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Abstract

Measured boot is an important class of boot protocols that
ensure that each layer of firmware and software in a device’s
chain of trust is measured, and the measurements are reli-
ably recorded for subsequent verification. This paper presents
DICE*, a formal specification as well as a formally verified
implementation of DICE, an industry standard measured boot
protocol. DICE* is proved to be functionally correct, memory-
safe, and resistant to timing- and cache-based side-channels.
A key component of DICE* is a verified certificate creation
library for a fragment of X.509. We have integrated DICE*
into the boot firmware of an STM32H753ZI micro-controller.
Our evaluation shows that using a fully verified implementa-
tion has minimal to no effect on the code size and boot time
when compared to an existing unverified implementation.

1 Introduction

Security attacks during boot are arguably the most difficult
to defend against because at this stage in a device’s lifecycle,
traditional defences such as firewalls and anti-viruses are not
in place, and attacks are hard to detect. It is, therefore, not
surprising that securing devices during boot continues to be
an active area of investigation [23,27,44,50,64].

A common defence against boot attacks is authenticated
or secure boot [13]. In this form of boot, the device ROM is
provisioned with a public key, which is used to authenticate
the next layer of firmware. This ensures that the device can
only boot with firmware signed by an authorized entity (e.g.
the device manufacturer).

While authenticated boot forms the first line of defence in
many systems, it remains susceptible to many attacks [33,41].
For example, authenticated boot does not prevent an attacker
from booting the device with an older version of firmware
with known vulnerabilities. To prevent such attacks, many
systems deploy a stronger, more secure boot protocol known
as measured boot [41,61]. Measured boot ensures that ev-
ery layer of firmware/software is measured before booting,
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Figure 1: DICE Architecture

and that the measurements are reliably recorded for future
verification. For example, the measurements can be used to
attest the device to a remote party (e.g. an attestation service),
which can inspect the measurements and decide if the device
is running an expected version of firmware before establish-
ing trust in the device and provisioning secrets such as keys
or certificates.

In many systems, measured boot is supported using a
Trusted Platform Module (TPM) [28], a dedicated hardware
chip attached to the host CPU. In a system with a TPM, each
layer of firmware is configured to measure and record the hash
of the next layer of firmware in the TPM. After boot, the TPM
can generate a signed log of the firmware measurements using
a unique signing key provisioned by the TPM manufacturer.
This log can be verified externally to ascertain whether the
device booted with expected firmware.

While suitable for some systems, there are many devices
(e.g. low-cost 10T devices) where a dedicated TPM is too
expensive in terms of cost, power, or real estate. To address
the need for stronger security in such scenarios, researchers
have recently proposed a new, measured boot architecture
known as Device Identifier Composition Engine (DICE) [38],
which is integrated on chip and requires significantly less
hardware support.

In the DICE architecture (Figure 1), trust is anchored in a
hardware component known as the DICE engine. Typically



implemented in the ROM firmware, DICE engine is the first
component to receive control when the device is powered-on.
It has access to a Unique Device Secret (UDS) provisioned
to each device during manufacturing. The engine transfers
control to one or more layers of firmware/software, with the
first layer known as L0. Before transferring control, it com-
putes a Compound Device Identifier (CDI ) by measuring
LO and combining the measurement with the UDS using a
One-Way hash Function (OWF). Every subsequent layer of
the firmware measures its next layer and performs an anal-
ogous computation to obtain its CDI. Firmware layers may
also derive additional secrets from their CDI. For example, LO
typically derives an asymmetric public/private key pair called
the DevicelD from CDIy g. A manufacturer-issued certificate
for DevicelD can serve as the device’s long term identity and
can be used to validate the attestations originating from the
device after deployment.

By incorporating the measurement of the next layers of
firmware into CDI, DICE architecture ensures that the full
Trusted Computing Base (TCB) of the device is implicitly
captured in the secrets/keys derived during boot. An impor-
tant consequence is that a change in the TCB (e.g. due to a
firmware upgrade) automatically changes the keys derived
during boot. Therefore, devices running with stale or compro-
mised firmware cannot impersonate known good firmware.

Due to these security properties, minimal hardware require-
ments, simplicity, and low cost, DICE-based measured boot
is being incorporated into an increasingly larger number of
devices [8—11], and is being developed into a standard by
Trusted Computing Group (TCG) [55, 56]. However, along
side a standard, it is critical to develop a methodology that
allows chip manufacturers to build and analyze robust, bug-
free implementations of the standard because defects in these
implementations can have serious implications, including at-
tackers taking control of these devices. What is worse, fixing a
defect in DICE engine or LO layers is either impossible (if the
layer is implemented in boot ROM), or extremely expensive
because an update changes the device identity and invalidates
the manufacturer issued certificates. Issuing new certificates
for devices already deployed in the field may require decom-
missioning or recalling the affected devices, both of which
can be expensive and/or laborious.

Building robust implementations of DICE is a challeng-
ing task for several reasons. Firstly, even though the DICE
architecture is simple, its implementation contains complex
cryptographic primitives such as public key derivation, signa-
tures, and hashes, and generation of X.509 Certificate Sign-
ing Requests (CSR) and certificates in multiple layers of the
firmware stack. Cryptographic and X.509 libraries are of-
ten written in a low-level unsafe language like C and are
well-known for their security vulnerabilities and functional
correctness bugs [1-6,20]. Secondly, if the implementations
are not careful operating on the secrets, the attackers may be
able to infer them using side-channel leaks, e.g. timing, as

in the TPM-Fail attack [42]. Finally, DICE implementations
rely on hardware-specific security features to protect secrets
and prevent tampering of code. These must be individually
certified as part of any security analysis.

1.1 Our Contributions

In this paper, we present DICE*, the first formally-verified
implementation of the standardized DICE engine layer [57]
and LO [58]. DICE* is proven to be memory-safe, functionally
correct, secure, and resistant to the timing- and cache-based
side-channel attacks. We implement DICE* in Low* [48],
a shallow-embedding of a well-behaved subset of C inside
the F* programming language and proof assistant [54]. Low*
programs enjoy the full higher-order expressiveness of F* for
specifications and proofs, while their first-order computational
fragment can be extracted to efficient, readable, and portable
C code using the KreMLin tool. For cryptographic primitives,
DICE* uses HACL* [65], a formally verified cryptographic
library written in Low*. For X.509 certificates, we extend the
LowParse framework [49] and build a custom, verified X.509
certificate creation library for DICE. Concretely, we make the
following contributions.

We show how DICE implementations can be refactored
into platform-agnostic and platform-specific components that
interact through a well-defined interface. This refactoring
enables reuse of the platform-agnostic components across de-
vices, thereby simplifying the security analysis (Section 4.1).

We formalize the DICE engine and LO standards [57,58]
by designing their top-level (platform-agnostic) APIs with
formal specifications (dice_main in Section 4.2 and 10_core in
Section 5.3 resp.).

We provide a formally verified implementation of the
platform-agnostic components in the DICE engine (Sec-
tion 4.2) and LO (Section 5.3) that is memory-safe, function-
ally correct, secure, and side-channel resistant. This verified
implementation is applicable to all DICE devices, leaving the
device manufacturers with a simpler task of analyzing just the
platform-specific components.

We precisely specify (and verify) the outputs from each
layer (CDI, keys, CSRs, and certificates), guaranteeing that
there are no direct flows of secrets (e.g. UDS) to the outputs.
Further, using the model of secrets as abstract types from
Low*, DICE* also ensures that there are no secret-dependent
branches or memory accesses, providing a constant-time im-
plementation [17] that is resistant to the timing- and cache-
based side channel attacks.

A key component of DICE* is a custom, verified X.509 cer-
tificate creation library (Section 5.2), implemented using the
LowParse framework [49]. We extend LowParse with back-
ward serializer support for serializing variable-length data.
This extension is general and can be applied to any system
that uses variable-length messages. The verified library that
we have developed for (a subset of) ASN.1 and X.509 can be



extended and applied to other applications, e.g. Public Key In-
frastructure (PKI). We have laid the necessary groundwork by
providing parser and serializer specifications, and low-level
serializers for many of the basic types.

