
AN2554
Creating a Multi-LUN USB Mass Storage Class Device

Using the MPLAB® Harmony USB Device Stack
INTRODUCTION
The Universal Serial Bus (USB) protocol is widely
used to interface storage devices to a USB Host
computer. Such devices use a set of standards called
the USB Mass Storage Class (MSC). Any Device that
allows access to its internal storage using the Mass
Storage Class protocol can be connected as a Mass
Storage Device (MSD) to the Host computer over the
USB interface.

This application note describes how to create an
application that supports multiple logical units (multi-
LUN), each appearing on the USB Host computer as
a separate drive, using the MPLAB® Harmony USB
Device Stack framework. A typical use case of a
multiple LUN application can be found in multi-slot
USB card reader applications.

This application note initially provides information
about MSD-specific USB descriptors, requests, and
transport protocol. This is followed by an overview of
the MPLAB Harmony USB Device Architecture. The
application note then details the step-wise creation of
the multi-LUN application using the MPLAB Harmony
Configurator (MHC) and describes the important data
structures, functions, and the state-machines.

CONTROL TRANSFERS

The USB 2.0 Protocol features four data transfer
types: Control, Bulk, Interrupt, and Isochronous. Each
of these data transfer type possess characteristics
that make these transfer types applicable to different
types of applications. The MSD typically uses Control
and Bulk Transfers. Refer to the section “Bulk
Transfers” for bulk transfer type details.

In the USB Protocol, the USB Host typically uses
Control Transfers to send standard and class specific
requests to the device. Control transfers are typically
sent on the default endpoint, Endpoint 0. This device
endpoint is bidirectional and is always enabled. For
Full-Speed devices, the size (the maximum number of
bytes that can be transferred in a single transaction)
of a control endpoint can be 8, 16, 32, or 64 bytes.
For High-Speed devices, the size is fixed to 64 bytes.
Unlike other USB transfers, a Control transfer consists
of multiple stages: the Setup Stage, an optional Data
Stage, and a Status Stage.

The Setup Stage consists of a Token packet followed
by a Data packet and a Handshake packet. The Token
packet contains a SETUP token. The Data packet
contains a DATA0 token and an 8-byte command, the
format of which is defined by the USB specification.
This command contains details about the request type
(standard, class-specific, or vendor), the recipient of
the request (Device, interface, or endpoint), request
code, interface or endpoint index, the direction of the
Data Stage of the Control transfer, and the number of
bytes to be transferred (this value could be 0), if there
is a data stage. The data related to a Setup command
is transferred in the Data Stage of the Control
Transfer. In a Read Control transfer, data moves from
Device to Host. In a Write Control Transfer, data
moves from Host to Device.

The optional Data Stage of a Control Transfer
contains three packets, a Token packet followed by a
Data packet and a Handshake packet. The Token
packet for a read transfer consists of an IN token. The
Token packet for a write transfer consists of an OUT
token. The Data packet starts with a DATA1 token and
then alternates between DATA0 and DATA1 tokens for
each transaction in the Data Stage. The Device can
either send an ACK token to the Host indicating that it
has successfully processed the transaction or send a
NAK token indicating that the endpoint is busy, or it
can send a STALL token indicating that an error has
occurred.

The Status Stage of the Control Transfer is always in
the opposite direction of a data transfer. It contains
three packets, a Token packet followed by a Data
packet and a Handshake packet. For a control read
transfer, the Host provides the status by sending an
OUT token packet, a Zero Length Data Packet (ZLP)
to which the Device replies with an ACK token in the
Handshake packet. For a control write transfer, Host
requests status from the Device with an IN token in
the Token packet. The Device responds by sending a
DATA1 token ZLP in the Data packet, to which the
Host replies with an ACK token in the Handshake
packet.

Figure 1 shows the different stages of a Control read
and write transfer. It also shows the fields of each
packet involved in the transfer. For information on
these fields, refer to the USB 2.0 Specification, which
is available from www.usb.org.
 2017 Microchip Technology Inc. DS00002554A-page 1

http://www.usb.org

AN2554
FIGURE 1: CONTROL READ AND WRITER TRANSFER STAGES
DS00002554A-page 2  2017 Microchip Technology Inc.

AN2554
BULK TRANSFERS

Bulk transfers are generally used for moving large
amounts of data. This transfer type guarantees data
integrity but does not guarantee latency. The USB
protocol does not allocate bandwidth for bulk
transfers. The USB Host schedules bulk transfer as
and when bandwidth becomes available, which is
typically after all other transfers (Control, Interrupt,
and Isochronous) in a frame are complete. This
makes the time of delivery of bulk transfers
unpredictable.

Bulk transactions take place on endpoints that are
configured for build transfers. Bulk endpoints are
unidirectional. A USB device can receive data from
the Host on a Bulk-OUT endpoint and transmit data to
the Host on a Bulk-IN endpoint. For Full-Speed
devices, the size of a Bulk endpoint can be 8, 16, 32
or 64 bytes. For High-Speed devices, the size is fixed
to 512 bytes.

Figure 2 shows the packets involved in a Bulk IN
(Read) and Bulk OUT (Write) transaction.

A Bulk Read transfer (Host reads from Device) can
contain multiple IN transactions with each transaction
containing the following interactions:

• The Host sends an IN request to device (Token
packet)

• The device responds with bulk data to Host (Data
packet) if it is ready to send data to the Host. The
device sends NAK if it does not have data to send
or is not yet ready. The device sends STALL if the
endpoint has an error.

• The Host sends ACK to the device (Handshake
packet).

A Bulk Write transfer (Host writes to Device) can
contain multiple OUT transactions with each
transaction containing the following interactions:

• Host sends OUT request to device (Token packet)

• The Host then sends bulk data to the device. (Data
Packet)

• The device sends ACK to Host indicating success
(Handshake packet). The device sends NAK if the
endpoint buffer is not empty. A STALL is sent if the
endpoint has an error.

FIGURE 2: BULK IN (READ) AND BULK OUT (WRITE) TRANSACTION PACKETS
 2017 Microchip Technology Inc. DS00002554A-page 3

AN2554
USB MASS STORAGE DEVICE
CLASS DESCRIPTORS

A USB device uses Standard USB Descriptors to
advertise its functional characteristics to a USB Host.
This section discusses the USB descriptors that are
relevant to a USB MSD.

Figure 3 shows the logical blocks of a typical USB
Mass Storage Class Device.

At a high level, a USB MSD device firmware must
perform the following tasks:

1. Detect and respond to control requests on
Endpoint 0.

2. Detect and respond to Mass Storage Class
specific requests on control endpoint 0

3. Decode and respond to (Block device/SCSI)
commands on bulk endpoints, and it must
access media and respond to read/write (SCSI)
requests on bulk endpoints.

Figure 4 shows the descriptor tree for a USB Mass
storage device. A USB Mass storage class device
requires a Device Descriptor, Configuration
Descriptor, Interface Descriptor, and two Endpoint (for
bulk-only transport protocol) Descriptors. The
following tables provide details of each of these
descriptors. Refer to Chapter 9 of the “USB 2.0
Specification” for additional information on standard
USB descriptors and USB Device Descriptor
Topology.

FIGURE 3: USB MASS STORAGE CLASS DEVICE BLOCK DIAGRAM

FIGURE 4: USB MASS STORAGE CLASS DEVICE DESCRIPTOR TREE

bNumConfigurations

bNumInterfaces

bNumEndpoints
DS00002554A-page 4  2017 Microchip Technology Inc.

AN2554
Table 1 provides details of the Device Descriptor for
the MSD implemented in this application. Note that
the bDeviceClass, bDeviceSubClass and
bDeviceProtocol fields are set to 0x00, as these will
be defined by the Interface Descriptor.

Table 2 provides details of the Configuration
Descriptor for the MSD implemented in this
application. The bNumInterfaces field of this
descriptor is set to 0x01. This indicates that the
configuration has only one interface.

When the device receives a Get Configuration
Descriptor request, it will return the configuration
descriptor, Interface Descriptor and endpoint
descriptors to the USB Host. During enumeration, the
USB Host will issue Set Configuration request to the
device, thereby asking the device to set this
configuration as active.

TABLE 1: DEVICE DESCRIPTOR

Offset Field
Size

(Bytes)
Value
(Hex)

Description

0 bLength 1 0x12 Size of Device Descriptor in bytes.

1 bDescriptorType 1 0x01 DEVICE descriptor.

2 bcdUSB 2 0x0200 Supports USB 2.0 Specification.

4 bDeviceClass 1 0x00 Class is specified in the Interface Descriptor

5 bDeviceSubClass 1 0x00 Sub-Class is specified in the Interface Descriptor

6 bDeviceProtocol 1 0x00 Protocol is specified in the Interface Descriptor

7 bMaxPacketSize0 1 0x40 Maximum packet size for Endpoint 0 is 64 bytes.

8 idVendor 2 0x04D8 Vendor ID (for example, Microchip Vendor ID = 04D8h).

10 idPacket 2 0x009 Product ID.

12 bcdDevice 2 0x0100 Device version number (for example 01.00).

14 iManufacturer 1 0x01 Index of Manufacturer string in string descriptors.

15 iProduct 1 0x02 Index of Product string in string descriptors.

16 iSerialNumber 1 0x03 Index of Device serial number in string descriptors.

17 bNumConfigurations 1 0x01 Number of configurations is set to ‘1’.

TABLE 2: CONFIGURATION DESCRIPTOR

Offset Field
Size

(Bytes)
Value
(Hex)

Description

0 bLength 1 0x09 Size of Configuration Descriptor in bytes.

1 bDescriptorType 1 0x02 CONFIGURATION descriptor.

2 wTotalLength 2 0x0020 Total length of data returned for this configuration is 32 bytes.
Includes Configuration Descriptor (9) + Interface Descriptor (9) +
Endpoint Descriptors (7+7).

4 bNumInterfaces 1 0x01 Number of interfaces in this configuration (supports Bulk-only data
interface).

5 bConfigurationValue 1 0x01 Value to use as an argument to the SetConfiguration function
request to select this configuration.

6 iConfiguration 1 0x00 Index of string descriptor describing this configuration.

7 bmAttributes 1 0xC0 Self-powered.

8 MaxPower 1 0x32 This device will consume maximum of 100 mA (2x MaxPower) from
the bus when it is fully functional and this configuration is selected.
 2017 Microchip Technology Inc. DS00002554A-page 5

AN2554
Table 3 provides details of the Interface Descriptor for
the MSD implemented in this application. The value of
bNumEndpoints is 0x02. This indicates that the device
contains two endpoints.

The bInterfaceClass field is set to 0x08, which
corresponds to Mass Storage class. This will direct
the Host to associate a Mass Storage client driver with
this device.

The bInterfaceSubClass field identifies the industry
standard command sets that can be transported by
the USB Mass Storage class.

Table 4 shows some of the possible values for the
bInterfaceSubClass field.

TABLE 3: INTERFACE DESCRIPTOR

Offset Field
Size

(Bytes)
Value
(Hex)

Description

0 bLength 1 0x09 Size of Configuration Descriptor in bytes.

1 bDescriptorType 1 0x04 INTERFACE descriptor.

2 bInterfaceNumber 1 0x00 Interface number. Zero-based value identifying the index in the
array of concurrent interfaces supported by this configuration.

3 bAlternateSetting 1 0x00 No alternate settings for this interface.

4 bNumEndpoints 1 0x02 Number of endpoints used by this interface (Bulk IN and Bulk
OUT).

5 bInterfaceClass 1 0x08 USB Mass storage class code.

6 bInterfaceSubClass 1 0x06 Data transfer protocol used is SCSI transparent commands set.

7 bInterfaceProtocol 1 0x50 Supports Bulk-only transport protocol.

8 iInterface 1 0x00 No string descriptors for this interface.

