New For 2018 # **Short Form Catalogue** Hydraulic measurement and control # Quality Hydraulic Test Equipment & Hydraulic Components # Contents | >WEBTEC | General Information | 2 - 3 | |----------|---|---------| | | Portable Hydraulic Testers | 4 - 8 | | | Flowmeters, Pressure Transducers, Temperature Sensors,
Readouts and Hydraulic Data Acquisition Equipment | 9 - 16 | | 101 | 'MecMeter'™ In-Line Flowmeters & Flow Test Kits | 17 - 18 | | 1 | WP Series Low Cost In-Line Flowmeters | 19 | | | Pressure Test Kits, Gauges & Pressure Test Points | 20 - 21 | | 6 | Custom hydraulic test kits | 22 | | oc . | Hydraulic Components; Valves, Pumps & Motors | 23 - 28 | | | Technical Information | 29 - 44 | # Hydraulic measurement and control #### **Experience** Over 50 years of product development enhanced by constant technical innovation to meet the ever changing needs of fluid power users. #### Support Located in Milwaukee, Wisconsin, with distributors across North and Central America, we provide product engineering and support before, during and after the sale. We aim for same day shipment on stock items. Other locations include England, France, Germany and Hong Kong for worldwide support. #### Quality Dedication to quality starts with design and is carried through all stages of manufacture. This commitment and ability to meet demanding criterion is demonstrated by our accreditation to ISO9001. #### **A Complete Line** Over 350 different portable hydraulic testers, flowmeters, pressure transducers, temperature sensors, speed sensors, hydraulic data acquisition systems and digital display units all designed to be easy to use, accurate and durable. For trouble shooting & testing of components or commissioning hydraulic circuits on mobile equipment, industrial machinery, hydraulic test stands or in the laboratory, we can help you perform your job quickly, efficiently and professionally. We also offer a range of high quality zero leak directional control valves available in aluminum or SST body. Our enhanced line of pressure compensated fixed and variable priority flow controls offer exceptional stability and optimized energy efficiency. ## **General Information** #### **Customer Satisfaction** We strive to provide the highest level of customer service possible while manufacturing the most progressive and the highest quality line of hydraulic test equipment available on the market today. If for any reason you are not satisfied with the performance of the item purchased or the level of service you receive, please call and let us know. A satisfied customer is the best and most honest form of advertising we know. #### **How to get Technical Information** Call, fax, email or mail us. Call toll free in the US or Canada, 800-WEBTEST (800-932-8378), telephone: (414) 769-6400, Toll Free Fax: 866-FLOWMETER (866-356-9637) or 414-769-6591. Our email address is sales-us@webtec.com. Our website address is www.webtec.com. Correspondence can be sent to 1290 E. Waterford Ave. Milwaukee, WI 53235. #### **How to Open an Account** NET 30 day accounts can be opened with approved credit. To apply send bank reference, two trade references and your federal tax ID number. Credit card orders or COD shipments can be made for other accounts, as well as overdue accounts. #### **How to get Delivery Information** Call, fax, email or mail us. Our toll free phone number is 800-WEBTEST (800-932-8378) or 414-769-6400, Our Toll Free Fax is: 866-FLOWMETER (866-356-9637) or 414-769-6591 and our email is sales-us@webtec.com. We aim to ship same day via UPS standard service on orders placed before 1:00 pm - our UPS driver collects around 3:00 pm and we like to have a couple of hours to process paperwork and package the goods. However if you need something shipped same day by next day air or second day air the major carriers will pickup until 7:00 pm - we will do our best to process your order, even if you call after 1:00 pm. We can also ship Federal Express, Emery, Burlington or TNT. #### How to Order To order, call, fax, email or mail us. Our toll free phone number is **800-WEBTEST** (**800-932-8378**) or **414-769-6400**, Our Toll Free Fax is: **866-FLOWMETER** (**866-356-9637**) or **414-769-6591** and our email is **sales-us@webtec.com**. The order desk is manned from 8:00 am to 5:00 pm Central Time, Monday through Friday - ask for the order desk. Outside these hours there is an automated attendant system, leave a message with your name and number and we will get back to you. The fax machine has its own line and is always open. Please note, we have a minimum order for the most up-to-date and complete information, please visit https://www.webtec.com/about/our-certificates and download our Terms and Conditions. #### Stocking Policy We endeavor to hold stock of popular items in Milwaukee. If you are a distributor and have a good established pattern you may want to hold stock to ensure faster product availability. #### How to get Literature Call our toll free phone number 800-WEBTEST (800-932-8378) or email us at sales-us@webtec.com Our website www.webtec.com has all literature available for download in several different languages. #### **How to Process Repairs** We like to think our equipment never goes wrong but if it does we will do our best for you. Call for an RGA# before returning your repair. A written estimate will be provided before we proceed. Occasionally we get units back with no paperwork at all - no address, no phone, no name. Please be sure to get your RGA # before returning any unit as we can not provide the high level of service you deserve without this important information. ### Shortages / Damaged in Transit / Returned Goods Shortages must be reported within 10 days of shipment. Goods damaged in shipment are the responsibility of the carrier and all claims must be submitted to the carrier. Returned goods not proven to be defective due to materials or workmanship will be subject to a minimum 25% restocking fee. Mastercard, Visa, and American Express are all accepted. To read our full terms and conditions of business please go to www.webtec.com # DHT 1 & 2 Series Digital Hydraulic Testers #### **Standard Features:** - · High Contrast LCD Digital readout - Bi-directional Loading Valve with "INTERPASS"™ Burst Disc Protection - Bi-directional flow & pressure readings - Flow accuracy 1% of reading - US & Metric units, button select (DHTxx2 series only) - Portable (DHT402 only 14 lbs) - RPM input circuitry (DHTxx2 series) - EP seals optional - Remote flow & temperature input is easily field calibrated for any LT series flowmeter (DHTxx2 series only) - DHT 1 Series features simple on/off - CMOS low-power circuitry with "Auto-Off" extends battery life - 6,000 psi Pressure Gauge (8500 psi DHT802) DHT802/801 | Model
Number | Flow range
(US gpm) | Inlet/Outlet
Ports | Max.
Pressure
(psi) | Remote
Flow Input | Weight
(lbs) | Approximate
Dimensions
(W x D x H) | Temperature
Range Internal | RPM
Range
& Remote | |-----------------|------------------------|--|---------------------------|--|-----------------|--|-------------------------------|--------------------------| | DHT401-S-6 | 2.5 - 100 | 1-5/16" -12UN
#16 SAE ORB | 6000 | | 14 | 9.5" x 7.9" x 7.9" | 32 - 250 °F | | | DHT801-F-3* | 5 - 210 | 1-1/2" #24 SAE
Code 61 4-bolt
flange | 3000 | N/A | 22 | 9.7" x 8.9" x 8.9" | (°C and lpm engineering | N/A | | DHT801-S-7* | 5 - 210 | 1-7/8" -12UN
#24 SAE ORB | 7000 | | 22 | 9.7" x 8.9" x 8.9" | units available) | | | DHT302-S-6 | 2 - 80 | 1-5/16" -12UN | 6000 | | 14 | 9.5" x 7.9" x 7.9" | | | | DHT402-S-6 | 2.5 - 100 | #16 SAE ORB | 0000 | DHT Series 2 | 14 | 9.5 X 7.9 X 7.9 | | | | DHT602-S-7* | 5 - 160 | 1-7/8" -12UN
#24 SAE ORB | 7000 | Testers EXTernal input is easily | 22 | | 32 - 250 °F
0 - 120 °C | 0 - 6000 | | DHT602-F-3* | 5 - 160 | 1-1/2" #24 SAE
Code 61 | 3000 | configured in
the field to
any LT series | 22 | 9.7" x 8.9" x 8.9" | Push Button
Select | 0 - 0000 | | DHT802-F-3* | 5 - 210 | 4-bolt flange | 3000 | flowmeter | 22 | J. I X O.S X O.S | | | | DHT802-S-7* | 5 - 210 | 1-7/8" -12UN
#24 SAE ORB | 7000 | | 22 | | | | # DHM 4 Series Digital Hydraulic Multimeter #### **Standard Features:** - PRODUCE an electronic report for immediate email to the customer - FLOW 10-800 lpm, 2.5-210 US gpm - PRESSURE 480 bar, 7000 psi - PEAK PRESSURE capture at 1000 times/s - ACCURATE measurements and FAST response bar graphs to aid diagnosis. - BUILT-IN loading valve. - BI-DIRECTIONAL operation. - INTERNAL oil by-pass protects the meter and system against overpressure. - AUTOMATIC calculation of hydraulic power and volumetric efficiency. - RECORD data to robust, non-volatile - PORTABLE, robust and sealed to IP54. | Model number | Flow range | Pressure range | Fluid temp. range | Inlet/outlet ports | |---------------|------------------|----------------|-------------------|---------------------------| | DHM404-B-6 | 10 - 400 LPM | 0 - 420 bar | 0 - 105°C | 1" BSPP | | DHM404-S-6 | 2.5 - 100 US gpm | 0 - 6000 psi | 32 - 220 °F | 1-5/16" -12UN #16 SAE ORB | | DHM804-S-7-L* | 20 - 800 LPM | 0 - 480 bar | 0 - 105 °C | 1-7/8" -12UN #24 SAE ORB | | DHM804-S-7* | 5 - 210 US gpm | 0 - 7000 psi | 32 - 220 °F | 1-7/8" -12UN #24 SAE ORB | ^{*} DHM804 has limited pressure control below 86 lpm (23 US gpm). The maximum controllable pressure in this region is calculated by: max pressure (in bar) = $5 \times 10 = 5 10$ # HT 2 Series Analog Hydraulic Testers #### Standard Features: - Analog readout of flow, pressure, temperature & RPM - Bi-directional Loading Valve with "INTERPASS"™ Burst Disc Protection - · Bi-directional flow & pressure - Flow Accuracy ± 1% FSD - · Dual
Scale, US & Metric - High/Low flow scales offer improved resolution - Portable (HT402 only 14 lbs) - · Battery test switch position - RPM input accepts signal from TH3 phototach for shaft rotational speed display - CMOS low-power circuitry - "Auto-Off" extends battery life - Pressure gauge is connected via builtin shuttle valve always indicating high pressure side of load valve regardless of flow direction - · EP seals optional | Model | Calibrated Flow Range (US gpm) | | Inlet/Outlet | Max.
Pressure | Weight (lbs) | Approximate
Dimensions | Temperature
Range Internal | rpm
Range | |------------|--------------------------------|------------|---|------------------|-----------------|---------------------------|-------------------------------|----------------------| | Number | Low Scale | High Scale | Ports | Ports (psi) | | (W x D x H) | & Remote | 1 PPR -
Phototach | | HT302-S-6 | 3 - 20 | 13 - 80 | 1-5/16" -12UN | 6000 | 14 | 9.5" x 7.9" x 7.9" | | 300 - 3000 | | HT402-S-6 | 3 - 25 | 13 - 105 | #16 SAE ORB | 14 | 14 | 9.5 x 7.9 x 7.9 | | 300 - 4000 | | HT602-S-7* | 6 - 40 | 25 - 160 | 1-7/8" -12UN
#24 SAE ORB | 7000 | 22 | | 32 - 250 °F | 300 - 6000 | | HT602-F-3* | 6 - 40 | 25 - 160 | 1-1/2" #24 SAE
- Code 61 3000
4-bolt flange | 3000 | 22 | 9.7" x 8.9" x 8.9" | 0 - 120 °C
Dual Scale | 300 - 6000 | | HT802-F-3* | 6 - 50 | 25 - 210 | | 3000 22 | 9.7 X 6.9 X 6.9 | | 300 - 5000 | | | HT802-S-7* | 6 - 50 | 25 - 210 | 1-7/8" -12UN
#24 SAE ORB | 7000 | 22 | | | 300 - 5000 | #### * Performance Notes All 600 and 800 Testers have limited pressure control below 23 USgpm (86 lpm). The maximum controllable pressure in this region is calculated by: max pressure (psi) = 289 x flow (gpm) +436. # RFIK Series Mechanical Hydraulic Tester #### **Standard Features:** Flow: 0.5 - 54 US gpmPressure: Up to 6000 psiTemperature: 68 - 248 °F Allows reverse flow · No batteries required - Flow Accuracy within 4% FSD - Large clear easy to read dials - Smooth pressure control up to 6000 psi - Safe to use, with "INTERPASS"TM internal safety protection system. Protects system and operator against accidental over-pressure in both flow directions | Model Number | Calibrated I
(lpm) | Flow Range
(US gpm) | Inlet fitting | Outlet fitting | |--------------|-----------------------|------------------------|-------------------------|-------------------------| | RFIK030-S-6 | 2 - 30 | 0.5 - 8 | 1-1/16" - 12UN JIC Male | 1-1/16" - 12UN JIC Male | | RFIK060-S-6 | 5 - 60 | 1 - 16 | 1-1/16" - 12UN JIC Male | 1-1/16" - 12UN JIC Male | | RFIK120-S-6 | 10 - 120 | 4 - 32 | 1-5/16" - 12UN JIC Male | 1-5/16" - 12UN JIC Male | | RFIK200-S-6 | 10 - 200 | 4 - 54 | 1-5/16" - 12UN JIC Male | 1-5/16" - 12UN JIC Male | # **DHCR Remote Digital Hydraulic Testers** ### **DHCR Series Digital hydraulic readout** #### **Standard Features:** - · Remote digital readout - Bi-directional flow & pressure - Flow accuracy up to 1% of Reading - 2 Flow & temp inputs, 1 RPM inputUS & Metric units selectable - 9 V battery powered - EP seals optional - M16x2 male pressure connection DHCR Remote Digital Hydraulic Tester | Model number | Max Pressure (psi) | |--------------|--------------------| | DHCR-6 | 6000 | | DHCR-7 | 7000 | - "Auto-Off" extends battery life - Remote flow & temperature input is easily field calibrated for any LT series flowmeter - Flow meters available with built-in loading valve "INTERPASS"™ burst disc safety feature - Build a test system by selecting the DHCR readout, LT or LTR flow meter, cable/hose assembly & optional carry case. # Choose your Flow block # LT Series Turbine flow meters with frequency output #### **Standard Features:** - Flow: 0.25 400 US gpmPressure: Up to 7000 psi - Accuracy: Up to 1% of indicated reading - Frequency Output - M16 x 2 male test point included - Bi-directional operation - Temperature: sensor built-in - Fluids: Wide range of hydraulic oil, lubrication oil, and fuels - Calibration: 21 cSt as standard. Special calibration possible | Model Number | Main ports | Top ports | Flow Range (US gpm) | Maximum pressure (psi) | |-----------------|--------------------------------------|-------------------------|---------------------|------------------------| | LT15-FM-S-S-6 | 3/4" -16UN #8 SAE ORB | 7/16" -20UN #4 SAE ORB* | 0.25 - 4 | 6000 | | LT60-FM-S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.8 - 16 | 6000 | | LT150-FM-S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 1.3 - 40 | 6000 | | LT300-FM-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 | 6000 | | LT400-FM-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2.5 - 100 | 6000 | | LT600-FM-S-S-5 | 1-5/8" -12UN #20 SAE ORB | 7/16" -20UN #4 SAE ORB | 4 - 160 | 5000 | | LT600-FM-F-S-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 4 - 160 | 3000 | | LT800-FM-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 210 | 7000 | | LT800-FM-F-S-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 210 | 3000 | | LT1500-FM-F-S-6 | 2" #32 SAE Code 62 4-bolt flange | 7/16" -20UN #4 SAE ORB | 12.5 - 400 | 6000 | ^{*} Only one test port # LTR Series Turbine flow meters with built-in loading valve #### **Standard Features:** - Flow: 2 210 gpm - Pressure: Up to 7000 psiAccuracy: Up to 1% of indicated - Accuracy: Up to 1% of indicate reading - · Frequency Output - Bi-directional operation - Temperature: sensor built-in - Fluids: Wide range of hydraulic oil, lubrication oil, and fuels - Calibration: 21 cSt as standard. Special calibration possible - Loading Valve: with bi-directional flow and pressure loading capability - "INTERPASS"™ safety disc system, bypasses oil internally in the event of the valve being over pressurised - M16x2 male test point included | Model Number | Main ports | Top ports | Flow Range (US gpm) | Maximum pressure (psi) | |-----------------|---------------------------|------------------------|---------------------|------------------------| | LT300R-FM-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 | 6000 | | LT400R-FM-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2.5 - 100 | 6000 | | LT600R-FM-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 4 - 160 * | 7000 | | LT800R-FM-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 210 * | 7000 | ^{*} LT600/800R has limited pressure control below 23 US gpm (86 lpm). The maximum controllable pressure in this region is calculated by: max pressure (psi) = 289 x flow (gpm). For connecting cable/hoses see accessories section ### Complete hydraulic test kit to measure flow, pressure, and temperature under load #### DHCR-LT1500 kit - Flow: Up to 400 US gpm - Pressure: Up to 6000 psi - Accuracy: ± 1% of indicated reading - Fast checks on pumps, motors, valves, cylinders and hydrostatic transmissions. - · Remote Inputs: 2 Flow and Temperature, Pressure