
®MOTOROLA

M6809

EXORciser

User's Guide

M6809EXOR(D1)

MICROSYSTEMS

M6809

EXORciser

USER'S GUIDE

M6809EXOR (Dl}

SEPTEMBER 1979

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no res pons i bi 1 ity is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc.

First Edition

©Copyright 1979 by Motorola Inc.

TABLE OF CONTENTS
Page

CHAPTER 1 GENERAL INFORMATION
1.1 INTRODUCTION 1-1
1.2 FEATURES 1-1
1.3 SPECIFICATIONS 1-2
1.4 EQUIPMENT SUPPLIED 1-2
1.5 GENERAL DESCRIPTION 1-3
1.5.1 EXORciser Memory Parity 1-3
1.5.2 Dual Map Concepts 1-5
1.5.3 Second level Interrupt Feature 1-7
1.5.4 Dynamic System Bus 1-10

CHAPTER 2 INSTALLATION INSTRUCTIONS AND HARDWARE PREPARATION
2.1 INTRODUCTION 2-1
2.2 UNPACKING INSTRUCTIONS 2-1
2.3 INSPECTION 2-1
2.4 INSTALLATION INSTRUCTIONS 2-1
2.5 DATA TERMINAL SELECTION AND CONNECTIONS 2-2
2.5.1 RS-232C Interconnections 2-2
2.5.2 20mA Current loop Interconnections 2-2
2.6 PREPARATION OF SYSTEM MODULES 2-2

CHAPTER 3 OPERATING INSTRUCTIONS
3.1 INTRODUCTION 3-1
3.2 SWITCHES AND INDICATORS 3-1
3.2.1 Front Panel Switches and Indicators 3-1
3.2.2 Switches on the DEbug Module 3-2
3.3 INITIALIZATION 3-3
3.3.1 Power ON/OFF Procedures 3-3
3.3.2 Baud Rate Selection 3-4
3.3.3 Start-Up Procedures 3-4
3.4 USING THE DUAL MEMORY MAP 3-5
3.5 ADDRESS SELECTION 3-5
3.6 EXbug COMMANDS 3-6
3.6.1 Four-Character Commands 3-8
3.6.2 Single Character Commands 3-14
3.6.2.1 Register Display and Change 3-14
3.6.2.2 Program Execution Control 3-16
3.6.2.3 Program Execution 3-19
3.6.2.4 Memory Parity Control 3-20
3.6.2.5 I/0 Control 3-22
3.6.2.6 Memory Search 3-23
3.6.2.7 Miscellaneous 3-26
3.6.3 Memory Change 3-27
3.6.3.1 Adding EXbug Commands 3-28
3.7 EXbug SUBROUTINES AND ENTRY POINTS 3-29

CHAPTER 4 SYSTEM DEVELOPMENT USING EXORciser
4.1 INTRODUCTION 4-1
4.2 THE EXORciser IN SYSTEM DEVELOPMENT 4-1
4.3 PERIPHERAL INTERFACING 4-1
4.4 PROCEDURE FOR DESIGN 4-3
4.5 EXORciser CONFIGURATION 4-5
4.6 SYSTEM ADDRESS SELECTION 4-5
4.7 SECOND LEVEL INTERRUPT 4-5

i

CHAPTER 4 {cont'd)
4.8 MEMORY ASSIGNMENTS
4.9 EXORciser CONFIGURATION FOR SYSTEM EMULATION
4.10 TESTING PROTOTYPE OR PRODUCTION SYSTEMS
4.11 PRECAUTIONS WHEN USING THE USER SYSTEM EVALUATOR
4.12 SYSTEM EVALUATION AND DEBUG PROCEDURES
4.12.1 Memory Loader
4.12.2 Abort Function
4.12.3 Default Debug Offset
4.12.4 Memory Change Function
4.12.5 Breakpoint, Trace, and Halt-on-Address/

4.12.5.1
4.12.5.2
4.12.5.3
4.12.5.4
4.12.6
4.13

CHAPTER 5
5.1
5.2

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H

APPENDIX I

FIGURE 1-1.
1-2.
1-3.
1-4.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
4-1.
4-2.
4-3.
5-1.

Scope Sync Functions
Breakpoints
Trace
Halt-on-Address
Scope Sync

Error Correction
SOFTWARE DEVELOPMENT USING EXORciser

THEORY OF OPERATION
INTRODUCTION
BASIC EXORciser BLOCK DIAGRAM DESCRIPTION

EXORciser BUS DESCRIPTION AND SPECIFICATIONS
EXbug 2.1 PROGRAM FOR EXORciser
PERIPHERAL REQUIREMENTS FOR EXORciser OPERATION
USE OF THE ASR33 TELETYPEWRITER WITH EXORciser
THE RS-232C STANDARD
TI TERMINAL DESCRIPTION
EXECUTIVE MAP -- USER MAP INTERFACE
COMPATIBILITY AMONG M6809 EXORciser, EXORciser II, and

M6800 EXORciser I MODULES
DIRECT MEMORY ACCESS ON THE DEVELOPMENT SYSTEM BUS

LIST OF ILLUSTRATIONS

EXORciser Simplified Block Diagram
EXORciser Dual Memory Map
Interrupt Vectors in User Map
Interrupt Vectors for Executive Map and Single Map Mode
EXORciser Front Panel Switches and Indicators
Toggle Switches on DEbug Module
PRNT Example
Tape Format
PNCH Example
LOAD Example
VERF Example
SRCH Example
MOOS Line Printer Driver
System Designing and Verifying Procedure
EXORciser, the Development Tool
Using Memory Change to Calculate a Relocatable Address
EXORciser Simplified Block Diagram

ii

Page

4-6
4-6
4-7
4-9
4-9
4-9
4-9
4-9
4-10
4-10

4-11
4-11
4-11
4-12
4-12
4-12

5-1
5-1

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1

I-1

1-4
1-6
1-7
1-8
3-1
3-2
3-9
3-10
3-11
3-12
3-13
3-13
3-24
4-2
4-4
4-10
5-3

TABLE 1-1.
1-2.
1-3.
1-4.
1-5.
3-1.
3-2.
3-3.

LIST OF TABLES

EXORciser Specifications
Second Level Interrupt Rules
Second Level NMI Rules
Second Level SWI Rules
IRQ, FIRQ, SWI2, and SWI3 Rules
EXbug Commands
Dual Map Mode Second Level SWI Options
EXbug Routines

; ; ;

1-2
1-9
1-9
1-10
1-10
3-6
3-25
3-30

1.1 INTRODUCTION

CHAPTER 1

GENERAL INFORMATION

The M6809 EXORciser Development System is the basic tool for designing and
developing M6809 microprocessor-based systems. It is an extremely powerful and
easy-to-use development system that has been designed to be highly user
oriented, reducing system development time and cost. The M6809 EXORciser
incorporates several advanced features, including Dual Memory Map mode of
operation and the ability to develop higher performance systems using the MC68A
and MC68B series parts (1.5 MHz and 2.0 MHz, respectively).

Documentation relevant to the M6809 EXORci ser Development System is separated
into two major categories: the M6809 EXORciser User's Guide and various
supplemental manuals. This manual (the M6809 EXORciser User's Guide) is the
primary guide for using the entire M6809 EXORciser system, and provides general
information, installation and set-up instructions, operating instructions,
guidelines to follow for system development, and theory of operation for the
entire system. It al so provides a thorough description of each M6809 EXbug
command, as well as all of the entry points for user access to the various sub
routines. Specifically excluded from this manual are operating instructions for
development system modules requiring special operating procedures (such as the
PROM Programmer III Module or System Performance Monitor). Operating instruc
tions for these modules are provided in their accompanying User's Guide.

Supplemental manuals are provided with this User's Guide. These supplements
offer detailed information on each of the standard and optional modules used
with the M6809 EXORciser, including schematic diagrams, detailed theory of
operation, and a complete parts list.

1.2 FEATURES

NOTE
THROUGHOUT THIS USER'S GUIDE, WHEREVER
EXORciser, EXbug, MPU MODULE, OR DEbug
MODULE TERMS ARE USED, THE TYPE NUMBER
M6809 IS IMPLIED, UNLESS OTHERWISE SPECIFIED.

The features of the EXORciser include:

• Versatile and easily expandable modular assembly tool used to evaluate and
debug the user's system hardware and software •

• Dual Memory Map mode of operation •

• Selectable clock speeds of up to 2.0 MHz •

• 32K of Development System Random Access Memory (RAM) •

• 8 selectable baud rates from 110 to 9600 baud •

• A single RS-232C compatible serial communications interface •

• A chassis containing a 14-card motherboard and the necessary +5 Vdc and
+12 Vdc power supplies.

1-1

1.3 SPECIFICATIONS

Table 1-1 identifies the basic EXORciser specifications.

TABLE 1-1. EXORciser Specifications

CHARACTERISTICS SPECIFICATIONS

Power Requirements 95-135/205-250 VAC
47-420 Hz
250 w

Word Size

Data 8 bits

Address 16 bits

Instruction U__Q_ to 5 ~tes

Memory Ca_B_abi l it_l. 65i536 b_l.tes _{_maximum) in each ma_£.

Instructions 59 variable lef'!..9_th

~stem S_£.eed Not over 2.0 MHz

Interru_Q_ts 3 hardware and 3 software

Data Terminal Interface
Characteristics

Baud Rates 110, 150, 300, 600, 1200, 2400, 4800, and 9600
_{_Jum_Q_er Selectablel

Signal Characteristics TTY (20 mA neutral current loop) or
EIA RS-232C com_patible

Reader Control signal Control signal for TTY devices modified for
external control

O_Q_erat i ng Tem_E_eratures 0 to 55°C

1.4 EQUIPMENT SUPPLIED

The EXORciser is shipped with the chassis (including power supply, motherboard,
and cover), MPU Module, DEbug Module, and 32K bytes of either static or dynamic
RAM (depending on customer preference). The Macro Assembler/Linking Loader and
Text Editor are also included in a media specified by the customer (either paper
tape, cassette, or diskette). This manual, together with the appropriate User's
Guides, is also included.

1-2

1.5 GENERAL DESCRIPTION

The EXORciser consists of a chassis with power supply and two essential hard
ware modules -- the MPU Module and the DEbug Module. Optional memory modules
and peripheral modules may be configured in the system, as required by the user.
The MPU Module provides the central time base for the system. The 2 MHz M6809
microprocessor chip is located on this module. The DEbug Module includes the
system tenninal interface and 3K bytes of finnware referred to as EXbug. This
finnware is organized into a 2K ROM and a lK ROM so that all I/0 utility
routines reside in the lK part. These routines are available to the user, and
the single lK ROM may be replaced by the user in situations where special I/0
routines are desirable. EXbug represents the basic system monitor for the
EXORciser, through which the user may enter commands to examine and to change
memory, to trace program execution, or to load additional systems software. All
EXbug commands are described in Chapter 3 of this manual.

Figure 1-1 shows a block diagram of the EXORciser configuration, with each of
the large boxes representing a plug-in module. Along the left of the diagram,
it can be seen that the configuration inc 1 udes at 1 east two systems that
timeshare the same MPU Module -- the debug system and the user system (the one
under development). In fact, if you include the Software Development System to
be discussed later, there are really three systems encompassed by the EXORciser.
The debug system is a complete operating M6809 system, which includes a
Microprocessor, RAM, ROM, and I/0. It is a specialized microcomputer with
unique hardware and software features to aid the designer.

MOOS is the optional software package that provides a complete disk operating
and file management system to the EXORciser. MOOS is described in detail in the
MOOS Reference Manual, and requires at least 16K bytes of RAM.

In order for the user to be ab 1 e to take full advantage of the system develop
ment aids provided, the following system concepts must be fully understood:

• Memory Parity
• Dual Map
• Second Level Interrupt Vectors
• Dynamic System Bus

1.5.1 EXORciser Memory Parity

Both the Static RAM and Dynamic RAM Modules, available for 2 MHz operation with
the EXORci ser, provide parity detect ion that interfaces with the system bus.
The DEbug Module may be enab 1 ed vi a an EXbug command to monitor this parity
error signal. If enabled, the occurrence of a parity error will cause a non
maskab 1 e interrupt (NMI) to be generated, and EXbug wi 11 print a parity error
message to warn the system user of the fault. While writing to the disk, a
memory parity error wil 1 generate a disk time-out error instead of a parity
error message. A parity error generated while examining User Map memory from
EXbug will result in EXbug switching to the Executive mode.

Because of the extensive flexibility for configuring hardware in an EXORciser,
the system cannot automatically initialize all memories to the proper parity at
power start-up without some direction from the user. As a result, EXbug starts
up following POWER-ON or RESTART by refusin~ to accept any parity errors from
memory modules. (Enabling and disabling parity does not involve modifying hard-
ware; i.e., the parity detection logic is always active on the memory modules.)

, ~

In order to properly initialize the system to take advantage of memory parity,
the user must first initialize all locations in the memory modules (EXbug
command "I") and then must turn on the enabling indicator in the EXbug firmware
(command ";;"). Chapter 3 contains a complete explanation of each of these
commands. If a parity error occurs and the user has enabled this feature, the
message "PARITY" wi 11 be printed by EXbug.

f
DE bug
System

User
System

UI

iii
c

.!2'
(/)

e ...
c
0
u

<O -

E, R/W

RAM
Module

Additional
RAM's, ROM's

or
I/O's

Optional
1/0

Module

r------,
I RS232C I

.-i---------t~I Terminal I

UI

" ID

19 .,
0

L _____ J

r----1
t------4 20 mA

TTY I

d
a:

t
~
" a:

L ____ _J

8 Control/
Status Lines

32 Input/
Output Lines

FIGURE 1-1. EXORciser Simplified Block Diagram

1-4

1.5.2 Dual Map Concepts

The DEbug Module provides the EXORciser with the ability to address two separate
64K memory maps, as illustrated in Figure 1-2. To accomplish this, the DEbug
Module takes the Val id Memory Address (VMA) signal from the MPU Module and
converts it to two other signals: Valid User Address (VUA) and Valid Executive
Address (VXA). All EXORci ser hardware modules may be configured to respond to
one of these enabling signals. As a result, two complete maps of 64K bytes are
addressable for either random access data storage or for data I/0.

EXbug is always assigned to the Executive map, regardless of Single or Dual Map
mode. The user selects Dual or Single Map mode vi a a switch on the DEbug
Module. In the Dual Map mode, the generation of the VUA and VXA signals is
under EXbug control. In this mode, the user can specify which map he wishes to
use via EXbug commands. However, when using the User map, the VUA light on the
front panel will not be on until a program is actually being run in the User
map. This occurs because EXbug, in the Executive map, is still in control of
the system until control is given to a program in the User map.

MOOS must be run in the Executive map when the system is in the Dual Map mode
because MOOS must access EXbug and its I/0 facilities. This leaves the full 64K
User map available without restrictions. The Executive map has full access to
the User map. However, the User map has only 1 imited access to the Executive
map. Control can be passed from the User map to the Executive map only by use
of software interrupts (SWI's) when properly enabled by the user.

The DEbug Module also provides for a Single Map mode of operation, as
illustrated in Figure 1-2. Mere, all addresses of $FOOO and larger are assigned
to VXA (EXbug), and all addresses smaller than $FOOO are assigned to VUA. (This
assignment is controlled by hardware - not by EXbug firmware.) In this mode,
all hardware modules must be configured for VUA operation. Thus, MOOS is effec
tively run in VUA when the EXORciser is in the Single Map mode. Modules used in
this mode must not use addresses $FOOO or larger. Programs run in this mode can
access EXbug, but cannot reside in the EXbug address range. The user must also
account for the presence of the MOOS ROM and I/0 devices when 1 ayi ng out his
development memory map, if MOOS is configured in the system. For more
information on MOOS, see EXORdisk User's Guide.

The debug system memory is set up so that the very top of memory is RAM, in
contrast to ROM or PROM which would normally be used. This is done so that the
interrupt vectors can be changed to suit any user requirements. A PROM address
is switched in during restart to get the EXORciser started (in EXbug). The
EXbug initialization routine sets the RAM interrupt vector locations to values
used by EXbug. IRQ is always masked and is not used by EXbug.

The DEbug Module contains hardware that controls the switching of the maps.
This hardware may be accessed only via software running under VXA. This
normally means that the map control is handled completely by the EXbug firmware.
The user may, however, set up service routines in the Executive Map that can
control the map selector. By setting the proper trigger value, then by
executing the proper instruction that wi 11 cause the map to change on the
appropriate subcycle of an instruction execution, the User map dynamicall.y
transfers program control from one map to another. The Software Interrupt (SWIJ
servicing routines in EXbug play a major role in accomplishing this control.
Normal system development using the EXORciser does not require explicit map
control by the user. EXbug provides complete access and control to the User map
for system development requiring an unobstructed 64K bytes of address space
(User map).

1-5

FFFF
Interrupt
Vectors

FFF2

EX bug
ROM/
RAM

FOOO

Pl As

Ecoo1

Disk
Controller

ESOO

Non-MOOS
RAM

User
Program

Area

MOOS

Initialization

2000

Overlay
Area

-- - --------
MOOS

Functions

0000
Executive Map

FIGURE 1-2.

VXA

VUA

VXA, VUA

EXORciser Dual Memory Map

1-6

User
Program

Area

User Map

FFFF

0000

1.5.3 Second Level Interrupt Feature

EXbug provides for the SWI and NMI features of the M6809 to be available to the
user without restricting EXbug use of them. This capability is referred to as
the second level interrupt feature. The EXbug use of the interrupt is the first
level and has the highest priority. EXbug gains control first, then decides if
user processing at the second level is specified. If the interrupt is not an
EXbug interrupt, EXbug passes control on to the second level service routine.
Using this technique, breakpoints can be set in a program that uses SWI's for
its own use (EXbug uses SWI's to mark breakpoints). The second level service
routines are reached via an address vector, just as normal interrupt service
routines. However, the locations where the vectors are kept vary, depending on
the map in use and whether the system is in the Single or Dual Map mode.

In the User map, the second level vectors are at the same locations as the
normal vectors -- i.e., $FFF2 through $FFFF. Si nee EXbug vectors must be at
these locations in the Executive map, the second level Executive map vectors are
located indirectly; that is, the address contained in locations $FFOO and $FF01
in the Executive map points to the last byte of the second level reset vector.
In this manual, this location is referred to symbolically as "ATOP". The other
vectors are in the normal order, as illu.strated in Figure 1-3.

Reset FFFE, FFFF (used by user restart and ;g command)

NMI FFFC, FFFD

SWI FFFA, FFFB (2nd level if breakpoints set)

IRQ FFF8, FFF9

FIRQ FFF6, FFF7

SWI2 FFF4, FFF5

S\·JI 3 FFF2, FFF3

~ ~

FIGURE 1-3. Interrupt Vectors in User Map

EXbug only gains control of non-EXbug NMI's if the system is in the Single Map
mode or if instructions are being executed from the Executive map of the Dual
Map mode when the NMI occurs. In both cases, EXbug uses the indirect approach
through the address in $FFOO, $FF01 to determine the address of the second level
service routine. Figure 1-4 illustrates this process.

The action taken due to a nonbreakpoint SWI is determined by the value of EXbug
E parameter (see the E command description, paragraph 3.6.1). A non
breakpoint SWI can generate an error message, or be serviced by the second level
routine. The address of the second level SWI routine in the User map is
obtained from $FFFA, $FFFB. For the Executive map and the Single Map mode, the
address of the second level SWI routine is obtained indirectly through $FFOO,
$FF01. EXbug does not handle IRQ's, so they can be handled directly by the user
in whichever map the interrupt is recognized.

1-7

The user must put the IRQ, FIRQ, SWI2, and SWI3 vectors at $FFF2 through $FFF9
in the User map. In the Executive map and the Single Map mode, the indirect
pointer in $FFOO, $FF01 is used to establish these vectors. During abort and
restart, EXbug moves the IRQ, FIRQ, SWI2, and SWI3 vectors specified by the
address in $FFOO, $FF01 to the normal $FFF2 through $FFF9 address range. On
restart, EXbug puts an address of $83FF into locations $FFOO, $FF01 as the
default second level vector top of memory in the Executive Map.

SWI3 ATOP-$D,ATOP-$C

SWI2 ATOP-$B,ATOP-$A Moved to FFF2-FFF9 on
Abort and Restart

FIRQ ATOP-9, ATOP-8

IRQ ATOP-7, ATOP-6

S\~I ATOP-5, ATOP-4 Second 1 evel SWI

NMI ATOP-3, ATOP-2 Second 1 evel NMI

Reset ATOP-1, ATOP Used by command ; G

address ATOP FFOO,FFOl Default is 83FF

a. Executive map (Dual mode) or User map if in Single mode .

.,,.,...
~

SWI3 FFF2,FFF3

SWI2 FFF4,FFF5

FIRQ FFF6,FFF7

IRQ FFF8,FFF9

SW!

NMI

FFFA,FFFB }
FFFC ,FFFD

Reset FFFE,FFFF

b. User map of the Dual Map mode.

Setup from location ATOP
on Abort and Restart

In RAM, normally setup
by EXbug

In ROM for EXbug

FIGURE 1-4. 2nd Level Interrupt Vector Locations for Executive Map and User Map

1-8

Tables 1-2 through 1-5 summarize the rules used by EXbug for handling
interrupts, including these second level interrupts.

The response time for second level service of interrupts is slower than if the
interrupts were serviced directly. This is because EXbug gains control and must
determine that the interrupt is not an EXbug function. EXbug must then
determine what action to take, and then set up the processor registers and stack
accordingly. On entry to a second level service routine, the processor
registers and stack are configured as if control had been given directly to the
routine· without intervention by EXbug.

Response time of second level SWI's serviced in the User map can be speeded up
by not setting breakpoints. Executive map response can be speeded up by
directly taking over the interrupt vector. This is done by placing the address
of the service routines at the normal vector positions, $FFFA through $FFFD.
However, this eliminates use of EXbug functions which require these vectors:
SWI - breakpoints; NMI - abort, trace, program continuation at a breakpoint.
Also, the EXbug vectors are restored to the locations on restart.

TABLE 1-2. Second Level Interrupt Rules

I. Second level interrupts are interrupts which are not related to EXbug
functions. They are generated by the user.

II. Exbug gets control from a second level interrupt but passes it on to the
user's service routine.

III. Possible second level interrupts are NMI and SWI.

IV. Addresses for second level interrupt service routines in the Executive
map are located indirectly through ATOP. Second level interrupt service
routine addresses in the User ma!>_ are in the normal vector locations.

TABLE 1-3. Second Level NMI Rules

I. Second level NMI is only possible in the Single Map mode or when the
system is running in the Executive map of the Dual Map mode.

II. Second level NMI is always enabled when the system is in either of the
two modes described in item I.

III. The address of the second level NMI service routine for both of the modes
in item I is determined indirectly through ATOP.

IV. User NMI's generated while the system is in the User map of the Dual Map
mode will not return the S_1._stem to the Executive ma-2_.

1-9

TABLE 1-4. Second Level SW! Rules

I. Second level SWI's can occur in any map and in any map mode.

II. Second level SWI's must be enabled by the EXbug E command. User SWI's in
the Single Map mode or the Executive map of the Dual Map mode will.cause
an 11 SWI 11 error message if the second level SW! is not enabled. User
SWI's in the User map of the Dual Map mode, without the second level
enabled, will be serviced directly in the User map if no breakpoints are
set, or will generate an 11 SWI 11 error message if breakpoints are set.

III. Second level SWI's from the User map of the Dual Map mode may be serviced
in either the User map or the Executive map, depending on the E command
value entered.

IV. The address of the second level SWI service routine for the Executive map
is determined indirectly through ATOP. The address of the second level
SW! service routine for the User map is in $FFFA, $FFFB of the User map.

V. User map SWI's being handled in the Executive map require the S stack to
be in memory common to both maps (i.e., enabled by VMA).

TABLE 1-5. IRQ, FIRQ, SWI2, and SWI3 Rules

I. EXbug does not use these interrupts and, therefore, does not have service
routines for them. They must be serviced directly by the user.

II. They are serviced in the map in which they are recognized. They do not
cause a map change.

III. The vectors always come from $FFF2-$FFF9 in the current map when the
interrupt is recognized.

IV. The vectors for the Single Map mode and the Executive map of the Dual Map
mode are initialized by EXbug during abort and restart indirectly from
ATOP. On abort and restart, ATOP is initialized to $83FF.

1.5.4 Dynamic System Bus

In the upper left-hand corner of all EXORciser modules (except the MPU Module)
is a 20-pin (4-pin on Static RAM) header known as the Dynamic System Bus (DSB).
As implied in its description, this input/output port gives the designer a means
for dynamically expanding the hardware capabilities of the EXORciser. The DSB
facilitates the implementation of such system features as:

• Priority Interrupts .
• Extended Memory Systems
• Advanced Parity Error Control
• Multiprocessor Applications

1-10

None of the connections on the DSB is used by EXbug or any of the standard
EXORciser modules (although the pins are connected to their appropriate logic on
the modules). No cables are provided for the DSB. Instead, the DSB provides a
unified approach for system designers to incorporate EXORciser modules into more
sophisticated end products of their own.

Some of these possible applications are described below. Additional ideas will
be recognized by imaginative designers.

PARITY-ERROR: For memory systems that demand a more sophisticated parity error
control than the standard EXORciser parity (see par. 1.5.1), the PAR-ERR signal
could be used as an input to a custom module that could perform such functions
as retry, restart, or fault address identification. If more than one memory
module needed to be controlled, the open header used for the DSB could be used
for nonbused connections. For example, an individual pair of twisted wires with
a 2-pin female connector could tie multiple memory modules to a single hardware
module designed by the user.

PAGE ENABLE: The Dual Map concept has been extended by making each EXORci ser
module addressable in one of three modes:

VUA - Valid User Address
VXA - Valid Executive Address

PAGE-ENABLE - for multiple 11 pages 11 of 64K bytes

Each module provides a jumper arrangement that a 11 ows the user to assign the
module to one of these addressing modes. If a user builds a controller that can
convert the VMA signal from the MPU into one of several pages, an unlimited
number of 11 pages 11 of 64K bytes can be realized. These 11 pages 11 could contain any
combinations of peripherals and memories. Once again, individual twisted pairs
would need to be connected from unique modules to a central control module.
This addressing capability will be useful in multiple-terminal, multi-disk, and
extended memory systems.

1-11

CHAPTER 2

INSTALLATION INSTRUCTIONS AND HARDWARE PREPARATION

2.1 INTRODUCTION

This chapter provides the unpacking, inspection, installation, and preparation
for-use instructions for the EXORciser Development System. Information is also
provided on the data tenninal selection and connection to the EXORciser.

2.2 UNPACKING INSTRUCTIONS

NOTE
IF THE SHIPPING CARTON IS DAMAGED UPON RECEIPT,
REQUEST THAT THE CARRIER'S AGENT BE PRESENT
DURING UNPACKING AND INSPECTION OF THE SYSTEM.

Unpack the EXORciser from its shipping carton. Refer to the packing list and
verify that all of the items are present. Save the packing materials for
storing or reshipping the system.

2.3 INSPECTION

The EXORciser should be inspected upon receipt for broken, damaged, or missing
parts, and for any physical damage to the chassis and/or internal modules.

2.4 INSTALLATION INSTRUCTIONS

As delivered, the EXORciser can be mounted on a table top, bench, or any other
flat surface having sufficient room to allow easy access to the front and rear
panels. After a location has been selected, proceed with the following steps.

a. Connect the selected data terminal to the EXORciser {refer to par. 2.5
for data terminal selection and connection information).

b. With the EXORciser POWER switch positioned OFF, connect the system to the
selected power source.

CAUTION
INSERTING MODULE WHILE POWER IS APPLIED MAY
RESULT IN DAMAGE TO COMPONENTS ON THE MODULE.

c. Ensure that all of the necessary modules are installed prior to
application of power. {NOTE: Since each module is offset, as well as
keyed, there is no chance of installing the modules backward. However,
wire-wrapped modules that require more than normal card separation should
be installed into the slots provided for this purpose.)

d. Connect interface cables to controller modules {if installed). If the
EXORciser top is to be installed, all cables must exit the chassis from
the rear.

e. Depress the POWER switch and observe that the indicator lamp on the
switch illuminates.

2-1

2.5 DATA TERMINAL SELECTION AND CONNECTIONS

The type of data terminal chosen for use with the EXORciser depends on the other
peripherals that are used, and on the total role of the Development System. The
EXORciser is compatible with a wide range of terminals because of its capability
to communicate via either the RS-232C or 20 mA current loop interface. The
terminal interface should be full duplex and transfer data at rates between 110
and 9600 baud. The standard ASCII communications protocol has been implemented
and is further described in Appendix c.
2.5.1 RS-232C Interconnections

The RS-232C interface is commonly used with terminals and modems. Most
terminals come equipped with a cable which will plug into the EXORciser and
operate correctly. However, in some cases, it is necessary to assemble or
modify a cable to make certain the proper signals are supplied to the terminal.
The EXORciser only needs to be connected to the data send and receive lines {and
ground), but most terminals are designed to work with modems and require the
RS-232C handshake signals to work properly. For this reason, logic is included
to sense the Data Terminal Ready {DTR) signal and to turn it around to supply
signals on the Clear-to-Send {CTS), Data Set Ready {DSR), and Data Carrier
Detected {DCD) lines. These signals are required by some terminals before they
will operate. It is not advisable to connect more than one RS-232C device to
the EXORciser {in parallel), since this is not permitted by the standard, and
voltages may be out of limits. {See Appendix E for RS-232C signal descriptions
and pin assignments.) Appendix F describes the use of the TI ASR733 terminal.

2.5.2 20 mA Current Loop Interconnections

Although originated for teletypewriters, the 20 mA current loop interface is
used by many other terminals because of its simplicity. When the 20 mA
interface is used for terminals other than a TTY, a baud rate faster than 110
baud can be used, but not faster than 1200 baud because of the bypassing used
for noise reduction.

While the EXORciser directly outputs only RS-232C interface signals, these
signals can be easily converted to the 20 mA neutral current loop protocol
through the use of Micromodule 11 {M68MM11). The interconnections required for
this current loop interface, along with the necessary connections at the ASR33
teletype, are described in detail in Appendix D and the Micromodule 11 User's
Guide.

2.6 PREPARATION OF SYSTEM MODULES

The MPU and DEbug Modules represent the m1n1mum configuration for an EXORciser
system. The Floppy Disk Controller Module must be added in order to use the
EXORdisk and MOOS. Various memory modules may be configured, as required. The
minimum module configuration to operate an MOOS-based EXORciser consists of the
MPU, DEbug, and Floppy Disk Controller Modules, plus at least 16K of memory.
(The Macro Assembler requires at least 24K of memory.) Additional I/0 modules
may be required for specific system development.

The reader should refer to the applicable User's Guide for complete details on
each module.

2-2

3.1 INTRODUCTION

CHAPTER 3

OPERATING INSTRUCTIONS

Infonnation in this chapter is intended to familiarize the user with the basic
operating procedure needed to initialize the EXORciser, use the dual memory map,
and select the addresses of the various modules. This chapter also provides a
description of the EXbug commands, subroutines, and entry points that are used
to perfonn system evaluation and debug procedures.

3.2 SWITCHES AND INDICATORS

The EXORciser switches and controls are divided into three categories:
(1) those on the EXORciser chassis, (2) those on the DEbug Module, and (3) those
on the MPU Module and the optional modules. The controls available on the MPU
and optional modules (memories and peripherals) are described in their
respective supplements.

3.2.1 Front Panel Switches and Indicators

Figure 3-1 illustrates the arrangement of the front panel switches and
indicators.

/

ABORT RESTART POWER

VXAO 00
\... ® MOTOROLA MICROSYSTEMS

VUAO
EXORciser M6809

FIGURE 3-1. EXORciser Front Panel Switches and Indicators

POWER - The power switch is used to turn the EXORci ser ON and OFF. It is an
alternate action pushbutton switch with a built-in indicator which is
illuminated when A/C power is ON.

3-1

ABORT - The momentary pushbutton switch 1 abel ed ABORT causes an NMI (Non
Maskabl e Interrupt) to be generated. Program control is returned to the address
indicated in the Executive map locations FFFC (MSB) and FFFD (LSB) of the NMI
vector. Except when a program is running in the User map, an abort operation
always forces the system into the Executive map, even though the Dual Map mode
is selected. If locations FFFC/FFFD of the Executive map have not been
explicitly changed by the user, pressing the ABORT button will cause control to
be returned to the EXbug routine.

RESTART - This momentary pushbutton switch generates a low level RESTART signal
throughout the system. As in the case of power ON, control is determined by the
address contained in the Restart vector locations FFFE (MSB) and FFFF (LSB). A
switch on the DEbug Module indicates in which map (User or Executive) the
Restart vector is to be found. The RESTART signal is also supplied to the bus
to reset all hardware that recognizes the Restart. If EXbug is in the map
indicated by the RESTART switch on the DEbug Module, pressing the front panel
RESTART button causes the EXORciser to initialize itself through the EXbug
initialization firmware.

VUA/VXA - The lights labeled VUA and VXA indicate when and in which map the
EXORc i ser is executing. Both lamps wi 11 be OFF when any of the three bus
signals -- BA (Bus Available), HALT, or BUSREQ (Bus Request) --is active. For
example, if the processor is in a CWAI (Clear and Wait for Interrupt) state,
neither light will be on. When the processor is executing, the lights will
indicate which map is currently active. The VUA indicator (Valid User Address)
is on when the system is executing in the User map. This is true when Dual Map
mode is selected, the user has entered 11 USER 11 , and the EXbug firmware is not
being accessed. It is also true when in Single Map mode and the EXbug firmware
is not being accessed. The VXA 1 i ght is on when EXbug firmware is being
executed under either single or dual map selection, or when execution is from
the Executive map under Dual map configuration.

3.2.2 Switches on the DEbug Module

The three switches that will be used during normal EXORciser use are described
here. They are accessible when the chassis cover is removed. Figure 3-2
summarizes their orientation, when viewed from the component side of the DEbug
Module.

w
..J
t?
z
Ul

f
:J
0

SW1

..J
<(
:J
Cl

<(
0
I

SW2

u
z
>
Ul

t?
ID
x
w

SW3

MAP RESTART

FIGURE 3-2. Toggle Switches on DEbug Module

3-2

a:
w
Ul
:J

SWl (MAP MODE) - This is a three-position switch which selects which map the
EXbug firmware is to reside in. In the SINGLE position, only 64K of memory
addressing space is available. EXbug occupies the high order portion of this
map. In the OUT position, the EXbug firmware is essentially disabled and the
DEbug Module becomes inactive. In the DUAL position, EXbug resides in the
executive portion of memory. The dual 64K memory map capability is enabled by
this switch position. When in this position, the user controls which map is
accessed via commands entered into EXbug (see USER and EXEC commands).

SW2 (HALT-ON-ADDRESS) - This switch is used in conjunction with the EXbug
command H (Halt-on-Address). When the user has enab 1 ed the Halt-on-Address
feature by entering the H command, this switch selects either the Trigger (SYNC)
mode or the Halt-on-Address (HOA) mode. When set in its HALT-ON-ADDRESS
position (toggle left), the EXORciser hardware will stop program execution if
the address bus compares with the address entered by the user for the H command.
When execution is halted, the MPU registers are displayed and control is
returned to the EXbug firmware. When the switch is set to the right, a scope
trigger pulse is generated when the program accesses the specified address.
This trigger is physically available to the user at the sync test point in the
upper left of the DEbug Module. During Trigger mode, program execution con
tinues at full speed.

SW3 (RESTART MAP) - This switch allows the user to specify which map the
EXORci ser is to access during power-up or RESTART. EXbug Restart vectors wi 11
always be used when in Single Map mode. If in Dual Map mode, and the Restart
switch is set to its USER position, the EXORciser will use the User map for its
restart vector and subsequent execution. This feature allows the user to fully
evaluate the power startup portion of his final system design.

3.3 INITIALIZATION

System initialization consists of selecting the system baud rate, module
addresses, turning power on, and performing any required start-up procedures.
Before the power is applied, it is necessary to select the baud rate to match
the terminal, and set the switches on the DEbug Module for the desired con
figuration. Normally, the baud rate is selected when the system is first con
figured, and does not require further adjustments unless the system terminal is
changed. Memory, I/0, or Disk Cont roll er Module must be properly jumpered for
VUA or VXA to match the mode selected, as well as being set for the proper
addresses. Module addresses are selected as required for software development
or for the target system being emulated (see paragraph 3.5).

3.3.1 Power ON/OFF Procedures

The recommended sequence for turning on the equipment in an EXORciser system is:

a. System Console (Terminal)

b. EXORciser

c. EXORdisk Unit

d. Printer Unit
CAUTION

DISKETTES SHOULD NOT BE MOUNTED
IN EXORDISK WHEN APPLYING POWER.

3-3

The recommended sequence for turning power OFF is:
a. Printer Unit
b. EXORdisk Unit
c. EXORciser
d. System Console (Terminal)

CAUTION
DISKETTES SHOULD BE REMOVED FROM
EXORDISK BEFORE TURNING POWER OFF.

3.3.2 Baud Rate Selection
Typically, the EXORciser will be operated at the maximum baud rate permitted by
the system console. Refer to DEbug User's Guide for instructions on configuring
the DEbug Module for the selected baud rate.

