
Cisco MediaSense Developer Guide, Release 11.0(1)
First Published: July 02, 2015

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITEDWARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDINGANYOTHERWARRANTYHEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS"WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FORA PARTICULAR PURPOSEANDNONINFRINGEMENTORARISING FROMACOURSEOFDEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

© 2015 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks

C O N T E N T S

P r e f a c e Preface vii

Change History vii

Related Documentation viii

Obtaining Documentation and Submitting a Service Request ix

Field Alerts and Field Notices ix

Troubleshooting ix

Documentation Feedback ix

C H A P T E R 1 Introduction 1

MediaSense Concepts 1

Mapping a Session to a Recording 1

Mapping a Media Stream to a Track 2

Hold-Resume or Transfer-Conference Behavior 3

Hold-Resume and Pause-Resume 4

Correlating Recordings 5

Correlating MediaSense Metadata with Unified Communications Manager CDR 5

Playing Back and Downloading Recordings 5

RTSP and HTTP Request Authentication and Redirection 7

DESCRIBE (with Authentication) 7

DESCRIBE (Before Authentication) 7

DESCRIBE (After Redirection) 7

Distributing HTTP Download Requests 8

Media Forking 8

Cisco Unified Communications Manager Network-based Recording 8

Blog Recording 9

Cluster Deployment 9

Cisco MediaSense Developer Guide, Release 11.0(1)
iii

Differences Between Unified Communications Manager and Unified Border Element

Scenarios 9

C H A P T E R 2 Working with Cisco MediaSense APIs 13

MediaSense API Conventions 13

Using HTTPS 13

Using POST or GET Requests 13

API Version 14

JSON Format in Responses 14

Key Elements for MediaSense APIs 15

API Response Schema 15

Asynchronous Event Schema 16

API Response Codes 16

Response Message 19

Response Body 20

Encoding 20

Special Characters in Text Strings 20

Job States 20

Precedence Rules for paramConnector and fieldConnector 21

Encoding 21

Special Characters in Text Strings 21

Request and Response Parameter Definitions 21

Failover Between Two MediaSense Servers 21

Security Considerations 22

API Inter-Dependencies for Authentication 22

Poster 22

C H A P T E R 3 Event Subscription APIs 27

Introduction 27

subscribeToEvents 27

unsubscribeFromEvents 29

verifyEventSubscription 31

subscribeRecordingEvent(deprecated) 33

unsubscribeRecordingEvent(deprecated) 33

verifyRecordingSubscription(deprecated) 34

 Cisco MediaSense Developer Guide, Release 11.0(1)
iv

Contents

C H A P T E R 4 Job Management APIs 35

Introduction 35

createJob 35

cancelJob 36

deleteJob 37

C H A P T E R 5 Job Query APIs 39

Introduction 39

getJobById 39

getJobResult 40

getJobs 43

C H A P T E R 6 Recording Control APIs 47

Introduction 47

pauseRecording 48

resumeRecording 48

startRecording 49

stopRecording 52

launchMediaPlayer 54

C H A P T E R 7 Session Management APIs 57

Introduction 57

addSessionTag 57

convertSession (Deprecated) 59

deleteSessions 60

deleteSessionTag 61

C H A P T E R 8 Session Query APIs 63

Introduction 63

getAllActiveSessions 64

getAllPrunedSessions 66

getArchiveSessions 69

getAssociatedSessions 69

getSessionBySessionId 74

Cisco MediaSense Developer Guide, Release 11.0(1)
v

Contents

getSessions 76

getSessionsByCCID 86

getSessionsByDeviceRef 89

getSessionsByMediaType 91

getSessionsByTag 93

Concurrent Search Requests 95

Scalable and Non-Scalable Queries 96

Avoid Non-Scalable Queries 96

C H A P T E R 9 System Information 101

Introduction 101

getAPIVersion 101

getSystemTime 102

getSessionsResponseSchema 103

C H A P T E R 1 0 User Authentication APIs 107

Introduction 107

signIn 107

signOut 110

C H A P T E R 1 1 Shared Parameters 111

Introduction 111

Common Parameters for All APIs 111

Shared Parameters 112

C H A P T E R 1 2 Events Triggered 131

sessionEvent 131

storageThresholdEvent 134

tagEvent 135

 Cisco MediaSense Developer Guide, Release 11.0(1)
vi

Contents

Preface

• Change History, page vii

• Related Documentation, page viii

• Obtaining Documentation and Submitting a Service Request, page ix

• Field Alerts and Field Notices, page ix

• Troubleshooting, page ix

• Documentation Feedback, page ix

Change History
This document may be updated at any time without notice. Obtain the latest version of this document online
at http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/
products-programming-reference-guides-list.html.

Visit this cisco.comwebsite periodically and check for documentation updates by comparing the revision date
(on the front title page) of your copy with the revision date of the online document.

The following table lists the change history for this document.

DateSeeChange

Initial Release of Document for Release
11.0(1)

getArchiveSessions, on
page 69

Added an API called
getArchiveSessions to the Session
Query APIs section.

Initial Release of Document for Release
11.0(1)

Session Query APIs, on
page 63

Added agent information
(loginId, lastName, firstName,
loginIdDomain, and loginName)
to the response schema of the
Session Query APIs section.

Initial Release of Document for Release
11.0(1)

Session Query APIs, on
page 63

Added lineDisplayName
parameter to the response schema
of theSessionQuery APIs section.

Cisco MediaSense Developer Guide, Release 11.0(1)
vii

http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-programming-reference-guides-list.html
http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-programming-reference-guides-list.html

DateSeeChange

Initial Release of Document for Release
11.0(1)

Session Query APIs, on
page 63

Added parameters errorDetail
and errorCode to the response
schema of theSessionQuery APIs
section.

Initial Release of Document for Release
10.5(1)_SU1

Session Query APIs, on
page 63

Updated the Successful JSON
Response Schema of the “Session
Query” section.

Initial Release of Document for Release
10.5(1)_SU1

sessionEvent, on page 131Updated the Event Schema of the
“Session Event” section.

Initial Release of Document for Release
10.5(1)

Shared Parameters, on
page 112

The following API Parameters
are now HTTPS URLs rather
than HTTP URLs.

• downloadUrl

• httpUrl

• mp4Url

• wavUrl

Initial Release of Document for Release
10.5(1)

Cisco Unified
Communications Manager
Network-based Recording,
on page 8

Added the section,Unified
Communications Manager
Network-based Recording.

Initial Release of Document for Release
10.5(1)

getAssociatedSessions, on
page 69

Added an API called
getAssociatedSessions in the
Session Query section.

Related Documentation
LinkDocument or Resource

http://www.cisco.com/c/en/us/support/customer-collaboration/
mediasense/products-documentation-roadmaps-list.html

Cisco MediaSense Documentation
Guide

http://www.cisco.com/c/en/us/support/customer-collaboration/
mediasense/tsd-products-support-series-home.html

Cisco.com site for Cisco MediaSense

http://docwiki.cisco.com/wiki/Category:Cisco_MediaSenseDoc Wiki for Cisco MediaSense

http://www.cisco.com/c/en/us/support/customer-collaboration/
mediasense/products-troubleshooting-guides-list.html

Troubleshooting tips for Cisco
MediaSense

 Cisco MediaSense Developer Guide, Release 11.0(1)
viii

Preface
Related Documentation

http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-documentation-roadmaps-list.html
http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-documentation-roadmaps-list.html
http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/tsd-products-support-series-home.html
http://docwiki.cisco.com/wiki/Category:Cisco_MediaSense
http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-troubleshooting-guides-list.html
http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-troubleshooting-guides-list.html

LinkDocument or Resource

http://docwiki.cisco.com/wiki/Virtualization_for_Cisco_
MediaSense

Virtualization for Cisco MediaSense

http://docwiki.cisco.com/w/index.php?title=FAQs_for_Cisco_
MediaSense

Frequently Asked Questions for Cisco
MediaSense

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, seeWhat's New in Cisco Product Documentation, at: http://
www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Subscribe toWhat's New in Cisco Product Documentation, which lists all new and revised Cisco technical
documentation as an RSS feed and delivers content directly to your desktop using a reader application. The
RSS feeds are a free service.

Field Alerts and Field Notices
Note that Cisco products may bemodified or key processes may be determined important. These are announced
through use of the Cisco Field Alert and Cisco Field Notice mechanisms. You can register to receive Field
Alerts and Field Notices through the Product Alert Tool on Cisco.com. This tool enables you to create a profile
to receive announcements by selecting all products of interest.

Log into www.cisco.com and access the tool at: http://www.cisco.com/cisco/support/notifications.html.

Troubleshooting
A Troubleshooting Tips wiki provides information to help resolve issues already reported by other users,
which is available at http://docwiki.cisco.com/wiki/Troubleshooting_Tips_for_Cisco_MediaSense.

Documentation Feedback
To provide comments about this document, send an email message to the following address:

mailto: ccbu_docfeedback@cisco.com

We appreciate your comments.

Cisco MediaSense Developer Guide, Release 11.0(1)
ix

Preface
Obtaining Documentation and Submitting a Service Request

http://docwiki.cisco.com/wiki/Virtualization_for_Cisco_MediaSense
http://docwiki.cisco.com/wiki/Virtualization_for_Cisco_MediaSense
http://docwiki.cisco.com/w/index.php?title=FAQs_for_Cisco_MediaSense
http://docwiki.cisco.com/w/index.php?title=FAQs_for_Cisco_MediaSense
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/cisco/support/notifications.html
http://docwiki.cisco.com/wiki/Troubleshooting_Tips_for_Cisco_MediaSense

 Cisco MediaSense Developer Guide, Release 11.0(1)
x

Preface
Documentation Feedback

C H A P T E R 1
Introduction

• MediaSense Concepts, page 1

• Differences Between Unified Communications Manager and Unified Border Element Scenarios, page
9

MediaSense Concepts
This section identifies and defines common MediaSense concepts and terms.

Mapping a Session to a Recording
In the context of MediaSense and this document, a session is a recorded monologue, dialog, or conference,
which can involve one or more participants. A session in MediaSense has the same meaning as a recording
session in Unified Communications Manager. For more information on recording sessions, see the Cisco
Unified Communications Manager Features and Services Guide available at http://www.cisco.com/en/US/
partner/products/sw/voicesw/ps556/prod_maintenance_guides_list.html.

The participants use a device to conduct this session.

A device is a physical entity that can be an endpoint or a personal computer and refers to any item that can
be recorded. A device is identified by a deviceRef, which is a phone number or extension for each device.

Cisco MediaSense Developer Guide, Release 11.0(1)
1

http://www.cisco.com/en/US/partner/products/sw/voicesw/ps556/prod_maintenance_guides_list.html
http://www.cisco.com/en/US/partner/products/sw/voicesw/ps556/prod_maintenance_guides_list.html

The deviceId is the unique identifier for each device and it corresponds directly to the name of the device
(like the MAC address or Universal Device Identifier [UDI]), as shown in the following graphic.

Figure 1: Device, Device ID, and Device Ref

Each session is identified by a sessionID and contains one or more tracks. Each track is specific to one audio
stream or one video stream, and is identified by a trackNumber.

A session can be live (active) or recorded (completed). You can monitor and record a live session at the same
time. You can play back a recorded session at any time. You can use the sessionId to manage recorded sessions.

Several recordings are possible using the Cisco MediaSense platform:

• Forked media from a Cisco IP Phone or Cisco Unified Border Element device. This recording has two
audio channels.

• Direct call to/from the MediaSense platform to any phone. This recording has one audio channel and
one optional video channel. These recordings are referred to as Blog recordings in this document.

MediaSense recording sessions using the following codec options:

• Audio recordings: g.711 (aLaw or µ-Law), g.722, or g.729 (a or b) codecs.

• Video recordings: h.264 baseline codecs (only with 48 kHz audio sampling rate).

Mapping a Media Stream to a Track
A media stream refers to the packets going through an audio channel or video channel in a live or recorded
session.

A track identifies each media stream and quantifies it with additional data such as participants, duration,
startDate, and a trackNumber. Track 0 contains media streamed from the forking device, and Track 1 contains
media streamed to the forking device. In a sessionEvent, each track is associated with one participant.

 Cisco MediaSense Developer Guide, Release 11.0(1)
2

Introduction
Mapping a Media Stream to a Track

The trackNumber assignment is arbitrary and is based on whether the call is incoming or outgoing from the
dial peer on which media forking is enabled. For more information, see the section Differences Between
Unified Communications Manager and Unified Border Element Scenarios, on page 9.

Hold-Resume or Transfer-Conference Behavior
Unified Border Element sends metadata information that MediaSense uses to associate a Unified Border
Element call with the media streams and identify the call participants. The metadata that is accumulated within
the bounds of a SIP Session is exposed to clients in the form of a recording session object. A recording session
in both Unified Communications Manager and Unified Border Element contains information on tracks, call
records, and media events.

When call participants use call features such as hold/resume or transfer/conference, the behavior is different
between Unified Border Element and Unified Communications Manager deployments:

• Unified Border Element: The SIP Session may be updated multiple times with corresponding media
track events.

• Unified Communications Manager: If a call is on hold, the recording session is terminated. When
participant resumes the call, a new recording session is created.

The following table captures this response for various representative deployment scenarios:

Unified Border Element
Forking with Unified
Communications
Manager Phone
Endpoints

Unified Communications
Manager Forking

Unified Border Element
Forking

Deployment

Participant AParticipant AParticipant ACall initiator

Participant BParticipant BParticipant BCall receiver

• Hold (Music on
Hold--M0H) or
transfer: participant
A

• Resume or
conference:
participant A

• Regardless of which
participant places
the hold, the
recording session is
terminated.

• Regardless of which
participant resumes
the call, a new
recording session is
created.

• Hold or transfer:
participant A

• Resume or
conference:
participant A

Hold/resume placed by

Cisco MediaSense Developer Guide, Release 11.0(1)
3

Introduction
Hold-Resume or Transfer-Conference Behavior

Unified Border Element
Forking with Unified
Communications
Manager Phone
Endpoints

Unified Communications
Manager Forking

Unified Border Element
Forking

Deployment

Six tag events: three
events for hold or transfer
and three events for
(resume or conference):

1 Type: TAG_EVENT,
Action: ADDED, Tag
name: TrackInactive,
Track #: Participant A

2 Type: TAG_EVENT,
Action: ADDED, Tag
name: TrackInactive,
Track #: Participant B

3 Type: TAG_EVENT,
Action: ADDED, Tag
name: TrackActive,
Track #: Participant A

4 Type: TAG_EVENT,
Action: ADDED, Tag
name: TrackInactive,
Track #: Participant A

5 Type: TAG_EVENT,
Action: ADDED, Tag
name: TrackInactive,
Track #: Participant B

6 Type: TAG_EVENT,
Action: ADDED, Tag
name: TrackActive,
Track #: Participant B

No tag events.Two tag events:

1 One event (Hold or
Transfer): Type:
TAG_EVENT,
Action:ADDED, Tag
name: TrackInactive,
Track #: Participant B

2 One event (resume or
conference): Type:
TAG_EVENT,
Action: ADDED, Tag
name: TrackActive,
Track #: Participant B

Number of tag events
received by client

Clients cannot delete these SYSTEM_DEFINED (TrackActive and TrackInactive) tag names at any time.
The track's initial state is assumed to be active (TrackActive) by default. When the media state changes
(Hold-resume or transfer-conference), the active state (TrackActive) changes to inactive (TrackInactive).

Hold-Resume and Pause-Resume
MediaSense uses "resume" to return to a call that was placed in the hold state or in the paused state:

• Resume from hold state:

• You can do this from a device.

• Results in the addition of a TrackActive system-defined tag event at the TRACK level.

 Cisco MediaSense Developer Guide, Release 11.0(1)
4

Introduction
Hold-Resume and Pause-Resume

• Resume from paused state:

• You can do this through the APIs.

• Results in the addition of a Resumed system-defined tag event at the SESSION level.

Correlating Recordings
Use MediaSense to correlate recordings for gateway forked media. You can correlate recordings using one
of the following options:

• Real Time correlation provides clients with the ability to issue MediaSense API requests while the
recording is active (for example, the ability to pause and resume recordings, and the ability to tag a
recording with an AgentID, or with an agent-specified time-specific annotation).

• Historical correlation gives clients the ability to locate recordings that are selected from an external
database (and vice versa) to locate call information in an external database using information from the
Cisco MediaSense metadata.

To achieve this correlation, use the Call Correlation ID (CCID) and callControllerType parameters.

Use the getSessionsByCCID API to search and retrieve recorded or live sessions based on the CCID.

Correlating MediaSense Metadata with Unified Communications Manager
CDR

The Cisco Unified Communications Manager Call Detail Records Administration Guide describes how to
configure call detail records (CDRs) and call management records (CMRs) and provides examples of these
records.

In MediaSense, when the callcontrollertype is Cisco-Unified Communications Manager , the meta data for
each call only provides the xRefci (reference call ID) and the device ref of the forking device and the far-end
device (can be a conference bridge or any other phone). When the callcontrollertype is Cisco-Unified
Communications Manager -Gateway, metadata for each call includes a CCID (Call Correlation Identifier)
field, which matches a field in the Unified Communications Manager Call Detail Recording Record.

For more information (such as the original calling number, called number, and type of call), see the Call Detail
Records section in the Unified CommunicationsManager Call Detail Records Administration Guide available
at http://www.cisco.com/en/US/products/sw/voicesw/ps556/prod_maintenance_guides_list.html.

All calls are stored on the MediaSense server.

Playing Back and Downloading Recordings
MediaSense recordings can be streamed using Real-Time Streaming Protocol (RTSP) and downloaded as an
.mp4 or .wav files, or downloaded in the Raw Format using HTTP 1.1 chunked transfer coding. You can play
back MediaSense recordings using any player which supports these capabilities (for example, VideoLAN
Client [VLC]).

If you listen in to a forked media recording in RTSP format using some players (for example VLC), you can
listen to only one track at a time (not both at the same time). If you prefer to listen to both audio channels and

Cisco MediaSense Developer Guide, Release 11.0(1)
5

Introduction
Correlating Recordings

http://www.cisco.com/en/us/products/sw/voicesw/ps556/prod_maintenance_guides_list.html

view the video at the same time, export any MediaSense recording to mp4 or wav format using either the
mp4Url or wavUrl link. Download that file using standard HTTP access methods and then listen to both audio
channels and view the video at the same time. Converting to mp4 or wav also makes the file portable and
allows you to copy it to a location of your choice.

Client applications can also download the recording in its RAW Audio format by using the downloadUrl
parameter returned by any of the Session Query APIs, on page 63 APIs. Each API will have a downloadUrl
only for audio tracks. You cannot downloadMediaSense video tracks in the RAW format. TheURLs (download,
wav, and mp4) are conditionally present in the session query response only if the sessionState is
CLOSED_NORMAL or in the sessionEvent only if the eventAction is ENDED. For other sessions in other
states, (ACTIVE, DELETED, or CLOSED_ERROR), downloadUrl, wavUrl, and mp4Url are not available.

The downloadUrl provides a way to download the file using HTTP 1.1 chunked transfer coding (RFC 2616,
Section 3.6.1). As such, the body contains a series of chunks that the recipient must reconstruct into the original
media stream. Each chunk begins with a line containing the chunk length expressed in hexadecimal, which
is followed by that exact number of bytes of binary data. The first line of the file contains the length field and
a <;MEDIA-TYPE=> chunk-extension tag which indicates the type of media codec for the subsequent data.
The values for the codec can be one of the following:

• "G711-Mulaw"

• "G711-Alaw"

• "G722"

• "G729"

Normally the chunks of data are directly concatenated with each other to reconstruct the media stream; however,
the length linemay contain an optional <;SILENCE=n> chunk-extension tag, which indicates that nmilliseconds
of silence should be inserted before the chunk in question. The final chunk is denoted with a length of zero
bytes. All lines end with both \r and \n characters.

MediaSense also includes a "START-TIME" tag in the raw download body content immediately following
the "MEDIA- TYPE" tag. START-TIME indicates when the first packet of media for each track was received
by the recorder (in milliseconds since Jan 1 1970 GMT). This tag may be used by a client application to
sequence and align downloaded raw media tracks so that, for example, participants do not 'talk over' each
other and instead alternate with each other.

All of the URLs (including rtsp) are treated by clients as opaque strings. Client code should not depend on
its format or structure in any way other than to assume that it contains a fully-formed HTTP URL, because
Cisco reserves the right to alter it in the future. However, clients may add URL parameters as necessary.
Specifically, adding the parameter timeout=n indicates that CiscoMediaSense should try for at least n seconds
to write to the socket before aborting the download (the default is 5 seconds). This protects the system in case
of slow networks or clients. The client can determine whether the download ran to completion by confirming
that the last line received ends with "0\r\n".

Following is an example of a G711-Mulaw media stream, which is divided into three chunks, for a total of
26796 bytes of data, with two interspersed silence segments totaling 240ms.

1234;MEDIA-TYPE=’G711-mulaw’;START-TIME=2069539211\r\n
0x1234 bytes of binary data\r\n
2222;SILENCE=’40’\r\n
0x2222 bytes of data\r\n
3456;SILENCE=’200’\r\n
0x3456 bytes of binary data\r\n
7788\r\n
0x7788 bytes of binary data\r\n
0\r\n

 Cisco MediaSense Developer Guide, Release 11.0(1)
6

Introduction
Playing Back and Downloading Recordings

http://tools.ietf.org/html/rfc2616#section-3.6.1
http://tools.ietf.org/html/rfc2616#section-3.6.1

The rtspUrl parameter allows streaming while the downloadUrl, wavUrl, and mp4url parameters provide
downloading capability. Consequently, the rtspURL is provided for both active and closed sessions, while
the other URLs are only available for closed sessions.

RTSP and HTTP Request Authentication and Redirection
MediaSense uses basic authentication to validate the username and password of API clients that make Real-Time
Streaming Protocol (RTSP) requests and media-related HTTP requests. The OPTIONS command is an
exception to this pattern because it does not require authentication; it may, however, be redirected.

After authentication, MediaSense redirects RTSP requests and media-related HTTP requests to another URL.
Do not parse or cache the redirected URL because it is opaque and is subject to change.

Following are examples of RTSP authentication and redirection of the DESCRIBE command:

• Before authentication

•With authentication

• After redirection

DESCRIBE (with Authentication)

REQUEST
DESCRIBE rtsp://10.194.118.94/archive/e4137a336b0bf1 RTSP/1.0
CSeq: 7
Authorization: Basix YXBpdXNIcjpaXNjbw==
User-Agent: LibVLC/1.1.9 {LIVE555; Streaming Media v2011.03.14}
Accept: application/sdp

RESPONSE
RTSP/1.0 302 Moved Temporarily
Server: Cisco MediaSense Media Server
CSeq: 7
Location: rtsp://10.194.118.94:9554/archive/e4137a336b0bf1?token=abc123

DESCRIBE (Before Authentication)

REQUEST
DESCRIBE rtsp://10.194.118.94/archive/e4137a336b0bf1 RTSP/1.0
CSeq: 6
User-Agent: LibVLC/1.1.9 {LIVE555; Streaming Media v2011.03.14}
Accept: application/sdp

RESPONSE
RTSP/1.0 401 Unauthorized
WWW-Authenticate: Basic realm=”Secured Area”
CSeq: 6
Server: Cisco MediaSense Media Server

DESCRIBE (After Redirection)

REQUEST
DESCRIBE rtsp://10.194.118.94:9554/archive/e4137a336b0bf1?token=abc123 RTSP/1.0

Cisco MediaSense Developer Guide, Release 11.0(1)
7

Introduction
RTSP and HTTP Request Authentication and Redirection

CSeq: 8
User-Agent: LibVLC/1.1.9 (LIVE555; Streaming Media v2011.03.14)
Accept: application/sdp

RESPONSE
RTSP/1.0 200 ok
CSeq: 8
Content-Type: application/sdp
Content-Length=512

V=0
O=15237780159166911470 15237780159166912070 IN IP4 10.194.118.94
a=Cisco Live Media Streaming Session

Distributing HTTP Download Requests
Some clients use the HTTP Download facility to create copies of all recordings, using MediaSense more as
a temporary location for these files than as a long-term archive. Using the download facility is a perfectly
valid use case. However, you may be tempted to batch up these download requests and issue them once a day
(or on some other periodic basis).