and Speed - Economical low power consumption from standard battery. Automatic "Power Off' feature. - Infra-red Phototachometer with 'On Target' indicator. - · Measures flow in both directions (Note: LT1500 is uni-directional when used with HV1500 kit) #### HV1500 kit - Smooth progressive pressure control - High tensile aluminium body rated at 6000 psi - Connecting flange for use with DHCR-LT1500 kit included, with seals and - Pilot operated over pressure internal bypass valve - Spare burst discs included - Uni-directional #### DHCR-LT1500 kit #### **Contents** DHCR, LT1500, connecting hose and cable assembly, user manuals all housed in a rugged carry case. Case Dimensions: 626 x 492 x 350 (24.6 x 19.4 x 13.8) Total Weight (Inc Case): 24 kg (53 lbs) #### Operating specification for all parts Ambient temperature: 15 to 40 °C (59 to 104 °F) Ambient humidity: 10 to 95% RH Altitude: up to 2000m (6,500 feet) Oil temperature range: 15 to 90 °C (59 to 194 °F) Oil cleanliness: ISO 18/15/12 (NAS 6) or better Fluid type: Mineral oil only typically ISO 15 -68 oil Viscosity Range: 10 centi-stokes to 100 centi-stokes Max pressure: 420 bar (6,000 psi) Seals: Viton #### **DHCR** Inputs: 1 pressure, 1 speed, 2 flow and temperature Max pressure: 6000 psi Engineering units: (selectable) Flow: Ipm, US gpm, I gpm Temperature: °C or °F Dimensions: 200 x 160 x 90 (7.8 x 6.3 x 3.5) Weight: 2.6 kg (5.7 lbs) See separate Bulletin for further information. #### LT1500 Main ports: 2" #32 SAE Code 62 4-bolt flange Top ports: 7/16" -20UN #4 SAE ORB x 2 Flow range: 13 to 400 gpm Accuracy*: 1% of indicated reading over 15 to 100% of flow range. (Below 15% of flow range \pm 2.25 lpm) * When used with DHCR Dimensions: 260 x 140 x 100 (10 x 5.5 x 4) Weight: 10 kg (22 lbs) #### **Frequency Output** Frequency: 20 - 2000 Hz Impedance: 3700 Ohm +25% - 20% Inductance: 1 kHz: 1,55H +25% - 20% #### Construction High tensile aluminium block houses a six blade turbine rotating on a combination axial/radial needle roller bearing and allov steel shaft. #### **Filtration** It is recommended that a 25 micron filter is installed in the hydraulic circuit prior to the flow meter. #### **HV1500** kit Dimensions in Millimetres (Inches) #### Contents HV1500 load valve, 2" #32 SAE Code 62 4-bolt flange Connector and fitting kit, user manual, all housed in a rudged carry case. Case Dimensions: 626 x 492 x 350 (24.6 x 19.4 x 13.8) Total Weight (Inc Case): 39 kg (86 lbs) #### **Specification** Controllable flow range: 100 - 1500 lpm (26 - 400 US gpm) Ports, load valve: 2" #32 SAE Code 62 4-bolt flange Ports, connector: 2" #32 SAE Code 62 4-bolt flange Dimensions: 300 x 250 x 140 (12 x 10 x 5.5) Weight: 28 kg (61.6 lbs) #### Construction Wetted parts: High tensile aluminium block, Steel 212A42 electroless nickel plated and alloy steel. #### **Ordering information** Description DHCR / LT1500 kit Order code / model number DHCR1500K HV1500 kit HV1500K # Accessories ## **HV Series Loading Valves** ####
Standard Features: - Flow: Up to 210 gpmPressure: Up to 6000 psi - Bi-directional loading - "INTERPASS"™ internal safety protection system with replaceable burst discs - Smooth progressive pressure control - High tensile aluminium body rated at 6000 psi - Easy to retro-fit | Model number | Flow range (US gpm) | Port one | Port two | |--------------|---------------------|---------------------------|---------------------------| | HV200-S-N-6 | 50 | 1-1/16" -12UN #12 SAE ORB | 1-1/16" -12UN #12 SAE ORB | | HV400-S-N-6 | 100 | 1-5/16" -12UN #16 SAE ORB | 1-5/16" -12UN #16 SAE ORB | | HV800-S-N-6 | 210 * | 1-7/8" -12UN #24 SAE ORB | 1-7/8" -12UN #24 SAE ORB | ^{*} Pressure control is limited below 23 US gpm (86 lpm). The maximum controllable pressure in this region is calculated by: max pressure (psi) = 289 x flow (gpm) +436. ### **TH3 - Tachometer Probe** #### **Standard Features:** - Rugged design - Narrow beam IRED - · Very high sensing speed - Low power consumption - Precision glass lens - · Wide range of accessories | Model number | Part number | Description | |--------------|-------------|----------------------------------| | TH3 | FT9251 | Sensor with cable and 5 pin plug | #### Accessories | Model number | Part number | Description | |--------------|------------------|--| | BA20 | FT9351
FT1800 | Magnetic base with 230 mm (9") flexible arm and sensor holder Reflective tape - 900mm long (36") | ### **Safety Burst Discs** | Replacement Burst Discs (10 per Package) | | | | | |--|--|------------------------------|--|--| | 0 - 100 gpm Testers & Load Valves (300 / 400 models) | | | | | | Part Number | Color Code | Nominal Burst Pressure (psi) | | | | FT10791-6 | Red | 6000 | | | | FT10791-5 | Blue | 5000 | | | | FT10791-4 | Green | 4000 | | | | FT10791-3 | Yellow | 3000 | | | | 160 gp | 160 gpm & 200 gpm Testers (600 / 800 models) | | | | | FT10792-7 | Orange | 7000 | | | | FT10792-6 | Red | 6000 | | | | FT10792-5 | Blue | 5000 | | | | Not | e: Two discs required | per replacement | | | # Repair & Calibration Services We can repair it! #### **Description** - · Certificate of Conformity, reissue - Traceable flow test c/w data & graph - Traceable pressure test c/w data & graph - · Operating manual, reissue - HT series tester complete rebuild* (1 year warranty) - DHT series tester complete rebuild* (1 year warranty) Repairs quoted on a time & material basis We offer calibration and repair services with traceable flow & pressure facilities for all products. We also offer Trade-Up discounts for obsolete or non-repairable models. ^{* (}Complete rebuilds include turbine assembly, load valve, pressure gauge, new electronics, user manual, labor, calibration and certificate of conformity) # **Turbine Flowmeters** ### CT Series Turbine flow meters with conditioned output #### **Standard Features:** Flow: 0.25 - 400 US gpmPressure: Up to 7000 psi Output Options: 4 - 20 mA, 0 - 5 V - · Bi-directional operation - Fluids: Wide range of hydraulic oil, lubrication oils, and fuels - Calibration: 21 cSt as standard. Special calibration possible - Comprehensive range of accessories available including pressure transducers, temperature sensors panel meters and cables. See MPT, TP125 and DP130 bulletin for details or contact Webtec sales office | Model Number | Outputs available | Main ports | Top ports* | Flow range (US gpm) | Max. pressure (psi) | |-----------------|-------------------|--------------------------------------|------------------------|---------------------|---------------------| | CT15-**-S-S-6 | 5V, mA | 3/4" -16UN #8 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.25 - 4 | 6000 | | CT60-**-S-S-6 | 5V, mA | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.8 - 16 | 6000 | | CT150-**-S-S-6 | 5V, mA | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 1.3 - 40 | 6000 | | CT300-**-S-S-6 | 5V, mA | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 | 6000 | | CT400-**-S-S-6 | 5V, mA | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2.5 - 100 | 6000 | | CT600-**-S-S-5 | 5V, mA | 1-5/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 4 - 160 | 5000 | | CT800-**-S-S-7 | 5V, mA | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 210 | 7000 | | CT800-**-F-S-3 | 5V, mA | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 210 | 3000 | | CT800-**-F-B-6 | mA | 1-1/2" ~24 SAE Code 62 4-bolt flange | 1/4" BSPP | 20 - 800 lpm | 420 bar | | CT1500-**-F-S-6 | 5V, mA | 1-1/2" #24 SAE Code 62 4-bolt flange | 7/16" -20UN #4 SAE ORB | 12.5 - 400 | 6000 | Replace ** with mA or 5V to give complete model number. *CT 15 has one of the specified top ports. ### CTR Series Turbine flow meters with conditioned output and built-in loading valve #### Standard Features: - Flow: 2 210 US gpm - Pressure: Up to 7000 psi - Output Options: 4 20 mA, 0 5 V - Loading Valve: with bi-directional flow and pressure loading capability * - "INTERPASS"TM safety disc system, bypasses oil internally in the event of the valve being over pressurised - Fluids: Wide range of hydraulic oil, lubrication oils, and fuels - Calibration: 21 cSt as standard. Special calibration possible - Comprehensive range of accessories available including pressure transducers, temperature sensors panel meters and cables. See MPT, TP125 and DP130 bulletins for details or contact Webtec sales office | Model Number | Outputs available | Main ports | Top ports* | Flow range (US gpm) | Max. pressure (psi) | |-----------------|-------------------|--------------------------------------|------------------------|---------------------|---------------------| | CT300R-**-S-S-6 | 5V, mA | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 | 6000 | | CT400R-**-S-S-6 | 5V, mA | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2.5 - 100 | 6000 | | CT600R-**-F-S-3 | 5V, mA | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 160 | 3000 | | CT800R-**-F-S-3 | 5V, mA | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 210 | 3000 | | CT600R-**-S-S-7 | 5V, mA | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 4 - 160 | 7000 | | CT800R-**-S-S-7 | 5V, mA | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 210 | 7000 | Replace ** with mA, PU, 5V to give complete model number. CT600, 750, 800 has limited pressure control below 23 US gpm (86 lpm). The maximum controllable pressure in this region is calculated by: max pressure (psi) = 289 x flow (gpm) +436. For cables and connectors see next page. # **Compact Turbine Flowmeters** #### **Standard Features:** - Flow: 0.8 100 US gpmPressure: Up to 6000 psi - Accuracy: ± 1% of indicated reading over a wide range (depending on readout) - Bi-Directional: operation - Temperature: sensor built-in - Fluids: Wide range of hydraulic, lubrication oil, and fuels - Calibration: 21 cSt as standard. Special calibration possible | Model Number | Main ports | Top ports | Flow range (US gpm) | Max Pressure (psi) | |--------------|---------------------------|------------------------|---------------------|--------------------| | LTE50-S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.8 - 16 | 6000 | | LTE125-S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 1.3 - 40 | 6000 | | LTE250-S-B-6 | 1-5/16" -12UN #16 SAE ORB | 1/4" BSPP | 2 - 80 | 6000 | | LTE400-S-B-6 | 1-5/16" -12UN #16 SAE ORB | 1/4" BSPP | 2.5 - 100 | 6000 | # **Gear Flowmeters** ### GF Series Positive displacement flow meters with conditioned output #### **Standard Features:** - Flow: 0.1 150 lpm, 0.03 40 US gpm - Pressure: up to 420 bar, 6000 psi. - Output Options: 4-20 mA & pulse (both linearized) - Bi-Directional operation - Calibration: 21 cSt as standard. Special calibration possible. Calibration certificate supplied as standard. - Fluids Oils, fuels, water glycol, water oil emulsions, phosphate esters. - Stainless Steel Body, gears and transducer as standard. | Model number | Male Fitting | Flow range | Pressure | |---------------|---------------------------|-------------------|----------| | GF025-MAP-B-6 | 1/2" -14 BSPP | 0.1 to 25 lpm | 420 bar | | GF025-MAP-S-6 | 3/4" -16UNF-2B JIC Male | 0.03 to 7 US gpm | 6000 psi | | GF070-MAP-B-6 | 3/4" -14 BSPP | 0.5 to 70 lpm | 420 bar | | GF070-MAP-S-6 | 1-1/16" 12UN-2B JIC Male | 0.15 to 19 US gpm | 6000 psi | | GF150-MAP-B-6 | 3/4" BSPP | 1 to 150 lpm | 420 bar | | GF150-MAP-S-6 | 1-1/16" -12UN-2B JIC Male | 0.26 to 40 US gpm | 6000 psi | #### **Cables and Connectors** | Model | No. | Description | |-------|------|-------------| | MIOGE | 140. | Description | FT9880 FT10228-05 FT10541-06 FT10521-06 Connector, M12 x 1 5 Pin, for use with CT and CTR flow meters (mA, 5V version), TP125, MPT and SP-TTL Cable, 16 ft. Use with LT, LTR, CT, CTR, TP125, MPT and SP-TTL. One M12 x1 connector included. Cable, Flow & Temperature, 20 ft. to connect LT series flowmeter to portable tester remote input. Cable hose assembly, 20 ft, to connect LT to DHCR. # **Pressure Transducers** #### **MPT Series Low Cost Pressure Transducers** #### **Standard Features:** - Accurate (± 0.25% Full Scale) - · Economically priced - Rugged design - Output Options: - 4 20mA or 0 5V - · Stainless Steel wetted parts - Connector: Male 4 pin M12 x1.0 - Two thread forms available | Model number | Outputs available | Pressure range (Gauge) | Pressure Connection | |--------------|-------------------|------------------------|-----------------------------| | MPT200PU** | 5V, mA | 200 psi | 7/16" -20UN #4 SAE ORB Male | | MPT600PU** | 5V, mA | 600 psi | 7/16" -20UN #4 SAE ORB Male | | MPT1K5PU** | 5V, mA | 1500 psi | 7/16" -20UN #4 SAE ORB Male | | MPT4K0PU** | 5V, mA | 4000 psi | 7/16" -20UN #4 SAE ORB Male | | MPT6K0PU** | 5V, mA | 6000 psi | 7/16" -20UN #4 SAE ORB Male | | MPT7K5PU** | 5V, mA | 7500 psi | 7/16"
-20UN #4 SAE ORB Male | | MPT10K0PU** | 5V, mA | 10000 psi | 7/16" -20UN #4 SAE ORB Male | | MPT3K0PU** | 5V, mA | 3000 psi | 7/16" -20UN #4 SAE ORB Male | Replace ** with mA or 5V to give complete model number # Temperature Sensors and Digital Pressure Gauges ### **TP125 Temperature Transmitter** #### Standard Features: Max. Temperature: 257 °FPressure Rating: 7000 psi Material: Stainless Steel / Aluminium - Connector: Male 5 pin M12 x1.0 - Output Options: 4 20mA or 0 5V - Three thread forms available | Model number | Output type | Fluid connection | |--------------|-----------------|-----------------------------| | TP125-5V-N | 3 wire 0 - 5V | 1/4" NPTF | | TP125-5V-S | 3 wire 0 - 5V | 7/16" -20UN #4 SAE ORB Male | | TP125-mA-N | 2 wire 4 - 20mA | 1/4" NPTF | | TP125-mA-S | 2 wire 4 - 20mA | 7/16" -20UN #4 SAE ORB Male | Note: All NPTF threads are to ANSI B1.20.3 -1976 Class 1. As stated in the standard it is recommended that "sealing is accomplished by the means of a sealant applied to the thread". NPT fittings may also be used to connect to NPTF ports (also with a sealant applied to the thread) # **HPM110 Digital Pressure Gauge** #### Standard Features: - Accurate (± 0.5% Full Scale) - · Economically priced - · Rugged design - Digital display with bar graph - · Stainless Steel wetted parts - Peak Pressure 10 ms scan rate - Back lit display | Model number | Max pressure (psi) | Overload pressure (psi) | Burst pressure (psi) | Thread | |--------------------|--------------------|-------------------------|----------------------|-----------------------------| | SR-HPM-110-UN-1500 | 1500 | 3000 | 6000 | 7/16" -20UN #4 SAE ORB Male | | SR-HPM-110-UN-8700 | 8700 | 17400 | 31900 | 7/16" -20UN #4 SAE ORB Male | # **Speed Sensors** ## **SP-TTL Speed Sensor** Magnetic speed pickup with conditioned output #### **Standard Features:** - Wide range 1 2000 Hertz - · Steel and aluminium housing - 0 5 volt square wave output - · Two lock nuts provide - M12 5 pin connection | Model number | Output | Frequency range | |--------------|--------|-----------------| | SP-TTL | Pulse | 1 - 2000 Hertz | For cables and connectors see previous page # Digital Panel Mount Readouts #### **APM** APM Advanced Panel Meters Digital process meters for analog sensors. #### Standard Features: - · Combined digital and bar graph display. - USB port for custom user settings - · Warning flash backlight. - 0.1% accuracy for voltage inputs and 0.01% accuracy for current inputs - Less than 2.1" deep. - · Visibility: - User-adjustable backlight brightness and colour (red, green, white). - Wide viewing angle (horizontal and vertical). - Custom annunciators. - Programmable: I Display Range (Both Min & Max values) - · Two independent alarm set-points. - Two independent outputs or 4-20mA analog monitor outputs. ### **Specification** | Code | Input Type | Analog Outputs ¹ | Reset Input for peak value ² | |--------|------------|-----------------------------|---| | APM-MA | 4-20mA | 2 x 4-20mA | Yes | | APM-5V | 0-5V | 2 X 4-20mA | Yes | ¹ Analog and digital outputs share the same terminals. # CAN sensors for hydraulic system monitoring of flow, pressure and temperature on pumps, valves and hydrostatic transmissions The CT turbine flow meter range with configurable CAN output is a convenient solution to measure flow and temperature in hydraulic systems. The flow meter can be installed anywhere in the hydraulic circuit for production testing, commissioning, development testing and analysis of control systems. With the addition of the manual loading valve on the CTR meters further test scenarios can be simulated and monitored such as pump efficiency. Pressure sensors also with CAN capability are also