3.3.3 Start-Up Procedures
The procedures that are required at power-up and following a restart are
described below. Here again, the required procedures depend on the system con-
figuration.

If the system console requires null padding after a carriage return (see
paragraph 3.6.2.5 and Appendix F), the "K" command should be used to specify the
padding. This ensures that the first few characters on new lines are accurately
displayed on various terminals. ·

If the system is being operated in Dual Map mode, the MAP switch on the DEbug
Module must be set to DUAL, and the memory or I/0 modules must be properly
jumpered for VUA or VXA. If the user wishes to debug programs in the User map,
the EXbug command USER must be entered.

If parity error detection is desired, the user must enable the detection logic
after the memory has been initialized. The EXbug semicolon command is used to
enable parity. If parity is to be monitored in the User map memory (RAM only),
the memory initialization (command I) should be entered after the USER command
is specified.

In the Single Map mode or Executive map of the Dual Map mode, EXbug assumes that
the user program may be contained within half of the maximum range of the
EXORciser memory. For this reason, EXbug provides for moving the user IRQ,
FIRQ, SWI2, and SWI3 vectors up to the EXbug memory at $FFF2 through $FFF9. Two
locations in the EXbug memory are initialized to $83FF on the assumption that
that is the top of user memory. The IRQ vector would be at $83F8. The vector
is moved up to the EXbug memory at $FFF8 and $FFF9 simply by pressing the ABORT
button. This causes the user normal IRQ, FIRQ, SWI2, and SWI3 vectors to be
moved to the appropriate area. In the event a different toP- of memory address
is desired, it is only necessary to change locations $FFOO and $FF01 to the
correct value by means of the EXbug Memory Change feature (described in
par. 3.6.3) and press the ABORT button. Remember that pressing the RESTART
button, or turning the EXORciser power OFF and ON, will restore $83FF, and it
will be necessary to re-enter the revised address. EXbug uses the top of memory
address to find the user restart vector and second level SWI and NMI vectors.

NOTE
If the IRQ, FIRQ, SWI2, and SWI3 vectors are to be used,
the ABORT button should always be pressed after loading
a program into the Executive map or the Single Map mode,
even though the top of memory address is $83FF.

3-4

3.4 USING THE DUAL MEMORY MAP

The DEbug Module provides the EXORciser with the capability of addressing two
separate 64K blocks of memory. These two blocks of memory are referred to as
the Dual Memory map. One of these, the Executive map, contains EXbug and, if
configured for Dual map, its peripheral devices and RAM, the EXORdisk ROM and
I/0 devices, and the Printer I/0 device. The other, the User map, is completely
available to the user for emulation of his target system. This gives the user
complete freedom in assigning addresses to his memory and I/0 devices without
worrying about addressing conflicts with the system monitor and I/0 devices,
yet EXbug still provides the user with full debug capabilities in the User map.
Optionally, in the Single Map mode, the DEbug Module can merge the two maps. In
this mode, al 1 addresses 1 ess than $FOOO come from the User map. The DEbug
Module preparation section describes how to select the Single or Dual Map mode.

In the Dual Map mode, all of the EXbug debug commands are available in either
map. The EXbug USER and EXEC commands control which map will be accessed by the
debug commands. The command USER causes the EXbug debug commands to operate in
the User map. In this mode, EXbug's prompt is *· The command EXEC causes the
EXbug debug commands to operate in the Executive map. EXbug 1 s prompt is *E in
this mode. On power-up, EXbug comes up in the EXEC mode.

In the Single Map mode, the EXEC and USER commands are not usually required
since the maps have been merged. However, if the Halt-on-Address or Scope Sync
functions are to be used at an address less than $FOOO, the USER command must be
entered so that the address compare circuitry will detect the appropriate map.

3.5 ADDRESS SELECTION

The address selection of the various modules will depend on whether the system
is being used for software development or to emulate the target system.
Included in the address selection is the determination of which map the module
will respond in. The user assigns a module to one of the two maps by installing
either the VUA or VXA addressing jumper that is found on all EXORciser modules.

During software development (edits, compilations, assemblies, etc.), the user
will probably want as much contiguous RAM as possible, starting at address 0000
(minimum of 16K). In the Dual Map mode, programs in the User map cannot
reference EXbug or the system terminal without special techniques (see
Appendix G). Therefore, MDOS memory or disk controllers must be in the
Executive map with EXbug. In the Single Map mode, where the distinction between
Executive and User maps is simply the address boundary FOOO, EXbug can be
accessed from the User map. This requires that the EXORdisk Interface, Printer
Interface (if they are used), and RAM be configured for the VXA, and the DEbug
Module be configured for the Dual Map mode, or that the RAM, EXORdisk Interface,
and Printer Interface be configured for VUA, and the DEbug Module be configured
for the Single Map mode. These same requirements also apply for any programs
that use the system terminal or EXbug routines.

During target system emulation, the module addresses will be selected as
required for the target system. The target system may be emulated in the User
map of the Dual Map mode or, if it does not require any addresses equal to or
greater than FOOO, it may be emulated in the Single Map mode. In the Single Map
mode, all modules should be configured to respond to VUA.

The various module User's Guides contain instructions on setting the address and
map of the various modules. Modules in the Executive map should be addressed
only at values less than FOOO to avoid conflicts with EXbug.

3-5

3.6 EXbug COMMANDS

There are three groups of EXbug commands:

a. Four-character commands followed by a carriage return.

b. Single-character commands following a semicolon, period, or dollar sign.
c. Memory change commands.

Four-character commands specify the map to be used, control the operation of the
console tape (cassette or paper tape), load the disk operating system, and print
memory. The user may add four-character commands to EXbug. Single-character
commands control program debug functions. Memory change commands allow memory
locations to be examined and changed. Any command may be entered when EXbug is
displaying its prompt. A list of the EXbug commands is in Table 3-1.

COMMAND

EXEC return
USER return
PRNT return

LOAD return
VERF return

SRCH return
PNCH return
MOOS return
.A nn [byte]
• B nn [byte]
.c nn [byte]

return
return
return

.D nn [byte] return
;E nn [byte] return
;G

addr;G

$H nnnn [addr] return

;H
byte; I

TABLE 3-1. EXbug Commands

Page
EXPLANATION Ref.

Debug in the Executive map (default). 3-8
Debug in the User map. 3-9
Print memory in both hexadecimal and ASCII 3-9
format.
Load an object tape from the terminal to memory. 3-11
Verify an object tape from the terminal against 3-12
memory.
Search an object tape on the terminal. 3-13
Punch an object tape on the terminal from memory. 3-10
Set the EXEC mode, then jump to E800. 3-9
Display and change the A accumulator. 3-15
Display and change the B accumulator.
Display and change the condition code register.
Display and change the DPR register.
Display and change the second level SWI enable.
Go (jump) to the target program at its restart
address.
Go (jump) to the target program at the speci
fied address.
Enable and change the halt on address or scope
sync.
Disable the halt on address and scope sync.
Initialize memory with a specified byte.

3-6

3-15
3-15
3-16
3-27
3-19

3-19

3-18

3-18
3-21

TABLE 3-1. EXbug Corrvnands (cont'd)

COMMAND

;K nnnn [value] return
addr;L

$M or ;M

;N
value;N
addr;O

• P nnnn [addr] return

;P
value;P

;Q nnnn [value] return
$R or ;R
. s nnnn [addr] return
$T nnnn [addr] return

;T
.u nnnn [addr] return

;U
addr;U
$V or ;V
addr;V
byte;W

• X nnnn [addr] return
• Y nnnn [addr] return
;Z nn [byte] return
. .
' .
. .
' '
Control-X

Control-W

EXPLANATION

Display and change the terminal null pad value.
Calculate long relative offset from currently
open location to the specified location.
Display and change the memory search beginning

and ending addresses and search mask.
Trace the next instruction.

Trace the next specified number of instructions.
Calculate short relative offset from currently
open location •
Display and change the program counter.

Proceed with program execution.
Proceed with program excution from breakpoint;
value specifies the number of times the break
point location is to be passed before return
ing control to EXbug and providing a register
printout.
Display and change the default debug offset.
Display the target program registers •
Display and change the stack pointer.
Enable and change the trace to ending address.

Disable the trace to ending address.
Display and change the U register.

Remove all breakpoints.
Remove a specified breakpoint.
Display the breakpoint addresses.
Set a breakpoint at the specified address.

Search memory for the specified byte (word).
See the M command •
Display and change the X index register •
Display and change the Y index register.
Copy terminal output to printer option.
Display the memory parity error interrupt •
Enable the memory parity error interrupt •
Abort the current command or entry.

Wait until some other character is entered.

3-7

Page
Ref.

3-22
3-28

3-23

3-20

3-20
3-28

3-15

3-20
3-20

3-26
3-14
3-16
3-18

3-19
3-16

3-17
3-17
3-17
3-16

3-26

3-15
3-15

3-23
3-21

3-21
3-9
3-9

TABLE 3-1. EXbug Commands (cont'd)

Page
COMMAND EXPLANATION Ref.

addr/nn cmnd The memory change function is invoked by enter- 3-27
ing addr/. Cmnd is one of the following memory
change function commands. These commands are
accepted as long as EXbug remains in the memory
change function.

[byte] LF Change memory if byte entered, and display the 3-27
next sequential location.

[byte] space Change memory if byte entered, and display the 3-27
previous sequential location.

[byte]/ Change memory if byte entered, and redisplay the 3-27
current location.

[byte] return Change memory if byte entered, and exit the 3-27
memory change function.

NOTE: a. Hexadecimal numbers may be preceded by a minus sign to obtain the
two's complement of the value entered.

b. Values shown in brackets ([]) in above explanations indicate
optional user inputs.

c. When addr is a single number (e.g., 142), the debug offset is added to
the number to detennine the value used by the command. If two
comma-~eparated values are entered, the sum of the values is used by
the command.

Some features are common to most commands. All parameters entered are assumed
to be hexadecimal values. A minus sign preceding a value will cause the two's
complement of the value to be used. Control-X can be used to delete the current
entry or command and cause EXbug to print another prompt. All address and
16-bit register parameters will automatically be adjusted by the addition of a
debug offset (see the Q command) unless a second parameter, separated from the
first by a comma, is entered. On power-up and restart, the debug offset is
reset to a value of 0. When a second parameter is entered, it (instead of the
debug offset) is added to the first parameter.

3.6.1 FOUR-CHARACTER COMMANDS

The four-character commands are activated by entering the appropriate four
characters, foll owed by a carriage return. If more than four characters are
entered before the carriage return, only the first four will be used to
detennine the command. If an invalid command is entered, EXbug responds by
typing a question mark, ringing the bell in the system terminal, and then
issuing another prompt. The four-character commands are described as follows.

EXEC - When the system is in the Dual Map mode, this command causes all debug
commands entered after it to operate on the Executive map. This mode remains in
effect until the USER command is entered. This is the default mode following
power-up or restart. The prompt in this mode is *E. In the Single Map mode,
this command does not affect what memory is accessed.

3-8

USER - When the system is in the Dual Map mode, this command causes all debug
commands entered after it to operate on the User map. This mode remains in
effect until the EXEC command is entered. The prompt in this mode is *· In the
Single Map mode, this command does not affect what memory is accessed. However,
it should be entered when a Halt-on-Address or Scope Trigger is active in the
Single Map mode.

MOOS - This command causes the EXEC command to be executed and then jumps to the
disk boot loader routine at $E800.

PRNT - This command prints the specified portion of the current memory map in
both hexadecimal and ASCII forms. After the user has entered the carriage
return, EXbug responds by printing BEG nnnn (where nnnn is the last beginning
address entered). If a beginning address had not been entered before, nnnn is
whatever value was in the beginning address memory location when the system was
turned on. If the beginning address is correct, the user should enter a
carriage return. To change the beginning address, the user may enter an address
followed by a carriage return, or an address followed by a comma, followed by a
second address followed by a carriage return. (The command can also be aborted
at this point by entering a Control-X.) If a single address is entered, the
beginning address is determined by adding the debug offset to it; if two
comma-separated addresses are entered, the beginning address becomes the sum of
two addresses entered. If an invalid character is entered in one of the
addresses, the command is aborted. If an incorrect address is entered, the
correct address may be entered on the same 1 i ne before the comma or carriage
return is entered. Up to 19 hexadecimal characters may be entered before the
comma or carriage return. Only the last four characters will be used as the
address. If 1 ess than four hexadecimal characters have been entered, the
unspecified most significant bits are assumed to be zero. For example, entering
E CR gives an address of $000E if the debug offset is O.

After the beginning address has been successfully entered, EXbug prints END nnnn
(where nnnn is the current ending address). Here, the user has the same options
for entering an ending address as described for the beginning address. If the
ending address to be used is less than the beginning address, EXbug will request
the beginning and ending addresses again. If the ending address is equal to or
greater than the beginning address, EXbug will print the requested portion of
memory. An example of the PRNT command is shown in Figure 3-3. While memory is
being displayed, entering Control-W will cause the display to wait at the end of
the current line until some other character is entered. Entering control-X will
abort the PRNT command at the end of the current line.

•E PPtH
BEG FOOO
Et·m F050
FOOO 7E F2 AE 7E FO 45 7E FO 6F 7E FO D':• 7E FO D'3 7E 0R. 0 PE0 PC 0 PU 0 PY 0

F010 FO :::8 7E Fl 1 •:O ·-· 7E F2 2A 7E FO 1··-=· ··-· '?E F U AF 7E FO F· ,. c:'.! • ·"·· R• P :3 P / 0 P

F020 AD 7E FO ::::A 7E FO 2D 7E FO 2F 7E Fl) 1::1 SD F.-. .:. A6 _0p:0p-0p/0Pl.R&
F 03 0 00 ::: 1 04 27 .-.-, .;;.,· :::r1 El o:::: 20 F5 :=:E. OD :::u DA :3E. OA ··7. A. LI• . . z . .
F040 ::::D D6 4F 20 rr::: CE FB •3•3 :::r1 E·::: CE FF OA E:It FE. 04 • '·lD :S:~i { • . cN. • =1/1 •

F050 .-.C' F·-=· CE FB '3E 8D It6 CE FF oc Btt F6 fl4 25 F":o CE ~ .. ~sN {. .VN. . =• ~~SN c. -· ·-· ·-·
•E

FIGURE 3-3. PRNT Example

3-9

PNCH - This command punches the specified portion of the current memory map on
the console punch device in an ASCII hexadecimal format. The tape format is
described in Figure 3-4.

} Leader (Nulls)

tD ICRI Formatting for printer

} 4 Nulls

Frame IA ILFI readability; ignored
H (NULL) by leader

1 53 S = Start-of-record -2 cc CC = Type of Record
3 } Byte Count (two frames •
4

& one byte)
5 B T l
6 ~ e Address/Size 0
7 .. i
8 ~ N .JI.

u • • ! 9 .&:: ..
0 c u Data

10 :I 0

1 x u
• ! :::E i

I } - Checksum
N

Frames 3 through N are hexadecimal digits represented by a 7-bit ASCII character.
Two hexadecimal digits are combined to make one 8-b1t byte.

The checksum is the one's complement of the summation of 8-bit bytes.

CC• 30 CC• 31 cc= 39
Header Data End-of.File

Frame Record Record Record

1. Start-of·Re1.-ord _iL s _.ll.._ s s
2. Type of Record_ 30 0 31 9

!: Byte Count
31 31

16 13
--1.L

12
1§

5. 30 31 30
6. Address/Size 30

0000
31 1100 30 1000

7. 30 30 30
8. --1!._ --1!_ ...lL
9.D 34 39

9B
4e FC

10• ata 48-H 38 43 2L ---
34

44-0
30 (Checksum)

~ 32
02

35
52-R [] ---

~ SA (Checksum)

w 1

N. Checksum 9E
5

FIGURE 3-4. Tape Format

3-10

After the command has been entered, EXbug requests the beginning and ending
addresses as described under the PRNT command. After the beginning and ending
addresses have been entered, EXbug requests the information to be put in the
header record. Zero through 17 characters, terminated by a carriage return, may
be entered. If 18 characters, not including a carriage return, are entered, the
characters will be ignored and the header information will be requested again.
ASCII control characters should not be entered in the header.

When the carriage return terminating the header information is entered, EXbug
will begin the punch sequence. Therefore, if the console punch device does not
have automatic control using the ASCII DC2 and DC4 characters, it should be
turned on after the last header character has been entered but before the
carriage return terminating the header is entered. The non-automatic punch
should be turned off after EXbug has completed the punch operation and has
printed a prompt. If the console punch device does have automatic control,
EXbug will control the punch, and no operator intervention is required.

If the system terminal is a TI Silent 700 with the Remote Device Control option,
and EXbug has been informed of this in the K command, then the data sent to the
console punch will not be printed on the terminal. On other terminals, the data
will be printed as it is being punched. If the line printer option is set at
zero (see the Z command), the punch data will not be listed on the line printer
as it is being punched. Figure 3-5 shows an example of the PNCH command.

+E PtK:H
BEG FOOO
EMD F050
HDF:=:=<BG2A
S00800005842473241A3
S11BF0007EF2AE7EF0457EF06F7EFOD57EFOD97EF08R7EF1187EF22AA5
S11BF0187EFOB37EFOAF7EFOAD7EF03A7EF02D7FFn2F7EFOB18DF2A65F
S11BF03000810427378DE10820F5860D8DDA86UH~DU64F20D3CEFB99C5
S10CF0488DE3CEFFOABDF6042598
:::·~ 03 0 0 0 OFC

+E

FIGURE 3-5. PNCH Example

LOAD - The LOAD command reads an ASCII hexadecimal tape from the system console
reader into the current memory map. The required tape format is specified in
Figure 3-4. The system console reader should respond to either the ASCII device
control codes (DCl through OC4) or to the TI Silent 700 remote device control
codes so that EXbug can control tape motion.

After the user has entered the command, EXbug responds with 11 S/C 11 • Entering
Control-X will abort the Load function. Entering Swill cause EXbug to load a
single object file -- that is, EXbug will stop the LOAD command and issue a
prompt when it reads an end-of-file (S9) record. Entering C will cause EXbug to
load continuously. All end-of-file records will be ignored. To stop the cont
tinuous load, the ABORT button or the RESTART button must be pressed. Entering
any other character will cause the message to be repeated. During either the
single or continuous load, EXbug will print at the system terminal the data in
each header (SO) record it reads.

3-11

If a checksum error is encountered while loading, EXbug will print CKSM nnnn
(where nnnn is the starting load address of the record in error}. Entering
Control-X will abort the LOAD command. Entering C will cause the LOAD command
to continue and load the record in error. If the checksum error is due to an
error in the record load address, there is no way to determine where data will
be loaded in memory. The user can reposition the tape to the beginning of the
record in error, enter R, and EXbug will re-read the record. Entering any other
character will cause the message to be repeated.

As the LOAD command writes each byte into memory, it reads it back to verify
that memory changed. If memory does not change properly, the error message

ADDR/MM/TP
nnnn mm tt

is printed, and the LOAD command is aborted. nnnn is the address of the memory
1 ocation that did not change correctly. mm is the hexadecimal value that the
memory location changed to. tt is the hexadecimal value for that location from
the tape.

Figure 3-6 shows an example of the LOAD command.

*E LOAD
SIC S
XBG2A
*E

FIGURE 3-6. LOAD Example

VERF - The VERF command verifies the current memory map with an ASCII hexa
decimal tape in the system console reader. The required tape format is
specified in Figure 3-4. The system console reader should respond to either the
ASCII device control codes (DCl through DC4} or to the TI Silent 700 remote
device control codes so that EXbug can control the tape motion.

After the user has entered the command, EXbug responds with "S/C". The user
should now enter S, C, or Control-X, as described for the LOAD command, to
obtain the desired operation.

The VERF command checks for header (SO} records and checksum errors, the same as
the LOAD command. The data in each header record read will be printed at the
system terminal. Checksum errors during VERF result in the same error message
and permit the same error response options as checksum errors during LOAD. If
the checksum error is due to an address error, and the continue option is
selected, the verification will be meaningless.

When a mismatch between the tape and memory is detected, the error message

ADDRIMMITP
nnnn mm tt

is printed. nnnn is the address of the error. mm is the memory contents. tt
is the tape cotents. The heading ADDRIMMITP is printed only for the first error
detected;. Only the address and data portions of the message are printed for
any subsequentd errors. While verify errors are being printed, entering
Control-W wi 11 cause the printout to stop unt i 1 another character is entered.
Also, while verify errors are being printed, entering Control-X will cause the
VERF command to be aborted.

An example of the VERF command is shown in Figure 3-7.

*E VERF
SIC S
XBG2A
*E

FIGURE 3-7. VERF Example

SRCH - The SRCH command searches the tape in the system console reader for
header (SO} records. All other record types will be skipped over. Figure 3-4
shows the required tape format. The system console reader should respond to
either the ASCII device control codes (DCl through DC4) or to the TI Silent 700
remote device control codes so that EXbug can control the tape motion.

On reading a header record, SRCH will stop the tape and print the data in the
record. SRCH will then print 11 CILIV 11 • Entering C will cause the search to
continue. Entering L wi 11 cause the LOAD command to be entered. Entering V
wi 11 cause the VERF command to be entered. Entering Control-X will cause the
SRCH command to be aborted and an EXbug prompt to be issued. Entering any other
character will cause the message to be repeated. Refer to the LOAD and VERF
command descriptions for the messages printed by these commands and the
appropriate responses.

If SRCH detects a checksum error in the header record, it will print the
checksum error message described in the LOAD command. An example of the SRCH
command is shown in Figure 3-8.

*E SRCH
XBG2A
CILIV L
SIC s

FIGURE 3-8. SRCH Example

') 1 ')

3.6.2 Single Character Commands

The single character commands control debug functions. These commands are pre
ceded by a semicolon, period, or dollar sign. Single character commands fall
into various groups: register display and change, program execution control,
memory parity control, 1/0 control, memory search, and miscellaneous functions.

The following conventions are applied in the comma,nd format representations:

n a hexadecimal digit of 0 through F displayed by the command. Thus,
nnnn is a 4-di git hexadecimal number, and nn is a 2-di git hexadecimal
number.

[] items contained within brackets indicate an optional parameter.

addr a 16-bit value entered by the user and expressed in hexadecimal. A
single hexadecimal number may be entered, or two hexadecimal numbers
separated by a comma may be entered. For example, 12AB and 56DC, 123
are valid entries. Leading zeros may be omitted. If a single number
is entered, the debug offset is added to the number to determine the
value used by the command (see Q command). If two comma-separated
values are entered, the sum of the values is used by the command.

byte an 8-bit value entered by the user and expressed in hexadecimal.
Leading zeros may be omitted.

value a 16-bit value entered by the user and expressed in hexadecimal. This
value is not relocated by the debug offset. Leading zeros may be
omitted.

return a carriage return.

If an error is made in entering a value, the value may be re-entered so that the
last four digits entered is the desired value. Up to 19 digits may be entered
for a single value. However, only the last four digits entered will be used. A
command may be aborted while a value is being entered by entering Control-X. If
an invalid character is entered in a value, the item being displayed will not be
changed when the command is terminated. If an error is made in a command, EXbug
will print a question mark and ring the bell in the system terminal.

3.6.2.1 Register Display and Change. These commands allow the user to display
and change the M6809 register values that will be used while executing the
program under test. There is one command that displays all the register values,
while individual commands are used to display and change each register.

Function: Display all registers

Format: ;R or $R

Description: This command displays the target register values in the following
format:
P-nnnn X-nnnn Y-nnnn A-nn B-nn C-nn DP-nn U-nnnn S-nnnn
where n is a hexadecimal digit. P, X, Y, A, B, C, DP, U, and S
designate the program counter, X index register, Y index register,
A accumulator, B accumulator, condition code register, direct page
register, user stack pointer, and stack pointer, respectively.

3-14

Function: Display and change the program (location} counter

Format: .P nnnn [addr] return

Description: This command displays the target program counter value (nnnn}. To
change the program counter value, enter a new value as described
in the definition of addr. A carriage return terminates the
command.

Function: Display and change the X index register

Format: .X nnnn [addr] return

Description: This command displays the target X index register value (nnnn}.
The value may be changed by entering a new value. A carriage
return terminates the command.

Function: Display and change the Y index register

Format: .Y nnnn [addr] return

Description: This command displays the target Y index register value (nnnn}.
The value may be changed by entering a new value. A carriage
return terminates the command.

Function: Display and change the A accumulator

Format: .A nn [byte] return

Description: This command displays the target A accumulator value (nn}. The
value may be changed by entering a new value. A carriage return
terminates the command.

Function: Display and change the B accumulator

Format: .B nn [byte] return

Description: This command displays the target B accumulator value (nn}. The
value may be changed by entering a new value. A carriage return
terminates the command.

Function: Display and change the condition code register

Format: .c nn [byte] return

Description: This command displays the target condition code register (nn}.
The value may be changed by entering a new value. A carriage
return terminates the command.

3-15

Function: Display and change the direct page register
•

Format: • D nn [byte] return

Description: This command displays the target direct page register value (nn}.
The value may be changed by entering a new value. A carriage
return terminates the command.

Function: Display and change the user stack pointer

Format: .u nnnn [addr] return

Description: This command displays the target user stack pointer (nnnn}. The
value may be changed by entering a new value. A carriage return
terminates the command.

Function: Display and change the stack pointer

Format: .s nnnn [addr] return

Description: This command displays the target stack pointer (nnnn}. The value
may be changed by entering a new value. A carriage return
terminates the command.

3.6.2.2 Program Execution Control.· These commands control the execution of the
target program. They permit the user to set and remove breakpoints, halt the
program or generate a scope sync pulse when a specified address appears on the
bus, and specify an ending address for a program trace.

Function: Set a breakpoint

Format: addr;V

Description: This command permits the user to specify a breakpoint in the
breakpoint table of EXbug. A maximum of eight breakpoints can be
entered. During an EXbug execute function, the breakpoints are
inserted into the target program. When a breakpoint location is
encountered, the program is halted to permit visual check printing
out, or other performance analysis of the processor program
registers. The breakpoint sequence is:

• User designates the breakpoint 1 ocations. A breakpoint cannot
be set at an absolute address of 0000. Al so, si nee an SWI
instruction is inserted into a breakpoint location, breakpoints
should only be set on the first byte of an instruction, and only
be used in portions of the target program where the stack
pointer is pointing to a valid stack area •

• User initiates the target program through the use of the program
execute command (;G, addr ;G, and ; P}. Breakpoints are not
inserted in memory during trace operations.

3-16

• When a breakpoint is encountered, control is returned to EXbug, and
the contents of the processor registers are printed. Breakpoints are
inserted in the map where the target program execution begins,
regardless of what map was in use when the breakpoint addresses were
entered.

NOTE
When an abort occurs, all breakpoints in memory are
removed. However, breakpoints are not removed from
memory during the restart sequence. In both cases,
abort and restart, the table of breakpoint addresses
is cleared. Following a restart during which break
points are active, the user will have to manually
restore the original instructions, using the memory
change function. Also, when EXbug encounters a memory
location where a breakpoint cannot be inserted (e.g.,
read only memory), it will print a question mark,
sound the terminal bell, and issue another prompt as
an error indication. If this occurs, all instructions
that are normally saved for re-insertion into the
program are lost. These instructions may be restored,
using the memory change function. It is also necessary
to keep the U stack out of the S stack when using
breakpoints if the U stack is to maintain its integrity.

Function: Display the breakpoint addresses

Format: ;V or $V

Description: This command displays the table of absolute addresses at which
breakpoints are set. An address of 0000 indicates that the
associated 1 ocat ion in the tab 1 e does not contain a breakpoint
address.

Function: Remove a specified breakpoint

Format: addr;U

Description: Regardless of the map that is in use, the command removes the
specified address from the breakpoint table. If a breakpoint is
not set at the specified address, a question mark is printed and
the terminal bell is sounded.

Function: Remove all breakpoints

Format: ;U

Description: Regardless of the map that is in use, the command clears all
addresses from the breakpoint table.

3-17

Function: Enable and change the Halt on Address or Scope Sync

Format: $H nnnn [addr] return

Description: This command enables, displays, and allows the user to change the
Halt on Address/Scope Sync address. The selection between Halt on
Address or Scope Sync is determined by the position of the
appropriate switch on the DEbug Module (refer to par. 3.2.2). In
Halt on Address operation, control will be returned to EXbug when
the specified absolute address appears on the system bus as a
val id memory address. Si nee the address match causes an NM!,
program execution will be stopped after the instruction that
accessed the halt address has been executed.

In the Scope Sync mode, a pulse wi 11 be generated at the scope
trigger pin on the DEbug Module each time the specified address
appears as a val id address on the bus. The Halt/Sync address is
set in the map in which program execution begins, regardless of
the map in which it was enabled. Thus, in the Single Map mode,
the command USER should be entered before starting a program with
Halt/Sync enabled, since all addresses below FOOO come from the
User map. Once enabled, the Halt/Sync will remain active until it
is disabled or an abort or restart is performed. When enabled,
the Halt/Sync is active only while executing the target program
(following a program execution command).

Function: Disable the Halt on Address or Scope Sync

Format: ; H

Description: Regardless of the map that is in use, the command disables the
Halt-on-Address/Scope Sync function.

Function: Enable and change the Trace to Ending Address

Format: $T nnnn [addr] return

Description: This command enables the Trace to Ending Address function,
displays the address, and allows the user to change the ending
address. Once enabled, the Trace to Ending Address is initiated
by starting program execution with the PROCEED command (;P).
EXbug wi 11 continue tracing until the trace program counter is
equal to the ending address. Therefore, the ending address should
be the first byte of an instruction. During the trace, entering
Control-W will cause the trace to pause until some other character
is entered. Entering Control-X will abort the trace and return
control to EXbug. Once enabled, the Trace to Ending Address
remains enabled until it is disabled or an abort or restart is
performed. Since the trace operation uses an NMI and the stack,
tracing should not be used unless the stack pointer is pointing to
a valid stack area. Also, SW! instructions should not be traced
since some SW! instructions are serviced by EXbug. CWAI
instructions cannot be traced because the trace-NM I would cause
the CWAI to continue and not wait for the user interrupt.

3-18

Function: Disable the Trace to Ending Address
Fonnat: ; T
Description: This command disables the Trace to Ending Address function.

3.6.2.3 Program Execution. These commands pennit the user to execute the
target program. The various program execution commands pennit starting the
target program through its restart vector or at a specified address, proceed
ing with program execution, and tracing one or more instructions.

Function: Start the target program through its restart vector
Fonnat: ;G

Description: This command starts the target program through its restart vector.
In the USER mode, the restart vector is obtained from 1 ocat i ans
FFFE and FFFF; whi 1 e in the EXEC mode, the restart vector is
obtained from the target program top of memory as specified at
FFOO and FFOl. (See the Start-up Procedures section.) Therefore,
when using ;G in the Single Map mode, EXbug should be in the EXEC
mode and the top of memory address should be set up appropriately.

This command cannot be used to initiate a Trace to Ending address.
If Trace to Ending address is enabled when this command is
entered, EXbug will print a question mark, sound the tenninal
bell, and issue another prompt.

On entering the target program, the stack pointer, condition code
register, and direct page register will contain the last target
value obtained by EXbug. The contents of the A and B accumulators
and the X, Y, and U registers are indetenninate. The user should
ensure that the stack pointer is pointing to a valid stack area
before any debug functions, such as breakpoints or a Halt on
Address, are encountered in the target program. This can be
accomplished by specifying the stack pointer value, using the .s
command before entering the ;G command, or by executing an LOS
immediate instruction as the first instruction of the target
program.

Function: Start the target program at a specified address
Format: addr;G
Description: This command starts the target program at the specified address.

A Trace to Ending Address function cannot be initiated with this
command. If Trace to Ending Address is enabled when this command
is entered, EXbug will print a question mark, sound the terminal
bell, and issue another prompt.

On entering the target program, the stack pointer, condition code
register, and direct page register will contain the last target
value obtained by EXbug. The contents of the A and B accumulators
and the X, Y, and U registers are indetenninate. The user should
ensure that the stack pointer is pointing to a va 1 id stack area
before any debug functions such as breakpoints or a Halt on
Address are encountered in the target program. This can be
accomplished by specifying the stack pointer value, using the .s
command before entering the ;G command, or by executing an LOS
immediate instruction as the first instruction of the target
program.

1-lQ

Function: Proceed with target program

Format: [value];P

Description: This command resumes target program execution using the target
register values. If a value is entered, then the point of program
continuation must be at a breakpoint location. The value
specifies the number of times the breakpoint location is to be
passed before the breakpoint returns control from other
breakpoints while the pass count is in effect, unless they also
have a non-zero pass count. A pass value will not be accepted if
the Trace to Ending Address is active. If a pass value is entered
while the Trace to Ending address is active, EXbug will print a
question mark, sound the bell in the terminal, and issue another
prompt.

This command should not be used to resume program execution at an
SWI or CWAI instruction if a breakpoint is set at that
instruction. Since continuing at a breakpoint causes an NMI, the
CWAI instruction will not wait for the user interrupt. The
breakpoint at the SWI will prevent it from being serviced as a
user SWI, but as a breakpoint.

This command can be used to initiate a Trace to Ending address if
a pass value is not entered. Breakpoints are not active during a
Trace to Ending address.

Function: Trace the next instruction

Format: [value];N

Description: This command traces the next instruction. If a value is entered,
it specifies the number of instructions to trace. After each
instruction is executed, the contents of the registers are
displayed. If multiple instruct ions are traced, entering
Control-W will cause the trace to stop until some other character
is entered. Entering Control-X will cause the trace to abort.

Since the trace function uses NMI, CWAI instructions should not be
traced because CWAI instructions will not wait for the user
interrupt, but will continue due to the NMI. Also, SWI instruc
tions cannot be traced due to the servicing of some SWI 's by
EXbug and the fact that the stack has a high chance of being
destroyed. Because the trace NMI uses the S stack pointer,
tracing should only be done in portions of the program where the
stack pointer is pointing to a valid stack area. In all cases, if
the User stack pointer is being used, it should not be placed in
the S stack during a trace. It will oe overwritten if it is.

3.6.2.4 Memori Parity Control. These commands provide the user with control
over memory parity functions. Included are commands to initialize memory with a
specific pattern and to enable and disable the memory parity error interrupt
function.

3-20

Function: Initialize memory to a specific pattern

Format: byte; I

Description: This command initializes random access memory to the byte value
entered. After the command is entered, EXbug requests the
beginning and ending addresses of the memory region to be
initialized. The beginning and ending addresses are entered as
described in the PRNT command. After valid beginning and ending
addresses have been entered, the memory is initialized. The byte
value entered is put in each memory location, starting at the
beginning address through the ending address.

Function:

Format:

Description:

Function:

Format:

Description:

Since the state of the memory is indeterminate when power is first
turned on, individual byte parity may be in error. Therefore, the
memory with parity should be initialized by writing to it before
it is read with the parity error interrupt enabled. Writing to
the memory can be accomplished by using this command, or by
loading a program.

Enable memory parity error interrupt

' '
This command enables the memory parity error interrupt. When a
memory parity error interrupt is enabled, an NMI will be
generated, which returns system control to EXbug. EXbug will then
print PARITY, followed by a printout of the interrupted registers.
Note that the program counter value displayed will not be pointing
to the instruction being executed while the parity error occurred,
but will be pointing to the next instruction to be executed after
the parity error occurred.

NOTE
While writing to the disk, a memory parity
error will generate a disk time-out error
instead of a parity error message.

In order to prevent any pending interrupts from occurring when the
error interrupt is enabled, the memory initialization command I
should be used immediately before the parity error interrupt
enab 1 e command. Using the memory change function to write a
location will also clear any pending parity error interrupts.

Disable memory parity error interrupt

..
' .
This command disables the memory parity error interrupt. Following
this command, a memory parity error will not generate an NMI.
This is the default mode in EXbug.

3-21

3.6.2.5. I/0 Control. These commands provide the user with control over EXbug
I/0 functions. Included are commands to specify the number of nulls to be
padded after a carriage return or other characters, and to direct the EXbug
output to a line printer.

Function: Display and change the terminal null pad values

Format: ;K nnnn [value] return

Descri.ption: This command specifies the control codes used to control the
console reader and punch, the number of nulls to be padded after a
carriage return, and the number of nulls to be padded after all
other characters. The null pad is required for terminals that have
a mechanical carriage , and it cannot turn in a single character
time. The null pad value is a 16-bit value. When a value is
entered, leading zeros are assumed.

The most significant bit, bit 15, of the null pad value controls
which console reader control codes are used. When this bit is
zero, the normal ASCII DCl and DC3 codes are used to turn the
reader on and off. When this bit is one, the TI Silent 700 RDC
codes are used to read a block of tape from the console. Also,
when bit 15 is a one, the TI Silent 700 RDC codes are used to turn
the terminal printer off before sending data to the terminal
punch, and to turn the printer back on when punching is completed.

The eight least-significant bits, 0 through 7, specify a binary
number which is the number of nulls sent to the terminal after a
carriage return is sent. This number is the last two hexadecimal
digits printed and entered.

The remaining seven bits, 8 through 14, specify a binary number
which is the number of nulls sent to the terminal after any
character other than a carriage return is sent.

