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1 Introduction

Traditional encryption schemes, both symmetric and asymmetric, were not designed to re-
spect any algebraic structure of the plaintext and ciphertext spaces, i.e. no computations can
be performed on the ciphertext in a way that would pass through the encryption to the un-
derlying plaintext without using the secret key, and such a property would in many contexts
be considered a vulnerability. Nevertheless, this property has powerful applications, e.g. in
outsourced (cloud) computation scenarios the cloud provider could use this to guarantee cus-
tomer data privacy in the presence of both internal (malicious employee) and external (outside
attacker) threats. An encryption scheme that allows computations to be done directly on the
encrypted data is said to be a homomorphic encryption scheme.

Some schemes, such as ElGamal (resp. e.g. Paillier), are multiplicatively homomorphic
(resp. additively homomorphic), i.e. one algebraic operation can pass through the encryption
to the underlying plaintext data. The restriction to one single operation is very strong, and
instead a much more powerful fully homomorphic encryption scheme that respects both addi-
tions and multiplications would be needed for many interesting applications, as it would allow
arbitrary Boolean or arithmetic circuits to be evaluated. The first such encryption scheme was
invented by Craig Gentry in 2009 [22], and since then researchers have introduced a number of
new and more efficient fully homomorphic encryption schemes [11, 10, 7, 9, 21, 29, 5, 24, 15].

Despite the promising theoretical power of homomorphic encryption, the practical side
remained underdeveloped for a long time. Recently new implementations, new data encoding
techniques, and new applications have started to improve the situation, but much remains
to be done. In 2015 the first version of the Simple Encrypted Arithmetic Library SEAL was
released, with the specific goal of providing a well-engineered and documented homomorphic
encryption library, with no external dependencies, that would be easy to use both by experts
and by non-experts with little or no cryptographic background.

This documents describes the core features of SEAL 2.3.1, and attempts to provide a
practical high-level guide to using homomorphic encryption for a wide audience. For a more
hands-on experience we recommend the reader to go over the code examples that come with
the library, and to read through the detailed comments accompanying the examples. This is
particularly important for users of previous versions of SEAL.

The library is available through http://sealcrypto.org, and is licensed under the MSR
License Agreement. For the license, see LICENSE.txt distributed with the code. This document
refers to SEAL 2.3.1.

1.1 Roadmap

In Section 2 we give an overview of changes moving from SEAL v2.3.0-4 to SEAL 2.3.1, which
are expanded upon in the other sections of this document. In Section 3 we define notation and
parameters that are used throughout this document. In Section 4 we give the description of the
Brakerski/Fan-Vercauteren homomorphic encryption scheme (BFV) – as originally specified
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in [21] – and in Section 5 we describe how SEAL 2.3.1 differs from this original description. In
Section 6 we introduce the new notion of ciphertext noise and we discuss the expected noise
growth behavior of SEAL ciphertexts as homomorphic evaluations are performed. In Section 7
we discuss the available ways of encoding data into SEAL 2.3.1 plaintexts. In Section 8 we
discuss the selection of parameters for performance, and describe the automatic parameter
selection module. In Section 9 we discuss the security properties of SEAL 2.3.1.

1.2 Acknowledgments

This document builds on previous versions that have been contributed to by Hao Chen, Rachel
Player, Amir Jalali, Zhicong Huang, and Kyoohyung Han.

2 Overview of Changes in SEAL 2.3.1

2.1 Updated Default Parameters

The default encryption parameters in SEAL have been updated according to the most recent
draft of the homomorphic encryption security standard by the HomomorphicEncryption.org
group (see [13] for previous version of the document). In particular, parameters for a 256-bit
security level have been added. See Table 3 for the new parameters.

2.2 Improved Linux and OS X support

SEAL now compiles with both clang++-5 and g++-8. Building and installation is easy using
CMake. To configure, change to the SEAL directory and run

cmake .

For easier access to the configuration options use e.g. ccmake instead of cmake. The configura-
tion options allow compiling in either Release or Debug mode (very slow), enabling/disabling
the use of specific compiler intrinsics, or enabling/disabling Microsoft GSL support (see Sec-
tion 2.5). Next run

make && sudo make install

to build and install SEAL system-wide. To install locally, set the CMAKE_INSTALL_PREFIX to
a desired value in e.g. ccmake.

Using SEAL in applications is now very easy. In a CMakeLists.txt file for your applica-
tions include the line

find_package(SEAL 2.3.1 EXACT REQUIRED)

This will import the target SEAL::seal. Simply link SEAL::seal with your program or library
and everything should work.

2.3 Generic Galois Automorphisms

SEAL now allows generic Galois automorphisms for permuting the values in the slots. These
are exposed through the Evaluator::apply_galois function.
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2.4 Changes to Memory Pool

Thread-unsafe memory pools are no longer available by default through the MemoryPoolHandle
class for safety reasons.

Tool classes such as KeyGenerator and Evaluator, etc. no longer take MemoryPoolHandle
as a constructor argument. These caused a lot of confusion, and detracted from the much more
important practice of using thread-local MemoryPoolHandle arguments to member function
calls such as Evaluator::multiply.

2.5 Support for Microsoft GSL (experimental)

SEAL can use Microsoft GSL (MSGSL)1 classes gsl::span and gsl::multi_span for provid-
ing more convenient hierarchical array access to objects such as Ciphertext, and for passing
matrix/vector arguments to PolyCRTBuilder::compose and PolyCRTBuilder::decompose

without requiring the allocation to necessarily be in the form of an std::vector.
MSGSL support is experimental at this point, and hence disabled by default. To enable

it in Microsoft Visual Studio, simply download and install MSGSL and add the installation
path to SEAL include directories in the project settings. When using CMake, first download
and install MSGSL; then enable SEAL_USE_MSGSL in ccmake. If CMake fails to find your
installation of MSGSL, you will need to add the path to CMAKE_INCLUDE_PATH in ccmake.

If SEAL is compiled and installed with MSGSL support,

find_package(SEAL 2.3.1 EXACT REQUIRED)

will additionally import a target SEAL::msgsl, which will automatically be linked with your
program or library when you link the target SEAL::seal. Thus, no additional changes to your
own CMakeLists.txt are needed.

2.6 Other

According to the practices adopted by the HomomorphicEncryption.org group, the encryption
scheme implemented in SEAL is now called the Brakerski/Fan-Vercauteren scheme (BFV), as
opposed to the previously used name Fan-Vercauteren scheme (FV). This is only a change in
the name and indicates no change in the encryption scheme itself.

The .NET examples project SEALNETExamples now contains the same performance test
examples that have been available in SEALExamples.

In addition to these visible changes, SEAL 2.3.1 brings in many internal improvements
and bug fixes.

3 Notation

We use b·c, d·e, and b·e to denote rounding down, up, and to the nearest integer, respectively.
When these operations are applied to a polynomial, we mean performing the corresponding
operation to each coefficient separately. The norm ‖ · ‖ denotes the infinity norm and ‖·‖can
denotes the canonical norm [16, 23]. We denote the reduction of an integer modulo t by [·]t.
This operation can also be applied to polynomials, in which case it is applied to every integer
coefficient separately. The reductions are always done into the symmetric interval [−t/2, t/2).
loga denotes the base-a logarithm, and log always denotes the base-2 logarithm. Table 1 below
lists commonly used parameters, and in some cases their corresponding names in SEAL 2.3.1.

1 Microsoft GSL is available at https://github.com/Microsoft/GSL/.

http://HomomorphicEncryption.org
https://github.com/Microsoft/GSL/


Parameter Description Name in SEAL (if applicable)

q Modulus in the ciphertext space (coefficient modulus) of the coeff_modulus

form q1 × . . .× qk, where qi are prime

t Modulus in the plaintext space (plaintext modulus) plain_modulus

n A power of 2

xn + 1 The polynomial modulus which specifies the ring R poly_modulus

R The ring Z[x]/(xn + 1)

Ra The ring Za[x]/(xn + 1), i.e. same as the ring R but with
coefficients reduced modulo a

w A base into which ciphertext elements are decomposed during
relinearization

logw decomposition_bit_count

` There are `+ 1 = blogw qc+ 1 elements in each component of
each evaluation key

δ Expansion factor in the ring R (δ ≤ n)

∆ Quotient on division of q by t, or bq/tc

rt(q) Remainder on division of q by t, i.e. q = ∆t+ rt(q),
where 0 ≤ rt(q) < t

χ Error distribution (a truncated discrete Gaussian distribution)

σ Standard deviation of χ noise_standard_deviation

B Bound on the distribution χ noise_max_deviation

Table 1: Notation used throughout this document.



4 The BFV Scheme

In this section we give the definition of the BFV scheme as presented in [21].

4.1 Plaintext Space and Encodings

In BFV the plaintext space is Rt = Zt[x]/(xn + 1), that is, polynomials of degree less than n
with coefficients modulo t. We will also use the ring structure in Rt, so that e.g. a product of
two plaintext polynomials becomes the product of the polynomials with xn being converted to
a −1. The homomorphic addition and multiplication operations on ciphertexts (that will be
described later) will carry through the encryption to addition and multiplications operations
in Rt.

If one wishes to encrypt (for example) an integer or a rational number, it needs to be
first encoded into a plaintext polynomial in Rt, and can be encrypted only after that. In
order to be able to compute additions and multiplications on e.g. integers in encrypted form,
the encoding must be such that addition and multiplication of encoded polynomials in Rt
carry over correctly to the integers when the result is decoded. SEAL provides a few different
encoders for the user’s convenience. These are discussed in more detail in Section 7 and
demonstrated in the SEALExamples project that comes with the code.

4.2 Ciphertext Space

Ciphertexts in BFV are arrays of polynomials in Rq. These arrays contain at least two poly-
nomials, but grow in size in homomorphic multiplication operations unless relinearization
is performed. Homomorphic additions are performed by computing a component-wise sum of
these arrays; homomorphic multiplications are slightly more complicated and will be described
below.

4.3 Description of Textbook-BFV

Let λ be the security parameter. Let w be a base, and let `+1 = blogw qc+1 denote the number
of terms in the decomposition into base w of an integer in base q. We will also decompose
polynomials in Rq into base-w components coefficient-wise, resulting in `+ 1 polynomials. By

a
$← S we denote that a is sampled uniformly from the finite set S.

The scheme BFV contains the algorithms SecretKeyGen, PublicKeyGen, EvaluationKeyGen,
Encrypt, Decrypt, Add, and Multiply. These algorithms are described below.

• SecretKeyGen(λ): Sample s
$← R2 and output sk = s.

