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ABSTRACT
Spreadsheets are popular and widely used for data presentation

and management, where users create tables in various structures

to organize and present data. Table formatting is an important yet

tedious task for better exhibiting table structures and data rela-

tionships. However, without the aid of intelligent tools, manual

formatting remains a tedious and time-consuming task. In this pa-

per, we propose CellGAN, a neural formatting model for learning

and recommending formats of spreadsheet tables. Based on a novel

conditional generative adversarial network (cGAN) architecture,

CellGAN learns table formatting from real-world spreadsheet tables

in a self-supervised fashion without requiring human labeling. In

CellGANwe devise twomechanisms, row/column-wise pooling and

local refinement network, to address challenges from the spread-

sheet domain. We evaluate the effectiveness of CellGAN against

real-world datasets using both quantitative metrics and human per-

ception studies. The results indicate remarkable performance gains

over rule-based methods, graphical models or direct application of

the state-of-the-art cGANs used in visual synthesis tasks. Neural

Formatting is the first step towards auto-formatting for spreadsheet

tables with promising results.

CCS CONCEPTS
• Information systems → Semi-structured data; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Spreadsheets are popular and widely used for data presentation

and management, with tables playing a central role. Different from

database tables, spreadsheet tables by themselves provide effec-

tive visualization for data presentation. Since tables typically have
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(a) A table with default formats

(b) A table with human-crafted formats

Figure 1: Comparison of an example spreadsheet table with
deault formats and human-crafted formats.

various structures and layouts on the cell grid, table formats are

created to intuitively reflect data correspondence for easy look-up,

or serve side-by-side comparison for higher-order knowledge exhi-

bition. From this visual perspective, table formatting such as border,

alignment, font, etc, significantly helps with table layout shaping

or structure scoping. For example, the rich formats on the table in

Figure 1(b) not only helps to shape the complex hierarchies in the

top and left headers (“A1:G7” and “A8:A17”), but also helps to scope

the data groups in “B8:G17”. On the contrary, it is not intuitive to

understand the raw data in Figure 1(a). Hence, table formatting is

an important task in the spreadsheet domain.

Manual formatting of spreadsheet tables is tedious and time-

consuming, especially for professional and complex tables in finance

and government domains. For example, at least 79 mouse clicks

with a correct order are required for an Excel professional to format

Figure 1(a) to Figure 1(b) using Excel. The objective of this study is

to explore intelligence towards automatic formatting of spreadsheet

tables. Unfortunately, there is hardly any related study or existing

spreadsheet tool available to address this task. Major challenges

are concluded as follows. (1) Table structures and data layouts are

often complex. Due to the flexibility of commodity spreadsheet

tools and the diversity of human artifacts when organizing data,

users create tables with various structures. It is challenging to
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Figure 2: Architecture of CellGAN to map table data→formats. The generator learns to generate formats based on data, and
the local refinement net is appended to enhance formats with better local consistency. The discriminators learn to distinguish
generated formats from real formats.

systematically describe and automatically extract various table

structures, e.g., the hierarchical headers and data groups. Several

works [8, 10, 20] aim to analyze table structures, but only target web

or PDF tables with simple table structures, such as single header

row/column that canmatch simple templates, and are not applicable

to complex table structure extraction. [3] focuses on spreadsheet

table structure extraction in a user interactive way. (2) To the best

of our knowledge, there is no existing metric to evaluate the quality

of table formatting, while metrics are neccessary for guiding both

rule-based methods and data-driven methods. (3) Since different

cultures and domains may have different preferences, there exists

various formatting styles in real-world tables (the same table can

be formatted in different border densities, alignment preferences,

color themes, etc.), and makes it challenging to summarize various

implicit formatting styles.

On the other hand, large volumes of expert-made formatted

spreadsheets are available on the web and can be obtained with

trivial efforts. Thismotivates an end-to-end approach to learn
automatic formatting directly from a large amount of for-
matted sheets in a self-supervised manner without explic-
itly modeling table structures, since structure information is

embedded in the underlying formats and implicitly captured by an

end-to-end model. (1) A sheet can be viewed as a two-dimensional

array of cells, and formats are well structured on sheets. This mo-

tivates us to use Convolutional Neural Networks (CNNs) [16] or

graphical models [15] to capture spatial correlations between cells.