The following values of the nul 1 pad parameter are used for TI
Silent 700 terminals at the baud rate listed:

BAUD RATE

300
1200
2400

K VALUE

4
8317
872F

Since the null pad value is initialized to zero on power-up and
restart, a terminal that requires null pads will not print
properly until the the appropriate null pad value is entered. Even
though the terminal may not correctly print the current value, the
appropriate value can be entered and will be echoed to the
terminal.

3-22

Function: Display and copy the terminal output to line printer option

Format: ;Z nn [byte] return

Description: This command displays the status of the line printer interface.
When the nn value is 0, the line printer interface is not
initialized and data is only displayed at the terminal. The 0
indication is a default value following a power-up, restart, or
abort. When the nn value is non-zero (1), the line printer
interface is initialized and the terminal output is sent to the
line printer. The printer output is not paged, but is continuous.
To initialize the line printer, a [byte] value of 1 must be
entered.

EXbug uses the line printer routines in the ROM on the Floppy Disk
Controller Module to initialize the printer interface and send
characters to the printer. A listing of these routines is provided
in Figure 3-9. EXbug calls the LPINIT entry when the line printer
interface is enabled. The LIST entry point is used by EXbug to
send characters to the line printer. If EXbug detects a printer
error by the carry bit being set on return from LIST, EXbug
disables the line printer interface. If the ROM is not in the
system, then equivalent line printer routines must be provided for
EXbug if the line printer output feature is to be used.

User program output, directed through various EXbug entry points,
will also be directed to the line printer under control of the
line printer interface (see par. 3-7). The line printer routine is
contained in the EXbug I/0 listing of Appendix B, and can be
controlled by the user program. However, the user program must
guarantee that the printer interface has been initialized before
setting the switch to non-zero.

3. 6. 2. 6 Memory Search. These commands control the memory search function.
Commands are included to establish the search address range and comparison mask
and to initiate the memory search.

Function: Establish search address range and comparison mask

Format: ;M or $~

Description: This command first requests the search address range as described
in the PRNT command. Memory wi 11 be searched from the beginning
address specified through the ending address. After a valid
address range is entered, the command requests the search
comparison mask in the following manner:

MASK = nn [byte] return

nn is the hexadecimal respresentation of the current mask. If it
is to be changed, a new value can be entered. A carriage return
terminates the command. The mask specifies which bits in each byte
are to be checked against the search value. Only those bit
locations set to a one in the mask will be compared. For example,
a mask of FF would compare each bit in the byte during the search,
while a value of 01 would compare only bit 0, the last significant
bit.

3-23

00761

00763
00764
00765
00766
00767
00768
00769
0077.0
00771

00773
00774
00775
00776
00777

00779A
00780
00781
00782A
00783A
00784A
00785A
00786A
00"787A

00789
00790
00791A
00792A
00793A
00794A
00795A

00797
0079S
00799
oosoo
OOS01A
00802A
00803A
00804A
00805A
00806A
00807A
0080SA

EBB4

EBB4 SD
EBB6 86
EBBS SD
EBBA 86
EBBC B7
EBBF 39

EBCO BE
EBC3 BF
EBC6 86
EBCB B7
EBCB 39

EBCC B7
EBCF 43
EBDO SD
EBD2 B6
EBD5 84
EBD7 4A
EBDS 26
EBDA 7D

EC10 A
EC11 A
EC12 A
EC13 A

EBB.I.I A
2A EREO
:::i4 A
02 EBBC
3C A
EC11 A

EBCO A
FF3C A
EClO A
3C A
EC13 A

EBCC A
EC10 A

E2 EBB4
EC12 A
03 A

06 EBEO
EC11 A

TTL LINE PRINTER DRIVER

* * LINE PRINTER DRIVER FOR CENTRONICS TYPE
* INTERFACE THROUGli A PIA WITH OUTPUT
* CHARACTER ON A SIDE, INPUT STATUS ON D SIDE·
* 6809 VERSION ...
*VERSION 1.2 19 FEB 1979
* COPYRIGHT 1979 BY MOTOROLA INC

*

* PIA ADDRESSES
DATA EOlJ $EC10
CN'IRLl EGl.J $EC11
STAT EOU $EC12
CNTRL.2 EGU $EC13

OR(~ RMSTRT+$3B4
* STROBE PRINTER
LIST5 EGlJ * DSR LERROR CLEAR ACKNOWLEDGE

LOA #$34
BSR LIST7
LDA #$3C

LIST7 STA CNTRL1
RTS

-ti· SUBROUTINE TO INITIALIZE PIA
LPINIT EGU * LDX #$FF3C A DATA OUTPUT

STX DAT,.\
LOA #$3C D STATUS INPUT
STA CNTRL2
RTB

* SUBROUTINE TO PRINT CHARACTER FROM A ACC
* AND CHECK FOR PRINTER ERROR
* IF ERROR CARRY IS SET ON RETURN
LIST EGU * STA DATA SEND DATA

COMA SET ERROR STATUS
BSR LIST~; SEND STROBE

LIST3 LDA STAT CHECK STATUS
ANDA #3 BIT O:::SELECT, BIT 1=PA
DECA A SHOULD HAVE BEEN 01
BNE LERROR NO PAPER OR NOT SELECT
TST CNTRL1 ACKNOWLEDGE?

FIGURE 3-9. MOOS Line Printer Driver

3-24

00809A EBDD 2A
00810A EBDF 4F
00811A EBEO B6
00812A EBE3 39

00814
00815
00816A EBE4 86
00817A EBE6 SD
00818A EBEB 25
00819A EBEA 86
00820A EBEC 20
00821A EBEE BD
00822A EBFO ~5
00823A EBF2 A6
00824A EBF4 81
00825A EBF6 26
00826A EBF8 30
00827A EBFA 39

F3 EBD2 BPL
CLRA

EClO A LERROR LDA
RTS

* SUBROUTINES
EBEi!- A LDATA EOll
OD A LDA
EA EBCC LDA1A7 BSf~

FC EBE6 BCS
OA ,, LDA
00 EDEE BRA
DC EBCC LD,..'ITA3 BSn
FC EBEE BCS
80 A LDATAl LDA
04 A CMPA
F6 EUEE BNE
lF A L.EAX

rns

L.IST3

DATA

TO PRINT

* #$0
LIST
LDATA7
#~A

LDATA3
LIST
LDATA3
o.x+
#4
LDATA3
·-·1, x

NO
YES, CLEAR ERROR STATU
RESTORE A

STRING AND STRING,CR,L.

SEND CR

HANG UP ON ERROR
SEND LF
HOLD LDATA1 ENTRY POIN

HANG UP ON ERROR

EOT?
NO
YES, CORRECT x

FIGURE 3-9. MOOS Line Printer Driver (cont'd)

TABLE 3-2. Dual Map Mode Second Level SWI Options

MAP SWI MAP SWI it REQUIRED
IS IN SERVICED IN E VALUE

user user 01
user executive FF
executive executive FF
executive user not _Qermitted

3-25

Function: Search memory for a byte (word)

Format: byte;W

Description: This command searches memory over the last beginning-ending
address range specified for a match with the value entered. Only
those bit positions set to one in the last comparison mask entered
are compared during the search. The same beginning and ending
address parameters are used for the PRNT, the PNCH, the I, and the
M commands. Therefore, if one of these commands is entered after
the M command and before the W command, the beginning and ending
addresses specified for the last such command entered will be used
for the W command.

When the memory search finds a match, it prints the memory address
of the match and the contents of memory. Entering Control-W while
this printout is occurring causes the search command to wait until
some other character is entered. Entering Contra 1-X during the
printout causes the search to abort and return to the EXbug
command level.

3.6.2.7 Miscellaneous. These commands control various EXbug functions. They
permit the user to specify a default debug offset to be used with address
parameters that are entered, and also control EXbug responses to SWI's that are
not breakpoints.

Function: Display and change the default debug offset

Format: ;Q nnnn [value] return

Description: This command displays, and permits the user to change, the default
debug off set. The debug off set is added to a single parameter
entered as an address value in an EXbug command to determine the
absolute address. When two parameters are entered as an address
value, the sum of the two parameters is the absolute address used.
To change the debug offset, enter a new value. A carriage return
terminates the command.

Use of the debug offset permits the user to easily test programs
assembled with the relocatable option. Once the debug offset is
set to the main program section, all references to the main
program section made in EXbug can be accomplished simply by
entering the relative address given in the assembly listing.
References can al so be made to other load sections by entering
both the relative address and the section starting address,
separated by a comma, in place of the single address parameter.
EXbug then uses the sum of these two values as the absolute
address.

3-26

Function: This command permits the user to display and change the option in
which second level SWI 1s are serviced.

Fonnat: ;E nn [byte] return

Description: The second level SWI enable controls the operation of second level
SWI instructions that are not breakpoints. The location of the
vector depends upon the map that is in use {User or Executive) and
whether the system is in the Single or Dual Map mode. The value of
nn indicates the map where the second level SWI's are to be
serviced. To change the map where second level SWI's are serviced,
a new value, [byte], can be entered.

To use the second level SWI feature in the Single Map mode, the
value of nn should be set to FF. Table 3-2 lists the various
second level SWI options supported in the Dual Map mode. When the
value of nn is zero (which is the default value following a
power-up, restart, or abort sequence), non-breakpoint SWI's in the
Single Map mode or in the Executive map of the Dual Map mode
return control to EXbug which, in turn, prints a breakpoint error
message. EXbug prints 11 SWI 11 followed by the register values when
the SWI is encountered. EXbug then issues a prompt. A zero value
causes SWI 1 s in the User map of the Dual Map mode to return
control to EXbug and print the SWI message only if breakpoints
have been set in the User map. However, if the nn value is zero,
and no breakpoints are set in the User map, then SWI's in the User
map of the Dual Map mode cause program control to be given to the
location pointed to by the SWI vector (contained in addresses
$FFFA and $FFFB of the User map).

3.6.3 Memory Change

The Memory Change function permits the user to examine and change individual
memory locations. To invoke the Memory Change function, the user enters:

addr/

Here again, addr is either a single parameter that is added to the debug offset
to determine the absolute address, or two parameters separated by a comma that
are added together to determine the absolute address. After the user enters the
slash, EXbug prints a space, the contents of the specified location in
hexadecimal, and then another space. If the memory contents are to be changed,
the user may enter a new hexadecimal value. Next, the user enters one of the
following characters to close the current memory location:

Carriage return

Line Feed

Space

Slash

This ends the memory change function and returns control to the
EXbug command level. EXbug then prompts the user.

This causes the next sequential memory 1 ocation to be opened
for memory change and its contents displayed.

This causes the previous sequential memory location to be
opened for memory change and its contents displayed.

This causes the current memory location to be reopened for
memory change and its contents displayed.

3-27

If memory is being changed, but it does not change properly, an error indication
will be displayed. A space will be printed, then a question mark, the terminal
bell will be sounded, and another space will be printed. The memory contents
after the attempted memory change are then printed. The Memory Change function
then continues as requested by the terminating character (carriage return, line
feed, space, or slash).

Memory locations displayed by the Memory Change function, after it has been
invoked, are in the form -- absolute address, space, contents, space.

Also, the Memory Change function will calculate the required offset for a long
or short relative addressing mode instruction (addr;L or addr;O command). To
calculate a relative address offset, first open the memory location that is to
contain the offset (e.g., the second byte of a branch instruction). Next, the
destination address is entered, followed by a semicolon and the capital letter L
for long relative, or 0 for short. If a single parameter is entered for the
destination address, the debug offset wi 11 be added to it to determine the
absolute destination address. If two parameters separated by commas are entered
for the de st i nation address, they wi 11 be added together to determine the
absolute destination address.

The Memory Change function will indicate that the destination address is out of
range by printing a space, a question mark, and sounding the terminal bell. If
the destination address is in range, the correct offset will be printed. In
both cases, the address and contents of the currently open location will be
redisplayed on the next line, permitting the user to easily modify it or request
another relative offset calculation.

3.6.3.1 Adding EXbug Commands. The user has the ability to add as many
four-character commands as desired. The only limiting factor is memory size.
In order to implement this feature, the user must have a table of his commands
and the actual commands stored in the Executive memory map (if the Dual Map mode
is in use), and must have told EXbug where his command table resides. The user
command table format must be as follows:

Example:

CTBEG EQU*
FCC/CMDl/
FOB CMDlE
FCC/CMD2/
FOB CMD2E

FCC/CM ON/
FOB CMDNE

CTBENDEQU*

Command table beginning
Four character command
Entry address of command
Four character command
Entry address of command

Four character command
Entry address of command
Command table end

Once the user command table is stored in memory, EXbug must be informed of its
location by having the beginning address of the table (the value of CTBEG in the
above example) put at locations $FFOE and $FFOF, while the ending address of the
table (the value of CTBEND in the above example) is put at locations $FF10 and

3-28

$FF11. In both of these cases, the addresses are loaded into memory in the
order of most significant byte first, followed by the least significant byte.
If the command table and commands are loaded from a tape, the tape may contain
an object code that will properly initialize these locations. This object code
may be generated by the ORG and FOB statements in the source. For the above
example, the source code required to generate the proper object code to
initialize these locations would be:

Example: ORG $FFOE
FOB CTBEG, CTBEND

NOTE: An ORG statement or END statement would be required after the two source
lines shown above, so that the object code would not be produced at 1 ocat ion
$FF12 or beyond.

If the command table and commands are loaded from an MOOS file, a short program
can be included in the file that would initialize these locations and then give
control to EXbug when it is executed. Programs cannot be loaded from the disk
at these locations.

Pressing the ABORT pushbutton will not modify locations $FFOE through $FF11.
However, pressing the RESTART pushbutton will cause these locations to be
restored to the EXbug values. These locations will also be restored to the
EXbug values when power is initially applied. Thus, following a restart, the
user must restore the beginning and ending addresses of his table (if required)
in memory locations $FFOE through $FF11. If the user does not wish to add
commands, no operation is needed.

On entry to the user command, the stack pointer will be pointing at two
locations below the top of the EXbug stack area; the A accumulator will contain
$20; and the contents of the B accumulator and X, Y, U, CC, and DP registers
will be unspecified. None of these values need be restored before returning to
EXbug. However, IRQ and FIRQ are normally made while EXbug is running. User
commands that are intended to return to EXbug without affecting the current
states of EXbug variables, should return by jumping to location $FSC2. User
programs that are intended to return to EXbug and initialize EXbug variables,
should return by jumping to location $F564.

3.7 EXbug SUBROUTINES AND ENTRY POINTS

This paragraph lists and describes the subroutines in EXbug that are available
to run programs in the EXORciser. Since EXbug is in the Executive map, any
program that uses EXbug routines must also be in the Executive map if the
EXORciser is being operated in the Dual Map mode. Also, programs run in the
Single Map mode can use EXbug routines. Table 3-3 lists the available routines.
A listing of the first lK of EXbug, which contains most of these routines, is
provided in Appendix B. This is the lK ROM on the DEbug Module. This ROM can
be replaced by a user-provided ROM if he wishes to modify the I/0 or restart
sequence. However, the other 2K of EXbug makes references to the first lK, as
given in cross reference symbol table of Appendix B. These references must be
provided for in a user-installed ROM for proper operation of EXbug. In order
for programs that use EXbug to be compatible with past and future versions of
EXbug, they should only use the routines listed in Table 3-3, and only at the
addresses given in that table.

3-29

TABLE 3-3. EXbug Routines

Page
ENTRY ADDA MNEMONIC FUNCTION Ref.

FOOO PWRUP ENTER EXBUG FROM RESTART 3-30
F003 XBEGEN INPUT START & END ADDRESSES 3-31
F006 XCBCDH CONVERT HEX TO BCD 3-31
F009 XCHEXL CONVERT MS BCD TO HEX (ASCI) 3-32
FOOC XCHEXR CONVERT LS BCD TO HEX (ASCI) 3-32
FOOF XINADD INPUT HEX ADDR INDIRECT (X) 3-32
F012 XINCH INPUT ONE CHARACTER 3-33
F015 XINCHN INPUT ONE CHAR NO PARITY 3-33
F018 XOUTCH OUTPUT CHAR (WITH SPEED FILL) 3-33
F01B XOUT2H PRINT 2 HEX CHAR (X) 3-34
F01E XOUT4H PRINT 4 HEX CHAR (X) 3-34
F021 XPCRLF PRINT C/ R LI F (Uses A) 3-34
F024 XPDATA PRINT C/R L/F +DATA STRING 3-35
F027 XPDAT1 PRINT DATA STRING (Enter with X) 3-35
F02A XPS PAC PRINT SPACE 3-35
FOF3 FOF3 REENTER EXBUG COMMAND LEVEL 3-36
F564 F564 REENTER EXBUG COMMAND LEVEL 3-36
F5C2 F5C2 REENTER EXBUG COMMAND LEVEL 3-36
F8A4 F8A4 READ OBJECT RECORD 3-36
F9CF F9CF OUTPUT CHAR (NO SPEED FILL) 3-37
FBFB _ RTNUSR RETURN TO USER MAP FROM SWI 3-37

Except as stated in the descriptions, all of these are subroutines, end with an
RTS, and should be called with a JSR. Control will be returned to the next
instruction following the JSR, providing the stack pointer and stack memory are
properly implemented. Most of these routines involve input or output of data on
the terminal that is connected to the EXORci ser. The routines that involve
input from the keyboard (or tape reader) will sit and wait (in a loop) until the
character is input; then it will return. Unless indicated otherwise, routines
that output to the terminal are affected by the Z option. That is, output
through these routines will be sent to the line printer, as well as the
terminal, if the Z option is on (non-zero). The Z flag is kept in location
ZFLAG ($FF32) and can be modified by the program. (Refer to the Z command
descripton.)

Name:

Function:

Call:

Input:

Output:

PWRUP -- Power-up and restart entry

Configure EXbug and its peripherals from a restart or power-up
condition

JMP PWRUP

None

EXbug parameters are initialized along with the EXbug peripheral
devices. the EXbug start-up message is sent to the terminal.
NOTE: Control is not returned to the calling program, but is
given to the EXbug command input routine.

3-30

Name:

Function:

Ca 11 :

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

XBEGEN -- Input Start and End Addresses

Request Input of Beginning and Ending Addresses as defined in the
PRNT command. Verify inputs are hexadecimal characters. Verify
ending address is larger than beginning address.

JSR XBEGEN

None

$FFOA BEGA
$FFOC ENDA

16 Bit Beginning Address
16 Bit Ending Address

NOTE

Ace A and B and the X and Y Index Registers are used
by this subroutine. If their contents are meaningful,
they must be saved prior to calling this subroutine.
If single parameters are entered for BEG or END, the
default debug offset (Q in locations $FFE6, $FFE7)
will be added to them to determine BEGA and ENDA.
If two parameters separated by a comma are entered,
they will be added together to determine the address
being entered. The calling program may modify Q to
specify the default debug address. However, if it
does this, the new value of Q will be used by EXbug
as the default debug offset.

XCBCDH -- Convert a hexadecimal character to a binary number

Verify input is a hexadecimal digit character. Convert character
to a 4-bit binary number with HI order 4 bits equal zero. Set N
(negative) condition code for non-hexadecimal characters.

JSR XCBCDH

Character to convert must be in Ace A

If hexadecimal character input, Ace A contains the 4-bit bi nary
number represented by the input character, and the N (negative)
condition code is cleared. If non-hexadecimal character input, Ace
A contains the character input, and the N condition code is set.
the B, X, Y, and U Registers are preserved.

3-31

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Ca 11 :

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

XCHEXL -- Convert most significant binary value to Hex

Convert the most significant 4 bits of Ace A to an ASCII coded
hexadecimal digit character

JSR XCHEXL

Contents of Ace A

An ASCII coded hexadecimal digit character in Ace A. The B, X, Y,
and U Registers are preserved.

XCHEXR -- Convert least significant binary value to Hex

Convert the least significant 4 bits of Ace A to an ASCII coded
hexadecimal digit character

JSR XCHEXR

Contents of Ace A

An ASCII coded hexadecimal digit character in Ace A. The B, X, Y,
and U -Registers are preserved.

XINADD -- Input a hexadecimal address

Convert up to 4 input hexadecimal characters to a 16-bit bi nary
address.

JSR XINADD

X Index Register contains address to store result

Most significant 8 bits of resultant 16-bit address will be stored
into the memory location specified by the X Register. The least
significant 8 bits will be stored into the next higher memory
location. Ace A will contain last character input. Ace B will
contain number of input hexadecimal characters. The X Register is
unchanged. The subroutine returns to the calling program when an
invalid character, or the fifth hexadecimal digit, is entered.
The Y and U Registers are preserved.

NOTE
This address is not modified
by the default debug offset.

3-32

Name:

Function:

Call:

Subroutine
Input: .

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Ca 11 :

Subroutine
Input:

Subroutine
Output:

XINCH -- Input one character

Wait for and accept.input of one character from debug terminal and
echo character back to tenninal, if required.

JSR XINCH

There is a no echo flag (AECHO) at $FF58. It must be set non-zero
before each call to XINCH for each character that is not to be
echoed to the terminal (and line printer, if the Z option is on).

Ace A contains 8-bit input character as received from the debug
tenninal. XINCH clears AECHO if it was non-zero. The B, X, Y,
and U Registers are preserved.

XINCHN -- Input one character with no parity

Wait for and accept input of one character from debug tenninal and
echo character back to terminal, if required. Clear HI order bit
of input character.

JSR XINCHN

There is a no echo flag (AECHO) at $FF58. It must be set non-zero
before each call to XINCHN for each character that is not to be
echoed to the terminal (and line printer, if the Z option is on).

Ace A contains input character as received from the debug terminal
with the HI order bit cleared. XINCHN clears AECHO if it was
non-zero. The B, X, Y, and U Registers are preserved.

XOUTCH -- Output Character

Output one character with required speed fill

JSR XOUTCH

Ace A contains character to output to the debug terminal (and to
the line printer, if the Z option is on).

Ace a contains character output. The B, X, Y, and U Registers are
preserved.

3-33

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

XOUT2H -- Output two hexadecimal characters and a space

Convert the contents of an 8-bit bi nary byte to two hexadecimal
characters and output them, followed by a space character, to the
debug terminal.

JSR XOUT2H

The X Register contains address of the byte to be converted and
output.

Ace A contains last character output. The X Register is
incremented by one. The B, Y, and U Registers are preserved.

XOUT4H -- Output four hexadecimal characters and a space.

Convert the contents of two consecutive 8-bit binary bytes to four
hexadecimal characters and output them, followed by a space
character, to the debug terminal.

JSR XOUT4H

The X Register contains address of the first byte to be converted
and output.

Ace A contains last character output. The X Register contains the
input address plus 2. the B, Y, and U Registers are preserved.

XPCRLF -- Print CR/LF/Null

Output a carriage return, a line feed, and a null character to the
debug terminal with required speed fill.

JSR XPCRLF

None

Ace A contains a null character (0). The B, X, Y, and U Registers
are preserved.

3-34

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:
•

Cal 1:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

XPDATA -- Print CR/LF/Data string

Output a carriage return, a line feed, and the user-specified
string of data characters to the debug terminal.

JSR XPDATA

The X Register will contain the starting address of user data
string to output. Output string is terminated by an EDT (04)
character.

The X Register will contain the address of the EDT character. Ace
A will contain the EDT character. The B, Y, and U Registers are
preserved.

XPDATl -- Print Data String

Output a user-specified string of data characters to the debug
terminal.

JSR XPDATl

The X Register will contain the starting address of user data
string to output. Output string is terminated by an EDT (04)
character.

The X Register will contain the address of the EDT character. Ace
A will contain the EDT character. The B, Y, and U Registers are
preserved.

XPSPAC -- Print space

Output a space character to the debug terminal

JSR XPSPAC

None

Ace A will contain a space character.
Registers are preserved.

3-35

The B, X, Y, and U

name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

FOF3 -- Reenter EXbug

Entry point for programs to reenter EXbug. In 6800 EXbug 1, this
is the MAID re-entry point. Reentering EXbug at this point with
breakpoints active can cause unexpected results.

JMP FOF3

None

Control is not returned to the calling program.

F564 -- Reenter EXbug

Entry point for programs to reenter EXbug. This entry point
initializes most of the EXbug parameters. This is the recommended
EXbug reentry address.

JMP F564

None

Control is not returned to the calling program

F5C2 -- Reenter EXbug

Entry point for user-added, four-character commands to reenter
EXbug

JMP F5C2

None

Control is not returned to the calling program

F8A4 -- Read object record

Read an object record from the terminal tape reader to a memory
buffer and convert the data from ASCII to binary. This routine
continues to read records until an object record is read. The
object format is described in Figure 3-4.

JSR F8A4

None

3-36

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subro~tine
Input:

Subroutine
Output:

The record type, ASCII 0, 1, or 9, is in BCONT (location $FF91).
The byte count is in location $FF92. The rest of the record in
hexadecimal, up to the checksum, begins in location $FF93. An
indication of the validity of the checksum is in BCKSM (location
$FF90). If this location contains zero, the checksum was correct.
If it contains a non-zero value, the checksum was in error. The
register values are indeterminate on return.

F9CF -- Output character

Output one character without speed fill

JSR F9CF

Ace A contains the character to output to the debug terminal. The
character is not sent to the line printer if the Z option is zero.

Ace A contains character output. The B, X, Y, and U Registers are
preserved.

RTNUSR -- Return to the user map

Returns control to the user map following a user map SWI that was
serviced in the Executive map. See E command description for
further information. This entry point is in EXbug 2 only.

JMP RTNUSR

The processor registers to be restored from the SWI must be on the
stack as the next items that can be pulled off the stack.

Control is not returned to the calling program.

3-37

CHAPTER 4

SYSTEM DEVELOPMENT USING THE EXORciser

4.1 INTRODUCTION

The EXORciser is a system development tool used in the design and development of
M6809 Microprocessor Systems. This chapter contains an overview of the tasks of
developing hardware and software, and an explanation of the role of the
EXORciser in the development of the user system. The use of the EXORciser to
emulate (functionally duplicate) the user system, or to connect to an existing
microprocessor system, is described, and methods to debug the user system are
shown.

The optional EXORciser modules are discussed in general terms. Refer to the
User's Guide for the optional modules, and to this User's Guide for details in
preparing the EXORci ser to emulate your system, or to connect it to another
system. It is assumed in this chapter that the M6809 Data Sheet is being used,
as well as the M6809 Programming Manual. These are the manuals referenced by
the expression "M6809 Manuals'' used throughout this chapter.

4.2 THE EXORciser IN SYSTEM DEVELOPMENT

The EXORciser reduces the time required for an engineer to construct a working
model of a prototype system. This is accomplished by the ability of the
EXORci ser to emulate a user system hardware, and to debug the interfaces of
external devices and user software. Rather than immediately designing and
building a prototype of a system, the engineer sets up the EXORciser to
functionally represent the system, using the plug-in optional modules mentioned
here and described in detail in the separate User's Guides.

If the designer has already built a prototype or production model of his system
before acquiring the EXORci ser, he can proceed to the later sections of this
chapter for descriptions of the use of the EXORciser with external microcomputer
hardware.

4.3 PERIPHERAL INTERFACING

When a system is being designed to use the MC6809, MC68A09, or MC68B09
Microprocessor, it must be determined how to control the hardware, and how much
of the system logic can be done in software. The hardware typically has
functions that need to be controlled, and sensors that need to be monitored.
The EXORci ser is an operating microcomputer in modular form, which can be
interfaced to the user hardware. Since most external devices can be interfaced
with 6820 or 6821 Peripheral Interface Adapters (PIA's), and use TTL compatible
signals, an 1/0 Module would, typically, be plugged into the EXORciser, and the
PIA I/0 pins wired to the user peripheral device via a flat ribbon cable. (It
is assumed that the user circuits are TTL compatible.) Once this is done, the
user can test the hardware interface by using the EXbug Display/Change Memory
command, as described in Chapter 3 (i.e., since PIA registers are like memory
locations in 6809 systems, storing to the PIA data register, after it has been
programmed as an output port, wi 11 put signal levels on the I/0 lines in
accordance with the data word stored). For example, depending on the system
hardware, a data word can be selected to cause a motor to run, a solenoid valve
to open, or a relay to close. When such a word is entered, it will frequently
be found that the correct action did not happen, in which case a scope or meter

4-1

Implement
Electromechanical

Systems
Elements

Plan Hardware
Interface To
System Bus

No

FIGURE 4-1.

Flow Chart
Functions To
Be Performed

l
Determine

Control Words
And 1/0

Addresses

Program
ROMS or PROMS

As Required

Hardware
Simulation

Using
EXORciser

I

Does
System Meet

Design
Goals

Yes

Final Design
Of PC Cards
And Other
Hardware

Test
Using

Use
Module

-

No ---

Errors

Write Code
Using M6809
Instruction

Set

Enter Source Code
Using

Terminal, Floppy
Disk, And Editor

Debug

Using
EX bug

Assemble
Using

Resident
Assembler

Firmware

Modify
Software

Using
Editor

System Designing and Verifying Procedure

4-2

can then be used to observe changes on the output lines and/or peripheral
devices, and the wires moved or the control word changed to correct the problem.
Once the proper control words have been determined, a similar analysis is made
of the data word read from the PIA input data register. The bits of this word
are the result of the data levels on the lines from the sensor hardware. When
the control and status words are known, a routine can be entered into memory, in
machine language, using EXbug, to exercise the external hardware. When
everything has been tried and it is fully understood, a complete program can be
written and assembled on the EXORciser, using the optional resident
Editor/Assembler programs. The program for this subsystem is then loaded into
memory, and tested by using breakpoints or 11 run-one-instruction 11 methods (see
Chapter 3). When finalized, the same technique is repeated for other subsystems
and their additional peripheral units until a whole system is assembled. This
entire process is depicted in Figure 4-1. It is seen in that figure that each
step has feedback paths so the hardware or software can be improved any number
of times until the desired performance is reached.

The engineer now has an operating model of his system using EXORciser hardware,
with a minimum amount of time spent on prototype construction. The programmer
can now finalize his routines.

The advantages of the EXORciser to the programmer are that he can verify his I/0
programming steps by testing them before he writes a source program, and it
permits him to debug the resulting object code on a real time basis.

4.4 PROCEDURE FOR DESIGN

To better understand using the EXORciser in the design and development of an
M6809 Microprocessor system, let us review the procedure followed by a typical
engineer in developing a microprocessor system, and how the EXORciser will
simplify the design (see Figure 4-2). The engineer:

a. Defines his system, using flow charts (or other means). In this
definition, he determines the software and hardware functions to be
performed.

b. Sets up the EXORciser to emulate his system hardware (to be explained).
If required, he also builds any special hardware interface circuitry to
his peripherals.

c. Prepares his software programs on the EXORciser, after testing the
hardware required to accomplish the intended function, and determining
the addresses and control words.

d. Loads software into the EXORciser and, using the EXbug Firmware, debugs
both the hardware and the software until he has a working system.

e. Designs and builds a preproduction model of his system.

f. Combines the preproduction hardware with the user system software and~
using the EXORciser EXbug Firmware and the User System Evaluator (USE*J
module, debugs and makes any hardware and software adjustments.

g. Extensively tests and evaluates his system in an actual working
environment. At this point, the program may be stored in PROM's, using
the optional PROM Programmer.

4-3

EXORciser

EXORdisk

Keypads

FIGURE 4-2.

Terminal

••

EXORciser, the Development Tool

4-4

Software
Development

Hardware
Debug

Final Debug
and/or
Production
Test

h. Builds the production hardware of his system and has his ROM's made. The
USE* is used in testing and debugging the production systems.

i. Combines the production hardware with the system software and makes the
final adjustments to his system. He again may use the EXORciser in
evaluating his system by means of the USE*.

j. Releases his system to production.

k~ Analyzes problems in production hardware with the EXORciser and USE*.

*The User System Evaluator is an optional module with an interconnecting cable
(and buffers) which plugs into the M6809 socket of the user prototype or
production unit. It connects the two systems together in such a way that all
the debug capabil itiess of the EXORciser are usable in the user hardware.
(See the USE User's Guide for details.)

4.5 EXORciser CONFIGURATION

The EXORciser configuration is described in detail in paragraph 1.5. Memory
parity is described in paragraph 1.5.1. Dual map concepts are discussed in
paragraph 1.5.2.

4.6 SYSTEM ADDRESS SELECTION

The address selection of the various modules will depend on whether the system
is being used for software development or to emulate the target system.
Included in the address selection is the determination of which map the module
will respond in. The user assigns a module to one of the two maps by installing
either the VUA or VXA addressing jumper that is found on all EXORciser modules.

During software development (edits, compilations, assemblies, etc.), the user
will probably want as much continuous RAM as possible, starting at address 0000.
This RAM must also be in the same map as EXbug so that the software development
programs can communicate with the system terminal. This requires that the RAM,
EXORdisk interface, and Printer interface be configured for the VXA, and the
DEbug Module be configured for the Dual Map mode, or that the RAM, EXORdi sk
interface, and Printer interface be configured for VUA, and the DEbug Module be
configured for the Single Map mode. These same requirements also apply for any
programs that use the system terminal or EXbug routines.

During target system emulation, the module addresses will be selected as
required for the target system. The target system may be emulated in the User
map of the Dual Map mode or, if it does not require any addresses .equal to or
greater than FOOO, it may be emulated in the Single Map mode. In the Single Map
mode, the modules should be configured to respond to VUA.

Refer to the applicable User's Guide for instructions on setting the address and
map of the various modules. To avoid conflicts with EXbug, Modules in the
Executive map should be addressed only at values less than $FOOO.

4.7 SECOND LEVEL INTERRUPT

The second level interrupt feature of the EXORciser is described in detail in
paragraph 1.5.3.

4-5

4.8 MEMORY ASSIGNMENTS

The DEbug Module provides the EXORciser with the capability of addressing two
separate 64K blocks of memory. These two blocks of memory are referred to as
the Dual Memory map. One of these, the Executive map, contains EXbug (if
configured for VXA), its peripheral devices and RAM, the EXORdisk ROM and I/0
devices, and the Printer I/0 device. The other, the User map, is completely
available to the user for emulation of his target system. This gives the user
complete freedom in assigning addresses to his memory and I/0 devices without
worrying about addressing conflicts with the system monitor and I/0 devices, yet
EXbug provides the user with full debug capabilities in the User map.
Optionally, in the Single Map mode, the DEbug Module can merge the two maps. In
this mode, all addresses less than $FOOD come from the User map.

In the Dual Map mode, all of the EXbug debug commands are available in either
map. The EXbug USER and EXEC commands control which map will be accessed by the
debug commands. The command USER causes the EXbug debug commands to operate in
the User map. In this mode, EXbug prompt is *. The command EXEC causes the
EXbug debug commands to operate in the Executive map. EXbug prompt is *E in
this mode. On power-up, EXbug comes up in the EXEC mode.

In the Single Map mode, the EXEC and USER commands are not usually required,
since the maps have been merged. However, if the Halt-on-Address or Scope Sync
function is to be used at an address less than $FOOO, the USER corrvnand must be
entered so that the address compare circuitry will detect the appropriate map.

Executive map/User map interface is described in detail in Appendix G. It is
suggested that the user read Appendix G, and then prepare the User Map as
follows:

a. Construct a basic memory map of the User System.

b. Assign the memory location for ROM's or PROM's at the top of memory. The
top of memory of the ROM's must appear to the MPU as address FFFF in the
planned decoding scheme. (Some address lines will not be used, and the
ROM, therefore, will respond to more than one range of addresses.)

c. Assign the memory addresses for RAM's. It is recommended that the RAM's
be placed below address 100 in memory, to realize the advantage of the
direct addressing mode to save memory.

d. If the User System is using Peripheral Interface Adapters (PIA's),
assign four addresses for each PIA, as described in the M6809 Manuals.

e. If the User System is using Asynchronous Communication Interface
Adapters (ACIA's), assign two addresses for each ACIA, as described in
the M6809 Manuals.

4.9 EXORciser CONFIGURATION FOR SYSTEM EMULATION

This paragraph discusses preparing the EXORciser to emulate (functionally
represent) the User System. Refer to the optional module User's Guides, as
required, for details. Prepare the EXORciser hardware as follows:

a. Install the EXORciser modules in the EXORciser card slots.

4-6

b. Determine whether the EXORciser clock or an external clock is to be used
in the User System. Install jumpers on the MPU Module accordingly. (If
using the User System Evaluator, see applicable User's Guide.)

c. If you are using an external clock, determine the clock frequency to be
used in the User System.

d. Connect the external clock to the MPU Module.

e. Connect the EXORciser to the user process or peripheral device, using the
I/0 Module for parallel interface, or the ACIA Module for serial
interface.

f. Construct any required special circuitry for interface.

g. Set the base memory addresses on the EXORci ser memory and peripheral
interface modules by means of the address switches, as described in the
module User's Guides.

h. Assign memory map address enable jumpers (VUA, VXA, or PAGE ENABLE) on
each module.

4.10 TESTING PROTOTYPE OR PRODUCTION SYSTEMS

Once the designer has emulated his system in the EXORciser chassis and it is
operating properly, he can begin construction of a prototype as a next step in
the development. By his emulation, he now knows exactly how much memory he
needs, how many output ports or lines will be required, and even what his clock
circuit and decoding scheme must be. This information allows him to design a
prototype that will be reasonably close to the final production units. He has
not eliminated the need for a prototype altogether, but probably has bypassed
several iterations, at least.

