
DIBOL-83 Language
Reference Manual
Order No. AA-U066A-TK
Includes Update Notice: AD-U066A-T1
October 1983

Supersession/Update Information: This manual incorporates Update Notice AD-U066A-T1.

Operating System and Version: CTS-300 VS.O
RSTS/E DIBOL V5.0
VAXNMS DIBOL V2.0
Professional Host Tool Kit DIBOL V1.6
PRO/Tool Kit DIBOL V1.6
RSX-11 M V4.3
RSX-11 M-PLUS V2.1

First Printing, May 1983
First Update, October 1983

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital
Equipment Corporation and shall not be reproduced or copied or used in
whole or in part as the basis for the manufacture or sale of items without
written permission.

Copyright © 1983 by Digital Equipment Corporation. All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTIBUS
DEC
DECmate
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter
DIBOL

mamaama

MASSBUS
PDP
P/OS
PRO/BASIC
Professional
PRO/FMS
PRO/RMS
PROSE
Rainbow

RSTS
RSX
Tool Kit
UNIBUS
VAX
VMS
VT
Work Processor

CONTENTS

Page

PREFACE vii

CHAPTER 1 DIBOL-83 LANGUAGE ELEMENTS 1-1

1.1 DIBOL-83 CHARACTER SET. 1-1
1.2 STATEMENT TyPES.................................... 1-1
1.2.1 Compiler Directives And Declarations. 1-2
1 .2.2 Data Specification Statements. 1-3
1.2.3 Data Manipulation Statements. 1-3
1.2.4 Control Statements. 1-3
1.2.5 Intertask Communications Statements. 1-4
1.2.6 Input/Output Statements.............................. 1-4
1.3 PROGRAM STRUCTURE. 1-5
1.4 STATEMENT LINE SyNTAX.............................. 1-5
1.5 PROCEDURE DIVISION STATEMENT LABELS. 1-8
1.6 ARRAY SUBSCRiPTING................................. 1-9
1.7 LITERALS. 1-11
1.8 SUBSTRINGS. 1-13
1.9 DECIMAL EXPRESSIONS. 1-15

CHAPTER 2 DATA DIVISION 2-1

2.1 INTRODUCTION. 2-1
2.2 RECORD STATEMENT.................................. 2-2
2.3 COMMON STATEMENT. 2-4
2.4 FIELD DEFINITIONS.................................... 2-7
2.5 ARRAY DEFINITIONS................................... 2-10
2.6 SUBROUTINE STATEMENT.. 2-12
2.6.1 Subroutine Argument Definition. 2-13

CHAPTER 3 THE DIBOL-83 PROCEDURE DIVISION STATEMENTS 3-1

3.1 INTRODUCTION. 3-1
3.2 VALUE ASSIGNMENT STATEMENTS. 3-2
3.2.1 Moving Alpha Data. 3-2
3.2.2 Moving Decimal Data. 3-3
3.2.3 Alpha-to-Decimal Conversion. 3-5
3.2.4 Decimal-to-Alpha Conversion. 3-6
3.2.5 Formatting Data..................................... 3-8
3.2.6 Clearing Variables................................... 3-11
3.3 ACCEPT . 3-12
3.4 BEGIN-END BLOCK. 3-14
3.5 CALL. 3-16
3.6 CLEAR. 3-17
3.7 CLOSE. 3-18
3.8 DELETE . 3-20

iii

CONTENTS (Cont.)

Page

3.9 DETACH. 3-22
3.10 DISPLAY. 3-24
3.11 DO-UNTIL. 3-26
3.12 FOR. 3-28
3.13 FORMS. 3-31
3.14 GOTO. 3-32
3.15 GOTO (COMPUTED).................................... 3-33
3.16 IF.. 3-34
3.17 IF-THEN-ELSE . 3-36
3.18 INCR... 3-38
3.19 LOCASE. 3-39
3.20 LPQUE . 3-40
3.21 OFFERROR . 3-42
3.22 ONERROR . 3-43
3.23 OPEN . 3-44
3.24 PROC-END. 3-49
3.25 READ (RELATIVE FILE). 3-51
3.26 READ (INDEXED FILE). 3-53
3.27 READS. 3-55
3.28 RECV. 3-57
3.29 RETURN. 3-59
3.30 SEND . 3-60
3.31 SLEEP. 3-62
3.32 STOP. 3-63
3.33 STORE . 3-64
3.34 UNLOCK. 3-66
3.35 UPCASE . 3-68
3.36 USING. 3-70
3.37 WHILE. 3-74
3.38 WRITE (RELATIVE FILE). 3-76
3.39 WRITE (INDEXED FILE). 3-78
3.40 WRITES. 3-79
3.41 XCALL. 3-81

CHAPTER 4 THE DIBOL-83 COMPILER DIRECTIVES 4-1

4.1 INTRODUCTION.. 4-1
4.2 .IFDEF-.ENDC. 4-2
4.3 .IFNDEF-.ENDC . 4-3
4.4 .INCLUDE. 4-4
4.5 .LlST. 4-6
4.6 .NOLIST . 4-8
4.7 .PAGE. 4-9
4.8 .TITLE. 4-11

iv

CHAPTER

APPENDIX

GLOSSARY

INDEX

FIGURES

TABLES

5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

A

1-1
5-1
5-2
5-3

1-1
1-2
1-3
1-4
1-5
3-1
5-1
5-2
5-3
A1

CONTENTS (Cont.)

Page

UNIVERSAL EXTERNAL SUBROUTINES. 5-1

ASCii....................... 5-2
DATE. 5-3
DECML....... 5-5
DELET....... 5-6
ERROR. 5-7
FATAL..... 5-8
FLAGS. 5-10
INSTR. 5-13 .
JBNO... 5-15
MONEY. 5-16
PAK. 5-17
RENAM.• . 5-19
RSTAT. 5-22
RUNJB 5-24
SiZE..... 5-25
TIME... 5-27
TNMBR............... 5-28
TTSTS... 5-29
UNPAK. 5-31
VERSN 5-33
WAIT... 5-35

DIBOL-83 CHARACTER SET... A-1

. .. Glossary-1

Index-1

FIGURES

DIBOL-83 Program Structure. 1-5
FLAGS Option Fields. 5-11
RENAM Flowchart. 5-20
WAIT Option Fields. 5-35

TABLES

DIBOL-83 Delimiters. 1-6
Table of Operator Precedence. 1-17
Unary Operator Table. 1-17
Binary Operator Table. 1-17
Truth Table... 1-18
Format Control Characters. 3-9
FLAGS Argument Assignments ,. 5-11
VERSN Returned Formats '. 5-34
WAIT Argument Assignments. 5-36
DIBOL-83 Character Set. .. Appendix-2

v

PREFACE

The DIBOL-83 Language Reference Manual contains reference information on all aspects of the Standard
DIBOL-83 Language. It does not include information on any particular operating systems or their specific
effect on DIBOL-83.

AUDIENCE

This manual is written for:

The programmer who is new to DIBOL but is experienced in another high-level language.

The experienced DIBOL programmer.

MANUAL ORGANIZATION

The manual is organized as follows:

This Preface orients the reader to the format used throughout the manual, and to the terms and
symbols used within the text.

Chapter 1 contains information related to the language elements such as the character set,
statement types, program structure, syntax, labels, array subscripting, literals, substrings, and
expressions.

Chapter 2 references all Data Division statements including the COMMON, RECORD, and
SUBROUTINE statements, and describes field definitions.

Chapter 3 references all Procedure Division statements and explains the Value Assigment
Statements.

Chapter 4 contains information related to Compiler Directives such as .TITLE, .INCLUDE, . LIST,
.PAGE, and others.

Chapter 5 references all Universal External Subroutines.

The Appendix contains the DIBOL-83 Character Set.

The Glossary defines terms and phrases as used in this manual.

vii

MANUAL FORMAT

This manual provides the reader with fast information retrieval.

The major subject discussed on each page in chapters two through five is displayed in bold lettering in
the upper outer corner of each page. This bold lettering allows the reader to quickly find particular
information.

The majority of the pages contain five main sections:

The FUNCTION section briefly describes or defines the subject matter.

The FORMAT section describes the correct structure or make-up of a statement, subroutine, etc.,
and explains each portion of the structure.

The RULES section provides guidelines, parameters, advice, and limitations for the particular
subject matter. The rules are not necessarily presented in order of importance.

The ERROR CONDITIONS sections list compiler errors and run-time errors. The run-time errors will
also indicate their assigned error number and whether they are Trappable (T) or Non-trappable
(NT). All listed errors are particular to the subject matter, statement, or subroutine being discussed.

The EXAMPLES section illustrates the use of the particular subject matter.

DOCUMENT SYMBOLS

The symbols defined below are used throughout this manual.

Symbol Definition

afield is the name of an alpha field.

aliteral is an alpha literal.

ch is a decimal expression that evaluates to an input/output channel number.

dexp is a decimal expression that can be any valid combination of operands and operators. In
its simplest cases, dexp can be a dfield or a dliteral.

dfield is the name of a decimal field.

dliteral is a decimal literal.

field is the name of either an alpha or a decimal field.

label is a Procedure Division statement label.

literal is either an alpha or a decimal literal.

viii

lowercase
(characters) mean elements of the language which are supplied by the programmer.

non-trappable error
is an error that causes program termination and cannot be trapped.

record
is the name of a record.

subroutine
is the name of a subroutine.

trappable error
is an error that can cause program termination but may be trapped using the ONERROR
statement.

UPPERCASE
(characters) mean elements of the language which must be used exactly as shown.

[I represent brackets and mean optional arguments.

II represent vertical lines and mean a single choice must be made from a list or arguments

•
•
•

represent a horizontal ellipsis and mean the preceding item can be repeated as
indicated.

represents a vertical ellipsis and means that not all of the statements in a figure or
example are shown.

ix

(

\

CHAPTER 1

DIBOL-83 LANGUAGE ELEMENTS

A DIBOL-83 program is a sequence of statements that describes a method for performing a task. These
statements are translated by the DIBOL-83 compiler for subsequent execution by the DIBOL-83 run-time
system under the control of the operating system.

1.1 DIBOL·83 CHARACTER SET

A DIBOL-83 program consists of symbolic characters that form the elements of the language. A subset of
the American Standard Code for Information Exchange (ASCII) characters comprise this set of symbolic
characters. Characters used as data are also selected from this character set.

Appendix A lists the ASCII characters and their associated numeric codes.

1.2 STATEMENT TYPES

A statement is the basic unit of expression in the DIBOL-83 language.

DIBOL-83 statements fall into six functional groups:

Compiler Directives and Declarations

Data Specification Statements

Data Manipulation Statements

Control Statements

Intertask Communications Statements

Input/Output Statements

A statement has one or more elements. The first element is usually an English language verb that
characterizes or symbolizes an action to be performed (such as READ, WRITE, SLEEP, OPEN, and
CALL).

The other elements of a statement may be arguments, expressions, or other statements. Arguments
consist of symbolic data names, references to statement labels, and expressions of data values or
relationships. Arguments specify the objects of the action being performed by the statement.

1-1

1.2.1 Compiler Directives and Declarations

• Compiler Directives and Declarations are instructions that provide information about the
program to the compiler.

• Compiler Directives and Declarations are not executable at run-time.

• Compiler Directives may appear anywhere in the program. They are discussed in Chapter 4.

• Declarations are limited to either the Data Division (SUBROUTINE) or Procedure Division
(BEGIN-END and PROC-END). They are discussed in the chapter devoted to those respective
program divisions.

• The Compiler Directives are:

.IFDEF-.ENDC causes statements that follow to be compiled if a specified variable is defined
(.ENDC marks the end of the statements controlled by the .IFDEF and
.IFNDEF statements) .

. IFNDEF-.ENDC causes statements that follow to be compiled if a specified variable is not
defined (.ENDC marks the end of the statements controlled by the .IFDEF and
.IFNDEF statements) .

. INCLUDE

. LlST

. NOLIST

.PAGE

.TITLE

causes the compiler to open a specified file and continue the compilation
using that file .

enables the compiler to list source code .

inhibits the listing of compiler source code.

causes a top-of-page command to occur.

causes a top-of-page command to occur and a new title to be placed in the
page header.

• The Declarations are:

BEGIN-END indicates the start (BEGIN) or finish (END) of a sequence of blocked
statements.

PROC-END separates Data Division Statements from Procedure Division Statements
(PROC) and indicates the last statement in a program (END).

SUBROUTINE identifies a program as an external subroutine.

1-2 D180L·83 Language Elements

1.2.2 Data Specification Statements

• Data Specification Statements identify and define the characteristics (Le., whether it is alpha or
numeric decimal, its size, and its symbolic name) of the data processed by a DIBOL-83 program.

• The Data Specification Statements are:

COMMON describes a record, whose fields can be accessed from external subroutines.

RECORD describes a record.

field definition describes the name, data type, and size of a field in a record.

1.2.3 Data Manipulation Statements

• Data Manipulation Statements perform conversion and value assignment.

• The Data Manipulation Statements are:

CLEAR sets a variable to zero or spaces.

INCR increments a variable by one.

LOCASE converts UPPERCASE letters to lowercase.

UPCASE converts lowercase letters to UPPERCASE.

value assignment statement
assigns the value in the source to the destination.

1.2.4 Control Statements

• Control Statements modify the order of statement execution within a program.

• The Control Statements are:

CALL calls a subroutine within the program.

DETACH disconnects the terminal from its associated program.

DO-UNTIL causes repetitive execution of a statement until a condition is true.

FOR causes repetitive execution of a statement.

GOTO transfers control to another statement.

IF executes a statement if a condition is true.

D180L-83 Language Elements 1-3

IF-THEN-ELSE allows conditional execution of one of two statements.

OFFERROR disables trapping of run-time errors.

ON ERROR enables trapping of run-time errors.

RETURN causes control to return from a subroutine.

SLEEP suspends program operation for a specified time interval.

STOP terminates program execution.

USING executes one statement out of a list of statements.

WHILE causes a statement to be executed repetitively while a condition is true.

XCALL calls an external subroutine.

1.2.5 Intertask Communications Statements

• Intertask Communications Statements allow communication between programs.

• The Intertask Communications Statements are:

RECV

SEND

receives a message from another program.

transmits a message to another program.

1.2.6 Input/Output Statements

• Input/Output Statements control the transmission and reception of data between memory and
input/output devices.

• The Input/Output Statements are:

ACCEPT

CLOSE

DELETE

DISPLAY

FORMS

LPQUE

OPEN

READ

READS

STORE

UNLOCK

WRITE

WRITES

receives a character from a device.

terminates use of an input/output channel and closes the associated file.

deletes a record from an indexed file.

sends a character string to a device.

sends special printer control codes.

requests a file to be printed.

initializes a file in preparation for input/output operations.

reads a record from a file (direct access).

reads the next record in sequence from a file.

adds a record to an indexed file.

releases a record for use by another program.

writes a record to a file (direct access).

writes the next record in sequence to a file.

1-4 0180L-83 Language Elements

1.3 PROGRAM STRUCTURE

A DIBOL program contains two major parts: a Data Division and a Procedure Division. The Data Division
contains statements that define and identify the data used by the program. The Procedure Division
contains statements that execute certain tasks.

Figure 1-1 shows a schematic drawing of a DIBOL-83 program structure.

Main Program

RECORD statement 1
field definitions

RECORD statement n
field definitions

PROC

END

External Subroutine

SUBROUTINE statement
argument definitions

RECORD statement n
field definitions

PROC

END

Figure 1·1 DIBOL-83 Program Structure

1.4 STATEMENT LINE SYNTAX

GENERAL RULES

• A statement line can contain 511 characters.

• A program may contain no more than one statement per line.

• A statement can begin anywhere on a line.

Data Division

Procedure Division

Procedure Division

DIBOL-83 Language Elements 1-5

RULES FOR LINE CONTINUATION

• The ampersand symbol (&) specifies line continuation. This allows lengthy statements to be
continued onto additional physical lines.

• The ampersand symbol must be placed at the first character position in the continuation line.

• A statement can be continued for a maximum of 511 characters, including ampersand symbols,
spaces, horizontal tabs, Carriage Return, and Line Feed characters.

• Comments cannot be continued by an ampersand; they require a semicolon.

RULES FOR DELIMITERS

• Delimiters separate the elements of the language (keywords, labels, symbols, literals).

• Delimiters are listed in Table 1-1.

Table 1-1
DIBOL-83 Delimiters

Name Symbol Name

Addition + Percent
Colon Period
Comma , Pound
Division I Right Parenthesis
Double Quotes " Single Quote
Equal = Space
Left Parenthesis (Subtraction
Multiplication * Tabs

RULES FOR COMMENTS

• Comments are used to explain the source program.

• Comments are ignored by the compiler.

• Comments are preceded by a semicolon (;).

• Comments can follow a statement on a line.

Symbol

%

-
) ,

-
<TAB>

• Comments can be placed on any statement line by preceding the comment with a semicolon (;).

• Comments can be placed on a line all by themselves (full line comments).

• Comments cannot be continued by an ampersand; they require a semicolon.

1-6 0180L-83 Language Elements

-~~ ~ -- ~~ ~--- ----- - -----~--

COMPILER ERROR CONDITIONS

• Line too long

• Extra characters at statement end

RUN-TIME ERROR CONDITIONS

None

EXAMPLES

Statement Line Syntax

Lengthy statement lines can be continued onto additional lines. A comment cannot be placed on
the first of the two lines; a comment can only be placed at the logical end of the statement as shown.

TESTl,
&

IF (INVENT+ORDER .GT. SHIPPD
.AND.CASH.GT.MINIM) GOTO GETMOR ;Time to order?

The following examples illustrate comments. The first example shows a commented statement and
the second example shows a full line comment.

RECORD CUST ; Customer record

; This program prints the Accounts Past Due Report

Comments can be continued onto multiple lines by using a semicolon as follows:

READS (l,CUST,EOF) ; Read the sequentially next
; ••• customer master file

The basic elements of the language are separated by delimiters. In the following example, the
space used as a delimiter between the keyword GOTO and the label TEST1 is missing. This
statement will generate a compiler error.

GOTOTESTl

The following statement will also generate a compiler error because there is an extra space in the
middle of the label TEST1: .

GOTO TE STl

D180L-83 Language Elements 1-7

1.5 PROCEDURE DIVISION STATEMENT LABELS

• A statement label is a unique symbolic name that identifies a statement in the Procedure Division
of a DIBOL program.

• A label consists of up to 6 characters, the first of which must be alphabetic. The remaining
characters can be alphabetic, numeric, $, or _(underscore).

• Only the first 6 characters of a label are significant; remaining characters are ignored.

• A label may begin anywhere on a line as long as it immediately precedes and is separated from
its associated statement by a comma.

• A label cannot be used to identify more than 1 statement.

• Compiler Directives and Declarations (except for BEGIN-END) cannot have labels.

COMPILER ERROR CONDITIONS

• Duplicate label

RUN-TIME ERROR CONDITIONS

• None

EXAMPLES

• The following labels (LOOP6, X_RTN, and BAD$) are all legal:

LOOP6, IF I.GT.MAX GOTO DONE

X_RTN, RETURN

BAD$, WRITES (CH,'Bad Input')

• The following label (DO_PAYROLL) is legal but will be truncated to six characters (i.e.,
DO_PAY):

DO_PAYROLL, OPEN (CH,U,'PAYROL.DDF')

• The following labels (6X, _RTN, and $BAD) are not legal because they do not begin with a letter:

6X, IF I.GT.MAX GOTO DONE

_RTN, RETURN

$BAD, WRITES (CH,'Bad Input')

1-8 DIBOL-83 Language Elements

1.6 ARRAY SUBSCRIPTING

DEFINITION

Array Subscripting references a specific variable within an array of variables (see section 2.5 for
information on array definitions).

FORMAT

array (subscript)

where:

array is an alpha array, decimal array, or a record being referenced.

subscript is a decimal expression that refers to a field in an array.

RULES

• Array subscripting can be used in any Procedure Division statement where a data field of the
same type is allowed.

• Subscript indicates the specific field to be referenced within the array.

• Subscript should be between 1 and the number of fields in the array as specified in the Data
Division.

• If subscript exceeds the number of fields within the array, portions of other fields may be
referenced. A Subscript error occurs when subscript specifies a field which is outside the Data
Division.

• A reference to an array without subscript accesses the first field in the array.

COMPILER ERROR CONDITIONS

• Invalid data type

• Invalid array element count

• Subscript too complex

• Too many subscripts

RUN-TIME ERROR CONDITIONS

• 7 T Subscript error

D180L-83 Language Elements 1-9

EXAMPLES

• The following examples all assume that the Data Division contains the following information:

RECORD

PROC

NAME,
CODE,

4A3, 'LAS', 'FIR', 'MID', 'ADD'
D4, 0617, 1739, 5173, 2480

• Using an array name without a subscript will access the first element of the array as shown in the
following examples:

Field Data Accessed

NAME LAS

CODE 0617

• The following examples illustrate the use of subscripts with array names:

Field

NAME(1)

NAME(3)

NAME(4)

CODE(1)

CODE(4)

Data Accessed

LAS

MID

ADD

0617

2480

• Data beyond the end of the array can also be accessed as in the following examples:

Field

NAME(S)

NAME(6)

Data Accessed

061

717

• If the data to be accessed is beyond the end of the Data Division a Subscript error will occur. For
example:

Field Data Accessed

CODE(S) Subscript error

NAME(10) Subscript error

1-10 0180L-83 Language Elements

1.7 LITERALS

DEFINITION

Literals are alpha or decimal values permanently defined in a program.

RULES

• A literal cannot be altered during program execution.

• Alpha literals are specified by enclosing a character string within a pair of either single (') or
double quote (") characters.

• Double or single quotes can appear within literals following these guidelines:

- A single quote can appear in a literal that is enclosed in single quotes by immediately following
the quote character with a second quote character ('O"Hare') within the literal.

-A single quote can appear in a literal that is enclosed in double quotes ("O'Hare").

- A double quote can appear in a literal that is enclosed in double quotes by immediately
following the double quote character with a second double quote character within the literal
(" " "END of FILE" " ").

- A double quote can appear in a literal that is enclosed in single quotes (' "END OF FILE" ').

• Literals cannot be subscripted.

• Decimal literals can be any valid DlBOL number.

• The value for a literal can be whatever is possible for that data type.

COMPILER ERROR CONDITIONS

• End quote missing

• Decimal literal too big, truncated to - * * *

• Invalid numeric literal

RUN-TIME ERROR CONDITIONS

• None

DIBOL~83 Language Elements 1-11

EXAMPLES

The following numbers are all legal decimal literals:

-99234780113

+000431

10000000000

--1 (same as +1)

The following numbers are not legal decimal literals because they contain characters other than the
plus sign (+), the minus sign (-), and the decimal digits (0 through 9).

$10

1,000,000

10.00

The following are legal alpha literals:

"PAYROLL NUMBER"

'Invalid customer number'

'$10'

"1,000,000"

The apostrophe character (') can be used in the literal by inserting two apostrophes for each one
desired, or by using the quote character (") to start and end the literal. Both of the following literals
puts a single apostrophe character in O'Hare.

'0' 'Hare'

"O'Hare"

1-12 0180L-83 Language Elements

1.8 SUBSTRINGS

DEFINITION

Substrings reference a portion of a variable.

FORMAT

field (start,end)

where:

field is an alpha field, decimal field, or record being referenced.

start is a decimal expression that specifies the position of the first character of the
data.

end is a decimal expression that specifies the position of the last character of the
data.

RULES

• Substrings can be specified in any Procedure Division statement where a data field of the same
type is allowed.

• The starting position must be greater than or equal to 1.

• The starting pOSition must be less than or equal to the ending position.

• The ending position should not exceed the field size as specified in the Data Division.

• If the ending position exceeds the field size, portions of other fields may be referenced. A
Subscript error occurs when a subscript specifies data which is outside the Data Division.

• If the length of a decimal substring is greater than 18 characters a Number too long error is
generated.

COMPILER ERROR CONDITIONS

• Invalid array element count

• Stack overflow

• Subscript too complex

• Too many subscripts

RUN· TIME ERROR CONDITIONS

• 7 T Subscript error

• 15 T Number too long

DIBOL-83 Language Elements 1-13

EXAMPLES

All of the following examples assume that the Data Division contains the following information:

RECORD REC
AM,
NZ,
NUM,

PROC

A13, 'abcdefghijk1m'
A13, 'nopqrstuvwxyz'
010, 1234567890

The following examples illustrate the use of substrings:

Field Data Accessed

AM(2,3) bc

AM'(4,4) d

AM(10,13) jk1m

REC(l,lO) abcdefghij

REC(27,28) 12

NUM(4,8) 45678

NUM(lO,lO) 0

NZ(12,13) yz

AM(NUM(5,5),9) efghi

Any data that is beyond the end of the named field can be accessed as illustrated in the following
examples:

Field

AM(12,15)

NZ(13,15)

Da ta Accessed

1mno

zl2

If the data to be accessed is beyond the end of the Data Division a Subscript error will occur. For
example:

Field Data Accessed

NUM(lO,ll)

NZ(30,30)

Subscript error

Subscript error

1-14 DIBOL-83 Language ELements

(
\
\

I~

1.9 DECIMAL EXPRESSIONS

DEFINITION

Decimal expressions are valid combinations of operands and operators.

