Welcome To:

AEMC® Instruments

Understanding & Logging Electrical Power & Energy We'll start at 11:00 AM EST

Understanding & Logging Electrical Power & Energy

Mark Gutekunst, Mid Atlantic Sales Engineer

Training Webinars

- Bi-monthly webinar subjects include;
 - Testing Insulation Resistance
 - Remote Power Monitoring and NEC 220.87
 - Introduction to Power Quality
- In-person & On-line Understanding Ground Resistance Testing training – see AEMC website for times and costs
- Private training seminars ask your AEMC Sales Engineer for more information.

What is Electrical Energy

• Electrical Energy is what powers all our electrical devices. The use of this energy is metered by electrical utilities and measured in Watt-hours (Wh), This is what you get billed for.

Power vs. Energy

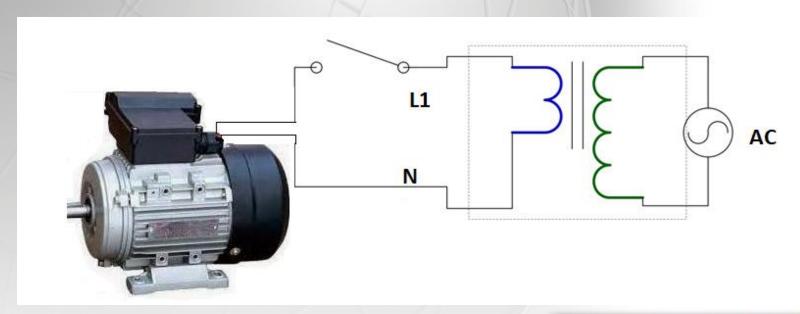
- Power and Energy are related, but different
- Power measured in Watts and is rate of how much electrical energy a device instantaneously consumes.
- Energy measured in Watt-hours, is the accumulated use of power over time

Power vs. Energy

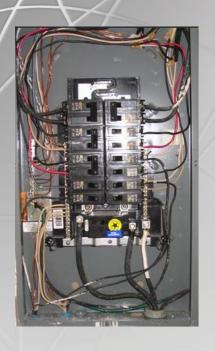
- When a 100 watt light is turned on:
- It begins to draw current from the utility.
- If the light stays on for an hour, the utility bills you for 100 Watt-hours
- If the light only stayed on for ½ an hour, the utility bills you for 50 Watt-hours.

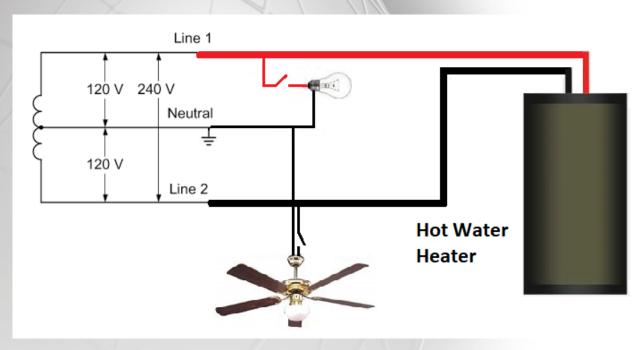
Power vs. Energy

- In a Single Phase System, a pair of voltage leads (L1 and Neutral) are used to monitor the voltage and 1 CT (Current Transducer) is used to monitor the current.
- In Split phase systems, 3 voltage leads are used (L1, L2, Neutral) to monitor the voltage and 2 CT's are used to monitor the currents.
- In 3 phase / 3 wire systems, 3 voltage leads (L1, L2, L3) and used to monitor voltages and 1 or 2 CT's are used to monitor currents.
- In 3 phase / 4 wire systems, 4 voltage leads (L1, L2, L3, & Neutral) are used to monitor voltages and 3 or 4 CT's are used to monitor currents.