(2) There lacks a loss function or an objective to score the overall

quality of formats, and designing effective losses needs a lot of

expert efforts. Since a table can have multiple reasonable format-

ting styles in real data, if we take a naive approach by asking a

CNN to minimize the Euclidean distance between predicted and

real-world formats, it may tend to produce “blurry" formats since

the Euclidean distance is minimized by “averaging" all reasonable

formatting styles in real data. Fortunately, Generative Adversarial

Nets (GANs) [12] are proposed to learn an overall loss by adversar-

ially training a network that “makes the output indistinguishable

from reality”. (3) While standard GANs aim to fit the natural data

distribution, conditional GANs [19] are proposed to learn the proba-

bilistic mapping from one domain to another domain in conditional

settings [13, 23], and have been successful in various computer

vision tasks including image style transfer [11] and multi-domain

image translation [4]. This motivates us to learn a one-to-many
mapping from table data to table formatting with a cGAN ar-

chitecture.

Nevertheless, the cross-domain application is never straightfor-

ward due to domain-specific characteristics of spreadsheet data

and the auto-formatting task. Directly applying cGAN-based mod-

els to spreadsheet data without incorporating domain-specific and

task-specific cues would produce results with poor quality. In this

study, we propose CellGAN, a CNN-based generative model with

several key enhancements customized for table auto-formatting.

Major contributions in this paper include:

• We provide the first formulation of the table auto-formatting

problem in this paper. In addition, we propose ways to evalu-

ate the generated table formatting including subjective eval-

uation with user perceptual studies and objective evaluation

with quantitative methods.

• We propose a novel method, CellGAN, to learn table format

generation with convolutional networks in a generative ad-

versarial way.
1
CellGAN achieves superior performance in

table format generation over all comparison methods accord-

ing to both quantitative metrics and human studies.

• Based on the characteristics of spreadsheet data and formats,

we devise a novel row/column-wise pooling layer and a local

refinement network. Our ablation studies show that they

can considerably improve the quality of generated formats.

• We also explore user-controllable auto-formatting such as

customizing borderlines with varied densities, demonstrat-

ing the model’s ability to navigate intrinsic formatting styles

in the space of acceptable formats.

2 METHOD
2.1 Problem Formulation
Table formats in real-world spreadsheets depend on both implicit

and explicit factors. While explicit factors such as cell values and

types provide direct cues for table formatting (e.g., a border should

be placed to separate data and header regions), implicit factors such

as the culture and domain are also useful in capturing the variations

of formatting styles (e.g., the best practices for border placement

and alignment adjustment vary with different professions). This

1
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motivates a data-driven approach to learn table formats based on

large volumes of professional spreadsheet tables crawled from di-

verse backgrounds. Moreover, with increasing amounts of training

data, we can also suppress the undesirable effect of sporadic user

factors over model learning, yielding models that concentrate on

common and domain practices rather than individual preferences.

To this end, we formulate auto-formatting as a task to map a ma-

trix of data in a table to their formats. Among different format types,

borders are one of the most effective and widely used formats to

visualize table structures, especially the hierarchical headers and

data groups, and alignments are also commonly used to provide

neat and clean data presentation. Hence in this paper, we select

border and alignment as two representative formats to demonstrate

the validity of our method. However, the proposed method is quite

general and can be directly applied to learn other format types.

2.2 Cell Featurization
To enable end-to-end format learning, we devise a featurization

scheme to represent input cells and their output formats. Each

input cell is encoded by an 11-dimensional vector to capture cell

value, formula, etc, whereas the output formats are encoded by a

4-dimensional vector, each representing the encoding for a specific

format type along a specified direction. Table 1 provides more

details on the encoding schemes. Supposeh andw are the height and

width of the table, anh×w×11 input tensord and anh×w×4 output

tensor f can be extracted based on our proposed featurization.