Distribute these requests evenly over time to make better use of your resources. For example, use the session
ENDED event to trigger a download as soon as the call recording terminates.

Media Forking
All MediaSense-supported Cisco IP phones have a built-in bridge (BIB), which allow incoming and outgoing
media streams to be forked. MediaSense makes use of this capability to record inbound and outbound forked
media. For more details about media forking, see the Unified Communications Manager documentation.

Unified Border Element does not have a concept of BIB as the call forking is performed within the Unified
Border Element application—not from a phone.

Cisco Unified Communications Manager Network-based Recording
With Unified Communications Manager network-based recording (NBR), you can use a gateway to record
calls. NBR allows the Unified CommunicationsManager to route recording calls, regardless of device, location,
or geography.

With NBR, call recording media can be sourced from either the IP phone or from a gateway that is connected
to the Unified Communications Manager over a SIP trunk. Unified Communications Manager dynamically
selects the right media source based on the call flow and call participants.

NBR offers an automatic fallback to Built-in-Bridge (BiB) when the Integrated Services Routers (ISR) are
unavailable as no separate recording configuration is required. This is useful in cases where customers want
to include agent-agent consult calls in the recording policies as Unified Border Element cannot record consult
calls, so BiB needs to be enabled separately.

For more information on Unified Communications Manager NBR, refer to Features and Services Guide for
Cisco Unified Communications Manager at http://www.cisco.com/c/en/us/support/unified-communications/
unified-communications-manager-callmanager/products-maintenance-guides-list.html

MediaSense supports TDM gateway recording.Note

 Cisco MediaSense Developer Guide, Release 11.0(1)
8

Introduction
Distributing HTTP Download Requests

http://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-maintenance-guides-list.html
http://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-maintenance-guides-list.html

Blog Recording
MediaSense enables you to create blog recordings (audio and video) using supported Cisco IP phones. After
you record blog recordings, third-party applications can publish them.

A blog recording is initiated in one of the following ways:

• By a user who dials into a MediaSense server.

• By the MediaSense server calling a user's phone in response to an API request.

Cluster Deployment
MediaSense servers are deployed in a cluster. A cluster can contain one to five servers. Depending on your
deployment, each cluster can provide basic media recording and database storage, and handle scalable recording
capacity.

• One-server clusters are deployed by small businesses. In this case, the server manages the media
recordings, the database storage, and the configuration information.

• Two-server clusters are deployed by businesses concerned about data replication and redundancy. In
this case, both servers manage the media recordings, the database storage, and the configuration
information. This deployment provides High Availability and ensures that all database data is stored
redundantly.

• Three- to five-server clusters provide greater recording capacity and handle a heavier load. The expansion
servers manage the additional media recordings.

Differences Between Unified Communications Manager and
Unified Border Element Scenarios

Unified Communications Manager is used to set up the recording profile or call control service connection
(SIP trunk) with MediaSense. Similarly, with Unified Border Element, the dial peers and media class settings
determine communication with MediaSense. Almost everything not related to call signaling is the same
betweenUnified CommunicationsManager scenarios usingMediaSense andUnified Border Element scenarios
using MediaSense. Regardless of MediaSense being deployed with Unified Communications Manager or
Unified Border Element, events, response codes, and parameter definitions are the same for both scenarios.

One of the API (application programming interface) parameters used by MediaSense to distinguish between
call provider types is the callControllerType parameter. While this parameter is present in both deployments,
the value of the parameter differs for Unified Border Element and Unified Communications Manager.

The following table highlights the major API-related differences between both scenarios.

Cisco MediaSense Developer Guide, Release 11.0(1)
9

Introduction
Blog Recording

With Unified Border Element Dial
Peer Forking

With Unified Communications
Manager (Applies to both
Built-in-Bridge Recording and
Network-based Recording)

MediaSense Feature

The trackNumber assignment is
arbitrary and is based on whether
the call is incoming or outgoing
from the dial peer on which media
forking is enabled.

SessionEvents and sessions (in the
API responses) have the following
track assignment:

• Track 0 is associated with
one participant (forking
phone).

• Track 1 is associated with
one participant (non-forking
phone) or multiple
participants (if non-forking
phone transfer call).

Assignment of the trackNumber
parameter

The xRefCi parameter is generated
by MediaSense. In this case, you
will not see the xRefCi details in
any Unified Communications
Manager record. The MediaSense
solution allows you to correlate
recordings for gateway forked
media. To achieve this correlation,
use the Call Correlation ID (CCID)
and callControllerType parameters.
For more information, see the
Correlating Recordings section.
The CCID parameter corresponds
to the Cisco GUID generated by
Unified Border Element and can
be used for solution-wide
end-to-end call trace.

The xRefCi parameter is generated
by Unified Communications
Manager.

Call correlation (xRefCi parameter)

Track 0 contains the media stream
corresponding to the dial peer in
which the media recording profile
is configured.

The numerically smaller xRefCi
parameter almost always refers to
the calling party's track.

Identifying tracks for calling versus
called party. For more information,
see the FAQs for Cisco
MediaSense website (How do you
determine which track has the
calling and which has the called
party?).

 Cisco MediaSense Developer Guide, Release 11.0(1)
10

Introduction
Differences Between Unified Communications Manager and Unified Border Element Scenarios

http://docwiki.cisco.com/wiki/FAQs_for_Cisco_MediaSense
http://docwiki.cisco.com/wiki/FAQs_for_Cisco_MediaSense

With Unified Border Element Dial
Peer Forking

With Unified Communications
Manager (Applies to both
Built-in-Bridge Recording and
Network-based Recording)

MediaSense Feature

• The SIP Session may be
updated multiple times with
corresponding media track
events. Only one session
despite any hold/resume
sequences.

• Adds the
SYSTEM_DEFINED
TrackInactive tag when you
place a call on hold.

•When a call is place on hold,
the logical recording session
is terminated. Sessions are
related—they share the same
pair of xRefCi parameters.

• The session is terminated for
the near end.

Call placed on hold

• The SIP Session may be
updated multiple times with
corresponding media track
events. Only one session
despite any hold/resume
sequences.

• Adds the
SYSTEM_DEFINED
TrackActive tag when you
resume the call.

•When a participant resumes
the call, a new recording
session is created. Sessions
are related—they share the
same pair of xRefCi
parameters.

• A new session is started for
the near end.

Call resumed

For more information about other deployment and administration-related differences, see the User Guide
for CiscoMediaSense (available at http://www.cisco.com/en/US/products/ps11389/products_user_guide_
list.html).

Note

Cisco MediaSense Developer Guide, Release 11.0(1)
11

Introduction
Differences Between Unified Communications Manager and Unified Border Element Scenarios

http://www.cisco.com/en/US/products/ps11389/products_user_guide_list.html
http://www.cisco.com/en/US/products/ps11389/products_user_guide_list.html

 Cisco MediaSense Developer Guide, Release 11.0(1)
12

Introduction
Differences Between Unified Communications Manager and Unified Border Element Scenarios

C H A P T E R 2
Working with Cisco MediaSense APIs

• MediaSense API Conventions, page 13

• Job States, page 20

• Precedence Rules for paramConnector and fieldConnector, page 21

• Encoding, page 21

• Special Characters in Text Strings, page 21

• Request and Response Parameter Definitions, page 21

• Failover Between Two MediaSense Servers, page 21

• Security Considerations, page 22

• API Inter-Dependencies for Authentication, page 22

• Poster, page 22

MediaSense API Conventions
MediaSense APIs use the camelCase convention. The API URIs are case sensitive. Use the exact URI as
identified for each API. The parameters are not case sensitive.

Using HTTPS
MediaSense APIs only support HTTPS. Unsecured HTTP is unaccepted for most MediaSense APIs. The only
exception is getAPIVersion that can accept either HTTP or HTTPS.

MediaSense uses HTTP version 1.1, and attempts to keep client connections in place from one request to the
next. To ensure better performance, especially for event delivery, be sure to design third-party applications
to do the same.

Using POST or GET Requests
MediaSense APIs use the following conventions for POST and GET requests:

Cisco MediaSense Developer Guide, Release 11.0(1)
13

http://en.wikipedia.org/wiki/Camel_case

ExampleActionDescriptionHTTP Request
Type

{
"requestParameters":{

"param1":"value1",
"param2":"value2"
}

}

Parameters are passed in the
POST data block. The data
block uses JSON syntax.

Any request that performs
an action on the server
and changes the state of
the MediaSense server
(start or stop requests). Or
any query or read request
in which the parameter
structure is too complex
to specify with query
parameters. For example,
the getSessions API uses
POST even though it is a
safe method (does not
change the state of the
server).

POST

http://cisco.com/abc
/xyz?param1=value1
¶m2=value2

Parameters are passed in the
URL as query parameters.
When specifying query
parameters, append a
question mark "?" to the first
parameter, and an ampersand
"&" to each of the
subsequent parameters.

Any request that only
queries or reads
information (intended
only for information
retrieval and does not
change the state of the
server, safemethods) from
the MediaSense system.

GET

API Version
MediaSense APIs follow the version conventions:

• The MediaSense Release 11.0(1) API version is 1.7.

• The API version number starts at 1.0 and is not tied to the product version.

• The API version number is x.y and not x.y.z (for example, 1.0).

Use the getAPIVersion API to retrieve the current version of the APIs running on the system. This API returns
a version number for the APIs running in any MediaSense deployment. You do not need to sign in to use this
API.

JSON Format in Responses
MediaSense supports JSON. API responses and events are in the JSON format. Regardless of the format used
in your third-party applications that use MediaSense APIs, follow these conventions:

• Specify content type as either application or json in the HTTP header of each API request.

• If the header is missing, the data is returned in the default JSON format.

 Cisco MediaSense Developer Guide, Release 11.0(1)
14

Working with Cisco MediaSense APIs
API Version

http://www.json.org
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Safe_methods

The JSON format is a key-value pair. The order of the key-value pairs may not be the same in each
response.

Cisco usually adds new properties to the JSON response schema from one API version to the next, but
does not modify either the meaning or the relative position in the object hierarchy of any existing property.
In order to ensure your client code functions properly with newer versions ofMediaSense, you must ignore
any JSON properties you do not recognize. This applies to both API responses and events.

Note

Key Elements for MediaSense APIs
This section identifies the key elements and pattern within a MediaSense API.

Sample URI for a MediaSense API.

https://<host>:<port>/ora/<sampleService>/<sample>/<sampleMethod>

The breakdown of this sample URI is explained in the following table:

DescriptionElement

The secure protocol used by MediaSense APIs.

• Server-server communications must always use HTTPS.

• Client-server communications must use HTTPS for authentication.

• HTTPS is required for almost all MediaSense APIs. The one exception is
getAPIVersion API, which can take either HTTP or HTTPS.

https://

Replace <host> with the hostname and <port> with the port number. These two
elements are part of the context root for each API.

<host>:<port>

The product name specification for MediaSense APIs. This element remains
constant throughout all MediaSense APIs.

ora

The name of the service being addressed by a particular MediaSense API. Some
of the available services are User Authentication, Event Subscription, Session
Query, Session Management, and so forth.

In this element, sampleService is the interface and sample is its implementation.

sampleService or sample

The API name. Each API name begins with a verb to indicate the action being
performed.

sampleMethod

The following URI is an example of the MediaSense subscribeRecording API.

https://<host>:<port>/ora/eventService/event/subscribeToEvents

API Response Schema
All MediaSense API responses have these key elements.

Cisco MediaSense Developer Guide, Release 11.0(1)
15

Working with Cisco MediaSense APIs
Key Elements for MediaSense APIs

JSON schema:

{
"responseCode": <replace with your integer> //Numeric code for the response
"responseMessage": <replace with your string> //A textual description of the result
"responseBody": {<JSON object>} //The response itself (optional)
}

The responseMessage parameter is subject to change and is not intended to be used for programmatic
comparison purposes. Instead, use the responseCode parameter for this purpose.

Note

Asynchronous Event Schema
All MediaSense API responses have these key elements.

JSON example:

{
"eventType": <string value>, //type of the event, such as SESSION_EVENT
"eventAction": <string value>, //possible actions for a given event such as

SESSION_STARTED
"forwardedEvent": <true or false>, //indicates that the event is not locally generated
"eventBody": <JSON object> //the event itself

}

See Shared Parameters, on page 112 for details about each of these elements.Note

API Response Codes

2xxx Success Response Codes

The action was successfully received, understood, and accepted.

DescriptionResponse Code

Success: Your request was successfully completed.2000

Success: No results found for this client request.2001

Success: The session recording was successfully paused but the database could not
be updated.

2002

Success: The session recording was successfully resumed but the database could not
be updated.

2003

Success: The session recording was successfully deleted but the database could not
be updated.

2004

Success: The subscription with the given subscriptionUri already exists.2005

Success: The current subscription has been updated and has been unsubscribed from
the subscriptionFilters requested. The subscription is still active.

2006

 Cisco MediaSense Developer Guide, Release 11.0(1)
16

Working with Cisco MediaSense APIs
Key Elements for MediaSense APIs

3xxx Redirection Response Code

The client must take additional action to complete the request.

DescriptionResponse Code

Failure : Unable to process the request. Provide redirection and try again.3001

4xxx Client Error Response Codes

The request contains bad syntax or cannot be fulfilled.

DescriptionResponse Code

Failure: Your request is invalid.4000

Failure: Unsecured HTTP is not allowed. Use HTTPS for your request.4001

Failure: Cannot find value in database. Detail: <parameter name>: <parameter value>4005

Failure: Not an authorized MediaSense user.4019

Failure: Your login credentials (username or password) are invalid.4020

Failure: Invalid session. The session may have expired. Sign in again or enter a valid
JSESSIONID.

4021

Failure: The specified user is not a Finesse supervisor.4022

Failure: Connection to the Cisco Finesse server failed. Verify the Cisco Finesse
configuration and try again.

4023

Failure: Unable to establish a call using this deviceRef. Verify the deviceRef and try
again.

4030

Failure: The deviceRef is unavailable or busy. Verify the device and try again later.4031

Failure: Unable to disconnect the call using this deviceRef. Verify if the call exists
and try again.

4032

Failure: Unsupported combination of mediaStreams. Verify the allowed streams for
this parameter and try again.

4033

Failure: The fieldName parameter is invalid.4041

Failure: The fieldOperator parameter is invalid.4042

Failure: The number of fieldValue parameters is invalid.4043

Failure: The connector parameter is invalid.4045

Failure: The order parameter is invalid.4046

Failure: The fieldName parameter is missing.4047

Failure: The fieldCondition parameters are missing.4048

Failure: The fieldOperator parameter is missing.4049

Failure: The fieldValue parameters are missing.4050

Cisco MediaSense Developer Guide, Release 11.0(1)
17

Working with Cisco MediaSense APIs
Key Elements for MediaSense APIs

DescriptionResponse Code

Failure: The fieldConnector parameter is missing.4051

Failure: The paramConnector parameter is missing.4052

Failure: The fieldName parameter is missing. Unable to sort by fieldName.4053

Failure: The order parameter is missing.4054

Failure: The requestParameter is missing.4055

Failure: Invalid JSON syntax. Verify the syntax and try again.4056

Failure: One or more of the fieldValue parameters are of the incorrect type.4057

Failure: Missing tagName parameter.4058

Failure: The authentication provider is invalid. Valid authentication providers are:
AXL, FINESSE

4059

Failure: The value is missing in the client request.4060

Failure: Missing parameter in message. Detail: <parameter name>4061

Failure: Invalid syntax in parameter. Detail: <parameter name>4062

Failure: The offset parameter is invalid.4063

Failure: The limit parameter is invalid.4064

Failure: The date range is invalid. Date range of up to one year is allowed. Resubmit
your request.

4066

Failure: The sessionId is invalid or no active session is found.4070

Failure: The sessionId is invalid or no inactive session is found.4071

Failure: The sessionId is invalid or no session is found.4072

Failure: The conversionFormat is invalid. Please verify the supported formats and
try again.

4073

Failure: The subscription with the given subscriptionUri already exists.4080

Failure: The subscription with the given subscriptionId does not exist.4081

Failure: Unable to convert a session that is in the ACTIVE or ERROR state.4082

Failure: The jobId is invalid or particular job is not running at this moment.4090

5xxx Server Error Response Codes

The server failed to fulfill an apparently valid request.

DescriptionResponse Code

Failure: An unknown server error occurred. Try again later.5000

Failure: A database error occurred. Try again later.5001

 Cisco MediaSense Developer Guide, Release 11.0(1)
18

Working with Cisco MediaSense APIs
Key Elements for MediaSense APIs

DescriptionResponse Code

Failure: Unable to pause the session. Try again later.5002

Failure: Unable to resume the session. Try again later.5003

Failure: Unable to delete the session. Try again later.5004

Failure: Unable to convert the session. Try again later. Detail: <Reason For Failure>5006

Failure: AXL service on the Unified Communications Manager timed out. Try again
later.

5020

Failure: AXL service on the Unified Communications Manager is not activated.
Activate the service and try again.

5021

Failure: AXL credentials are invalid. Verify the Unified Communications Manager
configuration and try again.

5022

Failure: Unknown AXL Host. Verify the Unified Communications Manager
configuration and try again.

5023

Failure: Unknown AXL service error. Try again later.5024

Failure: Connection to the AXL service failed. Try again later.5025

Failure: Unable to establish a call using this DeviceRef in association with the system.
Verify the Unified Communications Manager or Unified Border Element system and
try again.

5030

Failure: Unable to record the call. Verify that the MediaSense Media Service is
functioning and try again.

5031

Failure: Unable to record the call. Low disk space on MediaSense Media Service.5032

Failure: Unable to process the request. Invalid state of the job for the requested
operation. Verify the job state and try again. Detail: <Job State>

5040

Failure: Request timed out. Resubmit your request.5041

Failure: The system has exceeded the maximum number of concurrent requests. Try
again later.

5042

Failure: Unable to process the request. The maximum limit to search the archived
sessions has exceeded. Narrow down your search.

5053

Response Message
The response message can have the following types of values:

• Positive response: "Success" or "Partial success".

• Negative response: "Failure: <text indicating reason for failure>".

Cisco MediaSense Developer Guide, Release 11.0(1)
19

Working with Cisco MediaSense APIs
Key Elements for MediaSense APIs

Response Body
The API response can also contain an optional body based on requirements (responseBody). Any information
other than the two preceding keys is placed within the responseBody.

JSON schema:

"responseBody": {//one or more optional elements within the
responseBody depending on the request specifications.

..
..

}

All parameters may not be present in the response body of an API as these vary on a case-to-case basis.
In these cases, only the applicable parameters appear in the response body of the related APIs. For example,
in the response body of the getSessions API, an active session will not contain the duration parameter
details.

Note

Encoding
All URLs must be URL encoded (Percent-encoding).

Special Characters in Text Strings
For all text strings (including passwords), users must abide by the http://www.json.org/ specification and
escape any special characters by preceding them with a backslash.

Job States
DescriptionJob States

The job started execution successfully and continues to execute.RUNNING

The job completed successfully.

Completed successfully does not mean all operations are successful, it just
indicates that all operations in this job were attempted successfully.

Note

COMPLETED

The job was canceled using the cancelJob API and is no longer running.CANCELED

The job stopped executing because of a system error.ERROR

 Cisco MediaSense Developer Guide, Release 11.0(1)
20

Working with Cisco MediaSense APIs
Encoding

http://en.wikipedia.org/wiki/Percent-encoding
http://www.json.org

Precedence Rules for paramConnector and fieldConnector
The query syntax for getSessions allows flexibility (though there are limitations; not every conceivable query
can be expressed). A query is formed by linking terms together by AND and OR operator; each term is made
up of a field name, a relational operator, and a field value (or two field values in case of BETWEEN). To
introduce parentheses follow the below mentioned precedence rules that direct the order in which the terms
are evaluated.

• Multiple conditions on the same field get the highest logical precedence.

• AND takes precedence over OR.

For example:

For query deviceRef=1000 or deviceRef=2000 or tagName=foo and state=active, the highest precedence
is given to the first two terms even though they are linked by OR because they refer to the same field name.

Next, tagName=foo and state=active are evaluated because AND has higher priority than OR.

Finally the results of the two previous evaluations are calculated as OR with unlike field names has the lowest
priority.

If the above query is represented with parentheses, then it looks like:

((deviceRef=1000 or deviceRef=2000) or (tagName=foo and state=active))

The above example is written in a quasi-English form in order to be readable for the purpose of explanation.
But in the actual API request, it would be represented in the JSON form. For a detailed example, see the
getSessions, on page 76.

Encoding
All URLs must be URL encoded (Percent-encoding).

Special Characters in Text Strings
For all text strings (including passwords), users must abide by the http://www.json.org/ specification and
escape any special characters by preceding them with a backslash.

Request and Response Parameter Definitions
For a list of request and response parameters used by the MediaSense API, see Shared Parameters, on page
112.

Failover Between Two MediaSense Servers
If your MediaSense cluster contains multiple servers, only two of these servers provide the API service that
handle the APIs. MediaSense does not support internal redirection of client requests between the nodes and

Cisco MediaSense Developer Guide, Release 11.0(1)
21

Working with Cisco MediaSense APIs
Precedence Rules for paramConnector and fieldConnector

http://en.wikipedia.org/wiki/Percent-encoding
http://www.json.org

hence does not support failover. If the MediaSense API service that handles these REST requests is
out-of-service for any reason, it sends a response code that signals the third-party client to redirect the request
to the other MediaSense server providing this service. The client interprets this response code and redirects
the request accordingly.

If the MediaSense API service is down or the server itself is down, then the client must handle the HTTP
timeout and redirect the request to the other MediaSense server accordingly.

Security Considerations
All MediaSense APIs are based on HTTPS and use self-signed certificates. You may see a security exception
each time you use an API.

A secure server uses a certificate to identify itself to web browsers. You can generate your own certificate
(called a self-signed certificate) or you can obtain a certificate from a certificate authority (CA). For more
information, see http://en.wikipedia.org/wiki/Certificate_authority or your web browser documentation.

If you use Poster or other similar applications to issue the API requests, you must first obtain a certificate
by opening and accepting the following URI in your web browser:

https://<Cisco MediaSense IP address>>:8440

Note

API Inter-Dependencies for Authentication
MediaSense APIs use the JSESSIONID to maintain all sessions, therefore a JSESSIONID is required to
authenticate the user before any other API (that requires authentication) can be used.

Use the MediaSense SignIn API to obtain a JSESSIONID. The response from the SignIn API looks like this:

Header Name: Set-Cookie
Header Value: JSESSIONID=SomeRandomAlphaNumericString

Each time you use a MediaSense API that requires authentication, you must set the header to the value of the
JSESSIONID returned from the SignIn API.

For more information about setting cookies, see http://en.wikipedia.org/wiki/HTTP_cookie.

The JSESSIONID expires when the user logs out or after 30 minutes of inactivity, whichever comes first.

Poster
All MediaSense APIs are accessible by a URI and follow a request-response paradigm. Poster is a Firefox
add-on that works with web services and web resources so you can interact with web services and inspect the
results.

To add Poster to Firefox:

• Configure a MediaSense API user (using a valid username and password).

• Download the Poster add-on from Firefox. You can obtain a free download from https://
addons.mozilla.org/en-US/firefox/addon/2691/.

 Cisco MediaSense Developer Guide, Release 11.0(1)
22

Working with Cisco MediaSense APIs
Security Considerations

http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/HTTP_cookie#Setting_a_cookie
https://addons.mozilla.org/en-US/firefox/addon/2691/
https://addons.mozilla.org/en-US/firefox/addon/2691/

• After you add Poster to Firefox, type Ctrl + Alt + P to launch it.

To test an API in Poster:

• Accept theMediaSense security certificate into the web browser by opening and accepting the following
URI in the web browser.

https://<Cisco MediaSense IP address>>:8440. You have to do this one time.

