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Read This First

Preface
SPRUIG3C–January 2018–Revised August 2019

Read This First

About This Manual
This document describes a tool which accepts kernels written for EVE’s VCOP processor in the VCOP
Kernel-C language, and rewrites them as a C program suitable for execution on C7000™ (C7x). This tool
is intended to assist programmers who have EVE code in migrating to C7000.

Related Documentation
The following documents will provide related information for the C7x:
• C7000 C/C++ Optimizing Compiler User's Guide (SPRUIG8)
• C7000 Host Emulation User's Guide (SPRUIG6)
• C7000 Embedded Application Binary Interface (EABI) Reference Guide (SPRUIG4)
• C6000-to-C7000 Migration User's Guide (SPRUIG5)

Trademarks
C7000 is a trademark of Texas Instruments.
OpenCL is a trademark of Apple Inc. used with permission by Khronos.
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Chapter 1
SPRUIG3C–January 2018–Revised August 2019

Overview and Scope

This document describes tooling that enables the migration of kernels written for EVE’s VCOP vector
coprocessor to the C7000 (C7x).
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1.1 Comparing VCOP and C7000
VCOP kernels are written in a domain-specific language subset of C++ called VCOP Kernel-C. A
migration tool accepts kernels written in Kernel-C and outputs code that will be functionally equivalent,
within limits, for C7x. This document provides details about the VCOP Kernel-C migration tool: its scope,
capability, and limitations.

VCOP Kernel-C, compiled for native execution on EVE, is translated to EVE code by a tool called vcc-
arp32. (VCC stands for VCOP C Compiler.) The vcc-arp32 tool generates kernel code for VCOP, as well
as C code for ARP32 that sets up the execution environment for the kernel such that the kernel can be
called as a C function. This code is then compiled by the ARP32 compiler for native execution on EVE.

For C7x the VCOP Kernel-C migration tool is called vcc7x. It translates a kernel written in VCOP Kernel-C
into a C function that can be compiled for C7x and called in the same way as on ARP32.

Typically the kernel is called by dispatch code running on the ARP32 that manages buffers, transfers data,
and synchronizes execution between VCOP and ARP32. The APIs that provide this functionality, which
are part of the ARP32 RTS, are re-implemented for C7x so that dispatch code can be migrated with little
or no modification.

The migration tool is supported by a library that implements specific VCOP operations on C7x. The library
is called the VCOP Virtual Machine (VVM, or simply virtual machine) since it layers a VCOP-like interface
onto the underlying C7x. VCC translates Kernel-C statements into calls to the virtual machine’s APIs. The
VVM is implemented as a C++ library that uses template classes and inline functions to achieve
abstraction and efficiency.

On the surface VCOP and C7x have many similarities in that both have SIMD capability in the form of
vector-oriented datapaths. In addition, both are designed for iterative (rather than thread-level) operation
using pipelined execution.

However, there are also many differences.
• VCOP has 8-way SIMD with 40-bit integer arithmetic in each lane for a total of 320 bits of arithmetic

width, while C7x has 512 bits of width with variable lane widths arranged as 64 lanes x 8 bits, 32x16,
16x32, or 8x64.

• VCOP has built-in control for up to four levels of nested looping, whereas C7x relies on traditional
explicit loop control and software pipelining.

• VCOP has built-in address generators that automatically compute multi-dimensional array accesses;
C7x has the Streaming Engine (SE) and Streaming Address Generators (SA), which are similar
concepts but differ in the details.

• VCOP has built-in support for lookup-table and histogram operations; C7x also supports these
operations but not as directly.

• VCOP has a rich set of addressing modes that enable loads and stores to perform upsampling,
downsampling, interleaving, scatter/gather, and so on. C7x has support for many of these operations
but others require software emulation.

• VCOP has 96K bytes of L1 memory for buffers, lookup tables, and histogram bins that must be
manually loaded and unloaded; C7x has 32K bytes of L1D SRAM (in addition to an L1 data cache that
is automatically managed).

• Finally, VCOP has a parameter buffer that allows kernel-invariant computations to be pre-computed
prior to execution of the kernel, whereas C7x has no such dedicated support, although such a
mechanism can be implemented programmatically.

All these differences must be accounted for when translating code written for VCOP to C7x.

http://www.ti.com
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1.2 About this Document
The purpose of this document is to describe the behavior of the VCOP Kernel-C migration tool and the
supporting virtual machine. Specifically, it describes how each feature of VCOP is implemented on C7x by
the migration tool. After reading this document, a user should be able to look at either the C code
generated by the migration tool or the assembly output that results from compiling it and understand what
it’s doing and why.

Compatibility Warnings:
The primary goal of the translation capability is functional correctness. That is, a kernel written for VCOP should execute
unmodified on C7x with identical (bit-exact) results as on VCOP. However, there are cases where this is not possible or impractical.
In these cases, the kernel or calling code may need to be modified to execute correctly. These cases are highlighted as
Compatibility Warnings in this document, and summarized in Section A.1.

Efficiency Warnings:
Most VCOP constructs map well to C7x with little or no loss of efficiency. However there are a few cases where efficient translation
is not possible. These cases are highlighted as Efficiency Warnings and summarized in Section A.2.

1.2.1 Documentation Conventions
The following terms are used throughout the document:
• VCC refers generically to either the VCOP Kernel-C compiler (vcc-arp32), or the VCOP Kernel-C

migration tool (vcc7x).
• Migration tool refers to vcc7x, and sometimes implicitly includes the virtual machine.
• Function names init(), kernel(), and vloops() refer to the functions generated by the VCC tool to

implement the kernel API. The real names are prepended with the name of the kernel. For example,
for a kernel named image_filter the term “vloops() function” in this document refers to the
image_filter_vloops() function generated by VCC.

• The term tvals structure refers to the VCC-generated structure that holds values computed in the
init() function and used by the vloops() function, corresponding to VCOPs pblock. See
Section 2.2.1. An expression of the form tvals->pN refers to an arbitrary field from the tvals structure.

• Symbols in angle brackets are placeholders for one of several values of the indicated type; for example
<op> represents some operation, <type> represents some type, and so on.

In code sequences in either the text or the tables, the following symbolic conventions are used:
• A symbol starting with an upper-case V is either a VCOP or C7x vector register or a variable that

represents such a register: Vsrc, Vdst, Vtmp, Vpred, etc.
• An operand starting with Vperm is a C7x vector register containing a pre-computed vector for use with

a VPERM instruction.
• An operand starting with upper-case S is a C7x scalar variable or register: Sreg, Stmp, etc.
• An operand starting with upper-case C is a C7x scalar constant: Cwidth, Csize, etc.
• An operand starting with upper-case P is a C7x vector predicate: Pred, Pnz, etc. Pmask is a special

vector predicate used to select certain lanes. Symbols of the form P8b, P8h, P8w and so on are
precomputed vector predicates used as lane masks for partial vector stores; for example P8h is a mask
for storing 8 halfwords. See Section 5.2.

• Addr represents a C7x indirect address expression, perhaps with an register or SA-based offset or
index, for example *A4, *A4[A0], or *B0[SA0++].

• Symbols base, in, and out represent the base address in a VCOP load or store. A base address can
be an expression, or a value loaded from the tvals structure (see Section 2.2).

• A symbol that begins with Agen represents either a VCOP address generator declared with __agen, or
the C7x variable or register that represents its translation.
SEn refers to a C7x Streaming Engine access, either SE0 or SE1. Similarly SAn refers to a C7x
Streaming Address Generator access.

http://www.ti.com
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1.3 Output Format
On EVE, the vcc-arp32 tool translates a kernel to a C source file that contains the five functions described
in Chapter 2, which is then compiled by the ARP32 compiler. The vloops() function contains VCOP
intrinsics to implement the vector loop command(s).

On C7x, the vcc7x tool translates a kernel to C++ source file that contains the same five functions, which
is then compiled by the C7x compiler.

It is feasible to use this translated output as the basis for additional development or performance
optimization by directly modifying the generated code. Under this scenario, translation is a one-time step
and the generated code becomes the source code. However, it’s important to be aware of the limitations
described in this section. Whether a user chooses to modify the translated output as the basis for further
development is up to the user.

Both versions of VCC invoke the C preprocessor on the Kernel-C input, which removes comments,
handles preprocessor directives like #if and #include, and expands macros. The implication is that the
C/C++ output of the migration tool will have these elements removed, with the exception of
VCOP_SIMD_WIDTH. (Additionally, VCOP_SIMD_WIDTH will not be expanded in #if statements.) The translated
output will therefore be less readable and less configurable than the source.

The migration tool makes some effort to make the translated output resemble the original Kernel-C source
code. In particular:
• Variable names (vectors, agens, and loop counters) are preserved.
• Original indentation and white spacing is not preserved, but the migration tool applies its own output

formatting to make the output readable.
• VCOP statements that map to simple C expressions are generated that way. Other statements

generally map to function calls in the VCOP virtual machine so that the kernel function remains
uncluttered.

VCOP vectors are translated using “native vector types” on C7x, which are built-in types in the C7x C
Compiler that are declared using OpenCL™ syntax. The typedef __vector maps to an OpenCL type
corresponding to a VCOP vector.