• PublicKeyGen(sk): Set s = sk, sample a
$← Rq, and e← χ. Output pk = ([−(as+ e)]q, a).

• EvaluationKeyGen(sk, w): for i ∈ {0, . . . , `}, sample ai
$← Rq, ei ← χ. Output

evk =
(
[−(ais+ ei) + wis2]q, ai

)
.

• Encrypt(pk,m): For m ∈ Rt, let pk = (p0, p1). Sample u
$← R2, and e1, e2 ← χ. Compute

ct = ([∆m+ p0u+ e1]q, [p1u+ e2]q) .



• Decrypt(sk, ct): Set s = sk, c0 = ct[0], and c1 = ct[1]. Output[⌊
t

q
[c0 + c1s]q

⌉]
t

.

• Add(ct0, ct1): Output (ct0[0] + ct1[0], ct0[1] + ct1[1]).
• Multiply(ct0, ct1): Compute

c0 =

[⌊
t

q
ct0[0]ct1[0]

⌉]
q

,

c1 =

[⌊
t

q
(ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]
q

,

c2 =

[⌊
t

q
ct0[1]ct1[1]

⌉]
q

.

Express c2 in base w as c2 =
∑`

i=0 c
(i)
2 wi. Set

c′0 = c0 +
∑̀
i=0

evk[i][0]c
(i)
2 ,

c′1 = c1 +
∑̀
i=0

evk[i][1]c
(i)
2 ,

and output (c′0, c
′
1).

5 How SEAL Differs from Textbook-BFV

In practice, some operations in SEAL are done slightly differently, or in slightly more gener-
ality, than in textbook-BFV. In this section we discuss these differences in detail.

5.1 Plaintexts and Ciphertexts

Plaintext elements in SEAL are polynomials in Rt, just as in textbook-BFV. Ciphertexts in
SEAL are tuples of polynomials in Rq of length at least 2. This is a difference to textbook-BFV,
where the ciphertexts are always in Rq ×Rq.

5.2 Decryption

A SEAL ciphertext ct = (c0, . . . , ck) is decrypted by computing[⌊
t

q
[ct(s)]q

⌉]
t

=

[⌊
t

q

[
c0 + · · ·+ cks

k
]
q

⌉]
t

.

This generalization of decryption (compare to Section 4.3) is handled automatically. The
decryption function determines the size of the input ciphertext, and generates the appropriate
powers of the secret key which are required to decrypt it. Note that because we consider well-
formed ciphertexts of arbitrary length valid, we automatically lose the compactness property
of homomorphic encryption. Roughly speaking, compactness states that the decryption circuit
should not depend on ciphertexts, or on the function being evaluated. For more details, see [2].



5.3 Multiplication

Consider the Multiply function as described in Section 4.3. The first step that outputs the
intermediate ciphertext (c0, c1, c2) defines a function Evaluator::multiply, and causes the
ciphertext to grow in size. The second step defines a function that we call relinearization, im-
plemented as Evaluator::relinearize, which takes a ciphertext of size 3 and an evaluation
key, and produces a ciphertext of size 2, encrypting the same underlying plaintext. Note that
the ciphertext (c0, c1, c2) can already be decrypted to give the product of the underlying plain-
texts (see Section 5.2), so that in fact the relinearization step is not necessary for correctness
of homomorphic multiplication.

It is possible to repeatedly use a generalized version of the first step of Multiply to produce
even larger ciphertexts if the user has a reason to further avoid relinearization. In particular,
let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two SEAL ciphertexts of sizes j+ 1 and
k+1, respectively. Let the ciphertext output by Multiply(ct1, ct2), which is of size j+k+1,
be denoted ctmult = (C0, C1, . . . , Cj+k). The polynomials Cm ∈ Rq are computed as

Cm =

[⌊
t

q

( ∑
r+s=m

crds

)⌉]
q

.

In SEAL the function Multiply means this generalization of the first step of multiplication.
It is implemented as Evaluator::multiply.

5.4 Relinearization

The goal of relinearization is to decrease the size of the ciphertext back to (at least) 2 after
it has been increased by multiplications as was described in Section 5.3. In other words,
given a size k + 1 ciphertext (c0, . . . , ck) that can be decrypted as was shown in Section 5.2,
relinearization is supposed to produce a ciphertext (c′0, . . . , c

′
k−1) of size k, or – when applied

repeatedly – of any size at least 2, that can be decrypted using a smaller degree decryption
function to yield the same result. This conversion will require a so-called evaluation key (or
keys) to be given to the evaluator, as we will explain below.

In BFV, suppose we have a size 3 ciphertext (c0, c1, c2) that we want to convert into
a size 2 ciphertext (c′0, c

′
1) that decrypts to the same result. Suppose we are also given a

pair evk =
(
[−(as+ e) + s2]q, a

)
, where a

$← Rq, and e ← χ. Now set c′0 = c0 + evk[0]c2,
c′1 = c1 + evk[1]c2, and define the output to be the pair (c′0, c

′
1). Interpreting this as a size 2

ciphertext and decrypting it yields

c′0 + c′1s = c0 + (−(as+ e) + s2)c2 + c1s+ ac2s = c0 + c1s+ c2s
2 − ec2 .

This is almost what is needed, i.e. c0 + c1s + c2s
2 (see Section 5.2), except for the additive

extra term ec2. Unfortunately, since c2 has coefficients up to size q, this extra term will make
the decryption process fail.

Instead we use the classical solution of writing c2 in terms of some smaller base w (see

e.g. [11, 9, 7, 21]) as c2 =
∑`

i=0 c
(i)
2 wi. Instead of having just one evaluation key (pair) as

above, suppose we have ` + 1 such pairs constructed as in Section 4.3. Then one can show
that instead setting c′0 and c′1 as in Section 4.3 successfully replaces the large additive term
that appeared in the naive approach above with a term of size linear in w.

This same idea can be generalized to relinearizing a ciphertext of any size k+1 to size k ≥ 2,
as long as a generalized set of evaluation keys is generated in the EvaluationKeyGen(sk, w)



function. Namely, suppose we have a set of evaluation keys evk2 (corresponding to s2), evk3
(corresponding to s3) and so on up to evkk (corresponding to sk), each generated as in
Section 4.3. Then relinearization converts (c0, c1, . . . , ck) into (c′0, c

′
1, . . . , c

′
k−1), where

c′0 = c0 +
∑̀
i=0

evkk[i][0]c
(i)
k ,

c′1 = c1 +
∑̀
i=0

evkk[i][1]c
(i)
k ,

and c′j = cj for 2 ≤ j ≤ k − 1.

Note that in order to generate evaluation keys, one needs to access the secret key, and
so in particular the evaluating party would not be able to do this. The owner of the secret
key must generate an appropriate number of evaluation keys and pass these to the evaluating
party in advance of the relinearization computation. This means that the evaluating party
should inform the key generating party beforehand whether or not they intend to relinearize,
and if so, by how many steps. Note that if they choose to relinearize after every multiplication
only one evaluation key, evk2, is needed.

In SEAL we define the function Relinearize to mean this generalization of the second
step of multiplication as was described in Section 4.3. It is implemented as Evaluator::

relinearize. Suppose a ciphertext ct has size K > 2, and evk = {evk2, evk3, . . . , evkK−1}
is a set of evaluation keys generated with KeyGenerator::generate_evaluation_keys in
SEAL, then relinearize(ct,evk) returns a ciphertext of size 2 encrypting the same message
as ct.

5.5 Addition

We also need to generalize addition to be able to operate on ciphertexts of any size. Suppose
we have two SEAL 2.3.1 ciphertexts ct1 = (c0, . . . , cj) and ct2 = (d0, . . . dk), encrypting
plaintext polynomials m1 and m2, respectively. Suppose WLOG j ≤ k. Then

ctadd = ([c0 + d0]q, . . . , [cj + dj ]q, dj+1, . . . , dk)

encrypts [m1 +m2]t. Subtraction works exactly analogously.

In SEAL 2.3.1 we define the functions Add to mean this generalization of addition. It is
implemented as Evaluator::add. We also provide a function Sub for subtraction, which works
in an analogous way, and is implemented as Evaluator::sub.

5.6 Galois Automorphisms

SEAL 2.3.1 allows the user to apply Galois automorphisms of the cyclotomic extension
Q ↪→ Q[x]/(xn + 1), where xn + 1 is the polynomial modulus, to the plaintext polynomi-
als in encrypted form. We will not discuss the details of what this means here, and instead
refer the user to any introductory text on algebraic number theory. Simply put, the extension
is generated by any primitive m = 2n-th root of unity. If ζ is such a primitive root, then the
other primitive roots are ζ3, ζ5, . . . , ζm−1. The Galois automorphisms correspond to changing
the primitive root as ζ 7→ ζ2k−1, and in the cyclotomic extension ring corresponds to sending a
polynomial f(x) 7→ f(x2k−1). Restricting to Z[x]/(xn+1) and reducing coefficients modulo the



plaintext modulus t yields a corresponding operation apply_galois(ct, gal_elt, gal_keys)
in the plaintext space. Here gal_elt is the Galois element that determines the Galois auto-
morphism; this is the odd exponent 2k − 1 above. gal_keys denotes Galois keys—a special
type of key required by the Galois automorphism operation. Galois keys for a specific Ga-
lois element can be generated with the KeyGenerator::generate_galois_keys function, and
apply_galois is implemented as Evaluator::apply_galois. There is a special overload of
KeyGenerator::generate_galois_keys that generates Galois keys for logarithmically many
(in n) Galois automorphisms that can be used for apply_galois with and gal_elt.

The Galois automorphisms form a group (under composition), which is isomorphic to
Zn/2 × Z2. The first factor is generated by gal_elt = 3, and the second factor is generated
by gal_elt = m− 1. This is important, because in the batching view (see Section 7.4) where
ζ ∈ Z∗t , the plaintext can be viewed as a 2 × (n/2) matrix whose rows and columns can be
cyclically rotated by applying the corresponding Galois automorphisms. These operations are
implemented as Evaluator::rotate_rows and Evaluator::rotate_columns.

5.7 Other Operations

SEAL provides a function Negate to perform homomorphic negation. This is implemented in
the library as Evaluator::negate.

