
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.cypress.com Document Number: 002-25401 Rev. *B 1

AN225401

How to Use Serial Communications Block (SCB) in Traveo II Family

Author: Koichi Tsuchiya

Associated Part Family: Traveo™ II Family CYT2/CYT3/CYT4 Series

Related Application Notes: see Related Documents.

AN225401 demonstrates how to configure and use a Serial Communications Block (SCB) in Traveo™ II family MCU

with three serial interface protocols: SPI, UART, and I2C.

Contents

1 Introduction .. 1
1.1 Features .. 1

2 General Description ... 2
3 Common Settings .. 3
4 SPI Setting Procedure Example 4

4.1 Master Mode ... 4
4.2 Slave Mode ... 8

5 UART Setting Procedure Example 12

5.1 UART Mode .. 12
6 I2C Setting Procedure Example 19

6.1 Master Mode ... 19
6.2 Slave Mode ... 24

7 Glossary .. 30
8 Related Documents ... 30
Document History .. 31
Worldwide Sales and Design Support 32

1 Introduction

This application note describes how to use a Serial Communications Block (SCB) in Cypress Traveo II family
CYT2/CYT3/CYT4 series MCUs. The SCB is used for serial communication with other devices; it supports three serial
communication protocols: SPI, UART, and I2C.

This application note explains the functioning of SCB, initial configuration, and data communication operations with use
cases. To understand the functionality described and terminology used in this application note, see the Serial
Communications Block (SCB) chapter of the Architecture Technical Reference Manual (Architecture TRM).

1.1 Features

The SCB supports the following features:

▪ Standard SPI Master and Slave functionality with Motorola, Texas Instruments, and National Semiconductor
protocols.

▪ Standard UART functionality with SmartCard reader, Local Interconnect Network (LIN), and IrDA protocols.

 Standard LIN Slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance.

The SCB in Traveo II family has only Standard LIN Slave functionality.

▪ Standard I2C Master and Slave functionality.

▪ Only SCB[0] is DeepSleep-capable.

▪ EZ mode for SPI and I2C Slaves allows for operation without CPU intervention.

▪ CMD_RESP mode for SPI and I2C Slaves allows for operation without CPU intervention, and available only in
DeepSleep-capable SCB.

▪ Low-power (DeepSleep) mode of operation for SPI and I2C Slaves (using external clocking), only available on
DeepSleep-capable SCB.

▪ DeepSleep wakeup on I2C Slave address match or SPI Slave selection; only available on DeepSleep-capable SCB.

▪ Trigger outputs for connection to DMA.

▪ Multiple interrupt sources to indicate status of FIFOs and transfers.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 2

2 General Description

The SCB supports three serial communication protocols: SPI, UART, and I2C. Only one of the protocol is supported by
an SCB at any given time.

The SCB supports only the Slave functions of the LIN standard. Therefore, UART-LIN of the SCB cannot be used for
the LIN Master. For details on the supported hardware and LIN Master tasks, see the description of the LIN block in
the Architecture TRM.

Figure 1 shows the block diagram of SCB.

Figure 1. Block Diagram of SCB

FIFO

SRAM

SPI

Control

SPI(EC)

Control

I
2
C

Control

I
2
C(EC)

Control

SPI Mux I
2
C Mux

UART

RX

Control

UART

TX

Control

Serializer

Glitch Filter

REGISTER
Clock

from Clock System Interrupt
 to NVIC

- TX/RX FIFO Control
- EZ Support
- Command/Response Support

S
C

L
S
D

A

R
X

R
T
S

S
C

L
K

M
O

S
I

M
IS

O
S
E
L
E
C

T

TX, RX Trigger
 to DW/DMAC

T
X

C
T
S

Peripheral interconnect

The SCB consists of registers, FIFO, and a control block for each protocol function (SPI, UART, and I2C). Registers
are used as a software interfaces for SCB settings and generated interrupts by each event. The FIFO consists of SRAM
(256-byte) and has three modes Tx/Rx FIFO (128x8-bit/ 64x16-bit/ 32x32-bit), EZ (256x8-bit), and Command/Response
(256x8-bit). Each protocol function control block works as a transmitting and receiving controller. SPI (all SCBs) and
I2C (SCB[0]) support externally clocked (EC) mode in Slave mode.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 3

3 Common Settings

Figure 2 shows the flow of the general settings of SCB. Specific settings for each protocol are described in later sections.

Figure 2. Flow of General Settings of SCB

START

END

Initialize Clock

Configure Port

Communication Program

Initialize SCB

Configure System Interrupt

The Initialize Clock block sets the peripheral clock (PCLK) input to the SCB. This setting is configured by the clock
system in the MCU.

The Configure Port block configures the connection of external pins used for communication with the SCB. The
Configure System Interrupt block configures the interrupt settings used for communicating as a transmission interrupt
or a receive interrupt.

For details, see the Architecture TRM of each block. The Initialize SCB block initializes the registers of the SCB for the
protocol used. The Communication Program block describes the control procedure when the SCB transmits or receives
data.

Initialize internal clocks related to SCB.

For details, see the Architecture TRM.

Configure the ports for direction (input, output, or High-Z),

drive mode, and function.

For details, see the Architecture TRM.

Configure system interrupts for priority level, enable, and

interrupt mask.

For details, see the Architecture TRM.

Initialize SCB configurations for the used protocol.

Program the procedure of transmitting and receiving.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 4

4 SPI Setting Procedure Example

This section shows an example of using SPI. The SCB supports SPI Master mode and SPI Slave mode with Motorola,
Texas Instruments, and National Semiconductor protocols. See the Architecture TRM for details of each protocol.

4.1 Master Mode

This example configures SCB in Motorola SPI Master mode and transmits one word (16-bits) of data and receives one
word of data from the SPI Slave.

<Use case>

- SCB Mode = Motorola SPI Master mode

- SCB Channel = 1

- PCLK (Peripheral Clock) = 4 MHz

- Bit rate = 1 Mbps

- Tx/Rx data length = 16 bits

- Tx/Rx FIFO = Yes (16-bit FIFO data elements)

- Rx interrupt = Enable

- Used ports

 SCLK : SCB1_CLK (P18.2)

 MOSI : SCB1_MOSI (P18.1)

 MISO : SCB1_MISO (P18.0)

 SELECT : SCB1_SEL0 (P18.3)

- MOSI data is driven on a falling edge of SCLK.

- MISO data is captured on a falling edge of SCLK after half a SPI SCLK period from a rising edge.

Figure 3 shows the example of connection between the SCB and another SPI device.

Figure 3. Example of SPI (Master Mode) Communication

MCU

SPI Slave Device

SCLK

MOSI

MISO

SELECT

SCB

(Master)

In SPI mode, SCLK, MOSI, MISO, and SELECT signals are connected to another Slave device. In Master mode, SCLK
and MOSI are output, and MISO is input. SELECT is used as an indication of valid data period for the Slave device. Up
to four SELECT signals can be assigned.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 5

Figure 4 shows the setting procedure and operation example for Master mode.

Figure 4. SPI Master Mode Operation

END

Set Target Slave SELECT

Configure SPI Interface

Enable SPI

Transmit SPI Tx Data

START

Configure Rx Settings

Configure Tx Settings

Configure Interrupt Settings

Configure Port

After the common settings such as ports and SPI interface configurations, enable the SCB block by setting the enable
bit (SCB_CTRL.ENABLED). The software sets the transmission data to the Tx FIFO; then the SPI controller transmits the

data to the Slave device. If the number of bytes received exceeds the Rx FIFO threshold level
(SCB_RX_FIFO_CTRL.TRIGGER_LEVEL), the SPI controller notifies the receive interrupt to the CPU. The software can

then read the received data from the Rx FIFO.

Configure SCB register for SPI Master mode.

See Table 2.

Configure Rx settings of SCB register.

See Table 3.

Configure Tx settings of SCB register.

See Table 4.