The virtual machine is implemented in C++ using template functions and classes, allowing for a relatively
economical yet efficient implementation. Since the virtual machine API is a C++ API, the generated kernel
is a C++ source file and must be compiled as C++.

The virtual machine uses extensions to the C++ language, particularly native vector types and C7x
intrinsics, and will therefore not be portable to other targets. In particular, the code will not compile and run
on a PC or other GPP host.

Although the translated code is C++, the client code that calls it can be either C or C++. By default, the
client code is assumed to be C and the migration tool includes extern C on the generate kernel functions
(which are C++) so they are callable from C. If the --cpp_out option is used on the migration tool, the
client code is assumed to be C++ and the extern C declarations are omitted.

http://www.ti.com
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1.4 Data Types
VCOP’s vector registers have 8 lanes. Each stores 40 bits. Some arithmetic operations operate on all 40
bits of each lane. Others operate on fewer bits. Data in memory are signed or unsigned 8, 16, or 32 bit
integers, which are sign or zero extended to 40 bits when loaded, and truncated or rounded when stored.

C7x has 512-bit vector registers, with variable-width lanes. That is, a vector register can hold 64 lanes of
8-bit data, 32 lanes of 32-bit data, and so on. To achieve efficient translation for the majority of cases, the
migration tool will model VCOP’s 40-bit arithmetic using 32-bit lanes. This can cause loss of precision for
some kernels that depend on the extra 8 guard bits.

1.4.1 40-bit Incompatibilities
In general, there are two kinds of errors that result from narrowing lanes.

The first is when the upper bits indicate signedness. For example on VCOP the value 0x00.FFFF.FFFF
represents a large unsigned number (4294967295), whereas the value 0xFF.FFFF.FFFF represents a
negative number (-1). When translated, the 32 bit result 0xFFFF.FFFF could be either value depending on
whether it’s treated as signed or unsigned.

By default, the migration tool treats all 32-bit values as signed. This covers the majority of cases, since the
40-bit values in VCOP are always treated as signed. In some cases, however, this can lead to incorrect
results. For example, when the value 0x00.FFFF.FFFF is right-shifted or compared, VCOP treats it as
positive while the C7x translation treats it as negative.

To help address this issue, the migration tool will, in some cases, treat 32-bit values as unsigned. There
are two ways this happens. First, if the vector is loaded from an unsigned base pointer (__vptr_uchar,
__vptr_ushort, or __vptr_uint), its element type becomes unsigned. Second, the user can force a
vector to become unsigned by declaring it using the special keyword __vector_uint32 (rather than the
normal __vector).

The following operations are affected by the signedness of vector elements.
• Right shifts (including shift-or) are unsigned if the left-hand-side operand is unsigned.
• Compare operations (including sort2, min, and max) use unsigned compares if both operands are

unsigned; if only one operand is unsigned, these operations use signed compare.
• Saturation operations use unsigned compare for saturation bounds if the source register is unsigned.

Compatibility Warning: Unsigned vector elements
If a kernel relies on vector elements being treated as unsigned when bit 31 is set, the translated code may not work properly. Most
such issues can be fixed by declaring the vector as __vector_uint32.

The second error that can result from the reduced lane width is when values have significance in the
upper 8 bits. On VCOP these bits are typically used as overflow (guard) bits for accumulation loops, or to
hold the upper bits of extended multiply operations. Here is a partial list of VCOP operations that use the
guard bits:
• Multiplies (VMPY, VMADD, and VMSUB)

Inputs are 17x17 (bit 16 is a sign bit) producing 40 bits of sign-extended output.
• VLMBD

Searches bits 39-32 for leftmost bit.
• VADDH (Kernel-C: (Vdst1,Vdst2) = Vsrc1 + hi(Vsrc2))

Shifts guard bits right by 32 and adds them.
• VSHF16 (Kernel-C: Vdst = jus16(src))

Sign extends bit 32 into upper guard bits.

The migration tool does not attempt to account for or detect these incompatibilities. The resultant code will
likely fail at run time.

Compatibility Warning: Reliance on 40-bit elements
If a kernel depends on more than 32-bits of precision in vector elements, the translated code may not work properly.

http://www.ti.com
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1.4.2 40-Bit Detection in Host Emulation Mode
To assist in detecting kernels that rely upon 40-bit elements, host emulation mode may be configured to
warn when an operation is executed that depends on the high 8 bits. (For example, a comparison between
two large values.) Defining VCOP_40_BIT_DETECTION to 1 will enable this feature. If VCOP_40_BIT_FATAL is
also defined to 1, execution will halt after the first warning. This method of detection must be used in
conjunction with a set of input data that is representative of expected input.

1.5 SIMD Width
VCOP has 8 lanes of 40 bits each. When mapped to 32-bit lanes on C7x, there are 16 lanes available,
potentially doubling the throughput of a kernel.
Many kernels are written to be independent of the SIMD width, using the macro VCOP_SIMD_WIDTH to
abstract the number of lanes. Some of these kernels can be successfully built in host emulation mode for
wider (or narrower) machines simply by changing the value of the macro. In host emulation mode,
VCOP_SIMD_WIDTH must now be defined on the command line or before inclusion of
vcop_host_emulation.h.
The SIMD width used by VCC is controlled by the --vcop_simd option. (Kernels that qualify for SIMD 16
are NOT automatically detected or transformed.) For a SIMD width of 16, --vcop_simd=16 should be
used. This option controls the translation sequence calls to the VM. As an additional change to allow this
option, the generated C source file will also define VCOP_SIMD_WIDTH.

Some kernels depend on a specific SIMD width and will not work correctly if extended to 16-way SIMD.
Furthermore, increasing the SIMD factor may depend on certain properties of the data layout in memory.
For example, image widths may be required to be multiples of 16 instead of 8. It is not possible for the
migration tool to automatically detect these cases.

The following are examples of VCOP operations that cannot be trivially extended to 16-way SIMD.
• VBITPK – if kernel assumes results are 8-bit values
• VBITTR – assumes 8x8 transpose
• VBITUNPK – if bit mask (src1[0]) is assumed to be 8 bits
• Interleave/Deinterleave, including de-interleaving loads, interleaving stores, and vector operations – if

kernel assumes interleaving on 8-lane boundaries. (If kernel avoids making assumptions about vector
sizes or layouts, for example simply using deinterleave-on-read and interleave-on-write to improve
throughput without regard to layout, then interleaving can be extended to wider SIMD widths.)

• Load with custom distribution – kernel C source format is tied to 8 lanes
• Load with expand – if kernel assumes 8-bit predicate
• Load with nbits – if kernel assumes 8-bit type for packed bit vector in memory
• Lookup table and histogram – the table layout in memory is tied to VCOP’s 8-bank memory

architecture, but certain cases of 16-way lookup and histogram are supported. See Section 5.4.8.

1.6 VCOP Virtual Machine
The VCOP virtual machine (VVM, or simply virtual machine) is a C++ library that implements VCOP
operations on C7x. The C7x source code generated by the migration tool contains calls to the virtual
machine. The virtual machine is intended to be an implementation mechanism; the programmer does not
need to know anything about it or even be aware of its existence. However, it is also not intended to be a
“black box.” Programmers may find it useful to understand at least the API to the virtual machine so they
can understand the code from the migration tool. Further, programmers may wish to consult the virtual
machine to see specifically how VCOP operations are implemented for C7x.

The virtual machine consists entirely of inline functions and C++ classes. None of the classes are actually
instantiated into objects; all the member functions are static inline, and the variables static. There is no
object component of the virtual machine to include at link time; it consists entirely of header files.

http://www.ti.com
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The classes and functions use C++ templates to abstract low-level details between similar constructs.
Template parameters specify things like data type, distribution mode, addressing mode, and SIMD factor;
these items are determined by the migration tool and therefore known at compile time. The library uses
template specialization to customize the implementation of a given operation for specific combinations of
the template parameters.

The implementation uses the C7x low-level programming model, consisting of native vector (extended
OpenCL) types and C7x intrinsics from <c7x.h>. That header file cross-references the intrinsic names
with the actual C7x mnemonics; in this way the programmer can see what instructions are actually being
generated.

A detailed description of the virtual machine is beyond the scope of this document. However, the core
components of the VVM are as follows:
• vcop_arith.h – Defines the VCOP arithmetic operations.
• vcop.h – Contains core definitions for the VVM. (VCOP types, macros, etc.)
• vcop_lht.h – Defines operations that use the C7x lookup table. (_LOOKUP, _HIST, and some forms of

OFFSET_NP1 and PDDA.)
• vcop_load.h – Defines VCOP load operations, with the exception of forms in vcop_lht.h.
• vcop_store.h – Defines VCOP store operations, with the exception of forms in vcop_lht.h.
• vcop_vm.h – Central header. Contains shared templates used by other headers. Includes other core

headers.

http://www.ti.com
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Kernel API

This chapter provides information about how the migration tool generates C7x functions that correspond to
the EVE C-callable API.

Topic ........................................................................................................................... Page
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2.1 Overview
A VCOP kernel written in VCOP Kernel-C is specified as C-callable function with arguments. The function
body consists of one or more VCOP loop commands, table lookup commands, or histogram commands,
collectively known as vloop commands.

