

Installation, Operation, and Maintenance

S&P Unit Heaters

Model Numbers:

UHSA UHPA

Preface and Warnings and Cautions

Hazard Identification

Warnings and Cautions appear at appropriate sections throughout this literature. Read these carefully.

AWARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

CAUTION

Indicates a situation that may result in equipment or property-damage only accidents.

⚠WARNINGOperational Hazards!

Improper installation, adjustment, alteration, service or maintenance can cause property damage, injury or death. Read the installation, operating and maintenance instructions thoroughly before installing or servicing this equipment.

⚠WARNINGCompliance Hazards!

Failure to comply with the general safety information may result in extensive property damage, severe personal injury or death.

≜WARNINGUnit Alterations!

Do not alter the unit heater in any way or damage to the unit and/or severe personal injury or death may occur!

⚠WARNINGVoltage Hazard!

Disconnect all power supplies before installing or servicing the heater. If the power disconnect is out of sight, lock it in the open position and tag it to prevent unexpected application of power. Failure to do so could result in fatal electric shock, or severe personal injury.

⚠WARNING Voltage Hazard!

Do not depend upon a thermostat or other switch as sole means of disconnecting power when installing or servicing heater. Always disconnect power at main circuit breaker as described above. Failure to do so could result in fatal electric shock.

CAUTION Equipment Damage!

Insure that all power sources conform to the requirements of the unit heater or damage to the unit will result!

Follow installation instructions CAREFULLY to avoid creating unsafe conditions. All external wiring must conform to applicable current local codes, and to the latest edition of the National Electric Code ANSI/NFPA No. 70. In Canada, all external wiring must conform to the Canadian Electric Code, Part 1 CSA Standard C22.1 All wiring should be done and checked by a qualified electrician using copper wire only. All steam and hot water connections should be made and leaktested by a suitably qualified individual, per instructions in this manual. Also follow procedures listed on the "Unit Equipment Start-Up Sheet" located in this manual.

Make certain that the power source conforms to the electrical requirements of the heater.

Special attention must be given to any grounding information pertaining to this heater. To prevent the risk of electrocution, the heater must be securely and adequately grounded. This should be accomplished by connecting a grounded conductor between the service panel and the heater. To ensure a proper ground, the grounding means must be tested by a qualified electrician.

Do not insert fingers or foreign objects into the heater or its air moving device. Do not block or tamper with the heater in any manner while in operation or just after it has been turned off, as some parts may be hot enough to cause injury.

Note: To meet CSA and OSHA requirements, units mounted below 8 feet (2.4m) from the floor must be equipped with an OSHA fan guard.

It is good practice to have a shutoff switch on the electrical power lines controlling the heater. Whenever a unit is serviced, shut power off to the unit

Since these units are installed in most instances higher than 8 feet (2.4m), proper type of ladders or scaffolding should be used, as set up by OSHA requirements. It is the owner's responsibility to provide any scaffolding or other apparatus required to perform emergency service or annual/periodic maintenance to this equipment.

In industrial plants, professional maintenance crews should service this equipment.

All Horizontal Unit Heaters are shipped fully assembled and may be used for steam or hot water applications. Coils are factory tested at 250 psig (1723.5 kg).

All Vertical Unit Heaters are shipped fully assembled and may be used for steam or hot water applications. Coils are factory tested at 400 psig air under water. Fans are balanced and motors are prelubricated.

Unless otherwise specified, the following conversions may be used for calculating SI unit measurements:

1 foot = 0.305 m

1 inch = 25.4 mm

1 psig = 6.894 kPa

1 pound = 0.453 kg

1 gallon = 3.785 L

1 inch water column = 0.249 kPa

meter/second = FPM ÷ 196.8

 $liter/second = CFM \times 0.472$

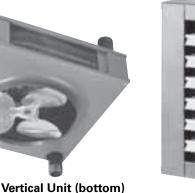
1000 Btu per hour = 0.293 kW

1000 Btu/Cu. Ft. = 37.5 MJ/m³

1 cubic foot = 0.028 m^3

Contents

Model Number Description
Location
Installation
Fan Guard/Louver Installation
Dimensional Data
Technical Data
Options
Electrical Connections
Motor Data38
Steam Performance Data 41
Hot Water Performance Data 46
Maintenance 55
Warranty Info57


Model Number Description

U	Н	S	В	Α	1	8	1	Т	Α	Α	1	0	1	Α	0	Α	0	Α	1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Description

Vertical hydronic unit heaters are designed for installation requiring down flow air delivery, offered in 15 sizes ranging from 41,300 to 705,000 BTU/Hr., and use with steam or hot water. Low output (increased airflow) units are available for high ceiling applications. The designs are certified by CSA (per CAN/CSA-C22.2 and UL1995). Do not alter these units in any way and do not attach any ductwork to these units. If you have any questions after reading this manual, contact the manufacturer.

horizontal units range from 18,000 to 360,000 (5.3 to 105.5 kW) and can operate with either hot water or steam. Both units are furnished with totally enclosed motors, with explosion proof motors as optional on header types. The designs are certified by CSA (per CAN/CSA-C22.2 and UL1995). Do not alter these units in any way and do not attach any ductwork to the units. If you have any questions after reading this manual, contact the manufacturer.

Serpentine Type

Figure 2. **Vertical Unit (top)**

Horizontal hydronic unit heaters are available in both serpentine and header type units. Serpentine units offer outputs from 8,030 to 35,900 BTU's (2.4 to 10.5 kW) and are ideal for hot water (only) installations with limited clearances. Header type

Figure 3.

Figure 4. **Header Type**

Service Model Number Description

DIGIT 1,2,3 — PRODUCT TYPE

UHP UHS

DIGIT 4— DEVELOPMENT SEQUENCE

В

DIGIT 5, 6, 7—CAPACITY/COIL

Hot Water Only (Coil Type A "Serpentine")

80A	8,030 BTU/HR
A18	18,400 BTU/HR
A25	24,800 BTU/HR
A36	35,900 BTU/HR

Steam or Hot Water

042	41,300 BTU/HR
064	65,500 BTU/HR
080	80,600 BTU/HR
102	101,800 BTU/HR
122	124,400 BTU/HR
146	152,000 BTU/HR
166	173,000 BTU/HR
202	210,200 BTU/HR
252	249,800 BTU/HR
280	283,800 BTU/HR
336	333,400 BTU/HR
384	386,000 BTU/HR
500	496,000 BTU/HR
600	585,000 BTU/HR
720	705,000 BTU/HR

Steam or Hot Water "Header Type Coil"

018	18,000 BTU/HR
024	24,000 BTU/HR
036	36,000 BTU/HR
048	48,000 BTU/HR
060	60,000 BTU/HR
072	72,000 BTU/HR
084	84,000 BTU/HR
096	96,000 BTU/HR
108	108,000 BTU/HR
120	120,000 BTU/HR
132	132,000 BTU/HR
144	144,000 BTU/HR
156	156,000 BTU/HR

Figure 1.

Model Number Description

180	180,000 BTU/HR
204	204,000 BTU/HR
240	240,000 BTU/HR
280	280,000 BTU/HR
300	300,000 BTU/HR
360	360,000 BTU/HR

DIGIT 8-VOLTAGE

- 115/1/60
- 230/1/60 (115 V motor with 3
- Transformer) 4 208/3/60
- 5 230/3/60
- 460/3/60 6
- 575/60/3 (Totally Enclosed) (P only)

DIGIT 9 - MOTOR TYPE

Totally Enclosed **Explosion Proof**

DIGIT 10- DESIGN SEQUENCE

DIGIT 11- TUBE MATERIAL

Copper Steel (P only)

DIGIT 12- FAN GUARD

- **OSHA Fan Guard**
- 2 Standard Fan Guard (3 phase or Explosion Proof motors only)
- 3 Standard Fan Guard (Unit Capacities 240 - 360)

DIGIT 13 - SPECIAL COATING

- No Special Coating
- Phenolic Coating (Baked) Α
- В Ероху
- С **Epoxy Phenolic**

DIGIT 14 - DISCONNECT SWITCH

- Disconnect switch

DIGIT 15 - THERMOSTATS (LINE VOLTAGE)

- 0 None
- Light Duty TSTAT w/ subbase Α Line Volts 8 Amps
- В Heavy Duty TSTAT w/ subbase&guard Line Volts 16 Amps+A32

DIGIT 16 - THERMOSTAT COVER

- Locking Thermostat Cover

DIGIT 17 - Manual Starter

- None
- Manual Starter Α

DIGIT 18 - STEAM & HOT WATER CONTROL

- 0
- Strap on Hot Water Control
- Steam Pressure Control (Open 2 on rise in pressure)
 - Steam Pressure Control
- 3 (Close on rise in pressure)
- 4 5.0 Amp Speed Control Switch (Capacities 18 - 108

DIGIT 19 - VERTICAL LOUVER

- 0 None
- Vertical Louver Α
- В Fin Diffuser (P only)
- C Fin Diffuser w/ Coating (Ponly)

Location

It is assumed that the design engineer has selected, sized, and located in the area to be heated. However, the information given here may be of additional help to the installer. These sketches indicate suggested basic locations for different types of unit heaters.

Horizontal unit heaters should be located to give a circulatory motion, preferably in the outer perimeter of the building. The units should be spaced to properly blanket the areas with warm air.

The unit should be suspended from connections provided in the unit by means of rods. The rods should then be attached to solid supports of the building.

Table 1.

Model No	Maximum Mounting HT. ft (m)	Approx. Max. Throw ft (m)
A08	8 (2.4)	20 (6.1)
A18	8 (2.4)	25 (7.6)
A25	9 (2.7)	29 (8.8)
A36	9 (2.7)	29 (8.8)
18	8 (2.4)	20 (6.1)
24	8 (2.4)	24 (7.3)
36	9 (2.7)	28 (8.5)
48	9 (2.7)	30 (9.1)
60	10 (3.0)	30 (9.1)
72	10 (3.0)	29 (8.8)
84	10 (3.0)	30 (9.1)
96	11 (3.4)	38 (11.6)
108	11 (3.4)	40 (12.2)
120	12 (3.7)	40 (12.2)
132	13 (4.0)	54 (16.5)
144	13 (4.0)	55 (16.8)
156	13 (4.0)	55 (16.8)
180	13 (4.0)	53 (16.2)
204	13 (4.0)	55 (16.8)
240	14 (4.3)	57 (17.4)
280	14 (4.3)	57 (17.4)
300	15 (4.6)	58 (17.7)
360	15 (4.6)	60 (18.3)

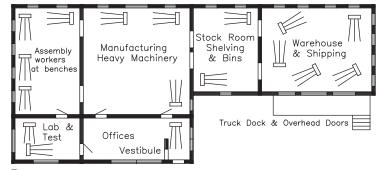


Figure 5.

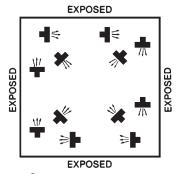


Figure 6.

Figure 6 represents a large square area with exposed walls and roof; units are blanketing all exposed surfaces.

Figure 7 is based on 2 PSI (13.8 kPa) steam pressure and 60 °F (16 °C) entering air temperature.

A narrow area with four exposed walls either with or without roof exposure.

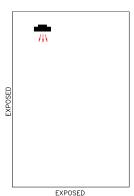


Figure 8.

A small area with exposed walls requiring one unit.

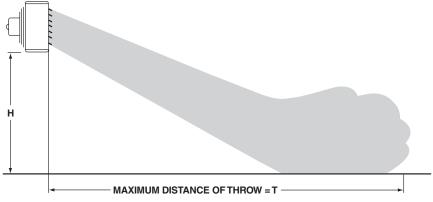


Figure 7. Mounting Height and Approx. Heat Throw

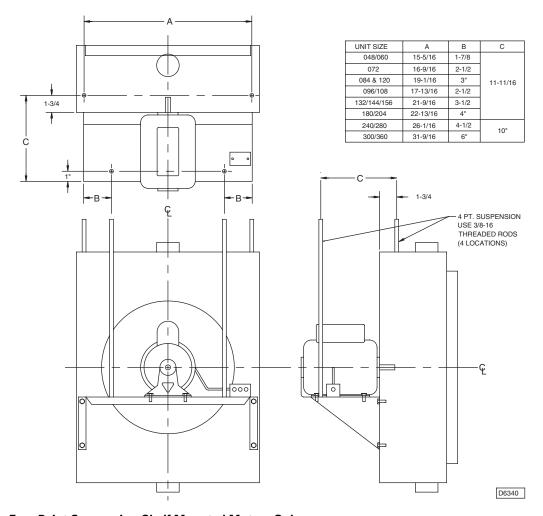


Figure 9. Four Point Suspension-Shelf Mounted Motors Only

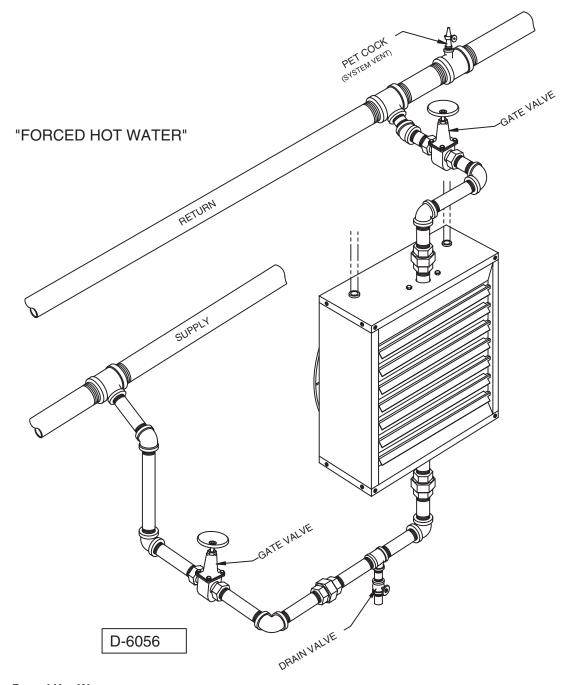


Figure 10. Forced Hot Water

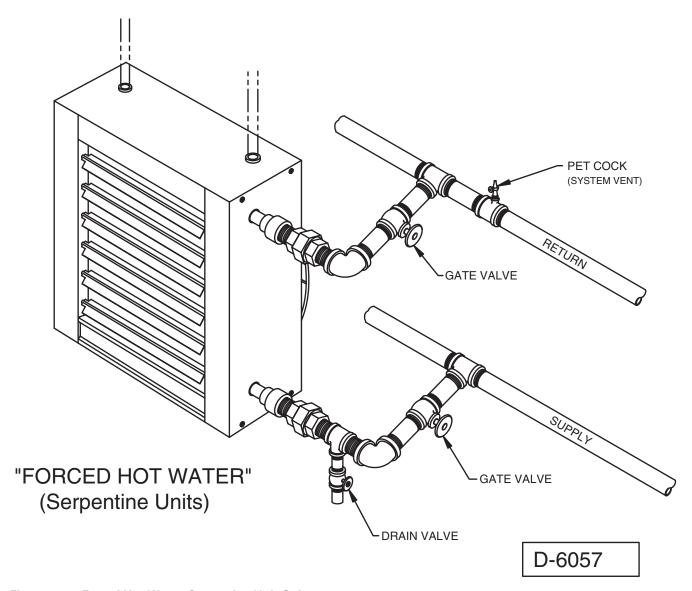


Figure 11. Forced Hot Water: Serpentine Unit Only

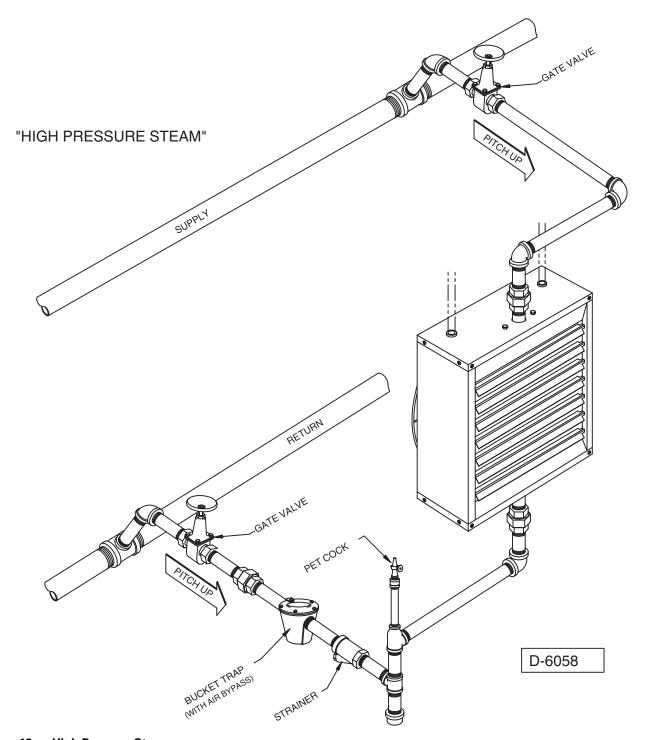


Figure 12. High Pressure Steam

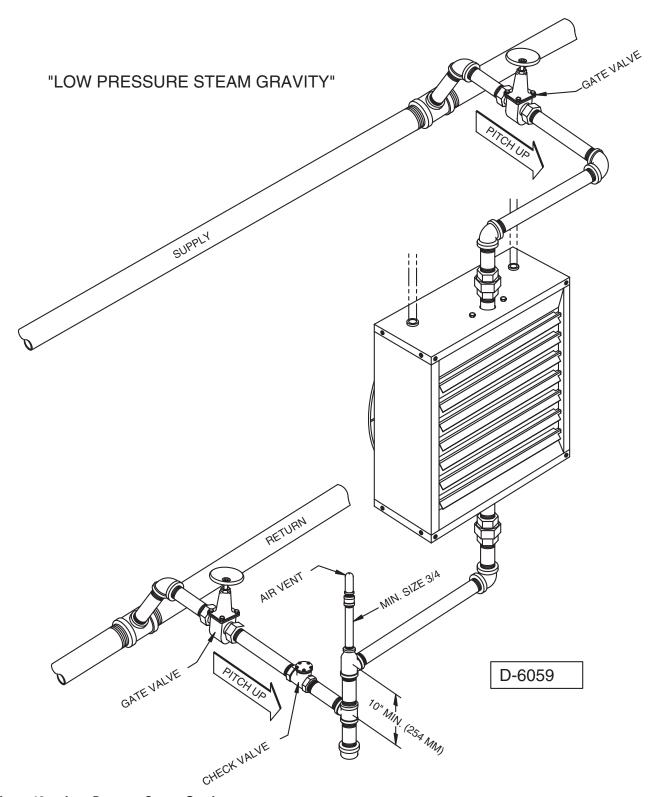


Figure 13. Low Pressure Steam Gravity

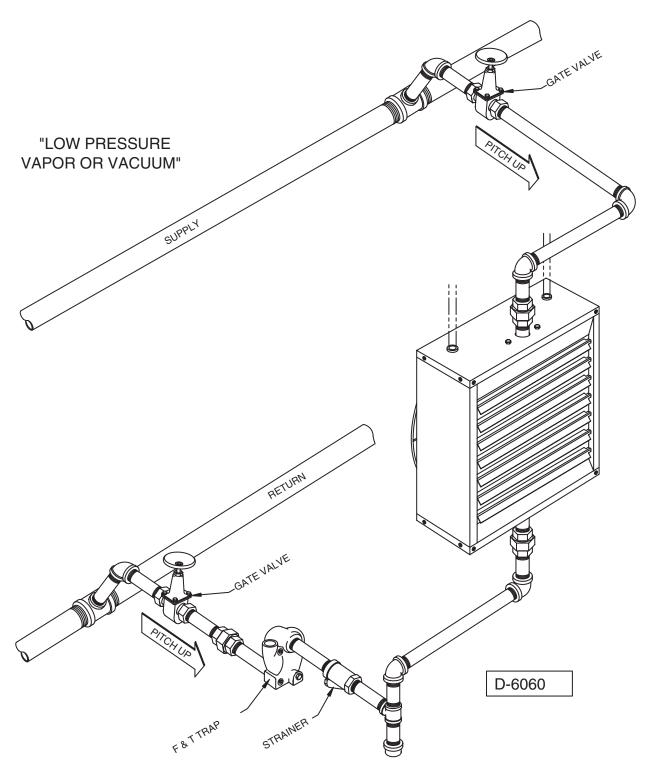


Figure 14. Low Pressure Vapor Or Vacuum

Installation

Installation: P Type

Periodic Service

⚠WARNINGHeavy Objects!