When construction is completed, he must test his prototype and determine whether
it performs as well as the emulation system did. For this purpose, the
EXORciser is augmented by the addition of the User System Evaluator (USE). This
subsystem consists of a USE processor module connected by cab 1 es to the MPU
Module, and a buffer and cable assembly.

The USE-EXORciser can be used with the Motorola M6809 microprocessor system.
The purpose of this arrangement is to provide the same debug capabilities in the
user system as previously used in the emulation. The interconnection of the two
systems in this way creates one bigger system which operates in real time with
one MPU. With this arrangement, it is now possible to operate and test the
system with all or part of the I/0, or memory, in either system. The memory can
be RAM or ROM (or PROM), and the I/0 can be the original emulated version using
EXORciser modules, or can be the newly constructed circuits on the prototype.

Since it is better to take little steps, rather than one big plunge, the
procedure for the development of a typical system might be as follows:

a. One or more of the I/0 chips are installed, and the associated external
peripheral is tested by using the EXbug memory display/change routine,
just as was done in the original emulation (see par. 4-3).

4-7

b. After all of the I/0 circuits have been activated and are working
correctly (assuming that the system previously shown in Figure 4-2 is
being prototyped), resume testing by loading the program that was used in
the emulation into RAM module.

NOTE
Many engineers may choose to assemble their I/0 circuitry
on the prototype board, or boards, and get it working with
their peripherals before the programming is finalized.
In this case, it is desirable to be able to edit and
re-assemble the program without dismantling the hardware
setup. This is possible by installing one or more of the
dynamic RAM memory modules.

c. If using a tape terminal and the Resident Editor/Assembler programs, a
minimum of 8K of RAM will be required with its address switches set for 0
and 1 (so as to have memory from 0000 to lFFF). The Editor/Assembler
reside in this range with 744 bytes left over for the edit buffer or
assembler symbol table.

d. If the EXORdi sk Floppy Disk System is chosen with the standard Editor
and Assembler programs, a minimum of 16K of RAM will be required, with
its address switch set for 0 to provide memory from 0000 to 3FFF.

NOTE
With either of these arrangements, the editing and
assembling process can be carried on in the EXORciser
without disturbing the hardware or the program in memory.
The USE feature, whereby the memory in the EXORciser has
priority over any memory (or I/0) in the user system,
allows this to work.

e. Once the user program has been edited and re-assembled until it operates
properly, it can be copied into EROM, or bi-polar PROM, by means of the
PROM Programmer Module (MEX68PP3). The PROM can then be installed in the
appropriate socket of the user prototype for extended testing.

NOTE
Any of the features of the EXbug program can be used at
any time. For example, the Trace and Breakpoint funcrions
are fully usable in either system. Trace works with PROM
(or ROM) and, although breakpoints will not work in ROM,
the Stop-on-Address will, and does essentially the same
job. These allow testing in real time (i.e., no wait
states are required, and the instructions are executed at
the user clock rate, including all I/O).

When the program has been put into PROM's, the EXORciser will start up in
the map specified by the switch settings on the DEbug. EXbug Restart
vectors will always be used when in Single Map mode. If in Dual Map
mode, and the Restart switch is set to its USER position, the EXORciser
wi 11 use the USER map for its RESTART vector and subsequent execution.
This feature allows the user to fully evaluate the power startup portion
of his final system design.

4-8

4.11 PRECAUTIONS WHEN USING THE USER SYSTEM EVALUATOR

The User System Evaluator is designed to interface with the user M6809 system,
but certain non-obvious precautions must always be taken. When the USE module
is first installed, many users have difficulty getting their EXORciser to run
properly. Refer to the USE User's Guide.

4.12 SYSTEM EVALUATION AND DEBUG PROCEDURES

Once a program has been written, entered, and assembled or compiled, it must be
tested to determine if there are any errors or bugs in it. The program must
also be tested with a prototype version of the system hardware to determine if
the complete system functions as required. The EXORciser, with the EXbug
program, provides a ready tool for system testing. For preliminary system
testing, the various optional EXORciser modules, such as the PIA and ACIA
modules, can be used to emulate the I/0 functions of the final system. The
EXORci ser RAM modules can be configured, as required, to contain the program
under test. Paragraph 4.9 discusses how to configure the EXORciser for system
testing. After the system is properly configured, load the program.

4.12.1 Memory Loader

The program may be loaded to memory from tape, using the terminal tape reader
and EXbug LOAD command. If the program is on an MOOS diskette, the MOOS LOAD
command can be used to bring it into memory. At this point, the program can be
run without any EXbug debug features active. This will given an indication if
the program operates correctly. The program can be started using the ;G or
addr;G command.

4.12.2 Abort Function

If the program does not operate properly, the ABORT button should return control
to EXbug. The abort will give a register printout of the processor state when
the abort occurred. This printout can be useful in further debugging by
indicating a likely place to start debugging. If the program were run in the
Single Map mode or in the Executive map, it might have destroyed EXbug NMI
vector, in which case the abort will not function. Al so, execution of an
invalid op code might put the processor in a state where it will not respond to
the abort NMI. If either of these two conditions occurs, the RESTART button
will have to be used to return control to EXbug. In the Dual Map mode, the
restart switch S3 on the DEbug Module must be in the EXBG position for the
restart to start EXbug.

4.12.3 Default Debug Offset

Before continuing further with debugging, the default debug offset, or Q value,
should be specified if a relocatable program is under test. Specifying the main
base address of the program as the Q value speeds debugging by permitting direct
entry of all addresses relative to it. EXbug automatically adds the Q value to
each single parameter address value entered. The Q value can be overridden by
entering two parameters separated by a comma as an address parameter. In this
case, the two parameters are added together to determine the absolute address.
Refer to par. 3.6, EXbug commands, for further information about the default
debug offset. All addresses displayed by EXbug are absolute values. The Memory
Change function can be used to determine the corresponding relative value. To
determine the relative address, enter the absolute address, a comma, a minus

4-9

sign, the base address, and then a slash. EXbug will then display the contents
of the relative address used as an absolute address. Entering another slash
will cause EXbug to display the relative address and the memory contents again.
A carriage return ends the Memory Change function. Figure 4-3 shows an example
of this use of the Memory Change function.

'E 240;G

P-4601 X-45EB A-00 8-37 C-04 S-FFBA

0256 FF

Note: Offset+ BRKPT = First BKPT Address

43AB + 256 = 4601 (HEX)

FIGURE 4-3. Using Memory Change to Calculate a Relocatable Address

4.12.4 Memory Change Function

Si nee the I/0 devices in an M6809 system are in the memory map, the Memory
Change function can be used to read and change their contents. Certain features
of the memory change command facilitate its use to read and modify I/0 devices.
The slash (/) memory change tenni nator updates the open location to the new
value entered, if one was, and then re-opens the same location. This capability
is handy in toggling a bit in a parallel output device, or repetitively viewing
an input device. If a location does not change correctly, the Memory Change
function is not automatically exited. Instead, an error message, consisting of
a question mark, bell character, and the contents of the location, is sent to
the system terminal. After the error message, the Memory Change function
proceeds according to the command used to close the last location. This feature
is useful when writing to write only registers or PIA control registers. The
EXbug Memory Change function reads a location only once when its contents are
displayed. Also, a location is read once after it is written to verify that it
changed properly. When a location is written, only one store instruction is
used.

4.12.5 Breakpoint, Trace, and Halt-on-Address/Scope Sync Functions

EXbug provides three different methods of controlled program execution to assist
in locating hardware and software problems. The methods are:

• Breakpoints
• Halt-on-Address/Scope Sync
• Trace

Each method has its advantages and restrictions. Combined, they provide very
powerful and flexible techniques for testing and debugging M6809 systems. There
is one restriction that is common to all three controlled program execution
methods, except for the scope sync. Breakpoints, trace, and halt-on-address all
use an interrupt to stop program execution. Since an interrupt pushes the
contents of the processor register on the stack, the stack pointer must be
pointing at a val id stack area when the interrupt occurs. Therefore, if the

4-10

stack pointer is not pointing at RAM when the interrupt occurs, the register
contents will be lost. If the stack pointer is pointing to a data area in RAM
when the interrupt occurs, the data will be overwritten by the register
contents.

4.12.5.1 Breakpoints. Breakpoints are probably the most useful of the three
techniques. A maximum of eight breakpoints can be active at any given time.
Therefore, they can be used to check program fl ow. Breakpoints can be set at
various locations throughout the program; then, when program execution reaches
the breakpoint, execution is stopped and the processor registers are displayed.
Breakpoints are also useful in testing the execution of program loops. This is
provided by the n;P command, which continues execution at a breakpoint but does
not stop and display the registers at that breakpoint until the nth time it
occurs. Except for the use of the n;P in loop testing, the program will execute
in real time while breakpoints are active. During the n;P operation, the
breakpoint remains in the program and gives control to EXbug each time it is
encountered. EXbug returns control to the program as 1 ong as the n value is
non-zero. This operation will slow loop execution. The restrictions on the use
of breakpoints are that they can only be used in programs running in RAM, and
that they must only be set on the first byte of an instruction. Both of these
restrictions result because EXbug uses the SWI instruction for breakpoints.

4.12.5.2 Trace. The trace feature comes in two options: trace a given number
of instructions or trace to a given address. Both are useful in watching the
processor registers during program execution. Care must be exercised while
using trace, however, since it is easy to quickly generate more register
printout than one can reasonably digest. Since the trace feature uses the NMI,
programs in ROM as well as RAM can be traced. The restriction on trace is that
the program execution is not real time. EXbug interrupts the program after each
instruction so that it can provide a register printout.

4.12.5.3 Halt-on-Address. The Halt-on-Address function is useful in finding
how a location is being changed when it is not expected to be. Halt-on-Address
generates an interrupt when the specified address appears on the address bus.
It is not necessarily associated with the execution of a specific instruction,
as are the two previous techniques. Since it is a function of address, the
Halt-on-Address can also be used as a single breakpoint for a program in ROM.
The restrictions on the Halt-on-Address are that the processor is not
interrupted until after the completion of the instruction which accessed the
specified location, and that unexpected halts may occur due to the operation of
certain instructions. The first restriction causes the program counter to
indicate the next instruction to be executed after the instruction that accessed
the specified location. In most cases, this will not cause a problem. However,
if the instruction which caused the halt also caused a change in program flow
(such as a branch, JMP, JSR, RTS, or RTI), it may be difficult to determine
which instruction caused the halt. Unexpected halts may be caused by certain
instructions. For example, all single-byte instructions cause the next address
to be read while the instruction is being executed. Therefore, if a halt is set
on an instruction following a single-byte instruction, the halt will occur twice
-- once when the single-byte instruction is executed and, again, when the
instruction following it is executed. One instance of this type of operation
that is not always obvious is when a halt is set on an instruction where the
preceding location contains an RTS. The halt will occur when the RTS is
executed, but the associated register printout will show no relationship to
where the halt was set. A cycle-by-cycle description of all M6809 instructions
is contained in the M6809 Data Sheets.

4-11

4.12.5.4 Scope Sync. Associated with the Halt-on-Address function is a Scope
Sync function, which is enabled and disabled by the same EXbug commands as the
Halt-on-Address. The selection between the two functions is made by switch S2
on the DEbug Module. When the switch is in the Halt-on-Address position, an NMI
is generated by the address match. In the Scope Sync position, a pulse is
generated at the scope trigger point on the DEbug Module by the address match.
The Scope Sync feature is used to trigger an oscilloscope to monitor the
waveforms associated with a particular point in the program. The restriction on
the Scope Sync is that unexpected trigger pulses may result. This happens for
the same reason as the unexpected halts -- the specified address appearing on
the bus because of a preceding single-byte instruction.

4.12.6 Error Correction

Once program errors, or bugs, have been found using the above procedures, the
next step is to correct the bug and continue testing. There are two ways of
correcting bugs. If the bug is relatively minor, such as loading the wrong
register or the wrong value, it may be patched -- that is, corrected in memory.
A written record should be made of the patch so that the program source may be
corrected at a later time. It is also a good idea to dump the patched program
to disk or tape so that memory can be restored. After several patches have been
collected, the program source should be edited and the bugs corrected. Then the
program can be rec om pi 1 ed or assemb 1 ed, and testing can continue with the new
version of the program. If the prograrq bug is major, such as an error in
program organization, it may be necessary to go directly to the edit, compile,
assemble procedure.

The point at which a bug becomes too large to patch depends on the time required
to edit, compile, assemble the program. If the program can be edited and
compiled or assembled and a new object program obtained quickly, then lengthy
patches may not be appropriate.

4.13 SOFTWARE DEVELOPMENT USING THE EXORciser

With the addition of the EXORdisk and Microsystems Printer, the EXORciser
becomes a very powerful software development tool. Software is developed as
follows.

Program Requirements - The first step in software development is to define the
program requirements. This specification should be as complete and detailed as
possible. Without this road map of what is required of the software, the design
of it can easily become misdirected into areas that are really unimportant.

Language Selection - Select the language the program will be written in. The
choice is between assembly language and the higher level languages. Along with
resident absolute and macro/relocatable assemblers, Motorola currently supports
the following resident higher level languages for the M6809: FORTRAN, BASIC,
MPL, and PASCAL. The decision of which language to use depends on the
application, the proposed production volume of the final system, and what
languages the user has experience with. Typically, as the production volume of
a product is increased, the reduced memory requirements of assembly 1 anguage
over higher level languages makes assembly language a better choice. However,
when the production volume will be low, the reduced development time for higher
1 evel 1 anguages, as compared to assembly 1 anguage, will . make them the better
choice. System response time requirements may also play\ a part in determining
what language is used, since higher level languages exe~ute more slowly than

4-12

assembly language. Some higher level languages overcome this by permitting
portions of the program to be written in assembly language. The user should
also give preference to languages he has had experience with, in order to avoid
a possibly lengthy learning period which would affect the product schedule.

Progam Design - After a language has been selected and program requirements
defined, design the program. This step is very important. The completed design
of the program is equivalent to the schematic for the hardware. This design may
be done in flow chart, metacode, a higher level language, or some other
technique with which the designer is familiar. The language selected will have
a bearing on the design. A more detailed design is required if the program is
to be written in assembly language instead of a higher level language. This is
required so that memory and the processor registers are properly allocated.
These are tasks that a higher level language will take care of for the
programmer. Some higher level languages such as MPL are structured so that the
program could be designed using the higher level language. In these cases, the
design and coding, or programming, would occur concurrently.

Writing the Program - Once the design is completed, the next step is to write
the program. As the program is being written, it can be entered onto disk or
tape, using the resident editor. This is referred to as the source. If the
program is written in modular blocks, they may be compiled or assembled and
tested as they are completed. Otherwise, the complete program will have to be
entered before it can be compiled/assembled and tested.

Testing - The procedure described in the preceding section may be used for
testing the program. However, if the equivalent I/0 devices for the final
system are not duplicated in the EXORciser, the routines that handle these
devices and the corresponding I/0 cannot be tested easily. If these routines
are to be tested at all without the corresponding hardware, then software
routines must be written to simulate the I/0. Generally, though, routines that
do not require I/0 can be tested without much difficulty once any required
parameters are set up. As testing continues and program errors are found, they
may be corrected by patches, as described in the preceding section. When
several patches have been made to the program, it is wise to incorporate the
corrections in the source by editing it. After the corrections have been made,
the program can be compiled/assembled again, and testing can continue.

4-13

CHAPTER 5

THEORY OF OPERATION

5.1 INTRODUCTION

This chapter provides a block diagram description of the EXORciser. As a system
development tool, the EXORciser may be configured in a variety of applications
and with a variety of options. This chapter, rather than discussing each
possible configuration, discusses the basic EXORciser, which comes equipped with
an MPU Module, a DEbug Module, 32K of RAM Modules, and the power supply.

The basic EXORciser and its optional modules provide the user with a system
development tool for the M6809 Microcomputer Family of Parts. The user, through
his configuration of the optional modules in the basic EXORciser unit, has the
capability of emulating (functionally creating) a hardware prototype of his
system.

5.2 BASIC EXORciser BLOCK DIAGRAM DESCRIPTION

The basic EXORciser, as illustrated in Figure 5-1, consists of the MPU Module,
DEbug Module, power supply, chassis, EXORciser bus, and the EXbug Firmware.
Each of these modules is built around the M6809 Microcomputer Family of Parts,
MC68B09 Microprocessing Unit (MPU), MC68B21 Peripheral Interface Adapter (PIA),
MC68B10 Random Access Memory (RAM), and MC68B50 Asynchronous Communications
Interface Adapter (ACIA).

Through its system debug and program control features, the EXORci ser EXbug
Firmware minimizes the time required to develop a user system. The EXbug
Firmware provides the EXORciser with the capability to:

• Display the contents of the MPU registers at any time •
• Step through the user program one instruction at a time •
• Trace through a user program to locate problem areas •

• Stop the program on a selected program step •
• Abort from the user program and return to the EXbug control program on

command •
• Re-initialize the EXORciser on command.

The user communicates with the EXORciser in one of two ways:

• Through an RS-232C or TTY data terminal •
• Through the EXORciser front panel controls and indicators.

The data
Firmware.
EXORciser
reset the

terminal permits the user to communicate directly with the EXbug
The EXORciser front panel permits the user to apply power to the

to abort (exit) the EXORciser from a routine, and to initialize and
EXORci ser.

The MPU Module incorporates the MC68B09 Microprocessing Unit (MPU) and the
system clock. This module provides the MPU and the clock signals for both the
EXORciser and the user prototype system. The MC68B09 Microprocessing Unit is an

5-1

8-bit parallel processing unit capable of addressing 64K bytes of memory. In
addition, the MPU addresses its input and output devices as memory. The MPU
also provides the EXORciser with 59 variable length instructions and the
capability of responding to real time interrupt signals.

The MPU Module controls the flow of commands, data, and addresses on the
EXORciser bus. During an MPU memory read or write operation, the MPU Module
controls the transfer of command, status, addresses, and data to the selected
module by controlling the EXORciser bus.

The DEbug Module provides the EXORciser with th_e capability to evaluate and
debug the user prototype hardware and software in an actual application. The
EXbug Firmware, contained in ROM, provides the EXORciser with program control
capabilities. The RAM is used as a scratchpad memory for the EXbug Firmware.
The EXbug Firmware enables the EXORciser to:

• Load data into the EXORciser.

Verify that the data in the EXORciser is valid •
• Search a tape for a specific file •
• Print the contents of the memory •
• Punch (or record} the contents of the memory •

• Perform the MAID (Motorola Active Interface Debug) functions.

The MAID function enables the EXORciser to:

Examine and, if required, change the contents in a memory location •
• Examine and, if required, change the contents of the MPU registers •

• Calculate the offset in the relative addressing mode •
• Insert, display, and remove breakpoints in the user program •

• Freerun or trace through a user program under MAID control •
• Search memory for a specific bit pattern •

• Perform decimal-octal-hexadecimal conversions.
Stop the EXORciser on a selected memory address in the user program •

• Provide an oscilloscope trigger pulse at a selected memory address.

The DEbug Module also incorporates the level converter circuits required to
interface the EXORciser with a TTY or RS-232C data terminal, and also provides
the EXORciser with eight standard baud rates (110, 150, 300, 600, 1200, 2400,
4800, and 9600). This module also interfaces the EXORciser with a TTY or
RS-232C compatible data terminal.

The Power Supply provides the EXORci ser with the +5, +12, and -12 Vdc power
sources that are required by the EXORciser and related modules. This power
supply will support a full rack of modules.

The chassis is capable of holding 14 plug-in modules. These 14 modules connect
directly into the EXORciser bus. The Power Supply is not a plug-in module, and
is mounted directly to the EXORciser chassis.

5-2

l
DE bug

Sy stern

User
System

"' iii
c:
Cl

en

~
c:
0
u

<(

~
>

R/W

VUA/
VXA

E, R/W

FIGURE 5-1.

r------,
i.-1--~~~~~~--~:I RS232C I

I Terminal I
L _____ J

MPU
Module

4--i

1--I

w
~ RAM

"' :J
Module

CD

"' 0
..,

"' ~

~ ~ !l
1'.l "' 1'.l 11>

<(a:

~
Additional

"' RAM's, ROM's :J
CD

Or !l
I/O's "' 0

8 Control/
Status Lines ____.

Optional
1/0

•
Module : (> 32 Input/

Output Lines

f r

EXORciser Simplified Block Diagram

5-3

APPENDIX A

EXORciser BUS DESCRIPTION AND SPECIFICATIONS

INTRODUCTION

The EXORciser Development System incorporates a multilayer motherboard to
interconnect the address, data, and control buses for up to 14 separate system
modules. The motherboard is made with an embedded groundplane to provide the
high noise immunity requirements of a high speed microprocessor development
system. This appendix identifies all of the motherboard interconnections, and
describes the function of each interconnect signal. In addition, complete
timing specifications are provided for the bus interconnections.

DESCRIPTION OF BUS SIGNALS AND PIN ASSIGNMENTS

Table 1 summarizes the pin assignments for the EXORciser motherboard, while
Table 2 lists the signal mnemonic, name, and functional description. Eight
motherboard interconnection lines have been specifically reserved for user
applications. Other unused EXORciser motherboard interconnects are reserved for
future EXORciser expansions.

TABLE 1. EXORciser Bus Connections

PIN NUMBER PIN NUMBER
1COMPONENT SIDEl FUNCTION _(CIRCUIT SIDEl FUNCTION

A,B,C +5VDC 1,2,3 +5VDC
D IRQ 4 HALT
E mu- 5 RESET
F VMA 6 R/W
H Not used 7 Q
J E 8 GND

K GND 9 GND
L MEMCLK 10 VUA

M -12VDC 11 -12VDC
N BUSREQ 12 REF REQ
p BA 13 REF GNT
R MNiffiY 14 DEBUG

s LIC* 15 BUSGNT
T +lZVDC 16 +12VDC

u STANDBY 17 STANDBY
v PWR FAIL 18 CLK

w PARITY-ERR 19 VXA
X,Y,Z GND 20,21,22 GND

'

A-1

TABLE 1. EXORciser Bus Connections {cont'd)

PIN NUMBER PIN NUMBER
lCOMPONENT SIDEJ FUNCTION (CIRCUIT SIDE) FUNCTION

-A FIRQ 23 BS
-B GND{REF) 24 GND(REF) ----C,D,E,F Reserved for 25,26,27,28 Reserved for

Bus Expansion Bus Expansion
lT 153 29 DI

' -J D7 30 DS
K D2 31 mr - - ...__.
L D6 32 D4
M A14 33 Al5
N A13 34 A12
p AlO 35 All
'R A9 36 AB
s A6 37 A7
'f AS 38 A4
u A2 39 A3
v Al 40 AO

WiX...l..Y GND 41.J..42,43 GND
*Denotes signal not used with M6809 EXORciser. For M6809E EXORcisers, LIC
signal is used.

TABLE 2. EXORciser Bus Signals

PIN SIGNAL
NUMBER MNEMONICS SIGNAL NAME AND DESCRIPTION

A,B,C +SVDC +5 Vdc Power - Used by the system module logic circuits
and available to the user for prototype module
requirements. (15 Amps max.)

D IRQ INTERRUPT REQUEST - An active low signal used to request
generation of an MPU interrupt sequence. The MPU will wait
until it completes the instruction being executed before
it recognizes the request. At that time, if the interrupt
mask bit in the MPU condition code register is not set,
the MPU will begin executing the interrupt sequence.

E NMI NON-MASKABLE INTERRUPT - A low going, edge sensitive
signal used to request generation of an MPU non-maskable
interrupt sequence. The MPU will wait until it completes
the instruction being executed before it recognizes the
request. At that time, regardless of the logic state of
the interrupt mask bit in the MPU condition code register,
the MPU will begin executing the non-maskabale interrupt.

A-2

TABLE 2. EXORciser Bus Signals (cont'd)

PIN SIGNAL
NUMBER MNEMONICS SIGNAL NAME AND DESCRIPTION

F VMA VALID MEMORY ADDRESS - A high level, TTL compatible
signal produced by the MPU Module and used to indicate to
the DEbug Module that a valid memory address is present on
the address bus.

H GND GROUND.
J E E - A bi-phase clock signal generated by the MPU Module.

Data from the MPU is guaranteed good with the falling edge
of E. This signal is held high during MNRDY.

K GND GROUND
L MEMCLK MEMORY CLOCK - A TTL level clock signal, in phase with E,

used to refresh all dynamic memory modules within the
system. This signal is stretched high during 2 MHz use.
It is held high during MNRDY. (pin R low).

M -12VDC -12 Vdc Power - Used by the system module logic circuits
and available to the user for prototype module
requirements. {1.5 Amps max.)

N BUSREQ BUS REQUEST - An active low signal used to request access
to the system bus. A low on this line will cause the MPU
Module to three-state (off or high impedance state) the
data, address, and R/W lines. A BUSGNT signal {pin 15)
will also be generated at this time.

P BA BUS AVAILABLE - A normally low level signal generated by
the system MPU. This signal along with the BS signal (pin
23) indicates the MPU state.

BA BS MPU STATE

0 0 Normal (Running)
0 1 Interrupt Acknowledge
1 0 Sync Acknowledge
1 1 Halt or Bus Grant

R MNRDY MEMORY NOT READY - A signal generated by the user that
permits the EXORciser to work with slow memory modules.
When this signal is low (set-up time before the falling
edge of E), the clocks will be stretched with E high and Q
low. Furthermore, the memory ready function actuall~
changes the system E, MEMCLK (pin L), and CLK (pin 18)
signals. Devices which require a real-time clock must use
a different clock source.

S Not used {M6809 only}.

S LIC LAST INSTRUCTION CYCLE {M6809E only). - An active high
signal produced only by the MC68B09E MPU during the last
cycle of each instruction. This line will be a high during
the halt and sync states.

T +12VDC +12 Vdc Power - Available to the user for prototype module
requirements. (2.5 Amps max.)

A-3

PIN
NUMBER

u

v

w

X,Y,Z
7f

----=-C,D,E,F

J
i<
L

M

....
N
p

SIGNAL
MNEMONICS

STANDBY

PWR FAIL

PARITY-ERR

GND
FIRQ.

GND(REF)

07
D2
i56
A14

A13
AlO

TABLE 2. EXORciser Bus Signals (cont'd)

SIGNAL NAME AND DESCRIPTION

STANDBY Power - This line is reserved for use with battery
backup memory modules. If battery backup is not required,
the STANDBY line is not used.
POWER FAIL - This signal line is reserved for use with
memory modules requiring battery backup. When used, this
low level signal would disable the protected memory
module. (This feature is not supplied as part of the
EXORciser.)
PARITY ERROR - This signal line is nonnally held high by
the DEbug Module. If a memory module that incorporates a
parity check circuit is used within the EXORciser, and a
parity error is detected, this signal will be forced low
for one clock cycle.
GROUND
FAST INTERRUPT REQUEST - An active low signal used to
request the generation of an MPU fast interrupt sequence.
The MPU will wait until the instruction being executed is
completed before recognizing the request. At that time,
if the interrupt mask bit in the MPU condition code
register is not set, the MPU wi 11 begin the interrupt
sequence. This sequence is fast in the sense that it only
stacks the return address and condition codes.
GROUND (REFERENCE) - Available to the user for prototype
modules that require an isolated ground. This ground line
is not connected to the nonnal EXORci ser ground
connection.
USER DEFINED - These signal lines, along with their
counterpart pin numbers (25,26,27,28) are reserved by
Motorola for possible expansion of the data bus to 16
bits. Since compatibility of 16-bit data bus modules with
existing modules is unlikely, these eight lines may be
used for custom modules.

DATA bus (bit 3) - One of 8 bi-directional data lines used
to provide a two-way data transfer between the MPU Module
and all other plug-in modules within the system. The data
bus drivers on the other modules are in their off or high
impedance state except when selected during a memory read
or write operation. - -DATA bus {bit 7) - Same as D3 on Pin H.
DATA bus (bit 2) - Same as 03 on Pin 1i.
DATA bus {bit 6) - Same as D3 on Pin H.
ADDRESS bus {bit 14) - One of 16 address 1 ines from the
MPU Module that pennits the MPU to select any addressable
memory location within the EXORciser •
ADDRESS bus {bit 13) - Same as A14 on Pin "M.
ADDRESS bus (bit 10) - Same as A14 on Pin "M.

A-4

PIN SIGNAL
NUMBER MNEMONICS

R A9

S A6

T AS
U A2
V Al

W,X,Y GND
1,2,3 +5VDC

5 RESET

6 R/W

7 Q

8,9 GND
10 VUA

11 -12VDC

12 REF REQ

TABLE 2. EXORciser Bus Signals (cont'd)

SIGNAL NAME AND DESCRIPTION

ADDRESS bus (bit 9) - Same as A14 on Pin M.
ADDRESS bus (bit 6) - Same as A14 on Pin M.
ADDRESS bus (bit 5) - Same as A14 on Pin "ft
ADDRESS bus (bit 2) - Same as A14 on Pin M.
ADDRESS bus (bit 1) - Same as A14 on Pin M'".
GROUND
+5 Vdc Power - Used by the system module logic circuits
and available to the user for prototype module require
ments. (15 Amps Total max.)
HALT - A normally h~ evel signal used to halt the MPU.
A low level on the HALT input causes the MPU to halt at
the end of the present instruction, and re.!llSi.!l. halted
indefinitely without loss of data, until the HALT pin is
driven high.
RESET - An active low signal used to reset the MPU as
well as other peripheral devices and system modules. This
signal also restarts the EXORciser when power is initially
applied. Depressing the RESTART pushbutton switch located
on the front panel of the EXORciser while the system is
operating will generate a RESET signal and cause the MPU
Module to execute the EXbug restart routine or the restart
routine indicated by the user.
READ/WRITE - This signal is generated by the MPU Module,
and indicates to the other modules contained within the
system that the MPU is performing a memory read (high) or
write (low) operation. The normal standby state of this
signal is read (high).
Q - A quadrature clock signal which leads E. Addresses
from the MPU will be guaranteed good with the leading edge
of Q. This signal is held low during JYmR1)V (pin R low).

GROUND
VALID USER ADDRESS - This signal is produced by the DEbug
Module. When high, this signal indicates that the address
on the address bus is valid and the MPU Module is not
addressing the EXbug program.
-12 Vdc Power - Available to the user for prototype module
requirements. (1.5 Amps max.)
REFRESH REQUEST - When low, this input signal to the MPU
Module initiates a memory refresh cycle of the dynamic
memory modules. The memory clock signal will continue to
run to allow memory refreshing.

A-5

PIN SIGNAL
NUMBER MNEMONICS

13 REF GRANT

14 DEBITG

15 BUSGNT

16 +12VDC

17 STANDBY
18 CLK

19 VXA

20,21,22 GND
23 BS

24 GND(REF}

25,26
27,28

29
30

TABLE 2. EXORciser Bus Signals (cont'd}

SIGNAL NAME AND DESCRIPTION

REFRESH GRANT - When high, this output signal from the MPU
Module instructs the dynamic memory modules to refresh
their memories.
DEBUG - This low level signal from the DEbug Module
indicates that the DEbug Module is installed in the
EXORciser. This is used to determine whether the VUA
signal is controlled by the DEbug Module or the MPU
Module.
BUS GRANT - This signal iBO~REQrated by the MPU Module in
response to a low level • When high, this signal
indicates that the MPU is not in control of the bus.
+12 Vdc Power - Available to the user for prototype module
requirements. (2.5 Amps max.}
STANDBY Power - Same as STANDBY on Pin U.
CLOCK - A symmetrical clock signal generated by the MPU
Module in phase with E. It is free running except when
used with slow memories. During memory ready (low level
MNRDY}, the CLK signal is stretched high.
VALID EXECUTIVE ADDRESS - A high level signal generated by
the DEbug Module in place of the VUA signal (refer to
description of VUA on Pin 10} when the EXORciser is
operating in the dua 1 map mode and the EXbug program is
addressing the executive portion of the memory map.
Additionally, all peripheral modules (such as memories}
must be set to respond to VXA signal if the user wants to
operate those modules in the executive portion of the
map.
GROUND
BUS STATUS - This signal is generated by the MPU Module.
When high, this signal, in conjunction with the BA signal
(pin P}, determines the MPU halt, interrupt, and sync
states.
GROUND (REFERENCE} - Available to the user for prototype
modules that require an isolated ground. This ground line
is not connected to the normal EXORci ser ground
connection.
USER DEFINED - These sign~ lines, along with their
counterpart pin numbers (C,lr,E,F) are reserved by Motorola
for poss i b 1 e expansion of the data bus to 16 bits. Si nee
compatibility of 16-bit data bus modules with existing
modules is unlikely, these eight 1 i nes may be used for
custom modules.
DATA bus (bit 1} - Same as 03 on PinlT.
DATA bus (bit 5} - Same as 03 on Pin H.

A-6

TABLE 2. EXORciser Bus Signals (cont'd}

PIN SIGNAL
NUMBER MNEMONICS SIGNAL NAME AND DESCRIPTION

- - -.31 DO DATA bus (bit 0) - Same as D3 on Pin H.
32 04 DATA bus (bit 4) - Same as D3 on Pin H.
33 A15 ADDRESS bus (bit 15) - Same as A14 on Pin M.
34 A12 ADDRESS bus (bit 12) - Same as A14 on Pin "M.
35 All ADDRESS bus (bit 11) - Same as A14 on Pin M:
36 AS ADDRESS bus (bit 8) - Same as A14 on Pin M.
37 A7 ADDRESS bus (bit 7) - Same as A14 on Pin "M.
38 A4 ADDRESS bus (bit 4) - Same as Al4 on Pin M.

39 A3 ADDRESS bus (bit 3) - Same as A14 on Pin M.
40 AO ADDRESS bus (bit O) - Same as A14 on Pin M.

41..!..42-2.43 GND GROUND

BUS SIGNAL TIMING SPECIFICATIONS

The second portion of Appendix A is intended to provide the user with detailed
timing data and general application notes. It is written from the perspective
of the design engineer who wants to design a new peripheral and/or memory module
that will interface with the EXORciser bus. Therefore, timing data is presented
with respect to the bus (internal timing on specific modules is not discussed).
Figure 1 presents a block diagram illustrating this point of view (using the bus
as the reference). Figure 2 provides a general timing diagram for the most
important signals on the bus. Frequent reference will be made to these two
figures throughout the following discussion.

Assumptions

All timing data presented in this appendix is based upon the EXORciser system
hardware consisting of the multilayer motherboard, the MPU Module (M6809MPU),
and the DEbug Module (M6809DB). In addition, it is assumed that all interfacing
to the bus is buffered with MC8T97 (MC6887} or equivalent devices. Timing data
on each signal is based upon a capacitive load (CL) of 50 picofarads and a
maximum device loading of 10 MC8T97 or equivalent devices (-4.0 mA @ 0.5V and
400 uA@ 2.4V). Vee is always assumed to be 5.0 volts. Ground is 0 volts and
is logic zero (low). Positive current is defined as into the terminal
referenced.

A-7

DE bug

Bus
VUA

VMA

Module

Bus
VXA

MPU

Bus Bus Bus Bus
R/iiii MEM E Q

CLK

User Module

+;
ii
~

"' ::J
cc

"' ...,
"' 0

MPU
Module

...,
.0

"' ~
"' ::J
cc ..
"' ~
-a
-a
<(

FIGURE 1. EXORciser Timing Signals Diagram (Bus View)

A-8

14-------- TBEHBEH ------~

~1·-- TBEHBEL --~~

BUS E (BE)

j.- TBELBQH -"'f-4--- TBQHBQL __ _, .. _,

BUS Q (Bl))

I-•-- TMCHMCL ---"'j

TMCHBEH -.j j.- -+i I+-- TBELMCL

MEM CLK (MC)

--+! f4--- TADVBQH

f.--- TADVBEH --i -..j ~ TBELADX

ADDRESS,

R/W, VUA, VXA (AD)~-------------
f+-- TBQHD•IV -+{

TBEHDWV -...j j4- -+{ I+-- TBELDWZ

DATA (WRITE) (OW)

j+- l DRVBEL -.j

DATA (READ) (DR)

FIGURE 2. EXORciser Bus Specification Timing Diagram

Nomenclature and Abbreviations

All abbreviations shown in Figure 2 and Table 5 (as well as in the examples) use
upper case characters with no subscripts. The initial character is always the
letter T followed by a six-character descriptor. This descriptor is used to
identify the to/from measurement points. The first three letters of the
descriptor identify the signal name and transition level for the measurement
starting point, while the last three letters identify the signal name and
transition level for the measurement ending point. The descriptor format is
illustrated in Table 3, while Table 4 lists the measurement abbreviations.

Description of Bus Timing and Examples

The bus timing and control signals are generated by the MPU and DEbug Modules.
These signals will be described with reference to Figures 1, 2, and Table 5.

During instruction execution, the MPU uses both the address bus and data bus,
regardless of whether an internal or external MPU operation is being performed.
In order to prevent the system from using erroneous address and data
information, the MPU generates the VMA signal. When VMA is high, the MPU is

A-9

addressing an external addressable location. During 1Jv1A and refresh operations,
VMA is appropriately three-stated or pulled low to prevent operational errors.
In the EXORci ser system, the DEbug Module uses the high 1 evel VMA signal to
generate either the VUA or the VXA signal. The high level VUA signal selects
address locations within the User map, while the high level VXA signal selects
locations within the Executive map. These signals will never be simultaneously
high.

