
VisFlow: A Relational Platform for Efficient Large-Scale Video Analytics

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula
Microsoft

Abstract– We describe VisFlow, a system that efficiently
analyzes the feeds from many cameras. Ubiquitous cam-
era deployments are widely used for security, traffic
monitoring, and customer analytics. However, existing
methods to analyze the video feeds in real-time or post-
facto do not scale and are error-prone. Our key contribu-
tions are two-fold. Surveillance video is hard to analyze
because it has low-resolution, many objects per frame,
varying light, etc. By leveraging the fixed perspective of
surveillance cameras, we show that typical vision tasks
can be performed with high accuracy. Next, to efficiently
process many feeds, we use a relational dataflow system.
We observe that (i) even vision queries that seem dif-
ferent have common parts (e.g., background subtraction
and feature extraction), (ii) often neither camera-level or
frame-level parallelism lead to good executions, and (iii)
the best execution plans vary with input size. By extend-
ing query optimization techniques, VisFlow computes ef-
ficient execution plans for vision queries, parallelizing as
needed. Evaluation on traffic videos from a large city on
complex vision queries shows many fold improvements
in accuracy, query completion time and resource usage
relative to existing systems.

1 Introduction

Recently, there has been a rapid growth in camera de-
ployments. Many cities have cameras on traffic lights
and street corners [43]; police departments use mounted
cameras on their cars and body-cams on personnel [17].
IHS Research [69] forecasts the video surveillance mar-
ket to grow over the next four years to $2.7 billion. A
key enabler for this change is the much lower cost of
high quality cameras and data storage.

Automatic analysis of surveillance videos removes the
human-in-the-loop and has the potential to be more ac-
curate, faster and more comprehensive. Our use cases
fall into two main bins– (i) real-time analysis to detect
anomalies such as security lapses or to maintain dash-
boards such as the number of cars on a highway [68] and
(ii) longitudinal or post-facto analysis that retroactively
examines video streams to say look for a certain person
or a car or a pattern [24, 50].

The state of the art in surveillance is custom closed
solutions. Vendors such as Omnicast [59], ProVigil [61]
and Avigilon [21] deploy and maintain the cameras. Of-

ten, the video is live streamed to an operations center for
manual observation by security personnel. This process
is error-prone and expensive. Some vendors also provide
video storage and analytics software and the larger cus-
tomers (e.g. cities) have curated in-house systems [29].
However, such automated analysis is restricted to spe-
cific goals such as say estimating traffic congestion. Con-
sequently, the vision pipelines are carefully hand-crafted
with the engineers focusing on nitty gritty details such as
how to parallelize, which order to execute the modules
in etc. Supporting ad-hoc queries or post facto analysis
on stored video or scaling to a large number of cameras
remain key open problems [67].

In this paper, we ask whether bringing together ad-
vances from two areas—machine vision and big data
analytics systems, can lead to an efficient query answer-
ing system over many cameras.

A first challenge is to execute basic vision tasks on
surveillance videos, such as detecting persons and track-
ing moving vehicles, with high precision. Surveillance
videos have low resolution, low frame rate and varying
light and weather conditions. More importantly, execut-
ing multiple analytic tasks on dense frames (many ob-
jects per frame) is computationally expensive. We build
upon some state-of-the-art vision techniques for these is-
sues. Further, since surveillance cameras have a fixed
frame of reference, we also use camera-specific inform-
ation to improve accuracy and efficiency. We have built
several vision modules such as classifying vehicles by
color and type, re-identifying vehicles across cameras,
tracking lane changes, identifying license plates etc. Fur-
ther details are in Section 3.1.

Next, to address the challenge of scaling to a rich set of
ad-hoc queries and to many cameras, we cast the problem
as an application of a relational parallel dataflow system.
The above-described vision modules are wrapped inside
some well-defined interfaces (processors, reducers and
combiners [26, 73]) which allows the query optimizer to
reason about alternate plans. Vision engineers can focus
on individual modules. End-users simply declare their
queries over the modules in a modified form of SQL. The
dataflow system translates user queries into appropriate
parallel plans over the vision modules. Various standard
query optimization improvements such as predicate push
down (execute filters near input) and choosing appropri-
ate join orders come to bear automatically [18]. We use a

1

cost based query optimizer that yields parallel plans [25]
which is built per the Cascades [40] framework. Further
details are in Section 3.2.

The primary advantages of this combination are (i)
ease-of-use for end-users: we will show that complex
queries such as amber alerts and traffic dashboards can
be declared within a few lines, (ii) decoupling of roles
between end-users and the vision engineers: the vision
engineers can ignore pipeline construction and need only
focus on efficiency and accuracy of specific modules, and
(iii) automatic generation of appropriate execution plans
that among other things de-duplicate similar work across
queries and parallelize appropriately: we will show ex-
amples where the resultant plans are much improved over
those that are literally declared by the user query.

Note that our focus here is on query answering sys-
tems over surveillance video. Our work is orthogonal
to the commendable recent work in training deep neural
networks [72] on GPUs such as TensorFlow [16]. We re-
view other related work in Section 2.3 and §6. Our vision
modules are simpler than DNNs and our dataflow system
focuses on efficiently executing video queries (that can
use trained DNNs or other modules) on a cluster.

In hindsight, the case for a system such as VisFlow,
which casts vision queries as an application for big-data
platforms, seems rather obvious given the possible gains.
Along the way, we also discovered a few simple yet use-
ful tricks. For instance, for some queries, neither camera-
level nor frame-level parallelism is appropriate. Consider
counting the traffic volume (# of vehicles/second/lane)
from a highway video. The query requires context across
frames to avoid duplicate counts and so frame-level par-
allelism leads to an incorrect answer. However, camera-
level parallelism leads to skew (if one camera processes
a busy road portion) and slow response times because
a single task has to process all the frames from a cam-
era. By observing that the context required is bounded
in time, to the duration for which vehicles remain in
the camera’s frame of reference, VisFlow breaks the feed
from each camera into overlapping chunks of frames;
such chunk-level parallelism combats skew and speeds-
up response times (see Table 7).

We have built an initial version of VisFlow on top of
Microsoft’s Cosmos system [25]. VisFlow supports sev-
eral common vision modules (see Table 2) and we de-
scribe some exemplar user queries (see Section 3.2.2).
We evaluate VisFlow by analyzing the video feeds from
tens of cameras from a highway monitoring company on
a shared production cluster. We also use a variety of
video feeds collected in and around the Microsoft cam-
pus. Our results show that the combination of vision
modules and dataflow reduces resource requirements by
about 3×; details are in Section 5.

To summarize, the novel contributions of VisFlow are:

(a) Intersection. (b) Parking garage.

Figure 1: Example of traffic surveillance video feeds.

• Fast and accurate implementation of several vision
modules that are needed in surveillance scenarios.

• A unified and customizable dataflow framework that
computes optimal parallel query plans given any num-
ber of end-user queries for execution on a cluster.

• Implementation and initial results.

Much work remains; in particular, VisFlow will bene-
fit from more principled approaches to privacy (such as
differential privacy or taint tracking) and improved video
stores (compression, careful index generation). Never-
theless, we believe that VisFlow targets a rich space of
potential customers– customers that have a server farm
or can upload videos to a secure cloud provider [1, 56]
can use VisFlow today to benefit from fast, accurate, scal-
able, and customizable analysis of their videos.

2 Primer on video surveillance analytics

2.1 Example surveillance use-cases
We briefly describe some use-cases.

Analytics on intersections and roadways: Surveillance
cameras are installed on major intersections and high-
ways in many cities. One use case is to understand the
typical flow of vehicles and people to improve traffic
planning (e.g., determine the hours for HOV or pay-to-
use lanes, estimate the need for pedestrian or bicycle
lanes etc.). Another use-case is to detect traffic conges-
tion, violations and accidents in realtime [24, 67, 70]. A
third use-case is to search over time for vehicles and li-
cense plates associated with an amber alert [64]. Fig-
ure 1(a) shows an example from a Seattle intersection.

Parking Structures have closely related use-cases. Sur-
veillance video can help ensure security of parked
vehicles, detect squatters or other anomalies and serve
as evidence for accidents. Video can also help determ-
ine the locations of available parking spots. Figure 1(b)
illustrates an example from a Microsoft garage.