available to compliment the CT Flow meters. With a pressure sensor all the fundamental parameters of a hydraulic system can be monitored in a single, compact unit with one cable supporting the CAN protocol. #### **Standard Features:** #### **Flowmeters** - Flow: 1-1500 lpm 0.25 400 US gpm - Temperature signal via flow transducer connection - Pressure: Up to 480 bar, 7000 psi - Porting: BSPP or SAE Bi-directional operation - Built-in loading valve optional - Output: CAN compatible (configured to customer's specification, e.g. J1939, CAN open) - Fluids: Wide range of hydraulic oil, lubrication oils, and fuels - Calibration: 21 cSt as standard. Special calibration possible Pressure Transducers Pressure transducers Pressure: 0 to 1000 bar (0 - 14500 psi) ² Preconfigured to reset the peak value after 14 seconds # Portable Readouts / Dataloggers ### HPM4000 Hydraulic data logger #### **Standard Features:** - Complete range of sensors pressure, flow, temperature, tachometer - Intelligent digital sensors (CAN protocol) for easier wiring and auto configuration (HPM4030 only) - Analog SR sensors with sensor recognition (HPM4020 only) - Large 3.5" back-lit display for quick and easy readings - IP67 rated for use in extreme conditions (HPM4030) - Kits available with carry case, charger & 1 x pressure transducer. - Supplied with with HPMComm version 7 - PC software | Model number | Inputs (Number and type of sensors) | |-----------------------|--| | SR-HPM-4020-05-0C | 2 'SR' sensors – up to four channels | | SR-HPM-4030-05-OC-CAN | 3 Intelligent Digital (CAN) sensors – up to six channels | Note: Some sensors, such as the PTT pressure transducers that include a temperature sensor built-in, are one sensor that uses two channels. ### **HPM540 Hydraulic data logger** #### Standard Features: - Digital Readout of Pressure, Temperature, Flow, Differential Pressure* (*requires two transducers of same range) - · Windows Compatible Software - Accuracy: Pressure within 0.5% of full scale Flow within 1% of full scale. - Pressure up to 9000 psi, peaks to 14,000 psi. - Auto configuration / sensor recognition - Analog SR sensors with Sensor Recognition - Battery Powered standard 9 Volt battery. Optional rechargeable unit. - Min / Max memory - USB connection | Model number | Description | |------------------|---| | SR-HPM-540-05-0C | 4 input readout / data logger with USB data output & Windows compatible analysis software | # HPM6000 Hydraulic data logger #### **Standard Features:** - Complete range of sensors pressure, flow, temperature, tachometer - Intelligent digital sensors (CAN protocol) for easier wiring and auto configuration - Analog sensor inputs (HPM6116, HPM6216) including HPM-SR range, mA, volts - Internal storage for over 36 million readings expandable to over 1 billion readings - Logging interval of 1 ms to 24 hours - Re-chargeable internal battery mains charger included - Full colour 5.7 inch display - IP64 and rubberised case surround for protection in harsh environments - Supplied with HPMComm version 7 - PC software - Connectivity USB Host, USB slave, Ethernet | Model number | Intelligent Digital inputs (CAN) | Analog input channel | |-----------------------|---|--| | SR-HPM-6016-05-0C-CAN | 2 lines - max of 8 sensors per line,
16 sensors in total (up to 32 channels) | None | | SR-HPM-6116-05-0C-CAN | 2 lines - max of 8 sensors per line,
16 sensors in total (up to 32 channels) | 3 SR sensors (up to 6 channels) 2 configurable auxiliary inputs | | SR-HPM-6216-05-0C-CAN | 2 lines - max of 8 sensors per line,
16 sensors in total (up to 32 channels) | 6 SR sensors (up to 12 channels) 4 configurable auxiliary inputs | Note: Some sensors, such as the PTT pressure transducers that include a temperature sensor built-in, are one sensor that uses two channels. # Portable Readouts / Dataloggers ### **HPM** sensor range overview Check the type and number of sensors your unit can accommodate. Sensors with built in temperature only count as one sensor. | Base Units - Model number | SR inputs | Intelligent Digital inputs (CAN) Number of Max sensors lines per line | | Auxiliary
analog
inputs | Total
sensors | |---------------------------|-----------|---|---|-------------------------------|------------------| | SR-HPM-4020-05-0C | 2 | 0 | 0 | 0 | 2 | | SR-HPM-4030-05-0C-CAN | 0 | 1 | 3 | 0 | 3 | | SR-HPM-540-05-0C | 4 | 0 | 0 | 0 | 4 | | SR-HPM-6016-05-0C-CAN | None | 2 | 8 | 0 | 16 | | SR-HPM-6116-05-0C-CAN | 3 | 2 | 8 | 2 | 21 | | SR-HPM-6216-05-0C-CAN | 6 | 2 | 8 | 4 | 26 | # Standard Features: Turbine Flowmeters Flow: 0.25 - 200 US gpmPressure: Up to 7000 psi • Porting: SAE, BI directional operation #### **Turbine Flowmeters with loading valve** Flow: 0.25 - 200 US gpmPressure: Up to 7000 psi Porting: SAE BI directional operation "INTERPASS"™ safety system, bypasses oil internally in the event of valve being over pressurised #### Pressure transducers · With and without temperature built in Pressure: -14.5 to 14500 psi Temperature: -13 - 221 °F #### **Accessories** Cables: 0.5 to 20 meter long #### **Turbine Flowmeters** | rubille Flowineters | | | | | | |---------------------|--------------------------------------|------------------------|-----------------|---------------|--| | Model Number | Main ports | Top ports* | Flow range | Max. pressure | | | CT15-***-B-B-6 | 1/2" BSPP | 1/4" BSPP | 1 - 15 lpm | 420 bar | | | CT15-***-S-S-6 | 3/4" -16UN #8 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.25 - 4 US gpm | 6000 psi | | | CT60-***-B-B-6 | 3/4" BSPP | 1/4" BSPP | 3 - 60 lpm | 420 bar | | | CT60-***S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.8 - 16 US gpm | 6000 psi | | | CT150-***-B-B-6 | 3/4" BSPP | 1/4" BSPP | 5 - 150 lpm | 420 bar | | | CT150-***-S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 1.3 - 40 US gpm | 6000 psi | | | CT300-***-B-B-6 | 1" BSPP | 1/4"
BSPP | 8 - 300 lpm | 420 bar | | | CT300-***-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 US gpm | 6000 psi | | | CT600-***-B-B-5 | 1-1/4" BSPP | 1/4" BSPP | 15 - 600 lpm | 350 bar | | | CT600-***-S-S-5 | 1-5/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 4 - 160 US gpm | 5000 psi | | | CT750-***-S-B-7 | 1-7/8" -12UN #24 SAE ORB | 1/4" BSPP | 20 - 750 lpm | 480 bar | | | CT750-***-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 7000 psi | | | CT750-SR-F-B-3 SR | 1-1/2" #24 SAE Code 61 4-bolt flange | 1/4" BSPP | 20 - 750 lpm | 210 bar | | | CT750-SR-F-S-3 SR | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 3000 psi | | Replace *** with CAN or SR to give complete model number. *CT 15 has one of the specified top ports. #### Turbine Flowmeters with loading valve | | • | | | | |------------------|--------------------------------------|------------------------|----------------|---------------| | Model Number | Main ports | Top ports | Flow range | Max. pressure | | CT300R-***-B-B-6 | 1" BSPP | 1/4" BSPP | 8 - 300 lpm | 420 bar | | CT300R-***-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 US gpm | 6000 psi | | CT600R-SR-F-B-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 1/4" BSPP | 20 - 600 lpm | 210 bar | | CT600R-SR-F-S-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 160 US gpm | 3000 psi | | CT600R-SR-S-B-7 | 1-7/8" -12UN #24 SAE ORB | 1/4" BSPP | 20 - 600 lpm | 480 bar | | CT600R-SR-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 160 US gpm | 7000 psi | | CT750R-***-S-B-7 | 1-7/8" -12UN #24 SAE ORB | 1/4" BSPP | 20 - 750 lpm | 480 bar | | CT750R-***-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 7000 psi | | CT750R-SR-F-B-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 1/4" BSPP | 20 - 750 lpm | 210 bar | | CT750R-SR-F-S-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 3000 psi | Replace *** with CAN or SR to give complete model number. Positive displacement flow meters with Intelligent digital sensors (CAN protocol) coming in 2016. Please contact the sales office for further information. # Portable Readouts / Dataloggers ### **Pressure Transducers** CAN (ID) | Model Number | Pressure range | |----------------------|----------------| | SR-PT*-016-05-0C-CAN | -1 - 16 bar | | SR-PT*-060-05-0C-CAN | 0 - 60 bar | | SR-PT*-160-05-0C-CAN | 0 - 160 bar | | SR-PT*-400-05-0C-CAN | 0 - 400 bar | | SR-PT*-600-05-0C-CAN | 0 - 600 bar | | SR-PT*-1K0-05-0C-CAN | 0 - 1000 bar | #### SR | Model Number | Pressure range | |------------------|----------------| | SR-PT*-015-05-0C | -1 - 15 bar | | SR-PT*-060-05-0C | 0 - 60 bar | | SR-PT*-150-05-0C | 0 - 150 bar | | SR-PT*-400-05-0C | 0 - 400 bar | | SR-PT*-600-05-0C | 0 - 600 bar | | SR-PT*-1K0-05-0C | 0 - 1000 bar | Replace * with 'N' for no temperature and with 'T' for unit with temperature. Supplied with M16 x 2 test point connector #### SR-PTN-***-0C-CAN # SR-PTN-***-05-0C #### SR-PTT-***-05-0C 100.0 (3.93") ## SR-PTT-***-0C-CAN **Functional specification** Ambient temperature: Fluid type: Accuracy: Fluid temperature: -25 to 85 °C (-13 - 185 °F) Oils, fuels, water glycol, water oil emulsions -25 to 105 °C (-13 - 221 °F) Pressure: ± 0.5% full scale Temperature: ± 3 °C (SR-PTT-* ONLY) **Electrical specification** Power supply: Response Time: CAN: 8 - 40 VDC SR: 7-15 VDC SR **Construction material** Main body: Sealing: Degree of protection*: Stainless steel 1.4301 Viton® (FKM) SR - IP54 (EN60529) CAN - IP66 (EN60529) *With cable connected Stainless steel 1.4301, Viton® (FKM) Wetted parts: **Dimensions:** 95.6 mm x 26.9 mm Weight approx.: 170 g #### **SR Cables** | Model Number | Length | Туре | |------------------|--------|--------------------| | SR-CBL-003-55-MM | 3m | Connecting | | SR-CBL-005-55-MF | 5m | Extension | | SR-CBL-002-54-MM | 2m | Adaptor 5 to 4 pin | # **CAN (ID) Connection cables** | . , | | | | |-------------------|--|--|--| | Model Number | Length | | | | SR-CBL-0.5-MF-CAN | 0.5m | | | | SR-CBL-02-MF-CAN | 2m | | | | SR-CBL-05-MF-CAN | 5m | | | | SR-CBL-10-MF-CAN | 10m | | | | SR-CBL-20-MF-CAN | 20m | | | | SR-CBL-0.05-Y-CAN | Splitter no cable | | | | SR-CBL-0.3-Y-CAN | CAN Y splitter, including 0.3 m cable | | | | SR-CBL-000-R-CAN | CAN terminating resistor | | | | SR-CONN-ADPT-M8 | Cable adapter M8x1 4pol Digital IN/OUT | | | | SR-CONN-ADPT-M12 | Cable adapter M12x1 5pol analog | | | #### Accessories / spares | Model Number | Description | |----------------------|--------------------------------| | SR-PSU-HPM6000 | HPM6000 power pack | | SR-HPM6000-00-0C-STP | HPM6000 neck strap | | SR-CAB-540-PC-USB | HPM540 PC Cable to USB | | SR-USB-HPM6000 | USB cable type A to B | | SR-LAN-HPM6000 | LAN cable | | SR-HPM-PSU-MC-1C | Power supply for HPM540 | | SR-HPM-CHG-03-0C | In car charger adaptor | | SR-HAND-HPM6000 | Replacement handle for HPM6000 | #### Other sensors & accessories | Other sensors & accessories | | | | |-----------------------------|--------------------------------|--|--| | Model Number | Description | | | | SR-RPM-300-05-3C | SR Tach with 5 pin fixed cable | | | | SR-RPM-WHL-00-0C | Tach contact wheel | | | | SR-RPM-ADP-00-0C | Focus adaptor | | | | SR-EXT-TRG-05-1C | External trigger box | | | | SR-VADC-700 | SR/CAN voltage, current & | | | | | frequency converter | | | | SR-TTP-190-05-0C | SR Temperature transducer | | | | | -40 to 150 °C 1/4" BSPP | | | | SR-TTP-190-05-0C-CAN | CAN Temperature transducer | | | | | -40 to 150 °C 1/4" BSPP | | | | SR-ICM* | ICM Contamination Monitor Kit | | | | | for HPM6000 | | | | | | | | Only NAS code is transmitted to the HPM6000 as standard. Other options available - please consult sales office. # C2000 Hydraulic data acquisition system ### A complete hydraulic solution to provide professional test certificates for your customers The C2000 is a 3rd generation solution for displaying, logging and reporting hydraulic test information, designed for use on pump test stands. The C2000 offers the latest in data monitoring and logging capability. The super panel offers easy user configuration of up to 12 channels in either digital or slider mode. #### **Standard Features:** - Modular 8 64 inputs - Windows[™] compatible Software - · Hydraulic test solution - Print test Certificates - TCP/IP network readv - Dedicated high-speed controller #### Features: · Up to 64 channels #### Sensors available: - Flow meters 0.25 to 400 gpm - Pressure transducers 15 to 15000 psi - Temperature transducer 32 to 257°F - Speed sensor - · Fluid ISO particle count - Standard 4 20 mA or TTL inputs for additional sensors #### Three logging modes: - Log on a keypress - Profile logging - Continuous logging - Logging speed up to 2 kHz per channel - · Over 8 million readings capability #### Four monitoring screens: - Super panel - Two standard panels - Real time graphing - · User defined screen layouts & calculated channels #### Other: - · Analysis of results - Ethernet connection - · Industrial control unit included as standard - Optional 19" rack - · Help on line - Export files to other packages - Easy upgrade path for future expansion if needed #### C2000 mid-box Up to 5 modules as standard 5U height Expansion box adds up to an additional 3 modules 4U height #### Input signal type 4 - 20 mA signals - measurement 8 channels per module TTL - frequency measurement - 6 channels per module # FI Series 'MecMeter'™ In-Line Flowmeters ### FI750 Series In-Line Flow Indicator #### Standard Features: Flow: 0.5 - 48 US gpm Pressure: 6000 psi Accuracy within 4% FSD Built-In thermometer available Direct reading • Dual scale lpm/US gpm - · Horizontal or vertical mounting - Large clear dial - Low cost rugged design - Pressure gauge port - Wide operating range | Model Number with temperature | Model number without temperature | Calibrated flow range (US gpm) | Main ports | Top port | Max.
pressure (psi) | |-------------------------------|----------------------------------|--------------------------------|--------------------------------|-----------|------------------------| | FI750-16ANOT | FI750-16ANO | 0.5 - 4 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI750-30ANOT | FI750-30ANO | 0.5 - 8 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI750-60ANOT | FI750-60ANO | 0.5 - 16 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI750-120ANOT | FI750-120ANO | 1 - 32 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI750-180ANOT | FI750-180ANO | 4 - 48 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI750-16ASOT | FI750-16ASO | 0.5 - 4 | 1 - 1/16" - 12 UNF #12 SAE ORB | 1/4" NPTF | 6000 | | FI750-30ASOT | FI750-30ASO | 0.5 - 8 | 1 - 1/16" - 12 UNF #12 SAE ORB | 1/4" NPTF | 6000 | | FI750-60ASOT | FI750-60ASO | 0.5 - 16 | 1 - 1/16" - 12 UNF #12 SAE ORB | 1/4" NPTF | 6000 | | FI750-120ASOT | FI750-120ASO | 1 - 32 | 1 - 1/16" - 12 UNF #12 SAE ORB | 1/4" NPTF | 6000 | | FI750-180ASOT | FI750-180ASO | 4 - 48 | 1 - 1/16" - 12 UNF #12 SAE ORB | 1/4" NPTF | 6000 | #### FI750/1500 Series Brass In-Line Flow Indicator #### **Standard Features:** Flow: 0.5 - 100 US gpm Pressure: 6000 psi Accuracy within 4% FSD Built-In thermometer available Direct reading • Dual scale water/oil - Horizontal or vertical mounting - Large clear dial - · Low cost rugged design - Pressure gauge port - Wide operating range | Model Number | Model number | Calibrated flow range (US gpm) | | Main ports | Top port | Max. | |------------------|---------------------|--------------------------------|----------|--------------------------|-----------|----------------| | with temperature | without temperature | Water | Oil | Wall ports | Top port | pressure (psi) | | FI750-30BNWT | FI750-30BNW | 0.5 - 8 | 0.5 - 8 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI750-60BNWT | FI750-60BNW | 0.8 - 8 | 0.5 - 16 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI750-120BNWT | FI750-120BNW | 1 - 37 | 1 - 32 | 3/4" NPSF | 1/4" NPTF | 6000 | | FI1500-200BSWT |
FI1500-200BSW | 2.5 - 50 | 2.5 - 50 | 1-7/8" -12UN #24 SAE ORB | 1/4" NPTF | 5000 | | FI1500-400BSWT | FI1500-400BSW | 5 - 100 | 5 - 100 | 1-7/8" -12UN #24 SAE ORB | 1/4" NPTF | 5000 | ### FI1500 Series In-Line Flow Indicator #### **Standard Features:** Flow: 0.5 - 100 US gpmPressure: 6000 psiAccuracy within 4% FSD • Built-In thermometer available · Direct reading • Dual scale lpm/US gpm - · Horizontal or vertical mounting - Large clear dial - · Low cost rugged design - Pressure gauge port - Wide operating range | Model Number with temperature | Model number without temperature | Calibrated flow range (US gpm) | Main ports | Top port | Max.
