs of the source Sfas

y 1 = {xux2 ,x5 }

y2 = {*3 ,
*7 }

y3 = {*4, *6}

Determine the entropy of 3/.

4.

Which source is more predictable, or 3/1 Why?
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6.24 An iid source . .
. ,
X-2 ,

X-\, Xo, X\, X2 , . . . has the pdf

fix) --

x > 0

otherwise

This source is quantized using the following scheme:

4.

0.5 0 < X < 1

1.5 1 < X < 2

2.5 2<X <3
3.5 3<X <4
6 otherwise

Design a Huffman code for the quantized source X.

What is the entropy of the quantized source XI
If the efficiency of the Huffman code is defined as the ratio of the entropy to the average

codeword length of the Huffman code, determine the efficiency of the Huffman code

designed in part 1

.

Now let X = i + 0.5, i < X < i + 1, for i =0,1,2, Which random variable has

a higher entropy, X or XI (There is no need to compute entropy of X, just give your

intuitive reasoning.)

6.25 A stationary source generates outputs at a rate of 10,000 samples. The samples are inde-

pendent and are uniformly distributed on the interval [—4, 4]. Throughout this problem

the distortion measure is assumed to be squared-error distortion.

1 . If perfect (distortion-free) reconstruction of the source at the destination is required,

what is the required transmission rate from the source to the destination?

2. If the transmission rate from the source to the destination is zero, what is the minimum
achievable distortion?

3. If a five-level uniform quantizer is designed for this source and the quantizer output is

entropy-coded using a Huffman code designed for single-source outputs, what is the

resulting transmission rate and distortion?

4. In part 3 if the Huffman code is designed for very large blocks of source outputs rather

than single source outputs, what is the resulting transmission rate and distortion?

6.26 A memoryless source has the alphabet A = {—5, —3, —1,0, 1,3,5}, with corresponding

probabilities {0.05, 0.1, 0.1, 0.15, 0.05, 0.25, 0.3}.

1 . Find the entropy of the source.

2. Assuming that the source is quantized according to the quantization rule

(q(-5) = q(-3) = -4

L(-l) = q(0) = q(l) = 0

{q(3) = q(5) = 4

find the entropy of the quantized source.

6.27 Design a ternary Huffman code, using 0, 1 ,
and 2 as letters, for a source with output alpha-

bet probabilities given by {0.05, 0.1, 0.15, 0.17, 0.18, 0.22, 0.13}. What is the resulting

average codeword length? Compare the average codeword length with the entropy of the



386 Digital Communications

source. (In what base would you compute the logarithms in the expression for the entropy

for a meaningful comparison?)

6.28 Two discrete memoryless information sources X and F each have an alphabet with

six symbols, = 8/ — {1, 2, 3, 4, 5, 6}. The probabilities of the letters for X are

1/2, 1/4, 1/8, 1/16, 1/32, and 1/32. The source Y has a uniform distribution.

1 . Which source is less predictable and why?

2. Design Huffman codes for each source. Which Huffman code is more efficient? (Effi-

ciency of a Huffman code is defined as the ratio of the source entropy to the average

codeword length.)

3. If Huffman codes were designed for the second extension of these sources (i.e., two

letters at a time), for which source would you expect a performance improvement

compared to the single-letter Huffman code and why?

4. Now assume the two sources are independent and a new source Z is defined to be the

sum of the two sources, i.e., Z = X + Y. Determine the entropy of this source, and

verify that H(Z) < H(X) + //(F).

5. How do you justify the fact that H{Z) < H(X) + //(F)? Under what circumstances

can you have H{Z) = H(X) + //(F)? Is there a case where you can have //(Z) >
H(X) + //(F)? Why?

6.29 A function g(x) is convex on (a ,
b) if for any x \ ,

x^ e (a, b) and any 0 < X < 1

g(^*i + (1 - k)X2 )
< kg(xi) + (1 - X)g(x2 )

The function g(jc) is convex if its second derivative is nonnegative in the given interval. A
function g(x) is called concave if —g(x) is convex.

1. Show that Hb(p ), the binary entropy function, is concave on (0, 1).

2. Show that Q(x) is convex on (0, oo).

3. Show that if X is a binary-valued random variable with range in (a, b) and g(X) is

convex on (a, b ), then

g(E[X])<E[g(X)]

4. Extend the result of part 3 to any random variable X with range in (a ,
b). This result is

known as Jensen ’s inequality.

5. Use Jensen’s inequality to prove that if X is a positive-valued random variable, then

E[emi> G(E[xi)

6.30 Find the Lempel Ziv source code for the binary source sequence

00010010000001 10000100000001000000101000010000001 10100000001100

Recover the original sequence back from the Lempel Ziv source code. Hint : You require

two passes of the binary sequence to decide on the size of the dictionary.

6.31 A continuous-valued, discrete-time, iid (independent and identically distributed) infor-

mation source . .
.

,

Z_2 , X_i, Xo, X2 , . . . has the probability density function (PDF)

given by

fix) =
x > 0

otherwise
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This source is quantized to source X using the following quantization rule:

0.5 0 < X < 1

1.5 1 < X < 2

2.5 2 < X < 3

6 otherwise

1 . What is the minimum required rate for lossless transmission of the nonquantized source

X?
2. What is the minimum required rate for lossless transmission of the quantized source

XI
3. Let X be another quantization of X given by X = i + 0.25 if i < X < i + 1 for

i =0,1,2, Which random variable has a higher entropy, X or XI (There is no

need to compute entropy of X, just give your intuitive reasoning.)

4. Let us define a new quantization rule as Y = X + X. Which of the three relations given

below are true (if any)?

(a) H(Y) = H(X) + H(X)

(b) H(Y) = H(X)

(c) H(Y) = H(X)

Give your intuitive reason in one short paragraph; no computation is required.

6.32 Find the differential entropy of the continuous random variable X in the following cases:

1. X is an exponential random variable with parameter X > 0, i.e.,

f \e-
x>x x > 0

Pix) =
\0 otherwise

2. X is a Laplacian random variable with parameter X > 0, i.e.,

p{x) = X e-Wx

3. X is a triangular random variable with parameter X > 0, i.e.,

{

(x + X)/X2 —X < x < 0

(—x + X)/X2 0 < x < X

0 otherwise

6.33 It can be shown that the rate distortion function for a Laplacian source p(x) = (2X)
l
e

with an absolute value of error distortion measure d(x,x ) = \x — x
\

is given by

R(D) =
rlog(VD)

10

0 < D < X

D > X

(see Berger, 1971).

1 . How many bits per sample are required to represent the outputs of this source with an

average distortion not exceeding
^
X ?

2. Plot R(D) for three different values of X, and discuss the effect of changes in X on these

plots.
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6.34 Three information sources X
,
Y

,
and Z are considered.

1. X is a binary discrete memoryless source with p(X = 0) = 0.4. This source is to be

reproduced at the receiving end with an error probability not exceeding 0.1.

2. Y is a memoryless Gaussian source with mean 0 and variance 4. This source is to be

reproduced with a squared-error distortion not exceeding 1.5.

3. Z is a memoryless source and has a distribution given by

r 1/5 —2 < z < 0

fz(z)= l 3/10 0 < z < 2

[ 0 otherwise

This source is quantized using a uniform quantizer with eight quantization levels to

get the quantized source Z. The quantized source is required to be transmitted with no

errors.

In each of the three cases, determine the absolute minimum rate required per source symbol

(i.e., you can use systems of arbitrary complexity).

6.35 It can be shown that if X is a zero-mean continuous random variable with variance cr
2

,

its rate distortion function, subject to squared-error distortion measure, satisfies the lower

and upper bounds given by the inequalities

1 lcr 2

H(X) - - log(27TeD) < R(D) <- logy
where H(X) denotes the differential entropy of the random variable X (see Cover and

Thomas, 2006).

1 . Show that, for a Gaussian random variable, the lower and upper bounds coincide.

2. Plot the lower and upper bounds for a Laplacian source with o = 1.

3. Plot the lower and upper bounds for a triangular source with o = 1.

6.36 A DMS has an alphabet of eight letters x
t ,

i = 1, 2, . .
.

,

8, with probabilities given in

Problem 6.19. Use the Huffman encoding procedure to determine a ternary code (using

symbols 0, 1 ,
and 2) for encoding the source output. (Hint: Add a symbol xg with probability

p9 = 0, and group three symbols at a time.)

6.37 Show that the entropy of an n-dimensional Gaussian vector X = (x\X2 •
•

• xn ) with zero

mean and covariance matrix C is

H{X) = Uog(2ne)n
\C\

6.38 Evaluate the rate distortion function for an M-ary symmetric source under Hamming
distortion (probability of error) given as

R(D ) = logM + D log D + (1 — D) log

for M = 2, 4, 8, and 16.

6.39 Consider the use of the weighted mean square error (MSE) distortion measure defined as

dw(x, x) = (x- - x)
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where W is a symmetric, positive-definitive weighting matrix. By factorizing W as W =
jP'jP, show thatdw (X, X) is equivalent to an unweightedMSE distortion measure d,2(X', X )

involving transformed vectors X f and x!

.

6.40 A discrete memoryless source produces outputs {a\, <22 ,
<23 ,

<24 ,
<25 }. The corresponding

output probabilities are 0.8, 0.1, 0.05, 0.04, and 0.01.

1. Design a binary Huffman code for the source. Find the average codeword length.

Compare it to the minimum possible average codeword length.

2. Assume that we have a binary symmetric channel with crossover probability € = 0.3.

Is it possible to transmit the source reliably over the channel? Why?
3 . Is it possible to transmit the source over the channel employing Huffman code designed

for single source outputs?

6.41 A discrete-time memoryless Gaussian source with mean 0 and variance cr
2

is to be trans-

mitted over a binary symmetric channel with crossover probability e.

1. What is the minimum value of the distortion attainable at destination? (Distortion is

measured in mean squared error.)

2. If the channel is discrete-time memoryless additive Gaussian noise with input power P
and noise power cr

2
,
what is the minimum attainable distortion?

3. Now assume that the source has the same basic properties but is not memoryless. Do
you expect that the distortion in transmission over the binary symmetric channel to be

decreased or increased? Why?

6.42 An additive white Gaussian noise channel has the output Y = X + N, where X is the

channel input and N is the noise with probability density function

p(n) = —^ e
-" 2

/2a,?

v 2tz Cfn

If X is a white Gaussian input with E(X) = 0 and E(X2
) = o\, determine

1. The conditional differential entropy H(X\N)
2. The mutual information I(X\ Y)

6.43

For the channel shown in Figure P6.43, find the channel capacity and the input distribution

that achieves capacity.
6.44

A discrete memoryless source produces outputs {<21 ,
<22 ,

<23 ,
<24 ,

<25 ,
<26 ,

<27 ,
a%). The corre-

sponding output probabilities are 0.05, 0.07, 0.08, 0.1, 0.1, 0.15, 0.2, and 0.25.

1. Design a binary Huffman code for the source. Find the average codeword length.

Compare it to the minimum possible average codeword length.

2. What is the minimum channel capacity required to transmit this source reliably? Can

this source be reliably transmitted via a binary symmetric channel?
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3. If a discrete memoryless zero-mean Gaussian source with o 2 — 1 is to be transmitted

via the channel of part 2, what is the minimum attainable mean squared distortion?6.45

Find the capacity of channels A and B as shown in Figure P6.45. What is the capacity of

the cascade channel AB? {Hint: Look carefully at the channels, avoid lengthy math.)

FIGURE P6.45

6.46 Each sample of a Gaussian memoryless source has a variance equal to 4, and the source

produces 8000 samples per second. The source is to be transmitted via an additive white

Gaussian noise channel with a bandwidth equal to 4000 Hz, and it is desirable to have a

distortion per sample not exceeding 1 at the destination (assume squared-error distortion).

1 . What is the minimum required signal-to-noise ratio of the channel?

2. If it is further assumed that, on the same channel, a BPSK scheme is employed with

hard decision decoding, what will be the minimum required channel signal-to-noise

ratio?

Note: the signal-to-noise ratio of the channel is defined by .

6.47 A communication channel is shown in Figure P6.47.

a FIGURE P6.47

B

C

D

1 . Show that, regardless of the contents of the probability transition matrix of the channel,

we have

C < log2 3 ~ 1.585. bits per transmission

2. Determine one probability transition matrix under which the above upper bound is

achieved.
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3. Assuming that a Gaussian source with variance cr

2

= 1 is to be transmitted via the

channel in part 2, what is the minimum achievable distortion? (Mean squared distortion

is assumed throughout.)

6.48 X is a binary memoryless source with P(X = 0) = 0.3. This source is transmitted over a

binary symmetric channel with crossover probability p = 0.1.

1 . Assume that the source is directly connected to the channel; i.e., no coding is employed.

What is the error probability at the destination?

2. If coding is allowed, what is the minimum possible error probability in the reconstruc-

tion of the source?

3. For what values of p is reliable transmission possible (with coding, of course)?

6.49 Two discrete memoryless information sources S\ and S2 each have an alphabet with six

symbols, S\ = {xu X2 ,
. .

.

,

x^} and S2 = {yi, yi, • • •
, y6}- The probabilities of the letters

for the first source are 1/2, 1/4, 1/8, 1/16, 1/32, and 1/32. The second source has a

uniform distribution.

1. Which source is less predictable and why?

2. Design Huffman codes for each source. Which Huffman code is more efficient?

(Efficiency of a Huffman code is defined as the ratio of the source entropy to the

average codeword length.)

3. If Huffman codes were designed for the second extension of these sources (i.e., two

letters at a time), for which source would you expect a performance improvement

compared to the single-letter Huffman code and why?

6.50 Show that the capacity of a binary-input, continuous-output AWGN channel with input-

output relation

yt = Xi + ni

where x
t
= ±A and noise components rii are iid zero-mean Gaussian random variables

with variance a 2
as given by Equations 6.5-31 and 6.5-32.

6.51 A discrete memoryless channel is shown in Figure P6.51.

1 FIGURE P6.51
2

1 . Determine the capacity of this channel.

2. Determine Rq for this channel.

3. If a discrete-time memoryless Gaussian source with a variance of 4 is to be transmitted

by this channel, and for each source output,- two uses of channel are allowed, what is

the absolute minimum to the achievable squared-error distortion?
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6.52 Show that the following two relations are necessary and sufficient conditions for the set of

input probabilities {P(xj)} to maximize I(X\ Y) and, thus, to achieve capacity for a DMC:

I(xj\ Y) = C for all j with P(xj) > 0

I(Xj\ Y) < C for all j with P(xj) = 0

where C is the capacity of the channel, Q =
\ 3/ |,

and

I(Xj -Y) =Yj
P(y

l \

x
J )\0g

P

^^
i=o

Kyi)

6.53 Figure P6.53 illustrates a M-ary symmetric DMC with transition probabilities P(y\x) =
1 — p when x = y = k for k = 0, 1, . .

.

,

M —
1, and P(y \x) = p/{M — 1) when x ^ y.

1. Show that this channel satisfies the condition given in Problem 6.52 when P{xk) =
1/M.

2. Determine and plot the channel capacity as a function of p.

input Output FIGURE P6.53
x

x
-
p Y

6.54

Determine the capacities of the channels shown in Figure P6.54.

6.55

Consider the two channels with the transition probabilities as shown in Figure P6.55.

Determine if equally probable input symbols maximize the information rate through the

channel.
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6.56 A telephone channel has a bandwidth W = 3000 Hz and a signal-to-noise power ratio of

400 (26 dB). Suppose we characterize the channel as a band-limited AWGN waveform

channel with Pav/WNo = 400. Determine the capacity of the channel in bits per second.

6.57 Consider the binary-input, quaternary-output DMC shown in Figure P6.57.

1 . Determine the capacity of the channel.

2. Show that this channel is equivalent to a BSC.

FIGURE P6.57

6.58

Determine the capacity for the channel shown in Figure P6.58.

i -p FIGURE P6.586.59

Consider a BSC with crossover probability of p. Suppose that R is the number of bits in

a source codeword that represents one of 2R possible levels at the output of a quantizer.

1. Determine the probability that a codeword transmitted over the BSC is received

correctly.

2. Determine the probability of having at least one bit error in a codeword transmitted

over the BSC.

3. Determine the probability of having n e or fewer bit errors in a codeword.

4. Evaluate the probabilities in parts 1, 2, and 3 for R = 5, p = 0.1, and n e = 5.
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6.60

Figure P6.60 illustrates a binary erasure channel with transition probabilities P(0|0) =
P(l\l) = l - p and P(e |0) = P(e |1) = p. The probabilities for the input symbols are

P(X = 0) = a and P(X = \)=\-a.
1. Determine the average mutual information I(X

;
Y) in bits.

2. Determine the value of a that maximizes I(X\ Y\ i.e., the channel capacity C in bits

per channel use, and plot C as a function of p for the optimum value of a.

3. For the value of a found in part 2, determine the mutual information I(x\y) =
7(0; 0), 7(1; 1), 7(0; e), and 7(1; e\ where

7(x; y) = log
P [X = x ,Y = y]

P[X = x]P[Y = y]

FIGURE P6.60

6.61 A discrete-time zero-mean Gaussian random process has a variance per sample of erf. This

source generates outputs at a rate of 1000 per second. The samples are transmitted over

a discrete-time AWGN channel with input power constraint of P and noise variance per

sample of cr|. This channel is capable of transmitting 500 symbols per second.

1 . If the source is to be transmitted over the channel, you are allowed to employ processing

schemes of any degree of complexity, and any delay is acceptable, what is the minimum
achievable distortion per sample?

2. If the channel remains the same but you have to use binary antipodal signals at the

input and employ hard decision decoding at the output (again no limit on complexity

and delay), what is the minimum achievable distortion per sample?

3. Now assume that the source has the same statistics but is not memoryless. Comparing

with part 1, do you expect the distortion to decrease or increase? Give your answer in

a short paragraph.

6.62 A binary memoryless source generates 0 and 1 with probabilities 1 /3 and 2/3, respectively.

This source is to be transmitted over an AWGN channel using binary PSK modulation.

1 . What is the absolute minimum Eb/No required to be able to transmit the source reliably,

assuming that hard decision decoding is employed by the channel and for each source

output you can use one channel transmission.

2. Under the same conditions as in part 1, find the minimum Sb/No required for reliable

transmission of the source if we can transmit at a rate at most equal to the cutoff rate

of the channel.

3. Now assume the source is a zero-mean memoryless Gaussian source with variance 1.

Answer part 1 if our goal is reproduction of the source with a mean-squared distortion

of at most 1 /4.

6.63 A discrete memoryless source U is to be transmitted over a memoryless communication

channel. For each source output, the channel can be used only once. Determine the min-

imum theoretical distortion achievable in transmission of the source over the channel in

each of the following cases.
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1. The source is a binary source with 0 and 1 as its outputs with p(U = 0) = 0.1; the

channel is a binary symmetric channel with crossover probability e = 0.1; and the

distortion measure is the Hamming distortion (probability of error).

2. The channel is as in part 1 ,
but the source is a zero-mean Gaussian source with variance

1 . The distortion is the squared-error distortion.

3. The source is as in part 2, and the channel is a discrete-time AWGN channel with input

power constraint P and noise variance a 1
.

6.64

Channel C\ is an additive white Gaussian noise channel with a bandwidth W, average

transmitter power P, and noise power spectral density ^N0 . Channel C2 is an additive

Gaussian noise channel with the same bandwidth and power as channel C\ but with noise

power spectral density Sn (f). It is further assumed that the total noise power for both

channels is the same; i.e.,

/

w
f
w

l

Sn{f)df= /
-N0 df = N0W

w J-w 1

Which channel do you think has a larger capacity? Give an intuitive reasoning.

6.65

A discrete memoryless ternary erasure communication channel is shown in Figure P6.65.

1 FIGURE P6.65
2

1 . Determine the capacity of this channel.

2. A memoryless exponential source X with probability density function

/*(*) =
2e~lx

0

x > 0

otherwise

is quantized using a two-level quantizer defined by

X = q(X)={°
l

X <2
otherwise

Can X be reliably transmitted over the channel shown above? Why? (The number of

source symbols per second is equal to the number of channel symbols per second.)

6.66 Plot the capacity of an AWGN channel that employs binary antipodal signaling, with

optimal bit-by-bit detection at the receiver, as a function of Sb/No. On the same axis, plot

the capacity of the same channel when binary orthogonal signaling is employed.

6.67 A discrete-time memoryless Gaussian source with mean 0 and variance a 2
is to be trans-

mitted over a binary symmetric channel with crossover probability p.
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1 . What is the minimum value of the distortion attainable at the destination (distortion is

measured in mean-squared error)?

2. If the channel is a discrete-time memoryless additive Gaussian noise channel with input

power P and noise power Pn ,
what is the minimum attainable distortion?

3. Now assume that the source has the same basic properties but is not memoryless. Do you

expect the distortion in transmission over the binary symmetric channel to be decreased

or increased? Why?

6.68 Find the capacity of the cascade connection of n binary symmetric channels with the same

crossover probability 6. What is the capacity when the number of channels goes to infinity?

6.69 Channels 1, 2, and 3 are shown in Figure P6.69.

1 . Find the capacity of channel 1 . What input distribution achieves capacity?

2. Find the capacity of channel 2. What input distribution achieves capacity?

3. Let C denote the capacity of the third channel and C\ and C2 represent the

capacities of the first and second channels. Which of the following relations holds

true and why?

c < i(C, + Cl)

C =
1

-{C
, + Cl)

c > I(C, + Cl)

Channel 1 Channel 2

FIGURE P6.69

6.70 Let C denote the capacity of a discrete memoryless channel with input alphabet '§£ =
{* 1 ,

X2 , . • • , xyv} and output alphabet Q/= {yi , y2 ,
. .

.

,

)>m}- Show that C < minjlog M,
log N}.

6.71 The channel C (known as the Z channel) is shown in Figure P6.71.

1 . Find the input probability distribution that achieves capacity.

2. What is the input distribution and capacity for the special cases 6 = 0, 6 = 1, and

6 = 0.57?

o o FIGURE P6.71
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3. Show that if n such channels are cascaded, the resulting channel will be equivalent to

a Z channel with = €
n

.

4. What is the capacity of the equivalent Z channel when n -> oo?6.72

Find the capacity of an additive white Gaussian noise channel with a bandwidth 1 MHz,
power 10 W, and noise power spectral density

\
Nq = 10

-9 W/Hz.
6.73

A Gaussian memoryless source is distributed according to A/*(0, 1). This source is to be

transmitted over a binary symmetric channel with a crossover probability of € = 0.1. For

each source output one use of channel is possible. The fidelity measure is squared-error

distortion, i.e., d(x, x) = (x — x)2
.

1.

In the first approach we use the optimum one-dimensional (scalar) quantizer. This

results in the following quantization rule

Q(x) =
x > 0

x < 0

where x = 0.798 and the resulting distortion is 0.3634. Then x and —x are represented

by 0 and 1 and directly transmitted over the channel (no channel coding). Determine

the resulting overall distortion using this approach.

2. In the second approach we use the same quantizer used in part 1 ,
but we allow the use of

arbitrarily complex channel coding. How would you determine the resulting distortion

in this case, and why?

3 . Now assume that after quantization, an arbitrarily complex lossless compression scheme

is employed and the output is transmitted over the channel (again using channel coding,

as explained in part 2). How would the resulting distortion compare with part 2?

4. If you were allowed to use an arbitrarily complex source and channel coding scheme,

what would be the minimum achievable distortion?

5. If the source is Gaussian with the same per-letter statistics (i.e., each letter is Af(0, 1))

but the source has memory (for instance, a Gauss-Markov source), do you think the

distortion you derived in part 4 would increase, decrease, or not change? Why?

6.74

For the channel shown in Figure P6.65:

1. Consider an extension of the channel with inputs a\, <22 ,
. .

.

,

an ,
outputs a\, <22 ,

. .
.

,

an ,
E

,
where P(a, |a/) = P(E\at) = for all 1 < i < n

,
and all other transition

probabilities are zero. What is the capacity of this channel? What is the capacity when

n = 2m ?

2. If a memoryless binary equiprobable source is transmitted via the channel shown in

Figure P6.65, what is the minimum attainable error probability, assuming no limit is

imposed on the complexity and delay of the system? (The number of source symbols

per second is equal to the number of channel symbols per second.) For what values of

n in part 2 can the source be reliably transmitted over the channel?

3. If a Gaussian source distributed according to J\f(m ,
a 2

) is transmitted via the channel in

part 2, what is the minimum attainable mean-squared distortion in regeneration of this

source as a function of n and a 2
? (Again the number of source symbols per second is

equal to the number of channel symbols per second, and no limit is imposed on system

complexity and delay.)

6.75

Using the expression for the cutoff Ro for the BSC, given in Equation 6.8-29, plot Ro as

a function of Sc /No for the following binary modulation methods:
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1. Antipodal signaling: p = Q

2. Orthogonal signaling: p = Q

3. DPSK: p = l e
-£'/N°

Comment on the difference in performance for the three modulation methods, as given by

the cutoff rate.

6.76

Consider the binary-input, ternary-output channel with transition probabilities shown in

Figure P6.76, where e denotes an erasure. For the AWGN channel, a and p are defined as

1

Of =
s/tvNq j

1

p =
VttNq j

i -p-a FIGURE P6.76

1.

2.

Determine the cutoff rate Rq as a function of the probabilities a and p.

The cutoff rate Rq depends on the choice of the threshold through the probabilities a
and p. For any £c /Nq, the value of ft that maximizes Rq can be determined by trial and

error. For example, it can be shown that for £c/Nq below 0 dB, /3opt = 0.65

1 < £c/No < 10, /?0pt varies approximately linearly between 0.65^

By using ft = 0.65^~Nq for the entire range of £c/Nq ,
plot Rq versus £c/Nq and

compare this result with Rq for an unquantized (continuous) output channel.

6.77

Show that for M-ary PSK signaling the cutoff rate Rq is given by

Rq = log2 M - log2

~M-

1

y^ g -ll^o-^ll
2
/47Vo

_k=0

= log2 M - log2

~M—\

^ e
-(Sc/N0)sm

2
(jTk/M)

_k=

0

Plot Rq as a function of £c/Nq for M — 2, 4, 8, and 16.

6.78

A discrete-time additive non-Gaussian noise channel is described by the input-output

relation

yi = Xi + rii
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where rii represents a sequence of iid noise random variables with probability density

function

p{n) =

and Xi can take ±1 with equal probability, where i represents the time index.

1 . Determine the cutoff rate Ro for this channel.

2. Assume that this channel is used with optimal hard decision decoding at the output.

What is the crossover probability of the resulting BSC channel?

3. What is the cutoff rate in part 2?

6.79 Show that the cutoff rate for an M -ary orthogonal signaling system where each signal

has energy E and the channel is AWGN with noise power spectral density of
\ No can be

expressed as

R0 = log2 M - log2 1 + (Af — 1) Pniy - VS)pn (y)dy

2

where pn (•) represents the PDF of an A/*(0, \ No) random variable. Conclude that the above

expression is simplified as

R0 = log2

M
1 + (M- l)e-£/*o
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We have studied the performance of different signaling methods when transmitted

through an AWGN channel in Chapter 4. In particular we have seen how the error

probability of each signaling method is related to the SNR per bit. In that chapter

we were mainly concerned with the case where M possible messages are sent by

transmitting one of the M possible waveforms, rather than blocks of channel inputs.

We also introduced criteria for comparing power and bandwidth efficiency of different

signaling schemes. The power efficiency is usually measured in terms of the required

SNR per bit to achieve a certain error probability. The lower the required SNR per

bit, the more power-efficient the system is. The bandwidth efficiency of the system is

measured by the spectral bit rate r = R/W which determines how many bits per second

can be transmitted in 1 Hz of bandwidth. Systems with high spectral bit rate are highly

bandwidth-efficient systems. We also saw that there is a trade-off between bandwidth

andpower efficiency. Modulation schemes such asQAM are highly bandwidth-efficient,

and signaling schemes such as orthogonal signaling are power-efficient at the expense

of high bandwidth demand.

In Chapter 6 we saw that reliable communication over a noisy channel is possible

if the transmission rate is less than channel capacity. Reliable communication is made
possible through channel coding

,
i.e., assigning messages to blocks of channel inputs

and using only a subset of all possible blocks. In Chapter 6 we did not study specific

mappings between messages and channel input sequences. Both channel capacity C
and channel cutoff rate Ro were presented using random coding. In random coding

we do not find the best mapping from the message set to channel input sequences and

analyze the performance of that mapping; rather we average the error probability over

all possible mappings and show that ifthe transmission rate is less than channel capacity,

the ensemble average of the error probability, averaged over all possible mappings, goes

to zero as the block length increases. From this we concluded that there must exist at

least one mapping among all mappings for which the error probability goes to zero as

the block length increases. The original proof of the channel coding theorem, presented

by Shannon in 1948, was based on random coding, and hence was not constructive in the

sense that it proved only the existence of good codes but did not provide any method for

400
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their design. Of course, based on the idea of random coding, one can argue that there is

a good chance that a randomly generated code is a good code. The problem, however, is

that the decoding of a randomly generated code when the codeword sequences are long

becomes extremely complex, thus making its use in practical systems impossible. The
development of coding theory in the decades after 1948 has been focused on designing

coding schemes that have sufficient structure to make their decoding practical and at

the same time close the gap between an uncoded system and the bounds derived by

Shannon. In Chapter 6 we also derived a fundamental relation between r, the spectral

bit rate, and
jjfc,

the SNR per bit of an ideal communication system given by

Eh 2
r — 1

No
>

r

By comparing the bandwidth and power efficiency of a given system with the bound

given in this equation, we can see how much that system can be improved.

Our focus in this chapter and Chapter 8 is on channel coding schemes with man-

ageable decoding algorithms that are used to improve performance of communication

systems over noisy channels. This chapter is devoted to block codes whose construction

is based on familiar algebraic structures such as groups, rings, and fields. In Chapter 8

we will study coding schemes that are best represented in terms of graphs and trellises.

7.1

BASIC DEFINITIONS

Channel codes can be classified into two major classes, block codes and convolutional

codes. In block codes one oftheM = 2k messages, each representing a binary sequence

of length k
,
called the information sequence

,
is mapped to a binary sequence of length

n ,
called the codeword

,
where n > k. The codeword is usually transmitted over the

communication channel by sending a sequence of n binary symbols, for instance,

by using BPSK. QPSK and BFSK are other types of signaling schemes frequently

used for transmission of a codeword. Block coding schemes are memoryless. After a

codeword is encoded and transmitted, the system receives a new set of k information

bits and encodes them using the mapping defined by the coding scheme. The resulting

codeword depends only on the current k information bits and is independent of all the

codewords transmitted before.

Convolutional codes are described in terms of finite-state machines. In these codes,

at each time instance i, k information bits enter the encoder, causing n binary symbols

generated at the encoder output and changing the state of the encoder from cr*_i to cr*.

The set of possible states is finite and denoted by £. The n binary symbols generated

at the encoder output and the next state a
t depend on the k input bits as well as i.

We can represent a convolutional code by a shift register of length Kk as shown in

Figure 7.1-1.

At each time instance, k bits enter the encoder and the contents of the shift register

are shifted to the right by k memory elements. The contents of the rightmost k elements

of the shift register leave the encoder. After the k bits have entered the shift register,



402 Digital Communications

FIGURE 7.1-1

A convolutional encoder.

the n adders add the contents of the memory elements they are connected to (modulo-2

addition) thus generating the code sequence of length n which is sent to the modulator.

The state of this convolutional code is given by the contents of the first (K — \)k

elements of the shift register.

The code rate of a block or convolutional code is denoted by Rc and is given by

k
Rc = ~ (7.1-1)

n

The rate of a code represents the number of information bits sent in transmission of a

binary symbol over the channel. The unit of Rc is information bits per transmission.

Since generally n > k, we have Rc < 1.

Let us assume that a codeword of length n is transmitted using an A-dimensional

constellation of size M, where M is assumed to be a power of 2 and L = M is

assumed to be an integer representing the number of M-ary symbol transmitted per

codeword. If the symbol duration is Ts ,
then the transmission time for k bits is T — LTS

and the transmission rate is given by

„ k k log2 M logo M
.

R = = - x ——— = Rc
—— bits/s

LT< n T, T,
' (7.1-2)

The dimension of the space of the encoded and modulated signals is LA, and using

the dimensionality theorem as stated in Equation 4.6-5 we conclude that the minimum
required transmission bandwidth is given by

N
2TS

RN
2Rc log2 M

bits/s

and from Equation 7.1-3, the resulting spectral bit rate is given by

R 2 logo M
r = — = —— R,W

(7.1-3)

N
(7.1-4)



Chapter Seven: Linear Block Codes 403

These equations indicate that compared with an uncoded system that uses the same
modulation scheme, the bit rate is changed by a factor of Rc and the bandwidth is

changed by a factor of 1 /Rc ,
i.e., there is a decrease in rate and an increase in bandwidth.

If the average energy of the constellation is denoted by £av ,
then the energy per

codeword £, is given by

£ = L£,v =
log2 M

f

and £c ,
energy per component of the codeword, is given by

£ £
g ° v

c ~ n~ log2 M
The energy per transmitted bit is denoted by £/, and can be found from

(7.1-5)

(7.1-6)

k Rc log2 M
From Equations 7.1-6 and 7.1-7 we conclude that

Sc = Rc£b

(7.1-7)

(7.1-8)

The transmitted power is given by

P
£

LTS

^ = R
£-v = R£

Ts Rc log2 M
(7.1-9)

Modulation schemes frequently used with coding are BPSK, BFSK, and QPSK. The
minimum required bandwidth and the resulting spectral bit rates for these modulation

schemes t are given below:

BPSK:
w = i
r = Rc

BFSK:
W = —

Rc

r = Rc

QPSK:
^ = WC

r = 2Rr

(7.1-10)

7.1-1 The Structure of Finite Fields

To further explore properties of block codes, we need to introduce the notion of afinite

field and its main properties. Simply stated, a field is a collection of objects that can

be added, subtracted, multiplied; and divided. To define fields, we begin by defining

Abelian groups. An Abelian group is a set with a binary operation that has the basic

properties of addition. A set G and a binary operation denoted by + constitute an

Abelian group if the following properties hold:

1. The operation + is commutative; i.e., for any a, b e G, a + b = b + a.

2. The operation + is associative; i.e., for any a,b,c e G, we have (a + b) + c =
a + (b + c).

tBPSK is assumed to be transmitted as a double-sideband signal.
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*1 TABLE 7.1-1

Addition and Multiplication Tables for GF(2)

3. The operation + has an identity element denoted by 0 such that for any a e G,

(2 0 — 0 (2 = (2 .

4. For any a e G there exists an element —a e G such that a + (—a) = (—a) + a = 0.

The element —a is called the (additive) inverse of a.

An Abelian group is usually denoted by {G, +, 0}.

A finite field or Galoisfield^ is a finite set F with two binary operations, addition and

multiplication, denoted, respectively, by + and •, satisfying the following properties:

1. {F, +, 0} is an Abelian group.

2. {F — {0}, *, 1} is an Abelian group; i.e., the nonzero elements of the field constitute

an Abelian group under multiplication with an identity element denoted by “1”. The

multiplicative inverse of a e F is denoted by a
-1

.

3. Multiplication is distributive with respect to addition: a • (b + c) = (b + c) • a =
a • b + a • c.

A field is usually denoted by {F, +, }. It is clear that M, the set of real numbers, is a field

(but not a finite field) with ordinary addition and multiplication. The set F = {0, 1}

with modulo-2 addition and multiplication is an example of a Galois (finite) field. This

field is called the binary field and is denoted by GF(2). The addition and multiplication

tables for this field are given in Table 7.1-1.

Characteristic of a Field and the Ground Field

A fundamental theorem of algebra states that a Galois field with q elements, denoted

by GF(g), exists if and only if q = p
m

,
where p is a prime and m is a positive integer.

It can also be proved that when GF(g) exists, it is unique up to isomorphism. This

means that any two Galois fields of the same size can be obtained from each other

after renaming the elements. For the case of q = p, the Galois field can be denoted by

GF(p) = {0, 1, 2, — 1} with modulo-p addition and multiplication. For instance

GF(5) = {0, 1, 2, 3, 4} is a finite field with modulo-5 addition and multiplication.

When q = p
m

,
the resulting Galois field is called an extension field of GF(p). In this

case GF(p) is called the ground field of GF(pm ), and p is called the characteristic

ofGF(p
m

).

tNamed after French mathematician Evariste Galois (1811-1832).



Chapter Seven: Linear Block Codes 405

Polynomials over Finite Fields

To study the structure of extension fields, we need to define polynomials over GF(/?).

A polynomial of degree m over GFQ?) is a polynomial

g(X) = 80 + giX + g2x
2 + • •

• + gmX
m

(7.1-11)

where g/,0 < i < ra, are elements of GF(/?) and gm ^ 0. Addition and multiplication of

polynomials follow standard addition and multiplication rules of ordinary polynomials

except that addition and multiplication ofthe coefficients are done modulo-p. Ifgm = 1

,

the polynomial is called monic. If a polynomial of degree m over GF(p) cannot be

written as the product of two polynomials of lower degrees over the same Galois field,

then the polynomial is called an irreducible polynomial. For instance, X2 + X + 1 is

an irreducible polynomial over GF(2), whereas X2 + 1 is not irreducible over GF(2)

because X2 + 1 = (X + l)
2

. A polynomial that is both monic and irreducible is called

aprime polynomial. A fundamental result of algebra states that a polynomial of degree

m over GFQ?) has m roots (some may be repeated), but the roots are not necessarily in

GF(p). In general, the roots are in some extension field of GF(p).

The Structure of Extension Fields

From the above definitions it is clear that there exist p
m polynomials of degree less

than m; in particular these polynomials include two special polynomials g(X) = 0 and

g(X) = 1. Now let us assume that g(X) is a prime (monic and irreducible) polynomial

of degree m and consider the set of all polynomials of degree less than m over GF(p)

with ordinary addition and with polynomial multiplication modulo-g(X). It can be

shown that the set of these polynomials with the addition and multiplication operations

defined above is a Galois field with p
m elements.

example 7.1-1. We know that X2 + X + 1 is prime over GF(2); therefore this poly-

nomial can be used to construct GF(22
) = GF(4). Let us consider all polynomials of

degree less than 2 over GF(2). These polynomials are 0, 1, X ,
and X + 1 with addition

and multiplication tables given in Table 7. 1-2. Note that the multiplication rule basically

entails multiplying the two polynomials, dividing the product by g(X) = X2 + X + 1,

and finding the remainder. This is what is meant by multiplying modulo-g(X). It is

interesting to note that all nonzero elements of GF(4) can be written as powers of X
;

i.e, X = X 1

,
X

r

+ 1 = X2
,
and 1 = X 3

.

TABLE 7.1-2

Addition and Multiplication Table for GF(4)

0 1 X x + 1

0 0 0 0 0

1 0 1 X x + l

X 0 X X + l 1

x + l 0 X + l 1 X

+ 0 1 X x + l

0 0 1 X X+l

1 1 0 x + l X

X X x + l 0 1

X+l X + l X 1 0
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TABLE 7.1-3

Multiplication Table for GF(8)

0 1 X x + l X2 X2 + l x2 + x X2 + X + l

0 0 0 0 0 0 0 0 0

1 0 1 X x + l X2 X2 + l x2 + x X2 + X + l

X 0 X X2 x2 + x x + l 1 X2 + X + 1 X2 + l

X+l 0 x+l X2 +X X2 +l X2 + X + 1 X2
1 X

X2 0 X2 x+l X2 + X+l x2 + x X X2 + 1 1

X2 + l 0 X2 + l 1 X2 X X+2+X+1 x + l X2 + X

x2 + x 0 x2 + x X2 + X+l 1 X2 + l x + l X X2

X2 + X + l 0 X2 + X+l X2 + l X 1 x2 + x X2 x + l

example 7.1-2. To generate GF(23
), we can use either of the two prime polynomials

gi(X) = X3 + X + 1 or g2(X) = X3 + X2 + 1. If g(X) = X3 + X + 1 is used,

the multiplication table for GF(23
) is given by Table 7.1-3. The addition table has

a trivial structure. Here again note that X 1 = X, X2 = X2
, X3 = X + 1, X4 =

X2 + X, X5 = X2 + X + 1, X6 = X2 + 1, and X7 = 1. In other words, all nonzero

elements of GF(8) can be written as powers of X. The nonzero elements of the field

can be expressed either as polynomials of degree less than 3 or, equivalently, as X 1
for

1 < i < 7. A third method for representing the field elements is to write coefficients

of the polynomial as a vector of length 3. The representation of the form X 1

is the

appropriate representation when multiplying field elements since X 1
• X-7 = Xi+

\
where i + j should be reduced modulo-7 because X1 = 1. The polynomial and vector

representations of field elements are more appropriate when adding field elements. A
table of the three representations of field elements is given in Table 7. 1^1. For instance,

to multiply X2 + X + 1 and X2 + 1, we use their power representation as X5 and X6

and we have (X2 + X + 1)(X2 + 1) = X 11 = X4 = X2 + X.

TABLE 7.1-4

Three Representations for GF(8) Elements

Power Polynomial Vector

— 0 000

X° = X1
1 001

X 1 X 010

X2 X2 100

X 3 X + l Oil

X4 x2 + x 110

X5 X2 +X + l 111

X6 X2 + l 101
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Primitive Elements and Primitive Polynomials

For any nonzero element f3 e GF(g), the smallest value of/ such that f3
l = 1 is called the

order of . It is shown in Problem 7. 1 that for any nonzero e GF(g) we have p q
~ l = 1

;

therefore the order of f3 is at most equal to q
— 1. A nonzero element of GF(g) is

called a primitive element if its order is q
— 1 . We observe that in both Examples 7.1-1

and 7.1-2, X is a primitive element. Primitive elements have the property that their

powers generate all nonzero elements of the Galois field. Primitive elements are not

unique; for instance, the reader can verify that in the GF(8) of Example 7.1-2, X2 and

X + 1 are both primitive elements; however, 1 e GF(8) is not primitive since l
1 = 1.

Since there are many prime polynomials of degree m, there are many constructs of

GFQ?m ) which are all isomorphic; i.e., each can be obtained from another by renaming

the elements. It is desirable that X be a primitive element of the Galois field GF(p
m

),

since in this case all nonzero elements of the field can be expressed simply as powers ofX
as was shown in Table 7.1-4 for GF(8). IfGF(pm ), generated by g(X), is such that in this

field X is a primitive element, then the polynomial g(X) is called aprimitivepolynomial

It can be shown that primitive polynomials exist for any degree m; and therefore, for

any positive integer m and any prime p, it is possible to generate GF(p
m

) such that in

this field X is primitive, i.e., all nonzero elements can be written as X 1

, 0 < i < p
m — 1

.

We always assume that Galois fields are constructed using primitive polynomials.

EXAMPLE 7.1-3. Polynomials gl (X) = X4+X+ l and g2(X) = X4+X 3+X2+X+ l

are two prime polynomials of degree 4 over GF(2) that can be used to generate GF(24
).

However, in the Galois field generated by gi (X), X is a primitive element, hence g i (X)

is a primitive polynomial, but in the field generated by g2(X), X is not primitive; in fact

in this field X 5 = 1 since X5 + 1 = (X + l)g2(X). Therefore, gz{X) is not a primitive

polynomial.

It can be shown that any prime polynomial g(X) of degree m over GF(p) divides

X
p>n ~ l + 1. However, it is possible that g(X) divides X 1 + 1 for some i < p

m — 1 as

well. For instance, X4 + X 3 + X2 + X + 1 divides X 15 + 1, but it also divides X5 + 1. It

can be shown that if a prime polynomial g(X) has the property that the smallest integer

i for which g(X) divides X 1 + 1 is i = p
m —

1, then g(X) is primitive. This means that

we have two equivalent definitions for a primitive polynomial. The first definition states

that a primitive polynomial g(X) is a prime polynomial of degree m such that ifGF(p
m

)

is constructed based on g(X), in the resulting field X is a primitive element. The second

definition states that g(X), a prime polynomial of degree m, is primitive if g(X) does

not divide X 1 + 1 for any i < p
m — 1 . All roots of a primitive polynomial of degree

m are primitive elements of GF(pm ). Primitive polynomials are usually tabulated for

different values of m. Table 7.1-5 gives some primitive polynomials for 2 < m < 12.

example 7.1-4. GF(16) can be constructed using g(X) = X4 + X + 1. If a is a root

of g(X), then a is a primitive element of GF(16) and all nonzero elements of GF(16)

can be written as a 1

for 0 < i < 15 with a 15 = a0 = 1. Table 7.1-6 presents elements

of GF(16) as powers of a, as polynomials in a, and finally as binary vectors of length

4. Note that = a 3
is a nonprimitive element in this field since fi

5 = a 15 = 1; i.e.,

the order of is 5. It is clearly seen that a 6
,
a 12

,
and a 9

are also elements of order 5,

whereas a 5 and a 10
are elements of order 3. Primitive elements of this field are a, a 2

,

a4
,
a 8

,
a 7

,
o'

14
,
a 13

,
and a n .
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TABLE 7.1-5

Primitive Polynomials of Orders 2 through 12

m gm
2 X2 + X + 1

3 X3 + X + 1

4 X4 + X + 1

5 Xs + X2 + 1

6 X6 + X + 1

7 X1 + X3 + 1

8 X8 + X4 + X3 + X2 + 1

9 X9 + X4 + 1

10 X 10 + X3 + 1

11 Xu +X2 + 1

12 X 12 + X6 + X4 + X + 1

Minimal Polynomials and Conjugate Elements

The minimal polynomial of a field element is the lowest-degree monic polynomial over

the ground field that has the element as its root. Let ^ be a nonzero element of GF(2m ).

Then the minimalpolynomial of /3, denoted by <pp(X)
9
is a monic polynomial of lowest

degree with coefficients in GF(2) such that is a root of 4>p(X), i.e., <j)p(P) = 0.

Obviously <f>p(X) is a prime polynomial over GF(2) and divides any other polynomial

over GF(2) that has a root at i.e., if f(X) is any polynomial over GF(2) such that

TABLE 7.1-6

Elements of GF(16)

Power Polynomial Vector

— 0 0000

a0 = a 15
1 0001

a 1 a 0010

a2 a2 0100

a3 a3 1000

a4 a + 1 0011

a5 a2 + a 0110

a6 a 3 + a2 1100

a1 a3 + a + 1 1011

a 8 a2 + 1 0101

a9 a3 + a 1010

a 10 a2 + a + 1 0111

a 11 a3 + a2 + a 1110

a 12 a3 + a2 + a + 1 mi
a 13 a3 + a2 + 1 1101

a 14 a 3 + 1 1001
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f(P) = 0, then f(X) can be factorized as f(X) = a(X)<j>p{X). In the following

paragraph we see how to obtain the minimal polynomial of a field element.

Since p e GF(2m ) and p ^ 0, we know that p
2 'n ~

x = 1. However, it is possible

that for some integer i < m we have p
2t ~ x = 1. For instance, in GF(16) if p = a 5

,

then p
3 = p

l2~ x = 1; therefore for this p we have i — 2. It can be shown that for any

P e GF(2m ), the minimal polynomial (j)p(X) is given by

i-

1

<t>p{X) = n (X + /3
2
') (7.1-12)

1=0

where l is the smallest integer such that p
2i~

x —
1. The roots of </>p(X), i.e., elements

of the form p
2 '

,
1 < i < f — 1, are called conjugates of p. It can be shown that all

conjugates of an element of a finite field have the same order. This means that conjugates

of primitive elements are also primitive. We add here that although all conjugates have

the same order, this does not mean that all elements of the same order are necessarily

conjugates. All elements of the finite field that are conjugates of each other are said

to belong to the same conjugacy class. Therefore to find the minimal polynomial of

P g GF(g), we take the following steps:

1. Find the conjugacy class of p ,
i.e., all elements of the form p

2 '

for 0 < i <1—1
where t is the smallest positive integer such that p

2* = p.

2. Find (j>p{X) as a monic polynomial whose roots are in the conjugacy class of p. This

is done by using Equation 7.1-12.

The (j)p{X ) obtained by this procedure is guaranteed to be a prime polynomial with

coefficients in GF(2).

example 7.1-5. To find the minimal polynomial of P = a 5
in GF(16), we observe

that p
4 = a20 = a 5 = p. Hence, 1 = 2, and the conjugacy class is {/3, p

2
}. Therefore,

l

MV = T[{x + P
2
')

1=0

= (X + P)(X + P
2
)

= (X + a5)(X + aw )

= X2 + (a
5 + a 15)X + a 15

= X2 + X + 1

(7.1-13)

For y = a 3 we have 1 = 4 and the conjugacy class is [y, y
2

, y
4

, y
8
}. Therefore,

3

Mx ) = n.(x + r
2')

i=0

= (X + y)(X + y
2
)(X + y

4
)(X + y

8
)

= (X + a 3
)(X + a 6

)(X + a l2
)(X + a9

)

= x4 + x3 + x2 + x + i

(7.1-14)
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To find the minimal polynomial of a, we note that a 16 = a, hence i = 4 and the

conjugacy class is {a, a 2
,
a4

,
a 8

}. The resulting minimal polynomial is

3

<Pa(X) = l[(X + a
21

)

i=0
(7.1-15)

= (X + a)(X + a 2
)(X + a 4

)(X + a 8
)

= X4 + X + 1

For 8 = a 1 we again have i = 4, and the conjugacy class is {5, S
2

,
8
4

, <$
8
}. The minimal

polynomial is

3

M*)=n(*+*2
')

!=0
(7.1-16)

= (X + a 7
)(X + a 14

)(X + a 13
)(X + a 11

)

= X4 + X 3 + 1

Note that a and 8 are both primitive elements, but they belong to two different conjugacy

classes and thus have different minimal polynomials.

We conclude our discussion of Galois field properties by observing that all the p
m

elements of GF(p
m

) are the roots of the equation

X
pm -X = 0 (7.1-17)

or equivalently, all nonzero elements of GF(/?m ) are the roots of

X
pm ~ l -1 = 0 (7.1-18)

This means that the polynomial X2" -1 — 1 can be uniquely factored over GF(2) into the

product of the minimal polynomials corresponding to the conjugacy classes of nonzero

elements of GF(2m ). In fact X
2m ~ l — 1 can be factorized over GF(2) as the product

of all prime polynomials over GF(2) whose degree divides m. For more details on the

structure of finite fields and the proofs of the properties we covered here, the reader is

referred to MacWilliams and Sloane (1977), Wicker (1995), and Blahut (2003).

7.1-2 Vector Spaces

A vector a space over a field of scalars {F , +, •} is an Abelian group {V, +, 0} whose
elements are denoted by boldface symbols such as v and called vectors

,
with vector

addition + and identity element 0; and an operation called scalar multiplication for

each c e F and each v e V that is denoted by c v such that the following properties

are satisfied:

1. c • v e V
2. c (v\ + v2 ) = c • Vi + c • v2

3. c i • (c2 • v ) = (c i -c2)'V

4. (a + c2 ) • v = ci • v + c2 • v

5. 1 • v = v
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It can be easily shown that the following properties are satisfied:

1. 0 • v = 0

2. c 0 = 0

3. (—c) • v = c • (— v) = — (c • v)

We will be mainly dealing with vector spaces over the scalar field GF(2). In this

case a vector space V is a collection of binary n-tuples such that if iq, v2 e V ,

then v\ + v2 c V, where + denotes componentwise binary addition, or component-

wise EXCLUSIVE-OR operation. Note that since we can choose v2 — iq, we have

OeV.

7.2

GENERAL PROPERTIES OF LINEAR BLOCK CODES

A g-ary block code C consists of a set of M vectors of length n denoted by cm =
(cm i, cm2 , . .

.

,

cmn ), 1 < m < M, and called codewords whose components are selected

from an alphabet ofq symbols, or elements. When the alphabet consists oftwo symbols,

0 and 1, the code is a binary code. It is interesting to note that when q is a power of 2,

i.e., q = 2b where b is a positive integer, each q-ary symbol has an equivalent binary

representation consisting of b bits; thus, a nonbinary code of block length N can be

mapped into a binary code of block length n = bN.

There are 2n possible codewords in a binary block code of length n. From these 2n

codewords, we may selectM = 2k codewords (k < n ) to form a code. Thus, a block ofk

information bits is mapped into a codeword of length n selected from the set ofM = 2k

codewords. We refer to the resulting block code as an (n, k) code, with rate Rc = k/n.

More generally, in a code having q symbols, there are q
11 possible codewords. A subset

ofM = q
k codewords may be selected to transmit ^-symbol blocks of information.

Besides the code rate parameter Rc , an important parameter of a codeword is its

weight,
which is simply the number of nonzero elements that it contains. In general,

each codeword has its own weight. The set of all weights in a code constitutes the

weight distribution of the code. When all theM codewords have equal weight, the code

is called &fixed-weight code or a constant-weight code.

A subset of block codes, called linear block codes, is particularly well studied

during the last few decades. The reason for the popularity of linear block codes is that

linearity guarantees easier implementation and analysis of these codes. In addition, it

is remarkable that the performance of the class of linear block codes is similar to the

performance of the general class of block codes. Therefore, we can limit our study to

the subclass of linear block codes without sacrificing system performance.

A linear block code C is a ^-dimensional subspace of an n-dimensional space which

is usually called an (jn
,
k) code. For binary codes, it follows from Problem 7.11 that a

linear block code is a collection of 2k binary sequences of length n such that for any

two codewords C\, c2 e C we have c\ + c2 € C. Obviously, 0 is a codeword of any

linear block code.
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7.2-1 Generator and Parity Check Matrices

In a linear block code, the mapping from the set ofM = 2k information sequences of

length k to the corresponding 2k codewords of length n can be represented by a k x n

matrix G called the generator matrix as

cm = um G, \ <m <2k
(7.2-1)

where um is a binary vector of length k denoting the information sequence and cm
is the corresponding codeword. The rows of G are denoted by g, . 1 < i < k,

denoting the codewords corresponding to the information sequences (1,0, . .
. , 0),

(0, 1,0,...,0),...,(0,...,0,1).

gl

§2

-gk

.

(7.2-2)

and hence,

k

Cm-^Umigi (7.2-3)

i=

1

where the summation is in GF(2), i.e., modulo-2 summation.

From Equation 7.2-2 it is clear that the set of codewords of C is exactly the set of

linear combinations of the rows of G, i.e., the row space of G. Two linear block codes

Ci and C2 are called equivalent if the corresponding generator matrices have the same

row space, possibly after a permutation of columns.

If the generator matrix G has the following structure

G = [/* |

P\ (7.2-4)

where Ik is a k x k identity matrix and P is a k x (n - k) matrix, the resulting linear block

code is called systematic. In systematic codes the first k components of the codeword

are equal to the information sequence, and the following n — k components, called the

parity check bits
,
provide the redundancy for protection against errors. It can be shown

that any linear block code has a systematic equivalent; i.e., its generator matrix can

be put in the form given by Equation 7.2-4 by elementary row operations and column

permutation.

Since C is a ^-dimensional subspace of the ^-dimensional binary space, its orthog-

onal complement, i.e., the set of all ^-dimensional binary vectors that are orthogonal

to the the codewords of C ,
is an (

n

— &)-dimensional subspace of the n-dimensional

space, and therefore it defines an (n, n — k) code which is denoted by C1- and is called

the dual code of C. The generator matrix of the dual code is an (n — k) x n matrix

whose rows are orthogonal to the rows of G, the generator matrix of C. The generator

matrix of the dual code is called the parity check matrix of the original code C and is
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denoted by H. Since any codeword of C is orthogonal to all rows of H, we conclude

that for all c e C

cW = 0 (7.2-5)

Also if for some binary n-dimensional vector c we have cW = 0
,
then c belongs to

the orthogonal complement of H, i.e., c e C. Therefore, a necessary and sufficient

condition for c e {0, \}
n
to be a codeword is that it satisfy Equation 7.2-5. Since rows

of G are codewords, we conclude that

GW = 0 (7.2-6)

In the special case of systematic codes, where G = [Ik
\

P], the parity check matrix is

given by

H= [~P t

\In-k (7.2-7)

which obviously satisfiesGW = 0 . For binary codes —P t = P t andH = [P f

\

In-k \

.

example 7.2-1. Consider a (7, 4) linear block code with

G = [J4 I

P] =

'10 0 0

0 10 0

0 0 10
0 0 0 1

1 0

1 1

1 1

0 1

r
i

0

1

(7.2-8)

Obviously this is a systematic code. The parity check matric for this code is obtained

from Equation 7.2-7 as

h = [p
i

i

=
T

0

1

110 10 0
"

1110 10
10 10 0 1

(7.2-9)

If ii = (u\, U 2 , « 3 ,
u4 ) is an information sequence, the corresponding codeword

c = (ci,c2 , . .
.

,

c7 ) is given by

C\ — U\

C2 = U2

C3 = U2

c4 = u4 (7.2-10)

C5 = U\ + U2 +
c6 = u 2 + ^3 + u4

Cj = U\ + U2 + U4

and from Equations 7.2-10 it can be easily verified that all codewords c satisfy Equa-

tion 7.2-5.
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7.2-2 Weight and Distance for Linear Block Codes

The weight of a codeword c e C is denoted by w(c) and is the number of nonzero

components of that codeword. Since 0 is a codeword of all linear block codes, we
conclude that each linear block code has one codeword of weight zero. The Hamming
distance between two codewords ci, c2 E C ,

denoted by d(c\
,
C2), is the number of

components at which C\ and C2 differ. It is clear that the weight of a codeword is its

distance from 0.

The distance between c\ and C2 is the weight of c\ — c2 ,
and since in linear block

codes c\ — C2 is a codeword, then d(c 1, c2 ) = w(c 1
— c2 ). We clearly see that in linear

block codes there exists a one-to-one correspondence between weight and the distance

between codewords. This means that the set of possible distances from any codeword

c e C to all other codewords is equal to the set of weights of different codewords,

and thus is independent of c. In other words, in a linear block code, looking from any

codeword to all other codewords, one observes the same set of distance, regardless of

the codeword one is looking from. Also note that in binary linear block codes we can

substitute C\ — c2 with C\ + c2 .

The minimum distance of a code is the minimum of all possible distances between

distinct codewords of the code, i.e.,

Jmin = min d(cu c2 ) (7.2-11)
c\,c2 eC
C\^C2

The minimum weight of a code is the minimum of the weights of all nonzero codewords,

which for linear block codes is equal to the minimum distance.

u^min = min w(c) (7.2-12)
ceC

0

There exists a close relation between the minimum weight of a linear block code and

the columns of the parity check matrix H. We have previously seen that the necessary

and sufficient condition for c e {0, \}
n
to be a codeword is that cH f = 0. If we choose

c to be a codeword of minimum weight, from this relation we conclude that u;min (or

dmin) columns of H are linearly dependent. On the other hand, since there exists no

codeword of weight less than dmin, no fewer than d^ columns of H can be linearly

dependent. Therefore, d^n represents the minimum number of columns of H that can

be linearly dependent. In other words the column space of H has dimension dm[n — 1 .

In certain modulation schemes there exists a close relation between Hamming
distance and Euclidean distance of the codewords. In binary antipodal signaling—for

instance, BPSK modulation—the 0 and 1 components of a codeword c e C are mapped
to —\t~£c and +\/£c, respectively. Therefore if s is the vector corresponding to the

modulated sequence of codeword c, we have

Smj = (2cmj ~ Vy/Sc, 1 < j <n, 1 < m < M (7.2-13)

and therefore,

^
sm ,sm f

— 4^crf(cm ,
cm>) (7.2-14)
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where dSm ^m ,
denotes the Euclidean distance between the modulated sequences and

d(cm ,
cm>) is the Hamming distance between the corresponding codewords. From the

above we have

4mi„ = 4£e4ni„ (7.2-15)

where ^Emin is the minimum Euclidean distance of the BPSK modulated sequences

corresponding to the codewords. Using Equation 7.1-8, we conclude that

4mi„ = iRcSbdrnm (7.2-16)

For the binary orthogonal modulations, e.g., binary orthogonal FSK, we similarly

have

4min = (7-2-17)

7.2-3 The Weight Distribution Polynomial

An (n,k) code has 2k codewords that can have weights between 0 and n. In any

linear block code there exists one codeword of weight 0, and the weights of nonzero

codewords can be between and n. The weight distribution polynomial (WEP) or

weight enumerationfunction (WEF) of a code is a polynomial that specifies the number

of codewords of different weights in a code. The weight distribution polynomial or

weight enumeration function is denoted by A(Z) and is defined by

n n

A(Z) = J2 A>Z‘ = 1 + Y, A
'
Z ' (7.2-18)

i=0 i=dmm

where A,- denotes the number of codewords of weight i. The following properties of

the weight enumeration function for linear block codes are straightforward:

n

A(l) = 2>, =2*
/=o

A(0) = 1

(7.2-19)

The weight enumeration function for many block codes is unknown. For low rate

codes the weight enumeration function can be obtained by using a computer search.

The MacWilliams identity expresses the weight enumeration function of a code in

terms of the weight enumeration function of its dual code. By this identity, the weight

enumeration function of a code A(Z) is related to the weight enumeration function of

its dual code A<j(Z) by

A(Z) = 2An
-k\l + ZfA d (Lpf) (7.2-20)

The weight enumeration function of a code is closely related to the distance enu-

merator function of a constellation as defined in Equation 4.2-74. Note that for a linear
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block code, the set of distances seen from any codeword to other codewords is indepen-

dent of the codeword from which these distances are seen. Therefore, in linear block

codes the error bound is independent of the transmitted codeword, and thus, without

loss of generality, we can always assume that the all-zero codeword 0 is transmitted.

The value of d2
in Equation 4.2-74 depends on the modulation scheme. For BPSK

modulation from Equation 7.2-14 we have

4(sm )
= 4£bRcw(cm ) (7.2-21)

where d^{sm ) denotes the Euclidean distance between sm and the modulated sequence

corresponding to 0 . For orthogonal binary FSK modulation we have

4(sm )
= 2£bRcw(cm ) (7.2-22)

The distance enumerator function for BPSK is given by

n

T(X) = ^ AiX4Rc£bi = (A(Z) - D\ z=xiRc£b
(7.2-23)

i—^min

and for orthogonal BFSK by

n

T(X) = MX2RAi = (A(Z) - l)lzM (7.2-24)

i—4min

Another version of the weight enumeration function provides information about

the weight of the codewords as well as the weight of the corresponding information

sequences. This polynomial is called the input-output weight enumeration function

(IOWEF), denoted by B(Y, Z) and is defined as

n k

B(Y, Z) = J2Y1 Bu
yJz ‘

(7.2-25)

i=0 j=0

where B
tj

is the number of codewords of weight i that are generated by information

sequences of weight j. Clearly,

k

At = X) B
<J

(7.2-26)

j=o

and for linear block codes we have B(0, 0) = Boo = 1. It is also clear that

A(Z)
= B(Y, Z)

jy=i
(7.2-27)

A third form of the weight enumeration function, called the conditional weight

enumerationfunction (CWEF), is defined by

n

Bj(Z) =^ BijZ
1

i=0

(7.2-28)
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and it represents the weight enumeration function of all codewords corresponding to

information sequences of weight j. From Equations 7.2-28 and 7.2-25 it is easy to see

that

Bj(Z) =
1 dJ

:B(Y,Z)
j dYJ 4

(7.2-29)

example 7.2-2. In the code discussed in Example 7.2-1, there are 24 = 16 codewords

with possible weights between 0 and 7. Substituting all possible information sequences

of the form u = (wi, W2, M3, «4) and generating the codewords, we can verify that for

this code dm = 3 and there are 7 codewords of weight 3 and 7 codewords of weight

4. There exist one codeword of weight 7 and one codeword of weight 0. Therefore,

A(Z) =1+7Z3 + 7Z4 + Z7
(7.2-30)

It is also easy to verify that for this code

#00 = 1 #31 = 3 #32 = 3 #33 = 1

#41 = 1 #42 = 3 #43 = 3 #74 = 1

Hence,

B(Y, Z) = 1 + 3FZ 3 + 3

F

2Z 3 + Y 3Z 3 + FZ4 + 3F2Z4 + 3F 3Z4 + F4Z7
(7.2-31)

#o(Z) = 1

B\(Z) = 3Z 3 + Z4

#2(Z) = 3Z 3 + 3Z4
(7.2-32)

£3 (Z) = Z 3 + 3Z4

#4(Z) = Z7

7.2-4 Error Probability of Linear Block Codes

Two types of error probability can be studied when linear block codes are employed.

The block error probability or word error probability is defined as the probability of

transmitting a codeword cm and detecting a different codeword cm >. The second type

of error probability is the bit error probability
,
defined as the probability of receiving

a transmitted information bit in error.

Block Error Probability

Linearity of the code guarantees that the distances from cm to all other codewords are

independent of the choice of cm . Therefore, without loss of generality we can assume

that the all-zero codeword 0 is transmitted.

To determine the block (word) error probability Pe ,
we note that an error occurs

if the receiver declares any codeword cm ^ 0 as the transmitted codeword. The prob-

ability of this event is denoted by the pairwise error probability Po^ Cm >
as defined in
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Section 4.2-3. Therefore,

^<E Fo^,„ (7.2-33)

Cm
Cm^0

where in general P^ Cm depends on the Hamming distance between 0 and cm ,
which

is equal to w(cm ), in a way that depends on the modulation scheme employed for

transmission of the codewords. Since for codewords of equal weight we have the

same Po~* Cm ,
we conclude that

n

Pe < E ^(0
1=dm\n

(7.2-34)

where P2O ) denotes the pairwise error probability (PEP) between two codewords with

Hamming distance i.

From Equation 6.8-9 we know that

n

p«^ Cm < nE Vp(yi\o)p(yi\ cmi)

i= 1 yi^r'/

Following Example 6.8-1 we define

(7.2-35)

A = E^^ylOMyll)

With this definition, Equation 7.2-35 reduces to

(7.2-36)

P^ Cm - P2(w(cm )) < Aw^
Substituting this result into Equation 7.2-34 results in

(7.2-37)

n

Pe < E
i—dmm

or

(7.2-38)

Pe < A(A) - 1 (7.2-39)

where A(Z) is the weight enumerating function of the linear block code.

From the inequality

E (•/p(3'I°) -
)

- 0 (7.2-40)

yzciz

we easily conclude that

a =E Vp(y\o)pW) < i (7.2-41)

and hence, for i > dmm .

A' < A dmi"
(7.2-42)
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Using this result in Equation 7.2-38 yields the simpler, but looser, bound

Pe < (2* - l)Adm“ (7.2-43)

Bit Error Probability

In general, errors at different locations of an information sequence of length k can occur

with different probabilities. We define the average of these error probabilities as the bit

error probability for a linear block code. We again assume that the all-zero sequence is

transmitted; then the probability that a specific codeword of weight i will be decoded at

the detector is equal to /MO- The number of codewords of weight i that correspond to

information sequences of weight j is denoted by B
tj. Therefore, when 0 is transmitted,

the expected number of information bits received in error is given by

k n

h ^Y,jY, B
‘j
pM (7.2-44)

7=0 i —drain

Since for 0 < i < dm[n we have B
tj = 0, we can write this as

k n

b<J2jJ2 B
‘j
p2(0 (7.2-45)

j=0 1=0

The (average) bit error probability of the linear block code Pt> is defined as the ratio

of the expected number of bits received in error to the total number of transmitted bits,

i.e.,

Y
k n

K
7=0 /=o

i k n

K
j=0 1=0

(7.2-46)

where in the last step we have used Equation 7.2-37. From Equation 7.2-28 we see

that the last sum is simply Bj(A); therefore,

(7.2-47)
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We can also express the bit error probability in terms of the IOWEF by using

Equation 7.2-25 as

Pb<
1

k

1

k

n k

i=0 7=0

97
B(Y, Z).

(7.2-48)

7.3

SOME SPECIFIC LINEAR BLOCK CODES

In this section, we briefly describe some linear block codes that are frequently encoun-

tered in practice and list their important parameters. Additional classes of linear codes

are introduced in our study of cyclic codes in Section 7.9.

7.3-1 Repetition Codes

A binary repetition code is an (n
, 1 ) code with two codewords oflength n . One codeword

is the all-zero codeword, and the other one is the all-one codeword. This code has a

rate of Rc = ~ and a minimum distance of dm -m = n. The dual of a repetition code is

an (n, n — 1) code consisting of all binary sequences of length n with even parity. The
minimum distance of the dual code is clearly dmin = 2.

7.3-2 Hamming Codes

Hamming codes are one of the earliest codes studied in coding theory. Hamming codes

are linear block codes with parameters n — 2m — 1 and k = 2m — m — 1, for m > 3.

Hamming codes are best described in terms of their parity check matrix H which is an

(n — k) x n = m x (2
m — 1) matrix. The 2m — 1 columns of H consist of all possible

binary vectors of length m excluding the all-zero vector. The rate of a Hamming code

is given by

Rc
2m - m - 1

2m -l
(7.3-1)

which is close to 1 for large values of m.

Since the columns ofH include all nonzero sequences of length m, the sum of any

two columns is another column. In other words, there always exist three columns that

are linearly dependent. Therefore, for Hamming codes, independent of the value of m,

dmin — 3.
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The weight distribution polynomial for the class ofHamming (n ,
k) codes is known

and is expressed as (see Problem 7.23)

A(Z )
- — [(i + Zf + n{ 1 + Z)(n~ 1)/2

( 1
- Z)(n+1)/2

1 (7.3-2)
n + l

example 7.3-1. To generate the H matrix for a (7, 4) Hamming code (corresponding

tom = 3), we have to use all nonzero sequences of length 3 as columns of H. We can

arrange these columns in such a way that the resulting code is systematic as

H =
T

0

1

110 10
1110 1

10 10 0

0"

0

1

(7.3-3)

This is the parity check matrix derived in Example 7.2-1 and given by Equation 7.2-9.

7.3-3 Maximum-Length Codes

Maximum-length codes are duals of Hamming codes; therefore these are a family of

(2
m — 1, m) codes for m > 3. The generator matrix of a maximum-length code is the

parity check matrix of a Hamming code, and therefore its columns are all sequences

of length m with the exception of the all-zero sequence. In Problem 7.23 it is shown

that maximum-length codes are constant-weight codes; i.e., all codewords, except the

all-zero codeword, have the same weight, and this weight is equal to 2m_1 . Therefore,

the weight enumeration function for these codes is given by

A(Z ) = l+(2m - l)Z
m~ l

(7.3-4)

Using this weight distribution function and applying the MacWilliams identity given

in Equation 7.2-20, we can derive the weight enumeration function of the Hamming
code as given in Equation 7.3-2.

7.3-4 Reed-Muller Codes

Reed-Muller codes introduced by Reed (1954) and Muller (1954) are a class of linear

block codes with flexible parameters that are particularly interesting due to the existence

of simple decoding algorithms for them.

A Reed-Muller code with block length n = 2m and order r < m is an (n, k) linear

block code with

*-§()
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whose generator matrix is given by

G =

rG0
1

G,

G2 1

l_GrJ

where Go is a 1 x n matrix of all Is

Go = [1 1 1 1]

(7.3-6)

(7.3-7)

and Gi is an m x n matrix whose columns are distinct binary sequences of length m
put in natural binary order.

'0 0 0 • •
• 1 r

0 0 0 ••• 11
0 0 0 11

0 0 1 ... 11
0 10-01

(7.3-8)

G2 is an
( 2 )

x n matrix whose rows are obtained by bitwise multiplication of two rows

ofG2 at a time. Similarly, G, for 2 < i < r is a ('”) x n matrix whose rows are obtained

by bitwise multiplication of r rows of G2 at a time.

example 7.3-2. The first-order Reed-Muller code with block length 8 is an (8, 4)

code with generator matrix

G -

'1111
0 0 0 0

0 0 11
0 10 1

1 1 1

1 1 1

0 0 1

0 1 0

r
1

1

1

(7.3-9)

This code can be obtained from a (7, 3) maximum-length code by adding one extra

parity bit to make the overall weight of each codeword even. This code has a minimum
distance of 4. The second-order Reed-Muller code with block length 8 has the generator

matrix

G =

1 1

0 0

0 0

0 1

0 0

0 0

0 0

1 1

0 0

1 1

0 1

0 0

0 0

0 1

1 1 1

1 1 1

0 0 1

0 1 0

0 0 1

0 1 0

0 0 0

1

1

1

1

1

1

1

(7.3-10)

and has a minimum distance of 2.
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7.3-5 Hadamard Codes

Hadamard signals were introduced in Section 3.2^1 as examples of orthogonal signal-

ing schemes. A Hadamard code is obtained by selecting as codewords the rows of a

Hadamard matrix. A Hadamard matrix Mn is an n x n matrix (n is an even integer)

of Is and Os with the property that any row differs from any other row in exactly |
positions.* One row of the matrix contains all zeros. The other rows each contain |
zeros and | ones.

For n = 2, the Hadamard matrix is

0 01

0 1

(7.3-11)

Furthermore, from Mn ,
we can generate the Hadamard matrix Mi,, according to the

relation

Mn Mn

Mn Mn

(7.3-12)

where Mn denotes the complement (Os replaced by Is and vice versa) ofM Thus, by

substituting Equation 7.3-11 into Equation 7.3-12, we obtain

M4

’0 0 0 0
"

0 10 1

0 0 11
0 110

The complement ofM4 is

M4

"1111 “

10 10
110 0

10 0 1

(7.3-13)

(7.3-14)

Now the rows ofM4 and M4 form a linear binary code of block length n = 4 having

2n = 8 codewords. The minimum distance of the code is <7min = |
= 2.

By repeated application of Equation 7.3-12, we can generate Hadamard codes

with block length n - 2m
,
k = log2 2n = log2 2

m+1 = m + 1, and <7min = |
= 2m_1

,

where m is a positive integer. In addition to the important special cases where n = 2m
,

Hadamard codes of other block lengths are possible, but the resulting codes are not

linear.

tin Section 3.2-4 the elements of the Hadamard matrix were denoted +1 and —1, resulting in mutually

orthogonal rows. We also note that the M = 2k signal waveforms, constructed from Hadamard codewords

by mapping each bit in a codeword into a binary PSK signal, are orthogonal.
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7.3-6 Golay Codes

The Golay code (Golay (1949)) is a binary linear (23, 12) code with dmm = 7. The
extended Golay code is obtained by adding an overall parity bit to the (23, 12) Golay

code such that each codeword has even parity. The resulting code is a binary linear

(24, 12) code with dmm = 8. The weight distribution polynomials of Golay code and

extended Golay code are known and are given by

Ag(Z) = 1 + 253

Z

7 + 506Z 8 + 1288Z 11 + 1288Z 12 + 506Z 15 + 253Z 16 + Z23

Aeg(Z) = 1 + 759

Z

8 + 2576Z 12 + 759

Z

16 + Z24

(7.3-15)

We discuss the generation of the Golay code in Section 7.9-5.

7.4

OPTIMUM SOFT DECISION DECODING OF LINEAR BLOCK CODES

In this section, we derive the performance of linear binary block codes on an AWGN
channel when optimum (unquantized) soft decision decoding is employed at the re-

ceiver. The bits of a codeword may be transmitted by any one of the binary signaling

methods described in Chapter 3. For our purposes, we consider binary (or quaternary)

coherent PSK, which is the most efficient method, and binary orthogonal FSK with

either coherent detection or noncoherent detection.

From Chapter 4, we know that the optimum receiver, in the sense of minimizing

the average probability of a codeword error, for the AWGN channel can be realized as a

parallel bank ofM = 2k filters matched to the M possible transmitted waveforms. The
outputs of the M matched filters at the end of each signaling interval, which encom-

passes the transmission of n binary symbols in the codeword, are compared, and the

codeword corresponding to the largest matched filter output is selected. Alternatively,

M cross-correlators can be employed. In either case, the receiver implementation can

be simplified. That is, an equivalent optimum receiver can be realized by use of a sin-

gle filter (or cross-correlator) matched to the binary PSK waveform used to transmit

each bit in the codeword, followed by a decoder that forms the M decision variables

corresponding to the M codewords.

To be specific, let rj, j = 1, 2, . .
.

,

n, represent the n sampled outputs of the

matched filter for any particular codeword. Since the signaling is binary coherent PSK,
the output rj may be expressed either as

rj = \[£c + nj (7.4-1)

when the yth bit of a codeword is a 1, or as

fj = —\[£c + tij (7.4-2)

when the jth bit is a 0. The variables {n
j } represent additive white Gaussian noise at the

sampling instants. Each nj has zero mean and variance ^Nq. From knowledge of the
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M possible transmitted codewords and upon reception of {r
; }, the optimum decoder

forms the M correlation metrics

n

CMm = C(r, cm ) = £(2cmJ - 1) rJt m = 1, 2,

.

.
. ,
M (7.4-3)

j=

i

where cmj
denotes the bit in the j th position of the rath codeword. Thus, if cmj = 1 ,

the

weighting factor 2cmj
— 1 = 1; and if cmj = 0, the weighting factor 2cmj

— 1 = — 1 . In

this manner, the weighting 2cmj
— 1 aligns the signal components in {rj } such that the

correlation metric corresponding to the actual transmitted codeword will have a mean
value nV^c, while the other M — 1 metrics will have smaller mean values.

Although the computations involved in forming the correlation metrics for soft

decision decoding according to Equation 7.4-3 are relatively simple, it may still be im-

practical to compute Equation 7.4-3 for all the possible codewords when the number

of codewords is large, e.g., M > 2 10
. In such a case it is still possible to implement

soft decision decoding using algorithms which employ techniques for discarding im-

probable codewords without computing their entire correlation metrics as given by

Equation 7.4-3. Several different types of soft decision decoding algorithms have been

described in the technical literature. The interested reader is referred to the papers

by Forney (1966b), Weldon (1971), Chase (1972), Wainberg and Wolf (1973), Wolf

(1978), and Matis and Modestino (1982).

Block and Bit Error Probability in Soft Decision Decoding

We can use the general bounds on the block error probability derived in Equa-

tions 7.2-39 and 7.2-43 to find bounds on the block error probability for soft deci-

sion decoding. The value of A defined by Equation 7.2-36 has to be found under the

specific modulation employed to transmit codeword components. In Example 6.8-1 it

was shown that for BPSK modulation we have A = e~£c ^N°, and since Sc = Rc£b ,
we

obtain

Pe < (A(Z) - 1)

Rc£b

Z=e N0

(7.4-4)

where A(Z) is the weight enumerating polynomial of the code.

The simple bound of Equation 7.2-43 under soft decision decoding reduces to

Pe •< (2* - l)e
- Rcd™£b/No

(7.4-5)

In Problem 7.18 it is shown that for binary orthogonal signaling, for instance,

orthogonal BFSK, we have A = e
~
£c ^2N°. Using this result, we obtain the simple

bound

Pe < (2* - \)e-
Rcd™£b /2N» (7.4-6)

for orthogonal BFSK modulation.

Using the inequality 2^ — 1 < 2k = e
kln2

,
we obtain

pe < e
~
Yb

{
Rcdmn~ kJ

?r) for BPSK (7.4-7)
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and

_Yb ( J? J .
*ln2\

Pe < e 2 v ': m,n
vb ) for orthogonal BFSK (7.4-8)

where as usual yb denotes £b/No ,
the SNR per bit.

When the upper bound in Equation 7.4-7 is compared with the performance of

an uncoded binary PSK system, which is upper-bounded as
\
exp(— yb ), we find that

coding yields a gain of approximately 10 log(Rcdm{n — k In 2/ yt,) dB. We may call this

the coding gain . We note that its value depends on the code parameters and also on the

SNR per bit yb- For large values of yb ,
the limit of the coding gain, i.e., Rcdmin ,

is called

the asymptotic coding gain.

Similar to the block error probability, we can use Equation 7.2-48 to bound the bit

error probability for BFSK and orthogonal BFSK modulation. We obtain

1 9
Pb < B(Y, Z)

k dY

1 9
Pb < B(Y, Z)b ~ k dY

K J

y=l,Z=exp(-^fe)

y=l,Z=exp(-^t)

for BPSK

for orthogonal BFSK
(7.4-9)

Soft Decision Decoding with Noncoherent Detection

In noncoherent detection of binary orthogonal FSK signaling, the performance is

further degraded by the noncoherent combining loss. Here the input variables to the

decoder are

roj
—

I
+ Noj

\

2

roj = \Nu\
2

(7.4-10)

for j = 1, 2, . .
.

,

n, where {A^;} and {N\j} represent complex-valued mutually statis-

tically independent Gaussian random variables with zero mean and variance 2Afo. The

correlation metric CM\ is given as

n

CM, = (7.4-11)

7= 1

while the correlation metric corresponding to the codeword having weight wm is sta-

tistically equivalent to the correlation metric of a codeword in which cmj
— 1 for

1 < j < u;m and cmj
= 0 for wm + 1 < j < n. Hence, CMm may be expressed as

wm n

CMm =Yj
r,

j + ^ r0j (7.4-12)

7=1 j=wm +l

The difference between CAfi and CMm is

wn!

CMi
- CMm = y^iroj ~ r,j)

j=

i

(7.4-13)
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and the pairwise error probability (PEP) is simply the probability that CM\ —CMm < 0.

But this difference is a special case of the general quadratic form in complex-valued

Gaussian random variables considered in Chapter 1 1 and in Appendix B. The expression

for the probability of error in deciding between CM\ and CMm is (see Section 11.1-1)

1 /I \ Wm i

/ \

p2(m )
= eXP ( ~2nRcWm

) Y, K
‘[ o

ybRc

where, by definition,

Ki

i=0

1 Wm 1 1 / /-) » . , 1 ^
1 X V / 1

r=0

(7.4-14)

(7.4-15)

The union bound obtained by summing P2(m) over 2 < m < M provides us with an

upper bound on the probability of a codeword error.

As an alternative, we may use the minimum distance instead of the weight distri-

bution to obtain the looser upper bound

M- 1

Pe < exp " YbP-cdn

i=0

^ ^ Ki ( r. YbRcdn (7.4-16)

A measure of the noncoherent combining loss inherent in the square-law detection

and combining of the n elementary binary FSK waveforms in a codeword can be

obtained from Figure 11.1-1, where dmjn is used in place of L. The loss obtained is

relative to the case in which the n elementary binary FSK waveforms are first detected

coherently and combined, and then the sums are square-law-detected or envelope-

detected to yield the M decision variables. The binary error probability for the latter

case is

Pi(m) = - exp
1

-YbPcWm

and hence

M

Pe<Y
m=

2

(7.4-17)

(7.4-18)

If <r/lllm is used instead of the weight distribution, the union bound for the codeword

error probability in the latter case is

Pe < l)exp I -\ybRcdn (7.4-19)

similar to Equation 7.4-8.

We have previously seen in Equation 7.1-10 that the channel bandwidth required

to transmit the coded waveforms, when binary PSK is used to transmit each bit, is

given by

(7.4-20)
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From Equation 4.6-7, the bandwidth requirement for an uncoded BPSK scheme is R.

Therefore, the bandwidth expansionfactor Be for the coded waveforms is

(7.4-21)

Comparison with Orthogonal Signaling

We are now in a position to compare the performance characteristics and bandwidth

requirements of coded signaling with orthogonal signaling. As we have seen in Chap-

ter 4, orthogonal signals are more power-efficient compared to BPSK signaling, but

using them requires large bandwidth. We have also seen that using coded BPSK signals

results in a moderate expansion in bandwidth and, at the same time, by providing the

coding gain, improves the power efficiency of the system.

Let us consider two systems, one employing orthogonal signaling and one employ-

ing coded BPSK signals to achieve the same performance. We use the bounds given

in Equations 4.4-17 and 7.4-7 to compare the error probabilities of orthogonal and

coded BPSK signals, respectively. To have equal bounds on the error probability, we
must have k = 2Rcdmm . Under this condition, the dimensionality of the orthogonal

signals, given by N = M = 2k
,
is given by N = 2Rcdmn . The dimensionality of the

BPSK code waveform is n = k/Rc = 2dmin . Since dimensionality is proportional to

the bandwidth, we conclude that

Warthogonal

Wcoded BPSK

f^Rcdmm

^mm
(7.4-22)

For example, suppose we use a (63, 30) binary code that has a minimum distance

dmm = 13. The bandwidth ratio for orthogonal signaling relative to this code, given by
Equation 7.4-22, is roughly 205. In other words, an orthogonal signaling scheme that

performs similar to the (63, 30) code requires 205 times the bandwidth of the coded

system. This example clearly shows the bandwidth efficiency of coded systems.

7.5

HARD DECISION DECODING OF LINEAR BLOCK CODES

The bounds given in Section 7.4 on the performance of coded signaling waveforms
on the AWGN channel are based on the premise that the samples from the matched
filter or cross-correlator are not quantized. Although this processing yields the best

performance, the basic limitation is the computational burden of formingM correlation

metrics and comparing these to obtain the largest. The amount of computation becomes
excessive when the number M of codewords is large.

To reduce the computational burden, the analog samples can be quantized and

the decoding operations are then performed digitally. In this section, we consider the

extreme situation in which each sample corresponding to a single bit of a codeword is

quantized to two levels: 0 and 1. That is, a hard decision is made as to whether each

transmitted bit in a codeword is a 0 or a 1 . The resulting discrete-time channel (consisting
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of the modulator, the AWGN channel, and the modulator/demodulator) constitutes a

BSC with crossover probability p. If coherent PSK is employed in transmitting and

receiving the bits in each codeword, then

P = Q (7.5-1)

On the other hand, if FSK is used to transmit the bits in each codeword, then

P = Q (VyX) (7-5-2)

for coherent detection and

P = \
exP (-^YbR^j (7.5-3)

for noncoherent detection.

Minimum-Distance (Maximum-Likelihood) Decoding

The n bits from the detector corresponding to a received codeword are passed to the

decoder, which compares the received codeword with theM possible transmitted code-

words and decides in favor of the codeword that is closest in Hamming distance (num-

ber of bit positions in which two codewords differ) to the received codeword. This

minimum-distance decoding rule is optimum in the sense that it results in a minimum
probability of a codeword error for the binary symmetric channel.

A conceptually simple, albeit computationally inefficient, method for decoding is

to first add (modulo-2) the received codeword vector to all the M possible transmitted

codewords cm to obtain the error vectors em . Hence, em represents the error event

that must have occurred on the channel in order to transform the codeword cm to the

particular received codeword. The number of errors in transforming cm into the received

codeword is just equal to the number of 1 s in em . Thus, ifwe simply compute the weight

of each of theM error vectors {em } and decide in favor of the codeword that results in the

smallest weight error vector, we have, in effect, a realization of the minimum-distance

decoding rule.

Syndrome and Standard Array

A more efficient method for hard decision decoding makes use of the parity check

matrix H. To elaborate, suppose that cm is the transmitted codeword and y is the

received sequence at the output of the detector. In general, y may be expressed as

y = cm +e

where e denotes an arbitrary binary error vector. The product yW yields

5 = yH f

+ eH l

= eH f

(7.5-4)
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where the (n — &)-dimensional vector s is called the syndrome of the error pattern. In

other words, the vector s has components that are zero for all parity check equations

that are satisfied and nonzero for all parity check equations that are not satisfied. Thus,

s contains the pattern of failures in the parity checks.

We emphasize that the syndrome s is a characteristic of the error pattern and not of

the transmitted codeword. If a syndrome is equal to zero, then the error pattern is equal

to one of the codewords. In this case we have an undetected error . Therefore, an error

pattern remains undetected if it is equal to one of the nonzero codewords. Hence, from

the 2n — 1 error patterns (the all-zero sequence does not count as an error), 2k — 1 are

not detectable; the remaining 2n — 2k nonzero error patterns can be detected, but not all

can be corrected because there are only 2n
~k syndromes and, consequently, different

error patterns result in the same syndrome. For ML decoding we are looking for the

error pattern of least weight among all possible error patterns.

Suppose we construct a decoding table in which we list all the 2k possible code-

words in the first row, beginning with the all-zero codeword c\ = 0 in the first (leftmost)

column. This all-zero codeword also represents the all-zero error pattern. After com-

pleting the first row, we put a sequence of length n which has not been included in

the first row (i.e., is not a codeword) and among all such sequences has the minimum
weight in the first column of the second row, and we call it e2 . We complete the second

row of the table by adding e2 to all codewords and putting the result in the column

corresponding to that codeword. After the second row is complete, we look among all

sequences of length n that have not been included in the first two rows and choose

a sequence of minimum weight, call it e 3 ,
and put it in the first column of the third

row; and complete the third row similar to the way we completed the second row. This

process is continued until all sequences of length n are used in the table. We obtain an

n x (n — k) table as follows:

c\ = 0 C2 c 3
* C2k

e2 c2 + e2 C3 + e2 '
' C2k + €2

£3 c2 + e 3 C 3 + e3 • C2k + £3

e2n-k C2 + e2n-k C 3 + e2n-k • '‘ * C2k -f- e2n-i

This table is called a standard array. Each row, including the first, consists of k possible

received sequences that would result from the corresponding error pattern in the first

column. Each row is called a coset
,
and the first (leftmost) codeword (or error pattern) is

called a coset leader. Therefore, a coset consists of all the possible received sequences

resulting from a particular error pattern (coset leader). Also note that by construction

the coset leader has the lowest weight among all coset members.

example 7.5-1. Let us construct the standard array for the (5 , 2) systematic code with

generator matrix given by

T 0

0 1

1 0

0 1

1

1
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TABLE 7.5-1

The Standard Array for Example 7.5-1

00000 01011 10101 11110

00001 01010 10100 mil
00010 01001 10111 11100

00100 01111 10001 11010

01000 00011 11101 10110

10000 11011 00101 oino
11000 10011 01101 00110

10010 11001 00111 01100

This code has a minimum distance dm -m = 3. The standard array is given in Table 7.5-1

.

Note that in this code, the coset leaders consist of the all-zero error pattern, five error

patterns of weight 1, and two error patterns of weight 2. Although many more double

error patterns exist, there is room for only two to complete the table.

Now, suppose that e
t
is a coset leader and that cm was the transmitted codeword.

Then the error pattern would result in the received sequence

y — Cm T"

The syndrome is

s = yH t = (cm + e^H 1 = cmH l + = eiH 1

Clearly, all received sequences in the same coset have the same syndrome, since the latter

depends only on the error pattern. Furthermore, each coset has a different syndrome.

This means that there exists a one-to-one correspondence between cosets (or coset

leaders) and syndromes.

The process of decoding the received sequence y basically involves finding the error

sequence of the lowest weight e
t
such that s = yW = e

i
H t

. Since each syndrome

s corresponds to a single coset, the error sequence e
t
is simply the lowest member of

the coset, i.e., the coset leader. Therefore, after the syndrome is found, it is sufficient

to find the coset leader corresponding to the syndrome and add the coset leader to y to

obtain the most likely transmitted codeword.

The above discussion makes it clear that coset leaders are the only error patterns

that are correctable. To sum up the above discussion, from all possible 2n — 1 nonzero

error patterns, 2^ — 1 corresponding to nonzero codewords are not detectable, and

2n — 2k are detectable of which only 2n
~k — 1 are correctable.

example 7.5-2. Consider the (5, 2) code with the standard array given in Table 7.5-1.

The syndromes versus the most likely error patterns are given in Table 7.5-2.

Now suppose the actual error vector on the channel is

e = (10100)
The syndrome computed for the error is s = (0 0 1). Hence, the error determined

from the table is £ = (0 0 0 0 1). When e is added to y, the result is a decoding
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TABLE 7.5-2

Syndromes and Coset

Leaders for Example 7.5-2

Syndrome Error Pattern

000 00000

001 00001

010 00010

100 00100

Oil 01000

101 10000

110 11000

111 10010

error. In other words, the (5, 2) code corrects all single errors and only two double

errors, namely, (1 1 0 0 0) and(1001 0).

7.5-1 Error Detection and Error Correction Capability of Block Codes

It is clear from the discussion above that when the syndrome consists of all zeros, the

received codeword is one of the 2k possible transmitted codewords. Since the minimum
separationbetween a pair ofcodewords is4m. it is possible for an error pattern ofweight

dmm to transform one of these 2k codewords in the code to another codeword. When this

happens, we have an undetected error. On the other hand, if the actual number of errors

is less than dmin ,
the syndrome will have a nonzero weight. When this occurs, we have

detected the presence of one or more errors on the channel. Clearly, the (;n ,
k) block code

is capable of detecting up to d^ — 1 errors. Error detection may be used in conjunction

with an automatic repeat-request (ARQ) scheme for retransmission of the codeword.

The error correction capability of a code also depends on the minimum distance.

However, the number of correctable error patterns is limited by the number of possible

syndromes or coset leaders in the standard array. To determine the error correction

capability of an (n ,
k) code, it is convenient to view the 2k codewords as points in an

n-dimensional space. If each codeword is viewed as the center of a sphere of radius

(Hamming distance) t
,
the largest value that t may have without intersection (or tan-

gency) of any pair of the 2k spheres is t = —
1)J , where |_xj denotes the largest

integer contained in x. Within each sphere lie all the possible received codewords of

distance less than or equal to t from the valid codeword. Consequently, any received

code vector that falls within a sphere is decoded into the valid codeword at the center of

the sphere. This implies that an (n, k) code with minimum distance dmm is capable of

correcting t = [J(<4nin
—

1)J
errors. Figure 7.5-1 is a two-dimensional representation

of the codewords and the spheres.

As described above, a code may be used to detect d^n — 1 errors or to correct

t = \\{dmm — 1)J
errors. Clearly, to correct t errors implies that we have detected t

errors. However, it is also possible to detect more than t errors if we compromise in the

error correction capability of the code. For example, a code with dmm = 1 can correct
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up to t = 3 errors. If we wish to detect four errors, we can do so by reducing the radius

of the sphere around each codeword from 3 to 2. Thus, patterns with four errors are

detectable, but only patterns of two errors are correctable. In other words, when only

two errors occur, these are corrected; and when three or four errors occur, the receiver

may ask for a retransmission. If more than four errors occur, they will go undetected if

the codeword falls within a sphere of radius 2. Similarly, for d^n = 7, five errors can

be detected and one error corrected. In general, a code with minimum distance dm*n can

detect ed errors and correct ec errors, where

&d — ^min 1

and

< ed

7.5-2 Block and Bit Error Probability for Hard Decision Decoding

In this section we derive bounds on the probability of error for hard decision decoding

of linear binary block codes based on error correction only.

From the above discussion, it is clear that the optimum decoder for a binary sym-

metric channel will decode correctly if (but not necessarily only if) the number of errors

in a codeword is less than one-half the minimum distance dm of the code. That is, any

number of errors up to

t — ~(dmin ~ 1 )



434 Digital Communications

is always correctable. Since the binary symmetric channel is memoryless, the bit errors

occur independently. Hence, the probability of m errors in a block of n bits is

P(m, n) =Q p
m

( 1 - pf~
m

(7.5-5)

and, therefore, the probability of a codeword error is upper-bounded by the expression

n

Pe < ^2 P(m, n) (7.5-6)

m=t -f 1

For high signal-to-noise ratios, i.e., small values of p ,
Equation 7.5-6 can be approxi-

mated by its first term, and we have

Pe » ^ ^
p
t+l

( 1 - p)"
- '-1

(7.5-7)

This equation states that when 0 is transmitted, the probability of error almost entirely is

equal to the probability of receiving sequences of weight t+ 1 . To derive an approximate

bound on the error probability of each binary symbol in a codeword, we note that if 0

is sent and a sequence of weight t + 1 is received, the decoder will decode the received

sequence of weight t + 1 to a codeword at a distance at most t from the received

sequence and hence a distance of at most 2t + l from 0 . But since the minimum weight

of the code is 2t + 1, the decoded codeword has to be of weight 2t + 1. This means

that for each highly probable block error we have 2t + 1 bit errors in the codeword

components; hence from Equation 7.5-7 we obtain

Pbs * (
” '

) p
,+l

( 1 - p)
n~'~ l

(7.5-8)
n \t+IJ

Equality holds in Equation 7.5-6 if the linear block code is a perfect code. To

describe the basic characteristics of a perfect code, suppose we place a sphere of radius

t around each of the possible transmitted codewords. Each sphere around a codeword

contains the set of all codewords of Hamming distance less than or equal to t from the

codeword. Now, the number of codewords in a sphere of radius t — —
1)J

is

Since there are M = 2k possible transmitted codewords, there are 2k nonoverlapping

spheres, each having a radius t. The total number of codewords enclosed in the 2k

spheres cannot exceed the 2n possible received codewords. Thus, a r-error correcting

code must satisfy the inequality

< 2
n

(7.5-10)



Chapter Seven: Linear Block Codes 435

or, equivalently,

2
"_^eQ

(

7 -5-n )

A perfect code has the property that all spheres of Hamming distance

t = ~
1)J

around the M — 2k possible transmitted codewords are disjoint

and every received codeword falls in one of the spheres. Thus, every received code-

word is at most at a distance t from one of the possible transmitted codewords, and

Equation 7.5-1 1 holds with equality. For such a code, all error patterns of weight less

than or equal to t are corrected by the optimum (minimum-distance) decoder. On the

other hand, any error pattern of weight t + 1 or greater cannot be corrected. Conse-

quently, the expression for the error probability given in Equation 7.5-6 holds with

equality. The reader can easily verify that the Hamming codes, which have the param-

eters n = 2n
~k —

1, dnun = 3, and t
—

1, are an example of perfect codes. The (23, 12)

Golay code has parameters dm [n = 7 and t = 3. It can be easily verified that this code

is also a perfect code. These two nontrivial codes and the trivial code consisting of two

codewords of odd length n and d^n = n are the only perfect binary block codes.

A quasi-perfect code is characterized by the property that all spheres of Hamming
radius t around the M possible transmitted codewords are disjoint and every received

codeword is at most at a distance t + 1 from one of the possible transmitted codewords.

For such a code, all error patterns of weight less than or equal to t and some error

patterns of weight t + 1 are correctable, but any error pattern of weight t + 2 or greater

leads to incorrect decoding of the codeword. Clearly, Equation 7.5-6 is an upper bound

on the error probability, and

n

Pe> J2 (7.5-12)

m=t+

2

is a lower bound.

A more precise measure of the performance for quasi-perfect codes can be ob-

tained by making use of the inequality in Equation 7.5-1 1. That is, the total number of

codewords outside the 2k spheres of radius t is

If these codewords are equally subdivided into 2k sets and each set is associated with

one of the 2k spheres, then each sphere is enlarged by the addition of

&+i = 2
n~k -£Q (7.5-13)

codewords having distance t + 1 from the transmitted codeword. Consequently, of

the
( f

error patterns of distance t + 1 from each codeword, we can correct f5t+ \

error patterns. Thus, the error probability for decoding the quasi- perfect code may be
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expressed as

n

Pe = ^ P(m, n) +
m=t+2

p
,+\i - pf-’-

1
(7.5-14)

Another pair of upper and lower bounds is obtained by considering two codewords

that differ by the minimum distance. First, we note that Pe cannot be less than the

probability of erroneously decoding the transmitted codeword as its nearest neighbor,

which is at a distance dm -m from the transmitted codeword. That is,

Pe > E
m=|dmin/2J+ l

p
m
(\ — p)

d
(7.5-15)

On the other hand, Pe cannot be greater than 2k — l times the probability of erroneously

decoding the transmitted codeword as its nearest neighbor, which is at a distance dm -m
from the transmitted codeword. That is a union bound, which is expressed as

C/nun

Pe < (2
* - 1

) ^
m=L^nun/2J+ l ^

nun

j
p
m
(l - p)

d™~m
(7.5-16)

When M — 2* is large, the lower bound in Equation 7.5-15 and the upper bound in

Equation 7.5-16 are very loose.

General bounds on block and bit error probabilities under hard decision decoding

are obtained by using relations derived in Equations 7.2-39, 7.2-43, and 7.2-48. The

value of A for hard decision decoding was found in Example 6.8-1 and is given by

A = v^4/?(l — p). The results are

(A(Z) - 1)

Z=j4p(l-p)

(7.5-17)

(2* -l)[4p(l -/>)]%* (7.5-18)

- —B(Y, Z
)

|

K ° 1 K=l,Z=V4p(l-p)

(7.5-19)

7.6

COMPARISON OF PERFORMANCE BETWEEN HARD DECISION
AND SOFT DECISION DECODING

It is both interesting and instructive to compare the bounds on the error rate performance

of linear block codes for soft decision decoding and hard decision decoding on an

AWGN channel. For illustrative purposes, we use the Golay (23, 12) code, which has

the relatively simple weight distribution given in Equation 7.3-15. As stated previously,

this code has a minimum distance dm^ = 7.

First we compute and compare the bounds on the error probability for hard decision

decoding. Since the Golay (23, 12) code is a perfect code, the exact error probability
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for hard decision decoding is given by Equation 7.5-6 as

p
m

( i - p)
,23—m

P
m

{ l - p)
23~m

(7.6-1)

where p is the probability of a binary digit error for the binary symmetric channel.

Binary (or four-phase) coherent PSK is assumed to be the modulation/demodulation

technique for the transmission and reception of the binary digits contained in each

codeword. Thus, the appropriate expression for p is given by Equation 7.5-1 . In addition

to the exact error probability given by Equation 7.6-1, we have the lower bound given

by Equation 7.5-15 and the three upper bounds given by Equations 7.5-16, 7.5-17,

and 7.5-18. Numerical results obtained from these bounds are compared with the

exact error probability in Figure 7.6-1. We observe that the lower bound is very loose.

At Pe = 10
-5

,
the lower bound is off by approximately 2 dB from the exact error

probability. All three upper bounds are very loose for error rates above Pe = 10
-2

.

It is also interesting to compare the performance between soft and hard decision

decoding. For this comparison, we use the upper bounds on the error probability for

soft decision decoding given by Equation 7.4-7 and the exact error probability for hard

decision decoding given by Equation 7.6-1 . Figure 7.6-2 illustrates these performance

characteristics. We observe that the two bounds for soft decision decoding differ by

approximately 0.5 dB at Pe = 10
-6

and by approximately 1 dB at Pe = 10
-2

. We also

SNR per bit, yb (dB)

FIGURE 7.6-1

Comparison of bounds with exact error

probability for hard decision decoding of Golay

(23, 12) code.
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FIGURE 7.6-2

Comparison of soft-decision decoding versus

hard-decision decoding for a (23, 12) Golay

code.

observe that the difference in performance between hard and soft decision decoding

is approximately 2 dB in the range 10
-2 < Pe < 10

-6
. In the range Pe > 10

-2
,
the

curve of the error probability for hard decision decoding crosses the curves for the

bounds. This behavior indicates that the bounds for soft decision decoding are loose

when Pe > 10“2
.

As we observed in Example 6.8-3 and Figure 6.8-4, there exists a roughly 2-dB

gap between the cutoff rates of a BPSK modulated scheme under soft and hard decision

decoding. A similar gap also exits between the capacities in these two cases. This result

can be shown directly by noting that the capacity of a BSC, corresponding to hard

decision decoding, is given by Equation 6.5-29 as

c = 1 - H2(p) = l + p log2 p + (1 - p) log2 (l - p) (7.6-2)

where

P = Q (^2VbRc) (7.6-3)

For small values of Rc we can use the approximation

Q{e)a
\-~k

e>0 aM)

to obtain

1

2

Yb^-c

7

r

P (7.6-5)



Chapter Seven: Linear Block Codes 439

Substituting this result into Equation 7.6-2 and using the approximation

log2 (l +x) «

we obtain

2

it In 2
Yb^c

(7.6-6)

(7.6-7)

Now we set C = Rc . Thus, in the limit as Rc approaches zero, we obtain the result

yb = ^Trln2~0.37dB (7.6-8)

The capacity of the binary-input AWGN channel with soft decision decoding can

be computed in a similar manner. The expression for the capacity in bits per code

symbol, derived in Equations 6.5-30 to 6.5-32 can be approximated for low values of

Rc as

C « Yb^c

ln2~
(7.6-9)

Again, we set C = Rc . Thus, as Rc —> 0, the minimum SNR per bit to achieve capacity

is

y& = ln2~-1.6dB (7.6-10)

Equations 7.6-8 and 7.6-10 clearly show that at low SNR values there exists roughly a

2-dB difference between the performance of hard and soft decision decoding. As seen

from Figure 6.8-4, increasing SNR results in a decrease in the performance difference

between hard and soft decision decoding. For example, at Rc = 0.8, the difference

reduces to about 1.5 dB.

The curves in Figure 6.8-4 provide more information than just the difference in

performance between soft and hard decision decoding. These curves also specify the

minimum SNR per bit that is required for a given code rate. For example, a code rate of

Rc = 0.8 can provide arbitrarily small error probability at an SNR per bit of 2 dB, when
soft decision decoding is used. By comparison, an uncoded binary PSK requires 9.6 dB
to achieve an error probability of 10

-5
. Hence, a 7.6-dB gain is possible by employing

a rate Rc = |
code. This gain is obtained by expanding the bandwidth by 25% since

the bandwidth expansion factor of such a code is 1/Rc = 1.25. To achieve such a

large coding gain usually implies the use of an extremely long block length code,

and generally a complex decoder. Nevertheless, the curves in Figure 6.8-4 provide

a benchmark for comparing the coding gains achieved by practically implementable

codes with the ultimate limits for either soft or hard decision decoding.
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7.7

BOUNDS ON MINIMUM DISTANCE OF LINEAR BLOCK CODES

The expressions for the probability of error derived in this chapter for soft decision and

hard decision decoding of linear binary block codes clearly indicate the importance

of the minimum-distance parameter in the performance of the code. If we consider

soft decision decoding, for example, the upper bound on the error probability given by

Equation 7.4-7 indicates that, for a given code rate Rc = k/n, the probability of error

in an AWGN channel decreases exponentially with dm\n . When this bound is used in

conjunction with the lower bound on dmm given below, we obtain an upper bound on

Pe ,
the probability of a codeword error. Similarly, we may use the upper bound given by

Equation 7.5-6 for the probability of error for hard decision decoding in conjunction

with the lower bound on dm -m to obtain an upper bound on the error probability for

linear binary block codes on the binary symmetric channel.

On the other hand, an upper bound on dm -m can be used to determine a lower bound
on the probability of error achieved by the best code. For example, suppose that hard

decision decoding is employed. In this case, we can use Equation 7.5-15 in conjunction

with an upper bound on to obtain a lower bound on Pe for the best (n, k) code.

Thus, upper and lower bounds on dmm are important in assessing the capabilities of

codes. In this section we study some bounds on minimum distance of linear block

codes.

7.7-1 Singleton Bound

The Singleton bound is obtained using the properties of the parity check matrix H.
Recall from the discussion in Section 7.2-2 that the minimum distance of a linear

block code is equal to the minimum number of columns ofH
, the parity check matrix,

that are linearly dependent. From this we conclude that the rank of the parity check

matrix is equal to d^n — 1. Since the parity check matrix is an (n — k) x n matrix, its

rank is at most n — k. Hence,

^rnin \ < Yl k (7.7—1)

or

dmm < n — k + 1 (7.7—2)

The bound given in Equation 7.7-2 is called the Singleton bound. Since dmm — 1 is

approximately twice the number of errors that a code can correct, from Equation 7.7-1

we conclude that the number of parity checks in a code must be at least equal to twice

the number of errors a code can correct. Although the proof of the Singleton bound
presented here was based on the linearity of the code, this bound applies to all block

codes, linear and nonlinear, binary and nonbinary.

Codes for which the Singleton bound is satisfied with equality, i.e., codes for which

drmn = n — k + 1, are called maximum-distance separable
,
or MDS, codes. Repetition

codes and their duals are examples of MDS codes. In fact these codes are the only
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binary MDS codes. ^ In the class of nonbinary codes, Reed-Solomon codes studied in

Section 7.1 1 are the most important examples ofMDS codes.

Dividing both sides of the Singleton bound by n, we have

— < 1 - Rc + - (7.7-3)
n n

If we define

sn =— (7.7—4)
n

we have

< 1 - Rc + - (7.7-5)
n

Note that dm -m/2 is roughly the number of errors that a code can correct. Therefore,

Un « - (7.7-6)
2 n

i.e., ^ approximately represents the fraction of correctable errors in transmission of n

bits.

If we define 8 = lim^oo 8n ,
we conclude that as n —> oo,

8<\ -Rc (7.7-7)

This is the asymptotic form of the Singleton bound.

7.7-2 Hamming Bound

The Hamming or sphere packing bound was previously developed in our study of the

performance of hard decision decoding and is given by Equation 7.5-1 1 as

-)fi—k

i=0

n

v
i

,

Taking the logarithm and dividing by n result in

or

(7.7-8)

(7.7-9)

(7.7-10)

This relation gives an upper bound for dmin in terms of n and k, known as the Hamming
bound. Note that the proof of the Hamming bound is independent of the linearity of

tThe (n, n ) code with dm [n = 1 is another MDS code, but this code introduces no redundancy and can

hardly be called a code.
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the code; therefore this bound applies to all block codes. For the g-ary block codes the

Hamming bound yields

l-i?c> (7.7-11)

In Problem 7.39 it is shown that for large n the right-hand side of Equation 7.7-9

can be approximated by

^Q « 2nIib(") (7.7-12)

where #&(•) is the binary entropy function defined in Equation 6.2-6. Using this

approximation, and Equation 7.7-6, we see that the asymptotic form of the Hamming
bound for binary codes becomes

Hb (0
< 1 - Rc (7.7-13)

The Hamming bound is tight for high-rate codes.

As discussed before, a code satisfying the Hamming bound given by Equa-

tion 7.7-10 with equality is called a perfect code. It has been shown by Tietavainen

(1973) that the only binary perfect codes* are repetition codes with odd length, Ham-
ming codes, and the (23, 12) Golay code with minimum distance 7. There exists only

one nonbinary perfect code which is the (11,6) ternary Golay code with minimum
distance 5.

7.7-3 Plotkin Bound

The Plotkin bound due to Plotkin (1960) states that for any g-ary block code we have

dmn q
k - q

k~ l— <
k \ (7.7-14)

n q
K — 1

For binary codes this bound becomes

n2k~ l

4iin < 2k _ I

(7.7-15)

The proof of the Plotkin bound for binary linear block codes is given in Prob-

lem 7.40. The proof is based on noting that the minimum distance of a code cannot

exceed its average codeword weight.

The form of the Plotkin bound given in Equation 7.7-15 is effective for low rates.

Another version of the Plotkin bound, given in Equation 7.7-16 for binary codes, is

tighter for higher-rate codes:

2j
~ l

drain < min (n - k + j)— (7.7-16)
1 <j<k 2J — 1

tHere again an (n, 1) code can be considered as a trivial perfect code.
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A simplified version of this bound, obtained by choosing j = 1 + |_log2 J ,
results in

2^min 2 |_log2 ^minj — M k

The asymptotic form of this bound with the assumption of 8 < ^
is

5 <
l

~(l - Rc )

(7.7-17)

(7.7-18)

7.7-4 Elias Bound

The asymptotic form of the Elias bound (see Berlekamp (1968)) states that for any

binary code with 8 < ^
we have

Hb Q (l - < 1 -Rc (7.7-19)

The Elias bound also applies to nonbinary codes. For nonbinary codes this bound states

that for any #-ary code with 8 < 1 —
^
we have

*'(
£
7
i

(
1 -!/ 1 "^')) sl "*' <7 '7_20)

where H
q ( •) is defined by

H
q (p)

= -p \og
q p

-
(1 - p) log

q
(\ -p) + p logq (q

-
1) (7.7-21)

for 0 < p < 1

.

7.7-5 McEliece-Rodemich-Rumsey-Welch (MRRW) Bound

The McEliece-Rodemich-Rumsey-Welch (MRRW) bound derived by McEliece et al.

(1977) is the tightest known bound for low to moderate rates. This bound has two

forms; the simpler form has the asymptotic form given by

Rc<Hb (^-~ v^l -
5))

(7.7-22)

for binary codes and for 8 < This bound is derived based on linear programming

techniques.

7.7-6 Varshamov-Gilbert Bound

All bounds stated so far give the necessary conditions that must be stratified by the

three main parameters n
,
k, and d of a block code. The Varshamov-Gilbert bound due to

Gilbert (1952) and Varshamov (1957) gives the sufficient conditions for the existence
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of an (n ,
k) code with minimum distance dm{n . The Varshamov-Gilbert bound in fact

goes further to prove the existence of a linear block code with the given parameters.

The Varshamov-Gilbert states that if the inequality

<qH~k
(7 '7_23)

is satisfied, then there exists a #-ary (n, k) linear block code with minimum distance

drmn > d . For the binary case the Varshamov-Gilbert bound becomes

^ 7 ^
(7.7-24)

The asymptotic version of the Varshamov-Gilbert bound states that if for 0 < 8 <
1 — - we have

q

H
q {8) < 1 -Rc (7.7-25)

where H
q
( •) is given by Equation 7.7-21, then there exists a g-ary (n ,

Rcn ) linear block

code with minimum distance of at least 8n .

A comparison of the asymptotic version of the bounds discussed above is shown in

Figure 7.7-1 for the binary codes. As seen in the figure, the tightest asymptotic upper

bounds are the Elias and the MRRW bounds. We add here that there exists a second

FIGURE 7.7-1

Comparison of Asymptotic Bounds.
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version of the MRRW bound that is better than the Elias bound at higher rates. The
ordering of the bounds shown on this plot is only an indication of how these bounds

compare as n oo. The region between the tightest upper bound and the Varshamov-

Gilbert lower bound can still be a rather wide region for certain block lengths. For

instance, for a (127, 33) code the best upper bound and lower bound yield d^n = 48

and Jmin = 32, respectively (Verhoeff (1987)).

7.8

MODIFIED LINEAR BLOCK CODES

In many cases design techniques for linear block codes result in codes with certain

parameters that might not be the exact parameters that are required for a certain appli-

cation. For example, we have seen that for Hamming codes n — 2m — 1 and d^ = 3.

In Section 7.10, we will see that the codeword lengths ofBCH codes, which are widely

used block codes, are equal to 2m — 1. Therefore, in many cases in order to change

the parameters of a code, the code has to be modified. In this section we study main

methods for modification of linear block codes.

7.8-1 Shortening and Lengthening

Let us assume C is an (n, k) linearblock code with minimum distance dmin . Shortening of

C means choosing some 1 <j<k and considering only 2k y information sequences

whose leading j bits are zero. Since these components carry no information, they

can be deleted. The result is a shortened code. The resulting code is a systematic

(n — j, k — j) linear block code with rate Rc = which is less than the rate of

the original code. Since the codewords of a shortened code are the result of removing

j zeros for the codewords of C, the minimum weight of the shortened code is at

least as large as the minimum weight of the original code. If j is large, the minimum
weight of the shortened code is usually larger than the minimum weight of the original

code.

example 7.8-1. A (15, 11) Hamming code can be shortened by 3 bits to obtain a

(12, 8) shortened Hamming code which is 8 bits (1 byte) of information. The (15, 11)

can also be shortened by 7 bits to obtain an (8, 4) shortened Hamming code with parity

check matrix

H =

"0 1

1 0

1 1

1 1

1 1

1 1

0 1

1 0

1 0

0 1

0 0

0 0

0 0‘

0 0

1 0

0 1

(7.8-1)

This code has a minimum distance of 4.
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example 7.8-2. Consider an (8, 4) linear block code with generator and parity check

matrices given by

G =

H =

P 1

0 1

0 0

p 0

p 1

0 0

0 0

0 1

1 1

0 1

1 0

0 1

1 1

0 1

1 0

0 0

1 1

1 1

1 1

0 1

1 1

0 1

1 1

1 0

i r

0 o

1 o

i i.

i r
i i

1 o

i i

(7.8-2)

Shortening this code by 1 bit results in a (7, 3) linear block code with the following

generator and parity check matrices.

G =

H -

'1

0

0

'1

0

0

1

0 1

1 0

0 1

1 1

0 1

1 0

0 0

110 0
"

1110
0 111
1111"
0 111
1110
10 11

(7.8-3)

Both codes have a minimum distance of 4.

Shortened codes are used in a variety of applications. One example is the shortened

Reed-Solomon codes used in CD recording where a (255, 251) Reed-Solomon code is

shortened to a (32, 28) code.

Lengthening a code is the inverse of the shortening operation. Here j extra infor-

mation bits are added to the code to obtain an (n + j,k + j) linear block code. The

rate of the lengthened code is higher than that of the original code, and its minimum
distance cannot exceed the minimum distance of the original code. Obviously in the

process of shortening and lengthening, the number of parity check bits of a code does

not change. In Example 7.8-2 the (8, 4) code can be considered a lengthened version

of the (7, 3) code.

7.8-2 Puncturing and Extending

Puncturing is a popular technique to increase the rate of a low-rate code. In puncturing

an (n , k) code the number of information bits l< remains unchanged whereas some

components of the code are deleted (punctured). The result is an (n — j, k) linear block

code with higher rate and possibly lower minimum distance. Obviously the minimum
distance of a punctured code cannot be higher than the minimum distance ofthe original

code.
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example 7.8-3. The (8, 4) code of Example 7.8-2 can be punctured to obtain a (7, 4)

code with

G =

H =

"1 1

0 1

0 0

0 0

"0 0

0 1

1 0

0 1

1 0

1 1

0 1

1 0

0 1

0 1

0 0

1 0

0 1

1 0

1 1

1 1

0 1

0"

0

0

1_

r
0

1

(7.8-4)

The reverse of puncturing is extending a code. In extending a code, while k remains

fixed, more parity check bits are added. The rate of the resulting code is lower, and the

resulting minimum distance is at least as large as that of the original code.

example 7.8-4. A (7, 4) Hamming code can be extended by adding an overall parity

check bit. The resulting code is an (8, 4) extended Hamming code whose parity check

matrix has a row of all Is to check the overall parity. If the parity check matrix of the

original Hamming code is an (n — k) x n matrix H, the parity check matrix of the

extended Hamming code is given by

H O'

1 : 1

(7.8-5)

where 1 denotes a 1 x n row vector of Is and 0 denotes a (n — k) x 1 vector column

of Os.

7.8-3 Expurgation and Augmentation

In these two modifications of a code, the block length n remains unchanged, and

the number of information sequence k is decreased in expurgation and increased in

augmentation.

The result of expurgation of an (n ,
k) linear block code is an (n, k — j) code with

lower rate whose minimum distance is guaranteed to be at least equal to the minimum
distance of the original code. This can be done by eliminating j rows of the generator

matrix G. The process of augmentation is the reverse of expurgation in which 27 (n
,
k)

codes are merged to generate ari (n, k + j) code.

7.9

CYCLIC CODES

Cyclic codes are an important class of linear block codes. Additional structure built in the

cyclic code family makes their algebraic decoding at reduced computational complexity

possible. The important class ofBCH codes and Reed-Solomon (RS) codes belongs to

the class of cyclic codes. Cyclic codes were first introduced by Prange (1957).
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7.9-1 Cyclic Codes— Definition and Basic Properties

Cyclic codes are a subset of the class of linear block codes that satisfy the following

cyclic shift property: if c = (cn -\ cn-

2

•
• • c\ Co) is a codeword of a cyclic code, then

(cn-2 cn-

3

•
•

• Co cn- 1 ), obtained by a cyclic shift of the elements of c
,
is also a codeword.

That is, all cyclic shifts of c are codewords. As a consequence of the cyclic property,

the codes possess a considerable amount of structure which can be exploited in the

encoding and decoding operations. A number of efficient encoding and hard decision

decoding algorithms have been devised for cyclic codes that make it possible to imple-

ment long block codes with a large number of codewords in practical communication

systems. Our primary objective is to briefly describe a number of characteristics of

cyclic codes, with emphasis on two important classes of cyclic codes, the BCH and

Reed-Solomon codes.

In dealing with cyclic codes, it is convenient to associate with a codeword c =
(cn _i cn-2

•
• c\ Co) a polynomial c{X) of degree at most n — 1

,
defined as

c(X ) = cn-\X
n 1 + cn-2Xn 2 + • •

• + C\X + Co (7.9—1)

For a binary code, each of the coefficients of the polynomial is either 0 or 1.

Now suppose we form the polynomial

Xc(X) = Cn-rX" + c„_2X
"“ 1 + • •

• + c\X2 + c0X

This polynomial cannot represent a codeword, since its degree may be equal to n (when

c
/7_ 1 = 1). However, if we divide Xc(X) by Xn + 1, we obtain

where

Xc(X) _ _
c( 1

>(X)

xn + 1

- c"_1 + xn + 1

(7.9-2)

C(1)(X) = cn-2Xn- 1 + cn_ 3Xn~2 + • •
• + C0X + Cn —\

Note that the polynomial c
(l>(X) represents the codeword c

(l) = (c„_2 •
•

• cq c„_i),

which is just the codeword c shifted cyclicly by one position. Since c ( 1 )(X) is the

remainder obtained by dividing Xc(X) by Xn + 1, we say that

c( 1 )(X) = Xc(X) mod (Xn + 1) (7.9-3)

In a similar manner, if c(X) represents a codeword in a cyclic code, then X l c(X )

mod (Xn + 1) is also a codeword of the cyclic code. Thus we may write

X’c(X) = Q(X)(Xn + 1) + c
(i\X) (7.9-4)

where the remainder polynomial c (,)(X) represents a codeword of the cyclic code,

corresponding to i cyclic shifts of c to the right, and Q(X) is the quotient.

We can generate a cyclic code by using a generator polynomial g(X) of degree

n — k. The generator polynomial of an (n, k) cyclic code is a factor of Xn + 1 and has

the general form

g(X) = Xn~k + gn-k-,XM + • •
• + giX + 1 (7.9-5)
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We also define a message polynomial u(X )

u(X7) — ujc—\X
k ^ ujc—2Xk

u iX H- uq (7.9—6)

where (uk~\ w&-2 *
•

• u\, u$) represent the k information bits. Clearly, the product

u(X)g(X) is a polynomial of degree less than or equal to n — 1, which may repre-

sent a codeword. We note that there are 2k polynomials {w;(X)}, and hence there are 2k

possible codewords that can be formed from a given g(X).

Suppose we denote these codewords as

cm (X) = um (X)g(X), m = 1,2,..., 2* (7.9-7)

To show that the codewords in Equation 7.9-7 satisfy the cyclic property, consider any

codeword c(X) in Equation 7.9-7. A cyclic shift of c(X) produces

c
(1)(X) = Xc(X) + cn-i(X

n + 1) (7.9-8)

and since g(X) divides both Xn + 1 and c(X), it also divides c(1)(X); i.e., c(1)(X) can

be represented as

cm(X) = Ul (X)g(X)

Therefore, a cyclic shift of any codeword c(X) generated by Equation 7.9-7 yields

another codeword.

From the above, we see that codewords possessing the cyclic property can be

generated by multiplying the 2k message polynomials with a unique polynomial g(X),

called the generator polynomial of the (n, k) cyclic code, which divides Xn + 1 and has

degree n — k. The cyclic code generated in this manner is a subspace Sc of the vector

space S. The dimension of Sc is k.

It is clear from above that an (

n

,
k) cyclic code can exist only if we can find

a polynomial g(X) of degree n — k that divides Xn + 1. Therefore the problem of

designing cyclic codes is equivalent to the problem of finding factors of Xn + 1 . We
have studied this problem for the case where n — 2m — 1 for some positive integer

m in the discussion following Equation 7.1-18, and we have seen that for this case

the factors of Xn + 1 are the minimal polynomials corresponding to the conjugacy

classes of nonzero elements of GF(2m ). For general n
,
the study of the factorization

of Xn + 1 is more involved. The interested reader is referred to the book by Wicker

(1995). Table 7.9-1 presents factoring of Xn + 1. The representation in this table is in

octal form; therefore the polynomial X 3 + X2 + 1 is represented as 001101 which is

equivalent to 15 in octal notation.

example 7.9-1. Consider a code with block length n = 7. The polynomial X1 + 1

has the following factors:

X1 + 1 = (X + l)(X
3 + A2 + 1)(X

3 + A + 1) (7.9-9)

To generate a (7, 4) cyclic code, we may take as a generator polynomial one of the

following two polynomials:

gl (X) = x 3 + X2 + l
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TABLE 7.9-1

Factors ofXn + 1 Based on MacWilliams and Sloane (1977)

n Factors

7 3.15.13

9 3.7.111

15 3.7.31.23.37

17 3.471.727

21 3.7.15.13.165.127

23 3.6165.5343

25 3.37.4102041

27 3.7.111.1001001

31 3.51.45.75.73.67.57

33 3.7.2251.3043.3777

35 3.15.13.37.16475.13627

39 3.7.17075.13617.17777

41 3.5747175.6647133

43 3.47771.52225.64213

45 3.7.31.23.27.111.11001.10011

47 3.75667061.43073357

49 3.15.13.1004000 1 . 1000020

1

51 3.7.661.471.763.433.727.637

55 3.37.3777.7164555.5551347

57 3.7.1341035.1735357.1777777

63 3.7.15.13.141.111.165.155.103.163.133.147.127

127 3.301.221.361.211.271.345.325.235.375.203.323.313.253.247.367.217.357.277

and

gi(X) = X3 + X + l

The codes generated by gi(X) and g2(X) are equivalent. The codewords in the (7, 4)

code generated by g\(X) = X3 + X2 + 1 are given in Table 7.9-2.

example 7.9-2. To determine the possible values of k for a cyclic code with block

length n — 25, we use Table 7.9-1. From this table, factors of X25 + 1 are 3, 37, and

4102041 whichcorrespondtoX+l,X4+X3+X2+X+l,andX20+X 15+X 10+X5+ l.

The possible (nontrivial) values for n — k are 1, 4, 20, and 5, 21, 24, where the latter

three are obtained by multiplying pairs of the polynomials. These correspond to the

values 24, 21, 20, 5, 4, and 1 for k.

In general, the polynomial Xn + 1 may be factored as

Xn + l = g(X)h(X)

where g(X) denotes the generator polynomial for the (n, k) cyclic code and h(X) denotes

the parity check polynomial that has degree k. The latter may be used to generate the

dual code. For this purpose, we define the reciprocal polynomial of h(X) as

Xkh(X
~

l

)
= Xk(X~k + hk-iX~

k+1 + hk_2X-
k+2 + •

• + hX- 1 + 1)

= 1 + hk-iX + hk-2X2 + • •
• + hxk- 1 + Xk

(7.9-10)
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TABLE 7.9-2

The (7, 4) Cyclic Code with Generator Polynomial

gi(X) = x3 + x2 + l

Information Bits Codewords

X3 X2 X 1 x° X6 X5 X4 X3 X2 X 1 x°
0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1 0 1

0 0 1 0 0 0 1 1 0 1 0

0 0 1 1 0 0 1 0 1 1 1

0 1 0 0 0 1 1 0 1 0 0

0 1 0 1 0 1 1 1 0 0 1

0 1 1 0 0 1 0 1 1 1 0

0 1 1 1 0 1 0 0 0 1 1

1 0 0 0 1 1 0 1 0 0 0

1 0 0 1 1 1 0 0 1 0 1

1 0 1 0 1 1 1 0 0 1 0

1 0 1 1 1 1 1 1 1 1 1

1 1 0 0 1 0 1 1 1 0 0

1 1 0 1 1 0 1 0 0 0 1

1 1 1 0 1 0 0 0 1 1 0

1 1 1 1 1 0 0 1 0 1 1

Clearly, the reciprocal polynomial is also a factor of Xn + 1. Hence, Xkh(X
~

l

) is

the generator polynomial of an (n, n — k) cyclic code. This cyclic code is the dual code

to the (n ,
k) code generated from g(X). Thus, the (n,n — k) dual code constitutes the

null space of the (;n , k) cyclic code.

example 7.9-3. Let us consider the dual code to the (7, 4) cyclic code generated

in Example 7.9-1. This dual code is a (7, 3) cyclic code associated with the parity

polynomial

hi(X) = (X+ 1)(X
3 + X + 1)

= X4 + X3
4- x2 + 1

(7.9-11)

The reciprocal polynomial is

X%{X~ l

) = 1 + X 4- x2 + x4

This polynomial generates the (7, 3) dual code given in Table 7.9-3. The reader can

verify that the codewords in the (7,3) dual code are orthogonal to the codewords in the

(7, 4) cyclic code of Example 7.9-1. Note that neither the (7, 4) nor the (7, 3) codes

are systematic.

It is desirable to show how a generator matrix can be obtained from the genera-

tor polynomial of a cyclic (n, k) code. As previously indicated, the generator matrix

for an (n, k) code can be constructed from any set of k linearly independent code-

words. Hence, given the generator polynomial g(X), an easily generated set of k lin-

early independent codewords is the codewords corresponding to the set of k linearly
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TABLE 7.9-3

The (7, 3) Dual Code with Generator Polynomial

X^h^X-1
) = X4 + X2 + X + 1

Information Bits Codewords

X2 X 1 x° X 6 X5 X4 X3 X2 X 1 x°

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 1 1 1

0 1 0 0 1 0 1 1 1 0

0 1 1 0 1 1 1 0 0 1

1 0 0 1 0 0 1 1 0 0

1 0 1 1 0 1 1 0 1 1

1 1 0 1 1 0 0 0 1 0

1 1 1 1 1 1 0 1 0 1

independent polynomials

Xk
-'g(X), Xk~2

g(X), Xg(X), g(X)

Since any polynomial of degree less than or equal to n — 1 and divisible by g(X)

can be expressed as a linear combination of this set of polynomials, the set forms a

basis of dimension k. Consequently, the codewords associated with these polynomials

form a basis of dimension k for the (n ,
k) cyclic code.

example 7.9-4. The four rows of the generator matrix for the (7, 4) cyclic code with

generator polynomial gi(X) = X3 + X2 + 1 are obtained from the polynomials

FgxiX) = X3+i + X2+i + X\ i = 3, 2, 1,

0

It is easy to see that the generator matrix is

ri l 0 1 0 0 0]

0 1 1 0 1 0 0
G i

=
0 0 1 1 0 1 0

0 0 0 1 1 0 1_

Similarly, the generator matrix for the (7, 4) cyclic code generated by the polynomial

g2(X) = X3 + X + 1 is

G 2

"1 0 1 1 0 0 0
"

0 10 110 0

0 0 10 110
0 0 0 1 0 1 1

(7.9-13)

The parity check matrices corresponding to G\ and G2 can be constructed in the same
manner by using the respective reciprocal polynomials (see Problem 7.46).

Shortened Cyclic Codes

From Example 7.9-2 and Table 7.9-1 it is clear that we cannot design cyclic (n ,
k)

codes for all values of n and k. One common approach to designing cyclic codes with

given parameters is to begin with the design of an (n ,
k) cyclic code and then shorten it
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by j bits to obtain an (n — j, k — j) code. The shortening of the cyclic code is carried out

by equating the j leading bits of the information sequence to zero and not transmitting

them. The resulting codes are called shortened cyclic codes, although in general they

are not cyclic codes. Of course by adding the deleted j zero bits at the receiver, we can

decode these codes with any decoder designed for the original cyclic code.

Shortened cyclic codes are extensively used in the form of shortened Reed-Solomon

codes and cyclic redundancy check (CRC) codes, which are widely used for error

detection in computer communication networks. For more details on CRC codes, see

Castagnoli et al. (1990) and Castagnoli et al. (1993).

7.9-2 Systematic Cyclic Codes

Note that the generator matrix obtained by this construction is not in systematic form.

We can construct the generator matrix of a cyclic code in the systematic form

G = h-P
from the generator polynomial as follows. First, we observe that the Zth row of G
corresponds to a polynomial of the form Xn~ l + Ri(X), l = 1, 2, . .

.

,

k, where Ri(X)

is a polynomial of degree less than n — k. This form can be obtained by dividing Xn~ l

by g(X). Thus, we have

1 = 1
,
2,...,*

Z = 1,2,...,* (7.9-14)

where Qi(X) is the quotient. But Xn~ l + Ri(X) is a codeword of the cyclic code since

Xn~ l R
{
(X ) = Qi(X)g(X). Therefore the desired polynomial corresponding to the

Zth row of G is Xn~ l + R/(X).

example 7.9-5. For the (7,4) cyclic code with generator polynomial g2(X) = X3 +
X + 1, previously discussed in Example 7.9-4, we have

X6 = (X3 + X + 1 )g2(X) + X2 +1

X5 = (

X

2 + l)g2(X) + X2 + X + 1

X4 = Xg2(X) + X2 + X

X 3 = g2(X) + X+1

Hence, the generator matrix of the code in systematic form is

’1 0 0 0 1 0 11

0 1 0 0 1 1 l
1

&2_
0 0 1 0 1 1 0

0 0 0 1 0 1 1

Xn~ l

Ri(X)
= Qi(X) +

g(X) 8(X)
’

or, equivalently.

Xn~ l = Q l(X)g(X) + R
l
(X),

(7.9-15)
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and the corresponding parity check matrix is

"1
1 1 0 1 0 (T

h2 = 0 1 1 1 0 1 0 (7.9-16)

1 1 0 1 0 0 1 .

It is left as an exercise for the reader to demonstrate that the generator matrix G2 given

by Equation 7.9-13 and the systematic form given by Equation 7.9-15 generate the

same set of codewords (see Problem 7.16).

The method for constructing the generator matrix G in systematic form according

to Equation 7.9-14 also implies that a systematic code can be generated directly from

the generator polynomial g(X). Suppose that we multiply the message polynomial u(X)

by Xn~k
. Thus, we obtain

Xn~ku(X) = uk^Xn- 1 + u k-2Xn~2 + • •
• + UlXn-k+1 + u0Xn~k

In a systematic code, this polynomial represents the first k bits in the codeword c(X).

To this polynomial we must add a polynomial of degree less than n — k representing

the parity check bits. Now, if X" ku(X) is divided by g(X), the result is

or, equivalently,

Xn~ku(X)

g(X)
= Q(X) +

r(X)

g(X)

Xn~ku(X) = Q(X)g(X) + r(X) (7.9-17)

where r(X) has degree less than n — k. Clearly, Q(X)g(X) is a codeword of the cyclic

code. Hence, by adding (modulo-2) r(X) to both sides of Equation 7.9-17, we obtain

the desired systematic code.

To summarize, the systematic code may be generated by

1. Multiplying the message polynomial u(X) by Xn~k

2. Dividing Xn~ku(X ) by g(X) to obtain the remainder r(X)

3. Adding r(X) to Xn~ku(X)

Below we demonstrate how these computations can be performed by using shift

registers with feedback.

Since Xn + 1 = g(X)h(X) or, equivalently, g(X)h(X) = 0 mod (Xn + 1), we
say that the polynomials g(X) and h(X) are orthogonal. Furthermore, the polynomials

X l g(X) and Xjh(X ) are also orthogonal for all i and j. However, the vectors corre-

sponding to the polynomials g(X) and h(X) are orthogonal only if the ordered elements

of one of these vectors are reversed. The same statement applies to the vectors corre-

sponding to X l g(X) and X j h(X). In fact, if the parity polynomial h{X) is used as a

generator for the (n,n — k) dual code, the set of codewords obtained just comprises the

same codewords generated by the reciprocal polynomial except that the code vectors

are reversed. This implies that the generator matrix for the dual code obtained from

the reciprocal polynomial Xkh(X~ l

) can also be obtained indirectly from h(X). Since

the parity check matrix H for the (n, k) cyclic code is the generator matrix for the
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dual code, it follows that H can also be obtained from h(X). The following example

illustrates these relationships.

example 7.9-6. The dual code to the (7, 4) cyclic code generated by gi(X) = X3 +
X2+\ isthe(7, 3) dual code that is generatedby the reciprocal polynomial X4h\(X~ l

)
=

X4+X2+

X

+ 1 . However, we may also use h i (X ) to obtain the generator matrix for the

dual code. Then the matrix corresponding to the polynomials X l h i(X), i = 2, 1, 0, is

Gh\

’1110 10 0
"

0 1110 10
0 0 1110 1

The generator matrix for the (7,3) dual code, which is the parity check matrix for the

(7, 4) cyclic code, consists of the rows of Ghi taken in reverse order. Thus,

H i
=

"0

0

1

0

1

0

1 0 1

0 1 1

1 1 1

i r
1 o

o o

The reader may verify that G\H\ = 0. Note that the column vectors of H\ consist

of all seven binary vectors of length 3, except the all-zero vector. But this is just the

description of the parity check matrix for a (7, 4) Hamming code. Therefore, the (7, 4)

cyclic code is equivalent to the (7, 4) Hamming code.

7.9-3 Encoders for Cyclic Codes

The encoding operations for generating a cyclic code may be performed by a linear

feedback shift register based on the use of either the generator polynomial or the parity

polynomial. First, let us consider the use of g(X).

As indicated above, the generation of a systematic cyclic code involves three steps,

namely, multiplying the message polynomial u(X) by Xn~k
,
dividing the product by

g(X), and adding the remainder to Xn~k u(X). Of these three steps, only the division is

nontrivial.

The division of the polynomial A(X) = Xn~ku(X ) of degree n — 1 by the

polynomial

g(.X) = gn-kX
n~k + + • •

• + glX + go

may be accomplished by the (n — &)-stage feedback shift register illustrated in Fig-

ure 7.9-1. Initially, the shift register contains all zeros. The coefficients of A(X) are

clocked into the shift register one (bit) coefficient at a time, beginning with the higher-

order coefficients, i.e., with an- 1 ,
followed by an-2 ,

and so on. After the kth shift, the

first nonzero output of the quotient is qu-\ = gn-kan- Subsequent outputs are gener-

ated as illustrated in Figure 7.9-1. For each output coefficient in the quotient, we must

subtract the polynomial g(X) multiplied by that coefficient, as in ordinary long division.

The subtraction is performed by means of the feedback part of the shift register. Thus,

the feedback shift register in Figure 7.9-1 performs division of two polynomials.

In our case, gn-k = go = 1, and for binary codes the arithmetic operations are

performed in modulo-2 arithmetic. Consequently, the subtraction operations reduce to

modulo-2 addition. Furthermore, we are interested only in generating the parity check
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Quotient

FIGURE 7.9-1

A feedback shift register for dividing the polynomial A(X) by g(X).

FIGURE 7.9-2

Encoding a cyclic code by use of the generator polynomial g(X).

bits for each codeword, since the code is systematic. Consequently, the encoder for the

cyclic code takes the form illustrated in Figure 7.9-2. The first k bits at the output of the

encoder are simply the k information bits. These k bits are also clocked simultaneously

into the shift register, since switch 1 is in the closed position. Note that the polynomial

multiplication of Xn~k with u(X) is not performed explicitly. After the k information

bits are all clocked into the encoder, the positions of the two switches are reversed.

At this time, the contents of the shift register are simply the n — k parity check bits,

which correspond to the coefficients of the remainder polynomial. These n — k bits are

clocked out one at a time and sent to the modulator.

example 7.9-7. The shift register for encoding the (7, 4) cyclic code with generator

polynomial g{X) = X 3 + X + 1 is illustrated in Figure 7.9-3. Suppose the input

message bits are 01 10. The contents of the shift register are as follows:

Input Shift Shift Register Contents

0 000

0 1 000

1 2 110

1 3 101

0 4 100
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FIGURE 7.9-3

The encoder for the (7, 4) cyclic code

with generator polynomial

2(X) = X3 + X+1.

Hence, the three parity check bits are 100, which correspond to the code bits C5 = 0,

c6 = 0, and c7 = 1.

Instead of using the generator polynomial, we may implement the encoder for the

cyclic code by making use of the parity polynomial

h{X) = Xk + h-iX*- 1 + • •
• + h xX + 1

The encoder is shown in Figure 7.9-4. Initially, the k information bits are shifted

into the shift register and simultaneously fed to the modulator. After all k information

bits are in the shift register, the switch is thrown into position 2 and the shift regis-

ter is clocked n — k times to generate the n — k parity check bits, as illustrated in

Figure 7.9-4.

example 7.9-8. The parity polynomial for the (7, 4) cyclic code generated by g(X )
=

X3 + X + 1 is h{X) = X4 + X2 + X + 1. The encoder for this code based on the parity

polynomial is illustrated in Figure 7.9-5. If the input to the encoder is the message

bits 0110
,
the parity check bits are C5 = 0

, ce = 0 ,
and c7 = 1

,
as is easily verified.

Note that the encoder based on the generator polynomial is simpler when n — k < k

(k > |), i.e., for high-rate codes
(
Rc > ^), while the encoder based on the parity

polynomial is simpler when k < n — k (k < |), which corresponds to low- rate codes

(Rc < I).

FIGURE 7.9-4

The encoder for an (n ,
k) cyclic code based on the parity polynomial h{X).



458 Digital Communications

FIGURE 7.9-5

The encoder for the (7, 4) cyclic code based on the parity polynomial

h{X) = X4 + X2 + X + 1.

7.9-4 Decoding Cyclic Codes

Syndrome decoding, described in Section 7.5, can be used for the decoding of cyclic

codes. The cyclic structure of these codes makes it possible to implement syndrome

computation and the decoding process using shift registers with considerable less com-

plexity compared to the general class of linear block codes.

Let us assume that c is the transmitted codeword of a binary cyclic code and

y = c + e is the received sequence at the output of the binary symmetric channel model

(i.e., the channel output after the matched filter outputs have been passed through a

binary quantizer). In terms of the corresponding polynomials, we can write

y(X) = c(X) + e(X) (7.9-18)

and since c(X) is a codeword, it is a multiple of g(X), the generator polynomial of the

code; i.e., c(X) = u(X)g(X) for some u(X ), a polynomial of degree at most k — 1.

y(X) = u(X)g(X) + e(X) (7.9-19)

From this relation we conclude

y(X) mod g(X) = e(X) mod g(X) (7.9-20)

Let us define s(X) = y(X) mod g(X) to denote the remainder of dividing y(X) by

g(X) and call s(X) the syndrome polynomial
,
which is a polynomial of degree at most

n — k — 1.

To compute the syndrome polynomial, we need to divide y(X) by the generator

polynomial g(X) and find the remainder. Clearly ^(X) depends on the error pattern

and not on the codeword, and different error patterns can yield the same syndrome

polynomials since the number ofpossible syndrome polynomials is 2n
~k and the number

of possible error patterns is 2n . Maximum-likelihood decoding calls for finding the error

pattern of the lowest weight corresponding to the computed syndrome polynomial ^(X)

and adding it to y(X) to obtain the most likely transmitted codeword polynomial c(X).

The division ofy(X) by the generator polynomial g(X) may be carried out by means

of a shift register which performs division as described previously. First the received

vector y is shifted into an (n — k)-stage shift register as illustrated in Figure 7.9-6.

Initially, all the shift register contents are zero, and the switch is closed in position 1.

After the entire n-bit received vector has been shifted into the register, the contents

of the n — k stages constitute the syndrome with the order of the bits numbered as

shown in Figure 7.9-6. These bits may be clocked out by throwing the switch into
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Output

syndrome
-O

2

FIGURE 7.9-6

An (

n

— &)-stage shift register for computing the syndrome.

position 2. Given the syndrome from the (n — k)-stage shift register, a table lookup may
be performed to identify the most probable error vector. Note that if the code is used for

error detection, a nonzero syndrome detects an error in transmission of the codeword.

example 7.9-9. Let us consider the syndrome computation for the (7 , 4) cyclic Ham-
ming code generated by the polynomial g(X)

= X3 + X + 1. Suppose that the received

vector is y = (1001 101). This is fed into the three-stage register shown in Figure 7 .9-7

.

After seven shifts, the contents of the shift register are 110, which corresponds to the

syndrome s = (Oil). The most probable error vector corresponding to this syndrome

is e = (0001000) and, hence,

c = y + e = (1000101)

The information bits are 1 0 0 0.

The table lookup decoding method using the syndrome is practical only when n — k

is small, e.g., when n — k < 10. This method is impractical for many interesting and

powerful codes. For example, if n — k = 20, the table has 220 (approximately 1 million)

Input

1011001

Output

--X)— syndrome

Shift Register contents

0 . 000

1 100

2 010

3 001

4 010

5 101

6 100

7 110

FIGURE 7.9-7

Syndrome computation for the (7, 4) cyclic code with generator polynomial

g(X) = X3 + X + 1 and received vector y = (1001101).
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entries. Such a large amount of storage and the time required to locate an entry in such a

large table renders the table lookup decoding method impractical for long codes having

large numbers of check bits.

The cyclic structure of the code can be used to simplify finding the error polynomial.

First we note that, as shown in Problem 7.54, if s(X) is the syndrome corresponding to

error sequence e(X), then the syndrome corresponding to e^
l\X), the right cyclic shift

of e(X ), is j (1) (X), defined by

s
{l)
(X) = Xs(X) mod g(X) (7.9-21)

This means that to obtain the syndrome corresponding to y
(1)

,
we need to multiply

s(X) by X and then divide by g(X); but this is equivalent to shifting the content of the

shift register shown in Figure 7.9-6 to the right when the input is disconnected. This

means that the same combinatorial logic circuit that computes en-\ from s can be used

to compute en-2 from a shifted version of s, i.e., s^
l\ The resulting decoder is known

as the Meggit decoder (Meggitt (1961)).

The Meggit decoder feeds the received sequence y into the syndrome computing

circuit to compute ^(Z); the syndrome is fed into a combinatorial circuit that computes

en -\. The output of this circuit is added modulo-2 to yn~ i, and after correction and a

cyclic shift of the syndrome, the same combinatorial logic circuit computes en-2 . This

process is repeated n times, and if the error pattern is correctable, i.e., is one of the

coset leaders, the decoder is capable of correcting it.

For details on the structure of decoders for general cyclic codes, the interested

reader is referred to the texts of Peterson and Weldon (1972), Lin and Costello (2004),

Blahut (2003), Wicker (1995), and Berlekamp (1968).

7.9-5 Examples of Cyclic Codes

In this section we discuss certain examples of cyclic codes. We have have selected the

cyclic Hamming, Golay, and maximum-length codes discussed previously as general

linear block codes. The most important class of cyclic codes, i.e., the BCH codes, is

discussed in Section 7.10.

Cyclic Hamming Codes

The class of cyclic codes includes the cyclic Hamming codes
,
which have a block length

n = 2m — 1 and n — k = m parity check bits, where m is any positive integer. The cyclic

Hamming codes are equivalent to the Hamming codes described in Section 7.3-2.

Cyclic Golay Codes

The linear (23, 12) Golay code described in Section 7.3-6 can be generated as a cyclic

code by means of the generator polynomial

g(X) = X n + X 9 + X1 + X6 + X 5 + X + 1 (7.9-22)

The codewords have a minimum distance dmin = 7.
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FIGURE 7.9-8

Three-stage (m = 3) shift register with

feedback.

Maximum-Length Shift Register Codes

Maximum-length shift register codes are a class of cyclic codes equivalent to the

maximum-length codes described in Section 7.3-3 as duals of Hamming codes. These

are a class of cyclic codes with

(n, k) = (2
m —

1, m) (7.9-23)

where m is a positive integer. The codewords are usually generated by means of an

ra-stage digital shift register with feedback, based on the parity polynomial. For each

codeword to be transmitted, the m information bits are loaded into the shift register,

and the switch is thrown from position 1 to position 2. The contents of the shift register

are shifted to the left one bit at a time for a total of 2m — 1 shifts. This operation

generates a systematic code with the desired output length n — 2m — 1. For example,

the codewords generated by the m = 3 stage shift register in Figure 7.9-8 are listed in

Table 7.9-4.

Note that, with the exception of the all-zero codeword, all the codewords generated

by the shift register are different cyclic shifts of a single codeword. The reason for this

structure is easily seen from the state diagram of the shift register, which is illustrated

in Figure 7.9-9 form = 3. When the shift register is loaded initially and shifted 2m — 1

times, it will cycle through all possible 2m — 1 states. Hence, the shift register is back

to its original state in 2m — 1 shifts. Consequently, the output sequence is periodic with

length n = 2m — 1. Since there are 2m — 1 possible states, this length corresponds to the

largest possible period. This explains why the 2m — 1 codewords are different cyclic

shifts of a single codeword. Maximum-length shift register codes exist for any positive

TABLE 7.9-4

Maximum-Length Shift Register Code for m = 3

Information Bits Codewords

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 1 1 0 1

0 1 0 0 1 0 0 1 1 1

0 1 1 0 1 1 1 0 1 0

1 0 0 1 0 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1

1 1 0 1 1 0 1 0 0 1

1 1 1 1 1 1 0 1 0 0
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FIGURE 7.9-9

The seven states for the m = 3 maximum-length shift

register.

value of m. Table 7.9-5 lists the stages connected to the modulo-2 adder that result in

a maximum-length shift register for 2 < m < 34.

Another characteristic of the codewords in a maximum-length shift register code

is that each codeword, with the exception of the all-zero codeword, contains 2m_1 ones

TABLE 7.9-5

Shift-Register Connections for Generating Maximum-Length Sequences

[from Forney (1970)].

m
Stages Connected

to Modulo-2 Adder m
Stages Connected

to Modulo-2 Adder m
Stages Connected

to Modulo-2 Adder

2 1,2 13 1,10,11,13 24 1,18,23,24

3 1,3 14 1,5,9,14 25 1,23

4 1,4 15 1,15 26 1,21,25,26

5 1,4 16 1,5,14,16 27 1,23,26,27

6 1,6 17 1,15 28 1,26

7 1,7 18 1,12 29 1,28

8 1,5,6,

7

19 1,15,18,19 30 1,8,29,30

9 1,6 20 1,18 31 1,29

10 1,8 21 1,20 32 1,11,31,32

11 1,10 22 1,22 33 1,21

12 1,7,9,12 23 1,19 34 1,8,33,34
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and 2m_1 — 1 zeros, as shown in Problem 7.23. Hence all these codewords have identical

weights, namely, w = 2m_1 . Since the code is linear, this weight is also the minimum
distance of the code, i.e.,

As stated in Section 7.3-3, the maximum-length shift register code shown in Table 7.9-4

is identical to the (7, 3) code given in Table 7.9-3, which is the dual of the (7, 4)

Hamming code given in Table 7.9-2. The maximum-length shift register codes are the

dual codes of the cyclic Hamming (2
m — 1, 2

m — 1 —m) codes. The shift register for

generating the maximum-length code may also be used to generate a periodic binary

sequence with period n = 2m — 1. The binary periodic sequence exhibits a periodic

autocorrelation R(m) with values R(m) = n form = 0, ±n, d=2n , . .
.

,

and R(m) = — 1

for all other shifts as described in Section 12.2-4. This impulselike autocorrelation

implies that the power spectrum is nearly white, and hence the sequence resembles

white noise. As a consequence, maximum-length sequences are called pseudo-noise

(PN) sequences and find use in the scrambling of data and in the generation of spread

spectrum signals as discussed in Chapter 12.

7.10

BOSE-CHAUDHURI-HOCQUENGHEM (BCH) CODES

BCH codes comprise a large class of cyclic codes that include codes over both binary

and nonbinary alphabets. BCH codes have rich algebraic structure that makes their

decoding possible by using efficient algebraic decoding algorithms. In addition, BCH
codes exist for a wide range of design parameters (rates and block lengths) and are well

tabulated. It also turns out that BCH codes are among the best-known codes for low to

moderate block lengths.

Our study of BCH codes is rather brief, and the interested reader is referred to

standard texts on coding theory including those by Wicker (1995), Lin and Costello

(2004), Berlekamp (1968), and Peterson and Weldon (1972) for details and proofs.

7.10-1 The Structure ofBCH Codes

BCH codes are a subclass of cyclic codes that were introduced independently by Bose

Ray-Chaudhuri (1960a, 1960b) and Hocquenghem (1959). These codes have rich alge-

braic structure that makes it possible to design efficient algebraic decoding algorithms

for them.

Since BCH codes are cyclic codes, we can describe them in terms of their genera-

tor polynomial g(X). In this section we treat only a special class of binary BCH codes

called primitive binary BCH codes. These codes have a block length of n = 2m — 1

for some integer m > 3, and they can be designed to have a guaranteed error de-

tection capability of at least t errors for any t < 2m_1 . In fact for any two positive

integers m > 3 and t < 2m
~ l we can design a BCH code whose parameters satisfy the
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following relations:

n = 2
m - 1

n — k < mt (7.10-1)

dmin >2t+l

The first equality determines the block length of the code. The second inequality pro-

vides a bound on the number of parity check bits of the code, and the third inequality

states that this code is capable of correcting at least t errors. The resulting code is called

a f-error correcting BCH code; although it is possible that this code can correct more

than t errors.

The Generator Polynomial for BCH Codes

To design a f-error correcting (primitive) BCH code, we choose a
,
a primitive element

of GF(2m ). Then g(X), the generator polynomial of the BCH code, is defined as the

lowest-degree polynomial g(X) over GF(2) such that a, a2
,
a3

, ...

,

and a2t
are its

roots.

Using the definition of the minimal polynomial of a field element given in Sec-

tion 7.1-1 and by Equation 7.1-12, we know that any polynomial over GF(2) that has

e GF(2) as a root is divisible by </>p(X), the minimal polynomial of fi. Therefore

g(X) must be divisible by 0a/(X) for 1 < i < 2t. Since g(X) is a polynomial of lowest

degree with this property, we conclude that

g(X) = LCM {(/>ai(X), 1 < i < 21} (7.10-2)

whereLCM denotes the least common multiple of0a « (X)’s. Also note that, for instance,

the 4>a i (X ) for i = 1 , 2, 4, . .

.

are the same since a, a2
,
a4

,
. . . are conjugates and hence

they have the same minimal polynomial. The same is true for a3
,
a6

,
a 12

, Therefore,

in the expression for g(X) it is sufficient to consider only odd values of a, i.e.,

g(X) = LCM (0a (X), 0„3(X), 0„ 5 (X), . .
.

,

0„2,-i(X)} (7.10-3)

and since the degree of (j)ai(X) does not exceed m, the degree of g(X) is at most mt.

Therefore, n — k < mt.

Let us assume that c(X) is a codeword polynomial of the designed BCH code.

From the cyclic property of the code we know that g(X) is a divisor of c(X). Therefore,

all a 1

for 1 < i < It are roots of c(X); i.e., for any codeword polynomial c(X) we
have

c (a
1

)
= 0 l < i <2t (7.10-4)

The conditions given in Equation 7.10-4 are necessary and sufficient conditions for a

polynomial of degree less than n to be a codeword polynomial of the BCH code.

example 7 .10-1 . To design a single-error-correcting (t = 1) BCH code with block

length n = 15 (m = 4), we choose a a primitive element in GF(24
). The minimal

polynomial of a is a primitive polynomial of degree 4.
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From Table 7.1-5 we see that g(X) = 0a (X) = X4 + X + 1. Therefore, n — k =
4 and k = 11. Since the weight of g(X) is 3, we have dm \n > 3. Combining this

with Equation 7.10-1, which states dm \n < 2t 4- l = 3, we conclude that dm{n = 3.

Therefore a single-error-correcting BCH code with block length 15 is a (15, 11) code

with = 3. This is, in fact, a cyclic Hamming code. In general, cyclic Hamming
codes are single-error-correcting BCH codes.

example 7.10-2. To design a four-error-correcting (t = 4) BCH code with block

length n = 15 (m = 4), we choose a a primitive element in GF(24 ). The minimal

polynomial of a is g(X) = 0a (X) = X4 + X + 1. We also need to find the minimal

polynomials of a 3
,
a 5

,
and a 1

.

From Example 7.1-5 we have 4>a 3 = X4 + X3 + X2 + X + 1, 5 = X2 + X + 1,

and 0a7 (Z) = X4
4-

X

3 4-1. Therefore,

g(X) = (X4 + X + 1)(X
4 + X 3 + X2 + X + 1)

x (X2 + X + 1)(X
4 + X 3 + 1)

= x 14 + x 13 + x 12 + x 11 + x 10 + x9 + x 8 + x7
(7 ‘ 10 5)

+ X6 + X5 + X4 + X3 + X2 + X + 1

Hence n — k = 14 and k = 1; the resulting code is a (15, 1) repetition code with

dmin = 15. Note that this code was designed to correct four errors but it is capable of

correcting up to seven errors.

example 7.10-3. To design a double-error-correcting BCH code with block length

n = 15 (m = 4), we need the minimal polynomials of a and a 3
. The minimal poly-

nomial of a is g(X) = (j)a {X) = X4 + X + 1, and from Example 7.1-5, (j)a 3 =
X4 + X 3 + X2 + X + 1. Therefore,

*(X) = (X4 + X + 1)(X
4 + X 3 + X2 + X + 1)

= X s + X1 + X 6 + X4 + 1

(7.10-6)

Hence n — k = 8 and k = 7, and the resulting code is a (15, 7) BCH code with dm{n = 5.

Table 7.10-1 lists the coefficients of generator polynomials forBCH codes ofblock

lengths 7 < n < 255, corresponding to 3 < m < 8. The coefficients are given in octal

form, with the leftmost digit corresponding to the highest-degree term of the generator

polynomial. Thus, the coefficients of the generator polynomial for the (15, 5) code are

2467, which in binary form is 10100110111. Consequently, the generator polynomial

is g(X) = X 10 + X8 + X5 + X4 + X2 + X + 1. A more extensive list of generator

polynomials for BCH codes is given by Peterson and Weldon (1972), who tabulated

the polynomial factors of X2m~ l + 1 for m < 34.

Let us consider from Table 7. 10-1 the sequence ofBCH codes with triplet param-

eters (ft, k
,
t) such that for these codes Rc is close to These codes include (7, 4, 1),

(15, 8, 2), (31, 16, 3), (63, 30, 6), (127, 64, 10), and (255, 131, 18) codes. We observe

that as ft increases and the rate remains almost constant, the ratio that is the fraction

of errors that the code can correct, decreases. In fact for all BCH codes with constant

rate, as the block length increases, the fraction of correctable errors goes to zero. This

shows that the BCH codes are asymptotically bad, and for large n their 8n falls below
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TABLE 7.10-1

Coefficients of Generator Polynomials (in Octal Form) for BCH Codes of Length 7 <n< 255

n k t

1 4 1 13

15 11 1 23

7 2 721

5 3 2467

31 26 1 45

21 2 3551

16 3 107657

11 5 5423325

6 7 313365047

63 57 1 103

51 2 12471

45 3 1701317

39 4 166623567

36 5 1033500423

30 6 157464165547

24 7 17323260404441

18 10 1363026512351725

16 11 6331141367235453

10 13 472622305527250155

7 15 5231045543503271737

127 120 1 211

113 2 41567

106 3 11554743

99 4 3447023271

92 5 624730022327

85 6 130704476322273

78 7 26230002166130115

71 9 6255010713253127753

64 10 1206534025570773100045

57 11 33526525205705053517721

50 13 54446512523314012421501421

43 14 17721772213651227521220574343

36 15 3146074666522075044764574721735

29 21 403114461367670603667530141176155

22 23 123376070404722522435445626637647043

15 27 22057042445604554770523013762217604353

8 31 7047264052751030651476224271567733130217

255 247 1 435

239 2 267543

231 3 156720665

223 4 75626641375

215 5 23157564726421

207 6 16176560567636227

199 7 7633031270420722341

191 8 2663470176115333714567

187 9 52755313540001322236351

179 10 226247 107 173404324 16300455

171 11 1541621421234235607706163067

((continued)
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TABLE 7.10-1

(Continued)

n k t g(X)

163 12 7500415510075602551574724514601

155 13 3757513005407665015722506464677633

147 14 164213017353716552530416530544101 171

1

139 15 461401732060175561570722730247453567445

131 18 215713331471510151261250277442142024165471

123 19 120614052242066003717210326516141226272506267

1 15 21 60526665572100247263636404600276352556313472737

107 22 22205772322066256312417300235347420176574750154441

99 23 1065666725347317422274141620157433225241 1076432303431

91 25 6750265030327444172723631724732511075550762720724344561

87 26 110136763414743236435231634307172046206722545273311721317

79 27 66700035637657500020270344207366174621015326711766541342355

71 29 24024710520644321515554172112331163205444250362557643221706035

63 30 10754475055163544325315217357707003666111726455267613656702543301

55 31 7315425203501100133015275306032054325414326755010557044426035473617

47 42 2533542017062646563033041377406233175123334145446045005066024552543173

45 43 15202056055234161131101346376423701563670024470762373033202157025051541

37 45 5136330255067007414177447447245437530420735706174323432347644354737403044003

29 47 3025715536673071465527064012361377115342242324201174114060254757410403565037

21 55 1256215257060332656001773153607612103227341405653074542521153121614466513473725

13 59 464173200505256454442657371425006600433067744547656140317467721357026134460500547

9 63 15726025217472463201031043255355134614162367212044074545112766115547705561677516057

the Varshamov-Gilbert bound. We need, however, to keep in mind that this happens at

large values of n and for small to moderate values of n, which include the most practical

cases, these codes remain among the best-known codes for which efficient decoding

algorithms are known.

7.10-2 Decoding BCH Codes

Since BCH codes are cyclic codes, any decoding algorithm for cyclic codes can be

applied toBCH codes. For instance, BCH codes can be decoded using a Meggit decoder.

However, the additional structure in BCH codes makes it possible to use more efficient

decoding algorithms, particularly when using codes with long block lengths.

Let us assume that a codeword c is associated with codeword polynomial c(X). By
Equation 7.10-4, we know that c(a l

) = 0 for 1 < i < 21. Let us assume that the error

polynomial is e(X ) and the received polynomial is y(X). Then

y(X) = c(X) + e(X) (7.10-7)

Let us denote the value of y(X) at a 1 by Si, i.e., the syndromes defined by

Si = y(oO

= c(a
l

) + e(a
l

) 1 < / < 2t

= e(a
l

)

(7.10-8)
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Obviously if e(X ) is zero, or it is equal to a nonzero codeword, the syndromes are

all zero. The syndrome can be computed from the received sequence y using GF(2m )

arithmetic.

Now let us assume there have been v errors in transmission of c, where v < t. Let

us denote the location of these errors by j\, ji, - - -
, jv

,

where without loss of generality

we may assume 0 < j\ < 72 < • • • < jv < n — 1 . Therefore

e(X) = X jv + Xjv~' + • •
• + Xh + X j]

(7.10-9)

From Equations 7.10-8 and 7.10-9 we conclude that

51 = a-71 + a jl + • •
• + a jv

52 = (a j> f + (ahf + • •
• + (a j")

2

(7.10-10)

S2t = (a Jif + (ahf + • •
• + (a jv

)

2t

These are a set of 21 equations in v unknowns, namely, j\, . .
.

,

jv ,
or equivalently

a ji
,

1 < i < v. Any method for solving simultaneous equations can be applied to

find unknowns a* from which error locations ji, 72, . .
. , jv can be found. Having

determined error locations, we change the received bit at those locations to find the

transmitted codeword c.

By defining error location numbers fa = a ji for 1 < i < v, Equation 7.10-10

becomes

S\ = fa + P2 + • • + Pv

S2 = fi + fi + --- + fi
(7.10-11)

S2, = tf + tf + - + tf

Solving this set of equations determines fa for 1 < i < v from which error locations can

be determined. Obviously the fa ’s are members of GF(2m ), and solving these equations

requires arithmetic over GF(2m ). This set of equations in general has many solutions.

For maximum-likelihood (minimum Hamming distance) decoding we are interested in

a solution with the smallest number of fas.

To solve these equations, we introduce the error locator polynomial as

cr(X) = (1 + faX) (1 + faX) •
•

• (1 + pvX)

t
(7.10-12)

= cfvX v + <JV-\X
V + • •

• + <J\X + ctq

whose roots are f5^
x

for 1 < i < v. Finding the roots of this polynomial determines

the location of errors. We need to determine a
t
for 0 < i < v to have cr(X) from which

we can find the roots and hence locate the errors. Expanding Equation 7.10-12 results
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in the following set of equations:

Go = 1

al — P\ + Pi + ’ *
* + Pv

a2 — P\Pl + P\Ps + ' •
• + Pv-l Pv (7.10-13)

= P\Pl Pv

Using Equations 7.10-10 and 7. 10-1 3, we obtain the following set of equations relating

the coefficients of g(X) and the syndromes.

Si + G\ = 0

S*2 + CTlSi + 2g2 = 0

S3 + G"\ S2 + g2 S\ + 3ct3 = 0

: (7.10-14)

Sy + criiSy-i + •
• + cry _iS'i + vgv = 0

Sy-fl + CTliSy + • •
• + Gy— 1 S2 + GyS\ = 0

We need to obtain the lowest-degree polynomial g(X) whose coefficients satisfy this

set of equations. After determining g(X), we have to find its roots fr
1

. The inverse

of the roots provides the location of the errors. Note that when the polynomial of the

lowest degree g(X) is found, we can simply find its roots over GF(2m ) by substituting

the 2m field elements in the polynomial.

The Berlekamp-Massey Decoding Algorithm for BCH Codes

Several algorithms have been proposed for solution of Equation 7.10-14. Here we
present the well-known Berlekamp-Massey algorithm due to Berlekamp (1968) and

Massey (1969). Our presentation of this algorithm follows the presentation in Lin and

Costello (2004). The interested reader is referred to Lin and Costello (2004), Berlekamp

(1968), Peterson and Weldon (1972), MacWilliams and Sloane (1977), Blahut (2003),

or Wicker (1995) for details and proofs.

To implement the Berlekamp-Massey algorithm, we begin by finding a polynomial

of lowest degree cr
(1)(X) that satisfies the first equation in 7.10-14. In the second step

we test to see if cr
(1)(X) satisfies the second equation in 7.10-14. If it satisfies the

second equation, we set cr
(2)(X) = cr

(1) (X). Otherwise, we introduce a correction term

to cr
(1)(X) to obtain cr

(2) (X), the polynomial of the lowest degree that satisfies the first

two equations. This process is continued until we obtain a polynomial of minimum
degree that satisfies all equations.

In general, if

aw(X) = + • •
• + ofx2 + a^X + 1 (7.10-15)
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is the polynomial of the lowest degree that satisfies the first p equations in

Equation 7.10-14, to find g^+V)(X) we compute the /xth discrepancy
, denoted by

d

^

and given by

d„ = 1 + + of + • •
• + *£%+ 1 _,„ (7.10-16)

If <7^ = 0, no correction is necessary and the g^\X) that satisfies the (/x+ l)st equation

is Equation 7.10-14. In this case we set

a^+x\X) = a^\X) (7.10-17)

If d^ / 0, a correction is necessary. In this case g^+1\X) is given by

g^+1)(X) = g^\X) + d
lx
d- la {p\X)X^~p (7.10-18)

where p < pi is selected such that dp / 0 and among all such p’s the value of p — lp

is maximum (lp is the degree of g^p\X)).

The polynomial given by Equation 7. 10-18 is the polynomial of the lowest degree

that satisfies the first (/x + 1) equations in Equation 7.10-14. This process is continued

until G^2t\X) is derived. The degree of this polynomial determines the number of errors,

and its roots can be used to locate the errors, as explained earlier. Ifthe degree ofG^2t\X)
is higher than t , the number of errors in the received sequence is greater than t, and the

errors cannot be corrected.

The Berlekamp-Massey algorithm can be better carried out ifwe begin with a table

such as Table 7.10-2.

example 7.10-4. Let us assume that the double-error-correcting BCH code designed

in Example 7.10-3 is considered, and the binary received sequence at the output of the

BSC channel is

y = (0 ,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
1

,
0

,
0

,
1 )

TABLE 7.10-2

The Berlekamp-Massey Algorithm

ffw(X) d. ifl fl Ifl

-1 1 1 0 -1

0 1 Si 0 0

1 1 + SiX
2

21
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TABLE 7.10-3

The Berlekamp-Massey Algorithm

Implementation for Example 7.10-4

a^\X) d. lit H-lfC

-1 1 1 0 -1

0 1 a 14 0 0

1 l+O! 14* 0 1 0

2 1 + a l4X a2
1 1

3 1 +a 14X + a3X2 0 2 1

4 l+aHX +a3X2 2 2

The corresponding received polynomial is y(X) = X3 + 1, and the syndrome compu-
tation yields

S\ = a 3 + 1 = a 14

52 = ot^ -(- 1 = a 13

53 = a 9 + \ = a 7

54 = a 12 + 1 = an

(7.10-19)

where we have used Table 7.1-6. Now we have all we need to fill in the entries

of Table 7.10-2 by using Equations 7.10-16 to 7.10-18. The result is given in

Table 7.10-3.

Therefore cr(X) = 1 + auX + a 3X2
,
and since the degree of this polynomial

is 2, this corresponds to a correctable error pattern. We can find the roots of cr(X) by

inspection, i.e., by substituting the elements of GF(24 ). This will give the two roots

of 1 and a 12
. Since the roots are the reciprocals of the error location numbers, we

conclude that the error location numbers are = a0 and /32 = a 3
. From this the

errors are at locations j\ = 0 and j2 = 3. From Equation 7.10-9 the error polynomial

is e(X) = 1 + X3
,
and c(X) = y(X) + e{X) = 0, i.e., the detected codeword, is the

all-zero codeword.

7.11

REED-SOLOMON CODES

Reed-Solomon (RS) codes are probably the most widely used codes in practice. These

codes are used in communication systems and particularly data storage systems. Reed-

Solomon codes are a special class of nonbinary BCH codes that were first introduced in

Reed and Solomon (1960). As we have already seen, these codes achieve the Singleton

bound and hence belong to the class ofMDS codes.

Recall that in construction of a binary BCH code of block length n — 2m — 1,

we began by selecting a primitive element in GF(2m ) and then finding the minimal

polynomials of a 1

for 1 < i <21. The notion of the minimal polynomial as defined

in Section 7.1-1 was a special case of the general notion of minimal polynomial with

respect to a subfield. We defined the minimal of /3 e GF(2m ) as a polynomial of lowest
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degree over GF(2), where one of its roots is /3. This is the definition of the minimal

polynomial with respect to GF(2). Ifwe drop the restriction that the minimal polynomial

be defined over GF(2), we can have other minimal polynomials of lower degree. One
extreme case occurs when we define the minimal polynomial of f5 e GF(2m ) with

respect to GF(2m ). In this case we look for a polynomial of lowest degree over GF(2m )

whose root is /}. Obviously X + is such a polynomial.

