
Manual

HI-TECH PICC-18 STD Compiler

HI-TECH Software.

Copyright (C) 2010 HI-TECH Software.
All Rights Reserved. Printed in Australia.

PICC-18 is licensed exclusively to HI-TECH Software
by Microchip Technology Inc.

Produced on: December 7, 2010

HI-TECH Software Pty. Ltd.
ACN 002 724 549

45 Colebard Street West
Acacia Ridge QLD 4110

Australia

email: hitech@htsoft.com
web: http://www.htsoft.com
ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://www.htsoft.com
ftp://www.htsoft.com

Contents

Table of Contents iii

List of Tables xiii

1 Introduction 1
1.1 Typographic conventions . 1

2 PICC-18 Command-line Driver 3
2.1 Long Command Lines . 4
2.2 Default Libraries . 4
2.3 Standard Runtime Code . 4
2.4 PICC18 Compiler Options . 5

2.4.1 -Bmodel: Select Memory Model . 7
2.4.2 -C: Compile to Object File . 7
2.4.3 -Dmacro: Define Macro . 8
2.4.4 -Efile: Redirect Compiler Errors to a File 8
2.4.5 -Gfile: Generate Source-level Symbol File 9
2.4.6 -Ipath: Include Search Path . 10
2.4.7 -Llibrary: Scan Library . 10
2.4.8 -L-option: Adjust Linker Options Directly 11
2.4.9 -Mfile: Generate Map File . 11
2.4.10 -Nsize: Identifier Length . 11
2.4.11 -Ofile: Specify Output File . 11
2.4.12 -P: Preprocess Assembly Files . 12
2.4.13 -Q: Quiet Mode . 12
2.4.14 -S: Compile to Assembler Code . 12
2.4.15 -Umacro: Undefine a Macro . 12
2.4.16 -V: Verbose Compile . 12

iii

CONTENTS CONTENTS

2.4.17 -X: Strip Local Symbols . 13
2.4.18 --ASMLIST: Generate Assembler .LST Files 13
2.4.19 --CALLGRAPH=type: Control level of information displayed in call graph . . 13
2.4.20 --CHAR=type: Make Char Type Signed or Unsigned 13
2.4.21 --CHECKSUM=start-end@address<,specs>: Calculate, store and ver-

ify a checksum . 13
2.4.22 --CHIP=processor: Define Processor 14
2.4.23 --CHIPINFO: Display List of Supported Processors 14
2.4.24 --CODEOFFSET: Offset Program Code to Address 14
2.4.25 --CP=size: Set the Size of Pointers to Code Space 14
2.4.26 --CR=file: Generate Cross Reference Listing 15
2.4.27 --DEBUGGER=type: Select Debugger Type 15
2.4.28 --DOUBLE=type: Select kind of Double Types 15
2.4.29 --EMI=type: Select operating mode of the external memory interface (EMI) 16
2.4.30 --ERRATA=type: Specify to add or remove specific errata workarounds . . . 16
2.4.31 --ERRFORMAT=format: Define Format for Compiler Messages 18

2.4.31.1 Using the Format Options . 18
2.4.31.2 Modifying the Standard Format 19

2.4.32 --ERRORS=number: Maximum Number of Errors 19
2.4.33 --FILL=opcode: Fill Unused Program Memory 20
2.4.34 --GETOPTION=app,file: Get Command-line Options 20
2.4.35 --HELP<=option>: Display Help . 20
2.4.36 --IDE=type: Specify the IDE being used 20
2.4.37 --LANG=language: Specify the Language for Messages 21
2.4.38 --MEMMAP=file: Display Memory Map 21
2.4.39 --MSGFORMAT=format: Set Advisory Message Format 21
2.4.40 --NOEXEC: Don’t Execute Compiler . 21
2.4.41 --OPT<=type>: Invoke Compiler Optimizations 22
2.4.42 --OUTPUT=type: Specify Output File Type 22
2.4.43 --PRE: Produce Preprocessed Source Code 23
2.4.44 --PROTO: Generate Prototypes . 23
2.4.45 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges 24
2.4.46 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges . . 25
2.4.47 --RUNTIME=type: Specify Runtime Environment 25
2.4.48 --SCANDEP: Scan for Dependencies . 25
2.4.49 --SERIAL=hexcode@address: Store a Value at this Program Memory

Address . 27
2.4.50 --SETOPTION=app,file: Set The Command-line Options for Application 27
2.4.51 --STRICT: Strict ANSI Conformance . 27

iv

CONTENTS CONTENTS

2.4.52 --SUMMARY=type: Select Memory Summary Output Type 27
2.4.53 --VER: Display The Compiler’s Version Information 27
2.4.54 --WARN=level: Set Warning Level . 28
2.4.55 --WARNFORMAT=format: Set Warning Message Format 28

3 C Language Features 29
3.1 ANSI Standard Issues . 29

3.1.1 Divergence from the ANSI C Standard . 29
3.1.2 Implementation-defined behaviour . 29

3.2 Processor-related Features . 29
3.2.1 Processor Support . 30
3.2.2 Configuration Fuses . 30
3.2.3 ID Locations . 31
3.2.4 EEPROM and Flash Runtime Access . 31

3.2.4.1 EEPROM Access . 31
3.2.4.2 Flash Access . 32

3.2.5 Peripheral Memory Ranges . 32
3.2.6 Bit Instructions . 33
3.2.7 Multi-byte SFRs . 33

3.3 Files . 34
3.3.1 Source Files . 34
3.3.2 Symbol Files . 34
3.3.3 Output File Formats . 35
3.3.4 Library files . 35

3.3.4.1 Standard Libraries . 35
3.3.4.2 Printf Libraries . 36
3.3.4.3 Peripheral Libraries . 36
3.3.4.4 Program Memory Libraries . 37

3.3.5 Runtime startup Modules . 38
3.3.5.1 Initialization of Data psects . 39
3.3.5.2 Clearing the Bss Psects . 39
3.3.5.3 Linking in the C Libraries . 40
3.3.5.4 The powerup Routine . 41

3.4 Supported Data Types and Variables . 41
3.4.1 Radix Specifiers and Constants . 42
3.4.2 Bit Data Types and Variables . 43
3.4.3 Using Bit-Addressable Registers . 44
3.4.4 8-Bit Integer Data Types and Variables . 44
3.4.5 16-Bit Integer Data Types . 45

v

CONTENTS CONTENTS

3.4.6 32-Bit Integer Data Types and Variables . 45
3.4.7 Floating Point Types and Variables . 46
3.4.8 Structures and Unions . 47

3.4.8.1 Bit-fields in Structures . 47
3.4.8.2 Structure and Union Qualifiers 48

3.4.9 Standard Type Qualifiers . 49
3.4.9.1 Const and Volatile Type Qualifiers 49

3.4.10 Special Type Qualifiers . 49
3.4.10.1 Persistent Type Qualifier . 50
3.4.10.2 Near Type Qualifier . 50
3.4.10.3 Far Type Qualifier . 51

3.4.11 Bdata Type Qualifier . 51
3.4.12 Pointer Types . 51

3.4.12.1 RAM Pointers . 52
3.4.12.2 Const and Far Pointers . 52
3.4.12.3 Function Pointers . 53
3.4.12.4 Combining Type Qualifiers and Pointers 53

3.5 Storage Class and Object Placement . 54
3.5.1 Local Variables . 54

3.5.1.1 Auto Variables . 55
3.5.1.2 Static Variables . 55

3.5.2 Absolute Variables . 56
3.5.3 Objects in Program Space . 56

3.6 Functions . 57
3.6.1 Function Argument Passing . 57
3.6.2 Function Return Values . 58

3.6.2.1 8-Bit Return Values . 58
3.6.2.2 16-Bit and 32-bit Return Values 58
3.6.2.3 Structure Return Values . 58

3.6.3 Memory Models and Usage . 59
3.7 Register Usage . 60
3.8 Operators . 60

3.8.1 Integral Promotion . 60
3.8.2 Shifts applied to integral types . 62
3.8.3 Division and modulus with integral types 62

3.9 Psects . 62
3.9.1 Compiler-generated Psects . 63

3.10 Interrupt Handling in C . 65
3.10.1 Interrupt Functions . 65

vi

CONTENTS CONTENTS

3.10.2 Context Saving on Interrupts . 66
3.10.3 Context Retrieval . 67
3.10.4 Interrupt Levels . 67
3.10.5 Interrupt Registers . 68

3.11 Mixing C and Assembler Code . 69
3.11.1 External Assembly Language Functions . 69
3.11.2 Accessing C objects from within Assembly Code 71

3.11.2.1 Accessing special function register names from assembler 72
3.11.3 #asm, #endasm and asm() . 72

3.12 Preprocessing . 73
3.12.1 Preprocessor Directives . 73
3.12.2 Predefined Macros . 75
3.12.3 Pragma Directives . 76

3.12.3.1 The #pragma jis and nojis Directives 77
3.12.3.2 The #pragma printf_check Directive 77
3.12.3.3 The #pragma psect Directive . 78
3.12.3.4 The #pragma regsused Directive 79
3.12.3.5 The #pragma switch Directive . 80

3.13 Linking Programs . 81
3.13.1 Replacing Library Modules . 81
3.13.2 Signature Checking . 82
3.13.3 Linker-Defined Symbols . 83

3.14 Standard I/O Functions and Serial I/O . 83
3.15 Debugging Information . 84

3.15.1 MPLAB-specific information . 84

4 Macro Assembler 85
4.1 Assembler Usage . 85
4.2 Assembler Options . 86
4.3 HI-TECH C Assembly Language . 88

4.3.1 Statement Formats . 89
4.3.2 Characters . 89

4.3.2.1 Delimiters . 89
4.3.2.2 Special Characters . 89

4.3.3 Comments . 90
4.3.3.1 Special Comment Strings . 90

4.3.4 Constants . 90
4.3.4.1 Numeric Constants . 90
4.3.4.2 Character Constants and Strings 91

vii

CONTENTS CONTENTS

4.3.5 Identifiers . 91
4.3.5.1 Significance of Identifiers . 91
4.3.5.2 Assembler-Generated Identifiers 91
4.3.5.3 Location Counter . 92
4.3.5.4 Register Symbols . 92
4.3.5.5 Symbolic Labels . 92

4.3.6 Expressions . 93
4.3.7 Program Sections . 93
4.3.8 Assembler Directives . 95

4.3.8.1 GLOBAL . 95
4.3.8.2 END . 97
4.3.8.3 PSECT . 97
4.3.8.4 ORG . 99
4.3.8.5 EQU . 99
4.3.8.6 SET . 100
4.3.8.7 DB . 100
4.3.8.8 DW . 100
4.3.8.9 DS . 100
4.3.8.10 FNADDR . 100
4.3.8.11 FNARG . 101
4.3.8.12 FNBREAK . 101
4.3.8.13 FNCALL . 101
4.3.8.14 FNCONF . 102
4.3.8.15 FNINDIR . 102
4.3.8.16 FNSIZE . 102
4.3.8.17 FNROOT . 103
4.3.8.18 IF, ELSIF, ELSE and ENDIF . 103
4.3.8.19 MACRO and ENDM . 103
4.3.8.20 LOCAL . 105
4.3.8.21 ALIGN . 105
4.3.8.22 REPT . 105
4.3.8.23 IRP and IRPC . 106
4.3.8.24 PROCESSOR . 107
4.3.8.25 SIGNAT . 107

4.3.9 Assembler Controls . 107
4.3.9.1 COND . 108
4.3.9.2 EXPAND . 108
4.3.9.3 INCLUDE . 108
4.3.9.4 LIST . 108

viii

CONTENTS CONTENTS

4.3.9.5 NOCOND . 109
4.3.9.6 NOEXPAND . 109
4.3.9.7 NOLIST . 109
4.3.9.8 NOXREF . 109
4.3.9.9 PAGE . 109
4.3.9.10 SPACE . 110
4.3.9.11 SUBTITLE . 110
4.3.9.12 TITLE . 110
4.3.9.13 XREF . 110

5 Linker and Utilities 111
5.1 Introduction . 111
5.2 Relocation and Psects . 111
5.3 Program Sections . 112
5.4 Local Psects . 112
5.5 Global Symbols . 112
5.6 Link and load addresses . 113
5.7 Operation . 113

5.7.1 Numbers in linker options . 114
5.7.2 -Aclass=low-high,... 115
5.7.3 -Cx . 115
5.7.4 -Cpsect=class . 116
5.7.5 -Dclass=delta . 116
5.7.6 -Dsymfile . 116
5.7.7 -Eerrfile . 116
5.7.8 -F . 116
5.7.9 -Gspec . 116
5.7.10 -Hsymfile . 117
5.7.11 -H+symfile . 117
5.7.12 -Jerrcount . 117
5.7.13 -K . 118
5.7.14 -I . 118
5.7.15 -L . 118
5.7.16 -LM . 118
5.7.17 -Mmapfile . 118
5.7.18 -N, -Ns and-Nc . 118
5.7.19 -Ooutfile . 118
5.7.20 -Pspec . 119
5.7.21 -Qprocessor . 120

ix

CONTENTS CONTENTS

5.7.22 -S . 120
5.7.23 -Sclass=limit[, bound] . 120
5.7.24 -Usymbol . 121
5.7.25 -Vavmap . 121
5.7.26 -Wnum . 121
5.7.27 -X . 121
5.7.28 -Z . 121

5.8 Invoking the Linker . 122
5.9 Compiled Stack Operation . 122

5.9.1 Parameters involving Function Calls . 123
5.10 Map Files . 125

5.10.1 Generation . 125
5.10.2 Contents . 125

5.10.2.1 General Information . 126
5.10.2.2 Call Graph Information . 127
5.10.2.3 Psect Information listed by Module 133
5.10.2.4 Psect Information listed by Class 135
5.10.2.5 Segment Listing . 135
5.10.2.6 Unused Address Ranges . 135
5.10.2.7 Symbol Table . 136

5.11 Librarian . 137
5.11.1 The Library Format . 137
5.11.2 Using the Librarian . 137
5.11.3 Examples . 138
5.11.4 Supplying Arguments . 139
5.11.5 Listing Format . 139
5.11.6 Ordering of Libraries . 140
5.11.7 Error Messages . 140

5.12 Objtohex . 140
5.12.1 Checksum Specifications . 140

5.13 Cref . 142
5.13.1 -Fprefix . 142
5.13.2 -Hheading . 142
5.13.3 -Llen . 143
5.13.4 -Ooutfile . 143
5.13.5 -Pwidth . 143
5.13.6 -Sstoplist . 143
5.13.7 -Xprefix . 143

5.14 Cromwell . 144

x

CONTENTS CONTENTS

5.14.1 -Pname[,architecture] . 144
5.14.2 -N . 145
5.14.3 -D . 145
5.14.4 -C . 145
5.14.5 -F . 146
5.14.6 -Okey . 146
5.14.7 -Ikey . 146
5.14.8 -L . 146
5.14.9 -E . 146
5.14.10 -B . 147
5.14.11 -M . 147
5.14.12 -V . 147

5.15 Hexmate . 147
5.15.1 Hexmate Command Line Options . 148

5.15.1.1 specifications,filename.hex . 148
5.15.1.2 + Prefix . 150
5.15.1.3 -ADDRESSING . 150
5.15.1.4 -BREAK . 150
5.15.1.5 -CK . 151
5.15.1.6 -FILL . 151
5.15.1.7 -FIND . 152
5.15.1.8 -FIND...,DELETE . 153
5.15.1.9 -FIND...,REPLACE . 153
5.15.1.10 -FORMAT . 154
5.15.1.11 -HELP . 155
5.15.1.12 -LOGFILE . 155
5.15.1.13 -Ofile . 155
5.15.1.14 -SERIAL . 155
5.15.1.15 -SIZE . 156
5.15.1.16 -STRING . 156
5.15.1.17 -STRPACK . 157

A Library Functions 159

B Error and Warning Messages 299

C Chip Information 407

Index 415

xi

CONTENTS CONTENTS

xii

List of Tables

2.1 PICC18 file types . 3
2.3 Additional --checksum specifications . 14
2.4 Supported Double Types . 16
2.6 Error format specifiers . 19
2.7 Supported IDEs . 21
2.8 Supported languages . 21
2.9 Optimization Options . 22
2.10 Output file formats . 22
2.11 Runtime environment suboptions . 26
2.12 Memory Summary Suboptions . 28

3.1 Peripheral memory tags . 33
3.2 Printf functionality . 36
3.3 Peripheral Library Configuration Bitmask . 37
3.4 Program Memory Errata Bitmask . 38
3.5 Basic data types . 41
3.6 Radix formats . 42
3.7 Floating-point formats . 46
3.8 Floating-point format example IEEE 754 . 46
3.9 Integral division . 62
3.10 Preprocessor directives . 74
3.12 Pragma directives . 77
3.13 Valid Register Names . 80
3.14 switch types . 80
3.15 Supported standard I/O functions . 83

4.1 ASPIC18 command-line options . 86

xiii

LIST OF TABLES LIST OF TABLES

4.2 ASPIC18 statement formats . 89
4.3 ASPIC18 numbers and bases . 90
4.4 ASPIC18 operators . 94
4.5 ASPIC18 assembler directives . 96
4.6 PSECT flags . 97
4.7 DSPIC assembler controls . 108
4.8 LIST control options . 109

5.1 Linker command-line options . 113
5.1 Linker command-line options . 114
5.2 Librarian command-line options . 138
5.3 Librarian key letter commands . 138
5.4 OBJTOHEX command-line options . 141
5.5 CREF command-line options . 143
5.6 CROMWELL format types . 144
5.7 CROMWELL command-line options . 145
5.8 -P option architecture arguments for COFF file output. 146
5.9 Hexmate command-line options . 149
5.10 Hexmate Checksum Algorithm Selection . 152
5.11 INHX types used in -FORMAT option . 155

A.1 Maximum delay versus system frequency . 163

C.1 Devices supported by HI-TECH PICC-18 STD . 407
C.1 Devices supported by HI-TECH PICC-18 STD . 408
C.1 Devices supported by HI-TECH PICC-18 STD . 409
C.1 Devices supported by HI-TECH PICC-18 STD . 410
C.1 Devices supported by HI-TECH PICC-18 STD . 411
C.1 Devices supported by HI-TECH PICC-18 STD . 412
C.1 Devices supported by HI-TECH PICC-18 STD . 413

xiv

Chapter 1

Introduction

1.1 Typographic conventions
Different fonts and styles are used throughout this manual to indicate special words or text. Com-
puter prompts, responses and filenames will be printed in constant-spaced type. When the
filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.
<stdio.h>. These header files can be found in the INCLUDE directory of your distribution.

Samples of code, C keywords or types, assembler instructions and labels will also be printed in
a constant-space type. Assembler code is printed in a font similar to that used by C code.

Particularly useful points and new terms will be emphasized using italicized type. When part of
a term requires substitution, that part should be printed in the appropriate font, but in italics. For
example: #include <filename.h>.

1

Typographic conventions Introduction

2

Chapter 2

PICC-18 Command-line Driver

PICC18 is the driver invoked from the command line to compile and/or link C programs. PICC18
has the following basic command format:

PICC18 [options] files [libraries]

It is conventional to supply the options (identified by a leading dash “-” or double dash “–”) before
the filenames.

The options are discussed below. The files may be a mixture of source files (C or assembler)
and object files. The order of the files is not important, except that it will affect the order in which
code or data appears in memory. Libraries are a list of library names, or -L options, see Section
2.4.7. Source files, object files and library files are distinguished by PICC18 solely by the file type or
extension. Recognized file types are listed in Table 2.1. This means, for example, that an assembler
file must always have a .as extension (alphabetic case is not important).

PICC18 will check each file argument and perform appropriate actions. C files will be compiled;
assembler files will be assembled. At the end, unless suppressed by one of the options discussed later,

Table 2.1: PICC18 file types
File Type Meaning
.c C source file
.as Assembler source file
.obj Relocatable object code file
.lib Relocatable object library file
.hex Intel HEX file

3

Long Command Lines PICC-18 Command-line Driver

all object files resulting from compilation or assembly, or those listed explicitly on the command line,
will be linked together with the standard runtime code and libraries and any user-specified libraries.
Functions in libraries will be linked into the resulting output file only if referenced in the source
code.

Invoking PICC18 with only object files specified as the file arguments (i.e. no source files) will
mean only the link stage is performed. It is typical in Makefiles to use PICC18 with a -C option
to compile several source files to object files, then to create the final program by invoking PICC18
again with only the generated object files and appropriate libraries (and appropriate options). If a
.lib output file type is selected, the object files will be stored in a library instead of going through to
the final link.

When a HEX file is given on the command line, PICC18 will invoke the Hexmate utility and
will merge the named hex file with the hex file currently being generated. This feature can be useful
when, for example, a single hex file is desired which contains a bootloader and application program.

2.1 Long Command Lines

The PICC18 driver is capable of processing command lines exceeding any operating system limita-
tion. To do this, the driver may be passed options via a command file. The command file is read by
using the @ symbol. For example:

PICC18 @xyz.cmd

2.2 Default Libraries

PICC18 will search the appropriate standard C library by default for symbol definitions. This will
always be done last, after any user-specified libraries. The particular library used will be dependent
on the processor selected.

2.3 Standard Runtime Code

PICC18 will automatically generate standard runtime start-up code appropriate for the processor and
options selected unless you have specified to disable this via the --RUNTIME option. If you require
any special powerup initialization, you should use the powerup routine feature (see Section 3.3.5.4).

4

PICC-18 Command-line Driver PICC18 Compiler Options

2.4 PICC18 Compiler Options
Most aspects of the compilation can be controlled using the command-line driver, PICC18. The
driver will configure and execute all required applications, such as the code generator, assembler
and linker.

PICC18 recognizes the compiler options listed in the table below. The case of the options is not
important, however command shells in UNIX based operating systems are case sensitive when it
comes to names of files.

PICC18 Command-line Options
Option Meaning
-C Compile to object files only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-Ofile Output file name
-P Preprocess assembler files
-Q Specify quiet mode
-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
--ASMLIST Generate assembler .LST file for each compilation
--CALLGRAPH=type Control the level of information displayed in the call

graph
--CHAR=type Make the default char signed or unsigned
--CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
--CODEOFFSET=address Offset program code to address
--CP=size Set size of pointers to code space
--CR=file Generate cross-reference listing
--DEBUGGER=type Select the debugger that will be used
continued. . .

5

PICC18 Compiler Options PICC-18 Command-line Driver

PICC18 Command-line Options
Option Meaning
--DOUBLE=type Selects size/kind of double types
--EMI=type Select the type of external memory interface used
--ERRATA=type Add or remove specific software workarounds for sil-

icon errata issues.
--ERRFORMAT<=format> Format error message strings to the given style
--ERRORS=number Sets the maximun number of errors displayed
--FILL=opcode Specify a hexadecimal opcode to program in all un-

used program memory locations.
--GETOPTION=app,file Get the command line options for the named applica-

tion
--HELP<=option> Display the compiler’s command line options
--IDE=ide Configure the compiler for use by the named IDE
--LANG=language Specify language for compiler messages
--MAPFILE<=file> Generates a map file
--MEMMAP=file Display memory summary information for the map

file
--MSGFORMAT<=format> Format general message strings to the given style
--NODEL Do not remove temporary files generated by the com-

piler
--NOEXEC Go through the motions of compiling without actually

compiling
--OPT<=type> Enable general compiler optimizations
--OUTDIR Specify output files directory
--OUTPUT=type Generate output file type
--PRE Produce preprocessed source files
--PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<,lo-hi,...> Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
--SCANDEP Generate file dependency “.DEP files”
--SERIAL=code@address Store this hexadecimal code at an address in program

memory
--SETOPTION=app,file Set the command line options for the named applica-

tion
--SETUP=argument Setup the product
continued. . .

6

PICC-18 Command-line Driver PICC18 Compiler Options

PICC18 Command-line Options
Option Meaning
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level
--WARNFORMAT=format Format warning message strings to given style

All single letter options are identified by a leading dash character, “-”, e.g. -C. Some single letter
options specify an additional data field which follows the option name immediately and without any
whitespace, e.g. -Ddebug.

Multi-letter, or word, options have two leading dash characters, e.g. --ASMLIST. (Because of the
double dash, you can determine that the option --ASMLIST, for example, is not a -A option followed
by the argument SMLIST.) Some of these options define suboptions which typically appear as a
comma-separated list following an equal character, =, e.g. --OUTPUT=hex,cof. The exact format of
the options varies and are described in detail in the following sections.

Some commonly used suboptions include default, which represents the default specification
that would be used if this option was absent altogether; all, which indicates that all of the available
suboptions should be enabled as if they had each been listed; and none, which indicates that all
suboptions should be disabled. Some suboptions may be prefixed with a plus character, +, to indicate
that they are in addition to the other suboptions present, or a minus character “-”, to indicate that
they should be excluded. In the following sections, angle brackets, < >, are used to indicate optional
parts of the command.

2.4.1 -Bmodel: Select Memory Model
The -Bmodel option tells PICC18 that this build is configured for memory model, model. The
memory models available for selection are s (small) and l (large). See Section 3.6.3 for details on
the differences between each of these memory models. If unspecified the default memory model
selection is large, which is the same as specifying -Bl.

2.4.2 -C: Compile to Object File
The -C option is used to halt compilation after generating a relocatable object file. This option is
frequently used when compiling multiple source files using a “make” utility. If multiple source files
are specified to the compiler each will be compiled to a separate .obj file. The object files will be
placed in the directory in which PICC18 was invoked, to handle situations where source files are

7

PICC18 Compiler Options PICC-18 Command-line Driver

located in read-only directories. To compile three source files main.c, module1.c and asmcode.as
to object files you could use a command similar to:

PICC18 --CHIP=18F242 -C main.c module1.c asmcode.as

The compiler will produce three object files main.obj, module1.obj and asmcode.obj which
could then be linked to produce an Intel HEX file using the command:

PICC18 --CHIP=18F242 main.obj module1.obj asmcode.obj

2.4.3 -Dmacro: Define Macro
The -D option is used to define a preprocessor macro on the command line, exactly as if it had
been defined using a #define directive in the source code. This option may take one of two forms,
-Dmacro which is equivalent to:

#define macro 1

placed at the top of each module compiled using this option, or -Dmacro=text which is equivalent
to:

#define macro text

where text is the textual substitution required. Thus, the command:

PICC18 --CHIP=18F242 -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the directives:

#define debug 1
#define buffers 10

2.4.4 -Efile: Redirect Compiler Errors to a File
Some editors do not allow the standard command line redirection facilities to be used when invoking
the compiler. To work with these editors, PICC18 allows an error listing filename to be specified
as part of the -E option. Error files generated using this option will always be in -E format. For
example, to compile x.c and redirect all errors to x.err, use the command:

PICC18 --CHIP=18F242 -Ex.err x.c

8

PICC-18 Command-line Driver PICC18 Compiler Options

The -E option also allows errors to be appended to an existing file by specifying an addition charac-
ter, +, at the start of the error filename, for example:

PICC18 --CHIP=18F242 -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use
the -E option to create the file then use -E+ when compiling all the other source files. For example,
to compile a number of files with all errors combined into a file called project.err, you could use
the -E option as follows:

PICC18 --CHIP=18F242 -Eproject.err -O -C main.c
PICC18 --CHIP=18F242 -E+project.err -O -C part1.c
PICC18 --CHIP=18F242 -E+project.err -C asmcode.as

The file project.err will contain any errors from main.c, followed by the errors from part1.c
and then asmcode.as, for example:

main.c 11 22:) expected
main.c 63 0: ; expected
part1.c 5 0: type redeclared
part1.c 5 0: argument list conflicts with prototype
asmcode.as 14 0: Syntax error
asmcode.as 355 0: Undefined symbol _putint

2.4.5 -Gfile: Generate Source-level Symbol File
The -G option generates a source-level symbol file (i.e. a file which allows tools to determine which
line of source code is associated with machine code instructions, and determine which source-level
variable names correspond with areas of memory, etc.) for use with supported debuggers and sim-
ulators such as HI-TIDE R© and MPLAB R©. If no filename is given, the symbol file will have the
same base name as the first source or object file specified on the command line, and an extension of
.sym. For example the option -GTEST.SYM generates a symbol file called test.sym. Symbol files
generated using the -G option include source-level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with
the -G option. The option is also required at the link stage, if this is performed separately. For
example:

PICC18 --CHIP=18F242 -G -C test.c
PICC18 --CHIP=18F242 -C module1.c
PICC18 --CHIP=18F242 -Gtest.sym test.obj module1.obj

9

PICC18 Compiler Options PICC-18 Command-line Driver

will include source-level debugging information for test.c only because module1.c was not com-
piled with the -G option.

The --IDE option will typically enable the -G option.

2.4.6 -Ipath: Include Search Path
Use -I to specify an additional directory to use when searching for header files which have been
included using the #include directive. The -I option can be used more than once if multiple
directories are to be searched.

The default include directory containing all standard header files is always searched even if no
-I option is present. The default search path is searched after any user-specified directories have
been searched. For example:

PICC18 --CHIP=18F242 -C -Ic:\include -Id:\myapp\include test.c

will search the directories c:\include and d:\myapp\include for any header files included into
the source code, then search the default include directory (the include directory where the compiler
was installed).

It is strongly advised not to use -I to add the compiler’s default include path, not only because
it is unnecessary but in the event that the build tool changes, the path specified here will be searched
prior to searching the new compiler’s default path.

This option has no effect for files that are included into assembly source using the INCLUDE
directive.

2.4.7 -Llibrary: Scan Library
The -L option is used to specify additional libraries which are to be scanned by the linker. Libraries
specified using the -L option are scanned before the standard C library, allowing additional versions
of standard library functions to be accessed.

The argument to -L is a library keyword to which the prefix pic8; numbers and letters represent-
ing the build configuration and applicable errata workarounds; and the suffix .lib are added. Thus
the option -LL when compiling for a 18F452 will, for example, scan the library pic86l-l.lib and
the option -Lxx will scan a library called pic86c-xx.lib. All libraries must be located in the LIB
subdirectory of the compiler installation directory. As indicated, the argument to the -L option is not
a complete library filename.

If you wish the linker to scan libraries whose names do not follow the above naming convention
or whose locations are not in the LIB subdirectory, simply include the libraries’ names on the com-
mand line along with your source files. Alternatively, the linker may be invoked directly allowing
the user to manually specify all the libraries to be scanned.

10

PICC-18 Command-line Driver PICC18 Compiler Options

2.4.8 -L-option: Adjust Linker Options Directly
The -L option can also be used to specify an extra “-” option which will be passed directly to the
linker by PICC18. If -L is followed immediately by any text starting with a dash character “-”, the
text will be passed directly to the linker without being interpreted by PICC18. For example, if the
option -L-FOO is specified, the -FOO option will be passed on to the linker when it is invoked.

The -L option is especially useful when linking code which contains extra program sections
(or psects), as may be the case if the program contains C code which makes use of the #pragma
psect directive or assembler code which contains user-defined psects. See Section 3.12.3.3 for
more information. If this -L option did not exist, it would be necessary to invoke the linker manually
to link code which uses the extra psects.

One commonly used linker option is -N, which sorts the symbol table in the map file by address,
rather than by name. This would be passed to PICC18 as the option -L-N.

The -L option can also be used to replace default linker options. If the string starting from the
first character after the -L up to the = character matches a default option, then the default option is
replaced by the option specified. For example, -L-preset=100h will inform the linker to replace
the default option that places the reset psect to be one that places the psect at the address 100h. The
default option that you are replacing must contain an equal character.

2.4.9 -Mfile: Generate Map File
The -M option is used to request the generation of a map file. The map is generated by the linker and
includes information about where objects are located in memory. If no filename is specified, then
the name of the map file will have the same name as the first file listed on the command line, with
the extension .map.

2.4.10 -Nsize: Identifier Length
This option allows the C identifier length to be increased from the default value of 31. Valid sizes
for this option are from 32 to 255. The option has no effect for all other values.

2.4.11 -Ofile: Specify Output File
This option allows the name of the output file(s) to be specified. If no -O option is given, the output
file(s) will be named after the first source or object file on the command line. The files controlled are
any produced by the linker or applications run subsequent to that, e.g. CROMWELL. So for instance
the HEX file, map file and SYM file are all controlled by the -O option.

The -O option can also change the directory in which the output file is located by including the
required path before the filename, e.g. -Oc:\project\output\first.hex. This will then also
specify the output directory for any files produced by the linker or subsequently run applications.

11

PICC18 Compiler Options PICC-18 Command-line Driver

2.4.12 -P: Preprocess Assembly Files

The -P option causes the assembler files to be preprocessed before they are assembled thus allowing
the use of preprocessor directives, such as #include, with assembler code. By default, assembler
files are not preprocessed.

2.4.13 -Q: Quiet Mode

This option places the compiler in a quiet mode which suppresses the HI-TECH Software copyright
notice from being displayed.

2.4.14 -S: Compile to Assembler Code

The -S option stops compilation after generating an assembler source file. An assembler file will be
generated for each C source file passed on the command line. The command:

PICC18 --CHIP=18F242 -S test.c

will produce an assembler file called test.as which contains the code generated from test.c.
This option is particularly useful for checking function calling conventions and signature values
when attempting to write external assembly language routines. The file produced by this option
differs to that produced by the --ASMLIST option in that it does not contain op-codes or addresses
and it may be used as a source file and subsequently passed to the assembler to be assembled.

2.4.15 -Umacro: Undefine a Macro

The -U option, the inverse of the -D option, is used to undefine predefined macros. This option takes
the form -Umacro. The option, -Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.

2.4.16 -V: Verbose Compile

The -V is the verbose option. The compiler will display the full command lines used to invoke each
of the compiler applications or compiler passes. This option may be useful for determining the exact
linker options if you need to directly invoke the HLINK command.

12

PICC-18 Command-line Driver PICC18 Compiler Options

2.4.17 -X: Strip Local Symbols

The option -X strips local symbols from any files compiled, assembled or linked. Only global sym-
bols will remain in any object files or symbol files produced.

2.4.18 --ASMLIST: Generate Assembler .LST Files

The --ASMLIST option tells PICC18 to generate an assembler listing file for each module being
compiled. The list file shows both the original C code, and the generated assembler code and the
corresponding binary op-codes. The listing file will have the same name as the source file, and a file
type (extension) of .lst. Provided the link stage has successfully concluded, the listing file will be
updated by the linker so that it contains absolute addresses and symbol values. Thus you may use the
assembler listing file to determine the position of, and exact op codes corresponding to, instructions.

2.4.19 --CALLGRAPH=type: Control level of information displayed in call
graph

This option allows control over the type of call graph produced in the map file. Allowable suboptions
include: none, to specify that no call graph should be produced; and full to indicate that the full
call graph be displayed in the map file. In addition, the suboption std can be specified to indicate
that a shorter form, without redundant information relating to ARG functions be produced; or crit,
to inidcate that only critical path information be displayed in the call graph.

2.4.20 --CHAR=type: Make Char Type Signed or Unsigned

Unless this option is used, the default behaviour of the compiler is to make all undesignated character
types, unsigned char, unless explicitly declared or cast to signed char. If --CHAR=signed is
used, the default char type will become signed char.

The range of a signed character type is -128 to +127 and the range of similar unsigned objects
is 0 to 255.

2.4.21 --CHECKSUM=start-end@address<,specs>: Calculate, store and
verify a checksum

When this option is used, a checksum is calculated over the given range and the result stored at the
address specified. Additional specifications are permitted to customize the type of checksum that is
used. Each specification is entered as a comma separated spec=value pair, details of which are in
table 2.3.

13

PICC18 Compiler Options PICC-18 Command-line Driver

Table 2.3: Additional --checksum specifications
Specification Purpose Possible values Default
algorithm Select a checksum algorithm See table 5.10 1
offset Add a value to result 0 - 0xFFFFFFFF 0
width Byte width of result 1 to 4. (Little-endian: -1 to -4) -2

By default, if the destination of the checksum is an address in program memory the generated
startup routine will include a built-in verification of this checksum. If this is not desired, this test
can be disabled with the option --runtime=-checksum. For reliable runtime verification of the
checksum, all unused locations within the checksum range should contain a known value. This
option will prefill all unused locations within the range of calculation with value FFh. This prefilling
will not be performed if the --FILL option is also used to allow a different code to be used for
prefilling.

2.4.22 --CHIP=processor: Define Processor
This option defines the processor which is being used. To see a list of supported processors that can
be used with this option, use the --CHIPINFO option.

2.4.23 --CHIPINFO: Display List of Supported Processors
The --CHIPINFO option simply displays a list of processors the compiler supports. The names listed
are those chips defined in the chipinfo file and which may be used with the --chip option or refer
to Appendix C of this manual.

2.4.24 --CODEOFFSET: Offset Program Code to Address
In some circumstances, such as bootloaders, it is necessary to shift the program image to an alternate
address. This option is used to specify a base address for the program code image. With this option,
all code psects (including interrupt vectors and constant data) that the linker would ordinarily control
the location of, will be adjusted.

2.4.25 --CP=size: Set the Size of Pointers to Code Space
Pointers to code/functions, pointers to const, pointers to far and pointers to void can be set to either
16 bits wide or 24 bits wide. If this option is not specified the default setting is 16 bits. It is
sufficient to use --CP=16 for chips that have less than 64K of program memory, or if only the first
64K of program memory will be dereferenced with a pointer. If a particular program uses pointers

14

PICC-18 Command-line Driver PICC18 Compiler Options

to program space beyond the 64K boundary that it is necessary to enable 24 bit code pointers. This
is also applicable to projects and PIC18 devices which utilize the external memory interface, as it is
more than likely that the additional memory will be mapped beyond the 64K boundary.
It will also be necessary to enable 24 bit pointers to reference an object in code space which is located
at an address that would also be valid in the general-purpose data space. For more information on
pointers refer to Section 3.4.12.
Note that it is critical that the compilation stages for all source files in a project and the link stage
apply consistent code pointer sizes.

2.4.26 --CR=file: Generate Cross Reference Listing

The --CR option will produce a cross reference listing. If the file argument is omitted, the “raw”
cross reference information will be left in a temporary file, leaving the user to run the CREF utility.
If a filename is supplied, for example --CR=test.crf, PICC18 will invoke CREF to process the
cross reference information into the listing file, in this case test.crf. If multiple source files are
to be included in the cross reference listing, all must be compiled and linked with the one PICC18
command. For example, to generate a cross reference listing which includes the source modules
main.c, module1.c and nvram.c, compile and link using the command:

PICC18 --CHIP=18F242 --CR=main.crf main.c module1.c nvram.c

2.4.27 --DEBUGGER=type: Select Debugger Type

This option specifies to the compiler that the code being built must be runnable on the nominated
debugger. PICC18 supports the Microchip ICD2 debugger and using this option will configure the
compiler to conform to the requirements of the debugger (reserving memory addresses, etc.). For
example:

PICC18 --CHIP=18F242 --DEBUGGER=icd2 main.c

2.4.28 --DOUBLE=type: Select kind of Double Types

This option allows the kind of double types to be selected. By default the compiler will choose the
truncated IEEE754 24-bit implementation for double types. With this option, this can be changed to
32-bits. A fast implementation, at the cost of code size, is also available.

15

PICC18 Compiler Options PICC-18 Command-line Driver

Table 2.4: Supported Double Types
Suboption Type
24 Truncated IEEE754 24-bit doubles
32 IEEE754 32-bit doubles
fast32 Faster implementation of 32-bit doubles

2.4.29 --EMI=type: Select operating mode of the external memory inter-
face (EMI)

Those PIC18 devices which can interface with an external memory are capable of operating in sev-
eral modes. The mode selected is determined by the type of memory available and the connection
method used. The interface can operate in 16-bit modes; word write and byte select mode or in
an 8-bit mode: byte write mode. Valid types that can be specified to this option are: wordwrite,
byteselect or bytewrite. Which mode is selected will affect the code generated when writing
to the external data. In word write mode, dummy reads and writes may be added to ensure that an
even number of bytes are always written. In byte select or byte write modes dummy reads and writes
are not generated and can result in more efficient code. Note that this option does not in any way
pre-configure the device for operation in the selected mode.

2.4.30 --ERRATA=type: Specify to add or remove specific errata workarounds
This option allows specification of the types of software workarounds to apply in order to overcome
documented silicon errata issues. The chip configuration file nominates a default set of errata issues
that apply to each device. To compile for an ideal chip, that is, apply no additional workarounds use
--ERRATA=none.

Errata name Errata description Workaround details
4000 Execution of some flow control opera-

tions may yeild unexpected results when
certain instructions vector code execu-
tion across the 4000h address boundary.

A continuous block of program code
is not allowed to grow over the 4000h
address boundary. Additional NOP in-
structions are inserted at prescribed lo-
cations.

LFSR Using the LFSR instruction to load a
value into a specified FSR register may
also corrupt a RAM location.

The compiler will load FSR registers
without using the LFSR instruction.

DAW The DAW instruction may improperly
clear the CARRY bit (STATUS<0>) when
executed.

The compiler is not affected by this is-
sue.

16

PICC-18 Command-line Driver PICC18 Compiler Options

MINUS40 Table read operations above the user
program space (>1FFFFFh) may yield
erroneous results at the extreme low end
of the device’s rated temperature range
(-40oC).

Affected library sources config.c,
idloc.c and devread.c employ additional
NOP instructions at prescribed locations.

EEPROMRD When reading EEPROM, the contents
of the EEDATA register may become cor-
rupted in the second instruction cycle
after setting the RD bit (EECON1<0>).

The EEPROM_READ macro and
eeprom_read library function read
EEDATA immeadiately.

EEPROMADR The result returned from an EEPROM
read operation can be corrupted if the
RD bit is set immediately following the
loading of the EEADR register.

The compiler is not affected by this is-
sue.

EEPROMLVD Writes to EEPROM memory may not
succeed if the internal voltage reference
is not set.

No workaround applied

FLASHLVD Writes to program memory may not
succeed if the internal voltage reference
is not set.

No workaround applied

RESET A GOTO instruction placed at the reset
vector may not execute.

Additional NOP instruction inserted at
reset vector if following instruction is
GOTO.

FASTINTS If a high-priority interrupt occurs during
a two-cycle instruction which modifies
WREG, BSR or STATUS, the fast-interrupt
return mechanism (via shadow regis-
ters) will restore the value held by the
register before the instruction.

Additional code reloads the shadow reg-
isters with the correct values of WREG,
STATUS and BSR.

BSR15 Peripheral flags may be erroneously af-
fected if the BSR register holds the value
15, and an instruction is executed that
holds the value C9h in its 8 least signif-
icant bits.

A warning will be issued if the instruc-
tion MOVLB 15 instruction is detected in
the execuble code.

TBLWTINT If a peripheral interrupt occurs during a
TBLWT operation, data can be corrupted.

Library routine flash_write() will tem-
porarily disable all applicable interrupt-
enable bits before execution of a TBLWT
instruction.

17

PICC18 Compiler Options PICC-18 Command-line Driver

FW4000 Self write operations initiated from and
acting upon a range within the same side
of the 4000h boundary may fail based
on sequences of instructions executed
following the write.

No workaround applied

2.4.31 --ERRFORMAT=format: Define Format for Compiler Messages

If the --ERRFORMAT option is not used, the default behaviour of the compiler is to display any errors
in a “human readable” format line with a caret “^” and error message pointing out the offending
characters in the source line, for example:

x.c: main()
4: _PA = xFF;

^ (192) undefined identifier: xFF

This standard format is perfectly acceptable to a person reading the error output, but is not generally
usable with environments which support compiler error handling. The following sections indicate
how this option may be used in such situations.

This section is also applicable to the --WARNFORMAT and --MSGFORMAT options which adjust the
format of warning and advisory messages, respectively.

2.4.31.1 Using the Format Options

Using the these options instructs the compiler to generate error, warning and advisory messages in a
format which is acceptable to some text editors and development environments.

If the same source code as used in the example above were compiled using the --ERRFORMAT
option, the error output would be:

x.c 4: (192) undefined identifier: xFF

indicating that the error number 192 occurred in file x.c at line 4, offset 9 characters into the state-
ment. The second numeric value - the column number - is relative to the left-most non-space charac-
ter on the source line. If an extra space or tab character were inserted at the start of the source line,
the compiler would still report an error at line 4, column 9.

18

PICC-18 Command-line Driver PICC18 Compiler Options

Table 2.6: Error format specifiers
Specifier Expands To
%f Filename
%l Line number
%c Column number
%s Error string
%a Application name
%n Message number

2.4.31.2 Modifying the Standard Format

If the message format does not meet your editor’s requirement, you can redefine its format by either
using the --ERRFORMAT, --WARNFORMAT or --MSGFORMAT option or by setting the environment vari-
ables: HTC_ERR_FORMAT, HTC_WARN_FORMAT or HTC_MSG_FORMAT. These options are in the form of
a printf-style string in which you can use the specifiers shown in Table 2.6. For example:

--ERRFORMAT=”file %f; line %l; column %c; %s”

The column number is relative to the left-most non-space character on the source line.
The environment variables can be set in a similar way, for example setting the environment

variables from within DOS can be done with the following DOS commands:

set HTC_WARN_FORMAT=WARNING: file %f; line %l; column %c; %s
set HTC_ERR_FORMAT=ERROR: %a: file %f; line %l; column %c; %n %s

Using the previous source code, the output from the compiler when using the above environment
variables would be:

ERROR: parser: file x.c; line 4; column 6; (192) undefined identifier: xFF

Remember that if these environment variables are set in a batch file, you must prepend the specifiers
with an additional percent character to stop the specifiers being interpreted immediately by DOS,
e.g. the filename specifier would become %%f.

2.4.32 --ERRORS=number: Maximum Number of Errors
This option sets the maximum number of errors each component of the compiler will display before
stopping. By default, up to 20 error messages will be displayed.

19

PICC18 Compiler Options PICC-18 Command-line Driver

2.4.33 --FILL=opcode: Fill Unused Program Memory

This option allows specification of a hexadecimal opcode that can be used to fill all unused program
memory locations with a known code sequence. Multi-byte codes should be entered in little endian
byte order.

TUT•RIAL

One practical application of this is filling unused space with instructions to could correct
the program if it starts executing in memory that is out-of-bounds. In this event, it might
be desirable to jump to an error-logging routine or invoke reset. The PIC18 opcode for
the RESET instruction is 00FFh. To fill all unused program memory locations with this
instruction, use the option --FILL=FF00 (Note that byte order is little endian).

If the fill value is only to be applied to a restricted address range, the restriction can be specified by
using --FILL=opcode@start_address-end_address. This facility also makes it possible
to allow a fill value to be applied to address ranges outside of program memory (as addressed in
the hex file), for example EEPROM. If an address restriction is not specified, the fill value will be
applied to all of the device’s program memory.

2.4.34 --GETOPTION=app,file: Get Command-line Options

This option is used to retrieve the command line options which are used for named compiler appli-
cation. The options are then saved into the given file. This option is not required for most projects.

2.4.35 --HELP<=option>: Display Help

The --HELP option displays information on the PICC18 compiler options. To find out more about a
particular option, use the option’s name as a parameter. For example:

PICC18 --help=warn

This will display more detailed information about the --WARN option.

2.4.36 --IDE=type: Specify the IDE being used

This option is used to automatically configure the compiler for use by the named Integrated Devel-
opment Environment (IDE). The supported IDE’s are shown in Table 2.7.

20

PICC-18 Command-line Driver PICC18 Compiler Options

Table 2.7: Supported IDEs
Suboption IDE
hitide HI-TECH Software’s HI-TIDE
mplab Microchip’s MPLAB

Table 2.8: Supported languages
Suboption Language

en, english English
fr, french,francais French
de, german, deutsch German

2.4.37 --LANG=language: Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some advisory mes-
sages in languages other than English. English is the default language and some messages are only
ever printed in English regardless of the language specified with this option.

Table 2.8 shows those langauges currently supported.

2.4.38 --MEMMAP=file: Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,
but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through
the driver. This command would display the memory summary which is normally produced at the
end of compilation by the driver.

2.4.39 --MSGFORMAT=format: Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. See Section 2.4.31 for
full information.

2.4.40 --NOEXEC: Don’t Execute Compiler

The --NOEXEC option causes the compiler to go through all the compilation steps, but without ac-
tually performing any compilation or producing any output. This may be useful when used in con-
junction with the -V (verbose) option in order to see all of the command lines the compiler uses to
drive the compiler applications.

21

PICC18 Compiler Options PICC-18 Command-line Driver

Table 2.9: Optimization Options
Option name File format
1..9 Select code generation level 1 through 9
asm Select assembler optimizations
debug Favor accurate debugging over optimization
all Enable all compiler optimizations
none Do not use any compiler optimziations

Table 2.10: Output file formats
Option name File format
lib Library File
intel Intel HEX
tek Tektronic
aahex American Automation symbolic HEX file
mot Motorola S19 HEX file
ubrof UBROF format
bin Binary file
mcof Microchip PIC COFF
cof Common Object File Format
cod Bytecraft COD file format
elf ELF/DWARF file format

2.4.41 --OPT<=type>: Invoke Compiler Optimizations

The --OPT option allows control of all the compiler optimizers. By default, without this option, all
optimizations are enabled. The options --OPT or --OPT=all also enable all optimizations. Opti-
mizations may be disabled by using --OPT=none, or individual optimizers may be controlled, e.g.
--OPT=asm will only enable the assembler optimizer. Table 2.9 lists the available optimization types.

2.4.42 --OUTPUT=type: Specify Output File Type

This option allows the type of the output file to be specified. If no --OUTPUT option is specified, the
output file’s name will be derived from the first source or object file specified on the command line.
The available output file formats are shown in Table 2.10.

22

PICC-18 Command-line Driver PICC18 Compiler Options

2.4.43 --PRE: Produce Preprocessed Source Code
The --PRE option is used to generate preprocessed C source files with an extension .pre. This may
be useful to ensure that preprocessor macros have expanded to what you think they should. Use
of this option can also create C source files which do not require any separate header files. This is
useful when sending files for technical support.

2.4.44 --PROTO: Generate Prototypes
The --PROTO option is used to generate .pro files containing both ANSI and K&R style function
declarations for all functions within the specified source files. Each .pro file produced will have
the same base name as the corresponding source file. Prototype files contain both ANSI C-style
prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from each .pro file should be edited into a global header file which is
included in all the source files comprising a project. The .pro files may also contain static decla-
rations for functions which are local to a source file. These static declarations should be edited into
the start of the source file. To demonstrate the operation of the --PROTO option, enter the following
source code as file test.c:

#include <stdio.h>
add(arg1, arg2)
int * arg1;
int * arg2;
{

return *arg1 + *arg2;
}

void printlist(int * list, int count)
{

while (count--)
printf("%d ", *list++);

putchar(’\n’);
}

If compiled with the command:

PICC18 --CHIP=18F242 --PROTO test.c

PICC18 will produce test.pro containing the following declarations which may then be edited as
necessary:

23

PICC18 Compiler Options PICC-18 Command-line Driver

/* Prototypes from test.c */
/* extern functions - include these in a header file */
#if PROTOTYPES
extern int add(int *, int *);
extern void printlist(int *, int);
#else /* PROTOTYPES */
extern int add();
extern void printlist();
#endif /* PROTOTYPES */

2.4.45 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges

This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which
should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory
which contain physical RAM. The output that will be placed in the ranges specified by this option
are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory
space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made
available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

--RAM=default,+100-1ff

for example. To only use an external range and ignore any on-chip memory, use:

--RAM=0-ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed with a minus character, -, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h
for allocation of RAM objects.
Sections of peripheral memory can sometimes be referred to with a tag, for example --RAM=default,+USBRAM.
For more information see Section 3.2.5.

24

PICC-18 Command-line Driver PICC18 Compiler Options

2.4.46 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges

This option is used to specify memory, in addition to any ROM specified in the chip configuration
file, which should be treated as available ROM space. Strictly speaking, this option specifies the
areas of memory that may be used by read-only (ROM-based) objects, and not necessarily those
areas of memory which contain physical ROM. The output that will be placed in the ranges specified
by this option are typically executable code and any data variables that are qualified as const.

When producing code that may be downloaded into a system via a bootloader the destination
memory may indeed be some sort of (volatile) RAM. To only use on-chip ROM memory, this option
is not required. For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+100-2ff

for example. To only use an external range and ignore any on-chip memory, use:

--ROM=100-2ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chip configuration file. To do this supply a range prefixed with a minus character, -, for example:

--ROM=default,-100-1ff

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 1ffh for
allocation of ROM objects.
Sections of peripheral memory can sometimes be referred to with a tag, for example --ROM=default,-BOOTROM.
For more information see Section 3.2.5.

2.4.47 --RUNTIME=type: Specify Runtime Environment

The --RUNTIME option is used to control what is included as part of the runtime environment. The
runtime environment encapsulates any code that is present at runtime which has not been defined by
the user, instead supplied by the compiler, typically as library code.

All runtime features are enabled by default and this option is not required for normal compilation.
The usable suboptions include those shown in Table 2.11.

2.4.48 --SCANDEP: Scan for Dependencies

When this option is used, a .dep (dependency) file is generated. The dependency file lists those files
on which the source file is dependant. Dependencies result when one file is #included into another.

25

PICC18 Compiler Options PICC-18 Command-line Driver

Table 2.11: Runtime environment suboptions
Suboption Controls On (+) implies
init The code present in the startup mod-

ule that copies the idata, ibigdata and
ifardata psects’ ROM-image to RAM.

The idata, ibigdata and
ifardata psects’ ROM image is
copied into RAM.

checksum Built-in verification of --checksum speci-
fications.

If PICC18’s --checksum option
is also used, the generated startup
routines will include verification
against the stored checksum. The
checksum result is assumed to be
stored in program memory. If
the verification fails, library func-
tion __checksum_failed() will
be called. This function is ex-
pected to be customized to suit
the final application.

clib The inclusion of library files into the output
code by the linker.

Library files are linked into the
output.

clear The code present in the startup module that
clears the bss, bigbss, rbss and farbss
psects.

The bss, bigbss, rbss and
farbss psects are cleared.

download Conditioning of the Intel hex file for use
with bootloaders. Data records in the Intel hex file

are padded out to 16 byte lengths
and will align on 16 byte bound-
aries. Startup code will not as-
sume reset values in certain reg-
isters.

keep Whether the start-up module source file is
deleted after compilation.

The start-up module is not
deleted.

ramtest Perform a RAM integrity test before clear-
ing/initializing memory.

Generated start up code will loop
through every location of general
purpose RAM and call library
routine, __ram_cell_test.
Variables qualified as persistent
are backed up during cell testing.