Ensure that all hardware used in the suspension of each unit heater is more than adequate for the job. Failure to do so may result in extensive property damage, severe personal injury or death.

△CAUTION Lifting/Suspension Methods!

Make certain that the lifting methods used to lift the heater and the method of suspension used in the field installation of the heater are capable of uniformly supporting the weight of the heater at all times. Failure to heed this warning may result in property damage or personal injury!

CAUTION Structural Integrity!

Make certain that the structure to which the heater is mounted is capable of supporting its weight. Under no circumstances must the piping or the electrical conduit be used to support the heater; or should any other objects (i.e. ladder, person) lean against the heater or the electrical conduit for support.

CAUTION Performance Failure!

Unit heaters must be hung level from side to side and from front to back. Failure to do so will result in poor performance and or premature failure of the unit.

It is assumed that the design engineer has selected, sized, and located in the area to be heated by the design engineer. However, the information given here may be of additional help to the installer.

Vertical unit heaters should be located to give spot heating or a circulatory distribution, preferably near the outer perimeter of the building. The units should be spaced to properly blanket the areas with

warm air. Place the units at points of greatest heat loss. Blanket outside doorway and provide ample coverage of window areas. Keep units away from obstructions that will impede the full and natural air delivery of the units.

Install unit heaters to meet CSA and OSHA requirements; Vertical Unit Heaters mounted lower than 2.4 meters (8 feet) from the floor must be equipped with an OSHA fan guard. Weldnuts are provided at the top of all units for suspension purposes. The unit should be suspended from connections provided in the unit by means of rods. The rods should then be attached to solid supports of the building.

Units must hang level vertically and horizontally.

Provide sufficient clearance around units for maintenance purposes. This includes at least 7 inches above all Vertical Unit Heaters even though the motor is removable through the bottom.

Isolators are not required but may be desirable for some applications. Refer to Table 2 for Unit Weights.

Unit Weights-Lbs

Table 2.

lable 2. Offic we	igiita-Eba					
Vertical Unit Heate	ers					
Unit	Weights (Lbs.)					
042	26					
064	32					
080	36					
102	51					
122	54					
146	69					
166	69					
202	75					
252	115					
280	120					
336	120					
384	126					
500	267					
600	210					
720	260					

EXAMPLE

Table 4 lists maximum mounting height and floor spread data of warm air coverage at floor level with louver cone diffusers. Correction factors for various water temp. and psig of steam are in Table 7.

An approximation of the floor spread when operating on other than 2 lb. Steam or 219 degree may be obtained by ratioing the new floor spread and the maximum mounting height to that at 2 lb. steam or 219 degree hot water.

Following is an example:

Determine the floor spread and the maximum mounting height of a std. model 80 unit heater with a cone diffuser set at 90 degrees, operating on 280 degree hot water.

From Table 6, maximum mounting height of a model 80 at 219 degree hot water is 18.5 ft. with floor coverage of 14.0 ft. diameter. The maximum mounting height correction factor at 280 degree hot water is 0.80.

 $18.5 \text{ ft.} \times 0.80 = 14.8 \text{ ft.}$

Maximum mounting height of a model 80 using 280 degree hot water.

"X" = floor spread of model 80 using 280 degree hot water.

 $X = 14.8 \times 14.0 / 18.5$

X = 207.2 / 18.5

X = 11.2 ft.

Installation

Unit Size		Steam	Pressure	e (PSI)		Unit Size	Steam Pressure (PSI)					
	2 (13.8)	5 (34.5)	10 (68.9)	50 (344.7)	75 (517.1)		2 (13.8)	5 (34.5)	10 (68.9)	50 (344.7)	75 (517.1)	
0.40	10.5 (3.2)	10.0 (3.0)	10.0 (3.0)	9.0 (2.7)	8.0 (2.4)	2001	18.0 (5.5)	17.5 (5.3)	17.5 (5.3)	15.0 (4.6)	14.0 (4.3)	
042	12.5 (3.8)	12.0 (3.7)	12.0 (3.7)	11.0 (3.4)	10.0 (3.0)	080L	22.0 (6.7)	21.0 (6.4)	21.0 (6.4)	19.0 (5.8)	18.0 (5.5)	
042*	7.5 (2.3)	7.5 (2.3)	7.5 (2.3)	7.5 (2.3)	7.5 (2.3)	0001 *	13.0 (4.0)	12.5 (3.8)	12.0 (3.7)	11.0 (3.4)	10.5 (3.2)	
042*	9.0 (2.7)	8.5 (2.6)	8.5 (2.6)	7.5 (2.3)	7.5 (2.3)	080L*	17.0 (5.2)	16.5 (5.0)	16.0 (4.9)	14.0 (4.3)	13.5 (4.1)	
0.421	12.5 (3.8)	12.0 (3.7)	12.0 (3.7)	10.5 (3.2)	9.5 (2.9)	102	14.0 (4.3)	13.5 (4.1)	13.0 (4.0)	11.5 (3.5)	11.0 (3.4)	
042L	14.5 (4.4)	14.0 (4.3)	13.5 (4.1)	12.0 (3.7)	11.5 (3.5)	102	17.0 (5.2)	16.5 (5.0)	16.0 (4.9)	14.0 (4.3)	13.5 (4.1)	
0.421 *	9.0 (2.7)	8.5 (2.6)	8.5 (2.6)	7.5 (2.3)	7.5 (2.3)	102*	11.0 (3.4)	10.5 (3.2)	10.5 (3.2)	9.5 (2.9)	9.0 (2.7)	
042L*	10.5 (3.2)	10.0 (3.0)	10.0 (3.0)	9.0 (2.7)	8.5 (2.6)	102*	13.5 (4.1)	13.0 (4.0)	13.0 (4.0)	12.0 (3.7)	11.5 (3.5)	
064	12.0 (3.7)	11.5 (3.5)	11.5 (3.5)	10.0 (3.0)	9.5 (2.9)	102L	17.5 (5.3)	17.0 (5.2)	16.5 (5.0)	15.0 (4.6)	14.5 (4.4)	
064	14.5 (4.4)	14.0 (4.3)	14.0 (4.3)	12.0 (3.7)	11.5 (3.5)		21.5 (6.6)	21.0 (6.4)	20.5 (6.2)	18.5 (5.6)	17.5 (5.3)	
0.5.4%	9.5 (2.9)	9.0 (2.7)	9.0 (2.7)	8.0 (2.4)	8.0 (2.4)		15.0 (4.6)	14.5 (4.4)	14.5 (4.4)	13.0 (4.0)	12.5 (3.8)	
064*	11.5 (3.5)	11.0 (3.4)	11.0 (3.4)	9.5 (2.9)	9.0 (2.7)	102L*	18.5 (5.6)	18.0 (5.5)	18.0 (5.5)	16.0 (4.9)	15.0 (4.6)	
0641	15.0 (4.6)	14.5 (4.4)	14.5 (4.4)	12.5 (3.8)	12.0 (3.7)	122	16.0 (4.9)	15.5 (4.7)	15.5 (4.7)	14.0 (4.3)	13.5 (4.1)	
064L	19.0 (5.8)	18.5 (5.6)	18.5 (5.6)	16.5 (5.0)	16.0 (4.9)	122	19.5 (5.9)	19.0 (5.8)	18.5 (5.6)	17.0 (5.2)	16.0 (4.9)	
0641#	11.5 (3.5)	11.0 (3.4)	11.0 (3.4)	9.5 (2.9)	9.0 (2.7)	4221	21.0 (6.4)	20.5 (6.2)	20.0 (6.1)	17.5 (5.3)	17.0 (5.2)	
064L*	14.0 (4.3)	13.5 (4.1)	13.5 (4.1)	12.0 (3.7)	11.5 (3.5)	122L	26.0 (7.9)	25.5 (7.8)	25.0 (7.6)	22.5 (6.9)	21.5 (6.6)	
000	15.0 (4.6)	14.5 (4.4)	14.0 (4.3)	12.0 (3.7)	11.5 (3.5)	146	15.5 (4.7)	15.0 (4.6)	14.5 (4.4)	13.0 (4.0)	12.0 (3.7)	
080	18.5 (5.6)	18.0 (5.5)	17.5 (5.3)	15.5 (4.7)	15.0 (4.6)		19.0 (5.8)	18.5 (5.6)	18.0 (5.5)	16.0 (4.9)	15.5 (4.7)	
000:	11.0 (3.4)	10.5 (3.2)	10.5 (3.2)	9.0 (2.7)	8.5 (2.6)		18.0 (5.5)	17.5 (5.3)	17.5 (5.3)	15.0 (4.6)	14.0 (4.3)	
080*	13.5 (4.1)	13.0 (4.0)	13.0 (4.0)	11.5 (3.5)	11.0 (3.4)	146L	22.5 (6.9)	22.0 (6.7)	21.5 (6.6)	18.5 (5.6)	18.0 (5.5)	

NOTES:

* = Low Speed
L = Low output model with all air ports open
Figures in bold face show maximum mounting height with louver cone diffusers set vertically.
Above table based on 60°F entering air temperature. In providing for the use of diffusers, it must be remembered that adjustment of a LCD to deflect air toward horizontal immediately lowers the mounting height limit.

		Steam	n Pressu	re (PSI)			Steam Pressure (PSI)					
Unit Size	2 (13.8)	5 (34.5)	10 (68.9)	50 (344.7)	75 (517.1)	Unit Size	2 (13.8)	5 (34.5)	10 (68.9)	50 (344.7)	75 (517.1	
	18.0 (5.5)	17.5 (5.3)	17.0 (5.2)	14.5 (4.4)	14.0 (4.3)		29.0 (8.8)	28.5 (8.7)	28.0 (8.5)	25.0 (7.6)	24.0 (7.3)	
166	22.5 (6.9)	22.0 (6.7)	21.5 (6.6)	19.0 (5.8)	18.0 (5.5)	336L	36.0 (11.0)	35.0 (10.7)	34.0 (10.4)	30.0 (9.1)	29.0 (8.8)	
	22.0 (6.7)	21.5 (6.6)	21.0 (6.4)	18.5 (5.6)	17.5 (5.3)		28.5 (8.7)	28.0 (8.5)	27.5 (8.4)	24.0 (7.3)	23.0 (7.0)	
166L	27.5 (8.4)	27.0 (8.2)	26.5 (8.1)	23.5 (7.2)	22.5 (6.9)	384	35.5 (10.8)	35.0 (10.7)	34.0 (10.4)	30.0 (9.1)	29.0 (8.8)	
	22.0 (6.7)	21.5 (6.6)	21.0 (6.4)	18.5 (5.6)	17.5 (5.3)		32.5 (9.9)	31.5 (9.6)	30.5 (9.3)	27.5 (8.4)	26.5 (8.1)	
202	27.5 (8.4)	27.0 (8.2)	26.5 (8.1)	24.0 (7.3)	23.0 (7.0)	384L	41.0 (12.5)	40.0 (12.2)	39.0 (11.9)	35.0 (10.7)	33.5 (10.2	
	25.5 (7.8)	25.0 (7.6)	24.5 (7.5)	22.0 (6.7)	21.0 (6.4)		29.5 (9.0)	29.0 (8.8)	28.5 (8.7)	25.0 (7.6)	24.0 (7.3)	
202L	31.5 (9.6)	31.0 (9.4)	30.5 (9.3)	27.0 (8.2)	26.0 (7.9)	500	36.5 (11.1)	36.0 (11.0)	35.5 (10.8)	32.0 (9.8)	30.5 (9.3)	
	20.0 (6.1)	19.5 (5.9)	19.0 (5.8)	17.0 (5.2)	16.0 (4.9)		35.0 (10.7)	34.0 (10.4)	33.0 (10.1)	29.0 (8.8)	28.0 (8.5)	
252	25.0 (7.6)	24.0 (7.3)	23.5 (7.2)	20.5 (6.2)	19.5 (5.9)	500L	43.5 (13.3)	42.5 (13.0)	41.5 (12.6)	35.0 (10.7)	34.0 (10.4	
	24.0 (7.3)	23.5 (7.2)	23.0 (7.0)	20.0 (6.1)	19.0 (5.8)		34.0 (10.4)	33.0 (10.1)	32.0 (9.8)	28.0 (8.5)	27.0 (8.2)	
252L	29.5 (9.0)	28.5 (8.7)	28.0 (8.5)	24.5 (7.5)	23.5 (7.2)	600	42.5 (13.0)	41.5 (12.6)	40.5 (12.3)	36.0 (11.0)	34.5 (10.5	
	21.0 (6.4)	20.5 (6.2)	20.0 (6.1)	17.5 (5.3)	17.0 (5.2)		37.0 (11.3)	36.0 (11.0)	35.0 (10.7)	31.0 (9.4)	30.0 (9.1)	
280	26.0 (7.9)	25.5 (7.8)	25.0 (7.6)	22.0 (6.7)	21.0 (6.4)	600L	46.5 (14.2)	45.5 (13.9)	44.5 (13.6)	39.0 (11.9)	37.0 (11.3	
	25.5 (7.8)	25.0 (7.6)	24.5 (7.5)	21.0 (6.4)	20.0 (6.1)		38.5 (11.7)	37.5 (11.4)	36.5 (11.1)	32.0 (9.8)	30.5 (9.3)	
280L	32.0 (9.8)	31.0 (9.4)	30.0 (9.1)	26.0 (7.9)	25.0 (7.6)	720	48.0 (14.6)	47.0 (14.3)	46.0 (14.0)	40.0 (12.2)	39.0 (11.9	
	24.0 (7.3)	23.0 (7.0)	22.0 (6.7)	20.0 (6.1)	19.0 (5.8)		42.5 (13.0)	41.5 (12.6)	40.5 (12.3)	35.0 (10.7)	33.5 (10.2	
336	30.0 (9.1)	29.0 (8.8)	28.0 (8.5)	25.0 (7.6)	24.0 (7.3)	720L	53.0 (16.2)	52.0 (15.8)	51.0 (15.5)	44.0 (13.4)	42.0 (12.8	

NOTES:

* = Low Speed
L = Low output model with all air ports open
Figures in bold face show maximum mounting height with louver cone diffusers set vertically.
Above table based on 60°F entering air temperature. In providing for the use of diffusers, it must be remembered that adjustment of a LCD to deflect air toward horizontal immediately lowers the mounting height limit.

Table 5. Ma	aximum	Spread	I												
MODEL No.	42	64	80	102	122	146	166	202	252	280	336	384	500	600	720
Spread ft (m)	15 (4.6)	17 (5.2)	20 (6.1)	24 (7.3)	26 (7.9)	27 (8.2)	28 (8.5)	32 (9.8)	35 (10.7)	37 (11.3)	45 (13.7)	50 (15.2)	54 (16.5)	57 (17.4)	60 (18.3)

Note: The "spread" is the diameter of the comfort zone at floor level. The above table represents the spread for standard units without a louver cone diffuser and mounted at its maximum height at 2 psi (13.8 kPa) steam pressure and 60°F (16*C) entering air. (See Tables 21 and 22 for maximum moun ing heights.)

Installation

			Cone 90° gure 5A				Cone 45° gure 5B	
	Stan	dard	Low (Output	Star	ndard	Low C	Output
	н	D	н	D	Н	D	Н	D
Model	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)
42	12.5	11.0	14.5	16.0	9.0	20.0	11.0	25.0
	(3.8)	(3.4)	(4.4)	(4.9)	(2.7)	(6.1)	(3.4)	(7.6)
64	14.5	12.0	19.0	19.0	10.0	24.0	12.0	29.0
	(4.4)	(3.7)	(5.8)	(5.8)	(3.0)	(7.3)	(3.7)	(8.8)
80	18.5	14.0	22.0	23.0	12.5	26.0	15.0	31.0
	(5.6)	(4.3)	(6.7)	(7.0)	(3.8)	(7.9)	(4.6)	(9.4)
102	17.0	18.0	21.5	26.0	11.0	31.0	14.0	35.0
	(5.2)	(5.5)	(6.6)	(7.9)	(3.4)	(9.4)	(4.3)	(10.7)
122	19.5	19.0	26.0	29.0	13.0	33.0	16.0	38.0
	(5.9)	(5.8)	(7.9)	(8.8)	(4.0)	(10.1)	(4.9)	(11.6)
146	19.0	20.0	22.5	30.0	12.0	39.0	15.5	44.0
	(5.8)	(6.1)	(6.9)	(9.1)	(3.7)	(11.9)	(4.7)	(13.4)
166	22.5	21.0	27.5	31.0	13.0	42.0	18.0	48.0
	(6.9)	(6.4)	(8.4)	(9.4)	(4.0)	(12.8)	(5.5)	(14.6)
202	27.5	25.0	31.5	35.0	14.0	45.0	21.0	53.0
	(8.4)	(7.6)	(9.6)	(10.7)	(4.3)	(13.7)	(6.4)	(16.2)
252	25.0	27.0	29.5	38.0	13.0	47.0	19.0	55.0
	(7.6)	(8.2)	(9.0)	(11.6)	(4.0)	(14.3)	(5.8)	(16.8)
280	26.0	29.0	32.0	40.0	15.0	50.0	21.0	60.0
	(7.9)	(8.8)	(9.8)	(12.2)	(4.6)	(15.2)	(6.4)	(18.3)
336	30.0	34.0	36.0	47.0	18.0	55.0	24.0	66.0
	(9.1)	(10.4)	(11.0)	(14.3)	(5.5)	(16.8)	(7.3)	(20.1)
384	35.5	39.0	41.0	52.0	20.0	59.0	28.0	71.0
	(10.8)	(11.9)	(12.5)	(15.8)	(6.1)	(18.0)	(8.5)	(21.6)
500	36.5	42.0	43.5	57.0	24.0	65.0	30.0	76.0
	(11.1)	(12.8)	(13.3)	(17.4)	(7.3)	(19.8)	(9.1)	(23.2)
600	42.5	45.0	46.5	60.0	26.0	70.0	34.0	78.0
	(13.0)	(13.7)	(14.2)	(18.3)	(7.9)	(21.3)	(10.4)	(23.8)
720	48.0	46.0	53.0	63.0	28.0	75.0	38.0	87.0
	(14.6)	(14.0)	(16.2)	(19.2)	(8.5)	(22.9)	(11.6)	(26.5)

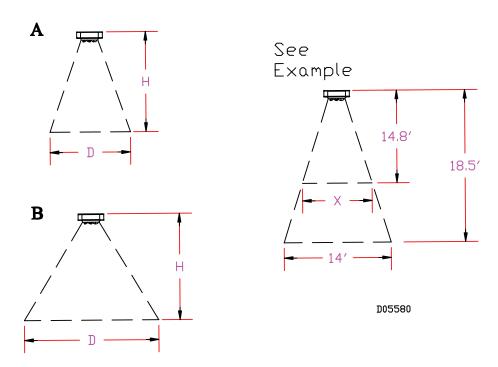


Figure 15.

Notes: To meet OSHA requirements, units mounted lower than 8 feet from the floor must be equipped with an OSHA fan guard.

Table 7.	Table 7. Mounting Height Correction Factors											
Water		٥F	150	160	170	180	190	200				
Temperature	9	(°C)	(66)	(71)	(77)	(82)	(88)	(93)				
Steam		PSI	-	-	-	-	-	-				
Pressure		(kPa)	-	-	-	-	-	-				
Correction F	actor		1.32	1.27	1.23	1.18	1.14	1.09				
Water		°F	210	219	227	239	250	259				
Temperature	9	(°C)	(99)	(104)	(108)	(115)	(121)	(126)				
Steam		PSI	-	2	5	10	15	20				
Pressure		(kPa)	-	(13.8)	(34.5)	(68.9)	(103.4)	(137.9)				
Correction F	actor		1.05	1.00	0.97	0.94	0.89	0.86				
Water		°F	267	280	287	298	307	320				
Temperature	9	(°C)	(131)	(138)	(142)	(148)	(153)	(160)				
Steam		PSI	25	35	40	50	60	75				
Pressure		(kPa)	(172.4)	(241.3)	(275.8)	(344.7)	(413.6)	(517.1)				
Correction F	actor		0.83	0.80	0.76	0.73	0.70	0.69				

Piping

To provide proper coil operation, follow all piping recommendations listed in this manual.