GENERAL RULES

• If X and Yare operands, the following are decimal expressions:

• X binary operator Y
• unary operator X
• (X)

• Operators in a decimal expression represent various arithmetic, relational, or Boolean functions
of the DIBOL-83 language (see Table 1-2).

• Decimal expressions are allowed on the right side of the equal sign (=) in value assignment
statements and in any Procedure Division Statement (except XCALL) where a decimal literal can
be used.

• Unary operators require 1 operand.

• Binary operators require 2 operands.

• Operators require operands to be the correct data type.

• Decimal expressions are evaluated according to the order of precedence shown in Table 1-2.
Operators with equal precedence are evaluated from left to right in a decimal expression.

• The order of expression evaluation can be altered by using parentheses. Expressions enclosed
in parentheses are evaluated before other elements of the decimal expression in which they
appear. Additional levels of precedence are achieved by nesting; the innermost expressions are
evaluated first.

RULES FOR +, -, ., AND 1

• Decimal expressions deal with integers only. So output data can be correctly formatted for
printing (see section 3.2.5), the position of an implied decimal point in a decimal value must be
determined by the program.

• Decimal expressions that produce intermediate results exceeding 18 digits generate the error
Number too long.

• The unary plus (+) operator has no effect on a value since unsigned values are assumed to be
positive. This operator is useful only to facilitate reading a program listing.

D180L-83 Language Elements 1-15

• The unary minus (-) operator is used to negate its operand. Successive minuses are combined
algebraically.

• The addition (+), subtraction (-), multiplication (*) and division (I) operators perform standard
signed integer arithmetic.

• Division by zero is illegal.

• Any fraction resulting from division is truncated.

RULES FOR #

• The rounding number operator (#) specifies numeric rounding.

• The first operand specifies the numeric value to be rounded.

• The second operand is a decimal expression that evaluates to a number between 0 and 15 which
specifies the number of rightmost digits to truncate after rounding takes place.

• The least significant digit of the truncated value is rounded upward by 1 if the digit to its right is
greater than or equal to 5.

RULES FOR RELATIONAL OPERATORS

• Relational expressions produce decimal results (either true (non-zero) or false (zero». These
expressions can be used as operands with Boolean operators.

• In comparisons using relational operators, only like data types are allowed as operands, i.e.,
decimal/decimal or alpha/alpha.

• In an alpha relational comparison, the operand values are compared on a character by character
basis from left to right. The comparison is limited to the size of the shortest operand.

COMPILER ERROR CONDITIONS

• None

RUN· TIME ERROR CONDITIONS

• 15 T Number too long

• 30 T Divide by zero

1-16 DIBOL-83 Language Elements

Table 1-2
Table of Operator Precedence

Operator

()
+ and

* and I
+ and-
.EO .. NE .. GT .. LT .. GE .. LE.
. NOT.

.AND.

.OR. and .xOR.

(from highest to lowest)

Description

parentheses
unary plus and unary minus
rounding
multiplication and division
addition and subtraction
relational comparison
unary logical operator which changes true to false and false to
true
Boolean AND
Boolean OR and exclusive OR

Table 1-3
Unary Operator Table

The following table indicates the legal data type(s) which can be used as an operand for a particular
unary operator. The data type result is also shown.

Operand Data Type

Result Data Type

UNARY OPERATORS

+ NOT

Table 1-4
Binary Operator Table

The following table indicates the legal data type(s) that can be used as an operand for a particular
unary operator. The data type result is also shown.

BINARY OPERATORS

Data Types of: + # * I EO NE GT LT GE LE OR XOR AND

Operands D D D D D AID AID AID AID AID AID D D D

Result D D D D D D D D D D D D D D

D180L-83 Language Elements 1-17

Boolean AND

exp .AND. exp Result

true true true
true false false
false true false
false false false

EXAMPLES

Boolean OR

Table 1-5
Truth Table

Boolean XOR

exp .OR. exp Result exp .XOR. exp Result

true true true true true false
true false true true false true
false true true false true true
false false false false false false

Boolean NOT

.NOT. exp Result

true false
false true

The following examples all assume that the Data Division contains the following information:

RECORO
MONEY, 06, 127654
Y, 03, -326
A, 01, 4
B, 02, 10
C, 02, 20
0, 01, 5

PROC

The following examples illustrate the use of arithmetic operators:

Expression

A+B-C

A*O

C/O

B/A

Resul t

-6

20

4

2 (The remainder is discarded)

The order of evaluation of the subexpressions can be modified by using parentheses, as in the
following examples:

Expression

B+C/O*A

B+C/(O*A)

(B+C)/(O*A)

((B+C)/O)*A

1-18 DIBOL-83 Language Elements

Resul t

26

11

1 (The remainder is discarded)

24

The following examples illustrate the use of the rounding operator (#):

Expression Result

MONEY:!tA 13

Y:!t2 -3

Y:!tA 0

(MONEY+Y):!tl 12733

Y:!tl -33

The Relational and Boolean operators produce true (non-zero) or false (zero) results. These
operators are most commonly used in the IF, IF-THEN-ELSE, DO-UNTIL, and WHILE statements.
They can be used anywhere that a decimal expression is allowed. The following examples illustrate
the use of these operators:

Expression Result

A.EQ.4 1 (true)

A.NE.4 0 (false)

• ABC • • EQ. • DEF' 0 (false)

A.EQ.4.AND.B.EQ.IO 1 (true)

A.AND.B 1 (true)

A.AND.O 0 (false)

DIBOL-83 Language Elements 1-19

2.1 INTRODUCTION

This chapter contains information on Data Division Statements.

CHAPTER 2

OAT A DIVISION

The Data Division is the first division of a DIBOL-83 program. It contains RECORD and COMMON
statements and associated field definitions that define all program variables. Variables used in the
Procedure Division of a program must be defined in the Data Division. The Data Division also contains a
SUBROUTINE statement if the program is an external subroutine. These statements are separated from
the Procedure Division by the PROC statement.

2-1

RECORD STATEMENT

2.2 RECORD STATEMENT

FUNCTION

RECORD defines the areas of memory where variable data is stored.

FORMAT

RECORD [name][,xJ

where:

name is the record name.

X is the redefinition indicator.

GENERAL RULES

• Storage is allocated contiguously in memory in the order the RECORD statements appear in the
program.

• RECORD must be followed by at least 1 field definition.

• The total size of the fields within a named record cannot exceed 16,383 characters.

RULES FOR RECORD NAME

• A RECORD name consists of up to 6 characters, the first of which must be alphabetic. Remaining
characters can be alphabetic, numeric, $, or --':,(underscore).

• Only the first 6 characters of a RECORD name are significant; remaining characters are ignored.

• A name cannot be used to identify more than 1 RECORD area, COMMON area, or field.

• If a RECORD name is not specified, only named fields within that record can be referenced.

RULES FOR REDEFINITION INDICATOR

• The redefinition indicator permits redefinition of fields within the record being redefined.

• An redefining RECORD references the same memory area as the record being redefined.

• The new field definitions are specified following the redefining RECORD statement.

• The size of the redefining RECORD (the sum of the sizes of all its fields) must not be greater than
the size of the record being redefined.

2-2 Data Division

\

• In a main program, RECORD can redefine RECORD or COMMON.

• In an external subroutine RECORD cannot redefine COMMON and vice versa. RECORD can
redefine RECORD.

• Fields in a redefining RECORD cannot be assigned initial values.

COMPILER ERROR CONDITIONS

• Overlay error

RUN· TIME ERROR CONDITIONS

• None

EXAMPLES

The following record names (6X and _PAY) are not legal because they do not begin with an
alphabetic character:

RECORD 6X

RECORD PAY

The following example shows a record (OUTPUT) used to format printed output data. The values for
MN, DAY, and YR are obtained from Procedure Division Statements. The unnamed fields contain
initial values used for formatting the output record.

RECORD OUTPUT
, A8, 'Date is
MN, D2 ; Month goes here
, AI, I /1
DAY, D2 ; Day goes here
, AI, 1/1
YR, D2 ; Year goes here

In the following example, the record (OUTPUT) has been redefined so that the date (in the format
mm/dd/yy) can be more easily accessed. A statement that accesses the DATE field will receive the
contents of the MN, DAY, and YR fields separated by the slash character (I).

RECORD OUTPUT
, A8, 'Date is
MN, D2 ; Month goes here , AI, 1/1
DAY, D2 ; Day goes here
, AI, 1/1
YR, D2 ; Year goes here

RECORD ,X
A8 ; Redefines 'Date is I ,

DATE, A8 ; Redefines MN / DAY / YR

Data Division 2-3

COMMON STATEMENT

2.3 COMMON STATEMENT

FUNCTION

COMMON defines the areas in memory where variable data is stored. This data is to be shared
between the main program and external subroutines.

FORMAT

COMMON [name][,x]

where:

name is the COMMON name.

X is the redefinition indicator.

GENERAL RULES

• COMMON must be followed by at least 1 field definition.

• The total size of the fields within a named COMMON area cannot exceed 16,383 characters.

• COMMON is similar toRECORD except that fields defined within a COMMON area are available
for use by the main program or by any external subroutine.

• If COMMON appears in a main program, space is allocated in memory just as it is done for a
RECORD statement.

• If COMMON appears in an external subroutine, memory is not allocated. All fields that appear in
the subroutine's COMMON area must reference the main program's COMMON area.

• Data cannot be shared between two external subroutines via the COMMON statement unless the
data is defined in the main program.

• COMMON and RECORD areas may be intermixed in the Data Division.

• When the main program is linked with its external subroutines, a correlation is made between the
field names defined in the COMMON areas of the subroutine and those of the main program.

• If a field is named in a COMMON area of an external subroutine but there is no corresponding
field name in the main program, an error message is generated when the program is linked.

• It is not necessary for the COMMON area of an external subroutine to contain all the COMMON
fields defined in the main program unless all are needed. For those that are needed it is
necessary that fields of the same types, names, and sizes be defined in the Data Division of the
main program and external subroutine. It is important that the sizes and types correspond.
Otherwise the operation will be incorrect and unpredictable problems may occur.

2-4 Data Division

• Fields in COMMON areas in subroutines cannot be assigned an initial value.

• The fields in the COMMON area of the subroutine do not need to be defined in the same order as
they are in the main program. The data is stored according to the order of the main program's
field definitions.

RULES FOR COMMON NAMES

• A COMMON name consists of up to 5 characters, the first of which must be alphabetic.
Remaining characters can be alphabetic, numeric, $, or _(underscore).

• Only the first 5 characters of a COMMON name are significant; remaining characters are
ignored.

• A name cannot be used to identify more than 1 RECORD area, COMMON area, or field.

• If a COMMON name is not specified, only named fields within that COMMON area can be
referenced.

• For each COMMON name and field name within COMMON, the compiler appends a dollar sign
($). This sign ($) ensures that COMMON names are unique and do not conflict with other global
names.

RULES FOR REDEFINITION INDICATOR

• The redefinition indicator permits redefinition of fields within the record being redefined.

• A redefining COMMON references the same memory area as the record being redefined.

• The new field definitions are specified following the redefining COMMON statement.

• The size of the redefining COMMON (the sum of the sizes of all its fields) must not be greater
than the size of the record being redefined.

• In a main program, COMMON can redefine RECORD or COMMON and vice versa.

• In an external subroutine COMMON cannot redefine RECORD and vice versa.

• Fields in a redefining COMMON cannot be assigned initial values.

COMPILER ERROR CONDITIONS

• None

RUN· TIME ERROR CONDITIONS

• None

Data Division 2-5

EXAMPLES

The following COMMON names (REC6, A_REC, and BAD$) are all legal:

COMMON REC6

COMMON A REC

COMMON BAD$

The following COMMON name (PAYROLL_RECORD) is legal but it will be truncated to 5
characters (i.e.,PAYRO):

COMMON PAYROLL RECORD

The following example contains a main program which has two COMMON areas and two external
subroutines. One subroutine (XSUB2) uses both COMMON areas, while the other subroutine
(XSUB1) uses only one. Neither of the two subroutines allocates memory storage area for the
COMMON areas; instead, the subroutines' COMMON areas point to the main program's memory
storage area.

Main Program

COMMON EMP ; Employee record
NAME, A20 Employee name
SAL, D5 Salary

COMMON
DATE, D5 Current date

Subroutine XSUBl

COMMON
DATE, D5 Current date

Subroutine XSUB2

COMMON
DATE, D5 Current date

COMMON EMP Employee record
NAME, A20 Employee name
SAL, D5 Salary

2-6 Data Division

FIELD DEFINITIONS

2.4 FIELD DEFINITIONS

FUNCTION

Field definitions define variables within a RECORD or COMMON area.

FORMAT

[name], [,literal]

where:

name is the field name.

A declares the field to be alpha.

D declares the field to be zoned decimal.

n is the size of the field.

literal is an alpha literal or a decimal literal (initial value).

GENERAL RULES

• The field size in an alpha field cannot exceed 16,383.

• The field size in a zoned decimal field cannot exceed 18.

RULES FOR FIELD NAME

• A field name in a RECORD consists of up to 6 characters, the first of which must be alphabetic.
Remaining characters can be alphabetic, numeric, $, or _(underscore).

• Only the first 6 characters of a field name in a RECORD are significant; remaining characters are
ignored.

• A field name in a COMMON area consists of up to 5 characters, the first of which must be
alphabetic. Remaining characters can be alphabetic, numeric, $, or _(underscore).

• Only the first 5 characters of a field name in a COMMON area are significant; remaining
characters are ignored.

• A name cannot be used to identify more than 1 RECORD area, COMMON area, or field.

• If no name is used, the field can be accessed either as part of the entire record by using the
record name, or by subscripting down from a previous record or field.

Data Division 2-7

RULES FOR SETTING INITIAL VALUES

• The initial value of a field is set by inserting a literal after the type and size specification.

• A comma must be used to separate the literal from the preceding type and size specification.

• The literal must be the same data type and should contain the same number of characters or
digits as specified for the field,.

• If the literal is longer than the field size, a warning is generated during program compilation.

• If the literal is shorter than the field size the initial value will be left-justified (for alpha literals), or
right-justified (for decimal literals).

• Leading signs (+ and-) in decimal literals, as well as delimiting apostrophes in alpha literals,
are not counted when calculating the size of a literal .

• If no initial value is specified, the field is initialized to all spaces if it is an alpha field, or to all
zeros, if it is a decimal field.

COMPILER ERROR CONDITIONS

• Overlay error

RUN-TIME ERROR CONDITIONS

• None

EXAMPLES

The following field names (DATE, ER_1, and CTR$) are all legal:

RECORD
DATE,
ER 1,
CTR$,

All
Dl
D2

; Date (dd-mmm-yyyy)
; Error indicator
; Counter

The following field name (EMPLOYEE_NAME is legal but will be truncated to 6 characters (i.e.,
EMPLOY). The same field name will be truncated to 5 characters when used in a COMMON area
(Le., EMPLO).

RECORD
EMPLOYEE_NAME, A20 ; Employee name

2-8 Data Division

The following record contains both named and unnamed fields. The 3 unnamed fields all have initial
values (named fields can also have initial values). The third field is a 2 character alpha field;
however, the initial value for the field contains only a single right parenthesis character ()). The
initial value will be left justified in the A2 field and the rightmost character will be cleared to a space.

RECORD
, AI, ' (,
AREA, D3 ; Area code
, A2, I) I

EXCH, D3 ; Telephone exchange
AI, I _ I ,

NMBR, D4 ; Telephone number

The following example shows 2 decimal fields which have initial values. The first field (LINE) is a 2
digit decimal field; however, the initial value is only a single digit. The initial value will be right
justified in LINE and the leftmost digit in LINE will be cleared to a zero.

RECORD
LINE, D2, 1
COLUMN, D2, 80

; Line number
; Column number

Data Division 2-9

ARRAY DEFINITIONS

2.5 ARRAY DEFINITIONS

FUNCTION

An array is a group of fields which share the same data type, field size, and symbolic name (array
name).

FORMAT

[name], m I ~ I n [,literal]

where:

name is the field name.

m is the array field count.

A declares the field to be alpha.

D declares the field to be zoned decimal.

n is the size of each field in the array.

literal is an alpha literal or a decimal literal (initial value).

GENERAL RULES

• The field size in an alpha field cannot exceed 16,383.

• The field size in a zoned decimal field cannot exceed 18.

RULES FOR FIELD NAME

• An array name in a RECORD consists of up to 6 characters, the first of which must be alphabetic.
Remaining characters can be alphabetic, numeric, $, or _(underscore).

• Only the first 6 characters of an array name in a RECORD are significant; remaining characters
are ignored.

• An array name in a COMMON area consists of up to 5 characters, the first of which must be
alphabetic. Remaining characters can be alphabetic, numeric, $, or _(underscore).

• Only the first 5 characters of an array name in a COMMON area are significant; remaining
characters are ignored.

• A name cannot be used to identify more than 1 RECORD area, COMMON area, or field.

• If no name is used, the fields within the array can be accessed either as part of the entire record
by using the record name, or by subscripting down from a previous record or field.

2-10 Data Division

RULES FOR ARRAY FIELD COUNT

• The array field count (m) may be any positive decimal value up to 8191.

• If no array field count is specified, it is assumed to be 1.

• Array data is referenced by using the array variable name with a subscript.

RULES FOR SETTING INITIAL VALUES

• The initial value of a field is set by inserting a literal after the type and size specification.

• A comma must be used to separate the literal from the preceding type and size specification.

• The literal must be the same data type and should contain the same number of characters or
digits as specified for the field.

• If the literal is longer than the field size, a warning is generated during program compilation.

• If the literal is shorter than the field size the initial value will be left-justified (for alpha literals), or
right-justified (for decimal literals).

• Leading signs (+ and -) in decimal literals, as well as delimiting apostrophes in alpha literals,
are not counted when calculating the size of a literal.

• If no initial value is specified, an alpha field is initialized to all spaces and a decimal field is
initialized to all zeros.

• Fields within an array may be initialized by specifying a series of initial values separated from
each other by commas.

• It is not necessary to initialize all fields of an array, but array fields that are to be initialized must
reside at the beginning of the array and must be contiguous.

COMPILER ERROR CONDITIONS

• Invalid array field count

RUN· TIME ERROR CONDITIONS

• None

EXAMPLES

The arrays (DAYS and MONTHS) in the following example have initial values for all of their fields:

RECORD
DAYS, 1202, 31,28,31,30,31,30,31,31,30,31,30,31
MONTHS, 12A3, 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'

& , 'Ju1', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'

Data Division 2-11

SUBROUTINE STATEMENT

2.6 SUBROUTINE STATEMENT

FUNCTION

SUBROUTINE identifies a program as an external subroutine.

FORMAT

SUBROUTINE name

where:

name is the subroutine name.

RULES

• SUBROUTINE must be the first statement (excluding Compiler Directives and/or comments) in
the Data Division of an external subroutine.

• SUBROUTINE is used to establish a logical connection between the subroutine and the calling
program.

• SUBROUTINE may be followed by 1 or more argument definitions.

RULES FOR SUBROUTINE NAME

• A subroutine name consists of up to 6 characters, the first of which must be alphabetic.
Remaining characters can be alphabetic, numeric, $, or _ (underscore).

• Only the first 6 characters of a subroutine name are significant; remaining characters are
ignored.

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• None

2-12 Data Division

2.6.1 Subroutine Argument Definition

FUNCTION

Subroutine argument definitions specify the data linkages between an external subroutine and the
program that called the external subroutine.

FORMAT

A
[name),

D

where:

name is the subroutine's internal name for the subroutine argument.

A declares the field to be alpha.

D declares the field to be zoned decimal.

RULES

• If a record is passed as an argument, references cannot be made to its fields; the entire record
can only be referred to in a subroutine as a single alpha field.

• The size of the argument is the size of the data as specified in the calling program.

• Argument definitions should correspond in number and data type with the arguments specified in
the XCALL statement in the calling program.

• The first argument definition specified refers to the data item referenced in the first argument in
the XCALL statement. The second argument definition refers to the second XCALL argument,
etc.

RULES FOR SUBROUTINE ARGUMENT NAME

• An argument name consists of up to 6 characters, the first of which must be alphabetic.
Remaining characters can be alphabetiC, numeric, $, or _(underscore).

• Only the first 6 characters of a subroutine argument name are significant; remaining characters
are ignored.

• A name cannot be used to identify more than 1 RECORD area, COMMON area, or field.

Data Division 2-13

COMPILER ERROR CONDITIONS

• Subroutine dummy argument not zero

RUN-TIME ERROR CONDITIONS

• None

EXAMPLES

In the following example, the main program calls the external subroutine (CNVRT) to change the format
of the date. It passes the arguments DATE and XDATE. These arguments are represented in the
subroutine as OLD and NEW.

RECORD

PROC

Main Program

DATE, D6, 010750
XDATE, All

XCALL CNVRT (DATE,XDATE)
OPEN (1,0,' TT: ')
WRITES (l,XDATE)
CLOSE 1
STOP

Convert the date
; Open the terminal
; Display the date

Close the terminal

External Subroutine

SUBROUTINE CNVRT ; Convert the date format

RECORD

RECORD

RECORD

&

PROC

2-14 Data Division

OLD, D ; Date (mmddyy)
NEW, A Date (dd-mmm-yy)

ODATE Old date format
MM, D2 Month
DD, D2 ; Day
'i'i, D2 ; Year

NDATE New date format
DAY, A2 Day

AI, ' - , ,
MONTH,A3 ; Month

AI, , - , ,
YEAR, D2 Year

MNAME,12A3,'Jan' ,'Feb' ,'Mar' ,'Apr' ,'May' ,'Jun'
,'Jul' ,'Aug' ,'Sept ,'Oct' ,'Nov' ,'Dec'

ODATE=OLD
DA'i=DD
YEAR=YY
MONTH=MNAME(MM)
NEW=NDATE
RETURN

Move day to new format
; Move year to new format
; Move month to new format
; Return new date

3.1 INTRODUCTION

CHAPTER 3
THE DISOl-S3 PROCEDURE

DIVISION STATEMENTS

The DIBOL-83 Procedure Division statements process data and control program execution. These
statements are verbs containing arguments and expressions.

This chapter contains information on value assignment statements, data conversion, and data
formatting. The Procedure Division statements are arranged alphabetically for easy reference.

3-1

VALUE ASSIGNMENT STATEMENTS

3.2 VALUE ASSIGNMENT STATEMENTS

FUNCTION

Value Assignment statements:

• Move data.

• Store the results of arithmetic expressions.

• Convert and format data.

• Clear variables.

FORMAT

destination = source

where:

destination
is a record or field which contains the data to be stored.

source is a record, field, literal, or expression which contains the data to be stored.

RULES

• The contents of the source are moved to the destination.

• The source data is not altered unless the destination location is one of the source elements (for
example, A = A + 1).

• The destination is the field or record defined in a Data Division statement and can be either alpha
or decimal.

• The source data is always converted to the data type defined for the destination.

3.2.1 Moving Alpha Data

FUNCTION

Value assignment statements move alpha data.

FORMAT

I afield
afield = aliteral

where:

afield

afield
aliteral

is an alpha field or record which is the destination.

is an alpha field, alpha literal, or record which is the source.

3-2 The 0180L-83 Procedure Division Statements

RULES

• The source is moved to the destination and is left-justified.

• If the source is smaller than the destination, the unused rightmost character positions in the
destination are cleared to spaces.

• If the source data is larger than the destination, the rightmost characters that cause overflow are
truncated.

COMPILER ERROR CONDITIONS

• None

RUN· TIME ERROR CONDITIONS

• 8 NT Writing into a literal

EXAMPLES

In the following example, the value of NAME2 (which contains 'Johnson') is moved to NAME1. Since
NAME1 is only 4 characters long, only the first 4 characters of 'Johnson' are moved. NAME1 will contain
'John' and the entire record will contain 'JohnJohnson'.