26

PICC-18 Command-line Driver PICC18 Compiler Options

2.4.49 --SERIAL=hexcode@address: Store a Value at this Program Mem-
ory Address

This option allows a hexadecimal code to be stored at a particular address in program memory. A
typical application for this option might be to position a serial number in program memory. The byte-
width of data to store is determined by the byte-width of the hexcode parameter in the option. For ex-
ample to store a one byte value, zero, at program memory address 1000h, use --SERIAL=00@1000.
To store the same value as a four byte quantity use --SERIAL=00000000@1000. This option is
functionally identical to the corresponding hexmate option. For more detailed information and ad-
vanced controls that can be used with this option, refer to Section 5.15.1.14 of this manual.

2.4.50 --SETOPTION=app,file: Set The Command-line Options for Ap-
plication

This option is used to supply alternative command line options for the named application when
compiling. This option is not required for most projects.

2.4.51 --STRICT: Strict ANSI Conformance

The --STRICT option is used to enable strict ANSI conformance of all special keywords. HI-
TECH C supports various special keywords (for example the persistent type qualifier). If the
--STRICT option is used, these keywords are changed to include two underscore characters at
the beginning of the keyword (e.g. __persistent) so as to strictly conform to the ANSI stan-
dard. Be warned that use of this option may cause problems with some standard header files (e.g.
<intrpt.h>).

2.4.52 --SUMMARY=type: Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,
or if the mem suboption is selected, a memory summary is shown. This shows the memory usage for
all available linker classes.

A psect summary may be shown by enabling the psect suboption. This shows individual psects,
after they have been grouped by the linker, and the memory ranges they cover. Table 2.12 shows
what summary types are available.

2.4.53 --VER: Display The Compiler’s Version Information

The --VER option will display what version of the compiler is running.

27

PICC18 Compiler Options PICC-18 Command-line Driver

Table 2.12: Memory Summary Suboptions
Suboption Controls On (+) implies
psect Summary of psect usage. A summary of psect names and

the addresses they were linked at
will be shown.

mem General summary of memory used. A general summary of memories
used will be shown.

hex Summary of address used within the hex
file.

A summary of addresses and hex
files which make up the final out-
put file will be shown.

file Whether summary information is shown
on the screen or shown and saved to a file.

Summary information will be
shown on screen and saved to a
file.

2.4.54 --WARN=level: Set Warning Level
The --WARN option is used to set the compiler warning level. Allowable warning levels range from -9
to 9. The warning level determines how pedantic the compiler is about dubious type conversions and
constructs. The default warning level --WARN=0 will allow all normal warning messages. Warning
level --WARN=1 will suppress the message Func() declared implicit int. --WARN=3 is rec-
ommended for compiling code originally written with other, less strict, compilers. --WARN=9 will
suppress all warning messages. Negative warning levels --WARN=-1, --WARN=-2 and --WARN=-3 en-
able special warning messages including compile-time checking of arguments to printf() against
the format string specified.

Use this option with care as some warning messages indicate code that is likely to fail during
execution, or compromise portability.

2.4.55 --WARNFORMAT=format: Set Warning Message Format
This option sets the format of warning messages produced by the compiler. See Section 2.4.31 for
full information.

28

Chapter 3

C Language Features

HI-TECH PICC-18 STD supports a number of special features and extensions to the C language
which are designed to ease the task of producing ROM-based applications. This chapter documents
the compiler options and special language features which are specific to the Microchip PIC 18 family
of processors.

3.1 ANSI Standard Issues

3.1.1 Divergence from the ANSI C Standard
HI-TECH PICC-18 STD diverges from the ANSI C standard in one area: function recursion.

Due to the PIC18’s hardware limitations of no easily-usable stack and limited memory, function
recursion is unsupported.

3.1.2 Implementation-defined behaviour
Certain sections of the ANSI standard have implementation-defined behaviour. This means that the
exact behaviour of some C code can vary from compiler to compiler. Throughout this manual are
sections describing how the HI-TECH PICC-18 STD compiler behaves in such situations.

3.2 Processor-related Features
HI-TECH PICC-18 STD has many features which relate directly to the PIC18 family of processors.
These are detailed in the following sections.

29

Processor-related Features C Language Features

3.2.1 Processor Support

HI-TECH PICC-18 STD supports the full range of Microchip PIC 18 processors. Additional code-
compatible processors may be added by editing the picc-18.ini file in the DAT directory. User-
defined processors should be placed at the end of the file. The header of the file explains how
to specify a processor. Newly added processors will be available the next time you compile by
selecting the name of the new processor on the command line in the usual way.

3.2.2 Configuration Fuses

The PIC18 processors have several locations which contain the configuration bits or fuses. These
bits may be set using the configuration macro. The macro has the form:

__CONFIG(n,x);

(there are two leading underscore characters) where n is the configuration register number and x is
the value that is to be the configuration word. The macro is defined in <htc.h> so be sure to include
that into each module that uses this macro.

The configuration macro programs the upper and lower half of each register, i.e. it programs
16 bits with each call. Special named quantities are defined in the header file appropriate for the
processor you are using to help you enable the required features. To look up the available attributes
for any particular chip, consult Appendix ?? of this manual.

For example, to set a PIC18Cxx1 chip to have an RC type oscillator, an 8-bit bus width, the
powerup timer disabled, the watchdog timer enabled with a post scale factor of 1:1, and the stack
full/underflow reset disabled, the following could be used.

#include <htc.h>
__CONFIG(1, RC);
__CONFIG(2, BW8 & PWRTDIS & WDTPS1 & WDTEN);
__CONFIG(4, STVRDIS);

Note that the individual selections are ANDed together. Any bits which are not selected in these
macros will remain unprogrammed. You should ensure that you have specified all bits correctly
to ensure proper operation of the part when programmed. Consult your PIC18 datasheet for more
details.

The __CONFIG macro does not produce executable code and should be placed outside function
definitions.

30

C Language Features Processor-related Features

3.2.3 ID Locations
Some PIC18 devices have location outside the addressable memory area that can be used for storing
program information, such as an ID number. The __IDLOC macro may be used to place data into
these locations. The macro is used in a manner similar to:

#include <htc.h>
__IDLOC(x);

where x is a list of nibbles which are to be positioned into the ID locations. Only the lower four bits
of each ID location is programmed, so the following:

__IDLOC(15F01);

will attempt to fill ID locations which the values: F1H, F5H, FFH, F0H, F1H. The base address of
the ID locations is specified by the idloc psect which will be automatically assigned as appropriate
address based on the type of processor selected.

3.2.4 EEPROM and Flash Runtime Access
The compiler offers several methods of accessing EEPROM and Flash memory. These are described
in the following sections.

3.2.4.1 EEPROM Access

For those PIC devices that support external programming of their EEPROM data area, the __EEP-
ROM_DATA() macro can be used to place the inital EEPROM data values into the HEX file ready
for programming. The macro is used as follows.

#include <htc.h>
__EEPROM_DATA(0, 1, 2, 3, 4, 5, 6, 7);

The macro accepts eight parameters, being eight data values. Each value should be a byte in size.
Unused values should be specified as a parameter of zero. The macro may be called multiple times
to define the required amount of EEPROM data. It is recommended that the macro be placed outside
any function definitions.

The macro defines, and places the data within, a psect called eeprom_data. This psect is posi-
tioned by a linker option in the usual way.

This macro is not used to write to EEPROM locations during run-time. The macros EEP-
ROM_READ() and EEPROM_WRITE(), and the function versions of these macros, can be called to
read from, and write to, the EEPROM during program execution. For example, to write a byte-size
value to an address in EEPROM memory using the macro version of EEPROM write:

31

Processor-related Features C Language Features

EEPROM_WRITE(address,value);

To read a byte of data from an address in EEPROM memory, and store it in a variable:

variable=EEPROM_READ(address);

For convenience, __EEPROMSIZE predefines the number of bytes of EEPROM available on chip.

3.2.4.2 Flash Access

To copy a block of code/data to an area in flash memory:

flash_write(source_pointer, length, dest_pointer);

To read a byte of data from an address in flash memory, and store in a variable:

variable=flash_read(address);

3.2.5 Peripheral Memory Ranges
Some devices have sections of memory that are intended for use by its peripherals or the device
itself. In these instances it may be beneficial to exclude these ranges from the compiler’s available
resources. Conversely, if you can be sure that a particular resource will not be used by the device
(and it is safe to do so), you may benefit by making the resource available to the compiler. Typical
examples of these types of memory resources are on-chip debug facilities, boot sectors in program
space, DMA and USB data buffers. These memory ranges can be included or excluded from the
memory ranges available to the compiler via the driver’s –RAM or –ROM options.

TUT•RIAL

Consider this example. A device has RAM in the address range from 0 to 7FFh, how-
ever the range 400h to 7FFh is dual-port RAM shared with the device’s onboard USB
module. This memory range by default is unavailable to the compiler. If a program
being built for this device is running short on RAM and doesn’t use the USB facility, it
would make sense to avail this memory range to the program. One way that this may be
done is to define and add the range using the driver option --RAM=default,+400-7ff.
Alternately, if the driver recognises the resource by name, the option could be modified
to say --RAM=default,+USBRAM.

Those peripheral ranges that can be referred to by name are detailed in Table 3.1.

32

C Language Features Processor-related Features

Table 3.1: Peripheral memory tags
Peripheral
tag

Description Applicable devices

USBRAM USB dual-port RAM Devices that have dual-port USB RAM
BOOTROM Boot sector in flash

memory
Flash memory based devices with a fixed length
boot sector

BOOT256,
BOOT512,
BOOT1K,
BOOT2K,
BOOT4K

Boot sector in flash
memory

Flash memory based devices with variable length
boot sector. Only tags corresponding to valid boot
sector sizes for that chip will be available.

3.2.6 Bit Instructions
Wherever possible, HI-TECH PICC-18 STD will attempt to use the PIC18 bit instructions. For
example, when using a bitwise operator and a mask to alter a bit within an integral type, the compiler
will check the mask value to determine if a bit instruction can achieve the same functionality.

unsigned int foo;
foo |= 0x40;

will produce the instruction:

bsf _foo,6

To set or clear individual bits within integral type, the following macros could be used:

#define bitset(var,bitno) ((var) |= 1 < < (bitno))
#define bitclr(var,bitno) ((var) &= ~(1 < < (bitno)))

To perform the same operation as above, the bitset macro could be employed as follows:

bitset(foo,6);

3.2.7 Multi-byte SFRs
Some of the SFRs associated with the PIC18 can be grouped to form multi-byte values, e.g. the
TMRxH and TMRxL register together form a 16-bit timer count value. Depending on the device
and mode of operation, there may be hardware requirements to read these registers correctly, e.g.

33

Files C Language Features

the TMRxL register often must be read before trying to read the TMRxH register to obtain a valid
16-bit result.

Although it is possible to define an absolute non-char C variable to map over such registers, the
order in which HI-TECH PICC-18 STD reads the bytes of a multi-byte object varies depending on
the context of the variable in an expression, i.e. it may read the most significant byte first, or the
least. Thus, it highly recommended that the existing SFR char definitions in the chip header files be
used. Each SFR should be accessed directly and in the required order by the programmer’s code.
This will ensure a much higher degree of portability.

The following code copies the two byte registers into C unsigned variable i for subsequent use.

i = TMR0L;
i += TMR0H < < 8;

3.3 Files

3.3.1 Source Files
The extension used with source files is important as it is used by the compiler drivers to determine
their content. Source files containing C code should have the extension .c, assembler files should
have extensions of .as, relocatable object files require the .obj extension, and library files should
be named with a .lib extension.

3.3.2 Symbol Files
The PICC18 -G option tells the compiler to produce several symbol files which can be used by
debuggers and simulators to perform symbolic and source-level debugging. Using the --IDE option
may also enable symbol file generation as well.

The -G option produces an absolute symbol files which contain both assembler- and C-level
information. This file is produced by the linker after the linking process has ben completed. If
no symbol filename is specified, a default filename of file.sym will be used, where file is the
basename of the first source file specified on the command line. For example, to produce a symbol
file called test.sym which includes C source-level information:

PICC18 --CHIP=18F242 -Gtest.sym test.c init.c

This option will also generate other symbol files for each module compiled. These files are produced
by the code generator and do not contain absolute address. These files have the extension .sdb.
The base name will be the same as the base name of the module being compiled. Thus the above
command line would also generate symbols files with the names test.sdb and init.sdb.

34

C Language Features Files

Figure 3.1: Library naming convention

3.3.3 Output File Formats
The compiler is able to directly produce a number of the output file formats which are used by
common PROM programmers and in-circuit emulators.

The default behaviour of the PICC18 command is to produce Microchip COFF and Intel HEX
output. If no output filename or type is specified, PICC18 will produce a Microchip COFF and Intel
HEX file with the same base name as the first source or object file specified on the command line.
Table 2.10 shows the output format options available with PICC18. The File Type column lists the
filename extension which will be used for the output file.

In addition to the options shown, the -O option may be used to request generation of binary or
UBROF files. If you use the -O option to specify an output filename with a .bin type, for example
-Otest.bin, PICC18 will produce a binary file. Likewise, if you need to produce UBROF files,
you can use the -O option to specify an output file with type .ubr, for example -Otest.ubr.

3.3.4 Library files
3.3.4.1 Standard Libraries

PICC-18 includes a number of standard libraries, each with the range of functions described in
Appendix A.

Figure 3.1 illustrates the naming convention used for the standard libraries.
The meaning of each field is described here, where:

• Processor Type is always pic.

• Processor Range is 8 for the PIC18 family.

• Configuration is a digit, bit 0 of which is either 1 for 24-bit wide program space pointers;
otherwise 0. Bit 1 is 0 to disallow the use of the LFSR instruction; 1 to allow this instruction.

35

Files C Language Features

Table 3.2: Printf functionality
Library type Supported formats

c (standard) %d, %u, %o, %x, %X, %s, %c
l (+long) c library plus %ld, %lx, %lX, %lo
f (+float) l library plus %f, %e
w (full featured) f library plus %E, %g, %G, %i, %p

• Memory Model is either l for large or s for small model.

• Double Type is - for 24-bit doubles, and d for 32-bit doubles.

• Library Type is c for standard library. Types l, f and w denote enhanced printf libraries which
are explained in section 3.3.4.2.

3.3.4.2 Printf Libraries

The standard libraries contain a compact, low-featured implementation of printf (and related func-
tions). The standard printf supports processing of the simplest format types. If an application re-
quires to process more complexed format types, enhanced routines can be linked from specific printf
libraries. Note that increasing the functionality of printf will also increase the amount of program
space consumed by these library routines. The capabilities of each printf library is explained in Table
3.2. The printf libraries are simply a suppliment to the standard libraries so the naming convention
is the same.

To nominate selection of a particular printf library, use the PICC18 option, -Lx as descriped in
section 2.4.7. It is not neccessary to nominate selection of the c (standard) library as this file will
automatically included by PICC18, unless explicitly excluded by the --RUNTIME option, as described
in section 2.4.47. For more details on the printf functions, see the library function documentation in
Appendix A.

3.3.4.3 Peripheral Libraries

To accompany the standard libraries, PICC-18 automatically includes an additional set of peripheral
dependant libraries. The functions contained in these libraries are those which have particular a
reliance on hardware or a device’s special function registers, for example accesses to EEPROM
memory. Figure 3.2 illustrates the naming convention used for the peripheral libraries.

PICC-18 peripheral libraries are denoted by the name pic8x--p.lib, where x is a 3-bit bitmask
that representing the combinations of peripheral characteristics and errata workarounds applicable
to this library. An explanation of the bits within the bitmask is available in Table 3.3.

36

C Language Features Files

Figure 3.2: Peripheral Library Nomenclature

Table 3.3: Peripheral Library Configuration Bitmask
Bit index Attribute

0 Device implementing EEDATA errata workaround for EEPROM reads
1 Device has more than 256 bytes of EEPROM on board
2 Device implementing 4000h boundary errata workaround

3.3.4.4 Program Memory Libraries

Some devices in the PIC18 architecture have the ability to erase and re-write their own program
memory at runtime. There are subtle differences between the mechanisms that a device may use
when operating on its own program memory. The block sizes of a program memory erase or write
operation may vary from device to device. Silicon errata issues may also dictate minor changes
need be applied to code sequences that enact a program memory access operation. For this reason a
specific set of libraries are provided to cater for the varying requirements of each device. Figure 3.3
illustrates the naming convention used for these program memory libraries.

These libraries are denoted by the name picxxypm.lib, where xx is an 8-bit hexadecimal
code used to identify the block sizes of a device’s program memory write and erase operations.

Figure 3.3: Program Memory Library Nomenclature

37

Files C Language Features

Table 3.4: Program Memory Errata Bitmask
Bit index Errata and build characteristic

0 Library implements additional NOPs when reading beyond program space at -40C
1 Library implements 4000h boundary errata workaround
2 Library uses 24-bit pointers to code space

The value y is a 3-bit bitmask which represents the combinations of errata workarounds and build
characteristics applied to this library. An explanation of the bits within the y bitmask is available in
Table 3.4.

3.3.5 Runtime startup Modules

A C program requires certain objects to be initialised and the processor to be in a particular state
before it can begin execution of its function main(). It is the job of the runtime startup code to
perform these tasks.

Traditionally, runtime startup code is a generic, precompiled routine which is always linked into
a user’s program. Even if a user’s program does not need all aspects of the runtime startup code,
redundant code is linked in which, albeit not harmful, takes up memory and slows execution. For
example, if a program does not use any uninitialized variables, then no routine is required to clear
the bss psects.

HI-TECH PICC-18 STD differs from other compilers by using a novel method to determine
exactly what runtime startup code is required and links this into the program automatically. It does
this by performing an additional link step which does not produce any usable output, but which can
be used to determine the requirements of the program. From this information PICC18 then “writes”
the assembler code which will perform the runtime startup. This code is stored into a file which can
then be assembled and linked into the remainder of the program in the usual way.

Since the runtime startup code is generated automatically on every compilation, the generated
files associated with this process are deleted after they have been used. If required, the assembler
file which contains the runtime startup code can be kept after compilation and linking by using the
driver option --RUNTIME=default,+keep. The residual file will be called startup.as and will be
located in the current working directory. If you are using an IDE to perform the compilation the
destination directory is dictated by the IDE itself, however you may use the --OUTDIR option to
specify an explicit output directory to the compiler.

This is an automatic process which does not require any user interaction, however some aspects
of the runtime code can be controlled, if required, using the --RUNTIME option. These are described
in the sections below.

38

C Language Features Files

3.3.5.1 Initialization of Data psects

One job of the runtime startup code is ensure that any initialized variables contain their initial value
before the program begins execution. Initialized variables are those which are not auto objects and
which are assigned an initial value in their definition, such as input in the following example.

int input = 88;
void main(void) { ...

•

Since auto objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is also possible that
their initial value changes on each instance of the function. As a result, initialized auto
objects do not use the data psects.

Such initialized objects have two components and are placed within the data psects.
The actual initial values are placed in a psect called idata. The other component is where the

variables will reside, and be accessed, at runtime. Space is reserved for the runtime location of
initialized variables in a psect called rdata. This psect does not contribute to the output file.

The runtime startup code performs a block copy of the values from the idata to the rdata psect
so that the RAM variables will contain their initial values before main() is executed. Each location
in the idata psect is copied to appropriate place in the rdata psect.

The block copy of the data psects may be omitted by disabling the init suboption of --RUNTIME.
For example:

--RUNTIME=default,-init

With this part of the runtime startup code absent, the contents of initialized variables will be unpre-
dictable when the program begins execution. Code relying on variables containing their initial value
will fail.

Variables whose contents should be preserved over a reset, should be qualified with persistent,
see Section 3.4.10.1. Such variables are linked at a different area of memory and are not altered by
the runtime startup code in any way.

3.3.5.2 Clearing the Bss Psects

The ANSI standard dictates that those non-auto objects which are not initialized must be cleared
before execution of the program begins. The compiler does this by grouping all such uninitialized
objects into a bss psect. This psect is then cleared as a block by the runtime startup code.

39

Files C Language Features

•

The abbreviation "bss" stands for Block Started by Symbol and was an assembler pseudo-
op used in IBM systems back in the days when computers were coal-fired. The contin-
ued usage of this term is still appropriate.

The name of the bss psects are rbss, bss, bigbss and farbss.
The block clear of the bss psect may be omitted by disabling the clear suboption of --RUNTIME.

For example:

--RUNTIME=default,-clear

With this part of the runtime startup code absent, the contents of uninitialized variables will be
unpredictable when the program begins execution.

As with initialized variables, those whose contents are to be preserved over a reset, should be
qualified persistent, see Section 3.4.10.1.

3.3.5.3 Linking in the C Libraries

By default, a set of libraries are automatically passed to the linker to be linked in with user’s program.
The libraries can be omitted by disabling the clib suboption of --RUNTIME. For example:

--RUNTIME=default,-clib

With this part of the runtime startup code absent, the user must provide alternative library or source
files to allow calls to library routines. This suboption may be useful if alternative library or source
files are available and you wish to ensure that no HI-TECH C library routines are present in the final
output.

•

Some C statements produce assembler code that call library routines even though no
library function was called by the C code. These calls perform such operations as di-
vision or floating-point arithmetic. If the C libraries have been excluded from the code
output, these implicit library calls will also require substitutes.

40

C Language Features Supported Data Types and Variables

Table 3.5: Basic data types
Type Size (bits) Arithmetic Type

bit 1 unsigned integer
char 8 signed or unsigned integer1

unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 24 real
double 24 or 322 real

3.3.5.4 The powerup Routine

Some hardware configurations require special initialization, often within the first few cycles of ex-
ecution after reset. To achieve this there is a hook to the reset vector provided via the powerup
routine. This is a user-supplied assembler module that will be executed immediately on reset. Often
this can be embedded in a C module as embedded assembler code. A “dummy” powerup routine is
included in the file powerup.as. The file can be copied, modified and included into your project.
No special linking options or jumps to the powerup routine are required, the compiler will detect if
you are using a powerup routine and will automatically generate code to jump to it after reset. If you
use a powerup routine, you will, however, need to add a jump to start after your initializations.
Refer to comments in the powerup source file for details about this. The powerup.as source file can
be found in the compiler’s SOURCES directory.

3.4 Supported Data Types and Variables

The HI-TECH PICC-18 STD compiler supports basic data types with 1, 2, 3 and 4 byte sizes. All
multi-byte types follow least significant byte first format, also known as little-endian. Word size
values thus have the least significant byte at the lower address, and double word size values have the
least significant byte and least significant word at the lowest address. Table 3.5 shows the data types
and their corresponding size and arithmetic type.

41

Supported Data Types and Variables C Language Features

Table 3.6: Radix formats
Radix Format Example

binary 0bnumber or 0Bnumber 0b10011010
octal 0number 0763
decimal number 129
hexadecimal 0xnumber or 0Xnumber 0x2F

3.4.1 Radix Specifiers and Constants

The format of integral constants specifies their radix. HI-TECH PICC-18 STD supports the ANSI
standard radix specifiers as well as ones which enable binary constants to be specified in C code.
The format used to specify the radices are given in Table 3.6. The letters used to specify binary or
hexadecimal radices are case insensitive, as are the letters used to specify the hexadecimal digits.

Any integral constant will have a type which is the smallest type that can hold the value without
overflow. The suffix l or L may be used with the constant to indicate that it must be assigned either
a signed long or unsigned long type, and the suffix u or U may be used with the constant to
indicate that it must be assigned an unsigned type, and both l or L and u or U may be used to indicate
unsigned long int type.

Floating-point constants have double type unless suffixed by f or F, in which case it is a float
constant. The suffixes l or L specify a long double type which is considered an identical type to
double by HI-TECH PICC-18 STD.

Character constants are enclosed by single quote characters ’, for example ’a’. A character
constant has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters ", for example "hello
world". The type of string constants is const char * and the strings are stored in the program
memory. Assigning a string constant to a non-const char pointer will generate a warning from the
compiler. For example:

char * cp= "one"; // "one" in ROM, produces warning
const char * ccp= "two"; // "two" in ROM, correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string, for example:

char ca[]= "two"; // "two" different to the above

produces an array in data space which is initialised at startup with the string "two" (copied from
program space), whereas a constant string used in other contexts represents an unnamed const-
qualified array, accessed directly in program space.

42

C Language Features Supported Data Types and Variables

HI-TECH C will use the same storage location and label for strings that have identical character
sequences, except where the strings are used to initialise an array residing in the data space as shown
in the last statement in the previous example.

Two adjacent string constants (i.e. two strings separated only by white space) are concatenated
by the compiler. Thus:

const char * cp = "hello " "world";

assigned the pointer with the string "hello world".

3.4.2 Bit Data Types and Variables

HI-TECH PICC-18 STDsupports bit integral types which can hold the values 0 or 1. Single bit
variables may be declared using the keyword bit. bit objects declared within a function, for exam-
ple:

static bit init_flag;

will be allocated in the bit-addressable psect rbit, and will be visible only in that function. When
the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible, but located within the same psect.
Bit variables cannot be auto or parameters to a function. A function may return a bit object

by using the bit keyword in the function’s prototype in the usual way. The bit return value will be
returned in the carry flag of the STATUS register.

Bit variables behave in most respects like normal unsigned char variables, but they may only
contain the values 0 and 1, and therefore provide a convenient and efficient method of storing boolean
flags without consuming large amounts of internal RAM. It is, however, not possible to declare
pointers to bit variables or statically initialize bit variables.

Operations on bit objects are performed using the single bit instructions (bsf and bcf) wherever
possible, thus the generated code to access bit objects is very efficient.

Note that when assigning a larger integral type to a bit variable, only the least-significant bit is
used. For example, if the bit variable bitvar was assigned as in the following:

int data = 0x54;
bit bitvar;
bitvar = data;

43

Supported Data Types and Variables C Language Features

it will be cleared by the assignment since the least significant bit of data is zero. If you want to set
a bit variable to be 0 or 1 depending on whether the larger integral type is zero (false) or non-zero
(true), use the form:

bitvar = data != 0;

The psects in which bit objects are allocated storage are declared using the bit PSECT directive
flag. Eight bit objects will take up one byte of storage space which is indicated by the psect’s scale
value of 8 in the map file. The length given in the map file for bit psects is in units of bits, not bytes.
All addresses specified for bit objects are also bit addresses.

The bit psects are cleared on startup, but are not initialised. To create a bit object which has a
non-zero initial value, explicitly initialise it at the beginning of your code.

If the PICC18 flag --STRICT is used, the bit keyword becomes unavailable.

3.4.3 Using Bit-Addressable Registers
The bit variable facility may be combined with absolute variable declarations (see Section 3.5.2) to
access bits at specific addresses. Absolute bit objects are numbered from 0 (the least significant bit
of the first byte) up. Therefore, bit number 3 (the fourth bit in the byte since numbering starts with
0) in byte number 5 is actually absolute bit number 43 (that is 8bits/byte * 5 bytes + 3 bits).

For example, to access the power down detection flag bit in the RCON register, declare RCON to
be a C object at absolute address FD0h, then declare a bit variable at absolute bit address 4050:

static unsigned char RCON @ 0xFD0;
static near bit PD @ (unsigned)&RCON*8+2;

Note that all standard registers and bits within these registers are defined in the header files provided.
The only header file you need to include to have access to the PIC18 registers is <htc.h> - at compile
time this will include the appropriate header for the selected chip.

3.4.4 8-Bit Integer Data Types and Variables
HI-TECH PICC-18 STD supports both signed char and unsigned char 8-bit integral types.
If the signed or unsigned keyword is absent from the variable’s definition, the default type is
unsigned char unless the PICC18 --CHAR=signed option is used, in which case the default type
is signed char. The signed char type is an 8-bit two’s complement signed integer type, rep-
resenting integral values from -128 to +127 inclusive. The unsigned char is an 8-bit unsigned
integer type, representing integral values from 0 to 255 inclusive. It is a common misconception that
the C char types are intended purely for ASCII character manipulation. This is not true, indeed the
C language makes no guarantee that the default character representation is even ASCII. The char

44

C Language Features Supported Data Types and Variables

types are simply the smallest of up to four possible integer sizes, and behave in all respects like
integers.

The reason for the name “char” is historical and does not mean that char can only be used to
represent characters. It is possible to freely mix char values with short, int and long values in C
expressions. With HI-TECH PICC-18 STD the char types will commonly be used for a number of
purposes, such as 8-bit integers, as storage for ASCII characters, and for access to I/O locations.

Variables may be declared using the signed char and unsigned char keywords, respectively,
to hold values of these types. Where only char is used in the declaration, the type will be unsigned
char unless the option, mentioned above, to specify signed char as default is used.

3.4.5 16-Bit Integer Data Types

HI-TECH PICC-18 STD supports four 16-bit integer types. short and int are 16-bit two’s comple-
ment signed integer types, representing integral values from -32,768 to +32,767 inclusive. Unsigned
short and unsigned int are 16-bit unsigned integer types, representing integral values from 0 to
65,535 inclusive. All 16-bit integer values are represented in little endian format with the least
significant byte at the lower address.

Variables may be declared using the signed short int and unsigned short int keyword
sequences, respectively, to hold values of these types. When specifying a short int type, the
keyword int may be omitted. Thus a variable declared as short will contain a signed short int
and a variable declared as unsigned short will contain an unsigned short int.

3.4.6 32-Bit Integer Data Types and Variables

HI-TECH PICC-18 STD supports two 32-bit integer types. Long is a 32-bit two’s complement
signed integer type, representing integral values from -2,147,483,648 to +2,147,483,647 inclusive.
Unsigned long is a 32-bit unsigned integer type, representing integral values from 0 to 4,294,967,295
inclusive. All 32-bit integer values are represented in little endian format with the least significant
word and least significant byte at the lowest address. Long and unsigned long occupy 32 bits as
this is the smallest long integer size allowed by the ANSI standard for C.

Variables may be declared using the signed long int and unsigned long int keyword se-
quences, respectively, to hold values of these types. Where only long int is used in the declaration,
the type will be signed long. When specifying this type, the keyword int may be omitted. Thus
a variable declared as long will contain a signed long int and a variable declared as unsigned
long will contain an unsigned long int.

45

Supported Data Types and Variables C Language Features

Table 3.7: Floating-point formats
Format Sign biased exponent mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx
modified IEEE 754 24-bit x xxxx xxxx xxx xxxx xxxx xxxx

Table 3.8: Floating-point format example IEEE 754
Format Number biased expo-

nent
1.mantissa decimal

32-bit 7DA6B69Bh 11111011b 1.01001101011011010011011b 2.77000e+37
(251) (1.302447676659)

24-bit 42123Ah 10000100b 1.001001000111010b 36.557
(132) (1.142395019531)

3.4.7 Floating Point Types and Variables
Floating point is implemented using either a IEEE 754 32-bit format or a modified (truncated) 24-bit
form of this.

The 24-bit format is used for all float values. For double values, the 24-bit format is the
default, or if the --double=24 option is used. The 32-bit format is used for double values if the
--double=32 option is used.

This format is described in 3.7, where:

• sign is the sign bit

• The exponent is 8-bits which is stored as excess 127 (i.e. an exponent of 0 is stored as 127).

• mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the
left of the radix point which is always 1 except for a zero value, where the implied bit is zero.
A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent−127) x 1.mantissa.
Here are some examples of the IEEE 754 32-bit formats:
Note that the most significant bit of the mantissa column in 3.8 (that is the bit to the left of the

radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which case
the float is zero).

The 32-bit example in 3.8 can be calculated manually as follows.
The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary

number to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223

46

C Language Features Supported Data Types and Variables

where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this
fraction. The floating-point number is then given by:
−10×2124×1.302447676659 = 1×2.126764793256e+37×1.302447676659≈ 2.77000e+37
Variables may be declared using the float and double keywords, respectively, to hold values

of these types. Floating point types are always signed and the unsigned keyword is illegal when
specifying a floating point type. Types declared as long double will use the same format as types
declared as double.

There is a fast implementation available for 32-bit doubles. Fast 32-bit doubles can be selected
via the --double=fast32 command line option. Although selecting this offers an improvement in
speed when doing calculations on 32-bit doubles, this comes at a cost of code size.

3.4.8 Structures and Unions
HI-TECH PICC-18 STD supports struct and union types of any size from one byte upwards.
Structures and unions only differ in the memory offset applied for each member. The members of
structures and unions may not be objects of type bit, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and return values. Pointers to
structures and unions are fully supported.

3.4.8.1 Bit-fields in Structures

HI-TECH PICC-18 STD fully supports bit-fields in structures.
Bit-fields are always allocated within 8-bit words. The first bit defined will be the least significant

bit of the word in which it will be stored. When a bit-field is declared, it is allocated within the
current 8-bit unit if it will fit, otherwise a new byte is allocated within the structure. Bit-fields can
never cross the boundary between 8-bit allocation units. For example, the declaration:

struct {
unsigned lo : 1;
unsigned dummy : 6;
unsigned hi : 1;

} foo;

will produce a structure occupying 1 bytes. If foo was ultimately linked at address 10H, the field lo
will be bit 0 of address 10H, hi will be bit 7 of address 10H. The least significant bit of dummy will
be bit 1 of address 10H and the most significant bit of dummy will be bit 6 of address 10h.

Unnamed bit-fields may be declared to pad out unused space between active bits in control
registers. For example, if dummy is never used the structure above could have been declared as:

struct {

47

Supported Data Types and Variables C Language Features

unsigned lo : 1;
unsigned : 6;
unsigned hi : 1;

} foo;

If a bit-field is declared in a structure that is assigned an absolute address, no storage will be allocated
for the structure. Absolute structures would be used when mapping a structure over a register to allow
a portable method of accessing individual bits within the register.

A structure with bit-fields may be initialised by supplying a comma-separated list of initial values
for each field. For example:

struct {
unsigned lo : 1;
unsigned mid : 6;
unsigned hi : 1;

} foo = {1, 8, 0};

3.4.8.2 Structure and Union Qualifiers

HI-TECH PICC-18 STD supports the use of type qualifiers on structures. When a qualifier is applied
to a structure, all of its members will inherit this qualification. In the following example the structure
is qualified const.

const struct {
int number;
int *ptr;

} record = { 0x55, &i};

In this case, the structure will be placed into the program space and each member will, obviously, be
read-only. Remember that all members must be initialized if a structure is const as they cannot be
initialized at runtime.

If the members of the structure were individually qualified const but the structure was not, then
the structure would be positioned into RAM, but each member would be read-only. Compare the
following structure with the above.

struct {
const int number;
int * const ptr;

} record = { 0x55, &i};

48

C Language Features Supported Data Types and Variables

3.4.9 Standard Type Qualifiers

Type qualifiers provide information regarding how an object may be used, in addition to its type
which defines it storage size and format. HI-TECH PICC-18 STD supports both ANSI qualifiers and
additional special qualifiers which are useful for embedded applications and which take advantage
of the PIC18 architecture.

3.4.9.1 Const and Volatile Type Qualifiers

HI-TECH PICC-18 STD supports the use of the ANSI type qualifiers const and volatile.
The const type qualifier is used to tell the compiler that an object is read only and will not

be modified. If any attempt is made to modify an object declared const, the compiler will issue
a warning. User-defined objects declared const are placed in special psects in the program space.
Obviously, a const object must be initialised when it is declared as it cannot be assigned a value at
any point at runtime. For example:

const int version = 3;

The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain
its value between successive accesses. This prevents the optimizer from eliminating apparently
redundant references to objects declared volatile because it may alter the behaviour of the program
to do so. All Input/Output ports and any variables which may be modified by interrupt routines
should be declared volatile, for example:

volatile static near unsigned char PORTA @ 0xF80;

Volatile objects may be accessed using different generated code to non-volatile objects. For ex-
ample, when assigning a non-volatile object the value 1, the object may be cleared and then incre-
mented, but the same operation performed on a volatile object will load the W register with 1 and
then store this to the appropriate address.

3.4.10 Special Type Qualifiers

HI-TECH PICC-18 STD supports special type qualifiers, persistent, near and far to allow the
user to control placement of static and extern class variables into particular address spaces. If the
PICC18 option, --STRICT is used, these type qualifiers are changed to __persistent, __near and
__far, respectively. These type qualifiers may also be applied to pointers. These type qualifiers may
not be used on variables of class auto; if used on variables local to a function they must be combined
with the static keyword. For example, you may not write:

49

Supported Data Types and Variables C Language Features

void test(void) {
persistent int intvar; /* WRONG! */
... other code ...

}

because intvar is of class auto. To declare intvar as a persistent variable local to function
test(), write:

static persistent int intvar;

HI-TECH PICC-18 STD also supports the keywords bank1, bank2 and bank3. These keywords
have been included to allow code to be easily ported from PICC. These keywords are accepted by
HI-TECH PICC-18 STD, but have no effect in terms of the object’s storage or how they are accessed.
These keywords do, however, affect the storage of objects when compiling with the PICC compiler
- see your PICC manual for more details.

3.4.10.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialised are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired for
some data to be preserved across resets.

The persistent type qualifier is used to qualify variables that should not be cleared on startup.
In addition, any persistent variables will be stored in a different area of memory to other variables.
Persistent objects are placed within one of the non-volatile psects. If the persistent object is
also qualified near, it placed in the nvrram psect. Persistent bit objects are placed within the
nvbit psect. All other persistent objects are placed in the nvram psect.

There are some library routines provided to check and initialise persistent data - see Appendix
A for more information, and for an example of using persistent data.

3.4.10.2 Near Type Qualifier

The near type qualifier is used to place static variables in the access bank of the PIC18. Near
objects are represented by 8 bit addresses and the access bank is always accessable regardless of the
currently selected RAM bank so accessing near objects may be faster than accessing other objects,
and typically results in smaller code sizes.

Here is an example of an unsigned char object placed within the access bank:

static near unsigned char fred;

50

C Language Features Supported Data Types and Variables

3.4.10.3 Far Type Qualifier

The far type qualifier is used to place variables of permanent duration into external program space
of the PIC18 for those devices which can support additional memory. Accesses to far variables are
less efficient than accesses to internal variables and extensive accesses to these variables will result
in larger code sizes.

Here is an example of an unsigned int object placed into the device’s external code space:

far unsigned int farvar;

Note that not all devices support extending their memory space in this way and the far qualifier is not
applicable to all PIC18 devices. For those devices that can extend their memory, the address range
where the additional memory will be mapped must first be specified with a –RAM option. For exam-
ple, to map additional data memory from 20000h to 2FFFFh use --RAM=default,+20000-2FFFF.

Also consider that if the external memory area uses addresses greater than FFFFh (as in most
cases) the --CP=24 command line option will also be required in order to access these variables
correctly.

3.4.11 Bdata Type Qualifier

The bdata type qualifier only has significance when compiling in the small memory model. In
this model all static and extern class variables are placed in the access bank, but this qualifier
specifies that the object is to be placed outside the access bank in the banked data area of the device.
The object then behaves like an unqualified object in large model. This qualifier is useful when the
access bank has overflowed by a small amount as it allows some objects to moved back into the
banked memory and prevents having to revert to the large memory model.

3.4.12 Pointer Types

There are two basic pointer types supported HI-TECH PICC-18 STD: data pointers and function
pointers. Data pointers hold the address of data objects which can be read and/or written by the
program. Function pointers hold the address of an executable routine which can be called indirectly
via the pointer.

Of the data pointers, RAM pointers are limited to accessing only the data space (RAM) of the
PIC18 device, but the const and far pointer types can access the data and program space (typically
ROM, although hardware using devices with an external memory interface may implement any type
of memory in this space).

51

Supported Data Types and Variables C Language Features

3.4.12.1 RAM Pointers

All RAM pointer objects on these PIC18 devices are 16 bits wide, with the exception of pointers to
objects qualified as near which are 8 bits wide.

A pointer to RAM, for example:

char * cp;

is 16 bits wide and can access all of the RAM available on the PIC18 devices.
A pointer to near is only 8 bits wide and can access the general-purpose RAM area of the access

bank. In other words they can be used to dereference any variable qualified as near. The amount of
general purpose RAM in the access bank varies from device to device. Being smaller in size, using
pointers to near result in smaller code sizes. If a pointer only ever accesses near-qualified objects,
then that pointer should be qualified as a pointer to near.

The operation of RAM pointers is unaffected by the --CP=24/--CP=16 switch, nor are they
affected by the choice of memory model.

3.4.12.2 Const and Far Pointers

Const and far pointers can either be 16 or 24 bits wide. Their size can be toggled with the --CP=24
or --CP=16 command line option. The code used to dereference them also changes with their size.
The same pointer size must be used for all modules in a project.

A pointer to far is identical to a pointer to const, except that pointers to far may be used to
write to the address they hold. A pointer to const objects cannot be used to write as the const
qualifier imposes that the object is read-only.

Const and far pointers which are 16 bits wide can access all RAM areas and most of the program
space. At runtime when dereferenced, the contents of the pointer are examined. For addresses above
the upper limit of RAM the program space is accessed using table read or table write instructions.
Addresses below the upper limit of RAM access the data space. Even if the address held by a pointer
to const is in RAM, the RAM location may not be changed.

The default linker options always place const data at addresses above the upper limit of the data
space so that the correct memory space is accessed when dereferencing with pointers.

If the target device selected has more than 64k bytes of program space memory, then only the
lower 64k bytes may be accessed with 16-bit wide pointers. Provided that all program space objects
that need to be dereferenced are in the lower 64k bytes, 16-bit pointers to const and far objects
may still be used. The smaller pointer size results in less RAM required and less code produced and
so should be used whenever possible.

Const and far pointers which are 24 bits wide can access all RAM areas and all of the program
space. At runtime when dereferenced, the contents of the pointer are examined. If bit number 21
in the address is set, the address is assumed to be a RAM address. Bit number 21 of the address is

52

C Language Features Supported Data Types and Variables

then ignored. If Bit number 21 is clear, then the address is assumed to be of an object in the program
space and the access is performed using table read or table write instructions. Again, no writes to
objects are permitted using a pointer to const.

Note that when dereferencing a 24-bit pointer, the most significant implemented bit (bit number
21) of the TBLPTRU register may be overwritten. This bit may be used to enable access to the
configuration area of the PIC18 device. If loading the table pointer registers from hand-written
assembler code, make no assumptions about the state of bit number 21 prior to executing table read
or write instructions.

3.4.12.3 Function Pointers

Function pointers can be defined to indirectly call functions or routines in the program space. The
size of these pointers are 16 or 24 bits wide and is controlled by the --CP=24/--CP=16 command
line option. When 16-bit wide function pointers are used only routines within the lower 64k bytes
can be indirectly called. The larger 24-bit function pointer allows indirect calls to be made to any
routine, but at the expense of increased code size and RAM usage.

It should be stressed that the --CP=16 option affects function pointer sizes and that it does not
affect code that calls functions directly, i.e. by their name rather than indirectly via a pointer. Thus
you can still directly call functions residing at any location even if you are using the --CP=16 option,
however you can only indirectly call functions that reside in the lower 64k byte area of the program
space.

The addresses for all code labels are always shown in the map file as an untruncated byte address
regardless of the options used.

3.4.12.4 Combining Type Qualifiers and Pointers

Pointers can be qualified like any other C object, but care must be taken when doing so as there are
two quantities associated with pointers. The first is the actual pointer itself, which is treated like
any ordinary C variable and has memory reserved for it. The second is the object that the pointer
references, or to which the pointer points. The general form of a pointer definition looks like the
following.

“object’s type & qualifiers” * “pointer’s qualifiers” “pointer’s name” ;

TUT•RIAL

Here are three examples, highlighting the fields with spacing:

near int * nip ;

int * near inp ;

near int * near ninp ;

53

Storage Class and Object Placement C Language Features

The first example is a pointer called nip. It contains the address of an int object that is
qualified near. Since a near object is in the access bank the pointer is only 8 bits wide
as discussed above. The pointer itself (i.e. the 8-bit value the pointer holds) will reside
somewhere in the main banked memory.

The second example is a pointer called inp which contains the address of an int object.
Since this object is not qualified near, the pointer needs 16 bits to access the object’s
location. The near keyword after the * indicates that the pointer itself has been qualified
near and so the pointer (i.e. the 16-bit value the pointer holds) will reside in the access
bank, but the object whose address the pointer holds is located in the main banked
memory.

The last example is of a pointer called ninp which is itself qualified near and which
also holds the address of an object that is also qualified near. In this example, both the
pointer and the object that the pointer references will be located in the access bank. The
pointer will be 8 bits wide.

The rule is as follows: if the modifier is to the left of the * in the pointer declaration, it
applies to the object which the pointer addresses. If the modifier is to the right of the *,
it applies to the pointer variable itself.

The const, volatile, far and persistent modifiers may also be applied to pointers in the above
manner.

To allow portability between PICC and PICC-18 code, the use of the bank1, bank2 and bank3
keywords is allowed with PICC-18 pointer definitions in the manner described above. These key-
words have no effect and do not alter the way in which indirect accesses are made. The use of these
keywords with pointers defined in PICC does affect the operation of pointer dereferences - see your
PICC manual for more details.

3.5 Storage Class and Object Placement
Objects are positioned in different memory areas dependant on their storage class and declaration.
This is discussed in the following sections.

3.5.1 Local Variables
A local variable is one which only has scope within the block in which it was defined. That is, it may
only be referenced within that block. C supports two classes of local variables in functions: auto
variables which are normally allocated in the function’s auto-variable block, and static variables
which are always given a fixed memory location and have permanent duration.

54

C Language Features Storage Class and Object Placement

3.5.1.1 Auto Variables

Auto (short for automatic) variables are the default type of local variable. Unless explicitly declared
to be static, a local variable will be made auto however the auto keyword may be used if desired.
Auto variables are allocated in the auto-variable block and referenced by indexing from the symbol
that represents that block. The variables will not necessarily be allocated in the order declared - in
contrast to parameters which are always in lexical order. Note that most type qualifiers cannot be
used with auto variables, since there is no control over the storage location. The exceptions are
const and volatile.

All auto variables are allocated memory within one bank of RAM. At present, all functions
share the same bank of memory for auto objects. The size of a function’s auto-variable block may
not exceed the size of one bank, which is 100H bytes.

The auto-variable blocks for a number of functions are overlapped by the linker if those func-
tions are never called at the same time.

Auto objects are referenced with a symbol that consists of a question mark, “?”, concatenated
with a_function plus some offset, where function is the name of the function in which the object
is defined. For example, if the int object test is the first object placed in main()’s auto-variable
block it will be accessed using the addresses ?a_main and ?a_main+1 since an int is two bytes
long.

Auto variables may be accessed using the banked instructions of the PIC18. When accessing
auto objects with banked instructions, the compiler will ensure that the bank of the auto-variable
block is selected using a movlb instruction, and then access the locations using the appropriate
instructions. In essence this amounts to an 8 bit access within the selected bank.

3.5.1.2 Static Variables

Uninitialized static variables are allocated in one of the bss, rbss or bigbss psects. Objects
qualified near appear in the rbss psect; objects larger than one bank in size or byte sized objects
are placed in the bigbss psect and the remainder in the bss psect. They will occupy fixed memory
locations which will not be overlapped by storage for other functions. Static variables are local in
scope to the function in which they are declared, but may be accessed by other functions via pointers
since they have permanent duration. Static variables are guaranteed to retain their value between
calls to a function, unless explicitly modified via a pointer. Static variables are not subject to any
architectural limitations on the PIC18.

Static variables which are initialised are only done so once during the program’s execution.
Thus, they may be preferable over initialised auto objects which are assigned a value every time the
block in which the definition is placed is executed.

55

Storage Class and Object Placement C Language Features

3.5.2 Absolute Variables

A global or static variable can be located at an absolute address by following its declaration with
the construct @ address, for example:

volatile unsigned char Portvar @ 0xF80;

will declare a variable called Portvar located at F80h. Note that the compiler does not reserve
any storage, but merely equates the variable to that address, the compiler-generated assembler will
include a line of the form:

_Portvar EQU F80h

Note also that the compiler and linker do not make any checks for overlap of absolute variables with
other variables of any kind, so it is entirely the programmer’s responsibility to ensure that absolute
variables are allocated only in memory not in use for other purposes.

This construct is primarily intended for equating the address of a C identifier with a micropro-
cessor special function register. To place a user-defined variable at an absolute address, define it in a
separate psect and instruct the linker to place this psect at the required address as specified in Section
3.12.3.3.

•

Absolute variables are accessed using the address specified with their definition, thus
there are no symbols associated with them. Because the linker never sees any symbols
for these objects it is not aware that they have been allocated space and it cannot make
any checks for overlap of absolute variables with other objects. It is entirely the pro-
grammer’s responsibility to ensure that absolute variables are allocated memory that is
not already in use.

3.5.3 Objects in Program Space

Const objects are usually placed in program space. On the PIC18 devices, the program space is
byte-wide, the compiler stores one character per byte location and values are read using the table
read instructions. All const-qualified data objects and string literals are placed in the const psect.
The const psect is placed at an address above the upper limit of RAM since RAM and const
pointers use this address to determine if an access to ROM or RAM is required. See Section 3.4.12.

56

C Language Features Functions

3.6 Functions

3.6.1 Function Argument Passing

The method used to pass function arguments depends on the size of the argument or arguments.
If there is only one argument, and it is one byte in size, it is passed in the W register.
If there is only one argument, and it is greater than one byte in size, it is passed in the argument

area of the called function. If there are subsequent arguments, these arguments are also passed in the
argument area of the called function. The argument area is referenced by an offset from the symbol
?_function, where function is the name of the function concerned.

If there is more than one argument, and the first argument is one byte in size, it is passed in the
W register, with subsequent arguments being passed in the argument area of the called function.

In the case of a variable argument list, which is defined by the ellipsis symbol ..., the calling
function builds up the variable argument list and passes a pointer to the variable part of the argument
list in btemp. Btemp is the label at the start of the temp psect (the psect used for temporary data).

Take, for example, the following ANSI-style function:

void test(char a, int b){
}

The function test() will receive the parameter b in its function argument block and a in the W
register. A call:

test(’a’, 8);

would generate code similar to:

movlw 08h
movff wreg,?_test
movlw 0h
movff wreg,?_test+1
movlw 061h
call (_test)

In this example, the parameter b is held in the memory locations ?_test and ?_test+1.
If you need to determine, for assembler code for example, the exact entry or exit code within a

function or the code used to call a function, it is often helpful to write a dummy C function with the
same argument types as your assembler function, and compile to assembler code with the PICC18
-S option, allowing you to examine the assembler code.

57

Functions C Language Features

3.6.2 Function Return Values
Function return values are passed to the calling function as follows:

3.6.2.1 8-Bit Return Values

Eight-bit values are returned from a function in the W register. For example, the function:

char return_8(void){
return 0;

}

will exit with the following code:

movlw 0
return

3.6.2.2 16-Bit and 32-bit Return Values

16-bit and 32-bit values are returned in temporary memory locations, with the least significant word
in the lowest memory location. For example, the function:

int return_16(void){
return 0x1234;

}

will exit with the following code:

movlw 34h
movwf btemp
movlw 12h
movwf btemp+1
return

3.6.2.3 Structure Return Values

Composite return values (struct and union) of size 4 bytes or smaller are returned in memory as
with 16-bit and 32-bit return values. For composite return values of greater than 4 bytes in size,
the structure or union is copied into the struct psect. Data is copied using the library routine
structcopy which uses FSR0 for the source address, FSR1 for the destination address and W for
the structure size. For example:

58

C Language Features Functions

struct fred {
int ace[4];

};
struct fred return_struct(void){

struct fred wow;
return wow;

}

will exit with the following code:

movlw low(?a_return_struct)
movwf fsr0l
movlw high(?a_return_struct)
movwf fsr0h
movlw structret
movwf fsr1l
clrf fsr1h
movlw 8
global structcopy
call structcopy

3.6.3 Memory Models and Usage
The compiler makes few assumptions about memory. With the exception of variables declared using
the @address construct, absolute addresses are not allocated until link time.

The memory used is based upon information in the chipinfo file (which defaults to picc-18.ini in
the DAT directory). The linker will automatically locate code and const-qualified data into all the
available memory pages and ensure that psects do not straddle any memory boundary.

Temporary variables created and used by the compiler are placed in the access bank to increase
efficiency.

There are two memory models available for HI-TECH PICC-18 STD: small and large. The
default memory model is large. The memory model is selected via the -Bmodel command line
option. 2.4.1.

In large memory model, all objects qualified near are placed in a “near” psect (e.g. rbss,
rdata) which are positioned in the access bank. These objects can be efficiently accessed using less
generated code than other objects. All other objects are placed in the PIC18’s banked memory space
in the following manner. Each module can allocate up to one bank of initialized (data psect), and
one bank of uninitialized (bss psect), global or static local objects. Any object that is larger than
one bank in size (e.g. an array) is placed in a separate area (in one of the “big” psects) and this area
can grow across bank boundaries to a size limited only by the available space on the device. Any

59

Register Usage C Language Features

single byte objects are also placed in one of the “big” psects (“big” refers to the size of the psect,
not the size of the objects within the psect). All auto and parameter variables from all functions are
overlapped by the linker if possible and then placed into an available RAM bank.

In small model, all objects qualified near are placed in a “near” psect (e.g. rbss, rdata) which
are positioned in the access bank as per the large model. The global and static local initialized
and uninitialized objects are also placed in the access bank as are all single byte objects. Objects
larger than the access bank size are positioned in a separate area (in one of the “big” psects) and this
area can grow across bank boundaries to a size limited only by the available space on the device. All
auto and parameter variables are positioned as per the large model.

3.7 Register Usage
The W register is used for register-based function argument passing and for function return values.
This register should be preserved by any assembly language routines which are called.

3.8 Operators
HI-TECH PICC-18 STD supports all the ANSI operators. The exact results of some of these are
implementation defined. The following sections illustrate code produced by the compiler.

3.8.1 Integral Promotion
When there is more than one operand to an operator, they typically must be of exactly the same type.
The compiler will automatically convert the operands, if necessary, so they have the same type. The
conversion is to a “larger” type so there is no loss of information. Even if the operands have the same
type, in some situations they are converted to a different type before the operation. This conversion
is called integral promotion. HI-TECH PICC-18 STD performs these integral promotions where
required. If you are not aware that these changes of type have taken place, the results of some
expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned varieties
of char, short int or bitfield types to either signed int or unsigned int. If the result of the
conversion can be represented by a signed int, then that is the destination type, otherwise the
conversion is to unsigned int.

Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)

count++;

60

C Language Features Operators

The unsigned char result of a - b is 206 (which is not less than 10), but both a and b are con-
verted to signed int via integral promotion before the subtraction takes place. The result of the
subtraction with these data types is -50 (which is less than 10) and hence the body of the if() state-
ment is executed. If the result of the subtraction is to be an unsigned quantity, then apply a cast.
For example:

if((unsigned int)(a - b) < 10)
count++;

The comparison is then done using unsigned int, in this case, and the body of the if() would not be
executed.

Another problem that frequently occurs is with the bitwise compliment operator, “~”. This
operator toggles each bit within a value. Consider the following code.

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)

count++;

If c contains the value 55h, it often assumed that ~c will produce AAh, however the result is FFAAh
and so the comparison above would fail. The compiler may be able to issue a mismatched compari-
son error to this effect in some circumstances. Again, a cast could be used to change this behaviour.

The consequence of integral promotion as illustrated above is that operations are not performed
with char-type operands, but with int-type operands. However there are circumstances when the
result of an operation is identical regardless of whether the operands are of type char or int. In
these cases, HI-TECH PICC-18 STD will not perform the integral promotion so as to increase the
code efficiency. Consider the following example.

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted to unsigned
int, the addition performed, the result of the addition cast to the type of a, and then the assignment
can take place. Even if the result of the unsigned int addition of the promoted values of b and c
was different to the result of the unsigned char addition of these values without promotion, after
the unsigned int result was converted back to unsigned char, the final result would be the same.
An 8-bit addition is more efficient than a 16-bit addition and so the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion would have
to be performed to comply with the ANSI standard.

61

Psects C Language Features

Table 3.9: Integral division
Operand 1 Operand 2 Quotient Remainder

+ + + +
- + - -
+ - - +
- - + -

3.8.2 Shifts applied to integral types
The ANSI standard states that the result of right shifting (> > operator) signed integral types is
implementation defined when the operand is negative. Typically, the possible actions that can be
taken are that when an object is shifted right by one bit, the bit value shifted into the most significant
bit of the result can either be zero, or a copy of the most significant bit before the shift took place.
The latter case amounts to a sign extension of the number.

PICC-18 performs a sign extension of any signed integral type (for example signed char,
signed int or signed long). Thus an object with the signed int value 0124h shifted right one
bit will yield the value 0092h and the value 8024h shifted right one bit will yield the value C012h.

Right shifts of unsigned integral values always clear the most significant bit of the result.
Left shifts (< < operator), signed or unsigned, always clear the least significant bit of the result.

3.8.3 Division and modulus with integral types
The sign of the result of division with integers when either operand is negative is implementation
specific. 3.9 shows the expected sign of the result of the division of operand 1 with operand 2 when
compiled with PICC-18.

In the case where the second operand is zero (division by zero), the result will always be zero.

3.9 Psects
The compiler splits code and data objects into a number of standard program sections referred to
as psects. The HI-TECH assembler allows an arbitrary number of named psects to be included in
assembler code. The linker will group all data for a particular psect into a single segment.

•

If you are using PICC18 to invoke the linker, you don’t need to worry about the informa-
tion documented here, except as background knowledge. If you want to run the linker
manually (this is not recommended), or write your own assembly language subroutines,

62

C Language Features Psects

you should read this section carefully.

A psect can be created in assembler code by using the PSECT assembler directive (see Section
4.3.8.3). In C, user-defined psects can be created by using the #pragma psect preprocessor di-
rective, see Section 3.12.3.3.

3.9.1 Compiler-generated Psects
The code generator places code and data into psects with standard names which are subsequently
positioned by the default linker options. These psects are described below.

The compiler-generated psects which are placed in ROM are:

powerup Which contains executable code for the standard or user-supplied power-up routine.

idata These psects contain the ROM image of any initialised variables. These psects are copied into
the data psects at startup.

irdata These psects contain the ROM image of any initialised near variables. These psects are
copied into the rdata psects at startup.

ibigdata These psects contain the ROM image of initialised objects which at runtime reside in the
bigdata psect. This includes global or static local char objects or char arrays, and arrays
whose size exceeds the size of a RAM bank.

ifardata This psect contains the ROM image of initialised objects which at runtime reside in the
fardata psect.

text Is a global psect used for executable code and library functions.

const These psects hold objects that are declared const and string literals which are not modifiable.

config Used to store the configuration words.

idloc Used to store the ID location words.

eeprom_data Used to store data to be programmed into the EEPROM data area.

intcode Is the psect which contains the executable code for the entry point to the default or high-
priority interrupt service routine. This psect is linked to the interrupt vector at address 08H.

intcodelo Is the psect which contains the executable code the low-priority interrupt service routine.
This psect is linked to the interrupt vector at address 018H.

63

Psects C Language Features

init Used by initialisation code which, for example, clears RAM.

end_init Used by initialization code which, for example, clears RAM.

clrtext Used by some startup routines for copying the data psects.

The compiler-generated psects which are placed in RAM are:

rbss These psects contain any uninitialized near variables. They reside in the access bank.

bigbss These psects contain any uninitialized global or static local char objects or char arrays,
and arrays whose size exceeds the size of a RAM bank. This psect is linked into a psect
class which does not have RAM bank boundaries. Accessing objects in this area may be less
efficient that accessing objects in the data psect.

farbss This psect contains any uninitialized objects which have been declared as far to be posi-
tioned in external code space. The location of this psect must be be specified to the compiler
with a --RAM option which defines an extra address range beginning at an address greater than
the top address of program memory.

fardata This psect contains initialized objects which have been declared as far to be positioned in
external code space. As with farbss, the address range to accomodate this external memory
must first be specified in a --RAM option.

bss These psects contain any uninitialized variables not contained in the above psects.

rdata These psects contain any initialised near variables. They reside in the access bank.

bigdata These psects contain any initialized global or static local char objects or char arrays,
and arrays whose size exceeds the size of a RAM bank. This psect is linked into a psect
class which does not have RAM bank boundaries. Accessing objects in this area may be less
efficient that accessing objects in the data psect.

data This psect contains initialised variables for a program that are not contained in any of the above
psects. This psect will be wholly contained within a RAM bank and so that it can be accessed
more efficiently.

nvrram This psect holds near persistent variables. It is not cleared or otherwise modified by
the runtime startup code.

nvbit This psect holds persistent bit objects. It is not cleared or otherwise modified at startup.

nvram This psect is used to store persistent variables. It is not cleared or otherwise modified at
startup.

64

C Language Features Interrupt Handling in C

rbit This psect is used to store all bit variables. All bit objects are near by default and are placed
in the access bank.

struct Contains any structure larger than 4 bytes in size which is returned from a function.

intsave_regs Holds the registers (including temporary locations) saved by the interrupt service rou-
tine.

temp Is used to store scratch variables used by the compiler. These include function return values
larger than a byte and values passed to and returned from library routines. This psect will be
positioned in the access bank.

3.10 Interrupt Handling in C
The compiler incorporates features allowing interrupts to be handled from C code. Interrupt func-
tions are often called interrupt service routines (ISR). Interrupts are also known as exceptions. PIC18
devices have two separate interrupt vectors and a priority scheme to dictate how the interrupt code
is called.

3.10.1 Interrupt Functions
The function qualifier interrupt may be applied to at most two functions to allow them to be called
directly from the hardware interrupts. The compiler will process the interrupt function differently
to any other functions, generating code to save and restore any registers used and exit using the
retfie instruction instead of a retlw or return instructions at the end of the function.

(If the PICC18 option --STRICT is used, the interrupt keyword becomes __interrupt. Wher-
ever this manual refers to the interrupt keyword, assume __interrupt if you are using --STRICT.)

The PIC18 devices have two interrupts, each with their own vector location. These have different
priorities and are known as low-priority and high-priority interrupts. If the PIC18 is placed in com-
patibility mode, only one interrupt is available and this defaults to being the high-priority interrupt.
An interrupt function must be declared as type interrupt void and may not have parameters.
In addition, the keyword low_priority may be used to indicate that the interrupt function is to
be linked with the low-priority vector when not in compatibility mode. Interrupt functions may
not be called directly from C code, but they may call other functions themselves, subject to certain
limitations. Once defined, the interrupt function is linked to the corresponding interrupt vector.

An example of a high-priority (default) interrupt function is shown here.

volatile long tick_count;
void interrupt tc_int(void){

++tick_count;

65

Interrupt Handling in C C Language Features

}

A low-priority interrupt function may be defined as in the following example.

void interrupt low_priority tc_clr(void){
tick_count = 0;

}

It is up to the user to determine and set the priority levels associated with each interrupt source on
the PIC18 devices. Defining a low-priority interrupt function does not put the PIC into interrupt-
priority mode.

Low- and high-priority interrupt functions have their own separate areas of memory in which
to save context, thus a high-priority interrupt function may interrupt a low-priority interrupt
function with no loss of data. The high-priority interrupt can also employ the devices’ shadow
registers to enable rapid context switching during the entry and exit of the service routine.

The interrupt_level pragma may be used with either or both interrupt functions in the
usual way.

3.10.2 Context Saving on Interrupts
The PIC18 processor only saves the program counter on its stack whenever an interrupt occurs.
Other registers and objects must be saved in software. PICC-18 automatically determines which
registers and objects are used by an interrupt function and saves these appropriately.

If the interrupt routine calls other functions and these functions are defined before the interrupt
code in the same module, then any registers used by these functions will be saved as well. If the
called functions have not been seen by the compiler, a worst case scenario is assumed and all registers
and objects will be saved.

PICC-18 does not scan assembly code which is placed in-line within the interrupt function for
register usage. Thus, if you include in-line assembly code into an interrupt function, you may have
to add extra assembly code to save and restore any registers or locations used if they are not already
saved by the interrupt entry routine.

By default, the high-priority interrupt function will utilize a fast interrupt save/restore tech-
nique where the W, STATUS and BSR registers are saved and restored via the devices’ internal
shadow registers. This minimizes code size and reduces the instruction cycles to access the high-
priority service routine. Note that for some older devices, the compiler will not apply fast interrupt
save/restore if compiling for the MPLAB ICD2 debugger, as the debugger istself utilizes these
shadow registers.

The high-priority or compatibility-mode interrupt function places a small routine in a psect
called intcode which is linked directly to the interrupt vector. This code saves the STATUS (if fast
interrupts are not used) and PCLATH registers then jumps to code placed in a text psect. This code

66

C Language Features Interrupt Handling in C

will save further context if it is necessary and then jump to code directly related to the interrupt
function. The interrupt function code is also placed in a text psect.

All objects saved are done so to locations at an offset to a symbol called saved_regsh, except
for the BSR register. If fast interrupts are not used, BSR is saved to a location symbol called
saved_bsrh.

The low-priority interrupt function places the code to save the STATUS and PCLATH registers
in a psect called intcodelo, which is directly linked to the low-priority interrupt vector. Operation
is then similar to the high-priority interrupt case, only with objects being saved offset to the symbol
saved_regsl and the BSR register saved to a location symbol called saved_bsrl.

3.10.3 Context Retrieval
Any objects saved by the compiler are automatically restored before the interrupt function returns.
The restoration code is placed into a text psect. The retfie instruction placed at the end of the
interrupt code will reload the program counter and the program will return to the location at which
it was when the interrupt occurred.

3.10.4 Interrupt Levels
Normally it is assumed by the compiler that any interrupt may occur at any time, and an error will
be issued by the linker if a function appears to be called by an interrupt function and by main-line
code, or another interrupt. Since it is often possible for the user to guarantee this will not happen for
a specific routine, the compiler supports an interrupt level feature to suppress the errors generated.

This is achieved with the #pragma interrupt_level directive. There are two interrupt levels
available, and any interrupt functions at the same level will be assumed by the compiler to be
mutually exclusive. This exclusion must be guaranteed by the user, i.e. the compiler is not able to
control interrupt priorities. Each interrupt function may be assigned a single level, either 0 or 1.

In addition, any non-interrupt functions that are called from an interrupt function and also
from main-line code may also use the #pragma interrupt_level directive to specify that they
will never be called by interrupts of one or more levels. This will prevent the linker from issuing an
error message because the function was included in more than one call graph. Note that it is entirely
up to the user to ensure that the function is not called by both main-line and interrupt code at the
same time. This will normally be ensured by disabling interrupts before calling the function. It is
not sufficient to disable interrupts inside the function after it has been called.

An example of using the interrupt levels is given below. Note that the #pragma directive applies
to only the immediately following function. Multiple #pragma interrupt_level directives may
precede a non-interrupt function to specify that it will be protected from multiple interrupt levels.

/* non-interrupt function called by interrupt and main-line code */

67

Interrupt Handling in C C Language Features

#pragma interrupt_level 1
void bill(){

int i;
i = 23;

}
/* two interrupt functions calling same non-interrupt function */
#pragma interrupt_level 1
void interrupt fred(void){

bill();
}
#pragma interrupt_level 1
void interrupt joe(void){

bill();
}
main(){

bill();
}

Both the low- and high-priority interrupt functions may use the interrupt level feature.

3.10.5 Interrupt Registers
It is up to the user how they want the interrupt source configured. All the registers and bits associated
with interrupts are defined in the specific header file which can be accessed by including <htc.h>.
The following is an example of setting up the interrupts associated with the change-on-PORTB
source. Interrupt priorities are used and the interrupt source is made a low priority. See your PIC18
datasheet for more information.

void main(void){
TRISB = 0x80; // Only RB7 will interrupt on change
IPEN = 1; // Interrupt priorities enabled
PEIE = 1; // enable peripheral interrupts
RBIP = 0; // make this a low priority interrupt
RBIE = 1; // enable PORTB change interrupt
RBIF = 0; // clear any pending events
GIEL = 1; // enable low-priority interrupts
while(1)continue; // sit here and wait for interrupt

}
void interrupt low_priority b_change(void){

if(RBIE && RBIF){

68

C Language Features Mixing C and Assembler Code

PORTB; // Read PORTB to clear any mismatch
RBIF = 0; // clear event flag
// process interrupt here

}
}

3.11 Mixing C and Assembler Code
Assembly language code can be mixed with C code using three different techniques.

3.11.1 External Assembly Language Functions
Entire functions may be coded in assembly language as separate .as source files, assembled by the
assembler (ASPIC18) and combined into the binary image using the linker. This technique allows
arguments and return values to be passed between C and assembler code.

The following are guidelines that must be adhered to when writing a routine in assembly code
that is callable from C code.

• select, or define, a suitable psect for the executable assembly code

• select a name (label) for the routine so that its corresponding C identifier is valid

• ensure that the routine’s label is globally accessable from other modules

• select an appropriate equivalent C prototype for the routine on which argument passing can be
modelled

• ensure any symbol used to hold arguments to the routine is globally accessable

• ensure any symbol used to hold a return value is globally accessable

• optionally, use a signature value to enable type checking when the function is called

• write the routine ensuring arguments are read from the correct location, the return value is
loaded to the correct storage location before returning

• ensure any local variables required by the routine have space reserved by the appropriate
directive

A mapping is performed on the names of all C functions and non-static global variables. See
3.11.2 for a description of mappings between C and assembly identifiers.

69

Mixing C and Assembler Code C Language Features

TUT•RIAL

An assembly routine is required which can add two 16-bit values together. The routine
must be callable from C code. Both the values are passed in as arguments when the
routine is called from the C code. The assembly routine should return the result of the
addition as a 16-bit quanity.

Most compiler-generated executable code is placed in a psect called text (see Section
3.9.1). As we do not need to have this assembly routine linked at any particular location,
we can use this psect so the code is bundled with other executbale code and stored
somewhere in the program space. This way we do not need to use any additional linker
options. So we use an ordinary looking psect that you would see in assembly code
produced by the compiler. The psect’s name is text, will be linked in the CODE class,
which will reside in a memory space that has 1 bytes per addressable location:

PSECT text,local,class=CODE,delta=1

Now we would like to call this routine add. However in assembly we must choose the
name _add as this then maps to the C identifier add since the compiler prepends an
underscore to all C identifiers when it creates assembly labels. If the name add was
chosen for the assembler routine the it could never be called from C code. The name of
the assembly routine is the label that we will assocaite with the assembly code:

_add:

We need to be able to call this from other modules, so make this label globally access-
able:

GLOBAL _add

By compiling a dummy C function with a similar prototype to how we will be calling
this assembly routine, we can determine the signature value. We add an assembler
directive to make this signature value known:

SIGNAT _add,8298

When writing the function, you can find that the parameters will be loaded into the
function’s parameter area by the calling function, and the result should be placed in
btemp.

To call an assembly routine from C code, a declaration for the routine must be provided. This
ensures that the compiler knows how to encode the function call in terms of paramters and return
values, however no other code is necessary.

If a signature value is present in the assembly code routine, its value will be checked by the linker
when the calling and called routines’ signatures can be compared.

70

C Language Features Mixing C and Assembler Code

TUT•RIAL

To continue the previous example, here is a code snippet that declares the operation of
the assembler routine, then calls the routine.

extern unsigned int add(unsigned a, unsigned b);
void main(void)
{

int a, result;
a = read_port();
result = add(5, a);

}

3.11.2 Accessing C objects from within Assembly Code
Global C objects may be directly accessed from within assembly code using their name prepended
with an underscore character. For example, the object foo defined globally in a C module:

int foo;

may be access from assembler as follows.

GLOBAL _foo
movwf _foo

If the assembler is contained in a different module, then the GLOBAL assembler directive should be
used in the assembler code to make the symbol name available, as above. If the object is being
accessed from in-line assembly in another module, then an extern declaration for the object can be
made in the C code, for example:

extern int foo;

This declaration will only take effect in the module if the object is also accessed from within C code.
If this is not the case then, an in-line GLOBAL assembler directive should be used. Care should be
taken if the object is defined in a bank other than 0. The address of a C object includes the bank
information which must be stripped before the address can be used in most PIC18 instructions. The
exceptions are the movff and lsfr instructions. Failure to do this may result in fixup errors issued
by the linker. If in doubt as to writing assembler which accesses C objects, write code in C which
performs a similar task to what you intend to do and study the assembler listing file produced by the
compiler.

71

Mixing C and Assembler Code C Language Features

•

C identifiers are assigned different symbols in the output assembly code so that an as-
sembly identifier cannot conflict with an identifier defined in C code. If assembly pro-
grammers choose identifier names that do not begin with an underscore, these identifiers
will never conflict with C identifiers. Importantly, this implies that the assembly identi-
fier, i, and the C identifier i relate to different objects at different memory locations.

3.11.2.1 Accessing special function register names from assembler

If writing separate assembly modules, SFR definitions will not automatically be present. If writing
assembler code from within a C module, SFRs may be accessed by referring to the symbols defined
by the chip-specific C header files. Whenever you include <htc.h> into a C module, all the available
SFRs are defined as absolute C variables. As the contents of this file is C code, it cannot be included
into an assembler module, but assembler code can uses these definitions. To use a SFR in in-line
assembler code from within the same C module that includes <htc.h>, simply use the symbol with
an underscore character prepended to the name. For example:

#include <htc.h>
void main(void)
{

PORTA = 0x55;
asm("movlw 0xAA");
asm("movwf _PORTA");
...

}

Alternately, an assembler equivalent of htc.h is provided. If an assembler source includes the file
aspic18.h, equivalent assembler definitions of the devices’ SFRs will be available.

3.11.3 #asm, #endasm and asm()
PIC18 instructions may also be directly embedded “in-line” into C code using the directives #asm,
#endasm or the statement asm().

The #asm and #endasm directives are used to start and end a block of assembly instructions which
are to be embedded into the assembly output of the code generator. The #asm and #endasm construct
is not syntactically part of the C program, and thus it does not obey normal C flow-of-control rules,
however you can easily include multiple instructions with this form of in-line assembly.

72

C Language Features Preprocessing

The asm() statement is used to embed a single assembler instruction. This form looks and be-
haves like a C statement, however each instruction must be encapsulated within an asm() statement.

•

You should not use a #asm block within any C constructs such as if, while, do etc.
In these cases, use only the asm("") form, which is a C statement and will correctly
interact with all C flow-of-control structures.

The following example shows both methods used to rotate a byte left through carry:

unsigned char var;
void main(void){

var = 1;
#asm // like this...

movlb (_var) > > 8
rlcf (_var)&0ffh,f

#endasm
asm(“movlb (_var)> >8”);
asm(“rlcf (_var)&0ffh,f”);

}

When using in-line assembler code, great care must be taken to avoid interacting with compiler-
generated code. If in doubt, compile your program with the PICC18 -S option and examine the
assembler code generated by the compiler.

3.12 Preprocessing

All C source files are preprocessed before compilation. Assembler files can also be preprocessed if
the -P command-line option is issued.

3.12.1 Preprocessor Directives

HI-TECH PICC-18 STD accepts several specialised preprocessor directives in addition to the stan-
dard directives. All of these are listed in the table below.

Macro expansion using arguments can use the # character to convert an argument to a string, and
the ## sequence to concatenate tokens.

73

Preprocessing C Language Features

Table 3.10: Preprocessor directives
Directive Meaning Example
preprocessor null directive, do

nothing
#

#assert generate error if condition false #assert SIZE > 10
#asm signifies the beginning of in-line

assembly
#asm
mov r0, r1h
#endasm

#define define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif short for #else #if see #ifdef
#else conditionally include source lines see #if
#endasm terminate in-line assembly see #asm
#endif terminate conditional source

inclusion
see #if

#error generate an error message #error Size too big
#if include source lines if constant

expression true
#if SIZE < 10
c = process(10)
#else
skip();
#endif

#ifdef include source lines if preprocessor
symbol defined

#ifdef FLAG
do_loop();
#elif SIZE == 5
skip_loop();
#endif

#ifndef include source lines if preprocessor
symbol not defined

#ifndef FLAG
jump();
#endif

#include include text file into source #include <stdio.h>
#include "project.h"

#line specify line number and filename
for listing

#line 3 final

#nn (where nn is a number) short for
#line nn

#20

#pragma compiler specific options See section 3.12.3
#undef undefines preprocessor symbol #undef FLAG
#warning generate a warning message #warning Length not set

74

C Language Features Preprocessing

3.12.2 Predefined Macros
The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional compi-
lation based on chip type etc. The symbols listed in the table below show the more common symbols
defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise stated.

Symbol When set Usage
continued. . .
HI_TECH_C Always To indicate that the compiler in use is HI-

TECH C.
_HTC_VER_MAJOR_ Always To indicate the compiler’s major version

number.
_HTC_VER_MINOR_ Always To indicate the compiler’s minor version

number.
_HTC_VER_PATCH_ Always To indicate the patch level of the com-

piler’s version number.
_HTC_EDITION_ Always To indicate which of PRO, STD or Lite

compiler is in use. Values of 2, 1 or 0 are
assigned respectively.

LARGE_DATA --CP=24 To indicate that program space pointers are
24 bits in size.

SMALL_DATA --CP=16 To indicate that program space pointers are
16 bits in size.

LARGE_MODEL -Bl To indicate code is compiled in large mem-
ory model.

SMALL_MODEL -Bs To indicate code is compiled in small
memory model.

__PICC18__ Always To indicate the use of the HI-TECH PICC-
18 compiler.

MPC Always To indicate the code is compiled for the
Microchip PIC family.

_PIC18 Always To indicate that this is a PIC18 device.
_ROMSIZE Always To indicate the number of bytes of program

space this device has.
_RAMSIZE Always To indicate the number of bytes of data

space this device has.
_EEPROMSIZE If EEPROM is present To indicate if EEPROM memory is present

and how many bytes are available.

75

Preprocessing C Language Features

Symbol When set Usage
_FLASH_ERASE_SIZE Always To indicate the number of bytes erased in a

single flash-erase operation at runtime.
_FLASH_WRITE_SIZE Always To indicate the number of bytes erased in a

single flash-write operation at runtime.
__MPLAB_ICD2__ --DEBUGGER=ICD2 To indicate that the code is being generated

for the Microchip ICD2 In-Circuit debug-
ger.

MPLAB_ICD --DEBUGGER=ICD2 As above, value is 2
_ICDROM_START --DEBUGGER=ICD2 Defined the start address of the ICD2’s re-

served program space
_ICDROM_END --DEBUGGER=ICD2 Defined the end address of the ICD2’s re-

served program space
_ERRATA_TYPES Always Defines a bitmask to show which types

of silicon errata may be applicable to this
build.

_chipname When chip selected To indicate the specific chip type selected
__FILE__ Always To indicate this source file being prepro-

cessed.
__LINE__ Always To indicate this source line number.
__DATE__ Always To indicate the current date, e.g. May 21

2004
__TIME__ Always To indicate the current time, e.g.

08:06:31.

3.12.3 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standard #pragma facility. The format of a
pragma is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain options. A
list of the keywords is given in Table 3.12. Those keywords not discussed elsewhere are detailed
below.

76

C Language Features Preprocessing

Table 3.12: Pragma directives
Directive Meaning Example

interrupt_level Allow interrupt function to be
called from main-line code. See
Section 3.10.4.

#pragma inline(fabs)

jis Enable JIS character handling in
strings

#pragma jis

nojis Disable JIS character handling (de-
fault)

#pragma nojis

printf_check Enable printf-style format string
checking

#pragma
printf_check(printf) const

psect Rename compiler-defined psect #pragma psect text=mytext
regsused Specify registers which are used in

an interrupt
#pragma regsused fsr0,fsr1

switch Specify code generation for switch
statements

#pragma switch direct

3.12.3.1 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other na-
tional characters, the #pragma jis directive will enable proper handling of these characters, specif-
ically not interpreting a backslash, \, character when it appears as the second half of a two byte
character. The nojis directive disables this special handling. JIS character handling is disabled by
default.

3.12.3.2 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner of printf(). Although the format string is interpreted at runtime, it can be compile-time
checked for consistency with the remaining arguments.

This directive enables this checking for the named function, e.g. the system header file <stdio.h>
includes the directive #pragma printf_check(printf) const to enable this checking for printf().
You may also use this for any user-defined function that accepts printf-style format strings. The
qualifier following the function name is to allow automatic conversion of pointers in variable argu-
ment lists. The above example would cast any pointers to strings in RAM to be pointers of the type
(const char *)

77

Preprocessing C Language Features

•

Note that the warning level must be set to -1 or below for this option to have any visible
effect. See Section 2.4.54.

3.12.3.3 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as described
in Section 3.9.1. This is fine for most applications, but sometimes it is necessary to redirect variables
or code into different psects when a special memory configuration is desired. Code and data for any
of the standard C psects may be redirected using a #pragma psect directive.

The general form of this pragma looks like:

#pragma psect default_psect=new_psect

and instructs the code generator that anything that would normally appear in the compiler-generated
psect default_psect, will now appear in a new psect called new_psect. This psect will be
identical to default_psect in terms of its options, however will have a different name. Thus, this
new psect can be explicitly positioned by the linker without affecting the original psect’s location.

If the name of the default psect that is being redirected contains a counter, e.g. absbss0,
absbss1, absbss2, then the placeholder %u should be used in the name of the psect at the posi-
tion of the counter, e.g. absbss%u. Any default psect, regardless of the counter value, will match
such a psect name.

This pragma remains in force until the end of the module and any given psect should only be
redirected once in a particular module. All psect redirections for a particular module should be
placed at the top of the source file, below any #include statements and above any other declarations.

TUT•RIAL

A particular function, called read_port(), needs to be located at the absolute address
0x400 in a program. Using the #pragma psect directive in the source code, and adding
a new linker option can do this. First write the function in the usual way. Place the
function definition in a separate module. There is obvioulsy something special about
this function so a module all to itself is probably a good idea anyway.

unsigned char read_port(void)
{

return PORTA;
}

78

C Language Features Preprocessing

Now, how do we know in which psect the code associated with the function will be
placed? Compile you program, inlcuding this new module and generate an assembly
list file, see Section 2.4.18.

Look for the definition of the function. A function starts with an assembly label which
is the name of the function prepended with an underscore. In this example, the label
appears on line 37.

36 psect text
37 0002 _read_port:

Look above this to see the first PSECT directive you encounter. This will indicate the
name of the psect in which the code is located. In this case it is the psect called text.

So let us redirect this psect into one with a unique and more meaningful name. In the C
module that contains the definition for read_port() place the following pragma:

#pragma psect text=readport

at the top of the module, before the function definition. With this, the read_port()
function will be placed in the psect called readport. Confirm this in the new assembly
list file.

Now we can tell the linker where we would like this psect positioned. Issue an additional
option to the command-line driver to place this psect at address 0x400.

-L-preadport=0400h

Then generate and check the map file, see Section 2.4.9. You should see the additional
linker command (minus the leading -L part of the option) present in the section after
Linker command line:. You should also see the remapped psect name appear in the
source file list of psects, e.g.:

Name Link Load Length Selector Space Scale
/tmp/cgt9e31jr.obj
main.obj maintext 0 0 2 0 0

portread 400 400 2 800 0

Check the link address to ensure it is that requested, in this case, 0x400.

3.12.3.4 The #pragma regsused Directive

HI-TECH C will automatically save context when an interrupt occurs. The compiler will determine
only those registers and objects which need to be saved for the particular interrupt function defined.

79

Preprocessing C Language Features

Table 3.13: Valid Register Names
Register Name Description

wreg W register
status STATUS register
pclat PCLATH register
prodl, prodh product result registers
btemp, btemp+1...btemp+11 btemp temporary registers 0 to 11
xbtemp btemp temporary registers 12+
fsr0, fsr1, fsr2 indirect data pointers 0, 1 and 2

Table 3.14: switch types
switch type description
auto use smallest code size method (default)
direct table lookup (fixed delay)

The #pragma regsused directive allows the programmer to indicate register usage for functions
that will not be “seen” by the code generator, for example if they were written in assembly code.

The general form of the pragma is:

#pragma regsused register_list

where register_list is a space-separated list of registers names. Those registers not listed are
assumed to be unused by the function or routine. The code generator may use the unlisted registers
to hold values across a function call. Hence, if the routine does in fact use these registers, unreliable
program execution may eventuate.

The register names are not case sensitive and a warning will be produced if the register name is
not recognised. A blank list indicates that the specified function or routine uses no registers.

3.12.3.5 The #pragma switch Directive

Normally the compiler decides the code generation method for switch statements which results in
the smallest possible code size. The #pragma switch directive can be used to force the compiler to
use one particular method. The general form of the switch pragma is:

#pragma switch switch_type

where switch_type is one of the available switch methods listed in Table 3.14.

80

C Language Features Linking Programs

Specifying the direct option to the #pragma switch directive forces the compiler to generate
the table look-up style switch method. This is mostly useful where timing is an issue for switch
statements (i.e.: state machines).

This pragma affects all code generated onward. The auto option may be used to revert to the
default behaviour.

3.13 Linking Programs

The compiler will automatically invoke the linker unless requested to stop after producing assembler
code (PICC18 -S option) or object code (PICC18 -C option).

HI-TECH C, by default, generates Intel HEX output files. Use the --OUTPUT= option to specify
a different output format.

After linking, the compiler will automatically generate a memory usage map which shows the
address used by, and the total sizes of, all the psects which are used by the compiled code.

The program statistics shown after the summary provides more concise information based on
each memory area of the device. This can be used as a guide to the available space left in the device.

More detailed memory usage information, listed in ascending order of individual psects, may be
obtained by using the PICC18 --SUMMARY=psect option. Alternately, generate a map file for the
complete memory specification of the program.

3.13.1 Replacing Library Modules

Although HI-TECH C comes with a librarian (LIBR) which allows you to unpack library files and
replace modules with your own modified versions, you can easily replace a library module that is
linked into your program without having to do this. If you have a source file which contains an
alternate implementation of a library routine, by adding this source file to the command-line list of
source files, the routine provided will be used in preference to the equivalent routine in the library.

•

This method works due to the way the linker scans source and library files. When trying
to resolve a symbol (in this instance a function name) the linker first scans all source
modules for the definition. Only if it cannot resolve the symbol in these files does it
then search the library files. Even though the symbol may be defined in a source file
and a library file, the linker will not search the libraries and no multiply defined symbol
error will result. This is not true if a symbol is defined twice in source files.

81

Linking Programs C Language Features

For example, if you wished to make changes to the library function max() which resides in the file
max.c in the SOURCES directory, you could make a copy of this source file, make the appropriate
changes and then compile and use it as follows.

PICC18 --chip=18F242 main.c init.c max.c

The code for max() in max.c will be linked into the program rather than the max() function con-
tained in the standard libraries. Note, that if you replace an assembler module, you may need the
-P option to preprocess assembler files as the library assembler files often contain C preprocessor
directives.

3.13.2 Signature Checking
The compiler automatically produces signatures for all functions. A signature is a 16-bit value
computed from a combination of the function’s return data type, the number of its parameters and
other information affecting the calling sequence for the function. This signature is output in the
object code of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. HI-TECH PICC-18 STD is only
likely to issue a mismatch error from the linker when the routine is either a precompiled object file
or an assembly routine. Other function mismatches are reported by the code generator.

TUT•RIAL

It is sometimes necessary to write assembly language routines which are called from C
using an extern declaration. Such assembly language functions should include a signa-
ture which is compatible with the C prototype used to call them. The simplest method of
determining the correct signature for a function is to write a dummy C function with the
same prototype and compile it to assembly language using the PICC18 -S option. For
example, suppose you have an assembly language routine called _widget which takes
two int arguments and returns a char value. The prototype used to call this function
from C would be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with two int
arguments and a char return value would be generated. In order to match the correct
signature the source code for widget needs to contain an assembler SIGNAT pseudo-op
which defines the same signature value. To determine the correct value, you would write
the following code:

char widget(int arg1, int arg2)
{
}

82

C Language Features Standard I/O Functions and Serial I/O

Table 3.15: Supported standard I/O functions
Function name Purpose

printf(const char * s, ...) Formatted printing to stdout
sprintf(char * buf, const char * s, ...) Writes formatted text to buf

and compile it to assembler code using

PICC18 -S x.c

The resultant assembler code includes the following line:

SIGNAT _widget,8249

The SIGNAT pseudo-op tells the assembler to include a record in the .obj file which
associates the value 8249 with symbol _widget. The value 8249 is the correct signature
for a function with two int arguments and a char return value. If this line is copied into
the .as file where _widget is defined, it will associate the correct signature with the
function and the linker will be able to check for correct argument passing. For example,
if another .c file contains the declaration:

extern char widget(long);

then a different signature will be generated and the linker will report a signature mis-
match which will alert you to the possible existence of incompatible calling conventions.

3.13.3 Linker-Defined Symbols
The link address of a psect can be obtained from the value of a global symbol with name __Lname
where name is the name of the psect. For example, __Lbss is the low bound of the bss psect. The
highest address of a psect (i.e. the link address plus the size) is symbol __Hname.

If the psect has different load and link addresses the load start address is specified as __Bname.

3.14 Standard I/O Functions and Serial I/O
A number of the standard I/O functions are provided in the C library with the compiler, specifically
those functions intended to read and write formatted text on standard output and input. A list of the
available functions is in Table 3.15. More details of these functions can be found in Appendix A.

Before any characters can be written or read using these functions, the putch() and getch()
functions must be written. Other routines which may be required include getche() and kbhit().

83

Debugging Information C Language Features

You will find samples of serial code which implements the putch() and getch() functions in the
file serial.c in the SAMPLES directory.

3.15 Debugging Information

3.15.1 MPLAB-specific information
Certain options and compiler features are specifically intended to help MPLAB perform symbolic
debugging. The --IDE=MPLAB switch performs two functions, both specific to MPLAB. Since
MPLAB does not read the local symbol information produced by the compiler, this option generates
additional global symbols which can be used to represent most local symbols in a program.

The --IDE=MPLAB switch also alters the line numbering information produced so that MPLAB
can better follow the C source when performing source-level stepping.

This option also adjusts the format for compiler errors so that they can be more readily inter-
preted by the MPLAB IDE.

84

Chapter 4

Macro Assembler

The Macro Assembler included with HI-TECH PICC-18 STD assembles source files for PIC18
MCUs. This chapter describes the usage of the assembler and the directives (assembler pseudo-ops
and controls) accepted by the assembler in the source files.

The HI-TECH C Macro Assembler package includes a linker, librarian, cross reference generator
and an object code converter.

•

Athough the term “assembler” is almost universally used to decribe the tool which con-
verts human-readable mnemonics into machine code, both “assembler” and “assembly”
are used to describe the source code which such a tool reads. The latter is more com-
mon and is used in this manual to describe the language. Thus you will see the terms
assembly language (or just assembly), assembly listing and etc, but assembler options,
assembler directive and assembler optimizer.

4.1 Assembler Usage
The assembler is called ASPIC18 and is available to run on Windows and UNIX machines. Note
that the assembler will not produce any messages unless there are errors or warnings — there are no
“assembly completed” messages.

Typically the command-line driver, PICC18, is used to envoke the assembler as it can be passed
assembler source files as input, however the options for the assembler are supplied here for instances

85

Assembler Options Macro Assembler

where the assembler is being called directly, or when they are specified using the command-line
driver option --SETOPTION, see Section 2.4.50.

The usage of the assembler is similar under all of available operating systems. All command-line
options are recognised in either upper or lower case. The basic command format is shown:

ASPIC18 [options] files

files is a space-separated list of one or more assembler source files. Where more than one source
file is specified the assembler treats them as a single module, i.e. a single assembly will be performed
on the concatenation of all the source files specified. The files must be specified in full, no default
extensions or suffixes are assumed.

options is an optional space-separated list of assembler options, each with a minus sign - as
the first character. A full list of possible options is given in Table 4.1, and a full description of each
option follows.

Table 4.1: ASPIC18 command-line options
Option Meaning Default

-A Produce assembler output Produce object code
-C Produce cross-reference file No cross reference
-Cchipinfo Define the chipinfo file dat\picc-18.ini
-E[file|digit] Set error destination/format
-Flength Specify listing form length 66
-H Output hex values for constants Decimal values
-I List macro expansions Don’t list macros
-L[listfile] Produce listing No listing
-O Perform optimization No optimization
-Ooutfile Specify object name srcfile.obj
-Pprocessor Define the processor
-R Specify non-standard ROM
-Twidth Specify listing page width 80
-V Produce line number info No line numbers
-Wlevel Set warning level threshold 0
-X No local symbols in OBJ file

4.2 Assembler Options
The command-line options recognised by ASPIC18 are as follows.

86

Macro Assembler Assembler Options

-A An assembler file with an extension .opt will be produced if this option is used. This is useful
when checking the optimized assembly produced using the -O assembler option. Thus if both
-A and -O are used with an assembly source file, the file will be optimized and rewritten, with-
out the usual conversion to an object file.
The output file, when this option is used, is a valid assembly file that can be passed to the as-
sembler. This differs to the assembly list file produced by the assembler when the -L assembler
option is used.

-C A cross reference file will be produced when this option is used. This file, called srcfile.crf,
where srcfile is the base portion of the first source file name, will contain raw cross refer-
ence information. The cross reference utility CREF must then be run to produce the formatted
cross reference listing. See Section 4.7 for more information.

-Cchipinfo Specify the chipinfo file to use. The chipinfo file is called picc-18.ini and can be
found in the DAT directory of the compiler distribution.

-E[file|digit] The default format for an error message is in the form:

filename: line: message

where the error of type message occurred on line line of the file filename.
The -E option with no argument will make the assembler use an alternate format for
error and warning messages. Use of the option in this form has a similar effect as the
same option used with command-line driver. See Section 2.4.31 for more information.
Specifying a digit as argument has a similar effect, only it allows selection of pre-set
message formats.
Specifying a filename as argument will force the assembler to direct error and warning
messages to a file with the name specified.

-Flength By default when an assembly list file is requested (see assembler option -L), the listing
format is pageless, i.e. the assembly listing output is continuous. The output may be formatted
into pages of varying lengths. Each page will begin with a header and title, if specified. The
-F option allows a page length to be specified. A zero value of length implies pageless
output. The length is specified in a number of lines.

-H Particularly useful in conjunction with the -A or -L ASPIC18 options, this option specifies that
output constants should be shown as hexadecimal values rather than decimal values.

-I This option forces listing of macro expansions and unassembled conditionals which would other-
wise be suppressed by a NOLIST assembler control. The -L option is still necessary to produce
a listing.

87

HI-TECH C Assembly Language Macro Assembler

-Llistfile This option requests the generation of an assembly listing file. If listfile is specified
then the listing will be written to that file, otherwise it will be written to the standard output.
An assembly listing file contains additional fields, such as the address and opcode fields, which
are not part of the assembly source syntax, hence these files cannot be passed to the assembler
for compilation. See the assembler -A option for generating processed assembly source files
that can be used as source files in subsequent compilation.

-O This requests the assembler to perform optimization on the assembly code. Note that the use of
this option slows the assembly process down, as the assembler must make an additional pass
over the input code. Debug information for assembler code generated from C source code
may become unreliable.

-Ooutfile By default the assembler determines the name of the object file to be created by stripping
any suffix or extension (i.e. the portion after the last dot) from the first source filename and
appending .obj. The -O option allows the user to override the default filename and specify a
new name for the object file.

-Pprocessor This option defines the processor which is being used. The processor type can also be
indicated by use of the PROCESSOR directive in the assembler source file, see Section 4.3.8.24.
You can also add your own processors to the compiler via the compiler’s chipinfo file.

-V This option will include line number and filename information in the object file produced by
the assembler. Such information may be used by debuggers. Note that the line numbers will
correspond with assembler code lines in the assembler file. This option should not be used
when assembling an assembler file produced by the code generator from a C source file, i.e. it
should only be used with hand-written assembler source files.

-Twidth This option allows specification of the assembly list file width, in characters. width
should be a decimal number greater than 41. The default width is 80 characters.

-W[!]warnlevel This option allow the warning threshold level to be set. This will limit the number
of warning messages produce when the assembler is executing. The effect of this option is
similar to the command-line driver’s --WARN option, see Section 2.4.54.

-X The object file created by the assembler contains symbol information, including local symbols,
i.e. symbols that are neither public or external. The -X assembler option will prevent the local
symbols from being included in the object file, thereby reducing the file size.

4.3 HI-TECH C Assembly Language
The source language accepted by the macro assembler, ASPIC18, is described below. All opcode
mnemonics and operand syntax are strictly PIC18 assembly language. Additional mnemonics and

88

Macro Assembler HI-TECH C Assembly Language

Table 4.2: ASPIC18 statement formats
Format 1 label:
Format 2 label: mnemonic operands ; comment
Format 3 name pseudo-op operands ; comment
Format 4 ; comment only
Format 5 <empty line>

assembler directives are documented in this section.

4.3.1 Statement Formats

Legal statement formats are shown in Table 4.2.
The label field is optional and, if present, should contain one identifier. A label may appear

on a line of its own, or precede a mnemonic as shown in the second format.
The third format is only legal with certain assembler directives, such as MACRO, SET and EQU. The

name field is mandatory and should also contain one identifier.
If the assembly file is first processed by the C preprocessor, see Section 2.4.12, then it may also

contain lines that form valid preprocessor directives. See Section 3.12.1 for more information on the
format for these directives.

There is no limitation on what column or part of the line in which any part of the statement
should appear.

4.3.2 Characters

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not
mnemonics and reserved words. Tabs are treated as equivalent to spaces.

4.3.2.1 Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric characters or the
end of a line.

4.3.2.2 Special Characters

There are a few characters that are special in certain contexts. Within a macro body, the character & is
used for token concatenation. To use the bitwise & operator within a macro body, escape it by using
&& instead. In a macro argument list, the angle brackets < and > are used to quote macro arguments.

89

HI-TECH C Assembly Language Macro Assembler

Table 4.3: ASPIC18 numbers and bases
Radix Format

Binary digits 0 and 1 followed by B
Octal digits 0 to 7 followed by O, Q, o or q
Decimal digits 0 to 9 followed by D, d or nothing
Hexadecimal digits 0 to 9, A to F preceded by Ox or followed by H or h

4.3.3 Comments

An assembly comment is initiated with a semicolon that is not part of a string or character constant.
If the assembly file is first processed by the C preprocessor, see Section 2.4.12, then it may also

contain C or C++ style comments using the standard /* ... */ and // syntax.

4.3.3.1 Special Comment Strings

Several comment strings are appended to assembler instructions by the code generator. These are
typically used by the assembler optimizer.

The comment string ;volatile is used to indicate that the memory location being accessed in
the commented instruction is associated with a variable that was declared as volatile in the C
source code. Accesses to this location which appear to be redundant will not be removed by the
assembler optimizer if this string is present.

This comment string may also be used in assembler source to achive the same effect for locations
defined and accessed in assembly code.

4.3.4 Constants

4.3.4.1 Numeric Constants

The assembler performs all arithmetic with signed 32-bit precision.
The default radix for all numbers is 10. Other radices may be specified by a trailing base specifier

as given in Table 4.3.
Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from identi-

fiers. Hexadecimal digits are accepted in either upper or lower case.
Note that a binary constant must have an upper case B following it, as a lower case b is used for

temporary (numeric) label backward references.
In expressions, real numbers are accepted in the usual format, and are interpreted as IEEE 32-bit

format.

90

Macro Assembler HI-TECH C Assembly Language

4.3.4.2 Character Constants and Strings

A character constant is a single character enclosed in single quotes ’.
Multi-character constants, or strings, are a sequence of characters, not including carriage return

or newline characters, enclosed within matching quotes. Either single quotes ’ or double quotes "
maybe used, but the opening and closing quotes must be the same.

4.3.5 Identifiers

Assembly identifiers are user-defined symbols representing memory locations or numbers. A sym-
bol may contain any number of characters drawn from the alphabetics, numerics and the special
characters dollar, $, question mark, ? and underscore, _.

The first character of an identifier may not be numeric. The case of alphabetics is significant,
e.g. Fred is not the same symbol as fred. Some examples of identifiers are shown here:

An_identifier
an_identifier
an_identifier1
$
?$_12345

4.3.5.1 Significance of Identifiers

Users of other assemblers that attempt to implement forms of data typing for identifiers should note
that this assembler attaches no significance to any symbol, and places no restrictions or expectations
on the usage of a symbol.

The names of psects (program sections) and ordinary symbols occupy separate, overlapping
name spaces, but other than this, the assembler does not care whether a symbol is used to represent
bytes, words or sports cars. No special syntax is needed or provided to define the addresses of bits
or any other data type, nor will the assembler issue any warnings if a symbol is used in more than
one context. The instruction and addressing mode syntax provide all the information necessary for
the assembler to generate correct code.

4.3.5.2 Assembler-Generated Identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have
the form ??nnnn where nnnn is a 4 digit number. The user should avoid defining symbols with the
same form.

91

HI-TECH C Assembly Language Macro Assembler

4.3.5.3 Location Counter

The current location within the active program section is accessible via the symbol $. This symbol
expands to the address of the currently executing instruction. Thus:

goto $

will represent code that will jump to itself and form an endless loop. By using this symbol and an
offset, a relative jump destination to be specified.

The address represented by $ is a word address and thus any offset to this symbol represents a
number of instructions. For example:

goto $+1
movlw 8
movwf _foo

will skip one instruction.

4.3.5.4 Register Symbols

Code in assembly modules may gain access to the special function registers by including pre-defined
assembly header files. The appropriate file can be included by add the line:

#include <aspic18.h>

to the assembler source file. Note that the file must be included using a C pre-processor directive and
hence the option to pre-process assembly files must be enabled when compiling, see Section 2.4.12.
This header file contains appropriate commands to ensure that the header file specific for the target
device is included into the souce file.

These header files contain EQU declarations for all byte or multi-byte sized registers and #define
macros for named bits within byte registers.

4.3.5.5 Symbolic Labels

A label is symbolic alias which is assigned a value equal to its offset within the current psect.
A label definition consists of any valid assembly identifier followed by a colon, :. The defini-

tion may appear on a line by itself or be positioned before a statement. Here are two examples of
legitimate labels interspersed with assembly code.

frank:
movlw 1
goto fin

simon44: clrf _input

92

Macro Assembler HI-TECH C Assembly Language

Here, the label frank will ultimately be assigned the address of the mov instruction, and simon44 the
address of the clrf instruction. Regardless of how they are defined, the assembler list file produced
by the assembler will always show labels on a line by themselves.

Labels may be used (and are prefered) in assembly code rather than using an absolute address.
Thus they can be used as the target location for jump-type instructions or to load an address into a
register.

Like variables, labels have scope. By default, they may be used anywhere in the module in which
they are defined. They may be used by code above their definition. To make a label accessable in
other modules, use the GLOBAL directive. See Section 4.3.8.1 for more information.

4.3.6 Expressions
The operands to instructions and directives are comprised of expressions. Expressions can be made
up of numbers, identifiers, strings and operators.

Operators can be unary (one operand, e.g. not) or binary (two operands, e.g. +). The operators
allowable in expressions are listed in Table 4.4. The usual rules governing the syntax of expressions
apply.

The operators listed may all be freely combined in both constant and relocatable expressions. The
HI-TECH linker permits relocation of complex expressions, so the results of expressions involving
relocatable identifiers may not be resolved until link time.

4.3.7 Program Sections
Program sections, or psects, are simply a section of code or data. They are a way of grouping together
parts of a program (via the psect’s name) even though the source code may not be physically adjacent
in the source file, or even where spread over several source files.

•

The concept of a program section is not a HI-TECH-only feature. Often referred to as
blocks or segments in other compilers, these grouping of code and data have long used
the names text, bss and data.

A psect is identified by a name and has several attributes. The PSECT assembler directive is used
to define a psect. It takes as arguments a name and an optional comma-separated list of flags. See
Section 4.3.8.3 for full information on psect definitions. Chapter 5 has more information on the
operation of the linker and on optins that can be used to control psect placement in memory.

The assembler associates no significance to the name of a psect and the linker is also not aware
of which are compiler-generated or user-defined psects. Unless defined as abs (absolute), psects are
relocatable.

93

HI-TECH C Assembly Language Macro Assembler

Table 4.4: ASPIC18 operators
Operator Purpose Example
* Multiplication movlw 4*33
+ Addition bra $+1
- Subtraction DB 5-2
/ Division movlw 100/4
= or eq Equality IF inp eq 66
> or gt Signed greater than IF inp > 40
>= or ge Signed greater than or equal to IF inp ge 66
< or lt Signed less than IF inp < 40
<= or le Signed less than or equal to IF inp le 66
<> or ne Signed not equal to IF inp <> 40
low Low byte of operand movlw low(inp)
high High byte of operand movlw high(1008h)
highword High 16 bits of operand DW highword(inp)
mod Modulus movlw 77 mod 4
& Bitwise AND clrf inp&0ffh
^ Bitwise XOR (exclusive or) movlw inp^80
| Bitwise OR movlw inp|1
not Bitwise complement movlw not 055h
< < or shl Shift left DB inp> >8
> > or shr Shift right movlw inp shr 2
rol Rotate left DB inp rol 1
ror Rotate right DB inp ror 1
float24 24-bit version of real operand DW float24(3.3)
nul Tests if macro argument is null

94

Macro Assembler HI-TECH C Assembly Language

The following is an example showing some executable instructions being placed in the text
psect, and some data being placed in the rbss psect.

PSECT text,class=CODE
adjust:

goto clear_fred
increment:

incf _fred
PSECT bss,class=BANK0,space=1
fred:

DS 2
PSECT text,class=CODE
clear_fred:

clrf _fred
return

Note that even though the two blocks of code in the text psect are separated by a block in the bss
psect, the two text psect blocks will be contiguous when loaded by the linker. In other words,
the incf _fred instruction will be followed by the clrf instruction in the final ouptut. The actual
location in memory of the text and bss psects will be determined by the linker.

Code or data that is not explicitly placed into a psect will become part of the default (unnamed)
psect.

4.3.8 Assembler Directives

Assembler directives, or pseudo-ops, are used in a similar way to instruction mnemonics, but either
do not generate code, or generate non-executable code, i.e. data bytes. The directives are listed in
Table 4.5, and are detailed below.

4.3.8.1 GLOBAL

GLOBAL declares a list of symbols which, if defined within the current module, are made public. If
the symbols are not defined in the current module, it is a reference to symbols in external modules.
Example:

GLOBAL lab1,lab2,lab3

95

HI-TECH C Assembly Language Macro Assembler

Table 4.5: ASPIC18 assembler directives
Directive Purpose
GLOBAL Make symbols accessible to other modules or allow reference to

other modules’ symbols
END End assembly
PSECT Declare or resume program section
ORG Set location counter
EQU Define symbol value
SET Define or re-define symbol value
DB Define constant byte(s)
DW Define constant word(s)
DS Reserve storage
IF Conditional assembly
ELSIF Alternate conditional assembly
ELSE Alternate conditional assembly
ENDIF End conditional assembly
FNADDR Inform the linker that a function may be indirectly called
FNARG Inform the linker that evaluation of arguments for one function

requires calling another
FNBREAK Break call graph links
FNCALL Inform the linker that one function calls another
FNCONF Supply call graph configuration information for the linker
FNINDIR Inform the linker that all functions with a particular signature

may be indirectly called
FNROOT Inform the linker that a function is the “root” of a call grpah
FNSIZE Inform the linker of argument and local variable for a function
MACRO Macro definition
ENDM End macro definition
LOCAL Define local tabs
ALIGN Align output to the specified boundary
PAGESEL Generate set/reset instruction to set PCLATH for this page
PROCESSOR Define the particular chip for which this file is to be assembled.
REPT Repeat a block of code n times
IRP Repeat a block of code with a list
IRPC Repeat a block of code with a character list
SIGNAT Define function signature

96

Macro Assembler HI-TECH C Assembly Language

Table 4.6: PSECT flags
Flag Meaning

abs Psect is absolute
bit Psect holds bit objects
class=name Specify class name for psect
delta=size Size of an addressing unit
global Psect is global (default)
limit=address Upper address limit of psect
local Psect is not global
ovrld Psect will overlap same psect in other modules
pure Psect is to be read-only
reloc=boundary Start psect on specified boundary
size=max Maximum size of psect
space=area Represents area in which psect will reside
with=psect Place psect in the same page as specified psect

4.3.8.2 END

END is optional, but if present should be at the very end of the program. It will terminate the assembly
and not even blank lines should follow this directive. If an expression is supplied as an argument,
that expression will be used to define the start address of the program. Whether this is of any use
will depend on the linker. Example:

END start_label

4.3.8.3 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and,
optionally, a comma-separated list of flags. The allowed flags are listed in Table 4.6, below.

Once a psect has been declared it may be resumed later by another PSECT directive, however the
flags need not be repeated.

• abs defines the current psect as being absolute, i.e. it is to start at location 0. This does
not mean that this module’s contribution to the psect will start at 0, since other modules may
contribute to the same psect.

• The bit flag specifies that a psect hold objects that are 1 bit long. Such psects have a scale
value of 8 to indicate that there are 8 addressable units to each byte of storage.