Enterprises deploy cameras primarily for insurance
(evidence) purposes. Some link cameras with the facil-
ities department to, for example, react faster to spills or
to readily access what is going on in response to a fire
alarm. Retail use-cases revolve around data-driven de-
cisions; it has become common-place to use video to de-

2

Scenario #cam Feed type Supp. Ingest rate Storage
Highway 1,000 mpeg2, 352p/15fps 50% 192Mbps 28 TB
City 1,000 h.264, 360p/24fps 80% 140Mbps 51 TB
Enterprise 100 h.264, 720p/30fps 80% 48Mbps 18 TB

Table 1: Back-of-the-envelope estimates of the problem size in dif-
ferent surveillance settings: ingest rate in Mbps and storage size for a
week of surveillance videos. Here, Supp. denotes the typical average
suppression rates achievable in each setting.

termine which hours to staff more and to optimally posi-
tion products.

Table 1 lists some back-of-the-envelope numbers for
a video surveillance system. The data volume of a feed
is affected by the application scenario, frame rate, res-
olution, video format and camera specifics (some sup-
press frames early such as emit only frames that have
motion [13]). The table lists the data ingest rate (bits/s)
and storage required (bytes/week) for different setups. It
is easy to see that the ingest rate is rather small (relat-
ive to youtube [14] or netflix [7] that has about 2Mbps
per video source for HD movies); however since video
is continuously acquired, executing complex analysis on
the stored video is a big-data problem.

2.2 Requirements for a surveillance system

Use-cases such as the above lead to these requirements.
• Precision and recall: Anomalies should be detected

with a small number of false positives and false neg-
atives. Classification (e.g., vehicle type, color) should
have a small confusion matrix [2]. Counts of objects
should be approximately correct.

• Timeliness: In many of the realtime use-cases such
as detecting anomalies, quick response time is the
primary motivation to deploy video surveillance. Said
differently, there are alternative methods to achieve
such functionality in a less timely manner. Often, the
time budget is minutes or less. For the post facto use-
cases, the faster a search can be completed the better.

• Resource efficiency: We are interested primarily in
scaling out to a large number of cameras and ana-
lyses (queries) with few machines. That is, we are
interested in frames/sec/$ and queries/sec/$.

• Customizability: The video storage and analyses
system should readily accept new queries; both real-
time and post-facto queries. Further, the best execu-
tion plan for a given set of queries, in terms of resource
efficiency and timeliness, may change when new quer-
ies are added.

• Probabilistic/ confidence estimates: As with most
machine learning algorithms, vision algorithms are
probabilistic (e.g., what is the license plate? what
is the vehicle type?). A surveillance system should
have probability as a first class entity to simplify the
decision making of the end users.

2.3 State-of-the-art in surveillance systems

In the early 2000s, the US government funded a
Video Surveillance and Monitoring (VSAM) [33] pro-
gram which lead to several real-world deployments
and research [62]. The IBM Smart Surveillance Sys-
tem (S3) [68] was one of the most notable. They had
a pilot deployment in Chicago, developed middleware
that monitors scenes, stored video in a SQL database
and provided a web interface that reported both real-time
alerts and allowed for long-term pattern mining. While
VisFlow has the same overall goals, our key contribu-
tions (improved vision modules and casting vision quer-
ies into a distributed dataflow system with query optim-
ization and scale-out) substantially improves upon S3. In
particular, each vision query in S3 ran with its own inde-
pendent hand-optimized pipeline.

In the commercial space, as already mentioned, sev-
eral vendors support video surveillance deployments that
have thousands of cameras. However, these systems
rarely use automated analyses. Nor do they offer data-
flow pipelines for queries. Typically, contracts consider
availability (uptime) of real-time feeds and longevity
of video storage. Even the many simple use-cases lis-
ted above are outside of these contractual agreements.
Hence, they remain expensive and cumbersome.

2.4 Challenges

Realizing the requirements in §2.2 for the use-cases
in §2.1 leads to these two challenges.
• Surveillance video 6= images: Most vision research

(but not all) uses images as input. These images are of-
ten high-resolution, collected in ideal light conditions
and are from curated benchmark datasets [5, 6, 37]. In
contrast, the input of a surveillance system is often low
resolution video [11]. The lighting conditions vary
continuously. There are multiple objects per frame
and occlusions [3]. In this sense, surveillance video
also differs substantially from movies or talks [42].
However, surveillance cameras are mostly fixed and
the data is available continuously. These aspects allow
for many optimizations as we will see shortly.

• Vision queries 6= SQL queries (e.g., TPC-DS [15]):
Decades of work in relational algebra have codified
design patterns that make it easy to express a data
analysis query in a manner that can be automatically
optimized. Recent work also considers the automatic
generation of parallel plans [20, 77]. However, a typ-
ical vision query consists of several machine learning
modules such as cleaning the input, image segmenta-
tion, object classification and other analyses. Naively,
each is a user-defined operator; which many query
optimizers have trouble with because the semantics

3

of the operations are not clearly specified (e.g., is
an operator pair commutative, does the operator keep
context across rows, etc). It is apriori unclear how
to specify the vision modules so that the query op-
timizer can yield efficient execution plans. Further,
even seemingly diverse queries such as traffic counting
and amber alert can have similar components such as
background subtraction and extracting HOG features.
Ideally, a query optimizer (QO) should avoid duplica-
tion of work. Hence, we are interested in a system that
optimizes the execution of multiple queries and is cus-
tomizable; that is, it adapts the execution gracefully
when new queries or more data (new cameras) arrives.

3 VisFlow Design

3.1 Vision modules for surveillance
We develop several vision modules to support popu-
lar surveillance use-cases. In each case, we emphasize
our innovations that (i) improve the accuracy and/or (ii)
lower the computational cost on input video that is col-
lected from deployments in the wild. We begin with a
simple module.

3.1.1 Automatic license plate recognition (LPR)

The license plate recognition module takes as input one
or more images of vehicles passing through a gateway
and outputs a set of possible license plates. The gate-
way can be a virtual line on a roadway or inside a gar-
age. Our goal here is to build a license plate recogni-
tion module over video that requires no additional hard-
ware (such as magnetic coils, flash lights or special-band
light [47]). Further, the video resolution is whatever is
available from the wild. We would like to extract for
each frame the top few likely license plate numbers and
the confidence associated with each number.

We use the following pipeline:
• License plate localization looks for a bounding box

around the likely location of the license plate. We
move a sliding window over the video frame and apply
a linear SVM classifier [31, 53] to estimate how likely
each window is to have a license plate; the windows
are sized in a camera-specific manner. The output is a
set of potential bounding boxes per frame.

• Binarization and character segmentation converts
each bounding box into binary and cuts out individual
characters of the license, if any. We use standard im-
age processing techniques here such as adaptive image
thresholding [22], RANSAC baseline detection [39]
and blob and character detection.

• OCR: We apply a pre-trained random forest classi-
fier [23] to identify each character; we search for the

Figure 2: Step-by-step process of mapping traffic flow. Left: a
vehicle entering the entry box. Right: a vehicle entering exit box.

characters 0–9, A–Z, and ’-’. This yields, for each
character in the image, several predicted values with
soft probabilities for each value. The overall license
plate is a combination of these predictions with con-
fidence equal to their joint probability.

• Post-processing: Since license plates have some com-
mon formats (e.g., three numerals followed by three
characters for plates in Washington state predating
2011), we use a pre-defined rule database to eliminate
predictions that are unlikely to be valid license plates.

We acknowledge that the LPR module requires a cer-
tain amount of resolution to be applicable. For example,
we detect almost no license plates from the videos in Fig-
ure 1(a) but can find almost every license plate from the
video in Figure 1(b). Qualitatively, we outperform exist-
ing LPR softwares due to the following reasons. (1) We
leverage the exemplar SVM [53] for license plate loc-
alization, while prior work [8] applies keypoint match-
ing, which is less accurate. (2) We train a different OCR
model per state to account for the differences in char-
acters across states; the baseline approach has a single
OCR model which we found to be less accurate.