Configure interrupt settings of SCB register to allow

Rx trigger. See Table 5.

Set target to slave SELECT0 (SSEL[0]).

SCB_SPI_CTRL.SSEL = “0”

Enable SCB block. When enabled, SCB functions as the

configured communication protocol (SPI in this case).

SCB_CTRL.ENABLED = “1”

Write the 16-bit data to be transmitted to SCB_TX_FIFO_WR

register. Based on Tx setting in Table 4, the SCB will start

transmitting as soon two or more bytes are written to the FIFO.

SCB_TX_FIFO_WR = transmit_data

Configure ports for SPI Master mode. SCLK, MOSI,

SELECT are output. MISO is input. See Table 1.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 6

Figure 5 shows an example of SPI receiver interrupt handling.

Figure 5. SPI Master Mode Interrupt

START

RX TRIGGER Interrupt? Check if SCB_INTR_RX_MASKED.TRIGGER == 1

Get Received SPI Data
Retrieve one word (16-bits) of data

unsigned short int receive_data = SCB_RX_FIFO_RD

END

N

Y

Clear RX TRIGGER Interrupt Flag SCB_INTR_RX.TRIGGER = 1

Read back the register for ensuring

the completion of register write access

dummy = SCB_INTR_RX.TRIGGER

Read Back

When the SPI controller stores data in the Rx FIFO, the SPI controller can notify a receive interrupt to the CPU. When
the CPU detects a receive interrupt, the software can get the received data from the Rx FIFO. If the cause of an interrupt
is not TRIGGER, you should check for other interrupt causes or clear all interrupts.

Note: Procedures for causes other than the TRIGGER interrupt should be handled by the application.

4.1.1 Configure Ports

This section explains an example of the port setting used in SPI Master mode. In this mode, SCLK, MOSI, MISO, and
SELECT are used as interface signals. Each signal is assigned to the port number as follows:

 SCLK : SCB1_CLK (P18.2)

 MOSI : SCB1_MOSI (P18.1)

 MISO : SCB1_MISO (P18.0)

 SELECT : SCB1_SEL0 (P18.3)

Table 1 shows an example of the port configuration in SPI Master mode.

SCLK, MOSI, and SELECT are configured for the output port, and MISO is configured for the input port with the
GPIO_PRT18_CFG.DRIVE_MODEx register and GPIO_PRT18_CFG.IN_ENx register. The pin functions are determined by

the HSIOM_PRT18.PORT_SEL0.IOx_SEL register.

Table 1. SPI (Master Mode): Example of Port Configuration

Register
Port Configuration

Remark
SCLK (x=2) MOSI (x=1) MISO (x=0) SELECT (x=3)

GPIO_PRT18_CFG.DRIVE_MODEx 6 6 0 6
0: High-Z.

6: Strong Drive Output.

GPIO_PRT18_CFG.IN_ENx 0 0 1 0
0: Input buffer disabled.

1: Input buffer enabled.

HSIOM_PRT18.PORT_SEL0.IOx_SEL 19 19 19 19
19: ACT#7. For the SCB
function of the pin, see the
datasheet.

Note: Bits that are not listed in Table 1 have default values. For default values, see the respective registers in the
Registers TRM.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 7

4.1.2 Configure SPI Interface Registers

This section explains an example of setting SPI registers used in SPI Master mode. The following SPI registers are
used: interface configuration register, Rx and Tx control register, and interrupt register.

Table 2 shows an example of the SPI interface configuration in SPI Master mode. These registers configure the SPI
interface in communication mode or clock and data. In this case, this SPI interface behaves in Motorola mode, SPI
Master mode, and 16-bit FIFO data elements.

Table 2. SPI (Master Mode): Example of SPI Interface Configuration

Register Bit Value Remark

SCB_CTRL MODE 1 SPI mode

OVS 3 Four oversampling (OVS + 1).

This OVS bit is used for determining the bit rate as
shown in section 4.1.3. Bit Rate Setting.

MEM_WIDTH 1 16-bit FIFO data elements

SCB_SPI_CTRL MODE 0 SPI_MOTOROLA mode

MASTER_MODE 1 Master mode

SSEL_POLARITY0 0 SELECT pin to the Slave is LOW/'0' active.

CPHA 0 When the clock is inactive, the level is LOW. MOSI is
driven on the falling edge of SCLK. MISO is captured on
the rising edge of SCLK.

CPOL 0

LATE_MISO_SAMPLE 1 The alternate clock edge is used (which comes half a
SPI SCLK period later).

SSEL_CONTINUOUS 0 SCLK is generated when the SPI Master is enabled and
data is transmitted.

SELECT_PRECEDE 0 Used only in SPI Texas Instruments mode.

SCLK_CONTINUOUS 0 Disables the Master to generate a continuous SCLK
regardless of whether there is data to send.

Note: Bits that are not listed in Table 2 have default values. For default values, see the respective registers in the
Registers TRM.

Table 3 shows an example of the Rx configuration in SPI Master mode. These registers configure the receiver control
settings. In this case, the received data format is Most Significant Bit (MSb) first, and the data width is 16 bits.

Table 3. SPI (Master Mode): Example of Rx Configurations

Register Bit Value Remark

SCB_RX_CTRL MSB_FIRST 1 MSb first.

MEDIAN 0 Disables the digital 3-tap median filter to be applied to
the input of Rx FIFO to filter glitches on the line.

DATA_WIDTH 15 Width of Rx data =16.

SCB_RX_FIFO_CTRL TRIGGER_LEVEL 1 Interrupt occurs when there are more than two entries in
the Rx FIFO.

Note: Bits that are not listed in Table 3 have default values. For default values, see the respective registers in the
Registers TRM.

Table 4 shows an example of the Tx configuration in SPI Master mode. These registers configure the transmitter control
settings. In this case, the transmitter data format is MSb first, and the data width is 16 bits.

Table 4. SPI (Master Mode): Example of Tx Configurations

Register Bit Value Remark

SCB_TX_CTRL MSB_FIRST 1 MSb first.

DATA_WIDTH 15 Width of Tx data =16.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 8

Note: Bits that are not listed in Table 4 have default values. For default values, see the respective registers in the
Registers TRM.

Table 5 shows an example of the interrupt configuration in SPI Master mode. These registers configure the interrupt
mask settings. In this case, when the Rx trigger occurs, the receiver interrupt occurs and the SCB notifies the CPU with
the interrupt controller.

Table 5. SPI (Master Mode): Example of Interrupt Configurations

Register Bit Value Remark

SCB_INTR_TX_MASK - 0 Tx interrupt is masked.

SCB_INTR_RX_MASK TRIGGER 1 Allow Rx trigger for interrupt.

SCB_INTR_M_MASK - 0 Master interrupt is masked.

SCB_INTR_S_MASK - 0 Slave interrupt is masked.

SCB_INTR_SPI_EC_MASK - 0 External Clock interrupt is masked.

Note: Bits that are not listed in Table 5 have default values. For default values, see the respective registers in the
Registers TRM.

4.1.3 Bit Rate Sett ing

The bit rate setting is valid only in Master mode. The formula of bit rate calculation is as follows:

Bit rate [bps] = Input Clock [Hz] / OVS

 OVS : SCB_CTRL.OVS + 1

In this case, bit rate is calculated as follows:

 Bit rate = Input Clock [Hz] / OVS = PCLK(4MHz) / (3+1) = 1 [Mbps]

For more details, see the Architecture TRM.

4.2 Slave Mode

This example sets the Motorola SPI Slave mode so that the Master transmits two half-words of data to the Slave, and
then the Slave receives two half-words of data from the Master.

<Use case>

- SCB Mode = Motorola SPI Slave mode

- SCB Channel = 1

- PCLK = 4 MHz

- Bit rate = 1 Mbps

- Tx/Rx data length = 16 bits

- Tx/Rx FIFO = Yes (16-bit FIFO data elements)

- Tx/Rx interrupts = Enable

- Used ports

 SCLK : SCB1_CLK (P18.2)

 MOSI : SCB1_MOSI (P18.1)

 MISO : SCB1_MISO (P18.0)

 SELECT : SCB1_SEL0 (P18.3)

- MISO data is driven on a falling edge of SCLK.