97

HI-TECH C Assembly Language Macro Assembler

• The class flag specifies a class name for this psect. Class names are used to allow local psects
to be referred to by a class name at link time, since they cannot be referred to by their own
name. Class names are also useful where psects need only be positioned anywhere within a
range of addresses rather than at one specific address.

• The delta flag defines the size of an addressing unit. In other words, the number of bytes
covered for an increment in the address.

• A psect defined as global will be combined with other global psects of the same name from
other modules at link time. This is the default behaviour for psects, unless the local flag is
used.

• The limit flag specifies a limit on the highest address to which a psect may extend.

• A psect defined as local will not be combined with other local psects at link time, even if
there are others with the same name. Where there are two local psects in the one module,
they reference the same psect. A local psect may not have the same name as any global
psect, even one in another module.

• A psect defined as ovrld will have the contribution from each module overlaid, rather than
concatenated at runtime. ovrld in combination with abs defines a truly absolute psect, i.e. a
psect within which any symbols defined are absolute.

• The pure flag instructs the linker that this psect will not be modified at runtime and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends
on the linker and target system enforcing it.

• The reloc flag allows specification of a requirement for alignment of the psect on a particular
boundary, e.g. reloc=100h would specify that this psect must start on an address that is a
multiple of 100h.

• The size flag allows a maximum size to be specified for the psect, e.g. size=100h. This will
be checked by the linker after psects have been combined from all modules.

• The space flag is used to differentiate areas of memory which have overlapping addresses,
but which are distinct. Psects which are positioned in program memory and data memory may
have a different space value to indicate that the program space address zero, for example,
is a different location to the data memory address zero. Devices which use banked RAM
data memory typically have the same space value as their full addresses (including bank
information) are unique.

• The with flag allows a psect to be placed in the same page with a specified psect. For example
with=text will specify that this psect should be placed in the same page as the text psect.

98

Macro Assembler HI-TECH C Assembly Language

Some examples of the use of the PSECT directive follow:

PSECT fred
PSECT bill,size=100h,global
PSECT joh,abs,ovrld,class=CODE,delta=2

4.3.8.4 ORG

The ORG directive changes the value of the location counter within the current psect. This means that
the addresses set with ORG are relative to the base address of the psect, which is not determined
until link time.

•

The much-abused ORG directive does not necessarily move the location counter to the
absolute address you specify as the operand. This directive is rarely needed in programs.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In
either case the current location counter is set to the value determined by the argument. It is not
possible to move the location counter backward. For example:

ORG 100h

will move the location counter to the beginning of the current psect plus 100h. The actual location
will not be known until link time.

In order to use the ORG directive to set the location counter to an absolute value, the directive
must be used from within an absolute, overlaid psect. For example:

PSECT absdata,abs,ovrld
ORG 50h

4.3.8.5 EQU

This pseudo-op defines a symbol and equates its value to an expression. For example

thomas EQU 123h

The identifier thomas will be given the value 123h. EQU is legal only when the symbol has not
previously been defined. See also Section 4.3.8.6.

99

HI-TECH C Assembly Language Macro Assembler

4.3.8.6 SET

This pseudo-op is equivalent to EQU except that allows a symbol to be re-defined. For example

thomas SET 0h

4.3.8.7 DB

DB is used to initialize storage as bytes. The argument is a list of expressions, each of which will be
assembled into one byte. Each character of the string will be assembled into one memory location.
Examples:

alabel: DB ’X’,1,2,3,4,

Note that because the size of an address unit in ROM is 2 bytes, the DB pseudo-op will initialise a
word with the upper byte set to zero.

4.3.8.8 DW

DW operates in a similar fashion to DB, except that it assembles expressions into words. Example:

DW -1, 3664h, ‘A’, 3777Q

4.3.8.9 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number
of bytes to be reserved. Examples:

alabel: DS 23 ;Reserve 23 bytes of memory
xlabel: DS 2+3 ;Reserve 5 bytes of memory

4.3.8.10 FNADDR

This directive tells the linker that a function has its address taken, and thus could be called indirectly
through a function pointer. For example

FNADDR _func1

tells the linker that func1() has its address taken.

100

Macro Assembler HI-TECH C Assembly Language

4.3.8.11 FNARG

The directive

FNARG fun1,fun2

tells the linker that evaluation of the arguments to function fun1 involves a call to fun2, thus the
memory argument memory allocated for the two functions should not overlap. For example, the C
function calls

fred(var1, bill(), 2);

will generate the assembler directive

FNARG _fred,_bill

thereby telling the linker that bill() is called while evaluating the arguments for a call to fred().

4.3.8.12 FNBREAK

This directive is used to break links in the call graph information. The form of this directive is as
follows:

FNBREAK fun1,fun2

and is automatically generated when the interrupt_level pragma is used. It states that any calls to
fun1 in trees other than the one rooted at fun2 should not be considered when checking for functions
that appear in multiple call graphs. Fun2() is typically intlevel0 or intlevel1 in compiler-generated
code when the interrupt_level pragma is used. Memory for the auto/parameter area for a fun1 will
only be assigned in the tree rooted at fun2.

4.3.8.13 FNCALL

This directive takes the form:

FNCALL fun1,fun2

FNCALL is usually used in compiler generated code. It tells the linker that function fun1 calls func-
tion fun2. This information is used by the linker when performing call graph analysis. If you write
assembler code which calls a C function, use the FNCALL directive to ensure that your assembler
function is taken into account. For example, if you have an assembler routine called _fred which
calls a C routine called foo(), in your assembler code you should write:

FNCALL _fred,_foo

101

HI-TECH C Assembly Language Macro Assembler

4.3.8.14 FNCONF

The FNCONF directive is used to supply the linker with configuration information for a call graph.
FNCONF is written as follows:

FNCONF psect,auto,args

where psect is the psect containing the call graph, auto is the prefix on all auto variable symbol names
and args is the prefix on all function argument symbol names. This directive normally appears in
only one place: the runtime startup code used by C compiler generated code. For the HI-TECH
PICC-18 Compiler the startup routine will include the directive:

FNCONF rbss,?a,?

telling the linker that the call graph is in the rbss psect, auto variable blocks start with ?a and function
argument blocks start with ?.

4.3.8.15 FNINDIR

This directive tells the linker that a function performs an indirect call to another function with a
particular signature (see the SIGNAT directive). The linker must assume worst case that the function
could call any other function which has the same signature and has had its address taken (see the
FNADDR directive). For example, if a function called fred() performs an indirect call to a function
with signature 8249, the compiler will produce the directive:

FNINDIR _fred,8249

4.3.8.16 FNSIZE

The FNSIZE directive informs the linker of the size of the local variable and argument area associ-
ated with a function. These values are used by the linker when building the call graph and assigning
addresses to the variable and argument areas. This directive takes the form:

FNSIZE func,local,args

The named function has a local variable area and argument area as specified, for example

FNSIZE _fred, 10, 5

means the function fred() has 10 bytes of local variables and 5 bytes of arguments. The function
name arguments to any of the call graph associated directives may be local or global. Local functions
are of course defined in the current module, but most be used in the call graph construction in the
same manner as global names.

102

Macro Assembler HI-TECH C Assembly Language

4.3.8.17 FNROOT

This directive tells the assembler that a function is a root function and thus forms the root of a call
graph. It could either be the C main() function or an interrupt function. For example, the C main
module produce the directive:

FNROOT _main

4.3.8.18 IF, ELSIF, ELSE and ENDIF

These directives implement conditional assembly. The argument to IF and ELSIF should be an
absolute expression. If it is non-zero, then the code following it up to the next matching ELSE,
ELSIF or ENDIF will be assembled. If the expression is zero then the code up to the next matching
ELSE or ENDIF will be skipped.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will termi-
nate the conditional assembly block. Example:

IF ABC
goto aardvark

ELSIF DEF
goto denver

ELSE
goto grapes

ENDIF

In this example, if ABC is non-zero, the first jmp instruction will be assembled but not the second or
third. If ABC is zero and DEF is non-zero, the second jmp will be assembled but the first and third
will not. If both ABC and DEF are zero, the third jmp will be assembled. Conditional assembly blocks
may be nested.

4.3.8.19 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by
the macro name and optionally followed by a comma-separated list of formal parameters. When the
macro is used, the macro name should be used in the same manner as a machine opcode, followed
by a list of arguments to be substituted for the formal parameters.

For example:

;macro: storem
;args: arg1 - the NAME of the source variable
; arg2 - the literal value to load

103

HI-TECH C Assembly Language Macro Assembler

;descr: Loads two registers with the value in the variable:
ldtwo MACRO arg1,arg2

movlw &arg2
movwf &arg1

ENDM

When used, this macro will expand to the 2 instructions in the body of the macro, with the formal
parameters substituted by the arguments. Thus:

storem tempvar,2

expands to:

movlw 2
movwf tempvar

A point to note in the above example: the & character is used to permit the concatenation of macro
parameters with other text, but is removed in the actual expansion.

A comment may be suppressed within the expansion of a macro (thus saving space in the macro
storage) by opening the comment with a double semicolon, ;;.

When invoking a macro, the argument list must be comma-separated. If it is desired to include a
comma (or other delimiter such as a space) in an argument then angle brackets < and > may be used
to quote the argument. In addition the exclamation mark, ! may be used to quote a single character.
The character immediately following the exclamation mark will be passed into the macro argument
even if it is normally a comment indicator.

If an argument is preceded by a percent sign %, that argument will be evaluated as an expression
and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument
inside the macro body would yield a different result.

The nul operator may be used within a macro to test a macro argument, for example:

IF nul arg3 ; argument was not supplied.
...

ELSE ; argument was supplied
...

ENDIF

By default, the assembly list file will show macro in an unexpanded format, i.e. as the macro was
invoked. Expansion of the macro in the listing file can be shown by using the EXPAND assembler
control, see Section 4.3.9.2,

104

Macro Assembler HI-TECH C Assembly Language

4.3.8.20 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted
for them when the macro is expanded. For example:

down MACRO count
LOCAL more
more: decfsz count
goto more

ENDM

when expanded will include a unique assembler generated label in place of more. For example:

down foobar

expands to:

??0001 decfsz foobar
goto ??0001

if invoked a second time, the label more would expand to ??0002.

4.3.8.21 ALIGN

The ALIGN directive aligns whatever is following, data storage or code etc., to the specified boundary
in the psect in which the directive is found. The boundary is specified by a number following the
directive and it specifies a number of bytes. For example, to align output to a 2 byte (even) address
within a psect, the following could be used.

ALIGN 2

Note, however, that what follows will only begin on an even absolute address if the psect begins on
an even address. The ALIGN directive can also be used to ensure that a psect’s length is a multiple
of a certain number. For example, if the above ALIGN directive was placed at the end of a psect, the
psect would have a length that was always an even number of bytes long.

4.3.8.22 REPT

The REPT directive temporarily defines an unnamed macro, then expands it a number of times as
determined by its argument. For example:

105

HI-TECH C Assembly Language Macro Assembler

REPT 3
addwf fred,w
ENDM

will expand to

addwf fred,w
addwf fred,w
addwf fred,w

4.3.8.23 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT, however instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case of IRP
the list is a conventional macro argument list, in the case or IRPC it is each character in one argument.
For each repetition the argument is substituted for one formal parameter.

For example:

PSECT idata_0
IRP number,4865h,6C6Ch,6F00h
DW number

ENDM
PSECT text0

would expand to:

PSECT idata_0
DW 4865h
DW 6C6Ch
DW 6F00h

PSECT text0

Note that you can use local labels and angle brackets in the same manner as with conventional
macros.

The IRPC directive is similar, except it substitutes one character at a time from a string of non-
space characters.

For example:

PSECT romdata,class=CODE,delta=2
IRPC char,ABC
DB ’char’

ENDM
PSECT text

106

Macro Assembler HI-TECH C Assembly Language

will expand to:

PSECT romdata,class=CODE,delta=2
DB ’A’
DB ’B’
DB ’C’

PSECT text

4.3.8.24 PROCESSOR

The output of the assembler may vary depending on the target device. The device name is typically
set using the --CHIP option to the command-line driver PICC18, see Section 2.4.22, or using the
assembler -P option, see Table 4.1, but can also be set with this directive, e.g.

PROCESSOR 16F877

4.3.8.25 SIGNAT

This directive is used to associate a 16-bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not. The
SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of C function
prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from
C. For example:

SIGNAT _fred,8192

will associate the signature value 8192 with the symbol _fred. If a different signature value for
_fred is present in any object file, the linker will report an error.

4.3.9 Assembler Controls
Assembler controls may be included in the assembler source to control assembler operation such as
listing format. These keywords have no significance anywhere else in the program. The control is
invoked by the directive OPT followed by the control name. Some keywords are followed by one or
more parameters. For example:

OPT EXPAND

A list of keywords is given in Table 4.7, and each is described further below.

107

HI-TECH C Assembly Language Macro Assembler

Table 4.7: DSPIC assembler controls
Control1 Meaning Format
COND* Include conditional code in the listing COND
EXPAND Expand macros in the listing output EXPAND
INCLUDE Textually include another source file INCLUDE <pathname>
LIST* Define options for listing output LIST [<listopt>, ...,

<listopt>]
NOCOND Leave conditional code out of the listing NOCOND
NOEXPAND* Disable macro expansion NOEXPAND
NOLIST Disable listing output NOLIST
PAGE Start a new page in the listing output PAGE
SUBTITLE Specify the subtitle of the program SUBTITLE “<subtitle>”
TITLE Specify the title of the program TITLE “<title>”

4.3.9.1 COND

Any conditional code will be included in the listing output. See also the NOCOND control in Section
4.3.9.5.

4.3.9.2 EXPAND

When EXPAND is in effect, the code generated by macro expansions will appear in the listing output.
See also the NOEXPAND control in Section 4.3.9.6.

4.3.9.3 INCLUDE

This control causes the file specified by pathname to be textually included at that point in the
assembly file. The INCLUDE control must be the last control keyword on the line, for example:

OPT INCLUDE "options.h"

The driver does not pass any search paths to the assembler, so if the include file is not located in the
working directory, the pathname must specify the exact location.

See also the driver option -P in Section 2.4.12 which forces the C preprocessor to preprocess
assembly file, thus allowing use of preprocessor directives, such as #include (see Section 3.12.1).

4.3.9.4 LIST

If the listing was previously turned off using the NOLIST control, the LIST control on its own will
turn the listing on.

108

Macro Assembler HI-TECH C Assembly Language

Table 4.8: LIST control options
List Option Default Description

c=nnn 80 Set the page (i.e. column) width.
n=nnn 59 Set the page length.
t=ON|OFF OFF Truncate listing output lines. The default wraps lines.
p=<processor> n/a Set the processor type.
r=<radix> hex Set the default radix to hex, dec or oct.
x=ON|OFF OFF Turn macro expansion on or off.

Alternatively, the LIST control may includes options to control the assembly and the listing. The
options are listed in Table 4.8.

See also the NOLIST control in Section 4.3.9.7.

4.3.9.5 NOCOND

Using this control will prevent conditional code from being included in the listing output. See also
the COND control in Section 4.3.9.1.

4.3.9.6 NOEXPAND

NOEXPAND disables macro expansion in the listing file. The macro call will be listed instead. See
also the EXPAND control in Section 4.3.9.2. Assembly macro are discussed in Section 4.3.8.19.

4.3.9.7 NOLIST

This control turns the listing output off from this point onward. See also the LIST control in Section
4.3.9.4.

4.3.9.8 NOXREF

NOXREF will disable generation of the raw cross reference file. See also the XREF control in Section
4.3.9.13.

4.3.9.9 PAGE

PAGE causes a new page to be started in the listing output. A Control-L (form feed) character will
also cause a new page when encountered in the source.

109

HI-TECH C Assembly Language Macro Assembler

4.3.9.10 SPACE

The SPACE control will place a number of blank lines in the listing output as specified by its param-
eter.

4.3.9.11 SUBTITLE

SUBTITLE defines a subtitle to appear at the top of every listing page, but under the title. The string
should be enclosed in single or double quotes. See also the TITLE control in Section 4.3.9.12.

4.3.9.12 TITLE

This control keyword defines a title to appear at the top of every listing page. The string should be
enclosed in single or double quotes. See also the SUBTITLE control in Section 4.3.9.11.

4.3.9.13 XREF

XREF is equivalent to the driver command line option --CR (see Section 2.4.26). It causes the assem-
bler to produce a raw cross reference file. The utility CREF should be used to actually generate the
formatted cross-reference listing.

110

Chapter 5

Linker and Utilities

5.1 Introduction
HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C
source files. This means that a program may be divided into several source files, each of which
may be kept to a manageable size for ease of editing and compilation, then each source file may be
compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most
instances it will not be necessary to use the linker directly, as the compiler driver will automatically
invoke the linker with all necessary arguments. Using the linker directly is not simple, and should
be attempted only by those with a sound knowledge of the compiler and linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker
arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that
the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for
several different processors. Not all features described in this chapter are applicable to all compilers.

5.2 Relocation and Psects
The fundamental task of the linker is to combine several relocatable object files into one. The
object files are said to be relocatable since the files have sufficient information in them so that any
references to program or data addresses (e.g. the address of a function) within the file may be
adjusted according to where the file is ultimately located in memory after the linkage process. Thus
the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.

111

Program Sections Linker and Utilities

relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the
base address of a particular section of code, for example the section of code containing the actual
executable instructions.

5.3 Program Sections
Any object file may contain bytes to be stored in memory in one or more program sections, which
will be referred to as psects. These psects represent logical groupings of certain types of code bytes in
the program. In general the compiler will produce code in three basic types of psects, although there
will be several different types of each. The three basic kinds are text psects, containing executable
code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved
data.

The difference between the data and bss psects may be illustrated by considering two external
variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into
the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of
the program, thus the second variable will be initialised at run time to zero. The first will however
occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite
possible to modify the value of a variable in the data psect during execution, however it is better
practice not to do so, since this leads to more consistent use of variables, and allows for restartable
and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

5.4 Local Psects
Most psects are global, i.e. they are referred to by the same name in all modules, and any reference
in any module to a global psect will refer to the same psect as any other reference. Some psects
are local, which means that they are local to only one module, and will be considered as separate
from any other psect even of the same name in another module. Local psects can only be referred
to at link time by a class name, which is a name associated with one or more psects via the PSECT
directive class= in assembler code. See Section 4.3.8.3 for more information on PSECT options.

5.5 Global Symbols
The linker handles only symbols which have been declared as GLOBAL to the assembler. The code
generator generates these assembler directives whenever it encounters global C objects. At the C
source level, this means all names which have storage class external and which are not declared

112

Linker and Utilities Link and load addresses

as static. These symbols may be referred to by modules other than the one in which they are
defined. It is the linker’s job to match up the definition of a global symbol with the references to it.
Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise
processed by the linker.

5.6 Link and load addresses
The linker deals with two kinds of addresses; link and load addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which
may or may not be the same as the link address, is the address at which the psect will start within the
output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-
responds to the offset within a segment, while the load address corresponds to the physical address
of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is
copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that
is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.

5.7 Operation
A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some
way. Files is one or more object files, and zero or more library names. The options recognised by
the linker are listed in Table 5.1 and discussed in the following paragraphs.

Table 5.1: Linker command-line options

Option Effect
-8 Use 8086 style segment:offset address form
-Aclass=low-high,... Specify address ranges for a class
-Cx Call graph options
continued. . .

1In earlier versions of HI-TECH C the linker was called LINK.EXE

113

Operation Linker and Utilities

Table 5.1: Linker command-line options

Option Effect
-Cpsect=class Specify a class name for a global psect
-Cbaseaddr Produce binary output file based at baseaddr
-Dclass=delta Specify a class delta value
-Dsymfile Produce old-style symbol file
-Eerrfile Write error messages to errfile
-F Produce .obj file with only symbol records
-Gspec Specify calculation for segment selectors
-Hsymfile Generate symbol file
-H+symfile Generate enhanced symbol file
-I Ignore undefined symbols
-Jnum Set maximum number of errors before aborting
-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items in .obj file
-LM Preserve segment relocation items in .obj file
-N Sort symbol table in map file by address order
-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file
-Ooutfile Specify name of output file
-Pspec Specify psect addresses and ordering
-Qprocessor Specify the processor type (for cosmetic reasons only)
-S Inhibit listing of symbols in symbol file
-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter symbol in table as undefined
-Vavmap Use file avmap to generate an Avocet format symbol file
-Wwarnlev Set warning level (-9 to 9)
-Wwidth Set map file width (>=10)
-X Remove any local symbols from the symbol file
-Z Remove trivial local symbols from the symbol file

5.7.1 Numbers in linker options
Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a
hex number, a trailing H should be added, e.g. 765FH will be treated as a hex number.

114

Linker and Utilities Operation

5.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a -P option (see below) but some-
times it is desired to have a class of psects linked into more than one non-contiguous address range.
This option allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the class CODE is to be linked into the given address ranges. Note that a contribution
to a psect from one module cannot be split, but the linker will attempt to pack each block from each
module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a
repeat count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though
the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
character x or * after a range, followed by a count.

5.7.3 -Cx

These options allow control over the call graph information which may be included in the map file
produced by the linker. There are four varients of this option:

Fully expanded callgraph The -Cf option displays the full callgraph information.

Short form callgraph The -Cs option is the default callgraph option which removes some redun-
dant information from the callgraph display. In the case where there are parameters to a func-
tion that involve function calls, the callgraph information associated with the “ARG function”
is only shown the first time it is encountered in the callgraph. See Sections 5.9.1 and 5.10.2.2
for more information on these functions.

Critical path callgraph The -Cc option only include the critical paths of the call graph. A function
call that is marked with a * in a full call graph is on a critical path and only these calls are
included when the -Cc option is used. See Section 5.10.2.2 for more information on critcal
paths.

No callgraph The -Cn option removes the call graph information from the map file.

115

Operation Linker and Utilities

5.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on
the command line since classes are specified in object files.

5.7.5 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to be defined.
The delta value should be a number and represents the number of bytes per addressable unit of
objects within the psects. Most psects do not need this option as they are defined with a delta value.

5.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where
each line has the link address of the symbol followed by the symbol name.

5.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

5.7.8 -F
Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used
again in a subsequent linker run to supply symbol values. The -F option will suppress data and code
bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program
is contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the
files for the other device. The process can then be repeated for the other files and device.

5.7.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker
can assign segment addresses, or selectors, to each segment. A segment is defined as a contiguous
group of psects where each psect in sequence has both its link and load address concatenated with

116

Linker and Utilities Operation

the previous psect in the group. The segment address or selector for the segment is the value derived
when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-
ment by the relocation quantum of the segment, which is based on the reloc= flag value given to
psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode
or some bank-switched arrangements. In this instance the -G option is used to specify a method for
calculating the segment selector. The argument to -G is a string similar to:

A/10h-4h

where A represents the load address of the segment and / represents division. This means "Take the
load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-
tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.
The token N is replaced by the ordinal number of the segment, which is allocated by the linker. For
example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number
of segments defined. This would be appropriate when compiling for 80286 protected mode, where
these selectors would represent LDT entries.

5.7.10 -Hsymfile
This option will instruct the linker to generate a symbol file. The optional argument symfile
specifies a file to receive the symbol file. The default file name is l.sym.

5.7.11 -H+symfile
This option will instruct the linker to generate an enhanced symbol file, which provides, in addition
to the standard symbol file, class names associated with each symbol and a segments section which
lists each class name and the range of memory it occupies. This format is recommended if the code
is to be run in conjunction with a debugger. The optional argument symfile specifies a file to
receive the symbol file. The default file name is l.sym.

5.7.12 -Jerrcount
The linker will stop processing object files after a certain number of errors (other than warnings).
The default number is 10, but the -J option allows this to be altered.

117

Operation Linker and Utilities

5.7.13 -K
For compilers that use a compiled stack, the linker will try and overlay function auto and parameter
areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature
can be disabled with this option.

5.7.14 -I
Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will
cause undefined symbols to be treated as warnings instead.

5.7.15 -L
When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation" of the program will be done at
load time, e.g. when running a .exe file under DOS or a .prg file under TOS. This requires that some
information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

5.7.16 -LM
Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generating .exe files to run under DOS.

5.7.17 -Mmapfile
This option causes the linker to generate a link map in the named file, or on the standard output if
the file name is omitted. The format of the map file is illustrated in Section 5.10.

5.7.18 -N, -Ns and-Nc
By default the symbol table in the link map will be sorted by name. The -N option will cause it to
be sorted numerically, based on the value of the symbol. The -Ns and -Nc options work similarly
except that the symbols are grouped by either their space value, or class.

5.7.19 -Ooutfile
This option allows specification of an output file name for the linker. The default output file name is
l.obj. Use of this option will override the default.

118

Linker and Utilities Operation

5.7.20 -Pspec
Psects are linked together and assigned addresses based on information supplied to the linker via -P
options. The argument to the -P option consists basically of comma-separated sequences thus:

-Ppsect=lnkaddr+min/ldaddr+min,psect=lnkaddr/ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load ad-
dresses, and a minimum value. All values may be omitted, in which case a default will apply,
depending on previous values.

The minimum value, min, is preceded by a + sign, if present. It sets a minimum value for the
link or load address. The address will be calculated as described below, but if it is less than the
minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects
or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse
order with the top of the psect appearing at the specified address minus one. Psects following a
negative address will be placed before the first psect in memory. If a link address is omitted, the
psect’s link address will be derived from the top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). The data
psect will be linked (and loaded) at an address which is 100 hex plus the length of the text psect,
rounded up as necessary if the data psect has a reloc= value associated with it. Similarly, the bss
psect will concatenate with the data psect. Again:

-Ptext=-100h,data,bss

will link in ascending order bss, data then text with the top of text appearing at address 0ffh.
If the load address is omitted entirely, it defaults to the same as the link address. If the slash /

character is supplied, but no address is supplied after it, the load address will concatenate with the
previous psect, e.g.

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero, text will have a load address of 0, and
data will have a load address starting after the end of text. The bss psect will concatenate with data
for both link and load addresses.

The load address may be replaced with a dot . character. This tells the linker to set the load
address of this psect to the same as its link address. The link or load address may also be the name of
another (already linked) psect. This will explicitly concatenate the current psect with the previously
specified psect, e.g.

119

Operation Linker and Utilities

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

This example shows text at zero, data linked at 8000h but loaded after text, bss is linked and
loaded at 8000h plus the size of data, and nvram and heap are concatenated with bss. Note here
the use of two -P options. Multiple -P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be
used in place of a link or load address, and space will be found in one of the address ranges. For
example:

-ACODE=8000h-BFFEh,E000h-FFFEh
-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated with CODE.
If no sufficiently large space is available, an error will result. Note that in this case the data psect
will still be assembled into one contiguous block, whereas other psects in the class CODE will be
distributed into the address ranges wherever they will fit. This means that if there are two or more
psects in class CODE, they may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from any
address ranges specified with the -A option. This allows a range to be specified with the -A option
without knowing in advance how much of the lower part of the range, for example, will be required
for other psects.

5.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map
file. The argument to this option is a string describing the processor.

5.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced
by the linker. Segment information is still included.

5.7.23 -Sclass=limit[, bound]

A class of psects may have an upper address limit associated with it. The following example places
a limit on the maximum address of the CODE class of psects to one less than 400h.

-SCODE=400h

120

Linker and Utilities Operation

Note that to set an upper limit to a psect, this must be set in assembler code (with a limit= flag on
a PSECT directive).

If the bound (boundary) argument is used, the class of psects will start on a multiple of the bound
address. This example places the FARCODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

-SFARCODE=6000h,1000h

5.7.24 -Usymbol
This option will enter the specified symbol into the linker’s symbol table as an undefined symbol.
This is useful for linking entirely from libraries, or for linking a module from a library where the
ordering has been arranged so that by default a later module will be linked.

5.7.25 -Vavmap
To produce an Avocet format symbol file, the linker needs to be given a map file to allow it to
map psect names to Avocet memory identifiers. The avmap file will normally be supplied with the
compiler, or created automatically by the compiler driver as required.

5.7.26 -Wnum
The -W option can be used to set the warning level, in the range -9 to 9, or the width of the map file,
for values of num >= 10.

-W9 will suppress all warning messages. -W0 is the default. Setting the warning level to -9 (-W-9)
will give the most comprehensive warning messages.

5.7.27 -X
Local symbols can be suppressed from a symbol file with this option. Global symbols will always
appear in the symbol file.

5.7.28 -Z
Some local symbols are compiler generated and not of interest in debugging. This option will
suppress from the symbol file all local symbols that have the form of a single alphabetic character,
followed by a digit string. The set of letters that can start a trivial symbol is currently "klfLSu".
The -Z option will strip any local symbols starting with one of these letters, and followed by a digit
string.

121

Invoking the Linker Linker and Utilities

5.8 Invoking the Linker
The linker is called HLINK, and normally resides in the BIN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is
generally useful if the number of arguments to HLINK is large. Even if the list of files is too long
to fit on one line, continuation lines may be included by leaving a backslash \ at the end of the
preceding line. In this fashion, HLINK commands of almost unlimited length may be issued. For
example a link command file called x.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk
hlink < x.lnk

5.9 Compiled Stack Operation
A compiler can either take advantage of the hardware stack contained on a device, or produce code
which uses a compiled stack for parameter passing between functions and auto variables. Temporary
variables used by a function may also be allocated space in the auto area. (Temporary variables with
names like btemp, wtemp or ltemp are not examples of such variables. These variables are treated
more like registers, although they may be allocated memory.) A compiled stack consists of fixed
memory areas that are usable by each function’s auto and parameter variables. When a compiled
stack is used, functions are not re-entrant since local variables in each function will use the same
fixed area of memory every time the function is invoked.

Fundamental to the compiled stack is the call graph which defines a tree-like hierarchy indicating
the structure of function calls. The call graph consists of one or more call trees which are defined
by the program. Each tree has a root function, which is typically not called by the program, but
which is executed via other means. The function main is an example of a root function. Interrupt
functions are another. The term main-line code means any code that is executed, or may be executed,
by a function that appears under the main root in the call graph. See Section 5.10.2.2 for detailed
information on the call graph which is displayed in the map file.

Each function in the call graph is allocated an auto/parameter block (APB) for its parameter,
auto and temporary variables. Temporary variables act just like auto variables. Local variables
which are qualified static are not part of this block. For situations where a compiled stack is used,

122

Linker and Utilities Compiled Stack Operation

the linker performs additional operations to minimise the memory consumed by the program by
overlaying each function’s APB where possible.

In assembly code variables within a function’s APB are referenced via special symbols, which
marks the start of the auto or parameter area in the block, and an offset. The symbol used to represent
the base address of the parameter area within the function’s APB is the concatenation of ? and the
assembler name of the function. The symbol used to represent the base address of the auto area
within the function’s APB is the concatenation of ?a, in the case of Standard version compilers, or
??, in the case of PRO version compilers, and the assembler name of the function.

For example, a function called foo, for example, will use the assembly symbol ?_foo as the
base address for all its parameters variables that have been allocated memory, and either ?a_foo
(Standard) or ??_foo (PRO) as the base address for auto variables which the function defines. So
the first two-byte auto variable might be referenced in PRO version compiler assembly code as
??_foo; the second auto variable as ??_foo+2, etc. Note that some parameters may be passed in
registers, and may not have memory allocated to them in the parameter area of the APB.

The linker allocates memory for each function’s APB, based on how that function is used in a
program. In particular, the linker determines which functions are, or may be, active at the same
time. If one function calls another, then both are active at the same time. To this end, a call graph
is created from information in the object files being linker. See Section 5.10.2.2 for information on
reading the call graph displayed in the map file. This information is directly related to the FNCALL
assembler directive (see Section 4.3.8.13 for more information) which the code generator places in
the assembler output whenever a C function calls another. Hand-written assembler code should also
contain these directives, if required. Information regarding the size of the auto and parameter areas
within in function’s APB is specified by the FNSIZE assembler directive (see Section 4.3.8.16).

5.9.1 Parameters involving Function Calls
The linker must take special note of the results of function calls used in expressions that are them-
selves parameters to another function. For example, if input and output are both functions that
accept two int parameters and and both return an int, the following:

result = output(out_selector, input(int_selector, 10));

shows that the function input is called to determine the second parameter to the function output.
This information is very important as it indicates areas of the code that must be considered carefully,
lest the code fail due to re-entrancy related issues.

A re-entrant call is typically considered to be the situation in which a function is called and
executed while another instance of the same function is also actively executing. For a compiled
stack program, a function must be considered active as soon as its parameter area has been modified
in preparation for a call, even though code in that function is not yet being executed and a call to
that function has not been made. This is particularly import with functions that accept more than

123

Compiled Stack Operation Linker and Utilities

one parameter as the ANSI standard does not dictate the order in which function parameters must be
evaluated.

Such a condition is best illustrated by an example, which is shown in the following tutorial.

TUT•RIAL

PARAMETERS IMPLEMENTED AS FUNCTION CALLS Consider the following code.

int B(int x, int y) {
return x - y;

}
int A(int a, int b) {
return a+B(9, b);

}
void main(void) {
B(5, A(6, 7)); // consider this statement

}

For the highlighted statement, the compiler might evaluate and load the first parameter
to the function B, which is the literal, 5. To do this, the value of 5 is loaded to the loca-
tions ?_B and ?_B+1. Now to evaluate the second parameter value to the function B, the
compiler must first call the function A. So A’s parameters are loaded and the call to func-
tion A is made. Code inside the function A, calls the function B. This involves loading
the parameters to B: the contents of the variable b are loaded to ?_B+2 and ?_B+3, and
the value 9 is loaded to ?_B and ?_B+1, which corrupts the contents of these locations
which were loaded earlier for the still pending call to function B. Function A eventually
returns normally and the the return value is the loaded to the second parameter locations
for the still pending call to function B, back at the highlighted line of source. However,
the value of 5 previously loaded as the first parameter to B has been lost. When the call
to function B is now made, the parameters will not be correct.
Note that the function B is not actively executing code in more than one instance of the
function at the same time, however the code that loads the parameters to function B is.

The linker indicates in the call graph those functions that may have been called to determine param-
eter values to other functions. See Section 5.10.2.2 for information on how this is displayed in the
map file.

124

Linker and Utilities Map Files

5.10 Map Files
The map file contains information relating to the relocation of psects and the addresses assigned to
symbols within those psects.

5.10.1 Generation
If compilation is being performed via HI-TIDE

TM
a map file is generated by default without you

having to adjust the compiler options. If you are using the driver from the command line then you’ll
need to use the -M option, see Section 2.4.9.

Map files are produced by the linker. If the compilation process is stopped before the linker is
executed, then no map file is produced. The linker will still produce a map file even if it encounters
errors, which will allow you to use this file to track down the cause of the errors. However, if the
linker ultimately reports too many errors then it did not run to completion, and the map file will
be either not created or not complete. You can use the --ERRORS option on the command line, or as
an alternate MPLAB IDE setting, to increase the number of errors before the compiler applications
give up. See Section 2.4.32 for more information on this option.

5.10.2 Contents
The sections in the map file, in order of appearance, are as follows:

• The compiler name and version number;

• A copy of the command line used to invoke the linker;

• The version number of the object code in the first file linked;

• The machine type;

• Optionally (dependent on the processor and compiler options selected), the call graph infor-
mation;

• A psect summary sorted by the psect’s parent object file;

• A psect summary sorted by the psect’s CLASS;

• A segment summary;

• Unused address ranges summary; and

• The symbol table

Portions of an example map file, along with explanatory text, are shown in the following sections.

125

Map Files Linker and Utilities

5.10.2.1 General Information

At the top of the map file is general information relating to the execution of the linker.
When analysing a program, always confirm the compiler version number shown in the map file if

you have more than one compiler version installed to ensure the desired compiler is being executed.
The chip selected with the --CHIP option should appear after the Machine type entry.
The Object code version relates to the file format used by relocatable object files produced by

the assembler. Unless either the assembler or linker have been updated independently, this should
not be of concern.

A typical map file may begin something like the following. This example has been cut down for
clarity and brevity, and should not be used for reference.

HI-TECH Software PICC Compiler std#V9.60
Linker command line:
--edf=C:\Program Files\HI-TECH Software\pic\std\9.60\dat\en_msgs.txt \
-h+conv.sym -z -Q16F73 -ol.obj -Mconv.map -ver=PICC#std#V9.60 \
-ACODE=00h-07FFhx2 -ACONST=00h-0FFhx16 -ASTRING=00h-0FFhx16 \
-ABANK0=020h-07Fh -ABANK1=0A0h-0FFh \
-preset_vec=00h,intentry,intcode -ppowerup=CODE -pintsave_0=07Fh \
-prbit_0=BANK0,rbss_0=BANK0,rdata_0=BANK0,idata_0=CODE \
C:\DOCUME~1\user\LOCALS~1\Temp\cgta5eHNF.obj conv.obj \
C:\Program Files\HI-TECH Software\pic\std\9.60\lib\pic412-c.lib \
C:\Program Files\HI-TECH Software\pic\std\9.60\lib\pic20--u.lib
Object code version is 3.9
Machine type is 16F73

The Linker command line shown is the entire list of options and files that were passed to the linker
for the build recorded by this map file. Remember, these are linker options and not command-line
driver options. Typically the first options relate to general execution of the linker: path and file
names for various input and output support files; and the chip type etc. These are followed by the
memory allocation options, e.g. -A and -p. Last are the input object and library files that will be
linked to form the output.

The linker command line should be used to confirm that driver options that control the link step
have been specified correctly, and at the correct time. It is particularly useful when using the driver
-L- option, see Section 2.4.8.

TUT•RIAL

CONFIRMING LINKER OPERATION A project requires that a number of memory lo-
cations be reserved. For the compiler and target device used by the project, the --ROM
driver option is suitable for this task. How can the operation of this option be confirmed?

126

Linker and Utilities Map Files

First the program is compiled without using this option and the following linker class
definition is noted in the linker command line:

-ACODE=0-03FFFhx2

The class name may vary between compilers and the selected target device, however
there is typically a class that is defined to cover the entire memory space used by the
device.
The driver option --ROM=default,-4000-400F is then used and the map file resulting
from the subsequent build shows the following change:

-ACODE=0-03FFFh,04010h-07FFFh

which confirms that the memory option was seen by the linker and that the memory
requested was reserved.

5.10.2.2 Call Graph Information

A call graph is produced and displayed in the map file for target devices and memory models that use
a compiled stack to facilitate parameter passing between functions and auto variables. See Section
5.9 for more detailed information on compiled stack operation.

The call graph in the map file shows the information collated and interpreted by the linker,
which is primarily used to allow overlapping of functions’ APBs. The following information can be
obtained from studying the call graph:

• The functions in the program that are “root” nodes marking the top of a call tree, and which
are not directly called;

• The functions that the linker deemed were called, or may have been called, during program
execution;

• The program’s hierarchy of function calls;

• The size of the auto and parameter areas within each function’s APB;

• The offset of each function’s APB within the program’s auto/parameter psect;

• Which functions’ APBs are consuming memory not overlapped by the APB of any other
function (on the critical path);

• Which functions are called indirectly;

• Which functions are called as part of a parameter expression for another function; and

127

Map Files Linker and Utilities

• The estimated call tree depth.

These features are discussed below.
The call graph produced by PRO versions compilers is very similar to that produced by Standard

version compilers, however there are differences. A typical PRO compiler call graph may look
something like:

Call graph:
*_main size 0,4 offset 0
* _byteconv size 0,17 offset 4

float size 3,7 offset 21
ldiv size 8,6 offset 21
_crv ARG size 0 offset 21

_crv size 1 offset 21
ldiv size 8,6 offset 21
_convert size 4,0 offset 33
_srv size 2,10 offset 21

_convert size 4,0 offset 33
* _srv size 2,10 offset 21
* _convert size 4,0 offset 33

_init size 0,4 offset 4
indir_func size 0,0 offset 4

Estimated maximum call depth: 3
*intlevel1 size 0,0 offset 37
* _isr size 0,2 offset 37
* i1ldiv size 8,6 offset 44
Estimated maximum call depth: 2

Each line basically consists of the name of the function in question, and its APB size and offset. The
general form of most entries look like:

name size p,a offset n

Note that the function name will always be the assembly name, thus the function main appears as
_main.

A function printed with no indent is a root function in a call tree. These functions are typically
not called by the C program. Examples include the function main, any any interrupt functions
the program defines. The programmer may also define additional functions that are root functions
in the call tree by using the FNROOT assembler directive, see Section 4.3.8.17 for more information.
The code generator issues an FNROOT directive for each interrupt function encountered, and the
runtime startup code contains the FNROOT directive for the function main.

128

Linker and Utilities Map Files

The functions that the root function calls, or may call, are indented one level and listed below
the root node. If any of these functions call (or might call) other functions, these called functions
are indented and listed below the calling functions. And so the process continues for entire program.
A function’s inclusion into the call graph does not imply the function was called, but there is a
possibility that the function was called. For example, code such as:

int test(int a) {
if(a)
foo();

else
bar();

}

will list foo and bar under test, as either may be called. If a is always true, then clearly the function
bar will never be called. If a function does not appear in the call graph, the linker has determined
that the function cannot possibly be called, and that it is not a root function. For code like:

int test(void) {
int a = 0;
if(a)
foo();

else
bar();

}

the function foo will never appear in the call graph.
The inclusion of a function into the call graph is controlled by the FNCALL assembler directive,

see Section 4.3.8.13 for more information. These directives are placed in the assembler output by
the code generator. For the above code, the code generator optimiser will remove the redundant call
to bar before the C source code conversion is performed, as so the FNCALL directive will not be
present in the output file, hence not detectable by the linker. When writing assembler source code,
the FNCALL assembler directive should always be used, particularly if the assembler routines define
local auto-like variables using the FNSIZE directive, see below, and also Section 4.3.8.16 for more
information.

If printed, the two components to the size are the size of that function’s parameter area, and
the size of the function’s auto area, respectively. The parameter size only includes those parameters
which are allocated memory locations, and which are not passed via a register. The auto size does not
include any auto variables which are allocated registers by the code generator’s (global) optimizer
for the entire duration of the function. The auto size does, however, include any values which must
be stored temporarily in the functions scratch area. Variables which are passed via a register may

129

Map Files Linker and Utilities

need to be saved into the function’s temporary variable if that register is required for code generation
purposes, in which case they do not contribute to the function’s parameter size, but increase the size
of the auto area.

The total parameter and auto area for each function is grouped to form an APB. This is then
allocated an address within the program’s auto/parameter psect. The offset value indicates the offset
within the psect for that block. Thus, two APBs with the same offset are mapped over one another.

If a star, *, appears on the very left line of a call tree, this implies that the memory consumed
by the function represented by that line does not fully overlap with that of other functions, and thus
this functions APB directly influences the size of the auto/parameter psect, and hence the total RAM
usage of the program. Such functions are said to be on the critical path. If the RAM usage of a
program needs to be reduced and the number or size of the parameters or auto variables defined by
the starred functions can be reduced, the program’s RAM usage will also be reduced. Reducing the
number or size of the parameters or auto variables defined by the functions that are not starred will
have no effect on the program’s total RAM usage.

PRO compilers track the values assigned to function pointers and maintains a list of all functions
that could be called via the function pointer. Functions called indirectly are listed in the call graph
along with those functions which are directly called.

If the ARG flag appears after a function’s name, this implies that the call to this “ARG function”
involves other function calls to determine the parameter values for this function. For example, if
input and output are both functions that take two int parameters and and both return an int, the
following:

result = output(out_selector, input(in_selector, 10));

shows that the function input is called to determine the second parameter to the function output.
The ARG function’s name is listed again under the line which actually shows the ARG flag, and

any functions this function calls appear here, indented in the usual way. Under this is listed every
function (regardless of its depth in the call tree) that could be called to determine a parameter value
to the ARG function throughout the program. If any of these functions call other functions, they
also list called functions below, indented in the usual way. For example the following annotated call
graph snippet illustrates the ARG function one.

_one ARG size 0 offset 21 ; _one is the ARG function
_one size 0 offset 21 ; ** here is _one’s call tree:

_two size 2,2 offset 21 ; ** _one may call _two
_prep1 size 1,1 offset 45 ; # _prep1, _get & _prep2 may
_get size 0,0 offset 47 ; # ultimately be called to
_prep2 size 1,1 offset 47 ; # obtain parameters for _one

_get size 0,0 offset 47 ; _prep2 may call by _get

130

Linker and Utilities Map Files

After each tree in call tree, there is an indication of the maximum call depth that might be realised
by that tree. This may be used as a guide to the stack usage of the program. No definitive value can
be given for the program’s total stack usage for several reasons:

• Certain parts of the call tree may never be reached, reducing that tree’s stack usage;

• The contribution of interrupt (or other) trees to the tree associated with the main function
cannot be determined as the point in main’s call tree at which the interrupt (or other function
invocation) will occur cannot be known;

• Any additional stack usage by functions, particularly interrupt functions, cannot be known;
and

• The assembler optimizer may have replaced function calls with jumps to functions, reducing
that tree’s stack usage.

The code generator also produces a warning if the maximum stack depth appears to have been
exceeded. For the above reasons, this warning, too, is intended to be a guide to potential stack
problems.

The above call graph example is analysed in the following tutorial.

TUT•RIAL

INTERPRETING A PRO COMPILER CALL GRAPH The graph graph shown above
indicates that the program compiled consists of two call trees, rooted at the functions
main, which can have up 3 levels of stack used, and intlevel1, which can use up to two
levels of stack. In the example above, the symbol _main is associated with the function
main, and intlevel1 associated with an interrupt function (with an interrupt level
of 1).

Here, the function main takes no parameters and defines 4 bytes of auto variables. The
total size of the APB for main is 4, and this was placed at an offset of 0 in the program’s
auto/parameter psect. The function main may call a function called init. This function
also uses a total of 4 bytes of auto variables. The function main is still active when init
is active so their APBs must occupy distinct memory. (NB main will always be active
during program execution, by definition.) The block for init follows immediately after
that of main’s at address offset 4. The function init does not call any other functions.

The main function may also call the function byteconv. This function defines a total of
17 bytes of auto variables. It is called when main is still active, but it is never active at
the same time as init is active, so its APB can overlap with that of init and is placed
at offset 4 within the auto/parameter psect.

131

Map Files Linker and Utilities

The function byteconv may call several functions: float, ldiv, crv and srv. (Any
function name that does not start with an underscore must be an assembly routine.
The routine float and ldiv in this case relating to floating point and long division
library routines.) All these functions have their APB placed at the same offset in the
auto/parameter psect. Of these functions, srv also may call convert.

The call to crv from byteconv indicates that other functions might be called to obtain
crv’s parameter values. Those other functions are listed in a “flattened” call list below
the ARG function line which shows every possible function that might be called,
regardless of call depth. The functions which might be called are: ldiv, convert and
srv. The function srv, which also calls convert still indicates this fact by also listing
convert below and indented in the more conventional call graph format. The two lines
of C code that produced this outcome were:

if(crv((my_long%10)) != 5) // ...
if(crv(srv(8)) != 6) // ...

where crv accepts one char parameter and returns a char. The call to srv is obvious;
the other call come from the modulus operator, calling ldiv.

The other call tree rooted at intlevel1 relates to the interrupt function. intlevel1
is not a real function, but is used to represent the interrupt level associated with the
interrupt function. There is no call from intlevel1 to the function isr and no stack
usage. Note that an additional level of call depth is indicated for interrupt functions.
This is used to mark the place of the return address of the stack. The selected device
may use a differing number of stack locations when interrupts occur and this needs to
be factored into any stack calculations.

Notice that the interrupt function isr calls a function called i1ldiv. This is a du-
plicate of the ldiv routine that is callable by functions under the intlevel1 call tree.
Having duplicate routines means that these implicitly called assembly library routines
can safely be called from both code under the main call tree and code under the interrupt
tree. PRO compilers will have as many duplicates of these routines as there are interrupt
levels.

The call graph shows that the functions: main, byteconv, srv, convert, isr and
i1ldiv are all consuming APB memory that does not fully overlap with that of other
functions. Reducing the auto/parameter memory requirements for these functions will
reduce the program’s memory requirements. The call graph reveals that 82 bytes of
memory are required by the program for autos and parameters, but that only 58 are re-
served and used by the program. The difference shows the amount of memory saved by
overlapping of these blocks by the linker.

132

Linker and Utilities Map Files

5.10.2.3 Psect Information listed by Module

The next section in the map file lists those modules that made a contribution to the output, and
information regarding the psects these modules defined.

This section is heralded by the line that contains the headings:

Name Link Load Length Selector Space Scale

Under this on the far left is a list of object files. These object files include both files generated from
source modules and those that were extracted from object library files. In the case of those from
library files, the name of the library file is printed before the object file list.

This section shows all the psects (under the Name column) that were linked into the program
from each object file, and information regarding that psect. This only deals with object files linked
by the linker. P-code modules derived from p-code library files are handled by the code generator,
and do not appear in the map file.

The Link address indicates the address at which this psect will be located when the program
is running. (The Load address is also shown for those psects that may reside in the HEX file at
a different location and which are mapped before program execution.) The Length of the psect is
shown (in units suitable for that psect). The Selector is less commonly used, but the Space field is
important as it indicates the memory space in which the psect was placed. For Harvard architecture
machines, with separate memory spaces, this field must be used in conjunction with the address to
specify an exact storage location. The Scale of a psect indicates the number of address units per byte
— this is left blank if the scale is 1 — and typically this will show 8 for psects that hold bit objects.
The Load address of psects that hold bits is used to display the link address converted into units of
bytes, rather than the load address.

TUT•RIAL

INTERPRETING THE PSECT LIST The following appears in a map file.

Name Link Load Length Selector Space Scale
ext.obj text 3A 3A 22 30 0

bss 4B 4B 10 4B 1
rbit 50 A 2 0 1 8

This indicates that one of the files that the linker processed was called ext.obj. (This
may have been derived from ext.c or ext.as.) This object file contained a text psect,
as well as psects called bss and rbit. The psect text was linked at address 3A and
bss at address 4B. At first glance, this seems to be a problem given that text is 22 words
long, however note that they are in different memory areas, as indicated by the Space
flag (0 for text and 1 for bss), and so do not occupy the same memory. The psect

133

Map Files Linker and Utilities

rbit contains bit objects, as indicated by its Scale value (its name is a bit of a giveaway
too). Again, at first glance there seems there could be an issue with rbit linked over
the top of bss. Their Space flags are the same, but since rbit contains bit objects, all
the addresses shown are bit addresses, as indicated by the Scale value of 8. Note that
the Load address field of rbit psect displays the Link address converted to byte units,
i.e. 50h/8 => Ah.

The list of files, that make up the program, indicated in this section of the map file will typically
consist of one or more object files derived from input source code. The map file produced by PRO
compilers will show one object file derived from all C source modules, however Standard version
compilers will show one object file per C source module.

In addition, there will typically be the runtime startup module. The runtime startup code is
precompiled into an object file, in the case of Standard version compilers, or is a compiler-written
assembler source file, which is then compiled along with the remainder of the program. In either
case, an object file module will be listed in this section, along with those psects which it defines.
If the startup module is not being deleted after compilation (see the --RUNTIME option in Section
2.4.47) then the module name will be startup.obj, otherwise this module will have a system-
dependent temporary file name, stored in a system-dependent location.

Modules derived from library files area also shown in this list. The name of the library file is
printed as a header, followed by a list of the modules that contributed to the output. Only mod-
ules that define symbols that are referenced are included in the program output. For example, the
following:

C:\program files\HI-TECH Software\PICC-18\9.50\lib\pic86l-c.lib
i1aldiv.obj text 174 174 3C C 0
aldiv.obj text 90 90 3C C 0

indicates that both the i1aldiv.obj and aldiv.obj modules were linked in from the library file
pic86l-c.lib.

Underneath the library file contributions, there may be a label COMMON. This shows the con-
tribution to the program from program-wide psects, in particular that used by the compiled stack
auto/parameter area.

This information in this section of the map file can be used to observe several details;

• To confirm that a module is making a contribution to the output file by ensuring that the
module appears in the module list;

• To determine the exact psects that each module defines;

134

Linker and Utilities Map Files

• For cases where a user-defined routine, with the same name as a library routine, is present in
the programs source file list, to confirm that the user-defined routine was linked in preference
to the library routine.

5.10.2.4 Psect Information listed by Class

The next section in the map file is the same psect information listed by module, but this time grouped
into the psects’ class.

This section is heralded by the line that contains the headings:

TOTAL Name Link Load Length

Under this are the class names followed by those psects which belong to this class. These psects are
the same as those listed by module in the above section; there is no new information contained in
this section.

5.10.2.5 Segment Listing

The class listing in the map file is followed by a listing of segments. A segment is conceptual
grouping of contiguous psects, and are used by the linker as an aid in psect placement. There is no
segment assembler directive and segments cannot be controlled in any way.

This section is heralded by the line that contains the headings:

SEGMENTS Name Load Length Top Selector Space Class

The name of a segment is derived from the psect in the contiguous group with the lowest link address.
This can lead to confusion with the psect with the same name. Do not read psect information from
this section of the map file.

Typically this section of the map file can be ignored by the user.

5.10.2.6 Unused Address Ranges

The last of the memory summaries Just before the symbol table in the map file is a list of memory
which was not allocated by the linker. This memory is thus unused. The linker is aware of any
memory allocated by the code generator (for absolute variables), and so this free space is accurate.

This section follows the heading:

UNUSED ADDRESS RANGES

135

Map Files Linker and Utilities

and is followed by a list of classes and the memory still available in each class defined in the program.
If there is more than one range in a class, each range is printed on a separate line. Any paging
boundaries within a class are ignored and not displayed in any way.

Note that classes often define memory that is also covered by other classes, thus the total free
space in a memory area is not simply the addition of the size of all the ranges indicated. For example
if there are two classes the cover the RAM memory — RAM and BANKRAM — and the first 100h
out of 500h bytes are used, then both will indicate 000100-0004FF as the unused memory.

5.10.2.7 Symbol Table

The final section in the map file list global symbols that the program defines. This section has a
heading:

Symbol Table

and is followed by two columns in which the symbols are alphabetically listed. As always with the
linker, any C derived symbol is shown with its assembler equivalent symbol name. The symbols
listed in this table are:

• Global assembly labels;

• Global EQU/SET assembler directive labels; and

• Linker-defined symbols.

Assembly symbols are made global via the GLOBAL assembler directive, see Section 4.3.8.1 for more
information. linker-defined symbols act like EQU directives, however they are defined by the linker
during the link process, and no definition for them will appear in any source or intermediate file.