3.1.2 Real-time traffic flow mapping

On highways and at intersections, understanding the
traffic flow has a variety of use-cases as described
in §2.1, including planning restricted-use lanes, speed
limits, traffic signs and police deployment. Hence, there
has been much interest in modeling vehicular traffic
flow [34,44,54,71]. The most widely used method, how-
ever, is to deploy a set of cables (“pneumatic road tubes”)
across the roadway; this enables counting the number of
vehicles that cross the coils and their velocity [12,55,57].
Such counts are typically not available in real-time. Fur-
ther, the cables cannot capture information that is vis-
ible to the human eye (vehicle types, aggressive driving,
vehicle origin-destination or how many turn right etc.).

Our goal here is to develop a module that extracts
rich information about traffic flow from a video feed.
Roadway surveillance cameras are typically mounted on
towers or cross-beams; we use their fixed viewpoint to
place labeled entrance and exit boxes on the roadway. An
example of entrance and exit boxes is shown in Figure 2.
Such annotation simplifies our traffic flow pipeline.

4

• Using a keypoint detection algorithm [65], we identify
and track a vehicle that passes through the entrance
box based on its keypoints [9, 52].

• If (and when) the keypoints cross the exit box, we
generate a traffic flow record stating the names of
the entrance box, the exit box, the corresponding
timestamps, and an estimate of vehicle velocity.

• These records are processed by our dataflow en-
gine (§3.2) into real-time estimates of traffic flow or
can be appended to a persistent store for later use.
Note that the above logic can simultaneously track the

traffic flow between multiple entrance and exit boxes. In
fact, we can compute a 3x3 matrix of traffic flow between
each pair of entrance and exit boxes shown in Figure 2;
the matrix denotes volume in each lane and how often
traffic changes lanes. Qualitatively, using keypoints to
track objects is not new; we cite the following relevant
prior work [65]. However, to the best of our knowledge
applying these ideas in the context of real-time traffic
flow is novel.

3.1.3 Vehicle type & color recognition

Building on the above pipeline, we do the following to
identify the type and color of each vehicle.
• Once a vehicle is detected as above, we obtain an im-

age patch for the vehicle by segmenting the image (see
§3.1.5).

• Given the image patch of a vehicle, we extract various
features including RGB histogram, and histogram of
gradients (HOG) [32] and send them to a classifier.

• We use a linear SVM classifier trained with approx-
imately 2K images belonging to each type and color.
The output of the SVM is a class label (type or color)
and the associated confidence. For vehicle type re-
cognition we classify the vehicles into ‘bike’, ‘sedan’,
‘van’ , ‘SUV’, or ‘truck’. For vehicle color recognition
we classify the vehicles into ‘white’, ‘black’, ‘silver’,
‘red’, or ‘others’. These labels were chosen based on
their frequency of occurrence in the analyzed videos.

Our takeaway from this portion is that standard feature
extraction and classifiers suffice to extract vehicle type
and color from surveillance video; they do not suffice for
more complex tasks such as detecting vehicle make and
model. We chose mature and light-weight features and
classifiers (see Table 2 for a list) and find that they yield
reasonable results.

3.1.4 Object re-identification

The problem here is to identify an object that may be
seen by different cameras. Potential applications include
region-wise tracking of vehicles and humans.

Figure 3: Background subtraction. Left: a vehicle entering the cam-
era view. Right: binary mask indicating moving objects.

At a high level, object reidentification involves (1)
learning an effective image and object representation
over features and (2) learning a feature transform matrix
between each pair of cameras [49]. We do the following:
• We learn a kernel matrix K for each camera pair by

training on images of the same object that are cap-
tured at the two cameras. This matrix encodes how
to “translate” an image from one camera’s viewpoint
to the viewpoint of the other camera.

• Then, the objects x seen at one camera are compared
with objects z that appear at the other camera by com-
puting a similarity score d(x, z) = φ(x) · K · φ(z)T
where φ is a feature extraction function. Table 2 de-
scribes the features that we use for re-identification.

In practice, both x and z can contain multiple objects
and hence the answer d(x, z) could be interpreted as a
pair-wise similarity matrix.

3.1.5 Background subtraction and segmentation

Background subtraction is a common practice; it reduces
the redundancy in surveillance videos [36, 78, 79]. We
use the following method:
• Construct a model of the background (e.g., Mixture of

Gaussians) based on pixels in the past frames.
• Use the model to remove the still pixels in each frame.
Relative to the other vision modules described thus far,
background subtraction is lightweight and often executes
first, as a pre-processor, in our analysis pipelines.

Take Figure 3 for an example, we segment the images
into portions that are needed for further analyses as fol-
lows:
• Since the background subtractor removes still pixels,

the remaining correspond to moving objects. We
connect them using a connected-component al-
gorithm [41] and return each component as a segment.

• The above approach does not work well with occlu-
sions and dense frames; it can group cars in adja-
cent lanes as one object for example. Hence, we use
heuristics based on the fixed viewpoint of surveillance
cameras (e.g. typical size of objects of interest, lane
annotations etc.) as well as an exemplar SVM [53] to
further break the segments.

5

Module Name Description Involving Query
Feature Extraction - RGB Histogram Extract RGB histogram feature given image patch. Amber Alert, Re-ID
Feature Extraction - HOG Extract Histogram of Gradient feature given image patch [32]. Amber Alert, Re-ID
Feature Extraction - Raw Pixels Extract raw pixel feature given image patch. Amber Alert
Feature Extraction - PyramidSILTPHist Extract Pyramid SILTP histogram feature [49] given image patch. Re-ID
Feature Extraction - PyramidHSVHist Extract Pyramid HSV histogram feature [49] given image patch. Object Re-ID
Classifier/regressor - Linear SVM Apply linear SVM classifier/regressor [38] on feature vector. Amber Alert, Re-ID
Classifier/regressor - Random Forest Apply Random forest classifier/regressor [23] on feature vector. Amber Alert
Classifier/regressor - XQDA Object matching algorithm used in [49]. Object Re-ID
Keypoint Extraction - Shi-Tomasi Extract the Shi-Tomasi keypoints in given image region [65]. Traffic Violation
Keypoint Extraction - SIFT Extract SIFT keypoints in given image region [51]. Amber Alert, Re-ID
Tracker - KLT Tracking keypoints using KLT tracker [52]. Traffic Violation
Tracker - CamShift Tracking objects using CamShift tracker [28]. Traffic Violation
Segmentation - MOG Generate Mixture of Gaussian background subtraction [48]. All
Segmentation - Binarization Binarize license plate images. Amber Alert

Table 2: A partial list of vision modules provided by our framework.

3.1.6 Conclusion on vision pipelines and modules

Table 2 describes a partial list of the techniques used in
our vision modules. Our takeaway is that the described
design lets us perform typical vision tasks with good ac-
curacy and efficiency. We are unaware of a system that
performs all of these tasks on surveillance video. Fur-
ther, VisFlow improves upon point solutions (e.g. Open-
ALPR [8] for license plate recognition) because it (a)
uses state-of-the-art vision techniques and (b) combines
them with heuristics based on the fixed viewpoint of sur-
veillance cameras. We note however that some of our
video datasets have insufficient resolution for some tasks
(e.g., inferring vehicle make/model). We next describe
how to efficiently support user queries that use these vis-
ion modules at scale.

3.2 A dataflow platform for vision queries
We build on top of the SCOPE [25] dataflow engine.
Besides general SQL syntax, the dataflow engine offers
some design patterns for user-defined operators: extract-
ors, processors, reducers and combiners. We first de-
scribe how VisFlow adopts these design patterns for vis-
ion modules. Next, we describe our query optimization
over vision queries.

3.2.1 Dataflow for Vision

Extractors ingest data from outside the system. We sup-
port ingesting data in different video formats. An ex-
tractor translates video into a timestamped group of rows.
An example follows.
. . . ← EXTRACT CameraID, FrameID, Blob
FROM video.mp4
USING VideoExtractor();

The columns have both native types (ints, floats,
strings) and blobs (images, matrices). We encode image
columns in the JPEG format to reduce data size and IO
costs. The dataflow engine instantiates as many extractor

tasks as needed given the size of input and the available
degree of parallelism in the cluster. Extractor tasks run
in parallel on different parts of the video input.