TABLE 3. Descriptor Format

Signal name of ending point

Transition level of starting point

Signal name of starting point

TABLE 4. Measurement Abbreviations

ABBREVIATIONS (Signal Names)

AD =Bus Address, Bus R/W, Bus VUA, or Bus VXA
OW = Write data from MPU to peripheral module
DR = Read data from peripheral module to MPU
MC = Bus Memory Clock
BE = Bus E clock signal
BO = Bus Q clock signal

ABBREVIATIONS (Transition Levels)

H =Low-To-High Transition
L =High-To-Low Transition
V =Transition to Valid State
X =Transition to Invalid or Don't Care State
Z =Transition to Off (High Impedance State)

WAVEFORMS

WAVEFORM SYMBOL

I

INPUT

Must be valid

Change from
High-To-Low

Change from
Low-To-High

Don't Care
(Any change)

High impedance
(Off)

A-10

OUTPUT

Will be valid

Will change from
High-To-Low

Will change from
Low-To-High

Changing state

The time relationship between the bus signals is shown in Figure 2, while the
minimum, typical, and maximum time values for the signals are listed in Table 5
(for 1.0 MHz, 1.5 MHz, and 2.0 MHz operation). All of these time values are
referenced to either the leading edge or trailing edge of BUS E (BE) or BUS Q
(BQ). Time relationships not specified within this table can be readily
calculated from the information provided. Examples 1 and 2 present two typical
problems, along with the calculations required to determine the solution to
each.

From the analysis, it has been determined that the user module must place valid
data on ·the data bus within 463 nanoseconds from the time that BUS ADDRESS,
BUS R/W, and BUS VUA or BUS VXA become valid.

TABLE 5. EXORciser Bus Specifications

SIGNAL 1.0 MHz 1.5 MHz 2.0 MHz
NAME MIN TYP MAX MIN TYP MAX MIN TYP MAX

TBEHBEH 980 1000 647 480
TBEHBEL 435 510 265 205
TMCHBEH -17 -4 8 -17 -4 8 30
TMCHMCL 430 495 260 255
TBELMCL -7 4 16 -7 4 16 -7 4 16
TADVBEH 248 410 153 98
TADVBQH 18 175 18 8
TBELADX 9 50 9 9
TBEHDWV 10 28 53 63
TBQHDWV 260 280 188 153

TBELDWZ 13 20 13 13
TDRVBEL 123 220 103 83
TBELBQH 250 260 175 135
TBQHB_Q_L 435 500 265 205

NOTE: All times are shown in nanoseconds. For information on values not shown
in table, contact (800} 528-1908.

A-11

EXAMPLE 1. Determining Data Ready Time (Read Operation)

PROBLEM:

To determine, during a memory read operation, the minimum
(worst case) time interval between the time that the
BUS ADl:RESS, BUS R/W, and BUS VUA or VXA become valid and
the time that valid data must be on the data bus.
(Thi s ti me is TA DV CR V) •

ANALYSIS:

From Figure 2, we obtain the BUS E, BUS ADl:RESS, and
DATA (READ) signals.

f+-- TBEHBEL 1t I

BUS E (BE)

141•---~+-I - TADVBEH

BUS ADDRESS (AD) ~----------~~~--
I• ~ I TDRVBEL.

DATA (READ) (DR)

f'4-- lADVDRV 1tl

TADVDRV (MIN) = TADVBEH (MIN) + TBrnBEL (tHrl) - TDRVBEL (WORSl CASE)

TADVDRV (Mirl) = 243 nSEC + 435 nSEC - 220 nSEC

TADVDRV (MIN) " 463 nSEC

CONCLUSION:

From the analysis, it has been determined that the user
module must place valid data on the data bus within
463 nanoseconds from the time that BUS ADDRESS, BUS R/W,
and BUS VUA or BUS VXA become valid.

A-12

EXAMPLE 2. Determining the Data Margin During Read Operation

PROBLEM:

To determine whether the memory module shown will function satisfactorily
during a read operation. This example al so works equa 11 y we 11 for I /0
devices such as the PIA or ACIA.

AO-Al5 [~ v
VUA

R/W -- USER

MODULE
BUS E

A

~ 00-07
v

ASSUMPTIONS:

(1) User module data access time from a valid address location:
ta(A) = 340 nanoseconds

(2) User module data access time from BE going high:
ta(BE) = 100 nanoseconds

(3) In order to occur during the read cycle, the last data access time to
become valid must be selected: ta(A) or ta(BE), whichever occurs later.

(4) BUS ADDRESS, BUS R/W, and BUS VUA or BUS VXA must be valid 30 nanoseconds
prior to the leading edge of BUS BE.

ANALYSIS:

(1) From the bus specifications, determine the worst case conditions for a
memory read operation and plot the timing diagram for a read cycle.