Non-static C functions, and non-auto and non-static C variables directly map to assembly
labels. The name of the label will be the C identifier with a leading underscore character. The
linker-defined symbols include symbols used to mark the bounds of psects. See Section 3.13.3. The
symbols used to mark the base address of each functions’ auto and parameter block are also shown.
Although these symbols are used to represent the local autos and parameters of a function, they
themselves must be globally accessible to allow each calling function to load their contents. The
C auto and parameter variable identifiers are local symbols that only have scope in the function in
which they are defined.

Each symbol is shown with the psect in which they are placed, and the address which the symbol
has been assigned. There is no information encoded into a symbol to indicate whether it represents
code or variables, nor in which memory space it resides.

If the psect of a symbol is shown as (abs), this implies that the symbol is not directly associated
with a psect as is the case with absolute C variables. Linker-defined symbols showing this as the

136

Linker and Utilities Librarian

psect name may be symbols that have never been used throughout the program, or relate to symbols
that are not directly associated with a psect.

Note that a symbol table is also shown in each assembler list file. (See Section 2.4.18 for in-
formation on generating these files.) These differ to that shown in the map file in that they list
all symbols, whether they be of global or local scope, and they only list the symbols used in the
module(s) associated with that list file.

5.11 Librarian
The librarian program, LIBR, has the function of combining several object files into a single file
known as a library. The purposes of combining several such object modules are several.

• fewer files to link

• faster access

• uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more
symbols previously known, but not defined, to the linker. Thus modules in a library will be linked
only if required. Since the choice of modules to link is made on the first pass of the linker, and
the library is searched in a linear fashion, it is possible to order the modules in a library to produce
special effects when linking. More will be said about this later.

5.11.1 The Library Format
The modules in a library are basically just concatenated, but at the beginning of a library is main-
tained a directory of the modules and symbols in the library. Since this directory is smaller than the
sum of the modules, the linker can perform faster searches since it need read only the directory, and
not all the modules, on the first pass. On the second pass it need read only those modules which are
required, seeking over the others. This all minimises disk I/O when linking.

It should be noted that the library format is geared exclusively toward object modules, and is not
a general purpose archiving mechanism as is used by some other compiler systems. This has the
advantage that the format may be optimized toward speeding up the linkage process.

5.11.2 Using the Librarian
The librarian program is called LIBR, and the format of commands to it is as follows:

137

Librarian Linker and Utilities

Table 5.2: Librarian command-line options
Option Effect
-Pwidth specify page width
-W Suppress non-fatal errors

Table 5.3: Librarian key letter commands
Key Meaning
r Replace modules
d Delete modules
x Extract modules
m List modules
s List modules with symbols

LIBR options k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, options is zero or more librarian options which
affect the output of the program. k is a key letter denoting the function requested of the librarian
(replacing, extracting or deleting modules, listing modules or symbols), file.lib is the name of
the library file to be operated on, and file.obj is zero or more object file names.

The librarian options are listed in Table 5.2.
The key letters are listed in Table 5.3.
When replacing or extracting modules, the file.obj arguments are the names of the modules

to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be
replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian
to replace it in the library. Since it is not present, the module will be appended to the library. If the
r key is used and the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it
is an error not to give any object file names.

The m and s key letters will list the named modules and, in the case of the s keyletter, the symbols
defined or referenced within (global symbols only are handled by the librarian). As with the r and x
key letters, an empty list of modules means all the modules in the library.

5.11.3 Examples
Here are some examples of usage of the librarian. The following lists the global symbols in the
modules a.obj, b.obj and c.obj:

LIBR s file.lib a.obj b.obj c.obj

138

Linker and Utilities Librarian

This command deletes the object modules a.obj, b.obj and c.obj from the library file.lib:

LIBR d file.lib a.obj b.obj c.obj

5.11.4 Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard input
if no command line arguments are given. If the standard input is attached to the console, LIBR will
prompt for input. Multiple line input may be given by using a backslash as a continuation character
on the end of a line. If standard input is redirected from a file, LIBR will take input from the file,
without prompting. For example:

libr
libr> r file.lib 1.obj 2.obj 3.obj \
libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line. The libr>
prompts were printed by LIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input from lib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given to LIBR.

5.11.5 Listing Format

A request to LIBR to list module names will simply produce a list of names, one per line, on standard
output. The s keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letter D or U, representing a definition or reference to the symbol
respectively. The -P option may be used to determine the width of the paper for this operation. For
example:

LIBR -P80 s file.lib

will list all modules in file.lib with their global symbols, with the output formatted for an 80
column printer or display.

139

Objtohex Linker and Utilities

5.11.6 Ordering of Libraries
The librarian creates libraries with the modules in the order in which they were given on the com-
mand line. When updating a library the order of the modules is preserved. Any new modules added
to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module
which references a symbol defined in another module in the same library, the module defining the
symbol should come after the module referencing the symbol.

5.11.7 Error Messages
LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unless the -W option was used. In this case
all warning messages will be suppressed.

5.12 Objtohex
The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility program OBJTOHEX. This allows conversion
of object files as produced by the linker into a variety of different formats, including various hex
formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. If outputfile is omitted it defaults to l.hex or l.bin depend-
ing on whether the -b option is used. The inputfile defaults to l.obj.

The options for OBJTOHEX are listed in Table 5.4. Where an address is required, the format is the
same as for HLINK.

5.12.1 Checksum Specifications
If you are generating a HEX file output, please refer to the hexmate section 5.15 for calculating
checksums. For OBJTOHEX, the checksum specification allows automated checksum calculation and
takes the form of several lines, each line describing one checksum. The syntax of a checksum line
is:

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are hex numbers, without the usual H suffix.
Such a specification says that the bytes at addr1 through to addr2 inclusive should be summed

140

Linker and Utilities Objtohex

Table 5.4: OBJTOHEX command-line options
Option Meaning

-8 Produce a CP/M-86 output file
-A Produce an ATDOS .atx output file
-Bbase Produce a binary file with offset of base. Default file name is

l.obj
-Cckfile Read a list of checksum specifications from ckfile or standard

input
-D Produce a COD file
-E Produce an MS-DOS .exe file
-Ffill Fill unused memory with words of value fill - default value is

0FFh
-I Produce an Intel HEX file with linear addressed extended

records.
-L Pass relocation information into the output file (used with .exe

files)
-M Produce a Motorola HEX file (S19, S28 or S37 format)
-N Produce an output file for Minix
-Pstk Produce an output file for an Atari ST, with optional stack size
-R Include relocation information in the output file
-Sfile Write a symbol file into file
-T Produce a Tektronix HEX file.
-TE Produce an extended TekHEX file.
-U Produce a COFF output file
-UB Produce a UBROF format file
-V Reverse the order of words and long words in the output file
-n,m Format either Motorola or Intel HEX file, where n is the maxi-

mum number of bytes per record and m specifies the record size
rounding. Non-rounded records are zero padded to a multiple of
m. m itself must be a multiple of 2.

141

Cref Linker and Utilities

and the sum placed in the locations where1 through where2 inclusive. For an 8 bit checksum
these two addresses should be the same. For a checksum stored low byte first, where1 should be less
than where2, and vice versa. The +offset is optional, but if supplied, the value offset will be used
to initialise the checksum. Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit
checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH
to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of
this checksum would add the last address of the ROM being checksummed into the checksum. For
the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any
desired fashion.

5.13 Cref
The cross reference list utility CREF is used to format raw cross-reference information produced by
the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the
--CR option to the compiler. The assembler will generate a raw cross-reference file with a -C option
(most assemblers) or by using an OPT CRE directive (6800 series assemblers) or a XREF control line
(PIC assembler). The general form of the CREF command is:

cref options files

where options is zero or more options as described below and files is one or more raw cross-
reference files. CREF takes the options listed in Table 5.5.

Each option is described in more detail in the following paragraphs.

5.13.1 -Fprefix
It is often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The -F option allows specification of a path name prefix that will be used to
exclude any symbols defined in a file whose path name begins with that prefix. For example, -F\
will exclude any symbols from all files with a path name starting with \.

5.13.2 -Hheading
The -H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

142

Linker and Utilities Cref

Table 5.5: CREF command-line options
Option Meaning

-Fprefix Exclude symbols from files with a pathname or
filename starting with prefix

-Hheading Specify a heading for the listing file
-Llen Specify the page length for the listing file
-Ooutfile Specify the name of the listing file
-Pwidth Set the listing width
-Sstoplist Read file stoplist and ignore any symbols

listed.
-Xprefix Exclude and symbols starting with prefix

5.13.3 -Llen
Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be
printed on 55 line paper you would use a -L55 option. The default is 66 lines.

5.13.4 -Ooutfile
Allows specification of the output file name. By default the listing will be written to the standard
output and may be redirected in the usual manner. Alternatively outfile may be specified as the
output file name.

5.13.5 -Pwidth
This option allows the specification of the width to which the listing is to be formatted, e.g. -P132
will format the listing for a 132 column printer. The default is 80 columns.

5.13.6 -Sstoplist
The -S option should have as its argument the name of a file containing a list of symbols not to be
listed in the cross-reference. Multiple stoplists may be supplied with multiple -S options.

5.13.7 -Xprefix
The -X option allows the exclusion of symbols from the listing, based on a prefix given as argument
to -X. For example if it was desired to exclude all symbols starting with the character sequence xyz
then the option -Xxyz would be used. If a digit appears in the character sequence then this will match

143

Cromwell Linker and Utilities

Table 5.6: CROMWELL format types
Key Format

cod Bytecraft COD file
coff COFF file format
elf ELF/DWARF file
eomf51 Extended OMF-51 format
hitech HI-TECH Software format
icoff ICOFF file format
ihex Intel HEX file format
mcoff Microchip COFF file format
omf51 OMF-51 file format
pe P&E file format
s19 Motorola HEX file format

any digit in the symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed by
a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied
by invoking CREF with no arguments and typing the command line in response to the cref> prompt.
A backslash at the end of the line will be interpreted to mean that more command lines follow.

5.14 Cromwell
The CROMWELL utility converts code and symbol files into different formats. The formats available
are shown in Table 5.6.

The general form of the CROMWELL command is:

CROMWELL options input_files -okey output_file

where options can be any of the options shown in Table 5.7. Output_file (optional) is the
name of the output file. The input_files are typically the HEX and SYM file. CROMWELL
automatically searches for the SDB files and reads those if they are found. The options are further
described in the following paragraphs.

5.14.1 -Pname[,architecture]
The -P options takes a string which is the name of the processor used. CROMWELL may use this in the
generation of the output format selected. Note that to produce output in COFF format an additional

144

Linker and Utilities Cromwell

Table 5.7: CROMWELL command-line options
Option Description

-Pname[,architecture] Processor name and architecture
-N Identify code classes
-D Dump input file
-C Identify input files only
-F Fake local symbols as global
-Okey Set the output format
-Ikey Set the input format
-L List the available formats
-E Strip file extensions
-B Specify big-endian byte ordering
-M Strip underscore character
-V Verbose mode

argument to this option which also specifies the processor architecture is required. Hence for this
format the usage of this option must take the form: -Pname,architecture. Table 5.8 enumerates
the architectures supported for producing COFF files.

5.14.2 -N

To produce some output file formats (e.g. COFF), Cromwell requires that the names of the program
memory space psect classes be provided. The names of the classes are given as a comma separated
list. For example, in the DSPIC C compiler these classes are typically “CODE” and “NEARCODE”,
i.e. -NCODE,NEARCODE.

5.14.3 -D

The -D option is used to display to the screen details about the named input file in a readable format.
The input file can be one of the file types as shown in Table 5.6.

5.14.4 -C

This option will attempt to identify if the specified input files are one of the formats as shown in
Table 5.6. If the file is recognised, a confirmation of its type will be displayed.

145

Cromwell Linker and Utilities

Table 5.8: -P option architecture arguments for COFF file output.
Architecture Description
68K Motorola 68000 series chips
H8/300 Hitachi 8 bit H8/300 chips
H8/300H Hitachi 16 bit H8/300H chips
SH Hitachi 32 bit SuperH RISC chips
PIC12 Microchip base-line PIC chips
PIC14 Microchip mid-range PIC chips
PIC16 Microchip high-end (17Cxxx) PIC chips
PIC18 Microchip PIC18 chips
PIC24 Microchip PIC24F and PIC24H chips
PIC30 Microchip dsPIC30 and dsPIC33 chips

5.14.5 -F
When generating a COD file, this option can be used to force all local symbols to be represented as
global symbols. The may be useful where an emulator cannot read local symbol information from
the COD file.

5.14.6 -Okey
This option specifies the format of the output file. The key can be any of the types listed in Table
5.6.

5.14.7 -Ikey
This option can be used to specify the default input file format. The key can be any of the types
listed in Table 5.6.

5.14.8 -L
Use this option to show what file format types are supported. A list similar to that given in Table 5.6
will be shown.

5.14.9 -E
Use this option to tell CROMWELL to ignore any filename extensions that were given. The default
extension will be used instead.

146

Linker and Utilities Hexmate

5.14.10 -B
In formats that support different endian types, use this option to specify big-endian byte ordering.

5.14.11 -M
When generating COD files this option will remove the preceding underscore character from sym-
bols.

5.14.12 -V
Turns on verbose mode which will display information about operations CROMWELL is performing.

5.15 Hexmate
The Hexmate utility is a program designed to manipulate Intel HEX files. Hexmate is a post-link
stage utility that provides the facility to:

• Calculate and store variable-length checksum values

• Fill unused memory locations with known data sequences

• Merge multiple Intel hex files into one output file

• Convert INHX32 files to other INHX formats (e.g. INHX8M)

• Detect specific or partial opcode sequences within a hex file

• Find/replace specific or partial opcode sequences

• Provide a map of addresses used in a hex file

• Change or fix the length of data records in a hex file.

• Validate checksums within Intel hex files.

Typical applications for hexmate might include:

• Merging a bootloader or debug module into a main application at build time

• Calculating a checksum over a range of program memory and storing its value in program
memory or EEPROM

147

Hexmate Linker and Utilities

• Filling unused memory locations with an instruction to send the PC to a known location if it
gets lost.

• Storage of a serial number at a fixed address.

• Storage of a string (e.g. time stamp) at a fixed address.

• Store initial values at a particular memory address (e.g. initialise EEPROM)

• Detecting usage of a buggy/restricted instruction

• Adjusting hex file to meet requirements of particular bootloaders

5.15.1 Hexmate Command Line Options
Some of these hexmate operations may be possible from the compiler’s command line driver. How-
ever, if hexmate is to be run directly, its usage is:

hexmate <file1.hex ... fileN.hex> <options>

Where file1.hex through to fileN.hex are a list of input Intel hex files to merge using hexmate. Ad-
ditional options can be provided to further customize this process. Table 5.9 lists the command line
options that hexmate accepts.

The input parameters to hexmate are now discussed in greater detail. Note that any integral
values supplied to the hexmate options should be entered as hexadecimal values without leading 0x
or trailing h characters. Note also that any address fields specified in these options are to be entered
as byte addresses, unless specified otherwise in the -ADDRESSING option.

5.15.1.1 specifications,filename.hex

Intel hex files that can be processed by hexmate should be in either INHX32 or INHX8M format.
Additional specifications can be applied to each hex file to put restrictions or conditions on how this
file should be processed. If any specifications are used they must precede the filename. The list of
specifications will then be separated from the filename by a comma.

A range restriction can be applied with the specification rStart-End. A range restriction will
cause only the address data falling within this range to be used. For example:

r100-1FF,myfile.hex

will use myfile.hex as input, but only process data which is addressed within the range 100h-1FFh
(inclusive) to be read from myfile.hex.

An address shift can be applied with the specification sOffset . If an address shift is used, data
read from this hex file will be shifted (by the Offset) to a new address when generating the output.
The offset can be either positive or negative. For example:

148

Linker and Utilities Hexmate

Table 5.9: Hexmate command-line options
Option Effect

-ADDRESSING Set address fields in all hexmate options to use word addressing
or other

-BREAK Break continuous data so that a new record begins at a set
address

-CK Calculate and store a checksum value
-FILL Program unused locations with a known value
-FIND Search and notify if a particular code sequence is detected
-FIND...,DELETE Remove the code sequence if it is detected (use with caution)
-FIND...,REPLACE Replace the code sequence with a new code sequence
-FORMAT Specify maximum data record length or select INHX variant
-HELP Show all options or display help message for specific option
-LOGFILE Save hexmate analysis of output and various results to a file
-Ofile Specify the name of the output file
-SERIAL Store a serial number or code sequence at a fixed address
-SIZE Report the number of bytes of data contained in the resultant

hex image.
-STRING Store an ASCII string at a fixed address
-STRPACK Store an ASCII string at a fixed address using string packing
-W Adjust warning sensitivity
+ Prefix to any option to overwrite other data in its address range

if necessary

149

Hexmate Linker and Utilities

r100-1FFs2000,myfile.hex

will shift the block of data from 100h-1FFh to the new address range 2100h-21FFh.
Be careful when shifting sections of executable code. Program code shouldn’t be shifted unless it

can be guaranteed that no part of the program relies upon the absolute location of this code segment.

5.15.1.2 + Prefix

When the + operator precedes a parameter or input file, the data obtained from that parameter will
be forced into the output file and will overwrite other data existing within its address range. For
example:

+input.hex +-STRING@1000="My string"

Ordinarily, hexmate will issue an error if two sources try to store differing data at the same location.
Using the + operator informs hexmate that if more than one data source tries to store data to the same
address, the one specified with a ’+’ will take priority.

5.15.1.3 -ADDRESSING

By default, all address parameters in hexmate options expect that values will be entered as byte
addresses. In some device architectures the native addressing format may be something other than
byte addressing. In these cases it would be much simpler to be able to enter address-components
in the device’s native format. To facilitate this, the -ADDRESSING option is used. This option takes
exactly one parameter which configures the number of bytes contained per address location. If for
example a device’s program memory naturally used a 16-bit (2 byte) word-addressing format, the
option -ADDRESSING=2 will configure hexmate to interpret all command line address fields as word
addresses. The affect of this setting is global and all hexmate options will now interpret addresses
according to this setting. This option will allow specification of addressing modes from one byte-
per-address to four bytes-per-address.

5.15.1.4 -BREAK

This option takes a comma separated list of addresses. If any of these addresses are encountered
in the hex file, the current data record will conclude and a new data record will recommence from
the nominated address. This can be useful to use new data records to force a distinction between
functionally different areas of program space. Some hex file readers depend on this.

150

Linker and Utilities Hexmate

5.15.1.5 -CK

The -CK option is for calculating a checksum. The usage of this option is:

-CK=start-end@destination[+offset][wWidth][tCode][gAlogithm]

where:

• Start and End specify the address range that the checksum will be calculated over.

• Destination is the address where to store the checksum result. This value cannot be within the
range of calculation.

• Offset is an optional initial value to add to the checksum result. Width is optional and specifies
the byte-width of the checksum result. Results can be calculated for byte-widths of 1 to 4
bytes. If a positive width is requested, the result will be stored in big-endian byte order. A
negative width will cause the result to be stored in little-endian byte order. If the width is left
unspecified, the result will be 2 bytes wide and stored in little-endian byte order.

• Code is a hexadecimal code that will trail each byte in the checksum result. This can allow
each byte of the checksum result to be embedded within an instruction.

• Algorithm is an integer to select which hexmate algorithm to use to calculate the checksum
result. A list of selectable algorithms are given in Table 5.10. If unspecified, the default
checksum algorithm used is 8 bit addition.

A typical example of the use of the checksum option is:

-CK=0-1FFF@2FFE+2100w2

This will calculate a checksum over the range 0-1FFFh and program the checksum result at address
2FFEh, checksum value will apply an initial offset of 2100h. The result will be two bytes wide.

5.15.1.6 -FILL

The -FILL option is used for filling unused memory locations with a known value. The usage of this
option is:

-FILL=Code@Start-End[,data]

where:

• Code is the opcode that will be programmed to unused locations in memory. Multi-byte codes
should be entered in little endian order.

151

Hexmate Linker and Utilities

Table 5.10: Hexmate Checksum Algorithm Selection
Selector Algorithm description
-4 Subtraction of 32 bit values from initial value
-3 Subtraction of 24 bit values from initial value
-2 Subtraction of 16 bit values from initial value
-1 Subtraction of 8 bit values from initial value
1 Addition of 8 bit values from initial value
2 Addition of 16 bit values from initial value
3 Addition of 24 bit values from initial value
4 Addition of 32 bit values from initial value

• Start and End specify the address range that this fill will apply to.

For example:

-FILL=3412@0-1FFF,data

will program opcode 1234h in all unused addresses from program memory address 0 to 1FFFh (Note
the endianism). -FILL accepts whole bytes of hexadecimal data from 1 to 8 bytes in length.

Adding the ,data flag to this option is not required. If the data flag has been specified, hexmate
will only perform ROM filling to records that actually contain data. This means that these records
will be padded out to the default data record length or the width specified in the -FORMAT option.
Records will also begin on addresses which are multiples of the data record length used. The default
data record length is 16 bytes. This facility is particularly useful or is a requirement for some
bootloaders that expect that all data records will be of a particular length and address alignment.

5.15.1.7 -FIND

This option is used to detect and log occurrences of an opcode or partial code sequence. The usage
of this option is:

-FIND=Findcode[mMask]@Start-End[/Align][w][t”Title”]

where:

• Findcode is the hexadecimal code sequence to search for and is entered in little endian byte
order.

• Mask is optional. It allows a bit mask over the Findcode value and is entered in little endian
byte order.

152

Linker and Utilities Hexmate

• Start and End limit the address range to search through.

• Align is optional. It specifies that a code sequence can only match if it begins on an address
which is a multiple of this value. w, if present will cause hexmate to issue a warning whenever
the code sequence is detected.

• Title is optional. It allows a title to be given to this code sequence. Defining a title will make
log-reports and messages more descriptive and more readable. A title will not affect the actual
search results.

TUT•RIAL

Let’s look at some examples. The option -FIND=3412@0-7FFF/2w will detect the code
sequence 1234h when aligned on a 2 (two) byte address boundary, between 0h and
7FFFh. w indicates that a warning will be issued each time this sequence is found.
Another example, -FIND=3412M0F00@0-7FFF/2wt"ADDXY" is same as last example
but the code sequence being matched is masked with 000Fh, so hexmate will search for
123xh. If a byte-mask is used, is must be of equal byte-width to the opcode it is applied
to. Any messaging or reports generated by hexmate will refer to this opcode by the
name, ADDXY as this was the title defined for this search.

If hexmate is generating a log file, it will contain the results of all searches. -FIND accepts whole
bytes of hex data from 1 to 8 bytes in length. Optionally, -FIND can be used in conjunction with
,REPLACE or ,DELETE (as described below).

5.15.1.8 -FIND...,DELETE

If DELETE is used in conjunction with a -FIND option and a sequence is found that matches the
-FIND criteria, it will be removed. This function should be used with extreme caution and is not
recommended for removal of executable code.

5.15.1.9 -FIND...,REPLACE

REPLACE Can only be used in conjunction with a -FIND option. Code sequences that matched the
-FIND criteria can be replaced or partially replaced with new codes. The usage for this sub-option
is:

-FIND...,REPLACE=Code[mMask]

where:

153

Hexmate Linker and Utilities

• Code is a little endian hexadecimal code to replace the sequences that match the -FIND crite-
ria.

• Mask is an optional bit mask to specify which bits within Code will replace the code sequence
that has been matched. This may be useful if, for example, it is only necessary to modify 4
bits within a 16-bit instruction. The remaining 12 bits can masked and be left unchanged.

5.15.1.10 -FORMAT

The -FORMAT option can be used to specify a particular variant of INHX format or adjust maximum
record length. The usage of this option is:

-FORMAT=Type[,Length]

where:

• Type specifies a particular INHX format to generate.

• Length is optional and sets the maximum number of bytes per data record. A valid length is
between 1 and 16, with 16 being the default.

TUT•RIAL

Consider this case. A bootloader trying to download an INHX32 file fails succeed
because it cannot process the extended address records which are part of the INHX32
standard. You know that this bootloader can only program data addressed within the
range 0 to 64k, and that any data in the hex file outside of this range can be safely
disregarded. In this case, by generating the hex file in INHX8M format the operation
might succeed. The hexmate option to do this would be -FORMAT=INHX8M.
Now consider this. What if the same bootloader also required every data record to
contain eight bytes of data, no more, no less? This is possible by combining -FORMAT
with -FILL. Appropriate use of -FILL can ensure that there are no gaps in the data
for the address range being programmed. This will satisfy the minimum data length
requirement. To set the maximum length of data records to eight bytes, just modify the
previous option to become -FORMAT=INHX8M,8.

The possible types that are supported by this option are listed in Table 5.11. Note that INHX032 is
not an actual INHX format. Selection of this type generates an INHX32 file but will also initialize
the upper address information to zero. This is a requirement of some device programmers.

154

Linker and Utilities Hexmate

Table 5.11: INHX types used in -FORMAT option
Type Description

INHX8M Cannot program addresses beyond 64K.
INHX32 Can program addresses beyond 64K with extended linear address records.
INHX032 INHX32 with initialization of upper address to zero.

5.15.1.11 -HELP

Using -HELP will list all hexmate options. By entering another hexmate option as a parameter of
-HELP will show a detailed help message for the given option. For example:

-HELP=string

will show additional help for the -STRING hexmate option.

5.15.1.12 -LOGFILE

The -LOGFILE option saves hex file statistics to the named file. For example:

-LOGFILE=output.log

will analyse the hex file that hexmate is generating and save a report to a file named output.log.

5.15.1.13 -Ofile

The generated Intel hex output will be created in this file. For example:

-Oprogram.hex

will save the resultant output to program.hex. The output file can take the same name as one of its
input files, but by doing so, it will replace the input file entirely.

5.15.1.14 -SERIAL

This option will store a particular hex value at a fixed address. The usage of this option is:

-SERIAL=Code[+/-Increment]@Address[+/-Interval][rRepetitions]

where:

• Code is a hexadecimal value to store and is entered in little endian byte order.

155

Hexmate Linker and Utilities

• Increment is optional and allows the value of Code to change by this value with each repetition
(if requested).

• Address is the location to store this code, or the first repetition thereof.

• Interval is optional and specifies the address shift per repetition of this code.

• Repetitions is optional and specifies the number of times to repeat this code.

For example:

-SERIAL=000001@EFFE

will store hex code 00001h to address EFFEh.
Another example:

-SERIAL=0000+2@1000+10r5

will store 5 codes, beginning with value 0000 at address 1000h. Subsequent codes will appear at
address intervals of +10h and the code value will change in increments of +2h.

5.15.1.15 -SIZE

Using the -SIZE option will report the number of bytes of data within the resultant hex image to
standard output. The size will also be recorded in the log file if one has been requested.

5.15.1.16 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this option is:

-STRING@Address[tCode]=”Text”

where:

• Address is the location to store this string.

• Code is optional and allows a byte sequence to trail each byte in the string. This can allow the
bytes of the string to be encoded within an instruction.

• Text is the string to convert to ASCII and embed.

For example:

-STRING@1000="My favourite string"

156

Linker and Utilities Hexmate

will store the ASCII data for the string, My favourite string (including null terminator) at ad-
dress 1000h.

Another example:

-STRING@1000t34="My favourite string"

will store the same string with every byte in the string being trailed with the hex code 34h.

5.15.1.17 -STRPACK

This option performs the same function as -STRING but with two important differences. Firstly, only
the lower seven bits from each character are stored. Pairs of 7 bit characters are then concatenated
and stored as a 14 bit word rather than in separate bytes. This is usually only useful for devices where
program space is addressed as 14 bit words. The second difference is that -STRING’s t specifier is
not applicable with -STRPACK.

157

Hexmate Linker and Utilities

158

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with
the name of the function. This is followed by information analysed into the following headings.

Synopsis This is the C definition of the function, and the header file in which it is declared.

Description This is a narrative description of the function and its purpose.

Example This is an example of the use of the function. It is usually a complete small program that
illustrates the function.

Data types If any special data types (structures etc.) are defined for use with the function, they are
listed here with their C definition. These data types will be defined in the header file given
under heading — Synopsis.

See also This refers you to any allied functions.

Return value The type and nature of the return value of the function, if any, is given. Information
on error returns is also included Only those headings which are relevant to each function are
used.

159

Library Functions

__checksum_failed
Synopsis

void __checksum_failed(void)

Description

This routine will be called during the execution of compiler-generated startup code if it has been
requested that a built-in checksum and verification routine be included, and the result of the veri-
fication does not match the expected result. The default implementation of this function contains
a busy loop which serves no purpose other than to prevent the program from proceeding to main.
It is implement a customised response to a checksum validation failure according to your system’s
ability. Some of the possible actions that could be included in a customised routine could be to blink
an error LED, re-flash the program image or call for help. If this routine is allowed to return, it will
resume execution of the compiler-generated startup code and proceed to main. If action was taken
to correct the problem, it may be preferred to call for a system reset rather than proceeding through
to main as this will cause the checksum to be verified again prior to entering main.

Notes

Be aware that this routine will have been entered prior to execution of startup code that would
normally clear and initialize data memory. If your customised routine uses variables, their initial
states should be assigned by your routine prior to their use.

See also

ram_test_failed()

160

Library Functions

__CONFIG
Synopsis

#include <htc.h>

__CONFIG(n, data)

Description

This macro is used to program the configuration fuses that set the device into various modes of
operation.

The macro accepts the number corresponding to the configuration register it is to program, then
the 16-Bit value it is to update it with.

16-Bit masks have been defined to describe each programmable attribute available on each de-
vice. These attribute masks can be found tabulated in this manual in the Features and Runtime
Environment section.

Multiple attributes can be selected by ANDing them together.

Example

#include <htc.h>

__CONFIG(1,RC & OSCEN)
__CONFIG(2,WDTPS16 & BORV45)
__CONFIG(4, DEBUGEN)

void
main (void)
{
}

See also

__EEPROM_DATA(), __IDLOC()

161

Library Functions

__delay_400_cycles
Synopsis

void __delay_ms(int)

Description

This routine when called will invoke a fixed delay of 400 instruction cycles multiplied by the value
passed to the function as a parameter. Also consider an additional 10 to 12 instruction cycle overhead
in the call/return mechanism to this function. Alternately, the macro __delay_ms() is defined as
an interface to this routine where a delay period can be specified as a number of milliseconds rather
than as 400 cycle multiples.

See also

__delay_ms()

162

Library Functions

Table A.1: Maximum delay versus system frequency
System frequency Maximum delay
40 MHz 2621 ms
20 MHz 5242 ms
10 MHz 10484 ms

__delay_ms
Synopsis

__delay_ms(x)

Description

This routine is defined as a preprocessor macro. The macro interfaces with library routine __de-
lay_400_cycles(). The parameter in this macro, x, defines the number of milliseconds that the pro-
gram will be delayed by calling this macro. This macro requires the definition of the preprocessor
symbol _XTAL_FREQ. This value that this symbol should be defined with is the oscillator frequency
(in Hertz) used in your system. The maximum delay period that can be requested varies linearly
according to the _XTAL_FREQ setting. Some limits of x that __delay_ms(x) can use for various fre-
quencies are given in table A.1.

Should these limits be exceeded the actual period of delay will be significantly less than re-
quested.

See also

__delay_400_cycles()

163

Library Functions

__EEPROM_DATA
Synopsis

#include <htc.h>

__EEPROM_DATA(a,b,c,d,e,f,g,h)

Description

This macro is used to store initial values into the device’s EEPROM registers at the time of program-
ming.

The macro must be given blocks of 8 bytes to write each time it is called, and can be called
repeatedly to store multiple blocks.

__EEPROM_DATA() will begin writing to EEPROM address zero, and will auto-increment the
address written to by 8, each time it is used.

Example

#include <htc.h>

__EEPROM_DATA(0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07)
__EEPROM_DATA(0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F)

void
main (void)
{
}

See also

__CONFIG()

164

Library Functions

__IDLOC
Synopsis

#include <htc.h>

__IDLOC(x)

Description

This macro places data into the device’s special locations outside of addressable memory reserved
for ID. This would be useful for storage of serial numbers etc.

The macro will attempt to write 5 nibbles of data to the 5 locations reserved for ID purposes.

Example

#include <htc.h>

__IDLOC(15F01);
/* will store 1, 5, F, 0 and 1 in the ID registers*/

void
main (void)
{
}

See also

__EEPROM_DATA(), __CONFIG()

165

Library Functions

__RAM_CELL_TEST
Synopsis

void _ram_cell_test(void)

Description

Should not be called from user code. This routine is called from a loop within the generated runtime
startup code if the system requires a RAM integrity test before program execution. Upon entry to
this routine, the FSR0 register has been loaded with the RAM cell to test. The value 0x55 will
be assigned to the cell and verified, followed by 0xAA. If either of these values fail verification,
the routine will call ram_test_failed() with an error code in the working register and FSR0 still
containing the address that was in error.

This routine is called repeatedly during startup, with each subsequent call testing the next address
in sequence. If the location being tested contains non volatile data, the value will be backed up in
the PRODL register before the test routine is called and restored upon return from the routine.

This library routine can be overriden by a user’s implementation if the standard cell tests are
insufficient for a particular system’s verification.

See also

ram_test_failed()

166

Library Functions

ABS
Synopsis

#include <stdlib.h>

int abs (int j)

Description

The abs() function returns the absolute value of j.

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));
}

See Also

labs(), fabs()

Return Value

The absolute value of j.

167

Library Functions

ACOS
Synopsis

#include <math.h>

double acos (double f)

Description

The acos() function implements the inverse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = acos(i)*180.0/3.141592;
printf("acos(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 0 to π

168

Library Functions

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into the struct tm structure, pointed to by its
argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0
Note the newline at the end of the string. The width of each field in the string is fixed. The

example gets the current time, converts it to a struct tm pointer with localtime(), it then converts
this to ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("%s", asctime(tp));

}

See Also

ctime(), gmtime(), localtime(), time()

169

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the
compiler.. See time() for more details.

170

Library Functions

ASIN
Synopsis

#include <math.h>

double asin (double f)

Description

The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = asin(i)*180.0/3.141592;
printf("asin(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range - π

171

Library Functions

ASSERT
Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally
throughout your code at points where correct operation of the code depends upon certain conditions
being true initially. An assert() routine may be used to ensure at run time that an assumption holds
true. For example, the following statement asserts that the pointer tp is not equal to NULL:

assert(tp);
If at run time the expression evaluates to false, the program will abort with a message identifying

the source file and line number of the assertion, and the expression used as an argument to it. A fuller
discussion of the uses of assert() is impossible in limited space, but it is closely linked to methods
of proving program correctness.

Example

void
ptrfunc (struct xyz * tp)
{

assert(tp != 0);
}

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-
mented by the user.

172

Library Functions

ATAN
Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range - π

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan(1.5));
}

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

173

Library Functions

ATAN2
Synopsis

#include <math.h>

double atan2 (double x, double x)

Description

This function returns the arc tangent of y/x.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan2(10.0, -10.0));
}

See Also

sin(), cos(), tan(), asin(), acos(), atan()

Return Value

The arc tangent of y/x.

174

Library Functions

ATOF
Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

The atof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating
point or scientific notation.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
double i;

gets(buf);
i = atof(buf);
printf("Read %s: converted to %f\n", buf, i);

}

See Also

atoi(), atol(), strtod()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

175

Library Functions

ATOI
Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = atoi(buf);
printf("Read %s: converted to %d\n", buf, i);

}

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, 0 will be returned.

176

Library Functions

ATOL
Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

The atol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
long i;

gets(buf);
i = atol(buf);
printf("Read %s: converted to %ld\n", buf, i);

}

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

177

Library Functions

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,
size_t size, int (*compar)(const void *, const void *))

Description

The bsearch() function searches a sorted array for an element matching a particular key. It uses a
binary search algorithm, calling the function pointed to by compar to compare elements in the array.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
char name[40];
int value;

} values[100];

int
val_cmp (const void * p1, const void * p2)
{

return strcmp(((const struct value *)p1)->name,
((const struct value *)p2)->name);

}

void
main (void)
{

char inbuf[80];
int i;
struct value * vp;

178

Library Functions

i = 0;
while(gets(inbuf)) {

sscanf(inbuf,"%s %d", values[i].name, &values[i].value);
i++;

}
qsort(values, i, sizeof values[0], val_cmp);
vp = bsearch("fred", values, i, sizeof values[0], val_cmp);
if(!vp)

printf("Item ’fred’ was not found\n");
else

printf("Item ’fred’ has value %d\n", vp->value);
}

See Also

qsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these
may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

179

Library Functions

CEIL
Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less than f.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double j;

scanf("%lf", &j);
printf("The ceiling of %lf is %lf\n", j, ceil(j));

}

180

Library Functions

CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets() function will read one line of input from the console into the buffer passed as an ar-
gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with
backspace deleting the previously typed character, and ctrl-U deleting the entire line typed so far.
Other characters are placed in the buffer, with a carriage return or line feed (newline) terminating
the function. The collected string is null terminated.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

getch(), getche(), putch(), cputs()

181

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

182

Library Functions

CLRWDT
Synopsis

#include <htc.h>

CLRWDT();

Description

This macro is used to clear the device’s internal watchdog timer.

Example

#include <htc.h>

void
main (void)
{

WDTCON=1;
/* enable the WDT */

CLRWDT();
}

183

Library Functions

config_read(), config_write()

Synopsis

#include <htc.h>

unsigned int config_read(void);

void config_write(unsigned char, unsigned int);

Description

These functions allow access to the device configuration registers which determine many of the
behavioural aspects of the device itself.

config_read() accepts a single parameter to determine which config word will be read. The 16-Bit
value contained in the register is returned.

config_write() doesn’t return any value. It accepts a second parameter which is a 16-Bit value to
be written to the selected register.

Example

#include <htc.h>

void
main (void)
{

unsigned int value;

value = config_read(2); // read register 2
value |= WDTEN; // modify value
config_write(2, value); // update config register

}

See Also

device_id_read(),idloc_read(),idloc_write()

184

Library Functions

Return Value

config_read() returns the 16-Bit value contained in the nominated configuration register.

Note

The functions config_read() config_write() are only applicable to such devices that support this
feature.

185

Library Functions

COS
Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated
by expansion of a polynomial series approximation.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

186

Library Functions

COSH, SINH, TANH
Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description

These functions are the implement hyperbolic equivalents of the trigonometric functions; cos(), sin()
and tan().

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", cosh(1.5));
printf("%f\n", sinh(1.5));
printf("%f\n", tanh(1.5));

}

Return Value

The function cosh() returns the hyperbolic cosine value.
The function sinh() returns the hyperbolic sine value.
The function tanh() returns the hyperbolic tangent value.

187

Library Functions

CPUTS
Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputting carriage returns before
each newline in the string. It calls putch() repeatedly. On a hosted system cputs() differs from puts()
in that it writes to the console directly, rather than using file I/O. In an embedded system cputs() and
puts() are equivalent.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

cputs(), puts(), putch()

188

Library Functions

CTIME
Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

The ctime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

189

Library Functions

device_id_read()

Synopsis

#include <htc.h>

unsigned int device_id_read(void);

Description

This function returns the device ID code that is factory-programmed into the chip. This code can be
used to identify the device and its revision number.

Example

#include <htc.h>

void
main (void)
{

unsigned int id_value;
unsigned int device_code;
unsigned char revision_no;

id_value = device_id_read();
/* lower 5 bits represent revision number
* upper 11 bits identify device */

device_code = (id_value > > 5);
revision_no = (unsigned char)(id_value & 0x1F);

}

See Also

flash_read(), config_read()

190

Library Functions

Return Value

device_id_read() returns the 16-Bit factory-programmed device id code used to identify the device
type and its revision number.

Note

The device_id_read() is applicable only to those devices which are capable of reading their own
program memory.

191

Library Functions

DI, EI

Synopsis

#include <htc.h>

void ei (void)
void di (void)

Description

The di() macro disables all interrupts globally (regardless of priority settings), ei() re-enables inter-
rupts globally. These are implemented as macros defined in PIC18.h. The example shows the use
of ei() and di() around access to a long variable that is modified during an interrupt. If this was not
done, it would be possible to return an incorrect value, if the interrupt occurred between accesses to
successive words of the count value.

Example

#include <htc.h>

long count;

void
interrupt tick (void)
{

count++;
}

long
getticks (void)
{

long val; /* Disable interrupts around access
to count, to ensure consistency.*/

di();
val = count;
ei();
return val;

192

Library Functions

}

Note
As these macros act on the global interrupt enable bit of the PIC18 processor, ei() will only restore
those interrupt sources that were previously enabled.

193

Library Functions

DIV
Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

The div() function computes the quotient and remainder of the numerator divided by the denomina-
tor.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

div_t x;

x = div(12345, 66);
printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

Return Value

Returns the quotient and remainder into the div_t structure.

194

Library Functions

EEPROM_READ, EEPROM_WRITE

Synopsis

#include <htc.h>

unsigned char eeprom_read (unsigned int address);
void eeprom_write (unsigned int address, unsigned char value);

Description

These functions allow access to the on-chip eeprom (when present). The eeprom is not in the
directly-accessible memory space and a special byte sequence is loaded to the eeprom control regis-
ters to access this memory. Writing a value to the eeprom is a slow process and the eeprom_write()
function polls the appropriate registers to ensure that any previous writes have completed before
writing the next datum.

Reading data is completed in the one cycle and no polling is necessary to check for a read
completion.

Example

#include <htc.h>

void
main (void)
{

unsigned char data;
unsigned int address = 0x0010;

data=eeprom_read(address);
eeprom_write(address, data);

}

See Also

flash_erase, flash_read, flash_write

195

Library Functions

Note

The high and low priority interrupt are disabled during sensitive sequences required to access EEP-
ROM. Interrupts are restored after the sequence has completed. eeprom_write() will clear the EEIF
hardware flag before returning.

Both eeprom_read() and eeprom_write() are available in a similar macro form. The essential
difference between the macro and function implementations is that EEPROM_READ(), the macro,
does not test nor wait for any prior write operations to complete.

196

Library Functions

EVAL_POLY
Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

The eval_poly() function evaluates a polynomial, whose coefficients are contained in the array d, at
x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed in n.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double x, y;
double d[3] = {1.1, 3.5, 2.7};

x = 2.2;
y = eval_poly(x, d, 2);
printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value

A double value, being the polynomial evaluated at x.

197

Library Functions

EXP
Synopsis

#include <math.h>

double exp (double f)

Description

The exp() routine returns the exponential function of its argument, i.e. e to the power of f.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)
printf("e to %1.0f = %f\n", f, exp(f));

}

See Also

log(), log10(), pow()

198

Library Functions

FABS
Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f %f\n", fabs(1.5), fabs(-1.5));
}

See Also

abs(), labs()

199

Library Functions

FLASH_ERASE, FLASH_READ, FLASH_WRITE

Synopsis

#include <htc.h>

void flash_erase (unsigned long addr);
unsigned char flash_read (unsigned long addr);
void flash_write(const unsigned char * source, unsigned int length,

far unsigned char * dest_addr);

Description

These functions allow access to the flash memory of the microcontroller (when present).
Reading from the flash memory can be done one byte at a time with use of the flash_read()

function. flash_read returns the data value found at the specified address in flash memory.
Entire sectors of flash memory can be restored to an unprogrammed state (value=FFFFh) with

use of the flash_erase() function. The number of bytes erased per flash erase action is specific to
each device’s flash-erase block size. Specifying an address to the flash_erase function, will erase
the entire block that contains the given address.

flash_write() copies blocks of data/code from RAM/flash to a new destination in flash memory.
flash_write requires a pointer to the data that will be copied, the length of data to copy (in bytes)
and a pointer to the destination address in flash memory. This function can be used to update values
of variables declared as const. Any erasures of flash memory required in order write to the flash are
performed within flash_write and pre-erasure is not required.

Example

#include <htc.h>
const unsigned char old_text[]="insert text here";
unsigned char new_text[]="HI-TECH Software";
void
main (void)
{

const unsigned char * source = new_text;
far unsigned char * dest = (far unsigned char *) old_text;
unsigned char data;
unsigned int length = sizeof(new_text);

200

Library Functions

// Read a byte of data from flash address 1000h
data = flash_read(0x1000);

// Copy data from source to destination in flash.
// source does not have be in flash.
// Any required flash erasures done internally.
flash_write(source, length, dest);

// Erase block containing the address 4000h
flash_erase(0x4000);

}

Return Value

flash_read() returns the data found at the given address, as an unsigned char.

Note

The flash_write() function can be used to update anywhere from 1 to 65535 bytes of data at a time,
however it is more efficient to write in data lengths that are multiples of that device’s erase block
size.
Ensure that the function does not attempt to overwrite the section of program memory from which
it is currently executing and extreme caution must be exercised if modifying code at the device’s
reset or interrupt vectors. A reset or interrupt must not be triggered while this sector is in erasure.
For PIC18FxxJxx parts, care must also be taken to ensure that a reset does not occur during a write
targetting the last 1024 bytes of program space as this region also contains the device’s configuration
values.

201

Library Functions

FMOD
Synopsis

#include <math.h>

double fmod (double x, double y)

Description

The function fmod returns the remainder of x/y as a floating point quantity.

Example

#include <math.h>

void
main (void)
{

double rem, x;

x = 12.34;
rem = fmod(x, 2.1);

}

Return Value

The floating-point remainder of x/y.

202

Library Functions

FLOOR
Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater than f.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", floor(1.5));
printf("%f\n", floor(-1.5));

}

203

Library Functions

FREXP
Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

The frexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into the int object pointed to by p. Its return value x is in the interval (0.5,
1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is zero, both parts of the
result are zero.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;
int i;

f = frexp(23456.34, &i);
printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also

ldexp()

204

Library Functions

FTOA
Synopsis

#include <stdlib.h>

char * ftoa (float f, int * status)

Description

The function ftoa converts the contents of f into a string which is stored into a buffer which is then
return.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char * buf;
float input = 12.34;
int status;
buf = ftoa(input, &status);
printf("The buffer holds %s\n", buf);

}

See Also

strtol(), itoa(), utoa(), ultoa()

Return Value

This routine returns a reference to the buffer into which the result is written.

205

Library Functions

GETCH, GETCHE
Synopsis

#include <conio.h>

char getch (void)
char getche (void)

Description

The getch() function reads a single character from the console keyboard and returns it without echo-
ing. The getche() function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.
By default, the library contains a version of getch() that will interface to the Lucifer Debugger. The
user should supply an appropriate routine if another source is desired, e.g. a serial port.

The module getch.c in the SOURCES directory contains model versions of all the console I/O
routines. Other modules may also be supplied, e.g. ser180.c has routines for the serial port in a
Z180.

Example

#include <conio.h>

void
main (void)
{

char c;

while((c = getche()) != ’\n’)
continue;

}

See Also

cgets(), cputs(), ungetch()

206

Library Functions

GETCHAR
Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro defined in stdio.h. Note that under
normal circumstances getchar() will NOT return unless a carriage return has been typed on the
console. To get a single character immediately from the console, use the function getch().

Example

#include <stdio.h>

void
main (void)
{

int c;

while((c = getchar()) != EOF)
putchar(c);

}

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

207

Library Functions

GETS
Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer at s, deleting the newline (cf.
fgets()). The buffer is null terminated. In an embedded system, gets() is equivalent to cgets(), and
results in getche() being called repeatedly to get characters. Editing (with backspace) is available.

Example

#include <stdio.h>

void
main (void)
{

char buf[80];

printf("Type a line: ");
if(gets(buf))

puts(buf);
}

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

208

Library Functions

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to by t which is in seconds since 00:00:00 on Jan 1, 1970,
into a broken down time stored in a structure as defined in time.h. The structure is defined in the
’Data Types’ section.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = gmtime(&clock);
printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also

ctime(), asctime(), time(), localtime()

209

Library Functions

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

210

Library Functions

idloc_read(),idloc_write()

Synopsis

#include <htc.h>

unsigned char idloc_read(void);

void idloc_write(unsigned char, unsigned char);

Description

These functions allow access to the user ID register which can be used to store small amounts of
information such as serial numbers, checksums etc.

idloc_read() accepts a single parameter to determine which user ID register to read. The value
contained in the register is returned.

idloc_write() doesn’t return any value. It accepts a second parameter which is a value to be
written to the selected register. Note that only the lower nibble is significant. The upper nibble of
the value written will always be 0xF as per Microchip’s documentation.

Example

#include <htc.h>

void
main (void)
{

unsigned char value;

value = idloc_read(2); // read register 2
value++; // modify value
idloc_write(2, value); // update user ID register

}

See Also

device_id_read(),config_read(),config_write()

211

Library Functions

Return Value

idloc_read() returns the value contained in the nominated user ID register.

Note

The functions idloc_read() idloc_write() are only applicable to such devices that support this fea-
ture.

Note also that ICD2 breakpoints should not be set within the idloc_write() function. Doing so
can result in disrupting the operation of the debugger.

212

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.

Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit(char c)

Description

These macros, defined in ctype.h, test the supplied character for membership in one of several over-
lapping groups of characters. Note that all except isascii() are defined for c, if isascii(c) is true or if
c = EOF.

isalnum(c) c is in 0-9 or a-z or A-Z
isalpha(c) c is in A-Z or a-z
isascii(c) c is a 7 bit ascii character
iscntrl(c) c is a control character
isdigit(c) c is a decimal digit
islower(c) c is in a-z
isprint(c) c is a printing char
isgraph(c) c is a non-space printable character
ispunct(c) c is not alphanumeric
isspace(c) c is a space, tab or newline
isupper(c) c is in A-Z
isxdigit(c) c is in 0-9 or a-f or A-F

213

Library Functions

Example

#include <ctype.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = 0;
while(isalnum(buf[i]))

i++;
buf[i] = 0;
printf("’%s’ is the word\n", buf);

}

See Also

toupper(), tolower(), toascii()

214

Library Functions

ISDIG
Synopsis

#include <ctype.h>

int isdig (int c)

Description

The isdig() function tests the input character c to see if is a decimal digit (0 – 9) and returns true is
this is the case; false otherwise.

Example

#include <ctype.h>

void
main (void)
{

char buf[] = "1998a";
if(isdig(buf[0]))

printf("valid type detected\n");
}

See Also

isdigit() (listed un isalnum())

Return Value

Zero if the character is a decimal digit; a non-zero value otherwise.

215

Library Functions

ITOA
Synopsis

#include <stdlib.h>

char * itoa (char * buf, int val, int base)

Description

The function itoa converts the contents of val into a string which is stored into buf. The conversion
is performed according to the radix specified in base. buf is assumed to reference a buffer which has
sufficent space allocated to it.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[10];
itoa(buf, 1234, 16);
printf("The buffer holds %s\n", buf);

}

See Also

strtol(), utoa(), ltoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

216

Library Functions

LABS
Synopsis

#include <stdlib.h>

int labs (long int j)

Description

The labs() function returns the absolute value of long value j.

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

long int a = -5;

printf("The absolute value of %ld is %ld\n", a, labs(a));
}

See Also

abs()

Return Value

The absolute value of j.

217

Library Functions

LDEXP
Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

The ldexp() function performs the inverse of frexp() operation; the integer i is added to the exponent
of the floating point f and the resultant returned.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

f = ldexp(1.0, 10);
printf("1.0 * 2^10 = %f\n", f);

}

See Also

frexp()

Return Value

The return value is the integer i added to the exponent of the floating point value f.

218

Library Functions

LDIV
Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description

The ldiv() routine divides the numerator by the denominator, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and
the members of the returned structure are all of type long int.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

ldiv_t lt;

lt = ldiv(1234567, 12345);
printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also

div()

Return Value

Returns a structure of type ldiv_t

219

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

The localtime() function converts the time pointed to by t which is in seconds since 00:00:00 on Jan
1, 1970, into a broken down time stored in a structure as defined in time.h. The routine localtime()
takes into account the contents of the global integer time_zone. This should contain the number of
minutes that the local time zone is westward of Greenwich. On systems where it is not possible to
predetermine this value, localtime() will return the same result as gmtime().

Example

#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("Today is %s\n", wday[tp->tm_wday]);

}

220

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

221

Library Functions

LOG, LOG10
Synopsis

#include <math.h>

double log (double f)
double log10 (double f)

Description

The log() function returns the natural logarithm of f. The function log10() returns the logarithm to
base 10 of f.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("log(%1.0f) = %f\n", f, log(f));

}

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

222

Library Functions

LONGJMP

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.
To use this facility, setjmp() should be called with a jmp_buf argument in some outer level function.
The call from setjmp() will return 0.

To return to this level of execution, longjmp() may be called with the same jmp_buf argument
from an inner level of execution. Note however that the function which called setjmp() must still be
active when longjmp() is called. Breach of this rule will cause disaster, due to the use of a stack
containing invalid data. The val argument to longjmp() will be the value apparently returned from
the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

223

Library Functions

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");
inner();
printf("inner returned - bad!\n");

}

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active when longjmp() is called. Breach of this rule
will cause disaster, due to the use of a stack containing invalid data.

224

Library Functions

LTOA
Synopsis

#include <stdlib.h>

char * ltoa (char * buf, long val, int base)

Description

The function itoa converts the contents of val into a string which is stored into buf. The conversion
is performed according to the radix specified in base. buf is assumed to reference a buffer which has
sufficent space allocated to it.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[10];
utoi(buf, 12345678L, 16);
printf("The buffer holds %s\n", buf);

}

See Also

strtol(), itoa(), utoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

225

Library Functions

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description

The memcmp() function compares two blocks of memory, of length n, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int buf[10], cow[10], i;

buf[0] = 1;
buf[2] = 4;
cow[0] = 1;
cow[2] = 5;
buf[1] = 3;
cow[1] = 3;
i = memcmp(buf, cow, 3*sizeof(int));
if(i < 0)

printf("less than\n");
else if(i > 0)

printf("Greater than\n");
else

printf("Equal\n");
}

226

Library Functions

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whether s1 points to string which is less than, equal
to or greater than the string pointed to by s2 in the collating sequence.

227

Library Functions

MEMMOVE
Synopsis

#include <string.h>

void * memmove (void * s1, const void * s2, size_t n)

Description

The memmove() function is similar to the function memcpy() except copying of overlapping blocks
is handled correctly. That is, it will copy forwards or backwards as appropriate to correctly copy one
block to another that overlaps it.

See Also

strncpy(), strncmp(), strchr(), memcpy()

Return Value

The function memmove() returns its first argument.

228

Library Functions

MKTIME
Synopsis

#include <time.h>

time_t mktime (struct tm * tmptr)

Description

The mktime() function converts the local calendar time referenced by the tm structure pointer tmptr
into a time being the number of seconds passed since Jan 1st 1970, or -1 if the time cannot be
represented.