TABLE 4: bInterfaceSubClass POSSIBLE VALUES

Subclass Code Command Block Specification Used by:

01 Reduced Block Commands (RBC) Flash devices

02 MMC-5 (ATAPI) CD and DVD devices

03 QIC-157 (Obsolete) Tape devices

04 UFI Floppy disk drives

05 SFF-8070i (Obsolete) Floppy disk drives

06 SCSI transparent command set Any device
DS00002554A-page 6  2017 Microchip Technology Inc.

AN2554
The Small Computer Systems Interface (SCSI)
transparent command set is recommended for most
devices. The SCSI transparent command set
comprises all SCSI-related specifications, including
the SCSI Primary Commands (SPC) and the SCSI
Block Commands (SBC). The SCSI standards are
defined outside of the USB specifications. During the
enumeration process, the USB Host will identify the
command protocol supported by the Device. The USB
Host will issue SCSI commands in USB transfers, if
the Device supports SCSI transparent command set.
The SCSI commands allow the USB Host to read and
write blocks of data in the storage media, request
status information, and control the Device operation.
The MPLAB Harmony USB Device Stack Mass
Storage Class Function Driver only supports SCSI
transparent command set.

The bInterfaceProtocol field in the Interface Descriptor
defines the transport protocol used by the mass
storage interface. It specifies the USB transfer types
to be used on the bus for transporting mass storage
commands, data and status information between the
Host and the device. The Mass Storage Class defines
two transport protocols:

• Control/Bulk/Interrupt (CBI)

• Bulk-only transport (BOT)

The USB MSC specification approves CBI transport
protocol for use only with full-speed floppy disk drives.
Moreover, CBI is completely replaced with bulk-only
protocol and USB MSC specification discourages
usage of CBI for new designs. The MPLAB Harmony
USB Device Stack Mass Storage Function Drivers
supports BOT protocol only. This protocol uses Bulk
transfers for transferring command, data and status of
Mass Storage Class operations. This application note
addresses BOT protocol only.

During enumeration the bInterfaceProtocol field will
indicate to Host that the device supports BOT protocol
and hence, the Host will use bulk endpoints for
transporting command, data and status stages of the
BOT.

Bulk IN Endpoint Descriptor

The bulk IN endpoint is used to transfer data and
status from device to Host.

Table 5 provides details of the Bulk IN Endpoint
Descriptor for the MSD implemented in this
application. The wMaxPacketSize field is set to 512
bytes.

TABLE 5: BULK IN ENDPOINT DESCRIPTOR

Offset Field
Size

(Bytes)
Value
(Hex)

Description

0 bLength 1 0x07 Size of Configuration Descriptor in bytes.

1 bDescriptorType 1 0x05 ENDPOINT descriptor.

2 bEndpointAddress 1 0x81 Endpoint 1, direction input.

3 bmAttributes 1 0x02 This endpoint supports bulk transfers.

4 wMaxPacketSize 2 0x0200 Max size of this endpoint is 512 bytes for High-Speed devices and
64 bytes for Full-Speed devices.

6 bInterval 1 0x00 Does not apply to Bulk endpoints. Set it to ‘0’.
 2017 Microchip Technology Inc. DS00002554A-page 7

AN2554
Bulk OUT Endpoint Descriptor

The bulk OUT endpoint is used to receive command
and data transferred from Host to device.

Table 6 provides details of the Bulk OUT Endpoint
Descriptor for the MSD implemented in this
application. The wMaxPacketSize field is set to 512
bytes.

In summary, a USB Mass Storage Class Device
(MSD) consists of 1 control endpoint and 2 bulk
endpoints.

• Control endpoint (endpoint 0)

• Bulk IN endpoint

• Bulk OUT endpoint

As shown in Figure 5, the bidirectional control
endpoint is used for enumerating the device and to
respond to Standard and Class specific (Mass

Storage Class in this case) USB requests. This
endpoint is typically endpoint 0 and is always enabled,
and it does not require a descriptor.

The Bulk OUT endpoint receives (SCSI) commands
and the media data to be written to the device from
the Host. The device sends (SCSI) command replies,
(SCSI) commands status, and the requested media
data to the Host through the Bulk IN endpoint.

FIGURE 5: USB MSD ENDPOINTS

TABLE 6: BULK OUT ENDPOINT DESCRIPTOR

Offset Field
Size

(Bytes)
Value
(Hex)

Description

0 bLength 1 0x07 Size of Configuration Descriptor in bytes.

1 bDescriptorType 1 0x05 ENDPOINT descriptor.

2 bEndpointAddress 1 0x01 Endpoint 1, direction output.

3 bmAttributes 1 0x02 This endpoint supports bulk transfers.

4 wMaxPacketSize 2 0x0200 Max size of this endpoint is 512 bytes for High-Speed devices and
64 bytes for Full-Speed devices.

6 bInterval 1 0x00 Does not apply to Bulk endpoints., set it to ‘0’.
DS00002554A-page 8  2017 Microchip Technology Inc.

AN2554
USB MASS STORAGE CLASS
SPECIFIC REQUESTS

This section describes the different Mass Storage
Class specific Control Requests. The USB Mass
Storage Class features only two class specific control
requests, Bulk-only Mass Storage Reset (BOMSR),
and Get Max LUN.

Bulk-only Mass Storage Reset (BOMSR)

This request is used to reset the mass storage device
and its associated interfaces. After completion of this
command, the device becomes ready to receive a
new command. Despite the reset command, the bulk
data toggle bits and the STALL condition on endpoints
should not change. The BOMSR being a class
specific control request is issued by the Host on
Control Endpoint 0.

Get Max LUN

A Logical Unit is a contiguous and individually
addressable unit presented by the USB Device to the
USB Host. A logical unit number (LUN) identifies a
logical unit, a device which can be addressed by the
SCSI protocol. A device can implement multiple
logical units which are numbered from 0 to a
maximum of 15. The USB Host sends a Get Max LUN
request to learn how many Logical Units are
contained in the device. The device shall report one

byte of data that contains maximum LUNs supported
by the device. If the device supports 4 LUNs, a value
of 3 shall be returned and the LUNs shall be
numbered from 0 to 3. A device with no logical units
shall report a value of 0. Devices that do not support
multiple LUNs may stall this request. The Get Max
LUN being a class specific request is issued by the
Host on Control Endpoint 0.

A Logical Block Address (LBA) runs from 0 to the size
of the logical unit. The starting LBA for each of the
logical units is 0 and the end address depends on the
size of each logical unit. For each LUN, the USB Host
will query the capacity of the LUN to learn about the
end address of the logical unit. With the combination
of LUN and LBA, Host and device can identify the
addressed memory location.

Figure 6 shows the 32 KB of internal Non-Volatile
Memory (NVM) configured as the second logical unit
in this application (SD card is configured as the first
logical unit). Typical USB MSD Host access memory
in units called sector. The size of a sector is generally
512 bytes. As a result, although the internal block size
(row size) of PIC32MZ NVM is 2048 bytes it is
presented to the Host as logical blocks (sectors) of
512 bytes (64 blocks x 512 bytes per block = 32KB).
The Host addresses the memory by passing to the
Device the LUN and LBA and the number of
consecutive sectors (sector = 512 bytes) to read and
write. The device must translate LUN and LBA to
actual physical address.

FIGURE 6: NVM CONFIGURATION
 2017 Microchip Technology Inc. DS00002554A-page 9

AN2554
USB MASS STORAGE BULK-ONLY
TRANSPORT (BOT)

The MSC BOT protocol transports the command set
supported by the device. In that, the BOT protocol
wraps the commands as they are transferred over
USB to the device. For external hard drives or thumb
drives, these commands implement the SCSI
protocol.

The BOT protocol divides a data transfer into three
stages:

• Command Transport (OUT transaction)

• Data Transport (IN transaction or OUT transaction)

• Status Transport (IN transaction)

Figure 7 shows the transactions involved in a Bulk
Read from the Host. The USB Host issues a read
command in an OUT transaction followed by one to
multiple IN transactions to read the data from the
device. The data transfer ends with the USB Host
requesting the status from the device in an IN
transaction.

The wrapper used for transmitting (SCSI) commands
over USB is Command Block Wrapper (CBW). The
status of (SCSI) commands is transmitted in a
Command Status Wrapper (CSW).

Each transfer begins with the Host sending a (SCSI)
command wrapped in a CBW to the device on a Bulk-
OUT endpoint. Depending on the command, there
may or may not be a Data stage. If there is a Data
stage, the Device receives data from the USB Host on
the Bulk-OUT endpoint and transmits data to the USB
Host on the Bulk-IN endpoint. After the Data stage is
complete (or if there is no Data stage), the USB Host
requests status from the Device. The Device returns
the status wrapped in a CSW to the Host on the Bulk-
IN endpoint, which marks the end of the transfer.

FIGURE 7: BULK READ TRANSACTIONS
DS00002554A-page 10  2017 Microchip Technology Inc.

AN2554
Command Block Wrapper (CBW)

Table 7 provides the structure of the Command Block
Wrapper (CBW). A CBW contains a 32-bit signature to
identify it as a CBW packet, a tag to associate a CSW
with its corresponding CBW, number of bytes to
transfer in the Data Stage, direction of Data Stage, the
LUN to which the command block is being sent,
length of the Command Block and the Command
Block (this is the SCSI command payload) itself.

dCBWSignature:

Contains the value 43425355. This identifies this data
packet as a CBW.

dCBWTag:

A 32-bit command block tag sent by the Host to
associate the CSW with its corresponding CBW. The
Device shall echo the tag in the dCSWTag field of the
CSW.

dCBWDataTransferLength:

Indicates the number of bytes of data Host expects to
transmit or receive (based on the direction bit in
bmCBWFlags). If this is set to zero, the device will
ignore the direction bit in bmCBWFlags and there will
be no data transfer between CBW and the associated
CSW.

bmCBWFlags:

Bit 7:

1 = Data-In from device to Host (Host wants to read)
0 = Data-Out from Host to Device–(Host wants to write)

Bit 6: Obsolete - Host will set it to zero.

Bit 5-0: Reserved - Host will set it to zero.

bCBWLUN:

The Logical Unit Number (LUN) of the device to which
this Command Block is being sent. The USB Host will
obtain the number of LUNs supported by the device
by issuing the class specific request Get Max LUN.
For devices that support multiple LUNs, the Host shall
place into this field the LUN to which this command
block is addressed. If the device has a single LUN,
the Host will set it to zero.

bCBWCBLength:

This defines the valid length of Command Block
(CBWCB). Valid values can be from 1 to 16.

CBWCB:

This contains the Command Block to be executed by
the device. The device shall interpret the first
bCBWCBLength bytes in this field as a Command
Block defined by the command set identified by
bInterfaceSubClass field of Interface Descriptor. For
Mass Storage Device Class the Command Block will
contain one of the SCSI commands.

TABLE 7: CBW STRUCTURE

Byte
Bit

7 6 5 4 3 2 1 0

0-3 dCBWSignature

4-7 dCBWTag

8-11
(0x08-0x0B)

dCBWDataTransferLength

12
(0x0C)

bmCBWFlags

13
(0x0D)

Reserved (0) bCBWLUN

14
(0x0E)

Reserved (0) bCBWCBLength

15-30
(0x0F-0x1E)

CBWCB

Note: The device will ignore this bit if the
dCBWDataTranferLength is set to zero.
 2017 Microchip Technology Inc. DS00002554A-page 11

AN2554
Command Status Wrapper (CSW)

The MSD sends the status of the command to the
Host in a Command Status Wrapper (CSW). Table 8
shows the structure of a CSW.

dCSWSignature:

Contains the value 53425355h that helps identify the
data packet as a CSW.

dCSWTag:

The device will set this field to the value received in
the dCBWTag field of the associated CBW.

dCSWDataResidue:

For Data-Out, the device will set this value to the
difference of dCBWDataTransferLength received in
CBW and the actual amount of data processed by the
device. For Data-In, the device will set this value to
the difference of dCBWDataTransferLength received
in CBW and the actual data sent by the device.

bCSWStatus:

Indicates the status of the (SCSI) command. The
possible values for bCSWStatus are shown in the
following table.