Reed-Solomon codes are t -error-correcting 2m -ary BCH codes with block length

N = 2m — \ symbols (i.e., mN binary digits)'*'. To design a Reed-Solomon code, we
choose a e GF(2m ) to be a primitive element and find the minimal polynomials of a 1

,

for 1 < i < It, over GF(2m ). These polynomials are obviously of the form X + a 1

.

Hence, the generator polynomial g(X) is given by

g(X) = (X + a)(X + a2
)(X + a 3

)
•

•
• (X + a2

')

„ 0 ,
(7.11-1)

= X 1
-\- g2t-\X

f + • •
• + g\X + go

where gt e GF(2m ) for 0 < i < 2t — 1; i.e., g(X) is a polynomial over GF(2m ). Since

a 1

,
for 1 < i < 21, are nonzero elements of GF(2m ), they are all roots of X2'n ~ l + 1;

therefore g(X) is a divisor of X2"'~ l + 1, and it is the generator polynomial of a 2m -ary

code with block length N = 2m — l and N — K — 21. Note that the weight of g(X)

cannot be less than Dmin ,
the minimum distance of the code, which is, by Equation 7.10-

1 ,
at least 2t + 1 . This means that none of the g* ’s in Equation 7.1 1-1 can be zero, and

therefore the minimum weight of the resulting code is equal to 2t + 1 . Therefore, for

this code

Amn = 2^+1=^ — ^T-|-l (7.11-2)

which shows that the code is MDS.
From the discussion above, we conclude that Reed-Solomon codes are 2m -ary

(2
m —

1, 2
m — 2t — 1) BCH codes with minimum distance Dmm = 2t + 1, where m is

any positive integer greater than or equal to 3 and 1 < t < 2m
~

l — 1. Equivalently, we
can define Reed-Solomon codes in terms ofm and Dmn ,

the minimum distance of the

code, as 2m -ary BCH codes with N = 2m — 1 and K = N — Dm[n ,
where 3 < Dmin < n.

example 7.11-1. To design a triple-error-correcting Reed-Solomon code of length

n = 15, we note that TV = 15 = 24 — 1. Therefore, m = 4 and t = 3. We choose

a e GF(24
) to be a primitive element. Using Equation 7.1 1-1, we obtain

g(X) = (X + a)(X + a 2
)(X + a 3

)(X + a4
)(X + a 5

)(X + a6
)

= X6 + a;
10Z5 + a 14X4 + a4Z3 + a 6X2 + a 9X + a 6

(7-11 3)

This is a (15, 8) triple-error-correcting Reed-Solomon code over GF(24
). Codewords

of this code have a block length of 15 where each component is a 24-ary symbol. In

binary representation the codewords have length 60.

A popular Reed-Solomon code is the (255, 223) code over GF(28
). This code has a

minimum distance of Dmin = 255—223+1 = 33 and is capable of correcting 16 symbol

errors. If these errors are spread, in the worst possible scenario this code is capable of

tin general, RS codes are defined on GF(pm ). For Reed-Solomon codes we denote the block length by N
(symbols) and the number of information symbols by K. The minimum distance is denoted by Dmin .
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correcting 16 bit errors. On the other hand, if these errors occur as a cluster, i.e., if we
have a burst of errors, this code can correct any burst of length 14x8 + 2= 114 bits.

Some bursts of length up to 16 x 8 = 128 errors can be corrected also by this code.

That is the reason why Reed-Solomon codes are particularly attractive in channels with

burst of errors. Such channels include fading channels and storage channels in which

scratches and manufacturing imperfections usually damage a sequence of bits. Reed-

Solomon codes are also popular in concatenated coding schemes discussed later in this

chapter.

Since Reed-Solomon codes are BCH codes, any algorithm used for decoding BCH
codes can be used for decoding Reed-Solomon codes. The Berlekamp-Massey algo-

rithm, for instance, can be used for the decoding of Reed-Solomon codes. The only

difference is that after locating the errors, we also have to determine the values of the

errors. This step was not necessary in binary BCH codes since in that case the value

of any error is 1 that changes a 0 to a 1 and a 1 to a 0. In nonbinary BCH codes that is

not the case. The value of error can be any nonzero member of GF(2m ) and has to be

determined. The methods used to determine the value of errors are beyond the scope

of our treatment. The interested user is referred to Lin and Costello (2004).

An interesting property of Reed-Solomon codes is that their weight enumeration

polynomial is known. In general, the weight distribution of a Reed-Solomon code with

symbols from GF(g) and with block length N = q — 1 and minimum distance Dmin is

given by

(n\ l
~ Dmin

( i — \\
Ai =

.

j

N
J2

(- 1
)'

( j J
(N + 1rj

~ Dmi
\ for Dmin <i<N (7.1 1-4)

A nonbinary code is particularly matched to an M-ary modulation technique for

transmitting the 2m possible symbols. Specifically, M-ary orthogonal signaling, e.g.,

M-ary FSK, is frequently used. Each of the 2m symbols in the 2m -ary alphabet is mapped

to one of the M = 2m orthogonal signals. Thus, the transmission of a codeword is

accomplished by transmitting N orthogonal signals, where each signal is selected from

the set ofM = 2m possible signals.

The optimum demodulator for such a signal corrupted by AWGN consists of M
matched filters (or cross-correlators) whose outputs are passed to the decoder, either

in the form of soft decisions or in the form of hard decisions. If hard decisions are

made by the demodulator, the symbol error probability PM and the code parameters

are sufficient to characterize the performance of the decoder. In fact, the modulator,

the AWGN channel, and the demodulator form an equivalent discrete (M-ary) input,

discrete (M-ary) output, symmetric memoryless channel characterized by the transition

probabilities Pc = 1 — Pm and Pm/(M —
1). This channel model, which is illustrated

in Figure 7.1 1-1, is a generalization of the BSC.

The performance of the hard decision decoder may be characterized by the follow-

ing upper bound on the codeword error probability:

Pe< E LJ PM<\ - PM)
N~ l

(7.11-5)

i=t+ 1 \
1

J

where t is the number of errors guaranteed to be corrected by the code.
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FIGURE 7.11-1

An M-ary input, M-ary output, symmetric

memoryless channel.

When a codeword error is made, the corresponding symbol error probability is

Pes = ^ E *'

(j)

pi
M a - Pm)

N~‘
(7.1 1-6)

Furthermore, if the symbols are converted to binary digits, the bit error probability

corresponding to Equation 7.1 1-6 is

2m—l

Pet =
j

- Pes (7.11-7)

example 7.11-2. Let us evaluate the performance of an N = 25 — 1 = 31 Reed-

Solomon code with Dm[n = 3, 5, 9, and 17. The corresponding values of K are 29, 27,

23, and 15. The modulation is M = 32 orthogonal FSK with noncoherent detection at

the receiver. The probability of a symbol error is given by Equation 4.5-44 and may
be expressed as

1
M / jijf\

p‘ = M e
~y

'E(- l)\i)
eY,i

(7 -n-8>

where y is the SNR per code symbol. By using Equation 7.11-8 in Equation 7.11-6

and combining the result with Equation 7. 1 1-7, we obtain the bit error probability. The
results of these computations are plotted in Figure 7.1 1-2. Note that the more powerful

codes (large 9^) give poorer performance at low SNR per bit than the weaker codes.

On the other hand, at high SNR, the more powerful codes give better performance.

Hence, there are crossovers among the various codes, as illustrated, for example, in

Figure 7. 1 1-2 for the t = 1 and t = 8 codes. Crossovers also occur among the t = 1 , 2,

and 4 codes at smaller values of SNR per bit. Similarly, the curves for t = 4 and 8 and

for t = 8 and 2 cross in the region of high SNR. This is the characteristic behavior for

noncoherent detection of the coded waveforms.

If the demodulator does not make a hard decision on each symbol, but instead

passes the unquantized matched filter outputs to the decoder, soft decision decoding

can be performed. This decoding involves the formation of q
K = 2mK correlation

metrics, where each metric corresponds to one of the q
K codewords and consists of a

sum of N matched filter outputs corresponding to the N code symbols. The matched

filter outputs may be added coherently, or they may be envelope-detected and then
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FIGURE 7.11-2

Performance of several N = 31, t-error-correcting

Reed-Solomon codes with 32-ary FSK modulation on an AWGN
channel (noncoherent demodulation)

added, or they may be square-law-detected and then added. If coherent detection is

used and the channel noise is AWGN, the computation of the probability of error is a

straightforward extension of the binary case considered in Section 7.4. On the other

hand, when envelope detection or square-law detection and noncoherent combining

are used to form the decision variables, the computation of the decoder performance is

considerably more complicated.

7.12

CODING FOR CHANNELS WITH BURST ERRORS

Most of the well-known codes that have been devised for increasing reliability in the

transmission of information are effective when the errors caused by the channel are

statistically independent. This is the case for the AWGN channel. However, there are

channels that exhibit bursty error characteristics. One example is the class of channels

characterized by multipath and fading, which is described in detail in Chapter 13. Signal

fading due to time-variant multipath propagation often causes the signal to fall below

the noise level, thus resulting in a large number of errors. A second example is the class

of magnetic recording channels (tape or disk) in which defects in the recording media

result in clusters of errors. Such error clusters are not usually corrected by codes that

are optimally designed for statistically independent errors.

Some of the codes designed for random error correction, i.e., nonburst errors, have

the capability of burst error correction. A notable example is Reed-Solomon codes that

can easily correct long burst of errors because such long error bursts result in a few

symbol errors that can be easily corrected. Considerable work has been done on the

construction of codes that are capable of correcting burst errors. Probably the best-

known burst error correcting codes are the subclass of cyclic codes called Fire codes,

named after P. Fire (Fire (1959)), who discovered them. Another class of cyclic codes

for burst error correction was subsequently discovered by Burton (1969).

A burst of errors of length b is defined as a sequence of b -bit errors, the first and

last of which are 1. The burst error correction capability of a code is defined as 1 less

than the length of the shortest uncorrectable burst. It is relatively easy to show that a

systematic (n, k) code, which has n — k parity check bits, can correct bursts of length

b < \_\{n -k)\.
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FIGURE 7.12-1

Block diagram of system employing interleaving for burst error channel.

An effective method for dealing with burst error channels is to interleave the coded

data in such a way that the bursty channel is transformed to a channel having independent

errors. Thus, a code designed for independent channel errors (short bursts) is used.

A block diagram of a system that employs interleaving is shown in Figure 7.12-1.

The encoded data are reordered by the interleaver and transmitted over the channel. At

the receiver, after either hard or soft decision demodulation, the deinterleaver puts the

data in proper sequence and passes them to the decoder. As a result of the interleav-

ing/deinterleaving, error bursts are spread out in time so that errors within a codeword

appear to be independent.

The interleaver can take one oftwo forms: a block structure or a convolutional struc-

ture. A block interleaver formats the encoded data in a rectangular array ofm rows and

n columns. Usually, each row of the array constitutes a codeword of length n. An inter-

leaver of degree m consists of m rows (m codewords) as illustrated in Figure 7.12-2.

The bits are read out columnwise and transmitted over the channel. At the receiver, the

deinterleaver stores the data in the same rectangular array format, but they are read out

rowwise, one codeword at a time. As a result of this reordering of the data during trans-

mission, a burst of errors of length l = mb is broken up into m bursts of length b. Thus,

an (n ,
k) code that can handle burst errors of length b < [\{n — k)\ can be combined

with an interleaver of degree m to create an interleaved (;mn ,
mk) block code that can

handle bursts of length mb. A convolutional interleaver can be used in place of a block

interleaver in much the same way. Convolutional interleavers are better matched for

Read out bits to modulator

-a -3
flj o
'O o
8 g
s a
-d o
g *
Pd

t t t t t t

- n-k parity bits -

it
1 8 15

1
22 29 36 mn-6

2 9 16 23 30 37 mn-

5

3 10 17 24 31 38 mn-4
4 11 18 25 32 39 mn-3

5 12 19 26 33 40 mn-2

6 13 20 27 34 41 mn - 1

7 14 21 28 35 42 mn

- k data bits -

FIGURE 7.12-2

A block interleaver for coded data.
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use with the class of convolutional codes that is described in Chapter 8. Convolutional

interleaver structures have been described by Ramsey (1970) and Forney (1971).

7.13

COMBINING CODES

The performance of a block code depends mainly on the number of errors it can cor-

rect, which is a function of the minimum distance of the code. For a given rate Rc ,
one

can design codes with different block lengths. Codes with higher block length offer

the possibility of higher minimum distances and thus higher error correction capabil-

ity. This is clearly seen from the different bounds on the minimum distance derived

in Section 7.7. The problem, however, is that the decoding complexity of a block

code generally increases with the block length, and this dependence in general is an

exponential dependence. Therefore improved performance through using block codes

is achieved at the cost of increased decoding complexity.

One approach to design block codes with long block lengths and with manageable

complexity is to begin with two or more simple codes with short block lengths and

combine them in a certain way to obtain codes with longer block length that have

better distance properties. Then some kind of suboptimal decoding can be applied to

the combined code based on the decoding algorithms of the simple constituent codes.

7.13-1 Product Codes

A simple method of combining two or more codes is described in this section. The

resulting codes are called product codes , first studied by Elias (1954). Let us assume

we have two systematic linear block codes; code C; is an (n,-, k
t ) code with minimum

distance d^ni for i = 1,2. The product of these codes is an (n\ri2 ,
linear block

code whose bits are arranged in a matrix form as shown in Figure 7.13-1.

The k\k2 information bits are put in a rectangle with width k\ and height The k\

bits in each row of this matrix are encoded using the encoder for code C\ ,
and the bits

in each column are encoded using the encoder for code C2 . The (n \
— k\ ) x (n2 — fe) bits

FIGURE 7.13-1

The structure of a product code.

k2

L n
\
-k.



478 Digital Communications

in the lower right rectangle can be obtained either from encoding the bottom — ki

rows using the encoding rule for C\ or from encoding the rightmost n\ — k\ columns

using the encoding rule for C2 . It is shown in Problem 7.63 that the results of these two

approaches are the same.

The resulting code is an (n\ri2 , & 1 &2 ) systematic linear block code. The rate of the

product code is obviously the product of the rates of its component codes. Moreover,

it can be shown that the minimum distance of the product code is the product of the

minimum distances of the component codes, i.e., dmjn = dm[n irfmin 2 (see Problem 7.64),

and hence the product code is capable of correcting

£

dmin 1dmm 2 1

2
(7.13-1)

errors using a complex optimal decoding scheme.

We can design a simpler decoding scheme based on the decoding rules of the two

constituent codes as follows. Let us assume

ti —
^min i 1

i = 1,2 (7.13-2)

is the number of errors that code C,* can correct. Now let us assume in transmission of

the n i ft2 binary digits of a codeword that fewer than (t\ + 1 )(£2+ 1 ) errors have occurred.

Regardless of the location of errors, the number of rows of the product code shown in

Figure 7. 1 3-1 that have more than t\ errors is less than or equal to £2 ,
because otherwise

the total number of errors would be (t\ + 1)(£2 + 1) or higher. Since each row having less

than *i + l errors can be fully recovered using the decoding algorithm of C\, if we do

rowwise decoding, we will have at most £2 rows decoded erroneously. This means that

after this stage of decoding the number of errors in each column cannot exceed £2 ,
all

of which can be corrected using the decoding algorithm for C2 on columns. Therefore,

using this simple two-stage decoding algorithm, we can correct up to

T — (t\ + 1 )(£2 + 1) — 1

— t\tl + t\ + £2

(7.13-3)

errors.

example 7.13-1. Consider a (255, 123) BCH code with dmn 1
= 39 and t\ = 19 and

a (15, 7) BCH code with <7min2 = 5 and £2 = 2 (see Example 7.10-3). The product of

these codes has a minimum distance of 39 x 5 = 195 and can correct up to 97 errors if a

complex decoding algorithm is employed to take advantage of the full error-correcting

capability of the code. A two-stage decoding algorithm can, however, correct up to

(19 + 1)(2 + 1) — 1 =59 errors at noticeably lower complexity.

Another decoding algorithm, similar to how a crossword puzzle is solved, can also

be used for decoding product codes. Using the row codes, we can come up with the best

guess for the bit values; and then using the column codes, we can improve these guesses.

This process can be repeated in an iterative fashion, improving the quality of the guess

in each step. This process is known as iterative decoding and is very similar to the way
a crossword puzzle is solved. To employ this decoding procedure, we need decoding

schemes for the row and column codes that are capable of providing guesses about
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each individual bit. In other words, decoding schemes with soft outputs— usually, the

likelihood values— are desirable. We will describe such decoding procedures in our

discussion of turbo codes in Chapter 8.

7.13-2 Concatenated Codes

In concatenated coding two codes, one binary and one nonbinary are concatenated such

that the codewords of the binary code are treated as symbols of the nonbinary code.

The combination of the binary channel and the binary encoder and decoder appears

as a nonbinary channel to the nonbinary encoder and decoder. The binary code that is

directly connected to the binary channel is called the inner code
,
and the nonbinary

code that operates on the combination of binary encoder/binary channel/binary decoder

is called the outer code.

To be more specific, let us consider the concatenated coding scheme shown in

Figure 7.13-2. The nonbinary (N
,
K ) code forms the outer code, and the binary code

forms the inner code. Codewords are formed by subdividing a block ofkK information

bits into K groups, called symbols, where each symbol consists of k bits. The K k-bit

symbols are encoded into N k-bit symbols by the outer encoder, as is usually done

with a nonbinary code. The inner encoder takes each k-bit symbol and encodes it into

a binary block code of length n. Thus we obtain a concatenated block code having a

block length of Nn bits and containing kK information bits. That is, we have created

an equivalent (Nn, Kk) long binary code. The bits in each codeword are transmitted

over the channel by means of PSK or, perhaps, by FSK.

We also indicate that the minimum distance of the concatenated code is dminAnm>
where Dmin is the minimum distance of the outer code and dmin is the minimum distance

of the inner code. Furthermore, the rate of the concatenated code is Kk/Nn, which is

equal to the product of the two code rates.

A hard decision decoder for a concatenated code is conveniently separated into an

inner decoder and an outer decoder. The inner decoder takes the hard decisions on each

group of n bits, corresponding to a codeword of the inner code, and makes a decision on

the k information bits based on maximum-likelihood (minimum-distance) decoding.

These k bits represent one symbol of the outer code. When a block ofN k -bit symbols

is received from the inner decoder, the outer decoder makes a hard decision on the

K k-bit symbols based on maximum-likelihood decoding.

data

FIGURE 7.13-2

A concatenated coding scheme.
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Soft decision decoding is also a possible alternative with a concatenated code.

Usually, the soft decision decoding is performed on the inner code, if it is selected to

have relatively few codewords, i.e., if 2k is not too large. The outer code is usually

decoded by means of hard decision decoding, especially if the block length is long

and there are many codewords. On the other hand, there may be a significant gain in

performance when soft decision decoding is used on both the outer and inner codes, to

justify the additional decoding complexity. This is the case in digital communications

over fading channels, as we shall demonstrate in Chapter 14.

example 7.13-2. Suppose that the (7, 4) Hamming code is used as the inner code in

a concatenated code in which the outer code is a Reed-Solomon code. Since k = 4, we
select the length of the Reed-Solomon code to be TV = 24 — 1 = 15. The number of

information symbols K per outer codeword may be selected over the range 1 < K < 14

in order to achieve a desired code rate.

Concatenated codes with Reed-Solomon codes as the outer code and binary con-

volutional codes as the inner code have been widely used in the design of deep space

communication systems. More details on concatenated codes can be found in the book
by Forney (1966a).

Serial and Parallel Concatenation with Interleavers

An interleaver may be used in conjunction with a concatenated code to construct a

code with extremely long codewords. In a serially concatenated block code (SCBC),
the interleaver is inserted between the two encoders as shown in Figure 7.13-3. Both
codes are linear systematic binary codes. The outer code is a (p, k) code, and the inner

code is an (n, p) code. The block interleaver length is selected as N = mp, where m is

a usually large positive integer that determines the overall block length. The encoding

and interleaving are performed as follows: mk information bits are encoded by the

outer encoder to produce mp coded bits. These N — mp coded bits are read out of the

interleaver in different order according to the permutation algorithm of the interleaver.

The mp bits at the output of the interleaver are fed to the inner encoder in blocks of

length p. Therefore, a block of mk information bits is encoded by the SCBC into a

block ofmn bits. The resulting code rate is R s

c = k/n, which is the product of the code

rates of the inner and outer encoders. However, the block length of the SCBC is nm
bits, which can be significantly larger than the block length of the conventional serial

concatenation of the block codes without the use of the interleaver.

The block interleaver is usually implemented as a pseudorandom interleaver, i.e.,

an interleaver that pseudorandomly permutes the block of N bits. For purposes of

analyzing the performance of SCBC, such an interleaver may be modeled as a uniform

FIGURE 7.13-3

Serial concatenated block code with interleaver.
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mk information bits

m(ri\-k) parity check bits

m{n2 - k) parity check bits

FIGURE 7.13-4

Parallel concatenated block code (PCBC) with interleaver.

interleaver
,
which is defined as a device that maps a given input word of weight w

into all distinct (^) permutations with equal probability. This operation is similar to

Shannon’s random coding argument, where here the average performance is measured

over all possible interleavers of length N.

By use of interleaving, parallel concatenated block codes (PCBCs) can be con-

structed in a similar manner. Figure 7.13-4 illustrates the basic configuration of such

an encoder based on two constituent binary codes. The constituent codes may be iden-

tical or different. The two encoders are systematic, binary linear encoders, denoted as

(n\,k) and (n2 ,
k ). The pseudorandom block interleaver has length N = k, and thus

the overall PCBC has block length n\ + n2 — k and rate k/(n\ + n2 — k\ since the

information bits are transmitted only once. More generally, we may encode mk bits

(m > 1) and thus use an interleaver of length N = mk. The design of interleavers

for parallel concatenated codes is considered in a paper by Daneshgaran and Mondin

(1999).

The use of an interleaver in the construction of SCBC and PCBC results in code-

words that are both large in block length and relatively sparse. Decoding of these types

of codes is generally performed iteratively, using soft-in/soft-out (SISO) maximum a

posteriori probability (MAP) algorithms. An iterative MAP decoding algorithm for

serially concatenated codes is described in the paper by Benedetto et al. (1998). Iter-

ative MAP decoding algorithms for parallel concatenated codes have been described

in a number of papers, including Berrou et al. (1993), Benedetto and Montorsi (1996),

Hagenauer et al. (1996) and in the book by Heegard and Wicker (1999). The combi-

nation of code concatenation with interleaving and iterative MAP decoding results in

performance very close to the Shannon limit at moderate error rates, such as 10
-4

to

10
-5

(low SNR region). More details on this type of concatenation will be given in

Chapter 8.
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7.14

BIBLIOGRAPHICAL NOTES AND REFERENCES

The pioneering work on coding and coded waveforms for digital communications was

done by Shannon (1948), Hamming (1950), and Golay (1949). These works were

rapidly followed with papers on code performance by Gilbert (1952), new codes by

Muller (1954) and Reed (1954), and coding techniques for noisy channels by Elias

(1954, 1955) and Slepian (1956). During the period 1960-1970, there were a num-

ber of significant contributions in the development of coding theory and decoding

algorithms. In particular, we cite the papers by Reed and Solomon (1960) on Reed-

Solomon codes, the papers by Hocquenghem (1959) and Bose and Ray-Chaudhuri

(1960) on BCH codes, and the Ph.D. dissertation of Forney (1966) on concatenated

codes. These works were followed by the papers of Goppa (1970, 1971) on the con-

struction of a new class of linear cyclic codes, now called Goppa codes [see also

Berlekamp (1973)], and the paper of Justesen (1972) on a constructive technique for

asymptotically good codes. During this period, work on decoding algorithms was pri-

marily focused on BCH codes. The first decoding algorithm for binary BCH codes

was developed by Peterson (1960). A number of refinements and generalizations by

Chien (1964), Forney (1965), Massey (1965), and Berlekamp (1968) led to the devel-

opment of the Berlekamp-Massey algorithm described in detail in Lin and Costello

(2004) and Wicker (1995). A treatment of Reed-Solomon codes is given in the book by

Wicker and Bhargava (1994).

In addition to the references given above on coding, decoding, and coded signal

design, we should mention the collection ofpapers published by the IEEE Press entitled

Key Papers in the Development of Coding Theory , edited by Berlekamp (1974). This

book contains important papers that were published in the first 25 years of the develop-

ment of coding theory. We should also cite the Special Issue on Error-Correcting Codes,

IEEE Transactions on Communications (October 1971). Finally, the survey papers by

Calderbank (1998), Costello et al. (1998), and Forney and Ungerboeck (1998) highlight

the major developments in coding and decoding over the past 50 years and include a

large number of references. Standard textbooks on this subject include those by Lin

and Costello (2004), MacWilliams and Sloane (1977), Blahut (2003), Wicker (1995),

and Berlekamp (1968).

PROBLEMS

7.1 From the definition of a Galois field GF(g) we know that {F — {0}, •, 1} is an Abelian

group with q
— 1 elements.

1. Let a G {F — {0}, 1} and define a 1 = a • a a -a. Show that for some positive j^ V ^

i times

we have aj = 1 and a 1 f \ for all 0 < / < j ,
where j is called the order of a.

2. Show that if 0 < i <V < j, then a 1 and a 1
'

are distinct elements of {F — {0}, •, 1}.

3. Show that Qa = {a, a2 ,
a 3

, ...

,

aj
] is an Abelian group under multiplication; Qa is

called the cyclic subgroup of element a.
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4. Let us assume that a b e {F —
{0}, •, 1} exists such that b £ Qa . Show that Qba =

{b • a, b • a2
, . .

. ,
b • a j

} is an Abelian group and Qa f! Qba = 0. Therefore, if such a b

exists, the number of elements in {F — {0}, •, 1} is at least 2j, and Qba is called a coset

of Qa -

5. Use the argument of part 4 to prove that the nonzero elements of GF(g) can be written

as the union of disjoint cosets, and hence the order of any element of GF(g) divides

q - !•

6. Conclude that for any nonzero fi e GF(g) we have —
1.

7.2 Use the result ofProblem 7. 1 to prove that the q elements of GF(g) are the roots of equation

Xq - X = 0

7.3 Construct the addition and multiplication tables of GF(5).

7.4 List all prime polynomials of degrees 2 and 3 over GF(3). Using a prime polynomial of

degree 2, generate the multiplication table of GF(9).

7.5 List all primitive elements in GF(8). How many primitive elements are in GF(32)?

7.6 Let a e GF(24 ) be a primitive element. Show that {0, 1, a 5
,
a 10

} is a field. From this

conclude that GF(4) is a subfield of GF(16).

7.7 Show that GF(4) is not a subfield of GF(32).

7.8 Using Table 7.1-5, generate GF(32) and express its elements in polynomials, power, and

vector form. Find the minimal polynomials of fi
= a 3 and y = a 3 + a, where a is a

primitive element.

7.9 Let fi e GF(p
m

) be a nonzero element. Show that

i=i

and

m

i= l

for all 0 < m < p.

7.10 Let a, fi e GF(pm ). Show that

(a + fiY =ap + fi
p

7.11 Show that any binary linear block code of length n has exactly 2k codewords for some

integer k <n.

7.12 Prove that the Hamming distance between two sequences of length n, denoted by dn (x
, y),

satisfies the following properties:

1. dn(x
, y) = 0 if and only if jt = y
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2. dH (x,y) = dH (y,x)

3. dH (x,z) < dH (x, y) + dH (y, z)

These properties show that du is a metric.

Digital Communications

7.13 The generator matrix for a linear binary code is

"0011101"
G — 0 10 0 111

.10 0 1110.

a. Express G in systematic [I\P] form.

b. Determine the parity check matrix H for the code.

c. Construct the table of syndromes for the code.

d. Determine the minimum distance of the code.

e. Demonstrate that the codeword c corresponding to the information sequence 101 satisfies

cW = 0 .

7.14 A code is self-dual if C = CL . Show that in a self-dual code the block length is always

even and the rate is
j

.

7.15 Consider a linear block code with codewords {0000, 1010, 0101
,
1111}. Find the dual of

this code and show that this code is self-dual.

7.16 List the codewords generated by the matrices given in Equations 7.9-13 and 7.9-15, and

thus demonstrate that these matrices generate the same set of codewords.

7.17 Determine the weight distribution of the (7, 4) Hamming code, and check your result with

the list of codewords given in Table 7.9-2.

7.18 Show that for binary orthogonal signaling, for instance, orthogonal BFSK, we have

A = e
-sc/2N0

,
where a is defined by Equation 7.2-36.

7.19 Find the generator and the parity check matrices of a second-order (r = 2) Reed-Muller

code with block length n — 16. Show that this code is the dual of a first-order Reed-Muller

code with n — 16.

7.20 Show that repetition codes whose block length is a power of 2 are Reed-Muller codes of

order r — 0.

7.21 When an (;

n

,
k) Hadamard code is mapped into waveforms by means of binary PSK, the

corresponding M = 2k waveforms are orthogonal. Determine the bandwidth expansion

factor for theM orthogonal waveforms, and compare this with the bandwidth requirements

of orthogonal FSK detected coherently.

7.22 Show that the signaling waveforms generated from a maximum-length shift register code

by mapping each bit in a codeword into a binary PSK signal are equicorrelated with

correlation coefficient pr = — 1/(M — 1), i.e., the M waveforms form a simplex set.

7.23 Using the generator matrix of a (2
m - l,ra) maximum-length code as defined in

Section 7.3-3, do the following.
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a. Show that maximum-length codes are constant-weight codes; i.e., all nonzero

codewords of a (2
m — 1

,
m) maximum-length code have weight 2m_1 .

b. Show that the weight distribution function of a maximum-length code is given by

Equation 7.3-4.

c. Use the MacWilliams identity to determine the weight distribution function of a

(2
m — 1

,
2m — 1 — m) Hamming code as the dual to a maximum-length code.

7.24 Compute the error probability obtained with a (7, 4) Hamming code on anAWGN channel,

for both hard decision and soft decision decoding. Use Equations 7.4-18, 7.4-19, 7.5-6,

and 7.5-18.

7.25 Show that when a binary sequence x of length n is transmitted over a BSC with crossover

probability p ,
the probability of receiving y, which is at Hamming distance d from x

,
is

given by

P(y\x) = (l-p)n P

1-p

d

From this conclude that if p < P(y|jc) is a decreasing function of d and hence

ML decoding is equivalent to minimum-Hamming-distance decoding. What happens if

p>i?

7.26 Using a symbolic computation program (e.g., Mathematica or Maple), find the weight

enumeration polynomial for a (15, 11) Hamming code. Plot the probability of decoding

error (when this code is used for error correction) and undetected error (when the code

used for error detection) as a function of the channel error probability p in the range

10"6 < p < 10" 1

.

7.27 By using a computer find the number of codewords of weight 34 in a (63, 57) Hamming
code.

7.28 Prove that if the sum of two error patterns e\ and e2 is a valid codeword Cj
,
then each error

pattern has the same syndrome.

7.29 Prove that any two ^-tuples in the same row of a standard array add to produce a valid

codeword.

7.30 Prove that

1 . Elements of the standard array of a linear block code are distinct.

2. Two elements belonging to two distinct cosets of a standard array have distinct

syndromes.

7.31 A (k + 1 ,
k) block code is generated by adding 1 extra bit to each information sequence of

length k such that the overall parity of the code (i.e., the number of Is in each codeword) is

an odd number. Two students, A and B, make the following arguments on error detection

capability of this code.

1 . Student A: Since the the weight of each codeword is odd, any single error changes the

weight to an even number. Hence, this code is capable of detecting any single error.
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Student B: The all-zero information sequence 00 - • 0 will be encoded by adding

k

one extra 1 to generate the codeword 00 - • 0 1 . This means that there is at least one

k

codeword of weight 1 in this code. Therefore, dm[n = 1, and since any code can detect

at most dm\n — 1 errors, and for this code dm in — 1=0, this code cannot detect any

errors.

Which argument do you agree with and why? Give your explanation in one short paragraph.

7.32 The parity check matrix of a linear block code is given below:

"1
1 0 1 1 0 0 0

"

1 0 1 1 0 1 0 0H ~ 01110010
_1 1 1 0 0 0 0 1_

1 . Determine the generator matrix for this code in the systematic form.

2. How many codewords are in this code? What is the for this code?

3. What is the coding gain for this code (soft decision decoding and BPSK modulation

over an AWGN channel are assumed)?

4. Using hard decision decoding, how many errors can this code correct?

5 . Show that any two codewords ofthis code are orthogonal, and in particular any codeword

is orthogonal to itself.

7.33 A code C consists of all binary sequences of length 6 and weight 3.

1. Is this code a linear block code? Why?
2. What is the rate of this code? What is the minimum distance of this code? What is the

minimum weight for this code?

3. If the code is used for error detection, how many errors can it detect?

4. If the code is used on a binary symmetric channel with crossover probability of p ,
what

is the probability that an undetectable error occurs?

5. Find the smallest linear block code C\ such that C c C\ (by the smallest code we mean
the code with the fewest codewords).

7.34 A systematic (6, 3) code has the generator matrix

" 100110 "

G= 010011
. 0 0 1 1 0 1 _

Construct the standard array and determine the correctable error patterns and their corre-

sponding syndromes.

7.35 Construct the standard array for the (7, 3) code with generator matrix

"1001011"
G= 0101110

_ 0 0 1 0 1 1 1 _

and determine the correctable patterns and their corresponding syndromes.
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7.36 A (6, 3) systematic linear block code encodes the information sequence x = (xi, X2 , *3)

into codeword c = (c\, C2, C3, C4, C5, ce), such that C4 is a parity check on c\ and C2, to

make the overall parity even (i.e., C{ 0 C2 © C4 = 0). Similarly C5 is a parity check on C2

and C3, and ce is a parity check on c\ and C3.

1 . Determine the generator matrix of this code.

2. Find the parity check matrix for this code.

3. Using the parity check matrix, determine the minimum distance of this code.

4. How many errors is this code capable of correcting?

5. If the received sequence (using hard decision decoding) is y = 100000, what is the

transmitted sequence using a maximum-likelihood decoder? (Assume that the crossover

probability of the channel is less than ^.)

7.37 C is a (6, 3) linear block code whose generator matrix is given by

G =

'1

0

1

1 1

0 1

1 1

1 0 0
"

1 1 1

1 1 1

1. What rate, minimum distance, and the coding gain can C provide in soft decision

decoding when BPSK is used over an AWGN channel?

2. Can you suggest another (6, 3) LBC that can provide a better coding gain? If the answer

is yes, what is its generator matrix and the resulting coding gain? If the answer is no,

why?

3. Suggest a parity check matrix H for C.

7.38

Prove that if C is MDS, its dual CL is also MDS.

7.39

Let n and t be positive integers such that n > 2t
;
hence

1

.

Show that for any X > 0 we have

2
X(n-t) ^ 2

xi f
n
) < (1 + 2

x
f

i=0

2. Assuming p = t/n in part 1, show that

< (2~Hl
~
p) + 2

Xp
y

'i=0 '

3. By choosing X = log2 show that

£
^
< 2

ntib^

4.

Using Stirling’s approximation that states that

n\ = eK



488 Digital Communications

where < K < ^ ,
show that for large n and t such that

l- < \
we have

£ (")
/=0 V '

7.40 Let C denote an (n, k) linear block code with minimum distance dm\n .

a. Let C denote a 2k x n matrix whose rows are all the codewords of C. Show that all

columns of C have equal weight and this weight is 2k
~

l

.

b. Conclude that the total weight of the codewords of C is given by

2k

^total
= ^ ^

w (cm )
= n2

m=

1

c. From part (b) conclude that the Plotkin bound

n2k~ l

dmin < 2k _ i

7.41 Construct an extended (8, 4) code from the (7, 4) Hamming code by specifying the gener-

ator matrix and the parity check matrix.

7.42 The polynomial

g(X) = X4 + X + 1

is the generator for the (15, 11) Hamming binary code.

a. Determine a generator matrix G for this code in systematic form.

b. Determine the generator polynomial for the dual code.

7.43 For the (7, 4) cyclic Hamming code with generator polynomial g(X) = X3 + X2 + 1,

construct an (8, 4) extended Hamming code and list all the codewords. What is dmm for

the extended code?

7.44 An (8 , 4) linear block code is constructed by shortening a ( 1 5 , 11) Hamming code generated

by the generator polynomial g{X) = X4 + X + 1.

a. Construct the codewords of the (8, 4) code and list them.

b. What is the minimum distance of the (8, 4) code?

7.45 The polynomial X 15 + 1 when factored yields

X 15 + 1 = (X4 + X 3 + 1)(X
4 + X 3 + X2 + X + 1)(X

4 + X + 1)(X
2 + X + 1)(X + 1)

a. Construct a systematic (15,5) code using the generator polynomial

g(X) = (X4 + X3 + X2 + X+ 1)(X
4 + X + 1)(X

2 + X + 1)

b. What is the minimum distance of the code?

c. How many random errors per codeword can be corrected?

d. How many errors can be detected by this code?
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e. List the codewords of a (15, 2) code constructed from the generator polynomial

8(X) =
X 15 + 1

X2 + X + 1

and determine the minimum distance.

7.46 Construct the parity check matrices H\ and H2 corresponding to the generator matrices

G i
and G2 given by Equations 7.9-12 and 7.9-13, respectively.

7.47 Determine the correctable error patterns (of least weight) and their syndromes for the

systematic (7, 4) cyclic Hamming code.

7.48 Let g(X) = Xs + X6 + X4 + X2 + 1 be a polynomial over the binary field.

a. Find the lowest-rate cyclic code with generator polynomial g(X). What is the rate of

this code?

b. Find the minimum distance of the code found in (a).

c. What is the coding gain for the code found in (a)?

7.49 The polynomial g(X) = X + 1 over the binary field is considered.

a. Show that this polynomial can generate a cyclic code for any choice of n. Find the

corresponding k.

b. Find the systematic form of G and H for the code generated by g(X).

c. Can you say what type of code this generator polynomial generates?

7.50 Design a (6, 2) cyclic code by choosing the shortest possible generator polynomial.

a. Determine the generator matrix G (in the systematic form) for this code, and find all

possible codewords.

b. How many errors can be corrected by this code?

7.51 Let C\ and C2 denote two cyclic codes with the same block length n, with generator

polynomials gi (X) and g2(X), and with minimum distances d\ and d2 ,
respectively. Define

Cmax = Ci U C2 and Cmin = C x
IT C2 .

1. Is Cmax a cyclic code? Why? If yes, what is its generator polynomial and its minimum
distance?

2. Is Cmm a cyclic code? Why? If yes, find its generator polynomial. What can you say

about its minimum distance?

7.52 We know that cyclic codes for all possible values of (n ,
k) do not exist.

1. Give an example of an (n ,
k) pair for which no cyclic code exists (k < n ).

2. How many (10, 2) cyclic codes do exist? Determine the generator polynomial of one

such code.

3. Determine the minimum distance of the code in part 2.

4. How many errors can the code in part 2 correct?

5. If this code is employed for transmission over a channel which uses binary antipodal

signaling with hard decision decoding and the SNR per bit of the channel is = 3 dB,

determine an upper bound on the error probability of the system.

7.53 What are the possible rates for cyclic codes with block length 23 ? List all possible generator

polynomials and specify the generator polynomial of the (23, 12) Golay code.
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7.54 Let s(X) denote the syndrome corresponding to error sequence e(X ) in an (n ,
k) cyclic

code with generator polynomial g(X). Show that the syndrome corresponding to e (1) (X),

the right cyclic shift of e(X ), is s (1) (X), defined by

s
{l)
(X) = Xs(X) mod g(X)

7.55 Is the following statement true or false? If it is true, prove it; and if it is false, give a

counterexample: The minimum weight of a cyclic code is equal to the number of nonzero

coefficients of its generator polynomial.

7.56 Determine the generator polynomial and the rate of a double-error-correcting BCH code

with block length n = 31.

7.57 In the BCH code designed in Problem 7.56 the received sequence is

r = 0000000000000000000011001001001

Using the Berlekamp-Massey algorithm, detect the error locations.

7.58 Solve Problem 7.57 when the received sequence is

r = 1110000000000000000011101101001

7.59 Beginning with a (15, 7) BCH code, construct a shortened (12, 4) code. Give the generator

matrix for the shortened code.

7.60 Determine the generator polynomial and the rate of a double-error-correcting Reed-

Solomon code with block length n = 1.

7.61 Determine the generator polynomial and the rate of a triple-error-correcting Reed-Solomon

code with block length n = 63. How many codewords does this code have?

7.62 What is the weight distribution function of the Reed-Solomon code designed in

Problem 7.60?

7.63 Prove that in the product code shown in Figure 7.13-1 the (n\ — k\) x (ri2 — ^2 ) bits in the

lower right comer can be obtained as either the parity checks on the rows or parity checks

on the columns.

7.64 Prove that the minimum distance of a product code is the product of the minimum distances

of the two constituent codes.
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Linear block codes were studied in detail in Chapter 7. These codes are mainly used

with hard decision decoding that employs the built-in algebraic structure of the code

based on the properties of finite fields. Hard decision decoding of these codes results in

a binary symmetric channel model consisting of the binary modulator, the waveform

channel, and the optimum binary detector. The decoder for these codes tries to find the

codeword at the minimum Hamming distance from the output of the BSC. The goal in

designing good linear block codes is to find the code with highest minimum distance

for a given n and k.

In this chapter we introduce another class of codes whose structure is more con-

veniently described in terms of trellises or graphs. We will see that for this family of

codes, soft decision decoding is possible, and in some cases performance very close to

channel capacity is achievable.

8.1

THE STRUCTURE OF CONVOLUTIONAL CODES

A convolutional code is generated by passing the information sequence to be transmitted

through a linear finite-state shift register. In general, the shift register consists of K
(k-bit) stages and n linear algebraic function generators, as shown in Figure 8.1-1. The

input data to the encoder, which is assumed to be binary, is shifted into and along the

shift register k bits at a time. The number of output bits for each k-bit input sequence is

n bits. Consequently, the code rate is defined as Rc = k/n , consistent with the definition

of the code rate for a block code. The parameter K is called the constraint length of

the convolution code.*

tin many cases, the constraint length of the code is given in bits rather than k-bit bytes. Hence, the shift

register may be called an L-stage shift register
,
where L = Kk. Furthermore, L may not be a multiple of

k
,
in general.

491
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FIGURE 8.1-1

Convolutional encoder.

One method for describing a convolutional code is to give its generator matrix, just

as we did for block codes. In general, the generator matrix for a convolutional code

is semi-infinite since the input sequence is semi-infinite in length. As an alternative to

specifying the generator matrix, we shall use a functionally equivalent representation

in which we specify a set of n vectors, one vector for each of the n modulo-2 adders.

Each vector has Kk dimensions and contains the connections of the encoder to that

modulo-2 adder. A 1 in the ith position of the vector indicates that the corresponding

stage in the shift register is connected to the modulo-2 adder, and a 0 in a given position

indicates that no connection exists between that stage and the modulo-2 adder.

To be specific, let us consider the binary convolutional encoder with constraint

length K = 3, k = 1, and n = 3, which is shown in Figure 8.1-2. Initially, the shift

register is assumed to be in the all-zeros state. Suppose the first input bit is a 1 . Then the

output sequence of 3 bits is 1 1 1 . Suppose the second bit is a 0. The output sequence will

then be 001. If the third bit is a 1, the output will be 100, and so on. Now, suppose we
number the outputs of the function generators that generate each 3 -bit output sequence

as 1,2, and 3, from top to bottom, and similarly number each corresponding function

generator. Then, since only the first stage is connected to the first function generator

(no modulo-2 adder is needed), the generator is

gi = [100]

The second function generator is connected to stages 1 and 3. Hence

g2 = [ 101 ]

FIGURE 8.1-2

i
K = 3,k = l,n = 3 convolutional encoder.

3

Output
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Finally,

S3 = [1H]

The generators for this code are more conveniently given in octal form as (4, 5,7). We
conclude that when k — 1, we require n generators, each of dimension K to specify

the encoder.

It is clear that g\, g2 ,
and g3 are the impulse responses from the encoder input to

the three outputs. Then if the input to the encoder is the information sequence u
,
the

three outputs are given by

c(1) = u*g 1

C^ = U*g2 (8 * 1- 1 )

c(3) = U+ g3

where denotes the convolution operation. The corresponding code sequence c is the

result of interleaving c(1)
, c

(2)
, and c(3) as

=0 ,(1) (2) (3) m (2) (3)
'1 -1 2 ’

C2 (8 . 1-2)

The convolutional operation is equivalent to multiplication in the transform domain.

We define the D transform^ of u as

00

u(D ) = U{D l

1=0

(8.1-3)

and the transfer function for the three impulse responses g\, g 2 - and g 3 as

gi(D) = 1

g2(D) = \ + D2
(8.1-4)

g3(D) = 1 + D + D2

The output transforms are then given by

cm(D) = u(D)gi(D)

CC\D) = u(D)g2(D) (8.1-5)

c (3)(D) = u(D)g3(D)

and the transform of the encoder output c is given by

c(D) = c(1)(D 3
) + Dc(2\D3

) + D2
c(3)(D3

) (8. 1-6)

example 8.1-1. Let the sequence u = (1001 1 1) be the input sequence to the convo-

lutional encoder shown in Figure 8.1-2. We have

u{D) = 1 + £>
3 + D4 + D5

tUsing the D transform is common in coding literature where D denotes the unit delay introduced by

one memory element in the shift register. By substituting D = z~
l

, the D transform becomes the familiar

z transform.
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FIGURE 8.1-3

K = 2, k = 2, n = 3 convolutional encoder.

Output

and

cm(D) = (1 + D3 + D4 + I>
5
)(1) = 1 + D 3 + D4 + D5

c®(D) = (1 + D3 + D4 + D5
)( 1 + D 2

) = 1 + D2 + D3 + Z>
4 + D6 + D1

c
(3)(D) = (1 + £>

3 + D4 + D5
)( 1 + D + D2

)
= 1 + D + D2 + D3 + D5 + D1

and

c{D) = c(1)(D 3
) + Z)c(2)

(Z)
3
) + D2c°\D3

)

= 1 + D + D2 + D5 + D1 + £>
8 + D9 + D 10 + Du + Du + Du + D 15

+ D 17 + D 19 + D22 + D23

corresponding to the code sequence

c = (111001011111110101010011)

For a rate k/n binary convolutional code with k > 1 and constraint length K
,

the n generators are ^-dimensional vectors, as stated above. The following example

illustrates the case in which k = 2 and n — 3.

example 8.1-2. Consider the rate 2/3 convolutional encoder illustrated in Fig-

ure 8.1-3. In this encoder, 2 bits at a time are shifted into it, and 3 output bits are

generated. The generators are

^1 = [1011], ^2 = [1101], ^3 = [1010]

In octal form, these generators are (13, 15, 12).

The code shown in Figure 8.1-3 can be also realized by the diagram shown in

Figure 8.1-4. In this realization, instead a single shift register of length 4, two shift

registers each of length 2 are employed. The information sequence u is split into two

substreams and using a serial-to-parallel converter. Each of the two substreams

u

FIGURE 8.1-4

Double shift register implementation of

the convolutional encoder shown in

Figure 8.1-3.
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is the input to one of the two shift registers. At the output, the three generated sequences

c^
2
\ and are interleaved to generate the code sequence c. In general, instead of

one shift register with length L — Kk, we can use a parallel implementation of k shift

registers each of length K.

In the implementation shown in Figure 8.1-4, the encoder has two input sequences

m ( 1) and w (2) and three output sequences c (1)
,
c(2)

,
and c(3)

. The encoder thus can be

described in terms of six impulse responses, and hence six transfer functions which are

the D transforms of the impulse responses. If we denote by g-
7)

the impulse response

from input stream u^
l)

to the output stream c^\ in the encoder depicted in Figure 8.1-4

we have

g[
l) = [0 1] g? = [1 1]

g? = [11] gf = [1 0] (8.1-7)

g[
3> = [0 0]

g™ = [1 1 ]

and the transfer functions are

g
(

i

1}

(£>) = D

gf\D) = 1 +D
gf\D) = 0

g
(l\D) = 1 + D

g?(D) = 1

gf\D) = 1 + D

(8.1-8)

From the transfer functions and the D transform of the input sequences we obtain

the D transform of the three output sequences as

c(1)(D) = um(D)g {"(D) + u {2\D)g (

2

l)

(D)

c(2)(D) = uw(D)gf\D ) + u (2\D)gf\D)

c (3)(D) = uw(D)gf\D) + u (2\D)gf\D)

and finally

c(D) = cm(D3
) + Dc{2\D3

) + D2
c (3)(D 3

)

Equation 8.1-9 can be written in a more compact way by defining

u{D) = [« (1)(D) u (1\D)]

and

G(D) =
g\'\D) gf\D) gf\D)~

g$\D) g$\D) gf\D)_

By these definitions Equation 8.1-9 can be written as

c(D ) = u(D)G(D)

where

c(D) — [c(1)(D) c (2)(D) c(3)(D)]

(8.1-9)

(8 . 1-10)

(8 . 1-11 )

(8.1-12)

(8.1-13)

(8.1-14)

In general, matrix G(D) is a k x n matrix whose elements are polynomials in

D with degree at most K — 1. This matrix is called the transform domain generator

matrix of the convolutional code. For the code whose encoder is shown in Figure 8.1-4
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we have

G(D) =
D 1 + Z) 0

1 + D 1 1 + Z)

and for the convolutional code shown in Figure 8.1-2 we have

G(D) = [ 1 D2 + 1 D2 + D + 1 ]

(8.1-15)

(8.1-16)

8.1-1 Tree, Trellis, and State Diagrams

There are three alternative methods that are often used to describe a convolutional code.

These are the tree diagram ,
the trellis diagram

,
and the state diagram. For example,

the tree diagram for the convolutional encoder shown in Figure 8.1-2 is illustrated in

Figure 8.1-5. Assuming that the encoder is in the all-zeros state initially, the diagram

shows that if the first input bit is a 0, the output sequence is 000 and if the first bit is a 1

,

the output sequence is 1 1 1 . Now, if the first input bit is a 1 and the second bit is a 0, the

second set of 3 output bits is 001 . Continuing through the tree, we see that if the third bit

is a 0, then the output is 01 1 ,
while if the third bit is a 1 ,

then the output is 100. Given that

a particular sequence has taken us to a particular node in the tree, the branching rule is

to follow the upper branch if the next input bit is a 0 and the lower branch if the bit is a 1

.

Thus, we trace a particular path through the tree that is determined by the input sequence.

Close observation of the tree that is generated by the convolutional encoder shown

in Figure 8.1-5 reveals that the structure repeats itself after the third stage. This behavior

is consistent with the fact that the constraint length K = 3. That is, the 3-bit output

sequence at each stage is determined by the input bit and the 2 previous input bits, i.e.,

the 2 bits contained in the first two stages of the shift register. The bit in the last stage of

the shift register is shifted out at the right and does not affect the output. Thus we may
say that the 3 -bit output sequence for each input bit is determined by the input bit and

the four possible states of the shift register, denoted as a = 00, b = 01 ,
c = 10, d = 11.

000 FIGURE 8.1-5

Tree diagram for rate 1/3, K = 3 convolutional code.
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000 000 000 000 000

FIGURE 8.1-6

Trellis diagram for rate 1/3, K = 3 convolutional code.

If we label each node in the tree to correspond to the four possible states in the shift

register, we find that at the third stage there are two nodes with label a, two with label

b
,
two with label c

,
and two with label d. Now we observe that all branches emanating

from two nodes having the same label (same state) are identical in the sense that they

generate identical output sequences. This means that the two nodes having the same

label can be merged. If we do this to the tree shown in Figure 8.1-5, we obtain another

diagram, which is more compact, namely, a trellis. For example, the trellis diagram for

the convolutional encoder of Figure 8.1-2 is shown in Figure 8.1-6. In drawing this

diagram, we use the convention that a solid line denotes the output generated by the

input bit 0 and a dotted line the output generated by the input bit 1 . In the example being

considered, we observe that, after the initial transient, the trellis contains four nodes at

each stage, corresponding to the four states of the shift register, a, b,c, and d. After the

second stage, each node in the trellis has two incoming paths and two outgoing paths.

Of the two outgoing paths, one corresponds to the input bit 0 and the other to the path

followed if the input bit is a 1.

Since the output of the encoder is determined by the input and the state of the

encoder, an even more compact diagram than the trellis is the state diagram. The

state diagram is simply a graph of the possible states of the encoder and the possible

transitions from one state to another. For example, the state diagram for the encoder

shown in Figure 8.1-2 is illustrated in Figure 8.1-7. This diagram shows that the

possible transitions are

a- c, b—>a
,
b—>c, c—>b

,
c—>d

,
d—>b

,
d-

where a—U/3 denotes the transition from state a to /3 when the input bit is a 1. The

3 bits shown next to each branch in the state diagram represent the output bits. A dotted

line in the graph indicates that the input bit is a 1, while the solid line indicates that the

input bit is a 0.

example 8.1-3. Let us consider the k = 2, rate 2/3 convolutional code described in

Example 8.1-2 and shown in Figure 8.1-3. The first two input bits may be 00, 01, 10,
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or 1 1 . The corresponding output bits are 000, 010, 111,101. When the next pair of input

bits enters the encoder, the first pair is shifted to the second stage. The corresponding

output bits depend on the pair of bits shifted into the second stage and the new pair

of input bits. Hence, the tree diagram for this code, shown in Figure 8.1-8, has four

branches per node, corresponding to the four possible pairs of input symbols.
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d 110 d 110 d 110 d

FIGURE 8.1-9

Trellis diagram for K = 2, k = 2, n = 3 convolutional code.

Since the constraint length of the code is K = 2, the tree begins to repeat after

the second stage. As illustrated in Figure 8.1-8, all the branches emanating from nodes

labeled a (state a) yield identical outputs.

By merging the nodes having identical labels, we obtain the trellis, which is shown
in Figure 8.1-9. Finally, the state diagram for this code is shown in Figure 8.1-10.

To generalize, we state that a rate k/n
,
constraint length K

,
convolutional code is

characterized by 2k branches emanating from each node of the tree diagram. The trellis

and the state diagrams each have 2k (K~ 1 ^ possible states. There are 2k branches entering

each state and 2k branches leaving each state (in the trellis and tree, this is true after the

initial transient). The three types of diagrams described above are also used to represent

nonbinary convolutional codes. When the number of symbols in the code alphabet is

q = 2k ,k > 1, the resulting nonbinary code may also be represented as an equivalent

binary code. The following example considers a convolutional code of this type.

example 8.1-4. Let us consider the convolutional code generated by the encoder

shown in Figure 8.1-11. This code may be described as a binary convolutional code

with parameters K = 2, k = 2, n = 4, Rc = 1/2 and having the generators

g\ = [1010], g2 = [0101 ], £3 = [1110], g4 = [1001 ]

Except for the difference in rate, this code is similar in form to the rate 2/3, k = 2

convolutional code considered in Example 8.1-2. Alternatively, the code generated by

the encoder in Figure 8.1-11 may be described as a nonbinary (q =A) code with one

quaternary symbol as an input and two quaternary symbols as an output. In fact, if the

output of the encoder is treated by the modulator and demodulator as g-ary (q =4)
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FIGURE 8.1-10

State diagram for K = 2, k = 2, n = 3 convolutional code.

symbols that are transmitted over the channel by means of some M-ary (M = 4)

modulation technique, the code is appropriately viewed as nonbinary. In any case, the

tree, the trellis, and the state diagrams are independent of how we view the code. That

is, this particular code is characterized by a tree with four branches emanating from

each node, or a trellis with four possible states and four branches entering and leaving

each state, or, equivalently, by a state diagram having the same parameters as the trellis.

8.1-2 The Transfer Function of a Convolutional Code

We have seen in Section 7.2-3 that the distance properties of block codes can be

expressed in terms of the weight distribution, or weight enumeration polynomial of

FIGURE 8.1-11

K = 2, k = 2, n = 4 convolutional

encoder.

4
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the code. The weight distribution polynomial can be used to find performance bounds

for linear block codes as given by Equations 7.2-39, 7.2-48, 7.4-4, and 7.5-17. The

distance properties and the error rate performance of a convolutional code can be

similarly obtained from its state diagram. Since a convolutional code is linear, the set of

Hamming distances of the code sequences generated up to some stage in the tree, from

the all-zero code sequence, is the same as the set of distances of the code sequences

with respect to any other code sequence. Consequently, we assume without loss of

generality that the all-zero code sequence is the input to the encoder. Therefore, instead

of studying distance properties of the code we will study the weight distribution of the

code, as we did for the case of block codes.

The state diagram shown in Figure 8.1-7 will be used to demonstrate the method

for obtaining the distance properties of a convolutional code. We assume that the

all-zero sequence is transmitted, and we focus on error events corresponding to a

departure from the all-zero path on the code trellis and returning to it for the first

time.

First, we label the branches of the state diagram as Z° = 1, Z 1

,
Z2

,
or Z3

,
where

the exponent of Z denotes the Hamming distance between the sequence of output bits

corresponding to each branch and the sequence of output bits corresponding to the

all-zero branch. The self-loop at node a can be eliminated, since it contributes nothing

to the distance properties of a code sequence relative to the all-zero code sequence

and does not represent a departure from the all-zero sequence. Furthermore, node a is

split into two nodes, one of which represents the input and the other the output of the

state diagram, corresponding to the departure from the all-zero path and returning to it

for the first time. Figure 8.1-12 illustrates the resulting diagram. We use this diagram,

which now consists of five nodes because node a was split into two, to write the four

state equations

xc = Z 3Xa + zxb

xb = zxc + zxd

xd = Z2XC + Z2Xd

xe = Z2Xb

FIGURE 8.1-12

State diagram for rate 1/3, K = 3 convolutional code.



502 Digital Communications

The transfer function for the code is defined as T(Z) = Xe/Xa . By solving the

state equations given above, we obtain

T(Z) =
Z6

1-2Z2

= Z6 + 2Z 8 + 4Z 10 + 8Z I2
H

= J2 a* zd

d=

6

(8.1-18)

where, by definition,

ad

2(d 6)/2 even j

0 odd d
(8.1-19)

The transfer function for this code indicates that there is a single path of Hamming
distance d — 6 from the all-zero path that merges with the all-zero path at a given

node. From the state diagram shown in Figure 8.1-7 or the trellis diagram shown in

Figure 8. 1-6, it is observed that the d — 6 path is acbe. There is no other path from node

a to node e having a distance d — 6. The second term in Equation 8.1-18 indicates that

there are two paths from node a to node e having a distance d — 8. Again, from the state

diagram or the trellis, we observe that these paths are acdbe and acbcbe. The third term

in Equation 8.1-18 indicates that there are four paths of distance d = 10, and so forth.

Thus the transfer function gives us the distance properties of the convolutional code.

The minimum distance of the code is called the minimumfree distance and denoted by

rffree- In our example, dfree = 6.

The transfer function T(Z) introduced above is similar to the the weight enumera-

tion function (WEF) A(Z) for block codes introduced in Chapter 7. The main difference

is that in the transfer function of a convolutional code the term corresponding to the

loop at the all-zero state is eliminated; hence the all-zero code sequence is not included,

and therefore the lowest power in the transfer function is dfree . In determining A(Z)
we include the all-zero codeword, hence A(Z) always contains a constant equal to 1.

Another difference is that in determining the transfer function of a convolutional code,

we consider only paths in the trellis that depart from the all-zero state and return to it

for the first time. Such a path is called & first event error and is used to bound the error

probability of convolutional codes.

The transfer function can be used to provide more detailed information than just

the distance of the various paths. Suppose we introduce a factor Y into all branch

transitions caused by the input bit 1. Thus, as each branch is traversed, the cumulative

exponent on Y increases by 1 only if that branch transition is due to an input bit 1

.

Furthermore, we introduce a factor of J into each branch of the state diagram so that

the exponent of J will serve as a counting variable to indicate the number of branches

in any given path from node a to node e. For the rate 1/3 convolutional code in our

example, the state diagram that incorporates the additional factors of J and Y is shown
in Figure 8.1-13.
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JYZi

FIGURE 8.1-13

State diagram for rate 1/3, K = 3 convolutional code.

The state equations for the state diagram shown in Figure 8.1-13 are

Xc = JYZ 3Xa + JYZXb

Xb = JZXC + JZXd

Xd = JYZ2XC + JYZ2Xd
(8 . 1-20)

= JZ2Xb

Upon solving these equations for the ratio Xe/Xa ,
we obtain the transfer function

T(Y, Z, J )
= J 3YZ6

1 — JYZ2 (l + J)

= j3yz 6 + j4y2z s + j 5y2z 8 + j 5y3 z 10

+ 2J6Y 3Z 10 + J
7Y 3Z 10 +

(8.1-21)

This form for the transfer functions gives the properties of all the paths in the

convolutional code. That is, the first term in the expansion of T(Y, Z, J) indicates that

the distance d = 6 path is of length 3 and of the three information bits, one is a 1 . The

second and third terms in the expansion of T(Y
,
Z, J) indicate that of the two d = 8

terms, one is of length 4 and the second has length 5. Two of the four information

bits in the path having length 4 and two of the five information bits in the path having

length 5 are Is. Thus, the exponent of the factor J indicates the length of the path that

merges with the all-zero path for the first time, the exponent of the factor Y indicates the

number of Is in the information sequence for that path, and the exponent of Z indicates

the distance of the sequence of encoded bits for that path from the all-zero sequence

(the weight of the code sequence).

The factor J is particularly important if we are transmitting a sequence of finite

duration, say m bits. In such a case, the convolutional code is truncated after m nodes

or m branches. This implies that the transfer function for the truncated code is obtained

by truncating T(Y
,
Z, J) at the term Jm . On the other hand, if we are transmitting an

extremely long sequence, i.e., essentially an infinite-length sequence, we may wish to

suppress the dependence of T(F, Z, J) on the parameter J. This is easily accomplished
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by setting J = l. Hence, for the example given above, we have

YZ6

T(Y, Z) = T(Y, Z, 1) =
t _ 2yz2

= FZ6 + 2y2Z 8 + 4Y 3Zw + • • •

00

= J2adY^2Zd

d=

6

(8 . 1-22)

where the coefficients {ad} are defined by Equation 8. 1-19. The reader should note the

similarity between T(Y
,
Z) and B(Y

,
Z) introduced in Equation 7.2-25, Section 7.2-3.

The procedure outlined above for determining the transfer function of a binary

convolutional code can be applied easily to simple codes with few number of states.

For a general procedure for finding the transfer function of a convolutional code based

on application of Mason’s rule for deriving transfer function of flow graphs, the reader

is referred to Lin and Costello (2004).

The procedure outlined above can be easily extended to nonbinary codes. In the

following example, we determine the transfer function of the nonbinary convolutional

code previously introduced in Example 8.1-4.

example 8.1-5. The convolutional code shown in Figure 8.1-11 has the parameters

K = 2, k = 2, n = 4. In this example, we have a choice of how we label distances

and count errors, depending on whether we treat the code as binary or nonbinary.

Suppose we treat the code as nonbinary. Thus, the input to the encoder and the output

are treated as quaternary symbols. In particular, if we treat the input and output as

quaternary symbols 00, 01, 10, and 1 1, the distance measured in symbols between the

sequences 0111 and 0000 is 2. Furthermore, suppose that an input symbol 00 is decoded

as the symbol 1 1 ;
then we have made one symbol error. This convention applied to the

convolutional code shown in Figure 8.1-11 results in the state diagram illustrated in

Figure 8.1-14, from which we obtain the state equations

Xb = YJZ2Xa + YJZXb + YJZXc + YJZ2Xd

Xc = YJZ2Xa + YJZ2Xb + YJZXC + YJZXd
2 2

(8.1-23)
Xd = YJZ2Xa + YJZXb + YJZ2XC + YJZXd

Xc = JZ\Xb + Xc + Xd )

Solution of these equations leads to the transfer function

3YJ2Z4

T(Y, Z, J) =
i _2yJZ — YJZ2

(8.1-24)

This expression for the transfer function is particularly appropriate when the quaternary

symbols at the output of the encoder are mapped into a corresponding set of quaternary

waveforms sm (t), m = 1, 2, 3, 4, e.g., four orthogonal waveforms. Thus, there is a one-

to-one correspondence between code symbols and signal waveforms. Alternatively, for

example, the output of the encoder may be transmitted as a sequence of binary digits

by means of binary PSK. In such a case, it is appropriate to measure distance in terms
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FIGURE 8.1-14

State diagram for K = 2, k = 2, rate 1 /2 nonbinary code.

of bits. When this convention is employed, the state diagram is labeled as shown in

Figure 8.1-15. Solution of the state equations obtained from this state diagram yields

a transfer function that is different from the one given in Equation 8.1-9.

8.1-3 Systematic, Nonrecursive, and Recursive Convolutional Codes

A convolutional code in which the information sequence directly appears as part of

the code sequence is called systematic. For instance the convolutional encoder given in

Figure 8.1-2 depicts the encoder for a systematic convolutional code since

c (1) = u + g\ — u (8.1-25)

This shows that the information sequence u appears as part of the code sequence c.

This can be directly seen by observing that the transform domain generator matrix of

the code given in Equation 8.1-16 has a 1 in its first column.

In general, if G(D) is of the form

G(D) = [Ik |

P(D)] (8.1-26)
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JYZ2

(0011 )

(0010)

jy2z

FIGURE 8.1-15

State diagram for K = 2,k = 2, rate 1 /2 convolutional code with output treated as a binary

sequence.

where P(D ) is a k x (n — k) polynomial matrix, the convolutional code is systematic.

The matrix G(D ) given below corresponds to a systematic convolutional code with

n — 3 and k = 2.

G(D) =
10 1 + D
0 1 1 + D + D 2

(8.1-27)

Two convolutional encoders are called equivalent if the code sequences generated

by them are the same. Note that in the definition of equivalent convolutional encoders

it is sufficient that the code sequences be the same; it is not required that the equal code

sequences correspond to the same information sequences.

example 8.1-6. A convolutional code with n — 3 and k — 1 is described by

G{U) = [1 + D + D2
1 + D D] (8.1-28)

The code sequences generated by this encoder are sequences of the general form

c{D) = c
(1)(D3

) + Dcm(D 3
) + D2

c(3\D3
) (8.1-29)
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where

cm(D) = (l + D + D 2
)u(D)

c(2)
(£>) = (1 + D)u(D)

c
(3)

(£>) = Du{D)

or

c(D) = (1 + D + D 3 + D4 + D5 + D6)u(D3
)

The matrix G(D) can also be written as

G(D) = (1+D + D2
)[ 1 i+fe]

= (1 + £> + D2
)G'(D)

G(D) and G\D) are equivalent encoders, meaning that these two matrices generate the

same set of code sequences; However, these code sequences correspond to different

information sequences. Also note that G\D) represents a systematic convolutional

code.

It is easy to verify that the information sequences u = (1, 0, 0, 0, 0, ... ) and

u! = (1, 1, 1, 0, 0, 0, 0, ... ) when applied to encoders G(D) and G'(D), respectively,

generate the same code sequence

c = (l, 1,0, 1,1, 1,1,0, 0, 0,0,...)

The transform domain generator matrix G\D) given by

G (D) = [l x+d+d2 1+d+d2
]

(8.1-33)

represents a convolutional encoder with feedback. To realize this transfer function, we
need to use shift registers with feedback as shown in Figure 8.1-16.

Convolutional codes that are realized using feedback shift registers are called re-

cursive convolutional codes (RCCs). The transform domain generator matrix for these

codes includes ratios of polynomials whereas in the case of nonrecursive convolutional

codes the elements of G(D) are polynomials. Note that in recursive convolutional codes

the existence of feedback causes the code to have infinite-length impulse responses.

Although systematic convolutional codes are desirable, unfortunately, in general

systematic nonrecursive convolutional codes cannot achieve the highest free distance

possible with nonsystematic nonrecursive convolutional codes of the same rate and

constraint length. Recursive systematic convolutional codes, however, can achieve the

(8.1-30)

(8.1-31)

(8.1-32)

c
(1) FIGURE 8.1-16

Realization of G'(D) using feedback shift register.
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same free distance as nonrecursive systematic codes for a given rate and constraint

length. The code depicted in Figure 8.1-16 is a recursive systematic convolutional

code (RSCC). Such codes are essential parts of turbo codes as discussed in Section 8.9.

8.1-4 The Inverse of a Convolutional Encoder and Catastrophic Codes

One desirable property of a convolutional encoder is that in the absence of noise it

is possible to recover the information sequence from the encoded sequence. In other

words it is desirable that the encoding process be invertible. Clearly, any systematic

convolutional code is invertible.

In addition to invertibility, it is desirable that the inverse of the encoder be realizable

using a feedforward network. The reason is that if in transmission of c(D) one error

occurs and the inverse function is a feedback circuit having an infinite impulse response,

then this single error, which is equivalent to an impulse, causes an infinite number of

errors to occur at the output.

For a nonsystematic convolutional code, there exists a one-to-one correspon-

dence between c(D) and c(1) (D), c (2)(D), . .
. ,

c^
n\D) and also between u(D) and

w (1) (D), z/2)(D), . .
.

,

u(
k\D). Therefore, to be able to recover u(D) from c(Z)), we

have to be able to recover w (1) (Z)), m (2) (D), . .
.

,

u^
k\D) from c(1) (D), c(2) (D), . .

.

,

c
(jl)

{D). Using the relation

c(D) = u(D)G(D) (8.1-34)

we conclude that the code is invertible if G(D ) is invertible. Therefore the condition

for invertibility of a convolutional code is that for the k x n matrix G(D) there must

exist an n x k inverse matrix G~ l (D) such that

G(D)G~ 1 (D) = Dl

Ik (8.1-35)

where l > 0 is an integer representing a delay of / time units between the input and the

output.

The following result due to Massey and Sain (1968) provides the necessary and

sufficient condition under which a feedforward inverse for G(D) exists.

An (ft, k) convolutional code with

G(D) = [ gl (D) g2(D) ... gn (D)] (8.1-36)

has a feedforward inverse with delay l if and only if for some / > Owe have

GCD {gi(D), 1 <i<k} = Dl

(8.1-37)

where GCD denotes the greatest common divisor. For (n , k) convolutional codes the

condition is

GCD Ai(D), 1 < i <
n

k
= Dl

(8.1-38)

where A,(D), 1 < i <
(£)

denote the determinants of the (") distinct kxk submatrices

of G(D).
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c
(1) FIGURE 8.1-17

A catastrophic convolutional encoder.

Convolutional codes for which a feedforward inverse does not exist are called

catastrophic convolutional codes. When a catastrophic convolutional code is used on a

binary symmetric channel, it is possible for a finite number of channel errors to cause an

infinite number of decoding errors. For simple codes, such a code can be identified from

its state diagram. It will contain a zero-distance path (a path with multiplier D° = 1)

from some nonzero state back to the same state. This means that one can loop around this

zero-distance path an infinite number oftimes without increasing the distance relative to

the all-zero path. But, if this self-loop corresponds to the transmission of a 1 ,
the decoder

will make an infinite number of errors. For general convolutional codes, conditions given

in Equations 8.1-37 and 8.1-38 must be satisfied for the code to be noncatastrophic.

example 8.1-7. Consider the k = 1, n = 2, K = 3 convolutional code shown in

Figure 8.1-17. For this code G(D) is given by

G(D) = [1 + D 1 + D 2
] (8.1-39)

and since GCD{1 + D, 1 + D2
}
= 1 + D / D l

,
the code is catastrophic. The state

diagram for this code is shown in Figure 8.1-18. The existence of the self-loop from

state 1 1 to itself corresponding to an input sequence of weight 1 and output sequence

of weight 0 results in catastrophic behavior for this code.

FIGURE 8.1-18

The state diagram for the catastrophic code of Figure 8.1-17.
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8.2

DECODING OF CONVOLUTIONAL CODES

There exist different methods for decoding of convolutional codes. Similar to block

codes, the decoding of convolutional codes can be done either by soft decision or by hard

decision decoding. In addition, the optimal decoding of convolutional codes can employ

the maximum-likelihood or the maximum a posteriori principle. For convolutional

codes with high constraint lengths, optimal decoding algorithms become too complex.

Suboptimal decoding algorithms are usually used in such cases.

8.2-1 Maximum-Likelihood Decoding of Convolutional

Codes— The Viterbi Algorithm

In the decoding of a block code for a memoryless channel, we computed the distances

(Hamming distance for hard-decision decoding and Euclidean distance for soft-decision

decoding) between the received codeword and the 2k possible transmitted codewords.

Then we selected the codeword that was closest in distance to the received codeword.

This decision rule, which requires the computation of 2k metrics, is optimum in the

sense that it results in a minimum probability of error for the binary symmetric channel

with p < \
and the additive white Gaussian noise channel.

Unlike a block code, which has a fixed length n
,
a convolutional encoder is basically

a finite-state machine. Hence the optimum decoder is a maximum-likelihood sequence

estimator (MLSE) of the type described in Section 4.8-1 for signals with memory.

Therefore, optimum decoding of a convolutional code involves a search through the

trellis for the most probable sequence. Depending on whether the detector following

the demodulator performs hard or soft decisions, the corresponding metric in the trel-

lis search may be either a Hamming metric or a Euclidean metric, respectively. We
elaborate below, using the trellis in Figure 8.1-6 for the convolutional code shown in

Figure 8.1-2.

Consider the two paths in the trellis that begin at the initial state a and remerge at

state a after three state transitions (three branches), corresponding to the two informa-

tion sequences 000 and 100 and the transmitted sequences 000 000 000 and 111 001

011, respectively. We denote the transmitted bits by {cjm , j = 1, 2, 3; m = 1, 2, 3},

where the index j indicates the jth branch and the index m the mth bit in that branch.

Correspondingly, we define {r;m , j = 1, 2, 3; m = 1, 2, 3} as the output of the de-

modulator. If the decoder performs hard decision decoding, the detector output for

each transmitted bit is either 0 or 1. On the other hand, if soft decision decoding is

employed and the coded sequence is transmitted by binary coherent PSK, the input to

the decoder is

rjm — V^c(2cjm 1) + fljm (8.2—1)

where njm represents the additive noise and £c is the transmitted signal energy for each

code bit.
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A metric is defined for the j th branch of the /th path through the trellis as the

logarithm of the joint probability of the sequence {r;m ,
m = 1 , 2, 3} conditioned on the

transmitted sequence {c^, m — 1, 2, 3} for the /th path. That is,

lif = log p(rj\cf), j = 1,2,3,... (8.2-2)

Furthermore, a metric for the /th path consisting of B branches through the trellis is

defined as

B

PM (i) = pf (8.2-3)

7= 1

The criterion for deciding between two paths through the trellis is to select the one

having the larger metric. This rule maximizes the probability of a correct decision, or,

equivalently, it minimizes the probability of error for the sequence of information bits.

For example, suppose that hard decision decoding is performed by the demodulator,

yielding the received sequence {101 000 100}. Let i = 0 denote the three-branch all-

zero path and i = 1 the second three-branch path that begins in the initial state a and

remerges with the all-zero path at state a after three transitions. The metrics for these

two paths are

PM(0) = 6 log(l - p) + 3 log p

PM(1) = 41og(l - p) + 5 log p
(8.2-4)

where p is the probability of a bit error. Assuming that p <\, we find that the metric

PM(0)
is larger than the metric PM(1)

. This result is consistent with the observation that

the all-zero path is at Hamming distance d = 3 from the received sequence, while the

i = 1 path is at Hamming distance d = 5 from the received path. Thus, the Hamming
distance is an equivalent metric for hard decision decoding.

Similarly, suppose that soft decision decoding is employed and the channel adds

white Gaussian noise to the signal. Then the demodulator output is described statistically

by the probability density function

P(rJm\c%) =
V2

exp < — -
'Time - Vs (

2cfm - 1
)]

,7TG
a 2(7 2

(8.2-5)

where a 2 = }No is the variance of the additive Gaussian noise. Ifwe neglect the terms

that are common to all branch metrics, the branch metric for the jth branch of the z‘th

path may be expressed as

fi
(0 = £ Tjm (2

C

(0
jm i)

m=

1

(8.2-6)
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where, in our example, n — 3. Thus the correlation metrics for the two paths under

consideration are

CM (0) = ±±r„(*%- 1
)

7= 1 m=

1

(8.2-7)

7= 1 m=

1

From the above discussion it is observed that forML decoding we need to look for

a code sequence c
(m)

in the trellis T that satisfies

•
(m) = max l°g P(r \cj),

j

for a general memoryless channel

•
(m) = miny lb — C;

II

2
,

j

for soft decision decoding
(8.2-8)

(m
> = mmY dH(yj, cj), for hard decision decoding

7

Note that for hard decision decoding y denotes the result of binary (hard) decisions

on the demodulator output r. Also in the hard decision case, c denotes the binary

encoded sequence whose components are 0 and 1, whereas in the soft decision case the

components of c are =bVSc- What is clear from above is that in all cases maximum-
likelihood decoding requires finding a path in the trellis that minimizes or maximizes

an additive metric. This is done by using the Viterbi algorithm as discussed below.

We consider the two paths described above, which merge at state a after three

transitions. Note that any particular path through the trellis that stems from this node

will add identical terms to the path metrics CM (0) and CM(1)
. Consequently, ifCM(0) >

CM(1) at the merged node a after three transitions, CM(0) will continue to be larger than

CM(1) for any path that stems from node a. This means that the path corresponding

to CM(1) can be discarded from further consideration. The path corresponding to the

metric CM (0)
is the survivor. Similarly, one of the two paths that merge at state b can be

eliminated on the basis of the two corresponding metrics. This procedure is repeated at

state c and state d. Asa result, after the first three transitions, there are four surviving

paths, one terminating at each state, and a corresponding metric for each survivor.

This procedure is repeated at each stage of the trellis as new signals are received in

subsequent time intervals.

In general, when a binary convolutional code with k = 1 and constraint length

K is decoded by means of the Viterbi algorithm, there are 2K
~

X
states. Hence, there

are 2K
~ l

surviving paths at each stage and 2K
~

l
metrics, one for each surviving path.

Furthermore, a binary convolutional code in which k bits at a time are shifted into

an encoder that consists of K (k-bit) shift-register stages generates a trellis that has

2KK- 1 ) states Consequently, the decoding of such a code by means of the Viterbi

algorithm requires keeping track of 2^ _1)
surviving paths and 2k{

~
K~ l)

metrics. At

each stage of the trellis, there are 2k paths that merge at each node. Since each path

that converges at a common node requires the computation of a metric, there are
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2k metrics computed for each node. Of the 2k paths that merge at each node, only

one survives, and this is the most probable (minimum-distance) path. Thus, the number

of computations in decoding performed at each stage increases exponentially with k

and K. The exponential increase in computational burden limits the use of the Viterbi

algorithm to relatively small values of K and k.

The decoding delay in decoding a long information sequence that has been con-

volutionally encoded is usually too long for most practical applications. Moreover, the

memory required to store the entire length of surviving sequences is large and expen-

sive. As indicated in Section 4.8-1, a solution to this problem is to modify the Viterbi

algorithm in a way which results in a fixed decoding delay without significantly affect-

ing the optimal performance of the algorithm. Recall that the modification is to retain

at any given time t only the most recent 8 decoded information bits (symbols) in each

surviving sequence. As each new information bit (symbol) is received, a final decision

is made on the bit (symbol) received 8 branches back in the trellis, by comparing the

metrics in the surviving sequences and deciding in favor of the bit in the sequence

having the largest metric. If 8 is chosen sufficiently large, all surviving sequences will

contain the identical decoded bit (symbol) 8 branches back in time. That is, with high

probability, all surviving sequences at time t stem from the same node at t — 8. It has

been found experimentally (computer simulation) that a delay 8 > 5K results in a

negligible degradation in the performance relative to the optimum Viterbi algorithm.

8.2-2 Probability of Error for Maximum-Likelihood Decoding

of Convolutional Codes

In deriving the probability of error for convolutional codes, the linearity property for

this class of codes is employed to simplify the derivation. That is, we assume that the

all-zero sequence is transmitted, and we determine the probability of error in deciding

in favor of another sequence.

Since the convolutional code does not necessarily have a fixed length, we derive

its performance from the probability of error for sequences that merge with the all-zero

sequence for the first time at a given node in the trellis. In particular, we define the

first-event error probability as the probability that another path that merges with the

all-zero path at node B has a metric that exceeds the metric of the all-zero path for

the first time. Of course in transmission of convolutional codes, other types of errors

can occur; but it can be shown that bounding the error probability of the convolutional

code by the sum of first-event error probabilities provides an upper bound that, although

conservative, in most cases is a usable bound on the error probability. The interested

user can refer to the book by Lin and Costello (2004) for details.

As we have previously discussed in Section 8.1-2, the transfer function of a con-

volutional code is similar to the WEF of a block code with two differences. First, it

considers only the first-event errors; and second, it does not include the all-zero code

sequence. Therefore, parallel to the argument we presented for block codes in Sec-

tion 7.2-4, we can derive bounds on sequence and bit error probability of convolutional

codes.
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The sequence error probability of a convolutional code is bounded by

Pe < T(Z) I (8.2-9)
I Z=A

where

a = (8 .2-10)

Note that unlike Equation 7.2-39, which states in linear block codes Pe < A(A) — 1,

here we do not need to subtract 1 from T{Z) since T{Z) does not include the all-zero

path. Equation 8.2-9 can be written as

00

Pe <J2 aJAd (8 .2-11 )

d=dfTee

The bit error probability for a convolutional code follows from Equation 7.2-48 as

Pb < 7 ^T(Y, Z), (8 .2-12)
K 01 k=l.Z=A

From Example 6.8-1 we know that if the modulation is BPSK (or QPSK) and the

channel is an AWGN channel with soft decision decoding, then

A = e~ Rcyb
(8.2-13)

and in case of hard decision decoding, where the channel model is a binary symmetric

channel with crossover probability of p ,
we have

A = y/4p(l ~ P) (8.2-14)

Therefore, we have the following upper bounds for the bit error probability of a con-

volutional code:

Pb<

l

k

< 1

k

JyT(Y,

w TW>

Z )
Y=l,Z=exp(-Rc yb )

Z )

y=l,Z=v'4p(l-p)

BPSK with soft decision decoding

hard decision decoding

(8.2-15)

In hard decision decoding we can employ direct expressions for the pairwise error

probability instead of using the Bhatacharyya bound. This results in tighter bounds on

the error probability. The probability of selecting a path of weight d
,
when d is odd,

over the all-zero path is the probability that the number of errors at these locations is

greater than or equal to {d + l)/2. Therefore, the pairwise error probability is given by

Pi(d)= (f) P
k(l-P)n~k

(8.2-16)

If d is even, the incorrect path is selected when the number of errors exceeds \d. If the

number of errors equals \d, there is a tie between the metrics in the two paths, which

may be resolved by randomly selecting one of the paths; thus, an error occurs one-half
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the time. Consequently, the pairwise error probability in this case is given by

P2(d) = ^(jd
S

jp
d/2(l-p)dl2

+
{fyp

kV-P)n~k
(8-2-17)

The error probability is bounded by

oo

Pe < Y, a* P^ (8.2-18)

d=dfTee

where Pjid) is substituted from Equations 8.2-16 and 8.2-17, for odd and even values

of d ,
respectively.

A similar tighter bound for the bit error probability can also be derived by using

the same approach. The result is given by

1
oo

n<:E ^P2(d) (8.2-19)
K
d=dhee

where fid are coefficients of Zd
in the expansion of T(Y, Z) computed at Y = 1.

A comparison of the error probability for the rate 1/3, K = 3 convolutional code

with soft decision decoding and hard decision decoding is made in Figure 8.2-1. Note

that the upper bound given by Equation 8.2-15 for hard decision decoding is less

than 1 dB above the tighter upper bound given by Equation 8.2-19 in conjunction

with Equations 8.2-16 and 8.2-17. The advantage of the Bhatacharyya bound is its
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computational simplicity. In comparing the performance between soft decision and

hard decision decoding, note that the difference obtained from the upper bounds is

approximately 2.5 dB for 10
-6 < Pb < 10

-2
.

Finally, we should mention that the ensemble average error rate performance of

a convolutional code on a discrete memoryless channel, just as in the case of a block

code, can be expressed in terms of the cutoff rate parameter Rq as (for the derivation,

see Viterbi and Omura (1979))

Pb <
(q - l) q

~KRo/Rc

^1 — q—(Ro~Rc)/Rcy2. 9 Pc < Ro (8 .2-20)

where q is the number of channel input symbols, K is the constraint length of the code,

Rc is the code rate, and Ro is the cutoff rate defined in Chapter 6. Therefore, conclusions

reached by computing Ro for various channel conditions apply to both block codes and

convolutional codes.

8.3

DISTANCE PROPERTIES OF BINARY CONVOLUTIONAL CODES

In this subsection, we shall tabulate the minimum free distance and the generators for

several binary, short-constraint-length convolutional codes for several code rates. These

binary codes are optimal in the sense that, for a given rate and a given constraint length,

they have the largest possible <7free . The generators and the corresponding values of

dfree tabulated below have been obtained by Odenwalder (1970), Larsen (1973), Paaske

(1974), and Daut et al. (1982) using computer search methods.

Heller (1968) has derived a relatively simple upper bound on the minimum free

distance of a rate 1 /

n

convolutional code. It is given by

dfree < min
l> 1

2l-\

(8.3-1)

where [xj denotes the largest integer contained in v. For purposes of comparison, this

upper bound is also given in the tables for the rate l/n codes. For rate k/n convolutional

codes, Daut et al. (1982) have given a modification to Heller’s bound. The values

obtained from this upper bound for k/n are also tabulated.

Tables 8.3-1 to 8.3-7 list the parameters of rate l/n convolutional codes for n =
2, 3, . .

.

,

8. Tables 8.3-8 to 8.3-1 1 list the parameters of several rate k/n convolutional

codes for k < 4 and n < 8.

8.4

PUNCTURED CONVOLUTIONAL CODES

In some practical applications, there is a need to employ high-rate convolutional codes,

e.g., rates of (n — 1)/n. As we have observed, the trellis for such high-rate codes has

2n
~ l branches that enter each state. Consequently, there are 2n

~ l metric computations

per state that must be performed in implementing the Viterbi algorithm and as many
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TABLE 8.3-1

Rate 1/2 Maximum Free Distance Codes

Constraint

Length K Generators in Octal dfree

Upper Bound
On dfree

3 5 7 5 5

4 15 17 6 6

5 23 35 7 8

6 53 75 8 8

7 133 171 10 10

8 247 371 10 11

9 561 753 12 12

10 1,167 1,545 12 13

11 2,335 3,661 14 14

12 4,335 5,723 15 15

13 10,533 17,661 16 16

14 21,675 27,123 16 17

Sources: Odenwalder (1970) and Larsen (1973).

comparisons of the updated metrics to select the best path at each state. Therefore, the

implementation of the decoder of a high-rate code can be very complex.

The computational complexity inherent in the implementation of the decoder of a

high-rate convolutional code can be avoided by designing the high-rate code from a low-

rate code in which some of the coded bits are deleted from transmission. The deletion of

selected coded bits at the output of a convolutional encoder is calledpuncturing , as previ-

ously discussed in Section 7.8-2. Thus, one can generate high-rate convolutional codes

by puncturing rate l/n codes with the result that the decoder maintains the low com-

plexity of the rate l/n code. We note, of course, that puncturing a code reduces the free

distance of the rate 1 /n code by some amount that depends on the degree of puncturing.

The puncturing process may be described as periodically deleting selected bits

from the output of the encoder, thus creating a periodically time-varying trellis code.

TABLE 8.3-2

Rate 1/3 Maximum Free Distance Codes

Constraint

Length K Generators in Octal dfree

Upper Bound
On dfree

3 5 7 7 8 8

4 13 15 17 10 10

5 25 33 37 12 12

6 47 53 75 13 13

7 133 145 175 15 15

8 225 331 367 16 16

9 557 663 711 18 18

10 1,117 1,365 1,633 20 20

11 2,353 2,671 3,175 22 22

12 4,767 5,723 6,265 24 24

13 10,533 10,675 17,661 24 24

14 21,645 35,661 37,133 26 26

Sources: Odenwalder (1970) and Larsen (1973).
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TABLE 8.3-3

Rate 1/4 Maximum Free Distance Codes

Constraint

Length K Generators in Octal dfree

Upper Bound
On dfree

3 5 7 7 7 10 10

4 13 15 15 17 13 15

5 25 27 33 37 16 16

6 53 67 71 75 18 18

7 135 135 147 163 20 20

8 235 275 313 357 22 22

9 463 535 733 745 24 24

10 1,117 1,365 1,633 1,653 27 27

11 2,327 2,353 2,671 3,175 29 29

12 4,767 5,723 6,265 7,455 32 32

13 11,145 12,477 15,537 16,727 33 33

14 21,113 23,175 35,527 35,537 36 36

Source: Larsen (1973).

TABLE 8.3-4

Rate 1/5 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal ^free On dfree

3 7 7 7 5 5 13 13

4 17 17 13 15 15 16 16

5 37 27 33 25 35 20 20

6 75 71 73 65 57 22 22

7 175 131 135 135 147 25 25

8 257 233 323 271 357 28 28

Source: Daut et al. (1982).

TABLE 8.3-5

Rate 1/6 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 7 7 7 16 16

7 5

4 17 17

13 15

5 37 35

33 25

6 73 75

65 47

7 173 151

135 163

8 253 375

235 313

5

13

15

20 20

27

35

24 24

55

57

27 27

135

137

30 30

331

357

34 34

Source: Daut et al. (1982).
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TABLE 8.3-6

Rate 1/7 Maximum Free Distance Codes

Constraint

Length K Generators in Octal dfree

Upper Bound
On dfyee

3 7 7 7 7 18 18

5 5 5

4 17 17 13 13 23 23

13 15 15

5 35 27 25 27 28 28

33 35 37

6 53 75 65 75 32 32

47 67 57

7 165 145 173 135 36 36

135 147 137

8 275 253 375 331 40 40

235 313 357

Source: Daut et al. (1982).

TABLE 8.3-7

Rate 1/8 Maximum Free Distance Codes

Constraint

Length K Generators in Octal dfree

Upper Bound
On dfree

3 7 7 5 5 21 21

5 7 7 7

4 17 17 13 13 26 26

13 15 15 17

5 37 33 25 25 32 32

35 33 27 37

6 57 73 51 65 36 36

75 47 67 57

7 153 111 165 173 40 40

135 135 147 137

8 275 275 253 371 45 45

331 235 313 357

Source: Daut et al. (1982).

TABLE 8.3-8

Rate 2/3 Maximum Free Distance Codes

Constraint

Length K Generators in Octal dfree

Upper Bound
On dfyee

2 17 6 15 3 4

3 27 75 72 5 6

4 236 155 337 7 1

Source: Daut et al. (1982).
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TABLE 8.3-9

Rate k/5 Maximum Free Distance Codes

Rate

Constraint

Length K Generators in Octal dfree

Upper Bound
on d ii’gc

2/5 2 17 07 11 12 04 6 6

3 27 71 52 65 57 10 10

4 247 366 171 266 373 12 12

3/5 2 35 23 75 61 47 5 5

4/5 2 237 274 156 255 337 3 4

Source: Daut et al. (1982).

TABLE 8.3-10

Rate k/1 Maximum Free Distance Codes

Rate

Constraint

Length K Generators in Octal dfree

Upper Bound
on dfagf*

2/7 2 05 06 12 15 9 9

15 13 17

3 33 55 72 47 14 14

25 53 75

4 312 125 247 366 18 18

171 266 373

3/7 2 45 21 36 62 8 8

57 43 71

4/7 2 130 067 237 274 6 7

156 255 337

Source

:

Daut et al. (1982).

TABLE 8.3-11

Rate 3/4 and 3/8 Maximum Free Distance Codes

Constraint Upper Bound
Rate Length K Generators in Octal dfree on dfree

3/4 2 13 25 61 47 4 4

3/8 2 15 42 23 61 8 8

51 36 75 47

Source: Daut et al. (1982).

We begin with a rate l/n parent code and define apuncturing period P
,
corresponding

to P input information bits to the encoder. Hence, in one period, the encoder outputs nP
coded bits. Associated with the nP encoded bits is a puncturing matrix P of the form

P 11 P 12
' '

• Pip

P21 P22
' ’

* P2P

Pn\ Pn2 • ' PnP

(8.4-1)
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where each column of P corresponds to the n possible output bits from the encoder for

each input bit and each element of P is either 0 or 1. When p tj = 1, the corresponding

output bit from the encoder is transmitted. When p tj
= 0, the corresponding output bit

from the encoder is deleted. Thus, the code rate is determined by the period P and the

number of bits deleted.

If we delete N bits out of nP, the code rate is P/(nP — N), where N may take

any integer value in the range 0 to (n — 1)P — 1. Hence, the achievable code rates are

Rc = M=l,2,...,(rc-l)P (8.4-2)
P + M

example 8.4-1. Let us construct a rate
|
code by puncturing the output of the rate

K = 3 encoder shown in Figure 8.1-2. There are many choices for P and M
in Equation 8.4-2 to achieve the desired rate. We may take the smallest value of P,

namely, P = 3. Then out of every nP = 9 output bits, we delete N = 5 bits. Thus,

we achieve a rate
|
punctured convolutional code. As the puncturing matrix, we may

select P as

P =

"1

1

0

i r
o o

o o

(8.4-3)

Figure 8.4-1 illustrates the generation of the punctured code from the rate
|
parent

code. The corresponding trellis for the punctured code is also shown in Figure 8.4-1.

In the example given above, the puncturing matrix was selected arbitrarily. How-
ever, some puncturing matrices are better than others in that the trellis paths have better

Hamming distance properties. A computer search is usually employed to find good

puncturing matrices. Generally, the high-rate punctured convolutional codes generated

in this manner have a free distance that is either equal to or 1 bit less than the best same

high-rate convolutional code obtained directly without puncturing.

Yasuda et al. (1984), Hole (1988), Lee (1988), Haccoun and Begin (1989), and

Begin et al. (1990) have investigated the construction and properties of small and large

constraint length punctured convolutional codes generated from low-rate codes. In

general, high-rate codes with good distance properties are obtained by puncturing rate

|
maximum free distance codes. For example, in Table 8.4-1 we list the puncturing

matrices for code rates of Rc < l
which are obtained by puncturing rate

\
codes

with constraint lengths 3 < K < 9. The free distances of the punctured codes are

also given in the table. Punctured convolutional codes for additional rates and larger

constraint lengths may be found in the papers referred to above.

The decoding of punctured convolutional codes is performed in the same manner

as the decoding of the low-rate l/n parent code, using the trellis of the 1 /n code. The

path metrics in the trellis for soft decision decoding are computed in the conventional

way as described previously. When one or more bits in a branch are punctured, the

corresponding branch metric increment is computed based on the nonpunctured bits;

thus, the punctured bits do not contribute to the branch metrics. Error events in a

punctured code are generally longer than error events in the low-rate l/n parent code.

Consequently, the decoder must wait longer than five constraint lengths before making
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(a) Encoder

(b) Trellis of punctured code

FIGURE 8.4-1

Generation of a rate 3/4 punctured code from a rate 1 /3 convolutional code.

TABLE 8.4-1

Puncturing Matrices for Code Rates of 2/3 < Rc < 7/8 from Rate 1/2 Code

K
Rate 2/3 Rate 3/4 Rate 4/5 Rate 5/6 Rate 6/7 Rate 7/8

P dfree P dfree P dfree P dfree P dfree P dfree

3 10 3 101 3 1011 2 10111 2 101111 2 1011111 2

11 110 1100 11000 110000 1100000

4 11 4 110 4 1011 3 10100 3 100011 2 1000010 2

10 101 1100 11011 111100 1111101

5 11 4 101 3 1010 3 10111 3 101010 3 1010011 3

10 110 1101 11000 110101 1101100

6 10 6 100 4 1000 4 10000 4 110110 3 1011101 3

11 111 mi mil 101001 1100010

7 11 6 110 5 mi 4 11011 4 111010 3 1111010 3

10 101 1000 10101 100101 1000101

8 10 7 110 6 1010 5 11100 4 101001 4 1010100 4

11 101 1101 10011 110110 1101011

9 11 7 111 6 1101 5 10110 5 110110 4 1101011 4

10 100 1010 11001 101001 1010100
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final decisions on the received bits. For soft decision decoding, the performance of

the punctured codes is given by the error probability (upper bound) expression in

Equation 8.2-15 for the bit error probability.

An approach for the design of good punctured codes is to search and select punc-

turing matrices that yield the maximum free distance. A somewhat better approach is

to determine the weight spectrum {/3^} of the dominant terms of the punctured code

and to calculate the corresponding bit error probability bound. The code corresponding

to the puncturing matrix that results in the best error rate performance may then be

selected as the best punctured code, provided that it is not catastrophic. In general, in

determining the weight spectrum for a punctured code, it is necessary to search through

a larger number of paths over longer lengths than the underlying low-rate l/n parent

code. Weight spectra for several punctured codes are given in the papers by Haccoun

and Begin (1989) and Begin et al. (1990).

8.4-1 Rate-Compatible Punctured Convolutional Codes

In the transmission of compressed digital speech signals and in some other applications,

there is a need to transmit some groups of information bits with more redundancy than

others. In other words, the different groups of information bits require unequal error

protection to be provided in the transmission of the information sequence, where the

more important bits are transmitted with more redundancy. Instead of using separate

codes to encode the different groups of bits, it is desirable to use a single code that

has variable redundancy. This can be accomplished by puncturing the same low-rate

l/n convolutional code by different amounts as described by Hagenauer (1988). The

puncturing matrices are selected to satisfy a rate compatibility criterion, where the

basic requirement is that lower-rate codes (higher redundancy) transmit the same coded

bits as all higher-rate codes plus additional bits. The resulting codes obtained from a

single rate l/n convolutional code are called rate-compatible punctured convolutional

(RCPC) codes.

example 8.4-2. From the rate | ,
K = 4 maximum free distance convolutional code,

let us construct an RCPC code. The RCPC codes for this example are taken from

the paper of Hagenauer (1988), who selected P = 8 and generated codes of rates

ranging from to The puncturing matrices are listed in Table 8.4-2. Note that the

rate
\
code has a puncturing matrix with all zeros in the third row. Hence all bits from

the third branch of the rate
\
encoder are deleted. Higher code rates are obtained by

deleting additional bits from the second branch of the rate
\
encoder. However, note

that when a 1 appears in a puncturing matrix of a high-rate code, a 1 also appears in

the same position for all lower-rate codes.

In applying RCPC codes to systems that require unequal error protection of the

information sequence, we may format the groups of bits into a frame structure, as

suggested by Hagenauer et al. ( 1 990) and illustrated in Figure 8 .4-2, where, for example,

three groups of bits of different lengths N\, N2 ,
and A3 are arranged in order of their

corresponding specified error protection probabilities p\ > P2 > ps- Each frame is

terminated after the last group of information bits (A3) by K — 1 zeros, which result
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TABLE 8.4-2

Rate-Compatible Punctured Convolutional Codes

Constructed from Rate 1/3,K = 4 Code with P = 8

Rc = P/(P + Af),M = 1, 2, 4, 6, 8, 10, 12, 14

Rate Puncturing Matrix P

1
T 1 1 1 1 1 1 1]

1 1 1 1 1 1 1 1

3
1 1 1 1 1 1 1 1_

4
T 1 1 1 1 1 1 f
1 1 1 1 1 1 1 1

11
_l 1 1 0 1 1 1 0_

2
IT 1 1 1 1 1 1 f
1 1 1 1 1 1 1 1

5
1 0 1 0 1 0 1 0_

4
T 1 1 1 1 1 1 f
1 1 1 1 1 1 1 1

9
_l 0 0 0 1 0 0 0_

1
T 1 1 1 1 1 1 f
1 1 1 1 1 1 1 1

2
0 0 0 0 0 0 0 0_

4
T 1 1 1 1 1 1 f
l 1 1 0 1 1 1 0

7
_o 0 0 0 0 0 0 0_

4
T 1 1 1 1 1 1 f
1 0 1 0 1 0 1 0

6
_0 0 0 0 0 0 0 0_

4
T 1 1 1 1 1 1

1"

l 0 0 0 1 0 0 0
5

_o 0 0 0 0 0 0 0_

8
T 1 1 1 1 1 1 f
l 0 0 0 0 0 0 0

9
0 0 0 0 0 0 0 0

in overhead bits that are used for the purpose of terminating the trellis in the all-zero

state. We then select an appropriate set of RCPC codes that satisfy the error protection

requirements, i.e.
, the specified error probabilities {pk } . In our example, the group ofbits

will be encoded by the use of three puncturing matrices having period P corresponding

to a set ofRCPC codes generated from a rate 1 jn code. Thus, the bits requiring the least

Pi < Pi < Pi

K- 1

zeros
n3 n2 Ni

Frame

Output

FIGURE 8.4-2

Frame structure for transmitting data with unequal error protection.
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protection are transmitted first, followed by the bits requiring the next-higher level of

protection, up to the group of bits requiring the highest level of protection, followed by

the all-zero terminating sequence. All rate transitions occur within the frame without

compromising the designed error rate performance requirements. As in the encoding,

the bits within a frame are decoded by a single Viterbi algorithm using the trellis of the

rate 1 /n code and performing metric computations based on the appropriate puncturing

matrix for each group of bits.

It can be shown (see Problem 8.21) that the average effective code rate of this

scheme is

Rav
zU N

i
p

E -=1 Nj(P + Mj) + (K- 1 )(P + Mj)
(8.4-4)

where J is the number of groups of bits in the frame, P is the period of the RCPC
codes, and the second term in the denominator corresponds to the overhead code bits

which are transmitted with the lowest code rate (highest redundancy).

8.5

OTHER DECODING ALGORITHMS FOR CONVOLUTIONAL CODES

The Viterbi algorithm described in Section 8.2-1 is the optimum decoding algorithm

(in the sense ofmaximum-likelihood decoding of the entire sequence) for convolutional

codes. However, it requires the computation of2kK metrics at each node ofthe trellis and

the storage of2^_1)
metrics and 2^-1)

surviving sequences, each of which may be

about 5kK bits long. The computational burden and the storage required to implement

the Viterbi algorithm make it impractical for convolutional codes with large constraint

length.

Prior to the discovery of the optimum algorithm by Viterbi, a number of other

algorithms had been proposed for decoding convolutional codes. The earliest was the

sequential decoding algorithm originally proposed by Wozencraft (1957), further treated

by Wozencraft and Reiffen (1961), and subsequently modified by Fano (1963).

Sequential decoding algorithm The Fano sequential decoding algorithm searches

for the most probable path through the tree or trellis by examining one path at a time. The

increment added to the metric along each branch is proportional to the probability of the

received signal for that branch, just as in Viterbi decoding, with the exception that an

additional negative constant is added to each branch metric. The value of this constant

is selected such that the metric for the correct path will increase on the average, while

the metric for any incorrect path will decrease on the average. By comparing the metric

of a candidate path with a moving (increasing) threshold, Fano’s algorithm detects and

discards incorrect paths.

To be more specific, let us consider a memoryless channel. The metric for the zth

path through the tree or trellis from the first branch to branch B may be expressed as

CM<i) =EE^
j= 1 m=

1

(8.5-1)
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where

Vfm = lo§2
P(rJm\cfm )

P(rjm )

-K (8.5-2)

In Equation 8.5-2, rlm is the demodulator output sequence, p(rjm \c
(

j

)

m ) denotes the

PDF of i'jm conditional on the code bit cfm for the mth bit of the jth branch of the ith

path, and JC is a positive constant. /C is selected as indicated above so that the incorrect

paths will have a decreasing metric while the correct path will have an increasing metric

on the average. Note that the term p(rjm ) in the denominator is independent of the code

sequence, and, hence, may be subsumed in the constant factor.

The metric given by Equation 8.5-2 is generally applicable for either hard- or

soft-decision decoding. However, it can be considerably simplified when hard-decision

decoding is employed. Specifically, if we have a BSC with transition (error) probability

p ,
the metric for each received bit, consistent with the form in Equation 8.5-2 is given by

u<‘>V'jm

log2 [2(l - p)] - Rc (if rjm = cfm )

log2 2p - Rc (if ? + c
(

fm )

(8.5-3)

where r]m is the hard-decision output from the demodulator, is the mth code bit in

the j th branch of the ith path in the tree, and Rc is the code rate. Note that this metric

requires some (approximate) knowledge of the error probability.

example 8.5-1. Suppose we have a rate Rc = 1/3 binary convolutional code for

transmitting information over a BSC with p = 0.1. By evaluating Equation 8.5-3 we
find that

f 0.52 (if ^jm — c^h)

1
-2.65 (if rJm *cfm )

(8.5-4)

To simplify the computations, the metric in Equation 8.5-4 may be normalized. It is

well approximated as

f 1 (if O'm —

1
—
^ (ifr

7
-m /c^)

(8.5-5)

Since the code rate is 1/3, there are three output bits from the encoder for each input

bit. Hence, the branch metric consistent with Equation 8.5-5 is

puf = 3-6d

or, equivalently,

fif = 1-2d (8.5-6)

where d is the Hamming distance of the three received bits from the three branch bits.

Thus, the metric puf is simply related to the Hamming distance between received bits

and the code bits in the jth branch of the z'th path.
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FIGURE 8.5-1

An example of the path search in

sequential decoding. [From Jordan

(1996), © 1966 IEEE.}

Initially, the decoder may be forced to start on the correct path by the transmission

of a few known bits of data. Then it proceeds forward from node to node, taking the

most probable (largest metric) branch at each node and increasing the threshold such

that the threshold is never more than some preselected value, say r, below the metric.

Now suppose that the additive noise (for soft-decision decoding) or demodulation errors

resulting from noise on the channel (for hard-decision decoding) cause the decoder to

take an incorrect path because it appears more probable than the correct path. This is

illustrated in Figure 8.5-1 . Since the metrics ofan incorrect path decrease on the average,

the metric will fall below the current threshold, say to. When this occurs, the decoder

backs up and takes alternative paths through the tree or trellis, in order of decreasing

branch metrics, in an attempt to find another path that exceeds the threshold to. If it is

successful in finding an alternative path, it continues along that path, always selecting the

most probable branch at each node. On the other hand, if no path exists that exceeds the

threshold to, the threshold is reduced by an amount r and the original path is retraced.

If the original path does not stay above the new threshold, the decoder resumes its

backward search for other paths. This procedure is repeated, with the threshold reduced

by r for each repetition, until the decoder finds a path that remains above the adjusted

threshold. A simplified flow diagram of Fano’s algorithm is shown in Figure 8.5-2.

The sequential decoding algorithm requires a buffer memory in the decoder to

store incoming demodulated data during periods when the decoder is searching for

alternate paths. When a search terminates, the decoder must be capable of processing

demodulated bits sufficiently fast to empty the buffer prior to commencing a new search.

Occasionally, during extremely long searches, the buffer may overflow. This causes loss

of data, a condition that can be remedied by retransmission of the lost information. In

this regard, we should mention that the cutoff rate Ro has special meaning in sequential

decoding. It is the rate above which the average number of decoding operations per

decoded digit becomes infinite, and it is termed the computational cutoff rate Rcomp . In

practice, sequential decoders usually operate at rates near Ro.

The Fano sequential decoding algorithm has been successfully implemented in

several communication systems. Its error rate performance is comparable to that of

Viterbi decoding. However, in comparison with Viterbi decoding, sequential decoding

has a significantly larger decoding delay. On the positive side, sequential decoding

requires less storage than Viterbi decoding and, hence, it appears attractive for convo-

lutional codes with a large constraint length. The issues of computational complexity

and storage requirements for sequential decoding are interesting and have been thor-

oughly investigated. For an analysis of these topics and other characteristics of the Fano
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FIGURE 8.5-2

A simplified flow diagram of Fano’s algorithm. [From Jordan (1966), © 1966 IEEE.]

algorithm, the interested reader may refer to Gallager (1968), Wozencraft and Jacobs

(1965), Savage (1966), and Forney (1974).

Stack algorithm Another type of sequential decoding algorithm, called a stack al-

gorithm
,
has been proposed independently by Jelinek (1969) and Zigangirov (1966). In

contrast to the Viterbi algorithm, which keeps track of 2^K~ l)k
paths and corresponding

metrics, the stack sequential decoding algorithm deals with fewer paths and their corre-

sponding metrics. In a stack algorithm, the more probable paths are ordered according

to their metrics, with the path at the top of the stack having the largest metric. At each

step of the algorithm, only the path at the top of the stack is extended by one branch.

This yields 2k successors and their corresponding metrics. These 2k successors along

with the other paths are then reordered according to the values of the metrics, and all

paths with metrics that fall below some preselected amount from the metric of the top

path may be discarded. Then the process of extending the path with the largest metric

is repeated. Figure 8.5-3 illustrates the first few steps in a stack algorithm.

It is apparent that when none of the 2k extensions of the path with the largest metric

remains at the top of the stack, the next step in the search involves the extension of

another path that has climbed to the top ofthe stack. It follows that the algorithm does not

necessarily advance by one branch through the trellis in every iteration. Consequently,
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FIGURE 8.5-3

An example of the stack algorithm

for decoding a rate 1/3

convolutional code.

Stack with accumulated path metrics

Step a Step b Step c Step d Step e Step /

-1 -2 -3 -2 -1 -2
-3 -3 -3 -3 -3 -3

-4 -4 -4 -4 -4
-5 -5 -5 -4

-8 -7 -5
-8 -7

-8

some amount of storage must be provided for newly received signals and previously

received signals in order to allow the algorithm to extend the search along one of the

shorter paths, when such a path reaches the top of the stack.

In a comparison of the stack algorithm with the Viterbi algorithm, the stack algo-

rithm requires fewer metric computations, but this computational saving is offset to a

large extent by the computations involved in reordering the stack after every iteration.

In comparison with the Fano algorithm, the stack algorithm is computationally simpler,

since there is no retracing over the same path as is done in the Fano algorithm. On the

other hand, the stack algorithm requires more storage than the Fano algorithm.

Feedback decoding A third alternative to the optimum Viterbi decoder is a method

calledfeedback decoding (Heller, 1975), which has been applied to decoding for a BSC
(hard-decision decoding). In feedback decoding, the decoder makes a hard decision on

the information bit at stage j based on metrics computed from stage j to stage j + m,

where m is a preselected positive integer. Thus, the decision on the information bit is

either 0 or 1 depending on whether the minimum Hamming distance path that begins at

stage j and ends at stage j +m contains a 0 or 1 in the branch emanating from stage j.

Once a decision is made on the information bit at stage j ,
only that part of the tree that

stems from the bit selected at stage j is kept (half the paths emanating from node j)

and the remaining part is discarded. This is the feedback feature of the decoder.
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The next step is to extend the part of the tree that has survived to stage j + l+m and

consider the paths from stage j+ 1 to j + l+min deciding on the bit at stage j+ 1 . Thus,

this procedure is repeated at every stage. The parameterm is simply the number of stages

in the tree that the decoderlooks ahead before making a hard decision. Since a large value

ofm results in a large amount of storage, it is desirable to selectm as small as possible.

On the other hand, m must be sufficiently large to avoid a severe degradation in perfor-

mance. To balance these two conflicting requirements, m is usually selected in the range

K <m < 2K, where K is the constraint length. Note that this decoding delay is signif-

icantly smaller than the decoding delay in a Viterbi decoder, which is usually about 5K.

example 8.5-2. Let us consider the use of a feedback decoder for the rate 1 /3 convo-

lutional code shown in Figure 8.1-2. Figure 8.5-4 illustrates the tree diagram and the

operation of the feedback decoder for m = 2. That is, in decoding the bit at branch j,

the decoder considers the paths at branches j , j + 1, and j + 2. Beginning with the

first branch, the decoder computes eight metrics (Hamming distances) and decides that

the bit for the first branch is 0 if the minimum distance path is contained in the upper

part of the tree, and 1 if the minimum distance path is contained in the lower part of

the tree. In this example, the received sequence for the first three branches is assumed
to be 101111110, so that the minimum distance path is in the upper part of the tree.

Hence, the first output bit is 0.

The next step is to extend the upper part of the tree (the part of the tree that has

survived) by one branch, and to compute the eight metrics for branches 2, 3, and 4. For

the assumed received sequence 111110011, the minimum-distance path is contained

in the lower part of the section of the tree that survived from the first step. Hence, the

second output bit is 1 . The third step is to extend this lower part of the tree and to repeat

the procedure described for the first two steps.

000

101 111 110 Oil
Received

sequence

Step 1: Upper-tree metrics: 7,6,5,2*; lower-tree metrics: 5,4,3,4 —

>

0

Step 2: Upper-tree metrics: 7,6,5,6; lower-tree metrics: 3,6,1*,2 —» 1

FIGURE 8.5-4

An example of feedback decoding for a

rate 1 /3 convolutional code.
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Instead of computing metrics as described above, a feedback decoder for the BSC
may be efficiently implemented by computing the syndrome from the received sequence

and using a table lookup method for correcting errors. This method is similar to the

one described for decoding block codes. For some convolutional codes, the feedback

decoder simplifies to a form called a majority logic decoder or a threshold decoder

(Massey (1963); Heller (1975)).

Soft-output algorithms The outputs of the Viterbi algorithm and the three algo-

rithms described in this section are hard decisions. In some cases, it is desirable to have

soft outputs from the decoder. This is the case if the decoding is being performed on an

inner code in a concatenated code, where it is desirable to provide soft decisions to the

input of the outer decoder. This is also the case in iterative decoding of concatenated

codes, previously discussed in the context of block codes in Section 7. 1 3-2, and further

treated in the context of convolutional codes in Section 8.9-2.

The optimum metric that provides a measure of the reliability of symbol decisions

is the a posteriori probability of the detected symbol conditioned on the received signal

vector r — {rjm ,
m = 1, 2, • •

•
,
n\ j = 1, 2, • •

• B}, where {rym } is the sequence of soft

outputs from the demodulator, n is the number of output symbols from the encoder for

each k input symbols, and j is the branch index. For example, the output of the demodu-

lator for a binary convolutional code and binary PSK modulation in anAWGN channel is

rjm = (2cJm - 1)V£C + njm (8.5-7)

where {cjm = 0, 1} are the output bits from the encoder. Given the received vector r,

decisions on the transmitted information bits are based on the maximum a posteriori

probability (MAP), which may be expressed as

P(Xi = 0|r) = 1 - P(xi = 1| r) (8.5-8)

where x
t
denotes the ith information bit in the sequence. Thus, under theMAP criterion,

a decision is made on a symbol-by-symbol basis by selecting the information symbol,

or bit in this case, corresponding to the largest a posteriori probability. If the a posteriori

probabilities for the possible transmitted symbols are nearly the same, the decision is

unreliable. Hence, the a posteriori probability associated with the decided symbol (the

hard decision) is the soft output from the decoder that provides a measure, or metric, for

the reliability of the hard decision. Since the MAP criterion minimizes the probability

of a symbol error, the a posteriori probability metric is the optimum soft output of the

decoder.

An algorithm for recursively computing the a posteriori probabilities for each

received symbol given the received signal sequence r from the demodulator has been

described in the paper by Bahl, Cocke, Jelinek, and Raviv (1974). This symbol-by-

symbol decoding algorithm, called the BCJR algorithm, is based on the MAP criterion

and provides a hard decision on each received symbol and the a posteriori probability

metric that serves as a measure for the reliability of the hard decision. The BCJR
algorithm is described in Section 8.8.

In contrast to theMAP symbol-by-symbol detection criterion, the Viterbi algorithm

selects the sequence that maximizes the probability p(r\x), where x is the vector of

information bits. In this case, the soft output metric is the Euclidean distance associated
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with the sequence of received symbols, as opposed to the individual symbols. However,

it is possible to derive symbol metrics from the sequence or path metrics. Hagenauer

and Hoeher (1989) devised a soft-output Viterbi algorithm (SOVA) that provides a

reliability metric for each decoded symbol. The SOVA is based on the observation

that the probability that a hard decision on a given symbol at the output of the Viterbi

algorithm is correct is proportional to the difference in path metrics between a surviving

sequence and its associated nonsurviving sequences. This observation allows us to form

an estimate of the error probability, or the probability of a correct decision, for each

symbol by comparing the path metrics of the surviving path with the path metrics of

nonsurviving paths.

For example, let us consider a binary convolutional code with binary PSK mod-
ulation. Since the Viterbi algorithm makes decisions with a decoding delay 8, at time

t = i + S the Viterbi decoder outputs the bit xis from the most probable surviving

sequence. When we trace back along the surviving path from t to t — 8, we observe

that we have discarded 5 + 1 paths. Let us consider the jth discarded path and its

corresponding bit Xij at time t — i. If X[s / Xij ,
let xf/j (xj/j > 0) be equal to

the difference in the path metrics between the surviving path and the /th discarded

path. If XiS = Xij, let xj/j = oc. This comparison is performed for all discarded

paths. From the set {xf/j, j = 0, 1, 2, • •
•

, 8} we select the smallest value, defined

as x//mm = min{i//0 , xf/ 1 ,

•
•

,
xj/8 }. Then, the probability of error for the bit xis is approx-

imated as

Po =
1 + e^m

(8.5-9)

Note that if xj/mm is very small, Pe « so the decision on xis is unreliable. Thus, Pe

provides a reliability metric for the hard decisions at the output of the Viterbi algorithm.

We note, however, that Pe is only an approximation to the true error probability. That

is, Pe is not the optimum soft-output metric for the hard decisions at the output of

the Viterbi algorithm. In fact, it has been observed in a paper by Wang and Wicker

(1996) that Pe underestimates the true error probability at low SNR. Nevertheless, this

soft-output metric from the Viterbi algorithm leads to a significant improvement in the

performance of the decoder in a concatenated code.

From Equation 8.5-9 we can obtain an estimate of the probability of a correct

decision as

Pc = \-Pe=
1 + e^

(8.5-10)

8,6

PRACTICAL CONSIDERATIONS IN THE APPLICATION
OF CONVOLUTIONAL CODES

Convolutional codes are widely used in many practical applications of communication

system design. Viterbi decoding is predominantly used for short constraint lengths

(K < 10), while sequential decoding is used for long-constraint-length codes, where
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TABLE 8.6-1

Upper Bounds on Coding Gain for Soft-Decision Decoding of Some
Convolutional Codes

Rate 1/2 codes Rate 1/3 codes

Constraint

Length K dfree

Upper bound,

dB
Constraint

Length K dfree

Upper bound,

dB

3 5 3.98 3 8 4.26

4 6 4.77 4 10 5.23

5 7 5.44 5 12 6.02

6 8 6.02 6 13 6.37

7 10 6.99 7 15 6.99

8 10 6.99 8 16 7.27

9 12 7.78 9 18 7.78

10 12 7.78 10 20 8.24

the complexity ofViterbi decoding becomes prohibitive. The choice of constraint length

is dictated by the desired coding gain.

From the error probability results for soft-decision decoding given by Equa-

tions 8.2-11, 8.2-12, and 8.2-13, it is apparent that the coding gain achieved by a

convolutional code over an uncoded binary PSK or QPSK system is

Coding gain < 101og 10(Rcdfree)

We also know that the minimum free distance dfrQC can be increased eitherby decreasing

the code rate or by increasing the constraint length, or both. Table 8.6-1 provides a

list of upper bounds on the coding gain for several convolutional codes. For purposes

of comparison. Table 8.6-2 lists the actual coding gains for several short-constraint-

length convolutional codes with Viterbi decoding. It should be noted that the coding

gain increases toward the asymptotic limit as the SNR per bit increases.

These results are based on soft-decision Viterbi decoding. Ifhard-decision decoding

is used, the coding gains are reduced by approximately 2 dB for the AWGN channel.

Larger coding gains than those listed in Tables 8.6-1 and 8.6-2 are achieved by

employing long-constraint-length convolutional codes, e.g., K = 50, and decoding

such codes by sequential decoding. Invariably, sequential decoders are implemented

TABLE 8.6-2

Coding Gain (dB) for Soft-Decision Viterbi Decoding

pb

Sb/No

Uncoded,

dB

Rc = 1/3 IIa? Rc = 2/3 Rc = 3/4

K = 8 K = 8 K = 5 K = 6 K = 1 K = 6 K = 8 K = 6 K = 9

10"3 6.8 4.2 4.4 3.3 3.5 3.8 2.9 3.1 2.6 2.6

lO"5 9.6 5.7 5.9 4.3 4.6 5.1 4.2 4.6 3.6 4.2

10-7 11.3 6.2 6.5 4.9 5.3 5.8 4.7 5.2 3.9 4.8

Source

:

Jacobs (1974); (c) IEEE
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FIGURE 8.6-1

Performance of rate 1 /2 and rate 1 /3

Viterbi and sequential decoding. [From

Omura and Levitt (1982). © 1982 IEEE.]

for hard-decision decoding to reduce complexity. Figure 8.6-1 illustrates the error rate

performance of several constraint-length K — 1 convolutional codes for rates 1 /2 and

1 /3 and for sequential decoding (with hard decisions) of a rate 1 /2 and a rate 1 /3

constraint-length K = 41 convolutional codes. Note that the K = 41 codes achieve an

error rate of 10
-6

at 2.5 and 3 dB, which are within 4-4.5 dB of the channel capacity

limit, i.e., in the vicinity of the cutoff rate limit. However, the rate 1/2 and rate 1/3,

K —1 codes with soft-decision Viterbi decoding operate at about 5 and 4.4 dB at 10
-6

,

respectively. These short-constraint-length codes achieve a coding gain of about 6 dB
at 10

-6
,
while the long-constraint-length codes gain about 7.5-8 dB.

Two important issues in the implementation of Viterbi decoding are

1 . The effect of path memory truncation, which is a desirable feature that ensures a

fixed decoding delay.

2. The degree of quantization of the input signal to the Viterbi decoder.

As a rule of thumb, we stated that path memory truncation to about five constraint

lengths has been found to result in negligible performance loss. Figure 8.6-2 illustrates

the performance obtained by simulation for rate 1 /2, constraint-lengths K = 3,5, and

7 codes with memory path length of 32 bits. In addition to path memory truncation,

the computations were performed with eight-level (three bits) quantized input signals

from the demodulator. The broken curves are performance results obtained from the

upper bound in the bit error rate given by Equation 8.2-12. Note that the simulation

results are close to the theoretical upper bounds, which indicate that the degradation

due to path memory truncation and quantization of the input signal has a minor effect

on performance (0.20-0.30 dB).

Figure 8.6-3 illustrates the bit error rate performance obtained via simulation for

hard-decision decoding of convolutional codes with K = 3-8. Note that with the K = 8
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FIGURE 8.6-2

Bit error probability for rate 1 /2 Viterbi decoding

with eight-level quantized inputs to the decoder and

32-bit path memory. [From Heller and Jacobs (1971 ).

© 1971 IEEE.]

code, an error rate of 10
-5

requires about 6 dB, which represents a coding gain of nearly

4 dB relative to uncoded QPSK.
The effect of input signal quantization is further illustrated in Figure 8.6-4 for a rate

1/2 ,
K = 5 code. Note that 3-bit quantization (eight levels) is about 2 dB better than

hard-decision decoding, which is the ultimate limit between soft-decision decoding

and hard-decision decoding on the AWGN channel. The combined effect of signal

quantization and path memory truncation for the rate 1/2, K = 5 code with 8-, 16-,

and 32-bit path memories and either 1- or 3-bit quantization is shown in Figure 8.6-5.

It is apparent from these results that a path memory as short as three constraint lengths

does not seriously degrade performance.

When the signal from the demodulator is quantized to more than two levels, an-

other problem that must be considered is the spacing between quantization levels.

Figure 8.6-6 illustrates the simulation results for an eight-level uniform quantizer as

a function of the quantizer threshold spacing. We observe that there is an optimum

FIGURE 8.6-3

Performance of rate 1 /2 codes with hard-decision

Viterbi decoding and 32-bit path memory truncation.

[From Heller and Jacobs (1971 ). © 1971 IEEE.]
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FIGURE 8.6-4

Performance of rate 1/2, K =5 code with eight-, four-,

and two-level quantization at the input to the Viterbi

decoder. Path truncation length = 32 bits. [From Heller

and Jacobs (1971). © 1971 IEEE.]

FIGURE 8.6-5

Performance of rate 1/2, K = 5 code with 32-, 16-,

and 8-bit path memory truncation and eight- and

two-level quantization. [From Heller and Jacobs

(1971). © 1971 IEEE.]

Quantizer threshold spacing

FIGURE 8.6-6

Error rate performance of rate 1/2 ,
K = 5 Viterbi decoder

for Eb/No = 3.5 dB and eight-level quantization as a

function of quantizer threshold level spacing for equally

spaced thresholds. [From Heller and Jacobs (1971 ). ©
1971 IEEE.]

spacing between thresholds (approximately equal to 0.5). However, the optimum is

sufficiently broad (0.4-0.7), so that, once it is set, there is little degradation resulting

from variations in the AGC level of the order of ±20 percent.

Finally, we should point out some important results in the performance degradation

due to carrier phase variations. Figure 8.6-7 illustrates the performance of a rate 1/2,
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SNR per bit, yb (dB)

FIGURE 8.6-7

Performance of a rate 1/2, K =1 code with

Viterbi decoding and eight-level quantization

as a function of the carrier phase tracking loop

SNR yl [From Heller and Jacobs (1971 ).

© 1971 IEEE.]

K = 1 code with eight-level quantization and a carrier phase tracking loop SNR yl-

Recall that in a PLL, the phase error has a variance that is inversely proportional to yl.
The results in Figure 8.6-7 indicate that the degradation is large when the loop SNR is

small (yl < 12 dB), and causes the error rate performance to bottom out at a relatively

high error rate.

8.7

NONBINARY DUAL-A: CODES AND CONCATENATED CODES

Our treatment of convolutional codes thus far has been focused primarily on binary

codes. Binary codes are particularly suitable for channels in which binary or quaternary

PSK modulation and coherent demodulation is possible. However, there are many
applications in which PSK modulation and coherent demodulation is not suitable or

possible. In such cases, other modulation techniques, e.g., M-ary FSK, are employed in

conjunction with noncoherent demodulation. Nonbinary codes are particularly matched

to M-ary signals that are demodulated noncoherently.

In this subsection, we describe a class of nonbinary convolutional codes, called

dual-k codes
,
that are easily decoded by means of the Viterbi algorithm using either

soft-decision or hard-decision decoding. They are also suitable either as an outer code

or as an inner code in a concatenated code, as will also be described below.

A dual-k rate 1/2 convolutional encoder may be represented as shown in

Figure 8.7-1. It consists of two (K — 2) k-bit shift-register stages and n = 2k func-

tion generators. Its output is two k-bit symbols. We note that the code considered in

Example 8.1^1 is a dual-2 convolutional code.
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FIGURE 8.7-1

Encoder for rate 1 /2 dual-/: codes.

The 2k function generators for the dual-/: codes have been given by Viterbi and

Jacobs (1975). These may be expressed in the form

<-gi

g2

g k

gfe+1

g/t+2

- g2k -

1 0 0

0 1 0

0 0 0 ••

110 0

0 0 10

0 0 0

1 0 0

110 0

0 0 10

0 0 0

1 0 0

where I* denotes the k x k identity matrix.

The general form for the transfer function of a rate 1/2 dual-/: code has been derived

by Odenwalder (1976). It is expressed as

(2* - l)Z4 /2y
T(Y, Z,J) =

0 1 0 0 0-

0 0 1 0 0
= [l* w

1 0 0 0 1.

0 1 0 0 0-

• 0 0 1 0 0

0 1 0 0 1 0

0 0 0 0 0 1.

0 1

0

I*

0 1

0 0

(8.7

1 - YJ[2Z +0 - 3)Z 2
]

OO

= '}TaiZ
i Ym Jh(i)

(8.7-2)

1=4

where D represents the Hamming distance for the g-ary (q = 2k ) symbols, the f(i)

exponent on N represents the number of information symbol errors that are produced
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in selecting a branch in the tree or trellis other than a corresponding branch on the

all-zero path, and the h(i) exponent on J is equal to the number of branches in a given

path. Note that the minimum free distance is <7free = 4 symbols (4k bits).

Lower-rate dual-A; convolutional codes can be generated in a number of ways, the

simplest of which is to repeat each symbol generated by the rate 1/2 code r times,

where r = 1,2 , . .
.

,

m (r = 1 corresponds to each symbol appearing once). If each

symbol in any particular branch of the tree or trellis or state diagram is repeated r times,

the effect is to increase the distance parameter from Z to Zr
. Consequently the transfer

function for a rate 1 /2r dual-k code is

T(Y, Z, J )
= (2

k -
1)Z4r J2Y

\-YJ[2Zr + (2
k -3)Z 2r

]

(8.7-3)

In the transmission of long information sequences, the path length parameter J

in the transfer function may be suppressed by setting 7 = 1. The resulting transfer

function T(Y, Z) may be differentiated with respect to Y, and Y is set to unity. This

yields

dT(Y, Z

)

dY N=

1

(2* - l)Z4r

[1 - 2Z r -
(2

k - 3)Z2r
]
2

00

E& zi

i=4r

(8.7-4)

where fo represents the number of symbol errors associated with a path having distance

Z [ from the all-zero path, as described previously in Section 8.2-2. The expression in

Equation 8.7-4 may be used to evaluate the error probability for dual-k codes under

various channel conditions.

Performance ofdual-k codes with M-ary modulation Suppose that a dual-A; code

is used in conjunction with M-ary orthogonal signaling at the modulator, where M =
2k . Each symbol from the encoder is mapped into one of the M possible orthogonal

waveforms. The channel is assumed to add white Gaussian noise. The demodulator

consists ofM matched filters.

If the decoder performs hard-decision decoding, the performance of the code is

determined by the symbol error probability Pe . This error probability has been computed

in Chapter 4 for both coherent and noncoherent detection. From Pe ,
we can determine

P2(d) according to Equation 8.2-16 or 8.2-17, which is the probability of error in a

pairwise comparison of the all-zero path with a path that differs in d symbols. The

probability of a bit error is upper-bounded as

2*-i 00

pb < y—r E ^Pi(d) (8.7-5)
Z 1

d=4r

The factor 2k
~

l

/(2
k —

1) is used to convert the symbol error probability to the bit error

probability.

Instead of hard-decision decoding, suppose that the decoder performs soft-decision

decoding using the output of a demodulator that employs a square-law detector. The
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expression for the bit error probability given by Equation 8.7-5 still applies, but now
Pi(d) is given by (see Section 11.1-1)

Piid) 2^ CXP

i=0
2
YbRcd (8.7-6)

where

Kt =
d-l-i

T, E
/=0

2d - 1

Z

(8.7-7)

and Rc = 1 /2r is the code rate.

Concatenated codes In Section 7.13-2, we considered the concatenation of two

block codes to form a long block code. Now that we have described convolutional

codes, we broaden our viewpoint and consider the concatenation of a block code with

a convolutional code or the concatenation of two convolutional codes.

In a conventional concatenated code, the outer code is usually chosen to be non-

binary, with each symbol selected from an alphabet of q = 2k symbols. This code

may be a block code, such as a Reed-Solomon code, or a convolutional code, such as

a dual-A; code. The inner code may be either binary or nonbinary, and either a block

or a convolutional code. For example, a Reed-Solomon code may be selected as the

outer code and a dual-A; code may be selected as the inner code. In such a concatenation

scheme, the number of symbols in the outer (Reed-Solomon) code q equals 2k
,
so that

each symbol of the outer code maps into a k-bit symbol of the inner dual-A; code. M-ary

orthogonal signals may be used to transmit the symbols.

The decoding of such concatenated codes may also take a variety of different

forms. If the inner code is a convolutional code having a short constraint length, the

Viterbi algorithm provides an efficient means for decoding, using either soft-decision

or hard-decision decoding.

If the inner code is a block code, and the decoder for this code performs soft-

decision decoding, the outer decoder may also perform soft-decision decoding using

as inputs the metrics corresponding to each word of the inner code. On the other hand,

the inner decoder may make a hard decision after receipt of the code word and feed the

hard decisions to the outer decoder. Then the outer decoder must perform hard-decision

decoding.

The following example describes a concatenated code in which the outer code is a

convolutional code and the inner code is a block code.

example 8.7-1. Suppose we construct a concatenated code by selecting a dual-& code

as the outer code and a Hadamard code as the inner code. To be specific, we select a

rate 1 /2 dual-5 code and a Hadamard (16,5) inner code. The dual-5 rate 1 /2 code has

a minimum free distance Dfree = 4 and the Hadamard code has a minimum distance

dmm = 8. Hence, the concatenated code has an effective minimum distance of 32. Since

there are 32 code words in the Hadamard code and 32 possible symbols in the outer

code, in effect, each symbol from the outer code is mapped into one of the 32 Hadamard
code words.
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The probability of a symbol error in decoding the inner code may be determined

from the results of the performance of block codes given in Sections 7.4 and 7.5

for soft-decision and hard-decision decoding, respectively. First, suppose that hard-

decision decoding is performed in the inner decoder with the probability of a code word
(symbol of outer code) error denoted as P32, since M = 32. Then the performance of

the outer code and, hence, the performance of the concatenated code is obtained by

using this error probability in conjunction with the transfer function for the dual-5 code

given by Equation 8.7-2.

On the other hand, if soft-decision decoding is used on both the outer and the inner

codes, the soft-decision metric from each received Hadamard code word is passed to

the Viterbi algorithm, which computes the accumulated metrics for the competing paths

through the trellis. We shall give numerical results on the performance of concatenated

codes of this type in our discussion of coding for Rayleigh fading channels.

8.8

MAXIMUM A POSTERIORI DECODING OF CONVOLUTIONAL
CODES—THE BCJR ALGORITHM

The BCJR algorithm, named after Bahl, Cocke, Jelinek, and Raviv Bahl et al. (1974),

is a symbol-by-symbol maximum a posteriori decoding algorithm for convolutional

codes. In this algorithm the decoder uses the MAP algorithm to decode each input

symbol to the decoder rather than looking for the most likely input sequence.

We know that convolutional codes are finite memory encoders in which the output

and the next state depend on the current state and the input. Assuming k = 1, we denote

an information sequence of length N by u = (u\
9
M2 , . .

.

,

u^) where u
t e {0, 1}, and

the corresponding encoded sequence by^ c = (ci, C2 , . .
.

,

cN ) where the length of c*

is n. The encoder state at time i is denoted by 07. For 1 < i < N we have

Ci = fc(ui,Oi- 1) (8.8-1)

<*i = fs(u i9 a*- 1 ) (8.8-2)

where functions fc and fs define the codeword and the new state as functions of the

input rq e {0, 1} and the previous state o/_i e X
,
where X denotes the set of all states. It

is clear that any pair of states (07_ 1 ,
or,-) that satisfies Equation 8.8-2 corresponds either

to Ui = 1 or to Hi — 0. Therefore, we can partition the set of all pairs of state (07-1, 07)

which correspond to all possible transitions into two subsets So and Si, corresponding

to ui = 0 and u t = 1, respectively.

The symbol-by-symbol maximum a posteriori decoding receives y = (ji, J2» • • •

»

yN ), the demodulator output, and based on this observation decodes u
t
using the

tWe use c to denote both the encoded sequence, which is a binary sequence of length nN with elements

from {0, 1}, and the encoded sequence after BPSK modulation, which is a sequence of length nN with

elements from ±^/£^. It should be clear from the context which notion is used.
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maximum a posteriori rule

Ui = argmax P(ui\y)
M/e{0,1}

pfa, y)= argmax

—

Uj E{0, 1} POO

= argmax p(u
t , y

)

Ui£{0,1}

(8.8-3)

= arg max V p((Ti-U , j)
£e{0 ’ 1} (Pi-uodzSt

where the last equality follows from the fact that u
t = l corresponds to all pairs of state

(cri-uGi) e Si for£ = 0, 1.

If we define

y
(r l) = (yu---,y

{i- l)

)

y\+ 1
= Oh+i. •••, Jw)

(8.8-4)

we can write

3- (^3^1) (8.8-5)

and we have

/7(CT,_1,<7;, JO = p 1(°i-l> yi’ 3’i+l)

= p\(cti-i, <r/, y/
-0

, 37
)
p (jffi k/-i. y

(r l)

> yt)

= p\(cr.--i. /r
1}

)
p (o-i, /i

i_l)

) p (y+iki-i , <*i, y
!-1)

, yi)

= p\(ffi-i, yr°) /> <a> j’/ki-i) p (y+iki)

(8.8-6)

where the first three steps follow from the chain rule and the last step follows from

Markov properties of the state in a trellis.

At this point we define c^-i (cr/_i), ft (cr*), and Yi (cr^, cr,) as

Oii- 1 (o-,-_l) = P (cri_ 1,

= (8.8-7)

Ki = p(oi, yi\cTi-i)

Using these definitions in Equation 8.8-6, we have

p(<*i- 1 > <*i, y) = «;-i (o',-!)// (a,_i, ct,) A (o'/) (8.8-8)

and hence from Equation 8.8-3 we obtain

«i = arg max Y] a,--i (cr,-_i) y,- (a,- 1 ,
<x,) A (cr,-) (8.8-9)

€s (°’ 1 l (<7,_,,<r/)eSf



Chapter Eight: Trellis and Graph Based Codes 543

Equation 8.8-9 indicates that for maximum a posteriori decoding we need the values

of cti-i (<7i- 1), Pi (Oi ), and yt (pi-i, 07). It should also be clear that although our devel-

opment of these equations was based on the assumption of k — 1 and ut e {0, 1}, the

extension of these results to general k is straightforward.

Now we derive recursion relations for a
t -\ (cti-i) and fy (cr*) which facilitate their

computation.

The Forward Recursion for a* (a*-) We show that

i

(o7_i) can be obtained by

using aforward recursion of the form

a, (o',) = Y Vi (cr,-i, adoti-i (ai_i) , 1 < i < N
a,-! eS

To prove Equation 8.8-10, we use the following set of relations

»i (Of) = p (ai, Ji
0

)

07-ieE

= Y p (<*-!• p (°>. yifo-u y
(r l)

)
(T,-! SE

= Y p
(
CTi - 1 ’ p(a‘' yMi-i)

c,-i eE

= Y “<-i (o-;-i,0;)

CT;-l EE

which completes the proof of the forward recursion relation for a* (cr,). This rela-

tion means that given the values of yt 07), it is possible to obtain a
t
{a

t ) from

oti—i (cfi-i). If we assume that the trellis starts in the all-zero state, the initial condition

for the forward recursion becomes

(8.8-10)

(8 . 8-11 )

(o’o) = P (^o) = | n °
/ n (8.8-12)

[0 cr0 ^ 0

Equations 8.8-10 and 8.8-12 provide a complete set of recursions for computing the

values of a.

The Backward Recursion for Pi (07) The backward recursion for computing the

values of ft is given by

A-l (07-l) = Y ((Tl) Yi ’

gt/EE

1 < i < N (8.8-13)
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To prove this recursion, we note that

Pi- 1 to- 1 ) = p
(
y\

N)
to-

1

)

= 12 p (y^y^l\’ ai

07 sE

= 12 P^ ’ yi (^+1 I °i > yi - <*i-
1 )

07 sE

= 12 P to’ yi to-l ) P (j'i+l I °i
)

ot,eE

= XI y’.to-i.o-.OAtoi)

a,eE

The boundary condition for the backward recursion, assuming that the trellis is

terminated in the all-zero state, is

Pn (<*n) =
1

0

tfv = 0

<Jn / 0
(8.8-15)

The recursive relations 8.8-10 and 8.8-13 together with initial conditions 8.8-12

and 8.8-15 provide the necessary equations to determine a's and P's when y ’s are

known. We now focus on computation of y ’s.

Computing yi (or;_ i, or
E ) We can write (o7_ 1? cr*), 1 < i < N, as

w fa-i, o/) = pfa,

(8.8-16)

where we have used the fact that there exists a one-to-one correspondence between a

pair of states (ov_! ,
cr*) and the input u

t
through Equation 8.8-2. The above expression

clearly shows the dependence of yt
(a/_i, cr*) on P(u

t ), the prior probability of the

information sequence at time /, as well as p (y t |

c
t ) which depends on the channel char-

acteristics. If the information sequence is equiprobable, an assumption that is usually

made when no information is available, then P(u
t = 0) = P(ut = 1) = |. Obviously,

the above derivation is based on the assumption that the state pair (ov_ l5 cr*) is a valid

pair; i.e., a transition from to <r
f
is possible.

Equation 8.8-9 together with the forward and backward relations for a and P given

in Equations 8.8-10 and 8.8-13 and Equation 8.8-16 for y are known as the BCJR
algorithm for symbol-by-symbol MAP decoding of a convolutional code.

Note that unlike the Viterbi algorithm that looks for the most likely information

sequence, the BCJR finds the most likely individual bits, or symbols. The BCJR al-

gorithm also provides the values of P (upy). These values provide a level of certainty

of the decoder about the value of u
t
and are called soft outputs or soft values. Having
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P (ui
| y), we can find the a posteriori L values as

L(ui) = In
P(U

{ = 1|J0

P(Ui = 0|j0

P(ui = \,y)
In
P (at = 0, y)

X] “i-i O;- 1 ) Yi (Pi- 1 , <*i) Pi (at)

(OTj-l.^OGSl
In——

X, a,-i y,- (cr/_i
,
cTj) Pi (cr,)

(cr/_i,cr/)G50

(8.8-17)

which are also referred to as soft outputs. Knowledge of soft outputs is crucial in

decoding of turbo codes discussed later in this chapter. A decoder such as the BCJR
decoder that accepts soft inputs (the vector y) and generates soft outputs is called a

soft-input soft-output (SISO) decoder. Note that the decoding rule based on L(ui) soft

values is given by

1 L(Ui ) > 0

0 L(ui ) < 0
(8.8-18)

For an AWGN channel, y = c + n, where c represents the modulated signal

corresponding to the encoded sequence, we have

Yi (o'i-
P(Mi)

(7tN0)
n/2

exp
II

— c
i 11

2

No
(8.8-19)

example 8.8-1. Let us consider the special case when n = 2, the convolutional code

is systematic, and the modulation is BPSK. In this case we have c
t = (cj, cf )

and

yt = (y-, yf), where the superscripts s and p represent the terms corresponding to

the systematic (information) bit and parity check bit, respectively. Here c\ =
depending on whether Ui = 1 or Ui = 0. The value of cf can also be one of the two

possible values of Using these values, Equation 8.8-19 becomes

, ,
P&i) ( (yf-cf ) +(y[-cf)

Yi (or,_!, (T,) = — exp
nN0

1

JTNo
ex exp

(V,< +

m

N0 No

(8 . 8-20)

Note that the term exp
|

— "
+2Sc

|
in Equation 8.8-20 is independent

of Ui and hence is canceled from the numerator and the denominator of the a posteriori

L values in Equation 8.8-17. It is also clear that in the numerator of Equation 8.8-17,

which corresponds to w/ = 1, we have c- = *f£c and in the denominator c- = — VSf.
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In this case the a posteriori L values simplify as

22 a,_i (a,-,) P(Ui) exp

t / \ i
(o/-i>0V)eSi

L(m/) = In

53 fa-i) P(ui) exp

(a'
/ _i,a'/)G5

,

o

2>f C; + 2 v/’cf

No

ly'jCj + 2 v/’c,-

1

N0

A to)

A to)

4V^yf
No

22 “i-i fa-i) pfa) exp

(ci/_i,o-,)e5i

+ In

53 a,-! fa_i)Pfa) exp

(o-,_i,o-,)e50

A fa;)

A fa)

4>/£jf
, ,

P(u
i
= i)

L + In —
Ao Pfa = 0)

«i-i fa— i) exP
(0-

/ _l,a’/)G5i
4- In

53 «;-i fa-i) exP
(o7_i,ov)eS0

Vcf
No

2y[c[

N0

A fa)

A fa)

(8 .8-21 )

One problem with the version ofthe BCJR algorithm described above is that it is not

a numerically stable algorithm, particularly if the trellis length is long. An alternative

to this algorithm is the log-domain version of it known as the Log-APP (log a posteriori

probability) algorithm.
1

In the Log-APP algorithm, instead of a, fi, and y

.

we define their logarithms as

5; fa/) = In fa, fa))

A fa) = In (A fa)) (8.8-22)

Yi fa-i, 0|) = In fa fa-i, CT,))

Straightforward calculation shows the following forward and backward recursions hold

for at fa) and A fai-i).

fa) = In 53 exP fa'- 1 fa'-i) + Yi fa;- 1> o’;))

\<v-ie£

A-1 fai-i) = In
( 53 exP (a fa) + Yi (fa- 1 ,

O';

ycr,ES

with initial conditions

(8.8-23)

JO ffo = 0 J° crN =0
«o fao) = ) , n /fa fav) = < , „

I —oo ctq
t*= 0 I —oo cr^v 0

(8.8-24)

tAlso called Log-MAP algorithm.
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and the a posteriori L values are computed as

L(ui) = In Y exptofi-^Oi-i) + yiicri-u o',) + PM))
o,)zS\

-In Y exp(a,_i

+

y,-(o/-i ,
a,) + ft(oi))

(cr
I
-_i,cr/)G5o

(8.8-25)

These relations are numerically more stable but are not computationally efficient.

To improve the computational efficiency, we can introduce the following notation:

max*{x, y} = ln(e
x + ey )

max*{x, y, z] = \n{e
x + ey + e

z
)

Using these definitions, we have the recursions

ai (o'/) = max* {a,-_i (cr^-j) + y, (o-,_i, a,)}
cr,_iES

A- i (ct;-i) = max*{/3,' (ct,) + y, (oi-_i, ct*)}
07 e£

(8.8-26)

(8.8-27)

where the initial conditions for these recursions are given by Equation 8.8-24. The a

posteriori L values are given by

L(ui ) max* {«/_! (a/_i) + y,- (cr
f_i, cr

f ) + fa (a*)}
(cr/_l,cr/)ESi

— max* {o'/.
(cr/_i,or

l
-)E50

(CT/_i) + }// (O'*-!, <Ji) + Pi (CT/)}

(8.8-28)

The initial conditions for these recursions are given by Equation 8.8-24.

example 8.8-2. For the special case studied in Example 8.8-1
,
the expression for the a

posteriori L values can be obtained using the log-domain quantities in Equation 8.8-21

.

The result is

4 /£"y? ( 2v?

c

f ~
L(uj )

= — + L a
(ui) + max* a,-i (ct,_i) H j-*- + ft (ct,)

f 1 P P ^

- max*
<J

a,_i (<r,-_i) + ^
C

‘ + ft (a,) l
(CT/-1

5 CT/)E5o ( N() J

where we have defined La
(ui) as

(8.8-29)

L a
(Ui )

= In— (8.8-30)v J

P{ui = 0)

It is seen that in this case the a posteriori L values can be written as the sum of

three terms. The first term,
4v^ ,

depends on the channel output corresponding to the

systematic bits received by the decoder. The second term, La
(u,i), depends on the a

priori probabilities of the information bits. The remaining term is the contribution of

the channel outputs corresponding to the parity bits.
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It can be easily shown that (Problem 8.22)

max*{x, y} = max{x, y] + In (1 + e~ {x~y{

)
(o.o—51)

max*{x, y, z] — max* {max*{x, y}, z

}

The term In (l + e
-1*”3'

1

)
is small when x and y are not close. Its maximum occurs

when x = y for which this term is In 2. It is clear that for large x and y or when x and

y are not close, we can use the approximation

max*{x, y} & max{x, y] (8.8-32)

Under similar conditions we can use the approximation

max*{x, y, z] ~ max{x, y, z] (8.8-33)

The approximate relations in Equations 8.8-32 and 8.8-33 are valid when the

values of x and y (or x, y, and z) are not close. In general, approximating max* by

max in Equation 8.8-27 would result in a small performance degradation. The resulting

algorithm, which is a suboptimal implementation of the MAP algorithm, is called that

Max-Log-APP algorithm. ^

Instead of using the approximations given in Equations 8.8-32 and 8.8-33, one

can use a lookup table for values of the correction term In (1 + e~\
x~y

\) to improve the

performance. The interested reader is referred to Robertson and Hoeher (1997), Ryan

(2003), Robertson et al. (1995), and Lin and Costello (2004) for details.

8.9

TURBO CODES AND ITERATIVE DECODING

In Section 7.13-2 we introduced serial and parallel concatenated block codes in which

an interleaver is used to construct extremely long codes. In this section we consider the

construction and decoding of concatenated codes with interleaving, using convolutional

codes.

Parallel concatenated convolutional codes (PCCCs) with interleaving, also called

turbo codes, were introduced by Berrou et al. (1993) and Berrou and Glavieux (1996).

A basic turbo encoder, shown in Figure 8.9-1, is a recursive systematic encoder that

employs two recursive systematic convolutional encoders in parallel, where the second

encoder is preceded by an interleaver. The two recursive systematic convolutional

encoders may be either identical or different. We observe that the nominal rate at the

output of the turbo encoder is Rc = 1/3. However, by puncturing the parity check bits

at the output of the binary convolutional encoders, we may achieve higher rates, such

as rate 1/2 or 2/3. As in the case of concatenated block codes, the interleaver is usually

selected to be a block pseudorandom interleaver that reorders the bits in the information

sequence before feeding them to the second encoder. In effect, as will be shown later,

tAlso called Max-Log-MAP algorithm.
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Input information bits

Output

Output

Output

FIGURE 8.9-1

Encoder for parallel concatenated code (turbo code).

the use of two recursive convolutional encoders in conjunction with the interleaver

produces a code that contains very few codewords of low weight. This characteristic

does not necessarily imply that the free distance of the concatenated code is especially

large. However, the use of the interleaver in conjunction with the two encoders results

in codewords that have relatively few nearest neighbors. That is, the codewords are

relatively sparse. Hence, the coding gain achieved by a turbo code is due in part to this

feature, i.e., the reduction in the number of nearest-neighboring codewords, called the

multiplicity
,
that result from interleaving.

A standard turbo code shown in Figure 8.9-1 is completely described by the con-

stituent codes, which are usually similar, and the interleaving pattern, usually denoted

by n . The constituent codes, being recursive and systematic, are given by their generator

matrix of the form

G(D)= 1
giip)

81 (D )

(8.9-1)

where g\(D) and g2(D) specify the feedback and the feedforward connections, respec-

tively. Usually the constituent codes are specified by the octal representation of g\

and g2 ‘

example 8.9-1. A (31, 27) RSC encoder is represented by g \
= (11001) and g2 =

(101 1 1) corresponding to g\(D) = 1 + D + D4 and g2(D) = 1 + D 2 + D 3 + D4
. The

encoder is given by the block diagram shown in Figure 8.9-2.

8.9-1 Performance Bounds for T\irbo Codes

Turbo codes are two recursive systematic convolutional codes concatenated by an inter-

leaver. Although the codes are linear and time-invariant, the operation of the interleaver,

although linear, is not time-invariant. The trellis of the resulting linear but time-varying
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FIGURE 8.9-2

A (3 1 , 27) RSC encoder.

GH

finite-state machine has a huge number of states that makes maximum-likelihood de-

coding hopeless. In Benedetto and Montorsi (1996) it is stated that a certain turbo code

that has been implemented in VLSI when viewed as a time-varying finite-state machine

has 2 1030
states, making maximum-likelihood decoding impractical.

Although maximum-likelihood decoding of turbo codes is impractical, it can serve

to find an upper bound on the performance of these codes. By linearity of turbo codes,

we can assume that the all-zero information sequence is transmitted. Assuming an

interleaver of length N
,
there exist a total of 2N possible information sequences with

weights between 0 (for the all-zero sequence) and N. Let m e {1,2, . .
.
,2N — 1}

denote the erroneous information sequence that is detected when the all-zero sequence

is transmitted, and let us denote the weight of this sequence by jm ,
where 1 < jm < N.

Note that since the code is systematic, the weight of the codeword corresponding to the

information sequence m, denoted by wm ,
is the sum of the weight of the information

sequence jm and the weight of the corresponding parity sequence. The probability of

decoding m when the all-zero sequence is transmitted, assuming BPSK modulation, is

given by

Po^m = Q (a/2Rcwm Yb) (8.9-2)

and the corresponding bit error probability when m is detected is given by

Pb(0 ^m) = ^Q (y2Rcwm yb
) (

8 .9-3)

Using the union bound, the average bit error probability is bounded by

1
2" —

1

pb - L jmQ (\f'2-Rcwm yb
)

(8.9-4)

m=

1

Reordering and grouping the terms corresponding to information sequences of the same

weight, we can write

J
* o

KE

E

}Q UlRcdjiYb) (8.9-5)

7= 1 /=

1

where
(^)

is the number of information sequences of weight j and dji is the weight

of the codeword generated by the Zth information sequence of weight j. Now let us

consider the following cases as applied to the PCCC shown in Figure 8.9-1.
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Information Sequences of Weight j = 1 An information sequence with weight 1

(j = 1) when applied to a recursive convolutional code generates the impulse response

of the convolutional code. Since recursive convolutional codes have infinite impulse

response, or very large weight impulse response even when they are terminated, the

case of j = 1 results in large values for dji and thus very low bit error probability.

The only case that can cause a problem occurs when the single 1 in the input sequence

occurs at the end of a block of length N
,
in which case the output weight is low. The

existence of the pseudorandom interleaver, however, makes it highly unlikely that after

interleaving the single 1 will not appear at the end of the block and thus would generate

a high-weight codeword when applied to the second encoder. The probability of having

a single 1 at the end of the block both before and after interleaving is very small.

Information Sequences ofWeight j = 2 There exist (^) information sequences of

weight 2 corresponding to polynomials ofthe form Dh + D 12 = D ll (D l2~ l

1

+ 1), where

0</i < h < N — 1, and i\ and z
’2 determine the location of the Is in the information

sequence. In general, a polynomial of this form when applied to g2(D)/gi(D) generates

parity symbols of large weight, unless gi(D) divides Dl + 1, where l = h — i\.

If this is the case, then Dl + 1 = g\(D)h{D ), where h(D) is a polynomial. The

parity sequences generated by Dn + D l2
in this case will be D ll h(D)g2(D) which can

correspond to a low-weight parity sequence. For instance, if g\(D) = 1 + D + D2
,

then g 1 (D ) divides any weight 2 sequence of the form Dh
(D3 + 1), resulting in a parity

polynomial of the form D ll

( 1 + D)g2(D) which can correspond to a parity sequence

of low weight. In this example any information sequence of weight 2 in which there

are two zeros between the two Is will result in a low-weight parity sequenced The

existence of the interleaver, however, makes it highly unlikely that an information

sequence of weight 2 would generate low-weight parity sequences both before and after

interleaving. In fact, the number of weight 2 information sequences that generate low-

weight parity polynomials before and after interleaving is much smaller than N
,
where

N is the interleaver length. In contrast, for a single RSCC this number is of the order

of N.

A similar argument can be applied to weight 3 and weight 4 information sequences.

In both cases it can be argued that due to the effect of the interleaver, the number of

weight 3 and weight 4 information sequences that generate low-weight parities is much
lower than N. This means that low-weight codewords are possible in turbo codes, but

their occurence is very low. In other words, the main factor contributing to the excellent

performance of turbo codes particularly at low signal-to-noise ratios is not their good

distance structure, but the relatively low multiplicity of codewords with low weight.

Note that the effect of low multiplicity of turbo codes is particularly noticeable at low

signal-to-noise ratios. At higher signal-to-noise ratios, the low minimum distance of

these codes results in an errorfloor.

If we consider information sequences of weight 2 and 3 as the main contributors

to the error probability bound for turbo codes, we can approximate the bit error bound

tObviously, this also applies to the case where there are five zeros between two Is, etc.
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of Equation 8.9-5 as

j

Pb ^ T7
'y

] jn j Q [yj'ZRcdj^mYb
^

(8.9—6)

where dj,min denotes the minimum codeword weight among all codewords generated

by information sequences of weight j and rij ^ N denotes the number of information

sequences of weight j that generate codewords of weight dj m̂ . Since rij N, the

coefficient of Q (^2Rcdjjmin yb) is much smaller than 1. The effect of the factor l/N
that drastically reduces the error bound on turbo codes is called the interleaver gain.

The bounds discussed above are based on the union bounding technique that is

loose particularly at low signal-to-noise ratios. More advanced bounding techniques

have been studied and applied to turbo codes that provide tighter bounds at low signal-

to-noise ratios. The interested reader is referred to Duman and Salehi (1997), Sason

and Shamai (2000), and Sason and Shamai (2001b).

8.9-2 Iterative Decoding for T\irbo Codes

We have seen that optimal decoding of turbo codes is impossible due to the large

number of states in the code trellis. A suboptimal iterative decoding algorithm, known
as the turbo decoding algorithm

,
was proposed by Berrou et al. (1993) which achieves

excellent performance very close to the theoretical bound predicted by Shannon.

The turbo decoding algorithm is based on iterative usage of the Log-APP or the

Max-Log-APP algorithm. As it was shown in Example 8.8-2, the a posteriori L values

can be written as the sum of three terms as

L(u,) = L cy* + L (a
\Ui ) + L (e

\Ui )

where

LcVi
4

No

La
(Ui ) = In

P{Uj = 1)

P(Ui = 0)

L (e
\ui) = max*

(cr;_i,ov)eSi

rs p p

&i-

1

(ai-

1

) H *7
1 + Pi (°7 )

/Vo

— max*
(cr/_l,cr/)€So

<*1-1 fa-l) +
2y[c[_

No
+ Pi fa)

(8.9-7)

(8.9-8)

and we have defined L c = ^\/£c.

The term L cyf is called the channel L value and denotes the effect of channel

outputs corresponding to the systematic bits. The second term La
(ui) is the a priori

L value and is a function of the a priori probabilities of the information sequence. The

final term, L (e)
(w/), represents the extrinsic L value or extrinsic information which is
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the part of the a posteriori L value that does not depend on the a priori probabilities

and the systematic information at the channel output.

Let us assume that the binary information sequence u = (u\, U2 , . .
.

,

uN ) is ap-

plied to the first rate 1/2 RSCC, and let us denote the parity bits at the output by

cp = (cf ,
c2 ,

. .
.

,

c
p
N ). The information sequence is passed through the interleaver to

obtain u' = (u[, u 2 , ...

,

u'N ), and this sequence is applied to the second encoder to

generate the parity sequence c,p — (c
p

,
c2 , . .

.

,

eft). Sequences u, cp
,
and c'p are

BPSK modulated and transmitted over a Gaussian channel. The corresponding output

sequences are denoted by y
s

, y
e

,
and y'p

. The MAP decoder for the first constituent

code receives the pair (y
s

, yp ). In the first iteration the decoder assumes all bits are

equiprobable, and therefore the a priori L values are set to zero. Having access to

(y
5

, y p
), the first decoder uses Equation 8.8-29 to compute the a posteriori L values.

At the output of the first constituent decoder, the decoder subtracts the channel L val-

ues from the a posteriori L values to compute the extrinsic L values. These values

are denoted by L 2̂ (ui) and are permuted by the interleaver n and then used by the

second constituent decoder as its a priori L values. In addition to this information,

the second decoder is supplied with y
,p and a permuted version of y

s
after passing

it through the interleaver II. The second decoder computes the extrinsic L values de-

noted by L
21 (ui) and after permuting them through II

-1
supplies them to the first

encoder, which in the next iteration uses these values as its a priori L values. This

process is continued either for a fixed number of iterations or until a certain criterion

is met. After the last iteration the a posteriori L values L{u
t ) are used to make the final

decision.

The building block of the turbo decoder is an SISO decoder with inputs y
s

, y
p

,

and L^a\ui) and outputs L (e)
(w;) and L(u

t ). In iterative decoding L (a)
(w*) is substituted

by the extrinsic L values provided by the other decoder. The block diagram of a turbo

decoder is shown in Figure 8.9-3.

A typical plot of the performance ofthe iterative decoding algorithm for turbo codes

is given in Figure 8.9-4. It is clearly seen that the first few iterations noticeably improve

the performance. It is seen from these plots that three regions are distinguishable. For

the low-SNR region where the error probability changes very slowly as a function of

£b/No and the number of iterations, for moderate SNRs the error probability drops

rapidly with increasing £b/No and over many iterations Pb decreases consistently. This

region is called the waterfall region or the turbo cliff region. Finally, for moderately

large £b/No values, the code exhibits an error floor which is typically achieved with a

FIGURE 8.9-3

Block diagram of a turbo decoder.
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FIGURE 8.9-4

Performance of iterative decoding for

turbo codes.

few iterations. As discussed before, the error floor effect in turbo codes is due to their

low minimum distance.

Typically, four iterations are adequate if the decoders are operating at a high enough

SNR to achieve an error rate in the range 10
-5

to 10
-6

,
whereas about eight to ten

iterations may be needed when the error rate is in the range of 10
-5

,
where the SNR is

lower.

An important factor in the performance of the turbo code is the length of the

interleaver, which is sometimes referred to as the interleaver gain. With a sufficiently

large interleaver and iterative MAP decoding, the performance of a turbo code is very

close to the Shannon limit. For example, a rate 1 /2 turbo code of block length N = 2 16

with 18 iterations of decoding per bit achieves an error probability of 10
-5

at an SNR
of 0.7 dB. From Figure 6.5-6 we see that the Shannon limit for a binary input rate 1 /2

code is roughly 0.19 dB. This means that this code operates 0.5 dB from the Shannon

limit.

The major drawback with decoding turbo codes with large interleavers is the de-

coding delay and the computational complexity inherent in the iterative decoding al-

gorithm. In most data communication systems, however, the decoding delay is tolera-

ble, and the additional computational complexity is usually justified by the significant

coding gain that is achieved by the turbo code. A second method for constructing

concatenated convolutional codes with interleaving is serial concatenation. Benedetto

et al. (1998) have investigated the construction and the performance of serial con-

catenated convolutional codes (SCCCs) with interleaving and have developed an iter-

ative decoding algorithm for such codes. In comparing the error rate performance of

SCCC with PCCC (turbo codes), Benedetto et al. (1998) found that SCCC generally

exhibit better performance than PCCC for error rates below 10~2
. For more details

on the properties of turbo codes, the reader is referred to Lin and Costello (2004),

Benedetto and Montorsi (1996), Heegard and Wicker (1999), and Hagenauer et al.

(1996).
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8.9-3 EXIT Chart Study of Iterative Decoding

Due to complexity of the iterative decoding algorithm, study of its convergence prop-

erties is difficult. A useful tool in studying the performance of iterative decoding of

turbo codes, particularly in the turbo cliff region, is the Extrinsic Information Transfer

(EXIT) chart. These charts were introduced by ten Brink (2001) and have served as a

useful tool in performance study and design of different iterative algorithms.

In Section 8.9-2 we have seen that an iterative decoder for a standard turbo code

consists oftwo similar SISO decoders which accept the a priori and channel information

at their input and generate the extrinsic information and the log-likelihood values at

the output. The two SISO decoders are connected in such a way that the extrinsic

information L (e) of each serves as the a priori information L (a)
for the other one. The

development of the EXIT chart is based on the empirical observation (ten Brink (2001))

that the a priori L value and the transmitted systematic bits are related through

2

L (a) = yCw + na (8.9-9)

where na is a zero-mean Gaussian random variable with variance a 2
, and C'

(f} denotes

the normalized systematic transmitted symbol that can take values ±1. From this we
conclude that

Plw\c&Wc) —
V2

(e-ca 2 /i
)

2

~e 2a2 (8.9-10)
jtct z

where c — ±1 with equal probability. The mutual information between L (a) and

is denoted by Ia and is given by

1 f°°
=

9 X / Jp(^k) 1°g2
Z
c=-l,l'/

-00

2p(l\c)

pWC = -l) + p(l\C = 1)

dl (8.9-11)

Using Equation 8.9-10 in 8.9-1 1 and using an approach similar to the approach taken

in the derivation of Equations 6.5-31 and 6.5-32, we obtain

Ia = 1 - E [log2 (l + e
-C‘" L

f (8.9-12)

where the expectation is with respect to the joint distribution of C (,s) and L (a)
.

It is clear that 0 < Ia < 1, and it can be shown to be a monotonically increasing

function of cr; thus given the value of Ia ,
a can be uniquely determined.

A similar argument can be applied to the extrinsic information to derive /e ,
the

mutual information between and The extrinsic information transfer (EXIT)

characteristic is defined as Ie when expressed as a function of Ia and Sb/No ,
i.e.,

Ie = T(Ie ,Sb/N0 ) (8.9-13)

or simply as

Ie = T(Ia ) (8.9-14)
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FIGURE 8.9-5

EXIT chart for a rate 2/3

convolutional code for different

values of Eb/No. [From ten Brink

(2001) ©IEEE.]

where this characteristic is plotted for different values of 8b/No. Since the values of

Ia and Ie are not given explicitly, Monte Carlo simulation is usually used to find the

expected value in Equation 8.9-12. This is done over a large number of samples N,

and Ia is computed as

1
N

4. « 1 ~ ^E l0& (1 + e~Cnt
") (8-9-15)

n=l

The EXIT chart for a (23, 37) RSCC after puncturing to increase the rate from 1 /2

to 2/3 is shown in Figure 8.9-5. The plots are shown for values of 8b/No in the range

of —0.5 dB to 3 dB.

For turbo codes, the extrinsic information generated by a decoder acts as the a

priori information for the next stage. To study the operation of an iterative decoder for a

turbo code, we plot the two EXIT functions of the constituent codes and move between

the two plots along the horizontal and vertical directions corresponding to equating the

extrinsic information of one encoder to the a priori information of the other, as shown

in Figure 8.9-6.

As seen in Figure 8.9-6, the iterative decoding begins with the assumption of

equal probabilities for the information bits. This corresponds to Ia \ =0 and moves

horizontally and vertically between the two EXIT graphs. It is seen that when 8b/No =
0. 1 dB, the two EXIT graphs intersect at low values of Ia and 7e ,

as noted in the lower left

comer of Figure 8.9-6. In this case after a couple of iterations no more improvement

is achieved, and low values of mutual information indicate a high error probability.

This behavior corresponds to the low signal-to-noise ratio region in Figure 8.9-4 and

sometimes is referred to as the pinch-off region. For higher values of 8b/No ,
the two

EXIT graphs become separated and there exists a bottleneck region through which the

iterative decoding trajectory climbs to high Ia and Ie values corresponding to low error
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FIGURE 8.9-6

Simulated trajectories of iterative

decoding for Sb/No = 0.1 and

£b/N0 = 0.8 dB. [From ten Brink

(2001) ©IEEE.]

probabilities. This region corresponds to the waterfall region in Figure 8.9-4. Finally,

for large 6b/No values the graphs in the EXIT charts become wide open with fast

convergence to the error floor. Figure 8.9-7 depicts another example of EXIT charts

for various values of 6b/No- The trajectories for 6b/No = 0.7 dB corresponding to the

waterfall region and 6b/No = 1.5 dB are shown for comparison.

In addition to providing insight to the performance of iterative decoding schemes,

EXIT charts have been used in the design of highly efficient codes as well as other

iterative methods such as iterative equalization.

FIGURE 8.9-7

EXIT chart trajectories for 8b/No =
0.7 dB and Sb/No = 1.5 dB. Simulation

is done for an interleaver size of 106

bits. [From ten Brink (2001) © IEEE.]

02 0.4 0.6 0.8
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8.10

FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM

We have observed that the trellis representation of convolutional codes is a convenient

graphical representation that is very useful in the implementation and understanding

of the maximum-likelihood decoding of these codes using the Viterbi algorithm or

the symbol-by-symbol maximum a posteriori decoding using the BCJR algorithm.

Representation of codes by more general graphical models is a convenient method in

studying the performance of some decoding algorithms. Graph representation is not

limited to decoding algorithms but has many applications to signal processing, circuit

theory, control theory, networking, and probability theory. In this section we provide

an introductory treatment of some of the basic graphical models used in the design of

a general algorithm called the sum-product algorithm.

The sum-product algorithm was first introduced by Gallager (1963) as a decoding

method for low-density parity check (LDPC) codes. Later, Tanner (1981) introduced

graphical models to describe this class of codes. These graphical models are known as

Tanner graphs. Wiberg et al. (1995) and Wiberg (1996) showed that the Viterbi and

BCJR algorithms as well as decoding algorithms for turbo and LDPC codes can be

unified in a single algorithm on certain graphs. The idea of graph representation of

codes was further developed and generalized by Forney (2001).

8.10-1 Tanner Graphs

Recall that an (n, k) linear block code C is described by a k x n generator matrix G
through

c = uG (8.10-1)

where u is an information sequence of length k and c is the corresponding codeword. A
binary sequence of length n is a codeword ofC if and only ifEquation 8.10-1 is satisfied

for some binary sequence u. The parity check matrix of this code H is an (n — k) x n

binary matrix defined as the generator matrix of the dual code CL . A necessary and

sufficient condition for c to be a codeword is that

cH f = 0 (8.10-2)

This equation can be written in terms of n — k relations

ch\ — 0

c/*2 = 0

cK-k = o

(8.10-3)
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FIGURE 8.10-1

An example of a graph.

where hi denotes the zth row of H. These equations introduce a set of n — k linear

constraints on a codeword c. For instance in a (7, 4) Hamming code with

these equations become

H =

"1
1 1

0 1 1

1 1 0

0 10 0
'

10 10
10 0 1

(8.10-4)

(8.10-5)

where addition is modulo-2. For a (3, 1) repetition code we have

and the parity check equations become

C\ + C2 = 0

Cl + c3 = 0

(8 . 10-6)

(8.10-7)

A Tanner graph is a graphical representation of Equations 8.10-3 as a bipartite

graph. In general, a graph is a collection of nodes (or vertices) and edges (or links) such

that each edge connects two nodes; i.e., each edge of the graph is uniquely determined

by the two nodes it connects. An example of a graph is shown in Figure 8.10-1. The

degree of a node is the number of edges that are incident on that node.