Threaded pipe headers are provided on all Vertical Units for piping connections. See Figure 25.
Connections are given in Figure 18 and Figure 19 and Table 27 and Table 28.

Follow standard practices and codes when installing the piping. Provide swing joints for expansion purposes, unions and shut-off valves for servicing purposes and as illustrated in Figure 6 through Figure 9, valves and traps for control purposes. Use 45 degree angle run-offs from all supply and return mains.

Dirt pockets should be the same pipe size as the return tapping of the unit heater. Also, pipe size in the branchoff should be the same size as the tapping in the traps. Beyond the trap, the return lateral pipe should be increased one size up to the return main

Properly support all piping to unit! Do not allow piping to place a strain on the coil or unit. Noise or coil failure may occur.

It is assumed that the type of system to be used has been selected by design engineer. The sketches shown are for different type of steam systems or hot water systems. For sizing of piping, traps, filter, etc., consult ASHRAE guides of the manufacturer's literature on these products.

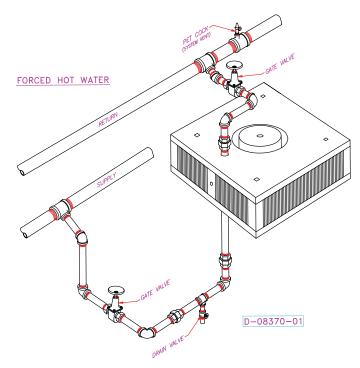


Figure 16.

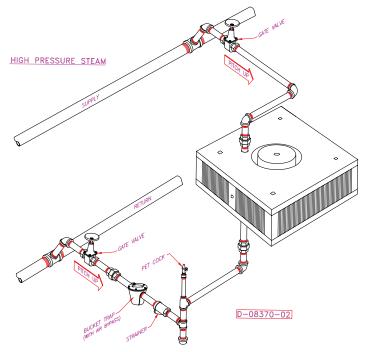


Figure 17.

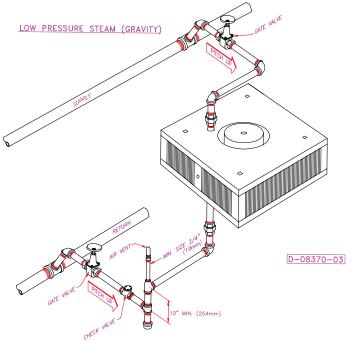


Figure 18.

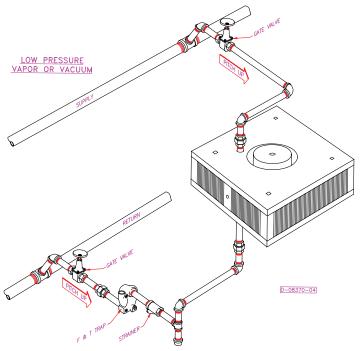


Figure 19.

Installation

Installation: S Type

Unit Mounting

△WARNING **Heavy Objects!**

Ensure that all hardware used in the suspension of each unit heater is more than adequate for the job. Failure to do so may result in extensive property damage, severe personal injury or death.

△WARNING Structural Integrity!

Make certain that the structure to which the heater is mounted is capable of supporting its weight. Under no circumstances must the gas lines, the venting system, or the electrical conduit be used to support the heater; or should any other objects (i.e. ladder, person) lean against the heater gas lines, venting system, electrical conduit for support. Failure to heed these warnings may result in property damage, personal injury, or death.

△CAUTION Lifting/Suspension Methods!

Make certain that the lifting methods used to lift the heater and the method of suspension used in the field installation of the heater are capable of uniformly supporting the weight of the heater at all times. Failure to heed this warning may result in property damage or personal injury!

CAUTION Performance Failure!

Unit heaters must be hung level from side to side and from front to back. Failure to do so will result in poor performance and or premature failure of the unit.

Install unit heaters to meet Occupational Safety and Health Act (OSHA) and CSA requirements. Unit heaters mounted lower than 8 feet (2.4m) from the floor must be equipped with an OSHA fan guard.

Note: Units equipped with the motor mounted to the fan guard require two point suspension. Units equipped with a shelf mounted motor are required to be suspended

at four points. Refer to Figure 20 and Figure 21 for two point suspension and refer to Figure 9 for four point suspension.

Nutserts are provided at the top of all units for suspension purposes. Support rods should support the total unit weight to assure that no strain is placed on supply and return piping. Provisions for removal of the unit from the suspension rods may be desirable for servicing purposes.

Units must hang level vertically and horizontally.

Provide sufficient clearance around units for maintenance purposes.

Isolators are not required but may be desirable for some applications. Refer to "Dimensional Data."

Piping

To provide proper coil operation, follow all piping recommendations listed in this manual.

See Figure 13 through Figure 17 for proper pipe connections.

Follow standard practices and codes when installing the piping. Provide swing joints for expansion purposes, unions and shut-off valves for servicing purposes and as illustrated in Figure 13 through Figure 17, valves and traps for control purposes. Use 45 degree angle runoffs from all supply and return mains.

Dirt pockets should be the same pipe size as the return tapping of the unit heater. Also, pipe size in the branchoff should be the same size as the tapping in the traps. Beyond the trap, the return lateral pipe should be increased one size up to the return main.

It is assumed that the design engineer has selected the type of system to be used. The sketches shown are for different types of steam systems or hot water systems. For sizing of piping, traps, filter, etc., consult ASHRAE guides of the manufacturer's literature on these products.

It is important that the system be kept clean. Care should be exercised that excessive joint materials or foreign substances be kept out of the system.

On steam systems it is recommended that the unit be installed level for proper condensate drainage. Swing joints should be used in piping, and pipes should be pitched down from units so that condensate can drain freely.

Fan Guard/Louver Installation

OSHA Fan Guard/Louver Cone Diffuser Installation Detail

⚠WARNINGHazardous Voltage

Do not mount either the Louver Cone Diffuser or OSHA Fan Guard while unit is in operation or severe personal injury may occur. Disconnect all power supplies to the unit before installing the Louver Cone Diffuser or OSHA Fan Guard.

The figures below show how both the OSHA Fan Guard and the Louver Cone Diffuser are installed on the Vertical Steam and Hot Water Unit Heater. Figure 20 and Figure 21 detail how the louver cone diffuser and OSHA guard are attached to the unit. Figure 22 and Figure 23 show full views of the vertical steam and hot water unit with a Louver Cone Diffuser and OSHA Fan Guard attached.

To meet CSA and OSHA requirements, units mounted below 8 feet (2.4 meters) must be equipped with an OSHA Fan Guard.

The same screws and washers are provided with both the OSHA fan guard and Louver Cone Diffuser. The screws and washers are used in conjunction with the Nutserts to support the wire guard or diffuser to the orifice panel (bottom of vertical unit).

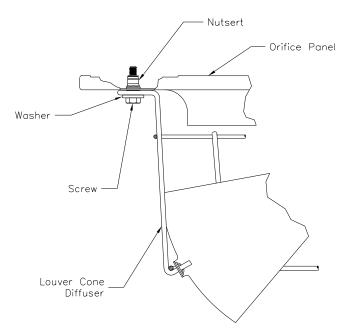


Figure 20. Louver Cone Diffuser

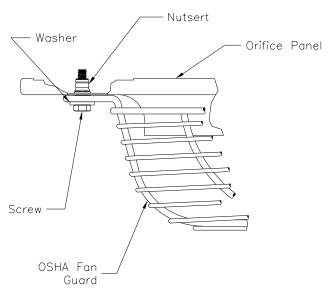


Figure 21. OSHA Fan Guard

Figure 22. Vertical Unit with Louver Cone Diffuser

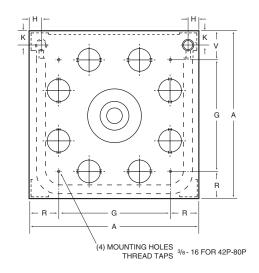


Figure 23. Vertical Unit with OSHA Fan Guard

Dimensional Data

Dimensional Data: P Model

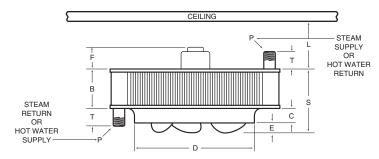
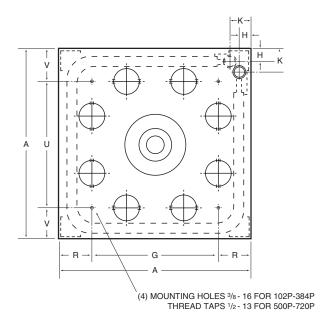



Figure 24. Models 42-80

Table 8. Roughing in	Dimension	nal Data	- Mod	lel Siz	e 42-80												
Unit Capacity (MBH)	Fan Dia.	Α	В	С	D	E	F	G	Н	K	L (Min.)	P (NPT)	R	S	Т	U	٧
042	11 1/4	18 1/4	4 5/8	1 1/4	11 3/4	3/4	4	11	1 3/8	1 7/8	7	1 1/2	3 5/8	6 5/8	2 3/4	11	3 5/8
064	13 1/2	21 1/4	4 5/8	1 5/8	14	1	4	14	1 3/8	1 7/8	7	1 1/2	3 5/8	7 1/8	2 3/4	14	3 5/8
080	13 1/2	21 1/4	6 1/8	1 5/8	14	1	3	14	1 3/8	1 7/8	7	1 1/2	3 5/8	8 5/8	2 3/4	14	3 5/8

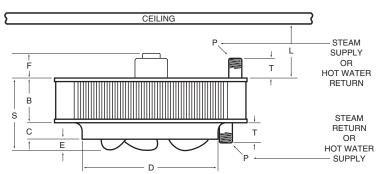


Figure 25. Models 102-720

Table 9.	Roughi	ng in Di	mensio	nal Da	ta - Mo	del Siz	e 102-	720									
Unit Capacity (MBH)	Fan Dia.	A	В	С	D	E	F	G	н	K	L (Min.)	P (NPT)	R	s	т	U	v
102	16 3/4	25 1/4	6 1/8	2	17 1/2	1 1/8	3	17	1 3/8	2 3/4	7	1 1/2	4 1/8	9 1/8	2 3/4	17	4 1/8
122	16 3/4	25 1/4	6 1/8	2	17 1/2	1 3/4	3	17	1 3/8	2 3/4	7	1 1/2	4 1/8	9 3/4	2 3/4	17	4 1/8
146	19 3/4	29 1/2	6 1/8	2 3/8	20 5/8	1 1/4	4	20 1/2	1 3/4	3 1/2	7	2	4 1/2	9 5/8	2 3/4	20 1/2	4 1/2
166	19 3/4	29 1/2	6 1/8	2 3/8	20 5/8	1 3/4	4	20 1/2	1 3/4	3 1/2	7	2	4 1/2	10 1/8	2 3/4	20 1/2	4 1/2
202	19 3/4	29 1/2	7 5/8	2 3/8	20 5/8	2	4	20 1/2	1 3/4	3 1/2	7	2	4 1/2	12	2 3/4	20 1/2	4 1/2
252	25 1/4	37 1/2	7 5/8	3	26 3/8	1	3 1/2	28	1 3/4	3 1/2	7	2	4 3/4	11 5/8	2 3/4	18	9 3/4
280	25 1/4	37 1/2	7 5/8	3	26 3/8	1 1/4	3 1/2	28	1 3/4	3 1/2	7	2	4 3/4	11 3/4	2 3/4	18	9 3/4
336	25 1/4	37 1/2	7 5/8	3	26 3/8	2 1/8	4	28	1 3/4	3 1/2	7	2	4 3/4	12 3/4	2 3/4	18	9 3/4
384	25 1/4	37 1/2	9 1/8	3	26 3/8	2	3 1/2	28	1 3/4	3 1/2	7	2	4 3/4	14 1/8	2 3/4	18	9 3/4
500	30 1/2	42	9 1/8	3 1/2	31 1/4	1 5/8	3	30	2 1/4	4 1/4	7	2 1/2	6	14 1/4	3	30	6
600	30 1/2	42	12 1/8	3 1/2	31 1/4	2 1/8	3	30	2 1/4	4 1/4	7	2 1/2	6	17 3/4	3	30	6
720	30 1/2	42	13 5/8	3 1/2	31 1/4	3	4	30	2 1/4	4 1/4	7	2 1/2	6	20 1/4	3	30	6

Dimensional Data: S Model

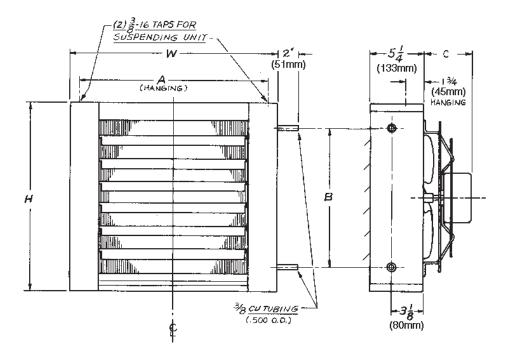


Figure 26. Serpentine Type Models A08, A18, A25, A36

Note: Motors are totally enclosed, thermally protected, sleeve bearing, with 4" (w) x 2" (h) conduit connection boxes. 3/8-16 nutserts are attached to enclosure for balanced hanging.

Table 3- Serp							
H inches (mm)	W inches (mm)	A inches (mm)	B inches (mm)	C inches (mm)	NO. OF LOUVERS	NOM. FAN DIAM. inches (mm)	APPROX. SHIP WT. lbs. (kg)
16 (406)	18 (457)	16 7/32 (412)	11 1/4 (286)	4 1/4 (108)	5	9 (229)	22 (10.0)
16 (406)	18 (457)	16 7/32 (412)	11 1/4 (286)	4 1/4 (108)	5	10 (254)	24 (10.9)
16 (406)	18 (457)	16 7/32 (412)	11 1/4 (286)	4 1/4 (108)	5	10 (254)	25 (11.3)
18 1/2 (470)	20 1/2 (521)	18 22/32 (475)	13 3/4 (349)	5 1/8 (130)	6	12 (305)	31 (14.0)
	H inches (mm) 16 (406) 16 (406) 16 (406)	H inches (mm) 16 (406) 18 (457) 16 (406) 18 (457) 16 (406) 18 (457)	(mm) (mm) (mm) 16 (406) 18 (457) 16 7/32 (412) 16 (406) 18 (457) 16 7/32 (412) 16 (406) 18 (457) 16 7/32 (412)	H inches (mm) W inches (mm) A inches (mm) B inches (mm) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286)	H inches (mm) W inches (mm) A inches (mm) B inches (mm) C inches (mm) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108)	H inches (mm) W inches (mm) A inches (mm) B inches (mm) C inches (mm) NO. OF LOUVERS 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 5 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 5 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 5	H inches (mm) W inches (mm) A inches (mm) B inches (mm) C inches (mm) NO. OF LOUVERS NOM. FAN DIAM. inches (mm) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 5 9 (229) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 5 10 (254) 16 (406) 18 (457) 16 7/32 (412) 11 1/4 (286) 4 1/4 (108) 5 10 (254)

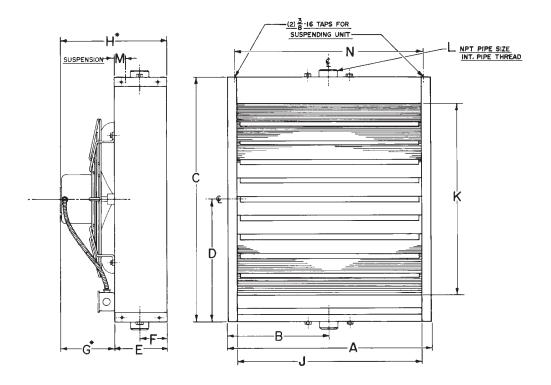


Figure 27. Header Type Models 18 thru 360

Note: Motors are totally enclosed, thermally protected, sleeve bearing, with 4" (w) x 2" (h) conduit connection boxes. 3/8-16 nutserts are attached to enclosure for balanced hanging.

Dimensional Data

Table 11. Header Models

MODEL	A inches (mm)	B inches (mm)	C inches (mm)	D inches (mm)	E inches (mm)	F inches (mm)	G* inches (mm)	H* inches (mm)	J inches (mm)	K inches (mm)	L inches (mm)	M inches (mm)		NO. OF LOU- VERS	NOM. FAN DIAM. inches (mm)	APPROX. SHIP WT. lbs. (kg)
18	14 5/8 (371)	7 5/16 (186)	15 (381)	7 1/2 (191)	6 1/8 (156)	215/16 (75)	3 1/4 (83)	9 3/8 (238)	12 1/4 (311)	9 1/2 (241)	1 1/4 (32)	2 1/4 (57)	12 7/8 (327)	4	9 (229)	26 (11.8)
24 36	14 5/8 (371)	7 5/16 (186)	18 (457)	9 (229)	6 1/8 (156)	2 15/16 (75)	3 1/4 (83)	9 3/8 (238)	12 1/4 (311)	12 1/2 (318)	1 1/4 (32)	2 1/4 (57)	12 7/8 (327)	5	10 (254)	30 (13.6)
48 60	17 1/8 (435)	8 9/16 (217)	20 1/2 (521)	10 1/4 (260)	5 7/8 (149)	2 15/16 (75)	5 1/16 (129)	10 15/16 (278)	14 3/4 (375)	15 (381)	1 1/4 (32)	1 3/4 (44)	15 3/8 (391)	6	12 (305)	41 (18.6)
72	18 3/8 (467)	9 3/16 (233)	21 3/4 (552)	10 7/8 (276)	6 (152)	2 15/16 (75)	5 1/16 (129)	11 1/16 (281)	16 (406)	16 1/4 (413)	1 1/4 (32)	1 3/4 (44)	16 5/8 (422)	7	14 (356)	44 (19.9)
84	20 7/8 (530)	10 7/16 (265)	24 1/4 (616)	12 1/8 (308)	6 1/8 (156)	2 15/16 (75)	5 11/16 (144)	11 13/16 (300)	18 1/2 (470)	18 3/4 (476)	1 1/4 (32)	1 3/4 (44)	19 1/8 (486)	8	14 (356)	47 (21.3)
96 108	19 5/8 (498)	9 13/16 (249)	24 (610)	12 (305)	6 5/16 (160)	3 3/16 (81)	7 1/2 (191)	13 13/16 (351)	17 1/4 (438)	17 1/2 (445)	1 1/2 (38)	1 3/4 (44)	17 7/8 (454)	8	16 (406)	49 (22.2)
120	20 7/8 (530)	10 7/16 (265)	25 1/4 (641)	12 5/8 (321)	6 5/16 (160)	3 3/16 (81)	6 11/16 (170)	13 (330)	18 1/2 (470)	18 3/4 (476)	1 1/2 (38)	1 3/4 (44)	19 1/8 (486)	8	18 (457)	59 (26.7)
132 144	23 3/8 (594)	11 11/16 (297)	27 3/4 (705)	13 7/8 (352)	6 5/16 (160)	3 3/16 (81)	7 5/8 (194)	14 (356)	21 (533)	21 1/4 (540)	1 1/2 (38)	1 3/4 (44)	21 5/8 (549)	9	18 (457)	74 (33.5)
156	23 3/8 (594)	1111/16 (297)	27 3/4 (705)	13 7/8 (352)	6 5/16 (160)	3 3/16 (81)	7 7/16 (189)	13 3/4 (349)	21 (533)	21 1/4 (540)	1 1/2 (38)	1 3/4 (44)	21 5/8 (549)	9	18 (457)	74 (33.5)
180 204	24 5/8 (625)	12 5/16 (313)	29 (737)	14 1/2 (368)	6 3/8 (162)	3 3/16 (81)	7 7/16 (189)	13 3/4 (349)	22 1/4 (565)	22 1/2 (572)	1 1/2 (38)	1 3/4 (44)	22 7/8 (581)	9	18 (457)	90 (40.8)
240	27 7/8 (708)	1315/16 (354)	30 1/4 (768)	15 1/8 (384)	8 1/8 (206)	3 3/16 (81)	5 7/8 (149)	14 (356)	25 1/2 (648)	23 3/4 (603)	2 (51)	1 3/4 (44)	26 1/8 (664)	10	20 (508)	125 (57)
280	27 7/8 (708)	1315/16 (354)	30 1/4 (768)	15 1/8 (384)	8 1/8 (206)	3 3/16 (81)	9-5/8 (244)	17 3/4 (451)	25 1/2 (648)	23 3/4 (603)	2 (51)	1 3/4 (44)	26 1/8 (664)	10	20 (508)	118 (53)
300 360	33 3/8 (848)	16 11/16 (424)	37 3/4 (959)	18 7/8 (479)	9 (229)	3 3/16 (81)	9 5/8 (244)	18 5/8 (473)	31 (787)	31 1/4 (794)	2 (51)	1 3/4 (44)	31 5/8 (803)	13	24 (610)	154 (69.8)

^{*} Applies to standard motor with standard fan guard. When optional motors or OSHA fan guards are requested, dimensions will change according to the substitutions made.