SEAL provides functions AddPlain(ct,madd) and MultiplyPlain(ct,mmult) that, given
a ciphertext ct encrypting a plaintext polynomial m, and unencrypted plaintext polynomials
madd,mmult, output encryptions of m + madd and m ·mmult, respectively. When one of the
operands in either addition or multiplication does not need to be protected, these operations
can be used to hugely improve performance over first encrypting the plaintext and then
performing the normal homomorphic addition or multiplication. The ‘plain’ operations are
implemented in SEAL 2.3.1 as Evaluator::add_plain and Evaluator::multiply_plain.
Analogously to AddPlain we have implemented a plaintext subtraction function Evaluator

::sub_plain.

In many situations it is necessary to multiply together several ciphertexts homomorphi-
cally. The naive sequential way of doing this has very poor noise growth properties. Instead,
the user should use a low-depth arithmetic circuit. For homomorphic addition of several val-
ues the exact method for doing so is less important. SEAL defines functions MultiplyMany

and AddMany, which either multiply together or add together several ciphertexts in an opti-
mal way. These are implemented as Evaluator::multiply_many and Evaluator::add_many.
Evaluator::multiply_many relinearizes after every multiplication it performs, which means
that the user needs to provide it an appropriate set of evaluation keys as input.

SEAL has a faster algorithm for computing the Square of a ciphertext. The difference
is only in computational complexity, and the noise growth behavior is the same as in calling
Evaluator::multiply with a repeated input parameter. Square is implemented as Evaluator
::square.

Exponentiating a ciphertext to a non-zero power should be done using a similar low-depth
arithmetic circuit that MultiplyMany uses. We denote this function by Exponentiate, and
implement it as Evaluator:exponentiate. The implementations of both MultiplyMany and
Exponentiate relinearize the ciphertext down to size 2 after every multiplication. It is the
responsibility of the user to create enough evaluation keys beforehand to ensure that these
operations can be done.

With parameter sets that support the Number Theoretic Transform (NTT) (see Section 8.5
and Section 8.6), Evaluator::multiply_plain works by first applying the Number Theoretic



Transform (NTT) to both the input ciphertext, and the input plaintext, then performing a
dyadic product of the transformed polynomials, and finally transforming the resulting cipher-
text back. In cases where the same input plaintext or ciphertext needs to be used repeatedly
for several different plain multiplications, it does not make sense to repeat the transform ev-
ery single time. Instead, SEAL allows plaintexts and the ciphertexts to be NTT transformed
at any time using the functions Evaluator::transform_to_ntt. Ciphertexts also can be
transformed back from NTT using Evaluator::transform_from_ntt. Given a ciphertext and
plaintext, both in NTT transformed form, the user can call Evaluator::multiply_plain_ntt
to perform a very fast plain multiplication operation. The result will still be in NTT trans-
formed form, and can be transformed back with Evaluator::transform_from_ntt.

5.8 Composite Coefficient Modulus

The coefficient modulus in SEAL is composed of several distinct prime values. In particular,
all the homomorphic operations over the polynomial coefficients ring is implemented based
on residue number system (RNS) arithmetic. We adopt several optimization techniques in
low level arithmetic implementation which improve the performance significantly, as proposed
in [4]. Here we describe this idea briefly at a high level.

Since the core operations of the FV scheme are performed in the polynomial ring Rq for a
modulus q, there is no restriction in choosing q to be a product of several distinct prime moduli
q1, q2, . . . , qk. The Chinese Remainder Theorem (CRT) implies a ring isomorphism Rq ≡
Rq1 × . . .×Rqk , which means that ring operations can just as well be performed in the factors
Rqi separately. Unfortunately, homomorphic multiplication and decryption require more than
simply ring operations, most importantly division and rounding. The main contribution of [4]
is to show how these operations can nevertheless be performed.

In SEAL 2.3.1, the coefficient modulus is implemented as a vector of SmallModulus ele-
ments with arbitrary bit-length up to 60-bit. The product of these small moduli constructs
the encryption coefficient modulus. We describe the restrictions on these moduli further in
Section 8.

SEAL 2.3.1 implements a combination of the classical relinearization operation and the
FullRNS relinearization described in [4]. As a result, the decomposition bit count can be at
most 60. This also applies to Galois automorphisms (Galois keys).

5.9 Key Distribution

In Section 5.4 we already explained how key generation in SEAL 2.3.1 differs from textbook-
FV. There is another subtle difference, that is also worth pointing out. In textbook-FV the
secret key is a polynomial sampled uniformly from R2, i.e. it is a polynomial with coefficients
in {0, 1}. SEAL instead samples the key uniformly from R3, i.e. with coefficients in {−1, 0, 1}.

6 Noise

In this section we present a heuristic noise growth analysis for SEAL. Although in textbook-
BFV all ciphertexts have size 2, we allow ciphertexts of any size greater than or equal to 2,
and present general results accordingly. SEAL implements the method of [4] which has slightly
different noise growth properties than textbook-BFV, but these differences are small and in
practice have no effect. Thus, we only analyze textbook-BFV with the arbitrary size ciphertext
extension as mentioned above.



Definition 1 (Invariant noise). Let ct = (c0, c1, . . . , ck) be a ciphertext encrypting the
message m ∈ Rt. Its invariant noise v is the polynomial with the smallest infinity norm such
that

t

q
ct(s) =

t

q

(
c0 + c1s+ · · ·+ cks

k
)

= m+ v + at ∈ R⊗Q ,

for some polynomial a with integer coefficients.

Intuitively, invariant noise captures the notion that the noise v being rounded incorrectly
is what causes decryption failures in the BFV scheme. We see this in the following Lemma,
which bounds the coefficients of v.

Lemma 1. The function Decrypt, as presented in Section 5.2, correctly decrypts a ciphertext
ct encrypting a message m, as long as the invariant noise v satisfies ‖v‖ < 1/2.

Proof. Let ct = (c0, c1, . . . , ck). Using the formula for decryption, we have for some polyno-
mial A with integer coefficients:

m′ =

[⌊
t

q

[
c0 + c1s+ · · ·+ cks

k
]
q

⌉]
t

=

[⌊
t

q

(
c0 + c1s+ · · ·+ cks

k +Aq
)⌉]

t

=

[⌊
t

q

(
c0 + c1s+ · · ·+ cks

k
)

+At

⌉]
t

=

[⌊
t

q

(
c0 + c1s+ · · ·+ cks

k
)⌉]

t

.

Then by definition of invariant noise,

m′ = [bm+ v + ate]t = m+ bve .

Hence decryption is successful as long as v is removed by the rounding, i.e. if ‖v‖ < 1/2. ut

It is often in practice more convenient to talk about how much noise we have left until
decryption will fail. We call this the (invariant) noise budget.

Definition 2 (Noise budget). Let v be the invariant noise of a ciphertext ct encrypting
the message m ∈ Rt. Then the noise budget of ct is − log2(2‖v‖).

Lemma 2. The function Decrypt, as presented in Section 5.2, correctly decrypts a ciphertext
ct encrypting a message m, as long as the noise budget of ct is positive. ut

In SEAL the user can output the noise budget in a particular ciphertext using the function
Decryptor::invariant_noise_budget. Note that this will require having access to the secret
key. Users without access to the secret key can instead use the noise simulator (see Section 8.7)
to estimate the noise.



6.1 Heuristic Estimates for Noise Growth

Homomorphic operations increase the invariant noise in complicated ways. The reader can
find strict upper bounds for the noise growth in the Appendix, along with proofs, but these
bounds result in poor practical estimates. SEAL uses instead heuristic upper-bound estimates
that hold with very high probability. Similar estimates have previously been presented in [16],
but using yet another definition of noise.

The heuristic upper bounds can be obtained by modifying the proofs of the strict upper
bounds in Appendix. The key idea is to use the canonical norm ‖·‖can instead of the usual
infinity norm ‖ · ‖, which has the nice property that for any polynomials a, b,

‖a‖ ≤ ‖a‖can ≤ ‖a‖1 , ‖ab‖can ≤ ‖a‖can ‖b‖can .

Since the usual (infinity) norm is always bounded from above by the canonical norm, it
suffices for correctness to ensure that the canonical norm never reaches 1/2. For more details
on exactly how the canonical norm works, we refer the reader to [16, 23].

Lemma 3 (Initial noise heuristic). Let ct be a fresh encryption of a message m ∈ Rt. Let
Nm be an upper bound on the number of non-zero terms in the polynomial m. The noise v in
ct satisfies

‖v‖can ≤ rt(q)

q
‖m‖Nm +

t

q
min{B, 6σ}

(
4
√

3n+
√
n
)
,

with very high probability.

Lemma 4 (Addition heuristic). Let ct1 and ct2 be two ciphertexts encrypting m1,m2 ∈
Rt, and having noises v1, v2, respectively. Then the noise vadd in their sum ctadd satisfies
‖vadd‖can ≤ ‖v1‖can + ‖v2‖can.

Lemma 5 (Multiplication heuristic). Let ct1 be a ciphertext of size j1 +1 encrypting m1

with noise v1, and let ct2 be a ciphertext of size j2 + 1 encrypting m2 with noise v2. Let Nm1

and Nm2 be upper bounds on the number of non-zero terms in the polynomials m1 and m2,
respectively. Then the noise vmult in the product ctmult satisfies the following bound:

‖vmult‖can ≤

(
2‖m1‖Nm1 + t

√
3n

(√
12n

)j1+1 − 1
√

12n− 1

)
‖v2‖can

+

(
2‖m2‖Nm2 + t

√
3n

(√
12n

)j2+1 − 1
√

12n− 1

)
‖v1‖can

+ 3 ‖v1‖can ‖v2‖can +
t
√

3n

q
·
(√

12n
)j1+j2+1 − 1
√

12n− 1
,

with very high probability.

Lemma 6 (Relinearization heuristic). Let ct be a ciphertext of size M + 1 encrypting
m, and having noise v. Let ctrelin of size N + 1 be the ciphertext encrypting m, obtained by
the relinearization of ct, where 2 ≤ N + 1 < M + 1. Then, the noise vrelin in ctrelin can be
bounded as

‖vrelin‖can ≤ ‖v‖can +
t

q

√
3 min{B, 6σ}(M −N)n(`+ 1)w ,

with very high probability.



In SEAL 2.3.1 relinearization always relinearizes a ciphertext down to size N + 1 = 2, so
N = 1 always.

Remark 1. It is worth mentioning that while the heuristics for initial noise and relinearization
look in fact worse than the strict upper bounds (see Appendix), the estimate for multiplication
is much tighter in the heuristic, and will quickly yield much better upper bound estimates
than the strict formula.