Example

#include <time.h>
#include <stdio.h>

void
main (void)
{

struct tm birthday;

birthday.tm_year = 1955;
birthday.tm_mon = 2;
birthday.tm_mday = 24;
birthday.tm_hour = birthday.tm_min = birthday.tm_sec = 0;
printf("you have been alive approximately %ld seconds\n", mktime(&birthday));

}

See Also

ctime(), asctime()

Return Value

The time contained in the tm structure represented as the number of seconds since the 1970 Epoch,
or -1 if this time cannot be represented.

229

Library Functions

MODF
Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argument value into integral and fractional parts, each having the
same sign as value. For example, -3.17 would be split into the integral part (-3) and the fractional
part (-0.17).

The integral part is stored as a double in the object pointed to by iptr.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i_val, f_val;

f_val = modf(-3.17, &i_val);
}

Return Value

The signed fractional part of value.

230

Library Functions

NOP
Synopsis

#include <htc.h>

NOP();

Description

Execute NOP instruction here. This is often useful to finetune delays or create a handle for break-
points. The NOP instruction is sometimes required during some sensitive sequences in hardware.

Example

#include <htc.h>

void
crude_delay(unsigned char x) {

while(x--){
NOP(); /* Do nothing for 3 cycles */
NOP();
NOP();

}
}

231

Library Functions

OS_TSLEEP
Synopsis

#include <task.h>

void os_tsleep(unsigned short tcks)

Description

This routine causes the current task to be removed from the run queue for tcks clock ticks.

Example

#include <task.h>

void
task(void)
{

while(1) {
/* sleep for 100 ticks */
os_tsleep(100);

}
}

232

Library Functions

PERSIST_CHECK, PERSIST_VALIDATE

Synopsis

#include <sys.h>

int persist_check (int flag)
void persist_validate (void)

Description

The persist_check() function is used with non-volatile RAM variables, declared with the persistent
qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a previous call
to persist_validate() and a checksum also calculated by persist_validate(). If the magic number and
checksum are correct, it returns true (non-zero). If either are incorrect, it returns zero. In this case it
will optionally zero out and re-validate the non-volatile RAM area (by calling persist_validate()).
This is done if the flag argument is true.

The persist_validate() routine should be called after each change to a persistent variable. It will
set up the magic number and recalculate the checksum.

Example

#include <sys.h>
#include <stdio.h>

persistent long reset_count;

void
main (void)
{

if(!persist_check(1))
printf("Reset count invalid - zeroed\n");

else
printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */
persist_validate(); /* and checksum */
for(;;)

continue; /* sleep until next reset */

233

Library Functions

}

Return Value

FALSE (zero) if the NVRAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.

234

Library Functions

POW
Synopsis

#include <math.h>

double pow (double f, double p)

Description

The pow() function raises its first argument, f, to the power p.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also

log(), log10(), exp()

Return Value

f to the power of p.

235

Library Functions

PRINTF
Synopsis

#include <stdio.h>

unsigned char printf (const char * fmt, ...)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating into a string buffer (sprintf()). The printf() routine is passed a format string,
followed by a list of zero or more arguments. In the format string are conversion specifications, each
of which is used to print out one of the argument list values.

Each conversion specification is of the form %m.nc where the percent symbol % introduces
a conversion, followed by an optional width specification m. The n specification is an optional
precision specification (introduced by the dot) and c is a letter specifying the type of the conversion.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one integer
argument will be taken from the list to provide that value. The types of conversion are:

o x X u d
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the case
of d, unsigned otherwise. The precision value is the total number of digits to print, and may be used
to force leading zeroes. E.g. %8.4x will print at least 4 hex digits in an 8 wide field. The letter X
prints out hexadecimal numbers using the upper case letters A-F rather than a-f as would be printed
when using x. When the alternate format is specified, a leading zero will be supplied for the octal
format, and a leading 0x or 0X for the hex format.

s
Print a string - the value argument is assumed to be a character pointer. At most n characters from
the string will be printed, in a field m characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus % will produce a
single percent sign.

l
Long integer conversion - Preceding the integer conversion key letter with an l indicates that the
argument list is long.

f
Floating point - m is the total width and n is the number of digits after the decimal point. If n is

236

Library Functions

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate
format is specified.

Example

printf("Total = %4d%", 23)
yields ’Total = 23%’

printf("Size is %lx" , size)
where size is a long, prints size
as hexadecimal.

printf("Name = %.8s", "a1234567890")
yields ’Name = a1234567’

printf("xx%*d", 3, 4)
yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int
error (char * s, ...)
{

va_list ap;

va_start(ap, s);
printf("Error: ");
vprintf(s, ap);
putchar(’\n’);
va_end(ap);

}

void
main (void)
{

int i;

237

Library Functions

i = 3;
error("testing 1 2 %d", i);

}

See Also

sprintf()

Return Value

The printf() routine returns the number of characters written to stdout.
NB The return value is a char, NOT an int.

Note

Certain features of printf are only available when linking in alternative libraries. Printing floating
point numbers requires that the float to be printed be no larger than the largest possible long integer.
In order to use long or float formats, the appropriate supplemental library must be included. See the
description on the PICC18 -L library scan option for more details.

238

Library Functions

PRINTF, VPRINTF
Synopsis

#include <stdio.h>

int printf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vprintf (const char * fmt, va_list va_arg)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating on a given stream (fprintf()) or into a string buffer (sprintf()). The printf() routine
is passed a format string, followed by a list of zero or more arguments. In the format string are
conversion specifications, each of which is used to print out one of the argument list values.

Each conversion specification is of the form %m.nc where the percent symbol % introduces
a conversion, followed by an optional width specification m. The n specification is an optional
precision specification (introduced by the dot) and c is a letter specifying the type of the conversion.

A minus sign (’-’) preceding m indicates left rather than right adjustment of the converted value
in the field. Where the field width is larger than required for the conversion, blank padding is per-
formed at the left or right as specified. Where right adjustment of a numeric conversion is specified,
and the first digit of m is 0, then padding will be performed with zeroes rather than blanks. For
integer formats, the precision indicates a minimum number of digits to be output, with leading zeros
inserted to make up this number if required.

A hash character (#) preceding the width indicates that an alternate format is to be used. The
nature of the alternate format is discussed below. Not all formats have alternates. In those cases, the
presence of the hash character has no effect.

The floating point formats require that the appropriate floating point library is linked. From
within HPD this can be forced by selecting the "Float formats in printf" selection in the options
menu. From the command line driver, use the option -LF.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one integer
argument will be taken from the list to provide that value. The types of conversion are:

f
Floating point - m is the total width and n is the number of digits after the decimal point. If n is

239

Library Functions

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate
format is specified.

e
Print the corresponding argument in scientific notation. Otherwise similar to f.

g
Use e or f format, whichever gives maximum precision in minimum width. Any trailing zeros after
the decimal point will be removed, and if no digits remain after the decimal point, it will also be
removed.

o x X u d
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the
case of d, unsigned otherwise. The precision value is the total number of digits to print, and may be
used to force leading zeroes. E.g. %8.4x will print at least 4 hex digits in an 8 wide field. Preceding
the key letter with an l indicates that the value argument is a long integer. The letter X prints out
hexadecimal numbers using the upper case letters A-F rather than a-f as would be printed when using
x. When the alternate format is specified, a leading zero will be supplied for the octal format, and a
leading 0x or 0X for the hex format.

s
Print a string - the value argument is assumed to be a character pointer. At most n characters from
the string will be printed, in a field m characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus % will produce a
single percent sign.

The vprintf() function is similar to printf() but takes a variable argument list pointer rather than
a list of arguments. See the description of va_start() for more information on variable argument lists.
An example of using vprintf() is given below.

Example

printf("Total = %4d%", 23)
yields ’Total = 23%’

printf("Size is %lx" , size)
where size is a long, prints size
as hexadecimal.

printf("Name = %.8s", "a1234567890")
yields ’Name = a1234567’

240

Library Functions

printf("xx%*d", 3, 4)
yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int
error (char * s, ...)
{

va_list ap;

va_start(ap, s);
printf("Error: ");
vprintf(s, ap);
putchar(’\n’);
va_end(ap);

}

void
main (void)
{

int i;

i = 3;
error("testing 1 2 %d", i);

}

See Also

fprintf(), sprintf()

Return Value

The printf() and vprintf() functions return the number of characters written to stdout.

241

Library Functions

PUTCH
Synopsis

#include <conio.h>

void putch (char c)

Description

The putch() function outputs the character c to the console screen, prepending a carriage return if
the character is a newline. In a CP/M or MS-DOS system this will use one of the system I/O calls.
In an embedded system this routine, and associated others, will be defined in a hardware dependent
way. The standard putch() routines in the embedded library interface either to a serial port or to the
Lucifer Debugger.

Example

#include <conio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putch(*x++);
putch(’\n’);

}

See Also

cgets(), cputs(), getch(), getche()

242

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

The putchar() function is a putc() operation on stdout, defined in stdio.h.

Example

#include <stdio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putchar(*x++);
putchar(’\n’);

}

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

243

Library Functions

Note

This routine is not usable in a ROM based system.

244

Library Functions

PUTS
Synopsis

#include <stdio.h>

int puts (const char * s)

Description

The puts() function writes the string s to the stdout stream, appending a newline. The null character
terminating the string is not copied.

Example

#include <stdio.h>

void
main (void)
{

puts("Hello, world!");
}

See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

245

Library Functions

QSORT

Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,
int (*func)(const void *, const void *))

Description

The qsort() function is an implementation of the quicksort algorithm. It sorts an array of nel items,
each of length width bytes, located contiguously in memory at base. The argument func is a pointer
to a function used by qsort() to compare items. It calls func with pointers to two items to be com-
pared. If the first item is considered to be greater than, equal to or less than the second then func
should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>
#include <stdlib.h>

int aray[] = {
567, 23, 456, 1024, 17, 567, 66

};

int
sortem (const void * p1, const void * p2)
{

return *(int *)p1 - *(int *)p2;
}

void
main (void)
{

register int i;

246

Library Functions

qsort(aray, sizeof aray/sizeof aray[0], sizeof aray[0], sortem);
for(i = 0 ; i != sizeof aray/sizeof aray[0] ; i++)

printf("%d\t", aray[i]);
putchar(’\n’);

}

Note

The function parameter must be a pointer to a function of type similar to:

int func (const void *, const void *)

i.e. it must accept two const void * parameters, and must be prototyped.

247

Library Functions

RAM_TEST_FAILED
Synopsis

void ram_test_failed (unsigned char errcode)

Description

The ram_test_failed() function is not intended to be called from within the general execution of
the program. This routine is called during execution of the generated runtime startup code if the
program is using a compiler generated RAM integrity test and the integrity test detects a bad cell.

This function is passed a single byte error code as a parameter. The address that failed this test
will be loaded in the FSR0 registers. The failed value will still be accessable through the INDF0
register. The default operation of this routine will halt program execution if a bad cell is detected,
however the user is free to enhance this functionality if required.

See Also

__ram_cell_test

Note

This routine is intended to be replaced by an equivalent routine to suit the user’s implementation.
Possible enhancements include logging the location of the dead cell and continuing to test if there
are any more more dead cells, or alerting the outside world that the device has a memory problem.

248

Library Functions

RAND

Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the range 0
to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set using the srand() call.
The example shows use of the time() function to generate a different starting point for the sequence
each time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

srand()

249

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

250

Library Functions

READTIMERx
Synopsis

#include <htc.h>

READTIMER0();
READTIMER1();
READTIMER2();

Description

The macros READTIMER0(), READTIMER1() and READTIMER2() will return the 16-Bit
value presently held in the device’s corresponding TMRxL and TMRxH register pair. Use of this
macro ensures that the registers are read in the correct order.

Example

#include <htc.h>

void
main (void)
{

unsigned int timer1value;

timer1value = READTIMER1();
}

See Also

WRITETIMERx()

Return Value

An unsigned integer which is the value held in a 16-Bit timer.

251

Library Functions

RESET
Synopsis

#include <htc.h>

RESET();

Description

Execute RESET instruction here.

Example

#include <htc.h>

void
test_result(unsigned int error_count) {

if(error_count != 0){
printf(“An error has been detected - Rebooting...\n”);
RESET(); /* Perform software reset */

}
}

252

Library Functions

ROUND
Synopsis

#include <math.h>

double round (double x)

Description

The round function round the argument to the nearest integer value, but in floating-point format.
Values midway between integer values are rounded up.

Example

#include <math.h>

void
main (void)
{

double input, rounded;
input = 1234.5678;
rounded = round(input);

}

See Also

trunc()

253

Library Functions

SCANF, VSCANF

Synopsis

#include <stdio.h>

int scanf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from the stdin stream. Similar func-
tions are available for streams in general, and for strings. The function vscanf() is similar, but takes
a pointer to an argument list rather than a series of additional arguments. This pointer should have
been initialised with va_start().

The input conversions are performed according to the fmt string; in general a character in the
format string must match a character in the input; however a space character in the format string will
match zero or more "white space" characters in the input, i.e. spaces, tabs or newlines.

A conversion specification takes the form of the character %, optionally followed by an assign-
ment suppression character (’*’), optionally followed by a numerical maximum field width, followed
by a conversion specification character. Each conversion specification, unless it incorporates the as-
signment suppression character, will assign a value to the variable pointed at by the next argument.
Thus if there are two conversion specifications in the fmt string, there should be two additional
pointer arguments.

The conversion characters are as follows:
o x d

Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was
supplied, take at most that many characters from the input. A leading minus sign will be recognized.

f
Skip white space, then convert a floating number in either conventional or scientific notation. The
field width applies as above.

s
Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer

254

Library Functions

argument must be a pointer to char. The field width will limit the number of characters copied. The
resultant string will be null terminated.

c
Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a
field width is specified, then copy that many characters. This differs from the s format in that white
space does not terminate the character sequence.

The conversion characters o, x, u, d and f may be preceded by an l to indicate that the corre-
sponding pointer argument is a pointer to long or double as appropriate. A preceding h will indicate
that the pointer argument is a pointer to short rather than int.

Example

scanf("%d %s", &a, &c)
with input " 12s"
will assign 12 to a, and "s" to s.

scanf("%3cd %lf", &c, &f)
with input " abcd -3.5"
will assign " abc" to c, and -3.5 to f.

See Also

fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file
was seen before any conversions were performed.

255

Library Functions

SETJMP

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

The setjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-
mation.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");

256

Library Functions

inner();
printf("inner returned - bad!\n");

}

See Also

longjmp()

Return Value

The setjmp() function returns zero after the real call, and non-zero if it apparently returns after a call
to longjmp().

257

Library Functions

SIN
Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale of f.

258

Library Functions

SLEEP
Synopsis

#include <htc.h>

SLEEP();

Description

This macro is used to put the device into a low-power standby mode.

Example

#include <htc.h>
extern void init(void);

void
main (void)
{

init(); /* enable peripherals/interrupts */

while(1)
SLEEP(); /* save power while nothing happening */

}

259

Library Functions

SQRT
Synopsis

#include <math.h>

double sqrt (double f)

Description

The function sqrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)
printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

260

Library Functions

SRAND
Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given
seed. This provides a mechanism for varying the starting point of the pseudo-random sequence
yielded by rand(). On the Z80, a good place to get a truly random seed is from the refresh register.
Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

rand()

261

Library Functions

STRCAT
Synopsis

#include <string.h>

char * strcat (char * s1, const char * s2)

Description

This function appends (concatenates) string s2 to the end of string s1. The result will be null termi-
nated. The argument s1 must point to a character array big enough to hold the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strncat(), strlen()

Return Value

The value of s1 is returned.

262

Library Functions

STRCHR, STRICHR

Synopsis

#include <string.h>

const char * strchr (const char * s, int c)
const char * strichr (const char * s, int c)

Description

The strchr() function searches the string s for an occurrence of the character c. If one is found, a
pointer to that character is returned, otherwise NULL is returned.

The strichr() function is the case-insensitive version of this function.

Example

#include <strings.h>
#include <stdio.h>

void
main (void)
{

static char temp[] = "Here it is...";
const char c = ’s’;

if(strchr(temp, c))
printf("Character %c was found in string\n", c);

else
printf("No character was found in string");

}

See Also

strrchr(), strlen(), strcmp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

263

Library Functions

Note

Although the function takes an integer argument for the character, only the lower 8 bits of the value
are used.

264

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)
int stricmp (const char * s1, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whether s1 is less than, equal to or greater than s2. The comparison is done with
the standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

int i;

if((i = strcmp("ABC", "ABc")) < 0)
printf("ABC is less than ABc\n");

else if(i > 0)
printf("ABC is greater than ABc\n");

else
printf("ABC is equal to ABc\n");

}

See Also

strlen(), strncmp(), strcpy(), strcat()

265

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

266

Library Functions

STRCPY
Synopsis

#include <string.h>

char * strcpy (char * s1, const char * s2)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. The destination
array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strncpy(), strlen(), strcat(), strlen()

Return Value

The destination buffer pointer s1 is returned.

267

Library Functions

STRCSPN
Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description

The strcspn() function returns the length of the initial segment of the string pointed to by s1 which
consists of characters NOT from the string pointed to by s2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));
printf("%d\n", strcspn("xxxbcadefs", set));
printf("%d\n", strcspn("1234567890", set));

}

See Also

strspn()

Return Value

Returns the length of the segment.

268

Library Functions

STRLEN
Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

The strlen() function returns the number of characters in the string s, not including the null termina-
tor.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

Return Value

The number of characters preceding the null terminator.

269

Library Functions

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * s1, const char * s2, size_t n)

Description

This function appends (concatenates) string s2 to the end of string s1. At most n characters will be
copied, and the result will be null terminated. s1 must point to a character array big enough to hold
the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strncat(s1, s2, 5);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strcat(), strlen()

270

Library Functions

Return Value

The value of s1 is returned.

271

Library Functions

STRNCMP, STRNICMP
Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)
int strnicmp (const char * s1, const char * s2, size_t n)

Description

The strncmp() function compares its two, null terminated, string arguments, up to a maximum of n
characters, and returns a signed integer to indicate whether s1 is less than, equal to or greater than s2.
The comparison is done with the standard collating sequence, which is that of the ASCII character
set.

The strnicmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int i;

i = strncmp("abcxyz", "abcxyz",6);
if(i == 0)

printf("Both strings are equal\n");
else if(i > 0)

printf("String 2 less than string 1\n");
else

printf("String 2 is greater than string 1\n");
}

See Also

strlen(), strcmp(), strcpy(), strcat()

272

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

273

Library Functions

STRNCPY

Synopsis

#include <string.h>

char * strncpy (char * s1, const char * s2, size_t n)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. At most
n characters are copied. If string s2 is longer than n then the destination string will not be null
terminated. The destination array must be large enough to hold the entire string, including the null
terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strncpy(buffer, "Start of line", 6);
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcat(), strlen(), strcmp()

274

Library Functions

Return Value

The destination buffer pointer s1 is returned.

275

Library Functions

STRPBRK
Synopsis

#include <string.h>

char * strpbrk (const char * s1, const char * s2)

Description

The strpbrk() function returns a pointer to the first occurrence in string s1 of any character from
string s2, or a null pointer if no character from s2 exists in s1.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strpbrk(str+1, "aeiou");

}
}

Return Value

Pointer to the first matching character, or NULL if no character found.

276

Library Functions

STRRCHR, STRRICHR
Synopsis

#include <string.h>

char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description

The strrchr() function is similar to the strchr() function, but searches from the end of the string
rather than the beginning, i.e. it locates the last occurrence of the character c in the null terminated
string s. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

The strrichr() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strrchr(str+1, ’s’);

}
}

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

277

Library Functions

STRSPN
Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description

The strspn() function returns the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strspn("This is a string", "This"));
printf("%d\n", strspn("This is a string", "this"));

}

See Also

strcspn()

Return Value

The length of the segment.

278

Library Functions

STRSTR, STRISTR
Synopsis

#include <string.h>

char * strstr (const char * s1, const char * s2)
char * stristr (const char * s1, const char * s2)

Description

The strstr() function locates the first occurrence of the sequence of characters in the string pointed
to by s2 in the string pointed to by s1.

The stristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strstr("This is a string", "str"));
}

Return Value

Pointer to the located string or a null pointer if the string was not found.

279

Library Functions

STRTOD

Synopsis

#include <stdlib.h>

double strtok (const char * s, const char ** res)

Description

Parse the string s converting it to a double floating point type. This function converts the first
occurence of a substring of the input that is made up of characters of the expected form after skipping
leading white-space characters. If res is not NULL, it will be made to point to the first character after
the converted sub-string.

Example

#include <stdio.h>
#include <strlib.h>

void
main (void)
{

char buf[] = " 35.7 23.27 ";
char * end;
double in1, in2;

in1 = strtod(buf, &end);
in2 = strtod(end, NULL);
printf("in comps: %f, %f\n", in1, in2);

}

See Also

atof()

280

Library Functions

Return Value

Returns a double representing the floating-point value of the converted input string.

281

Library Functions

STRTOL

Synopsis

#include <stdlib.h>

double strtol (const char * s, const char ** res, int base)

Description

Parse the string s converting it to a long integer type. This function converts the first occurence of
a substring of the input that is made up of characters of the expected form after skipping leading
white-space characters. The radix of the input is determined from base. If this is zero, then the
radix defaults to base 10. If res is not NULL, it will be made to point to the first character after the
converted sub-string.

Example

#include <stdio.h>
#include <strlib.h>

void
main (void)
{

char buf[] = " 0X299 0x792 ";
char * end;
long in1, in2;

in1 = strtol(buf, &end, 16);
in2 = strtol(end, NULL, 16);
printf("in (decimal): %ld, %ld\n", in1, in2);

}

See Also

strtod()

282

Library Functions

Return Value

Returns a long int representing the value of the converted input string using the specified base.

283

Library Functions

STRTOK

Synopsis

#include <string.h>

char * strtok (char * s1, const char * s2)

Description

A number of calls to strtok() breaks the string s1 (which consists of a sequence of zero or more text
tokens separated by one or more characters from the separator string s2) into its separate tokens.

The first call must have the string s1. This call returns a pointer to the first character of the first
token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null
character, which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a null pointer. These calls start searching
from the end of the last token found, and again return a pointer to the first character of the next token,
or NULL if no further tokens were found.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;
char buf[] = "This is a string of words.";
char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);
while(ptr != NULL) {

printf("%s\n", ptr);
ptr = strtok(NULL, sep_tok);

}
}

284

Library Functions

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator string s2 may be different from call to call.

285

Library Functions

TAN
Synopsis

#include <math.h>

double tan (double f)

Description

The tan() function calculates the tangent of f.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent of f.

286

Library Functions

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time
in seconds since 00:00:00 on Jan 1, 1970. If the argument t is not equal to NULL, the same value is
stored into the object pointed to by t.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,
1970.

287

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.

288

Library Functions

TOLOWER, TOUPPER, TOASCII
Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c)

Description

The toupper() function converts its lower case alphabetic argument to upper case, the tolower()
routine performs the reverse conversion and the toascii() macro returns a result that is guaranteed
in the range 0-0177. The functions toupper() and tolower() return their arguments if it is not an
alphabetic character.

Example

#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)
{

char * array1 = "aBcDE";
int i;

for(i=0;i < strlen(array1); ++i) {
printf("%c", tolower(array1[i]));

}
printf("\n");

}

See Also

islower(), isupper(), isascii(), et. al.

289

Library Functions

TRUNC
Synopsis

#include <math.h>

double trunc (double x)

Description

The trunc function rounds the argument to the nearest integer value, in floating-point format, that is
not larger in magniture than the argument.

Example

#include <math.h>

void
main (void)
{

double input, rounded;
input = 1234.5678;
rounded = trunc(input);

}

See Also

round()

290

Library Functions

ULDIV
Synopsis

#include <stdlib.h>

int uldiv (unsigned long num, unsigned long demon)

Description

The uldiv() function calculate the quotient and remainder of the division of number and denom,
storing the results into a uldiv_t structure which is returned.

Example

#include <stdlib.h>

void
main (void)
{

uldiv_t result;
unsigned long num = 1234, den = 7;

result = uldiv(num, den);
}

See Also

ldiv(), div()

Return Value

Returns the the quotient and remainder as a uldiv_t structure.

291

Library Functions

UNGETCH
Synopsis

#include <conio.h>

void ungetch (char c)

Description

The ungetch() function will push back the character c onto the console stream, such that a subse-
quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

292

Library Functions

UTOA
Synopsis

#include <stdlib.h>

char * utoa (char * buf, unsigned val, int base)

Description

The function itoa converts the unsigned contents of val into a string which is stored into buf. The
conversion is performed according to the radix specified in base. buf is assumed to reference a
buffer which has sufficent space allocated to it.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[10];
utoi(buf, 1234, 16);
printf("The buffer holds %s\n", buf);

}

See Also

strtol(), itoa(), ltoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

293

Library Functions

VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in
a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function
are not known at compile time.

The rightmost parameter to the function (shown as parmN) plays an important role in these
macros, as it is the starting point for access to further parameters. In a function taking variable num-
bers of arguments, a variable of type va_list should be declared, then the macro va_start() invoked
with that variable and the name of parmN. This will initialize the variable to allow subsequent calls
of the macro va_arg() to access successive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a type name
which is the type that the next parameter is expected to be. Note that any arguments thus accessed
will have been widened by the default conventions to int, unsigned int or double. For example if a
character argument has been passed, it should be accessed by va_arg(ap, int) since the char will
have been widened to int.

An example is given below of a function taking one integer parameter, followed by a number
of other parameters. In this example the function expects the subsequent parameters to be pointers
to char, but note that the compiler is not aware of this, and it is the programmers responsibility to
ensure that correct arguments are supplied.

Example

#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{

294

Library Functions

va_list ap;

va_start(ap, a);
while(a--)

puts(va_arg(ap, char *));
va_end(ap);

}

void
main (void)
{

pf(3, "Line 1", "line 2", "line 3");
}

295

Library Functions

WRITETIMERx
Synopsis

#include <htc.h>

WRITETIMER0(unsigned int);
WRITETIMER1(unsigned int);
WRITETIMER2(unsigned int);

Description

The WRITETIMER0, WRITETIMER1() and WRITETIMER2() macros will assign a 16-Bit
value to the TMRxL and TMRxH register pair of the corresponding device timer. Using this macro
will ensure that the bytes are written in the correct order.

Example

#include <htc.h>

void
main (void)
{

WRITETIMER1(0xF500);
}

See Also

READTIMERx()

296

Library Functions

XTOI
Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

The xtoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = xtoi(buf);
printf("Read %s: converted to %x\n", buf, i);

}

See Also

atoi()

Return Value

A signed integer. If no number is found in the string, zero will be returned.

297

Library Functions

298

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with
an explanation of each message. Most messages have been assigned a unique number which appears
in brackets before each message in this chapter, and which is also printed by the compiler when the
message is issued. The messages shown here are sorted by their number. Un-numbered messages
appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets
opposite the error message. In some cases examples of code or options that could trigger the error
are given. The use of * in the error message is used to represent a string that the compiler will
substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error
message.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #if or similar block was not terminated with a matching #endif, e.g.:

#if INPUT /* error flagged here */
void main(void)
{
run();

} /* no #endif was found in this module */

299

Error and Warning Messages

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block as a #else. These can only follow a
#if, e.g.:

#ifdef FOO
result = foo;

#else
result = bar;

#elif defined(NEXT) /* the #else above terminated the #if */
result = next(0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matching #if line. If there is an
apparently corresponding #if line, check for things like extra #endif’s, or improperly terminated
comments, e.g.:

#ifdef FOO
result = foo;

#endif
result = bar;

#elif defined(NEXT) /* the #endif above terminated the #if */
result = next(0);

#endif

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally
used to check compile time defines etc. Remove the directive to remove the error, but first check as
to why the directive is there.

(104) preprocessor assertion failure (Preprocessor)

The argument to a preprocessor #assert directive has evaluated to zero. This is a programmer
induced error.

#assert SIZE == 4 /* size should never be 4 */

300

Error and Warning Messages

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matching #asm, e.g.:

void cleardog(void)
{
clrwdt

#endasm /* this ends the in-line assembler, only where did it begin? */
}

(106) nested #asm directive (Preprocessor)

It is not legal to nest #asm directives. Check for a missing or misspelt #endasm directive, e.g.:

#asm
move r0, #0aah

#asm ; the previous #asm must be closed before opening another
sleep

#endasm

(107) illegal # directive "*" (Preprocessor, Parser)

The compiler does not understand the # directive. It is probably a misspelling of a pre-processor #
directive, e.g.:

#indef DEBUG /* woops -- that should be #undef DEBUG */

(108) #if, #ifdef, or #ifndef without an argument (Preprocessor)

The preprocessor directives #if, #ifdef and #ifndef must have an argument. The argument to #if
should be an expression, while the argument to #ifdef or #ifndef should be a single name, e.g.:

#if /* woops -- no argument to check */
output = 10;

#else
output = 20;

#endif

301

Error and Warning Messages

(109) #include syntax error (Preprocessor)

The syntax of the filename argument to #include is invalid. The argument to #include must be
a valid file name, either enclosed in double quotes "" or angle brackets < >. Spaces should not be
included, and the closing quote or bracket must be present. There should be nothing else on the line
other than comments, e.g.:

#include stdio.h /* woops -- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)

CPP should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-
sor is being executed by a compiler driver.

(111) redefining macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want
to deliberately redefine a macro, use #undef first to remove the original definition, e.g.:

#define ONE 1
/* elsewhere: */
#define ONE one /* Is this correct? It will overwrite the first definition. */

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that
does not start with a letter or a missing closing parenthesis ,), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

(113) unterminated string in macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument to #undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

302

Error and Warning Messages

(115) recursive macro definition of "*" defined by "*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion
of itself!

(116) end of file within macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument
started, e.g.:

#define FUNC(a, b) func(a+b)
FUNC(5, 6; /* woops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in a #if expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator, e.g.:

#if FOO BAR /* woops -- did you mean: #if FOO == BAR ? */

(118) #if value stack overflow (Preprocessor)

The preprocessor filled up its expression evaluation stack in a #if expression. Simplify the expres-
sion — it probably contains too many parenthesized subexpressions.

(119) illegal #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(120) operator * in incorrect context (Preprocessor)

An operator has been encountered in a #if expression that is incorrectly placed, e.g. two binary
operators are not separated by a value, e.g.:

#if FOO * % BAR == 4 /* what is “* %” ? */
#define BIG

#endif

303

Error and Warning Messages

(121) expression stack overflow at op "*" (Preprocessor)

Expressions in #if lines are evaluated using a stack with a size of 128. It is possible for very complex
expressions to overflow this. Simplify the expression.

(122) unbalanced paren’s, op is "*" (Preprocessor)

The evaluation of a #if expression found mismatched parentheses. Check the expression for correct
parenthesisation, e.g.:

#if ((A) + (B) /* woops -- a missing), I think */
#define ADDED

#endif

(123) misplaced "?" or ":", previous operator is * (Preprocessor)

A colon operator has been encountered in a #if expression that does not match up with a corre-
sponding ? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*" in #if (Preprocessor)

There is a character in a #if expression that has no business being there. Valid characters are the
letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY‘ /* what are these characters doing here? */
int m;

#endif

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character in a #if expression that has no business being there. Valid char-
acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ^SYYY /* what is this control characters doing here? */
int m;

#endif

304

Error and Warning Messages

(126) can’t use a string in an #if (Preprocessor)

The preprocessor does not allow the use of strings in #if expressions, e.g.:

#if MESSAGE > “hello” /* no string operations allowed by the preprocessor */
#define DEBUG
#endif

(127) bad #if ... defined() syntax (Preprocessor)

The defined() pseudo-function in a preprocessor expression requires its argument to be a single
name. The name must start with a letter and should be enclosed in parentheses, e.g.:

#if defined(a&b) /* woops -- defined expects a name, not an expression */
input = read();

#endif

(128) illegal operator in #if (Preprocessor)

A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* woops -- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)

The backslash is incorrect in the #if statement, e.g.:

#if FOO == \34
#define BIG

#endif

(130) #if sizeof, unknown type "*" (Preprocessor)

An unknown type was used in a preprocessor sizeof(). The preprocessor can only evaluate
sizeof() with basic types, or pointers to basic types, e.g.:

#if sizeof(unt) == 2 /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

305

Error and Warning Messages

(131) #if ... sizeof: illegal type combination (Preprocessor)

The preprocessor found an illegal type combination in the argument to sizeof() in a #if expres-
sion, e.g.

#if sizeof(short long int) == 2 /* short or long? make up your mind */
i = 0xFFFF;

#endif

(132) #if sizeof() error, no type specified (Preprocessor)

Sizeof() was used in a preprocessor #if expression, but no type was specified. The argument to
sizeof() in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* woops -- size of what? */
i = 0;

#endif

(133) #if ... sizeof: bug, unknown type code 0x* (Preprocessor)

The preprocessor has made an internal error in evaluating a sizeof() expression. Check for a
malformed type specifier. This is an internal error. Contact HI-TECH Software technical support
with details.

(134) #if ... sizeof() syntax error (Preprocessor)

The preprocessor found a syntax error in the argument to sizeof, in a #if expression. Probable
causes are mismatched parentheses and similar things, e.g.:

#if sizeof(int == 2) /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

(135) #if bug, operand = * (Preprocessor)

The preprocessor has tried to evaluate an expression with an operator it does not understand. This is
an internal error. Contact HI-TECH Software technical support with details.

306

Error and Warning Messages

(137) strange character "*" after ## (Preprocessor)

A character has been seen after the token catenation operator ## that is neither a letter nor a digit.
Since the result of this operator must be a legal token, the operands must be tokens containing only
letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation operator ## that is neither a letter
nor a digit. Since the result of this operator must be a legal token, the operands must be tokens
containing only letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(139) EOF in comment (Preprocessor)

End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here is the start of a comment. I’m not sure where I end, though
}

(140) can’t open command file * (Driver, Preprocessor, Assembler, Linker)

The command file specified could not be opened for reading. Confirm the spelling and path of the
file specified on the command line, e.g.:

picc @communds

should that be:

picc @commands

(141) can’t open output file * (Preprocessor, Assembler)

An output file could not be created. Confirm the spelling and path of the file specified on the com-
mand line.

307

Error and Warning Messages

(142) can’t open input file * (Preprocessor, Assembler)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(144) too many nested #if statements (Preprocessor)

#if, #ifdef etc. blocks may only be nested to a maximum of 32.

(145) cannot open include file "*" (Preprocessor)

The named preprocessor include file could not be opened for reading by the preprocessor. Check
the spelling of the filename. If it is a standard header file, not in the current directory, then the name
should be enclosed in angle brackets <> not quotes. For files not in the current working directory or
the standard compiler include directory, you may need to specify an additional include file path to
the command-line driver, see Section 2.4.6.

(146) filename work buffer overflow (Preprocessor)

A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many include directories (Preprocessor)

A maximum of 7 directories may be specified for the preprocessor to search for include files. The
number of directories specified with the driver is too great.

(148) too many arguments for macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is
normally 8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K
bytes.

(150) bug: illegal __ macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

308

Error and Warning Messages

(151) too many arguments in macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is
31.

(152) bad dp/nargs in openpar: c = * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(153) out of space in macro "*" arg expansion (Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes
long.

(155) work buffer overflow doing * ## (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer overflow: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) out of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too much pushback (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(160) too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)

There were so many errors that the compiler has given up. Correct the first few errors and many of
the later ones will probably go away.

309

Error and Warning Messages

(161) control line "*" within macro expansion (Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expanding a macro.
This should not happen.

(163) unexpected text in #control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text
will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to
enclose the text as a comment, e.g.:

#if defined(END)
#define NEXT

#endif END /* END would be better in a comment here */

(164) included file * was converted to lower case (Preprocessor)

The file specified to be included was not found, but a file with a lowercase version of the name of
the file specified was found and used instead, e.g.:

#include “STDIO.H” /* is this meant to be stdio.h ? */

(164) included file * was converted to lower case (Preprocessor)

The #include file name had to be converted to lowercase before it could be opened.

#include <STDIO.H> /* woops -- should be: #include <stdio.h> */

(166) -S, too few values specified in * (Preprocessor)

The list of values to the preprocessor (CPP) -S option is incomplete. This should not happen if the
preprocessor is being invoked by the compiler driver. The values passes to this option represent the
sizes of char, short, int, long, float and double types.

(167) -S, too many values, "*" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message -s, too
few values specified in * on page 310.

(168) unknown option "*" (Hexmate, Preprocessor)

This option to the preprocessor/hexmate is not recognized.

310

Error and Warning Messages

(169) strange character after # (*) (Preprocessor)

There is an unexpected character after #.

(170) symbol "*" not defined in #undef (Preprocessor)

The symbol supplied as argument to #undef was not already defined. This warning may be disabled
with some compilers. This warning can be avoided with code like:

#ifdef SYM
#undef SYM /* only undefine if defined */

#endif

(171) wrong number of macro arguments for "*" - * instead of * (Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)
ADD(1, 2, 3) /* woops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operator # (not to be confused with the leading # used for preprocessor control
lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* woops -- did you mean x instead of y? */

If you need to stringize a token, you will need to define a special macro to do it, e.g.

#define __mkstr__(x) #x

then use __mkstr__(token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a #if expression was not a defined preprocessor macro. For the purposes of this
expression, its value has been taken as zero. This warning may be disabled with some compilers.
Example:

#if FOO+BAR /* e.g. FOO was never #defined */
#define GOOD

#endif

311

Error and Warning Messages

(174) multi-byte constant "*" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,
e.g.:

#if CHAR == ’ab’
#define MULTI

#endif

(175) division by zero in #if, zero result assumed (Preprocessor)

Inside a #if expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */
int a;

#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line
at the end. This problem is normally introduced by editors.

(177) macro "*" wasn’t defined (Preprocessor)

A macro name specified in a -U option to the preprocessor was not initially defined, and thus cannot
be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated
flag = TRUE; /* another comment: hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

312

Error and Warning Messages

(181) non-scalar types can’t be converted (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;
struct TEST * sp;
sp = test; /* woops -- did you mean: sp = &test; ? */

(182) illegal conversion (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure
type into an integer, e.g.:

struct LAYOUT layout;
int i;
layout = i; /* an int cannot be converted into a struct */

Note that even if a structure only contains an int, for example, it cannot be assigned to an int
variable, and vice versa.

(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, c, d;
a = b(c+d); /* b is not a function -- did you mean a = b*(c+d) ? */

(184) can’t call an interrupt function (Parser)

A function qualified interrupt can’t be called from other functions. It can only be called by a
hardware (or software) interrupt. This is because an interrupt function has special function entry
and exit code that is appropriate only for calling from an interrupt. An interrupt function can call
other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)

This function has no parameters, but it is called here with one or more arguments, e.g.:

int get_value(void);
void main(void)
{

313

Error and Warning Messages

int input;
input = get_value(6); /* woops -- the parameter should not be here */

}

(186) too many arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);
add(5, 7, input); /* this call has too many arguments */

(187) too few arguments (Parser)

This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);
add(5); /* this call needs more arguments */

(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;
switch(input) {
case a: /* woops -- you cannot use a variable as part of a case label */
input++;

}

(189) illegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* woops -- twelve and a half elements, eh? */

(190) illegal type for index expression (Parser)

An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];
i = array[3.5]; /* woops -- exactly which element do you mean? */

314

Error and Warning Messages

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either
scalar (i.e. not an array or a structure) or the type void, e.g.:

lip = (long [])input; /* woops -- maybe: lip = (long *)input */

(192) undefined identifier: * (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors if you think it has been defined.

(193) not a variable identifier: * (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194)) expected (Parser)

A closing parenthesis,), was expected here. This may indicate you have left out this character in an
expression, or you have some other syntax error. The error is flagged on the line at which the code
first starts to make no sense. This may be a statement following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */
b = 0; /* the error is flagged here */

(195) expression syntax (Parser)

This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* woops -- maybe that should be: a /= b; */

(196) struct/union required (Parser)

A structure or union identifier is required before a dot ., e.g.:

int a;
a.b = 9; /* woops -- a is not a structure */

(197) struct/union member expected (Parser)

A structure or union member name must follow a dot (".") or arrow ("->").

315

Error and Warning Messages

(198) undefined struct/union: * (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operand to if, while statements or to boolean operators like ! and &&
must be a scalar integral type, e.g.:

struct FORMAT format;
if(format) /* this operand must be a scaler type */
format.a = 0;

(200) can’t take address of register variable (Parser)

A variable declared register may not have storage allocated for it in memory, and thus it is illegal
to attempt to take the address of it by applying the & operator, e.g.:

int * proc(register int in)
{
int * ip = ∈ /* woops -- in may not have an address to take */
return ip;

}

(201) can’t take this address (Parser)

The expression which was the operand of the & operator is not one that denotes memory storage ("an
lvalue") and therefore its address can not be defined, e.g.:

ip = &8; /* woops -- you can’t take the address of a literal */

(202) only lvalues may be assigned to or modified (Parser)

Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned
to or otherwise modified, e.g.:

int array[10];
int * ip;
char c;
array = ip; /* array is not a variable, it cannot be written to */

316

Error and Warning Messages

A typecast does not yield an lvalue, e.g.:

(int)c = 1; /* the contents of c cast to int is only a intermediate value */

However you can write this using pointers:

*(int *)&c = 1

(203) illegal operation on a bit variable (Parser)

Not all operations on bit variables are supported. This operation is one of those, e.g.:

bit b;
int * ip;
ip = &b; /* woops -- cannot take the address of a bit object */

(204) void function cannot return value (Parser)

A void function cannot return a value. Any return statement should not be followed by an expres-
sion, e.g.:

void run(void)
{
step();
return 1; /* either run should not be void, or remove the 1 */

}

(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can’t use it anywhere an expression with a value
is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for * (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

317

Error and Warning Messages

(208) operands of * not same type (Parser)

The operands of this operator are of different pointer, e.g.:

int * ip;
char * cp, * cp2;
cp = flag ? ip : cp2; /* result of ? : will either be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(212) missing number after pragma "pack" (Parser)

The pragma pack requires a decimal number as argument. This specifies the alignment of each
member within the structure. Use this with caution as some processors enforce alignment and will
not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */

Maybe you meant something like:

#pragma pack 2

(214) missing number after pragma "interrupt_level" (Parser)

The pragma interrupt_level requires an argument from 0 to 7.

(215) missing argument to "pragma switch" (Parser)

The pragma switch requires an argument of auto, direct or simple, e.g.:

#pragma switch /* woops -- this requires a switch mode */

maybe you meant something like:

#pragma switch simple

318

Error and Warning Messages

(216) missing argument to "pragma psect" (Parser)

The pragma psect requires an argument of the form oldname=newname where oldname is an
existing psect name known to the compiler, and newname is the desired new name, e.g.:

#pragma psect /* woops -- this requires an psect to redirect */

maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)

The inline pragma expects the name of a function to follow. The function name must be recognized
by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */

maybe you meant something like:

#pragma inline memcpy

(219) missing name after pragma "printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style
format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */

Maybe you meant something like:

#pragma printf_check sprintf

Pragmas for all the standard printf-like function are already contained in <stdio.h>.

(220) exponent expected (Parser)

A floating point constant must have at least one digit after the e or E., e.g.:

float f;
f = 1.234e; /* woops -- what is the exponent? */

319

Error and Warning Messages

(221) hex digit expected (Parser)

After 0x should follow at least one of the hex digits 0-9 and A-F or a-f, e.g.:

a = 0xg6; /* woops -- was that meant to be a = 0xf6 ? */

(222) binary digit expected (Parser)

A binary digit was expected following the 0b format specifier, e.g.

i = 0bf000; /* wooops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal
number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string
commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058; /* a leading 0 implies octal which has digits 0 thru 7 */

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char c = ”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c = ’12’; /* woops -- only one character may be specified */

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part of the ellipsis symbol, which
must have 3 dots. (An ellipsis is used in function prototypes to indicate a variable number of param-
eters.)

Either .. was meant to be an ellipsis symbol which would require you to add an extra dot, or it
was meant to be a structure member operator which would require you remove one dot.

320

Error and Warning Messages

(228) illegal character (*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising
the acceptable operators, e.g.:

c = ‘a‘; /* woops -- did you mean c = ’a’; ? */

(229) unknown qualifier "*" given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing arg to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(231) unknown qualifier "*" given to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing arg to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (disk space?) (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(236) simple integer expression required (Parser)

A simple integral expression is required after the operator @, used to associate an absolute address
with a variable, e.g.:

int address;
char LOCK @ address;

321

Error and Warning Messages

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading
is illegal, e.g.:

int twice(int a)
{
return a*2;

}
long twice(long a) /* only one prototype & definition of rv can exist */
{
return a*2;

}

(238) illegal initialisation (Parser)

You can’t initialise a typedef declaration, because it does not reserve any storage that can be ini-
tialised, e.g.:

typedef unsigned int uint = 99; /* woops -- uint is a type, not a variable */

(239) identifier redefined: * (from line *) (Parser)

This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */
int a; /* this attempts to define another with the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-
mended.

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure), e.g.:

int ivals[3] = { 2, 4, 6, 8}; /* three elements, but four initializers */

322

Error and Warning Messages

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-
ber of braces and commas, e.g.:

int iarray[10] = {{’a’, ’b’, ’c’}; /* woops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,
e.g:

double d;
switch(d) { /* woops -- this must be integral */
case ’1.0’:
d = 0;

}

(243) inappropriate break/continue (Parser)

A break or continue statement has been found that is not enclosed in an appropriate control struc-
ture. A continue can only be used inside a while, for or do while loop, while break can only be
used inside those loops or a switch statement, e.g.:

switch(input) {
case 0:
if(output == 0)
input = 0xff;

} /* woops -- this shouldn’t be here and closed the switch */
break; /* this should be inside the switch */

(244) default case redefined (Parser)

There is only allowed to be one default label in a switch statement. You have more than one, e.g.:

switch(a) {
default: /* if this is the default case... */
b = 9;
break;

default: /* then what is this? */
b = 10;
break;

323

Error and Warning Messages

(245) "default" not in switch (Parser)

A label has been encountered called default but it is not enclosed by a switch statement. A
default label is only legal inside the body of a switch statement.

If there is a switch statement before this default label, there may be one too many closing
braces in the switch code which would prematurely terminate the switch statement. See example
for Error Message ’case’ not in switch on page 324.

(246) "case" not in switch (Parser)

A case label has been encountered, but there is no enclosing switch statement. A case label may
only appear inside the body of a switch statement.

If there is a switch statement before this case label, there may be one too many closing braces
in the switch code which would prematurely terminate the switch statement, e.g.:

switch(input) {
case ’0’:
count++;
break;

case ’1’:
if(count>MAX)
count= 0;

} /* woops -- this shouldn’t be here */
break;

case ’2’: /* error flagged here */

(247) duplicate label * (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is
the entire function, not just the block that encloses a label, e.g.:

start:
if(a > 256)
goto end;

start: /* error flagged here */
if(a == 0)
goto start; /* which start label do I jump to? */

324

Error and Warning Messages

(248) inappropriate "else" (Parser)

An else keyword has been encountered that cannot be associated with an if statement. This may
mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...
if(a > b) {
c = 0; /* ... that will be closed here, thus removing the “if” */

else /* my “if” has been lost */
c = 0xff;

(249) probable missing "}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding
function has not been ended with a closing brace. This probably means that a closing brace has been
omitted from somewhere in the previous function, although it may well not be the last one, e.g.:

void set(char a)
{
PORTA = a;

/* the closing brace was left out here */
void clear(void) /* error flagged here */
{
PORTA = 0;

}

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It
is acceptable to redeclare the size of an array that was previously declared with a zero dimension,
but not otherwise, e.g.:

extern int array[5];
int array[10]; /* woops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument 0 is the left most argument) of this function definition does not
agree with a previous prototype for this function, e.g.:

325

Error and Warning Messages

extern int calc(int, int); /* this is supposedly calc’s prototype */
int calc(int a, long int b) /* hmmm -- which is right? */
{ /* error flagged here */
return sin(b/a);

}

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.
Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */
int calc(int a, int b) /* hmmm -- which is right? */
{ /* error flagged here */
return a + b;

}

(254) undefined *: * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union * (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

struct {
int a, b, c;

} data;
if(data.d) /* woops -- there is no member d in this structure */
return;

(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.

(257) only register storage class allowed (Parser)

The only storage class allowed for a function parameter is register, e.g.:

void process(static int input)

326

Error and Warning Messages

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either
directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;
volatile vint very_vol; /* woops -- this results in two volatile qualifiers */

(259) can’t be both far and near (Parser)

It is illegal to qualify a type as both far and near, e.g.:

far near int spooky; /* woops -- choose either far or near, not both */

(260) undefined enum tag: * (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

(261) member * redefined (Parser)

This name of this member of the struct or union has already been used in this struct or union, e.g.:

struct {
int a;
int b;
int a; /* woops -- a different name is required here */

} input;

(262) struct/union redefined: * (Parser)

A structure or union has been defined more than once, e.g.:

struct {
int a;

} ms;
struct {
int a;

} ms; /* was this meant to be the same name as above? */

327

Error and Warning Messages

(263) members cannot be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:

struct {
int a;
int get(int); /* this should be a pointer: int (*get)(int); */

} object;

(264) bad bitfield type (Parser)

A bitfield may only have a type of int (signed or unsigned), e.g.:

struct FREG {
char b0:1; /* woops -- these must be part of an int, not char */
char :6;
char b7:1;

} freg;

(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a
bitfield. An integral constant must appear after the colon to define the number of bits in the bitfield,
e.g.:

struct {
unsigned first: /* woops -- should be: unsigned first; */
unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {
unsigned first : 4; /* 4 bits wide */
unsigned second: 4; /* another 4 bits */

} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the
storage class of the structure, e.g.:

328

Error and Warning Messages

struct {
static int first; /* no additional qualifiers may be present with members */

} ;

(267) bad storage class (Code Generator)

The code generator has encounterd a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */
int power(static int a) /* paramters may not be static */
{
return foo * a;

}

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,
e.g.:

extern static int where; /* so is it static or extern? */

(269) inconsistent type (Parser)

Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) can’t be register (Parser)

Only function parameters or auto variables may be declared using the register qualifier, e.g.:

register int gi; /* this cannot be qualified register */
int process(register int input) /* this is okay */
{
return input + gi;

}

329

Error and Warning Messages

(271) can’t be long (Parser)

Only int and float can be qualified with long.

long char lc; /* what? */

(272) can’t be short (Parser)

Only int can be modified with short, e.g.:

short float sf; /* what? */

(273) can’t have "signed" and "unsigned" together (Parser)

The type modifiers signed and unsigned cannot be used together in the same declaration, as they
have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? signed or unsigned? */

(274) can’t be unsigned (Parser)

A floating point type cannot be made unsigned, e.g.:

unsigned float uf; /* what? */

(275) ... illegal in non-prototype arg list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not
appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style
non-prototype function definitions. For example:

int kandr(a, b, ...) /* K&R-style non-prototyped function definition */
int a, b;

{

(276) type specifier required for proto arg (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

330

Error and Warning Messages

(277) can’t mix proto and non-proto args (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration
list before the start of the function body), e.g.:

int plus(int a, b) /* woops -- a is prototyped, b is not */
int b;
{
return a + b;

}

(278) argument redeclared: * (Parser)

The specified argument is declared more than once in the same argument list, e.g.

int calc(int a, int a) /* you cannot have two parameters called “a” */

(279) can’t initialize arg (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument
happens when the function is called and a value is provided for the argument by the calling function,
e.g.:

extern int proc(int a = 9); /* woops -- a is initialized when proc is called */

(280) can’t have array of functions (Parser)

You can’t define an array of functions. You can however define an array of pointers to functions,
e.g.:

int * farray[](); /* woops -- should be: int (* farray[])(); */

(281) functions can’t return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer
to a function could be declared like this: int (* (name()))(). Note the many parentheses that are
necessary to make the parts of the declaration bind correctly.

331

Error and Warning Messages

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a
value. All succeeding dimensions must be present as a constant expression, e.g.:

enum { one = 1, two };
int get_element(int array[two][]) /* should be, e.g.: int array[][7] */
{
return array[1][6];

}

(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces, e.g.:

void interrupt(void) /* what is the name of this function? */
{
}

(286) declarator too complex (Parser)

This declarator is too complex for the compiler to handle. Examine the declaration and find a way
to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

(287) can’t have an array of bits or a pointer to bit (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */
bit * bp; /* wrong -- no pointers to bit variables */

(288) only functions may be void (Parser)

A variable may not be void. Only a function can be void, e.g.:

int a;
void b; /* this makes no sense */

332

Error and Warning Messages

(289) only functions may be qualified interrupt (Parser)

The qualifier interrupt may not be applied to anything except a function, e.g.:

interrupt int input; /* variables cannot be qualified interrupt */

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier
only make sense when used with an lvalue, e.g. const or volatile. This may indicate that you have
forgotten out a star * indicating that the function should return a pointer to a qualified object, e.g.

const char ccrv(void) /* woops -- did you mean const * char ccrv(void) ? */
{ /* error flagged here */
return ccip;

}

(291) not an argument: * (Parser)

This identifier that has appeared in a K&R stype argument declarator is not listed inside the paren-
theses after the function name, e.g.:

int process(input)
int unput; /* woops -- that should be int input; */
{
}

(292) a parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has
been omitted from the declaration.

(293) bad size in index_type (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) can’t allocate * bytes of memory (Code Generator, Hexmate)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

333

Error and Warning Messages

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or
split into two expressions.

(297) bad arg (*) to tysize (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(298) EOF in #asm (Preprocessor)

An end of file has been encountered inside a #asm block. This probably means the #endasm is
missing or misspelt, e.g.:

#asm
mov r0, #55
mov [r1], r0

} /* woops -- where is the #endasm */

(300) unexpected EOF (Parser)

An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)
{
init();
run(); /* is that it? What about the close brace */

(301) EOF on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can’t reopen * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) no memory for string buffer (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort
and merge strings. Try reducing the number or length of strings in this module.

334

Error and Warning Messages

(305) can’t open * (Code Generator, Assembler, Optimiser, Cromwell)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(306) out of far memory (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(308) too many cases in switch (Code Generator)

There are too many case labels in this switch statement. The maximum allowable number of case
labels in any one switch statement is 511.

(309) too many symbols (Assembler)

There are too many symbols for the assembler’s symbol table. Reduce the number of symbols in
your program.