- NOTES

 1. Standard motor and standard guard shown.

 2. Optional OSHA guards available for all units with 1 phase motors.

 3. All 3 phase and explosion proof motors are shelf mounted.

Technical Data

Technical Data: S Models

The performance data listed in Table 11 includes sound ratings. The ratings provide a guide in determining the acceptable degree of loudness in particular occupancy situations.

Certain general rules apply to specific selection of unit heaters with regard to degree of quietness (or loudness);

- The greater the fan diameter, the higher the sound level.
- The higher the motor RPM, the higher the sound level. Note that on most units the lower the speed mode results in lowering the sound rating one increment.
- Selecting a larger number of smaller units generally results in lower overall noise levels than fewer large units.

All horizontal steam and hot water unit heater motors, whether fan guard or shelf-mounted, are isolated from the mechanical mount by resilient isolators. This mounting along with balanced fan blades and excellent overall construction integrity, assures you the utmost in quiet operation.

The following table outlines SOUND RATING for various applications. The lower the number, the quieter the unit and the lower the sound requirement.

CATEGORY OF AREA	SOUND RATING
apartment, assembly hall, classrooms, churches, courtrooms, executive offices, hospitals, libraries, museums, theatres	I
dining rooms, general offices, recreation areas, small retail stores	II
restaurants, banks, cafeterias, department stores, public buildings, service stations	III
gymnasiums, health clubs, laundromats, supermarkets	IV
garages, small machine shops, light manufacturing	V
Factories, foundries, steel mills	III-VII*

^{*}Depending on specific use in these facilities, size of operation, etc.

Table 12. Corrections When Using Glycol Solution in System

		Propylene Glycol
Heat transfer @ 180°F (82°C) with	20% solution	.97*
no increase inflow rate	50% solution	.90*
G.P.M. Req'd. @ 180°F (82°C), 20°F (11°C) Δ t (no correction to pump curve)		1.10%*
Pump Head Req'd. @ 180°F (82°C) w/increase in G.P.M.		1.23%*
Specify gravity (water = 1.0)		1.045-1.055*
Pounds/Gallons @ 60°F (16°C) (water = 8.3453 Pound/Gallon)		8.77
pH @ 50% by volume		9.5
	55%	-
	50%	-28°F (-33°C)
Freezing Point by volume	40%	-13°F (-25°C)
	30%	+ 4°F (-16°C)
	20%	+17°F (- 8°C)

^{*}Compared to water.

Table 13. Approximate factors at	varying altitudes			
Altitude	Factor			
Sea level - 1000 ft. (305m)	1.00			
1000 ft 3000 ft. (915m)	.958			
3000 ft 5000 ft. (1524m)	.929			
5000 ft 7000 ft. (2134m)	.900			
7000 ft 10000 ft. (3048m)	.871			

Technical Data

Technical Data: P Model

The performance data listed in Table 13, Table 14, and Table 15 include sound ratings. The ratings provide a guide in determining the acceptable degree of loudness in particular occupancy situations.

Certain general rules apply to specific selection of unit heaters with regard to degree of quietness (or loudness);

- The greater the fan diameter, the higher the sound level.
- The higher the motor RPM, the higher the sound level. Note that on most units the lower the speed mode results in lowering the sound rating one increment.
- Selecting a larger number of smaller units generally results in lower overall noise levels than fewer large units.

All vertical steam and hot water unit heater motors, whether fan guard or shelf-mounted, are isolated from the mechanical mount by resilient isolators. This mounting along with balanced fan blades and excellent overall construction integrity, assures you the utmost in quiet operation.

The following table outlines sound ratings for various applications. The lower the number, the quieter the unit and the lower the sound requirement.

Category of Area	Sound Rating
apartment, assembly hall, classrooms, churches, courtrooms, executive offices, hospitals, libraries, museums, theatres	I
dining rooms, general offices, recreation areas, small retail stores	II
restaurants, banks, cafeterias, department stores, public buildings, service stations	III
gymnasiums, health clubs, laundromats, supermarkets	IV
garages, small machine shops, light manufacturing	V
factories, foundries, steel mills	III-VII*

^{*} Depending on specific use in these facilities, size of operation, etc.

Table 14. Corrections When Using Glycol Solution in System

		Propylene Glycol
Heat transfer @ 180°F with no	20% solution	.97*
increase inflow rate	50% solution	.90*
G.P.M. Req'd. @ 180°F, 20°F Δ t (no correction to pump curve)		1.10%*
Pump Head Req'd. @ 180°F w/ increase in G.P.M.		1.23%*
Specify gravity (water = 1.0)		1.045-1.055*
Pounds/Gallons @ 60°F (water = 8.3453 Pound/Gallon)		8.77
pH @ 50% by volume		9.5
	55%	-
	50%	-28°F
Freezing Point by volume	40%	-13°F
	30%	+ 4°F
	20%	+17°F

^{*}Compared to water.

Table 15. Approximate factors at varying altitudes						
Altitude	Factor					
Sea level - 1000 ft.	1.00					
1000 ft 3000 ft.	.958					
000 ft 5000 ft.	.929					
000 ft 7000 ft.	.900					
000 ft 10000 ft.	.871					

Options

Options: S Models

Variable Speed Control 115 Volt Only (optional)

The solid state speed controller may be installed at any convenient location and is suitable for surface or flush type mounting. A Standard electrical single or double gang wall box is recommended as in Figure 28.

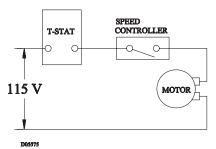


Figure 28. Wiring Diagram of Speed Control Installation

Installation Procedure:

- Attach the control's leads to the electrical leads in the control box using wire nuts. The speed control is to be wired in series with the motor. See wiring diagram in Figure 28.
- Make certain wire nuts are tight with no copper wire being exposed.
- Place wires and wire nuts back into box allowing room for the control to fit in box also.
- Mount speed control to box using number 6 flathead screws provided.

Setting the Control:

- Turn the control shaft fully clockwise. If the motor is not running at the desired low speed, adjust the trim on the face of the control for low speed setting using a small screwdriver.
- Rotate the control shaft counter clockwise. The speed will increase smoothly from minimum to maximum and then switch off.

Mount face plate with screw provided and attach control knob.

Strap-On Water Control

A SPDT strap-on type hot water control with 100° to 240°F (38 to 116°C) rated at 10 amps at 120V is also available. Control can be used for direct or reverse acting applications as high or low limit.

Steam Pressure Control

SPDT switch opens on a rise in pressure. Control is automatically reset, has a range of 0 to 15 PSIG (0 to 103 kPa) and has an adjustable differential. Other actions, ranges, circuits and manual reset models are available on request.

Horizontal and Vertical Louvers

Horizontal louvers are standard on all models. Vertical louvers are an optional accessory on all models. Vertical louvers are installed on built to order units or shipped loose for field installation.

Thermostats

Line voltage wall thermostats are in stock for immediate shipment. All models are SPST with bimetal thermometer, knob-type set point adjustment, 40 to 90°F (5 to 30°C) range and selector switches.

Standard duty models with "offauto" and "auto-off-fan" and a heavy duty model with "auto-off-fan" switching are available. Other models available on request. Plastic tamperproof one size fits all thermostat guards are also available.

Manual Starters

Single and three-phase models are available. Standard models are single-speed, toggle-operated, NEMA Type 1 and are surfacemounted.

Wall Mounted Speed Controllers

Units with standard motors up to Model 108 (115/1/60) can be operated at reduced speeds by addition of optional speed controller. Controller is 5 amps, pre-set at factory for maximum and minimum speeds, with intermediate speeds infinitely controllable. All 1/3, 1/2 HP and 230V motors operate only at rated speed and CFM - See Tables.

CAUTION

When using electrical accessories, always refer to the accessory manufacturer's installation manual for proper use, location and wiring instructions.

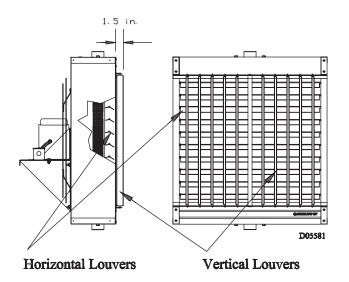


Figure 29. Horizontal and Vertical Louver Mounting

Options: P Models

Variable Speed Control 115 Volt Only (optional)

The solid state speed controller may be installed at any convenient location and is suitable for surface or flush type mounting. A standard electrical single or double gang wall box is recommended as in Figure 30.

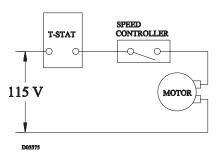


Figure 30. Wiring Diagram of Speed Control Installation

Installation Procedure:

- Attach the control's leads to the electrical leads in the control box using wire nuts. The speed control is to be wired in series with the motor. See wiring diagram in Figure 30.
- Make certain wire nuts are tight with no copper wire being exposed.
- Place wires and wire nuts back into box allowing room for the control to fit in box also.
- Mount speed control to box using number 6 flathead screws provided.

Setting the Control:

- Turn the control shaft fully clockwise. If the motor is not running at the desired low speed, adjust the trim on the face of the control for low speed setting using a small screwdriver.
- Rotate the control shaft counter clockwise. The speed will increase smoothly from minimum to maximum and then switch off.

Vertical Louver Cone Diffuser (optional)

Rubber mounts and mounting nuts and bolts are provided with each louver cone diffuser. Attach the

diffuser to the bottom of the unit heater as shown in Figure 51. Mounting holes are provided in the unit base plate.

Adjust the diffuser to provide the desired air pattern.

Strap-On Water Control

A SPDT strap-on type hot water control with 100° to 240°F (38 to 116°C) rated at 10 amps at 120V is also available. Control can be used for direct or reverse acting applications as high or low limit.

Steam Pressure Control

SPDT switch opens on a rise in pressure. Control is automatically reset, has a range of 0 to 15 PSIG (0 to 103 kPa) and has an adjustable differential. Other actions, ranges, circuits and manual reset models are available on request.

Thermostats

Line voltage wall thermostats are in stock for immediate shipment. All models are SPST with bimetal thermometer, knob-type set point adjustment, 40 to 90°F (5 to 30°C) range and selector switches. Standard duty models with "off-auto" and a heavy duty model with "auto-offfan" switching are available. Other models available on request. Plastic tamperproof one size fits all thermostat guards are also available.

Wall Mounted Speed Controllers

Motors up to and including 1/8 HP (115V) can be operated at reduced speeds by addition of optional speed controller. Controller is 5 amps, preset at factory for maximum and minimum speeds, with intermediate

Figure 31. Louver Cone Diffuser Attached to Vertical Unit Heater

speeds indefinitely controllable. All 1/3, 1/2 HP and 230V motors operate only at rated speed and CFM - See Charts

Manual Starters

Single and three-phase models are available. Standard models are single-speed, toggle-operated, NEMA Type 1 and are surface-mounted.

CAUTION:

When using electrical accessories, always refer to the accessory manufacturer's installation manual for proper use, location and wiring instructions.

Electrical Connections

Electrical Connections: P Model

⚠WARNINGHazardous Voltage

Disconnect all electric power including remote disconnects before servicing. Failure to disconnect power before servicing can cause severe personal injury or death.

⚠WARNINGHazardous Voltage

Do not use any tools (i.e. screwdriver, pliers, etc.) across the terminals to check for power. Use a voltmeter. Failure to disconnect power before servicing can cause severe personal injury or death.

Standard units are shipped for use on 115 volt, 60 hertz single phase electric power. The motor nameplate and electrical rating on the transformer should be checked before energizing the unit heater electrical system. All external wiring must conform to ANSI/NFPA No. 70-2002, National Electrical Code (or the latest edition) and applicable current local codes; in Canada, to the Canadian Electrical Code, Part 1 CSA Standard C22.1.

It is recommended that the electrical power supply to each unit heater be provided by a separate, fused and permanently live electrical circuit. A disconnect switch of suitable electrical rating for each unit heater should be located as close to the controls as possible. Each unit heater must be electrically grounded in accordance with National Electric Code, ANSI/NFPA No. 70-2002 (or the latest edition of) or CSA Standard C22.1. Sample wiring connections are depicted in Figure 38 through Figure 40.

Operation

Most basic unit heater systems are controlled by a room thermostat. Locate thermostat on inner wall or column so that optimum control could be obtained for that area. Set thermostat for desired temperature.

On steam systems a low limit may be used to prevent fan from blowing

cold air unless the heater has steam passing through the coil.

Small hot water systems could have the circulating pump controlled directly by the room thermostat. On large systems, zone valves could be used to control the individual unit heater where constant water circulation is used on the main system.

A louvered cone air diffuser is readily available as an optional accessory for vertical unit heaters. See catalog for details.

Thermostat Wiring and Location

Note:

The thermostat must be mounted on a vertical vibration-free surface free from air currents and in accordance with the furnished instructions.

Mount the thermostat approximately 5 feet (1.5 m) above the floor in an area where it will be exposed to a free circulation of average temperature air. Always refer to the thermostat instructions as well as our unit wiring diagram and wire accordingly. Avoid mounting the thermostat in the following locations:

- Cold areas Outside walls or areas where drafts may affect the operation of the control.
- Hot areas Areas where the sun's rays, radiation, or warm air currents may affect control operation.
- Dead areas Areas where air cannot circulate freely, such as behind doors or in corners.

Note: For all wiring connections, refer to the wiring diagram on the motor nameplate. Should any original wire supplied with the heater have to be replaced, it must be replaced with wiring material having a temperature rating of at least 105° C.

Motors

The standard 115/1/60 motors provided on Vertical Unit Heaters are totally enclosed, Class "B" insulated and have built-in thermal overload protection.

Vertical Units 42 through 80 use sleeve type bearings. Vertical Units 122 through 280 use permanent split capacitor motors with ball bearings.

All sleeve bearing motors have oil holes to allow lubrication. Ball bearing motors are permanently lubricated although some three phase or special motors have removable plugs which will allow field installation of grease fittings.

The standard 42 through 102 motors can be converted to variable speed operation with the addition of the solid state speed control.

See Figure 32 through Figure 37 for typical wiring diagrams.

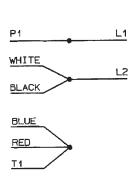
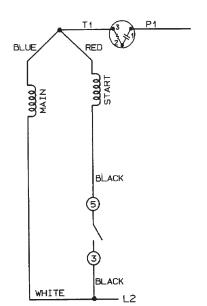
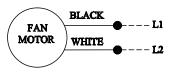




Figure 32. Fan Motor Connections Low Voltage with Protector Select Rotation (CCW shown)(Marathon) For CW Rotation Interchange (Red and black lead)

Fan Motor Connections 115/1/60 Constant Speed, Two Lead (GE, Marathon, Universal)

D05577

Figure 35. Fan Motor Connections 115/1/60 Constant Speed, Two Lead (GE, Marathon, Universal)

Figure 34. Fan Motor Connections Low Voltage CCW Internal (Marathon)

Fan Motor Connections 3 Phase Wiring

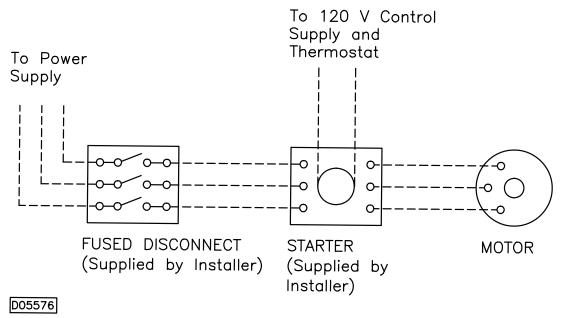
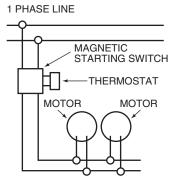
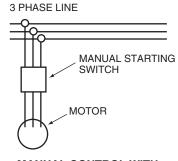


Figure 33.



Wiring Installation: P Model


Notice

- When using a speed controller, always locate the thermostat between the speed controller and the line, not between the motor and the controller.
- For internal wiring and overload protection on all starters, consult the control manufacturer for details.
- When using thermostatic control with a manual starter, be sure that the electrical rating of the thermostat is sufficient to carry the motor current.

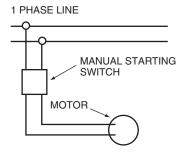

THERMOSTATIC CONTROL USING MAGNETIC STARTER OPERATING SEVERAL UNITS

Figure 38.

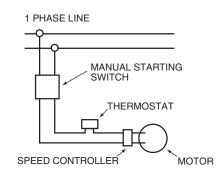

MANUAL CONTROL WITH THREE PHASE MOTOR

Figure 41.

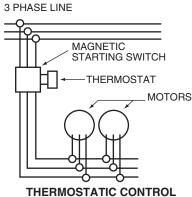
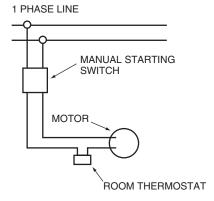
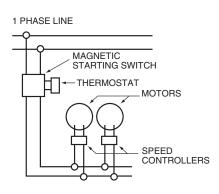

MANUAL CONTROL WITH SINGLE PHASE MOTOR

Figure 36.



SPEED CONTROLLER WITH MANUAL STARTING SWITCH

Figure 39.



OF SEVERAL THREE PHASE UNITS
Figure 42.

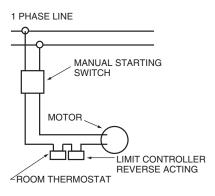

THERMOSTATIC CONTROL WITH MANUAL STARTER

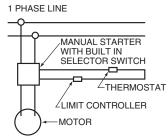
Figure 37.

SPEED CONTROLLERS WITH MAGNETIC STARTING SWITCH FOR OPERATING SEVERAL UNITS

Figure 40.

THERMOSTATIC CONTROL WITH ACTING LIMIT CONTROLLER AND MANUAL STARTER

Figure 43.



3 PHASE LINE MANUAL STARTING SWITCH THERMOSTAT LIMIT CONTROLLER REVERSE ACTING MOTOR

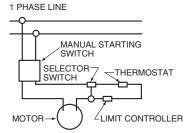

MANUAL CONTROL WITH THREE PHASE MOTOR

Figure 44.

THREE POSITION SELECTOR SWITCH BUILT INTO MAGNETIC STARTER FOR MANUAL OR THERMOSTATIC CONTROL

Figure 45.

THREE POSITION SELECTOR SWITCH USED FOR EITHER MANUAL OR THERMOSTATIC CONTROL

Figure 46.

Electrical Connections: S Model

⚠WARNINGHazardous Voltage

Disconnect all electric power including remote disconnects before servicing. Failure to disconnect power before servicing can cause severe personal injury or death.

⚠WARNINGHazardous Voltage

Do not use any tools (i.e. screwdriver, pliers, etc.) across the terminals to check for power. Use a voltmeter. Failure to disconnect power before servicing can cause severe personal injury or death.