Lemma 7 (Plain multiplication heuristic). Let ct = (x0, . . . , xj) be a ciphertext encrypt-
ing m1 with noise v, and let m2 be a plaintext polynomial. Let Nm2 be an upper bound on the
number of non-zero terms in the polynomial m2. Let ctpmult denote the ciphertext obtained by
plain multiplication of ct with m2. Then the noise vpmult in ctpmult can be bounded as

‖vpmult‖can ≤ Nm2‖m2‖ ‖v‖can .

Lemma 8 (Plain addition heuristic). Let ct = (x0, . . . , xj) be a ciphertext encrypting m1

with noise v, and let m2 be a plaintext polynomial. Let ctpadd denote the ciphertext obtained
by plain addition of ct with m2. Then the noise vpadd in ctpadd can be bounded as

‖vpadd‖can ≤ ‖v‖can +
rt(q)

q
Nm2‖m2‖ .

6.2 Summary of noise growth

SEAL uses slightly simplified versions of the heuristic estimates presented in Section 6.1, as
it is easy to see that certain terms are insignificant for any reasonable set of parameters. For
a ciphertext ct, with invariant noise v, we denote by ν(ct) an upper bound on ‖v‖can. For
operations that take only one input ciphertext ct, we denote ν = ν(ct). For operations that
take several inputs ct1, . . . , ctk, we denote νk = ν(ctk). For each operation we describe a
bound for the noise in the output in terms of ν, or ν1, . . . , νk, and the encryption parameters
(recall Table 1).

Some operations, such as AddPlain and MultiplyPlain, take a plaintext polynomial m ∈
Rt as input. In these cases the bound ν for the output depends also on the qualities of the
plaintext polynomial, in particular the infinity norm ‖m‖, and an upper bound Nm on the
number of non-zero coefficients in the polynomial m.

The noise growth estimates implemented in SEAL are summarized in Table 2.
We also take this opportunity to point out a few important facts about noise growth that

the user should keep in mind.

1. Every ciphertext, even if it is freshly encrypted, contains a non-zero amount of noise.
2. Addition and subtraction have a very small impact on noise.
3. Relinearization increases the noise only by an additive factor. Compare this with multipli-

cation, which increases the noise also by a multiplicative factor. This means, for example,
that after a few multiplications have been performed, depending on the decomposition bit
count (recall Table 1), the additive factor from relinearization can completely drown into
the noise in the input.

4. The decomposition bit count has a significant effect on both performance (recall Section 5.4)
and noise growth in relinearization. Tuning down the decomposition bit count has a posi-
tive impact on noise growth in relinearization, and a negative impact on the computational
cost of relinearization. However, when the entire computation is considered, it is not ob-
vious at all what an optimal decomposition bit count should be, and at which points in



Operation Input description Noise bound of output

Encrypt Plaintext m rt(q)
q
‖m‖Nm + 7nt

q
min{B, 6σ}

Negate Ciphertext ct ν

Add/Sub Ciphertexts ct1 and ct2 ν1 + ν2

AddPlain/SubPlain Ciphertext ct and plaintext m ν + rt(q)
q
Nm‖m‖

MultiplyPlain Ciphertext ct and plaintext m Nm‖m‖ν

Multiply Ciphertexts ct1 and ct2 of sizes t
√

3n
[
(12n)j1/2ν2 + (12n)j2/2ν1

j1 + 1 and j2 + 1 +(12n)(j1+j2)/2
]

Square Ciphertext ct of size j Same as Multiply(ct, ct)

Relinearize Ciphertext ct of size K and target ν + 2t
q

min{B, 6σ}(K − L)n(`+ 1)w

size L, such that 2 ≤ L < K

AddMany Ciphertexts ct1, . . . , ctk
∑

i νi

MultiplyMany Ciphertexts ct1, . . . , ctk Apply Multiply in a tree-like manner,
and Relinearize down to size 2 after

every multiplication

Exponentiate Ciphertext ct and exponent k Apply MultiplyMany to k copies of ct

Table 2: Noise estimates for homomorphic operations in SEAL.



the computation relinearization should be performed. Optimizing these choices is a diffi-
cult task and an interesting research problem. We have included several examples in the
code to illustrate the situation, and we recommend the user to experiment to get a good
understanding of how relinearization behaves.

7 Encoding

One of the most important aspects in making homomorphic encryption practical and useful
is in using an appropriate encoder for the task at hand. Recall from Section 4 that plaintext
elements in the FV scheme are polynomials in Rt, and homomorphic operations on ciphertexts
are reflected in the plaintext side as corresponding (multiplication and addition) operations
in the ring Rt. In typical applications of homomorphic encryption the user would instead
want to perform computations on integers (or real numbers), and encoders are responsible for
converting these integer (or real number) inputs to elements of Rt in an appropriate way.

It is easy to see that encoding is a highly non-trivial task. The rings Z and Rt are very
different (most obviously the set of integers is infinite, whereas Rt is finite), and they are
certainly not isomorphic. However, typically one does not need the power to encrypt any
integer, so we can just as well settle for some finite reasonably large subset of Z and try
to find appropriate injective maps from that particular subset into Rt. Since no non-trivial
subset of Z is closed under additions and multiplications, we have to settle for something that
does not respect an arbitrary number of homomorphic operations. It is then the responsibility
of the evaluating party to be aware of the type of encoding that is used, and perform only
operations such that the underlying plaintexts throughout the computation remain in the
image of the encoding map.

7.1 Scalar Encoder

Perhaps the simplest possible encoder is what we could call the scalar encoder. Given an
integer a, simply encode it as the constant polynomial a ∈ Rt. Obviously we can only encode
integers modulo t in this manner. Decoding amounts to reading the constant coefficient of the
polynomial and interpreting that as an integer. The problem is that as soon as the underlying
plaintext polynomial (constant) wraps around t at any point during the computation, we are
no longer doing integer arithmetic, but rather modulo t arithmetic, and decoding might yield
an unexpected result. This means that t must be chosen to be possibly very large, which
creates problems with the noise growth. Recall from Table 2 that the noise growth in most of
the operations, and particularly in multiplication, depends strongly on t, so increasing t even
a little bit could possibly significantly reduce the noise budget.

One possible way around this is to encrypt the integer twice, using two or more relatively
prime plaintext moduli {ti}. Then if the computation is done separately to each of the encryp-
tions, in the end after decryption the result can be combined using the Chinese Remainder
Theorem to yield an answer modulo

∏
ti. As long as this product is larger than the largest

underlying integer appearing during the computation, the result will be correct as an integer.
In most practical applications the scalar encoder is not a good choice, as it is extremely

wasteful in the sense that the entire huge plaintext polynomial is used to encode and encrypt
only one small integer. The scalar encoder is not implemented in SEAL 2.3.1 due to its
inefficiency, but it can be constructed as a special case of some of the other encoders by
choosing their parameters in a certain way. These other encoders attempt to make better use
of the plaintext polynomials by either packing more data into one polynomial, or spreading
the data around inside the polynomial to obtain encodings with smaller coefficients.



7.2 Integer Encoder

In SEAL the integer encoder is used to encode integers in a much more efficient manner
than what the scalar encoder (Section 7.1) could do. The integer encoder is really a family of
encoders, one for each integer base B ≥ 2. We start by explaining how the integer encoder
works with B = 2, and then comment on the general case, which is an obvious extension.

When B = 2, the idea of the integer encoder is to encode an integer −(2n−1) ≤ a ≤ 2n−1
as follows. First, form the (up to n-bit) binary expansion of |a|, say an−1 . . . a1a0. Then the
binary encoding of a is

IntegerEncode(a,B = 2) = sign(a) ·
(
an−1x

n−1 + . . .+ a1x+ a0
)
.

Remark 2. SEAL uses only unsigned integer data types, so each coefficient of the polynomial
is represented as its smallest positive representative modulo t. For example, the −1 coefficients
of the polynomial will be stored as the positive integers t− 1.

Decoding (IntegerDecode) amounts to evaluating the plaintext polynomial at x = 2. It is
clear that in good conditions (see below) the integer encoder respects integer operations:

IntegerDecode [IntegerEncode(a,B = 2) + IntegerEncode(b, B = 2)] = a+ b ,

IntegerDecode [IntegerEncode(a) · IntegerEncode(b, B = 2)] = ab .

When the integer encoder with B = 2 is used, the norms of the plaintext polynomials are
guaranteed to be bounded by 1 only when no homomorphic operations have been performed.
When two such encodings are added together, the coefficients sum up and can therefore get
bigger. In multiplication this is even more noticeable due to the appearance of cross terms.
In multiplications the polynomial length also grows, but often in practice this is not an issue
due to the large number of coefficients available in the plaintext polynomials. Things will go
wrong as soon as any modular reduction – either modulo the polynomial modulus xn + 1,
or modulo the plaintext modulus t – occurs in the underlying plaintexts at any point during
the computation. If this happens, decoding will yield an incorrect result, but there will be no
other indication that something has gone wrong. It is therefore crucial that the evaluating
party understands the limitations of the integer encoder, and makes sure that the plaintext
underlying the result ciphertext will still be possible to decode correctly.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from
the symmetric set [−(B − 1)/2, . . . , (B − 1)/2]. There is a unique such representation with
at most n coefficients for each integer in [−(Bn − 1)/2, (Bn − 1)/2]. Decoding is obviously
performed by evaluating a plaintext polynomial at x = B. Note that with B = 3 the integer
encoder provides encodings with equally small norm as with B = 2, but with a more compact
representation, as it does not waste space in repeating the sign for each non-zero coefficient.
Larger B provide even more compact representations, but at the cost of increased coefficients.
In most common applications taking B = 2 or 3 is a good choice, and there is little difference
between these two.

The integer encoder is significantly better than the scalar encoder, as the coefficients in the
beginning are much smaller than in plaintexts encoded with the scalar encoder, leaving more
room for homomorphic operations before problems with reduction modulo t are encountered.



From a slightly different point of view, the binary encoder allows a smaller t to be used,
resulting in smaller noise growth in homomorphic operations.

The integer encoder is available in SEAL through the class IntegerEncoder. Its construc-
tor will require both the plain_modulus and the base B as parameters. If no base is given,
the default value B = 2 is used.

7.3 Fractional Encoder

There are several ways for encoding rational numbers. The simplest and often most efficient
way is to simply scale all rational numbers to integers, encode them using the integer encoder
described above, and modify any computations to instead work with such scaled integers.
After decryption and decoding the result needs to be scaled down by an appropriate amount.
While efficient, in some cases this technique can be annoying, as it will require one to always
keep track of how each plaintext has been scaled. Here we describe what we call the fractional
encoder. Just like the integer encoder (Section 7.2 above), the fractional encoder is a family
of encoders, parametrized by an integer base B ≥ 2 [18]. The function of this base is exactly
the same as in the integer encoder, so since the generalization is obvious, we will only explain
how the fractional encoder works when B = 2.