• Copy and paste the URI for the API request from this Developer Guide into a text editor. For example,
to enter the URI for signing in, copy the URI from the signIn API.

• Examine the pasted code for case sensitivity and format and to remove any carriage returns.

• Update the URI with the IP Address and port of your MediaSense server.

• Add any mandatory parameters for the request.

• Set the content-type header with the appropriate value.

Cisco MediaSense Developer Guide, Release 11.0(1)
23

Working with Cisco MediaSense APIs
Poster

• Click the appropriate action (GET or POST).

Figure 2: A Cisco MediaSense API Request Using Poster

Figure 3: A Cisco MediaSense API Response Status Using Poster

 Cisco MediaSense Developer Guide, Release 11.0(1)
24

Working with Cisco MediaSense APIs
Poster

Cisco MediaSense Developer Guide, Release 11.0(1)
25

Working with Cisco MediaSense APIs
Poster

 Cisco MediaSense Developer Guide, Release 11.0(1)
26

Working with Cisco MediaSense APIs
Poster

C H A P T E R 3
Event Subscription APIs

• Introduction, page 27

• subscribeToEvents, page 27

• unsubscribeFromEvents, page 29

• verifyEventSubscription, page 31

• subscribeRecordingEvent(deprecated), page 33

• unsubscribeRecordingEvent(deprecated), page 33

• verifyRecordingSubscription(deprecated), page 34

Introduction
The eventSubscription APIs allow you to subscribe, verify subscription, and unsubscribe for various event
notifications.

subscribeToEvents
Use this API to receive event notifications, such as when recording starts, recording ends, recording data gets
updated, a tag is added to the recording, or when a tag is deleted from the recording. You may choose to
subscribe to all events, categories of events or specific types of events.

URI

https://<host>:<port>/ora/eventService/event/subscribeToEvents

HTTP Method

POST

Parameters

• subscriptionFilters— It is an output JSON array and an optional input JSON array. It specifies a list of
events or a list of event categories. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
27

• subscriptionId— It is an output string. See Shared Parameters, on page 112.

• subscriptionType— It is an output string. It specifies a type of subscription. See Shared Parameters, on
page 112.

• subscriptionUri— It is the required input string. It specifies the URI where the event notifications are
sent to server-based clients. See Shared Parameters, on page 112.

• tagNameRegEx— It is an optional input string. It is a Java regular expression that only applies to tag
events. See Shared Parameters, on page 112.

If the same subscriptionUri is subscribed for a second time, the subscriptionFilters in the existing
subscription will be replaced with the new subscriptionFilters. If the subscriptionFilters are also the same,
then no error is generated. A 2005 responseCode is generated indicating that the subscription already
exists.

Note

Examples

Example 1

To receive event notifications for all events.

HTTPS POST:

https://10.194.118.1:8440/ora/eventService/event/
subscribeToEvents
Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>

Body:

{
requestParameters: {

"subscriptionType": "http",
"subscriptionUri": "http://10.35.146.157:
8085/sessionEvent",
"subscriptionFilters": ["ALL_EVENTS"]

}
}

Response:

{
"responseMessage": "Success: Your request was successfully
completed.",
"responseCode": 2000,
"responseBody": {

"subscriptionFilters": [
"EXIT_EMERGENCY_STORAGE_SPACE_EVENT",
"TAG_ADDED_EVENT",
"TAG_DELETED_EVENT",
"TAG_UPDATED_EVENT",
"SESSION_STARTED_EVENT",
"SESSION_ENDED_EVENT",
"EXIT_LOW_STORAGE_SPACE_EVENT",
"EXIT_CRTITICAL_STORAGE_SPACE_EVENT",
"ENTER_CRTITICAL_STORAGE_SPACE_EVENT",
"ENTER_LOW_STORAGE_SPACE_EVENT",

 Cisco MediaSense Developer Guide, Release 11.0(1)
28

Event Subscription APIs
subscribeToEvents

"SESSION_UPDATED_EVENT",
"SESSION_DELETED_EVENT",
"ENTER_EMERGENCY_STORAGE_SPACE_EVENT",
"SESSION_PRUNED_EVENT"

],
"subscriptionId": "3oV6jCEnJUlGYZo8"

}
}

Example 2

To receive event notifications for onlyTAG_EVENTS.

HTTPS POST:

https://10.194.118.1:8440/ora/eventService/event/
subscribeToEvents

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>

Body:

{
requestParameters: {

"subscriptionType": "http",
"subscriptionUri": "http://10.35.146.157:
8085/sessionEvent",
"subscriptionFilters": ["TAG_EVENTS"]

}
}

Response:

{
"responseMessage": "Success: Your request was successfully
completed.",
"responseCode": 2000,
"responseBody": {

"subscriptionFilters": [
"TAG_ADDED_EVENT",
"TAG_DELETED_EVENT",
"TAG_UPDATED_EVENT"

],
"subscriptionId": "D52C4aeXISTURzM7"

}
}

unsubscribeFromEvents
Use this API to stop receiving recording events.

• A request without a "subscriptionFilters" parameter unsubscribes the client completely and terminates
the subscription.

• A request with a "subscriptionFilters" parameter only removes the specified filter from the subscription,
but the subscription as a whole remains active. If no filters remain subscribed, then the entire subscription
is removed, exactly as if no "subscriptionFilters" parameter were specified.

• The response also includes a list of the remaining subscription filters, unless there are no event types
left.

Cisco MediaSense Developer Guide, Release 11.0(1)
29

Event Subscription APIs
unsubscribeFromEvents

URI

https://<host>:<port>/ora/eventService/event/unsubscribeFromEvents

HTTP Method

POST

Parameters

• subscriptionId— It is a required input string. See Shared Parameters, on page 112.

• subscriptionFilters— It is an output JSON array and an optional input JSON array. It specifies a list of
events or a list of event categories. See Shared Parameters, on page 112.

• tagNameRegEx— It is an optional input string. It is a regular Java expression which only applies to tag
events. See Shared Parameters, on page 112.

Examples

Example 1

To stop receiving event notifications for any event (unsubscribe from all events):

HTTPS POST:

https://10.194.118.1:8440/ora/eventService/event/
unsubscribeFromEvents

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>

Body:

{
requestParameters: {

"subscriptionId": "sN7DASoAArHmDfI1",
"subscriptionFilters":[ALL_EVENTS]

}
}
OR

{
requestParameters: {

"subscriptionId": "sN7DASoAArHmDfI1"
}

}

Response:

{
"responseCode": 2000,
"responseMessage": "Successful"

}

Example 2
The client is currently subscribed to RECORDING_EVENTS and CLEANUP_EVENTS and now wants to
unsubscribe fromCLEANUP_EVENTS, but continue tomaintain their subscription toRECORDING_EVENTS.

 Cisco MediaSense Developer Guide, Release 11.0(1)
30

Event Subscription APIs
unsubscribeFromEvents

HTTPS POST:

https://10.194.118.1:8440/ora/eventService/event/
unsubscribeFromEvents

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>

Body:

{
requestParameters: {

"subscriptionId": "sN7DASoAArHmDfI1",
"subscriptionFilters":[CLEANUP_EVENTS]

}
}

Response: (This will tell the client the filters they are still subscribed to.)

{
"responseMessage": "Success: Your request was successfully
completed.",
"responseCode": 2000,
"responseBody": {

"subscriptionFilters": [
"SESSION_STARTED_EVENT",
"SESSION_UPDATED_EVENT",
"SESSION_ENDED_EVENT"

]
}

}

verifyEventSubscription
Use this API to verify if the subscription to receive events is active or not.

URI

https://<host>:<port>/ora/eventService/event/verifyEventSubscription

HTTP Method

POST

Parameters

• subscriptionFilters— It is an output JSON array and an optional input JSON array. It specifies a list of
events or event categories. See Shared Parameters, on page 112.

• subscriptionId— It is a required input string. It is a system-generated ID. See Shared Parameters, on
page 112.

• subscriptionStatus— It is an output string. It is a response received from the API. See Shared Parameters,
on page 112.

• tagNameRegEx— It is an optional input string. It is a Java regular expression that only applies to tag
events. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
31

Event Subscription APIs
verifyEventSubscription

Examples

Example 1

Assuming that you are currently subscribed to receive all RECORDING_EVENTS, use the following API to
verify that your subscription is active:

HTTPS POST:

https://10.194.118.1:8440/ora/eventService/event/
verifyEventSubscription
Headers:

{
requestParameters: {

"subscriptionId": "sN7DASoAArHmDfI1"
}

}
Response:

{
"responseMessage": "Success: Your request was successfully
completed.",
"responseCode": 2000,
"responseBody": {

"subscriptionFilters": [
"SESSION_STARTED_EVENT",
"SESSION_UPDATED_EVENT",
"SESSION_ENDED_EVENT"

],
"subscriptionStatus": "ACTIVE"

}
}

Example 2

Verify an INACTIVE subscription.

HTTPS POST:

https://10.194.118.1:8440/ora/eventService/event/
verifyEventSubscription
Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
requestParameters: {

"subscriptionId": "sN7DASoAArHmDfI2"
}

}
Response:

{
"responseMessage": "Success: Your request was successfully
completed.",
"responseCode": 2000,
"responseBody": {

"subscriptionStatus": "INACTIVE"
}

}

 Cisco MediaSense Developer Guide, Release 11.0(1)
32

Event Subscription APIs
verifyEventSubscription

subscribeRecordingEvent(deprecated)
Use this API to receive event notifications, such as when recording starts, recording ends, recording data gets
updated, a tag is added to the recording, or when a tag is deleted from the recording.

URI

https://<host>:<port>/ora/eventService/event/subscribeRecordingEvent

HTTP Post

POST

Parameters

• subscriptionId— It is a required input string. It is the system-generated ID. See Shared Parameters, on
page 112.

• subscriptionType— It is an output string. It is the type of subscription. See Shared Parameters, on page
112.

• subscriptionUri— It is a required input string. It is the URI where event notifications are sent to
server-based clients. See Shared Parameters, on page 112.

If the same subscriptionUri is subscribed for a second time, an error will be returned and it will contain
the original subscriptionId.

Note

Related Event

storageThresholdEvent— The event is sent each time the storage disk space reaches various thresholds. For
more information, see storageThresholdEvent, on page 134.

unsubscribeRecordingEvent(deprecated)
Use this API to stop receiving recording events.

URI

https://<host>:<port>/ora/eventService/event/unsubscribeRecordingEvent

HTTP Method

POST

Parameter

subscriptionId— It is a required input string. It is the system-generated ID. See Shared Parameters, on page
112

Cisco MediaSense Developer Guide, Release 11.0(1)
33

Event Subscription APIs
subscribeRecordingEvent(deprecated)

verifyRecordingSubscription(deprecated)
Use this API to verify if the recording subscription is active.

URI

https://<host>:<port>/ora/eventService/event/verifyRecordingSubscription

HTTP Method

POST

Parameter

• subscriptionId— It is a required input string. It is the system-generated ID. See Shared Parameters, on
page 112.

• subscriptionStatus— It is an output string. It is the response that is received from the API. See Shared
Parameters, on page 112.

The subscriptionStatus is active or inactive depending upon whether the subscription exists or not.Note

 Cisco MediaSense Developer Guide, Release 11.0(1)
34

Event Subscription APIs
verifyRecordingSubscription(deprecated)

C H A P T E R 4
Job Management APIs

• Introduction, page 35

• createJob, page 35

• cancelJob, page 36

• deleteJob, page 37

Introduction
A job can contain one or more operations and takes a significant amount of time to complete. Each result is
provided on a per-operation basis. The purpose of a job is to allow the system to accept and act on the job
request without requiring a persistent client connection to the server until the job is completed.

You can create a MediaSense job by using the deleteSessions API, which creates a job in response to a bulk
delete operation, where you may delete multiple sessions at the same time.

You can only delete a job that has already been completed, canceled, or in an error state. If the job is in the
RUNNING state, use the cancelJob API to first stop the job and then use the deleteJob API to delete that job.

A job may not eventually be acted upon, as it might be disallowed during the processing phase. Use the Job
Query APIs to retrieve the job status and operation results.

createJob
Use this API to create a batch process for jobs which take a significant amount of time to complete. The results
are provided for each operation.

URI

https://<host>:<port>/ora/managementService/manage/createJob

HTTP Method

POST

Cisco MediaSense Developer Guide, Release 11.0(1)
35

Parameters

• jobType— It is an input string. The type of the job. See Shared Parameters, on page 112.

• jobParameters— It is a system-generated identifier for a session. See Shared Parameters, on page 112.

See Job States, on page 20.Note

cancelJob
Use this API to cancel a job that is already in progress. This API only stops the execution of a job. To delete
the job from the database, use the deleteJob API.

URI

https://<host>:<port>/ora/managementService/manage/cancelJob

Parameter

jobId— It is an output string. This is a system-generated job ID. See Shared Parameters, on page 112.

HTTP Method

POST

Example

HTTPS POST:

https://10.194.118.1:8440/ora/managementService/manage/cancelJob
Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": {
"jobId": "123456789"
}
}
Response:

{
"responseMessage": "Success: Your request was successfully completed.",
"responseCode": 2000,
"jobId": "123456789"
}

 Cisco MediaSense Developer Guide, Release 11.0(1)
36

Job Management APIs
cancelJob

deleteJob
Use this API to delete a job from the database. This API is only applicable to a job that is already completed,
canceled, or in an error state. If the job is in the RUNNING state, use the cancelJob API to first stop the job,
and then use the deleteJob API to delete that job. This API deletes job details and all job results from the
database.

URI

https://<host>:<port>/ora/managementService/manage/deleteJob

HTTP Method

POST

Parameter

jobId— It is an output string. This is a system-generated job ID. See Shared Parameters, on page 112.

Example

HTTPS POST:

https://10.194.118.1:8440/ora/managementService/manage/deleteJob
Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": { "jobId": "JobId_1" }
}
Response:

{ "responseMessage": "Success: Your request was successfully
completed.", "responseCode": 2000, "jobId": "JobId_1" }

Cisco MediaSense Developer Guide, Release 11.0(1)
37

Job Management APIs
deleteJob

 Cisco MediaSense Developer Guide, Release 11.0(1)
38

Job Management APIs
deleteJob

C H A P T E R 5
Job Query APIs

• Introduction, page 39

• getJobById, page 39

• getJobResult, page 40

• getJobs, page 43

Introduction
Use the Job query APIs to retrieve the status and results for jobs created using the job management APIs.

The getJobsById API allows you to retrieve existing jobs using the jobId parameter. Subsequent calls to this
API may return different values as the job is still in progress.

Within the getJobs API, you can specify specific parameters to obtain results based on your search criteria.

If you have not provided a valid job state, MediaSense may not be able to process your request. In this case,
verify the job state and issue the request again. All job states are listed in Job States, on page 20.

getJobById
Use this API to retrieve existing jobs using the jobId. In successful JSON response fields, the jobstate,
operationsCompleted, and operationsRemaining parameter values are retrieved at the time the API is called.
Subsequent calls to this API may display different values.

URI

https://<host>:<port>/ora/queryService/query/getJobById

HTTP Method

GET

Parameters

• jobDuration— It is an output integer for the API. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
39

• jobId— It is an output string. It is a system-generated Id. See Shared Parameters, on page 112.

• jobState— It is an output string for the API. See Shared Parameters, on page 112.

• jobs— It is an output array of job objects. See Shared Parameters, on page 112.

• jobStartTime— It is an output integer for the API. See Shared Parameters, on page 112.

• jobType— It is an output string for the API. See Shared Parameters, on page 112.

• operationsCompleted— It is an output integer. It is the number of operations completed for this job. The
number varies depending on when the parameter is called. The counter starts at zero (0).

• operationsRemaining— It is an output integer. The number of operations remaining for this job. The
number varies depending on when the parameter is called.

Example

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getJobById?jobId=AMS_10.194.118.1_1282948026491_5
Headers:

JSESSIONID: <the jsessionId received from a previous signIn request>

Response:

{
"responseMessage": "Success: Your request was
successfully completed.",
"responseCode": 2000,
"responseBody": {

"jobs": [
{

"jobType": "BULK_DELETE_SESSIONS",
"jobDuration": 203567,
"jobStartTime": 1343333766345,
"jobId": "AMS_10.194.118.1_
1282948026491_5",
"jobState": "COMPLETED"

}
],
"operationsCompleted": 2,
"operationsRemaining": 0

}
}

getJobResult
Use this API to retrieve job results of existing jobs. The "requestParameters" parameter is optional. If it is not
specified, all job operations for the specified job Id will be returned. If the query filter specified in the
"requestParameters" parameter does not match any job operation for the specified job Id, then the response
will not contain the "jobOperationResultset" parameter.

URI

https://<host>:<port>/ora/queryService/query/getJobResult

 Cisco MediaSense Developer Guide, Release 11.0(1)
40

Job Query APIs
getJobResult

HTTP Method

POST

Parameters

• byFieldName— It is an optional input string. Enumerations allowed for this parameter are:

◦operationId

◦operationData

◦operationResponse

See Shared Parameters, on page 112.

• fieldConditions— It is a required input. See Shared Parameters, on page 112.

• fieldConnector— It is an optional string when you have one field in an array. It is a required input string
when you have two or more fields in an array. See Shared Parameters, on page 112.

• fieldName— It is a required input string. See Shared Parameters, on page 112.

• fieldOperator— It is a required input string. See Shared Parameters, on page 112.

• fieldValues— It is a required input. See Shared Parameters, on page 112.

• jobDuration— It is an output integer. See Shared Parameters, on page 112.

• jobId— It is an output string. It is a system-generated Id. See Shared Parameters, on page 112.

• jobOperationsResultset— It is output array of strings. It represents set of individual operations results
for a particular job.

• jobState— It is an output string for the API. See Shared Parameters, on page 112.

• jobStartTime— It is an output integer for the API. See Shared Parameters, on page 112.

• jobType— It is an output string for the API. See Shared Parameters, on page 112.

• limit— It is a required input integer. See Shared Parameters, on page 112.

• order— It is an optional input string. See Shared Parameters, on page 112.

• operationData— It is an output string and an optional input string. It is case sensitive. It is the individual
operation input data in a job.

• operationId— It is an output string and an optional input string. It is case sensitive. It is the individual
operation in a job.

• operationResponse— It is an output string and an optional input string. It is case sensitive. It is the
individual operation in a job.

• pageParameters— It is an optional input. See Shared Parameters, on page 112.

• paramConnector— It is an optional string when you have one field in an array. It is a required input
string when you have two or more fields in an array. See Shared Parameters, on page 112.

• sortParameters— It is an optional input JSON array. See Shared Parameters, on page 112.

fieldOperators for getJobResult

Cisco MediaSense Developer Guide, Release 11.0(1)
41

Job Query APIs
getJobResult

Allowed fieldOperators for this parameterParameter

equalsoperationId

equalsoperationData

equalsoperationResult

equals

contains

startsWith

endsWith

operationFailureReason

Example

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/
getJobResult

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn
request>
Body:

{
"jobId": "AMS_10.27.185.20_1287093966514_162",
"requestParameters": [

{
"fieldName" : "operationResult",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : [

"2000"
]

}
]

}
],
"sortParameters": [

{
"byFieldName": "operationResult",
"order": "ASC"

}
]

}
Response:

{
"responseMessage": "Success: Your request was
successfully completed.",
"responseCode": 2000,
"responseBody": {

"job": {
"jobType": "BULK_DELETE_SESSIONS",
"jobDuration": 36005,
"jobId": "AMS_10.27.185.20_1287093966514_
162",

 Cisco MediaSense Developer Guide, Release 11.0(1)
42

Job Query APIs
getJobResult

"jobStartTime": 1287171904409,
"jobState": "COMPLETED"

},
"jobOperationsResultset": [

{
"responseCode": 2000,
"operationData": "Session-1-10.194.118.
92-1287017042781",
"jobOperationId": "AMS_10.27.185.20_
1287093966514_163",
"OperationResponse": "Successful: Your
request was successfully completed."

},

{
"responseCode": 2000,
"operationData": "Session-11-10.194.118.
92-1287178816956",
"jobOperationId": "AMS_10.27.185.20_
1287093966514_164",
"OperationResponse": "Successful: Your
request was successfully completed."

}
]

}
}

getJobs
Use this API to retrieve existing jobs using any of the job parameter names.

URI

https://<host>:<port>/ora/queryService/query/getJobs

HTTP Method

POST

Parameters

• byFieldName— It is an optional input string. See Shared Parameters, on page 112.

Allowed enumerations for this parameter.

◦jobId

◦jobState

◦jobType

◦jobStartTime

◦jobDuration

• fieldConditions— It is a required array of strings. See Shared Parameters, on page 112.

• fieldConnector— It is an optional input string when you have one field in an array. It is a required input
string when you have two or more fields in an array. See Shared Parameters, on page 112.

• fieldName— It is a required input string. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
43

Job Query APIs
getJobs

• fieldOperator— It is a required input string. See Shared Parameters, on page 112.

fieldOperators for getJobs

Allowed fieldOperators for the ParameterParameter

equalsjobId

equalsjobState

equalsjobType

between

lessThan

greaterThan

jobStartTime

between

lessThan

greaterThan

jobDuration

• fieldValues— It is a required array of strings. See Shared Parameters, on page 112.

• jobDuration— It is an optional input integer. See Shared Parameters, on page 112.

• jobId— It is an optional input string. See Shared Parameters, on page 112.

• jobState— It is an optional input string. See Shared Parameters, on page 112.

• jobs— It is an output array of objects. See Shared Parameters, on page 112.

• jobStartTime— It is an optional input integer. See Shared Parameters, on page 112.

• jobType— It is an optional input string. See Shared Parameters, on page 112.

• limit— It is a required input integer. See Shared Parameters, on page 112.

• order— It is an optional input string. However, it becomes a required input string within sortParameters.
See Shared Parameters, on page 112.

• pageParameters— It is an optional input JSON object. See Shared Parameters, on page 112.

• paramConnector— It is an optional input string when you have one field in an array. It is a required
input string when you have two or more fields in an array. See Shared Parameters, on page 112.

• sortParameters— It is an optional input JSON array. See Shared Parameters, on page 112.

Example

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/
getJobs

Headers:

Content-Type: application/json

 Cisco MediaSense Developer Guide, Release 11.0(1)
44

Job Query APIs
getJobs

JSESSIONID: <the jsessionId received from a
signIn request>
Body:

{
"requestParameters": [

{
"fieldName" : "jobState",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : [

"completed"
]

}
]

}
],
"sortParameters": [

{
"byFieldName": "jobId",
"order": "ASC"

}
]

}
Response:

{
"responseMessage": "Success: Your request was
successfully completed.",
"responseCode": 2000,
"responseBody": {

"jobs": [
{

"jobType": "BULK_DELETE_SESSIONS",
"jobDuration": 34200,
"jobStartTime": 1343334076111,
"jobId": "Job_123",
"jobState": "COMPLETED"

},
{

"jobType": "BULK_DELETE_SESSIONS",
"jobDuration": 44200,
"jobStartTime":1343334075432,
"jobId": "Job_234",
"jobState": "COMPLETED"

},
{

"jobType": "BULK_DELETE_SESSIONS",
"jobDuration": 43678,
"jobStartTime": 1343334073567,
"jobId": "Job_345",
"jobState": "COMPLETED"

}
]

}
}

Cisco MediaSense Developer Guide, Release 11.0(1)
45

Job Query APIs
getJobs

 Cisco MediaSense Developer Guide, Release 11.0(1)
46

Job Query APIs
getJobs

C H A P T E R 6
Recording Control APIs

• Introduction, page 47

• pauseRecording, page 48

• resumeRecording, page 48

• startRecording, page 49

• stopRecording, page 52

• launchMediaPlayer, page 54

Introduction
The recording control APIs provided byMediaSense enable a third-party client to control recording of sessions.

Third-party clients can pause or resume a session recording that is currently in progress (active).The following
conditions apply to these APIs:

• You can only use this API on active session recordings.

• You can only resume a paused recording.

MediaSense also provides another form of control by allowing third-party clients to trigger a call from
MediaSense to a phone, and then start a recording as soon as the call is answered. This is known as Direct
Outbound Recording. A corresponding API can stop a recording that has been started in this manner. You
can use these APIs to record blogs or video messages.