(a)
(b}
(c)

~~~ 

TBEHBEH 
TBEHBEL 
TADVBEH 
TBELADX 
TDRVEBL 

(min) 
(min) 
(min) 
(min) 
(worst case) 

= 980 nanoseconds 
= 435 nanoseconds 
= 248 nanoseconds 
= 9 nanoseconds 
= 123 nanoseconds 

Plot: Bus Read Specifications (Worst Case) 

A-13 



EXAMPLE 2. Determining the Data Margin During Read Operation (con't) 

------ 980 nSEC ------

14----- 435 nSEC 

BUS E (BE) 

j+- 248 nSEC -i 

Ill• I 545nSEC1---

I+-- l 288 nSEC l---i 
-.j I+- 9 nSEC 

ADDRESS, a R/W, VUA, VXA (AD) ---------~'tlllllltllllll~----
f4 I 560 nSEC I .,I 

!+-1312 nSEC I 123 nSEC 

DATA (READ) (DR) 

(2) From the timing plot produced in step 1, calculate the timing 
relationships required to evaluate the mdoule read cycle. (These values 
are shown within boxes in the plot produced in the previous step.) 

(a) TADVl:RV = TADVBEH + TBEHBEL - TffiVBEL 
TADVmV = 248 nsec + 435 nsec - 123 nsec 
TADVl:RV = 560 nanoseconds 

(b) TBEHmv = TBEHBEL - TfRVBEL 
TBEHl:RV = 435 nsec - 123 nsec 
TBEHmV = 312 nanoseconds 

(c) TBELBEH = TBEHBEH - TBEHBEL 
TBELBEH = 980 nsec - 435 nsec 
TBELBEH = 545 nanoseconds (not required for read cycle) 

(d) TADXADV = TBELBEH - TBELADX - TADVBEH 
TADXADV = 545 nsec - 9 nsec - 248 nsec 
TADXADV = 288 nanoseconds 

(3) From the timing plot produced in step 1 and the worst case bus read 
specifications, determine when valid data (CJ'1) will be available from the 
module. Calculate and plot the data margin by referencing the times to 
TBEH. 

A-14 



EXAMPLE 2. Determining the Data Margin During Read Operation (cont'd) 

------ 980 nSEC ------

f--- 435 nSEC --+I--- 545 nSEC ---

BUS E (BE} 

~ 288 nSEC --+I 
f+-248 nSEC --f ~ f4- 9 nSEC 

a~~~~~~~~-ADDRESS, 

R/W, VUA, VXA (AD} 

DATA (READ} (DR) 

VALID DATA 

ta(A} (DM} 

VALID DATA 

ta(BE} (DM) 

j4 560 nSEC ---

92 nSEC ~ j+
f+- 340 nSEC -+-I 

I ~----

--f lo--100 nSEC I 

.....i 212 nSEC i.-

VALID DATA READ MARGIN ______ ___, 

(a) Using ta(A): 

TBEHDMV = ta(A) - TADVBEH 
TBEHDMV = 340 nsec - 248 nsec 
TBEHDMV = 92 nanoseconds 

(b) Using ta(BE): 

TBEHDMV = ta(BE) 
TBEHDMV = 100 nanoseconds 

(4) Valid data ta(A) occurs 92 nanoseconds after TBEH. Valid data ta(BE) 
ccurs 100 nanoseconds after TBEH and is the limiting time factor. Therefore, 
ata is valid 100 nanoseconds after TBEH. Since the bus specification requires 
hat data be val id within 312 nanoseconds of TBEH or TBEHDRV, the val id data 

read margin is calculated using the following formula (illustrated in preceding 
step). 

Valid Data Read Margin= TBEHDRV - TBEHDMV 
Valid Data Read Margin = 312 nsec - 100 nsec 
Valid Data Read Margin= 212 nanoseconds 

CONCLUSION: 

The user module will operate satisfactorily for a read operation on the 
EXORciser bus. 

A-15 





APPENDIX B 

EXBUG 2.1 PROGRAM FOR EXORciser 

B-1 



PAGE 001 EXBIJG(l9 . SA: 1 EXBUG2 VERSION 2. 1,6809 15 l'IAR 1979 

00001 NAl'I EXBUG2 
00002 m VERSION 2. 1,6009 15 MAR 1979 
00003 IDNT VERSION 2. 1,6809 15 MAR 1979 
00004 OPT MJCLIST DON'T LIST CONDITIONAL ASSEl'tBLY STATEl'IENTS 

00006 * EXBUG mu PROGRAM FOR EXORCISER mn SERIES-II 
00007 * COPYRIGHT 1979 BY l'IOTOROl..A INC 

00009 * EXBUG COl'll'fANDS 
00010 * LOAD(CRl LOADER 
00011 * VERF<CRl VERIFY 
00012 * PNCH<CRl PUNCH 
00013 * PRNT!CRl PRINT 
00014 * SRCH(CRl SEARCH 
00015 * "DOS!CRl LOAD AND START 11DOS 
00016 f USER(CRl IEBIJG IN T1£ USER l1AP 
00017 * EXEC!CR) DEBUG IN THE EXECUTIVE f'fAP 
00018 f I DISPLAY/CHANGE MEMORY 
00019 f (Lf) NEXT LOCATION 
00020 f I SPACE! PREVIOUS LOCATION 
00021 * I ctOSE/REOPEN CURRENT LOCATION 
00022 f (CRl ctOSE 
00023 * ;0 CALCULATE SHORT RELATIVE OFFSET 
00024 * iL CALCllATE LONG RELATIVE ADOFFSET 
00025 * .A DISPLAY/CHANGE T1£ A ACCUlllATOR 
00026 f .B DISPLAY/CHANGE THE B ACCIJlll..ATOR 
00027 f .C DISPLAY/CHANGE T1£ CONDITION CODE REGISTER 
00028 * .D DISPLAY/CHANGE THE DPR REGISTER 
00029 * ;E DISPLAY/CHANGE THE SWI RETmN SWITCH 
00030 f ;G GO <.DIP TO ADDRESS! 
00031 f $H SET HALT ON ADDRESS 
00032 * ;H RESET HALT ON ADDRESS 
00033 * ; I INITIALIZE "8'IORY 
00034 * ;K DISPLAY/CHANGE CONSOLE PAD VALUE 
00035 * SM SET tEl'IORY SEARCH ADDR AND l'IASK 
00036 * ;l'I SET l'IEltlRY SEARCH ADDR AND MSK 
00037 * ;N TRACE INSTRUCTION 
00038 * .P DISPLAY/CHANGE THE PROGRAM COUNTER 
00039 * ;P CONTINUE EXECUTION 
00040 * ;Q DISPLAY CHANGE DEBUG OFFSET 
00041 * SR DISPLAY REGISTERS 
00042 * ;R DISPLAY REGISTERS 
00043 * .S DISPLAY/CHANGE STACK POINTER 
00044 f ST SET TRACE TO ENDING ADDRESS 
00045 f ;T RESET TRACE TO ENDING ADDRESS 
00046 * .U DISPLAY/CHAMJE TI£ U REGISTER 
00047 f ;U REMOVE BREAKPOINTS 
00048 * SV· DISPLAY/SET BREAKPOINTS 
00049 f ;V DISPLAY/SET BREAKPOINTS 
00050 * ;W 8-BIT tEl'IORY SEARCH 
00051 f . x DISPLAY/CHANGE THE X REGISTER 
00052 f .Y DISPLAY/CHANGE TI£ V REGISTER 
00053 f ; z DISPLAY/CHANGE 1l£ Lit£ PRINTER SWITCH 
00054 * ; : DISABLE PARITY ERROR INTERRUPT 
00055 f ;; ENABLE PARITY ERROR INTERRlf>T 
00056 f n£ USER CAN ADD COl1l'IANDS ~INATED BY A CARRIAGE ~ 
00057 f BY Slffl.YING EXBOO WITH THE BEGitf4ING AND ENDIMJ ADDRESSES 
00058 f OF A COttlAND TABLE 

8-2 



PAGE 002 EXB0009 . SA: l EXB002 VERSI~ 2. l, 6809 15 11AR 1979 

00060 
00061 

t EXBOO CCJlfANDS RECtQ4IZE nE Flllti.Itll PARAl1ETER PREFIX: 
t - USE M'S <nFLEt£NT 

00063 t THIS FILE ~TES nE LISTitll (f THE FIRST tK (f 
00064 t EXBOO, YiICH IS stfPLIED WITH TI£ SYS'J'8', AS IELL AS 
00065 t nE ENTIRE EXBOO LISTitll. THIS IS COORW.ED BY nE 
00066 t CCN>ITICWL ASSEltBLY FLAG LIS'OO LJSOO IS EQUATED 
00067 t TO M (f nE FW.tlllt«J LABELS AS IESIRED. 
00068 0000 A MK BIU 0 ASSEltBLY LISTitll (f FIRST 1K 
00069 0001 A ALL BIU 1 ASSEMBLY LISTitll (f ALL 
00070 t !£RE'S nE CfJIDITl(lfAl. ASSEl1BLY FLAG 
00071 0000 A LISOO EQU MK 

00073 t EXBUG EQUATES 
00074 FCF4 A ACIASC EQIJ SFCF4 ACIA STATl.IS/ctWrROL REGISTER 
00075 FCF5 A ACIADT BIU SFCFS ACIA DATA REGISTER 
00076 83FF A TIPTGT EQU S83FF DEFAlU TOP (f VECTCRS <EXEC t!AF» 
ooon FCF8 A lflIAAD EQU SFCF8 HALT ~ ADDRESS PIA - A DATA 
00078 FCF9 A lflIAAC EQU lflIAAD+t HALT ~ ADDRESS PIA - A CNTL 
00079 FCFA A lf>IABD EQU tf>IAAD+2 HALT 00 ADDRESS PIA - B DATA 
00080 FCFB A Jf>IABC EQU lflIAAD+3 HALT ~ ADmESS PIA - B CNTL 
00081 FCFC A t!PIAAD EQU tf>IAAD+4 P'llP CONTRCl. PIA - A DATA 
00082 FCFD A l'IPIABD EQU tf>IAAD+S P'llP COORCt PIA - B DATA 
00083 FCFE A t!PIAAC EQU tf>IAAD+O P'llP CONTRCl. PIA - A CNTL 
00084 FCFF A t!PIABC EQU tf>IAAD+7 tlAP CONTRCl. PIA - B CNTL 
00085 FCFD A SBIT EQU t!PIABD STOP BIT INDICIATIOO 
00086 003F A SWI EQU $3F SWI INSTROCTI~ 
00087 008C A SKIP2 EQU SSC Ct!PX Ilt£DIATE INSTROCTIOO 

00089 t ttOOS LUE PRINTER DRIVER EQUATES 
00090 EBCO A LPINIT EQU tEBCO INITIALIZE LINE PRINTER INTERACE 
00091 EBCC A LIST EQU SEBCC SEND CHARACTER TO LINE PRINTER 

00093 t ttOOS BOOT LOAD ENTRY EQUATE 
00094 ESOO A t!OOSE EQU $£800 

B-3 



PAGE 003 EXBUG09 .SA:l EXB002.VERSIIW 2. 1,6809 15 l1AR 1979 

00097A FOOO 
00102 
00103A FOOO 16 
00104A F003 20 
0010SA FOOS 12 
00106A F006 20 
00107A FOOS 12 
0010SA F009 16 
00109A FOOC 16 
OOHOA FOOF 20 
001 HA FOU 12 
00112A F012 16 
00113A F01S 16 
00114A F01S 16 
0011SA F01B 16 
00116A F01E 16 
00117A F021 20 
00118A F023 12 
00119A F024 20 
00120A F026 12 
00121A F027 20 
00122A F029 12 
00123A F02A 20 
00124A F02C 12 

00126 
00127 
00128 
00129 
00130 
00131 

00133 
00134 
00135 
00136 
00137A F02D SD 
00138 
00139 
00140 
00141 
00142 
00143A F02F A6 
00144A F031 81 
0014SA F033 27 
00146A F03S SD 
00147A F037 30 
00148A F039 20 

MG SFOOO 
* T1£ Ffl.LOWING ~ TABLE IS aJltlW TO EXBOO 1 AND 2 

02A7 F2AA PWRlP LBRA START GET t£RE FRCt1 RESET 
41 F046 XBEGEN BRA BEIEND GET BEGINNING AND ENDIMJ ADDRESSES 

NOP tnD ENTRY POINT 
64 F06C XCBCIJI BRA CBroiX cctNERT ASCII 1£X TO BINARY 

NOP tnD ENTRY POOIINT 
OOEA FOF6 XOEXL LBRA Cl£XL cnNERT 4"5B TO ASCII HEX 
OOEB FOFA Xct£XR LBRA C1£XR CONVERT 4LSB TO ASCII HEX 
73 F084 XINADD BRA INADm tET HEX ADDRESS INDIRECT m 

NOP tnD ENTRY POINT 
OOBD FOD2 XItDI LBRA ItDI Itf'UT M CHARACTER 
020D F22S Xlt«:lfi LBRA Itatf> Itf>UT M CHARACTER Ml PARITY 
0092 FOAD XOOTCH LBRA ONE OUTPUT CHARACTER <WITH SPEED PAD> 
008B FOA9 XOOT2H LBRA OOT2HS PRINT 2 1£X CHARS, SPACE < X > 

0086 FOA7 XOOT4H LBRA OOT4HS PRINT 4 1£X CHARS, SPACE m 
1S F03B XPCRLF BRA PCRlF PRINT CR, LF 

NOP t0..11 ENTRY POINT 
07 F02D XPDATA BRA PDATA PRINT CR, LF. DATA STRING 

NOP tllLD ENTRY POINT 
06 F02F XPDATl BRA PDATA1 PRINT DATA STRING 

NOP .U.D ENTRY POINT 
7F FOAB XPSPAC BRA PSPACE PRINT SPACE 

F02D 
F2 

F02F 
84 
04 
34 
El 
01 
F4 

NOP .U.D ENTRY POINT 

* * 1/0 ROOTINES START l£RE 
t THESE ROUTINES ARE ACCESSED FRO'! T1£ JJF TABLE 
f AND ARE T1£ EXWJ 1 FlKTIIWAL. EQUIVALENTS WITH 
f CfTIIWAL LINE PRINTER OUTPUT 
f 

f 

* PRINT CR, LF, DATA STRING TERl'llNATED BY EOT 
f 

A PDATA EQU f 

F021 BSR XPCRLF PRINT CR, LF 
t FALL INTO PDATAl ROUTINE 

* * PRINT DATA STRINJ TERl'IINATED BY EOT 
f 

A PDATA1 EQU f 

A LDA o. x GET CHAR 
A CPIPA 14 EOT? 

F069 BEQ END1 YES, RET1.IN 
F01S BSR XOOTCH N), SEND CHAR 

A LEAX 1. x U«: POINTER 
F02F BRA PDATA1 COOIM.IE 

B-4 



PAGE 004 EXB0009 . SA: 1 EXB002 YERSI~ 2. 1, 6809 15 .. 1979 

00150 
00151 
00152 
00153 
00154A F03B 86 
00155A F03D 8D 
00156A F03F 86 
00157A F041 8D 
00158A F043 4F 
00159A F044 20 

00161 
00162 
00163 
00164 
00165A F046 8E 
00166A F049 SD 
00167A F04B 8E 
00168A F04E 17 
00169A F051 25 
00170A F053 8E 
00171A F056 8D 
00172A F058 8E 
00173A F05B 17 
00174A F05E 25 
00175A F060 8E 
00176A F063 EC 
001nA F065 A3 
00178A F067 25 
00179A F069 39 

00181 
00182 
00183 
00184 
00185A F06A SD 
00186 

00188 
00189 
00190 
00191 
00192 
00193 
00194A F06C 81 
00195A F06E 22 

f 

1 PRINT CR, LF, NU 
f 

F03B A PCRLF EQU f 

OD A LDA ltD SEND CR 
D9 F018 BSR XOOTCH 
OA A LDA ISA SEND LF 
D5 F018 BSR XOOTCH 

Cl.RA SEND NU 
D2 F018 BRA XOOTCH 

f 

1 Itf>UT BEGI~ING AND ENDING ADDRESSES 
f 

F046 A BEGEND EQU f 

FB91 A LDX lllEG PRINT CR, Lf, BEG 
D9 F024 BSR XPDATA 
FFOA A LDX IBEGA PRINT/OWa BEGA 
0557 F5A8 LBSR PON>1 
F3 F046 BCS BEGEND ERRm 
FB96 A ENDIN LDX ltEND PRINT CR, LF, END 
cc F024 
FFOC A 
054A F5A8 
F3 F053 
FFOA A 
02 A 
84 A 
DD F046 

BSR XPDATA 
LDX IENDA PRINT/CHAta: ENDA 
LBSR PCltID1 
BCS END IN ERRm 
LDX IBEGA POINT TO BEGA 
LDD 2.x INSmE ENDA >= BEGA 
SUBD o.x 
BCS BEIDD BEGA LARGER 

ENDl RTS 

t 

t Itf>UT CH: ASCII t£X CIWMCTER AND C<JNERT TO BINARY 
f 

F06A A INlH EQU 1 

A9 F015 BSR XI~ Itf>UT CHARR 
1 FALL INTO CBClliX ROOTit£ 

t 

1 CCHJERT ASCII HEX TO BINARY. 
1 IF t«>T t£X, CHAR t«>T OINERTED AND N=1 
t IF t£X, CHAR mNERTED AND N=O 
f 

F06C A CBCDHX EQU 
46 A CttPA 
11 F081 BHI 

f 

l'F 
CBCDH1 t«lT t£X 

B-5 



PAC.t 005 EXBUG09. SA:l EXB002 VERSitw 2. 1,0809 15 l'IAR 1979 

00196A F070 Sl 41 A Clf'A l'A 
00197A F072 25 05 F079 BCS Cll'.C <A 
00198A F074 80 07 A SUM 17 COORECT A-F 
00199A F076 84 OF A CBCDH3 ANDA l$F WISK TO 4 LSB 
00200A F07S 39 RTS 

00202 t COOVERT ASCII 11'.CU'IAL TO BINARY 
00203A F079 Sl 39 A Cll'.C Clf'A 1'9 
00204A F07B 22 04 F081 BHI CBCDH1 mm. >9 
00205A F07D Sl 30 A Clf'A 1'0 
00206A F07F 24 F5 F076 BCC CBCDH3 0-9 
00207A F081 1A 08 A CBCIJU ~ 1$8 SET N 
00208A F083 39 RTS 

00210 f 

00211 t Itf>UT AD!ff:SS, RETI.Rl WITH: 
00212 t CA> LAST CHAR Itf>UT 
00213 t (8) tUtBER Cf 1£X CHARS Itf>UT 
00214 * 00215 F084 A INADm EQU * 00216A F084 4F CLRA INIT Itf>UT STORAGE 
00217A FOSS SF CLRB 
00218A FOSb ED 84 A STD o. x 
00219A FOSS SD EO F06A INADD1 BSR IN1H GET 1£X CHAR 
00220A FOSA 2B 07 F093 Bl'II INADD3 NOT 1£X 
00221A FOSC SD Ob F094 BSR l'IERGEH l£RGE INPUT WITH NtJtBER 
00222A FOSE SC INCB INC HEX CHAR CIU4T 
00223A FOSF Cl 05 A OtPB 15 HAVE tmE THAN 4 CHARS? 
00224A F091 26 FS FOSS BNE INADDI NO 
0022SA F093 39 INADD3 RTS 

00227 f 

00228 t 1£RGE 1£X CHAR IN A <4 LSB> WITH 16 BIT HEX Nlt'IBER <X> 
00229 f 

00230 F094 A 1£RGEH EQIJ f 

00231A F094 34 Ob A PSHS A,B SAVE ACC A,B 
00232A F096 C6 04 A LDB 14 NlJ1BERt16 
00233A F098 6S 01 A 1£RGE1 ASL 1, x 
00234A F09A 69 84 A Rtl. o.x 
00235A F09C SA 11'.CB 
00236A F09D 26 F9 F09S BNE 1£RGE1 
00237A F09F AB 01 A ADDA 1. x INPUT +Nlll'IBER 
00238A FOA1 A7 01 A STA 1. x 
00239A FOA3 35 86 A PllS A,B,PC RESTORE ACC B & RTS 

00241 * 
B-6 



PAGE 006 EXBUG09. SA:1 EXB002 YERSIC:W 2. 1,6809 15 l'IAR 1979 

00242 
00243 
00244 
00245A FOAS 1F 
00246 
00247 
00248 
00249 
00250 
00251A FOA7 SD 
00252 
00253 
00254 
00255 
00256 
00257A FOA9 SD 
00258 
00259 
00260 
00261 
00262 
00263A FOAB 86 
00264 

00266 
00267 
00268 
00269 
00270A FOAD 7D 
00271A FOBO 26 
00272A F082 SD 
00273A FOB4 70 
00274A FOB7 27 
00275A FOB9 BD 
00276A FOBC 24 
002nA FOBE 7F 
00278A FOC1 39 

00280 
00281 
00282 
00283 
00284A FOC2 Ab 
00285A FOC4 34 
00286A FOCb SD 
00287A FOCS SD 
00288A FOCA 35 
00289A FOCC SD 
00290A FOCE 30 
00291A FODO 20 

t PRINT TCf OF DATA STACK 
f 

FOAS A OUTI£X EQU f 

31 A TFR U,X 
t FALL INTO OUT4HS 
f 

t PRINT 4 HEX CHARACTERS, SPACE m 
f 

FOA7 A OUT4HS EQU t 

19 FOC2 BSR OOT2H PRINT FIRST 2 HEX CHARS 
t FALL INTO OOT2HS Fm LAST 2 HEX CHARS, SPACE 
f 

t PRINT 2 HEX CHARACTERS, SPACE <X> 
f 

FOA9 A OOT2HS EQU t 

17 FOC2 BSR OOT2H PRINT 2 HEX CHARS 
t FALL INTO PSPACE 
f 

t PRINT SPACE 
f 

FOAB A PSPACE EQU t 

20 A LDA 1$20 SPACE 
t FALL INTO rotlAND OOTPUT CHARACTER 

f 

t eot11'1AND EOO/OOTPUT ROOTINE 
f 

FOAD A ONE EQU f 

FF67 A TST CASSET Pt.WCHitw. 
7b F128 BNE OOTCH YES 
74 F128 BSR OUT CH ALWAYS OUTPUT TO CONSOLE 
FF37 A TST ZFLAG OOTPIJT TO PRINTER? 
DA F093 BEQ INADD3 M) 

EBCC A CltIDE1 JSR LIST YES 
D5 F093 BCC INADD3 (J( 

FF37 A CLR ZFLAG PRINTER ERROO, CLEAR Z FLAG 
RTS 

I 

t OOTPUT 2 HEX CHARS <X> 
f 

FOC2 A OOT2H EQU f 

84 A LDA o.x GET CHAR TO PRINT 
02 OOT2H1 PSHA SAVE IT 
2E FOF6 BSR Cf£XL ClJNERT 4 ltSB 
E3 FOAD BSR Cit« PRINT ASCII 
02 Pll.A RESTmE CHAR 
2C FOFA BSR Cf£XR CONVERT 4 LSB 
01 A LEAX 1. x IM; POINTR 
DB FOAD BRA Cit« 

B-7 



PAGE 007 EXB0009 .SA:l EXB002 YERSJ(l4 2. 1, 6809 15 ftAR 1979 

00293 f 

00294 t Itflll'T M ~ FRctl ~ 
00295 t ECHl CHARACTER IF AECfll Cl.EAR 
00296 f 

00297 FOD2 A IN:H EQU f 

00298A FOD2 Bb FCf 4 A LDA ACIASC RECEIVE REG Flll? 
00299A FOD5 47 ASRA 
00300A FOD6 24 FA FOD2 BCC It«:H t«) 
00301A FODS Bb FCF5 A LOA ACIADT YES, GET CHAR 
00302A FODB 7D FF5B A TST AEOO Eet«l? 
00303A FOIE 27 CD FOAD flEQ CtN'E YES 
00304A FOEO 7F FF5B A CLR AEOO t«), RESET AEOO 
00305A FOE3 39 RTS 

00307 f 

00308 t EXBOO CCll1AND Itflll'T ROOTitE 
00309 f 

00310 FOE4 A CfWDI EQU f 

00311A FOE4 17 0138 F222 LBSR ItWNE ASSltE Ml EOO 
00312A FOE7 81 OA A Of>A MA LF? 
00313A FOE9 27 19 F104 BEQ Cf£X1 YES, IX*'T EOO 
00314A fOEB 81 OD A OIPA 1$0 CR? 
00315A FOED 27 15 F104 BEQ Cf£X1 YES, IX*'T ECfll 
0031bA FOEF 81 18 A CftPA 1$18 CTL-X? 
00317A FOF1 26 BA FOAD Bt£ Clt4( t(), ECfll CHAR 
00318 t YES, REMN TO EXBOO 

00320 f 

00321 t EXBOO l'IAID ENTRY ADDRESS - PIJST BE AT SFOF3 
00322 * 
00323A FOF3 16 0250 F346 FOF3 LBRA RENTR2 

00325 * 00326 t CCJNERT 4 PISB TO ASCII tEX 
00327 f 

00328 FOF6 A OEXL EQU f 

00329A FOF6 44 LSRA SHIFT 4 PISB TO 4 LSB 
00330A FOF7 44 LSRA 
00331A FOFS 44 LSRA 
00332A FOF9 44 LSRA 
00333 t FALL INTO ct£XR FOO CCINERSION 
00334 * 00335 t C€*VERT 4 LSB TO ASCII tEX 
00336 f 

00337 FOFA A Cf£XR EQU f 

00338A FOFA 84 OF A ANDA l$F l1ASI< TO 4 LSB 

B-8 



Pl« 008 EXB0009 .SA:l EXB002 VERSI(W 2. 116809 15 ttAR 1979 

00339A FOFC 88 30 A ADDA 1'0 ADD ASCII 0 
00340A FOFE 81 39 A OFA 1'9 
00341A F100 23 02 F104 Bl.S Cf£X1 0-9 
00342A F102 88 07 A ADM 17 A-F 
00343A F104 39 Cf£X1 RTS 

00345 f 

00346 f z COlt'MD 
00347 f 

00348 F105 A ZCltID EQU f 

00349A F105 SE FF37 A LDX IZFLAG SAVE W) Z FLAG 
00350A F108 A6 84 A LOA o.x 
00351A FtOA 34 12 A PSHS A,X 
00352A FlOC 17 043E F54D LBSR ACPWD1 
00353A Fl<f' 35 14 A Pll.S B,X GET €1.D Z FLAG 
00354A Fl 11 25 Fl F104 BCS Cf£X1 ERRM 
00355A F113 A6 84 A LOA o.x t£W ZFLAG 
00356A F115 26 OB F122 BNE Za.Dt PRINTER ta. (W 
00357A F117 5D TSTB PRINTER ta. CfF 
00358A F118 27 EA F104 BEQ Cf£X1 PRINTER WAS (ff 
00359A FUA 86 OD A LOA 1$0 SEND CR, LF 
00360A F11C SD 98 FOB9 BSR Cl'NE1 
00361A FUE 86 OA A LOA l$A 
00362A F120 20 97 FOB9 BRA atat 
00363 f 

00364A F122 50 Za.Dt TSTB 
00365A F123 26 IF F104 BNE Cf£X1 PRINTER WAS (W 
00366A F125 7E ESCO A • LPINIT INIT LP, PRINTER WAS CfF 

00368 f 

00369 1 OOTPUT CHARACTER FIOt ACC A TO cooa..E 
00370 1 WITH SPEED PAD IF PlN:H FLAG CfF 
00371 f 

ooan F128 A OOTCH EQU f 

00373A F128 17 OOAC F1D7 LBSR OCHAR SEND CHAR 
00374A F12B 34 06 A PSHS A.B SAVE ACC A,B 
00375A F12D 84 7F A ANDA 1$7F RESET CHAR PARITY 
00376A F12F 81 OD A OFA 1$0 CR? 
003nA F131 26 15 F148 BNE OOTaf5 Nl 
00378A F133 C6 04 A LOB 14 4 ttlLS IF CR AND PllOf Itfl 
00379A F135 70 FF67 A TST CASSET 
00380A F138 26 03 F13D BNE OOTCH1 PlJOIItfl 
00381A F13A F6 FF03 A LOB CRN. CR AND NlT PlN:Hitfl 
00382A F13D C4 7F A OOTCHl ANDB 1$7F RESET SI~ BIT ( 120, 240 TI FLAG> 
00383A F13F 54' IECB IO£ PADDIMI/ 
00384A F140 2B OE F150 llltI OOTCH3 YES 
00385A F142 4F Ct.RA SEND ttlL 
00386A F143 17 0091 F1D7 LBSR OCHAR 
00387A F146 20 F5 F13D BRA OOTCH1 

B-9 



PAGE 009 EXBUG09 .SA:t EXB002 VERSION 2. 1,6809 15 l'IAR 1979 

00389A F148 f 6 FF02 A OUTCHS LDB CHARNL 
00390A F14B 7D FF67 A TST CASSET 
00391A F14E 27 ED F13D BEQ OIJTCHl NOT CR AND NOT PUNCHING 
00392A f 150 4F OUTCH3 Cl.RA TO CLEAR CARRY 
00393A F151 35 Sb A PULS A,B,PC NOT CR AND PUNCHING ,RTS 

00395 f 

00396 t PNCH COl'll'IAND 
00397 f 

00398 F153 A PNCH EQU f 

00399A F153 17 FEAD F003 LBSR XBEGEN GET AODRS 
00400A F15b SE FBE2 A PNCHl LOX ll'IHDR GET SO DATA 
00401A F159 17 FECS f 024 LBSR XPDATA 
00402A FlSC SE FF94 A LDX IBl..f +2 INIT BUFFER POINTER 
00403A FlSF Cb 02 A LDB 12 INIT BYTE COUNT 
00404A F161 17 0283 F3E7 PNCH3 LBSR Itf>UTt 
00405A F164 Cl 15 A Cl1PB 121 
00406A F16b 24 EE F1Sb BCC PNCHt BlfFER OVERFLOW 
00407A FtbS St OD A Cl'IPA ISD 
0040SA F16A 26 FS f 161 BNE PhtH3 NOT CR 
00409A F16C BD 77 F1E5 BSR SETLf SET Lf FOR SO 
00410A F16E 7C FF67 A INC CASSET PlKH FLAG~ 
00411A F171 7D FF02 A TST SPEED 
00412A F174 2A 04 F17A BPL ~1 tllT TI CONTR<l.. 
00413A F176 Sb 30 A LDA l'O TI PRINTER OFF 
00414A F178 SD 55 F1CF BSR llE 
00415A F17A 86 12 A PNON1 LDA 1$12 DC2 - P1KH ON 
00416A F17C SD 59 F1D7 BSR OCHAR 
00417A F17E 17 0096 F217 lBSR ~ Pltol LEA.tE:R 
0041BA F181 Cb 30 A LDB 1'0 PUNCH RECORD TYPE, BYTE COUNT, ADDR 
00419A F183 SD 69 FlEE BSR TPUN 
00420A F185 27 04 Fl SB BEQ PNCH15 NO '1SG 
00421A F1S7 SO 77 F200 PNCH5 BSR TPUNt PlKH l'IESSAGE 
00422A F189 26 FC F187 BNE PNCH5 tllT DONE 
00423A F18B FE FFOA A POCIUS LOU BEGA 
00424A FlSE FC FFOC A PNCH7 LDD ENDA CALC BYTE ro.trr 
00425A F191 34 40 A PSHS u 
00426A F193 A3 El A SUBD o.s++ 
00427A F195 1083 0018 A Ct1PD 124 
00428A F199 25 02 F19D BCS PNCH11 
00429A F19B C6 17 A PtOl9 LDB 123 
00430A F19D CB 04 A PNOU 1 ADDB 14 
00431A F19F F7 FF91 A STB KONT SAVE BYTE C~T 
00432A F1A2 C6 31 A LDB 1'1 PUNCH DATA RECORD 
00433A F1A4 SD 48 F1EE BSR TPIM 
00434A F1Ab lF 31 A TFR u.x 
00435A F1 AS 17 OSF6 FMl PNCH13 LBSR FETCH 
00436A F1AB SD 55 F202 BSR rum 
00437A F1AD 26 F9 Fl AS Bt£ PNCH13 
00438A FlAF 33 lF A LEAU -1,x ~CT AND LfDATE ADDRESS 
00439A F1B1 11B3 FFOC A Ct1PU ENDA 
00440A F1B5 25 D7 F18E BCS PNCH7 NO 
00441A F1B7 C6 03 A LDB 13 S9 RECOOD BYTE ro.NT 
00442A F1B9 SD 2A Fl ES BSR SETLf SET Lf S9 REOEJ 

B-10 



PAGE 010 EXBl..009 .SA:l EXB002 VERSION 2. 1,6809 15 flfAR 1979 

00443A F1BB Cb 
00444A F1BD SD 
00445A FlBF SD 
00446A F1C1 7F 
00447A F1C4 86 
00448A F1C6 SD 
00449A FlCS 7D 
00450A FlCB 2A 
00451 

39 A LDB 1'9 
2F FlEE BSR TPIM 
56 F217 BSR LIR 
FF67 A CLR CASSET 
14 A LDA 1$14 
OF FlD7 BSR OCHAR 
FF02 A TST SPEED 

ftN)I S9 RECORD 

PlKH TRAILER 
PlN:H FLAG !FF 
DC4 - P1MCH Cf F 

49 F216 BPl. PltfT5 NOT TI COORG.. 
t TI PRINTER ON ENTRY - CALLED FRfJt mER-ON INITIALIZATION 

00452A FlCD 86 39 
00453 

A PNCfF3 LDA 1'9 TI PRINTER ON 
t FALL INTO CU RruTII£ 

00455 
00456 
00457 
00458 
00459A FlCF 34 
00460A F1D1 86 
00461A F1D3 SD 
00462A F1DS 35 
00463 

00465 
00466 
00467 
00468 
00469 
00470A F1D7 34 
00471A F1D9 Fb 
00472A F1DC CS 
00473A F1J:E 27 
00474A F1EO B7 
00475A F1E3 35 

00477 
00478 
00479 
004SOA FlES SE 
004S1A F1E8 CE 
00482A F1EB E7 
00483A F1ED 39 
00484 
00485 
00486 
00487A FlEE 86 
00488A F1FO SD 

t 

t SEND ILE AND ACC A TO cctm.E 

* F1CF A DLE EQU * 02 PSHA SAVE ACC A 
10 A LDA 1$10 SEND DLE 
02 F1D7 BSR OCHAR 
02 Pl.I.A RESTIH: ACC A 

* FALL INTO OCHAR 

* * OUTPUT CHARACTER FRll't ACC A TO CONSOLE, NJ SPEED PAD 
t GET tERE FROtl ENTERING AT $F9CF 
f 

FlD7 A OCHAR EQU 
04 PSHB 
FCF4 A OCHAR1 LDB 
02 A BITB 
F9 F1D9 BEQ 
FCF5 A STA 
84 A PllS 

* 

* 
ACIASC 
12 
OCHAR1 
ACIADT 
B.PC 

SAVE ACC B 
TRANSttIT REG El'fTV? 

NO 
VES, SEND CHAR 
RESTCft: ACC B AND RTS 

t SET lf BYTE COONT, ADm=OOOO 
F1E5 A SETUP EQU t 

FF91 A LDX IBCONT 
0000 A LDU IO SET ADm = O 
84 A STB O,X SAVE COIMT 

RTS 
f 

* PIXH S, RECORD TYPE, BYTE ctUff, ADM 
F1EE A TPUN EQU t 

53 A LDA I'S P00-1 S 
ES F1D7 BSR OCHAR 

B-11 



PAGE 011 EXB0009 . SA: 1 EXB002 IJERSIC* 2. t, 6809 15 PIM 1979 

00489A F1F2 1F 
00490A F1F4 SD 
00491A F1F6 8E 
00492A FlF9 5F 
00493A FIFA SD 
00494A f 1FC EF 
00495A FtFE SD 
00496A F200 A6 
00497 
00498 
00499A F202 34 
00500A F204 EB 
00501A F206 17 
00502A F209 7A 
00503A f 20C 26 
00504A f 20E 53 
00505A F20F 1F 
00506A F211 SD 
00507A F213 SD 
00508A F215 4F 
00509A F216 39 

00511 
00512 
00513 
00514A F217 C6 
00515A F219 4F 
00516A F21A 8D 
00517A F21C 5A 
00518A F21D 26 
00519A F21F 16 
00520 
00521 
00522 
00523 
00524A F222 7C 
00525 
00526 
00527 
00528 
00529 
00530A F22S 17 
00531A F228 84 
00532A F22A 39 

00534 
00535 
00536A F22B SD 
00537A F22D 81 
00538A F22F 27 

98 A TFR B,A PlKH RECORD TYPE 
El FlD7 BSR OCHAR 
FF91 A LDX IBCOO 

Cl.RB INIT CKStt 
04 F200 BSR TN41 PlKH BYTE CClWT 
84 A STU o.x GET ADm 
00 f 200 BSR TN41 PIJOI ADm ttSB 
84 A TN4l LDA o.x PlJOf ADm LSB 

f 

* Pl.IOI DATA 
02 P001 PSHA lFDATE CKStt 
EO A ADDB o.s+ 
FEBB FOC4 P00'3 LBSR WT2H1 SEND BYTE 
FF9l A DEC BCOO 0£CK BYTE CClWT 
08 F216 BtE Pltfl5 t«>T Dct£ 

CCllB PIJOI CKStt 
98 A TFR B,A 
F3 f 206 BSR P00'3 
OA F21F BSR XCRLF PlN:H CR, LF 

CLRA SET Z FLAG <DONE> 
Pltfl5 RTS 

f 

1 PlJOf LEADER 
F217 Alm EQU * 37 A LDB 155 CClWT 

Cl.RA till 
BB F1D7 Lmt BSR OCHAR 

DECB 
FB F21A BNE Lmt 
FIFF F021 XCRLF LBRA XPCRLF 

f 

t Itf!UT ll£ CHARACTER, N) PARITY M EClll 
f 

F222 A Itff'NE EQU f 

FF58 A It«: AEOO t«> EClll 
t FALL INTO ItDW 
f 

t ltf!UT Ot£ CHARACTER, STRIP PARITY 
f 

F22S A It«:ttf> EQU f 

FEAA FOD2 LBSR ItOt INPUT OMACTER 
7F A ANDA 1$7F STRIP PARITY 

RTS 

t READER INPUT - IGNME RUBOUTS 
F22B A RDIN EQU t 
FS F222 BSR ItfflE 
7F A CfFA 1$7F 
FA F228 BEQ RDIN RtJBOOT, TRY AGAIN 

B-12 



PAGE 012 EXllJG09 . SA: 1 EXB002 VERSI€* 2. t, 6809 15 MR 1979 

00539A F231 39 

00541A F232 B4 FCFD 
00542A F235 87 FCF4 
00543A F238 39 

00545 
00546 
00547 
0054S 
00549 F239 
00550 
005S1A F239 F6 FF02 
00552A F23C 2A 06 
00553A F23E 86 37 
00554A F240 SD SD 
0055SA F242 20 08 
00556 
00557A F244 86 11 
00558A F246 SD 8F 
00559A F248 86 5F 
00560A F24A SD E6 
00561A F24C SD DD 
00562 
00563A F24E St OD 
00564A F250 26 03 
00565A F252 5D 
00566A F253 28 E9 
00567A F255 Sl 53 
00568A F257 26 F3 
00569A F259 8E FFSF 
00570A F25C SD CD 
00571A F25E A7 02 
00572A F260 Sl 39 
00573A F262 27 05 
00574A F264 80 30 
00575A F266 44 
00576A F267 26 E3 
oosnA F269 bf 01 
00578A F268 SD lC 
00579A F26D 6C 84 
00580A F2bf IF 89 
00581A F271 8D 16 
00582A F273 SA 
00583A F274 26 FB 
00584A F276 86 04 
00585A F27S A7 02 
00586 
00587A F27A 86 3F 
00588A F27C SD 84 

RTS 

A RDOO ANDA SBIT 
A STA ACIASC 

RTS 

t 

t READ RE~ ROOTUE 
t GET t£RE FR(JI ENTERING AT SF8A4 
t 

A REAm EllJ f 

t REAIER €* 
A LDB SPEED 

F244 BPL Rll'*t NOT TI COORCl 
A REAm9 LDA 1'7 BLOCK ~WARD 

F1CF BSR IlE 
F24C BRA REAm1 

t 

A RIK*1 LDA 1$11 OC1 - REAIER €* 
F1D7 BSR ~ 

A LDA ISSF REAIER RELAY ON 
F232 BSR RDOO 
F22B READRl BSR -RDIN GET CHAR 

t IF TI AND CR READ At«>n£R RE~ 
A CIFA ISD 

F255 BtE REAm3 NOT CR 
TSTB 

F23E BtlI REAim IS TI 
A READR3 CtlPA I'S 

F24C BtE REAIR1 FIRST CHAR MIT S 
A LDX IBUF-3 INIT BlFFER POINTER 

F22B BSR RDIN GET REcmD TYPE 
A STA 2.x SAVE IT IN BCOO 
A Cl'f A 1'9 

F269 BEQ READR5 E<F 
A SWiii 1'0 

LSRA 
F24C 81£ REAIR1 NOT tEAIER m DATA 

A READR5 CLR 1. x INIT CKstt 
F289 BSR RDBYTE READ BYTE CW'fT 

A I~ o.x aRCT CK5" 
A TFR A. B SAVE BYTE COCNT 

F289 REAIR7 BSR RDBYTE li:T DATA 
IECB CtECK BYTE m.NT 

F271 lltE REAIR7 NOT IO£ 
A LDA 14 ST~ ETX Fm l£AIER 
A STA 2.x 

t REAID <FF - CAI.LED FROft POER €* INITIALIZATI€* 
A RlllfF LDA IS3F REAIER RELAY <FF 

F232 BSR RIOG 

B-13 



PAGE 013 EXlltl009 . SA: 1 EXB002 VERSIC* 2 1, 6809 15 MR 19~ 

00589A F27E 86 
00590A F280 17 
00591A F283 SD 
00592A F285 B6 
00593A F288 39 

00595 
00596 
00597A F289 SD 
00598A F28B 4S 
00599A F28C 48 
00600A F28D 48 
00601A F28E 4S 
00602A F28F 34 
00603A F291 SD 
00604A F293 AB 
00605A F295 A7 
00606A F297 BB 
00607A F29A B7 
00608A F29D 8C 
00609A F2AO 27 
00610A F2A2 30 
00611A F2A4 39 

00613 
00614 
00615A F2A5 8D 
00616A F2A7 16 

13 A READR6 LDA 
FEAS F128 LBSR 
00 F285 BSR 
FCF5 A READR8 LDA 

RTS 

t READ BYTE 
F289 A RDBYTE EQU 
IA F2A5 BSR 

ASLA 
ASLA 
ASLA 
ASlA 

02 A PSHS 
12 F2A5 BSR 
EO A ADDA 
03 A STA 
FF90 A ADDA 
FF90 A STA 
FFDS A CPX 
02 F2A4 BEQ 
01 INX 

RDBYT1 RTS 

1$13 DC3 - READER (ff 
CUT CH 
READRS CLEAR ACIA 
ACIADT 

f 

RDltftX GET CHAR 
ttOVE TO 4 11SB 

A AND SAVE IT 
RDitftX CU CHAR 
o.s+ F~ BYTE 
3,X SmE BYTE 
BCKSt1 l.fDATE CK5" 
BCKstt 
1Blf+70 
RDBYT1 81.FFER OVERFL~ 

t REAr£R Itf>UT - 1£X CHARACTER 
F2A5 A RDitftX EQU t 

S4 F22B BSR RDIN 
FOC2 F06C LBRA CBCDHX 

B-14 



PAGE 014 EXB0009 . SA: 1 EXB002 YERSI€14 2 1, 6809 15 IYtR 1979 

00618 t 
00619 1 EXBOO PCIEH.P INITI~IZATION 
00620 t 
00621 F2M A START EQU f 

00622A F2M 10CE FFES A LDS IX STACK INIT SP 
00623 t INITI~IZE ~ 
00624A F2AE CE FF02 A LDU IATCP+2 
00625A F2B1 8E 8l=F A LDX ITCfTGT 
00626A F2B4 AF 5E A STX -2.u ATCf,U 
00627A F286 8E FB61 A LDX ICROID 
00628A F2B9 AF 4C A STX sc.u OIDBEG-ATCf,U 
00629A F2BB 30 06 A LEAX 61 x 
00630A F2BD AF 4E A STX SE,U CllEID-ATCP,U 
00631A F2BF 4F Cl.RA 
00632A F2CO 5F Cl.RB 
00633A F2C1 FD FFE6 A STD Q 
00634A F2C4 ED C4 A STD o.u 
00635 t INITI~IZE HALT ON ADmESS PIA 
00636A F2C6 CE FCF4 A LDU IACIASC PIA BASE ADmESS 
00637A F2C9 CC FF3C A LDD ISFF3C A DATA TO OOTPUT 
00638A F2CC ED 44 A STD 4,U A DIR+cNTL 
00639A F2CE C6 04 A LDB .... B DATA TO OUTPUT 
00640A F200 ED 46 A STD 6,U B DIR+CNTL 
00641 t INITI~IZE MAP CONTRCl.. PIA 
00642A F2D2 CC 7F7F A LDD ff 7F7F A+B DATA OOTPUT 
00643A F2D5 ED 48 A STD s.u A+B DIR 
00644A F2D7 86 2C A LDA 1$2C A CNTL 
00645A F2D9 ED 4A A STD 10.u A+B CNTL 
00646 t CIJ£ lfl IN EXEC tfAP 
00647A F2DB 17 0824 FB02 LBSR EXEC 
0064S t INITI~IZE ACIA 
00649A F2DE C6 03 A LDB 1$3 RESET ACIA 
00650A F2EO E7 C4 A STB o.u 
00651A F2E2 C6 31 A LDB 1$31 ASSlJIE 2 STCf BITS 
00652A F2E4 E7 C4 A STB o.u 
00653A F2E6 SD 96 F27E BSR READR6 SEND 2 CHARACTERS 
00654A F2ES SD 94 F27E BSR READR6 
00655A F2EA 1F 31 A TFR u. x 
00656A F2EC 30 1F A INACIA LEAX -1.x COONT CHAR SEND TUE 
00657A F2EE A6 C4 A LDA o.u ACIASC 
00658A F2FO 85 02 A BITA 12 ~SENT? 
00659A F2F2 27 FS F2EC BEQ INACIA N) 

00660A F2F4 SC E700 A CPX l$E700 ~y 2 STCP BITS? 
00661A F2F7 28 04 F2FD BltI IACIA1 YES 
00662A F2F9 C6 35 A LDB 1$35 
00663A F2FB E7 C4 A STB o.u ACIASC 
00664A F2FD CA 40 A IACJA1 mAB 1$40 SAVE IN SBJT 
00665A F2FF E7 49 A STB 9,U SBIT 
00666A F301 7F FF1E A CLR PRIFR SET PSEUOO DPR--0 
00667A F304 86 50 A LDA ff 50 SET PSEUOO I, F ltASKS 
00668A F306 87 FF21 A STA PRCC 

00670 t GET l£RE Ant ENTERJMJ AT $F564 
00671 F309 A RENTER EOO f 

00672A F309 10CE FFES A LDS IXSTACK INJT SP 
00673A F30D SE FF90 A LDX ISTACK INIT PSEUOO SP 
00674A F310 BF FF22 A STX SPSAVE 

B-15 



PAGE 015 EXB0009 . SA: 1 EXBUG2 VERSICW 2.116809 15 ,_ 1979 

00676 t INITIALIZE IJECTmS - ADT REENTRY POINT 
006n F313 A RENTR1 EQU f 

00678 tlNIT EXEC ttAP IRQ VECT~ 
00679A F313 CE 0000 A LOO IO U=TCf Cf EXBOO'S POINTER 
-00680A F316 BE FFOO A LDX ATCf 
00681A F319 30 01 A LEAX 1. x INX 
00682A F31B C6 18 A LDB 124 
00683A F31D A6 82 A RENTR4 LDA o.-x 
00684A F31F A7 C2 A STA o.-u 
00685A F321 5A DECB 
00686A F322 26 F9 F31D Bt£ RENTR4 
00687A F324 SE F8C3 A LDX wtISRV INIT tftl VECTm 
00688A F327 BF FFFC A STX SFFFC 
00689A F32A SE F827 A LDX ISWISRV INIT SWI VECTm 
00690A F32D BF FFFA A STX SFFFA 

00692 t CLEAR EXBOO RAf'I 
00693A F330 C6 44 A LDB IZEND-BKADm 
00694A F332 17 0355 F68A LBSR l0Nl1 

00696A F335 86 3A A LDA I': TI RDC CW 
00697A F337 17 FE95 FlCF LBSR DLE 
00698A F33A 17 FE90 FlCD LBSR Pt«ff 3 PRINTER CW 
00699A F33D 17 FF3A F27A LBSR RmtfF READER CfF 

00701A F340 SE FBE7 A LDX IHIN3 PRINT ~ADING 
00702A F343 17 FCDE F024 LBSR XPDATA 

00704 t GET l£RE FRa'I ENTERING AT $FOF3 m SF5C2 
00705 F346 
00706A F346 lOCE FFE5 
00707 

A RENTR2 EQU t 
A LDS IXSTACK INIT SP 

t ISSUE PRM'T 
00708A F34A SE 
00709A F34D 17 
00710A F350 B6 
00711A F353 26 
00712A F355 30 
00713A F357 17 
00714A F35A 4F 
00715A F35B 17 
00716A F35E 17 
00717A F361 25 
00718A F363 81 
00719A F365 27 
00720A F367 17 
00721A F36A SE 
00722A F36D 81 
00723A F36F 27 
00724A F371 SE 
00725A F374 81 
00726A F376 27 
00727A F378 81 
00728A F37A 27 
00729A F37C 81 
00730A F37E 26 
00731 
00732 
00733A F380 17 

FBD7 A LDX IPRM1 PRINT t 
FCD4 F024 LBSR XPDATA 
FFES A LDA l«>DE 
05 F35A BNE CLPl IS USER l«>DE 
01 A LEAX 1,X 
FCCD F027 LBSR XPDATl 

CLP! CLRA NO PARAl£TERS YET 
021E F57C LBSR INDSP INIT DATA STACK POINTER 
0083 F3E4 CLP9 LBSR INPUT GET FIRD 
4E F3B1 BCS CLP3 ERROR 
OD A ctFA 1$D CR TERtUNATOO? 
32 F399 BEQ CLP5 YES, CR CflltAND 
OOA9 F413 LBSR CNVRT Cll'NERT INPUT FIRD 
FB3F A LDX IPCMDT-6 INIT PERIOD OID TABLE POINTER 
2E A ctFA I' PERIOD? 
OF F380 BEQ CLP7 YES 
FB08 A LDX ISCMD-6 INIT TABLE POINTER 
2F A ctlPA I'/ SLASH? 
OD F385 BEQ CLP13 YES 
24 A CltPA 1'$ $? 
04 F380 BEQ CLP7 YES 
3B A ctFA I'; 581ICOLOO 
IE F35E Bt£ CLP9 tll, GET NEXT PARfiETER 

1 PERIOD, SE11ICCl.CW, m DOLLAR SIGN 
F380 A CLP7 EQU * 
FD61 FOE4 LBSR CltllI GET CMtAND CHAR 

B-16 



PAGE 016 EXB0009 . SA: 1 EXB002 YERSIC* 2. 1, 6809 15 11AR 1979 

00734A F383 1F 89 A TFR A,B SAVE CCltlAND CHAR IN B 
00735A F385 30 03 A CLP13 LEAX 3,X lPDATE POINTER 
00736A F387 6D 03 A TST 3,X IOE? 
00737A F389 27 26 F3B1 f£Q CLP3 YES, ERRm 
00738A F38B Al 03 A OFA 3, x WITCH? 
00739A F38D 26 F6 F385 BNE CLP13 NO 
00740A F38F 17 FC98 F02A CLP15 LBSR XPSPAC PRINT SPACE 
00741A F392 AD 98 04 A JSR [4, Xl GET mttAND ADllESS 
00742A F395 25 1A F3B1 BCS CLP3 ERRm 
00743A F397 20 AD F346 BRA RENTR2 NEXT CttltAND 

00745 t CR C(Jt',AND 
00746A F399 8E FB61 A CLP5 LDX ICRCl1D Cl£CK EXBllJ C<lltANDS FIRST 
00747A F39C SD 18 F3B6 Cl.P17 BSR OfOCH( LCO< FCR l'IATCH 
00748A F39E 24 EF F38F BCC CLP15 FCUID IT 
00749A F3AO SC FB91 A CPX ICROIDE CECKED All €F TABLE? 
00750A F3A3 26 F7 F39C BtE CLP17 NO 
00751A F3AS BE FFOE A LDX Cl1DBEG Cl£CK USER TABLE 
00752A F3A8 SD oc F3B6 CLP19 BSR etml< LOO< FCR WITCH 
00753A F3AA 24 E3 F38F BCC CLP15 Fll.N> IT 
00754A F3AC BC FF10 A CPX Cl'IIEND Cl£CKED All €F TABLE? 
00755A F3AF 26 F7 F3A8 BNE CLP19 NO 

00757A F3B1 17 0129 F4DD CLP3 lBSR PERR PRINT ERRm l'IESSAGE 
00758A F3B4 20 90 F346 BRA RENTR2 

00760 t LOO< FOR CR 001AND TABLE WITCH 
00761 F3B6 A ct1octt< EQIJ f 

00762A F3B6 FC FF92 A LDD Btf' CIECK FIRST Ir SECCWD CHAR 
00763A F3B9 81 OD A CIFA l$D 
00764A F3BB 27 89 F346 f£Q RENTR2 REPRIJl>T IF CR 
00765A F3BD A3 84 A SUBD o. x 
00766A F3BF 26 07 F3C8 BtE INX6 
00767A F3C1 FC Ff 94 A LDD Blf +2 Cl£CK THIRD AND f(gTH CHAR 
00768A F3C4 A3 · 02 A SUBD 2. x 
00769A F3Cb 27 15 F3DD f£Q CKBRK1 FCUID IT 

00771A F3C8 30 06 A INX6 LEAX 6,X 
00772A F3CA 1A 01 SEC SEC NOT Ftm> FLAG 
00773A F3CC 39 RTS 

00775 f 

00776 t Cl£CK FCR BREAK/WAIT 
oom f 

00778 F3CD A CKBRK EQU f 

00779A F3CD B6 FCF4 A lDA ACIASC Cl£CK ACIA 
00780A F3DO 47 ASRA 
007S1A F3D1 24 OA F3DD BCC CKBRK1 NO CHAR 
00782A F3D3 17 FE4C F222 CKBRK7 LBSR Il'WNE 
00783A F3D6 80 17 A SUBA 1$17 CTL-w? 
00784A F3D8 27 F9 F3D3 f£Q CKBRK7 YES 
00785A F3DA 4A IECA CTL-X? 
00786A F3DB 27 D4 F3B1 f£Q CLP3 YES, RETl..R4 TO aJltAND LEVEL 
00787A F3DD 39 CKBRKl RTS 

B-17 



PAGE 017 EXBl..009. SA: 1 EXB002 VERSION 2.1.6809 15 ~ 1979 

00789 
00790 
00791 
00792 
00793A F3DE 17 
00794A F3E1 7E 

00796 
00797 
00798 
00799 
00800A F3E4 SE 
00801A F3E7 17 
00802A F3EA A7 
00803A F3EC 5C 
00804A F3ED SD 
00805A F3EF 24 
00806A F3F1 SC 
00807A F3F4 25 
00808A F3F6 20 

00810 
00811 
00812 

f 

f l100S mtlAND 
f 

F3DE A l'IInS EQU 1 

on1 FB02 LBSR EXEC 
E800 A .W tlDOSE 

f 

SET EXEC P1AP 

1 I~ FIB.D TO BlfFER 

* F3E4 A INPUT EQIJ * FF92 A LOX IBlF INIT BtfFER POINTER 
FCFA FOE4 INPIJT1 LBSR otNDI GET CHAR 
80 A STA o.x+ SAVE CHAR.INC Blf POINTER 

INCB INC CHAR COlM 
OB F3FA BSR CKTRl'I TERttINATOR? 
14 F40S BCC CKTRl'l1 YES 
FFA6 A CPX IBlf +20 BlfFER FllL? 
Ft F3E7 BCS INPUT! NO 
D2 F3CA BRA SEC YES, ERRM 

• 
t GET CHARACTER FROtt BUFFER - ct£CK IF TEfmINATOR 
f 

00813 F3F8 A GETC EQU t 

00814A F3F8 A6 80 
00815 

A LDA o.x+ GET CHAR.l.fDASTE POINTER 
t FALL INTO CKTRM 

00817 
00818 
00819 
00820A F3FA 31 
00821A F3FD 6D 
00822A F3FF 27 
00823A f 401 Al 
00824A F403 26 
00825A f 405 39 
00826 
00827 
00828 
00829A F406 
00830A F40E 

f 

t OECK FOR TERMINATOR 
f 

8C 09 CKTRtt LEAY <TRttTB,PCR OECK AGAINST TERtt TABLE 
A4 A Cl<TR"3 TST O,Y OECKED ALL~ TABLE? 
C9 F3CA BEQ SEC YES 
AO A CttPA o.v+ 
FS F3FD BNE CKTRt13 NOT TERt1INATOR 

IS TERt1INATOR 

F406 
20 
00 

CKTRttl RTS 
tTERttINATOR TABLE 
1 SPACE, CR, Lf, COtlfA, SLASH. SEl'IIClJ..ON, Jn.LM SIGN, PERIOD 

A TRl'ITB EQU 1 

A FCB $20,$D,$A,',,'/,';,'S,'. 
A FCB 0 END ~ TABLE 

B-18 



PAGE 018 EXBUG09 .SA:1 EXBUG2 VERSION 2. 1.6809 15 WtR 1979 

02080 en LIST 
02081A FFOO ORG $FFOO 
02086A FFOO 0002 A ATCf RttB 2 TCf OF EXEC 11AP YECT~ 
02087 FF02 A CHARNL EQU f SPEED FLAG AND CHAR <MJHR> NLU PAD VAL.l.E 
02088A FF02 0001 A SPEED Rl1B 1 O=OC, -=TI CNTL, OTl£R=mt8 
02089A FF03 0001 A CRM.. Rl1B 1 CR N.ll PAD VALUE 
02090A FF04 0002 A HAL.TAD RMB 2 HALT ADDRESS 
02091A FF06 0002 A TEND RttB 2 TRACE ENDIN1 ADmESS 
02092A FFOS 0002 A RMB 2 RESERVED DATA STACK POINTER 
02093A FFOA 0002 A BEGA Rl1B 2 BEGINNING ADm - BEGEND 
02094A FFOC 0002 A ENDA RttB 2 ENDING ADDRESS - BEGEND 
02095A FFOE 0002 A CMDBEG Rl1B 2 EXTENDED Cl1ND TABLE BEGIN 
02096A FF10 0002 A ct1DEND Rl1B 2 EXTENDED CM! TABLE END 
02097A FF12 0002 A TElf'A R11B 2 TEtlP STORAll: 
02098A FF14 0002 A TElf'B R11B 2 TEPP STORAGE 
02099 * PSEUDO-REGISTERS FOR TARGET PROORAtt 
02100A FF16 0001 A PRPCH RttB 1 TGT PC HIGH 
02101A FF17 0001 A Rl1B 1 TGT PC Lc.11 
02102A FF18 0001 A PRURH Rl'IB 1 TGT U REG HIGH 
02103A FF19 0001 A Rl1B 1 TGT U REG LOW 
02104A FF1A 0001 A PRVRH RttB 1 TGT V REG. HIGH 
02105A FF1B 0001 A RHB 1 TGT V REG. Lc.11 
02106A FFlC 0001 A PRXRH Rl'IB 1 TGT X REG. HIGH 
02107A FF1D 0001 A RHB 1 TGT X REG. LOW 
02108A FFlE 0001 A PRDPR RHB 1 TGT r:fR 
02109A FF1F 0001 A PRACCA RHB 1 TGT ACC A 
02110A FF20 0001 A PRACCB RMB 1 TGT ACC B 
02111A FF21 0001 A PRCC Rl1B 1 TGT CONDITION CODES .. HINZVC 
02112A FF22 0002 A SPSAYE RMB 2 TGT SP 
02113 t END OF PSEUDO-REGISTERS 
02114 1 BEGINNING OF EXBUG 1 CLEARED AREA 
02115A FF24 0010 A Bl<ADDR RMB 16 BREAKPOINT ADDRESSES 
02116A FF34 0001 A BKINS R11B 1 BKPT INSTRUCTIONS, !ALTERNATING BYTES> 
02117A FF35 0001 A EFLAG RHB 1 E rotfAND FLAG 
02118A FF36 0001 A Rl1B 1 BKPT INS 2 
02119A FF37 0001 A ZFLAG Rl1B 1 Z Cott1AND FLAG 
02120A FF38 0001 A Rl1B 1 BKPT INS 3 
02121A FF39 0001 A wt1SK Rl1B 1 l'IEl'IORV SEARCH l1ASK 
02122A FF3A 0001 A Rt'IB 1 BKPT INS 4 
02123A FF3B 0001 A HAl..TF Rl1B 1 HALT ON ADDR ACTIVE FLAG 
02124A FF3C 0001 A Rl1B 1 BKPT INS 5 
02125A FF3D 0001 A TRACE Rl1B 1 TRACE ACTIVE FLAG 
02126A FF3E 0001 A Rl'IB 1 BKPT INS b 
02127A FF3F 0001 A INTl'1AP Rl'IB 1 l1AP LAST INTERRUPT WAS IN: +=EXEC, -=USER 
02128A FF40 0001 A Rl'IB 1 BKPT INS 7 
02129A FF41 0001 A TEHPC R11B 1 TEMP STORAGE 