TABLE 9: SCSI COMMAND VALUES

Phase Error indicates that the device has
encountered an internal error, for which it has no
reliable means of recovering, other than a reset.

Upon receiving a Phase Error, the USB Host should
perform a reset recovery on the device by issuing the
following commands in order on the Control endpoint.

1. Bulk-Only Mass Storage Reset:
This is a Class specific Interface request. On
completion of the request, the device is ready
to receive a new CBW. The reset should not
alter the data-toggle bits and the endpoint stall
conditions.

2. Clear Feature HALT to the Bulk-In endpoint:
This is a Standard Endpoint request. The
device shall reset the endpoint's data toggle to
DATA0. The endpoint should resume normal
communication if possible.

3. Clear Feature HALT to the Bulk-Out endpoint:
This is a Standard Endpoint request. The
device shall reset the endpoint's data toggle to
DATA0. The endpoint should resume normal
communication if possible.

Figure 8 shows transmission of CBW and CSW in
USB transactions.

TABLE 8: CSW STRUCTURE

Byte
Bit

7 6 5 4 3 2 1 0

0-3 dCBWSignature

4-7 dCBWTag

8-11 (0x08-0x0B) dCBWDataResidue

12 (0x0C) bmCBWStatus

Value (Hex) Description

0x00 Command passed.

0x01 Command failed.

0x02 Phase error. Host will perform a reset
recovery.

0x03-0x04 Obsolete (Reserved).

0x05-0xFF Reserved.
DS00002554A-page 12  2017 Microchip Technology Inc.

AN2554
FIGURE 8: CBW AND CSW TRANSMISSION DURING USB TRANSACTIONS
 2017 Microchip Technology Inc. DS00002554A-page 13

AN2554
SMALL COMPUTERS SYSTEM
INTERFACE (SCSI) PROTOCOL

Small Computers System Interface (SCSI) is a family
of protocols that enables systems to communicate
with storage devices. It provides applications with a
standard architecture and a standardized command
set for different class of devices. It thereby abstracts
the underlying media and provides a standard
mechanism to access different media types. SCSI
provides the means for reading, writing and checking
the status of the media, along with other operations.

A typical MSD uses the SCSI shared commands:
SCSI Primary Commands (SPC) and the Device
specific commands, SCSI Block Commands (SBC).

The SCSI Primary Commands are common to all
device types. The SCSI Block Commands are specific
to block devices. These are applicable to logical unit
that declares itself to be a direct-access block device
in the PERIPHERAL DEVICE TYPE field of the
standard SCSI INQUIRY response.

Table 10 shows the SCSI commands supported by
the MPLAB Harmony MSD SCSI implementation.

TABLE 10: SCSI COMMANDS SUPPORTED BY MPLAB HARMONY

SCSI Primary Commands (SPC) SCSI Block Commands (SBC)

SCSI INQUIRY (Mandatory) SCSI READ CAPACITY (10) (Mandatory)

SCSI REQUEST SENSE (Mandatory) SCSI READ (10) (Mandatory)

SCSI MODE SENSE (Optional) SCSI WRITE (10) (Mandatory for writable devices)

SCSI TEST UNIT READY (Mandatory) —
DS00002554A-page 14  2017 Microchip Technology Inc.

AN2554
SCSI Primary Commands

SCSI INQUIRY (OPCODE 0x12)

The USB Host issues the SCSI INQUIRY command to
get information about the device, such as the
Peripheral Device Type, Version of SPC supported,
Vendor and Product identifications.

The MSD implemented in this application note sends
36 bytes in response to the SCSI INQUIRY command,
as provided in the following table.

The Peripheral Device Type is set to ‘0’, which
indicates that a Direct Access Block Device is
connected to its logical unit. The specifications for a
direct access block Device are further specified in the
SBC standard.

The RMB bit is set to ‘1’ which indicates that the
media is removable.

The VERSION is set to 0x04, which specifies that the
device complies with SPC-2 version of the
specification.

The VENDOR IDENTIFICATION specifies the vendor
identification code specified by the T10 technical
committee.

For additional information, refer to the Section 7.3.2
“Standard INQUIRY Data” of the SPC-2
Specification.

TABLE 11: SCSI INQUIRY COMMAND

Byte
Bit

7 6 5 4 3 2 1 0

0
PERIPHERAL QUALIFIER

(0)
PERIPHERAL DEVICE TYPE

(0)

1
RMB
(1)

Reserved

2
VERSION

(0x04)

3
AERC

(0)
Obsolete

(0)
NormACA

(0)
HiSup

(0)
RESPONSE DATA FORMAT

(0x02)

4
ADDITIONAL LENGTH (n-4)

(0x1F)

5
SCCS

(0)
Reserved

6
BQUE

(0)
ENCSERV

(0)
VS
 (0)

MULTIP
(0)

MCHNGR
(0)

Obsolete
(0)

Obsolete
(0)

ADDR16
(0)

7
RELADR

(0)
Obsolete

(0)
WBUS16

(0)
SYNC

 (0)
LINKED

(0)
Obsolete

(0)
CMDQUE

(0)
VS
(0)

8 VENDOR IDENTIFICATION
(“Microchp”)15

16 PRODUCT IDENTIFICATION
(“Mass Storage“)31

32 PRODUCT REVISION LEVEL
(“0001”)35
 2017 Microchip Technology Inc. DS00002554A-page 15

AN2554
SCSI MODE SENSE (OPCODE 0x1A)

The USB Host issues a MODE SENSE command to
read device specific parameters. The device sends
the response to a MODE SENSE command as shown
in the following table.

TABLE 12: MODE SENSE COMMAND

The MEDIUM TYPE is defined by the SBC
Specification and is set to 0x00.

The DEVICE-SPECIFIC PARAMETER is defined by
the SBC Specification as shown in the following table.

TABLE 13: DEVICE-SPECIFIC PARAMETER

The WP bit indicates whether or not the medium is
write-protected. The device checks the write
protection status of the media before setting this bit.

The DPOFUA bit is set to ‘0’ indicating that the device
does not support caching.

The MPLAB Harmony USB device stack will fail this
command by setting the bCSWStatus bit in CSW to
0x01 and updates the SENSE data if the media is not
present. This is true for all other SCSI commands that
depend on the media for a response.

SCSI REQUEST SENSE (OPCODE 0x03)

The Host can issue a REQUEST SENSE command to
learn more about the failure of the previous command,
after having received a command failed status for that
command. The bCSWStatus field in the CSW
indicates whether a command has failed or passed. At
this point, the device will also record the error.

The device responds to the SCSI REQUEST SENSE
command with a sense data structure. While the
sense data structure has many fields, only the
following three fields are important: The first field is
the Sense Key, which indicates the result of the last
command, such as Media not ready, illegal command
request, media protected and so on. Two other fields,
Additional Sense Code (ASC) and Additional Sense

Code Qualifier (ASCQ), provide accurate descriptions
of the problems, for example, Media not present,
illegal command opcode, write-protected.

SCSI TEST UNIT READY (OPCODE 0x00H)

The USB Host issues the TEST UNIT READY
command to check whether the media device is
ready. The Host can also issue this command when
the sense data indicates that the media is not ready.
This command does not have a data stage. If the
device is not ready, the bCSWStatus field in CSW is
set to 0x01 (command failed). The Host can retry
sending the TEST UNIT READY command until the
device reports 00h in the bCSWStatus field in CSW,
which indicates that media is ready.

For pluggable medias, such as the SD Card, the
media is considered to be in a ready state if the media
driver detects the media to be present and the media
has been successfully initialized and is ready to be
used.

For non-removable media, such as the NVM (internal
Flash memory), the media is always considered to be
in a ready state.

Byte
Bit

7 6 5 4 3 2 1 0

0 MODE DATA LENGTH (0x03)

1 MEDIUM TYPE (0x00)

2 DEVICE-SPECIFIC PARAMETER (see Note 1)

3 BLOCK DESCRIPTOR LENGTH (0x00)

Note 1: The contents of these fields are described in the SBC Specification.

Bit 7 6 5 4 3 2 1 0

Name WP DPOFUA Reserved

Note: For additional information, refer to the
Section 8.3.3 of the SPC-2 Specification
and Section 6.3.1 of the SBC-3 Specifica-
tion.
DS00002554A-page 16  2017 Microchip Technology Inc.

AN2554
SCSI Block Commands

SCSI READ CAPACITY (10) (OPCODE 0x25)

The Host issues the READ CAPACITY command to
learn how many bytes the device media can store.
The device responds with a structure containing LBA
of the last block on the media and the block size
during the data stage, as shown in the following table.

TABLE 14: BLOCK SIZE AND BLOCK ADDRESS

This puts a theoretical limit of 2TB (0xFFFFFFFF x
512) for a block size of 512 bytes.

A logical unit of size 256 MB and a block size of 512
bytes shall report an LBA of 0x7FFFF and a block
size of 512 bytes.

A logical unit of size 32768 bytes and an internal
block size of 2048 bytes (NVM memory in case of this
application) shall report LBA of 0x3F [(32768 / 512) -
1] and a (logical) block size of 512 bytes.

Byte
Bit

7 6 5 4 3 2 1 0

0
LOGICAL BLOCK ADDRESS

3

4
BLOCK SIZE IN BYTES

7

 2017 Microchip Technology Inc. DS00002554A-page 17

AN2554
SCSI READ (10) (OPCODE 0x28)

The USB Host issues the SCSI READ command to
read data from the device media. The Host will specify
the starting address in the LOGICAL BLOCK
ADDRESS and the number of contiguous logical
blocks to read in the TRANSFER LENGTH field of the
READ request. The LUN ID is specified in the
bCBWLUN field of the CBW header. The device will
read the requested logical blocks from the media and
send it to the Host in IN data stage in chunks of 512
bytes.

Figure 9 shows the transactions involved in a USB
Read operation.

The MPLAB Harmony USB device stack allows
buffering of data read from the media. For example, if
the user has configured a buffer size of 8 sectors (size
of one sector = 512 bytes), then a request to read 12
logical blocks of data (12 sectors or 6KB) will result in
only two read requests to the media. During the first
read request, 8 sectors (4KB) worth of data shall be
read and saved in the buffer. The remaining 4 sectors
(2KB) shall be read in the next read request to the
media.

If the media data is not available, the device sends a
NAK in response to the IN data request from the Host,
while the device is reading from the media. The Host
then retries the IN data transaction. With the buffering
enabled, the media data is already available in the
RAM buffer, and therefore, the IN data stage from the
Host can be serviced without any media read delays.
This results in lesser number of retries from the Host
which in turn increases the overall throughput of the
read operation, but, at the expense of increased RAM
usage.

The Host shall receive all the 12 logical blocks of data
over a period of 12 IN data transactions with each IN
transaction transferring 512 bytes to Host.

The USB Bulk-only transport specification does not
allow the USB Host to transfer a CBW to the device
until the Host has received CSW for any outstanding
CBW. This allows a common buffer to be shared by all
the logical units supported by the USB Mass Storage
Device Stack.

FIGURE 9: USB READ OPERATION TRANSACTIONS
DS00002554A-page 18  2017 Microchip Technology Inc.

AN2554
SCSI WRITE (10) (OPCODE 0x2A)

The USB Host issues the SCSI WRITE command to
write data to the device media. The USB Host will
specify the starting address in the LOGICAL BLOCK
ADDRESS and the number of contiguous logical
blocks to write in the TRANSFER LENGTH field of the
WRITE request. The LUN ID is specified in the
bCBWLUN field of the CBW header.

The MPLAB Harmony Device Stack performs a read-
modify-erase-write operation for media whose block
size is greater than 1 sector (or 512 bytes). For the
MSD example implemented in this application, the
write block (row) size of the NVM media is 4 sectors
(or 2048 bytes). Figure 10 shows a WRITE request
with LOGICAL BLOCK ADDRESS is set to 50, and
TRANSFER LENGTH is set to 6, the device will first
read the internal block number 12 (sectors 48-51) and
modify the sectors 50 and 51 with the data received

from the Host. The complete modified block (sectors
48-51) is written back to the media. After this,
contents of block number 13 (sectors 52-55) are read
and is modified with the data received from the Host.
The complete modified block is written back to the
media.