2.3 Network Architecture
In general, a cGAN architecture consists of a generator G and a

discriminator D. In this formatting task, the generator G is trained

to generate output formats f conditioned on the input features d
such that an adversarially trained discriminator cannot distinguish

generated formats from real-world formats. The discriminator D is

trained to classify whether the data and formats pair (d, f ) is “real"
or “fake". The objective function is then given by:

LcGAN(G,D) =E(d ,f )[logD(d, f )]+

Ed [log (1 − D(d,G(d)))],
(1)

whereG and D aim to model the conditional distribution of formats

via the following minimax game:

min

G
max

D
LcGAN(G,D) (2)

The architecture of our method is shown in Figure 2. We use

convolutional neural networks to build the backbone of G and

D to capture spatial correlations in the cell matrix. To effectively

use cell-level spreadsheet features to generate high-quality for-

mats, the “u-net” architecture [22] is adopted in the generator with

shortcut connections between corresponding down-sampling and

up-sampling layers. Multi-scale Markovian discriminators [7] are

used during training in an effort to better capture information in

widely varying scales of receptive fields in a coarse-to-fine fashion.

We use 3 discriminators to differentiate real and generated formats

in 3 different scales. The learning problem in Eq. (2) then becomes:

min

G
max

D1,D2,D3

∑
k=1,2,3

LcGAN(G,Dk ) (3)
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Figure 3: The architecture of row/column-wise average pool-
ing. The input feature map is concatenated with their row
and column average.

2.4 Row/column-wise Average Pooling
In a spreadsheet table, data are usually arranged row-wise or column-

wise for easy look-up and query. Consequently, table formats also

exhibit such row-level and column-level patterns. For example, in

Figure 1(b), all the horizontal alignments of numbers in column G

are right alignments. To capture these row-level and column-level

patterns in a more effective way, we propose row/column-wise

average pooling as shown in Figure 3.

Suppose E ∈ Rh×w is the input feature map to the row/column-

wise average pooling layer. For row-wise pooling, we first average

the feature vector for each row, then fill each row of the pooling

result H ∈ Rh×w with the corresponding row-average value. And

the same operations can be applied to column-wise pooling but

in a different orientation to produce the pooling result V ∈ Rh×w .

Precisely, the row/column-wise pooling results are defined by:

H =
1

w
(E · 1w×w ) (4)

V =
1

h
(1h×h · E) (5)

where 1w×w
and 1h×h arew ×w and h ×h matrices of ones respec-

tively. Finally, the output is produced by concatenating the input E
with the pooling results H and V as shown in Figure 3.

By using row/column-wise pooling, the subsequent convolu-

tional layers can directly integrate both row-level and column-level

features, regardless of the kernel sizes used for convolution. More-

over, the shortcut connection between input and output also help

preserve the original features. In our method, row/column-wise

pooling is applied to all down-sampling layers of u-net as well as

the first layer of the local refinement network as shown in Figure 2.

2.5 Local Refinement Network
Viewers are sensitive to the local patterns in table formats, espe-

cially in important table regions like hierarchical headers. Even a

single cell with an inconsistent format from neighboring cells is

obtrusive and can destroy the eventual effect of table formatting,

such as a cell with an inconsistent border in the header region or a

cell with a different alignment in the middle of a column. In order

to prevent undesirable artifacts, we need to enforce stronger local

consistency of the generated formats in model training. However,



Table 1: Featurization of table data and formats.

Name Description Value

Input features
Log Length Log length of the string. Set to 0 for blank string. Float

Alpha Prop Proportion of the letters in the string. [0, 1]

Number Prop Proportion of digits in the string [0, 1]

Space Log Length Log length of spaces at the starting of string. Float

Merged With Top If the cell is merged with top neighbor. {0, 1}

Merged With Left If the cell is merged with left neighbor. {0, 1}

Merged With Bottom If the cell is merged with bottom neighbor. {0, 1}

Merged With Right If the cell is merged with right neighbor. {0, 1}

Is Number Type If the cell value is displayed as number. {0, 1}

Is Date Type If the cell value is displayed as date. {0, 1}

Has Formula If the cell contains a formula. {0, 1}

Output formats
Horizontal Border If horizontal border of the cell exists. {0, 1}

Vertical Border If vertical border of the cell exists. {0, 1}

Horizontal Alignment Horizontal text alignment (left, center, right). {0, 1, 2}

Vertical Alignment Vertical text alignment (top, middle, bottom). {0, 1, 2}

due to the variety of table structures, it is difficult to employ ex-

plicit rules with high robustness. To this end, we propose a novel

local refinement network customized for the spreadsheet domain

to perform a coarse-to-fine refinement on the generated formats

and diminish the local outliers.