- MOSI data is captured on a rising edge of SCLK

Figure 6 shows the example of a connection between the SCB and another SPI device.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 9

Figure 6. Example of SPI (Slave Mode) Communication Connection

MCU

SCLK

MOSI

MISO

SELECT

SPI Master Device
SCB

(Slave)

In SPI mode, SCLK, MOSI, MISO, and SELECT signals connect to another SPI Master device. In Slave mode, SCLK,
MOSI, and SELECT are input ports, and MISO is the output port. SELECT indicates when valid data is transmitted
from the SPI Master device or SPI Slave device.

Figure 7 shows the setting procedure and operation example for Slave mode.

Figure 7. SPI Slave Mode Operation

END

Set Target Slave SELECT

Configure SPI Interface

Enable SPI

START

Configure Rx Settings

Configure Tx Settings

Configure Interrupt Settings

Configure Port

The SCB is configured in SPI Slave mode by these procedures. Received and transmitted interrupts are configured
with each threshold level of FIFO. After the SPI controller is enabled (SCB_CTRL.ENABLE = “1”), the SPI controller

waits for the interrupt trigger. If the SPI controller receives an interrupt, the interrupt handler is called as shown in Figure
8, which shows an example of the SPI controller receiver interrupt handling.

Configure SCB register for SPI Slave mode.

See Table 7.

Configure Rx settings of SCB register.

See Table 8.

Configure Tx settings of SCB register.

See Table 9.

Configure interrupt settings of SCB register to allow

Tx and Rx triggers. See Table 10.

Set target to slave SELECT0 (SSEL[0]).

SCB_SPI_CTRL.SSEL = “0”

Enable SCB block. When enabled, SCB functions as the

configured communication protocol (SPI in this case).

SCB_CTRL.ENABLED = “1”

Configure ports for SPI Slave mode. SCLK, MOSI,

SELECT are inputs. MISO is output. See Table 6.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 10

Figure 8. SPI Slave Mode Interrupt

START

RX TRIGGER Interrupt?
Check if SCB_INTR_RX_MASKED.TRIGGER == 1

SCB_INTR_RX.TRIGGER = 1

Get Received SPI Data
retrieve one word (16-bits) of data

 unsigned short int receive_data = SCB_RX_FIFO_RD

END

N

Y

TX TRIGGER Interrupt?
Check if SCB_INTR_TX_MASKED.TRIGGER == 1

SCB_INTR_TX.TRIGGER = 1

Transmit SPI TX Data
tarnsmit one word (16-bits) of data

 SCB_TX_FIFO_WR = transmit_data

N

Y

Clear RX TRIGGER Interrupt Flag

read back the register for ensuring

the completion of register write access

 dummy = SCB_INTR_RX.TRIGGER

Read Back

Clear TX TRIGGER Interrupt Flag

read back the register for ensuring

the completion of register write access

 dummy = SCB_INTR_TX.TRIGGER

Read Back

In this case, when more than two bytes of data is stored in the Rx FIFO, the SPI controller can notify a receive interrupt
to the CPU. After the CPU detects a receive interrupt, if SCB_INTR_RX.TRIGGER is “1”, the software can get two bytes

of the received data from the Rx FIFO. On the other hand, when there is no entry data in Tx FIFO, the SPI controller
can also notify a transmission interrupt to the CPU. If SCB_INTR_TX.TRIGGER is “1”, the software can transmit the data

via the Tx FIFO.

Note: Procedures for causes other than the TRIGGER interrupt should be handled by the application.

4.2.1 Configure Ports

This section explains an example of the port setting used in SPI Slave mode. In this mode, SCLK, MOSI, MISO, and
SELECT are used as interface signals. Each signal is assigned to the port number as follows:

 SCLK : SCB1_CLK (P18.2)

 MOSI : SCB1_MOSI (P18.1)

 MISO : SCB1_MISO (P18.0)

 SELECT : SCB1_SEL0 (P18.3)

Table 6 shows an example of the port configuration in SPI Slave mode.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 11

SCLK, MOSI, and SELECT are configured for input ports, and MISO is configured for the output port with the
GPIO_PRT18_CFG.DRIVE_MODEx register and the GPIO_PRT18_CFG.IN_ENx register. The pin functions are determined

by the HSIOM_PRT18.PORT_SEL0.IOx_SEL register.

Table 6.SPI (Slave Mode): Example of PORT Configurations

Register
Port Configuration

Remark
SCLK (x=2) MOSI (x=1) MISO (x=0) SELECT (x=3)

GPIO_PRT18_CFG.DRIVE_MODEx 0 0 6 0
0: High-Z.

6: Strong Drive Output.

GPIO_PRT18_CFG.IN_ENx 1 1 0 1
0: Input buffer disabled.

1: Input buffer enabled.

HSIOM_PRT18.PORT_SEL0.IOx_SEL 19 19 19 19
19: ACT#7. For the SCB function
of the pin, see the datasheet.

Note: Bits that are not listed in the table above have their default values. For default values, refer the respective
registers in the Registers TRM.

4.2.2 Configure SPI Interface Registers

This section explains an example of the SPI registers setting in SPI Slave mode. The following SPI registers are used:
Interface configuration register, Rx and Tx control register, and Interrupt register.

Table 7 shows an example of the SPI interface configuration in SPI Slave mode. These registers configure the SPI
interface with a communication mode or a format of clock and data. In this case, the SPI interface behaves in Motorola
mode, SPI Slave mode, and 16-bit FIFO data elements.

Table 7. SPI (Slave Mode): Example of SPI Interface Configurations

Register Bit Value Remark

SCB_CTRL

MODE 1 SPI mode.

OVS 15 No effect in Slave mode.

MEM_WIDTH 1 16-bit FIFO data elements.

SCB_SPI_CTRL

MODE 0 SPI_MOTOROLA mode.

MASTER_MODE 0 Slave mode.

SSEL_POLARITY0 0 SELECT pin to the Slave is LOW/'0' active.

CPHA 0 When the clock is inactive, the level is LOW. MOSI is driven on the
falling edge of SCLK. MISO is captured on the rising edge of SCLK. CPOL 0

Note: Bits that are not listed in Table 7 have default values. For default values, see the respective registers in the
Registers TRM.

Table 8 shows an example of the Rx configuration in SPI Slave mode. These registers configure the receiver control
settings. In this case, the received data format is MSb first, and the data width is 16 bits.

Table 8. SPI (Slave Mode): Example of Rx Configurations

Register Bit Value Remark

SCB_RX_CTRL

MSB_FIRST 1 MSb first.

MEDIAN 0
Disables the digital 3-tap median filter to be
applied to the input of the Rx FIFO to filter
glitches on the line.

DATA_WIDTH 15 Width of Rx data =16.

SCB_RX_FIFO_CTRL TRIGGER_LEVEL 1
Interrupt occurs when there are more than two
entries in the Rx FIFO.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 12

Note: Bits that are not listed in Table 8 their default values. For default values, see the respective registers in the
Registers TRM.

Table 9 shows an example of the Tx configuration in SPI Slave mode. These registers configure the transmitter control
settings. In this case, the transmitter data format is MSb first, and the data width is 16 bits.

Table 9. SPI (Slave Mode): Example of Tx Configurations

Register Bit Value Remark

SCB_TX_CTRL
MSB_FIRST 1 MSb first.

DATA_WIDTH 15 The width of Tx data =16.

SCB_TX_FIFO_CTRL TRIGGER_LEVEL 1 Interrupt occurs when Tx FIFO is empty.

Note: Bits that are not listed in Table 9 have their default values. For default values, refer the respective registers in
the Registers TRM.