We evaluate DICE* by integrating it into the boot firmware
of an STM32H753ZI micro-controller [11] and measuring
the impact of the verified code on the firmware binary size
(a critical metric for applicability to the low-cost devices)
and boot time (Section 7). Our evaluation shows that using a
fully verified implementation has minimal to no impact when
compared to an unverified hand-written C implementation.

DICE” is publicly available at https://github.com/
verified-HRoT/dice-star. DICE is a security-critical
infrastructure component. By formally verifying it and pro-
ducing a deployment-ready artifact, we hope that DICE* will
serve as a robust baseline for the next generation of DICE
implementations, thereby avoiding the expensive bug-finding
and fixing cycles in the future.

The rest of this paper is structured as follows. Section 2
provides a background on DICE. Section 3 provides a high-
level overview of our verification toolchain. Sections 4 and
5 focuses on the verification of DICE engine and LO layers,
respectively. Section 6 provides details of the DICE* imple-
mentation. Section 7 describes a DICE*-based implementa-
tion for the STM32H753ZI micro-controller, and compares
this implementation with an unverified implementation. We
review related work in Section 8 and conclude in Section 9.

2 Overview of DICE

This section describes the DICE architecture in more detail,
discusses our threat model, verification goals, and TCB.

2.1 DICE Architecture

The DICE architecture is motivated by the need for a low cost
measured boot protocol that can generate verifiable attesta-
tions capturing the entire hardware and software TCB of each
device, and can be deployed on a large class of devices.
Figure 2 shows the dataflow in the simplest instance of
the DICE architecture with three layers. The first layer is a
hardware layer called the DICE engine [57], which receives
control after device reset. This layer has access to the unique
device secret (UDS) provisioned to the device during manu-
facturing. The DICE specification requires UDS to provide at
least 256-bit cryptographic strength. The UDS must also be
stored in read-only and latchable memory so that access to the
UDS can be disabled and is restored only by a hardware reset.
DICE engine performs the following sequence of operations:

1. Authenticate L0 firmware. First, the DICE engine
loads the LO firmware image into the RAM and authen-
ticates it. One way of authenticating the image is to
append the hash of the firmware image and a signature
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Figure 2: DICE architecture with three layers of firmware.

over this hash using a firmware signing key to the image,
and provision the public firmware signing key to the
device during manufacturing e.g. in e-fuses. The DICE
engine can use this key to verify the signature, and check
that the hash matches the hash of the image.

2. Derive CDI. The DICE engine then derives a compound
device identifier (CDI) from the UDS and the hash digest
of the firmware image:

CDI; o = HMAC(UDS, Hash(L0)) (1)

The DICE specification prescribes the use of the UDS
as the HMAC key for the HMAC function, instead of
a hash combining the UDS with the hash of L0. This
derivation ensures that the derived CDI value has the
same cryptographic strength as UDS (see NIST SP800-
57, Part 1 [16]).

3. Latch UDS. The DICE engine disables access to the
UDS using a hardware-specific latch mechanism, which
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remains in place until the next reset. DICE engine also
erases any copies of the UDS on the stack or in memory.

4. Transfer to L0. Finally, DICE engine passes the CDI
value and control to the LO firmware. To prevent Time-
Of-Check-To-Time-Of-Use (TOCTTOU) attacks, it is
crucial that the DICE engine jumps to the LO firmware
copy in the RAM from Step 1.

Together, these steps limit exposure of the UDS: access to
the raw UDS value is restricted to only the DICE engine, and
other firmware layers get access to the CDI derived from the
UDS using a cryptographically secure one-way hash function.

2.2 Layer 0

Layer 0 (LO) is the layer of firmware that receives control from
the DICE engine. Its main purpose is to derive an asymmetric
device identity key (also known as DevicelD) from CDI using
a cryptographically secure key derivation function (KDF):

DevicelD ,,, DevicelD,,;,, = KDF(CDI) 2)

If the KDF is cryptographically secure, i.e. injective and one-
way, the derivation ensures that DevicelD uniquely identifies
each device and the LO firmware that the device is running.
Furthermore, the public key DevicelD,,,;, does not reveal any
information about CDI.

In most deployments, the LO firmware (and consequently
the device identity) is intended to remain unchanged through-
out the lifetime of the device, unless there is a firmware cor-
ruption or an attempt to tamper. Therefore, the CDI value and
DevicelD keys remain stable throughout the device lifetime.

The LO layer is also responsible for generating X.509
Certificate Signing Requests (CSR) for DevicelD,,;,. These
CSRs are typically harvested in a trusted environment (e.g.
during manufacturing), and processed by the manufacturer’s
PKI for DevicelD certificate issuance.

In addition to DevicelD, the LO firmware generates an ad-
ditional asymmetric key pair, known as the Alias Key, from
CDI and the measurement of L1 (referred as FWID):

AliasKey ,,;,, AliasKey ,;, = KDF(CDL,FWID)  (3)

This key pair is unique for each combination of UDS, LO
firmware, and L1 firmware. It can be used by L1 for attes-
tation and secure key exchange. LO also issues an X.509
certificate for the alias key signed by DevicelD,;,. Therefore,
any relying party can verify that the alias key was issued by a
genuine device as long as they have access to a manufacturer
issued DevicelD certificate for the device.

2.3 Threat Model

We focus on an adversary that has both remote and physical
access to the device. Remotely, the attacker may try and ex-
ploit any vulnerability in the device firmware, and thereby

obtain full control over execution including the ability to run
arbitrary code. Physically, the adversary can observe or tam-
per with any of the device’s I/O interfaces such as SPI, 12C,
wi-fi, and any additional pins such as RESET and interrupts, as
well as any persistent storage on the device e.g. flash memory.
Finally, similar to HACL* [65], we assume that the adversary
can observe the low-level runtime behavior such as branching
and memory-access patterns.

Possible attacks. An attacker with these capabilities may
exploit a buggy DICE implementation in several ways. A low-
level memory error (such as a buffer overflow) or a simple
bug in the implementation may leak secrets such as the UDS
or the device private key into one of the outputs. Using a
functional correctness bug in the X.509 certificate generation
code, an attacker may load stale or malicious firmware on the
device, while exploiting the bug to generate the certificate cor-
responding to a good firmware. Finally, if the implementation
is not careful with the secrets, an attacker may be able to infer
them by observing the branching behavior or memory-access
patterns at runtime.

More sophisticated attacks such as exploiting speculative
execution, fault injection, cold boot attacks, and use of elec-
tron microscopes to exfiltrate secrets are out of scope of this
paper. In many simpler devices such as [oT devices, attacks
based on speculative execution are not applicable because the
CPUs do not use speculation. Attacks during manufacturing
and in the supply chain such as leakage of secrets, device
counterfeiting etc. are also out-of-scope.

2.4 Verification Goals

Our objective is to develop DICE implementations that guar-
antee that each device has a unique long-term identity and is
capable of generating reliable assertions about its firmware
even in the presence of an attacker with the capabilities de-
scribed above. The verified implementation should satisfy the
following properties:

Confidentiality. The DICE implementation should not leak
any secrets or values derived from the secrets to the adversary.
For instance, the UDS should only be accessible to the DICE
engine, and the private DevicelD key should only be known
to the LO firmware.

Functional correctness. The DICE implementation should
meet all functional requirements laid out in the DICE specifi-
cation, including key derivation and certificate generation.

Memory safety. The DICE implementation should be free
from low-level memory errors such as memory leaks, buffer
overflows, null dereferences, and dangling pointers.

Side-channel resistance. At runtime, the sequence of in-
structions executed and memory access patterns should be
independent of the secrets. Therefore, even an attacker who
has access to the low-level branching and addresses of all
memory accesses should not be able to distinguish between



two runs that use two different values for secrets. In other
words, the implementation should be resistant to timing- and
cache-based side-channel attacks.