pressure (psi) | |-------------------------------|----------------------------------|--------------------------------|--------------------------|-----------|------------------------| | FI1500-200ASOT | FI1500-200ASO | 5 - 50 | 1-7/8" -12UN #24 SAE ORB | 1/4" NPTF | 5000 | | FI1500-300ASOT | FI1500-300ASO | 4 - 80 | 1-7/8" -12UN #24 SAE ORB | 1/4" NPTF | 5000 | | FI1500-400ASOT | FI1500-400ASO | 5 - 100 | 1-7/8" -12UN #24 SAE ORB | 1/4" NPTF | 5000 | # FlowHUB Series ### Flow and temperature: Measure, display, switch, transmit #### **Standard Features:** - Flow: 0.25 100 US gpm - Pressure: 6,000 psi - Designed for permanent installation (few wearing parts) - Easy to operate: 4 digit LED display, 3 large keys - Accuracy better than 3% FSD - Repeatability better than 1% - Temperature measurement built-in - Wide range of options: Choice of outputs V or mA. Two programmable switches. Complete with adaptors fitted (BSP or JIC Male). Engineering units lpm or US gpm (°C or °F) - Easy installation: Mount in any orientation, Install straight after a bend - · Allows reverse flow - Traceable calibration on request #### Model configuration #### Example Above model number is a FlowHUB Transmitter: Flow range: 2 - 100 US gpm, Maximum pressure: 3000 psi (210 bar), Temperature: °F, Output: 4 - 20 mA, no switches, 1 5/16" JIC Male adaptors. Step 1 - Choose flow range and engineering units | EU flow range (lpm) | | | US flow range (US gpm) | | | |---|---|---|---|--|--| | Code 1 | Flow range | Standard adaptors | Code 1 Flow Range | | Standard adaptors | | HF030
HF060
HF120
HF240
HF360 | 1 - 30
2 - 60
4 - 120
8 - 240
8 - 360 | 1/2" or 3/4" BSPP
1/2" or 3/4" BSPP
3/4" or 1" BSPP
1" BSPP
1" BSPP | HF008
HF016
HF032
HF064
HF100 | 0.3 - 8
0.5 - 16
1 - 32
2 - 64
2 - 100 | 1-1/16" -12UN JIC Male or 3/4" -16UN JIC Male
1-1/16" -12UN JIC Male or 3/4" -16UN JIC Male
1-1/16" -12UN JIC Male or 1-5/16" -12UN JIC Male
1-5/16" -12UN JIC Male
1-5/16" -12UN JIC Male | Step 2 - Choose electronics and maximum pressure | Electronic control and maximum pressure options | | | | | |--|-------------------------|--|--|--| | Code 2 Maximum working pressure (psi) Function description | | | | | | SWTNA-3
TRN5V-3
TRNMA-3 | 3,000
3,000
3,000 | Two programmable switches Output 0 - 5 Volt Output 4 - 20 mA | | | | ULT5V-6
ULTMA-6 | 6,000
6,000 | Two programmable switches, output 0 - 5 Volt Two programmable switches, output 4 - 20 mA | | | Step 3 - Choose adaptors | Adaptors | | | | | | |--------------------------|-----------------------------------|-------------------------|---|--|--| | BSPP options SAE options | | | | | | | Code 3 | Code 3 Description | | Description | | | | B050V
B075V
B100V | 1/2" BSPP
3/4" BSPP
1" BSPP | S050V
S075V
S100V | 3/4" -16UN JIC Male
1-1/16" -12UN JIC Male
1-5/16" -12UN JIC Male | | | Custom configurations are available, please contact sales. ### **Build your own FlowHUB** Order connecting cable separately - contact sales office # WP Series Low Cost In-Line Flowmeters #### **Standard Features:** 1000 psi Fluid Media Oil and 0.873 specific gravity Water and 1.0 specific gravity = 5 = H = W - Advanced sharp edge orifice design provides measurement stability over wide viscosity range - · Reliable and economical design - Direct reading, dual calibrated scale, gpm/ lpm, special scales available. - Available in Aluminum, Brass or Stainless Steel to suit fluid - Line sizes 1/2", 3/4", 1", 1-1/2" & 2" - Flowrates available; 0.05 to 150 gpm liquids. 1.5 - 1350 SCFM - gases - Max pressure rating 3500 & 6000 psi liquids, 1000 psi gases. - Accurate within 2% FSD - Ports available in SAE, NPT or BSP - Optional single or dual flow switch, high temperature versions, transmitter version and phosphate ester models. - Unrestricted mounting in any orientation, horizontal, vertical or inverted. - High strength cast ALNICO magnet for superior coupling performance - Available with free reverse flow or bidirectional reading #### **Product Selector** 3/4" BSPP 1" BSPP = U 4 only = V 4 only 1/2" NPTF, dry seal = B 3 only 3/4" NPTF, dry seal = C 4 only 1" NPTF, dry seal = D 4 only 10 - 115 (3 - 30) = 30 4 only # **Pressure Test Kits** ### **Fully customizable Pressure Test Kits** #### **Standard Features:** - Custom built to your specification pick and mix from huge range. - Pressure Test Kits provide a complete test system for rapid pressure testing. - Pressure test points can be fitted anywhere in the circuit for instant pressure checks saving installation costs of piping and gauges. - Test hoses can be connected by hand under full system pressure without loss of oil or ingress of dirt. Oil samples can be taken and circuits bled of air. - The kit includes gauges, hoses, test points and adaptors. - The case provides ample storage and the gauge panel can be removed for convenient use while testing the machine. (PT4 and PT6 only) - Three models available completely assembled` | | Model No. | Contents | |------------|-----------|---| | 6,00 | PT200-2 | Rugged Plastic case 2 gauges from table 1 1 hose 2 meters long from table 2 2 test points from table 3 2 adaptors from table 4 | | WHITE A SE | PT100-4 | Metal Case - removable gauge panel 4 gauges from table 1 2 hoses 2 meters long from table 2 4 test points from table 3 4 adaptors from table 4 | | 00000 | PT100-6 | Metal Case - removable gauge panel 6 gauges from table 1 6 hoses 2 meters long from table 2 6 test points from table 3 4 adaptors from table 4 | | | PT200-8 | Compact case 8 gauges from table 1 (complete with rubber cover) 3 hoses 2 meters long from table 2 7 test points from table 3 2 adaptors from table 4 | | | | See Contents tables on next page | Test kits can be modified or assembled to your specifications, Please contact sales office # Pressure Test Kit Contents Tables ### **Order specification sheet** #### Choose kit type | Kit | Part Number | No. reqd | |---------|-------------|----------| | PT200-2 | FT9213 | | | PT100-4 | FT5823 | | | PT100-6 | FT7915 | | | PT200-8 | FT10278 | | #### PT200-2 Contents #### Compact case - 2 gauges from table 1 - 1 hose 2 meters long from table 2 - 1 test point from table 3 - 2 adaptors from table 4 ### PT100-4 Contents #### Metal Case - removable gauge panel - 4 gauges from table 1 - 2 hoses 2 meters long from table 2 - 4 test points from table 3 - 4 adaptors from table 4 #### PT100-6 Contents #### Metal Case - removable gauge panel - 6 gauges from table 1 - 6 hoses 2 meters long from table 2 - 6 test points from table 3 - 4 adaptors from table 4 #### PT200-8 Contents #### Compact case - 8 gauges from table 1 (with rubber cover) - 3 hoses 2 meters long from table 2 - 7 test points from table 3 - 2 adaptors from table 4 Table 1 - Pressure Gauges Glycerine filled, scale in both bar and psi | Pressure range: bar (psi) | Part number | No. reqd | |---------------------------|-------------|----------| | 0 - 10 (0 - 140) | FT5274-1 | | | 0 - 20 (0 - 290) | FT5274-2 | | | 0 - 40 (0 - 580) | FT5274-3 | | | 0 - 70 (0 - 1000) | FT5274-6 | | | 0 - 140 (0 - 2000) | FT5274-5 | | | 0 - 200 (0 - 2900) | FT5274-7 | | | 0 - 280 (0 - 4000) | FT5274-8 | | | 0 - 400 (0 - 5800) | FT5274-4 | | Table 2 - High pressure hoses Pressure rating 420 bar (6000 psi) at 50 °C. Minimum bend radius 18mm. | Lenght 'L' mm (inches) | Part number | No. reqd | |------------------------|-------------|----------| | 300 (12) | FT9128-030 | | | 1000 (39) | FT9128-100 | | | 2000 (78) | FT9128-200 | | | 2500 (98) | FT9128-250 | | | 4000 (157) | FT9128-400 | | Table 3 - Pressure test points, Pressure rating 400 bar max. | Thread G | L1 | AF | Part number | No. reqd | |------------------------|----|----|-------------|----------| | 1/8" BSPT | 36 | 17 | 8172675 | | | 1/8" BSPP | 37 | 17 | 8172671 | | | 1/4" BSPT | 36 | 17 | 8172676 | | | 1/4" BSPP | 40 | 19 | FT9742-1 | | | M8 x1 | 38 | 17 | 8172666 | | | M10 x1 | 38 | 17 | 8172667 | | | M12 x 1.5 | 40 | 17 | 8172668 | | | M14 x 1.5 | 40 | 19 | 8172669 | | | M16 x 1.5 | 37 | 22 | 8172670 | | | 7/16" -20UN #4 SAE ORB | 38 | 17 | FT9738-1 | | | 1/8" NPT | 38 | 17 | 8112618 | | | 1/4" NPT | 40 | 17 | 8172677 | | | 9/16" -18UN #6 SAE ORB | 40 | 19 | 8172678 | | | 1/2" -20UN #5 SAE ORB | 37 | 17 | FT6777 | | Table 4 - Adaptor fittings | Thread G | L1 | L2 | AF | Part number | No. reqd | |----------------------|----|----|----|-------------|----------| | 3/8" BSPP | 25 | 12 | 25 | FT1609 | | | 1/2" BSPP |
27 | 10 | 25 | FT2771 | | | 3/4" BSPP | 32 | 10 | 32 | FT5305 | | | M18 x 1.5 | 27 | 12 | 25 | FT5306 | | | 9/16" -18UN JIC Male | 28 | 15 | 19 | FT1607 | | | 3/4" -16UN JIC Male | 25 | 8 | 25 | FT1606 | | | 7/8" -14UN JIC Male | 31 | 10 | 25 | FT1605 | | **Options** Coupling to connect two hoses: Part number 8173667 Spare gauge connectors: Part number 8112625 Other gauge connectors available consult sales for information # Custom hydraulic test kits If you are using diagnostic test equipment, there is a very high chance that you will be using it for field service, wherever that may be. It is important that when you get on site, the equipment is easily and quickly accessible and ready to use. In response to customer demand, Webtec offers individual kits to store and easily transport your hydraulic test equipment on-site. So, now rather than having several separate boxes to carry you can have a dedicated kit to manage the transport of your test equipment using the internationally renowned $Pelican^{TM}$ case system. The Pelican[™] cases are rugged, durable, waterproof and airline approved, ensuring that you arrive on-site with your Webtec test equipment intact and ready to use, no matter what the conditions. On the larger Pelican cases, a set of wheels and a carry handle are also included for even easier transportation. #### **Standard Features:** - · Customised kits for your needs - Easy to transport - Rugged, durable, waterproof and airline approved. - Renowned and internationally recognised Pelican[™] case brand - Wheels and carry handle on larger cases Standard DHCR kit with high density foam Custom and branded kits also available # Custom hydraulic components # Hydraulic solutions designed to your specification Give your machine the edge over your competitors. Working with you and your team Webtec will research, develop, test and manufacture a special hydraulic solution that can include many different components. Typical applications are on mobile machinery used in the Construction, Mining, Agricultural or Energy industries and benefits include: #### Standard Features: - Combination flow / pressure / directional control monoblock valves to reduce envelope size, piping and assembly costs - Custom high-efficiency flow control valves to reduce energy wastage and prevent overheating - Real-time hydraulic system monitoring of flow, pressure, temperature and contamination to reduce down time or warranty claims Quantity pricing available, Contact sales office #### **ILFC Series In-Line Fixed Flow Control** Flow Control Valves maintain the flow rate of hydraulic fluid to a specified value. #### Features: - Pressure compensated to ensure a constant flow rate under varying pressures. - Pre-set in factory to customer requirements at any flow rate between 0.4 to 4.2 gpm. - Uncontrolled flow is permitted in reverse direction. - · Zinc plated clear passivate. - Cartridge version available, without steel body. Flow Ranges: 0.4 - 3.7 gpm (1/4" ports), 0.4 - 4.2 gpm (3/8" ports) **Maximum Pressure:** 3000 psi **Ports:** BSPP, NPTF & SAE ### VFC Series Variable flow pressure compensated control valve Variable Flow Control Valves maintain the flow rate of hydraulic fluid to a selected value. #### Features: - Pressure compensated to ensure a constant flow rate under varying pressures. - Knurled knob enables fast, accurate adjustment of flow rate in one direction (under pressure) - Knurled knob can be locked in position by a grub (set) screw and provides weatherproof sealing to prevent the adjusting screw from corroding or seizing. - Free (uncontrolled) flow is permitted in reverse direction. - Special, Uni-directional version available on request. Flow Ranges: 0.4 - 5.2 gpm (1/4" ports), 0.5 - 10 gpm (3/8" ports), 0.5 - 14.5 gpm (1/2" ports) Maximum Pressure: 3000 psi Ports: BSPP, NPTF & SAE ### **FV120 Series Fixed Priority Flow Dividers** Priority Type Flow Dividers split a single input flow into a 'Priority' (regulated) flow and a 'By-Pass' (excess) flow which can be returned directly to the oil reservoir or used to power a second system. This often dispenses with the need for another pump to operate a second system. ### Features: 'Priority' flow rate is preset in factory to customer specifications at any value between 3.78 lpm and 34.1 lpm in increments of 3.78 lpm. Flow through the 'Priority' port will remain constant at the pre-set value as long as input flow equals or exceeds the Priority flow value. - Pressure compensated permitting both 'Priority' and 'By-Pass' flows to be used simultaneously at varying pressures without effecting the 'Priority' flow rate. - Optional built-in pressure relief valve protects the 'Priority' circuit from excess pressure and is adjustable from 34.5 bar to 210 bar (Factory set 82.7 bar unless otherwise specified). **Total Flow Capacity:** 20 gpm **Maximum Pressure:** Up to 6000 psi Ports: BSPP, NPTF & SAE ### **FV200 Series Proportional Flow Dividers** Proportional Flow Dividers split a single input flow into two output flows, each output being a fixed proportion of the input. For example, a 50/50 flow divider will always split a single input flow into two equal output flows which could be used to operate two motors at equal speeds. The actual rate of flow from each output is not fixed but will vary as the input flow rate varies. #### Features: Pressure compensated to keep each output flow at a fixed percentage of the input flow, regardless of pressure variations between the output ports. - Standard proportional splits are available (see ordering codes). Other non-standard proportional splits are available upon request. - Four Input flow ranges are available **Total Flow Capacity:** 20 gpm **Maximum Pressure:** Up to 6000 psi Ports: BSPP, NPTF & SAE ### VFD50 Series Variable Priority Flow Divider Priority Type Flow Dividers split a single input flow into a 'Priority' (regulated) flow and a 'By-Pass' (excess) flow which can be returned directly to the oil reservoir or used to power a second system. In many instances this dispenses with the need for another pump to operate a second system. #### Features: Clearly marked hand-dial permits fast visual adjustments to pre-determined 'Priority' flow and fast easy adjustment of 'Priority' circuit to meet varying requirements. Pressure compensated permitting both 'Priority and 'By-Pass' flows to be used simultaneously at varying pressures without effecting the Priority flow rate Flow Ranges: 0 - 4 gpm, 0 - 8 gpm Maximum Pressure: 3600 psi Ports: 3/8" BSPP x 3 Ports, Manifold Mounted, 3/8" NPTF x 3 Ports # VFD120 Series Variable Priority Flow Dividers (2FV2V replacement) Aimed at mobile and industrial applications the VFD120 can be used for controlling hydraulic motor and cylinder speeds by manually adjusting the flow rate. Variable priority flow dividers split a single input (P) flow into a priority (REG) flow and an excess or by-pass (BP) flow which can be returned directly to the oil reservoir or used to power a second system. This is possible due to the valve's adaptive pressure compensation characteristics meaning both the priority and by-pass flows can be used to drive separate circuits, even under varying loads. In many instances this dispenses with the need for another pump to operate a second system. #### Features - Clearly marked single-turn hand dial permits fast visual adjustments to pre-determined 'Priority' flow. - Pressure compensated permitting both 'Priority' and 'By-Pass' to be used simultaneously at varying pressures without affecting the 'Priority' flow rate. - Anti-tamper locknut option available. Contact Sales Office for more information. - Reverse flow capable (Depending upon control knob position) Contact Sales office for more information. Flow Ranges: 0 - 3.0 gpm, 0 - 5.0 gpm, 0 - 8.0 gpm, 0 - 16.0 gpm, 0 - 20.0 gpm, 0 - 25.0 gpm Maximum Pressure: 6000 psi Port Threads Inlet Regulated Flow and Excess Flow: 1/2" BSPP, 3/4" BSPP, 1-1/16" -12UN #12 SAE ORB, 3/4" NPTF *¹, M22 x 1.5 Two bolt - M8 or 5/16" ### Other Variable Priority Flow Dividers avaliable - RV2FV2V Variable Priority Flow Divider with Relief Internally Drained. Specifications as above with relief from Priority to Bypass. - AC2FV2V Variable Priority Flow Divider with Anti Cavitation Check from Priority to Bypass CK2FV2V Variable Priority Flow Divider with Reverse Flow Check from Priority to Inlet # VFD120 Motor-Driven Series Variable Priority Flow Divider with Remote Proportional Control. The VFD120MD remote control flow divider is ideally suited for the agricultural and industrial user seeking a cost-effective method of controlling hydraulic motor speed. The priority flow port gives an output independent of load pressure while the By-Pass port can be used to power a secondary circuit. #### Features: - Minimum to maximum priority flow in less than 10 seconds (at full pressure) - 1 28 Vdc supply enables unit to be powered from a vehicle supply - Remote control using: Potentiometer 0.5 5 Vdc 4 20 mA loop - Set and Forget - No external control box needed. All electronics are self-contained inside the canister. - Easy setup on-field. All connections made via M12 connector - Pressure compensated permitting both 'priority' and 'By-Pass' flow to be used simultaneously at varying pressures without affecting the 'priority' flow rate - Automatic current limiting to prevent overheating and motor overload - · Valve settings immune to power failure - · Certified to IP66 (with cable connected) **Flow Ranges:** 0* - 3.0 gpm, 0* - 5.0 gpm, 0* - 8.0 gpm, 0* - 12.0 gpm, 0.5* - 16.0 gpm, 0.5* - 20.0 gpm, 1* - 25.0 gpm, 1.5* - 30.0 gpm Maximum Pressure: 6000 psi Port Threads Inlet Regulated Flow and Excess Flow: 1/2" BSPP, 3/4" BSPP, 1-1/16" -12UN #12 SAE ORB, 3/4" NPTF2, M22 x 1.5 # 2FV2V Series Manifold Mounted Variable Priority Flow Divider Priority Type Flow Dividers split a single input flow into a 'Priority' (regulated) flow and a 'By-Pass' (excess) flow which can be returned