Why Would You Want To Record Energy

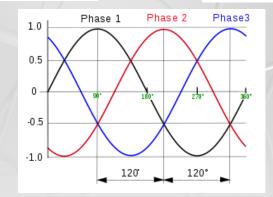

- Energy is what our utility bills us for (in addition to other things such as PF, Peak Demand, Harmonics, etc.)
- Energy is always one of the most significant operational costs of any facility.
- Lowering Energy usage reduces operating expenses.
- Using energy efficient devices or turning off unused devices can significantly reduce energy usage and therefore operating costs.
- KEY: YOU NEED TO KNOW WHAT IS BEING USED BEFORE YOU CAN PLAN WHAT TO DO



Let's Look a Single-Phase System

This is the type of power system used in residential structures

Split Phase System



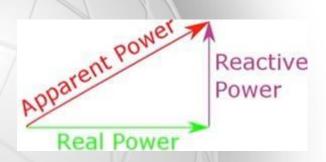
120 V 240 V 240 V 240 V 240 V

Figure 1. Three-Phase 120/208Y

DELTA

WYE

3 Phase Systems



Types of Power

- Apparent Power VA Volts x Amps, power grid must be able to supply
- Real Power Watts Volts x Amps x Cos Θ, energy consumed by resistive load
- Reactive Power VARS Volts x Amps x Sin Θ, energy stored in the inductor or capacitor

A famous analogy is made with the glass of beer and the froth of the beer. Real power is what you end up drinking. The glass is the apparent power and must be large enough to contain liquid and froth.

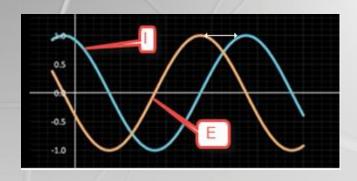
When The Load is Resistive

- Devices like incandescent light bulbs
- Phase angle Θ is 0 degrees and VA = Watts,
- Real Power equals Apparent Power
- Power Factor = 1
- All energy is converted to work

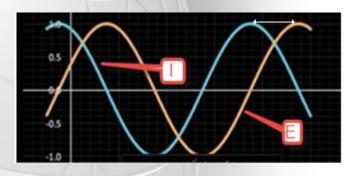
When The Load is Inductive

- Devices like Motors, Transformers
- Phase Angle Θ increases from 0 to as much as 90 degrees
- Real Power, Watts will drop while Apparent Power, VA stays constant.
- As Phase Angle Θ increases so does Reactive Power, VARs
- In Inductive devices, the current lags the voltage, and which causes a lagging Power Factor

... Which many utilities bill you extra for


When The load is Capacitive

- Devices like Computers, LED lights
- Phase Angle Θ increases from 0 to as much as 90 degrees
- Real Power, Watts will drop while Apparent Power, VA stays constant
- As Phase Angle Θ increases, so does Reactive Power, VARs
- In this case, the current leads the voltage, and we would have a leading Power Factor


... Which many utilities bill you extra for

The Electricians' Friend ELI the ICE Man

In an inductive circuit the Voltage leads the Current (ELI)

In a capacitive circuit the Current leads the Voltage (ICE)

How do I measure & log power, what do I need?

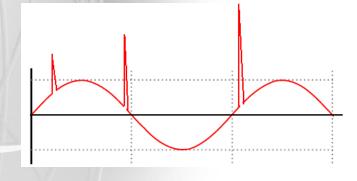
- Device capable of measuring required phase voltages and phase currents: single to 3 phase
- Capable of measuring True RMS
- Memory to record Power over time frame required
- Real time clock to record Time of Day (TOD)
- Report Generation capability included
- Suitable for required CAT (voltage inpulse) rating
- Weather consideration: interior or exterior

Who Uses Energy Loggers

- Electrical Contractors
- Design Engineers
- **Electric Utility Technicians**
- Plant Maintenance Staff
- •Field Service Technicians
- Consultants

Why is CAT Rating so important???

Category	Description			
CATI	At the signal level parts of electronic equipment			
CAT II	At local level environment, Portable equipment appliances			
CAT III	At an interior, fixed installation distribution level of AC main power			
CAT IV	Outside of a building, main power line at service level			



WHAT IS CAT IV Rating???

Test instruments are rated on their ability to withstand a <u>voltage</u> <u>impulse</u>, which is applied through a specified level of resistance (See table).