A graph is called a bipartite graph if the nodes of the graph can be partitioned into

two subsets N\ and W2 such that each edge has one node in N\ and one node in Af2 . In

other words, there exists no edge that connects two nodes both in N\ or both in Af2 . An
example of a bipartite graph is shown in Figure 8.10-2.

n
2

FIGURE 8.10-2

A bipartite graph.
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FIGURE 8.10-3

The Tanner graph for the (3,1) repetition code.
fi

f2

A Tanner graph representation ofEquations 8.10-3 can be obtained by representing

the each codeword component q, 1 < i < n, of a codeword c as a node i in N\ and

each of the n — k constraints given by Equation 8.10-3 as a node JA <j <n-k,
in N2 . There exists an edge connecting node i in N1 to node j in N2 if and only if q
appears in the j th parity check equation. Figures 8.10-3 and 8.10-4 depict the Tanner

graphs for the (3,1) repetition code and the (7, 4) Hamming code, respectively. Note

that since H for a code is not unique, its Tanner graph is not unique either.

One major difference between the two graphs shown in Figures 8.10-3 and 8.10-4

is that the first graph does not include cycles ;
that is, a path on the edges does not exist

that starts from a node and ends in the same node. However, the second graph includes

cycles, as clearly seen on the graph. A cycle-free graph is a graph in which removing

any edge divides the graph into two disconnected graphs. The length of the shortest

cycle included in a graph is called the girth of the graph. The girth of the graph shown
in Figure 8.10-4 is 4.

In the Tanner graph of Figure 8.10-4 two types of nodes are distinguishable: the

variable nodes
,
which correspond to the variables supplied to the Tanner graph (these are

cl

c2

c3

c4 f2

f3

FIGURE 8.10-4

The Tanner graph for the (7, 4) Hamming code.

c7
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the nodes denoted by circles on the left), and the constraint nodes that force a relation

between the variables. These nodes are denoted by squares on the right. A binary

sequence c is a codeword if it satisfies the three constraints given by Equations 8.10-5.

Let us define the indicator function of a proposition P as

S[P] =
1

0

if P is true

if P is false

Then, for instance,

S[C{ + C2 + C3 + C5 — 0]
— 1

0

if ci + c2 + c3 + c5 = 0

if C\ + C2 + C3 + C5 = 1

(8 . 10-8 )

(8.10-9)

and c is a codeword if

S[c\ +C2 + C3 +C5 = 0]5 [c2 + C3 +C4 + C6 = 0]S[ci -\-C2 + C4 + C7 = 0] = 1 (8.10—10)

The graph shown in Figure 8.10-4 is a graphical representation of the relation given

by Equation 8.10-10. We note that the product function of Equation 8.10-10 which

represents a global constraint for c to be a codeword can be factored into three local

constraints. Any input to this graph is a valid input if it results in a nonzero global value

for the global equation of the graph; and this can occur only if the input is a codeword.

Tanner graphs are special cases of factor graphs to be studied in the next section.

8.10-2 Factor Graphs

Let us assume that f(x 1 ,
X2 , . .

.

,

xn ) is a real-valued function of n variables x \ , . .
.

,

xn
where Xi takes values in a discrete set X. Assume we are interested in computing a

marginal function of one variable /* (*;) as

Mxi ) = 2̂ 2̂ - • -

- ^2 f(.xi,x2 , (8 . 10-11 )

X\ X2 JC/—I JCj+1 Xn

This, for instance, can be the case if we have the joint PDF of n random variables

and want to compute the marginal PDF of If the size of the set X is \X\, then

computing this sum requires \X\ n~ l
operations. If we use the the shorthand notation

~Xi to indicate summation over all variables except x
t ,
then Equation 8.10-11 can be

written in the more compact form

=
(8 . 10-12)

Computation of fi(x t ) can be made considerably simpler if the global function

f(x 1 ,
x2 ,

. .
.

,

xn ) is a factor of some localfunctions depending on a subset of variables,

i.e., if for x = (x \ ,
x2 , . .

.

,

xn ) we can write

M
fix )

= n gmiXm)
m=

1

(8.10-13)
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where xm , 1 < m < M, is a subset of components of x. For instance, in the case

where

f(Xl,X2 , *3, *4 ,
X5 ,X6 ,

X7 ,
X8 ) = gl(xi)g2(x2)g3 (xi,x2 , X3 , X4)g4(x4 , X5 , X6 )

x g5(X5)ge(X6, X7 , xs)g7(x7 )

(8.10-14)

we have

f4 (x4) = I 8l(Xl)g2(x2)g3(Xu x2 , *3, X4 ) 1

\xi,x2 ,x3 )

x
(
L g4(X4 ’

X5
’
x^8s(x5 ) I Y 8(>(X6, X7 , x%)g7(x7 ) I I

\x5 ,x6 \x7 ,x8 / /

(8.10-15)

which requires less computation than the general case.

Let us assume that fix) is given by Equation 8.10-13. Then a factor graph repre-

senting this global function is a graph consisting of aM nodes and n edge or half-edges.

An edge connects two nodes, and a half-edge just represents a value entering a node.

Therefore a half-edge on one side is connected to a node and on the other side is free.

Each edge or half-edge of the factor graph uniquely represents a variable, and each

node uniquely represents a local function. Since we are assuming that each edge or

half-edge uniquely represents a variable, this representation is possible only if each

variable appears in at most two local functions. We will see shortly how this limitation

can be removed.

example 8.10-1. The factor graph representing

p(w, u, v,xi,x2 , y ) = p{u
,
v, w)p(xi\u)p(x2 \v)p(y\xu x2 ) (8.10-16)

is shown in Figure 8.10-5. Note that two half edges corresponding to variables w and

y appear just in one local function.

If a variable appears in more than two local functions, we introduce a cloning node
that makes copies of this variable. Then we can supply these copies to local functions

(nodes on the graph) that need them. A cloning node is given by equality constraints.

example 8.10-2. Let us consider the function

fix\,X2 ,
x3 ,

x4 ,
x5 ) = glixu x2)g2 ixu x3 )g3 ix 1 ,

x4)g4ix3 ,
x4 ,

x5 ) (8.10-17)

FIGURE 8.10-5

Factor graph representing Equation 8.10-16.
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FIGURE 8.10-6

The factor graph representing Equation 8.10-17.

In this function the variable x\ appears in three local functions and hence has to be

cloned. The factor graph in Figure 8.10-6 shows how the equality constraint is in-

troduced to carry out this cloning. The equality constraint is a local function of the

form

g= (x\, x[, x") = $(*i = x[)&(x\ = x'{) (8.10-18)

This means that the value of this local function is 1 if and only if x\ = x[ = x'{. If

this constraint is not satisfied, the value of the function is zero, making the value of

the global function zero. This means that for such values of (x\, x
[ ,
x") the value of

the global function is not positive, and hence such a combination is not a valid input.

Introducing g= as in Equation 8.10-18 makes it possible to have a variable in more
than two local functions.

example 8.10-3. The factor graph representation of the Tanner graph for the Ham-
ming code shown in Figure 8.10-4 is shown in Figure 8.10-7.

FIGURE 8.10-7

The factor graph representation for a (7, 4) Hamming code.

c7
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FIGURE 8.10-8

The factor graph representation of the function in Equation 8.10-14.

8.10-3 The Sum-Product Algorithm

The sum-product algorithm is an efficient algorithm for computing marginals of the

form

= u x2 ,...,xn ) (8.10-19)

~Xi

using the factor graph for f(x \, . .
.

,

xn ). The basic idea is to sum over some of the

variables and then transmit two different messages in opposite directions across each

edge of the factor graph. The messages transmitted across each edge are functions of the

variable corresponding to that edge. These functions are usually expressed as vectors

whose components represent different values that these functions can take for different

values of the edge variable. This means that the dimensionality of the vector for each

edge is equal to the cardinality of the variable represented by that edge. In applications

of this algorithm to coding problems, since variables are usually binary, the vectors

representing the messages are two-dimensional vectors. A more convenient way in this

case, where the messages usually represent the probabilities of the variable being equal

to 0 or 1, is to use the ratio of the probabilities (likelihood ratio) or its logarithm (the

log-likelihood ratio LLR).

Let us consider the marginal represented by Equation 8.10-15 as"*"

Uix4 ) = ( 8l(X\)g2(X2)g3(Xl, X2 ,
X3 ,X4 ) I

\xi,x2 ,x3 /

(8 . 10-20)

^2 X5 ,
X6)g5 (x5 ) ( ^2 S6(X6, *7, Xs)g7 (x7 )

\x5 ,x6

The factor graph for f(x 1 ,
X2 ,

X3 ,
X4 ,

x$, x7 ,
x%) is represented by Figure 8.10-8,

where elements in the boxes correspond to the partial sums in Equation 8.10-20.

tThis example is taken from Loeliger (2004).
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We define

^X4 (x4) = 22 gl(Xl)g2(X2)g3(XuX2,X3,X4 )

Xl,X2 ,X3

l\^X6
(x6 ) = 22 ge(x

6

,
X7 ,

X8)g7 (x7 ) (8.10-21)
*7 ,*8

tX
g^H {X4) = 22 g4(X4

’
X5

' X6)g5(X5)(X
S6^X6

(x6 )

x5 ,x6

as the messages passed at #3 , g6 ,
and #4 ,

respectively. Referring to Figure 8.10-8,

we note that 11
6
(*6 ) is the message passed out of the inner box summarizing its

content and li
g^H and ii

g^H are the two messages sent in opposite directions on the

edge corresponding to variable X4 . Equation 8.10-20 states that the marginal f4 (^x4 )

is the product of the two messages passed along the edge corresponding to X4 . What
we have done here is that we have successively summarized each subsystem and used

the result to summarize the next system. The resulting algorithm, known as the sum-

product algorithm, can be summarized as follows. Each node corresponding to local

function g(x 1 ,
*2 ,

• • • ,
xn ) receives messages corresponding to local variables x

t
on

the branches corresponding to these variables. The received messages are denoted by

ix (x{). Based on these messages the node computes the outgoing message fi
g^x ,

(xt)

and sends it over the branch corresponding to x
t

. A diagram representing this process

is shown in Figure 8.10-9.

The outgoing messages are computed using the relation

/x
g^x.(xi) = 22 g(-

x »> • • >*«)II (8.10-22)

~x, j£i

where /jl
x .

(xj) is the incoming message on edge j corresponding to variable Xj. Note

that in computing the outgoing message on the edge corresponding to Xi ,
we have used

all incoming messages except the message corresponding to edge xt . This is equivalent

to saying that the extrinsic information is passed over node x
t

. For some special nodes

the following rules are followed:

1 . The message sent over a half-edge to the (single) node connecting to it is a message

with value 1 .

*1

8

x
i

X
n

FIGURE 8.10-9

The local computation in sum-product algorithm.
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2. If g is a function of a single variable then the product term in Equation 8.10-22

becomes empty and the equation reduces to

= g(Xi) (8.10-23)

3. For a cloning node g= with equality constraint, simple substitution in Equa-

tion 8.10-22 yields

l\= ^x .
(Xi) = n (Xj) (8. 10-24)

i+i

There exists a sharp contrast in applying the sum-product algorithm to cycle-free

graphs and graphs with cycles. In a cycle-free graph, the sum-product algorithm can start

from all leaves of the graph and proceed along the nodes as their incoming messages

become available. Since the graph is cycle-free, each message is computed only once.

After this step is done, the marginals corresponding to each variable can be found as the

product of the two messages sent in opposite directions on the edge corresponding to

that variable. For cycle-free graphs the sum-product algorithm converges to the correct

marginals in a finite number of steps. If the graph has cycles, then the convergence

of the algorithm is not guaranteed. However, in many practical cases of interest the

algorithm converges even for graphs that include cycles.

Factor Graph of a Code

For a code C with codewords c*, 1 < i < Af, the global function can be written as

<$[c G C\. If c is a codeword, then this function is equal to 1, indicating that c is a valid

input. For a noncodeword sequence, the value of the global variable is zero, indicating

that the input is not valid.

Depending on the code characteristics this global function can be factorized differ-

ently. For instance, for convolutional codes this function can be written as the product

of the conditions that each component of c must be part of a path through the code

trellis and, therefore, must correspond to a transition between states cr^ and . For the

(7, 4) Hamming code the global function can be written as the product of three parity

check (local) functions as

5 [c G C] — <5 [ci + C2 + C3 + C5 = 0]<5[c2 + C3 + C4 + c$ = 0] <5 [c 1 + C2 + C4 + cj = 0]

(8.10-25)

In binary block codes two types of nodes are present in the factor graph of the

code: the n — k constraint nodes that represent the n — k parity check equations of the

form ch\ = 0forl < s < n — k and the equality constraint nodes (cloning nodes)

corresponding to codeword components that appear in more than two parity check

equations. We have already seen that for the equality constraint nodes

iiti

(8.10-26)
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For the parity check nodes, if the messages are two-dimensional vectors representing

the probability of the edge variable beingt 0 or 1, we can show that (see Problem 8.25)

H,^(ci =0) = ± + ±
1

[[(.l-2pj{l))

/Vx,fa = !) = \
-

\ na
-

(8.10-27)

where pj( 1) denotes the incoming probability that the yth edge takes the value 1.

8.10-4 MAP Decoding Using the Sum-Product Algorithm

A code C with codewords c
t ,

1 < i < M, is used for communication over a memoryless

channel. Codeword c is transmitted over the channel and y is received, and at the decoder

we are interested in performing symbol-by-symbol maximum a posteriori decoding that

maximizes p{c
t \y). This can be written as

c
t
= argmax p(cmi\y)

1<m<M

= argmax^ p(cm \ y)
1<m<M _ .

L-mi

- argmaxV p(cm)p(y\cm )

1<m<M Z^r.

n

= arg maxV p(cm ) TT p(yt |
cmi )

\<m<M zr.

This quantity has to be computed over all codewords cm .

For an arbitrary binary sequence of length n denoted by c we have

(8.10-28)

Pic) = M
0

c eC
otherwise

(8.10-29)

or equivalently we can write

' p(c) = T <5[c € C] (8.10-30)

The MAP decoding rule then becomes

n

Ci = arg max^ S[c e C] JJ p(yt |c,) (8.10-31)

1= 1

tOr, equivalently, when the incoming two-dimensional message vector to each node is appropriately nor-

malized such that the two components add to 1, i.e., if the messages are
( ^+^( 1 ) > )

•
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The factor 8[c e C] determines the factor graph of the code, and factors p(yi\cj)

are nodes (functions) connected to the inputs (variable nodes) of the code factor graph

with yi as the input and p{yt\ci) as the node function. The resulting factor graph for

a (7, 4) Hamming code is shown in Figure 8.10-10. In this graph the leftmost squares

represent the channel conditional probabilities p(yt |q).

The decoding process begins by supplying the channel outputs yi as the variables

to the variable nodes of the code-channel factor graph. Using the values of p(yt
\

c

t ) and

Equations 8.10-31 and 8.10-27, the decoder can apply the sum-product algorithm to

find the marginal probabilities of each edge variable. The iterations are continued either

for a fixed number of times or until a stopping criterion is satisfied. One such stopping

criterion can be cH f = 0 .

8.11

LOW DENSITY PARITY CHECK CODES

Low density parity check codes (LDPCs) are linear block codes that are characterized

by a sparse parity check matrix. These codes were originally introduced in Gallager

(1960, 1963), but were not widely studied for the next twenty years. Although Tanner
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(1981) introduced the graphical representation of these codes, it was not until after

the introduction of turbo codes and the iterative decoding algorithm that these codes

were rediscovered by MacKay and Neal (1996) and MacKay (1999). Since then these

codes have been the topic of active research in the coding community motivated by

the excellent performance of these codes, which is realized by using iterative decoding

schemes based on the sum-product algorithm. In fact, it has been shown that these

codes are competitors to turbo codes in terms of performance and, if well designed,

have better performance than turbo codes. Their excellent performance has resulted in

their adoption in several communication and broadcasting standards.

Low density parity check codes are linear block codes with very large codeword

length n usually in the thousands. The parity check matrix H for these codes is a large

matrix with very few Is in it. The term low density refers to the low density of Is in the

parity check matrix of these codes.

A regular low density parity check can be defined as a linear block code with a

sparse m x n parity check matrix H satisfying the following properties.

1. There are wr Is in each row of H
,
where wr min{m, n}.

2. There are wc Is in each column of H
,
where wc min{m, n}.

The density of a low-density parity check code, denoted by r, is defined as the ratio of

the total number of Is in H to the total number of elements in H. The density is given

by

wr wc
(8.11-1)

n m
from which it is clear that

m wc
(8.11-2)

n wr

If the matrix H is full rank, then m —n — k

m „ wc
Rc = 1 - - = 1 - — (8.11-3)

n wr

otherwise,

D t

rank(H)
Kc — 1 (8.11-4)

n

The Tanner graph of a regular low density parity check code consists of the usual

constraint and variable nodes. The low density constraint of the code, however, makes

the degree of all constraint (parity-check) nodes equal to wr which is much less than

the code block length. Similarly the degree of all variable nodes is equal to wc . The

Tanner graph for an LDPC code is shown in Figure 8.1 1-1

The Tanner graph ofLDPC codes usually is a graph with cycles. We have previously

defined the girth of a graph as the length of the shortest cycle in that graph. Obviously

a bipartite graph with cycles has a girth that is least equal to 4. A common decoding

technique used forLDPC codes is the sum-product algorithm discussed in the preceding

section. This algorithm is effective when the girth of the Tanner graph of the LDPC
code is large. The reason for this behavior is that in order for the sum-product algorithm
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AAA FIGURE 8.11-1

The Tanner graph for a regular LDPC
code with wr = 4 and wc = 3.

to be effective on a graph with cycles, the value of the extrinsic information must be

high. If the girth of the LDPC code is low, the information corresponding to a bit loops

back to itself very soon, hence providing a small amount of extrinsic information and

resulting in poor performance. Design techniques for LDPC codes with large girth are

a topic of active research. We have seen in the preceding section that if the Tanner graph

of a code has no cycles, then the sum-product algorithm converges in a finite number of

steps. However, it has been shown that high-rate LDPC codes whose graph is cycle-free

have low minimum distance and hence their bit error rate performance is poor.

An irregular LDPC code is one in which the number of Is in rows and columns

of H is low but is not constant for all rows and columns. Irregular low density parity

check codes are usually described in terms of two degree distribution polynomials X(x)

and p(X), for variable nodes and constraint nodes, respectively. These polynomials are

defined as

dr

m*) = y2 XdX<i
~

l

d=l
(8.11-5)

dc

p(x) = y^pdx
d~ i

d=

l

where Xd and pd denote the fraction of all edges connected to variable and constraint

nodes of degree d
,
respectively. It is clear that for a regular LDPC code we have

k(x) = xw
‘~ l

p(x) = x Wr~ l
(8 . 11-6)

Very long irregular LDPC codes have been designed to operate within 0.0045 dB of

the Shannon limit (see Chung et al. (2001)).

8.11-1 Decoding LDPC Codes

The two main algorithms used to decode LDPC codes are the bit-flipping algorithm

and the sum-product algorithm, the latter also referred to as the beliefpropagation algo-

rithm. The bit-flipping algorithm is a hard decision decoding algorithm with low com-

plexity. The sum-product algorithm is a soft decision algorithm with higher complexity.

We have already studied the sum-product algorithm in Section 8.10-3. Applying this
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algorithm to LDPC codes is straightforward and is based on applying Equations 8 . 10-3

1

and 8.10-27 to the code-channel factor graph.

The bit-flipping algorithm is a hard decision decoding algorithm. Let us assume

that y is the hard channel output, i.e., the channel output quantized to 0 or 1. In the first

step of the bit-flipping algorithm, the syndrome s = yW is computed. If the syndrome

is zero, then we put c = y and stop. Otherwise, we consider the nonzero components

of s corresponding to parity check equations that are not satisfied by the components

of y. The update of y is done by flipping those components of y that appear in the

largest number of unsatisfied parity check equations. Equivalently, these are the node

variables that are connected to the largest number of unsatisfied constraint nodes of the

graph of the LDPC code. After the update the syndrome is computed again, and the

whole process is repeated for a fixed number of iterations or until the syndrome is equal

to zero. The interested reader can refer to Lin and Costello (2004) for more details on

bit-flipping decoding and its various forms.

8.12

CODING FOR BANDWIDTH-CONSTRAINED CHANNELS— TRELLIS
CODED MODULATION

In the treatment of block and convolutional codes, performance improvement was

achieved by expanding the bandwidth of the transmitted signal by an amount equal to

the reciprocal of the code rate. Recall for example that the improvement in performance

achieved by an (n, k) binary block code with soft-decision decoding is approximately

101og 10(RcJmin — k In 1/Yb) compared with uncoded binary or quaternary PSK. For

example, when yb — 10, the (24, 12) extended Golay code gives a coding gain of 5 dB.

This coding gain is achieved at a cost of doubling the bandwidth of the transmitted

signal and, of course, at the additional cost in receiver implementation complexity.

Thus, coding provides an effective method for trading bandwidth and implementation

complexity against transmitter power. This situation applies to digital communication

systems that are designed to operate in the power-limited region where R/W < 1.

In this section, we consider the use of coded signals for bandwidth-constrained

channels. For such channels, the digital communication system is designed to use

bandwidth-efficient multilevel amplitude and phase modulation, such as PAM, PSK,

DPSK, or QAM, and operates in the region where R/W > 1 . When coding is applied

to the bandwidth-constrained channel, a performance gain is desired without expanding

the signal bandwidth. This goal can be achieved by increasing the number of signals

over the corresponding uncoded system to compensate for the redundancy introduced

by the code.

For example, suppose that a system employing uncoded four-phase PSK modula-

tion achieves an R/W — 2 (bits/s)/Hz at an error probability of 10
-6

. For this error rate

the SNR per bit is yb = 10.5 dB. We may try to reduce the SNR per bit by use of coded

signals, but this must be done without expanding the bandwidth. If we choose a rate

Rc
= 2/3 code, it must be accompanied by an increase in the number of signal points

from four (2 bits per symbol) to eight (3 bits per symbol). Thus, the rate 2/3 code used
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in conjunction with eight-phase PSK, for example, yields the same data throughput as

uncoded four-phase PSK. However, we recall that an increase in the number of signal

phases from four to eight requires an additional 4 dB approximately in signal power to

maintain the same error rate. Hence, if coding is to provide a benefit, the performance

gain of the rate 2/3 code must overcome this 4-dB penalty.

If the modulation is treated as a separate operation independent of the encoding,

the use of very powerful codes (large-constraint-length convolutional codes or large-

block-length block codes) is required to offset the loss and provide some significant

coding gain. On the other hand, if the modulation is an integral part of the encoding

process and is designed in conjunction with the code to increase the minimum Euclidean

distance between pairs of coded signals, the loss from the expansion of the signal set is

easily overcome and a significant coding gain is achieved with relatively simple codes.

The key to this integrated modulation and coding approach is to devise an effective

method for mapping the coded bits into signal points such that the minimum Euclidean

distance is maximized. Such a method was developed by Ungerboeck (1982), based

on the principle of mapping by setpartitioning. We describe this principle by means of

Examples 8.12-1 and 8.12-2.

Setpartitioning We begin with a given signal constellation, such as M-ary PAM,
or QAM or PSK, and partition the constellation into subsets in a way that the minimum
Euclidean distance between signal points in a subset is increased with each partition. The
following two examples illustrate the set partitioning method proposed by Ungerboeck.

EXAMPLE 8.12-1. an 8-PSK signal constellation. Let us partition the eight-phase

signal constellation shown in Figure 8.12-1 into subsets of increasing minimum
Euclidean distance. In the eight-phase signal set, the signal points are located on a

circle of radius V£ and have a minimum distance separation of

d0 = iVS sin = y/(2 - V2)£ = 0.765VF

In the first partitioning, the eight points are subdivided into two subsets of four points

each, such that the minimum distance between points increases to d\ — a/2£. In the

second level of partitioning, each of the two subsets is subdivided into two subsets of

two points, such that the minimum distance increases to = 2y/£. This results in four

subsets of two points each.

Finally, the last stage of partitioning leads to eight subsets, where each subset

contains a single point. Note that each level of partitioning increases the minimum
Euclidean distance between signal points. The results of these three stages of partition-

ing are illustrated in Figure 8.12-1. The way in which the coded bits are mapped into

the partitioned signal points is described below.

example 8.12-2. A 16-QAM signal constellation. The 1 6-point rectangular signal

constellation shown in Figure 8.12-2 is first divided into two subsets by assigning

alternate points to each subset as illustrated in the figure. Thus, the distance between

points is increased from 2y/£ to 2^/lS by the first partitioning. Further partitioning of

the two subsets leads to greater separation in Euclidean distance between signal points

as illustrated in Figure 8.12-2. It is interesting to note that for the rectangular signal
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FIGURE 8.12-1

Set partitioning of an 8-PSK signal set.
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Set partitioning of 16-QAM signal.
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constellations, each level of partitioning increases the minimum Euclidean distance by

V2
,
i.e., di+\/di = V2 for all i.

In these two examples, the partitioning was carried out to the limit where each

subset contains only a single point. In general, this may not be necessary. For example,

the 16-point QAM signal constellation may be partitioned only twice, to yield four

subsets of four points each. Similarly, the eight-phase PSK signal constellation can be

partitioned twice, to yield four subsets of two points each.

Trellis-coded modulation (TCM) The degree to which the signal is partitioned

depends on the characteristics of the code. In general, the encoding process is performed

as illustrated in Figure 8 . 1 2-3 . A block ofm information bits is separated into two groups

of length k\ and fe, respectively. The k\ bits are encoded into n bits, while the bits

are left uncoded. Then, the n bits from the encoder are used to select one of the possible

subsets in the partitioned signal set, while the k2 bits are used to select one of 2kl signal

points in each subset. When &2 = 0, all m information bits are encoded.

The assignment of signal subsets to state transitions in the trellis is based on three

heuristic rules devised by Ungerboeck (1982). The rules are

1. Use all subsets with equal frequency in the trellis.

2. Transitions originating from the same state or merging into the same state in the

trellis are assigned subsets that are separated by the largest Euclidean distance.

3. Parallel state transitions (when they occur) are assigned signal points separated by

the largest Euclidean distance. Parallel transitions in the trellis are characteristic of

TCM that contains one or more uncoded information bits.

example 8.12-3. Consider the use of the rate 1/2 convolutional encoder shown in

Figure 8.12-4a to encode one information bit while the second information bit is left

uncoded. This code results in the four-state trellis shown in Figure 8.12-4b. When
used in conjunction with an eight-point signal constellation, such as eight-point PSK
or QAM, the two encoded output bits are used to select one of the four subsets in the

partitioned signal constellation, while the remaining information bit is used to select

one of the two points within each subset. Let us use the eight-point PSK consellation

to complete this example. The four subsets assigned to the trellis in Figure 8.12-4b

correspond to the subsets labeled Co, C 1 ,
C2 , C3 in Figure 8.12-1. Note that the

Euclidean distance of points within any subset is d,2 = 2\/£ and the largest minimum

distance between signal points in any pair of subsets is d\ = \/2£. The mappings

of the coded bits (C2 , ci) and the uncoded bit C3 to the state transitions, using the

convention (C3 ,
C2 ,

c\) are shown in Figure 8.12-4c. We note that each trellis state has
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Uncoded bit
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(c) Mapping of bits to state transitions

(d) Mapping of bits (c3 ,
c2 ,

c{) to

signal points corresponding to

partition in Fig. 8.3-1 (note

nonuniqueness of this mapping)

FIGURE 8.12-4

Four-state trellis-coded modulation with 8-PSK signal constellation.

two parallel transitions, corresponding to the two possible values of the uncoded bit. The
phase assignments in the eight-point PSK constellation are shown in Figure 8.12-4d.

It should be noted that the mapping of the bits (C3 ,
C2 , ci) into the eight signal points

in the constellation is not unique. Several other mappings are possible. For example,

an equally good mapping is obtained if the four-point subsets Bo and B\ shown in

Figure 8.12-1, are interchanged, so that the signal points in the subsets Co, C \ ,
C2 ,

and

C3 will also change.

In general, the number of states S = 2V
in the code trellis is a function of the number

ofmemory elements in the encoder. Hence, we may increase the number of trellis states

while maintaining the same code rate. For example, Figure 8.12-5 illustrates a rate

2/3 code that has eight trellis states. In this case, both information bits are coded.

Let us now evaluate the performance of the trellis-coded 8-PSK and compare its

performance with that of uncoded 4-PSK, which we use as a reference in measuring the

coding gain of the trellis-coded modulation. Uncoded 4-PSK employs the signal points

in either subset Bo or B\ of Figure 8.12-1, for which the minimum distance of the signal

points is Note that the 4-PSK signal corresponds to a trivial one-state trellis with

four parallel state transitions, as shown in Figure 8.12-6. The subsets Do, O2 ,
£>4 ,

and

Z>6 in Figure 8.12-1 are used as the signal points for the purpose of illustration.
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FIGURE 8.12-5

Rate | ,
eight-state trellis code.

For the trellis-coded 8-PSK modulation, we use the four-state trellis shown in

Figure 8.12-4b and c. We observe that each branch in the trellis corresponds to one of

the four subsets Co, C\, C2 ,
or C3. As indicated above, for the eight-point constella-

tion, each of the subsets Co, C \ ,
C2, and C3 contains two signal points. Hence, the state

transition Co contains the two signal points corresponding to the bits (c3 c2ci) = (000)

and (100), or (0, 4) in octal representation. Similarly, C2 contains the two signal points

corresponding to (010) and (110) or to (2, 6) in octal, C\ contains the points corre-

sponding to (001) and (101) or (1, 5) in octal, and C3 contains the points corresponding

000

FIGURE 8.12-6

Uncoded 4-PSK and trellis-coded 8-PSK modulation.



Chapter Eight: Trellis and Graph Based Codes 577

to (01 1) and (1 1 1) or (3, 7) in octal. Thus, each transition in the four-state trellis con-

tains two parallel paths, as previously indicated. As shown in Figure 8.12-6, any two

signal paths that diverge from one state and remerge at the same state after more than

one transition have a squared Euclidean distance of d% + 2d\ = + d% between

them. For example, the signal paths 0, 0, 0 and 2, 1, 2 are separated by d% + df —
[(0.765)

2 + 4]8 = 4.5858. On the other hand, the squared Euclidean distance between

parallel transitions is d\ — 48. Hence, the minimum Euclidean distance separation

between paths that diverge from any state and remerge at the same state in the four-

state trellis is d2 = 2V£. The minimum distance in the trellis code is called tht free

Euclidean distance and denoted by Dftd .

In the four-state trellis of Figure 8.12-6b, Dfed = 2V£. When compared with the

Euclidean distance do = V28 for the uncoded 4-PSK modulation, we observe that the

four-state trellis code gives a coding gain of 3 dB.

We should emphasize that the four-state trellis code illustrated in Figure 8.12-6b

is optimum in the sense that it provides the largest free Euclidean distance. Clearly,

many other four-state trellis codes can be constructed, including the one shown in

Figure 8.12-7, which consists of four distinct transitions from each state to all other

states. However, neither this code nor any of the other possible four-state trellis codes

gives a larger DfQd .

In the four-state trellis code, the parallel transitions were separated by the Euclidean

distance 2\[8, which is also Dftd . Hence, the coding gain of 3 dB is limited by the

distance of the parallel transitions. Larger gains in performance relative to uncoded

4-PSK can be achieved by using trellis codes with more states, which allow for the

elimination of the parallel transitions. Thus, trellis codes with eight or more states

would use distinct transitions to obtain a larger Dftd .

For example, in Figure 8.12-8, we illustrate an eight-state trellis code due to

Ungerboeck (1982) for the 8-PSK signal constellation. The state transitions for maxi-

mizing the free Euclidean distance were determined from application of the three basic

rules given above. In this case, note that the minimum squared Euclidean distance is

Djed = dl + 2d\ = 4.5855

which, when compared with dd = 2

£

for uncoded 4-PSK, represents a gain of

3.6 dB. Ungerboeck (1982, 1987) has also found rate 2/3 trellis codes with 16, 32,

DQD4D2D6

D6D2DaDq

D7D3D5D1

FIGURE 8.12-7

An alternative four-state trellis code.
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FIGURE 8.12-8

Eight-state trellis code for coded

8-PSK modulation.

64, 128, and 256 states that achieve coding gains ranging from 4 to 5.75 dB for 8-PSK
modulation.

The basic principle of set partitioning is easily extended to larger PSK signal

constellations that yield greater bandwidth efficiency. For example, 3 (bits/s)/Hz can

be achieved with either uncoded 8-PSK or with trellis-coded 16-PSK modulation.

Ungerboeck ( 1 987) has devised trellis codes and has evaluated the coding gains achieved

by simple rate 1 /2 and rate 2/3 convolutional codes for the 1 6-PSK signal constellations.

The results are summarized below.

Soft-decision Viterbi decoding for trellis-coded modulation is accomplished in two

steps. Since each branch in the trellis corresponds to a signal subset, the first step in

decoding is to determine the best signal point within each subset, i.e., the point in each

subset that is closest in distance to the received point. We may call this subset decoding .

In the second step, the signal point selected from each subset and its squared distance

metric are used for the corresponding branch in the Viterbi algorithm to determine the

signal path through the code trellis that has the minimum sum of squared distances

from the sequence of received (noisy channel output) signals.

The error rate performance of the trellis-coded signals in the presence of additive

Gaussian noise can be evaluated by following the procedure described in Section 8.2 for

convolutional codes. Recall that this procedure involves the computation of the proba-

bility of error for all different error events and summing these error event probabilities

to obtain a union bound on the first-event error probability. Note, however, that at high
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SNR, the first-event error probability is dominated by the leading term, which has the

minimum distance D^. Consequently, at high SNR, the first-event error probability is

well approximated as

Pe ~ NfedQ
2N0

(8 . 12- 1 )

where Afeci denotes the number of signal sequences with distance Z)fed that diverge at

any state and remerge at that state after one or more transitions.

In computing the coding gain achieved by trellis-coded modulation, we usually

focus on the gain achieved by increasing Dfed and neglect the effect of N^. However,

trellis codes with a large number of states may result in a large Afeci that cannot be

ignored in assessing the overall coding gain.

In addition to the trellis-coded PSK modulations described above, powerful trellis

codes have also been developed for PAM and QAM signal constellations. Of particular

practical importance is the class of trellis-coded two-dimensional rectangular signal

constellations. Figure 8.12-9 illustrates these signal constellations for M-QAM where

M = 16, 32, 64, and 128. The M — 32 and 128 constellations have a cross pattern

and are sometimes called cross-constellations. The underlying rectangular grid con-

taining the signal points inM-QAM is called a lattice oftype Z2 (the subscript indicates

the dimensionality of the space). When set partitioning is applied to this class of sig-

nal constellations, the minimum Euclidean distance between successive partitions is

di+ i/di = V2 for all i
,
as previously observed in Example 8.12-2.

Figure 8.12-10 illustrates an eight-state trellis code that can be used with any of the

M-QAM rectangular signal constellations for which M = 2k
,
where k = 4, 5, 6, ...

,

etc. With the eight-state trellis, we associate eight signal subsets, so that any of the

FIGURE 8.12-9

Rectangular two-dimensional (QAM) signal constellations.
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FIGURE 8.12-10

Eight-state trellis for rectangular QAM signal

constellations.

M-QAM signal sets for M > 16 are suitable. For M = 2m+1
,
two input bits (k\ = 2)

are encoded into n = 3 (n = k\ + l) bits that are used to select one of the eight subsets.

The additional k2 = m — k\ input bits are used to select signal points within a subset, and

result in parallel transitions in the eight-state trellis. Hence, 16-QAM with an 8-state

trellis involves two parallel transitions in each branch of the trellis. More generally, the

choice of an M — 2m+1 -point QAM signal constellation implies that the eight-state

trellis contains 2m
~2

parallel transitions in each branch.

The assignment of signal subsets to transitions is based on the same set of basic

(heuristic) rules described above for the 8-PSK signal constellation. Thus, for the 8-

state trellis, the four (branches) transitions originating from or leading to the same state

are assigned either the subsets D0 ,
D2 ,

Z)4 ,
D6 or D\, D3 ,

D5 ,
Z)7 . Parallel transitions

are assigned signal points contained within the corresponding subsets. This eight-state

trellis code provides a coding gain of4 dB . The Euclidean distance ofparallel transitions

exceeds the free Euclidean distance, and, hence, the code performance is not limited

by parallel transitions.

Larger size trellis codes for M-QAM provide even larger coding gains. For ex-

ample, trellis codes with 2V
states for an M = 2m+1 QAM signal constellation can be

constructed by convolutionally encoding k\ input bits into k\ + 1 output bits. Thus, a

rate Rc = k\/(k\ + 1) convolutional code is employed for this purpose. Usually, the

choice of k\ = 2 provides a significant fraction of the total coding gain that is achiev-

able. The additional k^ — m — k\ input bits are uncoded and are transmitted in each

signal interval by selecting signal points within a subset.
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TABLE 8.12-1

Coding Gains for Trellis-Coded PAM Signals

Number
of

states ki

Code
rate

ki

k\ +

1

m = 1

coding gain (dB)

of 4-PAM versus

uncoded 2-PAM

m — 2

coding gain (dB)

of 8-PAM versus

uncoded 4-PAM

m -y oo

asymptotic

coding gain

(dB)

m —

y

oo

Afed

4 1 1/2 2.55 3.31 3.52 4

8 1 1/2 3.01 3.77 3.97 4

16 1 1/2 3.42 4.18 4.39 8

32 1 1/2 4.15 4.91 5.11 12

64 1 1/2 4.47 5.23 5.44 36

128 1 1/2 5.05 5.81 6.02 66

Source: Ungerboeck (1987).

Tables 8.12-1 to 8.12-3, taken from the paper by Ungerboeck (1987), provide a

summary of coding gains achievable with trellis-coded modulation. Table 8.12-1 sum-

marizes the coding gains achieved for trellis-coded (one-dimensional) PAM modulation

with rate 1/2 trellis codes. Note that the coding gain with a 128-state trellis code is

5.8 dB for octal PAM, which is close to the channel cutoff rate A0 and less than 4 dB
from the channel capacity limit for error rates in the range of 10~6-10~8

. We should

also observe that the number of paths N\-cd with free Euclidean distance Dfed becomes

large with an increase in the number of states.

Table 8. 12-2 lists the coding gain for trellis-coded 16-PSK. Again, we observe that

the coding gain for eight or more trellis states exceeds 4 dB, relative to uncoded 8-PSK.

A simple rate 1 /2 code yields 5.33 dB gain with a 128-states trellis.

Table 8.12-3 contains the coding gains obtained with trellis-coded QAM signals.

Relatively simple rate 2/3 trellis codes yield a gain of 6 dB with 128 trellis states for

m = 3 and 4.

The results in these tables clearly illustrate the significant coding gains that are

achievable with relatively simple trellis codes. A 6-dB coding gain is close to the cutoff

rate Ro for the signal sets under consideration. Additional gains that would lead to

TABLE 8.12-2

Coding Gains for Trellis-Coded 16-PSK Modulation

Number
of

states ki

Code rate

k\

kx + 1

m = 3

coding gain (dB)

of 16-PSK versus

uncoded 8-PSK

m —y oo

Afed

4 1 1/2 3.54 4

8 1 1/2 4.01 4

16 1 1/2 4.44 8

32 1 1/2 5.13 8

64 1 1/2 5.33 2

128 1 1/2 5.33 2

256 2 2/3 5.51 8

Source • Ungerboeck (1987).
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TABLE 8.12-3

Coding Gains for Trellis-Coded QAM Modulation

m = 3 m = 4 m = 5

Code gain (dB) of gain (dB) of gain (dB) of m — oo

Number rate 16-QAM versus 32-QAM versus 64-QAM versus asymptotic

of *i uncoded uncoded uncoded coding

states h +

1

8-QAM 16-QAM 32-QAM gain (dB) Afed

4 1 1/2 3.01 3.01 2.80 3.01 4

8 2 2/3 3.98 3.98 3.77 3.98 16

16 2 2/3 4.77 4.77 4.56 4.77 56

32 2 2/3 4.77 4.77 4.56 4.77 16

64 2 2/3 5.44 5.44 5.23 5.44 56

128 2 2/3 6.02 6.02 5.81 6.02 344

256 2 2/3 6.02 6.02 5.81 6.02 44

Source: Ungerboeck (1987).

transmission in the vicinity of the channel capacity bound are difficult to attain without

a significant increase in coding/decoding complexity. Continued partitioning of large

signal sets quickly leads to signal point separation within any subset that exceeds the

free Euclidean distance of the code. In such cases, parallel transitions are no longer

the limiting factor on Dfcd . Usually, a partition to eight subsets is sufficient to obtain a

coding gain of 5-6 dB with simple rate 1/2 or rate 2/3 trellis codes with either 64 or

128 trellis states, as indicated in Tables 8.12-1 to 8.12-3.

Convolutional encoders for the linear trellis codes listed in Tables 8.12-1 to 8.12-3

for the M-PAM, M-PSK, and M-QAM signal constellations are given in the papers by

Ungerboeck (1982, 1987). The encoders may be realized either with feedback or with-

out feedback. For example Figure 8.12-1 1 illustrates three feedback-free convolutional

encoders corresponding to 4-, 8-, and 16-state trellis codes for 8-PSK and 16-QAM
signal constellations. Equivalent realizations of these trellis codes based on system-

atic convolutional encoders with feedback are shown in Figure 8.12-12. Usually, the

systematic convolutional encoders are preferred in practical applications.

A potential problem with linear trellis codes is that the modulated signal sets are not

usually invariant to phase rotations. This poses a problem in practical applications where

differential encoding is usually employed to avoid phase ambiguities when a receiver

must recover the carrier phase after a temporary loss of signal. For two-dimensional

signal constellations, it is possible to achieve 180° phase invariance by use of a linear

trellis code. However, it is not possible to achieve 90° phase invariance with a linear

code. In such a case, a non-linear code must be used. The problem of phase invari-

ance and differential encoding/decoding was solved by Wei (1984a,b), who devised

linear and non-linear trellis codes that are rotationally invariant under either 180° or

90° phase rotations, respectively. For example. Figure 8.12-13 illustrates a non-linear

eight-state convolutional encoder for a 32-QAM rectangular signal constellation that

is invariant under 90° phase rotations. This trellis code has been adopted as an interna-

tional standard (V.32 and V.33) for 9600 and 14,000 bits/s (high-speed) telephone line

modems.
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FIGURE 8.12-11

Minimal feedback-free convolutional encoders for 8-PSK and 16-QAM signals. [From

Ungerboeck (1982). © 1982 IEEE.]

Trellis-coded modulation schemes have also been developed for multidimensional

signals. In practical systems, multidimensional signals are transmitted as a sequence of

either one-dimensional (PAM) or two-dimensional (QAM) signals. Trellis codes based

on 4-, 8-, and 16-dimensional signal constellations have been constructed, and some of

these codes have been implemented in commercially available modems. A potential ad-

vantage of trellis-coded multidimensional signals is that we can use smaller constituent

two-dimensional signal constellations that allow for a trade-off between coding gain

and implementation complexity. For example, a 16-state linear four-dimensional code,

also designed by Wei (1987), is currently used as one of the codes for the V.34 tele-

phone modem standard. The constituent two-dimensional signal constellation contains

a maximum of 1664 signal points. The modem can transmit as many as 10 bits per

symbol (eight uncoded bits) to achieve data rates as high as 33,600 bits/s. The papers

by Wei (1987), Ungerboeck (1987), Gersho and Lawrence (1984), and Forney et al.

(1984) treat multidimensional signal constellations for trellis-coded modulation.

8.12-1 Lattices and Trellis Coded Modulation

The set partitioning principles used in trellis coded modulation and the coding scheme

based on set partitioning can be formulated in terms of lattices. We have defined lattices
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FIGURE 8.12-12

Equivalent realizations of systematic convolutional encoders with feedback for 8-PSK and

16-QAM. [From Ungerboeck (1982). © 1982 IEEE.]

and sublattice in Section 4.7. If A' is a sublattice of lattice A and c e A is arbitrary,

we can define a shift of A' by c
,
denoted by A ' + c as the set of points of A' when

each is shifted by c. The result is called a coset of A' in A. If c is a member of A'

then the coset is simply A'. The union of all distinct cosets of A' generate A, hence

A can be partitioned into cosets where each coset is a shifted version of A'. The set

of distinct cosets generated this way is denoted by A/A'. Each element of A/A' is a

coset that can be represented by c e A; this element of the lattice is called the coset

representative. The reader can compare this notion to the discussion of standard array

and cosets in linear block codes discussed in Section 7.5 and notice the close relation.

Coset representatives are similar to coset leaders. The set of coset representatives is

represented by [A /A'], and the number of distinct cosets, called the order ofpartition, is

denoted by
|

A /A' |
. From this discussion we conclude that a lattice A can be partitioned

into cosets and be written as the union of the cosets as

L

A =
(J{Ci + A'} = [A/A'] + A' (8.12-2)

i=

1

where L =
|

A/A'
|

is the partition order. This relation is called the coset decomposition

of lattice A in terms of cosets of lattice A'.

The set partitioning of a constellation can be compared with the coset decomposi-

tion of a lattice. Let us assume a lattice A is decomposed using sublattice A' such that
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FIGURE 8.12-13

Eight-state non-linear convolutional encoder for 32-QAM signal set that exhibits invariance

under 90° phase rotations.

the order of the partition
|

A/A'| is equal to 2n
,
then each coset can serve as one of the

partitions used in Ungerboeck’s set partitioning. An (n,ki) code is used to encode k\

information bits into a binary sequence of length n which select one of the 2n cosets in

the lattice decomposition. The £2 uncoded bits are used to select a point in the coset.

Note that the number of elements in a coset is equal to the number of elements of the

sublattice A' which is infinite, selection of a point in the coset determines the signal
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Data

bits

FIGURE 8.12-14

Encoder for concatenation of a PCCC (turbo code) with TCM.

space boundary, thus determining the shaping. The total coding gain can then be defined

as the product of two factors, the fundamental coding gain and the shaping gain. The

shaping gain measures the amount of power reduction resulting from using a close to

spherically shaped boundary and is independent from the convolutional code and the

lattice used. The value of the shaping gain is limited to 1.53 dB as was discussed in

Section 4.7. The interested reader is referred to Forney (1988).

8.12-2 Hirbo-Coded Bandwidth Efficient Modulation

The performance of TCM can be further improved by code concatenation. There are

several different methods described in the literature. We shall briefly describe two

schemes for code concatenation using parallel concatenated codes, which we simply

refer to as turbo coding.

In one scheme, described in the paper by Le Goff et al. (1994), the information

sequence is fed to a binary turbo encoder that employs a parallel concatenation of

a component convolutional code with interleaving to generate a systematic binary

turbo code. As shown in Figure 8.12-14, the output of the turbo encoder is ultimately

connected to the signal mapper after the binary sequence from the turbo code has

been appropriately multiplexed, the parity bit sequence has been punctured to achieve

the desired code rate, and the data and parity sequences have been interleaved. Gray

mapping is typically used in mapping coded bits to modulation signal points, separately

for the in-phase (/) and quadrature (Q ) signal components.

Figure 8.12-15 illustrates the block diagram of the decoder for this turbo coding

scheme. Based on each received I and Q symbol, the receiver computes the loga-

rithm of the likelihood ratio or the MAP of each systematic bit and each parity bit.

FIGURE 8.12-15

Decoder for concatenated PCCC/TCM code.
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After deinterleaving, depuncturing, and demultiplexing of these logarithmic metrics,

the systematic and parity bit information are fed to the standard binary turbo decoder.

This scheme for constructing turbo-coded bandwidth efficient modulation imposes

no constraints on the type or size of the signal constellation. In addition, this scheme can

be matched to any conventional binary turbo code. In fact, this scheme is also suitable

if the turbo code is replaced by a serially concatenated convolutional code.

A second scheme employs a conventional Ungerboeck trellis code with interleav-

ing to yield a parallel concatenated TCM. The basic configuration of the turbo TCM
encoder, as described in the paper by Robertson and Worz (1998), is illustrated in Fig-

ure 8.12-16. To avoid a rate loss, the parity sequence is punctured, as described below,

in such a way that all information bits are transmitted only once, and the parity bits from

the two encoders are alternately punctured. The block interleaver operates on groups

of m — 1 information bits, where the signal constellation consists of 2m signal points.

To illustrate the group interleaving and puncturing, let us consider a rate Rc =
|
TCM code, a block interleaver of length N = 6, and 8-PSK modulation (m = 3).

Hence, the number of information bits per block is N(m — 1) = 12, and the interleaving

is performed on pairs ofinformation bits as shown in Figure 8.12-16 where, for example,

a pair of bits in an even position (2, 4, 6) is mapped to another even position and a pair

of bits in an odd position is mapped to another odd position. The output of the second

Infobit pairs

\(d\, d2 ,
d3 ,

d4 ,
d5 ,

d6)
=

j

! 00,01,11,10,00,11 i

8-PSK
mapper

8-PSK symbols

[
0,2, 7, 5, 1,6 0, 3, 7, 4, 1, 7

Selector

!

oo, oi, li, 10
,
oo, li

!

0,3, 6, 4, 0,7 i

_ _ _ 1 __ 1 i

Deinterleaver

(symbols)

Interleaver

(pairwise)

/*( Even positions to even positions

/ \ Odd positions to odd positions

|
11, 11, 00, 01, 00, 10

I
= (d

} , d6 ,
d
5 ,
d2 ,

du d4)

Sequence of infobit pairs

8-PSK

mapper

6, 7, 0, 3, 0, 4

8-PSK symbols

-O Output

FIGURE 8.12-16

Turbo TCM encoder shown for 8-PSK with two-dimensional component codes of memory 3.

An example of interleaving with N = 6 is shown. Bold letters indicate that symbols or pairs of

bits correspond to the upper encoder. [From Robertson and Worz (1998); © 1998 IEEE.]
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TCM encoder is deinterleaved symbol-wise as illustrated in Figure 8.12-16, and the

output symbol sequence is obtained by puncturing the two signal-point sequences, i.e.,

by selecting every other symbol from each of the two sequences. That is, we select the

even-numbered symbols from the top symbol mapper and the odd-numbered symbols

from the bottom symbol mapper. (In general, some of the information bits can remain

uncoded, depending on the signal constellation and the signal mapping. In this example,

both information bits are coded.)

A block diagram of the turbo decoder is shown in Figure 8.12-17. In the conven-

tional binary iterative turbo decoder, each output of each component decoder is usually

split into three parts, namely, the systematic part, the a priori part, and the extrinsic

part, where only the latter is passed between the two decoders. In this TCM scheme,

the systematic part cannot be separated from the extrinsic component, because the

noise that affects the parity component also affects the systematic component due to

the fact that both components are transmitted by the same symbol. This implies that

the output of the decoders can be split into only two components, namely, the a priori

information and the extrinsic-systematic information. Hence, each decoder passes the

extrinsic-systematic information to the other decoder. Each decoder ignores those sym-

bols where the pertinent parity bit was not sent and obtains the systematic information

FIGURE 8.12-17

Turbo TCM decoder corresponding to the encoder in Figure 8.12-16. [From Robertson and

Worz (1998); © 1998 IEEE.]



Chapter Eight: Trellis and Graph Based Codes 589

through its a priori input. In the first iteration, the a priori input of the first decoder

is initialized with the missing systematic information. Details of the iterative decoder

computations are given in the paper by Robertson and Worz (1998). An additional

coding gain of about 1 .7 dR has been achieved by use of a turbo TCM compared to

conventional TCM, at error rates in the vicinity of 10~4
. This means that turbo TCM

achieves a performance close to the Shannon capacity on an AWGN channel.

8.13

BIBLIOGRAPHICAL NOTES AND REFERENCES

In parallel with the developments on block codes are the developments in convolu-

tional codes, which were invented by Elias (1955). The major problem in convolutional

coding was decoding. Wozencraft and Reiffen (1961) described a sequential decoding

algorithm for convolutional codes. This algorithm was later modified and refined by

Fano (1963), and it is now called the Fano algorithm. Subsequently, the stack algorithm

was devised by Zigangirov (1966) and Jelinek (1969), and the Viterbi algorithm was

devised by Viterbi (1967). The optimality and the relatively modest complexity for

small constraint lengths have served to make the Viterbi algorithm the most popular in

decoding of convolutional codes with K < 10.

One of the most important contributions in coding during the 1970s was the work of

Ungerboeck and Csajka (1976) on coding for bandwidth-constrained channels. In this

paper, it was demonstrated that a significant coding gain can be achieved through the

introduction of redundancy in a bandwidth-constrained channel, and trellis codes were

described for achieving coding gains of 3-4 dB. This work has generated much interest

among researchers and has led to a large number of publications over the past 15 years.

A number of references can be found in the papers by Ungerboeck (1982, 1987) and

Forney et al. (1984). The papers by Benedetto et al. (1988, 1994) focus on applications

and performance evaluation. Additional papers on coded modulation for bandwidth-

constrained channels may also be found in the Special Issue on Voiceband Telephone

Data Transmission, IEEE Journal on Selected Areas in Communication (September

1984, August 1989, and December 1989). A comprehensive treatment of trellis-coded

modulation is given in the book by Biglieri et al. (1991).

A major new advance in coding and decoding is the construction of parallel and

serially concatenated codes with interleaving, and the decoding of such codes using

iterativeMAP algorithms. BothPCCC andSCCC have been shown to yield performance

very close to the Shannon limit with iterative decoding. PCCCs, called turbo codes,

and the use of iterative decoding were first described in a paper by Berrou et al. (1993).

Serially concatenated codes with interleaving and their performance have been treated

in the paper by Benedetto et al. (1998). Turbo coding and decoding is also treated in

the books by Heegard and Wicker (1999), Johannesson and Zigangirov (1999), and

Schlegel (1997). Performance bounds for turbo codes are given in the paper by Duman
and Salehi (1997) and Sason and Shamai (2001a, b).

Low density parity check codes were introduced by the pioneering work ofGallager

(1963). Tanner (1981) studied the relation between these codes and graphs, and the work
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ofMacKay and Neal (1996) reinstated the interest in these works. Wiberg et al. (1995),

Wiberg (1996), and Forney (2000) extended the work of Tanner on the relation between

codes and graphs.

In addition to the references given above on coding, decoding, and coded signal

design, we should mention the collection of papers published by the IEEE Press enti-

tled Key Papers in the Development of Coding Theory
,
edited by Berlekamp (1974).

This book contains important papers that were published in the first 25 years of coding

theory. We should also cite the Special Issue on Error-Correcting Codes, IEEE Trans-

actions on Communications (October 1971). Finally, the survey papers by Calderbank

(1998), Costello et al. (1998), and Forney and Ungerboeck (1998) highlight the major

developments in coding and decoding over the past 50 years and include a large number

of references.

PROBLEMS

8.1 A convolutional code is described by

= [101 ], *2 = [111 ], *3 = [ 1H ]

1. Draw the encoder corresponding to this code.

2. Draw the state-transition diagram for this code.

3. Draw the trellis diagram for this code.

4. Find the transfer function and the free distance of this code.

5. Verify whether or not this code is catastrophic.

8.2 The convolutional code of Problem 8.1 is used for transmission over an AWGN
channel with hard decision decoding. The output of the demodulator detector is

(101001011110111 • •
• ). Using the Viterbi algorithm, find the transmitted sequence, as-

suming that the convolutional code is terminated at the zero state.

8.3 Repeat Problem 8.1 for a code with

Si = [110], *2 = [101], g3 = [1H]

8.4

The block diagram of a binary convolutional code is shown in Figure P8.4.

1. Draw the state diagram for the code.

2. Find the transfer function of the code T(Z).

3. What is dfree ,
the minimum free distance of the code?

FIGURE P8.4
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4. Assume that a message has been encoded by this code and transmitted over a binary

symmetric channel with an error probability of p = 10“5
. If the received sequence is

r = (110, 110, 110, 111,010, 101, 101)

using the Viterbi algorithm, find the most likely information sequence, assuming that

the convolutional code is terminated at the zero state.

5. Find an upper bound to the bit error probability of the code when the above binary

symmetric channel is employed. Make any reasonable approximation.

8.5

The block diagram of a (3, 1) convolutional code is shown in Figure P8.5.

1 . Draw the state diagram of the code.

2. Find the transfer function T(Z) of the code.

3. Find the minimum free distance (dfree ) of the code, and show the corresponding path

(at distance dfree from the all-zero codeword) in the trellis.

4. Determine G(D ) for this code. Use G(D) to determine whether this code is catastrophic.

5 . Determine G(D) for the RSCC equivalent to this code, and sketch a block diagram of it.

6. Assume that four information bits (x\
, *2, *3, *4), followed by two zero bits have been

encoded and sent via a binary-symmetric channel with crossover probability equal to

0.1. The received sequence is (111, 111, 111, 111, 111, 111). Use the Viterbi decoding

algorithm to find the most likely data sequence, assuming that the convolutional code

is terminated at the zero state.

FIGURE P8.5
8.6

In the convolutional code generated by the encoder shown in Figure P8.6:

1 . Find the transfer function of the code in the form T(Y, Z).

2. Find dfrte of the code.

3. If the code is used on a channel with hard decision Viterbi decoding, assuming the

crossover probability of the channel is p = 10
-6

,
use the hard decision bound to find

an upper bound on the average bit error probability of the code.

FIGURE P8.6

8.7

Figure P8.7 depicts a rate 1/2, constraint length K = 2, convolutional code.

1 . Sketch the tree diagram, the trellis diagram, and the state diagram.

2. Solve for the transfer function T(Y, Z, /), and from this, specify the minimum free

distance.
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FIGURE P8.7
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8.8

A rate 1/2, K = 3, binary convolutional encoder is shown in Figure P8.8.

1. Draw the tree diagram, the trellis diagram, and the state diagram.

2. Determine the transfer function T(Y, Z, /), and from this, specify the minimum free

distance.

3. Determine the RSCC equivalent to this code, and sketch a block diagram of it.

4. Determine whether this code is catastrophic.

FIGURE P8.8

8.9

A k = 1, K = 3, and n = 2 convolutional code is characterized by gi = [001] and

g2 = [101].

1. Draw the state diagram for the encoder.

2. Determine the transfer function of the code in the form T (7, Z).

3. Is this code a catastrophic code? Why?
4. Determine the free distance of the code.

5. If the code is used with hard decision decoding on a channel with crossover probability

of p = 10“3
,
determine an upper bound on the average bit error probability of the

code.

8.10

The block diagram for a convolutional code is given in Figure P8.10.

k= l

FIGURE P8.10

1. Draw the state transition diagram for this code.

2. Is this code catastrophic? Why?
3. What is the transfer function for this code?

4. What is the free distance of this code?

5. Assuming that this code is used for binary data transmission over a binary symmetric

channel with crossover probability of 10
-3

,
find a bound on the resulting bit error

probability.

8.11

The convolutional code shown in Figure P8.10 is used with a binary antipodal signaling

scheme for transmission over an additive noise channel with input-output relation

n = c
t + rii
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where q e and noise components are iid random variables with PDF

Pin )
= le- |n|

The receiver uses a soft decision ML decoding scheme.

1 . Show that the optimal decoding rule is given by

c
(m) =minV|r

/
-c,

czT^ 1

J J

j

2. Find an upper bound for the average bit error probability for this system. Is this a useful

bound? Why?
3. Assuming that £c = 1 and the code is terminated at the zero state, determine the most

likely information sequence if the received output of the matched filter is

r = (-1, -1, 1.5, 2, 0.7, -0.5, -0.8, -3, 3, 0.2, 0, 1)

4. If in part 3 instead of soft decision decoding, hard decision is employed, what is the

most likely information sequence?

5. Answer part 2 for hard decision decoding.

8.12

The block diagram for a convolutional encoder is shown in Figure P8.12.

1 . What is the number of states for this code?

2. Determine the transfer function T(Y, Z) for this code, and find its free distance.

3. How many paths at the free distance exist in this code?

4. Is this code catastrophic? Why?
5. Assuming that this code is used for transmission over a binary symmetric channel with

a crossover probability of 10
-4

,
find a bound on the bit error probability.

FIGURE P8.12

8.13 For the convolutional code shown in Figure P8.12:

1. Determine the matrix G(D).

2. Determine the encoded sequence for the input sequence u = (1001111001) using G(D)
found in part 1

.

3. Directly determine the encoded sequence corresponding to u given in part 2, and com-

pare it with the sequence obtained using G(D).

4. Using G(D), determine whether this code is catastrophic.

8.14 A k = 1
,
K = 3, and n = 2 convolutional code is characterized by g\ = [001] and

*2 = [H0].

1 . Find the transfer function of the code in the form T(Y, Z).

2. Is this code catastrophic? Why?
3. Find dfTee for the code.
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4. If the code is used on an AWGN channel using BPSK with hard decision Viterbi

decoding, assuming Sb/No = 12.6 dB, find an upper bound on the average bit error

probability of the code.

8.15 Use Tables 8.3-1 to 8.3-1 1 to sketch the convolutional encoders for the following codes:

1. Rate 1/2, AT = 5, maximum free distance code

2. Rate 1/3, AT = 5, maximum free distance code

3. Rate 2/3, K = 2, maximum free distance code

8.16 Draw the state diagram for the rate 2/3, K = 2, convolutional code indicated in Prob-

lem 8.15, part 3, and, for each transition, show the output sequence and the distance of the

output sequence from the all-zero sequence.

8.17

Consider the K = 3, rate 1/2, convolutional code shown in Figure P8.17. Suppose that

the code is used on a binary symmetric channel and the received sequence for the first

eight branches is 0001100000001001. Trace the decisions on a trellis diagram, and label

the survivors’ Hamming distance metric at each node level. If a tie occurs in the metrics

required for a decision, always choose the upper path (arbitrary choice).

FIGURE P8.17

8.18

Use the transfer function derived in Problem 8.8 for the Rc = 1/2, K = 3, convolutional

code to compute the probability of a bit error for an AWGN channel with

a. Hard-decision decoding

b. Soft-decision decoding

Compare the performance by plotting the results of the computation on the same graph.

8.19

Draw the state diagram for the convolutional code generated by the encoder shown in

Figure P8.19, and thus determine whether the code is catastrophic. Also, give an example

of a rate 1/2, AT = 4, convolutional encoder that exhibits catastrophic error propagation.

FIGURE P8.19

8.20

A trellis-coded signal is formed as shown in Figure P8.20 by encoding 1 bit by use of a

rate 1 /2 convolutional code, while 3 additional information bits are left uncoded. Perform

the set partitioning of a 32-QAM (cross) constellation, and indicate the subsets in the
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partition. By how much is the distance between adjacent signal points increased as a result

of partitioning?

8.21 Prove Equation 8.4-4.

8.22 Prove that for all real numbers x,y, and z we have

max*{x, y} = max{jc, y} + ln(l + e~^
x~y

^)

max*{x, y, z }
= max* {max* {x

, y}, z

}

8.23 A recursive systematic convolutional code is characterized by

G(D) =
C
1 DTl]

This code is used with antipodal signaling with £c = ± 1 over an additive white Gaussian

noise channel with noise power spectral density of ^ = 2 W/Hz. It is assumed that the

convolutional code is terminated at the zero state and the received sequence is given by

r = (0.3, 0.2, 1, -1.2, 1.21.7, 0.3 - 0.6)

1. Use the BCJR algorithm to determine the information sequence u.

2. Use the Viterbi algorithm to determine the information sequence u.

8.24 Apply the Max-Log-APP algorithm to Problem 8.23, and compare the result with the result

when the BCJR is used.

8.25 Let A/,1 < i < n
,
denote a sequence of independent binary random variables, and let

Pi (0) and pi{ 1) denote the probabilities that X
t
is equal to 0 and 1, respectively. Let

r =±*
i= l

where the addition is modulo-2, and denote by p(0) and p( 1) the probabilities that Y is 0

and 1, respectively.

1 . Show that

p(0) — p(l) = T1 (Pi (0) — P;(l))

1= 1
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2. Show that

1 1

"

pw = - +

-

n - PiW)
f=i

i i

"

p( i)

=

2 - 2
~ p‘^

i=

1

3. Using these results, prove Equation 8.10-27.

8.26 Prove Equation 8.10-31 for the equality constraint nodes.

8.27 The parity check matrix of a (12, 3) LDPC code is given by

"0 0 1 0 0 1 1 1 0 0 0 0
"

110010000001
000100001110
010001100100

H= 101000010010
000110001001
100110100000
000001010011
_0 1 1 0 0 0 0 0 1 1 0 0_

Sketch the Tanner graph for this code.

8.28 Show that any (^2 , 1) repetition code is a LDPC code. Determine the general form of the

parity check matrix for an (n, 1) repetition code.

8.29 Sketch the Tanner graph of a (6, 1) repetition code.



9

Digital Communication Through

Band-Limited Channels

In previous chapters, we considered the transmission of digital information through

an additive Gaussian noise channel. In effect, no bandwidth constraint was imposed on

the signal design and the communication system design.

In this chapter, we consider the problem of signal design when the channel is band-

limited to some specified bandwidth of W Hz. Under this condition, the channel may
be modeled as a linear filter having an equivalent lowpass* frequency response C(f )

that is zero for |/| > W.
The first topic that is treated is the design of the signal pulse g(t) in a linearly

modulated signal, represented as

v(t) = J^Ing(t-nT)
n

that efficiently utilizes the total available channel bandwidth W. We shall see that when
the channel is ideal for |/[ < W, a signal pulse can be designed that allows us to

transmit at symbol rates comparable to or exceeding the channel bandwidth W. On the

other hand, when the channel is not ideal, signal transmission at a symbol rate equal to

or exceeding W results in intersymbol interference (ISI) among a number of adjacent

symbols.

The second topic that we consider is the design of the receiver in the presence of

intersymbol interference and AWGN. The solution to the ISI problem is to design a

receiver that employs a means for compensating or reducing the ISI in the received

signal. The compensator for the ISI is called an equalizer.

We begin our discussion with a general characterization ofband-limited linear filter

channels.

tFor convenience, the subscript on lowpass equivalent signals is omitted throughout this chapter.

597
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9.1

CHARACTERIZATION OF BAND-LIMITED CHANNELS

Of the various channels available for digital communications, telephone channels are

by far the most widely used. Such channels are characterized as band-limited linearfil-

ters. This is certainly the proper characterization when frequency-division multiplexing

(FDM) is used as a means for establishing channels in the telephone network. Modem
telephone networks employ pulse-code modulation (PCM) for digitizing and encod-

ing the analog signal and time-division multiplexing (TDM) for establishing multiple

channels. Nevertheless, filtering is still used on the analog signal prior to sampling and

encoding. Consequently, even though the present telephone network employs a mixture

of FDM and TDM for transmission, the linear filter model for telephone channels is

still appropriate.

For our purposes, a bandlimited channel such as a telephone channel will be charac-

terized as a linear filter having an equivalent lowpass frequency-response characteristic

C(/). Its equivalent lowpass impulse response is denoted by c(t). Then, if a signal of

the form

s(t) = Re [v(t)e
j2nfct

] (9.1-1)

is transmitted over a bandpass telephone channel, the equivalent low-pass received

signal is

/
oo

v(x)c(t - x)dx + z(t) (9.1-2)
-OO

where the integral represents the convolution of c(t ) with v(t), and z(t ) denotes the

additive noise. Alternatively, the signal term can be represented in the frequency

domain as V(/)C(/), where V(f ) is the Fourier transform of v(t).

If the channel is band-limited to W Hz, then C(/) = 0 for |/| > W. Asa conse-

quence, any frequency components in V(f) above |/| = W will not be passed by the

channel. For this reason, we limit the bandwidth of the transmitted signal to W Hz also.

Within the bandwidth of the channel, we may express the frequency response

C(f) as

C(/) = |C(/)|e^> (9.1-3)

where |C(/)| is the amplitude-response characteristic and 0(f) is the phase-response

characteristic. Furthermore, the envelope delay characteristic is defined as

T(/) = - 1 dOjf)

2n df
(9.1-4)

A channel is said to be nondistorting or ideal ifthe amplitude response
|

C(/) |

is constant

for all
| /| < W and 6(f) is a linear function of frequency, i.e., r(/) is a constant for all

| /| < W. On the other hand, if \C(f)\ is not constant for all |/| < W, we say that the

channel distorts the transmitted signal V(f) in amplitude
,
and, if r(/) is not constant

for all
| /| < W, we say that the channel distorts the signal V(f) in delay.

As a result of the amplitude and delay distortion caused by the nonideal channel

frequency-response characteristic C(/), a succession of pulses transmitted through the

channel at rates comparable to the bandwidth W are smeared to the point that they are
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FIGURE 9.1-1

Effect of channel distortion: (a) channel input; (b) channel output; (c) equalizer output.

no longer distinguishable as well-defined pulses at the receiving terminal. Instead, they

overlap, and, thus, we have intersymbol interference. As an example of the effect of

delay distortion on a transmitted pulse, Figure 9.1-la illustrates a band-limited pulse

having zeros periodically spaced in time at points labeled ±T, ±2T, etc. If information

is conveyed by the pulse amplitude, as in PAM, for example, then one can transmit a

sequence of pulses, each of which has a peak at the periodic zeros of the other pulses.

However, transmission of the pulse through a channel modeled as having a linear

envelope delay characteristic r (/) (quadratic phase 0(f)) results in the received pulse

shown in Figure 9.1-lb having zero-crossings that are no longer periodically spaced.

Consequently, a sequence of successive pulses would be smeared into one another and

the peaks of the pulses would no longer be distinguishable. Thus, the channel delay

distortion results in intesymbol interference. As will be discussed in this chapter, it

is possible to compensate for the nonideal frequency-response characteristic of the

channel by use of a filter or equalizer at the demodulator. Figure 9.1-lc illustrates the

output of a linear equalizer that compensates for the linear distortion in the channel.

The extent of the intersymbol interference on a telephone channel can be appre-

ciated by observing a frequency-response characteristic of the channel. Figure 9.1-2

illustrates the measured average amplitude and delay as functions of frequency for a

medium-range (180-725 mi) telephone channel of the switched telecommunications

network as given by Duffy and Tratcher (1971). We observe that the usable band of

the channel extends from about 300 Hz to about 3000 Hz. The corresponding impulse

response of this average channel is shown in Figure 9.1-3. Its duration is about 10 ms.

In comparison, the transmitted symbol rates on such a channel may be of the order
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FIGURE 9.1-2

Average amplitude and delay characteristics of medium-range telephone channel.

of 2500 pulses or symbols per second. Hence, intersymbol interference might extend

over 20-30 symbols.

In addition to linear distortion, signals transmitted through telephone channels are

subject to other impairments, specifically non-linear distortion, frequency offset, phase

jitter, impulse noise, and thermal noise.

Non-linear distortion in telephone channels arises from non-linearities in amplifiers

and compandors used in the telephone system. This type of distortion is usually small

and it is very difficult to correct.

A small frequency offset,
usually less than 5 Hz, results from the use of carrier

equipment in the telephone channel. Such an offset cannot be tolerated in high-speed

digital transmission systems that use synchronous phase-coherent demodulation. The
offset is usually compensated for by the carrier recovery loop in the demodulator.

Phasejitter is basically a low-index frequency modulation of the transmitted signal

with the low-frequency harmonics of the power line frequency (50-60 Hz). Phase jitter

poses a serious problem in digital transmission at high rates. However, it can be tracked

and compensated for, to some extent, at the demodulator.

FIGURE 9.1-3

Impulse response of average channel with amplitude and delay shown in Figure 9.1-2.
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Impulse noise is an additive disturbance. It arises primarily from the switching

equipment in the telephone system. Thermal (Gaussian) noise is also present at levels

of 30 dB or more below the signal.

The degree to which one must be concerned with these channel impairments de-

pends on the transmission rate over the channel and the modulation technique. For rates

below 1800 bits/s (R/W < 1), one can choose a modulation technique, e.g., FSK, that

is relatively insensitive to the amount of distortion encountered on typical telephone

channels from all the sources listed above. For rates between 1800 and 2400 bits/s

(R/W & 1), a more bandwidth-efficient modulation technique such as four-phase

PSK is usually employed. At these rates, some form of compromise equalization is

often employed to compensate for the average amplitude and delay distortion in the

channel. In addition, the carrier recovery method is designed to compensate for the

frequency offset. The other channel impairments are not that serious in their effects

on the error rate performance at these rates. At transmission rates above 2400 bits/s

(R/W > 1), bandwidth-efficient coded modulation techniques such as trellis-coded

QAM, PAM, and PSK are employed. For such rates, special attention must be paid to

linear distortion, frequency offset, and phase jitter. Linear distortion is usually com-

pensated for by means of an adaptive equalizer. Phase jitter is handled by a combi-

nation of signal design and some type of phase compensation at the demodulator. At

rates above 9600 bits/s, special attention must be paid not only to linear distortion,

phase jitter, and frequency offset, but also to the other channel impairments mentioned

above.

Unfortunately, a channel model that encompasses all the impairments listed above

becomes difficult to analyze. For mathematical tractability the channel model that is

adopted in this and the next chapter is a linear filter that introduces amplitude and delay

distortion and adds Gaussian noise.

Besides the telephone channels, there are other physical channels that exhibit some

form of time dispersion and, thus, introduce intersymbol interference. Radio channels

such as shortwave ionospheric channels (HF), tropospheric scatter channels, and mobile

radio channels are examples of time-dispersive channels. In these channels, time disper-

sion and, hence, intersymbol interference are the result of multiple propagation paths

with different path delays. The number of paths and the relative time delays among the

paths vary with time, and, for this reason, these radio channels are usually called time-

variant multipath channels. The time-variant multipath conditions give rise to a wide

variety of frequency-response characteristics. Consequently the frequency-response

characterization that is used for. telephone channels is inappropriate for time-variant

multipath channels. Instead, these radio channels are characterized statistically, as ex-

plained in more detail in Chapter 13, in terms of the scattering function, which, in brief,

is a two-dimensional representation of the average received signal power as a function

of relative time delay and Doppler frequency.

In this chapter, we deal exclusively with the linear time-invariant filter model for

a band-limited channel. The adaptive equalization techniques presented in Chapter 10

for combating intersymbol interference are also applicable to time-variant multipath

channels, under the condition that the time variations in the channel are relatively slow in

comparison to the total channel bandwidth or, equivalently, to the symbol transmission

rate over the channel.
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SIGNAL DESIGN FOR BAND-LIMITED CHANNELS

It was shown in Chapter 3 that the equivalent lowpass transmitted signal for several

different types of digital modulation techniques has the common form

v(t) = J2lng(t-nT) (9.2-1)

where {/„} represents the discrete information-bearing sequence of symbols and g(t)

is a pulse that, for the purposes of this discussion, is assumed to have a band-limited

frequency-response characteristic G(/), i.e., G(/) = 0 for |/| > W. This signal is

transmitted over a channel having a frequency response C(/), also limited to |/| < W.
Consequently, the received signal can be represented as

rl (t) =YJ
Inh(t-nT) + z(t) (9.2-2)

where

h{t)=
/

g{x)c(t-x)dx (9.2-3)

and z(t) represents the additive white Gaussian noise.

Let us suppose that the received signal is passed first through a filter and then

sampled at a rate l/T samples/s. We shall show in a subsequent section that the optimum
filter from the point of view of signal detection is one matched to the received pulse.

That is, the frequency response of the receiving filter is We denote the output

of the receiving filter as

y(t) = Y2 Inx(t - nT) + v(t) (9.2-4)

where x(t) is the pulse representing the response of the receiving filter to the input pulse

h(t) and v(t) is the response of the receiving filter to the noise z(t).

Now, if y(t) is sampled at times t = kT + ro, k = 0, 1, . .
.

,

we have

y(kT + r0 ) = yk = ^2,
- nT + x0 ) + v(kT + r0)

or, equivalently,

— ^ ]
Inxk—n “

1
“ Vki k — 0

,
1

,
. . .

(9.2-5)

(9.2-6)

where To is the transmission delay through the channel. The sample values can be

expressed as

yk = *o
( i

00

)
Ik H ^ ^ In^k—n “t~ 5

,

*0 n=0

V "** )

Jfc = 0,l,... (9.2-7)
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(a) Binary (b) Quaternary

FIGURE 9.2-1

Examples of eye patterns for binary and quaternary amplitude-shift keying (or PAM).

We regard xq as an arbitrary scale factor, which we arbitrarily set equal to unity for

convenience. Then
oo

yk = h + InXk-n + vk (9.2-8)

n=0
n^k

The term Ik represents the desired information symbol at the kth sampling instant, the

term
oo

^ ^ Iji^k—n

n=0
n^k

represents the ISI, and vk is the additive Gaussian noise variable at the kth sampling

instant.

The amount of intersymbol interference and noise in a digital communication

system can be viewed on an oscilloscope. For PAM signals, we can display the received

signal y(t) on the vertical input with the horizontal sweep rate set at 1 /T. The resulting

oscilloscope display is called an eye pattern because of its resemblance to the human
eye. For example, Figure 9.2-1 illustrates the eye patterns for binary and four-levelPAM
modulation. The effect of ISI is to cause the eye to close, thereby reducing the margin

for additive noise to cause errors. Figure 9.2-2 graphically illustrates the effect of

Optimum
sampling

tune

Sensitivity

to timing

error

\

Disi

zero

tortioi

cross

a of

mgs

\ ^

i

k*\
t l1 \

Peak distortion Noise margm

FIGURE 9.2-2

Effect of intersymbol interference on eye opening.
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FIGURE 9.2-3

Two-dimensional digital “eye patterns.”

Transmitted Received signal samples

eight-phase signal at the ouput of demodulator

(a) (b)

intersymbol interference in reducing the opening of a binary eye. Note that intersymbol

interference distorts the position of the zero-crossings and causes a reduction in the eye

opening. Thus, it causes the system to be more sensitive to a synchronization error.

ForPSK andQAM it is customary to display the “eye pattern” as a two-dimensional

scatter diagram illustrating the sampled values {y^ that represent the decision variables

at the sampling instants. Figure 9.2-3 illustrates such an eye pattern for an 8-PSK

signal. In the absence of intersymbol interference and noise, the superimposed signals

at the sampling instants would result in eight distinct points corresponding to the eight

transmitted signal phases. Intersymbol interference and noise result in a deviation of

the received samples {y&} from the desired 8-PSK signal. The larger the intersymbol

interference and noise, the larger the scattering of the received signal samples relative

to the transmitted signal points.

Below, we consider the problem of signal design under the condition that there is

no intersymbol interference at the sampling instants.

9.2-1 Design of Band-Limited Signals for No Intersymbol

Interference—The Nyquist Criterion

For the discussion in this section and in Section 9.2-2, we assume that the band-limited

channel has ideal frequency-response characteristics, i.e., C(/) = lfor|/| < W.Then
the pulse x(t) has a spectral characteristic X(f) = |G(/)|

2
,
where

/
w

X{f)ej2nft df (9.2-9)
w

We are interested in determining the spectrakproperties of the pulse x(t) and, hence,

the transmitted pulse g(t), that results in no intersymbol interference. Since

oo

yk = Ik "F ^ ^ In^k—n “1“ ^

k

(9.2—10)

71=0

n^k

the condition for no intersymbol interference is

x(t ~ kT) = Xk
{

k = 0

k^ 0
(9.2-11)
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Below, we derive the necessary and sufficient condition on X{f) in order for x(t)

to satisfy the above relation. This condition is known as the Nyquist pulse-shaping

criterion or Nyquist conditionfor zero ISI and is stated in the following theorem.

theorem: (nyquist). The necessary and sufficient condition for x(t) to satisfy

*<"T>={ii tA (9 '2- i2)

is that its Fourier transform X(f) satisfy

oo

X X(f + m/T) = T (9.2-13)

Proof. In general, x(t) is the inverse Fourier transform of X(f). Hence,

/
oo

X(f)e^‘df
oo

At the sampling instants t = nT, this relation becomes

x(nT)-f X(f)e
j'ljrfnT

df

(9.2-14)

(9.2-15)

Let us break up the integral in Equation 9.2-15 into integrals covering the finite range

of 1 / T. Thus, we obtain

x(nT)

oo M2m+\)/2T

= X \ X{f)ei2nfnTdf
m=—oo J0-m—l)/2T

oo pl/2T

= Y, / X(f + m/T)ej2nfnTdf
m=-oo J

~ l /2T

-r1/2T
\/2T

X) X(f+m/T)

(9.2-16)

e
j2nfnT

df

Pl/Zl

=
/

B(f)eJ2nfnTdf
J-1/2T

where we have defined B(f) as

oo

B(f)= J2 X(f + m/T) (9.2-17)

Obviously B(f) is a periodic function with period l/T, and, therefore, it can be

expanded in terms of its Fourier series coefficients {bn } as

oo

B(f) = J2 bn e
i2nnfT

(9.2-18)

n=—oo

where

Z-l/2T

bn — T BU)e~j2nnST
df

7-1/27
(9.2-19)
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FIGURE 9.2-4

Plot of B(f) for the case T < 1/2W.

Now suppose that the channel has a bandwidth of W. Then C(/) = 0 for
| / 1

> W
and, consequently, X(f ) = 0 for |/| > W. We distinguish three cases.

1. WhenT < 1/2W, or, equivalently, l/T > 2W, since B{f) = Ylt=-ooX{f+ n/T)

consists of nonoverlapping replicas of X(f), separated by 1/T as shown in Fig-

ure 9.2-4, there is no choice for X{f) to ensure B{f) = T in this case and there is

no way that we can design a system with no ISI.

2. When T = 1/2W, or, equivalently, l/T = 2

W

(the Nyquist rate), the replications

of X(f), separated by 1 /T, are as shown in Figure 9.2-5. It is clear that in this case

FIGURE 9.2-5

Plot of B(f) for the case T = 1/2W.
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there exists only one X(f) that results in B{f) = T, namely,

X(f) =
T

0

I/I < w
otherwise

(9.2-24)

which corresponds to the pulse

xit)
sm(nt/T)

nt/T
= sine

nt

Y (9.2-25)

This means that the smallest value of T for which transmission with zero ISI is

possible is T = 1/2W, and for this value, x(t) has to be a sine function. The

difficulty with this choice of x(t ) is that it is noncausal and, therefore, nonrealizable.

To make it realizable, usually a delayed version of it, i.e., sinc[7r(£ — to)/T] is used

and to is chosen such that for t < 0, we have sinc[7r (t — to)/ T] & 0. Of course, with

this choice of x{t ), the sampling time must also be shifted to mT + to. A second

difficulty with this pulse shape is that its rate of convergence to zero is slow. The

tails of x(t) decay as 1 /t\ consequently, a small mistiming error in sampling the

output of the matched filter at the demodulator results in an infinite series of ISI

components. Such a series is not absolutely summable because of the l/t rate of

decay of the pulse, and, hence, the sum of the resulting ISI does not converge.

3. When T > 1/2W, B(f) consists of overlapping replications of X(f ) separated by

1/ T, as shown in Figure 9.2-6. In this case, there exist numerous choices for X(f)
such that B(f) = T .

A particular pulse spectrum, for the T > 1/2W case, that has desirable spectral

properties and has been widely used in practice is the raised cosine spectrum. The raised

cosine frequency characteristic is given as (see Problem 9.16)

where is called the roll-offfactor and takes values in the range 0 < ft < 1. The

bandwidth occupied by the signal beyond the Nyquist frequency 1 /2T is called the

FIGURE 9.2-6

Plot of B{f) for the case T > 1/2W.
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1 _J_ J_ I /
T IT IT T

(b)

FIGURE 9.2-7

Pulses having a raised cosine spectrum.

excess bandwidth and is usually expressed as a percentage of the Nyquist frequency.

For example, when p = the excess bandwidth is 50 percent and when p = 1, the

excess bandwidth is 100 percent. The pulse x(t ), having the raised cosine spectrum, is

sin(jtt/T) cos(nfit/T)

nt/T 1-4p 2
t
2/T2

= sinc(7rt/T)
cos(jrpt/T)

1-4p 2
t
2/T2

(9.2-27)

Note that x(t) is normalized so that x(0) = 1. Figure 9.2-7 illustrates the raised cosine

spectral characteristics and the corresponding pulses for p = 0, and 1. Note that

for p = 0, the pulse reduces to x(t) = sinc(jtt/T), and the symbol rate l/T = 2W.
When p = 1 ,

the symbol rate is 1/T = W. In general, the tails of x{t) decay as 1 /t
3
for

P > 0. Consequently, a mistiming error in sampling leads to a series of ISI components

that converges to a finite value.

Because of the smooth characteristics of the raised cosine spectrum, it is possible

to design practical filters for the transmitter and the receiver that approximate the

overall desired frequency response. In the special case where the channel is ideal, i.e.,

C(f) = h\f\< W, we have

Xrdf) = GT(f)GR (f) (9.2-28)

where Gj(f) and GR (f) are the frequency responses of the two filters. In this case, if

the receiver filter is matched to the transmitter filter, we have Xrc(f) = Gr{f)GR {f) =
|G r (/)|

2
. Ideally,

GT(f) = V\Xrc(f)\e-
j2nft° (9.2-29)
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and G r (f) = G^(/), where to is some nominal delay that is required to ensure physical

realizability of the filter. Thus, the overall raised cosine spectral characteristic is split

evenly between the transmitting filter and the receiving filter. Note also that an additional

delay is necessary to ensure the physical realizability of the receiving filter.

9.2-2 Design of Band-Limited Signals with Controlled

ISI—Partial-Response Signals

As we have observed from our discussion of signal design for zero ISI, it is necessary to

reduce the symbol rate 1/ T below the Nyquist rate of 2W symbols/s to realize practical

transmitting and receiving filters. On the other hand, suppose we choose to relax the

condition of zero ISI and, thus, achieve a symbol transmission rate of 2W symbols/s.

By allowing for a controlled amount of ISI, we can achieve this symbol rate.

We have already seen that the condition for zero ISI is x(nT) = 0 for n / 0.

However, suppose that we design the band-limited signal to have controlled ISI at one

time instant. This means that we allow one additional nonzero value in the samples

[x(nT)}. The ISI that we introduce is deterministic or “controlled” and, hence, it can

be taken into account at the receiver, as discussed below.

One special case that leads to (approximately) physically realizable transmitting

and receiving filters is specified by the samples^

x{nT) =
1

0

n — 0, 1

otherwise

Now, using Equation 9.2-20, we obtain

T n = 0,-1

0 otherwise

(9.2-30)

(9.2-31)

which, when substituted into Equation 9.2-18, yields

B(f) = T + Te~jl7TfT
(9.2-32)

As in the preceding section, it is impossible to satisfy the above equation for T < 1/2W.
However, for T = 1 /2VV\ we obtain

X(f) =
— (l + e

~^w
)

2W
0

]_.-jnf/2W 71f
w
0

cos
2W

I/I < W

otherwise

I/I < W

otherwise

(9.2-33)

tit is convenient to deal with samples of x(t) that are normalized to unity for n = 0, 1.
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FIGURE 9.2-8

Time-domain and frequency-domain characteristics of a duobinary signal.

Therefore, x{t) is given by

x(t) = sinc(27rW0 + sine 2tv (9.2-34)

This pulse is called a duobinary signal pulse . It is illustrated along with its magnitude

spectrum in Figure 9.2-8. Note that the spectrum decays to zero smoothly, which means

that physically realizable filters can be designed that approximate this spectrum very

closely. Thus, a symbol rate of 2 IF is achieved.

Another special case that leads to (approximately) physically realizable transmit-

ting and receiving filters is specified by the samples

(£)-
i

x{nT) = { -1
0

n = — 1

n = 1

otherwise

The corresponding pulse x(t) is given as

.
7t(t + T)

.
7t (t - T)

x(t )
= sme sine

(9.2-35)

(9.2-36)

and its spectrum is

X(f) =
— (ej*f/

w _ e
-j*f/W) _

2W
0

w w \f\<w

I/I > W
(9.2-37)

This pulse and its magnitude spectrum are illustrated in Figure 9.2-9. It is called a

modified duobinary signal pulse. It is interesting to note that the spectrum of this signal

has a zero at / = 0, making it suitable for transmission over a channel that does not

pass DC.

One can obtain other interesting and physically realizable filter characteristics, as

shown by Kretzmer (1966) and Lucky et al. (1968), by selecting different values for

the samples {x{n/2W)} and more than two nonzero samples. However, as we select

more nonzero samples, the problem of unraveling the controlled ISI becomes more
cumbersome and impractical.
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FIGURE 9.2-9

Time-domain and frequency-domain characteristics of a modified duobinary signal.

In general, the class of band-limited signal pulses that have the form

oo

x(t)= x
n=—oo

n

2W sine 2nW

and their corresponding spectra

X(f) = {

10

e
~jnnf/W \f\<w

I/I > w

(9.2-38)

(9.2-39)

are called partial-response signals when controlled ISI is a purposely introduced by

selecting two or more nonzero samples from the set {x(n/2W)}. The resulting signal

pulses allow us to transmit information symbols at the Nyquist rate of 2W symbols/s.

The detection of the received symbols in the presence of controlled ISI is described

below.

Alternative characterization ofpartial-response signals We conclude this sub-

section by presenting another interpretation of a partial-response signal. Suppose that

the partial-response signal is generated, as shown in Figure 9.2-10, by passing the

discrete-time sequence {In } through a discrete-time filter with coefficients xn =
x(n/2W), n = 0

9
l, . .

. ,
N —

1, and using the output sequence {Bn } from this filter

to excite periodically with an input Bn 8(t — nT) an analog filter having an impulse

response sinc(27rW0- The resulting output signal is identical to the partial-response

signal given by Equation 9.2-38.

Since

N-

1

Bn ~ ^ ^ ^kln—k

k=

0

(9.2-40)
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-wow

Output

FIGURE 9.2-10

An alternative method for generating a partial-response signal.

the sequence of symbols {Bn } is correlated as a consequence of the filtering performed

on the sequence {/„}. In fact, the autocorrelation function of the sequence {Bn } is

R(m) = E(BnBn+m )

N-l N-

1

= ^ ^ ^ ^ XkXlE(In—k^n-\-m—l)
k=0 1=0

When the input sequence is zero-mean and white,

E(ln—kln+m—l') ~ &m+k—l

where we have used the normalization E (/^) = 1. Substitution of Equation 9.2-42,

into Equation 9.2-41 yields the desired autocorrelation function for {Bn } in the form

N-l-\m\

R(m) = ^2 xkxk+
\

m \, m = 0, ±1 , . ±(N - 1) (9.2-43)

*=

o

The corresponding power spectral density is

(9.2-41)

(9.2-42)

N-l

S(f) = J2 R(rn)e~12nfmT

|2

m=—{N—l)

N-l

Y,xme-j2nfmT

m=

0

(9.2-44)

where T = 1/2W and |/| < 1/2T = W. Thus, the partial-response signal designs

provide spectral shaping of the signal transmitted through the channel.
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9.2-3 Data Detection for Controlled ISI

In this section, we describe two methods for detecting the information symbols at the

receiver when the received signal contains controlled ISI. One is a symbol-by-symbol

detection method that is relatively easy to implement. The second method is based

on the maximum-likelihood criterion for detecting a sequence of symbols. The latter

method minimizes the probability of error but is a little more complex to implement.

In particular, we consider the detection of the duobinary and the modified duobinary

partial-response signals. In both cases, we assume that the desired spectral character-

istic X(f ) for the partial-response signal is split evenly between the transmitting and

receiving filters, i.e., \Gr(f)\ = \Gr(/)\ = |Z(/)| 1/2
. This treatment is based on PAM

signals, but it is easily generalized to QAM and PSK.

Symbol-by-symbol suboptimum detection For the duobinary signal pulse,

x(nT) = 1, for n = 0,1, and is zero otherwise. Hence, the samples at the output

of the receiving filter (demodulator) have the form

ym = Bm + Vm = Im + Im- 1 + vm (9.2-45)

where {/m } is the transmitted sequence of amplitudes and {vm } is a sequence of additive

Gaussian noise samples. Let us ignore the noise for the moment and consider the binary

case where Im = ±1 with equal probability. Then Bm takes on one of three possible

values, namely, Bm = —2,0,2 with corresponding probabilities 1/4, 1/2, 1/4. If

7m_i is the detected symbol from the (ra — l)th signaling interval, its effect on Bm ,

the received signal in the rath signaling interval, can be eliminated by subtraction, thus

allowing Im to be detected. This process can be repeated sequentially for every received

symbol.

The major problem with this procedure is that errors arising from the additive noise

tend to propagate. For example, if 7m_i is in error, its effect on Bm is not eliminated

but, in fact, is reinforced by the incorrect subtraction. Consequently, the detection of

Im is also likely to be in error.

Error propagation can be avoided by precoding the data at the transmitter instead of

eliminating the controlled ISI by subtraction at the receiver. The precoding is performed

on the binary data sequence prior to modulation. From the data sequence {Dn } of Is

and Os that is to be transmitted, a new sequence {Pn }, called the precoded sequence
,
is

generated. For the duobinary signal, the precoded sequence is defined as

Pm = Dm 0 Pm _i, ra = 1,2, ... (9.2-46)

where 0 denotes modulo-2 subtraction. ^ Then we set Im = — 1 if Pm = 0 and Im = 1

if Pm = 1, i.e., 7m = 2Pm — 1. Note that this precoding operation is identical to that

described in Section 3.3 in the context of our discussion of an NRZI signal.

tAlthough this is identical to modulo-2 addition, it is convenient to view the precoding operation for

duobinary in terms of modulo-2 subtraction.
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The noise-free samples at the output of the receiving filter are given by

Pm — Im + Im—l

= (2Pm - 1) + (2Pm_! - 1) (9.2-47)

= 2(Pm + Pm- 1
~ 1)

Consequently,

P

m

+ Pm- 1 — + 1 (9.2-48)

Since Dm = Pm ® Pm_i, it follows that the data sequence Dm is obtained from Bm
using the relation

Dm = \Bm + 1 (mod 2) (9.2-49)

Consequently, if Bm = ±2, then Dm = 0, and if Bm — 0, then Dm = 1. An example

that illustrates the precoding and decoding operations is given in Table 9.2-1. In the

presence of additive noise, the sampled outputs from the receiving filter are given by

Equation 9.2-45. In this case ym = Bm + vm is compared with the two thresholds set

at +1 and —1. The data sequence {Dn } is obtained according to the detection rule

f i (bU < i)

[0 (|yml>l)
(9.2-50)

The extension from binary PAM to multilevel PAM signaling using the duobinary

pulses is straightforward. In this case the M-level amplitude sequence {Im } results in a

(noise-free) sequence

Pm — Im T" Im— 1> ^ — 1,2,... (9.2—51)

which has 2M —
1 possible equally spaced levels. The amplitude levels are determined

from the relation

Im = 2Pm ~ (M - 1) (9.2-52)

TABLE 9.2-1

Binary Signaling with Duobinary Pulses

Data

sequence Dn 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1

Precoded

sequence Pn 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0

Transmitted

sequence In -1 1 -1 1 1 -1 -1 -1 1 1 1 1 -1 1 1 -1
Received

sequence Bn 0 0 0 2 0 -2 -2 0 2 2 2 0 0 2 0

Decoded

sequence Dn 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1
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where {Pm } is the precoded sequence that is obtained from an M-level data sequence

{Dm } according to the relation

Pm = Dm e Pm- 1 (mod M) (9.2-53)

where the possible values of the sequence {Dm } are 0, 1, 2, . .
.

,

M — 1.

In the absence of noise, the samples at the output of the receiving filter may be

expressed as

Bm = Im + Im- 1
= 2[Pm + Pm- 1 - (M - 1)] (9.2-54)

Hence,

Pm + Pm- 1 = \Bm + {M- 1) (9.2-55)

Since Dm = Pm + Pm-i (mod M), it follows that

Dm = \Bm + (M — 1) (mod M) (9.2-56)

An example illustrating multilevel precoding and decoding is given in Table 9.2-2.

In the presence of noise, the received signal-plus-noise is quantized to the nearest

of the possible signal levels and the rule given above is used on the quantized values to

recover the data sequence.

In the case of the modified duobinary pulse, the controlled ISI is specified by the

values x(n/2W) = —1, for n = 1, x(n/2W) = 1 for n = —1, and zero otherwise.

Consequently, the noise-free sampled output from the receiving filter is given as

Bm = Im- Im-2 (9.2-57)

where the M-level sequence {/m } is obtained by mapping a precoded sequence accord-

ing to the Equation 9.2-52 and

Pm = Dm © Pm—2 (mod M) (9.2-58)

TABLE 9.2-2

Four-Level Signal Transmission with Duobinary Pulses

Data

sequence Dm 0 0 1 3 1 2 0 3 3 2 0 1 0

Precoded

sequence Pm 0 0 0 1 2 3 3 1 2 1 1 3 2 2

Transmitted

sequence Im -3 -3 -3 -1 1 3 3 -1 1 -1 -1 3 1 1

Received

sequence Bn -6 -6 -4 0 4 6 2 0 0 -2 2 4 2

Decoded

sequence Dm 0 0 1 3 1 2 0 3 3 2 0 1 0
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AWGN

FIGURE 9.2-11

Block diagram of modulator and demodulator for partial-response signals.

From these relations, it is easy to show that the detection rule for recovering the data

sequence {Dm } from {Bm } in the absence of noise is

Dm = \Bm (mod M) (9.2-59)

As demonstrated above, the precoding ofthe data at the transmittermakes it possible

to detect the received data on a symbol-by-symbol basis without having to look back

at previously detected symbols. Thus, error propagation is avoided.

The symbol-by-symbol detection rule described above is not the optimum detection

scheme for partial-response signals due to the memory inherent in the received signal.

Nevertheless, symbol-by-symbol detection is relatively simple to implement and is

used in many practical applications involving duobinary and modified duobinary pulse

signals.

Let us determine the probability of error for detection of digital M-ary PAM sig-

naling using duobinary and modified duobinary pulses. The channel is assumed to be

an ideal band-limited channel with additive white Gaussian noise. The model for the

communication system is shown in Figure 9.2-1 1.

At the transmitter, the M-level data sequence {Dm } is precoded as described pre-

viously. The precoder output is mapped into one ofM possible amplitude levels. Then
the transmitting filter with frequency response GT (f ) has an output

oo

V(t)= Ingrit-nT) (9.2-60)

n——oo

The partial-respone function X(f ) is divided equally between the transmitting and

receiving filters. Hence, the receiving filter is matched to the transmitted pulse, and the

cascade of the two filters results in the frequency characteristic

\G T(f)GR {f)\ = \X(f)\ (9.2-61)

The matched filter output is sampled at t = nT = n/2W and the samples are fed to

the decoder. For the duobinary signal, the output of the matched filter at the sampling

instant may be expressed as

ym — J-m “b Im— 1 “b Vm = Bm H- Vm (9.2—62)

where vm is the additive noise component. Similarly, the output of the matched filter

for the modified duobinary signal is

ym — Im J-m—2 "b Vm — Bm "b Vm (9.2-63)
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For binary transmission, let Im = dzd, where 2d is the distance between signal levels.

Then, the corresponding values of Bm are (2d, 0, —2d). For M-ary PAM signal trans-

mission, where Im = ±d, d=3d , . .
.

,

±(M — 1 )d, the received signal levels are Bm = 0,

±2d, d=4d, . .
.

,

±2(M — 1 )d. Hence, the number of received levels is 2M — 1, and the

scale factor d is equivalent to xo = Eg .

The input transmitted symbols {Im } are assumed to be equally probable. Then, for

duobinary and modified duobinary signals, it is easily demonstrated that, in the absence

of noise, the received output levels have a (triangular) probability distribution of the

form

P(B = 2md)=
M

J

m|
, m = 0, ±1, ±2, . . .

,

±(M — 1) (9.2-64)M2

where B denotes the noise-free received level and 2d is the distance between any two

adjacent received signal levels.

The channel corrupts the signal transmitted through it by the addition of white

Gaussian noise with zero-mean and power spectral density \ No.

We assume that a symbol error occurs whenever the magnitude of the additive

noise exceeds the distance d. This assumption neglects the rare event that a large noise

component with magnitude exceeding d may result in a received signal level that yields a

correct symbol decision. The noise component vm is zero-mean Gaussian with variance

a
v = jNo

/
|G*(/)|

2J/
J-w

= ±;vo r mydf

=

^
J-W ft

(9.2-65)

for both the duobinary and the modified duobinary signals. Hence, an upper bound on

the symbol probability of error is

M—2

Pe < ^ P(|y — 2md\ > d\B = 2md)P(B = 2md)
m=—(M—2)

+ 2P[y + 2{M -
1 )d > d\B = -2(M - 2)d]P[B = -2(M -

1 )d]

= P(\y\>d\B = 0)

M-

1

lYJ P{B = 2md) - P(B = 0) - P[B = -2(M
m=

0

= (l - M~2
)P(\y\ >d\B = 0)

But

(9.2-66)

2
P(|y| > d\B = 0) = — / e~

x2/2a»dx
\j2ltOv Jd

= 2Q
nd2

Wo

(9.2-67)



618 Digital Communications

Therefore, the average probability of a symbol error is upper-bounded as

Pe < 2d - M~2
)Q

7rd2

2iVo
(9.2-68)

The scale factor d in Equation 9.2-68 can be eliminated by expressing it in terms

of the average power transmitted into the channel. For the M-ary PAM signal in which

the transmitted levels are equally probable, the average power at the output of the

transmitting filter is

f(j 2
\ rw f(t2

\ rw d
pav =^ /

\G T (f)\
2
df = -Usd.

/ I
X(f)\df = ~E(l2

m )
1 J-w 1 J-W Kl

where E (I
2
)

is the mean square value of the M signal levels, which is

E{l2
m ) = \d\M2 - 1)

Therefore,

37rPavr

4(M2 - 1)

(9.2-69)

(9.2-70)

(9.2-71)

By substituting the value of d2 from Equation 9.2-71 into Equation 9.2-68, we obtain

the upper bound on the symbol error probability as

Pe <2 M2 Q
/ 7V \

2
6 £av

V4y m2 — i ~Nq
(9.2-72)

where £av is the average energy per transmitted symbol, which can be also expressed

in terms of the average bit energy as £av = fc£&av = (log2 M)P^av .

The expression in Equation 9.2-72 for the probability of error ofM -ary PAM holds

for both duobinary and modified duobinary partial-response signals. Ifwe compare this

result with the error probability of M-ary PAM with zero ISI, which can be obtained

by using a signal pulse with a raised cosine spectrum, we note that the performance of

partial-response duobinary or modified duobinary has a loss of or 2.1 dB. This

loss in SNR is due to the fact that the detector for the partial-response signals makes

decisions on a symbol-by-symbol basis, and ignores the inherent memory contained in

the received signal at its input.

Maximum-likelihood sequence detection It is clear from the above discussion

that partial-response waveforms are signal waveforms with memory. This memory is

conveniently represented by a trellis. For example, the trellis for the duobinary partial-

response signal for binary data transmission is illustrated in Figure 9.2-12. For binary

modulation, this trellis contains two states, corresponding to the two possible input

values of 7m ,
i.e., Im = ±1. Each branch in the trellis is labeled by two numbers. The

first number on the left is the new data bit, i.e., Im+\ = ±1. This number determines

the transition to the new state. The number on the right is the received signal level.
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1/2 1/2 1/2

t
= 0 t=T t = 2T t = 3T

FIGURE 9.2-12

Trellis for duobinary partial-response signal.

The duobinary signal has a memory of length L = 1 . Hence, for binary modulation

the trellis has St = 2 states. In general, for M-ary modulation, the number of trellis

states is ML
.

The optimum maximum-likelihood (ML) sequence detector selects the most prob-

able path through the trellis upon observing the received data sequence {ym } at the

sampling instants t = mT,m = 1,2, In general, each node in the trellis will have

M incoming paths and M corresponding metrics. One out of the M incoming paths is

selected as the most probable, based on the values of the metrics and the other M — 1

paths and their metrics are discarded. The surviving path at each node is then extended

to M new paths, one for each of the M possible input symbols, and the search process

continues. This is basically the Viterbi algorithm for performing the trellis search. Its

performance is calculated in Section 9.3-4.

9.2-4 Signal Design for Channels with Distortion

In Sections 9.2-1 and 9.2-2, we described signal design criteria for the modulation filter

at the transmitter and the demodulation filter at the receiver when the channel is ideal. In

this section, we perform the signal design under the condition that the channel distorts

the transmitted signal. We assume that the channel frequency-response C(f) is known
for |/| < W and that C(f) = 0 for |/| > W. The filter responses Gr(f) and Gr(f)
may be selected to minimize the error probability at the detector. The additive channel

noise is assumed to be Gaussian with power spectral density Snn {f). Figure 9.2-13

illustrates the overall system under consideration.

For the signal component at the output of the demodulator, we must satisfy the

condition

GT{f)C{f)GR {f) = Xd{f)e~
j2nf,

\ \f\<W (9.2-73)

Gaussian

noise

FIGURE 9.2-13

System model for the design of the modulation and demodulation filters.
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where Xd(f) is the desired frequency response of the cascade ofthe modulator, channel,

and demodulator, and to is a time delay that is necessary to ensure the physical real-

izability of the modulation and demodulation filters. The desired frequency response

Xd(f) may be selected to yield either zero ISI or controlled ISI at the sampling instants.

We shall consider the case of zero ISI by selecting Xd(f) = Xrc(f ), where Xrc(f) is

the raised cosine spectrum with an arbitrary roll-off factor.

The noise at the output of the demodulation filter may be expressed as

/
oo

n(t - t)gR (r)dr
-OO

(9.2-74)

where n(t) is the input to the filter. Since n(t) is zero-mean Gaussian, v(t) is zero-mean

Gaussian, with a power spectral density

Svv (f) = Sn„(f)\GR {f)\
2

(9.2-75)

For simplicity, we consider binary PAM transmission. Then, the sampled output

of the matched filter is

ym — Xolm Vm — V

m

H- (9.2 76)

where xo is normalized^ to unity, Im = ±d, and vm represents the noise term, which is

zero-mean Gaussian with variance

/

oo

Snn(f)\G R (f)\
2
df (9.2-77)

-OO

Consequently, the probability of error is

P2 = ~}=r e^dy = Q
(V2n Jd/av \

(9.2-78)

The probability of error is minimized by maximizing the ratio d2
/o

l

or, equiva-

lently, by minimizing the noise-to-signal ratio a 2/d2
.

Let us consider two possible solutions for the case in which the additive Gaussian

noise is white, so that Snn(f ) = No/2. First, suppose that we precompensate for the

total channel distortion at the transmitter, so that the filter at the receiver is matched to

the received signal. In this case, the transmitter and receiver filters have the magnitude

characteristics

|Gt(/)|

\G R (f)\

yx^if)

|C(/)|
’

yxM),

\f\<w

\f\<w

(9.2-79)

The phase characteristic of the channel frequency response C{f) may also be com-

pensated at the transmitter filter. For these filter characteristics, the average transmitted

tBy setting x0 = 1 and Im = ±d, the scaling by xq is incorporated into the parameter d.
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power is

F (

I

2
) r°° d2 rw

^av = -^/ g
2
j{t)dt = - \GT (f)\

2
df

* J-OQ 1 J-W

d2
r
w xrc(f)-U

(9.2-80)

w |C(/)| :
df

and, hence,

dL = P„T L
W Xrc(f)

-|-1

W \C(f)\-
df (9.2-81)

The noise variance at the output of the receiver filter is a,
2 = No/2 and, hence, the

SNR at the detector is

d2 2PmT

of, No

rW

J-W

Xrc(f)

w \C(f)\
2
df (9.2-82)

As an alternative, suppose we split the channel compensation equally between the

transmitter and receiver filters, i.e.,

\G T (f)\ =

|G*(/)I =

*JXM)
|C(/)|>/2’

ypGlf)
|C(/)|V2

I/I < W

I/I < W
(9.2-83)

The phase characteristic of C(/) may also be split equally between the transmitter

and receiver filters. In this case, the average transmitter power is

-ti:
d2

r
w xrc(f)

-w |C(/)|
df

and the noise variance at the output of the receiver filter is

rW Xrc(f)

w \C(f)\
df

Hence, the SNR at the detector is

d2

at

2P*nT

No

rW

J-W

w xrc(f)
-i
—2

|C(/)|
df

(9.2-84)

(9.2-85)

(9.2-86)

From Equations 9.2-82 and 9.2-86, we observe that when we express the SNR
d2/o 2

in terms of the average transmitter power F\K , there is a loss incurred due to

channel distortion. In the case of the filters given by Equation 9.2-79, the loss is

10 log
/.

* Xrcjf)

-w |C(/)| 2
df (9.2-87)
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and, in the case of the filters given by Equation 9.2-83, the loss is

10 log

rW

J-W

Xrc(f)
df

-w |C(/)|

We observe that when C(/) = 1 for |/| < W ,
the channel is ideal and

r>W

[ Xrc(f)df = 1

J-w

(9.2-88)

(9.2-89)

so that no loss is incurred. On the other hand, when there is amplitude distortion,

|C(/)| < 1 for some range of frequencies in the band |/| < W and, hence, there is a

loss in SNR as given by Equations 9.2-87 and 9.2-88. The interested reader may show
(see Problem 9.30) that the filters given by Equation 9.2-83 result in the smaller SNR
loss.

example 9.2-1. Let us determine the transmitting and receiving filters given by
Equation 9.2-83 for a binary communication system that transmits data at a rate of

4800 bits/s over a channel with frequency (magnitude) response

\C(f)\ =
1

7hP?’ \f\<w (9.2-90)

where W = 4800 Hz. The additive noise is zero-mean white Gaussian with spectral

density ±N0 = 10~ 15 W/Hz.
Since W = 1 / T = 4800, we use a signal pulse with a raised cosine spectrum and

= 1. Thus,

Xrc(f) = ±r[i + cos(7rr|/|)]

T cos
2

* 1/1

9600

Then,

|Gr(/)l = \GR (f)\ = 1 + /
4800

21

COS
*

1 / 1 \

9600 ) ’

(9.2-91)

| /| < 4800 (9.2-92)

and \Gr(f)\ = \G R (f)\ = 0, otherwise. Figure 9.2-14 illustrates the filter character-

istic GT (f).
One can now use these filters to determine the amount of transmitted energy £

required to achieve a specified error probability. This problem is left as an exercise for

the reader.

FIGURE 9.2-14

Frequency response of an optimum transmitter filter.

-4800 0 4800 /
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9.3

OPTIMUM RECEIVER FOR CHANNELS WITH ISI AND AWGN

In this section, we derive the structure of the optimum demodulator and detector for dig-

ital transmission through a nonideal band-limited channel with additive Gaussian noise.

We begin with the transmitted (equivalent lowpass) signal given by Equation 9.2-1.

The received (equivalent lowpass) signal is expressed as

r(t) = J2 JnKt ~ nT ) + z(t) (9.3-1)

where h(t) represents the response of the channel to the input signal pulse g(t) and z(t)

represents the additive white Gaussian noise.

First we demonstrate that the optimum demodulator can be realized as a filter

matched to h(t), followed by a sampler operating at the symbol rate l/T and a sub-

sequent processing algorithm for estimating the information sequence {/„} from the

sample values. Consequently, the samples at the output of the matched filter are suffi-

cient for the estimation of the sequence {/„}.

9.3-1 Optimum Maximum-Likelihood Receiver

Using the Karhunen-Loeve expansion, we expand the received signal rt (t) in the series

N

n(t) = Jim V rk <pk {t) (9.3-2)
N-> OO Z—

'

k=

1

where {<fe(0} is a complete set of orthonormal functions and {r^} are the observable

random variables obtained by projecting ri(t ) onto the set {0^(01- It is easily shown

that

rk = ^2lnhkn +

z

k , k= 1,2,... (9.3-3)

n

where hkn is the value obtained from projecting h(t — nT) onto </>&(0, an(I zk is the

value obtained from projecting 'z(t) onto 4>k(t). The sequence {zk} is Gaussian with

zero-mean and covariance

E(z*kzm)=2N08km (9.3-4)

The joint probability density function of the random variables = \r \
r2 -

\

conditioned on the transmitted sequence Ip = \_I\ h • • • Ip ], where p < N, is

p(rN \IP )

1

2iVo

N

E ^ ^
Inhkn

n

(9.3-5)
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In the limit as the number N of observable random variables approaches infinity, the

logarithm of p(rN \Ip ) is proportional to the metrics PM(Ip ), defined as

PM(Ip )
=
-

J'

-L

r\(t) - h(t — nT)\ dt

n

r

\n(t)\
2
dt + 2RcJ2 [i:

j
ri(t)h*(t - nT)dt (9.3-6)

/

OO

h*(t — nT)h(t — mT)dt
n rn

-°°

The maximum-likelihood estimates of the symbols /i, h , . .
.

,

Ip are those that

maximize this quantity. Note, however, that the integral of \n(t )\

2
is common to all

metrics, and, hence, it may be discarded. The other integral involving r(t) gives rise to

the variables

/
OO

ri(t)h*{t - nT ) dt (9.3-7)
-OO

These variables can be generated by passing r{t) through a filter matched to h(t) and

sampling the output at the symbol rate 1 /T. The samples {y„} form a set of sufficient

statistics for the computation of PM{Ip ) or, equivalently, of the correlation metrics

CM(Ip ) = 2Re I £ rn yn
J

W^n-m
\ n J n m

where, by definition, x(t) is the response of the matched filter to h(t ) and

xn = x(nT ) -i:
h*(t)h(t + nT)dt

(9.3-8)

(9.3-9)

Hence, x(t) represents the output of a filter having an impulse response h*(—t) and

an excitation h(t). In other words, x{t) represents the autocorrelation function of h(t).

Consequently, {xn } represents the samples of the autocorrelation function of h(t), taken

periodically at 1/ T. We are not particularly concerned with the noncausal characteristic

of the filter matched to h{t), since, in practice, we can introduce a sufficiently large

delay to ensure causality of the matched filter.

If we substitute for r/(0 in Equation 9.3-7 using Equation 9.3-1, we obtain

yk — ^ ^ In^k—n T" Vk (9.3-10)

where denotes the additive noise sequence of the output of the matched filter, i.e.,

/
OO

z(t)h*(t — kT ) dt (9.3-1 1)
-OO

The output of the demodulator (matched filter) at the sampling instants is corrupted

by ISI as indicated by Equation 9.3-10. In any practical system, it is reasonable to

assume that the ISI affects a finite number of symbols. Hence, we may assume that

xn = 0 for > L. Consequently, the ISI observed at the output of the demodulator

may be viewed as the output of a finite state machine. This implies that the channel

output with ISI may be represented by a trellis diagram, and the maximum-likelihood
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Clock

t = kT

FIGURE 9.3-1

Optimum receiver for an AWGN channel with 1ST

estimate of the information sequence (4 , 4, . .
.

,

Ip ) is simply the most probable path

through the trellis given the received demodulator output sequence {y„}. Clearly, the

Viterbi algorithm provides an efficient means for performing the trellis search.

The metrics that are computed for the MLSE of the sequence {4} are given by

Equation 9.3-8. It can be seen that these metrics can be computed recursively in the

Viterbi algorithm, according to the relation

CMn (In ) = CMn-\(In-i) + Re 4 f
^yn *o4 2V Xm I,

m=

1

(9.3-12)

Figure 9.3-1 illustrates the block diagram of the optimum receiver for an AWGN
channel with ISI.

9.3-2 A Discrete-Time Model for a Channel with ISI

In dealing with band-limited channels that result in ISI, it is convenient to develop

an equivalent discrete-time model for the analog (continuous-time) system. Since the

transmitter sends discrete-time symbols at a rate of 1/T symbols/s and the sampled

output of the matched filter at the receiver is also a discrete-time signal with samples

occurring at a rate of 1/T per second, it follows that the cascade of the analog filter

at the transmitter with impulse response g(t ), the channel with impulse response c{t ),

the matched filter at the receiver with impulse response h*(—t ), and the sampler can be

represented by an equivalent discrete-time tranversal filter having tap gain coefficients

{.Xk ] . Consequently, we have an equivalent discrete-time transversal filter that spans a

time interval of 2LT seconds. Its input is the sequence of information symbols {4} and

its output is the discrete-time sequence {y^} given by Equation 9.3-10. The equivalent

discrete-time model is shown in Figure 9.3-2.

The major difficulty with this discrete-time model occurs in the evaluation of

performance of the various equalization or estimation techniques that are discussed

in the following sections. The difficulty is caused by the correlations in the noise

sequence [vk] at the output of the matched filter. That is, the set of noise variables {vk}

is a Gaussian-distributed sequence with zero-mean and autocorrelation function (see

Problem 9.36)

) = f 2VoXj-k • (l& j I
— L)

^ k \0 (otherwise)
(9.3-13)
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M
FIGURE 9.3-2

Equivalent discrete-time model of channel with intersymbol interference.

Hence, the noise sequence is correlated unless = 0,k / 0. Since it is more convenient

to deal with the white noise sequence when calculating the error rate performance, it

is desirable to whiten the noise sequence by further filtering the sequence {y^}. A
discrete-time noise-whitening filter is determined as follows.

LetX (z) denote the (two-sided) z transform ofthe sampled autocorrelation function

{Xk }, i.e.,

L

X{z) = Y, x*z
~k

(9.3-14)

k——L

Since Xk = x^
k ,

it follows that X(z) = X*(l/z*) and the 2L roots of X(z) have the

symmetry that if p is a root, 1/p* is also a root. Hence, X(z) can be factored and

expressed as

X(z) = F(z)F*
(

2
)

(9.3-15)

where F(z) is a polynomial of degree L having the roots p \ , p2 ,
• • •

, Pl and F*(l /z*) is

apolynomial of degree L having the roots 1/p*, l/p|, • •
. , 1 /pl- Assuming that there

are no roots on the unit circle, an appropriate noise-whitening filter has a z transform

1 /F*(l/z*). Since there are 2L possible choices for the roots of F*(l/z*), each choice

resulting in a filter characteristic that is identical in magnitude but different in phase

from other choices of the roots, we propose to choose the unique F*(l/z*) that results

in an anticausal impulse response with poles corresponding to the zeros of X(z) that are

outside the unit circle. Such an anticausal filter is stable. Selecting the noise-whitening

filter in this manner ensures that the resulting channel response, characterized by F(z),

is minimum phase. Consequently, passage of the sequence {y^} through the digital filter

1 /F*( 1 /z*) results in an output sequence {i;^} that can be expressed as

L

V]c = ^ ^ fn.Ik—n “
1
“ ^Ik

n=

0

(9.3-16)
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where {?7^} is a white Gaussian noise sequence and {/^} is a set of tap coefficients of an

equivalent discrete-time transversal filter having a transfer function F(z). The cascade

of the matched filter, the sampler, and the noise-whitening filter is called the whitened

matchedfilter (WMF).
It is convenient to normalize the energy of F(z) to unity, i.e.,

Ei/«i 2 = 1

n=

0

The minimum-phase condition on F(z) implies that the energy in the first M values of

the impulse response {/o, fi , . .
.

,

/m} is a maximum for every M.
In summary, the cascade of the transmitting filter g(t ), the channel c{t ), the matched

filter h*(—t), the sampler, and the discrete-time noise-whitening filter l/F*(l/z*) can be

represented as an equivalent discrete-time transversal filter having the set {/*} as its tap

coefficients. The additive noise sequence {rjk} corrupting the output of the discrete-time

transversal filter is a white Gaussian noise sequence having zero-mean and variance

No. Figure 9.3-3 illustrates the model of the equivalent discrete-time system with

white noise. We refer to this model as the equivalent discrete-time white noise filter

model.

example 9.3-1. Suppose that the transmitter signal pulse g(t) has duration T and unit

energy and the received signal pulse is h{t) = g(t) + ag(t — T). Let us determine the

equivalent discrete-time white noise filter model. The sampled autocorrelation function

is given by

fa* (* = — 1)

xk =\ 1 + \a\
2

(jfe = 0)

\a (k = l)

(9.3-17)

{*7*1

FIGURE 9.3-3

Equivalent discrete-time model of intersymbol interference channel with AWGN.
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The z transform of is

x(z) = Y2 XkZ
k

*=-i (9.3-18)

= Cl*Z + (1 + |fl|
2
) + QZ

1

= (az~
1 + \)(a*z+ 1)

Under the assumption that \a\ < 1, one chooses F(z) = az~ l + 1, so that the equivalent

transversal filter consists of two taps having tap gain coefficients /o = 1, f\ = a. Note
that the correlation sequence {xk\ may be expressed in terms of the {fn } as

L-k

xk = J2 fnfn+k, k = 0, 1, 2, . .
.

,

L (9.3-19)

n=

0

When the channel impulse response is changing slowly with time, the matched

filter at the receiver becomes a time-variable filter. In this case, the time variations

of the channel/matched-filter pair result in a discrete-time filter with time-variable

coefficients. As a consequence, we have time-variable intersymbol interference effects,

which can be modeled by the filter illustrated in Figure 9.3-3, where the tap coefficients

are slowly varying with time.

The discrete-time white noise linear filter model for the intersymbol interference

effects that arise in high-speed digital transmission over nonideal band-limited channels

will be used throughout the remainder of this chapter in our discussion of compensa-

tion techniques for the interference. In general, the compensation methods are called

equalization techniques or equalization algorithms.

9.3-3 Maximum-Likelihood Sequence Estimation (MLSE)
for the Discrete-Time White Noise Filter Model

In the presence of intersymbol interference that spans L + 1 symbols (L interfering

components), theMLSE criterion is equivalent to the problem of estimating the state of a

discrete-time finite-state machine. The finite-state machine in this case is the equivalent

discrete-time channel with coefficients {/&}, and its state at any instant in time is given

by the L most recent inputs, i.e., the state at time k is

Sk = (h- i, 4-2, • • • , 4-l) (9.3-20)

where 4 = 0 for k < 0. Hence, if the information symbols are M-ary, the channel filter

has ML
states. Consequently, the channel is described by an ML

-state trellis and the

Viterbi algorithm may be used to determine the most probable path through the trellis.

The metrics used in the trellis search are akin to the metrics used in soft-decision

decoding of convolutional codes. In brief, we begin with the samples vi,V2 ,

,

vl+ i,

from which we compute the ML+1
metrics

L+

1

^ln/?(Ufc|4, 4-i, • • • , 4-l) (9.3-21)

k=

1

The ML+l
possible sequences of IL+ 1 , 4, • • • , 4, 4 are subdivided into ML groups

corresponding to the ML
states (4+i, 4, • • • , 4)- Note that the M sequences in each
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group (state) differ in I\ and correspond to the paths through the trellis that merge at a

single node. From the M sequences in each of the ML
states, we select the sequence

with the largest probability (with respect to I\) and assign to the surviving sequence

the metric

PMx (IL+l ) = PM x {IL+u lL ,...,I2 )

^+1 (9.3-22)
= max X \np(vk \Ik , /*_i, . .

. ,
Ik-L )

h k—l

The M — 1 remaining sequences from each of the ML groups are discarded. Thus, we
are left with ML surviving sequences and their metrics.

Upon reception of vL+2, theML
surviving sequences are extended by one stage, and

the corresponding ML+l
probabilities for the extended sequences are computed using

the previous metrics and the new increment, which is In p(vL+2^+2, h+ 1, • • • , h)-

Again, the ML+l sequences are subdivided into ML groups corresponding to the ML

possible states (/l+2 ,
. .

. , h) and the most probable sequence from each group is se-

lected, while the other M — 1 sequences are discarded.

The procedure described continues with the reception of subsequent signal samples.

In general, upon reception of vL+k ,
the metrics*

PMk (IL+k ) = maxfln p(vL+k I h+k , ...,/*) + PM*_i(/L+*_i))] (9.3-23)
h

that are computed give the probabilities of the ML
surviving sequences. Thus, as each

signal sample is received, the Viterbi algorithm involves first the computation of the

Ml+1
probabilities

In p (vL+k \ IL+k, • • • , Ik) + PMk~\(IL+k-i) (9.3-24)

corresponding to the ML+1 sequences that form the continuations of the ML surviving

sequences from the previous stage of the process. Then the ML+1 sequences are subdi-

vided into Ml
groups, with each group containing M sequences that terminate in the

same set of symbols h+k, • • , h+\ and differ in the symbol Ik . From each group of

M sequences, we select the one having the largest probability as indicated by Equa-

tion 9.3-23, while the remaining M — 1 sequences are discarded. Thus, we are left

again with ML sequences having the metrics PMk (IL+k ).

As indicated previously, the delay in detecting each information symbol is variable.

In practice, the variable delay is avoided by truncating the surviving sequences to the

q most recent symbols, where q L, thus achieving a fixed delay. In the case that

the Ml
surviving sequences at time k disagree on the symbol Ik-q ,

the symbol in the

most probable sequence may be chosen. The loss of performance resulting from this

suboptimum decision procedure is negligible if q > 5L.

example 9.3-2. For illustrative purposes, suppose that a duobinary signal pulse is

employed to transmit four-level (M = 4) PAM. Thus, each symbol is a number selected

from the set {—3, —1, 1, 3}. The controlled intersymbol interference in this partial-

response signal is represented by the equivalent discrete-time channel model shown in

tWe observe that the metrics PM^iI) are simply related to the Euclidean distance metrics DMk(l) when the

additive noise is Gaussian.



630 Digital Communications

FIGURE 9.3-4

Equivalent discrete-time model for intersymbol interference resulting from a duobinary pulse.

Figure 9.3-4. Suppose we have received v\ and t>2 ,
where

«i = h + m
v2 — h + h + m

(9.3-25)

and [r/i] is a sequence of statistically independent zero-mean Gaussian noise. We may
now compute the 16 metrics

pMiih, h) = -^2 vk -j2 !
tk-j 4, 4 = ±4 ±3 (9.3-26)

k=

1

where 4 = 0 for k < 0 .

Note that any subsequently received signals {i>;} do not involve 4- Hence, at this

stage, we may discard 12 of the 16 possible pairs {4 ,4}. This step is illustrated by the

tree diagram shown in Figure 9.3-5. In other words, after computing the 16 metrics

corresponding to the 16 paths in the tree diagram, we discard three out of the four paths

that terminate with 4 = 3 and save the most probable of these four. Thus, the metric

for the surviving path is

PM\(h = 3, 4) = max
h

2

E
1

Vk ^2 1k~J

j=0

2

The process is repeated for each set of four paths terminating with 4 = 4 4 = — 1,

and 4 = —3. Thus four paths and their corresponding metrics survive after v\ and i>2

are received.

When U3 is received, the four paths are extended as shown in Figure 9.3-5 to yield

16 paths and 16 corresponding metrics given by

PM2(h, I2 , h) - PMrih, I
x )
- - 53 (9.3-27)

Of the four paths terminating with the 4 = 3 , we save the most probable. This procedure
is again repeated for 4 = 4 4 = — 4 and 4 = — 3. Consequently, only four paths
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PM
x
{I2,Ix ) PM2(I3 ,

1

2 , /,) pm3 (/4) /3,/2> /1 )

FIGURE 9.3-5

Tree diagram for Viterbi decoding of the duobinary pulse.

survive at this stage. The procedure is then repeated for each subsequently received

signal Vk for k > 3.

9.3-4 Performance ofMLSE for Channels with ISI

We shall now determine the probability of error for the MLSE of the received informa-

tion sequence when the information is transmitted via PAM and the additive noise is

Gaussian. The similarity between a convolutional code and a finite-duration intersym-

bol interference channel implies that the method for computing the error probability

for the latter carries over from the former. In particular, the method for computing the

performance of soft-decision decoding of a convolutional code by means of the Viterbi

algorithm, described in Section 8.3, applies with some modification.
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In PAM signaling with the additive Gaussian noise and intersymbol interference,

the metrics used in the Viterbi algorithm may be expressed as in Equation 9.3-23, or,

equivalently, as

PMk-L(Ik) = PMk-L-lVk-l) ~ fwt -E (9-3-28)

where the symbols {/„} may take the values d~d, ±3d , . .
.

,

±(M — 1 )d, and 2d is the

distance between successive levels. The trellis has ML
states, defined at time k as

S* = (4_i,/*_2,...,4_l ) (9.3-29)

Let the estimated symbols from the Viterbi algorithm be denoted by {In } and the

corresponding estimated state at time k by

Sk = (Ik-u I k-2,..., h-L) (9.3-30)

Now suppose that the estimated path through the trellis diverges from the correct path at

time k and remerges with the correct path at time k+l. Thus, Sk = ^and^+ i
= S^+i,

but Sm / Sm for k < m < k + L As in a convolutional code, we call this an error

event. Since the channel spans L + 1 symbols, it follows that / > L + 1.

For such an error event, we have Ik / h and Ik+i-L-\ / h+i-L- 1 ,
but Im = Im

for k — L < m < k — 1 and k + l — L < m < k + l
— 1 . It is convenient to define an

error vector e corresponding to this error event as

e = [sk sk+i ••• £k+i-L-i\ (9.3-31)

where the components of e are defined as

£j = ^(Ij
- Ij), j = k, k + 1, . .

.

,

k + l - L -
1 (9.3-32)

The normalization factor of 2d in Equation 9.3-32 results in elements £j that take on

the values 0, d=l, ±2, d=3, . .
.

,

d=(M — 1). Moreover, the error vector is characterized

by the properties that e* / 0, £k+i-L-

1

/ and there is no sequence of L consecutive

elements that are zero. Associated with the error vector in Equation 9.3-31 is the

polynomial of degree l — L —
1,

s(z) = sk + sk+ iz~
l + Sk+2z

~2
4 1- Sk+i-L- 1Z~

(1
~L~ 1)

(9.3-33)

We wish to determine the probability of occurrence of the error event that begins

at time k and is characterized by the error vector e given in Equation 9.3-3 1 or, equiv-

alently, by the polymonial given in Equation 9.3-33. To accomplish this, we follow the

procedure developed by Forney (1972). Specifically, for the error event e to occur, the

following three subevents E\, E2 ,
and Eo, must occur:

E\\ At time k
, §k =

E2 \ The information symbols /*,/*+!,..., h+i-L-

1

when added to the scaled

error sequence 2d(£k, £k+ i, • • • , £k+i-L-i) must result in an allowable se-

quence, i.e., the sequence /*, h+u • .
.

,

Ik+i-L-i must have values selected

from ±d, ±3d, ± • •
• ± (M — 1 )d.

E3 : For k < m < k + /, the sum of the branch metrics of the estimated path

exceeds the sum of the branch metrics of the correct path.
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The probability of occurrence of E3 is

P(E3 )
= P

k+l- 1 / L \~ k+l-l

J2 l

w
' < J2 I vi-'EtWi-i

j=0 ) i=k \ j=0i=k

(9.3-34)

But

= + (9.3-35)

j=

0

where {^} is a real-valued white Gaussian noise sequence. Substitution of Equ-

ation 9.3-35 into Equation 9.3-34 yields

2

P(E3 )
= P

= P

k+l-

1

k+l-

1

Z < z $
i=k j=0 i=k

k+l- 1 / L \ *+/-l / L

4d E *?'•

(
£Mw < “4j2 E I]Mw

i=* \y=0 / i=* \y=0

(9.3-36)

where Sj = 0 for j < k and j > k + l — L — 1. If we define

a, = EMw (9-3-37)

7=0

then Equation 9.3-36 may be expressed as

(k+l- 1 *+1-1 \

P(E3 )
= P I ^2 ViVi < -d ^2

)

(9.3-38)

\ i=k i=k J

where the factor of 4d common to both terms has been dropped. Now Equation 9.3-38

is just the probability that a linear combination of statistically independent Gaussian

random variables is less than some negative number. Thus

P(E3 ) = Q
2d2 k+1-1

N w» S
(9.3-39)

For convenience, we define

k+l-l k+l- 1 / L

<$
2
(e) = J2 a?

=
(53 fJ £‘-

i=k i=k \j=

0

(9.3-40)

where sj = 0 for j < k and j > k + l — L — 1. Note that the {a, } resulting from the

convolution of {/, } with {f.
j } are the coefficients of the polynomial

a(z) — F(z)e(z)

= ak + ak+xz~
l + •

• + ak+i-\Z~
(l~ l)

(9.3—41)
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Furthermore, 8
2
(e) is simply equal to the coefficient of z° in the polynomial

a(z)a(z~
l

)
= F(z)F(z~ l

)e(z)s(z~
l

)

= X(z)s(z)s(z~
l

)

(9.3-42)

We call 8
2
(e) the Euclidean weight of the error event e.

An alternative method for representing the result of convolving {/)} with {£y} is

the matrix form

a = ef

where a is an /-dimensional vector, / is an (L + l)-dimensional vector, and e is an

/ x (L + 1) matrix defined as

L «*+/_! J

ek 0 0

&k+ 1 &k 0

= £k+2 £k+ 1 £k

(9.3-43)

L
e*+z-i £k+l-L-

1

8
2
(e) = a*a

= fe'ef
= fAf

where A is an (L + 1) x (L + 1) matrix of the form

Po Pi P2 *
*

• Pl

Pi Po Pi • • Pl—1

A = e*e= P2 Po A Pl—2

(9.3-44)

(9.3-45)

ik+Z-l-m

= 53 (9.3-46)

We may use either Equations 9.3-40 and 9.3-41 or Equations 9.3-45 and 9.3-46 in

evaluating the error rate performance. We consider these computations later. For now



Chapter Nine: Digital Communication Through Band-Limited Channels 635

we conclude that the probability of the subevent £3 ,
given by Equations 9.3-39, may

be expressed as

P(E3 ) = Q
1 2d2

No
82(e)

= Q
6

M 2 -
1
Kav<$

20)

(9.3-47)

where we have used the relation

d2 3

M2 - 1

TPav (9.3-48)

to eliminate d2 and yav = TP av/No. Note that, in the absence of intersymbol interfer-

ence, S
2
(e ) = 1 and £(£3 ) is proportional to the symbol error probability of M-ary

PAM.
The probability of the subevent £2 depends only on the statistical properties of

the input sequence. We assume that the information symbols are equally probable and

that the symbols in the transmitted sequence are statistically independent. Then, for an

error of the form \Si
\

= j, j = 1, 2, . .
.

,

M —
1, there are M — j possible values of /;

such that

Ii — /; + 2d£(

Hence

p^2)= n J (9-3-49)

i=0
M

The probability of the subevent E\ is much more difficult to compute exactly be-

cause of its dependence on the subevent £3. That is, we must compute £^(£1
1
£3). How-

ever, jP(£i
I
£3) = 1 — Pe ,

where Pe is the symbol error probability. Hence £^(£1 (£3)

is well approximated (and upper-bounded) by unity for reasonably low symbol error

probabilities. Therefore, the probability of the error event e is well approximated and

upper-bounded as

P(e) < Q
6

M2 - 1
yav8

2(e)

l—L—l

n
M-\ Si

\

M (9.3-50)

Let £ be the set of all error events e starting at time k and let w(e) be the cor-

responding number of nonzero components (Hamming weight or number of symbol

errors) in each error event e. Then the probability of a symbol error is upper-bounded
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(union bound) as

Pe <
eeE

<
'Y l̂

w{e)Q
J

<

eeE \

6

M2 - 1

y^(e) n
i=0

M
(9.3-51)

Now let D be the set of all 5(e). For each 5 e D, let Es be the subset of error events

for which 5(e) = 5. Then Equation 9.3-51 may be expressed as

Pe<J2Q
SeD

M2 - 1
Kav<$

2

l-L-\

^vv(e) JJ
eeEs i=0

M~ |e,-|

M

<J2 K&Q
SeD

M2 - 1
/av5

2

(9.3-52)

where

K,= E »<*) II 77“^ <9 -3-53 )

eeEs i=0

The expression for the error probability in Equation 9.3-52 is similar to the form

of the error probability for a convolutional code with soft-decision decoding given

by Equation 8.2-19. The weighting factors may be determined by means of the

error state diagram, which is akin to the state diagram of a convolutional encoder. This

approach has been illustrated by Forney (1972) and Viterbi and Omura (1979).

In general, however, the use of the error state diagram for computing Pe is tedious.

Instead, we may simplify the computation of Pe by focusing on the dominant term in the

summation of Equation 9.3-52. Because of the exponential dependence of each term

in the sum, the expression Pe is dominated by the term corresponding to the minimum
value of <5, denoted as <5^. Hence the symbol error probability may be approximated

as

Pe « KSma Q (9-3-54)

where

Ks^= E ^ ff^ (9.3-55)

*eE*mn i=0

In general, <5^n < 1. Hence, 10 log <$^in
represents the loss in SNR due to intersymbol

interference.

The minimum value of <5 may be determined either from Equation 9.3-40 or from

evaluation of the quadratic form in Equation 9.3-44 for different error sequences. In

the following two examples we use Equation 9.3-40.
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example 9.3-3. Consider a two path channel (L = 1) with arbitrary coefficients /o

and fi satisfying the constraint /0
2 + /

2 = 1. The channel characteristic is

F(z) = f0 + fiz~' (9.3-56)

For an error event of length n
,

£ (z) = £o + e ]Z
- 1 + ... + £„_ lZ

-(”- 1 )

) „>1 (9.3-57)

The product a(z) = F(z)s(z) may be expressed as

a(z) = a0 + a\
z~ x

H b (9.3-58)

where ao = £o/o and an = f\£n-\ - Since £o 7^ 0? en-i 7^ 0, and

n

b\e) = Y,oc
2
k (9.3-59)

Jfc=0

it follows that

C>/o+/.2 = i

Indeed, = 1 when a single error occurs, i.e., s(z) = £o* Thus, we conclude that

there is no loss in SNR in maximum-likelihood sequence estimation of the information

symbols when the channel dispersion has length 2.

example 9.3-4. The controlled intersymbol interference in a partial-response signal

may be viewed as having been generated by a time-dispersive channel. Thus, the inter-

symbol interference from a duobinary pulse may be represented by the (normalized)

channel characteristic

F{z)=yfl+yflz~
l

(9.3-60)

Similarly, the representation for a modified duobinary pulse is

nz)=Ji-J\z~
2

(9.3-61)

The minimum distance <$^in = 1 for any error event of the form

s(z) = ±(1 — z~
l — z~

2
z
_(w_1)

), n > 1 (9.3-62)

for the channel given by Equation 9.3-60, since

a(z) = ±yfl T \[\z~
n

Similarly, when

s(z) = ±(1 + z~
2 + z~

4
H b z~

2(n~ 1}
), n > 1 (9.3-63)

<$^in = 1 for the channel given by Equation 9.3-61 since

a(z) = T \J\z~
2n
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Hence the MLSE of these two partial-response signals result in no loss in SNR. In

contrast, the suboptimum symbol-by-symbol detection described previously resulted

in a 2.1-dB loss.

The constant L^
min

is easily evaluated for these two signals. With precoding, the

number of output symbol errors (Hamming weight) associated with the error events in

Equations 9.3-62 and 9.3-63 is two. Hence,

00
/ M — l\

n

KSmi„ = 2£ f

)
=m~ 1) (9.3-64)

n=

1

' '

On the other hand, without precoding, these error events result in n symbol errors, and,

hence,

°° (M — 1V
Ksmia = 2 f \ = 2M(M - 1) (9.3-65)

n= 1 ' '

As a final exercise, we consider the evaluation of from the quadratic form in

Equation 9.3-44. The matrix A of the quadratic form is positive-definite; hence, all

its eigenvalues are positive. If {/^(e)} are the eigenvalues and {i>fc(e)} are the corre-

sponding orthonormal eigenvectors of A for an error event e
,
then the quadratic form

in Equation 9.3-44 can be expressed as

L+l

8\e) =£ M«)[/V«)]
2

(9.3-66)

k=\

In other words, <5
2
(e) is expressed as a linear combination of the squared projections

of the channel vector f onto the eigenvectors of A. Each squared projection of the sum
is weighted by the corresponding eigenvalue A: = 1,2, ...,L + 1. Then

^min
= mm<$2

(e) (9.3-67)

It is interesting to note that the worst channel characteristic of a given length L + l

can be obtained by finding the eigenvector corresponding to the minimum eigenvalue.

Thus, if /Xmm(e) is the minimum eigenvalue for a given error event e and i>min(e) is the

corresponding eigenvector, then

Mmin — mm /Xmin(^)
e

f = min Wnunte)

and

example 9.3-5. Let us determine the worst time-dispersive channel of length

3 (L = 2) by finding the minimum eigenvalue of A for different error events. Thus,

F(z) = fo + fiz~
l + fiz

~2

where /o, /i, and fa are the components of the eigenvector of A corresponding to the

minimum eigenvalue. An error event of the form

e(z) = 1 - z~
l
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results in a matrix

A =
-1
2

-1

O'

-1

2

which has the eigenvalues /jL\ = 2, /X2 = 2 + V2, M3 = 2 — V2. The eigenvector

corresponding to /x3 is

We may also consider the dual error event

e(z) = 1 + z
_1

(9.3-68)

which results in the matrix

A =
"2

1

1 2

0 1

O'

1

2

This matrix has eigenvalues identical to those of the one for s(z) = 1 — z
l

- The

corresponding eigenvector for /x3 = 2 — is

v\ = (9.3-69)

Any other error events lead to larger values for /xmm . Hence, fim\n = 2 — and

the worst-case channel is either

The loss in SNR from the channel is

— 10 log = -10 log /Amin - 2.3 dB

Repetitions of the above computation for channels with L = 3,4, and 5 yield the

results given in Table 9.3-1.

TABLE 9.3-1

Maximum Performance Loss and Corresponding

Channel Characteristics

Channel length

L + l

Performance loss

—l«log«Li»dB Minimum-distance channel

3 2.3 0.50, 0.71,0.50

4 4.2 0.38, 0.60, 0.60, 0.38

5 5.7 0.29, 0.50, 0.58, 0.50, 0.29

6 7.0 0.23, 0.42, 0.52, 0.52, 0.42, 0.23
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9.4

LINEAR EQUALIZATION

The MLSE for a channel with ISI has a computational complexity that grows exponen-

tially with the length of the channel time dispersion. If the size of the symbol alphabet

is M and the number of interfering symbols contributing to ISI is L, the Yiterbi al-

gorithm computes ML+l metrics for each new received symbol. In most channels of

practical interest, such a large computational complexity is prohibitively expensive to

implement.

In this and the following sections, we describe suboptimum channel equalization

approaches to compensate for the ISI. One approach employs a linear transversal filter,

which is described in this section. This filter structure has a computational complexity

that is a linear function of the channel dispersion length L.

The linear filter most often used for equalization is the transversal filter shown in

Figure 9.4-1. Its input is the sequence {t;*:} given in Equation 9.3-16 and its output in

the estimate of the information sequence {4}- The estimate of the kth symbol may be

expressed as

K

= E cJ Vk~J (9-4-1 )

j=~K

where {cj} are the 2K + 1 complex-valued tap weight coefficients of the filter. The

estimate is quantized to the nearest (in distance) information symbol to form the

decision /*. If is not identical to the transmitted information symbol 4, an error has

been made.

Considerable research has been performed on the criterion for optimizing the filter

coefficients {cjJ. Since the most meaningful measure of performance for a digital com-

munication system is the average probability of error, it is desirable to choose the coeffi-

cients to minimize this performance index. However, the probability of error is a highly

non-linear function of {Cj}. Consequently, the probability of error as a performance

Unequalized

FIGURE 9.4-1

Linear transversal filter.
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index for optimizing the tap weight coefficients of the equalizer is computationally

complex.

Two criteria have found widespread use in optimizing the equalizer coefficients

[cj }. One is the peak distortion criterion and the other is the mean-square-error criterion.

9.4-1 Peak Distortion Criterion

The peak distortion is simply defined as the worst-case intersymbol interference at the

output of the equalizer. The minimization of this performance index is called the peak

distortion criterion. First we consider the minimization of the peak distortion assuming

that the equalizer has an infinite number of taps. Then we shall discuss the case in which

the transversal equalizer spans a finite time duration.

We observe that the cascade of the discrete-time linear filter model having an im-

pulse response {fn } and an equalizer having an impulse response {cn } can be represented

by a single equivalent filter having the impulse response

oo

<7n = E cjfn~J (9.4-2)

j=-oo

That is, {qn } is simply the convolution of {cn } and {/„}. The equalizer is assumed to

have an infinite number of taps. Its output at the kth sampling instant can be expressed

in the form

oo

h = qoh +E hqk-n + Yl c
J
rlk-j (9.4-3)

n^k _/=—oo

The first term in Equation 9.4-3 represents a scaled version of the desired sym-

bol. For convenience, we normalize qo to unity. The second term is the intersymbol

interference. The peak value of this interference, which is called the peak distortion
,
is

oo

©(c) = E i?»i

n^Q

OO

= E
n=— oo

71^0

OO

Cjfn-j

y=—oo

(9.4-4)

Thus, V(c) is a function of the equalizer tap weights.

With an equalizer having an infinite number of taps, it is possible to select the

tap weights so that V(c) = 0, i.e., qn = 0 for all n except n — 0. That is, the

intersymbol interference can be completely eliminated. The values of the tap weights

for accomplishing this goal are determined from the condition

qn =
oo

E<
j=-oo

jfn-j ~
1 (n = 0)

0 (n # 0)
(9.4-5)
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{4}
^

Channel ^
Equalizer

{4}

F(z)

AWGN
{*7*}

FIGURE 9.4-2

Block diagram of channel with

zero-forcing equalizer.

By taking the z transform of Equation 9.4-5, we obtain

Q{z) = C(z)F(z) = 1 (9.4-6)

or, simply,

C(z) =
1

W) (9.4-7)

where C(z) denotes the z transform of the {cy}. Note that the equalizer, with transfer

function C(z), is simply the inverse filter to the linear filter model F(z). In other words,

complete elimination of the intersymbol interference requires the use of an inverse

filter to F(z). We call such a filter a zero-forcing filter. Figure 9.4-2 illustrates in block

diagram the equivalent discrete-time channel and equalizer.

The cascade of the noise-whitening filter having the transfer function 1 /F*(l/z*)

and the zero-forcing equalizer having the transfer function 1 /F(z) results in an equiv-

alent zero-forcing equalizer having the transfer function

C'(z)
1

F(z)F*(l/z*)

1

X(z)
(9.4-8)

as shown in Figure 9.4-3. This combined filter has as its input the sequence {y^} of

samples from the matched filter, given by Equation 9.3-10. Its output consists of the

desired symbols corrupted only by additive zero-mean Gaussian noise. The impulse

response of the combined filter is

4 =
ibjf

c ’

(z)^'dz

1 / z‘~'

2nj J X(z)
Z

(9.4-9)

where the integration is performed on a closed contour that lies within the region of

convergence of C’(z ). Since X(z) is a polynomial with 2L roots (p i, P2 , . • •
, Pl> 1/p*,

l/p|, • •
. ,

l/p£), it follows that C\z) must converge in an annular region in the z plane

Gaussian

noise

Equivalent equalizer

C(z) = = —

F

U KZ)
F(z)F*(l/z*) X(z)

FIGURE 9.4-3

Block diagram of channel with equivalent zero-forcing equalizer.
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that includes the unit circle {z = e
je

). Consequently, the closed contour in the integral

can be the unit circle.

The performance of the infinite-tap equalizer that completely eliminates the inter-

symbol interference can be expressed in terms oftheSNR at its output. For mathematical

convenience, we normalize the received signal energy to unity, t This implies that qo = 1

and that the expected value of
1 4

1

2
is also unity. Then the SNR is simply the reciprocal

of the noise variance cr
2
at the output of the equalizer.*

The value of cr
2 can be simply determined by observing that the noise sequence

{vk } at the input to the equivalent zero-forcing equalizer C\z) has zero-mean and a

power spectral density

Svv (co) = N0X{e^
T
), |o>| < j (9.4-10)

where X(e J0Jt
) is obtained from X(z) by the substitution z = eJ(oT. Since C'(z) —

1/X(z), it follows that the noise sequence at the output of the equalizer has a power

spectral density

s-’m =j£h- <9 '4-U)

Consequently, the variance of the noise variable at the output of the equalizer is

T f
n/ T

<?n
= — /

Snn (co) dco
47T J-n/T

_ TNo r
n/ T dco

-
J.„, T X(ej“T )

and the SNR for the zero-forcing equalizer is

(9.4-12)

Yoo —
~TN0 r

n/T

_
2n J-n/T

dco

X(ej“T )

(9.4-13)

where the subscript on y indicates that the equalizer has an infinite number of taps.

The spectral characteristics X(eJcoT
) corresponding to the Fourier transform of the

sampled sequence {xn } has an interesting relationship to the analog filter H(co) used at

the receiver. Since

xk h*(t)h(t + kT)dt

use of Parseval’s theorem yields

1 f°°
xk = — \H(co)\

2
e
ja)kT

dco
7—00

(9.4-14)

tThis normalization is used throughout this chapter for mathematical convenience.

tlf desired, one can multiply this normalized SNR at the output of the equalizer by the signal energy.
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where H (co) is the Fourier transform of h(t). But the integral in Equation 9.4-14 can

be expressed in the form

e
jcokT

dco (9.4-15)

Now, the Fourier transform of [xk] is

oo

X(ejaT ) = Y xke~
jmkT

(9.4-16)

k=—oo

and the inverse transform yields

xk = f [
'

X(ejo)T
)e

ia)kT
dco (9.4-17)

Z7T J-n/T

From a comparison of Equations 9.4-15 and 9.4-17, we obtain the desired relationship

beween X(eja)T
) and H(co). That is,

X{eja)T
)
= - Y H [o) +

2nn
\a>\ <

7

X

(9.4-18)

where the right-hand side of Equation 9.4-18 is called thefolded spectrum of \H(co)\
2

.

We also observe that \H(co)\
2 = X(co)

9
where X(co) is the Fourier transform of the

waveform x(t) and x(t) is the response of the matched filter to the input pulse h(t).

Therefore the right-hand side of Equation 9.4-18 can also be expressed in terms of

X(a>).

Substitution for X(ejcoT
) in Equation 9.4-13 using the result in Equation 9.4-18

yields the desired expression for the SNR in the form

T2N0 r*l T d(0

27t J—n/T E~-oo I# (g> + 27tn/T)\ 2
(9.4-19)

We observe that if the folded spectral characteristic of H(co) possesses any zeros, the

integrand becomes infinite and the SNR goes to zero. In other words, the performance of

the equalizer is poor whenever the folded spectral characteristic possesses nulls or takes

on small values. This behavior occurs primarily because the equalizer, in eliminating

the intersymbol interference, enhances the additive noise. For example, if the channel

contains a spectral null in its frequency response, the linear zero-forcing equalizer

attempts to compensate for this by introducing an infinite gain at that frequency. But

this compensates for the channel distortion at the expense of enhancing the additive

noise. On the other hand, an ideal channel coupled with an appropriate signal design

that results in no intersymbol interference will have a folded spectrum that satisfies the

condition

E
2nn

H
[
co +

T

2

= T, H < - (9.4-20)
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In this case, the SNR achieves its maximum value, namely,

(9.4-21)

Finite-length equalizer Let us now turn our attention to an equalizer having 2K+X
taps. Since cj — 0 for

\ j\ > K
,
the convolution of {/„} with {cn } is zero outside the

range —K < n < K + L — 1. That is, qn = 0 for ft < —K and n > K + L — 1. With

qo normalized to unity, the peak distortion is

K+L- 1 K+L-

1

v{c)= y, i?»i= E
n=-K n——K
n^O n^O

Cifn-j

j

(9.4-22)

Although the equalizer has 2K + 1 adjustable parameters, there are 2K + L nonzero

values in the response {qn } . Therefore, it is generally impossible to completely eliminate

the intersymbol interference at the output of the equalizer. There is always some residual

interference when the optimum coefficients are used. The problem is to minimize D(c)

with respect to the coefficients {cj}.

The peak distortion given by Equation 9.4-22 has been shown by Lucky (1965) to

be a convex function of the coefficients {cj }. That is, it possesses a global minimum and

no local minima. Its minimization can be carried out numerically using, for example,

the method of steepest descent. Little more can be said for the general solution to this

minimization problem. However, for one special but important case, the solution for

the minimization of V(c) is known. This is the case in which the distortion at the input

to the equalizer, defined as

D0

i/oi5
l/nl (9.4-23)

is less than unity. This condition is equivalent to having the eye open prior to equaliza-

tion. That is, the intersymbol interference is not severe enough to close the eye. Under

this condition, the peak distortion T>(c) is minimized by selecting the equalizer coeffi-

cients to force qn = 0 for i < i«i < K and q0 = 1 . In other words, the general solution

to the minimization of T>(c), when D0 < 1
,
is the zero-forcing solution for {qn } in the

range 1 < \n\ < K. However, the values of {qn } for ^+ 1 <n< K+L — X are nonzero,

in general. These nonzero values constitute the residual intersymbol interference at the

output of the equalizer.

9.4-2 Mean-Square-Error (MSE) Criterion

In the MSE criterion, the tap weight coefficients {cj} of the equalizer are adjusted to

minimize the mean square value of the error

&k — Ik Ik (9.4-24)
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where 4 is the information symbol transmitted in the fcth signaling interval and 4 is

the estimate of that symbol at the output of the equalizer, defined in Equation 9.4-1.

When the information symbols {4} are complex-valued, the performance index for the

MSE criterion, denoted by 7, is defined as

J = E\ek \

2 = E\Ih - I k |

2
(9.4-25)

On the other hand, when the information symbols are real-valued, the performance index

is simply the square of the real part of £&. In either case, 7 is a quadratic function of the

equalizer coefficients {c/}. In the following discussion, we consider the minimization

of the complex-valued form given in Equation 9.4-25.

Infinite-length equalizer First, we shall derive the tap weight coefficients that

minimize 7 when the equalizer has an infinite number of taps. In this case, the estimate

Ik is expressed as

oo

h = Y cjVk-j (9.4-26)

y— oo

Substitution of Equation 9.4-26 into the expression for 7 given in Equation 9.4-25 and

expansion of the result yields a quadratic function of the coefficients {cj }. This function

can be easily minimized with respect to the {cj} to yield a set (infinite in number) of

linear equations for the {cj }. Alternatively, the set of linear equations can be obtained

by invoking the orthogonality principle in mean square estimation. That is, we select

the coefficients {cj} to render the error Sk orthogonal to the signal sequence {u^_
z }

for

—oo < / < oo. Thus,

E (sk^k-i) ~ 0’ —°° < l < oo

Substitution for Sk in Equation 9.4-27 yields

(9.4-27)

h ^ c
j
vk-j

)

vk-i I

— 0

L'

or, equivalently,

oo

Yu C
J
E

(
Vk-j Vk-l )

= E {hvUi), -00 < / < OO

j=-oo

(9.4-28)

To evaluate the moments in Equation 9.4-28, we use the expression for Vk given

in Equation 9.3-16. Thus, we obtain

e ovk-jvu

)

= £ rn ui-j + mu
n=

0

xl-j + ^0 Sij (| / — j |

< L)

0 (otherwise)

(9.4-29)
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and

v(t * n J
/-* (~L<1< 0)

^ kVk-"
\ 0 (otherwise)

(9.4-30)

Now, if we substitute Equations 9.4-29 and 9.4-30 into Equation 9.4-28 and take the

z transform of both sides of the resulting equation, we obtain

C(z)[F(z)F*(l/z*) + N0 ]
= F*(l/z*) (9.4-31)

Therefore, the transfer function of the equalizer based on the MSE criterion is

C(z) =
F*(l/z*)

F(z)F*(l/z*) + N0

(9.4-32)

When the noise-whitening filter is incorporated into C(z), we obtain an equivalent

equalizer having the transfer function

C\z)
1

F(z)F*(l/z*) + N0

1

X(z) + N0

(9.4-33)

We observe that the only difference between this expression for C\z) and the

one based on the peak distortion criterion is the noise spectral density factor No that

appears in Equation 9.4-33. When No is very small in comparison with the signal,

the coefficients that minimize the peak distortion T>(c) are approximately equal to

the coefficients that minimize the MSE performance index J. That is, in the limit as

No 0, the two criteria yield the same solution for the tap weights. Consequently,

when No = 0, the minimization of the MSE results in complete elimination of the

intersymbol interference. On the other hand, that is not the case when No / 0. In

general, when No / 0, there is both residual intersymbol interference and additive

noise at the output of the equalizer.

A measure of the residual intersymbol interference and additive noise is obtained

by evaluating the minimum value of J ,
denoted by when the transfer function C(z)

of the equalizer is given by Equation 9.4-32. Since/ = E\Sk\
2 = E{skl

'£)
—E(ekl*k ),

and since E{sklf) = 0 by virtue of the orthogonality conditions given in Equation

9.4-27, it follows that

•Anm = E(sk I£)
oo

= E\h\
2 - £ cjE{vk-ji;)

j=-oo
oo

= i - E cjf-j

j=-O0

(9.4-34)

This particular form for is not very informative. More insight on the perfor-

mance of the equalizer as a function of the channel characteristics is obtained when the

summation in Equation 9.4-34 is transformed into the frequency domain. This can be

accomplished by first noting that the summation in Equation 9.4-34 is the convolution



648 Digital Communications

of
{Cj } with jfj }

,

evaluated at a shift of zero. Thus, if {bi,

}

denotes the convolution of

these two sequences, the summation in Equation 9.4-34 is simply equal to bo. Since

the z transform of the sequence
{bk } is

the term bo is

B(z) = C(z)F(z)

F(z)F*(l/z*)

F(z)F*(l/z*) + N0

= X(z)

X(z) + No

B(z )

z
dz

X(z)

2nj / z[X(z) + No]
dz

(9.4-35)

(9.4-36)

The contour integral in Equation 9.4—36 can be transformed into an equivalent line

integral by the change of variable z = e'
coT

. The result of this change of variable is

T [
n! T X(eja)T

)

0 “ 2n J—n/T X(e^T
) + N0

dCO (9.4-37)

Finally, substitution of the result in Equation 9.4-37 for the summation in Equation

9.4-34 yields the desired expression for the minimum MSE in the form

r _ ,
T r,T X(ei°>T

) J
Jrmn ~ ~

2n J-k/t X{ei“>T ) + Nq

T [*! T No
= it- / • t

,

—zrdco (9.4-38)
27t J—jz/t X(eJaT

) + No

= t r No
-

27t J-n/T r- 1

TZ-oo I

H(co + 2nn/T)\ 2 + N0

In the absence of intersymbol interference, X ( e
Jco1

) = 1 and, hence,

= Np

l + No
(9.4-39)

We observe that 0 < ./„„„ < 1. Furthermore, the relationship between the output

(normalized by the signal energy) SNR yoo and /min must be

Yoo —
1 -/.

(9.4-40)

More importantly, this relation between yoo and /mm also holds when there is residual

intersymbol interference in addition to the noise.
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Finite-length equalizer Let us now turn our attention to the case in which the

transversal equalizer spans a finite time duration. The output of the equalizer in the fcth

signaling interval is

K

h =
'Yl

c
j Vk~j

j=-K

The MSE for the equalizer having 2K + 1 taps, denoted by J(K), is

J(K) = E\Ik -Ik \

2 = E
K

h — ^ c
j
vk-j

j=~K

2

(9.4-41)

(9.4-42)

Minimization of J{K) with respect to the tap weights {cj} or, equivalently, forcing

the error £k = h — h to be orthogonal to the signal samples u*_
z ,

\l\ < K, yields the

following set of simultaneous equations:

where

and

K

r, c
j

_ & >

j=~K

l = -K, ...,-1,0,

xi~j + NoSij (\l — j |

< L)

0 (otherwise)

fh (-L<1< 0)

0 (otherwise)

(9.4-43)

(9.4-44)

(9.4-45)

It is convenient to express the set of linear equations in matrix form. Thus,

rC = $ (9.4-46)

where C denotes the column vector of 2K + 1 tap weight coefficients, T denotes the

(2K+ 1) x (2K + 1) Hermitian covariance matrix with elements T/y and £ is a (IK+ 1)-

dimensional column vector with elements The solution of Equation 9.4-46 is

Copt = r~ l

$ (9.4-47)

Thus, the solution for Copt involves inverting the matrix F The optimum tap weight

coefficients given by Equation 9.4-47 minimize the performance index J(K), with the

result that the minimum value of J(K) is

o

JminiK) = 1 - £ Cjf-j

j=~K

= l

(9.4-48)

where H represents the conjugate transpose. Jm\n(K) may be used in Equation 9.4-40

to compute the output SNR for the linear equalizer with 2K + 1 tap coefficients.
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9.4-3 Performance Characteristics of the MSE Equalizer

In this section, we consider the performance characteristics of the linear equalizer that

is optimized by using the MSE criterion. Both the minimumMSE and the probability of

error are considered as performance measures for some specific channels. We begin by

evaluating the minimum MSE J^n and the output SNR yQ

0

for two specific channels.

Then, we consider the evaluation of the probability of error.

example 9.4-1. First, we consider an equivalent discrete-time channel model con-

sisting of two components fo and /i, which are normalized to |/o|
2 + |/i|

2 = 1.

Then

F(z) = fo + f\z (9.4-49)

and

X(z) = /o/i*Z + 1 + /o*/iz~'

The corresponding frequency response is

X{ei“T
) = fotfej*

1 + 1 + f0*f,e~^
T

= 1 + 2|/0 ||/i|cos(ft>r + 9)

(9.4-50)

(9.4-51)

where 0 is the angle of fof*. We note that this channel characteristic possesses a null

aUo = n/T when /o = fi =
A linear equalizer with an infinite number of taps, adjusted on the basis of the

MSE criterion, will have the minimum MSE given by Equation 9.4-38. Evaluation of

the integral in Equation 9.4-38 for the X(e7"r
) given in Equation 9.4-51 yields the

result

\/N% + 2M,(|/o|
2 + |/i|

2
) + (|/ol

2 - l/il
2
)
2

No

V^0
2 + 2iVo + (|/o|

2
-|/i|

2
)
2

(9.4-52)

Let us consider the special case in which /o = f\ | . The minimum MSE is

‘fmin = Nq/ \/Nq + 2Nq and the corresponding output SNR is

Yoo

Ay
/2

AW
N0 « 1

(9.4-53)

This result should be compared with the output SNR of 1/No obtained in the case of

no intersymbol interference. A significant loss in SNR occurs from this channel.

example 9.4-2. As a second example, we consider an exponentially decaying char-

acteristic of the form

fk = \J 1 -a 2 ak
. * = 0,1,...



Chapter Nine: Digital Communication Through Band-Limited Channels 651

where a < 1 . The Fourier transform of this sequence is

X(eJmT ) =
1 “ a%

1 + a 1 — 2a cos coT

which is a function that contains a minimum at co = ix/ T.

The output SNR for this channel is

Yoo = I W1+2aJ-^ +Atf-1

l -a 2

’

1 — a2

No « 1

(l+a2)No’

Therefore, the loss in SNR due to the presence of the interference is

1 — a 2 '

— 101og
10

1 + a?

(9.4-54)

(9.4-55)

Probability of errorperformance of linear MSE equalizer Above, we discussed

the performance of the linear equalizer in terms of the minimum achievable MSE
and the output SNR y that is related to J^n through the formula in Equation 9.4-40.

Unfortunately, there is no simple relationship between these quantities and the prob-

ability of error. The reason is that the linear MSE equalizer contains some residual

intersymbol interference at its output. This situation is unlike that of the infinitely long

zero-forcing equalizer, for which there is no residual interference, but only Gaussian

noise. The residual interference at the output of the MSE equalizer is not well char-

acterized as an additional Gaussian noise term, and, hence, the output SNR does not

translate easily into an equivalent error probability.

One approach to computing the error probability is a brute force method that yields

an exact result. To illustrate this method, let us consider a PAM signal in which the

information symbols are selected from the set of values 2n — M — l,n = 1,2, . .
.

,

M,

with equal probability. Now consider the decision on the symbol In . The estimate of In

is

K

in = qo In +^ hqn-k + ^ C
j
T1n-j (9.4-56)

k^n j=~K

where {qn } represent the convolution of the impulse response of the equalizer and

equivalent channel, i.e.,

K

qn = ckfn-k (9.4-57)

k=—K

and the input signal to the equalizer is

L

vk = Y, fjh-j + %
j=

0

(9.4-58)
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The first term in the right-hand side of Equation 9.4-56 is the desired symbol, the

middle term is the intersymbol interference, and the last term is the Gaussian noise.

The variance of the noise is

K

4 =No J2 C
J

(9.4-59)

j=~K

For an equalizer with 2K + 1 taps and a channel response that spans L + 1 symbols,

the number of symbols involved in the intersymbol interference is 2K + L.

Define

V = Y,hqn-k (9.4-60)

k^n

For a particular sequence of 2K + L information symbols, say the sequence I j, the

intersymbol interference term V = Dj is fixed. The probability of error for a fixed Dj

is

Pe(Dj) = 2^—-P(N + Dj> q0)M
KM-l) ( l(q0

- D,f= —m~ Q
V

(9.4-61)

where N denotes the additive noise term. The average probability of error is obtained

by averaging Pe(D

j

) over all possible sequences / j. That is,

Pe = J2 Pe(Dj)P(Ij)

h

2(M - 1)

M
(<7o

- Dj )
2

P(h)
(9.4-62)

When all the sequences are equally likely,

=
M2K+L (9.4-63)

The conditional error probability terms Pe(Dj) are dominated by the sequence that

yields the largest value of Dj. This occurs when In = d=(M — 1) and the signs of the

information symbols match the signs of the corresponding {qn }. Then,

d* = (M - i)Y,\qk \

k^O

and

Pe{D*j)
2(M - 1)

Q
\

4
i -
M- 1

<7o

£>i
ki=0

A

M
)

(9.4-64)
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Thus, an upper bound on the average probability of error for equally likely symbol

sequences is

Pe<Pe(D*j
)

(9.4-65)

If the computation of the exact error probability in Equation 9.4-62 proves to be

too cumbersome and too time consuming because of the large number of terms in the

sum and if the upper bound is too loose, one can resort to one of a number of different

approximate methods that have been devised, which are known to yield tight bounds

on A discussion of these different approaches would take us too far afield. The

interested reader is referred to the papers by Saltzberg (1968), Lugannani (1969), Ho
and Yeh (1970), Shimbo and Celebiler (1971), Glave (1972), Yao (1972), and Yao and

Tobin (1976).

As an illustration of the performance limitations of a linear equalizer in the pres-

ence of severe intersymbol interference, we show in Figure 9.4-4 the probability of

error for binary (antipodal) signaling, as measured by Monte Carlo simulation, for

the three discrete-time channel characteristics shown in Figure 9.4-5. For purposes of

comparison, the performance obtained for a channel with no intersymbol interference

is also illustrated in Figure 9.4-4. The equivalent discrete-time channel shown in Fig-

ure 9.4-5a is typical of the response of a good-quality telephone channel. In contrast,

the equivalent discrete-time channel characteristics shown in Figure 9.4-5b and c result

FIGURE 9.4-4

Error rate performance of linear MSE equalizer. Thirty-one taps in transversal equalizer.
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0 72

(a)

0 688

0 460 0 460 y |/*|
2 = l

k

0.227 0 227

(c)

0.815

T H

FIGURE 9.4-5

Three discrete-time channel characteristics.

in severe intersymbol interference. The spectral characteristics \X(e jco
)\ for the three

channels, illustrated in Figure 9.4-6, clearly show that the channel in Figure 9.4-5c has

the worst spectral characteristic. Hence the performance of the linear equalizer for this

channel is the poorest of the three cases. Next in performance is the channel shown in

Figure 9.4-5b, and finally, the best performance is obtained with the channel shown in

Fig. 9.4-5a. In fact, the error rate of the latter is within 3 dB of the error rate achieved

with no interference.

One conclusion reached from the results on output SNR y

^

and the limited prob-

ability of error results illustrated in Figure 9.4-4 is that a linear equalizer yields good

performance on channels such as telephone lines, where the spectral characteristics of

the channels are well behaved and do not exhibit spectral nulls. On the other hand,

a linear equalizer is inadequate as a compensator for the intersymbol interference on

channels with spectral nulls, which may be encountered in radio transmission. In gen-

eral, the channel spectral nulls result in a large noise enhancement at the output of the

linear equalizer.

The basic limitation of the linear equalizer to cope with severe ISI has motivated

a considerable amount of research into non-linear equalizers with low computational

complexity. The decision-feedback equalizer described in Section 9.5 is shown to be

an effective solution to this problem.
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Frequency a)

(a)

Frequency a)

(b)

Frequency co

(c)

FIGURE 9.4-6

Amplitude spectra for the channels shown in Figure 9.4-5a, b, and c, respectively.

9.4-4 Fractionally Spaced Equalizers

In the linear equalizer structures that we have described in the previous section, the

equalizer taps are spaced at the reciprocal of the symbol rate, i.e., at the reciprocal of the

signaling rate l/T. This tap spacing is optimum if the equalizer is preceded by a filter

matched to the channel distorted transmitted pulse. When the channel characteristics

are unknown, the receiver filter is sometimes matched to the transmitted signal pulse

and the sampling time is optimized for this suboptimum filter. In general, this approach

leads to an equalizer performance that is very sensitive to the choice of sampling time.

The limitations of the symbol rate equalizer are most easily evident in the frequency

domain. From Equation 9.2-5, the spectrum of the signal at the input to the equalizer

may be expressed as

W) = JE X (/ - f)
n ' .