Direct Outbound Recording is supported only for Unified Communications Manager phones.

A call initiated by the startRecording API on a device reference must be answered for the recording to
start. You can stop the recording either by hanging up the device or by invoking the stopRecording API
on that Device Reference.

Mid-call codec changes are not supported for direct inbound or direct outbound calls.

Note

Cisco MediaSense Developer Guide, Release 11.0(1)
47

pauseRecording
Use this API to pause the recording of a session.

URI

https://<host>:<port>/ora/controlService/control/pauseRecording

HTTP Method

POST

Parameter

sessionId— It is a system-generated identifier for a session. See Shared Parameters, on page 112.

Related Event

tagEvent— The event is sent when a tag is added or deleted from a session. For more information, see tagEvent,
on page 135.

Example

To pause a recording that is currently in progress:

HTTPS POST:

https://10.194.118.1:8440/ora/controlService/control/
pauseRecording

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
requestParameters: {

"sessionId": "Session-1234.abc.
5678"

}
}
Response:

{
"responseCode": 2000,
"responseMessage": "Successful"

}

resumeRecording
Use this API to resume recording a session.

 Cisco MediaSense Developer Guide, Release 11.0(1)
48

Recording Control APIs
pauseRecording

URI

https://<host>:<port>/ora/controlService/control/resumeRecording

HTTP Method

POST

Parameter

sessionId— It is a system-generated identifier for a session. See Shared Parameters, on page 112.

Related Event

tagEvent— The event is sent when a tag is added or deleted from a session. For more information, see tagEvent,
on page 135.

Example

HTTPS POST:

https://10.194.118.1:8440/ora/controlService/control/
resumeRecording

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn
request>
Body:

{
requestParameters: {

"sessionId": "Session-1234.abc.
5678"

}
}
Response:

{
"responseCode": 2000,
"responseMessage": "Successful"

}

startRecording
Use this API to have MediaSense call a phone and record the recipient's audio and video input.

URI

https://<host>:<port>/ora/controlService/control/startRecording

HTTP Method

POST

Cisco MediaSense Developer Guide, Release 11.0(1)
49

Recording Control APIs
startRecording

Parameters

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• httpUrl— It is an output string. The HTTPS link for a session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. It indicates whether the participant is a conference bridge or an
individual device. See Shared Parameters, on page 112.

• mediaType— It is an output string. The type of the media being established. See Shared Parameters,
on page 112.

• mediaStreams— It is a required input array of media types. The media stream being established. Each
stream is a media type. Therefore, mediaStreams is an array of media types. A recording must have at
least one media stream. The array is not ordered. It is a required input.

• mp4Url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• offset— It is an optional input integer. It becomes a required input integer within pageParameters. The
first record to be returned. See Shared Parameters, on page 112.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when
this track's recording started. See Shared Parameters, on page 112.

• rtspUrl— It is an output string. The reference to the entire session, which can contain multiple tracks.
See Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionId— It is a required input string. The system-generated unique identifier of a session. See Shared
Parameters, on page 112.

• sessionStartDate— It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when
the session recording started. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112.

• tags— It is an output JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when the
tag was created. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording, which is not case sensitive.
See Shared Parameters, on page 112.

• tagOffset— It is an output integer. The number of milliseconds from the start of session for this tag. See
Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
50

Recording Control APIs
startRecording

• tagType— It is an output string. See Shared Parameters, on page 112.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. The system-generated unique identifier of the track. See Shared
Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when the
track recording started. See Shared Parameters, on page 112.

• urls— It is an output JSON object. It includes information on the httpUrl and the rtspUrl parameters.
See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

• xRefCi— It is an output string. The Unified Communications Manager identifier for a particular media
stream. See Shared Parameters, on page 112.

This API requires that you configure a Call Control Service Provider in CiscoMediaSense Administration,
and that the target phone be accessible by that Unified Communications Manager.

Note

Related Event

sessionEvent— It is an event that is sent each time a recording session is started or an existing recording
session is updated or ended. For more information, see sessionEvent, on page 131.

Example

Example 1

To start a blog recording that contains both audio and video tracks on a device with deviceRef 1000:

HTTPS POST:

https://10.194.118.1:8440/ora/controlService/control/
startRecording
Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn
request>
Body:

{
"requestParameters": {

"deviceRef": "1000",
"mediaStreams": [

{
"mediaType": "VIDEO"

},
{

"mediaType": "AUDIO"
}

Cisco MediaSense Developer Guide, Release 11.0(1)
51

Recording Control APIs
startRecording

]
}

}

Example 2

To start a blog recording that contains only an audio track on a device with deviceRef 1111:

HTTPS POST:

https://10.194.118.1:8440/ora/controlService/control/
startRecording
Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn
request>
Body:

{
"requestParameters": {

"deviceRef": "1111",
"mediaStreams": [

{
"mediaType": "AUDIO"

}
]

}
}

stopRecording
Use this API to stop device recording as soon as an outbound call (initiated by the startRecording API) is
completed.

URI

https://<host>:<port>/ora/controlService/control/stopRecording

HTTP Method

POST

Parameters

• codec— The codec of the track. See Shared Parameters, on page 112.

• deviceId— The unique identifier of the device. See Shared Parameters, on page 112.

• deviceRef— The phone number of each device. See Shared Parameters, on page 112.

• downloadUrl— The URL that is used to download the recording in the raw format. See Shared
Parameters, on page 112.

• httpUrl— The HTTPS link for a session. See Shared Parameters, on page 112.

• isConference— It indicates whether the participant is a conference bridge or an individual device. See
Shared Parameters, on page 112.

• mp4Url— The mp4 link for the session. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
52

Recording Control APIs
stopRecording

• offset— The first record to be returned. See Shared Parameters, on page 112.

• participantDuration— The number of milliseconds that the participant was active in the session. See
Shared Parameters, on page 112.

• participants— It is a JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— The number of milliseconds since Jan 1, 1970 GMT when this track's recording
started. See Shared Parameters, on page 112.

• rtspUrl— The reference to the entire session, which can contain multiple tracks. See Shared Parameters,
on page 112.

• sessions— The JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration— The number of milliseconds that the session lasted. See Shared Parameters, on page
112.

• sessionId— The system-generated unique identifier of a session. See Shared Parameters, on page 112.

• sessionStartDate— The number of milliseconds since Jan 1, 1970 GMT when the session recording
started. See Shared Parameters, on page 112.

• sessionState— The state of the session. See Shared Parameters, on page 112.

• tags— The JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— The number of milliseconds since Jan 1, 1970 GMT when the tag was created. See
Shared Parameters, on page 112.

• tagName— The name that is used to label a recording, which is not case sensitive. See Shared Parameters,
on page 112.

• tagOffset— The number of milliseconds from the start of session for this tag. See Shared Parameters,
on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112.

• trackDuration— The number of milliseconds that the track lasted. See Shared Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— The system-generated unique identifier of the track. See Shared Parameters, on page
112.

• tracks— The JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— The number of milliseconds since Jan 1, 1970 GMT when the track recording started.
See Shared Parameters, on page 112.

• urls— It includes information on the httpUrl and the rtspUrl parameters. See Shared Parameters, on
page 112.

• wavUrl— The wav link for the session. See Shared Parameters, on page 112.

• xRefCi— The Unified Communications Manager identifier for a particular media stream. See Shared
Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
53

Recording Control APIs
stopRecording

Related Event

sessionEvent— It is an event that is sent each time a recording session is started or an existing recording
session is updated or ended. For more information, see sessionEvent, on page 131.

Example

To stop a blog recording in progress on a device with deviceRef 1000:

HTTPS POST:

https://10.194.118.1:8440/ora/controlService/control/
stopRecording
Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{ "requestParameters":
{

"deviceRef": "1000"
}

}

launchMediaPlayer
Use this API to launch the MediaSense media player and play the specified recording. The API is designed
to work with a server-based application that is acting as a proxy for a browser. However, a browser can directly
call the API. When an application issues this request on behalf of a browser client, it passes the JNLP file to
that browser for execution. The browser then interacts with MediaSense directly to download the player
application and to fetch the media stream to be played. The API parameters are JSON and not URL.

URI

https://<host>:<port>/ora/controlService/control/launchMediaPlayer

HTTP Method

GET

Parameter

rtspUrl— The parameter must be specified in the query section of the URL:

rtspUrl=<user provided string>

where rtspUrl is the rtsp URL of the session to be played in the media player when it launches. This URL is
obtained with the Query APIs (such as getSessions). The client fetches this rtspUrl from MediaSense shortly
before using it in the launchMediaPlayer request. As with all URLs provided by MediaSense, the rtspUrl for
a given recorded session is subject to change from time to time without notice.

 Cisco MediaSense Developer Guide, Release 11.0(1)
54

Recording Control APIs
launchMediaPlayer

Youmust have the required version of Java installed on the client machine. See the Search and Play section
of the MediaSense User Guide for more details on Java requirements, available at http://www.cisco.com/
c/en/us/support/customer-collaboration/mediasense/tsd-products-support-maintain-and-operate.html.

Note

Example

Example 1

To play the session with the rtspUrl "13092154564622" in the Media Player:

HTTPS GET:
https://<server>:<port>/ora/controlService/control/launchMediaPlayer?rtspUrl=rtsp://<server>/archive/2413e6746c8441

Headers: JSESSIONID (the jsessionID received from a previous signIn request)

Response:

This response is for illustrative purposes only. Your application does not need to parse this response. If
Java is installed correctly, this response automatically launches the Media Player applet using JWS.

Note

...
Content-type: application/x-java-jnlp-file
...

<?xml version="1.0" encoding="UTF-8"?>
<jnlp codebase="https://<server>:<port>/mediasense/
" spec="1.0+">
<information>

<title>MediaSensePlayer</title>
<vendor>Cisco Systems</vendor>
<homepage href="http://www.cisco.com" />
<description>MediaSensePlayer</description>
<description kind="short">MediaSensePlayer</description>

</information>
<update check="always" />
<security>

<all-permissions />
</security>
<resources>

<j2se version="1.7.0_11" />
<jar href="java/MediaSensePlayer.jar" main="true" />
<jar href="java/jna-3.4.0.jar" />

</resources>
<application-desc main-class="com.cisco.cbabu.videoplayer.
Main">
<argument>rtsp://<server>/archive/2413e6746c8441?
token=HQFmZ0yl2ynton0CvOKMifXwe6gBONLAOeMqaPzw2jTrrbhh
SjbnjOr2siZJmIIqcg2gJDNsFpMrDheQyUGYveUhDQAwdT6ze6mQeek
JPhipAhtI15Rrfaackd6r6jlj</argument>

</application-desc>
</jnlp>
Example 2

An example of a failure response. (The GET request was sent without the required rtspUrl parameter.)

HTTPS GET: https://<server>:<port>/ora/controlService/control/launchMediaPlayer

Headers: JSESSIONID (the jsessionID received from a previous signIn request)

Cisco MediaSense Developer Guide, Release 11.0(1)
55

Recording Control APIs
launchMediaPlayer

http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/tsd-products-support-maintain-and-operate.html
http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/tsd-products-support-maintain-and-operate.html

Response:

...
Content-type: application/json
...

{
"responseMessage": "Failure: Missing parameter in message.",
"responseCode": 4061,
"detail": "rtspUrl"

}

 Cisco MediaSense Developer Guide, Release 11.0(1)
56

Recording Control APIs
launchMediaPlayer

C H A P T E R 7
Session Management APIs

• Introduction, page 57

• addSessionTag, page 57

• convertSession (Deprecated), page 59

• deleteSessions, page 60

• deleteSessionTag, page 61

Introduction
In the Contact Center or in speech analytics environments, a supervisor, an agent or a speech analytics system
may need to add a tag to a session that is being recorded or has already been recorded. Or, they may need to
better manage their session recording repository by deleting some sessions or saving other sessions to prevent
those sessions from being deleted.

MediaSense provides these management capabilities through session management APIs. Using these APIs,
third-party clients can add or delete tags to sessions and delete sessions one-at-a-time or in bulk. Clients can
also convert a session to supported formats like mp4 or wav and move them to a pre-specified location (on
the MediaSense system).

While you can add or delete tags on both active and completed session recordings, you can only delete
completed session recordings. Similarly, you cannot convert a session if it is in the ACTIVE or ERROR
state.

Note

addSessionTag
Use this API to add tags to closed (already recorded) or active (currently being recorded) sessions. A tag is
the name assigned by the user to label a recording.

Cisco MediaSense Developer Guide, Release 11.0(1)
57

Within Cisco, the accepted protocol when adding tags is to include a prefix and a colon (:) at the beginning
of each tag to identify the application that is inserting the tag. For example, the prefix for tags inserted by
CCX applications is "CCX:". Following this protocol ensures that multiple, independent client applications
can insert tags intoMediaSense without inadvertently inserting tag names that are meaningful or confusing
to each other.

Note

URI

https://<host>:<port>/ora/managementService/manage/addSessionTag

Parameter

• sessionId— It is a required input string. It is a system-generated identifier for a session. See Shared
Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording, which is not case sensitive.
See Shared Parameters, on page 112.

• tagOffset— It is an optional integer. The number of milliseconds from the start of session for the tag.
See Shared Parameters, on page 112.

Related Event

tagEvent— The event is sent when a tag is added or deleted from a session. For more information, see tagEvent,
on page 135.

Example

HTTPS POST:

https://10.10.10.10:8440/ora/managementService/manage/
addSessionTag

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters":

{
"sessionId": "AMS_10.194.118.56_1283550575777_2",
"tagName": "Sample tag",
"tagOffset": 10

}
}
Response:

{
"responseMessage":"Success: Your request was successfully completed.",
"responseCode":2000

}

 Cisco MediaSense Developer Guide, Release 11.0(1)
58

Session Management APIs
addSessionTag

convertSession (Deprecated)
Use this API to convert aMediaSense session to the format specified in the request. If your request is successful,
you receive a list of links of the converted files in the response.

If the MediaSense session exists in the request format, the existing links are returned. New links are not
created in the system. If the MediaSense session is in ACTIVE or ERROR state, the session cannot be
converted.

The system deletes the converted mp4 and wav files after a maximum of 2 hours of their creation or last
modification.

Note

URI

https://<host>:<port>/ora/managementService/manage/convertSession

HTTP Method

POST

Parameters

• convertedLink— It is an output string. These strings are generated as part of the convertSession API.
A comma-separated list of URLs. Each URL points to the audio recording of a session. All values
together make up the string.

• convertedFormat— It is an intput string. The format to convert a MediaSense session. Enumeration
value is MP4.

• sessionId— It is a required input string. The system-generated identifier for a session. See Shared
Parameters, on page 112.

Examples

Example 1

HTTPS POST:

https://10.10.10.10:8440/ora/managementService/manage/
convertSession

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>

Body:

{ "requestParameters":
{

"sessionId": "AMS_10.10.10.10_1283550575777_2",
"conversionFormat": "mp4"

}
}

Cisco MediaSense Developer Guide, Release 11.0(1)
59

Session Management APIs
convertSession (Deprecated)

Response:

{
"responseMessage":"Success: Your request was successfully completed.",
"responseCode":2000,
"responseBody":

{
"convertedLink":"http://10.10.10.10:8080/
oramedia/mp4/Session-1-10.10.10.10-
1283811989534.mp4"

}
}

Example 2—System Capacity Exceeded

HTTPS POST:

https://10.10.10.10:8440/ora/managementService/manage/
convertSession

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>

Body:

{ "requestParameters":
{

"sessionId": "AMS_10.10.10.10_1283550575777_2",
"conversionFormat": "mp4"

}
}

Response:

{
“responseCode”: 5006,
“responseMessage”: “Failure: Unable to convert the session. Try again later.”,
"detail": "Capacity Exceeded"

}

deleteSessions
Use this API to delete recorded sessions based on the specified Session IDs.

You cannot delete an active session.

The jobId parameter in a successful response is used in the job query API to retrieve the job status and
results.

Note

URI

https://<host>:<port>/ora/managementService/manage/deleteSessions

 Cisco MediaSense Developer Guide, Release 11.0(1)
60

Session Management APIs
deleteSessions

HTTP Method

POST

Parameters

• jobId— It is an output string. It is a system-generated ID. See Shared Parameters, on page 112.

• sessionIds— It is an input parameter. A list of sessions IDs.

Example

To delete multiple recordings:

HTTPS POST:

https://10.194.118.64:8440/ora/managementService/manage/
deleteSessions

Headers:

Content-Type: application/json

Body:

{
"requestParameters": {

"sessionIds": [
"4ed31387d58902d1",
"4ed31387d58923a3"

]
}

}

Response:

{
"responseCode": 2000,
"responseMessage": "Successful",
"jobId": "abcd1234"

}

deleteSessionTag
Use this API to delete tags from a session. A tag is the name assigned by the user to label a recording. After
you no longer need a label or tag, delete it from this session using this API. The tagName and tagOffset
parameters are unique for a tag. When deleting a recording, make sure that you use the same name and offset
fields with which it was created (using the addSessionTag API). After you delete a tag, you cannot undo this
operation. However, you can add the tag again to the session by specifying the tag name and offset fields.

URI

https://<host>:<port>/ora/managementService/manage/deleteSessionTag

HTTP Method

POST

Cisco MediaSense Developer Guide, Release 11.0(1)
61

Session Management APIs
deleteSessionTag

Parameter

• sessionId— It is an output string. It is a system-generated identifier for a session. See Shared Parameters,
on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112.

• tagOffset— It is an output integer. The offset is calculated from the start of the session or track. See
Shared Parameters, on page 112.

Related Event

tagEvent— The event is sent when a tag is added or deleted from a session. For more information, see tagEvent,
on page 135.

Example

HTTPS POST:

https://10.78.95.207:8440/ora/managementService/manage/
deleteSessionTag

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>

Body:

{
"requestParameters":

{
"sessionId": "3212d734fd0a71",
"tagName": "demo",
"tagOffset": 10

}
}

Response:

{
"responseMessage":"Success: Your request was
successfully completed.",
"responseCode":2000

}

 Cisco MediaSense Developer Guide, Release 11.0(1)
62

Session Management APIs
deleteSessionTag

C H A P T E R 8
Session Query APIs

• Introduction, page 63

• getAllActiveSessions, page 64

• getAllPrunedSessions, page 66

• getArchiveSessions, page 69

• getAssociatedSessions, page 69

• getSessionBySessionId, page 74

• getSessions, page 76

• getSessionsByCCID, page 86

• getSessionsByDeviceRef, page 89

• getSessionsByMediaType, page 91

• getSessionsByTag, page 93

• Concurrent Search Requests, page 95

• Scalable and Non-Scalable Queries, page 96

• Avoid Non-Scalable Queries , page 96

Introduction
MediaSense query APIs allow applications to query for the sessions in flexible ways.

• A complex, but flexible getSessions API allows you to perform complex queries. Using this API, you
can specify various logical operations and other sort and pagination parameters in the search criteria.

• Simpler, but less flexible query APIs only allow some basic, but commonly-used, queries (for example,
getAllActiveSessions).

Cisco MediaSense Developer Guide, Release 11.0(1)
63

getAllActiveSessions
Use this API to search all active recordings. The returned sessions are automatically sorted by sessionStartDate
(in descending order).

The response for this API depends on the query—All parameters may not be available in each response.
For example, active sessions do not have a sessionDuration, downloadUrl, and other parameters. Similarly,
the httpUrl is only available if the session is converted.

Note

URI

https://<host>:<port>/ora/queryService/query/getAllActiveSessions

HTTP Method

GET

Parameters

• callControllerIP— It is an output string. See Shared Parameters, on page 112.

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• ccid— It is an output string that is used to identify recording sessions which are part of the same call.
See Shared Parameters, on page 112.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• errorCode—

• errorDetail— It is an output string. See Shared Parameters, on page 112.

• httpUrl— It is an output string. The HTTPS link for the session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. It indicates whether the participant is a conference bridge or an
individual device. See Shared Parameters, on page 112.

• limit— It is a required input integer. The number of records to be returned, starting at the specified
offset. See Shared Parameters, on page 112.

• maxSessionStartDate— It is an optional input integer. The number of milliseconds since Jan 1, 1970
GMT when the session recording started, or more precisely, when the first track for this session began
recording. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
64

Session Query APIs
getAllActiveSessions

• minSessionStartDate— It is an optional input integer. The number of milliseconds since Jan 1, 1970
GMT when the session recording started, or more precisely, when the first track for this session began
recording. See Shared Parameters, on page 112.

• mp4Url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• offset— It is an optional input integer. The first record to be returned. See Shared Parameters, on page
112.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants— It is output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when
this track's recording started. See Shared Parameters, on page 112.

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration— It is an output integer. The number of milliseconds that the session lasted. See Shared
Parameters, on page 112.

• sessionId— It is an output string. It is a system-generated identifier for a session. See Shared Parameters,
on page 112.

• sessionStartDate— It is an output integer. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112.

• tags— It is an ouput JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when this
tag was created. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112.

• tagOffset— It is an output integer. The offset is calculated from the start of the session or track. See
Shared Parameters, on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. The system-generated unique identifier of the track. See Shared
Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when the
track recording started.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
65

Session Query APIs
getAllActiveSessions

• xRefCi— It is an output string. The Unified Communications Manager identifier for a particular media
stream. See Shared Parameters, on page 112.

Examples

Example 1

To get all active sessions in the last 2 hours ending at 26 Jul 2012 20:45:40 GMT (for example, from 18:45:40
to 20:45:40):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/
query/getAllActiveSessions?maxSessionStartDate=
1343335540154

Headers:

JSESSIONID: <the jsessionId received from a previous
signIn request>

Example 2

To get the first ten active sessions between 26 Jul 2012 18:45:40 GMT and 26 Jul 2012 20:45:40 GMT (2-hour
time window):

HTTPS GET:

https://10.194.118.1:8443/ora/queryService/query/
getAllActiveSessions?offset=0&limit=10&
minSessionStartDate=1343328340000&maxSessionStartDate
=1343335540154

Headers:

JSESSIONID: <the jsessionId received from a previous
signIn request>

getAllPrunedSessions
Use this API to search all pruned recordings. The returned sessions are automatically sorted by sessionStart
date. The term Pruned refers to recordings that are deleted by the MediaSense system. If you have explicitly
deleted any recording using the deleteSessions API, then these deleted recordings, not pruned recordings.

URI

https://<host>:<port>/ora/queryService/query/getAllPrunedSessions

HTTP Method

GET

Parameters

• callControllerIP: It is an output string. See Shared Parameters, on page 112.

• callControllerType: It is an output string. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
66

Session Query APIs
getAllPrunedSessions

• ccid: It is an output string that is used to identify recording sessions which are part of the same call. See
Shared Parameters, on page 112.

• codec: It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId: It is an output string. The unique identifier of the device. See Shared Parameters.

• deviceRef: It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl: It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• httpUrl: It is an output string. The HTTPS link for the session. See Shared Parameters, on page 112.

• isConference: It is an output boolean. It indicates whether the participant is a conference bridge or an
individual device. See Shared Parameters, on page 112.

• limit: It is a required input integer. The number of records to be returned, starting at the specified offset.
See Shared Parameters, on page 112.

• maxSessionStartDate: It is an optional input integer. The number of milliseconds since Jan 1, 1970 GMT
when the session recording started, or more precisely, when the first track for this session began recording.
See Shared Parameters, on page 112.

• minSessionStartDate: It is an optional input integer. The number of milliseconds since Jan 1, 1970 GMT
when the session recording started, or more precisely, when the first track for this session began recording.
See Shared Parameters, on page 112.

• mp4Url: It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• offset: It is an optional input integer. The first record to be returned. See Shared Parameters, on page
112.

• participantDuration: It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants: It is output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate: It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when
this track's recording started. See Shared Parameters, on page 112.

• rtspUrl: It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions: It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration: It is an output integer. The number of milliseconds that the session lasted. See Shared
Parameters, on page 112.

• sessionId: It is a system-generated identifier for a session. See Shared Parameters, on page 112.