2.5 Trusted Computing Base

Our TCB includes the Low* toolchain, including the F* type-
checker, Z3 SMT solver, and the KreMLin compiler. Low*
verification guarantees, including side-channel resistance, ex-
tend only until the compiled C code. Beyond that, one may
use a certified C compiler like CompCert [18] that preserves
both the semantics and the constant-time property of the input
C code, or use a more general compiler like gcc at the cost of
adding it to the TCB. We trust the native, platform-specific
implementation of the hardware functions that our DICE en-
gine implementation relies on (Section 4.1), the bootloader,
I/O and peripheral drivers (Section 7.1), as well as the native
(one-line) implementation of declassification routine used
to declassify public keys (Section 5.3). Finally, we assume
that the manufacturer deploys a secure PKI infrastructure that
issues certificates only to genuine devices.

3 Overview of the Toolchain

We use the Low™ toolchain to develop DICE*. Low* has been
used to verify, generate, and deploy low-level code such as
cryptographic algorithms [47, 65] and parsers and serializ-
ers [49]. By developing DICE* also in Low*, we are able to
integrate with these libraries at the specification level, thereby
providing strong end-to-end guarantees. In this section, we
provide a background of the toolchain.

31 F*

F* [54] is a dependently-typed functional programming lan-
guage that allows programmers to do proofs about their
programs—programmers write specifications as part of the
types, and with the help of SMT-based automation provided
by F*, prove that their program meet those specifications. As
an example, the factorial function in F* can be given the type
int —int, as in other languages like OCaml, but it can also be
given a more precise type x:int{x > 0} —y:int{y > x}. The type
states that the function must be called with non-negative int
arguments, and it returns int-typed results that are at least as
large as their arguments (the type x:int{x > 0} is called a re-
finement type). F* type system is also effectful—the function
types in F* capture the effects of the function body. x:t; —t;
is a shorthand for x:t; — Tot t, where Tot is the effect of pure,
terminating computations. Note that we write the argument
type as x:t; to emphasize that x may appear free in t,. Compu-
tations that work with mutable state have ST effect, with types
of the form x:t; — ST t, req ens. When F* verifies a function
to have this type, the metatheory of F* guarantees that if the
function is called with an argument of type t; and in a state

that satisfies the precondition req, then the function either di-
verges, or returns a value of type t, and the final state satisfies
the postcondition ens.

F* programs can be extracted to OCaml (or C if they are
written in the Low™ fragment (Section 3.2)); the extraction
only outputs computationally relevant code, erasing all the
proofs and specifications.

Erased types F* standard library provides a mechanism to
define values and computations that can only be used in the
specifications and do not have any computational relevance.
In particular, the ghost version erased t of any type t is non-
informative and extracted as unit. To use an erased value,
one must use the reveal function reveal: erased t — Ghost t, that
incurs the Ghost effect. Again, terms with Ghost effect are
computationally irrelevant, and are erased during extraction.

3.2 Low*

Low* [48] is a restricted, first-order subset of F* that can be
used to program and verify low-level applications. Low™ ex-
poses shallow-embedding of a well-behaved subset of C in F*
in the form of a C-like memory model with stack and heap,
and libraries for machine integers and mutable arrays. While
the Low™ computational code is restricted to be first-order,
proofs and specifications are free to use the full expressive-
ness of F*. Verified Low™ programs can be extracted to read-
able and idiomatic C code that is free of low-level memory
errors (such as buffer overflows, use-after-free, null pointer
dereferences) and enjoys the specifications proven in Low*.

3.3 HACL~*

HACL* [65] is a cryptographic library written and verified
in Low*. In addition to being free of low-level memory er-
rors, HACL* algorithms are also proven functionally correct
and side-channel resistant (in the program-counter security
model [43]). Because our DICE engine and LO specifications
are written using the specifications exported by HACL* prim-
itives, we explain them in more detail.

Functional correctness of HACL* primitives. To prove the
functional correctness of a cryptographic algorithm, say the
SHAZ256 hash algorithm, HACL* defines a formal specifica-
tion written in the pure fragment of F* that has no side-effects
and is guaranteed to terminate. The specification is written
using functional sequences (instead of mutable C arrays), and
is free to use mathematical integers and natural numbers, or
any other high-level constructs that may not have a low-level
C counterpart:
type sbyte = ug ( the type for secret bytes *)
let sha256_spec (inp:seq sbyte{length inp < 26! — 1})

:Iseq sbyte 32 = ...

In this code snippet, the spec function for SHA256 takes as
argument a sequence of bytes with the refinement capturing



the allowed maximum length of the input, and returns a se-
quence of bytes whose length is 32. Its body implements the
SHA256 algorithm. This specification is extracted to OCaml
and tested on standard test vectors, but is otherwise trusted.

HACL* then defines the low-level implementation of the
primitive in Low*, using mutable arrays and bounded inte-
gers libraries, and relates it to the pure specification in the
postcondition; e.g.,

let sha256_impl (len:size_t) (inp:array sbyte len) (dst:array sbyte 32)
: Stack unit
(requires Ah —
len < 261 — 1 Alive m inp A live m dst A disjoint [inp; dst])
(ensures Ahg () h; — modifies dst hg h; A
as_seq hy dst == sha256_spec (as_seq hg inp))

The Low* array type array t len represents C-arrays with
element type t and length len. Effect label Stack is a refine-
ment of ST that additionally ensures that sha256_impl does not
perform any heap allocations. The precondition, a predicate
on the input memory h, requires that the input arrays are live
(temporal memory safety), and constrains their lengths as re-
quired by the SHA-256 algorithm (spatial memory safety). It
also requires that inp and dst arrays are disjoint. The postcon-
dition is a predicate on the input memory hg, the return value
(unit value () in this case), and output memory h;. It states
that the function only modifies dst, thus leaving inp (or any
other array that is disjoint from dst) unchanged, and that the
contents of dst in h; match the specification function applied
to the contents of inp. Thus, no matter what algorithmic or
low-level optimizations sha256_impl implements, once F* ver-
ifies it with the above signature, its output is guaranteed to
be consistent with the specification (as_seq is a Low* library
function that returns the contents of an array in a memory as
a functional sequence).

Side-channel resistance. Following the methodology pre-
scribed in Low* [48], HACL* algorithms are implemented
with secrets modeled as abstract, constant-time integers. In-
deed the type ug in the code listing for SHA256 spec above
is the secret byte type. Thus, if the program type checks, it is
guaranteed that the algorithm implementations cannot branch
on secrets or use them as array indices, thus preventing the
timing and memory access based side-channel leaks. In the
ghost code (specification and proofs), the contents of the se-
cret bytes may be inspected via coercions. We refer the reader
to [65] for more HACL* details.

4 DICE* Engine

In this section, we present the DICE engine implementation
in DICE*.

Verified properties. We prove that the CDI computation is
functionally correct (as per Eq. 1). We also prove that the
implementation does not leak secrets through heap by proving
that: (a) it is memory-safe, (b) it does not allocate any memory

val t : Type
val t_rel : Preorder.preorder (seq (erased t))
type state = {
ghost_state : pointer (erased t) t_rel;
cdi : array sbyte 32ul;
10_binary_size : u3p;
10_binary : b:array sbyte 10_binary_size{
eternal ghost_state A eternal cdi A eternal b A
disjoint [ghost_state; cdi; 10_binary]
1}
val get_st () : state
val uds_len :i: usp {Oul <i A hashable i}
val uds_bytes : erased (Iseq sbyte uds_len)
val uds_enabled (h:mem) : prop
val stack_cleared (h:mem) : prop
val read_uds (out:array sbyte uds_len) : Stack unit
(requires Ah — uds_enabled h A live h out A stack_array out)
(ensures Ahg _h; —
modifies out hg hy A as_seq h; out == uds_bytes)
val disable_uds () : Stack unit
(requires Ah — uds_enabled h)
(ensures Ahg _h; —
(— uds_enabled h1) A modifies (get_st ()).ghost_state hg hy)
val clear_stack () : Stack unit
(requires Ah — —uds_enabled h)
(ensures Ahy _hy —
(— uds_enabled hy) A stack _cleared h; A
heap_arrays_except_ghost_state_are_preserved hy hy)

Figure 3: Platform-agnostic interface used by DICE engine

on the heap, and (c) it only modifies CDI. Disallowing heap
allocations guarantees that there are no memory leaks and
secret leakage through dynamically-allocated memory.