On EVE, the kernel is invoked via a C-callable API consisting of five functions, which are generated by
VCC. For a kernel named kernel written in VCOP Kernel-C, the API is:
• unsigned int kernel_init(<args>, unsigned short pblock[])

Evaluate kernel-invariant expressions, including kernel arguments, into pblock[]

• unsigned int kernel_param_count(void)
Return the size of the parameter block

• void kernel_vloops(unsigned short pblock[])
Execute the kernel loops using parameters from pblock[]. This function contains the actual VCOP
code.

• void kernel(<args>)
Call kernel_init() and kernel_vloops() using a statically allocated parameter block

• void kernel_custom()
Call kernel_init() and kernel_vloops() using a passed-in parameter block

The API gives the application varying levels of control over the kernel execution. A naive application can
simply call the kernel as kernel(<args>). A more sophisticated application that wants to control
parameter buffer allocation and leverage double-buffering would call the lower level functions directly.

The migration tool generates these same five functions, as C++ functions for C7x. Therefore the functional
interface to the kernel remains the same.

Figure 2-1 illustrates the kernel API in its original form for EVE and as translated for C7x.

Figure 2-1. Kernel API

http://www.ti.com
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2.2 Parameter Block
The init() function generated as part of native kernel compilation for EVE computes kernel-invariant
expressions (called pexprs in the Kernel-C language spec) and stores the computed values in a block of
memory called the parameter block, or pblock. As the kernel executes, it references parameter values as
memory-mapped 16-bit parameter registers (pregs) that are mapped to the location of the pblock. The
parameter block is declared as an array of unsigned short, corresponding to the data type of the pregs.
It may be allocated by the application code and passed to both the init() function and the custom()
kernel function. Alternately, there is a statically allocated default variable called <kernel>_pblock[] that
can be used when the application code does not need to control pblock allocation.
All parameterization of the vloops() function is done through the pblock. Arguments to the kernel()
function are not passed to the vloops() function; instead they are captured by the init() function and
accessed via the pblock.

2.2.1 Tvals Structure
To preserve the dispatch API, the C7x translation uses a similar approach. Expressions that are kernel
invariant are precomputed by the init() function and stored in a memory block, then accessed by the
translated kernel by passing the memory block’s address to the vloops() function. However, the size,
layout, and contents of the block is different. On C7x, restricting parameter elements to be 16-bit values is
needlessly inefficient; parameter expressions often represent constants, addresses, or even vectors (for
example Streaming Engine setup vectors). For this reason the pblock object on C7x is defined as a
structure with fields defined by the migration tool. The address of the structure is passed to the init()
function, which assigns to the fields of the structure, and the vloops() function, which accesses them.
The structure has type <kernel>_tvals_t, and is referred to simply as the tvals structure throughout this
document.

Even though the translated parameter block object is a structure, to preserve API compatibility, the pblock
pointer parameters to the init() and vloops() function are declared as unsigned short*. The
functions convert the pointer to point to the tvals structure by casting it.
The param_count() API function allows the client to allocate the pblock rather than using the built-in
statically allocated one. It returns the required size of the pblock in unsigned short units. For example, a
user-managed pblock might be allocated as:
typedef unsigned short ptype;
ptype *my_pblock = (ptype*)malloc(mykernel_param_count() * sizeof(ptype));

To preserve compatibility, for C7x the return value of the param_count() function is still in terms of
unsigned short units, even though the underlying object is actually a structure. This allows client code
that allocates the pblock as above to remain unchanged.

The tvals structure consists of one field for each kernel parameter to capture its value, plus a nested
substructure for each vloop in the kernel to hold loop-specific expressions. Furthermore, each substructure
is actually an array of substructures. This is to handle vloops that use the “repeat” feature, whereby the
vloop runs multiple times using different parameter sets.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIG3C


www.ti.com Parameter Block

15SPRUIG3C–January 2018–Revised August 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

Kernel API

Table 2-1 illustrates the migration tool-generated tvals structure for a simple kernel with two vloop
commands, the first of which is inside a repeat loop.

Table 2-1. Migration tool-generated parameter block access via tvals structure

Kernel-C Program Generated Tvals Structure
kernel(__vptr_int32 parm1, int N)
{

// "repeat" loop
foreach (roi, roi < N, 5)
{

// vloop 0
for (...)
{

}
}

// vloop 1
for (...)
{

}
}

typedef struct
{

__vptr_int32 parm1; // kernel parm
int N; // kernel parm
struct // tvals for loop0
{

struct
{

int p0;
uchar* p1;
...

} tvals[5];
} loop0;

struct // tvals for loop1
{

struct
{

uchar* p0;
uint p1;
uint16 p2;
...

} tvals[1];
} loop1;

} kernel_tvals_t;

Access to Parameters in vloops() Function
kernel_vloops(ushort *pblock) // ushort* for API compatibility
{

kernel_tvals_t *tvals = (kernel_tvals_t *)pblock; // cast as tvals_t*

// retrieve captured kernel parameters
__vptr_int32 parm1 = tvals->parm1;
int N = tvals->N;

// access to kernel parameters
... parm1 ...

// access to parameters for vloop 0 (index by repeat loop counter)
... tvals->loop0.tvals[roi].p0 ...

// access to parameters for vloop 1
... tvals->loop1.tvals[0].p2 ...

}

Compatibility Warning: Pblock Size
The parameter block for C7x tends to be larger on C7x than VCOP. Programs which (dynamically or statically) allocate the pblock
without using the kernel_pblock_size() function may fail if the allocated space is too small for the translated tvals structure.
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2.2.2 Pblock Manipulation
Some VCOP applications have kernels that manipulate the parameter blocks of other kernels. This is to
allow dynamic update of kernel parameters without the overhead of returning to ARP32 and re-calling the
init() function. However, it is fragile in that it relies on the updating kernel to have direct knowledge of
the pblock of the other kernel, manifested as hard-coded pblock offsets.

There is no direct way to support this for C7x translation since the pblock size and layout differ. Kernels
that perform pblock manipulation will not work if directly translated for C7x.

Compatibility Warning: Pblock Manipulation
The size and layout of the pblock differs between C7x and VCOP. A kernel which tries to modify the pblock or otherwise depends
on its contents will not execute correctly on C7x.

As an alternative means to support this functionality, the C7x migration tool adds an additional function to
the dispatch API that allows for dynamic update of kernel parameters.
Recall that the init() function captures kernel parameters and stores them in the tvals structure. It also
computes additional expressions used by the vloops() function and stores them in the tvals structure.

A new keyword, __update, identifies kernel parameters that may be dynamically updated. If any kernel
parameters are declared using __update, the migration tool generates an additional function with the
following signature:
void kernel_update(<update args>, unsigned short pblock[])

The arguments to the update() function consist only of the kernel parameters declared as __update. The
function updates the pblock by re-capturing these parameters into the tvals structure, and re-evaluating
any tvals that depend on them. The updated pblock can be passed to a re-invocation of the vloops()
function.
Table 2-2 provides an example of a kernel that declares __update parameters, along with the generated
code and the kernel dispatch code that calls it.

Table 2-2. Updating Kernel Parameters via update() API

Kernel-C Program
kernel( __vptr_int32 parm1, // non-updatable parameter

__update __vptr_int32 parm2, // updatable
int N) // non-updatable

{
...

}

Generated Update Function
kernel_update(__vptr_int32 parm2, // sig. includes only __update parameters

ushort *pblock)
{

kernel_tvals_t *tvals = (kernel_tvals_t *)pblock

// recapture __update parameters
tvals->parm2 = parm2;

// re-compute tvals that depend on __update parameters
tvals->loop0.tvals[0].p3 = ... parm2 ... ;

...
}

Client’s Kernel Dispatch Code
kernel_init(buffer1, buffer2); // (using built-in default pblock)
kernel_vloops(); // first call
kernel_update(buffer3); // updates pblock with parm2=buffer3
kernel_vloops(); // second call
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Loop Control

This chapter provides information about how the migration tool converts VCOP's vloop commands to C7x
C code.
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3.1 Overview
VCOP kernels consist of one or more vloop “commands”, each of which is expressed as a loop nest
having up to 4 levels. The loops are controlled by a hardware looping mechanism. Logically, each loop is
specified as a simple counter (loop control variable, or LCV) that starts at 0 and counts up by one. Trip
counts are guaranteed to be loop invariant, although there is an early exit mechanism, discussed in
Section 3.5. Each loop level is guaranteed to execute at least once. Trip counts are specified in the
parameter block as 16-bit unsigned values, so the maximum number of iterations is 216 or 65536.
For C7x, the migration tool simply generates loops using for expressions, just as they appear in the
Kernel-C source, right down to using the same names for the LCVs. The migration tool adds
must_iterate pragmas to indicate the built-in constraints on the trip counts.

3.2 Loop Control and Nested Loops
As generated, each loop level requires computation to control the loop: initialization of the LCV outside the
loop, and an increment, compare, and branch inside the loop. The compiler and ISA provide a handful of
mechanisms to reduce or eliminate this overhead.

First, the compiler typically converts simple counting loops to count down rather than up, slightly reducing
the cost of the compare and branch operation.

Second, if the body of a loop consists entirely of another loop, the compiler can collapse the two loops into
a single loop whose trip count is the product of the original loops.

Finally, and most significantly, the compiler can leverage an ISA feature called the Nested Loop Controller
(NLC), which provides hardware loop control similar to VCOP for up to two levels of loop nesting.