RECORD

PROC

NAMEl,
NAME2,

A4, 'Fred'
A7, 'Johnson'

NAMEl=NAME2
In the following example, the value of B (which contains 'FGH') is moved to A. 'FGH' will be left-justified
in A and the rightmost characters in A will be cleared to spaces. A will contain 'FGH ' and the entire
record will contain 'FGH FGH'.

RECORD
A, AS,' ABCDE '
B, A3, 'FGH'

PROC
A=B

3.2.2 Moving Decimal Data

FUNCTION

Value assignment statements move decimal data.

FORMAT

dfield = dexp

where:

dfield is a decimal field which is the destination.

dexp is a decimal expression which is the source.

The DIBOL-83 Procedure Division Statements 3-3

RULES

• The sign of the source data is preserved in the destination field.

• The source is moved to the destination and is right-justified.

• If the source is smaller than the destination, the unused leftmost digit positions in the destination
are cleared to zeros .

• If the source is larger than the destination, the leftmost digits that cause overflow are truncated.

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 8 NT Writing into a literal

EXAMPLES

In the following example, the value of A (which contains 1234) is moved to B. Since B is shorter than A,
1234 is right-justified in B and the digits that cause overflow (12) are truncated. B will contain 34.

RECORD
A, D4, 1234
B, D2

PROC
B=A

In the following example, the value of A (which contains 1234) is moved to C. Since C is longer than A,
1234 is right-justified in C and the leftmost digits are cleared to zero. C will contain 0000001234.

RECORD
A, D4, 1234
B, D2,

PROC
C=A

In the following example the result of A *B (1234*34= 41956) is moved to C. Since C is only 4 digits long,
4196 is right-justified in C and the leftmost digit is truncated. C will contain 1956.

RECORD
A, D4, 1234
B, D2, 34
C, D4

PROC
C=AB

3-4 The DIBOL-83 Procedure Division Statements

3.2.3 Alpha-to-Decimal Conversion

FUNCTION

Value assignment statements convert alpha data to its decimal equivalent.

FORMAT

afield
dfield = aliteral

where:

dfield is a decimal field which is the destination.

I afield , is an alpha field, alpha literal, or record which is the source.
aliteral

RULES

• The source may contain up to 18 digits with any number of plus (+) or minus (-) characters.
Plus and minus characters are treated as unary operators and are combined algebraically.

• Spaces in the source are ignored.

• The source is moved to the destination and is right-justified.

• If the source is smaller than the destination, the unused leftmost digit positions in the destination
are cleared to zeros.

• If more than 18 digits are moved, or, if the source is larger than the destination, the leftmost digits
that cause overflow are truncated.

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 20 T Bad digit

• 8 NT Writing into a literal

EXAMPLES

In the following example, the value of A (which contains '910111213141 ') is moved to B.

Since B is shorter than A, '910111213141' is right-justified in B and the digits that cause overflow
(91) are truncated. B will contain 011213141.

RECORD
A, A12, '910111213141'
B, 010

PROC
B=A

The D180L-83 Procedure Division Statements 3-5

In the following example, the value of A (which contains '65444321 ') is moved to C. Since C is
longer than A, '65444321' is right-justified in C and the leftmost digits are cleared to zero. C will
contain 0065444321.

RECORD
A, A8,'65444321'
C, 010

PROC
C=A

In the following example, the value of A (which contains '-0065432178') is moved to C. C will contain
006543217x. The 'x' is the internal representation for -8 (see Appendix A).

RECORD
A, All, '-0065432178'
C, D10

PROC
C=A

3.2.4 Decimal-to-Alpha Conversion

FUNCTION

Value assignment statements convert decimal data to its alpha equivalent.

FORMAT

afield = dexp

where:

afield is an alpha field or record which is the destination.

dexp is a decimal expression which is the source.

RULES

• The source is moved to the destination and is right-justified.

• If the source is negative, an additional character should be allocated in the destination for the
minus sign. A leading minus sign is inserted to the left of the leftmost nonspace character in the
d~stination.

• If the source is smaller than the destination, the unused leftmost character positions in the
destination are cleared to spaces.

• If the source is larger than the destination, the leftmost characters that cause overflow are
truncated.

• Leading zeros are cleared to spaces.

• If the source is zero, a Single right-justified zero is moved to the destination; remaining character
pOSitions to the left are cleared to spaces.

3-6 The D180L-83 Procedure Division Statements

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 8 NT Writing into a literal

EXAMPLES

In the following example, the value of A (which contains 87654321) is moved to B. Since B is shorter
than A, 87654321 is right-justified in B and the digits that cause overflow (8765) are truncated. B will
contain '4321'.

RECORD
A, 08, 87654321
B, A4

PROC
B=A

In the following example, the value of A (which contains 1234) is moved to C. Since C is longer than
A, 1234 is right-justified in C and the leftmost characters are cleared to spaces. C will contain
'1234'.

RECORD
A, 04, 1234
C, A6

PROC
C=A

In the following example, the value of A (which contains Ox, the internal representation for -08 (see
Appendix A)) is moved to C. C will contain '-8'.

RECORD
A, 02, -08
C, A3

PROC
C=A

In the following example, the value of A (which contains 000) is moved to C. C will contain '0'.

RECORD
A, 03, 000
C, A3

PROC
C=A

The DI80L-83 Procedure Division Statements 3-7

In the following example, the value of A (which contains 123t, the internal representation for -1234
(see Appendix A)) is moved to C. C will contain '234'.

RECORD
A, D4, -1234
C, A3

PROC
C=A

If a decimal field can have a negative value, space must be made for the sign in the alpha field. In
the following example, the value of A (which contains -1234) is moved to C. C will contain '1234'
with no minus sign.

RECORD
A, D4, -1234
C, A4

PROC
C=A

3.2.5 Formatting Data

FUNCTION

Value assignment statements permit decimal data to be converted to its alpha equivalent and
formatted.

FORMAT

afield = dexp, formatstring

where

afield

dexp

formatstring

RULES

is an alpha field or record which is the destination.

is a decimal expression which is the source.

is an alpha field, alpha literal, or record which contains format control characters.

• The source is formatted according to the format string, moved to the destination, and right
justified.

• If the formatted data is smaller than the destination, the unused leftmost character positions in
the destination are cleared to spaces.

• If the formatted data is larger than the destination, the leftmost characters that cause overflow
are truncated.

• The format string forms a picture or specification of what the converted data is to look like. It is
composed of one or more format control characters (see Table 3-1).

• The format string may also contain other DIBOL-83 characters (except for the format control
characters themselves) that are to be inserted in the formatted data.

• The format string should be large enough to represent the entire source, since only those digits
that are specified by the format string are moved.

3-8 The D180L-83 Procedure Division Statements

Table 3-1
FORMAT CONTROL CHARACTERS

Character Description

X Each X represents a digit position. An X causes a digit in the source to be placed in the
corresponding position in the destination. If there are more Xs than source digits, a
leading zero is inserted for each additional X.

Z Each Z represents a digit position. A Z suppresses a leading zero in this character
position if Z is to the left of the decimal point (see below). When placed to the right of the
decimal point, zeros are suppressed only if all digits are zeros.

* Each asterisk (*) represents a digit position. It replaces a leading zero with an * symbol
in this position.

money Each money sign (for example, $) represents a digit position. It replaces leading zeros
sign beginning at this character position with leading spaces and a single money sign. Format

characters to the left of the money sign are ignored. Any character can be used for the
money sign by calling the MONEY external subroutine, although it is initially set to $. Any
character with an established format meaning should not be used, for example, ,Z,X, -.
,

- When used as the first or last character in a format string, the minus sign (-) causes the
sign of the number being formatted to be placed in that position. If the number is
negative, a minus appears, otherwise a space is inserted. When used elsewhere in a
format string, this will cause a minus to be placed in that position in the formatted data. A
minus cannot be used to the left of a money sign format character.

NOTE

The following descriptions on the decimal point (.)
and comma (,) are reversed when international
data formatting is selected via the FLAGS external
subroutine.

A decimal point (.) causes a decimal point to be inserted in the corresponding position in
the formatted data and causes zeros to the right of it to become significant.

, The comma (,) causes a comma to be inserted in the corresponding position in the
formatted data if there are significant digits to the left.

The DIBOL-83 Procedure Division Statements 3-9

COMPILER ERROR CONDITIONS

• None

RUN· TIME ERROR CONDITIONS

• 8 NT Writing into a literal

EXAMPLES

The following examples assume that the Data Division contains the following fields:

RECORD
F, A8

The following examples illustrate data formatting:

Statement Result

F= 123, 'xxxxxxxx' '00000123'

F= 123, 'zzzzzzzz' 123'

F= 123, '********' '*****123'

F= 123, '$$$$$$$$' $123'

F= -1123, '-XXX,XXX' '-001,123'

F= 123, '$$$$$.XX' $1. 23'

F= -123, '$***. **-' '$**1.23-'

F= 12345678,'X,XXX.XX' '3,456.78'

3-10 The DIBOL-83 Procedure Division Statements

3.2.6 Clearing Variables

FUNCTION

Value assignment statements clear variables.

FORMAT

field =

where:

field is an alpha field, decimal field, or record which is to be cleared.

RULES

• If the destination is an alpha field, it is cleared to spaces.

• If the destination is a decimal field, it is cleared to zeros.

• If the destination is a record containing decimal fields, the entire record, including the decimal
fields, is cleared to spaces.

• If the equal sign (=) is followed by anything on the same line (other than a comment) it is treated
as an assignment statement.

NOTE

Whenever possible use the CLEAR statement to
clear fields.

COMPILER ERROR CONDITIONS

• None

RUN· TIME ERROR CONDITIONS

• 8 NT Writing into a literal

EXAMPLES

When clearing a field, the equal sign (=) cannot be followed by anything on the same line (other
than a comment). If anything follows the equal sign, the statement is interpreted as a value
assignment statement. In the following example, the statement is not legal. It is interpreted as
A=ELSE.

IF A.EQ.B THEN A= ELSE STOP

See CLEAR for examples on clearing fields. Whenever possible use the CLEAR statement to clear
fields.

The DIBOL-83 Procedure Division Statements 3-11

ACCEPT

3.3 ACCEPT

FUNCTION

ACCEPT inputs a character from a terminal.

FORMAT

ACCEPT (ch, field[,labe/))

where:

ch is a decimal expression that evaluates to a channel number as specified in a previous
OPEN statement.

field is an alpha field, decimal field, or record which will contain the character input from the
terminal.

label is a statement label where control is to be transferred when a (CTRUZ) is detected.

GENERAL RULES

• ACCEPT is used in I or 0 mode with a terminal.

• If the RETURN key on a terminal is used, a carriage return character and line feed character are
generated.

RULES FOR ACCEPTING INTO AN ALPHA FIELD OR RECORD

• The character is moved to the leftmost character position of the field according to the rules for
moving alpha data (see section 3.2.1).

• If a CTRUZ is detected, it is interpreted as a logical end-of-file and no character is input.

RULES FOR ACCEPTING INTO A DECIMAL FIELD

• Field should be a 3 digit field.

• The decimal character code is moved to field according to the rules for moving decimal data (see
section 3.2.2).

• All characters are input. CTRUZ is input like other characters and does not terminate input.

3-12 The DIBOL-83 Procedure Division Statements

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 1 T End of file

• 8 NT Writing into a literal

• 10 NT Illegal channel number

• 11 NT Channel not open

• 21 T Bad OPEN

EXAMPLES

The following examples assume that the Data Division contains the following fields:

RECORD
ACHR, Al
DCHR, 03

In the following example ACCEPT reads a character into ACHR. When a CTRLlZ is detected,
control is transferred to the statement labeled END. If 'A' is typed at the terminal, ACHR will contain
'A'.

ACCEPT (3,DCHR,END)

In the next example ACCEPT puts the decimal character code for the next character into DCGHR.
When accepting into a decimal field, CTRLlZ is treated the same as all other characters. If 'A' is
typed at the terminal, DCHR will contain 065 which is the decimal character code for 'A'.

ACCEPT (3,DCHR)

The DIBOL-83 Procedure Division Statements 3-13

BEGIN-END

3.4 BEGIN-END BLOCK

FUNCTION

The BEGIN-END block is a sequence of statements preceded by BEGIN and followed by END.

FORMAT

BEGIN
statement

END

where:

statement is a DIBOL Procedure Division statement.

RULES

• The BEGIN-END block may be used wherever a single executable statement is valid.

• Control can be transferred from inside a BEGIN-END block to outside the BEGIN-END block.

• BEGIN may begin on a new line.

• END may begin on a new line.

• BEGIN and END cannot be followed on the same line by any statement.

• The label on BEGIN, if present, is outside the block.

• The label on END, if present, is inside the block.

COMPILER ERROR CONDITIONS

• No END for BEGIN

• Stack overflow

RUN· TIME ERROR CONDITIONS

• None

3-14 The D180L-83 Procedure Division Statements

EXAMPLES

The BEGIN-END block is particularly useful with the IF, IF-THEN-ELSE, DO-UNTIL, FOR, USING,
and WHILE statements. In the following example all of the statements within the BEGIN-END block
will be executed if LNECTR is greater than MAXCTR.

IF LNECTR.GT.MAXCTR ; Time for a new pag e?
BEGIN Yes--
FORMS (6,0) Output a form feed
INCR PAGE Increment the page numbe r
WRITES (6,TITLE) ; Output title
CLEAR LNECTR Reset line counter
END

In the following example the statements within the BEGIN-END block (the READS and the IF) will be
repetitively executed until CUSNAM equals SPACES. The IF statement also contains a BEGIN
END block. The statements within this inner BEGIN-END block will be executed if the BALANC is
greater than 100.

DO
BEGIN
READS (l,CUST,EOF)
IF BALANC.GT.100

END

BEGIN
NAME=CUSNAM
AMT=BALANC
WRITES (6,PLINE)
END

UNTIL CUSNAM.EQ.SPACES

Read a customer record
Owe more than $100?
Yes--
Save customer name
Save the balance
Print name and balance

The D180L-83 Procedure Division Statements 3-15

CALL

3.5 CALL

FUNCTION

CALL transfers program control to an internal subroutine.

FORMAT

CALL label

where:

label is the statement label of the first statement in the subroutine.
,

RULES

• Each CALL statement must be matched by a RETURN statement.

• The matching RETURN statement causes control to return to the statement logically following
the CALL.

COMPILER ERROR CONDITIONS

• Label out of context block: < label name>

RUN-TIME ERROR CONDITIONS

• 66 NT R6 Stack overflow

EXAMPLES

This example shows how program control branches from one subroutine to the next and returns.
The solid lines show the control path upon execution of RETURN statements.

CALL PROFIT
WRITES (6,PROFIT)
CLOSE 6
STOP

; Output the profit
Close the file

; Subroutine to calculate profit

PROFIT, PBT=PRICE-COST
CALL TAX
PAT=PBT-TAX

profit
RETURN

; Compute pre-tax profit
; Get the tax

; Compute post-tax

; Subroutine to calculate tax

TAX, TAX=PBT8 ; Compute the tax
IF TAX.GT.MAX TAX=MAX
RETURN

3-16 The D180L-83 Procedure Division Statements

CLEAR

3.6 CLEAR

FUNCTION

CLEAR sets variables to zeros or spaces.

FORMAT

CLEAR field[, ...]

where:

field is an alpha field, decimal field, or record.

RULES

• If field is an alpha field it is cleared to spaces.

• If field is a decimal field, it is cleared to zeros.

• If field is a record containing decimal fields, the entire record, including the decimal fields, is
cleared to spaces.

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 8 NT Writing into a literal

EXAMPLES

The following examples assume that the Data Division contains the following fields:
RECORD REC

AFLD, AIO
DFLD, D5

The following statement will clear AFLD to all spaces:

CLEAR AFLD

The following statement will clear DFLD to all zeros:

CLEAR DFLD

The following statement will clear AFLD to all spaces and will clear DFLD to all zeros:

CLEAR AFLD,DFLD

When a record is cleared, all fields including decimal fields within the record, are cleared to spaces.
The following statement will clear AFLD and DFLD to spaces.

CLEAR REC

The D180L-83 Procedure Division Statements 3-17

CLOSE

3.7 CLOSE

FUNCTION

CLOSE terminates the use of a channel by closing the associated file and releasing both the I/O
channel and the file buffer.

FORMAT

CLOSE ch

where:

ch is a decimal expression that evaluates to a channel number as specified in a previous
OPEN statement.

RULES

• CLOSE is necessary for channels opened in 0 and U modes to assure that records remaining in
the I/O buffer are output to the file.

• If the channel is open in 0 mode, CLOSE writes records remaining in the I/O buffer into the file.
The end-of-file mark is placed after the last record in the file.

• If the channel is open in U mode, CLOSE writes records remaining in the I/O buffer into the file.
The records are automatically unlocked.

• No error is generated if the channel is not opened.

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 10 NT Illegal channel number

• 22 T 1-0 error

• 25 T Output file full

• 40 T Record locked

3-18 The D180L-83 Procedure Division Statements

EXAMPLES

There are three parts to the following example. First, a new file is created and a single record is
written into it. Second, the newly created file is opened for input and the record is read. Finally, the
record that was read is displayed on the screen. All I/O operations use the same channel. The
channel number can be reused following the CLOSE statement.

RECORD
DAT, A80

PROC
;
; Create a new file (TEST.DDF)
;

;

OPEN (3,O,'TEST.DDF')
WRITES (3,'This is a test')
CLOSE 3

Create file
Output a record

; Close TEST.DDF

; Read the record written into newly created file
;

;

OPEN (3,I,'TEST.DDF')
READS (3,DAT)
CLOSE 3

; Open TEST.DDF for input
Read a record

; Close the input file

; Display the record that was read
;

OPEN (3 , 0, , TT: I)

WRITES (3,DAT)
CLOSE 3
STOP

; Open the terminal
; Display the data
; Close the terminal

The DIBOL-83 Procedure Division Statements 3-19

DELETE

3.8 DELETE

FUNCTION

DELETE eliminates a record from an indexed file.

FORMAT

DELETE (ch ,keytld)

where:

ch

keyfld

RULES

is a decimal expression that evaluates to a channel number as specified in a previous
OPEN statement.

is an alpha field or record which identifies the record to be deleted.

• DELETE is used in U:I mode.

• The record to be deleted is the record most recently read on the specified channel and must still
be locked.

• DELETE serves as a signal to the file system that the record is no longer valid. The action taken
is system dependent.

• Keyfld must match the key field of the last record read.

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 10 NT Illegal channel number

• 11 NT Channel not open

• 21 T Bad OPEN

• 22 T 1-0 error

• 40 T Record locked

• 52 T Illegal key

• 53 T Key not same

• 61 T No current record

3-20 The DIBOl Procedure Division Statements

EXAMPLES

In the following example all of the customer records in the indexed file are read. When a customer
with a balance of less than $20 is found, that customer's record is deleted.

RECORD REC
NAME, AIO ; Customer name
BAL, D6 Customer balance

PROC
OPEN (l,U:I,'CUSBAL.ISM') Open the indexed file

LOOP, READS (I, REC , OUT) Read the next record
IF BAL.LT.20 ; Balance less than $20?

DELETE (I, NAME) ; YES--Delete the record
GOTO LOOP

OUT, CLOSE 1 ; Close the file
STOP

The DIBOL-83 Procedure Division Statements 3-21

DETACH

3.9 DETACH

FUNCTION

DETACH disconnects the program from its associated terminal.

FORMAT

DETACH

RULES

• When DETACH is executed, the message DETACHING is displayed at the terminal and the
program continues its execution.

• Attempting to perform I/O to the terminal suspends the program's execution until a terminal is
reassigned to the detached program.

• DETACH has no effect on a program executing in a non-multi-tasking or detached environment.

• The terminal number associated with a detached program is -1, regardless of the number of the
terminal from which the program detaches.

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• None

3-22 The D180L-83 Procedure Division Statements

EXAMPLES

The following program allows the operator to enter the name of a file to print. Once the file name is
entered, the terminal is no longer required by the program. Therefore, the DETACH statement is
used so that another program may be run at the terminal.

RECORD

PROC

FILE,
LINE,

A20
Al32

OPEN (I, I, , TT: ')

; File name to print
; Line to print

; Open the terminal
WRITES (1,'Enter file name')

• READS (l,FILE)
CLOSE 1
DETACH

; Display prompt
Accept the file name

; Close the terminal
; Release the terminal

;
The remainder of the program runs detached

;
OPEN (l,I,FILE) ; Open the print file
OPEN (6,O:P,'LP: ') ; Open the printer

LOOP, READS (1, LINE, EOF) ; Read the next line
WRITES (6,LINE) ; Print the line
GOTO LOOP

EOF, CLOSE 1 ; Close the print line
CLOSE 6 ; Close the printer
STOP

The DIBOL-83 Procedure Division Statements 3-23

DISPLAY

3.1 0 DISPLAY

FUNCTION

DISPLAY outputs characters to a device or file.

FORMAT

DISPLAY (ch, aliteral [, ...]) I afield I
where:

ch

afield
aliteral
dexp

RULES

dexp

is a decimal expression that evaluates to a channel number as specified in a previous
OPEN statement.

is an alpha field, alpha literal, record, or decimal expression which contains the
characters to output.

• DISPLAY is used in O:P mode with a sequential file; in I and 0 modes with a terminal; and in 0
mode with a printer.

• DISPLAY uses the ASCII decimal character code (see Appendix A).

• If the data is alpha, the characters are output to the device as presented.

• If the data is decimal, the number is treated as a single character code.

• A number that exceeds the character code range (0 through 255) is converted by dividing the
number by 256 and taking the remainder as a character code (e.g., 257 is interpreted as 001).

• A negative number produces unpredictable results.

3-24 The D180L-83 Procedure Division Statements

COMPILER ERROR CONDITIONS

• None

RUN· TIME ERROR CONDITIONS

• 10 NT Illegal channel number

• 11 NT Channel not open

• 21 T Bad OPEN

• 104 NT Out of range

EXAMPLES

The following example outputs the message HELLO followed by a Carriage Return (decimal
character code 13) and a Line Feed (decimal character code 10):

DISPLAY (1, 'HELLO' ,13,10)

DISPLAY is especially useful for outputting terminal control sequences. The terminal user guide
lists control code sequences for cursor positioning, clearing the screen, and many other operations.
Assuming that channel 1 is associated with a VT100 terminal, the following example will position
the cursor to line 3, column 5:

DISPLAY (1,27,' [3;5H')

The DIBOL-83 Procedure Division Statements 3-25

DO-UNTIL

3.11 DO-UNTIL

FUNCTION

DO-UNTIL repetitively executes a statement until a condition is true.

FORMAT

DO statement UNTIL condition

where:

statement is a DIBOL Procedure Division statement.

condition is a decimal expression.

RULES

• Statement is always executed at least once.

• The condition is evaluated following each execution of the statement.

• The condition is either true (non-zero) or false (zero).

• If the condition is false, the statement is executed again.

• UNTIL may be on a separate line.

• Statement may be on a separate line.

DO-UNTIL

execute
statement

false test
condition

true

3-26 The D180L-83 Procedure Division Statements

COMPILER ERROR CONDITIONS

• No UNTIL in DO-UNTIL statement

• Stack overflow

RUN· TIME ERROR CONDITIONS

• None

EXAMPLES

In the following example customer records (CUST) will be read until one is found with a balance
(BAL) of less than $20:

DO
READS (l,CUST,EOF)

UNTIL BAL.LT.20

The following program segment reads customer records (CUST) and creates a list of those
customers with a balance over $100:

DO
BEGIN
READS (l,CUST,EOF)
IF BALANC.GT.100

END

BEGIN
NAME=CUSNAM
AMT=BALANC
WRITES (6,PLINE)
END

UNTIL CUSNAM.EQ.SPACES

Read a customer record
; Owe more than $100?

Yes--
Save customer name

; Save the balance
; Print name and balance

The DIBOL-83 Procedure Division Statements 3-27

FOR

3.12 FOR

FUNCTION

FOR repetitively executes a statement.

FORMAT

FOR dfield FROM initial THRU final [BY step] statement

where:

dfield is a decimal field to be incremented.

initial is a decimal expression which specifies the initial value to be assigned to dfield.

final

step

is a decimal expression which specifies the final value for dfield.

is a decimal expression which specifies the value to add to dfield each time through the
loop.

statement is a DIBOL Procedure Division statement.

FOR
(positive step value)

t-final = final
t -step = step
dfield = initial

execute
statement

dfield = dfield + t-step

yes

3-28 The D180L-83 Procedure Division Statements

FOR
(negative step value)

t-final = final
t-step = step
dfield = initial

execute
statement

dfield = dfield + t-step

yes

RULES

• Dfield cannot be a subscripted decimal field.