Since Low™ only models a well-behaved subset of C, it
does not allow us to reason about the (absence of) secret
leaks via deallocated stack frames. Instead, we model an ab-
stract clear_stack function, which is implemented natively in a
platform-specific manner, and call this function to clear the
stack memory just before transferring control to LO. Since
it is not connected to the Low™ memory-model, it has to be
manually audited to ensure that it is the last call in the DICE
engine implementation. Finally, we also prove that the imple-
mentation is side-channel resistant.

Some aspects of the DICE engine are platform specific; for
example, accessing and disabling UDS, primitives for erasing
memory, and even the location of the CDI in the memory. To
make the DICE engine implementation general and portable,
we design a platform-agnostic interface (Section 4.1) against
which we implement the core DICE engine (Section 4.2).
While we provide a model F* implementation of the interface,
the extracted DICE engine C code is linked with a native,
platform-specific implementation of it. This native implemen-
tation is part of our TCB.



4.1 Platform-Agnostic Interface

Figure 3 shows the platform-agnostic interface used by the
DICE engine. The interface defines a state record type that
exports the CDI array (a secret bytes array of length 32) and
the LO binary to the DICE engine. For driving the specifica-
tions about disabling UDS and clearing the stack, the state
type also contains a pointer (i.e. an array of length 1) to an
erased t, where t is an abstract type in the interface; the erased
type constructor ensures that the type is safely erased during
extraction. The interface associates a preorder t_rel with the
ghost state pointer; F*’s theory of monotonicity [12] enforces
that the contents of the pointer evolve as per t_rel. The refine-
ment formula on the 10_binary field captures the invariant that
all arrays in state are (a) pairwise disjoint, and (b) efernal, i.e.
they are allocated on the heap and are never freed. The get_st
API provides a way to get the state.

The interface exports the abstract uds_enabled and
stack_cleared predicates—as we will see later, the DICE en-
gine specification includes both of these in its postcondition.
As we remarked earlier, the stack_cleared predicate is not con-
nected to the memory model. The interface provides three
main functions:

* read_uds provides access to the UDS; it copies the UDS
into the argument array out. Its precondition requires
the callers to prove that (i) access to UDS is enabled
and (ii) out is a stack-allocated array that is live in the
input memory. The postcondition of read_uds ensures
that (a) it does no heap allocations (the Stack effect),
(b) it only modifies out, and (c) the contents of out in the
final memory are same as the (ghost) UDS bytes.

* disable_uds disables access to the UDS. Its postcondition
ensures that it only modifies the ghost state, preserving
contents of all other arrays.

* clear_stack clears the stack memory region in a platform-
specific way. Its precondition requires that the UDS
access is disabled. Its postcondition ensures that the
stack_cleared predicate holds, and all the heap arrays, ex-
cept the ghost state, are preserved in the final memory.
Because ghost state is erased during extraction to C,
clear_stack preserves all heap arrays, such as CDI.

The predicate heap_arrays_except_ghost_state_are_preserved is
defined as:

let heap_arrays_except_ghost_state_are_preserved (h0 h1:mem) =
lets=get st()in
Va len (b:array a len).
(heap_array b A disjoint [b; s.ghost_state] A live h0 b) —-
(as_seq hO b ==as_seqh1b Alive h1b)

Through abstraction, the interface enforces several prop-
erties in the DICE engine that uses it. First, access to UDS
cannot be enabled after it is disabled. Indeed, only when the

device reboots, will the access to UDS be enabled again. Sec-
ond, heap or stack arrays cannot be modified by the DICE
engine after clear_stack is called. stack_cleared is an abstract
predicate, and the clear_stack function provides it as a post-
condition on its output memory. The interface provides no
other functions or lemmas for stack_cleared. Thus, if the DICE
engine modifies memory in any way after clear_stack is called,
it will not be able to prove stack_cleared in the final mem-
ory before returning. Third, clear_stack enforces that access
to UDS must be disabled before its invocation. As a result,
the interface enforces the following coding discipline on the
DICE engine: it should read the UDS in a stack-allocated
buffer, compute CDI, disable access to UDS, clear the stack,
and return.

Model implementation of the interface. Figure 4 shows the
model implementation of the platform-agnostic interface in
F*. The implementation defines type t to be a pair of two
booleans, the first indicates whether access to UDS is enabled,
and the second indicates whether the stack has been cleared.
The type t_rel enforces the aforementioned coding discipline:
if access to UDS is enabled, then it may be disabled (the
first transition from (true, _) to (false, _)); if access to UDS is
disabled, then the stack may be cleared (the second transition),
and the ghost state remains unchanged for all other transitions.
The implementation defines a module-level variable of type
state that is returned by the get_st function.

4.2 DICE Engine Implementation

We prove the following top-level specification for the DICE
engine in DICE*:

let cdi_spec (h:mem) =
let st=get_st()in
as_seq h st.cdi == (« Functional spec for the CDI contents )
Spec.HMAC.hmac SHA2_256
(Spec.Hash.hash SHA2_256 uds_bytes)
(Spec.Hash.hash SHA2_256 (as_seq h st.l0_binary))

val dice_main () : Stack unit (requires Ah — uds_enabled h)
(ensures Ahg () hy —
cdi_spec h; A (— uds_is_enabled h{) A stack_cleared hy A
heap_arrays_except_cdi_and_ghost_state_are_preserved hg hy)

The predicate cdi_spec specifies that the contents of the
CDI buffer satisfies Eq. | using specifications about crypto-
graphic primitives from HACL*. The dice_main function is in
the Stack effect and requires that access to UDS is enabled
when it is called. Its postcondition ensures that in the final
memory CDI satisfies cdi_spec, access to the UDS is disabled,
and stack_cleared is true. It also ensures that contents of all
other heap arrays, except ghost state, are preserved. (Note that
ghost state is erased at extraction). Thus, our DICE engine im-
plementation is functionally correct, and does not leak secrets
through memory or other interfaces such as network, disk,



type t = bool & bool
lett_rel = Asy sy —length s; == length s> A (length s1 >0 —>
(let t; = reveal (index sq 0) in
let t, =reveal (index s, 0) in
match ty, tp with
| (true, _), (false, )
| (false, ), (false, true) — T
| —t ==t
let state_var : state = ... (s allocate the arrays =)
let uds_enabled h = fst (get h state_var.ghost_state)
let stack_cleared h = snd (get h state_var.ghost_state)

Figure 4: F* implementation of platform-agnostic interface

etc. (because Stack effect does not permit any 1/0). Figure 5
shows the implementation of dice_main.

5 DICE* L0

This section presents the LO implementation in DICE*.

Verified properties. Besides memory safety, we prove func-
tional correctness for the outputs (DevicelD ,;, and its CSR,
AliasKey pair, and AliasKey ,,, certificate). Functional cor-
rectness ensures that the code does not inadvertently leak se-
crets (CDI or DevicelD,,;,) into these arrays. We also prove
that our implementation does not leak secrets through the
heap: it is memory safe, does not perform any heap alloca-
tions, and only modifies the necessary output arrays (as per
their functional specifications). Secrets are modeled using
the (abstract) type sbyte (as described in Section 3.3), which
ensures that the code is side-channel resistant. Because our
serializers (Section 5.2) are written over public bytes, F* type-
safety ensures that the LO implementation does not serialize
any secrets.