directly to the oil reservoir or used to power a second system. In many instances this dispenses with the need for another pump to operate a second system. #### Features: - Pressure compensated permitting both 'Priority' and 'By-Pass' flows to be used simultaneously at varying pressures without affecting the 'Priority' flow rate. - Can be used as uni-directional two port in line flow control by plugging the 'By-Pass' flow port. (Note: in this configuration a relief valve must be used on the inlet line). - Manifold Mounted. - Anti-tamper locknut option available for all models, Contact sales office for more information. - For intermittent reverse flow, needle valve 'pull back' facility available on request. Flow Ranges: 0 - 3 gpm, 0 - 5 gpm, 0 - 8 gpm, 0 -12.5 gpm **Maximum Pressure:** 3600 psi **Ports:** Manifold Mounted ### **VFD190 Series Variable Priority Flow Dividers** Aimed at mobile and industrial applications the VFD190 can be used for controlling hydraulic motor and cylinder speeds by manually adjusting the flow rate. Variable priority flow dividers split a single input (P) flow into a priority (REG) flow and an excess or by-pass (BP) flow which can be returned directly to the oil reservoir or used to power a second system. This is possible due to the valve's adaptive pressure compensation characteristics #### Features: - Clearly marked single-turn hand dial permits fast visual adjustments to predetermined 'Priority' flow and fast easy adjustments of 'Priority' circuit to meet varying requirements. - Pressure compensated permitting both 'Priority' and 'By-Pass' to be used simultaneously at varying pressures without affecting the 'Priority' flow rate. meaning both the priority and by-pass flows can be used to drive separate circuits, even under varying loads. In many instances this dispenses with the need for another pump to operate a second system. The VFD190 design has also been optimised to reduce energy wastage by minimising the pressure losses across the valve, resulting in a significant reduction in running costs. - Needle Valve can be pulled back to allow intermittent reverse flow - Anti-tamper locknut option available for all models, Contact Sales Office for more information. Nominal Regulated Flow: 20 gpm, 25 gpm, 30 gpm, 35 gpm, 40 gpm Nominal Input Flow: 25 gpm, 32 gpm, 37 gpm, 44 gpm, 50 gpm Maximum Pressure: 6000 psi Ports: Contact sales for detailed Porting information #### **FDC60 Fixed Flow Divider** A Flow Divider-Combiner will divide a single flow into two separate flows which will always be in the same ratio to each other regardless of any pressure differential between the two lines. If the flow is reversed (e.g. return stroke of two cylinders) the return flows are held in the same ratio to each other and combined into a single flow, regardless of individual loads on the cylinders #### Features: - Pressure compensated to keep the two divided flow rates at the same ratio regardless of pressure variations between them. - Flow ratios are pre-set at factory from 50% 50% up to 10% 90%. - Flow ranges are available from 1.3 -18.5 gpm. - Cast iron/hardened steel construction (no aluminium) makes it suitable for mining applications. Flow Ranges: 0.5 - 1.3 gpm, 1.3 - 2.6 gpm, 2.1 - 5.3 gpm, 4.2 - 8 gpm, 6.6 - 10 gpm, 9 - 13 gpm, 12 - 16 gpm, 14.5 - 18.5 gpm Maximum Pressure: 4500 psi Ports: Contact sales for detailed Porting information ### **SV80 Series Diverter Valve** A Diverter Valve provides an alternative to the standard directional control valve when a neutral position is not required. It allows flow to be directed into either of two lines which enables fast changing from one system to another, or from one system to tank thus providing an idling circuit. #### Features: Flow may be directed by mechanically pushing the spool with spring offset or by a mechanical push pull operation in which case the valve stem is threaded or fitted with a moulded knob. - Customer can select from one of two spool types allowing flow to be diverted from one line to another or from system to tank. - A choice of port threads are available. - Special versions also available. Maximum Flow: 20 gpm, Maximum Pressure: 3000 psi Ports: 1/2" BSPP, 7/8" -14UN #10 SAE ORB, M22 x 1.5, 1/2" NPTF Operation: Spring Offset, Mechanical Push - Manual, Push - Pull - Threaded, Push - Pull #### **DV80 Series Diverter Valve** A Diverter Valve provides an alternative to the standard directional control valve when a neutral position is not required. It allows flow to be directed into either of two lines which enables fast changing from one system to another, or from one system to tank thus providing an idling circuit. #### Features: - Flow may be directed by mechanically pushing the spool with spring offset. - Customer can select from one of two spool types allowing flow to be diverted from one line to another or from system to tank. - A choice of port threads and spool end types are available. - Spring and spool end protected from environment in sealed housing. - Special versions also available Maximum Flow: 20 gpm, Maximum Pressure: 3000 psi Ports: 1/2" BSPP, 7/8" -14UN #10 SAE ORB Operation: Roller, Ball, Manual #### 180 Series Manual Directional Control Valve The 180 series of high-pressure aluminium hydraulic rotary shear directional control valves are the ideal solution for control of hydraulic actuators on mobile and industrial applications where internal leakage must be minimised. The valves utilise an optically flat rotary spool with pressure loaded seats, to ensure either zero or near zero leakage. They have excellent tolerance to contaminates. #### Features: - 6 Center conditions - 3 position / 2 position - · Flow throttling capability - Zero leakage - · Spring to center or detent action - Position lock version available (button or removable key type) - Option of a pressurised tank port with additional drain - Maximum Tank line pressure 17.2 bar, 250 psi Flow Ranges: up to 10 gpm, three sizes available Maximum Pressure: up to 10000 psi Ports: SAE, NPTF, BSPP, Manifold Mount & D03 adapter available ### 280 Series Stainless Steel Rotary Control Valve The 280 series of high-pressure 316 stainless steel hydraulic rotary control valves are the ideal solution for control of hydraulic actuators used in arduous environments where internal leakage must be minimised. Features: - Over 4000 possible configurations - 3 position / 2 position - 4 port / 3 port - Zero leakage (15 lpm version) - Maximum tank line pressure up to 1450 psi (100 bar) - BS EN13463-1:2009 (ATEX) rating of 'II 3G TX' The valves utilise an optically flat rotary spool with pressure loaded seats, to ensure either zero or near zero leakage (depending on flow size). The Valve is compatible with water glycol hydraulic fluids. - · Certificate of Conformity - Performance test Certificate - Declaration of Conformity to 'ATEX' - Option of manufacture to EN10204-3.1 - · Same day dispatch available Flow Ranges: up to 10 gpm, three sizes available Maximum Pressure: up to 10000 psi Ports: SAE, NPTF, BSPP, Manifold Mount & D03 adapter available ### **BG4D Lever Operated Directional Control Valve** Rugged directional control valve ideal for general mobile and industrial hydraulic applications. Features low spool leakage and 3625 psi tank port rating. Also available with cam actuation and air or oil pilot operation. 5 spool types including a special hose rewind spool and 2 position option. #### Features: - Nominal flow rate: 14.5 gpm - · Max. operating pressure: 3625 psi - · Max. pressure on 'T' port: 3625 psi - Recommended operating viscosity range: min. 13 Cst max 400 Cst - Recommended operating temperature range: min. -22 °F - max 176 °F - Available with relief valve from P-T, 3000 psi max. Ports: Contact sales office for details - Recommended filtration: 25 microns or better - Seals medium nitrile (contact Technical Sales for alternatives) - Leakage: typical max. allowable on works test 0.004 gpm at 2000 psi, oil 35 cSt at 104 °F - Mounting unrestricted - · Lever, Cam, Air or Oil pilot actuation #### **YB Series Pumps** Compact, light weight aluminium gear pumps available in six displacements from 0.15 to 0.73 in³/rev at pressures to 2000 psi continuous, 2500 psi intermittent duty. #### **MYB Series Motors** Compact, light weight aluminium gear motors available in four displacements from 0.29 to 1.73 in³/rev. Efficient performance at speeds to 5000 rpm & supply pressure to 2000 psi. #### **B Series Pumps** Basic - cast iron fixed clearance gear pumps available in nine displacements from 0.11 to 0.74 in³/rev at pressures to 3500 psi. #### **MB Series Motors** Basic - cast iron fixed clearance gear motors available in seven displacements from 0.15 to 0.59 in³/rev at supply pressure to 2500 psi. #### **YC Series Pumps** Compact, light weight aluminium gear pumps with pressure balanced design available in six displacements from 0.58 to 1.94 in³/rev at pressures to 2500 psi. #### **MYC Series Motors** Compact, light weight aluminium gear motors with pressure balanced design available in six displacements from 0.58 to 1.94 in³/rev and speeds to 5000 rpm. #### **K Series Pumps** Highly flexible multi-section, rugged, dependable gear pumps with pressure balanced wear plate available in nine displacements from 0.86 to 3.88in³/rev. #### **MK Series Motors** Highly flexible, rugged, dependable gear motors available in seven displacements from 1.29 to 3.88 in³/rev with 1300 lb-in torque at speeds to 2000 rpm with 2500 psi supply pressure. # Imperial Hydraulic Motor or Engine Torque $$T = \frac{5252 \times HP}{rpm}$$ Where: T = Torque in pounds feet HP = Horsepower rpm = Engine speed in revolutions per minute **Example:** What is the torque of an engine that develops 40 HP at 2500 rpm? $$T = \frac{5252 \times 40}{2500} = 84 \text{ lbs - feet}$$ #### **Axle Torque** The torque available at the driving axle is the hydraulic motor torque multiplied by gear reduction through the
transmission and axle. Where Ta = T x Rta x Ra Ta = Axle torque (lb in) Ra = Axle gear reduction Rta = Gear reduction through auxiliary transmission if used T = Motor torque (lb in) **Example:** What is the rear axle torque in high gear on a vehicle having 1000 lb in motor torque, an auxiliary ratio of 4:1, and an axle ratio of 20:1. Ta = $$1000 \times 4 \times 20 = 80,000$$ lb in. #### **Hydraulic Motor Torque Required** The torque required to slip the wheels is the vehicle weight over the driving tires times the coefficient of friction of the driving tires on rolling surface times the rolling radius of tires divided by the overall gear reduction. $$ST = \frac{VW \times u \times r}{R}$$ Where VW: = Vehicle weight over driving tires VW (lbs) Coefficient of friction of tires on average road surface, generally 0.6. T = Rolling radius of loaded driving tire in inches. R = Overall gear reduction in both axle and transmission. #### **Hydraulic Motor Torque To Slip Wheels** **Example:** What is the motor torque required to slip wheels of a vehicle where the weight over he driving tire is 2000lb, the coefficient of friction of the tires is 0.6., the rolling radius is 15 inches. The total reduction of power train is 10. $$ST = \frac{2000 \times .6 \times 15}{10} 1800 \text{ lb in}$$ #### **Hydraulic Motor Speed From mph** The motor speed is obtained by multiplying 168 by the ratio of the power train by the miles per hour and diving this sum by the rolling radius of the tire. $$rpm = \frac{168 \times R \times mph}{r}$$ # Metric Hydraulic Motor or Engine Torque $$T = \frac{9.545 \times P}{rpm}$$ Where: T = Torque in newton metre (N m) P = Power in watts (W) rpm = Engine speed in revolutions per minute **Example:** What is the torque of an engine that develops 30,000w at 2500 rpm? $$T = \frac{9.545 \times 30,000}{2500} 114.54 \text{ N-m}$$ #### **Axle Torque** The torque available at the driving axle is the hydraulic motor torque multiplied by gear reduction through the transmission and axle. Where Ta = T x Rta x Ra Ta = Axle torque (N m) Ra = Axle gear reduction Rta = Gear reduction through auxiliary transmission if used T = Motor torque (N m) **Example:** What is the rear axle torque in high gear on a vehicle having 100 Nm in motor torque, an auxiliary ratio of 5:1, and an axle ratio of 20:1. Ta = $$100 \times 5 \times 20 = 10,000 \text{ N m}$$. #### **Hydraulic Motor Torque Required** The torque required to slip the wheels is the vehicle weight over the driving tires times the coefficient of friction of the driving tires on rolling surface times the rolling radius of tires divided by the overall gear reduction. $$ST = \frac{VW \times u \times r}{R \times 101.97}$$ Where VW: = Vehicle weight over driving tires VW (kg) Coefficient of friction of tires on average road surface, generally 0.6. Rolling radius of loaded driving tire in millimetres. R = Overall gear reduction in both axle and transmission. #### **Hydraulic Motor Torque To Slip Wheels** **Example:** What is the motor torque required to slip wheels of a vehicle where the weight over the driving tire is 1000 kg, the coefficient of friction of the tires is 0.6., the rolling radius is 400 mm. The total reduction of power train is 10. $$ST = \frac{1000 \times 0.6 \times 400}{10 \times 101.97} 235.36 \text{ Nm}$$ #### Hydraulic Motor Speed From kph The motor speed is obtained by multiplying 2651.51 by the ratio of the power train by the kilometres per hour and dividing this sum by the rolling radius of the tire. $$rpm = \frac{2651.51 \times R \times kph}{r}$$ #### **Imperial** 168 Factor Revolutions per minute of engine rpm Rolling radius of loaded drive tire in inches Overall gear reduction including both axle and transmission Vehicle speed in miles per hour mph **Example:** Find the motor speed where the overall gear reduction is 10, vehicle speed is 15 mph and rolling radius of driving tire is 15 inches. 1680 rpm $$rpm = \frac{168 \times 10 \times 15}{15} = 1680 \text{ rpm}$$ #### Miles Per Hour From Motor Speed Vehicles speed in miles per hour is the rolling radius of loaded driving tire multiplied by the motor rpm and divided by 168 times the overall gear reduction of the power train. $$mph = \frac{rpm \times r}{168 \times R}$$ 168 Factor Revolutions per minute of the motor rpm = Rolling radius of loaded driving tire in inches R Overall gear reduction including both axle and transmission mph Vehicle speed in miles per hour Example: Find the mph of a vehicle where the motor speed is 1680 rpm, the rolling radius of loaded driving tire is 15 inches and the overall gear reduction is 10. mph = $$\frac{1680 \times 15}{168 \times 10}$$ = 15 mph #### **Tractive Effort** The tractive effort is obtained by multiplying the torque by the total ratio of power train and dividing this sum by the rolling radius of the driving tires. $$TE = \frac{T \times R}{r}$$ Where: T = Motor torque in lb. in. Overall gear reduction including both axle and transmission. Rolling radius of loaded driving tire in inches. **Example:** Find the tractive effort where the rolling radius of driving tires is 15 inches, the total ratio of power train is 10, the motor torque is 1000 lb in. $$TE = \frac{1000 \times 10}{15} 667$$ #### **Overall Gear Reduction** The overall gear reduction is the rpm times the rolling radius of the loaded driving tire divided by 168 times the vehicle speed in miles per hour. $$R = \frac{\text{rpm x r}}{168 \text{ x mph}}$$ #### **Metric** 2651.51 = Factor = Revolutions per minute of engine Rolling radius of loaded drive tire in millimetres Overall gear reduction including both axle and transmission Vehicle speed in kilometres per hour mph **Example:** Find the motor speed where the overall gear reduction is 10, vehicle speed is 20 kph and rolling radius of driving tire is 400 millimetres. $$rpm = \frac{2651.51 \times 10 \times 20}{400} = 1325.75 rpm$$ #### **Kilometres Per Hour From Motor Speed** Vehicles speed in kilometres per hour is the rolling radius of loaded driving tire multiplied by the motor rpm and divided by 2651.51 times the overall gear reduction of the power train. $$kph = \frac{rpm \times r}{2651.51 \times R}$$ 2651.51 = Factor = Revolutions per minute of the motor rpm = Rolling radius of loaded driving tire in millimetres R Overall gear reduction including both axle and transmission kph Vehicle speed in kilometres per hour Example: Find the kph of a vehicle where the motor speed is 1326 rpm, the rolling radius of loaded driving tire is 400 millimetres and the overall gear reduction is 10. $$kph = \frac{1326 \times 400}{2651.51 \times 10} = 20 kph$$ #### **Tractive Effort** The tractive effort is obtained by multiplying the torque by the total ratio of power train and dividing this sum by the rolling radius of the driving tires. $$TE = \frac{T \times R \times 1000}{r}$$ Where: T = Motor torque in lb in. = Overall gear reduction including both axle and transmission. Rolling radius of loaded driving tire in millimeters. **Example:** Find the tractive effort where the rolling radius of driving tires is 400 millimetres, the total ratio of power train is 10, the motor torque is 115 Nm. $$TE = \frac{115 \times 10 \times 1000}{400} = 2875 \text{ N}$$ #### **Overall Gear Reduction** The overall gear reduction is the rpm times the rolling radius of the loaded driving tire divided by 2651.51 times the vehicle speed in kilometres per hour. $$R = \frac{\text{rpm x r}}{2651.51 \text{ x kph}}$$ ### **Imperial** 168 = Factor Revolutions per minute of engine rpm Rolling radius of loaded driving tire in inches R Overall gear reduction including both axle and transmission Vehicle speed in miles per hour mph Example: Find out overall gear reduction of a vehicle where the motor speed is 1680 rpm, the rolling radius of loaded driving tire is 15 inches and the mph is 15. $$R = \frac{1680 \times 15}{168 \times 15} = 10 \text{ to } 1$$ #### **Rolling Radius Of Loaded Driving Tire** The rolling radius of loaded driving tire is 168 times the overall gear reduction times the miles per hour divided by the engine speed. $$r = \frac{168 \times R \text{ mph}}{\text{rpm}}$$ 168 = Factor rpm Revolutions per minute of the motor Rolling radius of loaded driving tires in inches R Overall gear reduction including both axle and transmission Vehicle speed in miles per hour mph **Example:** Find the rolling radius of loaded driving tire of a vehicle where the overall gear reduction is 10, the miles per hour 15 and the engine speed 1680 rpm. $$r = \frac{168 \times 10 \times 15}{1680} = 15$$ inches #### **Road Rolling Resistance** The road rolling resistance is the force required to push a vehicle over the surface it is rolling over and maybe expressed in several ways. One, in terms of pounds resistance per thousand pounds of gross weight. Other methods are derived from this basic expression. Following is a table of rolling resistance in pounds per thousand pounds of gross weight for various road surfaces. Rolling resistance is the gross vehicle weight in lbs, times the rolling resistance of the surface divided by 1000. $$RR = \frac{GVW \times R}{1000}$$ = Road rolling resistance in pounds Where: RR **GVW** = Gross vehicle weight in pounds R = Rolling resistance in pounds per thousand pounds vehicle weight 1000 A constant to determine number of thousand pounds in vehicle Example: What is the rolling resistance of a vehicle with a gross weight of 10,000 pounds on poor asphalt $$RR = \frac{10,000 \times 22}{1000} = 220 \text{ lbs}$$ #### Metric 2651.51 = Factor Revolutions per minute of engine rpm Rolling radius of loaded driving tire in millimetres Overall gear reduction including both axle and transmission Vehicle speed in kilometres per hour kph **Example:** Find out overall gear reduction of a vehicle where the motor speed is 1680 rpm, the rolling radius of loaded driving tire is 381mm and the kph is 24. $$R = \frac{1680 \times 381}{2651.51 \times 24} \text{ 10 to 1}$$ #### **Rolling Radius