The Host will complete sending 6 logical blocks of
data over a period of 6 OUT transactions, with each
OUT transaction transmitting 512 bytes to the device.
The MPLAB Harmony Device Stack reports a GOOD
status to the Host only after the data has actually
been written to the media.

For all the unsupported SCSI commands, the USB
device sets the bCSWStatus field of the CSW to 01h
(Command failed) and updates the sense data by
setting the Sense Key to 0x05 (Illegal Request) and
the Additional Sense Code to 0x20 (Invalid Command
Opcode).

FIGURE 10: READ-MODIFY-ERASE-WRITE OPERATION
 2017 Microchip Technology Inc. DS00002554A-page 19

AN2554
MPLAB HARMONY USB DEVICE
LIBRARY ARCHITECTURE
OVERVIEW

The MPLAB Harmony USB Device Library features a
modular and layered framework that allows
developers to design and develop a wide variety of
USB devices. The USB Device Library facilitates the
development of standard USB devices through
function drivers that implement standard USB device
class specification. The USB Device Library consists
of the following three major components, as shown in
Figure 11.

• USB Controller Driver (USBCD)

• Device Layer

• Function Drivers

FIGURE 11: USB DEVICE LIBRARY COMPONENTS
DS00002554A-page 20  2017 Microchip Technology Inc.

AN2554
USBCD

The USB Controller Driver (USBCD) manages the
state of the USB peripheral, and provides the Device
Layer with structured data access methods to the
USB. It also provides the Device Layer with USB
events. It supports only one client, the Device Layer,
per instance of USB peripheral. The USBCD is
accessed exclusively by the Device Layer. It is
recommended that the USBCD be configured for
interrupt mode. This will reduce the impact of other
application components on the operation of USB
device stack.

The USBCD provides functions to perform these:

• Enable, disable, and stall endpoints

• Schedule USB transfers

• Attach or detach the device

• Control resume signaling

Device Layer

The Device Layer responds to the enumeration
requests issued by the USB Host.

It has exclusive access to an instance of the USBCD
and the control endpoint (Endpoint 0). When the Host
issues a Class specific Control transfer request, the

Device Layer will analyze the setup packet of the
Control transfer and will route the Control transfer to
the appropriate Function Driver. Figure 12 shows how
the Device Layer interfaces with the USBCD and the
Function Driver (MSD in this case).

The Device Layer initializes all function drivers that
are registered with it when it receives a Set
Configuration (for a supported configuration) request
from the USB Host. It deinitializes the function drivers
when a USB reset event occurs. It opens the USBCD
and registers an event handler to receive USB events.
The Device Layer can also be opened by the
application (the application becomes a client to the
Device Layer). The application can then receive bus
and device events and respond to control transfer
requests. The Device Layer provides events to the
application such as Device configured or Device
reset. Some of these events are notification-only
events, while other events require the application to
take action.

Function Drivers

The Function Drivers implements various USB device
classes as per the class specification.

FIGURE 12: INTERFACING THE USBCD AND FUNCTION DRIVER WITH THE DEVICE LAYER
 2017 Microchip Technology Inc. DS00002554A-page 21

AN2554
USB MASS STORAGE DEVICE
FUNCTION DRIVER

Figure 13 illustrates the functional interaction between
the application, the MSD Function Driver, the media
drivers, and the USB Device Layer.

As shown in Figure 13, the application does not have
to interact with MSD Function Driver. Also, the MSD
Function Driver does not have application callable
functions. The media drivers control the storage
media. The application interacts with the media
drivers to update or access the information on the
storage media. The MSD Function Driver interacts
with the media drivers to process data read and write
requests that it receives from the USB Host. This data
is always accessed in blocks.

The Device Layer initializes the MSD Function Driver
when the Host sets the configuration (Set
Configuration control request) that contains the Mass

Storage Interfaces. The MSD Function Driver requires
an initialization data structure to be defined for each
instance of the Function Driver.

This initialization data structure should be of the type
USB_DEVICE_MSD_INIT_DATA.

This initialization data structure contains the following:

• The number of Logical Unit Numbers (LUNs) in this
MSD Function Driver instance

• A pointer to the USB_MSD_CBW type data structure

• A pointer to the USB_MSD_CSW type data structure.

• A pointer to the array of media driver initialization
data structure

Figure 14 illustrates the MSD Function Driver
initialization data structure.

FIGURE 13: FUNCTIONAL INTERACTION
DS00002554A-page 22  2017 Microchip Technology Inc.

AN2554
FIGURE 14: MSD FUNCTION DRIVER INITIALIZATION DATA STRUCTURE

During initialization, MSD Function Driver will initialize
itself with the initialization data available in the
USB_DEVICE_MSD_INIT_DATA data structure. The
MSD Function Driver will also enable Bulk Endpoints
and will have an exclusive access to the Bulk
Endpoint.

A media driver is plugged into the MSD Function
Driver by providing a media driver entry point in the
MSD Function Driver initialization data structure. In
the case of multi-LUN storage, multiple media drivers
can be plugged into the MSD Function Driver, with
each one being capable of accessing different storage
media types.

The MSD Function Driver Tasks function is invoked in
the context of the Device Layer Tasks function. The
MSD Function Driver interfaces should be registered
in the USB Device Layer Function Driver Registration
Table.

The USB Control requests are first handled by the
Device Layer and then forwarded to the MSD
Function Driver to allow handling of standard interface
requests GET/SET INTERFACE and class specific
interface requests GET MAX LUN and USB MSD
RESET in case of MSD. The standard control
requests for Bulk Endpoints are handled by the
Device Layer itself. The MSD Function Driver
accesses the USB bus and Endpoint 0 through the
Device Layer, as these are managed by the Device
Layer.
 2017 Microchip Technology Inc. DS00002554A-page 23

AN2554
Media Interface

The USB_DEVICE_MSD_MEDIA_INIT_DATA data
structure allows a media driver to be plugged into
the MSD Function Driver. Any media driver that
needs to be plugged into the MSD Function Driver
needs to implement the interface (function pointer
signatures) specified by the
USB_DEVICE_MSD_MEDIA_FUNCTIONS type.

For every LUN, a SCSI Inquiry Response data
structure needs to be made available.

Following guidelines needs to be adhered to while
developing a media driver:

• Read functions should be non-blocking

• Write functions should be non-blocking

• The media driver should provide an event to
indicate when a block transfer has complete. It
should allow the event handler to be registered.

• Where required, the write function should erase and
write to the storage area in one operation. The MSD
Function Driver does not explicitly call the erase
operation.

• The media driver should provide a media geometry
object when required. This media geometry object
allows the MSD Function Driver to understand the
media characteristics. This object is of the type
SYS_FS_MEDIA_GEOMETRY.

Data Transfers

Once the device is configured, the Device Layer runs
the MSD Function Driver tasks. The MSD Function
Driver task's state machine waits for CBW packet from
USB Host. Once the CBW packet is received, it is
parsed and SCSI command requests are serviced.
For SCSI command requests that require media
access, based on the received LUN number, the
corresponding media's Read and Write functions are
called to read and write media sectors.

The media events are notified to the MSD Function
Driver through an event handler registered by the
MSD Function Driver. While the MSD Function Driver
waits with the media driver for the media to complete
the operation, the Function Driver will NAK the data
stage of the MSD data transfer request. Once the
media driver has completed the read/write operation,
the MSD Function Driver will respond to the MSD data
transfer request by submitting a I/O Request Packet
(IRP) to the USB driver through the Device Layer. The
USB driver maintains a IRP queue for each endpoint
and allows queuing of multiple requests on the
corresponding endpoint queue.

Error Handling

Valid CBW - A Device considers a CBW valid if:

• The CBW was received after the Device had sent a
CSW or after a reset

• The CBW is 31 (0x1F) bytes in length
• The dCBWSignature is equal to 0x43425355

Meaningful CBW - A Device considers a CBW
meaningful if:

• No reserved bits are set,
• The bCBWLUN contains a valid LUN supported by

the Device, and
• Both bCBWCBLength and the content of the

CBWCB are in accordance with bInterfaceSubClass

Not a valid CBW - If the size of CBW packet is greater
than 31 bytes or if the dCBWSignature field in CBW is
not equal to the valid signature (0x43425355), the
device will send STALL condition on both IN and OUT
endpoints and CSW is not sent. The device will
remain in this state until the Host performs a reset
recovery by sending BOMSR command followed by
Clear Feature (Endpoint Halt) command for both the
endpoints to the device. In addition to this, the
following checks to be performed:

• Not a meaningful CBW - For a SCSI READ 10 or
SCSI WRITE 10 request, if the
dCBWDataTransferLength field in CBW is not equal
to TRANSFER LENGTH field of CBWCB, the
command is failed (bCSWStatus = 0x01)

• Not a meaningful CBW - For SCSI READ 10 or
SCSI WRITE 10 request, if the direction of data
transfer (indicated by bmCBWFlags) is incorrect,
the command is failed.

• For a SCSI READ 10 or SCSI WRITE 10 request, if
the media is not present, the command is failed by
setting the bCSWStatus field in CSW to 0x01
(Command Failed). Please note: SCSI requests
that depend on media for a response (like SCSI
READ CAPACITY, SCSI MODE SENSE, SCSI
TEST UNIT READY) will also be failed if the media
is not present. If the media is not present, the
SENSE KEY is set to SCSI_SENSE_NOT_READY
(0x02) and the Additional Sense Code (ASC) is
updated to SCSI_ASC_MEDIUM_NOT_PRESENT
(0x3A).

• For SCSI WRITE 10 request, if the media is write
protected, the command is failed (bCSWStatus =
0x01). At this point, the SENSE data is updated
with SENSE KEY set to
SCSI_SENSE_DATA_PROTECT (0x07), and the
Additional Sense Code (ASC) to
SCSI_ASC_WRITE_PROTECTED (0x27). The
SENSE data will be sent to Host in response to
SCSI REQUEST SENSE command.

• Media Driver Errors - For a valid and a meaningful
CBW, the MSD Function Driver will respond with
bCSWStatus = 0x01 (Command Failed) status in
CSW, if any error is reported by the media driver.
DS00002554A-page 24  2017 Microchip Technology Inc.

AN2554
If for a valid and a meaningful CBW, the number of
bytes transmitted (during IN data transfers) or
received (during OUT data transfers) by the MSD
Function Driver is less than indicated by the Host in
the dCBWDataTransferLength field of the CBW
packet, the MSD Function Driver will set the
bCSWStatus field of CSW to 0x00 (Command
Passed) and the dCSWDataResidue field in CSW will
be set to the difference of dCBWDataTransferLength
and the actual number of bytes received or sent by
the device. The device will then STALL the Bulk-IN
endpoint.

The Host upon attempting to read the CSW will
receive a STALL on the IN endpoint from the device.
After receiving a STALL, the Host will issue a Clear
Feature (Endpoint Halt) control request (with the Bulk-
IN endpoint's address) to clear the STALL condition
on the Bulk-IN endpoint. Once the STALL condition is
cleared, the device will send the CSW to the Host.

If for a valid and a meaningful CBW, the command
execution is failed (bCSWStatus = 0x01, Command
Failed), where the Host expects to receive or send
data from/to the device (dCBWDataTransferLength >
0), the MSD Function Driver will stall the IN endpoint if
the Host is reading (bmCBWFlags = 1) data from the
device, and will stall the OUT endpoint if the Host is
writing (bmCBWFlags = 0) data to the device (CSW is
sent). When the IN endpoint is stalled, the device will
wait for the Host to clear the STALL condition on the
bulk IN endpoint by issuing a CLEAR FEATURE
request (for Bulk IN endpoint) on the Control endpoint,
before sending the CSW.
 2017 Microchip Technology Inc. DS00002554A-page 25

AN2554
Events Handling

Figure 15 shows the handling of various events in
MSD.