Processors are row manipulators. That is, they produce
one or more output rows per input row. Several vision
components are frame-local such as extracting various
types of features (see Table 2), applying classifiers etc.
A few examples follow. As with extractors, processors
can be parallelized at a frame-level; VisFlow chooses the
degree-of-parallelism based on the amount of work done
by the processor [18] and the available cluster resources.
. . . ← PROCESS . . .
PRODUCE CameraID, FrameID, HOGFeatures
USING HOGFeatureGenerator();

. . . ← PROCESS . . .
PRODUCE CameraID, FrameID, License, Confidence
USING LPRProcessor();

Reducers are operations over groups of rows that share
some common aspects. Many vision components such as
background subtraction (§3.1.5) and traffic flow (§3.1.2)
use information across subsequent frames from the same
camera. They are implemented using reducers.

Observe that naively, the degree-of-parallelism of a re-
ducer is bounded by the number of cameras. Because,
an algorithm maintains state per camera (e.g., which
vehicles were in the previous frame), randomly distrib-
uting frames across tasks will lead to incorrect output.
On the other hand, camera-level parallelism can lead to
work skew: tasks corresponding to cameras with busy
views may have an order-of-magnitude more work than
other tasks.

VisFlow uses a novel trick that increases the degree
of parallelism many fold and can combat skew. Our
intuition is that the state maintained across frames has
a bounded time horizon. For the traffic flow example:
each vehicle stays in the camera’s frame-of-view for only
a limited period of time and hence, we can chunk the
video into overlapping groups of frames. If vehicles
transit the frame-of-view in δ frames, then chunk-n may

6

have frames [ns − δ, ns + s]. That is, the reducer pro-
cessing chunk-n uses the first δ frames only to warm-up
its internal state (e.g., assess the background for back-
ground subtraction or detect keypoints of vehicles that
overlap entrance boxes); it then processes the remaining
s frames. The number of the frames per chunk s and the
amount of overlap δ are configuration variables specific
to the reducer. Observe that with chunking the available
degree of parallelism is now limited only by the chunk
size (s) and no longer limited by the number of cameras.
An example reducer follows (the net effect of chunking
is shown in bold, it is an additional group-by column):
. . . ← REDUCE . . .
PRODUCE CameraId, FrameId, VehicleCount
ON {CameraId, ChunkId}
USING TrafficFlowTrackingReducer();

Reducers translate to a partition-shuffle-aggregate.
That is, the input is partitioned on the group and shuffled
such that rows belonging to a group are on one machine.
The number of reducers and partitions is picked, as be-
fore, per the amount of work to be done. Our underly-
ing dataflow engine supports both hash partitioning and
range partitioning to avoid data skew [19].

Combiners implement custom join operations; they take
as input two groups of rows that share some common as-
pects. VisFlow uses combiners for correspondence algor-
ithms, such as object re-identification (§3.1.4). Recall
that re-identification joins an incoming frame (its fea-
tures to be precise) with a reference set and a kernel mat-
rix that encodes mapping the between the two cameras.
An example follows:
. . . ← COMBINE (SELECT * FROM X JOIN Z)
JOIN Kernel USING ReIDCombiner()
ON X.CamId = Kernel.Cam1, Z.CamId = Kernel.Cam2
PRODUCE Cam1, Cam2, FrameID1, FrameID2, Score;

A combiner and other joins, can be implemented in a
few different ways. If one of the inputs is small, it can
be broadcast in its entirety and joined in place with each
portion of the other input; else, either side is partitioned
and shuffled on the join keys and each pair of partitions
are joined in parallel. The dataflow engine automatically
reasons about the various join implementations.

Notes: We note a few benefits from this design. First,
wrapping a vision module in one of the above design
patterns lets the query optimizer reason about semantics.
For example, a pair of processors is commutative if the
columns that one processor manipulates or creates are
pass-through columns for the other processor. Second,
this design allows a vision engineer to focus on effi-
ciently implementing core functionality; they can ig-
nore details about how to parallelize, which order to
join etc. Further, we encourage vision modules to per-
form a single role and explicitly declare all configura-
tion. Not doing so can prevent reuse. For example, con-

1 Func: AmberAlert:
2 Input: search terms: vehicle type vt, vehicle color vc, license l
3 Output: matching {camera, timestamp}
4 State: Real-time tables for $LPR, $VehType and $VehColor

5 SELECT CameraID, FrameID, ($LPR.conf * $VehType.conf *
$VehColor. conf) AS Confidence

6 FROM $LPR, $VehType, $VehColor
7 ON $LPR.{CamId,FrameId}=$VehType.{CamId,FrameId},
$LPR.{CamId,FrameId}=$VehColor.{CamId,FrameId}

8 WHERE $LPR.licensePlate=l ∧ $VehType.type=vt ∧
$VehColor.color=vc

Figure 4: User query 1: Amber Alert.

sider a black-box implementation of the traffic counter
module that implements all of the functionality described
in §3.1.2 in a single reducer. Such a module would pre-
clude reusing intermediate content generated after back-
ground subtraction + segmentation + vehicle identifica-
tion + feature extraction with another query that may be
looking for red cars (§3.1.3). Finally, we ensure that the
overhead from using more statements is negligible. Each
operator is implemented as an iterator that pulls from its
parent. The operators are chained in memory and data is
written to disk only when needed such as for the input to
a shuffle. The output of this part is that each vision task
translates to a directed acyclic graph (DAG) of logical
operations; the DAG is used as input by query optimizer
as we will describe shortly.

3.2.2 Example user queries

To ground further discussion, we show three example
scripts that mimic common queries to a video surveil-
lance system. The complete data flow and user scripts
can be found at http://yao.lu/visflow.

User query 1: Amber alert
Problem: We consider the problem of amber alert– re-
trieving a vehicle of certain color, type, and license plate
number. The user query is shown in Figure 4. Assume
that vision engineers have written their modules in §3.1
using the dataflow in §3.2.1 and that the output of these
modules is available as system tables: $LPR, $VehType,
$VehColor corresponding to license plates, vehicle types
and vehicle colors. The user’s query shown here is one
select statement that joins three tables. VisFlow only ma-
terializes the system tables when needed by user queries.

User query 2: Traffic violation
Problem: We consider the problem of detecting traffic
law violations– vehicles that are overspeeding, weaving
between lanes, or making illegal turns. The user query is
shown in Figure 5. It is a single select statement.

User query 3: Re-identification

7

http://yao.lu/visflow

1 Func: Traffic violation alert:
2 Input: Search terms: vehicle type vt, vehicle speed vs, illegal

origin and destination boxes o, d
3 Output: Matching {Camera, Timestamp, VehicleImage}.
4 State: Real-time tables for traffic flow mapping Traf, VehType

5 SELECT CameraID, FrameID, VehImage
6 FROM Traf, VehType
7 ON
Traf.{CameraID,FrameID}=VehType.{CameraID,FrameID}

8 WHERE VehType.vType=vt ∧ (Traf.vSpeed≥vs ∨
(Traf.vOri=o ∧ Traf.vDes=d))

Figure 5: User query 2: Traffic Violation.

1 Func: Re-ID: tracking a vehicle between two cameras:
2 Input: Search term: vehicle type vt
3 Output: Matching {camera1, timestamp1, camera2,

timestamp2}.
4 State: Real-time tables for re-identification ReID,
VehType{1, 2}

5 SELECT cameraId1, frameId1, cameraId2, frameId2
6 FROM ReID, VehType1 as VT1, VehType2 as VT2
7 ON ReID.{camId1,frameId1}={VT1, VT2}.{camId,frameId},
8 WHERE VT1.vType=vt ∧ VT2.vType=vt;

Figure 6: User query 3: Re-identification.

Problem: We consider the problem of retrieving a vehicle
of same type across two different cameras. The user
query is shown in Figure 6.

3.2.3 Optimizing vision queries

Beyond the ease of specifying queries, we point out a
few aspects of the above design. First, the end-user only
needs to know the schema of the system tables that have
been made available by the vision engineers. As long as
they maintain the schema, vision engineers can change
their pipeline transparent to users.