X.509 certificates introduce a new attack surface in LO. For
instance, implementing the complex ASN.1 encoding format
used by X.509 directly in C leaves open the possibilities of
low-level exploitable memory errors. Furthermore, an inse-
cure X.509 serializer (as defined in Section 5.1) could allow
an attacker to break measured boot. For example, if the X.509
implementation is not injective, then an attacker could down-
load a malicious L1 image on the device and exploit this
non-injectivity to generate a certificate with the FWID of a
valid L1 image.

General purpose X.509 libraries are large and complex, and
come without any formal guarantees of correctness and secu-
rity. Unsurprisingly, these are often the source of high-profile
security vulnerabilities [1,4,5]. At the same time, LO function-
ality requires only a subset of X.509 features (datatypes, exten-
sions and cryptographic identifiers). To avoid the complexity
of full X.509, the DICE specification recommends using a
custom DICE-specific X.509 library (Section 7.3 in [58]).
Therefore, we have built a formally verified, secure X.509

let compute_cdi () =
push_frame (); (= Low™ construct for stack frame creation *)
let uds = alloca 0x00 uds_len in
read_uds uds;
let uds_hash = alloca 0x00 32ul in
let I0_hash = alloca 0x00 32ul in
Hacl.Hash.SHA2.hash_256 uds uds_len uds_hash;

Hacl.Hash.SHA2.hash_256 st.I0_binary st.I0_binary_size 10_hash;
Hacl.HMAC.compute_sha2_256 st.cdi uds_hash 32ul 10_hash 32ul;

pop_frame ()

let dice_main () = compute_cdi (); disable_uds (); clear_stack ()

Figure 5: F* implementation of DICE main function

certificate serialization library that contains all features neces-
sary for implementing LO. Extending this library to support
more datatypes and encodings is an interesting future work.

Our X.5009 library is built using LowParse [49], a library
of parser combinators written in F*. Section 5.1 presents an
overview of LowParse, Section 5.2 describes our extension to
LowParse to support (a fragment of) X.509, and Section 5.3
presents a formally verified LO implementation.

5.1 LowParse Overview

LowParse defines combinators for parsers and serializers cap-
turing their correctness and security properties in the types.
Given a set of valid messages V/, the library defines a notion
of secure parsers as parsers that are complete, i.e. accepting
at least one binary representation of each message, and non-
malleable, i.e. accepting at most one binary representation of
each message. A secure serializer is the mathematical inverse
of a secure parser (considering the parser to be a function
from bytes to VU {_L}, where L denotes the error value).

By building our X.509 library using LowParse, we formally
verify that our parsers and serializers are also secure. This
means, for example, that our X.509 serializations are injec-
tive and, hence, the kind of L1 image impersonation attacks
outlined above are not possible.

The LowParse architecture consists of a specification layer,
where parser and serializer specifications are written in the
pure fragment of F* (using functional sequences and mathe-
matical integers), and a low-level implementation layer writ-
ten in Low*. The security proofs are done on the specifica-
tion layer, while the low-level implementations are proven
memory safe and functionally correct w.r.t. the specifications.
During extraction, the specifications and the proofs are erased,
and the low-level implementations are extracted to C.

The F* type for parser specification is:

type pbyte = pug ( the type of public bytes )
type parser (t:Type) (k:meta) =
p:(input:seq pbyte — Ghost (option (t * l:nat{l < length input})))
{ parser_prop k p}



The parser specification parser t k is a ghost function that takes
as input a sequence of bytes, and either returns an error (the
value None), or a tuple with a value of type t and the number
of consumed bytes. The refinement parser_prop k p ensures
that the parser specification p satisfies properties specified by
the metadata k, such as the non-malleability property.

The F* type for serializer specification is:

type serializer #t #k (p:parser t k) =
s:(t — Ghost (seq pbyte)){V x. p (s x) == Some (x, length (s x))}

The serializer specification serializer p, indexed by the cor-
responding parser specification p, is a ghost function that
serializes a value x of type t into a sequence of bytes such
that parsing these bytes using p returns the same value v and
consumes all the bytes in the sequence.

The Low™ type of a low-level serializer implementation is:

type serializers, #t #k (#p:parser t k) (s:serializer p) =
x:t —b:array pbyte — pos:u3; — Stack u3;
(requires Ah —
live h b A v pos + Seqg.length (serialize s x) < length b)
(ensures Ahg len hy — modifies b hg h; A
as_seq hy b==
replace (as_seq hg b) (v pos) (v (pos + len)) (serialize s x))

The low-level serializer implementation serializers; s takes as
input a value x of type t, an array of bytes b, and a position
pos in b at which to serialize x, and returns the number of seri-
alized bytes. The precondition requires that the array b is live
and is large enough to store the serialization of x. Note that
the specification function v is used to coerce a uz, to a mathe-
matical integer. The postcondition ensures that only the input
array b is modified, no heap allocations are performed (speci-
fied via the Stack effect on the return type), and the len bytes
of b starting at pos equal the serialization of x as specified
by the serializer specification s, which ensures the functional
correctness of the low-level serializer implementation.

Based on these types, LowParse defines combinators,
which are higher-order functions that compose basic parsers
and serializers into parsers and serializers for composite types.
For example, the serialize_nondep_then combinator takes as in-
put two serializer specifications s; and s, for types t; and t,,
resp., and builds a serialize specification fort; = t; by invoking
s followed by s,.

Ramananandro et al. [49] also present the EverParse frame-
work that uses the LowParse combinators to auto-generate
parsers and serializers from message formats specified in
a domain-specific language. The paper also describes a
functional-implementation layer (in addition to the specifica-
tion layer and the low-level layer discussed above). We do not
use these features, and refer the reader to [49] for more details.
Instead, we focus on parser and serializer specifications, and
low-level serializer implementation for X.509.

5.2 X.509 Serialization

The X.509 standard [24] describes the structure for public key
certificates. An X.509 certificate contains basic fields such as
a serial number, version, signature algorithm and value, and
public key info, as well as optional extensions. The certifi-
cate structure is expressed in the Abstract Syntax Notation
One (ASN.1) language. ASN.1 defines datatypes, such as
integer, boolean, sequence, bitstring, octet string, and syntax
for describing message formats using their composition. It
also defines several binary encoding rules, such as Distin-
guished Encoding Rules (DER) [30], which is used by X.509
certificates.

DER encodes every message, including the basic types, in a
Tag-Length-Value (TLV) format. The value bytes encode the
message, which could be a primitive ASN.1 value or another
TLV triplet. The length bytes encode the length of the value
bytes, and tag is a one-byte value encoding the type. Both the
value and length DER encodings are variable length.

Extending LowParse with backward serializers. LowParse
supports serializing variable-length data using finalizers. A
finalizer takes as input an array, with the precondition that
the array contains a placeholder for the length of the data
followed by the serialization of the data itself. The finalizer
computes and writes the length in the placeholder, providing
an appropriate postcondition.

However, finalizers are not suitable for DER as they require
placeholders for serialization of the lengths. In the DER TLV
format, the size of the length encoding depends on the value
of length itself. Hence, determining the size of the placehold-
ers for lengths requires making a pass over the message to
compute its length before serializing the message itself. Since
every DER encoding is TLV, this means making multiple
passes on the sub-messages in a naive implementation. One
could optimize this to one pass by computing a length struc-
ture isomorphic to the message, but this requires changing the
serializer type in LowParse to pass this additional argument—
a suboptimal choice for fixed-length formats and a pervasive
change to the LowParse library.