Of Loaded Driving Tire** The rolling radius of loaded driving tire is 2651.51 times the overall gear reduction times the kilometres per hour divided by the engine $r = \frac{2651.51 \times R \times kph}{r}$ 2651.51 = Factor = Revolutions per minute of the motor rpm Rolling radius of loaded driving tires in millimetres R Overall gear reduction including both axle and transmission Vehicle speed in kilometers per hour **Example:** Find the rolling radius of loaded driving tire of a vehicle where the overall gear reduction is 10, the kilometres per hour 20 and the engine speed 1500 rpm. $$r = \frac{2651.51 \times 10 \times 20}{1500} = 353.5 \text{ mm}$$ #### **Road Rolling Resistance** The road rolling resistance is the force required to push a vehicle over the surface it is rolling over a maybe expressed in several ways. One, in terms of newtons resistance per hundred kilograms of gross weight. Other methods are derived from this basic expression. Following is a table of rolling resistance in pounds per thousand pounds of gross weight for various road surfaces. Rolling resistance in Newton per hundred kilograms is the gross vehicle weight in kg, times the rolling resistance of the surface divided by 100. $$RR = \frac{GVW \times R}{100}$$ Where: RR Road rolling resistance in newtons Gross vehicle weight in kilograms **GVW** R Rolling resistance in newtons per hundred kilograms vehicle weight = A constant to determine number of 100 kg in 100 Example: What is the rolling resistance of a vehicle with a gross weight of 4,500 kg on poor asphalt $$RR = \frac{4,500 \times 22}{100} = 990 \text{ lbs}$$ ### **Imperial** Many formula are arranged to use the rolling resistance in the table below as a factor. To set the table data up in factor form divide the resistance in lbs by 1000. $$Q = \frac{R}{1000}$$ Where: Q = Rolling resistance factor per pound of gross vehicle weight. R = Rolling resistance in pounds per thousand pounds vehicle weight. **Example:** What is the rolling resistance factor per pound of gross vehicle weight on poor concrete? $$Q = \frac{20}{1000} = .02$$ Another method of expressing road rolling resistance is percent of grade. To express rolling resistance in percent of grade multiply rolling resistance per thousand pounds vehicle by 100 and divide by 1000. $$RR\% = \frac{R \times 100}{1000}$$ Where: RR% = Road rolling resistance in percent Grade of grade R = Rolling resistance pounds per thousand pounds vehicle weight 100 = A constant to express percent. **Example:** What is the road rolling resistance expressed in percent of grade of a vehicle on poor concrete? $$RR\% = \frac{20 \times 100}{1000} = 2\%$$ #### Table Of Rolling Resistance In Pounds Per 1000 Pounds Of Gross Weight | Concrete, excellent | 10 lbs | |-----------------------|--------------------| | Concrete, good | 15 lbs | | Concrete, poor | 20 lbs | | Asphalt, good | 12 lbs | | Asphalt, fair | 17 lbs | | Asphalt, poor | 22 lbs | | Macadam, good | 15 lbs | | Macadam, fair | 22 lbs | | Macadam, poor | 37 lbs | | Cobbles, ordinary | 55 lbs | | Cobbles, poor | 85 lbs | | Snow, 2 inch | 25 lbs | | Snow, 4 inch | 37 lbs | | Dirt, smooth | 25 lbs | | Dirt, sandy | 37 lbs | | Mud | 37 lbs to 150 lbs | | Sand, level soft sand | 60 lbs to 150 lbs | | Sand, dune | 160 lbs to 300 lbs | ### **Metric** Many formula are arranged to use the rolling resistance in the table below as a factor. To set the table data up in factor form divide the resistance in N by 100 $$Q = \frac{R}{100}$$ Where: Q = Rolling resistance factor per kilogram of gross vehicle weight. R R = Rolling resistance in newtons per hundred kilograms vehicle weight. **Example:** What is the rolling resistance factor per kilogram of gross vehicle weight on poor concrete? $$Q = \frac{20}{100} = .2$$ Another method of expressing road rolling resistance is percent of grade. To express rolling resistance in percent of grade multiply rolling resistance per hundred kilograms vehicle by 100 and divide by 1000. $$RR\% = \frac{R \times 100}{1000}$$ Where: = Road rolling resistance in percent of RR% grade R = Rolling resistance newtons per hundred kilograms vehicle weight 100 = A constant to express percent. 1000 = 100×10 (factor to account for discrepancy between newtons and kilograms). **Example:** What is the road rolling resistance expressed in percent of grade of a vehicle on poor concrete? $$RR\% = \frac{20 \times 100}{1000} = 2\%$$ #### Table Of Rolling Resistance In Newtons Per 100 Kilogram Of Gross Weight | Concrete, excellent | 10 N | |-----------------------|----------------| | Concrete, good | 15 N | | Concrete, poor | 20 N | | Asphalt, good | 12 N | | Asphalt, fair | 17 N | | Asphalt, poor | 22 N | | Macadam, good | 15 N | | Macadam, fair | 22 N | | Macadam, poor | 37 N | | Cobbles, ordinary | 55 N | | Cobbles, poor | 85 N | | Snow, 2 inch | 25 N | | Snow, 4 inch | 37 N | | Dirt, smooth | 25 N | | Dirt, sandy | 37 N | | Mud | 37 N to 150 N | | Sand, level soft sand | 60 N to 150 N | | Sand, dune | 160 N to 300 N | | | | ### **Imperial** Draw Bar Pull The torque on the driving axle creates a force between the tires and the road which is used to propel the vehicle. This gross force is termed the tractive effort and the net force, that is, gross force minus rolling resistance is the draw bar pull. $$DP = \frac{T \times R}{r} - \frac{RR}{1000} \times GVW$$ Where: DP = Draw bar pull in lbs Т = Motor torque in lb-in R Overall gear reduction including both axle and transmission Rolling radius of loaded driving tire in inches RR Road rolling resistance in pounds **GVW** Gross vehicle weight of motive vehicle in pounds **Example:** What is the draw bar pull of a vehicle with a motor torque of 1000 lb-in, an overall gear reduction of 10:1 and rolling radius of the driving tire is 15 inches and a GVW of 10,000 lbs over good concrete? $$DP = \frac{1000 \times 10}{15} - \frac{15}{1000} \times 10000 = 516 \text{ lbs}$$ #### Gradeability Obviously, the tractive effort available at the wheels must be greater than the sum of the rolling resistance encountered. If this is not so, the transmission must be shifted to a lower gear in order to increase the tractive effort. The percentage of grade which can be negotiated is given by the formula. $$G = \frac{100 \times T \times R}{r \times GVW} - RR$$ = A constant expressing percentage grade and Where 100 Т Motor torque in lb inches R Overall gear reduction including both axle and Т Rolling radius of loaded driving tire in inches GVW Gross vehicle weight in pounds Rolling resistance expressed in percentage RR arade. **Example:** What percentage grade can be negotiated by a vehicle having a hydraulic motor torque of 1000 lb inches, an overall gear reduction in high of 12 to 1, a tire rolling radius of 15 inches and a gross vehicle weight of 10,000 lbs over good concrete. $$G = \frac{100 \times 1000 \times 12}{15 \times 10,000} - 1.5\%$$ G = 8 - 1.5 = 6.5% ### **Grade Resistance** The grade resistance of a vehicle is .01 times the gross weight times the percentage grade. = .01 x GVW x % grade GR Where: GR = Grade resistance GVW = Gross vehicle weight **Example:** What is the grade resistance of a vehicle having a gross weight of 10,000 lbs. on a 5% grade? GR = .01 x 10.000 x 5 = 500 lbs #### Metric **Draw Bar Pull** The torque on the driving axle creates a force between the tires and the road which is used to propel the vehicle. This gross force is termed the tractive effort and the net force, that is, gross force minus rolling resistance is the draw bar pull. $$DP = \frac{T \times R}{r} - \frac{RR}{100} \times GVW$$ Where: DP Draw bar pull in newtons Т = Motor torque in newton metre's R = Overall gear reduction including both axle and transmission Rolling radius of loaded driving tire in millimetres Road rolling resistance in newtons RR G\/\\/ Gross vehicle weight of motive vehicle in Example: What is the draw bar pull of a vehicle with a motor torque of 115 N m, an overall gear reduction of 10:1 and rolling radius of the driving tire is 400 millimetres and a GVW of 4,500 $$DP = \frac{115 \times 10 \times 1000}{15} - \frac{15}{100} \times 4500 = 2200 \text{ N}$$ #### Gradeability Obviously, the tractive effort available at the wheels must be greater than the sum of the rolling resistances encountered. If this is not so, the transmission must be shifted to a lower gear in order to increase the tractive effort. The percentage of grade which can be negotiated is given by the formula. $$G = \frac{T \times R \times 10200}{r \times GVW} - RR$$ Where: 1000 = Factor Motor torque in newton metre's R Overall gear reduction including both axle and transmission Rolling radius of loaded driving type in millimetres GVW Gross vehicle weight in kilograms RR = Rolling resistance expressed percentage Example: What percentage grade can be negotiated by a vehicle having a hydraulic motor torque of 117 newton metre's, an overall gear reduction in high of 12 to 1, a tire rolling radius of 400 mm and a gross vehicle weight of 4,500 kg over good concrete. $$G = \frac{117 \times 121 \times 200}{400 \times 4500} - 1.5\%$$ = 8 - 1.5 = 6.5%G #### **Grade Resistance** The grade resistance of a vehicle is 0.0981 times the gross weight times the percentage grade. = 0.0981 x GVW x % grade GR Where: GR = Grade resistance in newtons = Gross vehicle weight in kilograms **Example:** What is the grade resistance of a vehicle having a gross weight of 4,500 kg. on a 5% grade? GR $= 0.0981 \times 4,500 \times 5 = 2207.25 \text{ N}$ # Imperial Air Resistance The air resistance against a vehicle is a force in lbs equal to .0025 times the miles per hour squared times the frontal area. Where: AR = .0025 mph² x FA AR = Air resistance in lbs mph = Speed in miles per hour FA = Frontal area of vehicle in sq. ft **Example:** What is the air resistance of a vehicle travelling 40 miles per hour and having a frontal area of 80 square feet? AR = $.0025 \times (40)2 \times 80 = 320 \text{ lbs}$ ####
Horsepower Required To Overcome Air Resistance The horsepower required to overcome air resistance is the speed in miles per hour, cubed, times the frontal area in square feet divided by 150,000 HP = $$\frac{\text{mph}^3 \times \text{FA}}{150,000}$$ mph = Speed in miles per hour FA = Frontal area in square feet HP = Horsepower 150,000 = A conversion constant **Example:** What is the horsepower required to overcome air resistance of a vehicle travelling 40 miles per hour and having a frontal area of 80 square feet? $$HP = \frac{40^3 \times 80}{150,000} = 34.13$$ #### **Ground Speed Of Track Laying Vehicle** The ground speed of a track laying vehicle is the hydraulic motor rpm times the circumference of the driving sprocket divided by 168 times 2 times 3.1416 times the overall gear reduction of the power train. $$V = \frac{\text{rpm x C}}{168 \text{ x 2 x 3.1416 x R}}$$ Where: V = Ground speed in mph rpm = Rev. per min. of engine C = Circumference C = $N \times L$ N = No. of teeth in sprocket L = Length of links in inches R = Overall gear reduction **Example:** Find the ground speed in miles per hour where the motor speed is 1800 rpm, the number of teeth in the sprocket is 41, the length of link 8", and the total reduction of power train is 61 to 1. C = $$41 \times 8 = 328$$ $$V = \frac{1800 \times 328}{168 \times 2 \times 3.1416} \times 61 = 9.169 \text{ mph}$$ # Metric Air Resistance The air resistance against a vehicle is a force in newtons equal to 0.0462 times the kilometres per hour squared times the frontal area. Where: AR = 0.0462 x kph² x FA AR = Air resistance in newtons kph = Speed in kilometres per hour FA = Frontal area of vehicle in sq. metre's What is the air resistance of a vehicle travelling 65 kilometres per hour and having a frontal area of 7.5 m²? AR = $0.0462 \times (65)2 \times 7.5 = 1464 \text{ N}$ #### Horsepower Required To Overcome Air Resistance The power required to overcome air resistance is the speed in kilometres per hour, cubed, times the frontal area in divided by 77.86 $$P = \frac{kph^3 \times FA}{77.86}$$ kph = Speed in kilometres per hour FA = Frontal area in square meters P = Power in watt 77.86 = A conversion factor What power is required to overcome air resistance of a vehicle travelling 65 kilometres per hour and having a frontal area of 7.5 m²? $$P = \frac{(65^3) \times 7.5}{77.86} = 26453.73 \text{ Watts}$$ #### **Ground Speed Of Track Laying Vehicle** The ground speed of a track laying vehicle is the hydraulic motor rpm times the circumference of the driving sprocket divided by 16660 times the overall gear reduction of the power train. $$V = \frac{rpm \times C}{16660 \times R}$$ Where: V = Ground speed in kph rpm = Rev. per min. of engine C = Circumference $C = N \times L$ N = No. of teeth in sprocket L = Length of links in millimetres R = Overall gear reduction Find the ground speed in kilometres per hour where the motor speed is 1800 rpm, the number of teeth in the sprocket is 41, the length of link 200 mm, and the total reduction of power train is 61 to 1. C = $$41 \times 200 = 8200$$ V = $\frac{1800 \times 8200}{16660 \times 61} = 14.524 \text{ kph}$ ## Viscosity of Hydraulic Oil The internal resistance to flow of a liquid is measured as viscosity. More precisely absolute viscosity (μ) which is defined in terms of the shear force between two parallel layers of fluid for a certain slip velocity between them. This is represented by Newton is equation $\tau = \mu \frac{\partial u}{\partial v}$. Very often a hydraulic fluid will be selected on the basis of its viscosity and the operating temperature of the system. A fluid will flow more easily the less viscous it is, since less energy is required to overcome the internal frictional forces. Any saving in energy must be balanced against an increase in leakage due to the lower fluid viscosity. There are two measures of viscosity: absolute (also known as dynamic) and kinematic. The S.I. unit for absolute viscosity is N s m^{-2} or Pa.s. The non-S.I. unit is the poise (P) equivalent to 0.1 N s m^{-2} (not to be confused with the poiseuille (PI), used in France, and equal to 10 poise) though the centipoise (cP) is more commonly used. In the hydraulics industry kinematic viscosity is more frequently used, where: $kinematic viscosity = \frac{dynamic viscosity}{density}$ The S.I. unit for kinematic viscosity (v) is mm² s⁻¹ which corresponds to the older but still commonly used unit the centistoke (cSt). Past measures of viscosity using arbitrary scales like Redwood No 1 seconds, Saybolt Universal Seconds (SUS), or degrees Engler should no longer be used. These units have been superseded by the empirical measures previously mentioned; conversion tables do exist but are only true at a fixed temperature. ## Effect of temperature on viscosity The temperature and viscosity of hydraulic oil are inversely related; as temperature increases, viscosity decreases. In order to define the kinematic viscosity of oil, its viscosity is quoted at a set temperature (40°C for the ISO standard) and the oil is given a value according to the viscosity index (V.I.). For example an oil quoted as conforming to ISO 22 will have a viscosity of 22 mm²s⁻¹/ cSt at 40°C. ## **Viscosity Index** The viscosity index is a single number representation of the viscosity temperature characteristics of a fluid. The greater the value of the V.I. the smaller the change in viscosity for a given change in temperature, and vice-versa. Oils with a V.I. of 80 or more are said to have a high V.I. value. Oils with a V.I. between 80 and 40 are said to have a medium value and those below 40 a low value. Typically mineral oils used by the fluid power industry have a high V.I. of about 100. If temperature and kinematic viscosity are plotted to give a linear relationship (using logarithmic scales) then the V.I. is a measure of the gradient of the line. As the V.I. is increased the gradient is reduced. A typical temperature-viscosity curve for ISO oils can be seen opposite. ## Effect of pressure on viscosity Contrary to popular belief, varying pressure can lead to significant variations in viscosity. In a closed flow circuit at a fixed temperature, a change in pressure of 6000 psi (400 bar) can lead to a change of up to 8% in viscosity. However there are problems in calculating this variation. ## Density and specific volume The density of mineral oils is typically around 870kg m^{-3} (In comparison synthetic oils usually have a density of around 1200kg m^{-3}). The specific gravity, the ratio of the density of the fluid to the density of water, is a dimensionless quantity typically 0.87 for mineral oils. ## **Graph of Temperature versus Kinematic Viscosity** ## **Metric Conversion Factors** Symbols of SI units, multiples and submultiples are given in parentheses in the right hand column | Multiply | Ву | To Obtain | |-------------------------|---------------|--------------------------------------| | | Length | | | centimetre | 0.03280840 | foot | | centimetre | 0.3937008 | inch | | fathom | 1.8288* | metre (m) | | foot | 0.3048* | metre (m) | | foot | 30.48* | centimetre (cm) | | foot | 304.8* | millimetres (mm) | | inch | 0.0254* | metre (m) | | inch | 2.54* | centimetre (cm) | | inch | 25.4* | millimetre (mm) | | kilometre | 0.6213712 | mile (US statute) | | metre | 39.37008 | inch | | metre | 0.5468066 | fathom | | metre | 3.280840 | foot | | metre | 0.1988388 | rod | | metre | 1.093613 | yard | | metre | 0.0006213712 | mile (US statute) | | microinch | 0.0254* | micrometre (micron)(um) | | Micrometre (Micron) | 39.37008 | microinch | | mile (US statute) | 1,609.344* | metre (m) | | mile (US statute) | 1.609.344* | kilometre (km) | | millimetre | 0.003280840 | foot | | millimetre | 0.03937008 | inch | | rod | 5.0292* | metre (m) | | yard | 0.9144* | metre (m) | | | Area | | | acre | 4046.856 | metre ² (m ²) | | acre | 0.4046856 | hectare | | centimetre ² | 0.1550003 | inch² | | centimetre ² | 0.001076391 | foot² | | foot ² | 0.09290304* | metre2 (m²) | | foot ² | 929.0304* | centimetre2 (cm²) | | foot ² | 92,903.04* | millimetre2 (mm²) | | hectare | 2.471054 | acre | | inch² | 645.16* | millimetre2 (mm²) | | inch² | 6.4516* | centimetre2 (cm²) | | inch² | 0.00064516* | metre2 (m²) | | metre ² | 1,550.003 | inch ² | | metre ² | 10.763910 | foot ² | | metre ² | 1.195990 | yard ² | | metre ² | 0.0002471054 | acre | | millimetre ² | 0.00001076391 | foot ² | | millimetre ² | 0.001550003 | inch ² | | yard ² | 0.8361274 | metre ² (m ²) | ^{*} Where an Asterisk is shown, the figure is exact. | Multiply | Ву | To Obtain | |--|--|--| | , | Volume (including Capacity | /) | | centimetre ³ foot ³ | 0.06102376
0.02831685
28.31685 | inch ³
metre ³ (m ³)
litre | | gallon (UK liquid)
gallon (UK liquid)
gallon (US liquid)
gallon (US liquid) | 0.004546092
4.546092
0.003785412
3.785412 | metre ³ (m ³)
litre
metre ³ (m ³)
litre | | inch ³
inch ³
inch ³ | 16.38706
16.38706
0.0000168706 | milliliter³ (ml³)
centimetre³ (cm³)
metre³ (m³) | | litre
litre
litre
litre | 0.001*
0.2199692
0.2641720
0.03531466 | metre ³ (m ³)
gallon (UK liquid)
gallon (US liquid)
foot ³ | | metre ³ | 219.9692
264.1720
35.31466
1.307951
1000.