FIGURE 15: HANDLING OF VARIOUS EVENTS IN MSD

The application must register an event handler with
the USB Device Layer to receive Device Layer events
like USB_DEVICE_EVENT_CONFIGURED,
USB_DEVICE_EVENT_POWER_DETECTED,
USB_DEVICE_EVENT_POWER_REMOVED etc. The
USB_DEVICE_Attach function can be called to
attach the Device to USB when the
USB_DEVICE_EVENT_POWER_DETECTED event
occurs.

The Device Layer registers an event handler with the
USB Controller Driver to receive events like
DRV_USB_EVENT_RESET_DETECT,
DRV_USB_EVENT_RESUME_DETECT,
DRV_USB_EVENT_IDLE_DETECT, and so on from the
controller driver. After handling the event, the Device
Layer will call the application event handler to allow
the application to handle these events.

The MSD Function Driver registers an event handler
with the Media driver corresponding to each logical
unit. The MSD Function Driver will receive media
events:

SYS_FS_MEDIA_EVENT_BLOCK_COMMAND_COMPLETE
and SYS_FS_MEDIA_EVENT_BLOCK_COMMAND_ERROR,
after the completion of media operation.

The MSD Function Driver does not provide any
events to the application. The application does not
have to intervene in the functioning of the MSD
Function Driver.

The Device Layer will also register event handlers to
receive Endpoint 0 transmit and receive events.
These callbacks are called after a Control packet is
received or transmitted.

The MSD Function Driver can also register an event
handler to receive events for Bulk endpoints that are
managed by the MSD Function Driver.

It is possible that the application may also open the
media driver while they are already opened by the
MSD Function Driver. If the application and the MSD
Function Driver try to write to the same media driver,
the result could be unpredictable. It is recommended
that the application restricts write access to the media
driver while the USB Device is plugged into the Host.
DS00002554A-page 26  2017 Microchip Technology Inc.

AN2554
Figure 16 shows firmware layers that handle different
USB requests in the MPLAB Harmony Device Stack
Mass Storage Class. The Device Layer handles the
Standard requests for the device and the endpoint.
Standard requests for Interface and Class specific
requests for Interface and Endpoint are forwarded by
the Device Layer to the Mass Storage Function Driver.

FIGURE 16: FIRMWARE LAYERS HANDLING USB REQUESTS IN THE MPLAB HARMONY USB
DEVICE STACK MASS STORAGE CLASS
 2017 Microchip Technology Inc. DS00002554A-page 27

AN2554
CONFIGURING THE USB MASS
STORAGE DEVICE STACK WITH
MPLAB HARMONY TO SUPPORT
TWO LOGICAL UNITS

The section describes the configuration steps required
to create a multi LUN MSD using MPLAB Harmony.
The SD card will act as one logical unit and the
PIC32MZ internal Flash memory as the second logical
unit. These two will appear as two separate drives
when connected to a USB Host PC.

Figure 17 shows the interaction between various
drivers. For LUN 0 read/write requests, the MSD
Function Driver reads/writes data from/to the SD Card
using the SD Card driver. Similarly, LUN 1 read/write
requests are serviced by the MSD Function Driver
accessing the NVM media (Internal Flash) using the
NVM driver. The SD Card Driver uses the SPI driver
to interact with the SD card. The MHC generates the
necessary code to bind the media drivers with the
MSD Function Driver's media interface

FIGURE 17: INTERACTION BETWEEN VARIOUS DRIVERS
DS00002554A-page 28  2017 Microchip Technology Inc.

AN2554
Hardware Requirements

• PIC32MZ EF Curiosity Development Board

• microSD Click board and SD card

• MPLAB REAL ICE Debugger (optional)

• USB Type-A to micro-B cables

Software Requirements

• MPLAB X IDE v3.40 or later

• MPLAB Harmony v2.02 or later

Using MPLAB Harmony Configurator
(MHC)

Follow these steps to use MHC:

1. Create a new MPLAB Harmony project, and
then configure the BSP and Clock.

2. Configure the USB Device Stack for Mass
Storage functionality with two logical units, SD
Card and NVM.

3. Configure the SD Card, SPI Driver, and SPI I/O
pins.

4. Configure the NVM Driver.

5. Generate MHC code.

6. Add and modify application files.

7. Compile and run the code.

STEP1: CREATING THE MPLAB HARMONY
PROJECT AND CONFIGURING THE BSP AND
CLOCK.

1. In MPLAB X IDE, select File > New Project and
then create a new 32-bit MPLAB Harmony
Project. Specify the Project Location, Project
Name, and then select the Target Device as
PIC32MZ2048EFM100.

2. Click Finish to create the project (see
Figure 18).

3. In MPLAB X IDE, select Tools > Embedded
and then open MPLAB Harmony
Configurator.

4. In the MHC tree view, expand the “BSP
Configuration” and then select USE BSP?.

5. Select the PIC32MZ EF Curiosity Development
Board. Selecting a BSP will automatically
configure clock and board specific hardware
(GPIOs, LEDs and Switches), as shown in
Figure 19.

FIGURE 18: CREATE NEW PROJECT
 2017 Microchip Technology Inc. DS00002554A-page 29

AN2554
FIGURE 19: BSP SELECTION IN MHC

6. Click the Clock Diagram tab and verify that the
System PLL output is set to 200 MHz and the
USB Clock is set to 48 MHz, as shown in
Figure 20.

FIGURE 20: CLOCK CONFIGURATION IN MHC
DS00002554A-page 30  2017 Microchip Technology Inc.

AN2554
STEP 2: CONFIGURING USB DEVICE STACK
FOR MASS STORAGE FUNCTIONALITY WITH
TWO LOGICAL UNITS -SD CARD AND NVM

1. Select Harmony Framework Configuration >
USB Library.

2. Select Use USB Stack?. The Interrupt Mode is
selected by default. This indicates that the USB
driver state-machine will be run from interrupt
context.

3. The Select Host or Device Stack is set to USB
Device.

4. Change the number of Endpoints to 2. The
USB MSD uses bulk-only transport (BOT)
protocol. One endpoint is the control endpoint
(EP0) used for control packet transfers. The
second endpoint is the Bulk endpoint (Bulk IN,
Bulk OUT) used for data transfers between the
Host and device.

5. Retain the Endpoint 0 Buffer Size to 64. For
High-Speed devices, the EP0 size is fixed to
64. For Full-Speed devices, the EP0 size can
be 8, 16, 32, or 64 bytes.

6. The USB Device Instance 0 is selected as
default. Each USB Device Instance represents
a USB peripheral on the micro-controller. Since
there is only one USB peripheral on PIC32MZ
devices, there is only one USB Device
Instance. user need to expand it.

7. Keep the device speed to default
USB_SPEED_HIGH. PIC32MZ devices
support both Full-Speed and High-Speed
operation. Selecting High-Speed will allow the
device to work at both Full-Speed and High-
Speed.

8. The Number of Functions Registered to this
Device Instance is set to 1. This indicates the
number of USB Device class drivers registered
with this Device instance. In this case, this will
be the MSD Function Driver (see Figure 21).

9. Function1 is selected, expand it. Configure the
Function Driver for USB MSD operation.

10. Select the Device Class to MSD.

11. Select the USB Configuration Value to which
this Function Driver will be tied. The USB
Device will set the active configuration to the
configuration value received through the SET
CONFIGURATION control command from the
Host. The USB Device task will run through all
the registered function drivers and will try to
match the value of active configuration with the
USB Configuration value for that Function
Driver. When a match is found, the
corresponding Function Driver's task is run. For
this example, retain the default value of 1.

12. Retain the default value of 0 for Start Interface
Number. This indicates that Interface number 0
is owned by this (MSD) Function Driver. This
will result in standard and class specific control
requests targeted to the interface, and class
specific endpoint requests be forwarded to the
Function Driver (MSD in this case) that
manages the interface number 0.

13. The Speed member of the entry specifies the
Device speeds for which this Function Driver
should be initialized. This can be set to
USB_SPEED_FULL, USB_SPEED_HIGH or a
logical OR combination of both. The Device
Layer will initialize the function if the devices'
attach speed matches the speed mentioned in
the Speed member of the entry. To allow for
both High-Speed and Full-Speed operation, set
it to USB_SPEED_HIGH|USB_SPEED_FULL.

FIGURE 21: USB STACK CONFIGURATION IN MHC
 2017 Microchip Technology Inc. DS00002554A-page 31

AN2554
14. Set the Endpoint Number to 1. This indicates
that Endpoint number 1 will be used for Bulk In
and Bulk Out transfers. The value selected for
Endpoint Number will be reflected in the
Endpoint address field of the Endpoint
descriptors. And based on the Endpoint
address in the endpoint descriptors, MSD
Function Driver will initialize the corresponding
endpoints for Bulk-In and Bulk-Out transfers.

15. Set a value of 1 for Max number of sectors to
buffer. This will set aside a buffer of size 512 x
1 bytes. This value may be changed to allow
buffering of data read from the media as
explained in the SCSI_READ_10 command.
Buffering of media data minimizes the number
of NAK sent to the USB Host in response to the
IN data request and thereby increases the
overall throughput, at the expense of increased
RAM usage.

16. Set a value of 2 for Number of Logical Units,
SD card and internal Flash (NVM).

17. Expand LUN 0 and select Media Type as
SDCARD. Selecting SDCARD will cause MHC
to automatically enable the SD card and SPI
drivers.

18. Expand LUN 1 and select Media Type as NVM.
Selecting NVM will cause MHC to automatically
enable the NVM driver, see Figure 22.

19. Retain default value for Vendor ID, Product ID,
Manufacturer String and Product String.

20. Retain the default Priority and Sub-priority
values for USB Interrupt and USB DMA
interrupts, see Figure 23.

21. Keep the Power State to
SYS_MODULE_POWER_RUN_FULL, and
retain the other values unchecked.

FIGURE 22: USB STACK CONFIGURATION IN MHC (CONTINUED)

FIGURE 23: USB STACK CONFIGURATION IN MHC (CONTINUED)
DS00002554A-page 32  2017 Microchip Technology Inc.

AN2554
STEP 3: CONFIGURING SD CARD, SPI
DRIVER, AND SPI I/O PINS

1. Select Harmony Framework Configuration >
Drivers > SD Card.

2. The “Use SD Card Driver?” option is already
selected as the LUN0 media type is selected
as SDCARD.

3. For “Clock To Use” choose
CLK_BUS_PERIPHERAL_2, and then clear
“Enable Write Protect Check?”.

4. For “Chip Select Port” choose
PORT_CHANNEL_D and for “Chip Select Port
Bit” select PORTS_BIT_POS_5.

5. Clear “Register with File System?”. The SD
card memory will be accessed by the USB
mass storage driver, see Figure 24.

6. Select Harmony Framework Configuration >
Drivers > SPI.

7. The “Use SPI Driver?” option is already

selected, as the SD card is configured to use
SPI driver instance 0. The SPI driver is
configured for 8-bit, Enhanced Buffer mode
and Master mode, see Figure 25.

8. Expand SPI Driver Instance 0. Notice that
driver is configured for Interrupt Mode
operation. Change SPI Module ID to SPI_ID_2,
since the SD Click board is connected to SPI
peripheral 2 on the PIC32 MZ Curiosity
Development Board, see Figure 26.

9. Change the Clock Mode to
DRV_SPI_CLOCK_MODE_IDLE_LOW_EDGE
_FALL and Clock Phase to
SPI_INPUT_SAMPLING_PHASE_AT_END,
see Figure 27.

10. To configure the SPI I/O lines, select MPLAB
Harmony Configurator > Pin Table.

11. Map SCK2 to pin 10, SDI2 to pin 88, and
SDO2 to pin 11, as shown Figure 28.

FIGURE 24: SD CARD DRIVER MHC CONFIGURATION
 2017 Microchip Technology Inc. DS00002554A-page 33

AN2554
FIGURE 25: SPI DRIVER MHC CONFIGURATION

FIGURE 26: SPI DRIVER MHC CONFIGURATION (CONTINUED)
DS00002554A-page 34  2017 Microchip Technology Inc.