(310)] expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,
e.g.

process(carray[idx); /* woops -- should be: process(carray[idx]); */

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow, e.g.:

int get_value(a, b); /* the function block must follow, not a semicolon */

335

Error and Warning Messages

(314) ; expected (Parser)

A semicolon is missing from a statement. A close brace or keyword was found following a statement
with no terminating semicolon, e.g.:

while(a) {
b = a-- /* woops -- where is the semicolon? */

} /* error is flagged here */

Note: Omitting a semicolon from statements not preceeding a close brace or keyword typically
results in some other error being issed for the following code which the parser assums to be part of
the original statement.

(315) { expected (Parser)

An opening brace was expected here. This error may be the result of a function definition missing
the opening brace, e.g.:

void process(char c) /* woops -- no opening brace after the prototype */
return max(c, 10) * 2; /* error flagged here */

}

(316) } expected (Parser)

A closing brace was expected here. This error may be the result of a initialized array missing the
closing brace, e.g.:

char carray[4] = { 1, 2, 3, 4; /* woops -- no closing brace */

(317) (expected (Parser)

An opening parenthesis, (, was expected here. This must be the first token after a while, for, if,
do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */
b = 0;

(318) string expected (Parser)

The operand to an asm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

336

Error and Warning Messages

(319) while expected (Parser)

The keyword while is expected at the end of a do statement, e.g.:

do {
func(i++);

} /* do the block while what condition is true? */
if(i > 5) /* error flagged here */
end();

(320) : expected (Parser)

A colon is missing after a case label, or after the keyword default. This often occurs when a
semicolon is accidentally typed instead of a colon, e.g.:

switch(input) {
case 0; /* woops -- that should have been: case 0: */
state = NEW;

(321) label identifier expected (Parser)

An identifier denoting a label must appear after goto, e.g.:

if(a)
goto 20; /* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or { expected (Parser)

After the keyword enum must come either an identifier that is or will be defined as an enum tag, or
an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)

An identifier denoting a structure or union or an opening brace must follow a struct or union
keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

337

Error and Warning Messages

struct {
int a;

} my_struct;

(324) too many arguments for format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string, e.g.:

printf(“%d - %d”, low, high, median); /* woops -- missed a placeholder? */

(325) error in format string (Parser)

There is an error in the format string here. The string has been interpreted as a printf() style format
string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at
run time, e.g.:

printf(“%l”, lll); /* woops -- maybe: printf(“%ld”, lll); */

(326) long argument required (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-
fiers and corresponding arguments, e.g.:

printf(“%lx”, 2); /* woops -- maybe you meant: printf(“%lx”, 2L);

(328) integral argument required (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order
of format specifiers and corresponding arguments, e.g.:

printf(“%d”, 1.23); /* woops -- either wrong number or wrong placeholder */

(329) double float argument required (Parser)

The printf format specifier corresponding to this argument is %f or similar, and requires a floating
point expression. Check for missing or extra format specifiers or arguments to printf.

printf(“%f”, 44); /* should be: printf(“%f”, 44.0); */

338

Error and Warning Messages

(330) pointer to * argument required (Parser)

A pointer argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

(331) too few arguments for format string (Parser)

There are too few arguments for this format string. This would result in a garbage value being printed
or converted at run time, e.g.:

printf(“%d - %d”, low); /* woops -- where is the other value to print? */

(332) interrupt_level should be 0 to 7 (Parser)

The pragma interrupt_level must have an argument from 0 to 7, e.g.:

#pragma interrupt_level /* woops -- what is the level */
void interrupt isr(void)
{
/* isr code goes here */

}

(333) unrecognized qualifier name after "strings" (Parser)

The pragma strings was passed a qualifier that was not identified, e.g.:

#pragma strings cinst /* woops -- should that be #pragma strings const ? */

(335) unknown pragma * (Parser)

An unknown pragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)

Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”
“there”; /* this is okay, but is it what you had intended? */

339

Error and Warning Messages

(337) line does not have a newline on the end (Parser)

The last line in the file is missing the newline (operating system dependent character) from the end.
Some editors will create such files, which can cause problems for include files. The ANSI C standard
requires all source files to consist of complete lines only.

(338) can’t create * file "*" (Code Generator, Assembler, Linker, Optimiser)

The application tried to create the named file, but it could not be created. Check that all file path-
names are correct.

(338) can’t create * file "*" (Linker, Code Generator Driver)

The compiler was unable to create a temporary file. Check the DOS Environment variable TEMP
(and TMP) and verify it points to a directory that exists, and that there is space available on that
drive. For example, AUTOEXEC.BAT should have something like:

SET TEMP=C:\TEMP

where the directory C:\TEMP exists.

(339) initializer in "extern" declaration (Parser)

A declaration containing the keyword extern has an initialiser. This overrides the extern storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated storage,
how can it be initialized? */

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach
the end of the function body, thus returning without a value. Either insert a return statement with a
value, or if the function is not to return a value, declare it void, e.g.:

int mydiv(double a, int b)
{
if(b != 0)
return a/b; /* what about when b is 0? */

} /* warning flagged here */

340

Error and Warning Messages

(344) non-void function returns no value (Parser)

A function that is declared as returning a value has a return statement that does not specify a return
value, e.g.:

int get_value(void)
{
if(flag)
return val++;

return; /* what is the return value in this instance? */
}

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be
reached, e.g.:

while(1) /* how does this loop finish? */
process();

flag = FINISHED; /* how do we get here? */

(346) declaration of * hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended, e.g.:

int input; /* input has filescope */
void process(int a)
{
int input; /* local blockscope input */
a = input; /* this will use the local variable. Is this right? */

(347) external declaration inside function (Parser)

A function contains an extern declaration. This is legal but is invariably not desirable as it restricts
the scope of the function declaration to the function body. This means that if the compiler encounters
another declaration, use or definition of the extern object later in the same file, it will no longer have
the earlier declaration and thus will be unable to check that the declarations are consistent. This
can lead to strange behaviour of your program or signature errors at link time. It will also hide any
previous declarations of the same thing, again subverting the compiler’s type checking. As a general
rule, always declare extern variables and functions outside any other functions. For example:

341

Error and Warning Messages

int process(int a)
{
extern int away; /* this would be better outside the function */
return away + a;

}

(348) auto variable * should not be qualified (Parser)

An auto variable should not have qualifiers such as near or far associated with it. Its storage class
is implicitly defined by the stack organization. An auto variable may be qualified with static, but
it is then no longer auto.

(349) non-prototyped function declaration: * (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions, e.g.:

int process(input)
int input; /* warning flagged here */
{
}

This would be better written:

int process(int input)
{
}

(350) unused *: * (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is
redundant, or the code that was meant to use it was excluded from compilation or misspelt the name
of the object. Note that the symbols rcsid and sccsid are never reported as being unused.

(352) float param coerced to double (Parser)

Where a non-prototyped function has a parameter declared as float, the compiler converts this into
a double float. This is because the default C type conversion conventions provide that when a
floating point number is passed to a non-prototyped function, it will be converted to double. It is
important that the function declaration be consistent with this convention, e.g.:

342

Error and Warning Messages

double inc_flt(f) /* the parameter f will be converted to double type */
float f; /* warning flagged here */
{
return f * 2;

}

(353) sizeof external array "*" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an
explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default
pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a larger unsigned type. Under the
ANSI "value preserving" rules, this will result in the signed value being first sign-extended to a
signed number the size of the target type, then converted to unsigned (which involves no change
in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first
convert the signed value to an unsigned equivalent, e.g.:

signed char sc;
unsigned int ui;
ui = sc; /* if sc contains 0xff, ui will contain 0xffff for example */

will perform a sign extension of the char variable to the longer type. If you do not want this to take
place, use a cast, e.g.:

ui = (unsigned char)sc;

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result
in truncation of the floating point value. A typecast will make this warning go away.

343

Error and Warning Messages

double dd;
int i;
i = dd; /* is this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the & address operator, e.g.:

int * ip;
int i;
ip = i; /* woops -- did you mean ip = &i ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;

(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the * dereference operator, e.g.:

int * ip;
int i;
i = ip; /* woops -- did you mean i = *ip ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

344

Error and Warning Messages

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer
of a different type. This will usually mean you have used the wrong variable, but if this is genuinely
what you want to do, use a typecast to inform the compiler that you want the conversion and the
warning will be suppressed, e.g.:

long input;
char * cp;
cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the
intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,
but which have different qualifiers, e.g.:

char * cp;
cp = “I am a string of characters”; /* yes, but what sort of characters? */

If the default type for string literals is const char *, then this warning is quite valid. This should
be written:

const char * cp;
cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array. This warning will not be issued when accessing an array element
via a pointer variable, e.g.:

int i, * ip, input[10];
i = input[-2]; /* woops -- this element doesn’t exist */
ip = &input[5];
i = ip[-2]; /* this is okay */

345

Error and Warning Messages

(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of type int, with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type
and arguments will be different from the earlier implicit declaration, causing a compiler error. The
solution is to ensure that all functions are defined or at least declared before use, preferably with
prototyped parameters. If it is necessary to make a forward declaration of a function, it should be
preceded with the keywords extern or static as appropriate. For example:

void set(long a, int b); /* I may prevent an error arising from calls below */
void main(void)
{
set(10L, 6); /* by here a prototype for set should have seen */

}

(362) redundant & applied to array (Parser)

The address operator & has been applied to an array. Since using the name of an array gives its
address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];
int * ip;
ip = &array; /* array is a constant, not a variable; the & is redundant. */

(364) attempt to modify * object (Parser)

Objects declared const or code may not be assigned to or modified in any other way by your
program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */
out = 0; /* woops -- writing to a read-only object */

(365) pointer to non-static object returned (Parser)

This function returns a pointer to a non-static (e.g. auto) variable. This is likely to be an error,
since the storage associated with automatic variables becomes invalid when the function returns,
e.g.:

346

Error and Warning Messages

char * get_addr(void)
{
char c;
return &c; /* returning this is dangerous; the pointer could be dereferenced */

}

(366) operands of * not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used
the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error
message.

(367) function is already "extern"; can’t be "static" (Parser)

This function was already declared extern, possibly through an implicit declaration. It has now
been redeclared static, but this redeclaration is invalid.

void main(void)
{
set(10L, 6); /* at this point the compiler assumes set is extern... */

}
static void set(long a, int b) /* now it finds out otherwise */
{
PORTA = a + b;

}

(368) array dimension on *[] ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the
dimension from the parameter, or define the parameter using pointer syntax, e.g.:

int get_first(int array[10]) /* param should be: “int array[]” or “int *” */
{ /* warning flagged here */
return array[0];

}

347

Error and Warning Messages

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be type int, the compiler still
treats it as unsigned, e.g.:

struct {
signed int sign: 1; /* this must be unsigned */
signed int value: 15;

} ;

(371) missing basic type: int assumed (Parser)

This declaration does not include a basic type, so int has been assumed. This declaration is not
illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;
i; /* don’t let the compiler make assumptions, use : int i */
func(); /* ditto, use: extern int func(int); */

(372) , expected (Parser)

A comma was expected here. This could mean you have left out the comma between two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and
has thus been interpreted as an identifier, e.g.:

unsigned char a;
unsigned chat b; /* thinks: chat & b are unsigned, but where is the comma? */

(375) unknown FNREC type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in
the call graph. This probably means the program has indirect recursion, which is not allowed when
using a compiled stack.

(378) can’t create * file “*” (Hexmate)

This type of file could not be created. Is the file or a file by this name already in use?

348

Error and Warning Messages

(379) bad record type * (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact
HI-TECH Software technical support with details.

(380) unknown record type: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) record too long (*): * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)

This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not
a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.

(383) text record has length too small: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expr * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(386) can’t open error file * (Linker)

The error file specified using the -e linker option could not be opened.

(387) illegal or too many -g flags (Linker)

There has been more than one linker -g option, or the -g option did not have any arguments follow-
ing. The arguments specify how the segment addresses are calculated.

(388) duplicate -m flag (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of this
option is present on the command line. See Section 5.7.9 for information on the correct syntax for
this option.

349

Error and Warning Messages

(389) illegal or too many -o flags (Linker)

This linker -o flag is illegal, or another -o option has been encountered. A -o option to the linker
must be immediately followed by a filename with no intervening space.

(390) illegal or too many -p flags (Linker)

There have been too many -p options passed to the linker, or a -p option was not followed by any
arguments. The arguments of separate -p options may be combined and separated by commas.

(391) missing arg to -Q (Linker)

The -Q linker option requires the machine type for an argument.

(392) missing arg to -u (Linker)

The -U (undefine) option needs an argument.

(393) missing arg to -w (Linker)

The -W option (listing width) needs a numeric argument.

(394) duplicate -d or -h flag (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of either
of these options is present on the command line.

(395) missing arg to -j (Linker)

The maximum number of errors before aborting must be specified following the -j linker option.

(396) illegal flag -* (Linker)

This linker option is unrecognized.

(398) output file cannot be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be
done, because it needs to simultaneously read and write input and output files.

350

Error and Warning Messages

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure it is a
valid HI-TECH object file. Contact HI-TECH Software technical support with details.

(401) cannot get memory (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)

The first value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)

The second value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(410) bad combination of flags (Objtohex)

The combination of options supplied to OBJTOHEX is invalid.

(412) text does not start at 0 (Objtohex)

Code in some things must start at zero. Here it doesn’t.

(413) write error on * (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read error on * (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) bad character in extended Tekhex line (*) (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

351

Error and Warning Messages

(417) seek error (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed to OBJTOHEX has relocation items in it. This may indicate it is the wrong object
file, or that the linker or OBJTOHEX have been given invalid options. The object output files from
the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(422) no end record (Linker)

This object file has no end record. This probably means it is not an object file. Contact HI-TECH
Support if the object file was generated by the compiler.

(423) illegal record type (Linker)

There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)

The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with
details.

352

Error and Warning Messages

(426) can’t open checksum file * (Linker)

The checksum file specified to OBJTOHEX could not be opened. Confirm the spelling and path of
the file specified on the command line.

(427) syntax error in checksum list (Objtohex)

There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from
standard input in response to an option.

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied to OBJTOHEX is syntatically incorrect.

(433) out of memory allocating * blocks of * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some
global symbols to local symbols to reduce the number of symbols.

(435) bad segspec * (Linker)

The segment specification option (-G) to the linker is invalid, e.g.:

-GA/f0+10

Did you forget the radix?

-GA/f0h+10

353

Error and Warning Messages

(436) psect "*" re-orged (Linker)

This psect has had its start address specified more than once.

(437) missing "=" in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See Section 5.7.9 for more infomation.

(438) bad size in -S option (Linker)

The address given in a -S specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-SCODE=f000

Did you forget the radix?

-SCODE=f000h

(441) bad -A spec: "*" (Linker)

The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address in -A spec - * (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-ACODE=1fff-3fffh

Did you forget the radix?

-ACODE=1fffh-3fffh

354

Error and Warning Messages

(444) expected "-" in -A spec (Linker)

There should be a minus sign, -, between the high and low addresses in a -A linker option, e.g.

-AROM=1000h

maybe you meant:

-AROM=1000h-1fffh

(445) bad high address in -A spec - * (Linker)

The high address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-ACODE=0h-ffff

Did you forget the radix?

-ACODE=0h-ffffh

See Section 5.7.20 for more infomation.

(446) bad overrun address in -A spec - * (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,
octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-AENTRY=0-0FFh-1FF

Did you forget the radix?

-AENTRY=0-0FFh-1FFh

355

Error and Warning Messages

(447) bad load address in -A spec - * (Linker)

The load address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,
e.g.:

-ACODE=0h-3fffh/a000

Did you forget the radix?

-ACODE=0h-3fffh/a000h

(448) bad repeat count in -A spec - * (Linker)

The repeat count given in a -A specification is invalid, e.g.:

-AENTRY=0-0FFhxf

Did you forget the radix?

-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)

The -A spec is invalid. A valid -A spec should be something like:
-AROM=1000h-1FFFh

(450) unknown psect: * (Linker, Optimiser)

This psect has been listed in a -P option, but is not defined in any module within the program.

(451) bad origin format in spec (Linker)

The origin format in a -p option is not a validly formed decimal, octal or hex number, nor is it the
name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=f000

Did you forget the radix?

-pbss=f000h

356

Error and Warning Messages

(452) bad min (+) format in spec (Linker)

The minimum address specification in the linker’s -p option is badly formatted, e.g.:

-pbss=data+f000

Did you forget the radix?

-pbss=data+f000h

(453) missing number after % in -p option (Linker)

The % operator in a -p option (for rounding boundaries) must have a number after it.

(455) psect * not relocated on 0x* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct
the -p option. if necessary.

(458) cannot open (Objtohex)

OBJTOHEX cannot open the specified input file. Confirm the spelling and path of the file specified on
the command line.

(462) can’t open avmap file * (Linker)

A file required for producing Avocet format symbol files is missing. Confirm the spelling and path
of the file specified on the command line.

(463) missing memory key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol in FNBREAK record: * (Linker)

The linker has found an undefined symbol in the FNBREAK record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

357

Error and Warning Messages

(466) undefined symbol in FNINDIR record: * (Linker)

The linker has found an undefined symbol in the FNINDIR record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol in FNADDR record: * (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.
Contact HI-TECH Support if this is not handwritten assembler code.

(468) undefined symbol in FNCALL record: * (Linker)

The linker has found an undefined symbol in the FNCALL record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol in FNROOT record: * (Linker)

The linker has found an undefined symbol in the FNROOT record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol in FNSIZE record: * (Linker)

The linker has found an undefined symbol in the FNSIZE record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-
ically allocated local variables (compiled stack). Either use the reentrant keyword (if supported
with this compiler) or recode to avoid recursion, e.g.:

int test(int a)
{
if(a == 5)
return test(a++); /* recursion may not be supported by some compilers */

return 0;
}

358

Error and Warning Messages

(472) function * appears in multiple call graphs: rooted at * and * (Linker)

This function can be called from both main-line code and interrupt code. Use the reentrant key-
word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate
the function, e.g.:

void interrupt my_isr(void)
{
scan(6); /* scan is called from an interrupt function */

}
void process(int a)
{
scan(a); /* scan is also called from main-line code */

}

(474) no psect specified for function variable/argument allocation (Linker)

The FNCONF assembler directive which specifies to the linker information regarding the auto/parameter
block was never seen. This is supplied in the standard runtime files if necessary. This error may im-
ply that the correct run-time startoff module was not linked. Ensure you have used the FNCONF
directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)

The linker has seen two conflicting FNCONF directives. This directive should only be specified once
and is included in the standard runtime startup code which is normally linked into every program.

(476) fixup overflow referencing * * (loc 0x* (0x*+*), size *, value 0x*) (Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
See the following error message (477) for more information..

(477) fixup overflow in expression (loc 0x* (0x*+*), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an
assembler instruction with an absolute value. This takes place after positioning the psects (program
sections or blocks) into the available memory on the target device. Fixup overflow is when the
value determined for a symbol is too large to fit within the allocated space within the assembler
instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the
linker determines that the symbol that has been used to represent this address has the value 0x110,
then clearly this value cannot be inserted into the instruction.

359

Error and Warning Messages

The causes for this can be many, but hand-written assembler code is always the first suspect.
Badly written C code can also generate assembler that ultimately generates fixup overflow errors.
Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1), size 1, value 0x7FC)

This indicates that the file causing the problem was main.obj. This would be typically be the output
of compiling main.c or main.as. This tells you the file in which you should be looking. The next
number (8 in this example) is the record number in the object file that was causing the problem. If
you use the DUMP utility to examine the object file, you can identify the record, however you do not
normally need to do this.

The location (loc) of the instruction (0x1FD), the size (in bytes) of the field in the instruction
for the value (1) , and the value which is the actual value the symbol represents, is typically the only
information needed to track down the cause of this error. Note that a size which is not a multiple of
8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as
1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the
error message.

7 07FC 0E21 movlw 33
8 07FD 6FFC movwf _foo
9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the
symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004
_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but
clearly the address 0x1FC exceeds this size. Maybe the instruction should have been written as:

movwf (_foo&0ffh)

which masks out the top bits of the address containing the bank information.
If the assembler instruction that caused this error was generated by the compiler, in the assem-

bler list file look back up the file from the instruction at fault to determine which C statement has
generated this instruction. You will then need to examine the C code for possible errors. incorrectly
qualified pointers are an common trigger.

360

Error and Warning Messages

(479) circular indirect definition of symbol * (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

(480) signatures do not match: * (*): 0x*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared
differently, e.g. it may have been prototyped in one module and not another. Check what declarations
for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);
/* and in another module: */
int get_value(int in, char type) /* this is different to the declaration */
{

(481) common symbol psect conflict: * (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*" multiply defined in file "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have an underscore prepended to their name after compilation.

(483) symbol * cannot be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

361

Error and Warning Messages

(484) psect * cannot be in classes * and * (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting
class= options to the PSECT directive, or use of the -C option to the linker, e.g.:

psect final,class=CODE
finish:
/* elsewhere: */
psect final,class=ENTRY

(485) unknown "with" psect referenced by psect * (Linker)

The specified psect has been placed with a psect using the psect with flag. The psect it has been
placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext ; was that meant to be with text?

(486) psect * selector value redefined (Linker)

The selector associated with this psect has been defined differently in two or more places.

(486) psect * selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect * type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are
trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode
code.

(488) psect * memory space redefined: */* (Linker)

A global psect has been defined in two different memory spaces. Either rename one of the psects or,
if they are the same psect, place them in the same memory space using the space psect flag, e.g.:

psect spdata,class=RAM,space=0
ds 6

; elsewhere:
psect spdata,class=RAM,space=1

362

Error and Warning Messages

(489) psect * memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2
finish:
; elsewhere:
psect final,class=CODE,delta=1

(490) class * memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they
are the same class, place them in the same memory space.

(491) can’t find * words for psect "*" in segment "*" (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that is
generated from the program into the memory available for the target device. This error indicates that
the linker was unable to find an area of free memory large enough to accomodate one of the psects.
The error message indicates the name of the psect that the linker was attempting to position and the
segment name which is typically the name of a class which is defined with a linker -A option.

Section 3.9.1 lists each compiler-generated psect and what it contains. Typically psect names
which are, or include, text relate to program code. Names such as bss or data refer to variable
blocks. This error can be due to two reasons.

First, the size of the program or the progam’s data has exceeded the total amount of space on the
selected device. In other words, some part of your device’s memory has completely filled. If this is
the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being
positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous
block is too small to accomodate the psect. The linker is unable to split psects in this situation. That
is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the linker
must be able to find a contiguous block of memory large enough for every psect. If this is the cause
of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see Section 2.4.9 for
information on how to generate a map file. Search for the string UNUSED ADDRESS RANGES. Under
this heading, look for the name of the segment specified in the error message. If the name is not
present, then all the memory available for this psect has been allocated. If it is present, there will be
one address range specified under this segment for each free block of memory. Determine the size
of each block and compare this with the number of words specified in the error message.

363

Error and Warning Messages

Psects containing code can be reduced by using all the compiler’s optimizations, or restructring
the program. If a code psect must be split into two or more small psects, this requies splitting a
function into two or more smaller functions (which may call each other). These functions may need
to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect
is less dramatic. The program may need to be rewritten so that it needs less variables. Section
5.10.2.2 has information on interpreting the map file’s call graph if the compiler you are using uses
a compiled stack. (If the string Call grpah: is not present in the map file, then the compiled
code uses a hardware stack.) If a data psect needs to be split into smaller psects, the definitions
for variables will need to be moved to new modules or more evenly spread in the existing modules.
Memory allocation for auto variables is entirely handled by the compiler. Other than reducing the
number of these variables used, the programmer has little control over their operation. This applies
whether the compiled code uses a hardware or compiled stack.

For example, after receiving the message:

Can’t find 0x34 words (0x34 withtotal) for psect text in segment CODE (error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES
CODE 00000244-0000025F

00001000-0000102f
RAM 00300014-00301FFB

In the CODE segment, there is 0x1c (0x25f-0x244+1) bytes of space available in one block and 0x30
available in another block. Neither of these are large enough to accomodate the psect text which
is 0x34 bytes long. Notice, however, that the total amout of memory available is larger than 0x34
bytes.

(492) psect is absolute: * (Linker)

This psect is absolute and should not have an address specified in a -P option. Either remove the
abs psect flag, or remove the -P linker option.

(493) psect origin multiply defined: * (Linker)

The origin of this psect is defined more than once. There is most likely more than one -p linker
option specifying this psect.

364

Error and Warning Messages

(494) bad -P format "*"/"*" (Linker)

The -P option given to the linker is malformed. This option specifies placement of a psect, e.g.:

-Ptext=10g0h

Maybe you meant:

-Ptext=10f0h

(497) psect exceeds max size: *: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified using the size psect flag.

(498) psect exceeds address limit: *: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it using the limit psect flag. Either
the psect needs to be linked at a different location or there is too much code/data in the psect.

(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(500) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

(501) entry point multiply defined (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is
specified after the END directive. The runtime startup code defines the entry point, e.g.:

powerup:
goto start
END powerup ; end of file and define entry point

; other files that use END should not define another entry point

(502) incomplete * record body: length = * (Linker)

An object file contained a record with an illegal size. This probably means the file is truncated or
not an object file. Contact HI-TECH Support with details.

365

Error and Warning Messages

(503) ident records do not match (Linker)

The object files passed to the linker do not have matching ident records. This means they are for
different processor types.

(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known
to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object
file if you have not patched the linker.

(505) no end record found (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an
object file. Contact HI-TECH Support if the object file was generated by the compiler.

(506) record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset * out of range 0..*-*-1 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using
a linker that is out of date, or that there is an internal error in the assembler or linker. Contact
HI-TECH Support with details if the object file was created by the compiler.

(510) complex relocation not supported for -r or -l options (Linker)

The linker was given a -R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

366

Error and Warning Messages

(512) unknown complex operator 0x* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the
file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was
created by the compiler.

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(517) write error (out of disk space?) * (Linker)

A write error occurred on the named file. This probably means you have run out of disk space.

(519) can’t seek in * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(520) function * is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-
ing it. If you believe this function should be called, check your source code. Some assembler library
routines are never called, although they are actually execute. In this case, the routines are linked in
a special sequence so that program execution falls through from one routine to the next.

(521) call depth exceeded by * (Linker)

The call graph shows that functions are nested to a depth greater than specified.

367

Error and Warning Messages

(522) library * is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument -W* ignored (Linker)

The argument to the linker option -w is out of range. This option controls two features. For warning
levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

(524) unable to open list file * (Linker)

The named list file could not be opened. The linker would be trying to fixup the list file so that it will
contain absolute addresses. Ensure that an assembler list file was generated during the compilation
stage. Alternatively, remove the assembler list file generation option from the link step.

(525) too many address spaces - space * ignored (Linker)

The limit to the number of address spaces (specified with the PSECT assembler directive) is currently
16.

(526) psect * not specified in -p option (first appears in *) (Linker)

This psect was not specified in a -P or -A option to the linker. It has been linked at the end of the
program, which is probably not where you wanted it.

(528) no start record: entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in
your startup module by using the END directive.

(593) can’t find 0x* words (0x* withtotal) for psect * in segment * (Linker)

See error (491) in Appendix B.

(596) segment *(*-*) overlaps segment *(*-*) (Linker)

The named segments have overlapping code or data. Check the addresses being assigned by the -P
linker option.

368

Error and Warning Messages

(597) can’t open (Linker)

An object file could not be opened. Confirm the spelling and path of the file specified on the com-
mand line.

(602) null format name (Cromwell)

The -I or -O option to Cromwell must specify a file format.

(603) ambiguous format name "*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with
the -ikey and -okey options respectively.

(604) unknown format name "*" (Cromwell)

The output format specified to CROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot

and output file type of cot, did you mean cof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E
or HI-TECH.

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The -p option to cromwell must specify a processor name.

(611) too many input files (Cromwell)

To many input files have been specified to be converted by CROMWELL.

369

Error and Warning Messages

(612) too many output files (Cromwell)

To many output file formats have been specified to CROMWELL.

(613) no output file format specified (Cromwell)

The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)

CROMWELL must have an input file to convert.

(619) I/O error reading symbol table

Cromwell could not read the symbol table. This could be because the file was truncated or there was
some other problem reading the file. Contact HI-TECH Support with details.

(620) file name index out of range in line number record (Cromwell)

The COD file has an invalid format in the specified record.

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in coff:get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(634) error dumping * (Cromwell)

Either the input file to CROMWELL is of an unsupported type or that file cannot be dumped to the
screen.

(635) invalid hex file: *, line * (Cromwell)

The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was
generated by the compiler.

370

Error and Warning Messages

(636) checksum error in Intel hex file *, line * (Cromwell, Hexmate)

A checksum error was found at the specified line in the specified Intel hex file. The HEX file may
be corrupt.

(674) too many references to * (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(675) can’t open * for input (Cref)

CREF cannot open the specified input file. Confirm the spelling and path of the file specified on the
command line.

(676) can’t open * for output (Cref)

CREF cannot open the specified output file. Confirm the spelling and path of the file specified on the
command line.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(680) bad format for -P option (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(685) bad putwsize (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(686) bad switch size * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(687) bad pushreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section 5.7.2 for more infomation.

371

Error and Warning Messages

(688) bad popreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(689) unknown predicate * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(693) interrupt level may only be 0 (default) or 1 (Code Generator)

The only possible interrupt levels are 0 or 1. Check to ensure that all interrupt_level pragmas
use these levels.

#pragma interrupt_level 2 /* woops -- only 0 or 1 */
void interrupt isr(void)
{
/* isr code goes here */

}

(695) duplicate case label * (Code Generator)

There are two case labels with the same value in this switch statement, e.g.:

switch(in) {
case ’0’: /* if this is case ’0’... */
b++;
break;

case ’0’: /* then what is this case? */
b--;
break;

}

(696) out-of-range case label * (Code Generator)

This case label is not a value that the controlling expression can yield, and thus this label will never
be selected.

(697) non-constant case label (Code Generator)

A case label in this switch statement has a value which is not a constant.

372

Error and Warning Messages

(698) bit variables must be global or static (Code Generator)

A bit variable cannot be of type auto. If you require a bit variable with scope local to a block of
code or function, qualify it static, e.g.:

bit proc(int a)
{
bit bb; /* woops -- this should be: static bit bb; */
bb = (a > 66);
return bb;

}

(699) no case labels (Code Generator)

There are no case labels in this switch statement, e.g.:

switch(input) {
} /* there is nothing to match the value of input */

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(702) regused - bad arg to G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section 5.7.2 for more infomation.

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after I (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

373

Error and Warning Messages

(706) expand - bad which (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.See
Section 5.7.20 for more infomation.

(708) bad mod "+" for how = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister * can’t be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(711) expand - bad how (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For
successful code generation, the code generator must know how to compile an expression and there
must be enough resources (e.g. registers or temporary memory locations) available. Simplifying
the expression, e.g. using a temporary variable to hold an intermediate result, may get around this
message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example
code which writes to a const-qualified object is illegal and will result in warning messages, but the
code generator may unsuccessfully try to produce code to perform the write.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

374

Error and Warning Messages

(715) bad pragma * (Code Generator)

The code generator has been passed a pragma directive that it does not understand. This implies that
the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using
has not implemented this pragma.

(716) bad -M option: -M* (Code Generator)

The code generator has been passed a -M option that it does not understand. This should not happen
if it is being invoked by a standard compiler driver.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.
This is either that incompatible versions of one or more compilers have been installed in the same
directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the
setting of the TEMP environment variable. If it refers to a long path name, change it to something
shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(721) bad element count expr (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(723) functions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-
TECH Support with details.

(724) bad op * to revlog (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

375

Error and Warning Messages

(726) bad uconval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(727) bad bconfloat - * (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

(728) bad confloat - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad conval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op: "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(732) can’t initialize bit type (Code Generator)

Variables of type bit cannot be initialised, e.g.:

bit b1 = 1; /* woops -- b1 must be assigned a value after its definition */

(733) bad string "*" in psect pragma (Code Generator)

The code generator has been passed a pragma psect directive that has a badly formed string, e.g.:

#pragma psect text /* redirect text psect into what? */

Maybe you meant something like:

#pragma psect text=special_text

376

Error and Warning Messages

(734) too many psect pragmas (Code Generator)

Too many #pragma psect directives have been used.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) bad dimensions (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

(741) bit field too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bits in an int, e.g. assuming
an int is 16 bits wide:

struct {
unsigned flag : 1;
unsigned value : 12;
unsigned cont : 6; /* woops -- that makes a total of 19 bits */

} object;

(742) function "*" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a
call like:

void fn1(void)
{
fn3(7, fn2(3), fn2(9)); /* Offending call */

}
char fn2(char fred)
{
return fred + fn3(5,1,0);

}
char fn3(char one, char two, char three)
{
return one+two+three;

}

377

Error and Warning Messages

where fn1 is calling fn3, and two arguments are evaluated by calling fn2, which in turn calls fn3.
The program structure should be modified to prevent this type of call sequence.

(744) static object has zero size: * (Code Generator)

A static object has been declared, but has a size of zero.

(745) nodecount = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(747) unrecognized option to -Z: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable may be used before set: * (Code Generator)

This variable may be used before it has been assigned a value. Since it is an auto variable, this will
result in it having a random value, e.g.:

void main(void)
{
int a;
if(a) /* woops -- a has never been assigned a value */
process();

}

(749) unknown register name * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(750) constant operand to || or && (Code Generator)

One operand to the logical operators || or && is a constant. Check the expression for missing or
badly placed parentheses. This message may also occur if the global optimizer is enabled and one of
the operands is an auto or static local variable whose value has been tracked by the code generator,
e.g.:

{
int a;
a = 6;

378

Error and Warning Messages

if(a || b) /* a is 6, therefore this is always true */
b++;

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is
too big for the type of the expression. The most common code to trigger this warning is assignments
to signed data types. For example:

signed char c;
c = 0xFF;

As a signed 8-bit quantity, c can only be assigned values -128 to 127. The constant is equal to 255
and is outside this range. If you mean to set all bits in this variable, then use either of:

c = ~0x0;
c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.
This warning can also be triggered by intermediate values overflowing. For example:

unsigned int i; /* assume ints are 16 bits wide */
i = 240 * 137; /* this should be okay, right? */

A quick check with your calculator reveils that 240 * 137 is 32880 which can easily be stored in
an unsigned int, but a warning is produced. Why? Because 240 and 137 and both signed int
values. Therefore the result of the multiplication must also be a signed int value, but a signed
int cannot hold the value 32880. (Both operands are constant values so the code generator can
evaluate this expression at compile time, but it must do so following all the ANSI rules.) The
following code forces the multiplication to be performed with an unsigned result:

i = 240u * 137; /* force at least one operand to be unsigned */

(752) conversion to shorter data type (Code Generator)

Truncation may occur in this expression as the lvalue is of shorter type than the rvalue, e.g.:

char a;
int b, c;
a = b + c; /* conversion of int to char may result in truncation */

379

Error and Warning Messages

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of
bits in the data type. This will produce an undefined result on many processors. This is non-portable
code and is flagged as having undefined results by the C Standard, e.g.:

int input;
input < <= 33; /* woops -- that shifts the entire value out of input */

(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.
For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range
from 0 to 3, e.g.:

struct {
unsigned mask : 2; /* mask can hold values 0 to 3 */

} value;
int compare(void)
{
return (value.mask == 6); /* test can

}

(755) division by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)

A conditional branch (generated by an if, for, while statement etc.) always follows the same path.
This will be some sort of comparison involving a variable and a constant expression. For the code
generator to issue this message, the variable must have local scope (either auto or static local) and
the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold
may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during
a function. For C code that compares these variables to constants, the result of the comparison can
be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

380

Error and Warning Messages

{
int a, b;
a = 5;
if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

will produce code that sets a to 5, then immediately sets b to 6. No code will be produced for the
comparison if(a == 4). If a was a global variable, it may be that other functions (particularly
interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an
expression with missing or badly placed parentheses, causing the evaluation to yield a value different
to what you expected.

This warning may also be issued because you have written something like while(1). To produce
an infinite loop, use for(;;).

A similar situation arises with for loops, e.g.:

{
int a, b;
for(a=0; a!=10; a++) /* this loop must iterate at least once */
b = func(a);

In this case the code generator can again pick up that a is assigned the value 0, then immediately
checked to see if it is equal to 10. Because a is modified during the for loop, the comparison
code cannot be removed, but the code generator will adjust the code so that the comparison is not
performed on the first pass of the loop; only on the subsequent passes. This may not reduce code
size, but it will speed program execution.

(758) constant conditional branch: possible use of = instead of == (Code Generator)

There is an expression inside an if or other conditional construct, where a constant is being assigned
to a variable. This may mean you have inadvertently used an assignment = instead of a compare ==,
e.g.:

int a, b;
if(a = 4) /* this can never be false; always perform the true statement */
b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can
be omitted and the assignment to b always made. Did you mean:

381

Error and Warning Messages

if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a
function call, e.g.:

int fred;
fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To
accommodate this, in some instances the code generator does produce code for a statement which
only consists of a variable ID. This may happen for variables which are qualified as volatile.
Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;
a = b,c; /* “b” has no effect, was that meant to be a comma? */

(761) sizeof yields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly
indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero
length array. In general, pointers to arrays are of little use. If you require a pointer to an array of
objects of unknown length, you only need a pointer to a single object that can then be indexed or
incremented.

(763) constant left operand to ? (Code Generator)

The left operand to a conditional operator ? is constant, thus the result of the tertiary operator ?:
will always be the same, e.g.:

a = 8 ? b : c; /* this is the same as saying a = b; */

382

Error and Warning Messages

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in
the range of possible values for that expression, e.g.:

unsigned char c;
if(c > 300) /* woops -- how can this be true? */
close();

(765) degenerate unsigned comparison (Code Generator)

There is a comparison of an unsigned value with zero, which will always be true or false, e.g.:

unsigned char c;
if(c >= 0)

will always be true, because an unsigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)

There is a comparison of a signed value with the most negative value possible for this type, such
that the comparison will always be true or false, e.g.:

char c;
if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are
comparing an unsigned number with a negative value, or comparing a variable with a value greater
than the largest number it can represent, e.g.:

unsigned int a;
if(a == -10) /* if a is unsigned, how can it be -10? */
b = 9;

(769) no space for macro definition (Assembler)

The assembler has run out of memory.

383

Error and Warning Messages

(770) insufficient memory for macro definition (Assembler)

There is not sufficient memory to store a macro definition.

(772) include files nested too deep (Assembler)

Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-
mum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files
nested at one time.

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(778) write error on object file (Assembler)

An error was reported when the assembler was attempting to write an object file. This probably
means there is not enough disk space.

(780) too many psects (Assembler)

There are too many psects defined! Boy, what a program!

(781) can’t enter abs psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(783) "with=" flags are cyclic (Assembler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no
hierarchy. The with flag is an attribute of a psect and indicates that this psect must be placed in the
same memory page as the specified psect.

Remove a with flag from one of the psect declarations. Such an assembler declaration may look
like:

384

Error and Warning Messages

psect my_text,local,class=CODE,with=basecode

which will define a psect called my_text and place this in the same page as the psect basecode.

(784) overfreed (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(785) too many temporary labels (Assembler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of
2000 temporary labels.

(787) copyexpr: can’t handle v_rtype = * (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character ("*") in number (Assembler)

A number contained a character that was not part of the range 0-9 or 0-F.

(790) EOF inside conditional (Assembler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

(793) unterminated macro arg (Assembler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro
arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other
malformed numbers.

(796) local illegal outside macros (Assembler)

The LOCAL directive is only legal inside macros. It defines local labels that will be unique for each
invocation of the macro.

385

Error and Warning Messages

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directive LOCAL may not include any of the formal parameters to the
macro, e.g.:

mmm macro a1
move r0, #a1
LOCAL a1 ; woops -- the macro parameter cannot be used with local

ENDM

(799) rept argument must be >= 0 (Assembler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */
move r0, [r1]++

endm

(800) undefined symbol * (Assembler)

The named symbol is not defined in this module, and has not been specified GLOBAL.

(801) range check too complex (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(802) invalid address after "end" directive (Assembler)

The start address of the program which is specified after the assembler END directive must be a label
in the current file.

(803) undefined temporary label (Assembler)

A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

(808) add_reloc - bad size (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

386

Error and Warning Messages

(809) unknown addressing mode * (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(814) processor type not defined (Assembler)

The processor must be defined either from the command line (eg. -16c84), via the PROCESSOR
assembler directive, or via the LIST assembler directive.

(815) syntax error in chipinfo file at line * (Assembler)

The chipinfo file contains non-standard syntax at the specified line.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

(826) inverted ram bank in chipinfo file at line * (Assembler, Driver)

The second hex number specified in the RAM field in the chipinfo file must be greater in value than
the first.

(828) inverted common bank in chipinfo file at line * (Assembler, Driver)

The second hex number specified in the COMMON field in the chipinfo file must be greater in value
than the first. Contact HI-TECH Support if you have not modified the chipinfo INI file.

(829) unrecognized line in chipinfo file at line * (Assembler)

The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support
if the INI has not been edited.

(832) empty chip info file * (Assembler)

The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-
TECH Support with details.

(833) no valid entries in chipinfo file (Assembler)

The chipinfo file contains no valid processor descriptions.

387

Error and Warning Messages

(834) page width must be >= 60 (Assembler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted
listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this

(835) form length must be >= 15 (Assembler)

The form length specified using the -Flength option must be at least 15 lines. Setting this length
to zero is allowed and turns off paging altogether. The default value is zero (pageless).

(836) no file arguments (Assembler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(839) relocation too complex (Assembler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)

The assembler has calculated a different value for a symbol on two different passes. This is probably
due to bizarre use of macros or conditional assembly.

(842) bad bit number (Assembler, Optimiser)

A bit number must be an absolute expression in the range 0-7.

(843) a macro name cannot also be an EQU/SET symbol (Assembler)

An EQU or SET symbol has been found with the same name as a macro. This is not allowed. For
example:

getval MACRO
mov r0, r1

ENDM
getval EQU 55h ; woops -- choose a different name to the macro

(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

388

Error and Warning Messages

(845) multiply defined symbol * (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have an underscore prepended to their name after compilation.

(846) relocation error (Assembler, Optimiser)

It is not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must
be used in various places where the assembler must know a value at assembly time.

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form
of operands for this instruction.

(849) illegal instruction for this processor (Assembler)

The instruction is not supported by this processor.

(852) radix must be from 2 - 16 (Assembler)

The radix specified using the RADIX assembler directive must be in the range from 2 (binary) to 16
(hexadecimal).

(853) invalid size for FNSIZE directive (Assembler)

The assembler FNSIZE assembler directive arguments must be positive constants.

389

Error and Warning Messages

(855) ORG argument must be a positive constant (Assembler)

An argument to the ORG assembler directive must be a positive constant or a symbol which has been
equated to a positive constant, e.g.:

ORG -10 /* this must a positive offset to the current psect */

(857) psect may not be local and global (Linker)

A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global
move r0, r1

; elsewhere:
psect text,local,class=CODE
move r2, r4

The global flag is the default for a psect if its scope is not explicitly stated.

(859) C= must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s C= option (which sets the column width of the listing
output) must be a positive decimal constant number, e.g.:

LIST C=a0h ; constant must be decimal and positive, try: LIST C=80

(861) N= must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s N option (which sets the page length for the listing
output) must be a positive constant number, e.g.:

LIST N=-3 ; page length must be positive

(862) symbol is not external (Assembler)

A symbol has been declared as EXTRN but is also defined in the current module.

(863) symbol cannot be both extern and public (Assembler)

If the symbol is declared as extern, it is to be imported. If it is declared as public, it is to be exported
from the current module. It is not possible for a symbol to be both.

390

Error and Warning Messages

(864) SIZE= must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s size option must be a positive constant number,
e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect size redefined (Assembler)

The size flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,size=400
; elsewhere:
psect spdata,class=RAM,size=500

(866) RELOC= must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s reloc option must be a positive constant number,
e.g.:

psect test,class=CODE,reloc=-4 ; the reloc must be positive

(867) psect reloc redefined (Assembler)

The reloc flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,reloc=4
; elsewhere:
psect spdata,class=RAM,reloc=8

(868) DELTA= must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s DELTA option must be a positive constant number,
e.g.:

PSECT text,class=CODE,delta=-2 ; a negative delta value does not make sense

(871) SPACE= must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s space option must be a positive constant number,
e.g.:

PSECT text,class=CODE,space=-1 ; space values start at zero

391

Error and Warning Messages

(872) psect space redefined (Assembler)

The space flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,space=0
; elsewhere:
psect spdata,class=RAM,space=1

(873) a psect may only be in one class (Assembler)

You cannot assign a psect to more than one class. The psect was defined differently at this point than
when it was defined elsewhere. A psect’s class is specified via a flag as in the following:

psect text,class=CODE

Look for other psect definitions that specify a different class name.

(874) a psect may only have one "with" option (Assembler)

A psect can only be placed with one other psect. A psect’s with option is specified via a flag as in
the following:

psect bss,with=data

Look for other psect definitions that specify a different with psect name.

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater
than one character or none at all. An assembler specific example:

mov r0, #’12’ ; ’12’ specifies two characters

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

392

Error and Warning Messages

(916) can’t allocate memory for arguments (Preprocessor, Parser, Code generator, Assembler)

The compiler could not allocate any more memory when trying to read in command-line arguments.

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(921) can’t open chipinfo file * (Driver, Assembler)

The chipinfo file could not be opened. This file normally resides in the LIB directory of the compiler
distribution. If driving the assembler directly (without the command line driver) ensure that the
option to location this file correctly specifies the path, otherwise contact HI-TECH Support with
details.

(941) bad * assignment; USAGE: * (Hexmate)

An option to Hexmate was incorrectly used or incomplete. Follow the usage supplied by the message
and ensure that that the option has been formed correctly and completely.

(942) unexpected character on line * of file * (Hexmate)

File contains a character that was not valid for this type of file, the file may be corrupt. For example,
an Intel hex file is expected to contain only ASCII representations of hexadecimal digits, colons (:)
and line formatting. The presence of any other characters will result in this error.

(944) data conflict at address *h between * and * (Hexmate)

Sources to Hexmate request differing data to be stored to the same address. To force one data source
to override the other, use the ’+’ specifier. If the two named sources of conflict are the same source,
then the source may contain an error.

(945) checksum range (*h to *h) contained an indeterminate value (Hexmate)

The range for this checksum calculation contained a value that could not be resolved. This can
happen if the checksum result was to be stored within the address range of the checksum calculation.

393

Error and Warning Messages

(948) checksum result width must be between 1 and 4 bytes (Hexmate)

The requested checksum byte size is illegal. Checksum results must be within 1 to 4 bytes wide.
Check the parameters to the -CKSUM option.

(949) start of checksum range must be less than end of range (Hexmate)

The -CKSUM option has been given a range where the start is greater than the end. The parameters
may be incomplete or entered in the wrong order.

(951) start of fill range must be less than end of range (Hexmate)

The -FILL option has been given a range where the start is greater than the end. The parameters may
be incomplete or entered in the wrong order.

(953) unknown -HELP sub-option: * (Hexmate)

Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP with no
sub-option to list all options.

(954) incomplete -O option; no file specified (Hexmate)

The output filename option did not contain a filename. A filename must follow -O. Make sure the
filename and -O are not separated by a space.

(956) -SERIAL value must be between 1 and * bytes long (Hexmate)

The serial number being stored was out of range. Ensure that the serial number can be stored in the
number of bytes permissible by this option.

(958) too many input files specified; * file maximum (Hexmate)

Too many file arguments have been used. Try merging these files in several stages rather than in one
command.

(960) unexpected record type(*) on line * of “*” (Hexmate)

Intel hex file contained an invalid record type. Consult the Intel hex format specification for valid
record types.

394

Error and Warning Messages

(962) forced data conflict at address *h between * and * (Hexmate)

Sources to Hexmate force differing data to be stored to the same address. More than one source
using the ’+’ specifier store data at the same address. The actual data stored there may not be what
you expect.

(963) checksum range includes voids or unspecified memory locations (Hexmate)

Checksum range had gaps in data content. The runtime calculated checksum is likely to differ from
the compile-time checksum due to gaps/unused byes within the address range that the checksum is
calculated over. Filling unused locations with a known value will correct this.

(966) no END record for HEX file “*” (Hexmate)

Intel hex file did not contain a record of type END. The hex file may be incomplete.

(967) unused function definition: * (from line *) (Parser)

The indicated static function was never called in the module being compiled. Being static, the
function cannot be called from other modules so this warning imples the function is never used.
Either the function is redundant, or the code that was meant to call it was excluded from compilation
or misspelt the name of the function.

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)

The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier (Parser)

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format (Parser)

Type modifiers may not be used with this format.

395

Error and Warning Messages

(972) only modifiers h and l valid with this format (Parser)

Only modifiers h (short) and l (long) are legal with this printf format specifier.

(973) only modifier l valid with this format (Parser)

The only modifier that is legal with this format is l (for long).

(974) type modifier already specified (Parser)

This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier (Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

(976) field width not valid at this point (Parser)

A field width may not appear at this point in a printf() type format specifier.

(978) this is an enum (Parser)

This identifier following a struct or union keyword is already the tag for an enumerated type, and
thus should only follow the keyword enum, e.g.:

enum IN {ONE=1, TWO};
struct IN { /* woops -- IN is already defined */
int a, b;

};

(979) this is a struct (Parser)

This identifier following a union or enum keyword is already the tag for a structure, and thus should
only follow the keyword struct, e.g.:

struct IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

396

Error and Warning Messages

(980) this is a union (Parser)

This identifier following a struct or enum keyword is already the tag for a union, and thus should
only follow the keyword union, e.g.:

union IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;
data->a = 9; /* data is a structure, not a pointer to a structure */

(982) nxtuse(): unknown op: * (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration, e.g.:

int a;
char a; /* woops -- what is the correct type? */

(985) qualifiers redeclared (Parser)

This function has different qualifiers in different declarations.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of
the same function.

397

Error and Warning Messages

(989) module has code below file base of *h (Linker)

This module has code below the address given, but the -C option has been used to specify that a
binary output file is to be created that is mapped to this address. This would mean code from this
module would have to be placed before the beginning of the file! Check for missing psect directives
in assembler files.

(990) modulus by zero in #if, zero result assumed (Preprocessor)

A modulus operation in a #if expression has a zero divisor. The result has been assumed to be zero,
e.g.:

#define ZERO 0
#if FOO%ZERO /* this will have an assumed result of 0 */
#define INTERESTING

#endif

(991) integer expression required (Parser)

In an enum declaration, values may be assigned to the members, but the expression must evaluate to
a constant of type int, e.g.:

enum { one = 1, two, about_three = 3.12 }; /* no non-int values allowed */

(992) can’t find op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1198) too many “*” specifications; * maximum (Hexmate)

This option has been specified too many times. If possible, try performing these operations over
several command lines.

(1201) all FIND/REPLACE code specifications must be of equal width (Hexmate)

All find, replace and mask attributes in this option must be of the same byte width. Check the
parameters supplied to this option. For example finding 1234h (2 bytes) masked with FFh (1 byte)
will result in an error, but masking with 00FFh (2 bytes) will be Ok.

398

Error and Warning Messages

(1202) unknown format requested in -FORMAT: * (Hexmate)

An unknown or unsupported INHX format has been requested. Refer to documentation for supported
INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)

Data to this option was not entered as whole bytes. Perhaps the data was incomplete or a leading
zero was omitted. For example the value Fh contains only four bits of significant data and is not a
whole byte. The value 0Fh contains eight bits of significant data and is a whole byte.

(1204) * value must be between 1 and * bytes long (Hexmate)

An illegal legth of data was given to this option. The value provided to this option exceeds the
maximum or minimum bounds required by this option.

(1212) Found * (*h) at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

ambiguous chip type * -> * or * (Driver)

The chip type specified on the command line is not complete and could refer to more than one chip.
Specify the full name of the chip type.

a maximum of * reserved areas are allowed. remainder of -RES* ignored (Driver)

Too many address ranges were specified with either the -RESROM or -RESRAM option.

can’t create cross reference file * (Assembler)

The assembler attempted to create a cross reference file, but it could not be created. Check that the
file’s pathname is correct.

couldn’t create error file: * (Driver)

The error file specified after the -Efile or -E+file options could not be opened. Check to ensure
that the file or directory is valid and that has read only access.

399

Error and Warning Messages

duplicate arch for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate lib for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple LIB values. Only one LIB value is allowed.
If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate romsize for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value
is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate sparebit for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

duplicate * for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple values for a field. Only one value is allowed
per chip. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate zeroreg for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

invalid * limits in chipinfo file at line * (Driver)

The ranges of addresses for the ram banks or common memory supplied in the chipinfo INI file is not
valid for architecture specified. If you have not manually edited the chip info file, contact HI-TECH
Support with details.

400

Error and Warning Messages

inverted ICD ROM address in chipinfo file at line * (Driver)

The second hex number specified in the ICD ROM address field in the chipinfo file must be greater
in value than the first. Contact HI-TECH Support if you have not modified the chipinfo INI file.

missing arch specification for * in chipinfo file (Assembler)

The chipinfo file has a processor section without an ARCH values. The architecture of the processor
must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

psect * not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address given in a -p option.
For example if a psect must be on a 4K byte boundary, you could not start it at 100H.

bad -A option: * (Driver)

The format of a -A option to shift the ROM image was not correct. The -A should be immediately
followed by a valid hex number, e.g.:

-A

What is the offset? Maybe you meant:

-A200See Section 5.7.2 for more details regarding this option.

bad -RES* arguments (Driver)

The address ranges specified to either the -RESROM or -RESRAM option are invalid.

bad -ROM arguments * (Driver)

The arguments to -ROM were either not present or badly formed.

banked/common conflict (Assembler)

The assembler has found conflicting information that suggests that a symbol is located in the access
bank, but also in the banked RAM area, e.g.:

movwf c:_foo,b ; _foo cannot be common and banked

401

Error and Warning Messages

bit range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. This error relates to checks carried on a bit addresses. If there is no hand-written assembler
code in this program, then this may be an internal compiler error and you should contact HI-TECH
support with details of the code that generated this error. Other causes are numerous.

can’t open include file * (Assembler)

The named assembler include file could not be opened. Confirm the spelling and path of the file
specified in the INCLUDE directive, e.g.:

INCLUDE “misspilt.h” ; is the filename correct?

delete what ? (Libr)

The librarian requires one or more modules to be listed for deletion when using the d key, e.g.:

libr d c:\ht-pic\lib\pic704-c.lib

does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

direct range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. If there is no hand-written assembler code in this program, then this may be an internal
compiler error and you should contact HI-TECH support with details of the code that generated this
error. Other causes are numerous.

duplicate banks for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple BANKS values. Only one BANKS value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

402

Error and Warning Messages

file locking not enabled on network drive (Driver)

The driver has attempted to modify the lock file located in the LIB directory but was unable to do
so. This has probably resulted from the network drive used to hold the compiler being read only.

identifier expected (Parser)

Inside the braces of an enum declaration should be a comma-separated list of identifiers, e.g.:

enum { 1, 2}; /* woops -- maybe you mean enum { one = 1, two }; */

incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

library file names should have .lib extension: * (Libr)

Use the .lib extension when specifying a library filename.

line too long (Optimiser)

This line is too long. It will not fit into the compiler’s internal buffers. It would require a line over
1000 characters long to do this, so it would normally only occur as a result of macro expansion.

module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean
that part of the code was inadvertently removed or commented.

no addresses specified with -RES* option (Driver)

No address ranges were specified to either the -RESROM or -RESRAM option.

no addresses specified with -ROM option (Driver)

No addresses ranges were specified with the -ROM option.