Second, VisFlow substantially optimizes the execution
of these queries. By recognizing that the filters are local
to each input, they are pushed ahead of the join. That is,
only rows matching the filters are joined rather than fil-
tering after the join. This feature, called predicate push
down [40], is standard in SQL query optimization. Other
more novel aspects of VisFlow follow. (1) The system
tables are materialized only on demand. That is, if no
current query requires license plate recognition, the DAG
of operations associated with that module do not execute.
(2) VisFlow exploits commonality between the various
tables. For example, both VehType and VehColor re-
quire similar features from the raw video frames; and
such features are computed only once. (3) When many
queries run simultaneously, VisFlow does even better.
This is akin to multi query optimization [63] in data-
base literature. The filters coalesce across different quer-
ies. For example, amber alerts for red SUV and green
sedan can be pushed down on to the VehColor table

r
#1

#6
σ
p

#4

#5
σ
p

#7
σ
p

pjoin
a

#3

aa

(a)

r
#1

a
p

#4
p

#5
σ
p

#7
σ
p

pjoin

a

a
#6
σ

#3

p

a

(b)
Figure 7: Dataflow and query Plans of Amber alert for (a) 1 GB
input and (b) 100 GB video input. Note that 100 GB input automatic-
ally parallelizes the tasks to minimize the query plan cost and the query
latency. Please refer to Figure 11 for legend.

as the filter red ∨ green. After join, the individual
amber alerts can separate out the frames that they desire
(e.g., red frames). (4) Finally, a key aspect is that Vis-
Flow performs the most expensive operations over video
frames exactly once (i.e., de-duplication) irrespective of
the number of queries that may use such system tables.

Method: VisFlow achieves these advantages by treating
all of queries as if they were one large query for the
purposes of optimization. However, during execution,
the jobs corresponding to each query are only loosely
coupled. As with other data-parallel frameworks [4, 19],
VisFlow stores the output of “tasks” in persistent stor-
age; each task is a unit of execution that is idempotent
and should finish within seconds. VisFlow retries failing
tasks. Faults in user-code will cause consistent failures
and hence such queries will fail; queries with defect-free
user code rarely fail in VisFlow.

QO details: Here, we sketch how the dataflow optim-
izations mentioned above are realized by VisFlow. The
input is a collection of queries, each of which is a direc-
ted acyclic graph (DAGs) of logical operations. The de-
sired output is an execution plan that can be translated to
a set of loosely coupled jobs. This plan should have the
above-mentioned properties including appropriate paral-
lelization and de-duplication of work.

VisFlow’s QO can be explained with two main con-
structs. A memo data structure remembers for each
unique sub-expression (i.e., an operator and its descend-
ants) the best possible plan and the cost of that plan. A
large collection of transformation rules offer alternatives
for sub-expressions. Examples of transformation rules
include predicate push-down:

E1 → S → Filter → E2 ⇐⇒ E1 → Filter → S → E2.

Transformations may or may not be useful; for example,
which of the above choices is better depends on the re-
lative costs of executing Filter and S and their selectiv-
ity on input. Hence, we uses data statistics to determine

8

the costs of various alternatives. The lowest cost plan is
picked. Here, cost is measured in terms of the comple-
tion time of the queries given available cluster resources.
The memo also allows VisFlow to de-duplicate common
sub-expressions across queries. By applying these trans-
formation rules till fixed point, VisFlow searches for an
efficient plan for all the queries.

To speed-up the search, VisFlow defers a few aspects
such as the choice of appropriate degree-of-parallelism
and avoiding re-partitions till after a good logical plan
is discovered. Given a logical plan, VisFlow costs a
variety of serial and parallel implementations of sub-
expressions (e.g., 20 partitions on column X) and picks
the best parallel plan.

Stepping back, we highlight with examples two as-
pects of the query optimization that we found useful for
vision queries. First, VisFlow adapts plans with vary-
ing input size. Simply changing the degree of parallel-
ism (DOP) does not suffice. When plans transition from
serial (DOP = 1) to parallel, corresponding partition-
shuffle-aggregates have to be added and join implement-
ations change (e.g. from broadcast join to pair-join). Fig-
ure 7 illustrates the plan for amber-alerts (Figure 4) at
two different input sizes. Next, VisFlow automatically
de-duplicates common vision portions of seemingly un-
related user queries. We illustrate this in Figure 11 when
different user queries described above run together. We
defer further discussion to §5.2.

4 VisFlow System

Data acquisition: To evaluate VisFlow on realistic
inputs, we collected video data in two ways. (1) We
collected high-resolution video data ourselves, in and
around Microsoft campus, using the IP surveillance cam-
era ACTi B21 with 1920x1080 resolution and 12x zoom.
We collected video at the entrances to a few parking
garages (from the windows of an adjacent building) as
well as curb-side videos. Figures 1(b) is an example
of this dataset. (2) We also gathered publicly avail-
able video traces from the Washington State Department
of Transportation (WSDOT). These are typically low
res videos (352x258 resolution, 15FPS) from cameras
mounted on crossposts along Washington state highways
and at traffic intersections. Figures 1(a) is an example
from this dataset.
Core vision modules: We have built several vision mod-
ules, including all those described in Table 2. The mod-
ules are in C++ and use the OpenCV framework. This
codebase contains about 5K lines of code.
Dataflow modules: Each of the vision modules are
mapped to a declarative dataflow system: SCOPE [25]
using wrappers. These wrappers are about 700 lines of
code in C#.

1 2 3 4 5 6
N=Number of LPs Returned

0

20

40

60

80

100

A
cc

u
ra

cy
 f

o
r

T
o
p
 N

 R
e
su

lt
s

VisFlow

OpenALPR

Figure 8: LPR Accuracy for Top N results.

Method 0 miss ≤ 1 miss ≤ 2 miss rate (fps)
VisFlow 0.57 0.75 0.82 4.8

OpenALPR 0.38 0.61 0.67 3.2

Table 3: LPR Evaluation.

User queries and query optimization: The end user
writes vision queries in the SCOPE language, an ex-
ample of which is shown in Figure 4. We built several
user queries including every one of the use-cases men-
tioned in §2. All queries are within a few tens of lines of
code.
Cluster: We initially build our system on top of Mi-
crosoft’s Cosmos system [25], a large shared production
cluster. For each case, we report performance and accur-
acy with VisFlow.
Streaming: While the execution plans output by VisFlow
can also be used in a stream engine such as Trill [27],
we have thus far only used them in the batch mode.
When new data arrives online, the plans can be peri-
odically re-executed say every minute with the outputs
shared through memory. This is the so-called mini-batch
model [75]. Applying VisFlow to a distributed stream en-
gine, especially one that scales beyond the total memory
size of the cluster, is a key area of future work.

5 Evaluation

5.1 Microbenchmarks of vision modules
for surveillance

5.1.1 License plate recognition

Methodology: The dataset for this evaluation is a day-
long video of the cars exiting a Microsoft campus garage.
The video is pre-processed using background subtraction
to prune frames that have no cars. We draw a random
sample of 1000 images from the remaining frames and
annotate the license plate area manually to train the loc-
alization module. Further, we annotate the license plate
characters manually in 200 images to train the optical
character recognition module.We use a test set of 200 dif-
ferent images to evaluate the License Plate Recognition
module, end-to-end.

We benchmark our module against state-of-the-art
OpenALPR [8], an open source Automatic License Plate
Recognition library. Two metrics are used in the compar-

9

Figure 9: Failure case for blob detection.

Seq1 Seq2 Seq3 Seq4 Avg rate(fps)
VisFlow 0.87 0.88 0.88 0.89 0.88 77
Baseline 0.46 0.40 0.31 0.58 0.44 42

Table 4: Vehicle counting accuracy and efficiency on four video
sequences.

Bike Sedan SUV Truck Van
VisFlow 1.00 0.92 0.34 0.70 0.65
Baseline 0.01 0.67 0.17 0.05 0.10

Table 5: Car type classification accuracy. We compare with a simple
guess according to the class distribution as baseline.

ison: (i) accuracy, which measures the probability that
the top N results contain the ground truth answer, and
(ii) maximum frame ingestion rate, which is based on the
processing time per frame. Both our module and Open-
ALPR run single threaded, and the average ingestion rate
over a batch of video frames is reported.

Results: Figure 8 shows that accuracy (probability that
the recognized license plate is entirely correct) increases
with N (the size of answers returned ordered by con-
fidence); our method achieves reasonable results with
only one answer. Table 3 demonstrates the detection ra-
tios given different tolerance thresholds, i.e., we consider
license plates with ≤ n wrong character(s) as correct.
The table shows that our LPR module processes frames
roughly 1.5× faster than the state-of-the-art license plate
recognition software and also achieves better accuracy in
terms of both absolute and relative correctness.

5.1.2 Real-time traffic flow mapping

Methodology: The dataset for this evaluation is
10 minute segments from WSDOT [10]; we picked cam-
eras in the city of Seattle on both highways and surface
roads. The goal is to count the vehicles in each lane.