• sessionStartDate: It is an output integer. See Shared Parameters, on page 112.

• sessionState: It is an output string. The state of the session. See Shared Parameters, on page 112.

• tags: It is an ouput JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate: It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when this
tag was created. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
67

Session Query APIs
getAllPrunedSessions

• tagName: It is an output string. The name that is used to label a recording. See Shared Parameters, on
page 112.

• tagOffset: It is an output integer. The offset is calculated from the start of the session or track. See Shared
Parameters, on page 112.

• tagType: It is an output string. See Shared Parameters, on page 112.

• trackDuration: It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType: It is an output integer. See Shared Parameters, on page 112.

• trackNumber: It is an output integer. The system-generated unique identifier of the track. See Shared
Parameters, on page 112.

• tracks: It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate: It is an output integer. The number of milliseconds since Jan 1, 1970 GMT when the
track recording started. See Shared Parameters, on page 112.

• urls: It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl: It is an output string. The wav link for the session. See Shared Parameters, on page 112.

• xRefCi: It is an output string. The Unified Communications Manager identifier for a particular media
stream. See Shared Parameters, on page 112.

Examples

Example 1

To get all the pruned sessions in the last 2 hours ending at 26 Jul 2012 20:45:40 GMT (for example, from
18:45:40 to 20:45:40):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getAllPrunedSessions?maxSessionStartDate=1343335540154

Headers:

JSESSIONID: <the jsessionId received from a previous
signIn request>

Example 2

To get the first ten pruned sessions between 26 Jul 2012 18:45:40 GMT and 26 Jul 2012 20:45:40 GMT (2
hour time window):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getAllPrunedSessions?offset=0&limit=10&
minSessionStartDate=1343328340000&maxSessionStartDate=
1343335540154

Headers:

JSESSIONID: <the jsessionId received from a previous
signIn request>

 Cisco MediaSense Developer Guide, Release 11.0(1)
68

Session Query APIs
getAllPrunedSessions

getArchiveSessions
Use this API to search and retrieve archived sessions.

URI

https://<host>:<port>/ora/queryService/query/getArchiveSessions

HTTP Method

POST

Parameters

• deviceRef: It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• sessionIdList: The parameter sessionIdList accepts a list of multiple comma-separated sessionIds in the
request body, but currently, only the first sessionId will be considered to return the strongly associated
sessionIds. Additional sessionIds will be ignored. This input parameter has been made of the List type
for future enhancement.

• maxSessionStartDate: It is an optional input integer. However, it becomes a required input integer when
no value is specific for minSessionStartDate. See Shared Parameters, on page 112.

• minSessionStartDate: It is an optional input integer. See Shared Parameters, on page 112.

Consider the following points while searching for an archived session.Note

• If you have both sessionId and deviceRef as request parameters, then getArchiveSessions API
considers only the sessionId.

• If you enter more than one sessionId, then getArchiveSessions API considers only the first sessionId.

• If you enter more than one deviceRef, then getArchiveSessions API considers only the first deviceRef.

getAssociatedSessions
Use this API to search and retrieve strongly associated sessions by a sessionID. The strongly associated
sessions contain one xRefci in common (for built-in-bridge (BiB) recordings and Unified Communications
Manager enabled network-based recordings (NBR)), and at least one CCID in common (for recordings through
Unified Border Element).

MediaSense supports call association for sessions generated through the following modes.

• Unified Communications Manager BiB forking

• Unified Communications Manager NBR

• Unified Border Element Dial Peer

Cisco MediaSense Developer Guide, Release 11.0(1)
69

Session Query APIs
getArchiveSessions

The Call Association feature works by iterating through the stored recordings and searching for common
xRefCi values (for recordings through Unified CommunicationsManager), and for common CCID values
(for recordings through Unified Border Element).

For example:

Note

1 If a conversation being recorded involves a call transfer from one agent (with BiB activated) to another
agent (with BiB activated), the recording sessions generated will be linked to each other through a
chain of common xRefCi values.

2 If a conversation being recorded through Unified Border Element involves a mid-call codec change,
such as A called B and call is negotiated at codec X. A puts the call on hold where music-on-hold
(MoH) codec is Y. So, there is another new session for MoH. When A resumes the call, another third
session is generated. These generated recording sessions are linked to each other by means of common
CCID values.

The Call Association feature takes advantage of this and prepares a set of recording sessions which are
thus related to each other.

Some call scenarios result in isolated recording sessions (sessions none of whose xRefCi or CCID are
common with any other session in the database). Such sessions cannot be associated through this feature.

Note

URI

https://<host>:<port>/ora/queryService/query/getAssociatedSessions

HTTP Method

POST

Parameters

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• firstName— It is an output string. See Shared Parameters, on page 112.

• httpUrl— It is an output string. See Shared Parameters, on page 112.

• isConference— It is an output boolean. It indicates whether the participant is a conference bridge or an
individual device. See Shared Parameters, on page 112.

• lastName— It is an output string. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
70

Session Query APIs
getAssociatedSessions

• lineDisplayName— It is an output string. See Shared Parameters, on page 112.

• loginId— It is an output string. See Shared Parameters, on page 112.

• loginIdDomain— It is an output string. See Shared Parameters, on page 112.

• loginName— It is an output string. See Shared Parameters, on page 112.

• mp4Url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participantInformation— It is an output JSON array of participant information. See Shared Parameters,
on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. See Shared Parameters, on page 112.

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks.

• sessionId— It is an output string. It is a system-generated identifier for a session. See Shared Parameters,
on page 112.

• sessionIdList— It accepts a list of multiple comma-separated sessionIds in the request body, but currently,
only the first sessionId will be considered to return the strongly associated sessionIds. Additional
sessionIds will be ignored. This input parameter has been made of the List type for future enhancement.

• sessionStartDate— It is an output integer. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112.

• trackDuration— It is an output integer. The number of milliseconds the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. The system-generated unique identifier of the track. See Shared
Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. See Shared Parameters, on page 112.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

• xRefCi— It is a output string. The Unified Communications Manager identifier for a particular media
stream. See Shared Parameters, on page 112.

Example

HTTPS POST:
https://10.78.170.114:8440/ora/queryService/query/getAssociatedSessions
Headers:
Content-Type: application/json

Cisco MediaSense Developer Guide, Release 11.0(1)
71

Session Query APIs
getAssociatedSessions

Body:
{

"requestParameters":{
"sessionIdList" : ["514406fbae4a1"]

}
}
Response:
{

"responseMessage":"Success: Your request was successfully completed.",
"responseCode":2000,
"responseBody":{

"sessions":[
{

"sessionState":"CLOSED_NORMAL",
"callControllerType":"Cisco-CUCM",
"sessionId":"614406fbae5e1",
"urls":{

"httpUrl":"https://10.78.170.114:19443/recordedMedia/oramedia/mp4/614406fbae5e1.mp4",
"rtspUrl":"rtsp://10.78.170.114/archive/614406fbae5e1",

"mp4Url":"https://10.78.170.114:19443/recordedMedia/oramedia/mp4/614406fbae5e1.mp4",

"wavUrl":"https://10.78.170.114:19443/recordedMedia/oramedia/wav/614406fbae5e1.wav"
},
"sessionStartDate":1391686561,
"tracks":[

{
"trackStartDate":1391686561,
"trackDuration":78119,
"codec":"PCMU",

"downloadUrl":"http://10.78.170.114:8081/mma/ExportRaw?recording=614406fbae5e1-TRACK1",
"trackNumber":1,
"trackMediaType":"AUDIO",
"participants":[

{
"participantStartDate":1391686561,
"deviceRef":"1341051",
"participantInformation": {

"loginId": "davpete",
"lastName": "Peter",
"firstName": "Dave",
"loginIdDomain": 1,
"loginName": "Peter"

},
"lineDisplayName": "Dave Peter",
"isConference":false,
"xRefCi":"20248680",
"participantDuration":78119,
"deviceId":"SEP70F39517B88A"

}
]

},
{

"trackStartDate":1391686561,
"trackDuration":78119,
"codec":"PCMU",

"downloadUrl":"http://10.78.170.114:8081/mma/ExportRaw?recording=614406fbae5e1-TRACK0",
"trackNumber":0,
"trackMediaType":"AUDIO",
"participants":[

{
"participantStartDate":1391686561,
"deviceRef":"1341052",
"participantInformation": {

"loginId": "davpete",
"lastName": "Peter",
"firstName": "Dave",
"loginIdDomain": 1,

 Cisco MediaSense Developer Guide, Release 11.0(1)
72

Session Query APIs
getAssociatedSessions

"loginName": "Peter"
},

"lineDisplayName": "Dave Peter",
"isConference":false,
"xRefCi":"20248679",
"participantDuration":78119,
"deviceId":"SEP402CF4ECA126"

}
]

}
],
"sessionDuration":78119,
"callControllerIP":"10.65.157.134"

},
{

"sessionState":"CLOSED_NORMAL",
"callControllerType":"Cisco-CUCM",
"sessionId":"514406fbae4a1",
"urls":{

"httpUrl":"https://10.78.170.114:19443/recordedMedia/oramedia/mp4/514406fbae4a1.mp4",
"rtspUrl":"rtsp://10.78.170.114/archive/514406fbae4a1",

"mp4Url":"https://10.78.170.114:19443/recordedMedia/oramedia/mp4/514406fbae4a1.mp4",

"wavUrl":"https://10.78.170.114:19443/recordedMedia/oramedia/wav/514406fbae4a1.wav"
},
"sessionStartDate":1391686561,
"tracks":[

{
"trackStartDate":1391686561,
"trackDuration":78093,
"codec":"PCMU",

"downloadUrl":"http://10.78.170.114:8081/mma/ExportRaw?recording=514406fbae4a1-TRACK1",
"trackNumber":1,
"trackMediaType":"AUDIO",
"participants":[

{
"participantStartDate":1391686561,
"deviceRef":"1341052",
"participantInformation": {

"loginId": "davpete",
"lastName": "Peter",
"firstName": "Dave",
"loginIdDomain": 1,
"loginName": "Peter"

},
"lineDisplayName": "Dave Peter",
"isConference":false,
"xRefCi":"20248679",
"participantDuration":78093,
"deviceId":"SEP402CF4ECA126"

}
]

},
{

"trackStartDate":1391686561,
"trackDuration":78093,
"codec":"PCMU",

"downloadUrl":"http://10.78.170.114:8081/mma/ExportRaw?recording=514406fbae4a1-TRACK0",
"trackNumber":0,
"trackMediaType":"AUDIO",
"participants":[

{
"participantStartDate":1391686561,
"deviceRef":"1341051",
"participantInformation": {

"loginId": "davpete",
"lastName": "Peter",
"firstName": "Dave",
"loginIdDomain": 1,

Cisco MediaSense Developer Guide, Release 11.0(1)
73

Session Query APIs
getAssociatedSessions

"loginName": "Peter"
},

"lineDisplayName": "Dave Peter",
"isConference":false,
"xRefCi":"20248680",
"participantDuration":78093,
"deviceId":"SEP70F39517B88A"

}
]

}
],
"sessionDuration":78093,
"callControllerIP":"10.65.157.134"

}
]

}
}

getSessionBySessionId
Use this API to search and retrieve a recorded or live session by its session ID.

URI

https://<host>:<port>/ora/queryService/query/getSessionBySessionId

HTTP Method

GET

Parameters

• callControllerIP— It is an output string. See Shared Parameters, on page 112.

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• ccid— It is an output string. It is used to identify recording sessions which are part of the same call. See
Shared Parameters, on page 112.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• devRef— It is an output string. The phone number of each device. See Shared Parameters, on page 112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• httpUrl— It is deprecated in release 10 in favor of mp4url. It is an output string. The HTTPS link for
the session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. See Shared Parameters, on page 112.

• mp4url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• participantDuration— It is an output integer. See Shared Parameters, on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
74

Session Query APIs
getSessionBySessionId

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration— It is an output integer. See Shared Parameters, on page 112.

• sessionId— It is a system-generated unique identifier for a session. See Shared Parameters, on page
112.

• sessionStartDate— It is an output integer. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112.

• tags— It is an output JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112.

• tagOffset— The number of milliseconds from the start of session for this tag. See Shared Parameters,
on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. It is the system-generated unique identifier of the track. See
Shared Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. See Shared Parameters, on page 112.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

• xRefCi— It is an output string. The Unified Communications Manager identifier for a particular media
stream. See Shared Parameters, on page 112.

Example

To get the session with the sessionId "13092154564622":

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getSessionBySessionId?value=13092154564622

Headers:

JSESSIONID: <the jsessionId received from a previous signIn
request>

Cisco MediaSense Developer Guide, Release 11.0(1)
75

Session Query APIs
getSessionBySessionId

getSessions
Use this API to search and retrieve recorded, live, or pruned sessions.

Requirement: To enforce scalability, this API requires a sessionStartDate field condition.

Limitation: The getSessions query syntax is flexible however, is not as general as SQL. Using the getSessions
API, you cannot express certain types of complex queries. Specifically, the syntax does not provide an approach
to override the built-in precedence rules. Also, it does not offer a method to indicate the order in which the
tables are joined and value matching is applied.

Examples:

Example 1

If you have three fields to query: f1, f2, and f3; and if the query is "f1=<query> AND f2=<query> OR
f3=<query>", then SQL precedence rules are applied to the fields such that the query translates to:
"[(f1=<query> AND f2=<query>) OR (f3=<query>)]."

Due to the use of brackets, the AND operator is evaluated before the OR operator. However, it is not possible
to specify that the OR operator gets evaluated before the AND operation because the expression syntax does
not provide a method to override the implicit precedence rules.

To summarize the limitation, a query like "[(f1) and (f2 or f3)]" is not possible.

Example 2

For searches which reference different fields located within the track object, the AND operator applies to
values found in the same track instance, not to values found in different tracks of the same session. For example,
a query such as "deviceRef=1000 AND loginName='Smith'" only returns a session in which agent Smith was
logged in under extension 1000. It will not return sessions in which agent Smith was in conversation with
extension 1000, because those two values occur on different tracks.

Moreover, if the same field is referenced on both sides of the AND operator, then MediaSense applies them
to different tracks within the same session. So a query such as "deviceRef=1000 AND deviceRef=2000" finds
sessions in which a user at extension 1000 conversed with another user who was at extension 2000, even
though these values are found in different tracks. This special handling does not work when a third track-specific
field is added to the query. For example, "deviceRef=1000 AND deviceRef=2000 AND loginName='Smith'"
may not produce the expected results because there is a different field name involved. And it is no longer
clear whether that value is meant to be found on the same track or on the other track in the same session.

 Cisco MediaSense Developer Guide, Release 11.0(1)
76

Session Query APIs
getSessions

Note • The sessionStartDate field is no longer bound to contain two field values in case of BETWEEN field
operator.

• If only one field value is provided with BETWEEN field operator, then the value is treated as the
sessionStartDate_value1 parameter. The sessionStartDate_value2 parameter would be automatically
set to the MS server's current time by the getSessions API itself.

• If two field values are provided with BETWEEN field operator, then these values are treated as the
sessionStartDate_value1 and sessionStartDate_value2, respectively (same as earlier behavior).

• To enforce scalability, this API requires a sessionStartDate field condition.

• This API no longer supports sessionId as a searchable fieldName.

URI

https://<host>:<port>/ora/queryService/query/getSessions

HTTP Method

POST

Parameters

• byFieldName— It is an optional input string. See Shared Parameters. The allowed enumerations are:

◦sessionId

◦sessionState

◦sessionDuration

◦sessionStartDate

◦ccid

• callControllerIP— It is an output string. See Shared Parameters, on page 112.

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• ccid— It is an optional input string. It is used to identify recording sessions which are part of the same
call. See Shared Parameters, on page 112. The allowed fieldOperator is “equals”.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId— It is an optional input string. The unique identifier of the device. See Shared Parameters,
on page 112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112. The allowed fieldOperators are:

◦equals

◦contains

◦startsWith

Cisco MediaSense Developer Guide, Release 11.0(1)
77

Session Query APIs
getSessions

◦endsWith

◦between

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• fieldConditions— It is a required input array of strings. The conditions specified for the queried field.
See Shared Parameters, on page 112.

• fieldConnector— It is used to logically connect a condition with the successive condition. See Shared
Parameters, on page 112.

• fieldName— It is a required input string. The name of the queried field. See Shared Parameters.

• fieldOperator— It is a required input string. See Shared Parameters, on page 112.

• fieldValues— It is a required input array of strings. See Shared Parameters, on page 112.

• httpUrl— It is an output string. The HTTPS link for the session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. See Shared Parameters, on page 112.

• limit— It is a required input integer. The number of records to be returned, starting at the specified
offset. See Shared Parameters, on page 112.

• mp4Url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• nodeIPAddress— It is an output string. The IP address of the Cisco MediaSense server. See Shared
Parameters, on page 112.The allowed fieldOperator is “equals”.

• offset— It is an optional input integer. The first record to be returned. See Shared Parameters, on page
112.

• order— It is an optional input string. See Shared Parameters, on page 112.

• partition— It is an output string. See Shared Parameters, on page 112. The allowed fieldOperator is
“equals”. The allowed fieldOperator is “equals”.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. See Shared Parameters, on page 112.

• pruned— It is an output boolean. It indicates whether a session was deleted by the system. The sessions
that are deleted by a user are not considered as pruned. Pruned is omitted when a session has not been
deleted. Enumeration values are:

◦TRUE

◦FALSE

The allowed fieldOperator is “equals”.

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
78

Session Query APIs
getSessions

• sessionDuration— It is an output integer. The number of milliseconds that the session lasted. See Shared
Parameters, on page 112. The allowed fieldOperators are:

◦lessThan

◦greaterThan

◦equals

• sessionStartDate— It is a required input integer. See Shared Parameters, on page 112.The allowed
fieldOperator is “between”.

• sortParameters— It is an optional input JSON array. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112. The
allowed fieldOperator is “equals”.

• tags— It is an output JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112. The allowed fieldOperators are:

◦equals

◦contains

◦startsWith

◦endsWith

• tagOffset— It is an optional integer for addSessionTag. The number of milliseconds from the start of
session for this tag. See Shared Parameters, on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112. The allowed fieldOperator is
“equals”.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. It is the system-generated unique identifier of the track. See
Shared Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. See Shared Parameters, on page 112.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

• xRefCi— It is an output string. It is the Unified Communications Manager identifier for a particular
media Stream. See Shared Parameters, on page 112. The allowed fieldOperator is “equals”.

Example

Example 1

Cisco MediaSense Developer Guide, Release 11.0(1)
79

Session Query APIs
getSessions

Query— Get all sessions where ((tagName = "foo" and sessionStartDate is between Nov 2, 2010 21:21:40 &
Nov 3, 2010 21:21:40) or (deviceRef = "1000" and sessionState = "active"))

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/getSessions

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": [

{
"fieldName" : "tagName",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : ["foo"]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [

1288732900000, // Tue, 02 Nov 2010
21:21:40 GMT
1288819300000 // Wed, 03 Nov 2010
21:21:40 GMT

]
}

],
"paramConnector": "OR"

},
{

"fieldName" : "deviceRef",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : ["1000"]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "sessionState",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : ["active"]

}
]

}
]

}

Example 2

Query— Get all sessions where ((xRefCi = 12345678 and tagName = foo) or (sessionState = active and
sessionStartDate is between Nov 2, 2010 21:21:40 & Nov 3, 2010 21:21:40))

 Cisco MediaSense Developer Guide, Release 11.0(1)
80

Session Query APIs
getSessions

Use care when specifying an "or" connector. The sub-expression before the "or" is not limited by the
sessionStartDate in the second subexpression. Ensure that the first subexpression is scalable or you must
add a sessionStartDate filter to the first subexpression. In this example, use a filter that specifies "xRefCi."
The xrefCi is a scalable field, so there is no need to restrict it by sessionStartDate."tagName" is nonscalable,
but because it is connected to the xRefCi filter by the "and" operator, the full subexpression is scalable.

For more information about writing scalable query expressions, see Avoiding Non-Scalable Queries.

Note

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/getSessions

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": [

{
"fieldName" : "xRefCi",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : [

"12345678"
]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "tagName",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : [

"foo"
]

}
],
"paramConnector": "OR"

},
{

"fieldName" : "sessionState",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : [

"active"
]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [

1288732900000, // Tue, 02 Nov 2010
21:21:40 GMT
1288819300000 // Wed, 03 Nov 2010

Cisco MediaSense Developer Guide, Release 11.0(1)
81

Session Query APIs
getSessions

21:21:40 GMT
]

}
]

}
]

}

Example 3

Query— Get all sessions where (((deviceRef = "1000" or deviceRef="2000") or tagName="foo") and
sessionState="active")

A query where higher precedence is intended for an 'OR'
operation over an 'AND' operation is not possible.

Example 4

Query— Get all sessions where (deviceRef = "1000" and sessionStartDate is between Nov 2, 2010 21:21:40
& Nov 3, 2010 21:21:40)

Although the simpler getSessionsByDeviceRef API is easier for a simpler query, you may still use
getSessions API.

Note

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/getSessions

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": [

{
"fieldName" : "deviceRef",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : ["1000"]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [

1288732900000, // Tue, 02 Nov 2010
21:21:40 GMT
1288819300000 // Wed, 03 Nov 2010
21:21:40 GMT

]
}

]
}

]
}

 Cisco MediaSense Developer Guide, Release 11.0(1)
82

Session Query APIs
getSessions

Example 5

Query— Get all sessions where a track has been recorded on nodeIPAddress "10.35.146.158" and partition
"/common" between Nov 2, 2010 21:21:40 & Nov 3, 2010 21:21:40

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/getSessions

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": [

{
"fieldName" : "nodeIPAddress",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : ["10.35.146.158"]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "partition",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : ["/common"]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [

1288732900000, // Tue, 02 Nov 2010
21:21:40 GMT
1288819300000 // Wed, 03 Nov 2010
21:21:40 GMT

]
}

]
}

]
}

Example 6

Query—Get all sessions that are pruned by the system between Nov 2, 2010 21:21:40 &Nov 3, 2010 21:21:40

Query—Get all sessions that are pruned by the system between Nov 2, 2010 21:21:40 &Nov 3, 2010 21:21:40

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/getSessions

Cisco MediaSense Developer Guide, Release 11.0(1)
83

Session Query APIs
getSessions

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": [

{
"fieldName" : "pruned",
"fieldConditions": [

{
"fieldOperator" : "equals",
"fieldValues" : ["true"]

}
],
"paramConnector": "AND"

},
{

"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [

1288732900000, // Tue, 02 Nov 2010
21:21:40 GMT
1288819300000 // Wed, 03 Nov 2010
21:21:40 GMT

]
}

]
}

]
}

Example 7

Query—Get all sessions that lie within a certain date range. For example, between Tue, 02 Nov 2010 21:21:40
GMT &Wed, 03 Nov 2010 21:21:40 GMT

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/getSessions

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": [

{
"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [

1288732900000, // Tue, 02 Nov 2010
21:21:40 GMT
1288819300000 // Wed, 03 Nov 2010
21:21:40 GMT

]
}

]
}

]

 Cisco MediaSense Developer Guide, Release 11.0(1)
84

Session Query APIs
getSessions

}

Example 8

Query— Get all sessions where ((deviceRef = 1000 or deviceRef = 2000 or deviceRef = 3000) and
sessionStartDate is between Nov 2, 2010 21:21:40 & Nov 3, 2010 21:21:40)

HTTPS POST:

https://10.194.118.1:8440/ora/queryService/query/getSessions

Headers:

Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:

{
"requestParameters": [

{
"fieldName": "deviceRef",
"fieldConditions": [

{
"fieldOperator": "equals",
"fieldValues": ["1000"],
"fieldConnector": "OR"

},
{

"fieldOperator": "equals",
"fieldValues": ["2000"],
"fieldConnector": "OR"

},
{

"fieldOperator": "equals",
"fieldValues": ["3000"]

}
],
"paramConnector": "AND"

},
{

"fieldName": "sessionStartDate",
"fieldConditions": [

{
"fieldOperator": "between",
"fieldValues": [

1288732900000, // Tue, 02 Nov 2010
21:21:40 GMT
1288819300000 // Wed, 03 Nov 2010
21:21:40 GMT

]
}

]
}

]
}

Example 9

Query— Get all sessions which started between a given date and the MS server's current time. For example:
between 12 Aug 2014 12:00 GMT-07:00 and MS server's current time.