61.023.76 | gallon (UK liquid) gallon (US liquid) foot ³ yard ³ litre inch ³ | | yard ³ | 0.7645549 | metre ³ (m ³) | | | locity, Acceleration, and Fl | | | centimetre/second centimetre/second | 1.968504
0.03280840 |
foot/minute
foot/second | | centimetre/minute | 0.3937008 | inch/minute | | foot/hour
foot/hour
foot/hour | 0.00008466667
0.00508*
0.3048* | metre/second (m/s)
metre/minute
metre/hour | | foot/minute
foot/minute
foot/minute
foot/minute | 0.508*
18.288*
0.3048*
0.00508* | centimetre/second
metre/hour
metre/minute
metre/second (m/s) | | foot/second
foot/second
foot/second | 30.48*
18.288*
0.3048 | centimetre/second
metre/minute
metre/second (m/s) | | foot/second ² | 0.3048* | metre/second ² (m/s ²) | | foot ³ /minute
foot ³ /minute | 28.31685
0.0004719474 | litre/minute
metre³/second (m³/s) | | gallons/min (US liquid)
gallons/min (US liquid)
gallons/min (US liquid)
gallons/min (US liquid)
gallons/min (US liquid)
gallons/min (US liquid) | 0.003785412
0.00006309020
0.06309020
3.785412
0.004546092
0.00007576820 | metre ³ /minute
metre ³ /second (m ³ /s)
litre/second
litre/minute
metre ³ /minute
metre ³ /second (m ³ /s) | | inch/minute
inch/minute
inch/minute | 25.4*
2.54*
0.0254* | millimetre/minute
centimetre/minute
metre/minute | | inch/second ³ | 0.0254* | metre/second ³ (m/s ³) | | Multiply | Ву | To Obtain | | | |--|--|--|--|--| | Velocity, | Acceleration and Flow (Co | ontinued) | | | | kilometre/hour | 0.6213712 | mile/hour (US statute) | | | | litre/minute
litre/minute | 0.03531466
0.2641720 | foot ³ /minute
gallons/min (US liquid) | | | | litre/second | 15.85032 | gallons/min (US liquid) | | | | mile/hour | 1.609344* | kilometre/hour | | | | millimetre/minute
metre/second
metre/second
metre/second | Velocity, Acceleration and Flow (Cordilometre/hour 0.6213712 litre/minute 0.03531466 litre/second 15.85032 mile/hour 1.609344* iillimetre/minute 0.03937008 metre/second 11,811.02 metre/second 196.8504 metre/second 3.280840 metre/second² 3.280840 metre/minute 0.05468067 metre/minute 3.280840 metre/hour 3.280840 metre/hour 3.280840 metre/hour 3.280840 metre/hour 3.280840 metre/socond 13,198.15 metre3/second 13,198.15 metre3/second 15,850.32 metre3/minute 219.9692 metre3/minute 219.9692 metre3/minute 0.06479891 Mass and Density /7000 lb avoirdupois 0.06479891 gram 0.03215074 am/centimetre3 0.03612730 dredweight (long) 50.80235 dredweight (short) | | | | | metre/second ²
metre/second ² | | foot/second ²
inch/second ² | | | | metre/minute
metre/minute
metre/minute | metre/minute 0.05468067 metre/minute 39.37008 metre/hour 3.280840 metre/hour 0.05468067 metre³/second 2118.880 | | | | | | metre/minute 39.37008 metre/hour 3.280840 metre/hour 0.05468067 metre³/second 2118.880 metre³/second 13,198.15 metre³/second 15,850.32 metre³/minute 219.9692 metre³/minute 264.1720 | | | | | metre ³ /second
metre ³ /second
metre ³ /minute | 13,198.15
15,850.32
219.9692 | foot ³ /minute
gallon/minute (UK liquid)
gallon/minute (US liquid)
gallon/minute (UK liquid) | | | | metre3/minute | | gallon/minute (US liquid) | | | | | - | | | | | | | gram (g) | | | | gram
gram | 0.001*
0.03527397 | grain
kilogram (kg)
ounce (avoirdupois)
ounce (troy) | | | | gram/centimetre3 | 0.03612730 | pound/inch3 | | | | hundredweight (long)
hundredweight (short) | | kilogram (kg)
kilogram (kg) | | | | kilogram
kilogram
kilogram
kilogram
kilogram
kilogram
kilogram
kilogram | 1000.* 35.27397 32.15074 2.204622 0.06852178 0.0009842064 0.001102311 0.001* 0.001* | gram (g) ounce (avoirdupois) ounce (troy) pound (avoirdupois) slug ton (long) ton (short) ton (metric) tonne | | | | kilogram 0.01968413 hundredweigh
kilogram 0.02204622 hundredweigh | | | | | | kilogram/metre ³
kilogram/metre ³
kilogram/metre ³ | 0.06242797
0.01002242
0.008345400 | pound/foot ³
pound/gallon (UK liquid)
pound/gallon (US liquid) | | | | ounce (avoirdupois)
ounce (avoirdupois) | 28.34952
0.02834952 | gram (g)
kilogram (kg) | | | | ounce (troy)
ounce (troy) | 31.10348
0.03110348 | gram (g)
kilogram (kg) | | | | pound (avoirdupois) pound/foot ³ | 0.4535924
16.01846 | kilogram (kg)
kilogram/metre ³ (kg/m ³) | | | | Multiply | Ву | To Obtain | |--|---|--| | M | ass and Density (Continue | d) | | pound/inch ³ | 27.67990 | gram/centimetre ³ (g/cm ³) | | pound/gal (US liquid)
pound/gal (UK liquid) | 119.8264
99.77633 | kilogram/metre ³ (kg/m ³)
kilogram/metre ³ (kg/m ³) | | slug | 14.59390 | kilogram (kg) | | ton (long 2240 lb) | 1.016.047 | kilogram (kg) | | ton (short 2000 lb)
ton (metric)
tone | 907.1847
1,000.*
1,000.* | kilogram (kg)
kilogram (kg)
kilogram (kg) | | | Force and Force / Length | | | Dyne | 0.00001* | newton (N) | | kilogram - force | 9.806650* | newton (N) | | kilopond | 9.806650* | newton (N) | | newton
newton
newton
newton
newton | 0.1019716
0.1019716
0.2248089
100.000.*
7.23301
3.596942 | kilogram - force
kilopond
pound - force
dyne
poundal
ounce - force | | newton/metre
newton/metre | 0.005710148
0.06852178 | pound/inch
pound/foot | | ounce - force
pound - force | 0.2780139
4.448222 | newton (N)
newton (N) | | poundal | 0.1382550 | newton (N) | | pound/inch
pound/foot | 175.1268
14.59390 | newton/metre (N/m)
newton/metre (N/m) | | Mome | nt of Inertia and Section M | odulus | | moment of inertia | 23.73036 | pound - foot ² | | (kg.m²)
moment of inertia
(kg.m²) | 3.417.171 | pound - inch ² | | moment of inertia
(lb.ft²) | 0.042.14011 | kilogram - metre ² (kg.m ²) | | moment of inertia (lb.inch²) | 0.0002926397 | kilogram - metre² (kg.m²) | | moment of section
(foot ⁴) | 0.008630975 | metre ⁴ (m ⁴) | | moment of section | 41.62314 | centimetre ⁴ | | (inch ⁴)
moment of section
(metre ⁴) | 115.8618 | foot ⁴ | | moment of section
(centimetre ⁴) | 0.02402510 | inch ⁴ | | section modulus (foot ³)
section modulus (inch ³)
section modulus (metre ³)
section modulus (metre ³) | 0.02831685
0.00001638706
35.31466
61,023.76 | metre ³ (m ³)
metre ³ (m ³)
foot ³
inch ³ | | Multiply | Ву | To Obtain | |--|--|---| | I | Bending Moment or Torque | • | | dyne - centimetre | 0.0000001.* | newton - metre (N-m) | | kilogram - metre | 9.806650.* | newton - metre (N-m) | | ounce - inch
ounce - inch | 7.061552
0.007061552 | newton - millimetre
newton - metre (N - m) | | newton - metre
newton - metre
newton - metre
newton - metre | 0.7375621
10,000,000.*
0.1019716
141.6119 | pound - foot
dyne - centimetre
kilogram - metre
ounce - inch | | newton - millimetre
pound - foot | 0.1416119
1.355818 | ounce - inch
newton - metre (N-m) | | | Momentum | | | kilogram - metre/second | 7.233011 | pound - foot/second | | kilogram - metre/second | 86.79614 | pound - inch/second | | pound - foot/second | 0.1382550 | kilogram - metre/second
(kg.m/s) | | pound - inch/second | 0.01152125 | kilogram - metre/second
(kg.m/s) | | | Energy and Work | | | Btu (International Table)
Btu (mean) | 1,055.056
1,055.87 | joule (J)
joule (J) | | calorie (mean) | 4.19002 | joule (J) | | foot - pound | 1.355818 | joule (J) | | foot - poundal | 0.04214011 | joule (J) | | joule
joule
joule
joule
joule
joule | 0.0009478170
0.0009470863
0.2386623
0.7375621
23.73036
0.9998180
0.9999830 | Btu (International table) Btu (mean) calorie (mean) foot - pound foot - poundal joule (International US) joule (US legal, 1948) | | joule (International US) | 1.000182 | joule (J) | | joule (US legal, 1948) | 1.000017 | joule (J) | | joule | 0002777778 | watt - hour | | watt - hour | 3600.* | joule (J) | | Multiply | Ву | To Obtain | |---|--
--| | | Pressure and Stress | | | atmosphere
(14.6959 lb/inch²) | 101,325 | pascal (Pa) | | bar
bar
bar | 100,000.*
14.50377
100,000.* | pascal (Pa)
pounds/inch²
newton/metre² (N/m²) | | hectobar | 0.6474898 | ton (long)/inch ² | | kilogram/centimetre ² | 14.22334 | pounds/inch ² | | kilogram/metre ² | 9.806650* | newton/metre ² (N/m ²) | | kilogram/metre ²
kilogram/metre ² | 9.806650*
0.2048161 | pascal (Pa)
pound/foot ² | | kilonewton/metre ² | 0.1450377 | pound/inch ² | | newton/centimetre ² | 1.450377 | pound/inch ² | | newton/metre ²
newton/metre ²
newton/metre ²
newton/metre ² | 0.00001*
1.0*
0.0001450377
0.1019716 | bar
pascal (Pa)
pound/inch²
kilogram/metre² | | newton/millimetre ² | 145.0377 | pound/inch ² | | pascal
pascal
pascal
pascal
pascal
pascal | 0.00000986923
0.00001*
0.1019716
1.0*
0.02088543
0.0001450377 | atmosphere
bar
kilogram/metre ²
newton/metre ² (N/m ²)
pound/foot
pound/inch ² | | pound/foot ²
pound/foot ² | 4.882429
47.88026 | kilogram/metre²
pascal (PA) | | pound/inch ² | 0.06894757
0.07030697
0.6894757
6.894757
6,894.757
0.006894757
6,894.757 | bar kilogram/centimetre² newton/centimetre² kilonewton/metre² newton/metre² (N/m²) newton/millimetre² (N/m²) pascal (Pa) | | ton (long)/inch ² | 1.544426 | hectobar | | Multiply | Ву | To Obtain | |--|---|--| | | Power | | | Btu/Hour (International | 0.2930711 | watt (W) | | Table)
foot-pound/hour
foot-pound/minute | 0.0003766161
0.02259697 | watt (W)
watt (W) | | horsepower (550 ft-lb/s)
horsepower (500 ft-lb/s) | 0.7456999
745.6999 | kilowatt (kW)
watt (W) | | horsepower (electric) | 746.* | watt (W) | | horsepower (metric)
horsepower (UK) | rsepower (metric) 735.499
norsepower (UK) 745.70 | | | Kilowatt | 1.341022 | horsepower (550 ft - lb/s) | | watt
watt
watt
watt
watt
watt
watt | 2,655.224
44.25372
0.001341022
0.001340483
0.001359621
0.001341022
3.412141 | foot-pound/hour
foot-pound/minute
horsepower (550 ft-lb/s)
horsepower (electric)
horsepower (metric)
horsepower (UK)
Btu/Hour (International
Table) | | | Viscosity | | | centipose | 0.001* | pascal-second (Pa.s) | | centistoke | 0.000001* | metre ² /second (m ² /s) | | metre ² /second
metre ² /second | 1,000,000.*
10,000.* | centistoke
stoke | | pascal-second
pascal-second | · | | | poise | 0.1* | pascal-second (Pa.s) | | stoke | 0.0001.* | metre ² /second (m ² /s) | | | Temperature | | | temperature Celsius, tC | temperature Kelvin,tK | tK = tC + 273.15 | | temperature Fahrenheit,tF | temperature Kelvin,tK | tK = tF + 459.67/1.8 | | temperature Celsius,tC | temperature Fahren,tF | tF = 1.8 tc + 32 | | temperature Fahrenheit,tF | temperature Celsius,tC | tC = tF - 32/1.8 | | temperature Kelvin,tK | temperature Celcius,tC | tC = tK - 273.15 | | temperature Kelvin,tK | temperature Fahren,tF | tF = 1.8 tK - 459.67 | | temperature Kelvin,tK | temperature Rankine,tR | tR = 9/5 tK | | temperature Rankine tR | temperature Kelvin,tK | tK = 5/9 tR | | Formula For | | Word Formula | Formula | |--|---------------------|--|--| | Fluid Pressure
(In Pounds/Square Inch) | Pressure = | Force (pounds) Unit Area (Square Inches) | $P = \frac{F}{A} \text{ or psi} = \frac{F}{A}$ | | Cylinder Area
(In Square Inches) | | $\pi \times \mathbf{Radius}^2 \text{ (Inches)}$ $= \frac{\pi}{4} \times \mathbf{Diameter}^2 \text{ (Inches)}$ | A = πr^2
A = $\frac{\pi D^2}{4}$ or A = 0.785 D ² | | Cylinder Force
(In Pounds, Push or Pull) | Force = | Pressure (psi) x Net Area (Square Inches) | F = psi x A or F = PA | | Cylinder Velocity
or Speed
(In Feet/Second) | Velocity = | 231 x Flow Rate (gpm) 12 x 60 x Net Area (Square Inches) | $v = \frac{231}{720A}$ or $v = \frac{0.3208}{A}$ | | Cylinder Volume
Capacity
In Gallons of Fluid | | π x Radius ² (Inches) x Stroke (Inches) 231 Net Area (Square Inches) x Stroke (inches) 231 | $V = \frac{\pi r^2 L}{231}$ $V = \frac{AL}{231}$ | | Cylinder Flow Rate In Gallons per minute | Flow Rate = | = 12 x 60 x Velocity (feet/sec) x Net Area
231 (Square Inches) | $Q = \frac{720 \text{vA}}{231}$ or $Q = 3.11 \text{ vA}$ | | Fluid Motor Torque
(In Inch Pounds) | = | Pressure (psi) x Displacement (cu,in,rev) 2 π Horsepower x 63025 rpm Flow Rate (gpm) x Pressure (psi) x 36.77 rpm | $T = \frac{\text{psi d}}{2\pi} \text{ or } \frac{\text{pd}}{2\pi}$ $T = \frac{63025 \text{ HP}}{n}$ $T = \frac{36.77 \text{ QP}}{n} \text{ or } T = \frac{36.77 \text{ Q psi}}{n}$ | | Fluid Motor Torque
(100 psi in Inch Pounds) | Torque = /100psi | FM Displacement (Cu, Inches/Rev) 0.0628 | T/100 psi = $\frac{d}{0.0628}$ | | Fluid Motor Speed
(In Rev/Min) | Speed = | = 231 x Flow Rate (gpm)
FM Displacement (Cu, In/Rev) | $n = \frac{231 Q}{d}$ | | Fluid Motor Power
(In Horsepower Output) | Horsepower = | Torque Output (Inches/Pounds) x rpm 63025 | $HP = \frac{Tn}{63025}$ | | Pump Outlet Flow
In Gallons/min | Flow = | rpm x Pump Displacement (Cu, In/Rev) | $Q = \frac{nd}{231}$ | | Pump Input Power
(In Horsepower Required) | Horsepower= | Flow Rate Output (gpm) x Pressure (psi) 1714 x Efficiency (Overall) | HP= QP or gpm x psi 1714 Eff | | Flow Rate Through
Piping
(In Feet/second Velocity) | Velocity = | 0.3207 x Flow Rate through ID (gpm) Internal Area (square inches) | $V = \frac{0.3207Q}{A}$ | | Compressibility 1/2% Of Oil | Additional = Volume | Pressure (psi) x Volume of Oil Under Pressure 250,000 | $V_a = \frac{PV}{250,000}$ Approx. 1/2% per 1000 psi | | Flow
In Gallons/min | Flow = | Flow Coefficient x Pressure Drop Specific Gravity | $Q = CA \times \sqrt{\frac{P1 - P2}{Sg}}$ | | Flow
(Cu, Ft, Sec) | Flow = | Orifice Coefficient x Area (sq.ft) x 2 x Press Head (ft) x Specific Gravity | Q = CA x/2HSg | | Heat Dissipation
(Btu/hr) | Cooling = | 2 x To-Ta x Area of Reservoir (sq. ft) | Btu/hr = 2 deltaTA | # Hydraulic test equipment | | | Ja | anı | ıar | y | | | |----|----|----|-----|-----|----|----|---| | M | Т | W | Т | F | S | S | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 2 | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 3 | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 4 | | 29 | 30 | 31 | | | | | 5 | | | | | | | | | | | | | F€ | ebr | uar | y | | | |----|----|----|-----|-----|----|----|---| | M | Т | W | Т | F | S | S | | | | | | 1 | 2 | 3 | 4 | 5 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 6 | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 7 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 8 | | 26 | 27 | 28 | | | | | 9 | | | | | | | | | | | | | | Mai | ⁻ ch | | | | |----|----|----|-----|-----------------|----|----|----| | М | Т | W | Т | F | S | S | | | | | | 1 | 2 | 3 | 4 | 9 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 10 | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 11 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 12 | | 26 | 27 | 28 | 29 | 30 | 31 | | 13 | | | | | | | | | | | | | | ril | Ар | | | | |----|----|----|-----|----|----|----|----| | | S | S | F | Т | W | Т | M | | 13 | 1 | | | | | | | | 14 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | | 15 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | | 16 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | 17 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | | 18 | | | | | | | 30 | sales-us@webtec.com Hydraulic measurement and control www.webtec.com # Hydraulic components | | May | | | | | | | | | | |----|-----|----|----|----|----|----|----|--|--|--| | М | Т | W | Т | F | S | S | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 18 | | | | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 19 | | | | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 20 | | | | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 21 | | | | | 28 | 29 | 30 | 31 | | | | 22 | | | | | | | | | | | | | | | | | June | | | | | | | | | |------|----|----|----|----|----|----|----|--| | М | Т | W | Т | F | S | S | | | | | | | | 1 | 2 | 3 | 22 | | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 23 | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 24 | | | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | | 25 | 26 | 27 | 28 | 29 | 30 | | 26 | | | | | | | | | | | | | July | | | | | | | | | |------|----|----|----|----|----|----|----|--| | М | Т | W | Т | F | S | S | | | | | | | | | | 1 | 26 | | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 27 | | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 28 | | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 29 | | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | 30 | 31 | | | | | | 31 | | | | August | | | | | | | | | |----|--------|----|----|----|----|----|----|--|--| | M | Т | W | Т | F | S | S | | | | | | | 1 | 2 | 3 | 4 | 5 | 31 | | | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 32 | | | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 33 | | | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 34 | | | | 27 | 28 | 29 | 30 | 31 | | | 35 | | | | | | | | | | | | | | sales-us@webtec.com Hydraulic measurement and control www.webtec.com # Service and recalibration | September | | | | | | | | | |-----------|----|----|----|----|----|----|----|--| | | S | S | F | Т | W | Т | Μ | | | 35 | 2 | 1 | | | | | | | | 36 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | | | 37 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | | | 38 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | | | 39 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | | | | | | | | | | | | | | October | | | | | | | | | |