The NLC allows loops to be collapsed even if the outer loop has code in addition to the inner loop, by
providing automatically-generated predicates for the outer loop code.

The combination of the compiler’s collapsing and the NLC reduce loop control overhead to an acceptable
degree. Virtually all kernels should have at least the two inner levels collapsed and controlled by the NLC.
Often there are at least two levels that the compiler can collapse, so most loops execute as either singly
nested loops, or in rare cases, doubly or triply nested loops. This is important because the C7x relies on
software pipelining for performance, and only the inner loop can be pipelined.

3.3 Repeat Loops
The “repeat loop” feature of VCOP allows the programmer to wrap an outer loop around the loop nest of a
vloops command. Each iteration of the outer loop executes with a new set of parameters from the pblock.
A repeat loop is specified with the foreach construct in Kernel-C.

The translation of repeat loops uses a straightforward for loop. The tvals structure corresponding to the
parameter block for a loop that uses the repeat feature is declared as an array, which is indexed by the
repeat loop LCV to access parameter values.

3.4 Compound Conditions
VCOP supports conditional moves with compound predicates comprised of testing the LCVs for either the
first or last iteration of each loop level. For example, the following kernel contains a conditional move that
will execute only when all three loops are in their first iteration:
for(I0 = 0; I0 < N0; I0++) {

for (I1 = 0; I1 < N1; I1++) {
for (I2 = 0; I2 < N2; I2++)
{

...
// conditional move
if (I0 == 0 && I1 == 0 && I2 == 0)

Vx = Vy;
...

}
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The migration tool translates conditional moves as simple conditions (if statements), copying the
condition verbatim from the Kernel-C expression. This will prevent additional optimizations such as
collapsing and use of the NLC because it requires the LCVs to be explicitly instantiated.

3.5 Early Exit
VCOP has a VEXITNZ instruction which conditionally breaks out of a given loop nest or repeat loop. The
condition is based on comparing lane 0 of a vector register to zero. In Kernel-C, early exit is expressed as
a conditional goto statement and a label, for example:
__vector acc1, acc2, flag;

for (int I1 = 0; I1 < 1; I1++)
{

for (int I4 = 0; I4 < num_pix[I0]; ++I4)
{

flag = (acc1 > acc2);
if (flag[0]) goto end_loop1;

}
}
end_loop1:;

For C7x translation, the migration tool simply copies the goto and label statements into the generated
output verbatim and leaves it to the C7x compiler to generate the appropriate control flow. A loop with an
early exit cannot use the NLC, but it may be software pipelined as a so-called “irregular loop”.
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This chapter provides information about how the migration tool converts VCOP's address generators to
C7x emulation mechanisms.
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4.1 Overview
VCOP has dedicated address generators (Agens) that facilitate efficient multidimensional access patterns
for loads and stores in the loop. VCOP’s Agens compute address offsets; individual loads and stores
supply base addresses from the parameter block which are combined with the offsets to form the effective
address for the load or store. There are eight Agens, but a single Agen can be shared among different
loads or stores with different base addresses.

The C7x has three different mechanisms for emulating VCOP’s Agens. They are, from most efficient to
least efficient: the Streaming Engine (SE), the Streaming Address Generator (SA), and regular indexed
addressing.

4.2 Streaming Engines
The SEs provide the most efficient addressing, but are restricted as follows:
• There are only two of them.
• They can only be used for loads (not stores).
• The base address is pre-initialized by the SE_OPEN step; therefore a given SE cannot be shared

between multiple loads with different base addresses.

The migration tool allocates the two SE resources to what it considers to be the two highest priority loads.
Loads in the innermost loop are considered to have the highest priority. The heuristic simply picks the first
two loads in the innermost loop; if there are fewer than two, it moves to the next outer loop.

For SE-based loads, the migration tool generates the following sequence of steps:
1. In the init() function, the migration tool generates a call to the SE_init() template function in the

virtual machine, which returns an SE setup vector. (The ISA spec refers to the setup vector as an SE
template; here we use the term setup vector to avoid confusion with the virtual machine’s C++
templates). The setup vector is saved in the tvals structure for later access by the vloops() function.
The setup vector consists of static (compile-time) and dynamic (run-time) values. The static values
correspond to flags in the SE setup vector and are determined from the distribution mode and data
type. These are passed as template parameters to SE_init(). The dynamic values correspond to
stride and trip count values that are determined from the terms in the Agen expression and loop trip
counts. These are passed as runtime arguments to SE_init().

2. Also in the init() function, the migration tool generates the expression that represents the base
address and saves that in another field of the tvals structure.

3. In the vloops() function, outside the outermost loop, the migration tool generates a call to the
SE_OPEN() intrinsic, passing it both the setup vector and the base address from the tvals structure.

4. The load instruction in the loop simply uses an __se_ac_<type> intrinsic for the access, which turns
into a quasi-register operand SEn++ containing the loaded value.

5. As an optimization, the compiler may copy-propagate the SEn++ operand into the instruction where the
value is used, thereby eliminating the load instruction altogether.

6. The migration tool generates a call to the SE_CLOSE() intrinsic after the loop nest.

4.3 Streaming Address Generators
C7x has four streaming address generators (SA) that provide zero-overhead address offset calculations
for nested loops, similar to VCOP’s Agens. The SAs are similar to the SEs, with the following differences:
• They can be used for both loads and stores.
• They do not offer the same pre-fetch advantage as the SEs.
• They do not have the flexible formatting options that allow seamless emulation of VCOP’s distribution

modes.
• The base address is not pre-initialized; therefore SAs can be shared between loads and stores that

use the same Agen on VCOP.
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After assigning the two SEs to the highest priority loads to SEs, the migration tool assigns the four SAs to
the next highest priority loads and stores (perhaps more than four if some share Agens). The process for
using SAs is similar to that for SEs in the previous section. The primary difference is that the base address
is passed to the access intrinsic rather to the SA_OPEN() call.

4.4 Indexed Addressing
Any loads or stores that remain after exhausting the SE or SA resources are generated using normal
indexed addressing. The migration tool defines a variable corresponding to the Agen whose type is
__agen, which is a typedef for int. The agen variable represents the address offset in bytes.

An access with base address b and agen a is generated as the C expression *(<type>*)((char*)b + a).
This generally results in no overhead for the access itself, as the compiler generally keeps both b and a in
registers for the duration of the loop nest, so the expression compiles to a simple indirect operand such as
*Rega[Regb].

The overhead results from having to update the agen as the loops iterate. These updates generally
involve adding a constant term at each loop level corresponding to the stride at that level. For levels
outside the innermost level, the stride is adjusted so as to rewind the inner level. The agen adjustment
values are computed in the init() function from the coefficients in the Agen expressions and the trip
counts, and stored in the tvals structure.

For example, the following code shows the addressing operations generated for a loop translated using
indexed addressing:
__agen A0, A1, A2; // typedef int __agen

for (I1 ... )
{

for (I2 ...)
{

for (I3 ...)
{

for (I4...)
{

Vreg0 = *(tvals->p4 + A0); // load using A0
Vreg1 = *(tvals->p5 + A1); // load using A1

A0 += 2; // update A0
A1 += 2; // update A1

}
A0 += tvals->p8; // outer loop updates
A1 += tvals->p11;

}
*(tvals->p7 + A2) = Vdst; // store using A2

A0 += tvals->p9; // outer loop updates
A1 += tvals->p12;
A2 += 16;

}
A0 += tvals->p10; // outer loop updates
A2 += tvals->p13;

}

The agen updates are generated as statements of the form a += tvals->pN, positioned at the end of the
loop at the appropriate level. These generally turn into a single ADD instruction, but since they appear in
outer loops, can hamper loop collapsing. For loops collapsed with NLC, the NLC-supplied predicate can
be used to predicate any agen adjustments in the outer loop. The total overhead of the agen in this case
is generally two instructions: the instruction to fetch the predicate from the NLC, and the (predicated) add
instruction to update the agen. For loops not collapsed with NLC, the overhead is higher, because the
presence of the agen update in the outer loop usually prevents collapsing, necessitating explicit loop
control for that loop level.
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4.5 Circular Addressing
VCOP has a hardware feature that supports circular addressing for loads and stores. Addresses
consisting of a base and offset computed such that the offset is taken modulo a fixed buffer size, causing
the address to wrap back to the beginning of the buffer as the offset increases. In VCOP Kernel-C circular
addressing is specified using a modulo (%) operator in the address calculation.

C7X does not directly support circular addressing using normal indirect addressing modes. The Streaming
Engine supports circular addressing, but only for loads.

The migration tool implements circular addressing using an explicit computation at the point of the access.
The effective address is computed as follows:
unsigned long mask = BUF_SIZE - 1;
void *addr = (base & ~mask) | ((base + offset) & mask);

The mask is invariant and can be pre-computed outside the loop. The rest of the computation requires 4
instructions: an ADD, two ANDs, and an OR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIG3C


24 SPRUIG3C–January 2018–Revised August 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

Operations

Chapter 5
SPRUIG3C–January 2018–Revised August 2019

Operations

This chapter describes the translation of load operations (see Section 5.1), store operations (see
Section 5.2), arithmetic operations (see Section 5.3), and lookup and histogram table operations (see
Section 5.4).
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5.1 Load Operations
VCOP’s fundamental load operation fetches a vector of 8 consecutive elements from memory into the 8
lanes of a vector register. In memory the elements are 8, 16, or 32 bit signed or unsigned values; they are
sign or zero extended into the 40-bit lanes of the register. On C7x the migration tool models VCOP’s 40 bit
lanes as 32 bit lanes; a vector register contains 16 of these lanes. (In 8-way SIMD mode only 8 of these
16 lanes are used; in 16-way SIMD mode all 16 are used.)