Thus, to support variable-length data in ASN.1 DER, we
extend LowParse with low-level backward serializers. Back-
ward serializers provide an elegant solution to the problem.
Instead of serializing messages forward from the beginning of
the array, backward serializers serialize messages backward
from the end of the array. They return the number of bytes
serialized, which can then be serialized by the caller at the
beginning of the serialized message. This allows us to build
generic TLV serializers, without explicitly requiring length
computations. The type of the backward serializers is:

type serializers,_backwards #t #k (#p:parser t k) (s:serializer p) =
x:t — b:array pbyte — pos:u3, — Stack u3, (requires Ah —
live h b A Seq.length (serialize s x) < v pos < length b)
(ensures Ahg len hy — modifies b hy hy A as_seqh; b ==
replace (as_seq hg b) (v (pos — len)) (v len) (serialize s x))



The pos argument to the backward serializers is the ending
position in the array. The postcondition establishes that the
contents of the array between [pos — len, pos) are the serialized
bytes (functionally correct w.r.t. the forward specification
serializer s). Since we do not change the parser and serializer
specifications, our low-level backward serializers enjoy the
same security properties as before.

Using backward serializers, we implement a generic TLV
serializer as follows:

let serializers,_tlv_backwards s3, x tag b pos =
let I_value = s35 x b pos in (: serialize value )
let |_length = (x serialize length =)
serialize3;_len_backwards |_value b (pos — |_value) in
let I_tag = (s serialize tag *)
serialize3p_tag backwards tag b (pos — I_value — |_length) in
|_value + |_length + |_tag (= return number of bytes written )

We also extend LowParse with combinators for backward seri-
alization. For example, the serialize3,_nondep_then_backwards
combinator takes as input two backward serializers s; and s;,
and invokes s; followed by s;.

ASN.1 serializers. We program parser and serializer spec-
ifications, and low-level backward serializers for the DER
encoding of the ASN.1 fragment needed to implement LO.
The parser and serializer specifications are proven secure, and
the low-level serializers are proven memory safe and func-
tionally correct w.r.t. the specification, all in the (extended)
LowParse framework.

Our implementation supports ASN.1 lengths in the
range [0,2%%), and all ASN.1 tags. For ASN.l prim-
itive types, it supports: BOOLEAN, NULL, non-negative
INTEGER, OCTET_STRING, PRINTABLE_STRING, IA5_STRING,
BIT_STRING, OBJECT_IDENTIFIER (OID), and specific values
for GENERALIZED_TIME and UTC_TIME (used in the X.509 va-
lidity field). For structured types, it supports SEQUENCE, as
well as empty and singleton SET. We support implicit and
explicit tagging over both primitive and structured types.

For the supported ASN.1 primitive types, we first define
their Low* representations:

let datatype_of asni_type (a:asni1_type) = match a with

| BOOLEAN — bool

| OCTET_STRING — (len: u3, {len < 232 — 6} « array pbyte len)
| BIT_STRING — bit_string_t

| OID — oid_t

... (= definition for other ASN.1 primitive types )

The Low™ representation for OCTET_STRING is a dependent
pair of a length lenc[0, 232-6) and an array of (public) bytes
of length len. The invariant on len ensures that the length of
the corresponding TLV message is less than 232, Invariants on
other types are more involved; e.g., the Low” representation
for BIT_STRING may contain unused bits that must be zero.
Then, we define the parser and serializer specifications, and
the low-level serializer implementation on these representa-
tion types to match their DER encoding. For example, the

ASN.1 BOOLEAN values TRUE and FALSE are serialized as
8-bit unsigned integers OxFFuy and 0x00uy respectively. The
parser specification for the BOOLEAN type is:

val parse_asn1_boolean
: parser (datatype_of _asn1_type BOOLEAN) boolean_meta
let parse_asn1_boolean = parse_ug
“parse_filter’ (A b —b = OxFFuy Il b = 0x00uy) “parse_synth®
(A b — match b with | 0xFFuy — true | 0x00uy — false)

Here, a *f* b is infix notation for f a b, and parse_ug, parse_filter,
and parse_synth are LowParse combinators [49]. For each
type, we also build its TLV serializer using the generic TLV
serializer sketched above.

X.509 serializers. We follow a similar methodology
for X.509 structures needed for LO [58]. For example,
the X.509 standard [24] defines Algorithmldentifier and
SubjectPublicKeylnfo as:

Algorithmldentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

SubjectPublicKeylnfo ::= SEQUENCE {
algorithm Algorithmldentifier,
subjectPublicKey BIT STRING }

The parameters field of Algorithmlidentifier is algorithm-specific.
For Ed25519 [32], for example, the algorithm should be the
OID id-Ed25519 and the parameters field should be absent. The
subjectPublicKey field in SubjectPublicKeylnfo for EdA25519 must
be a 33-byte bit string where the leading byte is set to zero;
this leading byte specifies the unused bits in the last byte. We
define the corresponding types and serializer specifications as
follows:

type the_oid oid = o0:0id{0 == oid} (: Singleton OID type =)

type alg_identifier_payload_t = the_oid OID_ED25519

let serialize_alg_identifier_payload = (=« Spec serializer )
serialize_the_oid OID_ED25519

let serialize_alg_identifier = (x SEQUENCE tagging *)
serialize_envelope_sequence serialize_alg_identifier_payload

type bit_string_with_len_and_unused I n =
b:bit_string_t{length b ==1 A unused b ==n}

type subject_public_key_info_payload_t = {
algorithm : envelope SEQUENCE alg_identifier_payload_t;
subject_public_key : bit_string_with_len_and_unused 33ul Oul }

let serialize_subject_public_key_info_payload =
serialize_alg_identifier “serialize_nondep_then®
serialize_bit_string_with_len_and_unused 33ul Oul

let serialize_subject_public_key_info = serialize_envelope_sequence
serialize_subject_public_key_info_payload

Following this scheme, we define parsers and serializers
of all the X.509 structures required for DeviceID CSR and
AliasKey certificate in accordance with the DICE certificate
standard [58].

X.509 extension for LO. The DICE certificate standard [58]
defines an X.509 extension for LO. The extension describes



how the device identity, consisting of the DevicelD,,;, and
FWID, should be embedded inside the AliasKey certificate.

TCG-DICE-FWID ::== SEQUENCE {
TCG-DICE-fwid OBJECT IDENTIFIER,
SEQUENCE CompositeDevicelD }

CompositeDevicelD ::== SEQUENCE {
version INTEGER,

SEQUENCE SubjectPublicKeylInfo,
SEQUENCE FWID }

FWID ::== SEQUENCE {
hashAlg OBJECT IDENTIFIER,
fwid OCTET STRING }

Similar to SubjectPublicKeyInfo, we define parser and serial-
izer specification as well as low-level serializer implementa-
tion for this extension.

5.3 L0 Implementation

The F* type for the core LO function is shown in Fig-
ure 6. The function 10_core takes as input (a) CDI and
FWID, (b) HKDF labels to be used in the derivation of
the DevicelD key pair and AliasKey pair, (c) the DevicelD
CSR and AliasKey certificate details (such as the version,
serial number, etc.), and (d) arrays for writing DevicelD pyp,
AliasKey ,;,, AliasKey ,.;,, DeviceID CSR, and AliasKey cer-
tificate. Because the DICE specification does not specify what
exactly constitutes a FWID measurement, we take FWID as
an input. The implementation can easily be adapted to support
specific measurement functions computed inside 10_core.

The precondition requires that all the arrays are live and
pairwise disjoint, and that the length of the CSR and certifi-
cate arrays equals the size of the (serialized) certificate and
CSR, respectively; we provide auxiliary functions to com-
pute the exact size for the certificate and CSR. Currently, we
enforce the length requirement as a precondition, but other
implementations, such as runtime checks, are possible.