----|---|----|----|----|----|----|----|--|--|--| | M | $M \mid T \mid W \mid T \mid F \mid S \mid S$ | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 40 | | | | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 41 | | | | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 42 | | | | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 43 | | | | | 29 | 30 | 31 | | | | | 44 | | | | | | | | | | | | | | | | | | November | | | | | | | | | | |----|----------|----|----|----|----|----|---|--|--|--| | М | Т | W | Т | F | S | S | | | | | | | | | 1 | 2 | 3 | 4 | 4 | | | | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 4 | | | | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 4 | | | | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 4 | | | | | 26 | 27 | 28 | 29 | 30 | | | 4 | December | | | | | | | | | | |----------|----|----|----|----|----|----|----|--|--| | Μ | Т | W | Т | F | S | S | | | | | | | | | | 1 | 2 | 48 | | | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 49 | | | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 50 | | | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 51 | | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 52 | | | | 31 | | | | | | | 01 | | | 1290 E. Waterford Ave. Milwaukee, WI 53235, USA Toll free: 1-800-932-8378 Ph: 414-769-6400 Fax: 414-769-6591 sales-us@webtec.com www.webtec.com For Sales & Service, Contact Your Webtec Distributor: # Safety Burst Discs Safety burst discs are an integral part of Webtec loading valves, acting as a hydraulic fuse, providing a safe rupture return path for the system fluid. The safety burst discs are precision manufactured, verified devices that are guaranteed to rupture within their tolerance. They protect the meters from accidental over-pressurisation. Milwaukee, WI 53235, USA Tel: +1 (414) 769-6400 sales-us@webtec.com St. Ives, Cambs. PE27 3LZ, UK Tel: +44 (0) 1480 397 400 sales-uk@webtec.com www.webtec.com #### **Features** - Guaranteed to rupture within the specified pressure range. - Protects the load valve from accidental overpressurisation. - Fast and easy to replace. BURST-BU-ENG-3648.pdf (Issue 2) 04/18 ## Safety burst disc rupture tolerances | Etched Identification | | psi tolerance | bar tolerance | |-----------------------|---------|---------------|----------------| | 1000 psi | 70 bar | -0% / +10% | -1.5% / +8.5% | | 2000 psi | 140 bar | -0% / +10% | -1.5% / +8.5% | | 3000 psi | 210 bar | -0% / +10% | -1.5% / +8.5% | | 4000 psi | 280 bar | -0% / +10% | -1.5% / +8.5% | | 5000 psi | 345 bar | -0% / +10% | -0% / +10% | | 6000 psi | 420 bar | -0% / +10% | -1.5% / +8.5% | | 7000 psi | 480 bar | -0% / +10% | +0.5% / +10.5% | NB. Burst disc ratings at 22°C The fluid operating temperature affects when the safety burst discs' rupture, a high temperature reduces the expected failure pressure. The % changes from nominal burst pressure are summarised below: | Fluid Temperature | 40°C | 50°C | 60°C | 70°C | 80°C | 90°C | 100°C | |--------------------------|-------|-------|-------|-------|-------|--------|--------| | | 104°F | 122°F | 140°F | 158°F | 176°F | 194°F | 212°F | | Disc Ø19.8mm-S.S 1.4044 | -3.2% | -5.2% | -7.0% | -8.0% | -9.6% | -11.3% | -12.9% | | Disc Ø16mm-Nickel 2.4066 | -2.2% | -3.3% | -4.5% | -5.2% | -6.1% | -7.1% | -8.1% | NB. This data is estimated from physical tests and should be considered as a guide. ## Safety burst disc | Flow Size/Model | Part No. (PK of 10) | Nominal rating | Colour | |--|---|--|--| | up to 400lpm
100USgpm
(Ø16mm)
HV1500
(Ø16mm) | FT10791-1
FT10791-2
FT10791-3
FT10791-4
FT10791-5
FT10791-6
FT10791-7 | 1000 psi, 70 bar
2000 psi, 140 bar
3000 psi, 210 bar
4000 psi, 280 bar
5000 psi, 345 bar
6000 psi, 420 bar
7000 psi, 480 bar | White
Brown
Yellow
Green
Blue
Red
Orange | | >400lpm
up to 800lpm
210USgpm
(Ø19.8mm) | FT10792-3
FT10792-5
FT10792-6
FT10792-7 | 3000 psi, 210 bar
5000 psi, 345 bar
6000 psi, 420 bar
7000 psi, 480 bar | Yellow
Blue
Red
Orange | NB. Colour is being phased out. ## SR & Intelligent Digital (CAN) sensors and accessories for use with HPM **Series** ## Up to - 750 lpm, 200 US gpm flow measurement - 1000 bar, 14500 psi pressure measurement ## Wide range of cables and accessories All Intelligent Digital (ID) sensors use the CAN protocol and feature a LED to enable easy identification. The SR sensors also have identification built in so the handsets can recognise the type and size of sensor being used. There is a wide range of cables and connectors to suit all applications. The ID sensors are connected in-line with one another, by way of a Y cable, often resulting in shorter cable lengths. The CT and CTR series of turbine flow meters, provide a complete solution to the flow and temperature measurement of hydraulic systems on test stands, machine tools and other fixed or mobile applications. The flow meter can be installed anywhere in the hydraulic circuit for production testing, commissioning, development testing and control systems. The compact design allows the flow meters to be installed where space is limited. The integral loading valve built into the CTR series provides smooth progressive pressure control in both flow directions allowing components such as cylinders or motors to be tested without re-plumbing the test connections. The pressure sensors are available in six different ranges up to 1000 bar and all measure temperature as well. The whole unit is housed in a stainless steel body, sealed to IP67. Hydraulic measurement and control Milwaukee, WI 53235, USA Tel: +1 (414) 769-6400 sales-us@webtec.com St. Ives, Cambs. PE27 3LZ, UK Tel: +44 (0) 1480 397 400 sales-uk@webtec.com www.webtec.com ## **Features** ## **Flowmeters** - FLOW: 1 -750 lpm 0.25 - 200 US gpm - PRESSURE: Upto 480 bar, 7000 psi - **PORTING: BSPP or SAE** BI directional operation ## Flowmeters with **Loading Valve** - FLOW: 1 -750 lpm 0.25 - 200 US gpm - PRESSURE: Upto 480 bar, 7000 psi - **PORTING: BSPP or SAE** - **BI DIRECTIONAL** operation 'INTERPASS™' safety system, bypasses oil internally in the event of valve being over pressurised - **FLOWMETER** TEMPERATURE: -25 to 125°C (-13 to 257 °F) #### Pressure transducers - PRESSURE: -1 to 1000 bar (-14.5 to 14500 psi) - TEMPERATURE: -25 to 105 °C (-13 - 221 °F) #### Accessories CABLES: 0.5 to 20 meter long Certificate No.8242 HPMACC-BU-ENG-2699.pdf 06/14 ## **Flowmeters** ## **Specifications** | Model Number | Main ports | Top ports* | Flow range | Max. pressure | |-------------------|--------------------------------------|------------------------|-----------------|---------------| | CT15-***-B-B-6 | 1/2" BSPP | 1/4" BSPP | 1 - 15 lpm | 420 bar | | CT15-***-S-S-6 | 3/4" -16UN #8 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.25 - 4 US gpm | 6000 psi | | CT60-***-B-B-6 | 3/4" BSPP | 1/4" BSPP | 3 - 60 lpm | 420 bar | | CT60-***S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 0.8 - 16 US gpm | 6000 psi | | CT150-***-B-B-6 | 3/4" BSPP | 1/4" BSPP | 5 - 150 lpm | 420 bar | | CT150-***-S-S-6 | 1-1/16" -12UN #12 SAE ORB | 7/16" -20UN #4 SAE ORB | 1.3 - 40 US gpm | 6000 psi | | CT300-***-B-B-6 | 1" BSPP | 1/4" BSPP | 8 - 300 lpm | 420 bar | | CT300-***-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 US gpm | 6000 psi | | CT600-***-B-B-5 | 1-1/4" BSPP | 1/4" BSPP | 15 - 600 lpm | 350 bar | | CT600-***-S-S-5 | 1-5/8" -12UN #20 SAE ORB | 7/16" -20UN #4 SAE ORB | 4 - 160 US gpm | 5000 psi | | CT750-***-S-B-7 | 1-7/8" -12UN #24 SAE ORB | 1/4" BSPP | 20 - 750 lpm | 480 bar | | CT750-***-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 7000 psi | | CT750-SR-F-B-3 SR | 1-1/2" #24 SAE Code 61 4-bolt flange | 1/4" BSPP | 20 - 750 lpm | 210 bar | | CT750-SR-F-S-3 SR | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 3000 psi | Replace *** with CAN or SR to give complete model number. *CT 15 has one of the specified top ports. ## Dimensions in mm (inches) | Model Number | Α | В | С | D | E | Weight kg (lbs) | |----------------|-------------|--------------|-------------|--------------|---------------|-----------------| | CT15 | 37 (1-1/2") | 136 (5-3/8") | 37 (1-1/2") | 123 (5") | 69.5 (2-3/4") | 0.7 (1.5) | | CT60 | 62 (2-1/2") | 190 (7-1/2") | 50 (2") | 136 (5-3/8") | 103 (4") | 1.6 (3.5) | | CT150 | 62 (2-1/2") | 190 (7-1/2") | 50 (2") | 136 (5-3/8") | 103 (4") | 1.6 (3.5) | | CT300 | 62 (2-1/2") | 190 (7-1/2") | 50 (2") | 140 (5-1/2") | 103 (4") | 1.7 (3.7) | | CT400 | 62 (2-1/2") | 190 (7-1/2") | 50 (2") | 140 (5-1/2") | 103 (4") | 1.7 (3.7) | | CT600 | 62 (2-1/2") | 212 (8-3/8") | 75 (3") | 156 (6") | 127 (5") | 2.7 (6) | | CT600-**-F-*-* | 100 (4") | 212 (8-3/8") | 75 (3") | 160 (6-1/4") | 126 (5") | 5.0 (11) | | CT750 | 100 (4") | 212 (8-3/8") | 75 (3") | 160 (6-1/4") | 126 (5") | 5.0 (11) | SR version is 9mm (3/8") shorter on the D dimensions ## Flowmeters with loading valve ## **Specifications** | Model Number | Main ports | Top ports | Flow range | Max. pressure | |------------------|--------------------------------------|------------------------|----------------|---------------| | CT300R-***-B-B-6 | 1" BSPP | 1/4" BSPP | 8 - 300 lpm | 420 bar | | CT300R-***-S-S-6 | 1-5/16" -12UN #16 SAE ORB | 7/16" -20UN #4 SAE ORB | 2 - 80 US gpm | 6000 psi | | CT600R-SR-F-B-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 1/4" BSPP | 20 - 600 lpm | 210 bar | | CT600R-SR-F-S-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 160 US gpm | 3000 psi | | CT600R-SR-S-B-7 | 1-7/8" -12UN #24 SAE ORB | 1/4" BSPP | 20 - 600 lpm | 480 bar | | CT600R-SR-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB
| 5 - 160 US gpm | 7000 psi | | CT750R-***-S-B-7 | 1-7/8" -12UN #24 SAE ORB | 1/4" BSPP | 20 - 750 lpm | 480 bar | | CT750R-***-S-S-7 | 1-7/8" -12UN #24 SAE ORB | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 7000 psi | | CT750R-SR-F-B-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 1/4" BSPP | 20 - 750 lpm | 210 bar | | CT750R-SR-F-S-3 | 1-1/2" #24 SAE Code 61 4-bolt flange | 7/16" -20UN #4 SAE ORB | 5 - 200 US gpm | 3000 psi | Replace *** with CAN or SR to give complete model number. ### Dimensions in mm (inches) | Model No | Α | В | С | D | E | F | G | Weight kg (lbs) | |----------|---------|----------|--------------|--------------|-------------|---------------|--------------|-----------------| | CT300R | 49 (2") | 100 (4") | 182 (7-1/8") | 222 (8-3/4") | 102.5 (4") | 47.6 (1-7/8") | 138 (5-1/2") | 3.7 (8.1) | | CT400R | 49 (2") | 100 (4") | 182 (7-1/8") | 222 (8-3/4") | 102.5 (4") | 47.6 (1-7/8") | 138 (5-1/2") | 3.7 (8.1) | | CT600R | 75 (3") | 125 (5") | 211 (8-3/8") | 235 (9-3/4") | 99 (3-7/8") | 63 (2-1/2") | 157 (6-1/8") | 7.5 (16.5) | | CT750R | 75 (3") | 125 (5") | 211 (8-3/8") | 235 (9-3/4") | 99 (3-7/8") | 63 (2-1/2") | 157 (6-1/8") | 7.5 (16.5) | Add 20mm (3/4") to G for full height including feet. SR version is 9mm (3/8") shorter on the G dimensions ## **Functional specification** CT and CTR flow meters -10 to 50 °C (14 - 122 °F) Ambient temperature: Fluid type: Oils, fuels, water glycol, water oil emulsions -20 to 90 °C (-4 - 194 °F) continuous use. Fluid temperature: **Filtration** 25 μm (10 μm for CT15-CAN) Viscosity range 10...100 cSt Temperature display: -25 to +125 °C (-13 to +257 °F). NB. CAN flow transducers only. Accuracy: 15 to 100% of range - 1% of indicated reading Below 15% fixed accuracy of 1% of 15% of full scale (CT15 is 1% of full scale) Temperature ± 2 °C (CAN only). Repeatability: Better than ± 0.2% Degree of protection*: CT-SR - IP54 (EN60529) CT-CAN - IP66 (EN60529) *With cable connected **Electrical specification** Power supply: CAN: 8 - 40 VDC, SR: 7-15 VDC **Response Time:** 50 ms **Construction material** Flow body: 600/750 High tensile Aluminium 2014A T6 15/60/150/300/400 High tensile Aluminium 2011 T6 Internal parts: Aluminium, Steel, Stainless Steel. Body and nut - steel 212A42 electroless nickel plated, Housing and Lid - Aluminium 2011 T3 Transducer: Viton seals as standard EPDM are available - please consult sales office. Seals: ## **Pressure Transducers** CAN (ID) | Model Number | Pressure range | |----------------------|----------------| | SR-PT*-016-05-0C-CAN | -1 - 16 bar | | SR-PT*-060-05-0C-CAN | 0 - 60 bar | | SR-PT*-160-05-0C-CAN | 0 - 160 bar | | SR-PT*-400-05-0C-CAN | 0 - 400 bar | | SR-PT*-600-05-0C-CAN | 0 - 600 bar | | SR-PT*-1K0-05-0C-CAN | 0 - 1000 bar | ### SR | Model Number | Pressure range | |------------------|----------------| | SR-PT*-015-05-0C | -1 - 15 bar | | SR-PT*-060-05-0C | 0 - 60 bar | | SR-PT*-150-05-0C | 0 - 150 bar | | SR-PT*-400-05-0C | 0 - 400 bar | | SR-PT*-600-05-0C | 0 - 600 bar | | SR-PT*-1K0-05-0C | 0 - 1000 bar | Replace * with 'N' for no temperature and with' T' for unit with temperature. Supplied with M16 x 2 test point connector #### SR-PTN-***-0C-CAN SR-PTT-***-05-0C **Functional specification** Ambient temperature: -25 to 85 °C (-13 - 185 °F) Fluid type: Oils, fuels, water glycol, water oil emulsions -25 to 105 °C (-13 - 221 °F) Pressure: ± 0.5% full scale Fluid temperature: Accuracy: Temperature: ± 3 °C (SR-PTT-* ONLY) **Electrical specification** Power supply: Response Time: CAN: 8 - 40 VDC SR: 7-15 VDC SR 1 ms Construction material Main body: Stainless steel 1.4301 Viton® (FKM) SR – IP54 (EN60529) Sealing: Degree of protection*: CAN - IP66 (EN60529) *With cable connected Wetted parts: Stainless steel 1.4301, Viton® (FKM) Dimensions: 95.6 mm x 26.9 mm Weight approx.: 170 g ## **CAN (ID) Connection cables** | Model Number | Length | |-------------------|--| | SR-CBL-0.5-MF-CAN | 0.5m | | SR-CBL-02-MF-CAN | 2m | | SR-CBL-05-MF-CAN | 5m | | SR-CBL-10-MF-CAN | 10m | | SR-CBL-20-MF-CAN | 20m | | SR-CBL-0.05-Y-CAN | Splitter no cable | | SR-CBL-0.3-Y-CAN | CAN Y splitter, including 0.3 m cable | | SR-CBL-000-R-CAN | CAN terminating resistor | | SR-CONN-ADPT-M8 | Cable adapter M8x1 4pol Digital IN/OUT | | SR-CONN-ADPT-M12 | Cable adapter M12x1 5pol analog | ## **SR Cables** | Model Number | Length | Туре | |------------------|--------|--------------------| | SR-CBL-003-55-MM | 3m | Connecting | | SR-CBL-005-55-MF | 5m | Extension | | SR-CBL-002-54-MM | 2m | Adaptor 5 to 4 pin | ### Accessories / spares | - to | | | | | |--|--------------------------------|--|--|--| | Model Number | Description | | | | | SR-PSU-HPM6000 | HPM6000 power pack | | | | | SR-HPM6000-00-0C-STP | HPM6000 neck strap | | | | | SR-CAB-540-PC-USB | HPM540 PC Cable to USB | | | | | SR-USB-HPM6000 | USB cable type A to B | | | | | SR-LAN-HPM6000 | LAN cable | | | | | SR-HPM-PSU-MC-1C | Power supply for HPM540 | | | | | SR-HPM-CHG-03-0C | In car charger adaptor | | | | | SR-HAND-HPM6000 | Replacement handle for HPM6000 | | | | ### Other sensors & accessories | Model Number | Description | | | | |------------------|---|--|--|--| | SR-RPM-300-05-3C | SR Tach with 5 pin fixed cable | | | | | SR-RPM-WHL-00-0C | Tach contact wheel | | | | | SR-RPM-ADP-00-0C | Focus adaptor | | | | | SR-EXT-TRG-05-1C | External trigger box | | | | | SR-VADC-1C | SR Sensor input box and cable | | | | | SR-FQC | SR frequency converter | | | | | SR-TTP-190-05-0C | SR Temperature transducer
-40 to 150 °C 1/4" BSPP | | | | | SR-TTP-190-05-0C | CAN Temperature transducer
-40 to 150 °C 1/4" BSPP | | | |