VCOP has various additional “distribution modes” that provide for alternate data layouts in memory: for
example, as the data is read in it may be oversampled (read each element multiple times), undersampled
(skip elements), deinterleaved, and so on. Descriptions of the distribution modes can be found in the
VCOP CPU manual or the programmer’s guide.

Thus, load operations are characterized primarily by the element type in memory and distribution mode.
The virtual machine has a template class called vcop_load that implements the various combinations
using C7x operations. The template parameters of the class specify the type and distribution mode, along
with a specification of what kind of low-level addressing to use (SE, SA, or indirect) and the number of
SIMD lanes to emulate (8 or 16). The class has two methods, load() and SE_load(), which implement
the load operation as specified by the template parameters. The load() method implements non-SE-
based loads, and the SE_load() method implements SE-based loads.

For example, here is the translation of a VCOP load instruction using the CIRC2 distribution mode and
SA-based addressing.

Kernel-C:
__vptr_uint16 in;
Vreg = in[Agen0].circ2();

translates to:
vcop_load<ushort, circ2, sa1adv>::load(Vreg, (uchar*)(tvals->p1));

The template parameters ushort, and circ2 specify the data type and distribution mode. The template
parameter sa1adv tells the template to use SA-based addressing, with SA1 and advancing enabled. The
SIMD factor defaults to 8. The runtime argument Vreg is the destination vector register (passed by
reference, since the load writes into it). The tvals->p1 expression is the base address. The load()
method, when load template is specialized for ushort, circ2, and sa1adv, results in generation of the
specific C7x sequence to implement that combination.
The specific C7x instruction sequences generated by specialized load() methods that result from all
combinations of type and distribution mode can be determined by examining the template specializations
in the header files.
The load() methods need to handle loading the vector elements according to the distribution mode, and
sign- or zero-extension. Most combinations of type and distribution mode are covered by a single C7x
instruction. A few need additional instructions to exactly mimic VCOP’s specific modes.
In general SE-based loads, invoked via the SE_load() method, simply rely on the SE configuration as
setup in the init() function (see Section 1.4), and translate to a simple access of the corresponding SE
source register.

The basic setup for the SE is based on the data type. For example, signed 16-bit data uses element type
__SE_ELETYPE_16BIT and __SE_PROMOTE_2X_SIGNEXT for sign-extension to 32 bits. The default
vector length for 8-way SIMD is __SE_VECLEN_32BYTE, for 8 lanes of 32-bit (4-byte) data. Additional
SE features used to implement the specific distribution modes are configured by the various
specializations of the vcop_load template.

C7x can speculatively load without risk of faulting. Therefore most of the load sequences simply load a full
C7x vector’s worth of data – that is, 16 lanes of 32-bit values. In 8-way SIMD mode, the extra values are
simply unused.
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5.2 Store Operations
Similarly to loads, VCOP’s store operations are characterized by data type and distribution mode. In
addition to distribution mode, there are two primary considerations for translation of VCOP stores for C7x:
packing, and lane masking.

Packing is the opposite of sign extension. The source data in C7x registers is 32 bits wide. When storing
to 16- or 8-bit element types, the elements must be truncated to that size. The C7x has direct instruction
support for such packing stores. Packing depends on size but not signedness. Signed and unsigned types
generally use the exact same sequence, so there are three fundamental translation sequences for each
mode, corresponding to 8-bit, 16-bit, or 32-bit data.

Signedness does come into play for rounding or saturation; these are covered in Section 5.2.3 and
Section 5.2.4.

Unlike loads, translation of stores is sensitive to the number of lanes. While excess lanes can be safely
loaded and ignored, stores must take care to only store the number of lanes being modeled. That means
in the default 8-way SIMD mode, stores are limited to storing only 8 lanes, even though the C7x vectors
contain 16 lanes of (32-bit) data. There is instructional support for such partial-vector stores for some
cases, but not all. In particular there are no partial-vector packing stores. Thus packing stores in 8-way
SIMD mode that use regular indirect addressing require the use of an explicit predicate to mask the store
of unused lanes. This lane-masking predicate is constant and can be computed outside the loop.

When using SA-based addressing, the SA automatically provides lane masking based on the VECLEN
flag in the SA setup vector. In this case the explicit lane masks are not needed.
The virtual machine has a template class called vcop_store that implements the various combinations in
terms of C7x operations. The template parameters of the class specify the type and distribution mode,
along with a specification of what kind of low-level addressing to use (SA or indirect), and the number of
SIMD lanes to emulate (8 or 16). The class has two methods: store() for regular stores and
store_pred() for predicated stores. For example, here is the translation of a store instruction using the
DS2 distribution mode and SA-based addressing.

Kernel-C source:
__vptr_s8 out;
out[Agen1].ds2() = Vreg;

translates to:
vcop_store<char, ds2, sa0adv>::store(Vreg, (uchar *)(tvals->p2));

The template parameters char, and ds2 specify the data type and distribution mode. The template
parameter sa0adv tells the template to use SA-based addressing, with SA0 and advancing enabled. The
SIMD factor defaults to 8. The runtime argument Vreg is the source vector register. The tvals->p2
expression is the base address.

Most cases of unconditional stores using the basic store distributions modes translate to a one- or two-
instruction sequence. Collating stores store a data-dependent number of elements in packed fashion and
are therefore more involved.

Efficiency Warning: Collating Stores
Collating stores require a long translation sequence and may perform poorly.

5.2.1 Predicated Stores
For some distribution modes, VCOP supports explicit predication. A vector register can be specified as a
predicate. If a lane of the predicate is zero, the corresponding lane of the source vector is blocked from
being stored.

On C7x predicates are represented as bit vectors with one bit corresponding to each byte of the source
register. To emulate VCOP’s predicated stores, the C7x predicate must be generated by explicitly
comparing the register containing the predicate vector to zero. This generates a word-wise predicate
corresponding to the 32-bit words of the predicate vector.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIG3C


www.ti.com Store Operations

27SPRUIG3C–January 2018–Revised August 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

Operations

Furthermore, if the store operation requires an explicit lane mask, the computed predicate must be
combined with a lane-mask predicate using an AND instruction. Explicit lane masks are required when not
using SA-based addressing, since the Streaming Address Generator provides built-in lane masking.

5.2.2 Scatter and Transposing Stores
VCOP has three distribution modes which store vector elements in a non-linear fashion. The
OFFSET_NP1 mode stores each element 9 words apart, effecting a 9x8 transpose. (The 9-word offset
causes each element to be stored into a different memory bank, to achieve a parallel store). The SDDA
(s_scatter in Kernel-C) mode stores each element at a data-dependent offset; the offsets come from
another vector. The PDDA (p_scatter in Kernel-C) mode is like SDDA except the offsets must be such
that each element goes to a different bank, so they can be parallel. The PDDA mode is also typically used
for transpose.

There is no direct support for these operations on C7x. On C7x, transpose is supported by the Streaming
Engine, but only for loads and not for stores.

For the specific case of OFFSET_NP1 used to store into a scratch buffer for a transpose operation, the
migration tool may detect this and re-arrange the layout of the scratch buffer so as to implement the
transpose using the streaming engine. See Section 5.2.3.

Otherwise, the migration tool generates naive sequences for these modes, storing elements one at a time
rather than in parallel.

Efficiency Warning: Parallel Stores
Unless the above optimizations are enabled, kernels that use these distribution modes will have inefficient translations.

5.2.3 Optimization of OFFSET_NP1-Based Transpose
VCC may recognize transpose sequences that use OFFSET_NP1. The general pattern is to store into a
scratch buffer using OFFSET_NP1, then read the scratch buffer back using NPT loads. Unfortunately
there is no direct translation for the OFFSET_NP1 store. However, the streaming engine does support a
transposed read mode. If transpose recognition is enabled, the migration tool may transform the sequence
to use non-transposed stores instead of OFFSET_NP1 stores, and transposed loads using the streaming
engine instead of normal vector loads. Thus, the transpose operation shifts from the store to the
subsequent load. The layout of the data in the scratch buffer is altered with respect to its VCOP layout, so
this transformation only works when the scratch buffer is used only for the transpose operation and not
otherwise used.

Transpose detection and transformation may be enabled by:
1. Enabling the --transpose command line option. This option enables automatic detection of transpose

sequences. This will apply transpose at every possible point in the file. If a kernel that should use
transpose is in the same file as one that shouldn’t, they should be separated into two files.

2. Applying the __tscratch keyword to a parameter. (For example,
__tscratch __vptr_uint32 scratch_buffer) This method of enabling transpose will take effect
even if --transpose is not specified.