The easiest way to explain how the fractional encoder (with B = 2) works is through a
simple example. Consider the rational number 5.8125. It has a finite binary expansion

5.875 = 22 + 20 + 2−1 + 2−2 + 2−4 .

First we take the integer part and encode it as usual with the integer encoder, obtaining the
polynomial IntegerEncode(5, B = 2) = x2 + 1. Then we take the fractional part 2−1 + 2−2 +
2−4, add n (as in Table 1) to each exponent, and convert it into a polynomial by changing the
base 2 into the variable x, resulting in xn−1 + xn−2 + xn−4. Next we flip the signs of each of
the terms, in this case obtaining −xn−1− xn−2− xn−4. For rational numbers r in the interval
[0, 1) with finite binary expansion we denote this encoding by FracEncode(r,B = 2). For any
rational number r with finite binary expansion we set

FracEncode(r,B = 2) = sign(r)·[IntegerEncode(b|r|c, B = 2) + FracEncode({|r|} , B = 2)] ,

where {·} denotes the fractional part. For example,

FracEncode(5.8125, B = 2) = −xn−1 − xn−2 − xn−4 + x2 + 1 .

Decoding works by essentially reversing the steps described above. First, separate the high-
degree part of the plaintext polynomial that describes the fractional part. Next invert the
signs of those terms and shift their exponents by −n. Finally evaluate the entire expression
at x = 2. We denote this operation FracDecode(·, B = 2).

It is not hard to see why this works. As a very simple example, imagine computing 1/2 · 2,
where FracEncode(1/2, B = 2) = −xn−1 and FracEncode(2, B = 2) = x. Then in the ring Rt
we have

FracEncode(1/2, B = 2) · FracEncode(2, B = 2) = −xn = 1 ,

which is exactly what we would expect, as FracDecode(1, B = 2) = 1. For a more complicated
example, consider computing 5.8125 · 2.25. We already computed FracEncode(5.8125, B = 2)
above, and FracEncode(2.25, B = 2) = −xn−2 + x. Then

FracEncode(5.8125, B = 2) · FracEncode(2.25, B = 2)



= (−xn−1 − xn−2 − xn−4 + x2 + 1) · (−xn−2 + x)

= x2n−3 + x2n−4 + x2n−6 − 2xn − xn−1 − xn−2 − xn−3 + x3 + x

= −xn−1 − xn−2 − 2xn−3 − xn−4 − xn−6 + x3 + x+ 2 .

Finally,

FracDecode(−xn−1 − xn−2 − 2xn−3 − xn−4 − xn−6 + x3 + x+ 2, B = 2)

=
[
x3 + x+ 2 + x−1 + x−2 + 2x−3 + x−4 + x−6

]
x=2

= 13.078125 .

There are several important aspects of the fractional encoder that require further clari-
fication. First of all, above we described only how FracEncode(·, B = 2) works for rational
numbers that have finite binary expansion, but many rational numbers do not, in which case
we need to truncate the expansion of the fractional part to some precision, say nf bits (equiv-
alently, high-degree coefficients of the plaintext polynomial). Next, the decoding process needs
to somehow know which coefficients of the plaintext polynomial should be interpreted as be-
longing to the fractional part and which to the integer part. For this purpose we fix a number
ni to denote the number of coefficients reserved for the integer part, and all of the remaining
n−ni coefficients will be interpreted as belonging to the fractional part. Note that nf+ni ≤ n,
and that nf only matters in the encoding process, whereas ni is needed both in encoding (can
only encode integer parts up to ni bits) and in decoding.

Decoding can fail for two reasons. First, if any of the coefficients of the underlying plaintext
polynomials wrap around the plaintext modulus t the result after decoding is likely to be
incorrect, just as in the normal integer encoder (recall Section 7.2). Second, homomorphic
multiplication will cause the fractional parts of the underlying plaintext polynomials to expand
down towards the integer part, and the integer part to expand up towards the fractional part.
If these different parts get mixed up, decoding will fail. Typically the user will want to choose
nf to be as small as possible, as many rational numbers will have dense infinite expansions,
filling up most of the leading nf coefficients. When such polynomials are multiplied, cross
terms cause the coefficients to quickly increase in size, resulting in them getting reduced
modulo t unless t is chosen to be very large.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from the
symmetric set [−(B − 1)/2, . . . , (B − 1)/2]. Again, in this case decoding amounts to evaluating
polynomials x = B.

The fractional encoder is available in SEAL through the class FractionalEncoder. Its
constructor will require the plain_modulus, the base B, and positive integers nf and ni with
nf + ni ≤ n as parameters. If no base is given, the default value B = 2 is used.

7.4 CRT Batching

The last encoder that we describe is very different from the previous ones, and extremely
powerful. It allows the user to pack n integers modulo t into one plaintext polynomial, and
to operate on those integers in a SIMD (Single Instruction, Multiple Data) manner. This
technique is often called batching in homomorphic encryption literature. For more details and
applications we refer the reader to [8, 33].

Batching only works when the plaintext modulus t is chosen to be a prime number and
congruent to 1 (mod 2n), which we assume to be the case2. In this case the multiplicative

2 Note that this means t > 2n, which can in some cases turn out to be an annoying limitation.



group of integers modulo t contains a subgroup of size 2n, which means that there is an integer
ζ ∈ Zt such that ζ2n = 1 (mod t), and ζm 6= 1 (mod t) for all 0 < m < 2n. Such an element
ζ is called a primitive 2n-th root of unity modulo t. Having a primitive 2n-th root of unity in
Zt is important because then the polynomial modulus xn + 1 factors modulo t as

xn + 1 = (x− ζ)(x− ζ3) . . . (x− ζ2n−1) (mod t) ,

and according to the Chinese Remainder Theorem (CRT) the ring Rt factors as

Rt =
Zt[x]

(xn + 1)
=

Zt[x]∏n−1
i=0 (x− ζ2i+1)

CRT∼=
n−1∏
i=0

Zt[x]

(x− ζ2i+1)
∼=

n−1∏
i=0

Zt[ζ2i+1] ∼=
n−1∏
i=0

Zt .

All of the isomorphisms above are isomorphisms of rings, which means that they respect
both the multiplicative and additive structures on both sides, and allows one to perform n
coefficient-wise additions (resp. multiplications) in integers modulo t (right-hand side) at the
cost of one single addition (resp. multiplication) in Rt (left-hand side). It is easy to describe
explicitly what the isomorphisms are. For simplicity, denote αi = ζ2i+1. In one direction the
isomorphism is given by

Decompose : Rt
∼=−→

n−1∏
i=0

Zt , m(x) 7−→ [m(α0),m(α1), . . . ,m(αn−1)] .

The inverse is slightly tricker to describe, so we omit it here for the sake of simplicity. We
define Compose to be the inverse of Decompose. These isomorphisms are computed using a
negacylic variant of the Number Theoretic Transform (NTT).

In SEAL the n-dimensional Zt-vector that Compose and Decompose convert to and from
a plaintext polynomial can be thought of as a 2 × (n/2) matrix, as we already briefly de-
scribed in Section 5.6. The benefit is that in this case the apply_galois operation has spe-
cializations rotate_rows and rotate_columns, which rotate the matrix rows and columns
(swap) cyclically a given number of steps in either direction. If Galois keys corresponding to
a particular rotation have been generated and are used, the computational cost of the rota-
tion is essentially the same as that of relinearization. If instead logarithmically many (in n)
Galois keys were generated (recall Section 5.6), then rotating k steps in either direction is
min{HammingWeight(k), HammingWeight(n/2 − k)} times more expensive. Note that in this
case rotating the rows power-of-2 number of steps in either direction is essentially as expensive
as a single relinearization.

When used correctly, batching can provide an enormous performance improvement over
the other encoders. When using batching for computations on encrypted integers rather than
on integers modulo t, one needs to ensure that the values in the slots never wrap around
t during the computation. Note that this is exactly the same limitation the scalar encoder
has (recall Section 7.1), and could be solved by choosing t to be large enough, which will
unfortunately cause large noise growth.

SEAL provides Compose and Decompose functionality in the PolyCRTBuilder class. The
constructor of PolyCRTBuilder takes an instance of SEALContext as argument, and will throw
an exception unless the parameters are appropriate, as was described in the beginning of
this section. The rotations are implemented as Evaluator::rotate_rows and Evaluator::

rotate_columns, and are similarly only available when the parameters support batching.



8 Encryption Parameters

Everything in SEAL starts with the construction of an instance of a container that holds the
encryption parameters (EncryptionParameters). These parameters are:

• poly_modulus: a polynomial xn + 1; n a power of 2;
• coeff_modulus: an integer modulus q which is constructed as a product of multiple distinct

primes;
• plain_modulus: an integer modulus t;
• noise_standard_deviation: a standard deviation σ;
• random_generator: a source of randomness.

In most cases the user only needs to set the poly_modulus, coeff_modulus, and plain_modulus

parameters. Both random_generator and noise_standard_deviation have good default
values and are in most cases not necessary to set explicitly (see Section 8.3).

The choice of encryption parameters significantly affects the performance, capabilities,
and security of the encryption scheme. Some choices of parameters may be insecure, give
poor performance, yield ciphertexts that will not work with any homomorphic operations, or
a combination of all of these. In this section we will describe the different parameters and
their impact. We will discuss security briefly in Section 9. In Section 8.7 we will discuss the
automatic parameter selection tools in SEAL, which can help the user in determining optimal
encryption parameters for certain use-cases.

8.1 Setting Parameters

Once an EncryptionParameters object has been created, the parameters need to be set.
This can be done using functions such as EncryptionParameters::set_coeff_modulus.
Once all of the critical parameters have been set, the user needs to create an instance of
the SEALContext class, which automatically evaluates the validity and properties of the pa-
rameters, and performs a series of pre-computations on them. The properties of the parameters
are stored in an instance of the EncryptionParameterQualifiers struct, which we describe
below in Section 8.6.

8.2 Hash Block

When any of the encryption parameters (except random_generator) is changed, SEAL com-
putes and updates an internally stored SHA-3 hash (hash block) of the parameters. The hash
is automatically stored by every ciphertext, and all key material created under the given pa-
rameters, and is used for fast input validity and compatibility checking. The user can modify
the hash block by hand and mutate the ciphertext/key data directly, but this should typically
never be done unless absolutely necessary for some advanced use-cases.