The local refinement network takes the previously generated

formats with the original spreadsheet data as inputs, and it outputs

the refined formats over initial ones. The network employs a fully

convolutional network [17] as its backbone, and incorporates our

proposed row/column-wise pooling. We further employ a new data

augmentation strategy that randomly adds some incorrect local

formatting patterns to the input, and encourage this network to

eliminate them by training with an additional loss term, L
denoising

:

L
denoising

=
1∑

t ∈T ,i, j et,i, j
(

∑
t ∈T ,i, j

et,i, j

���ft,i, j − f ∗t,i, j

���),
(6)

where et,i, j indicates if the specific input format of class t in the

(i, j)-th cell is changed when adding incorrect local patterns, f ∗ is
the input formats before adding incorrect patterns, f is the output

formats, andT is the full set of format types. Moreover, to encourage

continuous formats in row and column directions, we incorporate a

novel discontinuity loss. Considering different format types may re-

quire continuity in different directions, we divide format types into

two groups,Trow andTcol .Trow contains format types that require

row-wise continuity (e.g., horizontal border, vertical alignment),

andTcol respects to column-wise continuity. The discontinuity loss

L
discontinuity

is then given by:

L
discontinuity

=
1

wh
(

∑
t ∈Trow ,i, j

��ft,i, j − ft,i, j+s
��+∑

t ∈Tcol ,i, j

��ft,i, j − ft,i+s, j
��), (7)

where s is the step size that defines the neighborhood relations for

the specific orientation, which is set to 1 in our local refinement

network. The final objective combines both the adversarial loss and

the local refinement loss:

min

G
( max

D1,D2,D3

(
∑

k=1,2,3

LcGAN(G,Dk )+αLdiscontinuity
+βL

denoising
)),

(8)

where α and β controls the importance of the two terms. Here

we can also view the local refinement module as an implicit soft

regularization for the overall lossLcGAN to encourage formats with

better local continuity and mitigate local defects.

2.6 Formatting with User-Controllable
Attributes

As discussed previously, it is desirable for the auto-formattingmodel

to generate a diversity of acceptable formats for input tables. Cur-

rent cGANs achieve this by providing a random variable z as an
additional input to the generator, allowing multiple outputs to be

produced in the same condition. However, the use of random vari-

able z to control diversity is not intuitive or meaningful.

Hence in our work, we try to explore intuitive and meaningful

control variables so as to enable flexible control over the output

formats by manipulating these variables. Taking border format as

an example, we find the border density to be an intuitive variable

to control the effect of generated borders for a table. Here the

horizontal (vertical) border density is defined as the proportion

of the cells with horizontal (vertical) borders in a table and can

be easily calculated. In the training phase, we augment the input

features d of a table with two new channels by filling the true

horizontal and vertical densities to all of its cells and feed the

augmented features to the generator. Then the generator G(d) in
Eq. (1) generates formats conditioned on both input features and

border densities. In the testing phase, the trained generator can then

be used to recommend diversified border formats over the same

table by feeding different target density values to the generator.

Note that this methodology is quite general and can also be applied



Table 2: Characteristics comparison between datasets.

Dataset SAUS NCES NSF

Number of tables 1,109 5,237 1,195

Average row count 54 60 45

Average column count 16 20 14

Tables with horizontal borders 100.0% 99.8% 100.0%

Tables with vertical borders 100.0% 62.7% 28.4%

to other format types that can be controlled via a ratio-like variable,

such as portion of highlighted cells by font or color.