The transpose transformation may be performed under the following conditions:
• All stores in the sequence are OFFSET_NP1.
• All loads in the sequence are NPT.
• The buffer used for the transpose is not later examined by the caller. (The data in the buffer will not be

transposed.)
• Enough streaming engines and streaming address generators are available.
• The stores/loads are 32 bit. (The streaming engine only supports all transpose read configurations for

32 bit data. If the only reason a transpose is not performed is the data type, VCC will warn.)
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The transpose transformation will correctly handle unrolled reads or unrolled writes and transform them as
a set. In addition, the transpose transformation will correctly handle a transpose scratch buffer that has
been split such that the one portion is used separately from another portion. However, the transpose
transformation will not correctly handle a combination of unrolled reads/writes AND a transpose scratch
buffer that has been split. (It becomes impossible for VCC to disambiguate the offset for the unroll from
the offset for the split.)

5.2.4 Rounding Stores
VCOP can perform rounding or truncation in conjunction with stores. The migration tool treats these as
discrete operations and generates them prior to the store.

Rounding is translated as if it were an arithmetic operation. That is, a rounding store of the form:
out[Agen] = Vsrc.round(N); // round at Nth bit

is translated as if were expressed as:
Vbits = N;
Vtemp = Vsrc.round(Vbits); // VSHRRW
out[Agen] = Vtemp;

Rounding adds one instruction in addition to the normal store instruction or sequence.

Similarly, truncation is translated as a discrete right shift. A truncating store of the form:
out[Agen] = Vreg.truncate(N);

is translated as if it were:
Vbits = -N; // negate so shift goes right
Vtemp = Vsrc << Vbits; // actually >>
out[Agen] = Vtemp;

This also results in one additional instruction.

5.2.5 Saturating Stores
Like rounding, a VCOP store that includes saturation is translated as if were two operations: an explicit
saturation operation, followed by the store. The saturation operation operates on 32-bit elements
regardless of the data type of the store. VCOP supports several forms of saturation: SYMM, ASYMM,
4PARAM, and so on. Fundamentally, all of the forms operate as follows:
saturate(min, minset, max, maxset) = (x < min) ? minset

: (x > max) ? maxset : x;

In the typical case when the saturation bounds are the same as the min/max set-to values, that is
min == minset and max == maxset, the C7x translation is an efficient two instruction sequence:
VMINW Vsrc,Vmax,Vdst
VMAXW Vdst,Vmin,Vdst

If the saturation bounds are to a power of two boundary, such as from 0 to 255, a single saturation
instruction will be used:
VGSATUW Vsrc,Cwidth,Vdst
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If the saturation bounds are different from the min/max set-to values, a less efficient 4-instruction
sequence is required:
VCMPGTW Vmin,Vsrc,Pred0
VSEL Pred0,Vminset,Vsrc
VCMPGTW Vmax,Vsrc,Pred1
VSEL Pred1,Vsrc,Vmaxset

For unsigned vectors (see Section 1.4), unsigned forms of the compares are used.

C7x has a dedicated instruction for saturating to the range of a signed 16-bit value: VSATWH. Therefore
the following statement:
__vptr_s16 out;
out[Agen] = Vsrc.saturate(); // saturates to (-32768, 32767)

translates to a single instruction.

VCC removes saturations that it determines to have no effect.

5.3 Arithmetic Operations
Most of VCOP’s arithmetic operations translate directly to either one C7x instruction or a short sequence.

VCOP arithmetic operations generally operate on vectors of signed 40-bit elements. Some VCOP
operations ignore the upper 8 bits and operate on 32-bit elements. C7x lacks direct support for 40-bit
arithmetic. One option is to model each lane as a 64-bit element but in practice most kernels rely only on
32 bits of precision. So the migration tool models VCOP vectors as having 32-bit elements and translates
them accordingly (see Section 1.4).

Most arithmetic operations are sign-agnostic, but in some cases treating elements as unsigned rather than
signed can correct translation errors arising from the loss of the guard (see Section 1.4). Therefore some
translations have unsigned forms in addition to the default signed forms.

In cases where an operation is represented by a C operator, the migration tool generates the expression
using the operator, and the C7x compiler generates the appropriate vector instruction. For example, for
this VCOP Kernel-C statement:
Vdst = Vsrc1 + Vsrc2;

The migration tool simply copies the expression verbatim and the compiler generates a VADDW
instruction.

In other cases where an operation translates directly to a C7x instruction, the compiler generates a C7x
intrinsic to invoke the instruction. For example:
Vdst = min(Vsrc1, Vsrc2);

translates to
Vdst = __min(Vsrc1, Vsrc2);

which turns directly into a VMINW instruction.

If there is no direct translation to a single instruction, the migration tool relies on the virtual machine to
provide the translation. Each operation that does not correspond to a C operator is implemented by a
class in the virtual machine. Like the load and store classes, these are template classes so that variations
can be specified at compile time by template parameters. For example, this VCOP Kernel-C statement:
Vdst = unpack(Vsrc1, Vsrc2);

translates to:
bit_unpack<int>::apply(Vdst, Vsrc1, Vsrc2);

The element type is specified by the template parameter int. All arithmetic classes have a single method
called apply() that implements the translation. In this case the apply() method invokes a sequence of
four C7x intrinsics..
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5.3.1 Vector Compares
Vector compare operations map directly to C7x’s vector compare instructions, but require an additional
VSEL instruction to turn the vector predicate generated by the compare into a vector of 1’s and 0’s in
order to mimic VCOP.

5.3.2 Multiplication with Rounding, Truncation, or Left Shift
VCOP multiplication operations (VMPY, VMADD, and VMSUB) support optional scaling as part of the
operation. The scaling can take the form of rounding, truncation (right shift), or left shift.

As with stores (see Section 5.2.3), for translation these are treated as distinct operations. Each adds an
additional instruction to the normal translation sequence for these operations: a single vector round or shift
instruction applied to the result operand of the VMPYW instruction.

5.4 Lookup and Histogram Table Operations
VCOP has dedicated support for Lookup and Histogram Table (LHT) operations that access memory in a
non-linear fashion. Both operate by indexing into a table using index values that contain offsets from the
table base. In the case of lookup table, the lookup operation loads from memory at the indexed locations
and returns the values. In the case of histogram, the update operation increments the memory at the
indexed locations.

Both lookup table and histogram support the notion of parallel tables, in which up to 8 distinct tables are
referenced using index values contained in the lanes of a vector register (and in the case of lookup,
values read from the table are returned in corresponding lanes). To enable parallel access to the tables,
the tables are interleaved in memory such that each distinct table occupies a different memory bank or
banks than the others.

C7x supports LHT operations in a very similar way. However there are two important differences that
fundamentally affect the translation of these operations to C7x.

First, VCOP supports LHT operations directly on its local memory, consisting of the IBUFA, IBUFB, and
WBUF buffers. Each is 32KB, for a total of 96KB. Typically these buffers will be mapped to L2 on C7x. But
C7x supports LHT operations only on a 32KB area of L1D. Therefore LHT operations require table data to
be copied from L2 into L1D before the operation, and then (in the case of histogram) copied back out.

Second, VCOP’s memory is laid out as 8 banks, each 32 bits wide. Each full-width line from the memory
interface contains 8x32 or 256 bits. C7x’s memory is laid out as 16 banks, each 64 bits wide. Each line
contains 16x64 or 1024 bits. For LHT operations that use parallel tables, the bank geometry affects the
table layout in memory.
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For example, consider a LHT operation with 4 parallel tables and 32-bit elements. We’ll call them T0, T1,
T2, and T3. (In the following description, for simplicity, “locations” refer to word offsets within the linear
address space of table memory. In reality, both machines are byte addressable.) On VCOP each table
occupies 2 of the 8 banks. In each table line, the two banks corresponding to a given table contain 2
elements: locations 0 and 1 are part of table T0; locations 2 and 3 are part of T1, and so on. On C7x,
each table occupies 4 of the 16 banks; in each line the 4 64-bit banks contain 8 table elements. Locations
0—7 are part of T0; locations 8—15 are part of T1, and so on. Figure 5-1 illustrates the two layouts for the
table in this example. In this figure, TN[M] represents the element at index M of table N. Shading indicates
memory banks. Heavy borders indicate table boundaries.

Figure 5-1. Differences in Table Layout Between VCOP and C7x

VCOP kernels assume tables are laid out according to VCOP’s geometry; therefore this layout must be
preserved at kernel boundaries. In order to operate on such tables with C7x LHT operations, the tables
must be rearranged to conform to C7X’s geometry.

In general, a kernel that uses LHT operations must go through the following steps when translated to C7x:
1. (In the init() function) Compute the LTCR control register flags to configure the table for the number

of parallel tables and element type, and store the configuration in the tvals structure.
2. (Before loop)

1. Copy table data from L2 location to L1D.
2. Rearrange table layout from VCOP to C7x.

3. (Before loop) Configure the table using the value from the tvals structure
4. (Within loop) Perform the lookup or histogram operation on table in L1D
5. (After loop, histogram only)

1. Copy table data from L1D to L2
2. Rearrange table layout from C7x to VCOP
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In practice, steps 2a and 2b (copy and rearrange) are combined: the table is rearranged on-the-fly as it is
copied. Similarly, steps 5a and 5b are combined.

Efficiency Warning: LHT Operations
The translation of LHT operations suffers from the overhead introduced by copying and rearranging the table data. This step takes
approximately one cycle per 512 bits (64 bytes) of data. The exact penalty depends on the size of the table.