403

Error and Warning Messages

no reserved * areas defined (Parser)

No address ranges were specified with the -RESRAM or -RESOM option.

no ROM banks defined (Driver)

The -ROM options was invoked but no valid bank address ranges were present.

no ROM range covering address 0 encountered (Driver)

None of the on-chip memory or memory specified with -ROM was found to include address 0. This
may have been deliberate.

psect limit redefined (Assembler)

The psect limit has already been defined using the psect limit flag elsewhere, e.g.:

psect text,class=CODE,limit=1ffh
move r0, r1

; elsewhere:
psect text,class=CODE,limit=2ffh
move r2, r4

RAM area * low bound greater than high bound (Driver)

An additional memory bank has been defined which has a lower address bound greater than the high
address bound.

replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when using the r key, e.g.:

libr r lcd.lib

This command needs the name of a module (.obj file) after the library name.

reserved * area and reserved ICD * range overlap in region * (Driver)

The -ICD option has been used which reserves memory locations for the debugger. Additional
memory areas have been reserved with the -RESROM or -RESRAM option and these address ranges
overlap those required by the ICD.

404

Error and Warning Messages

reserved * area * - * and * - * could be merged (Driver)

Two address ranges are contiguous. These could have been merged into one reserved range.

reserved * area * - * low bound greater than high bound (Driver)

This structure member is never used. Maybe it isn’t needed at all.

reserved * area * - * overlaps reserved * area * (Driver)

Two address ranges were specified with either then -RESROM or -RESRAM option that overlap.

ROM bank * low bound greater than high bound (Driver)

An additional memory bank has been defined which has a lower address bound greater than the high
address bound.

ROM bank * overlaps ROM bank * (Driver)

The -ROM options was invoked but no valid bank address ranges were present.

ROM banks * and * could be merged (Driver)

Two banks specified are contiguous. This may have been intentional to create a memory boundary,
otherwise these two banks could be merged into one larger bank.

too many object files (Driver)

A maximum of 128 object files may be passed to the linker. The driver exceeded this amount when
generating the command line for the linker.

zero size ROM bank * defined (Driver)

An additional memory bank has been defined which has a size of zero.

405

Error and Warning Messages

406

Appendix C

Chip Information

The following table lists all devices currently supported by HI-TECH PICC-18 STD.

Table C.1: Devices supported by HI-TECH PICC-18 STD

DEVICE ROMSIZE RAMSIZE EEPROMSIZE EXTMEM
18C242 4000 200
18C252 8000 600
18C442 4000 200
18C452 8000 600
18C601 40000 600 3FFFF
18C801 200000 600 1FFFFF
18C658 8000 600
18C858 8000 600
18F23K20 2000 200 100
18F2410 4000 300
18F242 4000 300 100
18F2420 4000 300 100
18F24K20 4000 300 100
18F2423 4000 300 100
18F248 4000 300 100
18F2480 4000 300 100
18F2510 8000 600
18F2515 C000 F80
18F252 8000 600 100
18F2520 8000 600 100
18F25K20 8000 600 100
18F2523 8000 600 100
18F258 8000 600 100
18F2580 8000 600 100
continued. . .

407

Chip Information

Table C.1: Devices supported by HI-TECH PICC-18 STD

DEVICE ROMSIZE RAMSIZE EEPROMSIZE EXTMEM
18F2610 10000 F80
18F24J10 3FF8 400
18LF24J10 3FF8 400
18F24J11 3FF8 E60
18LF24J11 3FF8 E60
18F24J50 3FF8 E60
18LF24J50 3FF8 E60
18F25J10 7FF8 400
18LF25J10 7FF8 400
18F25J11 7FF8 E60
18LF25J11 7FF8 E60
18LF25J50 7FF8 E60
18F25J50 7FF8 E60
18F26J11 FFF8 F80
18LF26J11 FFF8 F80
18F26J50 FFF8 E60
18LF26J50 FFF8 E60
18F44J10 3FF8 400
18LF44J10 3FF8 400
18F44J11 3FF8 E60
18LF44J11 3FF8 E60
18F44J50 3FF8 E60
18LF44J50 3FF8 E60
18F45J10 7FF8 400
18LF45J10 7FF8 400
18F45J11 7FF8 E60
18LF45J11 7FF8 E60
18F45J50 7FF8 E60
18LF45J50 7FF8 E60
18F46J11 FFF8 F80
18LF46J11 FFF8 F80
18F46J50 FFF8 E60
18LF46J50 FFF8 E60
18F26K20 10000 F60 400
18F43K20 2000 200 100
18F4410 4000 300
18F442 4000 300 100
18F4420 4000 300 100
18F44K20 4000 300 100
18F4423 4000 300 100
18F448 4000 300 100
18F4480 4000 300 100
18F4510 8000 600
18F4515 C000 F80
18F452 8000 600 100
continued. . .

408

Chip Information

Table C.1: Devices supported by HI-TECH PICC-18 STD

DEVICE ROMSIZE RAMSIZE EEPROMSIZE EXTMEM
18F4520 8000 600 100
18F45K20 8000 600 100
18F4523 8000 600 100
18F458 8000 600 100
18F4580 8000 600 100
18F4610 10000 F80
18F46K20 10000 F60 400
18F1220 1000 100 100
18F1230 1000 100 80
18F1320 2000 100 100
18F1330 2000 100 80
18F13K20 2000 300 100
18F13K22 2000 A0 100
18LF13K22 2000 A0 100
18F14K20 4000 300 100
18F14K22 4000 1A0 100
18LF14K22 4000 1A0 100
18F13K50 2000 200 100
18LF13K50 2000 200 100
18F14K50 4000 200 100
18LF14K50 4000 200 100
18F2220 1000 200 100
18F2221 1000 200 100
18F2320 2000 200 100
18F2321 2000 200 100
18F2331 2000 300 100
18F2431 4000 300 100
18F2439 3000 280 100
18F2450 4000 200
18F2455 6000 400 100
18F2458 6000 400 100
18F2525 C000 F80 400
18F2550 8000 400 100
18F2553 8000 400 100
18F2539 6000 580 100
18F2585 C000 D00 400
18F2620 10000 F80 400
18F2680 10000 D00 400
18F2682 14000 D00 400
18F2685 18000 D00 400
18F4220 1000 200 100
18F4221 1000 200 100
18F4320 2000 200 100
18F4321 2000 200 100
18F4331 2000 300 100
continued. . .

409

Chip Information

Table C.1: Devices supported by HI-TECH PICC-18 STD

DEVICE ROMSIZE RAMSIZE EEPROMSIZE EXTMEM
18F4431 4000 300 100
18F4439 3000 280 100
18F4455 6000 400 100
18F4458 6000 400 100
18F4525 C000 F80 400
18F4539 6000 580 100
18F4450 4000 200
18F4550 8000 400 100
18F4553 8000 400 100
18F4585 C000 D00 400
18F4620 10000 F80 400
18F4680 10000 D00 400
18F4682 14000 D00 400
18F4685 18000 D00 400
18F6310 2000 300
18F63J11 1FF8 400
18F6390 2000 300
18F63J90 1FF8 400
18F6393 2000 300
18F6410 4000 300
18F64J11 3FF8 400
18F6490 4000 300
18F64J90 3FF8 400
18F6493 4000 300
18F6520 8000 800 400
18F6525 C000 F00 400
18F6527 C000 F60 400
18F6585 C000 D00 400
18F65J10 7FF8 800
18F65J11 7FF8 800
18F65J15 BFF8 800
18F65J50 7FF8 F40
18F65J90 7FF8 800
18F66J11 FFF8 F40
18F66J16 17FF8 F40
18F6620 10000 F00 400
18F6621 10000 F00 400
18F6622 10000 F60 400
18F6627 18000 F60 400
18F6628 18000 F60 400
18F6680 10000 D00 400
18F66J10 FFF8 800
18F66J15 17FF8 F00
18F66J50 FFF8 F40
18F66J55 17FF8 F40
continued. . .

410

Chip Information

Table C.1: Devices supported by HI-TECH PICC-18 STD

DEVICE ROMSIZE RAMSIZE EEPROMSIZE EXTMEM
18F67J11 1FFF8 F40
18F6720 20000 F00 400
18F6722 20000 F60 400
18F6723 20000 F60 400
18F67J10 1FFF8 F00
18F67J50 1FFF8 F40
18F8310 2000 300 1FFFFF
18F83J11 1FF8 400
18F8390 2000 300
18F83J90 1FF8 400
18F8393 2000 300
18F8410 4000 300 1FFFFF
18F84J11 3FF8 400
18F8490 4000 300
18F84J90 3FF8 400
18F8493 4000 300
18F85J11 7FF8 800
18F8520 8000 800 400 1FFFFF
18F8525 C000 F00 400 1FFFFF
18F8527 C000 F60 400 1FFFFF
18F8585 C000 D00 400 1FFFFF
18F85J10 7FF8 800 1FFFFF
18F85J15 BFF8 800 1FFFFF
18F85J50 7FF8 F40
18F85J90 7FF8 800
18F86J11 FFF8 F40
18F86J16 17FF8 F40
18F8620 10000 F00 400 1FFFFF
18F8621 10000 F00 400 1FFFFF
18F8622 10000 F60 400 1FFFFF
18F8627 18000 F60 400 1FFFFF
18F8628 18000 F60 400 1FFFFF
18F8680 10000 D00 400 1FFFFF
18F86J10 FFF8 800 1FFFFF
18F86J15 17FF8 F00 1FFFFF
18F86J50 FFF8 F40
18F86J55 17FF8 F40
18F87J11 1FFF8 F40
18F8720 20000 F00 400 1FFFFF
18F8722 20000 F60 400 1FFFFF
18F8723 20000 F60 400 1FFFFF
18F87J10 1FFF8 F00 1FFFFF
18F66J60 FFF8 E80 1FFFFF
18F66J65 17FF8 E80 1FFFFF
18F67J60 1FFF8 E80 1FFFFF
continued. . .

411

Chip Information

Table C.1: Devices supported by HI-TECH PICC-18 STD

DEVICE ROMSIZE RAMSIZE EEPROMSIZE EXTMEM
18F86J60 FFF8 E80 1FFFFF
18F86J65 17FF8 E80 1FFFFF
18F66J90 FFF8 EF4
18F67J90 1FFF8 EF4
18F86J90 FFF8 EF4
18F87J90 1FFF8 EF4
18F66J93 FFF8 EF4
18F67J93 1FFF8 EF4
18F86J93 FFF8 EF4
18F87J93 1FFF8 EF4
18F87J50 1FFF8 F40
18F87J60 1FFF8 E80 1FFFFF
18F87K22 20000 EB6
18F87K90 20000 E94 400
18F96J60 FFF8 E80 1FFFFF
18F96J65 17FF8 E80 1FFFFF
18F97J60 1FFF8 E80 1FFFFF
18F23K22 2000 1A0 100 1FFFFF
18LF23K22 2000 1A0 100 1FFFFF
18F24K22 4000 2A0 100 1FFFFF
18LF24K22 4000 2A0 100 1FFFFF
18F25K22 8000 5A0 100 1FFFFF
18LF25K22 8000 5A0 100 1FFFFF
18F26K22 10000 9A0 400 1FFFFF
18LF26K22 10000 9A0 400 1FFFFF
18F43K22 2000 1A0 100 1FFFFF
18LF43K22 2000 1A0 100 1FFFFF
18F44K22 4000 2A0 100 1FFFFF
18LF44K22 4000 2A0 100 1FFFFF
18F45K22 8000 5A0 100 1FFFFF
18LF45K22 8000 5A0 100 1FFFFF
18F46K22 10000 9A0 400 1FFFFF
18LF46K22 10000 9A0 400 1FFFFF
18F25K80 8000 DE1 400 1FFFFF
18LF25K80 8000 DE1 400 1FFFFF
18F26K80 10000 DE1 400 1FFFFF
18LF26K80 10000 DE1 400 1FFFFF
18F45K80 8000 DE1 400 1FFFFF
18LF45K80 8000 DE1 400 1FFFFF
18F46K80 10000 DE1 400 1FFFFF
18LF46K80 10000 DE1 400 1FFFFF
18F65K80 8000 DE1 400 1FFFFF
18LF65K80 8000 DE1 400 1FFFFF
18F66K80 10000 DE1 400 1FFFFF
18LF66K80 10000 DE1 400 1FFFFF
continued. . .

412

Chip Information

Table C.1: Devices supported by HI-TECH PICC-18 STD

DEVICE ROMSIZE RAMSIZE EEPROMSIZE EXTMEM
18F86J72 FFF8 EF4 1FFFFF
18F87J72 1FFF8 EF4 1FFFFF
18F26J13 FFF8 E50 1FFFFF
18LF26J13 FFF8 E50 1FFFFF
18F27J13 1FFF8 E50 1FFFFF
18LF27J13 1FFF8 E50 1FFFFF
18F46J13 FFF8 E50 1FFFFF
18LF46J13 FFF8 E50 1FFFFF
18F47J13 1FFF8 E50 1FFFFF
18LF47J13 1FFF8 E50 1FFFFF
18F65K90 8000 7A0 400 1FFFFF
18F66K90 10000 E94 400 1FFFFF
18F67K90 20000 E94 400 1FFFFF
18F85K90 8000 7A0 400 1FFFFF
18F86K90 10000 E94 400 1FFFFF
18F26J53 FFF8 E50 1FFFFF
18LF26J53 FFF8 E50 1FFFFF
18F27J53 1FFF8 E50 1FFFFF
18LF27J53 1FFF8 E50 1FFFFF
18F46J53 FFF8 E50 1FFFFF
18LF46J53 FFF8 E50 1FFFFF
18F47J53 1FFF8 E50 1FFFFF
18LF47J53 1FFF8 E50 1FFFFF
18F65K22 8000 7A0 400 1FFFFF
18F66K22 10000 EB6 400 1FFFFF
18F67K22 20000 EB6 400 1FFFFF
18F85K22 8000 7A0 400 1FFFFF
18F86K22 10000 EB6 400 1FFFFF

413

Chip Information

414

Index

! macro quote character, 104
. psect address symbol, 119
... symbol, 57
.as files, 34
.c files, 34
.cmd files, 139
.crf files, 15, 87
.ini files, 30
.lib files, 34, 35, 137, 138
.lnk files, 122
.lst files, 13
.obj files, 34, 88, 118, 138
.opt files, 87
.pro files, 23
.sdb files, 34
.sym files, 34, 117, 120
/ psect address symbol, 119
;; comment suppression characters, 104
<> macro quote characters, 104
? character

in assembly labels, 91
??_xxxx type symbols, 123
??nnnn type symbols, 91, 105
?_xxxx type symbols, 123
?a_xxxx type symbols, 123
#asm directive, 72
#define, 8
#pragma directives, 76
#undef, 12
$ character

in assembly labels, 91
$ location counter symbol, 92
% macro argument prefix, 104
& assembly macro concatenation character, 104
_ character

in assembly labels, 91
_EEPROMSIZE, 75
_ERRATA_TYPES, 76
_FLASH_ERASE_SIZE, 76
_FLASH_WRITE_SIZE, 76
_HTC_VER_EDITION_, 75
_HTC_VER_MAJOR_, 75
_HTC_VER_MINOR_, 75
_HTC_VER_PATCH_, 75
_ICDROM_END, 76
_ICDROM_START, 76
MPC, 75
_PIC18, 75
_RAMSIZE, 75
_ROMSIZE, 75
__Bxxxx type symbols, 83
__CONFIG macro, 30, 161
__DATE__, 76
__EEPROM_DATA, 31
__EEPROM_DATA macro, 164
__FILE__, 76
__Hxxxx type symbols, 83
__IDLOC, 31
__IDLOC macro, 165
__LINE__, 76

415

INDEX INDEX

__Lxxxx type symbols, 83
__MPLAB_ICD2__, 76
__PICC18__, 75
__TIME__, 76
__checksum_failed, 160
__delay_400_cycles, 162
__delay_ms, 163
__ram_cell_test, 166
24-bit doubles, 15
32-bit doubles, 15

abs function, 167
abs PSECT flag, 97
absolute object files, 118
absolute psects, 97, 98
absolute varaiables, 59
absolute variables, 56, 78

bits, 44
access bank, 50, 51, 64
accessing SFRs, 72
acos function, 168
additional memory ranges, 24, 25
addresses

byte, 150
link, 113, 119
load, 113, 119
word, 150

addressing unit, 98
ALIGN directive, 105
alignment

within psects, 105
ANSI standard

conformance, 27
divergence from, 29
implementation-defined behaviour, 29

argument area, 57
argument passing, 57
ASCII characters, 45
asctime function, 169

asin function, 171
asm() C directive, 72
aspic18.h, 72
assembler, 85

accessing C objects, 71
controls, 107
directives, 95
generating from C, 12
in-line, 71
mixing with C, 69
options, 86
pseudo-ops, 95

assembler code
called by C, 69

assembler control
COND, 108
EXPAND, 108
INCLUDE, 108
LIST, 108
NOCOND, 109
NOEXPAND, 109
NOLIST, 109
NOXREF, 109
PAGE, 109
SPACE, 110
SUBTITLE, 110
TITLE, 110
XREF, 110

assembler directive
ALIGN, 105
DB, 100
DS, 100
DW, 100
ELSE, 103
ELSIF, 103
END, 97
ENDIF, 103
ENDM, 103
EQU, 89, 99

416

INDEX INDEX

GLOBAL, 93, 95
IF, 103
IRP, 106
IRPC, 106
LOCAL, 91, 105
MACRO, 89, 103
ORG, 99
PROCESSOR, 88, 107
PSECT, 93, 97
REPT, 105
SET, 89, 100
SIGNAT, 82, 107

assembler files
preprocessing, 23

assembler listings, 13
assembler optimizer

debug information and, 88
enabling, 88
viewing output of, 87

assembler option
-A, 87
-C, 87
-Cchipinfo, 87
-E, 87
-Flength, 87
-H, 87
-I, 87
-Llistfile, 88
-O, 88
-Ooutfile, 88
-Twidth, 88
-V, 88
-X, 88
-processor, 88

assembler-generated symbols, 91
assembly, 85

character constants, 91
character set, 89
comments, 89

conditional, 103
constants, 90
default radix, 90
delimiters, 89
expressions, 93
identifiers, 91

data typing, 91
include files, 108
initializing

bytes, 100
words, 100

labels, 89, 92
line numbers, 88
location counter, 92
multi-character constants, 91
operators, 93
radix specifiers, 90
relative jumps, 92
relocatable expression, 93
repeating macros, 105
reserving memory, 100
special characters, 89
special comment strings, 90
statement format, 89
strings, 91
volatile locations, 90

assembly labels, 89, 92
? character, 91
$ character, 91
_chacrter, 91
making globally accessable, 95
scope, 93, 95

assembly listings
blank lines, 110
disabling macro expansion, 109
enabling, 108
excluding conditional code, 109
expanding macros, 87, 108
generating, 88

417

INDEX INDEX

hexadecimal constants, 87
including conditional code, 108
new page, 109
page length, 87
page width, 88
radix specification, 87
subtitles, 110
titles, 110

assembly macros, 103
! character, 104
% character, 104
& symbol, 104
concatenation of arguments, 104
quoting characters, 104
suppressing comments, 104

assert function, 172
atan function, 173
atan2 function, 174
atof function, 175
atoi function, 176
atol function, 177
auto variable area, 57
auto variables, 55
auto-variable block, 55
Avocet symbol file, 121

banked access, 55
banks

chipinfo file, 59
RAM banks, 50, 51

bankx qualifier, 50, 54
base specifier, see radix specifier
bases

C source, 42
batch files, 19
bdata keyword, 51
biased exponent, 46
big endian format, 151
bigbss psect, 55, 64

bigdata psect, 64
bigxxx psect, 59
binary constants

assembly, 90
C, 42

bit PSECT flag, 97
bit types, 65

absolute, 44
in assembly, 97

bit-addressable Registers, 44
bit-fields, 47

initializing, 48
unamed, 47

blocks, see psects
bootloader, 25, 147, 154
bootloaders, 26, 152
bsearch function, 178
bss psect, 39, 55, 64, 112

clearing, 112
btemp symbol, 57
byte addresses, 150

call graph, 13, 127
critical path, 13, 130

ceil function, 180
cgets function, 181
char types, 13, 45
char variables, 13
character constants, 42

assembly, 91
checksum endianism, 151
checksum specifications, 26, 140
checksums, 13, 26, 147, 151

algorithms, 14, 151
endianism, 151
failure, 160
specifications, 14
verification, 14, 160

chipinfo files, 30, 87

418

INDEX INDEX

class PSECT flag, 98
classes, 116

address ranges, 115
boundary argument, 120
upper address limit, 120

clrtext psect, 64
CLRWDT macro, 183
COD file, 22
code protection fuses, 30
command line driver, 3
command lines

HLINK, long command lines, 122
long, 4, 139
verbose option, 12

compiled stack, 127
compiler

options, 5
compiler errors

format, 19
compiler generated psects, 63
compiling

to assembler file, 12
to object file, 7

COND assembler control, 108
conditional assembly, 103
config psect, 63
config_read() function, 184
config_write() function, 184
configuration

word, 63
configuration fuses, 30
console I/O functions, 83
const psect, 63
const qualifier, 49
constants

assembly, 90
C specifiers, 42
character, 42
string, see string literals

context retrieval, 67
context saving, 66

in-line assembly, 79
copyright notice, 12
cos function, 186
cosh function, 187
cputs function, 188
creating

libraries, 138
creating new, 62
CREF application, 87, 142
CREF option

-Fprefix, 142
-Hheading, 142
-Llen, 143
-Ooutfile, 143
-Pwidth, 143
-Sstoplist, 143
-Xprefix, 143

CREF options, 142
critical path, 130
cromwell application, 144
cromwell option

-B, 147
-C, 145
-D, 145
-E, 146
-F, 146
-Ikey, 146
-L, 146
-M, 147
-N, 145
-Okey, 146
-P, 144
-V, 147

cromwell options, 144
cross reference

disabling, 109
generating, 142

419

INDEX INDEX

list utility, 142
cross reference file, 87

generation, 87
cross reference listings, 15

excluding header symbols, 142
excluding symbols, 143
headers, 142
output name, 143
page length, 143
page width, 143

cross referencing
enabling, 110

ctime function, 189

data psect, 64, 112
copying, 113

data psects, 39
data types, 41

16-bit integer, 45
8-bit integer, 44
assembly, 91
bit, 65
char, 44
floating point, 46
int, 45
short, 45

DB directive, 100
debug information, 9, 34

assembler, 88
optimizers and, 88

debugger requirements, 15
debugger selection, 15
default libraries, 4
default psect, 95
default radix

assembly, 90
delay routine, 162, 163
delta PSECT flag, 98
delta psect flag, 116

dependencies, 25
device selection, 14
device_id_read() function, 190
DI macro, 192
directives

asm, C, 72
assembler, 95
EQU, 92

div function, 194
divide by zero

result of, 62
double type, 15
DS directive, 100
DW directive, 100

EEPROM Data, 31
EEPROM data, 63
eeprom memory

initializing, 31
reading, 31
writing, 31

eeprom qualifier, 31
eeprom variables, 31
eeprom_data psect, 63
EEPROM_READ, 31
eeprom_read function, 195
EEPROM_WRITE, 31
eeprom_write function, 195
EI macro, 192
ellipsis symbol, 57
ELSE directive, 103
ELSIF directive, 103
embedding serial numbers, 155
END directive, 97
end_init psect, 64
endasm directive, 72
ENDIF directive, 103
ENDM directive, 103
enhanced symbol files, 117

420

INDEX INDEX

environment variable
HTC_ERR_FORMAT, 19
HTC_MSG_FORMAT, 19
HTC_WARN_FORMAT, 19

EQU directive, 89, 92, 99
equating assembly symbols, 99
Errata workarounds, 16
error files

creating, 116
error messages, 8

formatting, 19
LIBR, 140

eval_poly function, 197
exceptions, 65
exp function, 198
EXPAND assembler control, 108
exponent, 46
expressions

assemby, 93
relocatable, 93

extern keyword, 69
External memory interface, 15, 16
external program space, 15, 51
external variables, 51

fabs function, 199
far keyword, 51, 52
far pointers, 52
far variables, 51
farbss, 64
farbss psect, 64
fardata, 64
fardata psect, 64
fast doubles, 15
fast floating point library, 47
fast interrupt save/restore, 66
fast interrupts, 66
file formats

assembler listing, 13

Avocet symbol, 121
command, 139
creating with cromwell, 144
cross reference, 87, 142
cross reference listings, 15
dependency, 25
DOS executable, 118
enhanced symbol, 117
library, 35, 137, 138
link, 122
object, 7, 118, 138
preprocessor, 23
prototype, 23
specifying, 22
symbol, 117
symbol files, 34
TOS executable, 118

files
source, 34

fill memory, 147
filling unused memory, 20, 151
fixup errors, 71
flash_erase function, 200
flash_read function, 200
flash_write function, 200
floating point data types, 46

biased exponent, 46
exponent, 46
format, 46
mantissa, 46

floating suffix, 42
floor function, 203
fmod function, 202
frexp function, 204
ftoa function, 205
function

return values, 58
16-bit, 58
32-bit, 58

421

INDEX INDEX

8-bit, 58
structures, 58

function parameters, 57
function pointers, 53
function prototypes, 82, 107

ellipsis, 57
function return values, 58
function signatures, 107
functions

argument area, 57
argument passing, 57
getch, 83
interrupt, 65
interrupt qualifier, 65
kbhit, 83
putch, 83
recursion, 29
return values, 58
returning from, 65
signatures, 82
written in assembler, 69

getch function, 83, 206
getchar function, 207
getche function, 206
gets function, 208
GLOBAL directive, 93, 95
global PSECT flag, 98
global symbols, 112
gmtime function, 209

hardware
initialization, 41

header files
htc.h, 44, 72
problems in, 27

HEX file format, 154
HEX file map, 155
hex files

address alignment, 26, 152
address map, 147
calculating check sums, 147
converting to other Intel formats, 147
data record, 26, 150
detecting instruction sequences, 147
embedding serial numbers, 148
extended address record, 154
filling unused memory, 20, 147
find and replacing instructions, 147
merging multiple, 147
multiple, 116
record length, 26, 147, 152, 154

hexadecimal constants
assembly, 90

hexmate application, 147
hexmate option

+prefix, 150
-CK, 151
-FILL, 151, 154
-FIND, 152
-FIND...,DELETE, 153
-FIND...,REPLACE, 153
-FORMAT, 154
-HELP, 155
-LOGFILE, 155
-O, 155
-SERIAL, 27, 155
-SIZE, 156
-STRING, 156
-STRPACK, 157
-addressing, 150
-break, 150
file specifications, 148

hexmate options, 148
HI-TIDE, 20
HI_TECH_C, 75
high priority interrupts, 65
htc.h, 44, 72

422

INDEX INDEX

HTC_ERR_FORMAT, 19
HTC_MSG_FORMAT, 19
HTC_WARN_FORMAT, 19

I/O
console I/O functions, 83
serial, 83
STDIO, 83

ibigdata psect, 63
ICD support, 66
ID locations, 31, 63
idata psect, 26, 63
identifier length, 11
identifiers

assembly, 91
IDLOC, 31
idloc psect, 63
idloc_read() function, 211
idloc_write() function, 211
IEEE floating point format, 46
IF directive, 103
ifardata psect, 63
Implementation-defined behaviour, 29

division and modulus, 62
shifts, 62

in-line assembly, 66, 71
INCLUDE assembler control, 108
include files

assembly, 108
INHX32, 147, 154
INHX8M, 147, 154
ini file, 59
init psect, 64
int data types, 45
intcode psect, 63
intcodelo psect, 63
integer suffix

long, 42
unsigned, 42

integral constants, 42
integral promotion, 60
interrupt functions, 65

calling from main line code, 67
calling functions from, 66
context retrieval, 67
context saving, 66, 79
returning from, 65

interrupt keyword, 65
interrupt level, 67
interrupt priority, 65
interrupt service routines, 65
interrupts

configuring priorities, 68
fast, 66
handling in C, 65
priority of, 65
use of shadow registers, 66

intsave psect, 65
irdata psect, 63
IRP directive, 106
IRPC directive, 106
isalnum function, 213
isalpha function, 213
isatty function, 215
isdigit function, 213
islower function, 213
itoa function, 216

Japanese character handling, 77
JIS character handling, 77
jis pragma directive, 77

kbhit function, 83
keyword

auto, 55
bankx, 50, 54
bdata, 51
extern, 71

423

INDEX INDEX

far, 51, 52
interrupt, 65
low_priority, 65
near, 49, 50, 52
persistent, 49, 50, 54

keywords
disabling non-ANSI, 27

label field, 89
labels

assembly, 89, 92
local, 105

labs function, 217
LARGE_DATA, 75
LARGE_MODEL, 75
ldexp function, 218
ldiv function, 219
LFSR instruction, 35, 71
LIBR, 137

command line arguments, 137
error messages, 140
listing format, 139
long command lines, 139
module order, 140

librarian, 137
command files, 139
command line arguments, 137, 139
error messages, 140
listing format, 139
long command lines, 139
module order, 140

Libraries, 40
libraries

adding files to, 138
creating, 138
default, 4
deleting files from, 138
excluding, 26
format of, 137

linking, 121
listing modules in, 138
module order, 140
naming convention, 35
peripheral, 36
printf, 36
program memory, 37
scanning additional, 10
standard, 35
used in executable, 118

library
difference between object file, 137
manager, 137

library function
__CONFIG, 161
__EEPROM_DATA, 164
__IDLOC, 165
__checksum_failed, 26, 160
__delay_400_cycles, 162
__delay_ms, 163
__ram_cell_test, 26, 166
abs, 167
acos, 168
asctime, 169
asin, 171
assert, 172
atan, 173
atan2, 174
atof, 175
atoi, 176
atol, 177
bsearch, 178
ceil, 180
cgets, 181
config_read(), 184
config_write(), 184
cos, 186
cosh, 187
cputs, 188

424

INDEX INDEX

ctime, 189
device_id_read(), 190
div, 194
eeprom_read, 195
eeprom_write, 195
eval_poly, 197
exp, 198
fabs, 199
flash_erase, 200
flash_read, 200
flash_write, 200
floor, 203
fmod, 202
frexp, 204
ftoa, 205
getch, 206
getchar, 207
getche, 206
gets, 208
gmtime, 209
idloc_read(), 211
idloc_write(), 211
isalnum, 213
isalpha, 213
isatty, 215
isdigit, 213
islower, 213
itoa, 216
labs, 217
ldexp, 218
ldiv, 219
localtime, 220
log, 222
log10, 222
longjmp, 223
ltoa, 225
memcmp, 226
memmove, 228
mktime, 229

modf, 230
os_tsleep, 232
persist_check, 233
persist_validate, 233
pow, 235
printf, 236, 239
putch, 242
putchar, 243
puts, 245
qsort, 246
ram_test_failed, 248
rand, 249
readtimerX, 251
round, 253
scanf, 254
setjmp, 256
sin, 258
sinh, 187
sqrt, 260
srand, 261
strcat, 262
strchr, 263
strcmp, 265
strcpy, 267
strcspn, 268
strichr, 263
stricmp, 265
stristr, 279
strlen, 269
strncat, 270
strncmp, 272
strncpy, 274
strnicmp, 272
strpbrk, 276
strrchr, 277
strrichr, 277
strspn, 278
strstr, 279
strtod, 280

425

INDEX INDEX

strtok, 284
strtol, 282
tan, 286
tanh, 187
time, 287
toascii, 289
tolower, 289
toupper, 289
trunc, 290
ungetc, 291
ungetch, 292
utoa, 293
va_arg, 294
va_end, 294
va_start, 294
vprintf, 239
vscanf, 254
writetimerX, 296
xtoi, 297

library macro
CLRWDT, 183
DI, 192
EI, 192
NOP, 231
RESET, 252
SLEEP, 259

limit PSECT flag, 98
limiting number of error messages, 19
link addresses, 113, 119
linker, 111

command files, 122
command line arguments, 113, 122
invoking, 122
long command lines, 122
options from PICC18, 11
passes, 137
symbols handled, 112

linker defined symbols, 83
linker errors

aborting, 117
undefined symbols, 118

linker option
-Aclass=low-high, 115, 120
-Cpsect=class, 116
-Dsymfile, 116
-Eerrfile, 116
-F, 116
-Gspec, 116
-H+symfile, 117
-Hsymfile, 117
-I, 118
-Jerrcount, 117
-K, 118
-L, 118
-LM, 118
-Mmapfile, 118
-N, 118
-Nc, 118
-Ns, 118
-Ooutfile, 118
-Pspec, 119
-Qprocessor, 120
-Sclass=limit[,bound], 120
-Usymbol, 121
-Vavmap, 121
-Wnum, 121
-X, 121
-Z, 121

linker options, 113
numbers in, 114

linking programs, 81
LIST assembler control, 108
list files

assembler, 13
little endian format, 41, 45, 151
load addresses, 113, 119
LOCAL directive, 91, 105
local PSECT flag, 98

426

INDEX INDEX

local psects, 112
local symbols, 13

suppressing, 88, 121
local variables, 54

auto, 55
static, 55

localtime function, 220
location counter, 92, 99
log function, 222
LOG10 function, 222
long data types, 45
long integer suffix, 42
longjmp function, 223
low priority interrupts, 65
ltoa function, 225

MACRO directive, 89, 103
macros

disabling in listing, 109
expanding in listings, 87, 108
nul operator, 104
predefined, 75
repeat with argument, 106
undefining, 12
unnamed, 105

mantissa, 46
map files, 118

call graph, 13, 127
generating, 11
processor selection, 120
segments, 125
symbol tables in, 118
width of, 121

Maximum number of errors, 19
memcmp function, 226
memmove function, 228
memory

external program space, 51
external RAM, 51

for auto variables, 55
peripheral, 24, 25, 32
reserving, 24, 25
specifying, 24, 25
specifying ranges, 115
unused, 20, 118

memory model
large, 59
small, 51, 59

Memory models, 7
memory pages, 98
memory summary, 27
merging hex files, 150
Microchip COF file, 22
mktime function, 229
modf function, 230
modules

in library, 137
list format, 139
order in library, 140
used in executable, 118

MOVFF instruction, 71
moving code, 14
MOVLB instruction, 55
MPLAB, 20

debugging information, 84
ICD support, 66

MPLAB ICD, 15
MPLAB_ICD, 76
multi-character constants

assembly, 91
multiple hex files, 116

near keyword, 49, 50, 52
NOCOND assembler control, 109
NOEXPAND assembler control, 109
nojis pragma directive, 77
NOLIST assembler control, 109
non-volatile memory, 50, 64

427

INDEX INDEX

non-volatile RAM, 49
NOP macro, 231
NOXREF assembler control, 109
numbers

C source, 42
in linker options, 114

nvbit psect, 50, 64
nvram, 49
nvram psect, 50, 64
nvrram psect, 50, 64

object code, version number, 118
object files, 7

absolute, 118
relocatable, 111
specifying name of, 88
suppressing local symbols, 88
symbol only, 116

OBJTOHEX, 140
command line arguments, 140

offsetting code, 14
operators

assembly, 93
Optimizations

assembler, 22
code generator, 22
debugging, 22
global, 22

optimizations
assembler, see assembler optimizer

optimizing assembly code, 87
options

assembler, 86
ORG directive, 99
os_tsleep function, 232
output

specifying type of, 11
output file, 11
Output file formats

American Automation HEX, 22
Binary, 22
Bytecraft COD, 22
COFF, 22
ELF, 22
Intel HEX, 22
library, 22
Microchip COFF, 22
Motorola S19 HEX, 22
Tektronic, 22
UBROF, 22

output file formats, 118
specifying, 22, 140

overlaid memory areas, 118
overlaid psects, 98
ovrld PSECT flag, 98

PAGE assembler control, 109
pages

chipinfo file, 59
parameter passing, 57, 69
peripheral libraries, 36
peripheral memory, 24, 25, 32
peripheral tags, 32
persist_check function, 233
persist_validate function, 233
persistent keyword, 49, 50, 54
persistent qualifier, 26, 50
persistent variables, 64
PIC18 assembler language

functions, 69
PIC18 MCU assembly language, 88
PICC18

command format, 3
file types, 3
long command lines, 4
options, 5
predefined macros, 75
supported data types, 41

428

INDEX INDEX

version number, 27
PICC18 options

–ASMLIST, 13
–CALLGRAPH, 13
–CHAR, 13
–CHECKSUM, 13, 26
–CHIP, 14
–CHIPINFO, 14
–CODEOFFSET, 14
–CP, 14
–CP=16, 52
–CP=24, 52
–CR, 15
–DEBUGGER, 15
–DOUBLE, 15
–EMI, 16
–ERRATA, 16
–ERRFORMAT=format, 18
–ERRORS, 19
–FILL, 14, 20
–GETOPTION, 20
–HELP, 20
–IDE, 20
–IDE=MPLAB, 84
–LANG, 21
–MEMMAP, 21
–MSGFORMAT, 21
–MSGFORMAT=format, 18
–NOEXEC, 21
–OPT, 22
–OUTPUT, 22
–PRE, 23
–PROTO, 23
–RAM, 24
–ROM, 25
–RUNTIME, 25
–SCANDEP, 25
–SERIAL, 27
–SETOPTION, 27

–STRICT, 27
–SUMMARY, 27
–SUMMARY=type, 81
–VER, 27
–WARN, 28
–WARNFORMAT, 28
–WARNFORMAT=format, 18
-B, 7
-C, 7, 81
-D, 8
-Efile, 8
-G, 9, 34
-L, 10, 11
-M, 11
-Nsize, 11
-O, 35
-Ofile, 11
-P, 12
-S, 12, 81
-U, 12
-V, 12
-X, 13
-q, 12

PICC18 output formats
American Automation Hex, 35
Binary, 35
Bytecraft, 35
Intel Hex, 35
Motorola Hex, 35
Tektronix Hex, 35
UBROF, 35

PICC18 options
–CHAR=type, 44
–RUNTIME=type, 38

pointer
qualifiers, 51, 53
sizes, 14, 52

pointers, 51
16 bit, 51

429

INDEX INDEX

24 bit, 51
combining with type modifiers, 53
far, 52
function, 53
to functions, 14, 51
to program space, 14, 52

pow function, 235
powerup, 38
powerup psect, 63
powerup routine, 4, 41
pragma directives, 76
predefined symbols

preprocessor, 75
preprocessing, 12

assembler files, 12
preprocessor

macros, 8
path, 10

preprocessor directives, 73
asm, 72
endasm, 72
in assembly files, 89

preprocessor symbols
predefined, 75

printf
format checking, 77

printf function, 236, 239
printf libraries, 36
printf_check pragma directive, 77
PROCESSOR directive, 88
processor ID data, 31
processor selection, 14, 107, 120
processor selections, 30
processors

adding new, 30
program memory libraries, 37
program sections, 93
psect

bigbss, 59, 64

bigdata, 64
bss, 39, 64, 112
clrtext, 64
config, 63
const, 63
data, 64, 112
eeprom_data, 63
end_init, 64
farbss, 64
fardata, 64
ibigdata, 63
idata, 26, 63
idloc, 63
ifardata, 63
init, 64
intcode, 63
intcodelo, 63
intsave, 65
irdata, 63
nvbit, 50, 64
nvram, 50, 64
nvrram, 50, 64
powerup, 63
ramdata, 39
rbit, 65
rbss, 26, 64
rdata, 64
romdata, 39
struct, 65
temp, 65
text, 63

psect bigdata, 59
PSECT directive, 93, 97
PSECT directive flag

limit, 121
PSECT directive flags, 97

abs, 97
bit, 97
class, 98

430

INDEX INDEX

delta, 98
global, 98
limit, 98
local, 98
ovrld, 98
pure, 98
reloc, 98
size, 98
space, 98
with, 98

psect pragma directive, 78
psects, 62, 93, 112

absolute, 97, 98
aligning within, 105
alignment of, 98
basic kinds, 112
class, 115, 116, 120
compiler generated, 63
default, 95
delta value of, 116
differentiating ROM and RAM, 98
linking, 111
listing, 27
local, 112
maximum size of, 98
page boundaries and, 98
renaming, 78
specifying address ranges, 120
specifying addresses, 115, 119
struct, 58
user defined, 78

pseudo-ops
assembler, 95

pure PSECT flag, 98
putch function, 83, 242
putchar function, 243
puts function, 245

qsort function, 246

qualifier
auto, 55
bankx, 50, 54
bdata, 51
const, 54
far, 51, 52
near, 49, 52
persistent, 26, 49, 50, 54
volatile, 54, 90

qualifiers, 49
and auto variables, 55
const, 49
pointer, 51
volatile, 49

quiet mode, 12

radix specifiers
assembly, 90
binary, 42
C source, 42
decimal, 42
hexadecimal, 42
octal, 42

RAM
dual-port, 32
USB, 32

RAM integrity test, 26, 166, 248
ram_test_failed function, 248
ramdata psect, 39
rand function, 249
rbit psect, 65
rbss psect, 26, 55, 64
rdata psect, 64
read-only variables, 49
READTIMERx function, 251
recursion, 29
redirecting errors, 8
reference, 114, 125
register

431

INDEX INDEX

TBLPTRU, 53
usage, 60

registers
shadow, 66
special function, see special function regis-

ters
regsused pragma directive, 79
relative jump, 92
RELOC, 116, 119
reloc PSECT flag, 98
relocatable

object files, 111
relocation, 111
relocation information

preserving, 118
renaming psects, 78
REPT directive, 105
reserving memory, 24, 25
reset, 41

code executed after, 41
RESET macro, 252
RETFIE instruction, 65, 67
RETLW instruction, 65
RETURN instruction, 65
return values, 58
romdata psect, 39
round function, 253
runtime environment, 25
runtime module, 4
RUNTIME option

checksum, 14, 26
clear, 26
clib, 26
download, 26
init, 26
keep, 26
ramtest, 26

runtime startup
variable initialization, 39

runtime startup code, 38
runtime startup module, 26

scale value, 97
scanf function, 254
search path

header files, 10
segment selector, 116
segments, see psects, 116, 125
serial I/O, 83
serial numbers, 27, 155
SET directive, 89, 100
setjmp function, 256
SFRs

multibyte, 33
shadow registers, 66
shift operations

result of, 62
shifting code, 14
sign extension when shifting, 62
SIGNAT directive, 107
signat directive, 82
signature checking, 82
signatures, 107
sin function, 258
sinh function, 187
size of doubles, 15
size PSECT flag, 98
SLEEP macro, 259
small memory model, 51
SMALL_DATA, 75
SMALL_MODEL, 75
source file

extensions, 34
source files, 34
SPACE assembler control, 110
space PSECT flag, 98
special characters in assembly, 89
special function registers, 72

432

INDEX INDEX

in assembly code, 92
multibyte, 33

special type qualifiers, 49
sports cars, 91
sqrt function, 260
srand function, 261
standard libraries, 35
standard type qualifiers, 49
startup module, 4, 26

clearing bss, 112
data copying, 113

startup.as, 38
static variables, 55
STDIO, 83
storage class, 54
strcat function, 262
strchr function, 263
strcmp function, 265
strcpy function, 267
strcspn function, 268
strichr function, 263
stricmp function, 265
string literals, 42, 156

concatenation, 43
String packing, 157
strings

assembly, 91
storage location, 43, 156
type of, 42

stristr function, 279
strlen function, 269
strncat function, 270
strncmp function, 272
strncpy function, 274
strnicmp function, 272
strpbrk function, 276
strrchr function, 277
strrichr function, 277
strspn function, 278

strstr function, 279
strtod function, 280
strtok function, 284
strtol function, 282
struct psect, 58, 65
structures

bit-fields, 47
qualifiers, 48

SUBTITLE assembler control, 110
SUMMARY option

file, 28
hex, 28
mem, 28
psect, 28

switch pragma directive, 80
switch type

auto, 80
direct table lookup, 80

symbol files, 9, 34
Avocet format, 121
enhanced, 117
generating, 117
local symbols in, 121
old style, 116
removing local symbols from, 13
removing symbols from, 120
source level, 9

symbol tables, 118, 121
sorting, 118

symbols
assembler-generated, 91
global, 112, 138
linker defined, 83
undefined, 121

table read instruction, 52, 56
table read/write instructions, 53
table write instruction, 52
tan function, 286

433

INDEX INDEX

tanh function, 187
temp psect, 65
text psect, 63
time function, 287
Timers, 251
timers function, 296
TITLE assembler control, 110
toascii function, 289
tolower function, 289
toupper function, 289
trunc function, 290
type modifiers

combining with pointers, 53
type qualifier, 49
type qualifiers, 49
typographic conventions, 1

unamed structure members, 47
ungetc function, 291
ungetch function, 292
unnamed psect, 95
unsigned integer suffix, 42
unused memory

filling, 147
USB dual-port RAM, 32
utilities, 111
utoa function, 293

va_arg function, 294
va_end function, 294
va_start function, 294
variable argument list, 57
variable initialization, 39
variables

absolute, 56
accessing from assembler, 71
auto, 55
char types, 44
floating point types, 46

in external memory, 51
int types, 45
local, 54
persistent, 64
static, 55
unique length of, 11

verbose, 12
version number, 27
volatile keyword, 54
volatile qualifier, 49, 90
vprintf function, 239
vscanf function, 254

W register, 60
warning level, 28

setting, 121
warning message format, 28
warnings

level displayed, 28
suppressing, 121

with PSECT flag, 98
word addresses, 150
word boundaries, 98
writetimerx function, 296

XREF assembler control, 110
xtoi function, 297

434

PICC18 Command-line Options
Option Meaning
-C Compile to object files only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-Ofile Output file name
-P Preprocess assembler files
-Q Specify quiet mode
-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
--ASMLIST Generate assembler .LST file for each compilation
--CALLGRAPH=type Control the level of information displayed in the call

graph
--CHAR=type Make the default char signed or unsigned
--CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
--CODEOFFSET=address Offset program code to address
--CP=size Set size of pointers to code space
--CR=file Generate cross-reference listing
--DEBUGGER=type Select the debugger that will be used
--DOUBLE=type Selects size/kind of double types
--EMI=type Select the type of external memory interface used
--ERRATA=type Add or remove specific software workarounds for sil-

icon errata issues.
--ERRFORMAT<=format> Format error message strings to the given style
--ERRORS=number Sets the maximun number of errors displayed
--FILL=opcode Specify a hexadecimal opcode to program in all un-

used program memory locations.
continued. . .

PICC18 Command-line Options
Option Meaning
--GETOPTION=app,file Get the command line options for the named applica-

tion
--HELP<=option> Display the compiler’s command line options
--IDE=ide Configure the compiler for use by the named IDE
--LANG=language Specify language for compiler messages
--MAPFILE<=file> Generates a map file
--MEMMAP=file Display memory summary information for the map

file
--MSGFORMAT<=format> Format general message strings to the given style
--NODEL Do not remove temporary files generated by the com-

piler
--NOEXEC Go through the motions of compiling without actually

compiling
--OPT<=type> Enable general compiler optimizations
--OUTDIR Specify output files directory
--OUTPUT=type Generate output file type
--PRE Produce preprocessed source files
--PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<,lo-hi,...> Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
--SCANDEP Generate file dependency “.DEP files”
--SERIAL=code@address Store this hexadecimal code at an address in program

memory
--SETOPTION=app,file Set the command line options for the named applica-

tion
--SETUP=argument Setup the product
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level
--WARNFORMAT=format Format warning message strings to given style

	Table of Contents
	List of Tables
	Introduction
	Typographic conventions

	PICC-18 Command-line Driver
	Long Command Lines
	Default Libraries
	Standard Runtime Code
	PICC18 Compiler Options
	-Bmodel: Select Memory Model
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate Source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ASMLIST: Generate Assembler .LST Files
	--CALLGRAPH=type: Control level of information displayed in call graph
	--CHAR=type: Make Char Type Signed or Unsigned
	--CHECKSUM=start-end@address<,specs>: Calculate, store and verify a checksum
	--CHIP=processor: Define Processor
	--CHIPINFO: Display List of Supported Processors
	--CODEOFFSET: Offset Program Code to Address
	--CP=size: Set the Size of Pointers to Code Space
	--CR=file: Generate Cross Reference Listing
	--DEBUGGER=type: Select Debugger Type
	--DOUBLE=type: Select kind of Double Types
	--EMI=type: Select operating mode of the external memory interface (EMI)
	--ERRATA=type: Specify to add or remove specific errata workarounds
	--ERRFORMAT=format: Define Format for Compiler Messages
	Using the Format Options
	Modifying the Standard Format

	--ERRORS=number: Maximum Number of Errors
	--FILL=opcode: Fill Unused Program Memory
	--GETOPTION=app,file: Get Command-line Options
	--HELP<=option>: Display Help
	--IDE=type: Specify the IDE being used
	--LANG=language: Specify the Language for Messages
	--MEMMAP=file: Display Memory Map
	--MSGFORMAT=format: Set Advisory Message Format
	--NOEXEC: Don't Execute Compiler
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTPUT=type: Specify Output File Type
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan for Dependencies
	--SERIAL=hexcode@address: Store a Value at this Program Memory Address
	--SETOPTION=app,file: Set The Command-line Options for Application
	--STRICT: Strict ANSI Conformance
	--SUMMARY=type: Select Memory Summary Output Type
	--VER: Display The Compiler's Version Information
	--WARN=level: Set Warning Level
	--WARNFORMAT=format: Set Warning Message Format

	C Language Features
	ANSI Standard Issues
	Divergence from the ANSI C Standard
	Implementation-defined behaviour

	Processor-related Features
	Processor Support
	Configuration Fuses
	ID Locations
	EEPROM and Flash Runtime Access
	EEPROM Access
	Flash Access

	Peripheral Memory Ranges
	Bit Instructions
	Multi-byte SFRs

	Files
	Source Files
	Symbol Files
	Output File Formats
	Library files
	Standard Libraries
	Printf Libraries
	Peripheral Libraries
	Program Memory Libraries

	Runtime startup Modules
	Initialization of Data psects
	Clearing the Bss Psects
	Linking in the C Libraries
	The powerup Routine

	Supported Data Types and Variables
	Radix Specifiers and Constants
	Bit Data Types and Variables
	Using Bit-Addressable Registers
	8-Bit Integer Data Types and Variables
	16-Bit Integer Data Types
	32-Bit Integer Data Types and Variables
	Floating Point Types and Variables
	Structures and Unions
	Bit-fields in Structures
	Structure and Union Qualifiers

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	Near Type Qualifier
	Far Type Qualifier

	Bdata Type Qualifier
	Pointer Types
	RAM Pointers
	Const and Far Pointers
	Function Pointers
	Combining Type Qualifiers and Pointers

	Storage Class and Object Placement
	Local Variables
	Auto Variables
	Static Variables

	Absolute Variables
	Objects in Program Space

	Functions
	Function Argument Passing
	Function Return Values
	8-Bit Return Values
	16-Bit and 32-bit Return Values
	Structure Return Values

	Memory Models and Usage

	Register Usage
	Operators
	Integral Promotion
	Shifts applied to integral types
	Division and modulus with integral types

	Psects
	Compiler-generated Psects

	Interrupt Handling in C
	Interrupt Functions
	Context Saving on Interrupts
	Context Retrieval
	Interrupt Levels
	Interrupt Registers

	Mixing C and Assembler Code
	External Assembly Language Functions
	Accessing C objects from within Assembly Code
	Accessing special function register names from assembler

	#asm, #endasm and asm()

	Preprocessing
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma jis and nojis Directives
	The #pragma printf_check Directive
	The #pragma psect Directive
	The #pragma regsused Directive
	The #pragma switch Directive

	Linking Programs
	Replacing Library Modules
	Signature Checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O
	Debugging Information
	MPLAB-specific information

	Macro Assembler
	Assembler Usage
	Assembler Options
	HI-TECH C Assembly Language
	Statement Formats
	Characters
	Delimiters
	Special Characters

	Comments
	Special Comment Strings

	Constants
	Numeric Constants
	Character Constants and Strings

	Identifiers
	Significance of Identifiers
	Assembler-Generated Identifiers
	Location Counter
	Register Symbols
	Symbolic Labels

	Expressions
	Program Sections
	Assembler Directives
	GLOBAL
	END
	PSECT
	ORG
	EQU
	SET
	DB
	DW
	DS
	FNADDR
	FNARG
	FNBREAK
	FNCALL
	FNCONF
	FNINDIR
	FNSIZE
	FNROOT
	IF, ELSIF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	ALIGN
	REPT
	IRP and IRPC
	PROCESSOR
	SIGNAT

	Assembler Controls
	COND
	EXPAND
	INCLUDE
	LIST
	NOCOND
	NOEXPAND
	NOLIST
	NOXREF
	PAGE
	SPACE
	SUBTITLE
	TITLE
	XREF

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Compiled Stack Operation
	Parameters involving Function Calls

	Map Files
	Generation
	Contents
	General Information
	Call Graph Information
	Psect Information listed by Module
	Psect Information listed by Class
	Segment Listing
	Unused Address Ranges
	Symbol Table

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname[,architecture]
	-N
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Hexmate
	Hexmate Command Line Options
	specifications,filename.hex
	+ Prefix
	-ADDRESSING
	-BREAK
	-CK
	-FILL
	-FIND
	-FIND...,DELETE
	-FIND...,REPLACE
	-FORMAT
	-HELP
	-LOGFILE
	-Ofile
	-SERIAL
	-SIZE
	-STRING
	-STRPACK

	Library Functions
	Error and Warning Messages
	Chip Information
	Index