Table 10 shows an example of the interrupt configuration in SPI Slave mode. These registers configure the interrupt
mask settings. In this case, when an Rx trigger occurs, the interrupt occurs and the SCB notifies the CPU with the
interrupt controller.

Table 10. SPI (Slave Mode): Example of Interrupt Configurations

Register Bit Value Remark

SCB_INTR_TX_MASK TRIGGER 1
Allow interrupt to be triggered based on the
TRIGGER_LEVEL setting of
SCB_TX_FIFO_CTRL.

SCB_INTR_RX_MASK TRIGGER 1
Allow interrupt to be triggered based on the
TRIGGER_LEVEL setting of
SCB_RX_FIFO_CTRL.

SCB_INTR_M_MASK - 0 Master interrupt mask is masked.

SCB_INTR_S_MASK - 0 Slave interrupt mask is masked.

SCB_INTR_SPI_EC_MASK - 0 Externally clocked SPI interrupt is masked.

Note: Bits that are not listed in Table 10 have default values. For default values, see the respective registers in the
Registers TRM.

5 UART Setting Procedure Example

SCB features Standard UART and Multi-processor mode, SmartCard (ISO7816) reader, IrDA, and LIN (Slave mode).
See the Architecture TRM for details of each protocol. In this section, the procedure to set Standard UART is explained
as an example.

5.1 UART Mode

This sample shows the usage of the SCB in standard UART mode. In this use case, after the respective registers are
configured, the SCB transmits one byte of data to another device, and waits for an Rx data from another device.

<Use case>

- SCB Mode = Standard UART

- SCB Channel = 3

- PCLK = 40MHz

- Baud Rate = 115,200 bps

- Data width = 8 bits

- Parity = None

- Stop Bits = 1

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 13

- Flow Control = None

- TX/RX FIFO = Yes

- RX interrupt = Enable

- Used ports

 Tx : SCB3_TX (P13.1)

 Rx : SCB3_RX (P13.0)

An example TX-RX connection between the SCB and the external UART device is shown in Figure 9. In this example,
flow control signals RTS and CTS are not used.

Figure 9. Example of UART Communication Connection

MCU

UART Device

TX

RXSCB

TX

RX

Figure 10 shows the setting procedure and operation example for UART.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 14

Figure 10. UART Operation

END

Configure Rx Settings

Configure UART Interface

Configure Tx Settings

Transmit UART Tx Data

START

Configure Flow Control Settings

Enable UART

Enable IRQ

Configure Interrupt Settings

Configure Port

After the general configuration (clock, port, interrupt, and so on), in this case, SCB registers are configured for UART.
The software then transmits the data over UART by writing to the TX FIFO. If the number of received data exceeds the
threshold of Rx FIFO (SCB_RX_FIFO_CTRL.TRIGGER_LEVEL), the receive interrupt occurs and the interrupt handler

would be called.

Configure ports for UART mode. Tx is output. Rx is input.

See Table 11.

Configure Rx settings of the SCB register.

See Table 13.

Configure Tx settings of the SCB register.

See Table 14.

Configure flow control of the SCB register.

See Table 15.

Enable SCB block. When enabled, SCB functions as the

configured communication protocol (UART in this case).

SCB_CTRL.ENABLED = “1”

Enable IRQ in NVIC

For details, see the Architecture TRM.

Write the data to be transmitted over UART into SCB TX FIFO.

SCB_TX_FIFO_WR = transmit_data

Configure SCB register for the UART mode.

See Table 12.

Configure interrupt settings of the SCB register to enable

interrupts of data reception. See Table 16.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 15

Figure 11 shows an example of UART interrupt handling.

Figure 11. UART: Example of Interrupt Flowchart

START

RX TRIGGER Interrupt? Check if SCB_INTR_RX_MASKED.TRIGGER == 1

SCB_INTR_RX.TRIGGER = 1

Get Received UART Data receive_data = SCB_RX_FIFO_RD

END

N

Y

RX Interrupt?
N

Y

Check if SCB_INTR_CAUSE.RX == 1

Frame Error? Check if SCB_INTR_RX_MASKED.FRAME_ERROR == 0

N

Y

Overｆlow Error?
SCB_INTR_RX_MASKED.OVERFLOW == 0

More entries in the RX FIFO than the value specified

by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL.
N

Y

TX Interrupt?

Y

Check if SCB_INTR_CAUSE.TX == 1

Overｆlow Error? Check if SCB_INTR_TX_MASKED.OVERFLOW == 0

 Attempt to write to a full TX FIFO.

N

Y

N

SCB_INTR_TX.TRIGGER = 1

Clear RX TRIGGER Interrupt Flag

Clear TX TRIGGER Interrupt Flag

read back the register for ensuring

the completion of register write access

 dummy = SCB_INTR_RX.TRIGGER

Read Back

read back the register for ensuring

the completion of register write access

 dummy = SCB_INTR_TX.TRIGGER

Read Back

Clear Frame Error Interrupt flag

Clear OVERFLOW Interrupt flag

SCB_INTR_RX.FRAME_ERROR = 1

SCB_INTR_RX.OVERFLOW = 1

Clear OVERFLOW Interrupt flag SCB_INTR_TX.OVERFLOW = 1

Figure 11 shows the interrupt procedure that will be executed when a TX/RX interrupt occurs. If an Rx interrupt occurs,

received errors are checked, the interrupt flag is cleared, and the received data is read. If a Tx interrupt occurs, the

interrupt flag is cleared, and the overflow error is checked.

Note: The error procedures should be handled by the application.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 16

5.1.1 Configure Ports

This section provides an example of the port setting used in UART mode. In this mode, Tx and Rx are used as interface
signals. Each signal is assigned to the port number as follows:

 Tx : SCB3_TX (P13.1)

 Rx : SCB3_RX (P13.0)

Table 11 shows an example of port configuration in UART mode.

Tx is configured for the output port, and Rx is configured for the input port with the GPIO_PRT13_CFG.DRIVE_MODEx

register and GPIO_PRT13_CFG.IN_ENx register. Pin functions are determined by the

HSIOM_PRT13.PORT_SEL0.IOx_SEL register.

Table 11. UART: Example of PORT Configurations

Register
Port Configuration

Remark
Tx (x=1) Rx (x=0)

GPIO_PRT13_CFG.DRIVE_MODEx 6 0
0: High-Z

6: Strong Drive Output

GPIO_PRT13_CFG.IN_ENx 0 1
0: Input buffer disabled

1: Input buffer enabled

HSIOM_PRT13.PORT_SEL0.IOx_SEL 17 17
17: ACT#5, for SCB function of the pin,
Refer datasheet.

Note: Bits that are not listed in Table 11 have default values. For default values, see the respective registers in the
Registers TRM.

5.1.2 Configure UART Inter face Registers

This section explains an example of the UART registers setting in standard UART mode. The following UART registers
are used: interface configuration register, Rx and Tx control register, and interrupt register.

Table 12 shows an example of the UART interface configuration. These registers configure the UART control settings
in communication mode or as an oversampling value. In this case, the UART interface behaves in standard UART
mode, 16 oversampling, and 8-bit FIFO data elements.

Table 12. UART: Example of UART Interface Configurations

Register Bit Value Remark

SCB_CTRL

MODE 2 UART mode

OVS 15 16 oversampling (OVS + 1)

MEM_WIDTH 0 8-bit FIFO data elements

SCB_UART_CTRL MODE 0 Standard UART mode

Note: Bits that are not listed in Table 12 have default values. For default values, see the respective registers in the
Registers TRM.

Table 13 shows an example of the Rx configuration in UART mode. These registers configure the receiver control
settings. In this case, the received data format is LSb first, the data width is 8 bits, stop bit is 1, and data parity is none.

The received interrupt threshold (SCB_RX_FIFO_CTRL.TRIGGER_LEVEL) is set to “0”, which means that when one byte

is received, an Rx interrupt should occur.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 17

Table 13 UART: Example of Rx Configurations

Register Bit Value Remark

SCB_UART_RX_CTRL POLARITY 0 Non-inversion.