02130A FF42 0001 A Rl'IB 1 BKPT INS 8 
02131A FF43 0001 A PCOUNT Rl1B 1 PARAl'I Co.MT, l'llL FIELD FLAG 
02132A FF44 0010 A BKCNT Rl'IB 16 BKPT PASS ~T 
02133A FF54 0001 A BKPTIN RMB 1 BKPTS IN FLAG 
02134A FF55 0002 A BUFPNT Rl'IB 2 Bl..FFER POINTER 
02135A FF57 0001 A TEMPD Rl1B 1 TEl'IP STORAGE 
02136A FF58 0001 A AECHO Rl1B 1 NON-ECHO FLAG 
02137A FF59 OOOE A Rl1B 14 DATA STACK AREA 
02138 FF67 A DATAS EQIJ * START OF DATA STACK 
02139A FF67 0001 A CA...CSET RHB 1 PlKH ON FLAG 
02140 FF68 A ZEND EQU f 

02141 t END OF EXBUG 1 CLEARED AREA 

B-19 



PAGE 019 EXll0009 . SA: 1 EXB002 IJERSI<* 2. 1, 6809 15 ttAR 1979 

02142A FF68 0028 A RttB 40 EXBOO 1 STACK AREA 
02143 FF90 A STACK EQU f 

02144A FF90 0001 A llCkSM RttB 1 BtFFER Cl£CKSl.lt 
02145A FF91 0001 A BCONT RMB 1 lllf FER coon CHARACTER 
02146A FF92 0053 A lllf RttB 83 RECORD lllfFER 
02147 FFE5 A XSTACK EQU f EXBOO 2 STACK 
02148A FFE5 0001 A Pt01'E: RttB 1 tlAP tOE 
02149A FFE6 0002 A Q RJtB 2 IEW3 CfFSET 
02150A FFES 0010 A Rttll 16 PIC VECTmS 
02151A FFFS 0002 A RJtB 2 IRQ YECT(f{ 
02152A FFFA 0002 A Rttll 2 SWI VECTm 
02153A FFFC 0002 A Rl1B 2 tfll VECTm 
02154A FFFE 0002 A RJtB 2 RESET YECTm 

B-20 



PAGE 020 EXBU009 . SA: 1 EXB002 VERSI~ 2. 1, 6809 15 ttAR 1979 

02156 FOOO A END M.f 
TOTAL ER~ 00000--00000 
TOTAL WARNINGS 00000-00000 

FCF5 ACIADT 0007Sf00301 00474 00592 
FCF4 ACIASC 00074.00298 00471 00542 00636 00779 
FS4A ACttND 010421()2004 
F54D ACltlDl 00352 01044f01059 01095 01102 01109 01119 
F55E AOIND3 01049 01050 01052f01072 
F46C ADD 00900 00906f00955 01152 
FFSS AECfll 00302 00304 00524 00878 021361 
0001 ALL 000691 
FFOO ATOP 00624 00680 01470 01592 01709 020861 
FF90 BCKSlf 00606 00607 01872 021441 
F~ BOfND 01057f02005 
FF91 BCONT 00431 00480 00491 00502 02145* 
FFOA BEGA 00167 00175 00423 01735 020931 
F046 BEGEND 00104 00164t00169 00178 
FF24 Bl<ADDR 00693 01306 01307 01344 02115* 
FF44 BKCNT 021321 
FF34 SKINS 01306 01350 021161 
FFS4 Bl<PTIN 01317 01365 01385 01559 021331 
F6A5 BtfTCH 01290 01327f01564 
F6A8 BKTCH1 01287 01303 013281 
F6AA BRJ<SB 01285 01320 01342*01382 
F6B3 BRKSB1 01347f01354 
F6EB BRKSB3 01351 013721 
F6BS BRKSBS 01345 01349f01357 01366 01369 01377 
FF92 BUF 00402 00569 00608 00762 00767 00800 00806 00847 01199 01847 01862 01876 01879 021461 
FF55 Blf PNT 021341 
FF67 CASSET 00270 00379 00390 00410 00446 021391 
F081 CBCIJfl 00195 00204 002071 
F076 CBCDH3 00199f00206 
F06C CBCDHX 00106 00193100616 
F583 CCPNl 01093*02006 
F079 Cr.E:C 00197 002031 
FF02 CHARNl 00389 01183 020871 
F104 CHEU 00313 00315 00341 00343t00354 00358 00365 
FOF6 ct£XL 00108 00286 003281 
FOFA CHEXR 00109 00289 003371 
F3CD CKBRK 007781()1715 01852 01946 
F3DD CKBRK1 00769 00781 007871 
F3D3 CKBRK7 00782f00784 
F3FA CKTRtt 00804 00820t 
F405 CKTRtU 00805 00825* 
F3FD CKTRl'l3 00821f00824 
F35A CLP1 00711 007141 
F385 CLP13 00726 00735*00739 
F38F Cl.PIS 00740f00748 00753 
F39C CLP17 00747t00750 
F3A8 CLP19 00752100755 
F3B1 CLP3 00717 00737 00742 00757t00786 00891 
F399 CLP5 00719 007461 
F380 CLP7 00723 00728 007321 
F35E CLP9 00716t00730 
FFOE cttDBEG 00751 02095f 

B-21 



PAGE 021 EXBUG09 . SA: 1 EXBUG2 VERSION 2. 1, 6809 15 11AR 1979 

F3Bb CMDCHI< 00747 00752 00761* 
FF10 CHDEND 00754 02096* 
FOAD CHNDE 00114 00269*00287 00291 00303 00317 
FOB9 01NDE1 00275*00360 00362 
FOE4 CHNDI 00310*00733 00801 00936 01762 01798 01878 
F413 CNVRT 00720 00845* 
F44C CNVRT7 00869 00875*00890 
F42A CNVRT9 00852 00857* 
F731 CONT! 01398 01404 01415*01456 
F72F CONT3 01400 01414*01573 01721 
F716 CONT5 01401*01706 
F71A CONT9 01403*01582 
F648 COUTAD 01250 01260* 
FBbl CRCl'ID 00627 00746 02026* 
FB91 CRCl'IDE 00749 02035* 
FF03 CRti.. 00381 02089* 
FF67 DATAS 01087 01718 02138* 
F588 DCl'IND 01100*02007 
F53B DEC 00957 00963 01015 01024*01409 01719 
F541 DEC1 01022 01028* 
F892 DECP1 01606*01653 
FBSA DECPC 01567 01586 01602* 
F8DE DELAYl 01656*01657 
FlCF DLE 00414 00458*00554 00697 
FSSD ECl'IND 01107*01979 
FF3S EFLAG 01108 01387 01584 02117* 
F069 END! 00145 00179* 
FFOC ENDA 00172 00424 00439 01224 01749 02094* 
F053 ENDIN 00170*00174 
F47C ERR 00918*00935 00962 00990 01076 
FB02 EXEC 00647 00793 01648 01955*02034 
FOF3 FOF3 00323* 
F564 F564 01064* 
F5C2 F5C2 01149* 
F8A4 F8A4 01620* 
F9CF F9CF 01782* 
FAA! FETCH 00435 00927 00996 01361 01367 01533 01631 01742 01829 01900*01924 
FSAC FETCH2 01471 01580 01627*01685 
F8B2 FETCHX 01628 01631*01668 
F40F GCFLD 00838*00930 00933 01047 01136 01142 
F77E GCl'WD 01461*01980 
F795 GCfilij)3 01469 01471* 
F79D GCltiJ5 01466 01474* 
F7AO GON)7 01473 01475* 
F7AC GCl'IND9 01478 01480* 
F3F8 GETC 00813*00851 00860 00866 
FF04 HALTAD 01198 01203 01510 02090t 
FF3B HALTF 01203 01508 02123* 
F5ED HClt4D 01197*01981 
FSF9 HCl'IND1 01201 01203* 
F5FO ~ 01199*01212 
FBE7 HIN3 00701 02062* 
F431 IEX 00858 00861*00867 
FCF9 lf>IAAC 00078*01514 01607 01688 
FCF8 lf>IAAD ooon*00078 00079 00080 00081 00082 00083 00084 01512 01689 
FCFB tf>IABC 00080*01696 
FCFA tf>IABD 00079*01511 01697 
F2FD IACIA1 00661 00664* 

B-22 



PAGE 022 EXBUG09 . SA: 1 EXW32 VERSI~ 2 1, 6809 15 tfAR 1979 

F605 ION> 01217f01982 
F610 ION>1 01223f01227 
F06A IN1H 00184f00219 
F2EC INACIA 00056f00659 
F088 INADD1 00219t00224 
F093 INADD3 00220 00225f00274 00276 
F084 INADm 00110 002151 
F533 It«: 01009 01018f01453 01748 01846 01929 
FOD2 It«:H 00112 00297f00300 00530 
F225 INCHNP 00113 005291 
F57C INDSP 00715 01036 0108St01561 
F222 INfNE 00311 00523f00536 00782 
F3E4 ItRIT 00716 00799f00839 
F3E7 Itf'UT1 00404 00801f00807 
FF3F INTHAP 01519 02127t 
F3C8 INX6 00760 00771t 
F800 ISP1 01520 01531t 
FSOO ISPS 01533f01537 
F7EF ISPREP 01517f01558 01652 
F5El KCl1ND 01182f01983 
F5E4 KetWill 01184f01192 
F71D LCl'INDl 01397 01406t 
F217 Lm 00417 00445 005131 
F21A LDRl 00516f00518 
EBCC LIST 00091*00275 
0000 LISTNG 00071t00096 00099 00832 02079 02083 
F9CB LOAD 01774f02028 
ESCO LPINIT 00090t00360 
FBAS ttABR 01692 02051t 
F6EE MTCH 01353 013751 
FB91 l'IBEG 00165 020461 
F481 ID«J 00926f00982 
F4BC PDfGl 00939 009S5f00964 
F4B8 l'IOOU 00953t00960 
F4E3 ID«Jl3 00968 009761 
F51F lt:HG21 00977 010061 
F529 tlCHG25 01007 01012t 
F4FB tt0m7 00989*01013 
F4DS l'DiG3 00932 009671 
F4C8 t'ICHG5 00938 009611 
F499 MCHG7 00936t00970 
F4E9 ID«J9 00947 00954 00979*01010 01016 
F47F ~ 00924f01978 
FBC1 ttCKS 01874 02055t 
FBBA l'n.V 01760 02054t 
FS92 l'OIND 01114f01984 
F3DE l1J))S 007921()2032 
E800 ltDOSE 00094*00794 
FB96 tEND 00170 020471 
F098 t£RGE1 00233*00236 
F094 l'ERGEH 00221 00230t00864 
FB9B l'IERR 00973 02048t 
FBE2 HHm 00400 02061t 
FBB4 ttl.T 01700 02053t 
FBDC ltlSK 01116 02060t 
FFE5 t10DE 00710 01468 01477 01504 01576 01963 021481 
FBAC tfAR 01658 02052t 
FCFE l'f IAAC 00083f01234 01649 

B-23 



PAGE 023 EXBUG09 . SA: 1 EXB002 VERSitw 2. 1, 6809 15 f'IAR 1979 

FCFC tFIMD 00081t01436 01484 01507 01650 01892 01901 01964 02071 
FCFF tFIABC 00084t01322 01518 
FCFD tFIABD 00082t00085 01522 
FBC7 "5C 01796 020561 
FBAO "5WI 01587 02050t 
F501 l'lfDT 00978 00991t01008 01014 
F51C tlfDT3 00993 00994 00998 010031 
F519 lt.fDT5 00946 010021 
FBCC tMiD 01835 020571 
F768 toN) 014461()1985 
F774 toN)1 01448 014531 
F777 toKl3 01452 014541 
F94F NttI11 01703 017081 
F958 NttI13 01705 017121 
F974 NttI15 01717 017231 
F97C NttI17 01720 017261 
F971 Nttl19 01721t01725 
F909 NttI21 01663 01665 016751 
F920 NttI23 01674 016851 
F924 NttI3 01676 01678 016881 
F936 NttI7 01691 01696* 
F945 tflI9 01699 017031 
F8C3 NttISRV 00687 016451 
F1D7 OCHAR 00373 00386 00416 00448 00461 00469t00488 00490 00516 00558 01782 
F1D9 OCHAR1 00471t00473 
F4BO OCltID3 00940 009481 
F486 ~ 00942 00944 00949 009521 
F4AA OCltID7 00945f00951 
0000 ONEJ( 00068t00071 
FOC2 OOT2H 00251 00257 002831 
FOC4 OUT2Hl 00285t00501 01002 01856 
FOA9 OUT2HS 00115 002561 
FOA7 OOT4HS 00116 00250t 
F128 OOTCH 00271 00272 00372t00590 
F13D OOTCHl 00380 00382t00387 00391 
Fl50 OOTCH3 00384 003921 
Fl48 OUTCHS 00377 00389t 
FOA5 OOTl£X 00244t00965 00981 01854 01921 
F458 PAR2 0088bt00898 
F464 PAR2A 00897t00925 01286 01302 01474 
F461 PM2E 00840 00862 00879 00891t 
F621 PARIT1 01225 0123St0124S 
F61C PARITY 01232t01995 01997 
F475 PARN 00914t01284 01300 01395 01447 01465 
F47E PARN1 00917 00919t00979 
F5A5 ~ 011311()2009 
FB45 PCl1DT 00721 020031 
F708 PON) 01394t01986 
F5A8 PONll 00168 00173 01126 01133*01163 01170 01177 01205 
F5A9 PCltID2 01134101185 
F5CB PCtN)3 01139 011531 
F5C5 PCttND4 01141 011511 
F5D1 PON>7 01138 01156t01204 
FSCF POtND8 01155f 
F5C8 PClt4)9 01143 011521 
F6A2 POOCH 01326t01399 01410 
FF43 PCtllNT 00846 00853 00855 00887 00915 00929 01070 01086 01137 01343 01352 01733 01794 021311 
F03B PCRLF 00117 001531 

B-24 



PAGE 024 EXB0009 . SA: 1 EXB002 VERSI114 2. 116809 15 l1AR 1979 

F02D PDATA 00119 001361 
F02F PDATA1 00121 00142f00148 
F4DD PERR 00757 00952 00973101000 
FA53 Plt*'O 01747 01838 018521 
FASE Pil'*01 00928 01840 018561 
F1S3 Pr«:H 00398*02031 
F1S6 PNCHl 00400i-0040b 
F19D Pt«li11 00428 00430f 
F1A8 PNCH13 0043Sf00437 
Fl8B Pt«lilS 00420 004231 
F161 f'tOi3 004041-00408 
F187 PNCHS 00421t00422 
F18E Pt«li7 00424*00440 
F19B PNCH9 00429* 
F1CD PNCff3 004S2t00698 
F17A PDl 00412 004151 
FF1F PRACCA 01043 01270 021091 
FF20 PRACCB 01058 02110f 
FF21 PRCC 00668 01094 01273 01482 01531 01639 01661 01683 021111 
FFlE PRDPR 00666 01101 01273 01274 01481 01547 021081 
F7D1 PREP 01432 01503*02070 
F7D8 PREPl 01480 01505 015071 
F7EE PREP3 01476 01509 015151 
FA64 PRINTR 01757 01804 01860f 
FBD7 PRtf 1 00708 01622 02058t 
FAA9 PRNT 01909*02030 
F{lt,7 PRNTl 01923*01932 
FAED PRNT11 01938 019411 
FAE1 PRNT3 0193Sf01944 
FABF PRNTS 01920f01949 
FAEF PRNT9 01940 019421 
FF16 PRPCH 01132 01242 01268 01326 01416 01417 01541 01581 01596 01603 01605 01723 02100f 
FF18 PRlRf 01125 01274 01275 02102• 
FFlC PRXRH 01169 01268 01269 02106* 
FF1A PRYRH 01176 01269 01270 02104• 
F44F PSH1 00850 00878f00987 01472 01918 
F4F3 PStll 00901 00969 00984f01151 
F7C5 PSmGl 01495t01498 
F7CE PSIR32 01441 01500f 
F7BF PSHRGS 01491101597 01636 
FOAB PSP{ll:,E 00123 00262• 
F202 Pl.INTI 00436 00499t 
F206 PUNT3 00501t00506 
F216 Pl..M5 00450 00503 005091 
FOOO M..f 00103f01S29 02156 
FFE6 Q 00633 00985 01191 02149* 
F5E8 QC'1ND 01190t01987 
F693 RBl<PT 01316*01608 
F69C RBKPTl 01318 013211 
F69E RBKPT3 01322f01386 01388 
F546 RaN1 0103Sf0104S 01134 
F622 RCl'IND 01240*01712 01988 
F625 RCl'IND1 01242*01614 
F62B RON)2 01244*01255 01257 
F637 RCl1ND3 01247 01250f 
F643 RCIY4 01253 012561 
F2A4 RDBVT1 00609 006111 
F289 RDBYTE 00578 00581 005961 

B-25 



PAGE 025 EXBUG09 .SA:1 EXBUG2 VERSI~ 2. 1,6809 15 l'fAR 1979 

F22B RDIN 00535*00538 00561 00570 00615 
F2A5 RDINHX 00597 00603 006141 
F244 R~1 00552 005571 
F232 RDON3 0054lf00560 00588 
F27A RDROFF 00587f00b99 
F239 READR 00549*01620 01861 
F24C READR1 00555 00561100568 00576 
F255 READR3 00564 005b71 
F269 READR5 00573 005771 
F27E READR6 00589f00653 00654 
F271 READR7 00581 f-00583 
F285 READRS 00591 005921 
F23E READR9 00553f-00566 
F6D9 REMOVE 01359 013641 
F309 RENTER 00b71f010b4 
F313 RENTR1 00677101694 
F346 RENTR2 00323 00705*00743 00758 00764 01149 01589 01727 
F31D RENTR4 00b83f00b86 
F8B5 RINT 01578 01591 01635*01666 01680 01708 
F89A RMSG 01588 01611101693 
F64F RTAB 01243 01266* 
FBF4 RTN1 02070*02075 
FBFB RTNUSR 02073* 
FCFD SBIT 00085f00541 01677 
FbF5 SBKPT 01381101401 01475 
F707 SBKPTl 01383 01389101402 01406 01408 01411 01450 01464 
F567 SBYTE 00992 01048 010691 
FBOE set1D 00724 019761 
FSD2 SCl'IND 01161*02010 
F3CA SEC 00772*00808 00822 
F1E5 SETUP 00409 00442 004791 
OOSC SKIP2 00087*01523 
FF02 SPEED 00411 00449 00551 020881 
FF22 SPSAVE 00674 01162 01275 01417 01483 01637 01667 01671 021121 
F9AF SRCH 01756*01758 01759 01764 02027 
F9B6 SRCH3 01760*01768 
FF90 STACK 00673 021431 
F2M START 00103 00621* 
FA99 STORE 00995 01223 01364 01500 01672 01828 018911 
FS12 SWAP 01492 01540*01640 
FS19 SWAP2 01544*01548 
F817 SWAP3 01543*01549 
003F SWI 00086101363 01368 
F871 SW111 01588101623 01660 01701 
F876 SWI13 01575 01577 015911 
FSbC SW117 015861 
F87D SW121 01594*01710 
FS67 SWI3 01560 01565 01584t 
FSA7 SWI5 01570 016221 
FS53 SWI9 01575*01585 
FB27 SWISRV 00689 015551 
F600 TCl'IND 01210*01989 
FF12 TEl'IPA 020971 
FF14 TEMPB 01948 020981 
FF41 TEl'IPC 01792 01826 01841 02129t 
FF57 TEMPD 01793 01833 01837 02135* 
FF06 TEND -01211 01724 020911 
83FF TOPTGT 00076*00625 

B-26 



PAGE 026 EXBUG09. SA:l EXBUG2 VERSION 2. 1,6809 15 PfAR 1979 

FlEE TPIJN 00419 00433 00444 004861 
F200 TPIJN1 00421 00493 00495 004961 
FF3D TRACE 01396 01455 01463 01613 01704 01713 01714 01716 01726 021251 
F40b TRl'ITB 00820 00828* 
F67C U~D 012991()1990 
F68A UCIMJ1 00694 013071 
F68D UCINl3 0130Sf01310 
F692 uct1ND5 01288 01292 013111 
F68S UCltID7 01301 0130bt 
F764 UPSH 01419 01421 01423 01425 01427 01429 01439*01496 
FSAO UR~D 01124f02012 
FB05 USER 01521 01961f02033 
FB07 USER1 01957 019631 
FA75 VCKSl'I 01800 01871t 
FA98 VCKSl'l3 01865 01873 01882 018861 
FA7A VCKSMS 01874t01884 
F663 VCl'IND 01282*01991 
F6n VCl'IND1 01292t01304 
F9DS VERF 01766 01776 01790f02029 
F9EO VERF1 01796*01802 
FAQ7 VERF11 01809 01817* 
FA14 VERF13 01823101848 
FA21 VERF15 01827 018291 
FA45 VERF16 01831 018451 
FA47 VERF17 01842 01846* 
FA37 VERF19 01834 01838• 
F9F1 VERF3 01800 01803*01814 
F9F3 VERF7 01804*01805 01807 01811 01850 
F982 WCMND 017321()1992 
F994 WCt1ND3 01738 01741f01750 
F9A5 WCl'IND5 01746 01748* 
F9D2 wet1ND7 01734 01740 01784*01795 
FF39 ""5K 01118 01745 021211 
F003 XBEGEN 00104t00399 01115 01220 01910 
F006 XCBCDH 0010bf00861 
F009 XCHEXL 001081 
FOOC XCIEXR 001091 
FSD7 XCl'ND 01168f02013 
F64C XCOUT 01248 01261 01263t 
F21F XCRLF 00507 OOS19t 
FOOF XINADD 00110t 
F012 XINCH 001121 
F015 XINCHN 00113t00185 
F01B XOUT2H 00115f01046 01254 01927 
F01E XOUT4H 00116*01135 01256 01348 01877 
F018 XOUTCH 00114t00146 00155 00157 00159 01263 01942 
F021 XPCRLF 00117t00137 00519 00980 01241 01853 01920 
F027 XPDAT1 00121t00713 00974 
F024 XPDATA 00119t00166 00171 00401 00702 00709 01117 01612 01761 01797 01836 01867 01875 
F4F8 XPSH 009871 
F4F6 XPSH1 00986*01037 01327 01736 01822 
F02A XPSPAC 00123t00740 00956 01857 01933 
FFE5 XSTACK 00622 00072 00706 01557 01647 021471 
FSDC YCl1ND 01175t02014 
F105 ZcttID 00348*01993 
F122 ZCIN>t 00356 003641 
FF68 ZEND 00693 02140* 
FF37 ZFLAG 00273 00277 00349 021191 

B-27 





APPENDIX C 

PERIPHERAL REQUIREMENTS FOR EXORciser OPERATION 

GENERAL 

The EXORciser depends on the concept that a data tenninal be used to 
"communicate" with the debug system and with the system under development. 

All address or data inputs are entered via the keyboard, and all status or other 
results are printed (or displayed) in ASCII-Hex characters. This exchange of 
infonnation is easier to interpret and much faster than could be done with 
lights or switches. The operator communicates in bytes and words, rather than 
in l's and O's. In addition to the keyboard and printer functions, however, is 
the need to save programs and be able to re-enter them into memory. 

The EXORciser uses the ASCII (American National Standard Code for Infonnation 
Interchange) communications protocol, which defines the serial asynchronous 
transmission and reception of characters with start-stop and parity bits 
appended, as shown in Figure 1. This figure shows the timing for baud rates of 
10, 15, and 30 characters per second (cps), but the same relationships apply at 
any higher speed. The EXORciser has a crystal controlled communication baud 
rate clock with selectable positions from 110 to 9600 baud. Each character 
consists of: 

1 Start bit 

7 Data bits (ASCII) - See Figure 2. 

1 Parity bit 

1 or 2 Stop bits (2 at 110 baud) 

In most terminals, the parity bit is sent by the keyboard, and is selected to be 
EVEN, ODD, ONE, or ZERO by strapping of switching options. The EXORciser 
ignores the parity bit from the keyboard, and nonnally transmits a ZERO {O) as 
the parity bit. Most tenninals, including the TTY printer, also ignore this 
function. If a terminal requires a specific type of parity, it can be 
accommodated by revising the program in PROM U38 on the DEbug Module. Parity 
checking is considered unnecessary in this application. 

TERMINAL FUNCTIONAL REQUIREMENTS 

Four basic functions must be perfonned by the tenninal/peripheral equipment in 
systems development work with the EXORciser. They are: 

a. KeyPoard entry 

b. Printer (or Display) 

c. Program loading (into memory) 

d. Program saving (storage) 

C-1 



Many operations require a hard copy, such as a program listing during an 
assembly. Some terminals, such as the teletype and TI 733ASR, provide all four 
functions in one unit, and use tape to handle the program storage. Since both 
of these terminals use the ASCII codes (DCl, DC2, DC3, and DC4) to control the 
tapes, they work compatibly with the EXbug control program, as wel 1 as with the 
Editor/Assembler tapes available for software development. 

Other terminals have various combinations of these functions, but two or more 
peripheral devices are usually needed to meet the complete requirements. For 
example, HP2644 and HP2645 CRT terminals have dual tape mechanisms, but require 
the addition of a line printer to be complete. Also, the HP terminals do not 
use standard ASCII codes for tape control. (A Motorola User Library program is 
available to interface them.) 

Tape storage, particularly cassette tape, is quite acceptable to many users, 
because the loading time has been reduced from 25 minutes for a TTY to three or 
four minutes with cassettes (for a 6-kilobyte program). The desire for still 
higher speeds exists and has been provided by the EXORdisk Floppy Disk System. 

Since users of these more capable storage systems usually deal in large 
programs, it is frequently advisable to add a high speed line printer to the 
system. This is accompanied by using one of the standard interface modules 
which plug into the EXORciser. Any "Centronics interface" printer can be 
directly connected. 

When data storage and line printer requirements are covered by other 
peripherals, a CRT terminal such as the EXORterm 100 is advantageous because of 
its higher display speed {up to 9600 baud), enhanced editing, and the 
elimination of the use of paper (see the EXORterm 100 User's Guide for more 
details). 

C-2 



110 BAUD 
SERIAL ASCII DATA TIMING 

1 I I I I I I I I 
MARKING r--,--T--r--,--T--r--,---n--

SeAC•NG L_J _ _l __ L_J __ L_L_J __ L_ ! __ 
BIT TIME ,., l 

msec 

START DO 
BIT 

DATA BITS 

D1 D2 D3 D4 D5 

CHARACTER TIME@ 10 CPS (11 BITS} 
100 msec 

D6 PAR ITV STOP STOP 
BIT BIT BIT 

MARKING r--1- -1- -r--1--1--r--1--n-----

SeAC•NG Lj __ l__! __ l__l _ _i __ J__l__ i ___ _ 
BIT TIME 
(SEE TABLE 
BELOW) 

l 
START DO 
BIT 

D1 D2 

DATA BITS 

D3 D4 D5 D6 PARITY STOP 

BIT BIT 

.... ------CHARACTER TIME@ 15 & 30 CPS (10 BITS)-----.... 
(SEE TABLE BELOW) 

BAUD RATE 150 300 

CHARACTERS/SEC 15 30 

3.33 BIT TIME (msec) 6.67 

CHARACTER TIME (msec) 33.3 BIT TIME= BAUD RATE 
SEC 

66.7 

FIGURE 1. 110, 150, and 300 Baud Serial ASCII Data Timing 

C-3 



BITS 4 THRU 6 

BITS 0 THRU 3 

MARK I I 
I I 
I I 

START I Do I D1 
SPACE .l .l 

I 
I 
I 

l 

ASCII CODE 

0 2 

0 NUL OLE SP 
1 SOH DC1 
2 STX DC2 
3 ETX DC3 # 
4 EOT DC4 $ 
5 ENQ NAK % 
6 ACK SYN & 
7 BEL ETB 
8 BS CAN 
9 HT EM 
A LF SUB 
B VT ESC + 
c FF FS 
D 
E 
F 

CR GS 
so RS 
SI us 

SEND A 7 BIT ASCII CHAR. "H" 
EVEN PARITY - 2 STOP BITS 

H = 481s = 10010002 

I 
I 
I 

D2 D3 D4 I D5 
_l 

FIGuRE 2. ASCII Example 

C-4 

3 4 5 6 7 

0 @ p p 
1 A Q a q 
2 B R b 
3 c s c 
4 D T d 
5 E u e u 
6 F v f v 
7 G w g w 
8 H x h x 
9 I y y 

z j 
K [ k 

< L I 
M I m 

> N t n ~ 

? 0 +- a DEL 

: 
I NEXT 

D5 PARITY STOP I STOP CHAR. 

I 



APPENDIX D 

USE OF THE ASR33 TELETYPEWRITER WITH EXORciser 

GENERAL 

The ASR33 teletypewriter is one of the standard data tenninals for use with 
computers. It uses the ASCII protocol, as described in Appendix c. The basic 
TTY is designed to interface via a de current loop. The 20 mA option is 
required for use with the EXORciser. 

FULL DUPLEX 20 mA CURRENT LOOP CONNECTIONS 

In order to use the 20 mA neutral current 1 oop interface with EXORci ser, the 
RS-232C interface signals must be translated to those of the current 1 oop 
interface. This can be done easily by using Micromodule 11 {M68MM11). The 
48-inch flat ribbon cable with keyed edge connector is plugged directly into 
connector P4 on the DEbug Module, after removing the connector and cable from 
the rear panel of the EXORciser chassis. The connections on the terminal, as 
well as the connections to the Micromodule, are all described in the 
Mi cromodule 11 User's Gui de. Additional comments are provided here to aid the 
user in understanding this interface. 

The teletype keyboard is normally wired to provide an EVEN parity bit {bit 7). 
It can be changed to be always ONE {1) or always ZERO {O) for each character. 
The EXORciser ignores the parity bit so it doesn't matter which type the 
keyboard transmits. The EXORciser normally sends each character to the tenninal 
with a zero {O) in the parity bit position; but since the TTY does not test 
parity, the bit is ignored. 

The ASR33 teletypewriter should be equipped with an automatic tape reader to be 
fully compatible with the EXbug control program. The Co-Resident Editor and 
Assembler tape programs cannot be used unless an automatic reader is provided. 
The lack of an automatic punch requires either careful manual operation or that 
a third pass of the source tape be made to generate an object tape {only) with 
the punch ON. 

The TTY can be equipped with either an automatic or manual reader. The 
automatic reader wi 11 start reading tape when a "DCl 11 control character {hex 11) 
is received, and wil 1 stop when a DC3 {hex 13) is received. The manual reader 
can be converted by means of a relay to operate automatically, if desired. In 
this case, the reader is started and stopped with a de output signal provided by 
the EXORciser. Older teletypes can also be easily updated by local TTY service 
organizations to provide the automatic punch or readers. 

AUTOMATIC READER/PUNCH CONATROL MODIFICATION 

The EXORciser is designed to work with a TTY tenninal having automatic 
reader/punch control, or a manual TTY terminal modified for automatic reader/ 
punch control. The following paragraphs discuss modifying a manual TTY tenninal 
for automatic reader/punch control. 

D-1 



Components Required 

Table 1 identifies the parts required to modify a TTY tenninal. 

TABLE 1. Automatic Reader/Punch Modification Parts List 

COMPONENT __Q_UANTITY DESCRIPTION 

Reed Relay 1 12 V, 600-ohm coil, Potter Brumfield Part Number 
JR-1005 or equivalent 

Resistor 1 470 ohm, 1/2 watt 
Capacitor 1 0.1 uf, 600 Vdc 
Com_Q_onent Board 1 Vector Board _{_2.5 x 3.8 inchesl 

Modification Procedures 

a. Install the resistor, capacitor, and relay on the component board, as 
depicted in Figure 1. 

li..•1------2.50"------t, .. 

Relay 

3.80" 

-.j 1/2" ~ 

1/8" Dia. Holes 

FIGURE 1. Component Board 

D-2 



b. Mount the component board onto the TTY terminal, using the holes in the 
terminal mounting plate. Refer to Figure 2 for the component board 
1 ocat ion. 

FIGURE 2. Component Board Location 

c. Refer to the schematic diagram in Figure 3; connect the relay, capacitor, 
and resistor into the terminal circuitry. Wire A may be spliced to the 
brown wire near the connector plug. Both the LINE and LOCAL 1 i nes must 
be connected to the MODE switch, as shown. 

d. For ope rat ion, the reader switch is 1 eft in the ON posit ion. The added 
relay controls the starting and stopping of the tape. 

CAUTION 
IN THE SYSTEM, MAKE CERTAIN NO VOLTAGES FROM THE 
TERMINAL ARE ACCIDENTALLY CONNECTED TO THE RELAY 
PRIMARY WINDINGS. SUCH A VOLTAGE MAY DAMAGE THE 
DEBUG MODULE AND POWER SUPPLY. 

D-3 



Terminal 

110 Vac 

F1 F2 

Input 

L_-, 
I 
I 
I 
I 
I 
I 

EXORciser I 
I 

r 
I 
I 
I 
I 
I 

A 

To 
3 E4 

CC12 ------~ 

B 

----<• BRN 
Open 

.---this 
I Wire 

B~11 
cc 11 

Local 

2 

Off Ol~:-I -0-..... -eH' 

L2 

I 
I 

Line I 
Local : 

I 
I 

L1 

-;7~----1 

y, w I 

NC 
0.1µF I 
soo v I 

2 l---+--+----1 

4 

FIGURE 3. TTY Tenninal Schematic Incorporating Automatic Reader Control 

D-4 



APPENDIX E 

RS-232C STANDARD 

The RS-232C standard adopted by the EleGtronic Industries Association (EIA) uses 
the following tenninology to describe signal levels: 

Binary state 
Signal Condition 
Voltage 
Paper Tape 

For control circuits: 

Control function 
Voltage 
Binary state 

"1" 
MARK 

negative 
hole 

OFF 
negative 

"1" 

"O" 
SPACE 

positive 
no hole 

ON 
positive 

"0" 

The specific RS-232C standard defines any voltage between -3 and -15 as a binary 
11 111 , and any voltage between +3 and +15 as a binary 11 011 • 

The connector used for an RS-232C equipped tenninal is standardized and made by 
several manufacturers. It should be a Cinch DB-25P or equivalent. 

The pin connections and signal characteristics for the RS-232C standard are 
listed in Table 1. These signals are available at the 25-pin connector located 
on the rear panel of the EXORciser chassis. 

E-1 



TABLE 1. RS-232C/EXORciser Interconnections 

PIN SIGNAL 
NUMBER MNEMONIC 

1 POWER GND 

2 RX DATA 

3 TX DATA 

4 

SIGNAL NAME AND DESCRIPTION 

POWER GROUND - Chassis ground. This line provides a 
safety ground connection to the RS-232C com pat i b 1 e 
terminal. 

RECEIVE DATA - This line receives the input from an 
RS-232C compatible terminal (keyboard). 

TRANSMIT DATA - This 1 i ne transfers data to an RS-232C 
compatible terminal (printer). 

Not used. 

5 CTS CLEAR TO SEND - This line is ON (plus) when an RS-232C 
data terminal is connected to the EXORci ser, and DTR is 
ON. 

6 DSR DATA SET READY - This line is ON (plus) when an RS-232C 
data terminal is connected to the EXORciser, and DTR is 
ON. 

7 SIGNAL GND SIGNAL GROUND - This line provides a common signal 
connection to the RS-232C data terminal. 

8 DCD DATA CARRIER DETECT - This line is ON (plus) when an 
RS-232C data terminal is connected to the EXORciser, and 
DTR is ON. 

9-19 

20 

21-25 

DTR 

Not used. 

DATA TERMINAL READY - This 1 i ne from the RS-232C data 
terminal indicates that the data terminal is ready, when 
ON (pl us). 

Not used. 



APPENDIX F 

TI TERMINAL DESCRIPTION 

The TI 733ARS terminal is functionally equivalent to the ASR33 teletypewriter, 
but provides 10, 15, or 30 characters per second (CPS) operation. When equipped 
with the ADC (Automatic Device Control) Module, the tape cassettes respond to 
the same ASCII commands (DC!, DC2, DC3, or DC4) as used by the TTY. Proper 
automatic operation with an EXORciser up to 30 CPS, is thus provided. To get 
maximum performance, however, it is suggested that the Remote Device Control 
(RDC) Module and 1200 baud option be used. This provides the same ASCII 
cassette control features as the ADC Module does, but adds several more which 
are utilized to realize the advantages of the 1200 baud operation. 

The added commands are: 

OLE,: RDC on command 

DLE,9 Printer ON 

DLE,7 Cassette Block Forward 

DLE,O Printer OFF 

These commands are used to allow turning the printer ON and OFF, when necessary 
to avoid garble. The DLE,7 command was found necessary to provide a "Block 
Forward" instead of DC!, when reading the tape. OLE,: is used during 
initialization. TI has numerous options on the RDC Module, so it is necessary 
to specify the (-3) version. Most of the difficulties experienced are due to 
the wrong options being used. When a terminal is received, it normally inhibits 
the printer at all times when 1200 baud is used. This need not be done with the 
EXORciser because of the nulls provided, so this option should be changed. This 
is done by removing a 10 ohm 1/4 W resistor from the center of the 1200 baud 
receiver card (Green Ejector). Also, the DIP package toggle switches should be 
as specified in the TI manual (1 through 6 are ON, and 7 and 8 are OFF). 

Revision K of the terminal control card will not work properly, but prior and 
later revisions will work properly. The TI field service stations all have been 
provided with instructions on the use of this terminal with an EXORciser. If the 
user has any difficulty, he should call Motorola for assistance. 

A TI 733ASR terminal, which is equipped for 1200 baud and RDC options, can be 
easily modified for 2400 baud operation. Two printed circuit runs on the 1200 
baud receiver card are cut (E2 to E4 and El to E3), and two jumpers are added 
(El to E2 and E3 to E4). When done, the terminal will transmit and receive at 
2400 baud when the HI-LO SPEED switch (located near the power switch) is in the 
HI-SPEED posit ion. The terminal performance will not be affected when this 
switch is in the LO-·SPEED position. (The baud rates will be determined by the 
switch inside, as before.) 

The EXbug program has features which work with the TI terminal to allow Assembly 
and Editing at 1200 and 2400 baud. The higher rates are used between the units 
so that the cassettes will read or record at these speeds. Since the printer 

F-1 



cannot exceed 300 baud, the EXORciser EXbug Firmware, for example, inserts three 
nulls between each character (every fourth character is printed) and 23 nulls 
after each CR (at 1200 baud) to allow time for the carriage to return. At 2400, 
it is 7 and 47 nulls, respectively. This software mode is selected by typing 
the appropriate ;K command when starting the EXORciser. This technique will 
work with any mechanical terminal which ignores nulls. Some terminals will not. 
These numbers can be used with any terminal that takes 200 milliseconds to 
return. If a slower terminal is used, the ;K command of EXbug can be used to 
insert any number of nulls. (See Chapter 3 for more details on EXbug.) 

F-2 



APPENDIX G 

EXECUTIVE MAP/USER MAP INTERFACE 

INTRODUCTION 

The dual map feature of EXORciser is provided primarily to ease program develop
ment by giving the user a full 64K memory map without sharing space with EXbug, 
MOOS interface, or other peripherals, while providing complete EXbug debug 
capabilities. However, the dual map also presents the possibility of running a 
program in the User map with the I/0 performed in the Executive map. These last 
two capabilities are discussed here, along with the procedures for transferring 
information and control between the two maps. 

Since the User map was developed as a separate 64K map for testing applications 
programs, it was not given access to the Executive map. The Ex~cutive map has 
the ability to store, fetch, and start execution at any location within the User 
map. Contra 1 is returned to the Executive map from the User map by means of 
interrupts. Since the Executive map also contains all EXbug I/0, the Executive 
map normally has control of the EXORciser. 

The two maps are provided by splitting the VMA signal into two other signals: 
VUA and VXA. VUA enables the User map, while VXA enables the Executive map. 
These two signals are generated by the DEbug Module. When the DEbug Module is 
in the Single Map mode, valid addresses less than FOOO generate VUA, while valid 
addresses equal to or greater than FOOO generate VXA. In the Dual Map mode, VUA 
and VXA are generated from a shift register controlled by a PIA. This PIA is 
addressable only from the Executive map. 

VUA GENERATION -- DUAL MAP MODE 

Figure 1 is a simplified diagram of the VUA/VXA generation circuitry for the 
Dual Map mode. As illustrated, the A peripheral register of the PIA determines 
the VUA/VXA pattern that will be generated. A pulse on the CA2 line loads the 
shift register and starts the sequence that controls access to the User map. 
The A control register generates the pulse on the CA2 line. To accomplish this, 
the A control register contains either $2C if memory parity error interrupts are 
not enabled, or $2D if enabled. Therefore, once the PIA A data register is 
properly set up, the User map can be repeatedly accessed by reading the PIA A 
data register for each access. This is accomplished by using load, test, and 
compare instructions in the Executive map. 

Figure 2 shows typical instruction sequences for accessing and passing control 
to the User map, a 1 ong with the corresponding shift register cycles and PIA A 
peripheral register contents. The instructions TST and CPX are used to load the 
shift register, because they provide the correct timing and do not modify the 
processor registers except for the condition code. Other instruction sequences 
may be used to access the User map. However, the VUA pulse must occur when data 
is to be read from or written to the User map. The MC6809 Data Sheet contains a 
summary of cycle-by-cycle instruction operation. If other instruction sequences 
are used to access the User map, note that the pattern 1 oaded in the PIA is 
transferred from the shift register on the third cycle after the PIA A register 
is read. Si nee the CLR instruct ion reads the location to be cl eared before 
clearing, CLR should not be used to clear the PIA A peripheral register, as this 

G-1 



PIA 

A peripheral 
register 
address= FCFC 

A control 
register 
address= FCFE 

(both in EXEC 
map only) 

CA2 

E 

PA4 

PAO 

PA1 

PA2 

D Q 

c 

1=VUA, O=VXA 

S Out 

R 

p 

N 

H 

G 

F 

E 

D 

c 

B 

A 

c 

16 Bit 
Shift 

Register 

Shift 

Load 

In 

Q 

E 

VXA 

VMA 

VUA 

Other PIA PA Lines 

PA3- 1=run one instruction 
PA5- Halt-on-Address map: 

1=VUA, O=VXA 
PA6- not used 
PA7- FIRQ indication 

FIGURE 1. VUA/VXA Generation Circuitry - Dual Map Mode 

G-2 



G') 
I 
w 

E 

Store l byte 

indexed 

I I I I I I I I IS I RI PI N IM I L J KI JI HI GI FI E I 0 IC I B I A 1 shift register 

I BITA $FCFC I BRA *+2 I STA o.x 

l 1l2l 3l 4l 5l 1 I 2l 3l 1l 21314l PIA A data register= $10 

VUA IL 
Store 2 bytes I CMPX $FCFC I STA o.x+ I LOA 0, y I STA O,X+ 

indexed I l I 2 j 31 4 j 51 61 71 l I 2 I 31 41 51 61 l I 2 I 31 41 l I 2 I 31 41 51 61 

PIA A data register = $12 

used during disk store 

VUA ____________ _.n IL to USER map 

Load 1 byte I BITA $FCFC I BRA *+2 I LOA 0,X I 
indexed I l I 2 I 31 41 51 l I 2 I 3 j l I 2 I 31 41 PIA A data register = $1 O 

VUA 

Load 2 bytes 

indexed 

VUA 
Jump to 

USER map 

VUA 

RTI to 

USER map 

VUA 

_____ ___,n_ 
I BITA $FCFC I BRA *+2 I LOA 0,X I STA 5,Y I LOA l ,X I PIA A data register= $12 

I ii 2l 3l 4l 5l 1l 2l 3l 1l 213141ii213141511121314151 used during disk load 

___________ n n_from USER map 

I BITA $FCFC I BRA *+2 J JMP O,X I 
I l I 2 I 31 41 5 j l I 2 I 311 I 2 I 31 PIA A data register = $37 

I BITA $FCFC I NOP I NOP I RTI 

I ii 2' 314151ii2l 1l 2l 1l 21314151617J8Ul1ol11l12l13Ji4h5l 

FIGURE 2. User Map Access Instruction Sequences 

PIA A data register 

= $37 

Note that the RTI 
registers come from 
the USER map 



will cause the shift register to be loaded from the PIA before the PIA is 
cleared. The recommended procedure for clearing the A peripheral register is to 
first clear the accumulator ·and then store the accumulator contents in the PIA 
peripheral register. 

Typically, the User map is accessed a byte at a time. In this case, the PIA A 
register is set up with the proper pattern initially, and does not require 
changing until program execution is to be passed to the User map. In all the 
instruction sequences illustrated here, except the RTI, the X index register 
contains the base address for the load, store, or execution. A non-zero index 
offset can be used in the sequences; however, the instruction sequence would 
have to be changed. A zero index offset is probably the most useful. The 
store-to-User-map sequence also requires that the data to be stored be in the 
appropriate accumulator before the sequence is started. The load and store 