'

(9.4-66)
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where YT (f) is the folded or aliased spectrum, where the folding frequency is 1/2T.

Note that the received signal spectrum is dependent on the choice of the sampling delay

to. The signal spectrum at the output of the equalizer is Cr(f)YT(f ), where

K

CT(f) = J2 Cke-
j2nfkT

(9.4—67)

k——K

It is clear from these relationships that the symbol rate equalizer can only compen-

sate for the frequency-response characteristics of the aliased received signal. It cannot

compensate for the channel distortion inherent in X(f)ej2n^r
°.

In contrast to the symbol rate equalizer, & fractionally spaced equalizer (FSE) is

based on sampling the incoming signal at least as fast as the Nyquist rate. For example,

if the transmitted signal consists of pulses having a raised cosine spectrum with a roll-

off factor p, its spectrum extends to Fmax = (1 + P)/2T. This signal can be sampled

at the receiver at a rate

l+P
2Fmax = (9.4-68)

and then passed through an equalizer with tap spacing of 77(1 + /3). For example, if

P
—

1, we would have a ^T-spaced equalizer. If p = 0.5, we would have a |T-spaced

equalizer, and so forth. In general, then, a digitally implemented fractionally spaced

equalizer has tap spacing ofMT/N whereM and N are integers and N > M. Usually,

a ^T-spaced equalizer is used in many applications.

Since the frequency response of the FSE is

K

Cr(f) = J2 ^e~j2nfkT '

(9.4-69)

k——K

where T f = MT/N, it follows that CTff) can equalize the received signal spectrum

beyond the Nyquist frequency / = 1/2T to / = (1 + P)/2T = N/2MT. The
equalized spectrum is

Cr(f)Yr(f) = Cr(f)J2 x
n

= cr(f)j2 x
n

e
j2n{f-n/T')xQ

f
J2n(f-nN/MT)T0

MT

(9.4-70)

Since X(f ) = 0 for |/| > N/2MT, Equation 9.4-70 may be expressed as

Cr(f)Yr (f) = Cr{f)X{f)e^\ \f\ < ~ (9.4-71)

Thus, we observe that the FSE compensates for the channel distortion in the received

signal before the aliasing effects due to symbol rate sampling. In other words, CT>(f)
can compensate for an arbitrary timing phase.

The FSE output is sampled at the symbol rate 1/T and has the spectrum

Xj Ct '

k

f
k

T
e
j2n(f-k/T)zQ (9.4-72)
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In effect, the optimum FSE is equivalent to the optimum linear receiver consisting of

the matched filter followed by a symbol rate equalizer.

Let us now consider the adjustment of the tap coefficients in the FSE. The input to

the FSE may be expressed as

SkMT\

\ N ) N

In each symbol interval, the FSE produces an output of the form

(kMT
— nT + v

fkMT\

n=-K

(9.4-73)

(9.4-74)

where the coefficients of the equalizer are selected to minimize the MSE. This

optimization leads to a set of linear equations for the equalizer coefficients that have

the solution

Copt = A~ la (9.4-75)

where A is the covariance matrix of the input data and a is the vector of cross corre-

lations. These equations are identical in form to those for the symbol rate equalizer,

but there are some subtle differences. One is that A is Hermitian, but not Toeplitz. In

addition, A exhibits periodicities that are inherent in a cyclostationary process, as shown

by Qureshi (1985). As a result of the fractional spacing, some of the eigenvalues of

A are nearly zero. Attempts have been made by Long et al. (1988a, b) to exploit this

property in the coefficient adjustment.

An analysis of the performance of fractionally spaced equalizers, including their

convergence properties, is given in a paper by Ungerboeck (1976). Simulation results

demonstrating the effectiveness of the FSE over a symbol rate equalizer have also

been given in the papers by Qureshi and Forney (1977) and Gitlin and Weinstein

(1981). We cite two examples from these papers. First, Figure 9.4-7 illustrates the

performance of the symbol rate equalizer and a ^T-FSE for a channel with high-end

amplitude distortion, whose characteristics are also shown in this figure. The symbol-

spaced equalizer was preceded with a filter matched to the transmitted pulse that had a

(square-root) raised cosine spectrum with a 20 percent roll-off = 0.2). The FSE did

not have any filter preceding it. The symbol rate was 2400 symbols/s and the modulation

was QAM. The received SNR was 30 dB. Both equalizers had 31 taps; hence, the

^T-FSE spanned one-half of the'time interval of the symbol rate equalizer. Neverthe-

less, the FSE outperformed the symbol rate equalizer when the latter was optimized at

the best sampling time. Furthermore, the FSE did not exhibit any sensitivity to timing

phase, as illustrated in Figure 9.4-7b.

Similar results were obtained by Gitlin and Weinstein. For a channel with poor

envelope delay characteristics, the SNR performance of the symbol rate equalizer and

a ^T-FSE are illustrated in Figure 9.4-8. In this case, both equalizers had the same

time span. The T-spaced equalizer had 24 taps while the FSE had 48 taps. The symbol

rate was 2400 symbols/s and the data rate was 9600 bits/s with 16-QAM modulation.

The signal pulse had a raised cosine spectrum with = 0. 12. Note again that the FSE
outperformed the T-spaced equalizer by several decibels, even when the latter was
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(a) Channel with high-end amplitude distortion (HA)
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(b) Equalizer performance

FIGURE 9.4-7

T and
\
T equalizer performance as a function of timing phase for 2400 symbols per second.

(NRF indicates no receiver filter.) [From Qureshi and Forney (1977). © 1977 IEEE.]

adjusted for optimum sampling. The results in these two papers clearly demonstrate

the superior performance achieved with a fractionally spaced equalizer.

9.4-5 Baseband and Passband Linear Equalizers

The linear equalizer treated above was described in terms of equivalent lowpass signals.

However, in a practical implementation, the linear equalizer shown in Figure 9.4-1 can

be realized either at baseband or at bandpass. For example, Figure 9.4-9 illustrates the

demodulation ofQAM or multiphase PSK by first translating the signal to baseband and

equalizing the baseband signal with an equalizer having complex-valued coefficients. In

effect, the equalizer with a complex-valued (in-phase and quadrature components) input

FIGURE 9.4-8

Performance of T and
\
T equalizers as a function

of timing phase for 2400 symbols/s 16-QAM on a

channel with poor envelope delay. [From Gitlin and

Weinstein (1981). Reprinted with permissionfrom

Bell System Technical Journal. © 1981 AT & T.]



Chapter Nine: Digital Communication Through Band-Limited Channels 659

COS 0)c t

- sin a)c t Output

FIGURE 9.4-9

QAM and PSK signal demodulator with baseband equalizer.

is equivalent to four parallel equalizers with real-valued tap coefficients as shown in

Figure 9.4-10. We generally refer to the equalizer in Figure 9.4-9 as a complex-valued

baseband equalizer.

As an alternative, we may equalize the signal at passband. This is accomplished

as shown in Figure 9.4-1 1 for two-dimensional signal constellations such as QAM
and PSK. The received signal is filtered and, in parallel, it is passed through a Hilbert

transformer, called aphase-splittingfilter. Thus, we have the equivalent of in-phase and

quadrature components at passband, which are fed to a passband complex equalizer.

We may call this equalizer structure a complex-valued passband equalizer. Following

the equalization, the signal is down-converted to baseband and detected.

The complex-valued baseband equalizer may be implemented either as a symbol

rate equalizer (SRE) or as a fractionally spaced equalizer (FSE), with the latter being

preferable in view of its insensitivity to the sampling phase within a symbol interval.

The complex-valued passband equalizer must be an FSE, with samples of the

received signal taken at some multiple of the symbol rate that exceeds the Nyquist

rate.

An alternative passband FSE to the structure shown in Figure 9.4-1 1 is illustrated

in Figure 9.4-12. In this FSE, real-valued samples of the received signal are taken

at the Nyquist rate or faster and equalized at bandpass by a linear equalizer that has

complex-valued coefficients. We note that this equalizer structure does not explicitly

FIGURE 9.4-10

Complex-valued baseband equalizer for

QAM and PSK signals.



660 Digital Communications

e~j0>ct

Output

symbol

FIGURE 9.4-11

QAM or PSK signal equalization at passband.

implement a Hilbert transformer to perform phase splitting. Instead, the phase-splitting

function is embedded in the equalizer coefficients and, thus, the Hilbert transform is

avoided. This alternative passband FSE structure in Figure 9.4-12 has been called a

phase-splitting FSE (PS-FSE). Its properties and its performance has been investigated

by Mueller and Werner (1982), Im and Un (1987), and Ling and Qureshi (1990).

Complex quantities Real quantities

FIGURE 9.4-12

Structure of a phase-splitting fractionally spaced equalizer. [From Ling and Qureshi (1990);

©1990 IEEE.]
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9.5

DECISION-FEEDBACK EQUALIZATION

In Section 9.3-2 we developed an equivalent discrete-time model ofthe channel with ISI

and additive noise, as shown in Figure 9.3-2. We observed that the additive Gaussian

noise in this model is colored. Then we simplified this model by inserting a noise-

whitening filter prior to the equalizer, so that the resulting discrete-time model of the

channel has AWGN as shown in Figure 9.3-3. To recover the information sequence that

is corrupted by ISI, we considered two types of equalization methods, one based on the

MLSE criterion that is efficiently implemented by the Viterbi algorithm and the other

employed a linear transversal filter. We recall that the MLSE is the optimum detector in

the sense that it minimizes the probability of a sequence error while the linear equalizer

is suboptimum.

In this section, we consider a nonlinear type of channel equalizer for mitigat-

ing the ISI, which is also suboptimum, but whose performance is generally better

than that of the linear equalizer. The nonlinear equalizer consists of two filters, a

feedforward filter and a feedback filter, arranged as shown in Figure 9.5-1, and it is

called a decision-feedback equalizer (DFE). The input to the feedforward filter is the

received signal sequence. The feedback filter has as its input the sequence of decisions

on previously detected symbols. Functionally, the feedback filter is used to remove

that part of the ISI from the present estimated symbol caused by previously detected

symbols. Since the detector feeds hard decisions to the feedback filter, the DFE is

nonlinear.

In the case where the feedforward and feedback filters have infinite-duration

impulse responses, Price (1972) showed that the optimum feedforward filter in a zero-

forcing DFE is the noise-whitening filter with system function l/F*(l/z*). Hence, in

the zero-forcing DFE, the feedforward filter whitens the additive noise and results in

an equivalent discrete-time channel having the system function F(z).

In our treatment, we focus on finite-duration impulse response filters and apply the

MSE criterion to optimize their coefficients.

FIGURE 9.5-1

Structure of decision-feedback equalizer.
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9.5-1 Coefficient Optimization

From the description given above, it follows that the equalizer output can be

expressed as

o k2

h = c
J
vk-j + Yl cjh-j (9.5-1)

j=-K
t j=

1

where is an estimate of the &th information symbol, {cj} are the tap coefficients

of the filter, and {/*_i, . .
. , h-K2 } are previously detected symbols. The equalizer is

assumed to have (K\ + 1) taps in its feedforward section and K2 in its feedback section.

Both the peak distortion criterion and the MSE criterion result in a mathematically

tractable optimization of the equalizer coefficients, as can be concluded from the papers

by George et al. (1971), Price (1972), Salz (1973), and Proakis (1975). Since the MSE
criterion is more prevalent in practice, we focus our attention on it. Based on the

assumption that previously detected symbols in the feedback filter are correct, the

minimization of MSE

J(KU K2 ) = E\Ik -Ik \

2
(9.5-2)

leads to the following set of linear equations for the coefficients of the feedforward

filter:

0

52 'hj cJ = f-i> l = -Ku ...,-l,0 (9.5-3)

j=-Ki

where

-/

*i = E/^+H +% l,j = -Ku ..., -1,0 (9.5-4)

m-

0

The coefficients of the feedback filter of the equalizer are given in terms of the coeffi-

cients of the feedforward section by the following expression:

0

Ck = - J2 cjh-j’ k = l,2,...,K2 (9.5-5)

j=~K\

The values of the feedback coefficients result in complete elimination of intersymbol

interference from previously detected symbols, provided that previous decisions are

correct and that K2 > L (see Problem 9.51).

9.5-2 Performance Characteristics ofDFE

We now turn our attention to the performance achieved with decision-feedback equal-

ization. The exact evaluation of the performance is complicated to some extent by

occasional incorrect decisions made by the detector, which then propagate down the
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feedback section. In the absence of decision errors, the minimum MSE is given as

o

=1-X) Cjf~J (9-5-6)

j=~K
i

By going to the limit {K\ — oo) of an infinite number of taps in the feedforward filter,

we obtain the smallest achievable MSE, denoted as Jm[n . With some effort /min can be

expressed in terms of the spectral characteristics of the channel and additive noise, as

shown by Salz (1973). This more desirable form for 7min is

/min = exp{^£
The corresponding output SNR is

n/T— I In

IT

N0

X(e^T
) + N0 \

dco

1

Yoo

= — 1 + exp
r t (

ni T

\H In

7V/T

No + X(eJ Ml )

No
dco

(9.5-7)

(9.5-8)

We observe again, that in the absence of intersymbol interference, X(ejcoT
)
= 1,

and hence, 7min = iVo/(l + No)- The corresponding output SNR is y^ = l /No.

example 9.5-1. It is interesting to compare the value of /min for the decision-feedback

equalizer with the value of obtained with the linear MSE equalizer. For example,

let us consider the discrete-time equivalent channel consisting of two taps fo and f\

.

The minimum MSE for this channel is

7min = exp
t_ r'

T

ln
r No

2n J-n/r .
1 + Nq + 2|/o||/i| cos(coT + 0)

dco

= No exp
/

ln^ + N° + 2\f0 \\fi\ cos co) dco (9.5-9)

= Wo
~~

1 + No + V(1 +^o)2 -4|/0 /, |

2

Note that Jm jn is maximized when |/o| = |/i |

= Then

r J Wo
Jmin — /

1 + No + VU + Wo)2 - 1 (9.5-10)

^ 2No, iVo < 1

The corresponding output SNR is

Yoo^^r, N0 < 1 (9.5-11)
ZJMo

Therefore, there is a 3-dB degradation in output SNR due to the presence of intersymbol

interference. In comparison, the performance loss for the linear equalizer is very severe.

Its output SNR as given by Equalizer 9.4-53 is y^ (2/N0)
]/2 for No « 1.
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example 9.5-2. Consider the exponentially decaying channel characteristic of the

form

fk = (l -a 2
)
ll2a

k
, * = 0,1,2,... (9.5-12)

where a < 1 . The output SNR of the decision-feedback equalizer is

Yoo = -1 + exp
i r

/_*
In

1 + a 2 + (1 — a 2
)/No — 2a cos co

1 + a2 — 2a cos co

= -! + 2^ {
1 - a

2 + A^°(1 + a
2
) + J[1

- a 2 + N0(l + a2
)]

2 - 4

a

2AT
2

(1 - a2
)[ 1 + 2V0(1 + a2

)/(l - a2
)]
- Afo

1 — a2

N0

N0

No « 1 (9.5-13)

Thus, the loss in SNR is 10 logi 0 (l — a2
) dB. In comparison, the linear equalizer has

a loss of 10 logioKl — a 2
)/( 1 + tf

2
)] dB.

These results illustrate the superiority of the decision-feedback equalizer over the

linear equalizer when the effect of decision errors on performance is neglected. It

is apparent that a considerable gain in performance can be achieved relative to the

linear equalizer by the inclusion of the decision-feedback section, which eliminates the

intersymbol interference from previously detected symbols.

One method of assessing the effect of decision errors on the error rate performance

of the decision-feedback equalizer is Monte Carlo simulation on a digital computer.

For purposes of illustration, we offer the following results for binary PAM signaling

through the equivalent discrete-time channel models shown in Figure 9.4-5b and c.

The results of the simulation are displayed in Figure 9.5-2. First of all, a compar-

ison of these results with those presented in Figure 9.4-4 leads us to conclude that the

decision-feedback equalizer yields a significant improvement in performance relative to

the linear equalizer having the same number of taps. Second, these results indicate that

there is still a significant degradation in performance of the decision-feedback equal-

izer due to the residual intersymbol interference, especially on channels with severe

distortion such as the one shown in Figure 9.4-5c. Finally, the performance loss due

to incorrect decisions being fed back is 2 dB, approximately, for the channel responses

under consideration. Additional results on the probability of error for a decision-

feedback equalizer with error propagation may be found in the papers by Duttweiler

et al. (1974) and Beaulieu (1994).

The structure of the DFE that is analyzed above employs a T-spaced filter for the

feedforward section. The optimality of such a structure is based on the assumption that

the analog filter preceding the DFE is matched to the channel-corrupted pulse response

and its output is sampled at the optimum time instant. In practice, the channel response

is not known a priori, so it is not possible to design an ideal matched filter. In view

of this difficulty, it is customary in practical applications to use a fractionally spaced

feedforward filter. Of course, the feedback filter tap spacing remains at T. The use of

the FSE for the feedforward filter eliminates the system sensitivity to a timing error.
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SNR, 10 logy, dB

FIGURE 9.5-2

Performance of decision-feedback equalizer with and without error propagation.

Performance comparison with the MLSE We conclude this subsection on the

performance of the DFE by comparing its performance against that of the MLSE. For

the two-path channel with f0 = f1
= y^, we have shown that the MLSE suffers no

SNR loss while the decision-feedback equalizer suffers a 3-dB loss. On channels with

more distortion, the SNR advantage of the MLSE over decision-feedback equalization

is even greater. Figure 9.5-3 illustrates a comparison of the error rate performance

of these two equalization techniques, obtained via Monte Carlo simulation, for binary

PAM and the channel characteristics shown in Figure 9.4-5b and c. The error rate curves

for the two methods have different slopes; hence the difference in SNR increases as

the error probability decreases. As a benchmark, the error rate for the AWGN channel

with no intersymbol interference- is also shown in Figure 9.5-3.

9.5-3 Predictive Decision-Feedback Equalizer

Belfiore and Park (1979) proposed another DFE structure that is equivalent to the one

shown in Figure 9.5-1 under the condition that the feedforward filter has an infinite

number of taps. This structure consists of an FSE as a feedforward filter and a linear

predictor as a feedback filter, as shown in the configuration given in Figure 9.5-4. Let

us briefly consider the performance characteristics of this equalizer, based on the MSE
criterion.
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SNR, dB (10 logy)

(a) Channel of Figure 9 4-56

SNR, dB (10 logy)

(b) Channel of Figure 9 4— 5c

FIGURE 9.5-3

Comparison of performance between MLSE and decision-feedback equalization for channel

characteristics shown (a) in Figure 9.4-5b and (b) in Figure 9.4-5c.

First of all, the noise at the output of the infinite length feedforward filter has the

power spectral density

NpX(eja}T
) 7T

\Np + X{e^T
)\
2 ' m ~

T

The residual intersymbol interference has the power spectral density

X(e^T
)

2

= jV0
2

;r

N0 + X(e^T
) \N0 + X(ej“T )\

2 ’ m ~
T

(9 .5-14)

(9 .5-15 )

Desired symbol Desired symbol

Output

decision

FIGURE 9.5-4

Block diagram of predictive DFE.
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The sum of these two spectra represents the power spectral density of the total noise

and intersymbol interference at the output of the feedforward filter. Thus, on adding

Equations 9.5-14 and 9.5-15, we obtain

\E,(co)\

2 No

N0 + X(ej“T )’
(9.5-16)

As we have observed previously, if X(ej(oT
)
= 1, the channel is ideal and, hence,

it is not possible to reduce the MSE any further. On the other hand, if there is channel

distortion, the power in the error sequence at the output of the feedforward filter can be

reduced by means of linear prediction based on past values of the error sequence.

If B(co) represents the frequency response of the infinite length feedback pre-

dictor, i.e.,

oo

B(co) = Y, Ke~
jlonT

(9.5-17)

n=

1

then the error at the output of the predictor is

Ep (co) = E
t (co)

- Et (co)B(co) = Et (co)[ 1 - B(co)] (9.5-18)

The minimization of the mean square value of this error, i.e.,

/ = d- r I

1 - B(co)\
2
\E,(co)\

2
dco (9.5-19)

Z7T J-n/T

over the predictor coefficients {bn } yields the optimum predictor in the form

B(a>) = 1 - (9.5-20)
go

where G{po) is the solution to the spectral factorization

G(co)G*(~co) =— (9.5-21)
\Et (co)\

2

and

oo

G(co) = Y8ne~ja)nT
(9.5-22)

The output of the infinite length linear predictor is a white noise sequence with power

spectral density 1 /g$ and the corresponding minimumMSE is given by Equation 9.5-7.

Therefore, the MSE performance of the infinite length predictive DFE is identical to

the conventional DFE.

Although these two DFE structures result in equivalent performance if their lengths

are infinite, the predictive DFE is suboptimum if the lengths of the two filters are

finite. The reason for the optimality of the conventional DFE is relatively simple.

The optimization of its tap coefficients in the feedforward and feedback filters is

done jointly. Hence, it yields the minimum MSE. On the other hand, the optimiza-

tions of the feedforward filter and the feedback predictor in the predictive DFE are

done separately. Hence, its MSE is at least as large as that of the conventional DFE.
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In spite of this suboptimality of the predictive DFE, it is suitable as an equalizer for

trellis-coded signals, where the conventional DFE is not as suitable, as described in the

next chapter.

9.5-4 Equalization at the Transmitter—Tomlinson-Harashima Precoding

If the channel response is known to the transmitter, the equalizer can be placed at

the transmitter end of the communication system. Thus, the noise enhancement that

is generally inherent when the equalizer (linear or DFE) is placed at the receiver is

avoided. In practice, however, channel characteristics generally vary with time, so it is

cumbersome to place the entire equalizer at the transmitter.

In wireline channels, the channel characteristics do not vary significantly with time.

Therefore, it is possible to place the feedback filter of the DFE at the transmitter and

the feedforward filter at the receiver. This approach has the advantage that the problem

of error propagation due to incorrect decisions in the feedback filter is completely

eliminated. Thus, the tail (postcursors) in the channel response is cancelled without

any penalty in the SNR. The linear fractionally spaced feedforward part of the DFE,

which ideally is the WMF, can be designed to compensate for ISI that results from any

small time variation in the channel response. The synthesis of the feedback filter of the

DFE at the transmitter side is usually performed after the response of the channel is

measured at the receiver by the transmission of a channel probe signal and the receiver

sends to the transmitter the coefficients of the feedback filter.

The one problem with this approach to implementing the DFE is that the signal

points at the transmitter, after subtracting the postcursors of the ISI, generally have a

larger dynamic range than the original signal constellation and, consequently, require

a larger transmitter power. This problem can be avoided by precoding the information

symbols prior to transmission as described by Tomlinson (1971) and Harashima and

Miyakawa (1972).

We describe the precoding technique for aPAM signal constellation. Since a square

QAM signal constellation may be viewed as twoPAM signal sets on quadrature carriers,

the precoding is easily extended to QAM. For simplicity, we assume that the feedforward

filter in the DFE is the WMF and that the channel response, characterized by the

parameters [fi9 0 < i < L}, is perfectly known to the transmitter and the receiver. The

information symbols {4} are assumed to take the values {±1, ±3, . .
.

,

±(M —
1)}.

In the precoding, the ISI due to the postcursors {ft ,
1 < i < L} is subtracted from

the symbol to be transmitted and, if the difference falls outside of the range (—M, M],

it is reduced to the range by subtracting an integer multiple of 2M from this difference.

Hence, the precoder output may be expressed as

L

ak = 4 ~ ^2 fj ak~j + (9.5-23)

7= 1

where {bk} represents the appropriate integer that brings {a*} to the desired range. In

other words, {a^ } is reduced to the desired range by performing a modulo-2M operation.

The modulo operation is defined mathematically by the function

m
y
(x) — x — yz
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Precoder Channel Detector/decoder

FIGURE 9.5-5

Tomlinson-Harashima precoding.

where y > 0 and z —
x + y/2

y
our case y = 2M. By using the z

we have

is a unique integer such that my (x) e[—y/2, y/2]. In

transform to describe the operation of the precoder,

A(z) = I{z) ~ [F(z) - 1 ]A(z) + 2MB(z) (9.5-24)

where the channel coefficient /o is normalized to unity for convenience. Hence, the

transmitted sequence is

A(z) =
I{z) + 2MB(z)

F(z)
(9.5-25)

Since the channel response is F(z), the received signal sequence may be expressed as

V(z) = A(z) + W(z)

= [I(z) + 2MB(z)] + W(z)

(9.5-26)

where W(z) represents the AWGN term. Therefore, the received data sequence term

I(z) + 2MB (z) at the input to the detector is free of ISI and I(z) can be recovered from

V(z) by use of a symbol-by-symbol detector that decodes the symbols modulo-2M.
Figure 9.5-5 illustrates the block diagram of the system that implements the precoder

and the feedback filter of the DFE at the transmitter.

The placement of the feedback filter at the transmitter makes it possible to use

the DFE in conjunction with trellis-coded modulation (TCM). Since the equalizer at

the receiver is a linear filter, decisions from the output of the Viterbi (TCM) detector

can be used to adjust the coefficients of the equalizer. In this case, the Viterbi detector

performs the modulo-2M operations in its metric computations.

9.6

REDUCED COMPLEXITY ML DETECTORS

The performance results of the three basic equalization methods described above,

namely, MLSE, linear equalization (LE), and decision-feedback equalization (DFE),

clearly show the superiority ofMLSE in channels with severe ISI. Such channels are en-

countered in wireless communications and in high-density magnetic recording systems.
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The performance advantage of MLSE has motivated a significant amount of research

on methods that retain the performance characteristics of MLSE, but do so at a reduced

complexity.

The early work on the design of reduced complexity MLSE focused on methods

that reduce the length of the ISI span by preprocessing the received signal prior to the

maximum-likelihood detector. Falconer and Magee (1973) and Beare (1978) used a

linear equalizer to reduce the span of the ISI to some small specified length prior to

the Viterbi detector. Lee and Hill (1977) employed a DFE in place of the LE. Thus, the

large ISI span in the channel is reduced to a sufficiently small length, called the desired

impulse response
,
so that the complexity of the Viterbi detector following the LE or

DFE is manageable. We may view this role of the LE or the DFE, prior to the Viterbi

detector, as equalizing the channel response to a specified partial-response characteristic

of short duration (the desired impulse response) which the Viterbi detector can handle

with sufficiently small complexity. The choice ofthe desired impulse response is tailored

to the ISI characteristics of the channel. This approach to reducing the complexity of

the Viterbi detector has proved to be very effective in high-density magnetic recording

systems, as illustrated in the papers by Siegel and Wolf (1991), Tyner and Proakis

(1993), Moon and Carley (1988), and Proakis (1998).

Another general approach is to reduce the complexity of the Viterbi detector di-

rectly, by reducing the number of surviving sequences. The papers by Vermuelen and

Heilman (1974), Fredricsson (1974), and Foschini (1977) describe algorithms that re-

duce the number of surviving sequences in the Viterbi detector. Other works on this class

of methods include the papers by Clark et al. (1984, 1985) and Wesolowski (1987a).

The most effective approach in terms of performance for reducing the complexity

of the Viterbi detector directly is the method described in the papers by Bergmans

et al. (1987), Eyuboglu and Qureshi (1988), and Duel-Hallen and Heegard (1989). The

filter preceding the Viterbi detector is the whitened matched filter (WMF) described

previously. The WMF reduces the channel to one that has a minimum phase charac-

teristic. The basic algorithm described in these papers for reducing the computational

complexity of the Viterbi detector employs decision feedback within the Viterbi detec-

tor to reduce the effective length of the ISI from L terms to Lo terms, where Lo < L.

This may be accomplished in one of two ways, as described by Bergmans et al. (1987),

either by using “global feedback” or “local feedback” from preliminary decisions that

are present in the Viterbi detector. The use of global feedback is illustrated in Fig-

ure 9.6-1, where preliminary decisions obtained by using the most probable surviving

sequence from the Viterbi detector are used to synthesize the tail in the ISI due to the

channel coefficients (/l 0+i, /l0+2, • • •
, fi- l, /l)- Thus, for M-ary modulations, the

computational complexity of the Viterbi detector is reduced from ML
to ML

°, which

amounts to a reduction by the factor ML~L
°. The primary drawback of using global

feedback is that if one or more of the symbols Ik-Lo- i ,
. •

. , h-L in the most probable

surviving sequence are incorrect, the subtraction of the tail in the ISI is also incorrect

and, thus, the metric computations are corrupted by the residual ISI resulting from this

imperfect cancellation.

To remedy this problem, one may use the preliminary decisions corresponding

to each surviving sequence to cancel the ISI in the tail of the corresponding surviv-

ing sequence. Thus, the ISI will be perfectly cancelled when the correct sequence is
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(a) Block diagram of symbol detector

IT 1Lj 1 T

0 T 3T 4T
[ |

l

ISI caused by tail of channel response to

be elimmated by feedback filter

(b) Channel response

FIGURE 9.6-1

Reduced complexity ML sequence detector using feedback from the Viterbi detector.

among the surviving sequences, even if it is not the most probable sequence. Bergmans

et al. (1987) described this approach as using “local feedback” to perform the tail

cancellation.

It is interesting to note that if L 0 is selected as unity (L 0 = 1), the Viterbi detector

reduces to the simple feedback filter of a conventional DFE. At the other extreme, when

Lo = L
,
we have a full complexity Viterbi detector. The analytical and simulation results

given in the paper by Bergmans et al. (1987) clearly illustrate that local feedback gives

superior performance to global feedback.

9.7

ITERATIVE EQUALIZATION AND DECODING—TURBO EQUALIZATION

Iterative decoding and the turbo-coding principle that was described in Section 8.7 can

be applied to channel equalization. Suppose the transmitter of a digital communica-

tion system employs a binary systematic convolutional encoder followed by a block

interleaver and a modulator. The channel is a linear time-dispersive channel that intro-

duces ISI. In such a case, we may view the channel as an inner encoder in a serially

concatenated code. Hence, we can apply iterative decoding based on theMAP criterion.

The basic configuration of the iterative equalizer-decoder is shown in Fig-

ure 9.7-1. The input to the MAP equalizer is the sequence {i^} from the WMF. The

equalizer computes the logarithm of the likelihood ratio of the coded bits, denoted as
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Received

signal

FIGURE 9.7-1

Iterative equalization and decoding.

L E
(x), which represents the a posteriori values of the coded bits. The outer decoder

receives as an input the extrinsic part of LE
(x), which is defined as

LE
e
{x) = Le (x) - L?(x) (9.7-1)

where Lf (x) is the extrinsic part of the outer decoder output after interleaving. LE
(x)

is deinterleaved prior to being fed to the outer decoder.

The outer decoder computes the logarithm of the likelihood ratio of the coded bits,

denoted by L°(x') and the information bits, denoted as LD (I). The extrinsic part of

LD (x0, denoted as LE (x'), is the incremental information about the current bit obtained

by the decoder after observing all the information for all the received bits. The extrinsic

information is computed as

LD
e
(x ') = Ld {x') - L e

{x') (9.7-2)

LE (x') is interleaved to produce LE (x) and fed to the MAP equalizer. We emphasize

the importance of feeding back only the extrinsic part LE (x), thus, minimizing the

correlation between the a priori information used by the equalizer and previous equal-

izer outputs. Similarly, we reduce the a posteriori information LE (x) by the a priori

information values LE {x) to obtain the extrinsic information value LE
(x), which is fed

to the outer decoder after deinterleaving.

The computation of the log-likelihood ratios is described in the paper by Bauch

et al. (1997). The power of this iterative equalization-decoding scheme can be assessed

from the performance results given in this paper. Figure 9.7-2 illustrates the bit error

probability obtained through simulation of the five-tap time-invariant channel given in

Figure 9.4-5c. The outer decoder used is a rate 1 /2 recursive systematic convolutional

code with constraint length K = 5. The interleaver used was a pseudorandom block

interleaver of length N = 4096 bits. Binary PSK was used for modulation. The graph

illustrates the performance gain as the number of iterations is increased. We observe

that after six iterations, the performance of the iterative equalizer-decoder is within

0.8 dB of the performance of the encoded data without ISI, at a bit error probability

of 10
-4

. Hence, the iterative equalizer eliminates nearly the entire loss due to ISI. In

contrast, the optimum (noniterative) Viterbi detector for this channel suffers a loss of

approximately 7 dB, due to ISI, as can be observed from Figure 9.5-3b. Therefore,
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Channel taps and bit error rate for a time-invariant channel. [From Bauch et al. (7997).]

the iterative equalizer has achieved a performance gain of about 6 dB, aside from the

coding gain due to the convolutional code. The performance of this method of iterative

equalization has been evaluated for cellular radio channels by Bauch et al. (1998). An
implementation ofiterative equalization-decoding using non-linear circuits is described

in a paper by Hagenauer et al. (1999).

An alternative approach to iterative equalization-decoding is to employ a parallel

concatenated code (turbo code) followed by a block interleaver and a modulator at the

transmitter side. The receiver employs a MAP equalizer followed by a turbo decoder.

The extrinsic information generated by the turbo decoder is fed back to the MAP
equalizer. Thus, we have an iterative equalizer-turbo decoder structure, which is called

a turbo equalizer. Turbo equalization is treated by Raphaeli and Zarai (1998) and

Douillard et al. (1995).

9.8

BIBLIOGRAPHICAL NOTES AND REFERENCES

The pioneering work on signal design for bandwidth-constrained channels was done

by Nyquist (1928). The use of binary partial-response signals was originally pro-

posed by Lender (1963) and was later generalized by Kretzmer (1966). Other early

work on problems dealing with intersymbol interference (ISI) and transmitter and re-

ceiver optimization with constraints on ISI was done by Gerst and Diamond (1961),
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Tufts (1965), Smith (1965), and Berger and Tufts (1967). “Faster than Nyquist” trans-

mission has been studied by Mazo (1975) and Foschini (1984).

Channel equalization for digital communications was developed by Lucky (1965,

1966), who focused on linear equalizers that were optimized using the peak distortion

criterion. The mean-square-error criterion for optimization of the equalizer coefficients

was proposed by Widrow (1966).

Decision-feedback equalization was proposed and analyzed by Austin (1967).

Analyses of the performance of the DFE can be found in the papers by Monsen (1971),

George et al. (1971), Price (1972), Salz (1973), Duttweiler et al. (1974), and Altekar

and Beaulieu (1993).

The use of the Viterbi algorithm as the optimal maximum-likelihood sequence

estimator for symbols corrupted by ISI was proposed and analyzed by Forney (1972)

and Omura (1971). Its use for carrier-modulated signals was considered by Ungerboeck

(1974) and MacKenchnie (1973).

The use of iterative MAP algorithms in suppressing ISI in coded systems, called

turbo equalization, represents a major new advance in suppression of intersymbol

interference in signal transmission through band-limited channels. It is anticipated

that iterative MAP equalization algorithms will be incorporated in future communi-

cation systems. The implementation of turbo equalization, described in the paper by

Hagenauer et al. (1999), is the first attempt at implementing an iterative MAP equal-

ization algorithm in a coded system.

PROBLEMS

9.1 A channel is said to be distortionless if the response y(t) to an input x(t) is Kx(t — to),

where K and to are contants. Show that if the frequency response of the channel is

A(f)eje^\ where A(f) and 0(f) are real, the necessary and sufficient conditions for

distortionless transmission are A(f) = K and 0(f) = 2tvf to ± nn
,
n = 0,1,2,

9.2 The raised cosine spectral characteristic is given by Equation 9.2-26.

a. Show that the corresponding impulse response is

sin(7rr/T) cos(fjtt/T)
X “

trt/T 1-4f2
t
2/T2

b. Determine the Hilbert transform of x(t) when f = 1.

c. Does x(t) possess the desirable properties of x(t) that make it appropriate for data

transmission? Explain.

d. Determine the envelope of the SSB suppressed-carrier signal generated from x(t).

9.3 a. Show that (Poisson sum formula)

OO
1

oo

x(t) = - kT) =» X(f) = y L H
(f)

G (f - y)
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Hint : Make a Fourier-series expansion of the periodic factor

CO

53 w - kT )

k=—co

b. Using the result in (a), verify the following versions of the Poisson sum:

oo oo

E *<«•> =
k=— oo n=—oo

E h{t-kT) = j J2 H
(£)

exp

k=—oo n=—co '

oo
i

o°

53 M^expt-^r/) = ^ E H {f - f)

)

k=—oo

(i)

(ii)

(hi)

c. Derive the condition for no intersymbol interference (Nyquist criterion) by using the

Poisson sum formula.

9.4 Suppose a digital communication system employs Gaussian-shaped pulses of the form

x(t )
= exp(—

7

ra
2
t
2
)

To reduce the level of intersymbol interference to a relatively small amount, we impose

the condition that x(T) = 0.01, where T is the symbol interval. The bandwidth W of the

pulse x(t) is defined as that value of W for which X(W)/X(0) = 0.01, where X(f) is

the Fourier transform of x(t). Determine the value of W and compare this value to that of

raised cosine spectrum with 100 percent rolloff.

9.5 Show that the impulse response of a filter having a square-root raised cosine spectral

characteristic is given as

(4/h/ T) cos[7r(l + P)t/ T] + sin[7T (1 — f$)t/ T]
Xsr{t) ~ (nt/T)[\ - (4fit/T)

2
]

9.6 It is desired to implement a (discrete-time) finite impulse response (FIR) filter that provides

square-root raised cosine spectral shaping. The coefficients of the FIR filter are the sampled

values of the time response given in Problem 9.5, where the samples are taken at t = kT/2,

for A: = 0, ±1, ±2, • •
•

,
±N. •

a. Determine the effect on the spectral characteristic resulting from the truncation of the

filter response for N = 10, 15, and 20 and roll-off factor ^ = 1/2, by computing their

frequency response

N

Xsr (u) = 53 x(nTs)e-
jconT’

n=—N

where Ts = T/2.

b. Plot the spectral characteristics of these three filters forN = 10, 15, and 20 and compare

your results with the ideal square-root raised cosine spectrum.
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9.7 Figure P9.7 illustrates a block diagram of a QAM or PSK modulator and demodulator

(modem) in which the modulated signals are synthesized digitally and demodulated digi-

tally. The FIR filters have square-root raised cosine spectral characteristics and employ a

sampling rate of 2/ T, where the symbol rate 1/T = 2400 symbols/s. The FIR interpola-

tors employ a sampling rate of 6/T and are designed as linear phase FIR filters that pass

the desired signal spectrum.

a. Write a software program that implements the digital modulator in Figure P9.7 for the

following parameters: roll-off factor = 0.25, length ofFIR shaping filter = 21, length

of FIR interpolator =11, carrier frequency fc = 1 800 Hz.

b. Generate 5000 samples of the digital signal sequence Xdin) and compute and plot the

power spectral density of this modulated signal.

c. Repeat (b) for five more iterations and compute the average power spectrum over the

total of six signal records. Comment on the results.

(a) QAM or PSK modulator

Sample at

t = kT
(b) QAM or PSK demodulator

FIGURE P9.7

9.8 (Carrierless QAM or PSK modem) Consider the transmission of a QAM or M-ary PSK
(Af > 4) signal at a carrier frequency fc ,

where the carrier is comparable to the bandwidth

of the baseband signal. The bandpass signal may be represented as

s(t) = Re Ing(! - nT)ejlnfcl

a. Show that s(t) can be expressed as

Y^Wt-nT)s{t) = Re
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where <2(0 is defined as

2(0 = q(t) + jq(t)

qit) = g(t)C0S2nfc t

<7(0 = g(Osin 2jtfc t

and l'n is a phase rotated symbol, i.e., I'
n — In e

j27rfctlT
.

b. Using FIR filters with responses q (t ) and q (0, sketch the block diagram ofthe modulator

and demodulator implementation that does not require the mixer to translate the signal

to bandpass at the modulator and to baseband at the demodulator.

9.9 (Carrierless amplitude or phase [CAP] modulation) In some practical applications in

wireline data transmission, the bandwidth of the signal to be transmitted is comparable to

the carrier frequency. In such systems, it is possible to eliminate the step of mixing the

baseband signal with the carrier component. Instead, the bandpass signal can be synthesized

directly, by embedding the carrier component in the realization of the FIR shaping filters.

Thus, the modem is realized as shown in the block diagram in Figure P9.9, where the FIR

shaping filters have the impulse responses

q(t) = g(t) cos 2nfc t

<7(0 = g(t) sin 2nfc t

and g(t) is a pulse that has a square-root raised cosine spectral characteristic.

a. Show that

q{t)q(t)dt = 0

and that this system can be used to transmit two-dimensional signal constellations.

To transmitter

(a) Modulator

Sample at

t = kT

(b) Demodulator

FIGURE P9.9
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b. Under what conditions is this CAP modem identical to the carrierless QAM/PSK
modem treated in Problem 9.8.9.10

A band-limited signal having bandwidth W can be represented as

x{t) =
sin[27r W(t - n/2W)]

2jtW(t-n/2W)

a. Determine the spectrum X(f) and plot |X(/)| for the following cases:

xq = 2
,

x\ = 1
,

X2 = —l, xn = 0
,

n ^ 0
, 1,2 (i)

X—\ — — 1 , xo = 2, x\ = — 1, = 0, n ^—1,0,1 (ii)

&. Plot jc(f) for these two cases.

c. If these signals are used for binary signal transmission, determine the number of

received levels possible at the sampling instants t = nT = n/2W and the probabilities

of occurrence of the received levels. Assume that the binary digits at the transmitter are

equally probable.

9.11

A 4-kHz bandpass channel is to be used for transmission of data at a rate of 9600 bits/s.

If i TVo = 10
-10 W/Hz is the spectral density of the additive zero-mean Gaussian noise in

the channel, design a QAM modulation and determine the average power that achieves a

bit error probability of 10
-6

. Use a signal pulse with a raised cosine spectrum having a

roll-off factor of at least 50 percent.

9.12 Determine the bit rate that can be transmitted through a 4-kHz voice-band telephone

(bandpass) channel if the following modulation methods are used:

a. Binary PAM.
b. Four-phase PSK.

c. 8-point QAM.
d. Binary orthogonal FSK, with noncoherent detection.

e. Orthogonal four-FSK with noncoherent detection.

/. Orthogonal 8-FSK with noncoherent detection.

For (a)-(c), assume that the transmitter pulse shape has a raised cosine spectrum with a

50 percent roll-off.

9.13 An ideal voice-band telephone line channel has a band-pass frequency-response charac-

teristic spanning the frequency range 600-3000 Hz.

a. Design an M = 4 PSK (quadrature PSK or QPSK) system for transmitting data at a

rate of 2400 bits/s and a carrier frequency fc = 1800 Hz. For spectral shaping, use a

raised cosine frequency-response characteristic. Sketch a block diagram of the system

and describe the functional operation of each block.

b. Repeat (a) for a bit rate R = 4800 bits/s and a 8-QAM signal.

9.14 A voice-band telephone channel passes the frequencies in the band from 300 to 3300 Hz.

It is desired to design a modem that transmits at a symbol rate of 2400 symbols/s, with the

objective of achieving 9600 bits/s. Select an appropriate QAM signal constellation, carrier

frequency, and the roll-off factor of a pulse with a raised cosine spectrum that utilizes the

entire frequency band. Sketch the spectrum of the transmitted signal pulse and indicate the

important frequencies.
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9.15 A communication system for a voice-band (3 kHz) channel is designed for a received SNR
at the detector of 30 dB when the transmitter power is Ps = —3 dBW. Determine the value

of Ps if it is desired to expand the bandwidth of the system to 10 kHz, while maintaining

the same SNR at the detector.

9.16 Show that a pulse having the raised-cosine spectrum given by Equation 9.2-26 satisfies

the Nyquist criterion given by Equation 9.2-13 for any value of the roll-off factor /?.

9.17 Show that, for any value of
,
the raised cosine spectrum given by Equation 9.2-26 satisfies

[Hint: Use the fact that Xrc(f ) satisfies the Nyquist criterion given by Equation 9.2-13.]

9.18 The Nyquist criterion gives the necessary and sufficient condition for the spectrum X(f) of

the pulse x (t ) that yields zero 1ST Prove that for any pulse that is band-limited to
| / 1

< 1 / T ,

the zero-ISI condition is satisfied if Re[X(/), for / > 0, consists of a rectangular function

plus an arbitrary odd function around / = 1/2T, and Im[X(f)] is any arbitrary even

function around / = 1/2T.

9.19 A voice-band telephone channel has a passband characteristic in the frequency range

300 Hz < / < 3000 Hz.

a . Select a symbol rate and a power efficient constellation size to achieve 9600 bits/s

signal transmission.

b. If a square-root raised cosine pulse is used for the transmitter pulse g(t), select the

roll-off factor. Assume that the channel has an ideal frequency-response characteristic.

9.20 Design an M-ary PAM system that transmits digital information over an ideal channel with

bandwidth W = 2400 Hz. The bit rate is 14,400 bits/s. Specify the number of transmitted

points, the number ofreceived signal points using a duobinary signal pulse, and the required

Sb to achieve an error probability of 10
-6

. The additive noise is zero-mean Gaussian with

a power spectral density of 10
-4W/Hz.

9.21 A binary PAM signal is generated by exciting a raised cosine roll-off filter with a

50 percent roll-off factor and is then DSB/SC amplitude-modulated on a sinusoidal carrier

as illustrated in Figure P9.21. The bit rate is 2400 bits/s.

a. Determine the spectrum of the modulated binary PAM signal and sketch it.

b. Draw the block diagram illustrating the optimum demodulator/detector for the received

signal, which is equal to the transmitted signal plus additive white Gaussian noise.

2 and(t-nT)
Filter with

raised cosine

spectrum

g(t)

AWGN
channel

r(f)

Carrier

c(t)

FIGURE P9.21
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9.22

The elements of the sequence {an }™=_00 are independent binary random variables taking

values of d= 1 with equal probability. This data sequence is used to modulate the basic pulse

g(t) shown in Figure P9.22a. The modulated signal is

+00

X(t) = ^2 ang(t - nT)

n=—oo

a. Find the power spectral density of X(t).

b. If g i it) (shown in Figure 9.22b) is used instead of g(t), how would the power spectrum

in (a) change?

c. In (b) assume we want to have a null in the spectrum at / = 1/3 7\ This is done by a

precoding of the form bn = an + otan-i. Find the a that provides the desired null.

d. Is it possible to employ a precoding of the form bn = an + Ym=\ a
i
an-i for some finite

N such that the final power spectrum will be identical to zero for 1/3T <
\ f\ < 1 /2T1

If yes, how? If no, why? [Hint: Use properties of analytic functions.]

g(t) gi(t) FIGURE P9.22

A

0 T t

(a)

A

0

1

(b)

IT t

9.23 Consider the transmission of data via PAM over a voice-band telephone channel that has

a bandwidth of 3000 Hz. Show how the symbol rate varies as a function of the excess

bandwidth. In particular, determine the symbol rate for an excess bandwidth of 25, 33, 50,

67, 75 and 100 percent.

9.24 The binary sequence 10010110010 is the input to a precoder whose output is used to

modulate a duobinary transmitting filter. Construct a table as in Table 9.2-1 showing the

precoded sequence, the transmitted amplitude levels, the received signal levels, and the

decoded sequence.

9.25 Repeat Problem 9.24 for a modified duobinary signal pulse.

9.26

A precoder for a partial response signal fails to work if the desired partial response at n = 0

is zero modulo M. For example, consider the desired response for M = 2:

x (nT) =

oi = o)

(» = i)

(» = 2)

(otherwise)

Show why this response cannot be precoded.

9.27

Consider the RC low-pass filter shown in Figure P9.27, where r = RC = 10
-6

.

a. Determine and sketch the envelope (group) delay of the filter as a function of frequency.

b. Suppose that the input to the filter is a lowpass signal of bandwidth A/ = 1 kHz.

Determine the effect of the RC filter on this signal.
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o
R

A/WV -o
FIGURE P9.27

Input Output

O O

9.28 A microwave radio channel has a frequency response

C(/) = 1 +0.3cos27t/T

Determine the frequency-response characteristic of the transmitting and receiving filters

that yield zero ISI at a rate of 1/T symbols/s and have a 50 percent excess bandwidth.

Assume that the additive noise spectrum is flat.

9.29 M = 4 PAM modulation is used for transmitting at a bit rate of 9600 bits/s on a channel

having a frequency response

l+y(//2400)

for
| f\ < 2400, and C(/) = 0 otherwise. The additive noise is zero-mean white Gaussian

with power spectral density
| No W/Hz. Determine the (magnitude) frequency-response

characteristic of the optimum transmitting and receiving filters.

9.30

Use the Cauchy-Schwarz inequality to show that the transmitter and receiver filters given

by Equation 9.2-83 minimize the noise-to signal ratio cr
2/d2

,
where a 2

is the noise power

given by Equation 9.2-77, where Snn (f ) = No/2.

9.31

Suppose that a channel frequency response is given as

r i i/i < w/2
c</)=^ ?<,/,<*

Determine the loss in SNR incurred, as given by Equations 9.2-87 and 9.2-88, for the filters

given by the corresponding Equations 9.2-79 and 9.2-83, respectively. Which filters result

in a smaller loss?

9.32 In a binary PAM system, the input to the detector is

ym = “f“ Mm “f“

where am = ±1 is the desired signal, nm is a zero-mean Gaussian random variable with

variance a 2
,
and im represents the ISI due to channel distortion. The ISI term is a random

variable that takes the values — ^ , 0, and
^
with probabilities \ , j ,

and \ ,
respectively.

Determine the average probability of error as a function of a 2
.

9.33 In a binary PAM system, the clock that specifies the sampling of the correlator output is

offset from the optimum sampling time by 10 percent.

a. If the signal pulse used is rectangular, determine the loss in SNR due to the mistiming.

b. Determine the amount of ISI introduced by the mistiming and determine its effect on

performance.
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9.34 The frequency-response characteristic of a lowpass channel can be approximated by

H( n = /
1 + 01 cos 2nf to l«l< 1.l/l<w/

^ |^0 otherwise

where W is the channel bandwidth. An input signal s(t) whose spectrum is band-limited

to W Hz is passed through the channel.

a. Show that

y(t) = s{t) + ^a[s(t - t0 ) + s(t + t0 )]

Thus, the channel produces a pair of echoes.

b. Suppose that the received signal y (t) is passed through a filter matched to s(t). Determine

the output of the matched filter at t = kT
,
k = 0, ±1, ±2, . .

.

,

where T is the symbol

duration.

c. What is the ISI pattern resulting from the channel if to = T1

9.35 A wireline channel of length 1000 km is used to transmit data by means of binary

PAM. Regenerative repeaters are spaced 50 km apart along the system. Each segment

of the channel has an ideal (constant) frequency response over the frequency band

0 < / < 1200 Hz and an attenuation of 1 dB/km. The channel noise is AWGN.
a. What is the highest bit rate that can be transmitted without ISI?

b. Determine the required £&/No to achieve a bit error of P2 = 10
-7

for each repeater.

c. Determine the transmitted power at each repeater to achieve the desired £b/No, where

No = 4.1 x 10
-21 W/Hz.

9.36 Prove the relationship in Equation 9.3-13 for the autocorrelation of the noise at the output

of the matched filter.

9.37 In the case of PAM with correlated noise, the correlation metrics in the Viterbi algorithm

may be expressed in general as (Ungerboeck, 1974)

CM{I) = 2 Y2 Vn ~ Y2 X]
n n m

where xn = x{nT) is the sampled signal output of the matched filter, {/„} is the data

sequence, and {rn } is the received signal sequence at the output of the matched filter.

Determine the metric for the duobinary signal.

9.38 Consider the use of a (square-root) raised cosine signal pulse with a roll-off factor of unity

for transmission of binary PAM over an ideal band-limited channel that passes the pulse

without distortion. Thus, the transmitted signal is

00

v(t) = IkgT (t - kTb )

k=—00

where the signal interval Tb = \T

.

Thus, the symbol rate is double of that for no ISI.

a. Determine the ISI values at the output of a matched filter demodulator.

b. Sketch the trellis for the maximum-likelihood sequence detector and label the states.

9.39 A binary antipodal signal is transmitted over a nonideal band-limited channel, which

introduces ISI over two adjacent symbols. For an isolated transmitted signal pulse s(t), the
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(noise-free) output of the demodulator is +f£b at t = T, +J~£bl^ at t = IT
,
and zero for

t = kT,k > 2, where £b is the signal energy and T is the signaling interval.

a. Determine the average probability of error, assuming that the two signals are equally

probable and the additive noise is white and Gaussian.

b. By plotting the error probability obtained in (a) and that for the case ofno ISI, determine

the relative difference in SNR of the error probability of 10
-6

.

9.40 Derive the expression in Equation 9.5-5 for the coefficients in the feedback filter of the

DFE.

9.41 Binary PAM is used to transmit information over an unequalized linear filter channel.

When a = 1 is transmitted, the noise-free output of the demodulator is

0.3 m = 1

0.9 m = 0

0.3 m = — 1

0 otherwise

a. Design a three-tap zero-forcing linear equalizer so that the output is

( 1 m = 0

0 m = dzl

b. Determine qm for m = d=2, ±3, by convolving the impulse response of the equalizer

with the channel response.

9.42

The transmission of a signal pulse with a raised cosine spectrum through a channel results

in the following (noise-free) sampled output from the demodulator:

-0.5 <N
1II

0.1 k = -1

1
?r* II O

-0.2 k = 1

0.05 k = 2

0 otherwise

a. Determine the tap coefficients of a three-tap linear equalizer based on the zero-forcing

criterion.

b. For the coefficients determined in (a), determine the output of the equalizer for the case

of the isolated pulse. Thus, determine the residual ISI and its span in time.

9.43

A nonideal band-limited channel introduces ISI over three successive symbols. The (noise-

free) response of the matched filter demodulator sampled at the sampling time JcT is

s(t)s(t — kT)dt =

(£b

0.9£b

0.1£b

[o

k = 0

k = ± 1

k = ±2

otherwise
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a . Determine the tap coefficients of a three-tap linear equalizer that equalizes the channel

(received signal) response to an equivalent partial-response (duobinary) signal

_ (Sh k = 0, 1~
1 0 otherwise

b. Suppose that the linear equalizer in (a) is followed by a Viterbi sequence detector for

the partial signal. Give an estimate of the error probability if the additive noise is white

and Gaussian, with power spectral density W/Hz.

9.44 Determine the tap weight coefficients of a three-tap zero-forcing equalizer if the ISI spans

three symbols and is characterized by the values x(0) = 1, x{— 1) = 0.3, jc( 1) = 0.2. Also

determine the residual ISI at the output of the equalizer for the optimum tap coefficients.

9.45 In line-of-sight microwave radio transmission, the signal arrives at the receiver via two

propagation paths: the direct path and a delayed path that occurs due to signal reflection

from surrounding terrain. Suppose that the received signal has the form

r(t ) = s(t ) + as(t — T) + n(t)

where s(t) is the transmitted signal, a is the attenuation {a < 1) of the secondary path,

and n(t) is AWGN.
a . Determine the output of the demodulator at t = T and t = 2T that employs a filter

matched to s{t).

b. Determine the probability of error for a symbol-by-symbol detector if the transmitted

signal is binary antipodal and the detector ignores the ISI.

c. What is the error rate performance of a simple (one-tap) DFE that estimates a and

removes the ISI? Sketch the detector structure that employs a DFE.

9.46 Repeat Problem 9.41 using the MSE as the criterion for optimizing the tap coefficients.

Assume that the noise power spectral density is 0.1 W/Hz.

9.47 In a magnetic recording channel, where the readback pulse resulting from a positive tran-

sition in the write current has the form

Pit) = 1 +
2t V n -l

Tso

a linear equalizer is used to equalize the pulse to a partial response. The parameter T50 is

defined as the width of the pulse at the 50 percent amplitude level. The bit rate is 1/7^ and

the ratio of T50/Th = A is the normalized density of the recording. Suppose the pulse is

equalized to the partial-response values

fl n = -l,l

x(nT) = < 2 n = 0

[ 0 otherwise

where x(t) represents the equalized pulse shape.

a. Determine the spectrum X(f) of the band-limited equalized pulse.

b . Determine the possible output levels at the detector, assuming that successive transitions

can occur at the rate 1/Tb .
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c. Determine the error rate performance of the symbol-by-symbol detector for this signal,

assuming that the additive noise is zero-mean Gaussian with variance cr
2

.

9.48 Sketch the trellis for the Viterbi detector of the equalized signal in Problem 9.47 and

label all the states. Also, determine the minimum Euclidean distance between merging

paths.

9.49 Consider the problem of equalizing the discrete-time equivalent channel shown in

Figure P9.49. The information sequence {In } is binary (±1) and uncorrelated. The ad-

ditive noise {vn } is white and real-valued, with variance No. The received sequence {yn } is

processed by a linear three-tap equalizer that is optimized on the basis of theMSE criterion.

a. Determine the optimum coefficients of the equalizer as a function of iVo-

b. Determine the three eigenvalues A2 ,
and A 3 of the covariance matrix T and the

corresponding (normalized to unit length) eigenvectors Vi, v2 ,
v3 .

c. Determine the minimum MSE for the three-tap equalizer as a function of No.

d. Determine the output SNR for the three-tap equalizer as a function of No . How does

this compare with the output SNR for the infinite-tap equalizer? For example, evaluate

the output SNR for these two equalizers when No = 0.1.

FIGURE P9.49

9.50 Use the orthogonality principle to derive the equations for the coefficients in a decision-

feedback equalizer based on the MSE criterion and given by Equations 9.5-3 and 9.5-5.

9.51 Suppose that the discrete-time model for the intersymbol interference is characterized by

the tap coefficients /o, /i ,
• • •

, /l • From the equations for the tap coefficients of a decision-

feedback equalizer (DFE), show that only L taps are needed in the feedback filter of the

DFE. That is, if {c^} are the coefficients of the feedback filter, then Ck = 0 for k > L + 1.

9.52 Consider the channel model shown in Figure P9.52. {vn } is a real-valued white noise

sequence with zero-mean and variance No. Suppose the channel is to be equalized by a

DFE having a two-tap feedforward filter (co, c_ i) and a one-tap feedback filter (ci). The

{q} are optimized using the MSE criterion.

a. Determine the optimum coefficients and their approximate values for No 1.

b. Determine the exact value of the minimum MSE and a first-order approximation

appropriate to the case No 1 •

c. Determine the exact value of the output SNR for the three-tap equalizer as a function

of No and a first-order approximation appropriate to the case iV0 « 1.

d. Compare the results in (b) and (c) with the performance of the infinite-tap DFE.
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e. Evaluate and compare the exact values of the output SNR for the three-tap and infinite-

tap DFE in the special cases where No = 0.1 and 0.01. Comment on how well the

three-tap equalizer performs relative to the infinite-tap equalizer.

FIGURE P9.52

9.53 A pulse and its (raised cosine) spectral characteristic are shown in Figure P9.53. This

pulse is used for transmitting digital information over a band-limited channel at a rate 1/T
symbols/s.

a. What is the roll-off factor

b. What is the pulse rate?

c. The channel distorts the signal pulses. Suppose the sampled values of the filtered re-

ceived pulse x(t) are as shown in Figure P9.53c. It is obvious that there are five in-

terfering signal components. Give the sequence of +ls and —Is that will cause the

largest (destructive or constructive) interference and the corresponding value of the

interference (the peak distortion).

d. What is the probability of occurrence of the worst sequence obtained in (c), assuming

that all binary digits are equally probable and independent?

FIGURE P9.53

9.54 A time-dispersive channel having an impulse response h(t) is used to transmit four-phase

PSK at a rate R = l/T symbols/s. The equivalent discrete-time channel is shown in
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Figure P9.54. The sequence {rjk }
is a white noise sequence having zero-mean and variance

<T
2 = No.

a. What is the sampled autocorrelation function sequence {x*} defined by

/

oo

h*(t)h(t + kT)dt
-oo

for this channel?

b. The minimumMSE performance of a linear equalizer and a decision-feedback equalizer

having an infinite number of taps depends on thqfolded-spectrum of the channel

1

T E H [a) +
2jxn

2

where H(a>) is the Fourier transform of h(t). Determine the folded spectrum of the

channel given above.

c. Use your answer in (b) to express the minimum MSE of a linear equalizer in terms of

the folded spectrum of the channel. (You may leave your answer in integral form.)

d. Repeat (c) for an infinite-tap decision-feedback equalizer.

FIGURE P9.54

9.55 Consider a four-level PAM system with possible transmitted levels, 3, 1, —1, and —3.

The channel through which the data is transmitted introduces intersymbol interference

over two successive symbols. The equivalent discrete-time channel model is shown in

Figure P9.55. {rj^} is a sequence of real-valued independent zero-mean Gaussian noise

variables with variance cr
2 = Nq. The received sequence is

y\ = 0.8/i +/ii

y2 = O.8/2 — O.6/1 H- n2

y3 = O.8/3 — O.6/2 + ^3

yk = 0.8/* - 0.6/*_i +nk

a. Sketch the tree structure, showing the possible signal sequences for the received signals

yu yi, and y3 .

b. Suppose the Viterbi algorithm is used to detect the information sequence. How many
probabilities must be computed at each stage of the algorithm?

c. How many surviving sequences are there in the Viterbi algorithm for this channel?
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d. Suppose that the received signals are

yi = 0.5, ^2 = 2.0, yi = — 1.0

Determine the surviving sequences through stage y3 and the corresponding metrics.

e. Give a tight upper bound for the probability of error for four-level PAM transmitted

over this channel.

FIGURE P9.55

9.56 A transversal equalizer with K taps has an impulse response

e(t) =E Cjc8(t — kT )

k=0

where T is the delay between adjacent taps, and a transfer function

k- 1

£« =E CkZ
-k

k=

0

The discrete Fourier transform (DFT) of the equalizer coefficients {c^} is defined as

k- 1

En = E{z)\ z=e^mK = Cke
~j2nknlK

,
n = 0, 1, . .

.

,

K - 1

k=

0

The inverse DFT is defined as

1
*_1

bk = ~y^En e
i2,tnklK

, k = 0,l,--.,K -1
n=

0

a. Show that bk = Ck, by substituting for En in the above expression.

b. From the relations given above, derive an equivalent filter structure having the z

transform

E(z) =
l-z~K

E\(z)

K-

1

En

e
j2nn/K

z
-l

E2 (z)

c. If E(z) is considered as two separate filters Efz) and ^(z) in cascade, sketch a block

diagram for each of the filters, using z
_1

to denote a unit of delay.

d. In the transversal equalizer, the adjustable parameters are the equalizer coefficients {ck }

.

What are the adjustable parameters of the equivalent equalizer in (b), and how are they

related to {c^}?
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Adaptive Equalization

In Chapter 9, we introduced both optimum and suboptimum receivers that compen-

sate for ISI in the transmission of digital information through band-limited, nonideal

channels. The optimum receiver employed maximum-likelihood sequence estimation

for detecting the information sequence from the samples of the demodulation filter.

The suboptimum receivers employed either a linear equalizer or a decision-feedback

equalizer.

In the development of the three equalization methods, we implicitly assumed that

the channel characteristics, either the impulse response or the frequency response,

were known at the receiver. However, in most communication systems that employ

equalizers, the channel characteristics are unknown a priori and, in many cases, the

channel response is time-variant. In such a case, the equalizers are designed to be

adjustable to the channel response and, for time-variant channels, to be adaptive to the

time variations in the channel response.

In this chapter, we present algorithms for automatically adjusting the equalizer co-

efficients to optimize a specified performance index and to adaptively compensate for

time variations in the channel characteristics. We also analyze the performance charac-

teristics of the algorithms, including their rate of convergence and their computational

complexity.

10.1

ADAPTIVE LINEAR EQUALIZER

In the case of the linear equalizer, recall that we considered two different criteria

for determining the values of the equalizer coefficients {<?&}. One criterion was based

on the minimization of the peak distortion at the output of the equalizer, which is

defined by Equation 9.4-22. The other criterion was based on the minimization of the

mean square error at the output of the equalizer, which is defined by Equation 9.4-42.

Below, we describe two algorithms for performing the optimization automatically and

adaptively.

689
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10.1-

1 The Zero-Forcing Algorithm

In the peak-distortion criterion, the peak distortion V(c), given by Equation 9.4-22, is

minimized by selecting the equalizer coefficients {ck }. In general, there is no simple

computational algorithm for performing this optimization, except in the special case

where the peak distortion at the input to the equalizer, defined as Vq in Equation 9.4-23,

is less than unity. When Vo < 1, the distortion V(c) at the output of the equalizer is

minimized by forcing the equalizer response qn = 0, for 1 < \n\ < K
,
and q0 = 1. In

this case, there is a simple computational algorithm, called the zero-forcing algorithm,

that achieves these conditions.

The zero-forcing solution is achieved by forcing the cross correlation between the

error sequence sk = h ~ h and the desired information sequence {4} to be zero

for shifts in the range o < \n\ < K. The demonstration that this leads to the desired

solution is quite simple. We have

£(**/;-,) = £[</. -A)/;-,] nn ,
.,

= E(ik i;_j)-E(i\i;_
t ), j = —K K

We assume that the information symbols are uncorrelated, i.e., E (4 /;) = h„ and that

the information sequence {/&} is uncorrelated with the additive noise sequence {77^}.

For I k ,
we use the expression given in Equation 9.4-41 . Then, after taking the expected

values in Equation 10.1-1, we obtain

E{ek i;_j) = Sj0 - qj, j = -K,...,K (10.1-2)

Therefore, the conditions

E{ek l£_j) = 0
, j = -K,...,K (10.1-3)

are fulfilled when qo = 1 and qn = 0, 1 < \n\ < K.

When the channel response is unknown, the cross correlations given by Equa-

tion 10.1-1 are also unknown. This difficulty can be circumvented by transmitting a

known training sequence {Ik } to the receiver, which can be used to estimate the cross

correlation by substituting time averages for the ensemble averages given in Equation

10.1-

1. After the initial training, which will require the transmission of a training se-

quence of some predetermined length that equals or exceeds the equalizer length, the

equalizer coefficients that satisfy Equation 10.1-3 can be determined.

A simple recursive algorithm for adjusting the equalizer coefficients is

cf
+1) = cf + Ask I*_j, j = —K, ...,—1,0, \ , ,

K (10.1-4)

where c'j
:l

is the value of the / 1h coefficient at time t = kT, sk = Ik — I k is the error

signal at time t = kT, and A is a scale factor that controls the rate of adjustment, as will

be explained later in this section. This is the zero-forcing algorithm. The term Sk^-j
is an estimate of the cross correlation (ensemble average) E(sk I£_j). The averaging

operation of the cross correlation is accomplished by means of the recursive first-order

difference equation algorithm in Equation 10.1-4, which represents a simple discrete-

time integrator.
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FIGURE 10.1-1

An adaptive zero-forcing equalizer.

Following the training period, after which the equalizer coefficients have converged

to their optimum values, the decisions at the output of the detector are generally suffi-

ciently reliable so that they may be used to continue the coefficient adaptation process.

This is called a decision-directed mode of adaptation. In such a case, the cross cor-

relations in Equation 10.1-4 involve the error signal £& = Ik — Ik and the detected

output sequence h-j, j = ~K, . .
.

,

K . Thus, in the adaptive mode, Equation 10.1-4

becomes

c
(M) = c

(k) +MJ*_. ( 10 . 1-5)

Figure 10. 1-1 illustrates the zero-forcing equalizer in the training mode and the adaptive

mode of operation.

The characteristics of the zero-forcing algorithm are similar to those of the least-

mean-square (LMS) algorithm, which minimizes the MSE and which is described in

detail in the following section.

10.1-2 The LMS Algorithm

In the minimization of the MSE, treated in Section 9.4-2, we found that the optimum

equalizer coefficients are determined from the solution of the set of linear equations,

expressed in matrix form as

rc = $ ( 10 . 1-6)
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where T is the (2K + 1) x (2K + 1) covariance matrix of the signal samples {vk }, C is

the column vector of (2K + 1) equalizer coefficients, and £ is a (2K + l)-dimensional

column vector of channel filter coefficients. The solution for the optimum equalizer

coefficients vector Copt
can be determined by inverting the covariance matrix T, which

can be efficiently performed by use of the Levinson-Durbin algorithm (see Levinson

(1947) and Durbin (1959)).

Alternatively, an iterative procedure that avoids the direct matrix inversion may
be used to compute C opt . Probably the simplest iterative procedure is the method of

steepest descent, in which one begins by arbitrarily choosing the vector C, say as Co-

This initial choice of coefficients corresponds to some point on the quadratic MSE
surface in the (2K + l)-dimensional space of coefficients. The gradient vector Go,

having the 2K + 1 gradient components ^dJ/dcok ,
k = —K , . .

. ,
—1, 0, 1, . .

.

,

K, is

then computed at this point on the MSE surface, and each tap weight is changed in

the direction opposite to its corresponding gradient component. The change in the yth

tap weight is proportional to the size of the yth gradient component. Thus, succeeding

values of the coefficient vector C are obtained according to the relation

C*+ 1
= Ck - AGk ,

k = 0, 1, 2, . .

.

(10.1-7)

where the gradient vector Gk is

G k = = rCk ~ * = ~E
(
e*vt) (10- 1-8)

The vector Ck represents the set of coefficients at the kth iteration, sk = Ik — I k is

the error signal at the kth iteration, Vk is the vector of received signal samples that

make up the estimate Ik ,
i.e., Vk = [

v

k+K •
•

• vk •
•

• vic-kY, and A is a positive number

chosen small enough to ensure convergence of the iterative procedure. If the minimum
MSE is reached for some k = ko, then Gk = 0

,
so that no further change occurs in

the tap weights. In general, 7min(^) cannot be attained for a finite value of with the

steepest-descent method. It can, however, be approached as closely as desired for some

finite value of ko.

The basic difficulty with the method of steepest descent for determining the opti-

mum tap weights is the lack of knowledge of the gradient vector Gk ,
which depends

on both the covariance matrix Tand the vector £ of cross correlations. In turn, these

quantities depend on the coefficients {fk } of the equivalent discrete-time channel model

and on the covariance of the information sequence and the additive noise, all of which

may be unknown at the receiver in general. To overcome the difficulty, estimates of

the gradient vector may be used. That is, the algorithm for adjusting the tap weight

coefficients may be expressed in the form

Ck+ i
= Ck ~ AGk (10.1-9)

A /V

where Gk denotes an estimate of the gradient vector Gk and Ck denotes the estimate

of the vector of coefficients.

From Equation 10.1-8 we note that Gk is the negative of the expected value of the

ek V*k . Consequently, an estimate of Gk is

Gk = -ek V*k ( 10 . 1-10)
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FIGURE 10.1-2

Linear adaptive equalizer based on the MSE criterion.

Since E(Gk ) = Gk, the estimate G& is an unbiased estimate of the true gradient vector

Gfc. Incorporation of Equation 10.1-10 into Equation 10.1-9 yields the algorithm

Ck+i = Ck + Aek Vl (10.1-11)

This is the basic LMS algorithm for recursively adjusting the tap weight coefficients of

the equalizer as described by Widrow (1966). It is illustrated in the equalizer shown in

Figure 10.1-2.

The basic algorithm given by Equation 10.1-1 1 and some of its possible variations

have been incorporated into many commercial adaptive equalizers that are used in high-

speed modems. Three variations of the basic algorithm are obtained by using only sign

information contained in the error signal £& and/or in the components of F&- Hence,

the three possible variations are

c(k+\)j = ckj + Acsgn(£j0iijfc_/, j = -K, . .
.

,

—1,0, 1, . .
.

,

K (10.1-12)

c(k+\)j = cy + Asfc csgn(i)^_
J
-), j = -K, —1,0, 1 ,

K

(10.1-13)

C(k+\)j = ckj + Acsgn(ek)csgn(vZ_j), j = -K, . .
.

,

-1, 0, 1, . .
.

,

K (10.1-14)

where csgn(x) is defined as

'

1 +j [Re(jc) > 0, Im(jc) > 0]

1 — j [Re(x) > 0, Im(x) < 0]
' —l + j [Re(;t) < 0, Im(x) > 0]

— l — j [Re(;t) < 0, Im(x) < 0]

csgn(*) = (10.1-15)
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(Note that in Equation 10.1-15, j
= T> as distinct from the index j in Equa-

tions 10.1-12 to 10.1-14.) Clearly, the algorithm in Equation 10.1-14 is the most

easily implemented, but it gives the slowest rate of convergence relative to the others.

Several other variations of the LMS algorithm are obtained by averaging or filtering

the gradient vectors over several iterations prior to making adjustments of the equalizer

coefficients. For example, the average over N gradient vectors is

GmN —miv

N-

1

SrnN+nYmN+n
n=

0

(10.1-16)

and the corresponding recursive equation for updating the equalizer coefficients once

every N iterations is

C(fc+i)w = CkN ~ AGkN (10.1-17)

In effect, the averaging operation performed in Equation 10.1-16 reduces the noise in

the estimate of the gradient vector, as shown by Gardner (1984).

An alternative approach is to filter the noisy gradient vectors by a low-pass filter

and use the output of the filter as an estimate of the gradient vector. For example, a

simple low-pass filter for the noisy gradients yields as an output

Gk = wGk-i + (1 — w)Gfc, G(0) = G(0) (10.1-18)

where the choice of 0 < w < 1 determines the bandwidth of the low-pass filter. When
w is close to unity, the filter bandwidth is small and the effective averaging is performed

over many gradient vectors. On the other hand, when w is small, the low-pass filter has

a large bandwidth and, hence, it provides little averaging of the gradient vectors. With
the filtered gradient vectors given by Equation 10.1-18 in place of Gk, we obtain the

filtered gradient LMS algorithm given by

Ck+ i
= Ck — AGk (10.1-19)

In the above discussion, it has been assumed that the receiver has knowledge of

the transmitted information sequence in forming the error signal between the desired

symbol and its estimate. Such knowledge can be made available during a short training

period in which a signal with a known information sequence is transmitted to the

receiver for initially adjusting the tap weights. The length of this sequence must be at

least as large as the length of the equalizer so that the spectrum of the transmitted signal

adequately covers the bandwidth of the channel being equalized.

In practice, the training sequence is often selected to be a periodic pseudorandom
sequence, such as a maximum length shift-register sequence whose period N is equal to

the length of the equalizer (N = 2K + 1). In this case, the gradient is usually averaged

over the length of the sequence as indicated in Equation 10.1-16 and the equalizer

is adjusted once a period according to Equation 10.1-17. This approach has been

called cyclic equalization
,
and has been treated in the papers by Mueller and Spaulding

(1975) and Qureshi (1977, 1985). A practical scheme for continuous adjustment of the

tap weights may be either a decision-directed mode of operation in which decisions on
the information symbols are assumed to be correct and used in place of Ik in forming
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the error signal Sk, or one in which a known pseudorandom-probe sequence is inserted

in the information-bearing signal either additively or by interleaving in time and the tap

weights adjusted by comparing the received probe symbols with the known transmitted

probe symbols. In the decision-directed mode of operation, the error signal becomes

Sk = h — h, where /& is the decision of the receiver based on the estimate /&. As long

as the receiver is operating at low error rates, an occasional error will have a negligible

effect on the convergence of the algorithm.

If the channel response changes, this change is reflected in the coefficients {fk)

of the equivalent discrete-time channel model. It is also reflected in the error signal

Sk, since it depends on {/&}. Hence, the tap weights will be changed according to

Equation 10.1-11 to reflect the change in the channel. A similar change in the tap

weights occurs if the statistics of the noise or the information sequence change. Thus,

the equalizer is adaptive.

10.1-3 Convergence Properties of the LMS Algorithm

The convergence properties of the LMS algorithm given by Equation 10.1-1 1 are gov-

erned by the step-size parameter A. We shall now consider the choice of the parameter

A to ensure convergence of the steepest-descent algorithm in Equation 10.1-7, which

employs the exact value of the gradient.

From Equations 10.1-7 and 10.1-8, we have

CM = Ck — AGk
= (I- Ar)Ck + A$

( 10 . 1-20)

where I is the identity matrix, r is the autocorrelation matrix of the received signal,

Ck is the (2K + l)-dimensional vector of equalizer tap gains, and £ is the vector of

cross correlations given by Equation 9.4-45. The recursive relation in Equation 10. 1-20

can be represented as a closed-loop control system as shown in Figure 10.1-3. Unfor-

tunately, the set of 2K + 1 first-order difference equations in Equation 10.1-20 are

coupled through the autocorrelation matrix r. In order to solve these equations and,

thus, establish the convergence properties of the recursive algorithm, it is mathemati-

cally convenient to decouple the equations by performing a linear transformation. The

appropriate transformation is obtained by noting that the matrix JT is Hermitian and,

hence, can be represented as

r = UAUH
( 10 . 1-21 )

FIGURE 10.1-3

Closed-loop control system representation of the

recursive relation in Equation 10.1-20.



696 Digital Communications

where U is the normalized modal matrix of Tand A is a diagonal matrix with diagonal

elements equal to the eigenvalues of r(see Appendix A).

When Equation 10.1-21 is substituted into Equation 10.1-20 and if we define the

transformed (orthogonalized) vectors C°
k = UHCk and %° = UH ^, we obtain

C°M = (/ - AA)C°
k + Ar (10.1-22)

This set of first-order difference equations is now decoupled. Their convergence is

determined from the homogeneous equation

C°M = (I - AA)C°
k (10.1-23)

We see that the recursive relation will converge provided that all the poles lie inside the

unit circle, i.e.,

|1- AA*| < 1, k = -£,...,-1,0,1,...,*: (10.1-24)

where {A&} is the set of 2K + 1 (possibly nondistinct) eigenvalues of T. Since JTis an

autocorrelation matrix, it is positive-definite and, hence, A& > 0 for all k. Consequently

convergence of the recursive relation in Equation 10.1-22 is ensured if A satisfies the

inequality

2
0 < A < (10.1-25)

^max

where Amax is the largest eigenvalue of T.

Since the largest eigenvalue of a positive-definite matrix is less than the sum of all

the eigenvalues of the matrix and, furthermore, since the sum of the eigenvalues of a

matrix is equal to its trace, we have the following simple upper bound on Amax :

K

^max < ^ ^ ^

k

— tr r= (2K + l)Tfcfc

k=-K (10.1-26)

= (2K + l)(*o + No)

From Equations 10.1-23 and 10.1-24 we observe that rapid convergence occurs

when |1 — AXk \

is small, i.e., when the pole positions are far from the unit circle. But

we cannot achieve this desirable condition and still satisfy Equation 10.1-25 if there

is a large difference between the largest and smallest eigenvalues of r. In other words,

even if we select A to be near the upper bound given in Equation 10.1-25, the con-

vergence rate of the recursive MSE algorithm is determined by the smallest eigenvalue

Anun- Consequently, the ratio AmaxAmin ultimately determines the convergence rate. If

^maxMmin is small, A can be selected so as to achieve rapid convergence. However, if

the ratio AmaxAmin is large, as is the case when the channel frequency response has

deep spectral nulls, the convergence rate of the algorithm will be slow.

10.1-4 Excess MSE due to Noisy Gradient Estimates

The recursive algorithm in Equation 10.1-1 1 for adjusting the coefficients of the linear

equalizer employs unbiased noisy estimates of the gradient vector. The noise in these
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estimates causes random fluctuations in the coefficients about their optimal values and,

thus, leads to an increase in the MSE at the output of the equalizer. That is, the final

MSE is Jmin + Ja, where JA is the variance of the measurement noise. The term Ja due

to the estimation noise has been termed excess mean square error by Widrow (1966).

The total MSE at the output of the equalizer for any set of coefficients C can be

expressed as

j = /min + (C - C opt)
Hr(C - Copt) (10.1-27)

where Copt represents the optimum coefficients, which satisfy Equation 10.1-6. This

expression for the MSE can be simplified by performing the linear orthogonal transfor-

mation used above to establish convergence. The result of this transformation applied

to Equation 10.1-27 is

K

J = Jmln+ J2 XkEK - c
°koVt\

2
(10.1-28)

k=—K

where the {c°
k } are the set of transformed equalizer coefficients. The excess MSE is the

expected value of the second term in Equation 10.1-28, i.e.,

K

ja=J2 ^K-^opj 2

k——K

It has been shown by Widrow (1970) that the excess MSE is

a =

(10.1-29)

(10.1-30)

The expression in Equation 10. 1-30 can be simplified when A is selected such that

AXk <£ 1 for all k. Then

K

JA ^ 2^^niin ^ ^ ^

k

k——K

^ 2^^min F

« |A(2K + l)Jmin(xo + N0 )

(10.1-31)

Note that xo + M) represents the received signal plus noise power.

It is desirable to have Ja < Jrmn- That is, A should be selected such that

A(2£ + l)(;to + IVo) < 1

7min

or, equivalently,

2
A < :

(2K + l)(xo + Nq)
(10.1-32)
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For example, if A is selected as

0.2

(2K + 1)(*0 + N0 )

(10.1-33)

the degradation in the output SNR of the equalizer due to the excess MSE is less than

1 dB.

The analysis given above on the excess mean square error is based on the assumption

that the mean value of the equalizer coefficients has converged to the optimum value

Copt . Under this condition, the step size A should satisfy the bound in Equation 10.1-

32. On the other hand, we have determined that convergence of the mean coefficient

vector requires that A < 2/Amax . While a choice of A near the upper bound 2/Amax
may lead to initial convergence of the deterministic (known) steepest-descent gradient

algorithm, such a large value ofA will usually result in instability of the LMS stochastic

gradient algorithm.

The initial convergence or transient behavior of the LMS algorithm has been in-

vestigated by several researchers. Their results clearly indicate that the step size must

be reduced in direct proportion to the length of the equalizer as specified by Equa-

tion 10.1-32. Hence, the upper bound given by Equation 10.1-32 is also necessary

to ensure the initial convergence of the LMS algorithm. The papers by Gitlin and

Weinstein (1979) and Ungerboeck (1972) contain analyses of the transient behavior

and the convergence properties of the LMS algorithm.

The following example serves to reinforce the important points made above re-

garding the initial convergence of the LMS algorithm.

example 10.1-1. The LMS algorithm was used to adaptively equalize a communi-
cation channel for which the autocorrelation matrix T has an eigenvalue spread of

^-maxAmin = 11. The number of taps selected for the equalizer was 2K + 1 = 11. The
input signal plus noise power xq + No was normalized to unity. Hence, the upper bound
on A given by Equation 10. 1-32 is 0.18. Figure 10.1-4 illustrates the initial convergence

characteristics of the LMS algorithm for A = 0.045, 0.09, and 0. 1 15, by averaging the

(estimated) MSE in 200 simulations. We observe that by selecting A = 0.09 (one-half

of the upper bound) we obtain relatively fast initial convergence. If we divide A by a

factor of 2 to A = 0.045, the convergence rate is reduced but the excess mean square

error is also reduced, so that the LMS algorithm performs better in steady state (in a

time-invariant signal environment). Finally, we note that a choice of A = 0. 1 15, which

FIGURE 10.1-4

Initial convergence characteristics of the LMS
algorithm with different step sizes. {From Digital

Signal Processing, by J. G. Proakis and D. G.

Manolakis, 1995, Prentice Hall Company. Reprinted

with permission of the publisher.)
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is still far below the upper bound, causes large undesirable fluctuations in the output

MSE of the algorithm.

In a digital implementation of the LMS algorithm, the choice of the step-size

parameter becomes even more critical. In an attempt to reduce the excess mean square

error, it is possible to reduce the step-size parameter to the point where the total mean
square error actually increases. This condition occurs when the estimated gradient

components of the vector SkVl after multiplication by the small step-size parameter

A are smaller than one-half of the least significant bit in the fixed-point representation

of the equalizer coefficients. In such a case, adaptation ceases. Consequently, it is

important for the step size to be large enough to bring the equalizer coefficients in the

vicinity of C opt . If it is desired to decrease the step size significantly, it is necessary

to increase the precision in the equalizer coefficients. Typically, 16 bits of precision

may be used for the coefficients, with about 10-12 of the most significant bits used for

arithmetic operations in the equalization of the data. The remaining least significant

bits are required to provide the necessary precision for the adaptation process. Thus, the

scaled estimated gradient components AsV^ usually affect only the least-significant

bits in any one iteration. In effect, the added precision also allows for the noise to be

averaged out, since many incremental changes in the least-significant bits are required

before any change occurs in the upper more significant bits used in arithmetic operations

for equalizing the data. For an analysis of roundoff errors in a digital implementation of

the LMS algorithm, the reader is referred to the papers by Gitlin and Weinstein (1979),

Gitlin et al. (1982), and Caraiscos and Liu (1984).

As a final point, we should indicate that the LMS algorithm is appropriate for

tracking slowly time invariant signal statistics. In such a case, the minimum MSE and

the optimum coefficient vector will be time-variant. In other words, Jjmn (n) is a function

of time and the 2(K + l)-dimensional error surface is moving with the time index n.

The LMS algorithm attempts to follow the moving minimum /mm(^) in the (2K + 1)-

dimensional space, but it is always lagging behind due to its use of (estimated) gradient

vectors. As a consequence, the LMS algorithm incurs another form of error, called the

lag error
,
whose mean square value decreases with an increase in the step size A. The

total MSE error can now be expressed as

Titotal — 7mm(ft) + 7a + 7/ (10.1-34)

where 7/ denotes the mean square error due to the lag.

In any given nonstationary adaptive equalization problem, if we plot the errors JA
and Ji as a function of A, we expect these errors to behave as illustrated in Figure 10.1-5.

We observe that 7a increases with an increase in A while 7/ decreases with an increase

in A. The total error will exhibit a minimum, which will determine the optimum choice

of the step-size parameter.

When the statistical time variations of the signal occur rapidly, the lag error will

dominate the performance of the adaptive equalizer. In such a case, 7/ 7min + 7a,
even when the largest possible value of A is used. When this condition occurs, the

LMS algorithm is inappropriate for the application and one must rely on the more

complex recursive least-squares algorithms described in Section 10.4 to obtain faster

convergence.
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FIGURE 10.1-5

Excess mean square error and lag

error // as a function of the step size.

{From Digital Signal Processing, by J. G.

Proakis and D. G. Manolakis, 1995
,

Prentice Hall Company. Reprinted with

permission of the publisher.)

10.1-5 Accelerating the Initial Convergence Rate in the LMS Algorithm

As we have observed, the initial convergence rate of the LMS algorithm for any given

channel characteristic is controlled by the step-size parameter A. The initial conver-

gence rate is strongly influenced by the channel spectral characteristics, which are

related to the eigenvalues {Xn } of the received signal covariance matrix. If the channel

amplitude and phase distortions are small, the eigenvalue ratio X^/X^ is close to

unity and, hence, the equalizer converges to its optimum tap coefficients relatively fast.

On the other hand, if the channel exhibits poor spectral characteristics, such as rela-

tively large attenuation in a part of its spectrum, the eigenvalue ratio Xm^/X^ 1

and, hence, the convergence rate of the LMS algorithm will be slow.

A considerable effort has been spent by researchers on methods to accelerate the

initial convergence of the LMS algorithm. A simple remedy is to begin with a large step

size, say Ao, and reduce the step size as the tap coefficients converge to their optimum
values. In other words, we use a sequence of step sizes, Ao > Ai > A2 > • • •

> Am = A, where A is the final step size to be used in steady-state operation of the

LMS algorithm.

An alternative method for accelerating initial convergence has been proposed and

investigated by Chang (1971) and Qureshi (1977). This method is based on introducing

additional parameters in the LMS algorithm by replacing the step size with a weighting

matrix W . In such a case, the LMS algorithm is generalized to the form:

Ck+\ = Ck ~ WGk

= Ck + W(rC -$) (10.1-35)

= ck + Wek V*k

where W is the weighting matrix. Ideally, W = r -1
,
or if JTis estimated, then W can

be set equal to the inverse of the estimate.

When the training sequence for the equalizer is periodic with period N, the co-

variance matrix T is Toeplitz and circulant and its inverse is circulant. In this case,

the multiplication by the weighting matrix W can be simplified considerably by the

implementation of a single finite duration impulse response (FIR) filter with weights

equal to the first row of W, as indicated by Qureshi (1977). That is, the fast update

algorithm that is equivalent to multiplying the gradient vector Gk by W is simply im-

plemented as shown in Figure 10.1-6, by inserting the FIR filter with N coefficients
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wo, w i, . .
.

,

wat-i in the path of the periodic input sequence before it is used for tap

coefficient adjustment.

Qureshi (1977) described a method for estimating the weights from the received

signal. The basic steps are as follows:

1. Collect one period (N symbols) of received data i>o, v\, . .
.

,

vN-\ in the equalizer

delay line.

2. Compute the Af-point discrete Fourier transform (DFT) of {vn } denoted as {Rn }-

3. Compute the discrete power spectrum \Rn \

2
. If we neglect the noise, \Rn \

2
corre-

sponds to N times the eigenvalues of the circulant covariance matrix of the signal

at the input to the equalizer. Then, add N times the estimate of the noise variance

a 2
to \Rn \

2
.

4. Compute the inverse DFT of the sequence \/[\Rn \

2 + N&2
), n = 0, l, N — 1.

This yields the sequence {wn } of filter coefficients for the filter shown in

Figure 10.1-6.

5. The algorithm for adjusting the equalizer tap coefficient now becomes

N-

1

FIGURE 10.1-6

Fast start-up technique for an adaptive equalizer.
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10.1-6 Adaptive Fractionally Spaced Equalizer—The Tap
Leakage Algorithm

As described in Section 9.4-4, an FSE is preferable to a symbol rate equalizer (SRE)

when the channel characteristics are unknown at the receiver. In such a case, the FSE
combines the operations of matched filtering and equalization of intersymbol interfer-

ence into a single filter. By processing samples at the Nyquist rate, the FSE adapts its

coefficients to compensate for any timing phase within a symbol. Thus, its performance

is insensitive to the sampling time within a symbol interval, as discussed previously.

Consequently, from a performance viewpoint, the FSE is equivalent to a matched filter

followed by a symbol rate sampler, and followed by an SRE.

The LMS algorithm and any of its variants can be used to adjust the coefficients of

the FSE adaptively. Suitable training signals for initial adjustment may take the form of

an aperiodic pseudorandom sequence or a periodic pseudorandom sequence, where the

period is equal to the time span of the equalizer, i.e., a sequence of period P is used to

train an FSE with PN/M coefficients, where the tap spacing is MT/N

.

In the case of a

periodic sequence for training, the update of each of the coefficients may be performed

periodically, once in every period of the sequence based on the average gradient LMS
algorithm given by Equations 10.1-16 and 10.1-17.

In a digital implementation of the LMS algorithm for an FSE, some care must

be exercised in selecting the step-size parameter A. It has been shown by Gitlin and

Weinstein (1981) and further described by Qureshi (1985) that in an FSE, a fraction

(.N — M)/N of the eigenvalues of the received signal covariance matrix are very small.

These small eigenvalues and their corresponding eigenvectors are related to the spectral

characteristics of the noise in the frequency band (1 + P)/2T < \f\ < l/T. As
a consequence, the output MSE becomes insensitive to deviations in the coefficient

values corresponding to these eigenvalues. In such cases, errors due to finite precision

arithmetic accumulate along the eigenvectors (frequency band) corresponding to the

small eigenvalues and eventually cause overflows in the coefficient values, without

significantly affecting the overall MSE.
A solution to this problem has been given in the paper by Gitlin et al. ( 1 982). Instead

of minimizing the MSE given by Equation 9.4-42, we minimize the performance index

K

J = Jmse + VL YL l

c'l

2
(10.1-37)

i——K

where Jmse is the conventional MSE and jjl is a small positive constant. Thus, the

ill-conditioning of the received signal covariance matrix is avoided. The minimization

of J leads to the following “modified LMS” algorithm (see Problem 10.5).

Ck+\ = (1 - AaOC* + Aek V*k (10.1-38)

This algorithm is called the tap-leakage algorithm.

In adapting the tap coefficients of an FSE, the tap adjustments, as described above,

are made periodically either at the symbol rate or slower when a periodic training

sequence is transmitted. However, the samples at the input to the FSE occur at a faster

rate. For example, if we consider a T/2 FSE, there are two samples per information
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symbol. An interesting question is whether or not it is possible to increase the initial

convergence rate of an FSE by adapting its coefficients at the sampling rate. If the tap

adjustments are performed at the sampling rate, one must generate additional desired

signal values corresponding to sample values that fall between values of the desired

symbols. That is, one must design a filter that performs intersymbol interpolation in

order to generate the intermediate desired sample sequence. This problem has been

considered by Gitlin and Weinstein (1981), Cioffi and Kailath (1984), and Ling (1989).

The results given in the paper by Ling provide an answer to the question.

First we note that the initial convergence of the LMS algorithm depends on the

number of nontrivial eigenvalues of the autocorrelation matrix of the received signal.

This number is equal to the number of independent parameters that are to be optimized.

For example, an SRE that has K taps and spans a time interval of KT seconds has K
independent parameters to be optimized. In contrast, af/2 complex-valued FSE that

spans the same time interval has 2K tap coefficients, but its autocorrelation matrix has

K nontrivial (and K trivial) eigenvalues and, thus, it has K independent parameters

to be optimized. Consequently, the complex-valued T/2 FSE that is adapted at the

symbol rate has the same convergence rate as the SRE. Now, if the complex-valued FSE
employs interpolation to update its coefficients at all time instants nT/2, the number of

independent parameters to be optimized is 2K. In this case, there are two autocorrelation

matrices, one corresponding to samples at nT/2, and the other corresponding to samples

at (nT + l)/2, and each matrix has K nontrivial eigenvalues. That is, the T/2 FSE that

employs interpolation adjusts one set of K parameters in one update and the second set

of K parameters in the next update. Therefore, the convergence rate of the interpolated

FSE will be approximately the same as the convergence rate of the symbol-updated FSE.

In the case of a phase-splitting FSE (PS-FSE), which is implemented at bandpass,

with a time span of KT seconds and tap spacing T/N, where N > 2, e.g., N = 3

or 4, there are KN parameters to be optimized. In this case, Ling (1989) showed that

the convergence rate of the PS-FSE was approximately a factor of 2 slower than the

convergence rate of the conventional complex-valued FSE, when the PS-FSE is adjusted

at the symbol rate. By employing ideal intersymbol interpolation, the convergence rate

of the PS-FSE is increased by approximately a factor of 2 compared to symbol rate

adjustment of the PS-FSE. Thus, the PS-FSE with intersymbol interpolation achieves

the same convergence rate as the conventional complex-valued FSE that is adjusted at

the symbol rate.

10.1-7 An Adaptive Channel Estimator for ML Sequence Detection

The ML sequence detection criterion implemented via the Viterbi algorithm as em-

bodied in the metric computation given by Equation 9.3-23 requires knowledge of the

equivalent discrete-time channel coefficients {/&}. To accommodate a channel that is

unknown or slowly time varying, one may include a channel estimator connected in

parallel with the detection algorithm, as shown in Figure 10.1-7. The channel estima-

tor, which is shown in Figure 10.1-8, is identical in structure to the linear transver-

sal equalizer discussed previously in Section 10.1. In fact, the channel estimator is

a replica of the equivalent discrete-time channel filter that models the intersymbol
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Input Output

FIGURE 10.1-7

Block diagram of method for estimating the channel

characteristics for the Viterbi algorithm.

interference. The estimated tap coefficients, denoted by {fk}, are adjusted recursively

to minimize the MSE between the actual received sequence and the output of the esti-

mator. For example, the LMS steepest-descent algorithm in a decision-directed mode of

operation is

h+ 1
= h + AeJl (10.1-39)

where fk is the vector of tap gain coefficients at the kth iteration, A is the step size,

sk = Vk — Vk is the error signal, and I k denotes the vector of detected information

symbols in the channel estimator at the kth iteration.

We now show that when the MSE between Vk and Vk is minimized, the result-

ing values of the tap gain coefficients of the channel estimator are the values of the

discrete-time channel model. For mathematical tractability, we assume that the detected

information sequence {/&} is correct, i.e., {/^} is identical to the transmitted sequence

{Ik}. This is a reasonable assumption when the system is operating at a low probability

of error. Thus, the MSE between the received signal Vk and the estimate 0& is

( N-

1

II - J2 fjh-j
oII

(10.1-40)

FIGURE 10.1-8

Adaptive transversal filter for estimating the channel dispersion.
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The tap coefficients [fk ] that minimize /(/) in Equation 10.1-40 satisfy the set ofN
linear equations

N-

1

YJ
fjRkj=dk , k = 0, l, . . . , N — l (10.1-41)

Rkj = E{hIJ), dk = J2 fjRkj (10. 1—42)
7=0

From Equations 10. 1-41 and 10. 1^12, we conclude that, as long as the information

sequence {4} is uncorrelated, the optimum coefficients are exactly equal to the respec-

tive values of the equivalent discrete-time channel. It is also apparent that when the

number of taps N in the channel estimator is greater than or equal to L + 1, the optimum

tap gain coefficients {fk } are equal to the respective values of the {fk }, even when the

information sequence is correlated. Subject to the above conditions, the minimum MSE
is simply equal to the noise variance No.

In the above discussion, the estimated information sequence at the output of the

Viterbi algorithm or the probabilistic symbol-by-symbol algorithm was used in making

adjustments of the channel estimator. For start-up operation, one may send a short

training sequence to perform the initial adjustment of the tap coefficients, as is usually

done in the case of the linear transversal equalizer. In an adaptive mode of operation,

the receiver simply uses its own decisions to form an error signal.

10.2

ADAPTIVE DECISION-FEEDBACK EQUALIZER

As in the case of the linear adaptive equalizer, the coefficients of the feedforward

filter and the feedback filter in a decision-feedback equalizer (DFE) may be adjusted

recursively, instead of inverting a matrix as implied by Equation 9.5-3. Based on the

minimization of the MSE at the output of the DFE, the steepest-descent algorithm takes

the form

Ck+x = Ck + AE (ekV$) (10.2-1)

where Ck is the vector of equalizer coefficients in the kth signal interval, E (sk Vl) is the

cross correlation ofthe error signal^ = h~h with Vk = [vk+Kl •
• vk h-

1

* * •

representing the signal values in the feedforward and feedback filters at time t = kT.

The MSE is minimized when the cross-correlation vector E [ek V£) = 0 as k -+ oo.

Since the exact cross-correlation vector is unknown at any time instant, we use

as an estimate the vector skVl and average out the noise in the estimate through the

recursive equation

Ck+

1

= Ck + Ask V$

This is the LMS algorithm for the DFE.

(10.2-2)
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Input {vk}

FIGURE 10.2-1

Decision-feedback equalizer.

As in the case of a linear equalizer, we may use a training sequence to adjust the

coefficients of the DFE initially. Upon convergence to the (near-) optimum coefficients

(minimum MSE), we may switch to a decision-directed mode where the decisions at

the output of the detector are used in forming the error signal and fed to the feedback

filter. This is the adaptive mode of the DFE, which is illustrated in Figure 10.2-1. In

this case, the recursive equation for adjusting the equalizer coefficient is

Ck+ 1
= Ck + AskVl (10.2-3)

where ek = Ik — Ik and Vk = [vk+Kl * • ^kh-i •
• h-K2V •

The performance characteristics of the LMS algorithm for the DFE are basically

the same as the development given in Sections 10. 1-3 and 10. 1-4 for the linear adaptive

equalizer.

10.3

ADAPTIVE EQUALIZATION OF TRELLIS CODED SIGNALS

Bandwidth efficient trellis-coded modulation that was described in Section 8.12 is fre-

quently used in digital communications over telephone channels to reduce the required

SNR per bit for achieving a specified error rate. Channel distortion of the trellis-coded

signal forces us to use adaptive equalization in order to reduce the intersymbol inter-

ference. The output of the equalizer is then fed to the Viterbi decoder, which performs

soft-decision decoding of the trellis-coded signal.
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Error signal FIGURE 10.3-1

Adjustment of equalizer based on

tentative decisions.

The question that arises regarding such a receiver is, how do we adapt the equalizer

in a data transmission mode? One possibility is to have the equalizer make its own
decisions at its output solely for the purpose of generating an error signal for adjusting its

tap coefficients, as shown in the block diagram in Figure 10.3-1 . The problem with this

approach is that such decisions are generally unreliable, since the pre-decoding coded

symbol SNR is relatively low. A high error rate would cause a significant degradation

in the operation of the equalizer, which would ultimately affect the reliability of the

decisions at the output of the decoder. The more desirable alternative is to use the

post-decoding decisions from the Viterbi decoder, which are much more reliable, to

continuously adapt the equalizer. This approach is certainly preferable and viable when
a linear equalizer is used prior to the Viterbi decoder. The decoding delay inherent in

the Viterbi decoder can be overcome by introducing an identical delay in the tap weight

adjustment of the equalizer coefficients as shown in Figure 10.3-2. The major price that

must be paid for the added delay is that the step-size parameter in the LMS algorithm

must be reduced, as described by Long et al. (1987, 1989), in order to achieve stability

in the algorithm.

In channels with severe ISI, the linear equalizer is no longer adequate for com-

pensating the channel intersymbol interference. Instead, we would like to use a DFE.

But the DFE requires reliable decisions in its feedback filter in order to cancel out

the intersymbol interference from previously detected symbols. Tentative decisions

prior to decoding would be highly unreliable and, hence, inappropriate. Unfortunately,

Error signal

Decisions

FIGURE 10.3-2

Adjustment of equalizer based on decisions from the Viterbi decoder.



708 Digital Communications

(a) Transmitter

Received

(b) Receiver

FIGURE 10.3-3

Use of predictive DFE with interleaving and trellis-coded modulation.

the conventional DFE cannot be cascaded with the Viterbi algorithm in which post-

decoding decisions from the decoder are fed back to the DFE.

One alternative is to use the predictive DFE described in Section 9.5-3. In order

to accommodate for the decoding delay as it affects the linear predictor, we introduce

a periodic interleaver/deinterleaver pair that has the same delay as the Viterbi decoder

and, thus, makes it possible to generate the appropriate error signal to the predictor as

illustrated in the block diagram of Figure 10.3-3. The way in which a predictive DFE
can be combined with Viterbi decoding to equalize trellis-coded signals is described and

analyzed by Eyuboglu (1988). This same idea has been carried over to the equalization

of fading multipath channels by Zhou et al. (1988, 1990), but the structure of the DFE
was modified to use recursive least-squares lattice-type filters, which provide faster

adaptation to the time variations encountered in the channel.

Another approach that is effective in wireline channels, where the channel impulse

response is essentially time invariant, is to place the feedback section of the DFE at the

transmitter and, thus, eliminate the tail (postcursors) of the channel response prior to

transmission. This is the approach previously described in Section 9.5-4, in which the

information sequence is precoded using the Tomlinson-Harashima precoding scheme.

Generally, this approach is implemented by sending a channel probe signal to measure

the channel frequency or impulse response at the receiver and, thus, to inform the

transmitter of the channel response in order to synthesize the precoder. An adaptive,

fractionally spaced linear equalizer is implemented at the receiver, which serves as the

feedforward filter of the DFE and, thus, compensates for any small time variations in

the channel response.

Reduced-state Viterbi detection algorithms From a performance viewpoint, the

best method for detecting a TCM signal sequence that is corrupted by ISI is to model

the ISI and the trellis code jointly by a single finite state machine and to use the
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l AWGN
~~ 2 fi i Vk
i=0

FIGURE 10.3-4

Model of TCM and ISI channel.

Viterbi algorithm on the combined trellis, as described in the papers by Chevillat and

Eleftheriou (1988, 1989), Eyuboglu et al. (1988, 1989), and Wesolowski (1987b). By
using a whitened matched filter (WMF) as described previously for the receiver front

end, the model for the combined trellis encoder and ISI channel filter is illustrated in

Figure 10.3^1, where the channel filter F(z ) is minimum phase. Thus, a TCM encoder

that has S states and employs a signal constellation with 2m+1 signal points has a

combined TCM/ISI trellis that has S2mL states and 2m transitions (branches) emerging

from each state. The states of the combined finite state machine may be denoted as

Sn = (In-L , In-L+U • • • , 4-1, 0n ) (10.3-1)

where {In } is the information symbol sequence and where 6n is the encoder state.

The Viterbi decoder operates on the combined ISI and code trellis in the conven-

tional way, by computing the branch metrics

L

Vk ^ ^ fi Ik—i

i=0

2

(10.3-2)

and incrementing the corresponding path metrics.

Clearly, the complexity of the Viterbi detector becomes prohibitively large when
the span L of the ISI is large. In such a case, the decoder complexity can be reduced

as described in Section 9.6, by truncating the effective channel memory to Lo terms.

With truncation, the combined TCM/ISI trellis has the S2mL ° states

0 = Un-L0 , In-Lo+U • • • , 0n ) (10.3-3)

where 1 < Lo < L.

Thus, when Lo = 1, the Viterbi algorithm operates directly on the TCM coded

trellis and the L ISI terms are estimated and canceled. By selecting Lo > 1, some

ISI terms are kept while L + 1 — Lo terms are canceled. To reduce the performance

degradation due to tentative decisions in the Viterbi detector, the ISI cancelation is

introduced into the branch metric computations using local feedback, as previously

described in Section 9.6. Thus, the branch metrics computed in the Viterbi detector

take the form

L0 -l L+l

/=0 i=Lo

(10.3-4)

where I k-i (5^°) denotes the estimated ISI term due to the symbols {Ik-i, Lo < i < L

}

involved in the truncation of the ISI based on local feedback.
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In the case of an unknown channel characteristic, both the WMF and the channel

estimator of F(z) must be determined adaptively. This may be accomplished by adapt-

ing a complex-valued baseband FSE for theWMF and the channel estimator described

previously in Section 10.1-7. Thus, a training sequence may be used for initial ad-

justment and decision-directed estimation may continue following the initial training

sequence. The LMS algorithm may be used in both the training and decision-directed

modes. Simulation results given by Chevillat and Eleftheriou (1989) demonstrate the

superior performance of this adaptive WMF/reduced-state Viterbi detector compared

to the combination of a linear equalizer followed by a Viterbi detector.

10.4

RECURSIVE LEAST-SQUARES ALGORITHMS
FOR ADAPTIVE EQUALIZATION

TheLMS algorithm that we described in Sections 10. 1 and 10.2 for adaptively adjusting

the tap coefficients of a linear equalizer or a DFE is basically a (stochastic) steepest-

descent algorithm in which the true gradient vector is approximated by an estimate

obtained directly from the data.

The major advantage of the steepest-descent algorithm lies in its computational

simplicity. However, the price paid for the simplicity is slow convergence, especially

when the channel characteristics result in an autocorrelation matrix T whose eigen-

values have a large spread, i.e., A.max/Amm 1. Viewed in another way, the gradient

algorithm has only a single adjustable parameter for controlling the convergence rate,

namely, the parameter A. Consequently the slow convergence is due to this fundamen-

tal limitation. Two simple methods for increasing the convergence rate to some extent

were described in Section 10.1-5.

In order to obtain faster convergence, it is necessary to devise more complex algo-

rithms involving additional parameters. In particular, if the matrix r is N x N and has

eigenvalues X \ ,
A2 , . .

.

,

A#, we may use an algorithm that contains N parameters—one

for each of the eigenvalues. The optimum selection of these parameters to achieve rapid

convergence is a topic of this section.

In deriving faster converging algorithms, we shall adopt a least-squares approach.

Thus, we shall deal directly with the received data in minimizing the quadratic per-

formance index, whereas previously we minimized the expected value of the squared

error. Put simply, this means that the performance index is expressed in terms of a time

average instead of a statistical average.

It is convenient to express the recursive least-squares algorithms in matrix form.

Hence, we shall define a number of vectors and matrices that are needed in this devel-

opment. In so doing, we shall change the notation slightly. Specifically, the estimate of

the information symbol at time t, where t is an integer, from a linear equalizer is now
expressed as

K

I(t) = ^2 Cj(t- 1 )vt-j

j=-K
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By changing the index j on cj(t — 1) to run from j = Otoj = N — 1 and simultaneously

defining

y(t) = vt+K

the estimate I(t ) becomes

m
N-

1

- i)y(t - j )

;=o

= C‘N (t - 1)YN (t)

(10.4-1)

where C^{t — 1) and YN (t) are, respectively, the column vectors of the equalizer

coefficients cj(t — 1), j = 0, 1, . .
.

,

N —
1, and the input signals y(t — j ), j =

0, 1, 2 // — 1.

Similarly, in the decision-feedback equalizer, we have tap coefficients Cj(t), j =
0, 1, . .

.

,

N —
1, where the first K\ + 1 are the coefficients of the feedforward filter

and the remaining K2 = N— K\ — 1 are the coefficients of the feedback filter. The data in

the estimate I(t) is • • • , ty+i, l
t
-

1 ,
. .

. , h-K2 ,
where I t~j ,

1 < j < K2 ,
denote

the decisions on previously detected symbols. In this development, we neglect the effect

of decision errors in the algorithms. Hence, we assume that I t-j = h-j ,
1 < j < K2 .

For notational convenience, we also define

y(t - i )
= Vt+Ki-j (0 < j < K\)

It+Kl -j (Ki<j<N- 1)

Thus,

YN (t) = [y(t) yit-V.-.yit-N+l)]*

= \Vt+K\ •
•

• ty+1 V t It- 1
• •

• It-K1 \

t

(10.4-2)

(10.4-3)

10.4-1 Recursive Least-Squares (Kalman) Algorithm

The recursive least-squares (RLS) estimation of I(t) may be formulated as follows.

Suppose we have observed the vectors Y# (h), n = 0, 1, . .
.

,

t, and we wish to deter-

mine the coefficient vector C#(f) of the equalizer (linear or decision-feedback) that

minimizes the time-average weighted squared error

t

= !>'“"
I

e^n
’
f )l

2
(10.4—4)

n=

0

where the error is defined as

eN (n, t

)

= I(n) - C f

N (t)YN (n) (10.4-5)

and w represents a weighting factor 0 < w < 1. Thus we introduce exponential

weighting into past data, which is appropriate when the channel characteristics are
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time-variant. Minimization of with respect to the coefficient vector CN (t) yields

the set of linear equations

RN (t)CN (t) = DN (t) (10.4-6)

where R^{t) is the signal correlation matrix defined as

t

RN (t) = J2 w
‘-nY*NWYtNW (10.4-7)

n=

0

and DN (t ) is the cross-correlation vector

t

DN (t ) = J2 w
‘

~

nKn)Y*N (n ) (10.4-8)

n=

0

The solution of Equation 10.4-6 is

Cw(0 = RJi
l

(f)DN (t ) (10.4-9)

The matrix Rm(0 is akin to the statistical autocorrelation matrix r, while the vector

DN (t) is akin to the cross-correlation vector £, defined previously. We emphasize,

however, that RnO) is not a Toeplitz matrix. We also should mention that, for small

values of t
, Rn(0 may be ill conditioned; hence, it is customary to initially add the

matrix 81N to Ruit), where 8 is a small positive constant and IN is the identity matrix.

With exponential weighting into the past, the effect of adding 81N dissipates with time.

Now suppose we have the solution in Equation 10.4-9 for time t
— 1

,
i.e., CN (t — 1),

and we wish to compute CnO). It is inefficient, and, hence, impractical to solve the set

ofN linear equations for each new signal component that is received. To avoid this, we
proceed as follows. First, Rn(0 may be computed recursively as

RN (t) = wRN (t - 1) + (10.4-10)

We call Equation 10.4-10 the time-update equation for RnO)-
Since the inverse of Rn(0 is needed in Equation 10.4-9, we use the matrix-inverse

identity

w + r^Otf^r-lTOO
(10.4-11)

Thus may be computed recursively according to Equation 10.4-1 1.

For convenience, we define /V(t) = R^ l

(t). It is also convenient to define an

-dimensional vector, called the Kalman gain vector, as

**(0 = —

—

1—7PN (t - l)n(r) (10.4-12)
W + flN (t)

where is a scalar defined as

iMO = Y‘N (t)PN (t - 1)Y*N (t) (10.4-13)
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With these definitions, Equation 10.4-11 becomes

PN (t) = ~[PN (t - 1) - Knitwit)

P

N (t - 1)]
w

(10.4-14)

Suppose we postmultiply both sides of Equation 10.4-14 by Y*N (t). Then

PN (t)Y*N (t) = ~[PN (t - l)Y*N (t) - KN (t)Y‘N (t)PN (t - l)F£,(f)]
w

= — {[w + \xN(t)]KN (t )
— KN (t)fAisr(t)}

w
= KN (t )

(10.4-15)

Therefore, the Kalman gain vector may also be defined as PN (t)YN (t).

Now we use the matrix inversion identity to derive an equation for obtaining CN (t)

from Cm

(

t — 1). Since

Cn(0 = P

and

DN (t) = wDN (t - 1) + (10.4-16)

we have

CN (t) = ~[PN (t - 1)
- - 1)][wDN (t - 1) + /(t)F^(t)]

w

= PN (t - 1)D„(t - 1) + -I(t)PN (t - 1)F*„(0
w

- KN (t)Y<N {t)PN {t - 1)DN {t - 1)
(10.4-17)

- -I(t)KN (t)Y‘N (t)PN (t - l)F^(t)
w

= CN (t - 1) + KN (t)[I(t) - Y^OCmO -
1)]

Note that Y f

N {t)CM{t — 1) is the output of the equalizer at time t
,
i.e.,

/(0 = F^(0C^-1) (10.4-18)

and

eN (t, t-l) = I(t) - I(t )
= eN (t) (10.4-19)

is the error between the desired symbol and the estimate. Hence, Cm it) is updated

recursively according to the relation

CN (t) = CN (t - 1) + KN (t)eN (t ) (10.4-20)

The residual MSE resulting from this optimization is

t

4min = X>'“
n

|

/ (”)|
2 - C‘N {t)D*N {t) (10.4-21)



714 Digital Communications

To summarize, suppose we have C^{t — 1) and — 1). When a new signal

component is received, we have F#(f). Then the recursive computation for the time

update of CN (t) and PN (t) proceeds as follows:

• Compute output:

• Compute error:

lit) = rN (t)cN {t - 1 )

eN (t) = I(t )
- 7(0

• Compute Kalman gain vector:

KN (t)

PN (t - l)Y*N (t)

w+Y^P^t -l)Y*N (t)

• Update inverse of the correlation matrix:

PN (t) = -[PN (t - 1) - KN (t)Y*N (t)PN (t - 1)]
w

• Update coefficients:

Cn(0 = CN (t — 1) + KN (t)eN (t)

= CN (t - 1) + PN (t)Y*N (t)eN (t)
( - ~ >

The algorithm described by Equation 10.4-22 is called the RLS direct form or

Kalman algorithm. It is appropriate when the equalizer has a transversal (direct-

form) structure.

Note that the equalizer coefficients change with time by an amount equal to the error

eN (t) multipled by the Kalman gain vector KN (t). Since if ) is TV-dimensional, each

tap coefficient in effect is controlled by one of the elements of KN (t). Consequently

rapid convergence is obtained. In contrast, the steepest-descent algorithm, expressed in

our present notation, is

CN (t) = CN (t - 1) + AY*N (t)eN (t) (10.4-23)

and the only variable parameter is the step size A.

Figure 10.4-1 illustrates the initial convergence rate of these two algorithms for a

channel with fixed parameters /0 = 0.26, f\ = 0.93, f2 = 0.26, and a linear equalizer

with 1 1 taps. The eigenvalue ratio for this channel is Amax/Amin = 11. All the equalizer

coefficients were initialized to zero. The steepest-descent algorithm was implemented

with A = 0.020. The superiority of the Kalman algorithm is clearly evident. This is

especially important in a time-variant channel. For example, the time variations in the

characteristics of an (ionospheric) high-frequency (HF) radio channel are too rapid to

be equalized by the gradient algorithm, but the Kalman algorithm adapts sufficiently

rapidly to track such variations.

In spite of its superior convergence performance, the Kalman algorithm described

above has two disadvantages. One is its complexity. The second is its sensitivity to
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FIGURE 10.4-1

Comparison of convergence rate for the

Kalman and gradient algorithms.

roundoff noise that accumulates due to the recursive computations. The latter may
cause instabilities in the algorithm.

The number of computations or operations (multiplications, divisions, and sub-

tractions) in computing the variables in Equation 10.4-22 is proportional to N2
. Most

of these operations are involved in the updating of PnO). This part of the computation

is also susceptible to roundoff noise. To remedy that problem, algorithms have been

developed that avoid the computation of Pn(0 according to Equation 10.4-14. The

basis of these algorithms lies in the decomposition of in the form

PN (t) = SN (t)AN (t)S
f

N (t) (10.4-24)

where S^(t) is a lower-triangular matrix whose diagonal elements are unity, and AN (t)

is a diagonal matrix. Such a decomposition is called a square-root factorization (see

Bierman, 1977). This factorization is described in Appendix D. In a square-root algo-

rithm, PN (t) is not updated as in Equation 10.4-14 nor is it computed. Instead, the time

updating is performed on 5^(0 and AN (t).

Square-root algorithms are frequently used in control systems applications in which

Kalman filtering is involved. In digital communications, the square-root Kalman algo-

rithm has been implemented in a decision-feedback-equalized PSK modem designed

to transmit at high speed over high-frequency radio channels with a nominal 3-kHz

bandwidth. This algorithm is described in the paper by Hsu (1982). It has a computa-

tional complexity of 1.5
A/"2 + 6.5 (complex-valued multiplications and divisions per

output symbol). It is also numerically stable and exhibits good numerical properties.

For a detailed discussion of square-root algorithms in sequential estimation, the reader

is referred to the book by Bierman (1977).

It is also possible to derive RLS algorithms with computational complexities that

grow linearly with the numberN of equalizer coefficients. Such algorithms are generally

calledfast RLS algorithms and have been described in the papers by Carayannis et al.

(1983), Cioffi and Kailath (1984), and Slock and Kailath (1991).

Another class of recursive least squares algorithms for adaptive equalization are

based on the lattice equalizer structure. Below, we derive the lattice filter structure

from the transversal filter structure and, thus, demonstrate the equivalence of the two

structures.
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10.4-2 Linear Prediction and the Lattice Filter

In this section we develop the connection between a linear FIR filter and a lattice

filter. This connection is most easily established by considering the problem of linear

prediction of a signal sequence.

The linear prediction problem may be stated as follows: given a set of data

y(t — 1), y(t — 2), . .
. ,

y(t — p ), predict the value of the next data point y(t). The

predictor of order p is

p

y(t ) = Y^apky{t -k)
k=\

(10.4-25)

Minimization of the MSE, defined as

£p = £[y(f) - y(t)f

= E
1 2

y(t) -X)apt y(f - k)

k= 1

(10.4-26)

with respect to the predictor coefficients {apk) yields the set of linear equations

^2 aPkR{k — l) = R(l), l = \, 2,

p

(10.4-27)

k=

1

where

R(l) = E[y(t)y(t + l)]

These are called the normal equations or the Yule-Walker equations.

The matrix R with elements R(k—l ) is aToeplitz matrix, and, hence, the Levinson-

Durbin algorithm provides an efficient means for solving the linear equations recur-

sively, starting with a first-order predictor and proceeding recursively to the solution of

the coefficients for the predictor of order p. The recursive relations for the Levinson-

Durbin algorithm are (see Levinson (1947) and Durbin (1959))

an

tirnm

®mk,

RiX)

R(oy

4>(m) -

£m-

1

&m—\k ^mm^m—\m—k

£o = R(0)

A ( R r

^m^m-

1

£m — £m- l(l amm)

(10.4-28)

for m — 1,2,...,/?, where the vectors Am_i and R r

m_\ are defined as

Am— 1 — \Pm— 1 1 12
* *

* \m— l]

K-i = [R(m - 1) R(m- 2) • • • R( 1)]'
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The linear prediction filter of order m may be realized as a transversal (FIR) filter

with transfer function

Am(z)= l-£\ (10.4-29)

Its input is the data {y(r)} and its output is the error e(t ) = y(t ) — y(t). The prediction

filter can also be realized in the form of a lattice, as we now demonstrate.

Our starting point is the use of the Levinson-Durbin algorithm for the predictor

coefficients amk in Equation 10.4-29. This substitution yields

Am {z) — 1 ^ — Q'mmQ'm—\m—k)Z ^mmZ

— 1 y ^ — IkZ &mm

Z

(

k=

1

\

— Am— l(z) G-mmZ Am— \{Z )

,
&m— lkZ

(10.4-30)

Thus we have the transfer function of the mth-order predictor in terms of the transfer

function of the (m — l)th-order predictor.

Now suppose we define a filter with transfer function Gm (z ) as

Gm (z) = z-
mAm (z~

l

)

Then Equation 10.4-30 may be expressed as

Am {z) — Am—\ (-£) &mmZ Gm—\{z)

(10.4-31)

(10.4-32)

Note that Gm-\(z ) represents a transversal filter with tap coefficients (—

a

m_

i

m_i,

—am- im_2 , . .
.

,

—

a

m_ ii, 1), while the coefficients of Am-\(z) are exactly the same

except that they are given in reverse order.

More insight into the relationship between Am (z) and Gm (z) can be obtained by

computing the output of these two filters to an input sequence y(t). Using z-transform

relations, we have

Am (z)Y(z) = Am-\(z)Y (z) - ammz-
1Gm_ 1 (z)F(z)

We define the outputs of the filters as

Fm(z) = Am (z)Y(z)

Bm {z) = Gm (z)Y(z)

Then Equation 10.4-33 becomes

Fmiz) — Fm—\(z) fl'mm.Z Bm—\(z)

In the time domain, the relation in Equation 10.4-35 becomes

fm (0 ~ fm—1(0 ^/nm^m-1 (j 1)? Wl > 1

(10.4-33)

(10.4-34)

(10.4-35)
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where

m— 1

fm(t) = y(t) - amky{t - k) (10.4-37)

k=

1

m— 1

bm {t) = y(t amky{t - m + k) (10.4-38)

k=

1

To elaborate, fm (t) in Equation 10.4-37 represents the error of an mth-order forward

predictor, while bm (t) represents the error of an mth-order backward predictor.

The relation in Equation 10.4-36 is one of two that specifies a lattice filter. The

second relation is obtained from Gm (z) as follows:

Gm (z) = z-
mAm (z~

l

)

= z~
m [Am-i(z~

l

)
- ammZ

mAm-i(z)) (10.4-39)

— z Gm ~\ (z) ammAm-i(z)

Now, if we multiply both sides of Equation 10.4-39 by Y(z) and express the result in

terms of Fm (z) and Bm (z ) using the definitions in Equation 10.4-34, we obtain

Bm (z) = z~
l Bm-i(z) - ammFm-\(z) (10.4^10)

By transforming Equation 10.4-40 into the time domain, we obtain the second relation

that corresponds to the lattice filter, namely,

bm (0 — bm— \{t 1) ttnirnfm— 1(0> 171 > \ (10.4—41)

The initial condition is

/o(0 = b0 (t) = y(t ) (10.4-42)

The lattice filter described by the recursive relations in Equations 10.4-36 and 10.4-41

is illustrated in Figure 10.4-2. Each stage is characterized by its own multiplication

factor {an}, i = 1,2 ,
,m, which is defined in the Levinson-Durbin algorithm. The

forward and backward errors fm (t) and bm (t) are usually called the residuals. The mean
square value of these residuals is

£m = E[fi(t)}=E[b2
m (t)\ (10.4-43)

(a) (b)

FIGURE 10.4-2

A lattice filter.
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As a consequence of the orthogonality properties of the residuals, the different

sections of the lattice exhibit a form of independence that allows us to add or delete

one or more of the last stages without affecting the parameters of the remaining stages.

Since the residual mean square error £m decreases monotonically with the number of

sections, £m can be used as a performance index in determining where the lattice should

be terminated.

From the above discussion, we observe that a linear prediction filter can be im-

plemented either as a linear transversal filter or as a lattice filter. The lattice filter is

order-recursive, and, as a consequence, the number of sections it contains can be easily

increased or decreased without affecting the parameters of the remaining sections. In

contrast, the coefficients of a transversal filter obtained on the basis of the RLS criterion

are interdependent. This means that an increase or a decrease in the size of the filter

results in a change in all coefficients. Consequently, the Kalman algorithm described

in Section 10.4-1 is recursive in time but not in order.

Based on least-squares optimization, RLS lattice equalization algorithms have

been developed whose computational complexity grows linearly with the number N
of filter coefficients (lattice stages). Hence, the lattice equalizer structure is compu-

tationally competitive with the direct-form fast RLS equalizer algorithms. For exam-

ple, Figure 10.4-3 illustrates the computational complexity (number of multiplications

and divisions per output symbol) of transversal and lattice, symbol-spaced DFE filter

structures. Observe that for equalizer lengths of fewer than 10 taps, the difference in

computational complexity among the different structures and algorithms is relatively

small. However, as the number of taps increases, the lattice RLS algorithm and the fast

(transversal) RLS algorithm are significantly less complex than the conventional and

square-root RLS algorithms. Of course, all the RLS algorithms are computationally

more complex than the LMS algorithm. RLS lattice algorithms are described in the

papers by Morf (1977), Morf and Lee (1978), and Morf et al. (1977a,b,c), Satorius and

Alexander (1979), Satorius and Pack (1981), Ling and Proakis (1982, 1984c, 1985,

1986) and in the books by Proakis et al. (2002) and Haykin (2002).
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FIGURE 10.4-3

Computational complexity of DFE algorithms.

LMS Gradient LMS Gradient LMS
RLS RLS RLS RLS RLS

Fast RLS Fast RLS Fast RLS
Square-root RLS Square-root RLS Square-root RLS

FIGURE 10.4-4

Equalizer types, structures, and algorithms.
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RLS lattice algorithms have the distinct feature of being numerically robust to

round-off error inherent in digital implementations of the algorithms. A treatment of

their numerical properties may be found in the papers by Ling and Proakis (1984a) and

Ling et al. (1986a,b).

Figure 10.4-4 illustrater the different types of linear and nonlinear equalizers the

corresponding structures for their implementation, and the adaptive algorithms that

may be used to adjust the equalizer coefficients.

10.5

SELF-RECOVERING (BLIND) EQUALIZATION

In the conventional zero-forcing orminimumMSE equalizers, we assumed that aknown
training sequence is transmitted to the receiver for the purpose of initially adjusting

the equalizer coefficients. However, there are some applications, such as multipoint

communication networks, where it is desirable for the receiver to synchronize to the

received signal and to adjust the equalizer without having a known training sequence

available. Equalization techniques based on initial adjustment ofthe coefficients without

the benefit of a training sequence are said to be self-recovering or blind.

Beginning with the paper by Sato (1975), three different classes of adaptive blind

equalization algorithms have been developed over the past three decades. One class of

algorithms is based on steepest descent for adaptation of the equalizer. A second class

of algorithms is based on the use of second- and higher-order (generally, fourth-order)

statistics of the received signal to estimate the channel characteristics and to design

the equalizer. More recently, a third class of blind equalization algorithms based on

the maximum-likelihood criterion have been investigated. In this section, we briefly

describe these approaches and give several relevant references to the literature.

10.5-1 Blind Equalization Based on the Maximum-Likelihood Criterion

It is convenient to use the equivalent, discrete-time channel model described in Sec-

tion 9.3-2. Recall that the output of this channel model with ISI is

L

•Vn = fkin-k + T]„

k=

0

(10.5-1)

where {/&} are the equivalent discrete-time channel coefficients, {In } represents the

information sequence, and {rjn } is a white Gaussian noise sequence.

For a block of N received data points, the (joint) probability density function of

the received data vector v = [v\ v2 • • • v^Y conditioned on knowing the impulse

response vector f = [f0 fi •
•

• fL\ and the data vector I = [f I2 • • • I^Y is

p{v\f,I) =
1

(2na 2
)
N 2a 2

N

£
n=

1

(10.5-2)
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The joint maximum-likelihood estimates of / and I are the values of these vectors

that maximize the joint probability density function p(v\f, /) or, equivalently, the

values of / and I that minimize the term in the exponent. Hence, the ML solution is

simply the minimum over / and I of the metric

DM(I, f) = J2
n=

1

Vn

L

E
k=0

fkU-

= ii®-m 2

(10.5-3)

where the matrix A is called the data matrix and is defined as

A =

h
h
h

0

h
h

0

0

h

0

0

0

In In-i In-i In-l

(10.5—4)

We make several observations. First of all, we note that when the data vector I

(or the data matrix A) is known, as is the case when a training sequence is available

at the receiver, the ML channel impulse response estimate obtained by minimizing

Equation 10.5-3 over / is

fML (I) = (AhA)~ xAh v (10.5-5)

On the other hand, when the channel impulse response / is known, the optimum

ML detector for the data sequence I performs a trellis search (or tree search) by utilizing

the Viterbi algorithm for the ISI channel.

When neither I nor / are known, the minimization of the performance index

DM(I, f) may be performed jointly over I and /. Alternatively, / may be estimated

from the probability density function p(v\f), which may be obtained by averaging

p(v, f\I) over all possible data sequences. That is,

m
(10.5-6)

where is the probability of the sequence I = /
(m)

,
for m = 1,2,..., MN

,
and

M is the size of the signal constellation.

Channel estimation based on average over data sequences As indicated in the

above discussion, when both I and / are unknown, one approach is to estimate the

impulse response / after averaging the probability density p(v
, I\f) over all possible
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data sequences. Thus, we have

= £ i

exp —Wv-A^fW2
(10.5-7)

P(/ (m)
)

(2na 2
)
N ~ r

\ 2a 2

Then, the estimate of / that maximizes p(v\f) is the solution of the equation

dp(v\f)

df
= ^P(/(m)

).

(A(m)"A (m
)/ - A(m)"i0exp = Q

(10.5-8)

Hence, the estimate of / may be expressed as

/ = Y, P(I (m))A{m)HA{m)
g(v, A{m)

, f )

m

X P(I (m)
)g(v, A(m)

, f)A
im)H

v

where the function g(v, A(m)
, /) is defined as

g(v, A(m
\ f) = exp

l|u-A(m)
/||

2

2cr 2

(10.5-9)

(10.5-10)

The resulting solution for the optimum / is denoted by fML .

Equation 10.5-9 is a non-linear equation for the estimate of the channel impulse re-

sponse, given the received signal vector v. It is generally difficult to obtain the optimum

solution by solving Equation 10.5-9 directly. On the other hand, it is relatively simple to

devise a numerical method that solves for /ML recursively. Specifically, we may write

y(*+D =
1-1

P(I im))A{m)HA{m)
g(v, A{m)

, f
(k)

)

x J2.P(I
(m)

)g(v, A(m)
, f

(k))A(m)H v

(10.5-11)

Once fML is obtained from the solution of Equation 10.5-9 or 10.5-1 1, we may simply

use the estimate in the minimization of the metric DM(I, fML ), given by Equation

10.5-3, over all the possible data sequences. Thus, IMl is the sequence I that minimizes

DM(I, fML ), i.e.,

min DM(I, fML ) = mm ||v - AfML f (10.5-12)

We know that the Viterbi algorithm is the computationally efficient algorithm for per-

forming the minimization of DM(I
, fML ) over I.
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This algorithm has two major drawbacks. First, the recursion for fLM given by

Equation 10.5-1 1 is computationally intensive. Second, and, perhaps, more importantly,

the estimate fML is not as good as the maximum-likelihood estimate fML (l ) that is

obtained when the sequence I is known. Consequently, the error rate performance of

the blind equalizer (the Viterbi algorithm) based on the estimate fML is poorer than

that based on fML (I)- Next, we consider joint channel and data estimation.

Joint channel and data estimation Here, we consider the joint optimization of

the performance index DM(I, f ) given by Equation 10.5-3. Since the elements of the

impulse response vector / are continuous and the elements of the data vector I are

discrete, one approach is to determine the maximum-likelihood estimate of / for each

possible data sequence and, then, to select the data sequence that minimizes DM{I, f)
for each corresponding channel estimate. Thus, the channel estimate corresponding to

the mth data sequence /
(m)

is

fML{I
(m)

) = (A {m)tA(m)y lA(m)t
v (10.5-13)

For the mth data sequence, the metric DM(I, f) becomes

DM [I
{m
\ fML (I

{m)
)\
= ||d - A(m)

/Mi (/
(m)

) ||

2
(10.5-14)

Then, from the set ofMN possible sequences, we select the data sequence that minimizes

the cost function in Equation 10.5-14, i.e., we determine

minDM [l
(m
\ fML (I

(m)
)\ (10.5-15)

The approach described above is an exhaustive computational search method with

a computational complexity that grows exponentially with the length of the data block.

We may select N = L + 1 ,
and, thus, we shall have one channel estimate for each of the

Ml
surviving sequences. Thereafter, we may continue to maintain a separate channel

estimate for each surviving path of the Viterbi algorithm search through the trellis. This

approach to joint channel and data estimation has been called per-survivor processing

by Raheli et al. (1995).

A similar approach has been proposed by Seshadri (1994). In essence, Seshadri’s

algorithm is a type of generalized Viterbi algorithm (GVA) that retains K > 1 best esti-

mates of the transmitted data sequence into each state of the trellis and the corresponding

channel estimates. In Seshadri’s GVA, the search is identical to the conventional Viterbi

algorithm (VA) from the beginning up to the Lth stage of the trellis, i.e., up to the point

where the received sequence (i>i ,
v2 , . .

. ,
vL ) has been processed. Hence, up to the Lth

stage, an exhaustive search is performed. Associated with each data sequence /
(m)

,

there is a corresponding channel estimate From this stage on, the search is

modified, to retain K > 1 surviving sequences and associated channel estimates per

state instead of only one sequence per state. Thus, the GVA is used for processing the

received signal sequence {vn ,
n > L + 1}. The channel estimate is updated recursively

at each stage using the LMS algorithm to further reduce the computational complex-

ity. Simulation results given in the paper by Seshadri (1994) indicate that this GVA
blind equalization algorithm performs rather well at moderate signal-to-noise ratios

with K = 4. Hence, there is a modest increase in the computational complexity of the
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GVA compared with that for the conventional VA. However, there are additional com-

putations involved with the estimation and updating of the channel estimates /(/
(m)

)

associated with each of the surviving data estimates.

An alternative joint estimation algorithm that avoids the least-squares computation

for channel estimation has been devised by Zervas et al. (1991). In this algorithm,

the order for performing the joint minimization of the performance index Z)M(/, /)
is reversed. That is, a channel impulse response, say / = /

(1)
,
is selected and then

the conventional VA is used to find the optimum sequence for this channel impulse

response. Then, we may modify /
(1)

in some manner to /
(2) = /

(1) + A/ (1) and

repeat the optimization over the data sequences

Based on this general approach, Zervas et al. developed a newML blind equalization

algorithm, which is called a quantized-channel algorithm. The algorithm operates over

a grid in the channel space, which becomes finer and finer by using the ML criterion

to confine the estimated channel in the neighborhood of the original unknown channel.

This algorithm leads to an efficient parallel implementation, and its storage requirements

are only those of the VA.

10.5-2 Stochastic Gradient Algorithms

Another class of blind equalization algorithms are stochastic-gradient iterative equal-

ization schemes that apply a memoryless non-linearity in the output of a linear FIR

equalization filter in order to generate the “desired response” in each iteration.

Let us begin with an initial guess of the coefficients of the optimum equalizer, which

we denote by {cn }. Then, the convolution of the channel response with the equalizer

response may be expressed as

{Cn}*{fn} = {Sn} + {en } (10.5-16)

where {<$„} is the unit sample sequence and {en } denotes the error sequence that results

from our initial guess of the equalizer coefficients. Ifwe convolve the equalizer impulse

response with the received sequence {rw }, we obtain

{In} = {Vn} * {Cn}

— {In} * {fn} * {cn\ 4"
{
4In } * {cn} /iq

= {In)*a8n} + {en }) + {Tln}*{Cn}

= {^1 } 4" {In} * {&n} 4“ {tfn} * {cn}

In Equation 10.5-17 the term {/„} represents the desired data sequence, the term

{In } {en } represents the residual ISI, and the term {r)n } {cn } represents the additive

noise. Ourproblem is to utilize the deconvolved sequence {In } to find the “best” estimate

of a desired response, denoted in general by {dn }. In the case of adaptive equalization

using a training sequence, {dn }
= {/„}. In a blind equalization mode, we shall generate

a desired response from {/„}.

The mean square error (MSE) criterion may be employed to determine the “best”

estimate of {In } from the observed equalizer output {/„}. Since the transmitted sequence

{In } has a non-Gaussian PDF, the MSE estimate is a non-linear transformation of {/„}.
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FIGURE 10.5-1

Adaptive blind equalization with stochastic

gradient algorithms.

In general, the best estimate {dn } is given by

d.=e(K)_
_

(memoryless)
(105_18)

dn = g(In, In-1, •••, In—m) (mth-order memory)

where g( ) is a non-linear function. The sequence {dn } is then used to generate an error

signal, which is fed back into the adaptive equalization filter, as shown in Figure 10.5-1

.

Let us consider the nonlinear function based on the MSE criterion.

A well-known classical estimation problem is the following. If the equalizer output

In is expressed as

In = h + f)n (10.5-19)

where f\n is assumed to be zero-mean Gaussian (the central limit theorem may be

invoked here for the residual ISI and the additive noise), {/„} and {f}n } are statistically

independent, and {/„} are statistically independent and identically distributed random

variables, then the MSE estimate of {/„} is

dn = E(In \In ) (10.5-20)

which is a non-linear function of the equalizer output when {/„} is non-Gaussian.

Table 10.5-1 illustrates the general form of existing blind equalization algorithms

that are based on LMS adaptation. We observe that the basic difference among these

algorithms lies in the choice of the memoryless non-linearity. The most widely used

algorithm in practice is the Godard algorithm
,
sometimes also called the constant-

modulus algorithm (CMA).
It is apparent from Table 10.5-1 that the output sequence {dn } obtained by taking

a non-linear function of the equalizer output plays the role of the desired response or

a training sequence. It is also apparent that these algorithms are simple to implement,

since they are basically LMS-type algorithms. As such, we expect that the convergence

characteristics of these algorithms will depend on the autocorrelation matrix of the

received data {vn }.

With regard to convergence, the adaptive LMS-type algorithms converge in the

mean when

E Vng'tfn) = E (10.5-21)
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TABLE 10.5-1

Stochastic Gradient Algorithms for Blind Equalization

Equalizer tap coefficients

Received signal sequence

Equalizer output sequence

Equalizer error sequence

Tap coefficient update equation

{c„,0 <n < N -
1)

\Vn)

[In] = {^nl * {cn)M = g{In) ~ In

cn+ 1 = cn + Av*en

Algorithm Non-linearity: g(In )

Godard

Sato

7n(i f"i + -
i
?«i

3
)- r2 = firrS

\In\ E{\In \

2
}

„ /f , ,
£{[Re(/„)]2 }

fcsgn(/„), f = —

—

Benveniste-Goursat

£{|Re(/„)|}

In + h(In - In ) + k2 \I„ ~ /„ |[f CSgn (/„) - /„],

Stop-and-go

k] and k2 are positive constants

in + \A(in - in) + \B{in - In)*, (A,B) = (2, 0), (1, 1),

(1,-1), or (0, 0), depending on the signs of decision-directed

error In — In and the error £ csgn (7n )
— In

and, in the mean square sense, when

E[C*Vng'0n )]
=E[C”vn IZ\

E[lng\In )\
=E[\In \

2
}

(10.5-22)

Therefore, it is required that the equalizer output {/„} satisfy Equation 10.5-22.

Note that Equation 10.5-22 states that the autocorrelation of {/„} (the right-hand side)

equals the cross correlation between In and a non-linear transformation of In (left-hand

side). Processes that satisfy this property are called Bussgang (1952), as named by

Bellini (1986). In summary, the algorithms given in Table 10.5-1 converge when the

equalizer output sequence In satisfies the Bussgang property.

The basic limitation of stochastic gradient algorithms is their relatively slow con-

vergence. Some improvement in the convergence rate can be achieved by modifying

the adaptive algorithms from LMS-type to RLS-type.

Godard algorithm The Godard blind equalization algorithm is a steepest-descent

algorithm that is widely used in practice when a training sequence is not available.

Let us describe this algorithm in more detail, assuming a general QAM signal

constellation.

Godard considered the problem of combined equalization and carrier phase re-

covery and tracking. The carrier phase tracking is performed at baseband, following

the equalizer as shown in Figure 10.5-2. Based on this structure, we may express the

equalizer output as

K

Ik = ^ ^
cnVk—n

n=—K

(10.5-23)
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FIGURE 10.5-2

Godard scheme for combined adaptive (blind) equalization and carrier phase tracking.

and the input to the decision device as In exp(—j$k\ where 0* is the carrier phase

estimate in the fcth symbol interval.

If the desired symbol were known, we could form the error signal

Sk = Ik- I ke~
J$k (10.5-24)

and minimize the MSE with respect to $k and {cn }, i.e.,

min £(14 - tke~
j^

|

2
)

(10.5-25)
$t ,c

This criterion leads us to use the LMS algorithm for recursively estimating C and <j>k .

The LMS algorithm based on knowledge of the transmitted sequence is

<4+ i
= Ck + Ac (4 - I ke-^)V*ke

&

(10.5-26)

4+i = 4 + A0Im(4/>^) (10.5-27)

where A c and are the step-size parameters for the two recursive equations. Note

that these recursive equations are coupled together. Unfortunately, these equations will

not converge, in general, when the desired symbol sequence {4} is unknown.

The approach proposed by Godard is to use a criterion that depends on the amount

of intersymbol interference at the output of the equalizer but one that is independent of

the QAM signal constellation and the carrier phase. For example, a cost function that

is independent of carrier phase and has the property that its minimum leads to a small

MSE is

G {p) = E(\Ik \

p -\Ik \

pf (10.5-28)

where p is a positive and real integer. Minimization of G (/7) with respect to the equalizer

coefficients results in the equalization of the signal amplitude only. Based on this

observation, Godard selected a more general cost function, called the dispersion of
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orderp ,
defined as

D (p) = E(\I k
\P -Rp )

2
(10.5-29)

where Rp is a positive real constant. As in the case of G^p\ we observe that D^p>}
is

independent of the carrier phase.

Minimization of with respect to the equalizer coefficients can be performed

recursively according to the steepest-descent algorithm

dD {p)

Ck+i = Ck
- Ap
—— (10.5-30)
dt k

where A p is the step-size parameter. By differentiating D

^

and dropping the expecta-

tion operation, we obtain the following LMS-type algorithm for adjusting the equalizer

coefficients:

Ck+i = ck + Ap V*k Ik \Ik \

p~2 {Rp - \tk
\P

)

(10.5-31)

where A p is the step-size parameter and the optimum choice of Rp is

E(\Ik ?P)

P ~
E(\Ik \p)

(10.5-32)

As expected, the recursion in Equation 10.5-31 for Ck does not require knowledge

of the carrier phase. Carrier phase tracking may be carried out in a decision-directed

mode according to Equation 10.5-27, with Ik substituted in place of Ik .

Of particular importance is the case p — 2, which leads to the relatively simple

algorithm

ck+ 1
= C k + Ap V*k I k (R2 - \!k \

2
)

$k+

1

=4>k + A^ Im (l k I*k e
j*k

)

where I k is the output decision based on I k ,
and

Ml
E{\Ik \

2
)

(10.5-34)

Convergence of the algorithm given in Equation 10.5-33 is demonstrated in the

paper by Godard (1980). Initially, the equalizer coefficients are set to zero except for

the center (reference) tap, which is set according to the condition

kol
2 >

E\Ik \

4

2
|

x0 |

2
[£(|/*|

2
)]

2
(10.5-35)

which is sufficient, but not necessary, for convergence of the algorithm. Simulation

results performed by Godard on simulated telephone channels with typical frequency-

response characteristics and transmission rates of 7200-12,000 bits/s indicate that the

algorithm in Equation 10.5-3
1 performs well and leads to convergence in 5000-20,000

iterations, depending on the signal constellation. Initially, the eye pattern was closed

prior to equalization. The number of iterations required for convergence is about an

order of magnitude greater than the number required to equalize the channels with
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a known training sequence. No apparent difficulties were encountered in using the

decision-directed phase estimation algorithm in Equation 10.5-33 from the beginning

of the equalizer adjustment process.

10.5-3 Blind Equalization Algorithms Based on Second- and Higher-Order
Signal Statistics

It is well known that second-order statistics (autocorrelation) of the received signal

sequence provide information on the magnitude of the channel characteristics, but not

on the phase. However, this statement is not correct if the autocorrelation function of

the received signal is periodic, as is the case for a digitally modulated signal. In such

a case, it is possible to obtain a measurement of the amplitude and the phase of the

channel from the received signal. This cyclostationarity property of the received signal

forms the basis for a channel estimation algorithm devised by Tong et al. (1994, 1995).

It is also possible to estimate the channel response from the received signal by using

higher-order statistical methods. In particular, the impulse response of a linear, discrete-

time-invariant system can be obtained explicitly from cumulants of the received signal,

provided that the channel input is non-Gaussian. We describe the following simple

method, due to Giannakis (1987) and Giannakis and Mendel (1989) for estimation

of the channel impulse response from fourth-order cumulants of the received signal

sequence. For simplicity, we assume that the received signal sequence is real-valued.

The fourth-order cumulant is defined as

c(vk ,
vk+m ,

vk+n , Vk+i) = cr (m, n, l )

= E^VkVk+mVk+nVk+l)

- E(vk vk+m)E(vk+n vk+i) (10.5-36)

E(Vk Vk+n)E(vk+m Vk +i')

E(vk u^-|_/)E'(u^_|_m u^_|_n )

(The fourth-order cumulant of a Gaussian signal process is zero.) Consequently, it

follows that

Cripl ,
n, 0 — c(Ik> Ik+mi 4+«) Ik+l) ^ ^ fkfk+mfk+nfk+l (10.5—37)

k=

0

For a statistically independent and identically distributed input sequence {In } to

the channel, c(Ik ,
Ik+m ,

Ik+n , h+i) = k, a constant, which is called the kurtosis. Then,

if the length of the channel response is L + 1, we may let m = n = l = —L so that

cr(—L, —L, —L) = kfL fQ (10.5-38)

Similarly, if we let m = 0, n = L, and l = p, we obtain

Cr (o, L,p) = kfiflfp (10.5-39)
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If we combine Equations 10.5-38 and 10.5-39, we obtain the impulse response within

a scale factor as

fp = fo
Cr(0, L, p)

cr(—L, —L, —L)'
p = l,2,...,L (10.5-40)

The cumulants cr(m,n, l) are estimated from sample averages of the received signal

sequence {u„}.

Another approach based on higher-order statistics is due to Hatzinakos and Nikias

(1991). They have introduced the first polyspectra-based adaptive blind equalization

method named the tricepstrum equalization algorithm (TEA). This method estimates

the channel response characteristics by using the complex cepstrum of the fourth-

order cumulants (tricepstrum) of the received signal sequence {vn }. TEA depends

only on fourth-order cumulants of {vn } and is capable of separately reconstructing

the minimum-phase and maximum-phase characteristics of the channel. The channel

equalizer coefficients are then computed from the measured channel characteristics.

The basic approach used in TEA is to compute the tricepstrum of the received sequence

{vn }, which is the inverse (three-dimensional) Fourier transform of the logarithm of the

trispectrum of {vn }. [The trispectrum is the three-dimensional discrete Fourier trans-

form of the fourth-order cumulant sequence cr (ra, n, /).] The equalizer coefficients are

then computed from the cepstral coefficients.

By separating the channel estimation from the channel equalization, it is possible

to use any type of equalizer for the ISI, i.e., either linear, or decision-feedback, or

maximum-likelihood sequence detection. The major disadvantage with this class of al-

gorithms is the large amount ofdata and the inherent computational complexity involved

in the estimation of the higher-order moments (cumulants) of the received signal.

In conclusion, we have provided an overview of three classes of blind equalization

algorithms that find applications in digital communications. Of the three families of

algorithms described, those based on the maximum-likelihood criterion for jointly

estimating the channel impulse response and the data sequence are optimal and require

relatively few received signal samples for performing channel estimation. However,

the computational complexity of the algorithms is large when the ISI spans many
symbols. On some channels, such as the mobile radio channel, where the span of the

ISI is relatively short, these algorithms are simple to implement. However, on telephone

channels, where the ISI spans many symbols but is usually not too severe, the LMS-type

(stochastic gradient) algorithms are generally employed.

10.6

BIBLIOGRAPHICAL NOTES AND REFERENCES

Adaptive equalization for digital communications was developed by Lucky (1965,

1966). His algorithm was based on the peak distortion criterion and led to the zero-

forcing algorithm. Lucky’s work was a major breakthrough, which led to the rapid

development of high-speed modems within 5 years of publication of his work. Concur-

rently, the LMS algorithm was devised by Widrow(1966, 1970), and its use for adaptive
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equalization for two-dimensional (in-phase and quadrature components) signals was

described and analyzed in a tutorial paper by Proakis and Miller (1969).

A tutorial treatment of adaptive equalization algorithms that were developed during

the period 1965-1975 is given by Proakis (1975). A more recent tutorial treatment of

adaptive equalization is given in the paper by Qureshi (1985). The major breakthrough

in adaptive equalization techniques, beginning with the work of Lucky in 1965 coupled

with the development of trellis-coded modulation, which was described by Ungerboeck

and Csajka (1976), has led to the development of commercially available high-speed

modems with a capability of speeds exceeding 30,000 bits/s on telephone channels.

The use of a more rapidly converging algorithm for adaptive equalization was pro-

posed by Godard (1974). Our derivation of the RLS (Kalman) algorithm, described

in Section 10.4-1, follows the approach outlined by Picinbono (1978). RLS lattice

algorithms for general signal estimation applications were developed by Morf (1977),

Morf and Lee (1978), and Morf et al. (1977a,b,c). The applications of these algorithms

have been investigated by several researchers, including Makhoul (1978), Satorius and

Pack (1981), Satorius and Alexander (1979), and Ling and Proakis (1982, 1984a-c,

1985, 1986). The fast RLS Kalman algorithm for adaptive equalization was first de-

scribed by Falconer and Ljung (1978). The above references are just a few of the

important papers that have been published on RLS algorithms for adaptive equalization

and other applications. A comprehensive treatment of RLS algorithms is given in the

books by Haykin (2002) and Proakis et al. (2002).

Sato’s (1975) original work on blind equalization was focused on PAM (one-

dimensional) signal constellations. Subsequently it was generalized to two-dimensional

and multidimensional signal constellations in the algorithms devised by Godard (1980),

Benveniste and Goursat (1984), Sato et al. (1986), Foschini (1985), Picchi and Prati

(1987), and Shalvi and Weinstein (1990). Blind equalization methods based on the use

of second- and higher-order moments ofthe received signal were proposedby Giannakis

(1987), Giannakis and Mendel (1989), Hatzinakos and Nikias (1991), and Tong et al.

(1994, 1995). The use of the maximum-likelihood criterion forjoint channel estimation

and data detection has been investigated and treated in papers by Sato (1994), Seshadri

(1994), Ghosh and Weber (1991), Zervas et al. (1991), and Raheli et al. (1995). Finally,

the convergence characteristics of stochastic gradient blind equalization algorithms

have been investigated by Ding (1990), Ding et al. (1989), and Johnson (1991).

PROBLEMS

10.1 An equivalent discrete-time channel with white Gaussian noise is shown in Figure P10.

1

a. Suppose we use a linear equalizer to equalize the channel. Determine the tap coeffi-

cients c_i, Co, c\ of a three-tap equalizer. To simplify the computation, let the AWGN
be zero.

b. The tap coefficients of the linear equalizer in (a) are determined recursively via the

algorithm

Ck+i = Ck ~ AGfc, Gfc — \C—\k CQk C\k\
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where Gk = rCk — % is the gradient vector and A is the step size. Determine the

range of values of A to ensure convergence of the recursive algorithm. To simplify

the computation, let the AWGN be zero.

c. Determine the tap weights of a DFE with two feedforward taps and one feedback tap.

To simplify the computation, let the AWGN be zero.

FIGURE P10.1

10.2 Refer to Problem 9.49 and answer the following questions.

a. Determine the maximum value of A that can be used to ensure that the equalizer

coefficients converge during operation in the adaptive mode.

b. What is the variance of the self-noise generated by the three-tap equalizer when

operating in an adaptive mode, as a function of A? Suppose it is desired to limit

the variance of the self-noise to 10 percent of the minimum MSE for the three-tap

equalizer when No = 0.1. What value of A would you select?

c. If the optimum coefficients of the equalizer are computed recursively by the method

of steepest descent, the recursive equation can be expressed in the form

Cn+\ — (I ~ Ar)Cn + A£

where I is the identity matrix. The above represents a set of three coupled first-

order difference equations. They can be decoupled by a linear transformation that

diagonalizes the matrix T. That is, T = UAU 1 where A is the diagonal matrix

having the eigenvalues of JT as its diagonal elements and U is the (normalized) modal

matrix that can be obtained from your answer to Problem 9.49(b). Let C' = U tC and

determine the steady-state solution for C\ From this, evaluate C = (J7*)
-1

C" = UC
and, thus, show that your answer agrees with the result obtained in Problem 9.49(a).

10.3 When a periodic pseudorandom sequence of length N is used to adjust the coefficients of

an A-tap linear equalizer, the computations can be performed efficiently in the frequency

domain by use of the discrete Fourier transform (DFT). Suppose that {yrt } is a sequence of

N received samples (taken at the symbol rate) at the equalizer input. Then the computation

of the equalizer coefficients is performed as follows.

a. Compute the DFT of one period of the equalizer input sequence {yrt }, i.e.,

N-

1

Yk = ^2 y" e

n=

0

—jliznk/N
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b. Compute the desired equalizer spectrum

_
*k Yj

ini
2

k = 0, 1 iV — 1

where {X/} is the precomputed DFT of the training sequence.

c. Compute the inverse DFT of {Ck } to obtain the equalizer coefficients {cn }. Show that

this procedure in the absence of noise yields an equalizer whose frequency response

is equal to the frequency response of the inverse folded channel spectrum at the N
uniformly spaced frequencies fk = k/NT, k = 0, 1, . .

. ,
TV — 1.

10.4

Show that the gradient vector in the minimization of the MSE may be expressed as

Gk = ~E{ek Vt)

where the error sk = Ik — I k ,
and the estimate of Gk ,

i.e.,

Gk = -sk Vt

satisfies the condition that E{Gk )
= Gk .

10.5

The tap-leakage LMS algorithm proposed in the paper by Gitlin et al. (1982) may be

expressed as

CN (n + 1) = wCN (n) + Ae(n)V*N (n)

where 0 < w < 1, A is the step size, and Vn(k) is the data vector at time n. Determine

the condition for the convergence of the mean value of C^(n).

10.6

Consider the random process

x(n) = gv(n) + w(n), n = 0, 1, . .
.

,

Af — 1

where v(n) is a known sequence, g is a random variable with E(g) = 0, and E(g2
) = G.

The process w{n) is a white noise sequence with

YWw(Wt) = CfyySyn

Determine the coefficients of the linear estimator for g, that is,

Af—

1

g =^ h(n)x(n)

n=

0

that minimize the mean square error.

10.7

A digital transversal filter can be realized in the frequency-sampling form with system

function (see Problem 9.56)

H(z) =
1 -z~M

M

Af—

1

E Hk

l — ej2nk/Mz -l

= Hx (z)H2 {z)

where H\(z) is the comb filter, H2 (z) is the parallel bank of resonators, and {Hk } are the

values of the discrete Fourier transform (DFT).

a. Suppose that this structure is implemented as an adaptive filter using the LMS algo-

rithm to adjust the filter (DFT) parameters {Hk }. Give the time-update equation for

these parameters. Sketch the adaptive filter structure.



Chapter Ten: Adaptive Equalization 735

b. Suppose that this structure is used as an adaptive channel equalizer in which the desired

signal is

! 2lXk
d(n ) = > Ak cos cokn, a>k =^ M

k=0

With this form for the desired signal, what advantages are there in the LMS adaptive

algorithm for theDFT coefficients {Hk) over the direct-form structure with coefficients

[h(n)}l [See Proakis (1970).]

10.8 Consider the performance index

J = h
2 + 40h + 28

Suppose that we search for the minimum of J by using the steepest-descent algorithm

h(n + 1 )
= h{n) - \Ag{n)

where g(n) is the gradient.

a. Determine the range of values of A that provides an overdamped system for the

adjustment process.

b. Plot the expression for / as a function of n for a value of A in this range.

10.9 Determine the coefficients a\ and a

i

for the linear predictor shown in Figure PI 0.9, given

that the autocorrelation yxx (m) of the input signal is

yxx(m) = b'
m
K 0 <b <1

FIGURE P10.9

10.10

Determine the lattice filter and its optimum reflection coefficients corresponding to the

linear predictor in Problem 10.9.

10.11

Consider the adaptive FIR filter shown in Figure P10. 1 1 . The system C(z ) is characterized

by the system function

C(z)
1

1 - 0.9z
-1

Determine the optimum coefficients of the adaptive transversal (FIR) filter B(z) = bo +
b\z~

l
that minimize the mean square error. The additive noise is white with variance

<r

w

= 0.1.
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' e(n)

FIGURE P10.ll

10.12 AnN x N correlation matrix T has eigenvalues > • •• > XN > 0 and associated

eigenvectors V\, V2 ,
. .

. ,
v^. Such a matrix can be represented as

r =
1=1

2 . Ifr = r 1 /2r 1/2
, where r 1/2

is the square root of U, show that JT
1 /2 can be represented

as

r 1 '1 = Y,A
/2

Vi vf
i=

1

Using this representation, determine a procedure for computing JT^
2

.
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Multichannel and Multicarrier Systems

In some applications, it is desirable to transmit the same information-bearing signal

over several channels. This mode of transmission is used primarily in situations where

there is a high probability that one or more of the channels will be unreliable from

time to time. For example, radio channels such as ionospheric scatter and tropospheric

scatter suffer from signal fading due to multipath, which renders the channels unreliable

for short periods of time. As another example, multichannel signaling is sometimes

employed in wireless communication systems as a means of overcoming the effects

of interference of the transmitted signal. By transmitting the same information over

multiple channels, we are providing signal diversity, which the receiver can exploit to

recover the information.

Another form of multichannel communications is multiple carrier transmission,

where the frequency band of the channel is subdivided into a number of subchannels

and information is transmitted on each of the subchannels. A rationale for subdividing

the frequency band of a channel into a number of narrowband channels is given below.

In this chapter, we consider both multichannel signal transmission and multicarrier

transmission. The focus is on the performance of such systems in AWGN channels.

The performance of multichannel and multicarrier transmission in fading channels is

treated in Chapter 13. We begin with a treatment of multichannel transmission.

11.1

MULTICHANNEL DIGITAL COMMUNICATIONS IN AWGN CHANNELS

In this section, we confine our attention to multichannel signaling over fixed channels

that differ only in attenuation and phase shift. The specific model for the multichannel

digital signaling system is illustrated in Figure 1 1 . 1-1 and may be described as follows.

The signal waveforms, in general, are expressed as

s£\t) - Re [s™(t)eJ27cfct
]

,

0 <t<T
n = 1,2, . .

. , L, m = 1,2, ...,M (11.1-1)

737
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Output decision

FIGURE 11.1-1

Model of a multichannel digital communication system.

where L is the number of channels andM is the number of waveforms. The waveforms

are assumed to have equal energy and to be equally probable a priori. The waveforms

{s%\t)} transmitted over the L channels are scaled by the attenuation factors {an },

phase-shifted by {</>„}, and corrupted by additive noise. The equivalent low-pass signals

received from the L channels may be expressed as

r\
n
\t) = ocn e

J<t)n
s\

n
2{t) + zn (t), 0 <t <T

n = 1,2, ...,L, m — 1,2, ... 9
M (11.1-2)

where {s^J(t)} are the equivalent lowpass transmitted waveforms and {zn (t)} represent

the additive noise processes on the L channels. We assume that {zn (t)} are mutually

statistically independent and identically distributed Gaussian noise random processes.

We consider two types of processing at the receiver, namely, coherent detection

and noncoherent detection. The receiver for coherent detection estimates the channel

parameters {an } and {(j>n } and uses the estimates in computing the decision variables.

Suppose we define gn = ane^n and let gn be the estimate of gn . The multichannel

receiver correlates each of the L received signals with a replica of the corresponding

transmitted signals, multiplies each of the correlator outputs by the corresponding

estimates {£*}, and sums the resulting signals. Thus, the decision variables for coherent

detection are the correlation metrics

CMm = in)
r

l
(t)sfj*(t)dt ,

m = 1, 2, . .
.

,

M (11.1-3)

In noncoherent detection, no attempt is made to estimate the channel parameters.

The demodulator may base its decision either on the sum of the envelopes (envelope

detection) or the sum of the squared envelopes (square-law detection) of the matched

filter outputs. In general, the performance obtained with envelope detection differs little

from the performance obtained with square-law detection in AWGN. However, square-

law detection of multichannel signaling in AWGN channels is considerably easier

to analyze than envelope detection. Therefore, we confine our attention to square-

law detection of the received signals of the L channels, which produces the decision
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variables

CMm =
L

E
n=

1

/ m = 1,2, M (H.l-4)

Let us consider binary signaling first, and assume that n = 1, 2, . .
.

,

L, are the

L transmitted waveforms. Then an error is committed ifCM2 > CMi ,
or, equivalently,

if the difference D — CM\ — CM2 <0. For noncoherent detection, this difference

may be expressed as

D = ^(ix„l
2 -irn |

2

)

n=

1

(11.1-5)

where the variables
{
X„ ) and { Y„ \

are defined as

Xn= r
Jo

Yn = C r\
n
\t)s\?*(t)dt,

Jo

n = 1, 2, . .
. ,
L

n = 1, 2, . .
. ,
L

(11.1-6)

The {Xn } are mutually independent and identically distributed complex Gaussian ran-

dom variables. The same statement applies to the variables {Yn }. However, for any n
,

Xn and Yn may be correlated. For coherent detection, the difference D = CM\ — CM2

may be expressed as

where, by definition,

D = \YJ
{Xn Y*n+ XlYn )

n=

1

Yn =gn, n = 1
, 2, . .

. , L

Xn = f dt
Jo

(11.1-7)

( 11 . 1-8)

If the estimates {£„} are obtained from observation of the received signal over one or

more signaling intervals, as described in Appendix C, their statistical characteristics

are described by the Gaussian distribution. Then the {Yn } are characterized as mutually

independent and identically distributed Gaussian random variables. The same statement

applies to the variables {Xn }. As in noncoherent detection, we allow for correlation

between Xn and Yn ,
but not between Xm and Yn for m ^ n.

11.1-1 Binary Signals

In Appendix B, we derive the probability that the general quadratic form

L

D = J2 (A\Xn \

2 + fi|r„|
2 + CXn Y* + C*X*Yn )

n=

1

(11.1-9)
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in complex-valued Gaussian random variables is less than zero, where A and B are

real constants and C may be either a real or a complex-valued constant. This proba-

bility, which is given in Equation B-21 of Appendix B, is the probability of error for

binary multichannel signaling in AWGN. A number of special cases are of particular

importance.

If the binary signals are antipodal and the estimates of {g„} are perfect, as in

coherent PSK, the probability of error takes the simple form

Pb = Q(V^Yb) ( 11 . 1-10)

where

Yb

n=

1

No
n=

1

(li.i-ii)

is the SNR per bit. If the channels are all identical, an = a for all n and, hence,

L£ ,

Yb = ^<x2
( 11 . 1-12)

We observe that LS is the total transmitted signal energy for the L signals. The inter-

pretation of this result is that the receiver combines the energy from the L channels

in an optimum manner. That is, there is no loss in performance in dividing the total

transmitted signal energy among the L channels. The same performance is obtained as

in the case in which a single waveform having energy LS is transmitted on one channel.

This behavior holds true only if the estimates gn = gn ,
for all n. If the estimates are

not perfect, a loss in performance occurs, the amount of which depends on the quality

of the estimates, as described in Appendix C.

Perfect estimates for {gn } constitute an extreme case. At the other extreme, we
have binary DPSK signaling. In DPSK, the estimates {£„} are simply the (normalized)

signal-plus-noise samples at the outputs of the matched filters in the previous signaling

interval. This is the simplest estimate that one might consider using in estimating {g„}.

For binary DPSK, the probability of error obtained from Equation B-21 is

Pb
1

22L
~ 1

~Yb

L-

1

Yl cnYb

where, by definition,

cn

(11.1-13)

(11.1-14)

and yb is the SNR per bit defined in Equation 11.1-11 and, for identical channels,

in Equation 11.1-12. This result can be compared with the single-channel (L = 1)

error probability. To simplify the comparison, we assume that the L channels have

identical attenuation factors. Thus, for the same value of yb, the performance of the

multichannel system is poorer than that of the single-channel system. That is, splitting
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the total transmitted energy among L channels results in a loss in performance, the

amount of which depends on L.

A loss in performance also occurs in square-law detection of orthogonal sig-

nals transmitted over L channels. For binary orthogonal signaling, the expression for

the probability of error is identical in form to that for binary DPSK given in Equa-

tion 11.1-13, except that yb is replaced by That is, binary orthogonal signaling

with noncoherent detection is 3 dB poorer than binary DPSK. However, the loss in

performance due to noncoherent combination of the signals received on the L channels

is identical to that for binary DPSK.
Figure 11.1-2 illustrates the loss resulting from noncoherent (square-law) combin-

ing of the L signals as a function of L. The probability of error is not shown, but it can

be easily obtained from the curve of the expression

Pb = \e~» (11.1-15)

which is the error probability of binary DPSK shown in Figure 4.5-5 and then degrad-

ing the required SNR per bit, yb, by the noncoherent combining loss corresponding to

the value of L.

11.1-2 M-ary Orthogonal Signals

Now let us consider M-ary orthogonal signaling with square-law detection and com-

bination of the signals on the L channels. The decision variables are given by Equa-

tion 11.1-4. Suppose that the signals sffit), n = 1, 2, . .
.

,

L, are transmitted over the

0 2 5 10 20 50 100 200 500 1000

Number of channels, L

FIGURE 11.1-2

Combining loss in noncoherent detection and combination of binary multichannel signals.
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L AWGN channels. Then, the decision variables are expressed as

L

CM\ = Ui = ^|2£a,
! + JV„i|

2

n=

1

L

CMm = Um = ^2\Nnm \

2
,

m = 2,3, . .
. ,
M

n=

1

(11.1-16)

where the {Nnm } are circular complex-valued zero-mean Gaussian random variables

with variance cr
2 = 28Nq per real and imaginary component. Hence U\ is described

statistically as a noncentral chi-square random variable with 2L degrees of freedom

and noncentrality parameter

5
2 = YP-£<*nf = 4£2Y an (11.1-17)

n= 1 n=

1

Using Equation 2.3-29, we obtain the PDF of U\ as

piui)
1

4£N0

U 1

(L- 1)/2

exp
5
2 + Ml\ /

4£N0 )

L~ l

\2£N0

ui>0 (11.1-18)

On the other hand, the {Um }, m = 2, 3, . .
.

,

Af
,
are statistically independent and iden-

tically chi-square-distributed random variables, each having 2L degrees of freedom.

Using Equation 2.3-21, we obtain the PDF for Um as

p(um )
= — u

l l

e
Um,AEN

\ um > 0F ;
(4SNq)l (L — 1)!

m

m = 2,3, ...,M (11.1-19)

The probability of a symbol error is

Pe = 1 - Pc

= 1 ~ />(£/2 < £/i, u3 < Ui, . .
. ,
UM < Ui)

=‘-/° [P(U2 < u\\U\ = ui)\
M- x p(u{)du

But

P(U, < u,\U, = „,) = 1 - exp
[ g i (-£4£N0 J f^k\ \4£N0

Hence,

P = i _ f°° i _ g-»./4£JVb V' 1 (
Ml

)
' Jo t-Zk\\4£N0 )

POO / ^ 1

= i-/
4o V t=0

M~ 1

fc=0

i“ 1 iM"
_1

k\

p(u\)du\

e
(-y+v

'>iL_ l (2y/yv)dv

(11.1-20)

(11.1-21)

(11.1-22)
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where

N0

The integral in Equation 1 1.1-22 can be evaluated numerically. It is also possible

to expand the term (1 — x)
M~ l

in Equation 1 1.1-22 and carry out the integration term

by term. This approach yields an expression for Pe in terms of finite sums.

An alternative approach is to use the union bound

Pe < (M — l)ft(L) (11.1-23)

where /^(L) is the probability of error in choosing between U\ and any one of the

M — 1 decision variables {Um }, m = 2, 3, . .
.

,

M. From our previous discussion on

the performance of binary orthogonal signaling, we have

1
L_1

P2(L) = ^e~k¥^ Cn(\kyhf (11.1-24)
1

Tl=

0

where cn is given by Equation 11.1-14. For relatively small values of Af, the union

bound in Equation 1 1.1-23 is sufficiently tight for most practical applications.

11.2

MULTICARRIER COMMUNICATIONS

From our treatment of nonideal linear filter channels in Chapters 9 and 10, we have

observed that such channels introduce ISI, which degrades performance compared with

the ideal channel. The degree of performance degradation depends on the frequency-

response characteristics. Furthermore, the complexity of the receiver increases as the

span of the ISI increases.

In this section, we consider the transmission of information on multiple carriers

contained within the allocated channel bandwidth. The primary motivation for transmit-

ting the data on multiple carriers is to reduce ISI and, thus, eliminate the performance

degradation that is incurred in single carrier modulation.

11.2-1 Single-Carrier Versus Multicarrier Modulation

Given a particular channel characteristic, the communication system designer must

decide how to efficiently utilize the available channel bandwidth in order to transmit

the information reliably within the transmitter power constraint and receiver complexity

constraints. For a nonideal linear filter channel, one option is to employ a single-carrier

system in which the information sequence is transmitted serially at some specified rate

R symbols/s. In such a channel, the time dispersion is generally much greater than
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the reciprocal of the symbol rate, and, hence, ISI results from the nonideal frequency-

response characteristics of the channel. As we have observed, an equalizer is necessary

to compensate for the channel distortion.