Standard units are shipped for use on 115 volt, 60 hertz single phase electric power. The motor nameplate and electrical rating on the transformer should be checked before energizing the unit heater electrical system. All external wiring must conform to ANSI/NFPA No. 70-2002, National Electrical Code (or the latest edition) and applicable current local codes; in Canada, to the Canadian Electrical Code, Part 1 CSA Standard C22.1.

It is recommended that the electrical power supply to each unit heater be provided by a separate, fused and permanently live electrical circuit. A disconnect switch of suitable electrical rating for each unit heater should be located as close to the controls as possible. Each unit heater must be electrically grounded in accordance with National Electric Code, ANSI/NFPA No. 70-2002 (or the latest edition) or CSA Standard C22.1. Sample wiring connections are depicted in Figure 49 through Figure 57.

Operation

Most basic unit heater systems are controlled by a room thermostat. Locate thermostat on inner wall or column so that optimum control can be obtained for that area. Set thermostat for desired temperature.

On steam systems a low limit may be used to prevent fan from blowing cold air unless the heater has steam passing through the coil.

Small hot water systems could have the circulating pump controlled directly by the room thermostat. On large systems, zone valves could be used to control the individual unit heater where constant water circulation is used on the main system.

Horizontal louvers are standard equipment on horizontal unit heaters, vertical louvers are available as an optional accessory.

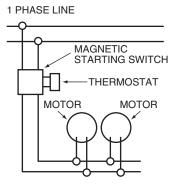
Thermostat Wiring and Location

Note: The thermostat must be mounted on a vertical vibration-free surface free from air currents and in accordance with the furnished instructions.

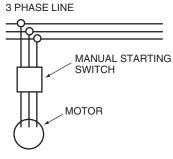
Mount the thermostat approximately 5 feet (1.5 m) above the floor in an area where it will be exposed to a free circulation of average temperature air. Always refer to the thermostat instructions as well as our unit wiring diagram and wire accordingly. Avoid mounting the thermostat in the following locations:

- Cold areas Outside walls or areas where drafts may affect the operation of the control.
- Hot areas Areas where the sun's rays, radiation, or warm air currents may affect control operation.
- Dead areas Areas where air cannot circulate freely, such as behind doors or in corners.

Note: For all wiring connections, refer to the wiring diagram on the motor nameplate.
Should any original wire supplied with the heater have to be replaced, it must be replaced with wiring material having a temperature rating of at least 105° C.



Wiring Installation: S Model


Notice

- When using a speed controller, always locate the thermostat between the speed controller and the line, not between the motor and the controller.
- For internal wiring and overload protection on all starters, consult the control manufacturer for details.
- When using thermostatic control with a manual starter, be sure that the electrical rating of the thermostat is sufficient to carry the motor current.

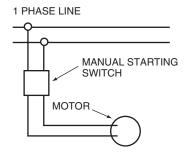

THERMOSTATIC CONTROL USING MAGNETIC STARTER OPERATING SEVERAL UNITS

Figure 49.

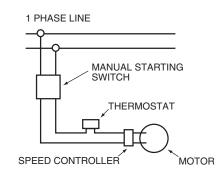

MANUAL CONTROL WITH THREE PHASE MOTOR

Figure 52.

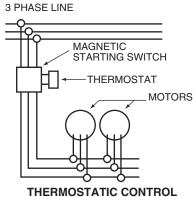
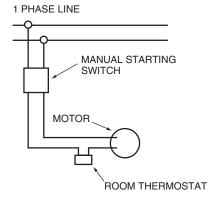
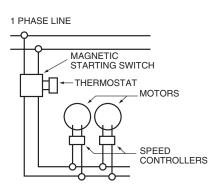

MANUAL CONTROL WITH SINGLE PHASE MOTOR

Figure 47.



SPEED CONTROLLER WITH MANUAL STARTING SWITCH

Figure 50.



OF SEVERAL THREE PHASE UNITS
Figure 53.

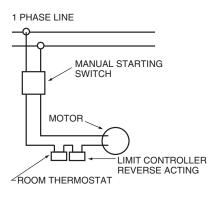
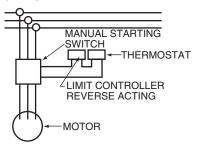

THERMOSTATIC CONTROL WITH MANUAL STARTER

Figure 48.

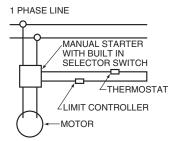
SPEED CONTROLLERS WITH MAGNETIC STARTING SWITCH FOR OPERATING SEVERAL UNITS

Figure 51.



THERMOSTATIC CONTROL WITH ACTING LIMIT CONTROLLER AND MANUAL STARTER

Figure 54.



3 PHASE LINE

MANUAL CONTROL WITH THREE PHASE MOTOR

Figure 55.

THREE POSITION SELECTOR SWITCH BUILT INTO MAGNETIC STARTER FOR MANUAL OR THERMOSTATIC CONTROL

Figure 56.

THREE POSITION SELECTOR SWITCH USED FOR EITHER MANUAL OR THERMOSTATIC CONTROL

Figure 57.

Motor Data

Motor Data: P Models

⚠CAUTION Voltage Selections

Select appropriate AMP, MCA, and MOP for the multiple voltage motors. For example, the AMP, MCA, and MOP for Model 40 with a 230 volt Totally Enclosed motor is 1.1, 1.4, and 2.5 respectively.

Note: All motors are constant speed and operate at top speed as indicated in motor data. Models through 1/8 H.P. can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 166 through 720 operate at constant speed as indicated in motor data.

Note: Stated draw is Full Load (FLA). AMP draw varies by motor manufacturer ± .2 AMPS. Verify FLA on motor data plate.

For Table 16

either Totally Enclosed or Explosion Proof with Overload 115/1/60 motor types.

RPM
* 1550
* 1550
* 1070
-
5 1100
1100
1100
1100
1140
1140
5 1140
5 1140
1140
1140
1140
1140
2 1160
1165
3 1140
1140
1140
1140
2 1160
1165
3

^{*} Optional variable speed switch is available. ** These motors have automatic thermal over-

load protection or impedance protection. *** These motors are 230/460 volts only.
† Models 336 through 720 are not available for

Table 17. Ex	plosion Proof w	rith Thermal O	verload Motor T	/pe [MT=2]	
Unit Model No.	АМР	MCA	МОР	НР	RPM
115/1/60† C	perating Volta	ge			
42	3.8	4.8	8.6	1/6	1140
64	3.8	4.8	8.6	1/6	1140
80	_				
102	3.8	4.8	8.6	1/6	1140
122					
146	- 3.8	4.8	8.6	1/6	1140
166	_				
202	4.4	5.5	9.9	1/4	1140
252	4.4	5.5	9.9	1/4	1140
280	7.8	9.8	17.6	1/2	1140
208-230/460)/3/60 Operati	ng Voltage			
42	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
64	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
80	_				
102	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
122					
146	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
166	=				
202	1.1-1.1/0.55	1.4-1.4/0.7	2.5-2.5/1.2	1/4	1140
252	1.1-1.1/0.55	1.4-1.4/0.7	2.5-2.5/1.2	1/4	1140
280	1.9/0.95***	2.4/1.2	4.3/2.1	1/2	1140
336	3.1-3.2/1.6	3.9-4.0/2.0	7.0-7.2/3.6	3/4	1145
384	_				
500	5.0/2.5***	6.5/3.3	11.7/5.9	1-1/2	1150
600	_				
720	10.0/5.0***	12.5/6.3	22.5/11.3	3	1150

in motor data. All 1/4 H.P. motors are P.S.C.

Note: Motors under 1/3 H.P. are totally enclosed, frame mounted, 115/1/60 with thermal overload protection and permanently lubricated sleeve bearings with optional speed controller available. 1/3 H.P. (115/1/60) motors are open frame constant speed with thermal over-load protection and ball bearings. 1/3 H.P. (230V) and 1/2 H.P. (230V) motors are open frame constant speed with thermal overload protection and ball bearings.

lote: 1/3 and 1/2 H.P. motors are available as 230V single and 3 phase in open frame and explosion-proof housings, all available as options. 1/3 and 1/2 H.P. motors operate at

single speed only.

Note: Stated AMP draw is Full Load Amp (FLA). AMP draw varies by motor manufacturer ± 0.2 AMPS. Verify FLA per unit motor data plate.

For Table 17

Motor Data: S Models

⚠CAUTION Voltage Selections

Select appropriate AMP, MCA, and MOP for the multiple voltage motors. For example, the AMP, MCA, and MOP for Models 360 with a 460 volt Totally Enclosed motor is 1.3, 1.6, and 2.9 respectively.

Also refer to Maintenance section for additional motor data.

Note: All motors are constant speed and operate at top speed as indicated in motor data. Models 18 through 108, including A08, A18, A25 and A36 can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 120 through 360 operate at constant speed as indicated

^{*} Optional variable speed switch is available.

^{**} These motors have automatic thermal overload protection or impedance protection.

^{***} These motors are 230/460 volts only.
† Models 336 through 720 are not available for either Totally Enclosed or Explosion Proof with Overload 115/1/60 motor types.

Motor Data

Table 18. Totally Enclosed Motor Type					
Unit Model No.	AMP	MCA	МОР	HP	RPM
	115/1/6	0			
18, 24, A08, A18	0.8	1	1.8	16W*	1550
A36	1.4	1.8	3.2	1/20*	1000
36, A25	1.2	1.5	2.7	25W*	1550
48, 60, 72	1.4	1.8	3.2	1/20*	1000
84, 96, 108	2.2	2.8	5.0	1/12*	1000
120, 132, 144, 156, 180, 204, 240	4.5	5.6	10.1	1/3	1140
280, 300, 360	5.4	6.8	12.2	1/2	1100
	230/1/6	0			
18, 24, A08, A18	0.4	0.5	0.9	16W	1550
A36	1.4	1.8	3.2	1/20†	1000
36, A25	0.6	0.8	1.4	25W	1550
48, 60, 72	1.4	1.8	3.2	1/20†	1000
84, 96, 108	2.2	2.8	5.0	1/12†	1000
120, 132, 144, 156, 180, 204, 240	4.5	5.6	10.1	1/3†	1140
280, 300, 360	5.4	6.8	12.2	1/2†	1100
	208-230/460	/3/60			
48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 180, 204, 240, 280, 300, 360	2.6-2.6/1.3	3.3-3.3/1.6	5.9-5.9/2.9	1/2**	1140

^{*}Optional variable speed switch is available. **These motors are without thermal overload protection. $\pm 230/1/60$ unit has $\pm 15/1/60$ motor supplied with field installed stepdown transformer.

Unit Model No.	AMP	MCA	MOP	HP	RPM	AMP	MCA	MOP	HP	RPM
	115-23	0/1/60					230	/460/3/6	0	
48, 60, 72, 84, 96, 108, 120, 132	3.7	4.6	8.3	1/6†	1140	-	-	-	-	-
144, 156, 180, 204	5.4	6.8	12.2	1/4†	1140	2.2/1.1	2.8/1.4	5.0/2.5	1/3	1140
240, 280, 300	7.4-3.7	9.3-4.7	16.7-8.3	1/3***	1140	2.2/1.1	2.8/1.4	5.0/2.5	1/3	1140
360	7.4-3.7	9.3-4.7	16.7-8.3	1/2***	1140	2.2/1.1	2.8/1.4	5.0/2.5	1/3	1140

 $^{^{\}dagger}230/1/60$ unit has 115/1/60 motor supplied with field installed stepdown transformer.

Table 20.	Model S F	leader Typ	e Only							
Unit Size	Output BTU/ HR* (kW)	Cond. lbs./hr. (kg/hr)	E.D.R. Sq. Ft. (sq. m)	Final Air Deg. °F (Deg. °C)	Motor HP (kW)	RPM	Nominal CFM (m³/s)	Outlet FPM (m/s)	Nom. Amps @ 115 VAC†	Nom. Fan Diam. Inches (mm)
	18,000 (5.3)	18.0 (8.2)	75 (7.0)	102 (39)		1550	395 (.186)	395 (2.007)		9 (228.6)
018	16,200 (4.7)	16.2 (7.3)	68 (6.3)	105 (41)	16 Watts	1350	330 (.156)	330 (1.676)	0.80	9 (228.6)
	24,000 (7.0)	24.5 (11.1)	100 (9.3)	109 (43)		1550	450 (.212)	450 (2.286)		10 (254.0)
024	21,600 (6.3)	22.0 (10.0)	90 (8.4)	112 (44)	16 Watts	1350	380 (.179)	380 (1,930)	0.80	10 (254.0)
	36,000 (10.5)	37.0 (16.8)	150 (13.9)	119 (48)		1550	550 (.260)	550 (2.794)		10 (254.0)
036	32,400 (9.5)	33.0 (14.9)	135 (12.5)	120 (49)	25 Watts	1350	480 (.227)	480 (2.438)	1.2	10 (254.0)
	48,000 (14.1)	49.0 (22.2)	200 (18.6)	119 (48)	1/20	1000	750 (.354)	550 (2.794)		12 (304.8)
048	43,200 (12.7)	44.0 (19.9)	180 (16.7)	123 (51)	(.037) -	900	630 (.297)	460 (2.337)	1.4	12 (304.8)
	60,000 (17.6)	61.0 (27.6)	250 (23.2)	121 (49)	1/20	1000	900 (.425)	650 (3.302)		12 (304.8)
060	54,000 (15.8)	55.0 (24.9)	225 (20.9)	131 (55)	(.037)	900	700 (.330)	510 (2.591)	1.4	12 (304.8)
	72,000 (21.1)	73.0 (33.1)	300 (27.9)	120 (49)	1/20	1000	1100 (.519)	800 (4.064)		14 (355.6)
072	64,800 (19.0)	66.0 (29.9)	270 (25.1)	123 (51)	(.037)	900	950 (.448)	700 (3.556)	1.4	14 (355.6)
	84,000 (24.6)	85.0 (38.5)	350 (32.5)	115 (46)	1/12	1000	1400 (.661)	900 (4.572)		14 (355.6)
084	75,600 (22.2)	76.0 (34.4)	315 (29.3)	123 (51)	(.062)	900	1100 (.519)	750 (3.810)	2.2	14 (355.6)
	96,000 (28.1)	97.0 (43.9)	400 (37.2)	123 (51)	1/12	1000	1400 (.661)	930 (4.724)		16 (406.4)
096	86,400 (25.3)	88.0 (39.9)	360 (33.4)	132 (56)	(.062)	900	1100 (.519)	800 (4.064)	2.2	16 (406.4)
	108,000 (31.6)	110.0 (49.8)	450 (41.8)	115 (46)	1/12	1000	1800 (.850)	1000 (5.080)		16 (406.4)
108	97,200 (28.5)	98.0 (44.4)	405 (37.6)	120 (49)	(.062)	900	1500 (.708)	900 (4.572)	2.2	16 (406.4)
120	120,000 (35.2)	122.0 (55.3)	500 (46.5)	118 (48)	1/3 (.249)	1140	1900 (.897)	900 (4.572)	4.5	18 (457.2)
132	132,000 (38.7)	134.0 (60.7)	550 (51.1)	121 (49)	1/3 (.249)	1140	2000 (.944)	950 (4.826)	4.5	18 (457.2)
144	144,000 (42.2)	146.0 (66.1)	600 (55.7)	120 (49)	1/3 (.249)	1140	2200 (1.038)	1000 (5.080)	4.5	18 (457.2)
156	156,000 (45.7)	160.0 (72.5)	650 (60.4)	115 (46)	1/3 (.249)	1140	2600 (1.227)	1150 (5.842)	4.5	18 (457.2)
180	180,000 (52.7)	190.0 (86.1)	770 (71.5)	135 (57)	1/3 (.249)	1140	2200 (1.038)	800 (4.064)	4.5	18 (457.2)
204	204,000 (59.8)	208.0 (94.2)	850 (79.0)	124 (51)	1/3 (.249)	1140	2900 (1.369)	1000 (5.080)	4.5	18 (457.2)
240	240,000 (70.3)	244.0 (110.5)	1000 (92.9)	123 (51)	1/3 (.249)	1140	3500 (1.652)	900 (4.572)	4.5	20 (508.0)

Table 20.	Model S F	leader Typ	e Only (c	ontinued)						
Unit Size	Output BTU/ HR* (kW)	Cond. lbs./hr. (kg/hr)	E.D.R. Sq. Ft. (sq. m)	Final Air Deg. °F (Deg. °C)	Motor HP (kW)	RPM	Nominal CFM (m³/s)	Outlet FPM (m/s)	Nom. Amps @ 115 VAC†	Nom. Fan Diam. Inches (mm)
280	280,000 (82.0)	280.0 (126.8)	1100 (102.2)	121 (49)	1/2 (.373)	1100	4200 (1.982)	980 (4.978)	5.4	20 (508.0)
300	300,000 (87.9)	310.0 (140.4)	1250 (116.1)	117 (47)	1/2 (.373)	1100	5000 (2.360)	700 (3.556)	5.4	24 (609.6)

1/2 (.373)

(139.4)Performance based on 2# steam pressure (13.8 kpa) at heater with air entering @ 60°F (16°C). For Sound Ratings See Pages 28 and 29.
Use conversion table for all metric conversions.

* For the lower output, an optional Speed Controller must be ordered.

1500

120

(49)

360,000 (105.5)

360

366.0

(165.8)

1100

5500 (2.596)

1000 (5.080)

5.4

24 (609.6)

Table 21. Steam Calculations and Correction F	actors	
		EXAMPLE: Unit Size: 24 Steam Pressure 10 PSI Entering Air Temp 40°F
I. CAPACITY A. For 2 lbs. steam, 60° entering air	Read output directly from Table 20, 24,000 BTU/HR. (Ref., Std. 24).	
B. For higher steam pressures and/or E.A.T.'s above or below 60°F	Multiply output from Table 20 by appropriate correction factor from Table 22	24,000 x 1.29 = 30,960 BTU/HR.
II. FINAL AIR TEMPERATURE A. For 2 lbs. steam, 60° entering air	Read temperature directly from Table 20, 109°F. (Ref., Std. 24)	
B. For capacities calculated in I.B. (above)	Output from I.B./1.085 x CFM from Table 20 + E.A.T. = Final Air Temp	30,960/1.085 x 450 + 40 = 103.4°F.
III. FINAL AIR VOLUME A. For 2 lbs. steam, 60° entering air	$460 + \text{Final Air Temp from Table 20 } / 530 \times \text{Nom.}$ CFM from Table 20 = Final Air Volume	460 + 109 / 530 x 450 = 483 CFM
B. For final air temperatures calculated in II.B. (above)	$460 + \text{Final Air Temp from II.B.} / 530 \times \text{Nom. CFM}$ from Table 20 = Final Air Volume	460 + 103.4 / 530 x 450 = 478 CFM
IV. CONDENSATE PER HOUR A. For 2 lbs. steam, 60° entering air	Read lbs. per hour from Table 20, 24.5 LBS./HR. (Ref., Std. 24).	
B. For capacities calculated in I.B. (above)	Output from I.B. / Latent Heat From Table 23 = lbs. per hour of condensate	30,960 / 953 = 32.5 LBS./HR.