3 EXPERIMENTS
Datasets We conduct evaluations on three web-crawled datasets,

namely SAUS
2
, NCSE

3
, NSF

4
, each containing rich amounts of

spreadsheets created by professionals in different domains with

high formatting quality. For each dataset, we randomly select 80%

of tables for training and the remaining 20% for testing. Table 2

shows some statistics. NSF prefers horizontal borders to shape

table layouts, while SAUS uses more vertical borders. We use the

ClosedXML
5
library to parse Excel spreadsheets and a recent CNN-

based approach, TableSense[5], to detect tables in spreadsheets.

Baselines Given the absence of prior work on this task, we first

investigate a rule-based method by consolidating effective heuris-

tics. Then we adapt a graphical model to this task. Considering the

analogy between an image as a 2D matrix of pixels and a sheet as a

2D matrix of cells, state-of-the-art methods for image generation

can also be strong baselines. Moreover, we evaluate two variants of

CellGAN for ablation studies. These methods are listed as follows:

• Rule-based method. First, we detect and parse the hierarchi-

cal headers based on merged cells in the top and indent levels

on the left. Based on the parsed header trees, we consolidate

heuristics to generate table formats, e.g., add borders be-

tween the respective regions of two neighboring tree levels.

• Undirected graphical model [15] that learns the joint distri-

bution of (d , f ) with the node potential to capture features

of a single cell and the edge potential to capture relations of

neighboring cells in pairwise.

• CRN [2], a supervised image synthesis model using a feed-

forward convolutional network.

• Pix2pixHD [24], a state-of-the-art high resolution image

generation algorithm based on cGANs.

• CellGAN (w/o LRN). Based on CellGAN (full), the Local

Refinement Network (LRN) is removed.

• CellGAN (w/o RCP). Based onCellGAN (full), the Row/Column-

wise Pooling (RCP) is removed.

To ensure unbiased comparison, all methods use the same featur-

ization scheme introduced in Section 2.2.

2
Downloaded the 2010 Statistical Abstract of US from the Census Bureau website.

3
Crawled from the National Center for Education Statistic website.

4
Crawled from the National Science Foundation website.

5
https://github.com/ClosedXML/ClosedXML
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Figure 4: Bad cases of CellGAN’s generation in SAUS.

3.1 Implementation Details
Generator in CellGAN We use Ca×b-k to denote a convolu-

tional layer with k a×b filters and stride 1. Similarly, Da×b-k de-

notes a convolutional layer down-sampled by a factor of 2, while

Ua×b-k denotes a convolutional layer up-sampled by a factor of 2.

RRCP-k denotes a residual block with k 5×3 filters. The proposed

row/column-wise pooling layer is inserted before each residual

block and downsampling layer. The generator adopts a u-net archi-

tecture that consists of:

• Encoder: C1×1-64, 3×C7×3-64, D8×2-128, D8×3-256, D8×3-

512, D8×2-1024, D8×3-1024, D8×2-1024, 6×RRCP-1024.

• Decoder: U8×2-1024, U8×3-1024, U8×2-512, U8×3-256, U8×2-

128, U8×2-5

Discriminator inCellGAN The discriminator adoptsmulti-scale

PatchGAN [24] that consists of: C1×1-64, 2×C5×3-64, D7×3-128,

D5×3-128, C3×1-512, D7×3-512, C5×3-512, C5×3-1.

Training Details We train the entire model end-to-end using an

Adam optimizer [14] by simultaneously optimizing the objectives

for borders and alignments. We train our models on 16 NVIDIA

Tesla V100 GPUs for around 900,000 iterations.

3.2 Case Study
To facilitate an easier understanding of the subsequent evaluations,

we first show two typical cases to help illustrate key concepts

intuitively. In Figure 4, Figure 5 and Figure 6, the two cases are

shown on the left and right columns, while results obtained by

different techniques are placed on different rows for comparison.
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Figure 5: Case study of various format generation approaches. Two test cases in SAUS are shown on the left and right columns,
while generated cell borders and alignments by different techniques are placed on different rows for comparison. To display
all these results on this constrained space, some rows and columns are hidden.
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Figure 6: Case study of two CellGAN variants.