The function has the Stack effect, ensuring that it does not
perform any heap allocations. Its postcondition ensures that
the function only modifies the contents of the DevicelD .
AliasKey pair, CSR, and certificate arrays, in accordance with
their functional specifications. Below we show the functional
specification for AliasKey certificate, which specifies the con-
tents of the ak_crt_arr in terms of the specification-level serial-
izer for the AliasKey certificate. The specification functions
for key derivation (e.g. dk_spec below) integrate with the key
derivation specifications from HACL*.

let ak_crt_post cdi fwid dk_label ak_label ak_crt ak_crt_arr hg hy =
let dk_pub, dk_priv = dk_spec cdi fwid dk_label hg in
let ak _crt =
ak_crt_spec cdi fwid dk_pub dk_priv ak_label ak_crt hy in
(s Functional correctness for the AliasKey certificate array =)
as_seq hy ak_crt_arr == serializer_ak_crt “serialize™ ak_crt

The implementation of 10_core derives the DevicelD and
AliasKey using the HKDF and Ed25519 libraries from

val 10_core (cdi:array sbyte 32) (fwid:array pbyte 32)
(dk_label_len:usy) (dk_label:array pbyte (v dk_label_len))
(ak_label_len:usy) (ak_label:array pbyte (v ak_label_len))
(dk_csr:csr_t) (ak_crt:crt_t) (dk_pub: array pbyte 32)
(ak_pub:array pbyte 32) (ak_priv:array sbyte 32)
(dk_csr_len:usp) (dk_csr_arr:array pbyte (v csr_len))
(ak_crt_len:usp) (ak_crt_arr:array pbyte (v crt_len)) : Stack unit

(requires Ah — ... A (x liveness and disjointness of arrays *)

(s label lengths are valid HKDF lengths =)

is_hkdf_label dk_label_len A is_hkdf label ak_label_len A

(s the CSR and certificate arrays have the required lengths )
dk_csr_pre dk_csr dk_csr_len A ak_crt_pre ak_crt ak_crt_len)

(ensures Ahg () h; — modifies
[dk_pub; ak_pub; ak_priv; dk_csr_arr; ak_crt_arr] hg hy A
(* Functional spec for the DevicelD public key =)
dk_post cdi dk_label dk_pub hg h; A
(s Functional spec for the AliasKey pair )
ak_post cdi fwid ak_label ak_pub ak_priv hg h; A
(s Functional spec for the DevicelD CSR )
dk_csr_post cdi dk_label dk_csr dk_csr_arr hg hy A
(s Functional spec for the AliasKey certificate *)
ak_crt_post cdi fwid dk_label ak_label ak_crt ak_crt_arr hy hy)

Figure 6: Signature of the core L0 function. Identifiers with
prefix ak_ and dk_ refer to AliasKey and DevicelD resp.

HACL*. The implementation then creates a DevicelD
CSR Low* value signed using the DevicelD,,;, and serial-
izes it into the dk_csr_arr using its low-level serializer. Fi-
nally, it creates the AliasKey certificate value, signed using
the DevicelD,,;,, and serializes it in ak_crt_arr. In all these
cases, it is proved that the serialized bytes match their func-
tional specifications.

Declassification of public data. The low-level implementa-
tions in the HACL* library operate exclusively on secret bytes;
e.g., the public key pair derivation function returns even the
public key in an array of secret bytes. Because secret and pub-
lic bytes are different types, type-safety in F* does not allow
copying public keys in secret byte arrays directly into the (pub-
lic) output arrays. Thus, we need to explicitly declassify three
public keys and two signatures: DevicelD,,, AliasKey ,,;,,
the digest of the DevicelD,,,, as the authority key identifier
used in the AliasKey certificate extension, DevicelD,;, CSR
signature, and AliasKey certificate signature. We model de-
classification using a trusted function as follows:

let declassify_spec len (s:lseq sbytes len) : Iseq pbytes len = ...
val declassify (len:us;) (src:array sbyte len) (dst:array pbyte len)
: Stack unit
(requires Ah — live h src A live h dst A disjoint [src; dst])
(ensures Ahg () hy — modifies dst hy h; A
as_seq hy dst == declassify_spec (as_seq hy src))

The extracted DICE* LO code is linked against a native im-
plementation of the declassification function, which can use
either memcpy or a verified memcpy extracted from Low™.



In general, such declassifications need to be manually au-
dited to ensure that only the intended data is declassified.
However, in our case, precise functional specification of all
the output arrays ensures that the verification will fail if incor-
rect data is declassified. Since our code does not use the heap
and explicitly clears the stack, all outputs are via argument
arrays whose contents are precisely specified in the postcondi-
tions. For example, the dk_post specification used in 10_core’s
postcondition (in Figure 6) explicitly states that the contents
of the array dk_pub are same as declassifying the output of the
function derive_dk_pub_spec:

let dk_post (cdi:array sbyte 32) (dk_label: array pbyte)
(dk_pub:array pbyte 32) (hg hi:mem) =
as_seq hy dk_pub
== declassify_spec 32 (derive_dk_pub_spec cdi dk_label)

Thus, a bug in declassification, e.g. declassifying the private
key instead of public key, would result in a verification failure
for this postcondition.

6 DICE* Implementation

Table | shows the lines of code (LOC) for DICE*. The DICE
engine implementation in DICE* consists of 533 lines of
(commented) F* code, including the specifications, imple-
mentations, and proofs, which extract to 205 lines of C code.
DICE* L0 implementation consists of 24,241 lines of F* code,
16,564 of those implementing the ASN.1/X.509 library. The
LO implementation extracts to 5,051 lines of C.

Table 1 also shows the verification times for DICE*. The
measurements are taken on an HP Z840 workstation with
Intel® Xeon® CPU E5-2699 v4 (2.20GHz) and 64GB RAM.
The time measurements are with parallelism provided by
modular verification, verifying LO sequentially takes 26m2s.
Note that the LOC and verification times in Table 1 do not
include HACL* and LowParse.

While the DICE engine implementation was relatively
straightforward to verify, to scale the verification to
ASN.1/X.509 library and the LO implementation, we used
the following proof-engineering mechanisms:

Abstraction via F* interfaces. We use F*’s interface mech-
anism to abstract away irrelevant definitions from the SMT
solver’s proof context, thereby reducing the size of the SMT
queries. For example, we declare the type of the definition
parse_asni_boolean (Section 5.2) in the ASN.1/X.509 library
in an interface file as follows:

val parse_asn1_boolean
: parser (datatype_of_asn1_type BOOLEAN) boolean_meta

For the clients, the definition of parse_asn1_boolean is not
important—it is sufficient that the low-level boolean serializer
implementation provides this spec in its type. Therefore, we
add the implementation of parse_asn1_boolean in the separate
implementation file. When F* verifies its clients, only the

Table 1: LOC and verification time for DICE*

F*LOC CLOC \Verification Time
DICE Engine 533 205 Im10s
LO 24,241 5,051 11m9s

interface file is in scope, and hence, the implementation details
are hidden from the client proofs.

Proof decompositon. When verifying a function like 10_core
(Figure 6), F* and the Z3 SMT solver need to reason about
multiple proof aspects, including arrays, secret bytes, cryp-
tography, and serialization. When all of these proof obliga-
tions are sent as a single query to the SMT solver, the proofs
sometimes don’t scale. We get around this by decomposing
functions with large proof obligations into auxiliary lemmas
with smaller proof obligation. For example, in the case of
10_core, we prove the modifies theory related properties in a
separate lemma lemma_|l0_core_modifies:

let lemma_l0_core_modifies (pub_t: Type) (sec_t: Type)
(ak_pub:array pub_t 32) (ak_priv:array sec_t 32) (hg h;:mem)
... (* other buffers and intermediate memory states ) ...

: Lemma (( mod. spec. between intermediate memory states *) ...

A modifies [ak_pub; ak_priv; ...] hg h1) =()

Separating out proof obligations in this manner significantly
decreases the total verification time of 10_core.

Using meta-programming to discharge proof obligations.
F* also has a meta-programming and tactics framework [39]
using which programmers can write F* programs to inspect
and prove properties of other F* programs. The metaprograms
are evaluated by the F* typechecker at the time of typecheck-
ing. For proofs that involve large computations, we used meta-
programming to carry out those computations and simplify
the proof obligations before they are sent to the SMT solver.
This provided significant speedups in some cases.