Table 22.	STEA	M CORF	RECTION	I FACTO	RS BASE	D ON 2 P	SI (13.8 kF	Pa) STEAN	/I AND 60	Deg. F (1	6 Deg. C)	E.A.T.			
ENTERING		STEAM PRESSURE (SATURATED) - LBS. PER SQ. IN. (kPa)													
AIR TEMP Deg. F (Deg. C)	0 (0)	2 (13.8)	5 (34.5)	10 (68.9)	15 (103.4)	20 (137.9)	30 (206.8)	40 (275.8)	50 (344.7)	75 (517.1)	100 (689.4)	125 (861.8)	150 (1,034.1)		
30 -(1)	1.19	1.24	1.29	1.38	1.44	1.50	1.60	1.68	1.70	1.90	2.02	2.11	2.20		
40 (4)	1.11	1.16	1.21	1.29	1.34	1.42	1.51	1.60	1.66	1.81	1.93	2.02	2.11		
50 (10)	1.03	1.08	1.13	1.21	1.28	1.33	1.43	1.51	1.58	1.72	1.84	1.93	2.02		
60 (16)	0.96	1.00	1.05	1.13	1.19	1.25	1.35	1.43	1.50	1.64	1.75	1.84	1.93		
70 (21)	0.88	0.93	0.97	1.06	1.12	1.17	1.27	1.35	1.42	1.55	1.66	1.76	1.84		
80 (27)	0.81	0.85	0.90	0.98	1.04	1.10	1.19	1.27	1.34	1.47	1.58	1.68	1.76		
90 (32)	0.74	0.78	0.83	0.91	0.97	1.02	1.12	1.19	1.26	1.39	1.50	1.59	1.67		
100 (38)	0.67	0.71	0.76	0.84	0.89	0.95	1.04	1.12	1.19	1.32	1.42	1.51	1.59		

[†]Stated AMP is full load for the standard motors. AMP draw varies by motor manufacturer ± 0.2 AMPS. Please see your unit's motor data plate for exact (FLA) Full Load Amp

Table 23. PROPERT	IES OF	SATURA	TED ST	EAM									
STEAM PRESSURE I	N PSIG	(kPa)											
Steam Pressure	0	2	5	10	15	20	30	40	50	75	100	125	150
psi (kPa)	(0)	(13.8)	(34.5)	(68.9)	(103.4)	(137.9)	(206.8)	(275.8)	(344.7)	(517.1)	(689.4)	(891.8)	(1,034.1)
Steam Temperature	212	218.5	227.1	239.4	249.8	258.8	274.0	286.7	297.7	319.9	337.9	352.9	365.9
Deg. F (Deg. C)	(100)	(103.6)	(108.4)	(115.2)	(121.0)	(126.0)	(134.4)	(141.5)	(147.6)	(159.9)	(169.9)	(178.3)	(185.5)
Latent Heat of Steam	970	966	961	953	946	940	929	920	912	891	881	868	857
Btu/lbm (KJ/Kg)	(2256)	(2247)	(2235)	(2217)	(2200)	(2186)	(2161)	(2140)	(2121)	(2072)	(2049)	(2019)	(1993)

Table 24.	Model P	Standard Un	its						
Unit Capacity (MBH)	Output BTU/HR (kW)	Condensate lbs./hr (kg/hr)	E.D.R. Sq. ft. (Sq. m)	Final Air Temp °F (°C)	Motor H.P. (kW)	Motor RPM	Nominal CFM (m ³ /s)	Outlet Velocity FPM (m/s)	Sound Rating
0.42	41,300 (12.1)	43 (19.5)	172 (16.0)	124 (51)	1/40	1550	595 (.278)	877 (4.455)	
042	33,600 (9.8)	55 (24.9)	140 (13.0)	131 (55)	1/40 (.019)	1150	436 (.203)	658 (3.343)	- I
064	65,500 (19.2)	68 (30.8)	273 (25.4)	121 (49)	1/20	1550	989 (.462)	1005 (5.105)	**
064	52,800 (15.5)	55 (24.9)	220 (20.5)	129 (54)	1/20 (.037)	1150	706 (.329)	727 (3.693)	- II
000	80,600 (23.6)	83 (37.6)	336 (31.3)	122 (50)	1 (20	1550	1200 (.560)	1220 (6.198)	
080	65,100 (19.1)	67 (30.4)	271 (25.2)	130 (54)	1/20 (.037)	1150	858 (.400)	894 (4.542)	- II
	101,800 (29.8)	106 (48.0)	424 (39.4)	123 (51)		1070	1490 (.695)	980 (4.978)	
102	87,900 (25.8)	91 (41.2)	366 (34.0)	129 (54)	1/8 (.093)	850	1180 (.551)	783 (3.978)	- II
122	124,400 (36.4)	129 (58.4)	518 (48.2)	124 (51)	1/6 (.124)	1100	1790 (.835)	1170 (5.944)	III
146	152,000 (44.5)	157 (71.1)	633 (58.9)	123 (51)	1/6 (.124)	1100	2220 (1.036)	1045 (5.309)	III
166	173,000 (50.7)	179 (81.1)	720 (67.0)	121 (49)	1/6 (.124)	1100	2620 (1.223)	1230 (6.248)	IV
202	210,200 (61.6)	208 (94.2)	838 (78.0)	118 (48)	1/4 (.186)	1100	3200 (1.493)	1495 (7.595)	III
252	249,800 (73.2)	260 (117.8)	1040 (96.7)	115 (46)	1/4 (.186)	1100	4180 (1.951)	1205 (6.121)	IV
280	283,800 (83.2)	294 (133.2)	1180 (109.8)	119 (48)	1/2 (.373)	1100	4430 (2.067)	1275 (6.477)	IV
336	333,400 (97.7)	345 (156.3)	1390 (129.3)	119 (48)	3/4 (.559)	1140	5210 (2.431)	1500 (7.620)	IV
384	386,000 (113.1)	400 (181.2)	1610 (149.8)	118 (48)	3/4 (.559)	1140	6140 (2.865)	1770 (8.992)	IV
500	496,000 (145.3)	514 (232.8)	2070 (192.6)	117 (47)	1-1/2 (1.119)	1175	8020 (3.743)	1640 (8.331)	IV
600	585,000 (171.4)	605 (274.1)	2440 (227.0)	117 (47)	1-1/2 (1.119)	1175	9450 (4.410)	1930 (9.804)	IV
720	705,000 (206.6)	729 (330.2)	2940 (273.5)	119 (48)	3 (2.237)	1165	11,000 (5.133)	2250 (11.430)	IV

E.D.R. = Equivalent Direct Radiation
NOTES:
Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors.

** Performance data based on 2 lbs. steam pressure at heater with air entering @60°F.
To determine BTU per hour capacities at various steam pressures and entering air temperatures, use conversion factors from Table 7. Final temperatures at new conditions can be calculated by applying basic formula.

Table 25.	"Low O	utput" Stand	lard Verti	cal Units w	vith All Air P	orts Ope	en		
Unit Capacity (MBH)	Output BTU/HR (kW)	Condensate lbs./hr (kg/hr)	E.D.R. Sq. ft. (Sq. m)	Final Air Temp. °F °C	Motor H.P. (kW)	Motor RPM	Nominal CFM (m ³ /s)	Outlet Velocity FPM (m/s)	Sound Rating
0.421	34,800 (10.2)	36 (16.3)	145 (13.5)	108 (42)	1/10	1550	668 (.312)	950 (4.826)	_
042L	26,000 (7.6)	27 (12.2)	108 (10.0)	111 (44)	1/40 (.019)	1150	470 (.219)	672 (3.414)	I
	57,200	59	238	104		1550	1200	1190	
064L	(16.8)	(26.7)	(22.1)	(40)	1/20		(.560)	(6.045)	I
	45,800	48	191	109	(.037)	1150	862	858	
	(13.4)	(21.7)	(17.8)	(43)	_		(.402)	(4.359)	
0001	68,000 (19.9)	71 (32.2)	283 (26.3)	106 (41)	1 /20	1550	1360 (.635)	1350 (6.858)	
080L	55,000 (16.1)	57 (25.8)	229 (21.3)	111 (44)	1/20 (.037)	1150	995 (.464)	992 (5.039)	II
	85,400 (25.0)	89 (40.3)	356 (33.1)	108 (42)		1070	1640 (.765)	1050 (5.334)	
102L	71,200 (20.9)	74 (33.5)	296 (27.5)	111 (44)	- 1/8 (.093)	850	1290 (.602)	827 (4.201)	II
122L	111,000 (32.5)	115 (52.1)	462 (43.0)	107 (42)	1/6 (.124)	1100	2180 (1.017)	1390 (7.061)	III
146L	125,000 (36.6)	130 (58.9)	524 (48.7)	109 (43)	1/6 (.124)	1100	2360 (1.101)	1080 (5.486)	III
166L	149,000 (43.7)	154 (69.8)	620 (57.7)	107 (42)	1/6 (.124)	1100	2920 (1.363)	1340 (6.807)	IV
202L	176,800 (51.8)	183 (82.9)	736 (68.5)	108 (42)	1/4 (.186)	1100	3390 (1.582)	1560 (7.925)	III
252L	214,900 (63.0)	224 (101.5)	895 (83.3)	104 (40)	1/4 (.186)	1100	4500 (2.100)	1270 (6.452)	IV
280L	251,800 (73.8)	260 (117.8)	1050 (97.7)	106 (41)	1/2 (.373)	1100	5040 (2.352)	1420 (7.214)	IV
336L	291,000 (85.3)	302 (136.8)	1210 (112.6)	107 (42)	3/4 (.559)	1140	5700 (2.660)	1610 (8.179)	IV
384L	344,000 (100.8)	356 (161.3)	1430 (133.0)	108 (42)	3/4 (.559)	1140	6600 (3.080)	1870 (9.500)	IV
500L	428,000 (125.4)	446 (202.0)	1785 (166.0)	102 (39)	1-1/2 (1.119)	1175	9380 (4.377)	1860 (9.449)	IV
600L	515,000 (150.9)	533 (241.4)	2140 (199.1)	106 (41)	1-1/2 (1.119)	1175	10,300 (4.807)	2060 (10.465)	IV
720L	620,000 (181.7)	642 (290.8)	2580 (240.0)	108 (42)	3 (2.237)	1165	11,900 (5.553)	2380 (12.090)	IV

E.D.R. = Equivalent Direct Radiation
NOTES:
Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors.

** Performance data based on 2 lbs. steam pressure at heater with air entering @60°F.

To determine BTU per hour capacities at various steam pressures and entering air temperatures, use conversion factors from Table 7. Final temperatures at new conditions can be calculated by applying basic formula.

		EXAMPLE: UNIT SIZE 042 Steam Pressure 10 PSI Entering Air Temp 40°F
I. CAPACITY A. For 2 lbs. steam, 60° entering air	Read output directly from Table 24: 41,300 BTU/HR.	
B. For higher steam pressures and/or E.A.T.'s above or below 60°F	Multiply output from Table 24 by appropriate correction factor from Table 27.	41,300 x 1.27 = 52,451 BTU/HR.
II. FINAL AIR TEMPERATURE A. For 2 lbs. steam, 60° entering air	Read temperature directly from Table 24: 124°F.	
B. For capacities calculated in I.B. (above)	Output from I.B./1.085 x CFM from Table 24 + E.A.T. = Final Air Temp	52,451/1.085 x 595 + 40 = 121.0°f
III. FINAL AIR VOLUME A. For 2 lbs. steam, 60° entering air	460 + Final Air Temp from Table 24 530 x Nom. CFM from Table 24 = Final Air Volume	460 + 124/530 x 595 = 655 CFM
B. For final air temperatures calculated In II. B. (above)	460 + Final Air Temp from II.B./530 x Nom. CFM from Table 24 = Final Air Volume	460 + 121.0/530 x 595 = 652 CFM
IV. CONDENSATE PER HOUR A. For 2 lbs. steam, 60° entering air	Read lbs. per hour from Table 24: 43 LBS./HR.	
B. For capacities calculated in I.B. (above)	Output from I.B./Latent Heat From Table 28 = lbs. per hour of condensate	52,451/953 = 55.0 LBS./HR.

ENTERING		STEAM PRESSURE - LBS. PER SQ. IN. (SATURATED)												
AIR TEMP °F (°C)	0 (.0)	2 (13.8)	5 (34.5)	10 (68.9)	15 (103.4)	20 (137.9)	30 (206.8)	40 (275.8)	50 (344.7)	75 (517.1)				
30° (-1°)	1.18	1.22	1.27	1.34	1.40	1.45	1.53	1.61	1.67	1.79				
40° (4°)	1.11	1.15	1.20	1.27	1.32	1.37	1.46	1.53	1.59	1.71				
50° (10°)	1.03	1.07	1.12	1.19	1.25	1.30	1.39	1.46	1.52	1.64				
60° (16°)	0.96	1.00	1.05	1.12	1.18	1.23	1.32	1.39	1.45	1.57				
70° (21°)	0.90	0.93	0.98	1.05	1.11	1.16	1.25	1.32	1.38	1.49				
80° (27°)	0.83	0.86	0.91	0.98	1.04	1.09	1.18	1.25	1.31	1.42				
90° (32°)	0.76	0.80	0.85	0.91	0.97	1.02	1.11	1.18	1.24	1.36				
100° (38°)	0.69	0.73	0.78	0.85	0.90	0.96	1.04	1.11	1.17	1.29				

Table 28. PROPERTIES OF SATURATED STEAM												
STEAM PRESSURE IN LBS. PER SQUARE INCH GAUGE												
	0 (.0)	2 (13.8)	5 (34.5)	10 (68.9)	15 (103.4)	20 (137.9)	30 (206.8)	40 (275.8)	50 (344.7)	75 (517.1)		
Steam Temperature-°F (°C)	212.0 (100.0)	218.5 (103.6)	227.1 (108.4)	239.4 (115.2)	249.8 (121.0)	258.8 (126.0)	274.0 (134.4)	286.7 (141.5)	297.7 (147.6)	319.9 (159.9)		
Latent Heat of Steam-Btu/ lbm (KJ/Kg)	970 (2256)	966 (2247)	961 (2235)	953 (2217)	946 (2200)	940 (2186)	929 (2161)	920 (2140)	912 (2121)	891 (2072)		

Note: Ratings apply only to free inlet and discharge without diffusers.

Note: All motors are constant speed and operate at top speed as indicated in motor data. Models 42 through 102 can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds in?nitely controllable. Models 166 through 720 operate at constant speed as indicated in motor data.

Note: For specific motor data refer to motor specifications in Table 16 and Table 17.

Note: To correct for entering air temperatures, use 1° temperature rise for each foot in mounting height. As an example, 60° air is r equired at work area (5 ft. above ?oor) units are to be mounted at (20 ft.) above floor.

Mounting height (20 ft.) minus work height (5 ft.) equals differential (15 ft.) or, 15° rise in air temperature at unit air inlet. Correct for actual inlet air temperature of 75° (60° + 15° = 75° E.A.T.) on Table 6.

Table 29.	Model S Serpentine and Header Type									
Unit Size		Flow Rate GPM (L/s)	Deg. °F	Prssr. Drop FT./H2O (m/water)	Motor HP (kW)	RPM	Nominal CFM (m³/s)	Outlet FPM (m/s)	Nom. Amps @ 115VAC†	Sound Rating
	8,030 (2.4)		91 (33)			1550	245 (.116)	250 (1.270)		II
A08	6,800 (2.0)	0.8 (.050)	90 (32)	0.80 (.244)	16 Watts	1350	210 (.099)	215 (1.092)	- 0.80	I
	18,400 (5.4)		94 (34)			1550	500 (.236)	500 (2.540)		II
A18	15,650 (4.6)	1.9 (.120)	96 (36)	2.20 (.671)	16 Watts	1350	420 (.198)	420 (2.134)	- 0.80	I
	24,800 (7.3)		102 (39)			1550	580 (.274)	590 (2.997)		II
A25	21,230 (6.2)	2.5 (.158)	106 (41)	2.20 (.671)	25 Watts	1350	460 (.217)	450 (2.286)	1.2	I
	35,900 (10.5)		99 (37)			1000	850 (.401)	550 (2.794)		II
A36	32,300 (9.5)	3.6 (.227)	100 (38)	3.00 (.914)	1/20 (.037)	900	750 (.354)	480 (2.438)	- 1.4	I
010	13,050 (3.8)		95 (35)	0.005	46.111.11	1550	395 (.186)	395 (2.007)	0.00	II
018	11,725 (3.4)	1.3 (.082)	99 (37)	0.005 (.002)	16 Watts	1350	350 (.165)	350 (1.778)	- 0.80	I
024	17,400 (5.1)	1.0	96 (36)	0.014	1.C. W-11-	1550	450 (.212)	450 (2.286)	0.00	II
024	15,600 (4.6)	1.8 (.114)	98 (37)	0.014 (.004)	16 Watts	1350	380 (.179)	380 (1.930)	- 0.80	I
036	26,100 (7.6)	- 27	103 (39)	- 0.00	25 Watta	1550	550 (.260)	550 (2.794)	- 12	II
036	23,500 (6.9)	2.7 (.170)	103 (39)	0.09 (.027)	25 Watts	1350	480 (.227)	480 (2.438)	- 1.2	I
048	34,800 (10.2)	- 3.5	103 (39)	- 0.12	1/20	1000	750 (.354)	550 (2.794)	- 14	II
046	31,300 (9.2)	(.221)	111 (44)	0.12 (.037)	(.037)	900	630 (.297)	460 (2.337)	- 1.4	I
060	43,600 (12.8)	- 4.4	105 (41)	- 0.17	1/20	1000	900 (.425)	650 (3.302)	- 1.4	II
000	39,200 (11.5)	(.278)	112 (44)	(.052)	(.037)	900	700 (.330)	510 (2.591)	1.4	I
072	52,300 (15.3)	- 5.3	104 (40)	0.23	1/20	1000	1100 (.519)	800 (4.064)	- 1.4	II
072	47,000 (13.8)	(.334)	106 (41)	(.070)	(.037)	900	950 (.448)	700 (3.556)	1.4	I
084	61,000 (17.9)	- 6.1	100 (38)	- 0.24	1/12	1000	1400 (.661)	900 (4.572)	- 2.2	III
004	54,900 (16.1)	(.385)	106 (41)	(.073)	(.062)	900	1100 (.519)	750 (3.810)	۷.۷	II
096	69,700 (20.4)	- 7.0	106 (41)	- 0.29	1/12	1000	1400 (.661)	930 (4.724)	- ງ ງ	III
USU	62,700 (18.4)	(.442)	113 45	(.088)	1/12 (.062)		1100 (.519)	800 (4.064)	- 2.2	II
108	78,400 (23.0)	- 7.9	100 (38)	- 0.26	1/12	1000	1800 (.850)	1000 (5.080)	- ງ າ	III
	70,500 (20.7)	(.498)	103 (39)	0.36 (.110)	(.062)	900	1500 (.708)	900 (4.572)	- 2.2	II

Table 29.	Model S S	erpentine a	nd Header	Type (contin	ued)					
120	87,100 (25.5)	8.8 (.555)	102 (39)	0.39 (.119)	1/3 (.249)	1140	1900 (.897)	900 (4.572)	4.5	III
132	95,800 (28.1)	9.6 (.606)	104 (40)	0.41 (.125)	1/3 (.249)	1140	2000 (.944)	950 (4.826)	4.5	IV
144	104,000 (30.5)	10.4 (.656)	104 (40)	0.43 (.131)	1/3 (.249)	1140	2200 (1.038)	1000 (5.080)	4.5	IV
156	113,000 (33.1)	11.3 (.713)	100 (38)	0.53 (.162)	1/3 (.249)	1140	2600 (1.227)	1150 (5.842)	4.5	IV
180	118,000 (34.6)	11.8 (.744)	110 (43)	0.6 (.183)	1/3 (.249)	1140	2200 (1.038)	800 (4.064)	4.5	III
204	148,000 (43.4)	14.9 (.940)	107 (42)	0.79 (.241)	1/3 (.249)	1140	2900 (1.369)	1000 (5.080)	4.5	IV
240	174,000 (51.0)	17.4 (1.098)	106 (41)	1.06 (.323)	1/3 (.249)	1140	3500 (1.652)	900 (4.572)	4.5	IV
280	209,100 (61.3)	21.0 (1.325)	106 (41)	1.33 (.405)	1/2 (.373)	1100	4200 (1.982)	980 (4.978)	5.4	IV
300	230,000 (67.4)	23.0 (1.451)	102 (39)	2.1 (.640)	1/2 (.373)	1100	5000 (2.360)	700 (3.556)	5.4	IV
360	261,300 (76.6)	26.2 (1.653)	103 (39)	2.1 (.640)	1/2 (.373)	1100	5500 (2.596)	1000 (5.080)	5.4	IV

Performance based on 200°F (93°C) EWT, 60°F (16°C) E.A.T., 20°F (11°C)TD. For Fan Diameter see Pages 41 and 42.