As an example of such an approach, we cite the modems designed to transmit data

through voice-band channels in the switched telephone network, which are based on the

International Telecommunications Union (ITU) standard V.34. Such modems employ

QAM impressed on a single carrier that is selected along with the symbol rate from a

small set of specified values to obtain the maximum throughout at the desired level of

performance (error rate). The channel frequency-response characteristics are measured

upon initial setup of the telephone circuit, and the symbol rate and carrier frequency

are selected based on this measurement.

An alternative approach to the design of a bandwidth-efficient communication sys-

tem in the presence of channel distortion is to subdivide the available channel bandwidth

into a number of subchannels, such that each subchannel is nearly ideal. To elaborate,

suppose that C(f) is the frequency response of a nonideal, band-limited channel with

a bandwidth W ,
and that the power spectral density of the additive Gaussian noise is

Snn (f). Then we divide the bandwidth W into N = W/Af subbands of width A/,
where A/ is chosen sufficiently small that \C(f)\

2/Snn (f) is approximately a con-

stant within each subband. Furthermore, we select the transmitted signal power to be

distributed in frequency as P(f ), subject to the constraint that

[ P(f)df<Pav (11.2-1)
Jw

where Pav is the available average power of the transmitter. Then we transmit the data

on these N subchannels. Before proceeding further with this approach, we evaluate the

capacity of the nonideal additive Gaussian noise channel.

11.2-2 Capacity of a Nonideal Linear Filter Channel

Recall that the capacity of an ideal, band-limited, AWGN channel is

c = w,o^{' + wk) <
n -2-2)

where C is the capacity in bits/s, W is the channel bandwidth, and Pav is the average

transmitted power. In a multicarrier system, with A/ sufficiently small the subchannel

has capacity

Ci = A/ log2 1 +
AfP(fi)\C(fi)\

2

AfSM)
Hence, the total capacity of the channel is

N N

c = £q = A/5>g2

*=1 i=l

i +
P(fi)\C(fj )\

2

Snn(fi)

(11.2-3)

(11.2-4)
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In the limit as A/ —> 0,we obtain the capacity of the overall channel in bits/s as

C = 1

f (/)|C(/)|
2

1

Snnifi)
df (11.2-5)

Under the constraint on P(f ) given by Equation 11.2-1, the choice of P(f) that

maximizes C may be determined by maximizing the integral

t
^(/)|C(/)I

2

'

Snn(f)
+ XP{f)\df (11.2-6)

where A. is a Lagrange multiplier, which is chosen to satisfy the constraint. By us-

ing the calculus of variations to perform the maximization, we find that the optimum
distribution of transmitted signal power is obtained from the solution to the equation

p(f) + <s„„(/)/|C(/)i 2
+x = ° (1L2_7)

Therefore, P(f) + Snn(f)\C(f)\
2 must be a constant, whose value is adjusted to satisfy

the average power constraint in Equation 11.2-1. That is,

P(f) =
K-Snn(f)/\C(f)\

2

0

feW
ftw ( 11 .2-8 )

This expression for the channel capacity of a nonideal linear filter channel with additive

Gaussian noise is due to Holsinger (1964). The basic interpretation of this result is that

the signal power should be high when the channel SNR \C(f)\
2/Snn(f) is high, and

low when the channel SNR is low. This result on the transmitted power distribution

is illustrated in Figure 11.2-1. Observe that if Snn(f)/\C(f)\
2

is interpreted as the

bottom of a bowl of unit depth, and we pour an amount of water equal to Pav into

the bowl, the water will distribute itself in the bowl so as to achieve capacity. This is

called the water-filling interpretation of the optimum power distribution as a function

of frequency.

It is interesting to note that the channel capacity is smallest when the channel

SNR \C(f)\
2/Snn(f) is a constant for all f e W. In this case, P(f) is a constant for

all f e W. Equivalently, if the channel frequency response is ideal, i.e., C(/) = 1

for f e W, then the worst Gaussian noise power distribution, from the viewpoint of

maximizing capacity, is white Gaussian noise.

SJJ)

|

C(/)|
2

|-« w !

FIGURE 11.2-1

The optimum power distribution based on water-filling

interpretation.

Frequency/
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11.2-3 Orthogonal Frequency Division Multiplexing (OFDM)

The above development suggests that multicarrier modulation that divides the available

channel bandwidth into subbands of relatively narrow width A/ = W/N provides a

solution that could yield transmission rates close to channel capacity. The signal in

each subband may be independently coded and modulated at a synchronous symbol

rate of 1/A/. If A/ is small enough, the channel frequency response C(f) is essentially

constant across each subband. Hence, the intersymbol interference is negligible. Such

a subdivision of the channel bandwidth W is illustrated in Figure 1 1.2-2.

With each subband (or subchannel), we associate a sinusoidal carrier signal of the

form

sk (t) = cos27tfk t, k = 0, 1,
.

,

N —
1 (11.2-9)

where fk is the mid frequency in the kth subchannel. By selecting the symbol rate \/T

in each of the subchannels to be equal to the frequency separation A/ of the adjacent

subcarriers, the subcarriers are orthogonal over the symbol interval T, independent of

the relative phase relationship between subcarriers. That is,

T

cos(27xfk t + </>k)cos(2nfjt + 4>j)dt = 0 (11.2-10)

where fk — fj = n/T, n = 1, 2, . .
.

,

N —
1, independent of the values of the phases

4>k and (j)j. Thus, we construct orthogonal frequency-division multiplexed (OFDM)
signals. In other words, OFDM is a special type of multicarrier modulation in which

the subcarriers of the corresponding subchannels are mutually orthogonal, as defined

in Equation 1 1.2-10.

Multicarrier modulation (OFDM) is widely used in both wireline and radio chan-

nels. For example, OFDM has been adopted as a standard for digital audio broadcast

applications and wireless local area networks based on the IEEE 802.1 1 standard.

A particular suitable application of OFDM is in digital transmission over copper

wire subscriber loops. The typical channel attenuation characteristics for such sub-

scriber lines are illustrated in Figure 1 1.2-3. We observe that the attenuation increases

rapidly as a function of frequency. This characteristic makes it extremely difficult to

FIGURE 11.2-2

Subdivision of the channel bandwidth

W into narrowband subchannels of

equal width A/.
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FIGURE 11.2-3

Attenuation characteristic of a 24-gauge 12,000-ft

polyethylene-insulated cable loop. [From Werner (1991)

© IEEE.]

achieve a high transmission rate with a single modulated carrier and an equalizer at the

receiver. The ISI penalty in performance is very large. On the other hand, OFDM with

optimum power distribution provides the potential for a higher transmission rate.

The dominant noise in transmission over subscriber lines is crosstalk interference

from signals carried on other telephone lines located in the same cable. The power

distribution of this type of noise is also frequency-dependent, which can be taken into

consideration in the allocation of the available transmitted power.

A design procedure for a multicarrierQAM system for a nonideal linear filter chan-

nel has been given by Kalet (1989). In this procedure, the overall bit rate is maximized,

through the design of an optimal power division among the subcarriers and an optimum

selection of the number of bits per symbol (sizes of the QAM signal constellations) for

each subcarrier, under an average power constraint and under the constraint that the

symbol error probabilities for all subcarriers are equal.

11.2-4 Modulation and Demodulation in an OFDM System

In an OFDM system with N subchannels, the symbol rate 1/T is reduced by a factor

of N relative to the symbol rate on a single carrier system that employs the entire

bandwidth W and transmits data at the same rate as OFDM. Hence, the symbol interval

in the OFDM system is T = NTS ,
where Ts is the symbol interval in the single-

carrier system. By selecting N to be sufficiently large, the symbol interval T can

be made significantly larger than the time duration of the channel-time dispersion.

Thus, intersymbol interference can be made arbitrarily small through the selection

of N

.

In other words, each subchannel appears to have a fixed frequency response

C(fk ), =
Suppose that each subcarrier is modulated with M-ary QAM. Then the signal on

the kth subcarrier may be expressed as

Uk(t) = Y
jA ki cos 2nfk t - y^Akq sin2jzfk t

^Ake^e^‘= Re ( 11 .2-11 )
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where Xk = Ak e
j0k is the signal point from the QAM signal constellation that is

transmitted on the kth subcarrier, A k = yj
A ^ + A^ ,

and 0k = tan \Akq/Aki ). The

energy per symbol £s has been absorbed into {Xk }

.

When the number of subchannels is large, so that the subchannels are sufficiently

narrowband, each subchannel can be characterized by a fixed frequency response

C(fk ), k = 0, 1, . .
.

,

N — 1. In general, C(fk ) is complex-valued and may be ex-

pressed as

C(/t) = Ck = |

Ck \e>*

Hence, the received signal on the fcth subchannel is

( 11 .2-12)

n(t) = \Ck \Akc cos(2nfk t + <t>k ) + ^\Ck \Aks sin(2jrfk t + <pk ) + n k (t )

= Re -CkXk e + nk (t) (11.2-13)

where nk (t) represents the additive noise in the kth subchannel. We assume that nk (t)

is zero-mean Gaussian and spectrally flat across the bandwidth of the kth subchannel.

We also assume that the channel parameters \Ck \

and 4>k are known at the receiver.

(These parameters are usually estimated by initially transmitting the unmodulated car-

rier cos 2nfk t and observing the received signal \Ck \

cos (2nfk t + <pk )-)

The demodulation of the received signal in the kth subchannel may be accomplished

by cross-correlating rk (t) with the two basis functions, based on knowledge of the carrier

phase {cj)k } at the receiver,

WO = A/
— cos(2ttfk t + 0*),

fi(t) = -\j — sin(2jxfk t + c/)k ),

0 <t <T

0 <t <T

(11.2-14)

and sampling the output of the cross-correlators at t = T. Thus, we obtain the received

signal vector

yh = (|Q |
Aw + rikr ,

\Ck \Akq + rjki ) (11.2-15)

which can also be expressed as the complex number

Yk = \Ck \Xk + m (11.2-16)

where r]k = r)kr + jrjki represents the additive noise.

The scaling of the transmitted symbol by the channel gain |Q| can be removed by

dividing Yk by |Q|. Thus, we obtain

Y'
k = Yk/\Ck \

= Xk + rik (11.2-17)
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where rj
k = rjk/\Ck \. The normalized variable Y

k
is passed to the detector, which

computes the distance metrics between Y

l

and each of the possible signal points in the

QAM signal constellation and selects the signal point resulting in the smallest distance.

From this description, it is clear that two cross-correlators or two matched filters

are required to demodulate the received signal in each subchannel. Therefore, if the

OFDM signal consists ofN subchannels, the implementation of the OFDM demodula-

tor requires a parallel bank of 2N cross-correlators or 2N matched filters. Furthermore,

the modulation process for generating the OFDM signal can also be viewed as ex-

citing a bank of 2N parallel filters with symbols taken from an M-ary QAM signal

constellation.

The bank of 2N parallel filters that generates the modulated signal at the transmitter

and demodulates the received signal is equivalent to the computation of the discrete

Fourier transform (DFT) and its inverse. Since an efficient computation of the DFT
is the fast Fourier transform (FFT) algorithm, a more efficient implementation of the

modulation and demodulation processes when N is large, e.g., N > 32, is by means of

the FFT algorithm. In the next section, we describe the implementation of the modulator

and demodulator in an OFDM system that uses the FFT algorithm to compute the DFT.

Since the signals transmitted on the N subchannels of the OFDM system are

synchronized, the received signals on any pair of subchannels are orthogonal over the

interval 0 < t < T. If the subchannel gains \Ck\, 0 < k < N —
1, are sufficiently

different across the channel bandwidth, subchannels that yield a higher SNR due to a

lower attenuation can be modulated to carry more bits per symbol than subcarriers that

yield a lower SNR (high attenuation). Consequently, QAM with different constellation

sizes can be used on the different subchannels of an OFDM system. This assignment

of different constellation sizes to different subchannels is generally done in practice.

11.2-5 An FFT Algorithm Implementation of an OFDM System

In this section we describe a multicarrier communication system that employs the

fast Fourier transform algorithm to synthesize the signal at the transmitter and to demod-

ulate the received signal at the receiver. The FFT is simply the efficient computational

tool for implementing the DFT.

Figure 1 1.2-4 illustrates a block diagram of a multicarrier communication system.

A serial-to-parallel buffer segments the information sequence into frames of Nf bits.

The Nf bits in each frame are parsed into N groups, where the ith group is assigned b
t

bits, and

N

Y,bi = Nf (11.2-18)

1= 1

Each group may be encoded separately, so that the number of output bits from the

encoder for the i th group is rii > b(.

It is convenient to view the multicarrier modulation as consisting ofN independent

QAM channels, each operating at the same symbol rate 1/ T, but each channel having

a distinct QAM constellation; i.e., the i th channel will employ M = 2bi signal points.
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FIGURE 11.2-4

Multicarrier communication system.

We denote the complex-valued signal points corresponding to the information symbols

on the subchannels by X*, k = 0, 1, . .
.

,

N — 1. To modulate the N subcarriers by the

information symbols {X&}, we employ the inverse DFT (IDFT).

However, if we compute the TV-point IDFT of {Xk }, we obtain a complex-valued

time series, which is not equivalent to N QAM-modulated subcarriers. Instead, we
create N = IN information symbols by defining

XN-k = Xj, k = 1, . .
.

,

N -
1 (11.2-19)

and Xo = Re(Xo), X# = Im(Xo). Thus, the symbol Xo is split into two parts, both

real. Then the Af-point IDFT yields the real-valued sequence

l
N~ 1

xn = —= J2 Xk e
j2nnk'N

,
n = 0, 1, . .

.

,

N - 1 (1 1.2-20)
vN

k_0

where 1/yfN is simply a scale factor.

The sequence {xn , 0 < n < N —
1} corresponds to the samples of the sum x(t ) of

N subcarrier signals, which is expressed as

1
N-

1

x(t) = —=YjXk e
jlnkt/T

, 0 <t <T (11.2-21)

k=0

where T is the symbol duration. We observe that the subcarrier frequencies are

fk = k/T, k = 0, 1, . .
.

,

N. Furthermore, the discrete-time sequence {xn } in Equa-

tion 11.2-20 represents the samples of x(t) taken at times t = nT/N where n — 0,

1, . .
. ,

TV — 1.

The computation of the IDFT of the data {X^} as given in Equation 1 1.2-20 may
be viewed as multiplication of each data point Xk by a corresponding vector

where

vk = [v*o 1*1 • • • 1*(V-1)] ( 11 .2-22)

Vkn
Vn

j(2n/N)kn
( 11 .2-23 )
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FIGURE 11.2-5

Signal synthesis for multicarrier modulation

based on inverse DFT.

as illustrated in Figure 11.2-5. In any case, the computation of the DFT is performed

efficiently by the use of the FFT algorithm.

In practice, the signal samples {xn } are passed through a digital-to-analog (D/A)

converter whose output, ideally, would be the signal waveform x(t). The output of the

channel is the waveform

r(t) = x(t) * c(t) + n(t) (11.2-24)

where c(t) is the impulse response of the channel and * denotes convolution. By se-

lecting the bandwidth A/ of each subchannel to be very small, the symbol duration

T = 1/A/ is large compared with the channel time dispersion. To be specific, let us

assume that the channel dispersion spans v + 1 signal samples where y « IV. One

way to avoid the effect of ISI is to insert a time guard band of duration vT/N between

transmissions of successive blocks.

An alternative method that avoids ISI is to append a cyclic prefix to each block

of N signal samples {xo, x\, . .
.

,

x#_i}. The cyclic prefix for this block of samples

consists of the samples xn- v , x^-v+i, • • • , xv-i- These new samples are appended to

the beginning of each block. Note that the addition of the cyclic prefix to the block

of data increases the length of the block to N + v samples, which may be indexed

from n = — v, . .
.

,

A — 1, where the first v samples constitute the prefix. Then if

{cn ,
0 < n < vj denotes the sampled channel impulse response, its convolution with

{xn ,
— v < n < N —

1} produces {r„}, the received sequence. We are interested in the

samples of {rn } for 0 < n < N —
1 ,
from which we recover the transmitted sequence by

using the A-pointDFT for demodulation. Thus, the first v samples of {rn } are discarded.

From a frequency-domain viewpoint, when the channel impulse response is {cn ,
0 <

n < v}, its frequency response at the subcarrier frequencies fk = k/N is

C* = C
(jf\

= -£c, .-»"*/» (1 1.2-25)

Because the cyclic prefix serves as a time guard band against interference, successive

blocks (frames) of the transmitted information sequence do not interfere and, hence,

the demodulated sequence may be expressed as

Xk = CyXk + rjk. jfc = 0, 1,..., N-l (11.2-26)
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where {X*} is the output of the A-point DFT demodulator and rjk is the additive noise

corrupting the signal. We note that by selecting N v, the rate loss due to the cyclic

prefix can be rendered negligible.

As shown in Figure 11.2-4, the information is demodulated by computing the

DFT of the received signal after it has been passed through an analog-to-digital (A/D)

converter. The DFT computation may be viewed as a multiplication of the received

signal samples {rn }
from the A/D converter by where r* is defined in Equation

1 1.2-22. As in the case of the modulator, the DFT computation at the demodulator is

performed efficiently by use of the FFT algorithm.

It is simple matter to estimate and compensate for the channel factors {C*} prior

to passing the data to the detector and decoder. A training signal consisting of either a

known modulated sequence on each of the subcarriers or unmodulated subcarriers may
be used to measure the {C*} at the receiver. If the channel parameters vary slowly with

time, it is also possible to track the time variations by using the decisions at the output

of the detector or the decoder, in a decision-directed fashion. Thus, the multicarrier

system can be rendered adaptive.

By measuring the SNR in each subchannel, one can optimize the transmission rate

by allocating the average transmitted power and the number of bits to be carried by

each subcarrier. The SNR per subchannel is defined as

TPk \Ck \

2

SNR* = % 1

(11.2-27)
°nk

where T is the symbol duration, P* is the average power allocated to the kth subchannel,

|

C*
|

2
is the magnitude squared of the frequency response of the kth subchannel, and cr%

k

is the variance of the noise in the kth subchannel. Based on these SNR measurements,

the capacity of each subchannel may be determined as described in Section 11.2-2.

Furthermore, system performance may be optimized by selecting the bit and power

allocation for each subchannel as described below and in the papers by Chow et al.

(1995) and Fischer and Huber (1996).

Multicarrier QAM of the type described above has been implemented for a variety

of applications, including high-speed transmission over telephone lines, such as digital

subscriber lines.

Other types of implementation besides the DFT are possible. For example, a dig-

ital filter bank that basically performs the DFT may be substituted for the FFT-based

implementation when the number of subcarriers is small, e.g., N < 32. For a large

number of subcarriers, e.g., N > 32, the FFT-based systems are computationally more
efficient.

11.2-6 Spectral Characteristics of Multicarrier Signals

Although the signals transmitted on the subcarriers of an OFDM system are mutually

orthogonal in the time domain, these signals have significant overlap in the frequency
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FIGURE 11.2-6

An example of the magnitude of the frequency response of adjacent subchannel filters in

OFDM system for fe (0, 0.06y) and N = 64. [From Cherubini et al. (2002) IEEE .]

domain. This can be observed by computing the Fourier transform of the signal

Uk(t) = Re 'Ix
k ei2nfkt

Ak cos(27xfkt + Ok), 0 < t < T

(11.2-28)

for several values of k. Figure 11.2-6 illustrates the magnitude spectrum \Uk(f)\ for

several adjacent subcarriers. Note the large spectral overlap of the main lobes. Also

note that the first sidelobe in the spectrum is only 13 dB down from the main lobe.

Hence, there is a significant amount of spectral overlap among the signals transmitted

on different subcarriers. Nevertheless, these signals are orthogonal when transmitted

synchronously in time.

The large spectral overlap of the OFDM signals has various ramifications when
the communication channel is a radio channel and the receiving terminal is mobile, as

in the case of cellular radio communications. In such mobile radio communications,

the transmitted signal is imparted with Doppler frequency shifts or Doppler spreading,

which destroys the orthogonality among the subcarriers and, as a consequence, results

in interchannel interference (ICI). The ICI produces a significant degradation in the

performance (error probability) of the OFDM system. The degree of performance

degradation is proportional to the speed at which the receiving terminal is moving.

In general, the degradation is small when the terminal is moving at pedestrian speed.



754 Digital Communications

Output

symbols

Sample at

end of each

frame

FIGURE 11.2-7

Filter bank implementation of OFDM receiver.

This is the case, for example, in wireless LANs that employ OFDM signals with large

(M = 64) QAM signal constellations.

The detrimental effects of ICI in a multicarrier system, such as OFDM, can be

significantly reduced by employing a bank of parallel filters in the implementation

of the system, as illustrated in Figure 11.2-7. In such an implementation, the proto-

type filter Ho(f) and, hence, its frequency-shifted versions Hk(f ) = Ho(f — k/T )

are designed to have sharp cutoff frequency-response characteristics. Consequently, a

Doppler frequency spread that is small compared to 1 /2T, or equivalently, compared to

the bandwidth of the prototype filter Ho(f ), will result in negligible ICI. For example,

Figure 11.2-8 illustrates the frequency-response characteristics in such a filter bank

implementation. Note that the filter sidelobes are approximately 70 dB below the main

lobe, and the spectral overlap between adjacent filters is negligible. Such filter charac-

teristics provide significant immunity against ICI that may be encountered in mobile

radio communication environments.

The price paid for achieving this immunity to ICI caused by Doppler spreading

is the added complexity in the implementation of the filters {Hk(f)} at the transmitter

and the receiver. An efficient implementation for the filter bank, based on multirate

digital signal processing methods, has been described in the papers by Cherubini

et al. (2000, 2002). The resulting filter bank implementation of the multicarrier system is

called filtered multitone (FMT) modulation. The spectral characteristics shown in Fig-

ure 1 1 .2-8 correspond to filter frequency responses in an FMT multicarrier modulation

system.

11.2-7 Bit and Power Allocation in Multicarrier Modulation

We now consider a bit and power allocation procedure to optimize the performance of

a multicarrier system transmitting over a linear time-invariant channel with AWGN.
We assume that there are N subcarriers and that the modulation on each subcarrier is
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10

fT/N

FIGURE 11.2-8

An example of the magnitude of the frequency response of adjacent subchannel filters in an

FMT system for /e (0, 0.06^) and design parameters N = 64. [From Cherubini et al. (2002)

IEEE.]

QAM, where M
t
= 2bi

is the constellation size and bi is the number of bits transmitted

on the zth subcarrier in the frame interval of T seconds. Thus, the total bit rate is

1
*

*» = -£*,• (11.2-29)
1

1= 1

The power allocated to the zth subcarrier is P
t ,
and the total transmitted power is

N
/> = £/> (11.2-30)

1= 1

which is constrained to be a fixed value.

The bandwidth of each subchannel is assumed to be sufficiently narrow that the

complex-valued channel gain C(fi) is constant across the frequency band of the zth

subchannel. For convenience, we also assume that the spectral density of the additive

Gaussian noise in the N subchannels is identical.

In selecting the bit and power allocation among the N subchannels, our objective

is to maximize the bit rate Rb for a specified error probability that is the same across

the N subchannels. It is convenient to use the symbol error probability for QAM as the

performance index and to focus on the low-error-rate (high-SNR) region. The symbol

error probability for QAM at low error rates is well approximated by the expression

Pe ~4Q
3

1

2

N0(Mi ~ 1 )

(11.2-31)
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where Pe is the desired symbol error probability and Q = C(ft ). The multiplier in

front of the Q function represents the number of nearest neighbors in a rectangular

QAM signal constellation. Therefore, P
t
and Mt

are selected such that

Q
3P/IQ1 2

N0(Mi - 1)

Pe_

4
(11.2-32)

It has been shown by Kalet (1989) that transmitting equal power across all sub-

channels for which \Ci\
2/No is sufficiently large to support at least an M = 4 signal

constellation at the desired low symbol error probability results in near optimum per-

formance. Hence, we may begin by allocating equal power among the subchannels and

deleting all subcarriers which cannot support at least an M = 4 signal constellation at

the desired error probability. Then we allocate the total transmit power equally among
the remaining subchannels and compute the value ofM

t
that satisfies the desired error

probability given by Equation (1 1.2-32).

At this point, we may simply truncate the values of {M;} to {Mi} such that

bi=log2 Mi, i = 1,2,..., N (11.2-33)

are integers. However, when the number of subchannels is large, this simple alloca-

tion procedure may result in a significant loss in rate. Alternatively, we may use the

unquantized value of each M
t
that satisfies the desired symbol error probability and

either round up to the next-higher power of 2 or truncate to the next-lower power of

2, if the fractional part of the bit bi = log2 Mt
is greater than 1 /2 or lower than 1 /2,

respectively. The allocated power for each subchannel is then adjusted accordingly to

satisfy the desired error probability. This power allocation procedure may be performed

sequentially, beginning with the subchannel having the largest |C;
\

2
/No, where at each

step the remaining power is allocated equally among the remaining subchannels. Thus,

the total power allocation is kept constant.

As an example, let us consider high-speed digital transmission over wirelines that

connect a telephone subscriber’s premises to a telephone central office. These wireline

channels typically consist of unshielded twisted-pair wire and are commonly called

the subscriber local loop. The desire to provide high-speed Internet access to homes

and businesses over the telephone subscriber loop has resulted in the development of a

standard for digital transmission based on OFDM with QAM as the basic modulation

method on each of the subcarriers.

The usable bandwidth of a twisted-pair subscriber loop wire is primarily limited by

the distance between the subscriber and the central telephone office, i.e., the length of

the wire, and by crosstalk interference from other lines in the same cable. For example,

a 3-km twisted-pair wireline may have a usable bandwidth of approximately 1 .2 MHz.
Since the need for high-speed digital transmission is usually in the direction from the

central office to the subscriber (the downlink) and the bandwidth is relatively small,

the major part of the bandwidth is allocated to the downlink. Consequently, the digital

transmission on the subscriber loop is asymmetric, and this transmission mode is called

ADSL (asymmetric digital subscriber line).

In the ADSL standard, the downlink and the uplink maximum data rates are spec-

ified as 6.8 Mbps and 640 kbps, respectively, for subscriber lines of approximately

12,000 ft in length, and 1.544 Mbps and 176 kbps, respectively, for subscriber lines of



Chapter Eleven: Multichannel and Multicarrier Systems 757

approximately 18,000 ft in length. The low part of the frequency band (0-25 kHz)

is reserved for the telephone voice transmission, which requires a nominal band-

width of 4 kHz. Hence, the frequency band of the subscriber line is separated into

two frequency bands via two filters (lowpass and highpass) that have cutoff frequen-

cies of 25 kHz. Thus, the low-end frequency for digital transmission is 25 kHz. The

ADSL standard specifies that the frequency range of 25 kHz to 1 . 1 MHz must be sub-

divided into 256 parallel OFDM subchannels Hence, the size of the DFT and IDFT
in the system implementation shown in Figure 11.2-4 is A = 512. A sampling rate

fs = 2.208 MHz is specified, so that the high-end frequency in the signal spectrum

is fs /2 = 1.104 MHz. The frequency spacing between two adjacent subcarriers is

Af = 1.104 x 106/256 = 4.3125 kHz. The channel time dispersion is suppressed by

using a cyclic prefix of A/16 = 32 samples.

By measuring the signal-to-noise ratio (SNR) for each subchannel at the receiver

and communicating this information to the transmitter via the uplink, the transmitter

can select the QAM constellation size in bits per symbol to achieve a desired error

probability in each subchannel. The ADSL standard specifies a minimum bit load

of 2 bits per subchannel, which corresponds to QPSK modulation. If a subchannel

cannot support QPSK at the desired error probability, no information is transmitted

over that subchannel. As an example, Figure 11.2-9 illustrates the received SNR as

measured by the receiver for each subchannel and the corresponding number of bits per

symbol selected from a QAM signal constellation. Note that the SNR in subchannels

220-256 is too low to support QPSK modulation; hence, no data are transmitted on

these subchannels. ADSL channel characteristics and the design of OFDM modems
based on the ADSL standard are treated in detail in the books by Bingham (2000) and

Starr et al. (1999). The use ofOFDM with variable size QAM signal constellations for

each of the subcarriers is sometimes called discrete multitone (DMT) modulation.

11.2-8 Peak-to-Average Ratio in Multicarrier Modulation

A major problem with multicarrier modulation is the relatively high peak-to-average

ratio (PAR) that is inherent in the transmitted signal. In general, large signal peaks

occur in the transmitted signal when the signals in many of the various subchannels

FIGURE 11.2-9

Example of a DSL frequency response and bit allocation on the OFDM subchannels.
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add constructively in phase. Such large signal peaks may result in clipping of the

signal voltage in a D/A converter when the multicarrier signal is synthesized digitally,

and/or it may saturate the power amplifier and thus cause intermodulation distortion

in the transmitted signal. When the number N of subcarriers is large, the central limit

theoremmay be used to model the combined signal on theN subchannels as a zero-mean

Gaussian random process. In such a model, the voltage PAR is proportional to */N.

To avoid intermodulation distortion, it is common to reduce the power in the trans-

mitted signal and thus operate the power amplifier at the transmitter in the linear oper-

ating range. This power reduction or “power backoff” results in inefficient operation of

the communication system. For example, if the PAR is 10 dB, the power backoff may
be as much as 10 dB to avoid intermodulation distortion.

Various methods have been devised to reduce the PAR in multicarrier systems.

One of the simplest methods is to insert different phase shifts in each of the subcarriers.

These phase shifts can be selected pseudorandomly, or by means of some algorithm,

to reduce the PAR. For example, we may have a small set ofN stored pseudorandomly

selected phase shifts which can be used when the PAR in the modulated subcarriers is

large. The information on which set of pseudorandom phase shifts is used in any signal

interval can be transmitted to the receiver on one of the N subcarriers. Alternatively,

a single set of pseudorandom phase shifts may be employed, where this set is found

via computer simulation to reduce the PAR to an acceptable level over the ensemble of

possible transmitted data symbols on the N subcarriers.

Another method that can be used to reduce the PAR is to modulate a small subset of

the subcarriers with dummy symbols which are selected to reduce the PAR. Since the

dummy symbols do not have to be constrained to take amplitude and phase values from

a specified signal constellation, the design of the dummy symbols is very flexible. The
subcarriers carrying dummy symbols may be distributed across the frequency band.

Since modulating subcarriers with dummy symbols results in a lower throughput in

data rate, it is desirable to employ only a small percentage of the total subcarriers for

this purpose.

As an alternative to allocating subcarriers that are modulated with dummy symbols,

one may select a subset of subcarriers that already carry data and expand the signal

constellation in such a manner that the data can be correctly detected at the receiver

by use of a modulo-g operation, where q is an appropriate integer. For example, if

rectangular 16-point QAM is used as the modulation of each subcarrier, a minimally

expanded signal constellation for a subset of subcarriers may consist of a 32-point

signal constellation that includes the 16 additional points adjacent to the outer points in

the original constellation. When the PAR of the original signal constellation exceeds a

predetermined amount, the signal point on a selected subcarrier is replaced by a signal

point from the minimally expanded set such that the PAR is reduced. This approach

may require several iterations using a different subcarrier each time to reduce the PAR
to a desired value. The interested reader may refer to the paper by Tellado and Cioffi

(1998), which treats this method.

In a digitally synthesized multicarrier signal, the PAR may be kept within a spec-

ified limit by clipping the signal at the D/A converter. The clipping generally distorts

the signal at the transmitter and hence degrades the performance at the receiver. The
effect of clipping on the probability of error at the detector in an OFDM system has
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been evaluated by Bahai and Saltzberg (1999). If the clipping occurs infrequently, the

occasional errors may be corrected by introducing a suitable error-correcting code.

Because of its practical importance, the problem of PAR reduction in multicar-

rier systems has been investigated by many people, and methods other than the ones

described above have been considered. The interested reader may refer to the papers

by Boyd (1986), Popovic (1991), Jones et al. (1994), Wilkinson and Jones (1995),

Wulich (1996), Li and Cimini (1997), Friese (1997), Muller et al. (1997), Tellado and

Cioffi (1998), Wulich and Goldfeld (1999), Tarokh and Jafarkhani (2000), Peterson and

Tarokh (2000), and Wunder and Boche (2003).

11.2-9 Channel Coding Considerations in Multicarrier Modulation

In single-carrier systems, channel coding is performed in the time domain. That is,

the coded bits or symbols span multiple signal or symbol intervals. In multicarrier

communication systems, such as OFDM, the frequency domain provides an additional

dimension in which channel coding can be applied to achieve immunity against noise

and other interference.

One possible channel coding approach is to encode the information bits on each

subcarrier separately (time-domain channel coding) using either a block code, or a

convolutional code, or by employing trellis-coded modulation (TCM). In such a time-

domain coding approach, the coded bits or symbols span multiple OFDM (multicarrier)

frames. There are basically two disadvantages with time-domain channel coding for

multicarrier communication systems. One is the encoding/decoding complexity in-

volved in the operation of N parallel encoders/decoders for the N subchannels. The

second is the latency (decoding delay) inherent in the decoding of the data on the N
subcarriers over multiple frames. For example, the decoding delay for a code that spans

K frames is KNf bits, where Nf is the number of information bits per frame.

The decoding delay can be minimized by designing the channel code to span the bits

across the subchannels for a single OFDM (multicarrier) frame. In such a frequency-

domain coding approach we may employ a block code, or a convolutional code, or

TCM. If additional delay beyond a single frame is tolerable, the channel code may be

designed to span multiple OFDM frames. The advantage of this approach to channel

coding for multicarrier communication systems is that a single encoder and decoder

can be employed in the system, thus simplifying the system implementation.

Although the channel coding methods for multicarrier modulation described above

focused on simple coding techniques (block coding, convolutional coding, TCM), they

are easily extended to concatenated coding and turbo coding methods.

11.3

BIBLIOGRAPHICAL NOTES AND REFERENCES

Multichannel signal transmission is commonly used on time-varying channels to over-

come the effects of signal fading. This topic is. treated in some detail in Chapter 13,

where we provide a number of references to published work. Of particular relevance
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to the treatment of multichannel digital communications given in this chapter are the

two publications by Price (1962a, b).

There is a large amount of literature on multicarrier digital communication systems.

Such systems have been implemented and used for over 35 years. One of the earliest

systems, described by Doeltz et al. (1957) and called Kineplex, was used for digital

transmission in the HF band. Other early work on multicarrier system design has been

reported in the papers by Chang (1966) and Saltzberg (1967). The use of the DFT for

modulation and demodulation of multicarrier systems was proposed by Weinstein and

Ebert (1971).

Of particular interest in recent years is the use of multicarrier digital transmission

for data, facsimile, and video on a variety of channels, including the narrowband (4 kHz)

switched telephone network, the 48-kHz group telephone band, digital subscriber lines,

cellular radio, and audio broadcast. The interested reader may refer to the many papers

in the literature. We cite as examples the papers by Hirosaki (1981), Hirosaki et al.

(1986), Chow et al. (1991), and the survey paper by Bingham (1990). The paper by
Kalet (1989) gives a design procedure for optimizing the rate in a multicarrier QAM
system given constraints on transmitter power and channel characteristics. Finally, we
cite the book by Vaidyanathan (1993) and the papers by Tzannes etal. (1994) andRizos

et al. (1994) for a treatment of multirate digital filter banks, and the books by Starr et

al. (1999) and Bingham (2000) on the application of multicarrier modulation for digital

transmission on digital subscriber lines.

PROBLEMS

11.1 X\, X2, . .
.

,

Xm are a set of TV statistically independent and identically distributed real

Gaussian random variables with moments E(X
t ) = m and var (X/) = cr

2
.

a. Define

U = Y,Xn
n=

1

Evaluate the SNR of U
,
which is defined as

where <r^ is the variance of U.

b. Define

(SNR)j, = [g(£/)]
2

N

V = J2 X2
n

n=

1

Evaluate the SNR of V , which is defined as

(SNR)v =
[g(V )]

2

2<Xy

where cry is the variance of V

.
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c. Plot (SNR)*/ and (SNR)y versus ra
2
/cr

2 on the same graph and, thus, compare the

SNRs graphically.

d. What does the result in (c) imply regarding coherent detection and combining versus

square-law detection and combining of multichannel signals?

11.2 A binary communication system transmits the same information on two diversity channels.

The two received signals are

r 1
= ±\/£b+ n i

r2 = + n2

where E(n{) = E{ri2 ) = 0, E (n
2

)
= cr

2 and E = o\, and n\ and n2 are uncorrelated

Gaussian variables. The detector bases its decision on the linear combination of r\ and

7*2, i.e.,

r = r\ + kr2

a. Determine the value of k that minimizes the probability of error.

b. Plot the probability of error for o\ = 1, — 3, and either k = 1 or k is the optimum
value found in (a). Compare the results.

11.3 Assess the cost of the cyclic prefix (used in multicarrier modulation to avoid ISI) in

terms of

a. Extra channel bandwidth.

b. Extra signal energy.

11.4 Let x(n) be a finite-duration signal with length N and let X(k) be its A-point DFT. Sup-

pose we pad x{n) with L zeros and compute the (

N

+ L)-point DFT, X'(k). What is the

relationship between X(0) and ^'(O)? If we plot \X(k)\ and \X'(k)\ on the same graph,

explain the relationships between the two graphs.

11.5 Show that the sequence {xn } given by Equation 1 1.2-1 1 corresponds to the samples of the

signal x(t) given by Equation 1 1.2-12.

11.6 Show that the IDFT of a sequence {X 0 < k < N —
1} can be computed by passing the

sequence {X^} through a bank of N linear discrete-time filters with system functions

Hn^ =
1 _ ej2jzn/N z

-\

and sampling the filter outputs at n = N.

11.7 Plot P2 (L), given by Equation 11.1-24 for L = 1 and L = 2 as a function of 10 log yb
and determine the loss in SNR due to the combining loss for yb = 10.



12

Spread Spectrum Signals for Digital

Communications

Spread spectrum signals used for the transmission of digital information are distin-

guished by the characteristic that their bandwidth W is much greater than the informa-

tion rate R in bits/s. That is, the bandwidth expansion factor Be = W/R for a spread

spectrum signal is much greater than unity. The large redundancy inherent in spread

spectrum signals is required to overcome the severe levels of interference that are

encountered in the transmission of digital information over some radio and satellite

channels. Since coded waveforms are also characterized by a bandwidth expansion

factor greater than unity and since coding is an efficient method for introducing redun-

dancy, it follows that coding is an important element in the design of spread spectrum

signals and systems.

A second important element employed in the design of spread spectrum signals

is pseudorandomness, which makes the signals appear similar to random noise and

difficult to demodulate by receivers other than the intended ones. This element is

intimately related with the application or purpose of such signals.

To be specific, spread spectrum signals are used for

• Combating or suppressing the detrimental effects of interference due to jamming,

interference arising from other users of the channel, and self-interference due to

multipath propagation.

• Hiding a signal by transmitting it at low power and, thus, making it difficult for an

unintended listener to detect in the presence of background noise.

• Achieving message privacy in the presence of other listeners.

In applications other than communications, spread spectrum signals are used to obtain

accurate range (time delay) and range rate (velocity) measurements in radar and navi-

gation. For the sake of brevity, we shall limit our discussion to digital communication

applications.

In combating intentional interference (jamming), it is important to the communi-
cators that the jammer who is trying to disrupt the communication does not have prior

knowledge of the signal characteristics except for the overall channel bandwidth and

the type of modulation (PSK, FSK, etc.) being used. If the digital information is just

762
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encoded as described in Chapters 7 and 8, a sophisticated jammer can easily mimic the

signal emitted by the transmitter and, thus, confuse the receiver. To circumvent this pos-

sibility, the transmitter introduces an element of unpredictability or randomness (pseu-

dorandomness) in each of the transmitted coded signal waveforms that is known to the

intended receiver but not to the jammer. As a consequence, thejammer must synthesize

and transmit an interfering signal without knowledge of the pseudorandom pattern.

Interference from the other users arises in multiple-access communication systems

in which a number of users share a common channel bandwidth. At any given time, a

subset of these users may transmit information simultaneously over the common chan-

nel to corresponding receivers. Assuming that all the users employ the same code for

the encoding and decoding of their respective information sequences, the transmitted

signals in this common spectrum may be distinguished from one another by superim-

posing a different pseudorandom pattern, also called a code
,
in each transmitted signal.

Thus, a particular receiver can recover the transmitted information intended for it by

knowing the pseudorandom pattern, i.e., the key, used by the corresponding transmitter.

This type of communication technique, which allows multiple users to simultaneously

use a common channel for transmission of information, is called code division multiple

access (CDMA). CDMA will be considered in Sections 12.2 and 12.3.

Resolvable multipath components resulting from time-dispersive propagation

through a channel may be viewed as a form of self-interference. This type of inter-

ference may also be suppressed by the introduction of a pseudorandom pattern in the

transmitted signal, as will be described below.

A message may be hidden in the background noise by spreading its bandwidth

with coding and transmitting the resultant signal at a low average power. Because of its

low power level, the transmitted signal is said to be “covert.” It has a low probability

of being intercepted (detected) by a casual listener and, hence, is also called a low-

probability-of-intercept (LPI) signal.

Finally, message privacy may be obtained by superimposing a pseudorandom pat-

tern on a transmitted message. The message can be demodulated by the intended re-

ceivers, who know the pseudorandom pattern or key used at the transmitter, but not by

any other receivers who do not have knowledge of the key.

In the following sections, we shall describe a number of different types of spread

spectrum signals, their characteristics, and their applications. The emphasis will be on

the use of spread spectrum signals for combating interference (antijam or AJ signals),

CDMA, and LPI. Before discussing the signal design problem, however, we shall briefly

describe the types of channel characteristics assumed for the applications cited above.

12.1

MODEL OF SPREAD SPECTRUM DIGITAL COMMUNICATION SYSTEM

The block diagram shown in Figure 12.1-1 illustrates the basic elements of a spread

spectrum digital communication system with a binary information sequence at its input

at the transmitting end and at its output at the receiving end. The channel encoder

and decoder and the modulator and demodulator are basic elements of the system,
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FIGURE 12.1-1

Model of spread spectrum digital communication system.

which were treated in Chapters 4, 7, and 8. In addition to these elements, we have two

identical pseudorandom pattern generators, one that interfaces with the modulator at the

transmitting end and a second that interfaces with the demodulator at the receiving end.

The generators generate a pseudorandom or pseudonoise (PN) binary-valued sequence

which is impressed on the transmitted signal at the modulator and removed from the

received signal at the demodulator.

Synchronization of the PN sequence generated at the receiver with the PN sequence

contained in the incoming received signal is required in order to demodulate the re-

ceived signal. Initially, prior to the transmission of information, synchronization may be

achieved by transmitting a fixed pseudorandom bit pattern that the receiver will recog-

nize in the presence of interference with a high probability. After time synchronization

of the generators is established, the transmission of information may commence.

Interference is introduced in the transmission of the information-bearing signal

through the channel. The characteristics of the interference depend to a large extent

on its origin. It may be categorized as being either broadband or narrowband relative

to the bandwidth of the information-bearing signal and as either continuous or pulsed

(discontinuous) in time. For example, an interfering signal may consist of one or more

sinusoids in the bandwidth used to transmit the information. The frequencies of the

sinusoids may remain fixed or they may change with time according to some rule. As
a second example, the interference generated in CDMA by other users of the channel

may be either broadband or narrowband, depending on the type of spread spectrum

signal that is employed to achieve multiple access. If it is broadband, it may be charac-

terized as an equivalent additive white Gaussian noise. We shall consider these types

of interference and some others in the following sections.

Our treatment of spread spectrum signals will focus on the performance of the dig-

ital communication system in the presence of narrowband and broadband interference.

Two types of modulation are considered: PSK and FSK. PSK is appropriate in appli-

cations where phase coherence between the transmitted signal and the received signal

can be maintained over a time interval that is relatively long compared to the reciprocal

of the transmitted signal bandwidth. On the other hand, FSK modulation is appropriate

in applications where such phase coherence cannot be maintained due to time-variant

effects on the communications link. This may be the case in a communications link

between two high-speed aircraft or between a high-speed aircraft and a ground terminal.

The PN sequence generated at the modulator is used in conjunction with the

PSK modulation to shift the phase of the PSK signal pseudorandomly as described

in Section 12.2. The resulting modulated signal is called a direct sequence (DS) or a
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pseudo-noise (PN) spread spectrum signal. When used in conjunction with binary or

M-ary (M > 2) FSK, the pseudorandom sequence selects the frequency of the trans-

mitted signal pseudorandomly. The resulting signal is called afrequency-hopped (FH)

spread spectrum signal. Although a number of other types of spread spectrum signals

will be briefly described, the emphasis of our treatment will be on DS and FH spread

spectrum signals.

12.2

DIRECT SEQUENCE SPREAD SPECTRUM SIGNALS

In the model shown in Figure 12.1-1, we assume that the information rate at the input

to the encoder is R bits/s and the available channel bandwidth is W Hz. The modulation

is assumed to be binary PSK. In order to utilize the entire available channel bandwidth,

the phase of the carrier is shifted pseudorandomly according to the pattern from the PN
generator at a rate W times/s. The reciprocal of W, denoted by Tc , defines the duration

of a pulse, which is called a chip
;
Tc is called the chip interval. The pulse is the basic

element in a DS spread spectrum signal.

If we define T\> = l/R to be the duration of a rectangular pulse corresponding to

the transmission time of an information bit, the bandwidth expansion factor W/R may
be expressed as

w _ n
R Tc

In practical systems, the ratio Tt/Tc is an integer,

Lc =
n
Tc

( 12 .2- 1 )

(12 .2-2)

which is the number of chips per information bit. That is, Lc is the number ofphase shifts

that can occur in the transmitted signal during the bit duration^ = l/R. Figure 12.2-la

illustrates the relationships between the PN signal and the data signal.

Suppose that the encoder takes k information bits at a time and generates a binary

linear (n
,
k) block code. The time duration available for transmitting the n code elements

is kTb seconds. The number of chips that occur in this time interval is kLc . Hence,

we may select the block length of the code as n = kLc . If the encoder generates a

binary convolutional code of rate k/n
,
the number of chips in the time interval kTt,

is also n = kLc . Therefore, the following discussion applies to both block codes and

convolutional codes. We note that the code rate Rc = k/n = l/Lc .

One method for impressing the PN sequence on the transmitted signal is to alter

directly the coded bits by modulo-2 addition with the PN sequenced Thus, each coded

tWhen four-phase PSK is desired, one PN sequence is added to the information sequence carried on the

in-phase signal component and a second PN sequence is added to the information sequence carried on the

quadrature component. In many PN spread spectrum systems, the same binary information sequence is

added to the two PN sequences to form the two quadrature .components. Thus, a four-phase PSK signal is

generated with a binary information stream.
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Data signal

X-

(a) PN and data signals

(b) DS-QPSK modulator

FIGURE 12.2-1

The PN and data signals (a) and the QPSK modulator (b) for a DS spread spectrum system.

bit is altered by its addition with a bit from the PN sequence. If bi represents the ith

bit of the PN sequence and c
t
is the corresponding bit from the encoder, the modulo-2

sum is

at = bi ® Ci ( 12 .2-3 )

Hence, a; = 1 if either bi = 1 and q = 0 or bi = 0 and c; = 1
;
also a

t
= 0 if either

bi = 1 and c
t
= 1 or bi = 0 and q = 0. We may say that a/ = 0 when bi = c

t
and

at = 1 when bi ^ c
t

. The sequence {a
t } is mapped into a binary PSK signal of the

form s(t ) = ±Re[g(t)ej27Tfct
] according to the convention

giit) =
g(t — iTc ) a

t
= 0

-g(t-iTc ) di = 1

(12.2-4)

where g(t) represents a pulse of duration Tc seconds and arbitrary shape.
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The modulo-2 addition of the coded sequence {c/} and the sequence {&;} from

the PN generator may also be represented as a multiplication of two waveforms. To

demonstrate this point, suppose that the elements of the coded sequence are mapped
into a binary PSK signal according to the relation

a(t) = (2d - l)g(t - iTc ) (12.2-5)

Similarly, we define a waveform p t
(t) as

Piit) = (2

b

t
- 1 )p(t - iTc ) (12.2-6)

where p(t) is a rectangular pulse of duration Tc . Then the equivalent low-pass trans-

mitted signal corresponding to the zth coded bit is

gi(t) = Pi(t)Ci(t)

= (2b
t
- l)(2Ci - 1 )g(t - iTc ) (12.2-7)

This signal is identical to the one given by Equation 12.2-4, which is obtained from the

sequence {a
t }. Consequently, modulo-2 addition of the coded bits with the PN sequence

followed by a mapping that yields a binary PSK signal is equivalent to multiplying a

binary PSK signal generated from the coded bits with a sequence of unit amplitude

rectangular pulses, each of duration Tc ,
and with a polarity which is determined from

the PN sequence according to Equation 12.2-6. Although it is easier to implement

modulo-2 addition followed by PSK modulation instead of waveform multiplication,

it is convenient, for purposes of demodulation, to consider the transmitted signal in

the multiplicative form given by Equation 12.2-7. A functional block diagram of a

four-phase PSK-DS spread spectrum modulator is shown in Figure 12.2-l(b).

The received equivalent low-pass signal for the zth code element is

n(t) = Pi(t)ci(t) + z(t), iTc <t < (i + 1 )TC

= (2bi - 1)(2a -
1 )g(t - iTc ) + z(t)

where z(t) represents the low-pass equivalent noise and interference signal corrupting

the information-bearing signal. This signal is assumed to be a stationary random process

with zero mean.

If z(t ) is a sample function from a complex-valued Gaussian process, the optimum

demodulator may be implemented either as a filter matched to the waveform g(t) or

as a correlator, as illustrated by the block diagrams in Figure 12.2-2. In the matched

filter realization, the sampled output from the matched filter is multiplied by 2b
t
— 1,

which is obtained from the PN generator at the demodulator when the PN generator is

properly synchronized. Since (2b
t

— l)
2 = 1 when b

t = 0 and b
t
= 1, the effect of the

PN sequence on the received coded bits is thus removed.

In Figure 12.2-2, we also observe that the cross correlation can be accomplished in

either one of two ways. The first, illustrated in Figure 12.2-2b, involves premultiplying

r
t
(t) with the waveform p t

(t) generated from the output of the PN generator and then

cross-correlating with g*(0 and sampling the output in each chip interval. The second

method, illustrated in Figure 12.2-2c, involves cross correlation with g*(t) first, sam-

pling the output of the correlator and, then, multiplying this output with 2b i

—
1 ,
which

is obtained from the PN generator.
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(a)

To

decoder

(b)

To

decoder

(c)

FIGURE 12.2-2

Possible demodulator structures for PN spread spectrum signals.

If z(t) is not a Gaussian random process, the demodulation methods illustrated

in Figure 12.2-2 are no longer optimum. Nevertheless, we may still use any of these

three demodulator structures to demodulate the received signal. When the statistical

characteristics of the interference z(t) are unknown a priori, this is certainly one possible

approach. An alternative method, which is described later, utilizes an adaptive filter

prior to the matched filter or correlator to whiten the interference. The rationale for this

second method is also described later.

In Section 12.2-1, we derive the error rate performance of the DS spread spectrum

system in the presence of wideband and narrowband interference. The derivations are

based on the assumption that the demodulator is any of the three equivalent structures

shown in Figure 12.2-2.

12.2-1 Error Rate Performance of the Decoder

Let the unquantized output of the demodulator be denoted by y;
-, 1 < j < n. First we

consider a linear binary (n ,
k) block code and, without loss of generality, we assume

that the all-zero code word is transmitted.
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A decoder that employs soft-decision decoding computes the correlation metrics

n

CMi = J2(2cij - \)yj, i = l,2,...,2
k

(12.2-9)

j= 1

where c
tj
denotes the j th bit in the zth code word. The correlation metric corresponding

to the all-zero code word is

CM\ = 2n£c + Y2 (
-
2c 'j

~ 1)(2^ - l)v,-

j=

i

n

= 2nSc — Y^bj — 1 )vj

j=

i

( 12 .2-10)

where vj, 1 < j < n, is the additive noise and interference term corrupting the yth

coded bit and Sc is the chip energy. It is defined as

= Re
U’

g*(,t)z[t + U -l)Tc]dt j = 1,2, (12.2-11)

Similarly, the correlation metric corresponding to code word cm having weight

wm is

{ ^ iy]j \ W

CMm = 2£c ii M - + ^(2cm;- - 1)(2^ - l) Vj (12.2-12)

Following the procedure used in Section 7.4, we shall determine the probability

that CMm > CM\. The difference between CM\ and CMm is

D = CM\ — CMm
n

= 4£cwm -2^Tcmj (2bj
-

1 )vj (12.2-13)

;'=i

Since the codeword cm has weight wm ,
there are wm nonzero components in the

summation of noise terms contained in Equation 12.2-13. We shall assume that the

minimum distance of the code is sufficiently large that we can invoke the central limit

theorem for the summation of noise components. This assumption is valid forDS spread

spectrum signals that have a bandwidth expansion of 10 or more.^ Thus, the summation

of noise components is modeled as a Gaussian random variable. Since E(2bj — 1) = 0

and E(vj) = 0, the mean of the second term in Equation 12.2-13 is also zero.

The variance is

n n

= 4EE cmi cmj E[(2bj - 1)(2bt
- 1 )]E(viVj) (12.2-14)

;=i /=i

tTypically, the bandwidth expansion factor in a spread spectrum signal is of the order of 10 to 100 and

sometimes higher.
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The sequence of binary digits from the PN generator are assumed to be uncorrelated.

Hence

E[(2bj - mbi -
1)] = Su (12.2-15)

and

<r
2 = 4wm E(v

2
) (12.2-16)

where E(v2
) is the second moment of any one element from the set {vj}. This moment

is easily evaluated to yield

E (v
2
) = l [ [ g*(t)g(x)Rzz (t -x)dtdx

£ Jo Jo

= -
/

\G(f)\
2Szz(f)df

^ J —00

(12.2-17)

where Rzz (r )
= E[z*(t)z(t + r)] is the autocorrelation function and Szz(f ) is the power

spectral density of the interference z(t).

We observe that when the interference is spectrally flat within the bandwidth^

occupied by the transmitted signal, i.e.,

Szz(f) = 2J0 , \f\<\W (12.2-18)

the second moment in Equation 12.2-17 is E(v2
) = 2Sc Jo ,

and, hence, the variance of

the interference term in Equation 12.2-16 becomes

a 2
m = 8£c J0wm (12.2-19)

In this case, the probability that D < 0 is

P2(m) = Q
2£c

~Twm
Jo

( 12 .2-20)

But the energy per coded bit £c may be expressed in terms of the energy per information

bit £b as

£c = -£b = Rc£b (12.2-21)
n

With his substitution, Equation 12.2-20 becomes

P2(m) = Q
<2£b

Jo
-Rcw„

= Q
^

RcWtJj

(12.2-22)

tlf the bandwidth of the bandpass channel is W, that of the equivalent low-pass channel is
^ W.
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where yb = £b/J0 is the SNR per information bit. Finally, the code word error proba-

bility may be upper-bounded by the union bound as

M
Pm <Yh Q(V2YbPcWm ) (12.2-23)

m—2

where M — 2k . Note that this expression is identical to the probability of a code word

error for soft-decision decoding of a linear binary block code in an AWGN channel.

Although we have considered a binary block code in the derivation given above,

the procedure is similar for an (n ,
k) convolutional code. The result of such a derivation

is the following upper bound on the equivalent bit error probability:

|

00

pb<rJ2 PdQWlYbRcd) (12.2-24)
K
d=dfree

The set of coefficients {/3d) is obtained from an expansion of the derivative of the

transfer function T(Y
,
Z), as described in Section 8.2-2.

Next, we consider a narrowband interference centered at the carrier (at DC for

the equivalent low-pass signal). We may fix the total (average) interference power to

yav = 2JoW, where 2

7

0 is the value of the power spectral density of an equivalent

wideband interference. The narrowband interference is characterized by the power

spectral density

Szzif) = W
1

0

I/I < jW,

I/I >
(12.2-25)

where W W\

.

Substitution of Equation 12.2-25 for Szz (f ) into Equation 12.2-17 yields

J fWi/2

E^=^F \G(f)\
2
df (12.2-26)

2Vvi J-Wi/2

The value of E(v2
) depends on the spectral characteristics of the pulse g(t). In the

following example, we consider two special cases.

example 12.2-1. Suppose that g(t) is a rectangular pulse as shown in Figure 12.2-3 (a)

and |G(/)|
2

is the corresponding energy density spectrum shown in Figure 12.2-3(b).

For the narrowband interference given by Equation 12.2-25, the variance of the total

interference is

ol = 4wm E(v2
)

= 4£cwmTcJiV f
w'!2 / sin jrfTc \

2

Wi J- Wl ,2\ nfTc J
1

4£cwm Jav y
/2 / sin 7zx\

2

^
Wl J-p/2 \ TtX J

(12.2-27)
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FIGURE 12.2-3

Rectangular pulse and its energy density spectrum.

where f = W\TC . Figure 12.2-4 illustrates the value of this integral for 0 < ft < 1.

We observe that the value of the integral is upper-bounded by unity. Hence, <
U)m Ja.v/W1 •

In the limit as W\ becomes zero, the interference becomes an impulse at the carrier.

In this case the interference is a pure frequency tone and it is usually called a continuous

wave (CW) interfering signal. The power spectral density is

SM) = (12.2-28)

and the corresponding variance for the decision variable D = CM\ — CMm is

^ = 2u;m 7av |G(0)|
2

= Awm£cTc JaY
(12.2-29)

The probability of a codeword error for CW interference is upper-bounded as

M

Pe<T,Q
4£r

m=

2

J&vTr
-wn (12.2-30)

P

FIGURE 12.2-4

Plot of the value of the integral in Equation 12.2-27.

o
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g(0 FIGURE 12.2-5

A sinusoidal signal pulse.

But £c = Rc£b • Furthermore, Tc ~ l/W and Jav/W = 2 Jo. Therefore Equation

12.2-30 may be expressed as

^ £ G (12.2-31)

which is the result obtained previously for broadband interference. This result indicates

that a CW interference has the same effect on performance as an equivalent broadband

interference. This equivalence is discussed further below.

example 12 .2-2 . Let us determine the performance of the DS spread spectrum system

in the presence of a CW interference of average power 7av when the transmitted signal

pulse g{t ) is one-half cycle of a sinusoid as illustrated in Figure 12.2-5, i.e.,

gif) = 0 <t<Tc

The variance of the interference of this pulse is

a,
2 _ 2wm /av |G(0)|

2

32

7

r

2
— 2 £c Tc JawWm

(12.2-32)

(12.2-33)

Hence, the upper bound on the codeword probability is

M
Pe<

m—

2

I 7t
2£b

2JavTc
- RrWn (12.2-34)

We observe that the performance obtained with this pulse is 0.9 dB better than that

obtained with a rectangular pulse. Recall that this pulse shape when used in offset

QPSK results in an MSK signal. MSK modulation is frequently used in DS spread

spectrum systems.

The processing gain and the interference margin An interesting interpretation

of the performance characteristics for the DS spread spectrum signal is obtained by

expressing the signal energy per bit £b in terms of the average power. That is, £b =
Pav Tb, where Pav is the average signal power and Tb is the bit interval. Let us consider

the performance obtained in the presence ofCW interference for the rectangular pulse

treated in Example 12.2-1. When we substitute for £b and Jq into Equation 12.2-31,
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we obtain

M

Pe<T,Q
m=

2

\4Pm Tb

4v Tc

M
Rc^m — ^ ^ Q

4 />

-L rRrw„ (12.2-35)

m=2

where Lc is the number of chips per information bit and Pav / Jav is the signal-to-

interference power ratio.

An identical result is obtained with broadband interference for which the perfor-

mance is given by Equation 12.2-23. For the signal energy per bit, we have

Sb = P^Tb =
K

(12.2-36)

where R is the information rate in bits/s. The power spectral density for the interference

may be expressed as

Using this relation and Equation 12.2-36, the ratio £b / Jo may be expressed as

£j, = UR_ = 2H7*

Jo A./2W J„/P„

The ratio /av/^av is the interference-to-signal power ratio, which is usually greater

than unity. The ratio W/R = Tb / Tc = Be = Lc is just the bandwidth expansion factor,

or, equivalently, the number of chips per information bit. This ratio is usually called the

processing gain of the DS spread spectrum system. It represents the advantage gained

over the interference that is obtained by expanding the bandwidth of the transmitted

signal. If we interpret £b / Jo as the SNR required to achieve a specified error rate

performanace and W/R as the available bandwidth expansion factor, the ratio J^/P^
is called the interference margin of the DS spread spectrum system. In other words, the

interference margin is the largest value that the ratio /av /^av can take and still satisfy

the specified error probability.

The performance of a soft-decision decoder for a linear (n ,
k) binary code, ex-

pressed in terms of the processing gain and the interference margin, is

M
PP < Ee

m=

2

4W/R
v/ Pav

RC W,n < (M (12.2-38)

In addition to the processing gain W/R and J^/P^, we observe that the performance

depends on a third factor, namely, Rcwm . This factor is the coding gain. A lower

bound on this factor is Rc^min- Thus the interference margin achieved by the DS spread

spectrum signal depends on the processing gain and the coding gain.

We may express the relationship among these three quantities in dB as

(SNR)dB = + (^mm)dB - (^-) (12.2-39)
\ K / dB V^av/dB

where the (SNR)dB is the signal-to-noise ratio required by the receiver to achieve a

specified level of performance.
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Uncoded DS spread spectrum signals The performance results given above for

DS spread spectrum signals generated by means of an (n ,
k) code may be specialized

to a trivial type of code, namely, a binary repetition code. For this case, k — 1 and the

weight of the nonzero code word is w — n. Thus, Rcw = 1 and, hence, the performance

of the binary signaling system reduces to

Pi=Q 2£t

Jo

= Q
4W/R

J&V/ P&

(12.2-40)

Note that the trivial (repetition) code gives no coding gain. It does result in a

processing gain of W/R.

example 12.2-3. Suppose that we wish to achieve an error rate performance of 10“6
or

less with an uncoded DS spread spectrum system. The available bandwidth expansion

factor is W/R = 1000. Let us determine the jamming margin.

The £b/ Jo required to achieve a bit error probability of 10
-6

with uncoded binary

PSK is 10.5 dB. The processing gain is 10 logio 1000 = 30 dB. Hence the maximum
interference-to-signal power that can be tolerated, i.e., the interference margin, is

101og
10
— = 33 - 10.5 = 22.5 dB
Pav

Since this is the interference margin achieved with an uncoded DS spread spectrum

system, it may be increased by coding the information sequence.

There is another way to view the modulation and demodulation processes for the

uncoded (repetition code) DS spread spectrum system. At the modulator, the signal

waveform generated by the repetition code with rectangular pulses, for example, is

identical to a unit amplitude rectangular pulse s(t) of duration T\, or its negative, de-

pending on whether the information bit is 1 or 0, respectively. This may be seen from

Equation 12.2-7, where the coded chips {c/} within a single information bit are either

all Is or 0s. The PN sequence multiplies either s(t) or — s(t). Thus, when the informa-

tion bit is a 1, the L c PN chips generated by the PN generator are transmitted with the

same polarity. On the other hand, when the information bit is a 0, the L c PN chips when

multiplied by —s(t) are reversed in polarity.

The demodulator for the repetition code, implemented as a correlator, is illustrated

in Figure 12.2-6. We observe that the integration interval in the integrator is the bit

interval T^. Thus, the decoder for the repetition code is eliminated and its function is

subsumed in the demodulator.

Now let us qualitatively assess the effect of this demodulation process on the

interference z(t). The multiplication of z(t) by the output of the PN generator, which

is expressed as

w(t) = ^(2bi - 1 )p(t - iTc )
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FIGURE 12.2-6

Correlation-type demodulator for a

repetition code.

yields

v(t) = w(t)z(t)

The waveforms w(t) and z(t) are statistically independent random processes each with

zero-mean and autocorrelation functions Rww (r) and Rzz (r), respectively. The product

v(t) is also a random process having an autocorrelation function equal to the product

of Rww (r) with Rzz (r). Hence, the power spectral density of the process v(t) is equal

to the convolution of the power spectral density of w(t) with the power spectral density

of z(t).

The effect of convolving the two spectra is to spread the power in bandwidth.

Since the bandwidth of w(t) occupies the available channel bandwidth W
,
the result

of convolution of the two spectra is to spread the power spectral density of z(t) over

the frequency band of width W. If z(t) is a narrowband process, i.e., its power spectral

density has a width much less than W
,
the power spectral density of the process v(t)

will occupy a bandwidth equal to at least W.
The integrator used in the cross correlation shown in Figure 12.2-6 has a bandwidth

approximately equal to 1/ Tb . Since 1/Tb W, only a fraction of the total interference

power appears at the output of the correlator. This fraction is approximately equal to

the ratio of bandwidths 1/7^, to W. That is,

l/Tb = 1 =
Tc = 1

W ~ WTb
~ Tb

~ Lc

In other words, the multiplication of the interference with the signal from the PN
generator spreads the interference to the signal bandwidth W, and the narrowband inte-

gration following the multiplication sees only the fraction 1 /L c of the total interference.

Thus, the performance of the uncoded DS spread spectrum system is enhanced by the

processing gain Lc .

Linear code concatenated with a repetition code As illustrated above, a binary

repetition code provides a margin against an interference signal but yields no coding

gain. To obtain an improvement in performance, we may use a linear (n\,k) block or

convolutional code, where n\ < n = kLc . One possibility is to select n\ < n and to

repeat each code bit n2 times such that n = n\ri 2 . Thus, we can construct a linear (n, k)

code by concatenating the (n\, k) code with a binary (n 2 , 1) repetition code. This may
be viewed as a trivial form of code concatenation where the outer code is the (n\, k)

code and the inner code is the repetition code.
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Since the repetition code yields no coding gain, the coding gain achieved by the

combined code must reduce to that achieved by the (n
i ,

k) outer code. It is demonstrated

that this is indeed the case. The coding gain of the overall combined code is

k
kRcwm = -Wm ,

m = 2,3 , ... ,2
n

But the weights {wm } for the combined code may be expressed as

wm = n2w°m

where {w°
m } are the weights ofthe outer code. Therefore, the coding gain ofthe combined

code is

Rcwm = -——n2
,w0
m = —w°m - R°w°m (12.2-41)

n\U 2 n\

which is just the coding gain obtained from the outer code.

A coding gain is also achieved if the (n\,k) outer code is decoded using hard

decisions. The probability of a bit error obtained with an (ri2 , 1) repetition code (based

on soft-decision decoding) is

p = Q

= Q

1
2n2£c

I 4W/R

Jav/ Paw

= Q I a/2jRc

(12.2—42)

R°
c

Then the codeword error probability for a linear (n\, k) block code is upper-bounded

as

Pe< p
m

( 1 - p)
n '~m

(12.2-43)

where t = L^mm — 1)J, or as

M

Pe'<J2^P( l -P^</2 (12.2-44)

m=

2

where the latter is a Chernov bound. For an (n \ ,
k) binary convolutional code, the upper

bound on the bit error probability is

00

Pb<Y, PdP^d) (12.2-45)

d=dftee

where P2(d) is defined by Equation 8.2-16 for odd d and by Equation 8.2-17 for

even d.



778 Digital Communications

Concatenated coding for DS spread spectrum systems It is apparent from the

above discussion that an improvement in performance can be obtained by replacing

the repetition code by a more powerful code that will yield a coding gain in addition

to the processing gain. Basically, the objective in a DS spread spectrum system is to

construct a long, low-rate code having a large minimum distance. This may be best ac-

complished by using code concatenation. When binary PSK is used in conjunction with

DS spread spectrum, the elements of a concatenated code word must be expressed in

binary form.

Best performance is obtained when soft-decision decoding is used on both the

inner and outer codes. However, an alternative, which usually results in reduced com-

plexity for the decoder, is to employ soft-decision decoding on the inner code and

hard-decision decoding on the outer code. The expressions for the error rate perfor-

mance of these decoding schemes depend, in part, on the type of codes (block or

convolutional) selected for the inner and outer codes. For example, the concatenation

of two block codes may be viewed as an overall long binary (n ,
k) block code having a

performance given by Equation 12.2-38. The performance of other code combinations

may also be readily derived. For the sake of brevity, we shall not consider such code

combinations.

12.2-2 Some Applications of DS Spread Spectrum Signals

In this subsection, we shall briefly consider the use of coded DS spread spectrum signals

for two specific applications. One is concerned with a communication signal that is

hidden in the background noise by transmitting the signal at a very low power level.

The second application is concerned with accommodating a number of simultaneous

signal transmissions on the same channel, i.e., CDMA.

Low-detectability signal transmission In this application, the signal is purposely

transmitted at a very low power level relative to the background channel noise and

thermal noise that is generated in the front end of the receiver. If the DS spread spec-

trum signal occupies a bandwidth W and the spectral density of the additive noise is

No/2 W/Hz, the average noise power in the bandwidth W is Aav = WNo-
The average received signal power at the intended receiver is Pav . Ifwe wish to hide

the presence of the signal from receivers that are in the vicinity of the intended receiver,

the signal is transmitted at a low power level such that Pav /Afav 1. For example, let

us assume that binary PSK is used to transmit the information. The probability of error

at the intended receiver may be expressed as

Pe < MQ

N*
^c^min< MQ
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From this expression, we observe that even though Pav/Nav <£! 1, the intended receiver

can recover the information-bearing signal with the aid of the processing gain and

the coding gain. However, any other receiver that has no prior knowledge of the PN
sequence is unable to take advantage of the processing gain and the coding gain. Hence,

the presence ofthe information-bearing signal is difficult to detect. We say that the signal

has a low probability of being intercepted (LPI) and it is called an LPI signal.

The probability of error results given in Section 12.2-1 also apply to the demodu-

lation and decoding of LPI signals at the intended receiver.

Code division multiple access The enhancement in performance obtained from a

DS spread spectrum signal through the processing gain and coding gain can be used

to enable many DS spread spectrum signals to occupy the same channel bandwidth

provided that each signal has its own distinct PN sequence. Thus, it is possible to have

several users transmit messages simultaneously over the same channel bandwidth. This

type of digital communication in which each user (transmitter-receiver pair) has a

distinct PN code for transmitting over a common channel bandwidth is called code

division multiple access (CDMA).
In the demodulation of each PN signal, the signals from the other simultaneous

users of the channel appear as an additive interference. The level of interference varies,

depending on the number of users at any given time. A major advantage of CDMA is

that a large number of users can be accommodated if each transmits messages for a

short period of time. In such a multiple access system, it is relatively easy either to add

new users or to decrease the number of users without disrupting the system.

Let us determine the number of simultaneous signals that can be supported in

a CDMA system.^ For simplicity, we assume that all signals have identical average

powers. Thus, if there are Nu simultaneous users, the desired signal-to-noise inteference

power ratio at a given receiver is

(Nu - l)Pav Nu - 1

(12.2-46)

Hence, the performance for soft-decision decoding at the given receiver is upper-

bounded as

Pe < £2
4W/R
Nu

- 1

Rc < (M — \)Q
4W/R
Nu

- 1

Rcdrr (12.2-47)

In this case, we have assumed that the interference from other users is Gaussian.

As an example, suppose that the desired level of performance (error probability of

10
-6

) is achieved when

4W/R „ ,— - Rcdmm — 40
Nu - 1

tin this section the interference from other users is treated as a random process. This is the case if there

is no cooperation among the users. In Chapter 16 we consider CDMA transmission in which interference

from other users is known and is suppressed by the receiver.
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Then the maximum number of users that can be supported in the CDMA system is

W/R
Nu= 10~ Rcd™* + 1 (12.2-48)

If W/R = 100 and Rcd^n = 4, as obtained with the Golay (24, 12) code, the maximum
number is Nu = 41. If W/R = 1000 and Rcd^n = 4, this number becomes Nu = 401.

In determining the maximum number of simultaneous users of the channel, we
have implicitly assumed that the PN code sequences are mutually orthogonal and the

interference from other users adds on apower basis only. However, orthogonality among
a number of PN code sequences is not easily achieved, especially if the number of PN
code sequences required is large. In fact, the selection of a good set of PN sequences

for a CDMA system is an important problem that has received considerable attention

in the technical literature. We shall briefly discuss this problem in Section 12.2-5.

Digital cellular CDMA system based on DS spread spectrum Direct sequence

CDMA has been adopted as one multiple-access method for digital cellular voice

communications in North America. This digital cellular communication system was

proposed and developed by Qualcomm and has been standardized and designated as

IS-95 by the Telecommunications Industry Association (TIA) for use in the 800-MHz
and in the 1900-MHz frequency bands.

The nominal bandwidth used for transmission from a base station to the mobile

receivers (forward link) is 1.25 MHz, and a separate channel, also with a bandwidth

of 1.25 MHz, is used for signal transmission from mobile receivers to a base station

(reverse link). The signals transmitted in both the forward and the reverse links are DS
spread spectrum signals having a chip rate of 1 .2288 x 106 chips per second (Mchips/s).

Forward link A block diagram of the modulator for the signals transmitted from

a base station to the mobile receivers is shown in Figure 12.2-7. The speech coder is a

code-excited linear predictive (CELP) coder which generates data at the variable rates

of 9600, 4800, 2400, and 1200 bits/s, where the data rate is a function of the speech

activity of the user, in frame intervals of 20 ms. The data from the speech coder is

encoded by a rate 1/2, constraint length K = 9 convolutional code. For lower speech

activity, where the data rates are 4800, 2400, or 1200 bits/s, the output symbols from

the convolutional encoder are repeated either twice, four times, or eight times so as

to maintain a constant bit rate of 9600 bits/s. At the lower speech activity rates, the

transmitter power is reduced by either 3, 6, or 9 dB, so that the transmitted energy per

bit remains constant for all speech rates. Thus, a lower speech activity results in a lower

transmitter power and, hence, a lower level of interference to other users.

The encoded bits for each frame are passed through a block interleaver, which is

needed to overcome the effects of burst errors that may occur in transmission through

the channel. The data bits at the output of the block interleaver, which occur at a rate

of 19.2 kbits/s, are scrambled by multiplication with the output of a long code (period

N = 242 — 1) generator running at the chip rate of 1 .2288M chips/s, but whose output is

decimated by a factor of 64 to 19.2 kchips/s. The long code is used to uniquely identify

a call of a mobile station on the forward and reverse links.
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Each user of the channel is assigned a Hadamard (or Walsh) sequence of length 64.

There are 64 orthogonal Hadamard sequences assigned to each base station, and, thus,

there are 64 channels available. One Hadamard sequence (the all-zero sequence) is used

to transmit a pilot signal, which serves as a means for measuring the channel character-

istics, including the signal strength and the carrier phase offset. These parameters are

used at the receiver in performing phase coherent demodulation. Another Hadamard
sequence is used for providing time synchronization. One channel, and possibly more
if necessary, is used for paging. That leaves up to 61 channels for allocation to different

users.

Each user, using the Hadamard sequence assigned to it, multiplies the data sequence

by the assigned Hadamard sequence. Thus, each encoded data bit is multiplied by the

Hadamard sequence of length 64. The resulting binary sequence is now spread by

multiplication with two PN sequences of length N = 2 15
,
so as to create in-phase and

quadrature signal components. Thus, the binary data signal is converted to a four-phase

signal and both the I and Q components are filtered by baseband spectral shaping filters.

Different base stations are identified by different offsets of these PN sequences.The

signals for all the 64 channels are transmitted synchronously so that, in the absence of

channel multipath distortion, the signals of other users received at any mobile receiver

do not interfere because of the orthogonality of the Hadamard sequences.

At the receiver, a RAKE demodulator is used to resolve the major multipath sig-

nal components, which are then phase-aligned and weighted according to their signal

strength using the estimates of phase and signal strength derived from the pilot signal.

These components are combined and passed to the Viterbi soft-decision decoder. The
RAKE demodulator is described in detail in Chapter 13.

Reverse link The modulator for the reverse link from a mobile transmitter to a base

station is different from that for the forward link. A block diagram of the modulator

is shown in Figure 12.2-8. An important consideration in the design of the modulator

is that signals transmitted from the various mobile transmitters to the base station

are asynchronous and, hence, there is significantly more interference among users.

Secondly, the mobile transmitters are usually battery operated and, consequently, these

transmissions are power limited. To compensate for these major limitations, a K = 9,

rate 1/3 convolutional code is used in the reverse link. Although this code has essentially

the same coding gain in anAWGN channel as the rate 1/2 code used in the forward link,

it has a much higher coding gain in a fading channel, which is the characteristic of digital

cellular communication links, as we shall observe in our treatment of communication

through fading channels in Chapter 13. As in the case of the forward link, for lower

speech activity, the output bits from the convolutional encoder are repeated either two,

or four, or eight times. However, the coded bit rate is 28.8 kbits/s.

For each 20-ms frame, the 576 encoded bits are block-interleaved and passed to

the modulator. The data is modulated using an M = 64 orthogonal signal set using

Hadamard sequences of length 64. Thus, a 6-bit block of data is mapped into one

of the 64 Hadamard sequences. The result is a bit (or chip) rate of 307.2 kbits/s at

the output of the modulator. We note that 64-ary orthogonal modulation at an error

probability of 1

0

-6
requires approximately 3 .5 dB less SNR per bit than binary antipodal

signaling.
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To reduce interference to other users, the time position of the transmitted code

symbol repetitions is randomized so that, at the lower speech activity, consecutive

bursts do not occur evenly spaced in time. Following the randomizer, the signal is

spread by the output of the long code PN generator, which is running at a rate of

1.2288 Mchips/s. Hence, there are only four PN chips for every bit of the Hadamard

sequence from the modulator, so the processing gain in the reverse link is very small.

The resulting 1.2288 Mchips/s binary sequence at the output of the multiplier is

then further multiplied by two PN sequences of length N = 2 15
,
whose rate is also

1.2288 Mchips/s, to create I and Q signals (a QPSK signal) which are filtered by base-

band spectral shaping filters and then passed to quadrature mixers. The Q-channel

signal is delayed in time by one-half PN chip relative to the I -channel signal prior to

the baseband filter. In effect, the signal at the output of the two baseband filters is an

offset QPSK signal.

Although the chips are transmitted as an offset QPSK signal, the demodulator

employs noncoherent demodulation of the M = 64 orthogonal Hadamard waveforms

to recover the encoded data bits. A fast Hadamard transform is used to reduce the

computational complexity in the demodulation process. The output of the demodula-

tor is then fed to the Viterbi detector, whose output is used to synthesize the speech

signal.

12.2-3 Effect of Pulsed Interference on DS Spread Spectrum Systems

Thus far, we have considered the effect of continuous interference or jamming on a

DS spread spectrum signal. We have observed that the processing gain and coding gain

provide a means for overcoming the detrimental effects of this type of interference.

However, there is a jamming threat that has a dramatic effect on the performance of

a DS spread spectrum system. That jamming signal consists of pulses of spectrally

flat noise that covers the entire signal bandwidth W. This is usually called pulsed

interference.

Suppose the jammer has an average power /av in the signal bandwidth W. Hence

2Jq = Jav/W. Instead of transmitting continuously, the jammer transmits pulses at a

power Jay/a fora percent of the time, i.e., the probability that thejammer is transmitting

at a given instant is a. For simplicity, we assume that an interference pulse spans an

integral number of signaling intervals and, thus, it affects an integral number of bits.

When the jammer is not transmitting, the transmitted bits are assumed to be received

error-free, and when thejammer is transmitting, the probability of error for an uncoded

DS spread spectrum system is Q(s/2aSb/ Jo)- Hence, the average probability of a bit

error is

Pi(a) = aQ (y2oc£b/J0
)

(12.2-49)

Thejammer selects the duty cycle a to maximize the error probability. On differentiating

Equation 12.2-49 with respect to a
,
we find that the worst-case pulse jamming occurs
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when

a

0.71

1

Sb/Jo > 0.71

Sb/Jo < 0.71

and the corresponding error probability is

Pi

0.083

sjlo
Sb/Jo > 0.71

Sb/JQ < 0.71

(12.2-50)

(12.2-51)

The error rate performance given by Equation 12.2-49 for a = 1.0, 0.1, and 0.01

along with the worst-case performance based on a * is plotted in Figure 12.2-9. By
comparing the error rate for continuous Gaussian noise jamming with worst-case pulse

jamming, we observe a large difference in performance, which is approximately 40 dB
at an error rate of 10“6

.

We should point out that the above analysis applies when thejammer pulse duration

is equal to or greater than the bit duration. In addition, we should indicate that practical

considerations may prohibit thejammer from achieving high peak power (small values

of a). Nevertheless, the error probability given by Equation 12.2-51 serves as an upper

bound on the performance of the uncoded binary PSK in worst-case pulse jamming.

Clearly, the performance of the DS spread spectrum system in the presence of such

interference is extremely poor.

If we simply add coding to the DS spread spectrum system, the improvement over

the uncoded system is the coding gain. Thus, Sb/Jo is reduced by the coding gain,

FIGURE 12.2-9

Performance of DS binary PSK with pulse

interference.

5
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FIGURE 12.2-10

Block diagram of AJ communication system.

which in most cases is limited to less than 10 dB. The reason for the poor performance

is that the jamming signal pulse duration may be selected to affect many consecutive

coded bits when the jamming signal is turned on. Consequently, the code word error

probability is high due to the burst characteristics of the jammer.

In order to improve the performance, we should interleave the coded bits prior

to transmission over the channel. The effect of the interleaving, as discussed in Sec-

tion 7.12, is to make the coded bits that are hit by the jammer statistically independent.

The block diagram of the digital communication system that includes interleaving/

deinterleaving is shown in Figure 12.2-10. Also shown is the possibility that the receiver

knows the jammer state, i.e., that it knows when the jammer is on or off. Knowledge

of the jammer state (called side information) is sometimes available from channel

measurements of noise power levels in adjacent frequency bands. In our treatment,

we consider two extreme cases, namely, no knowledge of the jammer state or com-

plete knowledge of the jammer state. In any case, the random variable f representing

the jammer state is characterized by the probabilities

P(? = 1) = a, P(? = 0) = 1 - a (12.2-52)

When the jammer is on, the channel is modeled as an AWGN with power spectral

density No = ToA* I
and when the jammer is off, there is no noise in the channel.

Knowledge of the jammer state implies that the decoder knows when f = 1 and when

f = 0, and uses this information in the computation of the correlation metrics. For

example, the decoder may weight the demodulator output for each coded bit by the

reciprocal of the noise power level in the interval. Alternatively, the decoder may give

zero weight (erasure) to a jammed bit.

First, let us consider the effect ofjamming without knowledge of the jammer state.

The interleaver/deinterleaver pair is assumed to result in statistically independent jam-

mer hits of the coded bits. As an example of the performance achieved with coding,

we cite the performance results from the paper of Martin and MeAdam (1980). There

the performance of binary convolutional codes is evaluated for worst-case pulse jam-

ming. Both hard- and soft-decision Viterbi decoding are considered. Soft decisions
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FIGURE 12.2-11

Optimal duty cycle for pulse jammer. [From

Martin and MeAdam (1980). © 1980 IEEE.]

are obtained by quantizing the demodulator output to eight levels. For this purpose, a

uniform quantizer is used for which the threshold spacing is optimized for the pulse

jammer noise level. The quantizer plays the important role of limiting the size of the

demodulator output when the pulse jammer is on. The limiting action ensures that any

hit on a coded bit does not heavily bias the corresponding path metrics.

The optimum duty cycle for the pulse jammer in the coded system is generally

inversely proportional to the SNR, but its value is different from that given by Equa-

tion 12.2-50 for the uncoded system. Figure 12.2-1 1 illustrates graphically the optimal

jammer duty cycle for both hard- and soft-decision decoding of the rate 1 /2 convolu-

tional codes. The corresponding error rate results for this worst-case pulse jammer are

illustrated in Figures 12.2-12 and 12.2-13 for rate 1/2 codes with constraint lengths

3 < K < 9. For example, note that at P2 = 10“6
,
the K = 7 convolutional code

with soft-decision decoding requires ^//0 = 7.6 dB, whereas hard-decision decoding

requires £b/J0 = 11.7 dB. This 4.1-dB difference in SNR is relatively large. With

continuous Gaussian noise, the corresponding SNRs for an error rate of 10
-6

are 5 dB
for soft-decision decoding and 7 dB for hard-decision decoding. Hence, the worst-case

pulse jammer has degraded the performance by 2.6 dB for soft-decision decoding and

by 4.7 dB for hard-decision decoding. These levels of degradation increase as the con-

straint length of the convolutional code is decreased. The important point, however, is

that the loss in SNR due to jamming has been reduced from 40 dB for the uncoded

system to less than 5 dB for the coded system based on a K = 7, rate 1/2 convolutional

code with interleaving.

A simpler method for evaluating the performance of a coded anti-jamming (AJ)

communication system is to use the cutoff rate parameter Ro as proposed by Omura
and Levitt (1982). For example, with binary-coded modulation, the cutoff rate may be

expressed as

Rq — 1 — log(l + Aa ) (12.2-53)



Probability

of

a

bit

error,

P
b

Probability

of

a

bit

error,

P

Digital Communications

FIGURE 12.2-12

Performance of rate 1/2 convolutional

codes with hard-decision Viterbi decoding

binary PSK with worst-case pulse jamming.

[From Martin andMeAdam (1980). ©
1980 IEEE.]

FIGURE 12.2-13

Performance of rate 1 /2 convolutional codes

with soft-decision Viterbi decoding binary

PSK with worst-case pulse jamming. [From

Martin and MeAdam (1980). © 1980 IEEE.]
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where the factor Aa depends on the channel noise characteristics and the decoder

processing. Recall that for binary PSK in anAWGN channel and soft-decision decoding,

A« = e~e'INo (12.2-54)

where £c is the energy per coded bit; and for hard-decision decoding,

A0 = y/Ap(l - p) (12.2-55)

where p is the probability of a coded bit error. Here, we have No = Jo-

For a coded binary PSK, with pulsejamming, Omura and Levitt (1982) have shown
that

Aa = ae~a£c ^N° for soft-decision decoding with

knowledge ofjammer state

Aa = min { [a exp
(
X
2£c/No/a )

+ 1 — a\ exp(—2X£C)}

for soft-decision decoding with

no knowledge ofjammer state

Aa = a<s/4p( 1 — p) for hard-decision decoding with

knowledge of the jammer state

Aa = ^/4ap(l — ap) for hard-decision decoding with

no knowledge of thejammer state

where the probability of error for hard-decision decoding of binary PSK is

(12.2-56)

(12.2-57)

(12.2-58)

(12.2-59)

P=Q
2a£c

The graphs for Ro as a function of £c/No are illustrated in Figure 12.2-14 for

the cases given above. Note that these graphs represent the cutoff rate for the worst-

case value of a = a* that maximizes Aa (minimizes Ro) for each value of £c/No-

Furthermore, note that with soft-decision decoding and no knowledge of the jammer
state, Ro = 0. This situation results from the fact that the demodulator output is not

quantized.

The graphs in Figure 12.2-14 may be used to evaluate the performance of coded

systems. To demonstrate the procedure, suppose that we wish to determine the SNR
required to achieve an error probability of 10~6 with coded binary PSK in worst-case

pulsejamming. To be specific, we assume that we have a rate 1/2, K = 1 convolutional

code. We begin with the performance of the rate 1/2 ,
K = 1 convolutional code with

soft-decision decoding in anAWGN channel. At P2 = 10
-6

,
the SNR required is found

from Figure 8.6-1 to be
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Key

(0) Soft-decision decoding in AWGN (a = 1)

(1) Soft-decision with jammer state information

(2) Hard-decision with jammer state information

(3) Soft-decision with no jammer state information

(4) Hard-decision with no jammer state information

FIGURE 12.2-14

Cutoff rate for coded DS binary PSK modulation. [From Omura and Levitt (1982). © 1982

IEEE].

Since the code is rate 1 /2, we have

£c

No

Now, we go to the graphs in Figure 12.2-14 and find that for the AWGN channel

(reference system) with £c/Nq = 2dB, the corresponding value of the cutoff rate is

R0 = 0.74 bit per symbol

If we have another channel with different noise characteristics (a worst-case pulse noise

channel) but with the same value of the cutoff rate Ro, then the upper bound on the

bit error probability is the same, i.e., 10
-6

in this case. Consequently, we can use this

rate to determine the SNR required for the worst-case pulse jammer channel. From the

graphs in Figure 12.2-14, we find that

Sc

Jo

'

10 dB for hard-decision decoding with

no knowledge ofjammer state

5 dB for hard-decision decoding with

knowledge ofjammer state

3 dB for soft-decision decoding with

knowledge ofjammer state

Therefore, the corresponding values of £b/Jo for the rate 1/2, K = 7 convolutional

code are 13, 8, and 6 dB, respectively.

This general approach may be used to generate error rate graphs for coded binary

signals in a worst-case pulsejamming channel by using corresponding error rate graphs
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for the AWGN channel. The approach we describe above is easily generalized to M-ary

coded signals as indicated by Omura and Levitt (1982).

By comparing the cutoff rate for coded DS binary PSK modulation shown in

Figure 12.2-14, we note that for rates below 0.7, there is no penalty in SNR with soft-

decision decoding and jammer state information compared with the performance on

the AWGN channel (a = 1). On the other hand, at Rq = 0.7, there is a 6-dB difference

in performance between the SNR in an AWGN channel and that required for hard-

decision decoding with no jammer state information. At rates below 0.4, there is no

penalty in SNR with hard-decision decoding if the jammer state is unknown. However,

there is the expected 2-dB loss in hard-decision decoding compared with soft-decision

decoding in the AWGN channel.

12.2-4 Excision of Narrowband Interference in DS Spread
Spectrum Systems

We have shown that DS spread spectrum signals reduce the effects of interference

due to other users of the channel and intentional jamming. When the interference is

narrowband, the cross correlation of the received signal with the replica of the PN code

sequence reduces the level of the interference by spreading it across the frequency

band occupied by the PN signal. Thus, the interference is rendered equivalent to a

lower-level noise with a relatively flat spectrum. Simultaneously the cross correlation

operation collapses the desired signal to the bandwidth occupied by the information

signal prior to spreading. Consequently, the power in the narrowband interference is

reduced by an amount equal to the processing gain.

The interference immunity of a DS spread spectrum communication system cor-

rupted by narrowband interference can be further improved by filtering (whitening) the

signal prior to despreading, where the objective is to reduce the level of the interference

at the expense of introducing some distortion on the desired signal. This filtering can

be accomplished by exploiting the wideband spectral characteristics of the desired DS
signal and the narrowband characteristic of the interference as described below.

To be specific, we consider the demodulator illustrated in Figure 12.2-15. The

received signal is passed through a filter matched to the chip pulse g(t). The output of

FIGURE 12.2-15

Demodulator for PN spread spectrum signal corrupted by narrowband interference.
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this filter is synchronously sampled every Tc seconds to yield

rj = 2£c (2bj - 1)(2dj - 1) + vj9 j = 1,2,... (12.2-60)

where £c is the energy of the chip pulse, {bj} is the binary-valued PN sequence, and

Vj represents the additive noise and interference term. The additive noise term vj will

be assumed to consist of two terms, one corresponding to a broadband noise (usually

thermal noise) and the other to narrowband interference. Consequently we may express

rj as

rj = Sj + ij + rij (12.2-61)

where sj denotes the signal component, ij the narrowband interference, and rij the

broadband noise.

The received signal sequence {r
; }

at the output of the sampler is fed to a discrete-

time filter that estimates the narrowband interference sequence {ij} and subtracts the

estimate ij from {rj}. This filter may be either linear or non-linear. The resulting signal

sequence [rj — ij } is then fed to the PN correlator, whose output is passed to the decoder.

Interference estimation and suppression based on linearprediction The interfer-

ence component ij can be estimated from the received signal by passing it through the

linear transversal filter. Computationally efficient algorithms based on linear predic-

tion may be used to estimate the interference. Basically, in this method the narrowband

interference is modeled as having been generated by passing white noise through an

all-pole filter. Hence, the output of this filter is an autoregressive (AR) process. Lin-

ear prediction is used to estimate the coefficients of the all-pole model. The estimated

coefficients specify an appropriate noise-whitening all-zero (transversal) filter which

is used to suppress the narrowband interference.

Let us assume for the moment that the statistics of the sequence [ij] are known
and that {ij} is a stationary random sequence. Then, because of the narrowband char-

acteristics of {ij}, we can predict ij from r
7 _i, r

;
-_2 ,

. .
. ,

r/_m . That is,

m

ij = 'y
^ Qmirj—i (12.2—62)

/=

1

where {am/} are the coefficients of an rath-order linear predictor. It should be empha-

sized that Equation 12.2-62 predicts the interference but not the signal Sj, because the

PN chips are uncorrelated and, hence, Sj is uncorrelated with r
; _/,

/ = 1, 2, . .
.

,

ra,

where m is less than the length of the PN sequence.

The coefficients in Equation 12.2-62 are determined by minimizing the mean
square error between r

7
- and ij, with respect to the predictor coefficients. This leads to

the set of linear equations, called the Yule-Walker equations,

m

J2amiR(k-l) = R(k), k = 1, 2, . .
.

,

m (12.2-63)

/= 1

where R (k) = E(rjrj+k) is the autocorrelation function of the received signal {r
7 }.



Chapter Twelve: Spread Spectrum Signals for Digital Communications 793

The solution ofEquation 12.2-63 for the coefficients ofthe prediction filter requires

knowledge of the autocorrelation function R(k). In practice, the autocorrelation function

of {ij} and, hence, {r
y } is usually unknown, and it may also be slowly varying in

time (nonstationary interference). In such a case, adaptive algorithms may be used

to estimate the narrowband interference. In particular, least-squares-type algorithms,

such as the Burg algorithm, are especially effective for estimating the coefficients

of the linear prediction filter adaptively, as described in the paper by Ketchum and

Proakis (1982).

example 12.2-4. Let us consider a narrowband interference that occupies 20 per-

cent of the spectral band occupied by the PN spread spectrum signal. The average

power of the interference is 20 dB above the average power of the signal. The average

power of the broadband noise is 20 dB below the average power of the signal. Fig-

ure 12.2-16 illustrates the spectral characteristics of a 16-tap and a 29-tap FIR filter

when the interference is equally split into four frequency bands. It is apparent that the

29-tap filter has better spectral characteristics. In general, the number of taps in the

filter should be about four times the number of interference bands for adequate suppres-

sion. It is also apparent that the interference suppression filter acts as a notch filter. In

effect, it attempts to whiten the total noise plus interference, so that the power spectral

density of these components at its output is approximately flat. While suppressing the

interference, the filter also distorts the desired signal by spreading it in time.

FIGURE 12.2-16

Frequency-response characteristics of 16- and 29-tap filters for four bands of interference.
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Performance improvement with interference suppression Since the noise plus in-

terference at the output of the suppression filter is spectrally flat, the matched filtering or

cross correlation following the suppression filter should be performed with the distorted

signal. This may be accomplished by having a filter matched to the interference suppres-

sion filter, i.e., a discrete-time filter impulse response {—

a

m
,
m ,
— ... — am>1 , 1}

followed by the PN correlator. In fact, we can combine the interference suppression

filter and its matched filter into a single filter having an impulse response

h0

hk

hm

hm+k

an
k-

1

&m,m—k H- ^ ^ fl'm,m—l&m,k—l ,

1=0

1 + a
2
ml

1=

1

T'm—k 5
0 < k < m

1 < k < m — 1

(12.2-64)

The combined filter is a linear phase (symmetric) transversal filter with K = 2m + 1

taps. The impulse response may be normalized by dividing every term by hm . Thus

the center tap is normalized to unity. In order to demonstrate the effectiveness of the

interference suppression filter, we compare the performance of the DS system with and

without the suppression filter. The output SNR is a convenient performance index for

this purpose. Since the output of the PN correlator is characterized as Gaussian, there

is a one-to-one correspondence between the SNR and the probability of error.

Without the suppression filter, the PN correlator output
,
denoted as U\, has mean

2£CL C and a variance L c(2£cNo + Ra(0)) where Ra(k) is the autocorrelation function

of the sequence {ij} and L c is the number of chips per bit or per symbol. The output

SNR is defined as the ratio of the square of the mean to twice the variance. Hence the

SNR without the suppression filter is

SNR„0 =
£CLC

N0 + Ra(0)/2£c
(12.2-65)

With an interference suppression filter having a symmetric impulse response as

defined in Equation 12.2-64 and normalized such that the center tap is unity, the mean
value of the correlator output is also 2£CL C . However, the variance of the output now
consists of three terms. One corresponds to the additive wideband noise, the second to

the residual narrowband interference, and the third to a self-noise caused by the time

dispersion introduced by the suppression filter. The expression for the variance can be

shown to be (see Ketchum and Proakis [1982]):

K K K

VAR[I/i] = 2LC£CN0 + h(l)h(k)Ru(k - l )

*=0 *=0 1=0

( 12 .2-66)
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Hence the output SNR with the filter is the ratio of the square of the mean to twice the

variance. The ratio of the SNR with the filter to the SNR without the filter is

N0 + Ru(0)/2£c
Tl° ~

K j
K K K/2-1

M)E^ +^EE h{km)Rn (k -l) + 2Sc E (2 - k/Lc)h\
k=o 2tc k=0 i=o t^o

(12.2-67)

This ratio is called the improvement factor resulting from interference suppression. It

may be plotted against the normalized SNR per chip without filtering, defined as

SNR„
0 = £c

L c Nq + Rii(0)/2£c
(12 .2-68 )

The resulting graph of rj0 versus SNRno/L c is universal in the sense that it applies to

any PN spread spectrum system with arbitrary processing gain for a given £c , No, and

*««(0).

As an example, the improvement factor in (decibels) is plotted against SNRno/L c

in Figure 12.2-17 for a single-band equal-amplitude randomly phased sinusoids cov-

ering 20 percent of the frequency band occupied by the DS spread spectrum signal.

The interference suppression filter consists of a nine-tap suppression filter which corre-

sponds to a fourth-order predictor. These numerical results indicate that the notch filter

is very effective in suppressing the interference prior to PN correlation and decoding.

As a consequence, the interference margin of the system is increased.

FIGURE 12.2-17

Improvement factor for interference suppression filter in cascade with its matched filter.
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The use of a linear adaptive FIR filter for suppression of narrowband interference

in DS spread spectrum systems has been considered in the literature by many authors.

The interested reader is referred to this literature cited in Section 12.6. A practical

motivation for excision of narrowband signals from wideband signals is to allow the

overlay of narrowband digital cellular systems with wideband CDMA systems.

Interference estimation and suppression basedon non-linearfiltering The linear

FIR filter used to predict the narrowband interference, which is modeled as a Gaussian

autoregressive (AR) process, is the optimal minimum mean-square-error filter when
the signal {sk } and broadband noise {nk } components are Gaussian random processes.

However, theDS spread spectrum signal sequence {sk } is non-Gaussian. Consequently,

the linear estimation filter is suboptimal, in the sense that it is not the best filter for

suppressing the narrowband interference. The optimum estimator for the narrowband

interference is non-linear.

By defining the state vector xk as

Xk — lik ik—\ ’

'

* ik—m+\\ (12.2—69)

where m is the order of the AR model, it is possible to express the state vector and the

observation sequence in the state-space form

x k = <Px k-i + wk

rk = Hx k + (nk + sk )

(12.2-70)

where is the state transition matrix that depends on the AR model parameters, wk is

the white Gaussian process driving the AR model, and H = [100 ... 0]. We recall that

the minimum mean-square-error estimator for the state at time k given the observations

i = [rk-\, rk-2 , . .
.

,

ro] is the conditional mean E(xk \rk-\). If the signal sequence

{sk } and the broadband noise sequence {nk } were Gaussian, the optimum estimator for

the state xk corresponding to the conditional mean would be the linear predictor obtained

from the Kalman filter. Since {^} is non-Gaussian, the conditional mean estimate is a

non-linear function of the observations which, in general, is highly complex. However,

it is possible to derive a reduced complexity approximation to the conditional mean
estimate. This approach has been described in the papers by Vijayan and Poor (1990),

Garth and Poor (1992), Rusch and Poor (1994), and Poor and Rusch (1994). The

general configuration of the approximate conditional mean non-linear filter is shown in

Figure 12.2-18. The non-linear function tanh(x) provides a soft-decision type feedback

signal component. An analysis and simulation results of the performance of this type

of non-linear filter for suppression of narrowband interference are given in the papers

cited above.

12.2-5 Generation ofPN Sequences

The generation of PN sequences for spread spectrum applications is a topic that has

received considerable attention in the technical literature. We shall briefly discuss the

construction of some PN sequences and present a number of important properties of the
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To PN correlator

FIGURE 12.2-18

Non-linear excision filter.

autocorrelation and cross-correlation functions of such sequences. For a comprehensive

treatment of this subject, the interested reader may refer to the book by Golomb (1967).

By far the most widely known binary PN sequences are the maximum-length shift-

register sequences introduced in Section 7.9-5 in the context of coding. A maximum-
length shift register sequence, or ra-sequence for short, has length n = 2m — 1 bits

and is generated by an m-stage shift register with linear feedback as illustrated in Fig-

ure 12.2-19. The sequence is periodic with period n. Each period of the sequence

contains 2m_1 ones and 2m
~ l — 1 zeros.

In DS spread spectrum applications the binary sequence with elements {0, 1} is

mapped into a corresponding sequence of positive and negative pulses according to the

relation

Pi(t) = (2bi - 1 )p(t - iT)

where p t
(t) is the pulse corresponding to the element bi in the sequence with elements

{0, 1 } . Equivalently, we may say that the binary sequence with elements {0, 1 } is mapped
into a corresponding binary sequence with elements {

—

1 , 1 } . We shall call the equivalent

m stages

FIGURE 12.2-19

General m-stage shift register with linear feedback.
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sequence with elements {— 1 , 1 } a bipolar sequence
,
since it results in pulses of positive

and negative amplitudes.

An important characteristic of aperiodic PN sequence is its periodic autocorrelation

function, which is usually defined in terms of the bipolar sequence as

n

R(j) = Y^(2bi
- 1X2bi+j - 1), 0 < j < n — 1 (12.2-71)

i= 1

where n is the period. Clearly, R(j + rn) = R(j ) for any integer value r.

Ideally, a pseudorandom sequence should have an autocorrelation function with

the property that R(0) = n and R(j )
= 0 for 1 < j < n — 1 . In the case ofm sequences,

the periodic autocorrelation function is

f n j = 0
R(J) = ,

' ^ .
(12.2-72)

For large values of n, i.e., for long m sequences, the size of the off-peak values of R(j)

relative to the peak value R(j)/R(0) = — l/n is small and, from a practical viewpoint,

inconsequential. Therefore, m sequences are almost ideal when viewed in terms of their

autocorrelation function.

In antijamming applications of PN spread spectrum signals, the period of the

sequence must be large in order to prevent the jammer from learning the feedback

connections of the PN generator. However, this requirement is impractical in most

cases because the jammer can determine the feedback connections by observing only

2m — 1 chips from the PN sequence. This vulnerability of the PN sequence is due to the

linearity property of the generator. To reduce the vulnerability to a jammer, the output

sequences from several stages of the shift register or the outputs from several distinct

m sequences are combined in a non-linear way to produce a non-linear sequence that is

considerably more difficult for the jammer to learn. Further reduction in vulnerability

is achieved by frequently changing the feedback connections and/or the number of

stages in the shift register according to some prearranged plan formulated between the

transmitter and the intended receiver.

In some applications, the cross-correlation properties of PN sequences are as im-

portant as the autocorrelation properties. For example, in CDMA, each user is assigned

a particular PN sequence. Ideally, the PN sequences among users should be mutually

orthogonal so that the level of interference experienced by any one user from transmis-

sions of other users adds on a power basis. However, the PN sequences used in practice

exhibit some correlation.

To be specific, we consider the class of m sequences. It is known (Sarwate and

Pursley, 1980) that the periodic cross-correlation function between any pair of m se-

quences of the same period can have relatively large peaks. Table 12.2-1 lists the peak

magnitude RmSiX for the periodic cross correlation between pairs of m sequences for

3 < m < 12. The table also shows the number ofm sequences of length n — 2m — 1 for

3 < m < 12. As we can see, the number of m sequences of length n increases rapidly

with m. We also observe that, for most sequences, the peak magnitude Rmax of the

cross-correlation function is a large percentage of the peak value of the autocorrelation

function.
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TABLE 12.2-1

Peak Cross Correlation ofm Sequences and Gold Sequences

m n=2m -1
Number of

m sequences

Peak cross

correlation Rmax t(m) t(m)IR(0)

3 1 2 5 0.71 5 0.71

4 15 2 9 0.60 9 0.60

5 31 6 11 0.35 9 0.29

6 63 6 23 0.36 17 0.27

7 127 18 41 0.32 17 0.13

8 255 16 95 0.37 33 0.13

9 511 48 113 0.22 33 0.06

10 1023 60 383 0.37 65 0.06

11 2047 176 287 0.14 65 0.03

12 4095 144 1407 0.34 129 0.03

Such high values for the cross correlations are undesirable in CDMA. Although it

is possible to select a small subset of m sequences that have relatively smaller cross-

correlation peak values, the number of sequences in the set is usually too small for

CDMA applications.

PN sequences with better periodic cross-correlation properties than m sequences

have been given by Gold (1967, 1968) and Kasami (1966). They are derived from m
sequences as described below.

Gold and Kasami proved that certain pairs of m sequences of length n exhibit a

three-valued cross-correlation function with values {—1, t(m) — 2}, where

f 2(m+l)/2 + 1 odd m
1

2

(m+2>/2 + 1 even m
(12.2-73)

For example, if m = 10, then t ( 1 0) = 26 + 1 = 65 and the three possible values of

the periodic cross-correlation function are {—1, —65, 63}. Hence the maximum cross

correlation for the pair of m sequences is 65, while the peak for the family of 60

possible sequences generated by a 10-stage shift register with different feedback con-

nections is Rmax = 383—about a sixfold difference in peak values. Two m sequences

of length n with a periodic cross-correlation function that takes on the possible values

{— 1, t(m) — 2} are called preferred sequences.

From a pair of preferred sequences, say a = \a\ • • • an \ and b = \b\ &2 • • • bn \,

we construct a set of sequences of length n by taking the modulo-2 sum of a with the n

cyclicly shifted versions of b or vice versa. Thus, we obtain n new periodic sequences^

with period n = 2m — 1. We may also include the original sequences a and b, and, thus,

we have a total of n + 2 sequences. The n + 2 sequences constructed in this manner

are called Gold sequences.

tAn equivalent method for generating the n new sequences is to employ a shift register of length 2m
with feedback connections specified by the polynomial h{X) = h\(X)h2(X), where h\(X) and h2(X) are

the polynomials that specify the feedback connections of the m-stage shift registers that generate the m
sequences a and b.
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example 12 .2-5 . Let us consider the generation of Gold sequences of length n =
31 = 25 — 1. As indicated above for m = 5, the cross-correlation peak is

/(5) = 23 + 1 = 9

Two preferred sequences, which may be obtained from Peterson and Weldon (1972),

are described by the parity polynomials

/i,(X) = X 5 + X3 + 1

h 2(X) = X5 + X4 + X3 + X + 1

The shift registers for generating the two m sequences and the corresponding Gold
sequences are shown in Figure 12.2-20. In this case, there are 33 different sequences,

corresponding to the 33 relative phases of the two m sequences. Of these, 31 sequences

are non-maximal-length sequences.

With the exception of the sequences a and b
,
the set of Gold sequences is not com-

prised of maximum-length shift-register sequences of length n. Hence, their autocorre-

lation functions are not two-valued. Gold (1968) has shown that the cross-correlation

function for any pair of sequences from the set of n + 2 Gold sequences is three-valued

with possible values {—1, —t(m ), t(m)
—

2}, where t(m) is given by Equation 12.2-73.

Similarly, the off-peak autocorrelation function for a Gold sequence takes on values

from the set {—1, —t(m), t(m) — 2}. Hence, the off-peak values of the autocorrelation

function are upper-bounded by t(m).

The values of the off-peak autocorrelation function and the peak cross-correlation

function, i.e., t(m), for Gold sequences is listed in Table 12.2-1. Also listed are the

values normalized by R(0).
The frequency of occurrence for each of the three possible values of the cross

correlation for any pair of Gold sequences may also be of interest to the system designer.

In Table 12.2-2, we give the frequency of occurrence of the three values for the case

in which m is odd.

It is interesting to compare the peak cross-correlation value of Gold sequences with

a known lower bound on the cross-correlation between any pair of binary sequences

of period n in a set of M sequences. A lower bound derived by Welch (1974) for

Gold

sequence

FIGURE 12.2-20

Generation of Gold sequences of length 31.
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TABLE 12.2-2

Frequency of Occurrence of Cross-Correlation

Values for Gold Codes of Length n = 2m — 1, m Odd

Cross-correlation value Frequency of occurrence

-1 2"-> - 1

_[2(m+l)/2 _j_ ^ 2"-2 _ 2(«—3)/2

2(m+l)/2 _ 1
2«-2 _(- 2(n~3)/2

^max IS

Rn*x>n\ *!!—

\

(12.2-74)

y
Mn - 1

which, for large values of n and M, is well approximated as +Jn. For Gold sequences,

M = 2m + l, n = 2m — 1 and the lower bound is Rmax ~ 2m/2
. This bound is lower

by \/2 for odd m and by 2 for even m relative to Rmax = t(m) for Gold sequences.

Therefore, Gold sequences do not achieve the lower bound.

A procedure similar to that used for generating Gold sequences will generate a

smaller set of M = 2m/2 binary sequences of period n = 2m —
1, where m is even.

In this procedure, we begin with an m sequence a and we form a binary sequence b

by taking every 2m/2 + 1 bit of a. Thus, the sequence b is formed by decimating a

by 2m/2 + 1. It can be verified that the resulting sequence b is periodic with period

2m/2 — 1. For example, if m = 10, the period of a is n = 1023 and the peroid of b is

31. Hence, if we observe 1023 bits of the sequence b
,
we shall see 33 repetitions of the

31 -bit sequence. Now, by taking n — 2m — 1 bits of the sequences a and b , we form a

new set of sequences by adding, modulo-2, the bits from a and the bits from b and all

2m/2 — 2 cyclic shifts of the bits from b. By including a in the set, we obtain a set of

2m/2 binary sequences of length n = 2m — 1 . These are called Kasami sequences. The

autocorrelation and cross-correlation functions of these sequences take on values from

the set {—1, —(2
m/2 + 1), 2

m/2 — 1}. Hence, the maximum cross-correlation value for

any pair of sequences from the set is

*max = 2m/1 + 1 (12.2-75)

This value of Rmax satisfies the Welch lower bound for a set of 2m/2 sequences of length

n — 2m — 1. Hence, the Kasami^ sequences are optimal.

Besides the well-known Gold and Kasami sequences, there are other binary se-

quences appropriate for CDMA applications. The interested reader may refer to the

work of Scholtz (1979), Olsen (1977), and Sarwate and Pursley (1980).

Finally, we wish to indicate that, although we have discussed the periodic cross-

correlation function between pairs of periodic sequences, many practical CDMA sys-

tems may use information bit durations that encompass only fractions of a periodic

sequence. In such cases, it is the partial-period cross correlation between two sequences

that is important. A number of papers deal with this problem, including those by Lind-

holm (1968), Wainberg and Wolf (1970), Fredricsson (1975), Bekir et al. (1978), and

Pursley (1979).
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12.3

FREQUENCY-HOPPED SPREAD SPECTRUM SIGNALS

In ^frequency-hopped (FH) spread spectrum communication system the available chan-

nel bandwidth is subdivided into a large number of contiguous frequency slots. In any

signaling interval, the transmitted signal occupies one or more of the available fre-

quency slots. The selection of the frequency slot(s) in each signaling interval is made
pseudorandomly according to the output from a PN generator. Figure 12.3-1 illustrates

a particular FH pattern in the time-frequency plane.

A block diagram of the transmitter and receiver for an FH spread spectrum system

is shown in Figure 12.3-2. The modulation is usually either binary or M-ary FSK.
For example, if binary FSK is employed, the modulator selects one of two frequencies

corresponding to the transmission of either a 1 or a 0. The resulting FSK signal is

translated in frequency by an amount that is determined by the output sequence from

the PN generator, which, in turn, is used to select a frequency that is synthesized by the

frequency synthesizer. This frequency is mixed with the output of the modulator and the

resultant frequency-translated signal is transmitted over the channel. For example, m
bits from thePN generator may be used to specify 2m — 1 possible frequency translations.

At the receiver, we have an identical PN generator, synchronized with the receiver

signal, which is used to control the output of the frequency synthesizer. Thus, the

pseudorandom frequency translation introduced at the transmitter is removed at the

receiver by mixing the synthesizer output with the received signal. The resultant signal

is demodulated by means of anFSK demodulator. A signal for maintaining synchronism

of the PN generator with the frequency-translated received signal is usually extracted

from the received signal.

Although PSK modulation gives better performance than FSK in an AWGN chan-

nel, it is sometimes difficult to maintain phase coherence in the synthesis of the fre-

quencies used in the hopping pattern and, also, in the propagation of the signal over the

channel as the signal is hopped from one frequency to another over a wide bandwidth.

Consequently, FSK modulation with noncoherent detection is often employed with FH
spread spectrum signals.
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FIGURE 12.3-2

Block diagram of an FH spread spectrum system.

In the FH system depicted in Figure 12.3-2, the carrier frequency is pseudoran-

domly hopped in every signaling interval. The M information-bearing tones are con-

tiguous and separated in frequency by 1/TC ,
where Tc is the signaling interval. This

type of frequency hopping is called block hopping.

Another type of frequency hopping that is less vulnerable to some jamming strate-

gies is independent tone hopping. In this scheme, the M possible tones from the mod-

ulator are assigned widely dispersed frequency slots. One method for accomplishing

this is illustrated in Figure 12.3-3. Here, the m bits from the PN generator and the k

information bits are used to specify the frequency slots for the transmitted signal.

The FH rate is usually selected to be either equal to the (coded or uncoded) symbol

rate or faster than that rate. If there are multiple hops per symbol, we have a fast-hopped

signal. On the other hand, if the hopping is performed at the symbol rate, we have a

slow-hopped signal.

Fast frequency hopping is employed in AJ applications when it is necessary to

prevent a type of jammer, called a follower jammer, from having sufficient time to

intercept the frequency and retransmit it along with adjacent frequencies so as to create

interfering signal components. However, there is a penalty incurred in subdividing a

signal into several FH elements because the energy from these separate elements is

Decoder

FIGURE 12.3-3

Block diagram of an independent tone FH spread spectrum system.
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combined noncoherently. Consequently, the demodulator incurs a penalty in the form

of a noncoherent combining loss as described in Section 11.1.

FH spread spectrum signals are used primarily in digital communication systems

that require AJ protection and in CDMA, where many users share a common bandwidth.

In most cases, an FH signal is preferred over a DS spread spectrum signal because of

the stringent synchronization requirements inherent in DS spread spectrum signals.

Specifically, in a DS system, timing and synchronization must be established to within

a fraction of the chip interval Tc & l/W. On the other hand, in an FH system, the

chip interval is the time spent in transmitting a signal in a particular frequency slot of

bandwidth B « W. But this interval is approximately 1 /B, which is much larger than

l/W. Hence the timing requirements in an FH system are not as stringent as in a DS
system.

In Sections 12.3-2 and 12.3-3, we shall focus on the AJ and CDMA applications

of FH spread spectrum signals. First, we shall determine the error rate performance of

an uncoded and a coded FH signal in the presence of broadband AWGN inteference.

Then we shall consider a more serious type of interference that arises in AJ and CDMA
applications, called partial-band interference. The benefits obtained from coding for

this type of interference are determined. We conclude the discussion in Section 12.3-3

with an example of an FH CDMA system that was designed for use by mobile users

with a satellite serving as the channel.

12o3-l Performance of FH Spread Spectrum Signals in an AWGN Channel

Let us consider the performance of an FH spread spectrum signal in the presence

of broadband interference characterized statistically as AWGN with power spectral

density J0 . For binary orthogonal FSK with noncoherent detection and slow frequency

hopping (1 hop/bit), the probability of error, derived in Section 4.5-3, is

P2 = \
e
~nl2 (12.3-1)

where yb = £b /J0 . On the other hand, if the bit interval is subdivided into L subintervals

and FH binary FSK is transmitted in each subinterval, we have a fast FH signal. With

square-law combining of the output signals from the corresponding matched filters for

the L subintervals, the error rate performance of the FH signal, obtained from the results

in Section 11.1, is

= J^ e
~n/2E K

‘ (W (12.3-2)

i=0

where the SNR per bit is yb = £b / Jq = Lyc , yc is the SNR per chip in the L-chip

symbol, and

Ki = (12.3-3)
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We recall that, for a given SNR per bit yb ,
the error rate obtained from Equa-

tion 12.3-2 is larger than that obtained from Equation 12.3-1. The difference in SNR
for a given error rate and a given L is called the noncoherent combining loss

,
which

was described and illustrated in Section 11.1.

Coding improves the performance of the FH spread spectrum system by an amount,

which we call the coding gain
,
that depends on the code parameters. Suppose we use a

linear binary (n ,
k) block code and binary FSK modulation with one hop per coded bit

for transmitting the bits. With soft-decision decoding of the square-law-demodulated

FSK signal, the probability of a codeword error is upper-bounded as

M

Pe<Yl p2(m) (12.3-4)

m=

2

where P2(m) is the error probability in deciding between the rath codeword and the

all-zero codeword when the latter has been transmitted. The expression for P2(m) was

derived in Section 7.4 and has the same form as Equations 12.3-2 and 12.3-3, with L
being replaced by wm and yb by ybRcwm ,

where wm is the weight of the rath code word

and Rc is the code rate. The product Rcwm ,
which is not less than Rcdm[n ,

represents

the coding gain. Thus, we have the performance of a block coded FH system with slow

frequency hopping in broadband interference.

The probability of error for fast frequency hopping with n2 hops per coded bit is

obtained by reinterpreting the binary event probability P2 (tn) in Equation 12.3-4. The

n2 hops per coded bit may be interpreted as a repetition code, which, when combined

with a nontrivial (n\,k) binary linear code having weight distribution {wm }, yields

an (n\n2 ,
k) binary linear code having weight distribution {n2Wm }. Hence, P2 (rn) has

the form given in Equation 12.3-2, with L replaced by n2wm and yb by ybRcn2Wm ,

where Rc = k/n i«2- Note that ybRcn2Wm = YbWmk/n\ ,
which is just the coding gain

obtained from the nontrivial (n\,k) code. Consequently, the use of the repetition code

will result in an increase in the noncoherent combining loss.

With hard-decision decoding and slow frequency hopping, the probability of a

coded bit error at the output of the demodulator for noncoherent detection is

p = \e~ybRcl1 (12.3-5)

The codeword error probability is easily upper bounded, by use of the Chernov bound,

as

M
Pe < 5>p(l - P)p"

/2 (12.3-6)

m=

2

However, if fast frequency hopping is employed with «2 hops per coded bit, and the

square-law-detected outputs from the corresponding matched filters for the hops are

added as in soft-decision decoding to form the two decision variables for the coded bits,

the bit error probability p is also given by Equation 12.3-2, with L replaced by /i2 and

yb replaced by ybRcn2 ,
where Rc is the rate of the nontrivial (ji \ ,

k) code. Consequently,

the performance of the fast FH system in broadband interference is degraded relative



806 Digital Communications

to the slow FH system by an amount equal to the noncoherent combining loss of the

signals received from the ft2 hops.

We have observed that for both hard-decision and soft-decision decoding, the use

of the repetition code in a fast FH system yields no coding gain. The only coding gain

obtained comes from the (fti, k) block code. Hence, the repetition code is inefficient

in a fast FH system with noncoherent combining. A more efficient coding method is

one in which either a single low-rate binary code or a concatenated code is employed.

Additional improvements in performance may be obtained by using nonbinary codes

in conjunction with M-ary FSK. Bounds on the error probability for this case may be

obtained from the results given in Section 11.1.

Although we have evaluated the performance of linear block codes only in the

above discussion, it is relatively easy to derive corresponding performance results for

binary convolutional codes. We leave as an exercise for the reader the derivation of

the bit error probability for soft-decision Viterbi decoding and hard-decision Viterbi

decoding of FH signals corrupted by broadband interference.

Finally, we observe that £b ,
the energy per bit, can be expressed as £b = Pav/R,

where R is the information rate in bits per second and J0 = Jav/2W. Therefore, yb
may be expressed as

_ £b _ 2W/R
Yb ~

To
~

Jm/

P

av

(12.3-7)

In this expression, we recognize W/R as the processing gain and /av/Fav as the inter-

ference margin for the FH spread spectrum signal.

12.3-2 Performance of FH Spread Spectrum Signals

in Partial-Band Interference

The partial-band interference considered in this subsection is modeled as a zero-mean

Gaussian random process with a flat power spectral density over a fraction a of the total

bandwidth W and zero elsewhere. In the region or regions where the power spectral

density is nonzero, its value is Rzz(f )
= 2J0/a,0 < a < 1. This model of the

interference may be applied to a jamming signal or to interference from other users in

an FH CDMA system.

Suppose that the partial-band interference comes from a jammer who may select

a to optimize the effect on the communication system. In an uncoded pseudorandomly

hopped (slow-hopping) FH system with binary FSK modulation and noncoherent de-

tection, the received signal will bejammed with probability a and it will not bejammed
with probability 1— a. When it is jammed, the probability of error is

\
exp (—£ha/2Jo),

and when it is not jammed, the demodulation is error-free. Consequently, the average

probability of error is

P2 (a) =

where £b/Jo may also be expressed as (2W//?)/(7av/Pav )-

(12.3-8)
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SNR per bit, yb (dB)

FIGURE 12.3-4

Performance of binary FSK with partial-band

interference.

Figure 12.3-4 illustrates the error rate as a function of £b/Jo f°r several values

of a. The jammer’s optimum strategy is to select the value of a that maximizes the error

probability. By differentiating P2(u) and solving for the extremum with the restriction

that 0 < a < 1, we find that

<** = { Sj2J0

£b/Jo - 2
(12.3-9)

I 1 Sb/J0 < 2

The corresponding error probability for the worst-case partial-band jammer is

Pi
£b/Jo

(12.3-10)

Whereas the error probability decreases exponentially for full-band jamming, we now
find that the error probability decreases only inversely with £b/ Jo for the worst-case

partial-bandjamming. This result is similar to the error rate performance of binary FSK
in a Rayleigh fading channel (see Section 13.3) and to the uncoded DS spread spectrum

system corrupted by worst-case pulse interference (see Section 12.2-3).

As we shall demonstrate below, signal diversity obtained by means of coding

provides a significant improvement in performance relative to uncoded signals. This

same approach to signal design is also effective for signaling over a fading channel, as

we shall demonstrate in Chapter 13.

To illustrate the benefits of diversity in an FH spread spectrum signal with partial-

band interference, we assume that the same information symbol is transmitted by binary

FSK on L independent frequency hops. This may be accomplished by subdividing

the signaling interval into L subintervals, as described previously for fast frequency

hopping. After the hopping pattern is removed, the signal is demodulated by passing it

through a pair of matched filters whose outputs, are square-law-detected and sampled

at the end of each subinterval. The square-law-detected signals corresponding to the L
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frequency hops are weighted and summed to form the two decision variables (metrics),

which are denoted as U\ and U2 .

When the decision variable U\ contains the signal components, U\ and U2 may be

expressed as

L

1/1 = X>i 2& + Afai
2

k=

/ (12.3-11)

U2 =Yj pk \N2k \

2

k= 1

where {fa} represent the weighting coefficients, £c is the signal energy per chip in the

L-chip symbol, and {Njk } represent the additive Gaussian noise terms at the output of

the matched filters.

The coefficients are optimally selected to prevent the interference from saturating

the combiner should the transmitted frequencies be successfully hit in one or more hops.

Ideally, fa is selected to be equal to the reciprocal of the variance of the corresponding

noise terms {Nk }. Thus, the noise variance for each chip is normalized to unity by

this weighting and the corresponding signal is also scaled accordingly. This means that

when the signal frequencies on a particular hop are interfered, the corresponding weight

is very small. In the absence of interference on a given hop, the weight is relatively

large. In practice, for partial-band interference, the weighting may be accomplished

by use of an AGC having a gain that is set on the basis of noise power measurements

obtained from frequency bands adjacent to the transmitted tones. This is equivalent to

having side information (knowledge ofjammer state) at the decoder.

Suppose that we have broadband Gaussian noise with power spectral density No
and partial-band interference, over aW of the frequency band, which is also Gaussian

with power spectral density Jo/a. In the presence of partial-band interference, the

variance of the real and imaginary parts of the noise terms N\k and are

el = ^(l^ul
2

) = \E(\N2k \

2
)
= 2£c (n0 + ^ (12 .3-12)

In this case, we select fa = 1 /of = [2£c(Nq + J0/a)]~
l

. In the absence of partial-

band interference, of = 2£cNo and, hence, fa = (2£cNo)~
l

. Note that fa is a random

variable. It is convenient to normalize the variance of the noise components to unity by

defining, N[k = ^/faN\k and N2k = \ffaN2k, where fa = 1/of for the corresponding

values of of.

An error occurs in the demodulation ifU2 > U\. Although it is possible to determine

the exact error probability, we shall resort to the Chernov bound, which yields a result

that is much easier to evaluate and interpret. Specifically, the Chernov (upper) bound

on the error probability is

P2 = P(U2 - U x > 0) < E{txp[v(U2 - t/i)]}

= E < exp ^(\2^p~k£c + N[k \

2 -\N^\ 2
)\ (12.3-13)

k= 1

where v > 0 is a variable that is optimized to yield the tightest possible bound.
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The averaging in Equation 12.3-13 is performed with respect to the statistics of

the noise components and the statistics of the weighting coefficients which are

random as a consequence of the statistical nature of the interference. Keeping the {fa}

fixed and averaging over the noise statistics first, we obtain

Pi(P) < E eXP
(

“ y
l

2^ + Nlk\

2 + VS
k=

1

k=l

= J] £[exp (-v|2jjk£c + A^| 2)]£[exp (iv\N’2k \

2

)
k= 1

L
-4g

c
2
jSt v \

4^
eXP

V 1 + 2v
)

(12.3-14)

Since the FSK tones are interfered with probability a, it follows that fa = [2£(No +
Jo/<x)]~

l with probability a and (2£cNo)~
l with probability 1 — a. Hence, the Chernov

bound is

p2 <n
k=

1

1 -4v2
exp

-2£r v

{:
a

exp

L(A/o +

/

0/a)(l + 2v)

—2£rv
+

+

1

1

1 — 4v 2
exp

-2£cv

exp
1 — 4v2 r

[(N0 + Jo/c()(l + 2v) 1 — 4v 2 ^L^o(l + 2v)J

LyV0(l+2v)

-2£c v
1 ' L

]}

(12.3-15)

The next step is to optimize the bound in Equation 12.3-15 with respect to the

variable v. In its present form, however, the bound is messy to manipulate. A significant

simplification occurs if we assume that Jo/a, > No, which renders the second term in

Equation 12.3-15 negligible compared with the first. Alternatively, we let No = 0, so

that the bound on P2 reduces to

Pi<
a

exp
1 — 4v2 r

|_«A)(1 + 2v)J

-2av£c

r (12.3-16)

The minimum value of this bound with respect to v and the maximum with respect to a

(worst-case partial-band interference) is easily shown to occur when a = 3Jo/£c < 1

and v = For these values of the parameters, Equation 12.3-16 reduces to

Pi < PiiL) = _ £c

Yc
Jo

£b_

LJn
> 3 (12.3-17)

where yc is the SNR per chip in the L-chip symbol.

The result in Equation 12.3-17 was first derived by Viterbi and Jacobs (1975).

We observe that the probability of error for the worst-case partial-band interference

decreases exponentially with an increase in the SNR per chip yc . This result is very

similar to the performance characteristics of diversity techniques for Rayleigh fading
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channels (see Section 13.3). We may express the right-hand side of Equation 12.3-17

in the form

P2(L) = exp[-ybh(yc )\ (12.3-18)

where the function h(yc ) is defined as

Kyc) = - (12.3-19)

A plot of h(yc ) is given in Figure 12.3-5. We observe that the function has a maximum
value of

|
at yc — 4. Consequently, there is an optimum SNR per chip of 10 log yc =

6 dB. At the optimum SNR, the error rate is upper-bounded as

Pi < Pi(Lopt) = e~n/4 (12.3-20)

When we compare the error probability bound in Equation 12.3-20 with the

error probability for binary FSK in spectrally flat noise, which is given by Equa-

tion 12.3-1, we see that the combined effect of worst-case partial-band interference

and the noncoherent combining loss in the square-law combining of the L chips is 3 dB.

We emphasize, however, that for a given £b/ Jo, the loss is greater when the order of

diversity is not optimally selected.

Coding provides a means for improving the performance of the FH system cor-

rupted by partial-band interference. In particular, if a block orthogonal code is used,

with M = 2k codewords and Lth-order diversity per codeword, the probability of a

codeword error is upper-bounded as

/147\ l /147\ l

Pe < (2* - 1 )Pi(L) = (2
k -

1) (—
J

= (2* - 1) (12.3-21)

and the equivalent bit error probability is upper-bounded as

Ph<2‘k
-

1

1.47

kyb/L
(12.3-22)
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SNR per bit, yb (dB)

FIGURE 12.3-6

Performance of binary and octal FSK with L-order diversity for a channel with worst-case

partial-band interference.

Figure 12.3-6 illustrates the probability of a bit error for L = 1, 2, 4, 8 and k = 1,3.

With an optimum choice of diversity, the upper bound can be expressed as

Pb < 2*- 1

exp(~\kyb ) = \
exp[-k(\ Yb - ln2)] (12.3-23)

Thus, we have an improvement in performance by an amount equal to 101og[&(l —

2.77/y&)]. For example, if yb = 10 and k —
3 (octal modulation), then the gain is

3.4 dB, while if k = 5, then the gain is 5.6 dB.

Additional gains can be achieved by employing concatenated codes in conjunction

with soft-decision decoding. In the example below, we employ a dual-k convolutional

code as the outer code and a Hadamard code as the inner code on the channel with

partial-band interference.
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example 12 .3-1 . Suppose we use a Hadamard H(n, k) constant weight code with on-

off keying (OOK) modulation for each code bit. The minimum distance of the code is

dmm = and, hence, the effective order of diversity obtained with OOK modulation

is | dmin = There are FH tones transmitted per code word. Hence,

Yc = T~Yb = ZRcYb (12.3-24)

2
U

when this code is used alone. The bit error rate performance for soft-decision decoding

of these codes for the partial-band interference channel is upper-bounded as

/ 1 47 \ n /4

Pb < 2
k- x P2{\dmia )

= 2*-' —— (12.3-25)
2

\2RcYbJ

Now, if a Hadamard (n, k) code is used as the inner code and a rate 1/2 dual-k

convolutional code (see Section 8.7) is the outer code, the bit error performance in the

presence of worst-case partial-band interference is (see Equation 8.7-5)

2^—1 °°
2k
~

l
°°

Pb < 2k _ 1
^2 PmP2(\mdmiD ) = 2k _ ^

^2 PmPi(\mn) (12.3-26)

m=4 m—4

where P2(L) is given by Equation 12.3-17 with

Yc = ~Yb = RcYb (12.3-27)
n

Figure 12.3-7 illustrates the performance of the dual-k codes for k = 5,4, and 3

concatenated with the Hadamard 7/(20, 5), 7/(16, 4), and 7/(12, 3) codes, respectively.

In the above discussion, we have focused on soft-decision decoding. On the other

hand, the performance achieved with hard-decision decoding is significantly (several

decibels) poorer than that obtained with soft-decision decoding. In a concatenated

SNR per bit, yb (dB)

FIGURE 12.3-7

Performance of dual-fc codes concatenated with

Hadamard codes for a channel with worst-case

partial-band interference.
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coding scheme, however, a mixture involving soft decision decoding of the inner code

and hard decision decoding of the outer code represents a reasonable compromise

between decoding complexity and performance.

Finally, we wish to indicate that another serious threat in an FH spread spectrum

system is partial-band multitone interference. This type of interference is similar in ef-

fect to partial-band spectrally flat noise interference. Diversity obtained through coding

is an effective means for improving the performance of the FH system. An additional

improvement is achieved by properly weighting the demodulator outputs so as to sup-

press the effects of the interference.

12.3-3 A CDMA System Based on FH Spread Spectrum Signals

In Section 12.2-2, we considered a CDMA system based on the use of DS spread

spectrum signals. As previously indicated, it is also possible to have a CDMA system

based on FH spread spectrum signals. Each transmitter-receiver pair in such a system

is assigned its own pseudorandom FH pattern. Aside from this distinguishing feature,

the transmitters and receivers of all the users may be identical in that they may have

identical encoders, decoders, modulators, and demodulators.

CDMA systems based on FH spread spectrum signals are particularly attractive

for mobile (land, air, sea) users because timing requirements are not as stringent as in a

DS spread spectrum signal. In addition, frequency synthesis techniques and associated

hardware have been developed that make it possible to frequency-hop over bandwidths

that are significantly larger than those currently possible with DS spread spectrum

systems. Consequently, larger processing gains are possible with FH. The capacity of

CDMA with FH is also relatively high. Viterbi (1978) has shown that with dual-k codes

and M-ary FSK modulation, it is possible to accommodate up to ^W/R simultaneous

users who transmit at an information rate R bits/s over a channel with bandwidth W .

One of the earliest CDMA systems based on FH coded spread spectrum signals

was built to provide multiple-access tactical satellite communications for small mobile

(land, sea, air) terminals each of which transmitted relatively short messages over the

channel intermittently. The system was called the Tactical Transmission System (TATS),

and it is described in a paper by Drouilhet and Bernstein (1969).

An octal Reed-Solomon (7, 2) code is used in the TATS system. Thus, two 3-bit

information symbols from the input to the encoder are used to generate a seven-symbol

code word. Each 3-bit coded symbol is transmitted by means of octal FSK modulation.

The eight possible frequencies are spaced 1 / Tc Hz apart, where Tc is the time (chip)

duration of a single frequency transmission. In addition to the seven symbols in a code

word, an eighth symbol is included. That symbol and its corresponding frequency are

fixed and transmitted at the beginning of each code word for the purpose of providing

timing and frequency synchronization^ at the receiver. Consequently, each code word

is transmitted in 8Tc seconds.

tSince mobile users are involved, there is a Doppler frequency offset associated with transmission. This

frequency offset must be tracked and compensated for in the demodulation of the signal. The sync symbol

is used for this purpose.
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TATS was designed to transmit at information rates of 75 and 2400 bits/s. Hence,

Tc = 10 ms and 312.5 /zs, respectively. Each frequency tone corresponding to a code

symbol is frequency-hopped. Hence, the hopping rate is 100 hops/s at the 75-bits/s rate

and 3200 hops/s at the 2400-bits/s rate.

There are M = 26 = 64 code words in the Reed-Solomon (7, 2) code and the

minimum distance of the code is dmm = 6. This means that the code provides an

effective order of diversity equal to 6.

At the receiver, the received signal is first dehopped and then demodulated by

passing it through a parallel bank of eight matched filters, where each filter is tuned to

one of the eight possible frequencies. Each filter output is envelope-detected, quantized

to 4 bits (one of 16 levels), and fed to the decoder. The decoder takes the 56 filter

outputs corresponding to the reception of each seven-symbol code word and forms 64

decision variables corresponding to the 64 possible code words in the (7, 2) code by

linearly combining the appropriate envelope-detected outputs. A decision is made in

favor of the code word having the largest decision variable.

By limiting the matched filter outputs to 16 levels, interference (crosstalk) from

other users of the channel causes a relatively small loss in performance (0.75 dB with

strong interference on one chip and 1.5 dB with strong interference on two chips out of

the seven). The AGC used in TATS has a time constant greater than the chip interval Tc ,

so that no attempt is made to perform optimum weighting of the demodulator outputs

as described in Section 12.3-2.

The derivation of the error probability for the TATS signal in AWGN and worst-

case partial-band interference is left as an exercise for the reader (Problems 12.23

and 12.24).

12.4

OTHER TYPES OF SPREAD SPECTRUM SIGNALS

DS and FH are the most common forms of spread spectrum signals used in practice.

However, other methods may be used to introduce pseudorandomness in a spread

spectrum signal. One method, which is analogous to FH, is time hopping (TH). In TH,

a time interval, which is selected to be much larger than the reciprocal of the information

rate, is subdivided into a large number of time slots. The coded information symbols are

transmitted in a pseudorandomly selected time slot as a block ofone or more codewords.

PSK modulation may be used to transmit the coded bits.

For example, suppose that a time interval T is subdivided into 1000 time slots of

width T/1000 each. With an information bit rate of R bits/s, the number of bits to be

transmitted in T seconds is RT. Coding increases this number to RT/RC bits, where Rc

is the code rate. Consequently, in a time interval of T/1000s, we must transmit RT/RC

bits. If binary PSK is used as the modulation method, the bit rate is 1000R/Rc and the

bandwidth required is approximately W = 1000R/Rc .

A block diagram of a transmitter and a receiver for a TH spread spectrum system

is shown in Figure 12.4-1. Because of the burst characteristics of the transmitted

signal, buffer storage must be provided at the transmitter in a TH system, as shown in
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Output

FIGURE 12.4-1

Block diagram of time-hopping (TH) spread spectrum system.

Figure 12.4-1. A buffer may also be used at the receiver to provide a uniform data

stream to the user.

Just as partial-band interference degrades an uncoded FH spread spectrum system,

partial-time (pulsed) interference has a similar effect on a TH spread spectrum system.

Coding and interleaving are effective means for combating this type of interference, as

we have already demonstrated for FH and DS systems. Perhaps the major disadvantage

of a TH system is the stringent timing requirements compared not only with FH but,

also, with DS.

Other types of spread spectrum signals can be obtained by combining DS, FH, and

TH. For example, we may have a hybrid DS/FH, which means that a PN sequence is

used in combination with frequency hopping. The signal transmitted on a single hop

consists of a DS spread spectrum signal which is demodulated coherently. However,

the received signals from different hops are combined noncoherently (envelope or

square-law combining). Since coherent detection is performed within a hop, there is an

advantage obtained relative to a pure FH system. However, the price paid for the gain

in performance is an increase in complexity, greater cost, and more stringent timing

requirements.

Another possible hybrid spread spectrum signal is DS/TH. This does not seem to

be as practical as DS/FH, primarily because of an increase in system complexity and

more stringent timing requirements.

12.5

SYNCHRONIZATION OF SPREAD SPECTRUM SYSTEMS

Time synchronization of the receiver to the received spread spectrum signal may be

separated into two phases. There is an initial acquisition phase and a tracking phase

after the signal has been initially acquired.
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Acquisition In a direct sequence spread spectrum system, the PN code must be

time-synchronized to within a small fraction of the chip interval Tc & l/W. The prob-

lem of initial synchronization may be viewed as one in which we attempt to synchronize

in time the receiver clock to the transmitter clock. Usually, extremely accurate and stable

time clocks are used in spread spectrum systems. Consequently, accurate time clocks

result in a reduction of the time uncertainty between the receiver and the transmitter.

However, there is always an initial timing uncertainty due to range uncertainty between

the transmitter and the receiver. This is especially a problem when communication is

taking place between two mobile users. In any case, the usual procedure for establish-

ing initial synchronization is for the transmitter to send a known pseudorandom data

sequence to the receiver. The receiver is continuously in a search mode looking for this

sequence in order to establish initial synchronization.

Let us suppose that the initial timing uncertainty is Tu and the chip duration is Tc .

If initial synchronization is to take place in the presence of additive noise and other

interference, it is necessary to dwell for Tj = NTC in order to test synchronism at each

time instant. If we search over the time uncertainty interval in (coarse) time steps of

\TC ,
then the time required to establish initial synchronization is

Zinitsync = T^NTc = 2NTu (12.5-1)

2
Ic

Clearly, the synchronization sequence transmitted to the receiver must be at least as

long as 2NTU in order for the receiver to have sufficient time to perform the necessary

search in a serial fashion.

In principle, matched filtering or cross correlation are optimum methods for estab-

lishing initial synchronization. A filter matched to the known data waveform generated

from the known pseudorandom sequence continuously looks for exceedence of a pre-

determined threshold. When this occurs, initial synchronization is established and the

demodulator enters the “data receive” mode.

Alternatively, we may use a sliding correlator as shown in Figure 12.5-1. The
correlator cycles through the time uncertainty, usually in discrete time intervals of ^Tc ,

and correlates the received signal with the known synchronization sequence. The cross

correlation is performed over the time interval NTC (

N

chips) and the correlator output

is compared with a threshold to determine if the known signal sequence is present. If

the threshold is not exceeded, the known reference sequence is advanced in time by

Sync.

pulse

FIGURE 12.5-1

A sliding correlator for DS signal acquisition.
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\TC seconds and the correlation process is repeated. These operations are performed

until a signal is detected or until the search has been performed over the time uncertainty

interval Tu . In the latter case, the search process is then repeated.

A similar process may also be used for FH signals. In this case, the problem is to

synchronize the PN code that controls the hopped frequency pattern. To accomplish

this initial synchronization, a known FH signal is transmitted to the receiver. The initial

acquisition system at the receiver looks for this known FH signal pattern. For example,

a bank of matched filters tuned to the transmitted frequencies in the known pattern

may be employed. Their outputs must be properly delayed, envelope- or square-law-

detected, weighted, if necessary, and added (noncoherent integration) to produce the

signal output which is compared with a threshold. A signal present is declared when
the threshold is exceeded. The search process is usually performed continuously in time

until a threshold is exceeded. A block diagram illustrating this signal acquisition scheme

is given in Figure 12.5-2. As an alternative, a single matched-filter-envelope detector

pair may be used, preceded by an FH pattern generator and followed by a postdetection

integrator and a threshold detector. This configuration, shown in Figure 12.5-3, is based

on a serial search and is akin to the sliding correlator for DS spread spectrum signals.

The sliding correlator for the DS signals or its counterpart shown in Figure 12.5-3

for FH signals basically perform a serial search that is generally time-consuming. As

an alternative, one may introduce some degree of parallelism by having two or more

such correlators operating in parallel and searching over non-overlapping time slots.

In such a case, the search time is reduced at the expense of a more complex and costly

implementation.

FIGURE 12.5-2

System for acquisition of an FH signal.
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Clock

Received

signal

FIGURE 12.5-3

Alternative system for acquisition of an FH signal.

During the search mode, there may be false alarms that occur at the designed false

alarm rate of the system. To handle the occasional false alarms, it is necessary to have

an additional method or circuit that checks to confirm that the received signal at the

output of the correlator remains above the threshold. With such a detection strategy, a

large noise pulse that causes a false alarm will cause only a temporary exceedence of

the threshold. On the other hand, when a signal is present, the correlator or matched

filter output will stay above the threshold for the duration of the transmitted signal.

Thus, if confirmation fails, the search is resumed.

Another initial search strategy, called a sequential search
,
has been investigated by

Ward (1965) and Ward and Yiu (1977). In this method, the dwell time at each delay in

the search process is made variable by employing a correlator with a variable integration

period whose (biased) output is compared with two thresholds. Thus, there are three

possible decisions:

1. If the upper threshold is exceeded by the correlator output, initial synchronization

is declared established.

2. If the correlator output falls below the lower threshold, the signal is declared absent

at that delay and the search process resumes at a different delay.

3. If the correlator output falls between the two thresholds, the integration time is

increased by one chip and the resulting output is compared with the two thresholds

again.

Hence, steps 1, 2, and 3 are repeated for each chip interval until the correlator output

either exceeds the upper threshold or falls below the lower threshold.
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The sequential search method falls in the class of sequential estimation methods

proposed by Wald (1947), which are known to result in a more efficient search in the

sense that the average search time is minimized. Hence, the search time for a sequential

search is less than that for the fixed dwell time integrator.

In the above discussion, we have considered only time uncertainty in establishing

initial synchronization. However, another aspect of initial synchronization is frequency

uncertainty. If the transmitter and/or the receiver are mobile, the relative velocity be-

tween them results in a Doppler frequency shift in the received signal relative to the

transmitted signal. Since the receiver does not usually know the relative velocity, a

priori, the Doppler frequency shift is unknown and must be determined by means of

a frequency search method. Such a search is usually accomplished in parallel over

a suitably quantized frequency uncertainty interval and serially over the time uncer-

tainty interval. A block diagram of this scheme is shown in Figure 12.5-4. Appropriate

Doppler frequency search methods can also be devised for FH signals.

Tracking Once the signal is acquired, the initial search process is stopped and fine

synchronization and tracking begins. The tracking maintains the PN code generator at

the receiver in synchronism with the incoming signal. Tracking includes both fine chip

synchronization and, for coherent demodulation, carrier phase tracking.

The commonly used tracking loop for a DS spread spectrum signal is the delay-

locked loop (DLL) which is shown in Figure 12.5-5. In this tracking loop, the received

signal is applied to two multipliers, where it is multiplied by two outputs from the local

PN code generator, which are delayed relative to each other by an amount 28 < Tc .

FIGURE 12.5-4

Initial search for Doppler frequency offset in a DS system.
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FIGURE 12.5-5

Delay-locked loop (DLL) for PN code tracking.

Thus, the product signals are the cross correlations between the received signal and

the PN sequence at the two values of delay. These products are band-pass-filtered

and envelope- (or square-law-) detected and then subtracted. This difference signal

is applied to the loop filter that drives the voltage-controlled clock (VCC). The VCC
serves as the clock for the PN code signal generator.

If the synchronism is not exact, the filtered output from one correlator will exceed

the other and the VCC will be appropriately advanced or delayed. At the equilibrium

point, the two filtered correlator outputs will be equally displaced from the peak value,

and thePN code generator output will be exactly synchronized to the received signal that

is fed to the demodulator. We observe that this implementation of the DLL for tracking

a DS signal is equivalent to the early-late gate bit tracking synchronizer previously

discussed in Section 5.3-2 and shown in Figure 5.3-5.

An alternative method for time tracking a DS signal is to use a tau-dither loop

(TDL), illustrated by the block diagram in Figure 12.5-6. The TDL employs a single

FIGURE 12.5-6

Tau-dither loop (TDL).
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“arm” instead of the two “arms” shown in Figure 12.5-5. By providing a suitable

gating waveform, it is possible to make this “single-arm” implementation appear to be

equivalent to the “two-arm” realization. In this case, the cross correlation is regularly

sampled at two values of delay, by stepping the code clock forward or backward in

time by an amount <5. The envelope of the cross correlation that is sampled at ±

8

has

an amplitude modulation whose phase relative to the tau-dither modulator determines

the sign of the tracking error.

A major advantage of the TDL is the less costly implementation resulting from

elimination of one of the two arms that are employed in the conventional DLL. A
second and less apparent advantage is that the TDL does not suffer from performance

degradation that is inherent in the DLL when the amplitude gain in the two arms is not

properly balanced.

The DLL (and its equivalent, the TDL) generate an error signal by sampling the

signal correlation function at =b<$ off the peak as shown in Figure 12.5-7a. This generates

an error signal as shown in Figure 12.5-7b. The analysis of the performance of the DLL
is similar to that for the phase-locked loop (PLL) carried out in Section 5.2. If it were

not for the envelope detectors in the two arms of the DLL, the loop would resemble

a Costas loop. In general, the variance of the time estimation error in the DLL is

inversely proportional to the loop SNR, which depends on the input SNR to the loop

and the loop bandwidth. Its performance is somewhat degraded as in the squaring PLL
by non-linearities inherent in the envelope detectors, but this degradation is relatively

small.

A typical tracking technique for FH spread spectrum signals is illustrated in Fig-

ure 12.5-8a. This method is also based on the premise that, although initial acquisition

has been achieved, there is a small timing error between the received signal and the

receiver clock. The band pass filter is tuned to a single intermediate frequency and its

bandwidth is of the order of 1/ Tc ,
where Tc is the chip interval. Its output is envelope-

detected and then multiplied by the clock signal to produce a three-level signal, as shown

in Figure 12.5-8b, which drives the loop filter. Note that when the chip transitions

from the locally generated sinusoidal waveform do not occur at the same time as the

FIGURE 12.5-7

Autocorrelation function and tracking error signal for DLL.
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(a) Tracking loop for FH signals
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(b) Wavefront for tracking an FH signal

FIGURE 12.5-8

Tracking method for FH signals. [From Pickholtz et al. (1982). © 1982 IEEE.]

transitions in the incoming signal, the output of the loop filter will be either negative or

positive, depending on whether the VCC is lagging or advanced relative to the timing

of the input signal. This error signal from the loop filter will provide the control signal

for adjusting the VCC timing signal so as to drive the frequency synthesized pulsed

sinusoid to proper synchronism with the received signal.
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12.6

BIBLIOGRAPHICAL NOTES AND REFERENCES

The introductory treatment of spread spectrum signals and their performance that we
have given in this chapter is necessarily brief. Detailed and more specialized treat-

ments of signal acquisition techniques, code tracking methods, and hybrid spread

spectrum systems, as well as other general topics on spread spectrum signals and

systems, can be found in the vast body of technical literature that now exists on the

subject.

Historically, the primary application of spread spectrum communications has been

in the development of secure (AJ) digital communication systems for military use.

In fact, prior to 1970, most of the work on the design and development of spread

spectrum communications was classified. Since then, this trend has been reversed. The
open literature now contains numerous publications on all aspects of spread spectrum

signal analysis and design. Moreover, we have recently seen the application of spread

spectrum signaling techniques to commercial communications such as interoffice radio

communications (see Pahlavan, 1985), mobile radio communications (see Yue, 1983),

and digital cellular communications (see Viterbi, 1995).

A historical perspective on the development of spread spectrum communication

systems covering the period 1920-1960 is given in a paper by Scholtz (1982).

Tutorial treatments focusing on the basic concepts are found in the papers by Scholtz

(1977) and Pickholtz et al. (1982). These papers also contain a large number of ref-

erences to previous work. In addition, there are two papers by Viterbi (1979, 1985)

that provide a basic review of the performance characteristics of DS and FH signaling

techniques.

Comprehensive treatments of various aspects of analysis and design of spread

spectrum signals and systems, including synchronization techniques are now available

in the texts by Simon et al. (1985) Peterson et al. (1995), and Holmes (1982). In

addition to these texts, there are several special issues of the IEEE Transactions on

Communications devoted to spread spectrum communications (August 1977 and May
1982) and the IEEE Transactions on Selected Areas in Communication (September

1985, May 1989, May 1990, and June 1993). These issues contain a collection ofpapers

devoted to a variety of topics, including multiple-access techniques, synchronization

techniques, and performance analyses with various types of interference. A number of

important papers that have been published in IEEE journals have also been reprinted in

book form by the IEEE Press (Dixon, 1976; Cook et al., 1983). Finally, we recommend
the book by Golomb (1967) as a basic reference on shift register sequences for the

reader who wishes to delve deeper into this topic.

PROBLEMS

12.1 Following the procedure outlined in Example 12.2-2, determine the error rate perfor-

mance of a DS spread spectrum system in the presence ofCW jamming when the signal
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pulse is

g(t) =
16£c

3Tr
cos -u \TC ) 0<t <TC12.2

The sketch in Figure PI 2.2 illustrates the power spectral densities of a PN spread spec-

trum signal and narrowband interference in an uncoded (trivial repetition code) digital

communication system. Referring to Figure 12.2-6, which shows the demodulator for

this signal, sketch the (approximate) spectral characteristics of the signal and the inter-

ference after the multiplication of r(t) with the output of the PN generator. Determine

the fraction of the total interference that appears at the output of the correlator when the

number of PN chips per bit is L c .

FIGURE P12.2
Spectrum of

— w
,

interference

W
X
«W

Signal

spectrum

W

12.3 Consider the concatenation of a Reed-Solomon (31, 3) (<7 = 32-ary alphabet) as the outer

code with a Hadamard (16, 5) binary code as the inner code in a DS spread spectrum

system. Assume that soft-decision decoding is performed on both codes. Determine an

upper (union) bound on the probability of a bit error based on the minimum distance of

the concatenated code.

12.4 The Hadamard (n, k) = (2
m

,
m+1) codes are low-rate codes with dmin = 2"_1

. Determine

the performance of this class of codes for DS spread spectrum signals with binary PSK
modulation and either soft-decision or hard-decision decoding.

12.5 A rate 1 /2 convolutional code with dfree = 10 is used to encode a data sequence occurring

at a rate of 1000 bits/s. The modulation is binary PSK. The DS spread spectrum sequence

has a chip rate of 10 MHz.
a. Determine the coding gain.

b. Determine the processing gain.

c. Determine the interference margin assuming an £b/Jo = 10.

12.6 A total of30 equal-power users are to share a common communication channel by CDMA.
Each user transmits information at a rate of 10 kbits/s via DS spread spectrum and binary

PSK. Determine the minimum chip rate to obtain a bit error probability of 10
-5

. Additive

noise at the receiver may be ignored in this computation.

12.7 A CDMA system is designed based on DS spread spectrum with a processing gain of

1000 and binary PSK modulation. Determine the number of users if each user has equal

power and the desired level of performance is an error probability of 10
-6

. Repeat the

computation if the processing gain is changed to 500.
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12.8 A DS spread spectrum system transmits at a rate of 1000 bits/s in the presence of a tone

jammer. The jammer power is 20 dB greater than the desired signal, and the required

St/ Jo to achieve satisfactory performance is 10 dB.

a. Determine the spreading bandwidth required to meet the specifications.

b. If the jammer is a pulse jammer, determine the pulse duty cycle that results in worst-

case jamming and the corresponding probability of error.

12.9 A CDMA system consists of 15 equal-power users that transmit information at a rate of

10,000 bits/s, each using a DS spread spectrum signal operating at a chip rate of 1 MHz.
The modulation is binary PSK.

a. Determine the £b/ Jo, where Jo is the spectral density of the combined interference.

b. What is the processing gain?

c. How much should the processing gain be increased to allow for doubling the number

of users without affecting the output SNR?

12.10 A DS binary PSK spread spectrum signal has a processing gain of 500. What is the

interference margin against a continuous-tone interference if the desired error probability

is 10~5
?

12.11 Repeat Problem 12.10 if the interference consists of pulsed noise with a duty cycle of

1 percent.

12.12 Consider the DS spread spectrum signal

oo

c(t) = ^2 cn p(t - nTc )
n=—oo

where cn is a periodic m sequence with a period N = 127 and p(t) is a rectangular pulse

of duration Tc = 1 /xs. Determine the power spectral density of the signal c(t).

12.13 Suppose that {ci; } and {c2i } are two binary (0,1) periodic sequences with periods N\ and

N2 ,
respectively. Determine the period of the sequence obtained by forming the modulo-2

sum of {cn} and {^2/}.

12.14 Anm = 10 maximum-length shift register is used to generate the pseudorandom sequence

in a DS spread spectrum system. The chip duration is Tc = 1 /xs, and the bit duration is

Tb = NTC ,
where N is the length (period) of the m sequence.

a. Determine the processing gain of the system in dB.

b. Determine the interference margin if the required St/ Jo = 10 and the jammer is a

tone jammer with an average power /av .

12.15 An FH binary orthogonal FSK system employs an m = 15 stage linear feedback shift

register that generates a maximum-length sequence. Each state of the shift register selects

one ofL non-overlapping frequency bands in the hopping pattern. The bit rate is 100 bits/s

and the hop rate is one hop per bit. The demodulator employs noncoherent detection.

a. Determine the hopping bandwidth for this channel.

b. What is the processing gain?

c. What is the probability of error in the presence ofAWGN?
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12.16 Consider the FH binary orthogonal FSK system described in Problem 12.15. Suppose

that the hop rate is increased to 2 hops/bit. The receiver uses square-law combining to

combine the signal over the two hops.

a. Determine the hopping bandwidth for the channel.

b. What is the processing gain?

c. What is the error probability in the presence of AWGN?

12.17 In a fast FH spread spectrum system, the information is transmitted via FSK, with non-

coherent detection. Suppose there are N = 3 hops/bit, with hard-decision decoding of

the signal in each hop.

a. Determine the probability of error for this system in an AWGN channel with power

spectral density
\ No and an SNR = 13 dB (total SNR over the three hops).

b. Compare the result in (a) with the error probability of an FH spread spectrum system

that hops once per bit.

12.18 A slow FH binary FSK system with noncoherent detection operates at St /Jo = 10, with

a hopping bandwidth of 2 GHz, and a bit rate of 10 kbits/s.

a. What is the processing gain for the system?

b. If thejammer operates as a partial-bandjammer, what is the bandwidth occupancy for

worst-case jamming?

c. What is the probability of error for the worst-case partial-band jammer?

12.19 Determine the error probability for an FH spread spectrum signal in which a binary

convolutional code is used in combination with binary FSK. The interference on the

channel is AWGN. The FSK demodulator outputs are square-law-detected and passed

to the decoder, which performs optimum soft-decision Viterbi decoding as described in

Chapter 8. Assume that the hopping rate is 1 hop per coded bit.

12.20 Repeat Problem 12.19 for hard-decision Viterbi decoding.

12.21 Repeat Problem 12.19 when fast frequency hopping is performed at a hopping rate

of L hops per coded bit.

12.22 Repeat Problem 12.19 when fast frequency hopping is performed with L hops per coded

bit and the decoder is a hard-decision Viterbi decoder. The L chips per coded bit are

square-law-detected and combined prior to the hard decision.

12.23 The TATS signal described in Section 12.3-3 is demodulated by a parallel bank of eight

matched filters (octal FSK), and each filter output is square-law-detected. The eight

outputs obtained in each of seven signal intervals (56 total outputs) are used to form the

64 possible decision variables corresponding to the Reed-Solomon (7, 2) code. Determine

an upper (union) bound of the code word error probability for AWGN and soft-decision

decoding.

12.24 Repeat Problem 12.23 for the worst-case partial-band interference channel.

12.25 Derive the results in Equations 12.2-50 and 12.2-51 from Equation 12.2-49.

12.26 Show that Equation 12.3-14 follows from Equation 12.3-13.



Chapter Twelve: Spread Spectrum Signals for Digital Communications 827

12.27 Derive Equation 12.3-17 from Equation 12.3-16.

12.28 The parity polynomials for constructing Gold code sequences of length n = 7 are

/i,(X) = X3 + X + l

h2(X) = X3 + X2 + 1

Generate all the Gold codes of length 7 and determine the cross correlations of one

sequence with each of the others.

12.29 In Section 12.2-3, we demonstrated techniques for evaluating the error probability of a

coded system with interleaving in pulse interference by using the cutoff rate parameter Rq.

Use the error probability curves given in Figure P12.29 for rate 1 /2 and 1 /3 convolutional

codes with soft-decision Viterbi decoding to determine the corresponding error rates for

a coded system in pulse interference. Perform this computation for K = 3,5, and 7.

FIGURE P12.29

12.30

In coded and interleavedDS binary PSK modulation with pulsejamming and soft-decision

decoding, the cutoff rate is

-a£c/N0
^Rq = 1 - log2 (l T oi€
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FIGURE P12.29

(Continued)

where a is the fraction of the time the system is being jammed, £c = £b R, R is the bit

rate, and Nq = Jq.

a. Show that the SNR per bit, £b/No ,
can be expressed as

N0
~ aR

ln
2 l ~Ro - 1

b. Determine the value of a that maximizes the required £b/No (worst-case pulse jam-

ming) and the resulting maximum value of £b /No.
c. Plot the graph of 10 \og(£b/rNo) versus Ro ,

where r = Ro/R, for worst-case pulse

jamming and forAWGN (a = 1). What conclusions do you reach regarding the effect

of worst-case pulse jamming?

12.31 In a coded and interleaved FH g-ary FSK modulation with partial band jamming and

coherent demodulation with soft-decision decoding, the cutoff rate is

R0 = log2
q

1 + (q - l)ae~a£c/2N°

where a is the fraction of the band being jammed, £c is the chip (or tone) energy, and

No = Jo •
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a. Show that the SNR per bit can be expressed as

£b_ _ _2_ ln
(q
~

1 )a

N0
~ aR

n
q2~R° - 1

b. Determine the value of a that maximizes the required St/No (worst-case partial band

jamming) and the resulting maximum value of Sb/No.

c. Define r = Ro/R in the result for St/No from (b), and plot 10 log(St / rNo) versus the

normalized cutoff rate Rq/ log2 q for q = 2, 4, 8, 16, 32. Compare these graphs with

the results of Problem 12.30c. What conclusions do you reach regarding the effect of

worst-case partial band jamming? What is the effect of increasing the alphabet size ql

What is the penalty in SNR between the results in Problem 12.30c and g-ary FSK
as q oo?



Fading Channels I: Characterization and Signaling

The previous chapters have described the design and performance of digital communi-

cation systems for transmission on either the classical AWGN channel or a linear filter

channel with AWGN. We observed that the distortion inherent in linear filter channels

requires special signal design techniques and rather sophisticated adaptive equalization

algorithms in order to achieve good performance.

In this chapter, we consider the signal design, receiver structure, and receiver per-

formance for more complex channels, namely, channels having randomly time variant

impulse responses. This characterization serves as a model for signal transmission

over many radio channels such as shortwave ionospheric radio communication in the

3-30 MHz frequency band (HF), tropsopheric scatter (beyond-the-horizon) radio com-

munications in the 300-3000 MHz frequency band (UHF), and 3000-30,000 MHz
frequency band (SHF), and ionospheric forward scatter in the 30-300 MHz frequency

band (VHF). The time-variant impulse responses of these channels are a consequence

of the constantly changing physical characteristics of the media. For example, the ions

in the ionospheric layers that reflect the signals transmitted in the HF band are always

in motion. To the user of the channel, the motion of the ions appears to be random.

Consequently, if the same signal is transmitted at HF in two widely separated time

intervals, the two received signals will be different. The time-varying responses that

occur are treated in statistical terms.

We shall begin our treatment of digital signaling over fading multipath chan-

nels by first developing a statistical characterization of the channel. Then we shall

evaluate the performance of several basic digital signaling techniques for commu-
nication over such channels. The performance results will demonstrate the severe

penalty in SNR that must be paid as a consequence of the fading characteristics of

the received signal. We shall then show that the penalty in SNR can be dramati-

cally reduced by means of efficient modulation/coding and demodulation/decoding

techniques.

830
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13.1

CHARACTERIZATION OF FADING MULTIPATH CHANNELS

If we transmit an extremely short pulse, ideally an impulse, over a time-varying mul-

tipath channel, the received signal might appear as a train of pulses, as shown in

Figure 13.1-1. Hence, one characteristic of a multipath medium is the time spread

introduced in the signal that is transmitted through the channel.

A second characteristic is due to the time variations in the structure of the medium.

As a result of such time variations, the nature of the multipath varies with time. That is,

if we repeat the pulse-sounding experiment over and over, we shall observe changes in

the received pulse train, which will include changes in the sizes of the individual pulses,

changes in the relative delays among the pulses, and, quite often, changes in the number

of pulses observed in the received pulse train as shown in Figure 13.1-1. Moreover, the

time variations appear to be unpredictable to the user of the channel. Therefore, it is

reasonable to characterize the time-variant multipath channel statistically. Toward this

end, let us examine the effects of the channel on a transmitted signal that is represented

in general as

s(t) = Re [si(t)e
j2nfc

‘] (13.1-1)

Transmitted signal Received signal FIGURE 13.1—1

Example of the response of a

time-variant multipath channel to a

very narrow pulse.
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We assume that there are multiple propagation paths. Associated with each path is

a propagation delay and an attenuation factor. Both the propagation delays and the

attenuation factors are time-variant as a result of changes in the structure of the medium.

Thus, the received bandpass signal may be expressed in the form

x(t) = an (t)s[t - r„(t)] (13.1-2)

n

where an (t) is the attenuation factor for the signal received on the nth path and rn (t) is

the propagation delay for the nth path. Substitution for s(t ) from Equation 14.1-1 into

Equation 13.1-2 yields the result

Y,an{t)e-^"
(t)

Sl [t - x„(*)]
j

e*
2*^ (13.1-3)

It is apparent from Equation 13.1-3 that in the absence of noise the equivalent

lowpass received signal is

x(t )
= Re

n(t) = J2<Xn(t)e-j
27'f'™s,[t - X„(*)] (13.1-4)

n

Since r/(f) is the response of an equivalent lowpass channel to the equivalent low-

pass signal si(t ), it follows that the equivalent lowpass channel is described by the

time-variant impulse response

c(t
;
t) = - rn (t)] (13.1-5)

n

For some channels, such as the tropospheric scatter channel, it is more appropriate

to view the received signal as consisting of a continuum of multipath components. In

such a case, the received signal x (t) is expressed in the integral form

/
oo

a{x\ t)s(t — r)dx (13.1-6)
-oo

where a(x; t) denotes the attenuation of the signal components at delay r and at time

instant t. Now substitution for s(t ) from Equation 13.1-1 into Equation 13.1-6 yields

x(t) = Re a(x
;
t)e

-jlnfct
si{t — x)dx\ , j^nfct

|
(13.1-7)

Since the integral in Equation 13.1-7 represents the convolution of si(t) with an equiv-

alent lowpass time-variant impulse response c(r
;
t ), it follows that

c(r; t ) = a(r; t)e~
j2nfcT

(13.1-8)

where c(r
;
t ) represents the response of the channel at time t due to an impulse applied at

time t — x. Thus Equation 13.1-8 is the appropriate definition of the equivalent lowpass

impulse response when the channel results in continuous multipath and Equation 13.1-5

is appropriate for a channel that contains discrete multipath components.

Now let us consider the transmission of an unmodulated carrier at frequency fc .

Then si(t )
= 1 for all t

,
and, hence, the received signal for the case of discrete multipath,
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given by Equation 13.1-4, reduces to

n(t) =

n

(13.1-9)

where 9n (t) = —2jtfc xn (t). Thus, the received signal consists of the sum of a number

of time-variant vectors (phasors) having amplitudes an (t) and phases 0n (t). Note that

large dynamic changes in the medium are required for an (t) to change sufficiently to

cause a significant change in the received signal. On the other hand, 0n (t) will change

by 2n rad whenever xn changes by 1 /fc . But 1 /fc is a small number and, hence, 0n

can change by 2n rad with relatively small motions of the medium. We also expect

the delays xn {t) associated with the different signal paths to change at different rates

and in an unpredictable (random) manner. This implies that the received signal 77 (f) in

Equation 13.1-9 can be modeled as a random process. When there are a large number

of paths, the central limit theorem can be applied. That is, 77 (£ ) may be modeled as a

complex-valued Gaussian random process. This means that the time-variant impulse

response c(x
;
t) is a complex-valued Gaussian random process in the t variable.

The multipath propagation model for the channel embodied in the received signal

77 (f), given in Equation 13.1-9, results in signal fading. The fading phenomenon is

primarily a result of the time variations in the phases {0n (t)}. That is, the randomly time

variant phases {9n (t)} associated with the vectors {an e
j6n

} at times result in the vectors

adding destructively. When that occurs, the resultant received signal rft) is very small

or practically zero. At other times, the vectors {an e
j9n

} add constructively, so that the

received signal is large. Thus, the amplitude variations in the received signal, termed

signalfading, are due to the time-variant multipath characteristics of the channel.

When the impulse response c(r; t) is modeled as a zero-mean complex-valued

Gaussian process, the envelope |c(r; t)\ at any instant t is Rayleigh-distributed. In this

case the channel is said to be a Rayleighfading channel. In the event that there are fixed

scatterers or signal reflectors in the medium, in addition to randomly moving scatterers,

c(r
;
t) can no longer be modeled as having zero-mean. In this case, the envelope

|

c(x
;
t ) |

has a Rice distribution and the channel is said to be a Ricean fading channel. Another

probability distribution function that has been used to model the envelope of fading

signals is the Nakagami-m distribution. These fading channel models are considered

in Section 13.1-2.

13.1-1 Channel Correlation Functions and Power Spectra

We shall now develop a number of useful correlation functions and power spectral

density functions that define the characteristics of a fading multipath channel. Our

starting point is the equivalent lowpass impulse response c(r
;
t ), which is characterized

as a complex-valued random process in the t variable. We assume that c(r
;
t) is wide-

sense-stationary. Then we define the autocorrelation function of c(r; t) as

Rc(t2, ti; At) = E [c*(ti; t)c(T2 ; t + Af)] (13.1-10)
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FIGURE 13.1-2

Multipath intensity profile.
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*c(T)

In most radio transmission media, the attentuation and phase shift of the channel

associated with path delay X\ is uncorrelated with the attenuation and phase shift asso-

ciated with path delay t2 . This is usually called uncorrelated scattering. We make the

assumption that the scattering at two different delays is uncorrelated and incorporate it

into Equation 13.1-10 to obtain

E t)c{t2\ t + At)] = Rd'tu At)8(x2 — X\) (13.1-11)

If we let At = 0, the resulting autocorrelation function Rc (r; 0) = Rc (r) is simply

the average power output of the channel as a function of the time delay r. For this

reason, Rc (r) is called the multipath intensity profile or the delay power spectrum of

the channel. In general, Rc (x\ At) gives the average power output as a function of the

time delay r and the difference At in observation time.