We compare against an open-source module [12],
which does background subtraction and tracks blobs in
the video. We measure the processing speed for each
frame and the accuracy of the traffic volume in each lane.

Results: Table 4 shows that VisFlow achieves an accur-
acy of 85–90% on four different video segments, while
the accuracy of the car blob detection module is less than
60%. The baseline method detects blobs of moving ob-
jects and often fails when different vehicles occlude with
each other, as shown in Figure 9. Unlike this approach,
our proposed method is based on keypoints and lever-
ages per-camera annotation (entry and exit boxes in each
lane) to protect against such shortcomings. We also see

20 40 60 80 100
Size of input

0

20

40

60

80

100

Q
u
e
ry

 l
a
te

n
cy

 (
m

in
)

(a)

20 40 60 80 100
Size of input

0

200

400

600

C
lu

st
e
r

p
ro

ce
ss

in
g
 t

im
e
 (

m
in

)

Amber Alert

Amber Alert w/o QO

ReID

ReID w/o QO

(b)
Figure 10: Query Optimization reduces the query completion time
significantly for both amber alert and Re-ID (a) as the number of input
videos increases for each query. Further, query optimization ensures
the most efficient cluster resource utilization in terms of processing
time (b).

that our approach is less computationally complex lead-
ing to a 1.8× higher frame processing rate compared to
the baseline.

5.1.3 Classification of vehicles

Methodology: The dataset for this evaluation is a one
hour video of the intersection of Fairview avenue and
Mercer street available from WSDOT [10]. We apply
the above discussed traffic flow module to segment this
video into per-vehicle patches. Our goal here is to clas-
sify these patches into types and colors; that is, assign
to each image the labels listed in §3.1.3. We compare
against a baseline that guesses the class for each image
with probability equalling the likelihood of that class. 1

Results: Table 5 shows that VisFlow achieves differ-
ent accuracy levels per class; across all classes Vis-
Flow is much better than random guesses. The relat-
ively lower accuracy for the SUV class is because SUVs
are routinely confused with sedans on the low-resolution
videos in the dataset; the two classes have a similar
size especially with “cross-overs”. Overall, we believe
that coarse granular categorization of vehicles is possible
with the techniques built into VisFlow.

5.2 Optimizing dataflow
Methodology: Over the video dataset from a Microsoft
campus garage, we execute two end-to-end user queries:
amber alert and car re-identification across 10-100 sets
of input. For amber alert, each inputset contains a 90MB
video from one camera, while for re-identification, each
inputset contains video from two cameras. All the videos
are 1 minute in length. We experiment by running each
amber alert and car re-id query independently as well as
a group of (different) amber alert queries at one time on
the input video set. Recall that an amber alert consists
of a triple of (partial) license plate information, vehicle
type and color. Further, for car re-identification, we first

1Uniformly random guesses for the class were less accurate.

10

Avg. task
duration

3mins

0s

Tasks

1

100
1000

Labels
r read
p partition
#x operation# x
a aggregate
pjoin pair join
σ select

10
r
#1

#2

#3 #4

pjoin

#5
σ

#6
σ

(a)

#2
σ
p

a

#4

r
#1

#3

#6
σ

pjoin

(b)

#2
p

a

#4

r
#1

#3

#6
σ

pjoin

#5
σ

σ σ

(c)

Edges
have to shuffle
broadcast

can be local
1GB 100GB

shuffle at least one side

Process
#1 VideoExtractor

#2 TrackingReducer

#3 FeatureProcessor(‘RGBHist’)

#4 FeatureProcessor(‘HOG’)

#5 SVMClassifierProcessor(‘color.model’)

#6 SVMClassifierProcessor(‘type.model’)

#7 LPRProcessor

Figure 11: Query Plans of (a) Amber alert query, (b) Traffic Violation query, and (c) Amber Alert+Traffic Violation query. Note that the
combined query plan in (c) deduplicates the common modules, thus minimizing the query plan cost and the query latency for both queries.

filter by vehicle type, and then use re-identification over
the set of matching frames.

Additionally, on a dataset of videos available from
Seattle WSDOT website, we execute two end-to-end user
queries: amber alert, and traffic violations across 50 sets
of input. The amber-alert query is similar to above, ex-
cept it does not have license plate recognition; while for
traffic violations, we measure the weaving of cars in the
traffic flow from the leftmost lane to the rightmost lane.

We compare VisFlow against a version of VisFlow
without query optimization. That is, the queries ex-
pressed by the end-user are run literally by the system.
We measure the completion time of the query as well as
the total resource usage across all queries (measured in
terms of compute hours on the cluster). We repeat the
experiment with different sizes of input to examine how
VisFlow scales. Besides, for amber alert, we vary the size
of the query set (number of amber alert triples) from one
to five to see how queries are affected by the optimizer.

Results: Figure 10 (a) plots the ratio of the completion
time for VisFlow with the version of VisFlow that has no
query optimization, for single queries on the garage feed.
We see that, with query optimization, VisFlow is roughly
3× faster. Further, the completion time of VisFlow re-
mains constant as dataset sizes increase illustrating the
fact that the QO sets the degree-of-parallelism correctly.
The large gains arise from de-duplicating the work in the
vision modules (e.g., generating HOG features etc.).

Further, Figure 10 (b) demonstrates the amount of
cluster resources used by VisFlow and the version of the
VisFlow that does not perform query optimization. We
observe similar behavior to Figure 10 (a). The key differ-

1 GB input 100 GB input
Average Task Duration 18.3 sec 38.6 sec
Cluster Computing Time 37.78 min 4101.75 min
Intermediate data size 1.95 GB 188.95 GB
Cross-rack Network IO 8.9% 8.9%

Table 6: Query optimization ensures efficient resource usage as the
input video size scales from 1 GB to 100 GB for Amber alert with LPR
query.

1 2 3 4 5
Number of queries

0

20

40

60

80

100

C
lu

st
e
r

p
ro

ce
ss

in
g
 t

im
e
 (

m
in

)

Amber Alert w/o QO

Amber Alert + Violation w/o QO

Amber Alert + Violation

Figure 12: As the number of queries scale, query optimization en-
sures that the cluster processing time for both sets of queries stays con-
stant by using auto-parallelization and de-duplication.

ence is that the gap between the two lines in Figure 10 (b)
measures the total-work-done by the query and is directly
related to the size of the inputset; for small inputs the gap
is lost in noise but at large inputs, the gap opens up quite
a bit. On the other hand, the gap in Figure 10 (a) is query
completion time; even a query that does more work can
finish quickly because our production cluster where these
experiments were conducted is shared by jobs from many
production groups and the cluster scheduler is work con-
serving; that is, it offers queries more than their share of
resources if the cluster is otherwise idle.

Next, we evaluate how VisFlow scales with different
sizes of videos from the garage feed. Figure 7 shows the
query plans for amber alert with LPR for two input sizes:
1 GB and 100 GB. In Figure 7 (b), the larger circle sizes
and darker circles illustrate that the degree of parallel-
ism is set correctly; hence, as Table 6 shows, the query
completion time is almost similar even for larger input.

Figure 12 compares the improvement in completion
time due to QO while varying the number of queries on
the WSDOT feed. We see that the improvements of Vis-
Flow increase when there are many similar queries; the
value of the X axes here denotes the number of different
queries of each type being executed simultaneously. Due
to careful de-duplication of work, the completion time
of VisFlow is roughly constant as the number of queries
increase; the latency is only proportional to the amount
of video examined. In contrast, the version of VisFlow
without QO is unable to de-duplicate the work, leading

11

of Query latency Cluster Processing
chunks (in min) Time (in min)
1 16.1 20.2
3 7.6 23.4
8 5.2 24.2
10 5.4 25.4

Table 7: For traffic violation query, chunking the video minimizes
the query latency by exploiting higher degree of parallelism.

to substantially worse completion time as the number of
queries increase. Figure 11 (a) and (b) show the query
plans when the amber alert and re-identification queries
are run individually, while Figure 11 (c) shows the query
plan when the two queries are run simultaneously on the
cluster. QO ensures that efficient de-duplication of the
common modules in (c) thereby minimizing the query
latency and resource usage on the cluster.