7 Evaluation

In this section, we evaluate DICE* by comparing it against
an unverified, hand-written DICE implementation in terms
of boot time and binary size. The goal of the evaluation is
to ensure that there are no unforeseen overheads of using
verified code. We evaluate DICE* on the STM32H753ZI mi-
crocontroller unit (MCU) from ST Microelectronics [11]. The
STM32H753ZI micro-controller is based on the ARM Cortex-
M7 family of CPUs. It operates at 480 Mhz; it has high-speed
embedded memories, including 2MB of dual bank flash and
1MB of RAM, and various other interfaces and peripherals.

Section 7.1 describes the bootloader and the platform-
specific interface of DICE* for STM32H753ZI, and Sec-
tion 7.2 compares DICE* against an unverified, hand-written
DICE implementation in terms of binary size and boot time
on STM32H753ZI.



7.1 DICE* for STM32H753Z1

We implement the bootloader and the platform-specific inter-
face of DICE* for STM32H753ZI using a hardware security
feature called secure access mode. This mode enables the
development of security-critical services such as bootloaders
that execute in isolation just after reset. Specifically, during
manufacturing, a region in flash memory can be configured
as a secure area, and can be provisioned with code and data
of a secure service. The hardware guarantees that this area
can only be accessed while the CPU is in secure access mode,
which the CPU enters just after reset. While the CPU is in
secure mode, the CPU ignores all debugging events. Once the
CPU exits this mode (using a special instruction), reads to
this area return zero, writes are ignored, and any attempt to
execute code from this area generate errors. The secure area
is also erase protected; i.e., no erase operations on a sector in
this area are permitted.

We implement the bootloader using secure access mode as
follows. We store the bootloader, DICE-engine image, which
includes unverified platform-specific interface, and the public
key used by the DICE engine in a secure area in flash memory.
The bootloader receives control after a reset. It checks if UDS
has already been provisioned at a pre-defined location in the
secure area. If the UDS has not been provisioned, then the
bootloader generates a fresh UDS by sampling a hardware
RNG, and stores the UDS in the secure area.

Next, the bootloader transfers control to the DICE engine.
The DICE engine, as per specification, authenticates the LO
image, derives CDI and latches UDS by exiting the secure
access mode. Finally, the control comes back to the bootloader
which then transfers control to LO.

We implement the platform-specific interface of DICE*
(Section 4.1) as follows:

* read_uds is implemented by copying UDS stored at a
pre-defined address in secure area to a buffer in RAM.

* disable_uds is empty because there is no explicit mecha-
nism to disable access to UDS on this MCU. Disabling
access is the responsibility of the bootloader.

* clear_stack is implemented by erasing all registers (ex-
cept the stack pointer), and erasing all regions in SRAM,
which holds the stack.

The bootloader and the platform-specific interface of
DICE* together contain 38 lines of assembly and 815 lines of
C code. This code is part of our TCB.

7.2 Comparison with Unverified DICE

We compare the boot time and the binary size of DICE* with
that of an unverified, handwritten DICE implementation. The
hand-written implementation uses cryptographic primitives
from mbedTLS [7], a cryptographic library commonly used

Table 2: Boot time (milliseconds) for each layer and the binary
size (KB) of unverified DICE (Unv. DICE) and DICE*

Layer Boot time (ms) Size (KB)

Unv. DICE DICE*  Unv. DICE DICE*
DICE engine 786 689 72 68
LO 313 208 92 92

in embedded systems. The two implementations match in all
respects except elliptic curve p-256 [19] used for firmware
authentication in DICE and generating certificates and CSRs
in LO. While the hand-written implementation uses p-256,
DICE* uses Ed25519. This is because mbedTLS currently
does not support Ed25519, and HACL* does not currently
support a side-channel free implementation of p-256.

Table 2 compares the boot time (measured in milliseconds)
of two DICE layers in these implementations. In both layers,
DICE* has better performance compared to the unverified
implementation. In the DICE engine, the difference in boot
times is due to the difference in the performance of P-256
and Ed25519 based image verification. This is consistent
with previously reported performance of these curves [60].
All other operations in the DICE engine have comparable
performance. In L0, the difference in boot time is due to the
X.509 certificate serialization logic. Unverified code relies on
X.509 support in mbedTLS, whereas verified code uses our
X.509 custom library built using LowParse.

Table 2 also shows a comparison of the binary sizes. Binary
size is an important metric, especially in embedded systems
where the amount of flash memory is often limited. Both
implementations have a comparable binary size.

In summary, DICE* compares favorably with the unverified
implementation both on performance and binary size, and,
thus, should form the basis for future DICE implementations.

8 Related Work

This paper presents a verified implementation of DICE [38,
55], which is an emerging industry standard for measured
boot proposed by TCG. There are also efforts on developing
attestation protocols based on DICE [29,31] and extending
DICE with new features to support secure firmware updates
and re-provisioning of DICE-powered devices [62].

Hardware solutions for trusted computing such as
TPM [28], ARM TrustZone [14] and Intel SGX [40] are not
suitable for low-cost devices. Compared to the minimal hard-
ware requirements of the DICE architecture, the hardware-
based solutions designed for isolation and attestation of em-
bedded devices, such as TyTAN [21], TrustLite [34], and San-
cus [45,46], are complex and costly [37]. Software-based solu-
tions for device attestation, such as SWATT [52], Pioneer [51],
and VIPER [36], make impractical assumptions [15].



DICE* focuses on verification of memory-safety, full-
functional correctness, and side-channel resistance for the
DICE measured boot protocol. Cook et al. [23] use the CBMC
model checker [35], extended with device-specific extensions,
to prove memory-safety of the boot code used in the AWS
data centers. Their boot code is not measured or authenticated
boot, the stages in their code only locate, load, and launch
the next stage. As a result, its guarantees, and the implemen-
tation complexity, are much weaker than DICE. Straznickas
et al. [53], in what seems to be a work-in-progress, use the
Coq theorem prover towards verifying functional-correctness
and termination of a first-stage bootloader written in RISC-V
assembly. Muduli et al. [44] use model checking to verify that
(model of) a firmware loader only loads valid images. They
cast the security property as a hyperproperty [22], modeling
TOCTTOU attacks. Hristozov et al. [29] propose a runtime at-
testation scheme, augmenting DICE, to protect against (unde-
tected) runtime compromise of the firmware code, an unlikely
scenario with fully verified and memory-safe DICE*.

For X.509 certificate generation, we extended the Low-
Parse framework [49], and provide memory-safe, functionally-
correct, and secure ASN.1/X.509 serializers. Tullsen et
al. [59] present verified encoders and decoders for a subset
of ASN.1 required for vehicle-to-vehicle (V2V) messaging.
However, they do not verify full-functional correctness, but
only an approximation of it, called self-consistency which
states that (a) a valid message that is encoded and decoded
results in the same message, and (b) the decoder only accepts
valid messages. They carry out the verification in the Soft-
ware Analysis Workbench [26] tool. Ye et al. [63] focus on
the Protocol Buffers data format and formally verify proto-
buf serializers and deserializers for functional correctness in
Coq. Their work is based on Narcissus [25] that defines a
non-deterministic data-format and derives verified encoders
and decoders using a library of higher-order combinators, like
in LowParse. The distinguishing feature of LowParse and our
work is the security proof and the generation of C code from
a verified implementation.

9 Conclusion

We have presented DICE*, an implementation of the DICE
measured boot protocol that is provably memory-safe,
functionally-correct, and side-channel resistant. A key com-
ponent of DICE* is a secure X.509 library that generates
DICE-compliant certificates and CSRs. We believe this im-
plementation can form a more secure baseline for future im-
plementations of the DICE architecture, avoiding bug-finding
and fixing cycles. DICE* can be extended to further improve
the security of measured boot e.g. by building verified imple-
mentations of hardware protection mechanisms underlying
the DICE architecture, and of commonly used components in
LO firmware such as attestation and key exchange protocols.
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