In practice, the function Rc {r ;
At) is measured by transmitting very narrow pulses

or, equivalently, a wideband signal and cross-correlating the received signal with a

delayed version of itself. Typically, the measured function Rc (x) may appear as shown
in Figure 13.1-2. The range of values of r over which Rc (x) is essentially nonzero is

called the multipath spread of the channel and is denoted by Tm .

A completely analogous characterization of the time-variant multipath channel

begins in the frequency domain. By taking the Fourier transform of c(r; t ), we obtain

the time-variant transfer function C(/; t), where / is the frequency variable. Thus,

/
oo

c(r;t)e-j2Kfr dr (13.1-12)
-OO

If c(x
;
t) is modeled as a complex-valued zero-mean Gaussian random process in the t

variable, it follows that C(/; t) also has the same statistics. Under the assumption that

the channel is wide-sense-stationary, we define the autocorrelation function

Rc(f2 , fi\ At) = E [C*(/i; t)C(f2 \
t + At)] (13.1-13)

Since C(f;t) is the Fourier transform of c(r; t), it is not surprising to find that

Rcifi , fu At) is related to Rc (r; At) by the Fourier transform. The relationship is
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easily established by substituting Equation 13.1-12 into Equation 13.1-13. Thus,

/
oo poo

/
E

[
c*(n; t)c(z2 ;

t + At)}e^ r'-f^dxxdx2
-oo J—oo

Rc(n; At)S(r2 - x
l )e

j2n(
'flTl

- f2T2)dxldx2

Rc (X\\ At)e
j2n^' f2 ^T

'dxi

Rc (t,; At)e~

i

2n

T

' dx
x
= Rc(Af\ At) (13.1-14)

where Af = f2 — f\. From Equation 13.1-14, we observe that Rc(Af\ At) is the

Fourier transform of the multipath intensity profile. Furthermore, the assumption of

uncorrelated scattering implies that the autocorrelation function of C(/; t) in frequency

is a function of only the frequency difference Af = f2 — f\. Therefore, it is appropri-

ate to call Rc(Af ;
At) the spaced-frequency, spaced time correlation function of the

channel. It can be measured in practice by transmitting a pair of sinusoids separated by

Af and cross-correlating the two separately received signals with a relative delay At.

Suppose we set At = 0 in Equation 13.1-14. Then, with Rc(Af\ 0) = Rc(Af)
and Rc (r; 0) = Rc (?), the transform relationship is simply

/
oo

Rc(x)e-^
Af xdx

-oo

(13.1-15)

The relationship is depicted graphically in Figure 13.1-3. Since Rc(Af) is an auto-

correlation function in the frequency variable, it provides us with a measure of the

frequency coherence of the channel. As a result of the Fourier transform relationship

between Rc(Af) and Rc (r), the reciprocal of the multipath spread is a measure of the

coherence bandwidth of the channel. That is,

(Af)c « f (13.1-16)
J-m

Spaced-frequency Multipath intensity profile

correlation function

FIGURE 13.1-3

Relationship between Rc(Af) and Rc (r).



836 Digital Communications

where (Af)c denotes the coherence bandwidth. Thus, two sinusoids with frequency sep-

aration greater than (Af)c are affected differently by the channel. When an information-

bearing signal is transmitted through the channel, if (Af)c is small in comparison to

the bandwidth of the transmitted signal, the channel is said to bt frequency-selective.

In this case, the signal is severely distorted by the channel. On the other hand, if (Af)c

is large in comparison with the bandwidth of the transmitted signal, the channel is said

to befrequency-nonselective.

We now focus our attention on the time variations of the channel as measured by

the parameter At in Rc(Af; At). The time variations in the channel are evidenced as

a Doppler broadening and, perhaps, in addition as a Doppler shift of a spectral line.

In order to relate the Doppler effects to the time variations of the channel, we define

the Fourier transform of Rc(Af\ At) with respect to the variable At to be the function

Sc(Af\ X). That is,

/
oo

Rc(Af; At)e~
j2nXA,dAt (13.1-17)

-OO

With A/ set to zero and <Sc(0; X) = Sc(X), the relation in Equation 14.1-17 becomes

/
oo

Rc (0; At)e~i2nXA‘dAt (13.1-18)
-OO

The function Sc(X) is a power spectrum that gives the signal intensity as a function

of the Doppler frequency X. Hence, we call Sc(X) the Doppler power spectrum of the

channel.

From Equation 13.1-18, we observe that if the channel is time-invariant, Rc(At) =
1 and Sc(X) becomes equal to the delta function 8(X). Therefore, when there are no time

variations in the channel, there is no spectral broadening observed in the transmission

of a pure frequency tone.

The range of values of X over which Sc(X) is essentially nonzero is called the

Doppler spread Bd of the channel. Since Sc(X) is related to Rc(At) by the Fourier

transform, the reciprocal of Bd is a measure of the coherence time of the channel. That

is,

(A t)c * -j- (13.1-19)
Bd

where (A t)c denotes the coherence time. Clearly, a slowly changing channel has a large

coherence time or, equivalently, a small Doppler spread. Figure 13.1-4 illustrates the

relationship between Rc(At) and Sc(X).

We have now established a Fourier transform relationship between Rc (Af\ At)

and Rc (r; At) involving the variables (r, A/), and a Fourier transform relationship

between Rc(Af ;
At) and <Sc(A/; X) involving the variables (At, X). There are two

additional Fourier transform relationships that we can define, which serve to relate

Rc (r; At) to Sc(Af; X) and, thus, close the loop. The desired relationship is obtained

by defining a new function, denoted by S(r
;
X), to be the Fourier transform of Rc (r ;

At)



Chapter Thirteen: Fading Channels I: Characterization and Signaling 837

l*c(A0l 5C (A)

Spaced-time correlation fhction Doppler power spectrum

FIGURE 13.1-4

Relationship between Rc(At) and Sc(X).

in the At variable. That is,

/
oo

Rc(t; At)e~}2nXAtdAt (13.1-20)
-OO

It follows that 5(r
;
X) and Sc(Af; X) are a Fourier transform pair. That is,

/
oo

«SC(A/; X)e i2nxAfdAf (13.1-21)
-OO

Furthermore, S(r
;
A.) and Rc(Af\ At) are related by the double Fourier transform

/
oo poo

/ Rc(Af; At)e-j2nXAl e j2nrAf dAtdAf (13.1-22)
-OO 7—00

This new function <S(r; X) is called the scattering function of the channel. It provides

us with a measure of the average power output of the channel as a function of the time

delay r and the Doppler frequency X.

The relationships among the four functions Rc(Af ;
At), Rc (r; At), Sc(Af; X),

and <S(r; X) are summarized in Figure 13.1-5.

EXAMPLE 13.1-1. SCATTERING FUNCTION OF A TROPOSPHERIC SCATTER CHANNEL.

The scattering function <S(r; X) measured on a 150-mi tropospheric scatter link is

shown in Figure 13.1-6. The signal used to probe the channel had a time resolution

of 0.1 /zs. Hence, the time-delay axis is quantized in increments of 0.1 /zs. From the

graph, we observe that the multipath spread Tm = 0.7 /zs. On the other hand, the

Doppler spread, which may be defined as the 3-dB bandwidth of the power spectrum

for each signal path, appears to vary with each signal path. For example, in one path it is

less than 1 Hz, while in some other paths it is several hertz. For our purposes, we shall

take the largest of these 3-dB bandwidths of the various paths and call that the Doppler

spread.

EXAMPLE 13.1-2. MULTIPATH INTENSITY PROFILE OF MOBILE RADIO CHANNELS. The
multipath intensity profile of a mobile radio channel depends critically on the type of

terrain. Numerous measurements have been made under various conditions in many
parts of the world. In urban and suburban areas, typical values of multipath spreads
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Relationships among the channel correlation functions and power spectra. [From Green

(1962), with permission.]

range from 1 to 10 /zs. In rural mountainous areas, the multipath spreads are much
greater, with typical values in the range of 10 to 30 /z s. Two models for the multipath

intensity profile that are widely used in evaluating system performance for these two
types of terrain are illustrated in Figure 13.1-7.

EXAMPLE 13.1-3. DOPPLER POWER SPECTRUM OF MOBILE RADIO CHANNELS. A
widely used model for the Doppler power spectrum of a mobile radio channel is the so-

called Jakes’ model (Jakes, 1974). In this model, the autocorrelation of the time-variant

transfer function C(f\t) is given as

Rc (At) = E[C*(f ;
0C(/; t + Af)]

= Jo(2nfm At)
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FIGURE 13.1-6

Scattering function of a medium-range tropospheric scatter channel. The taps delay increment

is 0.1 /x s.

where 7o(*) is the zero-order Bessel function of the first kind and fm = vfo/c is the

maximum Doppler frequency, where v is the vehicle speed in meters per second (m/s),

/o is the carrier frequency, and c is the speed of light (3 x 108
m/s). The Fourier

transform of this autocorrelation function yields the Doppler power spectrum. That is

ScM =
/

oo

Rc(At)e~J2nXAt dAt
-OO

/:
M2nfm At)e

—jink At dAt

1 1

= i ”fm y/\ ~ (f/fm )
2

0

I/I < fm

I/I > fm

The graph of S(-(X) is shown in Figure 13.1-8.

13.1-2 Statistical Models for Fading Channels

There are several probability distributions that can be considered in attempting to model

the statistical characteristics of the fading channel. When there are a large number of

scatterers in the channel that contribute to the signal at the receiver, as is the case in
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FIGURE 13.1-7

Cost 207 average power delay profiles: (a) typical delay profile for suburban and urban areas;

(b) typical “bad”-case delay profile for hilly terrain. [From Cost 207 Document 207 TD (86)51

rev 3.]

SC (A)

Frequency

FIGURE 13.1-8

Model of Doppler spectrum for a mobile

radio channel.

ionospheric or tropospheric signal propagation, application of the central limit theorem

leads to a Gaussian process model for the channel impulse response. If the process is

zero-mean, then the envelope of the channel response at any time instant has a Rayleigh

probability distribution and the phase is uniformly distributed in the interval (0, 27t).
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That is

pr (t )
=

^r
e
“r2/J2

’ r > o (13.1-23)

where

£2 = E{R2
) (13.1-24)

We observe that the Rayleigh distribution is characterized by the single parameter

E(R2
).

An alternative statistical model for the envelope of the channel response is the

Nakagami-m distribution given by the PDF in Equation 2.3-67. In contrast to the

Rayleigh distribution, which has a single parameter that can be used to match the fad-

ing channel statistics, the Nakagami-m is a two-parameter distribution, involving the

parameter m and the second moment Q = E(R2
). As a consequence, this distribution

provides more flexibility and accuracy in matching the observed signal statistics. The
Nakagami-m distribution can be used to model fading channel conditions that are either

more or less severe than the Rayleigh distribution, and it includes the Rayleigh distribu-

tion as a special case (m = 1). For example, Turin et al. (1972) and Suzuki (1977) have

shown that the Nakagami-ra distribution provides the best fit for data signals received

in urban radio multipath channels.

The Rice distribution is also a two-parameter distribution. It may be expressed by

the PDF given in Equation 2.3-56, where the parameters are s and a 2
,
where s

2
is called

the noncentrality parameter in the equivalent chi-square distribution. It represents the

power in the nonfading signal components, sometimes called specular components
,
of

the received signal.

There are many radio channels in which fading is encountered that are basically line-

of-sight (LOS) communication links with multipath components arising from secondary

reflections, or signal paths, from surrounding terrain. In such channels, the number of

multipath components is small, and, hence, the channel may be modeled in a somewhat

simpler form. We cite two channel models as examples.

As the first example, let us consider an airplane to ground communication link in

which there is the direct path and a single multipath component at a delay to relative to

the direct path. The impulse response of such a channel may be modeled as

c(r; t) = a8(r) + P(t)S[r - r0 (t)] (13.1-25)

where a is the attenuation factor.of the direct path and fi(t) represents the time-variant

multipath signal component resulting from terrain reflections. Often, f3(t) can be charac-

terized as a zero-mean Gaussian random process. The transfer function for this channel

model may be expressed as

C(f; t) = a + p(t)e~J2}tfToit) (13.1-26)

This channel fits the Ricean fading model defined previously. The direct path with

attenuation a represents the specular component and 13(t ) represents the Rayleigh fading

component.

A similar model has been found to hold for microwave LOS radio channels used

for long-distance voice and video transmission by telephone companies throughout the
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world. For such channels, Rummler (1979) has developed a three-path model based on

channel measurements performed on typical LOS links in the 6-GHz frequency band.

The differential delay on the two multipath components is relatively small, and, hence,

the model developed by Rummler is one that has a channel transfer function

C(/) = a[l - (13.1-27)

where a is the overall attenuation parameter, /3 is called a shape parameter which is due

to the multipath components, fo is the frequency of the fade minimum, and to is the

relative time delay between the direct and the multipath components. This simplified

model was used to fit data derived from channel measurements.

Rummler found that the parameters a and /3 may be characterized as random

variables that, for practical purposes, are nearly statistically independent. From the

channel measurements, he found that the distribution of has the form (1 — fi)
23

.

The distribution of a is well modeled by the lognormal distribution, i.e., — log a is

Gaussian. For > 0.5, the mean of —20 log a was found to be 25 dB and the standard

deviation was 5 dB. For smaller values of /3, the mean decreases to 15 dB. The delay

parameter determined from the measurements was to = 6.3 ns. The magnitude-square

response of C(/) is

|C(/)|
2 = cc

2U+p2 - 2p cos 2n(f - /0)t0 ] (13.1-28)

|C(/)| is plotted in Figure 13.1-9 as a function of the frequency f — fo for to = 6.3 ns.

Note that the effect of the multipath component is to create a deep attenuation at f = fo

and at multiples of 1/to ~ 159 MHz. By comparison, the typical channel bandwidth

is 30 MHz. This model was used by Lundgren and Rummler (1979) to determine the

error rate performance of digital radio systems.

Propagation models for mobile radio channels In the link budget calculations

that were described in Section 4.10-2, we had characterized the path loss of radio

waves propagating through free space as being inversely proportional to d2
,
where d

is the distance between the transmitter and the receiver. However, in a mobile radio

FIGURE 13.1-9

Magnitude frequency response of LOS channel model.
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channel, propagation is generally neither free space nor line of sight. The mean path

loss encountered in mobile radio channels may be characterized as being inversely

proportional to dp
,
where 2 < p < 4, with d

4 being a worst-case model. Consequently,

the path loss is usually much more severe compared to that of free space.

There are a number of factors affecting the path loss in mobile radio communi-

cations. Among these factors are base station antenna height, mobile antenna height,

operating frequency, atmospheric conditions, and presence or absence of buildings and

trees. Various mean path loss models have been developed that incorporate such factors.

For example, a model for a large city in an urban area is the Hata model, in which the

mean path loss is expressed as

Loss in dB = 69.55 + 26.161og 10 / — 13.82 log 10 h t
— a(h r )

+ (44.9 - 6.55 log 10 h t ) log 10 d

where / is the operating frequency in MHz (150 < / < 1500), h t is the transmitter

antenna height in meters (30 <h t
< 200), h r is the receiver antenna height in meters

(1 < h r < 10), d is the distance between transmitter and receiver in km (1 < d < 20),

and

a(h r ) = 3.2(log 10 11.75h rf - 4.97, / > 400 MHz (13.1-30)

Another problem with mobile radio propagation is the effect of shadowing of the

signal due to large obstructions, such as large buildings, trees, and hilly terrain between

the transmitter and the receiver. Shadowing is usually modeled as a multiplicative and,

generally, slowly time varying random process. That is, the received signal may be

characterized mathematically as

r{t) = Adg{t)s(t) (13.1-31)

where Ao represents the mean path loss, s(t) is the transmitted signal, and g(t) is a

random process that represents the shadowing effect. At any time instant, the shadowing

process is modeled statistically as lognormally distributed. The probability density

function for the lognormal distribution is

Pig) =
1 ^-(ln g-n)

2/2a 2

y/2na 2
.g

0

(g>0)

(g < 0)

(13.1-32)

If we define a new random variable X as X = In g, then

p(x) =
1

—oo < x < oo (13.1-33)
V2na 2

The random variable X represents the path loss measured in dB, /x is the mean path

loss in dB, and a is the standard deviation of the path loss in dB. For typical cellular

and microcellular environments, a is in the range of 5-12 dB.
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13.2

THE EFFECT OF SIGNAL CHARACTERISTICS ON THE CHOICE
OF A CHANNEL MODEL

Having discussed the statistical characterization of time-variant multipath channels

generally in terms of the correlation functions describe in Section 1 3 . 1 , we now consider

the effect of signal characteristics on the selection of a channel model that is appropriate

for the specified signal. Thus, let si(t) be the equivalent lowpass signal transmitted over

the channel and let S/(/) denote its frequency content. Then the equivalent lowpass

received signal, exclusive of additive noise, may be expressed either in terms of the

time-domain variables c(r
;
t) and sft) as

/
oo

c (t ; t)si(t — x)dx (13.2-1)
-oo

or in terms of the frequency functions C(f\i) and Sff) as

/
oo

df-DSiiDe^df (13.2-2)
-OO

Suppose we are transmitting digital information over the channel by modulating

(either in amplitude, or in phase, or both) the basic pulse si(t) at a rate l/T, where

T is the signaling interval. It is apparent from Equation 13.2-2 that the time-variant

channel characterized by the transfer function C(/; t) distorts the signal £/(/)• If

Si(f) has a bandwidth W greater than the coherence bandwidth (Af)c of the channel,

Si(f) is subjected to different gains and phase shifts across the band. In such a case,

the channel is said to be frequency-selective. Additional distortion is caused by the

time variations in C(/; t). This type of distortion is evidenced as a variation in the

received signal strength, and has been termedfading. It should be emphasized that the

frequency selectivity and fading are viewed as two different types of distortion. The

former depends on the multipath spread or, equivalently, on the coherence bandwidth

of the channel relative to the transmitted signal bandwidth W

.

The latter depends on

the time variations of the channel, which are grossly characterized by the coherence

time (A t)c or, equivalently, by the Doppler spread Bj.

The effect of the channel on the transmitted signal sft) is a function of our choice of

signal bandwidth and signal duration. For example, if we select the signaling interval

T to satisfy the condition T Tm ,
the channel introduces a negligible amount of

intersymbol interference. If the bandwidth of the signal pulse sft) is W ~ l/T, the

condition T Tm implies that

W « * (Af)c (13.2-3)

That is, the signal bandwidth W is much smaller than the coherence bandwidth of the

channel. Hence, the channel isfrequency-nonselective. In other words, all the frequency

components in Sff) undergo the same attenuation and phase shift in transmission

through the channel. But this implies that, within the bandwidth occupied by Sff),
the time-variant transfer function C(f;t) of the channel is a complex-valued constant
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in the frequency variable. Since S/(/) has its frequency content concentrated in the

vicinity of / = 0, C(/; t) — C(0; t ). Consequently, Equation 13.2-2 reduces to

/
oo

Stifle*** df
(13.2-4)

= C(0; t)si(t)

Thus, when the signal bandwidth W is much smaller than the coherence bandwidth

(Af)c of the channel, the received signal is simply the transmitted signal multiplied by

a complex-valued random process C(0; t), which represents the time-variant character-

istics of the channel. In this case, we say that the multipath components in the received

are not resolvable because W (Af)c .

The transfer function C(0; t) for a frequency-nonselective channel may be ex-

pressed in the form

C(0; t) = a(t)em) (13.2-5)

where a(t) represents the envelope and 0(f) represents the phase of the equivalent

lowpass channel. When C(0; t) is modeled as a zero-mean complex-valued Gaussian

random process, the envelope a(t) is Rayleigh-distributed for any fixed value of t and

0(f) is uniformly distributed over the interval {—it, it). The rapidity of the fading on

the frequency-nonselective channel is determined either from the correlation function

Rc(At) or from the Doppler power spectrum Sc (A.). Alternatively, either of the channel

parameters (At)c or Bd can be used to characterize the rapidity of the fading.

For example, suppose it is possible to select the signal bandwidth W to satisfy the

condition W <£ (Af)c and the signaling interval T to satisfy the condition T (A f)c .

Since T is smaller than the coherence time of the channel, the channel attenuation and

phase shift are essentially fixed for the duration of at least one signaling interval. When
this condition holds, we call the channel a slowlyfading channel. Furthermore, when

W & 1/ r, the conditions that the channel be frequency-nonselective and slowly fading

imply that the product of Tm and Bd must satisfy the condition TmBd < 1 .

The product TmBd is called the spread factor of the channel. If Tm Bd < 1 , the

channel is said to be underspread
;
otherwise, it is overspread. The multipath spread,

the Doppler spread, and the spread factor are listed in Table 13.2-1 for several channels.

TABLE 13.2-1

Multipath Spread, Doppler Spread, and Spread Factor for Several Time-Variant

Multipath Channels

Type of channel

Multipath duration,

s

Doppler spread,

Hz
Spread

factor

Shortwave ionospheric propagation (HF) icr3-i<r2 10-3-1 icr4-icr2

Ionospheric propagation under distributed io-3-io
-2 10-100 10“2-1

auroral conditions (HF)

Ionospheric forward scatter (VHF) icr4 10 io
-3

Tropospheric scatter (SHF) IO"6 10 10"5

Orbital scatter (X band) lO
-4

103 IO" 1

Moon at max. libration (/0 = 0.4 kmc) io
-2 10 io

- 1
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We observe from this table that several radio channels, including the moon when used

as a passive reflector, are underspread. Consequently, it is possible to select the signal

si(t) such that these channels are frequency-nonselective and slowly fading. The slow-

fading condition implies that the channel characteristics vary sufficiently slowly that

they can be measured.

In Section 13.3, we shall determine the error rate performance for binary signaling

over a frequency-nonselective slowly fading channel. This channel model is, by far, the

simplest to analyze. More importantly, it yields insight into the performance character-

istics for digital signaling on a fading channel and serves to suggest the type of signal

waveforms that are effective in overcoming the fading caused by the channel.

Since the multipath components in the received signal are not resolvable when the

signal bandwidth W is less than the coherence bandwidth (Af)c of the channel, the

received signal appears to arrive at the receiver via a single fading path. On the other

hand, we may choose W (Af)c , so that the channel becomes frequency-selective.

We shall show later that, under this condition, the multipath components in the received

signal are resolvable with a resolution in time delay of 1/W. Thus, we shall illustrate

that the frequency-selective channel can be modeled as a tapped delay line (transversal)

filter with time-variant tap coefficients. We shall then derive the performance of binary

signaling over such a frequency-selective channel model.

13.3

FREQUENCY-NONSELECTIVE, SLOWLY FADING CHANNEL

In this section, we derive the error rate performance ofbinaryPSK and binaryFSK when
these signals are transmitted over a frequency-nonselective, slowly fading channel. As
described in Section 13.2, the frequency-nonselective channel results in multiplicative

distortion of the transmitted signal si(t). Furthermore, the condition that the channel

fades slowly implies that the multiplicative process may be regarded as a constant

during at least one signaling interval. Consequently, if the transmitted signal is

the received equivalent lowpass signal in one signaling interval is

nit) = aej4,
si(t) + z(t), 0 < t < T (13.3-1)

where z(t) represents the complex-valued white Gaussian noise process corrupting the

signal.

Let us assume that the channel fading is sufficiently slow that the phase shift 0 can

be estimated from the received signal without error. In that case, we can achieve ideal

coherent detection of the received signal. Thus, the received signal can be processed

by passing it through a matched filter in the case of binary PSK or through a pair of

matched filters in the case of binary FSK. One method that we can use to determine the

performance of the binary communication systems is to evaluate the decision variables

and from these determine the probability of error. However, we have already done

this for a fixed (time-invariant) channel. That is, for a fixed attenuation a, we know
the probability of error for binary PSK and binary FSK. From Equation 4.3-13, the
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expression for the error rate of binary PSK as a function of the received SNR yb is

Pb(yb ) = Q {y/2n) (13.3-2)

where yb = a2£b/No. The expression for the error rate of binary FSK, detected coher-

ently, is given by Equation 4.2-32 as

PbiYb) = Q (Vn) (13.3-3)

We view Equations 13.3-2 and 13.3-3 as conditional error probabilities, where the

condition is that a is fixed. To obtain the error probabilities when a is random, we must

average PbiYb ), given in Equations 13.3-2 and 13.3-3, over the probability density

function of yb . That is, we must evaluate the integral

poo

Pb= Pb(Yb)p(Yb)dyb (13.3-4)
Jo

where p(yb ) is the probability density function of yb when a is random.

Rayleigh fading When a is Rayleigh-distributed, a2 has a chi-square probabil-

ity distribution with two degrees of freedom. Consequently, Yb also is chi-square-

distributed. It is easily shown that

p(Yb) = Yb > 0 (13.3-5)
Yb

where yb is the average signal-to-noise ratio, defined as

Yb = E(a2
) (13.3-6)

TVo

The term E(a2
) is simply the average value of a2

.

Now we can substitute Equation 13.3-5 into Equation 13.3-4 and carry out the

integration for PbiYb) as given by Equations 13.3-2 and 13.3-3. The result of this

integration for binary PSK is (see Problems 4.44 and 4.50)

<133-7)

If we repeat the integration with PbiYb) given by Equation 13.3-3, we obtain the

probability of error for binary FSK, detected coherently, in the form

Pb
Yb

2 + Yb

(13.3-8)

In arriving at the error rate results in Equations 13.3-7 and 13.3-8, we have assumed

that the estimate of the channel phase shift, obtained in the presence of slow fading,

is noiseless. Such an ideal condition may not hold in practice. In such a case, the

expressions in Equations 13.3-7 and 13.3-8 should be viewed as representing the best

achievable performance in the presence of Rayleigh fading. In Appendix C we consider
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the problem of estimating the phase in the presence of noise and we evaluate the error

rate performance of binary and multiphase PSK.

On channels for which the fading is sufficiently rapid to preclude the estimation

of a stable phase reference by averaging the received signal phase over many signaling

intervals, DPSK, is an alternative signaling method. SinceDPSK requires phase stability

over only two consecutive signaling intervals, this modulation technique is quite robust

in the presence of signal fading. In deriving the performance of binary DPSK for a

fading channel, we begin again with the error probability for a nonfading channel,

which is

PbiYb) = y~ Yb (13.3-9)

This expression is substituted into the integral in Equation 13.3-4 along with p(yb) ob-

tained from Equation 13.3-5. Evaluation of the resulting integral yields the probability

of error for binary DPSK, in the form

2(1 + Yb)
(13.3-10)

If we choose not to estimate the channel phase shift at all, but instead employ a

noncoherent (envelope or square-law) detector with binary, orthogonal FSK signals,

the error probability for a nonfading channel is

PbiYb) = \e~Vbl2 (13.3-11)

When we average PbiYb) over the Rayleigh fading channel attenuation, the resulting

error probability is

Pb = (13.3-12)
2 + Y b

The error probabilities in Equations 13.3-7, 13.3-8, 13.3-10, and 13.3-12 are

illustrated in Figure 13.3-1. In comparing the performance of the four binary signaling

systems, we focus our attention on the probabilities of error for large SNR, i.e., y b 1

.

Under this condition, the error rates in Equations 13.3-7, 13.3-8, 13.3-10, and 13.3-12

simplify to

'

1/47* for coherent PSK

1/27* for coherent, orthogonal FSK

1/27* for DPSK

.1/7* for noncoherent, orthogonal FSK

(13.3-13)

From Equation 13.3-13, we observe that coherent PSK is 3 dB better than DPSK
and 6 dB better than noncoherent FSK. More striking, however, is the observtion that

the error rates decrease only inversely with SNR. In contrast, the decrease in error

rate on a nonfading channel is exponential with SNR. This means that, on a fading

channel, the transmitter must transmit a large amount of power in order to obtain a low

probability of error. In many cases, a large amount of power is not possible, technically

and/or economically. An alternative solution to the problem of obtaining acceptable
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SNR per bit, %(dB)

FIGURE 13.3-1

Performance of binary signaling on a

Rayleigh fading channel.

performance on a fading channel is the use of redundancy, which can be obtained by

means of diversity techniques, as discussed in Section 13.4.

Nakagamifading If a is characterized statistically by the Nakagami-m distribu-

tion, the random variable y = a2£b/No has the PDF (see Problem 13.14)

mm
p(.r> = f(̂

r’-'e-"7 (13.3-14)

where y = E(a2
)£/No-

The average probability of error for any of the modulation methods is simply

obtained by averaging the appropriate error probability for a nonfading channel over

the fading signal statistics.

As an example of the performance obtained with Nakagami-m fading statistics,

Figure 13.3-2 illustrates the probability of error of binary PSK with m as a parameter.

We recall that m = 1 corresponds to Rayleigh fading. We observe that the performance

improves as m is increased above m = 1
,
which is indicative of the fact that the fading

is less severe. On the other hand, when m < 1, the performance is worse than Rayleigh

fading.

Other fading signal statistics Following the procedure describe above, one can

determine the performance of the various modulation methods for other types of fading

signal statistics, such as Ricean Fading.
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Average SNR yh (dB)

FIGURE 13.3-2

Average error probability for two-phase

PSK with Nakagami fading.

Error probability results for Rice-distributed fading statistics can be found in the

paper by Lindsey (1964), while for Nakagami-m fading statistics, the reader may refer

to the papers by Esposito (1967), Miyagaki et al. (1978), Charash (1979), Al-Hussaini

et al. (1985), and Beaulieu and Abu-Dayya (1991).

13.4

DIVERSITY TECHNIQUES FOR FADING MULTIPATH CHANNELS

Diversity techniques are based on the notion that errors occur in reception when the

channel attenuation is large, i.e., when the channel is in a deep fade. If we can sup-

ply to the receiver several replicas of the same information signal transmitted over

independently fading channels, the probability that all the signal components will fade

simultaneously is reduced considerably. That is, if p is the probability that any one

signal will fade below some critical value, then p
L

is the probability that all L inde-

pendently fading replicas of the same signal will fade below the critical value. There

are several ways in which we can provide the receiver with L independently fading

replicas of the same information-bearing signal.

One method is to employfrequency diversity. That is, the same information-bearing

signal is transmitted on L carriers, where the separation between successive carriers

equals or exceeds the coherence bandwidth (Af)c of the channel.

A second method for achieving L independently fading versions of the same

information-bearing signal is to transmit the signal in L different time slots, where
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the separation between successive time slots equals or exceeds the coherence time

(A t)c of the channel. This method is called time diversity.

Note that the fading channel fits the model of a bursty error channel. Furthermore,

we may view the transmission of the same information either at different frequencies or

in difference time slots (or both) as a simple form of repetition coding. The separation

of the diversity transmissions in time by (A t)c or in frequency by (A/)c is basically

a form of block-interleaving the bits in the repetition code in an attempt to break up

the error bursts and, thus, to obtain independent errors. Later in the chapter, we shall

demonstrate that, in general, repetition coding is wasteful ofbandwidth when compared

with nontrivial coding.

Another commonly used method for achieving diversity employs multiple anten-

nas. For example, we may employ a single transmitting antenna and multiple receiving

antennas. The latter must be spaced sufficiently far apart that the multipath components

in the signal have significantly different propagation delays at the antennas. Usually a

separation of a few wavelengths is required between two antennas in order to obtain

signals that fade independently.

A more sophisticated method for obtaining diversity is based on the use of a

signal having a bandwidth much greater than the coherence bandwidth (A/)c of the

channel. Such a signal with bandwidth W will resolve the multipath components and,

thus, provide the receiver with several independently fading signal paths. The time

resolution is 1 /W. Consequently, with a multipath spread of Tm seconds, there are

TmW resolvable signal components. Since Tm ^ 1/(A/)C ,
the number of resolvable

signal components may also be expressed as W/(Af)c . Thus, the use of a wideband

signal may be viewed as just another method for obtaining frequency diversity of order

L & W/(Af)c . The optimum demodulator for processing the wideband signal will be

derived in Section 13.5. It is called a RAKE correlator or a RAKE matched filter and

was invented by Price and Green (1958).

There are other diversity techniques that have received some consideration in prac-

tice, such as angle-of-arrival diversity and polarization diversity. However, these have

not been as widely used as those described above.

13.4-1 Binary Signals

We shall now determine the error rate performance for a binary digital communication

system with diversity. We begin by describing the mathematical model for the com-

munication system with diversity. First of all, we assume that there are L diversity

channels, carrying the same information-bearing signal. Each channel is assumed to be

frequency-nonselective and slowly fading with Rayleigh-distributed envelope statistics.

The fading processes among the L diversity channels are assumed to be mutually statis-

tically independent. The signal in each channel is corrupted by an additive zero-mean

white Gaussian noise process. The noise processes in the L channels are assumed to be

mutually statistically independent, with identical autocorrelation functions. Thus, the

equivalent low-pass received signals for the L channels can be expressed in the form

m(t ) = ake
J</>k

skm (t ) + zk (t), k = \ , 2, . .
. ,
L, m = 1,2 ( 13 .4- 1 )
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where {otk^k
} represent the attenuation factors and phase shifts for the L channels,

Skmif) denotes the rath signal transmitted on the kXh channel, and ikif) denotes the

additive white Gaussian noise on the fcth channel. All signals in the set {skm (t)} have

the same energy.

The optimum demodulator for the signal received from the kth channel consists of

two matched filters, one having the impulse response

bk i(t) = s*kl (T-t) (13.4-2)

and the other having the impulse response

bkiit) = s*k2(T - t) (13.4-3)

Of course, ifbinary PSK is the modulation method used to transmit the information, then

Sk\(t) = —Ski(t). Consequently, only a single matched filter is required for binary PSK.

Following the matched filters is a combiner that forms the two decision variables. The

combiner that achieves the best performance is one in which each matched filter output

is multiplied by the corresponding complex-valued (conjugate) channel gain oike~ j(t>k
.

The effect of this multiplication is to compensate for the phase shift in the channel

and to weight the signal by a factor that is proportional to the signal strength. Thus,

a strong signal carries a larger weight than a weak signal. After the complex-valued

weighting operation is performed, two sums are formed. One consists of the real parts

of the weighted outputs from the matched filters corresponding to a transmitted 0. The

second consists of the real part of the outputs from the matched filters corresponding

to a transmitted 1. This optimum combiner is called a maximal ratio combiner by

Brennan (1959). Of course, the realization of this optimum combiner is based on the

assumption that the channel attenuations {a*} and the phase shifts {</>&} are known
perfectly. That is, the estimates of the parameters {a*} and {0^} contain no noise. (The

effect of noisy estimates on the error rate performance of multiphase PSK is considered

in Appendix C.)

A block diagram illustrating the model for the binary digital communication system

described above is shown in Figure 13.4-1.

Let us first consider the performance of binary PSK with Lth-order diversity. The

output of the maximal ratio combiner can be expressed as a single decision variable in

the form

U = Re
|

IS^d2
k +

V k= 1 k= 1 V

L L

= 2£ X! +L akNkr

(13.4-4)

k=

1

k=

1

where N& denotes the real part of the complex-valued Gaussian noise variable

Nk = e-i* F zk (t)s*(t) dt (13.4-5)
Jo

We follow the approach used in Section 1 3 .3 in deriving the probability of error. That is,

the probability of error conditioned on a fixed set of attenuation factors {c^} is obtained
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*n(0

FIGURE 13.4-1

Model of binary digital communication system with diversity.

first. Then the conditional probability of error is averaged over the probability density

function of the {a*}.

Rayleigh fading For a fixed set of {ak] the decision variable U is Gaussian with

mean

L

E(U) = 2£^2 (13.4-6)

and variance

<jjj — 2£Nq ^ ^
oc

i

k=

1

(13.4-7)

For these values of the mean and variance, the probability that U is less than zero is

simply

Pb(Vb) - Q (\/2Yb)

where the SNR per bit, yb ,
is given as

Yb

L

(13.4-8)

(13.4-9)

where y* = £a\/N§ is the instantaneous SNR on the k\h channel. Now we must de-

termine the probability density function p(yb )- This function is most easily determined

via the characteristic function of yb . First of all, we note that for L = 1, yb = y\ has

a chi-square probability density function given in Equation 13.3-5. The characteristic
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function of y\ is easily shown to be

<&*(!>) = E^JVV')

= 1 (13.4-10)

1 - j vY c

where y c is the average SNR per channel, which is assumed to be identical for all

channels. That is,

y c = ^E{al) (13.4-11)
yvo

independent of k. This assumption applies for the results throughout this section. Since

the fading on the L channels is mutually statistically independent, the {%} are statisti-

cally independent, and, hence, the characteristic function for the sum yb is simply the

result in Equation 13.4-10 raised to the Lth power, i.e.,

<M«) = 7j

1

r-=-E (13.4-12)
(1 -Jvy c)

L

But this is the characteristic function of a chi-square-distributed random variable with

2L degrees of freedom. It follows from Equation 2.3-21 that the probability density

function p(yb ) is

p(Yb) = n \
-.-_L Yb

L- l e-yb/yc (13.4-13)
(L - 1)

! Xc

The final step in this derivation is to average the conditional error probability given

in Equation 13.4-8 over the fading channel statistics. Thus, we evaluate the integral

poo

Pb=
/

P2(yb)p(yb)dyb (13.4-14)
Jo

There is a closed-form solution for Equation 13.4-14, which can be expressed as

Pb =[yi-(^)]
L

J2(
L
~l

+ k

) [\0 + »)]* (13.4-15)

k=o '
'

where, by definition

M =
y c

i + y c

(13.4-16)

When the average SNR per channel, y c ,
satisfies the condition y c 1, the term

^(1 + jji) & 1 and the term ^(1 — ju) & 1 /4y c . Furthermore,
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Therefore, when y c is sufficiently large (greater than 10 dB), the probability of error

in Equation 13.4-15 can be approximated as

Pb « J_\
L
( 2L — l

47c) \ L
(13.4-18)

We observe from Equation 13.4-18 that the probability of error varies as 1 /y c raised to

the Lth power. Thus, with diversity, the error rate decreases inversely with the Lth power

of the SNR.
Having obtained the performance of binary PSK with diversity, we now turn our

attention to binary, orthogonal FSK that is detected coherently. In this case, the two

decision variables at the output of the maximal ratio combiner may be expressed as

Ui
= Re

U2 = Re

L L

2S +^2 akNk i

k=

1

k= 1

' L

^ ^ &kNk2

,k=

1

(13.4-19)

where we have assumed that signal Sk\{t) was transmitted and where {A^i} and {Afo}

are the two sets of noise components at the output of the matched filters. The probability

of error is simply the probability that U2 > U\. This computation is similar to the one

performed for PSK, except that we now have twice the noise power. Consequently,

when the {c^} are fixed, the conditional probability of error is

PbiYb) = Q {Vn) (13.4-20)

We use Equation 13.4-13 to average PbiYb) over the fading. It is not surprising to find

that the result given in Equation 13.4-15 still applies, with y c replaced by )jy c . That is,

Equation 13.4-15 is the probability of error for binary, orthogonal FSK with coherent

detection, where the parameter \x is defined as

2 + y c

(13.4-21)

Furthermore, for large values of y c ,
the performance Pb can be approximated as

1

w:
2L- 1

L
(13.4-22)

In comparing Equation 13.4-22 with Equation 13.4-18, we observe that the 3-dB

difference in performance between PSK and orthogonal FSK with coherent detection,

which exists in a nonfading, nondispersive channel, is the same also in a fading channel.

In the above discussion of binary PSK and FSK, detected coherently, we assumed

that noiseless estimates of the complex-valued channel parameters were used

at the receiver. Since the channel is time-variant, the parameters cannot be

estimated perfectly. In fact, on some channels, the time variations may be sufficiently

fast to preclude the implementation of coherent detection. In such a case, we should

consider using either DPSK or FSK with noncoherent detection.
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Let us consider DPSK first. In order for DPSK to be a viable digital signaling

method, the channel variations must be sufficiently slow so that the channel phase

shifts {0fc} do not change appreciably over two consecutive signaling intervals. In our

analysis, we assume that the channel parameters remain constant over two

successive signaling intervals. Thus the combiner for binary DPSK will yield as an

output the decision variable

U = Re £ (2£ake* + Nk2 )
{2£ake~^ + Aft)

,k=\

(13.4-23)

where {Nk\} and {iV^} denote the received noise components at the output of the

matched filters in the two consecutive signaling intervals. The probability of error is

simply the probability that U < 0. Since U is a special case ofthe general quadratic form

in complex-valued Gaussian random variables treated in Appendix B, the probability

of error can be obtained directly from the results given in that appendix. Alternatively,

we may use the error probability given in Equation 11.1-13, which applies to binary

DPSK transmitted over L time-invariant channels, and average it over the Rayleigh

fading channel statistics. Thus, we have the conditional error probability

L—

1

PbiYb ) = i\)
2L~ l

e~Yb ^bky^
k=

0

where //, is given by Equation 13.4-9 and

(13.4-24)

(13.4-25)

The average of PbiYb) over the fading channel statistics given by p(yi,) in Equa-

tion 13.4-13 is easily shown to be

Pb
1

22L-1 (L — 1)!(1 + y c )
L

L-

1

Y^hn-i+ky.
k=

0

(13.4-26)

We indicate that the result in Equation 13.4-26 can be manipulated into the form given

in Equation 13.4-15, which applies also to coherent PSK and FSK. For binary DPSK,
the parameter jjl in Equation 13.4-15 is defined as (see Appendix C)

IX = (13.4-27)
1 + Y C

For y (
. 1 . the error probability in Equation 13.4-26 can be approximated by the

expression

o 3 -4-28 *

Orthogonal FSK with noncoherent detection is the final signaling technique that

we consider in this section. It is appropriate for both slow and fast fading. However,

the analysis of the performance presented below is based on the assumption that the

fading is sufficiently slow so that the channel parameters remain constant for
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the duration of the signaling interval. The combiner for the multichannel signals is a

square-law combiner. Its output consists of the two decision variables

L

Ux
=^2\2Sake^ + Nkl \

2

k= 1

L
(13.4-29)

U2 = Ei^i 2

where U\ is assumed to contain the signal. Consequently the probability of error is the

probability that U2 > U\.

As in DPSK, we have a choice of two approaches in deriving the performance of

FSK with square-law combining. In Section 1 1.1, we indicated that the expression for

the error probability for square-law-combined FSK is the same as that for DPSK with

yb replaced by ^yb . That is, the FSK system requires 3 dB of additional SNR to achieve

the same performance on a time-invariant channel. Consequently, the conditional error

probability for DPSK given in Equation 13.4-24 applies to square-law-combined FSK
when yb is replaced by \yb . Furthermore, the result obtained by averaging Equa-

tion 13.4-24 over the fading, which is given by Equation 13.4-26, must also apply to

FSK with y c
replaced by ^y c . But we also stated previously that Equations 13.4-26

and 13.4-15 are equivalent. Therefore, the error probability given in Equation 13.4-15

also applies to square-law-combined FSK with the parameter jx defined as

n = (13.4-30)
2 + Y C

An alternative derivation used by Pierce (1958) to obtain the probability that the

decision variable U2 > U\ is just as easy as the method described above. It begins with

the probability density functions p(u\) and p(u2 ). Since the complex-valued random

variables {c^e 7^}, {iV*i}, and {Afo} are zero-mean Gaussian-distributed, the decision

variables U\ and U2 are distributed according to a chi-square probability distribution

with 2L degrees of freedom. That is,

where

Similarly,

p(ui) -
(2a?)HL - 1 )!

L-

1

I
W 1

<rf = ±E (\2£akeS* + Nkl \

2

)

= 2SN0(l + y c )

1 L—\ ( U2
P(U2)=

(2a|)(L-l)!“2
" CXP

\ 2o|

(13.4-31)

(13.4-32)

fff = 2£N0

where
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The probability of error is just the probability that U2 > U\. It is left as an exercise

for the reader to show that this probability is given by Equation 13.4-15, where jjl is

defined by Equation 13.4-30.

When y c ^> 1, the performance of square-law-detected FSK can be simplified as

we have done for the other binary multichannel systems. In this case, the error rate is

well approximated by the expression

Pb (13.4-33)

The error rate performance of PSK, DPSK, and square-law-detected orthogonal

FSK is illustrated in Figure 13.4-2 for L = 1, 2, and 4. The performance is plotted as

a function of the average SNR per bit, yb ,
which is related to the average SNR per

channel, y c ,
by the formula

Yb = l Yc (13.4-34)

5 10 15 20 25 30 35 40

SNR per bit, yb (dB)

FIGURE 13.4-2

Performance of binary signals with diversity.
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The results in Figure 13.4-2 clearly illustrate the advantage of diversity as a means for

overcoming the severe penalty in SNR caused by fading.

Nakagami fading It is a simple matter to extend the results of this section to

other fading models. We shall briefly consider Nakagami fading. Let us compare the

Nakagami PDF for the single-channel SNR parameter yb = a2£b/No, previously given

by Equation 13.3-14 as

P(Yb) =
1

T(m)(y b/my
_ym-l

e
-
yb /(Yh/m ) (13.4-35)

with the PDF p(yb ) obtained for the L-channel SNR with Rayleigh fading, given by

Equation 13.4-13 as

p(Yb) = 7
—

\ M_L Yt~
le
~
Yb,Yc (13.4-36)

(L - 1 )\y^

By noting that y c — y b/L in the case of an Lth order diversity system, it is clear

that the two PDFs are identical for L = m = integer. When L = m = 1, the two

PDFs correspond to a single channel Rayleigh fading system. For the case in which

the Nakagami parameter m = 2, the performance of the single-channel system is

identical to the performance obtained in a Rayleigh fading channel with dual (L = 2)

diversity. More generally, any single-channel system with Nakagami fading in which

the parameter m is an integer, is equivalent to an L-channel diversity system for a

Rayleigh fading channel. In view of this equivalence, the characteristic function of a

Nakagami-m random variable must be of the form

1

(1 - jvy b/m)
m (13.4-37)

which is consistent with the result given in Equation 13.4-12 for the characteristic

function of the combined signal in a system with Lth-order diversity in a Rayleigh

fading channel. Consequently, it follows that a ^-channel system transmitting in a

Nakagami fading channel with independent fading is equivalent to an L = Km channel

diversity in a Rayleigh fading channel.

13.4-2 Multiphase Signals

Multiphase signaling over a Rayleigh fading channel is the topic presented in some

detail in Appendix C. Our main purpose in this section is to cite the general result for

the probability of a symbol error in M-ary PSK and DPSK systems and the probability

of a bit error in four-phase PSK and DPSK.
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The general result for the probability of a symbol error in M-ary PSK and DPSK is

Pe =
{-l)L~\l - V?)

L
( 9

L—

1

7r(L — 1)! \dbL~ l

1 7

r

-(M-l)

/x sin(7r/M)
cot

-/x cos(n/M)

\/b — fi
1 cos2(n/M) \Jb — ijl

2 cos2(tt/M) ]»...

(13.4-38)

where

for coherent PSK and

\x =
1 + Y C

(13.4-39)

(13.4-40)

for DPSK. Again y c is the average received SNR per channel. The SNR per bit is

y b = Ly
c/k ,

where k = log2 M.
The bit error rate for four-phase PSK and DPSK is derived on the basis that the

pair of information bits is mapped into the four phases according to a Gray code. The

expression for the bit error rate derived in Appendix C is

(13.4-41)

where /jl is again given by Equations 13.4-39 and 13.4-40 for PSK and DPSK,
respectively.

Figure 13.4-3 illustrates the probability of a symbol error of DPSK and coherent

PSK forM — 2, 4, and 8 with L = 1. Note that the difference in performance between

DPSK and coherent PSK is approximately 3 dB for all three values of M. In fact, when

y b ^> 1 and L — 1, Equation 13.4-38 is well approximated as

for DPSK and as

M — 1

(M log2 A/)[sin
2
(7r /M)]y b

(13.4-42)

M-l
(M log2 M)[sm

2
(TT/M)]2yh

(13.4-43)

for PSK. Hence, at high SNR, coherent PSK is 3 dB better than DPSK on a Rayleigh

fading channel. This difference also holds as L is increased.

Bit error probabilities are depicted in Figure 13.4-4 for two-phase, four-phase,

and eight-phase DPSK signaling with L = 1,2, and 4. The expression for the bit

error probability of eight-phase DPSK with Gray encoding is not given here, but it is

available in the paper by Proakis (1968). In this case, we observe that the performances

for two- and four-phase DPSK are (approximately) the same, while that for eight-phase

DPSK is about 3 dB poorer. Although we have not shown the bit error probability for
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SNR per bit, yb (dB)

FIGURE 13.4-3

Probability of symbol error for PSK and DPSK for Rayleigh fading.

coherent PSK, it can be demonstrated that two- and four-phase coherent PSK also yield

approximately the same performance.

13.4-3 M-ary Orthogonal Signals

In this subsection, we determine the performance of M-ary orthogonal signals trans-

mitted over a Rayleigh fading channel and we assess the advantages of higher-order

signal alphabets relative to a binary alphabet. The orthogonal signals may be viewed as

M-ary FSK with a minimum frequency separation of an integer multiple of 1 /T, where

T is the signaling interval. The same information-bearing signal is transmitted on L
diversity channels. Each diversity channel is assumed to be frequency-nonselective and

slowly fading, and the fading processes on the L channels are assumed to be mutually

statistically independent. An additive white Gaussian noise process corrupts the signal

on each diversity channel. We assume that the additive noise processes are mutually

statistically independent.
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5 10 15 20 25 30 35 40

SNR per bit, yb (dB)

FIGURE 13.4-4

Probability of a bit error for DPSK with diversity for Rayleigh fading.

Although it is relatively easy to formulate the structure and analyze the performance

of a maximal ratio combiner for the diversity channels in the M-ary communication

system, it is more likely that a practical system would employ noncoherent detection.

Consequently, we confine our attention to square-law combining ofthe diversity signals.

The output of the combiner containing the signal is

L

E/i = |2 + Nkl |

2
(13.4-44)

k= 1

while the outputs of the remaining M — 1 combiners are

L

Um = Y,\Nkm \\ m = 2,3,4,

M

(13.4-45)

k=

1

The probability of error is simply 1 minus the probability that U\ > Um for m =
2, 3, . .

.

,

M. Since the signals are orthogonal and the additive noise processes are mu-
tually statistically independent, the random variables U\ ,

U2 , . .
.

,

Um are also mutually
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statistically independent. The probability density function of U\ was given in Equa-

tion 13.4-31. On the other hand, U2 ,
. .

.

,

UM are identically distributed and described

by the marginal probability density function in Equation 13.4-32. With U\ fixed, the

joint probability P(U2 < U\, C/3 < U\, . .
.

,

Um < U\) is equal to P(U2 < U\) raised

to the M —
1 power. Now,

P(U2 <Ui\Ui=ui p(u 2 ) du 2

= 1 — exp

(13.4-46)

where No- The M —
1 power of this probability is then averaged over the

probability density function of U\ to yield the probability of a correct decision. If we
subtract this result from unity, we obtain the probability of error in the form given by

Hahn (1962)

=i-r

—

Jo (2or?) ((L-l)!

L—

1

L-l (exp(-^

M-

1

Ml

-i-r
Jo

1

(1 + Yc )
l (L ~ 1 )!

wf
1

exp

du\

U\

1 +

X

(13.4-47)

where y c is the average SNR per diversity channel. The average SNR per bit is y h =
L7c/ l°E2M = L7c/k •

The integral in Equation 13.4-47 can be expressed in closed form as a double

summation. This can be seen if we write

/L-l k \
m m(L-l)

Et7 = E (13.4-48)

\A:=0
K

' ) k=0

where [7m is the set of coefficients in the above expansion. Then it follows that Equa-

tion 13.4-47 reduces to

Pe =
1

(L-l)
m(L— 1 )

M-

1

(~ 1 )E
m=

1

,771+1 M- 1

m

(1 + m + my c )
L

Pkm{L-\+k)\
k=

0

1 + Yc

(13.4-49)

X
1 + m + my

(
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When there is no diversity (L = 1), the error probability in Equation 13.4-49 reduces

to the simple form

772= 1
+ m + my c

(13.4-50)

The symbol error rate Pe may be converted to an equivalent bit error rate by multiplying

Pe with 7(2* - 1).

Although the expression for Pe given in Equation 13.4-49 is in closed form, it is

computationally cumbersome to evaluate for large values of M and L. An alternative

is to evaluate Pm by numerical integration using the expression in Equation 13.4-47.

The results illustrated in the following graphs were generated from Equation 13.4-47.

First of all, let us observe the error rate performance of M-ary orthogonal signaling

with square-law combining as a function of the order of diversity. Figures 13.4-5 and

13.4-6 illustrate the characteristics of Pe for M = 2 and 4 as a function of L when the

total SNR, defined as yt
= Vy c ,

remains fixed. These results indicate that there is an

optimum order of diversity for each yt
. That is, for any yt ,

there is a value of L for

which Pe is a minimum. A careful observation of these graphs reveals that the minimum

1 2 3 5 10

Order of diversity, L

FIGURE 13.4-5

Performance of square-law-detected

binary orthogonal signals as a function

of diversity.

J i L
20 30 50
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FIGURE 13.4-6

Performance of square-law-detected

M = 4 orthogonal signals as a

function of diversity.

5 10 20 30 50

Order of diversity, L

in Pe is obtained when y c = y t
/L^3. This result appears to be independent of the

alphabet size M.
Second, let us observe the error rate Pe as a function of the average SNR per bit,

defined as y b — Ly c/k. (If we interpret M-ary orthogonal FSK as a form of coding

and the order of diversity as the number of times a symbol is repeated in a repetition

code, then y b — y c
/Rc ,

where Rc = k/L is the code rate.) The graphs of Pe versus

y b for M = 2, 4, 8, 16, 32 and L — 1, 2, 4 are shown in Figure 13.4-7. These results

illustrate the gain in performance as M increases and L increases. First, we note that a

significant gain in performance is obtained by increasing L. Second, we note that the

gain in performance obtained with an increase inM is relatively small when L is small.

However, as L increases, the gain achieved by increasing M also increases. Since an

increase in either parameter results in an expansion of bandwidth, i.e.,

LM
log2 M

(13.4-51)

the results illustrated in Figure 1 3 .4-7 indicate that an increase in L is more efficient than

a corresponding increase in M. As we shall see in Chapter 14, coding is a bandwidth-

effective means for obtaining diversity in the signal transmitted over the fading channel.
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SNR per bit, yb (dB)

FIGURE 13.4-7

Performance of orthogonal signaling with M and L as parameters.

Chernov bound Before concluding this section, we develop a Chernov upper

bound on the error probability of binary orthogonal signaling with Lth-order diver-

sity, which will be useful in our discussion of coding for fading channels, the topic

of Chapter 14. Our starting point is the expression for the two decision variables U\

and U2 given by Equation 13.4-29, where U\ consists of the square-law-combined

signal-plus-noise terms and U2 consists of square-law-combined noise terms. The bi-

nary probability of error, denoted here by Pb(L), is

Pb(L) = P(U2 - Ux > 0)

f
00 (13.4-52)

= P(X> 0)= /
p(x)dx

Jo

where the random variable X is defined as

L

X = U2 -Ul =YJ
{\Nki\

2 ~
|2£ak + Nkl \

2

)

k=\

(13.4-53)
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The phase terms {</>&} in U\ have been dropped since they do not affect the performance

of the square-law detector.

Using the Chernov bound, the error probability in 13.4-52 can be expressed in the

form

Pb(L) < E(e^
x

) (13.4-54)

where the parameter £ > 0 is optimized to yield a tight bound. Upon substituting for

the random variable X from Equation 13.4-53 and noting that the random variables in

the summation are mutually statistically independent, we obtain the result

L

Pb(L ) < ru( E
^
e
-(\2sak+Nkl \

2

^
(13.4-55)

k=

1

But

and

1

1 - 2Cct2
2 ’

E (
-t;\2Sak+Nkl \

2 \ _ 1

V ) 1 + 2fa
2 ’ C >

-1

2erf

(13.4-56)

(13.4-57)

where a

f

= 2£No , erf = 2£No(l + y c ),
and y c

is the average SNR per diversity

channel. Note that erf and of are independent of k
,
i.e., the additive noise terms on

the L diversity channels as well as the fading statistics are identically distributed.

Consequently, Equation 13.4-55 reduces to

Pb (L) <
(1 - 2(ai) (1 + 2;ol)

o < c < —

~

“ S - 2a,2
(13.4-58)

By differentiating the right-hand side of Equation 13.4-58 with respect to £, we
find that the upper bound is minimized when

? =
°T - ^2

Aafaf
(13.4-59)

Substitution of Equation 13.4-59 for £ into Equation 13.4-58 yields the Chernov upper

bound in the form

Pb {L) <
4(1 + YcV

L

.(2 + y c)
2

J

It is interesting to note that Equation 13.4-60 may also be expressed as

(13.4-60)

Pb(L) < [4/7(1 - p)]
L

(13.4-61)
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SNR per bit, yb (dB)

FIGURE 13.4-8

Comparison of Chernov bound with exact

error probability.

where p = 1/(2 + y c ) is the probability of error for binary orthogonal signaling on a

fading channel without diversity.

A comparison of the Chernov bound in Equation 13.4-60 with the exact error

probability for binary orthogonal signaling and square-law combining of the L diversity

signals, which is given by the expression

Pb(L) =
1

2 + y

L

j:(
L
~l

+k

k=0 v

k=0 v

(1 - Pf

1 +7

A

*

2 + Yc)
(13.4-62)

reveals the tightness of the bound. Figure 13.4-8 illustrates this comparison. We observe

that the Chernov upper bound is approximately 6 dB from the exact error probability

for L — 1, but, as L increases, it becomes tighter. For example, the difference between

the bound and the exact error probability is about 2.5 dB when L — 4.

Finally we mention that the error probability for M-ary orthogonal signaling with

diversity can be upper-bounded by means of the union bound

Pe<(M- 1)P2(L) (13.4-63)

where we may use either the exact expression given in Equation 13.4-62 or the Chernov

bound in Equation 13.4-60 for Pb(L).
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13.5

SIGNALING OVER A FREQUENCY-SELECTIVE, SLOWLY FADING
CHANNEL: THE RAKE DEMODULATOR

When the spread factor of the channel satisfies the condition Tm Bd 1 ,
it is possible to

select signals having a bandwidth W <£ (Af)c and a signal duration T (At)c . Thus,

the channel is frequency-nonselective and slowly fading. In such a channel, diversity

techniques can be employed to overcome the severe consequences of fading.

When a bandwidth W (Af)c is available to the user, the channel can be subdi-

vided into a number of frequency-division multiplexed (FDM) subchannels having a

mutual separation in center frequencies of at least (Af)c . Then the same signal can be

transmitted on the FDM subchannels, and, thus, frequency diversity is obtained. In this

section, we describe an alternative method.

13.5-1 A Tapped-Delay-Line Channel Model

As we shall now demonstrate, a more direct method for achieving basically the same

results is to employ a wideband signal covering the bandwidth W. The channel is

still assumed to be slowly fading by virtue of the assumption that T (At)c . Now
suppose that W is the bandwidth occupied by the real band-pass signal. Then the

band occupancy of the equivalent low-pass signal st (t) is |/| < \W. Since si(t) is

band-limited to |/| < \W, application of the sampling theorem results in the signal

representation

^ { n \ sin[7r W(t-n/W)]
Sl(t) ~

vW ) nW(t — n/W)
(13 .5-1 )

The Fourier transform of si(t) is

Si(f) =
1

oo

- f; Sl(n/W)e-j
2”fi>'w

n=—oo
'

o

\f\<kw

I/I > \W
(13 .5-2)

The noiseless received signal from a frequency-selective channel was previously

expressed in the form

/
oo

C(f; t)Si{f)e^f‘ df
-OO

(13 .5-3)
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where C(/; t) is the time-variant transfer function. Substitution for St(f) from Equa-

tion 13.5-2 into 13.5-3 yields

where c(r; t) is the time-variant impulse response. We observe that Equation 13.5-4

has the form of a convolution sum. Hence, it can also be expressed in the alternative

form

Then Equation 13.5-5 expressed in terms of these channel coefficients becomes

The form for the received signal in Equation 13.5-7 implies that the time-variant

frequency-selective channel can be modeled or represented as a tapped delay line with

tap spacing l/W and tap weight coefficients {cn (t)}. In fact, we deduce from Equa-

tion 13.5-7 that the low-pass impulse response for the channel is

Thus, with an equivalent low-pass-signal having a bandwidth ^W, where W > (Af)c ,

we achieve a resolution of 1/W in the multipath delay profile. Since the total multipath

spread is Tm ,
for all practical purposes the tapped delay line model for the channel

can be truncated at L =
\

Tm W\ + 1 taps. Then the noiseless received signal can be

expressed in the form

(13.5-4)

(13.5-5)

n=—oo

It is convenient to define a set of time-variable channel coefficients as

(13.5-6)

OO

(13.5-7)

n=—oo

oo

(13.5-8)

n=—oo

and the corresponding time-variant transfer function is

oo

c(/ ; o = E cn(t)e-^
n'w (13.5-9)

n=

(13.5-10)
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FIGURE 13.5-1

Trapped delay line model of frequency-selective channel.

The truncated tapped delay line model is shown in Figure 13.5-1. In accordance

with the statistical characterization of the channel presented in Section 13.1, the time-

variant tap weights {cn (t)} are complex-valued stationary random processes. In the spe-

cial case of Rayleigh fading, the magnitudes \cn (t)\ = an (t) are Rayleigh-distributed

and the phases
<fin (t ) are uniformly distributed. Since the [cn (t)} represent the tap

weights corresponding to the L different delays r = n/W,n = 1 , 2, . .
.

,

L, the uncor-

related scattering assumption made in Section 13.1 implies that the {cn (t)} are mutually

uncorrelated. When the {cn (t)} are Gaussian random processes, they are statistically

independent.

13.5-2 The RAKE Demodulator

We now consider the problem of digital signaling over a frequency-selective channel

that is modeled by a tapped delay line with statistically independent time-variant tap

weights {cn (t)}. It is apparent at the outset, however, that the tapped delay line model

with statistically independent tap weights provides us with L replicas of the same

transmitted signal at the receiver. Hence, a receiver that processes the received signal in

an optimum manner will achieve the performance of an equivalent Lth-order diversity

communication system.

Let us consider binary signaling over the channel. We have two equal-energy

signals sn(t) and s/2(0> which are either antipodal or orthogonal. Their time duration T
is selected to satisfy the condition T Tm . Thus, we may neglect any intersymbol

interference due to multipath. Since the bandwidth of the signal exceeds the coherent
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bandwidth of the channel, the received signal is expressed as

n(t) = ^2 ck (t)su(t -k/W) + z(t)

k= 1

= Vi(t) + z(t), 0 <t<T, i — 1,2

(13.5-11)

where z(t) is a complex-valued zero-mean white Gaussian noise process. Assume for

the moment that the channel tap weights are known. Then the optimum demodulator

consists of two filters matched to v\(t) and i>2(0- The demodulator output is sampled at

the symbol rate and the samples are passed to a decision circuit that selects the signal

corresponding to the largest output. An equivalent optimum demodulator employs

cross correlation instead of matched filtering. In either case, the decision variables for

coherent detection of the binary signals can be expressed as

Um = Re
[/
L

n(t)v*(t)dt

= Re tf nit)4(tK(t

-

L*=i Jo

(13.5-12)

k/W)dt\ m — 1,2

Figure 13.5-2 illustrates the operations involved in the computation of the decision

variables. In this realization of the optimum receiver, the two reference signals are

delayed and correlated with the received signal

An alternative realization of the optimum demodulator employs a single delay line

through which is passed the received signal r\(t). The signal at each tap is correlated

with cl(t)sfm (t), where k = 1, 2, . .
.

,

L and m = 1,2. This receiver structure is shown

in Figure 13.5-3. In effect, the tapped delay line demodulator attempts to collect the

signal energy from all the received signal paths that fall within the span of the delay

line and carry the same information. Its action is somewhat analogous to an ordinary

garden rake and, consequently, the name “RAKE demodulator” has been coined for this

demodulator structure by Price and Green (1958). The taps on the RAKE demodulator

are often called “RAKE fingers.”

13.5-3 Performance of RAKE Demodulator

We shall now evaluate the performance of the RAKE demodulator under the condition

that the fading is sufficiently slow to allow us to estimate c*(f ) perfectly (without noise).

Furthermore, within any one signaling interval, c*(f ) is treated as a constant and denoted

as c*. Thus the decision variables in Equation 13.5-12 may be expressed in the form

" L

_k=

l

/’ r(t)s*m(t-k/W)dtUm - Re m = 1,2 (13.5-13)
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FIGURE 13.5-2

Optimum demodulator for wideband binary signals (delayed reference configuration).

Suppose the transmitted signal is sn(t); then the received signal is

L

rl {t) =YJ
CnSn(t-n/W) + z{t), 0 <t <T

n=

1

Substitution of Equation 13.5-14 into Equation 13.5-13 yields

(13.5-14)

(13.5-15)
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FIGURE 13.5-3

Optimum demodulator for wideband binary signals (delayed received signal configuration).

Usually the wideband signals sn(t) and s^it) are generated from pseudorandom

sequences, which result in signals that have the property

[ su(t - n / W)s*t
(t -k/W)dt* 0, k^n, i = 1,2 (13.5-16)

Jo

If we assume that our binary signals are designed to satisfy this property, then Equa-

tion 13.5-15 simplifies to"*"

~ L j
1

Um = Re V |C*|
2

[ sn(t - k/W)s*m (t - k/W)dt
Jo

L j
1

+ Re Tctf z(t)s*m (t — k/W)dt
, m

u, JO

tAlthough the orthogonality property specified by Equation 13.5-16 can be satisfied by proper selection

of the pseudorandom sequences, the cross correlation of sn(t — n/W) with s*
t
(t — k/W) gives rise to a

signal-dependent self-noise, which ultimately limits the performance. For simplicity, we do not consider

the self-noise term in the following calculations. Consequently, the performance results presented below

should be considered as lower bounds (ideal RAKE). An approximation to the performance of the RAKE
can be obtained by treating the self-noise as an additional Gaussian noise component with noise power

equal to its variance.
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When the binary signals are antipodal, a single decision variable suffices. In this

case, Equation 13.5-17 reduces to

Ui
= Re

L

where a^
= |c^| and

Nk — k/W)dt

(13.5-18)

(13.5-19)

But Equation 13.5-18 is identical to the decision variable given in Equation 13.4-4,

which corresponds to the output of a maximal ratio combiner in a system with Lth-order

diversity. Consequently, the RAKE demodulator with perfect (noiseless) estimates of

the channel tap weights is equivalent to a maximal ratio combiner in a system with

Lth-order diversity. Thus, when all the tap weights have the same mean-square value,

i.e., E(al) is the same for all k
,
the error rate performance of the RAKE demodulator

is given by Equations 13.4-15 and 13.4-16. On the other hand, when the mean-square

values E(af) are not identical for all k
,
the derivation of the error rate performance

must be repeated since Equation 13.4-15 no longer applies.

We shall derive the probability of error for binary antipodal and orthogonal signals

under the condition that the mean-square values of {c^} are distinct. We begin with the

conditional error probability

PbiYb) = Q
(
y/Ybtt - Pr)

)
(13.5-20)

where pr = — 1 for antipodal signals, pr
— 0 for orthogonal signals, and

£
L L

Yb = = (13.5-21)
N

° k= i k=i

Each of the {y^} is distributed according to a chi-squared distribution with two

degrees of freedom. That is,

. PiYk) = =-e Yk/Yk

Yk

where y k is the average SNR for the kth path, defined as

(13.5-22)

(13.5-23)

Furthermore, from Equation 13.4-10 we know that the characteristic function of yk is

1=
1 - J vYk

(13.5-24)
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Since y^ is the sum of L statistically independent components {yt}, the character-

istic function of y& is

*»(«) =

n

i

1 -jvYk
(13.5-25)

The inverse Fourier transform of the characteristic function in Equation 13.5-25 yields

the probability density function of y& in the form

L

p(Yb) =Y
k=

l

^L e~Yb/Yk

Yk
Yb> 0

where jr* is defined as

-*=n
/=i

i±k

Yk

Yk ~ Yi

(13.5-26)

(13.5-27)

When the conditional error probability in Equation 13.5-20 is averaged over the

probability density function given in Equation 13.5-26, the result is

Pb = \Y n

k

k= 1

1 - Yk( 1 ~ Pr)

2 + y*(l - Pr)
(13.5-28)

This error probability can be approximated as ( y k '^> 1)

Pb
2L - 1

L

L

n
l

2Vk(l - Pr)
(13.5-29)

By comparing Equation 13.5-29 for pr = — 1 with Equation 13.4-18, we observe that

the same type of asymptotic behavior is obtained for the case of unequal SNR per path

and the case of equal SNR per path.

In the derivation of the error rate performance of the RAKE demodulator, we
assumed that the estimates of the channel tap weights are perfect. In practice, relatively

good estimates can be obtained if the channel fading is sufficiently slow, e.g., (A t)c / T >
100, where T is the signaling interval. Figure 13.5-4 illustrates a method for estimating

the tap weights when the binary signaling waveforms are orthogonal. The estimate is

the output of the low-pass filter at each tap. At any one instant in time, the incoming

signal is either 571(f) or 572(f). Hence, the input to the low-pass filter used to estimate

Ck(t) contains signal plus noise from one of the correlators and noise only from the

other correlator. This method for channel estimation is not appropriate for antipodal

signals, because the addition of the two correlator outputs results in signal cancellation.

Instead, a single correlator can be employed for antipodal signals. Its output is fed

to the input of the low-pass filter after the information-bearing signal is removed. To
accomplish this, we must introduce a delay of one signaling interval into the channel

estimation procedure, as illustrated in Figure 13.5-5. That is, first the receiver must

decide whether the information in the received signal is +1 or —1 and, then, it uses the



Chapter Thirteen: Fading Channels I: Characterization and Signaling 877

To summer To summer
and integrator and integrator

FIGURE 13.5-4

Channel tap weight estimation with binary orthogonal signals.

decision to remove the information from the correlator ouput prior to feeding it to the

low-pass filter.

If we choose not to estimate the tap weights of the frequency-selective channel, we
may use either DPSK signaling or noncoherently detected orthogonal signaling. The
RAKE demodulator structure forDPSK is illustrated in Figure 1 3.5-6. It is apparent that

when the transmitted signal waveform si(t ) satisfies the orthogonality property given in

Equation 13.5-16, the decision variable is identical to that given in Equation 13.4-23 for

an Lth-order diversity system. Consequently, the error rate performance of the RAKE
demodulator for a binary DPSK is identical to that given in Equation 13.4-15 with

/jl — Yet (1 + y c )> when all the signal paths have the same SNR y c . On the other hand,

when the SNRs {y k } are distinct, the error probability can be obtained by averaging

Equation 13.4-24, which is the probability of error conditioned on a time-invariant

channel, over the probability density function of y& given by Equation 13.5-26. The
result of this integration is

ft = (i)
1 \
2£—

1

'Y^m\br>

m=

0

t'f
*=i y *

Yk r+1

1 + Yk)
(13.5-30)

where 7T* is defined in Equation 13.5-27 and bm in Equation 13.4-25.

Finally, we consider binary orthognal signaling over the frequency-selective chan-

nel with square-law detection at the receiver. This type of signal is appropriate when
the fading is rapid enough to preclude a good estimate of the channel tap weights.

The RAKE demodulator with square-law combining of the signal from each tap is

illustrated in Figure 13.5-7. In computing its performance, we again assume that the

orthogonality property given in Equation 13.5-16 holds. Then the decision variables at
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FIGURE 13.5-7

RAKE demodulator for square-law combination of orthogonal signals.

the output of the RAKE are

L

Ux = £|2£c* + JV*,|
2

k=

1

L

t/2 = £l^l 2

k=\

(13.5-31)

where we have assumed that 571 (t) was the transmitted signal. Again we observe that the

decision variables are identical to the ones given in Equation 13.4-29, which apply to

orthogonal signals with Lth-order diversity. Therefore, the performance of the RAKE
demodulator for square-law-detected orthogonal signals is given by Equation 13.4-15

with /x — yc/(2 + y~) when all the signal paths have the same SNR. If the SNRs are

distinct, we can average the conditional error probability given by Equation 13.4-24,

with Yb replaced by
\ Yb ,

over the probability density function p(Yb) given in Equa-

tion 13.5-26. The result ofthis averagingis given by Equation 13.5-30, with Yk replaced

by \7ic
In the above analysis, the RAKE demodulator shown in Figure 13.5-7 for square-

law combining of orthogonal signals is assumed to contain a signal component at each

delay. If that is not the case, its performance will be degraded, since some of the tap



880 Digital Communications

correlators will contribute only noise. Under such conditions, the low-level, noise-only

contributions from the tap correlators should be excluded from the combiner, as shown

by Chyi et al. (1988).

The configurations of the RAKE demodulator presented in this section can be

easily generalized to multilevel signaling. In fact, if M-ary PSK or DPSK is chosen,

the RAKE structures presented in this section remain unchanged. Only the PSK and

DPSK detectors that follow the RAKE correlator are different.

Generalized RAKE Demodulator

The RAKE demodulator described above is the optimum demodulator when the ad-

ditive noise is white and Gaussian. However, there are communication scenarios in

which additive interference from other users of the channel results in colored additive

noise. This is the case, for example, in the downlink of a cellular communication sys-

tem employing CDMA as a multiple access method. In this case, the spread spectrum

signals transmitted from a base station to the mobile receivers carry information on

synchronously transmitted orthogonal spreading codes. However, in transmission over

a frequency-selective channel, the orthogonality of the code sequences is destroyed by

the channel time dispersion due to multipath. As a consequence, the RAKE demodu-

lator for any given mobile receiver must demodulate its desired signal in the presence

of additional additive interference resulting from the cross-correlations of its desired

spreading code sequence with the multipath corrupted code sequences that are assigned

to the other mobile users. This additional interference is generally characterized as col-

ored Gaussian noise, as shown by Bottomley (1993) and Klein (1997).

A model for the downlink transmission in aCDMA cellular communication system

is illustrated in Figure 13.5-8. The base station transmits the combined signal.

K

s(t) = Y,Sk(t) (13.5-32)

k=

1

to the K mobile terminals, where each Sk(t) is a spread spectrum signal intended for the

fcth user and the corresponding spreading code for the &th user is orthogonal with each

of the spreading codes of the other K — 1 users. We assume that the signals propagate

through a channel characterized by the baseband equivalent lowpass, time-invariant

S](t)

rR(t), k = 1,2, ..,K

FIGURE 13.5-8

Model for the downlink transmission of a CDMA cellular communication system.
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w
i

FIGURE 13.5-9

Structure of generalized RAKE demodulator.

impulse response

Lk

Ck(t) = ^2 ckiS(r-xki ), k = \,2,

,

K (13.5-33)

1= 1

where L* is the number of resolvable multipath components, {c^ } are the complex-

valued coefficients, and {r^} are the corresponding time delays. To simplify this pre-

sentation, we focus on the processing at the receiver of the first user (k = 1) and drop

the index k. In a CDMA cellular system, an unmodulated spread spectrum signal, say

so(t), is transmitted along with the information-bearing signals and serves as a pilot

signal that is used by each mobile receiver to estimate the channel coefficients {q } and

the time delays { r/ }

.

A conventional RAKE demodulator would consist of L “fingers” with each finger

corresponding to one of the L channel delays, and the weights at the L fingers would be

{c*}, the complex conjugates of the corresponding channel coefficients. In contrast, a

generalized RAKE demodulator consists of L
g
> L RAKE fingers, and the weights at

the L g
fingers, denoted as {w;}, are different from {cf }. The structure of the generalized

RAKE demodulator is illustrated in Figure 13.5-9 for phase coherent modulation such

as PSK or QAM. The decision variable U at the detector may be expressed as

U = wHy (13.5-34)

It is convenient to express the received vector y at the output of the cross-

correlators as

y = gb + z (13.5-35)

where g is a vector ofcomplex-valued elements which result from the cross-correlations

of the desired received signal, say s\(t) * c\(t), with the corresponding spreading se-

quence at the Lg
delays, b is the desired symbol to be detected, and z represents the

vector of additive Gaussian noise plus interference resulting from the cross-correlations

of the spreading sequence with the received signals of the other users and intersymbol
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interference due to channel multipath. For a sufficiently large number of users and

channel multipath components, the vector z may be characterized as complex-valued

Gaussian with zero mean and covariance matrix R z = E[zzH ]. Based on this statis-

tical characterization of z, the RAKE finger weight vector for maximum-likelihood

detection is given as

w = R; l

g (13.5-36)

Given the channel impulse response, the implementation ofthemaximum-likelihood

detector requires the evaluation of the covariance matrix R z and the desired signal vec-

tor g. The procedure for evaluation of these parameters has been described in a paper

by Bottomley et al. (2000). Also investigated in this paper is the selection of the number

of RAKE fingers and the selection of the corresponding delays for different channel

characteristics.

In the description of the generalized RAKE demodulator given above, we assumed

that the channel is time-invariant. In a randomly time-variant channel, the position of

the RAKE fingers and the weights {Wi } must be varied according to the characteristics

of the channel impulse response. The pilot signal transmitted by the base station to

the mobile receivers is used to estimate the channel impulse response, from which the

finger placement and weights {iu/} can be determined adaptively. The interested reader

is referred to the paper by Bottomley et al. (2000) for a detailed description of the

performance of the generalized RAKE demodulator for some channel models.

13.5-4 Receiver Structures for Channels with Intersymbol Interference

As described above, the wideband signal waveforms that are transmitted through the

multipath channels resolve the multipath components with a time resolution of 1/W,
where W is the signal bandwidth. Usually, such wideband signals are generated as

direct sequence spread spectrum signals, in which the PN spreading sequences are

the outputs of linear feedback shift registers, e.g., maximum-length linear feedback

shift registers. The modulation impressed on the sequences may be binary PSK, QPSK,
DPSK, or binary orthogonal. The desired bit rate determines the bit interval or symbol

interval.

The RAKE demodulator that we described above is the optimum demodulator

based on the condition that the bit interval Tm ,
i.e., there is negligible ISI. When

this condition is not satisfied, the RAKE demodulator output is corrupted by ISI. In

such a case, an equalizer is required to suppress the ISI.

To be specific, we assume that binary PSK modulation is used and spread by a

PN sequence. The bandwidth of the transmitted signal is sufficiently broad to resolve

two or more multipath components. At the receiver, after the signal is demodulated to

baseband, it may be processed by the RAKE, which is the matched filter to the channel

response, followed by an equalizer to suppress the ISI. The RAKE output is sampled

at the bit rate, and these samples are passed to the equalizer. An appropriate equalizer,

in this case, would be a maximum-likelihood sequence estimator implemented by use
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FIGURE 13.5-10

Receiver structure for processing wideband signal corrupted by 1ST

of the Viterbi algorithm or a decision feedback equalizer (DFE). This demodulator

structure is shown in Figure 13.5-10.

Other receiver structures are also possible. If the period of the PN sequence is equal

to the bit interval, i.e., LTC = Tb, where Tc is the chip interval and L is the number of

chips per bit, a fixed filter matched to the spreading sequence may be used to process

the received signal and followed by an adaptive equalizer, such as a fractionally spaced

DFE, as shown in Figure 13.5-11. In this case, the matched filter output is sampled

at some multiple of the chip rate, e.g., twice the chip rate, and fed to the fractionally

spaced DFE. The feedback filter in the DFE would have taps spaced at the bit interval.

The adaptive DFE would require a training sequence for adjustment of its coefficients

to the channel multipath structure.

An even simpler receiver structure is one in which the spread spectrum matched

filter is replaced by a low-pass filter whose bandwidth is matched to the transmitted

signal bandwidth. The output of such a filter may be sampled at an integer multiple

of the chip rate and the samples are passed to an adaptive fractionally spaced DFE. In

this case, the coefficients of the feedback filter in the DFE, with the aid of a training

sequence, will adapt to the combination of the spreading sequence and the channel

multipath. Abdulrahman et al. (1994) consider the use of a DFE to suppress ISI in a

CDMA system in which each user employs a wideband direct sequence spread spectrum

signal.

The paper by Taylor et al. ( 1 998) provides a broad survey of equalization techniques

and their performance for wireless channels.

FIGURE 13.5-11

Alternative receiver stmcture for processing wideband signal corrupted by ISI.
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13.6

MULTICARRIER MODULATION (OFDM)

Multicarrier modulation was introduced in Chapter 11 (Section 11.2), and a special

form of multicarrier transmission, called orthogonal frequency-division multiplexing

(OFDM), was treated in detail. In this section, we consider the use ofOFDM for digital

transmission on fading multipath channels.

From our previous discussion, we have observed that OFDM is an attractive al-

ternative to single-carrier modulation for use in time-dispersive channels. By selecting

the symbol duration in an OFDM system to be significantly larger than the channel

dispersion, intersymbol interference (ISI) can be rendered negligible and completely

eliminated by use of a time guard band or, equivalently, by the use of a cyclic pre-

fix embedded in the OFDM signal. The elimination of ISI due to multipath dispersion,

without the use of complex equalizers, is a basic motivation for use ofOFDM for digital

communication in fading multipath channels. However, OFDM is especially vulnera-

ble to Doppler spread resulting from time variations in the channel impulse response,

as is the case in mobile communication systems. The Doppler spreading destroys the

orthogonality of the OFDM subcarriers and results in intercarrier interference (ICI)

which can severely degrade the performance of the OFDM system. In the following

section we evaluate the effect of a Doppler spread on the performance of OFDM.

13.6-1 Performance Degradation of an OFDM System due
to Doppler Spreading

Let us consider an OFDM system with N subcarriers {ej2j[fkt }, where each subcarrier

employs either Af-ary QAM or PSK modulation. The subcarriers are orthogonal over

the symbol duration T, i.e., fk = k/T, k = 1, 2, . .
.

,

N, so that

e-W d, = {>
* =

' (,3.6-1)

The channel is modeled as a frequency-selective randomly varying channel with

impulse response c(r; t). Within the frequency band of each subcarrier, the channel is

modeled as a frequency-nonselective Rayleigh fading channel with impulse response.

ck {r; t ) = ak(t)S(t) 9
k = 0, 1, . .

.

,

N -
1 (13.6-2)

It is assumed that the processes {ak (t), k = 0, 1, . .
.

,

N — 1} are complex-valued,

jointly stationary, and jointly Gaussian with zero means and cross-covariance function

Rakai(r) = E[ak (t + r)a*(0], k, i = 0, 1, . .
.

,

N — 1 (13.6-3)

For each fixed k, the real and imaginary parts of the process ak (t) are assumed

independent with identical covariance function. It is further assumed that the covariance

function Raka.(r) has the following factorable form

Rakai (t) = Ri(r)R2(k - i

)

(13.6-4)
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which is sufficient to represent the frequency selectivity and the time-varying effects

of the channel. R\(r) represents the temporal correlation of the process which is

identical for all k = 0, 1 , . .
.

,

TV — 1, and Ri{k) represents the correlation in frequency

across subcarriers.

To obtain numerical results, we assume that the power spectral density correspond-

ing to R\(x) is modeled as in Jakes (1974) and given by (see Figure 13.1-8)

S{f) = {

1

nfmVl -
(f/fmf

0

I/I < fm

otherwise

(13.6-5)

where Fd is the maximum Doppler frequency. We note that

Ri(r) = J0(2nfm r) (13.6-6)

where Jo(r) is the zero-order Bessel function of the first kind. To specify the correlation

in frequency across the subcarriers, we model the multipath power intensity profile as

an exponential of the form

Rc (r) = pe
-pT

, r > 0, p>0 (13.6-7)

where is a parameter that controls the coherence bandwidth of the channel. The

Fourier transform of Rc (r) yields

Rc(f) = p

P + j2nf
(13.6-8)

which provides a measure of the correlation of the fading across the subcarriers, as

shown in Figure 13.6-1 . Hence, R2 (k) = Rc{k/T) is the frequency separation between

two adjacent subcarriers. The 3-dB bandwidth of Rc(f ) may be defined as the coherence

bandwidth of the channel and is easily shown to be V3/3/27T.

The channel model described above is suitable for modeling OFDM signal trans-

mission in mobile radio systems, such as cellular systems and radio broadcasting sys-

tems. Since the symbol duration T is usually selected to be much larger than the channel

multipath spread, it is reasonable to model the signal fading as flat over each subcar-

rier. However, compared with the entire OFDM system bandwidth W, the coherence

bandwidth of the channel is usually smaller. Hence, the channel is frequency-selective

over the entire OFDM signal bandwidth.

Let us now model the time variations of the channel within an OFDM symbol

interval T. For mobile radio channels of practical interest, the channel coherence time

is significantly larger than T. For such slow fading channels, we may use the two-term

Taylor series expansion, first introduced by Bello (1963), to represent the time-varying

channel variations otk{t) as

0 < t < Totkif) = ak (to) + a'k (to)(t
- to), (13.6-9)
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FIGURE 13.6-1

Multipath delay profile and frequency correlation function.

Therefore, the impulse response of the kth subchannel within a symbol interval is

given as

Ck(t; 0 = ak (t0)S(r) + (t - to)a
f

k (to)8(r) (13.6-10)

Since R\(r) given by Equation 13.6-6 is infinitely differentiable, all mean-square

derivatives exist and hence the differentiation of otk{t) is justified.

Based on the channel model described above, we determine the ICI term at the

detector and evaluate its power. The baseband signal transmitted over the channel is

expressed as

|
N-

1

s(t) = -= Y, sk e
j2nfkt

, 0 <t <T (13 .6- 1

1

)

k=0

where fk = k/T and Sk, k — 0, 1, . .
.

,

N —
1, represents the complex-valued signal

constellation points. We assume that

E[\sk \

2]=2Savg ( 13 .6-12)

where 2£avg denotes the average symbol energy of each Sk.

The received baseband signal may be expressed as

1
N~ l

r(t) = —= ^2 ak (t)sk e
j2nfk ‘ + n(t) (13 .6-13 )

k—Q

where n(t) is the additive noise, which is modeled as a complex-valued, zero-mean

Gaussian process that is spectrally flat within the signal bandwidth with spectral den-

sity 2Afo W/Hz. By using the two-term Taylor series expansion for ak(t), r(t) may be

expressed as

l
N~ l

+ toWk (t0)sk e>
2*fkt + n(t) ( 13 .6-14)

*=o vT k=0

1
W- 1

r(t) = —7= V ak (t0)ske
j2nfkt
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The received signal in a symbol interval is passed through a parallel bank of N
correlators, where each correlator is tuned to one of the N subcarrier frequencies. The

output of the ith correlator at the sampling instant is

r

Si = -k J
r (t) e-i2nf<‘ dt

n \ I

r a
ifc(

fo)5i= a
l
(t())sl +— > — + rii

k ~ l

k^i

(13.6-15)

The first term in Equation 13.6-15 represents the desired signal, the second term rep-

resents the ICI, and the third term is the additive noise component.

The mean-square value of the desired signal component is

S = E [M?okl
2
]

(13.6-16)
= E [\ai(t0 )\

2
]
E [k|

2
]
= 2£avg

where the average channel gain is normalized to unity. The mean-square value of the

ICI term is evaluated as follows. Since RasClk (r) = R\(r) is infinitely differentiable, all

(mean-square) derivatives of the process ctk(t), —oo < t < oo, exist. In particular, the

first derivative ot
f

k
(t) is a zero-mean, complex-valued Gaussian process with correlation

function

E [a'k {t + x)«(0*)] = ~R'{{t) (13.6-17)

with corresponding spectral density (2nf)
2
S(f). Hence,

E [K(t)|
2

]
= (2:xf)

2
S(f)df = 2:

x

2
f

2
m (13.6-18)

J-fm

The power in the ICI term is

r
2
i

J _ F
T V^

1

ak(fo)sk

2nJ k ~ i

= (£) £

£

(t _
k^i l^i

+ (£)’§'
k^i

We note that the pair (a
f

k (to ), a[{to)) is statistically independent of (sk, si ). Further-

more, the {sk} are iid with zero means. Hence, the first term of the right-hand side of
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fmT ~ Normalized Doppler Spread

FIGURE 13.6-2

Signal-to-ICI power ratio versus normalized Doppler spread.

Equation 13.6-19 is zero. Therefore, by using the result from Equation 13.6-18 in

Equation 13.6-19, the power of the ICI component is

. (Tfmf yi 2£,

2 '>
2

(13.6-20)

Consequently, the signal-to-interference ratio S/I is given by

S

7

1

(77m)
2

y.
1

1

2 h (k -»2

(13.6-21)

Graphs of S/I versus Tfm are shown in Figure 13.6-2 for N = 256 subcarriers and

i = N

/

2, the interference on the middle subcarrier.

The evaluation of the effect of the ICI on the error rate performance of an OFDM
system requires knowledge of the PDF of the ICI which, in general, is a mixture of

Gaussian PDFs. However, when the number of subcarriers is large, the distribution of

the ICI can be approximated by a Gaussian distribution, and thus the evaluation of the

error rate performance is straightforward.

Figure 13.6-3 illustrates the symbol error probability for an OFDM system having

N = 256 subcarriers and 16-QAM, where the error probability is evaluated analytically

based on the Gaussian model for the ICI and by Monte Carlo simulation. We observe that

the ICI severely degrades the performance oftheOFDM system. In the following section

we describe a method for suppressing the ICI and, thus, improving the performance of

the OFDM system.
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Signal-to-Noise Ratio, C
b
/N0 (dB)

FIGURE 13.6-3

Symbol error probability for 16-QAM OFDM system with N = 256 subcarriers.

13.6-2 Suppression of ICI in OFDM Systems

The distortion caused by ICI in an OFDM system is akin to the distortion caused by

ISI in a single-carrier system. Recall that a linear time-domain equalizer based on the

minimum mean-square-error (MMSE) criterion is an effective method for suppressing

ISI. In a similar manner, we may apply the MMSE criterion to suppress the ICI in the

frequency domain. Thus, we begin with the N frequency samples at the output of the

discrete Fourier transform (DFT) processor, which we denote by the vector R(m) for

the rath frame. Then we form the estimate of the symbol Sk(m) as

Sk(m) = b
1

^ (ra)R(ra), k = 0, l, N —
1 (13.6-22)

where bk(m) is the coefficient vector of size N x 1. This vector is selected to minimize

the MSE

E
[|
sk(m) - sk(m )

|

2

]
= E

[|
sk(m) - b%(m)R(m )

|

2

]
(13.6-23)

where the expectation is taken with respect to the signal and noise statistics. By applying

the orthogonality principle, the optimum coefficient vector is obtained as

bk(m) = [G(m)GH (ra) + <j
2
In]

1

gk(m), k = 0, l, N —
1 (13.6-24)
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where

E [R(m)RH(m
)]
= G(m)GH(m) + a 21N

E [R(m)s”(m)\ = gk(m )

(13.6-25)

and G(m) is related to the channel impulse response matrix H(m) through the DFT
relation (see Problem 13.16)

G(m ) = WHH(m)W (13.6-26)

where W is the orthonormal (IDFT) transformation matrix. The vector gk(m) is the kth

column of the matrix G(m), and a 1
is the variance of the additive noise component.

It is easily shown that the minimum MSE for the signal on the fcth subcarrier may be

expressed as

E
[|
sk(m) - sk(m)

|

2

]
= 1 - gk (m)(G(m)G

H
(m) + o 2

1N)~
x

gk(m) (13.6-27)

We observe that the optimum weight vectors {bk(m)} require knowledge of the

channel impulse response. In practice, the channel response may be estimated by pe-

riodically transmitting pilot signals on each of the subcarriers and by employing a

decision-directed method when data are transmitted on the N subcarriers. In a slowly

fading channel, the coefficient vectors {bk(m)} may also be adjusted recursively by

employing either an LMS- or an RLS-type algorithm, as previously described in the

context of equalization for suppression of ISI.

13.7

BIBLIOGRAPHICAL NOTES AND REFERENCES

In this chapter, we have considered a number of topics concerned with digital commu-
nications over a fading multipath channel. We began with a statistical characterization

of the channel and then described the ramifications of the channel characteristics on

the design of digital signals and on their performance. We observed that the reliability

of the communication system is enhanced by the use of diversity transmission and

reception. We also considered the transmission of digital information through time-

dispersive channels and described the RAKE demodulator, which is the matched filter

for the channel. Finally, we considered the use of OFDM for mobile communications

and on the performance of an OFDM system, described the effect of ICI caused by

Doppler frequency spreading.

The pionerring work on the characterization of fading multipath channels and

on signal and receiver design for reliable digital communciations over such channels

was done by Price (1954, 1956). This work was followed by additional significant

contributions from Price and Green (1958, 1960), Kailath (1960, 1961), and Green

(1962). Diversity transmission and diversity combining techniques under a variety of

channel conditions have been considered in the papers by Pierce (1958), Brennan

(1959), Turin (1961, 1962), Pierce and Stein (1960), Barrow (1963), Bello and Nelin

(1962a, b, 1963), Price (1962a, b), and Lindsey (1964).
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Our treatment of digital communications over fading channels focused primarily

on the Rayleigh fading channel model. For the most part, this is due to the wide ac-

ceptance of this model for describing the fading effects on many radio channels and to

its mathematical tractability. Although other statistical models, such as the Ricean fad-

ing model or the Nakagami fading model may be more appropriate for characterizing

fading on some real channels, the general approach in the design of reliable commu-
nications presented in this chapter carries over. Alouini and Goldsmith (1998), Simon
and Alouini (1988, 2000), and Annamalai et al. (1998, 1999) have presented a unified

approach to evaluating the error rate performance of digital communication systems

for various fading channel models. The effect of ICI in OFDM for mobile commu-
nications has been extensively treated in the literature, e.g., the papers by Robertson

and Kaiser (1999), Li and Kavehrad (1999), Ciavaccini and Vitetta (2000), Li and

Cimini (2001), Stamoulis et al. (2002), and Wang et al. (2006). A general treatment

of wireless communications is given in the books by Rappaport (1996) and Stuber

(2000).

PROBLEMS

13.1 The scattering function S(r; X) for a fading multipath channel is nonzero for the range

of values 0 < r < 1 ms and —0.1 Hz < X < 0.1 Hz. Assume that the scattering function

is approximately uniform in the two variables.

a. Give numerical values for the following parameters:

(i) The multipath spread of the channel.

(ii) The Doppler spread of the channel.

(iii) The coherence time of the channel.

(iv) The coherence bandwidth of the channel.

(v) The spread factor of the channel.

b. Explain the meaning of the following, taking into consideration the answers given

in (a):

(i) The channel is frequency-nonselective.

(ii) The channel is slowly fading.

(iii) The channel is frequency-selective.

c. Suppose that we have a frequency allocation (bandwidth) of 10 kHz and we wish to

transmit at a rate of 100 bits over this channel. Design a binary communication system

with frequency diversity. In particular, specify

(i) The type of modulation.

(ii) The number of subchannels.

(iii) The frequency separation between adjacent carriers.

(iv) The signaling interval used in your design.

Justify your choice of parameters.

13.2 Consider a binary communication system for transmitting a binary sequence over a fading

channel. The modulation is orthogonal FSK with third-order frequency diversity (

L

= 3).

The demodulator consists of matched filters followed by square-law detectors. Assume
that the FSK carriers fade independently and identically according to a Rayleigh envelope
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distribution. The additive noises on the diversity signals are zero-mean Gaussian with

autocorrelation functions E[zl(t)zic(t + r)] = 2No8(z). The noise processes are mutually

statistically independent.

a. The transmitted signal may be viewed as binary FSK with square-law detection,

generated by a repetition code of the form

1 — ci = [1 1 1], 0^c0 = [0 0 0]

Determine the error rate performance Pbh for a hard-decision decoder following the

square-law-detected signals.

b. Evaluate Pbh for y c = 100 and 1000.

c. Evaluate the error rate Pbs for y c = 100 and 1000 if the decoder employs soft-decision

decoding.

d. Consider the generalization of the result in (a). If a repetition code of block length

L (L odd) is used, determine the error probability Pbh of the hard-decision decoder

and compare that with Pbs ,
the error rate of the soft-decision decoder. Assume y 1.

13.3 Suppose that the binary signal ±si (t ) is transmitted over a fading channel and the received

signal is

n(t) = ±asi(t) + z(t), 0 < t < T

where z(t) is zero-mean white Gaussian noise with autocorrelation function

RZz(t )
= 2N08(t)

The energy in the transmitted signal is S = \
|s/(r)

|

2
dt. The channel gain a is specified

by the probability density function

p(a) = 0.18(a) + 0.98(a- 2)

a . Determine the average probability of error Pb for the demodulator that employs a filter

matched to sft).

b. What value does Pb approach as S/No approaches infinity?

c. Suppose that the same signal is transmitted on two statistically independently fading

channels with gains a\ and <22 ,
where

p(ak) = 0.1<$(<2fc) + 0.9<$(<2fc
— 2), k = 1,2

The noises on the two channels are statistically independent and identically distributed.

The demodulator employs a matched filter for each channel and simply adds the two

filter outputs to form the decision variable. Determine the average Pb .

d. For the case in (c) what value does Pb approach as S/No approaches infinity?

13.4 A multipath fading channel has a multipath spread of Tm = Is and a Doppler spread

Bd = 0.01 Hz. The total channel bandwidth at bandpass available for signal transmission

is W = 5 Hz. To reduce the effects of intersymbol interference, the signal designer selects

a pulse duration T = 10 s.

a. Determine the coherence bandwidth and the coherence time.

b. Is the channel frequency selective? Explain.

c. Is the channel fading slowly or rapidly? Explain.

d. Suppose that the channel is used to transmit binary data via (antipodal) coherently

detected PSK in a frequency diversity mode. Explain how you would use the available
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channel bandwidth to obtain frequency diversity and determine how much diversity

is available.

e. For the case in (d), what is the approximate SNR required per diversity to achieve an

error probability of 10
-6

?

/. Suppose that a wideband signal is used for transmission and a RAKE-type receiver is

used for demodulation. How many taps would you use in the RAKE receiver?

g. Explain whether or not the RAKE receiver can be implemented as a coherent receiver

with maximal ratio combining.

h. If binary orthogonal signals are used for the wideband signal with square-law post-

detection combining in the RAKE receiver, what is the approximate SNR required to

achieve an error probability of 10
-6

? (Assume that all taps have the same SNR.)

13.5 In the binary communication system shown in Figure P13.5, z \ (0 and zi(t) are statistically

independent white Gaussian noise processes with zero-mean and identical autocorrelation

functions Rzz (r) = 2Ao<$(r). The sampled values U\ and t/2 represent the real parts of

the matched filter outputs. For example, if si(t) is transmitted, then we have

Ui=2£ + N\

U2 = Ni+ N2

where 8 is the transmitted signal energy and

Nk = Re s*(t)zk(t)dt ,
k = 1,2

It is apparent that U\ and U2 are correlated Gaussian variables while N\ and N2 are

independent Gaussian variables. Thus,

P(ni) =
1

exp
(\/27r<7 ^ 2o 1

P{ni) =
1

exp
(

{ n 2

Vino
1

to

1
q to

1

where the variance of Nk is cr
2 = 28No.

a . Show that the joint probability density function for U\ and U2 is

p(u i, u 2 ) = 2^g 2
exP

|

_ ~2 \(Ul ~
2 ~ M2(Wl — 28) + \u\\

|

FIGURE P13.5
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if s(t) is transmitted and

p(u\, u2 ) = exp ^~~2 \(Ul + ~ U2 ^Ul + + ^ 2 ]

if —5(0 is transmitted.

b. Based on the likelihood ratio, show that the optimum combination of U

\

and U2 results

in the decision variable

u = u x
+pu2

where is a constant. What is the optimum value of /3?

c. Suppose that s(t) is transmitted. What is the probability density function of U1
d. What is the probability of error assuming that s(t) was transmitted? Express your

answer as a function for the SNR S/No.

e. What is the loss in performance if only U = U1 is the decision variable?

13.6 Consider the model for a binary communication system with diversity as shown in Fig-

ure P13. 6. The channels have fixed attenuations and phase shifts. The {zk(t)} are complex-

valued white Gaussian noise processes with zero-mean and autocorrelation functions

Ra (t) = E [zl(t)zk (t + r)] = 2N0k S(r)

(Note that the spectral densities {A^} are all different.) Also, the noise processes

are mutually statistically independent. The {/^} are complex-valued weighting factors to

be determined. The decision variable from the combiner is

a. Determine the PDF p(u) when +1 is transmitted.

b. Determine the probability of error Pb as a function of the weights {fa}-

c. Determine the values of {fik} that minimize Pb.

*i(0

FIGURE P13.6

13.7 Determine the probability oferror for binary orthogonal signaling with Lth-order diversity

over a Rayleigh fading channel. The PDFs of the two decision variables are given by

Equations 13.4-31 and 13.4-32.
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13.8

A binary sequence is transmitted via binary antipodal signaling over a Rayleigh fading

channel with Lth-order diversity. When si(t) is transmitted, the received equivalent low-

pass signals are

n(t) = ake
J 't‘t st {t) 4- Zk(t), k= 1,2 , ...,L

The fading among the L subchannels is statistically independent. The additive noise

terms {Zk(t)} are zero-mean, statistically independent, and identically distributed white

Gaussian noise processes with autocorrelation function Rzz (r) = 2No8(r). Each of the

L signals is passed through a filter matched to si(t) and the output is phase-corrected to

yield

Uk = Re e ~j<t>k rk (t)s*(t)dt k = 1,2, ...,L

The [Uk } are combined by a linear combiner to form the decision variable

L

k=

1

a. Determine the PDF of U conditional on fixed values for the [ak ).

b. Determine the expression for the probability of error when the {ak } are statistically

independent and identically distributed Rayleigh random variables.

13.9

The Chernov bound for the probability oferror for binaryFSK with diversity L in Rayleigh

fading was shown to be

P2(L) < [4p(l - p)f

< 2-ybsifc)

l + Y c
]

L

(2 + Yc)
2

.

where

g(Yc) = — l°g2
y c

(2 + y cr
4(1 +7c).

a. Plot g(y c ) and determine its approximate maximum value and the value of y c where

the maximum occurs.

b. For a given y b ,
determine the optimal order of diversity.

c. Compare P2 (L), under the condition that g(y c ) is maximized (optimal diversity), with

the error probability for binary FSK and AWGN with no fading, which is

P2 = ig-)'b!2

and determine the penalty in SNR due to fading and noncoherent (square-law) com-

bining.

13.10

A DS spread spectrum system is used to resolve the multipath signal components in a

two-path radio signal propagation scenario. If the path length of the secondary path is

300 m longer than that of the direct path, determine the minimum chip rate necessary to

resolve the multipath components.
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13.11 A baseband digital communication system employs the signals shown in Figure P13. 1 1(a)

for the transmission of two equiprobable messages. It is assumed that the communication

problem studied here is a “one-shot” communication problem; that is, the above messages

are transmitted just once and no transmission takes place afterward. The channel has no

attenuation {a = 1), and the noise is AWGN with power spectral density \ No.

a. Find an appropriate orthonormal basis for the representation of the signals.

b. In a block diagram, give the precise specifications of the optimum receiver using

matched filters. Label the diagram carefully.

c. Find the error probability of the optimum receiver.

d. Show that the optimum receiver can be implemented by using just one filter (see the

block diagram in Figure PI 3. 1 1(b)). What are the characteristics of the matched filter,

the sampler and decision device?

e. Now assume that the channel is not ideal but has an impulse response of c(t )
=

<5(0 + \ 8(t — \T). Using the same matched filter as in (d), design the optimum

receiver.

/. Assuming that the channel impulse response is c(t) = 8(t) + a8(t — ^
T), where a is

a random variable uniformly distributed on [0, 1], and using the same matched filter

as in (d), design the optimum receiver.

s
x
(t) s2(0

A A

0 \T t 0 \T T t

(a)

AWGN

(b)

FIGURE P13.ll

13.12 A communication system employs dual antenna diversity and binary orthogonal FSK
modulation. The received signals at the two antennas are

r(t) = ot\s(t) + n\(t)

r2 (t) = a2s(t) + n2 (t)

where a\ and a2 are statistically iid Rayleigh random variables, and n\(t) and n2 (t) are

statistically independent, zero-mean and white Gaussian random processes with power-

spectral density
^ No . The two signals are demodulated, squared, and then combined

(summed) prior to detection.

a. Sketch the functional block diagram of the entire receiver, including the demodulator,

the combiner, and the detector.

b. Plot the probability of error for the detector and compare the result with the case of

no diversity.
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13.13

The two equivalent lowpass signals shown in Figure PI 3. 13 are used to transmit a binary

sequence. The equivalent low-pass impulse response of the channel is h(t) = 4S(t) —
2S(t — T). To avoid pulse overlap between successive transmissions, the transmission rate

in bits/s is selected to be R = 1/27\ The transmitted signals are equally probable and

are corrupted by additive zero-mean white Gaussian noise having an equivalent lowpass

representation z(t) with an autocorrelation function

Rzz (r) = E[z*(t)z(t + r)] = 2N08(r)

a . Sketch the two possible equivalent lowpass noise-free received waveforms.

b. Specify the optimum receiver and sketch the equivalent lowpass impulse responses of

all filters used in the optimum receiver. Assume coherent detection of the signals.

A 1 J

0 T "f 0

-A

\T T 't

FIGURE P13.13

13.14 Verify the relation in Equation 13.3-14 by making the change of variable y = a 2
Sb/No

in the Nakagami-ra distribution.

13.15 Consider a digital communication system that uses two transmitting antennas and one

receiving antenna. The two transmitting antennas are sufficiently separated so as to pro-

vide dual spatial diversity in the transmission of the signal. The transmission scheme is

as follows: If s\ and S2 represent a pair of symbols from either a one-dimensional or a

two-dimensional signal constellation, which are to be transmitted by the two antennas,

the signal from the first antenna over two signal intervals is (s \ ,
sj) and from the second

antenna the transmitted signal is fa ,
—s*). The signal received by the single receiving

antenna over the two signal intervals is

n = h\s\ +h2s2 + ni

r2 = h\s% - h 2s

*

T n2

where (h i ,
h 2 ) represent the complex-valued channel path gains, which may be assumed

to be zero-mean, complex Gaussian with unit variance and statistically independent. The

channel path gains (h i ,
h 2 ) are assumed to be constant over the two signal intervals and

known to the receiver. The terms (ni, 722 ) represent additive white Gaussian noise terms

that have zero-mean and variance a 2 and uncorrelated.

a. Show how to recover the transmitted symbols (si, S2 ) from (n, 7
-

2 ) and achieve dual

diversity reception.

b. If the energy in the pair (s \ ,
S2 ) is (£s ,

Ss ) and the modulation is binary PSK, determine

the probability of error.

c. Repeat (b) if the modulation is QPSK.

13.16 In the suppression of ICI in on DFDM system, the received signal vector for the rath

frame may be expressed as

r(ra) = H(m)Ws(m) + n(m)
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where W is the N x N IDFT transformation matrix, s(m) is the N x 1 signal vector, n(m)

is the zero-mean, Gaussian noise vector with iid components, and H(m) is the N x N
channel impulse response matrix, defined as

H(m) = [h
H(0,m)hH(l,m)-- hH(N -

where h(n,m) is the right cyclic shift by n + 1 positions of the zero-padded channel

impulse response vector of dimension N x l.

By expressing the DFT of r(m ) by R(m ), derive the relations in Equations 13.6-24,

13.6-25, and 13.6-27, where G(m) is defined in Equation 13.6-26.

13.17 Prove the result given in Equation 13.6-17.

13.18 Prove the result given in Equation 13.6-18.



Fading Channels II: Capacity and Coding

Tws chapter studies capacity and coding aspects for fading channels. In Chapter 13

the physical sources of the fading phenomenon in communications were discussed, and

different models for fading channels were introduced. In particular, we saw that the

effect of fading can be expressed in terms of the multipath spread of the channel denoted

by Tm and the Doppler spread of the channel denoted by Bj. Equivalently we can use

the coherence bandwidth and the coherence time of the channel denoted by (Af)c and

(At)C9 respectively. If two narrow pulses are separated by less than the coherence time

of the channel, they will experience the same fading effects; and if two frequency tones

are separated by less than the coherence bandwidth, they will be affected by the same

fading effects. If the signal bandwidth is much larger than the coherence bandwidth of

the channel, i.e., ifW (Af)c ,
then we have a frequency-selective channel model; and

if W ^ (A/)c ,
then the channel model is frequency-nonselective or flat in frequency.

In this case all frequency components of the input signal experience the same fading

effects. Similarly if the signal duration is much longer than the channel coherence time,

i.e., T (At)c , the signal will be subject to different fading effects and we have a fast

fading channel; and if T <3C (At)c we have a slowly fading channel, or the channel is

flat in time. Since the bandwidth and the duration of a signal are related through the

approximate relation W ~ l/T, we conclude that if in a channel Tm Bd <3C 1, i.e., if the

channel is underspread, then we can choose a signal bandwidth W such that for this

signal the channel is flat in both time and frequency, t

In dealing with capacity and coding for fading channels, we need to study chan-

nel variations during transmission of a block of signal waveforms transmitted over

the channel. We can distinguish two different possibilities. In one case the character-

istics of the channel change fast enough with respect to the transmission duration of

a block that a single block of information experiences all possible realizations of the

channel frequently. In this case the time averages during the transmission duration of

a single block are equal to the statistical (ensemble) averages over all possible channel

tWe are excluding the spread spectrum systems in which W ~ l/Tc where Tc is the chip interval.

899
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realizations. Another possibility is that the block duration is short and each block ex-

periences only a cross section of channel characteristics. In this model, the channel

remains relatively constant during the transmission of one block, and we can say that

each block experiences a single state of the channel and the following blocks experi-

ence different channel states. The notions of channel capacity in these two cases are

quite different. In the first channel model, since all channel realizations are experienced

during a block, an ergodic channel model is appropriate and ergodic capacity can be

defined as the ensemble average of channel capacity over all possible channel realiza-

tions. In the second channel model, where in each block different channel realizations

are experienced, for each block the capacity will be different. Thus, the capacity can

best be modeled as a random variable. In this case another notion of capacity known
as outage capacity is more appropriate.

Another parameter that affects the capacity of fading channels is whether infor-

mation about the state of the channel is available at the transmitter and/or the receiver.

Availability of state information at the receiver that is usually measured by transmitting

tones over the channel at different frequencies helps the receiver in increasing the chan-

nel capacity since the state of the channel can be interpreted as an auxiliary channel

output. Availability of the state information at the transmitter makes it possible for the

transmitter to design its signal to match the state of the channel through some kind of

precoding. In this case the transmitter can change the level of the transmitted power

according to the channel state, thus preserving transmission of valuable power during

the time the channel is in deep fade and saving it for transmission during periods when
the channel does not highly attenuate the transmitted signal.

Coding for fading channels introduces new challenges and opportunities that are

different from the standard additive white Gaussian noise channels. As we will see in

this chapter, the metrics that determine the performance of coding schemes over fading

channels are different from the standard metrics used to compare the performance of

different coding schemes over additive white Gaussian noise channels. On the other

hand, since coding techniques introduce redundancy through transmission of the parity

check codes, the extra transmissions provide diversity that improves the performance

of coded systems over fading channels.

In this chapter we study the case of single-antenna systems from an information-

theoretic and coding point of view. The study of capacity and coding for multiple-

antenna systems and the design and analysis of space-time codes are done in Chapter 15.

14.1

CAPACITY OF FADING CHANNELS

The capacity of a channel is defined as the supremum of the rates at which reliable com-
munication over the channel is possible. Reliable communication at rate R is possible

if there exists a sequence of codes with rate R for which the average error probability

tends to zero as the block length of the code increases. In other words, at any rate less

than capacity we can find a code whose error probability is less than any specified c > 0.

In Chapter 6 we gave a general expression for the capacity of a discrete memoryless
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channel in the form

C = max I(X; Y) (14.1-1)
p(x)

where the maximum is taken over all channel input probability density functions. For

a power-constrained discrete-time AWGN channel, the capacity can be expressed as

C =M' +
£)

(14.1-2)

where P is the signal power, N is the noise power, and C is the capacity in bits per

transmission, or bits per (real) dimension. For a complex-input complex-output channel

with circular complex Gaussian noise^ with noise variance No, or No/2 per real and

imaginary components, the capacity is given by

C = ,og(l + £) (14.1-3,

bits per complex dimension.

The capacity ofan ideal band-limited, power-limited additive white Gaussian wave-

form channel is given by

C = Wlog
(

1 + —— ) (14.1-4)6
V NoWj

where W denotes the bandwidth, P denotes the signal power, and No/2 is the noise

power spectral density. The capacity C in this case is given in bits per second. For an

infinite-bandwidth channel in which the signal-to-noise ratio P/(NoW) tends to zero,

the capacity is given in Equation 6.5^14 as

P P= ^ 1.44—
In 2 No N0

(14.1-5)

The capacity in bits/sec/Hz (or bits per complex dimension) which determines the

highest achievable spectral bit rate is given by

C = log(l + SNR) (14.1-6)

where SNR denotes the signal-to-noise ratio defined as

SNR = — (14.1-7)
N0W

Note that since W ~ jr, where Ts is the symbol duration, the above expression for

SNR can be written as SNR = ^ where £s indicates energy per symbol. In an

AWGN channel the capacity is achieved by using a Gaussian input probability density

function. At low values of SNR we have

C « -h SNR « 1.44 SNR (14.1-8)

tWe use the notation CN(0, a 2
) to denote a circular complex random variable with variance cr

2
/2 per real

and imaginary parts.
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The notion of capacity for a band-limited additive white Gaussian noise channel

can be extended to a nonideal channel in which the channel frequency response is

denoted by C(/). In this case the channel is described by the input-output relation of

the form

y(£) = x(t) c(t ) + n(t) (14.1-9)

where c(t) denotes the channel impulse response and C(/) = d^”[c(0] is the channel

frequency response. The noise is Gaussian with a power spectral density of Sn (f). It

was shown in Chapter 1 1 that the capacity of this channel is given by

r 1 r i™-(, ,

,,c =iL l08

(
+

s„{f)
-) df

where P(f), the the input power spectral density, is selected such that

(14.1-10)

where x+ is defined by

and K is selected such that

(k Snif) V
V |C(/)lV

( 14 . 1-11 )

= max{0, x} ( 14 . 1-12)

P(f)df = P ( 14 . 1-13)

The water-filling interpretation of this result states that the input power should be

allocated to different frequencies in such a way that more power is transmitted at those

frequencies of which the channel exhibits a higher signal-to-noise ratio and less power

is sent at the frequencies with poor signal-to-noise ratio. A graphical interpretation of

the water-filling process is shown in Figure 14.1-1.

The water-filling argument can be also applied to communication over parallel

channels. IfN parallel discrete-timeAWGN channels have noise powers 1 <i<N
,

and an overall power constraint of P, then the total capacity of the parallel channels is

given by

where P/’s are selected such that

subject to

P,=(K- N,)+

1= 1

= P

( 14 . 1-14)

( 14 . 1-15 )

( 14 . 1-16)

In addition to frequency selectivity which can be treated through water-filling argu-

ments, a fading channel is characterized with time variations in channel characteristics,
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FIGURE 14.1-1

The water-filling interpretation of the channel

capacity.

i.e., time selectivity. Since the capacity is defined in the limiting sense as the block

length of the code tends to infinity, we can always argue that even in a slowly fading

channel the block length can be selected large enough that in any block the channel

experiences all possible states, and hence the time averages over one block are equal to

the statistical averages. However, from a practical point of view, this would introduce

a large delay which is not acceptable in many applications, for instance, speech com-

munication on cellular phones. Therefore, for a delay-constrained system on a slowly

fading channel, the ergodicity assumption is not valid.

A common practice to break the inherent memory in fading channels is to em-

ploy long interleavers that spread a code sequence across a long period of time, thus

making individual symbols experience independent fading. However, employing long

interleavers would also introduce unacceptable delay in many applications. These ob-

servations make it clear that the notion of capacity is more subtle in the study of fading

channels, and depending on the coherence time of the channel and the maximum delay

acceptable in the application under study, different channel models and different no-

tions of channel capacity need to be considered. Since fading channels can be modeled

as channels whose state changes, we first study the capacity of these channels.

14.1-1 Capacity of Finite-State Channels

A finite-state channel is a channel model for a communication environment that varies

with time. We assume that in each transmission interval the state of the channel is

selected independently from a set of possible states according to some probability
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FIGURE 14.1-2

A finite-state channel.

distribution on the space of channel states. The model for a finite-state channel is

shown in Figure 14.1-2.

In this channel model, in each transmission the output y e 3/ depends on the input

x e and the state of the channel s e d?
57

through the conditional PDF p(y \x, s ). The
sets Sf and <3? denote the input, the output, and the state alphabets, respectively,

and are assumed to be discrete sets. The state of the channel is generated independent

of the channel input according to

n

P(s) = Up^ (14.1-17)

i=

1

and the channel is memoryless, i.e,

n

(14.1-18)

i= l

The encoder and the decoder have access to noisy versions of the state denoted by

u g H/ and v e % respectively. Based on an original idea of Shannon (1958), Salehi

(1992), and Caire and Shamai (1999) have shown that the capacity of this channel can

be given as

C = max I(T; Y\V) (14.1-19)
pit)

In this expression the maximization is over p(t), the set of all probability mass functions

on <3F where 3T denotes the set of all vectors of length
|

HI
|

with components from

The cardinality of the set <^is
| ^l 1 ^*, and the set <^"is called the set of input

strategies.

In the study of fading channels, certain cases of this channel model are of partic-

ular interest. The special case where U = S and V is a degenerate random variable

corresponds to the case when complete channel state information (CSI) is available at

the receiver and no channel state information is available at the transmitter. In this case

the capacity reduces to

C = max I{X\ y|S) (14.1-20)
p{x)

where

p(s, x
, y) = p(s)p(x)p(y\x, s) (14.1-21)

Note that since

I(x
; y |S) = PWW’ y

\

s = s) (14.1-22)
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the capacity can be interpreted as the maximum over all input distributions of the

average of the mutual information over all channel states. A second interesting case

occurs when the state information is available at both the transmitter and the receiver.

In this case

C = max /(X; Y\S) = V p(s) max /(X; Y\S = s) (14.1-23)
p(x\s) p(x\s)

where the maximization is on all joint probabilities of the form

P(s, x, y) = p(s)p(x\s)p(y\x, s) (14.1-24)

Clearly since in this case the state information is available at the transmitter, the encoder

can choose the input distributionbased on the knowledge ofthe state. Since for each state

of the channel the input distribution is selected to maximize the mutual information

in that state, the channel capacity is the expected value of the capacities. A third

interesting case occurs when complete channel information is available at the receiver

but the receiver transmits only a deterministic function of it to the transmitter. In this

case v = s and u = g(s), where g(-) denotes a deterministic function. In this case the

capacity is given by [see Caire and Shamai (1999)]

C =V p(u) max /(X; Y\S, U = u) (14.1-25)

u

This case corresponds to when the receiver can estimate the channel state but due to

communication constraints over the feedback channel can transmit only a quantized

version of the state information to the transmitter.

The underlying memoryless assumption in these cases makes these models appro-

priate for a fully interleaved fading channel.

14.2

ERGODIC AND OUTAGE CAPACITY

To study the difference between ergodic and outage capacity, consider the two-state

channel shown in Figure 14.2-1 . In this figure two binary symmetric channels, one with

crossover probability p = 0 and one with crossover probability p = 1/2, are shown.

We consider two different channel models based on this figure.

1. In channel model 1 the input and output switches choose the top channel (BSC 1)

with probability <5 and the bottom channel (BSC 2) with probability 1—5, inde-

pendentlyfor each transmission. In this channel model each symbol is transmitted

independently of the previous symbols, and the state of the channel is also selected

independently for each symbol.

2. In channel model 2 the top and the bottom channels are selected at the beginning of

the transmission with probabilities 5 and 1 — 5, respectively; but once a channel is

selected, it will not change for the entire transmission period.
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FIGURE 14.2-1

A two-state channel.

Digital Communications

From Chapter 6 we know that the capacities of the top and bottom channels are C\ = 1

and C2 = 0 bits per transmission, respectively. To find the capacity of the first channel

model, we note that since in this case for transmission of each symbol the channel

is selected independently over a long block, the channel will experience both BSC
component channels according to their corresponding probabilities. In this case time

and ensemble averages can be interchanged, the notion of ergodic capacity
,
denoted

by C, applies, and the results of the preceding section can be used. The capacity of

this channel model depends on the availability of the state information. We distinguish

three cases for the first channel model.

1. Case 1: No channel state information is available at the transmitter or receiver. In

this case it is easy to verify that the average channel is a binary symmetric channel

with crossover probability of and hence the ergodic capacity is

C = \-Hb (14.2-1)

2. Case 2: Channel state information available at the receiver. Using Equation 14.1-

22, we observe that in this case we maximize the mutual information with a fixed

input distribution. But since regardless of the state of the channel a uniform input

distribution maximizes the mutual information, the ergodic capacity of the channel

is the average of the two capacities, i.e.,

C = «Ci+(l- 8)C2 = 8 (14.2-2)

3. Case 3: Channel state information is available at the transmitter and the receiver.

Here we use Equation 14.1-23 to find the channel capacity. In this case we can

maximize the mutual information individually for each state, and the capacity is the

average of the capacities as given in Equation 14.2-2.

A plot of the two capacities as a function of <5 is given in Figure 14.2-2. Note that

in this particular channel since the capacity achieving input distribution for the two

channels states is the same, the results of cases 2 and 3 are the same. In general the

capacities in these cases are different, as shown in Problem 14.7.

In the second channel model where one of the two channels BSC 1 or BSC 2 is

selected only once and then used for the entire communication situation, the capacity

in the Shannon sense is zero. In fact it is not possible to communicate reliably over this

channel model at any positive rate. The reason is that if we transmit at a rate R > 0 and

channel BSC 2 is selected, the error probability cannot be set arbitrarily small. Since

channel BSC 2 is selected with a probability of 1 — <5 > 0, reliable communication at

any rate R > 0 is impossible. In fact in this case the channel capacity is a binary random

variable which takes values of 1 and 0 with probabilities <5 and 1—5, respectively. This
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FIGURE 14.2-2

The ergodic capacity of channel model 1.

is a case for which ergodic capacity is not applicable and a new notion of capacity

called outage capacity is more appropriate (Ozarow et al. (1994)).

We note that since the channel capacity in this case is a random variable, if we
transmit at a rate R > 0, there is a certain probability that the rate exceeds the capacity

and the channel will be in outage. The probability of this event is called the outage

probability and is given by

PoutW = P [C <R\ = Fc(R-) (14.2-3)

where Fc(c) denotes the CDF of the random variable C and Fc(R~ ) is the limit-from-

left of Fc (c) at point c = R.

For any 0 < € < 1 we can define C0 the €-outage capacity of the channel, as the

highest transmission rate that keeps the outage probability under 6, i.e.,

C€
= max {R : Pout(R) < (} (14.2-4)

In the channel model 2, the 6-outage capacity of the channel is given by

0 for 0 < 6 < 1 — <5

1 for 1 — <5 < 6 < 1

(14.2-5)

14.2-1 The Ergodic Capacity of the Rayleigh Fading Channel

In this section we study the ergodic capacity of the Rayleigh fading channel. The
underlying assumption is that the channel coherence time and the delay restrictions of

the channel are such that perfect interleaving is possible and the discrete-time equivalent
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of the channel can be modeled as a memoryless AWGN channel with independent

Rayleigh channel coefficients. The lowpass discrete-time equivalent of this channel is

described by an input-output relation of the form

yi = Ri*i + n
t (14.2-6)

where x
t
and yt

are the complex input and output of the channel, R
t
is a complex iid

random variable with Rayleigh distributed magnitude and uniform phase, and nf s are

iid random variables drawn according to CM(0, No ). The PDF of the magnitude of R
t

is given by

/ \ J -T e~ 2°1 r > 0 ,iAr>n\
p(r) = (14.2-7)

[0 r < 0

We know from Chapter 2, Equations 2.3^15 and 2.3-27, that R2
is an exponential

random variable with expected value E[R2
]
= la 2

. Therefore, if p — \R
t |

2
,
then from

Equation 2.3-27 we have

< i4 -2-8>

and since the received power is proportional to p, we have

Pr = 2o 2Pt (14.2-9)

where Pt and Pr denote the transmitted and the received power, respectively. In the

following discussion we assume that 2a 2 = 1, thus Pt = Pr = P

.

The extension of

the results to the general case is straightforward.

Depending on the availability of channel state information at the transmitter and

receiver, we study the ergodic channel capacity in three cases.

No Channel State Information In this case the receiver knows neither the magni-

tude nor the phase of the fading coefficients R
t ;
hence no information can be transmitted

on the phase of the input signal. The input-output relation for the channel is given by

y = Rx-\-n (14.2-10)

where R and n are independent circular complex Gaussian random variables drawn

according to CM(0, 2a
2
) and CM(0, No), respectively.

To determine the capacity ofthe channel in this case, we need to derive an expression

for p(y \x) which can be written as

|
n2n nOQ

P(y\x) = — /
p(y\x,r,d)p(r)drdd (14.2-11)

Jo Jo

where p(r) is given by Equation 14.2-7 and

1 \y-reJ°x\ 2

e N0

ttNq
p(y\x,r,9) = (14.2-12)



Chapter Fourteen: Fading Channels II: Capacity and Coding 909

It can be shown (see Problem 14.8) that Equation 14.2-1 1 simplifies to

p(y\x) =
1

7T (N0 + \X\
2
)

6
lyl

2

N0 +|*| 2 (14.2-13)

This relation clearly shows that all the phase information is lost.

It has been shown by Abou-Faycal et al. (2001) that when an input power constraint

is imposed, the capacity achieving input distribution for this case has a discrete iid

amplitude and an irrelevant phase. However, there exists no closed-form expression

for the capacity in this case. Moreover, in the same work it has been shown that for

relatively low average signal-to-noise ratios, when P/No is less than 8 dB, only two

signal levels, one of them at zero, are sufficient to achieve capacity; i.e., in this case

on-off signaling is optimal. As the signal-to-noise ratio decreases, the amplitude of the

nonzero input in the optimal on-off signaling increases, and in the limit for P/No 0

we obtain

C
1 P

In2 iVo
(14.2-14)

By comparing this result with Equation 14.1-8 it is seen that for low signal-to-noise

ratios the capacity is equal to the capacity of an AWGN channel; but at high signal-to-

noise ratios the capacity is much lower than the capacity of an AWGN channel.

Although no closed form for the capacity exists, a parametric expression for the

capacity is derived in Taricco and Elia (1997). The parametric form of the capacity is

given by

P = /xe-Y-^ - 1

C =
(i-y - ix^iix) - 1

In 2
+ iog2 r(/x)

(14.2-15)

where 4>(z) is the digammafunction defined by

r'(z)
nz) = (14.2-16)

1 (z)

and y = — T'(l) ~ 0.5772156 is Euler’s constant.

A plot of capacity in this case is shown in Figure 14.2-3. The capacity ofAWGN
is also given for reference. It is clearly seen that lack of information about the channel

state is particularly harmful at high signal-to-noise ratios.

State Information at the Receiver Since in this case the phase of the fading process

is available at the receiver, the receiver can compensate for this phase; hence without loss

of generality we can assume that fading is modeled by a multiplicative real coefficient

R with Rayleigh distribution whose effect on the power is a multiplicative coefficient p
with exponential PDF. Using Equation 14.1-22, we have to find the expected value of

the mutual information over all possible states. This corresponds to finding the expected

value of

c=io8
(
i+^ (14.2-17)
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FIGURE 14.2-3

The ergodic capacity of a Rayleigh fading channel with no CSI.

in which p has an exponential PDF given by Equation 14.2-8. Since log is a concave

function, we can use Jensen’s inequality (see Problem 6.29) to show that

C = E log

<log(l+E[p]^

= '°g (l + £)

(14.2-18)

This shows that in this case the capacity is upper-bounded by the capacity of an AWGN
channel whose signal-to noise-ratio is equal to the average signal-to-noise ratio of the

Rayleigh fading channel.

To find an expression for the capacity in this case, we note that

= r
Jo

log

=— e~r r
In 2

‘ + *£) r'**

•?)
1 _2_= gSNR r

In 2

(14.2-19)
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where F(a, z) denotes the complementary gamma function, defined by

/

oo

t
a- l

e-‘dt (14.2-20)

Note that F(a, 0) = F (a).

At low SNR values we can use the approximation

,0*(,+ '£)“£2S£' < 14 -2-21 >

and therefore at low signal-to-noise ratios the capacity is given by

— P r°°
C ^ —— / pe~p dp ^ 1.44 SNR (14.2-22)

N0 In 2 Jo

which is equal to the capacity of an AWGN channel at low signal-to-noise ratios. At

high signal-to-noise ratios we have

and the capacity becomes

= log SNR + —— /
(In p)e~p dp

In 2 Jo

= log SNR — 0.8327

(14.2-23)

(14.2-24)

Note that the capacity of an AWGN channel at high signal-to-noise ratios is approxi-

mated by log(SNR); therefore at high signal-to-noise ratios, the ergodic capacity of a

Rayleigh fading channel with channel state information at the receiver lags the capacity

of the AWGN channel by 0.83 bit per complex dimension.

Plots of the capacities of this channel model and the capacity of an AWGN chan-

nel with comparable SNR are given in Figure 14.2^1. Unlike the case where no CSI

is available, in this case the asymptotic difference between the two curves at high

signal-to-noise ratios is roughly 2.5 dB. This compares very favorably with the per-

formance difference of different signaling schemes over Rayleigh fading and AWGN
channels. We recall from Equation 13.3-13 that the error probability ofcommon signal-

ing schemes over Rayleigh fading channels decreases inversely with the signal-to-noise

ratio, whereas on Gaussian channels the error probability is an exponentially decreasing

function of the signal-to-noise ratio. For instance, to achieve an error probability of 1

0

-5

using BPSK, an AWGN channel requires a yt of 9.6 dB and a Rayleigh fading channel

requires 44 dB. This is a huge performance difference. The much lower performance

difference between capacities is highly promising and indicates that coding can provide

considerable gain in fading channels. The required length of the codewords on fading

channels is largely dependent on the dynamics of the fading process and the coherence

time of the channel, whereas in an AWGN channel the AWGN effects are averaged

over a codeword. In a fading channel, in addition to noise effects, fading effects have
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FIGURE 14.2-4

Capacity of Gaussian and Rayleigh fading channel with CSI at the decoder.

to be averaged out over the codeword length. If the channel coherence time is large,

this could require very large codeword lengths and could entail unacceptable delay.

Interleaving is often used to reduce large codeword requirements, but it cannot reduce

the delay in fading channels. Another alternative would be to spread the transmitted

code components in the frequency domain to benefit from the diversity. This approach

is studied in Section 14.7.

State Information Available at Both Sides If the state information is available at

both the transmitter and the receiver, then the result of Equation 14.1-23 can be used.

In this case the transmitter can adjust its power level to the fading level similar to the

water-filling approach in the frequency domain. Water-filling in time can be employed

to allocate the optimal transmitted power as a function of channel state information.

Here p, the channel state, plays the same role as frequency in the standard water-filling

argument, and the capacity is given by

c =[ log (l + p e~p dp (14.2-25)

where P(p) denotes the optimum power allocation as a function of the fading parameter

p. The optimal power allocation is obtained by using water-filling in time, i.e.,

p(p) =
No \Po p)

where as before (x)+ = maxjx. 0}, and po is selected such that

(14.2-26)

(14.2-27)
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Note that from above

p(p) = i)

Hence, Equation 14.2-27 becomes

P > Po

P < Po

P

ivo

(14.2-28)

(14.2-29)

This equation can be simplified as

e-Po P
T (0, po) = — (14.2-30)

Po N0

where T(a, z) is given by Equation 14.2-20. Substituting Pip) in the expression for

capacity results in

e~p log — dp
J Po PO

= (0, po)m2

(14.2-31)

Equations 14.2-30 and 14.2-31 provide a parametric description of the capacity of this

channel model.

It is interesting to compare the capacity of this channel with an AWGN chan-

nel at low and high frequencies. For a very low signal-to-noise ratio, we consider

the case where SNR = 0.1 corresponding to —10 dB. Substituting this value into

Equation 14.2-30 results in po = 1.166. Substituting this value into Equation 14.2-31

yields C = 0.241. Computing the capacity of an AWGN channel at SNR = —10

dB yields C = 0.137. Interestingly, the capacity of the fading channel at low signal-

to-noise ratios in this case exceeds the capacity of a comparable AWGN channel. At

high signal-to-noise ratios, however, the capacity is less than the capacity of an AWGN
channel and is very close to the capacity of a Rayleigh fading channel for which the

state information is available only at the receiver.

A plot of capacity of this channel versus the signal-to-noise ratio is given in Fig-

ure 14.2-5. The capacity of an AWGN channel is also provided for comparison.

Figure 14.2-6 compares the capacities of Rayleigh fading channels under different

availability of state information scenarios with the capacity of the Gaussian channel.

14.2-2 The Outage Capacity of Rayleigh Fading Channels

The outage capacity is considered when due to strict delay restrictions ideal inter-

leaving is impossible and the channel capacity cannot be expressed as the average

of the capacities for all possible channel realizations, as was done in the case of the
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FIGURE 14.2-5

Capacity of Gaussian and Rayleigh fading channel with CSI at both sides.

ergodic capacity. In this case the capacity is a random variable (Ozarow et al. (1994)).

We assume at rates less than capacity ideal coding is employed to make transmission

effectively error-free. With this assumption, errors occur only when the rate exceeds

capacity, i.e., when the channel is in outage.

FIGURE 14.2-6

Capacity of Gaussian and Rayleigh fading channel with different CSI.
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For a Rayleigh fading channel the outage 6-capacity is derived by using Equa-

tions 14.2-3 and 14.2^- as

C€ = max{R : Pout(R) < e}

= max{R : FC(R~) = 6} (14.2-32)

=

where Fc (-) is the CDF of the random variable representing the channel capacity.

For a Rayleigh fading channel with normalized channel gain, we have

C = log (1 + p SNR) (14.2-33)

where p is an exponential random variable with expected value equal to 1 . The outage

probability in this case is given by

which simplifies to

PoutW = P[C < R]

Pom(R) = P P <
2R - 1

SNR

= l-e
2K -l
SNR

(14.2-34)

(14.2-35)

Note that for high signal-to-noise ratios, i.e., for low outage probabilities, this expression

can be approximated by

Pou,(R)
2R - 1

SNR

Solving for R from Equation 14.2-36 results in

R = log [1- SNR In (1 -Pout )]

from which

(14.2-36)

(14.2-37)

Ce = log [1 - SNR In (1 - e)] (14.2-38)

We consider the cases of low and high signal-to-noise ratios separately. For low

SNR values we have

SNR 1

ln2 1-e
(14.2-39)

Since the capacity of an AWGN at low SNR values is ^ SNR, we conclude that the

outage capacity is a fraction of the capacity of an AWGN channel. In fact the capacity

of an AWGN channel is scaled by a factor of In^ . For instance, for e = 0. 1 this

value is equal to 0.105, and the outage capacity of the Rayleigh fading channel is only

one-tenth of the capacity of an AWGN channel with the same power. For very small e,

this factor tends to 6 and we have

Ce ~ eCawgn (14.2-40)
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For high signal-to-noise ratios, the capacity is approximated by

C€ log SNR In
1-6

= log SNR + log In-
1-6

(14.2-41)

The capacity of an AWGN channel at high SNR is log SNR; therefore the outage

capacity of the Rayleigh fading channel is less than the capacity of a comparable

AWGN channel by log ^ln bits per complex dimension. For 6 = 0.1 this is equal

to 3.25 bits per complex dimension. For very small 6 we have In & 6, and the

difference between the capacities is log2 6.

The outage capacity of a Rayleigh fading channel for 6 = 0.1 and 6 = 0.01 and

the capacity of the AWGN channel are shown in Figure 14.2-7.

Effect of Diversity on Outage Capacity

If a communication system over a Rayleigh fading channel employs L-order diversity,

then the random variable p = \R\
2 has a/ 2 PDF with 2L degrees of freedom. In the

special case of L = 1 we have ax 2 random variable with two degrees of freedom

which is an exponential random variable studied so far. For L-order diversity we use

FIGURE 14.2-7

The outage capacity of a Rayleigh fading channel for 6 = 0.1 and 6 = 0.01. The capacity of an

AWGN channel is given for comparison.
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the CDF of a x
2 random variable given by Equation 2.3-24. We obtain

PoutW = P P <
2R - 1

SNR

— I — e

(14.2-42)

Equating Pout(^) to € and solving for R give the 6-outage capacity Ce for a channel

with L-order diversity. The resulting Ce is obtained by solving the equation

= 1

or equivalently

e
2Cg-l
SNR

OO

E i

T\

2Cf - 1

SNR

k

= €

(14.2—43)

(14.2-44)

No closed-form solution for C€ exists for arbitrary L. Plots of Co oi for different diversity

orders as well as the capacity of an AWGN channel are given in Figure 14.2-8. The

noticeable improvement due to diversity is clear from this figure.

FIGURE 14.2-8

The outage capacity of fading channels with different diversity orders.
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14.3

CODING FOR FADING CHANNELS

In Chapter 13 we have demonstrated that diversity techniques are very effective in

overcoming the detrimental effects of fading caused by the time-variant dispersive

characteristics of the channel. Time and/or frequency diversity techniques may be

viewed as a form of repetition (block) coding of the information sequence. From this

point of view, the combining techniques described in Chapter 13 represent soft decision

decoding of the repetition code. Since a repetition code is a trivial form of coding,

we now consider the additional benefits derived from more efficient types of codes. In

particular, we demonstrate that coding provides an efficient means ofobtaining diversity

on a fading channel. The amount of diversity provided by a code is directly related to

its minimum distance.

As explained in Section 13.4, time diversity is obtained by transmitting the signal

components carrying the same information in multiple time intervals mutually separated

by an amount equal to or exceeding the coherence time (At)c of the channel. Similarly,

frequency diversity is obtained by transmitting the signal components carrying the same

information in multiple frequency slots mutually separated by an amount at least equal

to the coherence bandwidth (Af)c of the channel. Thus, the signal components carrying

the same information undergo statistically independent fading.

To extend these notions to a coded information sequence, we simply require that the

signal waveform corresponding to a particular code bit or code symbol fade indepen-

dently of the signal waveform corresponding to any other code bit or code symbol. This

requirement may result in inefficient utilization of the available time-frequency space,

with the existence of large unused portions in this two-dimensional signaling space.

To reduce the inefficiency, a number of codewords may be interleaved in time or in

frequency or both, in such a manner that the waveforms corresponding to the bits or sym-

bols of a given codeword fade independently. Thus, we assume that the time-frequency

signaling space is partitioned into nonoverlapping time-frequency cells. A signal wave-

form corresponding to a code bit or code symbol is transmitted within such a cell.

In addition to the assumption of statistically independent fading of the signal com-

ponents of a given codeword, we assume that the additive noise components corrupting

the received signals are white Gaussian processes that are statistically independent and

identically distributed among the cells in the time-frequency space. Also, we assume

that there is sufficient separation between adjacent cells that intercell interference is

negligible.

An important issue is the modulation technique that is used to transmit the coded

information sequence. If the channel fades slowly enough to allow the establishment

of a phase reference, then PSK or DPSK may be employed. In the case where channel

state information (CSI) is available at the receiver, knowledge of the phase makes co-

herent detection possible. If this is not possible, thenFSK modulation with noncoherent

detection at the receiver is appropriate.

A model of the digital communication system for which the error rate performance

will be evaluated is shown in Figure 14.3-1. The encoder may be binary, nonbinary, or

a concatenation of a nonbinary encoder with a binary encoder. Furthermore, the code
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FIGURE 14.3-1

Model of communications system with modulation/demodulation and encoding/decoding.

generated by the encoder may be a block code a convolutional code, or, in the case of

concatenation, a mixture of a block code and a convolutional code.

To explain the modulation, demodulation, and decoding, consider a linear binary

block code in which k information bits are encoded into a block of n bits. For simplicity

and without loss of generality, let us assume that all n bits of a codeword are transmitted

simultaneously over the channel on multiple frequency/time cells. A codeword Ci having

bits {dj} is mapped into signal waveforms and interleaved in time and/or frequency and

transmitted. The dimensionality of the signal space depends on the modulation system.

For instance, if FSK modulation is employed, each transmitted symbol is a point in

the two-dimensional space, hence the dimensionality of the encoded/modulated signal

is 2n. Since each codeword conveys k bits of information, the bandwidth expansion

factor for FSK is Be = 2n/k.

The demodulator demodulates the signal components transmitted in independently

faded frequency/time cells, providing the sufficient statistics to the decoder which

appropriately combines them for each codeword to form theM — 2k decision variables.

The codeword corresponding to the maximum of the decision variables is selected. If

hard decision decoding is employed, the optimum maximum-likelihood decoder selects

the codeword having the smallest Hamming distance relative to the received codeword.

Although the discussion above assumed the use of a block code, a convolutional

encoder can be easily accommodated in the block diagram shown in Figure 14.3-1. For

this case the maximum-likelihood soft decision decoding criterion for the convolutional

code can be efficiently implemented by means of the Viterbi algorithm. On the other

hand, if hard decision decoding is employed, the Viterbi algorithm is implemented with

Hamming distance as the metric.

14.4

PERFORMANCE OF CODED SYSTEMS IN FADING CHANNELS

In studying the capacity of fading channels in Section 14.2 we noted that the notion of

capacity in fading channels is more involved that the notion of capacity for a standard

memoryless channel. The capacity of a fading channel depends on the dynamics of the
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fading process and how the coherence time of the channels compares with the code

length as well as the availability of channel state information at the transmitter and

the receiver. In this section we study the performance of a coded system on a fading

channel, and we observe that the same factors affect the code performance.

We assume that a coding scheme followed by modulation, or a coded modulation

scheme, is employed for data transmission over the fading channel. Our treatment

at this point is quite general and includes block and convolutional codes as well as

concatenated coding schemes followed by a general signaling (modulation) scheme.

This treatment also includes block or trellis-coded modulation schemes.

We assume that M signal space coded sequences {jci, *2 ,
• • • , *m} are employed

to transmit one of the equiprobable messages 1 < m < M. Each codeword x
t

is a

sequence of n symbols of the form

Xi =(XiuXi2,...,xin ) (14.4-1)

where each x
tj

is a point in the signal constellation. We assume that the signal constel-

lation is two-dimensional, hence x
tf s are complex numbers.

Depending on the dynamics of fading and availability of channel state information,

we can study the effect of fading and derive bounds on the performance of the coding

scheme just described.

14.4-1 Coding for Fully Interleaved Channel Model

In this model we assume a very long interleaver is employed and the codeword com-

ponents are spread over a long interval, much longer than the channel coherence time.

As a result, we can assume that the components of the transmitted codeword undergo

independent fading. The channel output for this model, when x
t
is sent, is given by

yj = RjXij + rij, 1 < j <n (14.4-2)

where the Rj represents the fading effect of the channel and the nj is the noise. In this

model due to the interleaving, Rj’s are independent and nf s are iid samples drawn

according to CM(0, No). The vector input-output relation for this channel is given by

y = Rx + n (14.4-3)

where R is an n x n diagonal matrix

'Ri 0 0 •• • O'

0 Ri 0 ••
• 0

R = diag(/?i, R2 , ..
. ,

R„) = 0 0 R3 •• • 0
(14.4-4)

'• 0

0 0 0 •• • Rn_

and n is a vector with independent n/ s as its components. The Rj’s are in general

complex, denoting the magnitude and the phase of the fading process.
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The maximum-likelihood decoder, having received y ,
uses the rule

m = argmax p(y\xm ) (14.4-5)
1<m<M

to detect the transmitted message m. By the independence of fading and noise compo-

nents we have

n

p(y\xm ) = Y[p(yj\xmj) (14.4-6)

The value of p(yj \

x

mj) depends on the availability of channel state information at the

receiver.

CSIAvailable at the Receiver In this case the output of the channel consists of the

output vector y and the channel state sequence (r \ ,
r2 ,

. .
.

,

rn ) which are realizations of

random variables R\, R2 ,
...

,

or equivalently the realization ofmatrix/?. Therefore,

the maximum-likelihood rule, P[observed|input], becomes

n n

II Ptyj' r
i\
xmj) = Y[p(rj)p(yj\xmj ,

rj) (14.4-7)

1= 1 1= 1

Substituting Equation 14.4-7 into 14.4-5 and dropping the common positive factor

n-=i p(rj ) resuit in

n

m = argmaxT[ p(yj\xmj ,
rj

)

(14.4-8)
1<m<M

No CSI Available at the Receiver In this case the ML rule is

n

m - argmax TT p{yj\xmj) (14.4-9)
1<m<M Jlj

where

p(yj\xmj) = J p(n)p(yj\xmj ,rj) do (14.4-10)

Performance of Fully Interleaved Fading Channels with CSI at the Receivers

A bound on error probability can be obtained by using an approach similar to the one

used in Section 6.8-1. Using Equation 6.8-2, we have

M
Pe|»< mm' \xm sent]

m'=

1

m'^m

M
— ^ ^

Pm->m'
m'= 1

(14.4-11)
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where Pm^m > is the pairwise error probability (PEP), i.e., the probability of error in

a binary communication system consisting of two signals xm and xm > when xm is

transmitted. Here we derive an upper bound on the pairwise error probability by using

the Chernov bounding technique. For other methods of studying the pairwise error

probability, the reader is referred to Biglieri et al. (1995, 1996, 1998a).

A Bound on the Pairwise Error Probability To compute a bound on the PEP, we
note that since in this case CSI is available at the receiver, according to Equation 14.4-8,

the channel conditional probabilities are p(yj \

x

mj ,
rj) and hence

Pm^m' = /P[*.- xm >

|

R = r]p(r)dr (14.4-12)

where

P[*„ = r] = P to
pWx-- r)

> ol
P(y\xm ,r)

= P [Zmm,(r) > 0]

(14.4-13)

and the likelihood ratio Zmm>(r) becomes

Zmm’(r) = In
P(y\Xm',r)

p(y\xm ,r )

1

ivo

1

No

n

^ ^
j(rj)

j=

1

(14.4-14)

with

Zmm'j (/"

j

) — I yj
r
j
Xmj I I yj

r
jXm'

j

I

= lol (l-^/w/l \Xm'

j

I )
+ 2Re rj {xm>j Xmj)]

(14.4-15)

Since we are assuming xm is transmitted, we have y;
= rjxmj + nj. Substituting this

into Equation 14.4-15 and simplifying yield

-Jmm' j (
) — \rj\

I

xmj
xm >

j

|

2Rq rjYij{xmj ^m ,

i/)]

-\rj\
2
d}mm' j

Ni
(14.4-16)

where Nj is a real zero-mean Gaussian random variable with variance 2\rj
\

2d^m,jNo
and dmm'j is the Euclidean distance between the constellation points representing the

j th components of xm and xm >.

Substituting Equation 14.4-16 into Equation 14.4-13 yields

Zmm'(r) — ^ ^ Nj) (14.4-17)
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Using this result, Equation 14.4-13 gives

p[*« \R = r] = P

j=

i

0 *.j\ 2dmm'j + Nj) <0 R = r\ (14.4-18)

Applying the Chernov bounding technique discussed in Section 2.4 gives

i2(\ Rj\
2d2

mm’j+Nj)<0 R = r = E

i

iias

_j=l L J

< min TT E
v<0 -LX

;=

i

v(\Rj\ 2d2 ,.+Nj)
9 \ J 1 mm' j

J J R
j = n

(14.4-19)

where \Rj\ denotes the envelope of the fading process. Substituting this result into

Equation 14.4-12 gives

< min
v<0 n /

1

;= 1

Xi Rj?dL'j+Nj) R
j = n p(rj)dr

j

(14.4-20)

Ricean Fading Here we assume that \Rj\, the envelope of the fading process,

has a Ricean PDF as given by Equation 2.3-56. We can directly apply the result of

Example 2.4-2 in Section 2.4, and in particular Equation 2.4-25, to obtain

n d2
,

.

exp
i 1 l

mm'

j

_2
'=* 1 + ~2Nt

a

d2
,

. ?

4Vo
A

d2
,

.

mm' j

2N0
1 + -w^-cr 2

and finally, from Equation 14.4-1 1 we have

* M M n *

A x—> x—> t r A

M ^ J.X d2
,4KZ .

/ i • i* 1 I
mm'

j

_9m=l m —\ j= 1 A + 2N°

exp

dL'i 2

4W0
A

d2

nii

Tv0
1 + ^a 2

(14.4-21)

(14.4-22)

In Equations 14.4-21 and 14.4-22, a 2 and s are the parameters of the Ricean random

variable determining the envelope of the fading process. The pairwise error probability

can also be expressed in terms of the Rice factor K as (see Equation 2.4-26)

< n
K + 1

Ad2

'=!* + 1 + -4T

exp

AKd2

mm' j

4V0

Ad,
2

,

.

K + 1 + —m±4V0

(14.4-23)
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where A = E [|R
;
-|
2

]
= s

2 + 2a 2
is the fading gain and K = ^ is the Rice factor.

From Equations 14.4-21 and 14.4-23 it is seen that if for one particular codeword

component j we have xmj
— xm>j ,

and hence dmm>j
—

0, the corresponding term in

the product is equal to 1 . Therefore, it is sufficient to consider only those terms in the

product for which xmj ^ xm>j. Let us denote the components j for which xmj
=/= xm>j

by yJmm' >
i*®»

Jmm> — {1 — j — n \ Xmj ^ Xm/j} (14.4-24)

Then

* n
1

j^l + ^O 2

exp

d2
,

. 0mm’ j Z

4V0
a

1 +
(14.4-25)

and in terms of the Rice factor,

n
K + 1

Ad2

j^3mm> K + 1 H

exp

AKd2
..

mm' j

4N0

Ad2
,K + 1 + 4V0

(14.4-26)

For a normalized fading channel which does not change the transmitted energy, we
have E[|R| 2

]
= A = 1, and the pairwise error probability can be bounded by

n
K + i

jejmm > K + 1 +
exp

Kd2

mm' j

4V0

* + * +%
(14.4-27)

Rayleigh Fadingand Gaussian Channels For the special case of a Rayleigh fading

channel, i.e., in the extreme case of s = K = 0, we have

Pn<<
I] (14.4-28)

1 H
2Nl)

^ ”

and for a normalized Rayleigh fading channel for which 2a 2 = 1 in which the received

power is equal to the transmitted power (see Equation 14.2-9) we obtain

• m—

_

n
l

jtJmx
,

d2 /•
1 I mm' j
1 4V0

(14.4-29)

The other extreme of a Ricean channel occurs when K —> oo. In this case

the Ricean channel becomes a Gaussian channel. For this case Equation 14.4-27
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reduces to

(14.4-30)

< e 4Aro (14.4-31)

This is the standard result for a Gaussian channel used in Equation 4.2-72.

High Signal-to-Noise Ratio Approximation At high signal-to-noise ratios when

> K + 1, the bound in Equation 14.4-26 can be approximated as

,< TT (g_
+ l^~K

rm^m' a J_J_ A2
rf

2
(14.4-32)

We define the Hamming distance between xm and xm > as the cardinality of the set

Jmm>\ i.e., the number of components at which x and xm > are different.

*^m') — I '3mm' I
— |{1 — j — ^ • ^mj ^ Xm'j}

The product distance of a code is defined as

(14.4-33)

8
2
(Xm ,Xm’)~ 11 dmm<j

\ s ) j^3mm'

where £s is the average energy per codeword, given by

(14.4-34)

ss = -ys M (14.4-35)

Note that with this definition we have factored the effect of the signal energy and have

defined the product distance for a normalized code, which is similar to the original

code, but has average energy equal to 1. With this definition Equation 14.4-32 can be

written as

f(l + K)e-K
]

dH(x""Xm,)

p < L v
1 ^ J

in >m py . . du(x x /

)

(14.4-36)

where

P / <1 m—

~

(1 + K)e~
dH(xm ,xmi)

(14.4-37)

r , — (h
2
(x. x ,Vl1 mm' — \

u \-*m) ^m' )

)
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is the geometric mean of the Euclidean distances of the unequal components of xm and

xm>. Note that the signal-to-noise ratio is multiplied by Tmm >, which we call the coding

gain of sequences xm and xm > due to its similarity to the Gaussian case.

Using Equation 14.4-37, in Equation 14.4-22, we obtain the following approximate

bound:

Pe
1

M
M M

EE
m=

1

m'=

1

m'^m

(1 + K)e~K

r
1 mm 4V0

dfi (,Xm iXm > )

(14.4-39)

For reasonably high signal-to-noise ratios, the dominating term in Equation 14.4-39 is

the term corresponding to the codewords with the minimum Hamming distance. In this

case we have

Pe g (M ~ 1 )

(1 + K)e~K

r
1 111111 4V0

(14.4-40)

where d^n is the minimum Hamming distance of the code and

(14.4-41)

where denotes the minimum of the product distances of the codeword pairs having

the minimum Hamming distance.

For a Rayleigh fading channel K = 0 and for high signal-to-noise ratios, Equa-

tions 14.4-36, 14.4-37, 14.4-39, and 14.4^10 simplify to

Pm^m> §

, <

l

i 4/Vo /
8^(xm 5 *^m')

-i dH {xm ,xm ')

mm 4N0 J

M M
p, < —y v

m—

1

m'=

1

m'^m

1

r ,-tLL.
1 mm' * >vr

Pe < (M — 1)

4V0

1 ^min

dH (xm ,xm f)

Pmin
£ s

4V0 J

(14.4-42)

(14.4-43)

(14.4-44)

(14.4-45)

Note that in Equations 14.4-40 and 144^-5 we have been rather conservative to

use the factor (M — 1). This is with the assumption that all codewords are at minimum
distance from the transmitted codeword and certainly results in an upper bound on the

error probability. A more realistic bound would be obtained if (Af — 1) were substituted

by the (average) number of codewords at distance dmin, i.e., the multiplicity of the code

denoted by N^.
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Diversity Through Coding Since the product distance is defined for a unit-energy

constellation, its effect is independent of the signal-to-noise ratio. Its effect on the per-

formance of the coded system is to increase the signal-to-noise ratio, or shift the perfor-

mance plots by rmm, the coding gain. A very important role is played by the minimum
Hamming distance of the code. Comparing Equations 14.4^2 to 14.4^5 with the per-

formance of diversity systems derived in Chapter 13, we note that in coded systems the

error probability is proportional to (SNR)~dimn and in a system with L-order diversity

the performance is propositional to (SNR)“L
. We conclude that the effect of coding

is similar to the effect of an L-order diversity with L = Jmin . In other words, a code

with minimum distance of dmin provides diversity of order d^. This should be clear

by noting that a diversity system is equivalent to transmitting a signal L times, and this

is similar to using a repetition code of length L for which dm[n = L. Coding, however,

can provide greater flexibility in choice of the diversity order and can provide coding

gain as well. In the context of coding for fading channels, the parameter dmin of a code

is usually called the diversity order or the effective length of the code.

From the above discussion it is clear that the factors affecting the performance of a

coded system on a Rayleigh fading channel are quite different from the factors affecting

the performance on Gaussian channels. On a Gaussian channel the performance of a

coded system is mainly determined by the minimum Euclidean distance of the code. In

other words, as long as the Euclidean distance between two codewords is large, it does

not matter how this distance is distributed among the code components. In a Rayleigh

fading channel, two parameters of the code contribute to its performance. The minimum
distance of the code determines the diversity order of the coded system and therefore

determines the slope of the error probability plots of the coded system. This is the most

important factor determining the code performance particularly at high signal-to-noise

ratios. A second factor that affects the performance is the product distance of the code

whose impact on the performance of the coded system is felt through the coding gain

Train - This effect is an additive effect on the performance plots and results in a horizontal

shift in performance curves. Since rmin is the geometric mean of the Euclidean distances

of the codeword components over nonequal components, and the geometric mean of

positive numbers with a constant sum is maximized when the numbers are equal, we
conclude that a good performing code over a Rayleigh fading channel must have all

the components different to provide the highest diversity and must have the overall

Euclidean distance equally distributed among the codeword components to achieve the

highest possible coding gain.

Signal Space Diversity To describe the effect of diversity order of a coded system

in a Rayleigh fading channel and see the difference in performance between Rayleigh

fading and Gaussian channels, consider the two signal sets given in Figure 14.4-1.

The signal constellation (a) is a standard QPSK constellation, and (b) is a rotated

version of it. If coding affects only the quadrature component of the transmitted signal,

the constellation gets contracted in the vertical direction. Under these conditions the

constellation points move to the location denoted by the empty circles. If the fading

is quite deep, it is possible that the two constellation points with the same real part

collapse into the same point, thus causing considerable error probability. It is clear that

under these conditions the constellation shown in Figure 14.4-1 (b) performs better than
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(a) (b)

FIGURE 14.4-1

The effect of Hamming distance on the performance of a coded system over fading channels.

[From Boutros and Viterbo (1998), copyright IEEE.}

n the constellation of Figure 14.4-l(a). Note that the two constellations have the same

Euclidean distance between signal points, and hence their performance over Gaussian

channels is similar. The reason for better performance of constellation (b) is that it has

higher Hamming distance and hence provides higher diversity. The diversity order for

constellation (a) is 1, whereas the diversity order for constellation (b) is 2. This type of

diversity which is a direct result of the choice of the points in the signal space is called

signal space diversity. Note that in moving from constellation (a) to constellation (b) no

redundancy is introduced, and therefore the spectral efficiency of the communication

system has not been compromised. The better performance of signal space diversity

is achieved by a simple rotation of the constellation. It has been shown by Boutros

and Viterbo (1998) that this simple rotation can improve the performance of a QPSK
signaling scheme over a Rayleigh fading channel by 8 dB at error probability of 10

-3
.

Signal space diversity through rotation of a Gaussian constellation can be applied

to signal constellations carved from a lattice. Using this technique results in a system

with improved performance on fading channels at no bandwidth or power cost. The

only drawback of these systems is increased detection complexity when compared with

the unrotated lattice. Details on signal space diversity can be found in Boutros et al.

(1996) and Boutros and Viterbo (1998).

Performance of Fully Interleaved Fading Channels with No CSI

Derivation of the pairwise error probability in this case is more involved. The details

for an MPSK constellation can be found in Divsalar and Simon (1988a) and Jamali and

Le-Ngoc (1994). The result for Ricean fading is given by

min TT ^' 2

-— [ [l -2^rX(e)Q(V2X(0))i
v>®

, CV n Jo L

J mm'

m—>m' <
,A

2
(0)

where

dO
j

(14.4^16)

m = 2N0 \

Xml
-Xm'j I

v^T+I
VZcos(6>) (14.4-47)
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At high signal-to-noise ratios and moderate to low values of K
,
this expression can

be further simplified and can be written in the following form

P / <1 m—>-ra' _ (K + l)e
-

K

1e

dH 2-ij . I*» X /

F

rmm > SNR

dH

(14.4-48)

where dH — dH(xm ,
xm>) is the Hamming distance between xm and xm> and xm =

-j=xm and xm r = —j=xm>. The signal-to-noise ratio is defined as SNR =
jf~.

For the
“V t's 'V

special case of a Rayleigh fading channel for which K = 0, this bound becomes

dH S/<= 'T • I
X™ X”

SNR

dH

(14.4-49)

14.5

TRELLIS-CODED MODULATION FOR FADING CHANNELS

Our discussion in Section 14.4 shows that in design of good codes for fading channels it

is important to consider code parameters that are different from the parameters consid-

ered for code design on Gaussian channels. We recall that for code design on Gaussian

channels, when soft decision decoding is employed, two parameters determine the

performance of the code. These parameters are

1. The minimum Euclidean distance of the code. This is the dominating factor that

determines the performance of the code, particularly at high signal-to-noise ratios.

2. The multiplicity of the code, i.e., the number of codewords that are at low Euclidean

distance, and particularly at minimum Euclidean distance, from a given codeword.

This parameter is particularly important at low signal-to-noise ratios. Turbo codes

are examples of codes with low multiplicity that contributes to their excellent per-

formance at low SNRs.

For fading channels the code parameters with highest impact on code performance are

1. The code diversity order or effective length
,
given by the minimum Hamming dis-

tance of the code. This determines the slope of the error probability plot and is

particularly the determining factor at high signal-to-noise ratios.

2. The product distance of the code as defined by Equation 14.4-34 which determines

the coding gain defined by Equations 14.4-38 and 14.4-41. This parameter results in

a shift in the error probability plot of the code and has the same effect at all signal-to-

noise ratios. It is interesting to note that the effect of increasing the product distance

on the coding gain is more pronounced at lower diversity orders. This is due to the

effect of the j— exponent in Equation 14.4-41. For instance, doubling the product

distance in a code with diversity order of 2 increases the coding gain by 1.5 dB,

whereas in a code with diversity order of 4, the same increase in the product distance

improves the coding gain by 0.75 dB.
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3. The multiplicity of the code A^mm, i.e., the total number of codewords at minimum
diversity order and product distance. This factor affects the performance of the code

at low signal-to-noise ratios.

14.5-1 TCM Systems for Fading Channels

Trellis-coded modulation was described in Section 8.12 as a means for achieving a

coding gain on bandwidth-constrained channels, where we wish to transmit at a bit

rate-to-bandwidth ratio R/W > 1. For such channels, the digital communication sys-

tem is designed to use bandwidth-efficient multilevel or multiphase modulation (PAM,
PSK, DPSK, or QAM), which allows us to achieve an R/W > 1. When coding is

applied in signal design for a bandwidth-constrained channel, a coding gain is desired

without expanding the signal bandwidth. This goal can be achieved, as described in

Section 8. 12, by increasing the number of signal points in the constellation over the cor-

responding uncoded system, to compensate for the redundancy introduced by the code,

and designing the trellis code so that the Euclidean distance in a sequence of transmitted

symbols corresponding to paths that merge at any node in the trellis is larger than the

Euclidean distance per symbol in an uncoded system. In contrast, traditional coding

schemes used on fading channels in conjunction with FSK or PSK modulation expand

the bandwidth of the modulated signal for the purpose of achieving signal diversity.

In designing trellis-coded signal waveforms for fading channels, we may use the

same basic principles that we have learned and applied in the design of conventional

coding schemes. In particular, the most important objective in any coded signal design

for fading channels is to achieve as large a diversity order as possible.

As indicated above, the candidate modulation methods that achieve high bandwidth

efficiency areM-ary PSK, DPSK, QAM, and PAM. The choice depends to a large extent

on the channel characteristics. If there are rapid amplitude variations in the received

signal, QAM and PAM may be particularly vulnerable, because a wideband automatic

gain control (AGC) must be used to compensate for the channel variations. In such a

case, PSK or DPSK is more suitable, since the information is conveyed by the signal

phase and not by the signal amplitude. DPSK provides the additional benefit that carrier

phase coherence is required only over two successive symbols. However, there is an

SNR degradation in DPSK relative to PSK.

The discussion and the design criteria provided in Section 14.5 show that a good

TCM code for the Gaussian channel is not necessarily a good code for the fading

channel. It is quite possible that a trellis code has a large Euclidean distance but has

a low effective code length or product distance. In particular some of the good codes

designed by Ungerboeck for the Gaussian channel (Ungerboeck (1983)) have parallel

branches in their trellises. The existence of parallel branches in TCM codes is due to

the existence of uncoded bits, as explained in Chapter 8. Obviously, two paths in the

trellis that are similar on all branches but correspond to different branches on a parallel

branch have a minimum distance of 1 and provide a diversity order of unity. Such codes

are not desirable for transmission over fading channels due to their low diversity order

and should be avoided. This is not, however, a problem with the Gaussian channel, and

in fact many good TCM schemes that work satisfactorily on Gaussian channels have

parallel branches in their trellis representation.
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To design TCM schemes with high diversity order, we have to make sure that the

paths in the trellis corresponding to different code sequences have long runs of different

branches, and the branches are labeled by different symbols from the code constellation.

In order for two code sequences to have a diversity order of L, the corresponding paths

in the code trellis must remerge at least L branches after diverging, and the two paths

on these L branches must have different labels. This clearly indicates that for L > 1

parallel transitions have to be excluded.

Let us consider an (n ,
k

,
K) convolutional code as shown in Figure 8.1-1. The

number of memory elements in this code is Kk, the number of states in the trellis

representing this code is 2k(̂K~ l

\ and 2k branches enter and leave each state of the

trellis. Without loss of generality we consider the all-zero path and a path diverging

from it. The diverging path from the all-zero path corresponds to an input of k bits

that contains at least one 1. Since the number of memory elements of the code is Kk
,

it takes K sequences of k-bit inputs, all equal to zero, to move the 1 (or Is) out of

the kK memory units, thus bringing back the code to the all-zero state and remerging

the path with the all-zero path. This shows that the two paths that have emerged from

one state can remerge after at least K branches, and hence this code can potentially

provide a diversity order of K. Therefore, the diversity order that a convolutional code

can provide is equal to K, the constraint length of the convolutional code. To employ

this potential diversity order, we need to have enough points in the signal constellation

to assign different signal points to different branches of the trellis.

Let us consider the following trellis code studied by Wilson and Leung (1987). The

trellis diagram and the constellation for this TCM scheme are shown in Figure 14.5-1

As seen in the figure, the trellis corresponding to this code is a fully connected trellis,

and there are no parallel branches on it, i.e., each branch of the trellis corresponds to

a single point in the constellation. The diversity order for this trellis is 2; therefore

the error probability is inversely proportional to the square of the signal-to-noise-ratio.

The product distance provided by this code is 1.172. It can be easily verified that the

squared free Euclidean distance for this code is = 2.586; therefore the coding

FIGURE 14.5-1

A TCM scheme for fading channels.
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gain of the TCM scheme in Figure 14.5-1
,
when used for transmission over an AWGN

channel, is 1.1 dB which is 1.9 dB inferior to the coding gain of the Ungerboeck code

of comparable complexity given in Section 8.12.

In Schlegel and Costello (1989) a class of 8-PSK rate 2/3 TCM codes for various

constraint lengths is introduced. The search for good codes in this work is done among
all codes that can be designed by employing a systematic convolutional code followed by

mapping to the 8-PSK signal constellation. It turns out that the advantage of this design

procedure is more noticeable at higher constraint lengths. In particular, this design

approach results in the same codes obtained by Ungerboeck (1983) when the constraint

length is small. At high constraint lengths these codes are capable of providing both

higher diversity orders and higher product distances compared to the codes designed

by Ungerboeck. For example, for a trellis with 1024 states, these codes can provide a

diversity order of 5 and a (normalized) product distance of 128. For comparison, the

Ungerboeck code with the same complexity can provide a diversity order of 4 and a

product distance of 32.

In Du and Vucetic (1990), Gray coding is employed in the mapping from a convo-

lutional code output to the signal constellation. An exhaustive search is performed on

8-PSKTCM schemes, and it is shown that, particularly at lower constraint lengths, these

codes have a better performance compared to those designed in Schlegel and Costello

(1989). As the number of states increases, the performance of the codes designed in

Schlegel and Costello (1989) is better. As an example for a 32-state trellis code, the

approach of Du and Vucetic (1990) results in a diversity order of 3 and a normalized

product distance of 32, whereas the corresponding figures for the code designed in

Schlegel and Costello (1989) are 3 and 16, respectively.

In Jamali and Le-Ngoc (1991), not only is the design problem ofgood 4-state 8-PSK
trellis codes addressed, but also general design rules are formulated for the Rayleigh

fading channel. These design principles can be viewed as the generalization of the

design rules formulated in Ungerboeck (1983) for the Gaussian channel. Application

of these rules results in improved performance. As an example, by applying these rules

one obtains the signal constellation and the trellis shown in Figure 14.5-2.

FIGURE 14.5-2

The improved TCM scheme.
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It is easy to verify that the coding gain of this code over an AWGN channel (as

expressed by the free Euclidean distance) is 2 dB, which is 0.9 dB superior to the code

designed in Wilson and Leung (1987) and shown in Figure 14.5-1, and only 1 dB
inferior to the Ungerboeck code with a comparable complexity. It is also easy to see

that the product distance of this code is twice the product distance of the code shown

in Figure 14.5-1, and therefore the performance of this code over a fading channel is

superior to the performance of the code designed in Wilson and Leung (1987). Since

the squared product distance of this code can be shown to be twice the squared product

distance of the code shown in Figure 14.5-1
,
the asymptotic performance improvement

of this code compared to the one designed in Wilson and Leung (1987), when used

over fading channels, is 10 log \fl = 1 .5 dB. The encoder for this code can be realized

by a convolutional encoder followed by a natural mapping to the 8-PSK signal set.

14.5-2 Multiple Trellis-Coded Modulation (MTCM)

We have seen that the performance of trellis code modulation schemes on fading chan-

nels is primarily determined by their diversity order and product distance. In particular,

we saw that trellises with parallel branches are to be avoided in transmission over fading

channels due to their low (unity) diversity order. In cases where high bit rates are to

be transmitted under severe bandwidth restrictions, the signal constellation consists of

many signal points. In such cases, to avoid parallel paths in the code trellis, the number

of trellis states should be very large, resulting in a very complex decoding scheme.

An innovative approach to avoid parallel branches and at the same time to avoid

a very large number of states is to employ multiple trellis-coded modulation (MTCM)
as first formulated in Divsalar and Simon (1988c). The block diagram for a multiple

trellis-coded modulation is shown in Figure 14.5-3.