^{*} For the lower output, an optional Speed Controller must be ordered.
†Stated AMP is full load for standard motors. AMP draw varies by motor manufacturer ± 0.2 AMPS. Please see your unit's motor data plate for exact (FLA) Full Load Amp rating.

Table 30. Hot Water Calculations an	nd Correction Factors S Type	
		EXAMPLE: UNIT SIZE: 024 Entering Water Temp. 160°F Entering Air Temp. 40°F Water Temperature Drop 10°F
I. CAPACITY @ 20° TD: A. For 200° EWT, 60° EAT	Read output directly from Table 29, 17,400 BTU/HR (Ref., Std. 024)	
B. For EWT and/or EAT above or below Standard	Multiply output from Table 29 by factor from Table 31	17,400 x .878 = 15,277 BTU/HR.
II. CAPACITY AT OTHER TD's A. For TD's from 5 to 60°F	Multiply output obtained in IA. Or IB. (above) by appropriate factor from Table 32	IA-17,400 x 1.15 = 20,010 BTU/HR. -OR- IB-15,277 x 1.15 = 17,569 BTU/HR.
III. GPM AT OTHER TD's A. For TD's from 5 to 60°F		$1.8 \times 2.30 = 4.14$ GPM (Applies only to units with Std. 200° EWT, 60° EAT.) For all others calculate using formula-GPM = BTU/500 x TD
IV. CAPACITY AT OTHER RATES OF WATER FLOW	Multiply output from Table 29 by factor from Table 34.	
V. PRESSURE LOSS AT OTHER TD's A. For TD's from 5 to 60°F	Multiply P.D. of unit for 20°TD, from Table 29 by appropriate factor from the Table 32	$.014 \times 5.00 = .07 \text{ Ft. H}_2\text{O}$

Table 31. HOT WATER CONVERSION FACTORS BASED ON 200° (93°C) ENTERING WATER, 60° (16°C) ENTERING AIR AND 20° (11°C) TEMPERATURE DROP

ENTERING	IG ENTERING WATER TEMPERATURE - °F (°C)										
AIR TEMPERAT URE °F (°C)	100° (38)	120° (49)	140° (60)	160° (71)	180° (82)	200° (93)	220° (104)	240° (116)	260° (127)	280° (138)	300° (149)
30 -(1)	0.518	0.666	0.814	0.963	1.120	1.268	1.408	1.555	1.702	1.850	1.997
40 (4)	0.439	0.585	0.731	0.878	1.025	1.172	1.317	1.464	1.609	1.755	1.908
50 (10)	0.361	0.506	0.651	0.796	0.941	1.085	1.231	1.375	1.518	1.663	1.824
60 (16)	0.286	0.429	0.571	0.715	0.857	1.000	1.143	1.286	1.429	1.571	1.717
70 (21)	0.212	0.353	0.494	0.636	0.777	0.918	1.060	1.201	1.342	1.483	1.630
80 (27)	0.140	0.279	0.419	0.558	0.698	0.837	0.977	1.117	1.257	1.397	1.545
90 (32)	0.069	0.207	0.345	0.483	0.621	0.759	0.897	1.035	1.173	1.311	1.462
100 (38)	0.000	0.137	0.273	0.409	0.546	0.682	0.818	0.955	1.094	1.230	1.371

Table 32. HOT WATER OUTPUT, FLOW RATE AND PRESSURE LOSS FACTORS BASED ON STANDARD CONDITIONS OF 200°F (93°C) ENTERING WATER, 60°F (16°C) ENTERING AIR & 20°F (11°C) WATER DROP

	TEMPERATURE DROP °F (°C)									
USE FACTORS FROM THIS TABLE TO OBTAIN APPROXIMATE RESULTS	5 (3)	10 (6)	15 (8)	20 (11)	25 (14)	30 (17)	40 (22)	50 (28)	60 (33)	
To obtain output for other Water Temperature Drops, multiply basic output rating by applicable Factor.	1.25	1.15	1.08	1.00	.94	.90	.83	.76	.72	
To obtain flow for other Water Temperature Drops, multiply basic rate rating by applicable Factor.*	5.00	2.30	1.44	1.00	.74	.59	.40	.30	.24	
To obtain Pressure Loss Feet (Meters) of Water for other temperature Drops, multiply Basic loss at 20°F (11°C) drop by Factor.	10.00	5.00	2.00	1.00	.60	.40	.20	.13	.07	

Table 33. MINIMUM WATER FLOW												
MODEL No.	A08	A18	A25	A36	18	24	36	48	60	72	84	96
MINIMUM GPM (L/s)	0.125 (.008)	0.125 (.008)	0.125 (.008)	0.125 (.008)	0.750 (.047)	1.240 (.078)	1.240 (.078)	1.490 (.094)	1.490 (.094)	1.620 (.102)	1.860 (.117)	3.350 (.211)
MODEL No.	108	120	132	144	156	180	204	240	280	300	360	
MINIMUM GPM (L/s)	3.35 (.211)	3.60 (.227)	4.09 (.258)	4.09 (.258)	4.09 (.258)	4.34 (.274)	4.34 (.274)	4.59 (.290)	4.59 (.290)	6.08 (.384)	6.08 (.384)	

Table 34. HEATING CA	PACITY F	ACTOR	S FOR \	/ARIOUS	RATES	OF WATE	R FLOW
% of Rated Water Flow	25%	50%	75%	100%	125%	150%	175%
Heating Capacity Factor	.80	.89	.96	1.00	1.04	1.07	1.10

Table 35.	P Type S	Standard Out	put Units**							
Model No.		Output MBH (kW)	Flow Rate G.P.M. (L/s)	Press. Drop ft/water (m/water)	Final Air. Temp. °F (°C)	Motor H.P. (kW)	R.P.M.	Nominal CFM (m ³ /s)	Outlet Velocity FPM (m/s)	Sound Rating
	10° (5.6°)	28.8 (8.4)	5.93 (.374)	.37 (.113)	104.6° (40.3°)					
42	20° (11.1°)	22.7 (6.7)	2.34 (.148)	.06 (.018)	95.2° (35.1°)	1/40 (.019)	1550	595 (.278)	877 (4.455)	I
	30° (16.7°)	16.7 (4.9)	1.15 (.073)	.02	85.9° (29.9°)	(.015)		(.270)	(4.433)	
	10° (5.6°)	22.9 (6.7)	4.71 (.297)	.24 (.073)	108.3° (42.4°)					
42*	20° (11.1°)	18.1 (5.3)	1.87 (.118)	.04 (.012)	98.3° (36.8°)	1/40 (.019)	1150	436 (.203)	658 (3.343)	I
	30° (16.7°)	13.4 (3.9)	.92 (.058)	.01 (.003)	88.4° (31.3°)	(.019)		(.203)	(3.543)	
	10° (5.6°)	48.1 (14.1)	9.92 (.626)	1.05 (.320)	104.8° (40.4°)					
64	20° (11.1°)	39.6 (11.6)	4.08 (.257)	.19 (.058)	96.9° (36.1°)	1/20 (.037)	1550	989 (.462)	1005 (5.105)	II
	30° (16.7°)	31.1 (9.1)	2.14 (.135)	.06 (.018)	89.0° (31.7°)	(.037)		(.402)	(3.103)	
	10° (5.6)	38.1 (11.2)	7.85 (.495)	.67 (.204)	109.7° (43.2°)					
64*	20° (11.1°)	31.5 (9.2)	3.24 (.204)	.13	101.1° (38.4°)	1/20 (.037)	1150	706 (.329)	727 (3.693)	II
	30° (16.7°)	24.8 (7.3)	1.71 (.108)	.04 (.012)	92.4° (33.6°)	(.037)		(.323)	(3.093)	
	10° (5.6°)	58.7 (17.2)	12.11 (.764)	.98 (.299)	105.1° (40.6°)					
80	20° (11.1°)	48.4 (14.2)	4.99 (.315)	.18 (.055)	97.2° (36.2°)	1/20 (.037)	1550	1200 (.560)	1220 (6.198)	II
	30° (16.7°)	38.1 (11.2)	2.62 (.165)	.05 (.015)	89.3° (31.8°)	(.037)		(.300)	(0.190)	
	10° (5.6°)	46.5 (13.6)	9.59 (.605)	.63 (.192)	110.0° (43.3°)					
80*	20° (11.1°)	38.5 (11.3)	3.97 (.250)	.12 (.037)	101.2° (38.4°)	1/20 (.037)	1150	858 (.400)	894 (4.542)	II
	30° (16.7°)	30.5 (8.9)	2.09 (.132)	.03	92.7° (33.7°)	(.037)		(.400)	(4.542)	
	10° (5.6°)	77.2 (22.6)	15.91 (1.004)	2.06 (.628)	106.6° (41.4°)					
102	20° (11.1°)	68.3 (20.0)	7.03 (.443)	.44 (.134)	101.2° (38.4°)	1/8 (.093)	1070	1528 (.713)	980 (4.978)	II
	30° (16.7°)	59.3 (17.4)	4.08 (.257)	.16 (.049)	95.8° (35.4°)	(.055)		(.713)	(4.570)	
	10° (5.6°)	63.7 (18.7)	13.13 (.828)	1.43 (.436)	108.6° (42.6°)					
102*	20° (11.1°)	56.5 (16.6)	5.82 (.367)	.31 (.095)	103.1° (39.5°)	1/8 (.093)	850	1208 (.564)	783 (3.978)	II
	30° (16.7°)	49.2 (14.4)	3.38 (.213)	.11 (.034)	97.6° (36.4°)	(.033)		(.504)	(3.370)	
	10° (5.6°)	94.9 (27.8)	19.55 (1.233)	3.04 (.927)	108.9° (42.7°)					
122	20° (11.1°)	83.7 (24.5)	8.63 (.544)	.65 (.198)	103.1° (39.5°)	1/6 (.124)	1100	1790 (.835)	1170 (5.944)	III
	30° (16.7°)	72.5 (21.2)	4.98 (.314)	.23 (.070)	97.3° (36.3°)	(.124)		(.033)	(3.344)	

Table 35.	P Type	Standard Out	put Units** (c	ontinued)						
Model No.		Output MBH (kW)	Flow Rate G.P.M. (L/s)	Press. Drop ft/water (m/water)	Final Air. Temp. °F (°C)	Motor H.P. (kW)	R.P.M.	Nominal CFM (m³/s)	Outlet Velocity FPM (m/s)	Sound Rating
	10° (5.6°)	117.6 (34.5)	24.24 (1.529)	4.32 (1.318)	108.8° (42.7°)					
146	20° (11.1°)	105.2 (30.8)	10.84 (.684)	.96 (.293)	103.7° (39.8°)	1/6 (.124)	1100	2220 (1.036)	1045 (5.309)	III
	30° (16.7°)	92.8 (27.2)	6.38 (.402)	.36 (.110)	98.5° (36.9°)	()		(2.000)	(5.555)	
	10° (5.6°)	132.4 (38.8)	27.29 (1.722)	3.67 (1.119)	106.6° (41.4°)					
166	20° (11.1°)	118.6 (34.7)	12.22 (.771)	.81 (.247)	101.7° (38.7°)	1/6 (.124)	1100	2620 (1.223)	1230 (6.248)	IV
	30° (16.7°)	104.8 (30.7)	7.20 (.454)	.30 (.092)	96.9° (36.1°)	(121)		(1.223)	(0.2.10)	
	10° (5.6°)	156.2 (45.8)	32.20 (2.031)	5.02 (1.531)	105.0° (40.6°)					
202	20° (11.1°)	139.7 (40.9)	14.40 (.908)	1.11 (.339)	100.2° (37.9°)	1/4 (.186)	1100	3200 (1.493)	1495 (7.595)	III
	30° (16.7°)	123.2 (36.1)	8.47 (.534)	.41 (.125)	95.5° (35.3°)	(.100)		(11133)	(7.555)	
	15° (8.3°)	188.9 (55.3)	25.95 (1.637)	3.92 (1.196)	101.8° (38.8°)					
252	20° (11.1°)	180.1 (52.8)	18.56 (1.171)	2.10 (.641)	99.9° (37.7°)	1/4 (.186)	1100	4162 (1.942)	1205 (6.121)	IV
	30° (16.7°)	162.7 (47.7)	11.18 (.705)	.82 (.250)	96.0° (35.6°)	(.100)		(11312)	(0.121)	
	15° (8.3°)	215.4 (63.1)	29.60 (1.867)	5.02 (1.531)	104.8° (40.4°)					
280	20° (11.1°)	205.4 (60.2)	21.17 (1.335)	2.68 (.817)	102.7° (39.3°)	1/2 (.373)	1100	4430 (2.067)	1275 (6.477)	IV
	30° (16.7°)	185.3 (54.3)	12.73 (.803)	1.04 (.317)	98.5° (36.9°)	()		(=::::)	(51117)	
	15° (8.3°)	254.9 (74.7)	35.03 (2.210)	6.88 (2.098)	105.1° (40.6°)					
336	20° (11.1°)	242.9 (71.2)	25.03 (1.579)	3.67 (1.119)	103.0° (39.4°)	3/4 (.559)	1140	5210 (2.431)	1500 (7.620)	IV
	30° (16.7°)	218.9 (64.1)	15.04 (.949)	1.42 (.433)	98.7° (37.1°)	()		(=: :==)	(***==*)	
	15° (8.3°)	294.7 (86.3)	40.49 (2.554)	6.60 (2.013)	104.2° (40.1°)					
384	20° (11.1°)	280.8 (82.3)	28.94 (1.826)	3.52 (1.074)	102.2° (39.0°)	3/4 (.559)	1140	6140 (2.865)	1770 (8.992)	IV
	30° (16.7°)	253.1 (74.2)	17.39 (1.097)	1.36 (.415)	98.0° (36.7°)	()		(=::::)	(===)	
500	20° (11.1°)	368.1 (107.9)	37.93 (2.393)	5.81 (1.772)	102.3° (39.1°)	1-1/2	1160	8020	1640	IV
	30° (16.7°)	333.6 (97.7)	22.92 (1.446)	2.29 (.698)	98.3° (36.8°)	(1.119)		(3.743)	(8.331)	
	15° (8.3°)	451.2 (132.2)	62.00 (3.911)	8.78 (2.678)	104.0° (40.0°)					
600	20° (11.1°)	431.1 (126.3)	44.43 (2.803)	4.72 (1.440)	102.0° (38.9°)	1-1/2 (1.119)	1160	9450 (4.410)	1930 (9.804)	IV
	30° (16.7°)	391.0 (114.6)	26.86 (1.694)	1.86 (.567)	98.1° (36.7°)	. (/			()	

Table 35. P Type Standard Output Units** (continued)										
Model No.		Output MBH (kW)	Flow Rate G.P.M. (L/s)	Press. Drop ft/water (m/water)	Final Air. Temp. °F (°C)	Motor H.P. (kW)	R.P.M.	Nominal CFM (m ³ /s)	Outlet Velocity FPM (m/s)	Sound Rating
	20° (11.1°)	519.4 (152.2)	53.52 (3.376)	5.29 (1.613)	103.5° (39.7°)	3		11,000	2250	
720	30° (16.7°)	470.9 (138.0)	32.35 (2.041)	2.08 (.634)	99.5° (37.5°)	(2.237)	1165	(5.133)	(11.430)	IV

^{**}Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 17.
*Speed controller option is required for reduced ratings.

Table 36. Low Output Units Standard Vertical Unit with All Air Ports Open**

Model No.	Water Temp. Drop °F (°C)	Output MBH (kW)	Flow Rate G.P.M. (L/s)	Press. Drop ft/water m/water	Final Air. Temp. °F (°C)	Motor H.P. (kW)	R.P.M.	Nominal CFM (m ³ /s)	Velocity	Sound Rating
	10° (5.6°)	23.9 (7.0)	4.92 (.310)	.26 (.079)	92.9° (33.8°)					
42L	20° (11.1°)	18.9 (5.5)	1.95 (.123)	.04 (.012)	86.1° (30.1°)	1/40 (.019)	1550	668 (.312)	950 (4.826)	I
	30° (16.7°)	14.0 (4.1)	.96 (.061)	.01 (.003)	79.3° (26.3°)	_		,	,	
101.1	10° (5.6°)	16.7 (4.9)	3.45 (.218)	.13 (.040).	92.8° (33.8°)					_
42L*	20° (11.1°)	13.5 (4.0)	1.39 (.088)	02 (.006)	86.4° (30.2°)	1/40 (.019)	1150	470 (.219)	672 (3.414)	I
	10° (5.6°)	41.5 (12.2)	8.56 (.540)	.80 (.244)	91.9° (33.3°)					
64L	20° (11.1°)	34.2 (10.0)	3.53 (.223)	.15 (.046)	86.3° (30.2°)	1/20 (.037)	1550	1200 (.560)	1190 (6.045)	II
	30° (16.7°)	27.0 (7.9)	1.85 (.117)	.04 (.012)	80.7° (27.1°)	_ (**		(/	(
	10° (5.6°)	32.4 (9.5)	6.68 (.421)	.50 (.153)	94.7° (34.8°)					
64L*	20° (11.1°)	26.9 (7.9)	2.77 (.175)	.09 (.027)	88.7° (31.5°)	1/20 (.037)	1150	862 (.402)	858 (4.359)	II
	30° (16.7°)	21.3 (6.2)	1.46 (.092)	.03 (.009)	82.8° (28.2°)	_		, ,		
	10° (5.6°)	48.9 (14.3)	10.09 (.637)	.69 (.210)	93.2° (34.0°)					
80L	20° (11.1°)	40.5 (11.9)	4.17 (.263)	.13 (.040)	87.4° (30.8°)	1/20 (.037)	1550	1360 (.635)	1350 (6.858)	II
	30° (16.7°)	32.0 (9.4)	2.20 (.139)	.04 (.012)	81.7° (27.6°)	_ (**		(,	(
	10° (5.6°)	38.5 (11.3)	7.94 (.501)	.44 (.134)	95.7° (35.4°)					
80L*	20° (11.1°)	32.0 (9.4)	3.29 (.208)	.08 (.024)	89.6° (32.0°)	1/20 (.037)	1150	995 (.464)	992 (5.039)	II
	30° (16.7°)	25.4 (7.4)	1.75 (.110)	.02 (.006)	83.5° (28.6°)	(.037)		(* * * * *)	(2.222)	
	10° (5.6°)	63.7 (18.7)	13.13 (.828)	1.43 (.463)	93.5° (34.2°)					
102L	20° (11.1°)	56.5 (16.6)	5.82 (.367)	.31 (.095)	89.7° (32.1°)		1070	1752 (.818)	1050 (5.334)	II
	30° (16.7°)	49.2 (14.4)	3.38 (.213)	.11 (.034)	85.9° (29.9°)			(/	()	

Table 36. Low Output Units Standard Vertical Unit with All Air Ports Open** (continued)