• FOR generates internal temporary fields to hold step (t-step) and final (t-final).

• T -final is a temporary field set to the final value and t-step is a temporary field set to the step
value, prior to executing the loop.

• If no step value is specified, it is assumed to be 1.

• Prior to entering the loop, the sign of t-step is checked to insure that the step direction is
correct. For the step direction to be correct, dfield must be less than or equal to t-final if t-step
is positive, and dfield must be greater than or equal to t-final if t-step is negative. If the step
direction is incorrect, the loop is not entered.

• Prior to each execution of statement, dfield is tested to determine if it has reached its limit. If
dfield has not reached is limit, statement is executed.

• If dfield is not large enough to hold final plus the step value without truncation, an infinite loop
may occur.

• T -step is added to dfield following each statement execution.

• If the loop is not executed, dfield is equal to the initial value.

• If the loop is exited normally, dfield will equal the previous value of dfield plus step.

• Modifying the initial value, final value, or step value in the FOR loop has no effect on the
execution of the FOR loop.

• The statement may be on a separate line.

COMPILER ERROR CONDITIONS

• Invalid data type

• No FROM in FOR statement

• No THRU in FOR statement

• Stack overflow

RUN· TIME ERROR CONDITIONS

• 15 T Number too long (only on initial, final, or step)

• 87 T Argument missing

The D180L-83 Procedure Division Statements 3-29

EXAMPLES

In the following example customer records 100 through 200 (inclusive) will be read and displayed:

FOR RECNO FROM 100 THRU 200
BEGIN
READ (l,CUST,RECNO)
WRITES (8,CUST)
END

; Read customer record
; Display the record

The FOR in the following program segment trims trailing spaces from a print line:

NEXT,

FOUND,

READS (1, LINE)
FOR I FROM 132 THRU 1 BY -1

IF LINE(I,I).NE.SPACE
GOTO FOUND

FORMS (6,1)
GOTO NEXT
WRITES' (6,LINE(1,I»
GOTO NEXT

; Read line to print

; Is this a space?
; No--found last character
; Completely blank line

Output the line

In the following example the ~ndex field (I) is not large enough to hold the limit value plus the step
(limit (99) + step (1) = 100). When the index reaches 99 it will be incremented to 100, but since the
index field is only a 2 digit field, 00 will be stored in I. Therefore, the FOR statement will loop
continuously.

RECORD WORK
I, D2 ; Loop index

PROC
OPEN (1 , 0, I TT: I) ; Open terminal
FOR I FROM 1 THRU 99

WRITES (l,WORK) ; Display index
STOP

3-30 The DIBOL-83 Procedure Division Statements

(

FORMS

3.13 FORMS

FUNCTION

FORMS outputs device-dependent codes to effect forms control. These codes are normally used by
printers.

FORMAT

FORMS (ch,dexp)

where:

ch is a decimal expression that evaluates to a channel number as specified in a previous
OPEN statement.

dexp is a decimal expression that results in a printer control code.

RULES

• FORMS is used in 0 mode with a sequential file, in I and 0 modes with a terminal, and in 0 mode
with a printer.

• Acceptable control code values are:

o Transmits a Form Feed character (ASCII code 12).

1-255 Sends this many Line Feed characters (ASCII code 10) preceded by a
Carriage Return character (ASCII code 13).

-1 Transmits a Vertical Tab character (ASCII code 11).

-3 Transmits a Carriage Return (ASCII code 13).

COMPILER ERROR CONDITIONS

• None

RUN-TIME ERROR CONDITIONS

• 10 NT Illegal channel number

• 11 NT Channel not open

• 22 T 1-0 error

• 104 NT Value out of range

EXAMPLES

The following FORMS statement will skip 3 lines:

FORMS (6,3)

The following FORMS statement will cause the printer to start a new page:

FORMS (6,0)

The DIBOL-83 Procedure Division Statements 3-31

GOTO

3.14 GOTO

FUNCTION

An unconditional GOTO transfers program control.

FORMAT

GOTOlabel

where:

label is the statement label where control is to be transferred.

RULES

• The statement may be written as GOTO or GO TO.

COMPILER ERROR CONDITIONS

• Label out of context block: < label name>

RUN· TIME ERROR CONDITIONS

• None

EXAMPLES

In the following example the GOTO will transfer control to the label NEXT:

NEXT, READS (l,CUST,EOF)
NAME=CUSNAM
AMT=BALANC
WRITES (6,PLINE)
GOTO NEXT

3-32 The D180L-83 Procedure Division Statements

; Read a customer record
Save customer name

; Save the balanc
; Print name and balance

~~~~~~---~--.. 



GOTO(COMPUTED) 

3.15 GOTO (COMPUTED) 

FUNCTION 

A computed GOTO transfers program control based on the evaluation of an expression. 

FORMAT 

GOTO (/abel(, ... ]),dexp 

where: 

label is one or more statement labels where control is to be transferred. 

dexp is a decimal expression which determines to which statement label control is transferred. 

RULES 

• The statement may be written as GOTO or GO TO. 

• Control is transferred to the statement identified by the first label if dexp is 1, to the statement 
identified by the second label if dexp is 2, etc. 

• If dexp is negative, zero, or greater than the number of labels, control is transferred to the next 
logical statement in sequence. 

COMPILER ERROR CONDITIONS 

• Label out of context block: < label name> 

RUN-TIME ERROR CONDITIONS 

• None 

EXAMPLES 

In the following statement control will be transferred to the label LOOP if the value of KEY is 1; to the 
label LIST if the value of KEY is 2; and to the label TOTAL if the value of KEY is 3. If the value of KEY 
is less than 1 or greater than 3, control will be transferred to the statement following the GOTO. 

GOTO (LOOP,LIST,TOTAL), KEY 

The DIBOL-83 Procedure Division Statements 3-33 



IF 

3.16 IF 

FUNCTION 

IF executes a statement if a condition is true. 

FORMAT 

I F condition statement 

where: 

condition is a decimal expression which determines whether or not the statement is executed. 

statement is a DIBOL Procedure Division statement. 

IF 

true 

false 

3-34 The D180L-83 Procedure Division Statements 

execute 
statement 



RULES 

• The condition is either true (non-zero) or false (zero). 

• If the condition is true, statement is executed. 

• If the condition is false, statement is not executed. 

• Statement may be on a separate line. 

COMPILER ERROR CONDITIONS 

• None 

RUN-TIME ERROR CONDITIONS 

• None 

EXAMPLES 

In an alpha relatronal comparison, the operands are compared on a character basis from left to right 
according to their value in the collating sequence specified by their character codes (see Appendix 
A). The comparison is limited to the size of the shorter alpha field. For example, the following 
statement compares a 3 character alpha field to a 5 character alpha field. Since only the first 3 
characters are compared, the result of the following statement is true: 

IF 'ABC' .EQ.'ABCDE' STOP 

The following IF statements are all valid: 

The following IF statements are all valid: 

IF A.EQ.B GOTO LABEL3 

IF (SLOT.NE.202) READS (CH,RECNAM,EOF) 

IF SALES.LT.PROFIT+TAX-RENT 
STOP 

IF DONE STOP 

IF LNECTR.GE.MAXCTR 
BEGIN 
FORMS (6,0) 
WRITES (6,TITLE) 
CLEAR LNECTR 
END 

The DIBOL-83 Procedure Division Statements 3-35 



IF-THEN-ELSE 

3.17 IF-THEN-ELSE 

FUNCTION 

IF-THEN-ELSE executes 1 of 2 statements based on a condition. 

FORMAT 

IF condition THEN statement1 ELSE statement2 

where: 

condition is a decimal expression that determines which statement is executed. 

statement 1 

statement2 

is a DIBOL Procedure Division statement. 

is a DIBOL Procedure Division statement. 

IF-THEN-ELSE 

false 

execute 
statement 2 

true 

3-36 The D180L-83 Procedure Division Statements 

execute 
statement 1 



RULES 

• The condition is either true (non-zero) or false (zero). 

• If the condition is true, statement1 is executed. 

• If the condition IS false, statement2 is executed. 

• THEN may be on a separate line. 

• ELSE may be on a separate line. 

• Statement1 may be on a separate line. 

• Statement2 may be on a separate line. 

COMPILER ERROR CONDITIONS 

• IF statement error - THEN without ELSE 

RUN-TIME ERROR CONDITIONS 

• None 

EXAMPLES 

In the following statement, the cost of an item is calculated differently, depending upon whether it is 
discountable: 

IF DISCNT.EQ.'Y' 
THEN 

COST=PRICE-DIS+TAX 
ELSE 

COST=PRICE+TAX 

; Is item discountable? 
; Yes--
; Get cost w/ discount· 

; Get cost w/o discount 

The following example performs the same type of operation except the TAX and DIS calculations 
are performed within the IF statement: 

IF DISCNT.EQ.'Y' 
THEN 

BEGIN 

; Is item discountable? 
; Yes--

DIS=PRICE/IO ; Calculate the discount 
TAX= (PRICE-DIS)I* 5/100) ; Calculate the tax 
COST=PRICE-DIS+TAX ; Get cost w/ discount 
END 

ELSE 
BEGIN 
TAX=PRICE.* 5/1 00 
COST=PRICE+TAX 
END 

; Calculate the tax 
; Get cost w/o the discount 

The DIBOL-83 Procedure Division Statements 3-37 



INCR 

3.181NCR 

FUNCTION 

INCR increases a decimal field by 1. 

FORMAT 

INCR dfield 

where: 

dfield is a decimal field to be incremented. 

RULES 

• The field to be incremented (dfie/d) can contain positive numbers, negative numbers, and 
spaces. 

• Spaces are treated as zeros. 

• If the size of the resulting value is larger than dfield, the leftmost digits that cause overflow are 
truncated. 

COMPILER ERROR CONDITIONS 

• None 

RUN· TIME ERROR CONDITIONS 

• 8 NT Writing into a literal 

EXAMPLES 

The following INCR statements are all valid (assuming that the fields being incremented are all 
decimal). 

INCR CNTR 

INCR A( 3) 

INCR C(H,6) 

IF LNECTR.LT.MAXCTR INCR LNECTR 

3-38 The D180L-83 Procedure Division Statements 



LOCASE 

3.19 LOCASE 

FUNCTION 

LOCASE converts uppercase characters to corresponding lowercase characters. 

FORMAT 

LOCASE afield 

where: 

afield is an alpha field or record that contains the characters to be converted. 

RULES 

• The following non-alphabetic symbols are converted: 

Uppercase Lowercase 
@ (064) , (140) 
[ (133) ( (173) 

"'- (134) I (174) 
] (135) ) (175) 

" (136) - (176) 

• Other non-alphabetic characters are unaffected. 

COMPILER ERROR CONDITIONS 

• None 

RUN-TIME ERROR CONDITIONS 

• 8 NT Writing into a literal 

EXAMPLES 

In the following example the first LOCASE statement changes the characters 'THIS IS A TEST' to 
lowercase. After the first LOCASE statement is executed, the contents of REC are 'This is a test [OF 
LOCASE], to lowercase. After the second LOCASE statement is executed, the contents of REC are 
'this is a test { of locase } '. 

RECORD REC 

PROC 

A, A14, 'THIS IS A TEST' 
B, A12,' [OF LOCASE]' 

LSCASE A(2,14) 
LOCASE REC 
STOP 

The D180L-83 Procedure Division Statements 3-39 



LPQUE 

3.20 LPQUE 

FUNCTION 

LPQUE queues a file to be printed by the printer spooler. 

FORMAT 

LPQUE (filespec[,LPNUM:dexp)[,COPIES:dexp] 

I afield I [,FORM: aliteral )[,DELETE]) 

where: 

filespec is an alpha field, alpha literal, or record which contains the file specification of the file to 
be printed. 

LPNUM:dexp 
is a decimal expression that specifies the printer. 

COPIES:dexp 
is a decimal expression which specifies the number of copies to print. 

FORM:afield 
aliteral 

is an alpha field, alpha literal, or record which specifies the type or name of the form to be 
inserted into the printer before the file is printed. 

DELETE deletes the file after all copies have been printed. 

RULES 

• Optional qualifiers prefaced by a keyword can occur in any order. 

• LPQUE sends a request to the printer spooler to print the file. 

• Multiple LPQUE statements cause the print requests to be queued. 

• If no printer identification is specified, the system's default printer(s) are used. 

• If no copy count is specified, or if it is less than 1, it is assumed to be 1. 

• If a form is specified, a system specific forms request is issued. 

3-40 The D180L-83 Procedure Division Statements 



COMPILER ERROR CONDITIONS 

• Invalid LPQUE keyword 

RUN-TIME ERROR CONDITIONS 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 18 T File not found 

• 120 T Queue not available or invalid queue name 

EXAMPLES 

In the following example the LPQUE statement requests the printing of one copy (NBR = 1) of the 
file CHECK. LIS. Before printing begins, the form CHECKS should be placed in the printer. 

RECORD 

PROC 

NBR, 
FILE, 

D2, 01 
A9, 'CHECK.LIS' 

LPQUE (FILE,COPIES:NBR,FORM:'CHECKS') 
STOP 

The D180L-83 Procedure Division Statements 3-41 



OFFERROR 

3.21 OFFERROR 

FUNCTION 

OFFERROR disables trapping of run-time errors. 

FORMAT 

OFFERROR 

RULES 

• This statement may be written as OFFERROR or OFF ERROR. 

• When OFFERROR is executed, run-time errors normally detected by the ONERROR statement 
are treated as non-trappable. 

COMPILER ERROR CONDITIONS 

• None 

RUN· TIME ERROR CONDITIONS 

• None 

EXAMPLES 

In the following example the ONERROR statement is used to trap the Division by 0 error and the 
OFFERROR is used to disable error trapping after the division is performed: 

ONERROR DIVa 
C=A/B 
OFFERROR 

3-42 The D180L-83 Procedure Division Statements 

Check for Division by a 

Turn off error check 



3.22 ONERROR 

FUNCTION 

ONERROR 

ON ERROR enables trapping of run-time errors which would otherwise cause program termination. 

FORMAT 

ONERROR label 

where: 

label is a statement label where control is to be transferred when an error occurs. 

RULES 

• This statement may be written as ONERROR or ON ERROR. 

• ONERROR remains in effect until one of the following occurs: 

• An ONERROR is executed which specifies a different label. 

• An XCALL is executed. ONERROR is suspended until control returns from the external 
subroutine. 

• An OFFERROR is executed. 

• The program terminates. 

• The error detected by ON ERROR may be determined either by using the ERROR external 
subroutine, or by knowing the nature of the statements executed after ONERROR was executed. 

• ONERROR is disabled by OFFERROR. 

COMPILER ERROR CONDITIONS 

• Label out of context block: < label name> 

RUN· TIME ERROR CONDITIONS 

• None 

EXAMPLES 

In the following example the ONERROR statement is used to trap errors. If a trappable error occurs 
after the ONERROR has been executed, control will be transferred to the label IOERR: 

NEXT, 
ON ERROR IOERR 
READS (l,CUST,EOF) 
NAME=CUSNAM 
AMT=BALANC 
WRITES (6,PLINE) 
GOTO NEXT 

; Read a customer record 
Save customer name 

; Save the balance 
Print name and balance 

The DIBOL-83 Procedure Division Statements 3-43 



OPEN 

3.23 OPEN 

FUNCTION 

OPEN associates a channel number with a device or with a file on a device. 

FORMAT 

OPEN (ch,mode[:submode),filespec[,ALLOC:dexpll,BKTSIZ:dexp) 

[, BLKSIZ:dexp II, BU FSIZ:dexp II, RECSIZ:dexp)) 

where: 

ch is a decimal expression that evaluates to a channel number. 

mode designates the data transfer method (Input, Output, or Update). 

submode further defines, qualifies, or restricts mode. 

filespec is an alpha field, alpha literal, or record that contains the file specification. 

ALLOC:dexp 
is a decimal expression that specifies the initial file allocation. 

BKTSIZ:dexp 
is a decimal expression that specifies the bucketsize in blocks. 

BLKSIZ:dexp 
is a decimal expression that specifies the block size (bytes) of magnetic tape. 

BUFSIZ:dexp 
is a decimal expression that specifies the size of the transfer buffer in blocks for this 
channel. 

RECSIZ:dexp 
is a decimal expression that specifies the length (bytes) of the records in the file. 

GENERAL RULES 

• A unique OPEN statement must be executed for each unique combination of device, file, and 
mode of operation. 

• OPEN must be executed prior to any I/O operation and remains in effect until a corresponding 
CLOSE is executed. 

• The maximum number of channels opened simultaneously is system dependent. 

• The maximum channel number is equal to the maximum number of channels which can be 
opened simultaneously. 

• Optional qualifiers prefaced by a keyword can occur in any order. 

• The transfer of program control to an external subroutine does not affect the status of a channel. 

3-44 The DIBOL-83 Procedure Division Statements 



RULES FOR MODE 

• OPEN uses three data access methods: sequential, relative, and indexed. 

• If a file is being opened, the modes of operation and file 1/0 statements are: 

INPUT (I) used to obtain input from an existing sequential, relative, or indexed file. Input 
mode is a read only mode. 

OUTPUT (0) used to create a file. 

UPDATE (U) used for input and output from an existing relative or indexed file. 

• If a terminal is being opened, only the Input and Output modes of operation are used. 

RULES FOR SUBMODE 

• Submodes are Sequential (S), Print (P), Relative (R) or Indexed (I). 

• Sequential submode is used with 0 mode and indicates that the file being created is a sequential 
file. Sequential submode is assumed if no submode is specified with 0 mode. 

• Print submode is used with 0 mode and indicates that the file being created is a print file. 

• Relative submode is used with the 0 mode and indicates that the file being created is a relative 
file. O:R is required when creating an RMS relative file. 

• Indexed submode is used with I and U modes and indicates that the file being opened is an 
indexed file. All file volumes must be on-line simultaneously. SI is equivalent to 1:1 and SU is 
equivalent to U:I. 

RULES FOR ALLOC 

• ALLOe overrides any filesize specified with the filespec. The value specified is system 
dependent. 

• ALLOe is used in 0 mode. It is ignored for other modes. 

RULES FOR BKTSIZ 

• BKTSIZ is used when creating an RMS relative file. Any other use of BKTSIZ is ignored. 

• The value is system dependent. 

RULES FOR BLKSIZ 

• BLKSIZ is used when creating a file on magtape. Any other use of BLKSIZ is ignored. 

The DIBOL-83 Procedure Division Statements 3-45 



RULES FOR BUFSIZ 

• BUFSIZ overrides the buffer size designated by PROC for this OPEN. 

• The value must be between 1 and 15. 

RULES FOR RECSIZ 

• RECSIZ is required when creating an RMS relative file. 

• RECSIZ implies the records are fixed length. 

• The range for RECSIZ is 1 to 16,383. 

The following chart shows which statements are legal for a file organization, mode, and character device. 

File Organization Character Device 

Sequential Relative Indexed Terminal Printer 

I 0 I 0 U I U I 0 0 

READS X X X X X X X X 

WRITES X X X X X X 

READ X X X X X 

WRITE X X X 

DELETE X 

STORE X 

ACCEPT X X 

DISPLAY * X X * 
FORMS X X X X 

* O:P ONLY 

COMPILER ERROR CONDITIONS 

• Invalid OPEN keyword: < keyword name> 

• Invalid OPEN mode 

• Invalid OPEN submode 

3-46 The DIBOL-83 Procedure Division Statements 



RUN· TIME ERROR CONDITIONS 

• 9 T Not enough memory 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 12 T Input from write-only device 

• 16 NT DIBOL channel in use 

• 17 T Bad file specification 

• 18 T File not found 

• 19 T Device handler not available 

• 22 T 1-0 error 

• 24 T No space for file 

• 32 T Cannot supersede existing file 

• 37 T Device in use 

• 38 T File in use 

• 39 T Output to read-only device 

• 43 NT ?M-Dir 10 error 

• 56 T Not ISAM file 

• 62 T Protection violation 

• 87 T Argument missing 

• 103 T Invalid file organization 

• 107 T Device not ready 

• 108 T Invalid OPEN mode value 

• 112 T Error during file open 

• 113 T Invalid ALLOC value in OPEN 

• 114 T Invalid BKTSIZ value in OPEN 

• 115 T Invalid BLKSIZ value in OPEN 

• 116 T Invalid BUFSIZ value in OPEN 

• 117 T Invalid RECSIZ value in OPEN 

The D180L-83 Procedure Division Statements 3-47 



EXAMPLES 

The following statement creates a new sequential file named RENEW.DDF and associates it with 
channelS: 

OPEN (S,O,'RENEW.DDF') 

The following statement creates a new relative file named ARMAS.DDF and associates it with 
channel 2. All the records in the file will be 100 characters in length: 

OPEN (2,O:R. ' ARMAS.DDF ' ,RECSIZ:100) 

The following statement opens the terminal for both input and output and associates the terminal 
with channel 15: 

OPEN (lS,O,'TT:') 

The following statement opens the relative file ARMAS.DDF for modification using channel 3. It also 
specifies an internal buffer size of 2 blocks. This buffer size overrides the size specified by PROe 
for this OPEN only: 

OPEN (3,U,'ARMAS.DDF ' ,BUFSIZ:2) 

The following statement creates a new sequential file named AR.LlS and associates it with channel 
5. Since the new file will eventually be printed, it is created with the P submode: 

OPEN (S,O:P, 'AR.LIS ' ) 

3-48 The D180L-83 Procedure Division Statements 



3.24 PROC-END 

FUNCTION 

PROC-END identifies the beginning and ending of the Procedure Division. 

FORMAT 

PROC [(dlitera/)] 
statement 

[END] 

where: 

PROC-END 

dliteral is a decimal literal that specifies the size of the I/O buffer allocated to every opened 
sequential file. 

statement is a DIBOL Procedure Division statement. 

RULES 

• Only 1 PROC may be used in a program. 

• PROC cannot have a statement label. 

• The dliteral value is ignored in external subroutines . 

• The dliteral value must be between 1 and 15 blocks (1 block = 512 bytes). 

• If no dliteral is specified, it is assumed to be 1. 

• The dliteral is meaningful only with sequential files. For relative and indexed files, the buffer sizes 
are determined by the bucket size specified when defining the file. 

• The BUFSIZ used in an OPEN statement overrides the buffer size established by PROC just for 
that OPEN. 

• END is not mandatory. 

• Termination of the PROC-END block, either explicitly (END) or implicitly (end-of-file) causes an 
implicit STOP statement to be inserted into the compiled program. 

• END can be used anywhere in a program except as the statement to be executed in an IF, IF
THEN-ELSE, FOR, WHILE, DO-UNTIL, or USING statement. 

• Source lines following END are not compiled. 

The D180L-83 Procedure Division Statements 3-49 



COMPILER ERROR CONDITIONS 

• Invalid PROe statement 

• No PROe statement 

RUN-TIME ERROR CONDITIONS 

• None 

EXAMPLES 

The following example copies 100 character records from INFILE.DDF to OUTFIL.DDF. The PROe 
statement specifies that a 3 block buffer is to be allocated for each opened channel. After the 2 
OPEN statements are executed, 6 blocks will have been allocated for internal buffers. 

RECORD REC 
, Alaa 

RECORD 
EOF, 01, a 

PROC 3 
OPEN (l,I,'INFILE.DDF') 
OPEN (2,0,'OUTFIL.DDF') 
DO 

BEGIN 
READS (l,REC,EOF) 
WRITES (2, REC) 
END 

UNTIL EOF 
EOF, 

CLOSE 1 
CLOSE 2 
STOP 

END 

3-50 The DIBOL-83 Procedure Division Statements 

; Open input file 
Open output file 

; Read input record 
; Write output record 

; Close input file 
; Close output file 



READ (RELATIVE FILE) 
3.25 READ (RELATIVE FILE) 

FUNCTION 

READ inputs a record from a relative file. 

FORMAT 

READ (ch,record,dexp) 

where: 

ch is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

record is an alpha field or record which will contain the data. 

dexp is a decimal expression that specifies the sequence number of the record to be read. 

RULES 

• READ is used in I and U modes. 

• Dexp must be between 1 and the total number of records in the file. 

• The record is read into record according to the rules for moving alpha data (see section 3.2.1). 

• If the record is larger than record, a Line too long error is generated. 

• When READ is executed in U mode, the blocks which contain the record are locked; other 
records that lie wholly or partially within these blocks are also locked. The lock remains in effect 
until one of the following occurs: 

• A WRITE or WRITES using the channel is executed. 

• A READ or READS using the channel is executed. 

• An UNLOCK using the channel is executed. 

• A CLOSE using the channel is executed. 

• The program terminates. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

The DIBOL-83 Procedure Division Statements 3-51 



RUN· TIME ERROR CONDITIONS 

• 1 T End of file 

• 8 NT Writing into a literal 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 21 T Bad OPEN 

• 22 T 1-0 error 

• 23 T Line too long 

• 28 T Illegal record number 

• 40 T Record locked 

• 64 T Record not found 

• 84 T Illegal block 1/0 record size 

EXAMPLES 

The following statement reads the 88th record of the relative file associated with channel 5 and 
places the record in the variable REX: 

READ (S,REX,88) 

The following statement reads the record specified by the value stored in the variable COUNT from 
the relative file associated with channel 6 and places the record in the variable BL T: 

READ (6,BLT,CQUNT) 

3-52 The DIBOL-83 Procedure Division Statements 



3.26 READ (INDEXED FILE) 

FUNCTION 

READ inputs a record from an indexed file. 

FORMAT 

READ (ch,record,keyfld) 

where: 

READ (INDEXED FILE) 

ch is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

record is an alpha field or record which will contain the data. 

keyfld is an alpha field or record which identifies the record to be read. 

RULES 

• READ is used in I and U modes. 

• If keyfld is less than the size of the key field defined for the indexed file, it is assumed to be a 
partial key. The system returns the first record whose initial characters match the specified key. 

• If duplicate keys exist, READ retrieves the first occurrence of the key. READS is used to retrieve 
each additional occurrence of the key. 

• Keyfld must occupy the same position within the record as does a key field defined for the 
indexed file. If it is a multi key file, any key may be used. 

• If a record containing the specified key is not found, the record with the next higher key is 
returned and a Key not same error is generated. 

• The record is read into record according to the rules for moving alpha data (see section 3.2.1). 

• If the record is larger than record, a Line too long error is error generated. 

• When a READ is executed in U mode, the blocks which contain the record are locked; other 
records that lie wholly or partially within these blocks are also locked. The lock remains in effect 
until one of the following occurs: 

• A WRITE using the channel is executed. 

• A READ or READS using the channel is executed. 

• A STORE using the channel is executed. 

• A DELETE using the channel is executed. 

The D180L-83 Procedure Division Statements 3-53 



• An UNLOCK using the channel is executed. 

• A CLOSE using the channel is executed. 

• The program terminates. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN-TIME ERROR CONDITIONS 

• 1 T End of file 

• 8 NT Writing into a literal 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 21 T Bad OPEN 

• 22 T 1-0 error 

• 23 T Line too long 

• 40 T Record locked 

• 52 T Illegal key 

• 53 T Key not same 

EXAMPLES 

Assuming that the indexed file has been defined with a key length of 5 characters and a key position 
of 16 and the Data Division contains: 

RECORD ADDR 
, 
, 
KEY, 
, 

AS 
D10 
AS, 'SMITH' 
D20 

then the following statement will return the record with the key SMITH from the indexed file opened 
on channel 1. The READ will place that record in ADDR. If more than one SMITH record exists, the 
first one is obtained and the remaining SMITH records can be read using the READS statement. If 
SMITH does not exist, the next higher keyed record will be retrieved, and a Key not same error will 
be generated. This error can be trapped by an ONERROR statement. 

READ (l,ADDR,KEY) 

3-54 The D180L-83 Procedure Division Statements 



READS 

3.27 READS 

FUNCTION 

READS inputs the next available record in sequence from a file. 

FORMAT 

READS (ch,record[,/abe/]) 

where: 

ch is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

record 

label 

is an alpha field or record which will contain the data. 

is a statement label where control is to be transferred when the logical end-of-file is 
detected. 

GENERAL RULES 

• READS is used in I mode with a sequential file; in I and U modes with a relative file and with an 
indexed file; and in I and 0 modes with a terminal. 

• The record is read into record according to the rules for moving alpha data (see section 3.2.1). 

• If the record is larger than record, a Line too long error is generated. 

• When a READS is executed in U mode, record locking occurs in the same manner as when a 
READ is executed. 

RULES FOR READS FROM AN INDEXED FILE 

• When an indexed file is opened and the first I/O statement for that file is a READS, the record 
with the lowest primary key value is returned. 

RULES FOR READS FROM A TERMINAL 

• READS from a terminal may be affected by the FLAGS subroutine. 

• All terminating characters except ESCAPE position the cursor or carriage at the beginning of the 
next line. ESCAPE terminates input but does not move the cursor or carriage. 

• When record is full, additional characters are ignored and the terminal alarm sounds for each 
additional character typed. 

The DIBOL-83 Procedure Division Statements 3-55 



COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN· TIME ERROR CONDITIONS 

• 1 T End of file 

• 8 NT Writing into a literal 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 21 T Bad OPEN 

• 22 T 1-0 error 

• 23 T Line too long 

• 40 T Record locked 

EXAMPLES 

The following statement transfers a record from the file associated with channel 3 to the variable 
INV. If the end of the file is reached, control branches to a statement labeled END. 

READS (3,INV,END) 

The next example is the same as the previous one, except that if the end of file is reached, an End 
of file error will be generated since no end of file label was specified. This error can be trapped by 
an ON ERROR statement. 

READS (3,INV) 

3-56 The D180L-83 Procedure Division Statements 



RECV 

3.28 RECV 

FUNCTION 

RECV accepts a message which was sent by another program. 

FORMAT 

RECV (message,/abe/[,sizeJ) 

where: 

message is an alpha field or record which will contain the message. 

label is a statement label where control is to be transferred if no message is pending. 

size is a decimal field which will contain the size of the message received. 

RULES 

• The message is moved into message according to the rules for moving alpha data (see section 
3.2.1). 

• The message size is moved into size according to the rules for moving decimal data (see section 
3.2.2). 

COMPILER ERROR CONDITIONS 

• Invalid data type 

• Label out of context block: <label name> 

RUN· TIME ERROR CONDITIONS 

• 8 T Writing into a literal 

• 23 T Line too long 

• 118 T Unable to open message manager mailbox 

The DIBOL·83 Procedure Division Statements 3·57 



EXAMPLES 

The following program segments show how one program might pass the name of a data file to 
another program using the SEND and RECV statements. The PAYROL program sends the file 
name (TFIL.DDF) to the program BAT. The RECV statement in BAT accepts the file name. If the 
RECV statement is executed prior to the message having been sent, control is transferred to the 
statement labeled LOOP. At LOOP the program delays for 10 seconds and then attempts to receive 
the message again. 

RECORD 

PROC 

RECORD 

PROC 
GETM, 

LOOP, 

Program PAYROL 

MSG, A8, 'TFIL.DDF' 
PRONAM, A3, 'BAT" 

• 

SEND (MSG,PRONAM) 

STOP 

Program BAT 

FILE, A9 

RECV (FILE,LOOP) 
• 

STOP 
SLEEP 10 
GOTO GETM 

3-58 The D180L-83 Procedure Division Statements 

; Send file name 

; Receive file name 

; Wait for 10 seconds 



RETURN 

3.29 RETURN 

FUNCTION 

RETURN transfers program control to the statement logically following the most recently executed 
CALL or XCALL statement. 

FORMAT 

RETURN 

RULES 

• RETURN must be placed at the logical exit of each internal and external subroutine. 

COMPILER ERROR CONDITIONS 

• None 

RUN-TIME ERROR CONDITIONS 

• 2 NT RETURN but no CALL or XCALL 

EXAMPLES 

The following example shows how program control branches when using external and internal 
subroutines. The solid lines show the control path upon execution of CALL and XCALL statements 
and the broken lines show the control path upon execution of RETURN statements: 

Main Program 

XCALL PROF 
WRITES (6, PROFIT)-41 
CLOSE 6 I 
STOP : 

; Output the profit 
; Close the file 

External ~broutine PROF 

SUBROUTINE PROF 

• 

PROC 

, 
I 
I 
I 
I 
I 
! 

PBT=PRICE-COST I ; 
r------cALL TAX I; 

PAT=PBT-TAX ... ---.1_--. ; RETURN-________ J I 
I 
I 

; Subroutine to calculate taxI 

TAX, TAX=PBT8 
I 
I 
I 

IF TAX.GT.MAX TAX=MAX I 
RETURN-------------J 

Compute pre-tax profit 
Get the tax 
Compute post-tax profit 

; Compute the tax 

The D180L-83 Procedure Division Statements 3-59 



SEND 

3.30 SEND 

FUNCTION 

SEND transmits a message to another program. 

FORMAT 

SEND (message,program[,termina/]) 

where: 

message is an alpha field, alpha literal, or record which contains the message to be sent. 

program is an alpha field, alpha literal, or record which contains the name of the program that is to 