sequences are useful in passing parameters between the maps under the control of 
the Executive map. The jump sequence is used to start programs in the User map, 
since it does not specify register contents. Return to the User map from 
service calls to the Executive map is accomplished using the RTI sequence. 

RETURNING CONTROL FROM USER MAP TO EXECUTIVE MAP 

Once a program is running in the User map, there are two contra 11 ed ways in 
which control can be returned to the Executive map. One way to return is an 
EXbug-generated NMI. EXbug-generated NMI's occur for abort, memory parity 
error, run-one-instruction, and halt-on-address. Restart will also return 
control to the Executive map if the restart map switch on the DEbug Module is in 
the Executive map position. 

The controlled way to return to the Executive map from the User map is by an 
SWI. If this feature is enabled on the DEbug Module, executing an SWI in the 
User map will cause control to return to the Executive map. When the SWI is 
executed, the processor registers are first pushed on the stack in the User map; 
then, when the SWI vector is fetched, control is passed to the Executive map and 
the vector is read from FFFA, FFFB of the Executive map. For this type of 
operation, the user should replace the normal EXbug vector in the Executive map 
with the address of his own service routine. The 11 SWI 11 return to Executive map 
is enabled by the CB2 line of the PIA which controls the map control shift 
register. The address of the control register which determines the state of CB2 
is FCFF in the Executive map. When this register contains $37, the 11 SWI 11 return 
to Executive map is enabled, and the sequence of events described above will 
occur when an SWI is executed in the User map. When this register contains $3F, 
the 11 SWI 11 return to Executive map is disabled, and SWI's are serviced in the 
User map. The EXbug E command can al so be used to enable the 11 SWI 11 return to 
Executive map. If the E corrmand is used, EXbug will put the appropriate value 
in the CB2 control register when the next program execution command (;P or ;G) 
is entered. Typically, the 11 SWI 11 return to Executive map is enabled initially 
using the EXbug E command. After program execution has begun, there is no need 
to change the 11 SWI 11 return enable. 

SWI Nesting 

For some uses of the SWI to return to the Executive map, it may be desirable to 
nest SWI's. That is, the routine that services the Executive return SWI might 
wish to execute SWI's of its own for other functions. These other SWI's would 
also be serviced in the Executive map. The problem that arises in this 

G-4 



situation is that the routine that responds initially to the SWI must know which 
map the SWI occurred in. Service of a User map SWI will probably require the 
saving of the stack pointer and then using a different stack pointer value, as 
well as setting the PIA A register for User map access. These operations will 
not be done if the SWI occurred in the Executive map. Al so, the return from 
interrupt will have to be handled differently for a User map return than for an 
Executive map return. Return from an Executive map SWI can be handled with an 
RTI. However, return from a User map SWI requires restoring the stack pointer 
to the User map value and passing control back to the User map. 

An indication of the map in which the SWI occurred is provided on the DEbug 
Module. The CBl line of the map control PIA gets a low to high transition when 
a User map to Executive map change occurs. This shows up as the sign bit of the 
B contra 1 register being set. The B contra 1 register address is FCFF in the 
Executive map. This register normally contains $37 or $3F, depending on whether 
the SWI return to Executive is enabled or disabled. If the map change 
indication is set, the B data register at FCFD in the Executive map must be read 
to reset it. The map change flag is used on entry to the SWI service routine to 
determine if the stack pointer must be saved and the Executive map value used. 
To determine the proper actions for the SWI return, the map change indication 
can be pushed onto the stack. In the return sequence, the map change indicator 
is pulled off the stack to determine proper return act ion. The actual SWI 
service can be done in a subroutine that returns to the SWI return routine. 

The flow chart in Figure 3 illustrates the SWI return sequence. The most 
general case of nested SWI's is covered in this flow chart. Asterisks in this 
chart mark steps that are not required if SWI's are not nested. 

Another problem encountered in nested SWI's is the accessing of parameters from 
the Executive map SWI's. If the same routines are used as for accessing the 
User map, loading a value 00 in the PIA A register before the User map access 
sequence will cause the Executive map to be accessed instead of the User map. A 
value of $30 will have to be restored to the PIA A data register before the User 
map is to be accessed again. Another solution is to use separate routines to 
obtain the Executive map parameters. These routines would read the Executive 
map directly without loading the shift register before reading or writing to 
memory. In this case, the value in the PIA will not have to be changed before 
accessing Executive map parameters, or restored after the parameters are 
accessed. 

FUNCTION REQUEST SPECIFICATION 

It is very likely that the User map will have to call the Executive map for more 
than one function. However, all SWI's are vectored to a single routine. The 
problem, then, is to communicate to the common SWI service routine the desired 
function, so that an appropriate subroutine can be called to accomplish that 
function. To solve this, a separate number can be assigned to each of the 
required functions. Then the common SWI service routine has to get the number 
of the desired function. 

There are several different ways that the common SWI service routine can get the 
function number. In one method, the function number is put in the byte follow
ing the SWI. This does not require programmed set-up in the User map, but the 
SWI service routine must make a number of accesses to the User map to get the 
function number. The service routine must first get the program counter from 
User map stack. It then uses this address to get the function number from the 
User map. Finally, it must correct the program counter on the User stack so 

G-5 



SWI Service 
Entry 

Reset USER 

map SWI 

indication* 

Save User 
map stack 

pointer 

Get EXEC 
map stack 

pointer 

Set up PI A 

for USER 

map accesses 

Get function 
request 

code 

Perform the 
desired 

function 

'indicates steps needed only if SW l's are nested in 
EXEC map. 

if sign bit of location $FCFF in EXEC map is set, 
the SW I was in the USER map. 

the sign bit of location $FCFF in the EXEC map is 
reset by reading location $FCFD in the EXEC map. 

put $30 in location $FCFC in the EXEC map. If 
the SWI was not from the USER map during nested 
SW l's, it may be desirable to put 00 in $FCFC so 
that the same parameter fetch routines can be 
executed as for the USER map; however, the EXEC 

map instead of the USER map would be accessed. 

FIGURE 3. SWI Service Sequence (Sheet 1 of 2) 

G-6 



Setup PIA 

for USER map 

return 

Get USER 

map stack 

pointer 

Start USER 

map return 

sequence 

RTI 

the contents of location $FCF F from the first deci
sion could have been saved on the stack for this 
decision. 

put $37 in location $FCFC in the EXEC map. 

CPX $FCFC 
NOP 

FIGURE 3. SWI Service Sequence {Sheet 2 of 2) 

that the SWI return skips over the function number. Another method is for the 
User map program to always put the function number at a specific location that 
is known to the SWI service routine, and then execute the SWI. This requires 
some programmed set-up in the User map. However, the SWI service routine only 
needs to access the User map once to get the function number. Perhaps the best 
way to pass the function number to the SWI service routine is to put it in one 
of the processor accumulators before executing the SWI. Only a minimal amount 
of programmed set-up is required in the User map. Also, the SWI service routine 
does not have to access the User map to get the function number. 

G-7 



Run Sequence 

Once the program has been assembled or compiled, the next step is to load it 
into· the system and test it. The following steps can be used to load the program 
from tape or MOOS. The only additional steps for MOOS are that MOOS must be 
started initially and must be restarted between steps a and b. 

a. Load the User map. 

b. load the Executive map. 

c. Take over the Executive map SWI vector. Place the SWI service routine 
entry address in FFFA, FFFB. 

d. Enable User map SWI's to be serviced in the Executive map by entering a 
-1 for the EXbug E command value. 

e. Enter the User map mode by typing the USER command and a carriage return. 

f. Start the User map program using the addr;G command. 

Debugging 

If the program does not work properly, the next step is to debug it. This is 
somewhat difficult since EXbug was not designed to debug in both maps at the 
same time. Also, since the EXbug SWI vector has been replaced by the user 
Executive map SWI vector, breakpoints cannot be used. The solution to the first 
problem is to debug each map separately. The Executive map routines can be 
tested by dummying up calls to them in the Executive map. EXbug Halt-on-Address 
and Trace functions can be used to verify the program operation. There is a 
precaution that must be observed while testing the Executive map routines in 
this mode. All locations where the map control PIA is set up to access or 
transfer control to the User map must be patched to store 00 in the PIA. This 
is required since the SWI's and data are in the Executive map. 

After the Executive map program has been debugged, the User map program can be 
tested. Here again, the Trace and Halt-on-Address functions can be used to 
verify program operation. While testing the User map program, the Trace 
function cannot be used to trace through SWI's. During the testing of the User 
map program, it makes its normal calls to the debugged Executive map routines. 

Example 

As an example of what is needed to run a program in the User map and have it use 
the Executive map for 1/0, a program that was originally written for a single 
map environment was converted to the dual map system. The converted program 
runs in the User map and uses SWI's to transfer control to the Executive map for 
1/0. 

The original program used five of the MIKbug 1/0 routines: 

OUTEEE sends the character in the A accumulator to the system terminal. 

PDATAl prints a data string pointed to by the index register and terminated by 
an EOT to the system terminal. 

G-8 



I NE EE 

OUT HR 

OUTS 

accepts a character from the system terminal and returns it in the A 
accumulator with bit 7 reset. The character is echoed to the system 
terminal. 

converts the four least significant bits of the A accumulator to ASCII 
hex and sends it to the system terminal. 

sends a space to the system terminal. 

In the original program, these labels were defined using EQU directives. A 
given routine was then called by a JSR to the appropriate label. To convert the 
program to dual map operation, the EQU definitions were replaced with the 
subroutines of the listing in Figure 4 and the program re-assembled. The sub
routines of Figure 4 are all similar. The only difference is the unique I/0 
code assigned to each subroutine. Each subroutine saves the B accumulator, gets 
the I/0 code in the B accumulator, and then executes an SWI to transfer control 
to the Executive map. Note that the B accumulator is used to pass the I/0 code 
to the Executive map. On return from the SWI, the original contents of the B 
accumulator are restored and an RTS is executed to return from the I/O 
subroutine. 

Figure 5 contains the listing of the Executive map SWI service routine. It uses 
three EXbug subroutines: 

XOUTCH sends the character in the A accumulator to the system terminal. 

XCHEXR converts the four least significant bits of the A accumulator to an 
ASCII hex character which is returned in the A accumulator. 

XINCHN accepts a character from the system terminal and returns it in the A 
accumulator with bit 7 reset. The character is echoed to the system 
terminal. 

The XPDATl function is duplicated in the SWI service routine because the EXbug 
PDATAl does not access the User map (which is where the string to be printed 
is). The EXbug XPSPAC was not used for OUTS because it was just as easy and a 
byte shorter to load the A accumulator with a space character and fall into a 
call to the XOUTCH routine. After the appropriate function is completed, the 
User map stack must be updated with the current register contents, since the 
registers are restored from stack when the RTI is executed. The PDATAl routine 
updates the index register on the User stack to point to the end of the EOT of 
the string that was printed. All the routines update the A accumulator on the 
User stack. This is not necessary for OUTEEE, but it does simplify the program 
to treat all the functions alike. Once the User map stack has been updated with 
the current register contents, the RTI sequence is used to transfer control back 
to the User map. 

CONCLUSION 

Although EXbug was not designed to debug in both maps concurrently, programs can 
be developed and run which utilize both maps. This type of operation defeats 
the original purpose of the dual map configuration, that of providing a 
completely separate 64K map for program development. However, it does open up 
the possibility of running programs of a size that was not possible before. 

G-9 



PAGE 010 Dl'IOYUA09.SA:1 OTtf:LO 

00434 * I/O CAL.LS TO EXEC l'tAf' 

00436 041F A OUTEEE EQU f 

00437A 041F 34 04 PSHB SAVE B 
00438A 0421 5f CLRB I/O CODE 
00439A 0422 3F SWI GO TO EXEC 
00440A 0423 35 04 PULB RESTCH B 
00441A 0425 39 RTS 

00443 0426 A PDATAl EQU f 

00444A 0426 34 04 PSHB 
00445A 0428 Cb 01 A LDAB 11 
00446A 042A 3F SWI 
00447A 0428 35 04 PULB 
00448A 042D 39 RTS 

00450 042E A INEEE EQU f 

00451A 042E 34 04 PSHB 
00452A 0430 Cb 02 A LDAB 12 
00453A 0432 3F SWI 
00454A 0433 35 04 PULB 
00455A 0435 39 RTS 

00457 0436 A~ EQU f 

00458A 0436 34 04 PSHB 
00459A 0438 Cb 03 A LDAB 13 
00460A 043A 3F SWI 
00461A 0438 35 04 PllB 
00462A 043D 39 RTS 

00464 043E A OUTS EQU f 

00465A 043E 34 04 PSHB 
00466A 0440 Cb 04 A LDAB M 
00467A 0442 3F SWI 
00468A 0443 35 04 PULB 
00469A 0445 39 RTS 

FIGURE 4. User Map 1/0 Routines to call Executive Map 

G-10 



PAGE 001 Ml\IXA09. SA: 1 SWISRV 

00001 NAt'I SWISRV 
00002 * 00003 * SERVICES USER l'fAP SWI'S IN EXEC l'fAP 
00004 * 00005 * EXBUG EQUATES 
00006 * 00007 FCFC A l'IPIAAD EQU SFCFC 
00008 F018 A XOOTCH EQU SF018 
00009 FOOC A XCHEXR EQU SFOOC 
00010 F015 A XI~ EQU SF015 
00011 * 00012 * TEl'IP VARIABLES 
00013 f 

00014A 0000 006 0 
00015A 0000 0002 A SPSAVE Rl'IB 2 
00016A 0002 0002 A TEl'IPX RHB 2 
00017 * 00018 * SWI SERVICE ROUTINE 
00019 * 00020A 1000 006 S1000 
00021 1000 A STACK EQIJ * EXEC l'IAP STACK 
00022 * 00023 t ENTER HERE ON SWI 
00024 * 00025 1000 A SWISRV EQU * 00026 * 00027A 1000 10DF 00 A STS SPSAVE SAVE USER l'IAP STACK POINTER 
00028 f 

00029A 1003 10CE 1000 A LDS ISTACK USE EXEC l'IAP STACK 
00030 * 00031A 1007 34 04 PSHB SAVE I/O RElll'ST TYPE 
00032 * 00032.A 1009 Cb 30 A LDAB 1$30 SET UP USER l'fAP ACCESS 
00034A 100B F7 FCFC A STAB l'IPIAAD 
00035 . * 00036A 1 OOE 35 04 Ptl.B GET I/O TYPE 
00037A 1010 5A DECB 
00038 * 00039A 1011 2B OA 101D Bt'II OOTEEE 0--0UTPUT A ACC 
00040 * 00041A 1013 27 30 1045 BEQ PDATA1 l=OOTPUT STRING 
00042 * 00043A 1015 5A DEC'.B 
00044A 1016 27 23 103B BEQ INEEE 2=INPUT TO A ACC 
00045 f 

00046A 1018 5A DECB 
00047A 1019 27 1B 1036 BEQ OUTHR 3=00TPUT 4 LSB OF A ACC AS HEX 
00048 * 00049A 101B 86 20 A LDAA 1$20 !X.ITPUT SPACE IS LEFT <4> 
00050 * OOOS1A 101D BD FOlS A OUTEEE JSR XOUTCH 
00052 * 00053 * cot'IE HERE TO ~ TO USER 1'1AP 
00054 * 00055A 1020 9E 00 A RTNA LDX SPSAVE l.PDATE SWI A ACC 
OOOS6A 1022 BS FCFC A BITA l'IPIAAD LOAD SR FOR USER l'IAP WRITE 
00057A 1025 12 Q> DELAY 
00058A 1026 A7 01 A STAA 1.x 

FIGURE 5. Executive Map SWI Service Routine (Page 1} 

G-11 



PAGE 002 010VXA09. SA:1 SWISRV 

00059 * 00060A 1028 Sb 37 A LDAA 1$37 
00061A 102A B7 FCFC A STAA l'IPIAAD 
000b2 f 

00063A 102D !ODE 00 A LDS SPSAVE 
00064 f 

00065A 1030 BS FCFC A BITA 11PIAAD 
00066A 1033 12 NOP 
000b7A 1034 12 NOP 
OOObSA 1035 38 RTI 
000b9 * 00070A 1036 BD FOOC A OUTHR JSR XCHEXR 
00071A 1039 20 E2 101D BRA OUTEEE 
00072 f 

00073A 1038 BD F015 A INEEE JSR XINCHN 
00074A 103E 20 EO 1020 BRA RTNA 
00075 * 00076A 1040 BD F018 A PDATA3 JSR XOIJTCH 
00077A 1043 30 01 INX 
00078A 1045 BS FCFC A PDATA1 BITA l'IPIAAD 
00079A 1048 20 00 104A BRA *+2 
00080A 104A Ab 84 A LDAA o.x 
OOOS1A 104C 81 04 A Cl'IPA 14 
OOOS2A 104E 2b FO 1040 BNE PDATA3 
OOOS3A 1050 9F 02 A STX TEl'f X 
00084A 1052 9E 00 A LDX SPC"...AVE 
00085A 1054 Db 02 A LDAB TEl'f>X 
OOOS6A 1056 85 FCFC A BITA l'IPIAAD 
00087A 1059 12 NOP 
OOOSSA 105A E7 04 A STAB 4,X 
00089A 105C Db 03 A LDAB TEl1PX+1 
00090A 105E 85 FCFC A BITA l'IPIAAD 
00091A 1061 12 NOP 
00092A 1062 E7 05 A STAB 5,X 
00093A 1064 20 BA 1020 BRA RTNA 

00095 1000 A END SWISRV 
TOTAL ~ 00000--00000 
TOTAL WARNitm 00000--00000 

103B INEEE 00044 00073t 

SET UP USER HAP RETl.mN 

GET USER ttAP STACI< POINTER 

LOAD SR FOR USER l'IAP RETIBN 
Til'IING DELAY 

CONVERT 4 LSB OF A ACC TO ASCII HEX 

INPUT C.HARACTER TO A ACC 
PUT CHARACTER ON USER STACK & RETlffJ 

PRINT CHARACTER 
UPDATE POINTER 
LOAD SR FOR USER t1AP READ 
DELAY 

END OF PRINT STRING? 
NO 
YES, UPDATE LISER MAP SWI X REG 

LOAD SR FOR USER MAP WRITE 
DELAY 

LOAD SR FOR LISER l1AP WRITE 
DELAY 

RETURN 

FCFC l'IPIAAD 00007f00034 00056 000b1 000b5 00078 00086 00090 
101D OUTEEE 00039 00051f00071 
1036 ~ 00047 000701 
1045 PDATAl 00041 000781 
1040 PDATA3 0007bt00082 
1020 RTNA 00055f00074 00093 
0000 SPSAVE 00015*00027 00055 00063 00084 
1000 STACK 00021t00029 
1000 SWISRV 00025f00095 
0002 mtPX 00016f00083 00085 00089 
FOOC XOEXR 00009t00070 
F015 XINCHN 00010t00073 
F018 XOIJTCH 00008t00051 00076 

FIGURE 5. Executive Map SWI Service Routine (Page 2) 

G-12 



APPENDIX H 

COMPATIBILITY AMONG M6809 EXORciser, M6800 EXORciser II 

AND M6800 EXORciser I MODULES 

USING M6800 EXORciser II MODULES IN THE M6809 EXORciser 

The M6809 EXORciser is designed to be compatible with the M6800 EXORciser II. 
Basically, the M6809 EXORciser is an M6800 EXORciser II, with a few of the 
motherboard bus signals redefined. These signals are listed below. 

Pin Number New Signal Old Signal 

J E ~2 

N BUSREQ TSC 

R MNRDY MEM ROY 

s LIC* Normally Not Used 
(REF CLK on MEX6815-l Module Only) 

A FIRQ Not Used 

7 Q ~1 

15 BUSGNT TSG 

23 BS Normally Not Used 
(ACT on MEX6816-1 Module Only) 

*Denotes that signal is applicable to M6809E EXORciser only. 

A description of the function of each of these signals is given in Appendix A. 

This redefined bus is compatible with the EXORciser II bus in the sense that all 
memory and standard I/0 modules designed for use in EXORciser II can be used in 
the M6809 EXORciser. 

Of course, any module designed with an MPU other than an MC6809 or MC6809E type 
processor installed in it, (such as M6800, M6801, M6802 MPU modules; M6800, 
M6802 USE modules; or M6800 Micromodules), will not function in an M6809 system. 
Also, only the M6809 DEbug Module will work in the system. DEbug II is not 
designed to function properly in the M6809 system without modification. 

The M6800 System Analyzer II Module can be used in an M6809 System when used 
with the M6809 System Analyzer Intercept Module and M6809 PROM's installed. 

When working with EXORdisk II or III, it is necessary to replace the M6800 
PROM's with M6809 PROM's on the Floppy Disk Controller Module. A low on the 
MNRDY line will cause the system clocks to be stretched. For this reason, it is 
necessary for the disk drivers to operate off the 1 MHz controller clock if the 
drivers are to function properly when slow memories are installed in the M6809 
system. 

H-1 



USING M6BOO EXORciser I MODULES IN THE M6B09 EXORciser 

Most EXORciser I modules are not rated to operate above 1 MHz. The system speed 
is 1 imited to the maximum clock rate specified for the slowest module in the 
system. Therefore, when using EXORciser I modules, it is necessary to configure 
the M6B09 system to 1 MHz. 

Dual map capability requires that all peripherals and memories must be able to 
be assigned to the proper map (VUA or VXA). All EXORciser I modules will auto
matically respond to VUA when operating in an M6B09 EXORciser (or EXORciser II) 
system. In order to assign these modules to VXA, the user must modify the 
individual modules by cutting and jumpering a single connection at the edge 
connector of the EXORciser I module. The modification is the same for all 
EXORciser I modules, and is illustrated in Figure 1. Cut the incoming VUA 
signal track from pin 10 near the edge connector finger. Solder a jumper wire 
from the VXA signal track (pin 19) to the circuitry side of the track cut just 
performed. 

JUMPER 

WIRE~ 
BACK SIDE OF MODULE 

... ~t---- CUT TRACK 

19 10 

VXA VUA 

FIGURE 1. Assigning EXORciser I Modules to VXA 

BK Dynamic RAM Module (MEX6Bl5-1) 

The early BK Dynamic RAM Module (MEX6B15-1) requires some precaution as well as 
modification before use in an M6B09 system. This module transfers data 
asynchronously. Timing problems will result if this module is used when working 
with the M6B09 USE Module. If the USE function is not used, the BK Dynamic RAM 
Module (MEX6B15-1) may be used in the M6B09 EXORciser if the following pre
cautions are taken and changes are made. 

Only a few early versions of the BK Dynamic RAM Modules (MEX6B15-1) used a 
60-microsecond refresh cycle. This was changed to 30 microseconds. If any 
difficulty is encountered using BK-1 memories with newer memories, a quick check 
of the refresh time should be made. The 60-microsecond timing cannot be used 
with newer modules. 

Al so important when mixing dynamic RAM' s is the early BK-1 requirement to 
provide +12VDC to the battery backup signal (pin U on EXORciser I bus). On 
EXORciser I, this bus signal was normally jumpered to +12VDC (pin T) when the 

H-2 



product was manufactured. In the M6809 EXORciser, pin U is still designated as 
STANDBY, but is not jumpered to +12VDC at the factory (since the application is 
more general in the M6809 EXORciser). When using 8K-1 dynamic RAM's in an M6809 
EXORciser chassis, the user must re-arrange the module +12VDC track connections 
as illustrated in Figure 2, and perform the following modifications: 

a. If jumper wires exist between pins T and U (front side of module) or pins 
16 and 17 (back side of module), cut or remove the applicable jumper 
wire. 

b. Cut the incoming +12VDC track from pin 17 near the edge connector 
finger. 

c. Solder a jumper wire from pin 16 to the +12VDC feed-through terminal on 
the back side of the module. 

d. Solder a jumper wire from pin T to the same +12VDC feed-through terminal 
on the front side of the module • 

FRONT SIDE OF MODULE 

+12VDC 

CUT TRACK 

. +12VDC 

T U 

SAME FEED THROUGH TERMINAL 

BACK SIDE OF MODULE 

17 16 

FIGURE 2. +12 VDC Modification to BK Dynamic RAM Module (MEX6815-1) 

When using 8K-1 modules with other dynamic RAM' s (including Series I I RAM 
modules), the BK-1 module must be assigned as the master in the system. 

Pin S on the M6809 EXORciser bus has been redefined as the M6809E signal LIC 
(Last Instruction Cycle). Previously this line was used by the BK-1 modules and 
was identified as a REF CLK (Refresh Clock) signal. The 8K-1 module is the only 
module which uses this signal. To avoid multi-signal conflicts on this line, 
simply disable the LIC line from the MPU Module by removing jumper connection KB 
on the MPU Module. 

H-3 



When working with the MC68B09E MPU, the user has two options to avoid multi
signal conflicts. First, the user can use the same method previously explained. 
Make sure there are no modules in the system requiring the LIC signal, then 
disable the LIC signal from the MPU Module by removing jumper connection K8. 
The second option is to remove the REF CLK·signal from the M6809 EXORciser bus. 
As long as there is only one 8K-1 module in the system, this is possible. If 
there is more than one 8K-1 module in the system, the REF CLK signal is required 
to synchronize the module refresh circuitry. In this case, only the first 
option can be used. 

The REF CLK signal can be disabled from the 8K-1 module by inserting a jumper 
connection at POSl on jumper platform JA. Refer to Figure 3. 

~ 

V) 

0 
a.. 

JUMPER .. I 
JA 

FRONT SIDE OF MODULE 

N 

V) 

0 
a.. 

0 

0 

0 0 
JB ..... 

I.JC 
JUMPER FOR MASTER REFRESH 

FIGURE 3. REF CLK Signal Disabled on BK Dynamic RAM Module (MEX6815-1) 

16K Dynamic RAM Modules (MEX6816-1) 

The early 16K Dynamic RAM Module (MEX6816-1) re)\~fes modification before use in 
an M6809 EXORciser. These modules generate an (Activate) signal on pin 23. 
This signal has been redefined in the M6809 EXORciser as BS (Bus Status). It is 
necessary to disable one of these signals in order to avoid damage to either 
module. The recommended modification is to disable the ACT signal on the 16K 
Dynamic RAM Module because it is n.Qi. used on any other:..J16800 or M6809 module. 
Refer to Figure 4. To disable the ACT signal, cut the ACT signal track (pin 23) 
above the finger on the module edge connector, as illustrated. 

It is also possible to disable the BS signal from the M6809 MPU Module by 
removing the jumper connection at K2 of the MPU Module. Prior to performing 
this modification, the user must make sure that none of the modules in the 
system requires the BS signal. 

The 16K Dynamic RAM Module (MEX6816-l) transfers data on the bus asynchronously. 
This causes a timing problem when operating with the M6809 USE Module. In order 
to enable the RAM module to transfer data synchronously, perform the following 
modifications on the back side of the RAM module: 

a. Remove +5VDC connection from U21 pin 13 (refer to Figure 4). This is 
accomplished by cutting the tracks between pins 13 and 14 and between 
+5VDC and pin 13, as illustrated. 

H-4 



b. Restore +5VDC connection to U21 by soldering a jumper wire between +5VDC 
and U21 pin 14. 

c. Connect a delayed CLK (Clock) signal to U21 pin 13 by soldering a jumper 
wire between Ul7 pin 10 and U21 pin 13, as illustrated. 

• • 
• • 

BACK SIDE OF MODULE 

23 

• • 
• • 
• • 

• 

• • 
• • 

Ul7 

FIGURE 4. USE Modification for 16K Dynamic RAM Module (MEX6816-1) 

The M6800 Systems Analyzer I can work at 1 MHz in an M6809 system if the M6809 
PROM's are installed and the M6809 Systems Analyzer Intercept Module is used. 

It is not possible to use or modify the DEbug I Module. 

EXORdisk I will work with a 1 MHz M6809 system as long as slow memories are not 
installed. Using slow memories with EXORdisk I will cause read/write errors. 

H-5 





APPENDIX I 

DIRECT MEMORY ACCESS ON THE IEVELOPMENT SYSTEM BUS 

I-1 



ACCESSING PROCEDURES 

IJJIA capability allows for high performance (typically next bus cycle access) and 
automatically arbitrates between the MPU execution requirements, memory refresh 
request, and the IJJIA device(s) access request(s). The interface is simple and is 
centered around two bus signals BUSREQ and BUSGNT. The BUSGNT signal is 
designed to allow cycle-by-cycle bus master arbitration, eliminating any need 
for dead bus cycles during bus mastership transfers. Rules for bus access are 
specific allowing for guaranteed results and thus preventing bus access 
conflicts. 

The steps for accessing the bus may be generalized as follows: 

1. The IJ.'IA device should prepare for the data transfer by setting up the 
memory address (and data if a write is to occur) as well as appropriate 
VMA and R/W signal states. 

2. The IJJIA device activates BUSREQ 40ns prior to the rising edge of E. 
(See Figure 1.) 

3. The IJJIA device waits for a BUSGNT. 

4. Upon receiving a BUSGNT, the device may execute a data transfer during 
that bus cycle. The device must be prepared to relinquish bus mastership 
during the next bus cycle because either the M6809 MPU or refresh may 
regain bus mastership during the next cycle. During data transfers, the 
CJJIA device must control the address and data buses as well as VMA and R/W 
(as necessary). 

5. If more data is to be transfered, then the device continues to hold 
BUSREQ active and returns to step 3. If the device will complete its 
transfer following the present bus cycle it must deactivate BUSREQ prior 
to the rising edge of E of its last transfer cycle. 

REQUEST AND GRANT SIGNALS 

The user who is designing a CJJIA interface to the Development System should study 
the following more detailed discussion of the two bus signals BUSGNT and BUSREQ. 

BUSGNT is the only signal which directly indicates the availability of the 
system bus. BA (MPU bus available) and BS (MPU bus state) may be used to 
determine the status of the M6809 MPU but there is no simple relationship 
between these signals and bus availability (BUSGNT). 

BUSREQ is the only signal which will initiate activation of BUSGNT. HALT will 
not activate BUSGNT (though it may affect BA and BS). The relationship between 
BUSREQ and BUSGNT is not direct: it also depends on REFREQ (refresh request), 
and on how long the MPU has been inactive. 

If the conditions of the processor and REFREQ are agreeable, then BUSGNT will be 
issued without delay in response to the BUSREQ. 

I-2 



BUSGNT is inactive {low) during the first 50ns after the falling edge of E of 
every bus cycle whether it will be inactive for that cycle or not. Thus, actual 
recognition of bus mastership should be done on the rising edge of Q. (See 
Figure 1.) 

This signal {BUSGNT) should be directly attached by the user to the address, 
data, VMA, and R/W bus driver enables of the IJJIA peripheral. Thus a 
non-conflicting cycle-by-cycle bus arbitration can occur since all bus drivers 
are disabled during the first 50ns of each cycle and BUSGNT is used to select 
between bus masters. 

Figure 1 shows the pertinent bus signals {BUSGNT, BUSREQ, REFREQ, REFGNT, E, Q) 
during IJJIA access and applies for any bus speed (E cycle length). 

The top part of the figure shows the timing when there is no refresh request. 
The bottom part of the figure shows how REFREQ causes a REFGNT output and 
disables BUSGNT. 

1-3 



E 

REFREd I I I 

BUSGNT ----~1 ---u u--L------
50n·~ ~ ~ ~50ns 

REFGNT 

E 

Q 

I I 
,~~~ II!// 

10ns~ ~ I ~ ~40nt 
BUSGNT J .___ _ __.I LJ l...__ _ ___.I 

I 
REFGNT 

FIGURE 1. M6809 [}JIA Timing 

I-4 



[)1A HAR!MARE ll:TAILS 

Two basic methods of [)1A access are possible under the above bus access 
protocol, cycle steal or halt steal. 

Cycle steal is the basic method of IJ.1A access using BUSREQ and waiting for a 
BUSGNT. Halt steal involves requesting an MPU halt by activating HALT {Pl pin 
4), waiting for BA = 1 and BS = 1, and then placing the BUSREQ. Note that halt 
steal is acknowledged only after completion of the current instruction. Figures 
2 and 3 show the circuitry for implementing both methods. 

Selection between the two methods is made strictly on the basis of the [)1A 
device characteristics. During the cycle steal mode, the MPU will regain bus 
mastership for one cycle every 14 cycles during a constant BUSREQ. For halt 
steal, no interruption by the MPU will occur once the bus is granted, but the 
delay until the bus is granted may be extreme {up to 20 cycles for a CWAI). It 
should also be noted that a REFREQ will cause a lost cycle in either mode. Thus, 
the cycle steal mode is by far the most preferable and the IJJIA device interface 
should sufficiently buffer the data stream to allow for lost cycles to MPU and 
to refresh. 

P1 

I 
NI 

BUSREO 

7 

a 

15 

BUSGNT 

7406 

74LS74 

D Q 

CLK 

74LS74 

a 

CLK 

SET 

D 

74LSOO 

TO THREE-STATE DRIVERS FOR 
ADDRESS, DATA, VMA, R/VV 

FIGURE 2. Simple Cycle Steal [)1A Interface 

I-5 

DMAREO 

LAST OMA CYCLE 

DMAREO 
ACKNOWLEDGE 



P1 

I 
4 I 

HALT 

I 
I 
I 
I 
I 

7 I 
Q 

I 
p I 

BA Dr---
BS 

23 I 
I 
I 
I 

NI 

BUSREQ 

15 

BUSGNT 

74LS74 

Q D OMAREQ 

7406 

CLK 

SET 

74LSOO 

74LS08 
----<J LAST OMA CYCLE 

7406 

74LS08 

74LS74 

D Q -C> 

CLK 

TO THREE-STATE DRIVERS FOR 
ADDRl:SS, DATA, VMA, R/W 

FIGURE 3. Simple Halt Steal C:MA Interface 

DMAREO 
ACKNOWLEDGE 

The scheme developed for performing IJ4A on the Development System bus will allow 
expansion to multiple C:MA devices or bus masters. Bus access prioritization 
among multiple devices may be done using a daisy-chain or spatial method alone 
or in conjunction with a rotating enable technique. 

The spatial priority method is accomplished by running a signal line from device 
to device to form the daisy-chain. This line is referred to as the BRQOUT by the 
source device and BRQIN by the receiving device. Thus each device has a bus 
access priority input and output, BRQIN and BRQOUT respectively. 

1-6 



The interconnect is illustrated in Figure 4. Thus, if BRQIN to device A is 
inactive, that is, no device higher in the chain requires the bus, then device A 
is allowed access to the bus. If device A does not require access to the bus, 
then its BRQOUT and consequential device B BRQIN is inactive thus allowing 
device B access to the bus, etc. Figure 5 shows the circuitry for implementing 
this for a given device. 

The daisy-chain scheme alone has some draw backs, in that the device last on the 
chain may never gain access to the bus if the other higher-priority devices are 
always busy. The rotating enable technique solves this problem by allowing each 
device only one access to the bus until all other devices have their requests 
serviced. This lockout may be done on a single cycle or single full request 
basis. Figure 6 shows the circuity. 

BROOUTe 
DEVICE 

B 

BRQINe BRQOUTA 

DECREASING BUS ACCESS PRIORITY 

DEVICE 
A 

FIGURE 4. Spatial Prioritizing for f.JJIA 

I-7 



P1 

I 
Nf 

BUSRl::Q 

I 
I 
I 
I 
I 
I 
I 
I 
I 

7 I 
Q 

BUSGNT 

74LS08 

74LS74 

Q D 

7406 
CLK 

SET 

74LSOO 

7406 74LS08 

74LS74 

------o 
CLK 

TO THREE-STATE DRIVERS FOR 
ADDRESS, DATA, VMA, R/W 

FIGURE 5. Spatial Prioritizing 1Jv1A Device Interface 

I-8 

DMAREO 

LAST OMA CYCLE 

DMAREQ 
ACKNOWLEDGE 



BUSREQ 

7 

Q 

15 

BUSGNT 

J 

E 

TRANSFER 
ENABLE 
SELECT 

74LS74 

Q D DMAREQ 

7406 

CLK 

SET 

LAST OMA CYCLE 

74LS08 
BRQIN 

BRQOUT 

7406 74LS74 

Q 
DMAREQ 

D 
ACKNOWLEDGE 

74LS08 

CLK Q 

74LS74 

BRQINACTIVE 
'----------i D Q 0.----. 

CLK 

SINGLE BURST 

..__ __ --I D SET Q __ R_E_a_u_E_ST_o_1s_A_B_L_E ___. 

CLK 

74LS74 

FIGURE 6. Rotating Priority with Spatial Arbitration IJv'IA Device Interface 

I-9 





SUGGESTION/PROBLEM REPORT 

Motorola welcomes your comments on its products and publications. Please use this form. 

To: Motorola Microsystems 
P.O. Box 20912 
Attention: Publications Manager 

Mail Drop M374 
Phoenix, Az. 85036 

Comments 
Product: _____________ _ 

Please Print 

Name 

Company 

Street 

City 

HARDWARE SUPPORT: 
SOFTWARE SUPPORT: 

(800) 528-1908 
(602) 831-4108 

Manual: 

Title 

Division 

Mail Drop Phone Number 

State Zip 





fiJ;:i MOTOROLA Semiconductor Products Inc. 
\CY P.O. BOX 20912 • PHOENIX, ARIZONA 85036 •A SUBSIDIARY OF MOTOROLA INC. 

13133 PRl1HEO J/l USA 9-79 IMPERIAL LITHOB816H 