The ratings are broken down by categories — CAT I, II, III, and IV.

Rated voltage	IEC 610	010-1 2nd	Edition	UL 61010B-1 (UL 3111-1)			
	CAT IV	CAT III	CAT II	CAT III	CAT II	CATI	
150V	4,000V	2,500V	1,500V	2,500V	1,500V	800V	
300V	6,000V	4,000V	2,500V	4,000V	2,500V	1,500V	
600V	8,000V	6,000V	4.000V	6.000V	4,000V	2,500V	
1,000V	12,000V	8,000V	6,000V	8,000V	6,000V	4,000V	
Resistance	2 ohms	2 ohms	12 ohms	2 ohms	12 ohms	30 ohms	

CAT IV-rated test instruments are designed for testing on the primary supply source, which also includes 120V or 240V overhead or underground lines that power detached buildings or underground lines that power well pumps. The CAT IV rating covers the highest and most dangerous level of transient overvoltage electricians encounter when working on utility service equipment like exterior transformers

Use as a traditional clamp meter

Use as a wireless communicating power meter

Models Series

AEMC ONE SOURCE

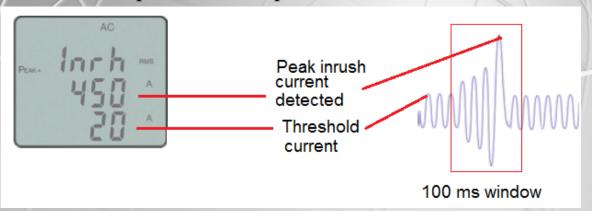
400 series

Models 401 and 403 are general purpose measures to 1000VAC/1400VDC and 1000AAC/(model 403)1500ADC Models 405 and 407 also measures Power and Harmonics

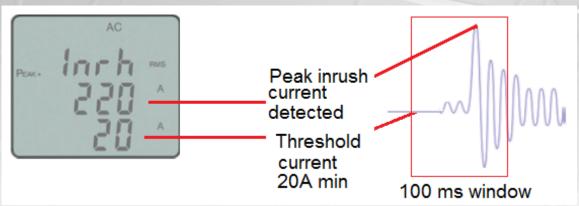
MSRP: \$309 to \$489

600 series

Models 601 and 603 are general purpose measures to 1000VAC/1400VDC and 2000AAC/(model 603)3000ADC Models 605 and 607 also measures Power and Harmonics



MSRP: \$411 to \$560


The models 407 and 607 can record and employ Bluetooth communication for Report Generation

Inrush captured on an operational circuit

Inrush captured on start up

- Automatic threshold detection (20A minimum)
- Programmable deviation detection from 5 to 200%
- 100 ms sample duration for calculation

AEMC Clamp-On Overview

- ✓ Up to 1000V CAT IV rated
- ✓ 2000 Amp AC 3000 ADC
- ✓ AC+DC measurement (can measure ripple on a DC signal)
- ✓ IP54 rated
- ✓ Measures real, apparent and reactive power to 3 MW with 1W resolution with 1 and 3 phase display
- √ 40 to 70 and 400Hz fundamental reference for harmonic measurements
- ✓ Bluetooth communication (model 407, 607)
- ✓ Stores up to 1,000 measurements with user programmable storage rates
- ✓ InRush measurement with 1mS response time and 100 ms sample duration periods True InRush
- √ Phase rotation measurement
- ✓ Agency approvals UL, CSA, VDE,GS and TUV
- ✓ UL 94VO flame retardant/self extinguishing plastic
- ✓ RoHS (Lead Free) compliance pending

What is Included?

Model 401,403, 405, 601,603, 605

- Meter
- Cat IV 1000V rated Silicone lead set
- K Thermocouple (excluding 405, 605)
- Set of 4 AA 1.5 V Batteries
- Soft case
- User Manual

What is Included?