receive the message. 

terminal is a decimal expression which specifies the terminal number associated with the 
receiving program. 

RULES 

• Message is stored for a subsequent RECV. 

• Multiple messages can be stored. 

• FIFO (First-In-First-Out) message processing ensures that the first message sent to a prQgram is 
the first to be received by that program. 

• Messages may be sent from one program in a chain to a program further along the chain. 

• System resources (memory, disk, ... ) can affect sending a message. 

• Programs with the same name can be identified by specifying the terminal to which the program 
is attached. 

• If the terminal number is not used, the first program with the correct name that executes a RECV 
will receive the message. 

• Messages may be sent to a detached program by specifying a terminal number of -1. 

• If two or more detached programs have the same name, the first to execute a RECV will receive 
the message. 

3-60 The DIBOL-83 Procedure Division Statements 



RUN-TIME ERROR CONDITIONS 

• 9 T Not enough memory 

• 118 T Unable to open message manager mailbox 

EXAMPLES 

The following statement sends a message to the program CNCRNT which may be running 
concurrently or at some later time on any terminal or detached: 

SEND (MSG,'CNCRNT') 

The following example sends a message to the program NEXT which is designated as running on 
the same terminal as the current program: 

RECORD 

PROC 

TNUM, 03 

XCALL TNMBR (TNUM) 
SEND (MSG,'NEXT' ,TNUM) 
STOP 'NEXT' 

Terminal number 

Get terminal number 
Send message 

The DIBOL-83 Procedure Division Statements 3-61 



SLEEP 

3.31 SLEEP 

FUNCTION 

SLEEP suspends program execution for a specified period of time. 

FORMAT 

SLEEP seconds 

where: 

seconds is a decimal expression that specifies the number of seconds to suspend program 
execution. 

RULES 

• Program execution resumes only when the specified time has elapsed 

• Specifying a negative number of seconds will generate a Value out of range error. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN· TIME ERROR CONDITIONS 

• 104 NT Value out of range 

EXAMPLES 

The following program sounds the terminal's alarm once every minute: 

PROC 

BEEP, 
OPEN ( 3 , 0, I TT: I ) 

DISPLAY (3,7) 
SLEEP 60 
GOTO BEEP 

3-62 The DIBOL-83 Procedure Division Statements 

; Open terminal 
Sound terminal alarm 

; Delay for 60 seconds 



3.32 STOP 

FUNCTION 

STOP terminates program execution. 

FORMAT 

STOP [filespec] 

where: 

STOP 

filespec is an alpha field, alpha literal, or record which contains a program or command file 
specification. 

RULES 

• STOP can appear as often as needed in a program, but the first STOP executed terminates the 
program. 

• If filespec is used, the system automatically chains to the specified program. 

• If filespec begins with a '@', it indicates that the filespec is for a command file. 

• If no filespec is specified for a detached program, the program is logged out. 

• When a detached program stops, no terminal output is generated (traceback, STOP message, 
etc.). 

• If a filespec is specified by a detached program, the new program also runs detached. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN-TIME ERROR CONDITIONS 

• 18 T File not found 

EXAMPLES 

The following statement will stop execution of the current program and begin execution of the 
PROG2 program: 

STOP 'PROG 2' 

The following statement will stop execution of the current program and begin execution of the 
CMDFIL command file: 

STOP '@CMDFIL' 

The DIBOL-83 Procedure Division Statements 3-63 



STORE 

3.33 STORE 

FUNCTION 

STORE adds a record to an indexed file. 

FORMAT 

STORE (ch ,record ,keyf/d) 

where: 

ch 

record 

keyf/d 

RULES 

is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

is an alpha field or record which contains the data to be stored. 

is an alpha field or record which identifies the record in which the data will be stored. 

• STORE is used in U:I mode. 

• Keyf/d must occupy the same position within the record as does a key field defined for the 
indexed file. If it is a multi-key file, any key may be used. 

• STORE locks the record which is being stored. The record is unlocked when STORE is 
completed. 

• If duplicate key values are not allowed and a record with the specified key already exists, a No 
duplicates error is generated. 

3-64 The D/BOL-83 Procedure Division Statements 



COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN· TIME ERROR CONDITIONS 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 21 T Bad OPEN 

• 25 T Output file full 

• 26 T Field or record too long 

• 40 T Record locked 

• 52 T Illegal key 

• 54 T No duplicates 

EXAMPLES 

The following example illustrates the use of STORE. On each iteration of the loop, this program 
stores an employee record with the key value contained in the field BADGE. 

RECORD NEWREC 
NAME, 
BADGE, 

A20 
AS 

RECORD 

PROC 
DONE, Al 

OPEN (1,0,' TT: ' ) 
OPEN (2,U:I,'EMPFIL') 
DO 

BEGIN 
WRITES (l,'Name?') 
READS (1, NAME) 
WRITES (l,'Badge?') 
READS (l,BADGE) 

; Employee record 
; Employee name 
; Employee badge number 

Open terminal 
; Open employee file 

; Prompt for name 
; Get employee name 
; Prompt for badge number 

Get badge number 
STORE (2,NEWREC,BADGE) ; Create employee record 

Ask if finished WRITES (l,'Done?') 
READS (l,DONE) 
END 

UNTIL DONE.EQ.'Y' 
CLOSE 1 
CLOSE 2 
STOP 

; Get response 

Close terminal 
Close employee file 

The DIBOL-83 Procedure Division Statements 3-65 



UNLOCK 

3.34 UNLOCK 

FUNCTION 

UNLOCK clears the lock condition on a specified channel. 

FORMAT 

UNLOCK ch 

where: 

ch is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

RULES 

• Records in the locked blocks will become available for access by other programs. 

• The specified channel is the one associated with the file containing the locked blocks. 

• UNLOCK is ignored if no records are locked on the channel or if the channel is not opened. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN-TIME ERROR CONDITIONS 

• 10 NT Illegal channel number 

3-66 The D180L-83 Procedure Division Statements 



EXAMPLES 

The following program will delete employee records from an indexed file. On each iteration of the 
loop, this program prompts for an employee badge number (the key field for the indexed record), 
reads the employee record (which locks the record), displays the associated name, and asks if the 
employee record should be deleted. If the record is not to be deleted, the UNLOCK statement 
makes the record available for other programs to read. 

RECORD EMPREC 
NAME, A20 
BADGE, AS 

RECORD 

PROC 

DELETE, Al 
DONE, Al 

OPEN (l, 0, ' TT; , ) 
OPEN (2, U: I , ' EMPF I L ' ) 
DO 

BEGIN 
WRITES (l,'Badge?') 
READS (l, BADGE) 
READ (2,EMPREC,BADGE) 
WRITES (l,NAME) 
WRITES (l,'Delete?') 
WRITES (l,DELETE) 
IF DELETE.EQ.'Y' 

THEN 
DELETE (2,BADGE) 

ELSE 
UNLOCK 2 

WRITES (l,'Done?') 
READS (l,DONE) 
END 

UNTIL DONE.EQ.'Y' 
CLOSE 1 
CLOSE 2 
STOP 

; Employee record 
Employee name 

; Employee badge number 

Open terminal 
Open employee file 

Prompt for badge number 
Get badge number 
Read employee record 
Display employee name 
Prompt for deletion 
Get response 
Delete the record 

; Yes--
Delete the record 

; Unlock the record 
; Ask if finished 

Get response 

; Close terminal 
Close employee file 

The D180L-83 Procedure Division Statements 3-67 



UPCASE 

3.35 UPCASE 

FUNCTION 

upeASE converts lowercase characters to corresponding uppercase characters. 

FORMAT 

u peASE afield 

where: 

afield is an alpha field or record which contains the characters to be converted. 

RULES 

• The following non-alphabetic characters are converted by upeASE: 

Lowercase 
\. 
( 

I 
) 
roI 

Uppercase 
@ 

[ 
\ 
I 

A 

• Other non-alphabetic characters are unaffected. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN· TIME ERROR CONDITIONS 

• 8 NT Writing into a literal 

3-68 The D180L-83 Procedure Division Statements 



EXAMPLES 

In the following example the first UPCASE statement changes the first character in field A. After the 
first UPCASE statement is executed the contents of REC are 'This is a test { of upcase } '. The 
second UPCASE statement changes the characters 'This is a test { of upcase} 'to uppercase. 
After the second UPCASE statement is executed the contents of REC are 'THIS IS A TEST [OF 
UPCASE],. 

RECORD REC 
A, A14, 'this is a test' 
B, A12, , {o f upcase} , 

PROC 
UPCASE A(l,l) 
UPCASE REC 
STOP 

The following example allows an operator to answer 'YES' without regard to uppercase or 
lowercase. The operator could type any of the following: yes, yeS, yEs, yES, Yes, YeS, YEs, or 
YES. 

RECORD 

PROC 
DONE, A3 

WRITES (l,'Done?') 
READS (l,DONE) 
UPCASE DONE 
IF DONE.EQ.'YES' 

STOP 

; Prompt user 
Get response 

; Make it uppercase 
; Did operator type 'YES'? 

Yes--

The DIBOL-83 Procedure Division Statements 3-69 



USING 

3.36 USING 

FUNCTION 

USING conditionally executes one statement from a list of statements based on the evaluation of an 
expression. 

FORMAT 

USING selection-value SELECT 
([mexp[, ... )]), statement 

ENDUSING 

where: 

selection-value 
is an alpha field, alpha literal, decimal expression, or record. 

mexp is one or more match expressions in the following format: 

I value I 
value THRU value 

statement is a DIBOL Procedure Division statement. 

3-70 The D180L-83 Procedure Division Statements 



• • • 

no 

yes 

yes 

yes 

USING 

execute 
statement 1 

execute 
statement 2 

execute 
statement n 

The D180L-83 Procedure Division Statements 3-71 



RULES 

• Selection-value is evaluated and compared with the match expressions ([mexp[, ... ]j). 

• Selection-value cannot be an alpha double-subscripted variable. 

• Selection-value cannot be an alpha substring because USING creates a temporary field for the 
value. The length of the alpha substring is not known at compile time, thus the compiler does not 
know how big to make the temporary field. 

• The match expression list ([mexp[, ... ]]) is referred to as a case-label. 

• An empty case-label (empty parentheses) is referred to as a null case-label. 

• A null case-label matches any selection-value. 

• The statement associated with the first matching case-label is executed and USING is exited. 

• If no match is found, no statement within USING is executed. 

• Each case-label must begin on a newline. 

• Statement may be on a separate line. 

• No match is found if the value to the left of THRU is greater than the value to the right of THRU. 

• The data types of the values in the match expressions (mexp) must match. 

• The data type of selection-value must match the data type of the match expression (mexp). 

COMPILER ERROR CONDITIONS 

• Invalid data type 

• No SELECT in USING statement 

• No ENDUSING in USING statement 

• Stack overflow 

RUN· TIME ERROR CONDITIONS 

• None 

EXAMPLES 

In the following example, the USING statement is used to check for the decimal character codes for 
CTRUU and DELETE. 

3-72 The D180L-83 Procedure Division Statements 



USING DCHAR SELECT 
(21) , 

BEGIN 
COL=STOOL 
CALL POSTN 
CALL CLEAR 
END 

(127) , 
BEGIN 
IF COL.GT.STOOL 

BEGIN 
COL=COL-l 
CALL POSTN 
DISPLAY (1,' ') 
CALL POSTN 
END 

CTRL!U 

Reset cursor position to 
••• start of field 

; Clear field 

DELETE 

; At beginning of field? 
No--

; Backup column number 
Reset cursor position 
Erase the character 

; Reset cursor position 

END 
ENDUSING 

The following program displays the message indicating which case of USING was selected. 

RECORD 
CHARS, A3 ; Characters entered 

PROC 
OPE N ( I , I , , T T: ' ) Op en term ina 1 

AGAIN, WRITES (1,'Enter 3 characters') ; Display prompt 
READS (l,CHARS,EOF) ; Get response 
USING CHARS SELECT ; Branch based on CHARS 

( 'AAA ' ) , 
WRITES (I, '1st case selected') 

('AAB' THRU 'AZZ') 
WRITES (1, '2nd case selected') 

('BAA' THRU 'WZZ') 
WRITES (1,'3rd case selected') 

('XXX', 'YYY', 'ZZZ'), 
WRITES (1,'4th case selected') 

(), 
WRITES (l,'Null case selected') 

ENDUSING 
GOTO AGAIN 

EOF, CLOSE 1 ; Close terminal 
STOP 

The DIBOL-83 Procedure Division Statements 3-73 



WHILE 

3.37 WHILE 

FUNCTION 

WHILE repetitively executes a statement as long as a condition is true. 

FORMAT 

WHILE condition statement 

where: 

condition is a decimal expression. 

statement is a DIBOL Procedure Division statement. 

RULES 

• The condition is evaluated prior to each possible execution of statement. 

• The condition is either true (non-zero) or false (zero). 

• If the condition is true, statement is executed. 

• Statement may be on a separate line. 

WHILE 

execute 
statement 

3-74 The D180L-83 Procedure Division Statements 

false 



COMPILER ERROR CONDITIONS 

• Invalid data type 

• Stack overflow 

RUN· TIME ERROR CONDITIONS 

• None 

EXAMPLES 

The following program segment accepts a line from the terminal. The WHILE statement is used to 
trim trailing spaces from the input line. 

RECORD INLINE 

RECORD 

PROC 

CHR, 80Al 

SIZE, 02 

OPEN (l, I, I TT: I ) 

READS (l,INLINE) 
SIZE=80 
WHILE CHR(SIZE).EQ.' 

SIZE=SIZE-l 

; Characters input 

; Number of characters 

; Open term inal 
; Accept terminal input 
; Set size of line 

I .AND. SIZE.GT.l ; Trim line 

The 0/80L-83 Procedure Division Statements 3-75 



WRITE (RELATIVE FILE) 

3.38 WRITE (RELATIVE FILE) 

FUNCTION 

WRITE outputs a record into a specified position in a relative file. 

FORMAT 

WRITE (ch ,record ,dexp) 

where: 

ch is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

record is an alpha field, alpha literal, or record which contains the data to be written. 

dexp is a decimal expression that specifies the sequence number of the record to be written. 

RULES 

• WRITE is used in 0 and U modes. 

• WRITE updates the record if it exists. If no record exists, WRITE creates one. 

• WRITE locks the record it is writing and unlocks the record when the WRITE is completed. 

3-76 The DIBOL-83 Procedure Division Statements 

---~----------



COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN-TIME ERROR CONDITIONS 

• 1 T End of file 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 21 T Bad OPEN 

• 22 T I-a error 

• 26 T Field or record too long 

• 28 T Illegal record number 

• 40 T Record locked 

• 84 T Illegal block I/O record size 

EXAMPLES 

The following statement writes the data in the variable REX into the 88th record of the relative file 
associated with channel 5. 

WRITE (S,REX,88) 

The following statement writes the data in the variable BL T into the relative file associated with 
channel 6. The record number is specified by the value stored in the variable COUNT. 

WRITE (6,BLT,COUNT) 

The DIBOL-83 Procedure Division Statements 3-77 



WRITE (INDEXED FILE) 

3.39 WRITE (INDEXED FILE) 

FUNCTION 

WRITE updates a record in an indexed file. 

FORMAT 

WRITE (ch ,record ,keyf/d) 

where: 

ch 

record 

keyf/d 

RULES 

is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

is an alpha field or record which contains the data to be written. 

is an alpha field or record which identifies the record into which the data will be written. 

• WRITE is used in U:I mode. 

• Keyf/d must occupy the same position within the record as does a key field defined for the 
indexed file. If it is a multikey file, any key field may be used. 

• WRITE updates the record if the record to be replaced was the last record read and its key field 
has the same value as the last record read. 

• The record to be written is the record most recently read on the specified channel and the record 
must still be locked. WRITE unlocks the record when the WRITE is completed. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN· TIME ERROR CONDITIONS 

• 1 T End of file 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 21 T Bad OPEN 

• 22 T 1-0 Error 

• 26 T Field or record too long 

• 52 T Illegal key 

• 53 T Key not same 

• 61 T No current record 

EXAMPLES 

The following statement will update a record in the indexed file opened on channel 1. The data for 
the record is in ADDR and the key field is in KEY. 

WRITE (l,ADDR,KEY) 

3-78 The D180L-83 Procedure Division Statements 



WRITES 

3.40 WRITES 

FUNCTION 

WRITES outputs a record to the next available position in a file. 

FORMAT 

WRITES (ch ,record) 

where: 

ch is a decimal expression that evaluates to a channel number as specified in a previous 
OPEN statement. 

record is an alpha field, alpha literal, or record which contains the data to be written. 

RULES 

• WRITES is used in 0 mode with a sequential file; in 0 and U modes with a relative file; in I and 0 
modes with a terminal; and in 0 mode with a printer. 

• In U mode, WRITES locks the record it is writing and unlocks the record when the WRITES is 
completed. 

COMPILER ERROR CONDITIONS 

• Invalid data type 

RUN-TIME ERROR CONDITIONS 

• 10 NT Illegal channel number 

• 11 NT Channel not open 

• 21 T Bad OPEN 

• 22 T 1-0 error 

• 25 T Output file full 

• 26 T Field or record too long 

The D180L-83 Procedure Division Statements 3-79 



EXAMPLES 

The following statement transfers the data in the array field PAY(EMPLNO) to the next sequential 
record in the file associated with channel 4. PAY(EMPLNO) must be an alpha field. 

WRITES (4,PAY(EMPLNO» 

Assuming that LPT contains the channel number associated with the printer, the following 
statement transfers the 2nd through the 9th characters in the variable MESSAG to the printer. 

WRITES (LPT,MESSAG(2,9» 

3-80 The DIBOL-83 Procedure Division Statements 

-- - ~- --- -- ~~ --- ---



3.41 XCALL 

FUNCTION 

XCALL transfers program control to an external program. 

FORMAT 

XCALL name (arg[, ... ]) 

where: 

name is the name of the external subroutine being called. 

XCALL 

arg is an alpha field, alpha literal, decimal field, decimal literal, expression, or record which 
contains the subroutine arguments. 

RULES 

• Each argument is linked to a corresponding argument definition in the called subroutine to 
provide the logical connections necessary to pass data. The first XCALL argument is linked to 
the first argument in the subroutine, the second is linked to the second, etc. 

• Arguments in the argument list are separated by commas. 

• A given argument may be omitted from the argument list. If more arguments are needed, their 
place must be held by putting in the commas, e.g., XCALL SUB (A"C). 

• For decimal fields, the returned value is moved to the field according to the rules for moving 
decimal data (see section 3.2.2). 

• For alpha fields and records, the returned value is moved to the field according to the rules for 
moving alpha data (see section 3.2.1). 

• If the number of arguments passed exceeds the number expected by the subroutine, an error is 
generated. 

• If the number of arguments is fewer than expected, no error is generated; it is the responsibility 
of the subroutine to check for the existence of each argument. 

• XCALL causes information to be stored in an internal stack. This stack is of finite size; if too many 
XCALL statements are executed without an intervening RETURN, the stack will overflow. The 
exact size of the stack is system dependent and the exact number of XCALL statements which 
can be nested will vary. In general, programmers should limit subroutine nesting to 15 levels. 

• Following the execution of the subroutine, execution of the calling routine begins with the 
statement which logically follows the XCALL. 

• The size of a missing external subroutine argument is -1. 

• An external subroutine cannot call itself. 

The DIBOL-83 Procedure Division Statements 3-81 



RULES FOR SUBROUTINE NAME 

• A subroutine name consists of up to 6 characters, the first of which must be alphabetic. 
Remaining characters can be alphabetic, numeric, or _(underscore). 

• Only the first 6 characters of a subroutine name are significant; remaining characters are 
ignored. 

COMPILER ERROR CONDITIONS 

• None 

RUN· TIME ERROR CONDITIONS 

• 4 NT DIBOL stack overflow 

• 60 NT R6 stack overflow 

EXAMPLES 

In the following example, the main program calls the external subroutine (CNVRT) to change the 
format of the date. It passes the arguments DATE and X-DATE. These arguments are represented 
in the subroutine as OLD and NEW. 

RECORD 

PROC 

Main Program 

DATE, D6, 010750 
XDATE, All 

XCALL CNVRT (DATE,XDATE) 
OPEN (1,0,' TT: ' ) 
WRITES (l,XDATE) 
CLOSE 1 
STOP 

3·82 The DIBOL·83 Procedure Division Statements 

Convert the date 
; Open the terminal 

Display the date 
Close the terminal 



External Subroutine 

SUBROUTINE CNVRT ; Convert the date format 
Date (mmddyy) 

RECORD 

RECORD 

RECORD 

PROC 

OLD, D 
NEW, A 

ODATE 
MM, 
DD, 
YY, 

NDATE 
DAY, 
, 
MONTH, 
, 
YEAR, 

D2 
D2 
D2 

A2 
Al, 
A3 
Al, 
D2 

' -' 

' -' 

Da te (dd-mmm-yy) 

; Old date format 
; Month 
; Day 

Year 

New date format 
; Day 

; Month 

; Year 

MNAME, l2A3, 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun' 
, 'Jul', 'Aug', 'Sept, 'Oct', 'Nov', 'Dec' 

ODATE=OLD 
DAY=DD 
YEAR=YY 
MONTH=MNAME(MM) 
NEW=NDATE 
RETURN 

; Move day to new format 
; Move year to new format 
; Move month to new format 
; Return new date 

Arguments can also be made optional. This requires some coordination between the calling 
program and the external subroutine. The external subroutine must determine whether a given 
optional argument was passed. This is done by using the SIZE subroutine. If the SIZE subroutine 
returns a negative value, then the subroutine argument was not passed. The following external 
subroutine accepts up to 3 file names to delete. 

SUBROUTINE DEL3 
FILE1, A 
FILE2, A 
FILE3, A 

; Subroutine to delete 
; First file 

3 files 

RECORD 

PROC 
SIZE, 03 

XCALL SIZE (FILE1,SIZE) 
IF SIZE.GT.O 

XCALL DELET (1,FILE1) 
XCALL SIZE (FILE2,SIZE) 
IF SIZE.GT.O 

XCALL DELET (1,FILE2) 
XCALL SIZE (FILE3,SIZE) 
IF SIZE.GT.O 

XCALL DELET (1,FILE3) 
RETURN 

; Second file 
; Thi rd file 

; Get size of first name 
; Was argument passed? 

Yes--Delete file 
; Get size of second name 

Was argument passed? 
; Yes--Delete file 
; Get size of third name 
; Was argument passed? 
; Yes--Delete file 

The DIBOL-83 Procedure Division Statements 3-83 



The DEL3 external subroutine can be called using many different types of argument lists. Some of 
the possible argument lists are shown below. F1, F2, and F3 are assumed to be valid file 
specifications. 

XCALL DEL3 (FI) 

XCALL DEL3 (FI,F2) 

XCALL DEL3 (FI,F2,) 

XCALL DEL3 (FI, ,F3) 

XCALL DEL3 ("F3) 

XCALL DEL3 () 

XCALL DEL3 

3-84 The D180L-83 Procedure Dividion Statements 



4.1 INTRODUCTION 

CHAPTER 4 

THE DIBOL-83 COMPILER DIRECTIVES 

This chapter contains information about all the Compiler Directives. For easy reference, the Compiler 
Directives are arranged alphabetically. 

Compiler Directives can be used anywhere in a program except as the statement to be executed in an IF, 
IF-THEN-ELSE, FOR,WHILE, DO-UNTIL, or USING statement. 

Compiler Directives cannot have labels. 

4-1 



.IFDEF-.ENDC 

4.2 .lFDEF-.ENDC 

FUNCTION 

FORMAT 

where: 

RULES 

.IFDEF specifies conditional compilation based on the definition of a variable. 

.IFDEF field 
statement 

.ENDC 

field 

statement 

is an alpha field, decimal field, or record that must be defined if the statements 
that follow are to be compiled. 

is a DI BOL statement. 

• The statements between .IFDEF and .ENDC are compiled only if the field is defined in the 
Data Division before .IFDEF. 

• Conditional compilation directives may be nested. 

• Compiler Directives have no effect when they are within conditionally uncompiled code. 

COMPILER ERROR CONDITIONS 

• Directive error 

EXAMPLES 

In the following example the INCR statement is not compiled because the variable RT11 is not 
defined: 

RECORD 
B, D1 

PROC 
.IFDEF RT11 

INCR B 
.ENDC 

STOP 

4-2 The DIBOL-83 Compiler Directives 



.IFNDEF-.ENDC 

4.3 .IFNDEF-.ENDC 

FUNCTION 

FORMAT 

where: 

RULES 

.IFNDEF specifies conditional compilation based on the non-definition of a variable. 

.IFNDEF field 
statement 

.ENDC 

field 

statement 

is an alpha field, decimal field, or record that must not be defined if the 
statements that follow are to be compiled. 

is a DIBOL statement. 

• The statements between .IFNDEF and .ENDC are compiled only if the field is not defined in 
the Data Division before .lFNDEF. 

• Conditional compilation directives may be nested. 

• Compiler Directives have no effect when they are within conditionally uncompiled code. 

COMPILER ERROR CONDITIONS 

• Directive error 

EXAMPLES 

In the following example the INCR statement is compiled because the variable RSTS. is not 
defined: 

RECORD 
B, 01 

PROC 
.IFNDEF RSTS 

INCR B 
.ENDC 

STOP 

The DIBOL-83 Compiler Directives 4-3 



.INCLUDE 

4.4 .INCLUDE 

FUNCTION 

FORMAT 

where: 

RULES 

.INCLUDE directs the compiler to read source code from a specified file. 

.INCLUDE filespec 

filespec is an alpha literal that contains the file specification of the file to be included. 

• When the compiler encounters .INCLUDE, the compiler stops reading statements from the 
current file and reads the statements in the included file. When it reaches the end of the 
included file, the compiler resumes compilation with the next logical line after .INCLUDE. 

• The filespec may contain only one specification. 

• The default extension for the file is the same as the default extension for DIBOL program 
source files. Other system dependent information in the specification follows the system 
defaults. 

• .INCLUDE may be nested to 3 levels. 

COMPILER ERROR CONDITIONS 

• Cannot open .INCLUDE file <filespec> 

• .INCLUDE nested too deeply - file ignored < filespec> 

EXAMPLES 

.INCLUDE is particularly useful for including standard record descriptions. Assume the file 
EMPREC.DBL contains the following information: 

RECORD EMPREC 
NAME, A20 
BADGE, AS 

4-4 The DIBOL Compiler Directives 

; Employee record 
; Employee name 
; Employee badge number 



The .INCLUDE in the following program will include the employee record description (stored in 
the file EMPREC.DBL): 

.INCLUDE 'EMPREC.DBL' 
RECORD 

DONE, Al 
PROC 

OPEN (l,O,'TT:') 
OPEN (2,U;I,'EMPFIL') 
DO 

BEGIN 

Open terminal 
Open employee file 

WRITES (1, 'Name?') ; Prompt for name 
READS (l,NAME) ; Get employee name 
WRITES (1, 'Badge?') ; prompt for badge number 
READS (l,BADGE) Get badge number 
STORE (2,EMPREC,BADGE) ; Create employee record 
WRITES (l,'Done?') ; Ask if finished 
READS (l,DONE) ; Get response 
END 

UNTIL DONE.EQ.'Y' 
CLOSE 1 ; Close terminal 
CLOSE 2 ; Close employee file 
STOP 

The resulting program listing will contain: 

• INCLUDE 'EMPREC. DBL' 
1 RECORD EMPREC Employee record 
2 NAME, A20 Employee name 
3 BADGE, AS Employee badge number 
4 RECORD 
S DONE, Al 

6 PROC 
7 OPEN (1 , 0, ' TT: ' ) ; Open terminal 
8 OPEN (2, U; I , ' EMPF I L ' ) ; Open employee file 
9 DO 

10 BEGIN 
11 WRITES (1, 'Name?') Prompt for name 
12 READS (1, NAME) Get employee name 
13 WRITES (l,'Badge?') Prompt for badge number 
14 READS (1, BADGE) Get badge number 
15 STORE (2,EMPREC,BADGE) ; Create employee record 
16 WRITES (1, 'Done?') ; Ask if finished 
17 READS (1, DONE) ; Get response 
18 END 
19 UNTIL DONE.EQ.'Y' 
20 CLOSE 1 Close terminal 
21 CLOSE 2 ; Close employee file 
22 STOP 

The DIBOL-83 Compiler Directives 4-5 



LIST 
4.5 .LlST 

FUNCTION 

FORMAT 

RULES 

.LlST enables the source code listing. 

. LIST 

• .LlST is the default condition when beginning a compilation. 

• .LlST and all subsequent source file input is listed. 

• Normal listing continues until the end of the program or until a .NOLIST directive is 
encou ntered. 

• .LlST always enables the listing regardless of the number of .NOLIST directives that 
preceded the .LlST .. LlST/.NOLIST cannot be nested. 

• .LlST does not affect the content of the listing beyond the last line of the source code. 

COMPILER ERROR CONDITIONS 

• None 

EXAMPLES 

The .LlST and .NOLIST directives in the following program will affect the listing of the 
program. The .NOLIST disables listing the EMPREC record description and the .LlST enables 
listing the remainder of the program . 

• NOLIST 
RECORD EMPREC 

NAME, 
BADGE, 

A20 
AS 

.LIST 
RECORD 

PROC 
DONE, Al 

OPEN (1,0,' TT: ' ) 
OPEN (2,U;I,'EMPFIL') 
DO 

4-6 The DIBOL Compiler Directives 

Employee record 
Employee name 

; Employee badge number 

; Open terminal 
Open employee file 



BEGIN 
WRITES (l,'Name?') ; Prompt for name 
READS (l,NAME) ; Get employee name 
WRITES (l,'Badge?') ; Prompt for badge number 