8.3 Default Values

If the user does not specify σ (noise_standard_deviation), it will be set by the constructor
of EncryptionParameters to the default value of 3.19 ≈ 8/

√
2π. If no randomness source

(random_generator) is given, SEAL will automatically use std::random_device.
The user will have to select n by setting the polynomial modulus (EncryptionParameters

::set_poly_modulus) to a polynomial of the form xn + 1, where n is a power of 2. For ease-
of-use, SEAL comes with hard-coded default values for q (coeff_modulus) corresponding to



various realistic choices of n. These default parameters are included for 128-bit, 192-bit, and
256-bit security levels according to the most recent (unpublished at the time of writing) homo-
morphic encryption security standard by the HomomorphicEncryption.org group. For an ear-
lier draft standard, see [13]. These default values are presented in Table 3, and can be accessed
through the functions coeff_modulus_128, coeff_modulus_192, and coeff_modulus_256.
The estimates assume σ to be the default value, and omit issues such as the memory cost of
the attacks. In Section 9 we will discuss the security properties of SEAL in a bit more detail.

n
Bit-length of default q

128-bit security 192-bit security 256-bit security

1024 27 19 14
2048 54 37 29
4096 109 75 58
8192 218 152 118
16384 438 300 237
32768 881 600 476

Table 3: Default pairs (n, q) for 128-bit, 192-bit, and 256-bit security levels.

8.4 Polynomial Modulus

The polynomial modulus (poly_modulus) must be a polynomial of the form xn+1, where n is
a power of 2. This is both for security (see Section 9) and performance reasons. Using a larger
n allows for a larger q to be used without decreasing the security level, which in turn increases
the noise ceiling and thus allows for larger t to be used, which is often important for integer
encodings to work (recall Section 7). Increasing n will significantly decrease performance, but
on the other hand it will allow for more elements of Zt to be batched into one plaintext when
using PolyCRTBuilder.

8.5 Coefficient Modulus and Plaintext Modulus

Suppose the polynomial modulus is held fixed. Then the choice of the coefficient modulus q
affects two things: the noise budget in a freshly encrypted ciphertext3 and the security level4.

In principle we can take q to be any integer, as long as it is not too large to cause security
problems. In SEAL, coefficient modulus q is a product of multiple small primes q1 × . . .× qk.
We adopt a generic algorithm for computing modular arithmetic modulo these small primes.
Therefore, taking these small primes to be of special form does not provide any performance
improvement. The user is free to choose a set of arbitrary primes regarding their requirements
as long as they are at most 60-bit long and qi = 1 (mod 2n) for i ∈ {1, 2, . . . , k}. We use
David Harvey’s algorithm for NTT as described in [26].

In some cases the user might want to use a particular n, but the default coefficient modulus
for that n is unnecessarily large. In these cases it might be beneficial from the point of
view of performance to simply use a smaller custom q. Note that this is always safe: with
all other parameters held fixed, decreasing q only increases the security level. This is very

3 Bigger q means larger initial noise budget (good).
4 Bigger q means lower security (bad).
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easy in SEAL, as the user can access more than enough hard-coded primes qi of various bit-
length and of appropriate form through the functions small_mods_60bit, small_mods_50bit,
small_mods_40bit, and small_mods_30bit.

The plaintext modulus t in SEAL is defined as a SmallModulus for performance reasons,
and can therefore be any positive integer at least 2 and at most 60 bits in length. Note that
when using batching (recall Section 7.4) t needs to be a prime such that t = 1 (mod 2n).

8.6 Encryption Parameter Qualifiers

After the encryption parameters are set, the instance of EncryptionParameters is given as in-
put to the constructor of SEALContext to be evaluated for validity. In case the parameters are
valid for homomorphic encryption, the instance of SEALContext is subsequently given to the
constructors of tools such as Encryptor and Decryptor. Various properties of the parameters
are stored in the SEALContext instance in a structure called EncryptionParameterQualifiers.

After the SEALContext is generated, the user can call SEALContext::qualifiers to return
a copy of the qualifiers. Note that the only way to change the qualifiers is to change the
encryption parameters themselves to support the particular features, and constructing a new
SEALContext. In SEAL, EncryptionParameterQualifiers contains 5 qualifiers, which are
described in Table 4.

Qualifier Description

parameters_set true if the encryption parameters are valid for SEAL, otherwise false.

enable_fft true if n in polynomial modulus xn + 1 is a power of 2, otherwise false.

enable_ntt true if all NTT can be used for polynomial multiplication (see [26, 28]) with respect
to all the factors qi of q, otherwise false. See Section 8.5 for details.

enable_batching true if batching (PolyCRTBuilder) can be used, otherwise false. See Section 7.4
for details.

enable_fast_plain_lift true if all the small moduli {q1, q2, . . . , qk} which construct the coefficient modulus
are smaller than plaintext modulus t, otherwise false. If this is true, then
Evaluator::multiply_plain becomes significantly faster.

Table 4: Encryption Parameter Qualifiers.

By far the most important of the qualifiers is parameters_set. In fact, if this is true, then
enable_fft and enable_ntt must also be true. The qualifiers are mostly used internally to
check whether the given parameters are compatible with specific operations and optimizations.

8.7 Automatic Parameter Selection

To assist the user in choosing parameters for a specific computation, SEAL provides an au-
tomatic parameter selection module. It consists of two parts: a Simulator component that
simulates noise growth in homomorphic operations using the estimates of Table 2, and a
Chooser component, which estimates the growth of the coefficients in the underlying plain-
text polynomials, and uses Simulator to simulate noise growth. Chooser also provides tools
for computing an optimized parameter set once it knows what kind of computation the user
wishes to perform.



Simulator Simulator consists of two components. A Simulation is a model of the invariant
noise ‖v‖ (recall Section 6) in a ciphertext. SimulationEvaluator is a tool that performs all of
the usual homomorphic operations on simulations rather than on ciphertexts, producing new
simulations with noise value set to a heuristic upper bound estimate according to Table 2.
Simulator is implemented in SEAL 2.3.1 by the Simulation and SimulationEvaluator

classes.

Chooser Chooser consists of three components. A ChooserPoly models a plaintext polyno-
mial, which can be thought of as being either encrypted or unencrypted. In particular, it keeps
track of two quantities: the largest coefficient in the plaintext (coefficient bound), and the num-
ber of non-zero coefficients in the plaintext (length bound). It also stores the operation history
of the plaintext, which can involve encryption, and any number of homomorphic operations
with an arbitrary number of other ChooserPoly objects as inputs. ChooserPoly also provides
a tool for estimating the noise that would result when the operations stored in its operation
history are performed, which it does using Simulator, and a tool for testing whether a given
set of encryption parameters can support the computations in its history. ChooserEvalua-
tor is a tool that performs all of the usual homomorphic operations on ChooserPoly objects
rather than on ciphertexts, producing new ChooserPoly objects with coefficient bound and
length bound estimates based on the operation in question, and on the inputs. Furthermore,
ChooserEvaluator contains a tool for finding an optimized parameter set, which we will dis-
cuss below. ChooserEncoder creates a ChooserPoly that models an unencrypted plaintext
(empty operation history), encoded using the integer encoder (recall Section 7.2). ChooserEn-
cryptor converts ChooserPoly objects with empty operation history (modeling unencrypted
plaintexts) into ones with operation history consisting only of encryption. These tools are
all implemented in SEAL by the ChooserPoly, ChooserEvaluator, ChooserEncoder, and
ChooserEncryptor classes.

Parameter Selection One of the most important tools in Chooser is the SelectParame-

ters functionality. It takes as input a vector of ChooserPoly objects, a set ParameterOp-

tions of pairs (n, q), a value for σ, and attempts to find an optimal pair (nopt, qopt) from
ParameterOptions, together with an optimal value topt, such that that the parameters are
just large enough to support the computations specified by all of the given ChooserPoly ob-
jects. It returns true if appropriate parameters were found, and populates a given instance
of EncryptionParameters with (xnopt + 1, qopt, topt). SelectParameters is implemented in
SEAL 2.3.1 by the function ChooserEvaluator::select_parameters.

Recall from Section 8.3 that SEAL has an easy-to-access (and easy-to-modify) default set of
pairs (n, q), and a default value for σ. The basic version of the function ChooserEvaluator::

select_parameters uses these, but another overload lets custom values to be used instead.
When calling ChooserEvaluator::select_parameters, both overloads require the user to
give a noise gap g (in bits). The parameters are selected so that after the computations—with
very high probability—there is at least g bits of noise budget left. To only ensure correctness,
one can set the noise gap to 0.

The way the ChooserEvaluator::select_parameters function works is as follows. First
it looks at the ChooserPoly input(s) it is given, and selects a t just large enough to be sure
that all the computations can be done without reduction modulo t taking place in the plaintext



polynomials5. Next, it loops through each (n, q) pair available in the order they were given,
and runs the ChooserPoly::test_parameters function every time until a set of parameters
is found that gives enough room for the noise.

If eventually a good parameter set is found, ChooserEvaluator::select_parameters

populates an instance of EncryptionParameters given to it, and returns true. Otherwise it
returns false. An example demonstrating the automatic parameter selection tool is included
with the library.

9 Security of FV

9.1 RLWE

The security of the FV encryption scheme is based on the apparent hardness of the famous
Ring Learning with Errors (RLWE) problem [30]. We give a definition of the decision-RLWE
problem appropriate to the rings that we use.

Definition 3 (Decision-RLWE). Let n be a power of 2. Let R = Z[x]/(xn + 1), and
Rq = Zq[x]/(xn + 1) for some integer q. Let s be a random element in Rq, and let χ be
the distribution on Rq obtained by choosing each coefficient of the polynomial from a discrete
Gaussian distribution over Z. Denote by As,χ the distribution obtained by choosing a ← Rq
uniformly at random, choosing e ← χ, and outputting (a, [a · s+ e]q). Decision-RLWE is the
problem of distinguishing between the distribution As,χ and the uniform distribution on R2

q .

It is possible to prove that for certain parameters the decision-RLWE problem is as hard as
solving certain famous lattice problems in the worst case. However, in practice the parameters
that are used are not necessarily in the range where the reduction holds, and the reduction
might be very difficult to perform in any case.

Remark 3. While it is possible to prove security results for certain choices of the polynomial
modulus other than xn + 1 for n a power of 2 (see [30, 19]), these proofs require the error
terms e to be sampled from the distribution χ in a way very different from how SEAL does
it. This, and performance reasons, is why we only allow polynomial moduli of the form xn+ 1
for n a power of 2.