Model 407 and 607

- Meter
- Cat IV 1000V rated Silicone lead set
- Bluetooth adaptor
- Set of 4 AA 1.5V Batteries
- Hard shell case
- DataView® Thumb Drive
- User Manual

PEL 102/103/105 Power & Energy Loggers

PEL Phase Power Adapter for Models 102 and 103

- Powers the PEL 102/103 from phase power
- Powers from phase to neutral or phase to phase
- Provides isolation between measurement and instrument power
- Range of use: Phase-to-neutral voltage: 110 to 277VAC
 Phase-to-phase voltage: 110 to 480VAC
- Max. input voltage: Permanent: 530Vac; Transient: 550VAC
- Min. input voltage: 85VAC (-20%)
- Max. output voltage: 360V peak
- Frequency: 50/60Hz
- Consumption: 100VA max at 50/60Hz

PEL102/103/105 capabilities

- Simple to use, minimal set up, records everything
- Offers all the necessary functions for Power/Energy data logging for most of the 50Hz, 60Hz, 400Hz and DC distribution systems worldwide
- User configurable for single phase to 3 phase Delta, Wye electrical systems, 17 electrical distribution system hookups supported
- Direct current measurements from 200mA up to 10,000A with MA193 external current sensors
- Energy measurements VAh, Wh (source/load indication) and varh (including quadrant indication)
- Power Factor (PF), $Cos(\varphi)$, and $Tan(\varphi)$, Crest Factor and DPF measurements
- Harmonics up to the 50th order for 50/60 Hz voltages and currents
- RMS and DC measurements @ 128 samples/cycle all phases simultaneously (16/cycle @ 400Hz)
- Storage of measured and calculated values on a removable SD-Card or SDHC-Card up to 32GB
- Automatic recognition of the connected current sensors/probes
- Configuration of current and voltage ratios to external PT and CT ratios
- USB, LAN, and Bluetooth (class 1 300 ft) communication
- DataView® software for data download, real-time communication with a PC and report generation with pre-written
 or custom templates, included with system.
- Complies with NEC 220.87 monitoring requirements: Determining Existing Loads which requires monitoring 15-minute demand periods for 30 days with a recording power meter when 1 year's historical data is not available before upgrading the service.

AEMC ONE SOURCE

Distribution Systems Supported

Single-Phase Power Networks

- ► .Single-Phase 2-Wire
- ➤ .Single-Phase 3-Wire (Split-phase)

Three-Phase 3-Wire Power Networks

- ►.Three-phase 3-wire ∆ (with two current sensors)
- ►.Three-phase 3-wire ∆ (with three current sensors)
- ►.Three-phase 3-wire Open ∆ (with two current sensors)
- ►.Three-phase 3-wire Open ∆ (with three current sensors)
- ►.Three-phase 3-wire Y (with two current sensors)
- ► Three-phase 3-wire Y (with three current sensors)
- ►.Three-phase 3-wire ∆ Balanced (with one current sensors)

Three-phase 4-Wire Y Power Networks

- ►.Three-phase 4-wire Y (with three current sensors)
- .Three-phase 4-wire Y Balanced
- ►.Three-phase 4-wire Y 2½ Element
- ►.Three-phase 4-wire ∆
- ▶.Three-phase 4-wire Open ∆