READS (l,BADGE) ; Get badge number 
STORE (2,EMPREC,BADGE) ; Create employee record 
WRITES (l,'Done?') ; Ask if finished 
READS (l,DONE) 
END 

UNTIL DONE.EQ.'Y' 
CLOSE 1 
CLOSE 2 
STOP 

; Get response 

; Close terminal 
Close employee file 

The resulting program listing will contain: 

.LIST 
4 RECORD 
5 DONE, Al 

6 PROC 
7 OPEN (1 , 0, ' TT: ' ) 
8 OPEN (2, U; I , ' EMPF I L ' ) 
9 DO 

10 BEGIN 
11 WRITES (l,'Name?') 
12 READS (1, NAME) 
13 WRITES (1, 'Badge?') 
14 READS (1, BADGE) 
15 STORE (2,EMPREC,BADGE) 
16 WRITES (1, 'Done?') 
17 READS (1,DONE) 
18 END 
19 UNTIL DONE.EQ.'Y' 
20 CLOSE 1 
21 CLOSE 2 
22 STOP 

; Open terminal 
; Open employee file 

; Prompt for name 
; Get employee name 
; Prompt for badge number 
; Get badge number 
; Create employee record 
; Ask if finished 
; Get response 

; Close terminal 
; Close employee file 

The DIBOL-83 Compiler Directives 4-7 



.NOLIST 

4.6.NOLIST 

FUNCTION 

FORMAT 

RULES 

.NOLIST disables the source code listing. 

.NOLIST 

• .NOLIST and all subsequent source file input is not listed. 

• If an error is detected while the listing is disabled, the statement containing the error and 
the error message is listed. 

• Normal listing continues only when a .LlST directive is encountered. 

• .NOLIST ALWAYS inhibits the listing regardless of the number of .LlST directives that 
preceded the .NOLIST .. LlST/.NOLIST cannot be nested. 

• . NOLIST does not affect the content of the listing beyond the last line of the source code. 

COMPILER ERROR CONDITIONS 

• None 

EXAMPLES 

See . LIST for example. 

4-8 The DIBOL-83 Compiler Directives 



.PAGE 

4.7.PAGE 

FUNCTION 

.PAGE ends the current listing page and begins a new listing page. 

FORMAT 

.PAGE 

RULES 

• .PAGE is the last line listed on the page being completed. 

COMPILER ERROR CONDITIONS 

• None 

EXAMPLES 

The .PAGE directive in the following program will place the EMPREC record description on a page 
by itself: 

RECORD EMPREC 
NAME, A20 
BADGE, AS 

RECORD 

PROC 
DONE, Al 

OPEN (I,O,ITT: I) 
OPEN (2,UiI,IEMPFIL') 
DO 

BEGIN 
WRITES (1,'Name?') 
READS (I,NAME) 
WRITES (l,'Badge?') 
READS (l,BADGE) 
STORE (2,EMPREC,BADGE) 
WRITES (l,'Done?') 
READS (l,DONE) 
END 

UNTIL DONE.EQ.'Y' 
CLOSE I 
CLOSE 2 
STOP 

; Employee record 
Employee name 

i Employee badge number 

Open terminal 
Open employee file 

Prompt for name 
Get employee name 
Prompt for badge number 
Get badge number 
Create employee record 
Ask if finished 

i Get response 

Close terminal 
Close employee file 

The DIBOL-83 Compiler Directives 4-9 



The resulting program listing will contain: 

1 RECORD EMPREC ; Employee record 
2 NAME, A20 ; Employee name 
3 BADGE, AS ; Employee badge number 

• PAGE 

4 RECORD 
5 DONE, Al 

6 PROC 
7 OPEN (1 ,0, , TT: ' ) · Open terminal , 
8 OPEN (2,U;I,'EMPFIL') ; Open employee file 
9 DO 

10 BEGIN 
11 WRITES (l,'Name?') ; Prompt for name 
12 READS (1, NAME) ; Get employee name 
13 WRITES (l,'Badge?') ; Prompt for badge number 
14 READS (I,BADGE) ; Get badge number 
15 STORE (2, EMPREC ,BADGE) ; Create employee record 
16 WRITES (l,'Done?') · Ask if finished , 
17 READS (1, DONE) ; Get response 
18 END 
19 UNTIL DONE.EQ.'Y' 
20 CLOSE 1 Close terminal 
21 CLOSE 2 · Close employee file , 
22 STOP 

4-10 The D180L-83 Compiler Directives 



·TITLE 

4.8.TITLE 

FUNCTION 

.TITLE changes the listing page header. 

FORMAT 

. TITLE [text-string) 

where: 

text-string is an alpha literal which is the page header text. 

RULES 

• .TITLE is the first source line listed on a new page. 

• If the listing is already at the beginning of a page when .TITLE is encountered, no new page is 
generated. 

• The text-string set by .TITLE is used in the page header of all pages until a new .TITLE directive 
is encountered. 

• The text-string is moved to the page header area according to the rules for moving alpha data 
(see section 3.2.1). 

• If no text-string is specified, the page header area is filled with spaces. 

COMPILER ERROR CONDITIONS 

• Directive error 

EXAMPLES 

The following .TITLE directive will set the title to 'Employee Update Program'. This title will appear 
at the top of all pages until another .TITLE is encountered . 

• TITLE 'Employee Update program' 

The following .TITLE directive will clear the title for all pages that follow until another .TITLE is 
encountered . 

• TITLE 

The DIBOL-83 Compiler Directives 4-11 





CHAPTER 5 

UNIVERSAL EXTERNAL SUBROUTINES 

This chapter contains information on the DIBOL-83 Universal External Subroutines. Each subroutine is 
described and an example of its use is given. Some subroutines may differ when used under a particular 
operating system. 

The appropriate operating system User's Guide should be referred to when using any of the subroutines 
contained in this document. 

5-1 



ASCII 
5.1 ASCII 

FUNCTION 

ASCII returns the ASCII character for a decimal character code. 

FORMAT 

XCALL ASCII (dfield, afield) 

where: 

dfield is a decimal field or decimal literal that contains the decimal character code. 

afield is an alpha field or record that is to contain the ASCII character. 

RULES 

• Afield should be a 1 character field. 

• The ASCII character is moved to afield according to the rules for moving alpha data (see section 
3.2.1). 

• Dfield is treated as a single character code. 

• If dfield exceeds the range of character codes, dfield is automatically converted by dividing the 
number by 256 and taking the remainder as the character code (258 becomes 2, 259 becomes 3, 
etc). 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

EXAMPLES 

Since 87 is the decimal character code for 'W', CHAR will contain 'W' after executing the following 
example: 

RECORD 
NUM, D2, 87 ; Decimal character code 
CHAR, Al ; ASCII character 

PROC 
XCALL ASCII (NUM, CHAR) Get ASCII character 
STOP 

/ 

5-2 Universal External Subroutines 



DATE 

5.2 DATE 

FUNCTION 

DATE returns the current system date. 

FORMAT 

XCALL DATE (afield) 

where: 

afield is an alpha field or record that is to contain the date. 

RULES 

• Afield should be a 9 character field. 

• The date is moved to the alpha field according to the rules for moving alpha data (see section 
3.2.1). 

• The date is returned in the form: 

dd-mmm-yy 

where: 

dd is the day of the month (01-31). 

mmm is the first three characters for the name of the month (JAN, FEB, MAR, JUN, 
JUL, AUG, SEP, OCT, NOV, and DEC). 

yy is the last two digits of the year (00-99). 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

Universal External Subroutines 5-3 



EXAMPLES 

Assuming the current system date is May 13,1983, OAT will contain '13-MAY-83' upon execution of 
the following program: 

RECORD 

PROC 
OAT, A9 

XCALL DATE (OAT) 
STOP 

5-4 Universal External Subroutines 

; System date 

; Get system date 



DECML 

5.30eCML 

FUNCTION 

DECML returns the decimal character code for an ASCII character. 

FORMAT 

XCALL DECML (afield, dfield) 

where: 

afield is an alpha field, alpha literal, or record that contains the ASCII character. 

dfield is a decimal field that is to contain the decimal character code. 

RULES 

• If afield is longer than one character, only the first (leftmost) character is used. 

• The dfield should be a three digit field. 

• The decimal character code is moved to dfield according to the rules for moving decimal data 
(see section 3.2.2). 

RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

EXAMPLES 

After executing the following example NUM will contain 087, which is the decimal character code 
for 'W'. 

RECORD 

PROC 

NUM, 03 
CHAR, Ai, I WI 

XCALL DECML (CHAR,NUM) 
STOP 

Decimal character code 
ASCII character 

; Get character code 

Universal External Subroutines 5-5 



DELET 

5.4DELET 

FUNCTION 

DELET removes one or more versions of a file from a directory. 

FORMAT 

XCALL DELET ([ch,] filespec) 

where: 

ch is a decimal field or decimal literal that specifies a channel number. 

filespec is an alpha field, alpha literal, or record that contains a file specification. 

GENERAL RULES 

• If the specified file does not exist, no error is given. 

• The file is deleted unless it is protected by the system. 

RULES FOR MULTI-VERSION FILE SYSTEMS 

• The file specification may contain wildcards. 

• If the file specification does not specify a version number, all versions are deleted. 

• DELET will attempt to delete all the files before generating an error. 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

EXAMPLES 

The following program will delete the file ARMAST.DDF: 

RECORD 

PROC 
NAME, AlO, 'ARMAST.DDF' 

XCALL DELET (NAME) 
STOP 

5-6 Universal External Subroutines 

; Delete ARMAST.DDF 



FUNCTION 

ERROR 
5.5 ERROR 

ERROR returns the error number and the line number at which the last trappable error occurred. 

FORMAT 

XCALL ERROR (errnum, line) 

where: 

errnum is a decimal field that is to contain the error number. 

line is a decimal field that is to contain the line number. 

RULES 

• Errnum should be a 3 digit field. 

• The error number is moved to errnum according to the rules for moving decimal data (see section 
3.2.2). 

• The line field should be large enough to hold the largest line number in the program. 

• The line number is moved to line according to the rules for moving decimal data (see section 
3.2.2). 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

EXAMPLES 

Assuming that the statement C = 5/0 is on line 7, LINE will contain 0007 and ERR will contain 0030, 
which is the Divide by 0 error number. 

RECORD 
LINE, D4 
ERR, D4 
C, D4 

PROC 
ONERROR BAD 
C=5/0 

BAD, XCALL ERROR (ERR,LINE) Get error and line. 

Universal External Subroutines 5-7 



FATAL 

5.6 FATAL 

FUNCTION 

FATAL specifies the action to be taken when a non-trappable error is detected by the run-time 
system. 

FORMAT 

XCALL FATAL (action[,fi/espec]) 

where: 

action is a decimal field or decimal literal that directs the run-time system what to do in the 
event of a fatal error. 

filespec is an alpha field, alpha literal or record which contains the file specification of a program 
to be run in place of this program if an untrapped error occurs. It may also be a record or 
alpha field that will receive the name of the default user-designated program. 

RULES 

• When an untrapped error occurs, the user-designated program is sent a message which 
contains error information. The format of the message is: 

ERR1, D3 
ERR2, D10 
ERLN, D10 
MODUL, A31 
PRGNM, A31 

;DIBOL fatal error number 
;Additional system information 
;Line number of statement causing the error 
;Name of module which caused the error 
;Name of the 'root' module 

• If the program that encounters the error is running detached, the user-designated program is 
started detached. 

• If the program that encounters the fatal error is running at a terminal, the user-designated 
program is started at the terminal. 

• Acceptable action values are: 

o Return to system level on untrapped error. 

1 Use the default user-designated program on an untrapped error. If there is no 
default user-designated program, return to the system level. 

2 Use the user-designated program specified by the filespec on the untrapped error. 
This filespec designation remains in effect while the current program is running. 

3 Return, in the filespec field, the name of the default user-designated program. If 
none is defined, return spaces. 

5-8 Universal External Subroutines 



RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

• 87 T Argument missing 

• 104 NT Value out of range 

EXAMPLES 

The following statement designates the program BADERR as the program to execute when an 
untrapped error occurs: 

XCALL FATAL (2,'BADERR') 

The following statement specifies that no program is to be loaded when an untrapped error occurs. 
Instead, control will be returned to the system level. 

XCALL FATAL (0) 

Universal External Subroutines 5-9 



FLAGS 

5.7 FLAGS 

FUNCTION 

FLAGS alters operating parameters of the run-time system. 

FORMAT 

XCALL FLAGS (parameters [,action]) 

where: 

parameters 
is a decimal field or decimal literal which contains the FLAGS parameters. 

action is a decimal field or decimal literal which alters the action of the subroutine to provide for 
flexibility. 

RULES 

The digits in the parameters field are right-justified. 

• Each digit corresponds to a parameter. 

• The digits are numbered from right to left. 

• Acceptable action values are: 

Not specified 
Parameters where a non-zero appears are enabled and remaining parameters are 
disabled. 

o Parameters where a non-zero appears are disabled and remaining parameters are 
unchanged. 

Parameters where a non-zero appears are enabled and remaining parameters are 
unchanged. 

2 The current value for the parameters is moved into the parameters field and is right-
justified. . 

RULES WHEN ACTION IS 2 

• Parameters must be a decimal field; it cannot be a literal. 

• Parameters should be a 10 digit field. 

• The parameters are moved to the parameters field according to the rules for moving decimal data 
(see section 3.2.2). 

5-10 Universal External Subroutines 

---~-... - .. - .-----------~----.. ----- ----_._----



10 9 8 I 7 6 5 4 3 I 2 1 

Suppress TermLtor EC~ 
Explicit Terminator Unrequired 

Data Formatting 

Upper/Lower Case Character 

File Protection 

Digit 

Ignore Interrupt Sequences-

Suppress STOP Message

Disable Multi-Volume OMS Files-

RUBOUT for Video Displays 

Suppress Character Echo 

Figure 5-1 FLAGS Option Fields 

Table 5-1 FLAGS Argument Assignments 

Position Meaning When Digit is a Non-Zero Value 

10 Do not echo the terminator of terminal input. 

9 Do not require an explicit terminator for terminal input using READS. Entry into the field 
is terminated implicitly when it is· filled. Entry may be terminated prior to the field being 
filled by use of a terminator character. 

8 Ignore interrupt sequences input from the terminal. This prevents an operator from 
terminating a program by typing an interrupt sequence (CTRUC). 

7 Suppress STOP message which is displayed on the screen at the end of each program. 

6 Do not recognize OMS multi volume files. This means that an input file returns an EOF at 
the end of the last block, even if a CTRLlZ is not present. This allows you to read files that 
are not terminated by a CTRL/Z, such as a single volume of multi volume file, files written 
with an editor, or files produced by the DIBOL compiler. 

Output files are closed with the unused portion of the final block set to nulls, but no 
CTRUZ is added. For OMS DIBOL the Output file full error is generated when the file is 
full. 

5 Do not echo characters input from a terminal. 

4 Backspace the video terminal's cursor one character position in response to each 
operation of the DELETE key, and delete the character instead of displaying a backslash 
('\.). 

3 Detect an attempt to open an output file when a file of the same name and version 
already exists on the device. When this condition occurs, the error message 
Superseding existing file is generated, or, if the Superseding existing file ONERROR 
trap is enabled, the error is trapped to ensure that no files are accidentally deleted and 
replaced. 

2 Do not convert lowercase characters entered from a terminal to the uppercase 
equivalents. 

1 Enable international data formatting by deleting leading periods rather than leading 
commas. 

Universal External Subroutines 5-11 



RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

• 87 T Argument missing 

• 104 NT Value out of range 

EXAMPLES 

Disabling character echo is particularly useful when accepting passwords as in the following 
example. FLAGS digit 5 is used to control character echo. 

RECORD 

PROC 
PASS, A10 

OPEN (1, I , , TT: ' ) 
DISPLAY (l,'Enter password: ') 
XCALL FLAGS (0000010000,1) 
READS (l,PASS) 
XCALL FLAGS (0000010000,0) 

• 

5-12 Universal External Subroutines 

; Password 

Open terminal 
Display password prompt 

; Disable character echo 
; Accept password 

Re-enab1e character echo 



INSTR 

5.8INSTR 

FUNCTION 

INSTR searches a string of data for another string. 

FORMAT 

XCALL INSTR (start,string1,string2,position) 

where: 

start is a decimal field or decimal literal which specifies the character position within string1 
where the search begins. 

string 1 is an alpha field, alpha literal, or record to be searched. 

string2 is an alpha field, alpha literal, or record to be searched for in string1. 

position is a decimal field that is to contain the starting character position of string2 within string 1 . 

RULES 

• The starting position specifies the position within string1 where the search begins. The starting 
position indicates the leftmost boundary for string1. 

• If the starting position is less than 1 or is greater than the length of string 1 , no search takes place 
and the position field is set to zero. 

• The position field is set to a decimal value indicating the leftmost position of string2 within string1. 
The complete string2 (all characters in the order specified) must be found within string1. 

• If the search is unsuccessful, the position field is set to zero. 

• The value indicating the leftmost position of string2 within string1 is moved to the position field 
according to the rules for moving decimal data (see section 3.2.2). 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

Universal External Subroutines 5-13 



EXAMPLES 

The following program reads in a file nameand, if the file name contains '.ISM', opens the file in 1:1 
(indexed) mode. Otherwise, the file is opened in I mode. 

RECORD 

PROC 

POS, 
NAME, 

D3 
A80 

OPEN (1, I , , TT: ' ) 
DISPLAY (1,' Enter file name: ') 
READS (l,NAME) 
XCALL INSTR (l,NAME,' .ISM' ,POS) 
IF POS.NE.O 

THEN 
OPEN (3, I : I , NAME) 

ELSE 
OPEN (3, I ,NAME) 

5-14 Universal External Subroutines 

; Where .ISM was found 
; File name 

Open terminal 
Display file name promp' 
Get file name 
Check for indexed file 
Indexed file? 
Yes--
Open indexed file 

Open non-indexed file 



JBNO 

5.9 JBNO 

FUNCTION 

JBNO returns the job number. 

FORMAT 

XCALL JBNO (dfield) 

where: 

dfield is a decimal field that is to contain the job number. 

RULES 

• The job number is moved to dfield according to the rules for moving decimal data (see section 
3.2.2). 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

EXAMPLES 

The following program will display the job number: 

RECORD MSG 

PROC 

, 
JOB, 

All, 'Job number' 
D3 

OPEN ( 1 , 0, , TT: ' ) 
XCALL JBNO (JOB) 
WRITES (l,MSG) 
CLOSE 1 
STOP 

Job number 

Open terminal 
; Get job number 

Display 'Job number 000' 
Close terminal 

Universal External Subroutines 5-15 



MONEY 

5.10 MONEY 

FUNCTION 

MONEY specifies a currency symbol as either the dollar symbol ($) or some other symbol. 

FORMAT 

XCALL MONEY (afield) 

where: 

afield is an alpha field, alpha literal, or record which contains the currency symbol. 

RULES 

• The currency symbol may be any ASCII character except comma (,), period (.), asterisk (*), 
hyphen (-), or the letters X and Z. 

• If afield is longer than one character, only the first (leftmost) character is used. 

RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 87 T Argument missing 

EXAMPLES 

In the following example the MONEY subroutine is used to change the currency symbol to '#'. The 
example will display '#1234567.89'. 

RECORD 

PROC 

A, 010, 0123456789 
B, A15 

OPEN (l,O,ITT:I) 
XCALL MONEY (1#1) 
B=A,I############.XXI 
WRITES (l,B) 
CLOSE 1 
STOP 

5-16 Universal External Subroutines 

; Open terminal 
Change currency symbol 
Format value 

; Display formatted value 
Close terminal 



PAK 
5.11 PAK 

FUNCTION 

PAK converts zoned decimal fields to packed decimal. 

FORMAT 

XCALL PAK (record,size,dfield[, ... ]) 

where: 

record is an alpha field or record which contains the unpacked source data. This also 
identifies the destination of the packed result. 

size is a decimal field where the size of the packed record is returned. 

dfield is one or more decimal fields to be packed. 

RULES 

• In packed form there are 2 digits per byte plus an extra byte for the sign. 

• The size of a packed field (in terms of bytes) is equal to the number of digits in the zoned decimal 
field divided by 2 plus 1. If the result is not an integer, round down to the next lower integer. The 
formula for calculating the packed decimal field size is the following: 

packed decimal field size == (number of digits/2) + 1 

Using this formula a zoned decimal field of 16 bytes requires a packed decimal field of 9 bytes or 
9 = (16/2) + 1. 

• Fields to be packed must be listed in ascending order by position within the record. 

• Fields between the packed fields are shifted forward in the resulting packed record. 

Universal External Subroutines 5-17 



RUN· TIME ERROR CONDITIONS 

• 8 NT Writing into a literal 

• 20 T Bad digit 

• 77 T Arguments out of order 

• 78 T Argument not defined in the record 

• 79 T Incorrect argument count 

• 80 T Field not packed 

EXAMPLES 

In the following example the employee record (EMPREC) is packed using the PAK subroutine and 
is then written to a file. The WRITES statement specifies the substring of EMPREC which contains 
the packed record. 

RECORD 

RECORD 

PROC 

SIZE, 03 ; Size of packed field 
EMPREC Employee record 
NAME, A20 ; Employee name 
BGN, 06 ; Beginning date 
SAL, 010 ; Current salary 
TITLE, AlO ; Current title 
DEP, 02 ; Number of dependents 

XCALL PAK (EMPREC,SIZE,BGN,SAL,DEP) 
WRITES (l,EMPREC(l,SIZE» 

; Pack employee record 
; Output packed record 

5-18 Universal External Subroutines 



RENAM 

5.12 RENAM 

FUNCTION 

RENAM changes the name of an existing file. 

FORMAT 

XCALL RENAM ([ch,] newfile, oldfile) 

where: 

ch is a decimal field or decimal literal that specifies a channel number. 

newfile is an alpha field, alpha literal, or record that contains the new file specification. 

oldfile is an alpha field, alpha literal, or record that contains the current file specification. 

RULES 

• The rename operation follows the flowchart in Figure 5-2. 

• A file can be renamed from one directory to another, but not from one device to another. 

• If oldfile does not exist, a File not found error is generated and the rename operation is 
terminated. 

• If newfile exists and specifies a file different from oldfile, but digit position 3 in the FLAGS 
subroutine is set to prevent the superseding of an existing file, a Cannot supersede existing file 
error is generated and the rename operation is terminated. 

• If newfile specifies the same file as oldfile, the results are system dependent. 

On RSTS/E, if digit position 3 in the FLAGS subroutine is clear, the file is deleted and a File not 
found error is generated. If FLAG 3 is set, the file will not be deleted and no error occurs. 

On VAX and PRO, the file will not be deleted and no error occurs. If FLAG 3 is clear, old versions 
of the specified file may be deleted. 

RULES FOR MULTI-VERSION FILE SYSTEMS 

• If an error occurs during the processing of multiple versions of a file (such as a file protection 
error), processing continues if possible and an error is generated upon completion. 

• If the version number of newfile is omitted or the version number is a wildcard (specified with an 
asterisk (*)), all versions of newfile will be deleted prior to the actual rename operation. 

Universal External Subroutines 5-19 



• If the version number of oldfile is omitted or the version number is wild, all versions of oldfile wil 
be renamed. 

• If the version number of oldfile is 0 or blank, the latest version of oldfile will be renamed. 

• If the version number of oldfile is explicit, that version of oldfile will be renamed. 

• If the version number of oldfile is omitted or the version number is wild, and the version number 01 
newfile is explicitly specified, unpredictable results may occur. 

• The order of the versions of oldfile will be retained when the fields are renamed to newfile. 

no 

Does 0 dfile exist? .. FILE NOT FOUND ... Exit 
error 

yes 

no 

Does n wfile exist? 

IY~ 
yes 

Is FLAG 3 set? .. Supersede .. Exit 

J no 

error 

Is newflle same no 
file as oldfile? ... Delete newiile 

yes I • 

Renam oldfile 

to neT 
Exit 

Figure 5-2 RENAM Flowchart 

5-20 Universal External Subroutines 



RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 18 T File not found 

• 32 T Cannot supersede existing file 

• 62 T Protection violation 

• Various other file-related errors may also occur which are not specific to RENAM. 

EXAMPLES 

The following statement will rename the file OLDFIL.DDF to NEWFIL.DDF: 

XCALL RENAM ('NEWFIL.DDF' ,'OLDFIL.DDF') 

Universal External Subroutines 5-21 



RSTAT 

5.13 RSTAT 

FUNCTION 

RSTAT returns the size and terminating character for the last record read by a READ or READS 
statement. 

FORMAT 

XCALL RSTAT (size[,char]) 

where: 

size is a decimal field that is to contain the record size. 

char is an alpha field or record that is to contain the terminating character. 

RULES 

• The record size is moved to size according to the rules for moving decimal data (see section 
3.2.2). 

• Char should be a 1 character field. 

• The terminating character is moved to char according to the rules for moving alpha data (see 
section 3.2.1). 

RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

• 87 T Argument missing 

5-22 Universal External Subroutines 



EXAMPLES 

The program that follows creates a sequential file called NEWFIL.DDF and fills the file with records 
from the file called OLDFIL.DDF (Le., a copy operation). Since the size of the input records may 
vary, RSTAT is used to obtain the record size following each READS. The WRITES is then done by 
specifying a substring. 

RECORD 

PROC 

LOOP, 

DONE, 

IN, A256 
SIZE, 03 

OPEN (l,I,'OLDFIL.DDF') 
OPEN (2,O,'NEWFIL.DDF') 
READS (l,IN,DONE) 
XCALL RSTAT (SIZE) 
WRITES (2,IN(l,SIZE)) 
GOTO LOOP 

CLOSE 1 
CLOSE 2 
STOP 

; Input record 
Input record size 

Open old file 
; Create new file 
; Read a record 
; ••• and get its size 

Copy record to new file 

Universal External Subroutines 5-23 



RUNJB 

5.14 RUNJB 

FUNCTION 

RUNJB starts another program without terminating the current program. 

FORMAT 

XCALL RUNJB (filespec, terminal) 

where: 

filespec is an alpha field, alpha literal, or record which contains the file specification of the 
program to be executed. 

terminal is a decimal field or decimal which specifies the terminal number. 

RULES 

• The terminal number specifies the terminal to which the program is to be attached. 

• If the terminal number is -1, no terminal is attached to the job. 

• RUNJB cannot be used in a non multi tasking environment. 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 58 T Job startup error 

EXAMPLES 

The following program starts a program called MENU on terminals 1 and 2 and starts a detached 
program called UPDT: 

PROC 
XCALL 
XCALL 
XCALL 
STOP 

RUNJB ('MENU', 1) ; Start program on terminal 1 
RUNJB ('MENU',2) ; Start program on terminal 2 
RUNJB ('UPDT' ,-1) ; Start detached program 

5-24 Universal External Subroutines 

\~ 



SIZE 

5.15 SIZE 

FUNCTION 

SIZE returns the size of a field. 

FORMAT 

XCALL SIZE (field,size) 

where: 

field is an alpha field, alpha literal, decimal field, decimal literal, or record whose size is to 
be returned. 

size is a decimal field which is to contain the size. 

RULES 

• The size of a subroutine argument which is not passed is -1. 

• The size of an alpha field or decimal field is the number of characters as specified in the Data 
Division. 

• The size of a record is the sum of the size of the fields which are part of the record. 

• The size of an alpha literal is the number of characters required to store it, 

• The size of a decimal literal is equal to the actual number of digits in the literal. Plus and minus 
signs are not counted. 

• The size is moved to size according to the rules for moving decimal data (see section 3.2.2). 

RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

• 87 T Argument missing 

Universal External Subroutines 5-25 



EXAMPLES 

Creating a relative file requires that the size of the records that will be placed in the file be specified 
in the OPEN. This can be done by counting the characters and hard-coding the value in the OPEN. 
This can also cause maintenance problems when new fields are added to the record. A better 
method is to use the SIZE subroutine to determine the size of the records as in the following 
example: 

RECORD 
SIZE, D3 ; Si ze of packed field 

RECORD EMPREC ; Employee record 