It is of course possible to carefully handcraft these
vision pipelines to achieve a similar result. The key
aspect of VisFlow, however, is that such de-duplication
(and query optimization, in general) occurs automatic-
ally even for quite complex queries. Thus, VisFlow can
offer these performance improvements along with sub-
stantial ease-of-use and with the ability to naturally ex-
tend to future user queries and vision modules.

Table 7 shows the effectiveness of chunking the videos
with overlap for traffic violation queries on the WSDOT
feed. Query completion times are improved by using
more chunks and hence leveraging higher degree of par-
allelism on the cluster (more cluster processing time).
The optimal number of chunks in this case is 8; breaking
into more chunks is not advisable because gains from ad-
ded parallelism are undone by the overhead in processing
the overlapping frames. We believe such chunking to be
rather broadly applicable to scenarios that are otherwise
limited to camera-level parallelism.

Overall, we conclude that VisFlow’s dataflow engine
not only allows end-users to specify queries in simple
SQL-like syntax but by employing a powerful query op-
timization engine offers (a) the ability to run similar
queries with nearly zero additional cost and (b) automat-
ically scales the execution plan appropriately with grow-
ing volume of datasets.

6 Related Work

To the best of our knowledge, VisFlow uniquely shows
how to execute sophisticated vision queries on top of a
distributed dataflow system. Below, we review some rel-
evant prior work.

6.1 Video analytics systems
We already discussed notable systems such as the IBM
Smart Surveillance System and start-ups in this space

in the background section (§2). Automatic analyses of
videos, including that collected from highways and in-
tersections, has a rich literature; the following are excel-
lent surveys of the latest in this space [24, 50, 67, 74].
Key differences for VisFlow are its use of simple camera-
specific annotation and its use of state-of-the-art vision
techniques such as exemplar SVMs.

6.2 Dataflow systems
There has been significant recent interest in distrib-
uted dataflow systems and programming models, e.g.,
Dryad [45], Map-Reduce [30,35,46], Hive [66], Pig [58],
Sawzall [60] and Spark [20, 76]. At a high level, the re-
cent work is characterized by a few key aspects: much
larger scale as in clusters of tens of thousands of serv-
ers, higher degrees of parallelism, simpler fault-tolerance
and consistency mechanisms, and stylistically different
languages. The more recent frameworks adopt relational
user-interfaces, i.e. SQL-like [20, 25, 66]. Most have a
rule-based optimizer [20, 66]; except for SCOPE, which
uses a Cascades-style [40] cost-based optimizer. The key
distinction between the two is that the latter allows con-
sidering alternatives that need not be strictly better than
the original plan; rather which alternative is better de-
pends on properties of the code (e.g., the computational
or memory cost of an operation) as well as data proper-
ties (e.g., the number of rows that pass through a filter).

Relative to these systems, VisFlow offers a library of
vision-specific modules built in a manner that lets users
specify their queries in a SQL-like language. Further,
VisFlow tweaks the underlying query optimization logic
in a few ways (e.g., incorporates costs and other aspects
of the vision modules) to achieve performant parallel ex-
ecution plans for a vision query system.

7 Conclusion

We present VisFlow, a system that combines state-of-the-
art techniques from the vision and data-parallel comput-
ing communities for a variety of surveillance applica-
tions. VisFlow provides a SQL-like declarative language
and substantially simplifies the job of end-users and vis-
ion engineers. VisFlow adapts a cost based query optim-
izer (QO) to bridge the gap between end-user queries and
low-level vision modules. The QO outputs good parallel
execution plans, scaling appropriately as the data to be
processed increases. Further, the QO also scales nicely
across similar queries; it is able to structure the work of
each query such that the overall work is not duplicated.
Our evaluation on surveillance videos and experiments
on a large production cluster show that VisFlow improves
upon prior art by several times on accuracy and perform-
ance.

12

References

[1] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[2] Confusion matrix. http://bit.ly/1TaZkFT.
[3] Earthcam live feeds from nyc. http://bit.ly/1SZgZQv.
[4] Hadoop YARN Project. http://bit.ly/1iS8xvP.
[5] Imagenet. http://www.image-net.org.
[6] Microsoft coco- common objects in a context. http:

//mscoco.org.
[7] Netflix tech blog: High quality video encoding at

scale. http://techblog.netflix.com/2015/12/high-quality-
video-encoding-at-scale.html.

[8] Open automatic license plate recognition library. https:
//github.com/openalpr/openalpr.

[9] Opencv. http://opencv.org/.
[10] Seattle department of transportation live traffic videos.

http://web6.seattle.gov/travelers/.
[11] Trafficland. http://www.trafficland.com.
[12] Vehicle counting based on blob detection. https://github.

com/andrewssobral/simple vehicle counting.
[13] Video surveillance storage: How much is enough?

http://www.seagate.com/files/staticfiles/docs/pdf/
whitepaper/video-surv-storage-tp571-3-1202-us.pdf.

[14] Youtube: Video encoding settings. https://support.google.
com/youtube/answer/1722171?hl=en.

[15] TPC-DS Benchmark. http://bit.ly/1J6uDap, 2012.
[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
et al. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorflow. org.

[17] ACLU. Police body-mounted cameras: With right
policies in place, a win for all. http://bit.ly/1RBzI1i.

[18] S. Agarwal, S. Kandula, N. Burno, M.-C. Wu, I. Stoica,
and J. Zhou. Re-optimizing data parallel computing. In
NSDI, 2012.

[19] G. Ananthanarayanan et al. Reining in the Outliers in
MapReduce Clusters Using Mantri. In OSDI, 2010.

[20] M. Armbrust et al. Spark sql: Relational data processing
in spark. In SIGMOD, 2015.

[21] Avigilon. Video surveillance solutions. http://bit.ly/
21EIIr3.

[22] D. Bradley and G. Roth. Adaptive thresholding using the
integral image. Journal of graphics, gpu, and game tools,
12(2):13–21, 2007.

[23] L. Breiman. Random forests. Machine learning, 45(1):5–
32, 2001.

[24] N. Buch, S. Velastin, and J. Orwell. A review of com-
puter vision techniques for the analysis of urban traffic.
IEEE Transactions on Intelligent Transportation Systems,
12(3):920–939, 2011.

[25] R. Chaiken et al. SCOPE: Easy and Efficient Parallel Pro-
cessing of Massive Datasets. In VLDB, 2008.

[26] C. Chambers et al. Flumejava: easy, efficient data-parallel
pipelines. In PLDI, 2010.

[27] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing.
Trill: A high-performance incremental query processor
for diverse analytics. VLDB, 8(4):401–412, 2014.

[28] Y. Cheng. Mean shift, mode seeking, and clustering. Pat-
tern Analysis and Machine Intelligence, IEEE Transac-
tions on, 17(8):790–799, 1995.

[29] Operation virtual shield: a homeland security grid
established in chicago. https://en.wikipedia.org/wiki/
Operation Virtual Shield.

[30] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. In NSDI,
pages 21–21, 2010.

[31] N. Cristianini and J. Shawe-Taylor. An Introduction
to Support Vector Machines: And Other Kernel-based
Learning Methods. Cambridge University Press, New
York, NY, USA, 2000.

[32] N. Dalal and B. Triggs. Histograms of oriented gradients
for human detection. In CVPR., volume 1, pages 886–
893, 2005.

[33] Defense advanced research projects agency (darpa) in-
formation systems office’s three-year program on video
surveillance and monitoring (vsam) technology. http://
www.cs.cmu.edu/∼vsam/OldVsamWeb/vsamhome.html.

[34] K. Davidson. A flow travel time relationship for use in
transportation planning. In Australian Road Research
Board (ARRB) Conference, 3rd, 1966, Sydney, 1966.

[35] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[36] A. Elgammal, D. Harwood, and L. Davis. Non-parametric
model for background subtraction. In ECCV. 2000, pages
751–767. Springer, 2000.

[37] M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. IJCV, 88(2):303–338, 2010.

[38] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-
J. Lin. Liblinear: A library for large linear classification.
JMLR, 9:1871–1874, 2008.

[39] M. A. Fischler and R. C. Bolles. Random sample con-
sensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communica-
tions of the ACM, 24(6):381–395, 1981.

[40] G. Graefe. The cascades framework for query optimiza-
tion. IEEE Data Eng. Bull., 1995.