In the multiple trellis-coded modulation depicted in Figure 14.5-3, at each in-

stance of time K = km information bits enter the trellis encoder and are mapped into

N = nm bits, which correspond to m signals from a signal constellation with a total of

2n signal points, and these m signals are transmitted over the channel. The important

fact is that, unlike the standard TCM, here each branch of the trellis is labeled with m
signals from the constellation and not only one signal. The existence of more than one

mn bits m signals

FIGURE 14.5-3

Block diagram of a multiple trellis-coded modulation scheme.
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signal corresponding to each trellis branch results in higher diversity order and therefore

improved performance when used over fading channels. In fact, MTCM schemes can

have a relatively small number of states and at the same time avoid a reduced diversity

order. The throughput (or spectral bit rate, defined as the ratio of the bit rate to the

bandwidth) for this system is k
,
which is equivalent to an uncoded (and a conventional

TCM) system. In most implementations of MTCM, the value of n is selected to be

k + 1 . Note that with this choice, the case m = 1 is equivalent to conventional TCM.
The rate of the MTCM code is R = K/N = k/n.

In the following example we give a specific TCM scheme and discuss its perfor-

mance in a fading environment. The signal constellation and the trellis for this example

are shown in Figure 14.5^1. For this code we assume m = 2, k = 2, and n — 3.

Therefore, the rate of this code is 2/3, and the trellis selected for the code is a two-state

trellis. At each instant of time K — km = 4 information bits enter the encoder. This

means that there are 2^ = 16 branches leaving each state of the trellis. Due to the

symmetry in the structure of the trellis, there exist eight parallel branches connecting

any two states of the trellis. The difference, however, with conventional trellis-coded

modulation is that here we assign two signals in the signal space to each branch of the

trellis. In fact, corresponding to the K =4 information bits that enter the encoder,

N = nm = 6 binary symbols leave the encoder. These six binary symbols are used to

select two signals from the 8-PSK constellation shown in Figure 14.5^1 (each signal

FIGURE 14.5-4

An example of multiple trellis-coded modulation.
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requires three binary symbols). The mappings of the branches to the binary symbols

are also shown in Figure 14.5-4. Close examination of the mappings suggested in this

figure shows that although there exist parallel branches in the trellis for this code, the

diversity order provided by this code is equal to 2.

It is seen from the above example that multiple trellis-coded modulation can achieve

good diversity, which is essential for transmission through the fading channel, without

requiring complex trellises with a large number of states. It can also be shown (see

Divsalar and Simon (1988c)), that this same technique can provide all the benefits of

using the asymmetric signal sets
,
as described in Divsalar et al. (1987), without the dif-

ficulties encountered with time jitter and catastrophic trellis codes. Optimum set parti-

tioning rules for multiple trellis-coded modulation schemes are investigated in Divsalar

and Simon (1988b) (see also Biglieri et al. (1991)). It is important to note that the signal

set assignments to the trellis branches shown in Figure 14.5-4 are not the best possible

signal assignments if this code is to be used over an AWGN channel. In fact, the signal

set assignment shown in Figure 14.5-5 provides a performance 1 .3 1 5 dB superior to the

signal set assignment of Figure 14.5^1 when used over an AWGN channel. However,

obviously the signal assignment of Figure 14.5-5 can only provide a diversity order

equal to unity as opposed to the diversity order of 2 provided by the signal assignment of

Figure 14.5-4. This means that on fading channels the performance of the code shown

in Figure 14.5^1 is superior to the performance of the code shown in Figure 14.5-5.

FIGURE 14.5-5

Signal assignment for an MTCM scheme appropriate for transmission over an AWGN channel.
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14.6

BIT-INTERLEAVED CODED MODULATION

In Section 8.12 we have seen that a coded modulation system in which coding and

modulation are jointly designed as a single entity provides good coding gain over

Gaussian channels with no expansion in bandwidth. These codes employ labeling by

set partitioning on the code trellis rather than common labeling techniques such as

Gray labeling, and these codes achieve their good performance over Gaussian channels

by providing large Euclidian distance between trellis paths corresponding to differ-

ent coded sequences. On the other hand, a code has good performance on a fading

channel if it can provide high diversity order, which depends on the minimum Ham-
ming distance of the code, as was seen in Section 14.4-1. For a code to have good

performance under both channel models, it has to provide high Euclidean and high

Hamming distances. We have previously seen in Chapter 7 that for BPSK and BFSK
modulation schemes the relation between Euclidean and Hamming distances is a simple

relation given by Equations 7.2-15 and 7.2-17, respectively. These equations indicate

that for these modulation schemes Euclidean and Hamming distances are optimized

simultaneously.

For coded modulation where expanded signal sets are employed, the relation be-

tween Euclidean and Hamming distances is not as simple as the corresponding relations

for BPSK and BFSK. In fact, in many coded modulation schemes, where the perfor-

mance is optimized through labeling the trellis branches by set partitioning using the

Ungerboeck’s rules (Ungerboeck (1983)), optimal Euclidean distance, and hence opti-

mal performance on the AWGN channels model, is achieved with TCM schemes that

have parallel branches and thus have a Hamming distance, and consequently diversity

order, equal to unity. These codes obviously cannot perform well on fading channels.

In Section 14.5 we gave examples of coded modulation schemes designed for fading

channels that achieve good diversity gain on these channels. The underlying assumption

in designing these codes was that similar to Ungerboeck’s coded modulation approach,

the modulation and coding have to be considered as a single entity, and the symbols

have to be interleaved by a symbol interleaver of depth usually many times the coher-

ence time of the channel to guarantee maximum diversity. Using symbol interleavers

results in the diversity order of the code being equal to the minimum number of distinct

symbols between the codewords; and as we have seen in Section 14.5-1, this can be

done by eliminating parallel transitions and increasing the constraint length of the code.

However, there is no guarantee that the codes using this approach perform well when
transmitted over an AWGN channel model. In this section we introduce a coded mod-

ulation scheme, called bit-interleaved coded modulation (BICM), that achieves robust

performance under both fading and AWGN channel models.

Bit-interleaved coded modulation was first introduced by Zehavi (1992), who in-

troduced a bit interleaver instead of a symbol interleaver at the output of the channel

encoder and before the modulator. The idea of introducing a bit interleaver is to make
the diversity order of the code equal to the minimum number of distinct bits (rather

than channel symbols) by which two trellis paths differ. Using this scheme results in a

new soft decision decoding metric for optimal decoding that is different from the metric
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used in standard coded modulation. A consequence of this approach is that coding and

modulation can be done separately. Separate coding and modulation results in a system

that is not optimal in terms of achieving the highest minimum Euclidean distance, and

therefore the resulting code is not optimal when used on an AWGN channel. However,

the diversity order provided by these codes is generally higher than the diversity order

of codes obtained by set partitioned labeling and thus provides improved performance

over fading channels. A block diagram of a standard TCM system and a bit-interleaved

coded modulation system are shown in Figure 14.6-1. In both systems a rate 2/3 convo-

lutional code with an 8-PSK constellation is employed. In the TCM system, the symbol

outputs of the encoder are interleaved and then modulated using the 8-PSK constellation

and transmitted over the fading channel, in which p and n denote the fading and noise

processes. In the BICM system, instead of the symbol interleaver we are using three

independent bit interleavers that individually interleave the three bit streams. In both

systems deinterleavers (at symbol and bit level, respectively) are used at the receiver

to undo the effect of interleaving. Note that the fading process (CSI) is available at the

receiver in both systems.

Bit-interleaved coded modulation was extensively studied in Caire et al. (1998).

This comprehensive study generalized the system introduced by Zehavi (1992), which

used multiple bit interleavers at the output of the encoder, and instead used a single bit

FIGURE 14.6-1

A TCM system (left) and a BICM system (right). [From Zehavi (1992) copyright IEEE.]
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FIGURE 14.6-2

The BICM system studied in Caire et al. (1998). [From Caire et al. (1998) copyright IEEE.]

interleaver that operates on the entire encoder output. The block diagram of the system

studied in Caire et al. (1998) is shown in Figure 14.6-2.

The encoder output is applied to to an interleaver denoted by n. The output of the

interleaver is modulated by the modulator consisting of a label map pi followed by a

signal set X. The channel model is a state channel with state s which is assumed to

be a stationary, finite-memory vector channel whose input and output symbols x and

y are N -tuples of complex numbers. The state s is independent of the channel input x,

and conditioned on s, the channel is memoryless, i.e.,

N

p(y\x,s) = (14.6-1)

1=1

The state sequence s is assumed to be a stationary finite-memory random process;

i.e., there exists some integer v > 0 such that for all integers r and s and all integers

v < k\ < k2 < • • • < kr and j\ < ji < • • • < js < 0, the sequences (s^ , . .
.

,

Sk
,

)

and

(s
;i ,

,Sj
s )

are independent. The integer v represents the maximum memory length

of the state process. The output of the channel enters the demodulator that computes

the branch metrics which after deinterleaving are supplied to the decoder for final

decision.

Both coded modulation and BICM systems can be described as special cases of

the block diagram of Figure 14.6-2. A coded modulation system results when the

encoder is defined over the label alphabet A and A and X c CN have the same

cardinality, i.e., when
\

A\ = \X\ = M. The labeling map pi : A — X acts on symbol

interleaved encoder outputs individually. For Ungerboeck codes the encoder is a rate

k/n convolutional code, and A is the set of binary sequences of length n. The labeling

function pi is obtained through applying the set partitioning rules to X.

In BICM, a binary code is employed and its output is bit-interleaved. After inter-

leaving the bit sequence is broken into subsequences of length n
,
and each is mapped

onto a constellation X c of size
|

X\ = M = 2n using a mapping pi : {0, 1}" -> X.

Let x e X and let i
l

(x) denote the zth bit of the label x\ obviously l
l

(x) e {0, 1}.

We define

X l

b = {x G X : l\x) = b

}

(14.6-2)

where X l

b
denotes the set of all points in the constellation whose label is equal to

b G {0, 1} at position i . It can be easily seen that if P [b = 0] = P [b = 1] = 1/2, then

Piy\l\x) — b,s) = 2-("- 1
) p(y\x, s)

X€Xl

(14.6-3)
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The computation of the bit metrics at the demodulator depends on the availability

of the channel state information. If CSI is available at the receiver, then the bit metric

for the ith bit of the symbol at time k is given by the log-likelihood

X(yk,b) = log p(yk\x,s) (14.6-4)

XSX‘

and for the case with no CSI we have

V(yk, b) = log p(yk\x) (14.6-5)

XEXj,

where b E {0, 1} and 1 < i < n. In the bit metric calculation for the no CSI case, we
have

P(yk\x) = j
p(yk \x,s)p(s)ds (14.6-6)

Finally, the decoder uses the ML bit metrics to decode the codeword c e C according

to

N

c = arg maxV X' (yk ,
ck ) (14.6-7)

ceC

which can be implemented using the Viterbi algorithm.

A simpler version of bit metrics can be found using the approximation

lQg£ at ~ max log a,i (14.6-8)

i

which is similar to Equation 8.8-33. With this approximation we have the approximate

bit metric

i\yk,b)

"max log p(y k \x,s)

<

X^x l

b

max log p(yk\x)
K xeXb

CSI available

no CSI
(14.6-9)

It turns out that BICM performs better when it is used with Gray labeling as

opposed to labeling induced by the set partitioning rules. The Gray and set partitioning

labeling for 16-QAM constellation is shown in Figure 14.6-3. Gray labeling is possible

for certain constellations. For instance, Gray labeling is not possible for a 32-QAM
constellation. In such cases a quasi-Gray labeling achieves good performance.

The channel model for BICM, when ideal interleaving is employed, is a set of n

independent memoryless parallel channels with binary inputs that are connected via a

random switch to the encoder output. Each channel corresponds to one particular bit

position from the total n bits. The capacity and the cutoff rate for this channel model

under the assumption of full CSI at the receiver and no CSI are computed in Caire et al.

(1998). Figure 14.6-4 shows the cutoff rate for different BICM systems for different

QAM signaling schemes over AWGN and Rayleigh fading channels.
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(a)

FIGURE 14.6-3

Set partitioning labeling (a) and Gray labeling (b) for

16-QAM signaling. [From Caire et al (1998), copyright

IEEE.]

• • • •

1110 1010 0010 0110

• • • •

mi 1011 0011 0111

• • • •

1101 1001 0001 0101

• • • •

1100 1000 0000 0100

(b)

Comparison of these figures shows that for the AWGN channel the performance of

coded modulation is superior to the performance of BICM at all signal-to-noise ratios.

The performance difference is particularly large for larger constellations and lower-rate

codes. For the Rayleigh fading channel BICM outperforms coded modulation at all rates

above 1 bit per dimension. The difference in performance is particularly noticeable for

larger constellations and higher rates. Similar results can be obtained for orthogonal

signals and noncoherent detection.

Table 14.6-1 summarizes the performance parameters of various TCM and BICM
schemes with comparable complexity. It is seen that using BICM generally improves

the Hamming distance and results in higher diversity order. At the same time BICM
marginally reduces the Euclidean distance, resulting in performance deterioration on

AWGN channels. This indicates that BICM is a good candidate for channels with

variations in the channel model. For instance, Ricean fading channels with varying

Rice factor operate somewhere between Rayleigh fading and Gaussian channels. For

these channels BICM is an attractive coding scheme displaying robustness to changes

in channel characteristics.

For more details on BICM, the interested reader is referred to Caire et al. (1998),

Ormeci et al. (2001), Martinez et al. (2006), and Li and Ritcey (1997, 1998, 1999).
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SNR (dB)

FIGURE 14.6-4

Cutoff rate plots of coded modulation (CM) and BICM for Gray (or quasi-Gray) labeling over

AWGN (top) and Rayleigh fading channel (bottom). [From Caire etal. (1998), copyright

IEEE.]



942 Digital Communications

TABLE 14.6-1

Upper Bounds to Minimum Euclidean Distance

and Diversity Order for TCM and BICM for

16-QAM Signaling. Average Energy is

Normalized to 1 and Transmission Rate is 3 Bits

per Complex Dimension.

Encoder

memory

BICM TCM

4 di(c) 4 ^M(C)

2 1.2 3 2 1

3 1.6 4 2.4 2

4 1.6 4 2.8 2

5 2.4 6 3.2 2

6 2.4 6 3.6 3

7 3.2 8 3.6 3

8 3.2 8 4 3

Source: From Caire etal. (1998), copyright IEEE

14.7

CODING IN THE FREQUENCY DOMAIN

Instead of bitwise or symbolwise interleaving in the time domain to increase diversity

of a coded system and improve the performance over a fading channel, we can achieve

similar diversity order by spreading the transmitted signal components in the frequency

domain. A candidate modulation scheme for this case is FSK which can be demodulated

noncoherently when tracking the channel phase is not possible.

A model for this communication scheme is shown in Figure 14.3-1 where each

bit {cij} is mapped into FSK signal waveforms in the following way. If Qy = 0, the

tone foj is transmitted; and if c,*y =s 1, the tone f\j is transmitted. This means that 2n

tones or cells are available to transmit the n bits of the codeword, but only n tones are

transmitted in any signaling interval.

The demodulator for the received signal separates the signal into 2n spectral com-

ponents corresponding to the available tone frequencies at the transmitter. Thus, the

demodulator can be realized as a bank of 2n filters, where each filter is matched to

one of the possible transmitted tones. The outputs of the 2n filters are detected nonco-

herently. Since the Rayleigh fading and the additive white Gaussian noises in the 2n

frequency cells are mutually statistically independent and identically distributed ran-

dom processes, the optimum maximum-likelihood soft decision decoding criterion

requires that these filter responses be square-law-detected and appropriately com-

bined for each codeword to form the M — 2k decision variables. The codeword

corresponding to the maximum of the decision variables is selected. If hard deci-

sion decoding is employed, the optimum maximum-likelihood decoder selects the

codeword having the smallest Hamming distance relative to the received codeword.

Either a block or a convolutional code can be employed as the underlying code in this

system.
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14.7-1 Probability of Error for Soft Decision Decoding
of Linear Binary Block Codes

Consider the decoding of a linear binary (n, k) code transmitted over a Rayleigh fad-

ing channel, as described above. The optimum soft-decision decoder, based on the

maximum-likelihood criterion, forms the M = 2k decision variables.

n

u
> =E [

(1 - c
'v) l yoj \

2 + cij\yij\
2

}

(14.7-1)

=E 0 y°j\
2 + c‘j( i yv i

2 -
1 ^ii

2
)] .

* = i. 2 , .... 2*

i=i

where
| yrj |

2
, j = 1, 2, . .

.

,

n, and r — 0, 1 represent the squared envelopes at the

outputs of the In filters that are tuned to the In possible transmitted tones. A decision

is made in favor of the code word corresponding to the largest decision variable of the

set {£/;}.

Our objective in this section is the determination of the error rate performance of

the soft-decision decoder. Toward this end, let us assume that the all-zero code word C\

is transmitted. The average received signal-to-noise ratio per tone (cell) is denoted by

yc . The total received SNR for the n tones in nyc and, hence, the average SNR per bit is

n yr
Yb = r Yc = ^~ (14.7-2)

k Rc

where Rc is the code rate.

The decision variable U\ corresponding to the code word c\ is given by

Equation 14.7-1 with c
tj
= 0 for all j. The probability that a decision is made in

favor of the mth code word is just

P2(m) = P(Um > Ux )
= P{U\ -Um < 0)

= p E^Ci >
- c»7)( i yij I

2 -
1 yoj i

2

)
< 0

1=1 (14.7-3)

= p E(i?oii
2
-i?ui

2

)
<0

_1
=1 '

where wm is the weight of the mth code word. But the probability in Equation 14.7-3

is just the probability of error for square-law combining of binary orthogonal FSK with

wmth-order diversity. That is,

(14.7-4)

(14.7-5)



944 Digital Communications

where

1 _ 1

2 + yc 2 + Rc Yb

(14.7-6)

As an alternative, we may use the Chernov upper bound derived in Section 13.4, which

in the present notation is

Pi(m) < [4/7(1 - p)]
Wm

(14.7-7)

The sum of the binary error events over the M — 1 nonzero-weight code words

gives an upper bound on the probability of error. Thus,

M

Pe<Y. ^2(m) (14.7-8)

m=

2

Since the minimum distance of the linear code is equal to the minimum weight, it

follows that

(2 + RcYbrWm < (2 + RcYb)~
dm"

The use of this relation is conjunction with Equations 14.7-5 and 14.7-8 yields a simple,

albeit looser, upper bound that may be expressed in the form

A /2wb -1\

wm )
p <

(2 + Rc Yb)
dma

(14.7-9)

This simple bound indicates that the code provides an effective order of diversity equal

to dmjn . An even simpler bound is the union bound

Pe < (M — l)[4p(l - p)]
d™ (14.7-10)

which is obtained from the Chernov bound given in Equation 14.7-7.

As an example serving to illustrate the benefits of coding for a Rayleigh fading

channel, we have plotted in Figure 14.7-1 the performance obtained with the extended

Golay (24,12) code and the performance of binary FSK and quaternary FSK each with

dual diversity. Since the extended Golay code requires a total of 48 cells and k = 12,

the bandwidth expansion factor Be = 4. This is also the bandwidth expansion factor

for binary and quaternary FSK with L = 2. Thus, the three types of waveforms are

compared on the basis of the same bandwidth expansion factor. Note that at P&
= 10

-4
,

the Golay code outperforms quaternary FSK by more than 6 dB, and at P\, — 10
-5

,
the

difference is approximately 10 dB.

The reason for the superior performanc of the Golay code is its large minimum
distance (d^n = 8), which translates into an equivalent eighth-order (L = 8) diversity.

In contrast, the binary and quaternary FSK signals have only second-order diversity.

Hence, the code makes more efficient use of the available channel bandwidth. The price

that we must pay for the superior performance of the code is the increase in decoding

complexity.
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FIGURE 14.7-1

Example of performance obtained with

conventional diversity versus coding for

Be
= 4.

14.7-2 Probability of Error for Hard-Decision Decoding
of Linear Block Codes

Bounds on the performance obtained with hard-decision decoding of a linear binary

(,n ,
k) code have already been given in Section 7.5-2. These bounds are applicable to

a general binary-input, binary-output memoryless (binary symmetric) channel, and,

hence, they apply without modification to a Rayleigh fading AWGN channel with

statistically independent fading of the symbols in the code word. The probability of a

bit error needed to evaluate these bounds when binary FSK with noncoherent detection

is used as the modulation and demodulation technique is given by Equation 14.7-6.

A particularly interesting result is obtained when we use the Chernov upper bound

on the error probability for hard-decision decoding given by

Pi(m) < [4/7(1 - p)]
w'"/2 (14.7-11)

and Pe is upper-bounded by Equation 14.7-8. In comparison, the Chernov upper bound

for P2(m) when soft-decision decoding is employed is given by Equation 14.7-7. We
observe that the effect of hard-decision decoding is a reduction in the distance between

any two code words by a factor of 2. When the minimum distance of a code is relatively

small, the reduction of the distances by a factor of 2 is much more noticeable in a fading

channel than in a nonfading channel.

For illustrative purposes we have plotted in Figure 14.7-2 the performance of the

Golay (23, 12) code when hard-decision and soft-decision decoding are used. The

difference in performance at Pt,
= 10

-5
is approximately 6 dB. This is a significant
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difference in performance compared with the 2-dB difference between soft- and hard-

decision decoding in a nonfading AWGN channel. We also note that the difference

in performance increases as P& decreases. In short, these results indicate the ben-

efits of soft-decision decoding over hard-decision decoding on a Rayleigh fading

channel.

14.7-3 Upper Bounds on the Performance of Convolutional

Codes for a Rayleigh Fading Channel

In this subsection, we derive the performance of binary convolutional codes when used

on a Rayleigh fading AWGN channel. The encoder accepts k binary digits at a time and

puts out n binary digits at a time. Thus, the code rate is Rc = k/n. The binary digits at

the output of the encoder are transmitted over the Rayleigh fading channel by means of

binary FSK, which is square-law-detected at the receiver. The decoder for either soft-

or hard-decision decoding performs maximum-likelihood sequence estimation, which

is efficiently implemented by means of the Viterbi algorithm.

First, we consider soft-decision decoding. In this case, the metrics computed in the

Viterbi algorithm are simply sums of square-law-detected outputs from the demodula-

tor. Suppose the all-zero sequence is transmitted. Following the procedure outlined in

Section 8.2-2, it is easily shown that the probability of error in a pairwise comparison

of the metric corresponding to the all-zero sequence with the metric corresponding to
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another sequence that merges for the first time at the all-zero state is

d-

1

P2(d) = p
d

J2{
d

J

+
*')(!-/>)*

k=

o

(14.7-12)

where d is the number of bit positions in which the two sequences differ and p is

given by Equation 14.7-6. That is, P2W) is just the probability of error for binary

FSK with square-law detection and dth-order diversity. Alternatively, we may use the

Chernov bound in Equation 14.7-7 for P2W). In any case, the bit error probability is

upper-bounded, as shown in Section 8.2-2 by the expression

1
00

Pb<- Y. P“P2(d) (14.7-13)
K
d=dfKt

where the weighting coefficients {/3</} in the summation are obtained from the expansion

of the first derivative of the transfer function T(Y, Z), given by Equation 8.2-12.

When hard-decision decoding is performed at the receiver, the bounds on the error

rate performance for binary convolutional codes derived in Section 8.2-2 apply. That

is, Pb is again upper-bounded by the expression in Equation 14.7-13, where P2W is

defined by Equation 8.2-16 for odd d and by Equation 8.2-17 for even d
,
or upper-

bounded (Chernov bound) by Equation 8.2-15, and p is defined by Equation 14.7-6.

As in the case of block coding, when the respective Chernov bounds are used for

P2(d) with hard-decision and soft-decision decoding, it is interesting to note that the

effect of hard-decision decoding is to reduce the distances (diversity) by a factor of

2 relative to soft-decision decoding.

The following numerical results illustrate the error rate performance of binary,

rate 1 jn, maximal free distance convolutional codes for n = 2, 3, and 4 with soft-

decision Viterbi decoding. First of all, Figure 14.7-3 shows the performance of the rate

1/2 convolutional codes for constraint lengths 3, 4, and 5. The bandwidth expansion

factor for binary FSK modulation is Be = 2n. Since an increase in the constraint

length results in an increase in the complexity of the decoder to go along with the

corresponding increase in the minimum free distance, the system designer can weight

these two factors in the selection of the code.

Another way to increase the distance without increasing the constraint length of

the code is to repeat each output bit m times. This is equivalent to reducing the code

rate by a factor of m or expanding the bandwidth by the same factor. The result is

a convolutional code that has a minimum free distance of mdfree ,
where Jfree is the

minimum free distance of the original code without repetitions. Such a code is almost

as good, from the viewpoint of minimum distance, as a maximum free distance, rate

1/mn code. The error rate performance with repetitions is upper-bounded by

I
00

Pb<jJ2^ P^md^ (14.7-14)
k

<hree

where P2(md) is given by Equation 14.7-12. Figure 14.7^- illustrates the performance

of the rate 1 /2 codes with repetitions (m = 1, 2, 3, 4) for constraint length 5.
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FIGURE 14.7-3

Performance of rate 1 /2 binary

convolutional codes with soft-decision

decoding.

FIGURE 14.7-4

Performance of rate l/2m, constraint

length 5, binary convolutional codes with

soft-decision decoding.

SNR per bit, yb (dB)
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14.7-4 Use of Constant-Weight Codes and Concatenated Codes
for a Fading Channel

Our treatment of coding for a Rayleigh channel to this point was based on the use of

binary FSK as the modulation technique for transmitting each of the binary digits in a

code word. For this modulation technique, all the 2k code words in the (,n ,
k) code have

identical transmitted energy. Furthermore, under the condition that the fading on the n

transmitted tones is mutually statistically independent and identically distributed, the

average received signal energy for the M = 2k possible code words is also identical.

Consequently, in a soft-decision decoder, the decision is made in favor of the code word

having the largest decision variable.

The condition that the received code words have identical average SNR has an

important ramification in the implementation of the receiver. If the received code words

do not have identical average SNR, the receiver must provide bias compensation for

each received code word so as to render it equal energy. In general, the determination

of the appropriate bias terms is difficult to implement because it requires the estimation

of the average received signal power; hence, the equal-energy condition on the received

code words considerably simplifies the receiver processing.

There is an alternative modulation method for generating equal-energy waveforms

from code words when the code is constant-weight, i.e., when every code word has

the same number of Is. Note that such a code is non-linear. Nevertheless, suppose we
assign a single tone or cell to each bit position of the 2k code words. Thus, an (n ,

k)

binary block code has n tones assigned. Waveforms are constructed by transmitting the

tone corresponding to a particular bit in a code word if that bit is a 1 ;
otherwise, that

tone is not transmitted for the duration of the interval. This modulation technique for

transmitting the coded bits is called on-off keying (OOK). Since the code is constant-

weight, say, w
,
every coded waveform consists of w transmitted tones that depend on

the positions of the Is in each of the code words.

As in FSK, all tones in the OOK signal that are transmitted over the channel are

assumed to fade independently across the frequency band and in time from one code

word to another. The received signal envelope for each tone is described statistically

by the Rayleigh distribution. Statistically independent additive white Gaussian noise is

assumed to be present in each frequency cell.

The receiver employs maximum-likelihood (soft-decision) decoding to map the

received waveform into one of theM possible transmitted code words. For this purpose,

n matched filters are employed, each matched to one of the n frequency tones. For the

assumed statistical independence of the signal fading for the n frequency cells and

additive white Gaussian noise, the envelopes of the matched filter outputs are squared

and combined to form the M decision variables

n

U, = C
‘J \yj?’ i = 1.2..... 2

k
(14.7-15)

j= 1

where \yj\
2 corresponds to the squared envelope of the filter corresponding to the j th

frequency, where j = 1, 2, . .
. ,

n.
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It may appear that the constant-weight condition severely restricts our choice

of codes. This is not the case, however. To illustrate this point, we briefly describe

some methods for constructing constant-weight codes. This discussion is by no means

exhaustive.

Method 1: Non-linear transformation ofa linear code In general, if in each word
of an arbitrary binary code we substitute one binary sequence for every occurrence

of a 0 and another sequence for each 1, a constant-weight binary block code will be

obtained if the two substitution sequences are of equal weights and lengths. If the

length of the sequence is v and the original code is an (n, k) code, then the resulting

constant-weight code will be an (vn, k) code. The weight will be n times the weight of

the substitution sequence, and the minimum distance will be the minimum distances

of the original code times the distances between the two substitution sequences. Thus,

the use of complementary sequences when v is even results in a code with minimum
distance vd^ and weight \vn.

The simplest form of this method is the case v = 2, in which every 0 is replaced

by the pair 01 and every 1 is replaced by the complementary sequence 10 (or vice

versa). As an example, we take as the initial code the (24,12) extended Golay code.

The parameters of the original and the resultant constant-weight code are given in

Table 14.7-1.

Note that this substitution process can be viewed as a separate encoding. This

secondary encoding clearly does not alter the information content of a code word

—

it merely changes the form in which it is transmitted. Since the new code word is

composed of pairs of bits—one “on” and one “off”—the use of OOK transmission of

this code word produces a waveform that is identical to that obtained by binary FSK
modulation for the underlying linear code.

Method 2: Expurgation In this method, we start with an arbitrary binary block

code and select from it a subset consisting of all words of a certain weight. Several

different constant-weight codes can be obtained from one initial code by varying the

choice of the weight w. Since the code words of the resulting expurgated code can

be viewed as a subset of all possible permutations of any one code word in the set,

the term binary expurgated permutation modulation (BEXPERM) has been used by

Gaarder (197 1) to describe such a code. In fact, the constant-weight binary block codes

constructed by the other methods may also be viewed asBEXPERM codes. This method

TABLE 14.7-1

Example of Constant-Weight Code Formed by Method 1

Code parameters Original Golay Constant-weight

n 24 48

k 12 12

M 4096 4096

dmm 8 16

W Variable 24
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TABLE 14.7-2

Examples of Constant-Weight Codes Formed by Expurgation

Parameters Original Constant weight no. 1 Constant weight no. 2

n 24 24 24

k 12 9 11

M 4096 759 2576

^min 8 >8 >8
W Variable 8 12

of generating constant-weight codes is in a sense opposite to the first method in that

the word length n is held constant and the code size M is changed. The minimum
distance for the constant-weight subset will clearly be no less than that of the original

code. As an example, we consider the Golay (24, 12) code and form the two different

constant-weight codes shown in Table 14.7-2.

Method 3: Hadamard matrices This method might appear to form a constant-

weight binary block code directly, but it actually is a special case of the method

of expurgation. In this method, a Hadamard matrix is formed as described in Sec-

tion 7.3-5, and a constant-weight code is created by selection of rows (code words)

from this matrix. Recall that a Hadamard matrix is an n x n matrix (n even integer)

of Is and Os with the property that any row differs from any other row in exactly \n

positions. One row of the matrix is normally chosen as being all Os.

In each of the other rows, half of the elements are Os and the other half Is. A
Hadamard code of size 2(n — 1) code words is obtained by selecting these n — 1 rows

and their complements. By selecting M = 2k < 2(n — 1) of these code words, we
obtain a Hadamard code, which we denote by H(n, k), where each code word conveys

k information bits. The resulting code has constant weight \n and minimum distance

^min — 2^*

Since n frequency cells are used to transmit k information bits, the bandwidth

expansion factor for the Hadamard H(n, k) code is defined as

n
Be = — cells per information bit

K

which is simply the reciprocal of the code rate. Also, the average SNR per bit, denoted

by yb, is related to the average SNR per cell, yc , by the expression

k k 2Yb
Yc = —Yb = 2-yb = 2Rch = (14.7-16)

\n n Be

Let us compare the performance of the constant-weight Hadamard codes under

a fixed bandwidth constraint with a conventional M-ary orthogonal set of waveforms

where each waveform has diversity L. The M orthogonal waveforms with diversity are

equivalent to a block orthogonal code having a block length n = LM and k = log2 M.
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For example, ifM = 4 and L = 2, the code words of the block orthogonal code are

Cl = [i 1 0 0 0 0 0 0]

Cl = [0 0 1 1 0 0 0 0]

C3 = [0 0 0 0 1 1 0 0]

C4 = [0 0 0 0 0 0 1 1]

To transmit these code words using OOK modulation requires n = 8 cells, and since

each code word conveys k = 2 bits of information, the bandwidth expansion factor

Be = 4. In general, we denote the block orthogonal code as O(n, k). The bandwidth

expansion factor is

n
B

k

LM
k

Also, the SNR per bit is related to the SNR per cell by the expression

(14.7-17)

(14.7-18)

Now we turn our attention to the performance characteristics of these codes. First,

the exact probability of a code word (symbol) error for M-ary orthogonal signaling

over a Rayleigh fading channel with diversity was given in closed form in Section 13.4.

As previously indicated, this expression is rather cumbersome to evaluate, especially

if either L or M or both are large. Instead, we shall use a union bound that is very

convenient. That is, for a set ofM orthogonal waveforms, the probability of a symbol

error can be upper-bounded as

Pe <(M- 1)P2 (L)

= (2
k - 1)P2(L) < 2kP2(L)

(14.7-19)

where Pi(L ), the probability of error for two orthogonal waveforms, each with diversity

L, is given by Equation 14.7-12 with p = 1/(2 + yc )- The probability of bit error is

obtained by multiplying Pe by 2k
~

l

/(2
k —

1), as explained previously.

A simple upper (union) bound on the probability of a code word error for the

Hadamard H(n,k) code is obtained by noting the probability of error in deciding

between the transmitted code word and any other code word is bounded from above by

Pi (^min) ,
where dmin is the minimum distance of the code. Therefore, an upper bound

on Pe is

Pe <(M- \)P2 {\dmn ) < 2k P2 (}d!mn )
(14.7-20)

Thus the “effective order of diversity” of the code for OOK modulation is in .

The bit error probability may be approximated as \Pe ,
or slightly overbounded by

multiplying Pe by the factor 2k
~ l

/(2
k — 1), which is the factor used above for or-

thogonal codes. The latter was selected for the error probability computations given

below.

Figure 14.7-5 illustrates the error rate performance of a selected number of

Hadamard codes for several bandwidth expansion factors. The advantage resulting
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SNR per bit, yb (dB)

FIGURE 14.7-5

Performance of Hadamard codes.

from an increase in the size M of the alphabet (or k
,
since k = log2 M) and an increase

in the bandwidth expansion factor is apparent from observation of these curves. Note,

for example, that the H(20, 5) code when repeated twice results in a code that is de-

noted by 2#(20, 5) and has a bandwidth expansion factor Be = 8. Figure 14.7-6 shows

the performance of the Hadamard and block orthogonal codes compared on the basis

of equal bandwidth expansion factors. It is observed that the error rate curves for the

Hadamard codes are steeper than the corresponding curves for the block orthogonal

codes. This characteristic behavior is due simply to the fact that, for the same bandwidth

expansion factor, the Hadamard codes provide more diversity than block orthogonal

codes. Alternatively, one may say that Hadamard codes provide better bandwidth effi-

ciency than block orthogonal codes. It should be mentioned, however, that at low SNR,

a lower-diversity code outperforms a higher-diversity code as a consequence of the fact

that, on a Rayleigh fading channel, there is an optimum distribution of the total received

SNR among the diversity signals. Therefore, the curves for the block orthogonal codes

will cross over the curves for the Hadamard codes at the low-SNR (high-error-rate)

region.

Method 4: Concatenation In this method, we begin with two codes: one binary

and the other nonbinary. The binary code is the inner code and is an (n ,
k) constant-

weight (non-linear) block code. The nonbinary code, which may be linear, is the outer

code. To distinguish it from the inner code, we use uppercase letters, e.g., an (N ,
K)

code, where N and K are measured in terms of symbols from a g-ary alphabet. The

size q of the alphabet over which the outer code is defined cannot be greater than the
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number of words in the inner code. The outer code, when defined in terms of the binary

inner code words rather than g-ary symbols, is the new code.

An important special case is obtained when q = 2k and the inner code size is

chosen to be 2k . Then the number of words is M = 2kK and the concatenated structure

is an (nN, kK) code. The bandwidth expansion factor of this concatenated code is the

product of the bandwidth expansions for the inner and outer codes.

Now we shall demonstrate the performance advantages obtained on a Rayleigh

fading channel by means of code concatenation. Specifically, we construct a concate-

nated code in which the outer code is a dual-A: (nonbinary) convolutional code and the

inner code is either a Hadamard code or a block orthogonal code. That is, we view the

dual-A: code with M-ary (M = 2k ) orthogonal signals for modulation as a concatenated

code. In all cases to be considered, soft-decision demodulation and Viterbi decoding

are assumed.

The error rate performance of the dual-/: convolutional codes is obtained from the

derivation of the transfer function given by Equation 8.7-2. For a rate- 1/2, dual-k code

with no repetitions, the bit error probability, appropriate for the case in which each k-bit

output symbol from the dual-k encoder is mapped into one ofM = 2k orthogonal code

words, is upper-bounded as

2^-i 00

Pb < y—j Y, PmPlim) (14.7-21)

ra=

4

where P2(^) is given by Equation 14.7-12.
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For example, a rate- 1/2, dual-2 code may employ a 4-ary orthogonal code 0(4, 2)

as the inner code. The bandwidth expansion factor of the resulting concatenated code

is, of course, the product of the bandwidth expansion factors of the inner and outer

codes. Thus, in this example, the rate of the outer code is 1 /2 and the inner code is 1 /2.

Hence, Be = (4/2)(2) = 4.

Note that if every symbol of the dual-/: is repeated r times, this is equivalent to

using an orthogonal code with diversity L = r. If we select r — 2 in the example

given above, the resulting orthogonal code is denoted as 0(8, 2) and the bandwidth

expansion factor for the rate- 1/2, dual-2 code becomes Be = 8. Consequently, the term

Pi{m) in Equation 14.7-21 must be replaced by P2(mL) when the orthogonal code

has diversity L. Since a Hadamard code has an “effective diversity” it follows

that when a Hadamard code is used as the inner code with a dual-A: outer code, the

upper bound on the bit error probability of the resulting concatenated code given by

Equation 14.7-21 still applies if P2(m) is replaced by P2(^indmin)- With these modi-

fications, the upper bound on the bit error probability given by Equation 14.7-21 has

been evaluated for rate- 1/2, dual-/: convolutional codes with either Hadamard codes

or block orthogonal codes as inner codes. Thus the resulting concatenated code has a

bandwidth exansion factor equal to twice the bandwidth expansion factor of the inner

code.

First, we consider the performance gains due to code concatenation. Figure 14.7-7

illustrates the performance of dual-/: codes with block orthogonal inner codes compared

with the performance of block orthogonal codes for bandwidth expansion factors Be =
4, 8, 16, and 32. The performance gains due to concatenation are very impressive.

10 12 14 16 18 20 22 24

SNR per bit, yb (dB)

FIGURE 14.7-7

Comparison of performance between

block orthogonal codes and dual-& with

block orthogonal inner codes.
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10 12 14 16 18 20 22 24

SNR per bit, yb (dB)

FIGURE 14.7-8

Comparison of performance between

Hadamard codes and dual-k codes with

Hadamard inner codes.

For example, at an error rate of 10“6 and Be — 8, the dual-A: code outperforms the

orthogonal block code by 7.5 dB. In short, this gain may be attributed to the increased

diversity (increase in minimum distance) obtained via code concatenation. Similarly,

Figure 14.7-8 illustrates the performance of two dual-/: codes with Hadamard inner

codes compared with the performance of the Hadamard codes alone for Be — 8 and 12.

It is observed that the performance gains due to code concatenation are still significant,

but certainly not as impressive as those illustrated in Figure 14.6-8. The reason is that

the Hadamard codes alone yield a large diversity, so that the increased diversity arising

from concatenation does not result in as large a gain in performance for the range of

error rates covered in Figure 14.7-8.

The numerical results given above illustrate the performance advantages in using

codes with good distance properties and soft-decision decoding on a Rayleigh fading

channel as an alternative to conventional M-ary orthogonal signaling with diversity.

In addition, the results illustrate the benefits of code concatenation on such a channel,

using a dual-/: convolutional code as the outer code and either a Hadamard code or a

block orthogonal code as the inner code. Although dual-/: codes were used for the outer

code, similar results are obtained when a Reed-Solomon code is used for the outer

code. There is an even greater choice in the selection of the inner code.

The important parameter in the selection of both the outer and the inner codes

is the minimum distance of the resultant concatenated code required to achieve a

specified level of performance. Since many codes will meet the performance require-

ments, the ultimate choice is made on the basis of decoding complexity and bandwidth

requirements.
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14.8

THE CHANNEL CUTOFF RATE FOR FADING CHANNELS

We studied the notion and significance of the channel cutoff rate for the general class

of memoryless channels in Section 6.8. In the same section we obtained expressions

for the channel cutoff rate for the special cases of a BSC channel and a binary-input,

continuous-output Gaussian channel. In this section we extend those results to the case

of fully interleaved Ricean and Rayleigh fading channels for the cases where CSI is

available at the receiver.

We have seen in Section 6.8 that for a general memoryless channel the cutoff rate

can be expressed by Equation 6.8-20 as

Ro = max sup Ro(p, X)
P(x) \>0

= max sup
P(x) A>0

log2 E A^_^X2

(14.8-1)

where for a symmetric channel model the maximum is achieved for X = i.e., by

substituting the Chernov bound by the Bhattacharyya bound, or substituting by

AXl)X2 . The values of Aj^ and AXuX2 are given by Equation 6.8-10 as

= J2p
x
(y\x2)p

l

-\y\xi)

yey
(14.8-2)

a*i.x2 = E
where the summation on y corresponds to a discrete-output channel, which should be

substituted by integration over the output space for a continuous-output channel. The

expectation in Equation 14.8-1 is over all independent input distributions, i.e.,

E A (X)

X!->X2 E 2)a£U (14.8-3)

where for continuous-input channels the summations are substituted by integrals.

14.8-1 Channel Cutoff Rate for Fully Interleaved Fading

Channels with CSI at Receiver

For this channel model, ideal interleaving causes the channel model to be memoryless.

The availability of CSI at the receiver can be interpreted as extending the channel

output to be both the regular channel output y and the fading information. The channel

is described as a memoryless model in which

yt = rixi + n i (14.8-4)
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where r* denotes the iid fading process and n
t
is the iid noise process, which is assumed

to be distributed according to CM(0, No) and is independent of the fading process. The
channel inputs are assumed to be points in a complex constellation. For a Rayleigh

fading channel the r/’s are iid drawn according to CM(0, 2a
2
). Since channel state

information is available at the decoder, we can consider the pair (y f ,
r*) as the channel

output. Therefore for this channel model P [output | input] can be written as

p(r,y\x) = p(r)p(y\r,x) (14.8-5)

Since the channel model is symmetric, we use the Bhattacharyya bound and from

Equation 14.8-2 we obtain

poo poo

A*,, *2 = / / \fp(y\x]L
,r)p(y\x2,r)dy

JO L/-00
poo

= E / \Jp{y\x])p{y\xi,r)dy
_J —oo

p(r)dr

(14.8-6)

where the expectation is taken with respect to the random variable R. For the channel

model of Equation 14.8-4 we have

p(y\x, r) = (14.8-7)
7t No

Using Equation 14.8-7 after completing the square in the exponent and some manipu-

lation, we obtain

\/p{y\x\)p{y\xur)dy — p 4iV0
l'Xl X2

\

2

(14.8-8)

or

A*!,*2 = E

where d\2 = \x\ — JC2 I-
Defining

we obtain

<*12 =
d\2

4M)

AX!,X2 = E e
-ot\i\r

\

2

(14.8-9)

(14.8-10)

(14.8-11)

In otherwords, AXl ,
X2 is equal to ©| JRp(^), the moment generating function ofthe random

variable |R|
2

,
i.e., the squared envelope of the fading process, when t is substituted

with —ai2 .

For a Ricean fading channel | R \

has a Ricean distribution and
|

R
\

2
has a noncentral

X
2 PDF with two degrees of freedom and parameters s and a 2

. From Table 2.3-3 we
obtain the characteristic function of |R|

2
,
and from it we obtain

AXi,X2

1

1 + 2o'i 2a 2

<*12*
2

l+2a\ 2 cr
2

(14.8-12)
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By substituting the terms A = s
2 + 2a 2 and K = ^ in Equation 14.8-12, we have

A*! ,*2

K + 1 _ AKa\2

^ AT+l+Aofj2

K + 1 + Aa 12

(14.8-13)

Note that A = E[|R| 2
] represents the average power gain of the channel. If we assume

that A = 1, the transmitted and received powers become equal. For this case

A v, .X'y

K + 1

g lf+l+aj2

K + 1 + a\2

For a Rayleigh fading channel we have s = K = 0 and

1

AXl ,x2 —
1 + 0^12

(14.8-14)

(14.8-15)

Note that in all cases studied above, if x\ = X2 ,
then an = 0 and A 12 = 1.

For aBPSK modulation system the optimal p(x) to achieve Ro is a uniform distribu-

tion. To compute Ro ,
we need to find E [Axux2 ]

•
For a uniform distribution on the inputs

±V£, the probability of X\ = X2 is and the probability of X\ =/= X2 is also For

this latter case d\
2 — 4£s ,

and from Equation 14.8-10 we obtain an = £s/No = SNR.

Therefore,

where

and finally

r n 1 1 A+l
E [A*,,*,] = - + -A =—

K + 1 ATSNR

A = — ———— g tf+l+SNR

K + 1 4- SNR

R0 = - log2

A + l

- , I . K + 1 __KSNR_
= 1 — log, 1 H e k+i+snr

B2 1 K + 1 + SNR

(14.8-16)

(14.8-17)

(14.8-18)

For the case of a Rayleigh fading channel, this relation reduces to

*»= 1 - 1°ft(1+ Trki) <14 -8-19)

For QPSK signaling the optimal input probability distribution is a uniform distri-

bution. In this case, d\2 = 0, or 2£s ,
or 4£s with probabilities and respectively.

SNR
The corresponding values ofan are 0, ^ ,

and SNR, respectively. Substituting these

values into Equation 14.8-14, we obtain

E [A ] = \ + \g
)
+ ^S(SNR) (14.8-20)
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FIGURE 14.8-1

The cutoff rate versus SNR for BPSK and QPSK over a Rayleigh fading channel.

where

S<“) = -TZTT- (14.8-21)
K + l +a

The Rayleigh fading case is obtained by putting K = 0 in Equation 14.8-21. The

result is

E[A] =
(SNR)2 + 8SNR + 8

4(SNR + 2)(SNR + 1)

Finally Rq is obtained using

(14.8-22)

R0 = — log2 E [A] (14.8-23)

where E[A] is obtained from Equations 14.8-20 and 14.8-22. Plots of Ro versus

SNR = Ss/No for BPSK and QPSK in the case of a Rayleigh fading channel are shown

in Figure 14.8-1.

14.9

BIBLIOGRAPHICAL NOTES AND REFERENCES

A comprehensive treatment of channel modeling, signaling, capacity issues, and coding

techniques for fading channels can be found in Biglieri et al. (1998b). This paper

summarizes and unifies the main results available on fading channel modeling, capacity,

and coding up to 1998 and includes many references. Channel capacity for finite-

state channels with different assumptions on the availability of state information are
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considered in Shannon (1958), Wolfowitz (1978), Salehi (1992), Cover and Chiang

(2002), Goldsmith and Varaiya (1997), Goldsmith and Varaiya (1996), Abou-Faycal

et al. (2001), and Ozarow et al. (1994).

Trellis-coded modulation for fading channels has been extensively treated in the

books by Biglieri et al. (1991) and Jamali and Le-Ngoc (1994) as well as in the papers

by Divsalar Simon (1988a, b, c), Sundberg and Seshadri (1993) and Salehi and Proakis

(1995). Coding for fading channels is also the subject of the book by Biglieri (2005)

where both coding and capacity issues under different assumptions have been treated.

The book by ?) also covers capacity and coding issues for wireless channels with

emphasis on multiantenna systems.

Bit-interleaved coded modulation introduced by Zehavi (1992) has been treated

extensively in the paper by Caire et al. (1998). Other papers studying different aspects

of this technique including error performance, iterative decoding, and optimal labeling

under iterative decoding include the works of Ormeci et al. (2001), Martinez et al.

(2006), and Li and Ritcey (1997, 1998, 1999).

The use of dual-k codes with M-ary orthogonal FSK was proposed in publications

by Viterbi and Jacobs (1975) and Odenwalder (1976). The importance of coding for

digital communications over a fading channel was also emphasized in a paper by Chase

(1976). The benefits derived from concatenated coding with soft decision decoding for

a fading channel were demonstrated by Pieper et al. (1978). The performance of dual-/t

codes with either block orthogonal codes or Hadamard codes as inner codes was in-

vestigated by Proakis and Rahman (1979). The error rate performance of maximal

free-distance binary convolutional codes was evaluated by Rahman (1981).

PROBLEMS

14.1 Channels 1 and 2 are both continuous-time additive Gaussian noise channels described

by Yi(t) = Xi(t) + Z\(t) and Y2 {t) = X2 (t) + Z2 (t), respectively. Z\(t) and Z2 (t) are

the noise processes of the channels. It is assumed that Z\(t) and Z2(t) are zero-mean,

independent Gaussian processes with power spectral densities N\(f) and N2(f) W/Hz,

as shown in Figure P14.1. It is assumed that each channel has an input power constraint

of 10 mW.
1. Determine C\ and C2 ,

the capacities of the two channels (in bits per second).

2. Ifa binary memoryless source with P(U = 0) = 1 —P{U = 1) = 0.4 which generates

7500 symbols per second is to be transmitted once via channel 1 and once via channel 2,

determine in each case the absolute minimum achievable error probability.

3 . Now consider the two channel configurations shown in Figure P14. 1 . The first configu-

ration is simply a concatenation ofthe two original channels. The second concatenation

allows a processor with arbitrary complexity to be used between the two channels. In

each case determine the absolute minimum achievable error probability for the binary

source of part 2 when transmitted over the given channel configuration.

4. What is the capacity of channel 1 if the input power constraint is increased from 10

to 100 mW?
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AW)

/(kHz)

Ar
2(f)

/(kHz)

Channel 1 Channel 2

Configuration 1

Channel 1

FIGURE P14.1

Processor

Configuration 2

Channel 2

14.2 Consider the channel model shown in Figure 14.2-1 and assume both channel components

are BSC channels with crossover probability p =
1 . What is the ergodic capacity of this channel?

2. Now assume that the transmitter can control the state of the channel and the receiver

has access to channel state information. What is the capacity of the resulting channel?

14.3 Using Equation 14.1-19, determine the capacity of a finite-state channel in which state

information is only available at the receiver.

14.4 Using Equation 14.1-19, determine the capacity of a finite-state channel in which the

same state information is available at the transmitter and the receiver.
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14.5 Consider a BSC in which the channel can be in three states. In state S = 0 the output

of the channel is always 0, regardless of the channel input. In state S = 1 ,
the output is

always 1, again regardless of the channel input. In state S = 2 the channel in noiseless,

i.e., the output is always equal to the input. We assume that P(S = 0) = P(S = 1) = |.

1 . Determine the capacity of this channel, assuming no state information is available to

the transmitter or the receiver.

2. Determine the capacity of the channel, assuming that channel state information S is

available at both sides.

14.6 In Problem 14.5 assume that the same noisy versions of state information are available

at both sides; i.e.,Z = £/ = Vis available where Z is a binary-valued random variable

with

P[Z = 0\S = 0] = P[Z = 1 \S = 1] = 1

P[Z = 0 |S = 2] = P[Z = 1 IS = 2] = 1

Determine the capacity of this channel.

14.7 Consider the channel model shown in Figure 14.2-1. Assume that the top channel is a

noiseless BSC channel for which crossover probability is zero and the bottom channel

is a binary-input binary-output Z channel with P [Y = 1 |X = 1] = 1 and P[Y =
0

|

X = 0 ] = \ . The channel switches between the two states independently for each

transmission, and the two states are equiprobable.

1 . Determine the ergodic capacity of this channel when no state information is available.

2. Determine the ergodic capacity of the channel when perfect state information is avail-

able at both sides.

3. Determine the ergodic capacity of the channel when perfect state information is avail-

able at the receiver.

14.8 Prove that Equation 14.2-1 1 can be simplified in the form of Equation 14.2-13.

14.9 In Figure 14.4-1, determine the optimal rotation that maximizes the coding gain. What

is the resulting coding gain?

14.10 A fading channel model that is flat in both time and frequency can be modeled as y =
Rx + «, where the fading factor R remains constant for the entire duration of the trans-

mission of the codeword. Determine the optimal decision rule for this channel for Ricean

fading when the state information is available at the receiver and when it is not available.

14.11 The outage probability of a diversity combiner is defined as the percentage of time the

instantaneous output SNR of the combiner is below some prescribed level for a specified

number of diversity branches. Consider a communication system that employs multiple

receiver antennas to achieve diversity in a Rayleigh fading channel. Suppose that selection

diversity is used with Nr receiver antennas. If the average SNR is 20 dB, determine the

probability that the instantaneous SNR drops below 10 dB when

1. Nr = 1

2. Nr = 2

3. Nr =4
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14.12 The Gauss-Markov model for a time-varying channel is given by

h(m + 1) = Vl — ah(m) + aw(m + 1)

where {w(m)} is a sequence of iid CA/*(0, 1) random variables independent of h(0) ~
CAT(0, 1). The sampling time is Ts . The coherence time of this channel is controlled by

the choice of parameter a.

1. Calculate the autocorrelation function of the sequence [h(m)} denoted by Rh(m).

2. Define coherence time as that corresponding to Ru (m) = 0.5. Determine the value of

a in terms of Ts and the coherence time Tc .

3. Suppose that {h(m} is transmitted from the receiver to the transmitter with a delay

of Ts . The transmitter predicts the value of h(m ), say h(m ), from the past samples

him — n) and h(m — n — 1). Thus

h(m) = b\h{m — n) + b^him — n — 1 )

where the prediction coefficients b\ and b2 are determined to minimize the MSE

E [H
2

]
= E

[|
h{m) - h(m)

|

2

]

Determine b\ and £>2 that minimize MSE.

14.13 The rate 1/3, K = 3, binary convolutional code with transfer function given by Equa-

tion 8.1-21 is used for transmitting data over a Rayleigh fading channel via binary PSK.

1 . Determine and plot the probability of error for hard decision decoding. Assume that

the transmitted waveforms corresponding to the coded bits fade independently.

2. Determine and plot the probability of error for soft decision decoding. Assume that

the waveforms corresponding to the coded bits fade independently.

14.14 Show that the pairwise error probability for a fully interleaved Rayleigh fading channel

with fading process R
t
can be bounded by

<ii E
1=1

Rf\xi-xi\
z

e~
1 4No

where the expectation is taken with respect to R/’s. From above conclude the following

bound on the pairwise error probability.

1

1 + \xi — Xi\
2/4No

14.15

Determine the product distance and the free Euclidean distance of the coded modulation

scheme shown in Figure 14.5-1.
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14.16 Determine the product distance and the free Euclidean distance of the coded modulation

scheme shown in Figure 14.5-2.

14.17 Show that the signal set assignment of Figure 14.5-5 provides a performance 1.315 dB

superior to the signal set assignment of Figure 14.5-4 when used over anAWGN channel.

14.18 In Figure 14.6-3 show X l

h
for b = 0,1 and for 1 < i < 4 for both set partitioning labeling

and Gray labeling.



Multiple-Antenna Systems

The use of multiple antennas at the receiver of a communication system is a standard

method for achieving spatial diversity to combat fading without expanding the band-

width of the transmitted signal. Spatial diversity can also be achieved by using multiple

antennas at the transmitter. For example, it is possible to achieve dual diversity with two

transmitting antennas and one receiving antenna, as we demonstrate in this chapter. We
will also demonstrate that multiple transmitting antennas can be used to create multiple

spatial channels and thus provide the capability to increase the data rate of a wireless

communication system. This method is called spatial multiplexing.

15.1

CHANNEL MODELS FOR MULTIPLE-ANTENNA SYSTEMS

A communication system employing Nt transmitting antennas and Nr receiving an-

tennas is generally called a multiple-input, multiple-output (MIMO) system
,
and the

resulting spatial channel in such a system is called a MIMO channel. The special case

in which Nj — Nr = 1 is called a single-input, single-output (SISO) system, and the

corresponding channel is called a SISO channel. A second special case is one in which

Nt = 1 and Nr > 2. The resulting system is called a single-input, multiple-output

(SIMO) system, and the corresponding channel is called a SIMO channel. Finally, a

third special case is one in which Nt >2 and Nr = 1 . The resulting system is called a

multiple-input, single-output (MISO) system, and the corresponding channel is called

a MISO channel.

In aMIMO system with Nt transmit antennas and Nr receive antennas, we denote

the equivalent lowpass channel impulse response between the jth transmit antenna and

the /th receive antenna as hij(r ;
t), where r is the age or delay variable and t is the time

variable.^ Thus, the randomly time-varying channel is characterized by the Nr x Nt

tFor convenience, the subscript on lowpass equivalent signals is omitted throughout this chapter.

966
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matrix H(r; t ), defined as

H(t\ t) =

hu(r; t)

h2 \{x\ t)

hn (x\ t)

h12 {x\ t)

hNR \(x\ t) h NR

2

(r; t)

h\NT
(x

;
t)

h2NT (r;

0

hNRNT (r ’ 0

(15.1-1)

Suppose that the signal transmitted from the yth transmit antenna is sj(t), j =
1, 2, . .

.

,

Nt- Then the signal received at the zth antenna in the absence of noise may
be expressed as

NT noo

n(t) = ~ x ) dx

j=

i

Nt

= i = 1,2,... ,

N

r

7= 1

(15.1-2)

where the asterisk denotes convolution. In matrix notation, Equation 15.1-2 is

expressed as

r(t) = H(r; t) * s(r) (15.1-3)

where s(t ) is an NT x 1 vector and r(t) is an Nr x 1 vector.

For a frequency-nonselective channel, the channel matrix H is expressed as

~hn (t) *12(0 • *lATr(0

*21 (0 *22(0 *2Wr (0

_hNR i(t ) *M«2(0 ' '

1
i-o

.

.

<45

In this case, the signal received at the zth antenna is simply

Nt

n(t) = Y2hij(t)sj(t), i = 1, 2, . .
.

,

Nr

j=

i

and, in matrix form, the received signal vector r{t) is given as

r(t) = H(t)s(t)

(15.1-4)

(15.1-5)

(15.1-6)

Furthermore, if the time variations of the channel impulse response are very slow within

a time interval 0 < t < T, when T may be either the symbol interval or some general

time interval, Equation 15.1-6 may be simply expressed as

r(t) = Hs(t), 0 <t <T (15.1-7)

where H is constant within the time interval 0 < t < T

.

The slowly time-variant frequency-nonselective channel model embodied in Equa-

tion 15.1-7 is the simplest model for signal transmission in a MIMO channel. In the
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following two subsections, we employ this model to illustrate the performance charac-

teristics ofMIMO systems. At this point, we assume that the data to be transmitted are

uncoded. Coding for MIMO channels is treated in Section 15.4.

15.1-1 Signal Transmission Through a Slow Fading

Frequency-Nonselective MIMO Channel

Consider a wireless communication system that employs multiple transmitting and

receiving antennas, as shown in Figure 15.1-1. We assume that there are Nt transmitting

antennas and Nr receiving antennas. As illustrated in Figure 15.1-1, a block of Nt
symbols is converted from serial to parallel, and each symbol is fed to one ofNt identical

modulators, where each modulator is connected to a spatially separate antenna. Thus,

the Nt symbols are transmitted in parallel and are received on Nr spatially separated

receiving antennas.

In this section, we assume that each signal from a transmitting antenna to a receiving

antenna undergoes frequency-nonselective Rayleigh fading. We also assume that the

differences in propagation times of the signals from the NT transmitting to the Nr
receiving antennas are small relative to the symbol duration T, so that for all practical

purposes, the signals from the Nt transmitting antennas to any receiving antenna are

synchronous. Hence, we can represent the equivalent lowpass received signals at the

receiving antennas in a signaling interval as

Nt

rm (t) = Y2snhmn g(t) + zm (t), 0<t<T, m = 1,2,..., Nr (15.1-8)

n=

1

(a) Transmitter

(b) Receiver

FIGURE 15.1-1

A communication system with multiple transmitting and receiving antennas.
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where g(t) is the pulse shape (impulse response) of the modulation filters; hmn is the

complex-valued, circular zero-mean Gaussian channel gain between the nth transmit-

ting antenna and the mth receiving antenna; sn is the symbol transmitted on the nth

antenna; and zm (0 is a sample function of an AWGN process. The channel gains {hmn }

are identically distributed and statistically independent from channel to channel. The

Gaussian sample functions {zm (0} are identically distributed and mutually statistically

independent, each having zero mean and two-sided power spectral density 2No. The
information symbols {sn } are drawn from either a binary or an M-ary PSK or QAM
signal constellation.

The demodulator for the signal at each of the Nr receiving antennas consists of

a matched filter to the pulse g(t), whose output is sampled at the end of each symbol

interval. The output of the demodulator corresponding to the mth receiving antenna can

be represented as

Nt

ym. — ^ ^ Snhmn ^Jm •> m = 1, 2, . . . , Nr (15.1—9)

n—

1

where the energy of the signal pulse g(t) is normalized to unity and rjm is the additive

Gaussian noise component. The Nr soft outputs from the demodulators are passed to

the signal detector. For mathematical convenience, Equation 15.1-9 may be expressed

in matrix form as

y = Hs + rj (15.1-10)

where y = [y\y2 ... yNR V, s = |>i s2 . . . sNl.y, r\ = [771 r\2 . . . rjNR ]‘, and H is the

Nr x Nr matrix of channel gains. Figure 15.1-2 illustrates the discrete-time model for

the multiple transmitter and receiver signals in each signaling interval.

In the formulation of a MIMO system as described above, we observe that the

transmitted symbols on the Nt transmitting antennas overlap totally in both time and

frequency. As a consequence, there is interchannel interference in the signals {ym , 1 <
m < Nr] received from the spatial channel. In the following subsection, we consider

three different detectors for recovering the transmitted data symbols in aMIMO system.

Vi

FIGURE 15.1-2

Discrete-time model of the communication system with multiple transmit and receive antennas

in a frequency-nonselective slow fading channel.
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15.1-2 Detection of Data Symbols in a MIMO System

Based on the frequency-nonselective MIMO channel model described in Sec-

tion 15.1-1, we consider three different detectors for recovering the transmitted data

symbols and evaluate their performance for Rayleigh fading and additive white Gaus-

sian noise. Throughout this development, we assume that the detector knows the ele-

ments of the channel matrix H perfectly. In practice, the elements of H are estimated

by using channel probe signals.

Maximum-Likelihood Detector (MLD) The MLD is the optimum detector in the

sense that it minimizes the probability of error. Since the additive noise terms at the Nr
receiving antennas are statistically independent and identically distributed (iid), zero-

mean Gaussian, the joint conditional PDF /?(y|,s) is Gaussian. Therefore, the MLD
selects the symbol vector s that minimizes the Euclidean distance metric

Nr

mO) = D
Nt

ym Y. h" (15.1-11)

Minimum Mean-Square-Error (MMSE) Detector The MMSE detector linearly

combines the received signals {ym , 1 < m < Nr] to form an estimate of the transmitted

symbols {^, 1 < n < Nt}. The linear combining is represented in matrix form as

s = WH
y (15.1-12)

where W is an Nr x Nt weighting matrix, which is selected to minimize the mean
square error

J(W) = £[|| e
II

2
]
= E[\\s - WH

y ||

2
] (15.1-13)

Minimization of J(W) leads to the solution for the optimum weight vectors w i ,
w2 , . .

.

,

w Nt as

wn = R-^rSny ,
n = \,2,...,NT (15.1-14)

where R
yy = E[yyH ]

= HRssHh + NqI is the (Nr x Nr) autocorrelation matrix of

the received signal vector y, Rss = E[ssH ], rSny = E[s*y], and E[rjrj
H

] = NqI. When
the signal vector has uncorrelated, zero-mean components, Rss is a diagonal matrix.

Each component of the estimate s is quantized to the closest transmitted symbol value.

Inverse Channel Detector (ICD) The ICD also forms an estimate of s by linearly

combining the received signals {ym ,
1 < m < Nr}. In this case, if we set Nt = Nr,

the weighting matrix W is selected so that the interchannel interference is completely

eliminated, i.e., WH = H~ l

,
hence

s = H l

y
= s + H l

ri

(15.1-15)

Each element of the estimate s is then quantized to the closest transmitted symbol

value. We note that the ICD estimate s is not corrupted by interchannel interference.
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However, this also implies that the ICD does not exploit the signal diversity inherent

in the received signal, as we will observe below.

When Nr > Nt, the weighting matrix W may be selected as the pseudoinverse of

the channel matrix, i.e.,

WH = (HhH)- 1Hh

Error Rate Performance ofthe Detectors The error rate performance of the three

detectors in a Rayleigh fading channel is most easily assessed by computer simulation of

the MIMO system. Figures 15.1-3 and 15.1-4 illustrate the binary error rate (BER) for

binary PSK modulation with (Nt , Nr) = (2, 2) and (Nt , Nr) = (2, 3), respectively. In

both cases, the variances of the channel gains are identical, and their sum is normalized

to unity, i.e.,

YJ
E[\hmn \

2

]
= l (15.1-16)

n,m

The BER for binary PSK modulation is plotted as a function of the average SNR per

bit. With the normalization of the variances in the channel gains {hmn } as given by

Equation 15.1-16, the average received energy is simply the transmitted signal energy

per symbol.

FIGURE 15.1-3

Performance of MLD, MMSE, and inverse channel detectors with Nr =2 receiving antennas.
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FIGURE 15.1-4

Performance ofMLD and MMSE detectors with Nr = 3 receiving antennas.

The performance results in Figures 15.1-3 and 15.1^1 illustrate that the MLD
exploits the full diversity of order Nr available in the received signal, and thus its

performance is comparable to that of a maximal ratio combiner (MRC) of the Nr
received signals, without the presence of interchannel interference, i.e., (Nt, Nr) =
(l, Nr). The two linear detectors—the MMSE detector and the ICD—achieve an error

rate that decreases inversely as the SNR raised to the (Nr — 1) power for NT =
2 transmitting antennas. Thus, when Nr = 2, the two linear detectors achieve no

diversity, and when Nr = 3, the linear detectors achieve dual diversity. We also note

that the MMSE detector outperforms the ICD, although both achieve the same order of

diversity. In general, with spatial multiplexing (Nt antennas transmitting independent

data streams), theMLD detector achieves a diversity oforder Nr ,
and the linear detectors

achieve a diversity of order Nr — Nt + 1, for any Nr > Nt- In effect, with Nt antennas

transmitting independent data streams and Nr receiving antennas, a linear detector has

Nr degrees of freedom. In detecting any one data stream, in the presence of Nt — 1

interfering signals from the other transmitting antennas, the linear detectors utilize

Nt — 1 degrees of freedom to cancel the Nt — 1 interfering signals. Therefore, the

effective order of diversity for the linear detectors is Nr — (Nt — 1) = Nr — Nt + 1-

Let us now compare the computational complexity of the three detectors. We
observe that the complexity of the MLD grows exponentially as MNt

,
where M is

the number of points in the signal constellation, whereas the linear detectors have a
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complexity that grows linearly with Nt and NR . Therefore, the computational com-

plexity of the MLD is significantly larger when M and NT are large. However, for a

small number of transmitting antennas and signal points, say NT < 4 and M — 4, the

computational complexity of the MLD is not excessive.

Other Detector Structures and Algorithms

As we have observed, the MLD is the optimum detector, hence, it minimizes the

symbol error probability. The two linear detectors, the ICD and the MMSE detector,

are suboptimum in terms of performance, but have low computational complexity.

Another class of detectors is nonlinear detectors whose performance is generally better

than that of linear detectors, but their computational complexity is greater.

An example of a nonlinear detector is one that employs successive cancellation

of symbols from the received signal once the symbols are detected. One method for

accomplishing symbol cancellation is to employ the ICD orMMSE detector on the first

pass through the data. From the linearly detected symbols, we select the symbol having

the highest SNR, i.e., which is the most reliable. This symbol can be multiplied by the

appropriate row of the channel matrix H and the result subtracted from the received

signals, leaving us with a received signal containing Nj — 1 symbols. Then we repeat

the detection procedure for the received signal containing the Nt — 1 symbols. Thus,

Nt iterations are employed to detect the Nt transmitted symbols. This successive

cancellation technique, applied to a MIMO system, is essentially a multiuser detection

method that is further treated in Chapter 16.

This is just one example of a nonlinear detection algorithm that may be employed

to detect the data. Such schemes have greater computational complexity than the linear

detectors described, but their performance is generally better.

Another suboptimum detection method that is simpler to implement than MLD is

sphere detection (also called sphere decoding). In sphere detection, the search for the

most probable transmitted signal vector s is limited to a set of points Hs that lie within

an Nr -dimensional hypersphere of fixed radius centered on the received signal vector y .

Thus, compared with MLD in which the search for the most probable signal vector s

encompasses all possible points Hs
,
sphere detection involves a search over a limited

set of received signal points. Consequently, the computational complexity is decreased

at a cost of an increase in the error probability. Clearly, as the radius of the sphere

is increased, the performance of the sphere detector approaches the performance of

the MLD. Computationally efficient algorithms for sphere detection, i.e., determining

the signal points Hs that lie inside a sphere of a given radius centered on the received

vector j, have been published by Fincke and Pohst (1985), Viterbo and Boutros (1999),

Damen et al. (2000), deJong and Willink (2002), and Hochwald and ten Brink (2003).

Another nonlinear method that exploits the signal diversity inherent in the received

signal vector y and provides near MLD performance is based on lattice reduction. For

example, recall that if the elements of the n -dimensional signal vector s are taken from

a square QAM signal constellation, the set of signal vectors can be viewed as a subset

of an ^-dimensional lattice. Hence, the noiseless received signal vector Hs is a subset

of a lattice that is transformed (distorted) by the channel matrix H. The basis vectors

for this transformed lattice are the columns of the matrix H
,
which, in general, are not

orthogonal. However, the basis vectors ofthe transformed lattice may be orthogonalized



974 Digital Communications

and reduced in magnitude, resulting in a new generator matrix B that is related to H
through the transformation B = HF, where the columns of B are orthogonal and F
is a unimodular matrix with elements having integer real and imaginary components,

such that F satisfies the condition det(F) = ±1 or dry. The inverse F~ l
of such a

matrix always exists.

We may use this basis transformation to express the received signal vector y as

y = Hs + ri

= (BF~ 1
)s + ri

We define the vector w as w = F~ l
s

,
so that y may be expressed as

y = Bw + rj

=
(HF)w + rj

Now, the ICD may be applied to detect the transformed signal vector w by inverting B
and making hard decisions on the resulting elements of the vector B~ l

y to yield the

vector w. An estimate of the signal vector s is obtained by the linear transformation s =
Fw. This detection method has been shown to yield an order of diversity comparable

to MLD (for reference, see Yao and Womell (2002)). Further discussion on lattice

reduction is given in Section 16.4^1, in the context of MIMO broadcast channels.

Signal Detection When Channel Is Known at the Transmitter and Receiver

The MLD, MMSE, and ICD techniques are based on knowing the channel matrix H
at the receiver. Another linear processing technique may be devised when the channel

matrix H is known at the transmitter as well as the receiver. In this method, the singular

value decomposition (SVD) of the channel matrix H
,
assumed to be of rank r, may be

expressed as

H = USVH
(15.1-17)

where U is an Nr x r matrix, V is an Nt x r matrix, and E is an r x r diagonal matrix

with diagonal elements the singular values 02 , . .
.

,

or of the channel. The column

vectors of the matrices U and V are orthonormal. Hence UHU = I r and VH V = / r ,

where I r is the r x r identity matrix. If we process an r x 1 signal vector s at the

transmitter by the linear transformation

^ = Vs (15.1-18)

then the received signal vector y is

y = Hs v + ri = HVs + rj (15.1-19)

At the receiver, we process the received signal vector y by the linear transformation

UH . Thus,

s = UHy = UHHVs + UH ri

= UhUEVh Vs + UH rj = Es + UH ri

(15.1-20)
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FIGURE 15.1-5

Signal processing and detection in a MIMO system when the channel is known at the

transmitter and the receiver.

Therefore, the elements of the received signal are decouptled and may be detected

individually. The scaling of the transmitted symbols by the singular values {a,} may be

compensated either at the transmitter by using the linear transformation VE~ l
in place

of V or at the receiver by the linear transformation H~ lUH . A block diagram of the

MIMO communication system is illustrated in Figure 15.1-5.

From the expression for the estimate of the signal vector s given by Equa-

tion 15.1-20 we observe that the SVD method does not exploit the signal diversity

provided by the channel. This is the main disadvantage in decoupling the received

signal vector y by means of the SVD.

15.1-3 Signal Transmission Through a Slow Fading Frequency-Selective

MIMO Channel

In this section we consider transmission through a frequency-selective MIMO channel

in which the time variations of the impulse responses {htj (r ;
t)} are very slow compared

to the symbol rate 1 /T. According to Equations 15.1-2 and 15.1-3, the signal received

from the frequency-selective MIMO channel may be expressed as

NT poo

ri(t) = Yl /
hij(r\t)sj(t -r)dr + zi(t), i = 1, 2, . .

.

,

NR (15.1-21)

j= l
J -°°

where n(t) represents the additive noise at the ith receive antenna. Let the signal

transmitted in the nth signal interval be Sj(t) = sj(n)g(t — nT ), where g(t ) is the

impulse response of the modulation filters and {sj(n)} is the set of NT information

symbols. After substituting for Sj(t) in Equation 15.1-21, we obtain

nt poo

n(t) =EE Sj(n) / hij(r; t)g(t -nT -x)dx + Zi(t ), i = 1, 2, . .
.

,

Nr
n j=

l

(15.1-22)

It is convenient to process the received signal in sampled form. Consequently, we
may sample the received signal r;(0 at some suitable sampling rate Fs = J/T, where

/ is a positive integer. For example, we may select / = 2, so that there are two samples

per symbol. Such a sampling rate is appropriate when the impulse response g(t) of the

modulation filters is band-limited to |/| < l/T.
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At each antenna, the received signal is passed through a bank of Nt finite-duration

impulse response (FIR) filters, where each filter spans K samples. The filter coefficients

at time instant n are denoted as {a,ij(k\ n),k = 0, 1, . .
.

,

K] and are assumed to be

complex-valued in general. Suppose that these FIR filters function as linear equalizers.

Then the outputs of the FIR filters from the Nr receive antennas may be used to

form estimates of the transmitted information symbols. Thus, the estimate of the j th

information symbol transmitted at time instant n may be expressed as

Nrw =
i=i

~K-

1

^2aij(k;n)ri(n - k)

.k=

o

j = 1,2,..., Nt (15.1-23)

where Sj(n) denotes the estimate of sj(n).

The estimates given by Equation 15.1-23 can be expressed more compactly in

matrix form as

s(n) = AH (n)r(n)

where the matrix A(n) and the vector r(n) are defined as

A(n) =

*
^ a*

12
(n) a \NT (n )

«2l(«) a*21 (n) a2NT ^n )

,
a

*NR l(
n ) a

*NRl(
n )

' ' a
*NRNT (n )_

r(ri) =

~r\(n)

riin)

rNR (n)

(15.1-24)

(15.1-25)

where {aij(n)} and {rj(n)} are column vectors ofdimension^ and AH (n) = [A(n)]
H =

[a*j(n)]
H = [fl^-(n)]. Figure 15.1-6 illustrates the structure of the demodulator for

Nt =2 transmitting antennas and Nr = 3 receiving antennas.

The estimate s(n) is fed to the detector which compares each element of s(n)

with the possible transmitted symbols and selects the symbol sj(n) that is closest in

Euclidean distance to Sj(n).

When the channel impulse responses {/^(t; t)} change slowly with time, the

coefficients of the FIR equalizers can be adjusted adaptively to minimize the mean
square error (MSE) between the desired data symbols {sj(n), j = 1, 2, . .

.

,

Nt} and the

estimates {Sj(n ), j = 1,2,..., Nt }. Initial adjustment of the coefficients {atj{n)} may
be accomplished by transmitting a finite-duration sequence of training symbol vectors

from the NT transmit antennas. In the training mode, the error signal is formed as

e{n) = s(n) — s{n)

= s(n) — AH (n)r(ri)
(15.1-26)

or, equivalently, as

ej{n) = Sj(n) - SjQt), j = l,2,...,NT (15.1-27)



Chapter Fifteen: Multiple-Antenna Systems 977

FIGURE 15.1-6

Signal demodulation with linear equalizers for the frequency-selective channel.

and the equalizer coefficients are adjusted to minimize

MSEj = E[\ej(n)\
2
], j = l,2,...,NT (15.1-28)

Either the LMS algorithm or the RLS algorithm described in Sections 10.1 and

10.4 may be used to adjust the equalizer coefficients. Following the training symbols,

in the data transmission mode, the detector outputs may be used in place of the training

symbols to form the error signal, i.e.,

ej(n) = Sj(n) - sj(n ), j = 1, 2, . .
.

,

NT (15.1-29)

where sj(n) is the output of the detector for the yth symbol at time n, which is the

symbol nearest in distance to the estimate sj(n).

example 15.1-1. Consider a MIMO system in which the channel impulse responses

are

hij(z- 1) = h\fS(z) + h^S(z -T), i = 1,2,..., Nr

j = 1 ,
2,..., Nt

where T is the symbol interval. In this case, the channel is time dispersive with inter-

symbol interference occurring over two successive symbols. The channel coefficients
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{h\f} and [hf^ }
are assumed to be fixed over a time interval spanning 2000 symbols,

and are zero-mean complex-valued Gaussian random variables with variances

*y(*) = E k = 1,2

The sum of all these variances is normalized to unity, i.e.,

2 NT Nr

EEE#) = 1

k= 1 y=l i=l

A Monte Carlo simulation of the performance of the linear equalizers for the case

in which the two multipath components have equal variance and the modulation is

binary PSK is shown in Figure 15.1-7 for (NT , Nr) = (1, 1), (2, 2), and (2, 3). The
linear equalizers were trained initially with the LMS algorithm for 1000 symbols. The
simulations were performed for 1000 different channel realizations. The maximum
achievable diversity is 2Nr, where the factor of 2 is due to the multipath.

We observe that the effect of the ISI in the performance of the MIMO system is

very severe. There is a significant loss in the performance of the (2, 2) and (2, 3) MIMO

FIGURE 15.1-7

Performance of linear equalizer for two-path channel with (Nt, Nr) antennas for spatial

multiplexing.
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systems due to the ISI. This effect is due to the basic limitation of linear equalizers to

mitigate ISI in fading multipath channels.

Other Equalizer Structures

The linear adaptive equalizer described above for the MIMO channel is the simplest

equalization technique from the viewpoint ofcomputational complexity. To achieve bet-

ter performance, one may employ a more powerful equalizer, in particular, a decision-

feedback equalizer (DFE) or a maximum-likelihood sequence detector (MLSD).
Figure 15.1-8 illustrates the structure of a DFE for a MIMO channel with Nt =

Nr =2 antennas. The two feedforward filters at each receive antenna are structurally

identical to the FIR filters in a linear equalizer structure. Typically, these FIR filters

have fractionally spaced taps. The two feedback filters connected to each detector

are symbol-spaced FIR filters. Their function is to suppress the ISI that is inherent

in previously detected symbols (so-called postcursors). Thus, the estimate of the j th

information symbol transmitted at time instant n may be expressed as

Nr ( 0 K2
)

Sj(n) = ^ < E aij(k', n )ri(n -k)-^2bij(k-,n)si(n-k)\ (15.1-30)

,=i [*=-*, k=i
J

where + 1 is the number of tap coefficients in each of the feedforward filters and

K2 is the number of tap coefficients {bij(k; n)} in each of the feedback filters.

FIGURE 15.1-8

Signal demodulation with decision-feedback equalizers for the frequency-selective channel.
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As in the case of the linear equalizers for the MIMO channel, the MSE criterion

may be used to adjust the coefficients of the feedforward and feedback filters. Training

symbols are usually needed to adjust the equalizer coefficients initially. When data

are transmitted in frames, training symbols may be inserted in each frame for initial

adjustment of the DFE coefficients. During the transmission of information symbols,

the symbols at the output of the detector may be used for coefficient adjustment. We
note that the computational complexity of the DFE is comparable to that of the linear

MIMO equalizer.

example 15.1-2. Consider the MIMO system described in Example 15.1-1, where

the linear equalizers are replaced by decision-feedback equalizers. The error rate perfor-

mance of the MIMO system with DFEs, obtained by Monte Carlo simulation, is shown
in Figure 15.1-9. In comparing the performance of the MIMO system with DFEs and

with linear equalizers, we observe that the DFEs generally yield better performance.

Nevertheless, there is still a significant loss in performance due to ISI.

The best performance in the presence of ISI is obtained when the equalization algo-

rithm is based on the MLSD criterion. A multichannel version of the Viterbi algorithm

FIGURE 15.1-9

Performance of DFEs for two-path channel with (Nt, Nr) antennas for spatial multiplexing.
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is computationally efficient in implementing MLSD for aMIMO channel with ISI. The

major impediment in the implementation of the Viterbi algorithm is its computational

complexity, which grows exponentially as ML
, where M is the size of the symbol con-

stellation and L is the span of the channel multipath dispersion expressed in terms of

the number of information symbols spanned. Consequently, except for channels with

relatively small multipath spread, e.g., L — 2 or 3, and small signal constellations,

e.g., M = 2 or 4, the implementation complexity of the Viterbi algorithm for a MIMO
system is very high compared to that for a DFE.

15.2

CAPACITY OF MIMO CHANNELS

In this section, we evaluate the capacity of MIMO channel models. For mathematical

convenience, we limit our treatment to frequency-nonselective channels which are

assumed to be known to the receiver. Thus, the channel is characterized by an Nr x Nt

channel matrix H with elements {hij}. In any signal interval, the elements {hij} are

complex-valued random variables. In the special case of a Rayleigh fading channel,

the {hij} are zero-mean complex-valued Gaussian random variables with uncorrelated

real and imaginary components (circularly symmetric). When the [hij] are statistically

independent and identically distributed complex-valued Gaussian random variables,

the MIMO channel is spatially white.

15.2-1 Mathematical Preliminaries

By using a singular value decomposition (SVD), the channel matrix H with rank r may
be expressed as

H = UZVH (15.2-1)

where U is an Nr x r matrix, V is an Nr x r matrix, and X is an r x r diagonal matrix

with diagonal elements the singular values oq, cr2 , o> of the channel. The singular

values {Oi

}

are strictly positive and are ordered in decreasing order, i.e., 07 > 07+ 1 .

The column vectors of U and V are orthonormal. Hence UHU = I r and VHV = Ir ,

where Ir is an r x r identity matrix. Therefore, the SVD of the channel matrix H may
be expressed as

r

H = (15.2-2)

i=

1

where [Ui] are the column vectors of U, which are called the left singular vectors of H,
and [Vi

}

are the column vectors of V, which are called the right singular vectors of H.
We also consider the decomposition of the Nr x Nr square matrix HHh

. This

matrix may be decomposed as

HHh =QAQh
(15.2-3)
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where Q is the Nr x Nr modal matrix with orthonormal column vectors (eigenvectors),

i.e., QH Q = Inr >
and A is an Nr x Nr diagonal matrix with diagonal elements

{ki, i = 1,2,..., Nr }, which are the eigenvalues of HHh
. With the eigenvalues

numbered in decreasing order (k t
> A.*+i), it can be easily demonstrated that the

eigenvalues ofHHh
are related to the singular values in the SVD of H as follows:

of i = 1, 2, . .
. ,

r

0 / = r + 1, . .
. , Nr

(15.2-4)

A useful metric is the Frobenius norm of H, which is defined as

\\H\\ f

\

Nr Nj

EE i*'.

i= 1 j=

1

= Vtrace (HHH ) (15.2-5)

Nr

i=i

We shall observe below that the squared Frobenius norm \\H\\
2
F is a parameter that de-

termines the performance ofMIMO communication systems. The statistical properties

of \\H\\
2
f can be determined for various fading channel conditions. For example, in the

case of Rayleigh fading, \hij\
2

is a chi-squared random variable with two degrees of

freedom. When the {hij } are iid (spatially white MIMO channel) with unit variance, the

probability density function of \\H\\
2
F is chi-squared with 2NrNt degrees of freedom;

i.e., if X =\\H\\
2
f ,

x n~^

PW =
7

x -°
(n - 1)!

(15.2-6)

where n = NrNT -

15.2-2 Capacity of a Frequency-Nonselective Deterministic MIMO Channel

Let us consider a frequency-nonselective AWGN MIMO channel characterized by

the matrix H. Let s denote the NF x 1 transmitted signal vector, which is statistically

stationary and has zero mean and autocovariance matrix R ss . In the presence ofAWGN,
the Nr x 1 received signal vector y may be expressed as

y = Hs + ri (15.2-7)

where ri is the Nr x 1 zero-mean Gaussian noise vector with covariance matrix Rnn =
NqI

n

r - Although H is a realization of a random matrix, in this section we treat H as

deterministic and known to the receiver.
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To determine the capacity of the MIMO channel, we first compute the mutual

information between the transmitted signal vector s and the received vector y, denoted

as I (s ', y ), and then determine the probability distribution of the signal vector s that

maximizes /(s; y). Thus,

C = max /(s; y) (15.2-8)
p(s)

where C is the channel capacity in bits per second per hertz (bps/Hz). It can be shown

(see Telatar (1999) and Neeser and Massey (1993)) that I(s', y) is maximized when
s is a zero-mean, circularly symmetric, complex Gaussian vector; hence, C is only

dependent on the covariance of the signal vector. The resulting capacity of the MIMO
channel is

C = max log2 det (iNr + ^-HRssHh
) bps/Hz (15.2-9)

—&s \ Nq J

where tr(R ss ) denotes the trace of the signal covariance R ss . This is the maximum rate

per hertz that can be transmitted reliably (without errors) over the MIMO channel for

any given realization of the channel matrix H.
In the important practical case where the signals among the Nt transmitters are

statistically independent symbols with energy per symbol equal to Ss/Nt ,
the signal

covariance matrix is diagonal, i.e.,

SsR ss = — IntNt
t

(15.2-10)

and trace (R ss )
= Ss . In this case, the expression for the capacity of the MIMO channel

simplifies to

C = log2 det INr +
NjNq

HH l bps/Hz (15.2-11)

The capacity formula in Equation 15.2-11 can also be expressed in terms of the

eigenvalues ofHHh by using the decomposition HHh = QA QH . Thus,

qaqh

qh qa

C - log2 det +

= log2 det (Inr +

= log2 det INr +

— XI l0g
2 (

1 +
1= 1

NtNq

Ss

Nt Nq

Ss

NtNq

X.

*/

(15.2-12)

NtNq

where r is the rank of the channel matrix H.
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It is interesting to note that in a SISO channel, X\ = \hn
|

2
so that

Csiso = log2 (l + ^l^nl
2

)
bps/Hz (15.2-13)

We observe that the capacity of the MIMO channel is simply equal to the sum of the

capacities of r SISO channels, where the transmit energy per SISO channel is £s/NT
and the corresponding channel gain is equal to the eigenvalue .

Capacity of SIMO Channel

A SIMO channel (NT = 1, Nr > 2) is characterized by the vector h = [hnh2 \ . .

.

hNR iY. In this case, the rank of the channel matrix is unity, and the eigenvalue X\ is

given as

Nr

A.1 =11 ft III = E 1^1

1

2
(15.2-14)

1= 1

Therefore, the capacity of the SIMO channel, when the Nr elements {hn } of the channel

are deterministic and known to the receiver, is

CsiMO = log2 ^1 + -j— \\h
II

f c nr \ (15.2-15)

= log2 fl + ^^|/zn |

2

J

bps/Hz

Capacity ofMISO Channel

A MISO channel (Nt > 2, Nr = 1) is characterized by the vector h = [hn h
i2 . .

.

h\ Nl.y

.

In this case, the rank of the channel matrix is also unity, and the eigenvalue k\

is given as

*i =11 h |||
=

Nt

Ei^ui
2

7=1

(15.2-16)

The resulting capacity of the MISO channel when the Nj elements {h\j} of the channel

are deterministic and known to the receiver is

Cmiso = log2 1 + NtN0

\h\\
2
F

= log2 1 +
Ss

NrNq

Nt

Em 2

7=1

bps/Hz

(15.2-17)

It is interesting to note that for the same
||
h

|| \ ,
the capacity of the SIMO channel is

greater than the capacity of the MISO channel when the channel is known to the receiver

only. The reason is that, under the constraint that the total transmitted energy in the

two systems be identical, the energy £s in the MISO system is split evenly among the

Nt transmit antennas, whereas in the SIMO system, the transmitter energy £s is used

by the single antenna. Note also that in both SIMO and MISO channels, the capacity

grows logarithmically as a function of
||
h

\\

2
F .
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15.2-3 Capacity of a Frequency-Nonselective Ergodic Random
MIMO Channel

The channel capacity expressions derived in Section 15.2-2 for a deterministic MIMO
channel may be viewed as the capacity for a randomly selected realization ofthe channel

matrix. To determine the ergodic capacity, we may simply average the expression for

the capacity of the deterministic channel over the statistics of the channel matrix. Thus,

for a SIMO channel, the ergodic capacity, as defined in Chapter 14, is

Csimo = E
Nr

log2

p(x ) dx bps/Hz

(15.2-18)

where X = and p{x) is the probability density function of the random

variable X.

Figure 15.2-1 illustrates Csimo versus the average SNR £s E(\hn \

2
)/No for Nr =

2,4, and 8 when the channel parameters {hn} are iid complex-valued, zero-mean,

circularly symmetric Gaussian with each having unit variance. Hence, the random

FIGURE 15.2-1

Ergodic capacity of SIMO channels.
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variable X has a chi-squared distribution with 2Nr degrees of freedom, and its PDF is

given by Equation 15.2-6. For comparison, the ergodic capacity Csiso is also shown.

Similarly, the ergodic channel capacity for the MISO channel is

Gmiso — E
p Nt

l°S2
|

i + 1^1; I

2

NtNq
7= 1

p(x)dx bps/Hz

(15.2-19)

Figure 15.2-2 illustrates Cmiso versus the average SNR, as defined above, for

Nt = 2,4, and 8 when the channel parameters {h\j} are iid zero-mean, complex-

valued, circularly symmetric Gaussian, each having unit variance. As in the case of

the SIMO channel, the random variable x has a chi-squared distribution with 2Nt
degrees of freedom. The ergodic capacity of a SISO channel is also included in Fig-

ure 15.2-2 for comparison purposes. In comparing the graphs in Figure 15.2-1 with

those in Figure 15.2-2, we observe that Csimo > Cmiso-

To determine the ergodic capacity of theMIMO channel, we average the expression

for C given in Equation 15.2-12 over the joint probability density function of the

FIGURE 15.2-2

Ergodic capacity of MISO channels.
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eigenvalues {A.,}. Thus,

Cmimo — E
\

. 1=1

E l0&
./= 1

1 +
Ss

Nt No
p(X \ , . .

.

,

X r ) dX\ •
• • <^A,r

(15.2-20)

For the case in which the elements of the channel matrix H are complex-valued

zero-mean Gaussian with unit variance and spatially white with Nr = Nt = N, the

joint PDF of {Xi } is given by Edelman (1989) as

N

JJ(2Aj
— 2A

;
-)
2

f[ u(h)
ij 1=

1

i<j

(15.2-21)

where Tn(N) is the multivariate gamma function defined as

p(X\, A.2, . .
. ,
XN )

= (tt/2)^- 1 )

[r^v(iV)]
2

V

exp

Vi=l /

N

rN(N) = JC
N{N- 1)/1

JJ(iV - i)\ (15.2-22)

i=

1

Figure 15.2-3 illustrates Cmimo versus the average SNR for NT = Nr = 2 and

Nt = Nr = 4. The ergodic capacity of a SISO channel is also included in Fig-

ure 15.2-3 for comparison purposes. We observe that at high SNRs, the capacity of

the (Nt, Nr) = (4, 4) MIMO system is approximately four times the capacity of the

(1,1) system. Thus, at high SNRs, the capacity increases linearly with the number of

antenna pairs when the channel is spatially white.

15.2-4 Outage Capacity

As we have observed, the capacity of a randomly fading channel is a random variable.

For an ergodic channel, its average value C is the ergodic capacity. For a nonergodic

channel, a useful performance metric is the probability that the capacity is below some

value for a specified percentage of channel realizations. This performance metric is the

outage capacity, defined in Section 14.2-2.

To be specific, we consider a channel that is known to the receiver only. We assume

that theMIMO channel matrix H is randomly selected in accordance with each channel

realization and remains constant for each channel use. In other words, we assume that

the channel is quasi-static for the duration of a frame of data, but the channel matrix

may change from frame to frame. Then, for any given frame, the probability

P(C < Cp ) = Pout (15.2-23)

is called the outageprobability and the corresponding capacity Cp is called the 100 Pout%
outage capacity where the subscript p denotes Pout . Hence, the achievable information
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FIGURE 15.2-3

Ergodic capacity ofMIMO channels.

rate will exceed Cp for 100(1 — P0ut)% of theMIMO channel realizations. Equivalently,

if we transmit a large number of frames, the transmission of a frame will fail (contain

errors) with probability P0ut-

To evaluate the outage capacity of aMIMO channel, let us consider a channel matrix

H
,
whose elements are iid, complex-valued, circularly symmetric, zero-mean Gaussian

with unit variance. Then, for each realization ofH
,
say Hk ,

the corresponding capacity

Ck is given by Equation 15.2-1 1 for any SNR 8S /No. Ifwe consider the ensemble of all

possible channel realizations for any given SNR, the PDF of Ck may appear as shown
in Figure 15.2-4.

The cumulative distribution function (CDF) is

F(C) = P(Ck < C)

Figure 15.2-5 illustrates the CDF for NT = Nr = 2 and NT = NR = 4 MIMO
channels and a SISO channel for an SNR of 10 dB. The outage capacity at some

specified outage probability is easily determined from F(C ) for any given SNR.
Figure 15.2-6 illustrates the 10% outage capacity as a function of the SNR for

Nt = Nr = 2 and Nt = Nr = 4 MIMO channels and for a SISO channel. We
observe that, as in the case of the ergodic capacity, the outage capacity increases as the

SNR is increased and as the number of antennas Nr = Nt increases.
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FIGURE 15.2-6

10% Outage capacity ofMIMO channels.

15.2-5 Capacity ofMIMO Channel When the Channel Is Known
at the Transmitter

We have observed that when the channel matrix H is known only at the receiver, the

transmitter allocates equal power to the signals transmitted on the multiple transmit

antennas. On the other hand, if both the transmitter and the receiver know the channel

matrix, the transmitter can allocate its transmitted power more efficiently and thus

achieve a higher capacity.

Let us consider aMIMO system with Nj transmit antennas and Nr receive antennas

in a frequency-nonselective channel. The channel matrix H is assumed to be of rank

r. Hence, using an SVD, H is represented as H = UHVH
. Since H is known at

the transmitter and the receiver, the transmitted signal vector of dimension r x 1 is

premultiplied by the matrix V, and the received signal is premultiplied by the matrix

UH as previously described in Section 15.1-2 and in Figure 15.1-5. The transmitted

signal vector s has zero-mean, complex-valued Gaussian elements. The sum of the

variances of the elements of s is constrained to be equal to Nt, i.e.,

£(S
"
S ) = ££[N 2

] =ir°l = Nt
k= 1 k—\

Hence, the signal transmitted on the Nj antennas is \/£jNr Vs.

(15.2-24)
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The received signal vector is

Nt
HV, + „ = ^-uz, + i

After premultiplying y by UH
,
we obtain the transformed r x 1 vector

(15.2-25)

y’ = UHy = ^Ijj-Zs + r)' (15.2-26)

where rj
' = UH rj.

We observe that the channel characterized by the Nr x Nt channel matrix is

equivalent to r decoupled SISO channels, whose output is

y'k
=
y

+ rj'k ,
k = 1, 2, . .

.

,

r (15.2-27)

Therefore, the capacity of the MIMO channel for a specific power allocation at the

transmitter is

C ({4}) =i 1082 (l + (15.2-28)

Note that the energy transmitted per symbol on the kth subchannel is SsoI/Nt.
The transmitter allocates its total transmitted power across the NT antennas so as to

maximize C ({a^}). Thus, the capacity of the MIMO channel under the optimum

power allocation is

c=
«?S

log2
(
1+l^4)

(15 -2"29)

where the constraint on the{a^} is given by Equation 15.2-24. The maximization

in Equation 15.2-29 can be performed by numerical methods. Basically, the solution

satisfies the “water-filling principle,” which allocates more power to subchannels which

have low noise power, i.e., according to the ratio iVo/A.^, and less power to subchannels

that have high noise power.

For an ergodic channel, the average (ergodic) capacity, is determined by averaging

the capacity given in Equation 15.2-29 for a given H over the channel statistics, i.e.,

over the joint PDF of {A.^}. Thus,

c=£feS
l0&

(
1+ ^‘-)} <15 '2-30,

This computation can be performed numerically when the joint PDF of the eigenvalues

{A.^} is known.
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15.3

SPREAD SPECTRUM SIGNALS AND MULTICODE TRANSMISSION

In Section 15.1 we demonstrated that a MIMO system transmitting in a frequency-

nonselective fading channel can employ identical narrowband signals for data trans-

mission. The signals from the Nt transmit antennas were assumed to arrive at the

Nr receive antennas via NtNr independently fading propagation paths. By knowing

the channel matrix H, the receiver is able to separate and detect the Nt transmitted

symbols in each signaling interval. Thus, the use of narrowband signals provided a

data rate increase (spatial multiplexing gain) of Nt relative to a single-antenna sys-

tem and, simultaneously, a signal diversity of order Nr, where Nr>Nt , when the

maximum-likelihood detector is employed.

In this section we consider a similar MIMO system with the exception that the

transmitted signals on the Nt transmit antennas will be wideband, i.e., spread spectrum

signals.

15.3-1 Orthogonal Spreading Sequences

The MIMO system under consideration is illustrated in Figure 15.3-1 (a). The data

symbols [sj, 1 < j < NT ] are each multiplied (spread) by a binary sequence [cjk, 1 <
k < Lc , 1 < j < Nt} consisting of Lc bits, where each bit takes a value of either +1
or —1. These binary sequences are assumed to be orthogonal, i.e.,

Lc

^2/CjkCik = 0, (15.3-1)

k=

1

For example, the orthogonal sequences may be generated from Nt Hadamard code-

words of block length Lc ,
where a 0 in the Hadamard codeword is mapped into a —1

and a 1 is mapped into a +1. The resulting orthogonal sequences are usually called

Walsh-Hadamard sequences.

The transmitted signal on the jth transmit antenna may be expressed as

sj(f) = J^tcjkrt - kTc ), 0 < t < T; j = 1, 2, . .
.

,

NT (15.3-2)

V nt k=l

where £s/Nt is the energy per transmitted symbol, T is the symbol duration, Tc =
T/Lc ,

and g(t) is a signal pulse of duration Tc and energy l/Lc . The pulse g(t) is

usually called a chip, and Lc is the number of chips per information symbol. Thus, the

bandwidth of the information symbols, which is approximately l/T, is expanded by

the factor Lc , so that the transmitted signal on each antenna occupies a bandwidth of

approximately l/Tc .

The MIMO channel is assumed to be frequency-nonselective and characterized by

the matrix H, which is known to the receiver. At each receiving terminal, the received

signal is passed through a chip matched filter and matched to the chip pulse g(t), and
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its sampled output is fed to a bank of Nt correlators whose outputs are sampled at the

end of each signaling interval, as illustrated in Figure 15.3—1(b). Since the spreading

sequences are orthogonal, the Nt correlator outputs at the rath receive antenna are

simply expressed as

ymj — s
j\l^ hmj + r1mj »

ra = 1, 2, . .
. , Nr, j = 1,2,..., Nt (15.3-3)

where { rjmj } denote the additive noise components, which are assumed to be zero mean,

complex-valued circularly symmetric Gaussian iid with variance E [l^mjl
2
]
= & 2

-

It is convenient to express the Nr correlator outputs corresponding to the same

transmitted symbol sj in vector form as

yj = j^
sjhj + Vj (15.3-4)

where yj = \y Xj y2j •
•

• yNRj Y, hj = [h Xj h2j hNRj ]‘, and = [r] Xj mj •
• • r)NRjY.

The optimum combiner is a maximal ratio combiner (MRC) for each of the transmitted

symbols {sj}. Thus, the output of the MRC for the j th signal is

M/ - hfyj

Si II hj III +hfrij. j = 1, 2, . .
. ,
Nt

(15.3-5)

The decision metrics {/x
; } are the inputs to the detector, which makes an independent

decision on each symbol in the set {sj } of transmitted symbols.

We observe that the use of orthogonal spreading sequences in a MIMO system

transmitting over a frequency-nonselective channel significantly simplifies the detector

and, for a spatially white channel, yields Nr -order diversity for each of the transmitted

symbols {s
; }. The evaluation of the error rate performance of the detector for standard

signal constellations such as PSK and QAM is relatively straightforward.

Frequency-Selective Channel If the channel is frequency-selective, the orthogo-

nality property of the spreading sequences no longer holds at the receiver. That is, the

channel multipath results in multiple received signal components which are offset in

time. Consequently, the correlator outputs at each of the antennas contain the desired

symbol plus the other Nt — 1 transmitted symbols, each scaled by the correspond-

ing cross-correlations between pairs of sequences. Due to the presence of intersymbol

interference, the MRC is no longer optimum. Instead, the optimum detector is a joint

maximum-likelihood detector for the Nj transmitted symbols received at the Nr receive

antennas.

In general, the implementation complexity of the optimum detector in a frequency-

selective channel is extremely high. In such channels, a suboptimum receiver may be

employed. A receiver structure that is readily implemented in a MIMO frequency-

selective channel employs adaptive equalizers at each of the Nr receivers prior to

despreading the spread spectrum signals. Figure 15.3-2 illustrates the basic receiver
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structure. The received signal at each receive antenna is sampled at some multiple

of the chip rate and fed to a parallel bank of Nt fractionally spaced linear equaliz-

ers, whose outputs are sampled at the chip rate. After combining the respective Nr
equalizer outputs, the NT signals are despread and fed to the detector, as illustrated in

Figure 15.3-2. Alternatively DFEs may be used, where the feedback filters are operated

at the symbol rate.

Training signals for the equalizers may be provided to the receiver by transmitting

a pilot signal from each transmit antenna. These pilot signals may be spread spec-

trum signals that are simultaneously transmitted along with the information-bearing

signals. Using the pilot signals, the equalizer coefficients can be adjusted recursively

by employing a LMS- or RLS-type algorithm.

15.3-2 Multiplexing Gain Versus Diversity Gain

As we have observed from our previous discussion, the use of orthogonal spreading

sequences to transmit multiple data symbols makes it possible for the receiver to separate

the data symbols by correlating the received signal with each ofthe spreading sequences.

For example, let us consider the MISO system shown in Figure 15.3-3, which has

Nt transmit antennas and one receive antenna. As shown, NT different symbols are

transmitted simultaneously on the Nt transmit antennas. The receiver employs a parallel

cnt

FIGURE 15.3-3

MISO system with spread spectrum signals.
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bank of Nt correlators. Thus, the output of the j th correlator is

yj = hj + Vj, j = 1 , 2, . .
.

,

Nt (15.3-6)

where hj is the complex-valued channel parameter associated with the propagation

of the yth transmitted signal. Hence, the detector computes the decision variables

{yj h*, j = 1, 2, . .
.

,

Nt} and makes an independent decision on each transmitted

symbol. In this configuration, theMISO system achieves a multiplexing gain (increase in

data rate) of Nt ,
but there is no diversity gain. Alternatively, if two or more transmitting

antennas transmit the same information symbol, the receiver can employ a maximal

ratio combiner to combine the received signals carrying the same information and, thus,

achieve an order of diversity of 2 or more at the expense of reducing the multiplexing

gain. If all Nt transmit antennas are used to transmit the same information symbol,

the receiver can achieve Nt -order diversity, but there would be no multiplexing gain.

Thus, we observe that there is a tradeoff between muliplexing gain and diversity gain.

More generally, in a MIMO system with Nt transmit antennas and Nr receive

antennas, the multiplexing gain can vary from 1 to Nt and the diversity gain can

vary from NrNt to Nr, respectively. Thus, an increase in diversity gain is offset

by a corresponding decrease in multiplexing gain and vice versa. Although we have

described this tradeoff between multiplexing gain and diversity gain in the context

of orthogonal spreading sequences, this tradeoff is also appropriate in the context of

narrowband signals.

15.3-3 Multicode MIMO Systems

In Sections 15.3-1 and 15.3-2, we considered spread spectrum MIMO systems in

which a single sequence was used at each transmitting antenna to spread a single

information symbol. However, it is possible to employ multiple orthogonal sequences

at each transmitting antenna, to transmit multiple information symbols and thus to

increase the data rate.

Figure 1 5.3^4 illustrates this concept with the use of two transmit and two receive

antennas (Nr = Nt = 2). There are K orthogonal spreading sequences that are used

to spread the spectrum of K information symbols at each transmitter. The same K
spreading sequences are used at all the transmitters. Thus, with NT transmit antennas

there are KNt information symbols that are transmitted simultaneously. At each trans-

mitter, the sum of K spread signals is multiplied by a pseudorandom sequence pj ,

called a scrambling sequence
,
consisting of statistically independent, equally probable

+ls and — Is occurring at the chip rate of the orthogonal sequences {Ck }. The scram-

bling sequences used at the Nt different transmitters are assumed to be statistically

independent. These scrambling sequences serve as a means to separate (orthogonalize)

the transmissions among the Nt transmit antennas, and have a length L s ,
which may

be equal to or larger than the length L c of the orthogonal sequences, where L c is the

number of chips per information symbol. The scrambled orthogonal signals at each
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antenna may be expressed as

r~s
k l°

Sj(t) = \ sjk ckiPjjg(t — iTc ), j = 1,2, . .
. , Nj',0 < t < T

V KNT k=l i=l

(15.3-7)

where pj is the scrambling sequence at the j th transmitter, Sj = |>; i sj2 •
• • sjK ]* is the

vector of information symbols transmitted from the j th antenna, ck = [ck i ck2 •
• •

is the kth orthogonal spreading sequence, g(t ) is the chip signal pulse of duration Tc and
energy l/L c ,

and £s/KNt is the average energy per transmitted information symbol

at each antenna.

At each receive antenna, the received signals are passed through a chip matched

filter and sampled at the chip rate. The samples at the output of the chip matched

filters are descrambled and cross-correlated with each of the K orthogonal sequences.

The correlator outputs are sampled at the symbol rate. Assuming that the scrambling

sequences are orthogonal, these samples may be expressed as

yjk =
£s

knt
sjk hj + j = l,2,...,iVr ;

*=1,2,...,* (15.3-8)

where yjk = [yijk y2jk • •
• yNRjkY,hj = [h Xj h2j •

• • hNRj ]\ and rj jk = [mjkmjk *

VNRjkY is the additive Gaussian noise vector. Thus, the transmitted symbols are decou-

pled by use of orthogonal scrambling and spreading sequences. These samples are fed

to the maximal ratio combiner which computes the metrics

Nk = hfyjk

= ^Y^sjk II
h
} \\

2
f +hf Vjk , j = 1,2,..., NT \

k = 1,2, . .
. ,
K

(15.3-9)

These metrics are passed to the detector which makes a decision on each of the trans-

mitted information symbols based on a Euclidean distance criterion. We should note

that if the scrambling sequences are not orthogonal, we have intersymbol interference

among the symbols transmitted on the Nt antennas. In such a case, a multisymbol (or

multiuser) detector must be employed.

In a frequency-selective channel, the orthogonality among the multiple codes is de-

stroyed. In such channels, a practical implementation of the receiver employs adaptive

equalizers to restore the orthogonality of the codes and mitigates the effects of inter-

chip and intersymbol interference. Figure 15.3-5 illustrates such a receiver structure.

Training signals for the equalizers are usually provided to the receiver by transmitting

a pilot signal from each transmit antenna. These pilot signals may be spread spectrum

signals that are simultaneously transmitted along with the information-bearing signals.

For example, the pilot signals may be transmitted with the spreading code c x at each

transmit antenna. Using the pilot signals, the equalizer coefficients can be adjusted

recursively by employing either an LMS or RLS type of algorithm.
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15.4

CODING FOR MIMO CHANNELS

In this section we describe two different approaches to code design forMIMO channels

and evaluate their performance for frequency-nonselective Rayleigh fading channels.

The first approach is based on using conventional block or convolutional codes with

interleaving to achieve signal diversity. The second approach is based on code design

that is tailored for multiple-antenna systems. The resulting codes are called space-time

codes. We begin by recapping the error rate performance of coded SISO systems in

Rayleigh fading channels.

15.4-1 Performance of Temporally Coded SISO Systems

in Rayleigh Fading Channels

Let us consider a SISO system, as shown in Figure 15.4-1, where the fading channel

is frequency-nonselective and the fading process is Rayleigh-distributed. The encoder

generates either an (n, k) linear binary block code or an (n, k) binary convolutional

code. The interleaver is assumed to be sufficiently long that the transmitted signals

conveying the coded bits fade independently. The modulation is binary PSK, DPSK,

orFSK.

The error probabilities for the coded SISO channel with Rayleigh fading are given

in Sections 14.4 and 14.7. Let us consider linear block codes first. From Section 7.2-4,

the union bound on the codeword error probability for soft decision decoding is

M

Pe<J2 P2(^m) < (M - l)P2 (4nin) < 2*P2(4nin) (15.4-1)

m=

2

where P2(wm ) is the pairwise error probability given by the expression (see Sec-

tion 14.7-1)

PliWm) = (t
4 (15.4-2)

FIGURE 15.4-1

Temporally coded SISO system.
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and

YbRc

1 + YbRc

iff =
YbRc/( 1 + YbRc )

YbRc/(2 +

BPSK

DPSK

FSK (noncoherent detection)

(15.4-3)

For simplicity, we will use the simpler (looser) upper bound obtained by assuming

that Yb 1 in the expression for P2(dmm ). Thus, we obtain

where

Pe < 2kP2(dmin)

< 2k
2dm \n 1

tfRcYb,

(15.4-4)

f 4 BPSK

q = < 2 DPSK (15.4-5)

I 1 FSK (noncoherent detection)

We observe that for soft decision decoding, the error probability decays exponentially

as 1 /YbRc ^
where the exponent is equal to 4m, the minimum Hamming distance of the

block codes.

For hard decision decoding, we employ the Chernov bound given in Section 14.4,

which may be expressed as

Pe < 2
k
[4p(\ - p)]*™'2 (15.4-6)

where the error probability per coded bit is given as

1 — xlr

P = ( 15.4-7)

and f is defined in Equation 15.4—3. For //, 1 . the Chernov bound simplifies to

/ ^
\ ^min/2

Pe < 2*1-2—

)

(15.4-8)
\qRcYb

where q is defined in Equation 15.4-5. As in the case of soft decision decoding, the error

probability decays exponentially as l/%Rc\ however, the exponent for hard decision

decoding is rfmm/2. Therefore, soft decision decoding provides twice the signal diversity

that is obtained by hard decision decoding.

For convolutional codes with soft decision decoding, we use the union bound

derived in Section 14.3, namely,

oo

Pb < ^p2 (d) (15.4-9)
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where P2(d) is given by Equation 15.4-2 and f is defined by Equation 15.4-3. If

Yb 1, we obtain the simpler form for the pairwise error probability, i.e.,

Pi(d)
2d - 1 \ / 1

d j \qRcYb
(15.4-10)

where q is defined by Equation 15.4-5. We observe that the leading term in Equation

15.4-9 has an exponent of d = dfree . Hence, for soft decision decoding, the leading

term in the error probability decays exponentially as l/yt,Rc ,
where the exponent is

dfree, the free distance of the convolutional code.

For hard decision decoding, we again use the Chernov bound for the pairwise error

probability

P2(d) < [4p(l - p)]
d?2 (15.4-11)

where p is defined by Equation 15.4-7 and f is defined by Equation 15.4-3. Hence,

with ft, ^>, P2(d) simplifies to

Pi(d) <
4

d/2

qRcYb
(15.4-12)

and the bit error probability is upper-bounded as

oo

pb < y. Pd
d=dfvee

(15.4-13)

As in the case of block codes, we observe that with hard decision decoding, the signal

diversity achieved by the code is reduced by a factor of 2 compared with soft decision

decoding.

With this background on the performance of coded SISO systems, we now consider

the performance of coded MIMO systems.

15.4-2 Bit-Interleaved Temporal Coding for MIMO Channels

We consider the MIMO system as shown in Figure 15.4-2, which has Nt transmit

antennas and Nr receive antennas (NR > NT )- The encoder may generate either a

binary block code or a convolutional code. The interleaver is selected to be suffi-

ciently long that the coded bits in a block of the block code or in several constraint

lengths of the convolutional code fade independently. The MIMO channel is assumed

to be frequency-nonselective with zero-mean, complex-valued, circularly symmetric

Gaussian distributed coefficients {/z,y}, which are identically distributed and mutually

statistically independent. The channel metrix H is assumed to have full rank.

The demodulator output in each signal interval is the vector y given by Equa-

tion 15.1-10. For hard decision decoding, the vector y is fed to the detector, which

may employ any of the three detection algorithms (MLD, MMSE, ICD) described in

Section 15.1-2 to make the hard decisions on the transmitted bits. For soft decision

decoding, the vector y, after deinterleaving, is fed to the decoder. Similarly, for hard
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Nt Transmit
antennas

(a) Transmitter

Nr Receive

antennas

(b) Receiver

FIGURE 15.4-2

Bit-interleaved temporally coded MIMO system.

decision decoding, the bits from the detector output are deinterleaved and fed to the

decoder.

Let us consider the amount of signal diversity that is achieved in the MIMO sys-

tem that employs spatial multiplexing of Nt- Recall from Section 15.1-2 that with

hard decision detection in an uncoded system, we achieved (Nr — Nt + l)-order

signal diversity with linear detection and Nr -order signal diversity with the optimum

maximum-likelihood detector (MLD). From our discussion in Section 15.4-1, we ob-

served that the code provides a diversity of order d^/2 or dfree/2. Therefore, in a coded

MIMO system, the total signal diversity achieved with a linear detector and a hard de-

cision decoder is (Nr — Nt + l)dmin/2 or (Nr — NT + l)rffree/2. On the other hand,

if soft decision decoding is employed, the total diversity order is NrcI^ or NRdfTt& .

We demonstrate the additional diversity achieved with coding and bit-interleaving

by computer simulation of the MIMO system shown in Figure 15.4-2 for a rate Rc =
1/2 convolutional code with dfree = 5 and BPSK modulation. Figures 15.4-3 and

15.4-4 illustrate the performance of the MIMO system for binary PSK with hard

decision decoding and soft decision decoding, for (Nt, Nr) = (2, 2) and (Nt, Nr) =
(2,3). We observe that coding with interleaving improves the performance oftheMIMO
system relative to the performance of the uncoded system at the cost of a reduction in the

data throughput rate by the reciprocal of the code rate. For (Nt, Nr) = (2, 3) and hard

decision decoding, theMMSE detector with coding performs almost as well as theMLD
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FIGURE 15.4-3

Performance of coded (Rc = 1 /2, dfTee = 5) systems with Nt = NR = 2.

FIGURE 15.4-4

Performance of coded (Rc = 1/2, dfree = 5) systems with Nt = 2, Nr = 3.
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detector with coding. In this case, the signal diversity provided by the convolutional

code enhances the performance of the MMSE detected data more than the performance

of the MLD detected data. We also observe that maximum-likelihood, soft decision

decoding is significantly better than MLD with hard decision decoding. For example,

at 10
-5

,
the difference in performance is more than 5 dB for (Nt, Nr) = (2, 3). This

performance advantage is due to the factor of 2 difference in the order of diversity

achieved by the two types of decoders.

Also plotted in Figures 15.4-3 and 15.4-4 is the ideal performance of rate 1/2,

dfree = 5 coded SIMO (Nt, Nr) = (1,2) and (Nt, Nr) = (1, 3) systems. The signal

diversity achieved by these two systems with soft decision decoding is 10 and 15,

respectively. We observe that there is about a 2-dB degradation at P& = 10“5
in the

performance of the soft decision decoded (2, 2) and (2, 3) MIMO systems compared to

the ideal performance of the corresponding SIMO systems. This loss in performance is

attributed to the interference resulting from the use of multiple transmitting antennas.

The simulation results shown in Figures 15.4-3 and 15.4-4 serve to reinforce our

analytical results on the signal diversity provided by coding with bit interleaving in

a MIMO system. The performance superiority of maximum-likelihood soft decision

decoding over hard decision decoding is clearly evident in these simulation results.

In this section we employed a single encoder and a single interleaver to generate

the coded symbols for transmission on the Nt antennas and a single deinterleaver and

decoder at the receiver. An alternative approach that has been considered in the litera-

ture is to employ separate but identical encoding and interleaving on the dimultiplexed

streams fed to each of the transmit antennas. This approach requires NT parallel en-

coders and interleavers at the transmitter and Nt parallel decoders and deinterleavers

at the receiver. It is especially suitable for situations where multiple data streams from

different users are to be transmitted in parallel on multiple transmit antennas.

15.4-3 Space-Time Block Codes for MIMO Channels

Let us now consider the MIMO system illustrated in Figure 15.4-5. At the transmitter,

the sequence of information bits is fed to a block encoder that maps a block of bits

into signal points selected from a signal constellation such as PAM, PSK, or QAM,
consisting of M = 2b signal points. The signal points generated by the encoder as a

block are fed to a parallel set of identical modulators which map the signal points into

corresponding waveforms that are transmitted simultaneously on the Nt antennas.

A space-time block code (STBC) is defined by a generator matrix G, having N
rows and Nj columns, of the form

gll g 12
' - glNT

#21 g22 ' ' g2NT

gN 1 gN2 ' gNNT

(15.4-14)

in which the elements {g*; }
are signal points resulting from a mapping of information

bits to corresponding signal points from a binary or M-ary signal constellation. By
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Nt Transmit
antennas

Nr Receive

antennas

FIGURE 15.4-5

Space-time block coded MIMO
system.

employing Nt transmit antennas, each row of G consisting of Nt signal points (sym-

bols) is transmitted on the Nt antennas in a time slot. Thus, the first row of Nt symbols

is transmitted on the Nt antennas in the first time slot, the second row of Nt symbols is

transmitted on the Nt antennas in the second time slot, and the Nth row of Nt symbols

is transmitted on the Nt antennas in the Nth time slot. Therefore, N time slots are used

to transmit the symbols in the N rows of the generator matrix G.

In the design of the generator matrix of a STBC, it is desirable to focus on three

principal objectives
: ( 1 ) achieving the highest possible diversity ofNtNr , (2) achieving

the highest possible spatial rate, and (3) minimizing the complexity of the decoder. Our

treatment considers these three objectives.

The Alamouti STBC

Alamouti (1998) devised a STBC for Nt = 2 transmit antennas and Nr = 1 receive

antenna. The generator matrix for the Alamouti code is given as

G = s\ s2

e *S 2 S
\

(15.4-15)

where s\ and s2 are two signal points selected from an M-ary PAM, or PSK or QAM
signal constellation with M = 2b signal points. Thus, 2b data bits are mapped into two

signal points (symbols) s\ and s2 from the M-ary signal constellation. The symbols s\

and s2 are transmitted on the two antennas in the first time slot, and the symbols —

and s* are transmitted on the two antennas in the second time slot. Thus, two symbols,

s\ and s2 ,
are transmitted in two time slots. Consequently, the spatial code rate Rs = 1

for the Alamouti code. This is the highest possible rate for a (orthogonal) STBC.
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The MISO channel matrix for the Nt = 2, Nr = l channel, based on a frequency-

nonselective model, is

H = [hn hn l (15.4-16)

In the decoding of the STBC, we assume that H is constant over the two time slots.

Consequently, the signal at the output of the matched filter demodulator of the receiver

in the two time slots is

yi =h n si +hns2 + m
yi = —hn^2 + h\2s\ + r}2

(15.4-17)

where rj\ and rj2 are zero-mean, circularly symmetric complex-valued uncorrelated

Gaussian random variables with equal variance <7
2

.

Let us considerML decoding of the symbols in Equation 15.4-17, with the objective

of achieving the full diversity of the STBC. Since rj\ and rj2 are uncorrelated zero-mean

Gaussian random variables with equal variance, the joint conditional PDF of y\ and y2
is

P(yi,y2\h xx ,h x2 ,s x ,s2) = ^Lexp{- [l^i
~ h ns\ -h x2s2 \

2

+\y2 + h xxsl-h x2s*x \

2

}} /lot (15-4-18)

Therefore, the Euclidean distance metric for ML decoding is

p(s x , s2 ) = lyi - h xx s x
- h X2s2 \

2 +
Iy2 + h xx sl - h X2s\\

2
(15.4-19)

The optimum ML decoder computes the Euclidean metrics
,
S2 ) for each pos-

sible pair of symbols and selects the symbol pair that results in the smallest metric.

The computational complexity of the ML decoding procedure is exponential in

the number of symbol pairs; i.e., there are M2 = 2lb symbol pairs in the above metric

computations. However, the computational complexity can be reduced ifwe expand the

right-hand side of Equation 15.4-19 and drop the term |yi |

2 +
1 3

^2 1

2
9
which is irrelevant

to the decision. Thus, we obtain

mC*i. S2 ) = l^il
2

[\h XX \

2 +
1

^ 12 1

2
]
- 2 Re [yJ'/iiiSi +y2h*ns x ]

+M 2
[\hn\

2 + \h X2 \

2
}

- 2 Re [yfh x2s2 - y2h*n s2 \
(15.4-20)

= fi(s x ) + n(s2)

Now, we observe that the metrics /jl(s i) and fi{s2 ) can be computed separately; i.e.,

we determine the symbol s\ that minimizes ^(^O and the symbol £2 that minimizes

fi(s2 ). Thus, the computational complexity is significantly reduced from computingM2

metrics to 2M metrics.

A further simplification in decoding results when the signal points in the con-

stellation have equal energy, as in PSK constellations. In such a case, the bias energy

terms |si|
2

[|/*n |

2 + I/Z12I
2

]
andl^l

2
[l^n |

2 + I^i2l
2

]
can be ignored. Furthermore, the

metrics ii(s 1 ) and fi(s2 ) can be rearranged as correlation metrics, defined as

ixc (s x )
= Re [yj^nsi + yih^]

(mc(s2 )
= Re [y x

h x2s2 - y2h*n s2 ]

(15.4-21)
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That is, we correlate y* with all possible values of s\
9
scaled by hn ,

and y2 with all

possible values of s \ ,
scaled by /z*2 ,

and select the s\ that results in the largest correlation

metric /xc (si). A similar computation is performed to find the value of s2 that yields the

largest /nc (s2 ).

For PAM and QAM signal constellations, the correlation metrics include the bias

terms in Equation 15.4-20. Hence, the correlation metrics may be expressed as

McOi) = 2 Re [yJTinSi + y2h*12s x ] - |si
\

2
[\hn \

2 + \h l2 \

2
}

/M>2) = 2 Re [yfhi2S2 ~ y2h*n s2 ] - |s2 l

2
[|/inl

2 + \hn\
2
]

It is interesting to note that for the particular symbol si that is contained in yi and

y2 , the signal component in the metric n r (,Vi ) is the largest possible and has the value

ElfiM)] = |ii|
2

[\hn \

2 + \hn \

2

}
(15.4-23)

where the expectation is taken over the additive Gaussian noise. Similarly, we have

E[Hc(s2 )] = M 2
[\hn \

2 + 1^12

1

2

]
(15.4-24)

Since each signal term contains the term [\hn\
2 + \h \ 2 \

2
] ,

the ML decoder achieves a

diversity of order 2, which is the maximum possible diversity with NT = 2 and Nr = 1

antennas.

Instead of computing the correlation metrics as defined in Equation 15.4-22, an

equivalent detector (see Problem 15.15) computes the estimates of the symbols s\ and

^2 as follows:

51 = y\h*n +yf/*i2

52 = y\h\2 - y%hn
(15.4-25)

and it selects the symbols s 1 and s2 that are closest to Si and s2 in Euclidean distance.

We make the following observation on the Alamouti STBC. First, we observe that

the code achieves the largest possible diversity. Second, through the separation of the

detector metrics given in Equation 15.4-22 or, equivalently, the estimates Si and S2 given

in Equation 15.4-25, the maximum-likelihood detector has low complexity. These two

desirable properties were achieved as a result of the orthogonality characteristic of the

generator matrix G for the Alamouti code, which we may express as

G
=[-S rfj

<15 '4-26)

We observe that the column vectors v\ = (gi, —g^Y andi>2 = (g2 , g*Y are orthogonal;

i.e., v\ • v2 = 0 and, furthermore,

GHG=[\ gl \

2 + \g2 \

2]l2 (15.4-27)

where l 2 is a 2 x 2 identity matrix. As a consequence of this property, when we express

the received signal given in Equation 15.4-17 as

yi 1 Un hn 1 pi]
,

[ J7i

’

_y2 _ J1
*
2 ~^h _ _

s2
_

y = H2l s + i) (15.4-28)
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and form the estimates Si and S2 as prescribed in Equation 15.4-25 from y in Equa-

tion 15.4-28, we obtain

r h *n n hn yi

'

_
S2_

h *
L
nn —ha [yU

Therefore,

= H”H 21 s + H”l
ri

= [\hn \

2 + \h l2 \

2}s + H”r,
(15.4-29)

H^H21 = [\h n \

2 + \h l2 \

2

}
l2 (15.4-30)

Thus, full diversity and low decoding complexity are achieved as a consequence of the

orthogonality property of G given in Equation 15.4-27.

Alamouti Code with Multiple Receive Antennas

We shall now demonstrate that the Alamouti code achieves the maximum possible

diversity of NTNR = 2

N

R when the number of receive antennas is increased to NR . In

this case, the NR x 2 channel matrix is

H = [hy h2 ]
=

h\i h\2

h2 \ h22

(15.4-31)

In the first transmission, the received signal is

y\ = h + Vi

and in the second transmission, the received signal is

yi = H
~S2

if
+ J/2

(15.4-32)

(15.4-33)

As in the case of the MISO Nj = 2, NR = 1 system, we may combine Equa-

tions 15.4—32 and 15.4-33 into the equation

y i = H2Nr

where H2nr is defined as follows:

H2nr = h%

+

h2

-h\

ni

t2
(15.4-34)

(15.4-35)

Here h
\
and h2 are the column vectors of the channel matrix given in Equation 1 5.4-3 1

.
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Suppose we form the estimates Si and $2 as

i

i

^

<N

ZTHH 2Nr
y i’

— ^2Nr ^2Nr

It is easily verified that

[Nr

+ H2NR
Vi

V*2

^2Nr ^2Nr —
Li=l

= II HI F *2

Consequently, Equation 15.4—36 simplifies to

=
11 i/ll + HH

2Nr
nl

(15.4-36)

(15.4-37)

(15.4-38)

We conclude that the Alamouti code achieves the full diversity of 2Nr available

in the MIMO system with NT = 2 transmit and Nr receive antennas. Furthermore, the

maximum-likelihood decoder bases its decisions on the decoupled estimates Si and s2

obtained from Equation 15.4—36 as

Si = h^yi + y%h2

h = h%y 1 - yghi

Hence, implementation complexity of the detector is minimized.

(15.4-39)

Orthogonal Code Design for Nt > 2 Transmit Antennas

The design of orthogonal generator matrices for more than Nt = 2 transmit antennas

has been extensively studied. Jafarkhani (2005) gives a comprehensive treatment on

their construction based on early work by Hurwitz and Radon (1922) on the design of

real orthogonal matrices. A real N x N matrix G with entries g\, —g\, g2 , —gi,

gN, —gN ,
is said to be orthogonal if

O'

a

=
\i=l J

(15.4-40)

where /# is the N x N identity matrix. It can be shown (Jafarkhani (2005)) that rate

Rs = 1 real orthogonal matrix designs exist only for N = 2, 4, 8. For example, a real

orthogonal matrix for Nt = 4 transmit antennas is the following:

G =
g i

-82

-83

84

g2

g 1

g4

—g3

g3

~g4

gl

g2

g4

g3

-g2

gl

(15.4-41)

With {gj } equal to {^} in the generator matrix in.Equation 15.4-41, this code transmits

four symbols in four consecutive time slots. Hence, Rs = 1 for this code.
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Real orthogonal generator matrices are suitable for transmitting PAM signal con-

stellations and squareQAM signal constellations that can be decoupled into two separate

PAM signal constellations. Real orthogonal generator matrix designs provide a diver-

sity of order NrNr and result in simple maximum-likelihood decoding by decoupling

the decision for each transmitted symbol.

The orthogonality property which results in a low-complexity maximum-likelihood

detector can be achieved for N > 8 at the cost of a lower spatial rate. Such space-time

block codes are called generalized orthogonal codes and are defined by a K x N
generator matrix G with real entries —g\, g2, —g2, • • •

, gK ,
—gK, that satisfies the

property

G tG = b

where b is a constant. The spatial rate is Rs = K/N.
The Alamouti code is an example of an orthogonal complex matrix design for

Nt = 2. It has been shown in the literature (see Jafarkhani (2005) and Tarokh et al.

(1999a)) that orthogonal complex matrix designs with Rs = 1 do not exist for Nj > 2

transmit antennas. However, by reducing the code rate, it is possible to devise complex

orthogonal designs for two-dimensional signal constellations. For example, an orthog-

onal generator matrix for a STBC that transmits four complex-valued (PSK or QAM)
symbols on Nj = 4 transmit antennas is

Si s2 ^3 S4

-S2 Si -s4 S3

S3 s4 Si -S2

-s4 S3 S2 si

S
1

S2
C.*
^3 S4

_ c*
^2 *1* -*4* C.*

^3

_ c* o* ~S2
_ c*s4

_ c.*
^3 *2*

(15.4-42)

For this code generator, the four complex-valued symbols are transmitted in eight

consecutive time slots. Hence the spatial rate for this code is Rs = 1/2. We also

observe that

4

G"G = X>il 2
]/4 (15.4-43)

1= 1

so that this code provides fourth-order diversity in the case of one receive antenna and

4Nr diversity with NR receive antennas.

Complex orthogonal matrices with rate Rs < 1/2 exist for any number of transmit

antennas. However, Wang and Xia (2003) have shown that complex orthogonal matrices

for rates Rs > 3/4 do not exist. Rate ^ = 3/4 complex orthogonal matrices do exist.

The following Rs = 3/4 complex orthogonal generator matrices are given in the paper
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by Tarokh et al. (1999a) for Nt = 3 and Nt = 4 transmit antennas:

Si s2 S3/V2

G _
~s2 S

1
53/\/2

S\S/y/2 s\/-j2 (-5! - sf + s2 - si)/

2

—

s

|/\/2 (J2+S2+ Si — s
l)/2

(15.4-44)

'si S2 S3/V2 S3/V2

_ sf S3/V2 -S3/V2

S
37V2 S3/V2 (-S! - s* + s2 - i|)/2 (-S2 - si + Si - sl)/2

sl/V2 -S37V2 (s2 + s2
* + Si - sp/2 -(Si + sf + s2 - si)/

2

(15.4-45)

Finally, we should indicate that orthogonal generator matrix designs are not unique.

To demonstrate this point, let V denote a unitary matrix, i.e., UHU = /, and let G be

a complex orthogonal matrix. Define Gu = UG. Then

= (UG)
hUG

= GhUhUG (15.4—46)

= GHG

Hence, a system employing the generator matrix Gu has the same properties as a system

employing G.

Quasi-orthogonal Space-Time Block Codes As we have observed, orthogonal

STBCs have the desirable property that the maximum-likelihood (ML) detector reduces

to one that detects each symbol separately. Furthermore, for N = 2, 4, and 8, a real

orthogonal STBC yields full diversity. Similarly, for N = 2, the Alamouti code with

complex elements yields full diversity. We also observed that by reducing the code rate,

it is possible to design (generalized) orthogonal codes having either real or complex

elements. Thus, the low complexity of separate symbol detection can be maintained at

the expense of a reduced rate and diversity.

On the other hand, we may relax the orthogonality condition which results in

separate ML detection and attempt to design STBC with spatial rate Rs = 1 and full

diversity. The simplest detector of such a design is one that allows for pairwise ML
symbol detection. Such a code is called quasi-orthogonal. For example, a complex

quasi-orthogonal STBC with rate Rs = 1 is specified by the generator matrix

S\ $2 ^3 S4

s* s
3

*

53 -S% s|

54 S3 —S2 Si _

The transmitted symbols for this code can be optimally detected by a pairwise ML
detector, and the code yields full diversity (see Problem 15.23).
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Differential Space-Time Block Codes

In the application of the Alamouti code, as we have observed, it is assumed that the

channel path coefficients {/z
j; } are constant over two successive time intervals. For

NT > 2 transmit antennas, the time interval over which the channel path coefficients

are assumed to be constant is even larger. For example, the STBCs given in Equa-

tions 15.4-41, 15.4-44, and 15.4-45 are constructed based on the assumption that the

channel path coefficients are constant over four time intervals. In a fading channel,

this assumption is usually not satisfied precisely. That is, in practice, the channel path

coefficients vary to some extent from one time interval to another. Consequently, the

performance of the coherent detector may be degraded by the channel variation from

one signal interval to the next. Further deterioration in the performance of the detector is

caused by noisy estimates of the channel path coefficients {/z,
; }. Typically, in practical

systems, the transmitter sends pilot signals that the receiver uses to obtain estimates

of the channel path coefficients. Then the estimates are used in the demodulation and

detection of the STBC. In general, these estimates are noisy and cause some deteri-

oration in the performance of the system. The effects of channel time variations and

noisy channel estimates on the performance of the STBC have received considerable

attention in the technical literature, e.g., Tarokh et al. (1999b), Buehrer and Kumar

(2002), Gu and Leung (2003), and Jootar et al. (2005).

In rapidly fading channels, where the channel time variations preclude the use of

coherent STBC, one may employ differential space-time modulation, which is akin to

differential PSK (DPSK). Differential STBCs do not require knowledge of the channel

path coefficients at the receiver. Consequently, the detector performs differentially

coherent detection. As a result, the performance achieved by a differential STBC on

a Rayleigh fading channel is approximately 3 dB worse than the performance of a

coherently detected STBC. Differential STBCs are described in the papers by Tarokh

and Jafarkhani (2000), Hughes (2000), Hochwald and Sweldens (2000), Tao and Cheng

(2001), Jafarkhani and Tarokh (2001), Jafarkhani (2003), and Chen et al. (2003).

15.4-4 Pairwise Error Probability for a Space-Time Code

In this section we derive an expression for the pairwise error probability for a space-time

coded MIMO system that is communicating over a frequency-nonselective Rayleigh

fading channel. The MIMO system is assumed to employ a STBC for Nj transmit

antennas and have spatial rate Rs = Nj/N
,
where N is the block length (number of

time slots used to transmit the block code).

Let us denote the signal elements transmitted in each time slot by the vector s(l) =
|>i (/) S2Q) •

• snt (/)]' for 1 < l < N and let the space-time codeword be denoted by the

Nt x N matrix S = [s'(l) ^(2) * - * s(N)]. Then the transmitted signal may be expressed

in matrix form as
,

X = (15.4-47)

and the received signal may be expressed as

Y = HS + N (15.4-48)
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where H is the Nr x Nt channel matrix with path coefficients {hij }, which are constant

over the entire codeword, Y = [y(l) y(2) •
•

• j(A0] with

y(l ) = \
-j-Hs(l) + ri(l), 1 < / < N (15.4-49)

y Nt

and N = [rj( 1) rf(2) . .

.

rj(N)] represents the additive noise. The noise components are

assumed to be statistically independent and identically distributed, zero-mean, complex-

valued Gaussian with variance No.

The receiver employs a maximum-likelihood (ML) decoder that is assumed to

know the channel matrix H. Since the additive noise components are iid, the decoder

searches for the valid codeword that is closest in Euclidean distance to the received

codeword. Thus, the decoder output is

S = arg min ||F - HS
\\

2
F (15.4-50)

S

Let us assume that the codeword S[k> was transmitted. Then the pairwise error

probability (PEP) that is selected when Sik>
is transmitted, for any given channel

matrix realization, is

P(Sm -> = Q
Ss

2N0Nt
||
H(S^-S^)

\\

2
f (15.4-51)

It is convenient to define an Nt x N error matrix as Ey = S,k) — S(k> and to

approximate the PEP by the Chernov bound

P(S(k) -+ SU) \H) < exp
II
HEkj III} (15.4-52)

We can now average this conditional PEP over the statistics of the channel matrix H.
Assuming that the channel path coefficients {hij} are iid, complex-valued zero-mean

Gaussian (spatially white channel), the average of the PEP in Equation 15.4-52 over

the statistics of the channel path coefficients yields the upper bound on the average

PEP as

P(S (*> - SW) < - 1

£ \1 nR

det
(
/nt -\ EkjEj/j

1 T 4N0Nt
1 J

( \
Nr

< n
n=l 1 +

4NqNt )

(15.4-53)

where r is the rank of the NT x A'Y matrix Ay = EyEy and {/.„ }
are the nonzero

eigenvalues of Ay

.
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At high SNR, where Es/ANqNt 1, the bound on the PEP may be expressed as

P(S{k) - S{i)
) < ^ (£s/4NoNT)~

rNR
(15.4-54)

This expression for the PEP suggests the following two criteria for designing ST
codes, namely, the rank criterion and the determinant criterion

,
as described in the

paper by Tarokh et al. (1998). In applying the rank criterion, the objective is to achieve

the maximum possible diversity of NtNr ,
which is obtained when the matrix A^ is

full rank (r = Nr) for any pair of valid codewords. If Akj has minimum rank r for a

pair of codewords, the order of diversity is rNr. In applying the determinant criterion,

the objective is to maximize the minimum of the determinant of matrix Akj
taken over

all pairs(&, j) of valid codewords. The term in the PEP involving the product of the

nonzero eigenvalues of A

^

has been coined as the coding gain of the space-time code.

Hence, the determinant criterion has the objective of maximizing the coding gain of

the space-time code.

15.4-5 Space-Time Trellis Codes for MIMO Channels

We observed in Section 8.12 that trellis-coded modulation (TCM) is a combination of

a trellis code and an appropriately selected signal constellation designed with the aim

of achieving a coding gain. Space-time trellis coding also combines trellis coding and

a selected signal constellation with the primary objective of achieving the maximum
possible spatial diversity at the highest code rate. To achieve this objective, code con-

struction may be based on applying the rank criterion and the determinant criterion

described in Section 15.4-4.

In applying the rank criterion, we optimize the spatial diversity obtained from

the space-time code, or equivalently we maximize the rank of the matrices A
tj
=

(£(') - S ( -/

'

))(S
(i) - S^)H over all pairs (/, j) of codewords. The goal is to achieve the

full rank of Nt . It has been shown (see Jafarkhani (2005)) that for a bit rate of b bps/Hz

and a diversity r, a space-time trellis code (STTC) must have at least 2^r_1) states.

Thus, to achieve full diversity, a STTC must have at least states.

Space-time trellis codes may be designed either manually or with the aid of a

computer by following some simple rules, similar in nature to the rules formulated by

Ungerboeck (1982) for designing trellis codes for TCM. Tarokh et al. (1998) specify

two design rules that guarantee full diversity for MIMO systems with two transmit

antennas.

Design Rule 1: Transitions departing from the same state should differ in the

second symbol (symbol transmitted on the second antenna).

Design Rule 2: Transitions arriving at the same state should differ in the first

symbol (symbol transmitted on the first antenna).

As an example of a STTC, we consider the 4-state trellis code shown in Fig-

ure 15.4-6, which is designed for two transmit antennas and QPSK modulation.
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FIGURE 15.4-6

4-PSK, 4-state, space-time trellis code.

The states are denoted as St = 0, 1, 2, 3. The input to the encoder is a pair of bits

(00, 01, 10, 11) which are mapped into the corresponding phases that are numbered

(0, 1,2,3), respectively. The indices 0, 1,2,3 correspond to the four phases, which are

called symbols. Initially, the encoder is in state St = 0. Then for each pair of input

bits, which are mapped into a corresponding symbol, the encoder generates a pair of

symbols, the first of which is transmitted on the first antenna, and the second symbol is

transmitted simultaneously on the second antenna. For example, when the encoder is

in state St = 0 and the input bits are 1 1, the symbol is a 3. The STTC outputs the pair

of symbols (0, 3), corresponding to the phases 0 and 3tv/2. The zero phase signal is

transmitted in the first antenna, and the 3tv/2 phase signal is transmitted on the second

antenna. At this point the encoder goes to state St = 3. If the next two input bits are

01, the encoder outputs the symbols (3,1) which are transmitted on the two antennas.

Then, the encoder goes to state St = 1, and this procedure continues. At the end of a

block of input bits, say a frame of data, zeros are inserted in the data stream to return

the encoder to the state St = 0. Thus the STTC transmits at a bit rate of 2 bps/Hz. We
note that it satisfies the two design rules given above and achieves full rank of NT = 2.

Increasing the number of states in the trellis beyond 2b states allows the designer to

increase the coding gain by increasing the product of the eigenvalues (determinant) in

the expression for the pairwise error probability. For example, the 8-state STTC, given

in the paper by Tarokh et al. (1998), that transmits at a bit rate of 2 bps/Hz with QPSK
modulation is shown in Figure 15.4-7. This code provides the same diversity order

(2Nr ) as the 4-state STTC illustrated in Figure 1 5 .4-6, but achieves a larger coding gain.

1017
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FIGURE 15.4-7

4-PSK, 8-state, space-time trellis code.

The paper by Tarokh et al. (1998) also describes higher rate codes for two transmit

antennas. For example, Figure 15.4-8 illustrates an 8-state STTC for use with 8-PSK
modulation to achieve a bit rate of 3 bps/Hz and full diversity of Nt = 2. STTC for

large constellations employing QAM are given in the paper by Tarokh et al. (1998) and

other publications in the literature.

In decoding a STTC, the maximum-likelihood sequence detection (MLSD) crite-

rion provides the optimum performance. MLSD is efficiently implemented by use of the
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Input. 0 1 7 5 4 6 • • •

Antenna 1 • 0 0 5 3 1 4

Antenna 2: 0 1 7 5 4 6

00 01 02 03 04 05 06 07

50 51 52 53 54 55 56 57

20 21 22 23 24 25 26 27

70 71 72 73 74 75 76 77

40 41 42 43 44 45 46 47

10 11 12 13 14 15 16 17

60 61 62 63 64 65 66 67

FIGURE 15.4-8

8-PSK, 8-state, space-time trellis code.

Viterbi algorithm. For two transmit antennas., the branch metrics may be expressed as

Nr

^b(si,s2 ) = ^2 I yj
~ hU s i

~ hys2 \

2
(15.4-55)

j= 1

where {yj ,
1 < j < Nr} are the outputs of the matched filters at the Nr receive

antennas, {h\j, 1 < j < Nr] and [h 2j, 1 < j < Nr} are the channel coefficients in

a frequency-nonselective channel, and (s\, s2 ) denote the symbols transmitted on the

two antennas. By using these branch metrics in the Viterbi algorithm, to form the path

metrics of valid paths through the trellis, we can find the path that minimizes the overall
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metric and thus determine the sequence of transmitted symbols corresponding to the

path having the smallest path metric.

15.4-6 Concatenated Space-Time Codes and Ttirbo Codes

In Section 15.4-2, we observed that temporal coding with interleaving provides a means

to achieve diversity in a MIMO system. It is also possible to construct concatenated

codes using temporal coding with interleaving in combination with space-time codes.

Figure 15.4-9 illustrates a system in which the input data stream is temporally coded

by either a block code or a convolutional code. Following the temporal encoding, the

data are bit-interleaved and passed to the space-time encoder, which may be either a

STBC or a STTC.

At the receiver, the space-time code is decoded first, and its output is deinter-

leaved and passed to the outer decoder. The output of the outer decoder constitutes the

(a) Transnutter

Nr Receive

antennas

(b) Receiver

FIGURE 15.4-9

A MIMO system with concatenated coding consisting of a temporal outer code and a

space-time inner code (dotted lines in the receiver indicate iterative decoding).
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reconstructed data stream. If desired, iterative decoding can be performed between the

inner and outer decoders by making multiple passes on the received data signal. Such

iterative decoding leads to an improvement in system performance but at a significant

cost in implementation (computational) complexity.

A turbo code (parallel concatenated convolutional encoders separated by an inter-

leaver) can also be used as the outer code in a concatenated coding scheme, as shown
in Figure 15.4-9. In such a case, the outer decoder at the receiver is a turbo (iterative)

decoder. Iterative decoding can also be implemented between the turbo decoder and

the space-time decoder. However, iterative decoding between the inner space-time de-

coder and the turbo decoder significantly increases the computational complexity of

the receiver.

15.5

BIBLIOGRAPHICAL NOTES AND REFERENCES

The use of multiple antennas at the receiver of the communication system has been a

well-known method for achieving spatial diversity to combat fading without expand-

ing the bandwidth of the transmitted signal. Much less common has been the use of

multiple antennas at the transmitter to achieve spatial diversity. The publications of

Wittneben (1993) and Seshadri and Winters (1994) are two of the early publications on

this topic.

A major breakthrough occurred with the publications of Foschini (1996) and

Foschini and Gans (1998), which demonstrated that multiple antennas at the trans-

mitter and the receiver of a wireless communication system can be used to establish

multiple parallel channels for simultaneous transmission of multiple data streams in

the same frequency band (spatial multiplexing) and, thus, result in extremely high

bandwidth efficiency. Since then, there have been numerous publications on the analy-

sis of the performance characteristics of MIMO wireless communication systems and

their implementation in practical systems. Basic treatments ofMIMO systems may be

found in the textbooks by Goldsmith (2005), Haykin and Moher (2005), and Tse and

Viswanath (2005).

Pioneering work on space-time coding for MIMO channels was performed by

Tarokh et al. (1998, 1999a). The book by Jafarkhani (2005) provides a comprehensive

treatment of both space-time block codes and trellis codes.

PROBLEMS

15.1 Consider an (Nt , Nr) = (2, 1) MIMO system that employs the Alamouti code to trans-

mit a binary sequence using binary PSK modulation. The channel is Rayleigh fading

characterized by the channel vector

h = [/in hi2\‘
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with E\hn \

2 = E\h\ 2 \

2 = 1. The additive noise is zero-mean Gaussian. Determine the

average probability of error for the system.

15.2 Consider a SIMO AWGN channel with Nr receive antennas. Instead of maximal ratio

combining, the receiver selects the signal from the antenna having the strongest signal;

i.e., if h = [h\, . .
.

,

h^R \ is the channel vector, the receiver selects the antenna with

channel coefficient

l^maxl = max \hi\, i = 1,2, ..., NR

This method is called selection diversity. Determine the capacity of a MIMO system that

employs selection diversity.

15.3 Prove the relationship between the eigenvalues of HHh and the singular values of the

channel matrix H
,
as given by Equation 15.2-4.

15.4 Consider a MIMO system with NR = Nt = N antennas and AWGN. The ergodic

capacity for the MIMO system is

C = E V log, ( 1 +—Xi]

Ltr \ m° )\

Show that for N large, the capacity can be approximated as

Es

C ~ Trf^av
Nq In 2

where A.av is the average of the eigenvalues ofHHH
.

15.5 Consider a deterministic SIMO channel withAWGN in which the elements of the channel

vector h satisfy the conditions \h
t |

2 = 1, i = 1, 2, . .
.

,

Nr.
a. Determine the capacity of this SIMO channel when h is known at the receiver only.

b. Suppose that h is also known at the transmitter. Does this additional knowledge

increase the channel capacity? Explain.

15.6 Consider a deterministic MISO channel withAWGN in which the elements of the channel

vector h satisfy the conditions \h
t |

2 = 1, i = 1, 2, . .
.

,

Nt-

a. Determine the capacity of this MISO channel when h is known at the receiver only.

b. How does this capacity compare with that of a SIMO and a SISO channel?

15.7 Consider a MIMO system with NR = Nt = N antennas and AWGN. The rank of the

channel matrix H is N.

a. Show that the capacity

C = |>g2 (i +
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subject to the constraint that

N

Xi = p = constant

;=i

is maximized when X
t = fi/N for i = 1,2,..., N ,

and hence

c=m^{1+ wk)
b. If Xi = p/N for i = 1,2,..., A, show that H must be an orthogonal matrix that

satisfies the condition

HHh = HhH = —INN

c. Show that if all the elements ofH are unit magnitude, i.e.,
|
Hij

\

= 1 ,
then \\H\\

2
F = N2

and

c= „,„g,(
1+
l)

Hence, under these conditions, the capacity of the orthogonal MIMO channel is N times

the capacity of a SISO channel.

15.8 The received signal vector in a frequency-nonselective AWGN MIMO channel with Nt
transmit antennas and NR receive antennas is given by Equation 15.2-7 as

y = Hs + rj

a. Use the SVD to transform the received signal vector to the form

y = ss + y

where £ is a diagonal matrix of rank r with the nonzero diagonal elements equal to

the singular values of the channel matrix H .

b. Show that ifthe elements of rj are statistically iid, zero-mean, complex-valued Gaussian

random variables, then the elements of rj' are also iid zero-mean complex-valued

Gaussian random variables.

c. Show that the capacity of the AWGN MIMO channel may be expressed as

c = lo& bps/Hz

where Pi ,
P2 ,

. .
.

,

Pr are the allocated powers based on the water-filling criterion with

the total power constraint

Y,pk = p
k=l

15.9 The capacity of MISO channel with AWGN, when the channel is known at the receiver

only, may be expressed as
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where y is the SNR and h = [h\ •
• • hNl.\ is the channel coefficient vector. Suppose

the channel coefficients are iid zero-mean, complex Gaussian distributed with E\hi
\

2 =
1, i = 1,2,..., Afr.

a. Determine the PDF of the random variable

nt

x = 5>l 2

i= l

b. Note that C is a monotonic function of X. Show that the outage probability for the

MISO system may be expressed as

Pout — P X <Nt
2c -r

y

c. Evaluate and plot Pout versus y for C = 2 bps/Hz and Nt = 1, 2, 4, 8.

d. For y = 10 dB, evaluate and plot the complementary cumulative distribution function

(CCDF)

1 - Pout = P X>Nt
2c -r

Y

versus C for TV = 1, 2, 4, 8. This is the CCDF for the outage capacity. Repeat the

computation for y = 20 dB.

e. Let Pout = 0.1 (corresponding to 10% outage capacity) and plot C versus y for

Nt = 1,2, 4, 8.

15.10

Consider a deterministic MISO (Nt , 1) channel with AWGN and channel vector h. The

received signal in any signal interval may be expressed as

y = hs + rj

where y and rj are scalars.

a. If the channel vector h is known at the transmitter, demonstrate that the received SNR
is maximized when the information is sent in the direction of the channel vector h,

i.e., s is selected as

s
/i*

m
(The alignment of the transmit signal in the direction of the channel vector h is called

transmit beamforming.)

b. What is the capacity of the MISO channel when h is known at the transmitter?

c. Compare the capacity obtained in (b) with that of a SIMO channel, when the channel

matrix h is identical for the two systems.

15.11

Determine the outage probability of an (Nt, Nr) = (4, 1) MIMO system for an SNR
y = 20 dB and outage capacity Cout

= 2 bps/Hz.

15.12

The capacity of a SIMO channel with AWGN may be expressed as

C = l0g2
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where y is the SNR and h = [h\ •
• • hNR Y is the channel coefficient vector. The channel

coefficients are complex-valued, iid zero-mean Gaussian distributed with E\hi\
2 = l,

i = l,2,...,NR .

a. Determine the PDF of the random variable

Nr

x = ^2\h
t \

2

i=

1

b. Note that C is a monotonic function of X. Show that the outage probability for the

SIMO system may be expressed as

Pout — P X <
2c -r

y

c. Evaluate and plot pout versus y for C = 2 bps/Hz and NR = 1, 2, 4, 8.

d. For y = 10 dB, evaluate and plot the complementary cumulative distribution function

(CCDF)

1 - Pout = P X >
2c -r

y

versus C for NR = 1, 2, 4, 8. This is the CCDF for the outage capacity. Repeat for

y = 20 dB.

e. Let Pout = 0.1 (corresponding to 10% outage capacity) and plot C versus y for

Nr = 1,2, 4, 8.

15.13 Consider an (Nt, Nr )
= (2, Nr) MIMO system that employs the Alamouti code with

QPSK modulation. If the input bit stream is 01 101001 1 10010, determine the transmitted

symbols from each antenna for each signaling interval.

15.14 Show that the detector that computes the estimates s\ and s2 given by Equation 15.4-25

is equivalent to the detector that computes the correlation metrics in Equation 15.4-22.

15.15 Determine the decision variables for the separate ML decoding of the symbols in the

following rate 3/4 block code.

s 1 ^2 S3

L 0 si -si J

15.16

Determine the decision variables for the separate ML decoding of the symbols in the rate

1/2 orthogonal STBC given by Equation 15.4-42.

15.17

Determine the probability of error for the detector with input metrics given by Equa-

tion 15.3-5 for BPSK modulation and a Rayleigh fading channel. Assume that the com-

ponents of hj are iid, zero-mean, complex-valued Gaussian random variables.
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15.18 For a Rayleigh fading channel and BPSK modulation, determine the performance of a

MISO (2, 1) system employing the Alamouti code with that of a SIMO (1,2) system.

Assume that the transmitter power is the same for the two systems.

15.19 Consider a MISO (2, 1) system in which the Alamouti code is used in conjunction with

multicode spread spectrum. To be specific, suppose that the symbol si is spread by code

C\ and —$2 is spread by code c2 . These two spread spectrum signals are added and

transmitted on antenna 1. Similarly, the symbol £2 is spread by c\ and the symbol s* is

spread by the code Then two spread spectrum signals are added and transmitted on

antenna 2. The channel coefficients h
1
and are known at the receiver.

a. Sketch the block diagram configuration of the transmitter and the receiver, illustrating

the modulation and demodulation operations.

b. Assuming that the spreading codes c
1
and C2 are orthogonal, determine the expressions

for the decision variables s 1
and $2-

c. What, if any, are the advantages and disadvantages of this multicode MISO (2, 1)

system over the conventional MISO (2, 1) system that employs the Alamouti STBC
without the multicode spreading?

15.20 Consider an uncoded MIMO system with Nt = NR antennas that transmits over a

frequency-nonselective channel in which the channel matrix H has iid complex-valued,

zero-mean Gaussian elements. The received signal vector is

y = Hs + rj

where the elements of rj are iid complex-valued, zero-mean Gaussian. The detector used

at the receiver is the inverse channel detector (ICD), described in Section 15.1-2.

a. Determine the covariance matrix of the noise at the output of the detector.

b. If the detector makes independent decisions on each of the Nt transmitted symbols,

is this detector optimum (in the sense of minimizing the error probability)?

c. If BPSK modulation is employed, determine the error probability of the detector

described in (b).

d. Now, suppose that Nr > Nt and the decisions made by the detector are based on the

signal estimate s = WH
y, where WH = (HHH)~ lHh

. Repeat parts (a) and (b).

15.21 The channel matrix in an Nt = NR = 2 MIMO system with AWGN is

H = 0.4 0.5

0.7 0.3

a . Determine the SVD of H .

b. Based on the SVD ofH
,
determine an equivalent MIMO system having two indepen-

dent channels, and find the optimal power allocation and channel capacity when H is

known at the transmitter and the receiver.

c. Determine the channel capacity when H is known only at the receiver.

15.22

Consider the following two MISO (2, 1) systems with AWGN. The first employs the

Alamouti code to achieve transmit diversity when the channel is known only at the

receiver. The second MISO (2, 1) also achieves transmit diversity, but the channel is

known at the transmitter. Determine and compare the outage probabilities for the two

systems. Which MISO system has a lower outage probability for the same SNR?
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15.23 The generator matrix for a rate Rs = 1 STBC is given as

a. Determine the matrix GHG
,
and thus show that the code is not orthogonal.

b. Show that the ML detector can perform pairwise ML detection.

c. What is the order of diversity achieved by this code?



Multiuser Communications

In the MIMO communication systems that were treated in Chapter 15, we observed

that multiple data streams can be sent simultaneously from a transmitter employing

multiple antennas to a receiver that employs multiple receive antennas. This type of

a MIMO system is generally viewed as a single-user point-to-point communication

system, having the primary objectives of increasing the data rate through spatial mul-

tiplexing and improving the error rate performance by increasing signal diversity to

combat fading. In this chapter, the focus shifts to multiple users and multiple commu-
nication links. We explore the various ways in which multiple users access a common
channel to transmit information. The multiple access methods that are described in

this chapter form the basis for current and future wireline and wireless communication

networks, such as satellite networks, cellular and mobile communication networks, and

underwater acoustic networks.

16.1

INTRODUCTION TO MULTIPLE ACCESS TECHNIQUES

It is instructive to distinguish among several types ofmultiuser communication systems.

One type is a multiple access system in which a large number of users share a common
communication channel to transmit information to a receiver. A model of such a system

is depicted in Figure 16.1-1. The common channel may represent the uplink in either

a cellular or a satellite communication system, or a cable to which are connected a

number of terminals that access a central computer. For example, in a mobile cellular

communication system, the users are the mobile terminals in any particular cell of the

system, and the receiver resides in the base station of the particular cell.

A second type ofmultiuser communication system is a broadcast network in which a

single transmitter sends information to multiple receivers, as depicted in Figure 16.1-2.

Examples of broadcast systems include the common radio and TV broadcast systems

as well as the downlinks in cellular and satellite communication systems.

1028
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FIGURE 16.1-1

A multiple access system.

The multiple access and broadcast systems are the most common multiuser com-

munication systems. A third type of multiuser system is a store-and-forward network,

as depicted in Figure 16.1-3. Yet a fourth type is the two-way communication system

shown in Figure 16.1-4.

In this chapter, we focus on multiple access and broadcast methods for multiuser

communications. In a multiple access system, there are several different ways in which

multiple users can send information through the communication channel to the receiver.

One simple method is to subdivide the available channel bandwidth into a number, say

K
,
of frequency non-overlapping subchannels, as shown in Figure 16. 1-5, and to assign

a subchannel to each user upon request by the users. This method is generally called

frequency-division multiple access (FDMA) and is commonly used in wireline channels

to accommodate multiple users for voice and data transmission.

Another method for creating multiple subchannels for multiple access is to subdi-

vide the duration 7/, called the frame duration
,
into, say, K non-overlapping subin-

tervals, each of duration Tf/K. Then each user who wishes to transmit information

FIGURE 16.1-2

A broadcast network.

Ground stations
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FIGURE 16.1-3

A store-and-forward communication

network with satellite relays.

is assigned to a particular time slot within each frame. This multiple access method

is called time-division multiple access (TDMA) and it is frequently used in data and

digital voice transmission.

We observe that in FDMA and TDMA, the channel is basically partitioned into

independent single-user subchannels. In this sense, the communication system design

methods that we have described for single-user communication are directly applicable

and no new problems are encountered in a multiple access environment, except for the

additional task of assigning users to available channels.

The interesting problems arise when the data from the users accessing the network

is bursty in nature. In other words, the information transmissions from a single user

are separated by periods of no transmission, where these periods of silence may be

greater than the periods of transmission. Such is the case generally with users at various

terminals in a computer communication network. To some extent, this is also the case in

mobile cellular communication systems carrying digitized voice, since speech signals

typically contain long pauses.

In such an environment where the transmission from the various users is bursty and

low-duty-cycle, FDMA and TDMA tend to be inefficient because a certain percentage

of the available frequency slots or time slots assigned to users do not carry informa-

tion. Ultimately, an inefficiently designed multiple access system limits the number of

simultaneous users of the channel.

An alternative to FDMA and TDMA is to allow more than one user to share

a channel or subchannel by use of direct-sequence spread spectrum signals. In this

FIGURE 16.1-4

A two-way communication channel.
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Band Band Band Band
1 2 K- 1 K Frequency

FIGURE 16.1-5

Subdivision of the channel into non-overlapping frequency bands.

method, each user is assigned a unique code sequence or signature sequence that

allows the user to spread the information signal across the assigned frequency band.

Thus signals from the various users are separated at the receiver by cross correlation

of the received signal with each of the possible user signature sequences. By designing

these code sequences to have relatively small cross-correlations, the crosstalk inherent

in the demodulation of the signals received from multiple transmitters is minimized.

This multiple access method is called code division multiple access (CDMA).
In CDMA, the users access the channel in a random manner. Hence, the signal

transmissions among the multiple users completely overlap both in time and in fre-

quency. The demodulation and separation of these signals at the receiver is facilitated

by the fact that each signal is spread in frequency by the pseudorandom code sequence.

CDMA is sometimes called spread spectrum multiple access (SSMA).

An alternative to CDMA is nonspread random access. In such a case, when two

users attempt to use the common channel simultaneously, their transmissions collide

and interefere with each other. When that happens, the information is lost and must be

retransmitted. To handle collisions, one must establish protocols for retransmission of

messages that have collided. Protocols for scheduling the retransmission of collided

messages are described below.

16.2

CAPACITY OF MULTIPLE ACCESS METHODS

It is interesting to compare FDMA, TDMA, and CDMA in terms ofthe information rate

that each multiple access method achieves in an idealAWGN channel ofbandwidth W.
Let us compare the capacity of K users, where each user has an average power Pt = P

9

for all 1 < i < K. Recall that in an ideal band-limited AWGN channel of bandwidth

W 9
the capacity of a single user is

where
|
TVq is the power spectral density of the additive noise.

In FDMA, each user is allocated a bandwidth W/K. Hence, the capacity of each

user is

= — log2 1 +
(W/K)N

,

o

(16 .2-2)
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FIGURE 16.2-1

Normalized capacity as a function of

Sb/N0 for FDMA.

and the total capacity for the K users is

(16.2-3)

Therefore, the total capacity is equivalent to that of a single user with average power

Pav = KP.
It is interesting to note that for a fixed bandwidth W, the total capacity goes

to infinity as the number of users increases linearly with K. On the other hand, as

K increases, each user is allocated a smaller bandwidth (W/K ) and, consequently,

the capacity per user decreases. Figure 16.2-1 illustrates the capacity CK per user

normalized by the channel bandwidth W, as a function of£b /No, with K as a parameter.

This expression is given as

Ck

W K
log2 1 + K^iW

&
N0

(16.2-4)

A more compact form of Equation 16.2-4 is obtained by defining the normalized total

capacity C„ = KCk/W, which is the total bit rate for all K users per unit of bandwidth.

Thus, Equation 16.2-4 may be expressed as

Cn = log2 ^1 + C„—
or, equivalently,

£b
_ = 2C"-1

No Cn

(16.2-5)

(16.2-6)

The graph of Cn versus £b/No is shown in Figure 16.2-2. We observe that C„ increases

as £b/No increases above the minimum value of In 2.

In a TDMA system, each user transmits for 1/K of the time through the channel

of bandwidth W ,
with average power K P. Therefore, the capacity per user is

KP \

WN0 )
CK = W log2 1 + (16.2-7)
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FIGURE 16.2-2

Total capacity per hertz as a function

of Sb/No for FDMA.

which is identical to the capacity of anFDMA system. However, from a practical stand-

point, we should emphasize that, in TDMA, it may not be possible for the transmitters

to sustain a transmitter power of KP when K is very large. Hence, there is a practical

limit beyond which the transmitter power cannot be increased as K is increased.

In a CDMA system, each user transmits a pseudorandom signal of a bandwidth W
and average power P. The capacity of the system depends on the level of cooperation

among the K users. At one extreme is noncooperative CDMA, in which the receiver for

each user signal does not know the codes and spreading waveforms of the other users,

or chooses to ignore them in the demodulation process. Hence, the other users’ signals

appear as interference at the receiver of each user. In this case, the multiuser receiver

consists of a bank ofK single-user matched filters. This is called single-user detection. If

we assume that each user’s pseudorandom signal waveform is Gaussian, then each user

signal is corrupted by Gaussian interference of power (K — l)P and additive Gaussian

noise of power WNp- Therefore, the capacity per user for single-user detection is

CK = W log2 1 +
P

WN0 + (K- 1)P
(16.2-8)

or, equivalently,

— — lo 1 +— £b/Np

W " °S4 W l + (K - l)(CK /W)(£b/N0 )

(16.2-9)

Figure 16.2-3 illustrates the graph of CK/W versus £b/No, with K as a parameter.

For a large number of users, we may use the approximation ln(l + x) < x. Hence,

^ CK £b/N0

w - W l + K(CK/W)(£b/No)
g2e

or, equivalently, the normalized total capacity Cn = KCk/W is

Cn < log2 e -
1

£b/No
1

“ ln2

1

£b/N0

1

ln2

(16.2-10)

(16.2-11)
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FIGURE 16.2-3

Normalized capacity as a function of Sb/No for noncooperative CDMA.

In this case, we observe that the total capacity does not increase with K as in TDMA
and FDMA.

On the other hand, suppose that the K users cooperate by transmitting their coded

signals synchronously in time, and the multiuser receiver jointly demodulates and

decodes all the users’ signals. This is called multiuser detection and decoding. Each

user is assigned a rate Ri, 1 < i < K
,
and a code book containing a set of 2nRi

codewords of power P. In each signal interval, each user selects an arbitrary codeword,

say Xi ,
from its own code book, and all users transmit their codewords simultaneously.

Thus, the decoder at the receiver observes

K

Y = Y, x i + z (16.2-12)

1= 1

where Z is an additive noise vector. The optimum decoder looks for the K codewords,

one from each code book, that have a vector sum closest to the received vector Y in

Euclidean distance.

The achievable ^-dimensional rate region for the K users in an AWGN channel,

assuming equal power for each user, is given by the following equations:

Ri < W log2 (l + ,
1 <i<K (16.2-13)

Ri + Rj <W log2 (l + ,
1 < i, j < K (16.2-14)

*s
M
UM =E R

‘ < W l0& (l +^

)

(16.2-15)
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where /?sum *s ^ total (sum) rate achieved by the K users by employing multiuser

detection. In the special case when all the rates are identical, the inequality 16.2-15 is

dominant over the other K — 1 inequalities. It follows that if the rates {Ri ,
1 < i <K}

for the K cooperative synchronous users are selected to fall in the capacity region

specified by the inequalities given above, then the probabilities of error for the K users

tend to zero as the code block length n tends to infinity.

From the above discussion, we conclude that the sum of the rates of the K users

^sum Soes t0 infinity with K. Therefore, with coded synchronous transmission and

joint detection and decoding, the capacity of CDMA has a form similar to that of

FDMA and TDMA. Note that if all the rates in the CDMA system are selected to be

identical to R, then Equation 16.2-15 reduces to

W ( KP \
s< Y 1o&

(
1 + waJ (16 '2-16)

which is the highest possible rate and is identical to the rate constraint in FDMA and

TDMA. In this case, CDMA does not yield a higher rate than TDMA and FDMA.
However, if the rates of the K users are selected to be unequal such that the inequalities

16.2-13 to 16.2-15 are satisfied, then it is possible to find the points in the achievable

rate region such that the sum of the rates for the K users in CDMA exceeds the capacity

ofFDMA and TDMA.

example 16 .2-1 . Consider the case of two users in a CDMA system that employs

coded signals as described above. The rates of the two users must satisfy the inequalities

(16.2-17)

(16.2-18)

(16.2-19)

R x < Wlog2 ^1 +

R2 < W log2 (\ +

WN0

P

WN0

R
l + Rl <« iog

2
|i + 2A)

where P is the average transmitted power of each user and W is the signal bandwidth.

The capacity region for the two-user CDMA system with coded signal waveforms

has the form illustrated in Figure 16.2-4, where

Q = W log2 (
1 + ) ,

i = 1,2
•
62

V WNo )

are the capacities corresponding to the two users with Px = P2 = P. We note that if

user 1 is transmitting at capacity C \ ,
user 2 can transmit up to a maximum rate

R2m - W log2 1 +
2P

WN0

-Ci

= W log2 1 +
P

jP + WNo)

(16.2-20)

which is illustrated in Figure 16.2-4 as point A. This result has an interesting interpre-

tation. We note that rate /?2m corresponds to the case in which the signal from user 1 is
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r2 FIGURE 16.2-4

Capacity region of two-user CDMA multiple

access Gaussian channel.

considered as an equivalent additive noise in the detection of the signal ofuser 2. On the

other hand, user 1 can transmit at capacity C\, since the receiver knows the transmitted

signal from user 2 and, hence, it can eliminate its effect in detecting the signal of user 1

.

Because of symmetry, a similar situation exists if user 2 is transmitting at capacity

C2 . Then user 1 can transmit up to a maximum rate R\m = /?2m> which is illustrated in

Figure 16.2-4 as point B. In this case, we have a similar interpretation as above, with

an interchange in the roles of user 1 and user 2.

The points A and B are connected by a straight line, which is defined by Equa-

tion 16.2-19. It is easily seen that this straight line is the boundary of the achievable

rate region, since any point on the line corresponds to the maximum rate W log2

(1 + 2P/WNo), which can be obtained by simply time sharing the channel between

the two users.

In the next section, we consider the problem of signal detection for a multiuser

CDMA system and assess the performance and the computational complexity of several

receiver structures.

16.3

MULTIUSER DETECTION IN CDMA SYSTEMS

As we have observed, TDMA and FDMA are multiple access methods in which the

channel is partitioned into independent, single-user subchannels, i.e., non-overlapping

time slots or frequency bands, respectively. In CDMA, each user is assigned a distinct

signature sequence (or waveform), which the user employs to modulate and spread

the information-bearing signal. The signature sequences also allow the receiver to

demodulate the message transmitted by multiple users of the channel, who transmit

simultaneously and, generally, asynchronously.