The virtual machine contains two template classes, vcop_lookup and vcop_hist. These implement the
translation steps in the previous outline. The template parameters specify the element data type, the
number of parallel tables, and in the case of vcop_lookup, the interpolation degree. Both classes are
based on another template called LHT_base which provides functionality common to both classes.

5.4.1 Determination of Table Size
In order to generate the copy-in/copy-out operations, the migration tool needs to know how large the table
is. Unfortunately there is nothing in the Kernel-C source code that definitively indicates the size of a lookup
or histogram table (the tables are referred to via a pointer to their base address). However, the migration
tool can conservatively estimate the maximum required size by analyzing the possible range of values of
the index vector used to index the table.

As a starting point, the absolute maximum table size is 32K bytes. That’s the size of each VCOP memory
block, and the maximum size reservable for table data in L1D on C7x.

On VCOP, the index vector can only be defined by loading it from memory. If the load’s data type is
__vptr_int8 or __vptr_uint8, the maximum index value is either 127 or 255 respectively.

Alternatively, saturation is often applied to the index values so as to insure the table access is within its
bounds. The migration tool uses the max-set value from the saturation expression to determine an upper
bound on the index value and therefore the table’s size.
To indicate the exact size of a table in bytes, the _HISTOGRAM and _LOOKUP directives have a new optional
parameter, table_size:
_LOOKUP(num_tables, num_pts, duplication, table_size)
_HISTOGRAM(num_copies, duplication, table_size)

(Duplication is covered in Section 5.4.8) If the table size is not specified using the directives, and cannot
be inferred by saturation or data size, the maximum size of 32K bytes will be used. The migration tool will
issue a warning in this case.

5.4.2 Table Configuration
On C7x, LHT operations are controlled by a handful of control registers. C7x supports up to 4 table
configurations that can be simultaneously active. On VCOP only one table operation can be active at a
time so the migration tool always uses configuration 0 for the LHT operation. This configuration is enabled
by writing __LUT_ENABLE_0 into the LTER register and configured via the LTBR0 and LTCR0 control
registers. The LTBR specifies the base of the configured table in L1D. Since there is only one active table
the migration tool always establishes the base address at 0, and allocates all 32K bytes for configuration
0.

The LTCR configuration specifies table properties such as number of parallel tables, element size and
signedness, element promotion, and saturation behavior (for histogram). The migration tool configures
these fields according to the properties of the VCOP table. Elements are always promoted to 32-bits since
that’s how translated vectors are modeled.
The table configuration is computed by the LHT_base::config() method. The migration tool generates a
call to this method in the kernel init() function and stores the config value in the tvals structure. Then, in
the vloops() function, the migration tool generates a call to LHT_base::open(), which copies the config
value from the tvals structure into LTCR0, thereby configuring the table.
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5.4.3 Copy-in Operation
The copy-in operation is responsible for copying table data from its “permanent” location in L2 into L1D so
that an LHT operation can be performed. The source table in L2 is in VCOP layout; the destination table in
L1D is in C7x layout.
This operation is performed by the LHT_copy_in::copy_table_in() method of the virtual machine. A
pointer to the table in L2 and its size in bytes are passed as parameters. The size is rounded up to a
multiple of 128 bytes (1024 bits), which is the line size of banked tables on C7x.

The table is read and written one 1024-bit line at a time. Each line is read from L2 as a pair of 512-bit
vectors using the Streaming Engine. The pair of vectors, containing four VCOP lines, are rearranged using
two VPERM instructions. Then, they are written into L1D using a LUTINIT instruction.

Thus each 1024-bit chunk requires 2 SE-based vector loads, two VPERMs, and two LUTINITs. The
resultant loop pipelines at an ii (initiation interval) of 2. The throughput is 512 bits per cycle.

In order to use LUTINIT to populate a table in L1D, the table must be configured as one parallel table,
allowing the lanes of the payload vectors to be written into the table in linear fashion. This is regardless of
how the table is configured for the LHT operation itself. So there is an independent LTCR configuration
that applies only to the copy-in operation. This configuration is computed during the init() function by a
call to the copy_in_config() method, and stored in the tvals structure.

Similarly, the SE configuration used for the copy-in operation is computed during init() by the
copy_in_SE_config() method and stored in the tvals structure.

5.4.4 Copy-out Operation
The copy-out operation is essentially the reverse of the copy-in operation. The operation is performed by
the LHT_copy_out::copy_table_out() method, which is called after a loop containing a histogram
operation. The table will also be copied out after a qualifying OFFSET_NP1 or PDDA operation. (See )

Like copy-in, the table is read and written one 1024-bit line at a time. Each line is read from L1D as a pair
of 512-bit vectors using two LUTRD (lookup read) instructions, rearranged using two VPERM instructions,
and written using normal vector stores. The loop pipelines at an ii of 2, resulting in a throughput of 512 bits
per cycle.

For purposes of the LUTRD used for the copy-out, the table is considered to be 16 parallel tables
containing 32-bit elements. This enables each LUTRD instruction to read the maximal payload of 512 bits.
The copy-out LTCR configuration is computed during the init() function by a call to the
copy_out_config() method and stored in the tvals structure.

5.4.5 Index Adjustment from Non-zero Agen
The general form of a lookup table operation in VCOP Kernel-C is:
Vdst = base[Agen].lookup(Vindex);

The Agen is added to the base address of the table before adding the index offsets. In typical usage, the
Agen remains fixed at zero, and no adjustment is needed. However some kernels may use non-zero or
varying Agens as an additional addend to vary the table base dynamically. To account for this, the
migration tool adds the offset from the Agen to each lane of the index vector prior to indexing the table.
The adjustment calculation is:
Sadj = ((Agen / Ntables) / Elemsz); // scale bytes -> table index
Vindex_adj = Vindex + Sadj; // add to each lane vector

The division by Ntables accounts for the fact that when there are multiple parallel tables, the Agen
represents an offset into the combined table data, not an offset into each table. The division by Elemsz
accounts for the fact that the Agen is a byte offset, while the index values are element offsets. Both are
compile-time constants so the two divisions typically simplify to a single shift instruction. Furthermore, if
the Agen does not vary inside the loop, the computation of Sadj can be hoisted outside the loop.

In summary, if the Agen used in a LHT operation varies inside the loop, two additional instructions are
required in the loop (shift and add).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIG3C


Lookup and Histogram Table Operations www.ti.com

34 SPRUIG3C–January 2018–Revised August 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

Operations

5.4.6 Lookup Operation
Once the table is properly configured, copied to L1D, and arranged for C7x layout, the lookup operation
itself is straightforward. This VCOP Kernel-C statement:
Vdst = base[Agen].lookup(Vindex);

translates to:
LUTRD LTBR0,Vindex_adj

where LTCR0 specifies the table configuration and Vindex_adj represents the adjusted index vector as
described in Section 5.4.5.

The table configuration handles promotion of the table elements to 32-bits and interpolation (where
multiple consecutive elements are returned for each index).
The lookup operation is implemented by the vcop_lookup::lookup() method of the virtual machine.

5.4.7 Histogram Update Operation
The histogram update operation is very similar to the lookup operation. The statement:
Vreg = base[agen].hist_update(Vindex, Vweight);

translates to
WHIST Vindex_adj, LTBR0, Vweight

where LTCR0 specifies the table configuration, Vindex_adj represents the adjusted index vector as
described in Section 5.4.5, and Vweight is the vector of weight values.

The migration tool uses the “weighted” form of histogram since there is no penalty and the VCOP Kernel-
C syntax always expresses histograms in weighted form.

VCOP always saturates histogram bin values as they are updated. The saturation bounds are determined
by the element type of the table, as specified by the declared type of the base pointer. Thus the C7x table
configuration always enables saturation, and defines the element type to correspond to the VCOP table.
The histogram operation is implemented by the vcop_hist::whist_update() method of the virtual
machine.

5.4.8 16-Way Lookup and Histogram
VCOP memory is arranged as lines of 8 32-bit banks, for a total of 256 bits per line. This layout
complements the 8-way SIMD width of table lookup operations: each SIMD lane corresponds to a lookup
in one memory bank. The table layout in VCOP memory reflects this architecture.

The table layout cannot change between 8-way and 16-way SIMD. The producer of the table is
independent of the consumer, so the producer need not be aware of whether the table will be read using
8-way SIMD or 16-way SIMD. So, for 16-way SIMD, only the lookup operation itself changes; the source
table layout in L2 does not.

These considerations result in the following default scheme to support 16-way lookup and histogram:
• The table is assumed to be laid out in L2 memory according to the num_tables parameter of the

_LOOKUP directive. This layout is dictated by VCOP’s memory architecture and num_tables, and is
independent of the SIMD width that will be used to read the table.

• If vcop_simd=16 is specified, the lookup table operation is assumed to use twice the number of lanes
as that specified by num_tables. For example, if num_tables==8, the lookup operation used 16 lanes.
If num_tables==2, the lookup operation uses 4 lanes.

• Doubling the lookup width is enabled by duplicating the table in L1D as it is copied from L2. In effect,
the N-way table becomes a 2N-way table, with the data from lanes [0,N-1] duplicated in lanes [N, 2N-1]
(where N is num_tables).

• For a histogram operation, when the table is copied back to L2, the accumulated sums from the
duplicated tables must be added together (with saturation).