[41] R. M. Haralick and L. G. Shapiro. Image segmentation
techniques. Computer vision, graphics, and image pro-
cessing, 29(1):100–132, 1985.

[42] K. Harrigan. The special system. Journal of Research on
Computing in Education, 2000.

[43] I. HLDI. Us communities using red light cameras
and speed cameras. http://www.iihs.org/iihs/topics/laws/
printablelist.

[44] S. P. Hoogendoorn and P. H. Bovy. State-of-the-art of
vehicular traffic flow modelling. Proceedings of the In-

13

http://bit.ly/1TaZkFT
http://bit.ly/1SZgZQv
http://bit.ly/1iS8xvP
http://www.image-net.org
http://mscoco.org
http://mscoco.org
http://techblog.netflix.com/2015/12/high-quality-video-encoding-at-scale.html
http://techblog.netflix.com/2015/12/high-quality-video-encoding-at-scale.html
https://github.com/openalpr/openalpr
https://github.com/openalpr/openalpr
http://opencv.org/
http://web6.seattle.gov/travelers/
http://www.trafficland.com
https://github.com/andrewssobral/simple_vehicle_counting
https://github.com/andrewssobral/simple_vehicle_counting
http://www.seagate.com/files/staticfiles/docs/pdf/whitepaper/video-surv-storage-tp571-3-1202-us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/whitepaper/video-surv-storage-tp571-3-1202-us.pdf
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
http://bit.ly/1J6uDap
http://bit.ly/1RBzI1i
http://bit.ly/21EIIr3
http://bit.ly/21EIIr3
https://en.wikipedia.org/wiki/Operation_Virtual_Shield
https://en.wikipedia.org/wiki/Operation_Virtual_Shield
http://www.cs.cmu.edu/~vsam/OldVsamWeb/vsamhome.html
http://www.cs.cmu.edu/~vsam/OldVsamWeb/vsamhome.html
http://www.iihs.org/iihs/topics/laws/printablelist
http://www.iihs.org/iihs/topics/laws/printablelist

stitution of Mechanical Engineers, Part I: Journal of Sys-
tems and Control Engineering, 215(4):283–303, 2001.

[45] M. Isard et al. Dryad: Distributed Data-Parallel Programs
From Sequential Building Blocks. In EuroSys, 2007.

[46] D. Jiang, B. Ooi, L. Shi, and S. Wu. The performance
of mapreduce: An in-depth study. Proc. VLDB Endow.,
3(1), 2010.

[47] J. Juang and Y.-C. Huang. Intelligent Technologies and
Engineering Systems, volume 234. Springer Science &
Business Media, 2013.

[48] P. KaewTraKulPong and R. Bowden. An improved ad-
aptive background mixture model for real-time tracking
with shadow detection. In Video-based surveillance sys-
tems, pages 135–144. Springer, 2002.

[49] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-
identification by local maximal occurrence representation
and metric learning. In CVPR, pages 2197–2206, 2015.

[50] S. Liu, J. Pu, Q. Luo, H. Qu, L. Ni, and R. Krishnan. Vait:
A visual analytics system for metropolitan transportation.
IEEE T. on Intelligent Transportation Systems, 2013.

[51] D. G. Lowe. Object recognition from local scale-invariant
features. In Computer vision, 1999. The proceedings of
the seventh IEEE international conference on, volume 2,
pages 1150–1157. Ieee, 1999.

[52] B. D. Lucas, T. Kanade, et al. An iterative image regis-
tration technique with an application to stereo vision. In
IJCAI, volume 81, pages 674–679, 1981.

[53] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of
exemplar-svms for object detection and beyond. In ICCV,
pages 89–96, 2011.

[54] A. D. May. Traffic flow fundamentals. 1990.
[55] P. McGowen and M. Sanderson. Accuracy of pneumatic

road tube counters. In Proceedings of the 2011 Western
District Annual Meeting, Anchorage, AK, USA, volume
1013, 2011.

[56] Microsoft. An Overview of Windows Azure.
http://bit.ly/1Qo6yUg.

[57] L. E. Y. Mimbela and L. A. Klein. Summary of vehicle
detection and surveillance technologies used in intelligent
transportation systems. 2000.

[58] C. Olston et al. Pig Latin: A Not-So-Foreign Language
for Data Processing. In SIGMOD, 2008.

[59] Omnicast. Video management software. http://www.
genetec.com/solutions/all-products/omnicast.

[60] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Inter-
preting the data: Parallel analysis with sawzall. Scientific
Prog., 2003.

[61] Pro-Vigil. Video surveillance. http://pro-vigil.com/.
[62] P. Remagnino. Video-Based Surveillance Systems: Com-

puter Vision and Distributed Processing. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2001.

[63] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and extensible algorithms for multi query optimization.
In ACM SIGMOD Record, 2000.

[64] M. Satyanarayanan. Mobile computing: The next decade.
SIGMOBILE Mob. Comput. Commun. Rev., 2011.

[65] J. Shi and C. Tomasi. Good features to track. In CVPR,
pages 593–600, 1994.

[66] A. Thusoo et al. Hive: A Warehousing Solution Over A
Map-Reduce Framework. Proc. VLDB Endow., 2009.

[67] B. Tian, B. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou,
D. Shen, and S. Tang. Hierarchical and networked vehicle
surveillance in its: A survey. IEEE T. on Intelligent Trans-
portation Systems, 16(2):557–580, April 2015.

[68] Y.-l. Tian, L. Brown, A. Hampapur, M. Lu, A. Senior,
and C.-f. Shu. Ibm smart surveillance system (s3): Event
based video surveillance system with an open and extens-
ible framework. Mach. Vision Appl., 19(5-6):315–327,
Sept. 2008.

[69] Supply of video management software remains fragmen-
ted. http://bit.ly/1TiDnVr.

[70] H. Vceraraghavan, O. Masoud, and N. Papanikolopoulos.
Vision-based monitoring of intersections. In IEEE In-
ternational Conference on Intelligent Transportation Sys-
tems, pages 7–12, 2002.

[71] X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised
activity perception in crowded and complicated scenes
using hierarchical bayesian models. IEEE Transactions
on PAMI, 31(3):539–555, 2009.

[72] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-
to-end learning of action detection from frame glimpses
in videos. In CVPR, 2016.

[73] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: a system for
general-purpose distributed data-parallel computing us-
ing a high-level language. In OSDI, pages 1–14, 2008.

[74] G. Yuan, X. Zhang, Q. Yao, and K. Wang. Hierarchical
and modular surveillance systems in its. IEEE Transac-
tions on Intelligent Systems.

[75] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Dis-
cretized streams: an efficient and fault-tolerant model for
stream processing on large clusters. In Presented as part
of the, 2012.

[76] M. Zaharia et al. Spark: Cluster computing with work-
ing sets. Technical Report UCB/EECS-2010-53, EECS
Department, University of California, Berkeley, 2010.

[77] J. Zhou et al. SCOPE: Parallel Databases Meet MapRe-
duce. Proc. VLDB Endow., 2012.

[78] Z. Zivkovic. Improved adaptive gaussian mixture model
for background subtraction. In ICPR, volume 2, pages
28–31, 2004.

[79] Z. Zivkovic and F. van der Heijden. Efficient ad-
aptive density estimation per image pixel for the task
of background subtraction. Pattern recognition letters,
27(7):773–780, 2006.

14

http://www.genetec.com/solutions/all-products/omnicast
http://www.genetec.com/solutions/all-products/omnicast
http://pro-vigil.com/
http://bit.ly/1TiDnVr

	Introduction
	Primer on video surveillance analytics
	Example surveillance use-cases
	Requirements for a surveillance system
	State-of-the-art in surveillance systems
	Challenges

	VisFlow Design
	Vision modules for surveillance
	Automatic license plate recognition (LPR)
	Real-time traffic flow mapping
	Vehicle type & color recognition
	Object re-identification
	Background subtraction and segmentation
	Conclusion on vision pipelines and modules

	A dataflow platform for vision queries
	Dataflow for Vision
	Example user queries
	Optimizing vision queries

	VisFlow System
	Evaluation
	Microbenchmarks of vision modules for surveillance
	License plate recognition
	Real-time traffic flow mapping
	Classification of vehicles

	Optimizing dataflow

	Related Work
	Video analytics systems
	Dataflow systems

	Conclusion