Baseline: The left and right cases on Row(a) in Figure 5 show that

the rule-based method is brittle. It generates inappropriate borders

when cells in the top are not merged, and misses the top header’s

last row (row 9) in the right case. Row (b) shows that the graphical

model fails to fully capture the correlations of formats on the two-

dimensonal cell grid, with lots of intermittent borderlines. Rows (c)

and (d) in Figure 5 show that without spreadsheet domain-specific

techniques, even state-of-the-art models for image generation will

produce low-quality results.

Human mistake: For the left case, the results on Rows (e) and (f)

in Figure 5 indicate that humans may make mistakes resulting in

incomplete borders. CellGAN avoids such mistakes via learning

from data on a large scale.

Non-exclusive styles: The right case in Rows (e) and (f) in Figure

5 shows that both two different formats can be reasonable. Top

borderlines are added in different ways on rows 9, 10, and 11.

RCP & LRN: Results on Rows (g) and (h) in Figure 6 show that dis-

continuous, incomplete or redundant borders are generated when

RCP or LRN is absent. RCP helps better preserve row/column-wise

consistency of formats, while LRN helps prevent local outliers of

output formats. Both of them enhance the quality of output formats.

Bad cases of CellGAN: There are also bad cases of CellGAN. Case
(a) in Figure 4 shows inappropriate generated borderlines in the

red circle. It seems that CellGAN is fooled by the blank region of

F14:H19 and tries to generate a bottom borderline for the region

F5:H13. Case (b) in Figure 4 shows that the generated borderlines

are inconsistent among peer data groups, as highlighed by four

circles with different colors. A main cause for this bad case is that

the top header of this table is complex with 9 rows of hierachical

cells. It indicates that although CellGAN can learn common table

structures from large data in an end-to-end way, it can still be

further improved for fine-grained table structure extraction.

3.3 Human Perceptual Study
The key purpose of table formatting is to help users better un-

derstand the table structure and data correspondence. It is thus

important to evaluate the formatting quality based on the subjec-

tive perception of humans. We conduct a perceptual study with 16

Excel data professionals from a professional data service supplier
6
.

We randomly select 200 tables from each dataset for human evalu-

ation. For each table, the generated formatting and its real-world

formatting form a pair for comparison and are presented in random

ordering with anonymized labels. A professional has unlimited time

to visually inspect the generated formatting against the real-world

formatting for each table, and marks the one with better quality
or a tie for comparable qualities according to:

• Integrity: Whether the formatting looks complete without

missing/redundant local pieces.

• Effectiveness:Whether the formatting reflects table struc-

ture and data correspondence for easy look-up.

• Harmony: Whether the formatting is visually appealing

and matches the table in harmony.

As shown in Figure 7, both borders and alignments generated by

CellGAN are rated much higher than those produced by alternative

approaches. 69.67% of the generated borders and 80.50% of the

generated alignments obtained by CellGAN are rated better than

or comparable to the real-world formats on average. And even for

10.5% of tables in SAUS, the generated borders by CellGAN are

considered better than the real-world borders. Results also show

that both the row/column-wise pooling and the local refinement

network considerably enhance the quality of generated formats. To

measure the agreement among human evaluators, we also evaluate

Fleiss’ kappa, which achieves 0.615, indicating substantial agree-

ment according to [25].

6
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Figure 7: Human evaluation results.

3.4 Quantitative Evaluation
Quantitative evaluation of generative models is known to be chal-

lenging, and to the best of our knowledge, there are no existing

quantitative metrics for table formatting evaluation. To address this

challenge, we define the following two metrics to reflect the quality

of generated formats from global and local perspectives.

3.4.1 Table-Level Accuracy (TLA). If a formatting algorithm can

generate formats for a given table that exactly matches the real-

world formats of the table, the generated formats are considered

as high quality. To this end, we employ the Table-Level Accuracy

(TLA) as a global metric, which is defined as the proportion of exact

matchings among all tables in a test dataset:

TLA =

N∑
n=1

| f n
gen
== f n

real
|/N , (9)

where “==” returns 1 if the generated formats f n
gen

of table n and

the corresponding real formats f n
real

are exactly the same for all

cells, and N is the number of test tables.