In practice an attacker will not have unlimited access to the oracle generating samples in
the decision-RLWE problem, but the number of samples available will be limited to d. We call
this the d-sample decision-RLWE problem. It is possible to prove that solving the d-sample
decision-RLWE problem is equally hard as solving the (d−1)-sample decision-RLWE problem
with the secret s instead sampled from the error distribution χ [31]. Furthermore, it is possible
to argue [25, 21] that the security level remains roughly the same even if s is sampled from
almost any narrow distribution with enough entropy, such as the uniform distribution on R2

or R3, as in SEAL 2.3.1 (recall Section 5.9).
It is easy to give an informal argument for the security of the FV scheme, assuming the

hardness of decision-RLWE. Namely, the FV public key is indistinguishable from uniform
based on the hardness of 2-sample decision-RLWE (or rather the hardness of the 1-sample
small secret variant described above). Subsequently, an FV encryption is indistinguishable
from uniform based on the 3-sample decision-RLWE (or rather the hardness of the 2-sample
small secret variant described above), and the assumed uniformity of the public key. We refer
the reader to [31] and [21] for further details and discussion.

5 This makes sense in the context of the integer encoders. Currently automatic parameter selection is only
designed to work with these integer encoders.



9.2 Choosing Parameters for Security

Each RLWE sample (as + e, a) ∈ R2
q can be used to extract n Learning with Errors (LWE)

samples [32, 27]. To the best of our knowledge, the most powerful attacks against d-sample
RLWE all work by instead attacking the nd-sample LWE problem, and when estimating the
security of a particular set of RLWE parameters it makes sense to instead focus on estimating
the security of the induced set of LWE parameters. We are only aware of relatively small
improvements to attacks of this type that utilize the ring structure in the RLWE samples.

At the time of writing this, determining the concrete hardness of parametrizations of
(R)LWE is an active area of research (see e.g. [17, 12, 1]) and the first draft of standardized
(R)LWE parameter sets was proposed in [13]. The security estimates for the default param-
eters in Table 3 reflect best understanding at the time of writing [13], and should not be
interpreted as definite security guarantees. We strongly recommend the user to consult ex-
perts in the security of (R)LWE when choosing parameters for SEAL, and in particular when
using customized parameters.

9.3 Circular Security

Recall from Section 4 that in textbook-FV we require an evaluation key, which is essentially
a masking of the secret key raised to the power 2 (or, more generally, to some higher power).
Unfortunately, it is not possible to argue the uniformity of the evaluation key based on the
decision-RLWE assumption. Instead, one can think of it as an encryption of (some power of)
the secret key under the secret key itself, and to argue security one needs to make the extra
assumption that the encryption scheme is secure even when the adversary has access to all of
the evaluation keys which may exist. In [21] this assumption is referred to as a form of weak
circular security.

In SEAL we do not perform relinearization by default, and therefore do not require the
generation of evaluation keys, so it is possible to avoid having to use this extra assumption.
However, in many cases using relinearization has massive performance benefits, and – as far
as we are aware – there exist no known practical attacks that would exploit the evaluation
keys.

9.4 Function Privacy

The privacy goal of SEAL is to allow the evaluation of arithmetic circuits on encrypted inputs,
without revealing the input wire values to the evaluator. In particular, no attempt is made to
keep any information hidden from the owner of the secret key. Even in a semi-honest security
model this causes challenges for designing protocols (see e.g. [14]), since the evaluator might
input some private information of its own to the circuit, which needs to be protected from the
owner of the secret key. For example, a semi-honest party can find information about a circuit
that was evaluated on encrypted data simply by looking at the resulting ciphertexts, or – even
better – at resulting ciphertext/plaintext pairs. For example, if no relinearization is used, the
highest power that was computed can be read from the size of the output ciphertext. A
much bigger issue is that noise growth in homomorphic operations depends on the underlying
plaintexts (recall Table 2): the owner of the secret key can compute the noise in the output
ciphertext, and deduce information about the circuit, including the inputs of the evaluator.

It is possible to solve these problems and obtain function privacy [2] in a number of ways.
One way already described by Gentry in [22] is to flood the noise by first relinearizing the
ciphertext size down to 2, and then adding an encryption of 0 with noise super-polynomially



larger than the old noise. An alternative approach, replacing flooding with a soak-spin-repeat
strategy, is given by Ducas and Stehlé in [20]. This technique uses Gentry’s bootstrapping
process to repeatedly re-encrypt the ciphertext. Unfortunately this is slow, and requires the
encryption parameters to be large enough to support bootstrapping (which is not currently
implemented in SEAL). Finally, there are scheme specific function privacy techniques that
can in some cases be much more efficient than the two generic method mentioned above. One
such method for the GSW cryptosystem [24] is described in [6].

Due to its superior performance, we recommend using the noise flooding technique when
necessary. In practice, a“smudging lemma”(see e.g. [3]) can be used together with the heuristic
noise growth estimates implemented in SEAL to precisely bound the amount of noise that
needs to be flooded to obtain a given statistical security level. For a concrete example, we
refer the reader to [14].
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Reuter, and Martin Strand. A guide to fully homomorphic encryption. Cryptology ePrint Archive,
Report 2015/1192, 2015. http://eprint.iacr.org/2015/1192.
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Appendix

Initial Noise

Lemma 9. Let ct = (c0, c1) be a fresh encryption of a message m ∈ Rt. The noise v in ct

satisfies

‖v‖ ≤ rt(q)

q
‖m‖+

tB

q
(2n+ 1) .
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Proof. Let ct = (c0, c1) be an encryption of m under the public key pk = (p0, p1) = ([−(as+
e)]q, a). Then, for some polynomials k0, k1, k,

t

q
(c0 + c1s) =

t

q
(∆m+ p0u+ e0 + k0q + p1us+ e1s+ k1qs)

= m+
t

q

(
−rt(q)m

t
+ p0u+ e0 + p1us+ e1s

)
+ t(k0 + k1s)

= m+
t

q

(
−rt(q)
t

m+ (−as− e+ kq)u+ e0 + aus+ e1s

)
+ t(k0 + k1s)

= m+
t

q

(
−rt(q)
t

m− eu+ e1 + e2s

)
+ t(k0 + k1s+ ku) ,

so the noise is

v =
t

q

(
−rt(q)
t

m− eu+ e1 + e2s

)
.

To bound ‖v‖, we use the fact that the error polynomials sampled from χ have coefficients
bounded by B, and that ‖s‖ = ‖u‖ = 1. Then

‖v‖ ≤ rt(q)

q
‖m‖+

tB

q
(2n+ 1) .

ut

Addition

Lemma 10. Let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two ciphertexts encrypting
m1,m2 ∈ Rt, and having noises v1, v2, respectively. Then the noise vadd in their sum ctadd is
vadd = v1 + v2, and satisfies ‖vadd‖ ≤ ‖v1‖+ ‖v2‖.

Proof. By definition of homomorphic addition, ctadd encrypts [m1 +m2]t. Let [m1 +m2]t =
m1 +m2 + at for some integer coefficient polynomial a. Suppose WLOG that max (j, k) = j,
so that

ctadd = (c0 + d0, . . . , ck + dk, ck+1, . . . cj) .

By definition of noise in ct1 and ct2, we have

t

q
ct1(s) = m1 + v1 + a1t ,

t

q
ct2(s) = m2 + v2 + a2t ,

for some polynomials a1, a2 with integer coefficients. Therefore

t

q
ctadd(s) =

t

q
ct1(s) +

t

q
ct2(s)

= m1 + v1 + a1t+m2 + v2 + a2t

= [m1 +m2]t + (m1 +m2 − [m1 +m2]t) + v1 + v2 + (a1 + a2)t

= [m1 +m2]t + v1 + v2 + (a1 + a2 − a)t ,

so the noise is vadd = v1 + v2, and ‖vadd‖ = ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖. ut



Multiplication

Lemma 11. Let ct1 = (x0, . . . , xj1) be a ciphertext of size j1+1 encrypting m1 with noise v1,
and let ct2 = (y0, . . . , yj2) be a ciphertext of size j2 + 1 encrypting m2 with noise v2. Let Nm1

and Nm2 be upper bounds on the number of non-zero terms in the polynomials m1 and m2,
respectively. Then the noise vmult in the product ctmult satisfies the following bound:

‖vmult‖ ≤
[
(Nm1 + n)‖m1‖+

nt

2
· n

j1+1 − 1

n− 1

]
‖v2‖

+

[
(Nm2 + n)‖m2‖+

nt

2
· n

j2+1 − 1

n− 1

]
‖v1‖

+ 3n‖v1‖‖v2‖+
t

2q

(
nj1+j2+1 − 1

n− 1

)
.

Proof. By definition of homomorphic multiplication the ciphertext ctmult = (c0, . . . cj1+j2) is
such that for 0 ≤ i ≤ j1 + j2, for some polynomials εi with coefficients in (−1

2 ,
1
2 ], and for

some polynomials Ai with integer coefficients,

ci =

[⌊
t

q

( ∑
k+l=i

xkyl

)⌉]
q

=

⌊
t

q

( ∑
k+l=i

xkyl

)⌉
+Aiq =

t

q

( ∑
k+l=i

xkyl

)
+ εi +Aiq .

Also, by definition ctmult encrypts [m1m2]t, and that [m1m2]t = m1m2 + at for some polyno-
mial a with integer coefficients.

By definition of noise in ct1 and ct2, we have for some polynomials a1, a2 with integer
coefficients,

t

q
ct1(s) = m1 + v1 + a1t ,

t

q
ct2(s) = m2 + v2 + a2t .

We then compute

t

q
ctmult(s) =

t

q
(c0, . . . , cj1+j2)(s)

=
t

q

[(
t

q
(x0y0) + ε0 +A0q

)
+ . . .+

(
t

q
(xj1yj2) + εj1+j2 +Aj1+j2q

)
sj1+j2

]
=
t

q
· t
q

[
j1+j2∑
i=0

( ∑
k+l=i

xkyl

)
si

]
+
t

q

j1+j2∑
i=0

εis
i +

(
j1+j2∑
i=0

Ais
i

)
t

=
t

q
ct1(s) ·

t

q
ct2(s) +

t

q

j1+j2∑
i=0

εis
i +

(
j1+j2∑
i=0

Ais
i

)
t

= (m1 + v1 + a1t)(m2 + v2 + a2t) +
t

q

j1+j2∑
i=0

εis
i +

(
j1+j2∑
i=0

Ais
i

)
t

= [m1m2]t +m1v2 +m2v1 + v1v2 + v1a2t+ v2a1t+
t

q

j1+j2∑
i=0

εis
i

+

(
m1a2 +m2a1 + a1a2t+

j1+j2∑
i=0

Ais
i − a

)
t ,



where in the last step we used m1m2 = [m1m2]t − at. Thus, we find that the noise in ctmult

is given by

vmult = m1v2 +m2v1 + v1v2 + (v1a2 + v2a1)t+
t

q

j1+j2∑
i=0

εis
i .