AN2554
FIGURE 27: SPI DRIVER MHC CONFIGURATION (CONTINUED)

FIGURE 28: SPI I/O LINE CONFIGURATION
 2017 Microchip Technology Inc. DS00002554A-page 35

AN2554
STEP 4: CONFIGURING NVM DRIVER

1. Select Harmony Framework Configuration >
Drivers > NVM.

2. The “Use NVM Driver?” is already selected,
as the media for LUN 1 is configured as NVM.
The NVM driver is configured for dynamic and
interrupt mode of operation.

3. For “NVM Media Start Address” enter
0x9D010000 and for “NVM Media Size” enter
32 (KB). The FAT12 file system on the NVM
media will be mounted to the address pointed
by NVM Media Start Address.

4. Select Enable Erase Write Function? to
enable the row erase write feature, see
Figure 29.

FIGURE 29: NVM DRIVER CONFIGURATION
DS00002554A-page 36  2017 Microchip Technology Inc.

AN2554
STEP 5: GENERATING MHC CODE

Save the MHC configuration and then click Generate
to generate the code, see Figure 30.

FIGURE 30: GENERATE CODE

MHC will generate the code based on the MHC
selections.

Make sure the Merging Strategy option is set to
Prompt Merge For All User Changes. Since there are
no user changes, there should not be any merge
conflicts.

The framework folder under the Source Files folder
contains the standard MPLAB Harmony Framework
files that are added to the project by MHC (based on
the MHC selections), see Figure 31. The nvm,
sdcard, spi, tmr and usb driver folders are added
to the driver folder. The system folder contains the
drivers used by the system services. The usb folder
contains the related USB Device Stack source files.

The framework folder under the app folder contains
the customized MPLAB Harmony Framework files.
These files are generated by MHC in response to the
specific MHC selections. The system_init.c
contains the initialization data for various drivers and
the system initialization function, SYS_Initialize.
The SYS_Initialize function performs system
initialization by initializing the Clock system, BSP, I/
Os, System services, Drivers, and Interrupts. The
APP_Initialize function is then called to allow
application initialization.
 2017 Microchip Technology Inc. DS00002554A-page 37

AN2554
FIGURE 31: PROJECT FILES AND FOLDERS STRUCTURE

The system_interrupt.c contains the interrupt handlers
for the configured drivers. The system_tasks.c
contains the SYS_Tasks function that runs the state
machines for various drivers and the USB stack. The
system_config.h file contains the driver
configuration definitions based on the MHC
selections.
DS00002554A-page 38  2017 Microchip Technology Inc.

AN2554
STEP 6: ADDING AND MODIFYING THE
APPLICATION FILES

Registering Application Event Handler to
Receive USB Device Layer Events

The app.c file is generated by the MHC which
provides a template for initializing the application
under APP_Initialize and running the application
tasks under APP_Tasks. The application must
register an event handler with the USB Device Layer
to receive the Device Layer events. A call to
USB_DEVICE_Open returns an handler to the specific

instance of the USB Device Layer. This handler is
then used to register the application event handler
with the USB Device Layer by a call to the
USB_DEVICE_EventHandlerSet function, as
shown in Example 1.

The registered event handler will be called by the
USB Device Layer to notify Device Layer events, such
as USB Device reset, USB Device configured, USB
Device power detected and so on. Under the USB
Device power detected event, the application must
call the USB_DEVICE_Attach function to attach the
Device to the USB as shown in Example 2.

EXAMPLE 1: OPENING THE USB DEVICE LAYER AND REGISTERING AN EVENT HANDLER
void APP_Tasks (void)
{

 /* Check the application's current state. */
 switch (appData.state)
 {
 /* Application's initial state. */
 case APP_STATE_INIT:
 {
 appData.usbDevHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0, DRV_IO_INTENT_READWRITE);

 if(appData.usbDevHandle != USB_DEVICE_HANDLE_INVALID)
 {
 /* Set the Event Handler. We will start receiving events after
 * the handler is set */
 USB_DEVICE_EventHandlerSet(appData.usbDevHandle, APP_USBDeviceEventHandler,

 (uintptr_t)&appData);

 /* Move the application to the next state */
 appData.state = APP_STATE_SERVICE_TASKS;
 }
 2017 Microchip Technology Inc. DS00002554A-page 39

AN2554
EXAMPLE 2: HANDLING USB DEVICE LAYER EVENTS

void APP_USBDeviceEventHandler(USB_DEVICE_EVENT event, void * pEventData, uintptr_t context)
{
 /* This is an example of how the context parameter
 in the event handler can be used.*/

 APP_DATA* appData = (APP_DATA*)context;

 switch(event)
 {
 case USB_DEVICE_EVENT_RESET:
 case USB_DEVICE_EVENT_DECONFIGURED:

 /* Device was reset or deconfigured. Update LED status */
 BSP_LEDOn (BSP_LED_1);
 BSP_LEDOn (BSP_LED_2);
 BSP_LEDOn (BSP_LED_3);
 break;

case USB_DEVICE_EVENT_POWER_DETECTED:

 /* VBUS is detected. Attach the device. */
 USB_DEVICE_Attach(appData->usbDevHandle);
 break;

 case USB_DEVICE_EVENT_POWER_REMOVED:

 /* VBUS is not detected. Detach the device */
 USB_DEVICE_Detach(appData->usbDevHandle);
 break;

 /* These events are not used in this demo */
 case USB_DEVICE_EVENT_RESUMED:
 case USB_DEVICE_EVENT_ERROR:
 case USB_DEVICE_EVENT_SOF:
 default:
 break;
 }
}

DS00002554A-page 40  2017 Microchip Technology Inc.

AN2554
Formating the NVM Memory Region to FAT12
File System

The NVM memory region must be formatted with a file
system to enable the USB Host computer to
understand the layout of files on the media. The
FAT12 is a lightweight file system with very low
overhead. In addition, the FAT12 file system can
address volumes of size up to 12 MB which is
sufficient for the NVM media partition of 32 Kbytes
size. The diskImage.c file contains the FAT12
image for the NVM memory region. The FAT12 image
formats the media to contain a FILE.TXT file
containing the string “Data”. The diskImage.c file is
not generated by the MHC, and it can be copied from
the msd_multiple_luns demonstration, which is
available in the harmony-install-dir/apps/
usb/device/msd_multiple_luns folder.

Right click the Source Files > app > Add Existing
Item… and then add the diskImage.c file to the
project.

The complete project source code is available with the
MPLAB Harmony version 2.02 (and later versions)
installer. The project can be found in the MPLAB
Harmony installer, by navigating to the harmony-
install-dir/apps/usb/device/
msd_multiple_luns folder.

STEP 8: COMPILING AND RUNNING THE
SOURCE CODE

After adding the necessary source code, build and
program the PIC32MZ Curiosity Development Board.

Insert the microSD click board (with SD Card inserted)
on the mikro bus header 2 (J10). Power the board
using the USB Debug connector J3. Connect a USB
micro cable from J12 on the USB device to a USB
Host PC.

Wait for the PC to enumerate the USB device as a
mass storage device. After enumeration is complete,
both the SD Card and the NVM should appear as two
separate logical drives on the Host PC, as shown in
Figure 32.

FIGURE 32: LOGICAL DRIVES ON THE HOST PC
 2017 Microchip Technology Inc. DS00002554A-page 41

AN2554
USB STACK INITIALIZATION DATA

The system_init.c file contains the initialization
data for the USB stack.

USB Device Layer Initialization Data

Example 3 shows the USB Device Layer initialization
data.

The USB_DEVICE_INIT structure contains the USB
Device Layer initialization data. The moduleInit
allows initialization of driver into the requested power
mode. The registeredFuncCount indicates the
number of function drivers registered to this instance
of USB Device Layer. This application will have only
one function drives, MSD Function Driver. The
registeredFunctions points to the Function
Driver Table for this instance of Device Layer. The
Function Driver Table contains initialization data for
the MSD Function Driver. The
usbMasterDescriptor points to the USB
Descriptor structure which in turn points to Device
Descriptor, Configuration Descriptor, and string
descriptors. The usbDriverInterface points to the
USB driver functions. These functions provide the
USB Device Layer with a structured access to the
USB bus.

EXAMPLE 3: USB DEVICE LAYER INITIALIZATION DATA

const USB_DEVICE_INIT usbDevInitData =
{
 /* System module initialization */
 .moduleInit = {SYS_MODULE_POWER_RUN_FULL},

 /* Number of function drivers registered to this instance of the
 USB device layer */
 .registeredFuncCount = 1,

 /* Function driver table registered to this instance of the USB device layer*/
 .registeredFunctions = (USB_DEVICE_FUNCTION_REGISTRATION_TABLE*)funcRegistrationTable,

 /* Pointer to USB Descriptor structure */
 .usbMasterDescriptor = (USB_DEVICE_MASTER_DESCRIPTOR*)&usbMasterDescriptor,

 /* USB Device Speed */
 .deviceSpeed = USB_SPEED_HIGH,

 /* Index of the USB Driver to be used by this Device Layer Instance */
 .driverIndex = DRV_USBHS_INDEX_0,

 /* Pointer to the USB Driver Functions. */
 .usbDriverInterface = DRV_USBHS_DEVICE_INTERFACE,

};
DS00002554A-page 42  2017 Microchip Technology Inc.

AN2554
USB Device Function Registration Table

Example 4 shows the instance of USB Device
Function Registration Table.

The funcRegistrationTable contains a list of
function drivers that allows registration of function
drivers with the USB Device Layer. The USB Device
Layer initialization data holds a pointer to the
funcRegistrationTable.

The configurationValue, interfaceNumber,
speed, numberOfInterfaces are all based on the
MHC selections. The funcDriverIndex is used as
an index into the MSD Function Driver instance data
structure - gUSBDeviceMSDInstance. Since there is
only one instance of USB MSD Function Driver, the
funcDriverIndex is set to ‘0’.

The driver points to the interface exposed by the
MSD Function Driver to the USB Device Layer. The
USB Device Layer calls these interface functions at
the time of an appropriate event. Example 4 shows
the Function Driver interface as expected by the USB
Device Layer.

Finally, the funcDriverInit points to the Function
Driver initialization data, which can be used by the
MSD Function Driver to initialize itself when the USB
Device layer receives Set Configuration Control
command from the USB Host.

EXAMPLE 4: USB DEVICE FUNCTION REGISTRATION TABLE

Note: Although there are two media (SD card
and NVM), only one instance of MSD
Function Driver is required. The two
media can be accessed based on the LUN
number passed in the CBW packet by the
USB Host.

const USB_DEVICE_FUNCTION_REGISTRATION_TABLE funcRegistrationTable[1] =
{
 /* Function 1 */
 {
 .configurationValue = 1, /* Configuration value */
 .interfaceNumber = 0, /* First interfaceNumber of this function */
 .speed = USB_SPEED_HIGH|USB_SPEED_FULL, /* Function Speed */
 .numberOfInterfaces = 1, /* Number of interfaces */
 .funcDriverIndex = 0, /* Index of MSD Function Driver */
 .driver = (void*)USB_DEVICE_MSD_FUNCTION_DRIVER, /* USB MSD function data exposed

 to device layer */
 .funcDriverInit = (void*)&msdInit0, /* Function driver init data */
 },
};
 2017 Microchip Technology Inc. DS00002554A-page 43

AN2554
USB Device Function Driver Interface

Example 5 shows the USB Function Driver Interface
structure. The USB Device Layer calls the
intilizeByDescriptor callback when the Set
Configuration control request is received from the
USB Host. The MSD Function Driver must initialize
itself and enable the bulk endpoints. The
pDescriptor argument will point to the
configuration, interface, and Endpoint Descriptor
corresponding to the configuration value received in
the Set Configuration request. The Function Driver will
initialize the bulk endpoints based on the interface
and endpoint descriptors pointed by pDescriptor.