As Table 3 shows, for border generation, the average TLA of Cell-

GAN achieves 38.93%, which significantly outperforms Pix2pixHD

of 17.84% and CRN of 3.95%. Due to the variety of formatting styles,

some generated formats which are not “Exactly Matching” the real

data may be also reasonable. By comparing Table 3 and Figure 7,

we find that results of TLAs are lower than results in human per-

ceptual studies. In particular for the rule-based method, TLA of

border generation only achieves 11.9%, much lower than 40.83% in

human studies, showing that the rule-based method fails to adapt

to various implicit formatting styles in real-world datasets.

3.4.2 Local Patch Metrics (LPM). TLA is quite a strict metric that

requires 100% matching between real-world formats and gener-

ated formats at table level. However, direct cell-level comparison

between formats is also problematic since multiple satisfactory

formats can be generated from the same input table conforming

to different formatting styles but aligning poorly at cell level. By

noting that two generated format results that do not match the

real-world formats at table level can have quite different quality

in local details, we define LPM to evaluate the local patch-level

quality for the generated formats. The general idea is to consider

patches from real-world high-quality datasets as “natural" patches,

and statistically measure the naturalness of generated formats by

matching their patches against “natural" patches.

Similar to n-grams in documents [1], we collect k×k local format

patches from spreadsheet tables with a sliding window. We denote

the collection of local format patches as bag-of-format-patches, and

build the bag-of-format-patches for both the real-world formats

and the generated formats. We then define LPM precision as the

percentage of generated patches covered by patches in the training

set, LPM recall as the percentage of training patches covered by

generated patches, and LPM as their F1 score in the following:

LPMprec. = |{ f k×k
gen

∈ P
real

}|/|Pgen |, (10)

LPM
recall.

= |{ f k×k
real

∈ Pgen}/|Preal |, (11)

where P
real
B { f k×k

real
} and Pgen B { f k×k

gen
} denote the collections

of all real-world patches and generated patches respectively, and

| · | denotes the cardinality of a set.

As shown in Table 4, CellGAN achieves much higher average

LPM scores than both CRN and Pix2pixHD. This means that the

format patches generated by CellGAN are more “natural” with sig-

nificant overlap with the true format patches in real-world datasets.

Results also show that the local refinement network achieves about

4%∼12% gains in LPM for borders and alignments.

3.5 Border Density for User Manipulation
We now show how the generated formats can be manipulated by

users using border densities as an example. In practice, not all

border formats are equally likely to be recommended for a given

input table. The generator usually generates a small number of

“authentic”-looking candidate formats with discrete border density

levels, and is not sensitive to minor changes in the continuous

control variable value. Therefore, we discretize the [0, 1] density

range into equal intervals with size 0.05 for both training and

inference. For training, the generator takes horizontal and vertical



Table 3: Comparison results with the TLA metric.

% Border Alignment

SAUS NCES NSF AVG SAUS NCES NSF AVG

Rule-based 7.62 12.18 15.91 11.90 18.46 23.27 23.19 21.64

Graphical model 1.37 7.63 12.48 6.70 1.12 18.31 16.22 11.88

CRN 4.11 3.38 4.37 3.95 48.40 27.32 36.68 37.47

Pix2pixHD 0.00 23.17 29.26 17.48 2.28 39.09 32.75 24.71

CellGAN(w/o RCP) 16.89 14.86 41.05 24.27 40.64 41.12 44.54 42.10

CellGAN(w/o LRN) 2.74 17.66 21.83 14.08 33.33 48.36 35.81 39.17

CellGAN(full) 30.14 38.61 48.03 38.93 48.40 61.68 44.10 51.39

Table 4: Comparison results with the LPM metric.