MP_MODE 0 Multi-processor mode disabled.

DROP_ON_PARITY_ERROR 0 Even if parity check fails, the received data is sent to the
Rx FIFO.

DROP_ON_FRAME_ERROR 0 Even if an error is detected in a start or stop period, the
received data is sent to the Rx FIFO.

STOP_BITS 1 Stop bits is STOP_BITS + 1 (= 2 of half bits).

PARITY 0 Parity not used.

PARITY_ENABLED 0 Parity disabled.

SCB_RX_CTRL MSB_FIRST 0 Least significant bit (LSb) first.

MEDIAN 0 Median filter disabled.

DATA_WIDTH 7 DATA_WIDTH + 1 (=8) is the expected number of bits in
the received data frame.

SCB_RX_MATCH ADDR 0 Slave device address =0.

MASK 0 Slave device address mask =0.

SCB_RX_FIFO_CTRL TRIGGER_LEVEL 0 When one byte received, the Rx interrupt should occur.

Note: Bits that are not listed in Table 13 have default values. For default values, see the respective registers in the
Registers TRM.

Table 14 shows an example of the Tx configuration in UART mode. These registers configure the transmitter control
settings. In this case, the transmitter data format is LSb first, the data width is 8 bits, stop bit is 1, and data parity is
none. The transmitted interrupt threshold (SCB_RTX_FIFO_CTRL.TRIGGER_LEVEL) is set to “0”, which means that when

one byte transmitted, a Tx interrupt should occur.

Table 14. UART: Example of Tx Configurations

Register Bit Value Remark

SCB_UART_TX_CTRL RETRY_ON_NACK 0 Not used.

STOP_BITS 1 Stop bits is STOP_BITS + 1 (= 2 of halve bit).

PARITY 0 Parity not used.

PARITY_ENABLED 0 Parity disabled.

SCB_TX_CTRL MSB_FIRST 0 Least significant bit (LSb) first.

DATA_WIDTH 7 DATA_WIDTH + 1 (=8) is the number of bits in a transmitted
data frame.

OPEN_DRAIN 0 Normal operation mode.

SCB_TX_FIFO_CTRL TRIGGER_LEVEL 0 When one byte transmitted, Tx interrupt should occur.

Note: Bits that are not listed in Table 14 have default values. For default values, see the respective registers in the
Registers TRM.

Table 15 shows an example of the flow control configuration in UART mode. These registers configure the data flow
control settings. In this use case, CTS and RTS are not used.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 18

Table 15. UART: Example of Flow Control Configurations

Register Bit Value Remark

SCB_UART_FLOW_CTRL CTS_ENABLED 0 CTS disabled.

CTS_POLARITY 0 Not used.

RTS_POLARITY 0 Not used.

TRIGGER_LEVEL 0 Not used.

Note: Bits that are not listed in Table 15 have default values. For default values, see the respective registers in the
Registers TRM.

Table 16 shows an example of the interrupt configuration in UART mode. These registers configure the interrupt mask
settings. Rx interrupt trigger, Tx interrupt trigger, Tx transmission done, and various alarms can be configured to be
enabled. In this case, when the Tx TRIGGER and UART_DONE interrupts occur, the SCB notifies to the CPU with the
interrupt controller.

Table 16. UART: Example of Interrupt Configurations

Register Bit Value Remark

SCB_INTR_RX_MASK - 0xB61
The following interrupt factor is enabled:
TRIGGER, OVERFLOW, UNDERFLOW, FRAME_ERROR,
PARITY_ERROR, BREAK_DETECT.

SCB_INTR_TX_MASK - 0x221
The following interrupt factor is enabled:
TRIGGER, OVERFLOW, UART_DONE.

Note: Bits that are not listed in Table 16 have their default values. For default values, refer the respective registers in
the Registers TRM.

5.1.3 Baud Rate Sett ing

The baud rate calculation formula is as follows:

Baud rate [bps] = Input Clock [Hz] / OVS

 OVS : SCB_CTRL.OVS + 1

For example, the following shows how to calculate a real UART baud rate from an ideal UART baud rate:

Calculation Example

CLK_PERI frequency = 40 [MHz]

target UART baud rate(Bit rate) = 115,200 [bps]

OVS = 16 [oversamples]

You can use the specified for CLK_PERI frequency, target UART baud rate, and OVS for calculating the real baud rate.

First, the ideal input clock to SCB is calculated:

Ideal Input Clock = target baud rate * OVS = 115,200 * 16 = 1,843,200 [Hz]

Next, the ideal value of the clock divider control register (DIV24.5) required can be calculated:

Ideal DIV24.5 = 40 [MHz] / 1,843,200 [Hz] = 21.7014

However, the DIV24.5 register has 24 bits for the integer part and limited 5 bits for the fraction part (based 1/32).
Therefore, the real divider value and the real UART baud rate can be calculated as follows:

Real DIV24.5 = 21.6875 (integer: 21, fractional: 22/32)

Real UART baud rate = 40 [MHz] / 21. 6875 / 16 = 115,274 [bps]

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 19

6 I2C Setting Procedure Example

This example shows the usage of SCB in I2C mode. The SCB supports Master mode, Slave mode, and multi-Master
mode. See the Architecture TRM for details of each protocol.

6.1 Master Mode

In this example, the SCB is configured as an I2C master and writes one byte data to the slave (address = 0x08) and
reads one byte data from the same slave. For simplicity, polling method is used in this example instead of interrupts for
writing and reading data to/from FIFOs.

<Use case>

- SCB Mode = I2C Master mode

- SCB Channel = 0

- PCLK = 2 MHz

- Bit rate = 100 kbps

- 7-bit Slave address = 0x8 (for another I2C device)

- MSb first

- Tx/Rx FIFO = Yes

- Tx/Rx interrupt = Disabled

- Analog filter is enabled and digital filter = Disabled

- Used ports

 SCL : SCB0_SCL (P1.0)

 SDA : SCB0_SDA (P1.1)

Figure 12 shows the example of connection between the SCB and another I2C Slave device.

Figure 12. Example of I2C (Master Mode) Communication

MCU

SCB

(Master)

SCL

SDA I2C Slave Device

VDDIO(*1)

Note (*1) For VDDIO value, see the datasheet (see Related Documents).

In I2C Master mode, SCL and SDA signals are connected to another I2C Slave device. The Master device outputs the
clock (SCL) to the Slave device. The data signal (SDA) is bidirectional. Both SCL and SDA are pulled up to VDDIO via
external pull up register.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 20

Figure 13 shows setting procedure and operation example for I2C Master mode.

Figure 13. I2C Master Mode Operation

END

Configure RX Settings

Configure I
2
C Interface

Configure TX Settings

Transmit I
2
C 1byte Data

START

Configure Interrupt Settings

Enable I
2
C

Receive I
2
C 1byte Data

Transmit I
2
C 1byte Data

Configure Port

After the common settings (clock, port, interrupt, and so on), the interface register of the SCB is configured for I2C. If
the SCB_CTRL.ENABLE register is set “1”, the SCB is ready to transmit and receive the data. Then, the I2C Master writes

one byte to the slave and reads one byte from the slave.

Configure SCB register for I2C Master mode.

See Table 18 and Table 21.

Configure Rx settings of the SCB register.

See Table 19.

Configure Tx settings of the SCB register.

See Table 20.

Configure interrupt settings of the SCB register to all interrupts

disabled in this case. See Table 22.

Enabling I2C, SCB functions as configured protocol.

SCB_CTRL.ENABLED = “1”

Transmit 1-byte data to the Slave.

Receive 1-byte data from the Slave.

Configure ports for I2C Master mode. SCL and SDA are Open

Drain and input. See Table 17.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 21

Figure 14 shows a procedure example of I2C Master transmission.

Figure 14. Example for I2C Master Data Transmission

Transmit START, Slave Address and

Write Bit
SCB_I2C_M_CMD.M_START_ON_IDLE =“1"

Transmit START bit and TX_FIFO data to Slave.