DC Power Networks

- ▶.DC 2-wire
- ▶.DC 3-wire
- ▶.DC 3-wire

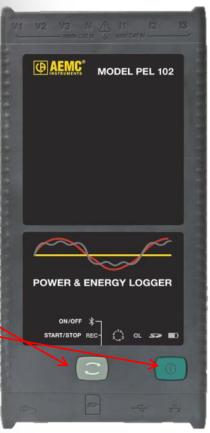
PEL Physical Features – Front Panel

PEL 103

Input Indicators

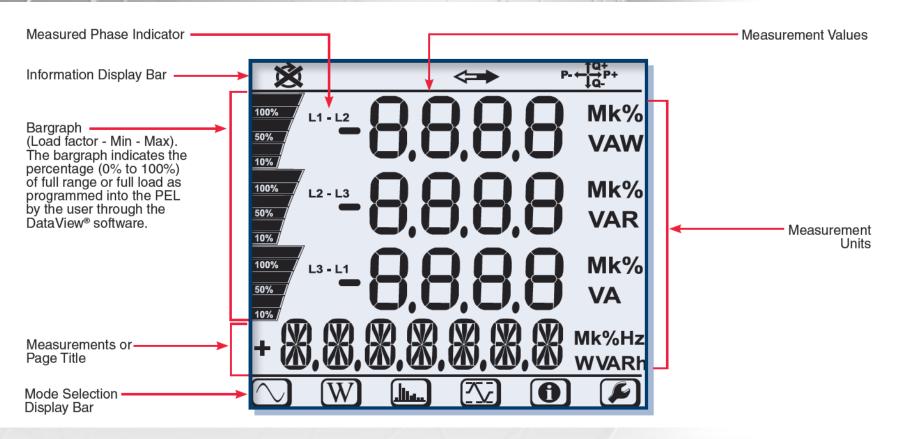
Backlit LCD

Enter Button

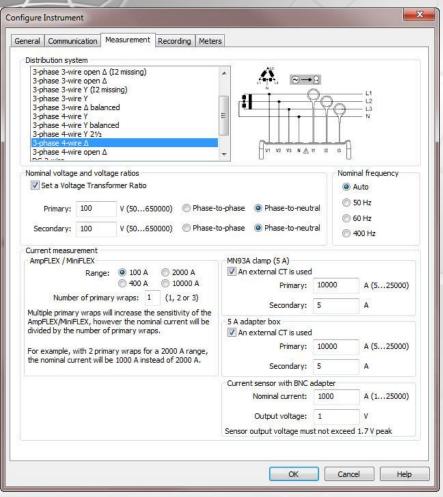

Navigation Button

Selection Button

Power Button

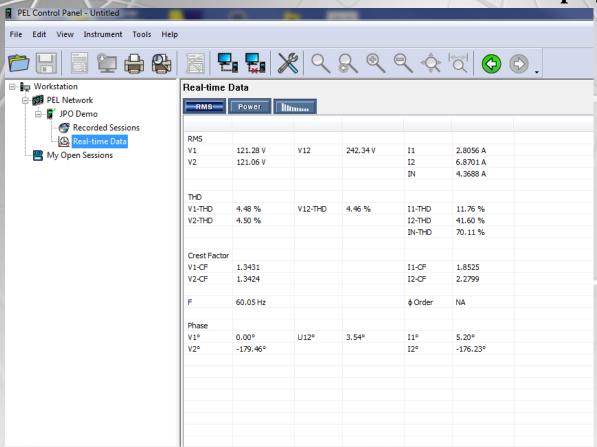

Port Indicators

PEL 102



PEL Display

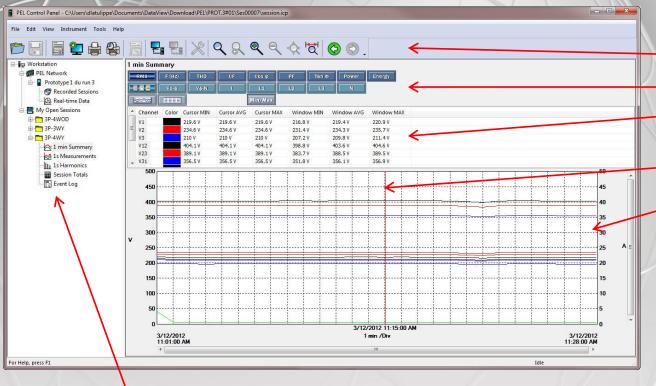
DataView PEL Control Panel



Measurement Tab

- Select network type
- Set PT ratio
- Select flexible probe range and number of wraps
- Select CT ratios for specific probes and adapters
- Select frequency/detection