% Border Alignment

Patch SAUS NCES NSF AVG SAUS NCES NSF AVG

4 × 4

Rule-based 82.22 90.51 84.18 85.64 83.32 75.28 62.45 73.68

Graphical model 63.24 81.34 77.01 73.86 60.14 73.64 61.90 65.23

CRN 85.94 87.85 90.63 88.14 86.95 58.49 66.86 70.77

Pix2pixHD 72.67 92.12 88.04 84.28 70.51 76.33 68.57 71.80

CellGAN(w/o RCP) 92.97 95.07 89.81 92.62 91.28 83.08 77.23 83.86

CellGAN(w/o LRN) 88.83 95.23 88.11 90.72 83.92 81.36 64.44 76.57

CellGAN(full) 96.66 98.12 88.86 94.55 92.26 89.44 74.33 85.34

6 × 6

Rule-based 77.04 83.51 78.36 79.64 76.39 60.81 57.96 64.96

Graphical model 42.17 73.82 72.39 62.79 43.65 50.74 46.70 47.03

CRN 77.01 79.15 87.16 81.11 79.26 44.06 55.66 59.66

Pix2pixHD 49.99 85.39 82.18 72.52 52.19 61.33 57.25 56.93

CellGAN(w/o RCP) 86.18 89.94 83.70 86.61 84.85 72.61 66.44 74.63

CellGAN(w/o LRN) 79.22 90.83 82.26 84.11 74.63 66.74 50.45 63.94

CellGAN(full) 92.61 95.78 82.48 90.29 86.05 80.71 62.39 76.39

Figure 8: Generated border densities in SAUS.

border densities as conditions. For inference, users can specify the

density attributes to generate formats with desired density levels.

We feed different border densities to the generator on test sheets

and examine the variations of density values for the generated

formats. Figure 8 plots the average output density values on the

test dataset over different input user-specified density values to the

generator. It can be clearly seen that the generated density values

are proportional to the input density values with an approximately

linear relationship highlighted by the dotted line. This demonstrates

the effectiveness of user manipulation with control variables. We

also show an intuitive example in Figure 9. By grouping the same

results for different input densities, we find three major patterns

with different generated borders. All look realistic by reflecting

different levels of data groups, showing the ability of CellGAN to

navigate intrinsic styles in the space of acceptable formats.

4 RELATEDWORK
Spreadsheet Table Formatting To the best of our knowledge,

this is the first study on learning spreadsheet formats. Hardly any

related study or spreadsheet tool is available to address this task. In

other related domains, we find some work on designing or assessing

presentations, webpages, and visualizations. [26] targets to visual-

textual presentation layout, e.g., digital magazine cover, poster, and

Power Point slides, by formulating the typography as an energy

optimization problem given pre-defined aesthetic principles and

topic-dependent templates. [9] proposes a deep learning method

for visualization assessment, and [6, 18] introduce ways to assess

aesthetics of websites. But due to the gap between these domains on

data structures and task formulations, techniques for these domains

are not quite applicable to spreadsheet formatting.

CGANs CGANs have been typically used to learn a mapping from

one domain to another in conditional settings, and have achieved
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Figure 9: An example for border density manipulation in
SAUS. CellGAN generates borders with different densities.

impressive results on inpainting [21], style transfer [11], and im-

age manipulation guided by user constraints [27]. CellGAN is the

first research effort leveraging cGANs for solving problems in the

spreadsheet domain and remarkably outperforms state-of-the-art

cGAN models that are specialized for other domains [24].

5 DISCUSSION AND CONCLUSION
In this paper, we propose a new problem, auto-formatting for spread-

sheet tables. First, we provide the first formulation of the table

auto-formatting problem. Second, as a new task, auto-formatting

lacks practical metrics for evaluation. we propose both quanti-

tative evaluations and human perception studies, which help to

compare the effectiveness of different methods in practice. Third,

different from domains such as computer vision and natural lan-

guage processing, where models such as CNNs and LSTMs are well

studied and proved highly effective in a wide range of tasks, there

lacks a widely adopted model in spreadsheet domain, especially in

generation tasks. CellGAN is the first deep model tailored for the

spreadsheet domain by learning the latent mapping from table data

to table formats in a generative adversarial way. We also explored

user-controllable manipulation on border generation for interactive

formatting. In the future, we plan to investigate fine-grained table

structure extraction to enable high-quality formatting generation

for complex tables.
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