START

Set Slave Address and Write Bit to

TX_FIFO

SCB_TX_FIFO_WR = (slave_address<<1) | rw_bit

 slave_address : right justified slave address

 rw_bit : Read(1)/Write(0) bit

ACK Received? Check if SCB_INTR_M.I2C_ACK == 1

Y

Set Transmit Data to TX_FIFO SCB_TX_FIFO_WR = transmit_data

ACK Received? Check if SCB_INTR_M.I2C_ACK == 1

Y

Transmit STOP Bit Transmit STOP bit to Slave.

END

N

N

STOP_DONE? Check if SCB_INTR_M.I2C_STOP == 1

Y

N

NACK Received?

NACK Received?

Y

N

Y

N

Check if SCB_INTR_M.I2C_NACK == 1

Check if SCB_INTR_M.I2C_NACK == 1

After transmitting the first byte consisting of the slave address and the write bit, the firmware polls the
SCB_INTR_M.I2C_ACK/NACK bit until an ACK/NACK is received from the slave. If ACK is received, the data byte is

transmitted before sending the stop bit. If the NACK is received , a STOP is issued on the I2C bus to terminate the bus
transfer.

Note: Handling of I2C bus errors/arbitration loss is not illustrated in the above example.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 22

Figure 15 shows a procedure example of I2C Master reception.

Figure 15. Example for I2C Master Mode Reception

Transmit START, Slave Address and

Read Bit

SCB_I2C_M_CMD.M_START_ON_IDLE =“1"

Transmit START bit and TX_FIFO data to Slave.

START

Set Slave Address and Read Bit to

TX_FIFO

SCB_TX_FIFO_WR = (slave_address<<1) | rw_bit

 slave_address : right justified slave address

 rw_bit : Read(1)/Write(0) bit

ACK Received? Check if SCB_INTR_M.I2C_ACK == 1

Y

Transmit STOP Bit

SCB_I2C_M_CMD.M_NACK =“1"

Transmit NACK for end of read data to Slave.

END

Get Received I2C Data

Transmit NACK

SCB_I2C_M_CMD.M_STOP =“1"

Transmit STOP bit to Slave.

receive_data = SCB_RX_FIFO_RD

N

RX_FIFO not empty? Check if SCB_INTR_RX.NOT_EMPTY == 1

Y

N

STOP_DONE? Check if SCB_INTR_M.I2C_STOP == 1

Y

N

NACK Received?

Y

N

Check if SCB_INTR_M.I2C_NACK == 1

After transmitting the first byte consisting of the slave address and the read bit, the firmware polls the
SCB_INTR_M.I2C_ACK/NACK bit until an ACK/NACK is received from the Slave. Firmware then waits for the data to
be available in the RX FIFO (RX_FIFO not empty), and then transmits NACK and STOP to the slave to finish the read
operation.

Note: Handling of I2C bus errors/arbitration loss is not illustrated in the above example.

6.1.1 Configure Ports

This section explains an example of the port setting used in I2C Master mode. In this mode, SCL and SDA are used as
interface signals. Each signal is assigned to the port number as shown follows:

 SCL : SCB0_SCL (P1.0)

 SDA : SCB0_SDA (P1.1)

Table 17 shows an example of the port configuration in I2C Master mode.

SCL and SDA are configured for open-drain and input port with the GPIO_PRT1_CFG.DRIVE_MODEx register and the

GPIO_PRT1_CFG.IN_ENx register. The pin functions are determined by the HSIOM_PRT1.PORT_SEL0.IOx_SEL register.

Table 17. I2C (Master Mode): Example of Port Configurations

Register
Port Configuration

Remark
SCL (x=0) SDA (x=1)

GPIO_PRT1_CFG.DRIVE_MODEx 4 4 4: Open Drain, Drives Low

GPIO_PRT1_CFG.IN_ENx 1 1 1: Input buffer enabled

HSIOM_PRT1.PORT_SEL0.IOx_SEL 14 14 14: DS#2

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 23

Note: Bits that are not listed Table 17 have default values. For default values, refer the respective registers in the
Registers TRM.

6.1.2 Configure I2C Interface Registers

This section explains an example of the I2C register setting used in I2C Master mode. The following I2C registers are
used: interface configuration register, Rx and Tx control register, and interrupt register.

Table 18 shows an example of the I2C interface configuration in I2C Master mode. These registers determine the
behavior of the SCB. In this case, the SCB is configured in I2C Master mode. This is not a multi-Master mode, so the
SCB_I2C_CTRL.SLAVE_MODE bit set to disable.

SCB_I2C_CTRL.HIGH_PHASE_OVS and SCB_I2C_CTRL.LOW_PHASE_OVS determine the I2C bit rate. For more details,

see Bit Rate Setting.

Table 18. I2C (Master Mode): Example of I2C Interface Configurations

Register Bit Value Remark

SCB_CTRL

MODE 0 I2C mode

ADDR_ACCEPT 0 Slave address not accepted

MEM_WIDTH 0 8-bit FIFO data elements

EC_AM_MODE 0 Internally clocked mode

SCB_I2C_CTRL

MASTER_MODE 1 Master mode

SLAVE_MODE 0 Disabled

HIGH_PHASE_OVS 9 HIGH phase oversampling factor is 10

LOW_PHASE_OVS 9 LOW phase oversampling factor is 10

Note: Bits that are not listed in Table 18 have default values. For default values, see the respective registers in the
Registers TRM.

Table 19 shows an example of the Rx Configuration in I2C Master mode. These registers configure the receiver control
settings. In this case, the received data format is MSb first, the data width is 8 bits, and digital median filter is disabled.

Table 19. I2C (Master Mode): Example of Rx Configurations

Register Bit Value Remark

SCB_RX_CTRL

MSB_FIRST 1 MSb first

DATA_WIDTH 7
DATA_WIDTH + 1 (=8) is the expected number of bits in
received data frame.

MEDIAN 0 Digital median filter is disabled.

Note: Bits that are not listed in Table 19 have default values. For default values, see the respective registers in the
Registers TRM.

Table 20 shows an example of the Tx configuration in I2C Master mode. These registers configure the transmitter
control settings. In this case, the transmitter data format is MSb first, the data width is 8 bits, and OPEN_DRAIN mode
is set.

Table 20. I2C (Master Mode): Example of Tx Configurations

Register Bit Value Remark

SCB_TX_CTRL

MSB_FIRST 1 MSb first.

DATA_WIDTH 7 DATA_WIDTH + 1 (=8) is the number of bits in a transmitted data frame.

OPEN_DRAIN 1 Open drain operation mode.

Note: Bits that are not listed in Table 20 have default values. For default values, see the respective registers in the
Registers TRM.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 24

Table 21 shows an example of the analog filter configuration in I2C Master mode. These registers configure the analog
filter settings to remove glitches. In this case, the filters of SDA_IN and SCLK_IN are enabled; SDA_OUT is disabled.

Table 21. I2C (Master Mode): Example of Analog Filter Configurations

Register Bit Value Remark

SCB_I2C_CFG

SDA_IN_FILT_SEL 1 SDA input filter is enabled.

SCL_IN_FILT_SEL 1 SCL input filter is enabled.

SDA_OUT_FILT_SEL 0 SDA output filter is disabled.

Note: Bits that are not listed in Table 21 have default values. For default values, see the respective registers in the
Registers TRM.

Table 22 shows an example of the interrupt configuration in I2C Master mode. These registers configure the interrupt
mask settings. In this case, Tx and Rx interrupt is not used, because the software polls the status bits of the SCB_INTR_M

register.

Table 22. I2C (Master Mode): Example of Interrupt Configurations

Register Bit Value Remark

SCB_INTR_I2C_EC_MASK - 0 Externally clocked I2C interrupt request is masked.

SCB_INTR_M_MASK - 0 Master interrupt is masked.