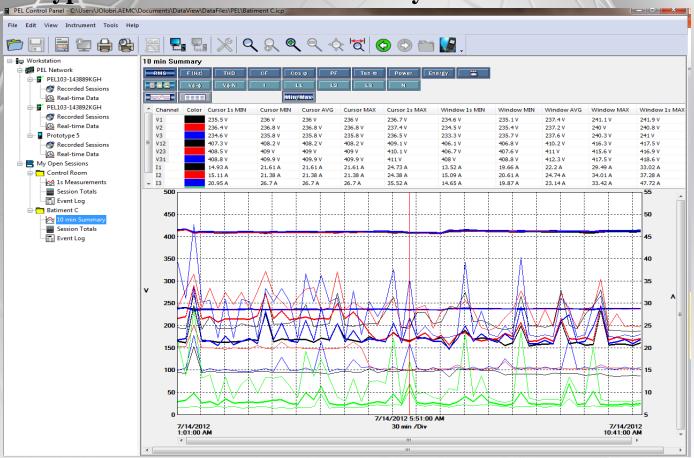
DataView PEL Control Panel – Real Time Display



Displays all measurements and calculations for:

- RMS measurements
- Power
- Harmonics

DataView PEL Control Panel – Recorded Data

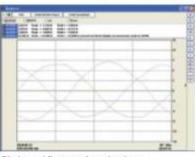


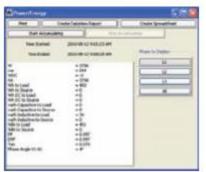
Tool Bar
Selection Buttons
Tabular listing @
Cursor position
Movable cursor
Plot/List area

Logger Tree

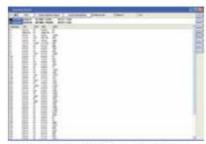
Typical Demand Period Summary

Stores and plots measurements based on user programmable demand aggregation periods from 1 to 60 minutes

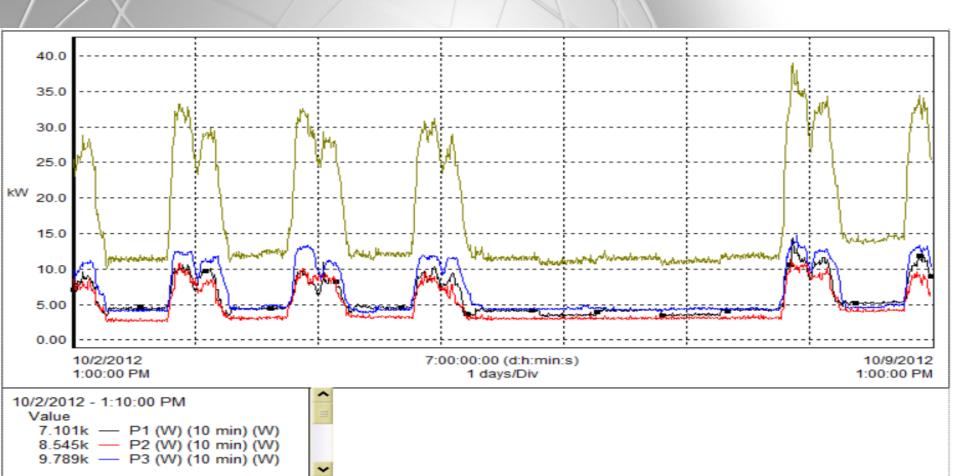

Here is a typical output


Clear and easy setup of all functions from one tabbed dialog box

Display real-time Phasor diagrams. Includes unbalance for both voltage and current.

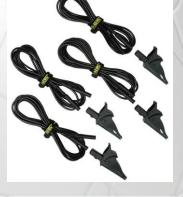

Display real-time waveforms by phase, parameter or total

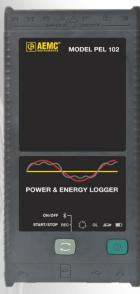
Display power and energy parameters – both instantaneous and total.


Display all harmonics from 1st to 50th in bargraph form for voltage, current and power.

Display harmonics in a text table from harmonic 0 (DC) through the 50th.