HTTP POST:
https://10.194.118.1:8440/ora/queryService/query/getSessions

Cisco MediaSense Developer Guide, Release 11.0(1)
85

Session Query APIs
getSessions

Headers:
Content-Type: application/json
JSESSIONID: <the jsessionId received from a signIn request>
Body:
{

"requestParameters": [
{

"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [407870000000 // 12 Aug 2014 12:00 GMT-07:00]

}
]

}
]

}
If MS server's current time is 19 Aug 2014, 12:05 = 1408475100000, the request body of getSessions API is
updated to:
{

"requestParameters": [
{

"fieldName" : "sessionStartDate",
"fieldConditions": [

{
"fieldOperator" : "between",
"fieldValues" : [

1407870000000, // 12 Aug 2014 12:00 GMT-07:00
1408475100000 // 19 Aug 2014 12:05 GMT-07:00

]
}

]
}

]
}

getSessionsByCCID
Use this API to search and retrieve recorded or live sessions by Call Correlation Identifier (CCID). The
returned sessions are automatically sorted by sessionStartDate, in descending order.

URI

https://<host>:<port>/ora/queryService/query/getSessionsByCCID

HTTP Method

GET

Parameters

• callControllerIP— It is an output string. See Shared Parameters, on page 112.

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• ccid— It is a required input string. It is used to identify recording sessions which are part of the same
call. See Shared Parameters, on page 112.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
86

Session Query APIs
getSessionsByCCID

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• httpUrl— It is an output string. The HTTPS link for the session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. See Shared Parameters, on page 112.

• limit— It is a required input integer. The number of records to be returned, starting at the specified
offset. See Shared Parameters, on page 112.

• mp4Url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• offset— It is an optional input integer. The first record to be returned. See Shared Parameters, on page
112.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. See Shared Parameters, on page 112.

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration— It is an output integer. The number of milliseconds that the session lasted. See Shared
Parameters, on page 112.

• sessionId— It is an output string. It is a system-generated identifier for a session. See Shared Parameters,
on page 112.

• sessionStartDate— It is a required input integer. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112. The
allowed fieldOperator is “equals”.

• tags— It is an output JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112.

• tagOffset— It is an optional integer for addSessionTag. The number of milliseconds from the start of
session for this tag. See Shared Parameters, on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112. The allowed fieldOperator is
“equals”.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
87

Session Query APIs
getSessionsByCCID

• trackNumber— It is an output integer. It is the system-generated unique identifier of the track. See
Shared Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. See Shared Parameters, on page 112.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

• xRefCi— It is an output string. It is the Unified Communications Manager identifier for a particular
media Stream. See Shared Parameters, on page 112.

Examples

Example 1

To get all sessions that have the ccid "0584071424-0000065536-0000000016-0671746570":

HTTPS GET:

https://10.194.118.1:8080/ora/queryService/query/
getSessionsByCCID?value=0584071424-0000065536-0000000016-
0671746570&offset=0&limit=0

Headers:

JSESSIONID: <the jsessionId received from a previous signIn
request>

Example 2

To get the first ten sessions that have the ccid "0584071424-0000065536-0000000016-0671746570":

HTTPS GET:

https://10.194.118.1:8080/ora/queryService/query/
getSessionsByCCID?value=13092154564622%4010.194.118.71
&offset=0&limit=10

Headers:

JSESSIONID: <the jsessionId received from a previous signIn
request>

Example 3

To get the first 100 (default number of records returned) sessions that have the ccid
"0584071424-0000065536-0000000016-0671746570":

HTTPS GET:

https://10.194.118.1:8080/ora/queryService/query/
getSessionsByCCID?value=0584071424-0000065536-0000000016-
0671746570

Headers:

JSESSIONID: <the jsessionId received from a previous signIn
request>

 Cisco MediaSense Developer Guide, Release 11.0(1)
88

Session Query APIs
getSessionsByCCID

In the absence of offset or limit parameters, the request defaults to the first 100 sessions to be returned.Note

getSessionsByDeviceRef
Use this API to search and retrieve recorded or live sessions by Device Ref (the phone number, IP address,
or URI/URL for each device). The returned sessions are automatically sorted by sessionStartDate (in descending
order).

URI

https://<host>:<port>/ora/queryService/query/getSessionsByDeviceRef

HTTP Method

GET

Parameters

• callControllerIP— It is an output string. See Shared Parameters, on page 112.

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• ccid— It is an output string. It is used to identify recording sessions which are part of the same call. See
Shared Parameters, on page 112.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• httpUrl— It is an output string. The HTTPS link for the session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. See Shared Parameters, on page 112.

• limit— It is a required input integer. The number of records to be returned, starting at the specified
offset. See Shared Parameters, on page 112.

• maxSessionStartDate— It is an optional input integer. See Shared Parameters, on page 112.

• minSessionStartDate— It is an optional input integer. See Shared Parameters, on page 112.

• offset— It is an optional input integer. The first record to be returned. See Shared Parameters, on page
112.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
89

Session Query APIs
getSessionsByDeviceRef

• participantStartDate— It is an output integer. See Shared Parameters, on page 112.

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration— It is an output integer. The number of milliseconds that the session lasted. See Shared
Parameters, on page 112.

• sessionId— It is an output string. It is a system-generated identifier for a session. See Shared Parameters,
on page 112.

• sessionStartDate— It is a required input integer. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112.

• tags— It is an output JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112.

• tagOffset— It is an optional integer for addSessionTag. The number of milliseconds from the start of
session for this tag. See Shared Parameters, on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. It is the system-generated unique identifier of the track. See
Shared Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. See Shared Parameters, on page 112.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

• xRefCi— It is an output string. The Unified Communications Manager identifier for a particular media
stream. See Shared Parameters, on page 112.

Examples

Example 1

To get all sessions that have the deviceRef "1000" in the last 2 hours ending at 26 Jul 2012 20:45:40 GMT
(for example, from 18:45:40 to 20:45:40):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getSessionsByDeviceRef?value=1000&maxSessionStartDate=
1343335540154

 Cisco MediaSense Developer Guide, Release 11.0(1)
90

Session Query APIs
getSessionsByDeviceRef

Headers:

JSESSIONID: <the jsessionId received from a previous signIn request>

Example 2

To get the first ten sessions that have the deviceRef "1000" between 26 Jul 2012 18:45:40 GMT and 26 Jul
2012 20:45:40 GMT (2-hour time window):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getSessionsByDeviceRef?value=1000&offset=0&limit=
10&minSessionStartDate=1343328340000&maxSessionStartDate=
1343335540154

Headers:

JSESSIONID: <the jsessionId received from a previous signIn request>

getSessionsByMediaType
Use this API to search and retrieve recorded or live sessions based on the media type (audio, video, audio and
video, or screen capture). The returned sessions are automatically sorted by sessionStartDate, with the most
recent one being on the top.

URI

https://<host>:<port>/ora/queryService/query/getSessionsByMediaType

HTTP Method

GET

Parameters

• callControllerIP— It is an output string. See Shared Parameters, on page 112.

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• ccid— It is an output string. It is used to identify recording sessions which are part of the same call. See
Shared Parameters, on page 112.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• httpUrl— It is an output string. The HTTPS link for the session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
91

Session Query APIs
getSessionsByMediaType

• limit— It is a required input integer. The number of records to be returned, starting at the specified
offset. See Shared Parameters, on page 112.

• maxSessionStartDate— It is an optional input integer. See Shared Parameters, on page 112.

• mediaType— It is an output string and a required input string. See Shared Parameters, on page 112.

• minSessionStartDate— It is an optional input integer. See Shared Parameters, on page 112.

• mp4Url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• offset— It is an optional input integer. The first record to be returned. See Shared Parameters, on page
112.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. See Shared Parameters, on page 112.

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration— It is an output integer. The number of milliseconds that the session lasted. See Shared
Parameters, on page 112.

• sessionId— It is an output string. It is a system-generated identifier for a session. See Shared Parameters,
on page 112.

• sessionStartDate— It is a required input integer. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112.

• tags— It is an output JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112.

• tagOffset— It is an optional integer for addSessionTag. The number of milliseconds from the start of
session for this tag. See Shared Parameters, on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. It is the system-generated unique identifier of the track. See
Shared Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. See Shared Parameters, on page 112.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
92

Session Query APIs
getSessionsByMediaType

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

Examples

Example 1

To get all sessions that have the mediaType "AUDIO" in the last 2 hours ending at 26 Jul 2012 20:45:40 GMT
(for example, from 18:45:40 to 20:45:40):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getSessionsByMediaType?value=AUDIO&maxSessionStartDate=
1343335540154
Headers:

JSESSIONID: <the jsessionId received from a previous signIn request>

Example 2

To get the first ten sessions that have the mediaType "AUDIO" between 26 Jul 2012 18:45:40 GMT and 26
Jul 2012 20:45:40 GMT (2-hour time window):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getSessionsByMediaType?value=AUDIO&offset=0&limit=
10&minSessionStartDate=1343328340000&maxSessionStartDate=
1343335540154
Headers:

JSESSIONID: <the jsessionId received from a previous signIn request>

getSessionsByTag
Use this API to search and retrieve recorded or live sessions based on the user-assigned tag names. A tag is
the name a user assigns to label a recording. The returned sessions are automatically sorted by sessionStartDate
(in descending order).

URI

https://<host>:<port>/ora/queryService/query/getSessionsByTag

HTTP Method

GET

Parameters

• callControllerIP— It is an output string. See Shared Parameters, on page 112.

• callControllerType— It is an output string. See Shared Parameters, on page 112.

• ccid— It is an output string. It is used to identify recording sessions which are part of the same call. See
Shared Parameters, on page 112.

• codec— It is an output string. The codec of the track. See Shared Parameters, on page 112.

Cisco MediaSense Developer Guide, Release 11.0(1)
93

Session Query APIs
getSessionsByTag

• deviceId— It is an output string. The unique identifier of the device. See Shared Parameters, on page
112.

• deviceRef— It is an output string. The phone number of each device. See Shared Parameters, on page
112.

• downloadUrl— It is an output string. The URL that is used to download the recording in the raw format.
See Shared Parameters, on page 112.

• httpUrl— It is an output string. The HTTPS link for the session. See Shared Parameters, on page 112.

• isConference— It is an output boolean. See Shared Parameters, on page 112.

• limit— It is a required input integer. The number of records to be returned, starting at the specified
offset. See Shared Parameters, on page 112.

• maxSessionStartDate— It is an optional input integer. See Shared Parameters, on page 112.

• minSessionStartDate— It is an optional input integer. See Shared Parameters, on page 112.

• mp4Url— It is an output string. The mp4 link for the session. See Shared Parameters, on page 112.

• offset— It is an optional input integer. The first record to be returned. See Shared Parameters, on page
112.

• participantDuration— It is an output integer. The number of milliseconds that the participant was active
in the session. See Shared Parameters, on page 112.

• participants— It is an output JSON array of participant objects. See Shared Parameters, on page 112.

• participantStartDate— It is an output integer. See Shared Parameters, on page 112.

• rtspUrl— It is an output string. A reference to the entire session, which can contain multiple tracks. See
Shared Parameters, on page 112.

• sessions— It is an output JSON array of session objects. See Shared Parameters, on page 112.

• sessionDuration— It is an output integer. The number of milliseconds that the session lasted. See Shared
Parameters, on page 112.

• sessionId— It is an output string. It is a system-generated identifier for a session. See Shared Parameters,
on page 112.

• sessionStartDate— It is a required input integer. See Shared Parameters, on page 112.

• sessionState— It is an output string. The state of the session. See Shared Parameters, on page 112.

• tags— It is an output JSON array of tag objects. See Shared Parameters, on page 112.

• tagCreateDate— It is an output integer. See Shared Parameters, on page 112.

• tagName— It is an output string. The name that is used to label a recording. See Shared Parameters,
on page 112.

• tagOffset— It is an optional integer for addSessionTag. The number of milliseconds from the start of
session for this tag. See Shared Parameters, on page 112.

• tagType— It is an output string. See Shared Parameters, on page 112.

• trackDuration— It is an output integer. The number of milliseconds that the track lasted. See Shared
Parameters, on page 112.

 Cisco MediaSense Developer Guide, Release 11.0(1)
94

Session Query APIs
getSessionsByTag

• trackMediaType— It is an output integer. See Shared Parameters, on page 112.

• trackNumber— It is an output integer. It is the system-generated unique identifier of the track. See
Shared Parameters, on page 112.

• tracks— It is an output JSON array of track objects. See Shared Parameters, on page 112.

• trackStartDate— It is an output integer. See Shared Parameters, on page 112.

• urls— It is an output JSON object. See Shared Parameters, on page 112.

• wavUrl— It is an output string. The wav link for the session. See Shared Parameters, on page 112.

Examples

Example 1

To get all sessions that have the tag "mysampletag1" in the last 2 hours ending at 26 Jul 2012 20:45:40 GMT
(for example, from 18:45:40 to 20:45:40):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getSessionsByTag?value=mysampletag1&maxSessionStartDate=
1343335540154
Headers:

JSESSIONID: <the jsessionId received from a previous signIn request>

Example 2

To get the first ten sessions that have the tag "mysampletag1" between 26 Jul 2012 18:45:40 GMT and 26 Jul
2012 20:45:40 GMT (2-hour time window):

HTTPS GET:

https://10.194.118.1:8440/ora/queryService/query/
getSessionsByTag?value=mysampletag1&offset=0&limit=
10&minSessionStartDate=1343328340000&maxSessionStartDate=
1343335540154
Headers:

JSESSIONID: <the jsessionId received from a previous
signIn request>

Concurrent Search Requests
To ensure that system performance is not impacted, MediaSense implements the following rules for session
query API requests:

• The MediaSense system accepts 15 incoming session query API requests and wait lists an additional 10
requests. The system rejects all other requests (beyond these 25 requests).

• If the MediaSense system does not complete a session query API request within two (2) minutes of it
being submitted, then that request times out and is dropped. In these cases, you must resubmit the request
later.

Cisco MediaSense Developer Guide, Release 11.0(1)
95

Session Query APIs
Concurrent Search Requests

Scalable and Non-Scalable Queries
The getSessions API allows the client to perform custom queries on the metadata collected for each session.
This API allows the client to form custom queries that can filter on any of several important data fields in the
session metadata. It also provides a flexible way to combine those queries to perform powerful metadata
searches.

If this custom query mechanism is misused, it can have serious performance impacts on not only the query
itself, but the entire MediaSense system. It is normal to store large numbers of session records depending
on the traffic on the system and the retention mechanism in use. However, if a query processes a large
amount of data, it takes several minutes to complete. It could also take resources away from the system
that are used to process new recordings and metadata, not to mention from other large queries which are
executing at the same time. If, for example, two simultaneous queries both require a large amount of
temporary database space in order to execute. One of them may fail due to lack of space and there are no
guarantees as to which one fails.

Note

To avoid this problem, it is important that clients form scalable queries. A scalable query is a query whose
performance remains constant regardless of howmuch data is in the database. An example of a scalable query
is: "Find all sessions whose start date or time is between 4 and 5 o'clock today." No matter howmany sessions
are in the database, the number of sessions between 4 and 5 o'clock today remains fairly stable and small. An
example of a non-scalable query is: "Find all sessions." The number of sessions returned is proportional to
the number of sessions in the database. If there are many stored sessions, then the results are huge. It takes
much time to complete and impacts resources needed by other functions of the MediaSense system.

You can protect the system against queries which return an excessive number of results by using the
minSessionStartDate and the maxSessionStartDate parameters in the applicable wrapper APIs. For more
information on using these parameters, see the applicable session query APIs.

For more information, see Avoid Non-Scalable Queries , on page 96.

Avoid Non-Scalable Queries
If you misuse the custom query mechanism, it can have serious performance impacts on not only the query
itself, but the entire MediaSense system. The entire MediaSense system is impacted because it is possible to
store large numbers of session records depending on the traffic on the system and the retention mechanism
in use. This system performance behavior is normal. However, if a query processes a large amount of data,
it could take up to several minutes to complete. It could also take resources away from the system that are
used to process new recordings and metadata.

To avoid this problem, clients must form scalable queries. A scalable query is a query whose performance
remains constant regardless of how much data is in the database. An example of a scalable query is: "Find all
sessions whose start date and time is between 4 and 5 o'clock today." No matter how many sessions are in the
database, the number of sessions between 4 and 5 o'clock today remain fairly stable and small. An example
of a non-scalable query is: "Find all sessions." The number of sessions returned is proportional to the number
of sessions in the database. If there are many stored sessions, then the results are huge. It takes much time to
complete and impacts resources needed by other functions of the MediaSense system.

While there is no direct way to issue a "Find all sessions" query with the getSessions API, you can form a
custom query to get almost the same result. For example, because all sessions have at least one track whose
media type is "Audio," you could submit a query like: "Find all sessions whose media type is Audio." While

 Cisco MediaSense Developer Guide, Release 11.0(1)
96

Session Query APIs
Scalable and Non-Scalable Queries

this query cannot be prevented, it can be the source of serious performance impact on the system. Although
a specific value of media type is being specified ("Audio"), the value is not restrictive enough. The performance
is impacted because most, if not all, sessions have a media type of "Audio." If there are many sessions saved
in the database, then the query has to process all these sessions. This query is not scalable.

It does not help to use pagination to specify a small page size. The page is obtained only after the full
result set is processed, which is too late.

Note

A better approach is to reduce the scope of the query by reducing the number of sessions processed. In this
case, perhaps what the client really wants is the last few sessions that occurred. You can reduce the number
of sessions by: "Find all sessions whose start date and time is greater than one hour ago." This query returns
a smaller set of results. More importantly, it returns roughly the same number of sessions regardless of how
many sessions are in the database. This query is scalable.

If only the last 10 sessions are required, the client could also add the qualifier to sort the results on the start
date and time field and specify pagination that displays the last 10 rows. Because the underlying result set is
small, this qualifier is not a costly operation.

It is not always a problem to filter on media type. For example, the following query is scalable: "Find all
sessions whose start date and time is during last Tuesday and whose media type is Video." First, narrow the
overall result set by setting a time window. So the query has to search through only that small set of sessions
to find the ones whose media type is "Video." In this case, the media type field does not affect scalability
because it is combined with a scalable filter.

Different fields in the metadata have different degrees of scalability when used to filter sessions. Use the
following table as a guide:

Table 1: Field Name and Relative Scalability

NotesRelative
scalability

Field name

This value is unique. If you query for a session that has a specific id, you
get only one.

ScalablesessionId

Use with care. If you specify an unreasonably large window size, you
still return a significant portion of the sessions in the database. Narrow
the time window as much as possible.

ScalablesessionStartDate

When usedwithminSessionStartDate this parameter allows you to specify
the upper limit of a time window. Make sure that you use a reasonably
sized window to limit the number of results. If this parameter is missing,
then minSessionStartDate is required and the time window is assumed
to be 2 hours.

ScalablemaxSessionStartDate

When usedwithmaxSessionStartDate this parameter allows you to specify
the lower limit of a time window. Make sure that you use a reasonably
sized window to limit the number of results. If this parameter is missing,
then maxSessionStartDate is required and the time window is assumed
to be 2 hours.

ScalableminSessionStartDate

Cisco MediaSense Developer Guide, Release 11.0(1)
97

Session Query APIs
Avoid Non-Scalable Queries

NotesRelative
scalability

Field name

This value is unique and takes a while to cycle. When filtering using a
specific xrefCi value, you get at most just a few sessions.

ScalablexrefCi

This is a boolean field. If you select "false", you are likely to get the vast
majority of sessions in the database. If you select "true", the result set is
small and scalable.

Mostly not
scalable

pruned

Only two to five possible values. For values like "Audio" for mediaType
or "Completed" for sessionState, the number of sessions returned is
proportional to the number of sessions that are in the database. Other
values may return smaller result sets, but they will be proportional to the
number of sessions in the database.

Mostly not
scalable

tagType

sessionState

mediaType

If tags are used, it is likely that the same tag names may be repeated
across many sessions. To the degree that tags are used, the number of
results returned that contain a specific tag may be proportional to the
number of sessions in the database.

Not
scalable

tagName

The extension numbers found in the deviceRef field tend to appear in
many sessions. Numbers that are heavily used tend to be associated with
many sessions. This number may be proportional to the number of
sessions in the database.

Not
scalable

deviceRef

Although the duration can vary somewhat, a simple query like "Find all
session whose duration is less than 2 minutes" can return a large portion
of the sessions in the database.

Not
scalable

sessionDuration

The number of partitions or nodes is relatively small. So accessing the
sessions associated with any specific partition or server (node) returns
several sessions that are proportional to the number of sessions in the
database.

Not
scalable

nodeIPAddress
partition

Field and parameter connectors affect scalability. See the following table:

Table 2: Connector and Relative Scalability

NotesRelative
scalability

Connector

This connector narrows the scope of the filter so the result set generally
gets smaller.

Scalableand

This connector widens the scope of the filter so the result set gets larger.
Its use should be limited to connecting filters on scalable fields using
scalable operators.

Not
scalable

or

When you define a query filter, always be sure to use a scalable filter. If you must filter on a non-scalable
field, always use the "and" connector to connect it to a scalable filter that narrows the result set.

 Cisco MediaSense Developer Guide, Release 11.0(1)
98

Session Query APIs
Avoid Non-Scalable Queries

The following are a few examples of how client applications can use the MediaSense API effectively without
impacting the performance of the system.

To track the progress of a session, a client application may take advantage of both the query and event
mechanism of MediaSense. Initially the client must gather the state of the sessions it is interested in. This
gathering of the state of the sessions can be done by an initial query such as "Find all sessions containing
extension number nnnn that are active that were started in the last day." This query narrows the number of
sessions to only those sessions that started in the last day and thus will be scalable. It then quickly finds the
small number of those sessions that contain the specified extension and that are active.

At the same time, the client should be subscribed to application events. This way, as the session changes state,
the client can track its progress.

This is similar to the previous scenario. Make an initial query to establish the current set of active sessions:
"Find all sessions that are active that started in the last day." One day should be plenty of time to ensure that
you find all active sessions without taking too much system resources searching through all sessions in the
database.

The client can continue to monitor the progress of the active sessions by using the event mechanism. If a new
session is created, an event notifies the client so that it can begin to track it as well. Likewise when sessions
close, they can be removed from the client's list of tracked sessions. The important point is that the client must
do a major database query to initialize. This minimizes the impact to the system resources.

When a system is set up to use Recording Priority retention mode, the sessions are pruned based on how long
they were stored. However, the metadata associated with those sessions is not removed. It is preserved so that
the administrator might review before it is deleted. The expected sequence is that the client application can
request a list of "pruned" sessions. It may then display the metadata of interest from those sessions. Finally
the user can select one or more of the pruned sessions to be deleted.

You can do the first step with a query like: "Find all sessions whose pruned status is 'true' that were started
in the last two days." Use a reasonable time window to make the query scalable. Because the pruning uses an
age-based mechanism, look at least a day before today. If this is not being done on a daily basis, you may
want to limit the time window to about a day. This depends upon traffic at the site. You do not want the query
returning more than about 100 sessions at a time. This may require some testing.

The client should then rerun this operation for each prior day until you have searched back to the last day you
previously performed this operation. The client may then present the list to the user and ask that they select
the sessions to be deleted (possibly giving a "delete all" option as well). The client uses the deleteSessions
method of the API to submit a job to delete the selected sessions. There is no scalability issue in this case as
the deleteSessions method serializes the deletion of each session.

To monitor the progress of the deletions, the client uses the event mechanism. As each session is deleted, a
session event is generated with an event type of "deleted."