The deInitialize callback is called when the
Device layer detects a Device detach, change in
configuration, or for USB bus reset. The
controlTransferNotification is called to allow
the Function Driver to handle Standard and Class
specific control requests targeted to MSD interface.
The Standard endpoint requests targeted to Bulk
Endpoints are handled by the Device Layer.

The USB Device Layer calls the MSD Function Driver
task function pointed by the tasks if the current
Device speed and current configuration matches with
the speed and configuration values mentioned in the
Function Driver Registration Table, and the Function
Driver is in a configured state. Example 6 shows an
instance of the MSD Function Driver.

EXAMPLE 5: USB FUNCTION DRIVER INTERFACE STRUCTURE
typedef struct
{
 /* Initialize gets called by the Device layer when it recieves set
 configuration event. The device layer will initialize a function driver
 for every descriptor. Based on the descriptor type the function driver
 has to initialize itself. */

 void (*initializeByDescriptor)
 (
 SYS_MODULE_INDEX funcDriverIndex,
 USB_DEVICE_HANDLE usbDeviceHandle,
 void* funcDriverInit,
 uint8_t interfaceNumber,
 uint8_t alternateSetting,
 uint8_t descriptorType,
 uint8_t * pDescriptor
);

 /* Deinitialize gets called when the device layer detects a device dettach,
 change in configuration or ob USB bus reset.*/

 void (*deInitialize)(SYS_MODULE_INDEX funcDriverIndex);

 /* This function will be called by the device layer when there is a interface specific
 setup packet request */

 void (*controlTransferNotification)
 (
 SYS_MODULE_INDEX index,
 USB_DEVICE_EVENT controlEvent,
 USB_SETUP_PACKET * controlEventData
);

 /* Function driver Tasks */
 void (*tasks)(SYS_MODULE_INDEX funcDriverIndex);

 /* Gloabl Initialize for function driver */
 void (*globalInitialize)(void);

} USB_DEVICE_FUNCTION_DRIVER;
DS00002554A-page 44  2017 Microchip Technology Inc.

AN2554
EXAMPLE 6: MSD FUNCTION DRIVER INSTANCE
USB_DEVICE_FUNCTION_DRIVER msdFunctionDriver =
{
 /* MSD init function */
 .initializeByDescriptor = _USB_DEVICE_MSD_InitializeByDescriptorType ,

 /* MSD deinit function */
 .deInitialize = _USB_DEVICE_MSD_Deinitialization ,

 /* MSD set-up packet handler */
 .controlTransferNotification = _USB_DEVICE_MSD_ControlTransferHandler ,

 /* MSD tasks function */
 .tasks = _USB_DEVICE_MSD_Tasks
};
 2017 Microchip Technology Inc. DS00002554A-page 45

AN2554
USB Device Function Driver Initialization Data

Example 7 shows the initialization data for the MSD
Function Driver.

The USB_DEVICE_MSD_INIT contains the
initialization data for the MSD Function Driver:

• numberOfLogicalUnits - This indicates the
number of logical units in this instance of MSD
Function Driver and is set to two.

• msdCBW - points to the CBW data structure. The
pointer is used by the MSD Function Driver to
receive CBW from the Host. For a PIC32MZ device
with a Data Cache, such as the PIC32MZ used in
this application, this array should be placed in
coherent memory and should be aligned on a 16-
byte boundary.

• msdCSW - points to the CSW data structure. The
pointer is used by the MSD Function Driver to send
CSW to the Host. For a PIC32MZ device, this array
should be placed in coherent memory and should
be aligned on a 16-byte boundary.

• mediaInit - points to the MSD media driver
initialization data structure. There should be one
structure for each LUN.

EXAMPLE 7: MSD FUNCTION DRIVER
INITIALIZATION DATA

const USB_DEVICE_MSD_INIT msdInit0 =
{

.numberOfLogicalUnits = 2,

.msdCBW = &msdCBW0,

.msdCSW = &msdCSW0,

.mediaInit = &msdMediaInit0[0]
};
DS00002554A-page 46  2017 Microchip Technology Inc.

AN2554
Media Driver Initialization Data

Example 8 shows the structure of the MSD media
driver initialization data.

EXAMPLE 8: MSD MEDIA DRIVER INITIALIZATION DATA STRUCTURE
typedef struct
{
 /* Instance index of the media driver to open for this LUN */
 SYS_MODULE_INDEX instanceIndex;

 /* Sector size for this LUN. If 0, means that sector size will be available
 from media geometry. */
 uint32_t sectorSize;

 /* Pointer to a byte buffer whose size is the size of the sector on this
 * media. In case of a PIC32MZ device, this buffer should be coherent and
 * should be aligned on a 16 byte boundary */
 uint8_t * sectorBuffer;

 /* In a case where the sector size of this media is less than the size of
 * the write block, a byte buffer of write block size should be provided to
 * the function driver. For example, the PIC32MZ NVM flash driver has a
 * flash program memory row size of 4096 bytes which is more than the
 * standard 512 byte sector. In such a case the application should set this
 * pointer to 4096 byte buffer */
 uint8_t * blockBuffer;

 /* Block 0 Start Address on this media. If non zero, then this address will
 be passed to blockStartAddressSet function. This should be set to start
 of the storage address on the media. */
 void * block0StartAddress;

 /* Pointer to SCSI inquiry response for this LUN */
 SCSI_INQUIRY_RESPONSE inquiryResponse;

 /* Function pointers to the media driver functions */
 USB_DEVICE_MSD_MEDIA_FUNCTIONS mediaFunctions;

} USB_DEVICE_MSD_MEDIA_INIT_DATA;
 2017 Microchip Technology Inc. DS00002554A-page 47

AN2554
The media initialization data consists the following:

• instanceIndex - points to the index of the media
driver opened for this LUN. For LUN0 this is set to
DRV_SDCARD_INDEX_0, which is an index into
the SD card drivers and for LUN1 this is set to
DRV_NVM_INDEX_0 which is an index into the
NVM drivers

• sectorSize - This is the size of one sector on this
media and is set to 512 for both the media. This is
because from the Host point of view the media is
organized in logical blocks of 512 bytes.

• sectorBuffer - points to a buffer whose size is
512 x Max number of sectors to buffer to allow
buffering of data during a media read operation. In
MHC, Max number of sectors to buffer was set
to 1 in the USB Function Driver configuration.

• blockBuffer - This buffer is used by the MSD
media driver to perform a read-modify-write
operation for media whose block size is greater
than the sector size (512 bytes). It is set to 0
(NULL) for LUN0. This is because the block size for
SD card is 512 bytes. For LUN1, the NVM write
block (Row) size is 2048 bytes and hence this is set
to a buffer of size 2048 bytes. For NVM, a complete
block of 2048 bytes will be read and modified in this
buffer before the modified block is written back to
the media.

• inquiryResponse - points to the SCSI inquiry
response for the LUN.

mediaFunctions points to the media driver functions
for this LUN. The MSD Function Driver expects the
media driver to comply with the
USB_DEVICE_MSD_MEDIA_FUNCTIONS interface.
The USB_DEVICE_MSD_MEDIA_FUNCTIONS
structure contains function pointers to media driver
functions, such as isAttached, open, close,
geometryGet, blockRead, blockWrite,
isWriteProtected, and
blockEventHandlerSet. For LUN0, the
mediaFunctions point to SD card driver functions
and for LUN1 it points to NVM driver functions:

• isAttached – The MSD Function Driver calls this
function when it needs to know if the media is
attached and ready to use.

• open – The MSD Function Driver calls this function
to obtain a handle and gain access to the
functionality of the specified instance of the media
driver.

• close – The MSD Function Driver calls this
function when the function driver gets deinitialized
as a result of device detach or a change in
configuration.

• geometryGet – The MSD Function Driver calls
this function when it needs to know the storage
capacity of the media.

• blockRead – The MSD Function Driver calls this
function to read a block of data from the media.

• blockWrite – The MSD Function Driver calls this
function to write a block of data to the media.

• isWriteProtected - The MSD Function Driver
calls this function to find out if the media is write
protected or not.

• blockEventHandlerSet – The MSD Function
Driver calls this function to register a block event
callback function with the media driver. This event
callback will be called when a block related
operation has completed.

Example 9 shows the media initialization data for both
of the logical units.
DS00002554A-page 48  2017 Microchip Technology Inc.

AN2554
EXAMPLE 9: MEDIA INITIALIZATION DATA
USB_DEVICE_MSD_MEDIA_INIT_DATA msdMediaInit0[2] =
{
 {
 DRV_SDCARD_INDEX_0,
 512,
 sectorBuffer,
 NULL,
 0,
 {
 0x00,// peripheral device is connected, direct access block device
 0x80, // removable
 0x04,// version = 00=> does not conform to any standard, 4=> SPC-2
 0x02,// response is in format specified by SPC-2
 0x1F,// additional length
 0x00,// sccs etc.
 0x00,// bque=1 and cmdque=0,indicates simple queuing 00 is obsolete,
 // but as in case of other device, we are just using 00
 0x00,// 00 obsolete, 0x80 for basic task queuing
 {
 'M','i','c','r','o','c','h','p'
 },
 {
 'M','a','s','s',' ','S','t','o','r','a','g','e',' ',' ',' ',' '
 },
 {
 '0','0','0','1'
 }
 },
 {
 DRV_SDCARD_IsAttached,
 DRV_SDCARD_Open,
 DRV_SDCARD_Close,
 DRV_SDCARD_GeometryGet,
 DRV_SDCARD_Read,
 DRV_SDCARD_Write,
 DRV_SDCARD_IsWriteProtected,
 DRV_SDCARD_EventHandlerSet,
 NULL
 }
 },
 2017 Microchip Technology Inc. DS00002554A-page 49

AN2554
EXAMPLE 9: MEDIA INITIALIZATION DATA (CONTINUED)

 {
 DRV_NVM_INDEX_0,
 512,
 sectorBuffer,
 flashRowBackupBuffer,
 (void *)diskImage,
 {
 0x00,// peripheral device is connected, direct access block device
 0x80, // removable
 0x04,// version = 00=> does not conform to any standard, 4=> SPC-2
 0x02,// response is in format specified by SPC-2
 0x1F,// additional length
 0x00,// sccs etc.
 0x00,// bque=1 and cmdque=0,indicates simple queueing 00 is obsolete,
 // but as in case of other device, we are just using 00
 0x00,// 00 obsolete, 0x80 for basic task queueing
 {
 'M','i','c','r','o','c','h','p'
 },
 {
 'M','a','s','s',' ','S','t','o','r','a','g','e',' ',' ',' ',' '
 },
 {
 '0','0','0','1'
 }
 },
 {
 DRV_NVM_IsAttached,
 DRV_NVM_Open,
 DRV_NVM_Close,
 DRV_NVM_GeometryGet,
 DRV_NVM_Read,
 DRV_NVM_EraseWrite,
 DRV_NVM_IsWriteProtected,
 DRV_NVM_EventHandlerSet,
 NULL
 }
 },
};
DS00002554A-page 50  2017 Microchip Technology Inc.

AN2554
USB Driver Initialization Data

Example 10 shows the initialization data structure for
the USB Driver.

The operationMode is set to Device mode of
operation. The interruptSource contains USB
interrupt source number. The
interruptSourceUSBDma contains the interrupt
number corresponding to USB DMA. The driver will
pass these as arguments to the peripheral library
functions to control (enable/disable) the interrupt
sources.

The PIC32MZ device has an integrated 8-channel
DMA. If available, the DMA channel will be used to
move the received data from the endpoint FIFO to the

endpoint's data buffer. During a transmission, DMA
will move the data from the endpoint's data buffer to
the endpoint FIFO.

Figure 33 illustrates how the media drivers plug into
the MSD Function Driver, and how the MSD Function
Driver plugs into the Device Layer.

The system_init.c file also contains the USB
descriptors for both High-Speed USB and Full-Speed
USB. The string descriptors for Manufacturer String,
Product String, and Serial Number String are also
populated based on the MHC selections.