NAME, A20 ; Employee name 
BGN, D6 ; Beginning date 
SAL, DlO ; Current salary 
TITLE, AlO ; Current title 
DEP, D2 ; Number of dependents 

PROC 
XCALL SIZE (EMPREC,SIZE) ; Get employee record size 
OPEN (l,O;R,'EMPFIL.DDF',RECSIZ:SIZE) ; Create file 

5-26 Universal External Subroutines 



TIME 

5.16 TIME 

FUNCTION 

TIME returns the current system time of day. 

FORMAT 

XCALL TIME (dfield) 

where: 

dfield is a decimal field that is to contain the time. 

RULES 

• Dfield should be a 6 digit field. 

• The time is moved to dfield according to the rules for moving decimal data (see section 3.2.2). 

• The time is returned in a 24-hour notation in the format: 

hhmmss 

where: 

hh is the number of hours elapsed since midnight. 
mm is the number of minutes elapsed since the last hour. 
ss is the number of seconds elapsed since the last minute. 

RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

EXAMPLES 

Assuming that the current time is 2:45:57 P.M., CURTIM will contain 144557 in the following 
example: 

RECORD 

PROC 
CURTIM, D6 

XCALL TIME (CURTIM) 
STOP 

Current time 

Get current time 

Universal External Subroutines 5-27 



TNMBR 

5.17 TNMBR 

FUNCTION 

TNMBR returns the number of the terminal to which the program is attached. 

FORMAT 

XCALL TNMBR (terminal) 

where: 

terminal is a decimal field which is to contain the terminal number. 

RULES 

• The terminal number is moved to terminal according to the rules for moving decimal data (see 
section 3.2.2) . 

• If the program is running detached, TNMBR returns -1. 

RUN· TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

EXAMPLES 

The following program calls TNMBR to determine if it is running detached. If it is not detached, the 
program displays the terminal number. 

RECORD MSG 

PROC 

, 
TT, 

A9, 'Terminal' 
D3 

XCALL TNMBR (TT) 
IF TT.GE.O 

BEGIN 
OPEN (l,O,'TT:') 
WRITES (l,MSG) 
CLOSE 1 
END 

STOP 

5-28 Universal External Subroutines 

Get terminal number 
; Is program detached? 
; No--
; Open terminal 
; Display terminal # 
; Close terminal 



TTSTS 

5.18 TTSTS 

FUNCTION 

nSTS returns an indication of waiting terminal input. 

FORMAT 

XCALL nSTS (dfield[,ch]) 

where: 

dfield is a decimal field which is to contain the number of characters waiting to be input. 

ch is a decimal field or decimal literal that evaluates to a channel number as specified in a 
previous OPEN statement. 

RULES 

• nSTS indicates the status by returning one of the following in dfield: 

zero (0) if no characters are waiting 

non-zero if one or more characters are waiting. 

• The status is moved to dfield according to the rules for moving decimal data (see section 3.2.2). 

• If there is at least one character in the buffer, execution of an ACCEPT will not cause an 1/0 wait. 

• If there is nothing in the buffer and an ACCEPT is done, the program will wait for keyboard input. 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• 8 NT Writing into a literal 

• 21 T Bad OPEN 

Universal External Subroutines 5-29 



EXAMPLES 

The following example continuously displays a counter at the terminal. However, the program is 
designed to stop if a carriage return is entered. 

RECORD 

RECORD 

PROC 

NUMBER 
, 
CTR, 

AlS, 'Loop counter = 
D5 

ARG, Dl 
CHAR, D3 

OPEN ( 1 , I , I TT: I ) 

DO 
BEGIN 
INCR CTR 
WRITES (l,NUMBER) 
XCALL TTSTS (ARG,l) 
IF ARG 

ACCEPT (l,CHAR) 
END 

UNTIL CHAR.EQ.13 
CLOSE 1 
STOP 

; Open terminal 

; Increment loop counter 
; Display loop counter 
; See if a key was typed 
; Was a character entered? 
; Yes--Get the character 

; Carriage return? 
; Close terminal 

5-30 Universal External Subroutines 



UNPAK 

5.19 UNPAK 

FUNCTION 

UNPAK converts packed decimal fields to zoned decimal. 

FORMAT 

XCALL UNPAK (record,dfield(, ... ]) 

where: 

record is an alpha field or record that contains the packed data. This also identifies the 
destination of the unpacked result. 

dfield is one or more decimal fields to receive the unpacked data. 

RULES 

• The packed record base address is used as the reference pOint and the unpacked record 
overlays the packed record. 

• Fields to be unpacked must be listed in ascending order by position within the record. 

• If all the fields are unpacked, the fields between the packed fields are shifted back to their 
original positions. 

RUN-TIME ERROR CONDITIONS 

• BAD DIGIT 

• ARGUMENTS OUT OF ORDER 

• ARGUMENT OUT OF RECORD LIMIT 

• ARGUMENT COUNT 

• FIELD NOT PACKED 

Universal External Subroutines 5-31 



EXAMPLES 

In the following example the employee record (EMPREC), which contains packed data, is read from 
a file and is unpacked using the UNPAK subroutine. The READS statement specifies the substring 
of EMPREC which contains the packed record. This size was returned by the PAK subroutine when 
the record was written. 

RECORD 

RECORD 

PROC 

SIZE, D3 ; Si ze of packed field 
EMPREC ; Employee record 
NAME, A20 ; Employee name 
BGN, D6 ; Beginning date 
SAL, DIO ; Current salary 
TITLE, AIO ; Current title 
DEP, D2 ; Number of dependents 

XCALL PAK (EMPREC,SIZE,BGN,SAL,DEP) 
WRITES (l,EMPREC(l,SIZE» 

; Pack employee record 
Output packed record 

READS (l,EMPREC(l,SIZE» 
XCALL UNPAK (EMPREC,BGN,SAL,DEP) 

Read packed record 
; Unpack record 

5-32 Universal External Subroutines 



5.20 VERSN 

FUNCTION 

VERSN returns the DIBOL version number. 

FORMAT· 

XCALL VERSN (afield) 

where: 

afield is an alpha field or record which is to contain the version number. 

RULES 

• The version number is returned in the following format: 

vvvvvvvsssstmm.nnpp 

where: 

vvvvvvv 

ssss 

mm 

nn 

pp 

is the operating system. 

is the operating system subsystem. 

is the release status of the product. 

v = Released Version 
Y = Field Test Version 
X = Internal Version 

is the major version number. 

is the minor version number. 

is the patch level. 

Table 5-2 contains the returned character string for each system. 

VERSN 

• The version number is moved to afield according to the rules for moving alpha data (see section 
3.2.1). 

Universal External Subroutines 5-33 



Table 5-2 VERSN Returned Formats 

Operating Sub-System 

CTS-300 Single User OIBOL 

CTS-300 Timeshare OIBOL 

CTS-300 Extended Memory Timeshare 

RSTS/E OMS 

RSTS/E RMS 

VAXIVMS OIBOL 

Professional OIBOL 

RUN-TIME ERROR CONDITIONS 

• 6 NT Incorrect number of arguments 

• S NT Writing into a literal 

EXAMPLES 

The following program displays the OIBOL version number: 

RECORD 

PROC 

REPLY 
OPSYS, 
SUB, 
VERSN, 

A7 
A4 
A8 

Returned Format 

RT11 SU~ VOS.OOOO 

RT11 TSO VOS.OOOO 

RT11 XMT VOS.OOOO 

RSTS/E OMS VOS.OO 

RSTS/E RMS VOS.OO 

VAX/VMS V02.00 

Pro-OIBOL V01.00 

Operating system 
Subsystem 
tmm.nnpp 

OPEN (l,O,'TT:') Open terminal 
XCALL VERSN (REPLY) Get version number 
WRITES (l,REPLY) ; Display response 
DISPLAY (1, 'Operating system is ',OPSYS,13,lO) 
DISPLAY (1, 'Subsystem is ',SUB,13,lO) 
DISPLAY (l,'DIBOL version is ',VERSN,13,lO) 
CLOSE 1 ; Close terminal 
STOP 

5-34 Universal External Subroutines 



WAIT 

5.21 WAIT 

FUNCTION 

WAIT suspends program execution pending the occurrence of an event. 

FORMAT 

XCALL WAIT ([seconds I ,parameters[,event]) 

where: 

seconds is a decimal field or decimal literal that specifies the number of seconds to suspend 
program execution. 

parameters 
is a decimal field or decimal literal which specifies the events to wait for. 

event is a decimal field which is to contain the digit corresponding to the event that occurred. 

RULES 

• The digits in parameters are right-justified. 

• Each digit corresponds to a specific event; a non·zero digit enables the event. 

• If more than one event is specified, the first event to occur will cause the program to resume 
execution. 

• The digits are numbered from right to left. 

• The event number that occurred is moved to event according to the rules for moving decimal data 
(see section 3.2.2). 

• The seconds argument is required only when digit 1 in parameters is used. 

Mess.{e / ~nput \ 

Terminator Time 

Figure 5-3 WAIT Option Fields 

Universal External Subroutines 5-35 



Table 5-3 

WAIT Argument Assignments 

Digit Position Meaning When Digit is Non-zero 

4 

3 

2 

1 

Wait for a message. 

Wait for a terminator (CR, LF,FF, VT, ESC) to be typed at any of the 
keyboards opened by the program. 

Wait for terminal input at anyone of the keyboards opened by the 
program. 

Wait for specified time to expire. 

RUN-TIME ERROR CONDITIONS 

• 87 T Argument missing 

• 118 T Unable to open message manager mailbox 

EXAMPLES 

The following example waits for a message to be sent to the program. If a message hasn't been 
received within 30 seconds, the program stops. 

RECORD 

PROC 
AGN, 

MSG, AS12 
SIZE, D3 
REASON, D1 

XCALL WAIT (30,1001,REASON) 
IF REASON.NE.4 

STOP 
RECV (MSG,AGN,SIZE) 

• 

5-36 Universal External Subroutines 

; Message 
Message size 

; WAIT expiration reason 

; Wait for message 
; Is there a message? 

No--
Yes--Get the message 



APPENDIX A 

DIBOL-83 CHARACTER SET 

Table A-1 shows the 128-character ASCII character set and the corresponding decimal codes used by 
DIBOL-83 for data and program statements. The order of the character set, as shown, establishes the 
collating sequence. 

All characters may be used for data input from the terminal and output to the terminal and printer. 

DIBOL-83 stores both alpha and decimal data in character code form. To distinguish between positive 
and negative numbers, the negative numbers are stored with a character in the place of the least 
significant digit. The characters p through yare used to represent the least significant digit (0-9) in a 
negative number. Thus, the negative value -1234 (or 1234-) is stored internally as 123t. This means that 
any program that neglects to perform decimal-to-alpha conversion before output to a device may 
produce numeric values that contain an alphabetic character as the least significant digit. 

A-1 



DEC 

000 
001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 

A-2 

!-EX 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
06 
OC 
00 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
16 
1C 
10 
1E 
1F 

OCT 

000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 
024 
025 
026 
027 
030 
031 
032 
033 
034 
035 
036 
037 

ASC DEC 

NUL 032 
033 
034 
035 
036 
037 
038 

AG(6EL) 039 
AH(6S) 040 
AI(HT) 041 
AJ(LF) 042 
AK(VT) 043 
AL(FF) 044 
AM(CR) 045 

046 
047 
048 
049 
050 
051 
052 
053 
054 
055 
056 
057 
058 

< ESC> 059 
060 
061 
062 
063 

!-EX 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
26 
2C 
20 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
36 
3C 
3D 
3E 
3F 

Table A-1 
DISOL-S3 Character Set 

OCT 

040 
041 
042 
043 
044 
045 
046 
047 
050 
051 
052 
053 
054 
055 
056 
057 
060 
061 
062 
063 
064 
065 
066 
067 
070 
071 
072 
073 
074 
075 
076 
077 

ASC DEC 

<SPACE> 064 
065 
066 

# 067 
$ 068 
% 069 
& 070 

071 
072 
073 
074 

+ 075 
076 
077 
078 
079 

o 080 
1 081 
2 082 
3 083 
4 084 
5 085 
6 086 
7 087 
8 088 
9 089 

090 
091 

< 092 
093 

> 094 
095 

!-EX 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
46 
4C 
40 
4E 
4F 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 
56 
5C 
50 
5E 
5F 

OCT 

100 
101 
102 
103 
104 
105 
106 
107 
110 
111 
112 
113 
114 
115 
116 
117 
120 
121 
122 
123 
124 
125 
126 
127 
130 
131 
132 
133 
134 
135 
136 
137 

ASC 

@ 

A 
6 
C 
o 
E 
F 
G 
H 

J 
K 
L 
M 
N 
o 
P 
Q 

R 
S 
T 
U 
V 
W 
x 
y 

z 
( 

\ 
I 
A 

DEC 

096 
097 
098 
099 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

!-EX 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
66 
6C 
60 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
76 
7C 
70 
7E 
7F 

OCT 

140 
141 
142 
143 
144 
145 
146 
147 
150 
151 
152 
153 
154 
155 
156 
157 
160 
161 
162 
163 
164 
165 
166 
167 
170 
171 
172 
173 
174 
175 
176 
177 

ASC 

a 
b 

c 
d 
e 
f 

9 
h 

j 
k 

m 

o 
p -0 
q -1 

-2 
s -3 
t -4 
u -5 
v -6 
w -7 

-8 
-9 

DEL 



alpha 

GLOSSARY 

A character set that contains letters, digits, and other characters, such as punctuation 
marks. 

alphabetic 

array 

ASCII 

A character set that contains only letters. 

A OIBOL technique for specifying more than one field of the same length and type. The 
array 503 reserves space for five numeric fields, each to be three digits long. The array 
2A10 describes two alpha fields, each to be ten characters long. 

American Standard Code for Information Interchange. This is one method of coding 
alpha characters. 

binary operator 

branch 

byte 

channel 

character 

An operator, such as * or /, which acts upon two or more constants or variables (e.g., 
B*C). 

A change in the sequence of execution of 01BOL-83 program statements. 

A group of eight bits considered as a unit. 

A number used to associate an input/output statement with a specified device. 

A letter, digit, or other symbol used to control or to represent data. One character is 
equivalent to one byte. 

character string 
A connected linear sequence of characters. 

clear 
Setting an alpha field to spaces or a numeric field to zeros. 

comments 

data 

Notes for people to read. They do not affect program execution or size. 

A representation of information in a manner suitable for communication, interpretation, 
or processing by either people or machines. In 01BOL-83 systems, data is represented 
by characters. 

G/ossary-1 



DEC 

decimal 

DIBOL-83 

Acronym for Digital Equipment Corporation. 

Refers to a base ten number. 

Digital's Interactive Business Oriented Language is used to write business application 
programs. It is based on the 1983 Standard. 

direct access 

dump 

The process of obtaining data from, or placing data into, a storage device where the 
availability of the data requested is independent of the location of the data most recently 
obtained or placed in storage. 

To copy the contents of all or part of storage, usually from memory to external storage. 

end-of-file mark 
A control character which marks the physical end of a file. 

expressions 

fatal error 

field 

file 

Variables, constants, or arithmetic expressions made up of variables, constants, and the 
operators #, +, -, *, and I. 

An error which terminates program execution. 

A specified area in a data record used for alpha or numeric data; cannot exceed the 
specified character length. 

A collection of records, treated as a logical unit. 

file specification (filespec) 

flowchart 

The general file name. 

A pictorial technique for analysis and solution of data flow and data processing 
problems. Symbols represent operations, and connecting flowlines show the direction of 
data flow. 

Illegal character 
A character that is not valid according to the DIBOL-83 design rules. 

indexed files 
Indexed files are Indexed Sequential Access Method files. 

input 
Data flowing into the computer. 

2-G/ossary 



Input/output 

Jump 

justify 

key 

keyword 

location 

loop 

Either input or output, or both. 1/0. 

A departure from the normal sequence of executing instructions in a computer. 

The process of positioning data in a field whose size is larger than the data. In alpha 
fields, the data is left-justified and any remaining positions are space-filled; in numeric 
fields, the digits are right-justified and any remaining positions to the left are zero-filled. 

One or more fields within a record used to match or sort a file. If a file is to be arranged by 
customer name, then the field that contains the customers' names is the key field. In a 
sort operation, the key fields of two records are compared and the records are 
resequenced when necessary. 

A part of a command operand that consists of a specific character string. 

Any place where data may be stored. 

A sequence of instructions that is executed repeatedly until a terminal condition prevails. 
A commonly used programming technique in processing data records. 

machine-level programming 
Programming using a sequence of binary instructions in a form executable by the 
computer. 

mass storage device 
A device having large storage capacity. 

master file 

memory 

merge 

A data file that is either relatively permanent or that is treated as an authority in a 
particular job. 

The computer's primary internal storage. 

To combine records from two or more similarly ordered strings into another string that is 
arranged in the same order. The latter phases of a sort operation. 

mnemonic 

mode 

Brief identifiers which are easy to remember. Example: ch. 

A designation used in OPEN statements to indicate the purpose for which a file was 
opened or to indicate the input/output device being used. 

Glossary-3 



modulo 

nest 

A condition where the specified number exceeds the maximum condition in a variable. 
The maximum allowable number is then subtracted from the specified number, and the 
remainder is used by the processor. In modulo 16, if 17 were specified (maximum is 15), 
16 would be subtracted from 17 and the processor would use 1 as the value. 

To embed subroutines, loops, or data in other subroutines or programs. 

object program 
A file which is output by the compiler or assembler. 

output 
Data flowing out of the computer. 

parameter 
A variable that is given a constant value for a specific purpose or process. 

primary key 
See key. 

pushdown stack 
A list of items where the last item entered becomes the first item in the list and where the 
relative position of the other items is pushed back one. 

random access 
Same as to direct access. 

RECORD 
A statement that reserves memory. 

record redefinition 
The technique of specifying several different record formats for the same data. Special 
rules apply. 

screen column number 
The number which indicates the order of the vertical lines on thescreen. 

screen line number 
The number which indicates the order of the horizontal lines on the screen. 

sequential operation 
Operations performed, one after the other. 

serial access 

sign 

The process of getting data from, or putting data into, storage, where the access time is 
dependent upon the location of the data most recently obtained or placed in storage. 

Indicates whether a number is negative or positive. 

significant digit 
A digit that is needed or recognized for a specified purpose. 

4-G/ossary 



source program 
A program written in the DIBOL-83 language. 

statement 

string 

subscript 

syntax 

An instruction in a source program. 

A connected linear sequence of characters. 

A designation which clarifies the particular parts (characters, values, records) within a 
larger grouping or array. 

The rules governing the structure of a language. 

system configuration 
The combination of hardware and software that make up a usable computer system. 

trappable error 
An error condition which may be trapped. 

unary operator 

variable 

An operator, such as + or -, which acts upon only one variable or constant (e.g., 
A=-C). 

A quantity that can assume anyone of a set of values. 

variable-length record 

verify 

zero fill 

A file in which the data records are not uniform in length. Direct access to such records is 
not possible. 

To determine if a transcription of data has been accomplished accurately. 

To fill the remaining character positions in a numeric field with zeros. 

zoned decimal 
A contiguous sequence of up to 18 bytes interpreted as a string of decimal digits (1 digit 
per byte). The sign is stored as a bit in the low order byte. 

G/ossary-5 





A 

ACCEPT statement, 1-4, 3-14 
accepting into an alpha field, 3-12 

accepting into a decimal field, 3-12 
Addition (+) operator, 1-15,1-16,1-17 
Afield (symbol), viii 
Aliteral (symbol), viii 
ALLOC (OPEN), 3-45 
Alpha data, 

moving, 3-2 
Alpha fields, 2-7, 3-11 
Alpha literals, 1-11 
Alpha relational comparison, 3-35 
Alpha-to-Decimal conversion, 3-5 
Argument definitions, 2-13 
Arguments, 1-1 
Array, 1-9,2-10 
Array definitions, 2-10 
Array field count, 2-11 
Array subscripting, 1-9 
Asterisk (*) format control character, 3-9 
ASCII external subroutine, 5-2 
Audience, vii 

B 

BEGIN-END block, 1-2,3-4 
Binary operators, 1-15, 1-16, 1-17 
BKTSIZ (OPEN), 3-45 
BLKSIZ (OPEN), 3-45 
Boolean operator, 1-16, 1-18 
Brackets ([]) symbol, ix 
BUFSIZ (OPEN), 3-46 

c 

CALL statement, 1-3, 3-16 
Ch, viii 
Character set, 1-1, A-1, A-2 
CLEAR statement, 1-3, 3-17 
Clearing variables, 3-11 
CLOSE statement, 1-4, 3-18 
Comma (,), 

format control character, 3-9 
Comments, 

rules for, 1-6 
COMMON areas, 2-4, 2-5 

INDEX 

COMMON statement, 1-3,2-4 
in a main program, 2-4 
in a subroutine, 2-4 
name, rules for, 2-5 

Compiler declarations, 1-2 
Compiler directives, 1-2, 4-1 
Computed GOTO, 3-33 
Continuation of line, 1-6 
Control statements, 1-3 
Conversion of data, 

D 

alpha-to-decimal, 3-5 
decimal-to-alpha, 3-6 
lower- to uppercase (UPCASE), 3-68 
upper- to lowercase (LOCASE), 3-39 

Data, 
clearing, 3-11 
field name, 2-7 
formatting, 3-8 
moving, 3-2, 3-3 
overflow, 3-4, 3-5, 3-6, 3-8 
sharing, 2-4 

Data Division, 1-5, 2-1 
Data field size, 2-2, 2-4 
Data manipulation statements, 1-3 
Data specification statements, 1-3 
DATE external subroutine, 5-3 
Decimal data, moving, 3-3 
Decimal expressions, 1-15 
Decimal literals, 1-11 
Decimal operands, 1-17 
Decimal point (.), 

format control character, 3-9 
Decimal-to-alpha conversion, 3-6 
DECML external subroutine, 5-5 
DELET external subroutine, 5-6 
DELETE statement, 1-4, 3-20 
Delimiters, 

rules for, 1-6 
Destination, 3-2 
DETACH statement, 1-3, 3-22 
Dexp (symbol), viii 
Dfield (symbol), viii 
DIBOL-83 program (definition), 1-1 
DISPLAY statement, 1-4, 3-24 
Division (I) operator, 1-15 
Dliteral (symbol), viii 

Index-1 



Document symbols, viii 
Dollar sign ($), 

Format control character, 3-9 
DO-UNTIL statement, 1-3,3-26 

E 

Elements, 1-1 
Elipsis ( ... ) symbol, ix 
Equal sign (=), 1-15 
ERROR external subroutine, 5-7 
Expressions, 1-15 
Expression evaluation, 1-15 
External subroutine, 2-12, 3-81 
External subroutine description, 5-1 

F 

ASCII,5-2 
DATE,5-3 
DECML,5-5 
DELET,5-6 
ERROR, 5-7 
FATAL,5-8 
FLAGS, 5-10 
INSTR,5-13 
JBNO, 5-15 
MONEY, 5-16 
PAK,5-17 
RENAM,5-19 
RSTAT,5-22 
RUNJB,5-24 
SIZE,5-25 
TIME,5-27 
TNMBR,5-28 
TTSTS, 5-29 
UNPAK,5-31 
VERSN,5-33 
WAIT,5-35 

FATAL external subroutine, 5-8 
Field, setting the initial value of, 2-11 
Field (symbol), viii 
Field definitions, 1-3, 2-7 
Field name, 2-7 

rules for, 2-7 
in an array, 2-10 

FLAGS external subroutine, 5-10 
option fields, 5-11 
argument assignments, 5-11 

2-lndex 

INDEX (Cont.) 

FOR statement, 1-3, 3-28 
Format control characters, 3-9 
Formatstring, 3-8 
Formatting data, 3-8 
Forming expressions, rules for, 1-15 
FORMS statement, 1-4, 3~31 

G 

GOTO statement, 1-3, 3-32 
unconditional, 3-32 
computed, 3-33 

I (Input mode), 3-44 
IF statement, 1-3, 3-34 
IF-THEN-ELSE statement, 1-4, 3-36 
.IFDEF-.ENDC, 1-2, 4-2 
.IFNDEF-.ENDC, 1-2,4-3 
.INCLUDE directive, 1-2, 4-4 
INCR statement, 1-3, 3-38 
Initial values, 2-8 

rules for, 2-8, 2-11 
INPUT/OUTPUT statements, 1-4 
INSTR external subroutine, 5-13 
Intertask communications statements, 1-4 

J 

JBNO external subroutine, 5-15 

L 

Label (symbol), viii 
Labels, statement, 1-8 
Leading signs, 2-8 
Line continuation, 1-6 

rules for, 1-6 
.L1ST directive, 1-2,4-6 
Literals, viii, 1-11 
LOCASE statement, 1-3, 3-39 
Lowercase characters, ix 
LPQUE statement, 1-4,3-40 

M 

Manual format, viii 
Minus sign (-), 

format control character, 3-9 



Mode (OPEN), 3-45 
MONEY external subroutine, 5-16 
Moving data, 

alpha, 3-2 
decimal, 3-3 

Multiplication (*) operator, 1-15, 1-17 

N 

Negative numbers, A-1 
Negative values, 1-15, 1-16 
Nested subexpressions, 1-15 
.NOLIST directive, 1-2, 4-8 
Non-trappable error, ix 
Number sign (#), 

binary operator (rounding), 1-16 

o 

. 0 (Output) mode, 3-45 
OFFERROR statement, 1-4, 3-42 
ONERROR statement, 1-4,3-43 
OPEN statement, 1-4, 3-44 

mode, rules for, 3-45 
submode, rules for, 3-45 
ALLOC, rules for, 3-45 
BKTSIZ, rules for, 3-45 
BLKSIZ, rules for, 3-45 
BUFSIZ, rules for, 3-46 
RECSIZ, rules for, 3-46 

Operands, 1-15 
Operator precedence, 1-17 
Operators, 1-15 

binary, 1-15 
relational, 1-16 
unary, 1-15, 1-16, 1-17 

Output (0 mode), 3-45 
Overflow data, 3-4, 3-5, 3-6, 3-8 

p 

.PAGE directive, 1-2, 4-9 
PAK external subroutine, 5-17 
Parentheses, 1-15 
Preface, viii 
Procedure Division, 1-5, 3-1 
Procedure Division statements, 3-1 
PROC-END block, 1-2, 3-49 
Program structure, 1-5 

INDEX (Cont.) 

Q 

Quotes, 
double, 1-11 
single, 1-11 

R 

READ (indexed file), 1-4, 3-53 
READ (relative file), 1-4, 3-51 
Record, ix 
RECORD statement, 1-3, 2-2 

record name, rules for, 2-2 
RECSIZE (OPEN), 3-46 
RECV statement, 1-4, 3-57 
Redefinition indicator, 2-2 
Relational operators, rules for, 1-16 
RENAM external subroutine, 5-19 
RETURN statement, 1-4, 3-59 
Rounding (#), (number sign, 

binary operator), 1-16 
RSTAT external subroutine, 5-22 
RUNJB external subroutine, 5-24 

s 

Semicolon (;) usage, 1-6 
SEND statement, 1-4, 3-60 
Setting initial field values, 2-11 
SIZE external subroutine, 5-25 
SLEEP statement, 1-4, 3-62 
Statement, continuing a, 1-6 
Statement labels, 1-8 
Statement line syntax, 1-5 
Statement types, 1-1 

compiler directive and declaration, 1-2 
control, 1-3 
data manipulation, 1-3 
cata specification, 1-3 
input/output, 1-4 
intertask communications, 1-4 

Statements, program, 
ACCEPT, 1-4, 3-14 
BEGIN-END, 1-2,3-4 
CALL, 1-3, 3-16 
CLEAR, 1-3, 3-17 
CLOSE, 1-4, 3-18 
COMMON, 1-3, 2-4 
DELETE, 1-4, 3-20 

Index-3 



DETACH, 1-3,3-22 
DISPLAY, 1-4, 3-24 
DO-UNTIL, 1-3,3-26 
FOR, 1-3, 3-28 
FORMS, 1-4,3-31 
GOTO, 1-3,3-32 
IF, 1-3, 3-34 
IF-THEN-ELSE, 1-4, 3-36 
INCR, 1-3,3-38 
LOCASE, 1-3, 3-39 
LPQUE, 1-4,3-40 
OFFERROR, 1-4, 3-42 
OPEN, 1-4,3-44 
PROC-END, 1-2,3-49 
RECORD, 1-3, 2-2 
RECV, 1-4, 3-57 
RETURN, 1-4,3-59 
SEND, 1-4,3-60 
SLEEP, 1-4, 3-62 
STOP, 1-4,3-63 
STORE, 1-4, 3-64 
SUBROUTINE, 1-2, 2-12 
UNLOCK, 1-4, 3-66 
UPCASE, 1-3,3-68 
USING, 1-4,3-70 
WHILE, 1-4,3-74 
WRITE, 1-4, 3-76, 3-78 
WRITES, 1-4,3-79 
XCALL, 1-4, 3-81 
.IFDEF-.ENDC, 1-2, 4-2 
.IFNDEF-.ENDC, 1-2,4-3 
.INCLUDE, 1-2, 4-4 
.L1ST, 1-2,4-6 
. NOLlST, 1-2, 4-8 
.PAGE, 1-2, 4-9 
.TITLE 

STOP statement, 1-4,3-63 
STORE statement, 1-4, 3-64 

Submode (OPEN), 3-45 

Subroutine, ix 
SUBROUTINE statement, 1-2, 2-12 

argument definition, 2-13 
subroutine name, rules for, 2-12, 3-82 

Subscript, 1-9 
Substrings, 1-13 

Subtraction (-) operator, 1-17 
Symbols used in manual, viii 

4-lndex 

INDEX (Cont.) 

T 

TIME external subroutine, 5-27 
.TITLE directive, 1-2, 4-11 
TNMBR external subroutine, 5-28 
Trappable error, ix 
nSTS external subroutine, 5-29 

U 

U (Update) mode, 3-45 
Unary operators, 1-15, 1-16, 1-17 

minus (-), 1-16 
plus (+), 1-17 

Unconditional GOTO, 3-32 
UNLOCK statement, 1-4, 3-66 
UNPAK external subroutine, 5-31 
UPCASE statement, 1-3, 3-68 
Uppercase characters, ix 
USING statements, 1-4, 3-70 

V 

Value assignment statement, 1-3, 3-2 
alpha-to-decimal conversion, 3-5 
clearing variables, 3-11 
decimal-to-alpha conversion, 3-6 
format control characters, 3-9 
moving alpha data, 3-2 
moving decimal data, 3-3 

VERSN external subroutine, 5-33 
returned formats, 5-34 

Vertical elipsis, ix 

w 

WAIT external subroutine, 5-35 
option fields, 5-35 
argument aSSignments, 5-36 

WHILE statement, 1-4, 3-74 
WRITE (indexed file), 1-4, 3-78 
WRITE (relative file), 1-4,3-76 
WRITES, 1-4,3-79 

X 

X (format control character), 3-9 
XCALL sttement, 1-4, 3-81 

Z 

Z (format control character), 3-9 



· Q) 
c 

1:= 
I.~ 

1"£ 
I~ 
I~ 
1° .... 
IB 
IQ) 

on 
q~ 
10: 

DIBOL-83 Language Reference Manual 
Order No. AA-U066A-TK 
Includes Update Notice No. AD-U066A-T1 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 

o Higher-level language programmer 

o Occasional programmer (experienced) 

o User with little programming experience 

o Student programmer 

o Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ ___ 

Organization ______________________________________________________________ __ 

Street __________________________________________________________________ ___ 

City ___________________________ State _____________ Zip Code ____________ ___ 

or 
Country 



- - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - -

mamaama IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Applied Commercial Engineering MK1-2/H32 

Continental Boulevard 

Merrimack N.H. 03054 

ATTN: Documentation Supervisor 

I 
I 

----1 

No Postage 
Necessary 

if Mailed in the 
United States 

I 
I
I 
I -, Do Not Tear-Fold Here and Tape - - - - - - - - - - - - - . - - - -