• In this way the lookup throughput is doubled without requiring a change to the table layout in L2.
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A few considerations apply to this scheme.
• First, the user should be aware that the table requires twice as much memory in L1 as in L2. Therefore

the maximum table size that can be supported in 16-way SIMD is 16K bytes.
• Second, because of the duplication, the throughput of the copy-in/out operations is 256 bits per cycle

instead of 512 bits as in 8-way mode.
• Third, like arithmetic kernels, in order to take advantage of 16-way SIMD, the kernel must be written in

a SIMD-width independent way. That is, loop control (trip counts) and addressing must be in terms of
VCOP_SIMD_WIDTH, rather than being hard-coded, or is more commonly the case, in terms of
num_tables.

This scheme is the default, but is not beneficial for all cases of lookup operations. For this reason,
_LOOKUP has been given an additional parameter to control this table duplication behavior, duplication:
_LOOKUP(num_tables, num_pts, duplication, table_size)

By default, duplication is VCOP_SIMD_WIDTH/8. That is, for 8-way it is 1 and for 16-way it is 2. In addition,
num_pts may be up to VCOP_SIMD_WIDTH. This additional parameter is particularly useful for one table
configurations. Consider the case of:
_LOOKUP(1, 8)

If the desired effect is to look up as many points as possible, this specification may be rewritten as:
_LOOKUP(1, VCOP_SIMD_WIDTH, 1)

This configuration will look up 8 points in 8 way mode and 16 points in 16 way mode from a single table in
L1D. If the desired effect is to lookup sets of 8 points, the specification may instead be rewritten to:
_LOOKUP(1, 8, VCOP_SIMD_WIDTH/8)

This configuration will look up 8 points using one index from one table in 8 way mode. In 16 way mode,
the table will be duplicated in memory, two index values will be used, and two sets of 8 points will be
returned.
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6.1 Overview
The collective design goal of the C7x ISA and the migration tool is to achieve cycle parity with VCOP on
Kernel-C kernels when translated to C7x. The actual performance of a given kernel depends on a variety
of factors:
• VCOP features used by the kernel
• how well the C7x ISA specifically covers those features
• the efficiency of the translation generated by the migration tool and virtual machine
• the ability of the C7x C compiler to generate efficient code from the translated code (including the

virtual machine)
• outer loop code limiting the use of NLC

Of these, only the ISA itself is relatively constant.

The most significant performance issues arise from the use of LHT (lookup and histogram) operations due
to the overhead of copying the table into and out of L1D, the use of OFFSET_NP1 and PDDA parallel
scattering stores, and collating stores which are not well-supported on C7x.

Having said that, for many kernels the goal of cycle parity is already achieved with current tools. We have
established the following general expectations:
• On average, kernels will execute on C7x with a cycles-to-cycles efficiency of about 0.7x vs VCOP.
• For kernels that can use 16-way SIMD, this doubles to about 1.4x.

6.2 Compiler Requirements
The migration tool generates C++ code that invokes methods in the virtual machine, which is also C++. As
such, it relies heavily on the compiler to achieve an efficient translation. In particular, the following
compiler optimizations are critical for VCOP translation:
• Inlining. The virtual machine is implemented as C++ classes with static inline methods. The migration

tool expects the compiler to inline them fully. The vloops() function of a translated kernel should
contain no calls.

• Software pipelining. This is an important key to performance on C7x. The compiler should be able to
pipeline any loop generated by the migration tool for a VCOP kernel.

• #pragma PARALLEL_LOOP. There are no loop-carried memory dependencies in a VCOP kernel (this
is a built-in property of the architecture). The migration tool uses the PARALLEL_LOOP pragma to convey
this property to the compiler. The compiler must not limit the initiation interval of a software pipelined
loop due to memory dependence.

• NLC. The migration tool does not directly invoke the NLC. It expresses loop control using explicit loops
and relies on the compiler to collapse them using the NLC where appropriate.

• Hoisting. The migration tool generates many loop-invariant operations within inner loops and relies on
the compiler to recognize that they are invariant and hoist them outside the loop.

• Forward Substitution for Addressing Primitives. The migration tool generates SE- and SA-based
loads as move instructions with the SE/SA pseudo-register as the source operand. Since this operand
encodes as a register operand, it can be often be propagated to where it’s used. For example, the
sequence:
VMV SE0++,Vreg1
...
VADDW Vreg1,Vreg2,Vdst

can be optimized to:
VADDW SE0++,Vreg2,Vdst
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A related issue is that the migration tool sometimes generates SA-based references to objects
separately from the actual indirection. The compiler should combine these. For example, the migration
tool may generate:
int16 *p = &__sa_noadv_int(0, 4, base); // note “address of”
...
*p = Vreg;

this generates:
ADDAW reg_base, SA0++, reg_p
...
VSTW Vreg,*reg_p

which should be optimized to:
VSTW Vreg,*reg_base[SA0++]

This is by no means an exhaustive list. Efficient translation relies on dozens of compiler optimizations, not
all of which have been implemented.

6.3 Automatic Performance Profiling
To facilitate evaluation of the performance of translated kernels running on C7x compared to native
execution on VCOP, an automatic profiling mechanism has been added to both the Kernel-C compiler
(vcc-arp32) and the migration tool (vcc7x). It measures the execution cycles of both the init() function
and the vloops() function on both targets so they can be compared.

The profiling mechanism relies on the built-in TSC cycle counter available on both EVE and C7x. The TSC
is accessed through API calls in the RTS.
On EVE the kernel executes asynchronously. That is, the vloops() function only dispatches the kernel
loops to VCOP but returns without waiting for them to complete. A subsequent call to
_vcop_vloop_done() synchronizes ARP32 execution with the completion of the kernel. EVE
programmers can manage this synchronization themselves by calling the init() function, the vloops()
function, and the _vcop_vloop_done() in the client code, possibly interspersed with other operations like
memory transfers.
Alternatively, programmers can use the higher-level kernel() function call which wraps these other calls.
The kernel() function waits for the VCOP loop to complete before returning. Automatic profiling is
supported only when the kernel is invoked through the higher-level kernel() API. However, users that
use the lower-level calls can still use the profiling mechanisms manually by inserting calls to the timer
functions themselves.

The mechanism works as follows:
• Profiling is enabled via the --profile switch on the VCC command line.
• VCC defines two global variables for each kernel to hold the cycle counts for the init() and vloops()

functions. Given a kernel named mykernel, the variables are named mykernel_init_cycles and
mykernel_vloops_cycles.

• In the kernel() function, VCC wraps calls to the init() and vloops() functions with cycle counting
via _tsc_gettime(). In the EVE case, the vloops cycle count is taken after _vcop_vloop_done(), so
that the elapsed time includes complete execution of the vloop command on VCOP. It stores the cycle
counts in the counter variables.

• At the bottom of the kernel() function, VCC inserts a call to a new API function
__vcop_log_kernel_profile() that records the accumulated cycle counts along with the kernel’s
name. This function is defined in the compiler’s runtime support library.

• When the program ends (after main() returns) the values are automatically printed. For example:
kernel profiling results:

vcop_fir_2D_short: init cycles=207 vloops cycles=64

If the kernel is not invoked through the high-level kernel() API, users may still insert cycle counting code
manually and call __vcop_log_kernel_profile() to register the accumulated cycle counts.

On EVE, VCOP is clocked at twice the rate of ARP32. The reported cycles for EVE are ARP32 cycles, not
VCOP cycles. Therefore to compare C7x cycles to VCOP cycles, the EVE cycle counts should be
doubled.
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6.4 Performance Options
There are a number of options available to improve performance under certain circumstances. Not all are
applicable to all kernels and some may require some refactoring of source.
--transpose – Enables the streaming engine based transpose read transformation to generate more
efficient OFFSET_NP1 transpose sequences.

--vcop_simd=16 – Enables 16 lanes and changes VCOP_SIMD_WIDTH to 16.
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Warnings and Notes

A.1 Compatibility Warnings
This is a summary of the “Compatibility Warnings” throughout the document. These are cases where
incorrect translation to C7x may occur.
• Pblock contents. Dispatch or Kernel Code that manipulates the pblock directly based on knowledge

of its contents will not work. The tvals structure, which is the C7x analogue of the pblock, has different
fields at different locations. (Section 2.2)

• Pblock size. The tvals structure for C7x tends to be larger than the pblock for VCOP. Programs which
allocate the pblock without using the kernel_pblock_size() function may fail if the allocated space is
too small. (Section 1.4)

• Unsigned vector elements. If a kernel relies on vector elements being treated as unsigned when bit
31 is set, the translated code may not work properly. (Section 1.4)

• 40-bit vector elements. If a kernel depends on more than 32-bits of precision in vector elements, the
translated code may not work properly. (Section 1.4)

A.2 Efficiency Warnings
This is a summary of the “Efficiency Warnings” throughout the document. These are cases where
inefficient translation to C7x may occur.
• Collate. Stores using the collate distribution mode do not have efficient translations. (Section 5.2)
• Parallel Stores. Stores using OFFSET_NP1 and PDDA (p_scatter) distribution modes do not have

efficient translations to C7x by default. (Section 5.2.2)
• Lookup Table and Histogram Operations. Due to the overhead of copying the table data into and

out of L1D, these operations can have inefficient translations. (Section 5.4)
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