EXAMPLE 10: USB DRIVER INITIALIZATION DATA STRUCTURE
const DRV_USBHS_INIT drvUSBInit =
{
 /* Interrupt Source for USB module */
 .interruptSource = INT_SOURCE_USB_1,

 /* Interrupt Source for USB module */
 .interruptSourceUSBDma = INT_SOURCE_USB_1_DMA,

 /* System module initialization */
 .moduleInit = {SYS_MODULE_POWER_RUN_FULL},

 .operationMode = DRV_USBHS_OPMODE_DEVICE,

 .operationSpeed = USB_SPEED_HIGH,

 /* Stop in idle */
 .stopInIdle = false,

 /* Suspend in sleep */
 .suspendInSleep = false,

 /* Identifies peripheral (PLIB-level) ID */
 .usbID = USBHS_ID_0,
};
 2017 Microchip Technology Inc. DS00002554A-page 51

AN2554
FIGURE 33: USB MSD APPLICATION INITIALIZATION DATA OVERVIEW
DS00002554A-page 52  2017 Microchip Technology Inc.

AN2554
USB Mass Storage Device Task Function

Figure 34 shows the System Tasks function which
runs the device driver tasks, system services, and the
application task.

Figure 35 shows the USB MSD Task function. The
USB MSD Task function
(_USB_DEVICE_MSD_Tasks) is run in the context of
the USB Device Task (USB_DEVICE_Tasks). The
USB Device Task is, in turn, run from the System
Tasks function (SYS_Tasks).

The USB MSD Task implements the MSD state
machine which handles the CBW command, data
stage, and CSW.

FIGURE 34: SYSTEM TASKS FUNCTION

FIGURE 35: USB MSD TASK FUNCTION
 2017 Microchip Technology Inc. DS00002554A-page 53

AN2554
Table 15 provides important source and header file
details in the MPLAB Harmony installer that are used
by the application project. All of these files are
automatically added into the MPLAB X IDE project by
the MHC when the library or driver is selected.

TABLE 15: IMPORTANT SOURCE AND HEADER FILES REFERRED BY THE APPLICATION
PROJECT

Source File Name Description

framework/usb/src/dynamic/usb_device.c This file implements the USB Device Layer inter-
face.

framework/usb/src/dynamic/usb_device_msd.c This file implements the MSD Function Driver
interface.

framework/driver/usb/usbhs/src/dynamic/drv_usbhs.c This file implements the functions accessed by
the system module that allow it to initialize/deini-
tialize and maintain the driver. In addition it con-
tains the client functions that allow opening,
closing, and other general driver operations

framework/driver/usb/usbhs/src/dynamic/drv_usbhs_device.c This fie implements the functions that allow the
USB device stack to perform USB Device mode
specific driver operations. It implements the USB
driver interface expected by the USB Device
Layer.
DS00002554A-page 54  2017 Microchip Technology Inc.

AN2554
CONCLUSION

Developing a USB Mass Storage Device application
requires an understanding of various standards,
protocols, and middleware. Using the MPLAB
Harmony USB Device Stack Framework, the
accompanying MSD firmware, and the media drivers,
users can design a solution without having to manage
the underlying standards or protocols. The MPLAB
Harmony provides users with a flexible, abstracted
and fully integrated firmware development platform for
PIC32 microcontrollers.

This application note introduces the basic concepts of
the USB Mass Storage Class and provides an
overview of the MPLAB Harmony USB Device Stack
firmware architecture. It covers the terminologies,
protocols, and standards that are involved in creating
a USB Mass Storage Device application. It also
describes how users can create and configure an
MSD application with support for multiple logical units
using the MPLAB Harmony Configurator (MHC) utility.
Additional examples and demos for various MSD
solutions are included with the MPLAB Harmony
Integrated Software Framework, which is available for
download from the Microchip website (see
“References”).

REFERENCES

• AN1142 “USB Mass Storage Class on an
Embedded Host”
(http://www.microchip.com)

• USB Mass Storage - Designing and Programming
Devices and Embedded Hosts - Jan Axelson
(ISBN-10: 1931448043; ISBN-13: 978-1931448048)

• AT91 USB Mass Storage Device Driver
Implementation
(http://www.atmel.com)

• T10 Technical Committee Website
(http://www.t10.org/drafts.htm)

• Universal Serial Bus Website
(http://www.usb.org)

• help_harmony.pdf available with the MPLAB
Harmony Software Framework Installer
(http://www.microchip.com/mplab/mplab-harmony)

• USB MSD Demonstration with Multiple Drives -
Stand-alone demonstration example
(https://www.microchip.com/DevelopmentTools/
ProductDetails.aspx?PartNO=DM320104)

• microSD Click board from MikroElektronika
(https://shop.mikroe.com/click/storage/microsd)
 2017 Microchip Technology Inc. DS00002554A-page 55

http://www.microchip.com
http://www.atmel.com
http://www.atmel.com
http://www.atmel.com
http://www.t10.org/drafts.htm
http://www.t10.org/drafts.htm
http://www.usb.org
http://www.usb.org
http://www.microchip.com/mplab/mplab-harmony
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=DM320104
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=DM320104
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=DM320104
https://shop.mikroe.com/click/storage/microsd
https://shop.mikroe.com/click/storage/microsd

AN2554
NOTES:
DS00002554A-page 56  2017 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2017 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2327-0
DS00002554A-page 57

DS00002554A-page 58  2017 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/25/17

http://support.microchip.com
http://www.microchip.com

	Introduction
	Control Transfers
	FIGURE 1: Control Read and Writer Transfer Stages

	Bulk Transfers
	FIGURE 2: Bulk IN (Read) and Bulk OUT (Write) Transaction Packets

	USB Mass Storage Device Class Descriptors
	FIGURE 3: USB Mass Storage Class Device Block Diagram
	FIGURE 4: USB Mass Storage Class Device Descriptor Tree
	TABLE 1: Device Descriptor
	TABLE 2: Configuration Descriptor
	TABLE 3: Interface Descriptor
	TABLE 4: bInterfaceSubClass Possible Values
	Bulk IN Endpoint Descriptor
	TABLE 5: Bulk IN Endpoint Descriptor

	Bulk OUT Endpoint Descriptor
	TABLE 6: Bulk OUT Endpoint Descriptor
	FIGURE 5: USB MSD Endpoints

	USB Mass Storage Class Specific Requests
	Bulk-only Mass Storage Reset (BOMSR)
	Get Max LUN
	FIGURE 6: NVM configuration

	USB Mass Storage Bulk-only Transport (BOT)
	FIGURE 7: Bulk Read Transactions
	Command Block Wrapper (CBW)
	TABLE 7: CBW Structure

	Command Status Wrapper (CSW)
	TABLE 8: CSW Structure
	TABLE 9: SCSI command values
	FIGURE 8: CBW and CSW Transmission During USB Transactions

	Small Computers System Interface (SCSI) Protocol
	TABLE 10: SCSI commands Supported by MPLAB harmony
	SCSI Primary Commands
	TABLE 11: SCSI Inquiry command
	TABLE 12: Mode Sense Command
	TABLE 13: Device-Specific parameter

	SCSI Block Commands
	TABLE 14: Block Size and Block Address
	FIGURE 9: USB Read Operation Transactions
	FIGURE 10: Read-Modify-Erase-Write Operation

	MPLAB Harmony USB Device Library Architecture Overview
	FIGURE 11: USB Device Library Components
	USBCD
	Device Layer
	Function Drivers
	FIGURE 12: Interfacing the USBCD and Function Driver with the Device layer

	USB Mass Storage Device Function Driver
	FIGURE 13: Functional Interaction
	FIGURE 14: MSD Function Driver Initialization Data Structure
	Media Interface
	Data Transfers
	Error Handling
	Events Handling
	FIGURE 15: Handling of Various Events in MSD
	FIGURE 16: Firmware Layers Handling USB Requests in the MPLAB Harmony USB Device Stack Mass Storage Class

	Configuring the USB Mass Storage Device Stack with MPLAB Harmony to Support Two Logical units
	FIGURE 17: Interaction Between Various Drivers
	Hardware Requirements
	Software Requirements
	Using MPLAB Harmony Configurator (MHC)
	FIGURE 18: Create New Project
	FIGURE 19: BSP Selection in MHC
	FIGURE 20: Clock Configuration in MHC
	FIGURE 21: USB Stack Configuration in MHC
	FIGURE 22: USB Stack Configuration in MHC (Continued)
	FIGURE 23: USB Stack Configuration in MHC (Continued)
	FIGURE 24: SD Card Driver MHC Configuration
	FIGURE 25: SPI Driver MHC Configuration
	FIGURE 26: SPI Driver MHC Configuration (Continued)
	FIGURE 27: SPI Driver MHC Configuration (Continued)
	FIGURE 28: SPI I/O Line Configuration
	FIGURE 29: NVM Driver Configuration
	FIGURE 30: Generate Code
	FIGURE 31: Project Files and Folders Structure
	EXAMPLE 1: Opening the USB Device Layer and Registering an Event Handler
	EXAMPLE 2: Handling USB Device Layer Events
	FIGURE 32: Logical Drives on the Host PC

	USB Stack Initialization Data
	USB Device Layer Initialization Data
	EXAMPLE 3: USB Device Layer Initialization Data
	EXAMPLE 4: USB Device Function Registration Table
	EXAMPLE 5: USB Function Driver Interface Structure
	EXAMPLE 6: MSD Function Driver Instance
	EXAMPLE 7: MSD Function Driver Initialization Data
	EXAMPLE 8: MSD Media Driver Initialization Data Structure
	EXAMPLE 9: Media Initialization Data
	EXAMPLE 9: Media Initialization Data (Continued)
	EXAMPLE 10: USB Driver Initialization Data Structure
	FIGURE 33: USB MSD Application Initialization Data Overview
	FIGURE 34: System Tasks Function
	FIGURE 35: USB MSD Task Function
	TABLE 15: Important Source and Header files Referred by the Application Project

	Conclusion
	References
	Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MIC...
	Trademarks
	The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, Media...
	ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
	Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, ...
	SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
	Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
	GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
	All other trademarks mentioned herein are property of their respective companies.
	© 2017, Microchip Technology Incorporated, All Rights Reserved.
	ISBN: 978-1-5224-2327-0
	AMERICAS
	Corporate Office
	Atlanta
	Austin, TX
	Boston
	Chicago
	Dallas
	Detroit
	Houston, TX
	Indianapolis
	Los Angeles
	Raleigh, NC
	New York, NY
	San Jose, CA
	Canada - Toronto

	ASIA/PACIFIC
	Australia - Sydney
	China - Beijing
	China - Chengdu
	China - Chongqing
	China - Dongguan
	China - Guangzhou
	China - Hangzhou
	China - Hong Kong SAR
	China - Nanjing
	China - Qingdao
	China - Shanghai
	China - Shenyang
	China - Shenzhen
	China - Suzhou
	China - Wuhan
	China - Xian
	China - Xiamen
	China - Zhuhai

	ASIA/PACIFIC
	India - Bangalore
	India - New Delhi
	India - Pune
	Japan - Osaka
	Japan - Tokyo
	Korea - Daegu
	Korea - Seoul
	Malaysia - Kuala Lumpur
	Malaysia - Penang
	Philippines - Manila
	Singapore
	Taiwan - Hsin Chu
	Taiwan - Kaohsiung
	Taiwan - Taipei
	Thailand - Bangkok
	Vietnam - Ho Chi Minh

	EUROPE
	Austria - Wels
	Denmark - Copenhagen
	Finland - Espoo
	France - Paris
	Germany - Garching
	Germany - Haan
	Germany - Heilbronn
	Germany - Karlsruhe
	Germany - Munich
	Germany - Rosenheim
	Israel - Ra’anana
	Italy - Milan
	Italy - Padova
	Netherlands - Drunen
	Norway - Trondheim
	Poland - Warsaw
	Romania - Bucharest
	Spain - Madrid
	Sweden - Gothenberg
	Sweden - Stockholm
	UK - Wokingham