SCB_INTR_S_MASK - 0 Slave interrupt is masked.

SCB_INTR_TX_MASK - 0 Transmitter interrupt is masked.

SCB_INTR_RX_MASK - 0 Receiver interrupt is masked.

Note: Bits that are not listed in Table 22 have default values. For default values, see the respective registers in the
Registers TRM.

6.1.3 Bit Rate Sett ing

The bit rate setting is valid only in Master mode. The bit rate calculation formula is as follows:

Bit rate [bps] = Input Clock [Hz] / (Low_phase_ovs + High_phase_ovs)

 Low_phase_ovs : SCB_I2C_CTRL.LOW_PHASE_OVS + 1

 High_phase_ovs : SCB_I2C_CTRL.HIGH_PHASE_OVS + 1

In this case, bit rate is calculated as follows:

 Bit rate = Input Clock [Hz] / (High_phase_ovs + Low_phase_ovs)

 = PCLK(2MHz) / ((9+1) + (9+1)) = 100 [kbps]

For more details, see the Architecture TRM.

6.2 Slave Mode

This example sets I2C Slave mode where the Master transmits the write or read data to the Slave SCB. If the Slave
receives the data, an interrupt occurs, and the Slave decides whether it should perform the read or write procedure.

<Use case>

- SCB Mode = I2C Slave mode

- SCB Channel = 0

- PCLK = 2 MHz

- Bit rate = 100 kbps

- 7-bit Slave address = 0x8

- Tx/Rx FIFO = Yes

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 25

- MSb first

- Data width = 8 bits

- Analog filter is enabled and digital filter = Disabled

- Enabled interrupts:

I2C_ARB_LOST (I2C Slave arbitration lost)

I2C_STOP (I2C STOP event detected)

I2C_ADDR_MATCH (I2C Slave address matching)

I2C_GENERAL (I2C Slave general call address received)

I2C_BUS_ERROR ((I2C Slave bus error detected)

- Used ports

 SCL : SCB0_SCL (P1.0)

 SDA : SCB0_SDA (P1.1)

Figure 16 shows the example of the connection between the Slave SCB and another I2C Master device.

Figure 16. Example of I2C (Slave Mode) Communication Connection

MCU

SCL
SDA

SCB
(Slave)

I2C Master Device

VDDIO(*1)

Note (*1) For VDDIO value, see the datasheet (see Related Documents).

In I2C Slave mode, SCL and SDA signals are connected to another I2C Master device. The Master device outputs the
clock (SCL) to the Slave device. The data (SDA) signal is bidirectional. Both SCL and SDA are pulled up to VDDIO via a
resistor.

Figure 17 shows the setting procedure and operation example for I2C Slave mode.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 26

Figure 17. I2C Slave Mode Operation

END

Configure Rx Settings

Configure I
2
C Interface

Configure Tx Settings

START

Configure Interrupt Settings

Enable I
2
C

Enable IRQ

Configure Port

After the general configuration (clock, port, interrupt, and so on.), the interface register of the SCB is configured for I2C.
If the SCB_CTRL.ENABLE register is set “1” and interrupt is enabled, the SCB is ready to receive data.

Configure SCB register for I2C Slave mode.

See Table 24 and Table 27.

Configure Rx settings of SCB register.

See Table 25.

Configure Tx settings of SCB register.

See Table 26.

Configure interrupt settings of SCB register to allow the Slave to

receive the trigger. See Table 28.

Enabling I2C, SCB performs as configured protocol.

SCB_CTRL.ENABLED = “1”

Enable IRQ in NVIC

For details, see Architecture TRM.

Configure ports for I2C Slave mode. SCL is High-Z (input). SDA is

Open Drain and input. See Table 23.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 27

Figure 18 shows an example for I2C Slave reception interrupt.

Figure 18. I2C Slave Mode Reception Interrupt Example

START

Slave interrupt?
N

Y

Slave Address Match?

Y
N

R or W?
Write(0)

Read(1)

Set ACK

Set Transmit Data to

TX_FIFO

END

SCB_INTR_CAUSE.S = 1

Set ACK

STOP?

Y

N

Get Received Data from

RX_FIFO

Set ACK

Check if SCB_INTR_S_MASKED.I2C_ADDR_MATCH == 1

Check if SCB_I2C_STATUS.S_READ

SCB_TX_FIFO_WR =

 transmit_data

Check if SCB_INTR_S_MASKED.I2C_STOP == 1

receive_data = SCB_RX_FIFO_RD

SCB_I2C_S_CMD.S_ACK = 1

Clear Interrupt Flag

read back the register for ensuring

the completion of register write access

 dummy = SCB_INTR_CAUSE

Read Back

Check if SCB_INTR_CAUSE.S == 1

status = Slave Written

mode
status = Slave Read mode

status?

 Slave Read mode

Slave Written mode

Set Transmit Data to

TX_FIFO

status = Idle status = Idle status = Idlestatus = Idle

Clear Interrupt Flag

Read Back

Clear Interrupt Flag

Read Back

SCB_INTR_S.I2C_ADDR_MATCH = 1

 dummy =

 SCB_INTR_S.I2C_ADDR_MATCH

SCB_INTR_S.I2C_STOP = 1

 dummy = SCB_INTR_S.I2C_STOP

Figure 18 shows the interrupt procedure. After a Slave interrupt (SCB_INTR_CAUSE.S) occurs, the interrupt flag should
be cleared, and the software can check whether the received Slave address matches with the configured Slave address.
If the received Slave address matches with the configured Slave address, the received data might be the first byte of
the I2C format, and then the software can check whether the direction of the data is write (from Master to Slave) or read
(from Slave to Master). If the received Slave address does not match and STOP interrupt is TRUE, the flow branches
based on the status of the first received byte. If the status is Slave Read mode, set the transmit data to the TX_FIFO
register as the response data to the master. If the status is Slave Written mode, the received data may be the written
data from the Master; then the software can read out the received data from the RX_FIFO register. If the received Slave

address does not match and the STOP interrupt is FALSE, the received data may be invalid.

Note: Error handling is not explained in Figure 18 and shall be handled by the application.

6.2.1 Configure Ports

This section explains an example of the port setting used in I2C Slave mode. In this mode, SCL and SDA are used as
interface signals. Each signal is assigned to the port number as follows:

 SCL : SCB0_SCL (P1.0)

 SDA : SCB0_SDA (P1.1)

Table 23 shows an example of the port configuration in I2C Slave mode.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 28

SCL and SDA are configured for open-drain and input port with the GPIO_PRT1_CFG.DRIVE_MODEx register and the

GPIO_PRT1_CFG.IN_ENx register. The port functions are determined by the HSIOM_PRT1.PORT_SEL0.IOx_SEL register.

Table 23. I2C (Slave Mode): Example of Port Configurations

Register
Port Configuration

Remark
SCL (x=0) SDA (x=1)

GPIO_PRT1_CFG.DRIVE_MODEx 0 4
0: High-Z.

4: Open Drain, Drives Low.

GPIO_PRT1_CFG.IN_ENx 1 1 1: Input buffer enabled.

HSIOM_PRT1.PORT_SEL0.IOx_SEL 14 14 14: DS#2.

Note: Bits that are not listed in Table 23 have default values. For default values, see the respective registers in the
Registers TRM.

6.2.2 Configure I2C Interface Registers

This section explains an example of the I2C registers setting used in I2C Slave mode. The following registers are used:
interface configuration register, Rx and Tx control register, and Interrupt register.

Table 24 shows an example of the I2C interface configuration in I2C Slave mode. These registers determine the behavior
of the SCB. In this case, the SCB is configured in the I2C Slave mode by setting SCB_I2C_CTRL.SLAVE_MODE to “1”.

Table 24. I2C (Slave Mode): Example of I2C Interface Configurations

Register Bit Value Remark

SCB_CTRL

MODE 0 I2C mode.

ADDR_ACCEPT 0 Slave address not accepted.

MEM_WIDTH 0 8-bit FIFO data elements.