Model No.	Water Temp. Drop °F (°C)	Output MBH (kW)	Flow Rate G.P.M. (L/s)	Press. Drop ft/water m/water	Final Air. Temp. °F (°C)	Motor H.P. (kW)	R.P.M.	Nominal CFM (m ³ /s)	Velocity	Sound Rating
	10° (5.6°)	54.5 (16.0)	11.24 (.709)	1.06 (.323)	93.5° (34.2°)					
102L*	20° (11.1°)	48.5 (14.2)	4.99 (.315)	.23 (.070)	89.8° (32.1°)	1/8 (.093)	850	1499 (.700)	827 (4.201)	II
	30° (16.7°)	42.4 (12.4)	2.91 (.184)	.08 (.024)	86.1° (30.1°)	_ (.033)		(.700)	(4.201)	
	10° (5.6°)	83.7 (24.5)	17.24 (1.088)	2.40 (.732)	95.4° (35.2°)					
122L	20° (11.1°)	73.9 (21.7)	7.62 (.481)	.51 (.156)	91.3° (32.9°)	1/6 (.124)	1100	2180 (1.017)	1390 (7.061)	III
	30° (16.7°)	64.2 (18.8)	4.41 (.278)	.18 (.055)	87.1° (30.6°)	_ (.12+)		(1.017)	(7.001)	
	10° (5.6°)	95.4 (28.0)	19.66 (1.240)	2.92 (.891)	97.3° (36.3)					
146L	20° (11.1°)	85.5 (25.1)	8.81 (.556)	.65 (.198)	93.4° (34.1)	- 1/6 (.124)	1100	2360 (1.101)	1080 (5.486)	III
	30° (16.7°)	75.6 (22.2)	5.20 (.328)	.24 (.073)	89.5° (31.9)	_ (.12.1)		(1.101)	(5.466)	
	10° (5.6°)	112.3 (32.9)	23.15 (1.460)	2.70 (.824)	95.4° (35.2)					
166L	20° (11.1°)	100.7 (29.5)	10.38 (.655)	.60 (.183)	91.8° (33.2)	1/6 (.124)	1100	2920 (1.363)	1340 (6.807)	IV
	30° (16.7°)	89.2 (26.1)	6.13 (.387)	.22 (.067)	88.1° (31.2)	(124)		(1.303)	(0.007)	
	10° (5.6°)	135.8 (39.8)	27.98 (1.765)	3.85 (1.174)	96.9° (36.1)					
202L	20° (11.1°)	121.8 (35.7)	12.52 (.790)	.85 (.259)	93.0° (33.9)	1/4 (.186)	1100	3390 (1.582)	1560 (7.925)	III
	30° (16.7°)	107.3 (31.4)	7.37 (.465)	.32 (.098)	89.2° (31.8)	_ (/				
	10° (5.6°)	168.5 (49.4)	34.72 (2.190)	6.75 (2.059)	94.5° (34.7)					
252L	20° (11.1°)	153.8 (45.1)	15.85 (1.000)	1.56 (.476)	91.4° (33.0)	1/4 (.186)	1100	0 4507 (2.103)	1270 (6.452)	IV
	30° (16.7°)	139.1 (40.8)	9.56 (.603)	.61 (.186)	88.4° (31.3)	-		,	, ,	
	10° (5.6°)	188.9 (55.3)	25.95 (1.637)	3.92 (1.196)	94.5° (34.7)					
280L	20° (11.1°)	180.1 (52.8)	18.56 (1.171)	2.10 (.641)	92.9° (33.8)	1/2 (.373)	1100	5040 (2.352)	1420 (7.214)	IV
	30° (16.7°)	162.7 (47.7)	11.18 (.705)	.82 (.250)	89.7° (32.1)	-		,	, ,	
	10° (5.6°)	220.9 (64.7)	30.35 (1.915)	5.26 (1.604)	95.7° (35.4)					
336L	20° (11.1°)	210.6 (61.7)	21.70 (1.369)	2.81 (.857)	94.1° (34.5)	3/4 (.559)	1140	5700 (2.660)	1610 (8.179)	IV
	30° (16.7°)	189.9 (55.6)	13.05 (.823)	1.09 (.332)	90.7° (32.6)					
	10° (5.6°)	260.7 (76.4)	35.82 (2.260)	5.24 (1.598)	96.4° (35.8)					
384L	20° (11.1°)	248.5 (72.8)	25.61 (1.616)	2.80 (.854)	94.7° (34.8)	3/4 _ (.559)	1140	6600 (3.080)	1870 (9.500)	IV
	30° (16.7°)	224.2 (65.7)	15.40 (.971)	1.09 (.332)	91.3° (32.9)			. ,	. ,	

Table 36. Low Output Units Standard Vertical Unit with All Air Ports Open** (continued)

Model No.	Water Temp. Drop °F (°C)	Output MBH (kW)	Flow Rate G.P.M. (L/s)	Press. Drop ft/water m/water	Final Air. Temp. °F (°C)	Motor H.P. (kW)	R.P.M.	Nominal CFM (m ³ /s)	Outlet Velocity FPM (m/s)	Sound Rating
500L	20° (11.1°)	310.5 (91.0)	32.00 (2.019)	4.23 (1.290)	90.5° (32.5)	1-1/2	1160	0 9380 (4.377)	1860 (9.449)	IV
	30° (16.7°)	281.7 (82.5)	19.35 (1.221)	1.67 (.509)	87.7° (30.9)	(1.119)				
	10° (5.6°)	394.4 (115.6)	54.19 (3.418)	6.83 (2.083)	95.3° (35.2)					
600L	20° (11.1°)	377.0 (110.5)	38.85 (2.451)	3.68 (1.122)	93.7° (34.3)	1-1/2 (1.119)	1160	10,300 (4.807)	2060 (10.465)	IV
	30° (16.7°)	342.2 (100.3)	23.51 (1.483)	1.45 (.442)	90.6° (32.6)	-		, ,	,	
720L	20° (11.1°)	453.7 (132.9)	46.76 (2.950)	4.11 (1.254)	95.1° (35.1)	3	1165	11,900	2380	IV
	30° (16.7°)	411.7 (120.6)	28.28 (1.784)	1.62 (.494)	91.9° (33.3)	(2.237)		(5.553)	(12.090)	

^{**}Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 17.
*Speed controller option is required for reduced ratings.

Table 37. HOT WATER CALCULATIONS	AND CORRECTION FACTOR P STYLE	
		EXAMPLE: 042 UNIT SIZE 042 Entering Water Temp. 160°F Entering Air Temp. 40°F Water Temperature Drop 10°F
I. CAPACITY @ 20° TD: A. For 200° EWT, 60° EAT	Read output directly from Table 35 & Table 36, 22,700 BTU/HR (Ref., Std. 042, p. 12).	
B. For EWT and/or EAT above or below Standard	Multiply output from Table 35 & Table 36 by factor from Table 38.	22,700 x .878 = 19,931 BTU/HR.
II. CAPACITY AT OTHER TD's A. For TD's from 5 to 60°F	Multiply output obtained in IA. or IB. (above) by appropriate factor from Table 39	IA - 22,700 x 1.15 = 26,105 BTU/HR. -OR- IB - 19,931 x 1.15 = 22,921 BTU/HR.
III. GPM AT OTHER TD's A. For TD's from 5 to 60°F	Multiply GPM of unit for 20° TD, from Table 35 & Table 36 by appropriate factor from Table 39	2.34 x 2.30 = 5.38 GPM (Applies only to units with. Std. 200° EWT, 60° EAT.) For all others calculate using formula - GPM = BTU/500 x TD
IV. PRESSURE LOSS AT OTHER TD's A.ForTD's from 5 to 60°F	Multiply P.D. of unit for 20° TD, from Table 35 & Table 36 by appropriate factor from Table 39	$.06 \times 5.00 = .30 \text{ Ft. H}_2\text{O}$

Table 38. HOT WATER CONVERSION FACTORS BASED ON 200° ENTERING WATER 60° ENTERING AIR 20° TEMPERATURE DROP

ENTERING AIR		ENTERING WATER TEMPERATURE -20° WATER TEMPERATURE DROP											
TEMPERATURE °F (°C)	100° (38°)	120° (49°)	140° (60°)	160° (71°)	180° (82°)	200° (93°)	220° (104°)	240° (116°)	260° (127°)	280° (138°)	300° (149°)		
30° (-1)	0.518	0.666	0.814	0.963	1.120	1.268	1.408	1.555	1.702	1.850	1.997		
40° (4)	0.439	0.585	0.731	0.878	1.025	1.172	1.317	1.464	1.609	1.755	1.908		
50° (10)	0.361	0.506	0.651	0.796	0.941	1.085	1.231	1.375	1.518	1.663	1.824		
60° (16)	0.286	0.429	0.571	0.715	0.857	1.000	1.143	1.286	1.429	1.571	1.717		
70° (21)	0.212	0.353	0.494	0.636	0.777	0.918	1.060	1.201	1.342	1.483	1.630		
80° (27)	0.140	0.279	0.419	0.558	0.698	0.837	0.977	1.117	1.257	1.397	1.545		
90° (32)	0.069	0.207	0.345	0.483	0.621	0.759	0.897	1.035	1.173	1.311	1.462		
100° (38)	0	0.137	0.273	0.409	0.546	0.682	0.818	0.955	1.094	1.230	1.371		

To obtain the BTU capacity for conditions other than those in the basic capacity tables, multiply the basic rating (200° entering water, 60° entering air) by the proper constant from the above tables.

Table 39. HOT WATER BTU, GPM AND PRESSURE LOSS FACTORS BASED ON STANDARD CONDITIONS OF 200°F ENTERING WATER 60°F ENTERING AIR & 20°F WATER DROP

USE FACTORS FROM THIS TABLE TO OBTAIN		TEMPERATURE DROP °F (°C)									
APPROXIMATE RESULTS	5 (3)	10 (6)	15 (8)	20 (11)	25 (14)	30 (17)	40 (22)	50 (28)	60 (33)		
To obtain BTU for other Water Temperature Drops, multiply basic BTU rating by applicable Factor.	1.25	1.15	1.08	1.00	.94	.90	.83	.76	.72		
To obtain GPM for other Water Temperature Drops, multiply basic GPM rating by applicable Factor.*	5.00	2.30	1.44	1.00	.74	.59	.40	.30	.24		
To obtain Pressure Loss Feet of Water for other temperature Drops, multiply Basic loss at 20° drop by Factor.	10.00	5.00	2.00	1.00	.60	40	.20	.13	.07		

Table 40. *MINIMUI	VI WATE	R FLOW	- GPM							
MODEL No.	42	64	80	102	146	166	202	252	336	384
MIN. GPM (L/s)	.55 (.035)	.55 (.035)	.55 (.035)	.55 (.035)	.82 (.052)	.82 (.052)	1.10 (.069)	1.10 (.069)	1.10 (.069)	1.10 (.069)

Table 41.	*HEATING CAPAC	ITY FAC	TORS	FOR VA	RIOUS	RATES (F WATE	R FLOW
% of Rated	l Water Flow	25%	50%	75%	100%	125%	150%	175%
Btu/Hr Hea	ating Capacity	.80	.89	.96	1.00	1.04	1.07	1.10

Maintenance

Periodic Service

⚠WARNINGHazardous Voltage

Open all disconnect switches and secure in that position before servicing unit. Failure to do so may result in personal injury or death from electrical shock.

△CAUTION Rotating Components

Allow rotating fans to stop before servicing to avoid serious injury to fingers and hands.

Because of the simple design of the steam and hot water unit heaters, they are nearly maintenance free. However, depending on the environment, simple maintenance practices should be adopted.

Periodically check the finned surfaces and vacuum these as often as necessary to remove any accumulation of lint and dirt. Check fan blades and remove dirt accumulation. If fan blades are not cleaned they tend to become unbalanced.

Most of the motors supplied on the unit heaters have either ball bearings or sleeve bearings and should not require lubrication for long periods of time. It is however advisable that motor maintenance and lubrication recommended by the motor manufacturer be followed.

Check motors for dirt and dust accumulation, and remove any accumulation as often as necessary. Open type motors may overheat if the dirt or dust is not removed from ventilation openings.

Motor Lubrication

Sleeve Bearings

Motors with oilers or oil holes are lubricated before shipment with a good grade of electric motor oil. Refill when necessary, with the motor at a stand-still, until oil reaches the proper level.

Use SAE 20W non detergent oil for motors operatingin ambient temperatures of 32°F to 100°F (0°C to 38°C). Below 32°F (0°C), SAE 10W non detergent oil will be required.

The frequency of oiling will depend upon operating conditions and length of running time. Inspect the oilers or oil holes when cleaning the unit. If the unit has a fractional horse-power motor, lubricate at least once a year. Under high ambient conditions or constant fan operation, fractional horse-power motors should be lubricated every 90 days. On those motors without oilers or oil holes, follow the instructions given on the motor nameplate.

Ball Bearings

Ball bearing motors are prelubricated and normally not equipped with grease fittings. However, motors are equipped with removable grease plugs to allow installation of grease fittings if desired by owner. Motor manufacturers do not recommend or require on the job lubrication of ball bearing motors.

If on the job lubrication is required by the owner, use the following procedure: With the motor at a stand-still, remove the vent and grease plugs. Install grease fitting and add grease sparingly. Remove the old grease from the vent relief chamber. Operate the motor a few minutes before reinstalling the vent plug to allow excess grease to escape. If there is evidence of grease working out around the motor shaft, less grease should be added and the greasing periods lengthened. If grease continues to appear, take the motor to the motor manufacturer's authorized service station for repair.

Note: Consult local motor manufacturer's service facility for information on type of grease and oil to be used.

Note: The heater system should be checked once a year by a qualified technician. All maintenance/service information should be

recorded accordingly on the

inspection sheet provided in this manual.

Should maintenance be required, perform the following inspection and service routine:

Inspect the area near the unit to be sure that there is no combustible material located within the minimum clearance requirements listed in this manual.

Cleaning the Unit

The unit casing, fan, diffuser and coil should be cleaned thoroughly once a year. Coil heat transfer efficiency depends on cleanliness. The following recommended procedures may be performed when lubricating the motor and cleaning the coil.

- Wipe all excess lubricant from the motor, fan and casing. Clean the motor thoroughly. A dirty motor will run hot and eventually cause internal damage.
- 2. Clean the coil:
 - a. Loosen the dirt with a brush on the fan side of the coil.
 Operate the motor allowing the fan to blow the loosened dirt through the unit.
 - Use high pressure air or steam on the side of the coil away from the fan.

Note: A piece of cheesecloth or a burlap bag may be used to collect the large particles during the cleaning process.

- Clean the casing, fan blades, fan guard and diffuser using a damp cloth. Any rust spots on the casing should be cleaned and repainted.
- Tighten the fan guard, motor frame and fan bolts. Check the fan for clearance in the panel orifice and free rotation.

Maintenance

Symptoms	Possible Cause(s)	Corrective Action
A. Leaking coil	 Frozen coil. Defective coil. Corrosion. Leak in joint. 	 Replace. Replace. Replace Braze joint if joint is exposed where leak has occurred.
B. Poor output on steam	 Check for air in coil. Lint on coil fins 	Repair or replace thermostatic air vent. Clean coil and fins. Check filter and clean.
C. Poor output on steam or hot water	No circulation of water through coil. Short cycling of motor. Backward rotating motor.	Check circulation pump. Check for blocked tubes. Check voltage and correct. Check for linted coil and clean. Check for defective overload and repair or replace motor. On single phase motor replace motor. On three phase motor, reverse two leads to change rotation.
D. Noisy or vibrating unit	 Damaged fan blade. Dirty fan blade. 	1. Change fan blade. 2. Clean fan blade.
Table 43. Unit Equipment Start-Up		
Customer	Job Name &	Number
	Pre-Inspection Information (with	power off)
Type of equipment: Unit Heater		
Serial Number	Model Numb	er
Name Plate Voltage	Name Plate	Amperage
Steam	Hotwater	
Questions/Checklist		
Are all panels in place?		
Has the unit suffered any external dama		
Does the piping and electric wiring appe	ear to be installed in a professional manner	?
Has the piping and electric been inspect	ed by the local authority having jurisdiction	1?
Is the supply properly sized for the equi	ipment?	
Were the installation instructions follows	ed when the equipment was installed?	
Have all field installed controls been ins	talled?	
Do you understand all the controls on the	nis equipment?	

Additional "P" Model Instructions

Fan and Motor Assembly

For cleaning or maintenance purposes, the fan and motor assembly may be removed easily from the Unit Heater. The motor is attached to the fan guard which is, in turn, mounted to the top or back panel of the unit as shown in Figure 58.

On Vertical Units, reach up through the fan and remove the fan guard mounting screws. Lower the motor, fan and fan guard assembly down through the fan outlet. If desired, the top and bottom panels may be removed from the coil by taking out the four panel mounting bolts. See Figure 58.

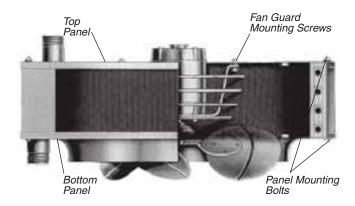


Figure 58. Cross Section View

Warranty Info

LIMITED WARRANTY: S Model

HORIZONTAL STEAM & HOT WATER UNIT HEATERS

The Manufacturer warrants to the original owner at the original installation site that the Horizontal Steam and Hot Water Unit Heaters (the "Product") will be free from defects in material and workmanship for a period not to exceed one (1) year from startup or eighteen (18) months from date of shipment from the factory, whichever occurs first. If upon examination by the Manufacturer the Product is shown to have a defect in material or workmanship during the warranty period, the Manufacturer will repair or replace, at its option, that part of the Product which is shown to be defective.

This limited warranty does not apply:

- a. if the Product has been subjected to misuse or neglect, has been accidentally or intentionally damaged, has not been installed, maintained or operated in accordance with the furnished written instructions, or has been altered or modified in any way.
- to any expenses, including labor or material, incurred during removal or reinstallation of the defective Product or parts thereof.
- c. to any workmanship of the installer of the Product.

This limited warranty is conditional upon:

- a. shipment, to the Manufacturer, of that part of the Product thought to be defective. Goods can only be returned with prior written approval from the Manufacturer. All returns must be freight prepaid.
- determination, in the reasonable opinion of the Manufacturer, that there

exists a defect in material or workmanship.

Repair or replacement of any part under this Limited Warranty shall not extend the duration of the warranty with respect to such repaired or replaced part beyond the stated warranty period.

THIS LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, AND ALL SUCH OTHER WARRANTIES. INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY DISCLAIMED AND **EXCLUDED FROM THIS LIMITED** WARRANTY. IN NO EVENT SHALL THE MANUFACTURER BE LIABLE IN ANY WAY FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OF ANY NATURE WHATSOEVER, OR FOR ANY AMOUNTS IN EXCESS OF THE SELLING PRICE OF THE PRODUCT OR ANY PARTS THEREOF FOUND TO BE DEFECTIVE. THIS LIMITED WARRANTY GIVES THE ORIGINAL OWNER OF THE PRODUCT SPECIFIC LEGAL RIGHTS. YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY BY EACH JURISDICTION.

LIMITED WARRANTY: P Model

VERTICAL STEAM & HOT WATER UNIT HEATERS

The Manufacturer warrants to the original owner at the original installation site that the Vertical Steam and Hot Water Unit Heaters (the "Product") will be free from defects in material and workmanship for a period not to exceed one (1) year from startup or eighteen (18) months from date of shipment from the factory, whichever occurs first. If upon examination by the Manufacturer the Product is shown to have a defect in material or workmanship during the warranty period, the Manufacturer will repair or replace, at its option, that part of the Product which is shown to be defective.

This limited warranty does not apply:

- a. if the Product has been subjected to misuse or neglect, has been accidentally or intentionally damaged, has not been installed, maintained or operated in accordance with the furnished written instructions, or has been altered or modified in any way.
- to any expenses, including labor or material, incurred during removal or reinstallation of the defective Product or parts thereof.
- c. to any workmanship of the installer of the Product.

This limited warranty is conditional upon:

- a. shipment, to the
 Manufacturer, of that part of
 the Product thought to be
 defective. Goods can only be
 returned with prior written
 approval from the
 Manufacturer. All returns
 must be freight prepaid.
- b. determination, in the reasonable opinion of the Manufacturer, that there exists a defect in material or workmanship.

Repair or replacement of any part under this Limited Warranty shall not extend the duration of the warranty with respect to such repaired or replaced part beyond the stated warranty period.

THIS LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, AND ALL SUCH OTHER WARRANTIES, INCLUDING WITHOUT LIMITATION **IMPLIED WARRANTIES OF** MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY DISCLAIMED AND **EXCLUDED FROM THIS LIMITED** WARRANTY. IN NO EVENT SHALL THE MANUFACTURER BE LIABLE IN ANY WAY FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OF ANY NATURE WHATSOEVER, OR FOR ANY AMOUNTS IN EXCESS OF THE

Warranty Info

SELLING PRICE OF THE PRODUCT OR ANY PARTS THEREOF FOUND TO BE DEFECTIVE. THIS LIMITED WARRANTY GIVES THE ORIGINAL OWNER OF THE PRODUCT SPECIFIC LEGAL RIGHTS. YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY BY EACH JURISDICTION.

Trane
A business of American Standard Companies
www.trane.com

For more information, contact your local Trane office or e-mail us at comfort@trane.com

Literature Order Number	UH-SVX01A-EN
Date	05/07
Supersedes	UH-IM-2F (09/99)

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.