Cisco MediaSense Developer Guide, Release 11.0(1)
99

Session Query APIs
Avoid Non-Scalable Queries

 Cisco MediaSense Developer Guide, Release 11.0(1)
100

Session Query APIs
Avoid Non-Scalable Queries

C H A P T E R 9
System Information

• Introduction, page 101

• getAPIVersion, page 101

• getSystemTime, page 102

• getSessionsResponseSchema, page 103

Introduction
Use these APIs to obtain the MediaSense API version information. You do not need to sign in to use this API.
The getAPIVersion API returns a floating point version number for the APIs running in MediaSense
deployments.

getAPIVersion
Use this API to retrieve the current version of the APIs running on the system. The version number starts at
1.0 and is not tied to the product version. The version number is x.y and not x.y.z (for example, it is 1.0 and
not 1.0.1).

URI

https://<host>:<port>/ora/infoService/info/getAPIVersion

HTTP Method

GET

Parameter

apiVersion: It is an output string. The version number of the APIs currently running on the system. Although
this version is returned as a string, it is also a floating point number. A relatively smaller numerical value
indicates an older version. A relatively larger numerical value indicates a newer version.

Cisco MediaSense Developer Guide, Release 11.0(1)
101

Example

HTTPS GET:

https://10.10.10.10:8440/ora/infoService/info/
getAPIVersion

Response:

{
"responseMessage": "Success: Your request was successfully completed.",
"responseCode": 2000,
"responseBody": {

"apiVersion": "1.4"
}

}

getSystemTime
Use this API to retrieve the current time of the system. The time is returned in milliseconds, since Jan 1, 1970
GMT.

As all MediaSense servers are configured as NTP clients, any differences between them are expected to be
small. Therefore only a single system time is returned, and this time applies to all servers in the MediaSense
cluster.

URI

https://<host>:<port>/ora/infoService/info/getSystemTime

HTTP Method

GET

Parameter

currentSystemTime: It is an output integer. The system time when the request was serviced; shown in the
number of milliseconds since Jan 1, 1970 GMT.

Example

HTTPS GET:

https://10.194.118.72:8440/ora/infoService/info/
getSystemTime

Headers:

JSESSIONID: <the jsessionId received from a signIn
request>
Response:

{
"responseMessage": "Success: Your request was
successfully completed.",
"responseCode": 2000,
"responseBody": {

"currentSystemTime": "1301145648258"

 Cisco MediaSense Developer Guide, Release 11.0(1)
102

System Information
getSystemTime

}
}

getSessionsResponseSchema
Use this API to retrieve the current version of the getSessions response schema running on the system.

The "required" tag in the schema means that the parent property has to exist in the actual response. If
"required" is not specified or it is set to false, then that property may not be returned by the response.

MediaSense uses "searchable" a little differently than the json schema draft; the node consists of an object
that is an array of all possible operations. If the "searchable" value exists, then the corresponding property
is searchable. If it doesn't exist or is set to false, then the property is not searchable.

The array defines properties (such as equals, greaterThan, lessThan, and between) by which the object is
searchable. The between property has lowerBound and upperBound values.

Note

URI

https://<host>:<port>/ora/infoService/info/getSessionsResponseSchema

HTTP Method

GET

Parameter

None

Example

HTTPS GET:

https://10.10.10.10:8440/ora/infoService/info/
getSessionsResponseSchema

Response:

{
"type":"object",
"$schema": "http://json-schema.org/draft-03/schema",
"apiVersion": "string representation of api version",
"properties":
{"responseCode":
{"type":"number",
"required":true },

"responseMessage":
{"type":"string",
"required":true }

"responseBody":
{"type":"object",
"required":false
"properties":
{"sessions":
{"type":"array",
"required":true,
"items":

Cisco MediaSense Developer Guide, Release 11.0(1)
103

System Information
getSessionsResponseSchema

{"type":"object",
"required":true,
"properties":
{"callControllerIP":
{"type":"string",
"required":true },

"callControllerType":
{"type":"string",
"required":true },

"ccid":
{"type":"string",
"required":false,
"searchable":
{"operations": ["equals"] }

},
"sessionDuration":
{"type":"number",
"required":false,
"minimum":0,
"searchable":
{"operations": ["equals", "lessThan",

"greaterThan"] }
},

"sessionId":
{"type":"string",
"required":true },

"sessionStartDate":
{"type":"number",
"required":true,
"minimum":0,
"searchable":
{"operations": ["between"] }

},
"sessionState":
{"description":"string values are ACTIVE,
CLOSED_NORMAL, DELETED, and CLOSED_ERROR",

"type":"string",
"required":true,
"searchable":
{"operations": ["equals"] }
},

"tags":
{"type":"array",
"required":false,
"items":
{"type":"object",
"required":true,
"properties":
{"tagCreateDate":
{"type":"number",
"required":true },

"tagName":
{"type":"string",
"required":true,
"searchable":
{"operations": ["equals", "contains",

"startsWith", "endsWith"] }
},
"tagOffset":
{"type":"number",
"required":false },

"tagType":
{"description":"string values are
SYSTEM_DEFINED and USER_DEFINED",
"type":"string",
"required"true,
"searchable":
{"operations": ["equals"] }
}

}
},

"tracks":
{"type":"array",

 Cisco MediaSense Developer Guide, Release 11.0(1)
104

System Information
getSessionsResponseSchema

"required":true,
"items":
{"type":"object",
"required":true,
"properties":
{"codec":
{"type":"string",
"required":true },

"downloadUrl":
{"type":"string",
"required":false },

"participants":
{"type":"array",
"required":true,
"items":
{"type":"object",
"required":true,
"properties":
{"deviceId":
{"type":"string",
"required":true },

"deviceRef":
{"type":"string",
"required":true,
"searchable":
{"operations": ["equals",
"contains", "startsWith",
"endsWith", "between"] }

},
"isConference":
{"type":"boolean",
"required":true },

"participantDuration":
{"type":"number",
"required":false },

"participantStartDate":
{"type":"number",
"required":true },

"xRefCi":
{"type":"string",
"required":false,
"searchable":
{"operations": ["equals"] }

}
}

}
},

"tags":
{"type":"array",
"required":false,
"items":
{"type":"object",
"required":true,
"properties":
{"tagCreateDate":
{"type":"number",
"required":true },

"tagName":
{"type":"string",
"required":true },

"tagOffset":
{"type":"number",
"required":false },

"tagType":
{"description":"string values are
SYSTEM_DEFINED and USER_DEFINED",
"type":"string",
"required":true, }

}
}

},
"trackDuration":

Cisco MediaSense Developer Guide, Release 11.0(1)
105

System Information
getSessionsResponseSchema

{"type":"number",
"required":false },

"trackMediaType":
{"description":"string values are AUDIO and
VIDEO",
"required":true,
"type":"string" },

"trackNumber":
{"type":"number",
"required"true },

"trackStartDate":
{"type":"number",
"required":true }

}
}

},
"urls":
{"type":"object",
"required":false,
"properties":
{"mp4Url":
{"type":"string",
"required":false },

"rtspUrl":
{"type":"string",
"required":false },

"wavUrl":
{"type":"string",
"required":false }

}
}
}
}
}
}
}
}
}

 Cisco MediaSense Developer Guide, Release 11.0(1)
106

System Information
getSessionsResponseSchema

C H A P T E R 10
User Authentication APIs

• Introduction, page 107

• signIn, page 107

• signOut, page 110

Introduction
MediaSense enables third-party developers to configure application users that allow third party applications
to authenticate themselves. All access to the MediaSense API requires authentication. The first step for any
application is to authenticate itself. Upon successful authentication, a JSESSION token is returned. This token
must be passed in all subsequent requests until the application signs out. The JSESSIONID is also required
in the signOut API request.

If third-party applications are designed to issue API requests to both the primary and the secondary servers,
then they must sign in to each node independently, and always use the corresponding JSESSIONID with the
server that returned the request.

The JESSIONID expires when the user logs out or after 30 minutes of inactivity, whichever comes first.

If the requests are made from a browser, then the browser automatically handles the session for the clients.

When your client logs in to the third-party client to use the MediaSense platform, the third-party software
must perform authentication as dictated by that software application.

Note

signIn
Use this API for user authentication/sign-in. The API checks the authentication of the given username and
password. On successful sign-in, a JSESSIONID is returned as a cookie in the header of the HTTP response.
This JSESSIONID serves as a token of authentication and must be passed in all subsequent requests. If the
sign-in is successful, the API checks the configuration database for the parameters set by the administrator
that are included in the JSON response of the API. The parameters that have not been set by the administrator
are excluded from the JSON response.

Cisco MediaSense Developer Guide, Release 11.0(1)
107

URI

https://<host>:<port>/ora/authenticationService/authentication/signIn

HTTP Method

POST

Parameters

• archiveSearchEnabled— It is a boolean. If the value is true, the archive search is enabled in MediaSense
Search and Play.

• authenticationProviders— It is an optional input array of strings. The identifiers of the services to use
for authenticating the user. Enumeration values are:

• AXL

• Finesse

If this parameter is unspecified, the system attempts to authenticate with the providers in the order listed
above and returns when the first one succeeds.

• firstNameDisplayConfig— It is a boolean. If the value is true, the first name appears as an advanced
search field and is displayed as part of agent information in MediaSense Search and Play.

• inbrowserPlaybackEnabled— It is a boolean. It indicates that In-browser playback is enabled in
MediaSense Search and Play.

• lastNameDisplayConfig— It is a boolean. If the value is true, the last name appears as an advanced
search field and is displayed as part of agent information in MediaSense Search and Play.

• lineNameDisplayConfig— It is a boolean. If the value is true, the Unified Communications Manager
line name appears as an advanced search field and is displayed as part of agent information inMediaSense
Search and Play.

• loginIdDisplayConfig— It is a boolean. If the value is true, the login identifier appears as advanced
search field and is displayed as part of agent information in MediaSense Search and Play.

• loginNameDisplayConfig— It is a boolean. If the value is true, the login name appears as advanced
search field and is displayed as part of agent information in MediaSense Search and Play.

• password— It is a required input string. The password of the Unified Communications Manager user
who is provisioned as a MediaSense user. All Unified Communications Manager password restrictions
apply. Because Unified Border Element uses SSH authentication, MediaSense uses Unified
Communications Manager authentication for all MediaSense users. It is case sensitive.

• username— It is a required input string. The username of the Unified Communications Manager user
who is provisioned as a MediaSense user. Unified Communications Manager uses "User ID" while
MediaSense uses username (non case-sensitive). All Unified Communications Manager User ID
restrictions apply. Because Unified Border Element uses SSH authentication, MediaSense uses Unified
Communication Manager authentication for all MediaSense users.

 Cisco MediaSense Developer Guide, Release 11.0(1)
108

User Authentication APIs
signIn

When an API user's password changes in Unified Communications Manager, it may take several minutes
for that change to be reflected in MediaSense. A successful response also returns a JSESSIONID inside
a cookie.

Note

Examples

Example 1
To signIn a user with username " myUser " and password " cisco " on the server 10.194.118.1 at port 8440:

Since no authentication provider has been specified, this request will try to authenticate against all possible
configured authentication providers including AXL and Finesse.

HTTPS POST:

https://10.194.118.1:8440/ora/authenticationService/authentication/signIn
Headers:

Content-Type: application/json
Body:

{
"requestParameters": {

"username":"myUser",
"password":"cisco"

}
}

Example 2

To signIn a Finesse supervisor with username " myUser " and password " cisco " on the server 10.194.118.1
at port 8440:

HTTPS POST:

https://10.194.118.1:8440/ora/authenticationService/authentication/signIn
Header:

Content-Type: application/json
Body

{
"requestParameters": {

"username":"myUser",
"password":"cisco"

},
"authenticationProviders": ["FINESSE"]

}

Example 3: Response Parameters
{

"responseMessage": "Success: Your request was successfully completed.",
"responseCode": 2000,
"inbrowserPlaybackEnabled": "true",
"lineNameDisplayConfig": "true",
"archiveSearchEnabled": "true",
"agentDataDisplayConfig": {

"loginNameDisplayConfig": "true",
"loginIdDisplayConfig": "true",

Cisco MediaSense Developer Guide, Release 11.0(1)
109

User Authentication APIs
signIn

"lastNameDisplayConfig": "true",
"firstNameDisplayConfig": "true"

}
}

signOut
This API is used to sign out the user fromMediaSense. The user requires no parameter other than JSESSIONID
to sign out.

URI

https://<host>:<port>/ora/authenticationService/authentication/signOut

HTTP Method

POST

Request Parameters

None

Examples

To signOut a user who was previously signed in:

HTTPS POST:

https://10.194.118.1:8440/ora/authenticationService/
authentication/signOut

Headers:

JSESSIONID: <the jsessionId received from a previous
signIn request>

Content-Type: application/json
The user identified by the JSESSIONID is signed out.

 Cisco MediaSense Developer Guide, Release 11.0(1)
110

User Authentication APIs
signOut

C H A P T E R 11
Shared Parameters

• Introduction, page 111

• Common Parameters for All APIs, page 111

• Shared Parameters, page 112

Introduction
MediaSense APIs use the term parameter to describe items with a name and value in JSON objects. We
acknowledge that these items are referred to by various terms in different programming interfaces.

The parameters are classified as follows:

• Required Input parameters are user-defined values, are necessary, and are supplied by the user to the
system when the API or event is issued.

• Optional Input parameters are user-defined values and may be supplied by the user to the system when
the API or event is issued. These parameter values are supplied only when users want to supply them.

• Output parameters have values that are system-generated and are the results of issuing the API or event.
These values are calculated according to the input parameter values and the APIs or events that use
them.

Common Parameters for All APIs
The following parameters are common across all APIs.

detail

• Output string.

• Provides information about response codes.

JSESSIONID

• Both an output string and a required input string.

Cisco MediaSense Developer Guide, Release 11.0(1)
111

• Header parameter.

• Session identifier and serves as a means of authentication for subsequent requests.

• Expires when the user explicitly logs out or within 30 minutes of inactivity, whichever comes first.

responseCode

• Output integer.

• Corresponding error code.

responseMessage

• Output string.

• Description of the responseCode for troubleshooting purposes.

Shared Parameters
byFieldName

• Optional input string.

• Required input string with sortParameters.

• Enumeration values differ based on the API that is using this parameter.

callControllerIP

• Output string.

•When the callControllerType = Cisco-SIPGateway, it is the IP address of the gateway which originated
the recording.

•When the callControllerType = Cisco-Unified Communications Manager, it is the IP address of the
Unified Communications Manager device which originated the recording.

•When the callControllerType = direct, it is the IP address of the IOS or Unified Ccommunications
Manager device which is communicating with MediaSense.

callControllerType

• Output string.

• Enumeration values (case-sensitive, identified in bold)

◦Cisco-SIP Gateway (calls from Unified Border Element).

◦Cisco-UnifiedCommunicationsManager (calls forked fromUnified CommunicationsManager).

◦direct (direct outbound/inbound calls initiated by MediaSense).

 Cisco MediaSense Developer Guide, Release 11.0(1)
112

Shared Parameters
Shared Parameters

◦Cisco-Unified Communications Manager-Gateway (calls forked from a gateway under the
control of Unified Communications Manager)

ccid

• Output string.

• Optional input string when getSessions is used.

• Required input string when getSessionsByCCID is used.

• Call Correlation ID.

• Always present for calls forked from the Unified Border Element Gateway, but may not be present for
calls forked from Unified Communications Manager phones.

• Used to identify recording sessions which are part of the same call.

• Corresponds to the "Cisco-guid" field which is provided by the Unified Border Element Gateway, and
can therefore also be used to correlate recording sessions with call information from other components
in the solution.

codec

• Output string.

• Codec of the track.

• Contains the standard name from the codec's SDP definition.

The g.711 µ-law and a-law codecs are known in the SDP as "PCMU" and "PCMA"
respectively. The AAC-LD codec is known as MP4A-LATM.

Note

deviceId

• Output string.

• Optional input string when getSessions is used.

• Unique identifier of the device.

deviceRef

• Output string.

• Phone number of each device.

•When either party on a call is a conference bridge, deviceRef shows "Anonymous" for Unified Border
Element forking or "b" followed by a string of digits for BiB forking.

downloadUrl

• Output string.

Cisco MediaSense Developer Guide, Release 11.0(1)
113

Shared Parameters
Shared Parameters

• URL that is used to download the recording in the raw format.

• Conditionally present only when all three of the following conditions are met:

◦If the API sessionState = CLOSED_NORMAL or the eventAction = ENDED

◦and if track mediaType = AUDIO

◦and if trackSize > 0 The downloadUrl parameter is not available for other sessions in ACTIVE,
DELETED, or CLOSED_ERROR states. The downloadUrl parameter should be treated by clients
as an opaque string. Client code should not depend on its format or structure in any way other than
to assume that it contains a fully-formed HTTPS URL. Clients can add the URL parameter
"?timeout=n" to indicate that MediaSense should try to write to the socket for at least n seconds
before it aborts the download. The default value is n = 5 seconds.

errorCode

• Output integer.

• Appears when there is an error in a report for a particular session.

errorDetail

• Output string.

•When the session state is CLOSED_ERROR, the errorDetail field will have one of the following values:

◦MEDIA_SERVER_ERROR: The Call Control server receives an error response from the Media
(recording) server for an open-session or close-session request.

◦MEDIA_SERVER_TIMEOUT: The Call Control server is timed out waiting for response from
the Media (recording) server for an open-session or close-session request.

◦SIP_SIGNALING_ERROR: The Call Control server detects a SIP signaling error. For example,
a missing ACK.

◦SIP_CANCEL_RECEIVED: The recording was canceled by the Call Control server, such as
CANCEL or premature BYE.

◦NO_MEDIA_RECEIVED: The session was closed successfully, however, all tracks have size as
zero.

◦ORPHANED: The session was orphaned. This can occur if (for example) the session was forcibly
closed after service restart.

◦UNSUPPORTED_CODEC: The codec is not supported.

eventAction

• Output string.

• The eventAction (sessionEvent) parameter indicates if a new recording session started or if an existing
recording session was updated, ended, deleted or pruned. Enumeration values:

◦STARTED

◦UPDATED

 Cisco MediaSense Developer Guide, Release 11.0(1)
114

Shared Parameters
Shared Parameters

◦ENDED

◦DELETED

◦PRUNED

• The eventAction (storageThresholdEvent) parameter is sent each time the storage disk space reaches
the specified threshold.

• The eventAction (tagEvent) parameter indicates if a new tag is added or existing tag is updated or deleted.
Enumeration values:

◦ADDED

◦DELETED

eventType

• Output string.

• Events triggered for the corresponding MediaSense API.

• Enumeration values:

◦SESSION_EVENT

◦STORAGE_THRESHOLD_EVENT

◦TAG_EVENT

fieldConditions

• Required input array of strings.

• Conditions specified for the queried field.

• Specify multiple conditions for a field name.

• Contains details on the fieldOperator, fieldValues, and fieldConnector.

• Enumeration values differ based on the APIs using this parameter

fieldConnector

• Optional input string when you have one field in an array.

• Required input string when you have two or more fields in an array.

• Used to logically connect a condition with the successive condition.

• Enumeration values:

◦AND

◦OR

Cisco MediaSense Developer Guide, Release 11.0(1)
115

Shared Parameters
Shared Parameters

fieldName

• Required input string.

• Name of the queried field.

• Enumeration values differ based on the APIs using this parameter.

fieldOperator

• Required input string.

• Logical operator conditions as specified in the Values Expected for Each fieldOperator section.

• Permitted number of operands for each operator:

◦equals = 1

◦contains = 1

◦startsWith = 1

◦endsWith = 1

◦lessThan = 1

◦greaterThan = 1

◦between = 2 (include boundary values).

◦Example: Between 11 - 14 includes 11, 12, 13, and 14. You can prepend a special negation operator
(!) * to all operators other than AND and OR to negate their meaning. Examples:

• "equals" is negated by "!equals".

• "between" is negated by "!between" to mean all values lying outside the interval A - B.

fieldValues

• Required input array of strings.

• Number of values passed in this array depends on the fieldOperator as specified in theValues Expected
for Each fieldOperator section.

• Does not accept regular expression (*,+ and so on)

• Enumeration values differ based on the APIs using this parameter.

firstName

• Output string.

• First name of the agent logged in to the Finesse Agent desktop.

forwardedEvent

• Omitted if events are locally-generated on the MediaSense server and if forwarding is disabled.

 Cisco MediaSense Developer Guide, Release 11.0(1)
116

Shared Parameters
Shared Parameters

• Disabled by default in MediaSense deployments.

• Enumeration values:

◦TRUE = Enabled

◦FALSE (default) = Disabled

httpUrl

• Deprecated in release 10 in favor of mp4Url.

• Output string.

• HTTPS link for the session.

• Url is only present if the session state is CLOSED_NORMAL.

• Has a maximum of 512 characters.

Converted mp4 and wav files are deleted by the system a maximum of 2 hours after
they have been created or last modified.

Note

isConference

• output Boolean.

• Used within a Participant object.

• Indicates whether the participant is a conference bridge or an individual device.

In certain scenarios, one participant may represent a conference bridge.Note

jobDuration

• Output integer when getJobById or getJobResult is used.

• Optional input integer when getJobs is used.

• Time, in milliseconds, between the jobStartTime and the time when this job ends.

jobId

• Optional input string when getJobs is used.

• Output string when all other APIs or events in the list are used.

• Job created and managed by the job management framework.

• System-generated.

• Used along with the Job management and Job query APIs.

Cisco MediaSense Developer Guide, Release 11.0(1)
117

Shared Parameters
Shared Parameters

jobState

• Output string when getJobById or getJobResult is used.

• Optional input string when getJobs is used.

• After retrieving the job status, the applicable value is pulled from the database based on the value at the
time of polling.

jobs

• Output array of job objects.

• List of jobs.

• Details for each job.

jobStartTime

• Output integer when getJobById or getJobResult is used

• Optional input integer when getJobs is used.

• Time, in milliseconds, since Jan 1, 1970 GMT when the job started.

• Time when the job starts to execute.

jobType

• Output string when getJobById or getJobResult is used.

• Optional input string when getJobs is used.

• Purpose of the job.

• Case sensitive

• Enumeration value is BULK_DELETE_SESSIONS.

lastName

• Output string.

• Last name of the agent logged in to the Finesse Agent desktop.

limit

• Required input integer.

• Number of records to be returned, starting at the specified offset.

• Required within pageParameters.

• Must be used in conjunction with offset parameter.

• By default, it returns the first 100 records.

• Any positive value greater than zero (0).

 Cisco MediaSense Developer Guide, Release 11.0(1)
118

Shared Parameters
Shared Parameters

• Maximum possible value for this parameter is 1000.

lineDisplayName

• Output string.

• Name that appears on a phone as a calling party, which is entered in the Display (Caller ID) field in
the Directory Number Configuration window in Cisco Unified Call Manager Administration.

loginId

• Output string.

• Login Id of the agent logged in to the Finesse Agent desktop.

loginIdDomain

• Output string.

• Login Id domain of the agent logged in to the Finesse Agent desktop.

loginName

• Output string.

• Login name of the agent logged in to the Finesse Agent desktop.

maxSessionStartDate

• Optional input integer.

• Required input integer when no value is specific for minSessionStartDate.

• Number of milliseconds since Jan 1, 1970 GMT when the session recording started, or more precisely,
when the first track for this session began recording.

• If either minSessionStartDate or maxSessionStartDate is missing, it is assumed to be 2 hours in that
direction.

mediaType

• Output string and a required input string.

• Describes the type of media being established.

• Case sensitive.

• Enumeration values are:

◦AUDIO

◦VIDEO

Cisco MediaSense Developer Guide, Release 11.0(1)
119

Shared Parameters
Shared Parameters

mediaStreams

• Required input array of media types.

• media streams being established.

• Each stream is a media type.

• mediaStreams is an array of media types.

• A recording must have at least one media stream

• Array is not ordered.

minSessionStartDate

• Optional input integer.

• Number of milliseconds since Jan 1, 1970 GMT when the session recording started, or more precisely,
when the first track for this session began recording.

• If either minSessionStartDate or maxSessionStartDate is missing, it is assumed to be 2 hours in that
direction.

mp4Url

• Output string.

• mp4 link for the session.

• Has a maximum of 512 characters.