To be able to bound the new noise, we first note that

t

q

∥∥∥∥∥
j1+j2∑
i=0

εis
i

∥∥∥∥∥ ≤ t

2q

(
nj1+j2+1 − 1

n− 1

)
. (1)

Next, we write ait = t
qcti(s)−mi − vi, and note that

‖ait‖ ≤
t

2
· n

ji+1 − 1

n− 1
+ ‖mi‖+ ‖vi‖ . (2)

Finally, using (1) and (2) we can bound the noise growth in multiplication:

‖vmult‖ =

∥∥∥∥∥m1v2 +m2v1 + v1v2 + (v1a2 + v2a1)t+
t

q

j1+j2∑
i=0

εis
i

∥∥∥∥∥
≤ ‖m1v2‖+ ‖m2v1‖+ ‖v1v2‖+ ‖(v1a2 + v2a1)t‖+

t

q

∥∥∥∥∥
j1+j2∑
i=0

εis
i

∥∥∥∥∥
≤ Nm1‖m1‖‖v2‖+Nm2‖m2‖‖v1‖+ n‖v1‖‖v2‖

+ n‖v1‖
(
t

2
· n

j2+1 − 1

n− 1
+ ‖m2‖+ ‖v2‖

)
+ n‖v2‖

(
t

2
· n

j1+1 − 1

n− 1
+ ‖m1‖+ ‖v1‖

)
+

t

2q

(
nj1+j2+1 − 1

n− 1

)
=

[
(Nm1 + n)‖m1‖+

nt

2
· n

j1+1 − 1

n− 1

]
‖v2‖

+

[
(Nm2 + n)‖m2‖+

nt

2
· n

j2+1 − 1

n− 1

]
‖v1‖

+ 3n‖v1‖‖v2‖+
t

2q

(
nj1+j2+1 − 1

n− 1

)
.

ut

Relinearization

Lemma 12. Let ct be a ciphertext of size M + 1 encrypting m, and having noise v. Let
ctrelin of size N + 1 be the ciphertext encrypting m, obtained by the relinearization of ct,
where 2 ≤ N + 1 < M + 1. Then, the noise vrelin in ctrelin is given by

vrelin = v − t

q

M−N−1∑
j=0

∑̀
i=0

e(M−j),ic
(i)
M−j ,

and can be bounded as

‖vrelin‖ ≤ ‖v‖+
t

q
(M −N)nB(`+ 1)w .



Proof. Relinearization of a ciphertext from size M + 1 to size N + 1, where 2 ≤ N + 1 <
M + 1 consists of M − N ‘one-step’ relinearizations. In each step, the ‘current’ ciphertext
(c0, c1, . . . , ck) is transformed to an intermediate ciphertext ct′ = (c′0, c

′
1, . . . , c

′
k−1) using the

appropriate evaluation key

evkk = [([−(ak,is+ ek,i) + wisk]q, ak,i) : i = 0, . . . , `] .

In the following step, ct′ becomes the ‘current ciphertext’, and so on until the intermediate
ciphertext produced is of size N + 1, at which point it is output as ctrelin.

The input ciphertext is ct = (c0, c1, . . . , cM ), and after the first one-step relinearization,
the intermediate ciphertext is ct′ = (c′0, c

′
1, . . . , c

′
M−1), where

c′0 = c0 +
∑̀
i=0

evkM [i][0]c
(i)
M , c′1 = c1 +

∑̀
i=0

evkM [i][1]c
(i)
M ,

and c′j = cj for 2 ≤ j ≤ M − 1. So, for some polynomials ai with integer coefficients, where
0 ≤ i ≤ `+ 1,

t

q
ct′(s) =

t

q

(
c′0 + c′1s+ . . .+ c′M−1s

M−1)
=
t

q

[
c0 +

∑̀
i=0

evkM [i][0]c
(i)
M +

(
c1 +

∑̀
i=0

evkM [i][1]c
(i)
M

)
s+ . . .+ cM−1s

M−1

]

=
t

q

(∑̀
i=0

evkM [i][0]c
(i)
M + s

∑̀
i=0

evkM [i][1]c
(i)
M

)
+
t

q

(
c0 + c1s+ . . .+ cM−1s

M−1)
=
t

q

(
−
∑̀
i=0

eM,ic
(i)
M +

∑̀
i=0

aiqc
(i)
M + sM

∑̀
i=0

wic
(i)
M

)
+
t

q

(
c0 + c1s+ . . .+ cM−1s

M−1)
=
t

q

(
−
∑̀
i=0

eM,ic
(i)
M +

∑̀
i=0

aiqc
(i)
M

)
+
t

q
sMcM +

t

q

(
c0 + c1s+ . . .+ cM−1s

M−1)
= − t

q

∑̀
i=0

eM,ic
(i)
M +

t

q

(
c0 + c1s+ . . .+ cM−1s

M−1 + cMs
M
)

+ t
∑̀
i=0

aic
(i)
M

= m+ v − t

q

∑̀
i=0

eM,ic
(i)
M +

(
a`+1 +

∑̀
i=0

aic
(i)
M

)
t .

Hence, the noise grows by an additive factor − t
q

∑`
i=0 eM,ic

(i)
M in a one-step relinearization.

Iterating this process, we find the noise after relinearization:

vrelin = v − t

q

M−N−1∑
j=0

∑̀
i=0

eM−j,ic
(i)
M−j .



Bounding ‖vrelin‖ is easy:

‖vrelin‖ =

∥∥∥∥∥∥v − t

q

M−N−1∑
j=0

∑̀
i=0

eM−j,ic
(i)
M−j

∥∥∥∥∥∥
≤ ‖v‖+

t

q

M−N−1∑
j=0

∑̀
i=0

∥∥∥eM−j,ic(i)M−j∥∥∥
≤ ‖v‖+

t

q
(M −N)nB(`+ 1)w .

ut

Plain Multiplication

Lemma 13. Let ct = (x0, . . . , xj) be a ciphertext encrypting m1 with noise v, and let m2

be a plaintext polynomial. Let Nm2 be an upper bound on the number of non-zero terms in
the polynomial m2. Let ctpmult denote the ciphertext obtained by plain multiplication of ct

with m2. Then the noise in the plain product ctpmult is vpmult = m2v, and we have the bound

‖vpmult‖ ≤ Nm2‖m2‖‖v‖ .

Proof. By definition the ciphertext ctpmult = (m2x0, . . . ,m2xj). Hence for some polynomials
a, a′ with integer coefficients,

t

q
ctpmult(s) =

t

q

(
m2x0 +m2x1s+ · · ·+m2xjs

j
)

= m2
t

q

(
x0 + x1s+ · · ·+ xjs

j
)

= m2
t

q
ct(s)

= m2(m1 + v + at)

= m1m2 +m2v +m2at

= [m1m2]t +m2v + (m2a− a′)t ,

where in the last line we used [m1m2]t = m1m2 + a′t. Hence the noise is vpmult = m2v and
can be bounded as

‖vpmult‖ ≤ Nm2‖m2‖‖v‖ .

ut

Plain Addition

Lemma 14. Let ct = (x0, . . . , xj) be a ciphertext encrypting m1 with noise v, and let m2

be a plaintext polynomial. Let ctpadd denote the ciphertext obtained by plain addition of ct

with m2. Then the noise in ctpadd is vpadd = v − rt(q)
q m2, and we have the bound

‖vpadd‖ ≤ ‖v‖+
rt(q)

q
‖m2‖ .



Proof. By definition of plain addition we have ctpadd = (x0 + ∆m2, x1, . . . , xj). Hence for
some polynomials a, a′ with integer coefficients,

t

q
ctpadd(s) =

t

q

(
x0 +∆m2 + x1s+ · · ·+ xjs

j
)

=
∆t

q
m2 +

t

q

(
x0 + x1s+ · · ·+ xjs

j
)

=
∆t

q
m2 +

t

q
ct(s)

= m1 + v +
q − rt(q)

q
m2 + at

= m1 +m2 + v − rt(q)

q
m2 + at

= [m1 +m2]t + v − rt(q)

q
m2 + (a− a′)t ,

where in the last line we used [m1 +m2]t = m1 +m2 + a′t. Hence the noise is

vpadd = v − rt(q)

q
m2

and this can be bounded as

‖vpadd‖ ≤ ‖v‖+
rt(q)

q
‖m2‖ .

ut

Negation

Lemma 15. Let ct be a ciphertext encrypting m with noise v and ctneg be its negation. The
noise vneg in ctneg is given by vneg = −v and we have

‖vneg‖ = ‖v‖ .

Proof. If ct = (c0, c1, . . . , ck) then its negation ctneg = (−c0,−c1, . . . ,−ck) = −(c0, c1, . . . , ck).
So

t

q
ctneg(s) = − t

q
ct(s)

= −(m+ v + at)

= −m+ (−v) + (−a)t.

Hence the noise vneg in ctneg is −v and ‖vneg‖ = ‖v‖. ut

Subtraction

Suppose ct1 and ct2 are two ciphertexts encrypting m1 and m2 and we want to compute a
ciphertext ctsub encrypting m1 −m2. We could firstly negate ct2 to obtain a ciphertext ct′2
that encrypts −m2 and then perform an addition of ct1 and ct′2. By viewing the subtraction
operation in this way we can see that the noise growth in subtraction is at most that for
addition, since the noise does not change in norm in negation.

Lemma 16. Let ct1 and ct2 be two ciphertexts encrypting m1, m2 respectively with noises
v1,v2 respectively. The noise vsub in the result ctsub is bounded as ‖vsub‖ ≤ ‖v1‖+ ‖v2‖.



Plain subtraction

By the same argument as for subtraction, the noise growth in plain subtraction is at most
that for plain addition.

Lemma 17. Let ct be a ciphertext encrypting m1 with noise v, and let m2 be a plaintext
polynomial. Let ctpsub denote the ciphertext obtained by plain subtraction of m2 from ct.
Then the noise vpsub in ctpsub is bounded as

‖vpsub‖ ≤ ‖v‖+
rt(q)

q
‖m2‖ .
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