Here's another look





MAEMO

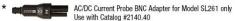
Phase Power Adapter MSRP: \$200

MSRP PEL105: \$3050

Android App Available

Glossary of Terms

Volt...... True RMS AC, DC, AC + DC (Ripple). Amps...... AC only (C.T.) AC/DC, AC+DC (Hall effect device). Ripple...... The quality of rectified AC voltage expressed in a percentage. (AC+DC) W.....(S) Apparent Power (Volts X Amps). (P) Real Power (Volts X Amps X COS θ). (Q) Reactive Power (Volts X Amps Reactive). Min/Max......Highest & Lowest RMS Voltage or Current. Peak...... Instantaneous (1ms) maximum Voltage or current. Harmonics.... Multiple frequencies within 50 or 60Hz fundamental (400Hz selectable). THD.....Total Harmonic Distortion as expressed as a $\sqrt{\Sigma^{2 \text{ Hm}}}$ Fundamental $^2=\%$. **True Inrush... Several types: (Motor and Load)** Start up (Motor start and End). Maximum instantaneous (RMS ½ Cycle) Maximum due to load changes. Recording..... Stores the Max, Min and present value of switch position parameter.


Auto Shut-off. Selectable, Automatic after 10 minutes inactivity with 5 "Beep" warning

Sensor Type		l nominal	RMS or DC Current	Accuracy	Typical Error on ϕ at 50/60Hz	Maximum Error on φ at 50/60Hz	Typical Error on φ at 400Hz	Max Conducto Size
MiniFlex® MA193		100Aac	5A to 120A	±1% ± 50mA	0°	±0.5°	-0.5°	
(Included with instrument)		400Aac	20A to 500A	±1% ± 0.2A	0°	±0.5°	-0.5°	2.75" (70mm)
		2000 A ac	100A to 2400A	±1% ± 15A	0°	±0.5°	-0.5°	
10" Sensor		10,000Aac	500A to 12000A	±1%	0°	±0.5°	-0.5°	1
MR193			50A to 100A	±1.5% ± 1A	-1°	± 2.5°		
		1000Apc	100A to 800A	±2.5%		- 00		1.6" (41mm)
			800A to 1200A	±4%	-0.7°	±2°		(,
SR193		1000 A ac	50A to 100A	±0.5%	+0.25°	±1°	+0.1°@ 1000Å	2.05" (52mm)
			100A to 1200A	±0.3%	+0.2°	±0.7°		
AmpFlex® 193		100 A ac	5A to 120A	±1% ± 50mA	0°	±0.5°	-0.5°	7.64" (190mm)
		400 A ac	20A to 500A	±1% ± 0.2mA	0°	±0.5°	-0.5°	
		2000Aac	100A to 2400A	±1% ± 15A	0°	±0.5°	-0.5°	11.46" (290mm)
		10,000Aac	500A to 12000A	±1%	0°	±0.5°	-0.5°	
MN93			5A to 40A	±2.5% ± 1A	+2°	±5°	-1.5°@ 40A	0.78" (20mm)
		200 A ac	40A to 100A	±2% ± 1A	+1.2°	±3°	-0.8°@ 100A	
			100A to 240A	±1% + 1A	+0.8°	±2.5°	-1°@ 200A	
MN193	100A	100 A ac	5A to 120A	±1%	+0.75°	±2.5°	-0.5°@100A	0.78" (20mm)
	5A	5Aac	250mA to 6A	±1%	+1.7°	±5°	-0.5°@ 5A	
	105	1001	5A to 40A	±4% ± 50mA	-	±1°	_	0.46" (11.8mm)
	10A	100Aac/dc	40A to 100A	±15%	-	±1°	-	
	100A	10Aac/dc	50mA to 10A	±3% ± 50mA	-	±1.5°	-	

Optional Accessories

MA193 included in base price

For More Information

Free Technical Support: Call 800-343-1391

E-mail: TechnicalSupport@aemc.com

Call me - Mark Gutekunst: 508.698.5655, email:

MPG@aemc.com

Checkout our website: www.AEMC.com

For More Information

SE US: Chad Dugas, cdugas@aemc.com, 508.698. 5655

Central US: Brent McKinley, bmckinley@aemc.com, 508.698.5649

N. Central, NE US: George Vlachos, gtv@aemc.com, 508.698.5651

Central South USA: Gregg Wong: gwong@aemc.com, 508.698.5652

Western US: Tim Cowgill, tcowgill@aemc.com, 508.698.5618

CA, OR, WA: Mark Van Til, mvantil@aemc.com, 508.698.5654