In this section, we treat the demodulation and detection of multiuser uncoded

CDMA signals. We shall see that the optimum maximum-likelihood detector has a

computational complexity that grows exponentially with the number of users. Such a

high complexity serves as a motivation to devise suboptimum detectors having lower

computational complexities. Finally, we consider the performance characteristics of

the various detectors.
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16.3-1 CDMA Signal and Channel Models

Let us consider a CDMA channel that is shared by K simultaneous users. Each user is

assigned a signature waveform g*(f) of duration T, where T is the symbol interval. A
signature waveform may be expressed as

L-

1

8k(t) = Y^ ak(n)p(t - nTc ), 0 <t <T (16.3-1)

n=

0

where {ak(n ), 0 < n < L —
1} is a pseudonoise (PN) code sequence consisting of L

chips that take values {±1}, p(t) is a pulse of duration Tc ,
and Tc is the chip interval.

Thus, we have L chips per symbol and T = LTC . Without loss of generality, we assume

that all K signature waveforms have unit energy, i.e.,

T

gl(t)dt = 1 (16.3-2)

The cross correlations between pairs of signature waveforms play an important role

in the metrics for the signal detector and on its performance. We define the following

cross correlations, where 0 < r < T and i < j,

Pijir)

PjM

[ gi(t)gj(t - x)dt
T

gi(t)gj(t + T + x)dt

(16.3-3)

(16.3-4)

The cross correlations in Equations 16.3-3 and 16.3-4 apply to asynchronous trans-

missions among the K users. For synchronous transmission, we need only Pij(0).

For simplicity, we assume that binary antipodal signals are used to transmit the

information from each user. Hence, let the information sequence of the &th user be

denoted by {bk (m)}, where the value of each information bit may be ± 1 . It is convenient

to consider the transmission of a block of bits of some arbitrary length, say N. Then,

the data block from the &th user is

bk = [bk (l)---bk(N)]
t

(16.3-5)

and the corresponding equivalent lowpass, transmitted waveform may be expressed as

N

sk (t) = Vsk bk (i)gk(t - iT) (16.3-6)

i=i

where £* is the signal energy per bit. The composite transmitted signal for the K users

may be expressed as

K

s (t) = 5>(f - Tk)

k= 1

K N

= ^2 '/£k'%2 bk(i)gk(t - iT - T*)

k= 1 i=l

(16.3-7)
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where {r^} are the transmission delays, which satisfy the condition 0 < Xk < T for

l < k < K. Without loss of generality, we assume that 0 < x\ < < • • • < xK < T.

This is the model for the multiuser transmitted signal in an asynchronous mode. In the

special case of synchronous transmission, Xk = 0 for 1 < k < K.

The transmitted signal is assumed to be corrupted by AWGN. Hence, the received

signal may be expressed as

r(t) = s(t) + n(t) (16.3-8)

where s(t) is given by Equation 16.3-7 and n(t) is the noise, with power spectral

density \No .

16.3-2 The Optimum Multiuser Receiver

The optimum receiver is defined as the receiver that selects the most probable sequence

of bits {bk(n), l<n<N,l<k<K} given the received signal r(t ) observed over

the time interval 0<t<NT + 2T. First, let us consider the case of synchronous

transmission; later, we shall consider asynchronous transmission.

Synchronous transmission In synchronous transmission, each (user) interferer

produces exactly one symbol which interferes with the desired symbol. In additive

white Gaussian noise, it is sufficient to consider the signal received in one signal

interval, say 0 < t < T, and determine the optimum receiver. Hence, r(t ) may be

expressed as

r(0 = V^bk(l)gk (t) + n(t), 0 < t < T (16.3-9)

k=l

The optimum maximum-likelihood receiver computes the log-likelihood function

A(b) -f r (t) -^ V£khO)gk(t)
k=

1

dt (16.3-10)

and selects the information sequence {^(1), 1 < k < K} that minimizes A (b). If we
expand the integral in Equation 16.3-10, we obtain

A(b)=f r
2
(t)dt - 2V] VSkbk (l) [ r(t)gk(t)dt

Jo Jo

l)bj{\) [ gk(t)gj(t)dt

;=1 *= 1
J°

(16.3-11)

We observe that the integral involving r
2
(t ) is common to all possible sequences {/;*(l)j

and is of no relevance in determining which sequence was transmitted. Hence, it may
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be neglected. The term

rk = [ r(t)gk (t)dt ,
1 <k<K (16.3-12)

Jo

represents the cross correlation of the received signal with each of the K signature

sequences. Instead of cross correlators, we may employ matched filters. Finally, the

integral involving gk(t) and gj(t) is simply

Pjk(0)= f gj(t)gk(t)dt (16.3-13)
Jo

Therefore, Equation 16.3-1 1 may be expressed in the form of correlation metrics

K K K

C(rK , bK ) = 2j2^kbk(Ork -££ ^£jSkbk(l)bj(l)pjk (0) (16.3-14)

k= 1 7= 1 k=

1

These correlation metrics may also be expressed in vector inner product form as

C(rK ,
bK ) = 2b

t

K rK - b^Rsbjc (16.3-15)

where

rK = [r i r2 ••• rK ]<
, bK = [V^i(l) • •

• V^bK (l)]‘

and R s is the correlation matrix, with elements Pjk(0). It is observed that the optimum

detector must have knowledge of the received signal energies in order to compute the

correlation metrics. Figure 16.3-1 depicts the optimum multiuser receiver.

There are 2K possible choices of the bits in the information sequence of the

K users. The optimum detector computes the correlation metrics for each sequence

and selects the sequence that yields the largest correlation metric. We observe that

the optimum detector has a complexity that grows exponentially with the number of

users, K.

In summary, the optimum receiver for symbol-synchronous transmission consists

of a bank ofK correlators or matched filters followed by a detector that computes the 2K

correlation metrics given by Equation 16.3-15 corresponding to the 2K possible trans-

mitted information sequences. Then, the detector selects the sequence corresponding

to the largest correlation metric.

Asynchronous transmission In this case, there are exactly two consecutive sym-

bols from each interferer that overlap a desired symbol. We assume that the receiver

knows the received signal energies {£k} for the K users and the transmission delays

{rk}- Clearly, these parameters must be measured at the receiver or provided to the

receiver as side information by the users via some control channel.



1040 Digital Communications

g\(t)

Sample at

FIGURE 16.3-1

Optimum multiuser receiver for synchronous transmission.
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represents the outputs of the correlator or matched filter for the &th user in each of the

signal intervals. Finally, the integral

rNT+2T

/ gk (t -iT - rk)gi(t - jT - t; ) dt
Jo

=/:
NT+2T-iT-xk

gk(t)gi(t + iT - jT + xk - Ti )dt (16.3-18)

may be easily decomposed into terms involving the cross correlation pkl (r) = Pkiiji
—

tk) for k < 1 and pa(r) fork > 1. Therefore, we observe that the log-likelihood

function may be expressed in terms of a correlation metric that involves the outputs

{/^(Z), 1 < k < K, < i < N] of K correlators or matched filters—one for each of the

K signature sequences. Using vector notation, it can be shown that the NK correlator

or matched filter outputs {r^(0} can be expressed in the form

r = RNb + n (16.3-19)

where, by definition

r = [r'(l) r'(2) • • • r'(iV)]'

r{i) = [r\(i) r2 (i )
••• rK (/)]'

b = [b
t

(l) b\2) ... tfiN)]*

b(i) = Ve^biii)

n = [n‘( 1) n‘(2)

n(i) = [ni(i) n2(i)

[Ra (0) *'(1) 0

Ra(0)

VfrbK (i)y

n‘(N)]‘

nidi )]
1

Rn =
Ra( 1)

0

0

K( i)

o

o

0

0 0

«a (0)

«a (l)

0

0

R‘a( i)

*«(0).

and Ra {m) is a K x K matrix with elements

Ru{m)
-i:

gk(t - xk)gi(t + mT - Ti)dt

(16.3-20)

(16.3-21)

(16.3-22)

(16.3-23)

(16.3-24)

The Gaussian noise vectors n(i) have zero-mean and autocorrelation matrix

E[n(k)n‘(j)\ = ±N0Ra (k - j ) (16.3-25)

Note that the vector r given by Equation 16.3-19 constitutes a set of sufficient statistics

for estimating the transmitted bits bk(i).

If we adopt a block processing approach, the optimum ML detector must com-

pute 2nk correlation metrics and select the K sequences of length N that correspond
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to the largest correlation metric. Clearly, such an approach is much too complex com-

putationally to be implemented in practice, especially when K and N are large. An
alternative approach is ML sequence estimation employing the Viterbi algorithm. In

order to construct a sequential-type detector, we make use of the fact that each trans-

mitted symbol overlaps at most with 2K — 2 symbols. Thus, a significant reduction in

computational complexity is obtained with respect to the block size parameter N
,
but

the exponential dependence on K cannot be reduced.

It is apparent that the optimum ML receiver employing the Viterbi algorithm

involves such a high computational complexity that its use in practice is limited to

communication systems where the number of users is extremely small, e.g., ^<10.
For larger values of K , one may consider a sequential-type detector that is akin

to either the sequential decoding or the stack algorithms described in Chapter 8.

Below, we consider a number of suboptimum detectors whose complexity grows lin-

early with K.

16.3-3 Suboptimum Detectors

In the above discussion, we observed that the optimum detector for the K CDMA users

has a computational complexity, measured in the number of arithmetic operations (ad-

ditions and multiplications/divisions) per modulated symbol, that grows exponentially

with K. In this subsection we describe suboptimum detectors with computational com-

plexities that grow linearly with the number of users, K. We begin with the simplest

suboptimum detector, which we call the conventional (single-user) detector.

Conventional single-user detector In conventional single-user detection, the re-

ceiver for each user consists of a demodulator that correlates (or match-filters) the

received signal with the signature sequence of the user and passes the correlator output

to the detector, which makes a decision based on the single correlator output. Thus,

the conventional detector neglects the presence of the other users of the channel or,

equivalently, assumes that the aggregate noise plus interference is white and Gaussian.

Let us consider synchronous transmission. Then, the output of the correlator for

the kth user for the signal in the interval 0 < t < T is

rk = [

T

r(t)gk (t)dt (16.3-26)
Jo

K

= y/Skbkd) + X) \/£jbjO)Pjk<f)) + «t(l) (16.3-27)

j=

1

J¥*

where the noise component w^(l) is given as

n*( 1) = [ n(t)gk(t)dt
Jo

(16.3-28)
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Since n(t ) is white Gaussian noise with power spectral density the variance of

«*( 1) is

E[nj( 1)]
= iiV0 [

T

g
2
k (t)dt

= i^V0 (16.3-29)
Jo

Clearly, if the signature sequences are orthogonal, the interference from the other users

given by the middle term in Equation 16.3-27 vanishes and the conventional single-user

detector is optimum. On the other hand, if one or more of the other signature sequences

are not orthogonal to the user signature sequence, the interference from the other users

can become excessive if the power levels of the signals (or the received signal energies)

ofone or more of the other users is sufficiently larger than the power level of the kth user.

This situation is generally called the near-far problem in multiuser communications,

and necessitates some type of power control for conventional detection.

In asynchronous transmission, the conventional detector is more vulnerable to

interference from other users. This is because it is not possible to design signature

sequences for any pair of users that are orthogonal for all time offsets. Consequently,

interference from other users is unavoidable in asynchronous transmission with the

conventional single-user detection. In such a case, the near-far problem resulting from

unequal power in the signals transmitted by the various users is particularly serious.

The practical solution generally requires a power adjustment method that is controlled

by the receiver via a separate communication channel that all users are continuously

monitoring. Another option is to employ one of the multiuser detectors described below.

Decorrelating detector We observe that the conventional detector has a complexity

that grows linearly with the number ofusers, but its vulnerability to the near-far problem

requires some type of power control. We shall now devise another type of detector that

also has a linear computational complexity but does not exhibit the vulnerability to

other-user interference.

Let us first consider the case of symbol-synchronous transmission. In this case, the

received signal vector rK that represents the output of the K matched filters is

i*k = RsbK + nK (16.3-30)

where bK = [*/E[b\(X) yfE&iiX) •
•

• V^KbK ( 1)]' and the noise vector with ele-

ments nK = [nfl) ri 2 (l) •
•

• wjK 1)]
? has a covariance

'E^k^k) = (16.3-31)

Since the noise is Gaussian, rK is described by a ^-dimensional Gaussian PDF with

mean R sbK and covariance R s . That is,

p(rK \bK ) =
1

: exp
1

,- t~(rK - RsbK)‘Rs
\rK - R sbK )

L -Wo

(16.3-32)

s/(N0n)
K det R

The best linear estimate of b°K is the value of bK that minimizes the likelihood function

A(bK ) = (rK - R sbKyR; l
(rK - RsbK ) (16.3-33)



1044 Digital Communications

si(0
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at t=T

FIGURE 16.3-2

Receiver structure for decorrelation receiver.

The result of this minimization yields

b°k = RJ
l

r% (16.3-34)

Then, the detected symbols are obtained by taking the sign of each element of b°K ,
i.e.,

bK = sgn(^) (16.3-35)

Figure 16.3-2 illustrates the receiver structure. Since the estimate b°K is obtained by

performing a linear transformation on the vector ofcorrelator outputs, the computational

complexity is linear in K.

The reader should observe that the best (maximum-likelihood) linear estimate of

bK given by Equation 16.3-34 is different from the optimum non-linear ML sequence

detector that finds the best discrete-valued {=b 1 } sequence that maximizes the likelihood

function. It is also interesting to note that the estimate b°K is the best linear estimate

that maximizes the correlation metric given by Equation 16.3-15.

An interesting interpretation of the detector that computes b°K as in Equa-

tion 16.3-34 and makes decisions according to Equation 16.3-35 is obtained by con-

sidering the case of K = 2 users. In this case,

R s

1 P

P 1
(16.3-36)

where

R

:

1 - P
2

L

1

-P
~P
1

(16.3-37)

=/ gi(t)g2(t)dt (16.3-38)
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Then, if we correlate the received signal

r(t) = VSibigi(t) + J£2b2g2 (t) + n(t ) (16.3-39)

with gi(t) and g2 (t) 9
we obtain

yf£\b\ + P\T&ib2 + n\

P\[£[b\ + \fE2b2 + n2

(16.3-40)

where n\ and ri2 are the noise components at the output of the correlators. Therefore,

b°
2 = K l

r2

_ s/Sibi + (ni ~ pn2)/(l - p
2
)

y/Zbi + (n2 - pti\)/(\ - p
2
)

(16.3-41)

This is a very interesting result, because the transformation R
~

1

has eliminated the

interference components between the two users. Consequently, the near-far problem is

eliminated and there is no need for power control.

It is interesting to note that a result similar to Equation 16.3-41 is obtained if we
correlate r(t ) given by Equation 16.3-39 with two modified signature waveforms

g[(t) = gi(t) - pg2 (t) (16.3-42)

g'
2 (t) = g2 (f) - pgi(t) (16.3-43)

This means that, by correlating the received signal with the modified signature wave-

forms, we have tuned out or decorrelated the multiuser interference. Hence, the detector

based on Equation 16.3-34 is called a decorrelating detector.

In asynchronous transmission, the received signal at the output of the correlators

is given by Equation 16.3-19. Hence, the log-likelihood function is given as

A (b) = (r - RN b)‘R„
l

(r - RNb) (16.3-44)

where R# is defined by Equation 16.3-23 and b is given by Equation 16.3-21. It is

relatively easy to show that the vector b that minimizes A (b) is

b° = R^r (16.3-45)

This is the ML estimate of b and it is again obtained by performing a linear transfor-

mation of the outputs from the bank of correlators of matched filters.

Since r = R^b + n, it follows from Equation 16.3-45 that

b° = b + RJf
1n (16.3-46)

Therefore, b° is an unbiased estimate of b. This means that the multiuser interference

has been eliminated, as in the case of symbol-synchronous transmission. Hence, this

detector for asynchronous transmission is also called a decorrelating detector.

A computationally efficient method for obtaining the solution given by Equa-

tion 16.3-45 is the square-root factorization method described in Appendix D. Of

course, there are many other methods that may be used to invert the matrix Rn . Iterative

methods to decorrelate the signals have also been explored.
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Minimum mean-square-error detector In the above discussion, we showed that

the linear ML estimate of b is obtained by minimizing the quadratic log-likelihood

function in Equation 16.3-44. Thus, we obtained the result given by Equation 16.3-45,

which is an estimate derived by performing a linear transformation on the outputs of

the bank of correlators or matched filters.

Another, somewhat different, solution is obtained if we seek the linear transfor-

mation b° = Ar, where the matrix A is to be determined so as to minimize the mean
square error (MSE)

J(b) = E[(b - b°)‘(b - ft
0
)]

= E[(b - Ar)\b - Ar)]
(16.3-47)

where the expectation is with respect to the data vector b and the additive noise n. The
optimum matrix A may be found by forcing the error (b — Ar) to be orthogonal to the

data vector r. Thus,

E\(b-Ary] =0
E(br') — AE(rr') = 0

(16.3-48)

Let us consider the case of synchronous transmission. We have

K
rt
K )

— E (bK^k) R
l

s
— DRs (16.3-49)

and

E (rK r,K )
‘ E [(Rsbic +nK )(RsbK +nK )']

= RSDR‘ + ^R‘
(16.3-50)

where D is a diagonal matrix with diagonal elements {£&, 1 < k < K}. By substituting

Equation 16.3-49 and 16.3-50 into Equation 16.3-48 and solving for A, we obtain

Then,

and

A° = ( Rs + ^D- 1

b°K = A°rK

bK = sgn (b°K )

(16.3-51)

(16.3-52)

(16.3-53)

Similarly, for asynchronous transmission, it can be shown that the optimum choice of

A that minimizes J(b) is

A° = (Rtf + ity,/)
-1

(16.3-54)

and, hence,

b° = (Ajv+iA/o/rv

The output of the detector is then b = sgn(b°).

(16.3-55)
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The estimate given by Equation 16.3-52 or 16.3-55 is called the minimum MSE
(MMSE) estimate of b. Note that when ^iVo is small compared with the diagonal

elements of Rn, the MMSE solution approaches the ML solution given by Equa-

tion 16.3-45. On the other hand, when the noise level is large compared with the signal

level in the diagonal elements of R#, A0 approaches the identity matrix (scaled by

\ No). In this low-SNR case, the detector basically ignores the interference from other

users, because the additive noise is the dominant term. It should also be noted that

the MMSE criterion produces a biased estimate of b. Hence, there is some residual

multiuser interference.

To perform the computations that lead to the values of b, we solve the set of linear

equations

(Rn + \N0l)b = r (16.3-56)

This solution may be computed efficiently using a square-root factorization of the matrix

Rn + \ Nol as indicated above. Thus, to detect NK bits requires 3NK 2
multiplica-

tions. Therefore, the computational complexity is 3K multiplications per bit, which is

independent of the block length N and is linear in K.

We observe that both the decorrelating detector and theMMSE detector exhibit the

desirable property of being near-far resistant. In fact, in the case of the decorrelating

detector, the interference from other users is completely eliminated.

We also observe that both the decorrelating detector and the MMSE detector de-

scribed above involve performing linear transformations on a block of data obtained

from K correlators or matched filters. The linear transformations are akin to the linear

equalization of intersymbol interference treated in Chapter 9. In fact, the decorrelating

detector is akin to the zero-forcing linear equalizer, and the MMSE detector is akin to

the linear MMSE equalizer. Consequently, these multiuser detectors for asynchronous

transmission can be implemented by employing a tapped-delay-line filter with ad-

justable coefficients for each user and selecting the filter coefficients to either eliminate

the interuser interference or to minimize theMSE for each user signal. Thus, the received

information bits are estimated sequentially with finite delay, instead of as a block.

A decision-feedback-type filter can be used instead of a linear filter to implement

the multiuser detector that processes the data sequentially. In particular, Xie et al.

(1990b) demonstrated that the transmitted bits may be recovered sequentially from

the received signal by employing a form of a decision-feedback equalizer with finite

delay. Hence, there is a similarity between the detection of signals corrupted by ISI in

a single-user communication system and the detection of signals in a multiuser system

with asynchronous transmission.

16.3-4 Successive Interference Cancellation

Another multiuser detection technique is called successive interference cancellation

(SIC). This technique is based on removing the interfering signal waveforms from

the received signal, one at a time as they are detected. One approach is to demodulate

the users in the order of decreasing received powers. Thus, the user having the strongest
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received signal is demodulated first. After a signal has been demodulated and detected,

the detected information is used to subtract the signal of the particular user from the

received signal.

When making a decision about the transmitted information of the kih user, we
assume that the decisions of users k + 1, . .

.

,

K are correct and neglect the presence of

users 1, . .
.

,

k — 1. Therefore, the decision for the information bit of the kth user, for

synchronous transmission, is

bk = sgn Tk

j=k+l

(16.3-57)

where rk is the output of the correlator or matched filter corresponding to the &th user’s

signature sequence.

The approach based on demodulating the user signals in the order of decreasing

received powers does not take into account the cross correlations among users. An
alternative approach is to demodulate the user signals according to the powers at the

outputs of the cross correlators or matched filters, i.e., according to the correlation

metrics

E
i
2

gk (t)r(t)dt = & +E (16.3-58)

which applies to the case of synchronous transmission.

We make the following observations regarding the SIC of multiuser interference.

First of all, SIC requires that we estimate the received signal powers of the users in order

to cancel the interference. Estimation errors result in residual multiuser interference,

which causes a degradation in performance. Secondly, the interference from users whose

signals are weaker than the user signal being detected is treated as additive interference.

Thirdly, the computational complexity in the demodulation of a user information bit

is linear in the number of users. Finally, the delay in demodulating the weakest user

increases linearly with the number of users.

SIC is easily generalized to asynchronous signal transmission. In this case, both

the user signal strengths and the time delays must be estimated.

Finally, we note that the SIC multiuser detector given in Equation 16.3-57 is

also a suboptimum detector, since the signals of weaker users are treated as additive

interference. The jointly optimum interference canceller for synchronous transmission

may be defined as the detector which computes the decisions bk as

bk = sgn

J¥*

£jpjk(0)bj (16.3-59)

Multistage interference cancellation (MIC) Multiuser detection based on MIC is

a technique that employs multiple iterations in detecting the user bits and cancelling

the interference. The method is easily described by means of an example.
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EXAMPLE 16.3-1. TWO USERS AND SYNCHRONOUS TRANSMISSION. For the first Stage

of the detector, we may use the SIC detector or any of the suboptimum detectors. For

example, suppose we use the decorrelating detector in the first stage.

First stage (decorrelating detector):

b\ = sgn(ri - pr2 )

b2 = sgn(r2 - pn)

Second stage:

b x = sgn (n - V£2b2p^

b2 = sgn (r2 - \T£ibip^j

Third stage:

b x = gn (n - +/£2b2p)

b2 = sgn (r2 - +/£
x bip^

The computations may be terminated when there is no change in the decisions over

two successive iterations.

Successive interference cancellation and multistage interference cancellation are

two types of multiple access interference cancellation techniques that have received

considerable attention by many researchers. For reference, we include the papers by

Varanasi and Aazhang (1990), Patel and Holtzman (1994), Buehrer et al. (1996, 1999),

and Divsalar et al. (1998).

We should indicate that the MIC is a suboptimum detector and does not converge

to the jointly optimum multiuser detector defined above.

16.3-5 Other Types of Multiuser Detectors

Because of the widespread interest in the development of commercial CDMA commu-
nication systems, the design of multiuser detection algorithms continues to be a very

active area of research. Our treatment in this chapter focused on the optimum MLSE
algorithm, suboptimum linear (MMSE and decorrelating detection) algorithms, and

non-linear successive interference cancellation algorithms based on hard decisions.

In addition to these relatively simple algorithms, a number of more complex al-

gorithms have been described in the literature that are appropriate for time-dispersive

channels which result in ISI. In addition, one may assume that knowledge of the sig-

nature waveforms of the other users is not available to a user receiver. Hence, a user

receiver is confronted with both ISI and multiple access interference (MAI). In such a

scenario, it is possible to design adaptive interference suppression algorithms that are

akin to equalization algorithms previously described in Chapter 10.

Adapative algorithms for suppressing ISI and MAI in multiuser CDMA systems

are described in the papers by Abdulrahman et al. (1994), Honig (1998), Miller (1995,
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1996), Rapajic and Vucetic (1994), and Mitra and Poor (1995). In some cases, the

adaptive algorithms are designed to converge without the use of any training symbols.

Such algorithms are called blind multiuser detection algorithms. Examples of such

blind algorithms are described in the papers by Honig et al. (1995), Madhow (1998),

Wang and Poor (1998a, b), Bensley and Aazhang (1996) and the book by Wang and

Poor (2004).

The use of multiple transmitting and/or receiving antennas in CDMA systems pro-

vides each user with the opportunity to employ spatial filtering in addition to temporal

filtering to reduce ISI and MAI and combat signal fading. Blind multiuser detection

algorithms for multiple antenna systems have been described by Wang and Poor (1999).

In general, the signals transmitted by the various users in a CDMA communication

system are coded, either using a single level of coding or a concatenated code. In-

stead of separating the signal processing of the demodulator from the decoder, a better

strategy is to use soft-information metrics from the decoder to enhance the suppres-

sion of the MAI and ISI at the demodulator. Thus, one can devise turbo-type iterative

demodulation-decoding algorithms for suppressing MAI and ISI. Such algorithms for

coded CDMA systems have been described in the papers by Reed et al. (1998), Moher

(1998), Alexander et al. (1999), and Wang and Poor (1999).

16.3-6 Performance Characteristics of Detectors

The bit error probability is generally the desirable performance measure in multiuser

communications. In evaluating the effect of multiuser interference on the performance

of the detector for a single user, we may use as a benchmark the probability of a bit

error for a single-user receiver in the absence of other users of the channel, which is

PkiYk) = Q(VWk) (16.3-60)

where yk = £k /No, 8k is the signal energy per bit, and
\ No is the power spectral density

of the AWGN.
In the case of the optimum detector for either synchronous or asynchronous trans-

mission, the probability of error is extremely difficult and tedious to evaluate. In this

case, we may use Equation 16.3-60 as a lower bound and the performance of a subop-

timum detector as an upper bound.

Let us consider, first, the suboptimum, conventional single-user detector. For syn-

chronous transmission, the output of the correlator for the kth user is given by Equa-

tion 16.3-27. Therefore, the probability of error for the kth user, conditional on a

sequence b
t
of bits from other users, is

K
2

/
)

\

2 VSk + >/£jbj(l)Pjk(Q) /No
j=

1

J¥*
'

J

Pkibt) = Q (16.3-61)
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Then, the average probability of error is simply

Pk = O )*
-1

!>*(*<)
1=1

(16.3-62)

The probability in Equation 16.3-62 will be dominated by the term that has the smallest

argument in the Q function. The smallest argument will result in an SNR of

(SNR)™

n 2

K

j=

i

Therefore,

(i)*
-1

Q(^2(SNRW) <Pk < G(\/2(SNR)~)

(16.3-63)

(16.3-64)

A similar development can be used to obtain bounds on the performance for asyn-

chronous transmission.

In the case of a decorrelating detector, tnfc other-user interference is completely

eliminated. Hence, the probability of error may be expressed as

Pk (16.3-65)

where <7
2

is the variance of the noise in the kth element of the estimate b°.

example 16.3-2. Consider the case of synchronous, two-user transmission, where b\

is given by Equation 16.3-41. Let us determine the probability of error.

The signal component for the first term in Equation 16.3-41 is The noise

component is

n\ — pri2n=
1 -P 2

where p is the correlation between the two signature signals. The variance of this

noise is

2 £[(«1 - pni)]
2

CTl “
(1 - P

2
)
2

1 N0

1 -p2 2

(16.3-66)

and

p' = e (vf (1 -',2)

)

(16.3-67)

A similar result is obtained for the performance of the second user. Therefore, the noise

variance has increased by the factor (1 — p
2
)

-1
. This noise enhancement is the price

paid for the elimination of the multiuser interference by the decorrelating detector.
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The error rate performance of the MMSE detector is similar to that for the decor-

relating detector when the noise level is low. For example, from Equation 16.3-55, we
observe that when No is small relative to the diagonal elements of the signal correlation

matrix R#

,

b° « R^r (16.3-68)

which is the solution for the decorrelating detector. For low multiuser interference, the

MMSE detector results in a smaller noise enhancement compared with the decorrelating

detector, but has some residual bias resulting from the other users. Thus, the MMSE
detector attempts to strike a balance between the residual interference and the noise

enhancement.

An alternative to the error probability as a figure of merit that has been used to

characterize the performance of a multiuser communication system is the ratio of SNRs
with and without the presence of interference. In particular, Equation 16.3-60 gives

the error probability of the kih user in the absence of other-user interference. In this

case, the SNR is y

\

= £k/No. In the presence of multiuser interference, the user that

transmits a signal with energy £* will have an error probability that exceeds Pk(Yk)-

The effective SNR yke is defined as the SNR required to achieve the error probability

Pk = PkiYke ) = Q(V^ne) (16.3-69)

The efficiency is defined as the ratio yke/Yk and represents the performance loss due

to the multiuser interference. The desirable figure of merit is the asymptotic efficiency ,

defined as

r)k = lim — (16.3-70)
Vo—^0 yk

This figure of merit is often simpler to compute than the probability of error.

example 16.3-3. Consider the case of two symbol-synchronous users with signal

energies £\ and £2 . Let us determine the asymptotic efficiency of the conventional

detector.

In this case, the probability of error is easily obtained from Equation 16.3-61 and

Equation 16.3-62 as

P\ = \Q (j'Ky/Si+pVStflN^j + \Q

However, the asymptotic efficiency is much easier to compute. It follows from the

definition of Equation 16.3-70 and from Equation 16.3-61 that

A similar expression is obtained for rj2 .

The asymptotic efficiency of the optimum and suboptimum detectors that we have

described has been evaluated by Verdu (1986c), Lupas and Verdu (1989), and Xie et al.

(1990b). Figure 16.3-3 illustrates the asymptotic efficiencies of these detectors when
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Conventional detector \
Optimum detector

Linear ML detector \
MMSE detector \

N.

10 1 1 ^
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10 log10 {S2IS{)

FIGURE 16.3-3

Asymptotic efficiencies of optimum (Viterbi) detector, conventional detector, MMSE detector,

and linear ML detector in a two-user synchronous DS/SSMA system. [From Xie et al. (1990 b),

© IEEE.]

K = 2 users are transmitting synchronously. These graphs show that when the inter-

ference is small (£2 -> 0), the asymptotic efficiencies of these detectors are relatively

large (near unity) and comparable. As £2 increases, the asymptotic efficiency of the

conventional single-user detector deteriorates rapidly. However, the other linear detec-

tors perform relatively well compared with the optimum detector. Similar conclusions

are reached by computing the error probabilities, but these computations are often more

tedious.

16.4

MULTIUSER MIMO SYSTEMS FOR BROADCAST CHANNELS

In the previous section we treated the detection of signals transmitted simultaneously

by multiple users to a common receiver. This scenario applies, for example, to the

uplink of a cellular communication system in which the individual users transmit to a

base station. We observed that the base station has the choice of selecting one of several

multiuser detection methods to separate and recover the data transmitted by each of the

multiple users.

In this section, we consider a broadcast scenario where data are transmitted simulta-

neously to multiple users from a common transmitting site. The transmitter is assumed
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to employ Nt antennas to transmit the data to K geographically distributed receivers,

where Nt > K. Each user is assumed to have a receiver with one or more receiving

antennas. This scenario applies, for example, to the downlink (broadcast mode) of a

wireless local-area network (LAN) or a cellular communication system in which the

channel is aMIMO channel. The distinguishing feature of this MIMO broadcast system

is that the receivers are geographically distributed (point-to-multipoint transmission)

and employ no coordination in processing the received signals. In contrast, the point-

to-point MIMO systems that were treated in Chapter 15 exploited the availability of

the signals from all the antennas in detecting the data.

In the MIMO broadcast scenario considered in this section, there are two possible

approaches for dealing with the multiple-access interference (MAI) resulting from the

simultaneous transmission to multiple users. One approach is to have each receiver

employ interference mitigation in the recovery of its desired signal. In most cases,

this approach is impractical because the users lack the processing capabilities and are

constrained by the limited energy resources inherent in the use of battery power. The

alternative approach is to employ interference mitigation techniques at the base station,

which possesses significantly greater processing capabilities and energy resources. We
adopt this more practical approach to interference mitigation for the MIMO broadcast

channel.

MAI mitigation at the base station requires that the transmitter know the channel

characteristics, typically the channel impulse response. This channel state information

(CSI) may be obtained by channel measurements performed at each of the receivers by

means of received pilot signals transmitted by the base station. Then the CSI must be

transmitted to the base station for use in MAI mitigation. In some systems, the uplink

and downlink channels are identical, e.g., the same frequency band is employed for

both the uplink and downlink, but separate time slots are used for transmission. This

transmission mode is called time-division duplex (TDD). In TDD operation, the pilot

signals for channel measurement may be transmitted by each of the users in the uplink.

In any case, we assume that the channel time variations are relatively slow so that a

reliable estimate of the channel characteristics is available at the base station. In the

treatment given in this section, we assume that the CSI at the transmitter is perfect.

The suppression ofMAI by means of transmitter processing is usually called signal

precoding. Although we will not include coded signal transmission in this discussion of

MAI suppression, the addition of channel coding to achieve a rate near channel capacity

is essential. In a paper entitled “Writing on Dirty Paper,” Costa (1983) demonstrated

that the capacity of an additive Gaussian noise channel further corrupted by additive

interference that is known at the transmitter is the same as the capacity of the additive

Gaussian noise channel without the additional interference. The analogy to writing on

dirty paper is that if the writer (transmitter) knows where the dirt is located on the paper,

the message can be written in a way that the reader (receiver) can recover the message

without any knowledge of the location of the dirt. To elaborate, suppose the transmitter

first selects a codeword xi ,
to be transmitted to receiver 1 . Then the transmitter selects

a codeword X2 to be transmitted to receiver 2, with knowledge of the codeword xi to

be sent to receiver 1. In such a case, the transmitter can presubtract xi from X2 ,
so that

receiver 2 will receive X2 without interference. The signal precoding performed at the

transmitter to suppress MAI is sometimes called dirty paper precoding.
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RX,

RX,

RXh

FIGURE 16.4-1

Model ofMIMO broadcast system employing linear precoding.

Signal precoding at the transmitter may take one of several forms, depending on the

criterion or the method used to perform the precoding. The simplest precoding methods

are linear and are based on either the zero-forcing (ZF) criterion or the mean-square-

error (MSE) criterion. Alternatively, there are nonlinear signal precoding methods that

result in better system performance. We begin with a treatment of linear precoding and

then we describe three nonlinear precoding methods.

16.4-1 Linear Precoding of the Transmitted Signals

For convenience and mathematical simplicity, we assume that each user has a single

antenna and the number of receivers (users) is K < Nt- It is also convenient to assume

that the channel is nondispersive. The communication system configuration is shown

in Figure 16.4-1, where the precoding matrix is denoted as A T . Hence, the received

signal vector is

y = HA t s + ri (16.4-1)

where H is a K x Nt matrix, At is an Nt x K matrix, s is a K x 1 vector, and rj is

a K x 1 Gaussian noise vector. The matrix that eliminates the MAI at each receiver is

generally given by the Moore-Penrose pseudoinverse (see Appendix A)

H+ = Hh(HHh
)

1

(16.4-2)

Hence, the precoding matrix is

A t = aH+
(16.4-3)

where a is a scale factor that is selected to satisfy the total transmitted power allo-

cation, i.e., \\A t s\\
2= P. Thus, the precoding matrix in Equation 16.4-3 allows the

individual users to recover their desired symbols without any interference from the

signals transmitted to the other users. We also observe that in the special case where

K = Nt, A T = aH~ l
. Furthermore, we note that when the symbols transmitted to

the K users are selected from the same constellation, all users have the same SNR at

their receivers and the corresponding data rates are also identical.

The sum capacity of the MIMO broadcast system that employs a channel inversion

precoder has been investigated by Hochwald and Vishwanath (2005) and by Peel et

al. (2005). It is shown in these references that the ergodic sum capacity with channel

inversion, when K = Nt oo
9
approaches a constant independent of K and Nt .
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This result is in contrast to the achievable sum capacity of a MIMO system which, as

we have observed, increases linearly as min(A^7 ,
K). This poor performance resulting

from channel inversion is attributed to the large disparity between the smallest and

largest eigenvalues of the matrix (HHh )~ l
.

The effect of the ill-conditioning in the channel matrix H is also observed in the

error rate performance of the MIMO broadcast system that employs channel inversion

to suppress the MAI. This ill-conditioning requires an increase in transmit power to

attain acceptable performance. The error rate performance is illustrated in the following

example.

example 16.4-1. The broadcast system modeled by Equations 16.4-1 and 16.4-3

may be simulated on a computer. The channel matrix elements are complex-valued iid

zero-mean Gaussian random variables with unit variance. The error rate performance

of the zero-forcing precoder obtained via Monte Carlo simulation is illustrated in

Figure 16.4-2 for K = Nt = 4, 6, and 10 for QPSK modulation. We observe that

the error rate increases with an increase in the number of users. We attribute this

deterioration in performance to the ill-conditioning of the channel matrix H.

As we have observed, the major drawback with the zero-forcing solution is that

when the channel matrix H is ill-conditioned (low gains or high attenuation in some
of the transmitter-receiver links), the system performance is degraded, due to matrix

inversion. If we relax the condition that the MAI be zero at all the receivers, the

performance degradation can be reduced. This can be accomplished by using the linear

MSE criterion in the design ofthe precoding matrix At . Thus, we selectA j to minimize

FIGURE 16.4-2

Performance of ZF linear precoding with Nj = K = 4, 6, 10. Performance improves as K
decreases.
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FIGURE 16.4-3

Comparison of the sum capacity for the linear precoder as a function of the number of users

K(K = Nt ) for an SNR = 10 dB. [From Peel et al (2005). © IEEE.]

the cost function

J(AT ,a) = arg min E
a,Ar

—(HAs + ri)-s
a

(16.4-4)

subject to the transmitted power allocation
||
A z s\\

2 = P, and where the expectation in

Equation 16.4-4 is taken over the noise statistics and signal statistics. The solution to

the MMSE criterion is the precoding matrix

At = aHN(HHH + fiiy
1

(16.4-5)

where a is the scale factor that is selected to satisfy the power allocation and is

defined as a loading factor, which when selected as = K /P maximizes the signal-

to-interference-plus-noise ratio (SINR) at the receiver [see Peel et al. (2005)].

Figure 16.4-3, taken from the paper by Peel et al. (2005), provides a comparison of

the sum capacity for the two linear precoders based on the zero-forcing and the MMSE
criteria. Also shown in this figure is the ergodic sum capacity of the MIMO channel

when the channel characteristics are known at the transmitter. We observe that the sum

capacity of the linear precoder designed on the basis of the MMSE criterion increases

linearly with K
,
but it has a smaller slope than the theoretical limit.

The error rate performance of the MMSE linear precoder obtained by Monte Carlo

simulation in a frequency-nonselective Rayleigh fading channel is illustrated in Fig-

ure 16.4-4 for K = Nr = 4, 6, and 10. We observe that the error rate performance

improves slightly as the number of users K increases.
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FIGURE 16.4-4

Performance ofMMSE linear precoding with Nt = K = 4, 6, 10. Performance improves as K
increases.

16.4-2 Nonlinear Precoding of the Transmitted Signals—The QR
Decomposition

When the transmitter knows the interference caused on other users by the transmis-

sion of a signal to any particular user, the transmitter can design signals for each

of the other users to cancel the MAI. The major problem with such an approach

is to perform the interference cancellation without increasing the transmitter power.

We encountered this same issue in our treatment of channel equalization based on

decision-feedback equalization, where the feedback part of the equalizer was imple-

mented at the transmitter (see Section 9.5-4). We recall that when the range of the

difference between the desired symbol and the ISI exceeded the range of the desired

transmitted symbol, the difference was reduced by subtracting an integer multiple of

2M for M-ary PAM, where [—M, M) is the range of the desired transmitted sig-

nal. This same nonlinear precoding method, called Tomlinson-Harashima precoding,

can be applied to the cancellation of the MAI in a MIMO broadcast communication

system.

Figure 16.4-5 illustrates the precoding operations for the MIMO multiuser sys-

tem. For a frequency-selective channel, the channel impulse response between the zth

transmit antenna and the receive antenna of the kih user is modeled as

L—

1

hki (t) = J2hkiW-lT)
1=0

(16.4-6)
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FIGURE 16.4-5

Tomlinson-Harashima precoding applied to a MIMO system.

where L is the number of multipath components in the channel response, T is the

symbol duration, and is the complex-valued channel coefficient for the Zth path.

The channel coefficients {h^}} are known at the transmitter and are realizations of iid

zero-mean, circularly symmetric complex Gaussian random variables with variance

£ h/j^l
2

]

= i, VJfc.i, and/ (16.4-7)
J ]_J

It is convenient to arrange these channel coefficients for the Zth path in a K x Nj matrix

H (,)
,
where [H«]w = hft ,

i = 1, 2, . . . , NT , k = 1, 2, . .
.

,

K.

The MAI cancellation is facilitated by use of the QR decomposition of the channel

matrix H^\ Thus, we express [H^]h as

[H (0)
]

h = QR (16.4-8)

where Q is an Nt x K matrix, such that QQH = /, and R is a K x K upper triangular

matrix with diagonal elements {ru }. Based on this decomposition of [H^]h
9
the signal

to be transmitted is precoded with the matrix transformation

W = QA (16.4-9)

where A is a K x K diagonal matrix with diagonal elements l/ru,i = 1,2 ,
. .

. ,
K.

The {r„} are real and positive [see Tulino and Verdu (2004)]. The matrix P = pi is

a diagonal K x K matrix that is used simply for scaling the power of the transmitted

signal and results in equal SNR for all users. Therefore, we have an effective channel

matrix of the form

H(0)WP = [QR]H QAP
= pRHA

(16.4-10)

We note that RHA is a K x K lower triangular matrix with unit diagonal elements. As

a result, user k sees multiple access interference from users 1, 2, . .
.

,

k — 1. We also
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note that the effective channel matrix H i0)W = RHA will have full rank K
,
provided

that Nt > K.

By reducing this channel matrix to a lower triangular matrix, we can now subtract

the interference at the transmitter that each user would normally observe at his or

her respective receiver. Thus, when the channel adds the same interference to the

transmitted signal, the received signal at each receiver will be free of interference.

By taking advantage of the lower triangular matrix structure, successive interference

cancellation is performed with the feedback filter defined by the matrix

B = [I — H (0) W, -HwW, ..., -

H

(L- l)W] (16.4-11)

where the matrix (/— // (0)W) is used to cancel the interference due to the other users that

arises in the current symbol interval, and the terms—HmW,—

H

(2)W , ... ,
—H^L~ ])W

are used to cancel the interference due to previous symbols.

To ensure that the subtraction of the interference terms does not result in an in-

crease of transmitter power, we use the modulo operator, as in Tomlinson-Harashima

precoding, to limit the range of the signal to the boundaries of the signal constellation.

Thus, the output of the modulo operators for the nth symbol vector, as shown in Figure

16.4-5, is (for square QAM constellations)

x(n) = mod
2
/^(rc) + Bx(n)\v

(16.4-12)
= s(n) + Bx(n) - 2^Mzx (n)

where the modulo operation is performed on each real and imaginary component of the

vector [s(?x) + Bx(n)], x(n) is the K x 1 vector at the output of the modulo operator,

s(n ) is the K x 1 data vector, x(n) is defined as

x(n) = [x(n)\ x(n - 1)', x(n - 2)', . .
.

,

x(n - (L - 1))']' (16.4-13)

and zx (n ) is an K x 1 vector with complex-valued components that take on inte-

ger values, determined by the constraint that the real and imaginary components of

x(n) fall in the range of \/M). Therefore, the transmitted signal vector is

expressed as

s\n) = WPx(n)

= pWx(n)
(16.4-14)

and the received signal vector is

L—

1

r(n) = pJ2H
(i)Wx(n - i) + j;(n) (16.4-15)

1=0

Hence,

L—

1

P~ l

r(n) = x(n) + (H^W - I)x(n ) +^ H (i)WX(n - i) + if'{n) (16.4-16)

1= 1
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By substituting for B and x(ri) in Equation 16.4-16, it follows that

P~ l
r(n) = s(n ) + n'(n )

- 2s[Mzx {n) (16.4-17)

Consequently, the MAI and ISI canceled perfectly, resulting in the test statistics for the

nth symbol vector as

y(n) = mod (16.4-18)

Optimum Ordering of the Decentralized Receivers

The ordering of the K decentralized receivers affects the construction of the K x NT

channel matrix There are K !
possible column permutations of [H^0)

]

h
,
and hence

there is one QR decomposition associated with each permutation. In turn, there are K !

transformation matrices W = QA, each of which requires a different transmit power.

To minimize the total transmit power, it is necessary to search over all the column

permutations of [H^]h . Such an exhaustive search procedure is computationally time-

consuming, except for a small number of users. Foschini et al. (1999) have described

methods for simplifying the search for the optimum ordering.

The error rate performance of the QR decomposition method described above has

been evaluated by Amihood et al. (2006, 2007). Figure 16.4-6 illustrates the symbol

error probability as a function of the SNR (total transmitted signal power over all

antennas divided by No) for QPSK modulation, L = 1,2 and NT = K = 2. The

FIGURE 16.4-6

Performance of optimal QR decomposition with Nt = K = 2 and L = 1 and 2.
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FIGURE 16.4-7

Performance of optimal ordered QR decomposition with K = 2, L = 1 and Nj = 2, 3, and 4.

Monte Carlo simulation results are also illustrated. The simulation results are obtained

by transmitting 1000 data symbols over each of 10,000 channel realizations.

Figure 16.4-7 shows the symbol error rate performance for QPSK with L — 1 (flat

fading), K —
2, and Nj — 2, 3, 4. We observe that the system performance improves

with an increase in the number of transmit antennas, which reflects the benefit of spatial

diversity.

Figure 16.4-8 shows a comparison of the error rate performance of the linear

ZF and MMSE precoding methods with the QR decomposition method for QPSK
modulation with L — 1 and K = Nj = 4. Figure 16.4-9 shows a similar comparison

for K = Nj = 6. We observe that the performance of the QR decomposition method is

better than that of the linear precoders at high SNRs but poorer at low SNRs. However,

the improvement in performance of the QR decomposition method at high SNRs should

be weighed against the significantly higher computational complexity compared with

the linear MMSE precoder.

16.4-3 Nonlinear Vector Precoding

The QR decomposition method described in Section 16.4-2 is one of several nonlinear

precoding techniques described in the literature for suppressing MAI in MIMO broad-

cast communication systems. These methods may be generally described as vector

precoding techniques.

Hochwald et al. (2005) have proposed and evaluated the performance of a vector

precoding technique in which the data vector to be transmitted to the K users is modified

by the addition of a precoding vector with integer elements. In particular, let us consider
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FIGURE 16.4-8

Comparison of the QR decomposition and the linear precoders with Nt = K = 4.

a modification of the linear zero-forcing precoder in which each element of the data

vector s is offset by some judiciously selected integer, as illustrated in Figure 16.4-10.

Thus, the offset data vector becomes

s' = s + xp (16.4-19)

FIGURE 16.4-9

Comparison of the QR decomposition and the linear precoders with Nj = K = 6.
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FIGURE 16.4-10

Model ofMIMO broadcast system employing vector precoding.

where r is a real positive number and p is a K-dimensional vector with complex-valued

elements, where the real and imaginary components are integers. Hence, for Nt = K,

the transmitted signal vector is

x = A t (s + r p)

= aH~ l
(s + rp)

(16.4-20)

The offset vector p is chosen to minimize the power in the transmitted signal, i.e.,

p = argmin
||
aH~ l

(s + rp)
||

2
(16.4-21)

p

Hence, the vector perturbation method jointly optimizes the perturbation vector for

the signals that are transmitted to all the receivers. Algorithms for solving this least-

squares ^-dimensional integer-lattice problem are given in the paper by Hochwald

et al. (2005).

It is demonstrated in Hochwald et al. (2005) that the optimization of the perturba-

tion vector p results in an offset data vector s' that, on average, is oriented toward each

eigenvalue of (HHh )~ 1
in inverse proportion to the eigenvalue. This vector precod-

ing method generally yields better error rate performance than the QR decomposition

method, described in the previous section, that employs scalar Tomlinson-Harashima

precoding.

The perturbation vector p is not known to the receivers. However, by constraining

the elements of p to be integers, the receivers may use the modulo operation, as in

Tomlinson-Harashima precoding, to recover the data components. The scalar r is

selected large enough that each receiver applies the modulo function to the real and

imaginary components of each element of the received vector y = Hx + rj to recover

the corresponding element of the data vector s. It is desirable to choose r so that it

results in a symmetric decoding region around the real and imaginary components

of every signal constellation symbol. The choice of r that accomplishes this desired

goal is

T — ^l^lmax + A (16.4—22)

where |^|max is the signal constellation symbol having the largest magnitude and A is

the distance between adjacent constellation symbols.
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The vector perturbation technique may also be applied to the linear precoder based

on the MMSE criterion. In this case, the transmitted vector is

x = A t (s + rp)

= aHH(HHH + /3I)~ l
(s + rp)

(16.4-23)

where p is selected to minimize the power of the transmitted signal, i.e.,

p = argmin \\aH
H(HHH + pi)~ l

(s + rp)\\
2

(16.4-24)
p

where a is selected to satisfy the transmitted power allocation constraint, is se-

lected to maximize the signal-to-interference-plus-noise ratio, and r is selected as

described previously to result in a symmetric decoding region around the real and

imaginary components of every signal constellation symbol. Hence the received signal

vector is

r = aHHH(HHH + pi)~ l

(s + Tp) + ri (16.4-25)

The rath user assumes that its received signal has the form

rm = ot{sm + rpm ) + rj'm (16.4-26)

where rj'm includes the additive channel noise and the MAI from other users due to the

nonzero scale factor /3 . Since each userknows a and r
,
the rath user performs the modulo

operation on rm to remove pm and passes the result to its decoder. It is demonstrated

in Hochwald et al. (2005) that the performance of this vector perturbation scheme is

significantly better than the linear MMSE precoder described in Section 16.4-1.

16.4-4 Lattice Reduction Technique for Precoding

Lattice constellations are quite common in designing signal sets for communication

systems. We have studied the main properties of lattices and lattice-based constellations

in Section 4.7. Lattice precoding is a technique similar to the Tomlinson-Harashima

precoding that can be used with channels with known interference at the transmitter.

We consider the MIMO broadcast channel model with Nj transmit antennas at the

base station and K receivers each with a single antenna. We also assume K < Nt- The

input-output relation for the channel is written as

y = Hx + ri (16.4-27)

where x and y are the transmitted and received signals with Nj and K components,

respectively, ri is a vector of iid random variables each drawn according to CM(0, No),

and H is a K x Nt matrix of complex channel coefficients. As previously stated, the

matrix H is assumed to be perfectly known at the transmitter.

The original lattice reduction techniques were developed for real lattices and in

order to employ them it is convenient to introduce a real equivalent ofthe communication

system under study. Equation 16.4-27 is equivalent to the following form in which all
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quantities are real

ReOO

Im(j)

-Re(H) -lm(H) Re(x)
+

Re(>/)

Im(H) Re(H) Im(x) Im(j/)

This equation can be written as

y r = Hrx r + Tfj r

(16.4-28)

(16.4-29)

The vector of data symbols intended for the K receivers is denoted by s, which

is a 7^-dimensional vector with components in an M-ary QAM constellation which is

defined as a set of lattice points with a given boundary.

We have seen different types of precoding in the previous sections, among them

zero-forcing precoding matrix of the form Ajr = olH+ = aHf{HrH^)~ l
resulting

in

= A TrSr = OlHf (HrH?)~
l

s r (16.4-30)

and MMSE precoding matrix of the form A Tr = aH? {HrH» + fil) Resulting in

x r = A Trs r = OlHf (
H rH" + piy

1

s r (16.4-31)

as examples of linear precoding, and Tomlinson-Harashima which uses modulo arith-

metic at the transmitter and requires a modulo operation at the receiver before quantizing

to the M-aryQAM constellation. This nonlinear precoding technique is based on theQR
decomposition ofHr and successive cancellation whose performance can be improved

by optimal ordering of the subchannels using the algorithm described by Foschini et

al. (1999).

The perturbation method of Section 16.4-3 can also be expressed in terms of the

real equivalent matrix representation of Equation 16.4-29 as

= A Tr (Sr + P )

p = argmin||A rr (s r + p
p'eaZ2K

(16.4-32)

where Z2K is the 2^-dimensional integer lattice and a is the scalar (2*JM) in the

Tomlinson-Harashima modulo operation. The optimization of p in Equation 16.4-32

can be interpreted as finding the closest point in the lattice aA TrZ2K to —A Tr s r ,
which

can be accomplished using the Voronoi regions of the lattice.

As studied in Section 4.7, a lattice can be expressed in terms of its generator matrix

G whose rows denote a basis for the lattice; i.e., all lattice points can be written as

a linear combination of the rows of G with integer coefficients. Any lattice A can

have many generator matrices and many bases for representation of lattice points. In

particular, if F is a square matrix with integer entries such that det F = ±1, then F~ l

exists and its entries are all integers. Then G f = FG is a generator of lattice A. The
new generator matrix G f

defines a new basis for the lattice A. A desirable property

of the modified lattice basis is that it be an orthogonal or close-to-orthogonal basis

with the lowest basis vector norms. The process of finding such a basis for a lattice
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is called lattice reduction. Although lattice reduction in high dimensions is an NP-
hard problem, a polynomial-time suboptimal lattice reduction method due to Lenstra,

Lenstra, and Lovasz, known as the LLL algorithm for lattice reduction, exists that in

most cases gives very good results (Lenstra et al. (1982)).

Since we are looking for p in lattice aAjr%2K that is closest to —ATrs r ,
we can

apply the LLL algorithm and write

A Tr = WrFr (16.4-33)

where Wr is a real-valued 2Nt x 2K matrix, representing the transformed close-to-

orthogonal basis and Fr is the integer-valued matrix with det F r = d=l that represents

the transformation. A benefit of a close-to-orthogonal basis with low basis vector norm

is that when linear interference mitigation techniques are applied to this bases, noise

enhancement effects are lower.

In Figure 16.4-11 the left diagram shows the lattice corresponding to aATrZ2

with its Voronoi regions representing minimum-distance solutions ofEquation 16.4-32.

The original basis for this lattice is denoted by the dashed arrows. Applying LLL to

this lattice results in the reduced basis denoted by solid arrows which are closer to

an orthogonal basis compared to the original basis. If we use the original basis for

linear equalization, we obtain the figure shown in the middle in which the dashed

arrows are orthonormal. However, the integer grid shown with dashed boundaries does

not match the modified Voronoi regions. In fact, large white areas that correspond to

the mismatch between the two regions indicate the inefficiency of this approach. In

the rightmost figure, the result of applying linear equalization to the reduced basis is

shown. As seen here, there is good overlap between the modified Voronoi regions and

the integer grid, indicating the efficiency of this method.

The lattice reduction method has also been applied directly to lattices in complex

dimensions using a complex version of the LLL algorithm as described by Gan and

Mow (2005). In this case the lattice is described by n linear independent complex row

vectors gi , gi , . .
.

,

gn of length n that constitute a basis for the lattice. All lattice points

FIGURE 16.4-11

Left: Lattice AHfZ2 and its Voronoi regions with original basis (dashed) and modified basis

(solid). Middle : Linear equalization applied to the original basis. Right: Linear equalization

applied to the modified basis. [From Windpassinger et al (2004), copyright IEEE.]
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can be written as

n

x = J2 ciSi (16.4-34)

i=

1

where c
t ’s are complex numbers with integer real and imaginary parts and matrix G

whose rows are g/’s is the generator of the lattice. Similar to real lattices, if G' — GF
and F is a square matrix with complex entries with integer real and imaginary parts

such that det F = d=l or det F = ±j. Then G f

is also a basis for the lattice generated

by G. The complex LLL reduction is of the form Aj = WF where W represents the

close-to-orthogonal reduced basis.

Depending on the approach selected, AT can have different forms. For the zero-

forcing approach AT = ocH+ = otHE(HHH)~ l and for the MMSE approach AT =
aHN(HHH + ft /)

_1
. For the perturbation method which employs Voronoi regions to

find the closest lattice point, the approximate offset vector is given by

Papprox = -F~ x Q{Fs) (16.4-35)

where Q(-) denotes the componentwise rounding of the ^-dimensional vector to the

scaled complex integer lattice.

The lattice reduction technique studied by Windpassinger et al. (2004) indicates

the effectiveness of this method in improving the performance through increasing the

diversity gain. In fact the order of signal diversity achieved by the lattice reduction

technique is comparable to the signal diversity obtained by the maximum-likelihood

detection, but this signal diversity in the lattice reduction technique is obtained at a

much lower complexity. The interested reader is referred to Yao and Wornell (2002),

Fischer and Windpassinger (2003), and Windpassinger et al. (2004) for details.

16.5

RANDOM ACCESS METHODS

In this section, we consider a multiuser communication system in which users transmit

information in packets over a common channel. In contrast to the CDMA method de-

scribed in Section 16.3, the information signals of the users are not spread in frequency.

As a consequence, simultaneous transmission of signals from multiple users cannot be

separated at the receiver, without the use of spatial filtering which can be achieved by

multiple receiving antennas. The access methods described below are basically ran-

dom, because packets are generated according to some statistical model. Users access

the channel when they have one or more packets to transmit. When more than one

user attempts to transmit packets simultaneously, the packets overlap in time, i.e., they

collide, and, hence, a conflict results, which must be resolved by devising some channel

protocol for retransmission of the packets. Below, we describe several random access

channel protocols that resolve conflicts in packet transmission.
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16.5-1 ALOHA Systems and Protocols

Suppose that a random access scheme is employed where each user transmits a packet

as soon as it is generated. When a packet is transmitted by a user and no other user

transmits a packet for the duration of the time interval, then the packet is considered

successfully transmitted. However, if one or more of the other users transmits a packet

that overlaps in time with the packet from the first user, a collision occurs and the

transmission is unsuccessful. Figure 16.5-1 illustrates this scenario. If the users know
when their packets are transmitted successfully and when they have collided with other

packets, it is possible to devise a scheme, which we may call a channel accessprotocol
,

for retransmission of collided packets.

Feedback to the users regarding the successful or unsuccessful transmission of

packets is necessary and can be provided in a number of ways. In a radio broadcast

system, such as one that employs a satellite relay as depicted in Figure 16.5-2, the

packets are broadcast to all the users on the downlink. Hence, all the transmitters

can monitor their transmissions and, thus, obtain the following ternary information: no

packet was transmitted, or a packet was transmitted successfully, or a collision occurred.

This type of feedback to the transmitters is generally denoted as (0, 1, c) feedback. In

systems that employ wireline or filter-optic channels, the receiver may transmit the

feedback signal on a separate channel.

Broadcast

satellite

FIGURE 16.5-2

Broadcast system.
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The ALOHA system devised by Abramson (1970, 1977) and others at the Univer-

sity of Hawaii employs a satellite repeater that broadcasts the packets received from the

various users who access the satellite. In this case, all the users can monitor the satellite

transmissions and, thus, establish whether or not their packets have been transmitted

successfully.

There are basically two types of ALOHA systems: synchronized or slotted and

unsynchronized or unslotted. In an unslotted ALOHA system, a user may begin trans-

mitting a packet at any arbitrary time. In a slotted ALOHA, the packets are transmitted

in time slots that have specified beginning and ending times.

We assume that the start time of packets that are transmitted is a Poisson point

process having an average rate of k packets/s. Let Tp denote the time duration of a

packet. Then, the normalized channel traffic G, also called the offered channel traffic ,

is defined as

G = kTp (16.5-1)

There are many channel access protocols that can be used to handle collisions. Let

us consider the one due to Abramson (1973). In Abramson’s protocol, packets that have

collided are retransmitted with some delay r, where r is randomly selected according

to the PDF

p{x) = ae~aT '(16.5-2)

where a is a design parameter. The random delay r is added to the time of the initial

transmission and the packet is retransmitted at the new time. If a collision occurs

again, a new value of r is randomly selected and the packet is retransmitted with a

new delay from the time of the second transmission. This process is continued until

the packet is transmitted successfully. The design parameter a determines the average

delay between retransmissions. The smaller the value of a, the longer the delay between

retransmissions.

Now, let A/, where k f < k, be the rate at which packets are transmitted successfully.

Then, the normalized channel throughput is

S = k'Tp (16.5-3)

We can relate the channel throughput S to the offered channel traffic G by making

use of the assumed start time distribution. The probability that a packet will not overlap

a given packet is simply the probability that no packet begins Tp seconds before or Tp
seconds after the start time of the transmitted packet. Since the start time of all packets

is Poisson-distributed, the probability that a packet will not overlap is exp(—

2

kTp )
=

exp(—2G). Therefore,

S = Ge~2G (16.5—4)

This relationship is plotted in Figure 16.5-3. We observe that the maximum throughput

is Smax = l/2e = 0.184 packets per slot, which occurs at G — When G > the

throughput S decreases. The above development illustrates that an unsynchronized or

unslotted random access method has a relatively small throughput and is inefficient.
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FIGURE 16.5-3

Throughput in ALOHA systems.

Throughputfor slottedALOHA To determine the throughput in a slottedALOHA
system, let G

t
be the probability that the ith user will transmit a packet in some slot. If

all the K users operate independently and there is no statistical dependence between the

transmission of the user’s packet in the current slot and the transmission of the user’s

packet in previous time slots, the total (normalized) offered channel traffic is

K

G = Y,Gi (16.5-5)

1= 1

Note that, in this case, G may be greater than unity.

Now, let Si < Gi be the probability that a packet transmitted in a time slot is

received without a collision. Then, the normalized channel throughput is

K

S = ^Si (16.5-6)

1= 1

The probability that a packet from the zth user will not have a collision with another

packet is

K

Qi = Lf(l — Gj) (16.5-7)

;=*

Therefore,

St = Gt Qi (16.5-8)

A simple expression for the channel throughput is obtained by considering K
identical users. Then,

S
i
= s

K’
Gi

G
K
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and

/ G\ K~ l

S = G
V

1 ~ K )
(16-5_9)

Then, if we let K -> oo, we obtain the throughput

S = Ge~° (16.5-10)

This result is also plotted in Figure 16.5-3. We observe that S reaches a maximum
throughput of 5max = l/e = 0.368 packets per slot at G = 1, which is twice the

throughput of the unslotted ALOHA system.

The performance of the slotted ALOHA system given above is based on Abram-

son’s protocol for handling collisions. A higher throughput is possible by devising a

better protocol.

A basic weakness in Abramson’s protocol is that it does not take into account the

information on the amount of traffic on the channel that is available from observation of

the collisions that occur. An improvement in throughput of the slotted ALOHA system

can be obtained by using a tree-type protocol devised by Capetanakis (1979). In this

algorithm, users are not allowed to transmit new packets that are generated until all ear-

lier collisions are resolved. A user can transmit a new packet in a time slot immediately

following its generation, provided that all previous packets that have collided have been

transmitted successfully. If a new packet is generated while the channel is clearing the

previous collisions, the packet is stored in a buffer. When a new packet collides with

another, each user assigns its respective packet to one oftwo sets, say A or B, with equal

probability (by flipping a coin). Then, if a packet is put in set A, the user transmits it

in the next time slot. If it collides again, the user will again randomly assign the packet

to one of two sets and the process of transmission is repeated. This process continues

until all packets contained in set A are transmitted successfully. Then, all packets in set

B are transmitted following the same procedure. All the users monitor the state of the

channel, and, hence, they know when all the collisions have been serviced.

When the channel becomes available for transmission of new packets, the earliest

generated packets are transmitted first. To establish a queue, the time scale is subdivided

into subintervals of sufficiently short duration such that, on average, approximately one

packet is generated by a user in a subinterval. Thus, each packet has a “time tag”

that is associated with the subinterval in which it was generated. Then, a new packet

belonging to the first subinterval is transmitted in the first available time slot. If there

is no collision, then a packet from the second subinterval is transmitted, and so on.

This procedure continues as new packets are generated and as long as any backlog of

packets for transmission exists. Capetanakis has demonstrated that this channel access

protocol achieves a maximum throughput of 0.43 packets per slot.

In addition to throughput, another important performance measure in a random

access system is the average transmission delay in transmitting a packet. In an ALOHA
system, the average number of transmissions per packet is G/S. To this number we may
add the average waiting time between transmissions and, thus, obtain an average delay

for a successful transmission. We recall from the above discussion that in the Abramson

protocol, the parameter a determines the average delay between retransmissions. If we
select a small, we obtain the desirable effect of smoothing out the channel load at times
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of peak loading, but the result is a long retransmission delay. This is the trade-off in

the selection of a in Equation 16.5-2. On the other hand, the Capetanakis protocol has

been shown to have a smaller average delay in the transmission of packets. Hence, it

outperforms Abramson’s protocol in both average delay and throughput.

Another important issue in the design of random access protocols is the stability of

the protocol. In our treatment of ALOHA-type channel access protocols, we implicitly

assumed that for a given offered load, an equilibrium point is reached where the average

number of packets entering the channel is equal to the average number of packets trans-

mitted successfully. In fact, it can be demonstrated that any channel access protocol,

such as the Abramson protocol, that does not take into account the number of previous

unsuccessful transmissions in establishing a retransmission policy is inherently unsta-

ble. On the other hand, the Capetanakis algorithm differs from the Abramson protocol

in this respect and has been proved to be stable. A thorough discussion of the stability

issues of random access protocols is found in the paper by Massey (1988).

16.5-2 Carrier Sense Systems and Protocols

As we have observed, ALOHA-type (slotted and unslotted) random access protocols

yield relatively low throughput. Furthermore, a slotted ALOHA system requires that

users transmit at synchronized time slots. In channels where transmission delays are

relatively small, it is possible to design random access protocols that yield higher

throughput. An example of such a protocol is carrier sensing with collision detection,

which is used as a standard Ethernet protocol in local area networks. This protocol is

generally known as carrier sense multiple access with collision detection (CSMA/CD).
The CSMA/CD protocol is simple. All users listen for transmissions on the channel.

A user who wishes to transmit a packet seizes the channel when it senses that the channel

is idle. Collisions may occur when two or more users sense an idle channel and begin

transmission. When the users that are transmitting simultaneously sense a collision,

they transmit a special signal, called ajam signal
,
that serves to notify all users of the

collision and abort their transmissions. Both the carrier sensing feature and the abortion

of transmission when a collision occurs result in minimizing the channel downtime and,

hence, yield a higher throughput.

To elaborate on the efficiency of CSMA/CD, let us consider a local area network

having a bus architecture, as shown in Figure 16.5-4. Consider two users U\ and at

the maximum separation, i.e., at the two ends of the bus, and let rd be the propagation

FIGURE 16.5-4

Local area network with bus architecture.
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delay for a signal to travel the length of the bus. Then, the (maximum) time required

to sense an idle channel is r Suppose that U\ transmits a packet of duration Tp .

User U2 may seize the channel rd seconds later by using carrier sensing and begins to

transmit. However, user U\ would not know of this transmission until rd seconds after

U2 begins transmission. Hence, we may define the time interval 2xd as the (maximum)

time interval to detect a collision. Ifwe assume that the time required to transmit thejam

signal is negligible, the CSMA/CD protocol yields a high throughput when 2rd < Tp .

There are several possible protocols that may be used to reschedule transmissions

when a collision occurs. One protocol is called nonpersistent CSMA
,
a second is called

1 -persistent CSMA
,
and a generalization of the latter is called p-persistent CSMA.

Nonpersistent CSMA In this protocol, a user that has a packet to transmit senses

the channel and operates according to the following rule.

(a) If the channel is idle, the user transmits a packet.

(b) If the channel is sensed busy, the user schedules the packet transmission at a later

time according to some delay distribution. At the end of the delay interval, the user

again senses the channel and repeats steps (a) and (b).

1-Persistent CSMA This protocol is designed to achieve high throughput by not

allowing the channel to go idle if some user has a packet to transmit. Hence, the user

senses the channel and operates according to the following rule.

(a) If the channel is sensed idle, the user transmits the packet with probability 1.

(b) If the channel is sensed busy, the user waits until the channel becomes idle and

transmits a packet with probability one. Note that in this protocol, a collision will

always occur when more than one user has a packet to transmit.

p-Persistent CSMA To reduce the rate of collisions in 1-persistent CSMA and

increase the throughput, we should randomize the starting time for transmission of

packets. In particular, upon sensing that the channel is idle, a user with a packet to

transmit sends it with probability p and delays it by r with probability 1 — p. The

probability p is chosen in a way that reduces the probability of collisions while the

idle periods between consecutive (non-overlapping) transmissions is kept small. This

is accomplished by subdividing the time axis into minislots of duration r and selecting

the packet transmission at the beginning of a minislot. In summary, in the p-persistent

protocol, a user with a packet to transmit proceeds as follows.

(a) If the channel is sensed idle, the packet is transmitted with probability p ,
and with

probability 1 — p the transmission is delayed by r seconds.

(b) If at t = r, the channel is still sensed to be idle, step (a) is repeated. If a colli-

sion occurs, the users schedule retransmission of the packets according to some

preselected transmission delay distribution.

(c) If at t = r, the channel is sensed busy, the user waits until it becomes idle, and the

operates as in steps (a) and (b) above.

Slotted versions of the above protocol can also be constructed.
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The throughput analysis for the nonpersistent and the p-persistent CSMA/CD pro-

tocols has been performed by Kleinroch and Tobagi (1975), based on the following

assumptions:

1. The average retransmission delay is large compared with the packet duration Tp .

2. The interarrival times of the point process defined by the start times of all the packets

plus retransmissions are independent and exponentially distributed.

For the nonpersistent CSMA, the throughput is

Ge~aG

G( 1 + 2d) + e~aG
(16.5-11)

where the parameter a = rd/Tp . Note that as £/ —> 0. .S'
—> G/( 1 + G). Figure 16.5-5

illustrates the throughput versus the offered traffic G, with a as a parameter. We observe

that S 1 as G -> oo for a = 0. For a > 0, the value of 5max decreases.

For the 1 -persistent protocol, the throughput obtained by Kleinrock and Tobagi

(1975) is

G[1 + G + aG( 1 + G + iaG)]e-G(1+2a)

0(1 + 2a) - (1 - e-aG ) + (1 + aG)rC(l+fl )

In this case,

lim S =
Cl—>-0

G(1 + G)e-G

G + e~G

which has a smaller peak value than the nonpersistent protocol.

(16.5-12)

(16.5-13)

FIGURE 16.5-5

Throughput in nonpersistent CSMA. [From Kleinrock and Tobagi (1975), © IEEE.]
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FIGURE 16.5-6

Channel throughput in p -persistent

CSMA: (a) a = 0; (b) a = 0.01;

(c) a = 0.1. [From Kleinrock and

Tobagi (1975), © IEEE.]

Offered channel traffic G

By adopting the p-persistent protocol, it is possible to increase the throughput

relative to the 1 -persistent scheme. For example, Figure 16.5-6 illustrates the throughput

versus the offered traffic with a = Xd/Tp fixed and with p as a parameter. We observe

that as p increases toward unity, the maximum throughput decreases.

The transmission delay was also evaluated by Kleinrock and Tobagi (1975).

Figure 16.5-7 illustrates the graphs of the delay (normalized by Tp ) versus the through-

put S for the slotted nonpersistent and p-persistent CSMA protocols. Also shown for

comparison is the delay versus throughput characteristic of the ALOHA slotted and

unslotted protocols. In this simulation, only the newly generated packets are derived in-

dependently from a Poisson distribution. Collisions and uniformly distributed random
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Slotted

FIGURE 16.5-7

Throughput versus delay from simulation (

a

= 0.01). [From Kleinrock and Tobagi (1975),

© IEEE.]

retransmissions are handled without further assumptions. These simulation results

illustrate the superior performance of the p-persistent and the nonpersistent protocols

relative to the ALOHA protocols. Note that the graph label “optimum p-persistent”

is obtained by finding the optimum value of p for each value of the throughput. We
observe that for small values of the throughput, the 1 -persistent (p = 1) protocol is

optimal.

16.6

BIBLIOGRAPHICAL NOTES AND REFERENCES

FDMA was the dominant multiple access scheme that has been used for decades in

telephone communication systems for analog voice transmission. With the advent of

digital speech transmission using PCM, DPCM, and other speech coding methods,

TDMA has replaced FDMA as the dominant multiple access scheme in telecommuni-

cations. CDMA and random access methods, in general, have been developed over the

past three decades, primarily for use in wireless, signal transmission and in local area

wireline networks.
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Multiuser information theory deals with basic information-theoretic limits in source

coding for multiple sources, and channel coding and modulation for multiple access

channels. A large amount of literature exists on these topics. In the context of our

treatment of multiple access methods, the reader will find the papers by Cover (1972),

El Gamal and Cover (1980), Bergmans and Cover (1974), Hui (1984), Cover (1998),

and the book by Cover and Thomas (2006) particularly relevant. The capacity of a

cellular CDMA system has been considered in the paper by Gilhousen et al. (1991).

Signal demodulation and detection for multiuser communications has received

considerable attention in recent years. The reader is referred to the papers by Verdu

(1986a,b,c, 1989), Lupas and Verdu (1990), Xie et al. (1990a,b), Poor and Verdu (1988),

Zhang and Brady (1993), Madhow and Honig (1994), Zvonar and Brady (1995), Viterbi

(1990), Varanasi (1999), and the books by Verdu (1998), Viterbi (1995), and Garg et al.

(1997). Earlier work on signal design and demodulation for multiuser communications

is found in the papers by Van Etten (1975, 1976), Horwood and Gagliardi (1975), and

Kaye and George (1970).

The achievable throughput (capacity) of point-to-multipoint signal transmission

employing multiple antennas in a Gaussian broadcast channel has been evaluated in

papers published by Yu and Cioffi (2002), Caire and Shamai (2003), Viswanath and Tse

(2003), Vishwanath et al. (2003), and Weingarten et al. (2004), as well as in the book

by Tse and Viswanath (2005). Various precoding schemes for the MIMO broadcast

channel have been considered in several publications, including the papers by Yu and

Cioffi (2001), Fisher et al. (2002), Ginis and Cioffi (2002), Windpassinger et al. (2003,

2004a, 2004b), Peel et al. (2005), Hochwald et al. (2005), and Amihood et al. (2006,

2007). The book by Fischer (2002) treats precoding and signal shaping for multichannel

digital transmission.

The ALOHA system, which was one of the earliest random access systems, is

treated in the papers by Abramson (1970, 1977) and Roberts (1975). These papers con-

tain the throughput analysis for unslotted and slotted systems. More recently, Abramson

(1994), considers an ALOHA system that employs spread spectrum signals and pro-

vides a link to CDMA systems. Stability issues regarding the ALOHA protocols may
be found in the papers by Carleial and Heilman (1975), Ghez et al. (1988), and Massey

(1988). Stable protocols based on tree algorithms for random access channels were

first given by Capetanakis (1979). The carrier sense multiple access protocols that we
described are due to Kleinrock and Tobagi (1975). Finally, we mention the IEEE Press

book edited by Abramson (1993), which contains a collection of papers dealing with

multiple access communications.

PROBLEMS

16.1 In the formulation of the CDMA signal and channel models described in Section 16.3-1

,

we assumed that the received signals are real. For K > 1, this assumption implies

phase synchronism at all transmitters, which is not very realistic in a practical system. To

accommodate the case where the carrier phases are not synchronous, we may simply alter

the signature waveforms for the K users, given by Equation 16.3-1
,
to be complex-valued,
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of the form

L—

1

gk (t) = ej9t Y2 ak (n)p(t - nTc ), 1 < k < K
n=o

where Ok represents the constant phase offset of the kth transmitter as seen by the common
receiver.

a. Given this complex-valued form for the signature waveforms, determine the form

of the optimumML receiver that computes the correlation metrics analogous to Equa-

tion 16.3-15.

b. Repeat the derivation for the optimum ML detector for asynchronous transmission

that is analogous to Equation 16.3-19.

16.2 Consider a TDMA system where each user is limited to a transmitted power P, indepen-

dent of the number of users. Determine the capacity per user, Ck, and the total capacity

KCk . Plot Ck and KCk as functions of Sb/No and comment on the results as K —> oo.

16.3 Consider an FDMA system with K = 2 users, in an AWGN channel, where user 1 is

assigned a bandwidth W\ = a

W

and user 2 is assigned a bandwidth W2 = (1 — cz)W,

where 0 < a < 1. Let Pi and P2 be the average powers of the two users.

a. Determine the capacities C\ and C2 of the two users and their sum C = C\ + C2 as a

function of o'. On a two-dimensional graph of the rates R2 versus Pi, plot the graph

of the points (C2 ,
C\) as a varies in the range 0 < a < 1.

b. Recall that the rates of the two users must satisfy the conditions

Ri < Wi log, f 1 + —— )2

V WtNoJ

R. + RKW,0& (. +^)
Determine the total capacity C when P\/a = /^/(l — a) = P\ + P2 ,

and, thus, show

that the maximum rate is achieved when a/( 1 — a) = P\/P2 = Wi /W2 .

16.4 Consider a TDMA system with K = 2 users in an AWGN channel. Suppose that the two

transmitters are peak-power-limited to Pi and P2 ,
and let user 1 transmit for IOOg' percent

of the available time and user 2 transmit 100(1 — a) percent of the time. The available

bandwidth is W.
a. Determine the capacities Ci, C2 ,

and C = Ci + C2 as functions of a.

b. Plot the graph of the points (C2 , Ci) as a varies in the range 0 < a < 1.

16.5 Consider a TDMA system with K = 2 users in an AWGN channel. Suppose that the two

transmitters are average-power-limited, with powers P\ and P2 . User 1 transmits 100a

percent of the time and user 2 transmits 100(1 — a) percent of the time. The channel

bandwidth is W.
a. Determine the capacities Ci, C2 ,

and C = Ci + C2 as functions of a.

b. Plot the graph of the points (C2 , Ci) as a varies in the range 0 < a < 1.

c. What is the similarity between this solution and the FDMA system in Problem 16.3?
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16.6

Consider a two-user, synchronous CDMA transmission system, where the received

signal is

r(t) = VS\bigi(t) + 'fSibigiit) + n(t), 0 <t <T

and (b i, ^2 ) = (±1, ±1). The noise process n(t) is zero-mean Gaussian and white, with

spectral density No/2. The demodulator for r(t) is shown in Figure P16.6.

a. Show that the correlator outputs r\ and at t = T may be expressed as

V\ = \/~S\b\ + \fS2pb2 “I
-

r2 = \/~E\b\p + + n2

b. Determine the variances of n\ and ri 2 and the covariance of n\ and « 2 *

c. Determine the joint PDF p(r\, r2 |^i, ^2 )-

8\(f)

gi(t) at t=T

FIGURE P16.6

16.7

Consider the two-user, synchronous CDMA transmission system described in Prob-

lem 16.6. The conventional single-user detector for the information bits b\ and b2 gives

the outputs

b 1 = sgn(n)

b2 = sgn(r2 )

Assuming that P(b\ = 1) = P(b2 = 1) = and b\ and b2 are statistically independent,

determine the probability of error for this detector.

16.8

Consider the two-user, synchronous CDMA transmission system described in Prob-

lem 16.6. P(b
{ = 1) = P(b2 = 1) = \

and P(bu b2 ) = P(b x )P(b2 ). The jointly

optimum detector makes decisions based on the maximum a posteriori probability (MAP)
criterion. That is, the detector computes

max P[b\, b2 \r(t), 0 < t < T]
b\,b2

a. For the equally likely information bits (b 1 ,
Z?2 ) show that the MAP criterion is equiv-

alent to the maximum-likelihood (ML) criterion

max p[r(t), 0 < t < T\b\, b{\
bi,b2
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b. Show that the ML criterion in (a) leads to the jointly optimum detector that makes

decisions on b\ and b2 according to the following rule:

max (yfE\b\r\ + \fs2b2r2 ~ *s/£\£2pb\b2 )
b\,b2 \ J

16.9

Consider the two-user, synchronous CDMA transmission system described in Prob-

lem 16.6. P(b\ = 1) = P(b2 = 1) = \
and P(b\, b2 ) = P(b\)P{b2 ). The individually

optimum detector makes decisions based on the MAP criterion. That is, the detector

computes the a posteriori probabilities.

P[bMt),0 < t < T] = P[bu b2 = 0 < t < T]

+ P\bu b2 = -l\r(t), 0<t <T]

and

P[b2 \r(t), 0 < t < T] = P[b\ = 1, b2 \r(t), 0 < t < T]

+ P[b
l
= -l,b2 \r(t),0<t<T]

a. Show that an equivalent test statistic for this individually optimum MAP detector for

the information bit b\ is

max
b\ {

~J~£\r 1

N0

b\ + In cosh
v^r2 - *JSiS2pbi

No )}
b. By substituting b\ = 1 and b\ = — 1 into the expression in (a), show that the test

statistic in (a) is equivalent to selecting b\ according to the relation

No ^ cosh (Vs2r2 + VS\S2p)/N0

2\f£\ cosh [Vs2r2 — y/£\£2p) /No

16.10

Show that the asymptotic efficiency of the conventional single-user detector in a CDMA
system with K users transmitting synchronously is

Vk

12

16.11

Consider the jointly optimum detector defined in Problem 16.8 for the two-user, syn-

chronous CDMA system. Show that the (symbol) error probability for this detector may
be upper-bounded as

PecQ + S2 — 2VS\S2 \p\ \

AW2

16.12

Consider the jointly optimum detector defined in Problem 16.8 for the two-user, syn-

chronous CDMA system.

a. Show that the asymptotic efficiency for this detector for user 1
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b. Plot and compare the asymptotic efficiencies of the jointly optimum detector and the

conventional single-user detector for p = 0.1 and p = 0.2.

16.13 Consider the two-user synchronous CDMA system in Problem 16.6. Determine the prob-

ability of error for each user that employs a decorrelating detector when 8\ ^82.

16.14 Consider a two-user synchronous CDMA system where the received signal is given

in Problem 16.6. Each user employs the minimum MSE detector specified by Equa-

tions 16.3-51 to 16.3-53.

a. Determine the linear transformation matrix A0
for the two users.

b. Show that the MMSE detector approaches the decorrelating detector as No —> 0.

c. Show that the MMSE detector approaches the conventional single-user detector as

Nq -> 00 .

16.15

Consider the asynchronous communication system shown in Figure P16.15. The two

receivers are not colocated, and the white noise processes nS
x

\t) and nS
2
\t) may be

considered to be independent. The noise processes are identically distributed, with power

spectral density a 2 and zero-mean. Since the receivers are not colocated, the relative

delays between the users are not the same—denote the relative delay of user k at receiver

i by All other signal parameters coincide for the receivers, and the received signal

at receiver i is

2 00

r
{i
\t) = ~ lT ~ +n (i

\t)

k=

1

/=—00

where has support on [0, T]. You may assume that the receiver i has full knowledge of

the waveforms, energies, and relative delays and Although receiver i is eventually

interested only in the data from transmitter /, note that there is a free communication

link between the sampler of one receiver, and the postprocessing circuitry of the other.

Following each postprocessor, the decision is attained by threshold detection. In this

problem, you will consider options for postprocessing and for the communication link in

order to improve performance.

a. What is the bit error probability for users 1 and 2 of a receiver pair that does not utilize

the communication link and does not perform postprocessing? Use the following

FIGURE P16.15
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notation:

ytQ) = j

s

k {t- IT - x

l

k)
)r ik)

(t)dt

P \2 = J
Si (t ~ T

1

( ' )
)s2 (t ~ 4°) dt

pil = J si(t - r,
(,)
)s2 (t + T - r^) dt

Wk = J
s*(*- r

*

(1)

)
dt = J

4(t- 4
2)

)
dt

b. Consider a postprocessor for receiver 1 that accepts y2 (/
—

1) and y2 (/) from the

communication link and implements the following postprocessing on y\ (/)

Z,(l) = yid)
- - 1)] - p$sgn[y2(l)l

Determine an exact expression for the bit error rate for user 1

.

c

.

Determine the asymptotic multiuser efficiency of the receiver proposed in (b), and

compare with that in (a). Does this receiver always perform better than that proposed

in (a)?

16.16 In a pure ALOHA system, the channel bit rate is 2400 bits/s. Suppose that each terminal

transmits a 100-bit message every minute on the average.

a. Determine the maximum number of terminals that can use the channel.

b. Repeat (a) if slotted ALOHA is used.

16.17 An alternative derivation for the throughput in a pure ALOHA system may be obtained

from the relation G = S+ A, where A is the average (normalized) rate of retransmissions.

Show that A = G( 1 — e~2G ) and then solve for S.

16.18

For a Poisson process, the probability of k arrivals in a time interval T is

P(k) =
e~XT (\J)

k

k\
k = 0,1,2,...

a. Determine the average number of arrivals in the interval T.

b. Determine the variance cr
2
in the number of arrivals in the interval T

.

c. What is the probability of at least one arrival in the interval T?

d. What is the probability of exactly one arrival in the interval T1

16.19 Refer to Problem 16.18. The average arrival rate is X = 10 packets/s. Determine

a. The average time between arrivals.

b. The probability that another packet will arrive within 1 s; within 100 ms.

16.20 Consider a pure ALOHA system that is operating with a throughput S = 0.1 and packets

are generated with a Poisson arrival rate X. Determine

a. The value of G.

b. The average number of attempted transmissions to send a packet.
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16.21 Consider a CSMA/CD system in which the transmission rate on the bus is 10 Mbits/s.

The bus is 2 km and the propagation delay is 5 (is/km. Packets are 1000 bits long.

Determine

a. The end-to-end delay ij.

b. The packet duration Tp .

c. The ratio rd/Tp .

d. The maximum utilization of the bus and the maximum bit rate.

16.22 Consider an MA communication system with K = 2 users and an AWGN channel. The

receiver decodes the two signals by preforming SIC. The signal power levels for the two

users at the receiver are Pi and P2 .

a. Suppose that the receiver decodes the signal for user 2 and subtracts signal 2 from the

received signal. Then the receiver decodes the signal from user 1 without interference.

Determine the maximum rates that can be achieved by users 1 and 2.

b. Now suppose that P\ = 10P2 and that the signal from user 2 is decoded first.

Determine the sum capacity of the two-user system.

c. Repeat part 2 if user 1 is decoded first, and compare the sum capacities in parts b

and c.



APPENDIX A

Matrices

matrix is a rectangular array of real or complex numbers called the elements of

the matrix. An n x m matrix has n rows and m columns. If m = ft, the matrix is

called a square matrix. An ft-dimensional vector may be viewed as an n x 1 matrix.

An n x m matrix may be viewed as having n m-dimensional vectors as its rows or m
ft-dimensional vectors as its columns.

The complex conjugate and the transpose of a matrix A are denoted as A* and A\
respectively. The conjugate transpose of a matrix with complex elements is denoted as

AH
;
that is, AH = [A*]' = [A']*.

A square matrix A is said to be symmetric if A 1 = A. A square matrix A with

complex elements is said to be Hermitian if AH — A. If A is a square matrix, then A-1

designates the inverse of A (if one exists), having the property that

A~ lA = AA~ l = In (A-l)

where In is the n x n identity matrix, i.e., a square matrix whose diagonal elements are

unity and off-diagonal elements are zero. If A has no inverse, it is said to be singular.

The trace of a square matrix A is denoted as tr(A) and is defined as the sum of the

diagonal elements, i.e.,

n

.
tr(A) = 5>„ (A-2)

1=1

The rank of an n x m matrix A is the maximum number of linearly independent

columns orrows in the matrix (itmakes no difference whether we take rows or columns)

.

A matrix is said to be offull rank if its rank is equal to the number of rows or columns,

whichever is smaller.

The following are some additional matrix properties (lowercase letters denote

vectors):

(Av)* = v fA*

(ABy = B tA t

cABr 1 = B lA-

(A'r 1 = (A~
l

y
(A-3)

1085
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A.l

EIGENVALUES AND EIGENVECTORS OF A MATRIX

Let A be an n x n square matrix. A nonzero vector v is called an eigenvector of A and

X is the associated eigenvalue if

Av = Xv (A-4)

If A is a Hermitian n x n matrix, then there exist n mutually orthogonal eigenvectors

Vi, i = 1,2 , ,n. Usually, we normalize each eigenvector to unit length, so that

(a-5)

In such a case, the eigenvectors are orthonormal.

We define an n x n matrix Q whose ith column is the eigenvector v
t . Then

Q
HQ=QQH = in (A-6)

Furthermore, A may be represented (decomposed) as

A=QAQh
(A-7)

where A is an n x n diagonal matrix with elements equal to the eigenvalues of A. This

decomposition is called a spectral decomposition of a Hermitian matrix.

If u is an n x 1 nonzero vector for which Au = 0, then u is called a null vector of

A. When A is Hermitian and Au = 0 for some vector u, then A is singular. A singular

Hermitian matrix has at least one zero eigenvalue.

Now, consider the scalar quadratic form uHAu associated with the Hermitian

matrix A. If uHAu > 0, the matrix A is said to be positive definite. In such a case, all

the eigenvalues of A are positive. On the other hand, if uHAu > 0, matrix A is said to

be positive semidefinite. In such a case, all the eigenvalues of A are nonnegative.

The following properties involving the eigenvalues of an arbitrary n x n matrix

A — (aij)n hold.

n n

Yl x‘ = =tr(A)

i=i /=i

n

JJ Xi — det(A)

i=l

n

J2 Xi= tr(A")

i=

1

tr(AtA) = f2J2 al ~ it X
t’

i= 1 j= 1 i=l

(A-8)

(A-9)

(A-10)

A real (A-ll)
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A.2

SINGULAR-VALUE DECOMPOSITION

The singular-value decomposition (SVD) is another orthogonal decomposition of a

matrix. Let us assume that A is an n x m matrix of rank r. Then there exist an n x r

matrix U, an m x r matrix V, and an r x r diagonal matrix E such that UHU =
VH V = l r and

A = UZVH (A-12)

where Z = diag (o\
,
a2 , . .

.

,

crr ). The r diagonal elements of Z are strictly positive and

are called the singular values of matrix A. For convenience, we assume that o\ > 02
• • • > o>.

The SVD of matrix A may be expressed as

r

A = Y^cfiUiV^ (A-13)

i=

1

where U( are the column vectors of U ,
which are called the left singular vectors of A,

and Vi are the column vectors of V, which are called the right singular vectors of A.

The singular values {07} are the nonnegative square roots of the eigenvalues of

matrix AHA. To demonstrate this, we postmultiply Equation A-12 by V. Thus, we
obtain

AV = UZ (A-14)

or, equivalently,

Avi=cfiUi , i = 1, 2, . .
.

,

r (A-15)

Similarly, we postmultiply AH = VZUH by U

.

Thus, we obtain

AhU = VZ (A-16)

or, equivalently,

AHUi=GVi ,
i = l,2, ...,r (A-17)

Then, by premultiplying both sides of Equation A-15 with AH and using Equ-

ation A-17, we obtain

AHAvi—a}vi , i = l,2, ...,r (A-18)

This demonstrates that the r nonzero eigenvalues ofAHA are the squares of the singular

values of A, and the corresponding r eigenvectors V( are the right singular vectors of A.

The remaining m—r eigenvalues ofAHA are zero. On the other hand, ifwe premultiply

both sides of Equation A-17 by A and use Equation A-15, we obtain

AAH Ui = afui ,
i = 1,2 ,

,r (A-19)

This demonstrates that the r nonzero eigenvalues ofAAH are the squares of the singular

values of A, and the corresponding r eigenvectors Uj are the left singular vectors of A.

The remaining n — r eigenvalues of AAH are zero. Hence, AAH and AHA have the

same set of nonzero eigenvalues.
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A.3

MATRIX NORM AND CONDITION NUMBER

Recall that the Euclidean norm (L2 norm) of a vector v, denoted as ||v||, is defined as

||u||= (v
H
v)

1/2 (A-20)

The Euclidean norm of a matrix A
,
denoted as ||A||, is defined as

||A||=max^ (A-21)
IN

for any vector v. It is easy to verify that the norm of a Hermitian matrix is equal to the

largest eigenvalue.

Another useful quantity associated with a matrix A is the nonzero minimum value

of
||
Au||/||i>|| . When A is a nonsingular Hermitian matrix, this minimum value is equal

to the smallest eigenvalue.

The squared Frobenius norm of an n x m matrix A is defined as

n n

\\A\\
2
f= tr(AAH )

= K'

1

2
(A-22)

i= 1 7=1

From the SVD of the matrix A, it follows that

n

l|A||
2
F = 5> (A-23)

i=

1

where {A, } are the eigenvalues of A A H .

The following are bounds on matrix norms:

l|A|| > 0, A ± 0

l|A + B\\ < ||A|| + ||B|| (A-24)

l|AB||<||A||||fi||

The condition number of a matrix A is defined as the ratio of the maximum value

to the minimum value of
||
At>

|| / 1|
v || . When A is Hermitian, the condition number is

^maxAmrn, where Amax is the largest eigenvalue and Amm is the smallest eigenvalue

of A.

A.4

THE MOORE-PENROSE PSEUDOINVERSE

Let us consider a rectangular n xm matrix A ofrankr, having an SVD as A = UTVH
.

The Moore-Penrose pseudoinverse, denoted by A+ , is an m x 11 matrix defined as

A+ = VZ~ iUH (A-25)
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where T,
1

is an r x r diagonal matrix with diagonal elements 1 /<Ti,i = 1,2 ,
,r.

We may also express A+ as

A+ = Y-viUf (A-26)

We observe that the rank of A+ is equal to the rank of A.

When the rank r = m or r = w, the pseudoinverse A+ can be expressed as

A+ = AH(AAH )~ l
r — n

A+ = (AhA)~ lAH r = m (A-27)

A+ = A-1
r — m = n

These relations are equivalent to AA+ = In and A+A = Im .



APPENDIX B

Error Probability for Multichannel Binary Signals

in multichannel communication systems that employ binary signaling for transmitting

information over the AWGN channel, the decision variable at the detector can be

expressed as a special case of the general quadratic form

L

D =^ (A \Xk \

2 + B\Yk \

2 + CXkY£ + C*X*k Yk ) (B-l)

k=l

in complex-valued Gaussian random variables. A, B
,
and C are constants; Xk and Yk

are a pair of correlated complex-valued Gaussian random variables. For the channels

considered, the L pairs {Xk ,
Yk } are mutually statistically independent and identically

distributed.

The probability of error is the probability that D < 0. This probability is evaluated

below.

The computation begins with the characteristic function, denoted by \//D (jv), of

the general quadratic form. The probability that D < 0, denoted here as the probability

of error Pk ,
is

Pb = P(D <0) =£ p(D)dD (B-2)

where p(D), the probability density function of D, is related to i//dU v) by the Fourier

transform, i.e.,

p(D) = — / fD(jv)e~
JvDdv

PK J—oo

Hence,

Pb f r
J—oo 2n J—

c

D(j y)e
jvDdv (B-3)

1090
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Let us interchange the order of integration and carry out first the integration with respect

to D. The result is

1 r°°+J* fD (jv)Pb = /
dv (B-4)

ZjTJ J-oo-fye V

where a small positive number s has been inserted in order to move the path ofintegration

away from the singularity at v = 0 and which must be positive in order to allow for the

interchange in the order of integration.

Since D is the sum of statistically independent random variables, the characteristic

function of D factors into a product of L characteristic functions, with each function

corresponding to the individual random variables dk ,
where

dk = A\Xk \

2 + B\Yk \

2 + CXk Y* + C*X*k Yk

The characteristic function of dk is

fdk
(jv) =

VlV2

(V + jVi)(v - jv2)

exp
VlV2{~ V

2
<Xlk+ jV<X2k)

(v + jv i)(u - jv2)

(B-5)

where the parameters ui, v2 ,
a lk ,

and au depend on the means Xk and Yk and the

second (central) moments /xxx , fjLyy ,
and /jLxy of the complex-valued Gaussian variables

Xk and Yk through the following definitions (|C|
2 — AZ? > 0):

v\ w2 +
1

- \HXy\
2)(]C

\

2 - AB)
— W

^
\

+
4(^xx flyy ~ \fMXy\

2)(\C\ 2—AB)
+ W

A ftXX + Bflyy “h C ftXy + C ftxy
U) =

^ftxxftyy-\ftXy\
2){\C\ 2 -AB)

a xk = 2(|C|
2 - AB)(\Xk \

2
fjLyy + \?k \

2
ftxx ~ Xt?k ftxy - Xk Y£ft*xy )

Ct2k = A|X,| 2 + B\Yk \

2 + CXiYk + C*Xk ?Z

ftxy = \E[{Xk - Xk)(Yk - Yk)*]

Now, as a result of the independence of the random variables dk ,
the characteristic

function of D is

where

V'dO'u) = Y[fdt
(jv)

(VlV2)
L

k=

1

^D(jv) =
(v + jv,)L (v - jv2y

exp
v^ijvai ~ v

2u\)

(v + jvO(v - jv i)

L

oil =Y au ’

k=l

L

“2 =Y aik

k=\

(B-7)

(B-8)
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The result B-7 is substituted for t/'dC/u) in Equation B-4, and we obtain

(VlV2 )
L

f°°
+j£

Vi v2 (jva2 - v
2
ai]

rb
= / exp -

2nj J-oo+je V(v + jv\)L (v - jv2 )
L + M)(u ~ j V2>}

This integral is evaluated as follows.

The first step is to express the exponential function in the form

exp —A\ +
V v + jv\ v-jv2 J

where one can easily verify that the constants A\, A2 ,
and A 3 are given as

A\ = (X 1 V 1 V2

A2 = ; (Oi\Vl +a2 )
+ v2 (B-10)

A 3 = (oq v2 - a2 )
v\ + v2

Second, a conformal transformation is made from the v plane onto the p plane via

the change in variable

ViV- JV2
p = —

—

V2 V + JV\

In the p plane, the integral given by Equation B-9 becomes

exp [viv2(-2aiviv2 + a2 v\ - a2 v2)/(v\ + v2 )
2
] 1

(1 + v2/vi)
2 2Jtj Jr

(B-ll)

f(p)dp (B-12)

where

f(p) =
[1 +(v2/vi)p]

2L \A2(v2/vi) A 3 (vi/v2)1
exp p H

p
L

( 1 - p) L ^1 + ^2 vi +v2 p

and T is a circular contour of radius less than unity that encloses the origin.

The third step is to evaluate the integral

(B-13)

_L [ „ w _ J_ [ n + QfrM)pr
2nj Jr

P P
2?rj Jr p

L
{ 1 - p)

~A2(v2/v 1 ) A 3 (v i/v2 ) 11
x exp p H dp

L V\ + V2 V\ + v2 pi

(B-14)

In order to facilitate subsequent manipulations, the constants a > 0 and b > 0 are

introduced and defined as follows:

W = Ai{V
'M

. W = A2{V2M
(B-1S)

V\ + l)2 Vl + v2
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Let us also expand the function [1 + (^2/^1 )p]
2L 1

as a binomial series. As a result,

we obtain

1 r
2L_1— / f(p)dp = Y,2nj Jr
k=

0

X

2L-l\ (v2 \
k

nj Jr

k ) \v\

1
P

exp
( + \b

2p\ dp

(B-16)

2Ttj Jr p
L

( 1 - p) \ p
2

The contour integral given in Equation B-16 is one representation of the Bessel

function. It can be solved by making use of the relations

f
1

2nj \bj Jr
In(ab) = l

2nj

i
a

P
' I„2

^TT
exP(V + dP

1 fb

a)
+

where In (x ) is the nth-order modified Bessel function of the first kind and the series

representation of Marcum’s Q function in terms of Bessel functions, i.e.,

00
fa\ n

Qi(a,b) = exp[-i(a2 + b
2
)} + Y[l) In^

n=

0

' '

First, consider the case 0 < k < L — 2 in Equation B-16. In this case, the resulting

contour integral can be written in the forrn^

L-l-k

Sj/r pL-'l1 - p)
“p(f

- + i
btp

)
dp = Ql(a b>apl^2 + bl)]+ £ (i

" (B-17)

Next, consider the term k = L — 1. The resulting contour integral can be expressed in

terms of the Q function as follows:

'

1

_L f 1
l 2

a
, U2

2nj Jr p(l ~ p)
exp ( + \b

2p\ dp = Q\(a, b)exp[±(a
2 + b

2
)]

(B-18)

tThis contour integral is related to the generalized Marcum Q function, defined as

-jf
Qm (a,b)= I

x(x/a)
m 1

exp[-5 (x
2 + a2

)]Im-i(ax)dx ,
m> 1

in the following manner:

Qm (a, b) exp[I(a> + b>)\ =^ ^
exp ^ dp

In (ab)
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Finally, consider the case L < k < 2L — 1. We have

^7 / I“ exp + ^

'exp I dp

= (r) In(flb) = Q\(a,b)exp[t(a2 + b
2
)] -^ -

j
/„(«&)

(B-19)

Collecting the terms that are indicated on the right-hand side of Equation B-16 and

using the results given in Equations B-17 to B-19, the following expression for the

contour integral is obtained after some algebra:

y— [ f(p)dp = (l + —
2nj Jr V v\

{exp [\{a
2 + b

1

)} Qi(a ,
b) - h(ab)}

+«Vg(V)e)‘
2L — 1\ \fb\

n
fv2

aj \vi

(V2

b U,
(B-20)

Equation B-20 in conjunction with Equation B-12 gives the result for the prob-

ability of error. A further simplification results when one uses the following identity,

which can easily be proved:

V j U2 f 1 9 o -1

exp -—;

—

-(-20C1V1V2 + OI2V1 -a2 v2) = exp [- 2(0 +bL
)\

L(«i + v2 )
2

]
2

Therefore, it follows that

Pb = Qi(a, b) - /0(a&)exp[— ±(a
2 + b

2
)]

I0(ab) exp [- \{a
2 + ft

2
)] ^ /2L- 1\ fv2 \

k exp [-\{a2 + b2)\

(1 + v2/v\)
2L~ x

\ k ) \uj (1 + v2/vi)
2L~ l

E 7«^) E 2L- 1

* C)‘G
a\ ( vi

b U,

Pb = Qi(a,b) -

L > 1

1 + v2/v\
/0(a&)exp[-i(a

2 + b2
)\ ,

L = 1 (B-21)
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This is the desired expression for the probability of error. It is now a simple matter

to relate the parameters a and b to the moments of the pairs {Xk ,
Yk }. Substituting for

A2 and A 3 from Equation B-10 into Equation B-15, we obtain

2v\v2{ot\V2 - a2 )

(v\ + v2 )
2

2uivf(aiui + a2 )

(vi + v2 )
2

(B-22)

Since vu v2,ai, and a2 have been given in Equations B-6 and B-8 directly in terms of

the moments of the pairs X* and Yk, our task is completed.



APPENDIX C

Error Probabilities for Adaptive Reception

of M-Phase Signals

In this appendix, we derive probabilities of error for two- and four-phase signaling

over an L -diversity-branch time-invariant Gaussian noise channel and for M-phase

signaling over an L-diversity-branch Rayleigh fading additive Gaussian noise channel.

Both channels corrupt the signaling waveforms transmitted through themby introducing

additive white Gaussian noise and an unknown or random multiplicative gain and phase

shift in the transmitted signal. The receiver processing consists of cross-correlating the

signal plus noise received over each diversity branch by a noisy reference signal, which

is derived either from the previously received information-bearing signals or from the

transmission and reception of a pilot signal, and adding the outputs from all L-diversity

branches to form the decision variable.

C.l

MATHEMATICAL MODEL FOR AN M-PHASE SIGNALING
COMMUNICATION SYSTEM

In the general case of M-phase signaling, the signaling waveforms at the transmitter

aret

sn (t) = Re[si„(t)e
j2nfct

]

where

Sln(t) = g(t)exp
2n

>M (n ~ ’> n = 1,2 M, 0 < f < 7" (C-l)

and T is the time duration of the signaling interval.

Consider the case in which one of these M waveforms is transmitted, for the

duration of the signaling interval, over L channels. Assume that each of the channels

1096

tThe complex representation of real signals is used throughout. Complex conjugation is denoted by an

asterisk.
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corrupts the signaling waveform transmitted through it by introducing a multiplicative

gain and phase shift, represented by the complex-valued number gk, and an additive

noise Zk(t). Thus, when the transmitted waveform is sin (t), the waveform received over

the kth channel is

rik(t) = gkSinit) + Zk(t), o <t<T, k = 1,2, , L (C-2)

The noises {zk(t)} are assumed to be sample functions of a stationary white Gaussian

random process with zero-mean and autocorrelation function (j)z {t) = No8(r), where

No is the value of the spectral density. These sample functions are assumed to be

mutually statistically independent.

At the demodulator, rikit) is passed through a filter whose impulse response is

matched to the waveform g(t). The output of this filter, sampled at time t = T, is

denoted as

Xk = 2£gk exp
27T

j— (n — 1 )J M + Nk (C-3)

where £ is the transmitted signal energy per channel and Nk is the noise sample from the

kth filter. In order for the demodulator to decide which of theM phases was transmitted

in the signaling interval 0 < t < T, it attempts to undo the phase shift introduced by

each channel. In practice, this is accomplished by multiplying the matched filter output

Xk by the complex conjugate of an estimate gk of the channel gain and phase shift.

The result is a weighted and phase-shifted sampled output from the fcth-channel filter,

which is then added to the weighted and phase-shifted sampled outputs from the other

L — 1 channel filters.

The estimate gk of the gain and phase shift of the kth channel is assumed to be

derived either from the transmission of a pilot signal or by undoing the modulation on

the information-bearing signals received in previous signaling intervals. As an example

of the former, suppose that a pilot signal, denoted by spk(t), 0 < t < T, is transmitted

over the kth channel for the purpose of measuring the channel gain and phase shift. The

received waveform is

8kSpk(t) T“ Zpk(t\ 0 < t < T

where zpk(t) is a sample function of a stationary white Gaussian random process with

zero-mean and autocorrelation function (pp (t)
= Nq8(t). This signal plus noise is

passed through a filter matched to spk(t). The filter output is sampled at time t — T to

yield the random variable Xpk
= 2£p gk+Npk ,

where £p is the energy in the pilot signal,

which is assumed to be identical for all channels, and Npk is the additive noise sample.

An estimate of gk is obtained by properly normalizing Xpk ,
i.e., gk = gk + Npk/2£p .

On the other hand, an estimate of gk can be obtained from the information-bearing

signal as follows. If one knew the information component contained in the matched

filter output, then an estimate of gk could be obtained by properly normalizing this

output. For example, the information component in the filter output given in Equa-

tion C-3 is 2£gk exip[j (2tt/M)(n — 1)], and, hence, the estimate is
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where N'k — Nk exp[—j(27t/M)(n — 1)] and the PDF of N'k is identical to the PDF of

Nk. An estimate that is obtained from the information-bearing signal in this manner

is called a clairvoyant estimate. Although a physically realizable receiver does not

possess such clairvoyance, it can approximate this estimate by employing a time delay

of one signaling interval and by feeding back the estimate of the transmitted phase in

the previous signaling interval.

Whether the estimate of gk is obtained from a pilot signal or from the information-

bearing signal, the estimate can be improved by extending the time interval over which

it is formed to include several prior signaling intervals in a way that has been described

by Price (1962a, b). As a result of extending the measurement interval, the signal-to-

noise ratio in the estimate of gk is increased. In the general case where the estimation

interval is the infinite past, the normalized pilot signal estimate is

gk — gk T* ^ ^ G -Apki j ^ ^
C[ (C-4)

;=i i=

1

where c
t
is the weighting coefficient on the subestimate of gk derived from the zth prior

signal interval andNpki is the sample of additive Gaussian noise at the output ofthe filter

matched to spk(t) in the zth prior signaling interval. Similarly, the clairvoyant estimate

that is obtained from the information-bearing signal by undoing the modulation over

the infinite past is

gk = gk + X) CiNki G (C-5)

z=i z=i

As indicated, the demodulator forms the product between gk and Xk and adds this

to the products of the other L — 1 channels. The random variable that results is

* =E =
k=l k= 1

= Zr + jZi

(C-6)

where, by definition, Yk = gk, zr = Re(z), and Zi = Im(z). The phase of z is the

decision variable. This is simply

6 = tan
1

f — ] = tan
1

Zr

Im / Re X>*y;
\k=l \k=

1

(C-7)

C.2

CHARACTERISTIC FUNCTION AND PROBABILITY DENSITY
FUNCTION OF THE PHASE 6

The following derivation is based on the assumption that the transmitted signal phase

is zero, i.e., n = 1. If desired, the PDF of 0 conditional on any other transmitted signal

phase can be obtained by translating p{6) by the angle 2tt (n — 1)/M. We also assume
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that the complex-valued numbers {#&}, which characterize the L channels, are mutu-

ally statistically independent and identically distributed zero-mean Gaussian random

variables. This characterization is appropriate for slowly fading Rayleigh channels.

As a consequence, the random variables (X*, 7*) are correlated, complex-valued, zero-

mean, Gaussian, and statistically independent, but identically distributed with any other

pair (Xi,Yi).

The method that has been used in evaluating the probability density p(9) in the

general case of diversity reception is as follows. First, the characteristic function of the

joint probability distribution function of zr and Zi, where zr and n are two components

that make up the decision variable 9 ,
is obtained. Second, the double Fourier transform

of the characteristic function is performed and yields the density p{zr , Zi). Then the

transformation

r = yjz} + zf, 0 = tan
1

(C-8)

yields the joint PDF of the envelope r and the phase 9. Finally, integration of this joint

PDF over the random variable r yields the PDF of 9.

The joint characteristic function of the random variables z r and Zi can be expressed

in the form

jv2 ) =
mxxmyJl - \fi\

2
)

Vi-J
2|/x| cose

s/wixxmyy { 1 - |/x|
2
)

(C-9)

+ \V2-j
2|/x

|

sine
+

Zmxxmyy (1 - ImI
2
) )

mxxm yy {\
-

|/x|
2
)
2

where, by definition,

mxx = E (\Xk
|

2
) ,

identical for all k

m yy — E
(| Yk |

2
) ,

identical for all k

mxy = E (Xk Y£) ,
identical for all k (C-10)

m
[l :

xy

Jm,XxWyy
= Me ~je

The result of Fourier-transforming the function j V2) with respect to the

variables v\ and v2 is

p(zr , Zi) =
(l - ImI

2
)

l

(L - \)\n2L

L-

1

x exp[|/x|(zr cose + n sine)]/irL_i z
2 + zfj

(C-ll)
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where Kn (x) is the modified Hankel function of order n. Then the transformation of

random variables, as indicated in Equation C-8 yields the joint PDF of the envelope r

and the phase 6 in the form

p(r, ^ = TV
—

VTT \l
rL exp[|/x|r cos(6» - e)]KL-\{r) (C-12)

(L — l)\n2L

Now, integration over the variable r yields the marginal PDF of the phase 6. We have

evaluated the integral to obtain p{6) in the form

P(0) =
(-D^a - m 2

)
l

f 9
L~ l

+

2n(L — 1)!
[
dbL

~ l

\/i
\
cos(6 — s )

[b- |/z|
2 cos2 (6> -e)]3/2

In this equation, the notation

d
L

db1

I

cos

fib, il)

b — ]/x|
2 cos2(0 — s)

\p\ COS(6 — £)

(C-13)

b l/2
b= 1

b= 1

denotes the Lth partial derivative of the function f(b, p) evaluated at b = 1.

C.3

ERROR PROBABILITIES FOR SLOWLY FADING RAYLEIGH CHANNELS

In this section, the probability of a character error and the probability of a binary

digit error are derived for M-phase signaling. The probabilities are evaluated via the

probability density function and the probability distribution function of 6.

The probability distribution function of the phase In order to evaluate the prob-

ability of error, we need to evaluate the definite integral

P(Pi <0 <02)
=

r®

2

JGi

p(6)d0

where 6\ and 02 are limits of integration and p{6) is given by Equation C-13. All

subsequent calculations are made for a real cross-correlation coefficient /x. A real-

valued lx implies that the signals have symmetric spectra. This is the usual situation

encountered. Since a complex-valued fx causes a shift of e in the PDF of 6
,
i.e., s is

simply a bias term, the results that are given for real /x can be altered in a trivial way to

cover the more general case of complex-valued /x.

In the integration of p(6 ), only the range 0 < 6 < tv is considered, because p{6)

is an even function. Furthermore, the continuity of the integrand and its derivatives

and the fact that the limits 6\ and 02 are independent of b allow for the interchange of

integration and differentiation. When this is done, the resulting integral can be evaluated
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quite readily and can be expressed as follows:

Jo, 2n(L - 1)!

d
L~ l

{ i

3bL
~ l

|
b — p?

1 (

(C_14)
b x !2

\1^2
- cot

l)x\
J J X\ b=

1

where, by definition,

X; =
— /x cos 6i

\Jb — /x
2(cos0;)2

’
i = 1,2 (C-15)

Probability ofa symbol error The probability of a symbol error for any M-phase

signaling system is

= 2 [ p(9)d9
J71jM

When Equation C-14 is evaluated at these two limits, the result is

Pe =
(-i)i_1 (i a

L~ l

f
i i

n(L — 1)! a^- 1 !^--/X2

usin{n/M) ,

rnt (-—/XCOS(7r/M)

yjb — pi
2 COS2 (7t/M) \\/b — /x

2 cos2 (7r/M)

(C-16)

b=

i

Probability of a binary digit error First, let us consider two-phase signaling. In

this case, the probability of a binary digit error is obtained by integrating the PDF p{9)

over the range < 0 < 3n. Since p(9) is an even function and the signals are a priori

equally likely, this probability can be written as

P2 = 2 f p(9)d9
Jn/2

It is easily verified that 9\ = ^

n

implies x
t = 0 and 92 = Jt implies x2 = p^/-\/b — /x

2
.

Thus,

(-i)L-‘(i - fi
2
)
L

a
L~ l ‘

1 /X 1

2(L - 1)! dbL
~ l <N1 b l /2(b — /x

2
) J

(C-17)

After performing the differentiation indicated in Equation C-17 and evaluating the

resulting function at b = 1, the probability of a binary digit error is obtained in
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the form

(C-18)

Next, we consider the case of four-phase signaling in which a Gray code is used to map
pairs of bits into phases. Assuming again that the transmitted signal is 571 (f), it is clear

that a single error is committed when the received phase is^ 7r < 0 < and a double

error is committed when the received phase is < 0 < n . That is, the probability of

a binary digit error is

n3n/4

p(Q)dQ+2 f p(0)d0
n/4 J3tt/4

P4b = /J 7T

It is easily established from Equations C-14 and C-19 that

P4b ~

(C-19)

(-l)t_1 (l -n2
)
1

d
L- 1

1
_

/x 1

2(L - 1)! dbL
~ l

1
(N

=i
1

(,b - iJL
2)(2b - II

2
)

1 /2
\ b=

i

Hence, the probability of a binary digit error for four-phase signaling is

P4b ~
2

1 -
L-

1

2k

kE 1 +/x2

4 - 2/x2
(C-20)

Note that if one defines the quantity p = pu/y/2 — /x
2

,
the expression for P4^ in terms

of p is

In other words, has the same form as P2 given in Equation C-18. Furthermore, note

that p, just like /x, can be interpreted as a cross-correlation coefficient, since the range

of p is 0 < p < 1 for 0 < /x < 1. This simple fact will be used in Section C.4.

The above procedure for obtaining the bit error probability for an M-phase signal

with a Gray code can be used to generate results for M = 8
, 16, etc., as shown by

Proakis (1968).

Evaluation ofthe cross-correlation coefficient The expressions for the probabil-

ities of error given above depend on a single parameter, namely, the cross-correlation

coefficient /x. The clairvoyant estimate is given by Equation C-5, and the matched filter

output, when signal waveform 571 (f) is transmitted, is = 2£gk + A^. Hence, the

cross-correlation coefficient is

VOV' + l) (yp + v)

H = (C-22)
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where, by definition,

v =

Yc =
£

No
E(\gk \

2
), k— 1, 2, . .

. ,
L

(C-23)

The parameter v represents the effective number of signaling intervals over which the

estimate is formed, and yc is the average SNR per channel.

In the case of differential phase signaling, the weighting coefficients are c\ = 1
,

d — 0 for i /: 1. Hence, v = 1 and /x = yc/( 1 + y)c).

When v = oo, the estimate is perfect and

lim ii —
V—HX)

Finally, in the case of a pilot signal estimate given by Equation C-4, the cross-

correlation coefficient is

/T : 1 +
r + 1

r?t
1 +

+ i\r 1/2

vyt

where, by definition.

?-=Ie ( I**'
2
)

£t — £ -\- £p
r = £/£p

The values of fi given above are summarized in Table C-l.

(C-24)

TABLE C-l

Rayleigh Fading Channel

Type of estimate

Clairvoyant estimate

Pilot signal estimate

Differential phase signaling

Perfect estimate

Cross-correlation coefficient \i

\j
{yc

1 + i) (yc
1 + 1-1

)

Yc

Yc + 1

Yc

Yc + 1
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C.4

ERROR PROBABILITIES FOR TIME-INVARIANT
AND RICEAN FADING CHANNELS

In Section C.2, the complex-valued channel gains {g&} were characterized as zero-mean

Gaussian random variables, which is appropriate for Rayleigh fading channels. In this

section, the channel gains {g^} are assumed to be nonzero-mean Gaussian random

variables. Estimates of the channel gains are formed by the demodulator and are used

as described in Section C.l. Moreover, the decision variable 0 is defined again by

Equation C-7. However, in this case, the Gaussian random variables Xk and Yk , which

denote the matched filter output and the estimate, respectively, for the kth channel, have

nonzero-means, which are denoted by Xk and Yk . Furthermore, the second moments

are

mxx = E( \Xk — Xk \

2
), identical for all channels

rriyy = E(\Yk — Yk \

2
), identical for all channels

mxy — E [{Xk — Xk){Y£ — ?£*)] ,
identical for all channels

and the normalized covariance is defined as

*Jmxxm,yy

Error probabilities are given below only for two- and four-phase signaling with this

channel model. We are interested in the special case in which the fluctuating component

of each of the channel gains {g^} is zero, so that the channels are time-invariant. If, in

addition to this time invariance, the noises between the estimate and the matched filter

output are uncorrelated, then /x = 0.

In the general case, the probability of error for two-phase signaling over L sta-

tistically independent channels characterized in the manner described above can be

obtained from the results in Appendix B. In its most general form, the expression for

the binary error rate is

Pi = Qi(a, b)
- Io(ab)exp[—j(a

2 - b
2
)]

Io(ab) exp\-\{a2 + b2
)]
yi /2L

I r/i ir-t s-iOf 1 / .

k=

0

+

[2/(1 -

exp[-i(a2 + b2 )]

[2/(1 - M)p-i

L-

1

L—l—n

E
k=

1

k=

0

2L- 1

1 + /x

1 — fi

1 + /x

1 -/x

Pi = Qi(a,b)~ i(l + H)l0{ab) exp[-i(a
2 + b2 )] (L = 1)

[+jA
i-n)

2L—\—k\

(L>2)

(C-25)
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where, by definition,

a

b

Qi(a,b) + x
2
)]I0(ax) dx

(C-26)

In (x ) is the modified Bessel function of the first kind and of order n.

Let us evaluate the constants a and b when the channel is time-invariant, ji = 0,

and the channel gain and phase estimates are those given in Section C.l. Recall that

when signal s\(t) is transmitted, the matched filter output is X

k

= 2£gk + Nk . The

clairvoyant estimate is given by Equation C-5 . Hence, for this estimate, the moments are

Xk = 2Sgk, Yk = gk, mxx = 4£No, andmyy
= No/£v, where £ is the signal energy, No

is the value of the noise spectral density, and v is defined in Equation C-23. Substitution

of these moments into Equation C-26 results in the following expressions for a and b\

a

b

Yb

(C-27)

This is a result originally derived by Price (1962).

The probability of error for differential phase signaling can be obtained by setting

v = 1 in Equation C-27.

Next, consider a pilot signal estimate. In this case, the estimate is given by Equation

C-4 and the matched filter output is again Xk = 2£gk + Nk- When the moments are

calculated and these are substituted into Equation C-26, the following expressions for

a and b are obtained:

a

b

(C-28)

Yt
L
No

Yl\sk \

2

k=

1

£t — £ + £p

r = £/£p

where
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Finally, we consider the probability of a binary digit error for four-phase signaling

over a time-invariant channel for which the condition /x = 0 obtains. One approach

that can be used to derive this error probability is to determine the PDF of 0 and then

to integrate this over the appropriate range of values of 0. Unfortunately, this approach

proves to be intractable mathematically. Instead, a simpler, albeit roundabout, method

may be used that involves the Laplace transform. In short, the integral in Equation 14.4-

14 of the text that relates the error probability Pi(yb) in an AWGN channel to the error

probability P2 in a Rayleigh fading channel is a Laplace transform. Since the bit error

probabilities P2 and P^ for a Rayleigh fading channel, given by Equations C-18 and

C-21, respectively, have the same form but differ only in the correlation coefficient,

it follows that the bit error probabilities for the time-invariant channel also have the

same form. That is, Equation C-25 with /x == 0 is also the expression for the bit error

probability of a four-phase signaling system with the parameters a and b modified to

reflect the difference in the correlation coefficient. The detailed derivation may be found

in the paper by Proakis (1968). The expressions for a and b are given in Table C-2.

TABLE C-2

Time-Invariant Channel

Type of estimate

Clairvoyant estimate

Differential phase signaling

Pilot signal estimate

a

Two-phase signaling

\/jYb\Vv- II

0

Four-phase signaling

Clairvoyant estimate

Differential phase signaling

Pilot signal estimate

\J \ Yb I \/V + l+ vV + l

- yjv + 1 - Vv 2 + 1
|

2 + V2-

\J 4(r + 1)
^' v + r + \/

v

2 + r 2

- v + r ~^/v 2 + r 2

b

yflvbi->/v + l)

V2yb

\Yb \y ^ + 1 + Vv 2 + 1

+ y/v + l — \/v 2 -
1

- 1

^

^
\ Yb

^
\/

2

+ a/2 + yj2 — a/2
^

'«?TT){^
v + r + ^v2 + r2

+ ^v+r-^+r2

)



APPENDIX D

Square Root Factorization

Consider the solution of the set of linear equations

RnCn = Un (P-1)

where is an TV x TV positive-definite symmetric matrix, CN is an TV-dimensional

vector of coefficients to be determined, and Un is an arbitrary TV-dimensional vector.

The equations in D-l can be solved efficiently by expressing RN in the factored form

Rn = SnDn S*n (D-2)

where SN is a lower triangular matrix with elements {sik } and DN is a diagonal matrix

with diagonal elements {dk }. The diagonal elements of SN are set to unity, i.e., su = 1.

Then we have

j

rij = d^2sikdksjk , 1 < ; < i
-

1, i >2 (D-3)

k=l

rn = di

where [r
tj } are the elements of Rn . Consequently, the elements {sik } and {dk } are

determined from Equation D-3 according to the equations

d\ = rii

T- 1

$ijdj — y'ij ^ ^ SikdkSjk-> 1 — j — i 1> 2 < i < TV (D—4)

i—

1

di =ru ~^2s?kdk , 2 < i < N
k=

1

Thus, Equation defines and Dyy in terms of the elements of Rn-
The solution to Equation D-l is performed in two steps. With Equation D-2 sub-

stituted into Equation D-l we have

SnDnS*nCn = Un

1107
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Let

yn Dn SNCn (D-5)

Then

SnYn = Un (P-6)

First we solve Equation D-6 for YN . Because of the triangular form of Sn, we have

y 1 = mi
i-i

yi = Ui -^2 Sijyj ,
2 < i < N

7=1

Having obtained YN ,
the second step is to compute CN . That is,

DnS*nCn = Yn

S*nCn = Dn
1 Yn

Beginning with

Cn =

(D-7)

(D-8)

the remaining coefficients of are obtained recursively as follows:

yi_

di

N

sji cj>

j=i+

1

1 < i < N - 1 (P-9)

The number of multiplications and divisions required to perform the factorization

of Rn is proportional to N3
. The number of multiplications and divisions required to

compute Cn, once Sn is determined, is proportional to N2
. In contrast, when RN is

Toeplitz the Levinson-Durbin algorithm should be used to determine the solution of

Equation D-l, since the number of multiplications and divisions is proportional to N2
.

On the other hand, in a recursive least-squares formulation, Sn and DN are not com-

puted as in Equation D-3, but they are updated recursively. The update is accomplished

with N2
operations (multiplications and divisions). Then the solution for the vector Cn

follows the steps of Equations D-5 to D-9. Consequently, the computational burden of

the recursive least-squares formulation is proportional to N2
.
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871-872

tap weight estimation of,

876-877

tapped delay line model of,

869-871

frequency offset, 600

impulse noise, 601

memoryless, 355

microwave LOS, 8

models for,

additive noise, 10

binary symmetric, 355

COST 207, 840

discrete memoryless, 356

discrete-time, 358

for multiuser channels,

1037-1038

Hata, 843

Jakes’ model, 838-839

linear filter, 1

1

linear, time-variant filter,

11-12, 832

MIMO channels, 966

slowly fading, 845

statistical, 839-843

waveform, 358

multipath spread, 834

Nakagami fading, 841

nonlinear, 600

overspread, 845

phase jitter, 600

probability transition

matrix, 357

Rayleigh fading, 833

Binary signaling over,

847-849

coded waveforms for,

942-956

coding for, 899-960

cutoff rate for, 957-960

frequency nonselective,

846-849

M-ary orthogonal signaling

over, 861-865

Multiphase signaling over,

859-861

reliability function, 369

state information (CSI), 904,

957-960, 1054

Ricean fading, 833

scattering function, 837

spread factor, 845

table, 845

squared-error, 645-646

storage, 9

symmetric, 363

thermal noise, 3, 69, 600

throughput, 1070

underspread, 845

underwater acoustic, 9

waveform, 358

wireless, 5-9

wireline, 4

Channel capacity, 13, 360

Channel coding, 400

Channel L-value, 552

Channel state information (CSI),

904, 957-960, 1054

Characteristic function, 44

Characteristic of a field, 404

Chernov bound, 58, 373, 923

for Rayleigh fading channel,

866-868

pairwise error probability,

1014-1016

Chernov parameter, 373

X
2 random variable, 45

Circular random vectors, 66

Clairvoyant estimate, 1098

CLT (central limit theorem), 63

Code division multiple access

(CDMA), 780-784

asymptotic efficiency, 1052

asynchronous, 1039-1042

capacity of, 1033-1034

digital cellular, 780-784

frequency hopped, 802-804,

813-814

optimum receiver for,

1038-1042

suboptimum detectors for,

1042-1050

decorrelating, 1043-1045

MMSE, 1046-1047

multistage interference

cancellation, 1048-1049

performance, 1050-1053

single user, 1042-1043

successive interference

cancellation, 1047-1048

synchronous, 1038-1039

Code rate, 2

Codeword, 2

Coded modulation,

bit-interleaved, 936

trellis, 571-586, 929-935

Codes

augmented, 447

bandwidth efficient, 571, 586

bandwidth expansion

factor, 428

BCH, 463

bit error probability, 417

block, 401

block error probability, 417

burst error correcting, 475

Burton, 475

classification, 401

coding gain, 426, 533

concatenated, 479-480,

953-956, 1020-1021

conditional weight enumeration

function, 416

constant weight, 949-953

convolutional, 491-548,

946-948

coset, 430

CRC, 453

cyclic, 447

cyclic Golay, 460

cyclic Hamming, 460

diversity order, 927

dual, 412

effective distance, 927

equivalent, 412

expurgated, 447, 950-951

extended, 447

extended Golay, 424

Fire, 475

fixed weight, 411, 949-953

generator matrix, 412

Golay, 424, 460

Hadamard, 423, 951-953

Hamming, 420, 460

Hamming distance, 414

inner, 479

input-output weight enumeration

function, 416

instantaneous, 340

lengthened, 446

linear block, 411

low density parity check

(LDPC), 569

maximum distance

separable, 440

maximum length, 421

maximum-length shift

register, 461

MDS (maximum-distance

separable), 440

minimum distance, 414

minimum weight, 414

outer, 479

parallel concatenated block, 481

parity check matnx, 412

perfect, 434, 442

product, 477

punctured, 446, 5 1 6-5 17,

521-523

quasi-perfect, 435

rate, 2

Reed-Muller (RM), 421

Reed-Solomon (RS), 471

serially concatenated block, 480

shortened, 445

shortened cyclic, 452

standard array, 430

syndrome, 430, 467

systematic, 412

ternary Golay, 442

turbo, 548

undetected error, 430

uniquely decodable, 339

weight distribution, 41

1

weight distribution polynomial,

415
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Codes (continued)

weight enumeration function,

415

word error probability, 417

Codeword, 372, 401

weight, 411

Coding

diversity order, 927

effective distance, 927

for MIMO channels,

1001-1021

for Rayleigh fading channel,

942-960

concatenated, 953-956

constant-weight codes,

949-953

convolutional codes,

946-948

cutoff rate, 371-380, 516,

527, 787-791, 957-960

linear block codes, 943-946

space-time codes, 1006-1021

trellis codes, 1016-1019

Gray, 100

Huffman, 342-346

in the frequency domain,

942-960

Coding gain, 533

of a lattice, 233

Complementary error

function, 44

Complementary gamma
function, 911

Complete set of signals, 32

Complex envelope, 22

Complex random processes

covariance, 7

1

pseudocovariance, 7

1

Complex random variables, 63

Complex random vectors, 64

covariance matrix, 64

pseudocovanance matrix, 64

Complex signals

bandwidth, 20

Concatenated codes, 479-480,

540-541, 953-956,

1020-1021

inner code, 479, 540

outer code, 479, 540

Concave function, 386

Conditional entropy, 334

Conditional weight enumeration

function, 416

Confluent hypergeometric

function, 49

Conjugacy class, 409

Conjugate element, 409

Constant weight codes, 411,

949-953

Constellation, 34

figure of merit, 238

minimum distance, 185

Constellation figure of merit

(CFM), 238

Constraint length, 96, 49

1

Continuous-phase frequency-shift

keying (CPFSK), 116-118

performance of, 116

power density spectrum of,

138-145

representation of, 116-117

Continuous-phase modulation

(CPM), 118-123, 243-259

demodulation, 243-258

maximum-likelihood

sequence estimation,

243-246

metric computations, 249-251

multi-/i, 257-258

performance of, 251-258

suboptimum, 258-259

full response, 118

linear representation of,

128-130

minimum-shift keying (MSK),

123-124

modulation index, 118, 254

multi-h, 118, 257-258

partial response, 1 18

phase cylinder, 1 22

phase state, 248

phase trees of, 1 20

power spectrum of, 138-142,

145-148

representation of, 118-123

state trellis, 249

trellis of, 120

Continuous-wave (CW)
interference, 772

Convergence

almost everywhere (a.e.), 63

almost surely (a.s), 63

in distribution, 63

Convex functions, 386

Convolutional codes, 491-548

applications, 532-537

catastrophic, 509

constraint length, 491

concatenated, 540-541

decoding,

Fano algorithm, 525

feedback, 529-531

maximum a posteriori,

541-548

sequential, 525-528

stack algorithm, 528-529

Viterbi, 243-246

distance properties of, 5 1

6

dual-fc, 537-540

equivalent encoders, 506

first-event error, 502

first-event error probability, 513

hard-decision decoding,

945-946

invertibility conditions, 508

invertible, 508

maximum free distance, 5 1

6

nonbinary, 499, 504

parallel concatenated (PCCC),

548

performance on AGWN
channel, 513-516

performance on BSC, 513-516

performance on Rayleigh fading

channel, 946-948

punctured, 516-517, 521-523

rate, 491

rate-compatible punctured,

523-525

recursive systematic (RSCC),

507-508

soft-decision decoding, 943-944

state diagram, 496

systematic, 505

table of generators for maximum
free distance, 517-520

transfer function, 500

tree diagram, 496

trellis diagram, 496

Viterbi algorithm, 510

Convolutional interleavers, 476

Correlation metric, 173

Correlation receiver, 177

Correlative state, 248

Correlative state vector, 248

Coset, 430, 483

Coset leader, 430

Coset representative, 584

Covariance

for complex random

processes, 71

CPFSK, 116-118, 138-145

modulation index, 1 1

8

peak frequency deviation, 1 17

power spectral density, 138-145

CPM, (See Continuous-Phase

Modulation),

CRC codes, 453

Cross spectral density, 67

in-phase and quadrature

components, 80

Cross-correlation coefficient, 26

Crosscorrelation function, 67

in-phase and quadrature

components, 80

CSD (cross spectral density),

67

CSI (channel state information),

904, 957-960, 1054

Cutoff rate (R0 ), 371-380, 516, 527

comparison with channel

capacity, 377-380

for fading channels, 957-960

for pulsed interference,

787-791

CWEF (conditional weight

enumeration function), 416

Cyclic codes, 447

CRC, 453

decoding, 458

encoding, 455

generator polynomial, 448

Golay, 460

Hamming, 460

message polynomial, 449

parity check polynomial, 450

shortened, 452

systematic, 453

Cyclic equalization, 694

Cyclic redundancy check (CRC)

codes, 453

Cyclic subgroup, 482

Cyclostationary random

process, 70

D transform, 493

Data compression, 1, 335-354

lossless, 335-348

lossy, 348-354

Decision-feedback equalizer {see

Equalizers,

decision-feedback)

,

661-665, 705-706

Decision region, 163

Decoding,

Berlekamp-Massey, 469

Fano algorithm, 525

feedback, 529-531

hard decision, 428

iterative, 478, 548

Meggit, 460

sequential, 525-528

soft decision, 424

stack algorithm, 528-529

turbo, 552

LDPC, 570

Viterbi algorithm, 243-244,

Degrees of freedom, 75

Delay distortion, 598-599

Delay power spectrum, 834

Demodulation, 24

Demodulation and detection, 201

earner recovery for, (See Carrier

phase estimation)

coherent

companson of, 226-229

of binary signals, 173-177

of biorthogonal signals,

207-209

of orthogonal signal, 203-207

of PAM signals, 188-190

of PSK signals, 190-195

ofQAM signals, 196-200

optimum, 201-203

correlation type, 177-178

of CPM, 243-258

performance, 251-258

for intersymbol interference,

623-628

matched filter-type, 178-182

maximum likelihood, 163

maximum-likelihood sequence,

623-628

noncoherent, 210-224

of binary signals, 219-221

of M-ary orthogonal signals,

216-219, 741-743,

861-865

multichannel,737-743

optimum, 212-214

of OFDM, 749

Density of a lattice, 236

Detector

decorrelating, 1043-1045

envelope, 214

inverse channel (ICD), 970

maximum-likelihood

(MLD), 970

MMSE, 970, 1046-1047

minimum distance, 171

nearest neighbor, 171

nonlinear, 973-974

optimal noncoherent, 212-214
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single user, 1042-1043

sphere, 973

Differential encoding, 1 15

Differential entropy, 349

Differential phase-shift keying

(DPSK), 221

Differentially encoded

PSK, 195

Digamma function, 909

Digital communication system

model, 1-3

Digital modulation, 95

Digital modulator, 2

Digital signaling, 95

Dimensionality theorem,

227

Direct sequence (See Spread

spectrum signals)

Dirty paper precoding, 1054

Discrete memoryless source

(DMS), 331

Discrete-memoryless channel

(DMC), 356

Discrete-time AWGN, 358

Discrete-time AWGN channel

capacity, 365

Discrete-time binary-input channel

capacity, 362

Distance (see Block codes,

Convolutional codes)

effective, 927

enumerator function, 185

Euclidean, 35

Hamming, 414

metric, 173

product, 925

Distortion {see Channel distortion)

Hamming, 354

squared-error, 350

Distortion-rate function, 352

Diversity

antenna, 85

1

frequency, 850

gain, 996-997

order, 852, 927

performance of, 851-859

polarization, 851

RAKE, 851

signal space, 928

time, 851

DMC {see Discret Memoryless

Channel)

DMS {see Discret Memoryless

Source)

Double-sideband (DSB)

PAM, 100

DPSK, 221

error probability, 223

DSB, 100

Dual code, 412

Dual-k codes, 537-540

Duobinary signal, 610

e-outage capacity, 907

Early-late gate synchronizer,

318-321

Effective antenna area, 262

Effective distance, 927

Effective radiated power, 260-261

Eigenvalue, 29, 1086

Eigenvector, 29, 1086

Elias bound, 443

Encoder

catastrophic, 509

convolutional, 402, 492

for cyclic codes, 455

inverse, 508

turbo, 549

Encoding {see Block codes;

Convolutional codes)

Energy, 25

average, 97

per bit,

average, 97

Entropy, 333

chain rule, 335

conditional, 334

differential, 349

joint, 334

Entropy rate, 337

Envelope detection, 214

Envelope of a signal, 23

Equivalent codes, 412

Equivalent convolutional

encoders, 506

Equalizers {See also Adaptive

equalizers)

at transmitter, 668-669

decision-feedback, 661-665,

705-

706

adaptive, 689-731

examples of performance,

662-665

for MEMO channels, 979-981

of trellis-coded signals,

706-

708

minimum MSE, 663

predictive form, 665-667

linear, 640-649

adaptive, 689-693

baseband, 658-659

convergence of MSE
algorithm, 695-696

cyclic equalization, 694

error probability, 65 1-655

examples of performance,

651-655

excess MSE, 696-697

for MEMO channels, 975-979

fractionally spaced, 655-658

LMS (MSE) algorithm,

'691-693

mean-square error (MSE)

criterion, 645-655

minimum MSE, 647-648

output SNR for, 648

passband, 658-659

peak distortion, 641

peak distortion cntenon,

641-645

phase-splitting, 659

zero-forcing, 642

iterative equalization/decoding,

671-673

maximum a posteriority

probability (MAP), 291

maximum -likelihood sequence

estimation, 623-625,

reduced- state, 669-671

self-recovering (blind), 721-731

with trellis-coded modulation,

706-708

using the Viterbi algorithm,

628-631

channel estimator for,

703-705

performance of, 631-639

reduced complexity,

669-671

reduced-state, 669-67

1

erfc, 44

Ergodic capacity, 900, 905-906,

985-987

Error correction, 900

Error detection, 432

Error floor, 551

Error probability,

16QAM, 186, 200

ASK, 189

binary antipodal signaling, 174

binary equiprobable

signaling, 174

binary orthogonal

signaling, 176

biorthogonal signaling, 208

bit, 164,417

block, 417

DPSK, 223

for hard-decision decoding,

945-946

for soft-decision decoding,

943-944

FSK, 205

lower bound to, 1 86

M-ary PSK, 190-194

for Rayleigh fading, 859-861,

1100-1103

for Ricean fading, 1 104-1 105

for AWGN channel, 1106

message, 164

multichannel binary symbols,

739-741, 1090-1095

orthogonal signaling, 205

noncoherent detection, 216

pairwise, 184, 372, 418,

922, 928

PAM, 189

QAM, 198

QPSK, 199

symbol, 164

union bound, 182

word, 417

Estimate

biased, 323

clairvoyant, 1098

consistent, 324

efficient, 324

pilot signal, 1098

unbiased, 323

Estimate of phase {See Carrier

phase estimation)

Estimation

maximum-likelihood, 291,

296-298, 321-322

of earner phase, 295-315

of signal parameters, 290

of symbol timing, 290

of symbol timing and earner

phase, 321-322

performance of, 323-326

Euclidean distance, 35

Euler’s constant, 909

Excess bandwidth, 607

Excess MSE, 696-697

Excision of narrowband

interference, 791-796

linear, 792-796

nonlinear, 796

EXIT charts, 555

Exponential random variable, 46

Expurgated codes, 447,

950-951

Extended codes, 447

Extended Golay code, 424

Extension field, 404

Extrinsic information, 552

Extnnsic L-value, 552

Eye pattern, 603

Factor Graphs, 558

Fading, 8, 830-844

figure, 52

Fading channels {See also

Channels), 830-890

coding for, 899-960

ergodic capacity, 900, 905-906,

985-987

outage capacity, 900, 906, 907,

900, 987-990

propagation models for,

842-843

Feedback decoding, 529-531

FH spread spectrum signals {see

Spread spectrum signals),

Field

characteristic, 404

extension, 404

finite, 403

Galois, 403

ground, 404

minimal polynomial of an

element, 408

order of an element, 407

primitive element, 407

Figure of merit

baseline, 239

constellation, 238

Filtered multitone (FMT)

modulation, 754

Filters,

matched, 178-182

whitemng, 627

Finite fields, 403

Finite-state channels, 903

capacity, 903-905

Fire codes, 475

First-event error, 502

First-event error probability,

513

Fixed weight codes, 411,

949-953

Fixed-length source coding, 339
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Folded spectrum, 644

Forward recursion, 543

Free Euclidian distance, 577

Free-space path loss, 262

Frequency diversity, 850

Frequency range

wireline channels, 5

wireless (radio) channels, 6

Frequency division multiple access

(FDMA), 1029

capacity of, 103 1-1032

Frequency domain coding,

942-960

Frequency hopped (FH) spread

spectrum, 802-804

Frequency support, 20

Frequency-shift keying (FSK),

109-110

continuous-phase (CPFSK),

116-118

error probability, 205

noncoherent detection, 215

power density spectrum, 154

Frobenius norm, 982

Fundamental coding gain, 586

Fundamental volume of a

lattice, 233

Galois fields, 403

minimal polynomial, 464

subfield, 483

Gamma function, 45

complementary, 911

Digamma function, 909

Gamma random variable, 46

Gaussian minimum-shift keying

(GMSK), 118

Gaussian noise, 10

Gaussian random process, 10, 68

Gaussian random variable, 41

Generalized RAKE demodulator,

880-882

Generator matrix

lattice, 23

1

of linear block codes, 412

of space-time block code,

1006

transform domain, 495

Generator polynomial, 448, 464

Gilbert-Varsharmov bound, 443

Girth of a graph, 560

GMSK, 118, 127

Golay codes, 424, 460

extended, 424

ternary, 442

Gold sequences, 799

Gram-Schmidt procedure, 29

Graphs, 558-568

bipartite, 559

constraint nodes, 561

cycle-free, 560

cycles, 560

factor, 558

girth, 560

global function, 561

local functions, 561

Tanner, 558

variable nodes, 560

Gray coding, 1 00

Gray labeling, 939

Ground field, 404

Group

Abelian, 403

identity element, 404

Hadamard codes, 423, 951-953

Hamming bound, 441

Hamming codes, 420, 460

Hamming distance, 414

Hamming distortion, 354

Hard decision decoding,

of block codes, 428-436

of convolutional codes, 509-516

Hata model, 843

Hermite parameter, 233

Hermitian matrix, 65, 1085

Hermitian symmetry, 19

Hermitian transpose of a matrix, 28

Hexagonal lattice, 230

Hilbert transform, 22

Homogeneous Markov chains, 72

Huffman coding, 342-346

Identity element, 404

iid random variables, 45

Illumination efficiency factor, 262

Impulse noise, 601

Impulse response,

for bandpass systems, 27

In-phase component, 22

Inequality

Cauchy-Schwarz, 29-30

Kraft, 340

Markov, 56

triangle, 29-30

Information sequence, 1 ,
40

1

Information source

discrete memoryless, 331

memoryless, 331

stationary, 33

1

Inner code, 479

Inner product, 26, 28, 30

Input-output weight enumeration

function (IOWEF), 416

Instantaneous codes, 340

Interference margin, 774

Interleaver

block, 476

convolutional, 476

gain 552

uniform, 480^4-81

Interleaving, A16-All

Intersymbol interference, 599-600,

603-604

controlled (see Partial response

signals), 609-611

discrete-time model for, 626

equivalent white noise filter

model, 627

optimum demodulator for,

623-628

Inverse channel detector

(ICD), 970

Inverse filter, 642

Irreducible Markov chains, 73

Irreducible polynomial, 405

Irregular LDPC, 570

Irrelevant information, 166

Iterative decoding, 478, 548-558

error floor, 551

EXIT charts, 555

turbo cliff region, 553

waterfall region, 553

Jakes’ model, 838-839

Jensen’s inequality, 386

Joint entropy, 334

Jointly Gaussian random

variables, 54

Jointly wide-sense stationary

processes, 54

Kalman (RLS) algorithm,

711-714

Kalman gain vector, 712

Karhunen-Loeve expansion, 76

Kasami sequences, 799

Kissing number of a lattice, 232

Kolmogorov-Wiener filter, 1

3

Kraft inequality, 340

Labeling

Gray, 939

set portioning, 939

Lattice

coding gain, 233

co set, 584

density, 236

equivalent, 23

1

filter, 716-721

fundamental volume, 233

generator matrix, 231

Hermite parameter, 233

hexagonal, 230

kissing number, 232

minimum distance, 232

multidimensional, 234

multiplicity, 232

recursive least squares, 708, 715

Schlafli, 234

Sublattice, 234

Voronoi region, 232

Law of large numbers (LLN), 63

LDPC (low density parity check

codes), 568-571

code density, 569

decoding, 570

degree distribution polynomial,

570

irregular, 570

regular, 569

Tanner graph, 569

Least-squares algorithms, 710-720

Lempel-Ziv algorithm, 346-348

Lengthened codes, 446

Levinson-Durbin algorithm,

692,716

Likelihood function, 292

Linear block codes, 400-490

Linear equalization {see

Equalizers, linear)

Linear-feedback shift-register,

maximum length, 798-799

Linear filter channel, 11

Linear modulation, 1 10

Linear prediction, 7 1

6

backward, 718

forward, 717

residuals, 718

Linear time-varying channel, 1

1

Linearly independent signals, 30

Link budget analysis, 261-265

Link margin, 246

LLN {see law of large numbers)

Log-APP (log a posteriori

probability), 546

Log-MAP (log maximum a

posteriori probability), 546

Lognormal random variable, 54

Lossless data compression, 335

Lossless source coding theorem,

336

Lossy data compression, 335

Low density parity check codes

{see LDPC)
Lowpass equivalent, 22

Lowpass signal, 20

Low probability of intercept,

778-779

MacWilliams identity, 415

MAP (maximum a posteriori

probability), 162-163,

291

Mapping by set partitioning, 572

Marcum’s (^-function, 47

generalized, 47

M-ary modulation, 2

Markov chains, 71-74

apenodic states, 73

equilibrium probabilities, 73

ergodic, 73

homogeneous, 72

irreducible, 73

penod of state, 73

state, 72

state probability vector, 72

state transition matrix, 72

stationary probabilities, 73

steady-state probabilities, 73

Markov inequality, 57-58

Matched filter, 178-182

frequency domain, 179

receiver, 178

Matrix

condition number, 1088

eigenvalue, 1086

eigenvector, 1086

generator, 412-413

Hermitian, 65

Hermitian transpose, 28

norm, 1088

orthogonal, 23

1

parity check, 412-413

rank, 1085

singular values, 1087

skew-Hermitian, 65

symmetric, 1085

trace of, 1085

transpose, 28

Max-Log-APP algorithm, 548

Max-Log-MAP algorithm, 548
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Maximal ratio combiner, 852

Maximum a posteriori probability

(see MAP),
Maximum-distance separable

codes, 440

Maximum free distance codes, 516

tables of, 517-520

Maximum-length shift register

codes, 461,798-799

Maximum likelihood,

parameter estimation, 290-291,

321-322

for carrier phase, 292-298

for joint earner and symbol,

321-322

for symbol timing, 315-321

performance of, 323-324

Maximum-likelihood (ML)

receiver, 163, 623-625,

Maximum likelihood sequence

detection (MLSD),

623-625,

Maximum ratio combining, 852

performance of, 851-855

McEliece-Rodemich-Rumsey-

Welch (MRRW) bound,

443

MDS (maximum-distance

separable) codes, 440

Mean-square error (MSE)

entenon, 645-655

Meggit decoder, 460

Memoryless channel, 355

Memoryless modulation, 95

Memoryless source, 33

1

Mercer’s theorem, 77

Message error probability, 164

PSK, 194

QPSK, 193

Message polynomial, 449

Metnc
correlation, 173

distance, 173

modified distance, 173

MGF (moment generating

function), 44

Microwave LOS channel, 8

MIMO channels, 966

capacity of, 982-984, 990-991

ergodic, 985-986

outage, 987-990

coding for, 1001-1021

bit-interleaved, 1 003- 1 006

space-time codes, 1006-1021

temporal, 1003-1006

slow fading, 968-969, 975-979

spread spectrum signals for,

992-996

MIMO systems, 966

detectors for, 970-974

diversity gam for, 996-997

error rate performance,

971-973

lattice reduction for, 973-974

multicode, 997-1000

multiplexing gam for, 996-997

outage probability, 987-988

scrambling sequence for, 997

singular-value decomposition

for, 974-975

spread spectrum, 992-996

Minimal polynomial, 408

Minimum distance, 414

Minimum distance detector, 171

Minimum distance of a

constellation, 185

Minimum distance of a lattice, 232

Minimum weight, 414

Minimum-shift keying (MSK),

123-124

power spectrum of, 144

ML (see maximum-likelihood)

MLSD, 623-625,

Modified Bessel function, 47, 213

Modified distance metric, 173

Modified duobinary signal, 610

Modulation

binary, 2

comparison of, 226-229

constraint length, 96

continuous-phase FSK
(CPFSK), 116-118

power spectrum, 138-145

continuous-phase modulation

(CPM), 118-123

digital, 95

DPSK, 221-223

equicorrelated (simplex),

112-113, 209-210

frequency-shift keying (FSK),

109-110, 205,215-216

linear, 110

M-ary orthogonal, 108-1 11,

204-207,216-219

memoryless, 95

multichannel, 737-743

multidimensional, 108-113

NRZ, 115

NRZI, 115

nonlinear, 110

OFDM, 746-752

offset QPSK,
phase-shift keying (PSK),

101-103, 191-195

pulse amplitude (PAM, ASK),

98-101, 188-190

quadrature amplitude (QAM),
103-107, 185-187,

196-200

with memory, 95-96

Modulator, 2, 24

binary, 2

digital, 95

linear, 110

M-ary, 2

memoryless, 95

nonlinear, 110

pulse amplitude, 98-101

quadrature amplitude, 103-107

with memory, 95-96

Moment generating function (see

MGF)
Monic polynomial, 405

Moore-Penrose pseudoinverse,

1088

Morse code, 12, 339

MRRW (McEliece-Rodemich-

Rumsey-Welch) bound,

443

MSK, 123-124, 144

Multicamer communications,

743-759

capacity of, 744-745

channel coding consideration,

759

FFT-based system, 749-752

Filtered multitone (FMT), 754

OFDM, 746-742

bit allocation, 754-757

power allocation, 754-757

peak-to-average ratio, 757-759

spectral characteristics, 752-754

Multichannel communications,

737-743

noncoherent combining

loss, 741

with binary signals, 739-741

with M-ary orthogonal signals,

741-743

Multicode MIMO systems,

997-1000

Multidimensional signaling,

108

Multipath channels, 8, 83

1

Multipath intensity profile,

834

Multipath spread, 834

Multiple access methods,

1029-1031

capacity of, 1031-1035

CDMA, 1033-1034

FDMA, 1031-1032

random accesss, 1068-1077

TDMA, 1032-1033

Multiple antenna systems,

966-1021

inverse channel detector,

970

maximum-likelihood detector,

970

minimum MSE detector, 970

space-time codes for, 1006-1021

concatenated codes,

1020-1021

differential STBC, 1014

orthogonal STBC, 1011-1013

quasi-orthogonal STBC, 1013

trellis codes, 1016-1019

turbo codes, 1020-1021

Multiplexing gain, 996-997

Multiplicity of a lattice, 232

Multistage interference

cancellation, 1043-1049

Multiuser communications,

1028

multiple access, 1029-1034

multiuser detection,

1029-1034

random access, 1068-1077

Multiuser detection, 1034

decorrelating detector,

1043-1045

for asynchronous transmission,

1039-1042

for broadcast channels,

1053-1068

for CDMA, 1036-1053

for random access, 1068-1077

for synchronous transmission,

1038-1039

single user detector, 1042-1043

Mutual information, 332

Nakagami random variable,

52, 841

Narrowband interference, 791-796

Narrowband process, 79

Narrowband signal, 18-21

Nat, 333

Nearest neighbor detector, 171

Negative spectrum, 20

Noise,

Gaussian, 10

thermal, 3, 69

white, 90

Noise equivalent bandwidth, 92

Noisy channel coding theorem, 361

Non-central x
2 random

variable, 46

Noncoherent combining loss, 741

Noncoherent detection, 210-226

error probability for orthogonal

signals, 216-218

FSK, 215-216

Nonlinear distortion, 600

Nonlinear modulation, 1 10

Norm
of a matrix, 1088

of a signal, 30

of a vector, 28

Normal equations, 716

Normal random variable, 41

NRZ, 115

NRZI, 115

Nyquist entenon, 604-605

Nyquistrate, 13

OFDM, 746-752, 844-890

bit and power allocation,

754-757

degradation due to Doppler

spreading, 884-889

FFT implementation, 749-752

ICI suppression in, 889-890

peak-to-average ratio, 757-759

Offset QPSK (OQPSK), 124-128

On-off keying (OOK), 267, 949

Optimal detection

after modulation, 202

binary antipodal signaling, 173

binary orthogonal signaling, 176

biorthogonal signaling, 207

simplex signaling, 209

OQPSK, 124-128

Order of a field element, 407

Orthogonal matrix, 23

1

Orthogonal signaling, 108

achieving channel capacity, 367

error probability, 205

with noncoherent detection,

216-218

Orthogonal signals, 26, 30



1148 Index

Orthogonal vectors, 28

Orthogonality pnnciple, 646

mean-square estimation,

646

Orthonormal

vectors, 28

basis, 28

signal set, 30

Outage capacity, 900, 907, 913

ofMIMO channels, 987-990

Outage probability,

ofMIMO channels, 987-988

Outer code,

Pairwise error probability (PEP),

184, 372,514, 922,

1014-1016

Chernov bound, 373, 1014-1016

PAM, 98-101

Parallel contatenated block

codes, 481

Parallel concatenated convolutional

codes (PCCC), 548

Parity check bits, 412

Parity check matrix, 412

Parity check polynomial, 450

Partial-band interference, 804

Partial response signals, 609-6 1

1

duobinary, 610

error probability of, 617-618

modified duobinary, 610

precoding for, 613

Partial-time (pulsed), 784

Path memory truncation, 246

PCBC (parallel concatenated block

codes), 481

PCCC (parallel concatenated

convolutional codes), 548

Peak distortion criterion, 641-645

Peak frequency deviation, 1 17

Peak-to-average ratio, 757-759

PEP (see pairwise error

probability)

Perfect codes, 434, 442

Phase of a signal, 23

Phase jitter, 600

Phase-locked loop (PLL),

298-315

Costas, 312-313

decision-directed, 303, 308

loop damping factor, 299

M-law type, 313-314

natural frequency, 299

non-decision-directed, 308-315

square-law type, 310-312

Phase tree, 120

Phase trellis, 120

Phase-shift keying (PSK),

101-103

Pilot signal, 1098

Plotkin bound, 442

PN sequences, 463, 796-801

Polynomial

irreducible, 405

minimal, 408

monic, 405

prime, 405

syndrome, 458

Positive spectrum, 20

Power efficiency, 226

Power spectral density, 67

continuous component, 133

CPFSK, 138-145

discrete component, 133

for in-phase component, 80

for lowpass process, 81

for quadrature component, 80

linearly modulated signals, 133

Power spectrum, 67

Pre-envelope, 21

Precoding

for broadcast channels,

1053-1068

dirty paper, 1054

linear, 1055-1058

nonlinear, 1058-1068

QR decomposition,

1058-1062

vector, 1062-1065

via lattice reduction,

1065-1068

for spectral shaping, 133-135,

611-612

Prediction (see Linear

prediction),

Preferred sequences, 799

Prefix condition, 340

Preprocessing, 166

Pnme polynomial, 405

Primitive BCH codes, 463

Primitive element, 407

Probability distributions

binomial, 41

chi-square,

central, 45-46

noncentral, 46-48

gamma, 46

Gaussian, 41-45

log normal, 54

multivariate Gaussian, 54-56

Nakagami, 52-53

Rayleigh, 48-50

Rice, 50-52

uniform, 41

Processing gain, 773-774

Probability transition matnx of a

channel, 357

Product codes, 477

Product distance, 925

Prolate spheroidal wave

functions, 227

Proper random processes, 71

Proper random vectors, 65

PSD (power spectral density), 67

Pseudo-noise (PN) sequences,

796-801

autocorrelation function, 798

generation via shift

register, 797

Gold, 799

Kasami, 799

maximal-length, 797

peak cross-correlation, 799

preferred, 799

(see also Spread spectrum

signals),

Pseudocovanance

for complex random

processes, 71

PSK, 101-103, 191-195

bit error probability, 195

Differential (DPSK), 221

differentially encoded, 195

message error probability, 194

Pulse amplitude modulation

{see PAM)
Pulsed interference, 784

effect on error rate performance,

785-791

Punctured codes, 446, 516,

521-523

Punctured convolutional codes,

516, 521-523

rate compatible, 523-525

Puncturing matnx, 520, 522

Pythagonan relation, 29

(2-function, 41

QAM, 103-107, 185-187,

196-200

error probability, 196-200

QPSK, 102

error probability, 199

message error probability, 193

offset (OQPSK), 124

Quadrature amplitude modulation

{see QAM)
Quadrature component, 22

Quasi-perfect codes, 435

Quaternary PSK (QPSK), 102

Rq (channel cutoff rate), 527,

787-791, 957-960

For fading channels, 957-960

Raised cosine spectrum, 607

excess bandwidth, 607

rolloff parameter, 607

RAKE demodulator, 869-882

for binary antipodal signals, 878

for binary orthogonal signals,

874-877

for DPSK signals, 878

for noncoherent detection of

orthogonal signals, 879

generalized, 880-882

Random access, 1068-1077

ALOHA, 1069-1073

carrier sense, 1073-1077

with collision detection, 1073

non persistent, 1074

1-persistent, 1074

/^-persistent, 1074-1077

offered channel traffic, 1070

slotted ALOHA, 1070

throughput, 1070

unslotted, 1070

Random coding, 362, 375

Random processes, 66-81

bandlimited, 74-76

bandpass, 78-81

cross spectral density, 67

cyclostationary, 70

discrete-time, 69

Gaussian, 68

jointly wide-sense

stationary, 67

narrowband, 79

power, 68

power spectral density, 67

power spectrum, 67

proper, 7

1

sampling theorem, 74

senes expansion, 74

white, 69

wide-sense stationary, 67

Random variables, 40-57

Bernoulli, 40

binomial, 41

characteristic function, 44

X
2
.45

complex, 63

exponential, 46

gamma, 46

Gaussian, 41

iid, 45

jointly Gaussian, 54

lognormal, 54

moment generating

function, 44

Nakagami, 52

non-central x
2

, 46

normal, 41

Rayleigh, 48

Ricean, 50

uniform, 41

Random vectors,

circular, 66

circularly symmetric, 66

complex, 64

proper, 65

Rate

bit, 97

code, 2, 402

signaling, 97

Rate-compatible punctured

convolutional codes

(RCPCC), 523-525

Rate-distortion function, 350

Shannon’s lower bound, 353

Rate-distortion theorem, 351

Rayleigh fading channel, 833, 841,

846-868

CSI at both sides, 912

CSI at receiver, 909, 957-960

ergodic capacity, 907

for MIMO channels, 985-987

no CSI, 908

outage capacity, 913

for MIMO channels, 987-990

Rayleigh random variable, 48

RCC (recursive convolutional

codes), 507

RCPCC (rate-compatible

punctured convolutional

codes), 523-525

Receiver

correlation, 177

MAP, 162

matched filter, 178-182

ML, 163, 623-625

Receiver implementation, 177

Reciprocal polynomial, 450
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Recursive convolutional codes,

Recursive least squares (RLS)

algorithms, 710-721

fast RLS, 715

RLS Kalman, 711-714

RLS lattice, 716-721

Recursive systematic convolutional

codes (RSCC), 507

Reed-Muller codes, 421

Reed-Solomon codes, 441, 446,

471-475

burst error correction, 473

decoding, 473

MDS property, 472

weight enumeration polynomial,

473

References, 1109

Regenerative repeaters, 260-26

1

Reliability function, 369

Reliable communication, 207, 361

Residuals, 718

Rice factor, 5

1

Ricean fading channel, 833,

Ricean random variable, 50-52

RS codes (see Reed-Solomon

codes)

RSCC (see recursive systematic

convolutional codes)

Sampling theorem, 74

Scattering function, 837

SCBC (see serially concatenated

block codes)

Schlafli lattice, 234

Scrambling sequence, 997

Sequential decoding, 525-528

Serially concatenated block

codes, 480

Set partitioning labeling,

572-573, 939

Shannon

first theorem, 336

lower bound on R(D), 353

second theorem, 361

third theorem, 35

1

Shannon limit, 207, 554, 570

Shaping, 586

Shaping gain, 240, 586

Shortened codes, 445

Shortened cyclic codes, 452

Signal (see also Signals)

analytic, 21

bandpass, 21

bandwidth, 20

baseband, 20

complex envelope, 22

energy of, 25

envelope of, 23

fading, 8

in-phase component, 22

lowpass, 20

lowpass equivalent, 22

multipath, 8, 83

1

narrowband, 18-21

norm, 30

parameter estimation,

290-326

phase, 23

quadrature components of, 22

spectrum, 19

Signal design, 602-611,

619-623

for band-limited channel, 602

for channels with distortion,

619-623

for no intersymbol interference,

604-609

with partial response pulses,

609-611

with raised cosine spectral pulse,

607-608

Signal constellation, 28

Signal space diversity, 928

Signal space representation, 34

Signal-to-noise ratio (SNR),

176, 192

Signaling

based on binary codes, 113

binary antipodal, 101

biorthogonal, 111

digital, 95

multidimensional, 108

non-retum-to-zero (NRZ), 115

non-retum-to-zero, inverted

(NRZI), 115

on-off, 267

orthogonal, 108

simplex, 112

with memory, 114

Signaling interval, 96

Signaling rate, 97

Signals

antipodal, 101

binary coded, 1 13

binary orthogonal, 176-177

biorthogonal, 1 1

1

digitally modulated, 95

cyclostationary, 70-71, 131

representation of, 28, 95

spectral characteristics, 1 3

1

inner product, 26

M-ary orthogonal, 108-1 1

1

multiamplitude, 98

multidimensional, 108-114

multiphase, 101-103

orthogonal, 30

random, 66-8

1

autocorrelation, 67

bandpass stationary, 78-81

cross correlation of, 67

power density spectrum, 67

properties of quadrature

components, 79-81

white noise, 69

quadrature amplitude modulated

(QAM), 103-106

simplex, 112-113

Signature sequence, 1037

Simplex signaling, 1 12-113

optimal detection, 209-210

Single-sideband (SSB) PAM, 100

Singleton bound, 440

Singular-value decomposition,

974-975, 981-982, 1087

left singular vectors, 981, ,

1087

right singular vectors,

981, 1087

singular values, 974,

981, 1087

SISO (soft-input-soft-output)

decoder, 545

Skew-Hermitian matrix, 65

Skin depth, 9

SNR, 176

Per bit, 176

per symbol, 192

Soft decision decoding, 424

Source 330-354

analog, 330

binary, 331

discrete memoryless

(DMS), 332

discrete stationary, 337

encoding, 339-354

discrete memoryless, 339

Huffman, 342-346

Lempel-Ziv, 346-348

Source coding, 1, 339-354

Space-time codes, 1006-1021

concatenated, 1020-1021

differential STBC, 1014

orthogonal STBC, 1011-1013

quasi-orthogonal STBC, 1013

trellis, 1016-1019

turbo, 1020-1021

Spaced-frequency, spaced-time

correlation function, 835

Spatial rate, 1007

Spectral bit rate, 226

Spectral shaping

by precoding, 134, 611-612

Spectrum

of CPFSK and CPM, 138-147

of digital signals, 131-148

of linear modulation, 133-135

of signals with memory,

131-133, 135-147

Specular component, 841

Sphere packing, 235

Sphere packing bound, 441

Spread factor, 845

table of, 845

Spread spectrum multiple access

(SSMA), 1031

Spread spectrum signals,

763-765

acquisition of, 816

for code division multiple access

(CDMA), 779-780,

813-814

for MIMO systems, 992-996

concatenated codes for, 776-778

direct sequence, 765-768

application of, 778-784

coding for, 776-778

demodulation of, 767-768

performance of, 768-773

with pulse interference,

784-791

excision of narrowband

interference, 791-796

for low-probability of intercept

(LPI), 778-779

for multipath channels,

869-871,997-1000

frequency-hopped (FH),

802-804

block hopping, 803

performance of, 804—806

with partial-band interference,

806-812

hybrid combinations, 814-815

interference margin, 774

processing gain, 773-774

synchronization of, 815-822

time-hopped (TH), 814

tracking of, 819-822

uncoded DS, 775

Spread spectrum system model,

763-765

Square-law detection, 216

Square-root factorization, 715

SQPSK, 124-128

SSB, 100

Staggered QPSK (SQPSK),

124-128

Standard array, 430

State diagram, 496

Stationary random processes,

wide-sense, 67

Stationary source, 337

Steepest-descent (gradient)

algorithm, 691-701

Storage channel, 9

Subfield, 483

Sublattice, 234

Subscriber local loop, 756

Successive interference

cancellation, 1047-1048

Sufficient statistics, 166

Sum-Product algorithm, 558-567

Survivor path, 244, 512

SVD (See Singular-value

decomposition)

Symbol error probability, 164

Symbol rate, 97

Symbol SNR, 192

Symmetric channel capacity, 363

Synchronization

carrier, 290-315

effect of noise, 300-303

for multiphase signals,

313-314

with Costas loop, 312-315

with decision-feedback loop,

303-308

with phase-locked loop

(PLL), 298-303

with squaring loop, 310-312

of spread spectrum signals,

815-822

with tau-dither loop, 820

with delay-locked loop, 819

sequential search, 8 1

8

sliding correlator, 816

symbol, 290-291,315,321

Syndrome, 430, 467

polynomial, 458

Systematic block codes, 412

Systematic convolutional codes,

Systematic cyclic codes, 453
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Tail probability bounds 56-63

Chernov bound, 58-63, 866-868

Markov bound, 56, 57

Tanner graph 558-561

for low density parity check

codes, 569-570

TATS (tactical transmission

system), 813

Telegraphy, 12

Telephone channels, 598-601

Ternary Golay code, 442

Theorem

central limit, 63

dimensionality, 227

lossless source coding, 336

Mercer, 77

noisy channel coding, 361

rate-distortion, 35

1

Shannon’s second, 361

Shannon’s third, 35

1

Wiener-Khinchin, 67

Thermal noise, 3, 69

Threshold decoder, 531

Time diversity, 85

1

Time division multiple access

(TDMA), 1030

capacity of, 1032-1033

Timing phase, 315

Toeplitz matrix, 700

Tomlinson-Harashima precoding,

668-669

Transfer function of convolutional

codes, 500

Transform domain generator

matrix, 495

Transpose of a matrix, 28

Tree diagram, 496

Trellis, 116, 243,496

Trellis-coded modulation,

571-589

encoders for, 583

for fading channels, 929-935

free Euclidean distance, 577

set partitioning, 572

subset decoding, 578

tables of coding gains for,

581-582

turbo coded, 586-589

Trellis diagram, 496

Triangle inequality, 29-30

Turbo cliff region, 553

Turbo codes, 548-558

error floor, 551

EXIT charts, 555

for fading channels,

1020-1021

interleaver gain, 552

iterative decoding, 552

Max-Log-APP algorithm, 548

multiplicity, 549

turbo cliff region, 553

waterfall region, 553

Turbo TCM, 586-589

Turbo decoding algorithm, 552

Turbo equalization, 671-673

Typical sequences, 336

Underspread fading

channels, 899

Underwater acoustic

channels, 9

Undetected error, 430

Unequal error protection, 523

Uniform interleaver, 480-481

Uniform random variable, 41

Union bound, 182-186

Uniquely decodable source

coding, 339

Universal source coding, 347

Variable-length source

coding, 339

Variance, 40

Varshamov-Gilbert bound, 443

Vector space, 28-30, 410-41

1

Vectors

linearly independent, 29

norm, 28

orthogonal, 28

orthonormal, 28

Viterbi algorithm, 243-246,

510-513

path memory truncation,

246,513

survivor, 244-245, 512

survivor path, 245, 512

Voltage-controlled oscillator

(VCO), 298

Voronoi region

of a lattice point, 232

Waterfall region, 553

Water-filling interpretation,

745, 902

in time, 912

Waveform channels, 358

WEF (weight enumeration

function), 415

Weight distribution, 41

1

Weight distribution polynomial

(WEP), 415

Weight enumeration

function, 415

Weight of a codeword, 41

1

Welch bound, 801

White processes, 69

Whitened matched filter

(WMF), 627

Whitening filter, 167, 627

Wide-sense stationary

process, 67

Wiener-Khinchin

theorem, 67

Wireless electromagnetic

channels, 5

Wireline channels, 4

Word error probability, 417

WSS (side-sense stationary), 67

Yule-Walker equations, 716

Z transform, 626

Zero-forcing equalizer, 642

Zero-forcing filter, 642