• mp4Url is only present when the session state is CLOSED_NORMAL and may return the following
HTTPS response codes:

◦200 OK

◦404 Not Found

◦500 Internal Server Error

◦503 Service Unavailable (When Cisco MediaSense Media Service is unavailable) Sessions are
converted to mp4 the first time the URL is accessed, so there may be a delay before the results are
returned the first time.

Mp4 files are generated when the URL is accessed and then cached for a period of time.
If the file needs to be generated, there may be a delay before this URL request responds.

Converted mp4 files are deleted by the system a maximum of 2 hours after they have
been created or last modified.

Note

nodeId

• Output integer.

 Cisco MediaSense Developer Guide, Release 11.0(1)
120

Shared Parameters
Shared Parameters

• System-defined numeric value.

nodeIPAddress

• Output string.

• IP address of the Cisco MediaSense server.

• Has a maximum of 54 characters.

offset

• Optional input integer.

• Becomes a required input integer within pageParameters.

• First record to be returned.

• Must be used in conjunction with limit parameter.

• Integer value starts at zero (0)

order

• Optional input string.

• Becomes a required input string within sortParameters.

• Case sensitive.

• Enumeration values are:

◦ASC= Ascending: Sorts results with the lowest value first.

◦DESC=Descending: Sorts results with the highest value first.

pageParameters

• Optional input.

• JSON object.

• Allows the client to request a specific subset of a request result representation.

• Specifies the elements to return.

• If used, it returns the first 1000 sessions.

• Must also specify the limit and offset parameters.

paramConnector

• Optional input string when you have only one field in the array.

• Required input string when you have two or more fields in the array.

• Case sensitive.

Cisco MediaSense Developer Guide, Release 11.0(1)
121

Shared Parameters
Shared Parameters

• Specify the logical connection between two elements in the RequestParameters array.

• Enumeration values are:

◦AND

◦OR

partition

• Output string.

• Name of the datastore using storage space.

• Has a maximum of 128 characters.

participantDuration

• Output integer.

• Number of milliseconds that the participant was active in the session.

The durations are derived from SIP call control information, and are typically a few
seconds longer than the actual media duration.

Note

participantInformation

• Output JSON array of participant information.

• Information contains details on loginId, lastName, firstName, loginIdDomain, and loginName parameters.

participants

• Output JSON array of participant objects.

• Each object in turn contains details on the deviceRef, participantStartDate, participantDuration,
isConference, and the xRefCi parameters.

participantStartDate

• Output integer.

• Number of milliseconds since Jan 1, 1970 GMT when this track's recording started.

rtspUrl

• Output string.

• Reference to the entire session, which can contain multiple tracks.

• To access a particular track, suffix the rtspUrl with "-TRACK0" or "-TRACK1". Both tracks in a given
session open and close simultaneously.

 Cisco MediaSense Developer Guide, Release 11.0(1)
122

Shared Parameters
Shared Parameters

• URLs stay constant for the life of the session.

• Has a maximum of 512 characters.

• Enumeration values are:

◦If eventAction = STARTED/UPDATED, then rtspUrl = monitor (used to monitor the
currently-recorded stream)

◦If eventAction = ENDED, then rtspUrl = play (used to play the stored media.)

sessions

• Output JSON array of session objects.

• Each object contains values for sessionId, tracks, URLs, sessionStartDate, and sessionDuration.

sessionDuration

• Output integer.

• Number of milliseconds that the session lasted.

These durations are derived from SIP call control information, and are typically a few
seconds longer than the actual media duration.

Note

sessionId

• System-generated identifier for a session.

• Unique across all MediaSense servers and has a maximum of 128 characters. A session is a unit of the
capture service, where one session is converted i

• Session is a unit of the capture service, where one session is converted into one MP4 file.

• Required input string for startRecording, stopRecording, addSessionTag, convertSession, and
getSessionBySessionId.

• Output string for the remaining APIs and events.

sessionIdList

• Accepts a list of multiple comma-separated sessionIds in the request body, but currently, only the first
sessionId will be considered to return the strongly associated sessionIds.

• Additional sessionIds will be ignored.

• Made of the List type for future enhancement.

sessionStartDate

• Output integer for all APIs and events.

Cisco MediaSense Developer Guide, Release 11.0(1)
123

Shared Parameters
Shared Parameters

• Required input integer for getSessions.

• Number of milliseconds since Jan 1, 1970 GMT when the session recording started, or more precisely,
when the first track for this session began recording.

sortParameters

• Optional input JSON array.

• Specifies how the returned result should be sorted.

• Default sorting is by the startDate with the newest session first.

sessionState

• Output string.

• State of the session.

• Enumeration values are:

◦ACTIVE = At least one session within the session is active.

◦CLOSED_NORMAL = All sessions within the session are closed without errors.

◦DELETED = User-deleted session or system-pruned session

◦CLOSED_ERROR = At least one session within the session has errors (could not be recorded).

subscriptionFilters

• Output JSON array and an optional input JSON array.

• Specifies a list of events or a list of event categories.

• Depending on which API it is used in, its meaning varies.

1 The events to which the client wants to subscribe.
2 Within the unsubscribeFromEvents API:

1 When used in the request: The events that the client wants to unsubscribe from.
2 When used in the response: The events that the client is now subscribed to, after performing

the unsubscription.

3 The events, to which the client is currently subscribed. Case-sensitiveEnumeration Values include:
* ALL_EVENTS (category)

• RECORDING_EVENTS (category)

• SESSION_STARTED_EVENT

• SESSION_UPDATED_EVENT

• SESSION_ENDED_EVENT

• CLEANUP_EVENTS (category)

• SESSION_DELETED_EVENT

 Cisco MediaSense Developer Guide, Release 11.0(1)
124

Shared Parameters
Shared Parameters

• SESSION_PRUNED_EVENT

• TAG_EVENTS (category)

• TAG_ADDED_EVENT

• TAG_DELETED_EVENT

• TAG_UPDATED_EVENT

• STORAGE_EVENTS (category)

• ENTER_LOW_STORAGE_ SPACE_EVENT

• EXIT_LOW_STORAGE_ SPACE_EVENT

• ENTER_CRITICAL_STORAGE_ SPACE_EVENT

• EXIT_CRITICAL_STORAGE_ SPACE_EVENT

• ENTER_EMERGENCY_STORAGE_ SPACE_EVENT

• EXIT_EMERGENCY_STORAGE_ SPACE_EVENT

The client can use the category name or the specific event names. If a category is used, the client is subscribed
to all events in that category.

subscriptionId

• Output string for subscribeToEvents.

• Required input string for all other APIs and events in the list.

• System-generated ID that is received from the subscribeRecordingEvent API.

subscriptionStatus

• Output string.

• Response that is received from the verifyEventSubscription API or the verifyRecordingSubscription
API.

• Enumeration values are:

◦ACTIVE

◦INACTIVE

subscriptionType

• Output string.

• Type of subscription.

• For server-based clients, the type is HTTP.

Cisco MediaSense Developer Guide, Release 11.0(1)
125

Shared Parameters
Shared Parameters

subscriptionUri

• Required input string.

• URI where event notifications are sent to server-based clients.

• Subscription is keyed by the subscriptionUri parameter.

• Only one subscription is allowed for any given subscriptionUri.

tags

• Output JSON array of tag objects.

• Each object includes information on the tagName, tagType, tagCreateDate, and tagOffset parameters.

• Has a maximum of 255 characters.

tagCreateDate

• Output integer.

• Number of milliseconds since Jan 1, 1970 GMT when this tag was created.

tagName

• Output string.

• Name that is used to label a recording, which is not case sensitive.

• Has a maximum limit of 255 characters.

• If tagtype = SYSTEM_DEFINED, then the enumeration values for tagName are as follows:

◦If the tag is at the session level:

• Pause

• Resume

◦If the tag is at the track level:

• TrackActive

• TrackInactive

tagNameRegEx

• Optional input string.

• Java regular expression which only applies to tag events.

• Additive string, that is, MediaSense only sends a tagEvent to the subscriber when the event matches the
actions that are requested by the subscriber and when the tagName matches the subscriber's optional
regular expression specified by this parameter.

See http://download.oracle.com/javase/tutorial/essential/regex/ formore information on Java regular expressions.

 Cisco MediaSense Developer Guide, Release 11.0(1)
126

Shared Parameters
Shared Parameters

http://download.oracle.com/javase/tutorial/essential/regex/

tagOffset

• Optional integer for addSessionTag.

• Number of milliseconds from the start of session for this tag.

• Use tagOffset to specify a point in the recording. For example, at the 10th second from the beginning
of a specific recording, an unexpected event occurred.) It is an output integer for all other APIs and
events in the list.

• Offset is calculated from the start of the session or track (regardless of the tag being present at the track
level or the session level).

• If no offset is specified, the tag is applied to the entire session and not to any specific point in the session.

tagType

• Output string.

• Enumeration values are:

◦SYSTEM_DEFINED = Default. Used for user-triggered system events (Pause and Resume,
TrackInactive and TrackActive).

◦USER_DEFINED = Users can create a tag (addSessionTag, on page 57 API). However, all tag
types are system-defined and users cannot redefine the value of any tagType.

trackDuration

• Output integer.

• Number of milliseconds that the track lasted.

These durations are derived from SIP call control information, and are typically a few
seconds longer than the actual media duration.

Note

trackMediaType

• Output integer.

• Enumeration values are:

◦AUDIO

◦VIDEO

trackNumber

• Output integer.

• System-generated unique identifier of the track.

Cisco MediaSense Developer Guide, Release 11.0(1)
127

Shared Parameters
Shared Parameters

For Unified Communications Manager, track 0 contains media streamed from the forking device and track 1
contains media streamed to the forking device.

In a Unified Comminications Manager sessionEvent, each track is associated with one or more participants
generating the media for each track.

For Unified Border Element, The trackNumber assignment is arbitrary and is not based on forking devices.
The order in which elements appear in the track array is arbitrary and has no particular meaning.

tracks

• Output JSON array of track objects.

• Each object in turn includes information on the trackNumber, trackStartDate, trackDuration,
trackMediaType, and participants parameters.

trackStartDate

• Output integer.

• Number of milliseconds since Jan 1, 1970 GMTwhen the track recording started (when the Call Control
Service received the 200 OK message from Unified Communications Manager or Unified Border
Element).

• MediaSense sends an acknowledgment (ACK) back to Unified Communications Manager or Unified
Border Element accordingly.

urls

• Output JSON object.

• Includes information on the httpUrl and the rtspUrl parameters.

wavUrl

• Output string.

•Wav link for the session.

• Has a maximum of 512 characters.

• For sessions that also include video tracks, the wavUrl will only contain the audio tracks.

• The wavUrl is only present when the session state is CLOSED_NORMAL and may return the following
HTTPS Response Codes:

◦200 OK

◦404 Not Found

◦500 Internal Server Error

◦503 Service Unavailable (When MediaSense Media Service is unavailable)

 Cisco MediaSense Developer Guide, Release 11.0(1)
128

Shared Parameters
Shared Parameters

Wav files are generated when the URL is accessed and then cached for a period of time.
If the file needs to be generated, there may be a delay before this URL request responds.

Converted wav files are deleted by the system a maximum of 2 hours after they have
been created or last modified.

Note

xRefCi

• Output string except for getSessionsByCCID, it is both an output string and an optional input string.

• The Unified Communications Manager identifier for a particular media stream.

• Do not always correspond one-to-one with the recorded tracks. However, you must use this identifier
to correlate the Unified Communications Manager JTAPI events to recorded sessions.

• xRefCi is present when the callControllerType for a session = "Cisco-SIPGateway" or "Cisco-Unified
Communications Manager". xRefCi is omitted when callControllerType = "direct".

• Unified Border Element does not use this identifier.

Cisco MediaSense Developer Guide, Release 11.0(1)
129

Shared Parameters
Shared Parameters

 Cisco MediaSense Developer Guide, Release 11.0(1)
130

Shared Parameters
Shared Parameters

C H A P T E R 12
Events Triggered

• sessionEvent, page 131

• storageThresholdEvent, page 134

• tagEvent, page 135

sessionEvent
This event is sent each time a new recording session is started or an existing recording session is updated or
ended. It is also sent when a recording session is deleted or pruned. For deleted and pruned sessions, the
sessions are batched and sent in a single event.

Method

POST

Body

JSON

Related APIs

• startRecording, on page 49

• stopRecording, on page 52

Example

{
"eventType": "SESSION_EVENT",
"eventAction": "DELETED",
"forwardedEvent": "TRUE",
"eventBody": {

"sessionIds": ["Session-6-10.194.118.57-1284096640651",
"Session-6-10.194.118.57-1284096640652"]

}
}
{

"eventAction": "STARTED",

Cisco MediaSense Developer Guide, Release 11.0(1)
131

"eventBody": {
"sessionId": "Session-6-10.194.118.57-1284096640651",
"callControllerType": "Cisco-CUCM",
"callControllerIP": "10.194.118.57"
"ccid": "2728850048-0000065536-0000018373",
"sessionStartDate": 1284096641174,
"sessionState": "ACTIVE",
"tracks": [

{
"trackStartDate": 1429519331647,
"trackDuration": 14252,
"codec": "PCMU",
"downloadUrl":

"https://10.126.135.72:8446/mma/ExportRaw?recording=7814cd5fdf06f1-TRACK1",
"trackNumber": 1,
"trackMediaType": "AUDIO",
"participants": [

{
"participantStartDate": 1429519331647,
"participantInformation":{

"loginId": "ambdev",
"lastName": "dev",
"firstname": "ambrose",
"loginIdDomain": "1",
"loginName": "ambdev",

},
"deviceRef": "11052",
"isConference": false,
"xRefCi": "29236211",
"participantDuration": 14252,
"deviceId": "trunk_to_cube150"

}
]

},
{

"trackStartDate": 1429519331647,
"trackDuration": 14252,
"codec": "PCMU",
"downloadUrl":

"https://10.126.135.72:8446/mma/ExportRaw?recording=7814cd5fdf06f1-TRACK0",
"trackNumber": 0,
"trackMediaType": "AUDIO",
"participants": [

{
"participantStartDate": 1429519331647,
"participantInformation":{

"loginId": "avmaitra",
"lastName": "maitra",
"firstname": "avirup",
"loginIdDomain": "1",
"loginName": "avmaitra",

},
"deviceRef": "11024",
"lineDisplayName": "Avirup12",
"isConference": false,
"xRefCi": "29236210",
"participantDuration": 14252,
"deviceId": "SEPF0292958FA6D"

}
]

}
],

"urls": [
{

"rtspUrl": "rtsp://10.194.118.57/live/
Session-6-10.194.118.57-1284096640651"

}
]

},
"eventType": "SESSION_EVENT",
"forwardedEvent": "TRUE"

}
{

 Cisco MediaSense Developer Guide, Release 11.0(1)
132

Events Triggered
sessionEvent

"eventAction": "ENDED",
"eventBody": {

"sessionId": "Session-6-10.194.118.57-1284096640651",
"callControllerType": "Cisco-CUCM",
"callControllerIP": "10.194.118.57"
"ccid": "2728850048-0000065536-0000018373",
"sessionState": "CLOSED_NORMAL",
"sessionStartDate": 1284096641174,
"sessionDuration": 8394,
"tracks": [

{
"trackStartDate": 1429519331647,
"trackDuration": 14252,
"codec": "PCMU",
"downloadUrl":

"https://10.126.135.72:8446/mma/ExportRaw?recording=7814cd5fdf06f1-TRACK1",
"trackNumber": 1,
"trackMediaType": "AUDIO",
"participants": [

{
"participantStartDate": 1429519331647,
"participantInformation":{

"loginId": "ambdev",
"lastName": "dev",
"firstname": "ambrose",
"loginIdDomain": "1",
"loginName": "ambdev",

},
"deviceRef": "11052",
"isConference": false,
"xRefCi": "29236211",
"participantDuration": 14252,
"deviceId": "trunk_to_cube150"

}
]

},
{

"trackStartDate": 1429519331647,
"trackDuration": 14252,
"codec": "PCMU",
"downloadUrl":

"https://10.126.135.72:8446/mma/ExportRaw?recording=7814cd5fdf06f1-TRACK0",
"trackNumber": 0,
"trackMediaType": "AUDIO",
"participants": [

{
"participantStartDate": 1429519331647,
"participantInformation":{

"loginId": "avmaitra",
"lastName": "maitra",
"firstname": "avirup",
"loginIdDomain": "1",
"loginName": "avmaitra",

},
"deviceRef": "11024",
"lineDisplayName": "Avirup12",
"isConference": false,
"xRefCi": "29236210",
"participantDuration": 14252,
"deviceId": "SEPF0292958FA6D"

}
]

}
],

"urls": [
{

"rtspUrl": "rtsp://10.194.118.57/archive/
Session-6-10.194.118.57-1284096640651"

}
]

},
"eventType": "SESSION_EVENT",

Cisco MediaSense Developer Guide, Release 11.0(1)
133

Events Triggered
sessionEvent

"forwardedEvent": "TRUE"
}

storageThresholdEvent
This event is sent each time the storage disk space (that stores the recorded media) reaches various thresholds.
More information about threshold values is provided in a table that follows.

Method

POST

Body

JSON

Related API

subscribeRecordingEvent(deprecated), on page 33

Example

{
"eventType":"STORAGE_THRESHOLD_EVENT",
"eventAction":"ENTER_LOW_STORAGE_SPACE",
"forwardedEvent":"TRUE",
"eventBody": {

"nodeId": 1,
"nodeIPAddress":"10.X.X.X",
"partition" : "/common",
"percentageUtilization": 70

}

}

Event Action Values

The threshold values percentage and implications are provided in the following table:

DescriptionStorage PercentageThreshold

First warning to indicate that the
disk storage is running into low
space condition.

Recorded media crossed the 75%
storage utilization mark.

ENTER_LOW_
STORAGE_SPACE

The disk storage is exiting the low
storage space condition.

Recorded media usage dropped
below 70% utilization mark.

EXIT_LOW_
STORAGE_SPACE

 Cisco MediaSense Developer Guide, Release 11.0(1)
134

Events Triggered
storageThresholdEvent

DescriptionStorage PercentageThreshold

Second warning. When entering
this condition, you must take
action to guarantee future
recording resources on this node.
If operating in the Retention
priority mode, new recording
sessions are not accepted when
you reach this threshold. In the
New Recording Priority Mode,
older recordings are automatically
pruned to make room for new
recordings.

Recorded media crossed the 90%
local storage utilization mark.

ENTER_CRITICAL_
STORAGE_SPACE

The disk storage is exiting the
critical storage space condition.
At this point the local node is still
considered to be low on resources.

Recorded media usage dropped
below the 85% utilization mark.

EXIT_CRITICAL_
STORAGE_SPACE

Last warning. When entering this
condition, you must take action to
guarantee future recording
resources on this node. If
operating in the Retention priority
mode, existing recording sessions
are terminated when you reach
this threshold.

Recorded media crossed the 99%
storage utilization mark.

ENTER_EMERGENCY_
STORAGE_SPACE

The disk storage is exiting the
emergency storage space
condition. At this point, the local
node is still considered to be low
on resources and new recording
sessions are still not accepted.

Recorded media usage dropped
below the 97% utilization mark.

EXIT_EMERGENCY_
STORAGE_SPACE

tagEvent
This event is sent when a tag is added or deleted from a session. In a multi-server MediaSense deployment,
the client can subscribe to only one MediaSense API service and receive notifications generated by other
MediaSense services.

Method

POST

Body

JSON

Cisco MediaSense Developer Guide, Release 11.0(1)
135

Events Triggered
tagEvent

Related APIs

• addSessionTag, on page 57

• pauseRecording, on page 48

• resumeRecording, on page 48

• deleteSessionTag, on page 61

Examples

The following example shows a user-defined tag that is time-bound (the tagOffset field is present). The date
the tag was created is Sept 9, 2010 23:14:13 GMT. You can use an Epoch converter to see the date and time
in a sensible format. The offset represents the number of milliseconds from the start of the session that the
tag represents. In this case it represents five minutes.

MediaSense does not allow the use of tagOffset 0 (zero value) for a USER_DEFINED time-bound tag.
When using a time-bound tag to start a recording, use a tagOffset of at least 1 millisecond.

Note

{
"eventType": "TAG_EVENT",
"eventAction": "UPDATED",
"eventBody": {

"sessionId": "1234abcd5678efgh90xyz",
"tagName": "Customer response",
"tagType": "USER_DEFINED",
"tagCreateDate": 1284074053,
"tagOffset": 300000

}
}
The following example shows a system-defined tag that was added to a track within a session. The track is
identified by the trackNumber.

{
"eventType": "TAG_EVENT",
"eventAction": "ADDED",
"eventBody": {

"sessionId": "57130d87d73f41",
"tagCreateDate": 1309302169848,
"tagName": "TrackInactive",
"tagOffset": 11203,
"tagType": "SYSTEM_DEFINED",
"trackNumber": 1

}
}

 Cisco MediaSense Developer Guide, Release 11.0(1)
136

Events Triggered
tagEvent

http://www.epochconverter.com/

	Cisco MediaSense Developer Guide, Release 11.0(1)
	Contents
	Preface
	Change History
	Related Documentation
	Obtaining Documentation and Submitting a Service Request
	Field Alerts and Field Notices
	Troubleshooting
	Documentation Feedback

	Introduction
	MediaSense Concepts
	Mapping a Session to a Recording
	Mapping a Media Stream to a Track
	Hold-Resume or Transfer-Conference Behavior
	Hold-Resume and Pause-Resume
	Correlating Recordings
	Correlating MediaSense Metadata with Unified Communications Manager CDR
	Playing Back and Downloading Recordings
	RTSP and HTTP Request Authentication and Redirection
	DESCRIBE (with Authentication)
	DESCRIBE (Before Authentication)
	DESCRIBE (After Redirection)
	Distributing HTTP Download Requests
	Media Forking
	Cisco Unified Communications Manager Network-based Recording
	Blog Recording
	Cluster Deployment

	Differences Between Unified Communications Manager and Unified Border Element Scenarios

	Working with Cisco MediaSense APIs
	MediaSense API Conventions
	Using HTTPS
	Using POST or GET Requests
	API Version
	JSON Format in Responses
	Key Elements for MediaSense APIs
	API Response Schema
	Asynchronous Event Schema
	API Response Codes
	Response Message
	Response Body

	Encoding
	Special Characters in Text Strings

	Job States
	Precedence Rules for paramConnector and fieldConnector
	Encoding
	Special Characters in Text Strings
	Request and Response Parameter Definitions
	Failover Between Two MediaSense Servers
	Security Considerations
	API Inter-Dependencies for Authentication
	Poster

	Event Subscription APIs
	Introduction
	subscribeToEvents
	unsubscribeFromEvents
	verifyEventSubscription
	subscribeRecordingEvent(deprecated)
	unsubscribeRecordingEvent(deprecated)
	verifyRecordingSubscription(deprecated)

	Job Management APIs
	Introduction
	createJob
	cancelJob
	deleteJob

	Job Query APIs
	Introduction
	getJobById
	getJobResult
	getJobs

	Recording Control APIs
	Introduction
	pauseRecording
	resumeRecording
	startRecording
	stopRecording
	launchMediaPlayer

	Session Management APIs
	Introduction
	addSessionTag
	convertSession (Deprecated)
	deleteSessions
	deleteSessionTag

	Session Query APIs
	Introduction
	getAllActiveSessions
	getAllPrunedSessions
	getArchiveSessions
	getAssociatedSessions
	getSessionBySessionId
	getSessions
	getSessionsByCCID
	getSessionsByDeviceRef
	getSessionsByMediaType
	getSessionsByTag
	Concurrent Search Requests
	Scalable and Non-Scalable Queries
	Avoid Non-Scalable Queries

	System Information
	Introduction
	getAPIVersion
	getSystemTime
	getSessionsResponseSchema

	User Authentication APIs
	Introduction
	signIn
	signOut

	Shared Parameters
	Introduction
	Common Parameters for All APIs
	Shared Parameters

	Events Triggered
	sessionEvent
	storageThresholdEvent
	tagEvent