SCB_I2C_CTRL

MASTER_MODE 0 Disabled.

SLAVE_MODE 1 Slave mode.

S_GENERAL_IGNORE 0 General call Slave address enabled.

Note: Bits that are not listed in Table 24 have default values. For default values, see the respective registers in the
Registers TRM.

Table 25 shows an example of the Rx configuration in the I2C Slave mode. These registers configure the receiver
control settings. In this case, the received data format is MSb first and the data width is 8 bits. The SCB_RX_MATCH.ADDR
register should be set to the Slave device address shifted left by 1 bit. The SCB_RX_MATCH.MASK register is set as is.

Table 25. I2C (Slave Mode): Example of Rx Configurations

Register Bit Value Remark

SCB_RX_CTRL

MSB_FIRST 1 MSb first.

DATA_WIDTH 7
DATA_WIDTH + 1 (=8) is the expected number of bits in the received
data frame.

SCB_RX_FIFO_CTRL

TRIGGER_LEVEL 1
When the receiver FIFO has more entries than the number of this field,
a receiver trigger event is generated.

CLEAR 0 Not cleared.

FREEZE 0 Not frozen.

SCB_RX_MATCH
ADDR 0x10

Slave device address =8.

Set the Slave address shifted left by 1 bit because only bits 7 down to
1 (of 7 to 0) are used for the Slave address.

In this case,

Slave address: 1000b (=8)

Set value: 0001 0000b (=0x10)

MASK 0xFE Slave device address mask. This is left-shifted by one bit.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 29

Note: Bits that are not listed in Table 25 have default values. For default values, see the respective registers in the
Registers TRM.

Table 26 shows an example of the Tx Configuration in I2C Slave mode. These registers configure the transmitter control
settings. In this case, the transmitter data format is MSb first, the data width is 8bit, and OPEN_DRAIN mode is set.

Table 26. I2C (Slave Mode): Example of Tx Configurations

Register Bit Value Remark

SCB_TX_CTRL MSB_FIRST 1 MSb first.

DATA_WIDTH 7 DATA_WIDTH + 1 (=8) is the number of bits in a
transmitted data frame.

OPEN_DRAIN 1 Open-drain operation mode.

SCB_TX_FIFO_CTRL TRIGGER_LEVEL 64 When the transmitter FIFO has fewer entries than the
number of this field, a transmitter trigger event is generated.

Note: Bits that are not listed in Table 26 have default values. For default values, see the respective registers in the
Registers TRM.

Table 27 shows an example of the analog filter configuration in I2C Slave mode. These registers configure the analog
filter settings to remove glitches. In this case, the filter of SDA_IN and SCLK_IN are enabled; SDA_OUT is disabled.

Table 27. I2C (Slave Mode): Example of Analog Filter Configurations

Register Bit Value Remark

SCB_I2C_CFG

SDA_IN_FILT_SEL 1 SDA input filter is enabled.

SCL_IN_FILT_SEL 1 SCL input filter is enabled.

SDA_OUT_FILT_SEL 0 SDA output filter is disabled.

Note: Bits that are not listed in Table 27 have default values. For default values, see the respective registers in the
Registers TRM.

Table 28 shows an example of the interrupt configuration in I2C Slave mode. These registers configure the interrupt
mask control settings. In this case, arbitration lost, STOP event, Slave address match, I2C general call address receiving,
and I2C bus error are set as receiver interrupts.

Table 28. I2C (Slave Mode): Example of Interrupt Configurations

Register Bit Value Remark

SCB_INTR_I2C_EC_MASK - 0 Externally clocked I2C interrupt request is masked.

SCB_INTR_M_MASK - 0 Master interrupt is masked.

SCB_INTR_S_MASK - 0x1D1
The following interrupt factor is enabled:
I2C_ARB_LOST, I2C_STOP, I2C_ADDR_MATCH,
I2C_GENERAL, I2C_BUS_ERROR.

SCB_INTR_TX_MASK - 0 Transmitter interrupt is masked.

SCB_INTR_RX_MASK - 0 Receiver interrupt is masked.

Note: Bits that are not listed in Table 28 have default values. For default values, see the respective registers in the
Registers TRM.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 30

7 Glossary

Terms Description

SPI Serial Peripheral Interface.

SPI is a synchronous serial communication interface specification used for short distance
communication with peripheral devices.

UART Universal asynchronous receiver-transmitter.

UART is a receiver-transmitter circuit to convert a serial signal into a parallel signal, and to convert the
opposite direction. It is used for low-speed communication between MCU and an external equipment.

I2C Inter-Integrated Circuit.

I2C bus is a serial synchronous communication bus corresponding to the multi-Master and the multi-
Slave. It is used for low-speed communication between MCUs and peripheral devices. I2C bus is used
with two lines of clock (SCK) and data (SDA) , and usually pulled-up by resistance.

Smart Card Smart card is a card which integrated a circuit to record data and to operate it.

LIN Local Interconnect Network.

LIN is a serial communication network for automotive. It is used for the data communication between
a control unit and various sensors/actuators. LIN takes lower cost than CAN.

IrDA IrDA is a kind of the standards of the optical radio data communication by infrared rays.

EZ mode EZ (easy) mode is the Cypress original communication protocol which is prepared to simplify the
Write/Read access between the device in SPI and I2C. During DeepSleep mode, it can communicate
with the Master device without CPU intervention.

CMD_RESP mode CMD_RESP (Command Response) mode is similar to EZ mode.

The major difference is whether a CPU sets the Slave’s base address or a Master device sets it.

DMA Direct Memory Access.

FIFO First in First Out.

8 Related Documents

The following are the Traveo II family series datasheets and Technical Reference Manuals. Contact Technical Support
to obtain these documents.

▪ Device datasheet

 CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo II Family

 CYT2B9 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo II Family

 CYT4BF Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo II Family

 CYT4DN Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo II Family

 CYT3BB/4BB Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo II Family

▪ Body Controller Entry Family

 Traveo™ II Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM)

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B7

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B9

▪ Body Controller High Family

 Traveo™ II Automotive Body Controller High Family Architecture Technical Reference Manual (TRM) for

CYT4BF

 Traveo™ II Automotive Body Controller High Registers Technical Reference Manual (TRM) for CYT3BB/4BB

▪ Cluster 2D Family

 Traveo™ II Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM)

 Traveo™ II Automotive Cluster 2D Registers Technical Reference Manual (TRM)

http://www.cypress.com/
http://www.cypress.com/support

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 31

Document History

Document Title: AN225401 - How to Use Serial Communications Block (SCB) in Traveo II Family

Document Number: 002-25401

Revision ECN Submission
Date

Description of Change

** 6428773 07/09/2019 New application note.

*A 6736694 11/22/2019 Added a part number CYT4D series.

*B 6806984 03/02/2020 Added parts number CYT2/CYT3/CYT4 series.

http://www.cypress.com/

How to Use Serial Communications Block (SCB) in Traveo II Family

www.cypress.com Document Number: 002-25401 Rev. *B 32

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2019-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and
treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in
this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-
exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary
code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 Features

	2 General Description
	3 Common Settings
	4 SPI Setting Procedure Example
	4.1 Master Mode
	4.1.1 Configure Ports
	4.1.2 Configure SPI Interface Registers
	4.1.3 Bit Rate Setting

	4.2 Slave Mode
	4.2.1 Configure Ports
	4.2.2 Configure SPI Interface Registers

	5 UART Setting Procedure Example
	5.1 UART Mode
	5.1.1 Configure Ports
	5.1.2 Configure UART Interface Registers
	5.1.3 Baud Rate Setting

	6 I2C Setting Procedure Example
	6.1 Master Mode
	6.1.1 Configure Ports
	6.1.2 Configure I2C Interface Registers
	6.1.3 Bit Rate Setting

	6.2 Slave Mode
	6.2.1 Configure Ports
	6.2.2 Configure I2C Interface Registers

	7 Glossary
	8 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

